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Abstract

In the context of this dissertation the nonrelativistic Limit of Quantum
Electrodynamics (QED) is derived by the help of the Wegner flow
equation. Thereby all constituents of the QED Quantum field can be
treated on equal footing, leading to the fundamental Hamiltonian of
light–matter interactions for a plurality of electrons and positrons as
classical point–like particles carrying mass, charge and spin.

The QED quantum field is a hybrid which is composed of the matter–
and antimatter quantum fields and the photon quantum field. Addi-
tionally, the coupling of the matter– and antimatter quantum fields
to classical external potentials is considered. The constituents of this
hybrid are initiallly inextricably interwoven with each other.

Starting from the hybrid QED field (represented in the
Coulomb gauge), firstly, it is shown that the physical problem
is that the respective QED Hamiltonian does not commute with
the QED particle number operator. The latter is defined via the
occupation number of the matter– and antimatter modes. This
lack of commutation is the reason why the QED Hamiltonian can
not be retranslated to first quantization, where one would sum over
individual point–like particles.

The fact that the QED Hamiltonian does not commute with the
particle number operator means that the particle number is not
a conserved quantity. This property fundamentally separates the
physics of QED from the nonrelativistic physics on the atomic
scale. Therefore a unitary transformation of the QED Hamiltonian
is performed such that a unitarily equivalent QED Hamiltonian arises
which conserves the particle number. Proceeding in this way, the
classical or quantum mechanical concept of a point particle with the
attributes mass, charge and spin is put in the center as the essential
property of the non-relativistic limit of QED.

The unitary transformation of the hybrid QED quantum field is per-
formed by the help of the Wegner flow equation. In general, the
flow equation is a differential equation that provides a method for
(block)diagonalizing an operator in a continuous manner by means of
a generator adapted to the problem.



In the context of the thesis problem, the generator of the flow equation
is constructed in such a way as to eliminate, the pair terms of the QED
Coulomb interaction and those of the coupling to external c-number
potentials, and the high-energy photons. High–energy photons in this
context are the X-ray photons and the gamma ray photons.

The flow equation which follows from this generator is given by
a nonlinear ordinary differential equation and can thus only be
solved perturbatively. For this the QED Hamiltonian is expanded
with respect to the (dimensionless) finestructure constant. This has
the consequence that the originally nonlinear differential equation
decomposes into a system of (still nonlinear) coupled differential
equations. Since the zeroth order differential equation of this system
can be solved exactly there follows for all higher orders coupled linear
differential equations for which a solution can be found.

The QED Hamiltonian transformed in this way is manifestly particle
number conserving, however, it cannot be translated back into the
first quantization yet. The reason for this is that in this QED
Hamilton operator preserving the particle number, still the matter
and antimatter degrees of freedom are coherently superposed. This
is due to the fact that the QED field operators are still given in the
so-called Dirac representation.

By the help of the Eriksen transformation it is possible to decouple
the matter– and antimatter degrees of freedom in the particle number
conserving QED quantum field. The Eriksen transformation is
a unitary transformation that transforms the single–particle Dirac
Hamiltonian in such a way that the resulting Hamiltonian – the
so–called Newton–Wigner Hamiltonian – is of blockdiagonal shape.
Furthermore, the Eriksen transformation is defined by the property
that it is energy separating. This means that first, the eigenfunctions
of the single–particle Dirac Hamiltonian, the four–component Dirac
spinors, become the Newton–Wigner spinors. The latter have, for
the matter degrees of freedom, entries in the upper two components,
whereas the lower components are zero. For the antimatter degrees
of freedom it it vice versa: their Newton–Wigner spinors have entries
in the lower to components, whereas the upper components are zero.
Secondly, in the Newton–Wigner representation, the energy eigenvalue
problem is separated in such a way that there is one for matter and
antimatter separately (with the respective minus sign for antimatter).



Therefore the Eriksen transformation guarantees that the matter–
and antimatter degrees of freedom are completely decoupled in the
Newton–Wigner representation. This enables to express the Newton–
Wigner spinors by the Pauli eigenfunctions of nonrelativistic atomic
physics (as solutions for the electrons as well as for the positrons),
which vary slowly on the length scale of the Bohr radius (with respect
to the Compton wavelength of the electron).

Going now, with respect to the unitarily equivalent QED quantum
field preserving the particle number, from the Dirac representation of
the field operators to the Newton-Wigner representation, the matrix
elements can be evaluated as gradient expansion with respect to the
slowly varying Newton-Wigner field operators. The solution is con-
structed up to the second order in the finestructure constant such
that the first relativistic corrections to the Pauli Hamiltonian of light–
matter interaction of atomic physics occur.

The Wegner flow equation also yields self energy terms
resulting first from the QED Coulomb interaction (longitudinal
interaction), and second from the interaction of the matter– and
antimatter quantum fields with high-energy photons (transversal
interaction). These describe the renormalization of the bare
mass of the fermion. Their evaluation leads then also to a
renormalization of the magnetic moment of the fermions which
is in agreement with the result of J. Schwinger. Moreover,
all effective one– and two–particle interactions known from the
light–matter interaction of atomic physics arise in this way. The
longitudinal QED Coulomb interaction leads, in addition to the
Coulomb interaction between two fermions, to the Darwin term
and the spin–orbit interaction in the field of another fermion. The
transversal QED interaction leads to the orbit–orbit interaction
between two fermions, to their magnetic dipole–dipole interaction,
and their spin–other–orbit interaction.

It is finally possible to express the unitarily equivalent, particle number
conserving QED Hamiltonian, represented in the Newton–Wigner re-
presentation, in first quantization. Proceeding in this guise the goal
is achieved to find a nonrelativistic Hamiltonian of light–matter inter-
actions describing classical, point–like particles carrying mass, charge
and spin interacting with low–energy photons.





Zusammenfassung

Im Rahmen dieser Dissertation wird der nichtrelativistische Limes
der Quantenelektrodynamik (QED) mit Hilfe der Wegnerschen Fluss-
gleichung hergeleitet. Dabei können alle Konstituenten des QED
Quantenfeldes gleich behandelt werden, sodass es sich bei dem
Ergebnis um den echten, fundamentalen Hamiltonoperator der Licht–
Materie Wechselwirkung handelt, undzwar für eine Pluralität von
Elektronen und Positronen als klassische Punktteilchen die Masse,
Ladung und Spin tragen.

Bei dem QED Quantenfeld handelt es sich um ein Hybrid
aus Materiequantenfeldern, Antimateriequantenfeldern und
Photonquantenfeldern, wobei zusätzlich die Kopplung der Materie–
und Antimateriequantenfelder an äußere klassische Potentiale
berücksichtigt wird. Die Konstituenten dieses Hybrids sind zunächst
untrennbar miteinander verwoben.

Ausgehend von diesem hybriden QED Quantenfeld (dargestellt in
der Coulomb–Eichung) wird zunächst ausführlich aufgezeigt, dass
das physikalische Problem dasjenige ist, dass der entsprechende
QED Hamiltonoperator nicht mit dem Teilchenzahloperator
vertauscht (letzterer ist, in der Modendarstellung, durch die
Besetzungszahl der Materie– und der Antimateriemoden definiert).
Dieses Nichtvertauschen ist die Ursache dafür, dass der QED
Hamiltonoperator nicht in die erste Quantisierung zurück übersetzt
werden kann, in der man über individuelle Punktteilchen summiert.
Das Nichtvertauschen des QED Hamiltonoperators mit dem
Teilchenzahloperator bedeutet, dass die Teilchenzahl keine Erhal-
tungsgröße in der QED ist. Diese Eigenschaft trennt die Physik der
QED radikal von der nichtrelativistischen Physik auf atomarer Skala.

Daher wird eine unitäre Transformation des QED Hamiltonoperators
dergestalt durchgeführt, dass ein unitär äquivalenter QED Hamilton-
operator zu Tage tritt, der die Teilchenzahl erhält. Zugleich wird auf
diese Weise das klassische bzw. quantenmechanische Punktteilchen
mit den Attributen Masse, Ladung und Spin als zentrale Eigenschaft
des nichtrelativistischen Limes der QED in den Mittelpunkt gestellt.

Die unitäre Transformation des hybriden QED Quantenfeldes wird
mit Hilfe der Wegnerschen Flussgleichung durchgeführt. Allgemein
handelt es sich bei dieser Flussgleichung um eine Differential-



gleichung, die mit Hilfe eines die Fragestellung angepassten Generators
einen gegebenen Operator unitär äquivalent transformiert bzw.
blockdiagonalisiert, undzwar auf kontinuierliche Art und Weise.

Im Rahmen des Problems dieser Dissertation wird der Generator
der Flussgleichung dergestalt konstruiert, dass erstens die Paarterme
der QED Coulomb–Wechselwirkung und diejenigen der Kopplung
an äußere c–Zahl Potentiale, und zweitens die hochenergetischen
Photonen eliminert werden. Bei den letzteren handelt es sich um
Röntgenphotonen und Gammaphotonen.

Die mit diesem Generator konstruierte Flussgleichung führt auf eine
nichtlineare, gewöhnliche Differentialgleichung und kann daher
nur perturbativ gelöst werden. Der QED Hamiltonoperator
wird dazu in eine Reihe bezüglich der (dimensionslosen)
Feinstrukturkonstante entwickelt. Dadurch zerfällt die ursprünglich
nichtlineare Differentialgleichung in ein System gekoppelter (zunächst
nichtlinearer) Differentialgleichungen. Da jedoch die nullte Ordnung
dieses Systems gekoppelter Differentialgleichungen exakt lösbar ist,
resultieren für alle höheren Ordnungen nunmehr lineare gekoppelte
Differentialgleichungen, für die eine Lösung gefunden werden kann.

Der auf diese Weise unitär transformierte QED Hamiltonoperator ist
manifest teilchenzahlerhaltend, allerdings lässt er sich noch nicht in
die erste Quantisierung zurück übersetzen. Die Ursache dafür ist
dass in diesem die Teilchenzahl erhaltenden QED Hamiltonoperator
noch immer die Materie– und Antimateriefreiheitsgrade kohärent
überlagert sind. Dies liegt daran dass die QED Feldoperatoren in
der Dirac Darstellung vorliegen.

Mit Hilfe der Eriksen–Transformation gelingt es im unitär
equivalenten, die Teilchenzahl erhaltenden QED Quantenfeld die
Materie– und Antimateriefreiheitsgrade zu entkoppeln. Die
Eriksen–Transformation transformiert erstens den Einteilchen Dirac–
Hamiltonian unitär äquivalent auf einen blockdiagonalen Dirac–
Hamiltonoperator, den so genannten Newton–Wigner Hamilton-
operator. Zweitens wird die Eriksen Transformation dadurch definiert,
energieseparierend zu sein. Dies bedeutet, dass die Eigenfunktionen
des Einteilchen Dirac–Hamiltonians, die vierkomponentigen Dirac–
Spinoren, in der Newton–Wigner Darstellung in (nach wie vor
vierkomponentige) Spinoren übergehen, die für die Materie Einträge in



den beiden oberen Komponenten aufweisen, und für die Antimaterie
Einträge in den beiden unteren Komponenten. Zudem wird
das Energieeigenwertproblem separiert, sodass es für Materie und
Antimaterie getrennt gültig ist (mit dem entsprechenden Minus für
die Antimaterie). Auf diese Weise ist sichergestellt, dass Materie–
und Antimateriefreiheitsgrade in der Newton–Wigner Darstellung
vollständig entkoppelt sind. Mit Hilfe der Eriksen Tranformation
ist es dann möglich, die Newton–Wigner Spinoren durch die Pauli
Eigenfunktionen der nichtrelativistischen Atomphysik auszudrücken
(sowohl als Lösungen für Elektronen, als auch für Positronen), die auf
der Skala des Bohrschen Radius langsam variierende Funktionen sind
(relativ zur Compton–Wellenlänge des Elektrons).

Geht man nun bezüglich des die Teilchenzahl erhaltenden QED
Quantenfeldes von der Dirac–Darstellung der Feldoperatoren in die
Newton–Wigner Darstellung, so lassen sich die Matrixelemente als
Gradiententwicklung bezüglich der langsam variierenden Newton–
Wigner Feldoperatoren auswerten. Die Lösung wird bis zur zweiten
Ordnung in der Feinstrukturkonstanten konstruiert, sodass die ersten
relativistischen Korrekturen zum Pauli Hamiltonoperator der Licht–
Materie Atomphysik in Erscheinung treten.

Die durch die Wegnersche Flussgleichung erhaltenen
Selbstenergieterme, resultierend erstens aus der QED Coulomb–
Wechselwirkung (longitudinale Wechselwirkung), und zweitens
aus der Wechselwirkung der Materie– und Antimateriefelder
mit hochenergetischen Photonen (transversale Wechselwirkung)
renormalisieren die nackte Masse des Elektrons. Deren Auswertung
führt daher auf eine Renormalisierung des magnetischen Moments
der Fermionen, die in Übereinstimmung mit dem Resultat von J.
Schwinger ist.

Darüber hinaus entstehen sämtliche effektive Ein– und
Zweiteilchenwechselwirkungsterme wie sie aus der Licht–Materie
Wechselwirkung der Atomphysik bekannt sind. Die longitudinale
QED Coulomb–Wechselwirkung führt, neben der Coulomb–Wech-
selwirkung zwischen zwei Fermionen, zum Darwin–Term und zur
Spin–Bahn Wechselwirkung im Feld eines anderen Fermions.
Die transversale QED Wechselwirkung führt auf die Orbit–Orbit
Wechselwirkung, die magnetische Dipol–Dipol Wechselwirkung und
die Spin–Other–Orbit Wechselwirkung.



Zusammenfassend ist es so möglich, den unitär äquivalenten,
die Teilchenzahl erhaltenden QED Hamiltonoperator in die erste
Quantisierung zurück zu übersetzen. Auf diese Weise wird das
Ziel erreicht, einen nichtrelativistischen Hamiltonoperator der Licht–
Materie Wechselwirkung zu erhalten, der Punktteilchen (Elektronen
und Positronen) mit Masse, Ladung und Spin in Wechselwirkung mit
niederenergetischen Photonen beschreibt.
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1 Introduction

Quantum Electrodynamics (QED) is a quantum field theory. It is the
theory of light–matter interactions in second quantization. This means
that it is not only the electromagnetic field that is described by the
occupation number of its modes, or by the creation and annihilation
operators of the (massless) photons. In QED also the particles are
described by the excitation and deexcitation of modes, however, of
matter and antimatter modes. Thus, also the massive particles, the
fermions, are described by creation and annihilation operators.

QED has been born by Paul Dirac in 1928 [1], and it has been raised
by Julian Schwinger, Richard Feynman and Shin ichiro Tomonaga.
For sure, there were many other physicists who contributed to the
development of QED, or even laid the foundations of the theory, as
for example Pascual Jordan, its ”unsung hero” [2].

Nevertheless, Paul Dirac is known to be ”the founding father and
guiding spirit” of QED [2]. He laid the foundations of the theory by
trying to unite the principles of quantum mechanics with the special
theory of relativity. This led him to the discovery that relativistic
quantum mechanics must at least be four dimensional as it is described
by the Dirac–Hamiltonian, which has a representation as a 4×4 matrix
operator. Up to then it was thought that it was sufficient to describe
the nonrelativistic electron interacting with electromagnetic fields by
the 2 × 2 Schrödinger–Pauli Hamiltonian. However, the additional
two dimensions in the Dirac–Hamiltonian held a problem ready: the
negative energy solutions. These are problematic because of the
interactions of the electron with electromagnetic fields. The electron
could in principle occupy these states of increasingly negative energy
by emitting photons, and in this way lower its energy further and
further. This is then an infinite process and therefore it is surely not
physical. Thus, Dirac applied the Pauli principle and postulated that
the ground state of relativistic quantum mechanics is of such nature
that all states of negative energies are occupied, whereas all states of
positive energies are empty. He then interpreted the excitations of this
ground state as holes in the Dirac–sea. In that way he discovered the
antiparticle of the electron, the hole. This is the famous hole theory
[3, 4, 5, 2]. Later on, the hole in the Dirac–sea became renowned as
the positron. Now with the introduction of the positron into QED
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the problem of negative energy solutions has finally been removed
[3, 4, 5, 2]. An in–depth introduction into the history of QED can be
found in [2].

So in textbook QED we are dealing with quantum fields for both,
matter, antimatter and light. This immediately brings a philosophical
or semantic trick box into play, and to say it right away, I believe
that this trick box is in a sense central to the problem posed in this
dissertation. Why is that?

Now, as is stated by Silvan Schweber [2], ”The history of elementary
particles can be analyzed in terms of oscillations between two
viewpoints: one which takes fields as fundamental, in which particles
are the quanta of the fields; and the other which takes particles as
fundamental, and in which fields are macroscopic coherent states.”
Obviously, Dirac favored the particle point of view! Nevertheless, in
the beginning it was mentioned that QED is a quantum field theory.
Now take a look at the following picture in figure 1:

Figure 1: Bubble chamber trajectories of an electron and a positron

Here you can see the trajectories of an electron and a positron
moving in a static magnetic induction field of a bubble chamber. The
(classical, Newtonian!) Lorentz force forces the particles onto spiral
paths, however, since the electron carries charge q = −|e|, and the
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positron carries charge q = +|e|, one of them goes around left, the
other goes around right. The intricate point is that one (reasonably)
presupposes that point particles are moving here which create the
tracks, not quantum fields!

Oh no!, you might think now, not the old, boring dispute regarding the
particle–wave dualism! Yes, obiously, the problem runs through to
quantum field theories! But I am not going to philosophize wildly, on
the contrary: the problem is approached very formally. It is therefore
important to point out how here the philosophical or semantic trick
box is related to an actual, formal “problem” of QED: the
lack of particle number conservation. Yes, in QED, the particle
number is not conserved!

Now, saying that in a quantum field theory the particle number is not
a conserved quantity might be confusing. How can the particle number
be not conserved in QED when there are no particles, only quantized
(anti–)matter fields? This mysterium can be solved at least formally:
it is possible to define a particle number operator N̂ that counts the
number of occupied matter and antimatter modes. And this particle
number operator does not commute with the Hamiltonian ĤQED

of QED,
[
N̂ , ĤQED

]
6= 0̂! For explaining this in more detail take a

look at the QED Hamiltonian in the Coulomb gauge [6]

ĤQED = ĤD + Ĥrad + V̂ext + Ĥ⊥ + V̂C (1)

The first term ĤD is the single–particle Dirac Hamiltonian in its
second quantized guise. The single–particle Dirac Hamiltonian
describes the Dirac–particle in a static external magnetic induction
field. It comprises the kinetic energy of the Dirac–particle, its
Zeeman energy and its rest energy. The second term Ĥrad describes
the quantized electromagnetic field. The term V̂ext describes the
interaction of the quantized matter and antimatter fields with external
electrostatic sources. The term Ĥ⊥ describes the interaction between
(anti–)matter fields and photons, and finally, the term V̂C describes
the interaction between the (anti–)matter fields, namely the QED
Coulomb interaction.

At a first glance, the Hamiltonian (1) looks more or less like the
ordinary Hamiltonian of light–matter interactions. And if it would
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not be for the hats, one could really confuse them. Therefore, it
has to be mentioned again, that all of these contributions in (1)
are quantized operator valued fields. And this fact creates an (at
least until now) unbridgeable rift between the world of QED and
the nonrelativistic description of the interactions between light and
matter. For sure, in our classical, nonrelativistic world, the particle
number is a well defined, conserved quantity and we observe electrons
carrying a fixed mass me, charge q = −|e| and spin sz = ±~

2 (or
positrons with fixed mass me, charge q = +|e| and spin sz = ∓~

2)! The

nonrelativistic Hamiltonian Ĥ
(el)
LM of electrons interacting with light (or

the one of positrons Ĥ
(pos)
LM interacting with light) should really conserve

the particle number iff it describes the particles causing the trajectories
in figure 1.

Therefore we ask: what is the relation between the QED Hamiltonian
(8) and the nonrelativistic Hamiltonian ĤLM describing point–like
fermions interacting with light?

The answer will be given throughout this dissertation. The result
regarding the electrons assumes the following guise [7, 8]

Ĥ
(el)
LM = Ĥ

(el)
SP + Ĥ

(low,el)
⊥ + V̂C,ee + V̂⊥,ee + Hrad + V̂

(el)
ext (2)

where [7, 8]

Ĥ
(el)
SP =

N∑
j=1


mec

2 +
(Π(j)

b )(Π(j)
b )

2me
− 1

8
1

m3
ec

2

(
Π

(j)
b

)4

+
(
2 + αFS

π

) (
qe~
2me

B
(ext)
b σ

(P,j)
b

)
s,s′

 (3)

is the nonrelativistic Schrödinger–Pauli Hamiltonian. Π
(j)
b is the gauge

invariant velocity of the electrons, and σ
(P,j)
b are the Pauli matrices.(

2 + αFS
π

)
is the Schwinger result of the anomalous magnetic moment

of the electron. Note that N is the total number of electrons, hence,
these can be counted!

Now [7, 8]

Ĥ
(low,el)
⊥ = − 1

mec2

N∑
j=1

ĵ
(e)
b

(
r(j)
)
Âb

(
r(j)
)

(4)
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where
∑N

j=1 ĵ
(e)
b

(
r(j)
)

is the nonrelativistic current density caused by a
plurality of point electrons interacting with low–energy photons. The
latter are described by the vector potential Ab

(
r(j)
)
.

The term [7, 8]

V̂C,ee =
1

2

N∑
j 6=j′



q2
e

4πε0

∣∣∣r(j′)−r(j)
∣∣∣

− q2
e

4πε0

(
~
mec

)2

πδ(3)
(
r(j) − r(j′)

)
− q2

e

8πε0

~
mec

σ
(P,j)
b′′ εbb′b′′

r
(j)
b −r

(j′)
b∣∣∣r(j)−r(j′)
∣∣∣3 Π

(j)

b′
mec


(5)

describes the Coulomb interaction between the electrons, their Darwin
interaction and their spin–orbit interaction due to the presence of the
other electrons.

The following term [7, 8]

V̂
(el)
ext =

Z |qe|
4πε0

N∑
j=1


1

4π|R−r(j)|
−1

8
~
mec

~
mec

δ(3)
(
R− r(j)

)
+1

4
~
mec

εbb′b′′

(
Rb−r(j)

b

4π|R−r(j)|3
)(

Πb′
mec

σ
(P,j)
b′′

)
µ,µ′

 (6)

describes the interaction of the electrons with external c–number
sources, the respective Darwin term, and the spin–orbit interaction
in the external electric field.

The effective interaction term [7, 8]

V̂⊥,ee =
1

2

N∑
j 6=j′



(
− q2

e

4πε0

)
1
2

 δa,b∣∣∣r(j)−r(j′)
∣∣∣ +

(
r(j)
a −r

(j′)
a

)(
r
(j)
b −r

(j′)
b

)
∣∣∣r(j)−r(j′)

∣∣∣3
 Π

(j′)
b

mec
Π(j)
a

mec

+
(
− q2

e

4πε0

)
1
4

(
~
mec

)2


8
3πδ

(3)
(
r(j) − r(j′)

)
δa,b

+
3

(
r(j)
a −r

(j′)
a

)(
r
(j)
b −r

(j′)
b

)
−3
∣∣∣r(j)−r(j′)

∣∣∣2δa,b∣∣∣r(j)−r(j′)
∣∣∣5

σ
(P,j′)
b σ

(P,j)
a

+ 1
2

~
mec

q2
e

4πε0

r
(j)
b −r

(j′)
b∣∣∣r(j)−r(j′)
∣∣∣3 εb′,b,b′′

(
Π

(j′)
b σ

(P,j)
b′′ −Π(P,j)

b σ
(j′)
b′′

)


(7)

5



comprises the orbit–orbit interaction, the magnetic dipole–dipole
interaction, and the spin–other orbit interaction between the electrons.

Finally, Hrad is the radiation field of the photons.

The corresponding Hamiltonian Ĥ
(pos)
LM thus describes point positrons

interacting with light.

Now for going from the QED Hamiltonian (8) to the nonrelativistic
Hamiltonian (2) it would be necessary to retranslate the QED
Hamiltonian to first quantization, e.g. as a discrete sum over
individual particles. However, that is not possible, because the particle
number is not conserved, as can be seen from the nonvanishing
commutator of the QED Hamiltonian (1) with the particle number
operator N̂ . And the reason why the QED particle number operator
does not commute with the QED Hamiltonian is the interaction
terms Ĥ⊥, V̂C and V̂ext. Vividly spoken it is the interaction of the
(anti–)matter fields with the high energy photons which allows for
processes during which matter or antimatter or photons are created
and annihilated, and the pair terms in the QED Coulomb interaction
and in the coupling to external sources, such that there is no way to
fix the particle number in QED.

It seems like an irresolvable philosophical or semantic contradiction:
one has to talk about particles all the time although they are described
by quantum fields! For the time being, however, the following
conception seems to make sense: QED does not describe interacting
point particles. It also does not describe pure quantum fields. What
QED is is hard to say. The clearest picture to think of is that QED
describes a hybrid between matter, antimatter and light (somewhat
loosely expressed, I sometimes call it the QED soup!). This hybrid
has physical properties which stand for themselves, and which have
nothing to do with the physical properties of classical, nonrelativistic
point particles.

As is shown throughout this dissertation, the fact that the properties of
this light–(anti–)matter hybrid stand for themselves is reflected in the
necessity of renormalization of the attributes of its constituents, the
renormalization of the bare mass m0 and the g–factor of the fermions.
By deducing the nonrelativistic limit of QED, renormalization is really
required!

To briefly summarize what has been said so far: in QED, which is
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a field theory, the particle number is not a conserved quantity. This
fact harbors a philosophical or semantic contradiction connected to
the particle–wave dualism. Moreover, this fact absolutely separates
QED from our nonrelativistic world. So how can one understand the
trajectories in figure 1 when the particles which create them are being
described by Quantum Electrodynamics as a high–energy field theory?
The question can also be formulated differently: how can one
derive the nonrelativistic limit of Quantum Electrodynamics,
so that the hybrid is unwound and disintegrates into its components:
nonrelativistic particles and low–energy photons? How can one come

from the QED Hamiltonian ĤQED with the property
[
N̂ , ĤQED

]
6= 0̂

to the nonrelativistic Hamiltonian of light–matter interactions ĤLM =

Ĥ(el)
LM + Ĥ(pos)

LM for which
[
N̂ , ĤLM

]
= 0̂?

As it becomes obvious from these questions, the ancient dispute
regarding the particle–wave dualism is not only a philosophical or
semantic one. In QED it gets a technical face in the form of a non-
vanishing commutator. Obviously, for answering the question above

one needs to address the non-vanishing commutator
[
N̂ , ĤQED

]
6= 0̂!

So in fact, the deduction of the nonrelativistic limit of QED is
obviously closely interwoven with the question of the relation between
classical point particles and quantum fields. It disposes of a formal

expression,
[
N̂ , ĤQED

]
6= 0̂, and this has the consequence that

one can ask: is there a unitary transformation of the QED

Hamiltonian ĤU such that
[
N̂ , ĤU

]
= 0̂?, hence, such that ĤU

conserves the particle number? And if so, how is ĤU related to ĤLM ,
and can one express this unitarily equivalent Hamiltonian ĤLM in first
quantization, where one can sum over individual particles with
their attributes mass me, charge q and spin sz?

Now this is a very formal question that can be attacked in a technically
and methodologically crystal clear manner. This is exactly what was
done in the context of this dissertation. And yes, finding a unitarily
equivalent Hamiltonian ĤU which conserves the particle number N̂
is indeed possible! However, it will turn out that it is not sufficient
to find such a Hamiltonian ĤU which preserves the particle number
for the goal of describing point particles. This is because in ĤU , the
matter and antimatter modes are still coherently superposed,
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which means that one cannot reexpress ĤU in first quantization.

However, one can also solve this problem technically in a clean
way. Now the reason for this coherent superposition of matter and
antimatter degrees of freedom lies in the properties of the single–
particle Dirac Hamiltonian and the reinterpretation of the Dirac–hole
as the positron. In the so–called Dirac representation, in which ĤQED

must therefore naturally be, and in which its sister ĤU still is, electrons
and positrons are still present as a matter–antimatter hybrid.

This means that one has yet to pass from the Dirac representation of
ĤU to the so–called the Newton Wigner representation [9, 10, 7]. The
Newton–Wigner representation is closely related to the nonrelativistic
limit of the single–particle Dirac Hamiltonian, and it is only in
this representation in which a classical interpretation is possible,
hence, in which we find the nonrelativistic Hamiltonian ĤLM of light–
matter interactions (for both electrons and positrons). Technically
the Newton–Wigner representation can be brought about by another
unitary transformation, the so–called Eriksen transformation [11,
10, 7]. Expressing the Hamiltonian ĤU in the Newton–Wigner
representation indeed makes it possible to derive the nonrelativistic
limit of QED as a many–fermion Hamiltonian ĤLM describing the
interactions of fermions as point particles, their interactions with
each other, and their interactions with low–energy photons. The
Hamiltonian ĤLM can then be retranslated to first quantization,
hence, from this Hamiltonian then follows ĤLM and thus the
Hamiltonian (2)!

It has to be emphazised, however, that it is an interesting feature,
given the history of QED as ”oscillating between the two viewpoints”,
that one can answer the question of how one can derive the
nonrelativistic or classical limit from QED in a physically sensible
way by answering the question how can one regain the classical
point particle carrying mass, charge and spin from QED.

To give an answer to this question by defining the essential properties
of point–like nonrelativistic particles is the bridge between QED and
nonrelativistic light–matter interactions, and this bridge is nothing
but the nonrelativistic limit of QED.

Fritz Rohrlich [12] already regretted in 1980 that ”there does not
exist up to date a clean proof of this [nonrelativistic...] limit,
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[although] this notion is logically very reasonable and my view
philosophically necessary because QED without [its nonrelativistic
limit] is incomplete.”

Now the inspiration to the question of how one can derive the
nonrelativistic limit of QED came from the pioneering work of Takashi
Itoh [13]. He was the first who deduced from the Hamiltonian
of QED the nonrelativistic many–body Hamiltonian of electrons
interacting with each other in case of a static external electromagnetic
field. Methodologically, the work unfortunately leaves something to
be desired, because the positrons are not treated properly. Itoh
often neglects terms in his derivation which violate particle number
conservation and provides unclear arguments for this (at least for me).
Itoh also eliminates all photons from the QED Hamiltonian, such that
he cannot implement the necessity of renormalization. With that it
is not possible to achieve the anomalous magnetic moment of the
electron.

Claude Cohen–Tannoudji et. al. have also faced this question in their
book Photons and Atoms. Introduction to Quantum Electrodynamics
[6]. There they deduce the nonrelativistic limit from the QED
Hamiltonian starting by two–component formalism of the field
operators. This means that their field operators describe already
on the QED level particles and antiparticles separately. They argue
that the coupling between the matter and antimatter degrees of
freedom is small, but neglecting this coupling from the beginning is
not satisfactory because again, in that way it is not possible to treat
the positrons on equal footing. Obviously, the positrons are particles
equal to the electron, see again figure 1! However, with their method
of perturbation theory, they are able to derive the Schrödinger–Pauli
Hamiltonian of the electron in first order of their expansion. For
higher order calculations they refer to the work of Iwo Bialynicky–
Birula The Hamiltonian of Quantum Electrodynamics [14]. There
Bialynicki–Birula unitarily transforms the QED Hamiltonian with a
Foldy–Wouthuysen transformation adapted to the formalism of field
theory. With that he gets as the most important representative
of the relativistic corrections to the Schrödinger–Pauli-Hamiltonian
the spin-orbit interaction of the fermions (electrons and positrons)
with the electromagnetic field. However, he also does not consider
(small) terms which violate the particle number conservation from the
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beginning by starting from Dirac field operators which describe matter
and antimatter separately. Furthermore, the relativistic correction to
the kinetic energy is missing.

In another work of Bialynicki–Birula [15], starting with the sentence
“The relationship between quantum and classical electrodynamics is
a complex subject, with many aspects, not all of which are at present
well understood.”, the focus has been laid on the classical limit of
the radiation or electromagnetic field interacting with a plurality of
charged particles. The approach taken in this dissertation shows,
however, that it is very important to consider the whole QED hybrid,
to take it radically serious as an object that has nothing to do with its
constituents arising from it in the nonrelativistic limit, e.g. that it is
not made of particles and the radiation field as distinguishable objects.
This makes it possible to focus on how to get back to the classical point
particle carrying mass, charge and spin, interacting with low–energy
photons, by attacking the problem of particle number conservation
violation (which is a problem insofar as it is not understable in classical
terms).

Therefore, in this dissertation, a different approach for deriving the
nonrelativistic limit from QED is taken. Thereby it is shown that
it is not necessary to put particle number conservation into it from
the beginning, or to drop small, however existent, particle number
violating terms 1. All constitutens of QED shall be treated on equal
footing. Therefore, for deriving the classical, nonrelativistic limit from
QED, use is made of the so–called Wegner flow equation [16]. The
Wegner flow equation (or the flow equation) is a tool for unitarily
transforming a given matrix or an operator in a continous manner.
It is a differential equation generated by a generator which has to be
chosen on the basis of physical considerations.

Hence, a unitary transformation of the QED Hamiltonian is to be
sought such that the resulting Hamiltonian ĤU conserves the particle
number. It now turns out that one has to chose the generator of the
related flow equation such that the pair terms in the QED Coulomb
interaction as well as the high energy photons are eliminated from
the QED Hamiltonian! It will be shown that high–energy photons
are those whose wave number q is larger than αFSmec

2, where αFS
1It has to be emphasised that with such an intuitive approach, one can not be sure that terms,

which actually belong to the result in this order, are suppressed.
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is the finestructure constant. Thus, it is the hard X-ray photons
and the gamma rays which are being elimanted. Only then the
resulting Hamiltonian preserves the particle number. Unfortunately
this generator generates a nonlinear differential equation that one
cannot solve exactly. This reflects the fact that, as is generally known,
real interactions can only be treated in terms of perturbation theory.
This means that one has to expand the QED Hamiltonian in terms of
a dimensionless coupling constant, which is the fine structure constant
αFS. The resulting system of coupled linear differential equations can
then be solved in principle in any order, and here it is solved up to
the order α2

FS.

Now this has also the consequence that the bare mass m0 occuring
as a parameter in the QED Hamiltonian will be changed during the
process of taking the nonrelativistic limit from it. This is also known
as renormalization. The g–factor of the fermions is also renormalized.
In that way one finds the Schwinger result of the anomalous g–factor
[17].

However, as has already been mentioned, the aspect of particle number
conservation this is not the only one of the story. The particle number
conserving Hamiltonian ĤU is not yet expressable in first quantization.
Due to the fact that the QED Hamiltonian is build upon the properties
of the nondiagonal single–particle Dirac Hamiltonian, in QED, the
matter and antimatter degrees of freedom are superposed, and this
coherent superposition is independent of the aspect of particle number
conservation. Therefore, in a second step, one has to decouple the
matter and antimatter degrees of freedom in ĤU . This can be done by
the help of the Erikson transformation [11, 10, 7], which is a unitary
transformation generalizing the Foldy–Whouthuysen transformation
[18]. It is a unitary transformation that blockdiagonalizes the
single–particle Dirac Hamiltonian in an external static magnetic
field, and with that it enables to express the Dirac operators in
the so–called Newton–Wigner representation. Now in the Newton–
Wigner representation the Dirac operators decompose into matter and
antimatter degrees of freedom separately, hence allowing for a classical
interpretation [19, 9, 10]. There are several works which are concerned
with this de–facto blockdiagonalization of the single–particle Dirac
Hamiltonian, see for example [20, 21, 22, 23, 24, 25, 11, 26, 27, 28, 29].
However, in none of them but in the one of Bylev and Pirner [26] use
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is made of a flow equation based approach. But Bylev and Pirner have
not solved the related flow equation exactly, only perturbatively. It
is, however, possible to solve this flow equation exactly.

All of this is explained in detail in the following sections. Finally it
should be said that with the path outlined here it is possible to derive
the nonrelativistic limit of QED for both electrons and positrons and
their interactions in a completely symmetric fashion. With that it is
possible to answer the urgent quesiton of T. Padmanabhan of ”What
happens to the antiparticles when you take the non-relativistic limit
of QFT?” [30].

It was Ettore Majorona who emphasised already in 1937 that “The
prescriptions to cast the [Dirac] theory into a symmetric form, in
conformity with its content, are however not entirely satisfactory,
because one always starts from an asymmetric form or because
symmetric results are obtained only after one applies appropriate
procedures such as the cancellation of divergent constants, that one
should possibly avoid.” [31]. In this work he then clarified that
four degrees of freedom are needed for both matter and antimatter,
so 4 + 4 = 8 degrees of freedom altogether.

However, in this dissertation, the final result for the many–body -
Schrödinger–Pauli Hamiltonian is only presented for the electrons.
Unfortunately, there was no time left for the (completeley) analog
evaluation of the positrons.

Furthermore, this dissertation was completed in July 2022. In the
meantime, the results have been extended by Nils Schopohl so that
the renormalization of the bare charge q0 and the Lamb shift are now
also available as the result of a unitary transformation of the QED
Hamiltonian based on Wegner’s flow equation [8].

Now the structure of the work is as follows: in section 2 the reader
is introduced to the Hamiltonian of QED in the Coulomb gauge.
Then the relation between QED and the classical limit problem is
discussed, and the Newton–Wigner representation of single–particle
Dirac Hamiltonian is briefly sketched.

In section 3 the method of unitarily transforming matrices or operators
by the help of the Wegner flow equation is presented, and then the
method is discussed in the context of the question of how to deduce
the classical limit from QED.
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Next in the first part of the solution to the classical limit problem of
QED 4 the flow equation that generates particle number conservation
is set up and solved by the help of perturbation theory. In that way one
achieves a unitarily equivalent QED Hamiltonian ĤU which conserves
the particle number, and in which all constituents, fermions, photons,
and their interactions, occur in a completely symmetric fashion.

Then in the section 5 the Eriksen transformation is introduced as
the unitary transformation which blockdiagonalizes the single–particle
Dirac Hamiltonian, and which decouples matter and antimatter
degrees of freedom. Then the single–particle Dirac Hamiltonian in
the Newton–Wigner representation, which follows from the Eriksen
transformation, is discussed.

In the second part of the solution to the classical limit problem of
QED 6 it is shown how one can retranslate the results achieved so far
to first quantization by applying the Eriksen transformation to ĤU .
At this point the positrons are not further considered, the evaluation
is only done for the part describing the electrons. Thereby it is shown
how the renormalization of the electron properties come into play: one
part comes from the interaction with the high–energy photons. This is
referred to as transversal renormalization. The other contributions to
the renormalization, the longitudinal contribution, is due to the QED
Coulomb interaction. As will become clear, it stems from the necessity
of normal ordering the QED Coulomb interaction. Next the effective
Schrödinger–Pauli Hamiltonan is derived. Finally the nonrelativistic
Hamiltonian of light–matter interaction in first quantization for a
plurality of electrons is presentend and the results are being discussed.

The appendix is intended as an auxiliary tool for those who wish to
follow long calculations in detail. There is, however, one appendix
section which stands alone. In section J it is shown how the Maxwell
Equations of the operator valued fields describing the photons as well
as their coupling to sources can be derived.

This dissertation was developed over a period of four years in close
collaboration with my supervisor Prof. Dr. Nils Schopohl. Most of the
calculations in this dissertation have been developed by my supervisor
while it was an indispensable part of mine to carefully check all these
calculations independently.

Furthermore it was an essential part of my mine to critically question
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the physical ideas which we have developed and discussed together,
and to insist on a physically coherent picture (or to be taught better,
i.e. to learn). In that way I have made several important contributions
concerning the physical coherence of the overall work. This concerns,
first, referring strictly to graph 1, the insistence that all constituents of
the QED soup must be treated equally, which has led to the realization
that it is inconsistent to introduce two separate components for matter
and antimatter from the beginning for the QED field operators.

Second, it was my insistence that we live in a world where there are
always photons that laid the basis for finding a generator for the flow
equation that allows to eliminate only a certain part of the photons,
namely the high-energy photons, from the QED Hamiltonian.

Third, it was unclear for a long time how to get from the four–
dimensional Dirac Hamiltonian to the nonrelativistic two–dimensional
Schrödinger–Pauli Hamiltonian. By reading McKellar’s extremely
insightful paper [9] I was able to make it clear that also in the
nonrelativistic limit the formalism will be four–dimensional, however,
it has somehow to be given by the diagonal Dirac β matrix. With
this insight it became possible to solve the flow equation for the
Eriksen transformation exactly and, indeed, the nonrelativistic limit
of the Dirac Hamiltonian was found to be given by β times the
two–dimensional Schrödinger–Pauli Hamiltonian, hence, as a four–
dimensional, blockdiagonal Hamiltonian.

Fourth, in the long discussions on how to choose the cut–off of the
renormalization terms to get a physically consistent picture, I was
able to make a decisive contribution by insisting that it is inconsistent
to say on the one hand that the correct cut–off must be made Lorentz
invariant, but on the other hand it was clear that the anomalous g–
factor has nothing at all to do with Lorentz invariance. This led to the
idea, following Paul Dirac [32], to implement a physical cut-off which
consists in limiting both the photon energy and the kinetic energy of
the fermions. This in turn led to the correct renormaliziation of the
bare mass m0 of the fermions and therefore to the Schwinger result
for the g–factor.

Finally, I realized that one does not have to do the evaluation for the
part with the positrons all over again, but that one can also obtain
the positron Hamiltonian using the charge conjugation operator, which
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makes sense since, of course, the fermions should be renormalized in
a symmetric way.

There have been many other contributions I could make during the
long and intensive discussions, here I have listed the most important
ones.
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2 Quantum Electrodynamics (QED) in the

Coulomb Gauge

2.1 Introduction to QED in the Coulomb Gauge

There are several highly recommendable books on QED [6, 32, 33, 4,
34, 5, 35, 36, 37, 38], where each book has a different focus, making it
worthwhile to read each one in order to understand and learn about
quantum field theories and Quantum Electrodynamics. Since for the
derivation of the nonrelativitisic limit of the QED Hamiltonian its
representation in the Coulomb gauge is the most convient one, the
representation from [6] has been mostly adopted.

As already indicated in the introduction, the hybrid quantum field
of QED consits of a charged (anti–)matter quantum field, a radiation
field, and their interaction fields. It can be represented by the following
Hamiltonian in the Coulomb gauge 2: [6]

ĤQED = ĤD + Ĥrad + V̂ext + Ĥ⊥ + V̂C (8)

The interpretation of these terms goes as follows: the first term ĤD

is the second quantized Dirac Hamiltonian. It comprises the rest
energy, the kinetic energy and the Zeeman energy of the charged (anti–
)matter quantum fields. The second term Ĥrad is the radiation field
or the quantized electromagnetic field. The term V̂ext is the potential
energy of the charged (anti–)matter quantum field in an external static
classical source Φ(ext) (r). The last two terms Ĥ⊥ and V̂C are the
essential terms of QED. V̂C comprises the Coulomb interaction of
the charged (anti–)matter quantum fields, and Ĥ⊥ describes the the
interaction of the charged matter quantum fields with the radiation
field or the photons.

One could think that the QED Hamiltonian (8) is not Lorentz
invariant, since the decomposition of the electromagnetic quantum

2The reason why the Hamiltonian (8) is referred to as ”in the Coulomb gauge” is that the
Coulomb interaction between the (anti–)matter fields appears explicitely. In a representation
withouth a choice of gauge the Hamiltonian of classical light-matter interactions consistens of the
kinetic energy of the electrons plus the energy of the electromagnetic field. Decomposing the
latter into longitudinal and transversal parts then the Coulomb interaction as the longitudinal
interaction of light–matter interactions, as well as the coupling to the light, the transversal part
of light–matter interactions, apperas. This is because light and matter are related by the Maxwell
equations, which also decompose into longitudinal and transversal parts [6].
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field into longitudinal and transversal parts is not. However, as has
already been shown by W. Heisenberg and W. Pauli in 1930 the total
Hamiltonian (8) is Lorentz invariant [39]. A nice summary of their
arguments can also be found in [14].

The various terms of (8) and their properties are discussed in more
detail in the following.

The Second Quantized Single–Particle Dirac Hamiltonian

The second quantized Dirac Hamiltonian ĤD is given as

ĤD =

∫
d3r

∑
µ,µ′∈{1,2,3,4}

1− CF

2

(
Ψ̂ †µ (r) H

(D)
µ,µ′Ψ̂µ′ (r)

)
(9)

It contains the integral kernel H
(D)
µ,µ′ which is the single–particle Dirac

Hamiltonian in a static external magnetic induction field B
(ext)
b =

rot A
(ext)
b (r). It is given by

H(D) = m0c
2β +

∑
b∈{x,y,z}

cαb

(
p̂b − qeA(ext)

b (r)
)

(10)

The four by four diagonal Dirac β matrix and the non–diagonal Dirac
αb matrix obey to the algebraic relations

βαa + αaβ = 04×4

β2 = 14×4

αaαb = δa,b14×4 + iεabcσc

a, b ∈ {x, y, z}

(11)

These are diagonal or non–diagonal with respect to a chosen
representation [5]. In our case this is the so–called Dirac
representation:

αa = σ(P )
x ⊗ σ(P )

a

β = σ(P )
z ⊗ 12×2

(12)
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where matrices σ
(P )
a are the Pauli matrices in their standard

representation, thus

σ(P )
x =

(
0 1
1 0

)
σ(P )
y =

(
0 −i
i 0

)
σ(P )
z =

(
1 0
0 1

) (13)

The first term in the single–particle Dirac Hamiltonian (10) describes
the rest energy of the Dirac fermion, whereas the second term describes
its kinetic energy and its Zeeman energy. (In the Heisenberg picture of
H(D) one finds that the velocity v̂a of the Dirac particle is cαa.) Please
note the rest mass m0, which is the bare mass of the Dirac fermion!

In the appendix sections A, C and D the properties of the single
particle Dirac Hamiltonian H(D) are discussed in more detail. An
extensive introduction to (the history of) the Dirac Hamiltonian can
be found in [3, 40, 5, 40, 41].

The (anti–)matter field operators Ψ̂µ and Ψ̂ †µ (r), the so called Dirac
spinors, are given by

Ψ̂µ (r) =
∑
k

(
Uµ (r; k) ĉk + Vµ (r; k) b̂†

k̃

)
Ψ̂ †µ (r) =

∑
k

(
U ?
µ (r; k) ĉ†k + V ?

µ (r; k) b̂k̃

)
µ ∈ {1, 2, 3, 4}

(14)

The operators ĉ†k, ĉk and b̂†
k̃
, b̂k̃ are creation and annihilation operators

(k is a multi index counting the modes of the Dirac eigenvalue
problem). They operate on the matter sector of the Fock space of
QED, and they obey to the anti–commutation relations for spin–1

2

particles [4, 5]:
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{
ĉk, ĉ

†
k′

}
= δk,k′1̂ =

{
b̂k̃, b̂

†
k̃′

}
{ĉk, ĉk′} = 0̂ =

{
ĉ†k, ĉ

†
k′

}
{
b̂k̃, b̂k̃′

}
= 0̂ =

{
b̂†
k̃
, b̂†
k̃′

}
{
b̂k̃, ĉk′

}
= 0̂ =

{
b̂k̃, ĉ

†
k′

}
{
b̂†
k̃
, ĉk′
}

= 0̂ =
{
b̂†
k̃
, ĉ†k′
}

(15)

Uµ (r; k) is the µ–th component of a Dirac amplitude belonging to the
positive energy Ek > 0, whereas Vµ (r; k) is the µ–th component of a
Dirac amplitude belonging to the negative energy −Ek < 0.

H
(D)
µ,µ′Uµ′ (r; k) = EkUµ (r; k)

H
(D)
µ,µ′Vµ′ (r; k) = −EkVµ (r; k)

(16)

The Dirac amplitudes comprise four components for both matter and
antimatter [31]!

Please notice that in case the Dirac Hamiltonian comprises an external
electric field E(ext) the charge conjugation symmetry is broken. This
is because the matter is attracted by the electric field, the Lorentz
force being F (e) = −|e|E(ext), whereas the antimatter is repulsed by
the electric field F (p) = +|e|E(ext). In that case the set of modes k
and k̃ are not necessarily of the same scope and one would have to
introduce a summation over the mode indices k̃ in the part describing
the negative energy solutions in 16 [10].

From the requirement that the Dirac Hamiltonian (10) must be
hermitian, the amplitudes U ?

µ (r; k), Uµ (r; k′) and V ?
µ (r; k), Vµ (r; k′)

obey to the following orthogonality relations:
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∫
d3r
∑
µ

U ?
µ (r; k)Uµ (r; k′) = δk,k′∫

d3r
∑
µ

V ?
µ (r; k)Vµ (r; k′) = δk,k′∫

d3r
∑
µ

U ?
µ (r; k)Vµ (r; k′) = 0∫

d3r
∑
µ

V ?
µ (r; k)Uµ (r; k′) = 0

(17)

From which the completeness relation of the Dirac modes follows as

∑
k

(
Uµ (r; k)U ?

µ′ (r
′; k) + Vµ (r; k)V ?

µ′ (r
′; k)

)
= δµ,µ′δ

(3) (r− r′) (18)

And the anti commutation relations of the creation and annihilation
operators of the fermions imply

{
Ψ̂µ (r) , Ψ̂ †µ′ (r

′)
}

= δµ,µ′δ
(3) (r− r′) 1̂{

Ψ̂µ (r) , Ψ̂µ′ (r
′)
}

= 0̂ =
{
Ψ̂ †µ (r) , Ψ̂ †µ′ (r

′)
} (19)

It can be shown that the relation (19) is a necessary consequence if
one requires that the momentum operator Ψ̂µ generates translations
in spacetime x [5].

The operation 1−CF
2 in (9) ensures that the Dirac quantum field is

symmetric under charge conjugation [33]. It is explained in more detail
below, where the QED current density operator ĵb (r) and the QED
charge density operator %̂ (r) are introduced, and also in the appendix
section F. It has to be mentioned that the operation 1−CF

2 removes an
(infinite) constant being not observable [4].

The most important operators of QED, besides the Hamiltonian (8),
are the particle number operator N̂ and the charge number operator
Q̂.
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N̂ = N̂ (e) + N̂ (p) =
∑
k

(
ĉ†kĉk + b̂†

k̃
b̂k̃

)
N̂ (e) =

∑
k

ĉ†kĉk

N̂ (p) =
∑
k

b̂†
k̃
b̂k̃

(20)

N̂ (e) is given by the mode occupation number ĉ†kĉk. It counts the
occupied Dirac–modes of H(D) with mode index k and positive energy
eigenvalue Ek > 0. N̂ (p) is given by the mode occupation number b̂†

k̃
b̂k̃.

It counts its occupied Dirac–modes with mode index k̃ and negative
energy eigenvalue −Ek < 0.

Hence, the charge number operator Q̂ is defined by

Q̂ = qe

(
N̂ (e) − N̂ (p)

)
(21)

Now the most important properties of these two operators for the
question posed in this dissertation are [8]

[
Q̂, ĤQED

]
= 0̂[

N̂ , ĤQED

]
6= 0̂

(22)

Like in our classical physical world, the charge number Q̂ is a conserved
quantity in QED. What separates QED from our world is the lacking
of particle number conservation. The reason for the latter is the fact
that in QED the energy can be so high that there are processes which
allow to convert photons into fermion pairs and vice versa. Actually,
the particle number operator N̂ does not commute with ĤQED because
of the interaction terms Ĥ⊥ and V̂C .

If one wishes to rebuild our classical world from QED or to regain
the nonrelativistic limit from it, one has to handle the lack of particle
number conservation. In subsection 2.2 a closer look is taken at the
properties (22).
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The Radiation Field

The quantized radiation field can be represented according to [6]

Ĥrad =
1

2

∫
d3r′

∑
bε{x,y,z}

(
Ê

(T )
b (r′) ε0Ê

(T )
b (r′) + B̂b(r

′)
1

µ0
B̂b(r

′)

)
(23)

In this representation it resembles its classical counterpart, the
classical electromagnetic field, the most. However, (23) is an operator
valued field. For understanding this better it is convenient to
represent the electromagnetic field by a linear superposition of creation
and anihilation operators â†q,λ and âq,λ describing the creation and
anihilation of the particle of the electromagnetic field, the photon,
with polarization λ ∈ {I, II} and wavevector q

Â
(T )
b (r) =

1√
V

∑
q

∑
λ∈{I,II}

Ab (q, λ)
(
eiq·râq,λ + e−iq·râ†q,λ

)

Ab (q, λ) =

√
~

2ε0ω (q)
ub (q, λ)

(24)

Ê
(T )
b (r) =

i√
V

∑
q

∑
λ∈{I,II}

Eb (q, λ)
(
eiq·râq,λ − e−iq·râ†q,λ

)

Eb (q, λ) =

√
~ω (q)

2ε0
ub (q, λ)

(25)

B̂
(T )
b (r) =

i√
V

∑
q

∑
λ∈{I,II}

Bb (q, λ)
(
eiq·râq,λ − e−iq·râ†q,λ

)

Bb (q, λ) =

√
~ω (q)

2c2ε0
εbb′b′′

qb′

q
ub′′ (q, λ)

(26)

This mode expansion of the quantized electromagnetic field relates
to a Volume V with periodic boundary conditions. One has to keep

22



in mind that in the end of all calculations one has to take the limit
V →∞.

As photons are bosons, their related creation and anihilation operators
obey to commuation relations

[âq,λ, âq′,λ′] = 0̂ =
[
â†q,λ, â

†
q′,λ′

]
[
âq,λ, â

†
q′,λ′

]
= δλ,λ′δq,q′1̂

(27)

The wavevector qb and the related polarization vectors ua (q, I) and
ua (q, II) form a complete orthornomal basis in the Fock space of the
photons. For lineraly polarized photons there holds

u?b (q, λ) = ub (q, λ)∑
a

ua (q, I)ua (q, I) = 1 =
∑
a

ua (q, II)ua (q, II)∑
a

ua (q, I)ua (q, II) = 0∑
a

ua (q, I) qa = 0 =
∑
a

ua (q, II) qa

(28)

The commutation relations (27) imply for the transversal vector

potential Â
(T )
a (r) and the transversal electrical field Ê

(T )
a (r)

[
Â(T )
a (r) , Ê

(T )
b (r′)

]
=

1

ε0

~
i
δ

(T )
ab (r− r′) 1̂[

Â(T )
a (r) , Â

(T )
b (r′)

]
= 0̂ =

[
Ê(T )
a (r) , Ê

(T )
b (r′)

] (29)

The integral kernel δ
(T )
ab (r− r′), the so–called transversal delta

function [6], is given by

δ
(T )
ab

(
r− r′

)
=

2

3
δabδ

(3)
(
r− r′

)
− lim
η→0+

Θ
(∣∣r− r′

∣∣− η) δab |r− r′|2 − 3 (r− r′)a (r− r′)b
4π |r− r′|5

= lim
ξ→0

∫
d3q

(2π)3

eiq·(r−r
′)

1 + q2ξ2

(
δa,b −

qaqb

|q|2

)
(30)

Together with its complement, the longitudinal delta function
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δ
(L)
ab

(
r− r′

)
= − ∂2

∂ra∂rb

1

4π

1

|r− r′|

=
1

3
δabδ

(3)
(
r− r′

)
+ lim
η→0+

Θ
(∣∣r− r′

∣∣− η) δab |r− r′|2 − 3 (r− r′)a (r− r′)b
4π |r− r′|5

= lim
ξ→0

∫
d3q

(2π)3

eiq·(r−r
′)

1 + q2ξ2

(
δa,b −

qaqb

|q|2

)
(31)

one finds

δ
(L)
ab (r− r′) + δ

(T )
ab (r− r′) = δabδ

(3) (r− r′) (32)

With a, b ∈ {x, y, z} there holds

B̂a(r) = εabc∇bÂ
(T )
c (r) =

(
rotÂ(T ) (r)

)
a

(33)

and

∇aÂ
(T )
a (r) = 0̂ = ∇aÊ

(T )
a (r) (34)

With these relations one can represent the radiation field Hamiltonian
(23) by the occupation number operator â†q,λâq,λ for the photons
according to

Ĥrad =
∑
q

∑
λ∈{I,II}

~ω (q)

(
â†q,λâq,λ +

1

2
1̂

)
(35)

The photon number operator is thus given by

N̂ (ph) =
∑
q

∑
λ∈{I,II}

â†q,λâq,λ ≡
∑
q

â†qâq (36)

In the appendix it is shown that the operator valued electormagnetic
field obeys to the Maxwell equations and that we can also deduce
the quantum analogue wave equation by the help of the Heisenberg
equations of motion for the fields Ê

(T )
b (r) and B̂

(T )
b (r), see section J.
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The Coupling of the Charged Matter and Antimatter Quantum Field to
an External Electric c–Number Field

The coupling to an external potential Φ(ext) (r) is given by the
contribution

V̂ext =

∫
d3r%̂ (r)Φ(ext) (r) (37)

Here, %̂ (r) is the QED current density operator as introduced below
in (43). V̂ext describes, for example, the interaction of electrons and
positrons with the Coulomb field of an atomic nucleus with charge
number Z at the position R according to

Φ(ext) (r) =
Z |qe|
4πε0

1

|r−R|
(38)

The potential (38) breaks the charge conjugation symmetry because
it is attractive for the electrons but repulsiv for the positrons.

The Fourier representation of the potential Φ(ext) (q) =
Z|qe|
4πε0

e−iq·(r−R) 1
|q|2 and of the QED charge density operator

ρ̃ (q) =
∫
d3re−iq·r%̂ (r) will be very useful later on:

V̂ext =
Z |qe|
4πε0

∫
d3q

(2π)3

eiq·R

|q|2
∫
d3re−iq·r%̂ (r)

=
Z |qe|
4πε0

∫
d3q

(2π)3

eiq·R

|q|2
ρ̃ (q)

(39)

Matter–Antimatter–Photon Interaction and Coulomb Interaction

The coupling between the charged (anti–)matter quantum fields and
the radiation field is described by

Ĥ⊥ = −
∫
d3rĵb (r) Â

(T )
b (r) (40)

The charge symmetrized QED current density ĵb(r) can be represented
according to
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ĵb (r) = qe
1− CF

2

∑
µ,µ′ε{1,2,3,4}

Ψ̂ †µ (r) (cαb)µ,µ′ Ψ̂µ′ (r) (41)

Whereas the vector potential Â
(T )
b (r) of the photons is given by (24).

The Coulomb interaction can be represented by

V̂C =
1

8πε0

∫
d3r

∫
d3r′

%̂ (r) %̂ (r′)

|r− r′|
(42)

Where the symmetrized charge density operator %̂ (r) is given by

%̂ (r) = qe
1− CF

2

∑
µε{1,2,3,4}

Ψ̂ †µ (r) Ψ̂µ (r) (43)

The representations of the charge density (43) and the current density
(41) are according to the one proposed by Wolfgang Pauli [33]. CF
is the symbol for charge conjugation operation, see also appendix F.
Usually, in text books on QED or quantum field theory, the current
density (41) and the charge density (43) are introduced withouth the
charge symmetry operation CF [4, 5]. However, the hint is given that
the operators occuring in the respective scalars (QED charge density),
vectors (QED current density) or tensors should always be considered
as being normally ordered. This means that creation operators are
shifted to the left, whereas anihilation operators are shifted to the
right. Depending on the commutation relations these operators obey
to there can occur minus signs during the exchange, or even δk’s, where
k is a multi index.

Now for example

N
(
ck′c

†
k

)
= −c†kck′

N
(
ck′c

†
kc
†
k′′

)
= −N

(
c†kck′c

†
k

)
= +c†kc

†
kck′

(44)

whereas without the operation N then, due to the anticommutation
relations (15)

ck′c
†
k = δk,k′ − c†kck′

ck′c
†
kc
†
k′′ =

(
δk,k′ − c†kck′)c

†
k′′

= δk,k′c
†
k′′ + δk′,k′′ck + c†kc

†
k′′ck′

(45)
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The normal ordering operation N indeed has a true physical meaning.
In the appendix section F it is shown that the operation 1−CF

2 related
to charge symmetry operation CF corresponds exactly to the normal
ordering operation N [7]. Moreover, these operations guarantee that
in the (unfortunately unkown) QED ground state |G〉 the expectation
value of ĵb (r) and %̂ (r) vanish, which should of course be the case [4].

It has to be mentioned that it depends on the purpose which
representation, the charge symmetry operation 1−CF

2 according to Pauli
or the normal ordering operation N , is more convenient [7].

2.2 QED and the Classical Limit Problem

In this subsection the reader shall be introduced in a more formal
way into the two aspects which separate Quantum Electrodynamics
as a field theory describing the interaction between quantized light–
and matter–antimatter fields from classical light–matter interaction
between fermions and photons.

The first, fundamental aspect is the lack of particle number
conservation which is indicated by the non–vanishing commutator
of the QED particle number operator (20) with the QED Hamiltonian
(8). The physical reason for this is the fact that in the QED soup high
energy photons buzz around, causing the creation and annihilation
of fermions and other photons! The QED field is a quantum field
consisting of matter and antimatter fields and light fields, and all
these fields are inextricably interwoven with each other.

The second aspect is the coherent superposition of matter and
antimatter degrees of freedom due to the definition of the Dirac
field operators (14).

These two aspects are independant of each other, as will be elaborated
in detail below.

Thus, in order to derive the nonrelativistic limit of QED there
are two steps necessary: one first has to unitarily transform the
QED Hamiltonian ĤQED in such a way that it commutes with the
QED particle number operator N̂ . This will essentially amount to
eliminating the pair terms in the QED Coulomb interaction, and to
eliminate the high energy photons. In chapter 4.1 it is specified what is
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meant by high energy photons (see (85) and the following discussion):
these are photons which are not important for the physics of classical
light-matter interaction processes, because their wavelength is below
the order of magnitude relevant for physics on the atomic or chemical
length scale.

The resulting unitarily equivalent many–body QED Hamiltonian is
a particle number conserving one for matter and antimatter fields
moving at arbitrary speed and interacting with low–energy photons,
the ones which are relevant for the classical light–matter interactions.
However, this unitarily equivalent many–body Hamiltonian is still
not describing electrons and positrons separately. That means that
it is still not retranslateable to first quantization. Therefore, in a
second step, one has to decouple the matter and antimatter degrees
of freedom in this many–body QED Hamiltonian.

In the following the reader is introduced to the fundamental aspect,
the lack of particle number conservation. With this, it will be shown
why the QED Hamiltonian (8) is very difficult to interpret, although
the contributions look very similar to their classical analogues. This
is done by a discussion of the QED charge density operator (43) and
the QED current density operator (41).

Then the second aspect of decoupling the matter and antimatter
degrees of freedom is discussed in a more formal way, and it is
elaborted why there is a strict order of procedure for addressing the
two aspects.

The Lack of Particle Number Conservation in QED

One really has to emphasize that and actually put three exclamation
points on it: altough the various contributions to the QED
Hamiltonian (8) are very similar to their classical counterparts, one
really has to be extremely careful, because these objects do not behave
classically, and what is going on in QED is absolutely non-trivial. As
is known, in our classical world, particle number conservation holds
strictly, and one can sum over the individual energies of the particles
(regarding their kinetic energy or their Zeeman energy), as well as
over the Coulomb energy of two particles. However, there is no way
to express the Hamiltonian (8) as one in which one can sum over
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individual particles. Formally, this means that there is no simple way
to reexpress the field theory QED Hamiltonian (8) in first quantization
[7]. This point can be more clarified by the simplest possible example,
by regarding the QED charge density (43).

In our classical world one could denote for the classical charge density
%(cl)(r) [7]

%(cl)(r) = qe

N (e)∑
j=1

δ(3)(r− r(j,e))− qe
N (p)∑
j=1

δ(3)(r− r(j,p)) (46)

where one would sum over individual electrons and even, with the
respective minus sign, over individual positrons.

Writing out the QED charge density %̂ (r) (using (14) and the
properties (17)) and applying the normal ordering operation N or
charge conjugation operation 1−CF

2

(
ckc
†
k′

)
= −c†k′ck, see (44), one finds

[7]

%̂ (r) = %̂0 (r) + %̂+ (r) + %̂− (r)

%̂0 (r) = qe
∑
k,k′

∑
µ

(
U ?
µ (r; k′)Uµ (r; k) ĉ†k′ ĉk − V

?
µ (r; k)Vµ (r; k′) b̂†

k̃′
b̂k̃

)
%̂+ (r) = qe

∑
k,k′

∑
µ

U ?
µ (r; k′)Vµ (r; k) ĉ†k′ b̂

†
k̃

%̂− (r) = qe
∑
k,k′

∑
µ

V ?
µ (r; k)Uµ (r; k′) b̂k̃ĉk′

(47)

Comparing (46) and (47) it becomes obvious that only %̂0 could be a
candidate for a classical interpretation, since it is proportional to the
occupation number operator ĉ†k′ ĉk for matter and, with the respective

minus sign, the occupation number operator b̂†
k̃′
b̂k̃ for antimatter.

The contributions %̂+ and %̂− describe the creation and annihilation
of an electron–positron pair, as they comprise products of matter
and anti–matter creation and anihilation operators b̂k̃ĉk′ and ĉ†k′ b̂

†
k̃
.

These contributions to the QED charge density operator cannot be
interpreted classically, and there is no way to express the operator
%̂ (r) as one in which one can count over individual point charges as
in the classical expression (46).
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From the anticommutation relations (15) of the fermionic creation and
annihilation operators one finds [8, 7]

[
N̂ , %̂0 (r)

]
= 0̂ (48)

and [8, 7]

[
N̂ , %̂± (r)

]
= ±2%̂± (r) (49)

The same holds true for the QED current density operator [7]

ĵb (r) ≡ qe
1− CF

2
Ψ̂†µ (r) (cαb)µν Ψ̂ν (r)

= qec
∑
µ,ν

N

(∑
k′

(
U?µ
(
r; k′

)
ĉ†k′ + V ?

µ

(
r; k′

)
b̂k̃′
)

(αb)µ,ν
∑
k

(
Uν (r; k) ĉk + Vν (r; k) b̂†

k̃

))

= qec
∑
k,k′

∑
µ,ν

(αb)µ,ν


U?µ (r; k′)Uν (r; k) ĉ†k′ ĉk − V

?
µ (r; k′)Vν (r; k) b̂†

k̃
b̂k̃′

+U?µ (r; k′)Vν (r; k) ĉ†k′ b̂
†
k̃

+ V ?
µ (r; k)Uν (r; k′) b̂k̃ ĉk′

= ĵ
(0)
b (r) + ĵ

(+)
b (r) + ĵ

(−)
b (r)

(50)

where again one finds [8, 7]

[
N̂ , ĵ

(0)
b (r)

]
= 0̂ (51)

and [8, 7]

[
N̂ , ĵ

(±)
b (r)

]
= ±2ĵ

(±)
b (r) (52)

Now this has of course implications for the QED Hamiltonian ĤQED.
The QED Coulomb interaction, for example, comprises nine terms,
of which six are non–particle number conserving! For example, the
contributions %̂0 (r) ◦ %̂+ (r) or %̂+ (r) ◦ %̂+ (r) are not particle number
conserving. By far, written out, the QED Coulomb interaction seems
to have very little in common with the classical Coulomb interaction,
at least formally.

It is exactly these nonclassical properties (49) and (52) which should
be eliminated from the QED Hamiltonian. The aim is to find a
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physically equivalent representation of the QED Hamiltonian in which
these non–particle number conserving contributions are removed.
This can be achieved by eliminating the pair terms of the QED
Coulomb interaction and by simultaneously eliminating the high–
energy photons, which are the reason for the creation and annihilation
of fermion pairs and other photons.

However, as indicated, a particle number conserving QED
Hamiltonian is not the end of the story, since there is still the second
aspect, the coherent superposition of matter and antimatter degrees
of freedom.

The Coherent Superposition of Matter and Antimatter Degrees of
Freedom

Imagine that one has succeeded in finding a unitarily equivalent QED
Hamiltonian ĤU which preserves the particle number, hence[
N̂ , ĤU

]
= 0̂. In this Hamiltonian ĤU all contributions with sub–

or superscripts (±) have vanished, while those with (0) remain (plus
some corrections, as will be shown). Then, for example, the particle
number conserving contribution to the QED current density (50),

which couples to the low energy photons as −ĵ(0)
b (r)·Â(T,low)

b (r), would
be given as follows:

ĵ
(0)
b (r) =

∑
k,k′

(
U ?
µ (r; k′) (αb)µν Uν (r; k) ĉ†k′ ĉk−V

?
µ (r; k′) (αb)µν Vν (r; k) b̂†

k̃
b̂k̃′
)

Here, the occupation number operator ĉ†k′ ĉk for the matter and b̂†
k̃
b̂k̃′

for the antimatter are separated. However, in the Dirac amplitudes
Uµ (r; k′) and Vν (r; k), which are the modes of the Dirac field operators
(14), the matter and antimatter degrees of freedom are not yet
separated.

The reason why there is no clear distinction between matter and
antimatter in QED as a field theory is that it is build upon
the properties of the single–particle Dirac Hamiltonian (10). The
amplitudes Uµ (r; k′) and Vµ (r; k) both comprise four components,
hence eight degrees of freedom altogether, such that the Dirac
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particle itself is a hybrid of matter and antimatter degrees of freedom
[31, 10, 8, 7].

In the introduction it has been mentioned that the relativistic
fermion, described by the Dirac Hamiltonian (10) is necessarily
a four–dimensional object [1, 31, 40], whereas the nonrelativistic
fermion, described by the 2 × 2 Schrödinger–Pauli Hamiltonian, is
two–dimensional. But one can still insist in the four-dimensional
theory that one wants an eigenvalue problem for the matter degrees of
freedom and the antimatter degrees of freedom separately, no matter
how many dimensions are necessary for describing the relativistic
fermion! This means that the Dirac amplitudes U (r; k′) and V (r; k)
have to decompose into upper and lower components [10, 7]. Only
then it is assured that under a temporal evolution the matter and
antimatter degrees of freedom remain separated for all times [10, 7].

Hence, a unitary transformation T is searched for such that for the
eigenvalue problem (16) [10, 7]

T ◦ H(D) ◦ T† ◦ TU (r; k) = EkTU (r; k)

T ◦ H(D) ◦ T† ◦ TV (r; k) = −EkTV (r; k)
(53)

where the new amplitudes TU (r; k) describe matter only, and the
amplitudes TV (r; k) describe antimatter only, and the transformed
Dirac Hamiltonian T ◦ H(D) ◦ T† is blockdiagonal. Only then is the
connection to the Schrödinger–Pauli Hamiltonian visible, because it
will not hurt the Schrödinger–Pauli theory if one adds two ”0”–
dimensions to it, meaning that the Schrödinger–Pauli Hamiltonian is
extended by two blocks 0̂2×2, and the Schrödinger–Pauli eigenfunctions

are extended by

(
0
0

)
!

Now in case of the free Dirac Hamiltonian the decoupling of the
matter and antimatter degrees of freedom can be done by the so–
called Foldy–Whouthuysen transformation S [18, 9, 5, 3]. In case
of a Dirac particle in a static external magnetic field it is the so–
called Eriksen T transformation which succeeds in the decoupling
[23, 11, 20, 10]. As is shown in section 5, the Eriksen transformation
transforms the single–particle Dirac–Hamiltonian H(D) into the so–
called Newton Wigner representation Ĥ(NW ) ≡ T ◦ H(D) ◦ T†, and the
correspoding Newton–Wigner eigenfunctions TU (r; k) and TV (r; k)
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indeed decompose into upper components for the matter, and lower
components for the anti–matter. This will be crucial for being able to
reexpress the field theory Hamiltonian ĤU that conserves the particle
number in first quantization. For a recent in–depth discussion of the
Eriksen transformation see [10].

As hopefully has become more clear: due to the coherent superposition
of matter and anti–matter degrees of freedom in the single–particle
Dirac theory, this superposition is carried into the field theory, because
for the Dirac field operators (14) the Dirac amplitudes Uµ (r; k′) and
Vν (r; k) serve as expansion modes. From this follows that in QED,
expressed in the Dirac representation, there is also no clear distinction
between electrons (matter) and positrons (antimatter). This aspect
does not have something to do with the particle number conservation,
as will be explained in more detail in the following subsection 2.3.

If one succeeds in resolving the first aspect, the lack of particle
number conservation, one will have a many–body QED Hamiltonian
ĤU still given in the Dirac representation. This means that ĤU is
still expressed by the Dirac spinors (14). Hence, this Hamiltonian still
couples matter and antimatter degrees of freedom.

However, one can in fact still apply the Eriksen transformation T, that
serves for decoupling the matter and antimatter degrees of freedom in
the single particle Dirac theory, to the particle number conserving
many–body Hamiltonian ĤU

To give an impression of how this is done, for the particle number
conserving contribution to the QED current density, which remains
after eliminating the particle number violating terms, this would mean
that one inserts the Eriksen transformation according to T†T = 1̂:

ĵ
(0)
b (r) =

∑
k,k′

(
U?ν
(
r; k′

)
(T†)νµ

(
(T)µν′ (αb)ν′µ′ (T

†)µ′ν

)
(T)νµUµ (r; k) ĉ†k′ ĉk

− V ?
ν

(
r; k′

)
(T†)νµ

(
(T)µν′ (αb)ν′µ′ (T

†)µ′ν

)
(T)νµVµ (r; k) b̂†

k̃
b̂k̃′

)

One can now reinterpret the amplitudes TνµUµ (r; k) ≡ U
(NW )
ν (r; k)

and (T)νµVµ (r; k) ≡ V
(NW )
ν (r; k) as Newton–Wigner amplitudes

U
(NW )
ν (r; k) and V

(NW )
ν (r; k) [10, 8, 7]. The Newton–Wigner

amplitudes can then be assumed to be proportional to the two–
Schrödinger–Pauli amplitudes of atomic energy scales, because
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the Newton–Wigner representation of the Dirac amplitudes is the
representation for the classical interpretation of the Dirac electron [9].
They will therefore will serve as expansion coefficients for the Newton–
Wigner field operators Φν (r). One can then therefore explicitely
calculate the matrix elements of the form T ◦ αb ◦ T† as a gradient
expansion with respect to the gauge invariant moment operators
Π̂a(r), because the latter acts, in the nonrelativistic subspace of QED,
on the slowly varying Schrödinger–Pauli wave functions.

Unitarily transforming the QED Hamiltonian (8) in the manner
outlined here, namely first finding a unitarily equivalent QED
Hamiltonian that conserves the particle number and second applying
the Eriksen transformation T for decoupling matter and antimatter
degrees of freedom, necessarily implies the renormalization of the bare
mass m0 and the g–factor of the fermions [8, 7]. This is because
QED is a field theory with true interactions. Since it is not possible to
transfrom the QED Hamiltonian into a particle number conserving one
exactly, only perturbatively, the result is valid up to a certain order
in the coupling constant that one has to choose (the finestructure
constant). Therefore, as will be shown, the “true” electron mass
me and therefore the “true” g–factor of the fermions, the anomalous
g–factor, only appear as classical attributes when one renormalizes
the bare mass m0. This means that one has to choose a cut-off for
otherwise divergent integrals in terms which add up to the one–particle
terms. In that guise the classical, the nonrelativistic Hamiltonian of
light–matter interactions for electrons as well as for positrons and
their interactions emerges.

But how can all of this be achieved? What unites the two aspects
introduced above is the relation with a change of representation.
In quantum mechanics, such a change of representation is done by
a unitary transformation, hence, a transformation which maintains
the physical content of a given Hamiltonian as the generator of the
dynamics of the respective physical system. If this transformation can
be performed only perturbatively, it is clear that the physical content
can be maintained only up to a certain order in the pertubation
method chosen.

In this dissertation the method of choice is the so–called flow equation
[16]. It is a differential equation for unitarily transforming a given
(Hamilton) operator in a continous manner, and it is discussed in the
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section 3. With the flow equation one can find a particle number
conserving unitarily equivalent QED Hamiltonian ĤU [8, 7].

Furthermore one can also deduce the Eriksen transformation T by the
help of the flow equation. The Eriksen transformation leads to the
very important Newton–Wigner representation of the single–particle
Dirac Hamiltonian and the related eigenfunctions [7].

Therefore, before diving into the flow equation, the Newton–Wigner
representation is explained in a little more detail, because it is a very
convenient representation for a classical interpretation of the single–
particle Dirac Hamiltonian (and related obervables) [19, 18, 9, 10].
This will help to understand why the lack of particle number
conservation and the decoupling of matter and antimatter degrees
of freedom are independent aspects, and why one first has to find
a unitarily equivalent QED Hamiltonian that preserves the particle
number, and then decouple the matter and antimatter degrees of
freedom.

2.3 The Newton–Wigner Representation: A Short
Exposure

The so–called Newton–Wigner representation H(NW ) ≡ T◦H(D)◦T†, of
the Dirac Hamiltonian H(D), resulting from the Eriksen transformation
T that has been mentioned in the previous subsection, has much
to do with the problem of finding the nonrelativistic limit of the
QED Hamiltonian (8). As is presented in the appendix section
B, the Eriksen transformation T that allows the transition from
the Dirac representation described by H(D) to the Newton–Wigner
representation H(NW ) can be found by solving the flow equation exactly
[10, 7].

However, as has already been mentioned, the Eriksen transformation
can also be applied to QED as a field theory. In this subsection a
short insight into the consequences that the Eriksen transformation T
has for Quantum Electrondynamics as a many–body theory shall be
given. For this the QED particle number operator N̂ and the QED
charge density operator %̂ (r) will be presented in the Newton–Wigner
representation.
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At this point one has to make a clear distinction between the
single particle Dirac Hamiltonian (10) and its second quantized
complement (9) regarding the way of speaking: speaking of the
Dirac representation in the context of the single particle theory,
the observables are transformed into one another by the unitary
transformation T, for example for an arbitrary operator Ô(D) (x̂, p̂)
in the Dirac picture then

Ô(NW ) (x̂, p̂) ≡ T ◦ Ô(D) (x̂, p̂) ◦ T† (54)

Speaking of the Dirac representation in the context of QED, however,
it is always referred to the second quantized observables which are
described by the Dirac field operators (14). Hence,

O(D) =

∫
d3rΨ̂ †µ (r)

(
Ô(D) (x̂, p̂)

)
µ,µ′
Ψ̂µ′ (r) (55)

Accordingly, speaking of the Newton–Wigner representation in the
context of QED, it is referred to the second quantized observables
expressed by the so–called Newton–Wigner field operators Φν (r)
introduced below (62). These indeed result from the Eriksen
transformation T:

O(NW ) =

∫
d3rΦ̂†µ (r)

(
T ◦ Ô(D) (x̂, p̂) ◦ T†

)
µ,µ′

Φ̂µ′ (r)

=

∫
d3rΦ̂†µ (r)

(
Ô(NW ) (x̂, p̂)

)
µ,µ′

Φ̂µ′ (r)

(56)

As an example for switching from the Dirac representation to the
Newton–Wigner representation consider the QED particle number
operator N̂ given in (20): in the Dirac representation, it is, expressed
in the position space r, a highly nonlocal operator [8, 7]:
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N̂ =
∑
k

(
ĉ†kĉk + b̂†

k̃
b̂k̃

)
=
∑
k

N
(
ĉ†kĉk − b̂k̃b̂

†
k̃

)

=

∫
d3rN

∑
µ,µ′

Ψ̂†µ (r)
(

P(+) − P(−)
)
µ,µ′

Ψ̂µ′ (r)


=

∫
d3rN

∑
µ,µ′

Ψ̂†µ (r)

(
H(D)

√
H(D) ◦ H(D)

)
µ,µ′

Ψ̂µ′ (r)


(57)

Here use has been made of the normal ordering ruleN
(
b̂†
k̃
b̂k̃

)
= −b̂k̃b̂

†
k̃
,

for an in–depth explanation again see appendix section F.

Furthermore, the projection operators P(±) have been used, which are
introduced in the appendix section A. Roughly spoken, P(+) projects
onto eigenstates Uµ (r; k) of positive energy solutions of the single
particle Dirac Hamiltonian, and P(−) projects onto its eigenstates of
negative energy solutions Vµ (r; k).

The exact formal identity [7, 10]

(
P(+) − P(−)

)
µ,µ′

=

(
H(D)

√
H(D) ◦ H(D)

)
µ,µ′

(58)

is also explained in detail in section A of the appendix.

As has already been mentioned, the QED particle number operator N̂
in the Dirac representation is nonlocal, meaning that the integrand in
(57) cannot be interpreted as a particle density in position space r.

However, in the Newton–Wigner representation, N̂ becomes local. To
see this one needs the following identity [7, 10]

T† ◦ β ◦ T = P(+) − P(−) (59)

where β is nothing but the Dirac β matrix (12) refering to the existence
of matter (upper block, +1̂2×2) and antimatter (lower block, −1̂2×2)!
(The identity (59) is derived in section C of the appendix.)

Inserting (59) into (57) there follows [7, 8]
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N̂ =

∫
d3rN

∑
µ,µ′

Ψ†µ (r)

(
H(D)

√
H(D) ◦ H(D)

)
µ,µ′

Ψ̂µ′ (r)


=

∫
d3rN

∑
µ,µ′

Ψ†µ (r)
(
T† ◦ β ◦ T

)
µ,µ′

Ψ̂µ′ (r)


=

∫
d3rN

 ∑
ν,ν′,µ,µ′

Ψ̂†µ (r)
(
T†
)
µ,ν

(β)ν,ν′ (T)ν′,µ′ Ψ̂µ′ (r)


=

∫
d3rN

 ∑
ν,ν′,µ,µ′

(
T‡
)
µ,ν

Ψ̂†µ (r) (β)ν,ν′ (T)ν′,µ′ Ψ̂µ′ (r)



(60)

In the last line it has been integrated partially with respect to Ψ̂†µ (r),

such that T‡ = T‡(Π̂∗).

If one reinterprets the ”new” field operators [7, 8]

Φ̂ν (r) =
∑

µ′ε{1,2,3,4}

(T)ν,µ Ψ̂µ (r)

Φ̂†ν (r) =
∑

µε{1,2,3,4}

(
T‡
)
µ,ν

Ψ̂†µ (r)
(61)

as Dirac spinors in the Newton–Wigner representation then [7, 8]

N̂ =

∫
d3rN

∑
ν,ν′

Φ̂†ν (r) (β)ν,ν′ Φ̂ν′ (r)

 (62)

becomes a local operator. As will be shown in section 5, the Newton–
Wigner field operators Φ̂ν (r) are blockdiagonal meaning that the

Newton–Wigner expansion amplitudes U
(NW )
µ′ (r, k) to positive energy

eigenvalues have entries in the upper two components, while the lower
two components are zero, whereas for the Newton–Wigner expansion
amplitudes V

(NW )
µ′ (r, k) to negative energy eigenvalues, it is vice versa,

the upper components vanish while the lower do not. Hence, the
integrand can be interpreted as a true particle density
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The same holds true for the QED charge density operator (43) [7, 8]:

Q̂ =

∫
d3rqeN

(∑
µ

Ψ†µ (r) Ψµ (r)

)

= qeN

∑
ν,µ,µ′

∫
d3rΨ̂†µ (r)

(
T†
)
µ,ν

(T)ν,µ′ Ψ̂µ′ (r)


= qeN

∑
ν,µ,µ′

∫
d3r
(
T‡
)
µ,ν

Ψ̂†µ (r) (T)ν,µ′ Ψ̂µ′ (r)


=

∫
d3rqeN

(∑
ν

Φ̂†ν (r) Φ̂ν (r)

)
(63)

One can now make the ansatz [8, 7]

Φν (r) = (T)ν,µ Ψ̂µ (r) =


ψ̂+ (r)

ψ̂− (r)

χ̂†+ (r)

χ̂†− (r)


ν

≡


ψ̂+ (r)

ψ̂− (r)
0
0


ν

+


0
0

χ̂†+ (r)

χ̂†− (r)


ν

(64)

where ψ̂± (r) and χ̂± (r) are the field operators of many–body physics
for electrons and positrons separately.

Therefore one finds [7]

Q̂ =

∫
d3rqeN

( ψ̂†+ (r) , ψ̂†− (r) , χ̂+ (r) , χ̂− (r)
)

ψ̂+ (r)

ψ̂− (r)

χ̂†+ (r)

χ̂†− (r)




=

∫
d3rqeN

(∑
σ

ψ̂†σ (r) ψ̂σ (r) +
∑
σ

χ̂σ (r) χ̂†σ (r)

)

=

∫
d3r qe

(∑
σ

ψ̂†σ (r) ψ̂σ (r)−
∑
σ

χ̂†σ (r) χ̂σ (r)

)
≡
∫
d3r qe

(
n̂(e) (r)− n̂(p) (r)

)
(65)
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Where n̂(e) (r) =
∑

σ ψ̂
†
σ (r) ψ̂σ (r) is the electron particle density,

whereas n̂(p) (r) =
∑

σ χ̂
†
σ (r) χ̂σ (r) is the positron particle density.

Please notice the minus sign for the positrons.

Hence [7]
%̂(NW ) (r) = qen̂

(e) (r)− qen̂(p) (r) (66)

and for the particle density operator [8, 7]

n̂(NW ) (r) = n̂(e) (r) + n̂(p) (r) (67)

This means that in the Newton–Wigner representation the particle
density operator and the charge density operator become local
operators that can be interpreted as a true particle density and a
true charge density in position space. There are no oscillating, the
particle number violating terms like %̂± (r) as is the case in the Dirac
representation of the QED charge density operator (47). There are

also no complicated operators like H(D)
√
H(D)◦H(D)

like in the QED particle

number (57).

However, as has been mentioned in the last subsection, it is not
sufficient to know the Newton–Wigner representation of the field
operators for deducing the classical limit of QED. One might think,
after having seen the Newton–Wigner representations of the QED
charge and current density operators, that the Eriksen transformation
T should make it possible to reexpress the QED Hamiltonian
ĤQED by the Newton–Wigner field operators Φν (r) and Φ†ν (r) and
then the QED Hamiltonian in the Newton–Wigner representation is
retranslatable to first quantization yielding the classical light–matter
interaction Hamiltonian. However, this is not the case, and now it is
possible to understand a little more formally why that is not sufficient.
It is because the particle number violating terms stemming from the
interaction terms Ĥ⊥ and V̂C are removed too early by replacing
the Dirac field operators Ψ̂µ (r) by the Newton–Wigner field operators
Φ̂µ (r) in (8)! Take a look, for example, at the unitary transformation
of the operator αb

Πb

m0c
, occuring in Ĥ⊥. It still has complicated form

in the Newton–Wigner representation [7]:

T
(
αb

Πb

m0c

)
T† =

1√
14×4 + 2

m0c2
H

(P )
4×4

(
Πb

m0c
αb + 2

m0c2
H

(P )
4×4β

)
(68)
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This relation is derived in the appendix in section B. However, the
term with the non–diagonal Dirac αb matrix vanishes iff it is applied
to the Newton–Wigner field operators (see section 5). Hence, if one
applies the Eriksen transformation before eliminating the particle
number violating contributions of the transversal interaction Ĥ⊥ given
in (40), and the QED Coulomb interaction V̂C given in (42), this does
not yield the correct (e.g. experimentally very well verified) light-

matter interaction Hamiltonian Ĥ
(el)
LM as presented in (2). It would

yield a Hamiltonian withouth effective interactions, and withouth self–
energy terms (e.g. without renormalization terms).

Therefore the aspect of particle number conservation and the
aspect of decoupling the degrees of freedom of the matter and
antimatter fields are independant aspects of the classical limit
problem of QED. Furthermore its is necessary that one first finds a
particle number conserving representation of the QED Hamiltonian
(8), and then decouples the matter and antimatter degrees of
freedom by reexpressing this particle–number conserving unitarily
equivalent QED Hamiltonian in Newton–Wigner representation!
QED described by the Hamiltonian ĤQED is not a many–body
theory, but its particle number conserving sister ĤU is, and
this makes it possible to apply the Eriksen transformation.

As has already been mentioned, the aspect of finding a unitarily
equivalent QED Hamiltonian which conserves the particle number can
be attacked by the help of the flow equation. The aspect of decoupling
the matter and antimatter degrees of freedom can be attacked by the
help of the Eriksen transformation. The matrix representation of the
Eriksen transformation can be found by the help of the flow equation.

In the following section the flow equation is introduced first on a
general level, then the Wegner flow equation is discussed briefly in
order to present the initial idea of its inventor Franz Wegner.

Then the Brockett flow equation is discussed briefly, because this type
of flow equation gives the Eriksen transformation T, which enables
one to decouple the matter and anti–matter degrees of freedom.

Since the Eriksen transformation is well discussed in the literature,
see for example [23, 24, 25, 11, 27, 28, 29, 10], its derivation is
not as fundamental as that of the particle number preserving QED
Hamiltonian. But it is a nice example of how the flow equation can be
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solved exactly, therefore, the solution of the flow equation which yields
the Eriksen transformation is presented in section B of the appendix.

As will be shown, the flow equation yielding the particle number
conserving QED Hamiltonian can only be solved perturbatively.
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3 The Flow Equation

The flow equation is a method for unitarily transforming a given
(Hamilton) operator in a continous manner. It has been introduced
into physics by Franz Wegner in 1994 [16]. In many cases applying
the flow equation in the sense envisioned by Wegner means that one
searches for a unitarily equivalent Hamiltonian that is diagonal or at
least blockdiagonal instead of being non–diagonal. In some sense it
is the operator analogon to diagonalizing a scalar matrix, however,
this (block–) diagonalization is achieved by solving a differential
equation. The requirement of unitary equivalence means that the
transformed Hamiltonian should describe the same physics as the
original Hamiltonian by leaving physical observables related to the
matrix elements of the Hamiltonian invariant.

The idea is the following. For a given Hamiltonian Ĥ an infinitesimal
shift that is guided by the flow parameter s can be expressed by [7]

Ĥ(s+ ds) = exp [η̂ (s) ds] Ĥ(s) exp [−η̂ (s) ds] (69)

The generator η̂ (s) of this shift must be skew–hermitian in order to
keep the shiftet Hamiltonian hermitean [7] :

η̂ (s)† = −η̂ (s)(
Ĥ(s+ ds)

)†
=
(

exp [η̂ (s) ds] Ĥ(s) exp [−η̂ (s) ds]
)†

= exp
[
−̂η† (s) ds

]
Ĥ†(s) exp

[
−η̂† (s) ds

]
= exp [η̂ (s) ds] Ĥ exp [η̂ (s) ds]

= Ĥ(s+ ds)

The inital value for s = 0 is given by Ĥ(s = 0) = Ĥ.

The flow parameter s does not have a specific physical meaning, it
serves as parameter for the unitary transformation.

By making use of the Baker–Campbell–Haussdorf formula, see (629),

exp(xA) ◦B ◦ exp(−xA) =
∞∑
n=0

xn

n!
[A,B]n (70)
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for operators A, B, one finds for (69) in the order ds [7]

Ĥ(s+ ds) = Ĥ(s) + ds[η̂ (s) , Ĥ(s)] +O
(
(ds)2

)
Thus [7],

Ĥ(s+ ds)− Ĥ(s)

ds
= [η̂ (s) , Ĥ(s)] +O

(
(ds)2

)
In the limit ds→ 0 the flow equation follows as [7]

d

ds
Ĥ(s) =

[
η̂ (s) , Ĥ(s)

]
(71)

Now there are two questions regarding the solution of the flow equation
(71). The first one is what is the suitable generator η̂ (s) that lets the
initial Hamiltonian Ĥ(s = 0) flow, for all s, towards a diagonal or at
least block diagonal shape, so that finally Ĥ(∞) is completely (block)
diagonal.

The second question is what is the right ansatz for Ĥ(s) that fulfills the
left side of the flow equation (71). This question might be answered
only for a concrete problem at hand.

In the following two subsections we will discuss two possible choices of
the generator η̂(s) related to two types of flow equations: the Wegner
generator η̂(W )(s) which generates a nonlinear differential equation,
and the Brockett generator η̂(B)(s) which generates a linear differential
equation.

3.1 The Wegner Flow Equation

The Wegner flow equation for an inital Hamiltonian Ĥ(s) assumes the
following guise [16]:

d

ds
Ĥ(s) =

[[
Ĥ(D)(s), Ĥ(s)

]
, Ĥ(s)

]
Ĥ(0) = Ĥ

(72)

44



Here, Ĥ(D)(s) refers to the diagonal part of the initial Hamiltonian
Ĥ(s), hence, the latter is decomposed into a diagonal part and a non–
diagonal part according to

Ĥ(s) = Ĥ(D)(s) + Ĥ(ND)(s) (73)

The generator η̂(W ) (s) that leads to the Wegner flow equation (72) is
given by [16]

η̂(W ) (s) =
[
Ĥ(D)(s), Ĥ(s)

]
(74)

A hint that the unitarily transformed Hamiltonian Ĥ(∞) assumes
a diagonal or at least a blockdiagonal form can be sketched by
considering the trace of the square of Ĥ(s), which is invariant under
a unitary transformation [7]:

d

ds
tr
(
Ĥ(s)Ĥ (s)

)
=

d

ds
tr
(
Ĥ(0)Ĥ (0)

)
=

d

ds
tr
(
Ĥ(D)(s)Ĥ(D)(s)

)
+

d

ds
tr
(
Ĥ(ND)(s)Ĥ(ND)(s)

)
(75)

This holds because tr

(
Ĥ(D)(s) ◦ Ĥ(ND)(s)

)
= 0. Furthermore, since

Ĥ(0) is constant, there follows d
dstr

(
Ĥ(0)Ĥ (0)

)
= 0. From this one

finds [7]

0 =
d

ds
tr
(
Ĥ(D)(s)Ĥ(D)(s)

)
+

d

ds
tr
(
Ĥ(ND)(s)Ĥ(ND)(s)

)
− d

ds
tr
(
Ĥ(ND)(s)Ĥ(ND)(s)

)
=

d

ds
tr
(
Ĥ(D)(s)Ĥ(D)(s)

)
(76)

An increase in the diagonal parts Ĥ(D)(s) of Ĥ(s) is accompanied by
a decrease in its off–diagonal parts Ĥ(ND)(s). In the limit s → ∞
then hopefully we find Ĥ(ND) → 0, at least approximately. As
has been pointed out by Franz Wegner, it depends strongly on the
initial problem how far the diagonalization can be advanced, i.e.,
whether the non-diagonal elements actually disappear completely or
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whether small parts remains. It is also not possible to say in general
whether a generator leads to complete diagonalization, or only to block
diagonalization. Furthermore, there are no instructions for finding a
suitable generator [42, 43]. Hence, finding the right generator is the
fine art of this method of unitary transformation.

The Wegner generator η̂(W ) of the flow equation allows great flexibility
in the unitary transformation, however, it leads to a nonlinear
differential equation that is cubic in the initial Hamiltonian Ĥ(s) so
that there does not necessarily have to be a simple solution to it.

Furthermore, it must also be noted that it depends on the choice of
the base which parts of the Hamiltonian are diagonal or nondiagonal.
An operator that is diagonal in one base is not necessarily diagonal
in another base. In this way, the flow equation itself becomes
dependent on the choice of base. This means that there could be
several generators that achieve the desired blockdiagonalization, and
one cannot say a priori which is the most convenient one. Now for
the solution of physical problems this means that it might be that a
unitarily equivalent, blockdiagonalized Hamiltonian is not physically
interpretable because the chosen base does not allow for a physical
interpretation. For example, the Dirac Hamiltonian describing the
Dirac electron can be interpreted classically only iff one changes the
representation by the help of the Foldy–Wouthuysen transformation
or the Eriksen transformation. This holds true also for observables
like velocity or angular moment and so on [9].

3.2 The Brockett Flow Equation

The Brockett flow equation for an inital Hamiltonian Ĥ(s) assumes
the following guise [44]:

d

ds
Ĥ(s) =

[[
N̂ , Ĥ(s)

]
, Ĥ(s)

]
(77)

Here, N̂ is some hermitian operator which does not depend on the
flow parameter s.

The generator η̂(B) (s) that leads to the Brockett flow equation (77) is
given by [44]
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η̂(B) (s) =
[
N̂ , Ĥ(s)

]
(78)

Since N̂ is constant, the Brockett flow equation is only quadratic in
the initial Hamiltonian. The price for a simpler differential equation
is that the unitarily transformed Hamiltonian Ĥ(∞) is not necessarily
of diagonal or blockdiagonal shape. What one can show is that the
Brockett generator leads to a unitarily equivalent Hamiltonian hat
commutes with the operator N̂ , which means that they share the
same base.

For this consider the following functional Φ(s) [7]

Φ(s) = tr

((
Ĥ(s)− N̂

)2
)

(79)

Since Ĥ(s) and N̂ are both hermitian operators, the function (79) is
positive semidefinite, Φ(s) ≥ 0.

For the the derivative of the functional Φ(s) with respect to s one
finds [7]

d

ds
Φ (s) =

d

ds
tr

[(
Ĥ(s)− N̂

)2
]

=
d

ds

[
tr
(
Ĥ(s)Ĥ(s)

)
+ tr

(
N̂N̂

)
− 2tr

(
N̂Ĥ(s)

)]
=

d

ds

[
tr
(
Ĥ(0)Ĥ(0)

)
+ tr

(
N̂N̂

)
− 2tr

(
N̂Ĥ(s)

)]
= −2tr

(
N̂
d

ds
Ĥ(s)

)
(80)

Here use has been made of the fact that the trace is cyclically invariant.
Using furthermore the Brockett flow equation (77) one finds [7]
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d

ds
Φ (s) = −2tr

(
N̂
[
η̂(B) (s) , Ĥ(s)

])
= −2tr

(
N̂
(
η̂(B) (s) Ĥ(s)− Ĥ(s)η̂(B) (s)

))
= 2tr

((
N̂Ĥ(s)− Ĥ(s)N̂

)
η̂(B) (s)

)
= 2tr

(
η̂(B) (s) η̂(B) (s)

)
= −2tr

(
η̂(B) (s)

(
η̂(B) (s)

)†)
≤ 0

Since the functional is positive semidefinite, Φ(s) ≥ 0, and its
derivative is negative semidefinite, d

dsΦ (s) ≤ 0, there follows in the
limit s→∞ [7]

lim
s→∞

d

ds
Φ (s) = 0 = tr

(
η̂(B) (∞)

(
η̂(B) (∞)

)†)
And therefore [7]

0̂ = η̂(B) (∞) =
[
N̂ , Ĥ(∞)

]
As one can see, the Brockett generator achieves a unitary
transformation of Ĥ(s) such that for s → ∞ the transformed
Hamiltonian Ĥ(∞) commutes with the operator N̂ . Only if N̂ is
itself diagonal or blockdiagonal one can infer that Ĥ(∞) must be so!

In the following subsection the use of the Wegner flow equation in the
context the problem attacked in this dissertation is briefly sketched,
namely, the deduction of the nonrelativistic limit of QED.

3.3 Flow Equations and the Classical Limit Problem of QED

As has been elucidated in section 2.2, one has to attack two aspects
regarding the deduction of the nonrelativistic limit of Quantum
Electrodynamics, and there is a strict order in which to proceed:
one first has to find a unitary transformation that gives a QED

Hamiltonian ĤU that is particle number conserving, thus,
[
N̂ , ĤU

]
=

0̂. It is possible to find this unitarily equivalent QED Hamiltonian by
the help of the Wegner flow equation.
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In part one of the deduction of the nonrelativistic limit of QED the
generator η̂(LM)(s), where LM stands for light–matter, which gives a
unitarily equivalent QED Hamiltonian ĤU is presented. It generates
a nonlinear ordinary differential equation. This can then be solved
perturbatively by expanding the QED Hamiltonian in a series in the
(dimensionless) finestructure constant αFS. This expansion will lead
to recursive linear differential equations, which will be solved up to
the order α2

FS.

The solution ĤU is then given by [7, 8]

lim
s→∞
ĤU(s) = m0c

2
(
Ĥ(0) + Ĥ(1) (∞) + Ĥ(2,h) (∞) + Ĥ(2,i) (∞)...

)
(81)

Here, Ĥ(1) (∞) is the first order solution, and Ĥ(2,h) (∞)+Ĥ(2,i) (∞) is
the second order solution comprising an homogeneous part Ĥ(2,h) (∞)
and an inhomogeneous part Ĥ(2,i) (∞). The particle number
conserving Hamiltonian lims→∞ ĤU(s) = ĤU(∞) ≡ ĤU , which will be
discussed in subsection 4.2, is a many–body Hamiltonian still beeing
expressed by the Dirac field operators Ψ̂µ (r) given in (14). As has
been indicated in section 2.2, these Dirac field operators superpose
matter and antimatter degrees of freedom due to the Dirac amplitudes
Uµ (r; k) and Vµ (r; k). For the decoupling one can then make use of
the Eriksen transformation T.
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4 Solution to the Classical Limit Problem of QED

Part I: Applying the Flow Equation

In subsection 4.1 the generator η̂(LM) (s) for the flow equation that
provides in the limit s→∞ a unitarily equivalent QED Hamiltonian
ĤU that preserves the particle number is introduced. LM in
η̂(LM) (s) stands for light–matter, since this unitarily equivalent QED
Hamiltonian is a many–body Hamiltonian in second quantization
describing the interaction between charged fermions moving at
arbitrary speed and interacting with low–energy photons.

As will be shown, the generator η̂(LM) (s) depends quadratically on
the initial (QED) Hamiltonian. Therefore, the related flow equation
is a nonlinear differential equation.

It comprises the operator N̂I counting the number of occupied Dirac
modes, and the operator N̂II counting the number of occupied photon
modes of high energy. The latter means that the flow equation
for constructing a light–matter interaction QED Hamiltonian ĤU

eliminates photons with wavenumbers larger than qB = αFS
λC

, where λC
is the Compton wavelength of the electron, and αFS the finestructure
constant. The related wavelength of the photons relevant for light–
matter interaction processes is then the Bohr wavelength λB = 2π

qB
≈

3Å. In the end one will therefore get a Hamiltonian ĤU that
describes processes of atomic and molecular physics, and even solid
state physics.

The related flow equation decomposes into recursive differential
equations by expanding the QED Hamiltonian into a series in the
finestructure constant αFS. For solving them one has to choose the
initial data, which will be done in a physically consistant manner.

The solution of the first order differential equation will be presented
in full, whereas the solution of the second order differential equation is
in larger parts shifted to the appendix, in order to keep the overview.

The homogeneous part of the second order differential equation is
related to the QED Coulomb interaction. For solving this equation
the latter should be decomposed into a normal ordered part and a
self–reaction part. The decomposition is presented in section G of the
appendix. The self–reaction part of the QED Coulomb interaction
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yields one part of the contribution to the renormalization of the bare
mass m0 of the fermions and their g–factor.

The other part of the renormalization of the fermionic attributes
is due to the QED interaction with photons beyond the energy
threshold ~cqB = αFSmec

2. These hard X-ray photons and the higher
energy ones are beeing eliminated from the QED Hamiltonian. This
takes place by solving the inhomogeneous part of the second order
differential equation.

Besides the renormalization contributions one will by that get
terms describing an effective Coulomb interaction and an effective
transversal interaction now with the low–energy photons.

4.1 Generating Particle Number Conservation

A unitary transformation is searched for such that in the low energy
sector of QED there holds particle number conservation for the
fermions, and all processes during which high energy photons that are
irrelevant for nonrelativistic light–matter interactions are eliminated.
The flow equation for that aim is given by [8, 7]

d

ds
Ĥ(s) =

[
η̂(LM) (s) , Ĥ(s)

]
Ĥ(0) =

1

m0c2
Ĥ(QED)

(82)

The generator η̂(LM) (s) of the flow equation can be found by regarding
the following positive semidefinite functional Φ(LM)(s) ≥ 0 [8, 7]:

Φ(LM)(s) =
1

2
tr
([
N̂I , Ĥ(s)

]
◦
[
Ĥ(s), N̂I

])
+

1

2
tr
([
N̂II , Ĥ(s)

]
◦
[
Ĥ(s), N̂II

])
(83)

Where
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N̂I = N̂ (e) + N̂ (p) =
∑
k

(
ĉ†kĉk + b̂†

k̃
b̂k̃

)
N̂II = N (ph)

qB
≡
∑
|q|>qB

∑
λ∈{I,II}

â†q,λâq,λ

=
∑
q,λ

κqâ
†
q,λâq,λ

≡
∑
q

κqâ
†
qâq

(84)

and

κq =

{
1 for |q| ≥ qB

0 for |q| < qB
(85)

Hence, N̂I counts the occupied fermion modes, and N̂II counts the
occupied photon modes of photons with energies are larger than ~cqB.
(85) ensures that all photons with wavelength λB ≡ 2π

qB
' 3Å and

longer remain contained, whereas all photons with wavelength λB /
2π
qB

are being eliminated. Hence X-ray photons and gamma photons
are eliminated. Note that the Compton wavelength of the electron
λC ≈ 2.4 pm, indicating the range of wavelengths where pair creation
starts to take place, was not chosen as upper limit for the photon
elimination. With the choice to eliminate photons with wavelengths
λB and shorter one is of order λB ≈ λC

αFS
well away from the pair

creation threshold.

Now for the derivative with respect to s one finds for the functional
(83) [8, 7]

d

ds
Φ(LM)(s) =


1
2tr
([
N̂I ,

d
dsĤ(s)

]
◦
[
Ĥ(s), N̂I

]
+
[
N̂I , Ĥ(s)

]
◦
[
d
dsĤ(s), N̂I

])
+1

2tr
([
N̂II ,

d
dsĤ(s)

]
◦
[
Ĥ(s), N̂II

]
+
[
N̂II , Ĥ(s)

]
◦
[
d
dsĤ(s), N̂II

])

=


tr
(
η̂(LM) (s) ◦

[
Ĥ(s),

[
N̂I ,

[
N̂I , Ĥ (s)

]]])
+tr

(
η̂(LM) (s) ◦

[
Ĥ(s),

[
N̂II ,

[
N̂II , Ĥ (s)

]]])
= tr

(
η̂(LM) (s) ◦

[
Ĥ(s),

([
N̂I ,

[
N̂I , Ĥ (s)

]]
+
[
N̂II ,

[
N̂II , Ĥ (s)

]])])
(86)
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Iff the generator η̂(LM) is choosen according to [8, 7]

η̂(LM) (s) ≡
[
Ĥ(s),

([
N̂I ,

[
N̂I , Ĥ (s)

]]
+
[
N̂II ,

[
N̂II , Ĥ (s)

]])]
(87)

then
(
η̂(LM) (s)

)†
= −η̂(LM) (s), and for (86) one further finds

d

ds
Φ(LM)(s) = tr

(
η̂(LM) (s) ◦ η̂(LM) (s)

)
= −tr

(
η̂(LM) (s) ◦

(
η̂(LM) (s)

)†)
≤ 0

(88)

Altogether then for s → ∞ there holds lims→∞Φ(LM)(s) = 0 =
lims→∞

d
dsΦ

(LM)(s), implying [8, 7]

lim
s→∞

[
N̂I , Ĥ(s)

]
=
[
N̂I , Ĥ(∞)

]
= 0̂

lim
s→∞

[
N̂II , Ĥ(s)

]
=
[
N̂II , Ĥ(∞)

]
= 0̂

(89)

The generator (87) therefore generates a flow equation which, if
solvable, provides in the limit s → ∞ a unitarily equivalent QED
Hamiltonian ĤU that conserves the particle number and that does
not describe absorption and emission processes of photons with high
energies ~ω (q) > ~cqB.

4.1.1 Series Expansion

It has been proven that the generator η̂(LM) allows to obtain a particle
number conserving QED Hamiltonian. The related flow equation
assumes the following guise [8, 7]

d

ds
Ĥ(s) =

[
η̂(LM) (s) , Ĥ(s)

]
=
[[
Ĥ (s) ,

([
N̂I ,

[
N̂I , Ĥ (s)

]]
+
[
N̂II ,

[
N̂II , Ĥ (s)

]])]
, Ĥ(s)

]
(90)

For s = 0 the initial values are given by
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Ĥ(0) =
1

m0c2
ĤQED

=
1

m0c2

(
ĤD + Ĥrad + V̂ext + Ĥ⊥ + V̂C

) (91)

Since the differential equation (90) is nonlinear, one can only solve
it perturbatively. As a parameter for a perturbation series of Ĥ(0)

the dimensionless finestructure constant αFS = |qe|2
4πε0~c = 1

kCaB
' 1

137 is
chosen. This yields to [8, 7]

Ĥ(s) =
∞∑
j=0

Ĥ(j) (s) (92)

Inserting this series into the differential equation (90) one find the
following recursion equations [8, 7]

d

ds

∞∑
j=0

Ĥ(j) (s) =

 ∞∑
j′=0

Ĥ(j′) (s) ,

N̂I ,
N̂I , ∞∑

j′′=0

Ĥ(j′′) (s)

+

N̂II ,
N̂II , ∞∑

j′′=0

Ĥ(j′′) (s)

 , ∞∑
j′′′=0

Ĥ(j′′′) (s)


=

∞∑
j′′′=0

∞∑
j′′=0

∞∑
j′=0

∞∑
j=0

δj,j′+j′′+j′′′
[[
Ĥ(j′) (s) ,

([
N̂I ,

[
N̂I , Ĥ

(j′′) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(j′′) (s)
]])]

, Ĥ(j′′′) (s)
]

=
∞∑
j=0

∞∑
j′=0

∞∑
j′′=0

Θ
(
j − j′ − j′′

) [[
Ĥ(j′) (s) ,

([
N̂I ,

[
N̂I , Ĥ

(j′′) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(j′′) (s)
]])]

, Ĥ(j−j′−j′′) (s)
]

(93)

where

Θ (x) =

{
1 for x ≥ 0

0 for x < 0
(94)

is the Heaviside step function.

Comparing the orders of j on both sides we finally find [8, 7]

d

ds
Ĥ(j) (s) =

∞∑
j′=0

∞∑
j′′=0

Θ
(
j − j′ − j′′

) [[
Ĥ(j′) (s) ,

([
N̂I ,

[
N̂I , Ĥ

(j′′) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(j′′) (s)
]])]

, Ĥ(j−j′−j′′) (s)
]

(95)

These recursive linear differential equations will now be solved up to
the order j = 2. For that purpose one has to choose the initial data.
This is done in the following way [7]
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Ĥ(0) (0) =
1

m0c2

(
ĤD + Ĥrad

)
Ĥ(1) (0) =

1

m0c2
Ĥ⊥

Ĥ(2) (0) =
1

m0c2

(
V̂ext + V̂C

)
Ĥ(j) (0) = 0 for j ≥ 3

(96)

Note that Ĥ(0) = 1
m0c2
ĤQED. The justification of the choice (96)

is presented in the appendix in section E. There it is shown that
the transversal coupling is of the order αFS, whereas the Coulomb
interaction is of the order α2

FS

It is very important to be clear that the energy of the radiation field
Ĥrad must be put on zeroth order here. It would not be consistent to
assume that it is of the order α2

FSm0c
2 of atomic physics (and hence

comparable with the Coulomb energy). The reason why is that the
number of occupied photon modes n̂q,λ = 0, 1, 2, 3, ... can be unlimited,
such that the radiation energy Ĥrad =

∑
q,λ ~ω (q)

(
n̂q,λ + 1

2

)
must be

put on the zeroth order next to the rest energy and the kinetic energy
of the fermions. Otherwise one would assume that there are only
low–energy photons in the QED soup from the beginning.

In the next step all quantities are normalized to the rest energy m0c
2

of the fermions. Hence, the following abbreveations are introduced [7]

Ĥ(0) =
1

m0c2

(
ĤD + Ĥrad

)
≡ ĤD + Ĥrad

Ĥrad =
1

m0c2

∑
q,λ

~ω (q)

(
â†q,λâq,λ +

1

2
1̂

)
≡
∑
q

ω̃q

(
â†qâq +

1

2
1̂

)
ĤD =

1

m0c2

∑
k

Ek

(
c†kck + b†

k̃
bk̃

)
=
∑
k

Ẽk

(
c†kck + b†

k̃
bk̃

)
Ẽk =

Ek

m0c2

ω̃q =
~ω (q)

m0c2
=

~c |q|
m0c2

=
~ |q|
m0c

=
|q|
kC

(97)

Now for the zeroth order differential equation of (95) one finds the
following nonlinear one [8, 7]
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d

ds
Ĥ(0) (s) =

[[
Ĥ(0) (s) ,

([
N̂I ,

[
N̂I , Ĥ

(0) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(0) (s)
]])]

, Ĥ(0) (s)
]
(98)

Since
[
N̂I , Ĥ

(0) (0)
]

= 0̂ =
[
N̂II , Ĥ

(0)(0)
]

the only phyiscal solution

that to the nonlinear zeroth order differential equation (98) with
respect to the initial value (96) is given by [8, 7]

Ĥ(0) (s) = Ĥ(0) (0) ≡ Ĥ(0) =
1

m0c2

(
ĤD + Ĥrad

)
= Ĥ(0) (∞)

(99)

Hence, it is constant for all s. This enables to find solutions for all
higher orders j, because they occur as linear differential equations.

For the first order j = 1 one finds from (95) the following linear,
homogeneous differential equation [8, 7]

d

ds
Ĥ(1) (s) = −

[
Ĥ(0),

[
Ĥ(0),

([
N̂I ,

[
N̂I , Ĥ

(1) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(1) (s)
]])]]

Ĥ(1) (0) =
1

m0c2
Ĥ⊥

(100)

And for the second order differential equation one finds from (95) [8, 7]

d

ds
Ĥ(2) (s) =



−
[
Ĥ(0),

[
Ĥ(0),

([
N̂I ,

[
N̂I , Ĥ

(2) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(2) (s)
]])]]

−
[
Ĥ(0),

([
Ĥ(1) (s) ,

([
N̂I ,

[
N̂I , Ĥ

(1) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(1) (s)
]])])]

−
[
Ĥ(1) (s) ,

([
Ĥ(0),

([
N̂I ,

[
N̂I , Ĥ

(1) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(1) (s)
]])])]

Ĥ(2) (0) =
1

m0c2

(
V̂ext + V̂C

)
(101)

Here, several contributions drop out because
[
N̂I , Ĥ

(0) (0)
]

= 0̂ =[
N̂II , Ĥ

(0)(0)
]
.

The seeked unitarily equivalent QED Hamiltonian respecting particle
number conservation assumes the guise [8, 7]
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lim
s→∞
ĤU(s) = m0c

2 lim
s→∞

Ĥ(s) = m0c
2
(
Ĥ(0) + Ĥ(1) (∞) + Ĥ(2) (∞) + ...

)
(102)

In the following subsections the equations (100) and (101) are being
solved.

4.1.2 First Order Solution

For solving the first order differential equation (100) one makes the
following ansatz [7]

Ĥ(1) (s) = Ĥ
(1,0)
< + Ĥ

(1,0)
> (s) + Ĥ(1,+) (s) + Ĥ(1,−) (s) (103)

Ĥ
(1,0)
< is the contribution that comprises interactions between fermions

and low energy photons (such one with wavenumber q is smaller than
the Bohr wave number qB = αFS

λC
[7]:

Ĥ
(1,0)
< = − 1

m0c2
(cqe)

∑
k,k′

∑
b

∫
d3r

∑
µ,µ′

(αb)µ,µ′
1√
V

∑
q<qB

Ab (q)


U?µ (r; k)Uµ′ (r; k′) ĉ†k ĉk′e

iq·râq
−V ?µ (r; k)Vµ′ (r; k′) b̂†

k̃′
b̂k̃e

iq·râq

+U?µ (r; k)Uµ′ (r; k′) ĉ†k ĉk′e
−iq·râ†q

−V ?µ (r; k)Vµ′ (r; k′) b̂†
k̃′
b̂k̃e
−iq·râ†q


(104)

This contribution is independent of the flow parameter s and therefore,
these interactions are being conserved during the flow s→∞.

Ĥ
(1,0)
> (s) accordingly comprises interaction processes between

fermions and high energy photons, such one with wavenumber q larger
than qB [7]:

Ĥ
(1,0)
> (s) = − 1

m0c2
(cqe)

∑
k,k′

∑
b

∫
d3r
∑
µ,µ′

(αb)µ,µ′

× 1√
V

∑
q>qB

Ab (q)


U ?
µ (r; k)Uµ′ (r; k′) e−s(Ẽk−Ẽk′−ω̃q)

2

ĉ†kĉk′e
iq·râq

−V ?
µ (r; k)Vµ′ (r; k′) e−s(Ẽk′−Ẽk−ω̃q)

2

b̂†
k̃′
b̂k̃e

iq·râq

+U ?
µ (r; k)Uµ′ (r; k′) e−s(Ẽk−Ẽk′+ω̃q)

2

ĉ†kĉk′e
−iq·râ†q

−V ?
µ (r; k)Vµ′ (r; k′) e−s(Ẽk′−Ẽk+ω̃q)

2

b̂†
k̃′
b̂k̃e
−iq·râ†q
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The dependence on the flow parameter s is chosen in such a way that
it reproduces the double commutator of the flow equation (100), as
will be shown a few lines below.

Hence [7],

Ĥ(1,0) (s) = Ĥ
(1,0)
< + Ĥ

(1,0)
> (s) (105)

With the definition of the step function κq according to (85) one
furthermore defines [7]

Ĥ(1,+) (s) = − 1

m0c2
(cqe)

∑
k,k′

∑
b

∫
d3r

∑
µ,µ′

(αb)µ,µ′ U
?
µ (r; k)Vµ′

(
r; k′

)
× 1√

V

∑
q

Ab (q) ĉ†k b̂
†
k̃′

(
e−(4+κq)s(Ẽk+Ẽk′−ω̃q)

2

eiq·râq + e−(4+κq)s(Ẽk+Ẽk′+ω̃q)
2

e−iq·râ†q

)

and [7]

Ĥ(1,−) (s) =
(
Ĥ(1,+) (s)

)†
= −

1

m0c2
(cqe)

∑
K,K′

∑
b′

∫
d3r′

∑
ν,ν′

(αb′ )
?
ν,ν′ V

?
ν′
(
r′;K′

)
Uν
(
r′;K

)
= ×

1
√
V

∑
q′
Ab′

(
q′
)
b̂K̃′ ĉK

(
e
−
(
4+κq′

)
s
(
ẼK+ẼK′−ω̃q′

)2

e−iq
′·r′ â†

q′ + e
−
(
4+κq′

)
s
(
ẼK+ẼK′+ω̃q′

)2

eiq
′·r′ âq′

)

In order to show that the ansatz (103) solves the first order equation
(100) it is convenient express the matrix elements in the compact Dirac
braket notation (see section A of the appendix)

∑
µ

∫
d3rU ?

µ (r, k) e−iq·rUµ (r, k′) = 〈Uk| e−iqaxa |Uk′〉

∑
µ

∫
d3rU ?

µ (r, k) e−iq·rVµ (r, k′) = 〈Uk| e−iqaxa |Vk′〉

∑
µ

∫
d3rV ?

µ (r, k) e−iq·rUµ (r, k′) = 〈Vk| e−iqaxa |Uk′〉

∑
µ

∫
d3rV ?

µ (r, k) e−iq·rVµ (r, k′) = 〈Vk| e−iqaxa |Vk′〉

(106)

Note that x is an operator.
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With that there holds [7]

Ĥ
(1,0)
< =

(
− qe
m0c

)∑
k,k′

1√
V

∑
q<qB

∑
b

Ab (q)

 〈Uk|αbeiqaxa |Uk′〉 ĉ†k ĉk′ âq
−〈Vk|αbeiqaxa |Vk′〉 b̂†k̃′ b̂k̃âq

+ 〈Uk|αbe−iqaxa |Uk′〉 ĉ†k ĉk′ â†q
−〈Vk|αbe−iqaxa |Vk′〉 b̂†k̃′ b̂k̃â

†
q



Ĥ
(1,0)
> (s) =

(
− qe
m0c

)∑
k,k′

1√
V

∑
q>qB

∑
b

Ab (q)


〈Uk|αbeiqaxa |Uk′〉 e−s(Ẽk−Ẽk′−ω̃q)

2

ĉ†k ĉk′ âq

−〈Vk|αbeiqaxa |Vk′〉 e−s(Ẽk′−Ẽk−ω̃q)
2

b̂†
k̃′
b̂k̃âq

+ 〈Uk|αbe−iqaxa |Uk′〉 e−s(Ẽk−Ẽk′+ω̃q)
2

ĉ†k ĉk′ â
†
q

−〈Vk|αbe−iqaxa |Vk′〉 e−s(Ẽk′−Ẽk+ω̃q)
2

b̂†
k̃′
b̂k̃â
†
q


(107)

Ĥ(1,+) (s) =

(
− qe
m0c

)∑
k,k′

1√
V

∑
q

∑
b

Ab (q)

(
〈Uk|αbeiqaxa |Vk′〉 e−(4+κq)s(Ẽk+Ẽk′−ω̃q)

2

ĉ†k b̂
†
k̃′
âq

+ 〈Uk|αbe−iqaxa |Vk′〉 e−(4+κq)s(Ẽk+Ẽk′+ω̃q)
2

ĉ†k b̂
†
k̃′
â†q

)
= Ĥ

(1,+)
< (s) + Ĥ

(1,+)
> (s)

(108)

Ĥ(1,−) (s) =

(
− qe
m0c

) ∑
K,K′

1√
V

∑
q′

∑
b′

Ab′ (q′)

(
〈VK′ |αb′e−iq

′
axa |UK〉 e−(4+κq′)s(−ẼK′−ẼK+ω̃q′)

2

b̂K̃′ ĉK â
†
q′

+ 〈VK′ |αb′e+iq′axa |UK〉 e−(4+κq′)s(−ẼK−ẼK′−ω̃q′)
2

b̂K̃′ ĉK âq′

)

=
(
Ĥ(1,+) (s)

)†
= Ĥ

(1,−)
< (s) + Ĥ

(1,−)
> (s)

This ansatz is consistent with the chosen initial value (96) as can be
seen by setting s ≡ 0.

With the given operator N̂I , see (84) one finds [7][
N̂I , Ĥ

(0)
]

= 0̂[
N̂I ,

(
Ĥ

(1,0)
< + Ĥ

(1,0)
> (s)

)]
= 0̂[

N̂I , Ĥ
(1,±) (s)

]
= ±2Ĥ(1,±) (s)

(109)

Hence [7],

[
N̂I ,

[
N̂I , Ĥ

(1) (s)
]]

=
[
N̂I ,

[
N̂I ,

(
Ĥ(1,0) (s) + Ĥ(1,+) (s) + Ĥ(1,−) (s)

)]]
= 4Ĥ(1,+) (s) + 4Ĥ(1,−) (s)

(110)
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Since the operator N̂II counts, according to (84) only high energy
photons, there holds [7] [

N̂II , Ĥ
(1,0)
<

]
= 0̂[

N̂II , Ĥ
(1,±)
< (s)

]
= 0̂

(111)

Therefore [7],

[
N̂II ,

[
N̂II , Ĥ

(1) (s)
]]

= Ĥ
(1,0)
> (s) + Ĥ

(1,+)
> (s) + Ĥ

(1,−)
> (s) (112)

Inserting the ansatz (103) into the inner double commutators on the
right hand sight of the differential equation (100) one can see by the
help of (110) and (112) [7]

[
N̂I ,

[
N̂I , Ĥ

(1) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(1) (s)
]]

= Ĥ
(1,0)
> (s) + 4Ĥ

(1,+)
< (s) + 5Ĥ

(1,+)
> (s) + 4Ĥ

(1,−)
< (s) + 5Ĥ

(1,−)
> (s)

(113)

Now for the outer double commutator of (100) one finds, with Ĥ(0) =

ĤD + Ĥrad,
[
ĤD, Ĥrad

]
= 0̂, the definitions in (97) and the (anti-

) commutator properties of the fermionic and bosonic creation and
annihilation operators (15) and (27)

from [7]

[
ĤD, ĉ

†
k′ b̂
†
k̃′′

]
=

[∑
k

Ẽk

(
c†kck + b†

k̃
bk̃

)
, ĉ†k′ b̂

†
k̃′′

]
=
∑
k

Ẽk

([
c†kck, ĉ

†
k′ b̂
†
k̃′′

]
+
[
b†
k̃
bk̃, ĉ

†
k′ b̂
†
k̃′′

])
=
∑
k

Ẽk

(
c†kb̂
†
k̃′′
δk,k′ − b†k̃ĉ

†
k′δk,k′′

)
= Ẽk′

(
c†k′ b̂

†
k̃′′
− b†

k̃′′
ĉ†k′
)

= Ẽk′

(
c†k′ b̂

†
k̃′′

+ ĉ†k′b
†
k̃′′

)
= 2Ẽk′ ĉ

†
k′ b̂
†
k̃′′

(114)
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then [7]

[
Ĥ(0),

[
Ĥ(0), e−(4+κq)s(Ẽk+Ẽk′−ω̃q)

2

ĉ†kb̂
†
k̃′
âq

]]
=
[(
ĤD + Ĥrad

)
,
[(
ĤD + Ĥrad

)
, e−(4+κq)s(Ẽk+Ẽk′−ω̃q)

2

ĉ†kb̂
†
k̃′
âq

]]
=
[(
ĤD + Ĥrad

)
,
(
Ẽk + Ẽk′ − ω̃q

)
e−(4+κq)s(Ẽk+Ẽk′−ω̃q)

2

ĉ†kb̂
†
k̃′
âq

]
= ĉ†kb̂

†
k̃′

(
Ẽk + Ẽk′ − ω̃q

)2

e−(4+κq)s(Ẽk+Ẽk′−ω̃q)
2

âq

=

(
− 1

4 + κq

d

ds

)
ĉ†kb̂
†
k̃′
e−(4+κq)s(Ẽk+Ẽk′−ω̃q)

2

âq

(115)

or [7]

[
Ĥ(0),

[
Ĥ(0), e−s(Ẽk−Ẽk′−ω̃q)

2

ĉ†kĉk′âq

]]
=
[(
ĤD + Ĥrad

)
,
[(
ĤD + Ĥrad

)
, e−s(Ẽk−Ẽk′−ω̃q)

2

ĉ†kĉk′âq

]]
=
[(
ĤD + Ĥrad

)
,
(
Ẽk − Ẽk′ − ω̃q

)
e−s(Ẽk−Ẽk′−ω̃q)

2

ĉ†kĉk′âq

]
=
(
Ẽk − Ẽk′ − ω̃q

)2

e−s(Ẽk−Ẽk′−ω̃q)
2

ĉ†kĉk′âq

=

(
− d

ds

)
e−s(Ẽk−Ẽk′−ω̃q)

2

ĉ†kĉk′âq

(116)

Hence, there holds [7]

[
Ĥ(0),

[
Ĥ(0), Ĥ

(1,±)
< (s)

]]
= −1

4

d

ds
Ĥ

(1,±)
< (s)[

Ĥ(0),
[
Ĥ(0), Ĥ

(1,±)
> (s)

]]
= −1

5

d

ds
Ĥ

(1,±)
> (s)[

Ĥ(0),
[
Ĥ(0), Ĥ

(1,0)
> (s)

]]
= − d

ds
Ĥ

(1,0)
> (s)

(117)

and altogether [7]
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−
[
Ĥ(0),

[
Ĥ(0),

([
N̂I ,

[
N̂I , Ĥ

(1) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(1) (s)
]])]]

= −
[
Ĥ(0),

[
Ĥ(0),

(
Ĥ

(1,0)
> (s) + 4Ĥ

(1,+)
< (s) + 5Ĥ

(1,+)
> (s) + 4Ĥ

(1,−)
< (s) + 5Ĥ

(1,−)
> (s)

)]]
=

d

ds

(
Ĥ

(1,0)
< + Ĥ

(1,0)
> (s) + Ĥ

(1,+)
< (s) + Ĥ

(1,+)
> (s) + Ĥ

(1,−)
< (s) + Ĥ

(1,−)
> (s)

)
=

d

ds

(
Ĥ(1,0) + Ĥ(1,+) (s) + Ĥ(1,−) (s)

)
=

d

ds
Ĥ(1) (s)

(118)

With that it is shown that the ansatz (103) solves the differential
equation (100) for the initial value Ĥ(1) (0) = 1

m0c2
Ĥ⊥.

Now regarding the flow s→∞ for the ansatz Ĥ(1)(s) one finds [7]

lim
s→∞

Ĥ(1) (s) = Ĥ
(1,0)
< +

(
− qe
m0c

)∑
k,k′

1√
V

∑
q

∑
b

δ
(
Ẽk + Ẽk′ − ω̃q

)
Ab (q)

{
〈Uk|αbeiqaxa |Vk′〉 × ĉ†k b̂

†
k̃′
âq

+ 〈Vk′ |αb′e−iqaxa |Uk〉 b̂k̃′ ĉkâ†q
(119)

The first term Ĥ
(1,0)
< describes the interactions of the fermions

(electrons and positrons) with low energy photons, see (104).

The second term appears here because in the summation over the
mode indices k, k′, q there are still high energy photons obeying to the
condition ω̃q = Ẽk + Ẽk′ (being of the order 1 since the energies of the
fermions still contain the rest energy). This term is in fact a particle
number violating term (since it is proportional to the products ĉ†kb̂

†
k̃′

and b̂k̃′ ĉk).

It has to be noticed, however, that if one takes the limit V → ∞,
the summation over the dense modes q = (q, λ) is converted into the
integral over the wave number q (with periodic boundary conditions),
and the summation λ ∈ {I, II} = 2. Hence, these remaing terms
violating particle number are of zero measure.

Iff one agrees here and in the following to first take the limit V →∞
and then the limit s → ∞. In that case the second term in (119)
vanishes and one finds [7]

lim
s→∞

lim
V→∞

[
N̂I , Ĥ

(1) (s)
]

= 0̂ (120)
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4.1.3 Second Order Solution

The differential equation (101) is a linear differential equation with
an inhomogeneous term. Hence, the solution Ĥ(2) (s) is given by the
superposition of the solution Ĥ(2,h) (s) to the homogeneous differential
equation [7]

d

ds
Ĥ(2,h) (s) = −

[
Ĥ(0),

[
Ĥ(0),

([
N̂I ,

[
N̂I , Ĥ

(2,h) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(2,h) (s)
]])]]

(121)

with the inhomogeneous inital value Ĥ(2,h) (0) = 1
m0c2

(
V̂ext + V̂C

)
, and

a special solution Ĥ(2,i) (s) to the inhomogeneous differential equation
[7]

d

ds
Ĥ(2,i) (s) =



−
[
Ĥ(0),

[
Ĥ(0),

([
N̂I ,

[
N̂I , Ĥ

(2,i) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(2,i) (s)
]])]]

−
[
Ĥ(0),

([
Ĥ(1) (s) ,

([
N̂I ,

[
N̂I , Ĥ

(1) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(1) (s)
]])])]

−
[
Ĥ(1) (s) ,

([
Ĥ(0),

([
N̂I ,

[
N̂I , Ĥ

(1) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(1) (s)
]])])]

≡

{
−
[
Ĥ(0),

[
Ĥ(0),

([
NI ,

[
NI , Ĥ

(2,i) (s)
]]

+
[
NII ,

[
NII , Ĥ

(2,i) (s)
]])]]

+I (s)

(122)

with the inital value 0.

Hence, the solution is of the form Ĥ(2) (s) = Ĥ(2,h) (s) + Ĥ(2,i) (s).

In the following two subsections the solutions to these differential
equations are sketched. They rely on closed formes that are quite
analagous to the ones given in (109) and (111). However, since the
calculations are longish, some parts of the solution for the second order
differential equation are shifted to the appendix.

Homogeneous Differential Equation

For the solution of the homogeneous part of the second order
differential equation it is convenient to decompose the the QED
Coulomb interaction V̂C into a sum of a part that is normally ordered,

N
(
V̂C
)

, and a self–interaction term M̂C . This decomposition can be

found in the appendix chapter G.
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The result is given by V̂C = M̂C (s) + U (s).

Having said that the ansatz for the solution to the homogeneous
differential equation (121) is presented as [7]

Ĥ(2,h) (s) =
1

m0c2

(
V̂ext (s) + M̂C (s) + U (s)

)
(123)

which will be verified in the following.

Now, in the appendix G it is also shown how to decompose the coupling
to an external Coulomb potential V̂ext into particle number conserving
and nonconserving terms. For the QED Coulomb interaction this
yields an extra one–particle contribution which contributes to the
renormalization of the bare mass m0 and the g–factor of the fermions
as we will see in section 6.1.2.

The result of the decomposition of the QED Coulomb interaction U (s)
is given by [7]

U (s) = ÛC
(0)

+ ÛC
(+)

(s) + ÛC
(−)

(s) + ÛC
(+,+)

(s) + ÛC
(−,−)

(s) (124)

Here and in the following the superscripts (+) and (−) indicate that
the terms concerned raise or lower the fermion occupation number
by 1, whereas the superscript (0) indicates that this term is particle
number conserving. Since the Coulomb interaction is the product of
two scalars Ψ̂†µ (r) Ψ̂µ (r) and Ψ̂†µ′ (r

′) Ψ̂µ′ (r
′) there occur terms that

raise or lower the the fermion occupation number by 2. These terms
are indicated by the superscripts (+,+) and (−,−) [7]

ÛC
(0)

= N
(
V̂(0)
C

)

ÛC
(+)

(s) =
q2
e

2ε0

∫
d3q

(2π)
3

1

|q|2
∑
k,k′

∑
K,K′

N


+ 〈Uk| e−iqaxa |Uk′〉 〈UK | eiqaxa |VK′〉 ĉ†kck′ ĉ

†
Kb
†
K̃′
e−4s(Ek−Ek′+EK+E′K)

2

+ 〈Uk| e−iqaxa |Vk′〉 〈UK | eiqaxa |UK′〉 ĉ†kb
†
k̃′
ĉ†KcK′e

−4s(Ek+Ek′+EK−E
′
K)

2

+ 〈Vk| e−iqaxa |Vk′〉 〈UK | eiqaxa |VK′〉 b̂k̃b
†
k̃′
ĉ†Kb

†
K̃′
e−4s(−Ek+Ek′+EK+E′K)

2

+ 〈Uk| e−iqaxa |Vk′〉 〈VK | eiqaxa |VK′〉 ĉ†kb
†
k̃′
b̂K̃b

†
K̃′
e−4s(Ek+Ek′−EK+E′K)

2


ÛC

(−)
(s) =

(
ÛC

(+)
(s)
)†

ÛC
(+,+)

(s) =
q2
e

2ε0

∫
d3q

(2π)
3

1

|q|2
∑
k,k′

∑
K,K′

N
(
〈Uk| e−iqaxa |Vk′〉 〈UK | eiqaxa |VK′〉 ĉ†kb

†
k̃′
ĉ†Kb

†
K̃′

)
e−16s(Ek+Ek′+EK+E′K)

2

ÛC
(−,−)

(s) =
(
ÛC

(+,+)
(s)
)†

(125)
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Accordingly, the contributions caused by the self energy M̂C (s) are
given as [7]

M̂C (s) = M̂(0)
C + M̂(+)

C (s) + M̂(−)
C (s)

M̂(0)
C =

q2
e

2ε0

∑
k,k′

(
〈Uk|M(C) |Uk′〉 ĉ†kck′ − 〈Vk|M

(C) |Vk′〉 b†k̃′ b̂k̃
)

M̂(+)
C (s) =

q2
e

2ε0

∑
k,k′

〈Uk|M(C) |Vk′〉 ĉ†kb
†
k̃′
e−4s(Ẽk+Ẽk′)

2

M̂(−)
C (s) =

(
M̂(+)

C (s)
)†

(126)

And finally the decompositon of the interaction of the fermions with
the external potential V̂ext (s) according to [7]

V̂ext (s) = V̂ (0)
ext + V̂ (+)

ext (s) + V̂ (−)
ext (s)

V̂ (0)
ext =

∫
d3q

(2π)3 Φ̃ext (q)
∑
k,k′

(
〈Uk| e−iqaxa |Uk′〉 ĉ†kck′ − 〈Vk| e

−iqaxa |Vk′〉 b†k̃′ b̂k̃
)

V̂ (+)
ext (s) =

∫
d3q

(2π)3 Φ̃ext (q)
∑
k,k′

〈Uk| e−iqaxa |Vk′〉 ĉ†kb
†
k̃′
e−4s(Ẽk+Ẽk′)

2

V̂ (−)
ext (s) =

(
V̂ (+)
ext (s)

)†
(127)

First of all, this solution (123) fulfills the inital value condition

Ĥ(2,h) (0) = Ĥ(2) (0) = 1
m0c2

(
V̂ext + M̂C +N

(
V̂C
))

.

Now one has to look at the properties of the commutators (121).

Starting with the inner double commutator
[
N̂I ,

[
N̂I , Ĥ

(2,h) (s)
]]

+[
N̂II ,

[
N̂II , Ĥ

(2,h) (s)
]]

one finds, with the anti–commutator algebra

of the fermions (see also appendix section G and the commutator
relations (491) ff. in section H) [7][

N̂I , ÛC
(0)
]

= 0̂[
N̂I , ÛC

(±)
(s)
]

= ±2ÛC
(±)

(s)[
N̂I , ÛC

(±,±)
(s)
]

= ±4ÛC
(±,±)

(s)

(128)
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And, of course [7],

[
N̂II ,

[
N̂II , Û (s)

]]
= 0̂ (129)

since fermions and photons share no commutation relations.

Hence, for the inner double commutator in (123) regarding the
Coulomb interaction contribution Û (s) there holds [7]

[
N̂I ,

[
N̂I , Û (s)

]]
+
[
N̂II ,

[
N̂II , Û (s)

]]
=
[
N̂I ,

[
N̂I , Û (s)

]]
=
[
N̂I ,

[
N̂I ,

(
ÛC

(0)
+ ÛC

(+)
(s) + ÛC

(−)
(s) + ÛC

(+,+)
(s) + ÛC

(−,−)
(s)
)]]

= 4ÛC
(+)

(s) + 4ÛC
(−)

(s) + ˆ16UC
(+,+)

(s) + 16ÛC
(−,−)

(s)
(130)

Furthermore, for the interaction with the external potential V̂ext (s)
and for the self energy contribution M̂C (s) there holds (see also
appendix section G) [7]

[
N̂I , V̂ (0)

ext

]
= 0̂[

N̂I , V̂ (±)
ext (s)

]
= ±2V̂ (±)

ext (s)[
N̂I ,M̂(0)

C

]
= 0̂[

N̂I ,M̂(±)
C (s)

]
= ±2M̂(±)

C (s)

(131)

and again, since fermions and photons share no commutation relations,
there holds [7]

[
N̂II ,

[
N̂II ,

(
V̂ext (s) + M̂C (s)

)]]
= 0̂ (132)

So altogether one finds for the contributions V̂ext (s) and M̂C (s) of
the solution (123) for the inner double commutator [7]
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[
N̂I ,

[
N̂I ,

(
V̂ext (s) + M̂C (s)

)]]
+
[
N̂II ,

[
N̂II ,

(
V̂ext (s) + M̂C (s)

)]]
=
[
N̂I ,

[
N̂I ,

(
V̂ext (s) + M̂C (s)

)]]
=
[
N̂I ,

[
N̂I ,

(
V̂ (0)
ext + V̂ (+)

ext (s) + V̂ (−)
ext (s) + M̂(0)

C + M̂(+)
C (s) + M̂(−)

C (s)
)]]

= 4V̂ (+)
ext (s) + 4V̂ (−)

ext (s) + 4M̂(+)
C (s) + 4M̂(−)

C (s)
(133)

The ansatz (123) for the homogeneous differential equation (121) can
now be readily confirmed by differentiating it with respect to s. On
the one hand there holds [7]

d

ds

(
V̂ext (s) + M̂C (s)

)
=

d

ds

(
V̂(+)
ext (s) + V̂(−)

ext (s) + M̂(+)
C (s) + M̂(−)

C (s)
)

= −
[
ĤD,

[
ĤD,

(
4V̂(+)

ext (s) + 4V̂(−)
ext (s) + 4M̂(+)

C (s) + 4M̂(−)
C (s)

)]]
=
[(
ĤD + Ĥrad

)
,
[(
ĤD + Ĥrad

)
,
(

4V̂(+)
ext (s) + 4V̂(−)

ext (s) + 4M̂(+)
C (s) + 4M̂(−)

C (s)
)]]
(134)

The differentiation of the terms in the ansatz (123) with respect to
s produces a factor of 4 and a factor (Ẽk + Ẽk′)

2. The latter can be
represented as a double commutator with ĤD. This principle will be
verified by the help of the example V̂ (+)

ext (s) which can be transfered
to all other contributions [7]:

[
ĤD,

[
ĤD, V̂(+)

ext (s)
]]

=

[∑
k

Ẽk

(
c†kck + b†

k̃
bk̃

)
,

[∑
k

Ẽk

(
c†kck + b†

k̃
bk̃

)
, V̂(+)

ext (s)

]]

=

∑
k

Ẽk

(
c†kck + b†

k̃
bk̃

)
,

∑
k

Ẽk

(
c†kck + b†

k̃
bk̃

)
,

∫
d3q

(2π)3 Φ̃ext (q)
∑
k,k′

〈Uk| eiqaxa |Vk′〉 ĉ†kb
†
k̃′
e−4s(Ẽk+Ẽk′)

2


=

∑
k

Ẽk

(
c†kck + b†

k̃
bk̃

)
, 2(Ẽk + Ẽk′)

∫
d3q

(2π)3 Φ̃ext (q)
∑
k,k′

〈Uk| eiqaxa |Vk′〉 ĉ†kb
†
k̃′
e−4s(Ẽk+Ẽk′)

2


= 4(Ẽk + Ẽk′)

2

∫
d3q

(2π)3 Φ̃ext (q)
∑
k,k′

〈Uk| eiqaxa |Vk′〉 ĉ†kb
†
k̃′
e−4s(Ẽk+Ẽk′)

2

= 4(Ẽk + Ẽk′)
2V̂(+)

ext (s)
(135)
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and, of course [7]

d

ds
V̂ (+)
ext (s) =

d

ds

∫ d3q

(2π)3 Φ̃ext (q)
∑
k,k′

〈Uk| eiqaxa |Vk′〉 ĉ†kb
†
k̃′
e−4s(Ẽk+Ẽk′)

2


= −4(Ẽk + Ẽk′)

2V̂ (+)
ext (s)

(136)

As one can see from this example, one can indeed represent the
differentiation with respect to s by the double commutator (multiplied
by a minus sign)! This holds true for each contribution and can be
traced back to the fundamental anti–commutator relations for the
fermions (19).

Furthermore, in (134), use has been made of
[
Ĥrad,

(
V̂ext + V̂C

)]
=

0̂ such that it is possible to insert Ĥrad into the outer double
commtutator.

Now looking at the intermediate result (133) there holds furthermore
[7]

d

ds

(
V̂ext (s) + M̂C (s)

)
= −

[(
ĤD + Ĥrad

)
,
[(
ĤD + Ĥrad

)
,
([
N̂I ,

[
N̂I ,

(
V̂ext (s) + M̂C (s)

)]]
+
[
N̂II ,

[
N̂II ,

(
V̂ext (s) + M̂C (s)

)]])]]
= −

[
Ĥ(0),

[
Ĥ(0),

([
N̂I ,

[
N̂I ,

(
V̂ext (s) + M̂C (s)

)]]
+
[
N̂II ,

[
N̂II ,

(
V̂ext (s) + M̂C (s)

)]])]]
(137)

For the contribution of the Coulomb interaction U (s) there holds, in
a very analagous way [7],

d

ds
U (s) =

d

ds

(
ÛC

(+)
(s) + ÛC

(−)
(s) + ÛC

(+,+)
(s) + ÛC

(−,−)
(s)
)

= −
[
ĤD,

[
ĤD,

(
4ÛC

(+)
(s) + 4ÛC

(−)
(s) + ˆ16UC

(+,+)
(s) + 16ÛC

(−,−)
(s)
)]]

= −
[
ĤD,

[
ĤD,

[
N̂I ,

[
N̂I , Û (s)

]]]]
= −

[
Ĥ(0),

[
Ĥ(0),

([
N̂I ,

[
N̂I , Û (s)

]]
+
[
N̂II ,

[
N̂II , Û (s)

]])]]
(138)

Putting the results (137) and (138) together one can verify the ansatz
(123) as [7]
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d

ds
Ĥ(2,h) (s) =

1

m0c2

(
d

ds
V̂ext (s) +

d

ds
M̂C (s) +

d

ds
U (s)

)
= −

[
ĤD,

[
ĤD,

[
N̂I ,

[
N̂I ,

1

m0c2

(
V̂ext (s) + M̂C (s) + U (s)

)]]]]
= −

[
ĤD,

[
ĤD,

[
N̂I ,

[
N̂I , Ĥ

(2,h) (s)
]]]]

= −
[
Ĥ(0),

[
Ĥ(0),

([
N̂I ,

[
N̂I , Ĥ

(2,h) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(2,h) (s)
]])]]

(139)

End of the proof.

Now one has to take a look at the limit s→∞ for the solution (123).

All contributions with superscripts (±) and (±,±) vanish in the limit
s→∞ iff one first take the limit V →∞ such that the mode indices
k, k′, K,K ′, q, q′ can be converted to an integral (see discussion for the
solution (119)) [7]:

lim
s→∞

lim
V→∞

V̂ (±)
ext (s) = 0̂

lim
s→∞

lim
V→∞

M̂(±)
C (s) = 0̂

lim
s→∞

lim
V→∞

U (±)
C (s) = 0̂

lim
s→∞

lim
V→∞

U (±,±) (s) = 0̂

(140)

Therefore, the solution of the homogeneous part of the second order
differential equation is given by [7]

lim
s→∞

lim
V→∞

Ĥ(2,h) (s) =
1

m0c2

(
V̂ (0)
ext + M̂(0)

C + U (0)
C

)
(141)

with V̂
(0)
ext as given in (127), M̂(0)

C as given in (126), and ÛC
(0)

as given
in (125).

In the appendix section G it is shown that the normal ordered QED
Coulomb interaction part which conserves the particle number is given
by [7]
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N
(
V̂(0)
C

)
=

(
q2
e

2ε0

)∫
d3q

(2π)3

1

|q|2
∑
K,k

∑
K′,k′


〈UK | e−iqaxa |Uk〉 〈UK′ | eiqaxa |Uk′〉 ĉ†K ĉ

†
K′ ĉk′ ĉk

+ 〈Vk| e−iqaxa |VK〉 〈Vk′ | eiqaxa |VK′〉 b̂†K̃ b̂
†
K̃′
b̂k̃′ b̂k̃

−2 〈UK | e−iqaxa |Uk〉 〈Vk′ | eiqaxa |VK′〉 ĉ†K ĉk b̂
†
K̃′
b̂k̃′

+2 〈UK | e−iqaxa |Vk〉 〈Vk′ | eiqaxa |UK′〉 ĉ†K b̂
†
k̃
b̂k̃′ ĉK̃′


= ÛC

(0)

(142)

There, also the deductions of the expressions (126) and (127) can be
found.

Inhomogeneous Differential Equation

The construction of the special solution Ĥ(2,i) (s) to the
inhomogeneous differential equation (122) is long, but is based
on the same approach as before: the multiple commutators of
quadratic forms on one side of the differential equation can be
represented by derivatives of exponential functions on the other side
of the differential equation. Hence, for the sake of readability, the
construction is placed in the appendix, see section H. Here, only the
solution lims→∞ Ĥ

(2,i) (s) is presented.

The result is given as follows [7]

m0c
2 lim
s→∞

lim
V→∞

Ĥ(2,i) (s)

= C⊥1̂ + M̂⊥,e + M̂⊥,p + V̂⊥,ee + V̂⊥,pp + V̂⊥,ep + Ĥe,ph + Ĥp,ph + Q̂⊥,ph
(143)

All contributions are caused by the normal ordering rule in the particle
number conserving parts of the solution Ĥ(2,i) (∞), see also section H
of the appendix.

The first term C⊥1̂ is a constant spectral shift [7]

C⊥1̂ = −m0c
2

(
qe
m0c

)2
1

V

∑
q

~
2ε0ω (q)

∑
b,b′

(
δb,b′ −

qbqb′

|q|2

)
×
∑
K,K ′

〈UK |αbe−iqaxa |VK ′〉 〈VK ′|αb′e+iqaxa |UK〉
(ẼK+ẼK′+ω̃q)+(ẼK+ẼK′+ω̃q)

(ẼK+ẼK′+ω̃q)
2
+(ẼK+ẼK′+ω̃q)

2 1̂

(144)
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The second term M̂(0)
⊥ = M̂(e)

⊥ + M̂(p)
⊥ describes the renormalization

of the fermion attributes mass m0 and g–factor due to the interaction
with the high energy photons [7]:

M̂(e)
⊥ = m0c

2
∑
k,K

ĉ†k ĉK

(
qe
m0c

)2 1

V

∑
q

~
2ε0ω (q)

∑
b.b′

(
δb,b′ −

qbqb′

|q|2

)

×


κq ×

∑
K′ 〈Uk|αbe

iqaxa |UK′〉 〈UK′ |αb′e−iqa′xa′ |UK〉
(Ẽk−ẼK′−ω̃q)−(ẼK′−ẼK+ω̃q)

(Ẽk−ẼK′−ω̃q)
2
+(ẼK′−ẼK+ω̃q)

2

+
∑

K′ 〈Uk|αbe
−iqaxa |VK′〉 〈VK′ |αb′e+iqaxa |UK〉

(Ẽk+ẼK′+ω̃q)+(ẼK+ẼK′+ω̃q)
(Ẽk+ẼK′+ω̃q)

2
+(ẼK+ẼK′+ω̃q)

2

(145)

M̂(p)
⊥ = m0c

2
∑
k′,K′

b̂†
k̃′
b̂K̃′

(
qe
m0c

)2 1

V

∑
q

~
2ε0ω (q)

∑
b.b′

(
δb,b′ −

qbqb′

|q|2

)

×


κq ×

∑
K 〈VK |αbe

iqaxa |Vk′〉 〈VK′ |αb′e−iqaxa |VK〉
(Ẽk′−ẼK−ω̃q)−(ẼK−ẼK′+ω̃q)

(Ẽk′−ẼK−ω̃q)
2
+(ẼK−ẼK′+ω̃q)

2

+
∑

K 〈UK |αbe
−iqaxa |Vk′〉 〈VK′ |αb′e+iqaxa |UK〉

(ẼK+Ẽk′+ω̃q)+(ẼK+ẼK′+ω̃q)
(ẼK+Ẽk′+ω̃q)

2
+(ẼK+ẼK′+ω̃q)

2

(146)

The apperance of κq in all effective terms indicates that the respective
term originates from the intercation with high energy photons and/or
high energy (anti-)matter modes.

The following three terms decompose into three normal ordered,
effective two–particle interactions: an effective electron–electron
interaction V̂⊥,ee, an effective positron–positron interaction V̂⊥,pp, and
an effective electron–positron interaction V̂⊥,ep [7]:

V̂⊥,ee = m0c
2

(
qe
m0c

)2∑
k,k′

∑
K,K ′

ĉ†kĉ
†
K ′ ĉK ĉk′

×


1
V

∑
q κq

~
2ε0ω(q)

∑
b,b′

(
δb,b′ − qbqb′

|q|2

)
×

×〈Uk|αbeiqaxa |Uk′〉 〈UK ′|αb′e−iqaxa |UK〉
(Ẽk−Ẽk′−ω̃q)−(ẼK′−ẼK+ω̃q)

(Ẽk−Ẽk′−ω̃q)
2
+(ẼK′−ẼK+ω̃q)

2

(147)
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V̂⊥,pp = m0c
2

(
qe
m0c

)2∑
k,k′

∑
K,K ′

b̂†
k̃′
b̂†
K̃
b̂K̃ ′ b̂k̃

×


1
V

∑
q κq

~
2ε0ω(q)

∑
b,b′

(
δb,b′ − qbqb′

|q|2

)
×

×〈Vk|αbeiqaxa |Vk′〉 〈VK ′|αb′e−iqaxa |VK〉
(Ẽk′−Ẽk−ω̃q)−(ẼK−ẼK′+ω̃q)

(Ẽk′−Ẽk−ω̃q)
2
+(ẼK−ẼK′+ω̃q)

2

(148)

V̂⊥,ep = m0c
2

(
qe
m0c

)2∑
k,k′

∑
K,K ′

1

V

∑
q

~
2ε0ω (q)

∑
b,b′

(
δb,b′ −

qbqb′

|q|2

)
×

×



+κq 〈Uk|αbeiqaxa |Uk′〉 〈VK ′|αb′e−iqaxa |VK〉 ĉ†kĉk′ b̂
†
K̃
b̂K̃ ′×

×
(

(ẼK−ẼK′+ω̃q)−(Ẽk−Ẽk′−ω̃q)

(Ẽk−Ẽk′−ω̃q)
2
+(ẼK−ẼK′+ω̃q)

2 +
(Ẽk−Ẽk′+ω̃q)−(ẼK−ẼK′−ω̃q)

(ẼK−ẼK′−ω̃q)
2
+(Ẽk−Ẽk′+ω̃q)

2

)

+ 〈Uk|αbe−iqaxa |Vk′〉 〈VK ′|αb′e+iqaxa |UK〉 ĉ†kĉK b̂
†
k̃′
b̂K̃ ′×

×
(

(Ẽk+Ẽk′−ω̃q)+(ẼK+ẼK′−ω̃q)

(Ẽk+Ẽk′−ω̃q)
2
+(ẼK+ẼK′−ω̃q)

2 −
(Ẽk+Ẽk′+ω̃q)+(ẼK+ẼK′+ω̃q)

(Ẽk+Ẽk′+ω̃q)
2
+(ẼK+ẼK′+ω̃q)

2

)
(149)

The term V̂⊥,ep describes positronium. It would be very interesting to
retranslate it to first quantization and check wether it concides with
the term found for example by Landau et. al [37]. A similar term,
indeed decribing the positronium system, is derived and evaluated in
[8].

72



The terms Ĥe,ph + Ĥp,ph describe interactions between Dirac fermions
and photons. Their explicit form is given as [7]

Ĥe,ph = +m0c
2

(
q0

m0c

)2∑
k,k′

∑
K,K′

lim
V→∞

1

V

∑
q,q′

∑
b,b′

Ab (q)Ab′
(
q′
)
×

×



κqκq′ 〈Uk|αbeiqaxa |Uk′〉 〈UK′ |αb′e−iq
′
axa |UK〉×

× (Ẽk−Ẽk′−ω̃q)−(ẼK′−ẼK+ω̃q′)
(Ẽk−Ẽk′−ω̃q)

2
+(ẼK′−ẼK+ω̃q′)

2

(
δk′.K′ ĉ

†
k ĉK − δk,K ĉ

†
K′ ĉk′

)
â†q′ âq

+
(
(1− κq)

(
1− κq′

)
+ κqκq′

)
〈Uk|αbeiqaxa |Vk′〉 〈VK′ |αb′e−iq

′
axa |UK〉×

× (Ẽk+Ẽk′−ω̃q)+(ẼK+ẼK′−ω̃q′)
(Ẽk+Ẽk′−ω̃q)

2
+(ẼK+ẼK′−ω̃q′)

2 δk′,K′ ĉ
†
k ĉK â

†
q′ âq

+
(
(1− κq)

(
1− κq′

)
+ κqκq′

)
〈Uk|αbe−iqaxa |Vk′〉 〈VK′ |αb′e+iq′axa |UK〉×

× (Ẽk+Ẽk′+ω̃q)+(ẼK+ẼK′+ω̃q′)
(Ẽk+Ẽk′+ω̃q)

2
+(ẼK+ẼK′+ω̃q′)

2 δK′,k′ ĉ
†
k ĉK â

†
qâq′

+ (1− κq)
(
1− κq′

)
〈Uk|αbeiqaxa |Vk′〉 〈VK′ |αb′e+iq′axa |UK〉×

× (ẼK+ẼK′+ω̃q′)+(Ẽk+Ẽk′−ω̃q)
(ẼK+ẼK′+ω̃q′)

2
+(Ẽk+Ẽk′−ω̃q)

2 δK′,k′ ĉ
†
k ĉK âq′ âq

+ (1− κq)
(
1− κq′

)
〈VK′ |αb′e−iq

′
axa |UK〉 〈Uk|αbe−iqaxa |Vk′〉×

× (ẼK+ẼK′−ω̃q′)+(Ẽk+Ẽk′+ω̃q)
(ẼK+ẼK′−ω̃q′)

2
+(Ẽk+Ẽk′+ω̃q)

2 δK′,k′ ĉ
†
k ĉK â

†
q′ â
†
q

(150)
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and [7]

Ĥp,ph = +m0c
2

(
q0

m0c

)2∑
k,k′

∑
K,K′

lim
V→∞

1

V

∑
q,q′

∑
b,b′

Ab (q)Ab′
(
q′
)
×

×



+κqκq′ 〈Vk|αbeiqaxa |Vk′〉 〈VK′ |αb′e−iq
′
axa |VK〉×

× (Ẽk′−Ẽk−ω̃q)−(ẼK−ẼK′+ω̃q′)
(Ẽk′−Ẽk−ω̃q)

2
+(ẼK−ẼK′+ω̃q′)

2

(
δk,K b̂

†
k̃′
b̂K̃′ − δK′,k′ b̂

†
K̃
b̂k̃

)
â†q′ âq

+
(
(1− κq)

(
1− κq′

)
+ κqκq′

)
〈Uk|αbeiqaxa |Vk′〉 〈VK′ |αb′e−iq

′
axa |UK〉×

× (Ẽk+Ẽk′−ω̃q)+(ẼK+ẼK′−ω̃q′)
(Ẽk+Ẽk′−ω̃q)

2
+(ẼK+ẼK′−ω̃q′)

2 δk,K b̂
†
k̃′
b̂K̃′ â

†
q′ âq

+
(
(1− κq)

(
1− κq′

)
+ κqκq′

)
〈Uk|αbe−iqaxa |Vk′〉 〈VK′ |αb′e+iq′axa×

|UK〉
(Ẽk+Ẽk′+ω̃q)+(ẼK+ẼK′+ω̃q′)

(Ẽk+Ẽk′+ω̃q)
2
+(ẼK+ẼK′+ω̃q′)

2 δK,k b̂
†
k̃′
b̂K̃′ â

†
qâq′

+ (1− κq)
(
1− κq′

)
〈Uk|αbeiqaxa |Vk′〉 〈VK′ |αb′e+iq′axa |UK〉×

(ẼK+ẼK′+ω̃q′)+(Ẽk+Ẽk′−ω̃q)
(ẼK+ẼK′+ω̃q′)

2
+(Ẽk+Ẽk′−ω̃q)

2 δK,k b̂
†
k̃′
b̂K̃′ âq′ âq

+ (1− κq)
(
1− κq′

)
〈VK′ |αb′e−iq

′
axa |UK〉 〈Uk|αbe−iqaxa |Vk′〉×

(ẼK+ẼK′−ω̃q′)+(Ẽk+Ẽk′+ω̃q)
(ẼK+ẼK′−ω̃q′)

2
+(Ẽk+Ẽk′+ω̃q)

2 δK,k b̂
†
k̃′
b̂K̃′ â

†
q′ â
†
q

(151)

These terms describe effects stimulated by the electromagnetic field
[45].
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Finally, the term that seems like renormalizing the dispersion relation
of the photons is given by [7]

Q̂⊥,ph = −m0c
2

(
qe
m0c

)2 1

V

∑
q,q′

∑
b,b′

Ab (q)Ab′
(
q′
)
×

×



κqκq′ â
†
q′ âq

∑
K,K′



〈UK |αbeiqaxa |VK′〉 〈VK′ |αb′e−iq
′
axa |UK〉×

× (ẼK+ẼK′−ω̃q)+(ẼK+ẼK′−ω̃q′)
(ẼK+ẼK′−ω̃q)

2
+(ẼK+ẼK′−ω̃q′)

2

+ 〈VK′ |αbe+iqaxa |UK〉 〈UK |αb′e−iq
′
axa |VK′〉×

× (ẼK+ẼK′+ω̃q′)+(ẼK+ẼK′+ω̃q)
(ẼK+ẼK′+ω̃q′)

2
+(ẼK+ẼK′+ω̃q)

2



+ (1− κq)
(
1− κq′

)
âq′ âq

∑
K,K′ 〈UK |αbeiqaxa |VK′〉 〈VK′ |αb′e+iq′axa |UK〉×

× (ẼK+ẼK′+ω̃q′)+(ẼK+ẼK′−ω̃q)
(ẼK+ẼK′+ω̃q′)

2
+(ẼK+ẼK′−ω̃q)

2

+ (1− κq)
(
1− κq′

)
â†q′ â

†
q
∑

K,K′ 〈VK′ |αb′e−iq
′
axa |UK〉 〈UK |αbe−iqaxa |VK′〉×

× (ẼK+ẼK′−ω̃q′)+(ẼK+ẼK′+ω̃q)
(ẼK+ẼK′−ω̃q′)

2
+(ẼK+ẼK′+ω̃q)

2

(152)

If true, this term would be very interesting, because it points out
that for very high energies ~q � ~qB the dispersion relation of the
photons is altered which can be seen from the operator valued wave
equation derived in section J of the appendix. It adds to the vacuum
velocity of light c which can be seen from the homogeneous wave
equation (656). However, the dealing with this term is a project that
stands for its own. Dirac counted the modification of the photon’s
properties among the last fundamental problems of QED [46], but
requiring to treat all constituents of QED on equal footing, it does
not seem unreasonable that there arises a term which describes the
modification of the photons properties. This would then mean that
the photons being part of the QED soup have different properties than
the photons acting in our nonrelativistic world, just as it is the case
for the fermions.

It has to be emphasized that in the solution Ĥ(2,i) (∞) all denominaters
containing the energies of the particles are manifestly positive (due
to the square). Hence, it comprises no further singularities. This
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shows that applying the flow equation as a tool for unitarily
transforming Hamiltonians once again leads to a non-singular result
like in the case of Peter Lenz and Franz Wegner who also achieved
a manifestly positive denominator by applying the flow equation to
BCS Hamiltonian [47].

4.2 Interim Summary

The flow equation for generating particle number conservation yields
a field theory Hamiltonian HU which is unitarily equivalent to the
order α2

FS to the Hamiltonian of QED (8) by the help of the generator
η̂(LM) (s).

The Hamiltonian HU assumes the following guise [7, 8]

HU = m0c
2 lim
s→∞

lim
V→∞

(
Ĥ(0) + Ĥ(1) (s) + Ĥ(2,h) (s) + Ĥ(2,i) (s) + ...

)

=


m0c

2
(
ĤD + Ĥrad

)
+m0c

2Ĥ
(1,0)
<

+V̂ (0)
ext + M̂(0)

C + U (0)
C

+M̂⊥,e + M̂⊥,p + V̂⊥,ee + V̂⊥,pp + V̂⊥,ep
+Ĥe,ph + Ĥp,ph + Q̂⊥,ph + C⊥1̂

=



ĤD + M̂(e)
C + M̂(p)

C + M̂(e)
⊥ + M̂(p)

⊥

+Ĥ(low,0)
⊥

+U (0)
C + V̂ (0)

ext

+C⊥1̂ + V̂⊥,ee + V̂⊥,pp + V̂⊥,ep
+Ĥp,ph + Ĥe,ph + Q̂⊥,ph

(153)

Here the zeroth order solution (99), the first order solution (119) (the
berry colored term) and the second order solution (143) (the orange
colored term of the homogeneous solution and the emarald colored
term of the inhomogeneous solution) have been inserted.

HU has the utmost important property of conserving the particle
number, hence [7]

76



[
HU , N̂I

]
= 0̂[

HU , N̂II

]
= 0̂

(154)

This Hamiltonian HU is given in the Dirac representation, which
means that it is expressed by the Dirac field operators (14).
Therefore it is a many–body Hamiltonian of superposed matter and
antimatter modes interacting with low–energy photons. It can now
be transformed by the help of the Eriksen transformation T to the
Newton–Wigner representation in which it decomposes into subspaces
for electrons and positrons separately. This is done in the second part
of the solution to the nonrelativistic limit problem of QED.

As will be shown, the parts M̂(e)
C + M̂(p)

C +M̂(e)
⊥ + M̂(p)

⊥ of the solution
generated by the flow equation aiming at particle number conservation
are those that renormalize the bare mass m0 of the fermions and
their g–factor. The orange ones with the subscript C are attributable
to the (longitudinal) high–energy QED Coulomb interaction between
the matter fields, whereas the emerald ones with the subscript ⊥ are
attributable to the (transversal) interactions of the (anti–)matter fields
with the high energy photons. These terms represent integrals over
the wavenumber q of the photons. For these divergent integrals one
has to choose a physical cut–off which can be done by truncating not
only the energy of the photons, but also the kinetic energy of the
fermions.

By retranslating these terms to first quantization it becomes obvious
that they add to the terms of the effective single–particle Schrödinger–
Pauli Hamiltonian. In that way one gets a consistent renormalization
of the bare mass m0 the anomalous magnetic moment.

Hence, in the following section the Eriksen transformation T
is introduced which allows to express the single–particle Dirac
Hamiltonian in the Newton–Wigner representation, and in which
matter and antimatter degrees of freedom are described separately.
Thereby the Newton–Wigner representation of the single–particle
Dirac Hamiltonian is discussed.
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5 The Eriksen Transformation and the Newton–

Wigner Representation of the Single–Particle

Dirac Hamiltonian

The Eriksen transformation T [20, 21, 22, 23, 24, 25, 11, 26, 27, 28, 29]
makes it possible to transform the single–particle Dirac Hamiltonian
Ĥ(D) to the Newton–Wigner representation Ĥ(NW ). For a recent
discussion of the Eriksen transformation see [10]. It is in this
representation where the Hamiltonian, as well as other observables
like the velocity and the angular momentum, resemble their classical
expressions the most [9].

The Eriksen transformation T is given by [10, 7]

T =

√
1

2

(
14×4 +

mec2

E (∞)

)
+ βDA

√
1

2

(
14×4 −

mec2

E (∞)

)
(155)

or [10, 7]

T† =

√
1

2

(
14×4 +

mec2

E (∞)

)
− βDA

√
1

2

(
14×4 −

mec2

E (∞)

)
(156)

where [10, 7]

E (∞) = m0c
2

√
14×4 +

2

m0c2
H

(P,0)
4×4 (157)

and [10, 7]

H
(P,0)
4×4 =

ΠbΠb

2m0
14×4 −

qe~
2m0

B
(ext)
b σb

σb = σx ⊗ σ(P )
b

(158)

This transformation is defined by two properties: first it enables to
blockdiagonalize the single particle Dirac Hamilton Ĥ(D), and second,
it decouples the matter and antimatter degrees of freedom in the
amplitudes U

(D)
µ′ (r, k) and V

(D)
µ′ (r, k). It is important to emphasize

that both requirements must be met, it is not sufficient to only
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blockdiagonalize the Dirac Hamiltonian. The latter required property
of the Eriksen transformation is also called energy–separating.

In the appendix B it is shown how the Eriksen transformation T can
be derived by a Brockett type of flow equation which can indeed be
solved exactly.

The Newton–Wigner representation of the Dirac Hamiltonian follows
as [10, 8]

H(NW ) = T ◦ H(D) ◦ T†

= β ◦
√

H(D) ◦ H(D)

= β ◦ E (∞)

= m0c
2 β ◦

√
14×4 +

2

m0c2
H

(P,0)
4×4

(159)

Please recognize the operator β = σ
(P )
z ⊗ 12×2! The Newton–Wigner

Hamiltonian is, indeed, blockdiagonal.

Furthermore [10, 7],

H
(P,0)
4×4 =

√
12×2 ⊗ H

(SP,0)
2×2 (160)

is the relativistic Schrödinger–Pauli Hamiltonian being related to the
nonrelativistic Schrödinger–Pauli Hamiltonian H

(SP,0)
2×2 given by [10, 7]

H
(SP,0)
2×2 =

ΠbΠb

2m0
12×2 −

qe~
2m0

B
(ext)
b σ

(P )
b (161)

With that one finds [10, 7]

H(NW ) = m0c
2
(
σ(P )
z ⊗ 12×2

)
◦
(

12×2 ⊗
√

12×2 +
2

m0c2
H

(SP,0)
2×2

)
= m0c

2 σ(P )
z ⊗

√
12×2 +

2

m0c2
H

(SP,0)
2×2

(162)

The property of being energy separating can formally be expressed by
[10]
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H(NW ) = β
√

H(NW )H(NW )

(04×1)µ =
(

H(NW ) − β
√

H(NW )H(NW )
)
µ,µ′

U
(NW )
µ′ (r, k)

= Ek

(
1̂4×4 − β

)
µ,µ′

U
(NW )
µ′ (r, k)

(04×1)µ =
(

H(NW ) − β
√

H(NW )H(NW )
)
µ,µ′

V
(NW )
µ′

(
r, k̃
)

= (−Ek̃)
(
1̂4×4 + β

)
µ,µ′

V
(NW )
µ′

(
r, k̃
)

(163)

These relations are only fulfilled iff the eigenfunctions U
(NW )
µ′ (r, k) are

of the form [10, 8]


U1 (r, k)
U2 (r, k)

0
0


µ′

(164)

and V
(NW )
µ′

(
r, k̃
)

are of the form [10, 8]


0
0

V3

(
r, k̃
)

V4

(
r, k̃
)

µ′

(165)

because

(
1̂4×4 − β

)
=


0 0 0 0
0 0 0 0
0 0 −2 0
0 0 0 −2

 ,
(
1̂4×4 + β

)
=


2 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0


(166)

The solution to a flow equation which blockdiagonalizes the single–
particle Dirac Hamiltonian does not automatically fulfill the condition
(163). In case of an additional external electric field the derivation
of the Newton–Wigner Hamiltonian is much more intricate because
H(NW ) ◦ H(NW ) 6= H(D) ◦ H(D). For a recent in–depth discussion see
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[10]. However, since here, only a static magnetic induction field is
considered, there holds H(NW ) ◦H(NW ) = H(D) ◦H(D), and therefore the
energy separation condition (163) is valid.

Now since indeed

[
β,H

(P,0)
4×4

]
= 04×4 (167)

the Eriksen transformation T transforms eigenfunctions Uµ (r, k) of
the Dirac Hamiltonian Ĥ(D) belonging to positive energy eigenvalues
Ek > 0 to the eigenfunctions U

(NW )
µ (r, k) of the bare relativistic Pauli

Hamiltonian H
(P,0)
4×4 , see equation (160), which are simultanouesly the

eigenfunctions of the Dirac β matrix belonging to the eigenvalue +1!

Therefore [10, 8]

Uµ′ (r, k) =
(
T† ◦ T

)
Uµ′ (r, k)

= T†U
(NW )
µ′ (r, k)

βU
(NW )
µ′ (r, k) = +U

(NW )
µ′ (r, k)

(168)

In addition, the eigenfunctions Vµ (r, k) of the Dirac Hamiltonian
Ĥ(D) belonging to the negative energy eigenvalue Ek < 0 are
transformed to the eigenfunctions V

(NW )
µ (r, k) of the bare relativistic

Pauli Hamiltonian H
(P,0)
4×4 which are simultanouesly the eigenfunctions

of the Dirac β matrix belonging to the eigenvalue −1 [10, 8]:

Vµ′
(
r, k̃
)

=
(
T† ◦ T

)
Vµ′
(
r, k̃
)

= T†V
(NW )
µ′

(
r, k̃
)

βV
(NW )
µ′

(
r, k̃
)

= −V (NW )
µ′

(
r, k̃
) (169)

The related eigenvalue problem assumes the following guise [10]:

∑
µ′

(
H(NW )

)
µ,µ′

U
(NW )
µ′ (r, k) = EkU

(NW )
µ (r, k)

∑
µ′

(
H(NW )

)
µ,µ′

V
(NW )
µ′ (r, k) = −EkV

(NW )
µ (r, k)

(170)
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Since(!) H
(P,0)
4×4 ≡ 12×2 ⊗ H

(SP,0)
2×2 the eigenvalues and eigenfunctions

of H(NW ) can now be related to the well-known eigenvalues
and eigenfunctions of the Schrödinger–Pauli Hamiltonian H

(SP,0)
2×2 !

Therefore, the Newton–Wigner eigenfunctions U
(NW )
µ (r, k) and

V
(NW )
µ (r, k) are four–spinors with two empty arguments, while the

other two arguments can be related to the eigenfunctions of the
Schrödinger–Pauli Hamiltonian H

(SP,0)
2×2 !

For the bare nonrelativistic Schrödinger–Pauli Hamiltonian the
following eigenvalue problem is valid [10]:

∑
σ′

(
H

(SP,0)
2×2

)
σ,σ′

u
(SP )
σ′ (r, k) = E

(SP )
k u(SP )

σ (r, k)

σ, σ′ ∈ {+,−}
k = (kz, n, ζ)

(171)

The eigenfunctions u
(SP )
σ (r, k) build a complete orthonormal basis of

the hermitean operator H
(SP,0)
2×2 such that [7]∫

d3r
∑

σε{+,−}

u?(SP )
σ (r, k)u(SP )

σ (r, k′) = δk,k′∑
k

u(SP )
σ (r, k)u

?(SP )
σ′ (r′, k) = δσ,σ′δ

(3) (r− r′)
(172)

Hence, the Newton–Wigner eigenfunctions of the relativistic Pauli
Hamiltonian have the following structure [10]:

U (NW )
µ (r, k) =


u

(SP )
+ (r, k)

u
(SP )
− (r, k)

0
0


µ

(173)

and [10]

V (NW )
µ (r, k) =


0
0

u
(SP )
+ (r, k)

u
(SP )
− (r, k)


µ

(174)
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and the relativistic energy is given by Ek = m0c
2
√

12×2 + 2
m0c2

E
(SP )
k .

From (β)µ,µ′ U
(NW )
µ′ (r, k) = +U

(NW )
µ′ (r, k) and (β)µ,µ′ V

(NW )
µ′ (r, k) =

−V (NW )
µ′ (r, k) one readily confirms [7]

∑
µ′

(
H(NW )

)
µ,µ′

U
(NW )
µ′ (r, k) =

∑
µ′

m0c
2

(
σ(P )
z ⊗

√
12×2 +

2

m0c2
H

(SP,0)
2×2

)
µ,µ′


u

(SP )
+ (r, k)

u
(SP )
− (r, k)

0
0


µ′

= m0c
2



∑
σ′

(√
12×2 + 2

m0c2
H

(SP,0)
2×2

)
+,σ′

u
(SP )
σ′ (r, k)∑

σ′

(√
12×2 + 2

m0c2
H

(SP,0)
2×2

)
−,σ′

u
(SP )
σ′ (r, k)

0
0


µ

= m0c
2

√
12×2 +

2

m0c2
E

(SP )
k


u

(SP )
+ (r, k)

u
(SP )
− (r, k)

0
0


µ

= EkU
(NW )
µ (r, k)

(175)

and [7]

∑
µ′

(
H(NW )

)
µ,µ′

V
(NW )
µ′ (r, k) =

∑
µ′

m0c
2

(
σ(P )
z ⊗

√
12×2 +

2

m0c2
H

(SP,0)
2×2

)
µ,µ′


0
0

u
(SP )
+ (r, k)

u
(SP )
− (r, k)


µ′

= m0c
2



0
0

−
∑
σ′

(√
12×2 + 2

m0c2
H

(SP,0)
2×2

)
+,σ′

u
(SP )
σ′ (r, k)

−
∑
σ′

(√
12×2 + 2

m0c2
H

(SP,0)
2×2

)
−,σ′

u
(SP )
σ′ (r, k)


µ

= −m0c
2

√
12×2 +

2

m0c2
E

(SP )
k


0
0

u
(SP )
+ (r, k)

u
(SP )
− (r, k)


µ

= −EkV (NW )
µ (r, k)

(176)

Hence, the relations [10]
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∑
µ′

(T)µ,µ′ Uµ′ (r, k) ≡ U (NW )
µ (r, k) ≡ 0 for µ = 3, 4∑

µ′

(T)µ,µ′ Vµ′ (r, k) ≡ V (NW )
µ (r, k) ≡ 0 for µ = 1, 2

(177)

between the Dirac amplitudes Uµ′ (r, k) and Vµ′ (r, k), and the

Newton–Wigner amplitudes U
(NW )
µ (r, k) and V

(NW )
µ (r, k) are valid.

With the transformation T there is a unitary transformation which has
two important properties: it blockdiagonalizes the Dirac Hamiltonian
according to (159), and it separates the modes of positive energy and
negative energy states according to (177). This will be the key to the
aim of reexpressing the particle number conserving QED Hamiltonian
ĤU in first quantization. As will be shown in the next section 6, from T
indeed follows the nonrelativistic light–matter interaction Hamiltonian
H

(el)
LM of electrons interacting with low–energy photons.

An important aspect of the Newton–Wigner amplitudes (173) and
(174) is that matrix elements of the form [8, 7]∫

d3r
∑
k,k′

U ?(NW )
µ (r, k) (αa)µ,µ′ U

(NW )
µ′ (r, k′) = 04×4 (178)

vanish identically, because the Dirac αa matrix is nondiagonal while
the Newton–Wigner amplitudes are “diagonal”.

As an example the Dirac αa assumes the following guise in the
Newton–Wigner representation (see section B of the appendix) [7]:

TαaT† = T (Π)αaT† (Π)

= αa + Πa

m0c
β − 1

4
Πb

m0c
Πb′
m0c

αbαb′αa +

αbαa + αaαb︸ ︷︷ ︸
2δa,b

αb′


(179)

It is well known that in the Heisenberg picture the velocity of the
Dirac particle is va = cαa, see for example [18, 9]. Intererstingly, in
the Newton–Wigner representation the nondiagonality of the Newton–
Wigner particles velocity associated with (179) is still there, however,
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by evaluation matrix elements, for which one has to make use of the
Newton–Wigner eigenfunctions (173) and (174), the contribution due
to the nondiagonal αa matrices in (179) vanish exactly. Hence, on the
operator level the velocity of the Newton–Wigner particle comprises
also nondiagonal parts, but these are not visible by evaluating matrix
elements (see also the discussion in the beginning of section 6.4).

It should be mentioned that one can show that in the Newton–Wigner
representation of the Dirac Hamiltonian there does not exist any
paradox like the so–called Zitterbewegung [10, 7].
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6 Solution to the Classical Limit Problem of QED

Part II: Applying the Eriksen Transformation

In section 4 the particle number conserving Hamiltonian ĤU has been
derived up to the order α2

FS of the finestructure constant αFS by
solving the flow equation perturbatively. The result was given by
[7, 8]

lim
s→∞
ĤU(s) = m0c

2
(
Ĥ(0) + Ĥ(1) (∞) + Ĥ(2,h) (∞) + Ĥ(2,i) (∞)...

)
= ĤD + M̂(e)

C + M̂(p)
C + M̂(e)

⊥ + M̂(p)
⊥

+ Ĥrad + Ĥ(low,0)
⊥ + Ĥp,ph + Ĥe,ph + Q̂⊥,ph

+ U (0)
C + V̂ (0)

ext + C⊥1̂ + V̂⊥,ee + V̂⊥,pp + V̂⊥,ep
(180)

This unitarily equivalent QED Hamiltonian describes the interaction
between matter and antimatter fields moving at arbitrary speed, and
low energy photons.

Then in section 5 the Eriksen transformation T has been introduced
which makes it possible to decouple the matter and antimatter degrees
of freedom.

This part is dedicated to the goal of now putting the results together
in such a way that one gets a Hamiltonian Ĥ(LM) from ĤU by applying
the Eriksen transformation . Ĥ(LM) then describes the interaction of
nonrelativistic electrons as point particles with low–energy photons. It
is thus a nonrelativistic, classical light–matter interaction Hamiltonian
for the electrons. Several steps are necessary for doing this.

First of all, in the following, the interaction terms
Ĥp,ph + Ĥe,ph + V̂⊥,ep, and the terms Q̂⊥,ph + C⊥1̂ + V̂⊥,pp in the
Hamiltonian (180) will not be considered further. The study of
these would be very interesting, but for the time being they do not
play a role in the derivation of the nonrelativistic many–electron
Hamiltonian of light–matter interaction.

The remaining contributions in (180) decompose into matter and
antimatter parts once the Eriksen transformation has been applied.
However, the parts describing interactions of positrons with photons
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will also not be evaluated. The evaluation is analogous as for the
electrons and as I have outlined in (238) there is a shorter way for

receiving the nonrelativistic positron Hamiltonian. Ĥ(pos)
LM principally

results from the charge conjugation symmetry operation CF .

Hence, first, the Hamiltonian [7, 8]

Ĥ(el)
LM = Ĥ(el)

D + M̂(e)
C + M̂(e)

⊥ + Ĥrad + Ĥ(low,el)
⊥

+ V̂C,ee + V̂ (el)
ext + V̂⊥,ee

(181)

is derived from the the respective parts of the Hamiltonian (180) by
applying the Eriksen transformation. Here, V̂C,ee is the matter part of

the particle number conserving Coulomb interaction, and Ĥ(low,el)
⊥ is

the matter part of the coupling of the matter fields to the low energy
photons.

The reexpression of the Hamiltonian Ĥ(el)
LM in the Newton–Wigner

representation is in large parts a discussion about orders of magnitude
that must be considered or can be neglected (regarding the
finestructure constant). Here, one must be guided by the physics.
For that it is very important to know that the Newton–Wigner field
operators are proportional to the nonrelativistic Schrödinger–Pauli
amplitudes (for electrons and positrons separately). The latter are
slowly varying functions on the Bohr length scale (compared to the
length scale of pair creation defined by the Compton wavelength
λC). Therefore, the operators occuring between the Newton–Wigner
amplitudes, or the respective matrix elements, can be evaluated as
a gradient expansion with respect to the gauge invariant momentum
operator Π̂b. Thereby all contributions higher than the order α2

FS will
be neglected, which is consistent with the solution of the perturbation
expansion applied in section 4.

First the renormalization terms for the electrons M̂(e)
C + M̂(e)

⊥ are
evaluated. These calculations are extensive and have therefore been
shifted in large parts to the appendix.

Then the matter part Ĥ(el)
D of the Dirac quantum field is evaluated,

such that one can find from Ĥ(el)
D + M̂(e)

C + M̂(e)
⊥ ≡ Ĥ

(el)
SP the effective

Schrödinger–Pauli Hamilton. In this context the physical cut–off
is introduced and the renormalization integrals are evaluated. It
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will then become obvious how the bare mass m0 of the electrons is
renormalized and with that, accordingly, the g–factor.

Finally, the effective interaction terms are evaluated. For this one has
to calculate matrix elements in the Newton–Wigner representation,
which give the corrections to the Dirac representation. In this context
the first order effective transversal interaction Ĥ(low,0)

⊥ and the second
order transversal interaction V̂⊥,ee are evaluated, then the second order

longitudinal interactions V̂C,ee and V̂ (el)
ext are evaluated.

Then, when one has succeeded in deriving the Hamiltonian Ĥ(el)
LM from

ĤU , it will be possible to express it in first quantization. In that
guise the light–matter Hamiltonian for electrons Ĥ

(el)
LM arises from Ĥ(el)

LM ,
derived by full QED.
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6.1 Evaluation of the Renormalization Terms

The terms that renormalize the bare mass m0 and the g–factor of
the fermions have been deduced in section 4.1.3. They are given
by M̂(0) = M̂(0)

C + M̂(0)
⊥ , where M̂(0)

C renormalizes the fermionic
attributes due to the high–energy Coulomb–interaction between the
(anti–)matter fields, and M̂(0)

⊥ renormalizes the fermionic attributes
due to the interaction of the (anti–)matter fields with the high–energy
photons.

These terms decompose into renormalization terms for matter (e) and
antimatter (p) separately according to [7, 8]

M̂(0)
C = M̂(e)

C + M̂(p)
C

M̂(0)
⊥ = M̂(e)

⊥ + M̂(p)
⊥

In the following it will be concentrated on the evaluation matter parts
M̂(e)

C and M̂(e)
⊥ of the renormalization. These are given by [7]

M̂(e)
C =

∑
K,k

(
q2
e

2ε0

)∫
d3q

(2π)3

1

|q|2
〈Uk| e−iqa·x̂a

(
P(+) − P(−)

)
◦ eiqa·x̂a |UK〉 ĉ†k ĉK

M̂(e)
⊥ = m0c

2
∑
k,K

ĉ†k ĉK

(
qe
m0c

)2 1

V

∑
q

~
2ε0ω (q)

∑
b,b′

(
δb,b′ −

qbqb′

|q|2

)

×


κq ×

∑
K′ 〈Uk|αbe

iqax̂a |UK′〉 〈UK′ |αb′e−iqa′ x̂a′ |UK〉
(Ẽk−ẼK′−ω̃q)+(ẼK−ẼK′−ω̃q)

(Ẽk−ẼK′−ω̃q)
2
+(ẼK−ẼK′−ω̃q)

2

+
∑

K′ 〈Uk|αbe
−iqax̂a |VK′〉 〈VK′ |αb′e+iqax̂a |UK〉

(Ẽk+ẼK′+ω̃q)+(ẼK+ẼK′+ω̃q)
(Ẽk+ẼK′+ω̃q)

2
+(ẼK+ẼK′+ω̃q)

2

(182)

With the abbreveations [7]

M̂(e)
C =

∑
k,K

M̃
(C,e)
k,K ĉ†kĉK

M̂(e)
⊥ =

∑
k,K

M̃
(⊥,e)
k,K ĉ†kĉK

(183)

there holds [7]

M̂(e) = M̂(e)
C + M̂(e)

⊥ =
∑
k,K

(
M̃

(C,e)
k,K + M̃

(⊥,e)
k,K

)
ĉ†kĉK (184)
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In section 6.3 it will become clear how the terms (184) add up to the
bare rest energy, the bare kinetic energy and the bare Zeeman energy
of the single–particle Dirac Hamiltonian: they numerically alter the
bare mass m0 and the g–factor of the electron.

6.1.1 Evaluation of the Transversal Contribution
to the Renormalization

For the following it is convenient to introduce [7]

ω̃q =
|q|
kC

m0c
2

(
qe
m0c

)2 ~
2ε0ω (q)

=

(
q2
e

2ε0

)(
~
m0c

)2
1

ω̃q

(185)

From that follows for the transversal matrix element in (182) [7]

M̃
(⊥,e)
k,K =

(
q2
e

2ε0

)(
~
m0c

)2 1

V

∑
q

1

ω̃q

∑
b,b′

(
δb,b′ −

qbqb′

|q|2

)

×


κq
∑

K′ 〈Uk|αbe
iqax̂a (Ẽk−ẼK′−ω̃q)+(ẼK−ẼK′−ω̃q)

(Ẽk−ẼK′−ω̃q)
2
+(ẼK−ẼK′−ω̃q)

2 |UK′〉 〈UK′ |αb′e−iqa′ x̂a′ |UK〉

+
∑

K′ 〈Uk|αbe
−iqax̂a (Ẽk+ẼK′+ω̃q)+(ẼK+ẼK′+ω̃q)

(Ẽk+ẼK′+ω̃q)
2
+(ẼK+ẼK′+ω̃q)

2 |VK′〉 〈VK′ |αb′e+iqa′ x̂a′ |UK〉

(186)

Obviously, due to the summation over all photon wavenumbers q, this
expression is divergent. Hence, one has to introduce a cut–off. At this
point there are several possibilities for choosing such a cut-off [32]: one
could truncate the photon energy only, or one could truncate both the
photon energy and the kinetic energy of the fermions. One could also
consider the potential energy of the photons in the cut-off. However,
it turns out that the correct physical cut-off is the one where one
truncates the energy ω̃q of the photons and the kinetic energy ẼK ′ of
the fermions. From a general point of view there is no reason to assume
that the photon energy should be limited, whereas the fermions can
move at any speed. It will be shown in subsection 6.3 that such a
choice of the cut-off leads to a consistent renormalization of the bare
electron mass me.

For now it will be assumed that the cut-off Ω̃max is given by [7]
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ω̃q + ẼK ′ < 2Ω̃max

Ω̃max � 1
(187)

The setting that Ω̃max � 1 will be justified in subsection 6.3, where it
is shown that the sum or the integral in (186) is of logarithmic nature,
such that αFS

π ln Ω̃max is a small number leading to the fact that there
is no big difference between the bare mass m0 and the true electron
mass me. The fact that it is possible to choose the cutoff Ω̃max � 1
in this way implies, moreover, that one is able to account for a wide
range of photon modes.

Formally, the cut–off (187) can be introduced by the Heaviside
stepfunction ΘH (x):

ΘH (x) =
1

2

(
1 +

x

|x|

)
=

{
1 für x > 0

0 für x < 0
(188)

according to [7]

ΘH

(
2Ω̃max − x

)
=

{
1 für x < 2Ω̃max

0 für x > 2Ω̃max

(189)

With this one can express (186) as [7]

M̃
(⊥,e)
k,K =

(
q2
e

2ε0

)(
~
m0c

)2
1

V

∑
q

1

ω̃q

∑
b,b′

(
δb,b′ −

qbqb′

|q|2

)

×


κq
∑
K′ 〈Uk|αbe

iqax̂a (Ẽk−ẼK′−ω̃q)+(ẼK−ẼK′−ω̃q)
(Ẽk−ẼK′−ω̃q)

2
+(ẼK−ẼK′−ω̃q)

2 ΘH

(
2Ω̃max − ω̃q − ẼK′

)
|UK′〉 〈UK′ |αb′e−iqa′ x̂a′ |UK〉

+
∑
K′ 〈Uk|αbe

−iqax̂a (Ẽk+ẼK′+ω̃q)+(ẼK+ẼK′+ω̃q)
(Ẽk+ẼK′+ω̃q)

2
+(ẼK+ẼK′+ω̃q)

2 ΘH

(
2Ω̃max − ω̃q − ẼK′

)
|VK′〉 〈VK′ |αb′e+iqa′ x̂a′ |UK〉

(190)

Using the Dirac eigenvalue relation

H̃(D) |Uk〉 = Ẽk |Uk〉
H̃(D) |Vk′〉 = −Ẽk′ |Vk′〉

(191)

implying for any analytical function F (z) [7]
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F
(

H̃(D)
)
|Uk〉 = F

(
Ẽk

)
|Uk〉F

(
H̃(D)

)
|Vk′〉 = F

(
−Ẽk′

)
|Vk′〉

(192)

for introducing the Operator Cq [7]

Cq ≡ ΘH

[(
2Ω̃max − ω̃q

)
14×4 −

√
H̃(D)H̃(D)

]
Cq |UK ′〉 = ΘH

(
2Ω̃max − ω̃q − ẼK ′

)
|UK ′〉

Cq |VK ′〉 = ΘH

(
2Ω̃max − ω̃q − ẼK ′

)
|VK ′〉

(193)

Inserting this into the transversal matrix element (190) one finds [7]

M̃
(⊥,e)
k,K =

(
q2
e

2ε0

)(
~
m0c

)2
1

V

∑
q

1

ω̃q

∑
b,b′

(
δb,b′ −

qbqb′

|q|2

)

×


κq 〈Uk|αbeiqax̂a ◦

(Ẽk−H̃(D)−ω̃q)+(ẼK−H̃(D)−ω̃q)
(Ẽk−H̃(D)−ω̃q)

2
+(ẼK−H̃(D)−ω̃q)

2 ◦ Cq ◦ (
∑
K′ |UK′〉 〈UK′ |) ◦ e−iqa′ x̂a′αb′ |UK〉

+ 〈Uk|αbe−iqax̂a ◦
(Ẽk−H̃(D)+ω̃q)+(ẼK−H̃(D)+ω̃q)

(Ẽk−H̃(D)+ω̃q)
2
+(ẼK−H̃(D)+ω̃q)

2 ◦ Cq ◦ (
∑
K′ |VK′〉 〈VK′ |) ◦ e+iqa′ x̂a′αb′ |UK〉

=

(
q2
e

2ε0

)(
~
m0c

)2
1

V

∑
q

1

ω̃q

∑
b,b′

(
δb,b′ −

qbqb′

|q|2

)

×


κq 〈Uk|αbeiqax̂a ◦

(Ẽk−H̃(D)−ω̃q)+(ẼK−H̃(D)−ω̃q)
(Ẽk−H̃(D)−ω̃q)

2
+(ẼK−H̃(D)−ω̃q)

2 ◦ Cq ◦ P(+)αb′e
−iqa′ x̂a′ |UK〉

+ 〈Uk|αbe−iqax̂a ◦
(Ẽk−H̃(D)+ω̃q)+(ẼK−H̃(D)+ω̃q)

(Ẽk−H̃(D)+ω̃q)
2
+(ẼK−H̃(D)+ω̃q)

2 ◦ Cq ◦ P(−) ◦ e+iqa′ x̂a′αb′ |UK〉

(194)

Here, use has been made of the definition (307) of the projection
operators P(+) and P(−).

The expression (194) can be further transformed by using that the
sum is not altered if one substitutes qa → −qa in the first line [7]:

M̃
(⊥,e)
k,K =

(
q2
e

2ε0

)(
~
m0c

)2
1

V

∑
q

1

ω̃q

∑
b,b′

(
δb,b′ −

qbqb′

|q|2

)

= ×



〈Uk|αbe−iqax̂a ◦ Cq ◦


(Ẽk−H̃(D)−ω̃q)+(ẼK−H̃(D)−ω̃q)

(Ẽk−H̃(D)−ω̃q)
2
+(ẼK−H̃(D)−ω̃q)

2P(+)

+
(Ẽk−H̃(D)+ω̃q)+(ẼK−H̃(D)+ω̃q)

(Ẽk−H̃(D)+ω̃q)
2
+(ẼK−H̃(D)+ω̃q)

2P(−)

 ◦ e+iqa′ x̂a′αb′ |UK〉

− (1− κq) 〈Uk|αbe−iqax̂a ◦ Cq ◦
(Ẽk−H̃(D)−ω̃q)+(ẼK−H̃(D)−ω̃q)

(Ẽk−H̃(D)−ω̃q)
2
+(ẼK−H̃(D)−ω̃q)

2 ◦ P(+) ◦ eiqa′ x̂a′αb′ |UK〉

(195)
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The contribution of the first line is independent of the photon, since
the sum runs over all wavenumbers q. It describes the renormalization
due to the presence of the high energy photons in the QED soup. This
contribution is always present, even if one would eliminate all photons.
Eliminating all photons, including the high energy photons, formally
means that κq ≡ 1 (see (85)), and the contribution of the second line
vanishes.

The following identity will be useful [7]:

F (z) P(+) + F (−z) P(−) = F
[
z
(

P(+) − P(−)
)]

(196)

This is valid for a power series F (w) =
∑∞

n=0 Fn · wn with matrix
coefficents Fn. The identity (196) is proven in the appendix I.

It leads to [7]

(Ẽk−H̃(D)−ω̃q)+(ẼK−H̃(D)−ω̃q)

(Ẽk−H̃(D)−ω̃q)
2
+(ẼK−H̃(D)−ω̃q)

2 ◦ P(+) +
(Ẽk−H̃(D)+ω̃q)+(ẼK−H̃(D)+ω̃q)

(Ẽk−H̃(D)+ω̃q)
2
+(ẼK−H̃(D)+ω̃q)

2 ◦ P(−)

=
(Ẽk−H̃(D)−ω̃q(P(+)−P(−)))+(ẼK−H̃(D)−ω̃q(P(+)−P(−)))

(Ẽk−H̃(D)−ω̃q(P(+)−P(−)))
2
+(ẼK−H̃(D)−ω̃q(P(+)−P(−)))

2

=

(
Ẽk−H̃(D)−ω̃q H̃(D)√

H̃(D)◦H̃(D)

)
+

(
ẼK−H̃(D)−ω̃q H̃(D)√

H̃(D)◦H̃(D)

)
(
Ẽk−H̃(D)−ω̃q H̃(D)√

H̃(D)◦H̃(D)

)2

+

(
ẼK−H̃(D)−ω̃q H̃(D)√

H̃(D)◦H̃(D)

)2

and with that one finds [7]

M̃
(⊥,e)
k,K =

(
q2
e

2ε0

)(
~
m0c

)2
1

V

∑
q

1

ω̃q

∑
b,b′

(
δb,b′ −

qbqb′

|q|2

)

×


〈Uk|αbe−iqax̂a ◦ Cq ◦

(
Ẽk−H̃(D)−ω̃q H̃(D)√

H̃(D)◦H̃(D)

)
+

(
ẼK−H̃(D)−ω̃q H̃(D)√

H̃(D)◦H̃(D)

)
(
Ẽk−H̃(D)−ω̃q H̃(D)√

H̃(D)◦H̃(D)

)2

+

(
ẼK−H̃(D)−ω̃q H̃(D)√

H̃(D)◦H̃(D)

)2 ◦ e+iqa′ x̂a′ αb′ |UK〉

− (1− κq) 〈Uk|αbe−iqax̂a ◦ Cq ◦
(Ẽk−H̃(D)−ω̃q)+(ẼK−H̃(D)−ω̃q)

(Ẽk−H̃(D)−ω̃q)
2
+(ẼK−H̃(D)−ω̃q)

2 ◦ P(+) ◦ eiqa′ x̂a′αb′ |UK〉


(197)

The fractions are of the form R (x) =
(x+a)+(x+b)

(x+a)
2
+(x+b)

2 which can

be transformed with the help of elementary algebra to R (x) =
x+a+b

2

(x+a+b
2 )

2
+ (a−b)2

4

.
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Together with the abbrevation Z = H̃(D)◦
(

14×4 +
ω̃q√

H̃(D)◦H̃(D)

)
one can

rewrite (197) according to [7]

M̃
(⊥,e)
k,K =

(
q2
e

2ε0

)(
~
m0c

)2
1

V

∑
q

1

ω̃q

∑
b,b′

(
δb,b′ −

qbqb′

|q|2

)

×


〈Uk|αbe−iqax̂a ◦Cq ◦

−Z+
Ẽk+ẼK

2 14×4(
−Z+

Ẽk+ẼK
2 14×4

)2
+

(Ẽk−ẼK)2

4 14×4

◦ e+iqa′ x̂a′ αb′ |UK〉

− (1− κq) 〈Uk|αbe−iqax̂a ◦ Cq ◦
−H̃(D)+

(
ω̃q+

Ẽk+ẼK
2

)
14×4(

−H̃(D)+
(
ω̃q+

Ẽk+ẼK
2

)
14×4

)2
+

(Ẽk−ẼK)2

4 14×4

◦ P(+) ◦ eiqa′ x̂a′αb′ |UK〉


(198)

One now has to think about the orders of magnitude. The goal is to
limit oneself to the nonrelativistic sector of QED, and therefore, for
being consistent with the perturbative solution of the flow equation
(102), this means that one has to keep corrections up to order α2

FS

regarding the energies Ẽk and ẼK .

In the appendix section E there is a discussion about the orders of
magnitude relevant for atomic and molecular physics. There one can
see that the kinetic energy Ẽkin and the Zeeman energy ẼZee are
already of second order in the finestructure constant αFS compared to
the rest energy of the electron.

From this follows that (dimensionless) differences like Ẽ2
k − 1 are

comparable to
H

(P,0)
4×4

m0c2
∼ α2

FS . This is because the rest energy Ẽ0 is

of order α0
FS = 1. Substracting the 1 = Ẽ0 from the total energy

Ẽk = Ẽ0 + Ẽkin + ẼZee then there remains the kinetic energy and the
Zeeman energy. Hence, such contributions in (198) are of the order

α2
FS like the Pauli term

H
(P,0)
4×4

m0c2
.

It follows immediately that differences like
(
Ẽk − ẼK

)2

are of the

order α4
FS. These can thus be neglected in (198).

Having said that there follows for (198) [7]

−Z + Ẽk+ẼK
2 14×4(

−Z + Ẽk+ẼK
2 14×4

)2

+
(Ẽk−ẼK)

2

4 14×4

= −
Z+

Ẽk+ẼK
2 14×4

Z2−
(
Ẽk+ẼK

2

)2

14×4
+O(α4

FS)

(199)
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and [7]

−H̃(D)+
(
ω̃q+

Ẽk+ẼK
2

)
14×4(

−H̃(D)+
(
ω̃q+

Ẽk+ẼK
2

)
14×4

)2

+
(Ẽk−ẼK)

2

4 14×4
= −

H̃(D)+
(
ω̃q+

Ẽk+ẼK
2

)
14×4

H̃(D)H̃(D)−
(
ω̃q+

Ẽk+ẼK
2

)2

14×4
+O(α4

FS)

(200)

yielding [7]

M̃
(⊥,e)
k,K =

(
q2
e

2ε0

)(
~
m0c

)2
1

V

∑
q

1

ω̃q

∑
b,b′

(
δb,b′ −

qbqb′

|q|2

)

×


− 〈Uk|αb

(
e−iqax̂a ◦ Cq ◦ eiqaxa

)
◦ e−iqaxa ◦

Z+
Ẽk+ẼK

2 14×4

Z2−
(
Ẽk+ẼK

2

)2
14×4

◦ eiqa′ x̂a′αb′ |UK〉

+ (1− κq) 〈Uk|αbe−iqax̂a ◦ Cq ◦
H̃(D)+

(
ω̃q+

Ẽk+ẼK
2

)
14×4

H̃(D)H̃(D)−
(
ω̃q+

Ẽk+ẼK
2

)2
14×4

◦ P(+) ◦ eiqa′ x̂a′αb′ |UK〉

(201)

Yet another simplification is possible. In the second line being
proportional to (1− κq) the corrections are of the order O(α3

FS).
This is because the term with 1 − κq describes the renormalization
contribution due to the low energy photons. It is therefore small.
Additionally, for the low energy photons one can make use of the
dipole approximation, meaning that we one set eiqaxa ' 1 and Cq ≡ 1,
because this is far below the cut–off regime (189). The remaining
corrections are then of the order O

(
α3
FS

)
.

Altogether one can set [7]

M̃
(⊥,e,high)
k,K = −

(
q2
e

2ε0

)(
~
m0c

)2 1

V

∑
q

1

ω̃q

∑
b,b′

(
δb,b′ −

qbqb′

|q|2

)

× 〈Uk|αb
(
e−iqax̂a ◦ Cq ◦ eiqaxa

)
◦ e−iqax̂a ◦

Z+
Ẽk+ẼK

2
14×4

Z2−
(
Ẽk+ẼK

2

)2

14×4

◦ eiqa′xa′αb′ |UK〉

(202)

which provides corrections up to the order α2
FS .

The evaluation of the operators e−iqax̂a◦
Z− Ẽk′+ẼK′2 14×4

Z2−
(
Ẽk′+ẼK′

2

)2

14×4
◦ eiqax̂a and

e−iqax̂a ◦ Cq ◦ eiqax̂a is shifted to the appendix section I. The final result
is given by [7]
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M̃
(⊥,e,high)
k,K = −m0c

2 αFS

π
×

×



〈Uk|
∫ Ω̃max
0 dξ ξ



(
ξ
w
− 1
)
β


− 1

3

( (
w
ξ
− ξ
w

)
+
(
−1 + ξ3

w3

) )
+
(
w
ξ
− 1
)

+
(
− 1

2ξ2
− ξ

2w
+ w

2ξ

)
 Πa

m0c
αa

+ 1
m0c2

(
− 1
ξ2

+ ξ
w3

)
1
3
H̃

(P )
4×4β

− 1
m0c2

(
2
(
− 1
ξ2

+ ξ
w3

)
+ 2+5ξ2

2ξw5

)
2
3
ΠaΠa
2m0

β

+ 1
m0c2

 ((
−1 + w

ξ
− ξ

2w3

)
+ 2

(
w
ξ
− ξ
w
− 1
ξ2

))
2
3

(
ΠaΠa
2m0

H̃(D)

2
+ H̃(D)

2
ΠaΠa
2m0

)
−
(
w
ξ
− ξ
w
− 1
ξ2

)
1
3

(
H̃

(P )
4×4

H̃(D)

2
+ H̃(D)

2
H̃

(P )
4×4

) 
+
(
w
ξ
− 1− 1

2ξ2

)(
− 2

m0c2
H̃

(P )
4×4

)
H̃(D)

+O
(
α3
FS

)



|UK〉

+ 〈Uk| 1
6

Πb
m0c

αb |UK〉


(203)

where the abbreveations ξ = ω̃q = q
kC

and w =
√

1 + ξ2 have been
introduced for convenience.

The small correction term in the last line is very important. As will be
shown in section 6.3, a consistent renormalization of the bare electron
m0 can only be achieved with this term.

Furthermore, in the derivation of (203), regarding the radial
integration variable ξ, all terms which yield corrections of the order

O
(

Ω̃−2
max

)
have been neglected. This will become clear when the

integrals are finally evaluated, see (248).

The representation (203) is the final result which can be evaluated as
a gradient expansion. For this purpose one first has to replace the

Dirac amplitudes |UK〉 by the Newton–Wigner amplitudes
∣∣∣U (NW )

K

〉
according to (173).

Now first there holds
〈
U

(NW )
k

∣∣∣αb ∣∣∣U (NW )
K

〉
= 04×4, see (178).

Next, for a constant magnetic induction field there holds[
ΠaΠa

2m0
, H̃

(P,0)
4×4

]
= 04×4. Therefore one finds [7]

T
(

ΠaΠa

2m0

)
T† = ΠaΠa

2m0
14×4 +O

(
α3
FS

)
(204)

Furthemore there holds [7]

96



T
(

2
m0c2

H
(P,0)
4×4

)
T† = 2

m0c2
H

(P,0)
4×4 (205)

T
(
αb

Πb

m0c

)
T† =

2
m0c2

H
(P,0)
4×4 β√

14×4+ 2
m0c

2H
(P,0)
4×4

(206)

and [7]

TβT† =
1√

14×4 + 2
m0c2

H
(P,0)
4×4

β (207)

The relations (205), (206) and (207) are derived in the end of section
B of the appendix.

Putting this together one finally finds for (203) after dropping
contributions of the order O

(
α3
FS

)
, [7]

M̃
(⊥,e,high)
k,K = αFS

π



〈
U

(NW )
k

∣∣∣ ∫ Ω̃max0 dξ


m0c

2
(
ξ − w + 1

w

)
β(

5
3w −

5
3ξ −

8
3w + 1

w3

)
H

(P,0)
4×4 β

+
(

2
3ξ −

2
3w + 1

3w −
1
w5

)
ΠaΠa
2m0

β


∣∣∣U (NW )

K

〉

−
〈
U

(NW )
k

∣∣∣ 1
3H

(P,0)
4×4 β

∣∣∣U (NW )
K

〉
+O

(
α3
FS

)


(208)

In the following subsection the longitudinal part of the renormalization
is evaluated.

6.1.2 Evaluation of the Longitudinal Contribution
to the Renormalization

Recall the form of the longitudinal contribution to the renormalization
of the bare mass m0 and the g–factor of the fermions (182).

With the definition of the projection operators (307) and the relation

P(+) − P(−) =
H̃(D)√

H̃(D)◦H̃(D)
derived in section A of the appendix, the

definition (193) for the operator valued step function Cq one finds [7]
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M̃
(C,e)
k,K =

(
q2
e

2ε0

)∫
d3q

(2π)3

1

|q|2
〈Uk| e−iqa·x̂a ◦ Cq ◦

H̃(D)√
H̃(D)◦H̃(D)

◦ eiqa·x̂a |UK〉

=

(
q2
e

2ε0

)∫
d3q

(2π)3

1

|q|2
〈Uk|Kq ◦ Rq |UK〉

(209)

Here, the abbreveations Rq = e−iqa·x̂a ◦ H̃(D)√
H̃(D)◦H̃(D)

◦ eiqa·x̂a and Kq =

e−iqax̂a ◦Cq ◦ eiqax̂a as defined in (594) and (601) have been used. If one
symmetrizes (209) with respect to the substitution qb → −qb one finds
[7]

M̃
(C,e)
k,K =

(
q2
e

2ε0

)∫
d3q

(2π)3

1

|q|2
〈Uk|

(
Kq+K−q

2
Rq+R−q

2
+ Kq−K−q

2
Rq−R−q

2

)
|UK〉

(210)

Introducing spheric coordinates according to

(
q2
e

2ε0

)∫
d3q

(2π)3

1

|q|2
f

(
q

kC
q̂

)
= m0c

2αFS
π

∫ ∞
0

dξ

∫
dΩq̂

4π
f (ξq̂)

(211)

one can rewrite (210) as [7]

M̃
(C,e)
k,K = m0c

2αFS
π

∫ Ω̃max

0
dξ 〈Uk|

∫ dΩq̂

4π

(
Kq+K−q

2
Rq+R−q

2
+ Kq−K−q

2
Rq−R−q

2

)
|UK〉

(212)

Here the integral measure does not depend on the variable ξ because
the introduction of spheric coordinates cancels it. (This is in
distinction to the transversal renormalization term, where there is the
transversal projector carrying 1

|q|2 , see (617))

In the appendix section I it is explained in great detail that the
symmetric part

Kq+K−q
2

Rq+R−q
2 yields the main contribution to the

integral, whereas the antisymmetric part
Kq−K−q

2
Rq−R−q

2 yields a tiny

correction. Therefore, for the symmetric
Kq+K−q

2
Rq+R−q

2 one can set
Kq+K−q

2 = ΘH (Ωmax − ξ), see (605).
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With the expansion (599) of Rq, and with ~qa
m0c

= ξq̂a, one finds [7]

Rq+R−q
2

=



β 1
w

+αa
Πa′
m0c

(
1
wδa,a′ −

ξ2

w3 q̂aq̂a′
)

+β 3ξ2

2w5 q̂aq̂a′
Πa

m0c
Πa′
m0c

− 1
w3 β

H
(P,0)
4×4

m0c2

+O
(
α3
FS

)
(213)

Evaluating the angle integrals then [7]

∫ dΩq̂

4π
Rq+R−q

2
=



β 1
w

+αa
Πa

m0c

(
1
w
− 1

3
ξ2

w3

)
+ 1

m0c2
ξ2

w5
ΠaΠa

2m0
β

− 1
w3 β

H
(P,0)
4×4

m0c2

+O
(
α3
FS

)
(214)

Now since 1
w − 1

3
ξ2

w3 = 1
3w3 + 2

3w and w =
√

1 + ξ2 one can finally
express (212) as [7]

M̃
(C,e)
k,K = m0c

2αFS
π

∫ Ω̃max

0

dξ 〈Uk|


β 1

w

+
(

1
3w3 + 2

3w

)
Πa

m0c
αa

+ 1
m0c2

ξ2

w5

ΠaΠa

2m0
β

− 1
w3

1
m0c2

H
(P,0)
4×4 β

+O
(
α3
FS

)

 |UK〉
(215)

This result can now be evaluated as a gradient expansion once
the Dirac amplitudes have been replaced for the Newton–Wigner
amplitudes according to (173). Then, by again using the relations
(205), (206) and (207), and by dropping corrections of the order
O
(
α3
FS

)
, one finally finds [7]

M̃
(C,e)
k,K = αFS

π

∫ Ω̃max

0
dξ
〈
U

(NW )
k

∣∣∣


m0c
2 1
w β

+ ξ2

w5
ΠaΠa
2m0

β

+
(
− 1
w + 4

3w + 2
3w3 − 1

w3

)
H

(P,0)
4×4 β

+O
(
α3
FS

)
∣∣∣U (NW )

K

〉
(216)
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Collecting the results for the longitudinal contribution M̂(e)
C and the

transversal contribution M̂(e)
⊥ (mainly given by M̂((e),high)

⊥ , see (208))
one finds for (184) [7]

M̂(e) = M̂(e)
C + M̂(e)

⊥ =
∑
k,K

(
M̃

(C,e)
k,K + M̃

(⊥,e)
k,K

)
ĉ†kĉK

=
∑
k,K

(
M̃

(C,e)
k,K + M̃

(⊥,e,high)
k,K

)
ĉ†kĉK

(217)

where, by using (208) and (216) [7]

M̃
(C,e)
k,K + M̃

(⊥,e,high)
k,K = αFS

π

〈
U

(NW )
k

∣∣∣



∫ Ω̃max
0

dξ



m0c
2 1
w β

+ ξ2

w5

ΠaΠa
2m0

β

+
(
− 1
w + 4

3w + 2
3w3 − 1

w3

)
H

(P,0)
4×4 β

+m0c
2
(
ξ − w + 1

w

)
β

+
(

5
3w −

5
3ξ −

8
3w + 1

w3

)
H

(P,0)
4×4 β

+
(

2
3ξ −

2
3w + 1

3w −
1
w5

)
ΠaΠa
2m0

β


−
〈
U

(NW )
k

∣∣∣ 1
3H

(P,0)
4×4 β

∣∣∣U (NW )
K

〉
+O

(
α3
FS

)



∣∣∣U (NW )
K

〉

(218)

Elementary algebra and the eigenvalue relation β
∣∣∣U (NW )

K

〉
=
∣∣∣U (NW )

K

〉
yields [7]

M̃
(C,e,high)
k,K + M̃

(⊥,e,high)
k,K

= αFS
π

〈
U

(NW )
k

∣∣∣



m0c
2
∫ Ω̃max

0
dξ
(

1
w +

(
ξ − w + 1

w

))
+

− 1
3 +

∫ Ω̃max
0

dξ

 ξ2

w5 +
(

2
3ξ −

2
3w + 1

3w −
1
w5

)
− 1
w + 4

3w + 2
3w3 − 1

w3

+ 5
3w −

5
3ξ −

8
3w + 1

w3

 ΠaΠa
2m0

+

(
− 1

3 +
∫ Ω̃max

0
dξ

(
− 1
w + 4

3w + 2
3w3 − 1

w3

+ 5
3w −

5
3ξ −

2ξ
w2 − 8

3w + 1
w3

))(
− qe~

2m0
B

(ext)
b σb

)
+O

(
α3
FS

)


β
∣∣∣U (NW )
K

〉

(219)

Recalling w =
√

1 + ξ2 one can reexpress (219) as [7]
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M̃
(C,e)
k,K + M̃

(⊥,e,high)
k,K =

αFS
π

〈
U

(NW )
k

∣∣∣



m0c
2
∫ Ω̃max

0 dξF1 (ξ)

−
(

1
3 +

∫ Ω̃max
0 dξF2 (ξ)

)
ΠaΠa
2m0

.

+
(

1
3 +

∫ Ω̃max
0 dξF3 (ξ)

)
qe~
2m0

B
(ext)
b σb

+O
(
α3
FS

)


∣∣∣U (NW )

K

〉

(220)

Where the functions F1 (ξ), F2 (ξ) and F3 (ξ), expressed by the variable
ξ only, are given by [7]

F1 (ξ) = ξ −
√

1 + ξ2 + 2√
1+ξ2

F2 (ξ) = ξ −
√

1 + ξ2 + 2√
1+ξ2 −

5

3
(√

1+ξ2
)3 +

2(√
1+ξ2

)5

F3 (ξ) =
5
3

(
ξ −

√
1 + ξ2

)
+ 7

3
√

1+ξ2
− 2

3
(√

1+ξ2
)3

(221)

As will been shown in the following subsection, if one transforms the
Dirac (anti–)matter field ĤD to the Newton–Wigner representation,

the bare relativistic Pauli Hamiltonian H
(P,0)
4×4 = ΠbΠb

2m0
14×4− qe~

2m0
B

(ext)
b σb

arises.

It will then become obvious how the renormalization terms M̃
(C,e)
k,K +

M̃
(⊥,e,high)
k,K match the bare Pauli–Hamiltonian: the first line in (220)

matches the rest energy, the second line matches the kinetic energy and
the third line matches the Zeeman energy. However, all these terms
are weighted by the numerical integrals defined by the functions (221).

In that way the ”true” electron massme and the “true”, the anomalous
g–factor, arise.

6.2 The Dirac (Anti–)Matter Field in the Newton–Wigner
Representation

The Dirac (anti–)matter field operator has been introduced in (8)
according to
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ĤD =

∫
d3r

∑
µ,µ′ε{1,2,3,4}

N
(
Ψ̂ †µ (r) H

(D)
µ,µ′Ψ̂µ′ (r)

)
(222)

where the Dirac field operators are given by

Ψ̂ †µ (r) =
∑
k

(
U ?
µ (r; k) ĉ†k + V ?

µ (r; k) b̂k̃

)
Ψ̂µ (r) =

∑
k

(
Uµ (r; k) ĉk + Vµ (r; k) b̂†

k̃

) (223)

Now in section 5 it has been shown that in the Newton–Wigner
representation of the Dirac Hamiltonian the amplitudes Uµ (r; k)
and Vµ (r; k) can be related to the Schrödinger–Pauli eigenfunctions

u
(SP )
± (r, k) describing physics on the atomic length scale [10, 8, 7]

Uµ (r; k) = T†U (NW )
µ (r; k)

Vµ (r; k) = T†V (NW )
µ (r; k)

(224)

with

U (NW )
µ (r; k) =


u

(SP )
+ (r, k)

u
(SP )
− (r, k)

0
0


µ

V (NW )
µ (r; k) =


0
0

u
(SP )
+ (r, k)

u
(SP )
− (r, k)


µ

(225)

For the goal of deducing the nonrelativistic Hamiltonian of light–
matter interaction from the QED Hamiltonian this is absolutely
essential, because one can now express the Dirac amplitudes in (222)
in the Newton–Wigner representation according to (224).

Therefore, the Newton–Wigner field operators Φµ (r) can be defined
with the help of the Eriksen transformation T according to [10, 8, 7]
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Φµ (r) = (T)ν,µ Ψ̂µ (r) =


ψ̂+ (r)

ψ̂− (r)

χ̂†+ (r)

χ̂†− (r)


µ

(226)

and [10, 8, 7]

Φ†µ (r) =
(
ψ̂†+ (r) , ψ̂†− (r) , χ̂+ (r) , χ̂− (r)

)
µ

(227)

Now the relation between the Schrödinger–Pauli amplitudes
u

(SP )
± (r, k) and the field operator ψ̂s (r) and χ̂s (r) of many–body

physics for electrons and positrons separately is as follows:

ψ̂s (r) =
∑
k

u(SP )
s (r, k) ĉk

ψ̂†s (r) =
∑
k

u?(SP )
s (r, k) ĉ†k

(228)

χ̂†s (r) =
∑
k

u(SP )
s

(
r, k̃
)
b̂†
k̃

χ̂s (r) =
∑
k̃

u?(SP )
s

(
r, k̃
)
b̂k̃

(229)

Using the properties (172) of the VONS u
(SP )
± (r, k) there readily

follows

{
ψ̂s (r) , ψ̂s′ (r

′)
}

= 0̂ =
{
ψ̂†s (r) , ψ̂†s′ (r

′)
}

{
ψ̂s (r) , ψ̂†s′ (r

′)
}

=
∑
k

u(SP )
s (r, k)u

?(SP )
s′ (r′, k)

= δs,s′δ
(3) (r− r′) 1̂

(230)

As well as for the positron field operators χ̂s (r).

With the Eriksen transformation T, the Newton–Wigner amplitudes
(226) and (227), and the properties (230) one can readily write for
(222)
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ĤD
NW
=

∫
d3r

∑
µ,µ′ε{1,2,3,4}

N
(
Ψ̂ †µ′ (r)

(
(T)†µ′,µ′′

)
(T)µ′′,µH

(D)
µ,µ′

((
(T)†µ′,ν′

)
(T)ν′,ν

)
Ψ̂ν (r)

)
=

∫
d3rN

(
Φ†µ′′ (r)

(
(T)µ′′,µH

(D)
µ,µ′

(
(T)†µ′,ν′

))
Φν′ (r)

)
=

∫
d3rN

(
Φ†µ′′ (r)H

(NW )
µ′′,ν′ Φν′ (r)

)
=

∫
d3rN

(
Φ†µ′′ (r)

(
m0c

2 β ◦
√

14×4 +
2

m0c2
H

(P,0)
4×4

)
µ′′,ν′

Φν′ (r)

)
(231)

Since β and H
(P,0)
4×4 commute there follows for electrons and positrons

separately

ĤD = m0c
2

∫
d3rN

 ψ̂†s (r)

(√
14×4 + 2

m0c2
H

(P,0)
4×4

)
s,s′
ψ̂s′ (r)

−χ̂s (r)

(√
14×4 + 2

m0c2
H

(P,0)
4×4

)
s,s′
χ̂†s′ (r)


(232)

Partial integration in the second line yields

ĤD = m0c
2

∫
d3rN


ψ̂†s (r)

(√
14×4 + 2

m0c2
H

(P,0)
4×4

)
s,s′
ψ̂s′ (r)

−

((√
14×4 + 2

m0c2

(
H

(P,0)
4×4

)?)
s,s′
χ̂s (r)

)
χ̂†s′ (r)


(233)

And using the normal ordering rule then

ĤD = m0c
2

∫
d3r


ψ̂†s (r)

(√
14×4 + 2

m0c2
H

(P,0)
4×4

)
s,s′
ψ̂s′ (r)

+χ̂†s′ (r)

(√
14×4 + 2

m0c2

(
H

(P,0)
4×4

)?)
s,s′
χ̂s (r)


≡ Ĥ(el)

D + Ĥ(p)
D

(234)

where
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ψ̂†σ (r) =
(
ψ̂†+ (r) , ψ̂†− (r) , 0, 0

)
σ

χ̂†σ′ (r) =
(

0, 0, χ̂†+ (r) , χ̂†− (r)
)
σ′

(235)

Furthermore, there holds

Π?
b = −

(
~
i
∇b + qeAb (r)

)
(236)

And for the positron contribution please recognize (σb)s,s′ =
− (σyσbσy)s′,s

However, in the following, only the electron part is discussed.

Ĥ(el)
D = m0c

2

∫
d3r

(
ψ̂†s (r)

(√
12×2 + 2

m0c2
H

(P,0)
2×2

)
s,s′
ψ̂s′ (r)

)
(237)

The positron Hamiltonian Ĥ(pos)
LM principally results from the charge

conjugation symmetry operation CF introduced in F.

Ĥ(pos)
LM = ĈF ◦

(
Ĥ(el)
LM

)
◦ Ĉ†F (238)

For gaining all the finestructure corrections one has to expand the
square root a according to

m0c
2

√
14×4 +

2

m0c2
H

(P,0)
4×4 = m0c

214×4 + H
(P,0)
4×4 −

1

2

1

m0c2

(
H

(P,0)
4×4

)2
+ ...

(239)

The third term in (239) contains the first relativistic correction to the
kinetic energy of the electron, the famous finesctructure correction
−1

2
Π4
a

(2m0c)2 . The other terms contained in
(
H

(P,0)
4×4

)2
can be neglected

since the one being proportional to Π̂aB
(ext)
b is a (small) gradient term,

and the square of the Zeeman–Term is even smaller than this gradient
term.

Hence, the nonrelativistic second quantized Hamiltonian Ĥ(el)
D for the

electrons (matter) is given by

105



Ĥ(el)
D =


ψ̂†s (r)m0c

2ψ̂s (r) + ψ̂†s (r)
(

H
(P,0)
4×4

)
s,s′
ψ̂s′ (r)

−ψ̂†s (r)

(
1
8

1
m3

0c
2

(
Π̂b

)4
)
ψ̂s (r)

(240)

The relativistic bare Pauli Hamiltonian H
(P,0)
4×4 is given by

H
(P,0)
4×4 =

ΠaΠa

2m0
1̂4× 4− qe

2m0

~
2
σbB

(ext)
b (241)

(see (158)). From this one finally finds

Ĥ(el)
D =


ψ̂†s (r)m0c

2ψ̂s (r) + ψ̂†s (r)

(
ΠbΠb

2m0
− 1

8
1

m3
0c

2

(
Π̂b

)4
)
s,s′
ψ̂s′ (r)

−ψ̂†s (r)
(
qe~
2m0

B
(ext)
b σb

)
s,s′
ψ̂s′ (r)

(242)

This is a 4 × 4 matrix operator with only one entry in the upper
block, whereas all other blocks are empty. The total Hamiltonian
ĤD = Ĥ(el)

D + Ĥ(p)
D , see (234), comprises Ĥ(el)

D in the first component,

and Ĥ(pos)
D in the fourth component, hence ĤD is blockdiagonal.

In the following subsection the effective Schrödinger–Pauli
Hamiltonian for a plurality of electrons is derived by putting
the results for the renormalization terms (220) and the bare electron
Hamiltonian (242) together.

6.3 The Effective Schrödinger–Pauli Hamiltonian and the
Justification of the Physical Cut–Off

T. Welton estimated in 1948 the anomalous g–factor by considerations
regarding the nonrelativistic equation of motion of the angular
momentum operator. He calculated the expectation value of its
dynamics with respect to the electromagnetic vacuum. The latter is
well–known to fluctuate, meaning that the square of the electric field
component E and the magnetic field component B of the radiation
field do not vanish in the vacuum state, 〈0|E2|0〉 6= 0. Associating
these “fluctuation corrections” to the intrinsic magnetic moment of
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the electron he found that their order of magnitude is “nearly correct”
with respect to the Schwinger result g − 2 = αFS

π (the anomalous
magnetic moment). Unfortunately, however, proceeding in this way,
Welton received the wrong sign, he found that g − 2 < 0 is negative
[48].

As will be shown in this subsection, the derivation of the anomalous
magnetic moment g on the basis of the flow equation unitarily
transforming the QED Hamiltonian makes it clear that it is the mass
renormalization which causes the anomalous magnetic moment of the
fermions. The mass renormalization, on the other side, is caused
by elimination of the transversal QED interaction (the interaction
of matter and antimatter fields with high energy photons) and
additionally by the elimination of the pair terms in the longitudinal
interaction (the QED Coulomb interaction).

In the sections 6.1.1 and 6.1.2 the renormalization terms M̃
(⊥,e)
k,K and

M̃
(C,e)
k,K were evaluated in such a way that only terms in agreement

with the order of the solution of the flow equation were considered or
retained. Therefore, the results for the renormalization terms include
terms up to order α2

FS, see (220).

The resulting renormalization contributions (220) comprise the
functions
F1 (ξ) , F2 (ξ) , F3 (ξ) defined in (221). These functions, once the radial
integral dξ has been evaluated, give numerical weights to the rest
energy, the kinetic energy and the Zeeman energy.

For the evaluation of the renormalization terms the assumption has
been made that the cut–off Ω̃max is large, Ω̃max � 1 (see (187)),
implying that one can consider a wide range of photon modes. As will
be justified in this subsection, assuming Ω̃max � 1 is only possible
because the integrals of the functions F1 (ξ) , F2 (ξ) , F3 (ξ) give
logarithmic results for the renormalization. This means that
ln Ω̃max is a small number, especially if it is again multiplied by the
finestructure constant αFS. From equation (244) one can thus see that
the difference between the bare mass m0 and the ”true” electron mass
me is small, of the order αFS ∼ 1

137 , and also the difference between
the bare g–factor and the “true”, anomalous g–factor.

Now, as has been shown in subsection 6.2, the bare Schrödinger–
Pauli Hamiltonian Ĥ(el)

D for a many–electron system interacting with
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an external magnetic induction field is given by

Ĥ(el)
D =


ψ̂†s (r)m0c

2ψ̂s (r) + ψ̂†s (r)

(
ΠbΠb

2m0
− 1

8
1

m3
0c

2

(
Π̂b

)4
)
s,s′
ψ̂s′ (r)

−ψ̂†s (r)
(
qe~
2m0

B
(ext)
b σb

)
s,s′
ψ̂s′ (r)

(243)

Adding the renormalization terms (220) to (243) one finds the effective
Schrödinger–Pauli Hamiltonian in second quantization as

Ĥ(el)
SP ≡ Ĥ

(el)
D + M̃

(C,e)
k,K + M̃

(⊥,e)
k,K

=

∫
d3rψ̂†s (r)



(
1 + αFS

π

∫ Ω̃max
0 dξF1 (ξ)

)
δs,s′m0c

2

+
(

1− αFS
π

(
1
3 +

∫ Ω̃max
0 dξF2 (ξ)

))
δs,s′

(
ΠbΠb
2m0

)
−
(

1− αFS
π

(
1
3 +

∫ Ω̃max
0 dξF3 (ξ)

))(
qe~
2m0

B
(ext)
b σb

)
s,s′

−1
8

1
m3

0c
2

(
Π̂b

)4
δs,s′

+O
(
α3
FS

)



ψ̂s′ (r)
(244)

First, for the Zeeman term in the third line there has to hold [7, 8]

me

m0

(
1− αFS

π

(
1

3
+

∫ Ω̃max

0

dξF3 (ξ)

))
≡ g

2
(245)

such that the mass renormalization corrects the result g = 2 following
from the Dirac theory of the electron.

Second, for a physically coherent picture it is required that the bare
rest mass term and the bare kinetic mass term are renormalized
consistently. This means that the constant C1 belonging to the integral
of the function F1 (ξ) and the constant C2 belonging to the integral of
the function F2 (ξ) are equal. The physical cut-off (187) indeed yields
such a consistent renormalization: for the renormalization of the bare
rest mass m0 term one finds [7]

mec
2 = m0c

2

(
1 +

αFS
π

∫ Ω̃max

0

dξF1 (ξ)

)
(246)
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And for the kinetic mass term [7]

1

me
=

1

m0

(
1− αFS

π

(
1

3
+

∫ Ω̃max

0

dξF2 (ξ)

))
(247)

Evaluating the integrals yields [7]

∫ Ω̃max

0

dξF1 (ξ) =
3

2
ln Ω̃max + C1 +O

(
1

Ω2
max

)
1

3
+

∫ Ω̃max

0

dξF2 (ξ) =
3

2
ln Ω̃max + C2 +O

(
1

Ω2
max

)
1

3
+

∫ Ω̃max

0

dξF3 (ξ) =
3

2
ln Ω̃max + C3 +O

(
1

Ω2
max

) (248)

where the constants are given by [7]

C1 = −1

4
+

3

2
ln (2)

C2 =
1

3
− 7

12
+

3

2
ln (2) = −1

4
+

3

2
ln 2 ≡ C1

C3 =
1

3
− 13

12
+

3

2
ln (2) = −3

4
+

3

2
ln 2

(249)

Now using (246) and (247) one finds for the anomalous g–factor [7]

g = 2
me

m0

(
1− αFS

π

(
1

3
+

∫ Ω̃max

0

dξF3 (ξ)

))

= 2
1− αFS

π

(
1
3 +

∫ Ω̃max
0 dξF3 (ξ)

)
1− αFS

π

(
1
3 +

∫ Ω̃max
0 dξF2 (ξ)

)
= 2

(
1 +

αFS
π

∫ Ω̃max

0

dξ (F2 (ξ)− F3 (ξ)) +O
(αFS
π

)2
)

= 2 +
αFS
π

+O
(αFS
π

)2

(250)

This is the Schwinger result [17, 49] (“trumpets please” [35]).
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Similar calculations of Cohen–Tannoudji et al. [50] also yield the
Schwinger result of g. In their work they evaluate matrix elements
considering effectively a one–electron problem. They derive the
following numerical values for the constants (249)

C∗1 =
3

2
ln (2)− 1

4

C∗2 =
3

2
ln (2)− 7

12

C∗3 =
3

2
ln (2)− 13

12

(251)

As can be seen, C∗1 6= C∗2 . However, since the anomalous magnetic
moment is given by the difference C∗2 − C∗3 from the difference of the
integrals

∫
dξ (F2 (ξ(q))− F3 (ξ(q))), they also derive the Schwinger

result for g:

C∗2 − C∗3 =
1

2
= C2 − C3 (252)

The constants C∗2 and C2, and C∗3 and C3 differ by the factor 1
3 .

It is this small correction which yields C1 ≡ C2! Regarding the
calculations presented here, the constants C2 and C3 contain the factor
1
3 because of a different choice for the cut-off. Here, both the photon
energy and the fermion energy have been truncated, which leads to

the small correction term −
〈
U

(NW )
k

∣∣∣ 1
3H

(P,0)
4×4 β

∣∣∣U (NW )
K

〉
in the high–

energy photon renormalization contribution (208)! This is in sharp
contradistinction the the cut-off chosen by Cohent–Tannoudji et. al.
who truncate the photons energy only. This also yields the correct
Schwinger result, however, the renormalization of the bare electron
mass m0 is not consistent because C∗1 6= C∗2 .

Cohen–Tannoudji et. al argue that such a consistent renormalization
of the bare electron mass m0 can only be achieved by a covariant cut-
off procedure. Here it has been shown that the physical cut-off (187)
which truncates both the photons energy and the fermions kinetic
energy gives both the renormalization of the g–factor (250) and a
consistent renormalization of the rest mass term and the kinetic energy
mass term. It has to be emphazized that, if one only truncates the
photon energy ω̃q and lets the fermions move arbitrarily fast, such
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that their kinetic energy Ẽk is arbitrarily high, this is physically
inconsistent. It is imporant to treat all constituents of the QED
soup on equal footing. This inconsistency is reflected by the fact that
with such a calculation the mass occuring in the rest energy term and
the mass occuring in the kinetic energy term are being renormalized
differently, meaning that the constants C∗1 and C∗2 are different. The
physical (not covariant) cut-off (253) provides a small correction 1

3

such that C1 = C2 holds true!

From graph 2 one can see that it is the photons beneath the Compton
wavelength λC which contribute to the renormalization of the g–
factor: the main contribution comes from photons with wave numbers
between qλC

2π ≈ 0.05 and qλC
2π ≈ 1. Hence, it is not the ultrarelativistic

photons which cause the correct sign of the anomalous magnetic
moment [50]. Please reckognize that only the photons with wave
numbers q > qB = 2π

aB
have been eliminated, but all photons from

qλC = 0 to qλC ≫ 1 contribute to the renormalization of g. However,
the photons relevant for light-matter interactions, those with q ∼ qB
and lower provide a relatively small weight in the integral shown in 2
(the red arrow and below). Please reckognize that the contribution to
the renormalization from photons with wave numbers q & 1

λC
is even

negative, hence, UV photons and X-ray photons reduce the g–factor.

Figure 2: Photons contributing to g−2
2

= αFS
2π

. The red arrow indicates the starting
point of the wave number range q > qB = 1

aB
of the photons which have been

eliminated by the generator η̂(LM)(s). This corresponds to a numerical value qBλC
2π

=
λC

2πaB
= 2.4·10−12m

2π5.3·10−11m
≈ 0.01. Adapted from [7].
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Having discussed these aspects the choice of the cut–off (187)
according to [7]

ω̃q + Ẽk < 2Ω̃max

Ω̃max � 1

1� Ω̃max � e137

(253)

is now justified. The choice ω̃q + Ẽk < 2Ω̃max gives a consistent
renormalization of the bare mass m0, and the choice Ω̃max � 1, which
guarantees that the main contribution to the renormalization in 2 is
included, is possible because of the logarithmic nature of the integrals.

For example, the cut–off Ω̃max = e137 is “a huge number” [50]
which sets up a large range for photon wave numbers for which the
renormalization procedure is still physically sensible, because in that
case αFS

π ln Ω̃max < 1. On the other hand, for Ω̃max = 1 corresponding
to q = 2π

λC
in figure 2 the renormalization of the bare fermion mass is

still mostly included.

Altogether, the effective Schrödinger–Pauli Hamiltonian Ĥ(el)
SP in (244)

is given by inserting the numerical results (248) and (249) for the
integrals. This yields [7]

Ĥ(el)
SP =

∫
d3rψ̂†s (r)


mec

2 + ΠbΠb

2me
− 1

8
1

m3
ec

2

(
Π̂b

)4

−
(
2 + αFS

π

) (
qe~
2me

B
(ext)
b σb

)
s,s′

+O
(
α3
FS

)


ψ̂s′ (r) (254)

Here, in the term of the relativistic correction to the kinetic energy,
m0 has been replaced by me, because a correction to this term occurs
only in higher order perturbation theory. However, the error is of
order α3

FS, as can be seen from equation (247).
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6.4 The Effective Interaction Terms

In this section the effective interactions are evaluated. For doing
this one has to calculate matrix elements as a gradient expansion
once the Dirac amplitudes have been replaced by the Netwon–
Wigner amplitudes. This is possible because the Newton–Wigner
amplitudes are slowly varying functions on the length scale of
the Bohr radius. For the evaluation of the first order effective
interaction Ĥ(low,0)

⊥ , the coupling of the matter fields to the low–
energy photons, as well as for the second order effective transversal
interaction V̂⊥,ee it is necessary to evaluate matrix elements of the

form
〈
U

(NW )
k

∣∣∣T ◦ αb ◦ e±iqaxaT†
∣∣∣U (NW )

k′

〉
. For the second order

effective longitudinal interactions, the effective Coulomb interaction

ÛC
(0)

between the matter fields and the coupling of the matter fields
an external source V̂ (0)

ext, it is necessary to evaluate matrix elements〈
U

(NW )
k

∣∣∣Te±iqaxaT†
∣∣∣U (NW )

k′

〉
. Proceeding in this way one has to be

careful to keep all orders α2
FS and neglect higher order corrections.

The matrix elements of a functional Fµ′,µ (x, p) depending on the
abstract operators xa and pb with the commutator [pb, xa] = ~

i δa,b1
are given by

〈
U

(NW )
K

∣∣∣F4×4 (x, p)
∣∣∣U (NW )

k

〉
=
∑
µ

∫
d3r
(
U (NW )
µ (r, K)

)?(
Fµ,µ′

(
r,
~
i
∇
)
U

(NW )
µ′ (r, k)

)
(255)

see [7, 51]. In the last line the agreement has been made that the

gradient ∇ shall operator on the function U
(NW )
µ′ (r, k) to the right. A

deeper justification can be found in the appendix C.

As has been shown in section 5, the Eriksen transformation T is a
functional of the operator Π, hence T = T (Π), see (155). Therefore
there holds for the operator T ◦ e±iqaxa ◦ T† [7]

T ◦ e±iqaxa ◦ T† = e±iqa·x̂a ◦
(
e∓iqa·x̂a ◦ T (Π) ◦ e±iqa·x̂a

)
◦ T† (Π)

= e±iqa·x̂a ◦ T (Π± ~q) ◦ T† (Π)
(256)
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Since the operators T† (Π) and T (Π± ~q) act on the slowly varying

functions U
(NW )
µ (r, k) of H

(P,0)
4×4 , see (173) and (174), one can evaluate

(256) by expanding it with respect to the gauge invariant momentum
operator Πb. Up to the order α2

FS there follows [7]

T (Π) = 14×4 − 1
4

ΠbΠb

2m0
14×4−

qe~
2m0

B
(ext)
b σb

m0c2
+ β

2
αb

Πb

m0c
+O

(
α3
FS

)
T† (Π) = 14×4 − 1

4

ΠbΠb
2m0

14×4−
qe~
2m0

B
(ext)
b σb

m0c2
− β

2
αb

Πb

m0c
+O

(
α3
FS

)
T (Π± ~q) = 14×4 − 1

4

(Πb±~qb)(Πb±~qb)
2m0

14×4−
qe~
2m0

B
(ext)
b σb

m0c2
+ β

2
αb

(Πb±~qb)
m0c

+O
(
α3
FS

)
(257)

Hence, for the operator (256) there holds [7]

T ◦ e±iqaxa ◦ T† = e±iqa·x̂a ◦ T (Π± ~q) ◦ T† (Π)

= e±iqa′ ·x̂a′ ◦



(
1− 1

8
~qb
m0c

~qb
m0c

)
14×4

± β
2
αb

~qb
m0c

±1
4
~qb
m0c

Πb′
m0c

iεbb′b′′σb′′

+O
(
α3
FS

)


(258)

Such that for the matrix element
〈
U

(NW )
k

∣∣∣Te±iqaxaT†
∣∣∣U (NW )

k′

〉
in the

Newton–Wigner representation one finds [7]

〈
U

(NW )
k

∣∣∣Te−iqaxaT† ∣∣∣U (NW )
k′

〉

=

∫
d3q

(2π)3

eiq·R

|q|2


∫
d3r

∑
k,k′

U?(NW )
µ (r, k) e±iq·r



(
1− 1

8
~qb
m0c

~qb
m0c

)
14×4

±1
4

~qb
m0c

Πb′
m0c

iεbb′b′′σb′′

+O
(
α3
FS

)


µ,µ′

U
(NW )
µ′

(
r, k′

)


(259)

Here it has been used that the nondiagonal terms in (258) do
not contribute, as has been explained in section 5, see (178).
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Furthermore it has been switched to the position representation
U
?(NW )
µ (r, k) according to (106) so that one can more easily identify

the contributions (e.g. the first line in (259) will yield the Coulomb
interaction, the second line will yield the spin–orbit coupling in the
presence of the other electrons).

The operator T ◦ αbe±iqa′xa′ ◦ T† can be rearranged according to [7]

T ◦ αae±iqa′xa′ ◦ T† = T ◦ e±iqa′xa′αa ◦ T†

=
(
T ◦ e±iqa′xa′ ◦ T†

)
◦
(
T ◦ αa ◦ T†

) (260)

The evaluation of the part
(
T ◦ e±iqa′xa′ ◦ T†

)
is given in (258). The

evaluation of the part
(
T ◦ αa ◦ T†

)
is given in the appendix section

B, see (350). Therefore, one finds up to the order α3
FS [7]

T ◦ αae±iqa′xa′ ◦ T†

= e±iqa·x̂a ◦



(
1− 1

8
~qa′
m0c

~qa′
m0c

)
αb − 1

4
Πb
m0c

Πb′
m0c

αbαb′αa +

αbαa + αaαb︸ ︷︷ ︸
2δa,b

αb′


∓ 1

2
~qa′
m0c

Πb
m0c

αa′ ± 1
4
~qa′
m0c

Πa
m0c

iεa′aa′′σa′′αb

±~qa′
m0c

β
2

(
δa′,b + iεa′,b,a′′σa′′

)
+ Πb

m0c
β

+O
(
α3
FS

)


(261)

Inserting (261) into the matrix elements
〈
U

(NW )
k

∣∣∣T ◦ αbe±iqaxa ◦

T†
∣∣∣U (NW )

k′

〉
, and using that nondiagonal parts do again not contribute

in the Newton–Wigner representation then [7]

〈
U

(NW )
k

∣∣∣T ◦ αbe±iqa′xa′ ◦ T†
∣∣∣U (NW )

k′

〉

=

∫
d3rU ?(NW )

µ (r, k) e±iq·r



(
±1

2
~qa
m0c

+ Πa

m0c

)
14×4

± 1
2

~qa′
m0c

iεa′,a,a′′σa′′

+O
(
α3
FS

)


µ,µ′

U
(NW )
µ′ (r, k′)

(262)
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6.4.1 The First Order Effective Interaction

Here, the coupling of the matter fields to the photons described by
Ĥ(low,0)
⊥ in the Hamiltonian ĤLM of (181) is expressed in the Newton–

Wigner representation. This is quite analogue to the procedure above.

The coupling term is given by [7]

Ĥ(low,0)
⊥ = − 1

m0c2

∫
d3rĵ

(0)
b (r)A(T,low)

b (r) (263)

Or, explicitely, [7]

Ĥ(low,0)
⊥ =

(
− qe
m0c

)∑
k,k′

1√
V

∑
q<qB

∑
b

Ab (q)


〈Uk|αbeiqaxa |Uk′〉 ĉ†kĉk′âq

+ 〈Uk|αbe−iqaxa |Uk′〉 ĉ†kĉk′â†q

−〈Vk|αbeiqaxa |Vk′〉 b̂†k̃′ b̂k̃âq
−〈Vk|αbe−iqaxa |Vk′〉 b̂†k̃′ b̂k̃â

†
q


(264)

It is again the matrix elements 〈Uk|αbe±iqaxa |Uk′〉 or 〈Vk|αbe±iqaxa |Vk′〉
which yield the corrections in the nonrelativistic limit. Using (262)

one can interpret the nonrelativistic current density ĵ
(0)
b (r) [7]

Ĥ(low,0)
⊥ =

(
− qe
m0c

)∑
k,k′

1√
V

∑
q<qB

∑
b

Ab (q)

×



∫
d3rU

?(NW )
µ (r, k) e+iq·r


(

+1
2

~qb
m0c

+ Πb
m0c

)
14×4

+ 1
2

~qa′
m0c

iεa′,b,a′′σa′′


µ,µ′

U
(NW )
µ′ (r, k′) ĉ†k ĉk′ âq

+
∫
d3rU

?(NW )
µ (r, k) e−iq·r


(
−1

2
~qb
m0c

+ Πb
m0c

)
14×4

− 1
2

~qa′
m0c

iεa′,b,a′′σa′′


µ,µ′

U
(NW )
µ′ (r, k′) ĉ†k ĉk′ â

†
q

+
∫
d3rV

?(NW )
µ

(
r, k̃
)
e+iq·r


(

1
2

~qb
m0c

+ Πb
m0c

)
14×4

+ 1
2

~qa′
m0c

iεa′,b,a′′σa′′


µ,µ′

V
(NW )
µ′

(
r, k̃′

)
b̂†
k̃′
b̂k̃âq

+
∫
d3rV

?(NW )
µ

(
r, k̃
)
e−iq·r


(
−1

2
~qb
m0c

+ Πb
m0c

)
14×4

− 1
2

~qa′
m0c

iεa′,b,a′′σa′′


µ,µ′

V
(NW )
µ′

(
r, k̃′

)
b̂†
k̃′
b̂k̃â
†
q


(265)
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Neglecting the antimatter part and using the transversality condition∑
bAb (q) qb = 0 there follows [7]

Ĥ(low,0,el)
⊥ =

(
− qe
m0c

)∑
k,k′

1√
V

∑
q<qB

∑
b

Ab (q)

×

 ∫
d3rU

?(NW )
µ (r, k) e+iq·r

(
Πb
m0c

14×4 + 1
2

~qa′
m0c

iεa′,b,a′′σa′′
)
µ,µ′

U
(NW )
µ′ (r, k′) ĉ†k ĉk′ âq

+
∫
d3rU

?(NW )
µ (r, k) e−iq·r

(
Πb
m0c

14×4 − 1
2

~qa′
m0c

iεa′,b,a′′σa′′
)
µ,µ′

U
(NW )
µ′ (r, k′) ĉ†k ĉk′ â

†
q


=

(
− qe
m0c

)
1√
V

∑
q<qB

∑
b

Ab (q)

×
∑
s,s′

 ∫
d3rψ̂†s (r) e+iq·r

(
Πb
m0c

12×2 + 1
2

~qa′
m0c

iεa′,b,a′′σ
(P )
a′′

)
s,s′

ψ̂s′ (r) âq

+
∫
d3rψ̂†s (r) e−iq·r

(
Πb
m0c

12×2 − 1
2

~qa′
m0c

iεa′,b,a′′σ
(P )
a′′

)
s,s′

ψ̂s′ (r) â†q


(266)

where the Schrödinger–Pauli field operators (228) have now been
inserted.

Once the matrix elements have been evaluated one can separate the
current density from the vector potential [7]:

Ĥ(low,0,el)
⊥ =

(
− qe
m0c

)

×


∫
d3r

∑
b

(
1√
V

∑
q<qB

Ab (q)
(
e+iq·râq + e−iq·râ†q

))(∑
s ψ̂
†
s (r) Πb

m0c
ψ̂s (r)

)
+
∫
d3r

∑
b

1
m0c

εa′,b,a′′
∂

∂ra′

(
1√
V

∑
q<qB

Ab (q)
(
e+iq·râq + e−iq·râ†q

))(∑
s,s′ ψ̂

†
s (r)

(
~
2σ

(P )
a′′

)
s,s′

ψ̂s′ (r)

) 
(267)

The following definitions for the operator of the vector potential Âb (x)
of the low energy photons, and paramagnetic current density of the
matter ĵ

(e,para)
a (r), the diamagnetic current density ĵ

(e,dia)
a (r) and the

magnetization current density j
(e,spin)
b (r) [7],
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Âb (x) =
1√
V

∑
q<qB

Ab (q)
(
eiqaxaâq + e−iqaxaâ†q

)
ĵ(e,para)
a (r) =

qe
2m0

~
i

∑
s

(
ψ̂†s (r)

∂

∂ra
ψ̂s (r)−

(
∂

∂ra
ψ̂†s (r)

)
ψ̂s (r)

)

ĵ(e,dia)
a (r) = − q2

e

m0

(∑
s

ψ̂†s (r) ψ̂s (r)

)
A(ext)
a (r)

j
(e,spin)
b (r) =

qe
m0

εb,a′,a′′
∂

∂ra′
Ŝ

(e)
a′′ (r) =

(
qe
m0

rotS(e) (r)

)
b

(268)

where q is a multiindex meaning
∑

q<qB
=
∑

q<qB

∑
λε{I,II}, and where

λ counts the polarizations, finally lead to [7]

Ĥ(low,0,el)
⊥ =

1

m0c2

 − ∫ d3r
∑

b

(
ĵ

(e,para)
b (r) + ĵ

(e,dia)
b (r)

)
Âb (r)

− qe
m0

∫
d3r
∑

b Âb (r)
(
εb,a′,a′′

∂
∂ra′

Ŝ
(e)
a′′ (r)

) 
= − 1

m0c2

( ∫
d3r
∑

b

(
ĵ

(e,para)
b (r) + ĵ

(e,dia)
b (r) + j

(e,spin)
b (r)

)
Âb (r)

)
(269)

The Hamiltonian (269) can now be retranslated to first quantization.

6.4.2 The Second Order Effective Interactions

In the following the effective interaction terms ÛC
(0)

and V̂⊥,ee, and

the term V̂ (0)
ext are expressed in the Newton–Wigner representation.

The beginning is made with ÛC
(0)

and then the term describing the
coupling to external sources V̂ (0)

ext is expressed in the Newton–Wigner

representation, because the procedure is similar to ÛC
(0)

. Finally,
the term V̂⊥,ee is evaluated. Having done that everything can be put
together to go back to first quantization.

The Effective Longitudinal Interaction ÛC
(0)

The effective QED Coulomb interaction term ÛC
(0)

= N
(
V̂ (0)
C

)
is part

of the solution of the homogeneous differential equation in the ansatz
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for the second order solution of the flow equation. It is derived in
section 4.1.3 and the result is given by (142).

Making use of the Eriksen transformation T or by using (168) it
decomposes into the following three contributions [7, 8]

N
(
V̂(0)
C

)
= q2

e

2ε0

∫
d3q

(2π)3
1
|q|2 ×

×
∑
K,k

∑
K′,k′



〈
U

(NW )
K

∣∣∣T ◦ e−iqaxa ◦ T† ∣∣∣U (NW )
k

〉〈
U

(NW )
K′

∣∣∣T ◦ eiqaxa ◦ T† ∣∣∣U (NW )
k′

〉
ĉ†K ĉ

†
K′ ĉk′ ĉk

+
〈
V

(NW )
k

∣∣∣T ◦ e−iqaxa ◦ T† ∣∣∣V (NW )
K

〉〈
V

(NW )
k′

∣∣∣T ◦ eiqaxa ◦ T† ∣∣∣V (NW )
K′

〉
b̂†
K̃
b̂†
K̃′
b̂k̃′ b̂k̃

−2
〈
U

(NW )
K

∣∣∣T ◦ e−iqaxa ◦ T† ∣∣∣U (NW )
k

〉〈
V

(NW )
k′

∣∣∣T ◦ eiqaxa ◦ T† ∣∣∣V (NW )
K′

〉
ĉ†K ĉk b̂

†
K̃′
b̂k̃′

+2
〈
U

(NW )
K

∣∣∣T ◦ e−iqaxa ◦ T† ∣∣∣V (NW )
k

〉〈
V

(NW )
k′

∣∣∣T ◦ eiqaxa ◦ T† ∣∣∣U (NW )
K′

〉
ĉ†K b̂

†
k̃
b̂k̃′ ĉK̃′


≡ V̂C,ee + V̂C,pp + V̂C,ep

(270)

V̂C,ee describes the effective Coulomb interaction between electrons,
V̂C,pp describes the effective Coulomb interaction between positrons,
and V̂C,ep describe an effective Coulomb interaction between pairs of
electrons and positrons.

In the following the effective Coulomb interaction V̂C,ee between the
electrons is evaluted.

Using the identity (256) for the matrix elements T ◦ e−iqaxa ◦ T† and
neglecting contributions of the order α3

FS one finds [7, 8]

V̂C,ee = q2
e

2ε0

∫
d3r

∫
d3r′

∑
K,k

∑
K′,k′ ĉ

†
K ĉ
†
K′ ĉk′ ĉk×

∫
d3q

(2π)3
eiqa·(r

′
a−ra)

|q|2

(
1− 1

4
~qb
m0c

~qb
m0c

)
U
?(NW )
µ (r,K)U

(NW )
µ (r, k)U

?(NW )
ν (r′,K ′)U

(NW )
ν (r′, k′)

− i
4εbb′b′′

~qb
m0c

U
?(NW )
µ (r,K) (σb′′)µ,µ′

(
Πb′
m0c

U
(NW )
µ′ (r, k)

)
U
?(NW )
ν (r′,K ′)U

(NW )
ν (r′, k′)

+U
?(NW )
µ (r,K)U

(NW )
µ (r, k) i

4εaa′a′′
~qa
m0c

U
?(NW )
ν (r′,K ′) (σa′′)ν,ν′

(
Π′
a′

m0c
U

(NW )
ν′ (r′, k′)

)
+O

(
α3
FS

)


(271)

With [8, 7]
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∫
d3q

(2π)
3
eiqa·(r

′
a−ra)

|q|2
= 1

4π|r′−r|∫
d3q

(2π)
3
eiqa·(r

′
a−ra)

|q|2
qb = ∇′b

i

∫
d3q

(2π)
3
eiqa·(r

′
a−ra)

|q|2 =
∇′b
i

1
4π|r′−r| = −1

i
r′b−rb

4π|r′−r|3∫
d3q

(2π)
3
eiqa·(r

′
a−ra)

|q|2
qbqb = δ(3) (r− r′)

(272)

there follows [8, 7]

V̂C,ee = q2
e

2ε0

∫
d3r

∫
d3r′

∑
K,k

∑
K′,k′ ĉ

†
K ĉ
†
K′ ĉk′ ĉk×

×



U
?(NW )
µ (r,K)U

(NW )
µ (r, k) 1

4π|r′−r|U
?(NW )
ν (r′,K ′)U

(NW )
ν (r′, k′)

−1
4

(
~
m0c

)2
U
?(NW )
µ (r,K)U

(NW )
µ (r, k) δ(3) (r− r′)U

?(NW )
ν (r′,K ′)U

(NW )
ν (r′, k′)

−1
2εbb′b′′

~
m0c

rb−r′b
4π|r′−r|3U

?(NW )
µ (r,K) (σb′′)µ,µ′

(
Πb′
m0c

U
(NW )
µ′ (r, k)

)
U
?(NW )
ν (r′,K ′)U

(NW )
ν (r′, k′)

+O
(
α3
FS

)


(273)

Inserting the Schrödinger–Pauli amplitudes (172) finally gives [8, 7]

V̂C,ee = q2
e

2ε0

∫
d3r

∫
d3r′



ψ̂†s (r) ψ̂†s′ (r
′) 1

4π|r′−r| ψ̂s′ (r
′) ψ̂s (r)

−1
4

(
~
m0c

)2
ψ̂†s (r) ψ̂†s′ (r

′) δ(3) (r− r′) ψ̂s′ (r
′) ψ̂s (r)

−ψ̂†s (r) ψ̂†s′′ (r
′) εbb′b′′

~
m0c

rb−r′b
8π|r′−r|3 ψ̂s

′′ (r′)
(
σ

(P )
b′′

)
s,s′

Πb′
m0c

ψ̂s′ (r)

+O
(
α3
FS

)


(274)

V̂C,ee is the nonrelativistic Coulomb interaction between electrons
expressed in second quantization. It can now be reexpressed in first
quantization, which is done in section 6.5.

The Coupling to External Sources V̂(0)
ext

The contribution of the coupling of the matter fields to an external
potential Φ̃ext (r) remaining in second order perturbation theory (see
(127) in section 4.1.3) is given by
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V̂ (0)
ext =

∫
d3q

(2π)3 Φ̃ext (q)
∑
k,k′

(
〈Uk| e−iqaxa |Uk′〉 ĉ†kck′ − 〈Vk| e

−iqaxa |Vk′〉 b†k̃′ b̂k̃
)

(275)

The Fourier representation of an external Coulomb potential of an
atomic nucleus is given by Φ̃ext (q) = Z|qe|

4πε0
eiq·R 1

|q|2 , see also (39).

By again using the relations (168) for switching to the Newton–Wigner

representation of V̂ (0)
ext there follows [7]

V̂(0)
ext =

∫
d3q

(2π)3 Φ̃ext (q)
∑
k,k′

(
〈Uk| e−iqaxa |Uk′〉 ĉ†kck′ − 〈Vk| e

−iqaxa |Vk′〉 b†k̃′ b̂k̃
)

=

∫
d3q

(2π)3 Φ̃ext (q)
∑
k,k′

(〈
U

(NW )
k

∣∣∣Te−iqaxaT† ∣∣∣U (NW )
k′

〉
ĉ†kck′ −

〈
V

(NW )
k

∣∣∣Te−iqaxaT† ∣∣∣V (NW )
k′

〉
b†
k̃′
b̂k̃

)
≡ V̂(el)

ext + V̂(p)
ext

(276)

Now for the electron part V̂ (el)
ext one finds with [7]

ρ̃
(el)
0 (q) =

∫
d3re−iq·rρ

(el)
0 (r)

ρ
(el)
0 (r) =

∑
k,k′

U ?(NW )
ν (r, k) |Te−iqaxaT†|U (NW )

ν (r, k′) ĉ†kck′
(277)

and with the result (258) [7]

V̂(el)
ext =

∫
d3q

(2π)3 Φ̃
(el)
ext (q) ρ̃

(el)
0 (q)

=

∫
d3q

(2π)3

(
Z |qe|
4πε0

eiq·R
1

|q|2

)∑
k,k′

〈
U

(NW )
k

∣∣∣Te−iqaxaT† ∣∣∣U (NW )
k′

〉
ĉ†kck′



=
Z |qe|
4πε0

∫
d3q

(2π)3

eiq·R

|q|2


∫
d3r

∑
k,k′

U?(NW )
µ (r, k) e−iq·r



(
1− 1

8
~qb
m0c

~qb
m0c

)
14×4

−1
4

~qb
m0c

Πb′
m0c

iεbb′b′′σb′′

+O
(
α3
FS

)


µ,µ′

U
(NW )
µ′

(
r, k′

)


=
Z |qe|
4πε0

∫
d3r

∑
k,k′

U?(NW )
µ (r, k)


∫ d3q

(2π)3
eiq·(R−r)

|q|2

−
∫ d3q

(2π)3
eiq·(R−r)

|q|2
1
8

~qb
m0c

~qb
m0c

−
∫ d3q

(2π)3
eiq·(R−r)

|q|2

(
1
4

~qb
m0c

Πb′
m0c

iεbb′b′′σb′′
)
µ,µ′

U (NW )
µ

(
r, k′

)
(278)
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Again inserting the integral relations (272) gives the result which can
be reexpressed in first quantization [7]:

V̂ (el)
ext =

Z |qe|
4πε0

∫
d3rψ̂†s (r)


1

4π|R−r|
−1

8
~
m0c

~
m0c

δ(3) (R− r)

+1
4

~
m0c

εbb′b′′
(

Rb−rb
4π|R−r|3

)(
Πb′
m0c

σ
(P )
b′′

)
µ,µ′

 ψ̂s′ (r)

(279)

The first line is the Coulomb interaction with the atomic nucleus at
the position R. The second line is the Darwin–term, and the third
line is the spin–orbit interaction of an electron in the Coulomb field
of the nucleus.

The Effective Transversal Interaction V̂⊥,ee

The effective transversal interaction V̂⊥,ee as a result of the solution of
the inhomogeneous differential equation of second order perturbation
expansion as deduced in section 4.1.3 follows as

V̂⊥,ee = m0c
2

(
qe
m0c

)2∑
k,k′

∑
K,K ′

1

V

∑
q

κq
~

2ε0ω (q)

∑
b,b′

(
δb,b′ −

qbqb′

|q|2

)
×

×
〈
U

(NW )
k

∣∣∣T ◦ αbeiqaxa ◦ T†
∣∣∣U (NW )

k′

〉〈
U

(NW )
K ′

∣∣∣T ◦ αb′e−iqaxa ◦ T†
∣∣∣U (NW )

K

〉
× (Ẽk−Ẽk′−ω̃q)−(ẼK′−ẼK+ω̃q)

(Ẽk−Ẽk′−ω̃q)
2
+(ẼK′−ẼK+ω̃q)

2 ĉ
†
kĉ
†
K ′ ĉK ĉk′

(280)

For the effective interaction V̂⊥,ee one has to consider that in the
nonrelativistic subspace of QED the difference in the fermionic
energies is always very small compared to the rest energy [7]:

|Ek − Ek′| � m0c
2

|EK ′ − EK | � m0c
2 (281)

Hence there holds [7]

(Ẽk−Ẽk′−ω̃q)−(ẼK′−ẼK+ω̃q)

(Ẽk−Ẽk′−ω̃q)
2
+(ẼK′−ẼK+ω̃q)

2 ' − 1
ω̃q

(282)
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The factor κq in (280) means that it is the high–energy photons, those
with wave number |q| > qB, which cause the effective transversal
interaction V̂⊥,ee. Since these have been eliminated in favor for V̂⊥,ee
one can set κq ≡ 1.

Switiching to the Newton–Wigner representation according to (168)
this yields the following approximation [7]

V̂⊥,ee = ' q2
e

2ε0

(
~
m0c

)2∑
k,k′
∑

K,K′
1
V

∑
q

1
~ω(q)

m0c
2

∑
b,b′

(
δb,b′ −

qbqb′

|q|2

)
×

×
〈
U

(NW )
k

∣∣∣T ◦ αbeiqaxa ◦ T† ∣∣∣U (NW )
k′

〉〈
U

(NW )
K′

∣∣∣T ◦ αb′e−iqaxa ◦ T† ∣∣∣U (NW )
K

〉 (
− 1

ω̃q

)
ĉ†k ĉ
†
K′ ĉK ĉk′

= q2
e

2ε0

(
~
m0c

)2∑
k,k′
∑

K,K′ ĉ
†
k ĉ
†
K′ ĉK ĉk′

1

V

∑
q

(
− 1

ω̃2
q

)∑
b,b′

(
δb,b′ −

qbqb′

|q|2
)
×

×
〈
U

(NW )
k

∣∣∣T ◦ αbeiqaxa ◦ T† ∣∣∣U (NW )
k′

〉〈
U

(NW )
K′

∣∣∣T ◦ αb′e−iqaxa ◦ T† ∣∣∣U (NW )
K

〉
(283)

With the matrix elements (262) then [7]

V̂⊥,ee = − q2
e

2ε0

∑
k,k′
∑

K,K′ ĉ
†
k ĉ
†
K′ ĉK ĉk′

1

V

∑
q

1
|q|2

∑
b,b′

(
δa,b − qaqb

|q|2
)
×

×
∫
d3rU?(NW )

µ (r, k) eiq·r



(
1
2
~qa
m0c

+ Πa
m0c

)
14×4

+ i
2

~qa′
m0c

εa′,a,a′′σa′′

+O
(
α3
FS

)


µ,µ′

U
(NW )
µ′

(
r, k′

)

×
∫
d3r′U?(NW )

ν

(
r′,K ′

)
e−iq·r

′



(
−1

2
~qb
m0c

+ Π′b
m0c

)
14×4

− i
2

~qb′
m0c

εb′,b,b′′σb′′

+O
(
α3
FS

)


ν,ν′

U
(NW )
ν′

(
r′,K

)
(284)

After several steps, and with the definition of the interaction potentials
[7]
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V
(o,o)
a,b (r− r′) =

(
−q2

e

ε0

)
1
V

∑
q

1
|q|2 e

iq·(r−r′)
(
δa,b − qaqb

|q|2
)

V
(sp,sp)
a,b (r− r′) =

(
−q2

e

ε0

)
1
V

∑
q

1
|q|2 e

iq·(r−r′) 1
4

(
~|q|
m0c

)2 (
δa,b − qaqb

|q|2
)

V
(osp,o)
b′ (r− r′) =

(
−q2

e

ε0

)
1
V

∑
q

1
|q|2 e

iq·(r−r′)
(

i
2

~qb′
m0c

)
(285)

one finds, by inserting the Newton–Wigner amplitudes related to the
Schrödinger–Pauli amplitudes (173) [7],

V̂⊥,ee = 1
2

∫
d3r

∫
d3r′



ψ̂†s (r) ψ̂†s′ (r
′)V

(o,o)
a,b (r− r′)

(
Π′b
m0c

ψ̂s′ (r
′)
)(

Πa
m0c

ψ̂s (r)
)

+ψ̂†s (r) ψ̂†s′ (r
′)V

(sp,sp)
a,b (r− r′)

(
σ

(P )
b

)
s′,s̃′

ψ̂s̃′ (r
′)
(
σ

(P )
a

)
s,s̃
ψ̂s̃ (r)

+ψ̂†s (r) ψ̂†s′ (r
′)V

(osp,o)
b′ (r− r′) εb′,b,b′′

(
Π′b
m0c

ψ̂s′ (r
′)
)(

σ
(P )
b′′

)
s,s̃
ψ̂s̃ (r)

+ψ̂†s (r) ψ̂†s′ (r
′)
(
−V (osp,o)

b′ (r− r′)
)
εb′,b,b′′

(
σ

(P )
b′′

)
s′,s̃′

ψ̂s̃′ (r
′)
(

Πb
m0c

ψ̂s (r)
)


(286)

The meaning of the interaction potentials (285) is given as follows:
the first line in (286) describes the orbit–orbit interaction between
two electrons, the second line describes the magnetic dipole–dipole
interaction, and the third and fourth lines describe the spin–other
orbit interaction between the electrons.

The evaluation of the interaction potentials (285) can be found in the
appendix section H. The result is given by [7]

V
(o,o)
a,b (r) =

(
− q2

e

4πε0

)
1

2

(
δa,b
r

+
rarb
r3

)
V

(sp,sp)
a,b (r) =

(
− q2

e

4πε0

)
1
4

(
~
mec

)2 (
8
3πδ

(3) (r) δa,b +
3rarb−3|r|2δa,b

|r|5

)
V

(osp,o)
b (r) = 1

2
~
mec

q2
e

4πε0

rb
r3

(287)

Inserting the transversal interaction potentials (287) yields the final
result for the effective transversal interaction contribution [7, 8]
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V̂⊥,ee =
1

2

∫
d
3
r

∫
d
3
r
′



−ψ̂†s (r) ψ̂
†
s′
(
r′
) ( q2e

4πε0

)
1
2

(
δa,b

|r−r′| +

(
ra−r′a

)(
rb−r

′
b

)
|r−r′|3

)(
Π′b
m0c

ψ̂s′
(
r′
)) ( Πa

m0c
ψ̂s (r)

)

−ψ̂†s (r) ψ̂
†
s′
(
r′
) (

q2e
4πε0

)
1
4

(
~

mec

)2


8
3
πδ(3) (r− r′

)
δa,b

+
3
(
ra−r′a

)(
rb−r

′
b

)
−3
∣∣∣r−r′

∣∣∣2δa,b
|r−r′|5

 (
σ

(P )
b

)
s′,s̃′

ψ̂s̃′
(
r′
) (
σ

(P )
a

)
s,s̃

ψ̂s̃ (r)

+ψ̂†s (r) ψ̂
†
s′
(
r′
) 1

2
~

mec
q2e

4πε0

(
r
b′−r

′
b′
)

|r−r′|3
εb′,b,b′′

(
Π′b
m0c

ψ̂s′
(
r′
)) (

σ
(P )

b′′
)
s,s̃

ψ̂s̃ (r)

−ψ̂†s (r) ψ̂
†
s′
(
r′
) (

1
2

~
mec

q2e
4πε0

(
r
b′−r

′
b′
)

|r−r′|3

)
εb′,b,b′′

(
σ

(P )

b′′
)
s′,s̃′

ψ̂s̃′
(
r′
) ( Πb

m0c
ψ̂s (r)

)
(288)

Now everything is put together for retranslating the Hamiltonian (181)
to first quantization. This is done in the following subsection.
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6.5 From Second Quantization to First Quantization:
The Many–Electron Hamiltonian of Light–Matter
Interactions

The nonrelativistic many–body Hamiltonian Ĥ(el)
LM of a plurality of

electrons has been introduced in section 6 according to [7, 8]

Ĥ(el)
LM = Ĥ(el)

D + M̂(e)
C + M̂(e)

⊥ + Ĥrad + Ĥ(low,el)
⊥

+ V̂C,ee + V̂ (el)
ext + V̂⊥,ee

(289)

In the last subsection these contributions have been evaluated
as a gradient expansion by switching to the Newton–Wigner
representation. This is the only representation in which a classical
interpretation is possible, and at the same time it is the representation
in which one can now quite simply reexpress the Hamiltonian (289)
in first quantization, hence, as sum over individual particles. The
switching to the Newton–Wigner representation is possible because
the Eriksen transformation of a Dirac–particle in an external static
magnetic induction field is known exactly, and because in the
nonrelativistic subspace of QED it is reasonable to assume that the
Newton–Wigner amplitudes vary slowly on the length scale of the
Bohr radius aB (atomic physics). These are given by the Schrödinger–
Pauli amplitudes solving the Schrödinger–Pauli eigenvalue problem of
a nonrelativistic spin 1

2 particle in an external magnetic induction field.

The results have been achieved as follows. The first three terms Ĥ(el)
D +

M̂(e)
C +M̂(e)

⊥ in (289) yield the effective Schrödinger–Pauli Hamiltonian

Ĥ(el)
SP for an electron with mass me, charge qe and spin σb = 1̂2×2⊗σ(P )

b .
This has been evaluated in subsection 6.3 [7, 8]

Ĥ(el)
SP =

∫
d3rψ̂†s (r)


mec

2 + ΠbΠb

2me
− 1

8
1

m3
ec

2

(
Π̂b

)4

+
(
2 + αFS

π

) (
qe~
2me

B
(ext)
b σb

)
s,s′

+O
(
α3
FS

)


ψ̂s′ (r) (290)

The coupling of electrons to the low–energy photons Ĥ(low,0,el)
⊥ has been
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deduced in subsection 6.4, see equation 269. The result is given by
[7, 8]

Ĥ(low,0,el)
⊥ = − 1

mec2

∫
d3r
∑
b

( (
ĵ

(e,para)
b (r) + ĵ

(e,dia)
b (r) + j

(e,spin)
b (r)

)
Âb (r)

)
(291)

The effective Coulomb interaction V̂C,ee has been deduced in
subsection 6.4.2 [7, 8]:

V̂C,ee = q2
e

2ε0

∫
d3r

∫
d3r′



ψ̂†s (r) ψ̂†s′ (r
′) 1

4π|r′−r| ψ̂s′ (r
′) ψ̂s (r)

− 1
4

(
~
mec

)2

ψ̂†s (r) ψ̂†s′ (r
′) δ(3) (r− r′) ψ̂s′ (r

′) ψ̂s (r)

−ψ̂†s (r) ψ̂†s′′ (r
′) εbb′b′′

~
mec

rb−r′b
8π|r′−r|3 ψ̂s′′ (r

′)
(
σ

(P )
b′′

)
s,s′

Πb′
mec

ψ̂s′ (r)

+O
(
α3
FS

)


(292)

The interaction V̂ (el)
ext of the electrons with an external source is found

to be (see section 6.4.2) [7, 8]

V̂ (el)
ext =

Z |qe|
4πε0

∫
d3rψ̂†s (r)


1

4π|R−r|
−1

8
~
mec

~
mec

δ(3) (R− r)

+1
4

~
mec

εbb′b′′
(

Rb−rb
4π|R−r|3

)(
Πb′
mec

σ
(P )
b′′

)
µ,µ′

 ψ̂s′ (r)

(293)

And finally, the effective transversal interaction V̂⊥,ee between the
electrons is found to be [7, 8]

V̂⊥,ee =
1

2

∫
d
3
r

∫
d
3
r
′



−ψ̂†s (r) ψ̂
†
s′
(
r′
) ( q2e

4πε0

)
1
2

(
δa,b

|r−r′| +

(
ra−r′a

)(
rb−r

′
b

)
|r−r′|3

)(
Π′b
m0c

ψ̂s′
(
r′
)) ( Πa

mec
ψ̂s (r)

)

−ψ̂†s (r) ψ̂
†
s′
(
r′
) (

q2e
4πε0

)
1
4

(
~

mec

)2


8
3
πδ(3) (r− r′

)
δa,b

+
3
(
ra−r′a

)(
rb−r

′
b

)
−3
∣∣∣r−r′

∣∣∣2δa,b
|r−r′|5

 (
σ

(P )
b

)
s′,s̃′

ψ̂s̃′
(
r′
) (
σ

(P )
a

)
s,s̃

ψ̂s̃ (r)

+ψ̂†s (r) ψ̂
†
s′
(
r′
) 1

2
~

mec
q2e

4πε0

(
r
b′−r

′
b′
)

|r−r′|3
εb′,b,b′′

(
Π′b
m0c

ψ̂s′
(
r′
)) (

σ
(P )

b′′
)
s,s̃

ψ̂s̃ (r)
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(294)

See (286).

Please note that the bare mass m0 has been replaced by the “true”
electron mass me in the relativistic correction to the kinetic energy,
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the relativistic corrections to the QED Coulomb interaction, and the
relativistic corrections to the QED transversal interaction. It is in
the nature of the perturbation theory that one gains in the order α2

FS

contributions which are not renormalized in this order but in higher
orders of the perturbation expansion. However, the error one makes
in the replacement m0 → me is small of the order αFS, and it does
not exceed the order of the particular term. Consider for example the
coupling term Ĥ(low,el)

⊥ . By construction this term of the order αFS.
In section 6.3 it has been shown that the first order renormalization
of the bare mass itself is of order αFS, hence, the error by replacing
m0 → me is not larger than αFS, e.g. the order of the term Ĥ(low,el)

⊥ .
In this sense the renormalization is closed.

Having said that we now go to the first quantization. For a general
one–particle operator O(1) in second quantization there holds

O(1) =

∫
d3r
∑
s,s′

ψ̂†s (r) Ô(r)ψ̂s′ (r) (295)

And for a general two–particle operator O(2) in second quantization

O(2) =

∫
d3r

∫
d3r′

∑
s,s′

ψ̂†s (r) ψ̂†s′ (r
′) Ô(r, r′)ψ̂s (r′) ψ̂s′ (r

′) (296)

There readily follows for (295) in the first quantization

Ô(1) =
N∑
j=1

Ô
(
r(j)
)

(297)

and for (296) accordingly

Ô(2) =
1

2

N∑
j 6=j′=1

Ô
(
r(j), r(j′)

)
(298)

With that we one can reexpress the terms (290), (291), (292), (293)
and (294) in first quantization as [7, 8]
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Ĥ
(el)
SP =

N∑
j=1


mec

2 +
(Π(j)

b )(Π(j)
b )

2me
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8
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m3
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b σ
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(299)

Ĥ
(low,el)
⊥ = − 1

mec2

N∑
j=1

(
ĵ

(e,para)
b

(
r(j)
)

+ ĵ
(e,dia)
b

(
r(j)
)

+ j
(e,spin)
b

(
r(j)
))

Âb

(
r(j)
)

(300)

where

ĵ
(e,para)
b

(
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)

=
qe
me
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ĵ
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b

(
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)

= − q
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e
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Ŝ
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(301)

V̂C,ee =
1
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N∑
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V̂
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4πε0
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(303)
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(304)

Note that N is the number of electrons! Hence, one can now
count the particles! Furthermore, σ

(P )
b was used instead of its

relativistic sister σb = 1⊗σ(P )
b because now the (empty) positron block

can be ignored (altough it is actually always there! Only hidden!)

Hence, the nonrelativistic Hamiltonian of many–electron light matter
interactions expressed in first quantization, deduced from full QED,
assumes the following guise [7, 8]:

Ĥ
(el)
LM = Ĥ

(el)
SP + Ĥ

(low,el)
⊥ + V̂C,ee + V̂⊥,ee + Hrad + V̂

(el)
ext (305)

The nonrelativistic Hamiltonian Ĥ
(pos)
LM of many-positron light matter

interactions in first quantization can be derived in a fully complete
consideration from the second quantized Hamiltonian Ĥ(pos)

LM as has

been done for the electron Hamiltonian Ĥ
(el)
LM from Ĥ(el)

LM .

It should also be possible, as indicated in (238), to start from the

second quantized Hamiltonian Ĥ(el)
LM of the electrons and apply the

charge conjugation operation ĈF given in (408), and introduced in the
appendix F.

The second quantized Hamiltonian Ĥ(pos)
LM of the positrons can then be

readily reexpressed in first quantization with the prescriptions (297)
and (298). This makes it manifest that the renormalization of the
positron attributes is equal to the renormalization of the electron,
such that the positron is equal to the electron.

Now the Hamiltonian (305) of the electrons does not coincide with the
solution of T. Itoh [13]. The main difference is that Itoh eliminates all
photons from the QED Hamiltonian, such that it is not comprehensible
how Itoh comes from the bare mass in the QED Hamiltonian to the
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renormalized true electron mass, and therefore, how he achives the
anomalous g–factor of the electrons.

Furthermore, Itoh drops terms which violate the particle number
conservation. Proceeding in this way one can first never be sure that
one misses contributions that belong to the result in the respective
order. And second, it is impossible to obtain a Hamiltonian describing
the positrons and therefore one cannot treat electrons and positrons
on equal footing.

The same is true for the derivation of Bialynicki–Birula [14], who also
does not take into account terms which violate the particle number
conservation by starting from Dirac field operators which describe
particles and antiparticles separately. The mass renormalization of the
electron is then explained by the normal ordering of the nonrelativistic
Coulomb–interaction.

As has been shown here, the renormalization comprises two
contributions: one part stems from the QED Coulomb interaction,
the longitudinal interaction, and the other part stems from the QED
transversal interaction, the one between the (anti–)matter fields and
the high–energy photons. Eliminating this particle number violating
contributions of the QED Hamiltonian by applying the flow equation
yields mass renormalization and the renormalization of the g-factor
(which coincides with the Schwinger result), and additionally the
well–known effective longitudinal interactions (Coulomb interaction,
Darwin term in the external field, spin–orbit interaction in the electric
field of the other electrons) and the effective transversal interactions
(dipole–dipole interaction, spin–other orbit interaction and orbit–orbit
interaction) [37]. Here one has to emphasize that it is not the ultra–
high energy photon modes which renormalize the bare massm0 and the
g–factor. From the graph 2 it can be seen which photons contribute
to the renormalization: it is the photons between the energy scale
αFSmec

2 and the pair creation threshold ~cqC !

With the derivation of the nonrelativistic limit of the QED
Hamiltonian (8) presented here one can treat each constituent on equal
footing, hence, the positrons are particles equal to the electrons.

The result (305) is crystal clear in its derivation, where each step
can be understood. One does not have to omit terms which violate
the particle number conservation, and all contributions important for
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the respective order of the perturbation expansion in the finestructure
constant αFS have been kept.

The result (305) also makes one thing clear: it would be wrong to
start from the classical Hamilton function of light–matter interaction
and quantize it by making use of the correspondence principle,
because in progressing so, one would implement all photons into this
Hamiltonian. It is, however, obvious, that the true Hamiltonian
of light–matter interactions comprises only the low–energy photons,
hence, all photons whose wave number q is smaller then the Bohr wave
number qB definded by ~cqB ≡ αFSmec

2.

For N = 2, A
(ext)
a (r) = 0, Âb

(
r(j)
)

= 0̂ and without the radiation
contribution Hrad the Hamiltonian (305) coincides with the so–
called Breit–Dirac–Pauli Hamiltonian3, see for example [37]. For the
derivation of the Breit–Dirac–Pauli Hamiltonian, the photons have to
be eliminated completely. However, since we are living in a world
where there are always photons present, the Hamiltonian (305) is
physically more sensible, since it describes the interaction of the
electrons with the low–energy photons and includes the radiation field.

3 The Breit–Dirac–Pauli Hamiltonian can also be contructed by starting from relativistic
classical mechanics. One constructs a Lagrange function (the so–called Darwin Lagrange function)
of two interacting electrons. These interact via the electromagnetic fields they produce due to
their motion, hence, due to the Lorentz force felt of by electron due to the electromagnetic field
of the respective other electron and vice versa. From this Lagrange function then the Breit
Hamiltonian is derived in analogy to the derivation of the Dirac Hamiltonian of one electron.
The Breit Hamiltonian subsequently is a 16× 16 matrix operator and thus acts on 16–component
spinors. This gives then a system of sixteen coupled equations which can be decoupled by replacing
the “large” components by the “small” components, just as in case of the free Dirac Hamiltonian.
Proceeding in this guise finally yields the Breit–Pauli–Dirac Hamiltonian [52, 53]. However, starting
from classical mechanics for two interacting particles leads to serious problems, e.g. an unphyiscal
|e|4 term in the Breit–Dirac–Pauli Hamiltonian. This is also discussed in section 7. The flow
equation method does not provide such an unphysical contribution to the nonrelativistic limit of
QED.
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7 Summary and Discussion

This dissertation was dedicated to the goal of deducing the
nonrelativistic limit from Quantum Electrodynamics as a high energy
field theory.

The central problem breaks thereby down into two subproblems of
which, thinking in classical physical terms, one would assume to be
related to each other: the first, fundamental subproblem is that in
QED, the particle number conservation is violated. Whatever one
wants to understand by a particle in the context of QED – be it
an occupied (anti–)matter mode or the (anti–)matter field itself – the
particle number operator N̂ counting occupied (anti–)matter modes is
well defined, and it does not commute with the Hamiltonian of QED.
Hence, the particle number is not conserved, which is a profoundly
unclassical property.

The second subproblem is the coherent superposition of matter and
antimatter modes in the Dirac field operators describing the creation
and annihilation of matter and antimatter in the QED Hamiltonian.
Assuming that there are particles and antiparticles, one would also
assume that there is a clear distinction between matter and antimatter.
However, it is (unfortunately deeply) hidden in the formalism of QED
that there is no clear distinction. This is due to the fact that the Dirac
field operators comprise four components matter and antimatter are at
first indissolubly interwoven with each other which on the other hand
goes back to the structure and the properties of the Dirac Hamiltonian.

It was now possible to achieve the goal of deducing the nonrelativistic
limit of QED by taking two separate steps: first the QED Hamiltonian
has been unitarily transformed in such a way that an equivalent Hamil-
tonian that conserves the particle number emerged. This Hamiltonian
is a many–body Hamiltonian describing the interaction with (possibly
fast moving) matter and antimatter fields, and low energy photons
(such with wave numbers q < qB). But in this Hamiltonian the matter
and antimatter degrees of freedom are still coherently superposed.

Therefore, in a second step, the matter and antimatter degrees of
freedom in the particle number conserving unitary equivalent QED
Hamiltonian have been decoupled.

In this guise then the nonrelativistic Hamiltonian of light–matter inter-

133



actions emerged as a many–body field theory Hamiltonian for electrons
and positrons separately. The resulting many–body field theory
Hamiltonian for electrons has been retranslated to first quantization,
hence, it has been expressed as a sum over individual point–like
particles carrying mass, charge and spin.

It was possible to achieve a unitarily equivalent QED Hamiltonian
which conserves the particle number by the help of the Wegner flow
equation, which is a differential equation for unitarily transforming a
matrix or an operator.

The generator of this flow equation made it possible to remove the
pair terms of the QED Coulomb interaction and the high energy
photons. With high energy photons hard X–ray photons and gamma
ray photons are meant. However, this flow equation is initially
a nonlinear ordinary differential equation, such that it could only
be solved perturbatively. For this the QED Hamiltonian has been
expanded into a series in the finestructure constant, and the inital
data has been choosen accordingly. The latter means that it has been
assumed that the radiation field energy is of the same strength as the
contribution of the rest energy and the kinetic energy of the matter
and antimatter fields (else one would ignore the high energy photons
from the beginning, which would thus be inconsistent).

Now this expansion led to a system of recursively coupled differential
equations still being nonlinear. Since the zeroth order differential
equation could be solved exactly, all higher order differential equations
occured as linear ones. It was possible to solve these linear ordinary
differential equations up to the second order in the finestructure
constant by the help of an ansatz which reproduced the eigenvalue
character of multiple interacted commutators.

Indeed, in this guise, all pair terms and high energy photons have
been removed from the QED Hamiltonian and a unitarily equivalent
Hamiltonian emerged which conserves the particle number.

This elimination of the pair terms of the QED Coulomb interaction
and the high energy photons yielded effective interactions in a
completely symmetric fashion for both matter and antimatter, as
well as for the photons. Next to that a term has been gained which
describes the interaction of electrons with positrons (positronium).

Moreover, terms have been gained which renormalize the bare
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attributes mass m0 and with that the g–factor of the fermions. These
so-called self–energy terms are present due to the requirement that
one has to normally order the creation and annihilation operators for
the fermions and the photons. This, on the other hand, is necessary
because only in the normally ordered form it is possible to reexpress
the field operators in first quantization.

One such renormalization contribution is due to the elimination
of the interaction between the (anti–)matter fields and the high-
energy photons, the transversal coupling. The second renormalization
contribution is due to the elimination of the high–energy interaction
between the matter and antimatter fields, the QED Coulomb
interaction.

Altogether, the unitarily equivalent QED Hamiltonian which
conserves the particle number then comprises the effective Pauli
Hamiltonian, the effective Coulomb interaction, the effective
transversal interaction, the coupling of the matter and antimatter
fields to the low energy photons, and the radiation field.

Besides one gets an effective fermion–photon interaction describing
stimulated emisson, a constant spectral shift and an effective electron–
positron interaction. The evaluation of these contributions has been
postponed.

The focus has been set on evaluating the part of the Hamiltonian
that describes matter only, the many–electron QED Hamiltonian.
Analogous considerations regarding positrons have also been
postponed.

The many–fermion QED Hamiltonian in second quantization can
be found by expressing the contributions of the particle number
conserving unitarily equivalent QED Hamiltonian in the Newton–
Wigner representation. This is the representation in which matter
and antimatter degrees of freedom fall apart.

The Newton–Wigner representation follows from the Eriksen
transformation, which is a unitary transformation that
blockdiagonalizes the single–particle Dirac Hamiltonian, leading
to a decomposition of the field operators into upper and lower
components for matter and antimatter respectively.

The renormalization terms together with the Dirac quantum field
which, in the Newton–Wigner representation, is nothing but the
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relativistic, second quantized Schrödinger–Pauli Hamiltonian, then
renormalize the bare mass m0 and the g–factor of the fermions. For
the latter the Schwinger result has been found.

The evaluation of the renormalization terms showed that the
anomalous g–factor is due to the renormalization of the fermionic
bare mass. The renormalization of the bare mass could be achieved
in a physically consistent manner by introducing the physical cut–off.
This cut–off truncates both the kinetic energy of the fermions and
the photon energy and led to the important numerical factor 1

3 due to
which the bare rest mass is renormalized equally as the bare kinetic
mass.

Since the single–particle Dirac Hamiltonian in the Newton–Wigner
representation is blockdiagonal, where the blocks are given by the
relativistic Schrödinger–Pauli Hamiltonian, it is possible to set the
Newton–Wigner amplitudes in relation to the Schrödinger–Pauli
amplitudes describing the nonrelativistic electron in an external
magnetic induction field. The related Schrödinger–Pauli wave
functions vary slowly on the atomic length scale, compared to the
Compton wavelength. It was therefore possible to evaluate the matrix
elements which give the corrections to the Dirac representation as a
gradient expansion.

Finally, the low–energy QED Hamiltonian in the Newton–Wigner
representation describes a plurality of electrons interacting with each
other and with low–energy photons. With that the many–electron
Hamiltonian of nonrelativistic light–matter interactions in its second
quantized guise has been derived, which could then be reexpressed in
first quantization, hence, as a sum over individual point particles.

The result extends that of Cohen–Tannoudji et al. presented in their
textbook on QED [6] by one order (though the technical procedure
was different there, e.g. perturbation theory has been applied by
starting from a particle picture from the beginning). This means that
the first relativistic corrections to the Schrödinger–Pauli Hamiltonian
have been derived. However, it has to be emphasized that with the
method presented here, one has at no point assumed particle number
conservation, it has been demanded by unitarily transforming the
QED Hamiltonian. By solving the flow equation, using the generator
which demands particle number conservation, one can proceed in a

136



technically clean manner and treat all constituents involved on equal
footing. This sharply distinguishes the method presented here from
all previous derivations of the nonrelativistic limit from the QED
Hamiltonian like the work of I. Bialynicky–Birula [14], by T. Itoh
[13], and by Cohen–Tannoudji et al. [6, 45].

The derivation of the nonrelativistic limit of full QED has the great
advantage that one does not have to start from the single–particle
theory of classical mechanics or relativistic quantum mechanics and
try to extend it to multiple interacting particles, in order to derive
from it its nonrelativistic limit. Such a Hamiltonian exisits, it
is the Breit–Dirac–Pauli Hamiltonian. It has been derived the
early 1929 work of Gregory Breit [52]. Breit worked out this
Hamiltonian by proceeding similarily as Dirac with this single-
electron approach. Breit imagined that two electrons interact with
with each other due to the electromagnetic field generated by the
respective other, moving electron (see also footnote 3). With that
he suggested for the description of two interacting electrons an
effective Hamiltonian operating on a sixteen-component two–particle
wavefunction. From Breit’s wave equation for that wavefunction
emerged in the nonrelativistic limit the well known Schrödinger-Pauli
Hamiltonian for two interacting electrons carrying mass, charge and
spin. However, the lowest order relativistic corrections to the particles
Coulomb interaction yielded not only the physical interaction terms
(e.g. the magnetic dipole-dipole interaction), but also an interaction
term proportional to |e|4 that contradicts experiment [53].

The result derived here coincides with the Breit–Dirac–Pauli
Hamiltonian (however, without the unphysical term) iff one sets
N = 2, puts the radiation field to zero, as well as the external magnetic
induction field and the photon vector field (the correct version of the
Breit–Dirac–Pauli Hamiltonian is also known as the Bethe–Salpeter
Hamiltonian, see below). Conversely, it would probably not be
immediately obvious how to integrate the photons into the Breit–
Dirac Pauli Hamiltonian or into the Bethe–Salpeter Hamiltonian in
order to get a nonrelativistic light–matter interaction Hamiltonian;
especially would it not be clear that these photons are then limited
in their energy, e.g. that X-ray photons and gamma photons must
be excluded from the Breit–Dirac–Pauli Hamiltonian or the Bethe–
Salpeter Hamiltonian.
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Hence, proceeding the opposite way, namely starting from the classical
quantum mechanics and the special theory of relativity, or from the
relativistic quantum mechanics of Paul Dirac, and trying to extend
it to a plurality of interacting particles yields numerous and serious
problems, see also [15] and the references therein.

It is also not necessary to start from a two–particle Bethe–Salpeter
equation describing bound states of a two–particle field theoretical
system in terms of propagators. This might be a useful equation,
however, as has hopefully become clear, it is questionable how the
field theory formalism and the particle picture come together here.
The covariant derivation of the results of Breit was established by
Bethe and Salpeter on the basis of QED, thus obtaining (in a frame of
reference with the total center of mass momentum being zero) a correct
version of the nonrelativistic Hamiltonian derived by G. Breit without
the unphysical |e|4 term [54]. An extension of the fully relativistic
Bethe-Salpeter equation to more than two interacting fermions seems
to be a hard problem, one aspect being the normalization of the
many–body wave function. Any Hamiltonian which involves a sum of
Dirac Hamiltonians for three or more particles plus local interactions
suffers from the so called continuum desease, that is normalizable
eigenfunctions don’t exist because of the coherent superposition of
positive- and negative-energy states [55]. To get from there via the
Bethe–Salpeter approach back to the Schrödinger-Pauli Hamiltonian
for a plurality of electrons, together with the lowest order relativistic
corrections, requires to intruduce in an ad hoc manenr positive-energy
projection operators collecting the interaction terms of the electrons
[54], for a recent summary see [56].

Altogehter, applying the flow equation method to the nonrelativistic
limit problem of QED is the most general method for attacking this
problem. With it it is possible to always stay on the level of the
Hamiltonian as the generator of the dynamics of the system. Here one
does not have to evaluate matrix elements of operators with the help of
the S–matrix as time ordered products in the interaction picture of the
QED interactions. For the S–matrix method it is necessary to choose
initial and final states, which is not necessary iff one remains on the
level of the Hamiltonian. The flow equation method also differs from
the “method 2” of Dirac who starts from the Heisenberg equation of
motion of a field operator describing the emission of one electron with
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respect to the QED Hamiltonian and solves it perturbatively [32].

In this dissertation it has been started from the full QED Hamiltonian
as a second quantized field theory including all interactions, and it has
been asked how one can retrieve the classical point particle carrying
mass, charge and spin from it. By appyling the flow equation to
the problem it was possible, always treating the constituents of the
QED soup on equal footing, to derive a many–fermion Hamiltonian
of nonrelativistic light matter interactions, including the Schwinger
result of the magnetic moment of the fermions.
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A Spectral Representation of the Dirac

Hamiltonian

With the Dirac Amplitudes Uµ (r; k) and Vµ (r; k) in the compact Dirac
braket notation [7],

Uµ (r; k) = 〈(r, µ) |Uk〉
U ?
µ′ (r

′; k) = 〈Uk| (r′, µ′)〉
Vµ (r; k) = 〈(r, µ) |Vk〉
V ?
µ′ (r

′; k) = 〈Vk| (r′, µ′)〉∫
d3r′

∑
µ′

|(r′, µ′)〉 〈(r′, µ′)| = 1

(306)

and the completeness relations (18) it is possible to define projection
operators [7]

P(+) =
∑
k′

|Uk′〉 〈Uk′|

P(−) =
∑
k′

|Vk′〉 〈Vk′|
(307)

that project onto the subspaces of positive energy or negative energy of
H(D) according to (16). These projection operators have the following
properites [7]

(
P(+)

)†
= P(+)(

P(−)
)†

= P(−)

P(+) + P(−) = 14×4

P(+) ◦ P(−) = 04×4 = P(−) ◦ P(+)

(308)

The projection operators (307) commute furthermore with the Dirac
Hamiltonian,

[
H(D),P(±)

]
= 0

From these one finds the spectra representation of the Dirac
Hamiltonian H(D) as follows [7]
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H(D) = H(D) ◦
(

P(+) + P(−)
)

=
∑
k′

|Ek′| (|Uk′〉 〈Uk′| − |Vk′〉 〈Vk′|)
(309)

And for the square of the Dirac Hamiltonian [7]

H(D) ◦ H(D) =
∑
k′

|Ek′| (|Uk′〉 〈Uk′| − |Vk′〉 〈Vk′|) ◦
∑
k′′

|Ek′′| (|Uk′′〉 〈Uk′′| − |Vk′′〉 〈Vk′′|)

=
∑
k′

|Ek′|2 (|Uk′〉 〈Uk′|+ |Vk′〉 〈Vk′|)

(310)

Note that (310) is always positive. Thus, one can take the square root
[7]:

√
H(D) ◦ H(D) =

∑
k′

|Ek′| (|Uk′〉 〈Uk′|+ |Vk′〉 〈Vk′|) (311)

Since [7]

√
H(D) ◦ H(D) ◦

√
H(D) ◦ H(D)

=
∑
k′

|Ek′|2 (|Uk′〉 〈Uk′|+ |Vk′〉 〈Vk′|)

= H(D) ◦ H(D)

(312)

√
H(D) ◦ H(D) |Uk〉 =

∑
k′

|Ek′| (|Uk′〉 〈Uk′|+ |Vk′〉 〈Vk′|) |Uk〉 = Ek |Uk〉

√
H(D) ◦ H(D) |Vk〉 =

∑
k′

|Ek′| (|Uk′〉 〈Uk′|+ |Vk′〉 〈Vk′|) |Vk〉 = Ek |Vk〉

H(D) =
∑
k′

|Ek′| (|Uk′〉 〈Uk′| − |Vk′〉 〈Vk′|)

=
√

H(D) ◦ H(D) ◦
∑
k′

(|Uk′〉 〈Uk′| − |Vk′〉 〈Vk′|)

=
√

H(D) ◦ H(D) ◦
(

P(+) − P(−)
) (313)
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This relation between the projection operators (307) and the Dirac
Hamiltonian can be also found in [50].

The identity (313) is important, since there follows a formal

representation of the nonlocal operator H(D)
√
H(D)◦H(D)

as [7]

P(+) − P(−) =
H(D)

√
H(D) ◦ H(D)

(314)

and for the projection operators [7]

P(±) =
1

2

(
14×4 ±

H(D)

√
H(D) ◦ H(D)

)
(315)

Note that in the nonrelativistic limit m0c
2 → ∞ there follows

limm0c2→∞ P(±) = 1
2 (14×4 ± β). Remark the β matrix as the operator

indiacting particles 12×2 in its first argument and antiparticles −12×2

in its last argument.
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B The Derivation of the Eriksen Transformation

A unitary transformation is searched for which blockdiagonalizes the
single–particle Dirac Hamiltonian, and which separates the matter
degrees of freedom and the antimatter degrees of freedom in the Dirac
modes.

Now since the operator β is blockdiagonal in the Dirac representation
it is reasonable to assume that a unitarily equivalent Dirac
Hamiltonian commutes with β, because in that case, this new
Hamiltonian must also be blockdiagonal. However, there might be
several unitary transformations which lead to a blockdiagonal Dirac
Hamiltonian, but for which matter and antimatter degrees of freedom
are still coupled [8]. Therefore, the unitary transformation must
also yield new amplitudes which are energy–separated in the sense as
indicated in (163). Both requirements, the blockdiagonalization of the
Dirac Hamiltonian and the energy separation of the Dirac amplitudes
define the Eriksen transformation [10, 7].

In the following it will be shown that the generator of a flow equation
which yields the Eriksen transformation T in the limit s→∞ is given
by [7]

η(T ) (s) = [β,H (s)] (316)

Since the generator η(T ) (s) depends only linearly on the Hamiltonian
H (s), it induces a Brockett type of flow equation for the gauge
invariant Dirac Hamiltonian [7]:

d

ds
H (s) =

[
η(T ) (s) ,H (s)

]
η(T ) (s) = [β,H (s)]

H (s = 0) = H(D) = m0c
2β + cαbΠb

(317)

And, as a reminder,
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Π̂b = pb − qeAb (x̂)

[p̂b, x̂a] =
~
i
δb,a1̂

rotA (r) = B(ext) (r)

βαb + αbβ = 04×4

It will now now be proven that the ansatz [7]

H (s) = βE (s) +DAF (s)

DA =
αbΠb√
(αaΠa)

2

(318)

solves the differential equation (317) exactly. Here, E (s) and F (s) are
four–dimensional blockdiagonal (!) operators that have to be specified.
The operator DA might be non–local.

The properties of the involved operators β and αbΠb are the following
[7]

DADA = 14×4

ββ = 14×4

βDA +DAβ = 04×4[
β, (αbΠb)

2
]

= 04×4

(319)

Now one assumes that the operators E (s) and F (s) are only dependent
on the square (αaΠa)

2 which will be verified once their explicit shape
has been constructed.

Iff the assumption holds true then [7]

[β,E (s)] = 04×4 = [β, F (s)]

[DA,E (s)] = 04×4 = [DA,F (s)]

[E (s) ,F (s)] = 04×4

(320)

And the generator (316) assumes the following guise [7]

η(T ) (s) = 2βDAF (s) (321)
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One can now explicitely write for the flow equation (317)

d

ds
H (s) = β

d

ds
E (s) +DA

d

ds
F (s)

!
=
[
η(T ) (s) ,H (s)

]
= [2βDAF (s) , βE (s) +DAF (s)]

= −4DAF (s) E (s) + 4βF (s) F (s)

(322)

where the relations (320) have been used.

Rewriting this one finds [7]

β

(
d

ds
E (s)− 4F (s) F (s)

)
+DA

(
d

ds
F (s) + 4F (s) E (s)

)
= 04×4

(323)

This equation (323) decomposes into two coupled nonlinear differential
equations for determining the operators E (s) and F (s) [7]

d

ds
E (s) = 4F (s) F (s)

d

ds
F (s) = −4E (s) F (s)

(324)

One can show this by applying the lemma Xβ + YDA = 04×4 ⇒
(X = 04×4) ∧ (Y = 04×4) for two 4× 4 matrix operators X and Y with
the property [X, β] = 04×4 = [Y, β] [7].

From the chosen initial values for s = 0 one finds [7]

H (0) = βE (0) +DAF (0)
!

= H(D)

= m0c
2β + cαbΠb

(325)

which implies for the initial values for E (s) and F (s) [7]

F (0) = c

√
(αaΠa)

2

E (0) = m0c
214×4

(326)
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The coupled equations (324) can now be solved by observing that the
square H (s) H (s) = E (s) E (s) + F (s) F (s) ≡ Q (s) is a constant of
motion [7]:

d

ds
Q (s) = E (s)

(
d

ds
E (s)

)
+

(
d

ds
E (s)

)
E (s) + F (s)

(
d

ds
F (s)

)
+

(
d

ds
F (s)

)
F (s)

= E (s)F (s)F (s) + 4F (s)F (s)E (s)− 4F (s)E (s)F (s)− 4E (s)F (s)F (s)

= 4F (s) (F (s)E (s)− E (s)F (s))

= 04×4

(327)

Hence [7],

Q (s) = Q (0)

= E (0) E (0) + F (0) F (0)

=
(
m0c

2
)2

14×4 + c2 (αaΠa)
2

= H(D) (0) H(D) (0)

(328)

The formal solution for F (s) for the differential equation (324) [7]

F (s) = exp

[
−4

∫ s

0

ds′E (s′)

]
F (0) (329)

which is true iff [E (s1) ,E (s2)] = 04×4 for s1, s2 ∈ ε [0,∞]. This
condition holds true once one has found the explicit solution of E (s).

Since E (s) is positive and increases as a function of s, F (s) necessarily
vanishes for s→∞ [7]:

lim
s→∞

F (s) = 04×4 = F (∞) (330)

For Q (s) then [7]

E (s) E (s) + F (s) F (s) = lim
s→∞

(E (s) E (s) + F (s) F (s))

= E (∞) E (∞)

= lim
s→0

(E (s) E (s) + F (s) F (s))

= H(D) (0) H(D) (0)

(331)

So, altogheter for E (∞) [7]
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E (∞) =
√

H(D) ◦ H(D)

=

√
(m0c2)2 14×4 + c2 (αaΠa)

2

≡ E (Π)

(332)

E (∞) only depends on (αaΠa)
2 as has been assumed above.

Inserting the result (332) into the differential equation (324) for E (s)
then gives [7]

d

ds
E (s) = 4F (s) F (s)

= 4 [E (∞)]2 − 4 [E (s)]2
(333)

This holds because F (s) F (s) = E (∞) E (∞) − E (s) E (s), which
follows from (331).

The differential equation (333) can be solved exactly by the function
[7]

E (s) = E (∞) tanh

(
4E (∞) s+ artanh

(
mec

2

E (∞)

))
(334)

This can be seen by calculating [7]

d

ds
E (s) =

4 [E (∞)]2

cosh2
(

4E (∞) s+ artanh
(
mec2

E(∞)

))
= 4 [E (∞)]2

cosh2
(

4E (∞) s+ artanh
(
mec2

E(∞)

))
− sinh2

(
4E (∞) s+ artanh

(
mec2

E(∞)

))
cosh2

(
4E (∞) s+ artanh

(
mec2

E(∞)

))
= 4 [E (∞)]2

(
1− tanh2

(
4E (∞) s+ artanh

(
mec

2

E (∞)

)))
= 4 [E (∞)]2 − 4 [E (s)]2

Since s is only a number one can see immediately that the condition
[E (s1) ,E (s2)] = 04×4 indeed holds true! Furthermore, the solution
(334) for E (s) is, too, a function depending on the square (αaΠa)

2, as
has been assumed above.

Now an explicit solution for the function F (s) can be given, too [7]:
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F (s) =
1

2

√
d

ds
E (s)

=
E (∞)

cosh
(

4E (∞) s+ artanh
(
mec2

E(∞)

))
=

√
[E (∞)]2 − [E (s)]2

(335)

The explicit and exact solution to the differential equations
(324) is very lucky, because now one can explicitely find the
unitary transformation U (s) yielding the blockdiagonalized Dirac
Hamiltonian. Why is that? For that one has to understand the notion
”generator” in a more formal way.

For each step s the unitarily transformed Hamiltonian H (s) is given
by [7]

H (s) = U (s) ◦ H(D) ◦ U† (s) (336)

(336) is a formal solution to the flow equation (317) for (318) with
the generator η(E) (s) ≡ 2βDAF (s). You can see this by regarding the
equation of motion for the unitary transformation U (s):

d

ds
U (s) = η̂(E) (s) U (s) (337)

with the initial value U (0) = 14×4 guaranteering H (s = 0) = H (0).

With that then [7]

d

ds
H (s) =

d

ds
U (s) ◦ H(D) ◦ U† (s) + U (s) ◦ H(D) ◦ d

ds
U† (s)

= η̂(E) (s) ◦ U (s) ◦ H(D) ◦ U† (s) + U (s) ◦ H(D) ◦ U† (s) ◦
(
−η̂(E) (s)

)
=
[
η̂(E) (s) ,U (s) ◦ H(D) ◦ U† (s)

]
=
[
η̂(E) (s) ,H (s)

]
(338)

The equation of motion (337) can be solved formally by [7]
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U (s) ≡ exp

[∫ s

0

ds′η̂ (s′)

]
= exp [βDAφ4×4 (s)]

φ4×4 (s) ≡ 2

∫ s

0

ds′F (s′)

(339)

because in here [η̂ (s1) , η̂ (s2)] = 0̂ for s1 6= s2.

In the limit s → ∞ of U (s) this will give the Newton–Wigner
representation H(NW ) of the Dirac Hamiltonian (10) according to
H(NW ) = T ◦ H(D) ◦ T†, where the T = lims→∞ U (s). This is done
in the following.

Hence, one has to calculate the matrix valued phase φ4×4 (s). Since
it is a function βDA of there holds [φ4×4 (s) , βDA] = 04×4. From that
follows for U (s) [7]

U (s) =
∞∑
j=0

(φ4×4 (s))j

j!
(βDA)j

=
∞∑
n=0

(φ4×4 (s))2n

(2n)!
(βDA)2n +

∞∑
n=0

(φ4×4 (s))2n+1

(2n+ 1)!
(βDA)2n+1

=
∞∑
n=0

(φ4×4 (s))2n

(2n)!
(−1)n 14×4 + βDA

∞∑
n=0

(φ4×4 (s))2n+1

(2n+ 1)!
(−1)n 14×4

= cos [φ4×4 (s)] 14×4 + βDA sin [φ4×4 (s)]
(340)

where (βDA)2n = (−1)n 14×4 and (βDA)2n+1 = βDA (−1)n 14×4 has
been used.

The matrix valued phase φ4×4 (s) is the solution of the integral
equation (339). Hence, its derivative with respect to s is given by
[7]

d

ds
φ4×4 (s) = 2F (s)

φ4×4 (0)=04×4

(341)

Now using the solution (335) for F (s) there holds [7]
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2F (s) =
2E (∞)

cosh
(

4E (∞) s+ artanh
(
mec2

E(∞)

))
= 4E (∞)

exp
(
−4E (∞) s− artanh

(
mec

2

E(∞)

))
1 +

(
exp

(
−4E (∞) s− artanh

(
mec2

E(∞)

)))2

= − d

ds
arctan

(
exp

(
−4E (∞) s− artanh

(
mec

2

E (∞)

)))
(342)

Comparing the last line in (342) with (341) we find the solution for
the matrix valued phase [7]

φ4×4 (s) = arctan

(
exp

(
−artanh

(
mec

2

E (∞)

)))
− arctan

(
exp

(
−4E (∞) s− artanh

(
mec

2

E (∞)

)))
(343)

with φ4×4 (0) = 04×4 as it should be!

The solution (343) can be reexpressed by the help of the identity

artanhz = ln
√

1+z
1−z , such that we can write exp (−artanh (z)) =

√
1−z
1+z .

Hence [7],

φ4×4 (s) = arctan


√√√√14×4 − mec2

E(∞)

14×4 + mec2

E(∞)

−arctan


√√√√14×4 − mec2

E(∞)

14×4 + mec2

E(∞)

e−4E(∞)s


(344)

Note that φ4×4 (∞) = arctan

(√
14×4−mec

2

E(∞)

14×4+mec2

E(∞)

)
. From this follows readily

[7]

tan [φ4×4 (∞)] =

√√√√14×4 − mec2

E(∞)

14×4 + mec2

E(∞)

=
sin [φ4×4 (∞)]

cos [φ4×4 (∞)]
(345)

One can thus conclude [7]
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sin [φ4×4 (∞)] =

√
1

2

(
14×4 −

mec2

E (∞)

)

cos [φ4×4 (∞)] =

√
1

2

(
14×4 +

mec2

E (∞)

) (346)

The factor
√

1
2 assures that the Pythagorean theorem sin2 [φ4×4 (∞)]+

cos2 [φ4×4 (∞)] = 14×4 holds true.

Finally, for s → ∞ of the unitary transformation U (s) one harvests
the unitary transformation yielding the blockdiagonalized Dirac
Hamiltonian, the so–called Newton–Wigner Hamiltonian, according
to [7]

T = lim
s→∞

U (s) = exp [βDAφ4×4 (∞)]

= cos [φ4×4 (∞)] 14×4 + βDA sin [φ4×4 (∞)]

=

√
1

2

(
14×4 +

mec2

E (∞)

)
+ βDA

√
1

2

(
14×4 −

mec2

E (∞)

) (347)

and [7]

T† = cos [φ4×4 (∞)] 14×4 − βDA sin [φ4×4 (∞)]

=

√
1

2

(
14×4 +

mec2

E (∞)

)
− βDA

√
1

2

(
14×4 −

mec2

E (∞)

)
(348)

with E (∞) =
√

H(D) ◦ H(D) = m0c
2
√

14×4 + 2
m0c2

H
(P,0)
4×4 and H

(P,0)
4×4 =

ΠbΠb

2m0
14×4 − qe~

2m0
B

(ext)
b σb.

From these results the Newton–Wigner Hamiltonian H(NW ) arises as
[7]
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H(NW ) = lim
s→∞

H (s)

= lim
s→∞

(
U (s) ◦ H(D) ◦ U† (s)

)
= T ◦ H(D) ◦ T†

= β ◦
√

H(D) ◦ H(D)

= β ◦ E (∞)

= m0c
2 β ◦

√
14×4 +

2

m0c2
H

(P,0)
4×4

(349)

In the following the Newton–Wigner representation of the Dirac
operators αa, αb

Πb

m0c
, β and 2

m0c2
H

(P,0)
4×4 will be deduced, as this is

useful.

Now for the Dirac αa operator we can evaluate [7]

TαaT
† = T (Π)αaT

† (Π)

= αa + Πa
m0c

β − 1
4

Πb
m0c

Πb′
m0c

αbαb′αa +

αbαa + αaαb︸ ︷︷ ︸
2δa,b

αb′

 (350)

For transforming the other Dirac operators into the Newton–Wigner
representation the following abbreveations are useful [7]

C = cos [φ4×4 (∞)] =

√
1
2

(
14×4 + m0c

2

E(∞)

)
S = sin [φ4×4 (∞)] =

√
1
2

(
14×4 − m0c

2

E(∞)

)
E (∞) =

√
H(D) ◦ H(D) = m0c

2

√
14×4 +

2

m0c2
H

(P,0)
4×4

(351)

because for (347) and (348) then [7]

T = C + βDAS

T† = C− βDAS
(352)

Now the properties [7]
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{β,DA} = 04×4

DADA = 14×4 = ββ

[DA, φ4×4 (∞)] = 04×4 = [β, φ4×4 (∞)]

(353)

readily give [7]

TDAT† = (C + βDAS)DA (C− βDAS)

= DA

(
C2 − S2

)
+ β (2CS)

= DA

1√
14×4+ 2

m0c
2H

(P,0)
4×4

+ β

√
2

m0c
2H

(P,0)
4×4

14×4+ 2
m0c

2H
(P,0)
4×4

(354)

Since DA =
αb

Πb
m0c√(

αb
Πb
m0c

)2 and
(
αb

Πb

m0c

)2

= 2
m0c2

H
(P,0)
4×4 there follows for

the unitary transformation of the operator αb
Πb

m0c
[7]

T
(
αb

Πb

m0c

)
T† = T

(√(
αb

Πb

m0c

)2

DA

)
T†

=

√(
αb

Πb

m0c

)2

TDAT†

=
1√

14×4+ 2
m0c

2H
(P,0)
4×4

(
Πb

m0c
αb + 2

m0c2
H

(P,0)
4×4 β

)
(355)

For the unitary transformation of the Dirac β matrix then [7]

TβT† = β
(
C2 − S2

)
−DA (2CS)

= β m0c
2

E(∞) −DA

√ (
14×4 − m0c

2

E(∞)

)(
14×4 + m0c

2

E(∞)

)
= β

1√
14×4+ 2

m0c
2H

(P,0)
4×4
− αb Πb

m0c

1√
14×4+ 2

m0c
2H

(P,0)
4×4

(356)

And finally, the unitary transformation of the operator 2
m0c2

H
(P,0)
4×4 [7]

T
(

2
m0c2

H
(P,0)
4×4

)
T† = T

(
αb

Πb
m0c

)2
T†

= T
(
αb

Πb
m0c

)
T†T

(
αb

Πb
m0c

)
T†

= 2
m0c2

H
(P,0)
4×4

(357)

As expacted, since the relativistic Pauli Hamiltonian is blockdiagonal.
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C Properties of the Dirac Operators

in the Newton–Wigner Representation

As has been shown in section 5, the Newton–Wigner representation
of the Dirac–Hamiltonian has very nice properties regarding the
possibility to interprete the Dirac–particle. It can be achieved by
the help of the Eriksen transformation T.

Here some useful identities between the Dirac–operators and their
analogues in the Newton–Wigner representation are given.

Now the relation between the Dirac Hamiltonian and the Newton–
Wigner Hamiltonian is given by [10, 7]

H(NW ) = β ◦
√

H(D) ◦ H(D) (358)

The reverse is then true [7]

H(D) = T† ◦
(
β ◦
√

H(D) ◦ H(D)
)
◦ T (359)

Now since
[

T,
√

H(D) ◦ H(D)
]

= 04×4 one can write for (359) [7]

H(D) =
√

H(D) ◦ H(D) ◦ T† ◦ β ◦ T (360)

From the spectral representation of the Dirac Hamiltonian follows on
the other hand [7]

H(D) =
√

H(D) ◦ H(D) ◦
(

P(+) − P(−)
)

(361)

which has been shown in section A of the appendix, see (313)!

Hence [7],

T† ◦ β ◦ T = P(+) − P(−)

=
H(D)

√
H(D) ◦ H(D)

(362)

The validity of the last line has been also shown in section A of the
appendix, see (314).
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Justification of the Identity (255)

The following considerations were inspired by [51]. There holds [7]

〈r′, µ′|r, µ〉 = δµ′,µδ
3 (r′ − r) (363)

From the eigenvalue relation 〈r′, µ′| xa = 〈r′, µ′| r′a there follows for
the matrix element of the positon operator xa with respect to a fixed
position state |r, µ〉 then [7]

〈r′, µ′| xa |r, µ〉 = 〈r′, µ′| r′a |r, µ〉
= r′a 〈r′, µ′|r, µ〉
= r′aδµ′,µδ

3 (r′ − r)

(364)

And accordingly [7]

〈r′, µ′| xbxa |r, µ〉 = 〈r′, µ′| r′bxa |r, µ〉
= r′b 〈r′, µ′| xb |r, µ〉
= r′br

′
aδµ′,µδ

3 (r′ − r)

(365)

Hence, for a general function V (x) there holds [7]

〈r′, µ′|V (x) |r, µ〉 = V (r′) 〈r′, µ′|r, µ〉
= V (r′) δµ′,µδ

3 (r′ − r)
(366)

Using the completeness relation [7]

∑
µ′

∫
d3r′ |r′, µ′〉 〈r′, µ′| = 1̂4×4 (367)

The matrix element of the function V (x) with respect to the Newton–

Wigner eigenfunctions
∣∣∣U (NW )

k

〉
is therefore given by [7]
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〈
U

(NW )
K

∣∣∣V (x)
∣∣∣U (NW )

k

〉
=
〈
U

(NW )
K

∣∣∣
∑

µ′

∫
d3r′ |r′, µ′〉 〈r′, µ′|

V (x)

(∑
µ

∫
d3r |r, µ〉 〈r, µ|

)∣∣∣U (NW )
k

〉
=
∑
µ′,µ

∫
d3r′

∫
d3r
〈
U

(NW )
K |r′, µ′

〉
〈r′, µ′|V (x) |r, µ〉

〈
r, µ|U (NW )

k

〉
=
∑
µ′,µ

∫
d3r′

∫
d3r
(
U

(NW )
µ′ (r′, K)

)?
〈r′, µ′|V (x) |r, µ〉U (NW )

µ (r, k)

=
∑
µ′,µ

∫
d3r′

∫
d3r
(
U

(NW )
µ′ (r′, K)

)?
V (r′) δµ′,µδ

3 (r′ − r)U (NW )
µ (r, k)

=
∑
µ′

∫
d3r′

(
U

(NW )
µ′ (r′, K)

)?
V (r′)U

(NW )
µ′ (r′, k)

(368)

For the analogue relations of the momentum operator pb one starts
with the fundamental commutation relation

[pb, xa] =
~
i
δb,a1 (369)

where xa is the position operator.

The matrix element of the momentum operator in the position
representation, with respect to the fixed position eigenstate |r, µ〉,
assumes the following guise [7]

〈r′, µ′| pb |r, µ〉 =

(
〈r′, µ′| ~

i

∂

∂r′b

)
|r, µ〉

= lim
τ→0

~
i

1

2τ

(〈
r′ + τe(b), µ′

∣∣∣− 〈r′ − τe(b), µ′
∣∣∣) |r, µ〉

= δµ′,µ lim
τ→0

~
i

1

2τ

(
δ3
(
r′ + τe(b) − r

)
− δ3

(
r′ − τe(b) − r

))
(370)

Therefore [7]
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〈
r′, µ′

∣∣ pbpa |r, µ〉
=

(〈
r′, µ′

∣∣ ~
i

∂

∂r′b

)
pa |r, µ〉

= lim
τ→0

~
i

1

2τ

(〈
r′ + τe(b), µ′

∣∣∣− 〈r′ − τe(b), µ′
∣∣∣) pa |r, µ〉

= lim
τ→0

~
i

1

2τ

(〈
r′ + τe(b), µ′

∣∣∣ pa − 〈r′ − τe(b), µ′
∣∣∣ pa) |r, µ〉

= lim
τ→0

~
i

1

2τ

(〈
r′ + τe(b), µ′

∣∣∣ pa |r, µ〉 − 〈r′ − τe(b), µ′
∣∣∣ pa |r, µ〉)

= δµ′,µ lim
τ→0

lim
τ ′→0

(
~
i

)2 1

2τ

1

2τ ′

(
δ3
(
r′ + τe(b) + τ ′e(a) − r

)
− δ3

(
r′ + τe(b) − τ ′e(a) − r

)
−δ3

(
r′ − τe(b) + τ ′e(a) − r

)
+ δ3

(
r′ − τe(b) − τ ′e(a) − r

) )
(371)

Now, in the Newton Wigner representation then [7]

〈
U

(NW )
K

∣∣∣ pbpa

∣∣∣U (NW )
k

〉
=
〈
U

(NW )
K

∣∣∣
∑

µ′

∫
d3r′ |r′, µ′〉 〈r′, µ′|

 pbpa

(∑
µ

∫
d3r |r, µ〉 〈r, µ|

)∣∣∣U (NW )
k

〉
=
∑
µ′,µ

∫
d3r′

∫
d3r
〈
U

(NW )
K |r′, µ′

〉
〈r′, µ′| pbpa |r, µ〉

〈
r, µ|U (NW )

k

〉
=
∑
µ′,µ

∫
d3r′

∫
d3r
(
U

(NW )
µ′ (r′, K)

)?
〈r′, µ′| pbpa |r, µ〉U (NW )

µ (r, k)

=
∑
µ′,µ

∫
d3r′

∫
d3r
(
U

(NW )
µ′ (r′, K)

)?
δµ′,µ lim

τ→0
lim
τ ′→0

(
~
i

)2
1

2τ

1

2τ ′
×

×
(

δ3
(
r′ + τe(b) + τ ′e(a) − r

)
− δ3

(
r′ + τe(b) − τ ′e(a) − r

)
−δ3

(
r′ − τe(b) + τ ′e(a) − r

)
+ δ3

(
r′ − τe(b) − τ ′e(a) − r

) )U (NW )
µ (r, k)

=
∑
µ′

∫
d3r′

(
U

(NW )
µ′ (r′, K)

)?
lim
τ→0

lim
τ ′→0

(
~
i

)2
1

2τ

1

2τ ′

×

(
U

(NW )
µ

(
r′ + τe(b) + τ ′e(a), k

)
− U (NW )

µ′

(
r′ + τe(b) − τ ′e(a), k

)
−U (NW )

µ

(
r′ − τe(b) + τ ′e(a), k

)
+ U

(NW )
µ

(
r′ − τe(b) − τ ′e(a), k

) )

=
∑
µ′

∫
d3r′

(
U

(NW )
µ′ (r′, K)

)?(~
i

∂

∂r′a

~
i

∂

∂r′b
U

(NW )
µ′ (r′, k)

)
(372)

Hence, for a general polynomia Y (p), applying the superpositon
principle [7],
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〈
U

(NW )
K

∣∣∣Y (p)
∣∣∣U (NW )

k

〉
=
〈
U

(NW )
K

∣∣∣
∑

µ′

∫
d3r′ |r′, µ′〉 〈r′, µ′|

Y (p)

(∑
µ

∫
d3r |r, µ〉 〈r, µ|

)∣∣∣U (NW )
k

〉
=
∑
µ′,µ

∫
d3r′

∫
d3r
〈
U

(NW )
K |r′, µ′

〉
〈r′, µ′|Y (p) |r, µ〉

〈
r, µ|U (NW )

k

〉
=
∑
µ′

∫
d3r′

(
U

(NW )
µ′ (r′, K)

)?
〈r′, µ′|Y (p) |r, µ〉U (NW )

µ′ (r′, k)

=
∑
µ′

∫
d3r′

(
U

(NW )
µ′ (r′, K)

)?(
Y

(
~
i
∇′
)
U

(NW )
µ′ (r′, k)

)
(373)

So that finally for a function Fµ′,µ (x, p) the matrix element with
respect to a Newton–Wigner eigenstate [7]

〈
U

(NW )
K

∣∣∣F4×4 (x, p)
∣∣∣U (NW )

k

〉
=
〈
U

(NW )
K

∣∣∣
∑

µ′

∫
d3r′

∣∣r′, µ′〉 〈r′, µ′∣∣
F4×4 (x, p)

(∑
µ

∫
d3r |r, µ〉 〈r, µ|

)∣∣∣U (NW )
k

〉
=
∑
µ′,µ

∫
d3r′

∫
d3r

〈
U

(NW )
K |r′, µ′

〉 〈
r′, µ′

∣∣F4×4 (x, p) |r, µ〉
〈
r, µ|U (NW )

k

〉
=
∑
µ′

∫
d3r′

(
U

(NW )
µ′

(
r′,K

))?(
Fµ′,µ

(
r′,

~
i
∇′
)
U (NW )
µ

(
r′, k

))
(374)
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D Relation between the Dirac Hamiltonian and

the Schrödinger Pauli Hamiltonian in a static

external magnetic field

For the square of the Dirac Hamiltonian we find explicitely [7]

H(D) ◦ H(D) =
(
m0c

2β + cαbΠb

)
◦
(
m0c

2β + cαb′Πb′
)

=
((
m0c

2
)2

+ c2ΠbΠb

)
14×4 − qe~c2B

(ext)
b′′ σb′′

(375)

where we have used the anticommutation relation {αb, β} = 04×4,
b ∈ {x, y, z}. σb is the relativistic spin operator given in (158).

The square of the Dirac Hamiltonian, representated by a matrix,
assumes the following guise [7]

((
m0c

2
)2

+ c2ΠbΠb

)
14×4 − qe~c2B

(ext)
b′′ σb′′

=

 ((
m0c

2
)2

+ c2ΠbΠb

)
12×2 − qe~c2B

(ext)
b σ

(P )
b , 02×2

02×2 ,
((
m0c

2
)2

+ c2ΠbΠb

)
12×2 − qe~c2B

(ext)
b σ

(P )
b


=
(
m0c

2
)2(

14×4 +
2

m0c2
H

(P,0)
4×4

)
(376)

Where the 4× 4 Pauli Hamiltonian is given by

H
(P,0)
4×4 = 12×2 ⊗ H

(SP,0)
2×2 (377)

and the 2 × 2 Schrödinger Pauli Hamiltonian describing the
nonrelativistic electron in an external magnet induction field is given
by

H
(SP,0)
2×2 =

ΠbΠb

2m0
12×2 −

qe~
2m0

B
(ext)
b σ

(P )
b (378)

Hence, the square root of the Dirac Hamiltonian is related to the
Schrödinger Pauli Hamiltonian according to

√
H(D) ◦ H(D) = m0c

2 × 12×2 ⊗
√

12×2 +
2

m0c2
H

(SP,0)
2×2 (379)
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It is now possible to expand the square root
√

12×2 + 2
m0c2

H
(SP,0)
2×2 as a

Taylor series:

√
12×2 +

2

m0c2
H

(SP,0)
2×2 = 12×2 +

1

m0c2
H

(SP,0)
2×2 − 1

2

(
1

m0c2
H

(SP,0)
2×2

)2

+ .....

(380)

With the expansion (380) one finds a nonlocal, gauge invariant
represenation of

√
H(D) ◦ H(D) according to

√
H(D) ◦ H(D) =

√(
(m0c2)2 + c2ΠbΠb

)
14×4 − qe~c2B

(ext)
b σb (381)

With the ansatz
√

H(D) ◦ H(D) = W014×4 + Wbσb [7] it is possible to
find the coefficients W0 and Wb for a linear representation of (381).

Squaring the ansatz then [7]

((
m0c

2
)2

+ c2ΠbΠb

)
14×4 − qe~c2B

(ext)
b σb = (W014×4 +Wbσb)

2

=
(
W 2

0 +WbWb

)
14×4 + (W0Wb +WbW0)σb

(382)

Hence, by comparing the linearily independent matrices 14×4 and of
σb [7],

W 2
0 +WbWb =

(
m0c

2
)2

+ c2ΠbΠb

W0Wb +WbW0 = −qe~c2B
(ext)
b

(383)

If the external magnetic induction field B
(ext)
b is constant then ΠbΠb

commutes with B
(ext)
b and there holds W0Wb +WbW0 = 2W0Wb.

In that case then [7]

Wb = −
qe~c2B

(ext)
b

2W0
(384)

and [7]
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W 2
0 +WbWb = W 2

0 +
1

W 2
0

(
−qe~c

2

2

∣∣∣B(ext)
∣∣∣)2

!
=
(
m0c

2
)2

+ c2ΠbΠb

(385)

This leads then to [7]

W 4
0 −W 2

0

((
m0c

2
)2

+ c2ΠbΠb

)
+

(
−qe~c

2

2

∣∣∣B(ext)
∣∣∣)2

= 0(
W 2

0 −
1

2

((
m0c

2
)2

+ c2ΠbΠb

))2

=
1

4

((
m0c

2
)2

+ c2ΠbΠb

)2
−
(
qe~c2

∣∣B(ext)
∣∣)2

4

(386)

Since W0 is real one can ignore the solution with the minus sign and
find [7]

W 2
0 =

1

2

(m0c
2
)2

+ c2ΠbΠb +

√(
(m0c2)2 + c2ΠbΠb

)2

−
(
qe~c2

∣∣B(ext)
∣∣)2

4


(387)

which can be represented as a square according to [7]

W 2
0 =

1

2

√(
(m0c2)2 + c2ΠbΠb

)
+
qe~c2

∣∣B(ext)
∣∣

2
+

1

2

√(
(m0c2)2 + c2ΠbΠb

)
−
qe~c2

∣∣B(ext)
∣∣

2

2

(388)

Altogether then [7]

W0 =
w+ + w−

2

w± =

√(
(m0c2)2 + c2ΠbΠb

)
±
qe~c2

∣∣B(ext)
∣∣

2

Wb = −
qe~c2B

(ext)
b

2W0
= −

qe~c2B
(ext)
b

w+ + w−

(389)

This means that for a homogenenous static magnetic induction field
B

(ext)
b we find exactly [7]

162



√
H(D) ◦ H(D) =

w+ + w−
2

14×4 −
qe~c2B

(ext)
b

w+ + w−
σb (390)

which is not the Dirac Hamiltonian H(D).

Since
[√

H(D) ◦ H(D), B
(ext)
b σb

]
= 0̂ there exists a common basis of

eigenfunctions of B
(ext)
b σb and ΠbΠb.

For a weak magnetic indunction field there still holds [7]

√
H(D) ◦ H(D) =

√
(m0c2)2 + c2ΠbΠb × 14×4 −

qe~c2

2
√

(m0c2)2 + c2ΠbΠb

B
(ext)
b σb

+O

(∣∣∣B(ext)
∣∣∣2)

(391)

Weak means here that the magnetic length LB =
√

2~
|qe|B(ext) is much

larger then the Bohr radius aB, hence LB � aB.
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E Orders of Magnitude in the QED Hamiltonian

Here it is explained why the transversal coupling contribution Ĥ⊥ to
the QED Hamiltonian is of first order in the finestructure constant
whereas the Coulomb–interaction contribution V̂C is of second order.
The notation is taken from [7].

Now with the electron mass me, the vacuum speed of light c and
Plancks constant ~ the Compton wavelength of the electron is given
by

kC =
mec

~
=

2π

λC

λC =
h

mec
' 2.4× 10−12 [m]

(392)

Multiplying this with the Bohr radius aB of the hydrogen atom

aB =
4πε0

|e|2
~2

me
(393)

the product kCaB is a dimensionless number

kCaB =
mec

~
4πε0

|e|2
~2

m0
=

4πε0~c
|e|2

=
1

αFS
= 137.036

αFS =
|e|2

4πε0~c
=

1

kCaB

(394)

hence, nothing but the finestructure constant αFS.

The Hamiltonian of the Schrödinger eigenvalue problem of one electron
in the Coulomb field of the (infinitely heavy, resting) proton is given
by

H = − ~2

2me
∇2
r −
|e|2

4πε0

1

r
(395)

One can now rewrite the components ra of the positon operator, where
a ∈ {x, y, z}, as a multiple of the Bohr radius according to ra = aB r̄a.
For the Hamiltonian (395) follows
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H =
|e|2

4πε0

1

aB

[
−4πε0

|e|2
aB

~2

2me

1

a2
B

∇2
r̄ −

1

r̄

]
(396)

Note that 4πε0

|e|2 aB
~2

2me

1
a2
B

= 4πε0

|e|2
~2

me

1
2aB

= 1
2 . Hence, the Hamiltonian can

be rewritte according to H = ECH̄ with EC = |e|2
4πε0

1
aB

. In atomic units
one readily finds

H̄ = −1

2
∇2
r̄ −

1

r̄
(397)

The Hamiltonian (397) is the dimensionless Hamiltonian of the
hydrogen atom. The constant EC , the Hartree, is the double of the
expectation value of the electron in the ground state 1s :

EC = −2E1s =
|e|2

4πε0

〈
1

r

〉
1s

=
|e|2

4πε0

1

aB
=

|e|2

4πε0
4πε0

|e|2
~2

me

=

(
|e|2

4πε0

1

~c

)2

mec
2

= α2
FS mec

2 = 2× 13.606[eV ]
(398)

In atomic units the action is measured as a multiple of the Planck
constant ~, charge as a multiple of the elementary charge |e|, mass
as a multiple of the electron mass me, length as a multiple of the
Bohr radius aB, energy as a multiple of the Hartree EC , velocity as
a multiple of the velocity v1s of the hydrogen–electron in its ground
state 1s. It thus seems like ~ = 1, |e| = 1, me = 1, aB = 1, EC = 1.

The Bohr magneton µB ≡ |e|~
2me

in atomic units is given by µB = 1
2 .

The electric field strength in atomic units is therefore given by

E0 =
EC

|e| aB
=
|e|

4πε0

1

a2
B

(399)

From the Lorentz equation of motion follows for the magnetic
induction field strength

B0 =
E0

c
(400)
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The virial theorem yields for the kinetic energy of the electron in the
groundstate 1s

me

2
v2

1s = −E1s =
EC

2
(401)

giving

v1s =

√
EC

me
=

√
α2
FS mec2

me
= αFSc '

c

137
(402)

The speed of light c in atomic units its thus given by c̄ = c
v1s

= 1
αFS
'

137!

Therefore one finds for magnetic induction field strength (400)

B0 =
E0

v1s
=

EC

|e| aB
1

v1s
=
α2
FS mec

2

|e| aB
1

v1s

=

h
2|e|

πa2
B

=
Φ0

πa2
B

(403)

This is magnetic induction field with one magnetic flux quantum Φ0 =
h

2|e| per area of radius aB. In SI uints this is a very high field strength

B0 ' 2.3 × 105[T ]! The values we can have in the laboratory are at
least four orders of magnitude smaller!

Finally one finds for gauge invariant velocity operator Π̂a in atomic
units:

Π̂a

m0c
=

(
~
m0c

1

aB

)
1

i

∂

∂
(
ra
aB

) − |e|
m0c

aBB0

(
q

|e|
Â

(T )
a (r) + A

(ext)
a (r, t)

B0aB

)
= αFSΠ̄a

(404)

Here the identity |e|aBm0c
B0 = |e|aB

m0c

(
~
|e|a2

B

)
= 1

kCaB
= αFS has been used.

Furthermore, q̄ = q
|e| = q

|e| is the coupling constant of the
electromagnetic fields in atomic units, and

166



t̄ =
t

tB

tB =
aB
c

Āa (r̄, t̄) =
Â

(T )
a (aB r̄) + A

(ext)
a (aB r̄, tB t̄)

B0aB

Π̄a =
1

i

∂

∂r̄a
− q̄Āa (r̄, t̄)

(405)

Therefore, the contribution Ĥ⊥ is smaller by a factor αFS than ĤD!
Using (405) there holds

1

m0c2
Ĥ⊥ = − 1

m0c2

∫
d3rĵb (r) Â

(T )
b (r)

= −αFS
∫
d3r

∑
µ,µ′ε{1,2,3,4}

Ψ̂ †µ (r) (αb)µ′µ′′ Ψ̂µ′′ (r) q̄Ā(T )
a (r)

(406)

The Coulomb interaction V̂C is smaller by a factor α2
FS than ĤD or

the rest energy mec
2:

1

mec2

|e|2

4πε0aB
=

EC

m0c2
= α2

FS (407)

The term Ĥrad has to be a zeroth order term in the perturbation
expansion, because if one would assume it to be of order α2

FS as is the
Coulomb–interaction one would assume that there are no high energy
photons in the QED soup! This would not be consistent. The energy
of one photon might be small, however, the occupation number of the
electromagnetic modes can take any value.
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F Charge Conjugation Symmetrie of QED,

Normal Ordering and QED Ground State

It is searched for the operator ĈF that causes the exchange of the
matter annihilation operator ĉk with b̂k, and of the antimatter creation
operator b̂†k with ĉ†k.

In textbooks, the so–called charge conjugation operator is introduced
according to

ĈF = −iβαy (408)

see for example [5]. The operator (408) acts on the amplitudes Uµ (r; k)

and Vµ (r; k) and gives the charge conjugated amplitudes U
(C)
µ (r; k)

and V
(C)
µ (r; k).

For understanding the relation between the normal ordering operation
N and the operation 1−CF

2 for correctly defining the QED Hamiltonian
(8), the charge conjugation operation CF acting on the creation an
annihilation operators is introduced as [7]

ĈF = exp

[
i
π

2

∑
k′

X̂k′

]
X̂k =

(
ĉ†k − b̂

†
k

)(
ĉk − b̂k

)
Ĉ†F = exp

[
−iπ

2

∑
k′

X̂k′

]
Ĉ†F ĈF = 1̂ = ĈF Ĉ†F

(409)

Applied to the fermion creation and annihilation operators it results
in their exchange according to [7]

ĈF ĉkĈ†F = b̂k

ĈF b̂†kĈ
†
F = ĉ†k

(410)

This can be proven by the help of the BCH expansion (see (629)).
With [7]
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ĈF ĉkĈ†F = ĉk +
∞∑
n=1

(
iπ2
)n

n!

[
X̂k, ĉk

](n)

(411)

Now the n–th term is given recursively [7],

[
X̂k, ĉk

](n)

=

[
X̂k,

[
X̂k, ĉk

](n−1)
]

and from
[
X̂k, ĉk

](1)

=
[
X̂k, ĉk

]
= −

(
ĉk − b̂k

)
one finds [7]

[
X̂k, ĉk

](n)

=
1

2
(−2)n

(
ĉk − b̂k

)
Such that [7]

ĈF ĉkĈ†F = ĉk +
∞∑
n=1

(
iπ2
)n

n!

1

2
(−2)n

(
ĉk − b̂k

)
= ĉk +

1

2

∞∑
n=1

(−iπ)n

n!

(
ĉk − b̂k

)
= ĉk +

1

2

(
e−iπ − 1

) (
ĉk − b̂k

)
= b̂k

(412)

Now the question is what the charge conjugated Dirac field operator
Ψ̂

(C)
µ (r). In order to find it one has to apply the charge conjugation

operation (409). Denoting the conjugated amplitudes with the
superscript (C) then [7]

Ψ̂ (C)
µ (r) = ĈF Ψ̂µ (r) Ĉ†F

= ĈF
∑
k

(
Uµ (r; k) ĉk + Vµ (r; k) b̂†

k̃

)
Ĉ†F

=
∑
k

(
U (C)
µ (r; k) ĈF ĉkĈ†F + V (C)

µ (r; k) ĈF b̂†k̃Ĉ
†
F

)
=
∑
k

(
U (C)
µ (r; k) b̂k + V (C)

µ (r; k) ĉ†
k̃

)
(413)
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For finding charge conjugated amplitudes U
(C)
µ (r; k) and V

(C)
µ (r; k)

one can has to compare the expressing (413) with [7]

Ψ̂ (C)
µ (r) = (−iβαy)µ,µ′ Ψ̂

†
µ′ (r)

= (−iβαy)µ,µ′
∑
k

(
U ?
µ′ (r; k) ĉ†k + V ?

µ′ (r; k) b̂k̃

)
=
∑
k

(
(−iβαy)µ,µ′ V

?
µ′ (r; k) b̂k̃ + (−iβαy)µ,µ′ U

?
µ′ (r; k) ĉ†k

)
=
∑
k

(
(−iβαy)µ,µ′ V

?
µ′

(
r; k̃
)
b̂k + (−iβαy)µ,µ′ U

?
µ′

(
r; k̃
)
ĉ†
k̃

)
!

=
∑
k

(
U (C)
µ (r; k) b̂k + V (C)

µ (r; k) ĉ†
k̃

)
(414)

In the third line it has been exchanged
(
k, k̃
)
→
(
k̃, k
)

.

Hence, by comparing the respective last lines in (413) and (414) there
has to hold [7]

U (C)
µ (r; k) = (−iβαy)µ,µ′ V

?
µ′

(
r; k̃
)

V (C)
µ (r; k) = (−iβαy)µ,µ′ U

?
µ′

(
r; k̃
) (415)

Equipped with these relations one can show that the normal ordering
rule N , whose rule of application is explained in(44), is equal to the
operation 1−CF

2 for defining the QED current density and the QED
charge density operator.

The following identities being a direct consequence of (415) are useful
[7]:
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∑
µ,ν

V ?
µ (r; k′) (αb)µν Uν (r; k) =

∑
µ′,ν′

V ?
ν′

(
r; k̃
)

(αb)ν′,µ′ Uµ′
(
r; k̃′

)
∑
µ,ν

V ?
µ (r; k′) (αb)µν Vν (r; k) =

∑
µ′,ν′

U ?
ν′

(
r; k̃
)

(αb)ν′,µ′ Uµ′
(
r; k̃′

)
∑
µ,ν

U ?
µ (r; k′) (αb)µν Uν (r; k) =

∑
µ′,ν′

V ?
ν′

(
r; k̃
)

(αb)ν′,µ′ Vµ′
(
r; k̃′

)
∑
µ,ν

U ?
µ (r; k′) (αb)µ,ν Vν (r; k) =

∑
µ′,ν′

U ?
ν′

(
r; k̃
)

(αb)ν′.µ′ Vµ′
(
r; k̃′

)
(416)

Any QED vector is thus charge conjugated as [7]

CF

(
Ψ†µ (r) (αb)µν Ψν (r)

)
=
(
ĈFΨ†µ (r) Ĉ†F

)
(αb)µν

(
ĈFΨν (r) Ĉ†F

)
=
∑
k′

(
U?µ
(
r; k′

)
b̂†k′ + V ?

µ

(
r; k′

)
ĉk̃′
)

(αb)µν
∑
k

(
Uν (r; k) b̂k + Vν (r; k) ĉ†

k̃

)

=
∑
k,k′


U?µ (r; k′) (αb)µν Uν (r; k) b̂†k′ b̂k

+U?µ (r; k′) (αb)µν Vν (r; k) b̂†k′ ĉ
†
k̃

+V ?
µ (r; k′) (αb)µν Uν (r; k) ĉk̃′ b̂k

+V ?
µ (r; k′) (αb)µν Vν (r; k) ĉk̃′ ĉ

†
k̃

(417)

This has to be compared with [7]

Ψ̂†µ (r) (αb)µν Ψ̂ν (r) =
∑
k′

(
U?µ
(
r; k′

)
ĉ†k′ + V ?

µ

(
r; k′

)
b̂k̃′
)

(αb)µν
∑
k

(
Uν (r; k) ĉk + Vν (r; k) b̂†

k̃

)

=
∑
k,k′


U?µ (r; k′) (αb)µν Uν (r; k) ĉ†k′ ĉk

+U?µ (r; k′) (αb)µν Vν (r; k) ĉ†k′ b̂
†
k̃

+V ?
µ (r; k′) (αb)µν Uν (r; k) b̂k̃′ ĉk

+V ?
µ (r; k′) (αb)µν Vν (r; k) b̂k̃′ b̂

†
k̃

(418)

And according to Pauli [33] then for the QED current density
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ĵb (r) = qe
1− CF

2
Ψ̂†µ (r) (cαb)µν Ψ̂ν (r)

=
qec

2

∑
k,k′

∑
µ,ν

(αb)µ,ν



U ?
µ (r; k′)Uν (r; k)

(
ĉ†k′ ĉk − b̂

†
k′ b̂k

)
+U ?

µ (r; k′)Vν (r; k)
(
ĉ†k′ b̂

†
k̃

+ ĉ†
k̃
b̂†k′
)

+V ?
µ (r; k′)Uν (r; k)

(
b̂k̃′ ĉk + b̂kĉk̃′

)
+V ?

µ (r; k′)Vν (r; k)
(
ĉ†
k̃
ĉk̃′ − b̂

†
k̃
b̂k̃′
)

(419)

Applying the identites (416) one can rewrite (419) according to [7]

ĵb (r) = qec
∑
k,k′

∑
µ,ν

(αb)µ,ν


U?µ (r; k′)Uν (r; k) ĉ†k′ ĉk − V

?
µ (r; k′)Vν (r; k) b̂†

k̃
b̂k̃′

+U?µ (r; k′)Vν (r; k) ĉ†k′ b̂
†
k̃

+ V ?
µ (r; k)Uν (r; k′) b̂k̃ ĉk′

(420)

And applying the normal ordering rule N
(
b̂k̃′ b̂

†
k̃

)
= −b̂†

k̃
b̂k̃′ for

fermionic creation and annihilation operators one sees that [7]

ĵb (r) = qe
1− CF

2
Ψ̂†µ (r) (cαb)µν Ψ̂ν (r)

= qec
∑
µ,ν

N

(∑
k′

(
U?µ
(
r; k′

)
ĉ†k′ + V ?

µ

(
r; k′

)
b̂k̃′
)

(αb)µ,ν
∑
k

(
Uν (r; k) ĉk + Vν (r; k) b̂†

k̃

))
= qec

∑
µ,ν

N
(

Ψ̂†µ (r) (αb)µ,ν Ψ̂ν (r)
)

(421)

The representation of the current density operator ĵb (r) with the
charge conjugation related operation 1−CF

2 is completely equivalent to
the representation with the normal ordering operation N !

The same is true for the QED current density operator %̂ (r).
According to W. Pauli [33] there holds

%̂ (r) = qe
1− CF

2

∑
µ

Ψ†µ (r) Ψµ (r)

= qe
∑
k,k′

∑
µ


U?µ (r; k′)Uµ (r; k) ĉ†k′ ĉk − V

?
µ (r; k)Vµ (r; k′) b̂†

k̃′
b̂k̃

+U?µ (r; k′)Vµ (r; k) ĉ†k′ b̂
†
k̃

+ V ?
µ (r; k)Uµ (r; k′) b̂k̃ ĉk′

(422)
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whereas for the charge density operator as defined in (43) [7]

%̂ (r) = qe
1− CF

2

∑
µ

Ψ†µ (r) Ψµ (r)

= qe
∑
µ

N

(∑
k′

(
U?µ
(
r; k′

)
ĉ†k′ + V ?

µ

(
r; k′

)
b̂k̃′
)∑

k

(
Uν (r; k) ĉk + Vν (r; k) b̂†

k̃

))

= N

(
qe
∑
µ

Ψ̂†µ (r) Ψ̂µ (r)

)
(423)

Consequences of the Charge Conjugation Operation for the Ground State
of QED

The charge conjugation operation CF applied to the QED current
density operator ĵb (r) gives [7]

CF ĵb (r) =
qe
2
CF (1− CF ) Ψ†µ (r) (cαb)µν Ψν (r)

=
qe
2

(CF − CFCF ) Ψ†µ (r) (cαb)µν Ψν (r)

=
qe
2

(CF − 1) Ψ†µ (r) (cαb)µν Ψν (r)

= −qe
2

(1− CF ) Ψ†µ (r) (cαb)µν Ψν (r)

= −ĵb (r)

(424)

and applied to the QED charge density operator %̂ (r) accordingly [7]

CF %̂ (r) =
qe
2
CF (1− CF ) Ψ†µ (r) Ψµ (r)

= −qe
2

(1− CF ) Ψ†µ (r) Ψµ (r)

= −%̂ (r)

(425)

Now the ground state |G〉 of QED is defined to be the eigenstate
of HQED to the lowest possible (positive) energy eigenvalue EG.
Demanding that |G〉 is invariant under charge conjugation [7],

Ĉ†F |G〉 = |G〉 (426)

there follows necessarily [7]
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〈G| %̂ (r) |G〉 = 〈G| ĈF ◦ %̂ (r) ◦ Ĉ†F |G〉 = 〈G|CF %̂ (r) |G〉 = −〈G| %̂ (r) |G〉
〈G| ĵb (r) |G〉 = 〈G| ĈF ◦ ĵb (r) ◦ Ĉ†F |G〉 = 〈G|CF ĵb (r) |G〉 = −〈G| ĵb (r) |G〉

(427)

Hence, the expactation values for the charge density and the current
density with respect to the ground state |G〉 vanish [7].

〈G| %̂ (r) |G〉 = 0

〈G| ĵb (r) |G〉 = 0
(428)

These are physical properties, because if there would drop a current
across QED we could make use of its energy, which is, of course, not
the case! Or?

Figure 3: Taken from https://www.explainxkcd.com/wiki/index.php/File:vacuum.png,
24.04.2022

Please be aware that the ground state of QED is not the vacuum
[46, 38].

These physical properties (428) are the true reason for the necessity
to symmetrize the QED Hamiltonian with respect to the charge, as
it has been introduced by W. Pauli. It now has become obvious that
this is fully equivalent to the normal ordering operation. With that
the normal ordering operation indeed has a physical meaning.
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G Complement to the Homogeneous Solution

Ĥ(2,h) (s)

In this part of the appendix the Coulomb–interaction is decomposed
into a part which is normally ordered, and into a self energy part. This
is very convenient for solving the homogeneous part of the second order
differential equation.

The Fourier transform of the Coulomb interaction VC , by using 1
4π|r| =∫

d3q

(2π)
3
eiq·r

|q|2 is given by

VC =
1

2ε0

∫
d3r

∫
d3r′%̂ (r)

1

4π |r− r′|
%̂
(
r′
)

=
1

2ε0

∫
d3q

(2π)3

ρ̃ (q) ρ̃ (−q)

|q|2
(429)

with

ρ̃ (q) =

∫
d3re−iq·rN

(
qeΨ̂

†
µ (r) Ψ̂µ (r)

)
(430)

Now using

x̂aΦ̂µ′ (r) = raΦ̂µ′ (r)

[p̂b, x̂a] =
~
i
δa,b1̂

Πb = p̂b − qeAb (x̂)

(431)

there follows for (430)

ρ̃ (q) = qeN
∫
d3rΨ̂†µ (r) e−iqa·x̂aΨ̂µ (r) (432)

The following decomposition of the field operators Ψ̂µ (r) and Ψ̂†µ (r)
is convenient [7]
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Ψ̂µ (r) = Γ̂e,µ (r) + Γ̂†p,µ (r)

Ψ̂†µ (r) = Γ̂†e,µ (r) + Γ̂p,µ (r)

Γ̂e,µ (r) =
∑
k

Uµ (r; k) ĉk

Γ̂†p,µ (r) =
∑
k

Vµ (r; k) b̂†
k̃

(433)

The operators (433) obey to the anti commutation relations of
fermionic field operators [7]:

{
Γ̂e,µ (r) , Γ̂e,µ′ (r

′)
}

= 0̂ =
{

Γ̂†e,µ (r) , Γ̂†e,µ′ (r
′)
}

{
Γ̂e,µ (r) , Γ̂†e,µ′ (r

′)
}

=
∑
k

Uµ (r, k)U ?
µ′ (r

′, k) 1̂ ≡ P
(+)
µ,µ′ (r, r

′){
Γ̂e,µ (r) , Γ̂†p,µ′ (r

′)
}

= 0̂ =
{

Γ̂e,µ (r) , Γ̂p,µ′ (r
′)
}

{
Γ̂†e,µ (r) , Γ̂†p,µ′ (r

′)
}

= 0̂ =
{

Γ̂†e,µ (r) , Γ̂p,µ′ (r
′)
}

{
Γ̂p,µ (r) , Γ̂p,µ′ (r

′)
}

= 0̂ =
{

Γ̂†p,µ (r) , Γ̂†p,µ′ (r
′)
}

{
Γ̂p,µ (r) , Γ̂†p,µ′ (r

′)
}

=
∑
k

V ?
µ (r, k)Vµ′ (r

′, k) 1̂ ≡ P
(−)
µ′,µ (r′, r)

(434)

Where P
(±)
µ,µ′ (r, r

′) are the projection operators P(±) in position space

P
(±)
µ,µ′ (r, r

′) = 〈r, µ|P(±) |r′, µ′〉

P(+) =
∑
k

|Uk〉 〈Uk|

P(−) =
∑
k

|Vk〉 〈Vk|

(435)

However, the operators (433) are no field operators, because they
do not build a complete system. This can be seen from the
anticommutation relations yielding the projection operators in (434).

The completeness relation is only given by both P
(+)
µ,µ′ (r, r

′) and

P
(−)
µ,µ′ (r, r

′):
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P
(+)
µ,µ′ (r, r

′) + P
(−)
µ,µ′ (r, r

′) = 〈r, µ|P(+) + P(−) |r′, µ′〉
= 〈r, µ| 14×4 |r′, µ′〉
= δµ,µ′δ

(3) (r− r′)

(436)

Inserting the gamma operators (433) into the Fourier transform of the
QED charge density operator (430) gives three contributions [7]:

ρ̃ (q) = qe

∫
d3re−iq·r

∑
µ

(
Γ̂†e,µ (r) Γ̂e,µ (r)− Γ̂†p,µ (r) Γ̂p,µ (r) + Γ̂†e,µ (r) Γ̂†p,µ (r) + Γ̂p,µ (r) Γ̂e,µ (r)

)
(437)

These are abbreviated further as [7]

ρ̃ (q) = ρ̃0 (q) + ρ̃+ (q) + ρ̃− (q)

ρ̃0 (q) = qe

∫
d3re−iq·r

(
Γ̂†e,µ (r) Γ̂e,µ (r)− Γ̂†p,µ (r) Γ̂p,µ (r)

)
ρ̃+ (q) = qe

∫
d3re−iq·rΓ̂†e,µ (r) Γ̂†p,µ (r)

ρ̃− (q) = qe

∫
d3re−iq·rΓ̂p,µ (r) Γ̂e,µ (r)

(438)

and they share the following commutation relations with the particle

number operator N̂ =
∑

k

(
ĉ†kĉk + b̂†

k̃
b̂k̃

)
[7]:

[
N̂I , ρ̃0 (q)

]
= 0̂[

N̂I , ρ̃± (q)
]

= ±2ρ̃± (q)
(439)

With these relations one can now decompose the Coulomb–interaction
VC and the coupling to an external source V̂ext into particle number
conserving and nonconserving parts.

The coupling to an external source, taking as such the Coulomb field
of an atomic nucleus sitting at the point R in space as given in (38),
in its Fourier representation, is assumes the guise

Φ(ext) (r) =
Z |qe|
4πε0

∫
d3q

(2π)3e
−iq·(r−R) 1

|q|2
(440)
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such that

V̂ext =
Z |qe|
4πε0

∫
d3q

(2π)3

eiq·R

|q|2
ρ̃ (q) (441)

Inserting the identities (438) yields readily [7]

V̂ext = V̂ (0)
ext + V̂ (+)

ext + V̂ (−)
ext

V̂ (0)
ext =

Z |qe|
4πε0

∫
d3q

(2π)3

eiq·R

|q|2
ρ̃0 (q)

V̂ (±)
ext =

Z |qe|
4πε0

∫
d3q

(2π)3

eiq·R

|q|2
ρ̃± (q)

(442)

The commutation relations (439) now imply [7]

[
N̂I , V̂ (0)

ext

]
= 0̂[

N̂I , V̂ (±)
ext

]
= ±2V̂ (±)

ext

(443)

The decomposition of the QED Coulomb interaction is analogous.
Here, one finds nine terms altogether [7]:

ρ̃ (q) ρ̃ (−q) = (ρ̃0 (q) + ρ̃+ (q) + ρ̃− (q)) (ρ̃0 (−q) + ρ̃+ (−q) + ρ̃− (−q))

=


ρ̃0 (q) ρ̃0 (−q) + ρ̃+ (q) ρ̃− (−q) + ρ̃− (q) ρ̃+ (−q)

+ρ̃0 (q) ρ̃+ (−q) + ρ̃+ (q) ρ̃0 (−q) + ρ̃0 (q) ρ̃− (−q) + ρ̃− (q) ρ̃0 (−q)

+ρ̃+ (q) ρ̃+ (−q) + ρ̃− (q) ρ̃− (−q)

(444)

Implying for the Coulomb interaction [7]

VC =
1

2ε0

∫
d3q

(2π)3

ρ̃ (q) ρ̃ (−q)

|q|2
= U (0)

C + U (+)
C + U (−)

C + U (+,+)
C + U (−,−)

C

(445)

Here [7]
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U (0)
C =

1

2ε0

∫
d3q

(2π)3

ρ̃0 (q) ρ̃0 (−q) + ρ̃+ (q) ρ̃− (−q) + ρ̃− (q) ρ̃+ (−q)

|q|2

U (+)
C =

1

2ε0

∫
d3q

(2π)3

ρ̃0 (q) ρ̃+ (−q) + ρ̃+ (q) ρ̃0 (−q)

|q|2

U (−)
C =

1

2ε0

∫
d3q

(2π)3

ρ̃0 (q) ρ̃− (−q) + ρ̃− (q) ρ̃0 (−q)

|q|2

U (+,+)
C =

1

2ε0

∫
d3q

(2π)3

ρ̃+ (q) ρ̃+ (−q)

|q|2

U (−,−)
C =

1

2ε0

∫
d3q

(2π)3

ρ̃− (q) ρ̃− (−q)

|q|2
(446)

with the commutation relations [7]

[
N̂I ,U (0)

C

]
= 0̂[

N̂I ,U (±)
C

]
= ±2U (±)

C[
N̂I ,U (+,+)

C

]
= 4U (+,+)

C[
N̂I ,U (−,−)

C

]
= 4U (−,−)

C

(447)

Such a decomposition into particle number conserving and
nonconserving parts makes it possible express the Coulomb interaction
as the sum of a normally ordered part and a self–energy contribution.

Inserting the gamma operators (433) into ρ̃0 (q) ρ̃0 (−q) and
ρ̃+ (q) ρ̃− (−q) + ρ̃− (q) ρ̃+ (−q) there follows, together with the
anticommutation relations (434) of the gamma operators [7]

ρ̃0 (q) ρ̃0 (−q) = q2
e

∫
d3r

∫
d3r′e−iq·(r−r′)


Γ̂†e,µ (r) Γ̂e,µ (r) Γ̂†

e,µ′ (r
′) Γ̂e,µ′ (r

′)

+Γ̂†p,µ (r) Γ̂p,µ (r) Γ̂†
p,µ′ (r

′) Γ̂p,µ′ (r
′)

−Γ̂†p,µ (r) Γ̂p,µ (r) Γ̂†
e,µ′ (r

′) Γ̂e,µ′ (r
′)

−Γ̂†e,µ (r) Γ̂e,µ (r) Γ̂†
p,µ′ (r

′) Γ̂p,µ′ (r
′)



= q2
e

∫
d3r

∫
d3r′e−iq·(r−r′)


P

(+)
µ,µ′ (r, r

′) Γ̂†e,µ (r) Γ̂e,µ′ (r
′)

+P
(−)
µ′,µ (r′, r) Γ̂†p,µ (r) Γ̂p,µ′ (r

′)

+N
((

Γ̂†e,µ (r) Γ̂e,µ (r)− Γ̂†p,µ (r) Γ̂p,µ (r)
)(

Γ̂†
e,µ′ (r

′) Γ̂e,µ′ (r
′)− Γ̂†

p,µ′ (r
′) Γ̂p,µ′ (r

′)
))


(448)
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and [7]

ρ̃+ (q) ρ̃− (−q) + ρ̃− (q) ρ̃+ (−q)

= q2
e

∫
d3r

∫
d3r′e−iq·(r−r′)

(
Γ̂†e,µ (r) Γ̂†p,µ (r) Γ̂p,µ′ (r

′) Γ̂e,µ′ (r
′)

+
(
P

(+)
µ,µ′ (r, r

′)− Γ̂†
e,µ′ (r

′) Γ̂e,µ (r)
)(

P
(−)
µ′,µ (r′, r)− Γ̂†

p,µ′ (r
′) Γ̂p,µ (r)

) )

= q2
e

∫
d3r

∫
d3r′e−iq·(r−r′)



Γ̂†e,µ (r) Γ̂†p,µ (r) Γ̂p,µ′ (r
′) Γ̂e,µ′ (r

′)

+Γ̂†
e,µ′ (r

′) Γ̂†
p,µ′ (r

′) Γ̂p,µ (r) Γ̂e,µ (r)

−P (−)
µ′,µ (r′, r) Γ̂†

e,µ′ (r
′) Γ̂e,µ (r)− P (+)

µ,µ′ (r, r
′) Γ̂†

p,µ′ (r
′) Γ̂p,µ (r)

+P
(+)
µ,µ′ (r, r

′)P
(−)
µ′,µ (r′, r) 1̂


(449)

Altogether one gets [7]

U (0)
C =

1

2ε0

∫
d3q

(2π)3

ρ̃0 (q) ρ̃0 (−q) + ρ̃+ (q) ρ̃− (−q) + ρ̃− (q) ρ̃+ (−q)

|q|2

=
q2
e

2ε0

∫
d3q

(2π)3

1

|q|2

∫
d3r

∫
d3r′e−iq·(r−r

′)×

×



P
(+)
µ,µ′ (r, r

′) Γ̂†e,µ (r) Γ̂e,µ′ (r
′)

+P
(−)
µ′,µ (r′, r) Γ̂†p,µ (r) Γ̂p,µ′ (r

′)

+N
((

Γ̂†e,µ (r) Γ̂e,µ (r)− Γ̂†p,µ (r) Γ̂p,µ (r)
)(

Γ̂†e,µ′ (r
′) Γ̂e,µ′ (r

′)− Γ̂†p,µ′ (r
′) Γ̂p,µ′ (r

′)
))

+Γ̂†e,µ (r) Γ̂†p,µ (r) Γ̂p,µ′ (r
′) Γ̂e,µ′ (r

′)

+Γ̂†e,µ′ (r
′) Γ̂†p,µ′ (r

′) Γ̂p,µ (r) Γ̂e,µ (r)

−P (−)
µ′,µ (r′, r) Γ̂†e,µ′ (r

′) Γ̂e,µ (r)− P (+)
µ,µ′ (r, r

′) Γ̂†p,µ′ (r
′) Γ̂p,µ (r)

+P
(+)
µ,µ′ (r, r

′)P
(−)
µ′,µ (r′, r) 1̂


(450)

In the second and sixth line we can substitute {qa, ra, r′a, µ, µ′} →
{−qa, r′a, ra, µ′, µ} without changing the integrals. Further
rearrangements finally give [7]

U(0)
C = N

(
V(0)
C

)
+

q2
e

2ε0

∫
d3q

(2π)3

1

|q|2


∫
d3r

∫
d3r′e−iq·(r−r′)

(
P

(+)
µ,µ′ (r, r

′)− P (−)
µ,µ′ (r, r

′)
)(

Γ̂†e,µ (r) Γ̂e,µ′ (r
′)− Γ̂†

p,µ′ (r
′) Γ̂p,µ (r)

)
+
∫
d3r

∫
d3r′e−iq·(r−r′)P

(+)
µ,µ′ (r, r

′)P
(−)
µ′,µ (r′, r) 1̂

(451)

The evaluation of the contributions U (+)
C + U (−)

C + U (+,+)
C + U (−,−)

C in

U (+)
C + U (−)

C is similar.

180



Here, one needs to normally order the contributions ρ̃0 (q) ρ̃+ (−q) +
ρ̃− (q) ρ̃0 (−q), because the other ones are already normally ordered.
Now [7]

ρ̃0 (q) ρ̃+ (−q) + ρ̃− (q) ρ̃0 (−q)

= q2
e

∫
d3r

∫
d3r′e−iq·(r−r

′)

 (
Γ̂†e,µ (r) Γ̂e,µ (r)− Γ̂†p,µ (r) Γ̂p,µ (r)

)
Γ̂†e,µ′ (r

′) Γ̂†p,µ′ (r
′)

+Γ̂p,µ (r) Γ̂e,µ (r)
(

Γ̂†e,µ′ (r
′) Γ̂e,µ′ (r

′)− Γ̂†p,µ′ (r
′) Γ̂p,µ′ (r

′)
) 

=



N (ρ̃0 (q) ρ̃+ (−q) + ρ̃− (q) ρ̃0 (−q))

+q2
e

∫
d3r

∫
d3r′e−iq·(r−r

′)


Γ̂†e,µ (r) Γ̂†p,µ′ (r

′)P
(+)
µ,µ′ (r, r

′)

+Γ̂†p,µ (r) Γ̂†e,µ′ (r
′)P

(−)
µ′,µ (r′, r)

−P (+)
µ,µ′ (r, r

′) Γ̂e,µ′ (r
′) Γ̂p,µ (r)

−P (−)
µ′,µ (r′, r) Γ̂p,µ′ (r

′) Γ̂e,µ (r)


(452)

Therefore one finds [7]

U (+)
C + U (−)

C

=


N
(
U (+)
C + U (−)

C

)
+ q2

e
2ε0

∫ d3q

(2π)3
1
|q|2
∫
d3r

∫
d3r′e−iq·(r−r

′)
(
P

(+)
µ,µ′ (r, r

′)− P (−)
µ,µ′ (r, r

′)
)(

Γ̂†e,µ (r) Γ̂†p,µ′ (r
′) + Γ̂p,µ (r) Γ̂e,µ′ (r

′)
)

(453)

The contributions U (+,+)
C and U (−,−)

C are already normally ordered.

Summarizing these results yields [7]

VC = U (0)
C + U (+)

C + U (−)
C + U (+,+)

C + U (−,−)
C

=



N
(
U (0)
C + U (+)

C + U (−)
C + U (+,+)

C + U (−,−)
C

)
+ q2

e

2ε0

∫
d3q

(2π)
3

1
|q|2
∫
d3r
∫
d3r′e−iq·(r−r

′)
(
P

(+)
µ,µ′ (r, r

′)− P (−)
µ,µ′ (r, r

′)
)
×

×
(

Γ̂†e,µ (r) Γ̂e,µ′ (r
′)− Γ̂†p,µ′ (r

′) Γ̂p,µ (r) + Γ̂†e,µ (r) Γ̂†p,µ′ (r
′) + Γ̂p,µ (r) Γ̂e,µ′ (r

′)
)

+
q2
e

2ε0

∫
d3q

(2π)3

1

|q|2
∫
d3r

∫
d3r′e−iq·(r−r

′)P
(+)
µ,µ′ (r, r

′)P
(−)
µ′,µ (r′, r)︸ ︷︷ ︸

=const.

1̂

(454)
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Since N
(

Ψ̂†µ (r) Ψ̂µ′ (r
′)
)

= Γ̂†e,µ (r) Γ̂e,µ′ (r
′) − Γ̂†p,µ′ (r

′) Γ̂p,µ (r) +

Γ̂†e,µ (r) Γ̂†p,µ′ (r
′) + Γ̂p,µ (r) Γ̂e,µ′ (r

′) one can write for (454) [7]

V̂C = const× 1̂ +N
(
V̂C
)

+
q2
e

2ε0

∫
d3q

(2π)3

1

|q|2
×N

∑
µ,µ′

∫
d3r

∫
d3r′ Ψ̂†µ (r) e−iq·r

(
P

(+)
µ,µ′ (r, r

′)− P (−)
µ,µ′ (r, r

′)
)
eiq·r

′
Ψ̂µ′ (r

′)


(455)

Defining, with position operator x̂a and the projection operators P(±)

[7]

∑
µ,µ′

∫
d3r

∫
d3r′ Ψ̂†µ (r) e−iq·r

(
P

(+)
µ,µ′ (r, r

′)− P (−)
µ,µ′ (r, r

′)
)
eiq·r

′
Ψ̂µ′ (r

′)

=
∑
µ,µ′

∫
d3r

∫
d3r′Ψ̂†µ (r) 〈r, µ| e−iqa·x̂a

(
P(+) − P(−)

)
◦ eiqa·x̂a |r′, µ′〉 Ψ̂µ′ (r

′)

(456)

(455) decomposes into [7]

V̂C = N
(
V̂C
)

+ M̂C (457)

where the self energy contribution M̂C is given by [7]

M̂C = N

∑
µ,µ′

∫
d3r

∫
d3r′Ψ̂†µ (r) M

(C)
µ,µ′ (r, r

′) Ψ̂µ′ (r
′)


M

(C)
µ,µ′ (r, r

′) =
q2
e

2ε0
〈r, µ|

(∫
d3q

(2π)3

1

|q|2
e−iqa·x̂a

(
P(+) − P(−)

)
◦ eiqa·x̂a

)
|r′, µ′〉

(458)

One can now decompose the self energy (458) further into particle
number conserving and violating terms. For this one has to insert the
gamma operators (433) into (458) [7]:
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M̂C = M̂(0)
C + M̂(+)

C + M̂(−)
C

M̂(0)
C =

∑
µ,µ′

∫
d3r

∫
d3r′M

(C)
µ,µ′ (r, r

′)
(

Γ̂†e,µ (r) Γ̂e,µ′ (r
′)− Γ̂†p,µ′ (r

′) Γ̂p,µ (r)
)

M̂(+)
C =

∑
µ,µ′

∫
d3r

∫
d3r′M

(C)
µ,µ′ (r, r

′) Γ̂†e,µ (r) Γ̂†p,µ′ (r
′)

M̂(−)
C =

∑
µ,µ′

∫
d3r

∫
d3r′M

(C)
µ,µ′ (r, r

′) Γ̂p,µ (r) Γ̂e,µ′ (r
′)

(459)

The eigenvalue or commutation relations are readily provided by [7]

[
N̂ ,M̂(0)

C

]
= 0̂[

N̂ ,M̂(±)
C

]
= ±2M̂(±)

C

(460)

Hence, one finally finds [7]

V̂C = N
(
V̂C
)

+ M̂C

= Û (0)
C + M̂(0)

C +N
(
Û (+)
C

)
+ M̂(+)

C +N
(
Û (−)
C

)
+ M̂(−)

C + Û (+,+)
C + Û (−,−)

C

(461)

For the Coulomb interaction contribution.

For solving the homogeneous part of the second order differential
equation it is convenient to reexpress the particle number conserving
contributions by the creation and annihilation operators of the Dirac
modes, because these survive remain in the limit s→∞

Using (433) one finds for the particle number conserving contribution

M̂(0)
C of the Coulomb self energy [7]

M̂(0)
C

=
∑
µ,µ′


∑
K,k

∫
d3r

∑
µ 〈UK |r, µ〉 〈r, µ|

(
q2e
2ε0

∫ d3q

(2π)3
1
|q|2

e−iqa ·̂xa
(
P(+) − P(−)

)
◦ eiqa ·̂xa

) ∫
d3r′

∑
µ′
∣∣r′, µ′〉 〈r′, µ′|Uk〉 ĉ†K ĉk

−
∑
K′,k′

∫
d3r

∑
µ

〈
Vk′ |r, µ

〉
〈r, µ|

(
q2e
2ε0

∫ d3q

(2π)3
1
|q|2

e−iqa ·̂xa
(
P(+) − P(−)

)
◦ eiqa ·̂xa

) ∫
d3r′

∑
µ′
∣∣r′, µ′〉 〈r′, µ′|VK′ 〉 b̂†K̃′ b̂k̃′

(462)

Now with
∫
d3r
∑

µ |r, µ〉 〈r, µ| = 14×4 there follows [7]
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M̂(0)
C = M̂(e)

C + M̂(p)
C

M̂(e)
C =

∑
K,k

(
q2
e

2ε0

)∫
d3q

(2π)3

1

|q|2
〈UK | e−iqa·x̂a

(
P(+) − P(−)

)
◦ eiqa·x̂a |Uk〉 ĉ†K ĉk

M̂(p)
C =

∑
K ′,k′

(
− q2

e

2ε0

)∫
d3q

(2π)3

1

|q|2
〈Vk′| e−iqa·x̂a

(
P(+) − P(−)

)
◦ eiqa·x̂a |VK ′〉 b̂†K̃ ′ b̂k̃′

(463)

For the particle number conserving part of the coupling to the external
Coulomb potential V̂ (0)

ext one finds by using (433) [7]

V̂ (0)
ext =

Z |qe|
4πε0

∫
d3q

(2π)3

eiq·R

|q|2
ρ̃0 (q)

= − Zq
2
e

4πε0


∑

K,k

∫
d3q

(2π)
3
eiq·R

|q|2 〈UK | e
−iqaxa

(∫
d3r
∑

µ |r, µ〉 〈r, µ|
)
|Uk〉 ĉ†K ĉk

−
∑

K,k

∫
d3q

(2π)
3
eiq·R

|q|2 〈Vk| e
−iqaxa

(∫
d3r
∑

µ |r, µ〉 〈r, µ|
)
|VK〉 b̂†K̃ b̂k̃

(464)

yielding [7]

V̂ (0)
ext = V̂ (e)

ext + V̂ (p)
ext

V̂ (e)
ext = − Zq

2
e

4πε0

∑
K,k

∫
d3q

(2π)3

eiq·R

|q|2
〈UK | e−iqaxa |Uk〉 ĉ†K ĉk

V̂ (p)
ext = +

Zq2
e

4πε0

∑
K,k

∫
d3q

(2π)3

eiq·R

|q|2
〈Vk| e−iqaxa |VK〉 b̂†K̃ b̂k̃

(465)

Finally, by inserting (433) into the particle number conserving part of
the normally ordered QED Coulomb interaction between the fermions

N
(
V̂ (0)
C

)
[7]

N
(
V̂(0)
C

)
=

q2
e

2ε0

∫ d3q

(2π)3
1
|q|2

∑
K,k

∑
K′,k′


〈UK | e−iqaxa |Uk〉 〈UK′ | eiqaxa |Uk′〉 ĉ†K ĉ

†
K′ ĉk′ ĉk

+ 〈Vk| e−iqaxa |VK〉 〈Vk′ | eiqaxa |VK′〉 b̂†K̃ b̂
†
K̃′
b̂k̃′ b̂k̃

−2 〈UK | e−iqaxa |Uk〉 〈Vk′ | eiqaxa |VK′〉 ĉ†K ĉk b̂
†
K̃′
b̂k̃′

+2 〈UK | e−iqaxa |Vk〉 〈Vk′ | eiqaxa |UK′〉 ĉ†K b̂
†
k̃
b̂k̃′ ĉK̃′


(466)
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H Complement to the Inhomogeneous Solution

Ĥ(2,i) (s)

Here, first, the special solution to the inhomogeneous differential
equation of the second order perturbation expansion.

Then it is shown by means of the example of the eigenvalue relation
of the kernel Ĵ (±,±) (s, s′) that the relations (485) being a part of the
solution are valid.

Then it is proven that in the limit s→∞ all contributions that violate
the particle number in the inhomogeneous solution of the second order
differential equation solution (476) vanish exponentially.

Finally the evaluation of the effective transversal potentials is
presented.

Construction of the special solution

For the construction of the special solution Ĥ(2,i) (s) to the
inhomogeneous differential equation (122) with initial value
Ĥ(2,i) (0) = 0 inhomogenity Î (s) is decomposed into terms which
conserve the particle number, und such ones that do not. Then the
solution to the differential equationis presented, proven, and show by
the help of an example term why it is indeed a solution.

Rewriting the inhomogeneous differential equation (122) according to
[7]

d

ds
Ĥ(2,i) (s) =

{
−
[
Ĥ(0),

[
Ĥ(0),

([
NI ,

[
NI , Ĥ

(2,i) (s)
]]

+
[
NII ,

[
NII , Ĥ

(2,i) (s)
]])]]

+I(0) (s) + I(+) (s) + I(−) (s) + I(+,+) (s) + I(−,−) (s)

Ĥ(2,i) (0) = 0̂
(467)

gives the inhomogenity according to [7]

Î (s) = Î(0) (s) + Î(+) (s) + Î(−) (s) + Î(+,+) (s) + Î(−,−) (s)

= −


[[
Ĥ(0), Ĥ(1) (s)

]
,
([
N̂I ,

[
N̂I , Ĥ

(1) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(1) (s)
]])]

+2
[
Ĥ(1) (s) ,

([
Ĥ(0),

([
N̂I ,

[
N̂I , Ĥ

(1) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(1) (s)
]])])]

(468)
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Here use has been made of the rule

[X, [Y, Z]] = [[X, Y ] , Z] + [Y, [X,Z]] (469)

for any operators X, Y and Z.

This decomposition (468) follows from the solution Ĥ(1) (s) [7]

Ĥ(1) (s) = Ĥ(1,0) (s) + Ĥ(1,+) (s) + Ĥ(1,−) (s) (470)

where Ĥ(1,0) (s) is given in (105), Ĥ(1,+) (s) is given in (107) and
Ĥ(1,−) (s) is given in (108)

Hence, Î(0) (s) is the part of all commutators with Ĥ(1) (s) in (468)
which altogether conserves the particle number [7]:

Î(0) (s) = −



[[
Ĥ(0), Ĥ(1,0) (s)

]
,
([
N̂I ,

[
N̂I , Ĥ

(1,0) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(1,0) (s)
]])]

+2
[
Ĥ(1,0) (s) ,

([
Ĥ(0),

([
N̂I ,

[
N̂I , Ĥ

(1,0) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(1,0) (s)
]])])]

+
[[
Ĥ(0), Ĥ(1,+) (s)

]
,
([
N̂I ,

[
N̂I , Ĥ

(1,−) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(1,−) (s)
]])]

+2
[
Ĥ(1,+) (s) ,

[
Ĥ(0),

([
N̂I ,

[
N̂I , Ĥ

(1,−) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(1,−) (s)
]])]]

+
[[
Ĥ(0), Ĥ(1,−) (s)

]
,
([
N̂I ,

[
N̂I , Ĥ

(1,+) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(1,+) (s)
]])]

+2
[
Ĥ(1,−) (s) ,

[
Ĥ(0),

([
N̂I ,

[
N̂I , Ĥ

(1,+) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(1,+) (s)
]])]]

(471)

Now Î(+) (s) is the part which contains all commutators describing the
creation of one matter–antimatter pair as [7]

Î(+) (s) = −



[[
Ĥ(0), Ĥ(1,0) (s)

]
,
([
N̂I ,

[
N̂I , Ĥ

(1,+) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(1,+) (s)
]])]

+2
[
Ĥ(1,0) (s) ,

[
Ĥ(0),

([
N̂I ,

[
N̂I , Ĥ

(1,+) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(1,+) (s)
]])]]

+
[[
Ĥ(0), Ĥ(1,+) (s)

]
,
([
N̂I ,

[
N̂I , Ĥ

(1,0) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(1,0) (s)
]])]

+2
[
Ĥ(1,+) (s) ,

[
Ĥ(0),

([
N̂I ,

[
N̂I , Ĥ

(1,0) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(1,0) (s)
]])]]

(472)

Finally, Î(+,+) (s) is the part of the inhomogenity (468) which contains
all commutators describing the creation of two matter–antimatter
pairs [7]:
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Î(+,+) (s) = −


[[
Ĥ(0), Ĥ(1,+) (s)

]
,
([
N̂I ,

[
N̂I , Ĥ

(1,+) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(1,+) (s)
]])]

+2
[
Ĥ(1,+) (s) ,

[
Ĥ(0),

([
N̂I ,

[
N̂I , Ĥ

(1,+) (s)
]]

+
[
N̂II ,

[
N̂II , Ĥ

(1,+) (s)
]])]]

(473)

The hermitian conjugates are then given by [7]

Î(−) (s) =
[
Î(+) (s)

]†
Î(−,−) (s) =

[
Î(+,+) (s)

]† (474)

Note that with N̂I given in (84) there holds [7]

[
N̂I , Î

(0) (s)
]

= 0̂[
N̂I , Î

(±) (s)
]

= ±2Î(±) (s)[
N̂I , Î

(±,±) (s)
]

= ±4Î(±,±) (s)

(475)

Now in the following it will be shown that the ansatz [7]

Ĥ(2,i) (s) =



∫ s
0 ds

′J (0) (s, s′)

+
∫ s

0 ds
′J (+) (s, s′) +

∫ s
0 ds

′J (−) (s, s′)

+
∫ s

0 ds
′J (+,+) (s, s′) +

∫ s
0 ds

′J (−,−) (s, s′)

(476)

solves the inhomogeneous differential equation (122). First note that
Ĥ(2,i) (s = 0) = 0̂ as it should be.

The integral kernels Ĵ (0) (s, s′), Ĵ (±) (s, s′) and Ĵ (±,±) (s, s′) are defined
as [7]

Ĵ (0)
(
s, s′

)
= Ĵ (0,0)

(
s, s′

)
+ Ĵ (0,+)

(
s, s′

)
+ Ĵ (0,−)

(
s, s′

)
Ĵ (0,0)

(
s, s′

)
= Ĵ

(0,0)
1

(
s, s′

)
+ J

(0,0)
2

(
s, s′

)
Ĵ (0,+)

(
s, s′

)
= Ĵ

(0,+)
1

(
s, s′

)
+ J

(0,+)
2

(
s, s′

)
Ĵ (0,−)

(
s, s′

)
=
[
Ĵ (0,+)

(
s, s′

)]†
(477)
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with [7]

Ĵ
(0,0)
1 (s, s′) = −

(
qe
m0c

)2∑
k,k′

∑
K,K′

1

V

∑
q,q′

∑
b,b′

Ab (q)Ab′ (q′)×

×



+ 〈Uk|αbeiqaxa |Uk′〉 〈UK′ |αb′e−iq
′
axa |UK〉 e−κqs

′(Ẽk−Ẽk′−ω̃q)
2

e−κq′s
′(ẼK′−ẼK+ω̃q′)

2

×
×
(
Ẽk − Ẽk′ − ω̃q + 2

(
ẼK′ − ẼK + ω̃q′

))
κq′×

×e−(s−s′)(−κq+κq′)
2
(Ẽk−Ẽk′−ω̃q+ẼK′−ẼK+ω̃q′)

2 [
ĉ†k ĉk′ âq, ĉ

†
K′ ĉK â

†
q′

]
−〈Uk|αbeiqaxa |Uk′〉 〈VK′ |αb′e−iq

′
axa |VK〉 e−κqs

′(Ẽk−Ẽk′−ω̃q)
2

e−κq′s
′(ẼK−ẼK′+ω̃q′)

2

×
×
(
Ẽk − Ẽk′ − ω̃q + 2

(
ẼK − ẼK′ + ω̃q′

))
κq′×

×e−(s−s′)(−κq+κq′)
2
(Ẽk−Ẽk′−ω̃q+ẼK−ẼK′+ω̃q′)

2 [
ĉ†k ĉk′ âq, b̂

†
K̃
b̂K̃′ â

†
q′

]
−〈Vk|αbeiqaxa |Vk′〉 〈UK′ |αb′e−iq

′
axa |UK〉 e−κqs

′(Ẽk′−Ẽk−ω̃q)
2

e−κq′s
′(ẼK′−ẼK+ω̃q′)

2

×
×
(
Ẽk′ − Ẽk − ω̃q + 2

(
ẼK′ − ẼK + ω̃q′

))
κq′×

×e−(s−s′)(−κq+κq′)
2
(Ẽk′−Ẽk−ω̃q+ẼK′−ẼK+ω̃q′)

2 [
b̂†
k̃′
b̂k̃âq, ĉ

†
K′ ĉK â

†
q′

]
+ 〈Vk|αbeiqaxa |Vk′〉 〈VK′ |αb′e−iq

′
axa |VK〉 e−κqs

′(Ẽk′−Ẽk−ω̃q)
2

e−κq′s
′(ẼK−ẼK′+ω̃q′)

2

×
×
(
Ẽk′ − Ẽk − ω̃q + 2

(
ẼK − ẼK′ + ω̃q′

))
κq′×

×e−(s−s′)(−κq+κq′)
2
(Ẽk′−Ẽk−ω̃q+ẼK−ẼK′+ω̃q′)

2 [
b̂†
k̃′
b̂k̃âq, b̂

†
K̃
b̂K̃′ â

†
q′

]
+ 〈Uk′ |αbe−iqaxa |Uk〉 〈UK |αb′eiq

′
axa |UK′〉 e−κqs

′(Ẽk′−Ẽk+ω̃q)
2

e−κq′s
′(ẼK−ẼK′−ω̃q′)

2

×
×
(
Ẽk′ − Ẽk + ω̃q + 2

(
ẼK − ẼK′ − ω̃q′

))
κq′×

×e−(s−s′)(κq−κq′)
2
(Ẽk′−Ẽk+ω̃q+ẼK−ẼK′−ω̃q′)

2 [
ĉ†k′ ĉkâ

†
q, ĉ
†
K ĉK′ âq′

]
−〈Uk′ |αbe−iqaxa |Uk〉 〈VK |αb′eiq

′
axa |VK′〉 e−κqs

′(Ẽk′−Ẽk+ω̃q)
2

e−κq′s
′(ẼK′−ẼK−ω̃q′)

2

×
×
(
Ẽk′ − Ẽk + ω̃q + 2

(
ẼK′ − ẼK − ω̃q′

))
κq′×

×e−(s−s′)(κq−κq′)
2
(Ẽk′−Ẽk+ω̃q+ẼK′−ẼK−ω̃q′)

2 [
ĉ†k′ ĉkâ

†
q, b̂
†
K̃′
b̂K̃ âq′

]
−〈Vk′ |αbe−iqaxa |Vk〉 〈UK |αb′eiq

′
axa |UK′〉 e−κqs

′(Ẽk−Ẽk′+ω̃q)
2

e−κq′s
′(ẼK−ẼK′−ω̃q′)

2

×
×
(
Ẽk − Ẽk′ + ω̃q + 2

(
ẼK − ẼK′ − ω̃q′

))
κq′×

×e−(s−s′)(κq−κq′)
2
(Ẽk−Ẽk′+ω̃q+ẼK−ẼK′−ω̃q′)

2 [
b̂†
k̃
b̂k̃′ â

†
q, ĉ
†
K ĉK′ âq′

]
+ 〈Vk′ |αbe−iqaxa |Vk〉 〈VK |αb′eiq

′
axa |VK′〉 e−κqs

′(Ẽk−Ẽk′+ω̃q)
2

e−κq′s
′(ẼK′−ẼK−ω̃q′)

2

×
×
(
Ẽk − Ẽk′ + ω̃q + 2

(
ẼK′ − ẼK − ω̃q′

))
κq′×

×e−(s−s′)(κq−κq′)
2
(Ẽk−Ẽk′+ω̃q+ẼK′−ẼK−ω̃q′)

2 [
b̂†
k̃
b̂k̃′ â

†
q, b̂
†
K̃′
b̂K̃ âq′

]
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Ĵ
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)2∑
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∑
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1

V

∑
q,q′

∑
b,b′

Ab (q)Ab′ (q′)×

×



+ 〈Uk|αbeiqaxa |Uk′〉 〈UK |αb′eiq
′
axa |UK′〉 e−κqs

′(Ẽk−Ẽk′−ω̃q)
2

e−κq′s
′(ẼK−ẼK′−ω̃q′)

2

×
×
(
Ẽk − Ẽk′ − ω̃q + 2

(
ẼK − ẼK′ − ω̃q′

))
κq′×

×e−(s−s′)(−κq−κq′)
2
(Ẽk−Ẽk′−ω̃q+ẼK−ẼK′−ω̃q′)

2 [
ĉ†k ĉk′ âq, ĉ

†
K ĉK′ âq′

]
+ 〈Vk|αbeiqaxa |Vk′〉 〈VK |αb′eiq

′
axa |VK′〉 e−κqs

′(Ẽk′−Ẽk−ω̃q)
2

e−κq′s
′(ẼK′−ẼK−ω̃q′)

2

×
×
(
Ẽk′ − Ẽk − ω̃q + 2

(
ẼK′ − ẼK − ω̃q′

))
κq′×

×e−(s−s′)(−κq−κq′)
2
(Ẽk′−Ẽk−ω̃q+ẼK′−ẼK−ω̃q′)

2 [
b̂†
k̃′
b̂k̃âq, b̂

†
K̃′
b̂K̃ âq′

]
+ 〈Uk′ |αbe−iqaxa |Uk〉 〈UK′ |αb′e−iq

′
axa |UK〉 e−κqs

′(Ẽk′−Ẽk+ω̃q)
2

e−κq′s
′(ẼK′−ẼK+ω̃q′)

2

×
×
(
Ẽk′ − Ẽk + ω̃q + 2

(
ẼK′ − ẼK + ω̃q′

))
κq′×

×e−(s−s′)(κq+κq′)
2
(Ẽk′−Ẽk+ω̃q+ẼK′−ẼK+ω̃q′)

2 [
ĉ†k′ ĉkâ

†
q, ĉ
†
K′ ĉK â

†
q′

]
+ 〈Vk′ |αbe−iqaxa |Vk〉 〈VK′ |αb′e−iq

′
axa |VK〉 e−κqs

′(Ẽk−Ẽk′+ω̃q)
2

e−κq′s
′(ẼK−ẼK′+ω̃q′)

2

×
×
(
Ẽk − Ẽk′ + ω̃q + 2

(
ẼK − ẼK′ + ω̃q′

))
κq′×

×e−(s−s′)(κq+κq′)
2
(Ẽk−Ẽk′+ω̃q+ẼK−ẼK′+ω̃q′)

2 [
b̂†
k̃
b̂k̃′ â

†
q, b̂
†
K̃
b̂K̃′ â

†
q′

]
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Ĵ
(0,+)
1 (s, s′) = −

(
qe
m0c

)2∑
k,k′

∑
K,K′

1

V

∑
q,q′

∑
b,b′

Ab (q)Ab′ (q′)×
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〈Uk|αbeiqaxa |Vk′〉 〈VK′ |αb′e−iq
′
axa |UK〉 e−(4+κq)s

′(Ẽk+Ẽk′−ω̃q)
2

e−(4+κq′)s′(−ẼK′−ẼK+ω̃q′)
2

×
×
(
Ẽk + Ẽk′ − ω̃q + 2

(
−ẼK − ẼK′ + ω̃q′

))
(4 + κq′)×

×e−(s−s′)(−κq+κq′)
2
(Ẽk+Ẽk′−ω̃q−ẼK′−ẼK+ω̃q′)

2 [
ĉ†k b̂
†
k̃′
âq, b̂K̃′ ĉK â

†
q′

]
+ 〈Uk|αbe−iqaxa |Vk′〉 〈VK′ |αb′e+iq′axa |UK〉 e−(4+κq)s

′(Ẽk+Ẽk′+ω̃q)
2

e−(4+κq′)s′(−ẼK′−ẼK−ω̃q′)
2

×
×
(
Ẽk + Ẽk′ + ω̃q + 2

(
−ẼK′ − ẼK − ω̃q′

))
(4 + κq′)×

×e−(s−s′)(κq−κq′)
2
(Ẽk+Ẽk′+ω̃q−ẼK′−ẼK−ω̃q′)

2 [
ĉ†k b̂
†
k̃′
â†q, b̂K̃′ ĉK âq′

]


(480)

Ĵ
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)2∑
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∑
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V

∑
q,q′

∑
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×



+ 〈Uk|αbeiqaxa |Vk′〉 〈VK′ |αb′e+iq′axa |UK〉 e−(4+κq)s
′(Ẽk+Ẽk′−ω̃q)

2

e−(4+κq′)s′(−ẼK′−ẼK−ω̃q′)
2

×
×
(
Ẽk + Ẽk′ − ω̃q + 2

(
−ẼK − ẼK′ − ω̃q′

))
(4 + κq′)×

×e−(s−s′)(−κq−κq′)
2
(Ẽk+Ẽk′−ω̃q−ẼK′−ẼK−ω̃q′)

2 [
ĉ†k b̂
†
k̃′
âq, b̂K̃′ ĉK âq′

]
+ 〈Uk|αbe−iqaxa |Vk′〉 〈VK′ |αb′e−iq

′
axa |UK〉 e−(4+κq)s

′(Ẽk+Ẽk′+ω̃q)
2

e−(4+κq′)s′(−ẼK′−ẼK+ω̃q′)
2

×
×
(
Ẽk + Ẽk′ + ω̃q + 2

(
−ẼK′ − ẼK + ω̃q′

))
(4 + κq′)×

×e−(s−s′)(κq+κq′)
2
(Ẽk+Ẽk′+ω̃q−ẼK′−ẼK+ω̃q′)

2 [
ĉ†k b̂
†
k̃′
â†q, b̂K̃′ ĉK â

†
q′

]


(481)
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Ĵ (+) (s, s′) = −
(
qe
m0c

)2∑
k,k′

∑
K,K′

1

V

∑
q,q′

∑
b,b′

Ab (q)Ab′ (q′)×

×



〈Uk|αbeiqaxa |Uk′〉 〈UK |αb′eiq
′
axa |VK′〉 e−κqs

′(Ẽk−Ẽk′−ω̃q)
2

e−(4+κq′)s′(ẼK+ẼK′−ω̃q′)
2

×
×
((
Ẽk − Ẽk′ − ω̃q

)
(4 + κq′ − 2κq) +

(
ẼK + ẼK′ − ω̃q′

)
(8 + 2κq′ − κq)

)
×

×e−(s−s′)
(

4+(−κq−κq′)
2
)
(Ẽk−Ẽk′−ω̃q+ẼK+ẼK′−ω̃q′)

2 [
ĉ†k ĉk′ âq, ĉ

†
K b̂
†
K̃′
âq′
]

+ 〈Uk|αbeiqaxa |Uk′〉 〈UK |αb′e−iq
′
axa |VK′〉 e−κqs

′(Ẽk−Ẽk′−ω̃q)
2

e−(4+κq′)s′(ẼK+ẼK′+ω̃q′)
2

×
×
((
Ẽk − Ẽk′ − ω̃q

)
(4 + κq′ − 2κq) +

(
ẼK + ẼK′ + ω̃q′

)
(8 + 2κq′ − κq)

)
×

×e−(s−s′)
(

4+(−κq+κq′)
2
)
(Ẽk−Ẽk′−ω̃q+ẼK+ẼK′+ω̃q′)

2 [
ĉ†k ĉk′ âq, ĉ

†
K b̂
†
K̃′
â†q′
]

−〈Vk|αbeiqaxa |Vk′〉 〈UK |αb′eiq
′
axa |VK′〉 e−κqs

′(Ẽk′−Ẽk−ω̃q)
2

e−(4+κq′)s′(ẼK+ẼK′−ω̃q′)
2

×
×
((
Ẽk′ − Ẽk − ω̃q

)
(4 + κq′ − 2κq) +

(
ẼK + ẼK′ − ω̃q′

)
(8 + 2κq′ − κq)

)
×

×e−(s−s′)
(

4+(−κq−κq′)
2
)
(Ẽk′−Ẽk−ω̃q+ẼK+ẼK′−ω̃q′)

2 [
b̂†
k̃′
b̂k̃âq, ĉ

†
K b̂
†
K̃′
âq′
]

−〈Vk|αbeiqaxa |Vk′〉 〈UK |αb′e−iq
′
axa |VK′〉 e−κqs

′(Ẽk′−Ẽk−ω̃q)
2

e−(4+κq′)s′(ẼK+ẼK′+ω̃q′)
2

×
×
((
Ẽk′ − Ẽk − ω̃q

)
(4 + κq′ − 2κq) +

(
ẼK + ẼK′ + ω̃q′

)
(8 + 2κq′ − κq)

)
×

×e−(s−s′)
(

4+(−κq+κq′)
2
)
(Ẽk′−Ẽk−ω̃q+ẼK+ẼK′+ω̃q′)

2 [
b̂†
k̃′
b̂k̃âq, ĉ

†
K b̂
†
K̃′
â†q′
]

+ 〈Uk′ |αbe−iqaxa |Uk〉 〈UK |αb′eiq
′
axa |VK′〉 e−κqs

′(Ẽk′−Ẽk+ω̃q)
2

e−(4+κq′)s′(ẼK+ẼK′−ω̃q′)
2

×
×
((
Ẽk′ − Ẽk + ω̃q

)
(4 + κq′ − 2κq) +

(
ẼK + ẼK′ − ω̃q′

)
(8 + 2κq′ − κq)

)
×

×e−(s−s′)
(

4+(κq−κq′)
2
)
(Ẽk′−Ẽk+ω̃q+ẼK+ẼK′−ω̃q′)

2 [
ĉ†k′ ĉkâ

†
q, ĉ
†
K b̂
†
K̃′
âq′
]

+ 〈Uk′ |αbe−iqaxa |Uk〉 〈UK |αb′e−iq
′
axa |VK′〉 e−κqs

′(Ẽk′−Ẽk+ω̃q)
2

e−(4+κq′)s′(ẼK+ẼK′+ω̃q′)
2

×
×
((
Ẽk′ − Ẽk + ω̃q

)
(4 + κq′ − 2κq) +

(
ẼK + ẼK′ + ω̃q′

)
(8 + 2κq′ − κq)

)
×

×e−(s−s′)
(

4+(κq+κq′)
2
)
(Ẽk′−Ẽk+ω̃q+ẼK+ẼK′+ω̃q′)

2 [
ĉ†k′ ĉkâ

†
q, ĉ
†
K b̂
†
K̃′
â†q′
]

−〈Vk′ |αbe−iqaxa |Vk〉 〈UK |αb′eiq
′
axa |VK′〉 e−κqs

′(Ẽk−Ẽk′+ω̃q)
2

e−(4+κq′)s′(ẼK+ẼK′−ω̃q′)
2

×
×
((
Ẽk − Ẽk′ + ω̃q

)
(4 + κq′ − 2κq) +

(
ẼK + ẼK′ − ω̃q′

)
(8 + 2κq′ − κq)

)
×

×e−(s−s′)
(

4+(κq−κq′)
2
)
(Ẽk−Ẽk′+ω̃q+ẼK+ẼK′−ω̃q′)

2 [
b̂†
k̃
b̂k̃′ â

†
q, ĉ
†
K b̂
†
K̃′
âq′
]

−〈Vk′ |αbe−iqaxa |Vk〉 〈UK |αb′e−iq
′
axa |VK′〉 e−κqs

′(Ẽk−Ẽk′+ω̃q)
2

e−(4+κq′)s′(ẼK+ẼK′+ω̃q′)
2

×
×
((
Ẽk − Ẽk′ + ω̃q

)
(4 + κq′ − 2κq) +

(
ẼK + ẼK′ + ω̃q′

)
(8 + 2κq′ − κq)

)
×

×e−(s−s′)
(

4+(κq+κq′)
2
)
(Ẽk−Ẽk′+ω̃q+ẼK+ẼK′+ω̃q′)

2 [
b̂†
k̃
b̂k̃′ â

†
q, ĉ
†
K b̂
†
K̃′
â†q′
]
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and Ĵ (−) (s, s′) =
[
Ĵ (+) (s, s′)

]†
Finally [7],
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Ĵ (+,+) (s, s′) = −
(
qe
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)2∑
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1
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∑
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×



〈Uk|αbeiqaxa |Vk′〉 〈UK |αb′eiq
′
axa |VK′〉 e−(4+κq)s

′(Ẽk+Ẽk′−ω̃q)
2

e−(4+κq′)s′(ẼK+ẼK′−ω̃q′)
2

×
×
((
Ẽk + Ẽk′ − ω̃q

)
+ 2

(
ẼK + ẼK′ − ω̃q′

))
(4 + κq′)×

×e−(s−s′)
(

16+(−κq−κq′)
2
)
(Ẽk+Ẽk′−ω̃q+ẼK+ẼK′−ω̃q′)

2 [
ĉ†k b̂
†
k̃′
âq, ĉ

†
K b̂
†
K̃′
âq′
]

+ 〈Uk|αbeiqaxa |Vk′〉 〈UK |αb′e−iq
′
axa |VK′〉 e−(4+κq)s

′(Ẽk+Ẽk′−ω̃q)
2

e−(4+κq′)s′(ẼK+ẼK′+ω̃q′)
2

×
×
(
Ẽk + Ẽk′ − ω̃q + 2

(
ẼK + ẼK′ + ω̃q′

))
(4 + κq′)×

×e−(s−s′)
(

16+(−κq+κq′)
2
)
(Ẽk+Ẽk′−ω̃q+ẼK+ẼK′+ω̃q′)

2 [
ĉ†k b̂
†
k̃′
âq, ĉ

†
K b̂
†
K̃′
â†q′
]

〈Uk|αbe−iqaxa |Vk′〉 〈UK |αb′eiq
′
axa |VK′〉 e−(4+κq)s

′(Ẽk+Ẽk′+ω̃q)
2

e−(4+κq′)s′(ẼK+ẼK′−ω̃q′)
2

×
×
(
Ẽk + Ẽk′ − ω̃q + 2

(
ẼK + ẼK′ − ω̃q′

))
(4 + κq′)×

×e−(s−s′)
(

16+(κq−κq′)
2
)
(Ẽk+Ẽk′+ω̃q+ẼK+ẼK′−ω̃q′)

2 [
ĉ†k b̂
†
k̃′
â†q, ĉ

†
K b̂
†
K̃′
âq′
]

+ 〈Uk|αbe−iqaxa |Vk′〉 〈UK |αb′e−iq
′
axa |VK′〉 e−(4+κq)s

′(Ẽk+Ẽk′+ω̃q)
2

e−(4+κq′)s′(ẼK+ẼK′+ω̃q′)
2

×
×
(
Ẽk + Ẽk′ + ω̃q + 2

(
ẼK + ẼK′ + ω̃q′

))
(4 + κq′)×

×e−(s−s′)
(

16+(κq+κq′)
2
)
(Ẽk+Ẽk′+ω̃q+ẼK+ẼK′+ω̃q′)

2 [
ĉ†k b̂
†
k̃′
â†q, ĉ

†
K b̂
†
K̃′
â†q′
]


(483)

and Ĵ (−,−) (s, s′) =
[
Ĵ (+,+) (s, s′)

]†
.

Now the relation between the kernels Ĵ (·) (s, s′) and the terms Î(·) (s)
is given by [7]

lim
s′→s

Ĵ (0) (s, s′) = Î(0) (s)

lim
s′→s

Ĵ (±) (s, s′) = Î(±) (s)

lim
s′→s

Ĵ (±,±) (s, s′) = Î(±,±) (s)

(484)

(for showing this one has to further decompose the inhomogeneous
terms Î(·) (s) as has been done for the kernels Ĵ (−,−) (s, s′) above).

For proving the ansatz (476) one needs the following eigenvalue
relations [7]

d

ds
Ĵ (0)

(
s, s′

)
= −

[
Ĥ(0),

[
Ĥ(0),

([
NI ,

[
NI , Ĵ

(0)
(
s, s′

)]]
+
[
NII ,

[
NII , Ĵ

(0)
(
s, s′

)]])]]
d

ds
Ĵ (±)

(
s, s′

)
= −

[
Ĥ(0),

[
Ĥ(0),

([
NI ,

[
NI , Ĵ

(±)
(
s, s′

)]]
+
[
NII ,

[
NII , Ĵ

(±)
(
s, s′

)]])]]
d

ds
Ĵ (±,±)

(
s, s′

)
= −

[
Ĥ(0),

[
Ĥ(0),

([
NI ,

[
NI , Ĵ

(±,±)
(
s, s′

)]]
+
[
NII ,

[
NII , Ĵ

(±,±)
(
s, s′

)]])]]
(485)
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Below the validation of the third line in (485) is shown explicitely, as
an example.

Now differentiating the ansatz (476) with respect to s one finds [7]

d

ds
Ĥ(2,i) (s) =

d

ds

∫ s

0

ds′
(
J (0) (s, s′) + J (+) (s, s′) + J (−) (s, s′) + J (+,+) (s, s′) + J (−,−) (s, s′)

)
=

{
J (0) (s, s) + J (+) (s, s) + J (−) (s, s) + J (+,+) (s, s) + J (−,−) (s, s)

+
∫ s

0
ds′
(
d
dsJ

(0) (s, s′) + d
dsJ

(+) (s, s′) + d
dsJ

(−) (s, s′) + d
dsJ

(+,+) (s, s′) + d
dsJ

(−,−) (s, s′)
)

=

{
J (0) (s, s) + J (+) (s, s) + J (−) (s, s) + J (+,+) (s, s) + J (−,−) (s, s)

+
∫ s

0
ds′
(
d
dsJ

(0) (s, s′) + d
dsJ

(+) (s, s′) + d
dsJ

(−) (s, s′) + d
dsJ

(+,+) (s, s′) + d
dsJ

(−,−) (s, s′)
)

=



I(0) (s) + I(+) (s) + I(−) (s) + I(+,+) (s) + I(−,−) (s)

−
∫ s

0
ds′
[
Ĥ(0),

[
Ĥ(0),

([
NI ,

[
NI , J

(0) (s, s′)
]]

+
[
NII ,

[
NII , J

(0) (s, s′)
]])]]

−
∫ s

0
ds′
[
Ĥ(0),

[
Ĥ(0),

([
NI ,

[
NI , J

(+) (s, s′)
]]

+
[
NII ,

[
NII , J

(+) (s, s′)
]])]]

−
∫ s

0
ds′
[
Ĥ(0),

[
Ĥ(0),

([
NI ,

[
NI , J

(−) (s, s′)
]]

+
[
NII ,

[
NII , J

(−) (s, s′)
]])]]

−
∫ s

0
ds′
[
Ĥ(0),

[
Ĥ(0),

([
NI ,

[
NI , J

(+,+) (s, s′)
]]

+
[
NII ,

[
NII , J

(+,+) (s, s′)
]])]]

−
∫ s

0
ds′
[
Ĥ(0),

[
Ĥ(0),

([
NI ,

[
NI , J

(−,−) (s, s′)
]]

+
[
NII ,

[
NII , J

(−,−) (s, s′)
]])]]

(486)

Using (485) there follows for (486) [7]

d

ds
Ĥ(2,i) (s)

=


I(0) (s) + I(+) (s) + I(−) (s) + I(+,+) (s) + I(−,−) (s)

−
[
Ĥ(0),

[
Ĥ(0),

( [
NI ,

[
NI ,

∫ s
0 ds

′ (J(0) (s, s′) + J(+) (s, s′) + J(−) (s, s′) + J(+,+) (s, s′) + J(−,−) (s, s′)
)]]

+

+
[
NII ,

[
NII ,

∫ s
0 ds

′ (J(0) (s, s′) + J(+) (s, s′) + J(−) (s, s′) + J(+,+) (s, s′) + J(−,−) (s, s′)
)]] )]]

=

{
+I(0) (s) + I(+) (s) + I(−) (s) + I(+,+) (s) + I(−,−) (s)

−
[
Ĥ(0),

[
Ĥ(0),

([
NI ,

[
NI , Ĥ

(2,i) (s)
]]

+
[
NII ,

[
NII , Ĥ

(2,i) (s)
]])]]

= −
[
Ĥ(0),

[
Ĥ(0),

([
NI ,

[
NI , Ĥ

(2,i) (s)
]]

+
[
NII ,

[
NII , Ĥ

(2,i) (s)
]])]]

+ Î (s)

(487)

As it should be!

In the following, after it has been shown by the example Ĵ (±,±) (s, s′)
how the eigenvalue relations (485) can be proven, the limit s → ∞
of the solution Ĥ(2,i) (s) is evaluated. This is done below, where the
integrals are calculated. With that it will also be proven that all terms
that violate the particle number vanish exponentially, again provided
that one first takes the limit V → ∞ such that the mode indices
k, k′, K,K ′, q, q′ lie dense in the Volume V and that their discrete
summation can be converted into integral.
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Eigenvalue relation of the kernel Ĵ (±,±) (s, s′)

The third line in (485) is given by [7]

d

ds
Ĵ (±,±)

(
s, s′

)
= −

[
Ĥ(0),

[
Ĥ(0),

([
NI ,

[
NI , Ĵ

(±,±)
(
s, s′

)]]
+
[
NII ,

[
NII , Ĵ

(±,±)
(
s, s′

)]])]]
(488)

For showing the equivalence one has to differentiate the kernel with
respect to s and on the oder hand evaluate the multiple commutator
on the right side of (488). For the latter the following considerations
are useful.

As a reminder note that [7]

Ĥ(0) = ĤD + Ĥrad

Ĥrad =
∑
q

ω̃q

(
â†qâq +

1

2
1̂

)
ĤD =

∑
k

Ẽk

(
c†kck + b†

k̃
bk̃

)
NI =

∑
k′′

(
c†k′′ck′′ + b†

k̃′′
bk̃′′
)

N̂II =
∑
q

κqâ
†
qâq

(489)

For the following the identity

[AB,CD] = A {B,C}D −B {D,A}C − ACBD + CADB (490)

which can be found in [14], will be very useful.

Starting simply yields [7]

[
N̂I , ĉ

†
k′ ĉk

]
= 0 =

[
N̂I , b̂

†
k̃
b̂k̃′
]

(491)

However, for pair creation terms holds [7]
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[
N̂I , ĉ

†
kb̂
†
k̃′

]
=

[∑
k′′

(
c†k′′ck′′ + b†

k̃′′
bk̃′′
)
, ĉ†kb̂

†
k̃′

]
=
∑
k′′

([
c†k′′ck′′, ĉ

†
kb̂
†
k̃′

]
+
[
b†
k̃′′
bk̃′′, ĉ

†
kb̂
†
k̃′

])
=
∑
k′′

([
c†k′′ck′′, ĉ

†
kb̂
†
k̃′

]
+
[
b†
k̃′′
bk̃′′, ĉ

†
kb̂
†
k̃′

])

=
∑
k′′


c†k′′
{
ck′′, ĉ

†
k

}
b̂†
k̃′

−b†
k̃′′

{
bk̃′′, b̂

†
k̃′

}
ĉ†k


=
∑
k′′

(
c†k′′ b̂

†
k̃′
δk′′,k − b†k̃′′ ĉ

†
kδk̃′′,k̃′

)
= 2c†kb̂

†
k̃′

(492)

where (490) and the fundamental commutation algebra for the
fermions (15) has been used.

This implies at once [7][
N̂I ,

[
N̂I , ĉ

†
kb̂
†
k̃′

]]
= 4c†kb̂

†
k̃′

(493)

On the other hand [7][
N̂I , b̂k̃′ ĉk

]
=

[∑
k′′

(
c†k′′ck′′ + b†

k̃′′
bk̃′′
)
, b̂k̃′ ĉk

]
=
∑
k′′

([
c†k′′ck′′, b̂k̃′ ĉk

]
+
[
b†
k̃′′
bk̃′′, b̂k̃′ ĉk

])
=
∑
k′′

(
−b̂k̃′

{
ĉk, c

†
k′′

}
ck′′ + ĉkbk̃′′

{
b̂k̃′, b

†
k̃′′

})
= −2b̂k̃′ck[

N̂I ,
[
N̂I , b̂k̃′ ĉk

]]
= −4b̂k̃′ck

(494)

Implying at once that
[
N̂I ,

[
ĉ†kb̂
†
k̃′
b̂K̃ ′ ĉK

]]
= 0̂!
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Now what about pairs of pair creators? [7][
N̂I ,

[
ĉ†kb̂
†
k̃′
, ĉ†K b̂

†
K̃ ′

]]
=
[
N̂I , ĉ

†
kb̂
†
k̃′
ĉ†K b̂

†
K̃ ′

]
−
[
N̂I , ĉ

†
K b̂
†
K̃ ′
ĉ†kb̂
†
k̃′

]

=



[
N̂I , ĉ

†
kb̂
†
k̃′

]
ĉ†K b̂

†
K̃ ′

+ĉ†kb̂
†
k̃′

[
N̂I , ĉ

†
K b̂
†
K̃ ′

]
−
[
N̂I , ĉ

†
K b̂
†
K̃ ′

]
ĉ†kb̂
†
k̃′

−ĉ†K b̂
†
K̃ ′

[
N̂I , ĉ

†
kb̂
†
k̃′

]

=



2ĉ†kb̂
†
k̃′
ĉ†K b̂

†
K̃ ′

+2ĉ†kb̂
†
k̃′
ĉ†K b̂

†
K̃ ′

−2ĉ†K b̂
†
K̃ ′
ĉ†kb̂
†
k̃′

−2ĉ†K b̂
†
K̃ ′
ĉ†kb̂
†
k̃′

= 4
[
ĉ†kb̂
†
k̃′
ĉ†K b̂

†
K̃ ′
− ĉ†K b̂

†
K̃ ′
ĉ†kb̂
†
k̃′

]
= 4

[
ĉ†kb̂
†
k̃′
, ĉ†K b̂

†
K̃ ′

]

(495)

Therefore [7]

[
N̂I ,

[
N̂I ,

[
ĉ†kb̂
†
k̃′
, ĉ†K b̂

†
K̃ ′

]]]
= 16

[
ĉ†kb̂
†
k̃′
, ĉ†K b̂

†
K̃ ′

]
(496)

Now for the photonic commutators [7]

[
N̂II , â

†
q′

]
=

[∑
q

κqâ
†
qâq, â

†
q′

]
=
∑
q

κq

[
â†qâq, â

†
q′

]
=
∑
q

κq

(
â†q

[
âq, â

†
q′

]
+
[
â†q, â

†
q′

]
âq

)
=
∑
q

κq
(
â†qδq,q′

)
= κqâ

†
q

(497)
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where the fundamental commutation algebra for the photons (27) has
been used.

Then readily [7][
N̂II , âq′

]
=

[∑
q

κqâ
†
qâq, âq′

]
=
∑
q

κq
(
â†q [âq, âq′] +

[
â†q, âq′

]
âq
)

= −κqâq

(498)

Note that κ2
q = κq.

Based on these equations there follows for example, since fermionic
and photonic creators and annihilators always commute [7],

[
N̂I ,

[
N̂I , ĉ

†
kb̂
†
k̃′
â†q

]]
+
[
N̂II ,

[
N̂II , ĉ

†
kb̂
†
k̃′
â†q

]]
=
(
4 + κ2

q

)
ĉ†kb̂
†
k̃′
â†q[

N̂I ,
[
N̂I , ĉ

†
kb̂
†
k̃′
âq

]]
+
[
N̂II ,

[
N̂II , ĉ

†
kb̂
†
k̃′
âq

]]
=
(
4 + κ2

q

)
ĉ†kb̂
†
k̃′
âq[

N̂I ,
[
N̂I , b̂k̃′ ĉkâ

†
q

]]
+
[
N̂II ,

[
N̂II , b̂k̃′ ĉkâ

†
q

]]
=
(
4 + κ2

q

)
b̂k̃′ ĉkâ

†
q[

N̂I ,
[
N̂I , b̂k̃′ ĉkâq

]]
+
[
N̂II ,

[
N̂II , b̂k̃′ ĉkâq

]]
=
(
4 + κ2

q

)
b̂k̃′ ĉkâq

(499)

or [7]

[
N̂I ,

[
ĉ†kb̂
†
k̃′
âq, ĉ

†
K b̂
†
K̃ ′
âq′
]]

= 4
[
ĉ†kb̂
†
k̃′
âq, ĉ

†
K b̂
†
K̃ ′
âq′
]

[
N̂I ,

[
N̂I ,

[
ĉ†kb̂
†
k̃′
âq, ĉ

†
K b̂
†
K̃ ′
âq′
]]]

= 16
[
ĉ†kb̂
†
k̃′
âq, ĉ

†
K b̂
†
K̃ ′
âq′
] (500)

The commutator with Ĥ(0) yields for example [7]

[
Ĥ(0),

([
N̂I ,

[
N̂I , ĉ

†
k b̂
†
k̃′
â†q

]]
+
[
N̂II ,

[
N̂II , ĉ

†
k b̂
†
k̃′
â†q

]])]
=
(
Ẽk + Ẽk′ + ω̃q

)
(4 + κq) ĉ

†
k b̂
†
k̃′
â†q[

Ĥ(0),
([
N̂I ,

[
N̂I , ĉ

†
k b̂
†
k̃′
âq

]]
+
[
N̂II ,

[
N̂II , ĉ

†
k b̂
†
k̃′
âq

]])]
=
(
Ẽk + Ẽk′ − ω̃q

)
(4 + κq) ĉ

†
k b̂
†
k̃′
âq[

Ĥ(0),
([
N̂I ,

[
N̂I , b̂k̃′ ĉkâ

†
q

]]
+
[
N̂II ,

[
N̂II , b̂k̃′ ĉkâ

†
q

]])]
=
(
−Ẽk′ − Ẽk + ω̃q

)
(4 + κq) b̂k̃′ ĉkâ

†
q[

Ĥ(0),
([
N̂I ,

[
N̂I , b̂k̃′ ĉkâq

]]
+
[
N̂II ,

[
N̂II , b̂k̃′ ĉkâq

]])]
=
(
−Ẽk′ − Ẽk − ω̃q

)
(4 + κq) b̂k̃′ ĉkâq

(501)
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or [7]

[
Ĥ(0),

([
N̂I ,

[
N̂I , ĉ

†
k b̂
†
k̃′
â†q

]]
+
[
N̂II ,

[
N̂II , ĉ

†
k b̂
†
k̃′
â†q

]])]
=
(
Ẽk + Ẽk′ + ω̃q

)
(4 + κq) ĉ

†
k b̂
†
k̃′
â†q[

Ĥ(0),
([
N̂I ,

[
N̂I , ĉ

†
k b̂
†
k̃′
âq

]]
+
[
N̂II ,

[
N̂II , ĉ

†
k b̂
†
k̃′
âq

]])]
=
(
Ẽk + Ẽk′ − ω̃q

)
(4 + κq) ĉ

†
k b̂
†
k̃′
âq[

Ĥ(0),
([
N̂I ,

[
N̂I , b̂k̃′ ĉkâ

†
q

]]
+
[
N̂II ,

[
N̂II , b̂k̃′ ĉkâ

†
q

]])]
=
(
−Ẽk′ − Ẽk + ω̃q

)
(4 + κq) b̂k̃′ ĉkâ

†
q[

Ĥ(0),
([
N̂I ,

[
N̂I , b̂k̃′ ĉkâq

]]
+
[
N̂II ,

[
N̂II , b̂k̃′ ĉkâq

]])]
=
(
−Ẽk′ − Ẽk − ω̃q

)
(4 + κq) b̂k̃′ ĉkâq

(502)

or [7]

[
N̂I ,

[
N̂I ,

[
ĉ†
k′ ĉkâ

†
q , ĉ
†
K′ ĉK â

†
q′

]]]
+
[
N̂II ,

[
N̂II ,

[
ĉ†
k′ ĉkâ

†
q , ĉ
†
K′ ĉK â

†
q′

]]]
=
(
κq + κq′

)2 [
ĉ†
k′ ĉkâ

†
q , ĉ
†
K′ ĉK â

†
q′

]
[
N̂I ,

[
N̂I ,

[
ĉ†k b̂
†
k̃′
âq , b̂K̃′ ĉK â

†
q′

]]]
+
[
N̂II ,

[
N̂II ,

[
ĉ†k b̂
†
k̃′
âq , b̂K̃′ ĉK â

†
q′

]]]
=
(
−κq + κq′

)2 [
ĉ†k b̂
†
k̃′
âq , b̂K̃′ ĉK â

†
q′

]
[
N̂I ,

[
N̂I ,

[
ĉ†k b̂
†
k̃′
âq , ĉ

†
K b̂
†
K̃′
â†
q′

]]]
+
[
N̂II ,

[
N̂II ,

[
ĉ†k b̂
†
k̃′
âq , ĉ

†
K b̂
†
K̃′
â†
q′

]]]
=
(

16 +
(
−κq + κq′

)2) [
ĉ†k b̂
†
k̃′
âq , ĉ

†
K b̂
†
K̃′
â†
q′

]
(503)

With these eigenvalue relations one is prepared for the multiple
commutator of the right hand side in (488).

For the inner commutator
[
NI ,

[
NI , Ĵ

(±,±) (s, s′)
]]

+[
NII ,

[
NII , Ĵ

(±,±) (s, s′)
]]

take a look at the first line. The

commutator is of the form [7]

[
NI

[
NI ,

[
ĉ†kb̂
†
k̃′
âq, ĉ

†
K b̂
†
K̃ ′
âq′
]]]

+
[
NII ,

[
NII ,

[
ĉ†kb̂
†
k̃′
âq, ĉ

†
K b̂
†
K̃ ′
âq′
]]]

=
(

16 + (−κq − κq′)2
) [
ĉ†kb̂
†
k̃′
âq, ĉ

†
K b̂
†
K̃ ′
âq′
]

(504)

Therefore one finds as an interim solution [7]
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[
NI ,

[
NI , Ĵ

(±,±)
(
s, s
′
)]]

+
[
NII ,

[
NII , Ĵ

(±,±)
(
s, s
′
)]]

= −
(
qe

m0c

)2 ∑
k,k′

∑
K,K′

1

V

∑
q,q′

∑
b,b′
Ab (q)Ab′

(
q
′
)

×



(
16 +

(
−κq − κq′

)2
)
〈Uk|αbeiqaxa

∣∣Vk′ 〉 〈UK |αb′eiq′axa
∣∣VK′ 〉 e−(4+κq)s′

(
Ẽk+Ẽ

k′−ω̃q
)2
e
−
(
4+κ

q′
)
s′
(
ẼK+Ẽ

K′−ω̃q′
)2
×

×
((
Ẽk + Ẽk′ − ω̃q

)
+ 2

(
ẼK + ẼK′ − ω̃q′

)) (
4 + κq′

)
×

×e
−
(
s−s′

)(
16+

(
−κq−κq′

)2)(
Ẽk+Ẽ

k′−ω̃q+ẼK+Ẽ
K′−ω̃q′

)2 [
ĉ
†
k
b̂
†
k̃′
âq, ĉ

†
K
b̂
†
K̃′
âq′
]

+

(
16 +

(
−κq + κq′

)2
)
〈Uk|αbeiqaxa

∣∣Vk′ 〉 〈UK |αb′e−iq′axa
∣∣VK′ 〉 e−(4+κq)s′

(
Ẽk+Ẽ

k′−ω̃q
)2
e
−
(
4+κ

q′
)
s′
(
ẼK+Ẽ

K′+ω̃q′
)2
×

×
(
Ẽk + Ẽk′ − ω̃q + 2

(
ẼK + ẼK′ + ω̃q′

)) (
4 + κq′

)
×

×e
−
(
s−s′

)(
16+

(
−κq+κ

q′
)2)(

Ẽk+Ẽ
k′−ω̃q+ẼK+Ẽ

K′+ω̃q′
)2 [

ĉ
†
k
b̂
†
k̃′
âq, ĉ

†
K
b̂
†
K̃′
â
†
q′
]

+

(
16 +

(
κq − κq′

)2
)
〈Uk|αbe−iqaxa

∣∣Vk′ 〉 〈UK |αb′eiq′axa
∣∣VK′ 〉 e−(4+κq)s′

(
Ẽk+Ẽ

k′+ω̃q
)2
e
−
(
4+κ

q′
)
s′
(
ẼK+Ẽ

K′−ω̃q′
)2
×

×
(
Ẽk + Ẽk′ − ω̃q + 2

(
ẼK + ẼK′ − ω̃q′

)) (
4 + κq′

)
×

×e
−
(
s−s′

)(
16+

(
κq−κq′

)2)(
Ẽk+Ẽ

k′+ω̃q+ẼK+Ẽ
K′−ω̃q′

)2 [
ĉ
†
k
b̂
†
k̃′
â†q, ĉ

†
K
b̂
†
K̃′
âq′
]

+

(
16 +

(
κq + κq′

)2
)
〈Uk|αbe−iqaxa

∣∣Vk′ 〉 〈UK |αb′e−iq′axa
∣∣VK′ 〉 e−(4+κq)s′

(
Ẽk+Ẽ

k′+ω̃q
)2
e
−
(
4+κ

q′
)
s′
(
ẼK+Ẽ

K′+ω̃q′
)2
×

×
(
Ẽk + Ẽk′ + ω̃q + 2

(
ẼK + ẼK′ + ω̃q′

)) (
4 + κq′

)
×

×e
−
(
s−s′

)(
16+

(
κq+κ

q′
)2)(

Ẽk+Ẽ
k′+ω̃q+ẼK+Ẽ

K′+ω̃q′
)2 [

ĉ
†
k
b̂
†
k̃′
â†q, ĉ

†
K
b̂
†
K̃′
â
†
q′
]


(505)

Now the commutator with [7]

[
Ĥ(0),

([
NI ,

[
NI , Ĵ

(±,±) (s, s′)
]]

+
[
NII ,

[
NII , Ĵ

(±,±) (s, s′)
]])]

is therefore of the form [7]

[
Ĥ(0),

([
NI ,

[
NI ,

[
ĉ†kb̂
†
k̃′
âq, ĉ

†
K b̂
†
K̃ ′
âq′
]]]

+
[
NII ,

[
NII ,

[
ĉ†kb̂
†
k̃′
âq, ĉ

†
K b̂
†
K̃ ′
âq′
]]])]

=
(
Ẽk + Ẽk′ − ω̃q + ẼK ′ + ẼK − ω̃q′

)(
16 + (−κq + κq′)

2
) [
ĉ†kb̂
†
k̃′
âq, ĉ

†
K b̂
†
K̃ ′
âq′
]

(506)

see for example (502).

Again commutating (506) with Ĥ(0) readily gives another factor(
Ẽk + Ẽk′ − ω̃q + ẼK ′ + ẼK − ω̃q′

)2 (
16 + (−κq + κq′)

2
) [
ĉ†kb̂
†
k̃′
âq, ĉ

†
K b̂
†
K̃ ′
âq′
]
.

Hence, for the multiple commtutator on the right hand side of (488)
there follows [7]
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[
Ĥ

(0)
,
[
Ĥ

(0)
,
([
NI ,

[
NI , Ĵ

(±,±)
(
s, s
′
)]]

+
[
NII ,

[
NII , Ĵ

(±,±)
(
s, s
′
)]])]]

= −
(
qe

m0c

)2 ∑
k,k′

∑
K,K′

1

V

∑
q,q′

∑
b,b′
Ab (q)Ab′

(
q
′
)
×

×



(
16 +

(
−κq − κq′

)2
)(

Ẽk + Ẽk′ − ω̃q + ẼK′ + ẼK − ω̃q′
)2
〈Uk|αbeiqaxa

∣∣Vk′ 〉 〈UK |αb′eiq′axa
∣∣VK′ 〉

×e−(4+κq)s′
(
Ẽk+Ẽ

k′−ω̃q
)2
e
−
(
4+κ

q′
)
s′
(
ẼK+Ẽ

K′−ω̃q′
)2 ((

Ẽk + Ẽk′ − ω̃q
)

+ 2
(
ẼK + ẼK′ − ω̃q′

)) (
4 + κq′

)
×

×e
−
(
s−s′

)(
16+

(
−κq−κq′

)2)(
Ẽk+Ẽ

k′−ω̃q+ẼK+Ẽ
K′−ω̃q′

)2 [
ĉ
†
k
b̂
†
k̃′
âq, ĉ

†
K
b̂
†
K̃′
âq′
]

+

(
16 +

(
−κq + κq′

)2
)(

Ẽk + Ẽk′ − ω̃q + ẼK′ + ẼK + ω̃q′
)2
〈Uk|αbeiqaxa

∣∣Vk′ 〉 〈UK |αb′e−iq′axa
∣∣VK′ 〉

×e−(4+κq)s′
(
Ẽk+Ẽ

k′−ω̃q
)2
e
−
(
4+κ

q′
)
s′
(
ẼK+Ẽ

K′+ω̃q′
)2 (

Ẽk + Ẽk′ − ω̃q + 2
(
ẼK + ẼK′ + ω̃q′

)) (
4 + κq′

)
×

×e
−
(
s−s′

)(
16+

(
−κq+κ

q′
)2)(

Ẽk+Ẽ
k′−ω̃q+ẼK+Ẽ

K′+ω̃q′
)2 [

ĉ
†
k
b̂
†
k̃′
âq, ĉ

†
K
b̂
†
K̃′
â
†
q′
]

+

(
16 +

(
κq − κq′

)2
)(

Ẽk + Ẽk′ + ω̃q + ẼK′ + ẼK − ω̃q′
)2
〈Uk|αbe−iqaxa

∣∣Vk′ 〉 〈UK |αb′eiq′axa
∣∣VK′ 〉

×e−(4+κq)s′
(
Ẽk+Ẽ

k′+ω̃q
)2
e
−
(
4+κ

q′
)
s′
(
ẼK+Ẽ

K′−ω̃q′
)2 (

Ẽk + Ẽk′ − ω̃q + 2
(
ẼK + ẼK′ − ω̃q′

)) (
4 + κq′

)
×

×e
−
(
s−s′

)(
16+

(
κq−κq′

)2)(
Ẽk+Ẽ

k′+ω̃q+ẼK+Ẽ
K′−ω̃q′

)2 [
ĉ
†
k
b̂
†
k̃′
â†q, ĉ

†
K
b̂
†
K̃′
âq′
]

+

(
16 +

(
κq + κq′

)2
)(

Ẽk + Ẽk′ + ω̃q + ẼK′ + ẼK + ω̃q′
)2
〈Uk|αbe−iqaxa

∣∣Vk′ 〉 〈UK |αb′e−iq′axa
∣∣VK′ 〉

×e−(4+κq)s′
(
Ẽk+Ẽ

k′+ω̃q
)2
e
−
(
4+κ

q′
)
s′
(
ẼK+Ẽ

K′+ω̃q′
)2 (

Ẽk + Ẽk′ + ω̃q + 2
(
ẼK + ẼK′ + ω̃q′

)) (
4 + κq′

)
×

×e
−
(
s−s′

)(
16+

(
κq+κ

q′
)2)(

Ẽk+Ẽ
k′+ω̃q+ẼK+Ẽ

K′+ω̃q′
)2 [

ĉ
†
k
b̂
†
k̃′
â†q, ĉ

†
K
b̂
†
K̃′
â
†
q′
]


(507)

On the other hand, for the derivative with respect to s of (488) there
follows with [7]

d

ds
e
−(s−s′)

(
16+

(
−κq−κq′

)2
)(
Ẽk+Ẽk′−ω̃q+ẼK+ẼK′−ω̃q′

)2

=
(

16 +
(
−κq − κq′

)2)(
Ẽk + Ẽk′ − ω̃q + ẼK + ẼK′ − ω̃q′

)2
e
−(s−s′)

(
16+

(
−κq−κq′

)2
)(
Ẽk+Ẽk′−ω̃q+ẼK+ẼK′−ω̃q′

)2

(508)

as an example then [7]
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d

ds
Ĵ(+,+)

(
s, s′

)
= −

(
qe

m0c

)2 ∑
k,k′

∑
K,K′

1

V

∑
q,q′

∑
b,b′
Ab (q)Ab′

(
q′
)
×

d

ds



〈Uk|αbeiqaxa |Vk′ 〉 〈UK |αb′eiq
′
axa |VK′ 〉 e−(4+κq)s′(Ẽk+Ẽk′−ω̃q)

2

e
−
(
4+κq′

)
s′
(
ẼK+ẼK′−ω̃q′

)2

×
×
((
Ẽk + Ẽk′ − ω̃q

)
+ 2

(
ẼK + ẼK′ − ω̃q′

)) (
4 + κq′

)
×

×e
−(s−s′)

(
16+

(
−κq−κq′

)2
)(
Ẽk+Ẽk′−ω̃q+ẼK+ẼK′−ω̃q′

)2 [
ĉ†k b̂
†
k̃′
âq , ĉ

†
K b̂
†
K̃′
âq′
]

+ 〈Uk|αbeiqaxa |Vk′ 〉 〈UK |αb′e−iq
′
axa |VK′ 〉 e−(4+κq)s′(Ẽk+Ẽk′−ω̃q)

2

e
−
(
4+κq′

)
s′
(
ẼK+ẼK′+ω̃q′

)2

×
×
(
Ẽk + Ẽk′ − ω̃q + 2

(
ẼK + ẼK′ + ω̃q′

)) (
4 + κq′

)
×

×e
−(s−s′)

(
16+

(
−κq+κq′

)2
)(
Ẽk+Ẽk′−ω̃q+ẼK+ẼK′+ω̃q′

)2 [
ĉ†k b̂
†
k̃′
âq , ĉ

†
K b̂
†
K̃′
â†
q′

]
〈Uk|αbe−iqaxa |Vk′ 〉 〈UK |αb′eiq

′
axa |VK′ 〉 e−(4+κq)s′(Ẽk+Ẽk′+ω̃q)

2

e
−
(
4+κq′

)
s′
(
ẼK+ẼK′−ω̃q′

)2

×
×
(
Ẽk + Ẽk′ − ω̃q + 2

(
ẼK + ẼK′ − ω̃q′

)) (
4 + κq′

)
×

×e
−(s−s′)

(
16+

(
κq−κq′

)2
)(
Ẽk+Ẽk′+ω̃q+ẼK+ẼK′−ω̃q′

)2 [
ĉ†k b̂
†
k̃′
â†q , ĉ

†
K b̂
†
K̃′
âq′
]

+ 〈Uk|αbe−iqaxa |Vk′ 〉 〈UK |αb′e−iq
′
axa |VK′ 〉 e−(4+κq)s′(Ẽk+Ẽk′+ω̃q)

2

e
−
(
4+κq′

)
s′
(
ẼK+ẼK′+ω̃q′

)2

×
×
(
Ẽk + Ẽk′ + ω̃q + 2

(
ẼK + ẼK′ + ω̃q′

)) (
4 + κq′

)
×

×e
−(s−s′)

(
16+

(
κq+κq′

)2
)(
Ẽk+Ẽk′+ω̃q+ẼK+ẼK′+ω̃q′

)2 [
ĉ†k b̂
†
k̃′
â†q , ĉ

†
K b̂
†
K̃′
â†
q′

]


= −

(
qe

m0c

)2 ∑
k,k′

∑
K,K′

1

V

∑
q,q′

∑
b,b′
Ab (q)Ab′

(
q′
)
×

×



(
16 +

(
−κq − κq′

)2)(
Ẽk + Ẽk′ − ω̃q + ẼK + ẼK′ − ω̃q′

)2
〈Uk|αbeiqaxa |Vk′ 〉 〈UK |αb′eiq

′
axa |VK′ 〉

×e−(4+κq)s′(Ẽk+Ẽk′−ω̃q)
2

e
−
(
4+κq′

)
s′
(
ẼK+ẼK′−ω̃q′

)2 ((
Ẽk + Ẽk′ − ω̃q

)
+ 2

(
ẼK + ẼK′ − ω̃q′

)) (
4 + κq′

)
×

×e
−(s−s′)

(
16+

(
−κq−κq′

)2
)(
Ẽk+Ẽk′−ω̃q+ẼK+ẼK′−ω̃q′

)2 [
ĉ†k b̂
†
k̃′
âq , ĉ

†
K b̂
†
K̃′
âq′
]

+
(

16 +
(
−κq + κq′

)2)(
Ẽk + Ẽk′ − ω̃q + ẼK + ẼK′ + ω̃q′

)2
〈Uk|αbeiqaxa |Vk′ 〉 〈UK |αb′e−iq

′
axa |VK′ 〉

×e−(4+κq)s′(Ẽk+Ẽk′−ω̃q)
2

e
−
(
4+κq′

)
s′
(
ẼK+ẼK′+ω̃q′

)2 (
Ẽk + Ẽk′ − ω̃q + 2

(
ẼK + ẼK′ + ω̃q′

)) (
4 + κq′

)
×

×e
−(s−s′)

(
16+

(
−κq+κq′

)2
)(
Ẽk+Ẽk′−ω̃q+ẼK+ẼK′+ω̃q′

)2 [
ĉ†k b̂
†
k̃′
âq , ĉ

†
K b̂
†
K̃′
â†
q′

]
+
(

16 +
(
κq − κq′

)2)(
Ẽk + Ẽk′ + ω̃q + ẼK + ẼK′ − ω̃q′

)2
〈Uk|αbe−iqaxa |Vk′ 〉 〈UK |αb′eiq

′
axa |VK′ 〉

×e−(4+κq)s′(Ẽk+Ẽk′+ω̃q)
2

e
−
(
4+κq′

)
s′
(
ẼK+ẼK′−ω̃q′

)2 (
Ẽk + Ẽk′ − ω̃q + 2

(
ẼK + ẼK′ − ω̃q′

)) (
4 + κq′

)
×

×e
−(s−s′)

(
16+

(
κq−κq′

)2
)(
Ẽk+Ẽk′+ω̃q+ẼK+ẼK′−ω̃q′

)2 [
ĉ†k b̂
†
k̃′
â†q , ĉ

†
K b̂
†
K̃′
âq′
]

+
(

16 +
(
κq + κq′

)2)(
Ẽk + Ẽk′ + ω̃q + ẼK + ẼK′ + ω̃q′

)2
〈Uk|αbe−iqaxa |Vk′ 〉 〈UK |αb′e−iq

′
axa |VK′ 〉

×e−(4+κq)s′(Ẽk+Ẽk′+ω̃q)
2

e
−
(
4+κq′

)
s′
(
ẼK+ẼK′+ω̃q′

)2 (
Ẽk + Ẽk′ + ω̃q + 2

(
ẼK + ẼK′ + ω̃q′

)) (
4 + κq′

)
×

×e
−(s−s′)

(
16+

(
κq+κq′

)2
)(
Ẽk+Ẽk′+ω̃q+ẼK+ẼK′+ω̃q′

)2 [
ĉ†k b̂
†
k̃′
â†q , ĉ

†
K b̂
†
K̃′
â†
q′

]


(509)

which is exactly the same in (507)!

Evaluation of lims→∞ Ĥ
(2,i) (s)

The integrals
∫ s

0 ds
′J (+) (s, s′) and

∫ s
0 ds

′J (+,+) (s, s′) occuring in the
solution (476) are of the following types [7]
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f (+)
(
s, x, y, κq , κq′

)
=
(
x
(
4 + κq′ − 2κq

)
+ y

(
8 + 2κq′ − κq

)) ∫ s

0
ds′e

−(s−s′)
(

4+
(
κq+κq′

)2
)

(x+y)2

e
−s′

(
κqx

2+
(
4+κq′

)
y2
)

=
(
x
(
4 + κq′ − 2κq

)
+ y

(
8 + 2κq′ − κq

))
e
−s
(

4+
(
κq+κq′

)2
)

(x+y)2
∫ s

0
ds′e

s′
((

4+
(
κq+κq′

)2
)

(x+y)2−κqx2−
(
4+κq′

)
y2
)

=
(
x
(
4 + κq′ − 2κq

)
+ y

(
8 + 2κq′ − κq

)) e−s(κqx2+
(
4+κq′

)
y2
)
− e
−s
(

4+
(
κq+κq′

)2
)

(x+y)2(
4 +

(
κq + κq′

)2)
(x+ y)2 − κqx2 −

(
4 + κq′

)
y2

(510)

and [7]

f (+,+)
(
s, x, y, κq , κq′

)
= (x+ 2y)

∫ s

0
ds′e

−(s−s′)
(

16+
(
κq+κq′

)2
)

(x+y)2

e
−s′

(
(4+κq)x2+

(
4+κq′

)
y2
)

= (x+ 2y) e
−s
(

16+
(
κq+κq′

)2
)

(x+y)2 e
s

((
16+

(
κq+κq′

)2
)

(x+y)2−(4+κq)x2−
(
4+κq′

)
y2
)
− 1(

16 +
(
κq + κq′

)2)
(x+ y)2 − (4 + κq)x2 −

(
4 + κq′

)
y2

= (x+ 2y)
e
−s
(
(4+κq)x2+

(
4+κq′

)
y2
)
− e
−s
(

16+
(
κq+κq′

)2
)

(x+y)2(
16 +

(
κq + κq′

)2)
(x+ y)2 − (4 + κq)x2 −

(
4 + κq′

)
y2

(511)

For κq, κq′ ∈ {0, 1}, x, y ∈ R and x + y 6= 0 both integrals vanish in
the limit s→∞.

Contributions of the sums over the mode indices k, k′, K,K ′, q, q′ that
relate to the special case x+ y = 0 do not vanish in the limit s→∞.
However, these contributions have zero measure, such that we can
proceed again such that one first has to take the limit V → ∞, and
then take the limit s→∞.

For sure this argument also holds for the hermitean conjugates.
Altogether then [7]

lim
s→∞

lim
V→∞

∫ s

0

ds′J (±) (s, s′) = 0̂

lim
s→∞

lim
V→∞

∫ s

0

ds′J (±,±) (s, s′) = 0̂

(512)

Hence, the only contribution of the solution that survives our limiting
procedure is given by lims→∞ limV→∞

∫ s
0 ds

′J (0) (s, s′) given by [7]
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lim
s→∞

lim
V→∞

∫ s

0

ds′J (0) (s, s′) = lim
s→∞

lim
V→∞



+
∫ s

0 ds
′
(
Ĵ

(0,0)
1 (s, s′) + J

(0,0)
2 (s, s′)

)
+
∫ s

0 ds
′
(
Ĵ

(0,+)
1 (s, s′) + Ĵ

(0,−)
1 (s, s′)

)
+
∫ s

0 ds
′
(
J

(0,+)
2 (s, s′) + J

(0,−)
2 (s, s′)

)
(513)

These integrals are now evaluated explicitely in order to show that
there do not remain terms that violate the particle number
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Integral 1

lim
s→∞

lim
V→∞

∫ s

0

ds′Ĵ
(0,0)
1 (s, s′)

= −
(
qe
m0c

)2

lim
s→∞

lim
V→∞

∑
k,k′

∑
K,K′

1

V

∑
q,q′

∑
b,b′

Ab (q)Ab′ (q′)×

×



+
∫ s

0
ds′ 〈Uk|αbeiqaxa |Uk′〉 〈UK′ |αb′e−iq

′
axa |UK〉 e−κqs

′(Ẽk−Ẽk′−ω̃q)
2

e−κq′s
′(ẼK′−ẼK+ω̃q′)

2

×
×
(
Ẽk − Ẽk′ − ω̃q + 2

(
ẼK′ − ẼK + ω̃q′

))
κq′×

×e−(s−s′)(−κq+κq′)
2
(Ẽk−Ẽk′−ω̃q+ẼK′−ẼK+ω̃q′)

2 [
ĉ†k ĉk′ âq, ĉ

†
K′ ĉK â

†
q′

]
−
∫ s

0
ds′ 〈Uk|αbeiqaxa |Uk′〉 〈VK′ |αb′e−iq

′
axa |VK〉 e−κqs

′(Ẽk−Ẽk′−ω̃q)
2

e−κq′s
′(ẼK−ẼK′+ω̃q′)

2

×
×
(
Ẽk − Ẽk′ − ω̃q + 2

(
ẼK − ẼK′ + ω̃q′

))
κq′×

×e−(s−s′)(−κq+κq′)
2
(Ẽk−Ẽk′−ω̃q+ẼK−ẼK′+ω̃q′)

2 [
ĉ†k ĉk′ âq, b̂

†
K̃
b̂K̃′ â

†
q′

]
−
∫ s

0
ds′ 〈Vk|αbeiqaxa |Vk′〉 〈UK′ |αb′e−iq

′
axa |UK〉 e−κqs

′(Ẽk′−Ẽk−ω̃q)
2

e−κq′s
′(ẼK′−ẼK+ω̃q′)

2

×
×
(
Ẽk′ − Ẽk − ω̃q + 2

(
ẼK′ − ẼK + ω̃q′

))
κq′×

×e−(s−s′)(−κq+κq′)
2
(Ẽk′−Ẽk−ω̃q+ẼK′−ẼK+ω̃q′)

2 [
b̂†
k̃′
b̂k̃âq, ĉ

†
K′ ĉK â

†
q′

]
+
∫ s

0
ds′ 〈Vk|αbeiqaxa |Vk′〉 〈VK′ |αb′e−iq

′
axa |VK〉 e−κqs

′(Ẽk′−Ẽk−ω̃q)
2

e−κq′s
′(ẼK−ẼK′+ω̃q′)

2

×
×
(
Ẽk′ − Ẽk − ω̃q + 2

(
ẼK − ẼK′ + ω̃q′

))
κq′×

×e−(s−s′)(−κq+κq′)
2
(Ẽk′−Ẽk−ω̃q+ẼK−ẼK′+ω̃q′)

2 [
b̂†
k̃′
b̂k̃âq, b̂

†
K̃
b̂K̃′ â

†
q′

]
+
∫ s

0
ds′ 〈Uk′ |αbe−iqaxa |Uk〉 〈UK |αb′eiq

′
axa |UK′〉 e−κqs

′(Ẽk′−Ẽk+ω̃q)
2

e−κq′s
′(ẼK−ẼK′−ω̃q′)

2

×
×
(
Ẽk′ − Ẽk + ω̃q + 2

(
ẼK − ẼK′ − ω̃q′

))
κq′×

×e−(s−s′)(κq−κq′)
2
(Ẽk′−Ẽk+ω̃q+ẼK−ẼK′−ω̃q′)

2 [
ĉ†k′ ĉkâ

†
q, ĉ
†
K ĉK′ âq′

]
−
∫ s

0
ds′ 〈Uk′ |αbe−iqaxa |Uk〉 〈VK |αb′eiq

′
axa |VK′〉 e−κqs

′(Ẽk′−Ẽk+ω̃q)
2

e−κq′s
′(ẼK′−ẼK−ω̃q′)

2

×
×
(
Ẽk′ − Ẽk + ω̃q + 2

(
ẼK′ − ẼK − ω̃q′

))
κq′×

×e−(s−s′)(κq−κq′)
2
(Ẽk′−Ẽk+ω̃q+ẼK′−ẼK−ω̃q′)

2 [
ĉ†k′ ĉkâ

†
q, b̂
†
K̃′
b̂K̃ âq′

]
−
∫ s

0
ds′ 〈Vk′ |αbe−iqaxa |Vk〉 〈UK |αb′eiq

′
axa |UK′〉 e−κqs

′(Ẽk−Ẽk′+ω̃q)
2

e−κq′s
′(ẼK−ẼK′−ω̃q′)

2

×
×
(
Ẽk − Ẽk′ + ω̃q + 2

(
ẼK − ẼK′ − ω̃q′

))
κq′×

×e−(s−s′)(κq−κq′)
2
(Ẽk−Ẽk′+ω̃q+ẼK−ẼK′−ω̃q′)

2 [
b̂†
k̃
b̂k̃′ â

†
q, ĉ
†
K ĉK′ âq′

]
+
∫ s

0
ds′ 〈Vk′ |αbe−iqaxa |Vk〉 〈VK |αb′eiq

′
axa |VK′〉 e−κqs

′(Ẽk−Ẽk′+ω̃q)
2

e−κq′s
′(ẼK′−ẼK−ω̃q′)

2

×
×
(
Ẽk − Ẽk′ + ω̃q + 2

(
ẼK′ − ẼK − ω̃q′

))
κq′×

×e−(s−s′)(κq−κq′)
2
(Ẽk−Ẽk′+ω̃q+ẼK′−ẼK−ω̃q′)

2 [
b̂†
k̃
b̂k̃′ â

†
q, b̂
†
K̃′
b̂K̃ âq′

]


(514)

These integrals are of the type [7]
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f
(0,0)
1

(
x, y, κq , κq′

)
= (x+ 2y)κq′

∫ s

0
ds′e

−(s−s′)
(
κq−κq′

)2
(x+y)2

e
−s′

(
κqx

2+κq′y
2
)

= (x+ 2y)κq′e
−s
(
κq−κq′

)2
(x+y)2

∫ s

0
e
s′
((
κq−κq′

)2
(x+y)2−κqx2−κq′y

2
)

= (x+ 2y)κq′e
−s
(
κq−κq′

)2
(x+y)2 e

s

((
κq−κq′

)2
(x+y)2−κqx2−κq′y

2
)
− 1(

κq − κq′
)2

(x+ y)2 − κqx2 − κq′y2

= (x+ 2y)κq′
e
−s
(
κqx

2+κq′y
2
)
− e−s

(
κq−κq′

)2
(x+y)2(

κq − κq′
)2

(x+ y)2 − κqx2 − κq′y2

=

0 für κq′ = 0

(x+ 2y) e
−s(κqx2+y2)−e−s(κq−1)2(x+y)2

(κq−1)2
(x+y)2−κqx2−y2

für κq′ = 1

=


0 für κq′ = 0

(x+ 2y) e
−sy2

−e−s(x+y)2

(x+y)2−y2 für κq′ = 1, κq = 0

(x+ 2y) e
−s(x2+y2)−1
−x2−y2 für κq′ = 1, κq = 1

=


0 für κq′ = 0

e−sy
2
−e−s(x+y)2

x
für κq′ = 1, κq = 0

x+2y
x2+y2

(
1− e−s(x

2+y2)
)

für κq′ = 1, κq = 1

(515)

Hence, only the term κq′ = 1 and κq = 1 contribute to the limit s→∞
(besides a contribution of zero measure for x+ y = 0).

Therefore [7],

lim
s→∞

lim
V→∞

∫ s

0

ds′Ĵ
(0,0)
1 (s, s′)

= −
(
qe
m0c

)2∑
k,k′

∑
K,K′

lim
V→∞

1

V

∑
q>qB

∑
q′>qB

∑
b,b′

Ab (q)Ab′ (q′)×

×



+ 〈Uk|αbeiqaxa |Uk′〉 〈UK′ |αb′e−iq
′
axa |UK〉

Ẽk−Ẽk′−ω̃q+2(ẼK′−ẼK+ω̃q′)
(Ẽk−Ẽk′−ω̃q)

2
+(ẼK′−ẼK+ω̃q′)

2

[
ĉ†k ĉk′ âq, ĉ

†
K′ ĉK â

†
q′

]
−〈Uk|αbeiqaxa |Uk′〉 〈VK′ |αb′e−iq

′
axa |VK〉

Ẽk−Ẽk′−ω̃q+2(ẼK−ẼK′+ω̃q′)
(Ẽk−Ẽk′−ω̃q)

2
+(ẼK−ẼK′+ω̃q′)

2

[
ĉ†k ĉk′ âq, b̂

†
K̃
b̂K̃′ â

†
q′

]
−〈Vk|αbeiqaxa |Vk′〉 〈UK′ |αb′e−iq

′
axa |UK〉

Ẽk′−Ẽk−ω̃q+2(ẼK′−ẼK+ω̃q′)
(Ẽk′−Ẽk−ω̃q)

2
+(ẼK′−ẼK+ω̃q′)

2

[
b̂†
k̃′
b̂k̃âq, ĉ

†
K′ ĉK â

†
q′

]
+ 〈Vk|αbeiqaxa |Vk′〉 〈VK′ |αb′e−iq

′
axa |VK〉

Ẽk′−Ẽk−ω̃q+2(ẼK−ẼK′+ω̃q′)
(Ẽk′−Ẽk−ω̃q)

2
+(ẼK−ẼK′+ω̃q′)

2

[
b̂†
k̃′
b̂k̃âq, b̂

†
K̃
b̂K̃′ â

†
q′

]
+ 〈Uk′ |αbe−iqaxa |Uk〉 〈UK |αb′eiq

′
axa |UK′〉

Ẽk′−Ẽk+ω̃q+2(ẼK−ẼK′−ω̃q′)
(Ẽk′−Ẽk+ω̃q)

2
+(ẼK−ẼK′−ω̃q′)

2

[
ĉ†k′ ĉkâ

†
q, ĉ
†
K ĉK′ âq′

]
−〈Uk′ |αbe−iqaxa |Uk〉 〈VK |αb′eiq

′
axa |VK′〉

Ẽk′−Ẽk+ω̃q+2(ẼK′−ẼK−ω̃q′)
(Ẽk′−Ẽk+ω̃q)

2
+(ẼK′−ẼK−ω̃q′)

2

[
ĉ†k′ ĉkâ

†
q, b̂
†
K̃′
b̂K̃ âq′

]
−〈Vk′ |αbe−iqaxa |Vk〉 〈UK |αb′eiq

′
axa |UK′〉

Ẽk−Ẽk′+ω̃q+2(ẼK−ẼK′−ω̃q′)
(Ẽk−Ẽk′+ω̃q)

2
+(ẼK−ẼK′−ω̃q′)

2

[
b̂†
k̃
b̂k̃′ â

†
q, ĉ
†
K ĉK′ âq′

]
+ 〈Vk′ |αbe−iqaxa |Vk〉 〈VK |αb′eiq

′
axa |VK′〉

Ẽk−Ẽk′+ω̃q+2(ẼK′−ẼK−ω̃q′)
(Ẽk−Ẽk′+ω̃q)

2
+(ẼK′−ẼK−ω̃q′)

2

[
b̂†
k̃
b̂k̃′ â

†
q, b̂
†
K̃′
b̂K̃ âq′

]


(516)
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These terms can be sorted by creation and annihilation operators for
matter and antimatter according to [7]

lim
s→∞

lim
V→∞

∫ s

0

ds′Ĵ
(0,0)
1 (s, s′)

= −
(
qe
m0c

)2∑
k,k′

∑
K,K′

lim
V→∞

1

V

∑
q>qB

∑
q′>qB

∑
b,b′

Ab (q)Ab′ (q′)×

×



+ 〈Uk|αbeiqaxa |Uk′〉 〈UK′ |αb′e−iq
′
axa |UK〉

Ẽk−Ẽk′−ω̃q+2(ẼK′−ẼK+ω̃q′)
(Ẽk−Ẽk′−ω̃q)

2
+(ẼK′−ẼK+ω̃q′)

2

[
ĉ†k ĉk′ âq, ĉ

†
K′ ĉK â

†
q′

]
+ 〈Uk′ |αbe−iqaxa |Uk〉 〈UK |αb′eiq

′
axa |UK′〉

Ẽk′−Ẽk+ω̃q+2(ẼK−ẼK′−ω̃q′)
(Ẽk′−Ẽk+ω̃q)

2
+(ẼK−ẼK′−ω̃q′)

2

[
ĉ†k′ ĉkâ

†
q, ĉ
†
K ĉK′ âq′

]

+ 〈Vk|αbeiqaxa |Vk′〉 〈VK′ |αb′e−iq
′
axa |VK〉

Ẽk′−Ẽk−ω̃q+2(ẼK−ẼK′+ω̃q′)
(Ẽk′−Ẽk−ω̃q)

2
+(ẼK−ẼK′+ω̃q′)

2

[
b̂†
k̃′
b̂k̃âq, b̂

†
K̃
b̂K̃′ â

†
q′

]
+ 〈Vk′ |αbe−iqaxa |Vk〉 〈VK |αb′eiq

′
axa |VK′〉

Ẽk−Ẽk′+ω̃q+2(ẼK′−ẼK−ω̃q′)
(Ẽk−Ẽk′+ω̃q)

2
+(ẼK′−ẼK−ω̃q′)

2

[
b̂†
k̃
b̂k̃′ â

†
q, b̂
†
K̃′
b̂K̃ âq′

]

−〈Uk|αbeiqaxa |Uk′〉 〈VK′ |αb′e−iq
′
axa |VK〉

Ẽk−Ẽk′−ω̃q+2(ẼK−ẼK′+ω̃q′)
(Ẽk−Ẽk′−ω̃q)

2
+(ẼK−ẼK′+ω̃q′)

2

[
ĉ†k ĉk′ âq, b̂

†
K̃
b̂K̃′ â

†
q′

]
−〈Vk′ |αbe−iqaxa |Vk〉 〈UK |αb′eiq

′
axa |UK′〉

Ẽk−Ẽk′+ω̃q+2(ẼK−ẼK′−ω̃q′)
(Ẽk−Ẽk′+ω̃q)

2
+(ẼK−ẼK′−ω̃q′)

2

[
b̂†
k̃
b̂k̃′ â

†
q, ĉ
†
K ĉK′ âq′

]
−〈Vk|αbeiqaxa |Vk′〉 〈UK′ |αb′e−iq

′
axa |UK〉

Ẽk′−Ẽk−ω̃q+2(ẼK′−ẼK+ω̃q′)
(Ẽk′−Ẽk−ω̃q)

2
+(ẼK′−ẼK+ω̃q′)

2

[
b̂†
k̃′
b̂k̃âq, ĉ

†
K′ ĉK â

†
q′

]
−〈Uk′ |αbe−iqaxa |Uk〉 〈VK |αb′eiq

′
axa |VK′〉

Ẽk′−Ẽk+ω̃q+2(ẼK′−ẼK−ω̃q′)
(Ẽk′−Ẽk+ω̃q)

2
+(ẼK′−ẼK−ω̃q′)

2

[
ĉ†k′ ĉkâ

†
q, b̂
†
K̃′
b̂K̃ âq′

]


(517)

Further rearrangements and renaming of the summation indices
according to [7]

(k, k′, K,K ′, q, q′, b.b′)→
(
K,K ′, k, k′, q′, q, b′, b

)
(518)

yield [7]
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lim
s→∞

lim
V→∞

∫ s

0
ds′Ĵ

(0,0)
1

(
s, s′

)
= −

(
qe

m0c

)2 ∑
k,k′

∑
K,K′

lim
V→∞

1

V

∑
q>qB

∑
q′>qB

∑
b,b′
Ab (q)Ab′

(
q′
)
×

×



+ 〈Uk|αbeiqaxa |Uk′ 〉 〈UK′ |αb′e−iq
′
axa |UK〉

(
Ẽk−Ẽk′−ω̃q+2

(
ẼK′−ẼK+ω̃q′

)
(Ẽk−Ẽk′−ω̃q)

2
+
(
ẼK′−ẼK+ω̃q′

)2 −
ẼK′−ẼK+ω̃q′+2(Ẽk−Ẽk′−ω̃q)(
ẼK′−ẼK+ω̃q′

)2
+(Ẽk−Ẽk′−ω̃q)

2

)
×

×
[
ĉ†k ĉk′ âq , ĉ

†
K′ ĉK â

†
q′

]

+ 〈Vk|αbeiqaxa |Vk′ 〉 〈VK′ |αb′e−iq
′
axa |VK〉

(
Ẽk′−Ẽk−ω̃q+2

(
ẼK−ẼK′+ω̃q′

)
(Ẽk′−Ẽk−ω̃q)

2
+
(
ẼK−ẼK′+ω̃q′

)2 −
ẼK−ẼK′+ω̃q′+2(Ẽk′−Ẽk−ω̃q)(
ẼK−ẼK′+ω̃q′

)2
+(Ẽk′−Ẽk−ω̃q)

2

)
×

×
[
b̂†
k̃′
b̂k̃âq , b̂

†
K̃
b̂K̃′ â

†
q′

]

−〈Uk|αbeiqaxa |Uk′ 〉 〈VK′ |αb′e−iq
′
axa |VK〉

(
Ẽk−Ẽk′−ω̃q+2

(
ẼK−ẼK′+ω̃q′

)
(Ẽk−Ẽk′−ω̃q)

2
+
(
ẼK−ẼK′+ω̃q′

)2 −
ẼK−ẼK′+ω̃q′+2(Ẽk−Ẽk′−ω̃q)(
ẼK−ẼK′+ω̃q′

)2
+(Ẽk−Ẽk′−ω̃q)

2

)
×

×
[
ĉ†k ĉk′ âq , b̂

†
K̃
b̂K̃′ â

†
q′

]

−〈Vk|αbeiqaxa |Vk′ 〉 〈UK′ |αb′e−iq
′
axa |UK〉

(
Ẽk′−Ẽk−ω̃q+2

(
ẼK′−ẼK+ω̃q′

)
(Ẽk′−Ẽk−ω̃q)

2
+
(
ẼK′−ẼK+ω̃q′

)2 −
ẼK′−ẼK+ω̃q′+2(Ẽk′−Ẽk−ω̃q)(
ẼK′−ẼK+ω̃q′

)2
+(Ẽk′−Ẽk−ω̃q)

2

)
×

×
[
b̂†
k̃′
b̂k̃âq , ĉ

†
K′ ĉK â

†
q′

]


(519)

Finally, terms with the same denominater can be picked up such that
[7]

lim
s→∞

lim
V→∞

∫ s

0

ds′Ĵ
(0,0)
1 (s, s′)

= −
(
qe
m0c

)2∑
k,k′

∑
K,K′

lim
V→∞

1

V

∑
q>qB

∑
q′>qB

∑
b,b′

Ab (q)Ab′ (q′)×

×



+ 〈Uk|αbeiqaxa |Uk′〉 〈UK′ |αb′e−iq
′
axa |UK〉

(ẼK′−ẼK+ω̃q′)−(Ẽk−Ẽk′−ω̃q)
(Ẽk−Ẽk′−ω̃q)

2
+(ẼK′−ẼK+ω̃q′)

2

[
ĉ†k ĉk′ âq, ĉ

†
K′ ĉK â

†
q′

]
+ 〈Vk|αbeiqaxa |Vk′〉 〈VK′ |αb′e−iq

′
axa |VK〉

(ẼK−ẼK′+ω̃q′)−(Ẽk′−Ẽk−ω̃q)
(Ẽk′−Ẽk−ω̃q)

2
+(ẼK−ẼK′+ω̃q′)

2

[
b̂†
k̃′
b̂k̃âq, b̂

†
K̃
b̂K̃′ â

†
q′

]

−〈Uk|αbeiqaxa |Uk′〉 〈VK′ |αb′e−iq
′
axa |VK〉

(ẼK−ẼK′+ω̃q′)−(Ẽk−Ẽk′−ω̃q)
(Ẽk−Ẽk′−ω̃q)

2
+(ẼK−ẼK′+ω̃q′)

2

[
ĉ†k ĉk′ âq, b̂

†
K̃
b̂K̃′ â

†
q′

]
−〈Vk|αbeiqaxa |Vk′〉 〈UK′ |αb′e−iq

′
axa |UK〉

(ẼK′−ẼK+ω̃q′)−(Ẽk′−Ẽk−ω̃q)
(Ẽk′−Ẽk−ω̃q)

2
+(ẼK′−ẼK+ω̃q′)

2

[
b̂†
k̃′
b̂k̃âq, ĉ

†
K′ ĉK â

†
q′

]


(520)

Now the multiple commutators in (520) can be evaluated by the help
of the following identities:
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1

2

[
f̂ , ĝ
]{

F̂ , Ĝ
}

+
1

2

{
f̂ , ĝ
}[

F̂ , Ĝ
]

=
1

2

(
f̂ ĝ − ĝf̂

)(
F̂ Ĝ+ ĜF̂

)
+

1

2

(
f̂ ĝ + ĝf̂

)(
F̂ Ĝ− ĜF̂

)
=
(
f̂ ĝF̂ Ĝ− ĝf̂ ĜF̂

)
=
(
f̂ F̂ ĝĜ− ĝĜf̂ F̂

)
=
[
f̂ F̂ , ĝĜ

]
(521)

For operators f̂ , ĝ, F̂ , Ĝ with the property
[
f̂ , Ĝ

]
= 0̂ =

[
ĝ, F̂

]
.

Furthermore we remind that

[
â†q, âq′

]
= −δq,q′1̂[

âq, â
†
q′

]
= +δq,q′1̂

1

2

{
â†q, âq′

}
= â†qâq′ +

1

2
δq,q′1̂

1

2

{
âq, â

†
q′

}
= â†q′âq +

1

2
δq,q′1̂

(522)

From (521) follows for (520) [7]
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lim
s→∞

lim
V→∞

∫ s

0
ds′Ĵ

(0,0)
1

(
s, s′

)
= −

(
qe

m0c

)2 ∑
k,k′

∑
K,K′

lim
V→∞

1

V

∑
q>qB

∑
q′>qB

∑
b,b′
Ab (q)Ab′

(
q′
)
×

×



+ 〈Uk|αbeiqaxa |Uk′ 〉 〈UK′ |αb′e−iq
′
axa |UK〉

(
ẼK′−ẼK+ω̃q′

)
−(Ẽk−Ẽk′−ω̃q)

(Ẽk−Ẽk′−ω̃q)
2
+
(
ẼK′−ẼK+ω̃q′

)2

 1
2

[
ĉ†k ĉk′ , ĉ

†
K′ ĉK

]{
âq , â

†
q′

}
+ 1

2

{
ĉ†k ĉk′ , ĉ

†
K′ ĉK

}[
âq , â

†
q′

] 

+ 〈Vk|αbeiqaxa |Vk′ 〉 〈VK′ |αb′e−iq
′
axa |VK〉

(
ẼK−ẼK′+ω̃q′

)
−(Ẽk′−Ẽk−ω̃q)

(Ẽk′−Ẽk−ω̃q)
2
+
(
ẼK−ẼK′+ω̃q′

)2

 1
2

[
b̂†
k̃′
b̂k̃, b̂

†
K̃
b̂K̃′
]{
âq , â

†
q′

}
+ 1

2

{
b̂†
k̃′
b̂k̃, b̂

†
K̃
b̂K̃′
}[
âq , â

†
q′

] 

−〈Uk|αbeiqaxa |Uk′ 〉 〈VK′ |αb′e−iq
′
axa |VK〉

(
ẼK−ẼK′+ω̃q′

)
−(Ẽk−Ẽk′−ω̃q)

(Ẽk−Ẽk′−ω̃q)
2
+
(
ẼK−ẼK′+ω̃q′

)2

 1
2

[
ĉ†k ĉk′ , b̂

†
K̃
b̂K̃′
]{
âq , â

†
q′

}
+ 1

2

{
ĉ†k ĉk′ , b̂

†
K̃
b̂K̃′
}[
âq , â

†
q′

] 

−〈Vk|αbeiqaxa |Vk′ 〉 〈UK′ |αb′e−iq
′
axa |UK〉

(
ẼK′−ẼK+ω̃q′

)
−(Ẽk′−Ẽk−ω̃q)

(Ẽk′−Ẽk−ω̃q)
2
+
(
ẼK′−ẼK+ω̃q′

)2

 1
2

[
b̂†
k̃′
b̂k̃, ĉ

†
K′ ĉK

]{
âq , â

†
q′

}
+ 1

2

{
b̂†
k̃′
b̂k̃, ĉ

†
K′ ĉK

}[
âq , â

†
q′

] 


= −

(
qe

m0c

)2 ∑
k,k′

∑
K,K′

lim
V→∞

1

V

∑
q>qB

∑
q′>qB

∑
b,b′
Ab (q)Ab′

(
q′
)

×



+ 〈Uk|αbeiqaxa |Uk′ 〉 〈UK′ |αb′e−iq
′
axa |UK〉

(
ẼK′−ẼK+ω̃q′

)
−(Ẽk−Ẽk′−ω̃q)

(Ẽk−Ẽk′−ω̃q)
2
+
(
ẼK′−ẼK+ω̃q′

)2×

×

 (
δk′.K′ ĉ

†
k ĉK − δk,K ĉ

†
K′ ĉk′

)(
â†
q′ âq + 1

2
δq,q′ 1̂

)
+
(
δk′.K′ ĉ

†
k ĉK + δk,K ĉ

†
K′ ĉk′ + 2ĉ†k ĉ

†
K′ ĉK ĉk′

)
1
2
δq,q′



+ 〈Vk|αbeiqaxa |Vk′ 〉 〈VK′ |αb′e−iq
′
axa |VK〉

(
ẼK−ẼK′+ω̃q′

)
−(Ẽk′−Ẽk−ω̃q)

(Ẽk′−Ẽk−ω̃q)
2
+
(
ẼK−ẼK′+ω̃q′

)2×

×

 (
δk,K b̂

†
k̃′
b̂K̃′ − δK′,k′ b̂

†
K̃
b̂k̃

)(
â†
q′ âq + 1

2
δq,q′ 1̂

)
+
(
δk,K b̂

†
k̃′
b̂K̃′ + δK′,k′ b̂

†
K̃
b̂k̃ + 2b̂†

k̃′
b̂†
K̃
b̂K̃′ b̂k̃

)
1
2
δq,q′



−〈Uk|αbeiqaxa |Uk′ 〉 〈VK′ |αb′e−iq
′
axa |VK〉

(
ẼK−ẼK′+ω̃q′

)
−(Ẽk−Ẽk′−ω̃q)

(Ẽk−Ẽk′−ω̃q)
2
+
(
ẼK−ẼK′+ω̃q′

)2 ĉ
†
k ĉk′ b̂

†
K̃
b̂K̃′δq,q′

−〈Vk|αbeiqaxa |Vk′ 〉 〈UK′ |αb′e−iq
′
axa |UK〉

(
ẼK′−ẼK+ω̃q′

)
−(Ẽk′−Ẽk−ω̃q)

(Ẽk′−Ẽk−ω̃q)
2
+
(
ẼK′−ẼK+ω̃q′

)2 b̂
†
k̃′
b̂k̃ ĉ
†
K′ ĉKδq,q′


(523)

In the last line of (523) use has been made of

[
ĉ†kĉk′, ĉ

†
K ′ ĉK

]
= δk′.K ′ ĉ

†
kĉK − δk,K ĉ

†
K ′ ĉk′ (524)

{
ĉ†kĉk′, ĉ

†
K ′ ĉK

}
= δk′.K ′ ĉ

†
kĉK + δk,K ĉ

†
K ′ ĉk′ + 2ĉ†kĉ

†
K ′ ĉK ĉk′ (525)

[
b̂†
k̃′
b̂k̃, b̂

†
K̃
b̂K̃ ′
]

= δk,K b̂
†
k̃′
b̂K̃ ′ − δK ′,k′ b̂

†
K̃
b̂k̃ (526)

{
b̂†
k̃′
b̂k̃, b̂

†
K̃
b̂K̃ ′
}

= δk,K b̂
†
k̃′
b̂K̃ ′ + δK ′,k′ b̂

†
K̃
b̂k̃ + 2b̂†

k̃′
b̂†
K̃
b̂K̃ ′ b̂k̃ (527)
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and

1

2

{
âq, â

†
q′

}
=

1

2

(
âqâ

†
q′ + â†q′âq

)
=

1

2

(
2â†q′âq + âqâ

†
q′ − â

†
q′âq

)
= â†q′âq+

1

2
δq,q′1̂

(528)

Several rearrangements lead to [7]

lim
s→∞

lim
V→∞

∫ s

0
ds′Ĵ

(0,0)
1

(
s, s′

)
= +

(
qe

m0c

)2 ∑
k,k′

∑
K,K′

× lim
V→∞

×



1
V

∑
q,q′ κqκq′

∑
b,b′ Ab (q)Ab′ (q′) 〈Uk|αbeiqaxa |Uk′ 〉 〈UK′ |αb′e−iq

′
axa |UK〉

(Ẽk−Ẽk′−ω̃q)−
(
ẼK′−ẼK+ω̃q′

)
(Ẽk−Ẽk′−ω̃q)

2
+
(
ẼK′−ẼK+ω̃q′

)2×

×
( (

δk′.K′ ĉ
†
k ĉK − δk,K ĉ

†
K′ ĉk′

)
â†
q′ âq

+δq,q′ ĉ
†
k ĉ
†
K′ ĉK ĉk′ + δq,q′δk′.K′ ĉ

†
k ĉK

)

+ 1
V

∑
q,q′ κqκq′

∑
b,b′ Ab (q)Ab′ (q′) 〈Vk|αbeiqaxa |Vk′ 〉 〈VK′ |αb′e−iq

′
axa |VK〉

(Ẽk′−Ẽk−ω̃q)−
(
ẼK−ẼK′+ω̃q′

)
(Ẽk′−Ẽk−ω̃q)

2
+
(
ẼK−ẼK′+ω̃q′

)2×

×

 (
δk,K b̂

†
k̃′
b̂K̃′ − δK′,k′ b̂

†
K̃
b̂k̃

)
â†
q′ âq

+δq,q′ b̂
†
k̃′
b̂†
K̃
b̂K̃′ b̂k̃ + δq,q′δk,K b̂

†
k̃′
b̂K̃′



+ 1
V

∑
q κq

∑
b,b′ Ab (q)Ab′ (q) 〈Uk|αbeiqaxa |Uk′ 〉 〈VK′ |αb′e−iqaxa |VK〉

(ẼK−ẼK′+ω̃q)−(Ẽk−Ẽk′−ω̃q)
(Ẽk−Ẽk′−ω̃q)

2
+(ẼK−ẼK′+ω̃q)

2 ĉ
†
k ĉk′ b̂

†
K̃
b̂K̃′

+ 1
V

∑
q κq

∑
b,b′ Ab (q)Ab′ (q) 〈Vk|αbeiqaxa |Vk′ 〉 〈UK′ |αb′e−iqaxa |UK〉

(ẼK′−ẼK+ω̃q)−(Ẽk′−Ẽk−ω̃q)
(Ẽk′−Ẽk−ω̃q)

2
+(ẼK′−ẼK+ω̃q)

2 ĉ
†
K′ ĉK b̂

†
k̃′
b̂k̃


(529)

Here we have inserted the definitions of the electromagnetic
amplitudes (24), (25),(26), and the polarization vectors (28).

Now with [7]

1

V

∑
q

κqAb (q)Ab′ (q) =
1

V

∑
q

κq
∑

λε{I.II}

Ab (q, λ)Ab′ (q, λ)

=
1

V

∑
q

κq
∑

λε{I.II}

√
~

2ε0ω (q)
ub (q, λ)

√
~

2ε0ω (q)
ub′ (q, λ)

=
1

V

∑
q

κq
~

2ε0ω (q)

 ∑
λε{I.II}

ub (q, λ)ub′ (q, λ)


=

1

V

∑
q

κq
~

2ε0ω (q)

(
δb,b′ −

qbqb′

|q|2

)
(530)

and renaming the summation indices according to
{k, k′, K,K ′, b, b′, q} →

{
K ′, K, k′, k, b′, b,−q

}
(minding ω̃−q = ω̃q)

then [7]
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lim
s→∞

lim
V→∞

∫ s

0
ds′Ĵ

(0,0)
1

(
s, s′

)
= +

(
qe

m0c

)2 ∑
k,k′

∑
K,K′

× lim
V→∞

×



1
V

∑
q,q′ κqκq′

∑
b,b′ Ab (q)Ab′ (q′) 〈Uk|αbeiqaxa |Uk′ 〉 〈UK′ |αb′e−iq

′
axa |UK〉

(Ẽk−Ẽk′−ω̃q)−
(
ẼK′−ẼK+ω̃q′

)
(Ẽk−Ẽk′−ω̃q)

2
+
(
ẼK′−ẼK+ω̃q′

)2×

×
( (

δk′.K′ ĉ
†
k ĉK − δk,K ĉ

†
K′ ĉk′

)
â†
q′ âq

+δq,q′ ĉ
†
k ĉ
†
K′ ĉK ĉk′ + δq,q′δk′.K′ ĉ

†
k ĉK

)

+ 1
V

∑
q,q′ κqκq′

∑
b,b′ Ab (q)Ab′ (q′) 〈Vk|αbeiqaxa |Vk′ 〉 〈VK′ |αb′e−iq

′
axa |VK〉

(Ẽk′−Ẽk−ω̃q)−
(
ẼK−ẼK′+ω̃q′

)
(Ẽk′−Ẽk−ω̃q)

2
+
(
ẼK−ẼK′+ω̃q′

)2×

×

 (
δk,K b̂

†
k̃′
b̂K̃′ − δK′,k′ b̂

†
K̃
b̂k̃

)
â†
q′ âq

+δq,q′ b̂
†
k̃′
b̂†
K̃
b̂K̃′ b̂k̃ + δq,q′δk,K b̂

†
k̃′
b̂K̃′



+ 1
V

∑
q κq

~
2ε0ω(q)

(
δb,b′ −

qbqb′
|q|2

)
〈Uk|αbeiqaxa |Uk′ 〉 〈VK′ |αb′e−iqaxa |VK〉

(ẼK−ẼK′+ω̃q)−(Ẽk−Ẽk′−ω̃q)
(Ẽk−Ẽk′−ω̃q)

2
+(ẼK−ẼK′+ω̃q)

2 ĉ
†
k ĉk′ b̂

†
K̃
b̂K̃′

+ 1
V

∑
q κq

~
2ε0ω(q)

(
δb,b′ −

qbqb′
|q|2

) 〈
VK′

∣∣αb′e−iqaxa ∣∣VK〉 〈Uk∣∣αbeiqaxa ∣∣Uk′〉 (
Ẽk−Ẽk′+ω̃q

)
−
(
ẼK−ẼK′−ω̃q

)
(
ẼK−ẼK′−ω̃q

)2
+
(
Ẽk−Ẽk′+ω̃q

)2 ĉ
†
k ĉk′ b̂

†
K̃
b̂
K̃′


(531)

(531) can last be summarized to [7]

lim
s→∞

lim
V→∞

∫ s

0
ds′Ĵ

(0,0)
1

(
s, s′

)
= +

(
qe

m0c

)2 ∑
k,k′

∑
K,K′

× lim
V→∞

×



1
V

∑
q,q′ κqκq′

∑
b,b′ Ab (q)Ab′ (q′) 〈Uk|αbeiqaxa |Uk′ 〉 〈UK′ |αb′e−iq

′
axa |UK〉×

×
(Ẽk−Ẽk′−ω̃q)−

(
ẼK′−ẼK+ω̃q′

)
(Ẽk−Ẽk′−ω̃q)

2
+
(
ẼK′−ẼK+ω̃q′

)2

(
δk′.K′ ĉ

†
k ĉK − δk,K ĉ

†
K′ ĉk′

)
â†
q′ âq

+ 1
V

∑
q,q′ κqκq′

∑
b,b′ Ab (q)Ab′ (q′) 〈Vk|αbeiqaxa |Vk′ 〉 〈VK′ |αb′e−iq

′
axa |VK〉×

×
(Ẽk′−Ẽk−ω̃q)−

(
ẼK−ẼK′+ω̃q′

)
(Ẽk′−Ẽk−ω̃q)

2
+
(
ẼK−ẼK′+ω̃q′

)2

(
δk,K b̂

†
k̃′
b̂K̃′ − δK′,k′ b̂

†
K̃
b̂k̃

)
â†
q′ âq

+ 1
V

∑
q κq

~
2ε0ω(q)

∑
b,b′

(
δb,b′ −

qbqb′
|q|2

)
〈Uk|αbeiqaxa |Uk′ 〉 〈UK′ |αb′e−iqaxa |UK〉×

× (Ẽk−Ẽk′−ω̃q)−(ẼK′−ẼK+ω̃q)
(Ẽk−Ẽk′−ω̃q)

2
+(ẼK′−ẼK+ω̃q)

2 δk′.K′ ĉ
†
k ĉK

+ 1
V

∑
q κq

~
2ε0ω(q)

∑
b,b′

(
δb,b′ −

qbqb′
|q|2

)
〈Vk|αbeiqaxa |Vk′ 〉 〈VK′ |αb′e−iqaxa |VK〉×

× (Ẽk′−Ẽk−ω̃q)−(ẼK−ẼK′+ω̃q)
(Ẽk′−Ẽk−ω̃q)

2
+(ẼK−ẼK′+ω̃q)

2 δk,K b̂
†
k̃′
b̂K̃′

+ 1
V

∑
q κq

~
2ε0ω(q)

∑
b,b′

(
δb,b′ −

qbqb′
|q|2

)
〈Uk|αbeiqaxa |Uk′ 〉 〈UK′ |αb′e−iqaxa |UK〉×

× (Ẽk−Ẽk′−ω̃q)−(ẼK′−ẼK+ω̃q)
(Ẽk−Ẽk′−ω̃q)

2
+(ẼK′−ẼK+ω̃q)

2 ĉ
†
k ĉ
†
K′ ĉK ĉk′

+ 1
V

∑
q κq

~
2ε0ω(q)

∑
b,b′

(
δb,b′ −

qbqb′
|q|2

)
〈Vk|αbeiqaxa |Vk′ 〉 〈VK′ |αb′e−iqaxa |VK〉×

× (Ẽk′−Ẽk−ω̃q)−(ẼK−ẼK′+ω̃q)
(Ẽk′−Ẽk−ω̃q)

2
+(ẼK−ẼK′+ω̃q)

2 b̂
†
k̃′
b̂†
K̃
b̂K̃′ b̂k̃

+ 1
V

∑
q κq

~
2ε0ω(q)

∑
b,b′

(
δb,b′ −

qbqb′
|q|2

)
〈Uk|αbeiqaxa |Uk′ 〉 〈VK′ |αb′e−iqaxa |VK〉×

×
(

(ẼK−ẼK′+ω̃q)−(Ẽk−Ẽk′−ω̃q)
(Ẽk−Ẽk′−ω̃q)

2
+(ẼK−ẼK′+ω̃q)

2 +
(Ẽk−Ẽk′+ω̃q)−(ẼK−ẼK′−ω̃q)

(ẼK−ẼK′−ω̃q)
2
+(Ẽk−Ẽk′+ω̃q)

2

)
ĉ†k ĉk′ b̂

†
K̃
b̂K̃′



(532)

where no particle number violating term occurs!

The terms in the first two lines contribute to the self–energy of the
photon Q̂⊥,ph. The terms in the third and fourth line contribute to the
renormalization contributions M̂⊥ of the fermions, whereas the other
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terms contribute to the transversal effective matter–matter interaction
V̂⊥,ee, the effective positron–positron interaction V̂⊥,pp and the effective
electron–positron interaction V̂⊥,ep.

Integral 2

The second integral is given by

lim
s→∞

lim
V→∞

∫ s

0
ds′Ĵ

(0,0)
2

(
s, s′

)
= −

(
qe

m0c

)2

lim
s→∞

lim
V→∞

∑
k,k′

∑
K,K′

1

V

∑
q,q′

∑
b,b′
Ab (q)Ab′

(
q′
)
×

×



+
∫ s
0 ds

′ 〈Uk|αbeiqaxa |Uk′ 〉 〈UK |αb′eiq
′
axa |UK′ 〉 e−κqs

′(Ẽk−Ẽk′−ω̃q)
2

e
−κq′s

′
(
ẼK−ẼK′−ω̃q′

)2

×
×
(
Ẽk − Ẽk′ − ω̃q + 2

(
ẼK − ẼK′ − ω̃q′

))
κq′×

×e−(s−s′)
(
−κq−κq′

)2(
Ẽk−Ẽk′−ω̃q+ẼK−ẼK′−ω̃q′

)2 [
ĉ†k ĉk′ âq , ĉ

†
K ĉK′ âq′

]
+
∫ s
0 ds

′ 〈Vk|αbeiqaxa |Vk′ 〉 〈VK |αb′eiq
′
axa |VK′ 〉 e−κqs

′(Ẽk′−Ẽk−ω̃q)
2

e
−κq′s

′
(
ẼK′−ẼK−ω̃q′

)2

×
×
(
Ẽk′ − Ẽk − ω̃q + 2

(
ẼK′ − ẼK − ω̃q′

))
κq′×

×e−(s−s′)
(
−κq−κq′

)2(
Ẽk′−Ẽk−ω̃q+ẼK′−ẼK−ω̃q′

)2 [
b̂†
k̃′
b̂k̃âq , b̂

†
K̃′
b̂K̃ âq′

]
+
∫ s
0 ds

′ 〈Uk′ |αbe−iqaxa |Uk〉 〈UK′ |αb′e−iq
′
axa |UK〉 e−κqs

′(Ẽk′−Ẽk+ω̃q)
2

e
−κq′s

′
(
ẼK′−ẼK+ω̃q′

)2

×
×
(
Ẽk′ − Ẽk + ω̃q + 2

(
ẼK′ − ẼK + ω̃q′

))
κq′×

×e−(s−s′)
(
κq+κq′

)2(
Ẽk′−Ẽk+ω̃q+ẼK′−ẼK+ω̃q′

)2 [
ĉ†
k′ ĉkâ

†
q , ĉ
†
K′ ĉK â

†
q′

]
+
∫ s
0 ds

′ 〈Vk′ |αbe−iqaxa |Vk〉 〈VK′ |αb′e−iq
′
axa |VK〉 e−κqs

′(Ẽk−Ẽk′+ω̃q)
2

e
−κq′s

′
(
ẼK−ẼK′+ω̃q′

)2

×
×
(
Ẽk − Ẽk′ + ω̃q + 2

(
ẼK − ẼK′ + ω̃q′

))
κq′×

×e−(s−s′)
(
κq+κq′

)2(
Ẽk−Ẽk′+ω̃q+ẼK−ẼK′+ω̃q′

)2 [
b̂†
k̃
b̂k̃′ â

†
q , b̂
†
K̃
b̂K̃′ â

†
q′

]


(533)

The integrals occuring here are of the type [7]

f
(0,0)
2

(
x, y, κq, κq′

)
= (x+ 2y)κq′

∫ s

0
ds′e−(s−s′)(κq+κq′)

2
(x+y)2

e−s
′(κqx2+κq′y

2)

= (x+ 2y)κq′
e−s(κqx

2+κq′y
2) − e−s(κq+κq′)

2
(x+y)2(

κq + κq′
)2

(x+ y)2 − κqx2 − κq′y2

=

0 für κq′ = 0

(x+ 2y) e
−s(κqx2+y2)−e−s(κq+1)2

(x+y)2

(κq+1)2(x+y)2−κqx2−y2
für κq′ = 1

=


0 für κq′ = 0

(x+ 2y) e
−sy2−e−s(x+y)2

(x+y)2−y2
für κq′ = 1, κq = 0

(x+ 2y) e
−s(x2+y2)−e−4s(x+y)2

4(x+y)2−x2−y2
für κq′ = 1, κq = 1

(534)

Hence, all terms for κq, κq′ ∈ {0, 1} yield the contribution zero in the
limit s→∞ (besides a term of zero measure x+ y = 0) [7]:
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lim
s→∞

lim
V→∞

∫ s

0

ds′Ĵ
(0,0)
2 (s, s′) = 0 (535)

Integral 3

The third integral is given by

lim
s→∞

lim
V→∞

∫ s

0
ds′Ĵ

(0,+)
1

(
s, s′

)
= − lim

s→∞
lim
V→∞

(
qe

m0c

)2 ∑
k,k′

∑
K,K′

1

V

∑
q,q′

∑
b,b′
Ab (q)Ab′

(
q′
)
×

×



∫ s
0 ds

′ 〈Uk|αbeiqaxa |Vk′ 〉 〈VK′ |αb′e−iq
′
axa |UK〉 e−(4+κq)s′(Ẽk+Ẽk′−ω̃q)

2

e
−
(
4+κq′

)
s′
(
−ẼK′−ẼK+ω̃q′

)2

×
×
(
Ẽk + Ẽk′ − ω̃q + 2

(
−ẼK − ẼK′ + ω̃q′

)) (
4 + κq′

)
×

×e−(s−s′)
(
−κq+κq′

)2(
Ẽk+Ẽk′−ω̃q−ẼK′−ẼK+ω̃q′

)2 [
ĉ†k b̂
†
k̃′
âq , b̂K̃′ ĉK â

†
q′

]
+
∫ s
0 ds

′ 〈Uk|αbe−iqaxa |Vk′ 〉 〈VK′ |αb′e+iq
′
axa |UK〉 e−(4+κq)s′(Ẽk+Ẽk′+ω̃q)

2

e
−
(
4+κq′

)
s′
(
−ẼK′−ẼK−ω̃q′

)2

×
×
(
Ẽk + Ẽk′ + ω̃q + 2

(
−ẼK′ − ẼK − ω̃q′

)) (
4 + κq′

)
×

×e−(s−s′)
(
κq−κq′

)2(
Ẽk+Ẽk′+ω̃q−ẼK′−ẼK−ω̃q′

)2 [
ĉ†k b̂
†
k̃′
â†q , b̂K̃′ ĉK âq′

]


(536)

The occuring integrals are of the type [7]

f
(0,+)
1

(
x, y, κq, κq′

)
= (x+ 2y)

(
4 + κq′

) ∫ s

0
ds′e−(s−s′)(κq−κq′)

2
(x+y)2

e−s
′((4+κq)x2+(4+κq′)y2)

= (x+ 2y)
(
4 + κq′

)
e−s(κq−κq′)

2
(x+y)2

∫ s

0
ds′e

s′
(
(κq−κq′)

2
(x+y)2−(4+κq)x2−(4+κq′)y2

)

= (x+ 2y)
(
4 + κq′

) e−s((4+κq)x2+(4+κq′)y2) − e−s(κq−κq′)
2
(x+y)2(

κq − κq′
)2

(x+ y)2 − (4 + κq)x2 −
(
4 + κq′

)
y2

=



x+2y
x2+y2

(
1− e−s(4x2+4y2)

)
für κq′ = 0, κq = 0

(x+2y)5

(x+y)2−4x2−5y2

(
e−s(4x2+5y2) − e−s(x+y)2

)
für κq′ = 1, κq = 0

(x+2y)4

(x+y)2−5x2−4y2

(
e−s(5x2+4y2) − e−s(x+y)2

)
für κq′ = 0, κq = 1

x+2y
x2+y2

(
1− e−s(5x2+5y2)

)
für κq′ = 1, κq = 1

(537)

In the limit s → ∞ the term with κq′ = 1 and κq = 0, as well as
the term with κq′ = 0 and κq = 1 do not contribute (besides the
zero measure contribution x+ y = 0). The contributions of the terms
κq′ = 1 and κq = 1, as well as κq′ = 0 and κq = 0 are the same.
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Therefore one finds for (536) [7]

lim
s→∞

lim
V→∞

∫ s

0
ds′Ĵ

(0,+)
1

(
s, s′

)
= − lim

s→∞
lim
V→∞

(
qe

m0c

)2 ∑
k,k′

∑
K,K′

1

V

∑
q,q′

∑
b,b′
Ab (q)Ab′

(
q′
)
×

×


〈Uk|αbeiqaxa |Vk′ 〉 〈VK′ |αb′e−iq

′
axa |UK〉

(Ẽk+Ẽk′−ω̃q)+2
(
−ẼK−ẼK′+ω̃q′

)
(Ẽk+Ẽk′−ω̃q)

2
+
(
−ẼK′−ẼK+ω̃q′

)2

[
ĉ†k b̂
†
k̃′
âq , b̂K̃′ ĉK â

†
q′

]

+ 〈Uk|αbe−iqaxa |Vk′ 〉 〈VK′ |αb′e+iq
′
axa |UK〉

(Ẽk+Ẽk′+ω̃q)+2
(
−ẼK′−ẼK−ω̃q′

)
(Ẽk+Ẽk′+ω̃q)

2
+
(
−ẼK′−ẼK−ω̃q′

)2

[
ĉ†k b̂
†
k̃′
â†q , b̂K̃′ ĉK âq′

]

(538)

Now with the relations (521) one can write [7]

lim
s→∞

lim
V→∞

∫ s

0
ds′Ĵ

(0,+)
1

(
s, s′

)
= − lim

s→∞
lim
V→∞

(
qe

m0c

)2 ∑
k,k′

∑
K,K′

1

V

∑
q,q′

∑
b,b′
Ab (q)Ab′

(
q′
)
×

×


〈Uk|αbeiqaxa |Vk′ 〉 〈VK′ |αb′e−iq

′
axa |UK〉

(Ẽk+Ẽk′−ω̃q)+2
(
−ẼK−ẼK′+ω̃q′

)
(Ẽk+Ẽk′−ω̃q)

2
+
(
−ẼK′−ẼK+ω̃q′

)2

 1
2

[
ĉ†k b̂
†
k̃′
, b̂K̃′ ĉK

]{
âq , â

†
q′

}
+ 1

2

{
ĉ†k b̂
†
k̃′
, b̂K̃′ ĉK

}[
âq , â

†
q′

] 

+ 〈Uk|αbe−iqaxa |Vk′ 〉 〈VK′ |αb′e+iq
′
axa |UK〉

(Ẽk+Ẽk′+ω̃q)+2
(
−ẼK′−ẼK−ω̃q′

)
(Ẽk+Ẽk′+ω̃q)

2
+
(
−ẼK′−ẼK−ω̃q′

)2

 1
2

[
ĉ†k b̂
†
k̃′
, b̂K̃′ ĉK

]{
â†q , âq′

}
+ 1

2

{
ĉ†k b̂
†
k̃′
, b̂K̃′ ĉK

}[
â†q , âq′

] 


(539)

(539) can be evaluated according to [7]

lim
s→∞

lim
V→∞

∫ s

0
ds′Ĵ

(0,+)
1

(
s, s′

)
= −

(
qe

m0c

)2 ∑
k,k′

∑
K,K′

lim
V→∞

1

V

 ∑
q>qB

∑
q′>qB

+
∑
q<qB

∑
q′<qB

∑
b,b′
Ab (q)Ab′

(
q′
)
×

×



〈Uk|αbeiqaxa |Vk′ 〉 〈VK′ |αb′e−iq
′
axa |UK〉

(Ẽk+Ẽk′−ω̃q)+2
(
−ẼK−ẼK′+ω̃q′

)
(Ẽk+Ẽk′−ω̃q)

2
+
(
−ẼK′−ẼK+ω̃q′

)2×

×
((
−δK′,k′δK,k1̂ + δK,k b̂

†
k̃′
b̂K̃′ + δK′,k′ ĉ

†
k ĉK

)
â†
q′ âq + δq,q′ ĉ

†
k ĉK b̂

†
k̃′
b̂K̃′
)

+ 〈Uk|αbe−iqaxa |Vk′ 〉 〈VK′ |αb′e+iq
′
axa |UK〉

(Ẽk+Ẽk′+ω̃q)+2
(
−ẼK′−ẼK−ω̃q′

)
(Ẽk+Ẽk′+ω̃q)

2
+
(
−ẼK′−ẼK−ω̃q′

)2×

×


+
(
−δK′,k′δK,k1̂ + δK,k b̂

†
k̃′
b̂K̃′ + δK′,k′ ĉ

†
k ĉK

)
â†q âq′ − δq,q′ ĉ

†
k ĉK b̂

†
k̃′
b̂K̃′

+
(

1
2

+ 1
2

)
δq,q′

(
−δK′,k′δK,k1̂ + δK,k b̂

†
k̃′
b̂K̃′ + δK′,k′ ĉ

†
k ĉK

)




(540)

where use has been made of[
ĉ†kb̂
†
k̃′
, b̂K̃ ′ ĉK

]
= −δK ′,k′δK,k1̂ + δK,kb̂

†
k̃′
b̂K̃ ′ + δK ′,k′ ĉ

†
kĉK (541)

{
ĉ†kb̂
†
k̃′
, b̂K̃ ′ ĉK

}
= δK ′,k′δK,k1̂− δK,kb̂†k̃′ b̂K̃ ′ − δK ′,k′ ĉ

†
kĉK + 2ĉ†kĉK b̂

†
k̃′
b̂K̃ ′

(542)
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and the identity (528).

Decomposing (540) into contributions with and without photons there
follows [7]

lim
s→∞

lim
V→∞

∫ s

0
ds′Ĵ

(0,+)
1

(
s, s′

)
= −

(
qe

m0c

)2 ∑
k,k′

∑
K,K′

lim
V→∞

1

V

 ∑
q>qB

∑
q′>qB

+
∑
q<qB

∑
q′<qB

∑
b,b′
Ab (q)Ab′

(
q′
)
×

×



〈Uk|αbeiqaxa |Vk′ 〉 〈VK′ |αb′e−iq
′
axa |UK〉

(Ẽk+Ẽk′−ω̃q)+2
(
−ẼK−ẼK′+ω̃q′

)
(Ẽk+Ẽk′−ω̃q)

2
+
(
−ẼK′−ẼK+ω̃q′

)2×

×
(
−δK′,k′δK,k1̂ + δK,k b̂

†
k̃′
b̂K̃′ + δK′,k′ ĉ

†
k ĉK

)
â†
q′ âq

+ 〈Uk|αbe−iqaxa |Vk′ 〉 〈VK′ |αb′e+iq
′
axa |UK〉

(Ẽk+Ẽk′+ω̃q)+2
(
−ẼK′−ẼK−ω̃q′

)
(Ẽk+Ẽk′+ω̃q)

2
+
(
−ẼK′−ẼK−ω̃q′

)2×

×
(
−δK′,k′δK,k1̂ + δK,k b̂

†
k̃′
b̂K̃′ + δK′,k′ ĉ

†
k ĉK

)
â†q âq′

+ 〈Uk|αbeiqaxa |Vk′ 〉 〈VK′ |αb′e−iq
′
axa |UK〉

(Ẽk+Ẽk′−ω̃q)+2
(
−ẼK−ẼK′+ω̃q′

)
(Ẽk+Ẽk′−ω̃q)

2
+
(
−ẼK′−ẼK+ω̃q′

)2 δq,q′ ĉ
†
k ĉK b̂

†
k̃′
b̂K̃′

−〈Uk|αbe−iqaxa |Vk′ 〉 〈VK′ |αb′e+iq
′
axa |UK〉

(Ẽk+Ẽk′+ω̃q)+2
(
−ẼK′−ẼK−ω̃q′

)
(Ẽk+Ẽk′+ω̃q)

2
+
(
−ẼK′−ẼK−ω̃q′

)2 δq,q′ ĉ
†
k ĉK b̂

†
k̃′
b̂K̃′

+ 〈Uk|αbe−iqaxa |Vk′ 〉 〈VK′ |αb′e+iq
′
axa |UK〉

(Ẽk+Ẽk′+ω̃q)+2
(
−ẼK′−ẼK−ω̃q′

)
(Ẽk+Ẽk′+ω̃q)

2
+
(
−ẼK′−ẼK−ω̃q′

)2×

×δq,q′
(
−δK′,k′δK,k1̂ + δK,k b̂

†
k̃′
b̂K̃′ + δK′,k′ ĉ

†
k ĉK

)


(543)

In the terms with δq,q′ the definitions of the electromagnetic amplitudes
(24), (25),(26), and the polarization vectors (28) are inserted [7]:

1

V

∑
q>qB

∑
q′>qB

+
∑
q<qB

∑
q′<qB

Ab (q)Ab′ (q′) δq,q′F (q, q′)

=
1

V

∑
q,λ

Ab (q, λ)Ab′ (q, λ)F (q, q)

=
1

V

∑
q

~
2ε0ω (q)

 ∑
λε{I.II}

ub (q, λ)ub′ (q, λ)

F (q, q)

=
1

V

∑
q

~
2ε0ω (q)

(
δb,b′ −

qbqb′

|q|2

)
F (q, q)

(544)

which leads to [7]

214



lim
s→∞

lim
V→∞

∫ s

0
ds′Ĵ

(0,+)
1

(
s, s′

)
= −

(
qe

m0c

)2 ∑
k,k′

∑
K,K′

lim
V→∞

×

×



1
V

(∑
q>qB

∑
q′>qB

+
∑
q<qB

∑
q′<qB

)∑
b,b′ Ab (q)Ab′ (q′) 〈Uk|αbeiqaxa |Vk′ 〉 〈VK′ |αb′e−iq

′
axa |UK〉×

×
(Ẽk+Ẽk′−ω̃q)+2

(
−ẼK−ẼK′+ω̃q′

)
(Ẽk+Ẽk′−ω̃q)

2
+
(
−ẼK′−ẼK+ω̃q′

)2

(
−δK′,k′δK,k1̂ + δK,k b̂

†
k̃′
b̂K̃′ + δK′,k′ ĉ

†
k ĉK

)
â†
q′ âq

+ 1
V

(∑
q>qB

∑
q′>qB

+
∑
q<qB

∑
q′<qB

)∑
b,b′ Ab (q)Ab′ (q′) 〈Uk|αbe−iqaxa |Vk′ 〉 〈VK′ |αb′e+iq

′
axa |UK〉×

×
(Ẽk+Ẽk′+ω̃q)+2

(
−ẼK′−ẼK−ω̃q′

)
(Ẽk+Ẽk′+ω̃q)

2
+
(
−ẼK′−ẼK−ω̃q′

)2

(
−δK′,k′δK,k1̂ + δK,k b̂

†
k̃′
b̂K̃′ + δK′,k′ ĉ

†
k ĉK

)
â†q âq′

+ 1
V

∑
q

~
2ε0ω(q)

(
δb,b′ −

qbqb′
|q|2

)
〈Uk|αbeiqaxa |Vk′ 〉 〈VK′ |αb′e−iqaxa |UK〉

(Ẽk+Ẽk′−ω̃q)+2(−ẼK−ẼK′+ω̃q)
(Ẽk+Ẽk′−ω̃q)

2
+(−ẼK′−ẼK+ω̃q)

2 ĉ
†
k ĉK b̂

†
k̃′
b̂K̃′

− 1
V

∑
q

~
2ε0ω(q)

(
δb,b′ −

qbqb′
|q|2

)
〈Uk|αbe−iqaxa |Vk′ 〉 〈VK′ |αb′e+iq

′
axa |UK〉

(Ẽk+Ẽk′+ω̃q)+2(−ẼK′−ẼK−ω̃q)
(Ẽk+Ẽk′+ω̃q)

2
+(−ẼK′−ẼK−ω̃q)

2 ĉ
†
k ĉK b̂

†
k̃′
b̂K̃′

+ 1
V

∑
q

~
2ε0ω(q)

(
δb,b′ −

qbqb′
|q|2

)
〈Uk|αbe−iqaxa |Vk′ 〉 〈VK′ |αb′e+iq

′
axa |UK〉

(Ẽk+Ẽk′+ω̃q)+2
(
−ẼK′−ẼK−ω̃q′

)
(Ẽk+Ẽk′+ω̃q)

2
+
(
−ẼK′−ẼK−ω̃q′

)2×

×
(
−δK′,k′δK,k1̂ + δK,k b̂

†
k̃′
b̂K̃′ + δK′,k′ ĉ

†
k ĉK

)


(545)

Adding the hermetian conjugate Ĵ
(0,−)
1 (s, s′) yields after some

rearrangements [7]

lim
s→∞

lim
V→∞

∫ s

0
ds′
(
Ĵ

(0,+)
1

(
s, s′

)
+ Ĵ

(0,−)
1

(
s, s′

))
= +

(
qe

m0c

)2 ∑
k,k′

∑
K,K′

lim
V→∞

×

×



1
V

(∑
q>qB

∑
q′>qB

+
∑
q<qB

∑
q′<qB

)∑
b,b′ Ab (q)Ab′ (q′) 〈Uk|αbeiqaxa |Vk′ 〉 〈VK′ |αb′e−iq

′
axa |UK〉×

×
(Ẽk+Ẽk′−ω̃q)+

(
ẼK+ẼK′−ω̃q′

)
(Ẽk+Ẽk′−ω̃q)

2
+
(
ẼK+ẼK′−ω̃q′

)2

(
−δk′,K′δk,K 1̂ + δk,K b̂

†
k̃′
b̂K̃′ + δk′,K′ ĉ

†
k ĉK

)
â†
q′ âq

+ 1
V

(∑
q>qB

∑
q′>qB

+
∑
q<qB

∑
q′<qB

)∑
b,b′ Ab (q)Ab′ (q′) 〈Uk|αbe−iqaxa |Vk′ 〉 〈VK′ |αb′e+iq

′
axa |UK〉×

×
(Ẽk+Ẽk′+ω̃q)+

(
ẼK+ẼK′+ω̃q′

)
(Ẽk+Ẽk′+ω̃q)

2
+
(
ẼK+ẼK′+ω̃q′

)2

(
−δK′,k′δK,k1̂ + δK,k b̂

†
k̃′
b̂K̃′ + δK′,k′ ĉ

†
k ĉK

)
â†q âq′

+ 1
V

∑
q

~
2ε0ω(q)

(
δb,b′ −

qbqb′
|q|2

)∑
b,b′ 〈Uk|αbe−iqaxa |Vk′ 〉 〈VK′ |αb′e+iqaxa |UK〉×

×
(

(Ẽk+Ẽk′−ω̃q)+(ẼK+ẼK′−ω̃q)
(Ẽk+Ẽk′−ω̃q)

2
+(ẼK+ẼK′−ω̃q)

2 −
(Ẽk+Ẽk′+ω̃q)+(ẼK+ẼK′+ω̃q)

(Ẽk+Ẽk′+ω̃q)
2
+(ẼK+ẼK′+ω̃q)

2

)
ĉ†k ĉK b̂

†
k̃′
b̂K̃′

+ 1
V

∑
q

~
2ε0ω(q)

(
δb,b′ −

qbqb′
|q|2

)∑
b,b′ 〈Uk|αbe−iqaxa |Vk′ 〉 〈VK′ |αb′e+iqaxa |UK〉×

× (Ẽk+Ẽk′+ω̃q)+(ẼK+ẼK′+ω̃q)
(Ẽk+Ẽk′+ω̃q)

2
+(ẼK+ẼK′+ω̃q)

2

(
−δk′,K′δk,K 1̂ + δk,K b̂

†
k̃′
b̂K̃′ + δk′,K′ ĉ

†
k ĉK

)


(546)

(546) can be finally rewritte according to [7]
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lim
s→∞

lim
V→∞

∫ s

0
ds′
(
Ĵ

(0,+)
1

(
s, s′

)
+ Ĵ

(0,−)
1

(
s, s′

))

=

(
qe

m0c

)2

lim
V→∞



− 1
V

(∑
q>qB

∑
q′>qB

+
∑
q<qB

∑
q′<qB

)∑
b,b′ Ab (q)Ab′ (q′)×

×
∑
K,K′ 〈UK |αbeiqaxa |VK′ 〉 〈VK′ |αb′e−iq

′
axa |UK〉

(ẼK+ẼK′−ω̃q)+
(
ẼK+ẼK′−ω̃q′

)
(ẼK+ẼK′−ω̃q)

2
+
(
ẼK+ẼK′−ω̃q′

)2 â
†
q′ âq

− 1
V

(∑
q>qB

∑
q′>qB

+
∑
q<qB

∑
q′<qB

)∑
b,b′ Ab (q)Ab′ (q′)×

×
∑
K,K′ 〈UK |αbe−iqaxa |VK′ 〉 〈VK′ |αb′e+iq

′
axa |UK〉

(ẼK+ẼK′+ω̃q)+
(
ẼK+ẼK′+ω̃q′

)
(ẼK+ẼK′+ω̃q)

2
+
(
ẼK+ẼK′+ω̃q′

)2 â
†
q âq′

+ 1
V

(∑
q>qB

∑
q′>qB

+
∑
q<qB

∑
q′<qB

)∑
b,b′ Ab (q)Ab′ (q′)×

×
∑
k,k′

∑
K,K′ 〈Uk|αbeiqaxa |Vk′ 〉 〈VK′ |αb′e−iq

′
axa |UK〉

(Ẽk+Ẽk′−ω̃q)+
(
ẼK+ẼK′−ω̃q′

)
(Ẽk+Ẽk′−ω̃q)

2
+
(
ẼK+ẼK′−ω̃q′

)2 ×

×
(
δk,K b̂

†
k̃′
b̂K̃′ + δk′,K′ ĉ

†
k ĉK

)
â†
q′ âq

+ 1
V

(∑
q>qB

∑
q′>qB

+
∑
q<qB

∑
q′<qB

)∑
b,b′ Ab (q)Ab′ (q′)×

×
∑
k,k′

∑
K,K′ 〈Uk|αbe−iqaxa |Vk′ 〉 〈VK′ |αb′e+iq

′
axa |UK〉

(Ẽk+Ẽk′+ω̃q)+
(
ẼK+ẼK′+ω̃q′

)
(Ẽk+Ẽk′+ω̃q)

2
+
(
ẼK+ẼK′+ω̃q′

)2

×
(
δK,k b̂

†
k̃′
b̂K̃′ + δK′,k′ ĉ

†
k ĉK

)
â†q âq′

+
∑
k,k′

∑
K,K′

1
V

∑
q

~
2ε0ω(q)

∑
b,b′

(
δb,b′ −

qbqb′
|q|2

)
〈Uk|αbe−iqaxa |Vk′ 〉 〈VK′ |αb′e+iqaxa |UK〉×

×
(

(Ẽk+Ẽk′−ω̃q)+(ẼK+ẼK′−ω̃q)
(Ẽk+Ẽk′−ω̃q)

2
+(ẼK+ẼK′−ω̃q)

2 −
(Ẽk+Ẽk′+ω̃q)+(ẼK+ẼK′+ω̃q)

(Ẽk+Ẽk′+ω̃q)
2
+(ẼK+ẼK′+ω̃q)

2

)
ĉ†k ĉK b̂

†
k̃′
b̂K̃′

+
∑
k

∑
K,K′

1
V

∑
q

~
2ε0ω(q)

∑
b,b′

(
δb,b′ −

qbqb′
|q|2

)
〈Uk|αbe−iqaxa |VK′ 〉 〈VK′ |αb′e+iqaxa |UK〉×

× (Ẽk+ẼK′+ω̃q)+(ẼK+ẼK′+ω̃q)
(Ẽk+ẼK′+ω̃q)

2
+(ẼK+ẼK′+ω̃q)

2 ĉ
†
k ĉK

+
∑
k′
∑
K,K′

1
V

∑
q

~
2ε0ω(q)

∑
b,b′

(
δb,b′ −

qbqb′
|q|2

)
〈UK |αbe−iqaxa |Vk′ 〉 〈VK′ |αb′e+iqaxa |UK〉×

× (ẼK+Ẽk′+ω̃q)+(ẼK+ẼK′+ω̃q)
(ẼK+Ẽk′+ω̃q)

2
+(ẼK+ẼK′+ω̃q)

2 b̂
†
k̃′
b̂K̃′

− 1
V

∑
q

~
2ε0ω(q)

∑
b,b′

(
δb,b′ −

qbqb′
|q|2

)
×

×
∑
K,K′ 〈UK |αbe−iqaxa |VK′ 〉 〈VK′ |αb′e+iqaxa |UK〉

(ẼK+ẼK′+ω̃q)+(ẼK+ẼK′+ω̃q)
(ẼK+ẼK′+ω̃q)

2
+(ẼK+ẼK′+ω̃q)

2 1̂


(547)

These integrals comprise the constant spectral shift C⊥1̂, contributions
to the transversal renormalization M̂⊥, to the effective electron–
positron interaction V̂⊥,ep and to the photon renormalization term
Q̂⊥,ph.

Integral 4

The fourth integral is given by

216



lim
s→∞

lim
V→∞

∫ s

0

ds′Ĵ
(0,+)
2 (s, s′) = − lim

s→∞
lim
V→∞

(
qe
m0c

)2∑
k,k′

∑
K,K′

1

V

∑
q,q′

∑
b,b′

Ab (q)Ab′ (q′)×

×



+
∫ s

0
ds′ 〈Uk|αbeiqaxa |Vk′〉 〈VK′ |αb′e+iq′axa |UK〉 e−(4+κq)s

′(Ẽk+Ẽk′−ω̃q)
2

e−(4+κq′)s′(−ẼK′−ẼK−ω̃q′)
2

×
×
(
Ẽk + Ẽk′ − ω̃q + 2

(
−ẼK − ẼK′ − ω̃q′

))
(4 + κq′)×

×e−(s−s′)(−κq−κq′)
2
(Ẽk+Ẽk′−ω̃q−ẼK′−ẼK−ω̃q′)

2 [
ĉ†k b̂
†
k̃′
âq, b̂K̃′ ĉK âq′

]
+
∫ s

0
ds′ 〈Uk|αbe−iqaxa |Vk′〉 〈VK′ |αb′e−iq

′
axa |UK〉 e−(4+κq)s

′(Ẽk+Ẽk′+ω̃q)
2

e−(4+κq′)s′(−ẼK′−ẼK+ω̃q′)
2

×
×
(
Ẽk + Ẽk′ + ω̃q + 2

(
−ẼK′ − ẼK + ω̃q′

))
(4 + κq′)×

×e−(s−s′)(κq+κq′)
2
(Ẽk+Ẽk′+ω̃q−ẼK′−ẼK+ω̃q′)

2 [
ĉ†k b̂
†
k̃′
â†q, b̂K̃′ ĉK â

†
q′

]


(548)

The occuring integrals are of the type [7]

f
(0,+)
2 (x, y, κq, κq′)

= (x+ 2y) (4 + κq′)

∫ s

0

ds′e−(s−s′)(κq+κq′)
2
(x+y)

2

e−s
′((4+κq)x

2+(4+κq′)y2)

(x+ 2y) (4 + κq′) e
−s(κq+κq′)

2
(x+y)

2
∫ s

0

ds′e
s′
(
(κq+κq′)

2
(x+y)

2−(4+κq)x
2−(4+κq′)y2

)

(x+ 2y) (4 + κq′)
e−s((4+κq)x

2+(4+κq′)y2) − e−s(κq+κq′)
2
(x+y)

2

(κq + κq′)
2 (x+ y)2 − (4 + κq)x2 − (4 + κq′) y2

=



x+2y
x2+y2

(
1− e−s(4x2+4y2)

)
für κq′ = 0, κq = 0

(x+2y)5

(x+y)
2−4x2−5y2

(
e−s(4x2+5y2) − e−s(x+y)

2
)

für κq′ = 1, κq = 0

(x+2y)4

(x+y)
2−5x2−4y2

(
e−s(5x2+4y2) − e−s(x+y)

2
)

für κq′ = 0, κq = 1

(x+2y)5

4(x+y)
2−5x2−5y2

(
e−5s(x2+y2) − e−4s(x+y)

2
)

für κq′ = 1, κq = 1

(549)

Only the term κq′ = 0, κq = 0 contributes in the limit s → ∞. The
other terms vanish besides one being of zero measure for x + y = 0.
Hence we get by applying (521) [7]

217



lim
s→∞

lim
V→∞

∫ s

0
ds′Ĵ

(0,+)
2

(
s, s′

)
= −

(
qe
m0c

)2∑
k,k′

∑
K,K′

lim
V→∞

1

V

∑
q<qB

∑
q′<qB

∑
b,b′

Ab (q)Ab′
(
q′
)
×

×


〈Uk|αbeiqaxa |Vk′〉 〈VK′ |αb′e+iq′axa |UK〉

Ẽk+Ẽk′−ω̃q+2(−ẼK−ẼK′−ω̃q′)
(Ẽk+Ẽk′−ω̃q)

2
+(−ẼK′−ẼK−ω̃q′)

2

[
ĉ†k b̂
†
k̃′
, b̂K̃′ ĉK

]
âqâq′

+ 〈Uk|αbe−iqaxa |Vk′〉 〈VK′ |αb′e−iq
′
axa |UK〉

Ẽk+Ẽk′+ω̃q+2(−ẼK′−ẼK+ω̃q′)
(Ẽk+Ẽk′+ω̃q)

2
+(−ẼK′−ẼK+ω̃q′)

2

[
ĉ†k b̂
†
k̃′
, b̂K̃′ ĉK

]
â†q′ â

†
q


(550)

By evaluating

[
ĉ†kb̂
†
k̃′
, b̂K̃ ′ ĉK

]
= −δK ′,k′δK,k1̂ + δK,kb̂

†
k̃′
b̂K̃ ′ + δK ′,k′ ĉ

†
kĉK (551)

there follows for (550) [7]

lim
s→∞

lim
V→∞

∫ s

0

ds′Ĵ
(0,+)
2 (s, s′)

= −
(
qe
m0c

)2∑
k,k′

∑
K,K ′

lim
V→∞

1

V

∑
q<qB

∑
q′<qB

∑
b,b′

Ab (q)Ab′ (q′)×

×



〈Uk|αbeiqaxa |Vk′〉 〈VK ′|αb′e+iq′axa |UK〉
Ẽk+Ẽk′−ω̃q+2(−ẼK−ẼK′−ω̃q′)

(Ẽk+Ẽk′−ω̃q)
2
+(−ẼK′−ẼK−ω̃q′)

2×

×
(
−δK ′,k′δK,k1̂ + δK,kb̂

†
k̃′
b̂K̃ ′ + δK ′,k′ ĉ

†
kĉK

)
âqâq′

+ 〈Uk|αbe−iqaxa |Vk′〉 〈VK ′|αb′e−iq
′
axa |UK〉

Ẽk+Ẽk′+ω̃q+2(−ẼK′−ẼK+ω̃q′)

(Ẽk+Ẽk′+ω̃q)
2
+(−ẼK′−ẼK+ω̃q′)

2×

×
(
−δK ′,k′δK,k1̂ + δK,kb̂

†
k̃′
b̂K̃ ′ + δK ′,k′ ĉ

†
kĉK

)
â†q′â

†
q


(552)

Adding the hermetian conjugate Ĵ
(0,−)
2 (s, s′) then [7]
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lim
s→∞

lim
V→∞

∫ s

0

ds′Ĵ
(0,+)
2 (s, s′)

= −
(
qe
m0c

)2∑
k,k′

∑
K,K ′

lim
V→∞

1

V

∑
q<qB

∑
q′<qB

∑
b,b′

Ab (q)Ab′ (q′)×

×



〈Uk|αbeiqaxa |Vk′〉 〈VK ′|αb′e+iq′axa |UK〉
Ẽk+Ẽk′−ω̃q+2(−ẼK−ẼK′−ω̃q′)

(Ẽk+Ẽk′−ω̃q)
2
+(−ẼK′−ẼK−ω̃q′)

2×

×
(
−δK ′,k′δK,k1̂ + δK,kb̂

†
k̃′
b̂K̃ ′ + δK ′,k′ ĉ

†
kĉK

)
âqâq′

+ 〈Vk′|αbe+iqaxa |Uk〉 〈UK |αb′e+iq′axa |VK ′〉
Ẽk+Ẽk′+ω̃q+2(−ẼK′−ẼK+ω̃q′)

(Ẽk+Ẽk′+ω̃q)
2
+(−ẼK′−ẼK+ω̃q′)

2×

×
(
−δK ′,k′δK,k1̂ + δK,kb̂

†
K̃ ′
b̂k̃′ + δK ′,k′ ĉ

†
K ĉk

)
âqâq′

+ 〈Vk′|αbe−iqaxa |Uk〉 〈UK |αb′e−iq
′
axa |VK ′〉

Ẽk+Ẽk′−ω̃q+2(−ẼK−ẼK′−ω̃q′)

(Ẽk+Ẽk′−ω̃q)
2
+(−ẼK′−ẼK−ω̃q′)

2×

×
(
−δK ′,k′δK,k1̂ + δK,kb̂

†
K̃ ′
b̂k̃′ + δK ′,k′ ĉ

†
K ĉk

)
â†q′â

†
q

+ 〈Uk|αbe−iqaxa |Vk′〉 〈VK ′|αb′e−iq
′
axa |UK〉

Ẽk+Ẽk′+ω̃q+2(−ẼK′−ẼK+ω̃q′)

(Ẽk+Ẽk′+ω̃q)
2
+(−ẼK′−ẼK+ω̃q′)

2×

×
(
−δK ′,k′δK,k1̂ + δK,kb̂

†
k̃′
b̂K̃ ′ + δK ′,k′ ĉ

†
kĉK

)
â†q′â

†
q


(553)

Again substituing the indices (k, k′, K,K ′, q, q′, b, b′) →
(K,K ′, k, k′, q′, q.b′, b) we find [7]
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lim
s→∞

lim
V→∞

∫ s

0

ds′Ĵ
(0,+)
2 (s, s′)

= −
(
qe
m0c

)2∑
k,k′

∑
K,K ′

lim
V→∞

1

V

∑
q<qB

∑
q′<qB

∑
b,b′

Ab (q)Ab′ (q′)×

×



〈Uk|αbeiqaxa |Vk′〉 〈VK ′|αb′e+iq′axa |UK〉
Ẽk+Ẽk′−ω̃q+2(−ẼK−ẼK′−ω̃q′)

(Ẽk+Ẽk′−ω̃q)
2
+(−ẼK′−ẼK−ω̃q′)

2×

×
(
−δK ′,k′δK,k1̂ + δK,kb̂

†
k̃′
b̂K̃ ′ + δK ′,k′ ĉ

†
kĉK

)
âqâq′

+ 〈VK ′|αb′e+iq′axa |UK〉 〈Uk|αbe+iqaxa |Vk′〉
ẼK+ẼK′+ω̃q′+2(−Ẽk′−Ẽk+ω̃q)

(ẼK+ẼK′+ω̃q′)
2
+(−Ẽk′−Ẽk+ω̃q)

2×

×
(
−δK ′,k′δK,k1̂ + δK,kb̂

†
k̃′
b̂K̃ ′ + δK ′,k′ ĉ

†
kĉK

)
âq′âq

+ 〈VK ′|αb′e−iq
′
axa |UK〉 〈Uk|αbe−iqaxa |Vk′〉

ẼK+ẼK′−ω̃q′+2(−Ẽk−Ẽk′−ω̃q)

(ẼK+ẼK′−ω̃q′)
2
+(−Ẽk′−Ẽk−ω̃q)

2×

×
(
−δK ′,k′δK,k1̂ + δK,kb̂

†
k̃′
b̂K̃ ′ + δK ′,k′ ĉ

†
kĉK

)
â†qâ

†
q′

+ 〈Uk|αbe−iqaxa |Vk′〉 〈VK ′|αb′e−iq
′
axa |UK〉

Ẽk+Ẽk′+ω̃q+2(−ẼK′−ẼK+ω̃q′)

(Ẽk+Ẽk′+ω̃q)
2
+(−ẼK′−ẼK+ω̃q′)

2×

×
(
−δK ′,k′δK,k1̂ + δK,kb̂

†
k̃′
b̂K̃ ′ + δK ′,k′ ĉ

†
kĉK

)
â†q′â

†
q


(554)

Since [âq′, âq] = 0̂ =
[
â†q′, â

†
q

]
further rearrangements can be done [7]

lim
s→∞

lim
V→∞

∫ s

0
ds′Ĵ

(0,+)
2

(
s, s′

)
= −

(
qe

m0c

)2 ∑
k,k′

∑
K,K′

lim
V→∞

1

V

∑
q<qB

∑
q′<qB

∑
b,b′
Ab (q)Ab′

(
q′
)
×

×



〈Uk|αbeiqaxa |Vk′ 〉 〈VK′ |αb′e+iq
′
axa |UK〉

(
Ẽk+Ẽk′−ω̃q+2

(
−ẼK−ẼK′−ω̃q′

)
(Ẽk+Ẽk′−ω̃q)

2
+
(
−ẼK′−ẼK−ω̃q′

)2 +
ẼK+ẼK′+ω̃q′+2(−Ẽk′−Ẽk+ω̃q)(
ẼK+ẼK′+ω̃q′

)2
+(−Ẽk′−Ẽk+ω̃q)

2

)
×

×
(
−δK′,k′δK,k1̂ + δK,k b̂

†
k̃′
b̂K̃′ + δK′,k′ ĉ

†
k ĉK

)
âq′ âq

+ 〈VK′ |αb′e−iq
′
axa |UK〉 〈Uk|αbe−iqaxa |Vk′ 〉

(
ẼK+ẼK′−ω̃q′+2(−Ẽk−Ẽk′−ω̃q)(
ẼK+ẼK′−ω̃q′

)2
+(−Ẽk′−Ẽk−ω̃q)

2
+

Ẽk+Ẽk′+ω̃q+2
(
−ẼK′−ẼK+ω̃q′

)
(Ẽk+Ẽk′+ω̃q)

2
+
(
−ẼK′−ẼK+ω̃q′

)2

)
×

×
(
−δK′,k′δK,k1̂ + δK,k b̂

†
k̃′
b̂K̃′ + δK′,k′ ĉ

†
k ĉK

)
â†
q′ â
†
q


(555)

Which finally gives, by adding the conjugate Ĵ
(0,−)
2 (s, s′) the

expression [7]
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lim
s→∞

lim
V→∞

∫ s

0

ds′
(
Ĵ

(0,+)
2 (s, s′) + Ĵ

(0,−)
2 (s, s′)

)
= −

(
qe
m0c

)2∑
k,k′

∑
K,K′

lim
V→∞

1

V

∑
q<qB

∑
q′<qB

∑
b,b′

Ab (q)Ab′ (q′)×

×



−〈UK |αbeiqaxa |VK′〉 〈VK′ |αb′e+iq′axa |UK〉
(ẼK+ẼK′+ω̃q′)+(ẼK+ẼK′−ω̃q)

(ẼK+ẼK′+ω̃q′)
2
+(ẼK+ẼK′−ω̃q)

2 âq′ âq

−〈VK′ |αb′e−iq
′
axa |UK〉 〈UK |αbe−iqaxa |VK′〉

(ẼK+ẼK′−ω̃q′)+(ẼK+ẼK′+ω̃q)
(ẼK+ẼK′−ω̃q′)

2
+(ẼK+ẼK′+ω̃q)

2 â
†
q′ â
†
q

+ 〈Uk|αbeiqaxa |Vk′〉 〈VK′ |αb′e+iq′axa |UK〉
(ẼK+ẼK′+ω̃q′)+(Ẽk+Ẽk′−ω̃q)

(ẼK+ẼK′+ω̃q′)
2
+(Ẽk+Ẽk′−ω̃q)

2×

×
(
δK,k b̂

†
k̃′
b̂K̃′ + δK′,k′ ĉ

†
k ĉK

)
âq′ âq

+ 〈VK′ |αb′e−iq
′
axa |UK〉 〈Uk|αbe−iqaxa |Vk′〉

(ẼK+ẼK′−ω̃q′)+(Ẽk+Ẽk′+ω̃q)
(ẼK+ẼK′−ω̃q′)

2
+(Ẽk+Ẽk′+ω̃q)

2×

×
(
δK,k b̂

†
k̃′
b̂K̃′ + δK′,k′ ĉ

†
k ĉK

)
â†q′ â

†
q



(556)

This integral contributes to the effective fermion–photon interactions
Ĥe,ph and Ĥp,ph. It describes absorption and emission processes of two
photons. Since |q| < qB these are low–energy photons. Discussing
only one electromagnetic mode (meaning q′ = q), Avan et al. argue
that these terms are of fourth order [45].

Evaluation of the Effective Potentials V
(o,o)
a,b (r), V

(sp,sp)
a,b (r) and V

(osp,o)
b (r)

In this section the effective potentials potentials are evaluted [7].

V
(o,o)
a,b (r) =

(
−q2

e

ε0

) ∫
d3q

(2π)
3

1
|q|2 e

iq·r
(
δa,b − qaqb

|q|2
)

V
(sp,sp)
a,b (r) =

(
−q2

e

ε0

)
1
4

(
~
m0c

)2
∫

d3q

(2π)
3 eiq·r

(
δa,b − qaqb

|q|2
)

V
(osp,o)
b (r) =

(
−q2

e

ε0

) ∫
d3q

(2π)
3

1
|q|2 e

iq·r
(

i
2

~qb
m0c

) (557)

It is not possible to assume from the beginning that q is aligned along
the direction of r, and the scalar product q · r in spheric coordinates
gives an exhausting integral.

However, one lay the z–axis parallel to |r|, such that all other
components have to be rotated accordingly:∑

b

[
RT (ϑ, ϕ)

]
ab
rb = |r| δa,z (558)
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For that purpose one writes in spheric coordinates

r = |r| cos (ϕ) sin (ϑ) e(x) + |r| sin (ϕ) sin (ϑ) e(y) + |r| cos (ϑ) e(z)

=

 |r| cos (ϕ) sin (ϑ)
|r| sin (ϕ) sin (ϑ)
|r| cos (ϑ)


(559)

where
{
e(x), e(y), e(z)

}
are the cartesian basic vectors, |r| is a fixed

distance as well as the angles ϕ and ϑ.

Likewise for the vector q′ then

q′ = |q′| cos (ϕ′) sin (ϑ′) e(x) + |q′| sin (ϕ′) sin (ϑ′) e(y) + |q′| cos (ϑ′) e(z)

=

 |q′| cos (ϕ) sin (ϑ)
|q′| sin (ϕ) sin (ϑ)
|q′| cos (ϑ)


(560)

For the scalar product q · r one finds by inserting the transformation
(560)

q · r = |r| |q′| cos (ϑ′) (561)

In this form the integral in spheric coordinates is simple because the
scalar product only depends on |r|, |q′| and the angle ϑ′.

The rotational matrix R (ϑ, ϕ) is given by

R ≡ R (ϑ, ϕ) =

 cos (ϕ) ,− sin (ϕ) , 0
sin (ϕ) , cos (ϕ) , 0

0 , 0 , 1

 ◦
 cos (ϑ) , 0 , sin (ϑ)

0 , 1 , 0
− sin (ϑ) , 0 , cos (ϑ)


(562)

As a rotational matrix is has the following properties:

R (ϑ, ϕ) ◦ RT (ϑ, ϕ) = 13×3 = RT (ϑ, ϕ) ◦ R (ϑ, ϕ)

detR (ϑ, ϕ) = 1

|q| = |R (ϑ, ϕ) q′| = |q′|
(563)
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For example

RT r =

 cos (ϑ) , 0 ,− sin (ϑ)
0 , 1 , 0

sin (ϑ) , 0 , cos (ϑ)

 ◦
 cos (ϕ) , sin (ϕ) , 0
− sin (ϕ) , cos (ϕ) , 0

0 , 0 , 1

 |r| cos (ϕ) sin (ϑ)
|r| sin (ϕ) sin (ϑ)
|r| cos (ϑ)


=

 0
0
|r|

 ≡ |r| e(z)

(564)

Such that RT r
|r| = e(z) On the other hand Re(z) = r

|r| , Rb,z = rb
r .

With that one can evaluate the integral for V
(o,o)
a,b (r) according to

V
(o,o)
a,b (r) =

(
−q

2
e

ε0

)∫
d3q′

(2π)3

1

|q′|2
ei(Rq′)·r

(
δa,b −

(Rq′)a (Rq′)b
|q′|2

)
=

(
−q

2
e

ε0

)
1

(2π)3

∫ ∞
0

dq′q′2
∫ π

0
dϑ′ sin

(
ϑ′
) ∫ 2π

0
dϕ′

1

q′2
eirq

′ cos(ϑ′)
∑
m,n

Ra,m
(
δm,n −

q′mq
′
n

q′2

)
RTn,b

=

(
−q

2
e

ε0

)
1

(2π)2

∫ ∞
0

dq′q′2
∫ π

0
dϑ′ sin

(
ϑ′
) 1

q′2
eirq

′ cos(ϑ′)
∑
m,n

Ra,m
1

2π

∫ 2π

0
dϕ′

(
δm,n −

q′mq
′
n

q′2

)
RTn,b

(565)

The integral of the angle ϕ′ is given by

1

2π

∫ 2π

0
dϕ′

(
δm,n −

q′mq
′
n

q′2

)

=

 1− sin2 (ϑ′) 1
2π

∫ 2π
0 dϕ′ cos2 (ϕ′) , 0 , 0

0 , 1− sin2 (ϑ′) 1
2π

∫ 2π
0 dϕ′ sin2 (ϕ′) , 0

0 , 0 , 1− cos2 (ϑ′)


m,n

=

 1− sin2(ϑ′)
2 , 0 , 0

0 , 1− sin2(ϑ′)
2 , 0

0 , 0 , 1− cos2 (ϑ′)


m,n

=

 1+cos2(ϑ′)
2 , 0 , 0

0 , 1+cos2(ϑ′)
2 , 0

0 , 0 , 1− cos2 (ϑ′)


m,n

=
1 + cos2 (ϑ′)

2

 1 , 0 , 0
0 , 1 , 0
0 , 0 , 1


m,n

+
1− 3 cos2 (ϑ′)

2

 0 , 0 , 0
0 , 0 , 0
0 , 0 , 1


m,n

(566)

which can be brought to the form
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∑
m,n

Ra,m
1

2π

∫ 2π

0

dϕ′
(
δm,n − q′mq

′
n

q′2

)
RT
n,b

= 1+cos2(ϑ′)
2

R

 1 , 0 , 0
0 , 1 , 0
0 , 0 , 1

RT + 1−3 cos2(ϑ′)
2

R ◦

 0 , 0 , 0
0 , 0 , 0
0 , 0 , 1

 ◦ RT

= 1+cos2(ϑ′)
2 13×3 + 1−3 cos2(ϑ′)

2
R
(

e(z) ⊗
[
e(z)
]T)
RT

= 1+cos2(ϑ′)
2 13×3 + 1−3 cos2(ϑ′)

2

(
Re(z) ⊗

[
Re(z)

]T)
=

1 + cos2 (ϑ′)

2
13×3 +

1− 3 cos2 (ϑ′)

2

(
r⊗ rT

|r|2

)
(567)

Altogether now

V
(o,o)
a,b (r) =

(
− q2

e
ε0

)
1

(2π)2

∫ ∞
0

dq′q′2
∫ π

0
dϑ′ sin

(
ϑ′
) 1

q′2
eirq

′ cos(ϑ′)
(

1+cos2(ϑ′)
2 δa,b + 1−3 cos2(ϑ′)

2
rarb
r2

)
(568)

Substituting t = cos (ϑ′) and rq′ = x then

V
(o,o)
a,b (r) =

(
−q2

e

ε0

)
1

(2π)
2

1

r

∫ ∞
0

dx

∫ 1

−1

dteixt
(

1+t2

2 δa,b + 1−3t2

2
rarb
r2

)
(569)

The remaining integrals are

∫ 1

−1

dt
eixt

2
= sin(x)

x∫ 1

−1

dt
eixt

2
t2 = 2

x2 cos (x) +
(
1− 2

x2

) sin(x)
x

(570)

Such that

V
(o,o)
a,b (r) =

(
− q2

e
ε0

)
1

(2π)2

1

r

∫ ∞
−∞

dx

 (
1
x2 cos (x) +

(
1− 1

x2

) sin(x)
x

)
δa,b+

−
(

sin(x)
x + 3

x2

(
cos (x)− sin(x)

x

))
rarb
r2

 (571)
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Hence,

V
(o,o)
a,b (r) =

(
− q2

e

4πε0

)
1

2

(
δa,b
r

+
rarb
r3

)
(572)

Here it has been used that

I1 ≡
∫ ∞
−∞

dx sin(x)
x

= π

I2 ≡
∫ ∞
−∞

dx
(

sin(x)
x3 − cos(x)

x2

)
=
π

2

(573)

Following from the residue theorem.

For the integral of the dipole–dipole potential V
(sp,sp)
a,b (r) follows by

observing that

V
(sp,sp)
a,b (r) =

(
−q2

e

ε0

)
1
4

(
~
m0c

)2
∫

d3q

(2π)
3 eiq·r

(
δa,b − qaqb

|q|2
)

=
(
−q2

e

ε0

)
1
4

(
~
m0c

)2
∫

d3q

(2π)
3 eiq·r

(
δa,b − qaqb

|q|2
)

=
(
−q2

e

ε0

)
1
4

(
~
m0c

)2
(∫

d3q

(2π)
3 eiq·r δa,b +∇a∇b

∫ d3q

(2π)
3
eiq·r

|q|2

)
=
(
−q2

e

ε0

)
1
4

(
~
m0c

)2
(
δ(3) (r) δa,b +∇a∇b

1

4π |r|

)
(574)

and with

−∇2 1

|r|
= 4πδ(3) (r)

∇a∇b
1

|r|
= −4π

3 δ
(3) (r) δa,b +

3rarb−3|r|2δa,b
|r|5

1
4π|r| =

∫
d3q

(2π)
3
eiq·r

|q|2

(575)

then

V
(sp,sp)
a,b (r) =

(
−q2

e

ε0

)
1
4

(
~
m0c

)2 (
2
3δ

(3) (r) δa,b +
3rarb−3|r|2δa,b

4π|r|5

)
=
(
− q2

e

4πε0

)
1
4

(
~
m0c

)2 (
8
3πδ

(3) (r) δa,b +
3rarb−3|r|2δa,b

|r|5

)
(576)
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Finally the potential of the spin–other orbit interaction V
(osp,o)
b (r) is

evaluated. Here one can again make use of the transformation (558)
and find

V
(osp,o)
b (r) =

(
− q2

e
ε0

) ∫
d3q

(2π)3
1
|q|2 eiq·r

(
i
2

~qb
m0c

)
=

(
− q2

e
ε0

)
i
2

~
m0c

∫
d3q

(2π)3
(Rq′)b
|q′|2 ei(Rq′)·r

=
(
− q2

e
ε0

)
i
2

~
m0c

1
(2π)2

∫ ∞
0

dq′q′2
∫ π

0
dϑ′ sin

(
ϑ′
) 1

2π

∫ 2π

0
dϕ
Rb,mq′m
q′2

eirq
′ cos(ϑ′)

=
(
− q2

e
ε0

)
i
2

~
m0c

1
(2π)2

∫ ∞
0

dq′q′2
∫ π

0
dϑ′ sin

(
ϑ′
) Rb,zq′ cos (ϑ′)

q′2
eirq

′ cos(ϑ′)

=
(
− q2

e
ε0

)
i
2

~
m0c
Rb,z

1
(2π)2

∫ ∞
0

dq′q′
∫ 1

−1
dt teirq

′t

=
(
− q2

e
ε0

)
1
2

~
m0c
Rb,z

1

(2π)2

(
−1

r2

)∫ ∞
−∞

dx sin(x)
x︸ ︷︷ ︸

=π

(577)

Applying Rb,z = rb
r then

V
(osp,o)
b (r) =

(
−q2

e

ε0

)
1
2

~
m0c

1
4π
−rb
r3

= 1
2

~
m0c

q2
e

4πε0

rb
r3

(578)
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I Complement to the Evaluation of M̂(e)
⊥

Proof of Idenity (196)

Consider a power series with matrix valued coefficients Fn according
to

F (w) =
∞∑
n=0

Fn · wn (579)

With the projection operators P(±) follows [7]

F
[
z
(
P(+) − P(−)

)]
=

∞∑
n=0

Fn ·
(
z
(
P(+) − P(−)

))n
=
∞∑
j=0

F2j ·
(
z
(
P(+) − P(−)

))2j
+
∞∑
j=0

F2j+1 ·
(
z
(
P(+) − P(−)

))2j+1

=

∞∑
j=0

F2j · z2j
(
P(+) − P(−)

)2j
+

∞∑
j=0

F2j+1 · z2j+1
(
P(+) − P(−)

)2j+1

(580)

Now [7](
P(+) − P(−)

)2j

=

((
P(+) − P(−)

)2
)j

= P(+) + P(−) = 1(
P(+) − P(−)

)2j+1

=
(

P(+) − P(−)
)2j (

P(+) − P(−)
)

= P(+) − P(−)

(581)

Therefore one finds for (580) [7]

F
[
z
(
P(+) − P(−)

)]
=

 ∞∑
j=0

F2j · z2j

(P(+) + P(−)
)

+

 ∞∑
j=0

F2j+1 · z2j+1

(P(+) − P(−)
)

(582)

On the other hand there holds [7]

∞∑
j=0

F2j · z2j =
1

2
(F (z) + F (−z))

∞∑
j=0

F2j+1 · z2j+1 =
1

2
(F (z)− F (−z))

(583)
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Inserting (583) to (582) finally yields [7]

F
[
z
(
P(+) − P(−)

)]
=

1

2
(F (z) + F (−z))

(
P(+) + P(−)

)
+

1

2
(F (z)− F (−z))

(
P(+) − P(−)

)
= F (z)P(+) + F (−z)P(−)

(584)

End of the proof.

Evaluation of M̂(e)
⊥

Here it is shown how one can come to the final result (203) for the
transversal renormalization contribution. For this the operator e−iqax̂a◦

Z− Ẽk′+ẼK′2 14×4

Z2−
(
Ẽk′+ẼK′

2

)2

14×4
◦ eiqax̂a and the operator e−iqax̂a ◦Cq ◦ eiqax̂a have to

be further evaluated.

Recalling
H̃(D) = β + αa

Πa

m0c

H̃(D) ◦ H̃(D) = 14×4 + 2
m0c2

H
(P,0)
4×4

H
(P,0)
4×4 = ΠbΠb

2m0
14×4 − qe~

2m0
B

(ext)
b σb

one finds for Z2 [7]

Z2 =
(
1 + ω̃2

q

)
14×4 +

2

m0c2

(
ΠbΠb

2m0
14×4 −

qe~
2m0

B
(ext)
b σb

)
+ 2ω̃q ·

√
14×4 +

2

m0c2

(
ΠbΠb

2m0
14×4 −

qe~
2m0

B
(ext)
b σb

)
From the BCH expansion, see also below (629), one finds [7]

e−iqa·x̂a ◦Πb ◦ eiqa·x̂a = Πb +
∞∑
j=1

1

j!
[−iqa · x̂a, Πb]

(j) = Πb + ~qb (585)

which is valid for any potency n according to [7]

e−iqa·x̂a ◦(Πb)
n◦eiqa·x̂a =

(
e−iqa·x̂a ◦ (Πb) ◦ eiqa·x̂a

)n
= (Πb + ~qb)n (586)
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and for any function being representable as a power series F (z) =∑
n Fnz

n [7]

e−iqa·x̂a ◦ F (Πb) ◦ eiqa·x̂a =
∑
n

Fn · e−iqa·x̂a ◦ (Πb)
n ◦ eiqa·x̂a

=
∑
n

Fn · (Πb + ~qb)n

= F (Πb + ~qb)

(587)

From this readily follows for the Dirac Hamiltonian H̃(D) [7]

e−iqa·x̂a ◦ H̃(D) ◦ eiqa·x̂a = H̃(D) + αa
~qa
m0c

= β + αa
Πa

m0c
+ αa

~qa
m0c

(588)

and for its square [7]

e−iqa·x̂a ◦
√

H̃(D) ◦ H̃(D) ◦ eiqa·x̂a = e−iqa·x̂a ◦
√

14×4 + 2
m0c2

H
(P,0)
4×4 ◦ eiqa·x̂a

=

√
14×4 + 2

m0c2

(
e−iqa·x̂a ◦ H

(P,0)
4×4 ◦ eiqa·x̂a

)
=

√(
1 +

∣∣∣ ~qm0c

∣∣∣2) 14×4 + 2

(
~qb
m0c

Πb

m0c
14×4 +

H
(P,0)
4×4

m0c2

)
(589)

Please recognize that in the nonrelativistic subspace of the QED
Hamiltonian the following inequality holds for any wavenumber |q|
of the photons [7](

1 +

∣∣∣∣ ~q

m0c

∣∣∣∣2
)

14×4 � 2

(
~qb
m0c

Πb

m0c
14×4 +

H
(P,0)
4×4

m0c2

)
(590)

iff the operators Πb

m0c
and

H
(P,0)
4×4

m0c2
are being applied to nonrelativistic wave

functions. This is because the latter vary slowley on the Compton
wavelength λC compared to the Bohr lengthscale aB.

Therefore one may assume that the contributions generated by ~qb
m0c

Πb

m0c

are of first order, and the contributions generated by
H

(P,0)
4×4

m0c2
are of second
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order with respect to the leading term 1 +
(

~|q|
m0c

)2

. This is important

where the renormalizing corrections are transformed to the Newton–
Wigner representation.

Introducing the abbreveations [7]∣∣∣∣ ~q

m0c

∣∣∣∣ = ω̃q√
1 +

∣∣∣∣ ~q

m0c

∣∣∣∣2 =
√

1 + ω̃2
q

(591)

and using the Taylor expansions

√
1 + 2 (Xε+ Y ε2) = 1 +Xε+

(
Y − 1

2
X2

)
ε2 +O

(
ε3
)

1√
1 + 2 (Xε+ Y ε2)

= 1−Xε+

(
3

2
X2 − Y

)
ε2 +O

(
ε3
)

(
1 +Xε+ Y ε2

)−1
= 1−Xε+

(
X2 − Y

)
ε2 +O

(
ε3
)

(592)

one can now evaluate the operator in (202) according to [7]
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e
−iqa x̂a

Z± Ẽk+ẼK
2

14×4

Z2 −
(
Ẽk+ẼK

2

)2 e
+iqa x̂a

= e
−iqa x̂a



± Ẽk+ẼK
2

14×4 +
(
β + αa

Πa
m0c

)14×4 +
ω̃q√

14×4+ 2
m0c

2

(
ΠbΠb
2m0

14×4−
qe~
2m0

B
(ext)
b

σb

)


(
1 + ω̃2

q

)
14×4 + 2

m0c
2

(
ΠbΠb
2m0

14×4 −
qe~
2m0

B
(ext)
b

σb

)
+ 2ω̃q ·

√
14×4 + 2

m0c
2

(
ΠbΠb
2m0

14×4 −
qe~
2m0

B
(ext)
b

σb

)
−
(
Ẽk+ẼK

2

)2


e
+iqa x̂a

=

± Ẽk+ẼK
2

14×4+

(
β+αa

(Πa+~qa)
m0c

)14×4+
ω̃q√

14×4+ 2
m0c

2

(
(Πb+~qb)(Πb+~qb)

2m0
14×4−

qe~
2m0

B
(ext)
b

σb

)


ω̃2
q14×4+ 2

m0c
2

(
(Πb+~qb)(Πb+~qb)

2m0
14×4−

qe~
2m0

B
(ext)
b

σb

)
+2ω̃q·

√
14×4+ 2

m0c
2

(
(Πb+~qb)(Πb+~qb)

2m0
14×4−

qe~
2m0

B
(ext)
b

σb

)
+

(
1−
(
Ẽk+ẼK

2

)2)
14×4

=

± Ẽk+ẼK
2

14×4+

(
β+αa

(Πa+~qa)
m0c

)


14×4+
ω̃q√√√√√√

(
1+

∣∣∣∣ ~q
m0c

∣∣∣∣2
)
14×4+2

 ~qb
m0c

Πb
m0c

14×4+
H
(P,0)
4×4

m0c
2





ω̃2
q14×4+

∣∣∣∣ ~q
m0c

∣∣∣∣214×4+2

 ~qb
m0c

Πb
m0c

14×4+
H
(P,0)
4×4

m0c
2

+2ω̃q·

√√√√√√
(

1+

∣∣∣∣ ~q
m0c

∣∣∣∣2
)
14×4+2

 ~qb
m0c

Πb
m0c

14×4+
H
(P,0)
4×4

m0c
2

+

(
1−
(
Ẽk+ẼK

2

)2)
14×4

=

± Ẽk+ẼK
2

14×4 +
(
β + αa

~qa
m0c

+ αa
Πa
m0c

)


14×4 +
ω̃q√√√√√√(1+ω̃2

q

)
14×4+2

 ~qb
m0c

Πb
m0c

14×4+
H
(P,0)
4×4

m0c
2





2ω̃2
q14×4 + 2

 ~qb
m0c

Πb
m0c

14×4 +
H
(P,0)
4×4

m0c
2

 + 2ω̃q ·

√√√√√(1 + ω̃2
q

)
14×4 + 2

 ~qb
m0c

Πb
m0c

14×4 +
H
(P,0)
4×4

m0c
2

 +

(
1−

(
Ẽk+ẼK

2

)2)
14×4

≡
1

2Gq
◦ F(±)
q

(593)

Here has been defined [7]

F(±)
q =

(
± Ẽk+ẼK

2
+ β + αa

~qa
m0c

+ αa
Πa

m0c

)
14×4 + ω̃qRq

Rq =
β + αa

~qa
m0c

+ αa
Πa

m0c√(
1 + ω̃2

q

)
14×4 + 2

(
~qb
m0c

Πb

m0c
14×4 +

H
(P,0)
4×4

m0c2

)
= e−iqa·x̂a ◦ H̃(D)√

H̃(D) ◦ H̃(D)
◦ eiqa·x̂a

(594)

and [7]

Gq =


ω̃2
q14×4 +

(
~qb
m0c

Πb
m0c

14×4 +
H

(P,0)
4×4

m0c2

)
+ ω̃q ·

√(
1 + ω̃2

q

)
14×4 + 2

(
~qb
m0c

Πb
m0c

14×4 +
H

(P,0)
4×4

m0c2

)
+ 1−

(
Ẽk+ẼK

2

)2

2 14×4

(595)

Further abbreveations for the purpose of clarity according to [7]
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ξ ≡ ω̃q

w ≡
√

1 + ω̃2
q = w(ξ)

(596)

lead to the representation of the inverse of Gq [7]

1

Gq
=



(
w

ξ
− 1

)
14×4︸ ︷︷ ︸

=O(1)

+
~qa
m0c

Πa

m0c

(
w

ξ
− ξ

w
− 1

ξ2

)
14×4︸ ︷︷ ︸

=O(αFS)

+


+ ~qa
m0c

Πa

m0c
~qa′
m0c

Πa′
m0c

(
− w

2ξ + ξ
2w + ξ

2w3 + w
ξ3 − 1

ξ2

)
14×4

+
(
w
ξ −

ξ
w −

1
ξ2

)
H

(P,0)
4×4

m0c2

+

(
1−

(
Ẽk+ẼK

2

)2
)(

w
ξ − 1− 1

2ξ2

)
14×4︸ ︷︷ ︸


=O(α2

FS)

+O
(
α3
FS

)


(597)

Now the operators F
(±)
q are expanded. The expansion of the inverse of

the square root (592) is given by [7]

1√(
1 + ω̃2

q

)
14×4 + 2

(
~qb
m0c

Πb

m0c
14×4 +

H
(P,0)
4×4

m0c2

)
=

1

w
− 1

w3
~qb
m0c

Πb

m0c
+

3

2w5

(
~qb
m0c

Πb

m0c

)2

− 1

w3
H

(P,0)
4×4

m0c2
+O

(
α3
FS

) (598)

Since αa and
H

(P,0)
4×4

m0c2
do not commute for a given magnetic induction

field B
(ext)
b 6= 0 one has to symmetrize the operators Rq and F

(±)
q [7]:
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Rq =
β + αa

~qa
m0c

+ αa
Πa
m0c√√√√√(1 + ω̃2

q

)
14×4 + 2

 ~qb
m0c

Πb
m0c

14×4 +
H
(P,0)
4×4

m0c
2



=
1

2



β + αa
~qa
m0c︸ ︷︷ ︸

=O(1)

+ αa
Πa
m0c︸ ︷︷ ︸

=O(αFS)




1
w︸ ︷︷ ︸

=O(1)

− 1
w3

~qb
m0c

Πb
m0c︸ ︷︷ ︸

=O(αFS)

+ 3
2w5

( ~qb
m0c

Πb
m0c

)2
− 1

w3
H
(P,0)
4×4

m0c
2︸ ︷︷ ︸

=O
(
α2
FS

)
+ O

(
α3
FS

)


+


1
w︸ ︷︷ ︸

=O(1)

− 1
w3

~qb
m0c

Πb
m0c︸ ︷︷ ︸

=O(αFS)

+ 3
2w5

( ~qb
m0c

Πb
m0c

)2
− 1

w3
H
(P,0)
4×4

m0c
2︸ ︷︷ ︸

=O
(
α2
FS

)
+ O

(
α3
FS

)


β + αa
~qa
m0c︸ ︷︷ ︸

=O(1)

+ αa
Πa
m0c︸ ︷︷ ︸

=O(αFS)



=



(
β + αa

~qa
m0c

)
1
w︸ ︷︷ ︸

=O(1)

+αa
Πa
m0c

1
w −

(
β + αa

~qa
m0c

) ~qb
m0c

Πb
m0c

1
w3︸ ︷︷ ︸

O(αFS)

+



(
β + αa

~qa
m0c

)
3

2w5

( ~qb
m0c

Πb
m0c

)2

− 1
w3

H
(P,0)
4×4

m0c
2

β − 1
2w3

(
H
(P,0)
4×4

m0c
2

αa
~qa
m0c

+ αa
~qa
m0c

H
(P,0)
4×4

m0c
2

)
− 1

w3
~qb
m0c

Πb
m0c

αa
Πa
m0c


︸ ︷︷ ︸

=O
(
α2
FS

)
(599)

And altogether [7]
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e
−iqa x̂a

Z± Ẽk+ẼK
2

14×4

Z2 −
(
Ẽk+ẼK

2

)2 e
+iqa x̂a ≡ 1

2Gq
◦ F(±)
q = 1

2

(
1

2Gq
F(±)
q + F(±)

q

1

2Gq

)

=
1

2



(
w

ξ
− 1

)
14×4︸ ︷︷ ︸

O(1)

(
±
Ẽk + ẼK

2
14×4 +

(
β + αa

~qa
m0c

) (
1 + ξ

w

) )
︸ ︷︷ ︸

O(1)

+

(
w

ξ
− 1

)
14×4︸ ︷︷ ︸

O(1)

 ((
1 + ξ

w

)
Πa
m0c

− ξ

w3
~qa
m0c

~qb
m0c

Πb
m0c

)
αa − ξ

w3
~qb
m0c

Πb
m0c

β︸ ︷︷ ︸


O(αFS)

+
~qa′
m0c

Πa′

m0c

(
w

ξ
−
ξ

w
−

1

ξ2

)
14×4︸ ︷︷ ︸

O(αFS)

·
(
±
Ẽk + ẼK

2
14×4 +

(
β + αa

~qa
m0c

) (
1 + ξ

w

) )
︸ ︷︷ ︸

O(1)

+

(
w

ξ
− 1

)
14×4︸ ︷︷ ︸

O(1)



(
3ξ

2w5

( ~qb
m0c

Πb
m0c

)2
− ξ

w3
H
(P,0)
4×4

m0c
2

)
β(

3ξ

2w5
~qa
m0c

( ~qb
m0c

Πb
m0c

)2
− ξ

w3
~qb
m0c

Πb
m0c

Πa
m0c

)
αa

− ξ

2w3

(
H
(P,0)
4×4

m0c
2

αa
~qa
m0c

+ αa
~qa
m0c

H
(P,0)
4×4

m0c
2

)


︸ ︷︷ ︸

=O
(
α2
FS

)

+
~qa′
m0c

Πa′

m0c

(
w

ξ
−
ξ

w
−

1

ξ2

)
14×4︸ ︷︷ ︸

O(αFS)

·

 ((
1 + ξ

w

)
Πa
m0c

− ξ

w3
~qa
m0c

~qb
m0c

Πb
m0c

)
αa − ξ

w3
~qb
m0c

Πb
m0c

β︸ ︷︷ ︸


O(αFS)

+ 1
2



+ ~qa
m0c

Πa
m0c

~q
a′

m0c

Π
a′

m0c

(
− w

2ξ
+ ξ

2w
+ ξ

2w3 + w
ξ3
− 1
ξ2

)
14×4

+

(
w
ξ
− ξ
w
− 1
ξ2

)
H
(P,0)
4×4

m0c
2

+

(
1−

(
Ẽk+ẼK

2

)2)(
w
ξ
− 1− 1

2ξ2

)
14×4︸ ︷︷ ︸


=O

(
α2
FS

)

·
(
±
Ẽk + ẼK

2
14×4 +

(
β + αa

~qa
m0c

) (
1 + ξ

w

) )
︸ ︷︷ ︸

O(1)

+ 1
2

(
±
Ẽk + ẼK

2
14×4 +

(
β + αa

~qa
m0c

) (
1 + ξ

w

) )
︸ ︷︷ ︸

O(1)



+ ~qa
m0c

Πa
m0c

~q
a′

m0c

Π
a′

m0c

(
− w

2ξ
+ ξ

2w
+ ξ

2w3 + w
ξ3
− 1
ξ2

)
14×4

+

(
w
ξ
− ξ
w
− 1
ξ2

)
H
(P,0)
4×4

m0c
2

+

(
1−

(
Ẽk+ẼK

2

)2)(
w
ξ
− 1− 1

2ξ2

)
14×4︸ ︷︷ ︸


=O

(
α2
FS

)

+O
(
α3
FS

)


(600)

Next the q–shift of the operator Cq evaluated [7]:
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Kq ≡ e−iqax̂a ◦ Cq ◦ eiqax̂a

= e−iqax̂a ◦ΘH

[(
2Ω̃max − ω̃q

)
14×4 −

√
H̃(D) ◦ H̃(D)

]
◦ eiqax̂a

= ΘH

[(
2Ω̃max − ω̃q

)
14×4 − e−iqax̂a ◦

√
H̃(D) ◦ H̃(D) ◦ eiqax̂a

]
= ΘH

[(
2Ω̃max − ω̃q

)
14×4 −

√(
1 + ω̃2

q

)
14×4 + 2

(
~qb
m0c

Πb

m0c
14×4 +

H
(P,0)
4×4

m0c2

) ]

= ΘH

[(
2Ω̃max − ξ

)
14×4 −w ·

√
14×4 + 2

w2

(
ξq̂b

Πb

m0c
14×4 +

H
(P,0)
4×4

m0c2

) ]
= ΘH

[(
2Ω̃max − ξ − w

)
14×4 − ξ

w q̂b
Πb

m0c
14×4 +O

(
1
ξ

) ]
= ΘH

[(
2Ω̃max − 2ξ − 1

w+ξ

)
14×4 − ξ

w q̂b
Πb

m0c
14×4 +O

(
1
ξ

) ]
= ΘH

[(
2Ω̃max − 2ξ

)
14×4 −q̂b Πb

m0c
14×4 +O

(
1
ξ

) ]
(601)

Since for the cut-off it has been assumed Ω̃max � 1 contributions of

the order O
(

1
ξ

)
and smaller do not contribute in the arguments of

Kq for ξ > Ω̃max. Hence one can neglect them, their contribution is

smaller like O
(

1
Ω̃max

)
.

For the identity ΘH (2x) ≡ ΘH (x) one can write [7]

Kq+K−q
2

= ΘH

(
Ω̃max − ξ

)
+


ΘH

[
(Ω̃max−ξ) −1

2 q̂b
Πb

m0c

]
−ΘH(Ω̃max−ξ)

2

ΘH

[
(Ω̃max−ξ) +1

2 q̂b
Πb

m0c

]
−ΘH(Ω̃max−ξ)

2


(602)

for the symmetric part of Kq, and [7]

Kq−K−q
2

= ΘH

[
(Ω̃max−ξ) −1

2 q̂b
Πb

m0c

]
−ΘH

[
(Ω̃max−ξ) +1

2 q̂b
Πb

m0c

]
2

(603)

for the antisymmetric part of Kq.

235



As will be shown now, the symmetric part
Kq+K−q

2 yields the main

contribution to the integral, whereas the antisymmetric part Kq−K−q
2

yields a tiny, however important correction.

This can be seen by expanding the theta function for x� a according
to [7]

ΘH [a+ x] = ΘH (a) + xΘ′H (a) + x2

2
Θ′′H (a) + ...

Θ′H (x) = δ (x)

Θ′′H (x) = δ′ (x)

(604)

Now for the symmetric part (602), in case that Ω̃max � 1, the

main contribution to the integral is given by ΘH

(
Ω̃max − ξ

)
because

the first order contributions cancel due to the different signs in
the expansion (604). This contribution corresponds to the cut-off
procedure suggested by Cohen–Tannoudji et al. who only truncate
the photon energy and do not consinder the kinetic energy of the
fermions in the cut-off [50].

One can therefore set [7]

Kq+K−q
2

= ΘH

(
Ω̃max − ξ

)
(605)

For the antisymmetric part (603) there survives for Ω̃max � 1 a small

correction term −q̂b Πb

m0c
δ
(
Ω̃max − ξ

)
because in that case the first

order contribution of the expansion (604) does not cancel due to to
sign! As is shown in subsection 6.3, this small correction will be crucial
for a consistent renormalization of the bare electron mass me.

Inserting e−iqax̂a
Z± Ẽk+ẼK

2 14×4

Z2 −
(
Ẽk+ẼK

2

)2 e+iqax̂a ≡ 1
2Gq
◦ F

(±)
q and e−iqax̂a ◦ Cq ◦

eiqax̂a ≡ Kq in (201) one finds [7]

M̃
(⊥,e,high)
k,K = −

(
q2
e

2ε0

)(
~
m0c

)2
1

V

∑
q

1

ω̃q

∑
b,b′

(
δb,b′ −

qbqb′

|q|2

)
〈Uk|αb

(
Kq ◦

1

2Gq
◦ F(+)

q

)
αb′ |UK〉

(606)

and the symmetrization yields, under the substitution qb → −qb [7],
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M̃
(⊥,e)
k,K = −

(
q2
e

2ε0

)(
~
m0c

)2
1

V

∑
q

1

ω̃q

∑
b,b′

(
δb,b′ −

qbqb′

|q|2

)

× 〈Uk|αb


Kq+K−q

4 ◦
(

1
2Gq
◦ F

(+)
q + 1

2G−q
◦ F

(+)
−q

)
+

Kq−K−q
4 ◦

(
1

2Gq
◦ F

(+)
q − 1

2G−q
◦ F

(+)
−q

)
αb′ |UK〉

(607)

In the following evaluation of the term
(

1
2Gq
◦ F

(±)
q + 1

2G−q
◦ F

(±)
−q

)
of

even parity with respect to qb as well as the evaluation of the term(
1

2Gq
◦ F

(−)
q − 1

2G−q
◦ F

(−)
−q

)
of odd parity with respect to qb is presented.

The goal is to only keep corrections of the order 1
Ωmax

and in the final
result of the renormalization. Hence, all terms yielding corrections of
the order O( 1

Ω2
max

) are neglected.

Starting with the contribution of even parity with respect to qa → −qa,
one finds, by inserting the shift identity (587) [7]
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1

2Gq
◦ F(±)

q +
1

2G−q
◦ F

(±)
−q

=



(
w
ξ − 1

) (
1 + ξ

w

)
β

+
(
w
ξ − 1

)(
± Ẽk+ẼK

2 14×4

)

+

 (
w
ξ − 1

)(
1 + ξ

w

)
δa,a′

+
((

w
ξ −

ξ
w −

1
ξ2

)(
1 + ξ

w

)
−
(
w
ξ − 1

)
ξ
w3

)
~qa
m0c

~qa′
m0c

 Πa′
m0c

αa

+
((

w
ξ −

ξ
w −

1
ξ2

)(
1 + ξ

w

)
−
(
w
ξ − 1

)
ξ
w3

)
β H

(P,0)
4×4

m0c2

+


(
w
ξ − 1

)
3ξ

2w5

−
(
w
ξ −

ξ
w −

1
ξ2

)
ξ
w3

+
(
− w

2ξ + ξ
2w + ξ

2w3 + w
ξ3 − 1

ξ2

)(
1 + ξ

w

)
 ~qa

m0c
Πa

m0c
~qa′
m0c

Πa′
m0c

β

+β

(
1−

(
Ẽk+ẼK

2

)2
)(

w
ξ − 1− 1

2ξ2

) (
1 + ξ

w

)

+


+ ~qa
m0c

Πa

m0c
~qa′
m0c

Πa′
m0c

(
− w

2ξ + ξ
2w + ξ

2w3 + w
ξ3 − 1

ξ2

)
14×4

+
(
w
ξ −

ξ
w −

1
ξ2

)
H

(P,0)
4×4

m0c2

+

(
1−

(
Ẽk+ẼK

2

)2
)(

w
ξ − 1− 1

2ξ2

)
14×4


(
± Ẽk+ẼK

2 14×4

)

+O
(
α3
FS

)


(608)

Hence, under even parity, all contributions with a uneven number of
wavenumber qb drop.

With the abbreveations qb
|q| = q̂b, q̂bq̂b = q̂xq̂x + q̂yq̂y + q̂z q̂z = 1 and

~qa
m0c

= ω̃qq̂a ≡ ξq̂a one yields, with further rearrangements [7],
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1

2Gq
◦ F(±)

q +
1

2G−q
◦ F

(±)
−q

=



(
w
ξ − 1

) (
1 + ξ

w

)
β

+

 (
w
ξ − 1

)(
1 + ξ

w

)
δa,a′

+
((

w
ξ −

ξ
w −

1
ξ2

)(
1 + ξ

w

)
−
(
w
ξ − 1

)
ξ
w3

)
ξ2q̂aq̂a′

 Πa′
m0c

αa

+
((

w
ξ −

ξ
w −

1
ξ2

)(
1 + ξ

w

)
−
(
w
ξ − 1

)
ξ
w3

)
H

(P,0)
4×4

m0c2
β

+


(
w
ξ − 1

)
3ξ

2w5

−
(
w
ξ −

ξ
w −

1
ξ2

)
ξ
w3

+
(
− w

2ξ + ξ
2w + ξ

2w3 + w
ξ3 − 1

ξ2

)(
1 + ξ

w

)
 ξ2q̂aq̂a′

Πa

m0c
Πa′
m0c

β

+



(
− w

2ξ + ξ
2w + ξ

2w3 + w
ξ3 − 1

ξ2

)
ξ2q̂aq̂a′

Πa

m0c
Πa′
m0c

+
(
w
ξ −

ξ
w −

1
ξ2

)
H

(P,0)
4×4

m0c2

+
(
w
ξ − 1− 1

2ξ2

)(
1−

(
Ẽk+ẼK

2

)2
)

+
(
w
ξ − 1

)


(
± Ẽk+ẼK

2 14×4

)

+
(
w
ξ − 1− 1

2ξ2

) (
1 + ξ

w

) (
1−

(
Ẽk+ẼK

2

)2
)
β

+O
(
α3
FS

)


(609)

For the terms with ξ and w there holds [7]
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(
w
ξ − 1

)(
1 + ξ

w

)
= w

ξ −
ξ
w = O

(
1
ξ2

)
((

w
ξ −

ξ
w −

1
ξ2

)(
1 + ξ

w

)
−
(
w
ξ − 1

)
ξ
w3

)
ξ2 = −1 + ξ3

w3 = O
(
− 3

2ξ2

)
(
w
ξ −

ξ
w −

1
ξ2

)(
1 + ξ

w

)
−
(
w
ξ − 1

)
ξ
w3 = − 1

ξ2 + ξ
w3 = O

(
− 3

2ξ4

)

(

1 + ξ
w

)(
− w

2ξ + ξ
2w + ξ

2w3 + w
ξ3 − 1

ξ2

)
+
(
w
ξ − 1

)
3ξ

2w5

−
(
w
ξ −

ξ
w −

1
ξ2

)
ξ
w3

 ξ2 = w
ξ −

ξ
w −

ξ
w3 + 3ξ

2w5
= 2+5ξ2

2ξw5 = O
(

5
2ξ4

)
(
− w

2ξ + ξ
2w + ξ

2w3 + w
ξ3 − 1

ξ2

)
ξ2 = −1 + w

ξ −
ξ

2w3 = O
(

5
8ξ4

)
(
w
ξ − 1− 1

2ξ2

) (
1 + ξ

w

)
= − 1

2ξ2 − ξ
2w + w

2ξ = O
(
− 1

4ξ4

)
(610)

These terms behave for large ξ like O(·). However, there are two
reasons for not neglecting contributions smaller than the order 1

ξ2 at
this point: first, when combining the terms with the antisymmetric
part, the weights change further. Second, as will be shown a few
lines below, the integration measure of the transversal renormalization
contribution provides another ξ of the radial integral component.

Inserting the identies (610) finally gives [7]
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1

2Gq
◦ F(±)

q +
1

2G−q
◦ F

(±)
−q

=



(
w
ξ −

ξ
w

)
β

+
( (

w
ξ −

ξ
w

)
δa,a′ +

(
−1 + ξ3

w3

)
q̂aq̂a′

)
Πa′
m0c

αa

+
(
− 1
ξ2 + ξ

w3

)
H

(P,0)
4×4

m0c2
β

+2+5ξ2

2ξw5 q̂aq̂a′
Πa

m0c
Πa′
m0c

β

+



(
−1 + w

ξ −
ξ

2w3

)
q̂aq̂a′

Πa

m0c
Πa′
m0c

+
(
w
ξ −

ξ
w −

1
ξ2

)
H

(P,0)
4×4

m0c2

+
(
w
ξ − 1− 1

2ξ2

)(
1−

(
Ẽk+ẼK

2

)2
)

+
(
w
ξ − 1

)


(
± Ẽk+ẼK

2 14×4

)

+
(
− 1

2ξ2 − ξ
2w + w

2ξ

)(
1−

(
Ẽk+ẼK

2

)2
)
β

+O
(
α3
FS

)


(611)

For the contribution with odd parity with respect to qa → −qa, by
again inserting the shift identity (587), there follows [7]
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1

2Gq
◦ F(±)

q −
1

2G−q
◦ F

(±)
−q

=



(
w
ξ − 1

) (
1 + ξ

w

) (
αa

~qa
m0c

)
+
(
w
ξ − 1

)(
− ξ

w3

~qa
m0c

Πa

m0c
β
)

+~qa′
m0c

Πa′
m0c

(
w
ξ −

ξ
w −

1
ξ2

)
·
(
± Ẽk+ẼK

2 14×4 + β
(

1 + ξ
w

) )

+
(
w
ξ − 1

) (
3ξ

2w5

~qa
m0c

(
~qa′′
m0c

Πa′′
m0c

~qa′
m0c

Πa′
m0c

)
− ξ

w3

~qa′
m0c

Πa′
m0c

Πa

m0c

)
αa

− ξ
2w3

(
H

(P,0)
4×4

m0c2
αa + αa

H
(P,0)
4×4
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Πa′′
m0c

(
w
ξ −

ξ
w −

1
ξ2

)
·
((

1 + ξ
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Πa′′
m0c

~qa′
m0c
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+
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+O
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)


(612)

Hence, all contributions with an even number of wavenumbers qb drop!

Going on then [7]
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w
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+
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1 + ξ

w

)
ξ

 q̂aαa



 ξ2
(
− w

2ξ + ξ
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(
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(
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ξ
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1
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w
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(
w
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ξ
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·
(
± Ẽk+ẼK

2 14×4
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+
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w
ξ −

ξ
w −

1
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·
(

1 + ξ
w
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(
w
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1
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H

(P,0)
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H
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)
+O
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FS
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(613)

Inserting the following identities [7]
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ξ
(
w
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1
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·
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w
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(
w
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(
w
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ξ
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1
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1 + ξ

w
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(
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ξ −

ξ
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1
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= 1
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1
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w
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ξ
w −

1
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) (
1 + ξ

w

)
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(
w
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)
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w3 = 1
w −

1
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1
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(614)

One finally finds [7]
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2Gq
◦ F(±)

q −
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=



 1
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(
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2
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1

2
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1

w
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ξ
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︸ ︷︷ ︸

=O
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− 1

4ξ3

)
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(

5

2w3
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︸ ︷︷ ︸

=O
(

5
2ξ3
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(
1

w
− 1

ξ
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︸ ︷︷ ︸
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+
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1
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︸ ︷︷ ︸

=O
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− 3
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)
q̂a
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β

+

(
1

w
− 1

ξ
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︸ ︷︷ ︸
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− 1
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(
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2 14×4

)
q̂a

Πa

m0c

+

(
1

w
− 1

ξ
− 1

w3

)
︸ ︷︷ ︸

=O
(
− 3

2ξ3

)
1
2

(
H

(P,0)
4×4
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αa + αa

H
(P,0)
4×4
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)
q̂a

+O
(
α3
FS

)


(615)

From (615) one can see that only the contribution in the first line
being proportional to 1

w contributes to the integral. This is because
together with the ξ stemming from the integration measure this term
give a correction of the order O (1) in the cut-off, whereas the other

contributions are at least of the order O
(
Ω̃−3
max

)
.

Hence, one can set [7]

Kq−K−q
4

(
1

2Gq
◦ F

(±)
q − 1

2G−q
◦ F

(±)
−q

)
= Kq−K−q

4

(
1
w q̂aαa +O

(
Ω̃−3
max

))
(616)
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Before putting the results together one has to convert the sum over the
continously varying wavenumbers qb of the photons, which lie dense
in the large volume V , to an integral. For V →∞ the error vanishes.
Hence,

(
q2
e

2ε0

)(
~
m0c

)2
1

V

∑
q

1

ω̃q

(
δb,b′ −

qbqb′

|q|2

)
f

(
~
m0c

q

)

→
(
q2
e

2ε0

)(
~
m0c

)2 ∫
d3q

(2π)3

1

ω̃q

(
δb,b′ −

qbqb′

|q|2

)
f

(
~
m0c

q

)
= m0c

2αFS
π

∫ ∞
0

dξ ξ

∫
dΩq̂

4π
(δb,b′ − q̂bq̂b′) f (ξq̂)

(617)

Putting the results (602), (611) and (616) together, and replacing the
sum according to (617) one finds for the renormalization due to the
high energy photons [7]

M̃
(⊥,e,high)
k,K

= −m0c
2 αFS

π

∫ ∞
0

dξ ξ

∫
dΩq̂

4π

(
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)
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1
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w
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π
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Ω̃max−ξ

)
2

(
w
ξ
− ξ
w

)
αbβαb′

+ ΘH

(
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− ξ
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2
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+ ξ
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H
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4×4
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2
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+
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(618)

For the further evaluation one needs the following relations. From the
properties of the Dirac matrices
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αbβ = −βαb
αbαb′ = δb′,b14×4 + i

∑
b′′

εbb′b′′σb′′ = σbσb′

αbσaαb′ = σbσaσb′

σbβ = βσb

a, b, b′ ∈ {x, y, z}

(619)

there follows [7]

(δb,b′ − q̂bq̂b′)αbαb′ = (δb,b′ − q̂bq̂b′) (δb′,b14×4 + iεbb′b′′σb′′)

=

 δb,b︸︷︷︸
=3

− q̂bq̂b︸︷︷︸
=1

 14×4 = 2 · 14×4

(δb,b′ − q̂bq̂b′)σbσb′ = 2 · 14×4

(δb,b′ − q̂bq̂b′)αbαaαb′ = (δb,b′ − q̂bq̂b′) (αbαa + αaαb − αaαb)αb′ = −2q̂aq̂b′αb′

(δb,b′ − q̂bq̂b′)αbσaαb′ = (δb,b′ − q̂bq̂b′)σbσaσb′ = −2q̂aq̂b′σb′

(δb,b′ − q̂bq̂b′)αbαaαb′ q̂a = −2q̂aq̂b′αb′ q̂a = −2αb′ q̂b′

(δb,b′ − q̂bq̂b′)αb H
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αb′ =

1
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=
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)
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a

)
(620)

With this there follows for (618) [7]
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(621)

For the correction term of the last line we use (604) such that [7]
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+ .. (622)

Hence [7],
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+ 〈Uk|
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1
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(
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m0c
δ
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))
1
w

(−2q̂b′αb′ ) |UK〉
(623)

One has to first evaluate the term (δb,b′ − q̂bq̂b′) which yields q̂aq̂a =

1. The occuring angle integrals are thus given by
∫ dΩq̂

4π 1 = 1 and∫ dΩq̂

4π q̂bq̂b′ = 1
3δb,b′. This gives [7]
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)2
)
Ẽk+ẼK

2

+
(
w
ξ
− 1
)
Ẽk+ẼK

2

−
(
− 1

2ξ2
− ξ

2w
+ w

2ξ

)(
1−

(
Ẽk+ẼK

2

)2
)
β



|UK〉

+

Ω̃max√
1 + Ω̃2

max︸ ︷︷ ︸
=1+O(Ω̃−2

max)

〈Uk| 1
6

Πb
m0c

αb |UK〉+O
(
α3
FS

)


(624)

Making use of the identities [7]

〈Uk| Ẽk+ẼK
2
|UK〉 = 〈Uk| H̃(D) |UK〉 (625)

〈Uk|
(

1−
(
Ẽk+ẼK

2

)2
)
β |UK〉 = 〈Uk|

(
1− Ẽ2

k

4 −
1
2 ẼkẼK −

Ẽ2
K

4

)
β |UK〉

= 〈Uk| β − H̃(D)H̃(D)

4 β − 1
2 H̃

(D)βH̃(D) − β H̃(D)H̃(D)

4 |UK〉

= 〈Uk|
(
− Πa

m0c
αa

)
|UK〉

(626)

〈Uk|
(

1−
(

Ẽk+ẼK
2

)2
)

Ẽk+ẼK
2
|UK〉 = 〈Uk|

(
14×4 − H̃(D)H̃(D)

)
H̃(D) |UK〉

= 〈Uk|
(
− 2

m0c2
H̃

(P )
4×4

)
H̃(D) |UK〉

(627)

and inserting for qe~
2m0

B
(ext)
a σa = ΠaΠa

2m0
14×4−H

(P,0)
4×4 there follows for (624)

[7]
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M̃
(⊥,e,high)
k,K = −m0c

2 αFS

π
×

×



〈Uk|
∫ Ω̃max
0 dξ ξ



(
ξ
w
− 1
)
β


− 1

3

( (
w
ξ
− ξ
w

)
+
(
−1 + ξ3

w3

) )
+
(
w
ξ
− 1
)

+
(
− 1

2ξ2
− ξ

2w
+ w

2ξ

)
 Πa

m0c
αa

+ 1
m0c2

(
− 1
ξ2

+ ξ
w3

)
1
3
H̃

(P )
4×4β

− 1
m0c2

(
2
(
− 1
ξ2

+ ξ
w3

)
+ 2+5ξ2

2ξw5

)
2
3
ΠaΠa
2m0

β

+ 1
m0c2

 ((
−1 + w

ξ
− ξ

2w3

)
+ 2

(
w
ξ
− ξ
w
− 1
ξ2

))
2
3

(
ΠaΠa
2m0

H̃(D)

2
+ H̃(D)

2
ΠaΠa
2m0

)
−
(
w
ξ
− ξ
w
− 1
ξ2

)
1
3

(
H̃

(P )
4×4

H̃(D)

2
+ H̃(D)

2
H̃

(P )
4×4

) 
+
(
w
ξ
− 1− 1

2ξ2

)(
− 2

m0c2
H̃

(P )
4×4

)
H̃(D)

+O
(
α3
FS

)



|UK〉

+ 〈Uk| 1
6

Πb
m0c

αb |UK〉


(628)

The representation (628) of the transversal renormalization
contribution is further evaluated in section 6.1.

The Baker–Campbell Hausdorff Formula

The BCH formula assumes the following guise [57]

exp (xA)B exp (−xA) =
∞∑
n=0

xn

n!
[A,B]n (629)

where A,B are operators and x is a parameter. The symbol [A,B]n

means to operatate as

[A, ... [A,B]] (630)

n times.

The initial value for n = 0 is defined as [A,B]0 ≡ B.
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J Operator Valued Maxwell Equations

In this part of the appendix it is shown that the operator valued
electromagnetic fields obey to the Maxwell equations [6].

For this one has to make use of the Heisenberg equation of motion.

For an operator X̂ (r) of QED in the Heisenberg picture (ĤQED being
time independant)

X̂ (r, t) = exp

(
i
t

~
ĤQED

)
X̂ (r) exp

(
−i t

~
ĤQED

)
(631)

the related Heisenberg equation of motion is given by

i~
∂X̂ (r, t)

∂t
=
[
X̂ (r, t) , ĤQED

]
(632)

Hence, for the photon vector field Â
(T )
a (r, t) as defined in (24) follows

for the Heisenberg equation of motion

i~
∂Â

(T )
a (r, t)

∂t
=
[
Â(T )
a (r, t) , ĤQED

]
= exp

(
i
t

~
ĤQED

)[
Â(T )
a (r) , Ĥrad

]
exp

(
−i t

~
ĤQED

)

= exp

(
i
t

~
ĤQED

)Â(T )
a (r) ,

ε0

2

∫
d3r′

∑
bε{x,y,z}

(
Ê

(T )
b

(
r′
)
Ê

(T )
b

(
r′
)) exp

(
−i t

~
ĤQED

)

= exp

(
i
t

~
ĤQED

)~
i

∫
d3r′

∑
bε{x,y,z}

δ
(T )
ab

(
r− r′

)
Ê

(T )
b

(
r′
) exp

(
−i t

~
ĤQED

)

=
~
i

exp

(
i
t

~
ĤQED

)
Ê(T )
a (r) exp

(
−i t

~
ĤQED

)
= −i~Ê(T )

a (r, t)
(633)

Now since B̂
(T )
a (r, t) = rotÂ

(T)
a (r, t) the Faraday induction law is valid

for operator valued electromagnetic fields

∂B̂
(T )
a (r, t)

∂t
+
(

rotÊ(T ) (r, t)
)
a

= 0̂ (634)
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On the other hand there follows for Ê
(T )
a (r, t) the Heisenberg equation

of motion according to

i~
∂Ê

(T )
a (r, t)

∂t
=
[
Ê(T )
a (r, t) , ĤQED

]
= exp

(
i
t

~
ĤQED

)[
Ê(T )
a (r) , Ĥ(QED)

]
exp

(
−i t

~
ĤQED

)

= ei
t
~ ĤQED

∫
d3r′

 −
[
Ê

(T )
a (r) , Â

(T )
b (r′)

]
ĵb (r′)

+ 1
2µ0

[
Ê

(T )
a (r) , B̂b(r

′)B̂b(r
′)
]  e−i

t
~ ĤQED

= ei
t
~ ĤQED

∫
d3r′

(
q
ε0

~
i δ

(T )
ab (r′ − r) ĵb (r′)

+ 1
2µ0

[
Ê

(T )
a (r) , B̂b(r

′)B̂b(r
′)
] )

e−i
t
~ ĤQED

= exp

(
i
t

~
ĤQED

) −i~ 1
ε0

∫
d3r′

∑
bε{x,y,z} δ

(T )
ab (r− r′) ĵb (r′)

+ i~
ε0µ0

(
rotB̂(r′)

)
a

 exp

(
−i t

~
ĤQED

)
(635)

In the last line use has been made of the commutation relations (29)
and the relation

1

2µ0

∫
d3r′

∑
bε{x,y,z}

[
Ê(T )
a (r) , B̂b(r

′)B̂b(r
′)
]

=
1

2µ0

∫
d3r′

∑
bε{x,y,z}

[
Ê(T )
a (r) ,

(
rotÂ(T )(r′)

)
b

(
rotÂ(T )(r′)

)
b

]

=
1

2µ0

∫
d3r′

∑
b,c,c′ε{x,y,z}

 1
ε0

~
i δ

(T )
ca (r′ − r)

(
εbc′c

∂
∂r′
c′
B̂b(r

′)
)

+
(
εbc′c

∂
∂r′
c′
B̂b(r

′)
)

1
ε0

~
i δ

(T )
ca (r′ − r)


=

1

ε0µ0

~
i

∫
d3r′

∑
b,c,c′ε{x,y,z}

δ(T )
ac (r− r′)

(
−εcc′b

∂

∂r′c′
B̂b(r

′)

)

=
i~
ε0µ0

∫
d3r′

∑
cε{x,y,z}

δ(T )
ac (r− r′)

(
rotB̂(r′)

)
c

=
i~
ε0µ0

(
rotB̂(r)

)
a

(636)

Here, ĵb (r) is the relativistic current density operator and ‘p.I.’
stands for partial integration. Decomposing it into longitudinal and
transversal parts according to

ĵ(T )
a (r) =

∫
d3r′

∑
bε{x,y,z}

δ
(T )
ab (r− r′) ĵb (r′)

ĵ(L)
a (r) =

∫
d3r′

∑
bε{x,y,z}

δ
(L)
ab (r− r′) ĵb (r′)

ĵa (r) = ĵ(L)
a (r) + ĵ(T )

a (r)

(637)
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there follows for the Heisenberg equation of motion (635)

(
rotB̂(r, t)

)
a

= ε0µ0
∂Ê

(T )
a (r, t)

∂t
+ µ0ĵ

(T )
a (r, t) (638)

which is the Maxwell equation of the displacement current.

Now, the decomposition of the current density into transversal and
longitudinal parts according to (637) is not invariant under Lorentz
transformations. However, one can complete equation (638) by adding
the equation of motion of the longitudinal current density operator
which is closely related to the QED continuity equation. The latter
follows from the Heisenberg equation of motion of the charge density
operator %̂ (r, t):

i~
∂%̂ (r, t)

∂t
=
[
%̂ (r, t) , ĤQED

]
= exp

(
i
t

~
ĤQED

)[
%̂ (r) , ĤQED

]
exp

(
−i t

~
ĤQED

) (639)

The commutator can be evaluated according to

[
%̂ (r) , ĤQED

]
=
[
%̂ (r) , ĤD + Ĥrad + ĤA + V̂C

]
=
[
%̂ (r) , ĤD

]
=

q0

∑
µ

Ψ̂ †µ (r) Ψ̂µ (r) ,

∫
d3r′

∑
µ′,µ′′

Ψ̂ †µ′
(
r′
)
H

(D)
µ′,µ′′

(
r′
)
Ψ̂µ′′

(
r′
)

= q0

∫
d3r′ lim

R′→r′

∑
µ,µ′,µ′′

H
(D)
µ′,µ′′

(
r′
) [
Ψ̂ †µ (r) Ψ̂µ (r) , Ψ̂ †µ′

(
R′
)
Ψ̂µ′′

(
r′
)]

= q0

∫
d3r′ lim

R′→r′

∑
µ,µ′,µ′′

H
(D)
µ′,µ′′

(
r′
)Ψ̂

†
µ (r)

{
Ψ̂µ (r) , Ψ̂ †µ′ (R

′)
}
Ψ̂µ′′ (r

′)

−Ψ̂ †µ′ (R
′)
{
Ψ̂µ′′ (r

′) , Ψ̂ †µ (r)
}
Ψ̂µ (r)

= q0

∫
d3r′ lim

R′→r′

∑
µ′,µ′′

H
(D)
µ′,µ′′

(
r′
){δ(3) (r−R′) Ψ̂ †µ′ (r) Ψ̂µ′′ (r

′)

−δ(3) (r− r′) Ψ̂ †µ′ (R
′) Ψ̂µ′′ (r)

(640)

Partial integration and inserting the single–particle Dirac Hamiltonian
H

(D)
µ′,µ′′ given in (10) yields
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[
%̂ (r) , ĤQED

]
= q0

∫
d3r′δ(3) (r− r′)

∑
µ′,µ′′

Ψ̂
†
µ′ (r)

(
h

(D)
µ′,µ′′ (r

′) Ψ̂µ′′ (r
′)
)

−
(
h
?(D)
µ′,µ′′ (r

′) Ψ̂ †µ′ (r
′)
)
Ψ̂µ′′ (r)

= q0

∑
µ′,µ′′

Ψ̂
†
µ′ (r)

(
h

(D)
µ′,µ′′ (r) Ψ̂µ′′ (r)

)
−
(
h
?(D)
µ′,µ′′ (r) Ψ̂ †µ′ (r)

)
Ψ̂µ′′ (r)

= q0

∑
µ′,µ′′

∑
bε{x,y,z}

(cαb)µ′,µ′′

Ψ̂
†
µ′ (r)

(
~
i
∂
∂rb
Ψ̂µ′′ (r)

)
−
(
−~

i
∂
∂rb
Ψ̂ †µ′ (r)

)
Ψ̂µ′′ (r)

=
~
i

∑
bε{x,y,z}

∂

∂rb

(
Ψ̂ †µ′ (r) (cαb)µ′,µ′′ Ψ̂µ′′ (r)

)
= −i~

∑
bε{x,y,z}

∂

∂rb
ĵb (r)

(641)

Hence there follows for the QED continuity equation

∂%̂ (r, t)

∂t
+

∑
bε{x,y,z}

∂

∂rb
ĵb (r, t) = 0̂ (642)

The longitudinal electric field is defined as

Ê(L)
a (r, t) = − ∂

∂ra
Φ̂ (r, t)

Φ̂ (r, t) =

∫
d3r′

%̂ (r′, t)

4πε0 |r− r′|

divÊ(L) (r, t) =
%̂ (r, t)

ε0

(643)

Using the continuity equation (642) for the temporal derivative of the

electric field operator Ê
(L)
a (r, t) then
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∂Ê
(L)
a (r, t)

∂t
=

∂

∂t

(
− ∂

∂ra
Φ̂ (r, t)

)
= − ∂

∂ra

∫
d3r′

∂%̂(r′,t)
∂t

4πε0 |r− r′|

=
∂

∂ra

∫
d3r′

∑
bε{x,y,z}

∂
∂r′b
ĵb (r′, t)

4πε0 |r− r′|

=
∂

∂ra

∫
d3r′

∑
bε{x,y,z}

(
∂

∂r′b

(
ĵb (r′, t)

4πε0 |r− r′|

)
− ĵb

(
r′, t
) ∂

∂r′b

1

4πε0 |r− r′|

)

=
∂

∂ra

∫
d3r′

∑
bε{x,y,z}

(
∂

∂r′b

(
ĵb (r′, t)

4πε0 |r− r′|

)
+

(
∂

∂rb

1

4πε0 |r− r′|

)
ĵb
(
r′, t
))

=

 ∂

∂ra

∫
d2r′

∑
bε{x,y,z}

nb′
ĵb (r′, t)

4πε0 |r− r′|


(Oberflächenterm verschwindet )

+
1

ε0

∫
d3r′

∑
bε{x,y,z}

∂2

∂ra∂rb

1

4π

1

|r− r′|
ĵb
(
r′, t
)

(644)

Using the representation of the longitudinal delta function (31) there
follows

∂Ê
(L)
a (r, t)

∂t
= − 1

ε0

∫
d3r′δ

(L)
ab (r− r′) ĵb (r′, t)

= − 1

ε0
ĵ(L)
a (r, t)

(645)

With that one finds

ε0µ0
∂Ê

(L)
a (r, t)

∂t
+ µ0ĵ

(L)
a (r, t) = 0̂ (646)

The divergence of (646) yields with
∑

aε{x,y,z}
∂
∂ra
Ê

(L)
a (r, t) =

divÊ(L) (r, t) = 1
ε0
%̂ (r, t) the continuity equation.

Adding (646) and (638) now gives the complete Maxwell equation of
the operator valued electromagntic fields as

(
rotB̂(r, t)

)
a

= ε0µ0
∂Êa (r, t)

∂t
+ µ0ĵa (r, t) (647)

One can also derive wave equations by differentiating again with
respect to time.
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rot
∂

∂t
B̂(r, t)

(634)
= −rotrotÊ(r, t)

= ε0µ0
∂2Ê(r, t)

∂t2
+ µ0

∂

∂t
ĵ (r, t)

(648)

or

rot rotÊ(r, t) +
1

c2

∂2Ê(r, t)

∂t2
= −µ0

∂

∂t
ĵ (r, t) (649)

where c = 1√
ε0µ0

.

The analogue of equation 649 for the photon field Â(T )(r, t) follows

with 633 and B̂
(T )
a (r, t) = rotÂ

(T)
a (r, t) is thus given by

rotrotÂ(T )(r, t) +
1

c2

∂2

∂t2
Â(T )(r, t) = µ0ĵ

(T ) (r, t) (650)

Using

rotrotÂ(T )(r, t) = ∇
(

divÂ(T )(r, t)
)
−∇2Â(T )(r, t)

divÂ(T )(r, t) = 0
(651)

there follows

(
1

c2

∂2

∂t2
−∇2

)
Â(T )(r, t) = µ0ĵ

(T ) (r, t) (652)

whose derivative with respect to the time (in the Heisenberg picture)
is identical to the wave equation 649.

Assuming there is no matter to which the photons couple the
homogeneous wave equation arises.

In that case one can write for the time dependence of the vector
potential (24) and the electric field (25) [7]

Â
(T,0)
b (r, t) = e

i
~ tĤradÂ

(0)
b (r)e−

i
~ tĤrad

Ê(T,0)
a (r, t) = e

i
~ tĤradÊ(T,0)

a (r)e−
i
~ tĤrad

(653)
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where Â
(0)
b (r) and Ê

(T,0)
a (r) are the solutions to the homogenous wave

equation (the right hand side of 649 and 652 equals zero).

Now using the BCH formula (see section I) there follows [7]

e
i
~ tĤradâq,λe

− i
~ tĤrad = e−iωqtâq,λ

e
i
~ tĤradâ†q,λe

− i
~ tĤrad = eiωqtâ†q,λ

(654)

which gives for (654) [7]

Â
(T,0)
b (r, t) =

1√
V

∑
q

∑
λε{I,II}

√
~

2ε0ω (q)

(
ei(q·r−ωqt)âq,λ + e−i(q·r−ωqt)â†q,λ

)
ub (q, λ)

Ê
(T,0)
b (r, t) =

i√
V

∑
q

∑
λε{I,II}

√
~ω (q)

2ε0

(
ei(q·r−ωqt)âq,λ − e−i(q·r−ωqt)â†q,λ

)
ub (q, λ)

(655)

The condition ωq = c |q| leads then to the vacuum wave equations or
homogeneous wave equations [7]

(
1

c2

∂2

∂t2
−∇2

)
Â(T,0)(r, t) = 0(

1

c2

∂2

∂t2
−∇2

)
Ê(T,0)(r, t) = 0

(656)

It has to be emphazised that the solutions Â(T,0)(r, t) and Ê(T,0)(r, t) to
the homogeneous wave equations cannot be zero (in sharp contrast to
classical electromagnetic fields), because otherwise their fundamental
commutation relation [7]

[
Â(T,0)
a (r) , Ê

(T,0)
b (r′)

]
=

1

ε0

~
i
δ

(T )
ab (r− r′) 1̂ (657)

would not be satisfied. This means that there is always a
electromagnetic vacuum quantum field leading to the so–called
vacuum fluctuations 〈V ac| Ê(T,0)

a (r, t)Ê
(T,0)
a (r, t) |V ac〉 6= 0.
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