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1 Introduction 

1.1 Definition, epidemiology and prevalence of obesity and type 2 diabetes 

1.1.1 Obesity 

The global number of individuals with overweight and obesity almost tripled during the 

last 50 years (World Health Organization, 2021). Excess weight increased especially in 

children and adolescents (Abarca-Gómez et al., 2017; Fanzo et al., 2018) as well as in 

low- and middle-income countries (Templin et al., 2019), making obesity not only a 

disease of the wealthy or the old. In 2016, 1.9 billion adults were overweight, representing 

39 % of the world’s population (World Health Organization, 2021). Of these, 650 million 

had obesity (World Health Organization, 2021). Reports from Germany show that more 

than half of the population is overweight or obese (Schienkiewitz et al., 2017).  

The world health organization (WHO) defines overweight as body mass index (BMI) ≥ 

25 and < 30 kg/m², while a BMI of 30 kg/m² or greater is termed as obesity (World Health 

Organization, 2000). Long-term imbalance between energy intake and expenditure is 

leading to excess weight gain (Hill et al., 2012). Obesogenic environmental factors as an 

unhealthy food system including highly processed, energy dense convenience food 

(Swinburn et al., 2011) accompanied by a shift to lower physical activity are supposed to 

be main drivers of this pandemic. Sedentary behavior is favored by technological 

advances at home and at work, including occupational work, transportation as well as 

activities in leisure time (Chooi et al., 2019; Ng and Popkin, 2012). Projections for 2030 

estimate the prevalence to rise to 2.16 billion for overweight and 1.12 billion for obesity 

in the worldwide adult population (Kelly et al., 2008). Obesity therefore represents a 

major global health concern and is associated with increased morbidity and all-cause 

mortality (Berrington de Gonzalez et al., 2010). Since excessive fat accumulation affects 

numerous physiological processes, obesity was identified as major risk factor for a 

number of clinical conditions including type 2 diabetes (Singh et al., 2013), fatty liver 

disease (Li et al., 2016), cardiovascular diseases (Singh et al., 2013), musculoskeletal 

diseases (Anandacoomarasamy et al., 2008), Alzheimer´s disease (Anstey et al., 2011), 

depression (Jantaratnotai et al., 2017) and even some types of cancer (Lauby-Secretan et 

al., 2016). All of these obesity-related diseases adversely affect not only quality of life 
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(Fontaine and Barofsky, 2001), but also lead to markedly increased health care costs. 

Indeed, obesity-related diseases account for 8.4 % of total health expenditures of the 

OECD countries, positioning obesity as a serious economic burden (OECD, 2019). 

1.1.2 Type 2 diabetes  

Several factors, including a growing life expectancy, a rise in urbanization as well as a 

sedentary lifestyle with unhealthy diet and an excess of calories favor the development of 

type 2 diabetes mellitus (T2DM) (Tinajero and Malik, 2021). Over the last decades, the 

worldwide prevalence of diabetes accelerated dramatically from 108 million in 1980 to 

422 million in 2014 (Zhou et al., 2016). In 2019, 463 million individuals were globally 

affected by diabetes corresponding to 9.3% of the population, of which 90 % had T2DM 

(Saeedi et al., 2019). This number is projected to rise to 578 million by 2030 and will 

reach 700 million by 2045 (Saeedi et al., 2019). Interestingly, a more rapid growth of 

diabetes cases was recorded in low- and middle- than in high-income countries (Saeedi 

et al., 2019; Tinajero and Malik, 2021). Aging is accompanied by an increasing 

prevalence with 19.9 % being diabetic between 65 and 79 years (Saeedi et al., 2019). 

Germany recorded 6.9 million T2DM cases in 2019/2020 with an estimated number of 

around 2 million unknown cases of diabetes (Jacobs and Rathmann, 2019). 

For the diagnosis of T2DM at least one of three criteria must be fulfilled: hemoglobin 

A1c (HbA1c) ≥ 6.5%, fasting plasma glucose ≥126 mg/dl or 2-h plasma glucose ≥ 200 

mg/dl in a 75-g oral glucose tolerance test (American Diabetes Association, 2021; 

Arzneimittelkommission Der Deutschen Apotheker et al., 2021; Schleicher et al., 2021).  

Diabetes represents a large burden for the health systems. In 2010, T2DM was attributed 

to 10 % of total healthcare expenses in Germany (Jacobs et al., 2017). Diabetes is the 

major cause for kidney failure (Drawz and Rahman, 2015) and doubles the risk for 

cardiovascular diseases (Emerging Risk Factors Collaboration et al., 2010), which are 

among the leading causes of death (Lozano et al., 2012). Indeed, diabetes accounted for 

4.2 million deaths in 2019 and is therefore linked to 1 in 9 deaths worldwide (Saeedi et 

al., 2020), placing the disease as major global threat. 
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1.2 Pathophysiology of obesity and type 2 diabetes 

1.2.1 Obesity 

1.2.1.1 Genetics, epigenetics and lifestyle  

Obesity is a complex multifactorial chronic disease, caused by a long-term energy 

imbalance. Estimates from twin and adoption studies suggest a heritability of BMI 

ranging from 40 up to 70 % (Herrera et al., 2011). While monogenetic forms of obesity 

are rare, polygenic obesity got into focus (Pigeyre et al., 2016; Rohde et al., 2019). 

Currently, more than 300 genetic loci for single nucleotide polymorphisms have been 

identified to associate with BMI (Goodarzi, 2018). However, these genetic variants 

explain less than 5 % of BMI variation (Pigeyre et al., 2016). Further, epigenetic 

mechanisms are likely involved in the heritability of obesity (Pigeyre et al., 2016). 

Epigenetic modifications are chemical modulations of deoxyribonucleic acid (DNA) 

bases as well as changes of the protein complex surrounding the DNA (histones) that 

impact on gene function despite the DNA sequence remains unaffected (Al Aboud et al., 

2021). As a result of these depicted reactions, gene expression is modified (mostly 

decreased but in some instances potentially also increased) (Al Aboud et al., 2021). 

Intrauterine and postnatal nutritional exposure are thought to have persistent effects on 

metabolic health later in life conveyed via epigenetic mechanisms (Oestreich and Moley, 

2017). In addition to the genetic and epigenetic predisposition, several behavioral and 

environmental factors contribute to the regulation of energy homeostasis. Obesity, as a 

result of dysregulated energy metabolism, is promoted by excessive food intake and lack 

of physical activity (Swinburn et al., 2011).  

1.2.1.2 Central regulation of energy homeostasis 

The brain, especially the hypothalamus regulates energy homeostasis via food intake and 

energy expenditure (Myers and Olson, 2012). Specialized neurons receive signals from 

the periphery that inform the brain about nutrient supply of the organism (Timper and 

Brüning, 2017). Energy availability or shortage is e.g. conveyed via vagal afferents from 

digestive organs (Berthoud, 2008). Furthermore, circulating metabolites as glucose as 

well as hormones like leptin, ghrelin and insulin signal to the brain (Berthoud, 2008; 
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Schwartz and Porte, 2005). These signaling factors are released from stomach, adipose 

tissue, and pancreas, respectively (Sobrino Crespo et al., 2014; Valassi et al., 2008). 

Highly specialized neurons in the hypothalamus translate these signals into behavior and 

inhibit or stimulate eating (Vettor et al., 2002). Further, they regulate absorption and 

storage as well as mobilization of substrates via vagal efferents, the sympathetic nervous 

system and hormonal mechanisms (Berthoud, 2008). Though, obesity is associated with 

insulin resistance and leptin resistance of peripheral tissues as well as the brain, whereby 

the physiological functions of these hormones in energy homeostasis are disrupted 

(Myers et al., 2010). Besides these basic homeostatic mechanisms in the hypothalamus, 

eating behavior is further influenced by centrally regulated processes as taste perception, 

hedonic liking of food, reward response to food stimuli as well as cognition and decision 

making (Davidson et al., 2019). One theory suggests that processes of homeostatic control 

can be overwritten by reward-related response mechanisms to food (cues) favoring 

weight gain (Burger and Berner, 2014; Lutter and Nestler, 2009). 

In addition to energy intake, the expenditure of energy is pivotal to maintain energy 

balance. Though hard to measure, energy expenditure by means of physical activity is 

assumed to be involved in obesity development (Blüher, 2019; Ng and Popkin, 2012). 

However, current evidence argues against an earlier supposed lower resting energy 

expenditure in persons with obesity compared to their normal weight counterparts, which 

would favor a positive energy balance (Carneiro et al., 2016a). Moreover, no differences 

of resting and activity-related energy expenditure between persons with normal weight 

and overweight have been found after adjusting for fat free mass (Oussaada et al., 2019). 

Thus, the relative contribution of energy expenditure to the development of obesity is still 

under debate. 

1.2.1.3 Adipose tissue and mitochondrial function  

The surplus of energy is predominantly stored as triacylglycerides (TAG) in white 

adipose tissue. Excessive fat deposition adversely affects metabolic processes and leads 

to an increase in adipocyte size and apoptosis (Strissel et al., 2007) with progressive 

immune-cell infiltration into adipose tissue (Harford et al., 2011). Altered adiponectin, 

adipokine and pro-inflammatory cytokine secretion by adipocytes and macrophages 

promote a state of chronic low-grade inflammation and foster the development of insulin 
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resistance (Harford et al., 2011). Subsequently, these secreted adipokines and pro-

inflammatory cytokines induce so called oxidative stress (Fernández-Sánchez et al., 

2011). In detail, oxidative stress is caused by highly reactive chemicals produced as 

byproducts from oxygen respiration. These reactive oxygen species (ROS) emerge from 

the mitochondrial oxidation of glucose and free fatty acids (FFA), and further metabolic 

processes within the cell (Bondia-Pons et al., 2012). In order to control ROS levels, an 

antioxidant defense system disarms these radicals (Birben et al., 2012). However, in the 

case of excess nutrient supply to adipose and non-adipose tissue cells, glucose and FFA 

can overload the mitochondria leading to a surplus of ROS production (Bondia-Pons et 

al., 2012). If ROS formation exceeds the cellular elimination capacity, these radicals 

accumulate and can oxidize e.g. lipids, proteins, DNA, or even cell structures which 

thereby lose their biological function (Birben et al., 2012). These mechanisms likely 

impair mitochondrial function and lead to a diminished oxidative capacity which might 

favor excessive fat accumulation (Bondia-Pons et al., 2012). Finally, oxidative stress 

further aggravates the inflammatory processes that are already present in obesity and in 

turn adversely affects insulin action in its target organs. Indeed, reduced insulin sensitivity 

was observed in persons with obesity (Kahn and Flier, 2000).  

1.2.1.4 Body fat distribution  

Since lipid handling and storage capacity of adipose tissue are impaired in obesity, the 

overflow energy can lead to ectopic fat deposition in the liver, muscle, and pancreas (Snel 

et al., 2012). Of notice, it appears that not every fat compartment is equally detrimental 

for future health (Ibrahim, 2010). It turned out that body fat distribution is pivotal for 

whole-body metabolism (Booth et al., 2014). Ectopic fat deposition e.g. in the liver as 

well as central obesity with visceral fat accumulation (Preis et al., 2010) are associated 

with abnormalities in metabolic functions, insulin resistance (Snel et al., 2012), and a 

markedly elevated risk for T2DM (Shuster et al., 2012). Increased hepatic release of very 

low-density lipoproteins (VLDL) due to lipid accumulation in the liver and diminished 

suppression of lipolysis by insulin in adipose tissue lead to elevated levels of FFA and 

TAG (Choi and Ginsberg, 2011; Ebbert and Jensen, 2013). Elevated concentrations of 

especially saturated FFA promote insulin resistance, and thereby contribute to the 

susceptibility to develop T2DM (Griffin et al., 1999). 
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1.2.2 Type 2 diabetes 

T2DM is a multifactorial disease. Most likely, an interaction of genetic and epigenetic 

predisposition with environmental and lifestyle factors is involved in the etiology of this 

metabolic disorder (Blüher, 2019). As a polygenetic disease, roughly 18 % of T2DM risk 

is explained by known genetic variation in loci of T2DM genes (Mahajan et al., 2018). 

Especially genes which play a role in ß-cell function and integrity appear to be involved 

(Mahajan et al., 2018).  

On a more mechanistic level, T2DM is caused by combined occurrence of insulin 

resistance and pancreatic ß-cell failure (Roden and Shulman, 2019; Stumvoll et al., 2005). 

This results in hyperglycemia, the common definition of diabetes. The earliest detectable 

pathogenic alteration typically is a diminished action of insulin in its classical target 

organs e.g. liver, adipose tissue and skeletal muscle (Galicia-Garcia et al., 2020). For 

some time, this can be compensated by increased insulin secretion from ß-cells to 

maintain normal glucose homeostasis (Cerf, 2013). Alterations in glucose metabolism are 

already seen several years prior to overt diabetes with a strong drop of insulin sensitivity 

starting 5 years before diagnosis (Tabák et al., 2009). To compensate for diminished 

insulin action, the secretion of insulin sharply increases 3-4 years prior to pathological 

glucose values, enabled potentially in part through enlargement of Langerhans islet size 

and rise of ß-cell number (Sachdeva and Stoffers, 2009). This state is characterized by 

hyperinsulinemia, which further promotes insulin resistance (Roden and Shulman, 2019), 

while glucose levels can still be kept within a physiological or prediabetic range. Fasting 

glucose gradually rises over time but start to strongly increase 3 years prior overt T2DM. 

The latter is also observed for 2-h glucose values after an oral glucose load (Tabák et al., 

2009). Thus, T2DM is preceded by a phase of prediabetes with slightly elevated glucose 

levels still remaining under the thresholds for T2DM. If insulin secretory capabilities 

decrease rapidly in the 3 years preceding T2DM diagnosis due to ß-cell loss, glucose 

levels increase and convert to a diabetic state (Stumvoll et al., 2007; Tabák et al., 2009).  

1.2.2.1 Insulin resistance 

Several causative factors that contribute to insulin resistance are discussed (Yaribeygi et 

al., 2019). A strong correlation between insulin sensitivity and visceral adiposity is well 
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established (Macor et al., 1997). One proposed underlying mechanism linking visceral fat 

with insulin resistance describes how adipokines interfere with the insulin signaling 

pathway. FFA, pro-inflammatory cytokines (e.g. tumor necrosis factor-alpha (TNF-α), 

interleukin-6 (IL-6)) and chemokines (e.g. monocyte chemoattractant protein-1 (MCP-

1)) are released by adipose tissue, a large non-classical endocrine organ (Trayhurn, 2007; 

Vázquez-Vela et al., 2008). These factors reach insulin-sensitive tissues via the 

bloodstream where they induce cellular insulin resistance by promoting serine 

phosphorylation of insulin receptor substrates (Shulman, 2000). This serine 

phosphorylation augments activity of the classical insulin receptor, namely the insulin 

receptor substrate (IRS)-1 - Akt signaling cascade (Shulman, 2000). Another crucial 

factor appears to be adiponectin. This peptide hormone is released from adipose tissue 

(Scherer et al., 1995). It was characterized as an insulin-sensitizing and anti-inflammatory 

adipokine (Wang and Scherer, 2016). Its expression and release are reduced in expanded 

adipose tissue (Arita et al., 1999). This lack of adiponectin is thought to promote insulin 

resistance in liver and muscle (Gilcampos, 2004).  

Besides the classical insulin sensitive organs, the brain has been characterized as insulin 

responsive (Ruud et al., 2017). In addition to the described effects on behavior above, 

insulin action in the brain is also involved in the regulation of peripheral metabolism and 

linked to body fat distribution (Kullmann et al., 2015a, 2020a, 2020b). Peripheral insulin 

reaches the brain, more specifically the hypothalamus where it initiates signals towards 

the periphery (Banks et al., 2012). This central regulation of peripheral metabolism was 

untangled in a number of studies in humans, showing brain insulin action to enhance 

whole-body insulin sensitivity (Heni et al., 2014), to promote insulin secretion (Heni et 

al., 2020) and to suppress hepatic endogenous glucose production (Dash et al., 2015; Heni 

et al., 2017). Though, diminished insulin responsiveness was detected in conditions like 

obesity and T2DM, a state termed brain insulin resistance (Heni et al., 2015). Decreased 

sensitivity of insulin in the brain adversely affects metabolic health and is moreover 

linked to an unfavorable body fat distribution with more fat surrounding the internal 

organs (Heni et al., 2015).  

Besides visceral fat, emerging evidence supports a close link between ectopic fat 

accumulation and insulin resistance (Snel et al., 2012). Ectopic fat means the deposition 
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of triglycerides in non-adipose tissues (cells), which are typically not linked to adipose 

tissue storage (e.g. muscle and liver) (Snel et al., 2012). Especially excess lipid 

accumulation in the liver, termed as non-alcoholic fatty liver disease (NAFLD) was 

identified as predictor of T2DM (Lallukka and Yki-Järvinen, 2016). Since the liver 

represents the key organ for systemic metabolism, lipids within the parenchyma likely 

disturb the secretory properties (e.g. proteins, lipids, metabolites) of the liver (Watt et al., 

2019). Especially an altered pattern of hepatokine secretion, which is involved in the 

regulation of lipid metabolism, inflammation and insulin sensitivity may adversely affect 

metabolism in other tissues (Watt et al., 2019).  

1.2.2.2 Insulin secretion 

Over the course of time, insulin hypersecretion is depleted, which likely corresponds to 

ß-cell dedifferentiation and ß-cell apoptosis (Stumvoll et al., 2007). Post mortem studies 

indicate a loss of 40-50 % of ß-cell mass in patients with T2DM (Butler et al., 2003). 

While acute rises in FFA and glucose physiologically stimulate insulin secretion, a 

chronic overload hinders insulin secretion/decreases ß-cell function and subsequently 

even induces ß-cell apoptosis (Rhodes, 2005). As underlying mechanisms for ß-cell 

apoptosis, an activation of Phosphatidylinositol-3-kinase (PI3K) (Eitel et al., 2003), the 

formation of ROS in substrate oxidation in ß-cells and endoplasmatic reticulum (ER) 

stress mediated signaling pathways are discussed (Donath and Halban, 2004).  

Of note, increased intrapancreatic fat has been observed in patients with prediabetes (Ou 

et al., 2013) and T2DM (Gaborit et al., 2015). Adipocytes located next to the islets within 

the pancreatic parenchyma have the potential to adversely affect ß-cell function via their 

secreted factors (e.g. FFA, cytokines) (Quiclet et al., 2019; Rodríguez et al., 2015). 

Indeed, increased intrapancreatic fat content associates with diminished insulin secretion 

in prediabetes (Heni et al., 2010). First hints point towards a positive effect of pancreatic 

fat reduction on restoration of insulin secretion (Lim et al., 2011; Wagner et al., 2021a). 

Therefore, pancreatic lipids are likely involved in the development of T2DM and may 

serve as a potential target to improve insulin metabolism (Wagner et al., 2021a).  

The observation that oral glucose intake evokes higher insulin secretion than isoglycemic 

intravenous administration in healthy persons is called “incretin effect” (Elrick et al., 
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1964; Nauck and Meier, 2018). Incretins are peptides secreted from gut cells upon oral 

nutrient intake and play a major role in the stimulation of insulin secretion (Buchan et al., 

1978; Eissele et al., 1992). Since the incretin effect is diminished or even absent in T2DM, 

insulin secretion is not sufficient to prevent hyperglycemia (Nauck and Meier, 2016).  

1.3 Energy metabolism and substrate oxidation 

In order to generate biochemical energy, humans rely on the oxidation of nutrients (lipids, 

carbohydrates, proteins). Major metabolic pathways for cellular energy generation are 

illustrated in figure 1. 

Glucose serves as primary energy substrate, which is first catabolized into two molecules 

of pyruvate in a series of enzymatic catalyzed reactions in the cytoplasm, called glycolysis 

(Pilkis and Granner, 1992). Under aerobic conditions, pyruvate is transformed to acetyl 

CoA via oxidative decarboxylation which then undergoes complete oxidation to CO2 in 

the citric cycle (Krebs, 1940; Maughan, 2009). These reactions allow the reduction of the 

cofactors nicotinamide adenine dinucleotide (NAD) and flavin adenine nucleotide (FAD), 

which deliver electrons for the respiratory chain (Maughan, 2009; Rigoulet et al., 2020). 

Electrons are transported along a chain of protein complexes in the inner mitochondrial 

membrane via redox reactions - evoking an electrochemical gradient that drives the 

formation of adenosine 5′ trisphosphate (ATP) (Bonora et al., 2012; Hatefi, 1985). 

Oxidation of glucose yields 36 ATP per mol and serves as carrier of biochemical energy 

(Ferrannini, 1988). These described intracellular processes take place in the 

mitochondria. In cells without mitochondria (e.g. erythrocytes) (Harvey and Kaneko, 

1976) or during lack of O2 (e.g. exercise) anaerobe glycolysis is the predominant pathway 

for energy generation (Skinner and Mclellan, 1980), where pyruvate is reduced to lactate. 

Break down of TAG via lipolysis serves as further energy source (Wang et al., 2008). 

Emerging glyceride enters glycolysis, while FFA are transformed to acetyl CoA in a 

series of reactions called ß-oxidation which flows into citric cycle (Kennedy and 

Lehninger, 1949). The oxidation of the FFA palmitate yields 131 ATP (Ferrannini, 1988).  

Last, proteins get catabolized into amino acids and are further degraded to enter glycolysis 

or citric cycle. Proteins play a minor role in energy metabolism and generate only 23 ATP 

per mol (Ferrannini, 1988).  
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In conditions like fasting, when glucose and insulin levels are low, or in states of insulin 

resistance, when glucose utilization is diminished, the formation of ketones is stimulated 

(Balasse and Féry, 1989). Ketogenesis in liver mitochondria originate mainly from the 

intermediate acetyl CoA of fatty acid oxidation (Puchalska and Crawford, 2021). Ketone 

bodies serve as energy source especially for the skeletal and cardiac muscle as well as the 

brain which is not able to oxidize FFA (Laffel, 1999). 

 

Figure 1: Major metabolic pathways for cellular energy generation  
Reference: Malandraki-Miller et al., Front cardiovasc Med, 2018 (Malandraki-Miller et al., 2018) 

 

1.3.1 Potential determinants of substrate oxidation 

1.3.1.1 Insulin and glucagon 

Major regulators of cellular nutrient availability for oxidation are insulin and glucagon 

(Qaid and Abdelrahman, 2016). High circulating glucose levels trigger the secretion of 

insulin from ß-cells of the pancreas (Suckale and Solimena, 2008). The binding of insulin 

to its receptor initiates an intracellular cascade, activating several lipid and protein 

kinases, that regulate glucose homeostasis and metabolism (Saltiel, 2021). Insulin 

facilitates cellular glucose uptake and promotes glycolysis as well as glycogen synthesis 

to lower blood glucose (Saltiel and Kahn, 2001). Insulin further affects lipid metabolism 

via suppression of lipolysis, stimulation of fat storage and reduction of FFA oxidation in 
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muscle and liver (Saltiel and Kahn, 2001). Since insulin promotes an anabolic state, the 

oxidation of glucose is favored while FFA oxidation becomes secondary.  

When glucose and insulin concentrations fall, glucagon is secreted from pancreatic α-

cells and potentially suppresses insulin secretion (Sutherland and De Duve, 1948). 

Glucagon stimulates glucose mobilization via hepatic breakdown of glycogen as well as 

gluconeogenesis in order to maintain normoglycemia (Qaid and Abdelrahman, 2016). 

This is further facilitated by diminished glucose uptake by tissues due to the lack of 

insulin in this fasting state (Qaid and Abdelrahman, 2016). In addition, glucagon 

promotes mobilization of FFA via increased lipolysis (Galsgaard et al., 2019; Keller and 

Shulman, 1979). Consequently, substrate oxidation is shifted towards FFA utilization 

with less oxidation of glucose (Habegger et al., 2010; Pégorier et al., 1989). 

1.3.1.2 Proglucagon cleavage products 

Beside glucagon, further proglucagon-derived peptide hormones are metabolically 

relevant (Rouillé et al., 1994). Proglucagon is processed in a cell-type-specific manner. 

The cleavage products glicentin (Raffort et al., 2017), glucagon-like peptide-1 (GLP-1) 

(Müller et al., 2019) and glucose-dependent insulinotropic polypeptide (GIP) (Holst, 

2019) are secreted from intestinal cells in response to food intake (Eissele et al., 1992).  

Though not thoroughly elucidated so far, actions of glicentin likely affect glucose 

metabolism via insulin production and secretion as well as intestine physiology as 

suggested by animal (Ohneda, 1987; Ohneda et al., 1995) and in vitro studies (Tomita et 

al., 2005). 

The incretins GLP-1 and GIP are known to potentiate glucose-stimulated insulin secretion 

from pancreatic ß-cells and are therefore crucially involved in glucose homeostasis 

(Holst, 2019). Beyond this, GLP-1 and GIP have the potential to affect postprandial 

glucagon secretion (Holst, 2019; Vilsbøll et al., 2003). Moreover, GIP might be involved 

in the regulation of glucagon secretion during low glucose levels (Tura et al., 2019). 

However, the role of these proglucagon cleavage products in the fasting state have not 

been decoded so far, but preliminary data show a low but continuous basal secretion of 

GLP-1 and GIP (Seino et al., 2010). Observations from rodents indicate alterations in 

fasting glucose concentrations in GLP-1 and GIP receptor knockout mice (Tura et al., 
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2019), while in a mouse model of hyperinsulinemia, fasting GLP-1 levels were increased 

(Lim et al., 2009). Studies in humans report increased basal GLP-1 levels in adolescents 

with obesity (Stinson et al., 2021), while reduced fasting levels of GLP-1 and glicentin 

were seen in adolescents with obesity and glucose intolerance (Manell et al., 2016). These 

findings give a hint for their potential relevance also in fasting metabolism. This is further 

emphasized by a previous investigation, suggesting that incretins may foster non-insulin 

dependent glucose disposal (Wagner et al., 2021b). In detail, in the presence of low basal 

insulin concentrations, glucose itself is able to promote its disposal, inhibit hepatic 

glucose production (Best et al., 1996) and even stimulate its cellular uptake (Galante et 

al., 1995). Since incretins have central signaling properties, they could also affect glucose 

metabolism (hepatic glucose output) via nervous system in a non-insulin dependent way, 

arguing for a potential role in fasting metabolism (Campbell and Drucker, 2013).  

1.3.1.3 Other potential regulators of energy metabolism 

Adipose tissue as metabolic organ is pivotal for whole-body energy metabolism 

(Trayhurn, 2007). In addition to its ability to store energy as fat, adipose tissue possesses 

endocrine functions (Vázquez-Vela et al., 2008). Secreted leptin is crucial for appetite 

inhibition (Obradovic et al., 2021) and promotion of lipid oxidation (Reidy and Weber, 

2000). Concentrations of this hormone are increased in obesity (Maffei et al., 1995). Of 

note, not solely the total amount of fat but also body fat distribution may affect energy 

metabolism (Bjorntorp, 1991; Ibrahim, 2010). In contrast to subcutaneous fat beneath the 

skin, visceral adipose tissue located around internal organs is strongly linked to metabolic 

disturbances as insulin resistance and T2DM (Preis et al., 2010; Snel et al., 2012) with 

potential consequences for substrate oxidation. Though controversially discussed, a 

reduced ß-oxidation of FFA seems to be present in NAFLD (Perseghin et al., 2006).  

Cortisol, originating from adrenal cortex follows a circadian rhythm and is also released 

in response to low glucose levels or in response to stress. The hormone promotes catabolic 

processes to foster gluconeogenesis in the liver with the aim to maintain stable energy 

supply via blood glucose (De Feo et al., 1989). Further, thyroid hormones play a role in 

the regulation of basal metabolism and thermogenesis as the interrelationship between 

thyroid function and  weight regulation is well known (Reinehr, 2010). A further regulator 

of metabolic processes is the sympathetic nervous system as one part of the autonomic 
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nervous system (Carnagarin et al., 2018). Increased sympathetic nervous system activity 

and reduced reactivity are described in obesity (Guarino et al., 2017).  

1.3.2 Disease-related alterations of energy metabolism 

Several clinical conditions have been linked to changes in fuel partitioning. Higher 

carbohydrate oxidation was observed in persons with hypertension (Ferro et al., 2013) 

and subclinical carotid atherosclerosis (Montalcini et al., 2013). Further, abnormalities of 

substrate utilization are prevalent in the failing heart (Steggall et al., 2017) as well as in 

cancer (Ma et al., 2018), where an increased reliance on fat oxidation was reported in 

newly diagnosed cancer patients (Cao et al., 2010). These observations highlight the 

importance of substrate use for health and disease. 

1.3.2.1 Alterations of energy metabolism in obesity and type 2 diabetes 

Over the last decades, fuel selection was repeatedly reported to predispose for subsequent 

rise in BMI. Longitudinal observations revealed higher weight gain over the years when 

individuals have a lower fat relative to carbohydrate utilization after overnight fasting 

(Ellis et al., 2010; Marra et al., 2004; Seidell et al., 1992) as well as over 24 h (Zurlo et 

al., 1990). These observations were made in persons without (Ellis et al., 2010; Marra et 

al., 2004; Seidell et al., 1992) and with obesity (Schutz, 1995). Though, lipids are not 

primarily selected for energy generation, indicating a diminished capacity to oxidase fat 

(Serra et al., 2013; Simoneau et al., 1999). This could favor a further accumulation of 

lipids (Simoneau et al., 1999). In addition to its potential involvement in obesity 

development, an altered fuel selection is related to insulin sensitivity (Kelley and 

Mandarino, 2000; Petersen et al., 2004). A clinical study in persons with obesity revealed 

higher fat utilization in participants characterized as metabolically healthy compared to 

metabolically unhealthy persons with prevalent metabolic syndrome or T2DM (Pujia et 

al., 2016). In line, a low lipid oxidation was suggested as a predictor for metabolic 

syndrome and T2DM (Pujia et al., 2019).  

Beside a lower ability to use fat as fuel in the fasting state, the upregulation of 

carbohydrate use in the postprandial phase seems to be blunted in case of insulin 

resistance (Corpeleijn et al., 2009; Galgani et al., 2008). At the end of the last century, 

Kelley and colleagues shaped the term of “metabolic flexibility”, meaning the ability of 
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the mitochondria or the organism to match fuel selection according to nutrient availability 

e.g. during conditions like fasting, feeding or exercise (Kelley and Mandarino, 2000; 

Kelley et al., 1999). The adaption of substrate oxidation to the fasting state with mainly 

lipid oxidation and to the fed state with insulin-stimulated suppression of lipid oxidation 

and predominant carbohydrate oxidation seems to be deteriorated (Corpeleijn et al., 2009; 

Galgani et al., 2008). This metabolic inflexibility was detected in conditions like T2DM 

and the metabolic syndrome (Smith et al., 2018).  

As a consequence of deficient insulin levels and action during T2DM, the proper 

regulation of metabolic processes is disturbed. Cellular glucose uptake and oxidation are 

decreased while hepatic glucose production and output are upregulated (Roden and 

Shulman, 2019). Since amino acids are increasingly transformed to glucose precursors, 

protein synthesis is inhibited. The same holds true for lipids. Due to insulin resistance, 

insulin is not potent to suppress lipolysis leading to higher release of FFA into the 

bloodstream. During more severe (absolute) insulin deficiency as seen e.g. in type 1 

diabetes, FFA are metabolized to ketone bodies (McGarry and Foster, 1972).  

Moreover, higher levels of glucagon were observed in patients with T2DM in the fasting 

state (D’Alessio, 2011). This indicates a potential contribution of glucagon to 

hyperglycemia, mediated through an increased hepatic glucose production in the fasted 

state (D’Alessio, 2011). If glucagon levels differ between healthy individuals and persons 

with T2DM in the postprandial phase remains highly debated (Wagner et al., 2021b).  

1.3.3 Assessment of energy metabolism 

The method of indirect calorimetry is the gold standard to assess resting energy 

expenditure in humans (Ferrannini, 1988). This non-invasive, in vivo technique is also 

applied for the measurement of whole-body substrate utilization using an open circuit 

hood system to measure respiratory gas exchange (Matarese, 1997). The measurement is 

performed during rest in a room with indifference temperature. Subjects stay in a supine 

position and are instructed to stay awake but remain still. The ratio of consumed VO2 and 

produced VCO2 is termed as respiratory quotient (RQ), and is a read out for substrate 

oxidation rate (Ferrannini, 1988; Weir, 1949). In more detail, RQ refers to O2 and CO2 

turnover on a cellular level, while the respiratory exchange ratio (RER) describes the 
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relation of VCO2 and VO2 in the exhaled air (Gupta et al., 2017). During rest, RQ and 

RER are interchangeable. Since the RQ is more frequently used in literature to describe 

substrate oxidation as assessed by indirect calorimetry, the term of RQ is used in this 

work. Of note, macronutrients are oxidized to water, carbon dioxide and heat (Jequier et 

al., 1987). Under the assumption, that the oxidation of each substrate (glucose, fat, 

protein) yields a specific ratio of O2 consumption and CO2 production, the RQ indicates 

the predominantly oxidized substrate for cellular energy generation (Jequier et al., 1987; 

McLean et al., 1987; Mtaweh et al., 2018). An RQ of 0.7 is an indicator for fat being 

metabolized, oxidation of protein yields an RQ of 0.8, while an RQ equal to 1 reflects 

pure carbohydrate utilization (Ferrannini, 1988; Weir, 1949). Physiologic values of the 

RQ range between 0.67 and 1.2 (Haugen et al., 2007). Conditions like lipogenesis from 

carbohydrates and overfeeding yield an RQ greater than 1, while during ketogenesis the 

RQ sometimes drops below 0.7 (Haugen et al., 2007; Matarese, 1997).  

Protein oxidation can be measured via urinary nitrogen excretion but the contribution of 

proteins to heat production are relatively small and constant. Assuming a stable protein 

use and neglecting nitrogen excretion causes an error of 4 % in the assessment of energy 

metabolism (Gupta et al., 2017; Weir, 1949). This approach is commonly applied since 

the collection of 24-h urine is sometimes technically difficult and strongly depending on 

the participants (Ferrannini, 1988).  

As indirect calorimetry represents a unique method to assess fasting substrate partitioning 

in vivo in a non-invasive manner, it is widely used in research and sometimes even in 

clinical practice (Delsoglio et al., 2019). Instead of using a hood system, indirect 

calorimetry in metabolic chambers enable the assessment of 24-h substrate oxidation to 

record changes over the day (Melanson et al., 2010). Though, solely net oxidation rate is 

recorded in indirect calorimetry neglecting metabolic interconversion. This could be 

addressed by means of stable isotope infusion and measuring disappearance rates (Kim 

et al., 2016). Highly artificial methods combining indirect calorimetry with tracer infusion 

or insulin clamp radioisotope turnover techniques (Kim et al., 2016; Simonson and 

DeFronzo, 1990) allow to distinguish between endogenous and exogenous substrate 

oxidation (Beylot, 2006; Gerrits and Labussière, 2015). Biosamples, e.g. obtained by 

skeletal muscle biopsies enable assessment of the respiration or mitochondrial ATP 
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synthesis with chemiluminescence of specific tissue cells ex vivo (Abdul-Ghani et al., 

2009). 

1.3.4 Modulation of energy metabolism 

Acute adaptions of substrate oxidation in response to exercise or food intake were 

extensively studied (Egan and Zierath, 2013; Yu et al., 2021). Whether long-term changes 

in fasting substrate selection can achieve favorable effects for diseases like obesity or 

T2DM is still under investigation.  

Available evidence suggests a beneficial effect of metabolically-acting drugs (e.g. 

ranolazine) for impaired mitochondrial energy generation in the failing heart (Steggall et 

al., 2017). In conditions like obesity, lifestyle intervention trials revealed opposing effects 

of dietary energy restriction (Coutinho et al., 2018) or modification (Goldenshluger et al., 

2021) on fasting substrate oxidation. Endurance exercise training for 7 weeks in 

premenopausal women with overweight lowered the RQ (Barwell et al., 2009). 

Furthermore, changes in fuel use were observed in patients after bariatric surgery 

(Jabbour and Salman, 2021). Metabolic benefits in response to bariatric surgery are likely 

attributed to reduction of body fat mass and changed intestinal peptides (Laferrère, 2011).  

In line, GLP-1 receptor agonists favored fat utilization in patients with diabetic 

dyslipidemia (Patel et al., 2014). Notably, further antidiabetic agents as metformin also 

have the potential to decrease fasting fat oxidation in healthy (Tokubuchi et al., 2017) as 

well as in patients with T2DM (Levin and Perlov, 1971). Though, Gormsen et al. reported 

no effect of metformin on fat oxidation (Gormsen et al., 2018).  

Beside their known benefits for glycemic control, the drug class of sodium glucose 

cotransporter 2 inhibitors (SGLT2i) has shown positive effects on body weight, body fat 

distribution (Neeland et al., 2016), and cardiovascular health (Anker et al., 2021). This 

drug class exerts its action via inhibition of glucose reabsorption in the proximal tubule 

of the kidney leading to enhanced urinary glucose excretion (Ferrannini, 2017). Emerging 

evidence from studies in rodents support a role of this drug class also in lipid metabolism 

and regulation of lipid synthesis, transportation and FFA oxidation (Szekeres et al., 2021). 

Of note, first clinical trials indicate a switch towards FFA oxidation in patients with 

T2DM after administration of the SGLT2i dapagliflozin (Daniele et al., 2016). Since the 
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different compounds of this drug class vary between their selectivity for SGLT2 

(Ferrannini, 2017) and therefore potentially exert different actions, further research is 

needed to elucidate these mechanisms and the potential of substrate oxidation modulation 

in persons with prediabetes and obesity.  

1.4 Research questions 

Substrate oxidation is potentially fundamental for long-term health. Therefore, this work 

aims to investigate fasting substrate oxidation, its determinants as well as its relationship 

to obesity and hyperglycemia in order to gain a better understanding of changes in energy 

metabolism in the pathogenesis of metabolic disorders. A further objective of this work 

is to explore the effects of a metabolically acting drug on substrate oxidation and its 

relation to intrapancreatic fat and insulin secretion as potential approach for prevention 

or therapy of metabolic disorders.  

The following research questions are addressed in this thesis:  

o What are the determinants of fasting substrate oxidation? 

o Can fasting substrate oxidation be changed by the SGLT2i empagliflozin? 

o Does pharmacological modulation of fasting substrate oxidation contribute to a 

reduction in intrapancreatic fat and an improvement in insulin secretion? 
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2 Results 

2.1 1st Publication: “Free fatty acids, glicentin and glucose-dependent 
insulinotropic polypeptide as potential major determinants of fasting 
substrate oxidation.” 

Authors: 

Julia Hummel, Louise Fritsche, Andreas Vosseler, Corinna Dannecker, Miriam Hoene, 

Konstantinos Kantartzis, Hans-Ulrich Häring, Norbert Stefan, Jürgen Machann, Andreas 

L. Birkenfeld, Cora Weigert, Robert Wagner, Andreas Peter, Andreas Fritsche, Martin 

Heni. 

 

Published in Scientific Reports, 2021; 11(1):16642; DOI: 10.1038/s41598-021-95750-9 

Suppl. Mat.: https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-021-

95750-9/MediaObjects/41598_2021_95750_MOESM1_ESM.pdf 

 

(Kelley et al., 1999) (Mandarino et al., 1996) (Stanley et al., 2005) (Bonora et al., 2012) 

(Ferrannini, 1988) (Zurlo et al., 1990) (Seidell et al., 1992) (Ravussin and Swinburn, 

1993) (Marra et al., 2004) (Pujia et al., 2016) (Croci et al., 2013) (Ferro et al., 2013) 

(Montalcini et al., 2013) (Kelley and Mandarino, 2000) (Goodpaster and Sparks, 2017) 

(Kelley and Simoneau, 1994) (Péronnet and Haman, 2019) (Levadoux et al., 2001) 

(Solomon et al., 2008) (Siervo et al., 2016) (Petersen, 2003) (Lee et al., 2010) (Weyer et 

al., 1999) (Leverve et al., 2007) (Randle et al., 1963) (Galgani et al., 2008) (Schiffelers 

et al., 2001) (Goedecke et al., 2000) (Toubro et al., 1998) (Bonadonna et al., 1990) (Hue 

and Taegtmeyer, 2009) (Papackova and Cahova, 2015) (Hirsch et al., 2017) (Fukao et al., 

2014) (Møller, 2020) (Kim et al., 2019) (Raffort et al., 2017) (Holst, 2019) (Naitoh et al., 

2008) (Zhou et al., 2005) (Galsgaard et al., 2019) (Schutz et al., 1992) (Nagy et al., 1996) 

(Colberg et al., 1995) (Booth et al., 2014) (Shi et al., 2009) (McLaughlin et al., 2011) 

(Knerr et al., 2020) (Killion et al., 2020) (Matsuda and DeFronzo, 1999) (Gastaldelli et 

al., 2009) (Kahn et al., 1993) (Alberti et al., 2009) (American Diabetes Association, 2018) 

(Weir, 1949) (Haugen et al., 2007) (Branson and Johannigman, 2004) (Machann et al., 

2010) (Würslin et al., 2010) 
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2.2 2nd Publication: “Empagliflozin improves insulin sensitivity of the 
hypothalamus in humans with prediabetes: a randomized, double-blind, 
placebo-controlled, phase 2 trial.” 

Authors: 

Stephanie Kullmann*, Julia Hummel*, Robert Wagner, Corinna Dannecker, Andreas 

Vosseler, Louise Fritsche, Ralf Veit, Konstantinos Kantartzis, Jürgen Machann, Andreas 

L. Birkenfeld, Norbert Stefan, Hans-Ulrich Häring, Andreas Peter, Hubert Preissl, 

Andreas Fritsche, Martin Heni.  

*authors contributed equally 

 

Published in Diabetes Care, 2021; 45(2):398-406; DOI: 10.2337/dc21-1136 

Suppl. Mat.: https://doi.org/10.2337/figshare.16652713 

 

(Kullmann et al., 2020b) (Ruud et al., 2017) (Heni et al., 2017) (Dash et al., 2015) (Heni 

et al., 2020) (Brüning et al., 2000) (Okamoto et al., 2004) (Obici et al., 2002a) (Schmid 

et al., 2018) (Kullmann et al., 2018) (Edwin Thanarajah et al., 2019) (Kullmann et al., 

2015b) (Opstal et al., 2017) (Kullmann et al., 2020a) (Khunti, 2021) (Ferrannini et al., 

2016) (Ferrannini et al., 2014) (Merovci et al., 2014) (Ferrannini, 2017) (DeFronzo et al., 

2017) (Sa-nguanmoo et al., 2017) (Naznin et al., 2017) (Sawada et al., 2017) (American 

Diabetes Association, 2021) (Machann et al., 2010) (Kellar and Craft, 2020) (Eriksson et 

al., 2007) (Kahl et al., 2020) (Abdul-Ghani et al., 2017) (Kuchay et al., 2018) (Gancheva 

et al., 2015) (Féry, 1994) (Cusi et al., 2019) (Latva-Rasku et al., 2019) (Daniele et al., 

2016) (Plomgaard et al., 2019) (Qiu et al., 2017) (Scherer et al., 2011) (Oerter et al., 2019) 

(Wiciński et al., 2020) (Brownlee, 2001) (Maciejczyk et al., 2019) (Abraham and Lam, 

2016) (Carneiro et al., 2016b) (Hædersdal et al., 2020) (Gueguen et al., 2020) (Rådholm 

et al., 2020) 
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2.3 3rd Publication: “Eight weeks of empagliflozin does not affect pancreatic fat 
content and insulin secretion in people with prediabetes.”  

Authors: 

Julia Hummel, Jürgen Machann, Corinna Dannecker, Stephanie Kullmann, Andreas L. 

Birkenfeld, Hans-Ulrich Häring, Andreas Peter, Andreas Fritsche, Robert Wagner, 

Martin Heni. 

 

Submitted to Diabetes, Obesity and Metabolism. 

 

(Wagner et al., 2021a) (Singh et al., 2017) (Gerst et al., 2019) (Taylor et al., 2018) 

(Scheen, 2020) (Kullmann et al., 2021) (Zhong et al., 2014) (Bashir et al., 2015) (Yu et 

al., 2008) (Machann et al., 2022) (Hudak et al., 2021) (Heiskanen et al., 2018a) (Anker et 

al., 2021) (Rossing et al., 2022) 
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3 Discussion 

This thesis focused on fasting substrate oxidation and elucidated its potential 

determinants as well as pharmacological modulation with the SGLT2i empagliflozin. 

Whether a change in fasting substrate oxidation in response to SGLT2 inhibition 

contributes to changes in intrapancreatic fat and insulin secretion was further evaluated. 

The findings of this research were summarized in three original research papers which 

are embedded in this thesis (see 2).  

First, we explored factors that potentially affect fasting substrate oxidation. Therefore, a 

cross-sectional analysis was performed (see 2.1). The latter included 192 persons with a 

wide range of clinical and metabolic parameters ranging from lean and healthy to obese 

persons with diabetes. This analysis revealed FFA to be independently correlated with 

the preferentially oxidized substrate. Likewise to FFA, high levels of ß-hydroxybutyrate 

were linked to predominant fat oxidation. In contrast to GLP-1, GIP and glicentin were 

uncovered as independent determinants of substrate preferences in a sub-group of persons 

with prediabetes. A relationship between insulin and whole-body insulin sensitivity with 

fuel utilization could not be detected in this work. Moreover, BMI, total fat mass as well 

as body fat distribution including intrahepatic lipid content were not related to substrate 

oxidation. There were no differences between normal glucose tolerance, prediabetes and 

newly-diagnosed T2DM in regard to the preferred substrate. Likewise, no relationship 

between the metabolic syndrome and substrate oxidation could be established.  

In the context of this thesis, a randomized controlled trial including 40 persons with 

overweight or obesity and prediabetes were analyzed to elucidate the potential of 

pharmacologic modulation of nutrient use (see 2.2). Altered substrate oxidation with a 

pronounced utilization of FFA was apparent after treatment with SGLT2i empagliflozin. 

This pharmacologic modulation of substrate oxidation by empagliflozin did neither affect 

intrapancreatic fat content nor pancreatic insulin secretion (see 2.3).  

These summarized results are discussed in the following sub-chapters. 

3.1 Determinants of fasting substrate oxidation 

The analyzed potential determinants for fasting substrate oxidation FFA, glucose, ß-

hydroxybutyrate, insulin and insulin sensitivity, age as well as sex were already 
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extensively discussed in the manuscript presented above (see 2.1; (Hummel et al., 2021)). 

Detailed conclusions in the context of available literature are moreover found in the 

manuscript in regard to the results of BMI as well as body fat distribution and metabolic 

diseases as obesity, diabetes and the metabolic syndrome (see 2.1, (Hummel et al., 2021)). 

Our work revealed predominant fat oxidation in case of low levels of glucagon in a 

population with overweight or obesity and prediabetes. This is in contrast to current 

textbook knowledge, where glucagon is classically thought to promote ß-oxidation 

(Cryer, 2012; McGarry and Foster, 1980). Of note, this previous assumption is based on 

data from studies with highly experimental conditions. Hence, actions of glucagon may 

differ under basal, physiologic conditions in vivo.  

Moreover, glucagon is heavily involved in lipid handling in the liver (Galsgaard et al., 

2019). In accordance, our detected link between glucagon and substrate oxidation was 

mediated through FFA (Hummel et al., 2021). It may therefore be possible that glucagon 

shifts FFA preferably to gluconeogenesis which are consequently not available for 

oxidation. To ultimately clarify the complex interplay between glucagon, GLP-1, FFA, 

glucose and insulin for the regulation of substrate oxidation, further studies and 

appropriate experiments are needed.   

Unlike GLP-1, higher levels of GIP and glicentin were correlated with predominant 

carbohydrate oxidation. Of notice, the antidiabetic drug class of GLP-1 receptor agonists 

(GLP-1 RA) which are approved for the treatment of T2DM (Croom and McCormack, 

2009) were reported to affect substrate oxidation. Liraglutide decreased 24-h RQ, 

indicating an overall higher fat utilization (van Can et al., 2014) and improved metabolic 

flexibility in the transition to the postprandial phase (Anholm et al., 2019). While the 

known actions of GLP-1 in response to food intake include stimulation of insulin 

secretion and suppression of glucagon release (Holst, 2019), its role in the fasting state is 

less understood. In contrast to the postprandial phase, insulin levels are lower and 

glucagon levels are increased in a fasting situation (Boyle et al., 1989), representing a 

completely different metabolic milieu. Therefore, insulinotropic effects of GLP-1 seem 

not to play a major role in basal conditions. Our results during fasting conditions are 

comparable to those of research in adults with overweight or obesity, where no link 

between fasting GLP-1 levels and the choice of oxidized substrates was detected 
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(Poggiogalle et al., 2018). In contrast to these findings, higher fasting GLP-1 levels were 

however reported to associate with an increased fat oxidation in a glucose tolerant 

population with a wide ranging BMI from 18.5-50 kg/m² (Pannacciulli et al., 2006). It 

was suggested that this observed relationship in normal glucose tolerant individuals could 

be conveyed via sympathetic nervous system activation which enhances lipolysis and 

FFA oxidation. Central administration of GLP-1 was shown to activate autonomic 

nervous system that in turn promotes sympathetic tone (McLean et al., 2021; Yamamoto 

et al., 2002, 2003). These heterogenous results might be explained by the different glucose 

tolerance states of the study populations, since the link between GLP-1 and substrate 

oxidation was solely seen in glucose tolerant subjects (Pannacciulli et al., 2006). It can 

therefore be hypothesized that the described mechanism via sympathetic nervous system 

is impaired in persons with glucose intolerance which were studied in this thesis. 

Moreover, the interpretation of this inconsistent results has to take the markedly higher 

GLP-1 concentrations in the study of Pannacciulli et al. into account. This might be due 

to cross-reactivity of the assay with other pro-glucagon cleavage products that were a 

well-known problem in older GLP-1 immunoassays. Thus, the discrepancy might be 

explained by improvements in assay technology over the last years, meaning a lower 

cross-reactivity of current assays measuring incretins (Bak et al., 2014) that were applied 

in our study. Moreover, adolescents with obesity and impaired glucose tolerance were 

reported to have lower fasting GLP-1 levels compared to persons with normal glucose 

tolerance (Manell et al., 2016), which could be a further explanation for higher GLP-1 

levels in glucose tolerant individuals in the study of Pannacciulli et al..  

Compared to GLP-1, GIP gained less attention as a therapeutic target so far. In addition 

to its role in glucose homeostasis (it promotes insulin secretion in response to food 

intake), GIP exerts further metabolically relevant actions (Holst, 2019; Thondam et al., 

2020). Data from studies in rodents are consistent with those in humans, demonstrating 

GIP to promote re-esterification of FFA, to increase TAG storage in adipose tissue, to 

decrease plasma FFA and to lower the oxidation of FFA (Thondam et al., 2020). In 

accordance with these findings, a lower reliance on fat oxidation during high fasting 

levels of GIP was observed within this thesis (Hummel et al., 2021). Of note, we studied 

participants with prediabetes who had diminished insulin sensitivity. Current findings of 

this work confirm the results of an insulin resistant mouse model lacking GIP receptor 
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(Zhou et al., 2005). These mice had an overall decreased RQ indicating a shift to fat 

oxidation in liver and skeletal muscle along with a preserved fat storage (Zhou et al., 

2005). GIP receptors are not solely located in the pancreas, but also expressed in other 

tissues, including adipose tissue and the brain (Usdin et al., 1993). Therefore, changes of 

substrate oxidation in the skeletal muscle of GIP receptor knockout mice can be suspected 

to be mediated via central nervous system (Pfeiffer and Keyhani-Nejad, 2018).  

The role of GIP during basal fasting conditions has not been well described so far, which 

impedes a direct comparison of literature with the results of this work. However, data of 

GIP infusion experiments might help when interpreting our current findings, since the 

effect of GIP on insulin secretion in humans was reported to depend on actual glucose 

levels. When glucose was low, GIP had only marginal effects on insulin secretion but 

rather increased glucagon secretion, while GIP infusion markedly increased insulin 

secretion and suppressed glucagon during hyperglycemia (Christensen et al., 2011). This 

argues for the relevance of GIP action during the fasting state where the incretin could 

function in an insulin-independent manner. A further hint towards its role in fasting 

metabolism are the observed differences of basal GIP levels between healthy individuals 

and persons with T2DM, in whom GIP is increased (Alssema et al., 2013).  

Albeit GLP-1 and glicentin are likewise secreted by intestinal L-cells, the physiologic 

role of glicentin is still unclear and even its receptors remain unknown (Perakakis and 

Mantzoros, 2020). An affinity to GLP-1 and -2, GIP or glucagon receptors is considered 

to be plausible (Perakakis and Mantzoros, 2020; Raffort et al., 2017). Beside the described 

insulinotropic actions of glicentin (Ohneda et al., 1995), the hormone was detected in the 

brain of rats (Jin et al., 1988), making a central action possible. Underlining its relevance 

in obesity, first data show lower fasting glicentin levels in persons with severe obesity 

(Raffort et al., 2018), while the concentrations are increased after bariatric surgery (Poitou 

et al., 2018; Raffort et al., 2017). In adolescents with obesity, fasting levels of glicentin 

were lower in those with impaired glucose tolerance compared to normal glucose 

tolerance, which can be interpreted as a sign of early metabolic deterioration (Manell et 

al., 2016). Current data of this thesis obtained in persons with overweight or obesity and 

prediabetes indicate that in the presence of high levels of glicentin, carbohydrates are 
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preferentially oxidized over fat. Though, a pursuing discussion is restricted due to the 

lack of data concerning glicentin and substrate oxidation.   

Since the discovery of a reduced or even missing incretin effect in patients with T2DM 

(Elrick et al., 1964; Nauck and Meier, 2016) and the detection of weight and glucose 

lowering features of GLP-1 receptor agonists (Christensen et al., 2009), incretins gained 

growing attention over the last years. Moreover, first hints for differences in fasting levels 

of GLP-1, GIP and glicentin were reported in the literature for obesity, impaired glucose 

tolerance and T2DM (Chia et al., 2014; Manell et al., 2016; Raffort et al., 2017). 

Preclinical trials testing GIP agonists as well as GIP antagonists to induce weight loss and 

improve whole-body metabolism were successful (Killion et al., 2020; Widenmaier et al., 

2010). Synergistic effects were achieved when they were combined with GLP-1 RA in 

rodents and humans (Frias et al., 2018; Killion et al., 2018). Recently, first clinical data 

on effects of GLP-1R/GIPR co-agonists revealed an improvement of β-cell function and 

insulin sensitivity in T2DM (Thomas et al., 2021). The co-agonism of GLP-1 and GIP 

represents a promising new therapeutic option for both T2DM and obesity (Frías, 2020). 

This underlines the importance of incretins as upcoming targets in diabetes research and 

emphasizes the clinical relevance of our findings that low fasting levels of GIP and 

glicentin are linked to preferred fat oxidation.   

3.2 Pharmacologic modulation of fasting substrate oxidation 

In order to analyze the second research question of this thesis, a population of 40 adults 

with overweight or obesity and prediabetes were enrolled in a randomized controlled, 

investigator-initiated trial. Participants had a mean BMI of 31.5 ± 3.8 kg/m² and were 60 

± 9 years old. Since persons with first impairments of glucose metabolism face a high risk 

to progress to T2DM, they represent a population of opportunity for interventions in order 

to prevent further metabolic deteriorations. 

As part of this thesis, a randomized controlled trial was analyzed, where empagliflozin 

treatment over 8 weeks resulted in a decreased RQ, reflecting a change of substrate use 

towards increased reliance on fat oxidation (Kullmann et al., 2021). The SGLT2 inhibitor 

empagliflozin elevates renal glucose excretion and thereby reduces blood glucose levels 

(Vallon, 2015). This pharmacologic modulation of substrate oxidation was accompanied 
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by further metabolic improvements in empagliflozin-treated persons. Fasting glucose 

levels, liver fat content as well as total adipose tissue were reduced after the 8-weeks 

intervention (Kullmann et al., 2021). In addition to a corroboration of brain insulin 

resistance in persons with prediabetes, restoration of hypothalamic insulin sensitivity was 

achieved in response to SGLT2 inhibition (Kullmann et al., 2021).  

Interestingly, this improvement of brain insulin responsiveness mediated the amelioration 

of fasting glucose and liver fat. Accumulating evidence demonstrates brain insulin action 

to suppress endogenous glucose production (EGP) (Dash et al., 2015; Heni et al., 2017; 

Könner et al., 2007; Obici et al., 2002b). Since the latter is central for fasting glucose 

concentrations (Féry, 1994), the improved hypothalamic insulin sensitivity upon 

empagliflozin may has the potential to convey the positive effects on fasting glucose 

levels. However, this inhibition of EGP was solely shown under postprandial conditions 

with elevated circulating insulin levels, while the effect during fasting remains unknown. 

Moreover, contradictory results from trials with SGLT2i were reported, reaching from 

reduced EGP (Cusi et al., 2019) over unaffected (Kahl et al., 2020) to increased EGP to 

compensate for glucose loss (Ferrannini et al., 2016). These divergent results suggest that 

further factors could interact with the effects of SGLT2i treatment on EGP. Additional 

interacting signals might include signals originating in the brain. Therefore, further 

research is needed to elucidate the relationship between SGLT2i, brain insulin action and 

glucose metabolism.  

In addition to EGP, first reports indicate that brain insulin action could be involved in the 

regulation of lipolysis (in adipose tissue) of rodents (Koch et al., 2008; Scherer et al., 

2011). Moreover, injection of insulin into the preoptic area of the hypothalamus results 

in enhanced fat utilization in mice (Sanchez-Alavez et al., 2009). Thus, the improved 

brain insulin sensitivity upon SGLT2 inhibition could have affected liver fat mobilization 

and fuel oxidation in our study. However, according to the performed mediation analyses 

in the scope of this work (see 2.2), the change in substrate oxidation was likely not 

conveyed via the brain. Further, emerging evidence supports the hypothesis that SGLT2 

inhibition affects the autonomic nervous system (Scheen, 2019; Spallone and Valensi, 

2021), which in turn regulates lipolysis (Geerling et al., 2014) with possible implications 

of fat oxidation. This mechanism could have affected liver fat reduction and substrate 
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oxidation. However, we did not assess autonomic outflow to the periphery and therefore 

this hypothesis remains elusive.  

Corresponding to the results of the prior presented manuscript (see 2.1 and 3.1), glucagon 

and FFA could have modulated the altered fuel selection in response to empagliflozin 

treatment (Hummel et al., 2021). A potential increase of glucagon in response to reduced 

fasting glucose levels could promote lipolysis, while a potential oversupply of FFA in 

peripheral tissues could subsequently promote their oxidation (Galsgaard et al., 2019). 

Alternatively, glucagon could be involved in the shift of FFA to gluconeogenesis or 

hepatic ß-oxidation (see 3.1) (Galsgaard et al., 2019). Though, neither fasting values of 

FFA, nor those of glucagon were modified in empagliflozin-treated persons in our trial 

(Kullmann et al., 2021). They are therefore most likely not involved in the observed 

increased rates of fat oxidation upon empagliflozin treatment. According to the literature, 

insulin as well as whole-body insulin sensitivity could explain changes in substrate use 

(Kelley and Mandarino, 2000; Thiebaud et al., 1982). However, both were not changed 

by our empagliflozin treatment (Kullmann et al., 2021), arguing against a possible 

contribution to the switch of the utilized fuel.  

Multifaceted health benefits of SGLT2i emerged over the last years (Bonora et al., 2020; 

Zelniker et al., 2019). Beyond glucose control, pleiotropic effects on cardiovascular and 

renal health were uncovered in large clinical trials (Wanner et al., 2016; Zinman et al., 

2015). The underlying mechanisms are still unclear. Discussed mechanisms include 

effects on diuresis as well as the enhanced lipolysis and ketogenesis in response to SGLT2 

inhibition (Verma and McMurray, 2018). Ketone bodies are superior to FFA in regard to 

substrate efficiency (Mudaliar et al., 2016). However, ß-hydroxybutyrate levels, 

representing the quantitively primary ketone body, were not affected by empagliflozin in 

the trial of this thesis (Kullmann et al., 2021). As revealed in the first manuscript of this 

thesis (see. 2.1 and 3.1), high levels of ß-hydroxybutyrate correspond to predominant 

oxidation of fat (Hummel et al., 2021). Consequently, ketones seem not to contribute to 

the drop in RQ seen after empagliflozin treatment in the current trial.  

A previously upcoming hypothesis stated, that SGLT2 inhibition, known to elicit a state 

of mild caloric restriction due to increased glucose excretion, could favor restoration of 

diurnal rhythm and therefore exert its diverse health benefits (Esterline et al., 2018). Both, 
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in persons with obesity as well as insulin-resistance, the adaption of substrate oxidation 

to fasting and feeding is believed to be disrupted (Smith et al., 2018). Recently, it was 

reported that SGLT2i treatment led to more pronounced fat oxidation during daytime as 

well as nighttime with a larger day-to-nighttime RQ difference (Op den Kamp et al., 

2021). The authors concluded an improved metabolic transition from the fed to the fasted 

state, which could favor the restoration of the diurnal metabolic rhythm (Op den Kamp et 

al., 2021).  

Evidence from studies inducing caloric restriction indicate benefits for cardiovascular and 

metabolic health (Cioffi et al., 2018; Patterson and Sears, 2017). Moreover, periods of 

energy deficit shifted substrate oxidation to fat use (Most and Redman, 2020) and 

revealed ameliorated metabolic flexibility (Johnson et al., 2016). In conclusion, beneficial 

effects of SGLT2i may be conveyed via an activation of several molecular pathways 

induced by energy shortage, which are crucial to preserve intact cellular function and are 

linked to healthy metabolism (Esterline et al., 2018; Op den Kamp et al., 2021). Of note, 

glucose loss was not yet compensated by a change in total caloric intake or macronutrient 

composition in the presented trial (Kullmann et al., 2021). This leads to the assumption 

that a possible mild calorie deficit was apparent, which however was too small to induce 

significant weight reductions. The relatively short study duration of 8 weeks made it 

possible to detect metabolic benefits independent of weight loss.  

Since trials on SGLT2 inhibition in prediabetes are scarce, we compared our results to 

findings from overt T2DM. Following intake of the SGLT2i dapagliflozin, fat utilization 

was upregulated in the fasted state as well as during nighttime (Daniele et al., 2016; 

Ferrannini et al., 2014; Op den Kamp et al., 2021). In terms of substrate oxidation, SGLT2 

inhibition revealed consistent results in T2DM and in persons with prediabetes analyzed 

in this work. However, these studies differ in respect to weight reduction, as well as in 

effects on fasting FFA, fasting insulin and insulin sensitivity outcomes (Daniele et al., 

2016; Ferrannini et al., 2014; Op den Kamp et al., 2021), suggesting further factors to be 

involved in the mediation of SGLT2i effects on substrate use. Furthermore, SGLT2i may 

have direct cellular effects interfering with lipid metabolism. Results from rodents make 

a mechanistic link between SGLT2 inhibition and substrate oxidation possible. The 

SGLT2 inhibitor canagliflozin was shown to upregulate the peroxisome proliferator-



Discussion 58 
 
 

activated receptor-alpha (PPAR-α) in an obese animal model (Wei et al., 2020). As a 

nuclear receptor protein, PPAR-α acts as transcription factor regulating the expression of 

several genes involved in hepatic lipid metabolism (Bocher et al., 2006). Its central role 

in the upregulation of genes that control ketogenesis and ß-oxidation could explain a 

decreased RQ after SGLT2 inhibition (Ji et al., 2017). In addition, SGLT2i empagliflozin 

enhanced the activation of AMP-activated protein kinase carboxylase (AMPK) in skeletal 

muscle and elevated the levels of fibroblast growth factor-21 (FGF-21) in liver and 

plasma of obese mice (Xu et al., 2017). FGF-21 was characterized as hepatokine that 

regulates lipolysis in white adipose tissue (Inagaki et al., 2007) and promotes hepatic ß-

oxidation (Badman et al., 2007). The enzyme AMPK triggers catabolic pathways in order 

to preserve energy, therefore shifting fatty acids from lipid synthesis to ß-oxidation 

(Hardie, 2008; Ruderman et al., 2003; Velasco et al., 1997). These molecular mechanisms 

may represent a direct link between SGLT2 inhibition and enhanced FFA oxidation. 

Besides SGLT2i, metformin represents a further anti-diabetic drug with the potential to 

modulate substrate oxidation (Malin and Kashyap, 2014). Although not investigated in 

detail so far, mechanisms of metformin action interfere with the mitochondrial respiratory 

chain and likewise to SGLT2i activate AMPK (Zhang et al., 2009). Despite this stated 

mechanistic rationale, data from human studies are conflicting. Some trials reported no 

change in (fasting) fuel utilization in T2DM (Avignon et al., 2000; Gormsen et al., 2018; 

Stumvoll et al., 1995) and healthy persons (Fruehwald-Schultes et al., 2002), while others 

observed an enhanced fat utilization in healthy individuals and T2DM (Tokubuchi et al., 

2017).  

Beside SGLT2i and metformin, further potential modulators of fuel partitioning are found 

within other anti-diabetics e.g. GLP-1 RA. The GLP-1 RA liraglutide was reported to 

decrease 24 h substrate use (van Can et al., 2014), while no change in fasting RQ could 

be detected in response to semaglutide in persons with obesity (Blundell et al., 2017). 

Upcoming pharmacological approaches even target several receptors in parallel. First 

data suggest promising results for the treatment of metabolic diseases (Ambery et al., 

2018). For example, GLP-1/glucagon dual receptor agonist shifted nutrient partitioning 

to preferential fat oxidation in preclinical models (Patel et al., 2014; Pocai et al., 2009). 

This alteration was accompanied by weight loss and reductions in hepatic liver content 

(Pocai et al., 2009).  
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The shift towards fatty acid oxidation likely contributes to favorable effects on liver fat 

accumulation. Data from preclinical models are consistent with those of clinical trials 

describing a reduction of intrahepatic lipids in response to SGLT2i treatment in T2DM 

(Raj et al., 2019). Evidence from in vitro studies analyzing human adipose tissue biopsies 

elucidated improvements in insulin resistance and lipid deposition in response to an 

experimentally-induced shift towards enhanced fat utilization in e.g. adipocytes 

(Malandrino et al., 2015). Since there was no beneficial effect on whole-body insulin 

sensitivity after 8 weeks of empagliflozin treatment in our current trial, improvements in 

liver fat seem to be independent of insulin action and weight reductions in the current 

work (Kullmann et al., 2021). Due to the link between ectopic fat and excess body weight 

(Verkouter et al., 2019), a decrease of BMI typically has favorable effects on lipid 

deposition (Dubé et al., 2011). However, data of this thesis revealed no change in BMI 

after 8 weeks of empagliflozin intake (Kullmann et al., 2021). This is in line with an 

article of Kuchay et al., where liver fat reduction upon empagliflozin administration was 

independent of changes in body weight in T2DM (Kuchay et al., 2018), excluding body 

weight reduction as main driver of liver fat loss in this context. Moreover, preliminary 

evidence from rodents indicate intracellular lipid accumulation by inhibiting ß-oxidation 

in vivo (Dobbins et al., 2001; Ravussin and Smith, 2006; Yokono et al., 2014). This 

observation places the choice of oxidized substrates as potential mediator for the 

reduction of excessive fat deposition. How this could have affected pancreatic fat content 

in our trial is discussed in the following section. 

3.3 Pharmacologic modulated fasting substrate oxidation: implications on 
intrapancreatic fat content and insulin secretion 

The importance of ectopic fat in metabolic deteriorations is further emphasized by 

findings from the DiRECT trial (Taylor et al., 2018). In this study, diabetes remission was 

achieved when ß-cell function recovered. This process depends on reductions in 

intrahepatic as well as pancreatic fat (Taylor et al., 2018). As stated above, SGLT2i 

treatment typically lowers body fat mass as well as ectopic fat accumulation (Ferrannini, 

2010; Schork et al., 2019; Shao et al., 2020). This holds true especially for intrahepatic 

fat in persons with T2DM (Shao et al., 2020), while the effect on pancreatic fat has not 

been studied yet. We hypothesized that the observed shift from carbohydrate to fat 
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oxidation may also have the potential to mobilize lipids from this fat depot. Indeed, 

findings from an in vitro study support this hypothesis. Experimentally promoted fat 

oxidation demonstrated benefits for insulin sensitivity and lipid deposition in human 

adipocytes (Malandrino et al., 2015), which is of relevance since adipocytes represent the 

major location of fat within the pancreas (Wagner et al., 2021a). Moreover, preliminary 

evidence from rodents indicate a reduced fat mass by shifting energy utilization from 

carbohydrates towards fatty acids under SGLT2 inhibition (Yokono et al., 2014), placing 

the choice of substrates as potential mediator for the reduction of excessive fat deposition. 

Data of the current work indicate that the tested intake of empagliflozin for 8 weeks was 

not potent enough to achieve pancreatic fat reduction (Hummel et al., unpublished data, 

submitted, march 2022). In accordance, a previously published trial in T2DM (n=22) 

reported no change in pancreatic fat upon any of the five tested SGLT2i treatments (Horii 

et al., 2021). However, a subgroup of 11 patients with extensive fat accumulation in the 

pancreas reduced their pancreatic fat content after SGLT2 inhibition (Horii et al., 2021; 

Kim et al., 2014). Despite the participants reduced their body weight after SGLT2i 

treatment, the observed weight reduction did not correlate with the loss of pancreatic fat 

in the subgroup of patients with fatty pancreas (Horii et al., 2021). Though, the study 

design was retrospective and pancreatic fat was assessed by abdominal computed 

tomography scans, which solely exert moderate validity (Horii et al., 2021; Wagner et al., 

2021a). Further anti-diabetic drugs were tested to target intrapancreatic lipids in T2DM. 

In agreement with the results of SGLT2i in our current work, administration of GLP-1 

RA did not affect fat accumulation in the pancreas in several trials, despite all these trials 

reported significant but mild weight loss (Dutour et al., 2016; Kuchay et al., 2020; 

Vanderheiden et al., 2016). In accordance with results of this thesis on SGLT2i, 

Vanderheiden et al. detected a liver fat reduction upon GLP-1 RA treatment, without 

changes in pancreatic fat (Vanderheiden et al., 2016). These findings were confirmed by 

data from bariatric surgery, where fat reduction in the pancreas was independent of liver 

fat loss (Gaborit et al., 2015), arguing for a tissue-specific regulation of ectopic fat 

storage. This leads to the assumption of a differentially influenced substrate oxidation in 

different tissues. 
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Prior reports observed a link between pancreatic fat and reduced insulin secretion, 

especially in prediabetes (Heni et al., 2010; Yokota et al., 2012). In disagreement with 

the results of this thesis, one trail reported improved ß-cell function subsequent to a 2-

weeks empagliflozin intervention in persons with impaired fasting glucose (Abdul-Ghani 

et al., 2017). This trial quantified insulin secretion by highly-controlled hyperglycemic 

clamp technique (Abdul-Ghani et al., 2017) that might have higher sensitivity than an 

OGTT, which was applied in our trial. Thus, the applied method for quantifying insulin 

secretion in this thesis might have not detected smaller changes. Though, the authors of 

the hyperglycemic clamp trial did not measure pancreatic fat and their results were limited 

by a small sample size (n=16) and a missing control group (Abdul-Ghani et al., 2017).  

While not reported for pharmacologic approaches so far, there are reports of improved ß-

cell function after pancreatic fat loss in response to bariatric surgery (Gaborit et al., 2015; 

Honka et al., 2015a), exercise (Heiskanen et al., 2018b; Solomon et al., 2013) or low 

calorie diets (Lim et al., 2011; Steven et al., 2016; Wagner et al., 2021a). Since Heiskanen 

and colleagues especially highlighted pancreatic fat reductions in persons with high lipid 

content in the pancreas at baseline (>6.2%) (Heiskanen et al., 2018b), participants of this 

thesis might had too little fat in pancreatic parenchyma to achieve major effects (Hummel 

et al., unpublished data, submitted, march 2022). However, a separate analysis with a cut-

off point of 6.2% might be underpowered due to the sample size of 40. Even though, the 

mean pancreatic fat content in our trial was comparable to that in participants of Lim et 

al. with T2DM (Lim et al., 2011). In these, marked weight reduction and glycemic 

improvements were achieved in addition to decreased pancreatic fat content (Hummel et 

al., unpublished data, submitted, march 2022; Lim et al., 2011). While this suggests a role 

of weight loss in pancreatic fat reduction, another trial reported decreased pancreatic fat 

despite stable body weight (Heiskanen et al., 2018b). Interestingly, this decline of 

pancreatic fat was regardless of baseline glucose metabolism and ranged from healthy 

over prediabetic to diabetic states (Heiskanen et al., 2018b). Contradictory, weight loss 

due to bariatric surgery was solely accompanied by reductions in intrapancreatic lipids in 

patients with T2DM, while pancreatic fat content remained the same in persons with 

normal glucose tolerance although they lost a similar amount of body fat (Steven et al., 

2016). These results point towards metabolic conditions as key factor for pancreatic fat 

reduction rather than sole weight loss.  
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Though, data are inconsistent presumably due to diverse study populations and applied 

experimental approaches. Most important, the lack of studies analyzing pancreatic fat 

hinders to gain a complete picture which warrants further investigations of this fat 

compartment. 

3.4 Strengths, limitations and future directions of the research concept 

The analysis of potential determinants of fasting substrate oxidation is limited by the 

cross-sectional correlative design. This approach can only be hypothesis generating but 

can never prove causality. Though, the large sample size of 192 subjects and the rigorous 

phenotyping with highly controlled pre-analytic and analytic conditions strengthens the 

scientific evidence of the findings. The heterogenous study population ranging from lean, 

healthy to obese persons with glucose intolerance allows to examine substrate oxidation 

independent of metabolic condition in a real-world setting. This population enables to 

study the link between substrate oxidation and different glycemic categories and provides 

the opportunity for a separate analysis stratified for weight groups (see appendix suppl. 

mat. 1st publication). The results concerning T2DM have to be considered with caution 

due to the small sample size (n=10). Moreover, this sub-group of persons with T2DM is 

rather specific, since they were newly diagnosed with T2DM and therefore were treatment 

naïve, which limits the comparability with patients with longtime T2DM.  

The focus of this thesis was to untangle fasting substrate oxidation in unstimulated 

conditions. Next, it would be of interest to assess links of fasting RQ and 24h RQ and 

their shared determinants. A further limitation is the absence of longitudinal data, which 

has the potential to foster the understanding of the link between pathophysiologic 

deteriorations of e.g. glycemia and alterations of the utilized fuel.  

Beside analyzing the large cohort with 192 subjects, proglucagon cleavage products were 

solely assessed in a smaller subgroup of 38 persons with prediabetes. Therefore, careful 

interpretation is necessary and the results of the thesis concerning proglucagon cleavage 

products have to be confirmed in larger cohorts and ideally in randomized controlled 

trials. Nevertheless, to my knowledge this analysis is one of the first uncovering a 

relationship between fasting GIP and glicentin to fasting substrate oxidation in persons 

with prediabetes. A further point to be considered is that glicentin and GLP-1 are thought 
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to be secreted in equal amounts, but solely glicentin was related to fuel utilization. This 

might be due to the rather limited sample size, which may has hindered detection of 

smaller effects. Considering the molecular similarity of the proglucagon cleavage 

products, the quantification is technically challenging. The availability of a recently 

commercialized ELISA kit allowed us their quantification with high specificity. The 

manufacturer reports no cross-reactivity between the proglucagon products (Manell et al., 

2016; Perakakis and Mantzoros, 2020). Moreover, all measurements of proglucagon-

cleavage products within this work were inside the assay range of the respective 

immunoassay, i.e. above the lowest calibrator.  

The strength of this thesis lies in the choice of a randomized, controlled, double-blind 

study design to test pharmacologic modulation of RQ as well as implications on 

pancreatic fat and insulin secretion that has the strongest empirical evidence. Considered 

as the gold standard in clinical research, the prospective design allows statements about 

causality (Hariton and Locascio, 2018). Moreover, blinding of participants as well as 

study personnel minimizes a potential performance and assessment bias. The study was 

performed in a real-world scenario with concomitant medication and comorbidities, 

frequently seen in this group of persons. However, chronic diseases (e.g. cancer, 

cardiovascular diseases, liver disease, impaired kidney function), which may affect the 

results were excluded. Since solely persons with overweight or obesity and prediabetes 

were studied, the findings exert compromised generalizability to the overall population 

due to the applied eligibility criteria. Moreover, the study design does not allow to 

distinguish between the effects in persons with solely excess fat mass or solely 

hyperglycemia and their separate contribution to changes in RQ. Further research should 

uncover, whether the effects of SGLT2 inhibition on substrate preference are independent 

of blood glucose and excess weight. Importantly, the potential and detriments of this 

approach as preventive strategy to impede metabolic deteriorations should be deciphered 

in future studies.  

The random allocation to treatment groups resulted in an uneven sex distribution between 

groups, as stratification was not performed in a sex-dependent fashion. This might have 

affected the results and therefore represents a limitation of this work.  
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Performance of indirect calorimetry provides information about whole-body substrate 

oxidation. However, this technique does not allow to distinguish between substrate use 

of different tissues e.g. liver, muscle or adipose tissue. Collection of muscle and adipose 

tissue biopsies could foster the understanding of tissue partitioning to empagliflozin-

induced changes in the choice of oxidized substrate. Despite, too comprehensive for the 

frame of a thesis, the understanding of fluctuations of substrate use over 24h or during 

postprandial conditions using a combination of clamp and tracer infusion technique could 

uncover the changes in metabolism, contributing to altered substrate oxidation.  

Notably, the presented work is not able to clarify, if the observed change in substrate 

oxidation contributed to the loss of liver fat. On a more artificial level, assessment of 

lipolysis during the post-absorptive phase or hepatic and pancreatic fatty acid uptake 

would have been possible by applying e.g. a tracer dilution technique. Collection of liver 

biopsies would provide the opportunity to study hepatic substrate oxidation. Though, this 

method is impeded by safety and ethical concerns in humans and is therefore more 

appropriate for animal models. To elucidate the detailed metabolic pathways of ectopic 

fat loss, further research is needed. Assessment of the expression and activity of key 

molecules in main metabolic tissues, which are relevant for energy metabolism especially 

for glucose and fatty acid oxidation are of relevance to clarify this research question.  

Since pancreatic fat is likely increased in T2DM (Wagner et al., 2021a), additional studies 

could test whether the effect of SGLT2i on intrapancreatic lipids is more potent in a 

diabetic population with longer treatment duration. Despite pancreatic fat content was 

quantified by MRI, which is recognized as the most reliable technique for pancreatic fat 

assessment (Wagner et al., 2021a), data interpretation is restricted due to the absence of 

a generally accepted threshold of pancreatic steatosis. Representing a minor limitation of 

the study concept, the assessment of insulin sensitivity and secretion was not performed 

by means of glucose clamp technique, that represents the gold standard and would have 

been more sensitive to smaller effects. However, standardized performance of OGTT 

technique provides a good estimate for whole-body insulin sensitivity and secretion with 

high reproducibility of this OGTT-derived measures (Hudak et al., 2021). In addition, the 

performance of OGTT is more feasible, less resource consuming and much more 

convenient for the study participants.  
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3.5 Conclusions 

As demonstrated in the presented work, FFA, GIP and glicentin are potentially involved 

in cellular fuel selection in humans. Especially the uncovered link between GIP and 

glicentin with the preferred oxidized substrate put the spotlight on upcoming 

pharmacological approaches targeting incretins. Emphasizing the relevance of our 

findings, preclinical studies that targeted GIP signaling suggest benefits for glucose 

metabolism and body weight. The therapeutic value of GLP-1R/GIPR co-agonists is 

already evaluated in clinical studies. To clarify the clinical value of GIP and glicentin to 

modulate substrate oxidation, further clinical trials are needed to assess whether potential 

changes in substrate oxidation contribute to the seen benefits for whole-body metabolism 

and weight loss.  

This work provides novel findings on the effect of SGLT2i treatment on fasting substrate 

oxidation in persons with prediabetes. The results suggest that the benefits of SGLT2 

inhibition also include increased fat oxidation which may foster the reduction in excessive 

liver fat content. The choice of the mainly oxidized substrate in persons with prediabetes 

represents a promising target for the prevention of metabolic diseases. The SGLT2 

inhibition in our trial might have hindered changes in substrate oxidation. As a result, 

cellular dysfunction and cellular fat accumulation would be prevented. Our current 

findings suggest that the positive metabolic effects of SGLT2i were independent of 

pancreatic fat and insulin secretion. The empagliflozin-induced change in whole-body 

fasting substrate oxidation did likely not affect pancreatic lipids. This indicates tissue-

specific mechanisms for ectopic fat loss. Therefore, assessing tissue-specific alterations 

of fuel utilization is of great interest for future research. Nevertheless, pancreatic fat and 

insulin secretion still remain interesting candidates for the prevention of diabetes, as 

underscored by the DiRECT trial, where diabetes remission was achieved through 

hypocaloric diet in persons who reduced pancreatic fat (Taylor et al., 2018).  

In future projects, different drugs or lifestyle interventions should be tested as novel 

modulators of substrate oxidation and ectopic fat with the goal of preventing or even 

treating metabolic diseases. Moreover, one important topic for future studies should be 

potential differences between sub-groups. Indeed, recent research stratified prediabetes 

(Wagner et al., 2021c) and diabetes (Ahlqvist et al., 2018) based on their different 
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pathophysiological phenotypes. It is likely that these sub-phenotypes are also different in 

substrate oxidation, which needs to be clarified in subsequent analyses. The ultimate goal 

of this line of work is the development of tailored treatment regimens on the way towards 

precision medicine in prediabetes and diabetes.  
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4 Summary 

4.1 English summary  

Alterations in substrate oxidation are a potential contributor to the pathogenesis of 

metabolic diseases as they might foster ectopic lipid accumulation. Longitudinal studies 

identified predominant carbohydrate oxidation to predispose for subsequent weight gain. 

However, determinants of fasting substrate oxidation remain elusive and evidence for 

substrate oxidation as a potential pharmacologic target is lacking.  

To investigate alterations in energy metabolism that can be involved in the pathogenesis 

of metabolic diseases, this research project aimed to elucidate determinants of fasting 

substrate oxidation. This thesis furthermore tested whether the latter can be 

pharmacologically modulated by the sodium glucose cotransporter 2 inhibitor (SGLT2i) 

empagliflozin to identify therapeutic approaches for altered fuel use. Moreover, 

implications of modulated fasting substrate oxidation on intrapancreatic fat and insulin 

secretion were evaluated with the aim to detect potential approaches for the prevention of 

type 2 diabetes (T2DM). These research questions were addressed in three publications 

embedded in this thesis.  

In order to elucidate determining factors of substrate oxidation in the fasted state, a 

cross‑sectional analysis was performed, including 192 individuals with a wide range of 

BMI as well as different glycemic categories. Following the assessment of fasting 

respiratory quotient (RQ=VCO2/VO2) by indirect calorimetry as a measure of substrate 

oxidation, participants underwent a 5-point 75 g oral glucose tolerance test (OGTT). The 

latter allows to estimate insulin sensitivity and determine the glycemic status beside 

quantification of several clinical parameters from basal blood. In the fasting state, high 

free fatty acid (FFA) concentrations were strongly linked to a low RQ, indicative of 

predominant fat oxidation. Participants with high levels of the ketone body 

β‑hydroxybutyric acid had significantly lower RQ values, while glucose and insulin levels 

were not correlated to RQ. Unlike glucagon-like-peptide 1 (GLP-1), fasting levels of 

glucose‑dependent insulinotropic polypeptide (GIP) and glicentin associated positively 

with fasting RQ. There was neither a correlation between BMI nor the total amount or the 
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allocation of body fat compartments with fasting RQ. Hyperglycemia, insulin sensitivity 

or the metabolic syndrome were not related to RQ. 

In a double-blind, placebo-controlled randomized trial, 40 participants with prediabetes 

were treated with empagliflozin or placebo once daily for 8 weeks. Subsequent to 

overnight fasting, indirect calorimetry as well as a 75 g OGTT were performed before 

and after treatment. Body fat compartments including lipids in the liver as well as 

intrapancreatic fat were quantified using magnetic resonance imaging (MRI). A 

combination of intranasal insulin application with functional MRI was used to determine 

hypothalamic insulin sensitivity. Empagliflozin reduced fasting RQ, lowered fasting 

glucose as well as liver fat content and increased hypothalamic insulin sensitivity. 

Pancreatic fat content as well as insulin secretion remained unaffected upon 

empagliflozin treatment.  

Data of this work support the role of FFA as independent determinants of fuel selection, 

while metabolic disorders were not linked to substrate preferences. This work gained 

hints for glicentin and GIP to be involved in fuel choice in the fasting state, representing 

a promising pharmaceutic target to modulate substrate oxidation with possible 

implications on whole-body metabolism. Upcoming therapeutic approaches in the 

preclinical as well as clinical phase targeting GIP receptor highlight the relevance of our 

results.  

Beside the empagliflozin-induced switch towards predominant fat use, intrahepatic lipids 

were diminished upon SGLT2 inhibition. This demonstrates the potential of 

pharmacologic modulation of substrate utilization. Since we detected such changes 

already in prediabetes, substrate oxidation is an interesting target for the development of 

preventive strategies of metabolic diseases as T2DM. Discussed underlying mechanisms 

for the empagliflozin-induced change in substrate oxidation are a restoration of diurnal 

rhythm by caloric restriction, centrally mediated effects and direct cellular effects of 

SGLT2i interfering with lipid metabolism. Beside SGLT2i, further antidiabetic drugs 

such as GLP-1 receptor agonists and metformin may have the potential to modulate 

substrate oxidation. Therefore, approaches to modulate substrate oxidation should be 

further evaluated and optimized in future studies. Since the observed increase in fat 

oxidation was neither accompanied by reductions in pancreatic fat nor by enhanced 
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insulin secretion, this work argues for tissue-specific regulation in substrate oxidation and 

fat mobilization which should be untangled in future studies. It is however possible that 

prolongation of treatment duration or a population with higher pancreatic fat content 

might have led to different results. Since lifestyle intervention trials achieved pancreatic 

fat reduction, approaches to reduce fat in the pancreas remain a promising strategy to 

improve insulin secretion for the prevention or therapy of T2DM. Future research should 

put a spotlight on tailored medicine and find out which sub-groups of persons with 

prediabetes and T2DM could especially profit from such therapies that target substrate 

oxidation and reduce ectopic fat deposition.   

4.2 German summary - Zusammenfassung 

Veränderungen in der Substratoxidation sind ein potenzieller Faktor in der Pathogenese 

metabolischer Erkrankungen. Hierbei könnte die ektope Akkumulation von Fett eine 

wichtige Rolle spielen. In Längsschnittstudien wurde eine vorherrschende Kohlenhydrat-

Oxidation als Prädiktor für eine spätere Gewichtszunahme identifiziert. Faktoren, die die 

basale Substratoxidation bestimmen sind jedoch bisher weitgehend unklar. Ob sich die 

Substratoxidation als potentielles Ziel für pharmakologische Ansätze eignet ist zudem 

nicht geklärt. 

Um das Wissen über Veränderungen im Energiestoffwechsel bei der Entstehung von 

Stoffwechselerkrankungen zu verbessern, wurden in dieser Arbeit die Determinanten der 

Nüchtern-Substratoxidation analysiert. Darüber hinaus wurde untersucht, ob diese durch 

den SGLT2-Hemmer (Natrium Glukose Cotransporter 2) Empagliflozin 

pharmakologisch moduliert werden kann, um so therapeutische Ansätze zur Modulation 

der Substratoxidation zu identifizieren. Darüber hinaus wurden die Auswirkungen der 

veränderten Nüchtern-Substratoxidation auf das Pankreasfett und die Insulinsekretion 

untersucht, um mögliche Ansätze zur Prävention von Typ 2 Diabetes (T2DM) zu finden. 

Diese Forschungsfragen wurden in drei Veröffentlichungen adressiert, die Bestandteil 

dieser Arbeit sind.  

Es wurde eine Querschnittsanalyse durchgeführt, um Determinanten der 

Substratoxidation im Nüchternzustand zu untersuchen. Hierzu wurden Daten von 192 

Personen mit einem breiten BMI-Spektrum sowie verschiedenen glykämischen 
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Kategorien untersucht. Nach der Bestimmung des Respiratorischen Quotienten 

(RQ=VCO2/VO2) mittels indirekter Kalorimetrie, als Maß für die Substratoxidation, 

wurden die Teilnehmer einem 5-Punkt 75 g oralen Glukosetoleranztest (OGTT) 

unterzogen. Letzterer ermöglicht neben der Quantifizierung verschiedener klinischer 

Parameter, die Einschätzung der Insulinsensitivität und die Bestimmung der 

Glukosetoleranz. Im Nüchternzustand waren hohe Konzentrationen an freien Fettsäuren 

(FFA) stark mit einem niedrigen RQ assoziiert, was auf eine vorherrschende 

Fettoxidation hinweist. Personen mit hohen Spiegeln des Ketonkörpers β-

Hydroxybuttersäure hatten signifikant niedrigere RQ-Werte, während Glukose- und 

Insulinspiegel nicht mit dem RQ korrelierten. Im Gegensatz zu GLP-1 korrelierten 

Glukoseabhängiges Insulinotropes Polypeptid (GIP) und Glicentin positiv mit dem RQ 

im Nüchternzustand. Es gab weder eine Korrelation zwischen dem BMI noch der Gesamt-

Fettmasse oder der Verteilung der Körperfettkompartimente mit dem Nüchtern-RQ. 

Hyperglykämie, Insulinsensitivität oder das Metabolische Syndrom standen nicht mit 

dem RQ in Zusammenhang.  

In einer weiteren Untersuchung, die als doppel-blinde, Placebo-kontrollierte, 

randomisierte Studie angelegt war, erhielten 40 Personen mit Prädiabetes für 8 Wochen 

einmal täglich Empagliflozin oder Placebo. Vor und nach der Behandlung wurde eine 

indirekte Kalorimetrie sowie ein 75 g OGTT durchgeführt. Die Körperfettkompartimente 

einschließlich Leberfett und Pankreasfett wurden mit Hilfe von 

Magnetresonanztomographie (MRT) quantifiziert. Eine Kombination aus intranasaler 

Insulinapplikation und funktionellem MRT wurde zur Bestimmung der 

hypothalamischen Insulinsensitivität eingesetzt. Empagliflozin reduzierte den Nüchtern-

RQ, senkte den Nüchtern-Glukosespiegel sowie den Leberfettgehalt und erhöhte die 

hypothalamische Insulinempfindlichkeit. Der Fettgehalt des Pankreas sowie die 

Insulinsekretion wurden durch die Behandlung mit Empagliflozin nicht beeinflusst.  

Die Daten dieser Arbeit stützen die Rolle von FFA als unabhängige Determinanten, 

während Stoffwechselstörungen nicht mit Substratpräferenzen in Verbindung standen. 

Diese Arbeit liefert Hinweise darauf, dass Glicentin und GIP an der Auswahl des 

Energiesubstrats im Nüchternzustand beteiligt sind, was ein vielversprechendes 

pharmazeutisches Ziel darstellt, um die Substratoxidation mit möglichen Vorteilen für 
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den Ganzkörperstoffwechsel zu modulieren. Neue therapeutische Ansätze, die auf den 

GIP-Rezeptor abzielen, sind in der präklinischen sowie klinischen Phase und 

unterstreichen die Relevanz unserer Ergebnisse. 

Neben der durch Empagliflozin induzierten Umstellung auf eine überwiegende 

Fettverwertung wurden der Leberfettgehalt durch die SGLT2-Hemmung verringert, was 

das klinische Potenzial einer pharmakologischen Modulation der Substratoxidation 

unterstreicht. Da die Veränderungen in unserer Studie bereits bei Prädiabetes beobachtet 

wurden, ist die Substratoxidation ein interessantes Ziel für die Entwicklung von 

Präventionsstrategien für metabolische Erkrankungen wie T2DM. Diskutierte zugrunde 

liegende Mechanismen für die Veränderung der Substratoxidation durch Empagliflozin 

sind eine Wiederherstellung des Tagesrhythmus durch Kalorienrestriktion, zentral 

vermittelte Wirkungen und direkte zelluläre Wirkungen von SGLT2-Hemmung, die in 

den Lipidstoffwechsel eingreifen. Neben SGLT2-Hemmern wurde festgestellt, dass 

weitere Antidiabetika wie GLP-1-Rezeptoragonisten und Metformin möglicherweise die 

Substratoxidation modulieren. Daher sollten in zukünftigen Studien Ansätze zur 

Modulation der Substratoxidation weiter getestet und optimiert werden. Da die 

beobachtete Zunahme der Fettoxidation weder mit einer Verringerung des Pankreasfetts 

noch mit einer erhöhten Insulinsekretion einherging, spricht diese Arbeit für 

gewebespezifische Regulationsmechanismen der Substratoxidation und 

Fettmobilisierung, die in zukünftigen Studien untersucht werden sollten. Trotzdem ist es 

möglich, dass eine Verlängerung der Behandlungsdauer oder eine Studienpopulation mit 

höherem Pankreasfettgehalt zu anderen Ergebnissen geführt hätte. Da Lebensstil-

Interventionsstudien eine Reduktion des Pankreasfettes erreicht haben, bleiben Ansätze 

zur Reduktion von Fett im Pankreas eine vielversprechende Strategie zur Verbesserung 

der Insulinsekretion in Bezug auf die Prävention oder Therapie von T2DM. Zukünftige 

Forschung sollte einen Fokus auf individualisierte Medizin richten und herausfinden, 

welche Subgruppen von Personen mit Prädiabetes und T2DM besonders von Therapien 

zur Modulation von Substratoxidation und Fettreduktion in ektopen Geweben profitieren 

könnten.  
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