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List of Abbreviations 

ACE2   Angiotensin-converting enzyme 2 

ADAMTS13  A disintegrin and metalloproteinase with a thrombospondin type 

1 motif, member 13 

ADP   Adenosine diphosphate  

AKT   Protein kinase B 

CCP    COVID-19 convalescent plasma 

COVID-2019  Coronavirus Disease 2019 

CVST   Cerebral venous sinus thrombosis 

EDTA   Ethylenediaminetetraacetic acid 

ELISA   Enzyme-linked immunosorbent assay 

EMA    European Medical Agency  

FcγRIIa   Fc γ receptor IIa 

FDA    Federal Drug Agency  

GPIIb/IIIa   Glycoprotein IIb/IIIa  

GPVI   Glycoprotein VI 

HIPA   Heparin-induced platelet aggregation assay 

HIT    Heparin-induced thrombocytopenia 

ICU    Intensive care unit  
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IgG   Immunoglobulin G 
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mAb IV.3  Monoclonal antibody IV.3 

NET    Neutrophil extracellular trap  

PAI-1   Plasminogen activator inhibitor type 1 

PAR1   Protease-activated receptor 1 

PAR4   Protease-activated receptor 4 

PF4   Platelet factor 4 

PI3K   Phosphatidylinositol 3-kinase 

PS    Phosphatidylserine 

PSGL-1  P-selectin glycoprotein ligand-1  

RBD   Receptor binding domain 



 

II 

SARS-CoV-2  Severe acute respiratory syndrome coronavirus type 2 

TMPRSS2  Transmembrane protease serine 2  

TRAP-6  Thrombin receptor activator peptide 6 

VITT    Vaccine-induced immune thrombotic thrombocytopenia 

vWF   von Willebrand factor 

vWF:Ag  von Willebrand factor antigen 
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1. Introduction  

SARS-CoV-2 (Severe acute respiratory syndrome coronavirus type 2) is a single-

stranded RNA virus, which was first isolated from a cluster of patients with 

pneumonia of unknown cause in Wuhan City, China at the end of 2019 [1]. The 

disease caused by SARS-CoV-2 has been named later as Coronavirus Diseases 

2019 (COVID-19). The World Health Organization declared on 11 March 2020 the 

COVID-19 outbreak as a global pandemic [2]. In the last 2.5 years, COVID-19 

pandemic challenged humans, in particular medical staff, on several fronts and 

claimed more than 6 million lives [3]. 

 

The transmission of the infection occurs through droplets or aerosol particles 

containing the virus. The incubation period ranges between 0 to 14 days. 

Approximately 15% of the patients with COVID-19 develop severe disease and 5% 

require intensive care [4]. Initial observational studies have recognized the increased 

thrombotic events in hospitalized COVID-19 patients [5]. Thrombotic complications 

were associated with increased mortality [6,7]. Despite a significant derangement of 

hemostasis, only a small portion of the patients with COVID-19 fulfilled the criteria for 

disseminated intravascular coagulation or sepsis induced coagulopathy [8]. Later, it 

was suggested that COVID-19 causes a unique form of coagulopathy, which is 

mediated by the release of proinflammatory cytokines, endotheliopathy and 

microvascular thrombosis [9].  

 

Several studies found platelet abnormalities in COVID-19 patients [10]. Platelet 

counts are slightly reduced in COVID-19 patients [11]. Furthermore, abnormalities in 

platelet morphology and function have been found in COVID-19 patients [12,13]. Our 
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group have previously demonstrated that platelets show a procoagulant phenotype 

in critically ill COVID-19 patients [14,15]. Platelet activation in COVID-19 is Fc γ 

receptor IIa (FcγRIIa) dependent, suggesting an immune mediated mechanism for 

platelet activation [14–17]. Understanding the underlying mechanism of platelet 

activation in COVID-19 might help us to minimize the thrombotic complications and 

reduce mortality.  

 

Several patients report continuing or new onset symptoms after a COVID-19 

infection [18,19]. Long COVID is a collective term for long-term health sequelae that 

may be present after an acute COVID-19 infection. The pathophysiologic 

mechanisms leading to Long COVID have not been adequately elucidated. One of 

the proposed mechanisms involves endothelial dysfunction and persistent 

hypercoagulability [20]. To our best knowledge platelet activation has not been 

investigated in patients who have recovered from COVID-19. 

 

Vaccination is the most effective means to contain an infectious disease. Several 

vaccine candidates against SARS-CoV-2 have been developed and others are under 

development [21]. After an accelerated assessment process, a number of vaccines 

received approval from the Federal Drug Agency (FDA) in the USA and the 

European Medical Agency (EMA) in Europe. However, a rare but severe side effect 

of vector-based vaccines against SARS-CoV-2, vaccine-induced immune thrombotic 

thrombocytopenia (VITT), has been identified [22–26]. Patients with VITT suffer from 

thrombocytopenia and thrombosis in unusual locations [25,27,28]. The 

pathophysiology of VITT is not completely understood. VITT resembles serologically 

and clinically heparin-induced thrombocytopenia (HIT) and immune-mediated 
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platelet activation appears to be the cause of thrombotic complications and platelet 

clearance in VITT [25,29].  

 

This dissertation focuses on understanding platelet activation in COVID-19 patients 

in the convalescent phase and immune response against platelet factor 4 (PF4) in 

VITT patients.  

 

1.1. COVID-19-associated coagulopathy  

Abnormalities in cellular and plasmatic coagulation is common in COVID-19. The 

pathogenesis of COVID-19-induced coagulopathy is not fully understood yet. 

Depending on the investigated patient population and the stage of the infection, 

different results have been reported in previous studies [10]. 

 

SARS-CoV-2 invades the cells through binding to angiotensin-converting enzyme 2 

(ACE2) receptor, which is highly expressed on pulmonary alveolar epithelial cells 

[30]. Damaged endothelial cells release proinflammatory cytokines und chemokines 

[31]. Cytokine storm is coined to describe this excessive and uncontrolled release of 

proinflammatory cytokines [32]. Later on, inflammatory cells including neutrophils, 

CD4 helper T cells and CD8 cytotoxic T cells are sequestrated in the lung tissue [33]. 

Continuing viral replication and lung injury caused by inflammatory cells lead to 

diffuse alveolar damage in patients with COVID-19 [34,35]. 

 

Inflammatory and hemostatic pathways interact with each other in the pulmonary 

vasculature and lead to endotheliopathy and microvascular thrombosis [36,37]. The 

recruited immune cells lead to endothelial activation, inflammatory cell infiltration, 
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and vascular inflammation [36]. Autopsy studies showed the presence of neutrophils 

and macrophages in platelet-fibrin-rich microvascular thrombi in COVID-19. 

Interestingly, an increased platelet-neutrophil and platelet-monocyte aggregates 

have been observed in blood samples from COVID-19 patients, which are also 

associated with disease severity [38]. Platelets induces tissue factor expression on 

monocytes through CD62P and integrin αIIb/β3 signaling [39]. Platelet-monocyte 

aggregates induce tissue factor expression, which is a strong initiator of clotting 

cascade [37,40].  

  

1.1.1. The role of platelets in COVID-19-associated coagulopathy 

A number of studies demonstrated a direct interaction between SARS-CoV-2 and 

platelets [41,42]. Cell entry mechanism includes the binding of spike protein to ACE2 

[43]. Transmembrane protease serine 2 (TMPRSS2), which cleaves S2’ site, is also 

crucial for ACE2-mediated endocytosis [43]. Platelets can express both ACE2 and 

TMPRSS2 [41]. SARS-CoV-2 mRNA was detected in platelets of severe COVID-19 

patients [44]. Others, however, failed to detect SARS-CoV-2 mRNA in platelets [45]. 

SARS-CoV-2 can directly induce programmed cell death and extracellular vesicle 

release in platelets [42]. Direct stimulation of platelets by SARS-CoV-2 and spike 

protein can stimulate the release of coagulation and inflammatory factors as well as 

the formation of platelet-leukocyte aggregates [41]. In fact, SARS-CoV-2 RNA in the 

blood stream correlates with platelet hyperactivity in patients with severe COVID-19 

[41]. An ACE2-independent mechanism for the interaction of SARS-CoV-2 with 

platelets and megakaryocytes has been also described [46]. 
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Neutrophil extracellular traps (NETs) might be another bridge between inflammation 

and thrombosis in COVID-19 patients [47]. Neutrophils release NETs, which consist 

of nucleosomes and histone proteins, to capture and inactivate pathogens. CD62P 

(P-selectin) promotes NET formation through binding to P-selectin glycoprotein 

ligand-1 (PSGL-1) on neutrophils [48]. Excessive formation of NETs has been shown 

in patients with severe COVID-19 [49,50]. NETs can trigger thrombus formation 

through a number of mechanisms, including intrinsic and extrinsic coagulation 

activation, platelet adhesion, and recruitment of platelet adhesion proteins [51]. 

Postmortem investigations revealed NETs in occluded microvessels in lung tissue of 

COVID-19 patients [49].  

 

Platelet morphology is altered in patients with COVID-19. A reduced platelet count is 

common in hospitalized COVID-19 patients [11,52,53]. Impaired megakaryocyte 

maturation or increased platelet clearance are among the suggested mechanism of 

thrombocytopenia in COVID-19 patients [54,55]. Although, there is a relationship 

between thrombocytopenia and increased mortality, [6,56] platelet count is not 

related to thromboembolic events [57]. An increase in mean platelet volume and 

immature platelet fraction has been also shown in COVID-19 patients [58–60], the 

contribution of these morphological changes to increased thrombotic events is not 

clear.  

 

Platelet hyperreactivity might contribute to COVID-19 coagulopathy [61,62]. The 

correlation between platelet activation markers (CD62P and PS externalization) and 

D-dimer in critically ill COVID-19 patients points to an association between COVID-

19 induced coagulopathy and platelet activation [14,40]. A prothrombotic platelet 
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phenotype has been found in COVID-19 patients [14]. Platelets from COVID-19 

patients are prone to delta granule release after low dose agonist stimulation [61]. 

Additionally, CD62P, LAMP-3 and glycoprotein IIb/IIIa (GPIIb/IIIa; CD41/CD61 

complex) expression is increased in platelets from COVID-19 patients [63]. 

Compared to healthy controls, platelets from COVID-19 patients present a 

significantly higher CD62P expression after stimulation with adenosine diphosphate 

(ADP) and thrombin receptor activator peptide 6 (TRAP-6) [44]. On the other hand, 

PAC-1 binding, which is a maker of activation-induced conformational change in 

GPIIb/IIIa, decreases after platelet activation with TRAP-6 [44]. Furthermore, 

platelets from COVID-19 patients adhere more efficiently on collagen under flow 

conditions and aggregate even at suboptimal thrombin concentrations, suggesting 

that platelets in COVID-19 patients have a lower threshold for stimulation [62]. 

Although serum levels of PF4 and serotonin levels are increased, their levels in 

platelets are reduced, suggesting an increased platelet degranulation due to 

activation in COVID-19 patients [62]. Furthermore, platelets also release fibrinogen, 

von Willebrand factor (vWF), and factor XII in COVID-19 patients [64]. Together, 

these data suggest that platelets contribute to the hypercoagulable state in COVID-

19 patients. 

 

Hottz et al. showed that the expression of CD62P above the control group median 

was associated with in hospital mortality in COVID-19 patients [40]. On the other 

hand, platelets from COVID-19 patients with a mild or asymptomatic infection were 

not activated [40]. Similarly, soluble CD62P is higher in critically ill COVID-19 

patients compared to non-critically ill COVID-19 patients [65]. CD62P and CD63 

expression correlates with D-dimer levels in severe COVID-19 patients [40]. 
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Another interaction between coagulation system and inflammation is the formation of 

platelet-monocyte aggregates [39]. Platelet-monocyte and platelet-granulocyte 

aggregates are significantly increased in COVID-19 patients [64]. COVID-19 patients 

in intensive care unit (ICU) has higher platelet-monocyte aggregate levels compared 

to controls and to patients with mild/asymptomatic infection [40]. Tissue factor 

expression is significantly higher on platelet-monocyte aggregates than monocytes 

without platelets [40]. Moreover, tissue factor expression on monocytes is associated 

with disease severity and in-hospital mortality [40]. 

 

1.1.2. Procoagulant platelets in COVID-19  

Accumulating evidence suggests that platelets consist of subpopulations with distinct 

phenotype and functional properties [66]. Procoagulant platelets are one of these 

subpopulations, which are characterized by exposure of phosphatidylserine (PS) and 

CD62P on platelet surface [67]. On activated platelets, PS facilitates the assembly of 

coagulation factors (intrinsic tenase complex and prothrombinase complex), 

contributing to the thrombin burst in the propagation phase of blood coagulation [67]. 

 

The studies investigating the role of procoagulant platelets in COVID-19 are scarce. 

Althaus et al. showed that platelets from severe COVID‐19 patients show an 

increased PS externalization [14]. PS externalization correlated with sequential 

organ failure assessment score and D-dimer level in critically ill COVID-19 patients 

[14]. Furthermore, patients with a thrombosis had a higher PS externalization 

compared to those without a thrombosis. Interestingly, sera and immunoglobulin G 

(IgG) fractions from critically ill COVID-19 patients induce a procoagulant phenotype 



 

8 

in platelets from healthy donors [14], suggesting an immune mediated mechanism 

for the formation of procoagulant phenotype [27].  

 

FcγRIIa is a receptor for IgG that is expressed on platelets. FcγRIIa cross-linking 

leads to platelet activation and aggregation. Blocking FcγRIIa with monoclonal 

antibody IV.3 (mAb IV.3) inhibited strongly the COVID-19 sera induced PS 

externalization and mitochondrial inner membrane depolarization [14]. Similarly, 

platelet activation induced by sera from COVID-19 patients in serotonin release 

assay can be completely inhibited with mAb IV.3 [16].  

 

In contrast to these findings, Denorme et al. demonstrated in a small study that 

platelets of hospitalized COVID-19 patients (n=11) showed lower PS externalization 

after dual stimulation (thrombin and convulxin) compared to those from healthy 

donors [68]. In another study, Khattab et al. showed that at baseline procoagulant 

platelet levels are lower than controls in moderate und severe COVID-19 patients 

[69]. However, baseline procoagulant platelet level were associated with increased 

mortality (adjusted hazard ratio of 40 for a procoagulant platelet level > 33.9%) [69]. 

The contrasting findings might suggest that generation of procoagulant platelet 

phenotype is limited to very severe COVID-19 patients and might be undetectable in 

small cohort of donors who had only mild SARS-CoV-2 infection. Further studies in 

patient groups with different disease severity are needed to better define 

pathophysiological and clinical significance, if any, of this phenomenon.  

 

In two additional studies from our group, antibody-induced platelet activation in 

COVID-19 was investigated in detail [15,17]. Pelzl et al. showed that downstream 



 

9 

regulation of FcγRIIa coupling with IgG from severe COVID-19 patients is controlled 

by PI3K/AKT signaling pathway [17]. The inhibition of PI3K/AKT signaling pathway 

using specific inhibitors of either protein kinase B (AKT) or phosphatidylinositol 3-

kinase (PI3K) blocks the formation of procoagulant platelets by IgG from COVID-19 

patients [17]. A subsequent study found that upregulation of cyclic-adenosine 

monophosphate prevents in vivo procoagulant platelet generation and clot formation 

induced by IgGs from severe COVID-19 patients [15]. Both studies hint at potential 

therapies for COVID-19 induced coagulopathy. These hypotheses should be tested, 

however, in clinical trials. 

 

Other mechanisms for antibody-mediated procoagulant platelet generation have also 

been reported previously. Stimulation of protease-activated receptors, protease-

activated receptor 1 (PAR1) and PAR4, alongside with glycoprotein VI (GPVI), 

collagen receptor, on platelets increases intracellular Ca+2 content and leads to PS 

exposure [70]. Increased GPVI cleavage after stimulation with TRAP-6 have been 

shown in COVID-19 patients [63]. However, the contribution of mechanisms other 

than antibody-mediated activation to the generation of procoagulant platelets in 

COVID-19 remains the subject of further research. 

 

1.1.3. Post-acute COVID-19 coagulopathy 

Several patients report continuing or new onset symptoms after a COVID-19 

infection [18,19]. An increased readmission rate (3.5 fold, 95%CI: 3.4-3.6) and post-

discharge mortality rate (7.7 fold, 95%CI: 7.2-8.3) in COVID-19 patients have been 

reported [71]. The term "Long COVID" includes symptoms that persist or are new 

more than 4 weeks after the onset of COVID-19. The most commonly reported 
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persistent symptoms after discharge are fatigue, headache, joint pain, chest pain, 

anxiety, and depression [18,72]. The pathophysiologic mechanisms leading to long 

COVID have not been adequately elucidated. One of the proposed mechanisms 

involves endothelial dysfunction and persistent hypercoagulability [20].  

 

Follow-up studies investigated the rate of thromboembolic events after discharge in 

patients with COVID-19. The rate of thrombosis in these studies ranged between 0-

2.6% [73–78]. Due to limitations of these studies such as retrospective design and 

lack of a comprehensive screening, it is possible that the true incidence of 

thromboembolic events is even higher.  

 

A number of studies investigated cellular and plasmatic components of the 

coagulation system after acute COVID-19 infection. von Meijenfeldt et al. measured 

markers of coagulation system and performed functional testing in 52 COVID-19 

patients at hospital admission and 4 months after hospital discharge [79]. Although, 

factor VIII was reduced after discharge it was still higher than controls 4 months after 

discharge [79]. Plasminogen activator inhibitor type1 (PAI-1) levels remained high 

and a prolonged clot lysis time was observed at 4 months. Although, D-dimer was 

normal at 4 months; endogenous thrombin generation potential was higher in 

COVID-19 patients. They suggested that COVID-19 patients sustain a 

hypercoagulable and hypofibrinolytic state several months after acute infection [79]. 

Townsed et al. investigated 69 hospitalized and 81 non-hospitalized COVID-19 

patients after a median of 80.5 (range 44-155) days after initial diagnosis [80]. 

Markers of coagulation and inflammation had returned to normal range in most of the 
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patients during follow-up. However, elevated D-dimer levels were observed in 25% 

of patients [80].  

 

Rotational thromboelastometry provides a global evaluation of coagulation status in 

COVID-19 patients [81]. Magomedov et al. investigated clot dynamics using 

intrinsically (INTEM) and extrinsically (EXTEM) activated viscoelastic test assays in 

13 COVID-19 patients during ICU stay and 3 months after ICU discharge [82]. 

Maximum clot firmness was reduced significantly within 12 weeks after discharge in 

COVID-19 patients [82]. Furthermore, compared to ICU values, maximum lysis 

increased in both tests at 3 months follow-up, suggesting a substantial normalization 

of fibrinolytic activity in COVID-19 patients after discharge [82]. Another study 

investigating 22 COVID-19 patients using tissue-type plasminogen activator 

rotational thromboelastometry reported a normalized maximum clot firmness in all 

patients 6 months after discharge from ICU [83]. However, the lysis time remained 

over the normal range in 4 of 22 (18%) patients [83]. 

 

The relationship between abnormal hemostatic parameters and post-COVID-19 

syndrome is not clear. An increased FVIII level has been found in one quarter of 

patients with post-acute COVID-19 syndrome [84]. Furthermore, an increased von 

Willebrand factor antigen (VWF:Ag)/ADAMTS13 ratio (≥1.5) is associated with an 

impaired exercise capacity in patients with post-acute COVID-19 syndrome [84]. 

Similarly, vWF:Ag and vWF propeptide levels correlate with 6 minute walking 

distance in COVID-19 convalescent patients, suggesting a relationship between 

persistent endotheliopathy and the development of long COVID-19 [85]. In contrast, a 

recent study showed that the markers of coagulopathy (FVIII, vWF, PAI-1 and D-
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Dimer) are not different in patients with and without persistent symptoms after 

COVID-19 infection [86]. 

 

Although the studies discussed here suggest an association between long COVID 

and abnormal coagulation markers, further studies are needed to confirm these 

findings. Most importantly, to our knowledge, platelet functions in patients recovered 

from COVID-19 have not been studied previously. 

 

1.1.4. COVID-19 convalescent plasma 

Convalescent plasma refers to plasma collected from individuals after the infection 

has resolved and antibodies to the pathogen have developed [87]. Passive 

immunotherapy with COVID-19 convalescent plasma (CCP) was proposed based on 

historical experiences for the treatment of patients with COVID-19 [87]. 

Convalescent plasma has been used previously to treat other viral infections such as 

H1N1 influenza, severe acute respiratory syndrome coronavirus (SARS-CoV) and 

Middle Eastern respiratory syndrome coronavirus (MERS-CoV) [88,89].  

 

The neutralizing antibodies against SARS-CoV-2 are the main reason of the 

beneficial effects in CCP [90,91]. CCP has been used so far in several thousands of 

patientswith COVID-19 [91–93]. The effectiveness of CCP on mortality and morbidity 

in COVID-19 patients is yet to be proven [94]. Recent evidence suggest that CCP 

units with a high neutralizing antibody content might be beneficial [91].  

 

Safety of CCP is another of aspect that needs to be clearly addressed. Concerns 

have been raised about whether the plasma constituents in CCP can put the already 
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imbalanced coagulation system into a hypercoagulable state [90,92]. A recent study 

found that coagulation factor levels in CCP units are not different from fresh frozen 

plasma in CCP [95]. On the other hand, soluble CD62P level is increased in CCP 

donors (35810548). To our knowledge, the platelet phenotype and activation in 

COVID-19 convalescents have not been studied yet. 

 

1.2. Vaccine induced thrombosis and thrombocytopenia (VITT)  

1.2.1. Definition 

VITT is a rare but serious complication of adenoviral vector based vaccines against 

SARS-CoV-2 [22,25]. In most cases, the disease manifests with severe 

thrombocytopenia and arterial and/or venous thrombosis within 4 to 28 days after 

vaccination [96].  

 

As of 18 May 2022, a total of 443 cases (51 cases after 2. dose) with thrombosis and 

thrombocytopenia have been reported to Medicines and Healthcare Products 

Regulatory Agency in the UK after vaccination with ChAdOx1 nCov19 (Vaxzevria, 

Oxford/AstraZeneca), which counts for an estimated incidence of 15.5 per million 

doses after the first vaccine and 2.1 per million doses after the second vaccination 

[97]. Ad26.Cov2.S (Janssen/Johnson & Johnson) is another adenoviral vector-based 

vaccine used mainly in the US. See et al. calculated an incidence of 3.5 per million 

doses after vaccination with Ad26.Cov2.S in US [28]. However, since some mild 

cases were not diagnosed properly the incidence of VITT might be even higher.  
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Although early reports defined women under 60 years of age as the risk group 

[22,23,25,26], further monitoring of the cases revealed that the sex and age 

imbalance were smaller than previously observed [96,97].  

 

1.2.2. Pathophysiology 

The simultaneous occurrence of thrombocytopenia and thrombosis and the 

manifestation of disease symptoms approximately 5 days after inoculation suggest 

an immune-mediated underlying mechanism similar to HIT type II [98]. In HIT type II, 

immune complexes consisting of anti-PF4 antibody, PF4, and heparin activate 

platelets via FcγRIIa [98]. Similarly, in VITT anti-PF4 antibodies bind to PF4 and 

activate platelets via FcγRIIa [22,25]. In contrast to HIT Type II, patients develop 

anti-PF4 antibodies in VITT without any previous exposure to heparin. Anti-PF4 

antibodies in VITT and HIT show different binding properties [99]. Huyn et al. 

isolated anti-PF4 antibodies from VITT patients and showed that they strongly bind 

to PF4 at heparin binding site [100]. Thus, they mimic the effect of heparin by 

causing PF4 tetramers to group and form big immune complexes, which is 

necessary for FcγRIIa coupling and platelet activation [100]. This difference might 

explain the heparin induced dissociation of bound anti-PF4-antibodies isolated from 

VITT patients [101]. 

 

The role of other immune cells in the pathophysiology of VITT is also discussed. 

Holm et al. found increased levels of NETosis markers (circulating H3Cit, dsDNA, 

and myeloperoxidase-DNA complex) in blood samples of VITT patients [102]. 

Furthermore, in thrombus material they found IgG deposits together with NETs [102].  
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The initial trigger for the development of anti-PF4 antibodies is not known. It is 

proposed that vaccine components such as human and non-structural viral proteins 

or free DNA might bind to PF4, which will be recognized by innate immune system 

as a neoantigen [103–105]. Another theory includes cross-reactivity between spike 

protein of the virus and PF4 [106]. Konstantinou found an 85% similarity between 

signaling peptide of the SARS-CoV-2 spike protein and PF4 [107]. This topic 

requires further research.  

 

1.2.3. Clinical picture  

The disease become manifest within the 2 weeks after vaccination in most cases. 

However, delayed presentations to a medical institution due to non-specific 

symptoms have also been reported [108]. Petechiae or bruising might be the earliest 

symptom in patients with severe thrombocytopenia; however, hematoma is rarely 

reported in patients with VITT. Thrombosis can be seen in different locations, 

however, cerebral venous sinuses is seen almost 50% of patients with VITT 

[96,109,110]. The mortality rate is markedly high in patients with a cerebral venous 

sinuses thrombosis (CVST) [111]. Patients with a cerebral venous sinuses 

thrombosis develop due to congestion and thrombocytopenia intracranial 

hemorrhage [112,113], which is associated with mortality [109]. Severe headache is 

common in these patients [109,113]. Since headache is also a frequent side effect of 

vaccination, it is often neglected, which leads to delayed diagnosis [108,114,115]. 

Patients with CVST can also present with altered mental status and/or focal 

neurologic deficits [111]. Interestingly, splanchnic vein thrombosis is also common in 

patients with VITT [110]. Patients with splanchnic vein thrombosis have often non-

specific symptoms such as abdominal pain, nausea, distention, vomiting or diarrhea. 
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Less commonly, patients may also have pulmonary embolism or lower extremity 

venous thrombosis. A systematic screening for thrombosis is necessary in patients 

with VITT.  

 

Mortality is high in patients with VITT. Initial case series reported a mortality rate as 

high as 60% [22,23,111]. The mortality rate has decreased with the recognition of 

the phenomenon and publication of diagnostic and treatment guidelines. Current 

case series report a mortality rate around over 20% [96,111,112,116].  

 

1.2.4. Diagnosis 

Diagnosis of VITT depends on clinical and laboratory findings [96,117,118]. 

Diagnostic algorithm based mainly on the experience in HIT Type II. Laboratory 

diagnosis includes the detection of anti-PF4 antibodies. Rapid immunoassays are 

not suitable for the detection of anti-PF4 antibodies in VITT [119–121]. Furthermore, 

commercially available anti-PF4 IgG or IgG, IgM, IgA ELISA assays have different 

levels of sensitivities in VITT [121]. An appropriate anti-PF4 ELISA assay should be 

preferred in the diagnosis of VITT [118,121]. Since not all anti-PF4 antibodies induce 

platelet activation, additionally laboratory confirmation of the diagnosis with a 

functional platelet activation assay is recommended [118]. However, these assays 

are only available in a number of specialized centers.  

 

Pavord et al. recommended a set of clinical and laboratory criteria to evaluate the 

likelihood of VITT in patients presenting with symptoms after COVID-19 vaccination. 

[96] These criteria include the following: 1) symptom onset within 5-30 days after 

vaccination with an adenoviral vector-based COVID-19 vaccine (AstraZeneca and 
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Johnson&Johnson/Jannsen), 2) documented venous or arterial thrombosis, 3) 

thrombocytopenia (150 000/microliter), 4) D-dimer > 4000 fibrin equivalent units 

(FEU), and a 5) a positive Anti-PF4 IgG ELISA. If all five criteria are met, the 

diagnosis of VITT is considered definite; if one criterion is missing, the diagnosis is 

considered probable. In these cases, anticoagulation and intravenous 

immunoglobulin (IVIG) may be considered based on clinical and laboratory findings.  

 

Patients might not present classical symptoms at first presentation [115]. Salih et al. 

defined cases who initially presented with anti-PF4 antibodies and later developed 

thrombosis [122]. Delayed onset thrombocytopenia is also described [123]. The 

disease can progress rapidly and patients might develop new thrombosis or 

bleeding. Close follow up is crucial to reduce additional morbidity and mortality. 

 

1.2.5. Treatment  

National and international societies published recommendations to help clinicians to 

manage patients with VITT [124]. Until VITT can be ruled out, patients should be 

hospitalized and monitored closely. Special attention should be given to patients with 

CVST. Since they may require endovascular or neurosurgical intervention, they 

should be transferred to a center with these capabilities. 

 

Patients should be anticoagulated to avoid further thrombotic complications [103]. 

Before this phenomenon was recognized, heparin was used for anticoagulation  

[111,125–127]. However, published societal guidelines recommend non-heparin 

anticoagulants [117,124]. In vitro studies demonstrated the inhibition of platelet 

activation as well as dissociation of PF4-antibody complexes with therapeutic dose 
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heparin [101]. In addition, a meta-analysis of published cases did not demonstrate 

different outcomes for patients treated with heparin and those treated with a non-

heparin anticoagulant [113]. Nevertheless, clinical data on the efficacy and safety of 

heparin in VITT is very limited and a non-heparin anticoagulant is recommended 

[29,103]. Anticoagulation should continue at least 3 months after the normalization of 

the platelet count.  

 

IVIG competes with anti-PF4 antibodies for FcγIIa [128,129]. The recommended 

dose for IVIG is 1 g/kg/day for two consecutive days. The dose can be repeated if 

platelet count did not respond in 48 hours. Given that confirmatory assays are only 

available in a limited number of centers, the diagnosis of VITT may be delayed by 

several hours or even days. When VITT is suspected, prompt initiation of treatment 

is critical to contain disease activity and reduce disease-related morbidity. IVIG 

therapy should be initiated in suspected cases without waiting for the results of 

functional tests. Perry et al. reported lower mortality rate in VITT patients with CVST 

receiving IVIG than in those who did not (40% vs 73%; p=0.022) [126]. Other 

immunomodulatory therapies such as steroids have also been used in patients with 

VITT [29]. However, retrospective case series did not show their benefit [126]. 

Favorable outcomes have been reported with therapeutic plasma exchange in 

refractory cases [130,131]. Therapeutic plasma exchange removes IgG antibodies 

causing VITT from the circulation [98,132]. 

 

It is important to note that platelet transfusions should be avoided unless a life-

threatening bleeding occurs or immediate major surgery is required [29].  
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2. Aims 

The aims of the dissertation are as follows:  

1. To investigate the procoagulant platelet phenotype after mild COVID-19 

infection 

2. To evaluate the coagulation and fibrinolytic system in the long term after mild 

COVID-19 infection  

3. To measure the effect of sera from COVID-19 convalescent subjects on 

healthy platelets 

4. To investigate the contribution of anti-SARS-CoV-2 antibodies in the 

development of VITT 

5. To analyze the platelet response to IVIG therapy in patients with VITT 

6. To investigate the clinical use of IVIG therapy in patients with VITT 
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3. Results 

3.1. Platelets and sera from donors of convalescent plasma after mild 
COVID-19 show no procoagulant phenotype.  

Authors: Uzun G, Singh A, Abou-Khalel W, Pelzl L, Weich K, Nowak-Harnau S, 

Althaus K, Bugert P, Klüter H, Bakchoul T.  

Journal: Haemostasiologie, Accepted on 12.03.2022  

 

Summary of the study:  

Thrombotic complications are common in patients with COVID-19 and associated 

with a negative outcome. Furthermore, high rehospitalization and mortality rate have 

been shown after discharge in COVID-19 patients suggesting a continuing disease 

progression even in the convalescent phase. COVID-19 associated derangements in 

the plasmatic coagulation system can remain several months after the acute 

disease. This study addressed the following questions:  

 

1) Do platelets express a procoagulant platelet phenotype for long time after a 

mild infection in COVID-19 patients? 

To answer this question, we investigated PS externalization, CD62P expression, and 

GPVI shedding both in platelet rich plasma as well as after incubation of washed 

healthy platelets with CCP donors’ sera using flow cytometry in CCP donors. 

Furthermore, coagulation and fibrinolysis systems were assessed with 

thromboelastometry.  

 

The study included forty-seven CCP donors [22 Male, 25 Female; and mean age 

(±SD) 41.4±13.7 years] with a history of mild COVID-19 infection. Platelets from CCP 
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donors did not show increased PS externalization, CD62P expression, or GPVI 

shedding.  

 

2) Can CCP activate healthy platelets?  

Our study showed that sera from CCP donors do not induce PS externalization or 

GPVI shedding in healthy platelets. None of the patients had a thrombotic 

complication during or after COVID-19 infection.  

 

3) Are there any alterations in the fibrinolytic system after a mild COVID-19 

infection? 

In the thromboelastometry, all but one patient showed a normal clot formation and 

clot lysis.  

 

In conclusion, we did not observe a prolonged coagulopathy after a mild COVID-19 

infection.  

 
 
 
 
 
 
 
 
 
Reproduced with permission from Uzun G, Singh A, Abou-Khalel W, Pelzl L, Weich K, 
Nowak-Harnau S, Althaus K, Bugert P, Klüter H, Bakchoul T. Platelets and Sera from 
Donors of Convalescent Plasma after Mild COVID-19 Show No Procoagulant 
Phenotype. Hamostaseologie. 2022 Oct;42(S 01):S14-S23., Copyright Thieme. 
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Abstract Coronavirus disease-2019 (COVID-19) is associated with increased thromboembolic
complications. Long-term alteration in the coagulation system after acute COVID-19
infection is still a subject of research. Furthermore, the effect of sera from conva-
lescent subjects on platelets is not known. In this study, we investigated platelet
phenotype, coagulation, and fibrinolysis in COVID-19 convalescent plasma (CCP)
donors and analyzed convalescent sera-induced effects on platelets. We investigated
CCP donors who had a history of mild COVID-19 infection and donors who did not
have COVID-19 were used as controls. We analyzed phosphatidylserine (PS) externali-
zation, CD62p expression, and glycoprotein VI (GPVI) shedding both in platelet-rich
plasma (PRP) and after incubation of washed healthy platelets with donors’ sera using
flow cytometry. Coagulation and fibrinolysis systems were assessed with thromboe-
lastometry. Forty-seven CCP donors (22 males, 25 females; mean age (!SD):
41.4!13.7 years) with a history of mild COVID-19 infection were included. Median
duration after acute COVID-19 infection was 97 days (range, 34–401). We did not find
an increased PS externalization, CD62p expression, or GPVI shedding in platelets from
CCP donors. Sera from CCP donors did not induce PS externalization or GPVI shedding
in healthy platelets. Sera-induced CD62p expression was slightly, albeit statistically
significantly, lower in CCP donors than in plasma donors without a history of COVID-
19. One patient showed increased maximum clot firmness and prolonged lysis time in
thromboelastometry. Our findings suggest that procoagulant platelet phenotype is
not present after mild COVID-19. Furthermore, CCP sera do not affect the activation
status of platelets.
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Introduction

Thromboembolic complications are common in patients
suffering from severe coronavirus disease-2019 (COVID-
19).1,2 Various organs are affected by micro and macro
thrombosis as a result of COVID-19-induced coagulopathy.3,4

Thrombotic complications can lead tomultiorgan failure and
mortality in severe cases.5 Both cellular and plasma elements
of the coagulation system show abnormalities in COVID-19.6

Platelets contribute not only to the hypercoagulable state in
COVID-19 patients but also to the systemic inflammatory
response (cytokine storm) by releasing inflammatory medi-
ators.7 The expression of P-selectin and CD63 is correlated
with D-dimer in severe COVID-19 patients, suggesting an
association between platelet activation and COVID-19-asso-
ciated coagulopathy.8 We have previously shown that plate-
lets of COVID-19 patients express a procoagulant
phenotype.9,10 Furthermore, a correlation between procoa-
gulant platelets and thrombosis as well asmortality has been
shown in COVID-19 patients.10,11 As more people recover
from COVID-19 infection and continue to experience symp-
toms,12 discussion has begun over the possibility of persis-
tent coagulopathy even after the acute infection period.13–15

COVID-19 convalescent plasma (CCP) is used in the treat-
ment of COVID-19.16–18 However, concerns have been
expressed whether plasma components in CCP can shift
the already imbalanced coagulation system to a more hyper-
coagulable state.16 Furthermore, we have previously shown
that immunoglobulin G fractions from severe COVID-19
patients induce a procoagulant phenotype in healthy plate-
lets.10 To our best knowledge, the effect of CCP on platelet
phenotype and activation has not been investigated earlier.

The aims of this study were (1) to investigate the procoa-
gulant platelet phenotype and platelet activation after acute
infection in COVID-19 patients, (2) to investigate the effect of
CCP on healthy platelets, (3) to measure the viscoelastic
properties of blood using a rotational thromboelastometry
in CCP donors.

Methods

Study Cohort
This study was conducted between January 2021 and
July 2021. Plasma donorswho had amild COVID-19 infection
at least 4 weeks before plasma donation were invited to
participate in the study (CCP donors). Donors who were
hospitalized for COVID-19 infection or who did not have a
positive SARS-CoV-2 polymerase chain reaction test or
SARS-CoV-2 antibody enzyme immunoassay were excluded
from the study. Information on medical history and COVID-
19 infection was obtained with a questionnaire. Blood sam-
pleswere collected before plasma donation and either tested
immediately or frozen for later analysis. Additionally,
citrated blood samples and native blood samples were also
collected from plasma donors who did not have a COVID-19
infection to establish control values for flow cytometry (FC)
measurements. Written informed consent was obtained
from all study participants.

Assessment of Platelet Phenotype
Platelets were isolated from citrated blood of the healthy
plasma donors and/or CCP donors and tested within 3 hours.
In brief, whole blood was centrifuged (120 g, 20minutes
[min"] at room temperature [RT], without brakes), and PRP
was gently separated and used for further analysis. Where
indicated, PRP was incubated with buffer or thrombin re-
ceptor activating peptide (TRAP-6, 2.5 and 10μM; Hart Bio-
logicals, Hartlepool, UK) for 15minutes at RT. Platelets were
then stained with annexin V-FITC and CD62p-APC (Immu-
noTools, Friesoythe, Germany) and directly analyzed by FC.
Test results were determined as fold increase (FI) of the
percentage of double phosphatidylserine (PS)/CD62p-posi-
tive events in platelets.

For the assessment of GPVI shedding, platelets were
stained with 1μL of phycoerythrin (PE)-labeled anti-GPVI
monoclonal antibodies (BD, San Jose, CA) for 15minutes at RT
in the dark and analyzed by FC. Where indicated, platelets
treated with collagen-related peptide (CRP, 2.5 μg/mL)
(CambCol laboratories, Ely, UK) served as positive control.
Changes in GPVI expression on the platelet surface were
quantified as percentage of reduction in the GPVI-positive
platelet population and normalized to baseline.

Investigation of Antibody-Mediated Effects on
Platelets
The ability of sera to induce procoagulant platelets was
determined by incubating the sera from healthy controls,
plasma donors, and CCP donors with washed platelets from
blood donors. Platelets were obtained from blood donors,
whose platelets are known to have a good response in the
heparin-induced platelet activation assay. Each sample was
tested with platelets from one donor.

Prior to use, all sera samples were heat-inactivated at 56 °C
for 30minutes, followed by a sharp centrifugation step at
5,000g. The supernatant was collected in a fresh tube. For
the determination of procoagulant platelets, 5μL serum was
incubated with 25μL washed platelets (7.5#106) for 1hour
under rotating conditions at RT. Platelets co-incubated with
TRAP-6 (10μM;Hart Biologicals, Hartlepool, UK) and ionomy-
cin (5μM, 15minutes" at RT [Sigma-Aldrich, St. Louis, MO])
were used as a positive control for procoagulant platelets.
Afterwards, samples were washed once (7minutes, 650g, RT,
without brake) and gently resuspended in 75μL of phosphate-
buffered saline (PBS; Biochrom, Berlin, Germany). Platelets
were then stainedwith annexinV-FITC andCD62-APC (Immu-
noTools, Friesoythe, Germany) and directly analyzed by FC.
Test results were determined as FI of the percentage of double
PS/CD62p-positive events in platelets upon incubation with
donors’ sera compared with healthy controls.

For the determination of GPVI shedding, aforementioned
sera-treated washed platelets were stained with 1 μL of PE-
labeled anti-GPVI (BD for 15minutes at RT in the dark. After
incubation, plateletswerefilled upwith PBS to a final volume
of 500μL and immediately assessed by FC. Platelets incubat-
edwith TRAP-6 (10 μM;Hart Biologicals, Hartlepool, UK) and
ionomycin (5 μM, 15minutes at RT [Sigma-Aldrich, St. Louis,
MO]) were used as a positive control. Changes in GPVI
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expression on the platelet surface were quantified as per-
centage of reduction in the GPVI-positive platelet popula-
tion, and normalized to washed platelets that were treated
with sera from healthy controls.

Thromboelastographic Assays
Citrated blood samples from CCP donors were analyzed
within 2 hours using a viscoelastic test system (ClotPro;
Enicor GmbH, Munich, Germany). Blood coagulation is de-
termined by elastic motion (clockwise and anticlockwise) of
a cylindrical cup including blood mixed with activator
reagents around a fixed pin. The motion of the cup is
recorded and the data are converted into thromboelasto-
graphic amplitude values that are plotted over time. The
rotation of the cup is progressively reduced depending on the
elastic properties of the formed clot. We used the extrinsic
assay (EX test), fibrinogen assay (FIB test), and the tissue
plasminogen activator assay (tPA test) according to the
manufacturer’s instructions. In brief, in the EX test, clotting
is triggered by tissue factor. This test appears to be sensitive
to anticoagulation, fibrinogen, factor XIII, and hyperfibrinol-
ysis. In the FIB test, platelets are inhibited by cytochalasin D
and a synthetic GP2b3a antagonist. The FIB test indicates
fibrinogen levels and fibrin polymerization in citrated blood.
The tPA test is similar to the EX test but contains an
additional 650 to 700ng/mL of recombinant tPA (r-tPA), an
activator of plasmin, to determinefibrinolysis resistance. The
following parameters were estimated during the study:
clotting time, maximum clot firmness, lysis time (time
from the beginning of the clot formation until 50% of clot
lysis), andmaximumclot lysis. The normal range specified by
the manufacturer was used in all measured parameters.

Ethics Statement
The studywas conducted in accordancewith the Declaration
of Helsinki. Written informed consent was obtained from all
volunteers prior to any study-related procedure. The study
protocol was approved by the Institutional Review Board of
the University of Tübingen.

Data Sharing Statement
Data may be requested for academic collaboration from the
corresponding author.

Statistics
Statistical analyses were performed using GraphPad Prism 7
(La Jolla, CA). t-Test was used to analyze normally distributed
results. Nonparametric test (Mann–Whitney test) was used
when data failed to follow a normal distribution as assessed
by the D’Agostino–Pearson omnibus normality test. A p-
value of <0.05 was assumed to represent statistical
significance.

Results

Study Cohort
Forty-nine CCP donors were included in the study. Two
donors were excluded later because of the negative SARS-

CoV-2 antibody test results (data not shown). The results
of the remaining 47 CCP donors (25 females, 22 males)
were analyzed. Mean age (!SD) of CCP donors was
41.4!13.7 years. Median duration after acute COVID-
19 infection was 97 days (range, 34–401). Patient char-
acteristics are presented in ►Table 1. None of the CCP
donors developed a thrombotic event during or after
COVID-19 infection until study inclusion. None of them
was vaccinated against SARS-CoV-2 at the time of blood
collection. In the control cohort, 51 (22 females, 29
males) plasma donors with a mean age of 38.9!18.4
years, who did not have SARS-CoV-2 infection, were
enrolled.

Table 1 Demographic and clinical characteristics of the CCP
donors

Demographic data

Age (years) 41.4! 13.7

Sex

Female 25 (53%)

Male 22 (47%)

SARS-CoV-2 infection

Duration of infection (days) 8.6! 6.5

Symptoms

Fever 24 (51%)

Anosmia 25 (53%)

Taste disorder 20 (43%)

Eyes (redness, inflammation) 3 (6%)

Headache 33 (70%)

Sore throat 18 (38%)

Congestion or runny nose 26 (55%)

Cough 27 (57%)

Shortness of breath or
difficulty breathing

18 (38%)

Pneumonia 0 (0)

Nausea/vomiting/diarrhea 5 (11%)

Fatigue 37 (79%)

Limb/joint/back pain 27 (57%)

Skin rash 1 (2%)

Time to blood collection
after the acute infection (days)

97 (34–401)

Comorbidities

Arterial hypertension 5 (11%)

Diabetes mellitus type II 2 (4%)

Asthma 1 (2%)

Benign prostate hypertrophy 1 (2%)

Abbreviation: CCP, COVID-19 convalescent plasma.
Note: Data are represented as mean! standard deviation or median
(range) for continuous data and n (%) for categorical data.
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No Increased Levels of Procoagulant Platelets in CCP
Donors
We first measured PS externalization using annexin V. The
rate of PS-positive cells was not different between plasma
donors and CCP donors (FI of PS-positive platelets:
1.24!1.21 (95% confidence interval [CI]: 0.89–1.6) vs.
1.83!2.40 (95% CI: 1.07–2.6), respectively,
p¼0.43;►Fig. 1A). Similarly, the rate of double positive cells
(CD62p and annexin V) was similar between plasma donors
and CCP donors (FI of CD62p/PS-positive platelets:
1.09!0.62 [95% CI: 0.91–1.27] vs. 1.22!1.51 [95% CI:
0.85–1.58], respectively, p¼0.29; ►Fig. 1B). Baseline
CD62p expressions (FI in mean fluorescence intensity
[MFI]: 1.0!0.13 [95% CI: 0.95–1.04] vs. 1.31!1.20 [95%
CI: 0.93–1.69], p¼0.93) were not statistically different be-
tween plasma donors and CCP donors. Moreover, CD62p
release was comparable between both groups upon activa-
tion with TRAP-6 at 2.5 μM (FI of MFI: 1.59!1.58 [95% CI:
1.1–2.08] vs. 1.69!1.18 [95% CI: 1.28–2.01], p¼0.43) aswell
as with TRAP-6 at 10 μM(FI ofMFI: 4.62!4.42 [95% CI: 3.52–
6.12] vs. 4.18!3.28 [95% CI: 3.15–5.22], p¼0.92; ►Fig. 2).
Furthermore, GPVI shedding at baseline (FI of GPVI-negative
platelets: 1.0!0.12 [95% CI: 0.96–1.04] vs. 1.31!0.81 [95%
CI: 1.06–1.55], p¼0.08) and after activation with 2.5 μg/mL
CRP (FI of GPVI-negative platelets: 2.16!1.16 [95% CI: 1.83–
2.48] vs. 2.31!1.21 [95% CI: 1.96–2.68], p¼0.49) were also
similar between CCP donors and plasma donors (►Fig. 3).

Antibody-Mediated Procoagulant Platelets and GPVI
Using Washed Platelets
Compared with sera from noninfected plasma donors, sera
from CCP donors did not induce higher PS externalization (FI
of PS-positive platelets: 1.16!0.66 [95% CI: 0.61–1.72] vs.

1.51!0.74 [95% CI: 1.3–1.74], respectively,
p¼0.11; ►Fig. 4A) or increased the rate of CD62p/PS double
positive procoagulant phenotype (FI in CD62p/PS-positive
platelets: 1.86!0.87 [95% CI: 1.13–2.59] vs. 1.37!0.63 [95%
CI: 1.19–1.56], respectively, p¼0.10; ►Fig. 4B) in platelets
from healthy persons. Of note, CD62p expression in healthy
platelets after incubation with sera from CCP plasma donors
was significantly lower compared with sera from noninfect-
ed donors (FI in CD62p: 2.09!1.36 [95% CI: 0.95–3.24] vs.
1.16!0.45 [95% CI: 1.03–1.30], p<0.01; ►Fig. 4C). Sera-
mediated GPVI shedding was similar between the groups
(1.07!0.16 [95% CI: 0.94–1.21] vs. 1.27!0.91 [95% CI: 0.99–
1.54], p¼0.52, ►Fig. 4D).

Thromboelastographic Assays
We assessed coagulation and fibrinolysis in whole blood
samples using a thromboelastometry (►Table 2, ►Fig. 5).
The thromboelastometry was available in 39 CCP donors. We
determined clotting time and maximum clot firmness in EX
test aswell as in FIB test to evaluate the coagulation. Only one
CCP donor (case no. 7) had increasedmaximum clot firmness
in EX test and FIB test. These parameters were within the
normal range in other CCP donors. Second, we determined
maximum clot lysis in EX test and in tPA test and lysis time in
tPA test to evaluate the fibrinolysis. Again, one CCP donor
(case no. 7) had increased lysis time in tPA test. This donor
had arterial hypertension and diabetesmellitus type 2. Other
CCP donors had normal fibrinolysis values.

Discussion

Recent studies have repeatedly shown that platelets are
composed of different subpopulations that fulfill different

Fig. 1 Assessment of procoagulant platelet phenotype in COVID-19 convalescent plasma (CCP) donors. Procoagulant platelet phenotype was
analyzed by assessing phosphatidylserine (PS) externalization (A) in platelets from plasma donors and CCP donors. Furthermore, procoagulant
platelets were assessed (B) by using flow cytometry analysis of CD62p/PS double positive cells in platelets from healthy plasma and CCP
donors (blue: plasma donors; red: CCP donors). Data are presented as mean! standard deviation of the fold increase (FI) of the mean
fluorescence intensity (MFI) or percentage (%). ns, not significant.
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roles in coagulation.19 Procoagulant platelets are a distinct
subgroup that externalize PS on their surfaces and support
fibrin formation.20 Despite the vast amount of studies on
coagulation in COVID-19, very few studies investigated pro-
coagulant platelets during acute COVID-19 infection. Althaus
et al have shown an increase in PS externalization in critically
ill COVID-19 patients compared with noncritically ill
COVID-19 patients.10 They also showed that PS externaliza-
tion is associated with thrombosis and high SOFA scores in

this patient group.10 Interestingly, Denorme et al found a
reduced PS externalization after dual agonist stimulation in
COVID-19 patients compared with healthy donors.21 Simi-
larly, Khattab et al demonstrated that procoagulant platelet
levels are lower than controls in moderate and severe
COVID-19 patients, but an increase in procoagulant platelets
is associatedwithmortality in COVID-19 patients.11 Previous
studies reported on antibody-mediated increase in PS expo-
sure as a marker for procoagulant platelets during severe
COVID-19, via active engagement of FcyRIIA.9,10,22 However,
this phenomenon seems to be limited to very severe
COVID-19 patients and might be undetectable in small
cohort of donors who had only mild SARS-CoV-2 infection.
To our best knowledge, PS externalization of platelets in
COVID-19 convalescent individuals has not been investigated
before. In this study,we did notfind a differencebetween CCP
donors and controls in terms of PS externalization.

Surface expression of CD62p (P-selection) is a marker of
platelet activation. Manne et al showed that CD62p expres-
sion is increased compared with controls in hospitalized
COVID-19 patients.23 Hottz et al found an increased CD62p
expression in severe COVID-19 patients but not in patients
with a mild or asymptomatic COVID-19 infection.8 Further-
more, CD62p surface expression at admissionwas correlated
with D-dimer and associated with the need for mechanical
ventilation as well as with in-hospital mortality, suggesting
an association between platelet activation and COVID-19-
associated coagulopathy.8 We found that CD62p expression
in CCP donors at baseline and after stimulation with TRAP-6
was not higher compared with controls. These findings
suggest that platelets of CCP donors are not activated.

Fig. 2 CD62p expression on platelets from COVID-19 convalescent plasma (CCP) donors. The basal expression of P-selectin was determined on
the surface of platelets from plasma and CCP donors. Where indicated, platelets were treated with thrombin receptor activating
peptide (TRAP-6, 2.5 and 10 μM) before staining with anti-CD62p (blue: plasma donors; red: CCP donors). Data are presented as mean! standard
deviation of the fold increase (FI) of mean fluorescence intensity (MFI) or percentage (%). ns, not significant; "p< 0.05.

Fig. 3 GPVI shedding from platelet surface. Reduction in the surface
expression of GPVI on the platelets of plasma and CCP donors was
analyzed with or without incubation with collagen-related peptide
(CRP, 2.5 μg/mL) by anti-GPVI-PE antibody staining (blue: plasma
donors; red: CCP donors). Data are presented as mean! standard
deviation of the fold increase (FI) of percentage of GPVI-negative
platelets (%). ns, not significant; "p< 0.05.
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Recent randomized trials showed increased survival in
COVID-19 patients receiving CCP with high-dose neutraliz-
ing antibodies.17,18 However, the risk of exacerbation of
COVID-19-associated coagulation derangements with CCP
as well as transfusion-related complications have also been
expressed.16 Therefore, investigation of the effect of CCP on
platelets is of clinical importance. In this study, we showed

that sera from CCP donors do not induce a procoagulant
phenotype or platelet activation in healthy platelets.

GPVI, the platelet immunoreceptor tyrosine-activating
motif receptor for collagen, has been shown to play a
prominent role on vascular integrity during inflammation.24

Bongiovanni and colleagues reported that enhanced GPVI
levels during SARS-CoV-2 infection might hint toward a

Fig. 4 Serum-induced effects on platelet’s phenotype. Sera from healthy controls, plasma donors, and COVID-19 convalescent plasma (CCP)
donors were incubated with washed platelets isolated from healthy donors, and PS externalization (A), procoagulant platelet formation (B),
platelet activation (C), and GPVI shedding (D) were determined (blue: plasma donors; red: CCP donors). Each sample was tested with platelets
from one donor. Data are presented as mean! standard deviation of the fold increase (FI) of healthy donors. ns, not significant; PS,
phosphatidylserine; "p< 0.05.

Table 2 Viscoelastic properties of clots formed in blood samples from CCP donors

Parameter Test Reference
rage

Mean Standard
deviation

Lower 95%
CI of mean

Upper 95%
CI of mean

Clotting time (s) EX test 38–65 48 4.8 46 49

Maximum clot firmness (mm) EX test 53–68 62 3.5 60 63

Maximum lysis (%) EX test 0–12 5.6 2 4.9 6.2

Maximum clot firmness (mm) FIB test 9–27 15 4.2 14 17

Maximum lysis (%) tPA test 92–100 95 1.2 94 95

Lysis time (s) tPA test <300 185 39 173 198

Abbreviations: CCP, COVID-19 convalescent plasma; CI, confidence interval.
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hyperactivated phenotype of platelets during COVID-19, and
this might play a role during hypercoagulopathy observed in
COVID-19 and hence influence the patient outcome.25 Apart
from antibody-mediated procoagulant platelet generation,
other mechanisms have also been reported previously. Cos-
timulation of GPVI along with protease-activated receptors,
PAR1 and PAR4, has been shown to increase PS exposure and
subsequent procoagulant platelet formation.26,27 During
dual stimulation of GPVI and PAR1/4, a sustained increase
in Ca2þ levels leads to PS exposure in platelets.28 Thus, it still
remains unclear whether procoagulant platelet formation in
severe COVID-19 is caused solely by antibody-mediated
mechanisms or also by increased thrombin generation and
higher levels of inflammation factors. In our study, no
significant differences were observed in GPVI levels of CCP
donors as compared with plasma donors at baseline as well
as after stimulationwith CRP. Similarly, sera fromCCP donors
as well as from plasma donors induced similar levels of GPVI
cleavage from healthy platelets.

As more people recover from COVID-19, discussions have
begun over the possibility of post-COVID syndrome or the so-
called long-COVID syndrome.12 A recent epidemiological
study demonstrated a significantly increased readmission
rate (3.5-fold, 95% CI: 3.4–3.6) and post-discharge mortality
rate (7.7-fold, 95% CI: 7.2–8.3) in COVID-19 patients com-

pared with a non-COVID control group.29 Several retrospec-
tive studies reported the rate of thromboembolic events after
discharge in patients with COVID-19. The rates of venous
thromboembolism and arterial thromboembolism in these
studies are 0.2 to 2.6%30–35 and 0 to 1.9%,31–33 respectively.
These studies are mostly retrospective and lack a compre-
hensive follow-up of the patients after discharge, which
suggests that the true incidence of thromboembolic events
could be even higher.

Very few studies investigated cellular and plasmatic
components of the coagulation system after acute COVID-
19 infection. Most recently, von Meijenfeldt and colleagues
reported elevated plasma levels of factor VIII and PAI-1 in
COVID-19 patients 4 months after discharge.13 Townsend
et al found increased D-dimer values in both hospitalized
and nonhospitalized patients at median of 80.5 days after
initial diagnosis.14 In this study, we used thromboelastom-
etry to evaluate the coagulation status in CCP donors. An
increased maximum clot firmness and hypofibrinolysis in
thromboelastometry have been reported in hospitalized
COVID-19 patients. Hulshof et al reported an increased
maximum clot firmness over 80% of all measurements in
critically ill COVID-19 patients.36 In the same study, a
sufficient (>90%) clot breakdown was not achieved in
more than half of the samples.36 In a previous study from

Fig. 5 Viscoelastic properties of clot formed in blood samples from COVID-19 convalescent plasma (CCP) donors. Citrated blood samples were
collected and investigated within 2 hours using a viscoelastic test system (ClotPro Enicor GmbH, Munich, Germany). EX test, FIB test, and tPA test
results in CCP donors. Pink area illustrates the reference ranges determined by the manufacturer; § denotes case no. 7.
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our group, an increased maximum clot firmness and ex-
tended lysis time in COVID-19 patients admitted to normal
wards or to the intensive care has been demonstrated.37 The
fibrin clots in the lungs of COVID-19 patients are more
compact, consist of thin fibers, and have small pores
compared with fibrin clots in patients with influenza infec-
tion.38 Together with reduced fibrinolytic activity, this
altered clot structure might cause thrombus in COVID-19
patients to be resistant to fibrinolysis. Two previous studies
have investigated global coagulation status using rotational
thromboelastometry after ICU discharge in COVID-19
patients.15,39 Magomedov et al reported that maximum
clot firmness reduced significantly within 12 weeks after
discharge in COVID-19 patients.39 Most recently, Hulshof
et al have shown that maximum clot firmness was within
normal range in the tissue-type plasminogen activator
rotational thromboelastometry in COVID-19 patients
6 months after discharge from ICU.15 However, although
the lysis time in the same test overall significantly reduced
6 months after discharge, it remained over the normal range
in 4 of 22 (18%) patients.15 Similarly, von Meijenfeldt
reported a prolonged clot lysis time in COVID-19 patients
4 months after hospital discharge, suggesting a sustained
hypofibrinolytic state.13 In this current study, we evaluated
coagulation and fibrinolysis in CCP donors with rotational
thromboelastometry. We demonstrated increased hyperco-
agulability and a hypofibrinolytic state in one donor (2%).
This donor did not experience any thrombotic event during
COVID-19 infection and thereafter. However, this donor had
arterial hypertension and diabetes mellitus type 2. Yürekli
et al found an increased maximum clot firmness in diabetic
patients than in controls.40 Comorbidities of this donor
might be responsible for the abnormal findings in throm-
boelastometry. Further studies are needed to better define
the risk of thrombosis after discharge and in the conva-
lescent phase in COVID-19 patients. Of note, impaired
fibrinolysis is not restricted to COVID-19 or sepsis. In an
ongoing study, we observed an increased resistance to clot
lysis in some patients with vascular occlusive disorder after
stem cell transplantation (unpublished data). The clinical
relevance of these findings has not been investigated yet.

Our study has several limitations. First, we did not have
blood samples at the time of infection that would allow us
to compare the changes in time. Second, this study is
focused on platelets and we did not measure plasmatic
coagulation factors in blood. Further studies should inves-
tigate the alterations in plasma components of coagulation
and fibrinolytic system after acute COVID-19 infection.
Finally, plasma donors undergo routine clinical examina-
tion as required by local regulations which may cause a
selection bias since they are relatively younger and health-
ier compared with other COVID-19 convalescent
individuals.

In conclusion, we could neither detect a procoagulant
platelet phenotype or increased platelet activation nor a
hypercoagulable or hypofibrinolytic state in CCP donors
after primary infection. Moreover, sera from CCP donors

did not induce significant changes in platelet activation or
procoagulant status. These findings support data from
clinical studies which indicate that transfusion of CCP to
treat or prevent severe COVID-19 is not associated with
increased risk of exacerbation of the coagulopathy in
COVID-19.

“What Is Known About This Topic?”

• Platelets contribute to the hypercoagulable state in
COVID-19 patients.

• Platelets of critically ill COVID-19 patients express a
procoagulant phenotype.

• Immunoglobulin G fractions from severe COVID-19
patients induce a procoagulant phenotype in healthy
platelets.

“What Does This Paper Add?”

• Procoagulant platelet phenotypeswere not observed after
mild COVID-19 infection.

• Sera from CCP donors do not activate healthy platelets or
induce procoagulant phenotype.
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3.2. No Correlation between Anti-PF4 and Anti-SARS-CoV-2 Antibodies after 
ChAdOx1 nCoV-19 Vaccination.  

Authors: Uzun G, Althaus K, Bakchoul T. 

Journal: N Engl J Med. 2021 Sep 30;385(14):1334-1336.  

 

Summary of the study:  

Patients with VITT develop IgG antibodies reactive to PF4 within days after 

vaccination. Anti-PF4 antibodies are the drivers of the pathophysiology of VITT. 

However, the mechanism of the development of anti-PF4 antibodies after 

vaccination is yet to be defined. A non-replicating adenovirus carries DNA of spike 

protein of SARS-CoV-2 in vector vaccines. Spike protein will be produced by cells 

infected with adenovirus. Immune reaction to spike protein leads to production of 

antibodies against different antigenic points of the spike protein. A cross-reactivity 

between spike protein and PF4 is one of the proposed mechanisms to explain the 

development of anti-PF4 antibodies in patients with VITT.  

 

To test this hypothesis, we measured anti-PF4/heparin antibodies and the antibodies 

against SARS-CoV-2 spike protein (Spike Trimer, Receptor Binding Domain [RBD], 

S1, S2) and nucleocapsid protein using a bead-based Luminex assay in healthcare 

workers (n=101) two weeks after the first vaccination with ChAdOx1 nCoV-19 and in 

patients (n=59) with clinically suspected VITT after ChAdOx1 nCoV-19. VITT 

diagnosis was confirmed with a modified heparin induced platelet aggregation assay 

(HIPA). 

 



 

33 

Of the 59 patients with clinically suspected VITT, 20 (34%) were diagnosed with 

VITT. As expected, the level of anti-PF4/heparin antibodies is higher in VITT patients 

compared to healthy controls and non-VITT patients. None of the patients with a 

negative anti-PF4/heparin ELISA had a positive HIPA. The levels of antibodies 

against Spike Trimer, RBD, S1, and nucleocapsid protein were similar in all groups. 

The level of anti-PF4/heparin antibodies did not correlate with anti-SARS-CoV-2 

antibodies in all study groups.  

 

As a conclusion, we did not find a correlation between antibodies against SARS-

CoV-2 and against PF4. Anti-SARS-CoV-2 antibodies are not responsible for the 

development of VITT. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Reproduced with permission from (Uzun G, Althaus K, Bakchoul T. No Correlation 
between Anti-PF4 and Anti-SARS-CoV-2 Antibodies after ChAdOx1 nCoV-19 
Vaccination. N Engl J Med. 2021 Sep 30;385(14):1334-1336.), Copyright 
Massachusetts Medical Society. 
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firmed, fulminant myocarditis that had devel-
oped within 2 weeks after Covid-19 vaccination, 
a direct causal relationship cannot be defini-
tively established because we did not perform 
testing for viral genomes or autoantibodies in 
the tissue specimens. However, no other causes 
were identified by PCR assay or serologic exami-
nation.
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No Correlation betwen Anti-PF4 and Anti–SARS-CoV-2 
Antibodies after ChAdOx1 nCoV-19 Vaccination

To the Editor: Vaccine-induced immune throm-
botic thrombocytopenia (VITT), also known as 
thrombosis with thrombocytopenia syndrome, 
is a rare but potentially fatal complication of 
vector-based severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) vaccines.1-3 The clin-
ical picture and the serologic findings in patients 
with VITT resemble heparin-induced thrombo-
cytopenia.1-3 Several groups have reported the 
presence of platelet factor 4 (PF4)–reactive anti-
bodies in patients with VITT.1-3 IgG from patients 
with VITT induces platelet activation and aggre-
gation by cross-linking Fcγ receptor IIA on 
platelets.1 PF4 is a tetrameric protein that is re-
leased from platelet alpha granules on activa-
tion. VITT antibodies bind to the heparin-bind-
ing site on PF4.4 The link between vaccination 
and the formation of anti-PF4 antibodies is yet 
to be determined. A proposed mechanism in-
cludes cross-reactivity between anti–SARS-CoV-2 
and anti-PF4 antibodies.5 In the current study, 
we investigated the correlation between anti–
PF4–heparin antibodies and anti–SARS-CoV-2 
antibodies in vaccinated health care workers 
(healthy controls) and in vaccinated patients 
with clinically suspected VITT.

The level of anti–PF4–heparin antibodies was 
measured with the use of an enzyme-linked im-
munosorbent assay (ELISA), and the levels of 

antibodies against various antigenic sites of the 
SARS-CoV-2 spike protein (spike trimer, receptor-
binding domain [RBD], subunit 1 [S1] domain, 
and subunit 2 [S2] domain) and against nucleo-
capsid protein were measured with the use of a 
bead-based assay (Luminex). Antibodies were 
measured in 101 healthy controls 2 weeks after 
the first dose of ChAdOx1 nCoV-19 (Oxford–
AstraZeneca) had been administered and in 59 
patients with clinically suspected VITT between 
11 and 22 days after the first dose had been 
administered. The ability of the sera to activate 
platelets was tested with the use of a modified 
heparin-induced platelet aggregation assay. De-
tails of the methods are provided in the Supple-
mentary Appendix, available with the full text of 
this letter at NEJM.org.

VITT was confirmed in 20 of 59 patients 
(34%) on the basis of a positive PF4 ELISA and a 
positive modified heparin-induced platelet aggre-
gation assay (Table S1 in the Supplementary 
Appendix). The level of anti–PF4–heparin anti-
bodies was higher among the patients with 
confirmed VITT than among the healthy con-
trols and the patients who did not have VITT 
(Fig. 1A and Table S1). The 95% confidence in-
tervals for the differences between the groups 
are presented in Table S2; these confidence in-
tervals were not adjusted for multiplicity and 
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therefore cannot be used to infer effects. The 
levels of antibodies against spike trimer, RBD, 
S1 domain, and nucleocapsid protein were simi-
lar in the three groups. The levels of antibodies 

against S2 domain were lower among the pa-
tients who did not have VITT than among the 
persons in the other two groups. We did not 
find any correlation between the level of anti–

Figure 1. Antibody Levels and Correlation Analysis.

Panel A shows the anti–platelet factor 4 (PF4)–heparin antibody optical density (OD) levels and anti–SARS-CoV-2 IgG levels against 
spike trimer, receptor-binding domain (RBD), subunit 1 (S1) domain, subunit 2 (S2) domain, and nucleocapsid protein in the healthy 
controls, the patients without vaccine-induced immune thrombotic thrombocytopenia (VITT), and the patients with confirmed VITT. 
Panel B shows the correlation analysis between the level of anti–PF4–heparin antibodies and the level of anti–SARS-CoV-2 IgG antibod-
ies against spike trimer, RBD, S1 domain, S2 domain, and nucleocapsid protein in the healthy controls, the patients without VITT, and 
the patients with confirmed VITT. Anti–PF4–heparin antibodies were quantified with the use of an enzyme-linked immunosorbent assay. 
Anti–SARS-CoV-2 IgG antibodies were quantified with the use of a bead-based assay (Luminex). Each dot in the figure represents an in-
dividual person, and the numbers of persons tested is shown in Panel A. The dashed lines in Panel A indicate the cutoff values, and the 
solid lines in Panel B indicate the correlation coefficient (r). TE denotes thrombotic event.
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PF4–heparin antibodies and the level of anti–
SARS-CoV-2 IgG antibodies in any of the three 
groups (Fig. 1B and Table S3).

Moreover, the levels of anti–SARS-CoV-2 anti-
bodies did not differ substantially between vac-
cinated persons without complications (i.e., the 
healthy controls) and patients with VITT. Simi-
larly, Scully et al.2 reported that the levels of 
antibodies to spike protein and RBD in patients 
with VITT were in the same range as those of 
the recipients of one dose of ChAdOx1 nCoV-19. 
Furthermore, our study did not show a correla-
tion between anti–PF4–heparin antibodies and 
anti–SARS-CoV-2 antibodies in patients with VITT. 
Although a preprint publication suggested that 
spike protein shares an immunogenic epitope 
with PF4, purified anti-PF4 and anti–PF4–hepa-
rin antibodies from patients with VITT did not 
show cross-reactivity to recombinant SARS-CoV-2 
spike protein.5

Our results do not support the hypothesis 
that the immune response against SARS-CoV-2 
proteins leads to the formation of anti-PF4 anti-
bodies in patients with VITT. However, we can-
not exclude the possibility of cross-reactivity 
between a subgroup of anti–SARS-CoV-2 anti-
bodies and a subgroup of anti-PF4 antibodies. A 
better understanding of the link between vacci-

nation and VITT is necessary for the develop-
ment of more targeted therapies.
Günalp Uzun, M.D.
Center for Clinical Transfusion Medicine 
Tuebingen, Germany
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Effectiveness of an Inactivated SARS-CoV-2 Vaccine

To the Editor: In the article by Jara and col-
leagues (Sept. 2 issue)1 reporting a study of real-
world efficacy of the CoronaVac vaccine against 
Covid-19, the authors provide a graph showing 
the incidences of infection among fully vaccinated, 
partially vaccinated, and unvaccinated partici-
pants. From this graph, the reader can conclude 
that partially vaccinated persons are especially 
vulnerable, since the incidence of infection is 
higher among them than among unvaccinated 
persons. This fact could have some causal expla-
nation, but I suggest that it is purely a statistical 
artifact.

The authors mention that vaccination status 
is a time-dependent variable, so for the efficacy 
calculations they correctly follow Thompson 
et al.,2 using person-days, rather than numbers 
of persons, for the calculation of hazard ratios. 

A person’s vaccination status may vary over time, 
so it is not possible to separate participants into 
groups according to vaccination status. Still, if 
one tries to do this, as the authors do, all the 
persons who become infected during the inter-
val between receiving the first and second doses 
of vaccine will be labeled as partially vaccinated, 
which severely biases the incidence of infection 
in this “group.” I think that the readers of the 
Journal would benefit from an explanation of this 
misleading and slightly frightening graph in this 
otherwise very important article.

Artemy Okhotin, M.D.
Tarusa Hospital 
Tarusa, Russia 
okhotin@  tarusa-hospital . ru
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Methods 
 

Sera were collected from health care workers at the blood donation center in Tübingen two 

weeks after the vaccination with ChAdOx1 nCoV-19. Additionally, sera of the patients with 

clinically suspected vaccine-induced immune thrombotic thrombocytopenia (VITT) were also 

analyzed.  

 

The diagnosis of VITT was serologically confirmed according to the recommendation of the 

International Society of Thrombosis and Hemostasis Scientific and Standardization 

Committee Platelet Immunology Subcommittee.1 

 

We measured PF4/heparin antibodies using a commercial IgG- enzyme-linked 

immunosorbent assay (ELISA) to detect IgG antibodies against PF4/heparin (Hyphen 

Biomed, Neuville-sur-Oise, France). The ability of sera to activate platelets was tested using 

a modified functional assay, heparin induced platelet aggregation assay (HIPA), as 

previously described.2 In brief, serum was tested with washed platelets from four different 

healthy donors in the absence (buffer alone) or in the presence of heparin (0.2 IU/mL and 

100 IU/mL). In addition, platelets were preincubated with PF4 (50 μg/mL). Reactions were 

placed in microtiter wells containing spherical stir bars and stirred at approximately 500 

revolutions per minute (rpm). Wells were examined optically at five-minutes interval for loss 

of turbidity. A serum was considered reactive (positive) if a shift from turbidity to transparency 

occurred within 30 min in at least two platelet suspensions. Observation time was 45 min. 

Each test included a diluted serum from a patient with heparin induced thrombocytopenia 

(HIT) as a weak positive control, collagen (5μg/mL) as strong positive control and a serum 

from a healthy donor as a negative control. 

 

COVID-19 antibodies were measured with a multiplex assay (MULTICOV AB, NMI, 

Reutlingen, Germany) with the FLEXMAP 3D® system (Luminex Corporation, Austin, USA) 

according to manufacturer’s recommendations.3 In brief, 25 μL of the 1:200 diluted samples 
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were incubated with bead mix for 2 hours at 21 °C on a microplate shaker. Unbound 

antibodies were removed using a magnetic plate separator and the beads were washed 

three times with 100 µL of wash buffer (1x PBS, 0.05% (v/v) Tween20). R-phycoerythrin 

labeled goat-anti-human IgG (Dianova, Cat# 109-116-098, Lot#148837, used at 3 µg/mL) 

antibodies were added and the plate was incubated for 45 min at 21 °C. For each sample, a 

single measurement was performed. Quality control samples were also measured duplicate. 

Readout was done using a Luminex FLEXMAP 3D instrument and the Luminex xPONENT 

Software 4.3 (settings: sample size: 80 µL, 50 events, Gate: 7,500–15,000, Reporter Gain: 

Standard PMT). Antibody levels were calculated by dividing the mean fluorescence intensity 

(MFI) values of each sample by the mean MFI value of quality control samples for each 

antigen separately. 

 

The study was conducted in accordance with the declaration of Helsinki. The study protocol 

was approved by the Institutional Review Board of the University of Tuebingen 

(236/2021BO1). We used GraphPad Prism, Version 7.0 (GraphPad, La Jolla, USA) for 

statistical analysis. Normality was tested using D'Agostino & Pearson normality test. The 

mean and 95% confidence interval of the difference between the groups were calculated 

using ANOVA with Tukey’s multiple comparisons test and presented in Table S2. The 

confidence intervals have not been adjusted for multiplicity and cannot be used to infer 

effects. Correlation was analyzed using Spearman’s rank correlation test. Data are presented 

as median (interquartile range) or as mean (95% confidence interval).  

 

Results 
 

We analyzed sera from health care workers (n=101) who were received their first vaccination 

with ChAdOx1 nCoV-19 (vaccinated control group). Sera from 59 patients have been 

referred to us during the study period (08 March 2021 to 01 June 2021) for the diagnosis of 

VITT. For patients in the suspected and confirmed VITT cohorts, the median duration 
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(interquartile range) after vaccination and symptom begin was 9 days (7-14 days). The 

median time (interquartile range) from vaccination to blood collection for testing was 15 days 

(11-22 days) in patients with clinically suspected VITT. We confirmed VITT in 20 (34%) 

patients and 39 (56%) patients did not have VITT. 

A positive PF4/heparin ELISA was obtained in 6/101 (6%) vaccinated controls. Sera from 

convalescent COVID-19 patients who have anti-Spike antibodies revealed no reaction 

against PF4/heparin in ELISA (data not shown). Anti-PF4/heparin values was higher in 

positive VITT cases compared to both vaccinated controls and negative cases. After high 

dose heparin, PF4 reactivity diminished in all positive samples (data not shown). Although 

some patients had a strong reaction on ELISA, modified HIPA was negative in these cases. 

Antibodies to nucleocapsid protein of SARS-CoV-2 virus has been detected in four patients 

in the VITT negative group. It is possible that these patients had a recent COVID-19 

infection. On the other hand, nucleocapsid antibodies were not detected in samples from 

vaccinated controls and in those from patients with VITT. The antibody levels against Spike 

Trimer, RBD, S1 domain and nucleocapsid protein were similar between all three groups 

(Table S1, Table S2, Figure 1A). However, anti-S2 antibodies were lower in VITT negative 

cases compared to vaccinated controls and positive VITT cases (Table S1, Figure 1A).
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3.3. The use of IV immunoglobulin in the treatment of vaccine-induced 
immune thrombotic thrombocytopenia.  
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Heyne N, Maschke M, Limpach C, Nagel S, Sachs UJ, Fend F, Bakchoul T. 

Journal: Blood. 2021 Sep 16;138(11):992-996.  

 

Summary of the study:  

Intravenous immunoglobulin (IVIG) is used in the treatment of immune mediated 

platelet disorders such as immune thrombocytopenia and heparin induced 

thrombocytopenia. IVIG blocks the Fc receptor on platelet surface. Platelet activation 

in VITT occurs via Fcgamma RIIA (FcγRIIa) receptors. It has been shown that IVIG 

can mitigate platelet activation in HIPA and flow cytometry induced by sera from 

VITT patients.. However, clinical experience on the use of IVIG in patients with VITT 

is limited. This study aimed to analyze the clinical response to IVIG therapy in 

patients with VITT. Furthermore, the effect of IVIG therapy on anti-PF4 antibody 

levels and platelet activation has been investigated.  

 

Five patients were included in this retrospective study. Laboratory parameters such 

as platelet count, D-dimer and anti-PF4 antibody levels were recorded. Additionally, 

sera of the patients were used to analyze platelet activation in HIPA and 

procoagulant platelets in flow cytometry. IVIG was administered at a dose of 1 g/KG 

body weight 2 to 5 days. 
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In this study, we observed rapid response (platelet count ≥ 100×109/L) in 4 patients 

within 96h. One patient had a platelet response (platelet count ≥ 30x109/L and at 

least 2-fold increase the baseline count) within 72h after IVIG therapy. D-dimer levels 

decreased after IVIG therapy. Although anti-PF4 antibody levels did not change after 

IVIG therapy, procoagulant platelet generation was reduced. 

 

In conclusion, IVIG interferes with the pathogenic anti-PF4 antibodies by competing 

with them to bind to FcγRIIa receptors which might be in vivo associated with 

reductions in platelet activation and disseminated intravascular coagulation. The 

adjunct use of IVIG together with anticoagulation is recommended in the acute 

treatment of VITT to mitigate the progression of the disease. 

 

 

 

 

 

This research was originally published in Blood. Author(s). The use of IV immunoglobulin in 
the treatment of vaccine-induced immune thrombotic thrombocytopenia. Blood. 
2021;138:992-996. © the American Society of Hematology." 



SF3B1 MT patients compared with 40% among those with WT.5

Recent data from a phase 2 clinical study with imetelstat suggest
potential preferential and disease modifying activity among small
number of SF3B1 MT patients.6

We reclassified our patients based on IWG SF3B1 new proposal
criteria.1 Notably, 175 patients were classified as MDS-SF3B1 by
the new proposed criteria, 145 patients with SF3B1MT not meet-
ing the new proposed criteria, and 1412 SF3B1WTMDS patients
(Table 1). The median OS was 120 months (95% CI, 77-164
months), 55 months (95% CI, 42-69 months), and 31.5 months
(95% CI, 28-35 months), respectively (P , .005; Figure 1C). The
median leukemia-free survival was not reached among all SF3B1
MTpatients compared with 58months among SF3B1WTpatients
(P, .005) (Figure 1D). The rate of AML transformation was 4.7%,
22%, and 38%, respectively (P , .005). t-MDS was observed in
10%, 9%, and 17% of the 3 above-mentioned groups. Excluding
t-MDS, the median OS was 142, 57, and 36 months, respectively
(P, .005). There was no difference in response rates to erythroid
stimulating agents, hypomethylating agents, and lenalidomide
between patients classified as SF3B1 by IWG new criteria com-
pared with other SF3B1 MT MDS.

In summary, we confirm and validate the findings reported
recently by Malcovati et al that SF3B1 MT MDS should be classi-
fied as a unique disease entity based on the new proposal criteria.
Furthermore, we demonstrate that SF3B1 MT retained favorable
prognostic value in the context of t-MDS and worse outcome
among patients with isolated del(5q), and we compliment the
IWG findings by reporting responses to current available therapies
based on SF3B1 MT status.
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The ChAdOx1 nCoV-19 is a recombinant chimpanzee adenoviral
vector vaccine encoding the spike glycoprotein of severe acute
respiratory syndrome coronavirus 2, which has a good efficacy
rate and safety profile.1 Over the past 2 months, concern has
been raised over reported thrombotic events associated with
thrombocytopenia after ChAdOx1 nCoV-19 vaccination, a compli-
cation called vaccine-induced immune thrombotic thrombocyto-
penia (VITT).2–6 The pathophysiology of VITT is still unclear but
seems to be similar to spontaneous autoimmune heparin-
induced thrombocytopenia (aHIT).2,7 In fact, as in aHIT, VITT
patients develop platelet factor-4 (PF4) antibodies without any
recent exposure to heparin. These antibodies are able to activate
platelets and induce procoagulant platelet phenotype via cross-
linking the Fc g receptor IIA on platelet surface. IV immunoglobu-
lin (IVIG) has been successfully used in the treatment of
spontaneous aHIT.8,9 We and others have recently shown that
IVIG inhibits the in vitro induction of procoagulant platelet
phenotype by sera from VITT patients.2,7 Herein, we report our
clinical experience on the use of IVIG in the management of

VITT and present novel laboratory analysis of the effect of IVIG
therapy on anti-PF4 antibody level and platelet activation in
VITT patients.

The study cohort consisted of patients who were admitted to our
hospitals between February 1 and May 5, 2021 with suspected
VITT due to neurological or hematological symptoms after first
immunization with ChAdOx1 nCoV-19 (Vaxzevria; AstraZeneca,
London, United Kingdom). The diagnosis of VITT was serologically
confirmed according to the recommendations of the International
Society on Thrombosis and Haemostasis Scientific and Standard-
ization Subcommittee on Platelet Immunology,10 using an immu-
noglobulin G (IgG)-enzyme immune assay (EIA) to detect IgG
antibodies against PF4 (Hyphen Biomed, Neuville-sur-Oise,
France). The ability of the sera to activate platelets was tested
using a modified heparin-induced platelet aggregation assay as
previously described.7 Sera-induced procoagulant platelets were
analyzed using flow cytometer as previously described.11 For
more details, see the supplemental material, available on the
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Figure 1. Individual course of the platelet counts and therapies. Five cases (A-E) of VITT after severe acute respiratory syndrome coronavirus 2 vaccination were iden-
tified. Patients were treated with nonheparin anticoagulation (argatroban, green blocks; danaparoid, lavender blocks; direct oral anticoagulants, orange blocks) combined
with IVIG. Patients receiving therapeutic anticoagulation with platelet counts below 50 3 109/L (dashed line) were considered to be at enhanced risk for major hemorrhage.
CSVT, cerebral sinus vein thrombosis; DVT, deep vein thrombosis; PE, pulmonary embolism; PLT, platelet.
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BloodWeb site. The study was conducted in accordance with the
Declaration of Helsinki. The study protocol was approved by the
Institutional Review Board of the University of Tuebingen (236/
2021BO1). We used GraphPad Prism, version 7.0 (GraphPad, La
Jolla, CA) for statistical analysis. A value of P, .05 was accepted
as statistically significant.

Five patients (3 females) with a median age of 47 years (range, 20-
57) were included in this study. The duration between vaccination
and hospital admission was 7 to 9 days. All patients had severe
thrombocytopenia (41.269.73109/L; range, 10-60; Figure 1A-
E) and increased D-dimer (9 mg/mL or higher; range, 9-54). At
admission, several thrombotic events, including cerebral venous
sinus thrombosis (CVST; 4 patients, cases 1-3 and 5), pulmonary
embolism (2 patients, cases 4 and 5), and deep vein thrombosis
(case 4), were detected. Detailed case descriptions and patient
characteristics are given in the supplemental methods and in
supplemental Table 1A. VITT diagnosis was confirmed by
detecting anti-PF4 IgG antibodies in EIA (optical density [OD]
2.9860.23; range, 2.07-3.36), platelet activation in the modi-
fied heparin-induced platelet aggregation assay (median time
to platelet aggregation, 5 minutes; range, 5-5 minutes ),
and formation of procoagulant platelets (CD62p/PS1 platelets
mean: 4567; range, 23-66). Laboratory investigations at
admission and after IVIG therapy are presented in supplemental
Table 1B.

All patients received parenteral anticoagulation with argatroban
(n5 4) or danaparoid (n51), and 1 patient (case 5) initially
received apixaban. Two patients (cases 3 and 5 on a prophylactic
dose of argatroban and apixapan, respectively) developed a new
thromboembolic complication at day 4 and 3 of hospitalization
(before IVIG administration), respectively. Anticoagulation was
continued in these patients with argatroban in a therapeutic dos-
age (Figure 1C,E).

IVIG was administered at a dose of 1 g/kg body weight for 2 to 5
days. Median of total IVIG dose was 140 g (range, 95-600 g).
Absolute platelet increment was 32.6617.13109/L within 48
hours (P vs baseline, .12) and 94.2623.33109/L within 72 hours
after IVIG (P vs baseline, .01; Figure 2A). A complete platelet
response (platelet count$1003 109/L) was achieved in 4 patients

within 96 hours. One patient had a platelet response (platelet
count $303109/L and at least twofold increase the baseline
count) within 72 hours after IVIG therapy. From a clinical perspec-
tive, increasing the platelet count is important in thrombocytope-
nic patients requiring therapeutic anticoagulation. This is most
critical when thrombosis occurs at unusual sites, such as CVST,
because of the increased mortality risk due to hemorrhagic trans-
formation after an arterial stroke or CVST. In our cohort, 1 patient
(case 1) suffering from VITT-associated CVST had postthrombotic
hemorrhage during the thrombocytopenic period, prior to receiv-
ing IVIG.

Successful use of IVIG in the treatment of aHIT has been
reported.8,9,12 Mainly because of similarities between aHIT and
VITT, recent societal guidelines recommend the use of IVIG in
VITTwith the assumption that IVIG couldmitigate the platelet acti-
vation induced by anti-PF4 antibodies and thus reduce the plate-
let consumption and the development of new thrombosis.10,13,14

However, concerns of increased new thrombotic events limit its
use.15 Serial D-dimer levels were available from 3 cases, and all
of them showed a decreasewithin 72 hours after IVIG therapy (Fig-
ure 1). We observed progression of CVST in 1 patient (case 5).
Other patients receiving nonheparin anticoagulation at therapeu-
tic doses combined by IVIG did not develop new thrombosis, indi-
cating sufficient antithrombotic efficacy. Similarly, Thaler et al
successfully used IVIG (1 g/kg for 2 consecutive days) and argatro-
ban in a patient with VITT.16 Tiede et al reported a positive platelet
response in 3 VITT patients after IVIG therapy (1 g/kg for 2 consec-
utive days).5 However, 2 patients developed new thromboem-
bolic events (extensive splanchnic vein thrombosis and popliteal
artery occlusion).5 New thromboembolic events are common in
patients with VITT.5-7 Therefore, clinicians should pay attention
to dynamic changes in clinical as well as laboratory parameters
and exercise extra vigilance in VITT patients in order to detect
new thromboembolic events in a timely manner.

To assess the mechanism by which high-dose IVIG downregulates
hypercoagulability in VITT, we analyzed the ability of VITT
patients’ sera to generate procoagulant platelets before and after
IVIG therapy. The reactivity in PF4 EIA did not change significantly
after IVIG administration (n54, 3.2160.06 OD vs 3.1860.08
OD; P: .798; supplemental Table 1B). On the other hand, the
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Figure 2. Effect of IVIG therapy on PLT count and procoagulant platelets. Platelet count increment (A) and procoagulant platelets after IVIG therapy (B-C).
Procoagulant platelets (CD62P/Phosphatidylserine [PS]1) were analyzed in patients before and after IVIG therapy via Annexin V-FITC and CD62p-APC antibody staining.
Where indicated, PLTs were pretreated with PF4 (C). Data are presented as fold increase compared with healthy control. ns, not significant. *P , .05. The number of
sera tested is reported in each graphic.
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ability of the sera from VITT patients to induce procoagulant pla-
telets reduced after IVIG therapy in 3 cases in the absence and in 2
out of 4 cases in the presence of PF4 (Figure 2B-C; supplemental
Table 1B). Noteworthy, diluted sera showed specific platelet
activation only in the presence of PF4 (supplemental Figure
1A-D). These data suggest that IVIG interferes with the patho-
genic anti-PF4 antibodies by competing with them to bind to
Fc g receptor IIA receptors, which might be in vivo associated
with reductions in platelet activation and disseminated intravas-
cular coagulation. The later ones are confirmed in our study by
the rapid response in platelet count and decrease in D-dimer
levels.7,9 However, the effect of IVIG on other cells cannot be
ruled out as another explanation for the observed therapeutic
benefit.

In summary, we showed that high-dose IVIG inhibits antibody-
mediated procoagulant platelet generation, rapidly increases
the platelet count, and finally, deescalates the hypercoagulable
state in VITT. Adjunct use of IVIG can be recommended as a ther-
apeutic option to prevent disease progression.
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TO THE EDITOR:

Immune thrombocytopenic purpura after vaccination with
COVID-19 vaccine (ChAdOx1 nCov-19)
Finn-Ole Paulsen,1,* Christoph Schaefers,1,* Florian Langer,1 Christian Frenzel,1 Ulrich Wenzel,2 Felicitas E. Hengel,2 Carsten Bokemeyer,1

and Christoph Seidel1

1Division of Pneumology, Department of Oncology, Hematology, and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg,
Germany; and 2Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany

Coronavirus disease 2019 (COVID-19) is an ongoing pandemic
caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2).1 Newly developed vaccines are powerful tools for
interrupting the ongoing dissemination of SARS-CoV-2. Because
the first vaccines were approved for clinical use within a short
period of time, the available data on adverse effects in relation
to vaccination for SARS-CoV-2 are still limited.2 One available vac-
cine is the adenovirus vector–based ChAdOx1 nCov-19 (also
known as AZD122) from AstraZeneca.3,4 As this vaccine is consid-
ered to be safe,2-4 a new condition named vaccine-induced
immune thrombotic thrombocytopenia (VITT) syndrome was
reported in relation to previous administration of ChAdOx1
nCov-195–7 and Ad26.COV2.S (Janssen Pharmaceuticals).8

VITT is associated with thrombocytopenia accompanied by
thrombosis and antibodies against platelet factor 4 (PF4) in the
serum, but it differs from postvaccination immune thrombocyto-
penic purpura (ITP), a phenomenon associated with both live
and inactivated vaccines.9-11 To our knowledge, however, ITP
has not yet been described as being associated with administra-
tion of ChAdOx1 nCov-19 vaccine. Here, we report our findings
in a cohort of 4 patients who presented with severe thrombocyto-
penia in the absence of thrombosis a short time after receiving a
ChAdOx1 nCoV-19 adenoviral vector vaccine at our (single-cen-
ter) institution.

We conducted retrospective and prospective analyses of patients
who received treatment in our institution for ITP associated with
ChAdOx1 nCoV19 vaccination within a 19-day period in May
2021. We evaluated patients’ records and confirmed the diagno-
sis of ITP. Patients’ demographic and clinical characteristics are
presented in Table 1. Detailed case descriptions are provided in
the supplemental information (available on the Blood Web site).
Informed consent was provided by each patient, andmonocentric
data acquisition was in line with local requirements according to
the Hamburg Hospital Act (HmbKHG) §12 and in accordance
with the Declaration of Helsinki.

The patients were White women and men between 64 and 72
years of age from Germany. They presented 2 to 15 days after
receiving the first dose of ChAdOx1 nCov-19 with severe symp-
tomatic thrombocytopenia of #6 3 109/L cells. Patients 1 and 2

had a medical history of thyroid disorders (autoimmune thyroiditis
and latent autoimmune hypothyroidism, respectively), patient 3
was previously diagnosed with minor thrombocytopenia (!60 3

109/L), and patient 4 reported preexisting conditions, including
chronic obstructive pulmonary disease and arterial hypertension.
Initial symptoms included petechiae (patients 1, 3, and 4), hema-
tomas (patient 1), headaches (patient 2), hyposphagma (patient 3),
and epistaxis (patient 4). All patients reported that prior vaccina-
tions against seasonal influenza (all patients), pneumococcus,
and rubella (patients 2 and 3) were well tolerated. At admission,
all patients were SARS-CoV2 negative according to a polymerase
chain reaction test. In addition, patient 2 had a serologic test that
was positive for SARS-CoV-2 spike receptor-binding domain and
SARS-CoV-2 spike trimer immunoglobulin G (IgG) or IgM antibod-
ies and negative for SARS-CoV2 nucleocapsid IgG or IgM anti-
bodies (Elecsys Anti-SARS-CoV2, electrochemiluminescence
immunoassay [ECLIA], Roche), indicating active immune response
after vaccination.

The patients did not present with signs or symptoms of throm-
botic events, and no antibodies to PF4-polyanion complexes
were detected in enzyme-linked immunosorbent assay (Asserach-
rom HPIA-IgG, Stago), so the patients discussed were not associ-
ated with VITT. In addition, a magnetic resonance imaging scan
was conducted in patient 2 to rule out intracranial bleeding and
cerebral vein or sinus thrombosis because she presented with
headaches. A bone marrow biopsy from patient 2 revealed an
increased megakaryocyte count with no signs of malignancy. No
clinical signs or symptoms of infection were present in any of
the patients. On the basis of presentation and after ruling out dif-
ferential diagnoses, ITP was diagnosed in all 4 patients.12

The patients received corticosteroids (prednisolone 100 mg/day;
initial bolus of 250 mg in patient 1) as initial treatment (Figure
1). No further treatment was initiated in patients 3 and 4 because
of a quick recovery of the platelet counts that increased to 23 3

109/L and 98 3 109/L after 4 and 6 days, respectively. Patients 3
and 4 were discharged for outpatient follow-up with a steroid
reduction plan. Intravenous immunoglobulin (IVIG) was adminis-
tered to patients 1 (0.4 g/kg) and 2 (1 g/kg) (Figure 1). Patient 2
did not respond, so dexamethasone (40 mg) was initiated for 7
more days. Platelet counts increased in patients 1 (142 3 109/L)

996 blood® 16 SEPTEMBER 2021 | VOLUME 138, NUMBER 11 LETTERS TO BLOOD

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/138/11/992/1822278/bloodbld2021012479.pdf by guest on 01 August 2022

52



1 
 

Supplemental material  
 
Methods:  

Preparation of washed platelets  

Whole blood from healthy donors was centrifuged at 120g for 20 minutes (min*) without 

break at room temperature (RT). The supernatant platelet rich plasma (PRP) was gently 

collected and immediately supplemented with apyrase (5 µL/mL PRP, [Sigma-Aldrich, St. 

Louis, USA]) and prewarmed anticoagulant-citrate dextrose solution A (ACD-A )(111 µL/mL 

PRP). Subsequently, platelets were separated from PRP via centrifugation (650g, 7 min*, 

RT, without brake), resuspended in 5 mL of wash-solution (modified Tyrode buffer: 5 mL 

bicarbonate buffer, 20 percent (%) bovine serum albumin, 10% glucose solution, 2.5 U/mL 

apyrase, 1 U/mL hirudin [Pentapharm, Basel, Swiss], pH 6.3) and allowed to rest for 15 min* 

at 37°C. Following a final centrifugation step (650g, 7 min*, RT, without brake) platelets were 

resuspended in 2 mL of resuspension-buffer (50 mL of modified Tyrode buffer, 0.5 mL of 1 

mM MgCl2, 1 mL of 2 mM CaCl2, pH 7.2) and adjusted to 300x109 /L after cell count 

measurement at a Cell-Dyn Ruby hematological analyzer (Abbott Park, Illinois, USA). 

Testing for anti-platelet factor 4 (PF4)/heparin antibodies 

A commercially available IgG-Enzym Immune assay (EIA) was used in accordance to 

manufacturer’s instructions (Hyphen Biomed, Neuville-sur-Oise, France). Per manufacturer’s 

recommendation, a sample was considered reactive if the optical density (OD) was ≥ 0.500. 

The ability of sera to activate platelets was tested using the functional assay heparin induced 

platelet aggregation assay (HIPA). In brief, serum was tested with washed platelets from four 

different healthy donors in the absence (buffer alone), in the presence of heparin (0.2 IU/mL 

and 100 IU/mL) and PF4 (25µg/mL [Chromatec, Greifswald, Germany]). Reactions were 

placed in microtiter wells containing spherical stir bars and stirred at approximately 500 

revolutions per minute (rpm). Wells were examined optically at five-minutes interval for loss 

of turbidity. A serum was considered reactive (positive) if a shift from turbidity to transparency 

occurred within 30 min in at least two platelet suspensions. Observation time was 45 min. 

Each test included a diluted serum from a patient with heparin induced thrombocytopenia 

(HIT) as a weak positive control, collagen (5µg/mL [Collagen Horn, Takeda, Linz, Austria]) as 

strong positive control and a serum from a healthy donor as a negative control. 
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Assessment of antibody-mediated procoagulant platelets  
To exclude non-specific effects like the activation of platelets via complement or non-specific 

immune complexes, all sera were heat-inactivated (56°C for 30 min*), followed by a sharp 

centrifugation step at 5,000g. The supernatant was collected. All experiments involving 

patients’ sera were performed after incubation of 5 µL serum with 25 µL washed platelets 

(7.5x106) for 1.5 h* under rotating conditions at RT. When indicated, cell suspensions were 

preincubated in presence of PF4 (25 µg/ml). Afterwards, samples were washed once (7 min*, 

650g, RT, without brake) and gently resuspended in 75 µL of phosphate-buffered saline 

(PBS, Biochrom, Berlin, Germany). Platelets were then stained with Annexin V-FITC and 

CD62-APC (Immunotools, Friesoythe Germany) and directly analyzed by flow cytometry 

(FC). As positive control, washed platelets were incubated with ionomycin (5µM, 15 min* at 

RT [Sigma-Aldrich, St. Louis, USA]) and thrombin receptor activating peptide TRAP-6 (10 

µM, 30 min at RT [Hart Biologicals, Hartlepool, UK]). Test results were determined as fold 

increase of the percentage of double CD62p/Phosphatidylserine (PS) positive events in 

platelets upon incubation with patients’ sera compared to cells incubated with healthy donors 

tested in parallel. 
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Results 

Clinical and laboratory features of vaccine induced immune thrombotic 
thrombocytopenia (VITT)  

We report 5 patients (3 female, 2 male) with a median age of 47 years (range: 20 and 57 

years) who were referred to our hospitals with suspected thrombotic complications after first 

vaccination with ChAdOx1 nCoV-19.  

 

Case #1: female, 47 y., Cerebral venous sinus thrombosis (CVST) 

A 47-year old female patient presented with headache, dizziness, and nausea 7 days after 

the first vaccination with ChAdOx1 nCoV-19. Initial platelet count revealed 56x109/L. 

Because of sustaining vertigo and increasing headache patient was referred to the neurology 

department. Coagulation parameters on the following days revealed a slight increased INR 

with 1.3, aPTT was also prolonged with 35s. Fibrinogen was in a normal range with 263 

mg/dL and D-dimer was increased with 9 µg/ml. After further decrease of platelet count, a 

severe thrombosis of the sagittal superior sinus and right transverse sinus was detected in 

computed tomography (CT) and magnetic resonance (MR) imaging. HIT testing revealed 

positive results in the EIA (OD 2.07) and in HIPA. Patient was treated with argatroban (1.5-2 

aPTT prolongation) with IVIG for 3 days (total dose: 140 g). After IVIG therapy the platelet 

count increased to 201x109/L.´The patient deteriorated 4 days after initiation of agatroban, 

directly at the day of first infusion of IVIG and revealed clinical and radiological signs of 

malignant brain edema and congestive hemorrhage. Therefore, bilateral hemicraniectomy 

has to be performed to decrease intracranial pressure. Neurological symptoms began to 

recover and the sagittal superior sinus showed radiological signs of recanalization. At the 

time of the writing of this manuscript (4 weeks after hospital admission), the patient was still 

in rehabilitation with persisting global aphasia. 

 

Case #2: female, 57 y., CSVT, hematoma  

A 57-year old female patient admitted to her family doctor because of continuing headache 9 

days after the first vaccination with ChAdOx1 nCoV-19. Blood analysis showed 

thrombocytopenia (27x10x9/µL) and the patient was transferred to a university hospital. At 

admission, she had petechiae in the extremities and hematoma. Platelet count was 25 x109/L 

and D-dimer was 54 µg/ml. Fibrinogen decreased (50mg/dl). Cranial CT revealed a 

thrombosis of the left sigmoid sinus and bleeding into right occipitotemporal region. HIT 

testing revealed positive result in EIA (OD: 3.23) and in HIPA (positive buffer reaction and 
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positive in presence of low molecular weight heparin). Anticoagulation was initiated with 

argatroban and IVIG was administered (2x1 g/kg body weight). After the therapy, platelet 

count steadily increased and D-dimer reduced. The patient was discharged with a platelet 

count of 237 x 109/L and D-dimer of 1.6 µg/ml after 7 days of hospitalization. Anticoagulation 

was changed to apixaban at discharge. No further thrombosis was observed during 

hospitalization and three weeks of follow-up.  

 

Case #3: female, 29y., CVST 

A 29-year old female patient had recurrent headache 9 days after the first vaccination with 

ChAdOx1 nCoV-19. At admission, MRI showed no signs of CVST. Platelet count at 

admission was 53 x109/L. Coagulation parameters were abnormal (fibrinogen 274 mg/dL, 

INR 1.2, aPTT 23 s). D-dimer was strongly elevated (32 µg/ml). Initial HIT-Testing revealed a 

positive rapid assay. Anticoagulation was then initiated with argatroban in prophylactic doses 

combined by dexamethasone (40 mg). After four days, the patient suffered from imminent 

headache and aphasia. High titer PF4/heparin IgG antibodies were detected in the EIA (OD 

3.07). HIPA was positive with a positive buffer reaction and positive in presence of low 

molecular weight heparin. A second MRI showed CVST and a large parenchymal 

hemorrhage in the left hemisphere. The patient was then treated with a combination of 

argatroban at therapeutic doses and IVIG (2x1 g/kg body weight; total dose: 95 g). Platelet 

count recovered within four days to 114x109/L. At day nine after CVST diagnosis and stable 

hemorrhage, anticoagulation was changed to dabigatran 2x150 mg. The patient had no risk 

factor for thromboembolism except oral contraception. She had also suffered from chronic 

autoimmune thyroiditis with normal thyroid function under replacement therapy. Follow-up 

MRI showed beginning of the resorption of the hematoma and partial recanalization of the 

CVST. The patient was discharged after 22 days of hospitalization.  

 

Case #4: male, 53 y., pulmonary embolism (PE), deep vein thrombosis (DVT)  

A 53-year old male was admitted to hospital 7 days after the first vaccination with ChAdOx1 

nCoV-19. He introduced himself because of slight shortness of breath, petechiae on the legs. 

Initial platelet count after admission was 8x109/L. D-dimer (>35µg/mL) were elevated and 

with a fibrinogen of 126 mg/dL with aPTT and INR in a normal range, patient presented 

beginning signs of consumption. Physical examination and ultrasound revealed a thrombosis 

in the right thigh (femoral vein). A CT-scan revealed thrombosis in both femoral veins and 

central embolism in the right lung. HIT-antibodies revealed strong positive result in the EIA 

(3.18 OD) and a positive HIPA-result (activation with buffer and low molecular weight 
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heparin). IVIG therapy (1 g/kg body weight for two consecutive days; total dose: 200 g) and 

alternative anticoagulation with argatroban was initiated immediately after diagnosis of VITT. 

Anticoagulation was switched to apixaban PO when the platelet count had reached 50x109/L. 

The patient was discharged on day 11 after admission with a platelet count of 80x109/L. In a 

follow-up interview 1 months later, he did not report any signs or symptoms of bleeding or 

thrombosis. His platelet count was stable at 180.000/µL. 

 

Case #5: male, 20 y, CVST, PE 

A-20-years old male patient with a body mass index of 37 admitted to the emergency room 

with severe headache 8 days after vaccination with ChAdOx1 nCoV-19. At admission, 

platelet count was 60x109/L and D-dimer level was 12.4 µg/mL. As there was no evidence of 

thrombosis in a cranial CT scan, prophylactic anticoagulation with apixaban (2x2.5 mg) was 

initiated. On day 4 he was referred to university hospital where cMRI revealed thrombosis of 

the right transverse sinus. Additionally he complained of new onset thoracic pain on 

admission. CT of the thorax showed bilateral pulmonary artery embolism and infarct 

pneumonia. The dose of apixaban was increased to 2x10 mg and IVIG (1g/kg continuous 

administration on two consecutive days) was administered. High titer PF4/heparin IgG 

antibodies were detected in the EIA (OD 3.36). Platelet count increased to 124 x109/L. After 3 

days, platelet count dropped again to 81 x109/L. Anticoagulation was changed to argatroban 

and a second dose of IVIG (1g/kg continuous administration on three consecutive days) was 

administered. A control MRI on the day of second IVIG administration showed progression of 

thrombus in size in right transverse sinus. After one week, MRI showed the regression of 

thrombosis in the transverse sinus. The patient received a total of 600 g IVIG. After IVIG 

therapy, platelet count increased to 175 x109/L. On 20th day of the hospitalization, the 

anticoagulation was changed to dabigatran (2x150 mg). The patient was discharged after 22 

days of hospitalization. The patient did not develop any further thrombosis during 

hospitalization and 3 weeks follow-up.  
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Supplemental Figure 1: Effect of intravenous immunoglobulin (IVIG) therapy 

on procoagulant platelets 

Procoagulant platelets (CD62P/Phosphatidylserine (PS) positive) were analysed in 

patients before and after IVIG therapy via Annexin V-FITC and CD62p-APC antibody 

staining. Where indicated, sera were serially diluted and PLTs were pre-treated with 

PF4 (Panel A-D). Data are presented as fold increase compared to healthy control. 
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4. Discussion 

The COVID-19 pandemic, which began in late 2019, has caused significant morbidity 

and mortality worldwide. Critically ill patients with COVID-19 may have marked 

coagulopathy, including thrombocytopenia and diffuse arterial and venous 

thrombosis. The pathophysiology of COVID-19 focuses on the interplay between 

inflammation and coagulation. Despite tremendous research efforts over the past 

two years, there are still questions about the role of platelets in the pathophysiology 

and long-term consequences of the disease. 

 

Given the importance of platelets in acute COVID-19, we were interested in the 

changes in platelet phenotype and activation status in the convalescent phase of 

COVID-19. In addition, one of our goals was to investigate whether sera from 

COVID-19 convalescent subjects would also induce platelet activation, which might 

be important for the safety of COVID-19 convalescent plasma transfusions in 

COVID-19 patients. In our study, we did not detect procoagulant platelet phenotype 

or increased platelet activation in COVID-19 convalescent subjects [133]. 

Furthermore, sera from COVID-19 convalescent plasma donors did not result in 

significant changes in platelet activation or procoagulant status. We did not observe 

persistent hyperecoagulopathy in our cohort. It should be noted that our study cohort 

consisted of routine plasma donors who underwent clinical examination according to 

local regulations, which may introduce selection bias because they are relatively 

younger and healthier compared with other COVID-19 convalescents. Looking 

forward, it would be also useful to measure plasmatic coagulation markers to better 

understand the coagulation status of convalescents and the correlation between 

post-COVID-19 syndrome and coagulation.  
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Vaccination efforts have been negatively impacted by the emergence of a rare 

complication, called VITT, which is also an immune-mediated coagulation problem. 

VITT occurs after a vaccination with adenoviral vector vaccines against COVID-19. 

Adenoviral vector vaccines carry a gene sequence encoding the spike protein of 

SARS-CoV-2. The gene sequence is transported into cells by adenoviral vectors at 

the injection site. The gene is translated into mRNA in the cells, and copies of the 

spike protein are assembled in the cytoplasm. Fragments of the spike protein are 

presented on the cell surface, which is subsequently recognized by immune cells 

that produce antibodies against the spike protein. In an attempt to understand the 

development of anti-PF4 antibodies in VITT, we measured anti-spike antibodies and 

anti-PF4 antibodies in vaccinated healthy controls and VITT patients. We did not find 

a correlation between immune response generated by vaccination and anti-PF4 

antibodies [134]. The pathophysiology of VITT is yet to be understood. Other 

proposed triggers of PF4 immunity include vaccine components such as EDTA 

(Ethylenediaminetetraacetic acid) or other human proteins in the vaccine, spike 

splice variant transcripts, or the adenoviral vector itself [103]. 

 

Although vaccines based on adenoviral vectors are now less commonly used in the 

Western world, more than one billion vaccines have been donated to 

underdeveloped countries under a World Health Organization vaccine program. New 

cases of VITT can be expected in these countries. As medical professionals, we will 

continue to seek answers to the question of how to deal with such cases in the 

coming months. We urgently need data on the effectiveness of currently proposed 

treatments.  
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Antibody mediated platelet activation via FcγRIIa is the central pathological 

mechanism in VITT. Our study have demonstrated that IVIG can interfere in this step 

and mitigate hypercoagulable state in patients with VITT [135]. Similar findings have 

been reported by others also [128,136–138]. Due to the rarity of VITT, it would not 

be possible to conduct a randomized controlled trial on the use of IVIG in VITT. We 

recommend the use of IVIG in cases without waiting for confirmatory test results.  

 

In conclusion, our results do not confirm sustained platelet activation in the 

convalescent phase of COVID-19. Moreover, antibodies against SARS-CoV-2 are 

not responsible for the development of anti-PF4 antibodies in patients with VITT. 

Finally yet importantly, high-dose IVIG therapy is an effective means to cool down 

the hypercoagulable state in patients with VITT and could be lifesaving. Investigating 

the pathophysiology of VITT and effectiveness of treatments will help us reduce 

mortality and increase public confidence in the vaccine. 
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5. Summary 

Thromboembolic complications are a hallmark of COVID-19 and are usually 

associated with multiple organ failure and high mortality. Activated platelets 

contribute to COVID-19 coagulopathy. Recent evidence suggests a persistent 

hypercoagulable and/or hypofibrinolytic state in convalescent COVID-19 patients. 

However, platelets in the convalescent period have not been studied to date. In 

addition, a rare thrombotic and thrombocytopenic complication, vaccine-induced 

immune thrombotic thrombocytopenia (VITT), has been described after vaccination 

with adenoviral vector based COVID-19 vaccines. In VITT, antibodies reacting to 

platelet factor 4 (PF4) activate platelets via the Fcγ receptor IIa (FcγRIIa) and lead to 

thrombus formation as well as platelet destruction. The mechanism of anti-PF4 

antibody development is not clear. In this work, we aimed to understand antibody–

mediated platelet activation in COVID-19 patients in the convalescent phase and the 

pathophysiology of VITT.  

 

In a prospective study, we investigated platelet phenotype by flow cytometry and 

global coagulation and fibrinolysis by thromboelastometry in convalescent COVID-19 

patients and control subjects. Phosphatidylserine (PS) externalization, CD62P 

expression, and Glycoprotein VI (GPVI) shedding were measured by flow cytometry. 

Platelets from COVID-19 convalescents did not exhibit an increased procoagulant 

phenotype. In addition, GPVI shedding did not differ from that of the control group. 

Sera from COVID-19 convalescents did not induce significantly higher PS 

externalization or GPVI shedding in healthy platelets. In thromboelastometry, only 

one COVID-19 convalescent showed increased maximum clotting strength and 

prolonged lysis time. Consequently, we did not observe an increased platelet 
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activation/procoagulant phenotype in the convalescent phase after mild COVID-19 

treatment.  

 

We then focused on understanding the development of anti-PF4 antibodies in 

patients with VITT. One of the proposed mechanisms is cross-reactivity between 

SARS-CoV-2 and PF4. To investigate the correlation between anti-PF4 and anti-

SARS-CoV-2 antibodies, we measured antibody levels in vaccinated controls and in 

patients with clinical suspicion of VITT after vaccination with ChAdOx1 nCoV-19. 

VITT patients had higher anti-PF4 antibody levels than healthy controls and non-

VITT patients. Levels of anti-PF4 did not correlate anti-SARS-CoV-2 antibodies in 

any of the study groups. These results refute the assumption that the development of 

anti-SARS-CoV-2 antibodies contributes to the formation of anti-PF4 antibodies in 

VITT patients. 

 

Finally, we investigated the effects of intravenous immunoglobulin therapy (IVIG) on 

platelet count and platelet activation in patients with VITT. All patients received a 

non-heparin anticoagulant. In addition, IVIG was administered at a dose of 1 g/KG 

body weight for 2 to 5 days. Four patients showed a complete platelet response 

(platelet count ≥ 100×109/L) and one patient a partial response (platelet count ≥ 

30×109/L and at least 2-fold increase in baseline count) after IVIG therapy. D-dimer 

levels decreased after IVIG therapy, indicating a reduction in thrombus burden. After 

IVIG therapy, the ability of sera from VITT patients to induce procoagulant platelets 

in flow cytometry was reduced. However, anti-PF4 antibody levels were not affected 

by IVIG therapy. These data suggest that IVIG attenuates the activity of pathogenic 
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anti-PF4 antibodies by competing with them for binding to FcγRIIa receptors, which 

may be associated with a reduction in platelet activation in vivo.  

 

In conclusion, our results do not confirm sustained platelet activation in the 

convalescent phase of COVID-19. Moreover, antibodies against SARS-CoV-2 are 

not responsible for the development of anti-PF4 antibodies in patients with VITT. 

Finally yet importantly, high-dose IVIG therapy is an effective means to cool down 

the hypercoagulable state in patients with VITT. 
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6. Zusammenfassung 

Thromboembolische Komplikationen sind eine häufige Manifestation von COVID-19 

und gehen in der Regel mit einem multiplen Organversagen und einer hohen 

Sterblichkeit einher. Aktivierte Blutplättchen tragen zur COVID-19-Koagulopathie bei. 

Neuere Erkenntnisse deuten auf einen anhaltenden hyperkoagulierbaren und/oder 

hypofibrinolytischen Zustand bei rekonvaleszenten COVID-19-Patienten hin. Die 

Thrombozyten in der Rekonvaleszenzphase wurden jedoch bisher nicht untersucht. 

Darüber hinaus wurde eine seltene thrombotische und thrombozytopenische 

Komplikation, die Vakzin-induzierte immunthrombotische Thrombozytopenie (VITT), 

bei Adenovirus-basierten Vektorimpfstoffen gegen COVID-19 beschrieben. Bei der 

VITT aktivieren Antikörper, die auf den Plättchenfaktor 4 (PF4) reagieren, die 

Thrombozyten über den Fcγ-Rezeptor IIa (FcγRIIa) und führen zur Thrombusbildung 

sowie zur Abbau der Thrombozyten. Der Mechanismus der Entwicklung von Anti-

PF4-Antikörpern ist nicht klar. In dieser Arbeit wollten wir die Antikörper-vermittelte 

Thrombozytenaktivierung bei COVID-19-Patienten in der Rekonvaleszenzphase und 

die Pathophysiologie der VITT untersuchen.  

 

In einer prospektiven Studie untersuchten wir den Phänotyp der Blutplättchen mittels 

Durchflusszytometrie und die globale Gerinnung und Fibrinolyse mittels 

Thromboelastometrie bei rekonvaleszenten COVID-19-Patienten und 

Kontrollpersonen. Die Externalisierung von Phosphatidylserin (PS), die Expression 

von CD62P und die Ausschüttung von Glykoprotein VI (GPVI) wurden mittels 

Durchflusszytometrie gemessen. Thrombozyten von COVID-19-Rekonvaleszenten 

wiesen keinen erhöhten prokoagulierenden Phänotyp auf. Darüber hinaus 

unterschied sich die GPVI-Abgabe nicht von der der Kontrollgruppe. Seren von 
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COVID-19-Rekonvaleszenten induzierten bei gesunden Thrombozyten keine 

signifikant höhere PS-Externalisierung oder GPVI-Ausschüttung. In der 

Thrombelastometrie zeigte nur ein COVID-19-Rekonvaleszent eine erhöhte 

maximale Gerinnungsstärke und eine verlängerte Lysezeit. Folglich konnten wir in 

der Rekonvaleszenzphase nach einer milden COVID-19-Behandlung keine erhöhte 

Thrombozytenaktivierung/prokoagulierenden Phänotyp beobachten.  

 

Anschließend konzentrierten wir uns auf das Verständnis der Entwicklung von Anti-

PF4-Antikörpern bei Patienten mit einer VITT. Einer der möglichen Mechanismen ist 

die Kreuzreaktivität zwischen SARS-CoV-2 und PF4. Um die Korrelation zwischen 

Anti-PF4- und Anti-SARS-CoV-2-Antikörpern zu untersuchen, wurden die 

Antikörperspiegel bei geimpften Kontrollen und bei Patienten mit klinischem 

Verdacht auf VITT nach der Impfung mit ChAdOx1 nCoV-19 gemessen. VITT-

Patienten hatten höhere Anti-PF4-Antikörperspiegel als gesunde Kontrollpersonen 

und Nicht-VITT-Patienten. Die Anti-PF4-Werte korrelierten in keiner der 

Studiengruppen mit den Anti-SARS-CoV-2-Antikörpern. Diese Ergebnisse 

widerlegen die Vermutung, dass die Entwicklung von Anti-SARS-CoV-2-Antikörpern 

zur Bildung von Anti-PF4-Antikörpern bei VITT-Patienten beiträgt. 

 

Schließlich untersuchten wir die Auswirkungen einer intravenösen 

Immunglobulintherapie (IVIG) auf die Thrombozytenzahl und die 

Thrombozytenaktivierung bei VITT-Patienten. Alle Patienten erhielten ein 

alternatives Antikoagulans. Darüber hinaus wurde IVIG in einer Dosis von 1 g/KG 

Körpergewicht über 2 bis 5 Tage verabreicht. Vier Patienten zeigten nach der IVIG-

Therapie ein vollständiges Ansprechen der Thrombozyten (Thrombozytenzahl ≥ 
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100×109/L) und ein Patient ein teilweises Ansprechen (Thrombozytenzahl ≥ 

30×109/L und mindestens 2-facher Anstieg der Ausgangszahl). Die D-Dimer-Werte 

sanken nach der IVIG-Therapie, was auf eine Verringerung der Thrombuslast 

hinweist. Nach der IVIG-Therapie war die Fähigkeit der Seren von VITT-Patienten, in 

der Durchflusszytometrie prokoagulierende Thrombozyten zu induzieren, reduziert. 

Die Anti-PF4-Antikörperspiegel wurden durch die IVIG-Therapie jedoch nicht 

beeinflusst. Diese Daten deuten darauf hin, dass IVIG die Aktivität pathogener Anti-

PF4-Antikörper abschwächt, indem es mit ihnen um die Bindung an FcγRIIa-

Rezeptoren konkurriert, was mit einer Verringerung der Thrombozytenaktivierung in 

vivo verbunden sein könnte.  

 

Zusammenfassend lässt sich sagen, dass unsere Ergebnisse keine anhaltende 

Thrombozytenaktivierung in der Rekonvaleszenzphase von COVID-19 bestätigen. 

Außerdem sind die Antikörper gegen SARS-CoV-2 nicht für die Entwicklung von 

Anti-PF4-Antikörpern bei Patienten mit VITT verantwortlich. Zu guter Letzt ist eine 

hochdosierte IVIG-Therapie ein wirksames Mittel zur Abkühlung des 

hyperkoagulierbaren Zustands bei VITT-Patienten. 
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