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Abstract

The human brain has the ability to make predictions, plan and imagine
by mental simulation. Artificial neural networks, while achieving great
performance in certain domains, still seem to lack a mechanistic un-
derstanding of the world. In this thesis we look at different approaches
towards making neural networks better capture the underlying mech-
anisms of the modeled system. We will look at Adaptive skip intervals
(ASI), a method that allows dynamical models to choose their own tem-
poral coarsening at every point,making long-termpredictions both eas-
ier and more computationally efficient. Next, we will look into alter-
native ways to aggregate gradients across environments, leading to the
notion of Invariant Learning Consistency (ILC), and the method AND-
mask, for modified stochastic gradient descent. By filtering out incon-
sistent training signals from different environments, the shared mecha-
nisms remain. Finally, wewill see that learning based onmeta-gradients
can transform trajectories of dynamical systems so as to construct use-
ful learning signal toward an underlying objective, such as reward in
reinforcement learning. This allows the internal model to include both
temporal as well as state abstraction.
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Zusammenfassung

Das menschliche Gehirn ist in der Lage, Vorhersagen zu treffen, zu pla-
nen und sich durch mentale Simulationen kontrafaktische Situationen
vorzustellen. Künstliche neuronale Netze sind zwar in bestimmten Be-
reichen brereits sehr leistungsfähig, scheinen aber immer noch ein me-
chanistisches Verständnis der Welt zu vermissen. In dieser Arbeit be-
fassen wir uns mit verschiedenen Ansätzen, wie neuronale Netze die
zugrundeliegenden Mechanismen des modellierten Systems besser er-
fassen können. Wir werden uns mit Adaptive skip intervals (ASI) befas-
sen; eine Methode, die es dynamischen Modellen ermöglicht, ihre eige-
ne zeitliche Vergröberung an jedem Punkt zu wählen. Dadurch werden
langfristige Vorhersagen sowohl einfacher als auch rechnerisch effizi-
enter. Als Nächstes werden wir uns mit alternativen Möglichkeiten zur
Aggregation von Gradienten in verschiedenen Umgebungen befassen,
was zum Begriff der Invariant Learning Consistency (ILC) und der Me-
thodeAND-mask für einenmodifizierten stochastischenGradientenab-
stieg führt. Durch dasHerausfiltern inkonsistenter Trainingssignale aus
verschiedenen Umgebungen bleiben die gemeinsamen Mechanismen
erhalten. Schließlich werden wir sehen, dass Lernen auf der Grundlage
von Meta-Gradienten Trajektorien von dynamischen Systemen trans-
formieren kann, um nützliche Lernsignale in Richtung eines zugrunde
liegenden Ziels zu konstruieren, wie z. B. Reward beim Reinforcement
Learning. Dadurch kann das interne Modell sowohl eine zeitliche als
auch eine Zustandsabstraktion beinhalten.
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1
Introduction

The work presented in this thesis is inspired by a fascinating human
ability: learning entirely within one’s own mind. A person can close
their eyes, think about a problem for hours, and keep discovering new
facts and insights about this problem without receiving any external in-
put or feedback. This is likely possible because the brain uses internal
generative models which capture essential aspects of the external world.
Rather than mere statistical associations or reactive responses to stim-
uli, such generative models provide mechanisms which allow agents to
perform computations such as mental simulation and planning. Start-
ing from initial assumptions, these computational processes can reveal
non-obvious consequences, which the person can consider as real evi-
dence, much like they would if they were observing a physical system.
The importance of mental simulation has been recognized by Kenneth
Craik, who wrote:

“If the organism carries a “small-scale model”
of external reality and of its own possible ac-
tions within its head, it is able to try out var-
ious alternatives, conclude which is the best of
them, react to future situations before they arise,
utilise the knowledge of past events in dealing
with the present and future, and in every way
to react in a much fuller, safer, and more com-
petent manner to the emergencies which face it.”

(Craik, 1952, Chapter 5)

1



2 Introduction

More concisely but in a similar spirit, Konrad Lorenz described think-
ing as “acting in an imagined space” (Lorenz, 1973).

If we want to create artificial agents which are as adaptive and versa-
tile as humans, a plausible hypothesis is that we have to provide these
agents with the ability to perform mental simulations and reasoning
as well. In fact, in the early days of artificial intelligence research, its
pioneers believed that reasoning is the main challenge in building in-
telligent systems. It soon became clear that while symbolic reasoning
at a (super-)human level is feasible in many domains, identifying use-
ful symbols in unstructured streams of sensory data – seemingly effort-
lessly performed by the human brain – is much more challenging than
initially thought. This phenomenon has been termed “Moravec’s Para-
dox” after Hans Moravec, who wrote in 1988: “it is comparatively easy
to make computers exhibit adult level performance on intelligence tests
or playing checkers, and difficult or impossible to give them the skills of a
one-year-old when it comes to perception and mobility” (Moravec, 1988).
An intuitive conclusion could be: since we already have very powerful
symbolic reasoning and planning systems, the only missing piece is to
independently solve the symbol grounding problem. However, this the-
sis will argue that perception, symbol grounding, and reasoning should
be optimized jointly, rather than in isolation.

Recent years have brought staggering progress in artificial intelligence
research. There have been major advances in subfields such as object
recognition (Krizhevsky et al., 2012; He et al., 2016), image generation
(Goodfellow et al., 2014; Ramesh et al., 2021), speech recognition (Hin-
ton et al., 2012), natural language processing (Brown et al., 2020) or
reinforcement learning (Mnih et al., 2015; Silver et al., 2016). Much of
this progress was driven by neural networks trained mostly end-to-end
on large amounts of data.

While the progress of deep learning is impressive, most of these suc-
cess stories could be argued to be solutions to problemswhich do not re-
quire reasoning, but merely consist of fast, intuitive reactions to inputs
– System 1 thinking, in the taxonomy of Kahneman, 2011. AlphaGo is a
notable exception: it uses Monte-Carlo Tree Search (Coulom, 2006), an
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algorithmwhich utilizes a dynamicalmodel of the system to plan ahead
explicitly, iteratively refining the value estimates of different action se-
quences. However, the game of Go makes it particularly easy to apply
this technique, as the dynamical system is (1) simple, (2) fully-observed,
(3) deterministic, and (4) known in advance. A big open challenge is
to apply techniques such as AlphaGo to real-world systems in which
none of these properties are satisfied, i.e. to complex, partially observed,
stochastic systems whose dynamics are unknown in advance.

Limitations of mental models In artificial domains such as Go, the
agent can be equipped with an exact specification of the system dynam-
ics. This is not possible for robots acting in the real world, for several
reasons: The laws of nature are not entirely known. Even if we knew the
precise physical laws governing our universe, a full real-time quantum
mechanical simulation of a macroscopic system is far beyond today’s
computational capabilities. Moreover, as agents only receive noisy and
local sensory information, they do not have access to the exact under-
lying state of the system. Therefore, it seems unrealistic to create intelli-
gent agents by giving them the laws of the universe and simply letting
them simulate.

However, there are several assumptions which can help us out.

Locality: The agent does not have to consider things that are happening
far away, as these are less likely to have a strong influence on the
current problem.

Irrelevant details: some things (e.g., the wiggling of tree leaves in the
wind) might be both hard to simulate and completely uninterest-
ing to the goals that the agent cares about.

Favorable approximations: there might be ways to approximate the sys-
tem to a sufficient degree, while giving up little accuracy.

Relevant level of abstraction: There may be ways to describe the system
in terms of quantities, objects and events which the agent finds
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useful, and the laws at this level of abstraction could turn out to be
particularly easy to represent. For example, rather than describ-
ing the position and momentum of each molecule in a gas, it has
turned out beneficial to use macroscopic thermodynamic quan-
tities such as temperature and pressure in practice.

These assumptions have the realization in common that for most goal-
directed agents, it is not necessary to model and simulate everything in
all of its detail. Doing so would be attempting to solve a much harder
problem than necessary, violating Vladimir Vapnik’s principle “When
solving a problem of interest, do not solve a more general problem as an
intermediate step” (Vapnik, 2006, Chapter 3).

A common counterargument to making dynamical models utility-
based is that the whole purpose of having a model is to be able to reuse
it even when the goals change. While this is true, it is important to real-
ize that there is a tradeoff. If we take the point to its extreme, we should
model everything in detail, because any simplification will rule out cer-
tain goals. However, the space of reasonable goals, while large, might be
much smaller than the space of theoretically conceivable goals. If this
knowledge can be exploited, we should do so.

One aim of this thesis is therefore to develop learning systems that
discover dynamical models at the right level of abstraction. Abstraction
here means both a temporal coarsening as well as a representation of
the state of the system in terms of useful entities. The “right level” refers
to the utility towards a space of plausible downstream tasks. We take an
approach that stays close to the end-to-end paradigm of deep learning,
as it has shown to be surprisingly successful recently.

Relationship to causality The above research goals are closely related
to those of causality (Pearl, 2009b; Peters et al., 2017b), and particularly
the emerging field of causal representation learning (Schölkopf et al.,
2021). In line with the motivation stated above, causal models can be
viewed as striking a balance between physical laws in the form of dif-
ferential equations and purely statistical models. One perspective on
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causality is that it is not an objective property of the physical world,
but a tool evolved to help intelligent agents to help achieve their goals.
This is not the only point of view, and some authors believe causal rep-
resentations to be objective, agent-agnostic descriptions of the world.
However, if we do choose the path of utility-based representations, we
have the option of manually designing objectives for intermediate rep-
resentations with the hope that they will be useful, or we set up the
downstream tasks explicitly and optimize everything to maximize the
overall objective. In the latter case, we would hope that causal repre-
sentations emerge as the most efficient solution to the problems that
an agent faces. A drawback of the end-to-end approach is that it can
be hard to formulate the exact utility metric one wishes to optimize,
and optimizing surrogate objectives can lead to unintended solutions
(Goodhart, 1984; Amodei et al., 2016).

Reinforcement learning Reinforcement learning studies agents that
learn to act in a dynamic environment so as to maximize the sum of
rewards (Sutton and Barto, 2018). In contrast to supervised learning,
the correct actions are not known in advance, but have to be discov-
ered through exploration. Approaches to this problem can be classified
along several dimensions, including whether they are model-based or
model-free (although as we will see, there exists a spectrum between
the extremes). Model-free methods represent a policy and/or a value
function directly, without explictly modeling the system’s state or its
dynamical laws. Model-based methods use a dynamical model of the
system to improve the policy. This is typically achieved by using the
model to generate additional, imaginary data, either in an offline man-
ner (Sutton, 1991), or as a local search around the agent’s current state,
such as in AlphaGo (Silver et al., 2016). If the dynamical model of the
system is not known in advance, model-based methods try to estimate
it from the agent’s obervations.

An advantage of model-based methods is that they make use of the
vast information present in trajectories of sensory observations, while
model-free methods do not use the observation trajectories as training
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signal: observations are only used as the input into the model, but not
as the target. On the other hand, model-free methods excel when there
is plenty of data, and when representing the system dynamics is much
harder than representing a good policy.

Based on our goals stated above, we should aim to take the best of
both worlds:We should bemodel-based in the sense that agents benefit
frommodels withwhich they can perform imagination-based planning.
At the same time, we do not want to ask more than necessary of the
agent, and learn dynamicalmodels that are as useful as possible towards
the end of achieving a better policy, which likely includes making use
of heuristics and “mental shortcuts” whenever they are feasible.

Overview of the thesis

The works presented in this thesis investigate different ways to change
or augment the training objective, with the goal of making the result-
ing models more mechanistic, as described above. We will begin with a
relaxed constraint on temporal alignment. Next, we will investigate an
alternative way to aggregate gradients across minibatches that reduces
overfitting to spurious signals. Finally, wewill look atmethod thatmeta-
learns how to derive training signal from trajectories.

Chapter 2 looks at whether we can remove the constraint that the
time-evolution of rollouts from a dynamical model has to align per-
fectly with the modeled system. We will examine the hypothesis that
the most efficient temporal coarsening is not just system-dependent,
but changes from state to state even within the same system, and de-
scribe a method that allows a model to pick its own level of temporal
coarsening, based on what makes it easy to predict long-range trajecto-
ries. Crucially, the prediction model does not need to model explicitly
how many frames were skipped. This relaxation makes deterministic
long-term predictions easier and more computationally efficient.
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Chapter 3 aims at achieving more mechanistic models by changing
the way we aggregate gradients across training environments. We show
that it can help reduce overfitting to spurious patterns, while the pat-
terns shared across environments are preserved.This helps our research
goal in situations when the mechanistic model is present in all environ-
ments.

While there are methods for temporal abstraction (Neitz et al., 2018;
Parascandolo et al., 2020), as well as for state-abstraction (Watter et al.,
2015a; Schrittwieser et al., 2020) in dynamicalmodels, combining these
two goals has shown to be surprisingly challenging. Chapter 4 addresses
this by introducing a teacher-student framework to construct a trans-
formed training signal from trajectories, in situations where there is an
explicit utility measure, such as reward in reinforcement learning tasks.
We show that we can train a teacher network to transform the trajec-
tories – which can now be seen as privileged information (Vapnik and
Vashist, 2009) – and present them to the student in a way that helps the
student maximize its utility.

The thesis assumes familiarity with the basic concepts of Deep Learn-
ing. A comprehensive introduction to these is provided in Goodfellow
et al. (2016). Specific background necessary to understand the technical
content will presented individually in each chapter.





2
Adaptive skip intervals

In this chapter1 we introduce a method which enables a recurrent dy-
namics model to be temporally abstract. Our approach, which we call
Adaptive Skip Intervals (ASI), is based on the observation that in many
sequential prediction tasks, the exact time at which events occur is irrel-
evant to the underlying objective. Moreover, in many situations, there
exist prediction intervals which result in particularly easy-to-predict
transitions. We show that there are prediction tasks for which we gain
both computational efficiency and prediction accuracy by allowing the
model to make predictions at a sampling rate which it can choose itself.

A core component of intelligent agents is the ability to predict cer-
tain properties of future states of their environments (Legg and Hutter,
2007). For example, model-based reinforcement learning (Daw, 2012;
Arulkumaran et al., 2017) decomposes the task into the two compo-
nents of learning a model and then using the learned model for plan-
ning ahead.

Despite significant recent advances, even relatively simple tasks like
pushing objects is still a challenging robotic task and foresight for robot
planning is still limited to relatively short horizon tasks (Finn andLevine,
2017). This is partially due to the fact that errors even from early stages

1 Adapted from: Neitz, A., Parascandolo, G., Bauer, S., Schölkopf, B.: “Adaptive skip
intervals: Temporal abstraction for recurrent dynamical models.” In: Advances in
Neural Information Processing Systems 31, pp. 9816–9826 (NeurIPS 2018). I am
the main developer of idea, implementation and experiments.

9
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in the predictionpipeline are accumulating especiallywhennewor com-
plex environments are considered.

Figure 2.1:Hypothesized relationship
between skip interval Δ𝑡 and error
accumulation rate ℒΔ𝑡 . The optimumΔ𝑡opt lies somewhere between the ex-
tremes, but may be state-dependent
and therefore not constant across any
trajectory.

Many dynamical systems have
the property that long-term predic-
tions of future states are easiest to
learn if they are obtained by a se-
quence of incremental predictions.
Our starting point is the hypothe-
sis that at each instant of the evolu-
tion, there is an ideal temporal step
length associated with those state
transitions which are easiest to pre-
dict: Intervals which are too long
correspond to complicated mecha-
nisms that could be simplified by
breaking them down into a succes-
sive application of simpler mech-
anisms. On the other hand, inter-
vals which are too short do not con-
tain much change, which means that the predictor has to represent
roughly the identity – this can lead to a situation where the model
makes small absolute errors 𝛿𝑠, but a large relative error 𝛿𝑠Δ𝑡 , which is
the rate at which the prediction error accumulates. This tradeoff is il-
lustrated in Figure 2.1. An additional drawback of too short prediction
intervals is that it requires many predictions, which can be computa-
tionally expensive. Somewhere in-between the two extremes, there is
an ideal step length corresponding to transitions that are easiest to rep-
resent and learn.

We propose Adaptive Skip Intervals (ASI), a simple change to autore-
gressive environment simulators (Chiappa et al., 2017; Buesing et al.,
2018) which can be applied to systems in which it is not necessary to
predict the exact time of events.While in the literature, abstractions are
often considered with respect to hierarchical components e.g. for loco-
motor control (Heess et al., 2016) or expanding the dynamics in a latent



Adaptive skip intervals 11

Figure 2.2: Visualization of a ball which is dropped into a funnel at different
initial horizontal velocities. The part of the trajectory within the funnel can be
considered inconsequential chaos.

space (Watter et al., 2015b), our work focuses on temporal abstractions.
Our goal is to understand the dynamics of the environment in terms
of robust causal mechanisms at the right level of temporal granularity.
This idea is closely related to causal inference (Peters et al., 2017b) and
the identification of invariances (Pearl, 2009b; Schölkopf et al., 2012;
Peters et al., 2016) and mechanisms (Parascandolo et al., 2018).

ASI allows the model to dynamically adjust the temporal resolution
at which predictions are made, based on the specific observed input. In
other words, the model has the option to converge to the easiest-to pre-
dict transitions, with prediction intervals Δ𝑡 that are not constant over
the whole trajectory, but situation-dependent. Moreover, the model is
more robust to certain shifts in the evolution speed at training time, and
also to shifts to datasets where the trajectories are partly corrupted. For
example, when some frames aremissing or extremely noisy, a frame-by-
frame predictionmethodwould be forced tomodel the noise, especially
if it is not independent of the state. Flexibly adjusting the time resolu-
tion of predictions also results in more computationally efficiency, as
fewer steps need to be predicted where they are not necessary — a key
requirement for real-time applications.

A type of prediction task which can especially profit from our pro-
posed method is one which exhibits a property we call inconsequential
chaos. To illustrate this, consider the following example: In Figure 2.2
we visualize the trajectories of a ball which falls into a funnel-shaped ob-
ject at different initial horizontal velocities. The exact trajectories that
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Time

ASI

True mechanisms

fixed Δt

Distinct transitions:
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Figure 2.3:One way to motivate the need for adaptive skip intervals compared
to a fixed temporal coarsening is to consider the complexity of the learned
model. If the underlying true dynamics have recurring “mechanisms” which
take different amounts of time, ASI enables the model to represent fewer
distinct transition types, reducing the required model capacity and thus the
amount of training data.

are taken within the funnel depend sensitively on the initial state and
are therefore difficult to predict ahead of time. On the other hand, pre-
dicting that the ball will hit the horizontal platform on the bottom is
easy because it only requires knowing that when the ball falls some-
where into the funnel, it will come out at the bottom end, irrespective
of how long it bounces around. If we are only interested in predicting
where the ball will ultimately land, we can skip the difficult parts, pro-
vided that they are inconsequential. Figure 2.3 explains another per-
spective to motivate our method.

2.1 Preliminaries

2.1.1 Problem statement

The machine learning problem we are considering is a classification
problem where the labels are generated by a dynamical process, such
as a Hidden Markov Model. As auxiliary data, we get access to observa-
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tions of the system’s internal state.The training data consists of observa-
tion sequences {𝑥(𝑖)}𝑖∈1,...,𝑁 and labels {𝑦(𝑖)}𝑖∈1,...,𝑁 . The trajectories𝑥 are ordered sequences of elements 𝑥𝑡 from an observation space 𝒳.
Typically, a trajectory 𝑥 arises from repeatedly measuring the dynami-
cal system’s state at some fixed sampling rate. To keep the scope limited,
we assume the labels 𝑦(𝑖) to be categorical, i.e. belonging to a finite set 𝒴.
In our formulation, there is only a single label for each trajectory, which
intuitively corresponds to the eventual “outcome” of the particular sys-
tem evolution. At test time, we are only given some initial observations(𝑥0, 𝑥1, ..., 𝑥𝑘), for some small 𝑘 (e.g., 𝑘 = 0 in the fully-observable
case) and have to predict the corresponding label 𝑦.

Note that the problem does not demand the prediction of any future
observations 𝑥𝑡. As a performance measure we use the accuracy of the
label predictions.The role of the classification task is to provide a way to
measure performance, as the objective is to know howwell themodel is
suited to predict the qualitative outcome of each instance. We explicitly
do not care about the loss in pixel space. Since frames may be skipped,
video-prediction metrics are not relevant for this task. In the future we
would like to use our model in latent spaces as well.

It is straightforward to generalize the classification task to a value pre-
diction task in a (hierarchical) reinforcement learning setting, given a
fixed policy (e.g. an option, as introduced in Sutton et al. (1999)). How-
ever, in this work we focus on uncontrolled tasks only.

2.1.2 Environment simulators

Environment simulators aremodels which approximate the conditional
probability distribution 𝑃(𝑋𝑡+1, 𝑅𝑡+1|𝑋𝑡) (2.1)

where𝑋𝑡 is a randomvariablewith range𝒳which describes theMarko-
vian state of the system at time 𝑡. 𝑅𝑡 is the random variable over some
real-valued cumulant which we want to track for our task. In order to
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simplify our experiments, in this chapter we consider the special case
of fully-observable tasks. For this reason, we use the terms “observa-
tion” and “state” interchangeably. However, note that in realistic appli-
cations, it may be desirable to predict future states given past obser-
vations, which poses the additional challenge of state inference. As an
additional simplification, we consider deterministic simulators, which
put a probability point mass of one on a single future state. For a recent,
more detailed investigation of several efficient state-space architectures,
see Buesing et al. (2018).

Note that given a distribution over an initial𝑋0, we can apply an envi-
ronment simulator multiple times to a distribution over the initial state,
yielding a probability distribution over trajectories and cumulants.𝑃(𝑋0∶𝑁, 𝐺0∶𝑁) = 𝑃(𝑋0) 𝑁∏𝑡=1 𝑃(𝑋𝑡, 𝐺𝑡|𝑋𝑡−1) (2.2)

Temporally abstract environment simulators only need to represent a
relaxed version of the above conditional probability distribution:𝑃(𝑋𝑡+𝜏, 𝑅𝜏𝑡 |𝑋𝑡) (2.3)

where 𝜏 is some arbitrary time skip interval up to the end of the tra-
jectory, which can be chosen by the model and 𝑅𝜏𝑡 denotes the sum∑𝜏𝑘=𝑡 𝑅𝑘. In other words, a temporally abstract environment simula-
tor must only be able to predict some future state of the system and
additionally provide the sum of the cumulants since the last step. To
address the classification problem defined in Section 2.1.1, we only con-
sider tasks where the cumulant is zero everywhere except for the last
state of the trajectory, which is a plausible restriction if the cumulant
tracks some form of “outcome” of the trajectory.

The dynamical models we consider in this chapter consist at their
core of a deep neural network 𝑓 ∶ 𝒳 → 𝒳 which is meant to repre-
sent the dynamical law of the environment. In order to learn to predict
multiple time-steps into the future, 𝑓 is iterated multiple times, which
makes the architecture a recurrent neural network. As the model pre-



Adaptive skip intervals 15

dicts the new state at time 𝑡 + 1, it needs to be conditioned on the pre-
vious state at the previous time step 𝑡. During training, there is a choice
for the source of the next input frame for the model: Either the ground
truth (observed) frame or the model’s own previous prediction can be
taken. The former provides more signal when 𝑓 is weak, while the lat-
ter matches more accurately the conditions during inference, when the
ground truth is not known. We found the technique of scheduled sam-
pling (Bengio et al., 2015) to be a simple and effective curriculum to
address the trade-off described above. Note that other works, such as
Chiappa et al. (2017) and Oh et al. (2017) have addressed the issue in
different ways. The exact way of dealing with this issue is orthogonal to
the use of temporal abstraction.

2.2 Method

We now introduce a method to inject temporal abstraction into deter-
ministic recurrent environment simulators.

Training process The main idea of ASI is that the dynamical model 𝑓
is not forced to predict every single time step in the sequence. Instead,
it has the freedom to skip an arbitrary number of frames up to some
pre-defined horizon 𝐻 ∈ ℕ. We train 𝑓 in such a way that it has the
incentive to focus on representing those transitions which allow it to
predict extended sequences which are accurate over many time steps
into the future. Figure 2.4 visualizes the three steps of the ASI training
procedure with a horizon of 𝐻 = 3.

At training time, we feed the first frame𝑥1 into a differentiablemodel𝑓 , producing the output ̂𝑥1 ∶= 𝑓(𝑥1). In contrast to classical autoregres-
sive modeling, ̂𝑥1 does not have to correspond to the next frame in the
ground truth sequence, 𝑥2, but can be matched with any frame from𝑥2 to 𝑥2+𝐻 . Importantly, 𝑓 is not required to know how many frames
it is going to skip – the temporal matching is performed by a “training
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Figure 2.4:Visualization of the first three steps of ASI with a horizon of 𝐻 = 3.
The blue lines represent loss components between the ground truth frames 𝑥
and predicted frames ̂𝑥. For simplicity, we do not consider scheduled sampling
here, therefore 𝑓 is always applied to the previous predicted state.

supervisor” who takes 𝑓 ’s prediction and selects the best-fitting ground-
truth frame to compute the loss, which is later on reduced using gradi-
ent based optimization.

To soften the winner-takes-all mechanism, we use an exploration-
curriculum. At every step, a Bernoulli trial with probability 𝜇 decides
whether an exploration or an exploitation step is executed: In an ex-
ploration step, the supervisor selects a future frame at random with a
frame-skip value between 1 and 𝐻 ; in an exploitation step, the supervi-
sor takes the best-fitting ground-truth frame𝑥𝑖 = argmin𝑡∈{2..2+𝐻}ℒ𝑥( ̂𝑥𝑏, 𝑥𝑡)
to provide the training signal. At the beginning of training, 𝜇 is high,
such that exploration is encouraged. Over the course of several epochs,
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Algorithm 1 Dynamical model learning with ASI
Require: 𝑖’th trajectory x(𝑖) = (𝑥1, 𝑥2, ..., 𝑥𝑇𝑖) ∈ 𝒳𝑇𝑖
Require: Differentiable model 𝑓 ∶ 𝒳 → 𝒳 w/ params 𝜃
Require: Loss function ℒ ∶ 𝒳 × 𝒳 → ℝ
Require: Matching-horizon 𝐻 ∈ ℕ
Require: Exploration schedule 𝜇 ∶ ℕ → [0, 1]
Require: Scheduled sampling temperatures 𝜖 ∶ ℕ → [0, 1]
1: 𝑡 ← 1, 𝑢 ← 1 ▷ Data timestep 𝑡, abstract timestep 𝑢
2: 𝑙 ← 0 ▷ Trajectory loss
3: 𝑥 ← 𝑥1 ▷ 𝑥 is the next input to the dynamics model 𝑓
4: while 𝑡 < |x| do
5: ̂𝑥𝑢 ← 𝑓(𝑥)
6: 𝑇 ← min(𝑡 + 𝐻, |x|) ▷ Upper time step limit
7: if Bernoulli(𝜇(𝑖)) = 0 then
8: 𝑡 ← argmin𝑡′∈{𝑡+1..𝑇 } ℒ( ̂𝑥𝑢, 𝑥𝑡′)
9: else

10: 𝑡 ∼ unif{𝑡 + 1, 𝑇 } ▷ Exploration
11: end if
12: 𝑙 ← 𝑙 + ℒ( ̂𝑥𝑢, 𝑥𝑡) ▷ Accumulate trajectory loss
13: 𝑥 ← binary_choice( ̂𝑥𝑢, 𝑥𝑡; 𝑝 = 𝜖(𝑖)) ▷ Scheduled sampling

(Bengio et al., 2015)
14: 𝑢 ← 𝑢 + 1
15: end while
16: 𝜃 ← gradient descent step on 𝜃 to reduce 𝑙
𝜇 is gradually decreased such that 𝑓 can converge to predicting sharp
mechanisms. The goal of the exploration schedule is to avoid being
caught in a local optimum early on during training. Over the course of
the learning process, we gradually decrease the chance of picking a ran-
dom frame, effectively transitioning to thewinner-takes-allmechanism.
We refer to this curriculum scheme Exploration of temporal matching.
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The best fitting frame 𝑥𝑖 is then fed into 𝑓 again, iterating the same
procedure as described above, but from a later starting point. At every
step, we accumulate a loss 𝑙𝑥, leading to an overall prediction loss ℒ𝑥
which is simply the mean of all the step-losses. We train the model 𝑓
via gradient descent to reduce the prediction loss ℒ𝑥.

In the example with the funnel, this could intuitively work as follows:
the transition from the ball which falls into the funnel to the ball which
is at the end of the funnel is the most robust one (let us call it the “ro-
bust transition”) – it occurs virtually every time. All other positions
within the funnel are visited less often. Therefore, 𝑓 will tend to get
most training signal from the robust transition. Hence, 𝑓 will begin
to predict something that resembles the robust transition, which will
subsequently be reinforced because it will often be the best-fitting tran-
sition which wins in the matching process.

Instead of using a greedy matching algorithm it is conceivable to use
a global optimization method which is applied to the whole sequence
of iteratively predicted frames, which would then be aligned in the glob-
ally best possible way to the ground truth data. However, in this case,
we would not be able to alternate randomly between the input sources
for 𝑓 , as we currently do with scheduled sampling, because in order to
know which ground truth frame to take next, we already need to know
the alignment.

Besides exploration of temporal matching,as mentioned in Section
2.1.2 we adopt another curriculum scheme, scheduled sampling (Ben-
gio et al., 2015), which gradually shifts the training distribution from
observation-dependent transitions towards prediction-dependent tran-
sitions.

Predicting the labels Since the learning procedure can choose to skip
difficult-to-predict frames, the mean loss in pixel space would not be a
fair metric to evaluate whether ASI serves a purpose. As explained in
Section 2.1.1, one of our central assumptions is that we are dealing with
environments which have the notion of a qualitative outcome, repre-
sented e.g. by the classification problem associated with the task. There-
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fore, as a way to measure the learning success, we let a separate classi-
fier 𝜓 ∶ 𝒳 → 𝒫(𝒴) predict the label of the underlying classification
task based on the frames predicted by 𝑓 . At test time, 𝑓 can unfold the
dynamics over multiple steps and 𝜓 is applied to the resulting frames,
allowing the combinedmodel to predict the label from the initial frame.

In principle, the classifier 𝜓 could be trained alongside the model𝑓 , or after convergence of 𝑓 – the two training processes do not inter-
fere with each other. For the experiments described in Section 4.4, we
hand-specify a classifier 𝜓 ahead of time for each environment. Since
our classification tasks are easy, given the last frame of a trajectory, the
classifiers are simple functions which achieve perfect accuracy when
fed the ground truth frames.

2.3 Experiments

We demonstrate the efficacy of our approach by introducing two envi-
ronments for which our approach is expected to perform well. Code to
reproduce our experiments is available at
KWWSV���JLWKXE�FRP�QHLW]DO�DGDSWLYH�VNLS�LQWHUYDOV.

2.3.1 Domains

Room runner In the Room runner task, an agent, represented by a
green dot, moves through a randomly generated map of rooms, which
are observed in 2D from above. The agent follows the policy of always
trying to move towards and into the next room, until it reaches a dead
end. Two rooms are colored – the actual dead end which the agent will
reach and another room, which is a dead end for another path. One of
these two rooms is red, the other one blue, but the assignment is chosen
by a fair coin flip.Theunderlying classification task is to predict whether
the agent will end up in the red room or in the blue one. Since there is
always exactly one passage between two adjacent rooms, the final room
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is alwayswell-defined and there is no ambiguity in the outcome.We add
noise to the runner’s acceleration at every step, simulating an imperfect
controller – for example one which is still taking exploratory actions in
order to improve. Figure 2.5 shows examples for the first states and the
resulting trajectories.

x x* y

Figure 2.5: Examples of first states 𝑥 of the Room runner domain, along with
the corresponding trajectories 𝑥∗ which arise from evolving the environment
dynamics and the agent’s policy and the correct label 𝑦. Darker regions in the
trajectory correspond to parts where the agent is moving more slowly. The
trajectories are merged into one image for visualization purposes only – in the
dataset, every frame is separate.

Funnel board In this task, a ball falls through a grid of obstacles onto
one of five platforms. Every other row of obstacles consists of funnel-



Adaptive skip intervals 21

shaped objects, which are meant to capture the ball and release it at a
well-defined exit position. Variety arises from the random rotations of
the sliders, from the random presence or absence of funnels in every
layer except for the last one, and from slight perturbations in the fun-
nel and slider positions. The courses are generated such that the ball is
always guaranteed to hit exactly one of the platforms. Figure 2.6 shows
three examples for the first states and the ball’s resulting paths. In or-
der to simplify the problem, we make the states nearly fully observable
by preprocessing the video frames such that they include a trace of the
ball’s position at the previous step.

The underlying classification task is to predict, given only access to
the first frame, on which of the five platforms the ball will land eventu-
ally. Note that the task does not include predicting the time when the
ball will reach its goal.

2.3.2 Experiment setup

The experiments are ablation studies of our method. We would like to
investigate the efficacy of adaptive skip intervals and whether the explo-
ration schedule is beneficial to obtain good results. For each of our two
environments, we compare four methods: (a) The recurrent dynamics
model with adaptive skip intervals as described in Section 2.2. (ASI)
(b) The dynamics model with adaptive skip intervals, but without any
exploration phase, i.e. 𝜇 = 0. (ASI w/o exploration) (c) The dynamics
model without adaptive skip intervals such that it is forced to predict
every step (fixed (Δ𝑡 = 1)). (d) The dynamics model without adaptive
skip intervals such that it is forced to predict every second step (fixed
(Δ𝑡 = 2)). In each experiment we train with a training set of 500 trajec-
tories, and we report validation metrics evaluated on a validation set of
500 trajectories. We perform validation steps four times per epoch in
order to obtain a higher resolution in the training curves.
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x x* y

Figure 2.6: Examples of first states 𝑥 of the Funnel board domain, along with
the corresponding trajectories 𝑥∗ which arise from evolving the environment
dynamics, and the label 𝑦. The trajectories are merged into one image for vi-
sualization purposes only – in the dataset, every frame is separate.
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Figure 2.7: Portion of a sequence from Room runner using ASI, with ground
truth frames on top and predicted, temporally aligned sequence on bottom.

For our experiments, we use a neural network with seven convo-
lutional layers as the dynamics model 𝑓 . Architectural details, which
are the same in all experiments, are described in the Appendix. Like
(Racanière et al., 2017), we train 𝑓 using a pixel-wise binary cross en-
tropy loss. Hyperpararameter settings such as the learning rates are de-
termined for each method individually by using the set of parameters
which led to the best result (highest maximum achieved accuracy on
the validation set), out of 9 runs each. We use the same search ranges
for all experiments and methods. The remaining hyperparameters, in-
cluding search ranges, are provided in the Appendix. For instance, as a
value for the horizon 𝐻 in the ASI runs, our search yielded optimal re-
sults for values of around 20 in both experiments. After fixing the best
hyperparameters, each method is evaluated 8 additional times with dif-
ferent random seeds, whichwe use to report the results.We additionally
included baselines with Δ𝑡 > 2, but to reduce the amount of computa-
tion did not perform another hyperparameter search for them, instead
taking the best parameters for the baseline “fixed (Δ𝑡 = 2)”.
2.3.3 Results

We begin by visualizing how the network with adaptive skip intervals
performs after training. In Figure 2.8 we show a portion of one trajec-
tory from the Funnel board, as processed by the network. As shown,
the network trained with ASI has learned to skip a variable number of
frames, specifically avoiding the bouncing in the funnel, and directly
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Figure 2.8: Portion of a sequence from Funnel board using ASI, with ground
truth frames on top and predicted, temporally aligned sequence on bottom.
Darker lines connecting a predicted frame to the ground truth frames corre-
spond to better matching in terms of pixel loss.

predicting the exiting ball. Similarly, Figure 2.7 shows a portion of a
sequence from the Room runner domain.

Quantitative results As shown in Figure 2.9, ASI outperforms the
fixed-steps baselines on both datasets. On Funnel board the networks
equipped with adaptive skip intervals achieve higher accuracy and in a
shorter time, with exploration of adaptive skip intervals obtaining even
better results. In the Room runner task, we observe a significant im-
provement ofASIwith exploration over the versionwithout exploration
and the baselines. Note that some of the baselines curves get worse af-
ter an initial improvement. This can be explained by the fact that the
two training curricula, scheduled sampling and exploration of tempo-
ral matching, create a nonstationary distribution for the network. We
observe that ASI appears more resilient to this effect.

Computational efficiency Note that the x-axis in Figure 2.10 repre-
sents the number of forward-passes through 𝑓 , which loosely corre-
sponds to the wall clock time during the training process. Since the
adaptive skip intervals methods are allowed to skip frames, they need
fewer model evaluations (and therefore fewer backpropagation passes
at training time) than fixed-rate training schemes. In the tasks we con-
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Figure 2.9: Learning progress, curves show validation accuracies on two tasks.
For each task, we show on the horizontal axis the number ofmodel evaluations
and the epoch number. Curves show mean validation accuracy, evaluated on
500 trajectories.The training sets consist of 500 trajectories in each experiment.
Shaded areas correspond to the interquartile range over all eight runs.

Figure 2.10: Learning progress (see Figure 2.9) with number of model evalua-
tions on the x-axis.

sidered, not only this gain in training speed does not come at the cost
of reduced accuracy, but it actually improves the overall performance.

Robustnessw.r.t. perturbationofdynamics Another advantage of the
temporally abstract model which we hypothesize is that the training
process is more stable when the dynamical systems changes in a certain
way. This is relevant because in real systems, the i.i.d. assumption is of-
ten violated.The same is true for reinforcement learning tasks, in which
the distribution over observed transition changes as the agent improves
its policy or due to changes in the environment over time. As a test for
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Figure 2.11: Up to epoch 75 we use a version of the Funnel board task where
the funnels’ bounciness is set to zero. At epoch 75 we switch the dataset for the
standard one but otherwise keep the training procedure going.

our hypothesis, we prepare a second version of the Funnel board dataset
with 500 trajectories of slightly altered physics: The bounciness of the
funnel walls is reduced to zero. This leads to a slightly different behav-
ior in the funnels, but the final platforms are the same in the majority
of trajectories. We start with the perturbed version and before the start
of the 75th epoch, we exchange it with the original one. Figure 2.11
shows the accuracy curves for this experiment. We observe that while
the fixed frame-rate baselines learn the correct classification better than
in the more difficult original task, after the switch the validation accu-
racy quickly deteriorates. Note that freezing the network at epoch 75
would leave the validation accuracy almost unchanged, since both ver-
sions of the task have similar labels.

2.4 Related work

The observation that every environment has an optimal sampling fre-
quency has also been made for reinforcement learning. For instance,
Braylan et al., 2015 investigate the effect of different frame-skip inter-
vals on the performance of agents learning to play Atari 2600 games.
A constant frame-skip value of four frames is considered standard for
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Deep RL agents (Machado et al., 2018). Focusing on spatio-temporal
prediction problems, (Oh et al., 2015) introduce a neural network ar-
chitecture for action conditional video prediction. Their approach ben-
efits fromusing curriculum learning to stabilize training of the network.
Buesing et al., 2018 investigate action-conditional state-space models
and explicitly consider “jumpy” models which skip a certain number
of timesteps in order to be more computationally efficient. In contrast
to our work they do not use adaptive skip intervals, but skip at a fixed
frame rate. Belzner, 2016 introduces a time-adaptive version of model-
based online planning inwhich the planner can optimize the step-length
adaptively.Their approach focuses on temporal abstraction in the space
of actions and plans. Temporal abstraction in the planning space is also
a motivation of the field of hierarchical reinforcement learning (Barto
andMahadevan, 2003), often in the framework of semi-MDPs–Markov
Decision Processes with temporally extended actions (e.g. Puterman,
1994).

The idea of skipping time steps has also been investigated in Ke et al.
Ke et al., 2018, where the authors present a way to attack the problem
of long-term credit assignment in recurrent neural networks by only
propagating errors through selected states instead of every single past
timestep.

Closely related to ourwork is the Predictron (Silver et al., 2017), which
is a deep neural network architecture which is set up to perform a se-
quence of temporally abstract lookahead steps in a latent space. It can
be trained end-to-end in order to approximate the values in a Markov
Reward Process. In contrast to ASI, the outputs of the Predictron are
regressed exclusively towards rewards and values, which circumvents
the need for an explicit solution to the temporal alignment problem.
However, by ignoring future states, the training process ignores a large
amount of dynamical information from the underlying system. Simi-
lar in spirit to the Predictron, the value prediction network (VPN) (Oh
et al., 2017) proposes a neural network architecture to learn a dynam-
ics model whose abstract states make option-conditional predictions of
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future values rather than of future observations.Their temporal abstrac-
tion is “grounded” by using option-termination as the skip-interval.

Ebert et al. (2017) introduced temporal skip connections for self-
supervised visual planning to keep track of objects through occlusion.
(Pong et al., 2018) introduce temporal difference models (TDM) which
are dynamicalmodels trained by temporal difference learning.Their ap-
proach starts with a temporally fine-grained dynamics model, which is
represented with a goal-conditioned value function. The temporal res-
olution is successively coarsened so as to converge toward a model-free
formulation. Concurrently to our work, Jayaraman et al., 2019 propose
a training framework with a similar motivation to ours. They further
explore ways to generalize the objective and include experiments on hi-
erarchical planning.

2.5 Conclusion

We presented a time skipping framework for the problem of sequen-
tial predictions. Our approach builds on concepts from causal discov-
ery (Peters et al., 2017b; Parascandolo et al., 2018) and can be included
in multiple fields where planning is important. In cases where our ap-
proach fails, e.g. when the alignment of predicted and ground truth is
lost and themodel does not have the power to restore it, more advanced
optimization methods like dynamic time warping (Müller, 2007) dur-
ing the matching phase may help at the cost of the simplicity and seam-
less integration of the scheduled sampling, as described in Section 2.2.

An interesting direction for future work is the combination of tempo-
ral abstraction with abstractions in a latent space. As noted for instance
by Oh et al., 2017, predicting future observations is a too difficult task
for realistic environment due to the high dimensionality of typical ob-
servation spaces.

The idea of an optimal prediction skip interval should extend to the
case of stochastic generative models, where instead of a deterministic
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mapping from current to next state, the model provides a probability
distribution over next states. In this case, ASI should lead to simpler
distributions, allowing for simpler models andmore data efficiency just
as in the deterministic case.The evaluation of this claim is left for future
work.

Another line of investigation which is left to future work is to in-
tegrate ASI with action-conditional models. As mentioned in Section
2.1.1, the problemcould be addressed byusing a separateASI-dynamical
model for each policy or option, which wouldmake option-conditional
planning possible. However, there may be a more interesting interplay
between ideal skip intervals and switching points for options, which
suggest that they should ideally be learned jointly.





3
Learning explanations that are hard to vary

In this chapter1, we investigate the principle that good explanations are
hard to vary in the context of deep learning. We show that averaging
gradients across examples – akin to a logical OR (∨) of patterns – can
favor memorization and ‘patchwork’ solutions that sew together differ-
ent strategies, instead of identifying invariances. To inspect this, we first
formalize a notion of consistency for minima of the loss surface, which
measures to what extent a minimum appears only when examples are
pooled. We then propose and experimentally validate a simple alterna-
tive algorithm based on a logical AND (∧), that focuses on invariances
and prevents memorization in a set of real-world tasks. Finally, using a
synthetic dataset with a clear distinction between invariant and spuri-
ousmechanisms, we dissect learning signals and compare this approach
to well-established regularizers.

3.1 Introduction

Consider the top of Figure 3.1, which shows a view from above of the
loss surface obtained as we vary a two dimensional parameter vector𝜽 = (𝜃1, 𝜃2), for a fictional dataset containing two observations 𝑥𝐴
1 Adapted from: Parascandolo, G.*, Neitz, A.*, Orvieto, A., Gresele, L., and Schölkopf,

B. (2021). “Learning explanations that are hard to vary.” In: International Confer-
ence on Learning Representations. (ICLR 2021). I co-developed idea, implementa-
tion and experiments together with Giambattista Parascandolo.
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Figure 3.1: Loss landscapes of a two-parameter model. Averaging gradients
forgoes information that can identify patterns shared across different environ-
ments.

and 𝑥𝐵. Note the two global minima on the top-right and bottom-left.
Depending on the initial values of 𝜃 —marked as white circles— gradi-
ent descent converges to one of the two minima. Judging solely by the
value of the loss function, which is zero in both cases, the two minima
look equally good.

However, looking at the loss surfaces for 𝑥𝐴 and 𝑥𝐵 separately, as
shown below, a crucial difference between those two minima appears:
Starting from the same initial parameter configurations and following
the gradient of the loss, ∇𝜃ℒ(𝜃, 𝑥𝑖), the probability of finding the same
minimum on the top-right in either case is zero. In contrast, the min-
imum in the lower-left corner has a significant overlap across the two
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loss surfaces, so gradient descent can converge to it even if training on𝑥𝐴 (or 𝑥𝐵) only. Note that after averaging there is no way to tell what
the two loss surfaces looked like: Are we destroying information that is
potentially important?

In this chapter, we argue that the answer is yes. In particular, we hy-
pothesize that if the goal is to find invariant mechanisms in the data,
these can be identified by finding explanations (e.g. model parameters)
that are hard to vary across examples. A notion of invariance implies
something that stays the same, as something else changes. We assume
that data comes from different environments: An invariant mechanism
is shared across all, generalizes out of distribution (o.o.d.), but might
be hard to model; each environment also has spurious explanations
that are easy to spot (‘shortcuts’), but do not generalize o.o.d. From the
point of view of causal modeling, such invariant mechanisms can be
interpreted as conditional distributions of the targets given causal fea-
tures of the inputs; invariance of such conditionals is expected if they
represent causal mechanisms, that is — stable properties of the physical
world (see e.g. Hoover, 1990). Generalizing o.o.d. means therefore that
the predictor should perform equally well on data coming from differ-
ent settings, as long as they share the causal mechanisms.

We formalize a notion of consistency, which characterizes to what ex-
tent a minimum of the loss surface appears only when data from differ-
ent environments are pooled. Minima with low consistency are ‘patch-
work’ solutions, which (we hypothesize) sew together different strate-
gies and should not be expected to generalize to new environments. An
intuitive description of this principle was proposed by physicist David
Deutsch: “good explanations are hard to vary” (Deutsch, 2011).

Using the notion of consistency, we define Invariant Learning Consis-
tency (ILC), ameasure of the expected consistency of the solution found
by a learning algorithm on a given hypothesis class. The ILC can be im-
proved by changing the hypothesis class or the learning algorithm, and
in the last part of the paper we focus on the latter. We then analyse why
current practices in deep learning provide little incentive for networks
to learn invariances, and show that standard training is instead set up
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with the explicit objective of greedily maximizing speed of learning, i.e.,
progress on the training loss. When learning “as fast as possible” is not
the main objective, we showwe can trade-off some “learning speed” for
prioritizing learning the invariances. A practical instantiation of ILC
leads to o.o.d. generalization on a challenging synthetic task where sev-
eral established regularizers fail to generalize; moreover, following the
memorization task from Zhang et al., 2017, ILC prevents convergence
on CIFAR-10 with random labels, as no shared mechanism is present,
and similarly when a portion of training labels is incorrect. Lastly, we
set up a behavioural cloning task based on the game CoinRun (Cobbe
et al., 2019), and observe better generalization on new unseen levels.

An example.
5334 Problems, Combinations & Games

1.1 Mate in 1

295
80Z0Z0Z0Z
7Z0Z0ZpZ0
6pZ0Z0ZpZ
5jpZ0ZPZ0
40Z0ZnZPA
3OPZ0Z0Z0
20ZKZ0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

296
80Z0Z0Z0Z
7snZ0Z0o0
60j0Z0ZPZ
5o0ZPZ0Z0
4Po0Z0M0Z
3ZKZ0Z0Z0
20ZRZ0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

297
80Z0Z0Z0Z
7Z0Zns0Z0
6BZ0ako0Z
5Z0Z0o0Z0
40O0Z0ZPZ
3Z0Z0Z0Z0
20ZKZNZ0Z
1Z0Z0Z0ZR

a b c d e f g h

298
80Z0Z0Z0Z
7ZRZ0Z0Z0
60Z0ako0Z
5Z0Z0onZ0
40Z0oKZPZ
3Z0ZPZ0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

299
8rZ0l0j0s
7opZ0a0op
60Z0o0m0Z
5Z0Z0o0M0
40Z0ZPZbZ
3OQM0A0Z0
20O0Z0OPO
1Z0ZRS0J0

a b c d e f g h

300
80ZrZ0j0s
7obl0opZp
60onZ0M0Z
5Z0m0Z0A0
40Z0o0Z0Z
3ZPZPZPO0
2PZ0MQZ0O
1ZKZ0S0ZR

a b c d e f g h
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8rZbZkZ0s
7ZpopZ0Zp
6pZ0ZpL0Z
5ZNO0Z0Z0
40OKZ0Z0Z
3O0Z0OnZP
20Z0Z0O0Z
1Z0Z0Z0Z0

a b c d e f g h
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80Z0ZkZ0Z
7Z0Z0OpZ0
60Z0O0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0ZQZ0
20J0Z0Z0Z
1Z0Z0l0Z0

a b c d e f g h
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80Z0ZkZ0Z
7Z0Z0Z0Z0
60Z0Z0ONZ
5Z0ZQZ0Z0
40Z0Z0Z0Z
3Z0Z0ZpZ0
20Z0ZnZ0J
1Z0Z0ZqZ0

a b c d e f g h
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80Z0Z0s0Z
7j0Z0Z0Z0
6No0Z0Z0Z
5Z0Z0Z0Zp
40O0ZbZpO
3Z0Z0OrZ0
2RZ0Z0OKA
1Z0Z0Z0Z0

a b c d e f g h
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80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0ZNZ0
20orZ0ZPO
1s0j0J0ZR

a b c d e f g h
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8ra0Z0Z0Z
7j0o0Z0ZR
6PZPZ0Z0Z
5OpJ0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0ZBZ0

a b c d e f g h
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8rZkZNZ0Z
7oRZRZ0Z0
6KZ0Z0Z0Z
5Z0Z0ZnZ0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0
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422
80Z0Z0Z0Z
7ZNZ0Z0Z0
6RZpZ0Z0Z
5ZkZ0Z0Z0
40MpZ0Z0Z
3Z0J0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h
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80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0ZNZB
40Z0Z0Z0Z
3Z0Z0o0ok
20Z0ZRZ0Z
1Z0Z0Z0J0
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80Z0Z0Z0Z
7Z0o0Z0S0
60ZRZNZ0j
5Z0Z0Z0Z0
40Z0Z0Z0o
3Z0Z0Z0ZK
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h
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80Z0Z0Z0Z
7Z0Z0Z0Zp
60Z0Z0Z0L
5Z0Z0Z0Z0
40Z0ZKZko
3Z0Z0Z0Z0
20Z0Z0ZPZ
1Z0Z0ZNZ0
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80Z0Z0Z0Z
7Z0ZRZ0Z0
60o0Z0Z0Z
5ZkZpZ0Z0
40Z0O0Z0Z
3Z0J0Z0Z0
2QZ0Z0Z0Z
1Z0Z0Z0Z0
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80Z0Z0Z0Z
7Z0Z0Z0Z0
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5Z0Z0ZQZ0
40Z0Z0mBZ
3Z0A0j0Z0
20Z0Z0Z0Z
1Z0Z0ZKZ0
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80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0o0ZNZ
3Z0ZKZ0Z0
20Z0Z0ZpL
1Z0Z0ZkZ0
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80Z0Z0ZRZ
7Z0Z0ZKm0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0S0
20Z0Z0Z0Z
1Z0Z0Z0Ak
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80Z0ZKZ0Z
7Z0Z0Z0Z0
60ZpZkZ0Z
5Z0Z0O0Z0
40Z0OQZ0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h
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80Z0Z0Z0Z
7jPO0Z0Z0
60SnZ0Z0Z
5Z0J0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0
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7Z0Z0Z0O0
60Z0Z0JBj
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h
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80Z0Z0Z0Z
7Z0Z0Z0Zp
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5Z0Z0Z0Z0
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20Z0Z0ZPZ
1Z0Z0ZNZ0
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80Z0Z0Z0Z
7Z0ZRZ0Z0
60o0Z0Z0Z
5ZkZpZ0Z0
40Z0O0Z0Z
3Z0J0Z0Z0
2QZ0Z0Z0Z
1Z0Z0Z0Z0
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80Z0Z0Z0Z
7Z0Z0ZpZ0
6pZ0Z0ZpZ
5jpZ0ZPZ0
40Z0ZnZPA
3OPZ0Z0Z0
20ZKZ0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

296
80Z0Z0Z0Z
7snZ0Z0o0
60j0Z0ZPZ
5o0ZPZ0Z0
4Po0Z0M0Z
3ZKZ0Z0Z0
20ZRZ0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

297
80Z0Z0Z0Z
7Z0Zns0Z0
6BZ0ako0Z
5Z0Z0o0Z0
40O0Z0ZPZ
3Z0Z0Z0Z0
20ZKZNZ0Z
1Z0Z0Z0ZR

a b c d e f g h

298
80Z0Z0Z0Z
7ZRZ0Z0Z0
60Z0ako0Z
5Z0Z0onZ0
40Z0oKZPZ
3Z0ZPZ0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h
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8rZ0l0j0s
7opZ0a0op
60Z0o0m0Z
5Z0Z0o0M0
40Z0ZPZbZ
3OQM0A0Z0
20O0Z0OPO
1Z0ZRS0J0
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80ZrZ0j0s
7obl0opZp
60onZ0M0Z
5Z0m0Z0A0
40Z0o0Z0Z
3ZPZPZPO0
2PZ0MQZ0O
1ZKZ0S0ZR

a b c d e f g h
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8rZbZkZ0s
7ZpopZ0Zp
6pZ0ZpL0Z
5ZNO0Z0Z0
40OKZ0Z0Z
3O0Z0OnZP
20Z0Z0O0Z
1Z0Z0Z0Z0

a b c d e f g h
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80Z0ZkZ0Z
7Z0Z0OpZ0
60Z0O0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0ZQZ0
20J0Z0Z0Z
1Z0Z0l0Z0

a b c d e f g h
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80Z0ZkZ0Z
7Z0Z0Z0Z0
60Z0Z0ONZ
5Z0ZQZ0Z0
40Z0Z0Z0Z
3Z0Z0ZpZ0
20Z0ZnZ0J
1Z0Z0ZqZ0

a b c d e f g h
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80Z0Z0s0Z
7j0Z0Z0Z0
6No0Z0Z0Z
5Z0Z0Z0Zp
40O0ZbZpO
3Z0Z0OrZ0
2RZ0Z0OKA
1Z0Z0Z0Z0

a b c d e f g h
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80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0ZNZ0
20orZ0ZPO
1s0j0J0ZR

a b c d e f g h

306
8ra0Z0Z0Z
7j0o0Z0ZR
6PZPZ0Z0Z
5OpJ0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0ZBZ0

a b c d e f g h
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80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0ZQZ0
40Z0Z0mBZ
3Z0A0j0Z0
20Z0Z0Z0Z
1Z0Z0ZKZ0

a b c d e f g h
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80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0o0ZNZ
3Z0ZKZ0Z0
20Z0Z0ZpL
1Z0Z0ZkZ0
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357
80Z0Z0ZRZ
7Z0Z0ZKm0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0S0
20Z0Z0Z0Z
1Z0Z0Z0Ak

a b c d e f g h
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80Z0ZKZ0Z
7Z0Z0Z0Z0
60ZpZkZ0Z
5Z0Z0O0Z0
40Z0OQZ0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0
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80Z0Z0Z0Z
7jPO0Z0Z0
60SnZ0Z0Z
5Z0J0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0
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80Z0Z0ArZ
7Z0Z0Z0O0
60Z0Z0JBj
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h
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8rZbZkZ0s
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6pZ0ZpL0Z
5ZNO0Z0Z0
40OKZ0Z0Z
3O0Z0OnZP
20Z0Z0O0Z
1Z0Z0Z0Z0
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80Z0ZkZ0Z
7Z0Z0OpZ0
60Z0O0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0ZQZ0
20J0Z0Z0Z
1Z0Z0l0Z0

abcdefgh
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80Z0ZkZ0Z
7Z0Z0Z0Z0
60Z0Z0ONZ
5Z0ZQZ0Z0
40Z0Z0Z0Z
3Z0Z0ZpZ0
20Z0ZnZ0J
1Z0Z0ZqZ0

abcdefgh
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80Z0Z0s0Z
7j0Z0Z0Z0
6No0Z0Z0Z
5Z0Z0Z0Zp
40O0ZbZpO
3Z0Z0OrZ0
2RZ0Z0OKA
1Z0Z0Z0Z0
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80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0ZNZ0
20orZ0ZPO
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8ra0Z0Z0Z
7j0o0Z0ZR
6PZPZ0Z0Z
5OpJ0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0ZBZ0
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8rZkZNZ0Z
7oRZRZ0Z0
6KZ0Z0Z0Z
5Z0Z0ZnZ0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

422
80Z0Z0Z0Z
7ZNZ0Z0Z0
6RZpZ0Z0Z
5ZkZ0Z0Z0
40MpZ0Z0Z
3Z0J0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

423
80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0ZNZB
40Z0Z0Z0Z
3Z0Z0o0ok
20Z0ZRZ0Z
1Z0Z0Z0J0

a b c d e f g h
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80Z0Z0Z0Z
7Z0o0Z0S0
60ZRZNZ0j
5Z0Z0Z0Z0
40Z0Z0Z0o
3Z0Z0Z0ZK
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h
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80Z0Z0Z0Z
7Z0Z0Z0Zp
60Z0Z0Z0L
5Z0Z0Z0Z0
40Z0ZKZko
3Z0Z0Z0Z0
20Z0Z0ZPZ
1Z0Z0ZNZ0

a b c d e f g h
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80Z0Z0Z0Z
7Z0ZRZ0Z0
60o0Z0Z0Z
5ZkZpZ0Z0
40Z0O0Z0Z
3Z0J0Z0Z0
2QZ0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h
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80Z0Z0Z0Z
7ZNZ0Z0Z0
6RZpZ0Z0Z
5ZkZ0Z0Z0
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20Z0Z0Z0Z
1Z0Z0Z0Z0
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80Z0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0ZNZB
40Z0Z0Z0Z
3Z0Z0o0ok
20Z0ZRZ0Z
1Z0Z0Z0J0
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424
80Z0Z0Z0Z
7Z0o0Z0S0
60ZRZNZ0j
5Z0Z0Z0Z0
40Z0Z0Z0o
3Z0Z0Z0ZK
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

425
80Z0Z0Z0Z
7Z0Z0Z0Zp
60Z0Z0Z0L
5Z0Z0Z0Z0
40Z0ZKZko
3Z0Z0Z0Z0
20Z0Z0ZPZ
1Z0Z0ZNZ0

a b c d e f g h
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80Z0Z0Z0Z
7Z0ZRZ0Z0
60o0Z0Z0Z
5ZkZpZ0Z0
40Z0O0Z0Z
3Z0J0Z0Z0
2QZ0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

Take these two second-hand books of chess puzzles. We can learn the
two independent shortcuts (blue arrows for the left book OR hand-
written solutions on the right), or actually learn to play chess (the
invariant mechanism). While both strategies solve other problems
from the same books (i.i.d.), only the latter generalises to new chess
puzzle books (o.o.d.). How to distinguish the two?Wewould not have
learned about the red arrows had we trained on the book on the right,
and vice versa with the hand-written notes.
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3.2 Explanations that are hard to vary

We consider datasets {𝒟𝑒}𝑒∈ℰ, with |ℰ| = 𝑑, and 𝒟𝑒 = (𝑥𝑒𝑖 , 𝑦𝑒𝑖 ),𝑖𝑒 = 1, … , 𝑛𝑒. Here 𝑥𝑒𝑖 ∈ 𝒳 ⊆ ℝ𝑚 is the vector containing the ob-
served inputs, and 𝑦𝑒𝑖 ∈ 𝒴 ⊆ ℝ𝑝 the targets. The superscript 𝑒 ∈ ℰ
indexes some aspect of the data collection process, and can be inter-
preted as an environment label. Our objective is to infer a function𝑓 ∶ 𝒳 → 𝒴 — which we call mechanism — assigning a target 𝑦𝑒𝑖 to
each input 𝑥𝑒𝑖 ; as explained in the introduction, we assume that such
function is shared across all environments. For estimation purposes, 𝑓
may be parametrized by a neural network with continuous activations;
forweights 𝜃 ∈ Θ ⊆ ℝ𝑛, we denote the neural network output at𝑥 ∈ 𝒳
as 𝑓𝜃(𝑥).
Gradient-based optimization. To find an appropriate model 𝑓𝜃, stan-
dard optimizers rely on gradients from a pooled loss functionℒ ∶ ℝ𝑛 → ℝ
.This functionmeasures the average performance of the neural network
when predicting data labels, across all environments:ℒ(𝜃) ∶= 1|ℰ| ∑𝑒∈ℰ ℒ𝑒(𝜃),
with ℒ𝑒(𝜃) ∶= 1|𝒟𝑒| ∑(𝑥𝑒𝑖 ,𝑦𝑒𝑖 )∈𝒟𝑒 ℓ(𝑓(𝑥𝑒𝑖 ; 𝜃), 𝑦𝑒𝑖 );
where ℓ ∶ ℝ𝑝 × ℝ𝑝 → [0, +∞) is usually chosen to be the 𝐿2 loss
or the cross-entropy loss. The parameter updates according to gradient
descent (GD) are given by 𝜃𝑘+1

GD = 𝜃𝑘
GD − 𝜂∇ℒ(𝜃𝑘

GD), where 𝜂 > 0 is
the learning rate. Under some standard assumptions (Lee et al., 2016),(𝜃𝑘

GD)𝑘≥0 converges to a local minimizer of ℒ, with probability one.

Whendowenot learn invariances? Westart by describingwhatmight
prevent learning invariances in standard gradient-based optimization.
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(i) Training stops once the loss is low enough. If the optimization has
learned spurious patterns by the time it converges, invariances will not
be learned anymore. This depends on the rate at which different pat-
terns are learned. The rates at which invariant patterns emerge (and
vice-versa, the spurious patterns do not) can be improved by e.g.: (a)
careful architecture design, e.g. as done by hardcoding spatial equivari-
ance in convolutional networks; (b) fine-tuning models pre-trained on
large amounts of data, where strong features already emerged and can
be readily selected.

(ii) Learning signals: everything looks relevant for a dataset of size 1.
Due to the summation in the definition of the pooled loss ℒ, gradients
for each example are computed independently. Informally, each signal
is identical to the one for an equivalent dataset of size 1, where every
pattern appears relevant to the task. To find invariant patterns across
examples, if we compute our training signals on each of them indepen-
dently, we have to rely on the way these are aggregated.2

(iii) Aggregating gradients: averaging maximizes learning speed. The
default method to pool gradients is the arithmetic mean. GD applied toℒ is designed tominimize the pooled loss by prioritizing descent speed.3
Indeed, a step of GD is equivalent to finding a tight4 quadratic upper
bound ̂ℒ to ℒ, and then jumping to the minimizer of this approxima-
tion (Nocedal andWright, 2006).While speed is often desirable, by con-
struction GD ignores one potentially crucial piece of information: The
gradient ∇ℒ is the result of averaging signals ∇ℒ𝑒, which correspond
to the patterns visible from each environment at this stage of optimiza-

2 After computing the gradients for a dataset of 𝑛−1 examples, if an 𝑛-th example
appeared, we would just compute one more vector of gradients and add it to the
sum. A Gaussian Process (Rasmussen, 2003) for example would require recom-
puting the entire solution from scratch, as all interactions are considered.

3 The same reasoning holds for SGD in the finite-sum optimization case ℒ =1𝑚 ∑𝑚𝑖=1 ℒ𝑖, where gradients from a mini-batch are seen as unbiased estimators
of gradients from the pooled loss. (Bottou et al., 2018).

4 Assume that ℒ has 𝐿-Lipschitz gradients (i.e. curvature bounded from above by𝐿). Then, at any point ̃𝜃, we can construct the upper bound ̂ℒ ̃𝜃(𝜃) = ℒ( ̃𝜃) +∇ℒ( ̃𝜃)⊤(𝜃 − ̃𝜃) + 𝐿‖𝜃 − ̃𝜃‖2/2.
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θk
GD

θk+1
GD

Figure 3.2: Inconsistency in gradient directions.

tion. In other words, GD with average gradients greedily maximizes for
learning speed, but in some situations we would like to trade some con-
vergence speed for invariance. For instance, instead of performing an
arithmeticmean between gradients (logical OR), wemight want to look
towards a logical AND, which can be characterized as a geometricmean.
Fig. 3.1 shows how a sum can be seen as a logical OR: the two orthog-
onal gradients from data 𝐴 and data 𝐵 at (0.5,0.5) point to different
directions, yet both are kept in the combined gradient.5 In Sec. 3.2.3
we elaborate on this idea and on implementing a logical AND between
gradients. Before presenting this discussion,we take some time to better
motivate the need for invariant learning consistency and to construct a
precise mathematical definition of consistency.

3.2.1 Formal definition of ILC

Let Θ∗𝒜 be the set of convergence points of algorithm 𝒜 when trained
using all environments (pooled data): that is,Θ∗𝒜 = {𝜃∗ ∈ Θ | ∃ 𝜃0 ∈ ℝ𝑛 s.t. 𝒜∞(𝜃0, ℰ) = 𝜃∗}.
5 Loosely speaking, a sum is large if any of the summands is large, a product is large

if all factors are large.
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Loss surface for data A Loss surface for data B
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For instance, if 𝒜 is gradient descent, the result of Lee et al., 2016 im-
plies that Θ∗𝒜 is the set of local minimizers of the pooled loss ℒ. To each𝜃∗ ∈ Θ∗𝒜, we want to associate a consistency score, quantifying the con-
cept “good 𝜃∗ are hard to vary”. In other words, we would like the score
to capture the consistency of the loss landscape around 𝜃∗ across the dif-
ferent environments. For example, in Fig. 3.1 the loss landscape near the
bottom-leftminimizer is consistent across environments, while the top-
rightminimizer is not. Let us characterize the landscape around 𝜃∗ from
the perspective of a fixed environment 𝑒 ∈ ℰ. We define the set 𝑁𝜖𝑒,𝜃∗
to be the largest path-connected region of space containing both 𝜃∗ and
the set {𝜃 ∈ Θ s.t.|ℒ𝑒(𝜃)−ℒ𝑒(𝜃∗)| ≤ 𝜖 }, with 𝜖 > 0. In other words, if𝜃 ∈ 𝑁𝜖𝑒,𝜃∗ then there exist a path-connected region in parameter space
including 𝜃∗ and 𝜃 where each parameter also is in 𝑁𝜖𝑒,𝜃∗ and its loss
on environment 𝑒 is comparable. From the perspective of environment𝑒, all these points are equivalent to 𝜃∗. We would like to evaluate the
elements of this set with respect to a different environment 𝑒′ ≠ 𝑒. We
will say that 𝑒′ is consistent with 𝑒 in 𝜃∗ if max𝜃∈𝑁𝜖𝑒,𝜃∗ |ℒ𝑒′(𝜃) − ℒ𝑒(𝜃)∣
is small. Repeating this reasoning for all environment pairs, we arrive
at the following inconsistency score:ℐ𝜖(𝜃∗) ∶= max(𝑒,𝑒′)∈ℰ2 max𝜃∈𝑁𝜖𝑒,𝜃∗ |ℒ𝑒′(𝜃) − ℒ𝑒(𝜃∗)|. (3.1)
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Figure 3.3:Plotted are contour lines 𝜃⊤𝐻−1𝜃 = 1 for 𝐻𝐴 = diag(0.05, 1) and𝐻𝐵 = diag(1, 0.05). 𝐻𝐴∧𝐵 retains the original volumes, while for 𝐻𝐴+𝐵 it
is 5× bigger. This magnification shows inconsistency of 𝐴 and 𝐵.

This consistency is our formalization of the principle “good explana-
tions are hard to vary”. Finally, we can write down an invariant learning
consistency score for 𝒜:

ILC(𝒜, 𝑝𝜃0) ∶= −𝔼𝜃0∼𝑝(𝜃0) [ℐ𝜖(𝒜∞(𝜃0, ℰ))] . (3.2)

That is, the learning consistency of an algorithmmeasures the expected
consistency across environments of the minimizer it converges to on
the pooled data.

Example: lowconsistencyofa classicpatchwork solution. One-hidden-
layer networks with sigmoid activations and enough neurons can ap-
proximate any function 𝑓∗ ∶ [0, 1] → ℝ (Cybenko, 1989). In appendix
B.1.1 we show how the construction used to obtain the weights leads
to a maximally inconsistent solution according to ℐ𝜖(𝜃∗), which would
not be expected to generalize o.o.d.

3.2.2 ILC as a logical AND between landscapes

Herewe draw a connection between our definition of inconsistency and
the local geometric properties of the loss landscapes. For the sake of
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clarity, we consider two environments (𝐴 and 𝐵) and assume 𝜃∗ to be a
local minimizer (with zero loss) for both environments. Using a Taylor
approximation6, we getℒ(𝜃) ≈ 12(𝜃 − 𝜃∗)⊤𝐻𝐴+𝐵(𝜃 − 𝜃∗)
for ‖𝜃 − 𝜃∗‖ ≈ 0, where 𝐻𝐴+𝐵 = (𝐻𝐴 + 𝐻𝐵) /2 is the arithmetic
mean of the Hessians 𝐻𝐴 ∶= ∇2ℒ𝐴(𝜃∗) and 𝐻𝐵 ∶= ∇2ℒ𝐴(𝜃∗). The
mean Hessian 𝐻𝐴+𝐵 does not capture the possibly conflicting geome-
tries of landscape 𝐴 or 𝐵: It performs a “logical OR” on the domi-
nant eigendirections. In contrast, the geometric mean, or Karchermean,𝐻𝐴∧𝐵 (Ando et al., 2004) is affected by the inconsistencies between
landscapes: It performs a “logical AND”. In appendix B.1.2, we give a
formal definition of 𝐻𝐴∧𝐵, and show that for diagonal Hessians,ℐ𝜖(𝜃∗) ≤ 2𝜖(det(𝐻𝐴+𝐵)

det(𝐻𝐴∧𝐵) )2. (3.3)

As for the geometric mean of positive numbers,0 ≤ det(𝐻𝐴∧𝐵) ≤ det(𝐻𝐴+𝐵); (3.4)

thus, inconsistency is lowest when shapes of 𝐴 and 𝐵 are similar – ex-
actly as in the bottom-left minimizer of Fig. 3.1.

From Hessians to gradients. We just saw that the consistency of 𝜃∗ is
linked to the geometric mean of the Hessians {𝐻𝑒(𝜃∗)}𝑒∈ℰ. Under the
simplifying assumption that each 𝐻𝑒 is diagonal7 and all eigenvalues𝜆𝑒𝑖 are positive, their geometric mean is𝐻∧ ∶= diag ((∏𝑒∈ℰ 𝜆𝑒1) 1|ℰ| , … , (∏𝑒∈ℰ 𝜆𝑒𝑛) 1|ℰ| ) . (3.5)

6 This provides a useful simplified perspective. Indeed, this quadratic model is heav-
ily used in the optimization community (see e.g. Jastrzębski et al., 2017; Zhang
et al., 2019a; Mandt et al., 2017.)

7 It was shown in (Becker, Le Cun, et al., 1988) and recently in (Adolphs et al., 2019;
Singh and Alistarh, 2020) that neural networks have a strong diagonal dominance
of the Hessian matrix at the end of training.
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The curvature of the corresponding loss in the 𝑖-th eigendirection de-
pends on how consistent the curvatures of each environment are in that
direction. Consider now optimizing from a point 𝜃𝑘; gradient descent
reads 𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝐻+(𝜃𝑘 − 𝜃∗)
where 𝐻+ ∶= diag( 1|ℰ| ∑𝑒∈ℰ 𝜆𝑒1, … , 1|ℰ| ∑𝑒∈ℰ 𝜆𝑒𝑛).

For 𝜂 small enough8, we have|𝜃𝑘+1𝑖 − 𝜃∗𝑖 | = (1 − 𝜂 1|ℰ| ∑𝑒∈ℰ 𝜆𝑒𝑖 )|𝜃𝑘𝑖 − 𝜃∗𝑖 |.
As noted, this choice maximises the speed of convergence to 𝜃∗, but
does not take into account whether this minimizer is consistent. We
can reduce the speed of convergence on directions where landscapes
have different curvatures – which would lead to a high inconsistency –
by following the gradients from the geometric mean of the landscapes,
as opposed to the arithmetic mean. I.e, we substitute the full gradient∇ℒ(𝜃) = 𝐻+(𝜃𝑘 − 𝜃∗)
with ∇ℒ∧(𝜃) = 𝐻∧(𝜃𝑘 − 𝜃∗).
Also, we have that9∇ℒ∧(𝜃) = (∏𝑒∈ℰ ∇ℒ𝑒(𝜃))1/|ℰ| .
To reduce the speed of convergence in directions with inconsistency, we
can take the element-wise geometric mean of gradients from different
environments (see also Fig. B.2 in the appendix).

8 Smaller than 1/𝜆max, 𝜆max is the maximum eigenvalue of Hessians from different
environments,

9 This holds if 𝜃 − 𝜃∗ is positive, otherwise we have ∇ℒ∧(𝜃) =− (∏𝑒∈ℰ |∇ℒ𝑒(𝜃)|)1/|ℰ|
.
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3.2.3 Masking gradients with a logical AND

The element-wise geometric mean of gradients, instead of the arith-
metic mean, increases consistency in the convex quadratic case. How-
ever, there are a few practical limitations:

(i) The geometricmean is only definedwhen all the signs are consistent.
It is still to be defined how sign inconsistencies, which can occur in
non-convex settings, should be dealt with.

(ii) It provides little flexibility for ‘partial’ agreement: Even a single zero
gradient component in one environment stops optimization in that
direction.

(iii) For numerical stability, it needs to be computed in log domain (more
computationally expensive).

(iv) Adaptive step-size optimizers (e.g. Adam (Kingma and Ba, 2015))
rescale the signal component-wise for local curvature adaptation.
The exact magnitude of the geometric mean would be ignored and
most of the difference from arithmetic averagingwill come from the
zero-ed components.

(i) can be overcome by treating different signs as zeros, resulting in a ge-
ometricmean of 0 if there is any sign disagreement across environments
for a gradient component. For (ii) we can allow for some disagreement
(with a hyperparameter), by not masking out if there is a large percent-
age of environments with gradients in that direction. (iii) and (iv) can
be addressed together: Since the final magnitude will be rescaled except
for masked components, i.e. where the geometric mean is 0, we can use
the average gradients (fast to compute) and mask out the components
based on the sign agreement (computable avoiding the log domain).

The AND-mask. We translate the reasoning we just presented to a
practical algorithm that we will refer to as the AND-mask. In its most
simple implementation, we zero out those gradient components with
respect to weights that have inconsistent signs across environments.
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Formally, the masked gradients at iteration 𝑘 are 𝑚𝑡(𝜃𝑘) ⊙ ∇ℒ(𝜃𝑘),
where 𝑚𝑡(𝜃𝑘) vanishes for any component where there are less than𝑡 ∈ {𝑑/2, 𝑑/2 + 1, … , 𝑑} agreeing gradient signs across environments
(𝑑 is the number of environments in the batch), and is equal to one oth-
erwise. For convenience, our implementation of the AND-mask uses
a threshold 𝜏 ∈ [0, 1] as hyper-parameter instead of 𝑡, such that 𝑡 =𝑑2(𝜏 + 1). Mathematically, for every component [𝑚𝜏]𝑗 of 𝑚𝜏 ,[𝑚𝜏]𝑗 = 1[𝜏𝑑 ≤ | ∑𝑒 sign([∇ℒ𝑒]𝑗)|] .

Computing the AND-mask has the same time and space complexity
of standard gradient descent, i.e., linear in the number of examples that
we average.Due to its simplicity and computational efficiency, this is the
algorithm that wewill use in the experiment section. As a first result, we
show that following the AND-masked gradient leads to convergence in
the directions made visible by the AND-mask. The proof is presented
in appendix B.1.3.
Proposition 1. Letℒhave𝐿-Lipschitz gradients and consider a learning
rate 𝜂 ≤ 1/𝐿. After 𝑘 iterations, AND-masked GD visits at least once
a point 𝜃 where ‖𝑚𝑡(𝜃) ⊙ ∇ℒ(𝜃)‖2 ≤ 𝒪(1/𝑘).
Behaviour in the face of randomness. Here we put the AND-mask
through a theoretical test: For gradients coming from different environ-
ments that are inconsistent (or even random), how fast does the AND-
mask reduce the magnitude of the step taken in parameter space, com-
pared to standard GD? In case of inconsistency, the AND-mask should
quickly make the gradient steps more conservative.

To assess this property, we consider a fixed set of 𝑛 parameters 𝜃 and
gradients∇ℒ𝑒 drawn independently fromamultivariateGaussianwith
zero mean and unit covariance.
Proposition 2. Consider the setting we just outlined, withℒ = (1/𝑑) 𝑑∑𝑒=1 ℒ𝑒
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Figure 3.4: Magnitude of gradient (average or masked) on random data (|𝜃| =
3000, 𝑡 = 0.8𝑑).

. While 𝔼‖∇ℒ(𝜃)‖2 = 𝒪(𝑛/𝑑), we have that∀𝑡 ∈ {𝑑/2+1, … , 𝑑}, ∃𝑐 ∈ (1, 2]s.t.𝔼‖𝑚𝑡(𝜃)⊙∇ℒ(𝜃)‖2 ≤ 𝒪(𝑛/𝑐𝑑).
The proof is presented in Appendix B.1.4, and an illustration with

numerical verification in Fig. 3.4 (the magnitudes of masked gradients
(•) for more than 100 examples were always zero in the numerical ver-
ification). Intuitively, in the presence of purely random patterns, the
AND-mask has a desirable property: it decreases the strength of these
signals exponentially fast, as opposed to linearly.

3.3 Experiments

Real-world datasets are generated by (causal) generative processeswhich
share mechanisms (Pearl, 2009a). However, mechanisms and spurious
signals are often entangled, making it hard to assess what part of the
learning signal is due to either. As the goal of this chapter is to dissect
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these two components to understand how they ultimately contribute
to the learning process, we create a simple synthetic dataset that allows
us to control the complexity, intensity, and number of shortcuts in the
data. After that, we evaluate whether spurious signals can be detected
even in high-dimensional networks and datasets by testing the AND-
mask on a memorization task similar to the one proposed in Zhang
et al., 2017, and on a behavioral cloning task using the game CoinRun
(Cobbe et al., 2019).

3.3.1 The synthetic memorization dataset

We introduce a binary classification task. The input dimensionality is𝑑 = 𝑑𝑀 + 𝑑𝑆. While 𝑝(𝑦|𝑥𝑑𝑀) is the same across all environments
(i.e. themechanism), 𝑝(𝑦|𝑥𝑑𝑆, 𝑒) is not the same across all environments
(the shortcuts). While the mechanism is shared, it needs a nonlinear de-
cision boundary to classify the data.The shortcuts are not shared across
environments, but provide a simple way to classify the data, even when
pooling all the environments together. See Figure 3.5 for a concrete ex-
amplewith 𝑑𝑀 and𝑑𝑆 equal to 2, and two environments (𝐴 and𝐵).The
spirals (on 𝑑𝑀) are invariant but hard to model. The shortcuts (on 𝑑𝑆)
are simple blobs but different in every environment: in 𝐴, linearly sepa-
rable through a vertical decision boundary, in 𝐵 with a horizontal one.
If the two environments are pooled, a new diagonal decision boundary
emerges on the shortcut dimensions as the most ‘natural’ one. While
this perfectly classifies data in both environments 𝐴 and 𝐵, critically it
would have not been found by training on either partition 𝐴 or 𝐵 alone.
The out-of-distribution (o.o.d.) test data has the same mechanism but
random shortcuts. Therefore, any method relying exclusively on the
shortcuts will have chance-level o.o.d. performance. Details about the
dataset, baselines, and training curves are reported in appendix B.2.

Despite the apparent simplicity of this dataset, note that it is challeng-
ing to find the invariantmechanism. In high dimensions, evenwith tens
of pooled environments, the shortcuts allow for a simple classification
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dS
<latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit>

dM
<latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit><latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit><latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit><latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit>

Environment A Environment B Pooled A & B Test o.o.d.

dS
<latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit>

dM
<latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit><latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit><latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit><latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit>

dS
<latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit>

dM
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Figure 3.5: A 4-dimensional instantiation of the synthetic memorization
dataset for visualization. Every example is a dot in both circles, and it can be
classified by finding either of the “oracle” decision boundaries shown.

rule under almost every classical definition of ‘simple’: the boundary
is linear, it has a large margin, it can be expressed with small weights,
it is fast to learn, robust to input noise, and has perfect accuracy and
no i.i.d. generalization gap. Finding the complex decision boundary of
the spirals, instead, is a fiddly process and arguably a much slower path
towards small loss.

Baselines. We evaluate several domain-agnostic baselines (all multi-
layer perceptrons) with some of the most common regularizers used in
deep learning — Dropout, L1, L2, Batch normalization. We also con-
sider methods that explicitly make use of the environment labels:

(i) DomainAdversarialNeuralNetworks (DANN) (Ganin et al., 2016),
a method specifically designed to address domain adaptation by
obfuscating domain information with an adversarial classifier;

(ii) Invariant Risk Minimization (IRM) (Arjovsky et al., 2019), dis-
cussed in detail in appendix B.2. The AND-mask is trained with
the same configurations in Table B.1.
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Figure 3.6: Results on the synthetic dataset.

Results. Fig. 3.6 shows training and test accuracy. DANN fails be-
cause it can align the representation-layer distributions from different
environments using only shortcuts, such that they become indistinguish-
able to the domain-discriminating classifier. The AND-mask was the
only method to achieve perfect test accuracy, by fitting the spirals in-
stead of the shortcuts. In particular, the combination of the AND-mask
with L1 or L2 regularization gave themost robust results overall, as they
help suppress neurons that at initialization are tuned towards the short-
cuts.

Correlations between average, memorization and generalization gradi-
ents. Due to the synthetic nature of the dataset, we can intervene
on its data-generating process in order to examine the learning signals
coming from the mechanisms and from the shortcuts. We isolate the
two andmeasure their contribution to the average gradients, as we vary
the agreement threshold of the mask. More precisely, we look at the
gradients computed with respect to the weights of a randomly initial-



48 Learning explanations that are hard to vary

1.0 0.5 0.0 0.5 1.0
Agreement threshold ø

0.25

0.50

0.75

1.00

C
or

re
la

ti
on

co
e±

ci
en

t

AND-mask →← XOR-mask

corr(rLmech, mø (rL))

corr(rLshortcut, mø (rL))

Figure 3.7:Gradient correlations.

ized network for different sets of data: (i) The original data, with mech-
anisms and shortcuts. (ii) Randomly permuting the dataset over the
mechanisms dimensions, thus leaving the “memorization” signal of the
shortcuts. (iii) Randomly permuting over the shortcuts dimensions, iso-
lating the “generalization” signal of the mechanisms alone. Figure 3.7
shows the correlation between the components of the original average
gradient (i) and the shortcut gradients ((ii), dashed line), and between
the original average gradients and the mechanism gradients ((iii), solid
line). While the signal from the mechanisms is present in the original
average gradients (i.e. 𝜌 ≈ 0.4 for 𝜏 = 0), itsmagnitude is smaller and it
is ‘drowned’ by the memorization signal. Instead, increasing the thresh-
old of the AND-mask (right side) suppresses memorization gradients
due to the shortcuts, and for 𝜏 ≈ 1 most of the gradient components
remaining contain signal from the mechanism. On the left side, we test
the other side of our hypothesis: An XOR-mask zeroes out consistent
gradients, preserves those with different signs, and results in a sharper
decrease of the correlation with the mechanism gradients.
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3.3.2 Experiments on CIFAR-10

Memorization in a vision task. Zhang et al., 2017 showed that neu-
ral networks trained with standard regularizers — like L2 and Dropout
— can still memorize large training datasets with shuffled labels, i.e.
reaching ≈100% training accuracy. Their experiments raised signifi-
cant questions about the generalization properties of neural networks
and the role of regularizers in constraining the hypothesis class. Our
hypothesis is that ILC — for example implemented as the AND-mask
— should prevent memorization on a similar task with the shuffled la-
bels, as gradients will tend to largely ‘disagree’ in the absence of a shared
mechanism. However, when the labels are not shuffled, ILC should have
a much weaker effect, as real shared mechanisms are still present in the
data.

To test our hypothesis, we ran an experiment that closely resembles
the one in (Zhang et al., 2017) on CIFAR-10. We trained a ResNet on
CIFAR-10 with random labels, with and without the AND-mask. In all
experiments we used batch size 80, and treated each example as its own
“environment”. Recall that standard gradient averaging is equivalent to
an AND-mask with threshold 0. As shown in Figure 3.8, the ResNet
with standard average gradients memorized the data, while slightly in-
creasing the threshold for the AND-mask quickly preventedmemoriza-
tion (dark blue line). In contrast, training the same networks on the
dataset with the original labels resulted in both of them converging and
generalizing to the test set, confirming that the mask did not signifi-
cantly affect the generalization error with a general underlying mecha-
nism in the data.

Note that there is no standard notion of environments in CIFAR-10,
which is why we treated every example as coming from its own envi-
ronment. This assumption is not unreasonable, as every image in the
dataset was literally collected in a different physical environment. If any-
thing, it is the standard i.i.d. assumption that hides this variety behind
a notion of a single distribution encompassing all environments. The
results of this experiment further support this interpretation, and can
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Figure 3.8: As the AND-mask threshold increases, memorization on CIFAR-
10 with random labels is quickly hindered.

serve as evidence that — in some cases — we might be able to iden-
tify invariances even without an explicit partition into environments,
as this can be already identified at the level of individual examples.

Label noise. Following up on this experiment, we test how the AND-
mask performs in the presence of label noise, i.e. when a portion of the
labels in the training set are randomly shuffled (25% here). According
to our hypothesis, gradients computed on examples with random labels
should disagree and get masked out by the AND-mask, while signal
from correctly labeled data should contribute to update the model. As
shown in Figure 3.9, the performance on the incorrectly labeled portion
of the dataset is well below chance for the AND-mask (as it predicts
correctly despite the wrong labels), while the baseline again memorizes
the incorrect labels. On the test set (with untouched labels), the baseline
peaks early then decreases as the model overfits, while the AND-mask
slowly but steadily improves.

3.3.3 Behavioral Cloning on CoinRun

CoinRun (Cobbe et al., 2019) is a game introduced to test howRL agents
generalize to novel situations.The agent needs to collect coins, jumping
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Figure 3.9: The AND-mask prevents overfitting to the incorrectly labeled por-
tion of the training set (left) without hurting the test accuracy (right).

Figure 3.10: Screenshots of four levels of CoinRun (from OpenAI).

on top of walls and boxes and avoiding enemies.10 Each level is proce-
durally generated — i.e. it has a different combination of sprites, back-
ground, and layout — but the physics and goals are invariant. Cobbe et
al., 2019 showed that state-of-the-art RL algorithms fail to model these
invariant mechanisms, performing poorly on new levels unless trained
on thousands of them.

To test our hypothesis, we set up a behavioral cloning task usingCoin-
Run.11 We start by pre-training a strong policy 𝜋∗ using standard PPO
(Schulman et al., 2017) for 400M steps on the full distribution of levels.

10 See Figure 3.10 in appendix B.2.6 for a visualization of the game.
11 To obtain a robust evaluation, we preferred to approach behavioral cloning in-

stead of the full RL problem, as it is a standard supervised learning task and has
substantially fewer moving parts than most deep RL algorithms.
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Figure 3.11: Learning curves for the behavioral cloning experiment on Coin-
Run. Training loss is shown on the left, test loss is shown on the right. We
show the mean over the top-10 runs for each method. The shaded regions cor-
respond to the 95% confidence interval of the mean based on bootstrapping.

We then generate a dataset of pairs (𝑠, 𝜋∗(𝑎|𝑠)) from the on-policy dis-
tribution.

Figure 3.12:CoinRun results

The training data consists of 1000 states
from each of 64 levels, while test data
comes from 2000 levels. A ResNet-18̂𝜋𝜃 is then trained to minimize the loss𝐷KL(𝜋∗|| ̂𝜋𝜃) on the training set. We com-
pare the generalization performance of
regular Adam to a version that uses the
AND-mask. For each method we ran an
automatic hyperparameter optimization
study using Tree-structured Parzen Esti-
mation (Bergstra et al., 2013) of 1024 tri-
als.

Despite the theoretical computational
efficiency of computing the AND-mask as
presented in Section 3.2.3 (i.e., linear time
and memory in the size of the mini-batch,
just like classic SGD), current deep learn-
ing frameworks such as PyTorch (Paszke
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et al., 2017) have optimized routines that sum gradients across exam-
ples in amini-batch before it is possible to efficiently compute the AND-
mask. We therefore test the AND-mask in a slightly different way. In
training, in each iteration we sample a batch of data from a randomly
chosen level out of the 64 available (and cycle through them all once per
epoch). We then apply the AND-mask ‘temporally’, only allowing gra-
dients that are consistent across time (and therefore across levels). See
Algorithm 4 in appendix B.2.6 for a detailed description of this alter-
native formulation of the AND-mask. Figure 3.12 shows the minimum
test loss for the 10 best runs, supporting the hypothesis that the AND-
mask helps identify invariant mechanisms across different levels.

3.4 Related Work

Generalization and covariate shift. The classic formulation of statistical
learning theory (Vapnik, n.d.) concerns learning from independent and
identically distributed samples. The case where the distribution of the
covariates at test time differs from the one observed during training is
termed covariate shift (Sugiyama et al., 2007; Quionero-Candela et al.,
2009; Sugiyama and Kawanabe, 2012). Standard solutions involve re-
weighting of the training examples, but require the additional assump-
tion of overlapping supports for train and test distributions.
Causal models and invariances. As we mentioned in the Introduction,
causality provides a strong motivation for our work, based on the no-
tion that statistical dependencies are epiphenomena of an underlying
causal model (Pearl, 2009a; Peters et al., 2017a). The causal descrip-
tion identifies stable elements – e.g. physical mechanisms – connecting
causes and effects, which are expected to remain invariant under inter-
ventions or changing external conditions (Haavelmo, 1943; Schölkopf
et al., 2012)). This motivates our notion of invariant mechanisms, and
inspired related notions which have been proposed for robust regres-
sion (Rojas-Carulla et al., 2018; Heinze-Deml et al., 2018; Arjovsky et
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al., 2019; Hermann and Lampinen, 2020; Ahuja et al., 2020; Krueger et
al., 2020). We discuss this in more detail in appendix B.3.1.
Domain generalization. ILC can be used in a setting of domain general-
ization (Muandet et al., 2013), but it is not limited to it: as demonstrated
in the experiments in Section 3.3.2, the AND-mask can be applied even
if domain labels are not available. In contrast, by treating every example
as a single domain, methods relying on domain classifiers (like DANN
Ganin et al., 2016 or Balaji et al. (2018)) would require as many output
units as there are training examples (i.e. 50’000 for CIFAR-10).
Gradient agreement. Looking at gradient agreement to learn meaning-
ful representations in neural networks has been explored in (Du et al.,
2018; Eshratifar et al., 2018; Fort et al., 2019; Zhang et al., 2019b).These
approaches mainly rely on a measure of cosine similarity between gra-
dients, which we did not consider here for two main reasons: (i) It is a
‘global’ property of the gradients, and it would not allow us to extract
precise information about different patterns in the network; (ii) It is un-
clear how to extend it beyond pairs of vectors, and for pairwise interac-
tions its computational cost scales quadratic in the number of examples
used.

3.5 Conclusions

Generalizing out of distribution is one of themost significant open chal-
lenges in machine learning, and relying on invariances across environ-
ments or examples may be key in certain contexts. In this chapter we
analyzed how neural networks trained by averaging gradients across
examples might converge to solutions that ignore the invariances, es-
pecially if these are harder to learn than spurious patterns. We argued
that if learning signals are collected on one example at the time —as it is
the case for gradients, e.g., computed with backpropagation — the way
these signals are aggregated can play a significant role in the patterns
that will ultimately be expressed: Averaging gradients in particular can
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be too permissive, acting as a logical OR of a collection of distinct pat-
terns, and lead to a ‘patchwork’ solution. We introduced and formal-
ized the concept of Invariant Learning Consistency, and showed how
to learn invariances even in the face of alternative explanations that —
although spurious — fulfill most characteristics of a good solution. The
AND-mask is but one of multiple possible ways to improve consistency,
and it is unlikely to be a practical algorithm for all applications. How-
ever, we believe this should not distract from the general idea which
we are trying to put forward — namely, that it is worthwhile to study
learning of explanations that are hard to vary, with the longer term goal
of advancing our understanding of learning, memorization and gener-
alization.





4
Learning to distill trajectories

By1 learning to predict trajectories of dynamical systems, model-based
methods can make extensive use of all observations from past experi-
ence. However, due to partial observability, stochasticity, compound-
ing errors, and irrelevant dynamics, training to predict observations ex-
plicitly often results in poor models. Model-free techniques try to side-
step the problem by learning to predict values directly. While breaking
the explicit dependency on future observations can result in strong per-
formance, this usually comes at the cost of low sample efficiency, as the
abundant information about the dynamics contained in future obser-
vations goes unused. Here we take a step back from both approaches:
Instead of hand-designing how trajectories should be incorporated, a
teacher network learns to extract relevant information from the trajec-
tories and to distill it into target activationswhich guide a student model
that can only observe the present. The teacher is trained with meta-
gradients to maximize the student’s performance on a validation set.
Our approach performs well on tasks that are difficult for model-free
and model-based methods, and we study the role of every component
through ablation studies.

1 Adapted from Neitz, A.*, Parascandolo, G.*, and Schölkopf, B. (2021). “A teacher-
student framework to distill future trajectories.” In: International Conference on
Learning Representations. (ICLR 2021) I co-developed idea, implementation and
experiments together with Giambattista Parascandolo.
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4.1 Introduction

The ability to learn models of the world has long been argued to be an
important ability of intelligent agents. An open and actively researched
question is how to learn world models at the right level of abstraction.
This chapter argues, as others have before, thatmodel-based andmodel-
free methods lie on a spectrum in which advantages and disadvantages
of either approach can be traded off against each other, and that there is
an optimal compromise for every task. Predicting future observations
allows extensive use of all observations from previous experiences dur-
ing training, and to swiftly transfer to a new reward if the learnedmodel
is accurate. However, due to partial observability, stochasticity, irrele-
vant dynamics and compounding errors in planning,model-basedmeth-
ods tend to be outperformed asymptotically (Pong et al., 2018; Chua et
al., 2018). On the other end of the spectrum, purely model-free meth-
ods use the scalar reward as the only source of learning signal. By avoid-
ing the potentially impossible task of explicitly modeling the environ-
ment, model-free methods can often achieve substantially better per-
formance in complex environments (Vinyals et al., 2019; OpenAI et al.,
2019). However, this comes at the cost of extreme sample inefficiency,
as only predicting rewards throws away useful information contained
in the sequences of future observations.

What is the right way to incorporate information from trajectories
that are associated with the inputs? In this chapter we take a step back:
Instead of trying to answer this question ourselves by hand-designing
what information should be taken into consideration and how, we let
a model learn how to make use of the data. Depending on what works
well within the setting, the model should learn if and how to learn from
the trajectories available at training time.Wewill adopt a teacher-student
setting: a teacher network learns to extract relevant information from
the trajectories, and distills it into target activations to guide a student
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network.2 A sketch of our approach can be found in Figure 4.1, next
to prototypical computational graphs used to integrate trajectory infor-
mation in most model-free and model-based methods. Future trajecto-
ries can be seen as being a form of privileged information Vapnik and
Vashist, 2009, i.e. data available at training time which provides addi-
tional information but is not available at test time.

Contributions The main contribution of this chapter is the proposal
of a generic method to extract relevant signal from privileged informa-
tion, specifically trajectories of future observations. We present an in-
stantiation of this approach called Learning toDistill Trajectories (LDT)
and an empirical analysis of it.

4.2 Related work

Efficiently making use of signal from trajectories is the topic of a wide
range of researchworks.The technique of bootstrapping inTD-learning
(Sutton, 1988) uses future observations to reduce the variance of value
function approximations.However, in its basic form, bootstrapping pro-
vides learning signal only through a scalar bottleneck, potentially miss-
ing out on rich additional sources of learning signal. Another approach
to extract additional training signal fromobservations is the framework
of Generalized Value Functions (Sutton et al., 2011), which has been ar-
gued to be able to bridge the gap between model-free and model-based
methods as well. A similar interpretation can be given to the technique
of successor representations (Dayan, 1993).

A number of methods have been proposed that try to leverage the
strengths of both model-free and model-based methods, among them
Racanière et al., 2017, who learn generative models of the environment

2 Note that the term distillation is often used in the context of “distilling a large
model into a smaller one” (Hinton et al., 2015), but in this context we talk about
distilling a trajectory into vectors used as target activations.
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Figure 4.1: Comparison of architectures. The data generator is a Markov re-
ward process (no actions) with an episode length of 𝑛. 𝑥 denotes the ini-
tial observation. 𝑦 = ∑𝑖 𝑦𝑖 is the 𝑛-step return (no bootstrapping). 𝑥∗ =(𝑥∗1, 𝑥∗2, ..., 𝑥∗𝑛) is the trajectory of observations (privileged data). Model acti-
vations and predictions are displayed boxed. Losses are displayed as red lines.
Solid edges denote learned functions. Dotted edges denote fixed functions.

and fuse predicted rollouts with a model-free network path. In a dif-
ferent line of research, Silver et al., 2017 and Oh et al., 2017 show that
value prediction can be improved by incorporating dynamical structure
and planning computation into the function approximators. Guez et
al., 2019 investigate to what extent agents can learn implicit dynamics
models which allow them to solve planning tasks effectively, using only
model-free methods. Similarly to LDT, those models can learn their
ownutility-based state abstractions and can even be temporally abstract
to some extent. One difference of these approaches to LDT is that they
use reward as their only learning signal without making direct use of
future observations when training the predictor.

The meta-gradient approach presented in this chapter can be used
more generally for problems in the framework of learning using privi-
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leged information (LUPI, (Vapnik and Vashist, 2009; Lopez-Paz et al.,
2016)), where privileged information is additional context about the
data that is available at training time but not at test time. Hindsight in-
formation such as the trajectories in a value-prediction task falls into
this category.

There are a variety of representation learning approaches which can
learn to extract learning signal from trajectories. Jaderberg et al., 2017
demonstrate that the performance of RL agents can be improved signif-
icantly by training the agent on additional prediction and control tasks
in addition to the original task. Du et al., 2018 use gradient similarity as
ameans to determinewhether an auxiliary loss is helpful or detrimental
for the downstream task. Oord et al., 2018 introduce amethod based on
contrastive learning. They, as well as multiple follow-up studies, show
that the representations learned in this way are helpful for downstream
tasks in a variety of settings.

Buesing et al., 2018 present ways to learn efficient dynamical models
which do not need to predict future observations at inference time. Re-
cently, Schrittwieser et al., 2020 introduced an RL agent that learns an
abstract model of the environment and uses it to achieve strong perfor-
mance on several challenging tasks. Similarly to our motivation, their
model is not required to produce future observations. Meta-learning
approaches have recently been shown to be successful as a technique
to achieve fast task adaptation (Finn et al., 2017), strong unsupervised
learning (Metz et al., 2019), and to improve RL (Xu et al., 2018). Simi-
lar to LDT in motivation is the recent work by Guez et al., 2020 which
also investigates how privileged hindsight information can be leveraged
for value estimation. The difference to LDT is how the trajectory infor-
mation is incorporated. Their approach has the advantage of not need-
ing second-order gradients. At the same time, LDT naturally avoids the
problem of the label being easily predictable from the hindsight data —
the teacher is trained to present it to the student in such a way that it
empirically improves the student’s performance on held-out data. Vee-
riah et al., 2019 use meta-gradients to derive useful auxiliary tasks in
the form of generalized value functions. In contrast, we use a teacher
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network that learns to provide target activations for a student neural
network based on privileged information.

4.3 Meta-Learning a Dynamics Teacher

Here we describe our approach of jointly learning a teacher and a stu-
dent.3 While our approach applies to the generic setting of learning us-
ing privileged information (Vapnik andVashist, 2009), herewewill focus
on the special case of a prediction task with an underlying dynamical
system.

4.3.1 Learning task

We are considering learning problems in which we have to make a pre-
diction about some property of the future state of a dynamical system,
given observations up to the current state. Our method particularly ap-
plies to systems in which both the function that relates the current ob-
servation to the label as well as the function that predicts the next ob-
servation from the current one are hard to learn, making it difficult for
both model-free and model-based methods respectively.

To make the explanation more concrete, we will use the practical
problem ofmedical decision-making as a running example to which we
can relate the definitions we used, similar to amotivating example from
Vapnik and Vashist, 2009: given the history of measurements (biopsies,
blood-pressure, etc.) on a given patient and the treatment assignment,
we want to predict whether the patient will recover or not.

The input 𝑥 ∈ 𝒳 of our learning task is some observation of the sys-
tem state 𝑠𝑡 ∈ S before and including time step4 𝑡 ∈ ℤ. In our running

3 Note that unlike in some related work, the teacher in our task is not a copy of the
student network, but can have a completely different architecture.

4 For simplicity, our dynamical system is time-discrete, but this assumption is not
important for what follows.



Learning to distill trajectories 63

example, 𝑠𝑡 can be considered the detailed physical state of the patient,
which is not directly observable. The observations 𝑥 include potentially
multi-modal data such as x-ray images, vital signmeasurements, oncol-
ogist reports, etc.The system is governed by an unknowndynamical law𝑓 ∶ S → S — in our example, the dynamics are physical equations that
determine the evolution of all cells in the body. The prediction target𝑦 ∈ 𝒴 is some function of a future state 𝑠𝑇 = 𝑓𝑇 −𝑡(𝑠𝑡), separated
from 𝑡 by 𝑇 − 𝑡 time steps: 𝑦 = 𝑔(𝑠𝑇 ). In our running example, a pre-
diction target could be the binary indicator of whether the patient will
recover within some time frame. Note that 𝑇 could vary from one ex-
ample to the next. In addition to the initial observation, we have access
to the trajectory 𝑥∗ = (𝑥𝜏)𝜏=𝑡+1..𝑇 at training (but not test) time. In
our running example, the trajectory includes all measurements from
the patient after the treatment decision has been made. This informa-
tion is available in a dataset of past patients (in hindsight), but not in
any novel situation.

4.3.2 Supervision of internal activations

A straightforward approach to solve the learning task which takes into
account the trajectory information,would be to train a state-space-model
(SSM) ̂𝑓 , consisting of a dynamical model and a decoder. The SSM is
trained to maximize the likelihood of the observed trajectories in the
training set, conditioned on the observed initial observation. Ideally,
the induced ̂𝑓 closely resembles 𝑓 , such that at test time, we can use it
to generate an estimate of the rollout and infer the label from it. A poten-
tial drawback of this approach is that learning a full SSM could bemore
difficult than necessary.Theremay bemany details of the dynamics that
are both difficult to model and unimportant for the classification tasks.
One example for this is the precise timing of events. As argued by Neitz
et al., 2018; Jayaraman et al., 2019, there are situations in which it is easy
to predict a sequence of events where each event follows a previous one,
but hard to predict the exact timing of those events. Moreover, an SSM
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typically requires rendering observations at training time, which may
be difficult to learn and computationally expensive to execute.

In the running example from Section 4.3.1, it seems challenging and
wasteful to predict all future observations in detail, as it would require
modeling a complicated distribution over data such as X-ray images
or doctor reports written in natural language. Ideally, we would like a
model to learn how to extract the relevant information from these data
efficiently.

We propose to relax the requirement of fitting the dynamics precisely.
The teacher can decide to omit properties of the observations that are
not needed and omit time steps that can be skipped. It could also change
the order of computation and let the student compute independently
evolving sub-mechanisms sequentially, even if they evolved in parallel
in the actual data generating process. In addition to potentially simpli-
fying the learning problem, this could have the additional benefit of
gaining computational efficiency. For example, modeling detailed pixel
observations may be computationally wasteful, as argued by Buesing et
al., 2018 and Oord et al., 2018.

4.3.3 Student-teacher setup

Wepropose a student-teacher setupwith twoneural networks, as shown
in Figure 4.2. The student network 𝒮, parameterized by weights 𝜃, is the
network that attempts to predict the quantity of interest 𝑦 (for instance
a cumulative reward or value). Its input is 𝑥 ∈ 𝒳, and its output is𝒮(𝑥) = ̂𝑦 ∈ 𝒴. In computing ̂𝑦, it produces a sequence of internal
activations (ℎ1, ..., ℎ𝑁), one for each of its 𝑁 hidden layers. Each ℎ𝑘
is a vector whose size is the number of neurons of the corresponding
hidden layer. The student’s goal is to minimize the generalization loss𝔼𝑥,𝑦∼𝑃test

[ℒ𝑦(𝑆(𝑥), 𝑦)] for some loss function ℒ𝑦 ∶ 𝒴 × 𝒴 → ℝ.
The teacher network 𝒯, parametrized by weights 𝜙, is only used at

training time, not at test time. It reads the observations of the rollout
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Figure 4.2: Visualization of the LDT framework for the special case of 𝑛 = 1.
Circled nodes are part of the dataset. 𝑥 denotes the input, 𝑥∗ is the privileged
data, 𝑦 is the label. 𝒮 is the student network with parameters 𝜃, 𝒯 is the teacher
network with parameters 𝜙.𝑥∗ = (𝑥𝜏)𝜏=𝑡+1..𝑇 corresponding to the current training example, and
outputs supervision signals (ℎ∗1, ..., ℎ∗𝑁).

The target activations produced by the teacher’s supervision result in
another loss for the student, the teaching loss, defined as𝐿ℎ = ∑𝑘 ℒℎ(ℎ𝑘, ℎ∗𝑘).ℒℎ denotes the teaching loss functionwhich, given a pre-activation and
a supervision signal, produces a scalar value. It can be chosen to be any
common loss function. Note however that in general, ℒℎ could com-
bine its inputs in an arbitrary way, as long as it is differentiable and pro-
duces a scalar. In particular, ℎ𝑘 and ℎ∗𝑘 are not required to have the same
dimensionality. For example, in our specific instantiation described in
Section 4.4,ℎ∗ containsmaskingweights to gate the teaching signal.The
total student training loss is𝐿train = 𝛼𝐿ℎ + 𝐿𝑦,
where 𝐿𝑦 is the label loss, e.g. the cross-entropy error between predic-
tions and true labels. 𝛼 ∈ ℝ+ is the teaching coefficient, a coefficient
weighting the losses against each other.
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4.3.4 Training the teacher using meta-gradients

We train the teacher’sweights𝜙using the the technique ofmeta-gradient
optimization. This is done as follows: At the beginning of training, we
split the dataset into a training and a validation set5. This split is kept
during the entire duration of training. The split ratio is a hyperparame-
ter.

The student’s weights 𝜃 are updated 𝑛 times using Stochastic Gra-
dient Descent on randomly sampled training batches, resulting in up-
dated weights 𝜃𝑛. The student 𝒮 is then evaluated on a validation set,
producing a validation loss 𝐿𝑣𝑎𝑙. This validation loss is optimized by
the teacher. This validation loss does not contain a term for the internal
activation loss, but consists only of the label-loss ℒ (𝒮(𝑥𝑣𝑎𝑙), 𝑦𝑣𝑎𝑙). The
teacher is optimized via the meta-gradient

d𝐿𝑣𝑎𝑙
d𝜙 = 𝜕ℒ𝜕 ̂𝑦 ∣ ̂𝑦=𝒮(𝑥𝑣𝑎𝑙;𝜃𝑛),𝑦=𝑦𝑣𝑎𝑙 ⋅ 𝜕𝒮𝜕𝜃 ∣𝑥=𝑥𝑣𝑎𝑙;𝜃=𝜃𝑛 ⋅ d𝜃𝑛

d𝜙 (4.1)

where 𝑥𝑣𝑎𝑙 and 𝑦𝑣𝑎𝑙 are the inputs and targets from the validation set.

We omit the summation over individual loss components to avoid
cluttering the notation.The crucial quantity d𝜃𝑛

d𝜙 describes how the final
student’s weights 𝜃𝑛 depend on the teachers weights 𝜙. It can be com-
puted in both linear time and space in the number of steps in the inner
optimization loop using automatic differentiation6. The meta-gradient
is then used for one step of stochastic gradient descent of the teacher’s
weights 𝜙.The student’s weights are reset to what they were at the begin-
ning of the step, since 𝜃𝑛 was only a hypothetical parameterization used

5 Note that the validation set is separate from the test set, which is an independently
sampled dataset used only to evaluate the generalization performance of all meth-
ods.

6 See Baydin et al., 2018 for a survey of AutomaticDifferentiation inMachine Learn-
ing.
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Figure 4.3: (a) Data generation diagram of task A. (b) Test accuracies on task
A. For every combination, we report the maximum test accuracy achieved,
averaged over five random seeds.

to determine the meta-gradient. Then, the student is actually trained
using the newly updated teacher for a certain number of steps. In our
experiments, every step ofmeta-training is followed by 𝑁 steps of train-
ing the student’s weights where 𝑁 is a hyperparameter. Alg. ?? describes
the teacher update formally.

4.4 Experiments

We implemented LDT in PyTorch (Paszke et al., 2019) using higher by
Grefenstette et al. (Grefenstette et al., 2019). Note that in all experi-
ments, we distinguish between a validation set and a test set. The val-
idation set is used to train the teacher’s parameters. Therefore, in order
to allow for fair comparisonwith non-meta-learning baselines, we train
baselines with the full training set and for LDT we split this set into a
training and a validation portion. The test set is separate from the vali-
dation set and is used only passively to track generalization metrics.
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Figure 4.4: (a) Data generation diagram of task B. (b) Test losses on task B
achieved by LDT and the no-teacher baselines with different entropy regular-
ization coefficients 𝛽.

4.4.1 Toy examples

Before moving on to datasets of dynamical systems, we study two toy
tasks in order to give a better intuition for situations where privileged
data can improve learning even though it is unavailable at test time, and
at the same time to examine whether LDT can make use of the privi-
leged data.

Task A This task demonstrates a situation where the privileged infor-
mation 𝑥∗ predicts the label 𝑦 perfectly and is lower-dimensional than
the input 𝑥. At the same time, 𝑥∗ is not deterministically predictable
from 𝑥. Formally, we construct the distribution over 𝑥, 𝑥∗, and 𝑦 such
that the conditional expectation 𝔼 [𝑥∗|𝑥] = 0 for all 𝑥, and the con-
ditional entropies 𝐻(𝑦|𝑥) = 𝐻(𝑦|𝑥∗) = 0. This is intended to cor-
respond to a real-world setting where we observe training-time priv-
ileged data which gives us a low-dimensional explanation of the label,
but this explanation has been obfuscated by noise and is hence unneces-
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sarily difficult to predict directly (here impossible with a deterministic
model).

We first sample a 𝐷-dimensional input 𝑥 with independent Gaussian
components. This vector gets mapped to a 2-dimensional vector ℎ us-
ing a random but fixed linear transformation 𝐴 ∈ ℝ2×𝐷. The label is
obtained by applying XOR to ℎ > 0. The privileged vector 𝑥∗ is con-
structed by independently sampling another two-dimensional vector 𝑠
which is multiplied with ℎ and concatenated to it. See Figure 4.3 for a
diagram and Appendix C.2.1 for a detailed description of the dataset.

Using an MLP to predict 𝑥∗ from 𝑥 fails because the optimal pre-
dictor of 𝑥∗ from 𝑥 always outputs 0. However, in principle LDT can
help in this situation: the teacher could learn to invert the stochastic
mapping from ℎ to 𝑥∗. We set up a study to examine whether LDT au-
tomatically discovers a suitable inversion in practice. As student- and
teacher-models we use MLPs with one hidden layer each. The teacher
gets 𝑥∗ as input and produces target activations for the student’s hidden
layer. To investigate the sample efficiency, we let both the unguided stu-
dent and LDT learn for a grid of different input dimensionalities 𝐷 and
dataset sizes. The achieved test-set accuracies are shown in Figure 3, in-
dicating that using a privileged data and a teacher makes this learning
problem substantially more sample-efficient.

Task B In this task (Figure 4.4), instead of using deterministic labels
and stochastic privileged data, we constructdeterministicprivileged data
and noisy labels. A large neural network trained on these labels will tend
to fit them exactly. Aswe discover empirically, this leads to ill-calibrated
out-of-sample predictions.

An example for a practical situation where this applies is learning a
value function in reinforcement learning using Monte Carlo or 𝑛-step
temporal difference learning: environments and policies are typically
stochastic, resulting in noisy empirical value targets. However, the tra-
jectory of observations and actions as privileged data, can in principle
explain away part of the influence of chance in the observed value target.
We model this situation by providing as privileged data a transformed
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view of the logits that were used to sample the target. This transforma-
tion is unknown to the learner, and we investigate whether LDT can
still use 𝑥⋆ to make the student learn a well-calibrated mapping.

We again sample the𝐷 components of each input𝑥 i.i.d. from𝒩(0, 1).
The random linear transformation 𝐴 ∈ ℝ𝑑ℎ×𝐷 now transforms 𝑥 into
a 𝑑ℎ-dimensional space. The privileged data 𝑥∗ ∈ ℝ𝑑𝑝 is obtained via
another linear transformation 𝐵 ∈ ℝ𝑑𝑝×𝑑ℎ of ℎ. In our experiment we
set 𝐷 = 128, 𝑑ℎ = 4 and 𝑑𝑝 = 32, and use 1000 training examples.
The teacher gets 𝑥∗ as input and only needs to supervise the student’s
output layer. As baseline we train the student without a teacher or priv-
ileged data, but regularize its output predictions by subtracting 𝛽𝐻( ̂𝑦)
from the training loss of each example, where 𝐻( ̂𝑦) is the entropy of the
model’s prediction, and 𝛽 is a scalar coefficient. As shown in Figure 4.4,
learning the mapping from stochastic labels alone never learns a well-
calibratedmap from 𝑥 to 𝑦, while LDT learns to interpret the privileged
information at training time, leading to a student that generalizes well
at test time.

4.4.2 Game of Life

We performed an additional experiment aimed at evaluating whether
LDT can help to extract dynamical information from trajectories. For
that reason we created a dataset based on the cellular automaton Game
of Life by John Conway.The input is a random initial state 𝑥, the output
is the state of one particular cell after 𝑛 evolution steps. The privileged
data 𝑥∗ consists of the trajectory of 𝑛 states after the first one. To make
the task more difficult, 𝑥∗ is temporally permuted randomly, but con-
sistently across examples.
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Dataset As the underlying dynamical system, we use the cellular au-
tomatonGame of Life by JohnConway.The rules of this cellular automa-
ton are:7

1. Any live cell with fewer than two live neighbours dies, as if by
underpopulation.

2. Any live cell with two or three live neighbours lives on to the next
generation.

3. Any live cell with more than three live neighbours dies, as if by
overpopulation.

4. Any dead cell with exactly three live neighbours becomes a live
cell, as if by reproduction.

Note that there is no linear decision boundary to determine the next
cell state if the input space is the cell’s neighborhood. However, with
at least one hidden layer, it is possible to implement the rules. We can
therefore use a convolutional neural networkwith 2𝑛 layers to represent
the system’s dynamics unrolled over 𝑛 steps.

We generate a binary classification task from the system as follows.• A board of size 17 × 17 is initialized by setting each cell to “alive”
with a probability of 𝑝𝐼 = 0.4, independently of other cells. Alive
cells are represented with a 1, all other cells are represented with
a 0. This first board state is the input 𝑥 ∈ {0, 1}17×17 for the task.• TheGame-of-Life rules are applied three times in sequence, yield-
ing three consecutive states• The classification target is the middle cell in the last state, i.e. a
binary label

7 Copied from KWWSV���HQ�ZLNLSHGLD�RUJ�ZLNL�&RQZD\���VB*DPHBRIB

/LIH.

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life


72 Learning to distill trajectories

• All intermediate and final states in the trajectory are considered
privileged information.

The initial alive-probability was chosen such that there typical roll-
outs are diverse. If the initial configuration is much sparser or much
denser, then the population quickly dies off.

Networkarchitecture In early experiments we found that three layers
per step facilitate training of the CNN compared to two layers. There-
fore, we fix three convolutional layers per step for all experiments.

The student’s internal activations z are convolutional feature maps.
We use z𝑘𝑙 to denote the 𝑙’th feature map of the 𝑘’th layer. Each z𝑘𝑙 has
the same dimensions as the map of the cellular automaton (17 × 17 in
our experiments).

Implementationof the teacher We choose a simple parameterization
of the teacher.The teacher’s weights are a three-dimensional tensor 𝜙 ∈ℝ𝑇 ×𝑁×𝐹 , where 𝑇 is the fixed number of steps in the Game-of-Life tra-
jectory, 𝑁 is the number of convolutional hidden layers in the student
network, and 𝐹 is the number of feature maps per hidden layer.

The internal activation targets are linear combinations of the cell
states in the trajectory (𝑥1, ..., 𝑥𝑇 ):ℎ∗𝑘𝑙 = ∑𝑡 𝑎𝑡𝑘𝑙𝑥𝑡 (4.2)

where 𝑎•𝑘𝑙 = softmax(𝜙•𝑘𝑙), i.e. themixtureweights are the teacher’s
weights softmaxed-through-time. More explicitly,𝑎𝑡𝑘𝑙 = exp(𝜙𝑡𝑘𝑙)∑𝜏 exp(𝜙𝜏𝑘𝑙) (4.3)

WeuseAdam toupdate the innerweights and vanilla SGD+momentum
to update the meta-parameters, as we found these two choices to gener-
ally perform best.
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Figure 4.5: A datapoint in the Game-of-Life task. The initial state 𝑥 is a ran-
domly sampled binary pattern, the trajectory 𝑥∗ is obtained from applying
the transition rule multiple times. The label 𝑦 is the state of the center cell.

Baselines• Fixed oracle teacher: 𝜙 is initialized to the values such that it pro-
vides the frames in the correct sequence to every third convolu-
tional layer. It is held fixed over the course of training.• Fixed random teacher: 𝜙 is initialized randomly and held fixed
over the course of training.• No teacher: Classification task without privileged data

Details about are provided in Appendix C.3. As shown in Fig. 4.6,
LDT can learn from the scrambled trajectory and help the student learn
with less data than a model-free method.

4.4.3 MuJoCo

In order to evaluate whether LDT can improve learning efficiency in
continuous control tasks, we set up a prediction task using the MuJoCo
simulator (Todorov et al., 2012). As an objective we choose learning an𝑛-step reward model: such a model has to predict the sum of rewards
along a trajectory of 𝑛 steps, given only access to the current state and𝑛 (open-loop) actions. We fix 𝑛 = 16 in all experiments.
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Figure 4.6: Result of Game-of-life experiment. The model-free approach can-
not learn anything from training sets of the sizes we investigated. LDT im-
proves test accuracy over using the fixed-teacher baseline.

We collect a dataset of size 4000 for each of the MuJoCo environ-
ments Swimmer-v2,Walker2d-v2,Hopper-v2, andHalfCheetah-v2. For
each training example, the input 𝑥 = (𝑠𝑡, 𝑎𝑡∶𝑡+𝑛) contains both an ini-
tial state and an action sequence. The initial state 𝑠𝑡 is obtained by exe-
cuting a random policy for a short number of time steps after resetting
the simulator. The action sequence 𝑎𝑡∶𝑡+𝑛 consists of random actions.
The label 𝑦 is the cumulative return of exectuting actions 𝑎𝑡∶𝑡+𝑛 in state𝑠𝑡. See Appendix C.2.2 for more details on the dataset.

Models We evaluate the following methods:• Model-free (MF):This baseline resembles the architecture shown
in Fig. 4.1a. neurons per layer. This baseline is trained with 𝑥 as
input and 𝑦 as output.• Auxiliary task (Aux): As shown in Fig. 4.1c, this baseline aug-
ments themodel-freemethodwith an auxiliary task-head, which
is trained to fit the full trajectory 𝑥∗ in order to shape the model’s
internal representation.• LDT: Using the sameMLP architecture as in themodel-free base-
line for the student, LDT additionally uses a teacher, which uses
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a network with a 1D-convolutional torso and an MLP-head to
embed the trajectory 𝑥∗ and provide training signals for the stu-
dent activations. The teaching loss is a gated mean squared er-
ror 𝐿ℎ ∝ ∑𝑘 𝜎(𝑚𝑘)(ℎ𝑘 − ℎ∗𝑘)2, where 𝜎 is the logistic sigmoid
function, 𝑚 and ℎ∗ are the outputs by the teacher, and ℎ are the
student’s internal pre-activations.

For all networks we follow Schrittwieser et al. (Schrittwieser et al.,
2020) in how we turn the regression task of predicting rewards into a
classification task by binning the reward space (see Appendix for de-
tails). Hyperparameters for each method are optimized independently
(see Appendix for ranges) for each method and task. We select the con-
figuration with the lowest mean-squared-error on test data and re-run
it eight times with different random seeds.

Results In Figure 4.7 we report the mean squared error between pre-
dicted and true cumulative reward.The student which was trained with
LDT achieved lower MSE than both the MF and Aux baselines in all
tasks.Moreover, we found the generalization gap to be significantly smaller
for LDT (Figure 4.8). This can be explained as follows: If the student
is overfitting to the training set, its performance will degrade on the
validation set. Since this loss only affects the teacher, the teacher can
provide teaching targets ℎ∗ that steer the student away when it starts to
severely overfit to the training data.

We acknowledge that there could be strong baselines from the litera-
ture that we have not considered. Many of these approaches have com-
plex pipelines of operations (e.g. Chua et al. (Chua et al., 2018)), or use
domain-specific knowledge to extract good representations (e.g. CPC
(Oord et al., 2018)). As the main point of this chapter is to investigate
and understand a new framework to incorporate trajectory informa-
tion, we decided to keep our evaluation setting simple and consistent,
e.g. by using the same student architecture for all models.
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Figure 4.7: Test losses for the MuJoCo reward prediction task. Evolution of
mean squared error between predicted and true normalized 𝑛-step reward on
a held-out test set. We ran each configuration with 8 different random seeds
and show the aggregated curves.

4.4.4 Ablations

We perform several ablation studies, in order to test the role of every
component in our set-up. We describe every experiment set-up and
show the results in Figure 4.9.

In the following list, we describe the different ablation studies in de-
tail.

1. Fixed untrained teacher (FT): The teacher still provides target ac-
tivations for the student, but we keep the teacher’s weights fixed
to the initial random weights. Using no meta-gradient updates,
the student essentially fails to learn, validating the need to train
the teacher.
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Figure 4.8: Generalization gaps (Test-set error minus Training-set error) for
the different approaches and domains.)

2. Time-permuted 𝑥∗ (PT): we independently and randomly permute
the time order of 𝑥∗ for each example. Interestingly, the perfor-
mance only degrades slightly. Two possible interpretations of this
result are the following: either the teacher architecture does not
make sufficient use of the temporal structure, or this structure
is not so relevant for the task. Since we did not heavily tune our
teacher network, we tend to lead towards the first explanation.

3. Random 𝑥∗ (RT-𝑛): each entry of the last 𝑛 frames of all trajecto-
ries 𝑥∗ are replaced by noise sampled i.i.d. from 𝒩(0, 1). When
the trajectories are completely irrelevant to the task, the teacher
can in principle learn to ignore them. However, since LDT trains
with a smaller effective training set (because a portion is split off
for validation), we expect a slightly weaker performance. Indeed,
the results show that LDTwith fully randomized trajectories (RT-
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Figure 4.9: Results of ablation studies.

16) tends to be comparable to, but slightly worse than the model-
free network.

4. Same training and validation data (AR): instead of fixing the split
of the training data into disjoint subsets for the student and for
the teacher, we resample the split after every step ofmeta-training.
Results show that the performance is even slightly worse than the
model-free baseline. This is consistent with expectations, as the
teacher’s loss can be minimized directly by the student in train-
ing.

4.5 Conclusion

In this chapter, instead of proposing a new hand-designed strategy to
incorporate information from previous trajectories, we proposed to let
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a model learn if and how to use them. A teacher network learns to ex-
tract relevant information from a trajectory, and distills targets activa-
tions for a student network that only sees the current observation. The
teacher is rewarded for maximizing the student performance on valida-
tion data, but can only achieve this indirectly by supervising the student
while it trains on the training data.The aim of thismethod is to preserve
advantages from both model-based as well as model-free methods: us-
ing the rich amount of information from observations as a training sig-
nal instead of just reward signal, but is not capped in performance due
to model bias. One advantage that is not preserved from model-based
approaches is the straightforward possibility to change tasks by adapt-
ing the reward function only. As validated empirically by the experi-
ments and ablations presented in Section 4.4, this framework allows
the model to choose where to sit in the wide spectrum between model-
based and model-free methods, adapting to the specifics of the task at
hand. An obvious drawback of LDT is — like many algorithms that
learn how to learn— that computingmeta-gradients increases the time
and space complexity at training time by a factor that is linear in the
number of inner steps. However, the computational cost of the student
at test time is exactly the same as for an equivalent student that did not
make use of the privileged information at training time, as the teacher
does not play any role and can be discarded.

We believe that the general framework of teacher-student trained
withmeta-gradients to incorporate privileged information canbe a fruit-
ful direction for future work, beyond learning from trajectories. As the
main limitation is the linear increase in time and space complexity at
training time, increases in computing power should allow for more and
more complex teachers and students to be trained on large tasks.





5
Conclusion

The goal of this thesis was to present different training objectives that
can help create “mechanistic” models of the world. It showed thatAdap-
tive skip intervals can helpmake long-range sequential predictions both
easier andmore computationally efficient. Similarly to how causal mod-
els can be seen as a coarse view of a system that is fundamentally gov-
erned by differential equations, adaptive skip intervals abstract away
details of the time evolution that are hard to predict and unnecessary
for long range predictions.

We have seen how the AND-mask can help suppress inconsistent
training signals from different environments. Whenever there are un-
derlying mechanisms of a system which produce consistent training
signals across multiple environments, this method can help moving us
closer towards identifying these mechanistic models.

Finally, we investigated the goal of learning dynamical models that
combine both state- and time-abstraction. While one solution to this
could have been to manually construct a framework where latent em-
beddings and temporal matching are combined, LDT approached the
problem from the other end – taking the downstream objective seri-
ously and using a meta-learning approach that allows a teacher to dis-
cover useful ways to interpret the training trajectory, giving the student
an internal dynamical model that is optimized towards utility. For this
approach to work, we need the assumption that the trajectories do con-
tain useful explanations about the label which can mitigate overfitting,
that a useful transformation of the training signal is simple, and that this
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transformation is beneficial across multiple tasks or sub-tasks within
the training distribution.

Limitations ASI is limited in that frame-skipping is its only degree of
freedom. If there are multiple independent processes evolving in par-
allel, it might be beneficial to simulate them independently from each
other. ASI does not allow this, because it requires matching full ground
truth frames without the possibility of splitting them into subsystems.
Moreover, ASI in the form described in Chapter 2 is restricted to un-
controlled systems. LDT can bypass these limitations in principle since
it gives full freedom for how a trajectory is used. On the other hand,
this freedom leads to poor interpretability of the resulting implicit dy-
namical model: we cannot easily analyse which aspects of the modeled
system are represented by the internal states.

Outlook

Someof the limitations ofASImentioned above are addressed byDivide-
and-conquerMonte-Carlo-Tree-Search (DC-MSCTS) (Parascandolo et
al., 2020). It can be applied to systems with actions and does not con-
strain the planning to happen sequentially from present to future, but
hierarchical.This comes at the expense of being a subgoal-basedmodel,
which cannot easily model uncontrollable dynamics. Neither ASI and
DC-MCTS address state-abstraction.

For ideas related to LDT, we should move towards population-based
training, such that the teacher is forced to providemore universally use-
ful feedback. LDT has not shown its full potential in simple, fixed do-
mains. While many reinforcement learning tasks consist of a sequence
of multiple sub-tasks, once they are all solved, there is no learning sig-
nal left for the teacher, and any overfitting that has occurred so far will
remain.
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Model architectures and hypothesis classes that address generaliza-
tion beyond the training distribution explicitly – for example symbolic
equations (Martius and Lampert, 2016; Biggio et al., 2021) – could be
combined with methods presented in this thesis.

An important impediment to research intomechanistic planning and
reasoning is that often times, reasoning is not necessary in fixed, sta-
tionary domains. If an agent plays a simple Atari game over and over
again, it will discover a useful policy and can represent it perfectly well
with a simple neural network. Advanced reasoning and long-term plan-
ning is not necessary here. Instead, we should evaluate, and perhaps
also train, agents in complex, nonstationary environments. If we want
to use deep learning and train models mostly end-to-end, we need to
make sure that there is sufficient pressure on the agent to be able to
adapt quickly to new situations. In such systems, developing a mech-
anistic understanding of the world might be the only solution for the
agent. A natural way to get complex, open-ended challenges is to use en-
vironments withmultiple agents.These agents may have different goals,
leading to an ever-changing evolution of cooperative and competitive
strategies, as shown recently by (Team et al., 2021).
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Adaptive Skip Intervals: Additional details

A.0.1 Model architecture

In all experiments, the model 𝑓 consists of 7 convolutional layers with
paddingmode “same” and the following specifications,whereConv(𝑎, (𝑏, 𝑐))
means “𝑎 kernels of size (𝑏, 𝑐)”: [Conv(𝑛𝑘, (5, 5)), Conv(𝑛𝑘, (5, 5)),
Conv(𝑛𝑘, (5, 5)), Conv(𝑛𝑘, (7, 7)), Conv(𝑛𝑘, (5, 5)), Conv(𝑛𝑘, (1, 1)),
Conv(3, (1, 1))]. Before the 6th layer, the three channels of the model
input are concatenated to the feature map. As part of the hyperparam-
eter search, 𝑛𝑘 was randomly chosen from the set {32, 48}. We added
two variations of this architecture to the hyperparameter search:• I�VWULGHG: the second convolutional layer performs a strided

convolution with stride 2 and the 4th convolutional layer per-
forms a transposed convolution.• I�GLODWHG: the fourth convolutional layer uses a dilation rate of
2.

We did not observe substantial difference in the performances of our
architectures.

All convolutions were used with a stride of 1. The weight initializa-
tion for all layers follows He et al., 2015. We use rectified linear units
(ReLU) as activation (Glorot et al., 2011).
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A.0.2 Full algorithmwith comments

See Algorithm 3 for the full algorithm including scheduled sampling.

Algorithm 3 Dynamical model learning with ASI
Require: 𝑖’th trajectory x(𝑖) = (𝑥1, 𝑥2, ..., 𝑥𝑇𝑖) ∈ 𝒳𝑇𝑖
Require: Differentiable model 𝑓 ∶ 𝒳 → 𝒳 w/ params 𝜃
Require: Loss function ℒ ∶ 𝒳 × 𝒳 → ℝ
Require: Matching-horizon 𝐻 ∈ ℕ
Require: Exploration schedule 𝜇 ∶ ℕ → [0, 1]
Require: Scheduled sampling temperatures 𝜖 ∶ ℕ → [0, 1]
1: 𝑡 ← 1, 𝑢 ← 1 ▷ Data timestep 𝑡, abstract timestep 𝑢
2: 𝑙 ← 0 ▷ Trajectory loss
3: 𝑥 ← 𝑥1 ▷ 𝑥 is the next input to the dynamics model 𝑓
4: while 𝑡 < |x| do
5: ̂𝑥𝑢 ← 𝑓(𝑥)
6: 𝑇 ← min(𝑡 + 𝐻, |x|) ▷ Upper time step limit
7: if Bernoulli(𝜇(𝑖)) = 0 then
8: 𝑡 ← argmin𝑡′∈{𝑡+1..𝑇 } ℒ( ̂𝑥𝑢, 𝑥𝑡′)
9: else

10: 𝑡 ∼ unif{𝑡 + 1, 𝑇 } ▷ Exploration
11: end if
12: 𝑙 ← 𝑙 + ℒ( ̂𝑥𝑢, 𝑥𝑡) ▷ Accumulate trajectory loss
13: if Bernoulli(𝜖(𝑖)) = 0 = 0 then
14: 𝑥 ← ̂𝑥𝑢 ▷ Scheduled sampling (Bengio et al., 2015)
15: else
16: 𝑥 ← 𝑥𝑡 ▷ Take ground truth frame as next model input
17: end if
18: 𝑢 ← 𝑢 + 1
19: end while
20: 𝜃 ← gradient descent step on 𝜃 to reduce 𝑙
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A.0.3 Training details

For all experiments, the Adam optimizer (Kingma and Ba, 2015) was
used. For hyperparameter search, learning rates for the model 𝑓 were
sampled from the set {1.0×10−3, 7.5×10−4, 5.0×10−4}.The learning
ratewas decayed by a factor of 0.2 after𝑛𝐷 steps, where𝑛𝐷 was sampled
from the set {7500, 10000, 15000}. The maximum ASI horizon 𝐻 was
sampled from the set {15, 18, 21, 25}. The number of trajectories per
training batch was chosen to be 2 in all experiments. As schedule of
exploration for temporal matching we choose 𝜇(𝑡) = max(0, 1 − 𝑡𝐾 ),
where 𝐾 was sampled from the set {7500, 10000, 15000}.

The hyperparameter search described in Section 4.4 resulted in the
parameters shown in Tables A.1 and A.2, which were used to produce
the resulting plots.

ASI ASI fixed fixed
w/o expl. (Δ𝑡 = 1) (Δ𝑡 = 2)

learning rate 5 × 10−4 5 × 10−4 5 × 10−4 5 × 10−4
steps to LR decay 15000 15000 15000 15000
ASI horizon 21 18 - -
Exploration steps 7500 - - -𝑓-architecture I�VWULGHG I�VLPSOH I�VLPSOH I�VLPSOH𝑓 : # of kernels 48 48 48 48

Table A.1:Hyperparameters found for Room Runner
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ASI ASI fixed fixed
w/o expl. (Δ𝑡 = 1) (Δ𝑡 = 2)

learning rate 5 × 10−4 7.5 × 10−4 7.5 × 10−4 7.5 × 10−4
steps to LR decay 15000 10000 15000 15000
ASI horizon 21 18 - -
Exploration steps 15000 - - -𝑓-architecture I�GLODWHG I�VWULGHG I�GLODWHG I�VWULGHG𝑓 : # of kernels 48 32 32 32

Table A.2:Hyperparameters found for Funnel Board
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B.1 Appendix to Section 3.2

B.1.1 A classic example of a patchwork solution

Consider a neural network with one hidden layer consisting of two neu-
rons and sigmoidal activations:𝑓𝜃(𝑥) = 𝜃5𝜎(𝜃1𝑥+𝜃2)+𝜃6𝜎(𝜃3𝑥+𝜃4), 𝜎(𝑧) ∶= 1/(1+𝑒−𝑧). (B.1)

We want to learn the continuous function 𝑓∗ ∶ [0, 1] → [0, 2] defined
as

𝑓∗(𝑥) =
⎧{{{{{⎨{{{{{⎩

0 𝑥 ∈ [0, 0.4);10(𝑥 − 0.4) 𝑥 ∈ [0.4, 0.5);1 𝑥 ∈ [0.5, 0.7);10(𝑥 − 0.7) + 1 𝑥 ∈ [0.7, 0.8);2 𝑥 ∈ [0.8, 1].
To perform this task, we have access to (noiseless) data from two envi-
ronments:𝐴 ∶ {(𝑥, 𝑓(𝑥)) | 𝑥 ∈ [0, 0.5)}, 𝐵 ∶ {(𝑥, 𝑓(𝑥)) | 𝑥 ∈ [0.5, 1]}.
There is a simple constructive way, provided by the universal function
approximation theorem Cybenko, 1989 to fit this function1 using 𝑓𝜃 up
1 For a graphical description, the reader can check KWWS���

QHXUDOQHWZRUNVDQGGHHSOHDUQLQJ�FRP�FKDS��KWPO
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http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
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to an arbitrarily small mean squared error ℒ𝐴+𝐵(𝜃∗). Leaving out the
details of such a construction (Cybenko, 1989 for details), the reader
can check on the left panel of Figure B.1 that𝜃∗ = (100, −50, 100, −75, 1, 1)
provides a good fit for both environments A and B — both ℒ𝐴(𝜃∗) andℒ𝐵(𝜃∗) are small.

However, it is easy to realize that 𝜃∗ — while being a solution which
can be returned by gradient descent using the pooled data A+B — is
not consistent (formal definition given in themain paper in Section 3.2).
Indeed, it is possible to modify ̃𝜃∗ such that the loss in environment A
remains almost unchanged, while the loss in environment B gets larger.
In particular, on the right panel of Figure B.1, we show that̃𝜃∗ = (100, −50, 100, −75, 1, −0.5)
is such that ℒ𝐴(𝜃∗) ≤ ℒ𝐴( ̃𝜃∗) + 𝜖 (with 𝜖 very small) but ℒ𝐵(𝜃∗) ≪ℒ𝐵( ̃𝜃∗). According to our definition in Equation 3.1 (see main paper),
we have ℐ𝜖(𝜃∗) ≤ |ℒ𝐵(𝜃∗) − ℒ𝐵( ̃𝜃∗)| — that is a large number (low
consistency).
Remark 1 (Connection to out of distribution generalization). Themain
point of this analysis was to show an example of where our measure of
consistency behaves according to expectations: A typical implementa-
tion of the universal approximation theorem — which one would not
expect to generalize out of distribution, due to its ‘patchwork’ behavior
— leads indeed to a very low consistency score.

B.1.2 Section3.2.2:Consistencyasarithmetic/geometricmeanof land-
scapes

Geometric mean ofmatrices. Given an 𝑛-tuple of 𝑑 × 𝑑 positive defi-
nite matrices (𝐴𝑗)𝑛𝑗=1, the geometric (Karcher) mean Ando et al., 2004
is the unique positive definite solution 𝑋 to the equation𝑚∑𝑖=1 log(𝐴−1𝑖 𝑋) = 0,
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where log is the matrix logarithm. This matrix average has many desir-
able properties, whichmake it relevant to signal processing andmedical
imaging. The Karcher mean can also be written as

argmin𝑋∈𝒮++(𝑑) 𝑓(𝑋) = 12𝑚 𝑚∑𝑖=1 𝑑(𝐴𝑖, 𝑋)2,
where 𝑑 is the Riemannian distance in the manifold of SPD matrices𝒮++(𝑑).
Link between consistency and geometric means. Here we show how
the consistency score introduced in Equation 3.1 can be linked (in a sim-
plified setting) to a comparison between the arithmetic and geometric
means of the Hessians approximating the landscapes of two separate
environments 𝐴 and 𝐵.

At the local minimizer 𝜃∗ = 0, we assume that ℒ𝐴 = ℒ𝐵 = 0 and
consider the local quadratic approximations ℒ𝐴(𝜃) = 12𝜃⊤𝐻𝐴𝜃 andℒ𝐵(𝜃) = 12𝜃⊤𝐻𝐵𝜃. Here, we make the additional simplifying assump-
tion that𝐻𝐴 and𝐻𝐵 are diagonal (or,more broadly, co-diagonalizable):𝐻𝐴 = diag(𝜆𝐴1 , ⋯ , 𝜆𝐴𝑛 ), 𝐻𝐵 = diag(𝜆𝐵1 , ⋯ , 𝜆𝐵𝑛 ), with 𝜆𝐴𝑖 ≥ 0 and𝜆𝐵𝑖 ≥ 0 for all 𝑖 = 1, … , 𝑛. The arithmetic and geometric means (noted
as 𝐻𝐴+𝐵 and 𝐻𝐴∧𝐵) of these matrices are defined in this simplified
setting as follows:𝐻𝐴+𝐵 = diag (12(𝜆𝐴1 + 𝜆𝐵1 ), ⋯ , 12(𝜆𝐴𝑛 + 𝜆𝐵𝑛 )) ,𝐻𝐴∧𝐵 = diag (√𝜆𝐴1 𝜆𝐵1 , ⋯ , √𝜆𝐴𝑛 𝜆𝐵𝑛 ) .
As motivated in the main paper and in Figure B.3, one can link the con-
sistency of two landscapes to a comparison between the geometric and
arithmetic means of the corresponding Hessians.

Proposition 3. In the setting we just described, the consistency score in
Equation 3.1 can be estimated as follows:ℐ𝜖(𝜃∗) ≤ 2𝜖 (det(𝐻𝐴+𝐵)

det(𝐻𝐴∧𝐵))2 .
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Before showing the proof, we note that the proposition gives a lower
bound on the consistency. That is, it provides a pessimistic estimate. Yet,
as wemotivated, this estimate has a nice geometric interpretation. How-
ever, as we outline in a remark after the proof, this estimate is tight in
two important limit cases.

Proof. In this setting, Equation 3.1 givesℐ𝜖(𝜃∗) ∶= max { maxℒ𝐴(𝜃)≤𝜖 ℒ𝐵(𝜃), maxℒ𝐵(𝜃)≤𝜖 ℒ𝐴(𝜃)} .
Recall that ℒ𝐴(𝜃) = 12𝜃⊤𝐻𝐴𝜃 = 12 ∑𝑖 𝜆𝐴𝑖 𝜃2𝑖 .
Hence, this is a simple quadratic program with quadratic constraints,
and

maxℒ𝐴(𝜃)≤𝜖 ℒ𝐵(𝜃) = max12 ∑𝑖 𝜆𝐴𝑖 𝜃2𝑖 ≤𝜖 12 ∑𝑖 𝜆𝐵𝑖 𝜃2𝑖 .
Further, we can change variables and introduce ̃𝜃𝑖 = 𝜃𝑖√𝜆𝐴𝑖 /2. The
problem gets even simpler:

maxℒ𝐴(𝜃)≤𝜖 ℒ𝐵(𝜃) = max‖ ̃𝜃‖2≤𝜖 ∑𝑖 𝜆𝐵𝑖𝜆𝐴𝑖 ̃𝜃2𝑖 = 𝜖 ⋅ max𝑖 𝜆𝐵𝑖𝜆𝐴𝑖 .
All in all, we getℐ𝜖(𝜃∗) = 𝜖 max {max𝑖 𝜆𝐵𝑖𝜆𝐴𝑖 , max𝑖 𝜆𝐴𝑖𝜆𝐵𝑖 }= 𝜖 ⋅ max𝑖 max {𝜆𝐵𝑖𝜆𝐴𝑖 , 𝜆𝐴𝑖𝜆𝐵𝑖 }≤ 𝜖 ⋅ max𝑖 (𝜆𝐵𝑖𝜆𝐴𝑖 + 𝜆𝐴𝑖𝜆𝐵𝑖 )= 𝜖 ⋅ max𝑖 {(𝜆𝐵𝑖 )2 + (𝜆𝐴𝑖 )2𝜆𝐵𝑖 𝜆𝐴𝑖 }≤ 𝜖 ⋅ max𝑖 {(𝜆𝐵𝑖 + 𝜆𝐴𝑖 )2𝜆𝐵𝑖 𝜆𝐴𝑖 } .
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This means √ℐ𝜖(𝜃∗) ≤ 𝜖 max𝑖 𝜆𝐵𝑖 + 𝜆𝐴𝑖√𝜆𝐵𝑖 𝜆𝐴𝑖= 2𝜖 max𝑖 (𝜆𝐵𝑖 + 𝜆𝐴𝑖 )/2√𝜆𝐵𝑖 𝜆𝐴𝑖≤ 2𝜖∏𝑖(𝜆𝐵𝑖 + 𝜆𝐴𝑖 )/2∏𝑖 √𝜆𝐵𝑖 𝜆𝐴𝑖= 2𝜖det(𝐻𝐴+𝐵)
det(𝐻𝐴∧𝐵) ,

where the first inequality comes from the monotonicity of the square
root function, and the second inequality comes from the fact that (i)
the geometricmean is always smaller or equal than the arithmeticmean
and (ii) for any sequence of numbers 𝛼𝑖 > 1, max𝑖 𝛼𝑖 ≤ ∏𝑖 𝛼𝑖.
Remark 2 (Sanity check). There are two important cases where we can
test the bound above. First, if 𝐻𝐴 = 𝐻𝐵, then ℐ𝜖(𝜃∗) = 𝜖, and the
bound returns ℐ𝜖(𝜃∗) ≤ 2𝜖, since the geometric and arithmetic mean
are the same. Next, say 𝜆𝐴𝑖 = 0 but 𝜆𝐵𝑖 > 0; then, both the bound and
the inconsistency score are ∞ (highest possible inconsistency).

B.1.3 Proof of Proposition 1

In this appendix section we consider the AND-masked GD algorithm,
introduced at the end of Section 3.2.We recall that themasked gradients
at iteration 𝑘 are 𝑚𝑡(𝜃𝑘) ⊙ ∇ℒ(𝜃𝑘), where 𝑚𝑡(𝜃𝑘) vanishes for any
component where there are less than 𝑡 ∈ {𝑑/2 + 1, … , 𝑑} agreeing
gradient signs across environments, and is equal to one otherwise. In a
full-batch setting, the algorithm is𝜃𝑘+1 = 𝜃𝑘 − 𝜂 𝑚𝑡(𝜃𝑘) ⊙ ∇ℒ(𝜃𝑘), (AND-masked GD)

where 𝜂 > 0 is the learning rate.
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Proposition 1. Letℒhave𝐿-Lipschitz gradients and consider a learning
rate 𝜂 ≤ 1/𝐿. After 𝑘 iterations, AND-masked GD visits at least once
a point 𝜃 where ‖𝑚𝑡(𝜃) ⊙ ∇ℒ(𝜃)‖2 ≤ 𝒪(1/𝑘).
Proof. Thanks to the component-wise 𝐿-smoothness and using a Tay-
lor expansion around 𝜃𝑖 we haveℒ(𝜃𝑖+1) ≤ ℒ(𝜃𝑖) − 𝜂⟨∇ℒ(𝜃𝑖), 𝑚𝑡(𝜃𝑖) ⊙ ∇ℒ(𝜃𝑖)⟩+ 𝐿𝜂22 ‖𝑚𝑡(𝜃𝑖) ⊙ ∇ℒ(𝜃𝑖)‖2= ℒ(𝜃𝑖) − (𝜂 − 𝐿𝜂22 ) ‖𝑚𝑡(𝜃𝑖) ⊙ ∇ℒ(𝜃𝑖)‖2.
If we seek 𝜂 − 𝐿𝜂2/2 ≥ 𝜂/2, then 𝜂 ≤ 1𝐿 , as we assumed in the
proposition statement. Therefore, ℒ(𝜃𝑖+1) ≤ ℒ(𝜃𝑖) − (𝜂/2)‖𝑚𝑡(𝜃𝑖) ⊙∇ℒ(𝜃𝑖)‖2, for all 𝑖 ≥ 0. Summing over 𝑖 from 0 to a desired iteration𝑘, we get𝑘−1∑𝑖=0(𝜂/2)‖𝑚𝑡(𝜃𝑖) ⊙ ∇ℒ(𝜃𝑖)‖2 ≤ ℒ(𝜃0) − ℒ(𝜃𝑘) ≤ ℒ(𝜃0).
Therefore,

min𝑖=0,…,𝑘 ‖𝑚𝑡(𝜃𝑖)⊙∇ℒ(𝜃𝑖)‖2 ≤ 1𝑘 𝑘−1∑𝑖=0(𝜂/2)‖𝑚𝑡(𝜃𝑖)⊙∇ℒ(𝜃𝑖)‖2 ≤ 2ℒ(𝜃0)𝜂𝑘 .
Hence, there exist an iteration 𝑖∗ ∈ {0, … , 𝑘} such that ‖𝑚𝑡(𝜃𝑖∗) ⊙∇ℒ(𝜃𝑖∗)‖2 ≤ 𝒪(1/𝑘).
B.1.4 Proof of Proposition 2

Here we fix parameters 𝜃 ∈ ℝ𝑛 and assume gradients ∇ℒ𝑒(𝜃) ∈ ℝ𝑛
coming from environments 𝑒 ∈ ℰ are drawn independently from a
multivariate Gaussian with zero mean and 𝜎2𝐼 covariance. We want to
show that, in this random setting, the AND-mask introduced in Sec-
tion 3.2.3 decreases the magnitude of the gradient step.
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Proposition 2. Consider the setting we just outlined, withℒ = (1/𝑑) 𝑑∑𝑒=1 ℒ𝑒
. While 𝔼‖∇ℒ(𝜃)‖2 = 𝒪(𝑛/𝑑), we have that∀𝑡 ∈ {𝑑/2+1, … , 𝑑}, ∃𝑐 ∈ (1, 2]s.t.𝔼‖𝑚𝑡(𝜃)⊙∇ℒ(𝜃)‖2 ≤ 𝒪(𝑛/𝑐𝑑).
Proof. Let us drop the argument 𝜃 for ease of notation. First, let us con-
sider ∇ℒ (no gradient AND-mask):𝔼 ∥1𝑑 𝑑∑𝑖=1 ∇ℒ𝑒𝑖∥2 = 1𝑑2 𝑑∑𝑖=1 𝔼‖∇ℒ𝑒𝑖‖2 = 𝑛𝜎2𝑑 ,

where in the first equality we used the fact that the ∇ℒ𝑒𝑖 are uncor-
related and in the second the fact that 𝔼[‖∇ℒ𝑒𝑖‖2] is the trace of the
covariance of ∇ℒ𝑒𝑖 .

Next, assume we apply the element-wise AND-mask 𝑚𝑡 to the gradi-
ents, which puts to zero the components (dimensions) where there are
less than 𝑡 ∈ {𝑑/2, … , 𝑑} equal signs. Since Gaussians are symmetric
around zero, the probability of having exactly 𝑢 positive 𝑗-th gradient
component among 𝑑 environments is 𝑃𝑟(𝑝𝑗 = 𝑢) = (12)𝑑 (𝑑𝑢). Hence,
the probability to keep the 𝑗-th gradient direction (considering also neg-
ative consistency) is

Pr[[𝑚𝑡]𝑗 = 1] = 𝑑∑𝑢=𝑡 Pr(𝑝𝑗 = 𝑢) + 𝑑−𝑡∑𝑢=0 Pr(𝑝𝑗 = 𝑢)
= (12)𝑑 𝑑∑𝑘=𝑡 (𝑑𝑘) + (12)𝑑 𝑑−𝑡∑𝑘=0 (𝑑𝑘)
= 2 (12)𝑑 𝑑∑𝑘=𝑡 (𝑑𝑘). (B.2)

We would now like to compute 𝔼 ∥𝑚𝑡 ⊙ (1𝑑 ∑𝑑𝑖=1 ∇ℒ𝑒𝑖)∥2
. The diffi-

culty lies in the fact that the event 𝑚𝑡 = 1 makes gradients condition-
ally dependent. Indeed, conditioning on both 𝑚𝑡 = 1 and [∇ℒ𝑒]𝑗 > 0



96 ILC: Additional details

changes the distribution of [∇ℒ𝑒′]𝑗: this gradient entry is going to be
more likely to be positive or negative, depending on the value of [∇ℒ𝑒]𝑗
and on the details of the gradient mask. To solve the issue, we our strat-
egy is to reduce the discussion (without loss in generality and with no
additional assumption) to the case where gradient entries have all the
same sign and hence conditional independence is restored.

We consider the following writing for the quantity we are interested
in: 𝔼 ∥𝑚𝑡 ⊙ (1𝑑 𝑑∑𝑖=1 ∇ℒ𝑒𝑖)∥2

= 𝑛∑𝑗=1 𝔼 ⎡⎢⎣[𝑚𝑡]𝑗 (1𝑑 𝑑∑𝑖=1[∇ℒ𝑒𝑖]𝑗)2⎤⎥⎦= 𝑛∑𝑗=1
𝑑∑̂𝑝𝑗=0 𝔼 ⎡⎢⎣[𝑚𝑡]𝑗 (1𝑑 𝑑∑𝑖=1[∇ℒ𝑒𝑖]𝑗)2 ∣𝑝𝑗 = ̂𝑝𝑗⎤⎥⎦ Pr[𝑝𝑗 = ̂𝑝𝑗]

= 𝑛∑𝑗=1
(𝑑−𝑡)∑̂𝑝𝑗=0

𝑑∑̂𝑝𝑗=𝑡 𝔼 ⎡⎢⎣(1𝑑 𝑑∑𝑖=1[∇ℒ𝑒𝑖]𝑗)2 ∣𝑝𝑗 = ̂𝑝𝑗⎤⎥⎦ Pr[𝑝𝑗 = ̂𝑝𝑗]
= 2 𝑛∑𝑗=1

𝑑∑̂𝑝𝑗=𝑡 𝔼 ⎡⎢⎣(1𝑑 𝑑∑𝑖=1[∇ℒ𝑒𝑖]𝑗)2 ∣𝑝𝑗 = ̂𝑝𝑗⎤⎥⎦ (12)𝑑 ( �̂�𝑝𝑗),
where we used the definition of 2-norm, the law of total expectation,
and the symmetry of the problem with respect to positive and negative
numbers. Finally, since the gradient components within the same envi-
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ronment are conditionally independent, for any 𝑗 ∈ {1, … , 𝑛} we can
write𝔼 ∥𝑚𝑡 ⊙ (1𝑑 𝑑∑𝑖=1 ∇ℒ𝑒𝑖)∥2

= 2𝑛 𝑑∑̂𝑝𝑗=𝑡 𝔼 ⎡⎢⎣(1𝑑 𝑑∑𝑖=1[∇ℒ𝑒𝑖]𝑗)2 ∣𝑝𝑗 = ̂𝑝𝑗⎤⎥⎦ (12)𝑑 ( �̂�𝑝𝑗).
Finally, we note that the following bound holds:𝔼 ⎡⎢⎣(1𝑑 𝑑∑𝑖=1[∇ℒ𝑒𝑖]𝑗)2 ∣𝑝𝑗 = ̂𝑝𝑗 ≤ 𝑑⎤⎥⎦ ≤ 𝔼 ⎡⎢⎣(1𝑑 𝑑∑𝑖=1[∇ℒ𝑒𝑖]𝑗)2 ∣𝑝𝑗 = 𝑑⎤⎥⎦ .

Indeed, if all environments lead to positive (or, symmetrically, negative)
and non-interacting gradients in the 𝑗-th direction, the average will be
the biggest in norm. Moreover — crucially — conditioned on the event𝑝𝑗 = 𝑑, gradients coming from different environments are distributed
as a positive half-normal distributions. Moreover, they are condition-
ally independent; this because, since they are all positive, the value of a
gradient in one environment cannot influence the value of the gradient
in another one. We remark that conditional independence on the right-
hand side is therefore not an assumption, but is intrinsic to the upper
bound.

Putting it all together, we have𝔼 ∥𝑚𝑡 ⊙ (1𝑑 𝑑∑𝑖=1 ∇ℒ𝑒𝑖)∥2
≤ 2𝑛 𝑑∑̂𝑝𝑗=𝑡 𝔼 ⎡⎢⎣(1𝑑 𝑑∑𝑖=1[∇ℒ𝑒𝑖]𝑗)2 ∣𝑝𝑗 = 𝑑⎤⎥⎦ (12)𝑑 ( �̂�𝑝𝑗)≤ 2𝑛 𝑑∑̂𝑝𝑗=𝑡 𝜎2 (12)𝑑 ( �̂�𝑝𝑗)≤ 𝜎2𝑛(𝑑 − 𝑡)(𝑑𝑡) (12)𝑑−1 ,
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where in the second line we bounded the squared average of a sum of
half normal distributions: let {𝑋𝑖}𝑑𝑖=1 be a family of uncorrelated posi-
tive half-normal distributions derived from aGaussianswithmean zero
and variance 𝜎2, we have2 that 𝔼[𝑋𝑖] = 𝜎√2/𝜋 and 𝔼[𝑋2𝑖 ] = 𝜎2. Also,𝔼[𝑋𝑖𝑋𝑗] = 𝔼[𝑋𝑖]𝔼[𝑋𝑗] ≤ 𝜎2. Therefore,

𝔼 ⎡⎢⎣(1𝑑 𝑑∑𝑖=1 𝑋𝑖)2⎤⎥⎦ = 1𝑑2 𝑑∑𝑖,𝑗=1 𝔼[𝑋𝑖𝑋𝑗] ≤ 𝜎2.
Finally, if we set 𝑟 = 𝑡/𝑑 ∈ (0.5, 1], we have3(𝑑𝑡) ∼ ( 1𝑟𝑟(1 − 𝑟)1−𝑟 )𝑑

as 𝑑 → ∞ (discarding all polynomial terms). Hence (𝑑𝑡) is of the form𝑞𝑑, with 1 ≤ 𝑞 < 2. So, the quantity 𝜎2𝑛(𝑑 − 𝑡)(𝑑𝑡) (12)𝑑−1 will be
exponentially decreasing at a rate 𝒪(𝑛/(2 − 𝑞)𝑑). Notably, if 𝑡 = 𝑑/2,
then we lose the exponential rate and get back to 𝒪(𝑛/𝑑).

2 KWWSV���HQ�ZLNLSHGLD�RUJ�ZLNL�+DOI�QRUPDOBGLVWULEXWLRQ
3 Theorem 1 in Burić, Tomislav, and Neven Elezović. “Asymptotic expansions of

the binomial coefficients.” Journal of applied mathematics and computing 46.1-2
(2014): 135-145.

https://en.wikipedia.org/wiki/Half-normal_distribution
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B.2 Appendix to Section 3.3

We used PyTorch (Paszke et al., 2017) to implement all experiments in
this chapter. Our codebase is publicly available4.

B.2.1 Section 3.3.1

Table B.1:Hyperparameter ranges for synthetic data experiments. The regular-
izers L1 and L2 are never combined; instead, one weight regularization type
out of L1, L2 and none is selected and we sample from the respective range
afterwards.

Hyperparameter Ranges

No. hidden units {256, 512}
No. hidden layers {3, 5}
Batch-size {64, 128, 256}
Optimizer {Adam𝛽1=0.9,𝛽2=0.999, SGD + momentum0.9}
Learning rate {1e-3, 1e-2, 1e-1}
Batch-normalization {Yes, No}
Dropout {0.0, 0.5}
L2 regularization {1e-5, 1e-4, 1e-3}
L1 regularization {1e-6, 1e-5, 1e-4}
B.2.2 Dataset

Here we report more technical details about the synthetic dataset de-
scribed in Section 3.3. Each example is constructed as follows: we first
choose the label randomly to be either +1 or −1, with equal probability.

4 KWWSV���JLWKXE�FRP�JLELSDUD���OHDUQLQJ�H[SODQDWLRQV�KDUG�WR�YDU\

https://github.com/gibipara92/learning-explanations-hard-to-vary


100 ILC: Additional details

The example is a vector with 𝑑𝑆 +𝑑𝑀 entries, consisting of the shortcut
and the mechanism. In our experiments, 𝑑𝑀 = 2 and 𝑑𝑆 = 32.

The Gaussian shortcuts are obtained by first sampling one random
vector x𝑠 ∈ ℝ𝑑𝑆 per environment. Its components 𝑥𝑠,𝑖 are sampled in-
dependently from a Normal distribution: 𝑥𝑠,𝑖 ∼ 𝒩(0, 0.1). We use x𝑠
for class 1, and −x𝑠 for class -1. In the test set, all shortcut components
are sampled i.i.d. from the same Normal distribution. Effectively, each
example of the test set belongs to a different domain. The mechanism is
implemented as the two interconnected spirals shown in Figure B.4 by
sampling the radius 𝑟 ∼ Unif(0.08, 1.0) and then computing the angle
as 𝛼 = 2𝜋𝑛𝑟 where 𝑛 is the number of revolutions of the spiral. We
add uniform noise in the range [−0.02, 0.02] to the radii afterwards.

The training dataset consists of 1280 examples per environment and
weuse𝐷 = 32 environments unless otherwisementioned.The training
datasets consists of 2000 examples.

B.2.3 Experiment

We train all networks for ⌊3000/𝐷⌋ epochs, dropping the learning rate
by a factor 10 halfway through, and again at three-quarters of training.
For computational reason, we stop each trial before completion if the
training accuracy exceeds 97% and the test accuracy is below 60%. All
networks are MLPs with LeakyReLU activation functions and a cross-
entropy loss on the output. We run a hyperparameter search over the
ranges shown in Table B.1. For IRM and the AND-mask, we select the
best-performing run and re-run it 50 timeswith different random seeds.
For DANN and the standard baselines nothing produced results signif-
icantly better than chance.

B.2.3.1 Standard regularizers and AND-mask

The networks with the L1, L2, Dropout and Batch-normalization reg-
ularizers, have hyperparameters that were randomly selected from Ta-
ble B.1. For the AND-mask we used the very same ranges. The regu-
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larizers L1 and L2 are never combined; instead, one weight regulariza-
tion type out of L1, L2 and none is selected and we sample from the
respective range afterwards. The parameters found to work best from
the grid search were: agreement threshold of 1, 256 hidden units, 3
hidden layers, batch size 128, Adam with learning rate 1e-2, no batch
norm, no dropout, L2-regularization with a coefficient of 1e-4, no L1-
regularization. In practice, we often found it helpful to rescale the gra-
dients after masking to compensate for the decreasing overall magni-
tude.We add the option for gradient rescaling as an additional hyperpa-
rameter, as we found it to help in several experiments. It rescales gradi-
ent components layer-wise aftermasking, bymultiplying the remaining
gradient components by 𝑐, where 𝑐 is the ratio of the number of compo-
nents in that layer over the number of non-masked components in that
layer (i.e. the sum of the binary elements in the mask).5. We speculate
that for very large layers, a less extreme normalization scheme or the
additional use of gradient clipping might be appropriate.

B.2.3.2 Domain Adversarial Neural Networks

The experiments using DANN follow a similar pattern. The model con-
sists of an embedding network, a classification network, and a “domain
discrimination” network. All three modules are two-layer multi-layer
perceptrons (MLP). The number of hidden units of all MLPs are sam-
pled from the range specified in Table B.1, and we trained 100 models.
Both label classifier and domain discriminator are applied to the output
of the embedding network. The label classifier is trained to minimize
the cross-entropy-loss between the predicted and the true label. Simi-
larly, the domain discriminator is trained to minimize the loss between
predicted and true domain-label. The embedding network is trained to
minimize the regular task classification loss and at the same time to
maximize the the domain-loss achieved by the domain discriminator.

5 Therefore, 𝑐 is 1 if the AND-mask has only 1s, and infinite if all components are
masked out (which we then keep as 0.)
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B.2.3.3 Invariant RiskMinimization

For the experiments using IRM we used the authors’ PyTorch imple-
mentation6. We perform a random hyperparameter search over with
the ranges shown in Table B.2

Table B.2:Hyperparameter ranges for IRM.

Hyperparameter Ranges

No. hidden units {256, 512}
No. hidden layers {3, 5}
Batch-size {64, 128, 256}
Optimizer {Adam𝛽1=0.9,𝛽2=0.999, SGD+momentum0.9}
Batch-normalization {Yes, No}
Penalty weight {10.0, 100.0, 1000.0}
Annealing iterations {0, 1, 2, 4, 8}
Learning rate {1e-3, 1e-2, 1e-1, 1}

B.2.3.4 Curves for all experiments

In Figure B.5 we show the learning curves of training and test accuracy
for the different methods.

B.2.3.5 Correlation plots

For the correlation plots in Figure 3.7 we used a randomly initialized
MLPwith the following configuration: 3 hidden layers, 256 hiddenunits.
The dataset was using 16 environments and batches of size 1024. The
lines in Figure 3.7 are linear least-squares regressions to the gradient
data shown as scatter plots. We repeat the experiment 10 times with dif-
ferent network weight seeds, resulting in the 10 regression lines. Zero

6 KWWSV���JLWKXE�FRP�IDFHERRNUHVHDUFK�,QYDULDQW5LVN0LQLPL]DWLRQ

https://github.com/facebookresearch/InvariantRiskMinimization
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gradients are excluded from the regression computation, as most gradi-
ents are masked out by the product mask in both cases.

B.2.4 Further visualizations and experiments

In Figure B.6 we show how many environments need to be present for
the baseline without AND-mask to switch the decision boundary from
the shortcuts to the mechanism. Under the same experimental condi-
tion as in the main paper, the baseline first succeeds at 1024 environ-
ments.

B.2.5 Section3.3.2:CIFAR-10memorizationand labelnoiseexperiments

Memorization experiment In Figure B.7, we report the test perfor-
mance (dashed lines) corresponding to the curves presented in themain
paper for theCIFAR-10memorization experiment.The test performance
with standard labels decreases slower than the training performance as
the threshold increases, and they eventually reach the same value. This
is consistent with the hypothesis that by training on the consistent di-
rections, the AND-mask selects the invariant patterns and prunes out
the signals that are not invariant.

Networkarchitectureand trainingdetails Each trial trains theResNet
“)DVW5HV1HW” from the PyTorch-Ignite example7 for 80 epochs on the
full CIFAR-10 training set. We use the Adam optimizer with a learning
rate of 5e−4, and a 0.1 learning rate decay at epoch 40 and 60. We fix
the batch size to 80. We set up 14 trials by evaluating each of the AND-
mask-thresholds {0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8} for two datasets:

(a) unchanged CIFAR-10,

7 KWWSV���JLWKXE�FRP�S\WRUFK�LJQLWH�EORE�PDVWHU�H[DPSOHV�FRQWULE�

FLIDU���IDVWUHVQHW�S\

https://github.com/pytorch/ignite/blob/master/examples/contrib/cifar10/fastresnet.py
https://github.com/pytorch/ignite/blob/master/examples/contrib/cifar10/fastresnet.py
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(b)CIFAR-10with the training labels replaced by random labels.Note
that a threshold of 0 corresponds to not using theAND-mask. Each trial
is run twice with separate random seeds.

Label noise experiment We trained the same ResNet as for the exper-
iment above, once with and once without the AND-mask. We ran each
experiment with three different starting learning rates{5e−4, 1e−3, 5e−3} and a learning rate decay at epoch 60.The baseline
worked best with a learning rate of 1e−3, while the AND-mask with
5e−3, likely to compensate for the masked out gradients. The AND-
mask threshold that worked best was 0.2, which is consistent with the
results obtain in the experiment above.

B.2.6 Section 3.3.3: Behavioral Cloning on CoinRun

The target policy 𝜋∗ is obtained by training PPO (Schulman et al., 2017)
for 400M time steps using the code8 for the paper Cobbe et al., 2020.
This policy is trained on the full distribution of levels in order to max-
imize its generality. We use 𝜋∗ to generate a behavioral cloning (BC)
dataset, consisting of pairs (𝑠, 𝜋∗(𝑎|𝑠)), where 𝑠 are the input-images
(64 × 64 RGB) and 𝜋∗(𝑎|𝑠) is the discrete probability distribution over
actions output by 𝜋∗.

The states are sampled randomly from trajectories generated by 𝜋∗.
In order to test for generalization performance, the BC training dataset
is restricted to 64 distinct levels. We generate 1000 examples per train-
ing level. The test set consists of 2000 examples, each from a different
level which does not appear in the training set.

A ResNet-18 ̂𝜋𝜃 is trained to minimize the loss 𝐷KL(𝜋∗|| ̂𝜋𝜃). We ran
two automatic hyperparameter optimization studies usingTree-structured
Parzen Estimation (TPE) (Bergstra et al., 2013) of 1024 trials each, with
and without the AND-mask. The learning rate was decayed by a factor
of 10 half-way at at 3/4 of the training epochs.

8 KWWSV���JLWKXE�FRP�RSHQDL�WUDLQ�SURFJHQ

https://github.com/openai/train-procgen
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The “temporal” version of the AND-mask used for this experiment
is reported in Algorithm 4.

Algorithm 4 Temporal AND-mask.
1: m ← 𝛽1 ⋅ m + (1 − 𝛽1) ⋅ g
2: v ← 𝛽2 ⋅ v + (1 − 𝛽2) ⋅ (g ∘ g)
3: a ← 𝛽3 ⋅ a + (1 − 𝛽3) ⋅ HOHPZLVHBVLJQ(g)
4: b ← 1[|a| ≥ 𝜏] ▷ All operations are element-wise
5: 𝜽 ← 𝜽 − 𝛼(m ∘ b) ⊘ √

v + 𝜖 ▷ Element-wise division

In bluewehighlight the additional lines compared to traditionalAdam.
The threshold 𝜏 and 𝛽3 are hyperparameters that we included in the
1024 trials of the search using Tree-structured Parsen Estimators. For
the top 10 runs, hyperparameter values that were selected via the TPE
search for the AND-mask are the following.

Table B.3:Hyperparameters for the 5 best runs using the AND-mask, from the
TPE search.

Test KL div lr 𝛽1 𝛽3 𝜏 weight decay

1.652E-2 0.0078 0.21 0.79 0.36 0.057
1.656E-2 0.0072 0.26 0.86 0.40 0.041
1.662E-2 0.0080 0.23 0.84 0.41 0.045
1.665E-2 0.0068 0.33 0.72 0.47 0.077
1.672E-2 0.0063 0.67 0.65 0.47 0.080

We found that applyingweight decay as a second independent update
after the AND-mask routine improved performance. To keep the com-
parison fair, we added this as a switch in the hyperparameter search for
the Adam baseline as well, and it improved performance there as well.
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B.3 Appendix to Section 3.4

B.3.1 Related work in causal inference

Causal graphs and causal factorizations The formalization of causal-
ity through directed acyclic graphs (Pearl, 2009a) is a key element in-
forming our exposition.According to such formalization, a causalmodel
gives rise to each observed distribution. It is thereby possible to exploit
properties of the causal factorization of the joint probability distribu-
tion over the observed variables. Clearly, there are many ways to fac-
torize a joint distribution into conditionals; a distinguishing feature of
the causal factorization is that many of the conditionals, which we can
think of as physical mechanisms underlying the statistical dependen-
cies represented, are expected to remain invariant under interventions
or changing external conditions.This postulate has appeared in various
forms in the literature (Haavelmo, 1943; Simon, 1953; Hurwicz, 1962;
Pearl, 2009a; Schölkopf et al., 2012).9

Causal models and robust regression Based on this insight, it was
proposed that regression based on causal features should presents desir-
able invariance and robustness properties (Mooij et al., 2009; Schölkopf
et al., 2012; Peters et al., 2016; Rojas-Carulla et al., 2018; Heinze-Deml
et al., 2018; Kügelgen et al., 2019; Parascandolo et al., 2018). In this view,
the mechanisms can be considered as features of the patterns such that
they support stable conditional probabilities. Thus learning the mecha-
nisms may help achieve a stable performance across a number of con-
ditions. Other works connecting causality and learning through invari-
ances are (Subbaswamy et al., 2019; Heinze-Deml and Meinshausen,
2017), and perhaps –most related to our work – (Arjovsky et al., 2019):
we presented a comparison with this method in the following section.

9 This would be different for a non-causal factorization of the joint distribution,
see Schölkopf, 2019
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Causal regularization Recently (Janzing, 2019) showed that biasing
learning towards models of lower complexity might in some cases be
beneficial for a notion of generalization from observational to interven-
tional regimes. Our proposed solution is however different, in that we
only indirectly deal with penalizingmodel complexity, and rather focus
on our proposed notion of consistency.

B.3.2 Learning invariances in the data

Here we are going to compare ILC to other approaches for learning
invariances in the data with neural networks, and in particular to In-
variant Risk Minimization (IRM) Arjovsky et al., 2019. The authors of
IRM analyze a set up where minimizing training error might lead to
models which absorb all the correlations foundwithin the training data,
thus failing to recover the relevant causal explanation. They consider a
multi-environment setting and focus on the objective of extracting data
representations that lead to invariant prediction across environments.

While the high level objective is close to the one we focused on, the
differences become clear when considering the definition of invariant
predictors presented in Arjovsky et al., 2019:

Definition 1. A data representation Φ ∶ 𝒳 → ℋ elicits an invariant
predictor 𝑤∘Φ across environments ℰ if there is a classifier 𝑤 ∶ ℋ → 𝒴
simultaneously optimal for all environments, i.e.,𝑤 ∈ arg min�̄�∶ℋ→𝑦 𝑅𝑒(�̄� ∘ Φ) ∀𝑒 ∈ ℰ.

In particular, the objective minimized by IRM is:

minΦ∶𝒳→𝒴 ∑𝑒∈ℰtr

𝑅𝑒(Φ) + 𝜆 ⋅ ∥∇𝑤|𝑤=1.0𝑅𝑒(𝑤 ⋅ Φ)∥2
(B.3)

whereΦ are the logits predicted by the neural network and𝑤 is a dummy
scaling variable (seeArjovsky et al., 2019).The relevant part is the penalty
term 𝜆 ⋅ ∥∇𝑤|𝑤=1.0𝑅𝑒(𝑤 ⋅ Φ)∥2

: One way to interpret it, is that the
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penalty is large on every environment where the distribution outputted
by Φ could be made ‘closer’ to the distribution of the labels by either
sharpening (𝑤 > 1) or softening it (i.e., closer to uniform 𝑤 < 1).

Let us consider the example from IRM, where the authors describe
two datasets of images that each contain either a cow or a camel: In one
of the datasets, there is grass on 80% of the images with cows, while
in the other dataset there is grass on 90% of them. IRM then makes
the point that we can learn to ignore grass as a feature, because its cor-
relation with the label cow is inconsistent (80% vs 90%). The setting
we consider in this chapter is slightly different: take our example from
the CIFAR-10 experiments. Under our concept of invariance, we expect
that (depending on the data generating process) even a single dataset
wherewe treat every image as coming from its own ‘environment’ should
be sufficient to discover invariances. Drawing a connection to the set-
ting from IRM, we would argue that the second dataset should not be
necessary to learn that ‘grass’ is not ‘cow’. If one treats every example
as coming from its own environment, there is already sufficient infor-
mation in the first dataset to realize that cows are not grass: Grass is
predictive of cows only in 80% of the data, so grass cannot be ‘cow’. The
actual cow on the other hand, should be present in 100% of the images,
and as such it is the invariance we are looking for. Note that this is of
course a much more strict definition of invariance: If our dataset con-
tains images labeled as ‘cows’ but that have no cows within them, we
might start to discard the features of cows as well.
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Figure B.1: Performance of the neural network in Equation B.1 for two differ-
ent parameters. Any reasonable modification on 𝜃6 (say ±1) leaves the perfor-
mance on environment A unchanged, while the performance on environment
B quickly degrades.
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Figure B.2: While the arithmetic mean of the two loss surfaces on the left is
identical in all three cases (third column), the geometric mean has weaker and
weaker gradients (black arrow) the more inconsistent the two loss surfaces
become.
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Figure B.3:Plotted are contour lines 𝜃⊤𝐻−1𝜃 = 1 for 𝐻𝐴 = diag(0.01, 1) and𝐻𝐵 = diag(1, 0.01). It is convenient to provide this visualization because it
is linked to the matrix determinant: Vol({𝜃⊤𝐻−1𝜃 = 1}) = 𝜋√det(𝐻). The
geometric average retains the volume of the original ellipses, while the volume
of 𝐻𝐴+𝐵 is 25 times bigger. This magnification indicates that landscape 𝐴 is
not consistent with landscape 𝐵.

Figure B.4: The spirals used as the mechanism in the synthetic memorization
dataset.
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Figure B.5: Learning curves for the evaluated methods. The top row shows the
accuracy on the training set, the bottom row shows the accuracy on the test
set.

�
7UDLQLQJ�HQYLURQPHQWV

Figure B.6: Relationship between number of training environments and test
accuracy for the AND-mask method compared to the baseline. We show the
best performance out of five runs using the settings that were used for the
experiment in the main text.

Figure B.7:Dashed lines show test acc, solid lines show training acc.
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C.1 Implementation details

We implemented LDT using PyTorch (Paszke et al., 2019) and used the
library higher (Grefenstette et al., 2019) to compute meta-gradients.

Our implementation of LDT contains a number of hyperparameters
and settings which we describe here.• Inner-loopoptimizer:Theoptimizer used on the student’sweights𝜃𝑘 in the inner loop of determining the meta-gradient (includes

inner learning rate and inner momentum)• Student optimizer:The optimizer used to actually update the stu-
dent’s weights 𝜃. (Includes student learning rate and studentmo-
mentum)• Meta-optimizer: The optimizer used to optimize the teacher’s
weights 𝜙. (Includes meta learning rate and meta momentum)• Validation split: The fraction of the training set that is used to
compute the meta-loss.• Teacher architecture: The architecture of the teacher network.

113
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C.2 Experiment details

C.2.1 Toy datasets

Task A Construction of a training example:• Sample 𝑥 ∈ ℝ𝐷. 𝑥 ∼ 𝒩(0, I)• Sample 𝐴 ∈ ℝ2×𝐷 with 𝐴𝑖𝑗 𝑖.𝑖.𝑑.∼ Uniform( 1√𝐷, 1√𝐷) (default for
WRUFK�QQ�/LQHDU)• Sample 𝑠 ∈ {−1, 1}2. 𝑠 𝑖.𝑖.𝑑.∼ 2 ⋅ Bernoulli(0.5) − 1• ℎ = 𝐴𝑥• 𝑦 = I[ℎ1 > 0] ⊕ I[ℎ2 > 0] where ⊕ denotes logical XOR.• 𝑥∗ = [𝑠1, 𝑠2, 𝑠1ℎ1, 𝑠2ℎ2]• Observed at training time: (𝑥, 𝑥∗, 𝑦)• Observed at test time: only 𝑥.

We perform an experiment over a grid of values for 𝐷 and 𝑛, where𝑛 is the number of training examples in the dataset. The range of values
for 𝐷 is the set {64, 128, 256, 512}. The range of values for 𝑛 are 16
exponentially-spaced integers between 128 and 1024. The student is a
multi-layer-perceptron (MLP) with 32 and 128 neurons in the hidden
layers, respectively. The architecture mirrors the data-generating pro-
cess with a bottleneck after the first linear transformation - in particu-
lar, there is no activation function after the first hidden layer. We set up
a baseline without a teacher, letting the student learn to predict 𝑦 from𝑥. For the teacher 𝒯 in LDT, we use an MLP with [256, 256] neurons in
the hidden layers, ReLU activations, and an output size of 32, matching
the size of the student’s first hidden layer. The teaching loss is the mean
squared error between the teacher’s output and the student’s first hid-
den activation. Additionally, the student is always trained to minimize
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binary cross-entropy between its prediction and the training label. We
use Adam with a learning rate of 10−3 as the optimizer for the student
in both methods. For LDT, we use a validation split of 0.5.
Task B Construction of a training example:• Sample 𝑥 ∈ ℝ𝐷. 𝑥 ∼ 𝒩(0, I)• Sample 𝐴 ∈ ℝ𝑑ℎ×𝐷 with 𝐴𝑖𝑗 𝑖.𝑖.𝑑.∼ Uniform(− 1√𝐷, 1√𝐷)• Sample 𝐵 ∈ ℝ𝑑𝑝×𝑑ℎ with 𝐵𝑖𝑗 𝑖.𝑖.𝑑.∼ Uniform(− 1√𝑑ℎ , 1√𝑑ℎ )• ℎ = 𝐴𝑥• Sample 𝑦 ∈ {0..𝑑ℎ − 1}: 𝑦 ∼ Categorical(Softmax(ℎ))• 𝑥∗ = 𝐵ℎ• Observed at training time: (𝑥, 𝑥∗, 𝑦)• Observed at test time: only 𝑥.

For this experiment, we set 𝐷 = 128 𝑑ℎ = 4, 𝑑𝑝 = 32, and use 1000
training examples.

The student is anMLPwith input dimension 𝐷, two layers of 256 hid-
den units each, ReLUactivations, and output dimension 𝑑ℎ.The teacher
is anMLPwith input dimension 𝑑𝑝, two layers of 256 hidden units each,
ReLU activations, and output dimension 𝑑ℎ. As teaching loss, we use
the KL-divergence between the softmax of the teacher’s output and the
softmax of the student’s output activations.

Other hyperparameters used in this experiment are summarized in
Table C.1.

C.2.2 MuJoCo

We now describe additional details for the MuJoCo reward-prediction
experiments.
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Hyperparameter Value

Inner optimizer Adam
Inner learning rate 1e−3
Batch size 32
Meta-optimizer Adam
Meta-learning rate 1e−3
Teaching coefficient 𝛼 104
Inner loop optimization steps 𝑛 64
Validation split 0.5

Table C.1:Hyperparameters for LDT in toy task B

C.2.2.1 Dataset details

The datasets for the MuJoCo reward prediction task are generated as
follows.

We use the MuJoCo environments from OpenAI gym (Brockman
et al., 2016), Each training set consists of 4000 examples generated as
follows.• Reset the environment to an initial state drawn from the initial-

state-distribution• Sample an integer 𝑛 uniformly from the range {10..30}• Perform 𝑛 steps following random policy 𝜋.• Record the current state 𝑠.• Sample a 16 step open-loop action sequence 𝑎1∶16 from 𝜋.• Set the example’s input 𝑥 = (𝑠, 𝑎1∶16)• Execute 𝑎1∶16 starting from the current state 𝑠



LDT: additional details 117

• Record the trajectory of states 𝑠1∶16 and rewards 𝑟1∶16 as privi-
leged data 𝑥∗• Record the sum of rewards as label 𝑦 = ∑𝑡 𝑟𝑡

As random policy 𝜋 we choose the policy that ignores the state and
at each step and for each action dimension, samples one of the numbers{−1, 0, 1} with equal probability, independently of each other.

We did not investigate the effects of using a different policy 𝜋 to gen-
erate the dataset.

The test sets consist of 10k examples distributed identically to their
respective training sets.

Similarly to Schrittwieser et al., 2020 we turn the regression task of
predicting rewards into a classification task by binning the reward space.
We first obtain a transformation 𝜓 ∶ ℝ → [0, 1] in such a way that it
transforms training rewards to a uniform distribution in [0, 1], inter-
polating linearly in-between values from the training set and clipping
values outside the training-reward-range to lie between 0 and 1. We ap-
ply this transformation to both training and test labels and afterwards
distribute the resulting values into 32 equally spaced bins between 0
and 1 to obtain categorical values. This leads to an even label distribu-
tion on the training set, and a roughly-even distribution on the test set.
The label-loss-function is then the cross-entropy between predicted la-
bel probabilities and the one-hot distribution of the true label. The nor-
malized mean-squared-error reported in the curves is obtained by first
obtaining the expected value of the prediction by weighting the output-
bucketwith the predicted probability and then determining the squared
difference to the true bucket value between 0 and 1.

Before training, we standardize all inputs along the dimensions indi-
vidually, using empirical means and standard deviations found in the
training set. Each state along the trajectory is standardized with the
same normalization parameters.
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C.2.2.2 Choosing hyperparameters

In order to determine good general ranges of hyperparameters1, we
first performed manual hyperparameter investigations and used a Tree-
structured Parzen Estimator (Bergstra et al., 2011) search to find good
ranges for the hyperparameters.Hyperparameter searches are performed
using different random seeds from the final evaluation in order to re-
duce overfitting due to the hyperparameter-optimization. The curves
for LDT shown in Figure 4.7 are the result of re-running the best hy-
perparameter configurations eight times with different random seeds.
The curves for the baselines are obtained by performing a grid search
on the hyperparameters shown in Tables C.2 and C.3, selecting the con-
figuration that yielded the lowest test-MSE at any point in training and
re-running it eight times with different random seeds.

We fix as architecture for the prediction model (the student in the
LDT framework) a five-layer fully connected MLP with ReLU activa-
tions and 128 neurons per layer.

LDT parameters Tables C.5 and C.6 show hyperparameters we deter-
mined to work well for the MuJoCo reward prediction task.

WeuseAdam(Kingma andBa, 2015) as optimizer for both the teacher’s
and student’sweights. For the inner-loop student-optimizerweuse SGD
with momentum.

As the teacher network we use a 1D-convolutional Neural Network
followed by a fully connected network as follows: The 16 states of the
trajectory 𝑥∗ (including rewards at every step) are fed into 𝑛conv 1D-
convolutional layers, each followedby aReLUactivation.Thefirst𝑛conv−1 convolutional layers have 𝑐1 output-channels, the last one has 𝑐2 output-
channels. The output of the last convolutional layer is flattened and fed
into a fully connected downstream model with one layer of 𝑐3 neurons.

1 By hyperparameters we mean those parameters which are fixed over the course of
a training run. They do not consist of the teacher’s meta-parameters.
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In our experiments we found that it did not help to feed the actions
along the trajectory to the teacher (additionally to the student who al-
ways gets to see the actions).

The output of the teacher is a vector that contains two entries for
every neuron in the student network. One of these values, ℎ∗𝑘, is the
target-pre-activation, and 𝑚𝑘 is a gating parameter to weight that par-
ticular neuron’s loss. We found it helpful to scale and shift the input
to the gating-sigmoid by two constant scalars that are used for the en-
tire network: the loss for a given pre-activation is computed as 𝜎(𝑚𝑘2 −1)(ℎ𝑘 − ℎ∗𝑘)2, where 𝜎 is the logistic sigmoid function, ℎ𝑘 is the pre-
activation in the student’s network, ℎ∗𝑘 is the target activation given by
the teacher, and 𝑚𝑘 is the gating signal output by the teacher.

We use batch-normalization (Ioffe and Szegedy, 2015) in the teacher
network andweight-normalization (Salimans andKingma, 2016) in the
student network, following the findings of Such et al., 2020.

As a precaution against exploding meta-gradients, we clip each com-
ponent of the meta-gradient to the range [−1e8, 1e8], but did not inves-
tigate whether this was necessary.

Table C.2:Hyperparameter ranges for the method ‘model-free‘ (MF)

Hyperparameter Range

Learning rate {1e−3, 1e−2}
Weight decay {0, 1e−5, 1e−4}
Batch size {8, 16, 32}

Performances When using the hyperparameters described above, we
obtain the minimum test MSEs in the eight evaluation runs shown in
Table C.7.
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Table C.3:Hyperparameter ranges for the method ‘auxiliary‘ (AUX)

Hyperparameter Range

Learning rate (LR) {1e−3, 1e−2}
Weight decay {0, 1e−5, 1e−4}
Auxiliary task weight {1, 2, 4}

Table C.4:Hyperparameter ranges for our proposed method (LDT)

Hyperparameter Range

Adam 𝛽1 (Meta) {0.0, 0.9}
Inner-loop LR (SGD) {1e−3, 5e−3, 1e−2}
Teaching coefficient (log10) {2.0, 2.5, 3.0}
Validation split {0.3, 0.5, 0.7}

Table C.5: Best hyperparameters found in grid search for LDT

Hyperparameter Swimmer-v2 Walker2d-v2 Hopper-v2 HalfCheetah-v2

Adam 𝛽1 (Meta) 0.9 0.9 0.0 0.0
Inner-loop LR (SGD) 1e−2 1e−2 1e−2 1e−2
Teaching coef. (log10) 2.5 3.0 2.5 2.5
Validation split 0.3 0.5 0.3 0.7

C.2.2.3 Model-based-baselines

Anaive implementation ofmodel-based could not fit the data.We trained
the model within the same teacher-student framework, with a fixed
dummy teacher that supervises the output of the student with the next
observation (essentiallymimicking amodel-based setting).We ‘stacked’
the student such that it takes as input its output observation on the pre-
vious timestep, and by feeding it only the first observation of the se-
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Table C.6:Other hyperparameters for LDT (all environments)

Hyperparameter Value (all envs)

Learning rate of Meta-optimizer (Adam) 5e−4
Learning rate of Student-optimizer (Adam) 1e−3
Batch size 24
Momentum of inner-loop optimizer (SGD) 0.75
Weight decay (L2) coefficient in inner-loop 1e−8
Number of inner-loop steps (𝑛inner) 96
Teacher 𝑐1 96
Teacher 𝑐2 256
Teacher 𝑐3 768
Teacher 𝑛conv 4
Number of student training steps per meta-step 24

quence, we supervise all of its intermediate targets. However, without
introducing the extra inductive bias of training the student on every
step independently of the others (instead of a single trajectory), the stu-
dent’s output would tend to diverge as it got deeper into the number of
steps.

Training the student onpairs of consecutive transitions independently
of the whole trajectory, makes the model work much better. However,
making a fair comparison to the model-free, Aux, and LDT students is
difficult, since the model-based student effectively uses 𝑛 = 16 times
more computation. Note that the main objective of this chapter is to
compare to what extent the abstract models implicitly learned by the
same student architectures but with different techniques, can learn to
incorporate the trajectory information. On this basis, we exclude the
model-based baselines from our comparisons.
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Table C.7:Minimum mean squared errors on all environments.

no-teacher auxiliary LDT

HalfCheetah-v2 0.0485 0.0477 0.0427
Hopper-v2 0.00270 0.00224 0.00132
Swimmer-v2 0.0169 0.0146 0.00964
Walker2d-v2 0.0238 0.0211 0.0164

C.3 Game of Life experiment

Here we provide details about the Game of Life experiment mentioned
in Section 4.4.2.

Hyperparameter Distribution Min Max Methods

OHDUQLQJBUDWH LogUniform 10−4 10−2 all
DGDPBPRPHQWXP 1.0 - LogUniform 10−1 100 all
ZHLJKWBGHFD\ LogUniform 10−8 10−3 all
EDWFKBVL]H DiscreteUniform 32 128 all
ZHLJKWBLQLWBPXOWLSOLHU LogUniform 0.1 2.0 all
QBILOWHUV DiscreteUniform 16 32 all
LQWHUQDOBFRHI LogUniform 102 104 LDT, fixed
WHDFKHUBZHLJKWBVFDOH LogUniform 10−2 100 fixed
WHDFKHUBDWWHQWLRQBVFDOH LogUniform 10−3 10−1 fixed
QBLQQHU DiscreteUniform 16 32 LDT
PHWDBOHDUQLQJBUDWH LogUniform 10−6 10−3 LDT
PHWDBPRPHQWXP LogUniform 10−2 100 LDT
YDOLGDWLRQBVSOLW LogUniform 10−2 100 LDT
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Hyperparameter ranges Theparameters for the initial teacherweights
are used exclusively by the fixed-teacher method.

Note that while the meta-learning approach has more hyperparame-
ters than the baselines, the overall computational budget given to each
method is the same - more hyperparameters are not advantageous by
default.

We run a hyperparameter search over the specified range for each
combination of (method, n-training-examples). As hyperparameter op-
timization algorithmweuse aTree-structuredParzenEstimator (Bergstra
et al., 2011) for each method.
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