Viability of Recursive SQL Functions

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. RER. NAT.)

vorgelegt von
Dipl.-Inform. Christian Duta
aus Tübingen

Tübingen
2022

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 05.04.2023
Dekan:

1. Berichterstatter/-in:

Prof. Dr. Thilo Stehle
2. Berichterstatter/-in:

Prof. Dr. Torsten Grust
Prof. Dr. Tilmann Rabl

Abstract

The inclusion of recursive common table expressions (recursive CTEs) in the SQL:1999 standard enabled the developer to implement complex in-database computations, e.g., graph algorithms and others. However, their awkward syntax and rigid fixedpoint evaluation method requires highly-specialized expert knowledge in SQL to implement complex computations. This sets the bar quite high for developers to consider implementing such queries.

We propose an alternative way to implement complex in-database computations, which we call functional-style SQL UDFs. UDFs implemented in functional-style allow recursive self-invocation inside their own function body. In this publication, we measure the viability of functional-style UDFs from two angles: readability and runtime performance.

To measure the readability of functional-style UDFs, we conducted a user study in 2020. We presented the participants with tasks from the following topics: - Choose the correct implementations of the algorithms for the fibonacci numbers and greatest common divisor formulated in functional-style and recursive CTE. - Describe and evaluate two unknown UDFs. One is formulated in functional-style and the other as a recursive CTE. - Implement the 0-1 Knapsack algorithm based on its textbook style formulation in either functional-style or recursive CTE formulation. Each participant is then graded based on the score and time needed. In Chapter 2, we present the user study results and compare how well the participants handle these functional-style UDFs compared to recursive CTEs. We discuss if functionalstyle UDFs can help improve readability for such complex queries. Besides readability, developers are also interested in the runtime performance of functional-style UDFs. We find that some RDBMSs such as PostgreSQL, Oracle, Microsoft SQL Server, MySQL and SQLite have trouble handling functional-style UDFs

as-is. Performance issues, strict recursion depth limitations, or even outright denying evaluation of functional-style UDFs are the main issues we encountered. In Chapter 4, we describe a SQL-to-SQL compiler which accepts functional-style UDFs, as defined in Chapter 3. The compiler produces standard SQL:1999 recursive CTEs, which replaces the function body of functional-style UDFs so that it no longer exhibits recursive self-invocations. The compiled function body evaluates in a two-phased fashion that
(1) constructs a call graph top-down and then
(2) traverses the call graph bottom-up until its root node is reached and the result is returned.
Indeed, the compiler does not rely on intrusive changes to the underlying database engine. Furthermore, this two-phased approach enables optimizations (call sharing, reference counting, linear- and tail-recursion detection, memoization, batching) through small tweaks and improvements to the compiler, which we describe in Chapter 5. We also measure the execution times of various algorithms before and after compilation and discuss the results. We find the runtime performance a developer experiences when compiling functional-style UDFs can improve which is supported by the experiments.

Acknowledgments

First and foremost, I must thank Prof. Dr. Torsten Grust for granting me the opportunity to research at the unique crossroads between programming languages and database systems at Universität Tübingen. Indeed, his readily available advice, patience and feedback on my journey as a Ph.D. student were invaluable.

I am also profoundly grateful to Dr. Daniyal Kazempour for his advice, feedback and support.

I also thank my colleagues: Daniel O'Grady, Denis Hirn, Tim Fischer, Benjamin Dietrich, and Tobias Müller. For their help, general feedback, and moral support.

Thanks to friends who supported me over the years. Due to the unusual circumstances in recent years, we only kept in touch remotely. I hope this can be remedied in the future when we can finally sit at the same table again.

Lastly, I would be remiss, not to mention my family: Fabienne, my parents, grandparents, siblings, cousins, aunts, and uncles. They kept my motivation high and my spirits strong through emotional support. Thank you.

Contents

1 Introduction 4
1.1 Functional-Style SQL User-Defined Functions 6
1.2 Performance of Functional-Style SQL UDFs in RDBMSs 6
1.3 Compiling Functional-Style SQL UDFs to Recursive CTEs 9
1.4 More Related Work 14
1.5 Research Focus and Contribution 16
2 Recursion in SQL - User Study 17
2.1 Choose the Correct Implementations 18
2.2 Describe a User-Defined Function 20
2.3 Manually Evaluate a User-Defined Function 22
2.4 Implement the 0-1 Knapsack Algorithm 25
2.5 Summary 26
3 Grammar of Functional-Style UDFs 27
4 Compiling Functional-Style UDFs 30
4.1 Step 1: Call Graph Construction 31
4.2 Step 2: Bottom-Up Traversal and Evaluation 34
4.3 SQL Template: Call Graph Construction 36
4.4 SQL Template: Bottom-Up Traversal 39
4.5 Emitting Code 41
4.6 Slicing Functional-Style SQL UDFs 42
5 Tweaks and Improvements 50
5.1 Reference Counting 53
5.2 Table-Valued Functions 67
5.3 Linear Recursion 70
5.4 Tail Recursion 73
5.5 Memoization 78
5.6 Batching 86
6 Conclusion 92
Appendix A User Study - Online Form 95
Appendix B Complete Templates 100
Appendix C Selected Functional-Style SQL UDFs 107
C. 1 Implementation 107
C. 2 Compilation 111
C. 3 Hand-Crafted Recursive CTEs 120
Appendix D Additional Use Cases 124
D. 1 Binomial Coefficient 124
D. 2 Floyd-Warshall Algorithm 124
D. 3 Longest Common Subsequence 125
D. 4 Reachability 126
D. 5 Finite State Machine 126
D. 6 Bounding Box 128
D. 7 Mandelbrot Set Fractals 129
References 131

Preface

Some sentences, phrases, and figures of the following chapters already appeared in or are extensions of previously published works:

Chapters 1, 2 and 6

[70] Duta, C. (2022). Another Way to Implement Complex Computations: FunctionalStyle SQL UDF. In Proceedings of the Workshop on Human-In-the-Loop Data Analytics, HILDA ' 22 New York, NY, USA: Association for Computing Machinery

Chapters 1 and 3 to 6
[71] Duta, C. \& Grust, T. (2020). Functional-Style SQL UDFs With a Capital 'F'. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, SIGMOD '20 (pp. 1273-1287). New York, NY, USA: Association for Computing Machinery

The author of this publication contributed to the publication Compiling PL/SQL Away [72].

1

Introduction

More and more developers find themselves in a situation where they want computations performed inside a Relational Database Management System (RDBMS). Most popular RDBMSs provide these developers with rich SQL dialects, which come with an extensive toolbox of features to help them implement these computations. But, the more complex these computations become, say recursive algorithms over tabular data, e.g., graph processing or machine learning [73, 64], the deeper the developer must

```
WITH RECURSIVE
T(c}\mp@subsup{c}{1}{},\ldots,\mp@subsup{c}{n}{})\textrm{AS}
    q0
    UNION
    qb}(T
6)
7 TABLE T;
```

(a) Recursive CTE.

```
u}\leftarrow\operatorname{DISTINCT(qu)
W}\leftarrow
LOOP
    i}\leftarrow\operatorname{DISTINCT (q`(w)\u)
    IF i = \varnothing THEN BREAK
    u \leftarrowu \cup i
    W}\leftarrow
END
RETURN U
```

(b) Pseudo code.

Figure 1.1: The general form of a recursive query $\mathrm{T}(\mathrm{a})$ and its evaluation strategy formulated as pseudocode (b). Evaluation requires keeping track of three bag variables: i (intermediate table), u (union table), and w (working table).

(a) Functional-style UDF.

	CREATE FUNCTION knap(k int, u int) 1 RETURNS int AS $\$ \$ \mathrm{l}$
	WITH RECURSIVE sack(i,w,p) AS (3
$\operatorname{knap}(1, \mathrm{u})=0$	SELECT $1,0,0$ 4 UNION 5
	SELECT s.i 1 , s.w+c.w, s.p+c.p
	FROM sack AS s,items AS i, 7
$\operatorname{knap}(\mathrm{k}, \mathrm{u})=\left\{\max \left\{\begin{array}{l} \operatorname{knap}(\mathrm{k}-1, \mathrm{u}), \\ \operatorname{knap}\left(\mathrm{k}-1, \mathrm{u}-\mathrm{w}_{\mathrm{k}}\right)+\mathrm{p}_{\mathrm{k}} \end{array}\right\},\right. \text { otherwise }$	$\begin{aligned} & \text { VALUES (} 0,0 \text {), (i.w,i.p) } \\ & \text {) AS c(w,p) } \end{aligned}$
	WHERE S.w+i.w <= u
	AND i.i $=$ s.i+1
	AND s.i <= k) 13
	SELECT MAX (s.p) FROM sack AS s;
	\$\$ LANGUAGE SQL STABLE STRICT;

(c) Recursive CTE.

Figure 1.2: Each formulation in (a) - (c) describes the same algorithm to solve the 0-1 Knapsack problem. A rough comparison of the function body in (a) with the body found in (b) shows strong similarities when set side by side. However, compared to (c), the function bodies look almost unrecognizably different.
reach into the SQL toolbox going beyond SELECT-FROM-WHERE clauses. The developer may have to resort to using more expressive language constructs like recursive common table expression (recursive CTE) [85], which many popular RDBMSs have adopted since its introduction in SQL:1999 [101].

However, this often requires developers to heavily restructure their computations such that it fits the rigid fixed-point semantics of recursive CTEs. Figure 1.1b outlines how recursive CTEs (in the form described in Figure 1.1a) are evaluated. This is the mold developers have to fit their complex computations into if they need to run such computations inside an RDBMS using standard SQL. Finkelstein et al. argue in favor of the potential benefits recursive CTEs provide through their rigidness [75], but many RDBMS, like PostgreSQL, implement only the restrictions, and none of the benefits [97]. We found that simple syntactic cover-ups lift some of these restrictions, enabling even recursive CTEs that use grouping, aggregates, and anti-joins. So we asked:

> "Is there another way to move computation close to the data?"

1.1 Functional-Style SQL User-Defined Functions

We propose functional-style SQL user-defined functions (we call functional-style UDFs), which give developers another way of expressing complex computations. Essentially, functional-style UDFs are your run-of-the-mill SQL functions that allow recursive self-invocations within their function body.

Consider the 0-1 Knapsack problem [88], for example. Given items $i \in\{1, \ldots, n\}$ where each item has a weight w_{i} and a value p_{i}. Function $\operatorname{knap}(n, w)$, recursively defined in its textbook-style formulation in Figure 1.2b, maximizes the sum of values of items that fit into a knapsack of weight w. The recursive CTE formulation (Figure 1.2c) reads almost unrecognizably different from its textbook-style counterpart. The functional-style UDF formulation (Figure 1.2a) fares much better, not significantly altering the textbook-style form. In Chapter 2, we discuss the result of a user study that gauges whether functional-style UDFs are as feasible for developers looking to implement complex computation close to the data. We define the grammar of functional-style UDFs in Chapter 3.

1.2 Performance of Functional-Style SQL UDFs in RDBMSs

It turns out, however, that the native runtime performance of functional-style UDFs in popular RDBMSs is disappointing. We benchmarked five well-known RDBMS to see how well they support functional-style UDFs. SQLite3 does not support SQL UDFs in general [102]. MySQL 8.0's SQL UDFs do not allow for recursive self-invocations within their function bodies [90]. Their recursive procedures do, albeit with a meager recursion depth of up to 255 set by the max_sp_recursion_depth variable [90, $\$ 5.1 .8$]. Microsoft SQL Server 2022 supports recursive self-invocations in SQL UDFs, but only with a hard-coded recursion depth limit [100]. Its @@NESTLEVEL variable tracks the recursion depth, and when it exceeds 32, the transaction terminates prematurely. Oracle 19c [95] and PostgreSQL 13 [97] allow for meaningful usage of functional-style UDFs, where the recursion depth can go beyond the 10,000 mark. However, the recursion depth is still limited. Specifically in PostgreSQL 13 we find the recursion depth limited by max_stack_depth $[97, \$ 19.4 .1]$. Its value cannot exceed the maximum

(a) Time series X, Y.

${ }^{1}\left(\begin{array}{llllll}0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 2\end{array}\right)$	
	22012
4	33012
	33100
	12345

(c) Matrix dtw $(5,5)$.
(b) Encoding.

Figure 1.3: Time series $X=x_{i}, Y=y_{j}$, and their tabular encodings. The path of 0 in matrix dtw $(5,5)$ indicates how to warp the series (e.g., x_{4} warps to y_{5}, shown as in (a)) for an overall distance of $\operatorname{dtw}(5,5)=0$.
stack size set by the operating system. On top of these restrictions, PostgreSQL 13 does not optimize for recursion in functional-style UDFs as far as we can tell. Moreover, the function body is repeatedly parsed and planned for each recursive call due to the absence of plan caching.

Take, for example, dynamic time warping (dtw). A widely used time series classification for machine learning [74] and other domains. Given two times series $X=x_{i}$ and $Y=y_{j}$ (see Figures 1.3a and 1.3b), where $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, m\}$, dtw measures the distance between X and Y if we stretch (or compress) them along the time axis to align both optimally [60]. Its recursive definition in textbook-style reads:

$$
\begin{align*}
& \operatorname{dtw}(0,0)=0 \\
& \operatorname{dtw}(i, 0)=\operatorname{dtw}(0, j)=\infty \\
& \operatorname{dtw}(i, j)=\left|x_{i}-y_{j}\right|+\min \left\{\begin{array}{l}
\operatorname{dtw}(i-1, j-1) \\
\operatorname{dtw}(i-1, j \\
\operatorname{dtw}(i \quad, j-1)
\end{array}\right\} \tag{dtw}
\end{align*}
$$

Figure 1.3 shows how dtw maps ("warps") the series' elements onto each other and measures their overall distance. With tables X and Y of Figure 1.3b in place, developers have two choices of how to implement dtw as a SQL function inside PostgreSQL 13:

- functional-style (Figure 1.4a), which roughly resembles the textbook-style but struggles in terms of runtime performance, or
- as a recursive CTE (Figure 1.4b), which does not resemble the textbook-style but

```
CREATE FUNCTION dtw(i int, j int)
RETURNS real AS $$
    CASE
        WHEN i=0 AND j=0 THEN 0.0
        WHEN i=O OR j=0 THEN \infty -- 'Infinity'::real
        ELSE (SELECT abs(Z.x - Z.y)
            +
                LEAST(1)dtw(i-1, j-1),
                        2dtw(i-1, j ),
                        3dtw(i , j-1))
    FROM
        (X JOIN Y
            ON ((X.t,Y.t) = (i,j))) AS Z)
END;
$$ LANGUAGE SQL STABLE STRICT;
```

(a) Functional-style UDF.

```
CREATE FUNCTION dtw(i int, j int)
```

RETURNS real AS \$\$
WITH RECURSIVE
warp(i,j,val) AS (
(SELECT X.t, Y.t, abs(X.x - Y.y)
FROM X, Y
ORDER BY X.t, Y.t
LIMIT 1)
UNION
SELECT step.i, step.j, MIN(step.val)
FROM (
SELECT step.i, step.j, warp.val + step.val
FROM warp, (VALUES $(1,1),(0,1),(1,0))$ AS $d(i, j)$,
LATERAL (
SELECT warp.i+d.i, warp.j+d.j, abs(X.x - Y.y) 1
FROM X, Y
WHERE (X.t,Y.t) = (warp.i+d.i,warp.j+d.j)
) AS step(i,j,val)
WHERE step.i <= dtw.i AND step.j <= dtw.j
) AS step(i,j,val)
GROUP BY step.i, step.j)
SELECT MIN(warp.val) AS dtw
FROM warp
WHERE (warp.i,warp.j) = (dtw.i,dtw.j);
\$\$ LANGUAGE SQL STABLE STRICT;
(b) Recursive CTE + optimizations.

Figure 1.4: Functional-style and recursive CTE Implementations of dtw. 1 , 2 , and 3 in (a) mark the recursive self-invocations (call sites).

Figure 1.5: Evaluating $\operatorname{dtw}(i, i)$: Shows the impact of compilation. Note, how the uncompiled functional-style UDF dtw struggles even when compared to the unoptimized recursive CTE.
allows for intricate optimizations.
In terms of runtime performance, Figure 1.5 reports on the execution times of the functional-style and recursive CTE implementation dtw (see , $\stackrel{\wedge}{ }$). These and all following experiments were performed with PostgreSQL 13 running on a 64-bit Linux x86 host with 8 Intel Core ${ }^{\mathrm{TM}}$ i7 CPUs clocked at 3.66 GHz and 64 GB of RAM, of which 128 MB were dedicated to the database buffer. Timings were averaged over ten runs, with worst and best runtimes disregarded.

Note how carefully placed optimizations (highlighted in Figure 1.4b) improve performance of the recursive CTE (compare with in Figure 1.5). Optimizations on this level, however, require a well-developed understanding of recursive CTEs and may be easily overlooked. Thus, we find that, unless we do something about it, neither recursive CTEs nor functional-style UDFs in their natural form satisfy both readability and runtime performance.

1.3 Compiling Functional-Style SQL UDFs to Recursive CTEs

In this publication, we propose a SQL-to-SQL compiler that

- accepts a functional-style UDF, say f (for example dtw, see Figure 1.4a),
- compiles the function body of f into semantically equivalent recursive CTEs which do not require any recursive self-invocations, and
- promises this without invasive modifications to the underlying RDBMS.

Once compiled, f is entirely replaced by its compiled counterpart, which makes it also feasible for systems that do not natively allow for such UDFs in functionalstyle. The compiled function body of f may even be inlined into the SQL query that invokes f, which enables functional-style UDFs for systems that lack any UDF support. In Chapter 4, we describe the SQL-to-SQL compiler in detail. Using function compilation is only the first step for functional-style UDFs to free developers from the need to come up with hand-crafted CTEs.

(a) The call graph describes edges representing either a recursive call $i n \cdot$ site $\rightarrow o u t$ or a nonrecursive base case $i n \bullet v a l$.
call_graph
in site fanout out val

i | j j |
| :--- |

$(2,2)$	\square	\square	$(2,2)$	\square
$(2,2)$	1	3	$(1,1)$	\square
$(2,2)$	2	3	$(1,2)$	\square
$(2,2)$	3	3	$(2,1)$	\square
$(1,1)$	1	3	$(0,0)$	\square
$(1,1)$	2	3	$(0,1)$	\square
$(1,1)$	3	3	$(1,0)$	\square
$(1,2)$	1	3	$(0,1)$	\square
$(1,2)$	2	3	$(0,2)$	\square
$(1,2)$	3	3	$(1,1)$	\square
$(2,1)$	1	3	$(1,0)$	\square
$(2,1)$	2	3	$(1,1)$	\square
$(2,1)$	3	3	$(2,0)$	\square
$(0,0)$	\square	0	$(0,0)$	0.0
$(0,1)$	\square	0	$(0,1)$	∞
$(1,0)$	\square	0	$(1,0)$	∞
$(0,2)$	\square	0	$(0,2)$	∞
$(2,0)$	\square	0	$(2,0)$	∞

(b) Tabular representation of the call graph in (a). We use \square to abbreviate SQL's NULL.

Figure 1.6: The call graph for invocation of $\operatorname{dtw}(2,2)$.

The ultimate goal is to tweak and improve the compiler such that the execution times of the compiled UDFs approach that of its hand-crafted recursive CTE counterparts. Compilation enables developers to utilize optimizations such as sharing, linear- and tail-recursion optimization, memoization, and batching (Chapter 5). These optimizations are independently applicable and rely on an explicit tabular representation of the UDF's call graph which the compiled function f internally maintains. Figure 1.5 (specifically ${ }^{-\infty}$) gives a preview of what to expect when compiling dtw with optimizations enabled.

Sharing

Figure 1.6a shows the call graph of $\operatorname{dtw}(2,2)$. An edge $x \bullet \leftrightarrow \rightarrow y$ in the call graph of a recursive function f indicates that the evaluation of $f(x)$ has led to a recursive call $f(y)$ at call site s. Recursive calls that are shared by multiple invocations of f-like $(1,1),(0,1)$, and $(1,0)$ in Figure 1.6a-indicate the potential to avoid repeated compu-
tations. The naive evaluation of $\operatorname{dtw}(i, i)$ with $i>0$ leads to about $0.87 \times\left(5.83^{\mathbf{i}} / \sqrt{\mathbf{i}}\right)$ recursive calls [77]. Enabling sharing collapses all recursive calls shared by multiple invocations into one node, which can drastically reduce the call graph size and thus evaluation effort (see Figure 1.6b for its tabular representation). In the case of dtw (i,i) from $O\left(5.83^{\mathrm{i}}\right)$ down to $O\left(\mathrm{i}^{2}\right)$. Indeed, the recursive CTEs (generated by the function compiler) build such call graphs that exploit sharing opportunities for increased evaluation speed (Section 4.1.2). Contemporary RDBMS do not take advantage of call sharing when evaluating recursive UDFs, as far as we can tell.

Figure 1.7: Evaluating $\operatorname{vm}\left(I_{0}, R\right)$ where R is the initial register state which is set to repeat a loop i times. With increasing i, evaluation of vm before compilation terminates prematurely due to recursion depth limitation (A).

Linear- and Tail-Recursion
Evaluating linear- or tail-recursive functions produces call graphs that are branchless chains. This assumption allows the compiler to utilize additional optimization opportunities, which we explore in Sections 5.3 and 5.4. Take, for example, program interpretation implemented in functional-style: $\operatorname{vm}\left(I_{p}, R\right)$ takes a program instruction I_{p} at position $p>0$ and an initial register state R and continues evaluating instructions until a hlt-instruction is reached and a register value is returned. Single registers in R at position k can be accessed with $\mathrm{R}[k]$. Binary operator $\mathrm{R}[\mathrm{t}] \hookleftarrow e$ replaces the value of

Figure 1.8: A bottom-up call graph traversal populates table memo with the results of all recursive calls performed during the evaluation of $\operatorname{dtw}(2,2)$.
a single register t in R with the result of expression e and returns the modified registers. Function vm is recursively defined as:

$$
\begin{align*}
& \operatorname{vm}((i, h l t, s), R) \quad=R[s] \\
& \operatorname{vm}((i, \operatorname{lod}, \mathrm{t}, \mathrm{x}), \mathrm{R}) \quad=\mathrm{vm}\left(\mathrm{I}_{\mathrm{i}+1}, \mathrm{R}[\mathrm{t}] \longleftrightarrow \mathrm{x}\right) \\
& \mathrm{vm}((\mathrm{i}, \mathrm{mov}, \mathrm{t}, \mathrm{~s}), \mathrm{R}) \quad=\mathrm{vm}\left(\mathrm{I}_{\mathrm{i}+1}, \mathrm{R}[\mathrm{t}] \hookleftarrow \mathrm{R}[\mathrm{~s}]\right) \\
& \operatorname{vm}\left(\left(i, a d d, t, s_{1}, s_{2}\right), R\right)=\operatorname{vm}\left(I_{i+1}, R[t] \longleftrightarrow R\left[s_{1}\right]+R\left[s_{2}\right]\right) \\
& \operatorname{vm}\left(\left(i, m u l, t, s_{1}, s_{2}\right), R\right)=\operatorname{vm}\left(I_{i+1}, R[t] \longleftrightarrow R\left[s_{1}\right] * R\left[s_{2}\right]\right) \\
& \operatorname{vm}\left(\left(i, \operatorname{div}, t, s_{1}, s_{2}\right), R\right)=\operatorname{vm}\left(I_{i+1}, R[t] \longleftrightarrow R\left[s_{1}\right] / R\left[s_{2}\right]\right) \tag{vm}\\
& \operatorname{vm}\left(\left(i, \bmod , t, s_{1}, s_{2}\right), R\right)=\operatorname{vm}\left(I_{i+1}, R[t] \longleftrightarrow R\left[s_{1}\right] \% R\left[s_{2}\right]\right) \\
& v m((i, j m p, a), R) \quad=v m\left(I_{a}, R\right) \\
& \operatorname{vm}((i, \text { jeq }, t, s, a), R)= \begin{cases}\operatorname{vm}\left(I_{a}, R\right) & , R[s]=R[t] \\
\operatorname{vm}\left(I_{i+1}, R\right), & \text { otherwise. }\end{cases}
\end{align*}
$$

Function vm is tail-recursive, as each branch recursively calls vm directly. Figure 1.7 reports that running vm precompilation terminates prematurely whenever evaluating reaches roughly the 1,000 th instruction due PostgreSQL's limited recursion depth [97]. Compiling this function with tail-recursion detection disabled (compiled) is not bound by recursion depth, but performance is disappointing compared to the hand-crafted recursive CTE. With tail recursion detection, execution times close in on the performance of the hand-crafted recursive CTE.

(a) Sharing in the call graph for $\operatorname{dtw}(2,2)$.

(b) Memoization prunes the call graph for $\operatorname{dtw}(3,3)$.

Figure 1.9: Call graphs for two consecutive invocations of UDF dtw showcasing memoization.

Memoization

Compilation allows us to store the results of all invocations of f in a table memo (Figure 1.8), which can then be used in future function invocations to trim the call graph size. Figure 1.9 shows the trimmed call graph of $\mathrm{dtw}(3,3)$ after $\mathrm{dtw}(2,2)$ has been evaluated and its intermediate calls memoized earlier. Memoization of recursive calls acts much like base cases and immediately return a value that prunes entire call subgraphs. We discuss memoization in Section 5.5. Automatic memoization based on trimming an explicitly represented call graph contrasts with the programming language implementation of memoization. The latter dynamically discovers a function's call graph through program or interpreter instrumentation, typically realized in terms of higher-order functions or macro facilities [94, 79]. Since both are unavailable in an RDBMS, we opt for the first-order call graph as data implementation, with no changes to the underlying RDBMS or its query evaluator required.

Batching

Developers can expect that a function f is invoked many times independently, say $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$. Enabling batching when compiling f changes its signature from $f(x)$ to $f^{\prime}([x, \ldots, x])$. Therefore allowing each individual function invocation $f\left(x_{i}\right)$ to be batched into a single call $f^{\prime}\left(\left[x_{1}, \ldots, x_{n}\right]\right)$. Lifted function f^{\prime} constructs a call graph with up to n root nodes and returns a table that maps each argument x_{i} to its result.

(a) The call graphs of $\operatorname{dtw}(2,2), \operatorname{dtw}(1,1)$ and dtw $(0,0)$ collapse into one.

call_g in	site			val
i ${ }^{\text {j }}$			i ${ }^{\text {j }}$	
$(2,2)$	\square	\square	$(2,2)$	\square
$(1,1)$	\square	\square	$(1,1)$	\square
$(0,0)$	\square	\square	$(0,0)$	\square
$(2,2)$	1	3	$(1,1)$	\square
$(2,2)$	2	3	$(1,2)$	\square
$(2,2)$	3	3	$(2,1)$	\square
$(1,1)$	1	3	$(0,0)$	\square
$(1,1)$	2	3	$(0,1)$	\square
$(1,1)$	3	3	$(1,0)$	\square
$(1,2)$	1	3	$(0,1)$	\square
$(1,2)$	2	3	$(0,2)$	\square
$(1,2)$	3	3	$(1,1)$	\square
$(2,1)$	1	3	$(1,0)$	\square
$(2,1)$	2	3	$(1,1)$	\square
$(2,1)$	3	3	$(2,0)$	\square
$(0,0)$	\square	0	$(0,0)$	0.0
$(0,1)$	\square	0	$(0,1)$	∞
$(1,0)$	\square	0	$(1,0)$	∞
$(0,2)$	\square	0	$(0,2)$	∞
$(2,0)$	\square	0	$(2,0)$	∞

(b) Tabular representation of the call graph in (a).

Figure 1.10: The call graph for invocation of $\operatorname{dtw}([(2,2),(1,1),(0,0)])$ showcasing batching.

Figure 1.10 shows the call graph of the batched function call $\operatorname{dtw}([(2,2),(1,1),(0,0)])$. Note how each call graph of function invocations $(1,1)$ and $(0,0)$ become subgraphs of the call graph of $(2,2)$. Similar to sharing, the more the constructed call graphs of each argument x_{1}, \ldots, x_{n} overlap, the smaller the total size of the batched call graph becomes (Section 5.6). Batching is a technique derived from data-parallel languages [63]. Another technique, called flattening, also bears strong similarities in its concept of lifting functions to arbitrary orders [106]. However, batching is exclusively concerned with first-order flattening: $f: a \rightarrow b$ to $f^{\prime}:[a] \rightarrow[b]$.

1.4 More Related Work

The compilation technique described in this publication is far from the only work done to allow developers to implement complex computations close to the data. Recent research presents other methods for recursive SQL UDF compilation. One such
research effort takes the function body of function f with recursive self-invocations and compiles it, using a form of continuation-passing style transformation [65]. This represents an alternative approach for recursive UDF compilation targeting recursive CTEs.

Another method, called R-SQL [57], translates SQL UDFs with recursive self-invocation into a set of queries with SELECT and INSERT statements. An external program written in Python repeatedly evaluates these statements until it reaches a fixed point. Consequently, R-SQL has to repeatedly cross over the $\mathrm{DB} / \mathrm{PL}$ line at query runtime, which is precisely what we want to avoid with our present work.

So far, we have focused strictly on SQL UDFs with recursive self-invocations. However, other research efforts exist to identify ways to give developers options to express complex algorithms. Some RDBMS, for example, offer a non-standard procedural extension to SQL such as $P L / p g S Q L$ that ships with PostgreSQL [97]. Its language features were heavily influenced by the PL/SQL language extension of the Oracle database [95]. However, the performance of PL/pgSQL-functions can be disappointing when embedded SQL queries are involved. Such embedded SQL queries require a cost-intensive context switch from extension executor to query executor and back. Compilation rewrites these functions into their semantically equivalent LANGUAGE SQL counterpart targeting recursive CTEs [81, 80].

FunSQL [61] proposes a PL/SQL-like (functional) language which enables developers to write functions in static single assignment form which embeds SQL expressions. Such functions are compiled into a data-flow graph of algebraic operators. We believe SQL itself should be the focus and aim to use it to its full potential, both as the language in which computation is expressed and as the compilation target.

Further research was conducted for HyPer [92], extending the SQL language itself by adding an ITERATE-operator [96]. This operator allows for an iterative subquery inside a SQL query. The ITERATE-operator works similarly to a for-loop, where the developer defines each: initialize, iterate, and stop-expression. In contrast to such research efforts, our approach avoids modifying the underlying RDBM and depends only on standard SQL, which makes it usable without the slow turn-around of patching non-standard changes into the RDBMS.

1.5 Research Focus and Contribution

We aim to measure the viability of functional-style SQL UDFs to implement complex computation. We measure the viability of functional-style UDFs from two angles: readability and runtime performance. This publication is separated into four parts:

1. The discussion of the user study (Chapter 2) aims to measure the readability and ease of handling functional-style UDFs compared to recursive CTEs.
2. The grammar definition for functional-style UDFs (Chapter 3).
3. The description of the SQL-to-SQL compiler (Chapter 4), which compiles a function-al-style UDF using recursive CTEs as their target and removing any recursive selfinvocations in the process. Compiling such UDFs improves runtime performance and enables a list of optimization opportunities which we discuss in Chapter 5.
4. The conclusion presents the overall assessment regarding the viability of functionalstyle UDFs and gives a short outline for future work (Chapter 6).
This work builds upon work previously published by us [70, 71].

Recursion in SQL - User Study

In 2020, we conducted an anonymous online study tasking developers to solve problems related to functional-style UDFs and recursive CTEs. The study aimed to gauge the readability and ease of handling functional-style UDFs and recursive CTEs comparing each to the other.

The user study targeted three demographics: students that have attended the Ad vanced SQL lecture of summer semester 2020 [56], users subscribed to the DBWorld mailing list [68], and interested students, as well as staff of the University of Tübingen, subscribed to the user study mailing list. Students that attended Advanced SQL were not introduced to functional-style UDFs before this study. The course focused on other SQL features like (recursive) CTEs, window functions, and other features beyond the common SELECT-FROM-WHERE-query.

We went through the following steps to conduct the user study: whenever an interested participant contacted us, they received a link with a randomly generated token. They were eligible to participate in the user study exactly once with this token. When the participant submits their result, it is automatically assigned a random identification number, decoupling the submission from the user. Out of 52 interested participants who received a generated token, 19 submitted their results. Dragicevic [69] deems this sufficient to draw meaningful conclusions. The following discussion is
centered around each task's aggregated scores and times (in minutes). Every discussion that centers exclusively around aggregated values is based on a 95% confidence interval ($\mathrm{CI}(\mathbf{9 5 \%})$) and the p -value ($\mathrm{p}-\mathrm{Val}$). Skipped tasks do not factor into the statistics.

The study itself is segmented into four general topics: choose the correct implementations (Section 2.1), describe a user-defined function (Section 2.2), manually evaluate a user-defined function (Section 2.3), and implement the $0-1$ knapsack algorithm (Section 2.4). The complete online form of the user study can be found in Appendix A.
User study introduction. Before the user study proper, an introductory text asked each participant not to use external programs to run queries found in this study. Instead, we asked them to use pen and paper only, if at all. Then, they had to list three regular programming languages they were familiar with and if they had some exposure to functional programming before this study. This helped us gain insight into the participant's background as a programmer.

We found that the 19 participants form a homogenous group where all are familiar with at least one imperative programming language, the majority being Java and Python, 15 of which had at least some exposure to Functional Programming. Recursive self-invocation and function definition by case distinction are staples of functional programming as it is used in, for example, Haskell [83]. Thus, we assume that most participants are familiar with these concepts, which functional-style UDFs depend on as well.

2.1 Choose the Correct Implementations

The first topic gauges the accuracy and speed required of the participants to distinguish between correct and incorrect implementations. The topic is separated into two tasks, each with its own textbook-style algorithm: Fibonacci Numbers [78]:

$$
\begin{align*}
& \operatorname{fib}(0)=0 \\
& \operatorname{fib}(1)=1 \tag{fib}\\
& \operatorname{fib}(n)=\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2)
\end{align*}
$$

(a) Aggregated Scores.

	Task	Time [min]		CI (95\%)	p -Val
			avg max		
fib	Functional-Style UDF	1:00	2:47 6:00	[2:03, 3:32]	0.0006
	Recursive CTE	3:00	5:47 12:00	[4:23, 7:11]	
gcd	Functional-Style UDF	1:00	2:16 7:00	[1:37, 2:55]	0.0002
	Recursive CTE	2:00	4:15 8:00	[3:32, 4:58]	

(b) Aggregated Times.

Table 2.1: The aggregated scores and times of the tasks Fibonacci Numbers (fib) and Greatest Common Divisor (gcd).
Scoring scheme of (a): participants gain 1 point, if a selection is correct and lose 1 point, if incorrect.
and Greatest Common Divisor [84]:

$$
\begin{align*}
& \operatorname{gcd}(\mathrm{n}, 0)=\mathrm{n} \\
& \operatorname{gcd}(\mathrm{n}, \mathrm{k})=\operatorname{gcd}(\mathrm{k}, \mathrm{n} \% \mathrm{k}) . \tag{gcd}
\end{align*}
$$

These algorithms were chosen for their concise textbook-style formulation and comparatively simple implementations as recursive CTE and functional-style UDF.

At first, each task presents the participants with the definition of the textbook-style function. Then, they are given a choice of four similar-looking recursive CTEs, and four similar-looking functional-style UDFs for fib (and vice versa, for gcd). Finally, they are asked to select only those snippets that correctly implement the algorithm. The participants also submit the time they need to complete this task.

Scores and times of each task fib and gcd are aggregated in Tables 2.1a and 2.1b. For each task, the aggregated times for functional-style UDFs are significantly lower than recursive CTEs. One participant skipped both recursive CTE parts of fib and gcd.

Conclusion. The aggregated scores Table 2.1a suggest that participants perform similarly well when differentiating between correct and incorrect implementations of functional-style UDFs and recursive CTEs. However, participants require only about half the time for functional-style UDFs.

Recursive CTEs disfigure the simple formulation of the textbook-style form, and thus it becomes much more time-consuming to detect subtle errors. Functional-style UDFs, on the other hand, can be compared almost verbatim to the textbook-style form, which is ideal when quickly validating code.

2.2 Describe a User-Defined Function

The second topic is separated into two tasks (Comprehension I and Comprehension II). It gauges the ability and speed with which each participant understands and correctly describes an unknown SQL user-defined function. Both UDFs were chosen for their concise formulation befitting their respective style:

- functional-style $\operatorname{UDF} f(i, j, k)$ which applies an error that propagates over time (see Figure 2.1), and

```
CREATE FUNCTION f(i int, j int, k float)
RETURNS float AS $$
SELECT CASE
WHEN i > j THEN k
ELSE (SELECT f(i+1, j, s.b + 0.5 * k)
    FROM s
    WHERE s.a = i)
END;
$$ LANGUAGE SQL STABLE STRICT;
```

Figure 2.1: Functional-style UDF $f(\mathrm{i}, \mathrm{j}, \mathrm{k})$.

CREATE FUNCTION g (a int)
RETURNS bigint AS \$\$
WITH RECURSIVE
r(x, y, z) AS (
SELECT t.x, t.y, t.z
FROM t
WHERE t.x = a
UNION
SELECT r.x, t.y, t.z
FROM r, t
WHERE r.y = t.x
)
SELECT SUM(r.z) 13
FROM r;
\$\$ LANGUAGE SQL STABLE STRICT; 15
Figure 2.2: Recursive CTE g(a).

(a) Recursive CTE.
$\mathrm{u} \leftarrow \operatorname{DISTINCT}\left(\mathrm{q}_{0}\right)$
$\mathrm{w} \leftarrow \mathrm{u}$
LOOP
$\mathrm{i} \leftarrow \operatorname{DISTINCT}\left(\mathrm{q}_{\mathrm{s}}(\mathrm{w}) \backslash \mathrm{u}\right)$
IF $i=\varnothing$ THEN BREAK
$\mathrm{u} \leftarrow \mathrm{u} \cup \mathrm{i}$
$\mathrm{w} \leftarrow \mathrm{i}$
8 END
RETURN u
(b) Pseudo code.

Figure 2.3: The general form of a recursive query $\mathrm{T}(\mathrm{a})$ and its semantics described in pseudo code (b). Evaluation requires keeping track of three bag variables: i (intermediate table), u (union table), and w (working table). Figure appeared before in Chapter 1.

- recursive CTE $\mathrm{g}(\mathrm{a})$ which traverses a directed graph and sums up each edge weight it passes once (see Figure 2.2).
The participants also submit the time they need to complete this task. Scores and times are aggregated in Tables 2.2a and 2.2b. On average, participants performed better describing functional-style UDF f in about the same time. Two participants skipped the recursive CTE in Comprehension II.
Conclusion. The aggregated scores in Table 2.2a show that twice as many participants described the functional-style UDF correctly (i.e. scored two or more points). Over half of the participants had difficulty explaining the recursive CTE and did not discover

Task	Points		Skip	
	0123Σ	avg		
Functional-Style UDF	345735	1.84	0	
Recursive CTE	651522	1.29		2

(a) Aggregated Scores.

Task	Time [min]	CI (95\%)	p -Val
	min avg max		
Functional-Style UDF	2:00 6:54 12:00	[5:44, 8:03]	
Recursive CTE	1:00 5:21 11:00	[4:04, 6:38]	

(b) Aggregated Times.

Table 2.2: The aggregated scores and times of tasks Comprehension I and Comprehension II.
Scoring scheme of (a): Incorrect description (0 points), partially correct description (1 point), correct description without discovering its intended purpose (2 points), correct description of its intended purpose (3 points).
its intended purpose. We point to the convoluted nature of evaluating recursive CTEs to explain why (see Figure 2.3). Thus, it is hard to imagine the participants easily keeping track of all the moving parts of function g and its recursive CTE. Compare this to function f, which has all its functionality explicitly visible. We conclude that developers are more likely to provide a correct description of an unknown functionalstyle UDF than they would an unknown recursive CTE in roughly the same amount of time.

2.3 Manually Evaluate a User-Defined Function

The third topic, Evaluation, builds upon the functions f and g (recall Figures 2.1 and 2.2) of the previous tasks Comprehension I and Comprehension II in Section 2.2. We gauge the ability and speed of the participants to manually evaluate (i.e. without computational aid) each function invocation $f(1,3,0)$ and $g(4)$. The participants then submit the results of these function calls and the time they need to complete this task.

Scores and times of this task are aggregated in Tables 2.3a and 2.3b. On average,

Task	Points				Skip
	012	Σ	avg		
Functional-Style UDF	3	12	28	1.47	0
Recursive CTE	809	18	1.06		2

(a) Aggregated Scores.

Task	Time [min]	CI (95\%)	p -Val
	min avg max		
Functional-Style UDF	1:00 3:21 10:00	[2:05, 4:36]	0.2806
Recursive CTE	0:30 2:51 10:00	[1:52, 3:50]	
	Aggregated Tim		

Table 2.3: The aggregated scores and times of task Evaluation.
Scoring scheme of (a): Incorrect result (0 points), partially correct intermediate steps (1 point), the correct result (2 points).

(a) Bag Variable Trace.

(b) Sample table.

Figure 2.4: The complete variable trace of function g (Figure 2.2) for call $g(4)$. Evaluating a recursive CTE manually requires the developer to keep track of three bag variables i, u, and w (recall Figure 2.3). $/ \int$ denotes bags of rows.

Figure 2.5: Each formulation in (a) - (c) describes the same algorithm to solve the 0-1 Knapsack problem. A rough comparison of the function body in (a) with the body found in (b) shows strong similarities when set side by side. However, compared to (c), the function bodies look almost unrecognizably different. Figure appeared before in Chapter 1.
participants performed better evaluating functional-style UDF f in about the same time. Two participants skipped evaluating the function of Comprehension II.
Conclusion. We find that the score of participants describing functions f and g in the previous task (Section 2.2) correlated to the score in this task. Thus, participants that understood a function were almost certainly going to evaluate them correctly.

Furthermore, the way most developers with at least some knowledge about functional programming would evaluate $f(1,3,0)$ is very straightforward: they first keep track of each function call until they reach a base case. Then, they backtrack until they reach the original function call, which returns the final result. This stands in stark contrast with recursive CTEs. Developers have to juggle many implicit variables throughout the evaluation process (recall Figure 2.3). Its complete bag variable trace in Figure 2.4 highlights the cognitive load for a developer to manually evaluate the function call $\mathrm{g}(4)$. These results only reinforce the argument that recursive CTEs still put a heavy mental burden on the developers even when a concise formulation is found.

Task	Ratings wrong minor syntax correct				Skip
Functional-Style UDF	3	2	4	2	8
Recursive CTE	-	-	-	-	

(a) Scores.

Task	Time [min]		
	\min	avg	\max

(b) Aggregated Times.

Table 2.4: The scores and aggregated times of task 0-1 Knapsack.
Rating scheme of (a): unrecognizable or unfixable (wrong), easily fixable mistakes, e.g., >= instead of > or missing edge cases (minor), valid but with syntax errors, a compiler would detect, e.g., write MAX instead of GREATEST or missing ')' (syntax), correct implementation (correct).

2.4 Implement the 0-1 Knapsack Algorithm

This final topic, 0-1 Knapsack, asks the participants to choose between writing a functional-style UDF or a recursive CTE. First, the topic presents the participants with the textbook-style definition of the 0-1 Knapsack algorithm [88] (recall Figure 2.5b). The participants then submit their implementation and the time they need to complete this task.
Scores and times of task 0-1 Knapsack are aggregated in Tables 2.4a and 2.4b. No participants even tried implementing the 0-1 Knapsack algorithm as a recursive CTE. Thus, we only discuss aggregated scores and times of the functional-style UDF implementations. Eight participants skipped this task.
Conclusion. We chose the textbook-style 0-1 Knapsack algorithm for this task. Both implementations as functional-style UDF (Figure 2.5a) and recursive CTE (Figure 2.5c) are similar in size, thus making them comparable to each other. Indeed, only the functional-style UDF resembles the textbook-style algorithm.

Combined with the submitted results, we argue that algorithms like 0-1 Knapsack do not lend themselves to be easily rewritten into their equivalent recursive CTE formu-
lation. Thus we conclude that if developers have the choice, they unanimously prefer functional-style UDFs over recursive CTEs when implementing such algorithms.

2.5 Summary

This study aimed to measure the performance of experienced developers working with functional-style UDFs and recursive CTEs. We found that developers require less time distinguishing correct from incorrect functional-style UDFs. They are also more likely to describe and manually evaluate a functional-style UDF accurately. Furthermore, given a choice, they overwhelmingly prefer functional-style UDFs over recursive CTEs to implement the 0-1 Knapsack algorithm. Thus, showing that there exist algorithms, such as these recursive textbook-style algorithms, that developers would prefer in functional-style. Indeed, some algorithms fit recursive CTEs better. Take, for example, the function g (recall Section 2.2), which describes an algorithm applied to a weighted graph. However, we can confidently say that developers appreciate functional-style UDFs as another pillar of support for moving computation close to the data.

Grammar of Functional-Style UDFs

We pursue a SQL source-to-source translation that accepts an input UDF f that adheres to the SQL dialect described by the grammar of Figure 3.1. Start symbol udf restricts our treatment to functions that

- are free of side effects (in PostgreSQL, such UDFs may be tagged as STABLE (or IMMUTABLE) [97, \$38.7]), and
- return values of some scalar type τ or tabular type $\operatorname{TABLE}(i d, \ldots, i d)$ with unique column identifiers $i d$.
Furthermore, function f must be STRICT and assumes a call-by-value evaluation of f where only actual values are passed as arguments [105]. Indeed, this excludes passing NULL as parameters to f, which represents a value currently unknown [66] and thus is incompatible with this restriction. Optional tags MEMO, BATCH and ITERATE allow the user to enable optimizations we discuss in Section 5.5, Section 5.6 and Section 5.4.3 respectively.

The UDF's body is formed top-level by

- set operations that link together two or more subqueries q,
- tabular conditionals where each branch may be a scalar or tabular subexpression q, and
- a SELECT-FROM-WHERE block in which scalar and tabular subexpressions (cf. non-

```
            udf ::= CREATE FUNCTION }f(id,\ldots,id) RETURNS T AS
            $$ q $$
            LANGUAGE SQL STABLE STRICT[MEMO][BATCH][ITERATE];
    q::= @ ©etop (q,\ldots,q)
        CASE OWHEN sql THEN q ELSE q END
```



```
            ` SELECT e AS id, ...,e AS id
            [ }\mp@subsup{}{}{\bullet}\mathrm{ FROM j
            [ }\mp@subsup{}{\mathrm{ WHERE }}{\mathrm{ WHE }
            [ [}\mp@subsup{}{\mathrm{ GROUP BY sql, ...sql [HAVING sql]}}{[
            ]
            [ [\mp@subsup{}{}{\ell}\mathrm{ GROUP BY sql, ...sql [HAVING sql] ]}
            [ '&}\mp@subsup{}{\mathrm{ LIMIT }}{l
            [ [}\mp@subsup{}{}{\mathrm{ OFFSET }
    e::= © f(sql,\ldots,sql)
    | (CASE OWHEN sql THEN e ELSE e END)
    |}\mp@subsup{\mathscr{Q}}{\otimes}{(e,\ldots,e)
    | © agg(e[ORDER BY sql]) [OVER (over)]
    | © (q)
    | © eqql
    j::= t AS id
    | ( j[LEFT|FULL] JOIN t AS id © ©N (sql)) AS id
                                (n-ary set operator)
                                    (tabular conditional)
                                    (optional WITH)
                                    (optional FROM)
                                    (optional WHERE)
            ]
                                    (optional GROUP BY)
                                    (optional ORDER BY)
                                    (optional LIMIT)
                                    (optional OFFSET)
                                    (scalar recursive call site)
                                    (scalar conditional)
                                    ( }n\mathrm{ -ary operator *)
                                    (aggregate function)
                                    (scalar subquery)
                            (any scalar expression)
                                    (JOIN clause)
    t::= © f(sql,\ldots,sql)
                                    (tabular recursive call site)
            | © id
                                    (table name)
                                    (tabular subquery)
    [LATERAL] }\mp@subsup{}{}{@}(q
    | © sql
                                    (any tabular expression)
setop ::= UNION[ALL]
                                    (set union)
            | INTERSECT[ALL]
                                    (set intersection)
            EXCEPT [ALL]
                                    (set difference)
    T::= \tau
                                    (scalar SQL type)
            | TABLE(id,\ldots,id)
                                    (tabular SQL type)
    sql::= any SQL expression without recursive call sites
over::= OVER clause expression without recursive call sites
            f::= name of recursive SQL UDF to be compiled
    agg::= name of aggregate function
    id ::= SQL identifier (table, column, alias, parameter)
@,(0):= unique expression labels
```

Figure 3.1: The grammar for functional-style SQL UDFs. Expression labels (e, ©) are internal annotations.
terminals e and j) may nest to arbitrary depth. A variety of optional clauses such as WITH, GROUP BY, ORDER BY, LIMIT and OFFSET are supported.
The grammar distinguishes scalar (and tabular) expressions that may contain selfinvocations (e, q, j, and t) and those that may not ($s q l$ and over). The non-terminals $s q l$ and over function as catch-alls for scalar and tabular subexpressions containing no recursive call sites. The grammar already rules out some queries in which calls to f depend on each other. Ultimately, slicing (Section 4.6) will identify all queries that exhibit such problematic interdependencies. Furthermore, some SQL constructs have been omitted for the sake of simplicity. This does not, however, deter from the expressiveness of functional-style UDFs. Unique labels e and © are assigned to subexpressions, e.g., a recursive call site. These labels are only internally represented in the parse tree.

4

Compiling Functional-Style UDFs

Let f be a SQL UDF in functional-style that adheres to the grammar defined in Chapter 3. Recursion is expressed in terms of self-invocations of f at, in general, several call sites (cf. 1 to 3 in the body of dtw in Figure 4.1). The compilation of f replaces its body with SQL code that will evaluate a call, say $f(\operatorname{args})$, in two steps:

1. Construct call graph g that originates in root args and records the arguments of all recursive calls that f would perform. Since we do not evaluate these calls yet, f 's recursive calls may only depend on args and any other database-wide accessible data, but not on f 's return values. The leaves of g are the non-recursive base cases entered by f (cf. 4) and 5 in the body of dtw in Figure 4.1).
2. Traverse g bottom up, evaluating the body of f for the recorded arguments. Evaluating the body for root args yields the overall result for the original call $f(\operatorname{args})$. We elaborate on this two-step evaluation with pseudo code in Sections 4.1 and 4.2 and discuss its SQL representation, which requires the compiler to utilize the well-known program slicing technique [108, 104], in Sections 4.3 to 4.6.

The main objective of this chapter is to bridge the gap between the theoretical description and the SQL implementation the compiler emits. For brevity, we keep the SQL implementation described in this chapter quite vanilla, exhibiting restrictions and missing improvements in favor of conciseness. For example, the vanilla

```
CREATE FUNCTION dtw(i int, j int)
RETURNS real AS $$
CASE
    WHEN i=0 AND j=0 THEN 40.0
    WHEN i=O OR j=0 THEN 5m -- 'Infinity'::real
    ELSE (SELECT abs(Z.x - Z.y)
            +
                LEAST(1dtw(i-1, j-1),
                        2dtw(i-1, j ),
                    3dtw(i , j-1))
        FROM (X JOIN Y
                        ON ((X.t,Y.t) = (i,j))) AS Z)
END;
$$ LANGUAGE SQL STABLE STRICT;
```

Figure 4.1: The Dynamic Time Warp (DTW, recall Equation (dtw) in Chapter 1) as a recursive SQL UDF written in functional style. 1, 2, and 3 mark the recursive call sites, 4 and 5 designate the non-recursive base cases.

Figure 4.2: The call graph for invocation of $\operatorname{dtw}(2,2)$ (recall Figure 4.1). The call graph describes edges representing either a recursive call in \bullet site \rightarrow out or a non-recursive base case in-val.
compilation does not yet support functions that exhibit recursive call site invocations dependent on surrounding row variables and table-valued return values. Indeed, in subsequent Chapter 5, we build upon this vanilla SQL implementation to lift these restrictions (see Sections 5.1 and 5.2) and introduce other tweaks and improvements such as linear- and tail-recursion optimization, memoization, and batching.

4.1 Step 1: Call Graph Construction

The call graph provides us with an explicit runtime representation of the work needed to be performed to evaluate $f($ args $)$. Figure 4.2, for example, shows the graph we

```
call_graph(f,in,graph):
calls \leftarrow[]
                                    Slices+Calls
FOR EACH call site site of f}\mathrm{ that would recursively
    invoke f(out) if the arguments are in DO
    calls[site] \leftarrow out
edges \leftarrow\varnothing Construct
IF calls }\not=[] THE
    FOR EACH (site,out) IN calls DO
        ADD in - site->out TO edges
ELSE
    val \leftarrow evaluate body of f for arguments in
    ADD in - val TO graph
edges \leftarrowedges\graph Invoke
FOR EACH • - >out IN edges DO
    | ADD call_graph(f,out, graph }\cup\mathrm{ edges) TO graph
RETURN graph
```

Figure 4.3: Call graph construction (pseudo code). Invoked via call_graph $(f, i n, \varnothing)$, returns a set of edges.
construct for $\operatorname{dtw}(2,2)$. Call graphs contain either of two edges:

- Edges in -site \rightarrow out embody an invocation with arguments in which leads f to call itself at site site with new arguments out (recall the function body of dtw in Figure 4.1 and its recursive call sites 1, 2, and (3).
- Edges in -val indicate that $f($ in $)$ enters a non-recursive base case that returns result value val (recall the function body of dtw in Figure 4.1 and its base cases (4) and (5).

4.1.1 Pseudo Code

Call graph construction can be described as a generic recursive process that accepts a function f and arguments in that returns the call graph. The pseudo code routine call_graph $(f$, in, graph $)$ of Figure 4.3 does exactly that. Parameter graph, initially \varnothing, is used to accumulate the set of edges for the call graph of $f(i n)$ and is then returned. This and the following routines are formulated in a style that allows their direct transcription into SQL. You will find the SQL code regions in Sections 4.3 to 4.5 to carry corresponding labels:
Slices+Calls With the incoming argument in, we collect the arguments out of all immediate outgoing calls of f (if any) in associative array calls. For this, we have to utilize a sliced version of f 's body which computes exactly the arguments out
without performing recursive calls. We focus on slicing f in Section 4.6.
Construct If we found that $f($ in $)$ leads to outgoing calls, construct corresponding edges in - site \rightarrow out with array calls and add them to the call graph. Otherwise, argument in led f into a base case, a case without recursive calls, where we then compute f 's return value val and add $i n \cdot v a l$ to the call graph.
Invoke Continue call graph construction for any outgoing argument out we have not encountered earlier, accumulating constructed edges in set graph. Once the call graph is complete, return it.
Note that call_graph $(f$, args,\varnothing) constructs a directed acyclic graph (or DAG) if the original UDF invocation $f(\operatorname{args})$ terminates. A circular call graph would indicate a lack of recursion progress in f looping indefinitely.

4.1.2 Optimization: Call Sharing

Figure 4.4: Sharing saves function invocations.

Any node in in the call graph - except the root - may have an in-degree greater than one (see node (1,1) in Figure 4.2, for example). As we assume f to be a pure function without side effects, any call $f(i n)$ will yield the same computation. Thus, all evaluation effort of node in and its sub-graphs below may be shared by all callers. The call_graph routine implements this sharing by accumulating a set of edges. Enabling such sharing can drastically reduce the call graph size and, thus evaluation effort. The naive evaluation of $\operatorname{dtw}(i, i)$ with $i>0$ leads to about $0.87 \times\left(5.83^{i} / \sqrt{\mathrm{i}}\right)$ recursive calls [77], see in Figure 4.4. With sharing enabled, the call graph size for dtw (i, i) reduces down to $(i+1)^{2}$, see \quad. Indeed, we found PostgreSQL does not share the evaluation effort of individual calls (this applies even if uncompiled function f is explicitly marked as being free of side effects [97, $\$ 38.7]$). Without sharing, the nine inner nodes of the dtw $(2,2)$ call graph in Figure 4.2 would already unfold into a graph of 19 invocations. In general, PostgreSQL's built-in function evaluation faces dtw call graphs of exponential size (\wedge^{-}), which ultimately leads to disastrous function runtimes.

Figure 4.5: A bottom-up call graph traversal populates table evaluation with the results of all recursive calls performed during the evaluation of $\operatorname{dtw}(2,2)$.

4.2 Step 2: Воttom-Up Traversal and Evaluation

Once the call graph is constructed, the second phase begins evaluation traversing f 's call graph bottom-up. Figure 4.5 a depicts this traversal for a sample call graph of $\operatorname{dtw}(2,2)$ shown in Figure 4.2. The graph is traversed layer-by-layer, starting with the bottommost layer in which the call graph's base case edges in - val indicate that $f(i n)=$ val. We record these discoveries as rows (in, val) in the two-column table evaluation (see Figure 4.5b). This table is initially empty but will hold the results of all recursive function calls once evaluation is complete. In each evaluation step, a call graph node in with its n recursive calls, in $\xrightarrow[\Omega_{1}]{\Omega_{n} \rightarrow} \rightarrow 0$ ut t_{1}, becomes available for evaluation in the next higher layer once all n return values of function calls $f\left(\right.$ out $\left._{1}\right), \ldots, f\left(\right.$ out $\left._{n}\right)$ are available in table evaluation, i.e. if $\left\{\left(\right.\right.$ out $_{1}$, val $_{1}, \ldots$, out $_{n}$, val $\left.\left._{n}\right)\right\} \subseteq$ evaluation. With these return values, we can then evaluate $f(i n)$ using a simplified function body where each recursive call site s_{i} has been replaced by $\operatorname{val}_{i}(i=1, \ldots, n)$. This returns value val, which we insert as a new row (in, val) into table evaluation. Figure 4.5 shows that this iterative evaluation process partitions the call graph for $\operatorname{dtw}(2,2)$ into four layers, traversed upwards from the leaves (dark to light). Once the fourth iteration concludes, table evaluation holds row $((2,2), 1.0)$ which ends the evaluation which returns the final result $\operatorname{dtw}(2,2)=1.0$.
evaluation($f, \operatorname{args}, e$, graph $):$
$g o \leftarrow[]$
Schedule
FOR EACH $i n \bullet \cdot \rightarrow \cdot$ IN graph SUCH THAT $e[i n]=\square$ DO
ret $\leftarrow[]$
FOR EACH SUCH call in \bullet site \rightarrow out DO
IF $e[$ out $]=\square$ THEN
CONTINUE AT 2
$\operatorname{ret}[$ site $] \leftarrow e[$ out $]$
$g o[i n] \leftarrow r e t$
returns $\leftarrow[]$ -
FOR EACH $(i n, r e t)$ IN $g o$ DO
val \leftarrow
evaluate body of f for arguments in
with the nth recursive call site replaced by $\operatorname{ret}[n]$
returns $[\mathrm{in}] \leftarrow$ val
$e \leftarrow e \cup$ returns
Traverse
IF $e[\operatorname{args}]=\square$ THEN
| RETURN evaluation(f, args, e, graph $)$
RETURN e

Figure 4.6: Call graph traversal (pseudo code).

4.2.1 Pseudo Code

The pseudo code routine evaluation $(f$, args, e, graph) of Figure 4.6 realizes the in Section 4.2 described traversal for call graph graph with root node args. While we traverse graph bottom-up, we use parameter e to accumulate the table of result rows. Initially, we expect e to only have rows (in, val) that derive from graph's base case edges in val. Schedule Populate associative array $g o$ with those in nodes not yet present in e (i.e. $e[i n]=\square)$ and have the return values of all outgoing recursive calls ready in e. Store an array ret in $g o[i n]$ which maps f 's recursive call sites to their return value recorded in e based on their position.
Body For each scheduled node in, evaluate the body of f in which recursive call sites have been replaced with their corresponding return values of array ret found in $g o[i n]$. Use returns to record the result val of the body evaluation for argument in.
Traverse Accumulate result rows in e. If graphs's root args is not found in e yet, continue the traversal (on the next higher layer). Otherwise, the evaluation is complete, and e is returned.

Figure 4.7: (Pseudo) code to replace the original body of UDF f. A SQL formulation is developed later in this chapter.

4.2.2 Compiled UDF = Call Graph Construction + Bottom-Up Traversal

To complete compilation of function f, we replace its original body with the composition of call graph construction (Section 4.1) and bottom-up traversal (Section 4.2). Figure 4.7 shows the corresponding pseudo code we will transcribe into proper SQL in Section 4.5. Note how Base prepares base_cases using graph's base case edges.

4.3 SQL Template: Call Graph Construction

The recursive common table expression of Figure 4.8 computes a tabular encoding of the call graph for $f(\overline{\operatorname{args}})$. We use overlines to abbreviate comma-separated lists of columns. Figure 4.9, for example, shows the call graph of $\operatorname{dtw}(2,2)$ (Figure 4.9a) and its tabular encoding call_graph (Figure 4.9 b). A call edge in \bullet site \rightarrow out is encoded as row (in, site, fanout, out, \square) in which fanout indicates that a call $f(i n)$ leads to a total of fanout immediate recursive invocations. For example, fanout $=3$ characterizes dtw's 3 -fold recursion. Likewise, base case edge in val maps to row (in, $\square, 0, i n$, val). We use \square to abbreviate SQL's NULL. Furthermore, the cursive type in Figure 4.8 indicates template text that needs to be replaced. And, for $f(\overline{\operatorname{args}}) \equiv \operatorname{dtw}(i, j), f$. $\overline{\operatorname{args}}$ denotes dtw.i,dtw.j.

To illustrate their workings, regions in the SQL code directly relate to those in the pseudo code for Figure 4.3:
Slices Compute two-column table slices in which a row $\left(i\right.$, out $\left._{i}\right)$ indicates that the evaluation of $f(\overline{\operatorname{args}})$ reaches call site s_{i} and would invoke $f\left(\right.$ out $\left._{i}\right)$. If call site s_{i} is not reached for arguments $\overline{\operatorname{args}}$, record (i, \perp) in slices instead. Any distinguishable SQL
WITH RECURSIVE call_graph(in, site, fanout, out, val) AS (
SELECT ROW($f . \overline{\operatorname{args}})$, NULL: :int, NULL: :bigint, ROW($f . \overline{\operatorname{args}})$, NULL: $: \tau$

```
UNION -- recursive UNION
SELECT g.out, edges.*
FROM call_graph AS g,
    LATERAL (
    WITH slices(site, out) AS (
        SELECT 1 AS site, out FROM (replace(slice(f, s1),[(g.out).\overline{args}])) AS _(out) Slices
            UNIION
            UNIȮN
```



```
        ),
        calls(site, fanout, out, val) AS (
        SELECT s.site, COUNT(*) OVER () AS fanout, s.out, NULL::\tau AS val
        FROM slices AS s
        WHERE s.out <> \perp Calls
    )
    TABLE calls
        UNION ALL
        SELECT NULL: :int AS site, O AS fanout, ROW((g.out).\overline{args}) AS out,
                        (replace(body(f,[NULL: : }\tau,\ldots,N|LL: :\tau])
                        [(g.out).\overline{args}])) AS val
        WHERE NOT EXISTS (TABLE calls)
    ) AS edges(site, fanout, out, val)
WHERE g.fanout > O OR g.fanout IS NULL
)

Figure 4.8: Call graph construction (SQL template, compare with pseudo code in Figure 4.3).

(a) The call graph describes edges representing either a recursive call \(i n \cdot\) site \(\rightarrow\) out or a nonrecursive base case \(i n \bullet v a l\).
call_graph
in site fanout out val
i \begin{tabular}{l} 
i j
\end{tabular}
\begin{tabular}{c|c|c|c|c|c|}
\((2,2)\) & \(\square\) & \(\square\) & \((2,2)\) & \(\square\) \\
\((2,2)\) & 1 & 3 & \((1,1)\) & \(\square\) \\
\((2,2)\) & 2 & 3 & \((1,2)\) & \(\square\) \\
\((2,2)\) & 3 & 3 & \((2,1)\) & \(\square\) \\
\((1,1)\) & 1 & 3 & \((0,0)\) & \(\square\) \\
\((1,1)\) & 2 & 3 & \((0,1)\) & \(\square\) \\
\((1,1)\) & 3 & 3 & \((1,0)\) & \(\square\) \\
\((1,2)\) & 1 & 3 & \((0,1)\) & \(\square\) \\
\((1,2)\) & 2 & 3 & \((0,2)\) & \(\square\) \\
\((1,2)\) & 3 & 3 & \((1,1)\) & \(\square\) \\
\((2,1)\) & 1 & 3 & \((1,0)\) & \(\square\) \\
\((2,1)\) & 2 & 3 & \((1,1)\) & \(\square\) \\
\((2,1)\) & 3 & 3 & \((2,0)\) & \(\square\) \\
\((0,0)\) & \(\square\) & 0 & \((0,0)\) & 0.0 \\
\((0,1)\) & \(\square\) & 0 & \((0,1)\) & \(\infty\) \\
\((1,0)\) & \(\square\) & 0 & \((1,0)\) & \(\infty\) \\
\((0,2)\) & \(\square\) & 0 & \((0,2)\) & \(\infty\) \\
\((2,0)\) & \(\square\) & 0 & \((2,0)\) & \(\infty\) \\
\hline
\end{tabular}
(b) Tabular representation of the call graph in (a). We use \(\square\) to abbreviate SQL's NULL.

Figure 4.9: The call graph for invocation of \(\operatorname{dtw}(2,2)\).
```

replace(slice(dtw, 11),[i,j])=
CASE
WHEN }i=0\mathrm{ AND j=0 THEN 4 L
WHEN i=O OR j=0 THEN 5 \perp
ELSE (SELECT 1 (SELECT ROW(}i-1,j-1)
FROM (X JOIN Y
ON ((X.t,Y.t) = (i,j))) AS Z)
END;

```

Figure 4.10: Slice of the body of UDF dtw for call site 1. Subexpressions irrelevant to the computation of the arguments \(i-1, j-1\) at call site 1 have been removed. Then, all references to dtw's arguments are replaced by \(i\) and \(j\).
value may be used to represent \(\perp\) ("bottom"). Table slices will carry \(n\) rows, if \(f\) has \(n\) recursive call sites. For dtw, this would be \(n=3\), where \(s_{i}=i\). To obtain out \({ }_{i}\), we evaluate replace (slice \(\left.\left(f, s_{i}\right),\left[x_{1}, x_{2}, \ldots\right]\right)\). slice \(\left(f, s_{i}\right)\) produces a sliced variant of the body of \(f\) in which all subexpressions have been removed that are irrelevant to the evaluation of \(f\) 's argument out \(t_{i}\) at call site \(s_{i}\). Slicing [108, 104, 107] is an established code transformation technique that we adapt for SQL in subsequent Section 4.6. Finally, replace \(\left(f,\left[x_{1}, x_{2}, \ldots\right]\right)\) produces out \({ }_{i}\), where all references to \(f\) 's arguments \(\overline{\text { args }}\) in \(f\) 's body are replaced with \(x_{1}, x_{2}, \ldots\). Figure 4.10, for example, shows the result of replace (slice(dtw, 1), \([i, j])\).
Calls For each recursive call site \(s_{i}\) that has been reached, collect (the tail of) its call graph edge \(\cdot s_{i} \rightarrow\) out \(t_{i}\) in table calls. We use aggregate COUNT(*) OVER () [97, §4.2.8] over the non-empty slices to find the number of recursive calls (fanout) performed by \(f(\overline{\operatorname{args}})\).
Construct If, instead, arguments \(\overline{\operatorname{args}}\) led to a base case (i.e, table calls is empty), evaluate the body of \(f\) for \(\overline{\operatorname{args}}\) to obtain return value val of scalar type \(\tau\). Construct (the tail of the) base case edge \(\bullet\) val. We use replace \(\left(\operatorname{body}\left(f,\left[e_{1}, e_{2}, \ldots\right]\right),\left[x_{1}, x_{2}, \ldots\right]\right)\) to modify the body of \(f . \operatorname{body}\left(f,\left[e_{1}, e_{2}, \ldots\right]\right)\) replaces the call sites of \(f\) with expressions \(e_{1}, e_{2}, \ldots\) and \(\operatorname{replace}\left(f,\left[x_{1}, x_{2}, \ldots\right]\right)\) takes all references to the arguments of \(f\) in its body and replaces them with \(x_{1}, x_{2}, \ldots\). Figure 4.11, for example, shows the result of \(\operatorname{replace}\left(\operatorname{body}\left(f,\left[e_{1}, e_{2}, e_{3}\right]\right),[i, j]\right)\). Since the recursive call sites are irrelevant in the base case, the template sets \(e_{i}\) to NULL of type \(\tau\).
Invoke Add edges to the call graph in each iteration. Proceed with the call graph construction using the arguments out of the added graph edges \(g\) from the directly
```

replace}(\operatorname{body}(f,[\mp@subsup{e}{1}{},\mp@subsup{e}{2}{},\mp@subsup{e}{3}{}]),[i,j])
CASE
WHEN i=0 AND j=0 THEN 4 0.0
WHEN i=O OR j=0 THEN 5 'm' -- 'Infinity'::real
ELSE (SELECT abs(Z.x - Z.y)
+
LEAST(1) }\mp@subsup{e}{1}{}\mathrm{ ,
2 e e,
FROM (X JOIN Y
ON ((X.t,Y.t) = (i,j))) AS Z)
END;

```

Figure 4.11: Body of UDF dtw with its call sites and arguments replaced by \(e_{1}, e_{2}, e_{3}\) and \(i, j\), respectively.
previous iteration as arguments to \(f\). As per the semantics of the recursive UNION, the construction will terminate once no new graph edges are discovered, i.e. all edges are base cases with fanout \(=0\).

\subsection*{4.4 SQL Template: Воtтom-Up Traversal}

The SQL template of Figure 4.12 realizes the layer-by-layer call graph traversal as introduced in Figure 4.6. Like the pseudo code, it returns binary table evaluation whose rows \(((\) in \(),(v a l))\) indicate that \(f(i n)=v a l\). This SQL piece assumes that (1) \(f\) 's return values for base cases are found in table base_cases (in, val), and (2) the tabular encoding of the call graph is found in call_graph (recall Figure 4.5):
Schedule Identify unevaluated nodes g whose recursive calls (of which there are g .fanout many) are all found in table evaluation. Like the pseudo code, we collect the return values of these recursive calls in an SQL array ret using the custom aggregate array_gather ( \(\mathrm{v}, \mathrm{i}\) ) which builds array a where a[i] = v. Subsequent tweaks and improvements to the template in Chapter 5 will not require array_gather (v,i) anymore.
Note that throughout the bottom-up traversal, each row in the evaluation CTE is joined with the call_graph CTE, prompting a full CTE scan every time. Thus, the runtime complexity of compiled function \(f\) is |evaluation \(\mid \times\) call_graph \(\mid\), where |evaluation \(|>|\) call_graph \(\mid\) i.e. the lion share of the total execution time
```

[WITH RECURSIVE] evaluation(in,val) AS (
TABLE base cases
UNION ALIL -- recursive UNION ALL
(WITH e(in,val) AS (TABLE evaluation),
returns(in,val) AS (
SELECT go.in,
(replace(body(f, [go.ret[1] ,...,go.ret [n]]),
[(go.in).args])) AS val
FROM (SELECT g.in, array_gather(e.val,g.site) AS ret
FROM call_graph AS g, e
WHERE g.out = e.in
AND NOT EXISTS (SEIECT FROM e WHERE e.in = g.in)
GROUP BY g.in, g.fanout
HAVING COUNT(*) = g.fanout
) AS go(in,ret) Schedule
SEI ECT results,*
Traverse
SELECT results.*
FROM (TABLE e UNION ALL TABLE returns) AS results(in,val)
WHERE NOT EXISTS (SELECT FROM e WHERE e.in = ROW(f.\overline{args}))
)
1)

```

Figure 4.12: Bottom-up call graph traversal (SQL template, compare with pseudo code in Figure 4.6).
to evaluate function \(f\). Indeed, depending on function \(f\), the size of evaluation can be many times the size of call_graph. For example, measuring the size of call_graph and evaluation for invocation of compiled function \(\operatorname{dtw}(100,100)\) yields \(\mid\) evaluation \(\mid=108,721\) and \(\mid\) call_graph \(\mid=10,201\). Chapter 5 discusses ways to improve this through reference counting.
Body For each node go, evaluate the body of \(f\) with its call sites replaced by the return values found in go.ret. We use replace \(\left(\operatorname{body}\left(f,\left[e_{1}, e_{2}, \ldots\right]\right),\left[x_{1}, x_{2}, \ldots\right]\right)\) to modify the body of UDF \(f\) in which \(\operatorname{body}\left(f,\left[e_{1}, e_{2}, \ldots\right]\right)\) replaces the call sites of \(f\) with expressions \(e_{1}, e_{2}, \ldots\) and \(\operatorname{replace}\left(f,\left[x_{1}, x_{2}, \ldots\right]\right)\) replaces all references to the arguments of \(f\) in its body with \(x_{1}, x_{2}, \ldots\). Figure 4.11, for example, shows the result of replace \(\left(\operatorname{body}\left(f,\left[e_{1}, e_{2}, e_{3}\right]\right),[i, j]\right)\). Record the found results in table returns(in,val).
Traverse Add returns to evaluation to form the overall known results so far. The CTE will continue to iterate until the result for argument \(f\).args is finally found in results.
```

CREATE FUNCTION f(\overline{args}) RETURNS }

AS $$
WITH RECURSIVE call_graph(in,site,fanout,out,val) AS (
 <see Figure 4.8>
),
 base_cases(in,val) AS (Base
 SEIECT g.in, g.val
 FROM call_graph AS g
 WHERE g.fanout = 0
),
 evaluation(in,val) AS (Eval
 <see Figure 4.12>
)
 SELECT e.val
 FROM evaluation AS e
 WHERE e.in = ROW(f.\overline{args});
$$ LANGUAGE SQL STABLE STRICT;

```

Figure 4.13: Compiled SQL code replaces the functional-style UDF f. (Compare with pseudo code in Figure 4.7.)

Note that the code regions Schedule and Traverse in Figure 4.12 hint at a nonmonotonic SQL query through its usage of aggregates and NOT EXISTS that some RDBMSs rule out syntactically if they appear in a recursive CTE. However, line 4 of Figure 4.12 references evaluation exactly once and stores only its most recent rows into CTE e, which works around this problem. We find that the templates discussed here are accepted by postgreSQL [97], HyPer [92], or Umbra [93], for example.

\subsection*{4.5 Emitting Code}

The compiler completes its job by emitting the SQL function \(f\) of Figure 4.13 which glues the two SQL templates of Sections 4.3 and 4.4 together. Just like the pseudo code of Figure 4.7, Graph and Base prepare the call graph and base case tables as expected by Evall. From table evaluation, Result extracts f's return value for arguments \(\overline{\text { args }}\) to deliver the function's final result. This purely CTE-based form of \(f\) serves as the drop-in replacement for the original functional-style UDF and already improves the runtimes compared to the uncompiled function (see, \(\boldsymbol{\alpha}\) and \(\boldsymbol{\sigma}\) in Figure 4.14).

This vanilla approach does not yet enable recursive call sites to reference surrounding row variables, table-valued return types, and other runtime optimizations. In subse-


Figure 4.14: Evaluating \(\operatorname{dtw}(i, i)\). Compares the runtimes before and after compilation.
quent Chapter 5, we lift these restrictions and further exploit this call graph-centric approach to UDF compilation. Besides the opportunity to share calls and thus evaluation effort, we find that
- some functions lead to simpler call graphs (i.e. call chains), which the compiler can use to optimize code (see Sections 5.3 and 5.4).
- Traversal-based evaluation creates a table filled with the results of all intermediate recursive calls. Future calls to \(f\) can benefit when these are stored for future use (see Section 5.5).
- Call graph construction allows the user to batch together many function invocations into one enabling sharing beyond the boundaries of a single function call (see Section 5.6).

\subsection*{4.6 Slicing Functional-Style SQL UDFs}

With slice \(\left(f, s_{i}\right)\), we are after a minimal version of function \(f\) 's original body - a slice - which still retains those expressions relevant to the evaluation of the argument expressions at call site with label \(s_{i}\). All argument expressions of \(s_{i}\) must evaluate the same in the sliced body as they would in the original. This closely resembles program slicing [108] in which a program is reduced to contain only statements relevant to executing a statement \(s\) called slicing criterion. We adapt slicing to aid in compiling
functional-style UDFs (recall use of slice \(\left(f, s_{i}\right)\) in SQL template in Figure 4.8).

\subsection*{4.6.1 Evaluation Paths}

In the statement-by-statement execution of an imperative program, we can mechanically identify the trace of statements [58] which are required for evaluating slicing criterion \(s\). In an expression-based language like SQL, an expression \(e_{1}\) is entered before \(e_{2}\) if an expression evaluator begins the evaluation of \(e_{1}\) before it starts to evaluate \(e_{2}\). This is the case if
- \(e_{2}\) is subexpression of \(e_{1}\) (in this case, the evaluation of \(e_{2}\) is done before \(e_{1}\) ), or
- \(e_{1}\) binds a variable that is in scope of \(e_{2}\), or
- \(e_{1}\) is a predicate that may inhibit the evaluation of \(e_{2}\).

Given a query \(q\), we use \(q \bullet\left\{p_{1}, \ldots, p_{n}\right\}\) to compute its set of evaluation paths. Each path \(p_{i}\) is a sequence of expression labels \([\ell, \ldots]\) (recall grammar in Chapter 3) which stand in for their associated expressions \(e_{\ell}\). Label (1) precedes 2 in \(p_{i}\) (or: \(1<{ }_{p_{i}}\) 2), if \(e_{1}\) is entered before \(e_{2}\) in \(q\). Figure 4.15 defines \(\bullet\) in terms of inference rules that inspect the syntax of \(q\).

Note that, for brevity, we write the elements of the FROM-list as \(T_{1} \circ \ldots 9 T_{f}\) which recursively expands to
\[
\begin{array}{ll}
T_{1} & \equiv t_{1} \mathrm{AS} i d_{21} \\
T_{1} \circ T_{2} & \equiv\left(T_{1}[\mathrm{LEFT} \mid \mathrm{FULL}] \mathrm{JOIN} t_{2} \mathrm{AS} i d^{\mathrm{N}_{2}} \mathrm{ON} s q l\right) \mathrm{AS} i d_{22} \\
T_{1} \circ \ldots \circ T_{f-1} \circ T_{f} & \equiv\left(T_{1} \circ \ldots \stackrel{\circ}{9} T_{f-1}[\mathrm{LEFT} \mid \mathrm{FULL}] \mathrm{JOIN} t_{f} \mathrm{AS} i d^{N_{f}} \mathrm{ON} s q l\right) \mathrm{AS} i d_{2 f}
\end{array}
\]

Figure 4.16 superimposes the evaluation paths of UDF dtw on its body query. We see that evaluation path \([\mathbf{A}, 4]\) contains the expressions entered before base case literal 0.0 (label 4) is evaluated. One evaluation path leading to call site 1 is \(p=\)
 table \(Y(\mathbb{E})\) in \(p\) as these bind row variables \(X\) and \(Y\) to \(O N\) clause ( (G). Its predicate controls wether 1 is evaluated for a given variable binding, thus we find \({ }^{G}<_{p} 1\) as well.

Note that evaluation paths reflect dependencies between the query subexpression prescribed by the SQL semantics [101] and are independent of any particular order an
\[
\frac{\left.q_{i} \bullet \pi_{i}\right|_{i=1 \ldots n}}{\bigotimes_{\text {setop }\left(q_{1}, \ldots, q_{n}\right)} \bullet\{[\ell]\} \oplus \bigcup_{i=1 \ldots n} \pi_{i}} \quad \begin{gathered}
e \bullet \pi \\
\begin{array}{c}
\text { agg }(e \text { ORDER BY sql) } \\
\text { OVER }(\text { over })
\end{array}
\end{gathered} \rightarrow\{[\varrho]\} \oplus \pi
\]
\[
\left.\left.e_{i} \bullet \pi_{1 i}\right|_{i=1 \ldots s} \quad t_{j} \bullet \pi_{2 j}\right|_{j=1 \ldots f} \quad e \bullet \pi
\]
\begin{tabular}{|c|c|c|}
\hline \({ }^{T_{\text {WITH }}}\) & \(i d_{1} \mathrm{AS}\left(s q l_{1}\right), \ldots, i d_{t} \mathrm{AS}\) & \\
\hline \({ }^{\text {S }}\) SELECT & \(e_{1} \mathrm{AS} i d_{11}, \ldots, e_{s} \mathrm{AS} i d_{1 s}\) & \\
\hline \({ }^{\text {E FROM }}\) & \(T_{1} \stackrel{\ldots}{ } \ldots \% T_{f}\) & \\
\hline \({ }^{\text {WHERE }}\) & \(e\) & \(\{[\mathcal{L}, \mathcal{E}]\} \oplus \pi_{21} \oplus \pi_{22} \oplus\left\{\left[N_{2}\right]\right\} \ldots \oplus \pi_{2 j} \oplus\left\{\left[N_{f}\right]\right\} \oplus\) \\
\hline \({ }^{G}\) GROUP & BY \(s q l_{1}, \ldots, s q l_{g}\) HAVING \(s q l\) & \(\bullet\{[\mathbb{W}]\} \oplus \pi \oplus\{[G, O, \mathcal{L}, \mathcal{E}, \mathcal{S}]\} \oplus \bigcup \pi_{1 i}\) \\
\hline \(O_{\text {ORDER }}\) & BY \(s q l_{1}, \ldots, s q l_{o}\) & \({ }_{i=1 . . s}\) \\
\hline \({ }^{\text {L }}\) LIMIT & sql & \\
\hline \({ }^{\text {E OFFSET }}\) & & \\
\hline
\end{tabular}

Figure 4.15: \(q \bullet \pi\) derives the set \(\pi\) of evaluation paths for SQL query \(q\). Operator \(\oplus\) combines two path sets: \(\pi_{1} \oplus \pi_{2}=\left\{p_{1} \| p_{2} \mid p_{1} \in \pi_{1}, p_{2} \in \pi_{2}\right\}\) where \(\|\) denotes path concatenation. Any \(\left.T_{j}\right|_{j=1 \ldots f}\) uniquely identifies tabular expression \(t_{j}\) (and label \(N_{j}\), if \(j>1\) ).


Figure 4.16: (Prefix tree of) Evaluation paths of UDF dtw superimposed on its body. \([A, B, C, \ldots]\) shown as \(A \cdot B \cdot C \rightarrow\).

RDBMS may choose to evaluate \(q\). This also means the evaluation path is produced independent of any alterations that specific query optimizations would have applied.
\[
\begin{align*}
& \bullet_{f}\left(s q l_{1}, \ldots, s q l_{n}\right) \|_{C}= \begin{cases}\mathscr{e}^{( }\left(\text {SELECT } \operatorname{ROW}\left(s q l_{1}, \ldots, s q l_{n}\right)\right) & \text { if } \bullet \in C \\
\perp & \text { otherwise }\end{cases}  \tag{Rec}\\
& \oplus_{s q l} \|_{C}= \begin{cases}®_{s q l} & \text { if } \ell \in C \\
\perp & \text { otherwise }\end{cases}  \tag{SQL}\\
& \mathscr{Q}_{\otimes}^{\otimes}\left(e_{1}, \ldots, e_{n}\right) \|_{C}=\left\{\begin{array}{ll}
e_{i} \Downarrow_{C} & \text { if } E=\{i\} \\
\perp & \text { otherwise }
\end{array} \quad \text { with } E=\left\{i \in 1 \ldots n \mid e_{i} \Downarrow_{C} \neq \perp\right\}\right.  \tag{Op}\\
& { }^{\ominus}(q) \|_{C}={ }^{\ominus}\left(q \Downarrow_{C}\right)  \tag{Sub}\\
& \bullet_{i d} \|_{C}= \begin{cases}\bullet_{i d} & \text { if } \bullet \in C \\
\perp & \text { otherwise }\end{cases}  \tag{Tвд}\\
& \text { END }
\end{align*}
\]
\[
\begin{align*}
& \text { CASE } \boldsymbol{0}_{\text {WHEN }} s q l \text { THEN } q_{1} \| \quad \text { (SELECT } * \operatorname{FROM}\left(q_{1} \Downarrow_{C}\right) \text { AS _ WHERE } s q l \\
& \text { ELSE } q_{2} \|_{C}=\quad \begin{array}{c}
\boldsymbol{O}_{\text {UNION ALL }} \\
\text { SELECT } \left.* \operatorname{FROM}\left(q_{2} \Downarrow_{C}\right) \text { AS _ WHERE NOT } s q l\right)
\end{array}  \tag{q}\\
& \boldsymbol{e}_{\text {setop }\left(q_{1}, \ldots, q_{n}\right)} \Downarrow_{C}=\left\{\begin{array}{ll}
q_{i} \Downarrow_{C} & \text { if } Q=\{i\} \\
\perp & \text { otherwise }
\end{array} \quad \text { with } Q=\left\{i \in 1 \ldots n \mid e_{i} \Downarrow_{C} \neq \perp\right\}\right. \\
& \mathbb{@}_{\text {agg }(e \operatorname{ORDER~BY} s q l)}^{\operatorname{OVER}(o v e r)} \|_{C}=\left(e \Downarrow_{C}\right)
\end{align*}
\]

Figure 4.17: \(q \Downarrow_{C}\left(e \Downarrow_{C}\right)\) slices SQL query \(q\) (expression \(e \Downarrow_{C}\) ) to expose the arguments of the recursive call at the call site identified by \(C\). Continued in Figure 4.18.
(Select)

(From)

\((\mathrm{SFW})\)
otherwise (SFw)


if \(\begin{aligned} & \{\oplus, w\} \subseteq C, \\ & E=\{i\}\end{aligned}\)
if \(\begin{aligned} & f \in C, \\ & T=\{j\}\end{aligned}\)



\subsection*{4.6.2 Call Site Slices}

We build upon evaluation paths (from previous Section 4.6.1) and define slice \(\left(f, s_{i}\right)\) as follows:
(1) Let \(q\) denote the query body of \(\operatorname{UDF} f\). Derive its set \(\pi\) of evaluation paths via \(q \bullet \pi\). Then, let \(\pi\left[s_{i}\right] \subseteq \pi\) hold the subset of paths that contain call site label \(s_{i}\).
(2) The labels in \(C=\left\{s_{i}\right\} \cup \bigcup_{p \in \pi\left[s_{i}\right]}\left\{c \mid c<_{p} s_{i}\right\}\) are those expressions in \(q\) that are entered before \(s_{i}\) on some evaluation path. To ensure that the resulting slice does not depend on other self-invocations of \(f\), we impose the syntactic restriction that \(C\) may not contain call site labels other than \(s_{i}\).
(3) Find and return the sliced query \(q^{-}=q \Downarrow_{C}\), which is stripped of expressions irrelevant to evaluating the arguments at call site \(s_{i} . \cdot \Downarrow_{C}\) is defined in Figures 4.17 and 4.18 and discussed in further detail below.
SQL transformation \(q \Downarrow_{C}\) is defined by syntactic case analysis on \(q\) guided by set \(C\). The slicing replaces any irrelevant subexpression with \(\perp\), an arbitrary yet unique SQL value which signifies that the evaluation of \(q\) has not entered call site \(s_{i}\).
Rec If this is the call site we are after (i.e. \(e \in C\) ), remove the recursive call to \(f\) and only keep its \(n\) arguments packaged inside a row constructor inside a SELECT-clause. Otherwise, the expression is irrelevant.
SQL Do not descend further into any SQL expression \(s q l\) which does not contain a call site (recall Figure 3.1).
Op If the call site found in the \(i\) th argument of \(n\)-ary operator \(\otimes\) (meaning \(e_{i} \Downarrow_{C} \neq \perp\) and thus \(E=\{i\})\), keep slicing that argument \(e_{i}\) only. Otherwise, discard the operator entirely.
\(\mathrm{CASE}_{e / q}\) Preserve the branches \(e_{1}\) and \(e_{2}\) (or \(q_{1}\) and \(q_{2}\) ) such that they are (not) evaluated under the same conditions as the original query. In any case, we transform the CASEclause into its equivalent SELECT-WHERE-clauses as part of this process, lifting the scalar conditional expression into its tabular representation. Recursive application of \(\cdot \Downarrow_{C}\) discards irrelevant branches with \(\perp\).
\(S_{\text {et }}\) If the call site found in the \(i\) th argument of \(n\)-ary set-operator setop (meaning \(q_{i} \Downarrow_{C} \neq \perp\) and thus \(\left.Q=\{i\}\right)\), keep slicing that argument \(q_{i}\). Otherwise, discard the operator entirely.

Select For a call site found in the SELECT expression \(e_{i}\), discard any other expression. Then, move \(e_{i}\) into a LATERAL subquery appended with a cross-join (,) at the end of FROM \(T_{1}{ }_{9} \ldots \circ{ }_{9}\). The LATERAL subquery is assigned a unique row variable \(i d\). Expression \(i d . *\) replaces all expressions in the SELECT-clause to extract and observe the call's argument values. This lifts \(e_{i}\) from a (possibly) scalar expression into a tabular context.
Where Similar to Select, except we append the Where predicate \(e\) at the end of FROM \(T_{1} \stackrel{\circ}{\circ}, \stackrel{\circ}{q} T_{f}\).
From For a call site found in the FROM tabular expression \(t_{j}(j \in 1, \ldots, f)\), we keep only \(T_{1} \circ \ldots \circ T_{j-1}\) and append \(t_{j}\) with a cross-join (,) at the end of it. Then, we move \(i d_{2 j} . *\) into the SELECT-clause where we extract and observe the call's argument values.
```

slice $(\mathrm{dtw}, 1)=$
CASE
BHEN $i=0$ AND $j=0$ THEN ${ }^{4} \perp \perp$
BHEN $i=0$ OR $\quad j=0$ THEN ${ }^{5} \perp$
ELSE $^{\text {C }}\left({ }^{\mathrm{H}}{ }^{\mathrm{D}}\right.$ SELECT $^{1}{ }^{1}$ SELECT ROW $\left.(i-1, j-1)\right)$
${ }^{\mathrm{D}} \mathrm{FROM}^{{ }^{\mathrm{E}} \mathrm{X}_{\mathrm{G}} \text { JOIN }{ }^{\mathrm{F}}}{ }^{\text {O }}$ Y
END;

```

Figure 4.19: Slice of the body of UDF dtw for call site 1. Subexpressions irrelevant to the computation for the arguments \(i-1, j-1\) at call site 1 have been removed.

For example, the Figure 4.19 shows the result of slice(dtw, 1). For readability sake, we refrain from rewriting the CASE as its SELECT-WHERE-clause (recall CASE in Figure 4.17).
 either returns the arguments \(\operatorname{ROW}(i-1, j-1)\) of the call at site with label 1 or \(\perp\) if the invocation of dtw enters a base case branch (4) or 5).

Now that we described the vanilla compilation method and its implementation, we can tweak and improve it in Chapter 5. There, we will lift restrictions and expoit the call graph for further optimizations.


\section*{Tweaks and Improvements}

The vanilla compilation method described in previous Chapter 4 already has a positive impact on the execution times of functional-style UDFs. This chapter introduces tweaks and improvements to this vanilla compilation technique to lower execution times even further as well as lift syntactical restrictions previously imposed. Indeed, as Figure 5.1 indicates, some of these improvements to the compiled functionalstyle UDF dtw ( \({ }^{(\infty)}\) ) moves execution times close to the runtime performance of a hand-crafted and carefully optimized CTE (

In Section 5.1, we ultimately replace the vanilla evaluation CTE with one that applies reference counting to the bottom-up traversal process and lifts the restriction where recursive call sites were not allowed to reference surrounding row variables. Further improvements in all subsequent sections build upon this tweaked SQL template. In Section 5.2, we describe necessary tweaks to the SQL template that enables compilation of functional-style UDFs with table-valued return type. In Sections 5.3 and 5.4, if the compiler identifies the functional-style UDF as linear- or tail-recursive, we can further simplify the SQL templates the compiler produces. Finally, we introduce two more optimizations developers can enable when compiling functional-style UDFs:
- Memoization retains the results of all intermediate recursive calls for future calls (Section 5.5), and


Figure 5.1: Evaluating \(\operatorname{dtw}(i, i)\) : Execution time comparison of compilation with sharing and reference-counting enabled with the uncompiled functional-style UDF dtw and the (optimized) hand-crafted CTE. The definition of dynamic time warping (dtw) and this plot appeared in Chapter 1 before.
- Batching turns function \(f\), that processes a single argument list \(f(\overline{\operatorname{args}})\), into a function \(f^{\prime}\) that evaluates an array of argument lists \(f^{\prime}([\overline{\operatorname{args}}, \ldots, \overline{\operatorname{args}}])\) batched together in a single call (Section 5.6).
Note that tweaks, such as table-valued return types, memoization, and batching, work independently of each other for functional-style UDFs which are compiled either as general-, linear-, and tail-recursive. Templates with all tweaks enabled can be found in Appendix B, where their modular nature is highlighted. All experiments in this chapter were performed with PostgreSQL 13 running on a 64 -bit Linux \(x 86\) host with 8 Intel Core \({ }^{\text {TM }}\) i7 CPUs clocked at 3.66 GHz and 64 GB of RAM, of which 128 MB were dedicated to the database buffer. Timings were averaged over 10 runs, with worst and best runtimes disregarded.
```

CREATE FUNCTION dtw(i int, j int)

RETURNS real AS $$
CASE
 WHEN i=0 AND j=0 THEN 40.0
 WHEN i=0 OR j=0 THEN 5m -- 'Infinity'::real
 ELSE (SELECT abs(Z.x - Z.y)
 +
 LEAST(1)dtw(i-1, j-1),
 2dtw(i-1, j),
 3dtw(i , j-1))
 FROM (X JOIN Y
 ON ((X.t,Y.t) = (i,j))) AS Z)
END;
$$ LANGUAGE SQL STABLE STRICT;

```

Figure 5.2: DTW as a recursive SQL UDF written in functional style. 1, 2, and 3 mark the recursive call sites, 4 and 5 designate the non-recursive base cases.


Figure 5.3: Table evaluation for \(\operatorname{dtw}(2,2)\) with reference counting enabled. Note how in each evaluation step \(i\), we keep only those rows in the working table that have not yet used to produce a new result.

\subsection*{5.1 Reference Counting}

In each iteration of a recursive common table expression,

\section*{WITH RECURSIVE \(t\) AS ( \(q_{1}\) UNION ALL \(q_{2}\) )}
query \(q_{2}\) finds in \(t\) all rows that were produced in the CTE's previous iteration [101]. SQL implementations hold these newly found rows of \(t\) in the so-called working table [97, §7.8], ready to be read by \(q_{2}\). In the vanilla compilation (recall Chapter 4), the evaluation CTE of Figure 4.12 keeps both known and new results (see Line 18 in Traverse) to ensure that Schedule sees all results found so far. Thus, the evaluation of a call graph node may depend on the result of a node found in any lower layer of the bottom-up graph traversal. For example, reusing the dynamic time warp (dtw) from previous Chapter 4, the evaluation of call graph node ( 1,2 ) in Figure 4.5a depends on result for nodes \((0,2),(0,1)\), and \((1,1)\) to be present in the working table. As evaluation continues, this leads to monotonically increasing working table sizes containing all these previous (possibly obsolete) results, negatively affecting runtime performance. We find that the in-degree of a call graph node determines how often its return value is referenced during the evaluation of parent calls. Thus, the following adaption of the compilation scheme enables reference counting, which removes such obsolete results from working tables throughout the bottom-up traversal of the call graph:
1. To the tabular encoding of the results in the evaluation CTE, add utility columns ref, site, and fanout. Together with in, these columns represent call graph edges ref \(\bullet\) site \(\rightarrow\) in. Referee ref functionally determines fanout. Thus, if the count of rows with the same ref is equal to fanout, evaluate the result of outgoing call \(f\) (ref) and store the newly evaluated results in the working table.
2. Mark those rows used to evaluate \(f(\mathrm{ref})\) as referenced and drop them from subsequent working tables.
3. For all newly evaluated results of outgoing call \(f\) (ref), we look up their referee's ref, site, and fanout in the call graph and add them to the working table.
Figure 5.3 shows the working tables of each iteration \(i\) when evaluating \(\operatorname{dtw}(2,2)\) with
```

 [WITH RECURSIVE] evaluation(in,val,ref,site,fanout) AS (
 TABLE base cases
 UNION AL\overline{L} -- recursive UNION ALL
 (WITH e(in,val,ref,site,fanout) AS (TABLE evaluation),
 returns(in,val) AS (
 SELECT go.in,
 (replace(body(f,[lookup(f,1), .., lookup(f,n)]),
 [(go.in).\overline{args}])) AS val
 FROM (SEIECT e.ref
 FROM e
 GROUP BY e.ref, e.fanout
 HAVING COUNT(*) = e.fanout
) AS go(in) RefSchedule
)
 SEIECT *
 FRDM e
 WHERE e.fanout IS NOT NULL
 AND NOT EXISTS (SEIECT FROM returns AS r WHERE r.in = e.ref)
 UNION ALL
 SEIECT r.*, g.in, g.site, g.fanout
 FROM returns AS r, call_graph AS g
 WHERE r.in = g.out
)
)

```

Figure 5.4: Tweaking the template of Figure 4.12 in previous Chapter 4 implements reference counting and enables functional-style UDFs with call sites that reference surrounding row variables.
reference counting enabled. The final step \((i=4)\) lists only the result for \((2,2)\) and, thus, marks the end of the bottom-up traversal and evaluation.

\subsection*{5.1.1 Tweaking the SQL Template}

The vanilla templates are tweaked to implement reference counting. Reference counting also lifts the restriction where recursive call sites were not allowed to reference surrounding row variables as a side effect. Such call sites that reference surrounding row variables we call correlated. For correlated call sites, fanout depends on the unknown number of rows the row variable references. Thus, we identify functions with correlated call sites as \(n\)-fold recursive. Compare this to dtw (see Figure 5.2) which has no correlated call site and which identifies it as 3 -fold recursive.

We highlight those changes that lead to the template in Figure 5.4:
RefSchedule Collect referee nodes ref whose recursive call results are all present in the working table of evaluation. This decides whether outgoing call \(f(\) ref \()\) is ready for evaluation or not. Notice, that custom aggregate array_gather is not required anymore, because we look up results in RefBody directly from the working table.
RefBody For each referee node in go, evaluate the body of \(f\) with its call sites replaced by subquery:
\[
\left.\operatorname{lookup}(f, \ell)=\begin{array}{ll}
\text { SELECT } & \text { e.val FROM e } \\
\text { WHERE } & \text { e.ref }=\text { in } \\
\text { AND } & \text { e.site }=\ell \\
\text { AND } & \text { e.in }=\operatorname{call}(f, \ell)
\end{array}\right) .
\]

The subquery \(\operatorname{lookup}(f, \ell)\) looks up the result of recursive call in of call graph edge ref \(\bullet\) site \(\rightarrow\) in i.e. the result of in at site called by ref. Recursive call in is determined by \(\operatorname{call}(\mathrm{f}, \ell)\) which extracts the call site argument expressions at \(\ell\). For example: \(\operatorname{call}(\mathrm{dtw}, 1)=(i-1, j-1)\) (see call site 11 in Figure 5.2). Extracting the call site arguments and looking up the results in the working table of evaluation makes the custom aggregate array_gather obsolete and, as a side effect, allows compilation of functional-style UDFs with correlated call sites.
Reftraverse Do not keep results in the working table of evaluation that have been used in this evaluation step. For each result of in in CTE returns find all its referees ref in call_graph and add the result of in at site called by ref representing call graph edge ref \(\cdot\) site \(\rightarrow\) out). Indeed, duplicates of the same results are added to the working table if more than one node ref depends on in. For example, recall \((1,1)\) in Figure 4.5a which has its result added three times, because nodes \((2,1),(2,2)\), and \((1,2)\) are its referees. However, this is a small price to pay since, with this tweak, we only join newly discovered results with call_graph instead of the entire evaluation CTE. The number of newly discovered results is exactly the number of nodes in the |call_graph|. This improves runtime complexity from |evaluation \(|\times|\) call_graph \(\mid\) to \(\mid\) call_graph \(\left.\right|^{2}\) (recall that |evaluation \(\left|>\left|c a l l \_g r a p h\right|\right)\). Bottom-up traversal continues until we reach the initial function call, which ends the evaluation and produces the result of \(f\).
```

CREATE FUNCTION f(\overline{args}) REIURNS }

AS $$
WITH RECURSIVE call_graph(in,site,fanout,out,val) AS (
 <see Figure 4.8>
), Graph
base_cases(in,val,ref,site,fanout) AS (
 SEIECT g.in, g.val, g_ref.in, g_ref.site,g_ref.fanout
 FROM call_graph AS g,
 call_graph AS g_ref
 WHERE g.fanout = 0
 AND (g_ref.fanout > 0 OR g_ref.fanout IS NULL)
 AND g.in = g_ref.out
),
evaluation(in,val,ref,site,fanout) AS (
 <see Figure 5.4>
)
SELECT e.val RefResult
FROM evaluation AS e
WHERE e.fanout IS NULL;
$$ LANGUAGE SQL STABLE STRICT;

```

Figure 5.5: The compiled SQL code enables reference counting and allows correlated call sites in functional-style UDFs.

In Figure 5.5, regions RefBase, RefEvall, and RefResult replace their vanilla counterparts. As before, the base_cases CTE initializes the first results at the very bottom layer of the traversal. Indeed, as with Reftraverse in CTE evaluation, multiple copies of the same result may be stored in base_cases if multiple ancestors depend on it. From table evaluation, RefResult extracts \(f\) 's return value, which has fanout set to \(\square\), to deliver the function's final result.

Figure 5.6a traces the working table size as CTE evaluation traverses the call graph for \(\operatorname{dtw}(100,100)\). The vanilla evaluation CTE of Figure 4.12 indeed processes working tables of monotonically increasing size, growing from 201 to 10,201 rows across the 200 iterations. This incurs a noticeable runtime penalty for evaluation processes that recurse deeply ( \(\sim\) in Figures 5.6a and 5.6b). With reference counting, the working table size never exceeds 400 rows and decreases sharply as the traversal approaches the ever-narrower layers at the top of dtw's call graph. These savings add up favorably at runtime (see \({ }_{\infty}\) in both figures). While sharing helps to keep working table sizes in check during call graph construction, reference counting does the same during evaluation. The evaluation of \(\operatorname{dtw}(300,300)\) builds a working table that never exceeds


Figure 5.6: Evaluating \(\operatorname{dtw}(100,100)\) : Impact of reference counting on working table size and CTE runtime.

1200 rows if reference counting is performed. To put into perspective how far we have come, recall Figure 5.1 as it compares dtw between the original UDF (before compilation) and the final compiled UDF.

\subsection*{5.1.2 The Impact of Call Sharing}

Some functional-style UDFs never share recursive calls throughout call graph construction. Take, for example, function \(\operatorname{split}(x, y)\) where \(x\) and \(y\) represent the boundaries of a range \([x, y]\). split divides this range in the middle and continues to do so recursively until \(|x-y| \leqslant 1\), at which point it returns 1 . We define split recursively as follows:
\[
\operatorname{split}(x, y)= \begin{cases}1 & ,|x-y| \leqslant 1  \tag{split}\\ \operatorname{split}\left(x, x+\frac{|x-y|}{2}\right)+\operatorname{split}\left(x+\frac{|x-y|}{2}, y\right), \text { otherwise }\end{cases}
\]
split will never produce the same recursive call twice during its evaluation. Figure 5.7 shows a direct comparison of split before compilation ( \(\wedge^{\wedge}\) ), after compilation without the benefit of call sharing ( \({ }^{(\infty)}\) ) and, the function implemented as a hand-crafted


Figure 5.7: Evaluating split \(\left(i, i^{2}\right)\).

CTE (~). Some functional-style UDFs, whether compiled or not, fall far behind when compared to the execution times of a hand-crafted CTE (found in Section C.3). Thus, developers must take into consideration whether their complex computation exhibits call sharing potential before deciding between writing a functional-style UDF (and compiling it) and a hand-crafted implementation using recursive CTEs. In such cases, the developer may be faced with a compromise between readability and performance. Indeed, this underlines that functional-style UDFs are not here to replace recursive CTEs but to give the developer additional options to implement complex computations.


Figure 5.8: Evaluating \(\operatorname{dtw}(i, i)\). Compares the runtime difference of the compiled UDF using reference counting with a database buffer size set to 4 MB and 128 MB . Only when the database buffer size is set to 4 MB , do we measure any \(\mathrm{I} / \mathrm{O}\) operations.

\subsection*{5.1.3 Runtime Experiments}

Pushing the approach further, we measure dtw \((i, i)\) until we reach \(i=600\) exhibiting a call graph with 361,201 nodes. Figure 5.8 reports that the call_graph CTE will exceed the PostgreSQL 13 default database buffer size of 4 MB [97] beginning with \(\operatorname{dtw}(140,140)\left(\right.\) see \(\left.\sim^{-}\right)\). As a consequence, PostgreSQL writes the excess pages of the database buffer to disk and, thus, evaluation CTE must now read from disk when joining with the call_graph CTE. The bar chart (III) plots the throughput of I/O operations measured in pages (the size of a single page is set to the PostgreSQL default: 8192 byte [97]). Increasing the database buffer size to a modest 128 MB (i.e., \(0.2 \%\) of the host's RAM of 64 GB ), not a single buffer read or write I/O operation is performed by PostgreSQL (see \(\left.\boldsymbol{\sim}^{\infty}\right)\). For example: dtw \((600,600)\) with a database buffer size of 4 MB requires \(6,671,512 \mathrm{I} / \mathrm{O}\) operations (of which only \(99.7 \%\) are read operations). Increasing the database buffer size to 128 MB then improves its runtimes from 258.7 seconds to 234.9 seconds, shaving off almost \(10 \%\) of the time needed to produce the result with minimal effort. In other words, the I/O operations cost us 23.8 seconds extra unless the buffer size is moderately increased to fit the call_graph.


Figure 5.9: Evaluating eval( \(e\) ) where \(e\) is an expression which evaluates \(2^{n}\) binary operators.

The rest of this section compares other functional-style UDF use cases: eval: Function eval \(\left(e_{k}\right)\) evaluates an arithmetic expression \(e_{k}=\left(o p, e_{l}, e_{r}, v\right)\).
- Each expression \(e_{i}\) is uniquely identified by integer \(i\),
- op can either be a binary operator \((+,-, \times, \div)\) or \(\ell\), and
- \(v\) can be any real number.

We assume that the same expressions also have the same identifier \(k\). Function eval is recursively defined as:
\[
\begin{align*}
& \operatorname{eval}\left(\left(\ell, e_{l}, e_{r}, v\right)\right)=v \\
& \operatorname{eval}\left(\left(+, e_{l}, e_{r}, v\right)\right)=\operatorname{eval}\left(e_{l}\right)+\operatorname{eval}\left(e_{r}\right) \\
& \operatorname{eval}\left(\left(-, e_{l}, e_{r}, v\right)\right)=\operatorname{eval}\left(e_{l}\right)-\operatorname{eval}\left(e_{r}\right)  \tag{eval}\\
& \operatorname{eval}\left(\left(\times, e_{l}, e_{r}, v\right)\right)=\operatorname{eval}\left(e_{l}\right) \times \operatorname{eval}\left(e_{r}\right) \\
& \operatorname{eval}\left(\left(\div, e_{l}, e_{r}, v\right)\right)=\operatorname{eval}\left(e_{l}\right) \div \operatorname{eval}\left(e_{r}\right) .
\end{align*}
\]

Function eval exhibits 2 -fold recursion. Compilation enables sharing of common subexpressions and improves runtimes by order of magnitude compared to eval before compilation (see Figure 5.9). Compilation also turns the original top-down expression interpreter into a bottom-up variant that processes all independent subexpressions step by step in the evaluation CTE.


Figure 5.10: Evaluating \(\operatorname{knap}(i, i)\).
knap: Function knap \((k, u)\) implements an algorithm to solve the \(0-1\) Knapsack problem [88]. Given items \(i \in 1, \ldots, n\) where each item has weight \(w_{i}\) and value \(p_{i}\). Then \(\operatorname{knap}(k, u)\) maximizes the sum of values of \(k\) items that fit into a knapsack with carrying capacity \(u\). Function knap is recursively defined as:
\[
\begin{align*}
& \operatorname{knap}(1, u)=0 \\
& \operatorname{knap}(k, u)=\left\{\begin{array}{ll}
\operatorname{knap}(k-1, u) & , w_{k}>u \\
\max \left\{\begin{array}{l}
\operatorname{knap}(k-1, u) \\
\operatorname{knap}\left(k-1, u-w_{k}\right)+p_{k}
\end{array}\right\}
\end{array},\right. \text { otherwise . } \tag{knap}
\end{align*}
\]

Function knap exhibits 2-fold recursion. The 0-1 Knapsack algorithm is used as the running example in Chapter 2 to highlight one of the functions developers would prefer to implement in functional-style. Figure 5.10 reports that, if a developer then also compiles knap, the runtime improves significantly. Call sharing turns the brute force approach into one that utilizes dynamic programming, where redundant subproblems are evaluated once instead of many times. Thus, for this use case, developers can expect both: readability and runtime improvements.


Figure 5.11: Evaluating needleman \((p, q, n, n, g)\) compares two protein sequences \(p\) and \(q\) of length \(n\) with gap penality \(g=-5\).
needleman: Function needleman ( \(p, q, n, n, g\) ) implements the Needleman-Wunsch algorithm [91] which compares two protein sequences \(p\) and \(q\) of length \(n\) and rates them based on gap penality \(g\) and a two-dimensional scoring matrix \(M\) (here: BLOSUM62 [99]). Notation \(s_{i}\) accesses a single amino acid in protein sequence \(s\) at position \(i\). The scoring matrix \(M\) takes two single amino acids \(a\) and \(b\) and produces a score (in short: \(M[a][b]\) ). Function needleman is a well-known algorithm in Bioinformatics and is recursively defined as:
\[
\begin{aligned}
& \begin{array}{l}
\text { needleman }(p, q, 0,0, g)=0 \\
\text { needleman }(p, q, i, 0, g)=i \times g
\end{array} \\
& \text { needleman }(p, q, 0, j, g)=j \times g \\
& \text { needleman }(p, q, i, j, g)=\max \left\{\begin{array}{l}
\text { needleman }(p, q, i-1, j \quad, g)+g \\
\text { needleman }(p, q, i \quad, j-1, g)+g \\
\text { needleman }(p, q, i-1, j-1, g)+M\left[p_{i}\right]\left[q_{j}\right]
\end{array}\right\} .
\end{aligned}
\]

Function needleman exhibits 3-fold recursion. Figure 5.11 reports on the runtime of comparing two sequences \(p\) and \(q\) of equal length \(n\). The call graph is structured almost identically to dtw and, thus, compiling improves its exponential growth to \(O\left(n^{2}\right)\) through call sharing.


Figure 5.12: Evaluating shortest \(\left(n_{1}, n_{2}\right)\) where \(n_{1}\) and \(n_{2}\) are nodes where finding the shortest path between them involves visiting exactly \(i\) nodes. Average fanout of 1.5 .
shortest: Given a graph with \(n\) nodes, where \(w_{i \rightarrow j}\) denotes the weight of an edge \(i \rightarrow j\) between two nodes \(v_{i}\) and \(v_{j}\) with \(i, j \in 1, \ldots, n\). Function shortest \((i, j)\) finds the shortest path length between two nodes \(v_{i}\) and \(v_{j}\) and returns \(\infty\) if there is none. Function shortest is recursively defined as:
\[
\begin{aligned}
& \operatorname{shortest}(i, i)=0 \\
& \operatorname{shortest}(i, j)=\min \left(\left\{w_{i \rightarrow k}+\operatorname{shortest}(k, j) \mid \forall i \rightarrow k\right\} \cup\{\infty\}\right) .
\end{aligned}
\]
shortest call site is correlated and, thus, exhibits \(n\)-fold recursion. Before compilation and without call sharing, any edge between two nodes may be visited many times. Call sharing prevents this; thus, any edge is traversed exactly once. Figure 5.12 reports that execution runtime improves significantly after compilation.

Functional-style UDFs dtw and split, as well as their compiled and manually crafted counterparts, can be found in Appendix C. Other use cases can be found in Appendix D. Among them are queries on mathematical problems (Section D.1), more queries over graphs (Section D.2, Section D.4) and string processing queries (Section D.3).

\subsection*{5.1.4 Summary}

The tweaks we describe in this section are a general improvement over the vanilla templates introduced in the previous Chapter 4. Introducing reference counting improves execution times and, as a side effect, enables compilation of functional-style UDFs which exhibit correlated call sites. However, functions such as split highlight that not all functional-style UDFs have improved execution times when compiled. Generally speaking: compilation leads to better performance for general recursive functions, depending on how much the call graph can be shrunk by call sharing. In later Sections 5.3 to 5.6 , we describe other methods (besides call sharing) that allow the compiler to exploit the presence of a call graph in the evaluation process. Note that all tweaks in the following sections use this improved template as their foundation.
```

WITH RECURSIVE call_graph(in, site, fanout, out, \overline{vals, "empty?",rid) AS (}
SELECT ROW(f.args}), NULL: :int, NULL: :bigint, ROW(f.\overline{args}), NULL, false, NULL: :bigint
Invoke
UNION -- recursive UNION
SELECT g.out, edges.*
FROM call_graph AS g,
LATERAL
WITH slices(site, out) AS (
SEIECT 1 AS site, out FROM (replace(slice(f, s1),[(g.out).\overline{args}])) AS _(out)Slices
UNION
UNIȮN

```

```

),
 calls(site, fanout, out, \overline{vals, "empty?",rid) AS (}
 SELECT s.site, COUNT(*) OVER () AS fanout, s.out, NULL, false, NULL: :bigint
 FROM slices AS s
 WHERE s.out <> \perp
),
 values(\overline{vals) AS (}
 replace(body(f,[(VALUES \overline{NULL}),\ldots,(VALUES \overline{NULL})]), [(g.out).\overline{args}])}\mathrm{ TblValues
)
 TABLE calls
 UNION ALL
 SELECT NULL: :int AS site, 0 AS fanout, ROW((g.out).\overline{args) AS out, v.vals, false,}
 ROW_NUMBER() OVER ()
 FROM valūes AS v
 WHERE NOT EXISTS (TABLE calls)
 UNION ALL
 SELECT NULL: :int AS site, 0 AS fanout, ROW((g.out).\overline{args})AS out, NULL, true, 1
 WHERE NOT EXISTS (TABLE calls)
 AND NOT EXISTS (TABLE values)
) AS edges(site, fanout, out, vals, "empty?", rid) TblConstruct
 WHERE g.fanout > O OR g.fanout IS NULL
)

```

Figure 5.13: Tweaking the template of Figure 4.8 in Chapter 4 enables functional-style UDFs with table-valued return types.
```

[WITH RECURSIVE] evaluation(in,vals, "empty?",rid,ref,fanout)AS (
TABLE base_cases
UNION AL\overline{L -- recursive UNION ALL}
(WITH e(in, vals, "empty?",rid,ref,fanout) AS (TABLE evaluation),
returns(in,\overline{vals, "empty?",rid) AS (}
SEJECT go.in, result.*
FROM (SELECT e.ref
FROM e
WHERE e.rid = 1
GROUP BY e.ref, e.fanout
HAVING COUNT(*) = e.fanout
) AS go(in), TblSchedule
LATERAL (
WITH result(vals) AS (
replace(body(f,[lookup
[(go.in).\overline{args}])
)
SELECT r.*, false, ROW_NUMBER() OVER () FROM result AS r
UNION ALL
SELECT NULL, true, 1 WHERE NOT EXISTS (TABLE result)
) AS result(\overline{vals, "empty?")}
)
SELECT *
FROM e
WHERE e.fanout IS NOT NULL
AND NOT EXISTS (SELECT FROM returns AS r WHERE r.in = e.ref)
UNION ALL
SELECT r.*, g.in, g.fanout
FROM returns AS r, call_graph AS g
WHERE r.in = g.out
)
)

```

Figure 5.14: Tweaking the template of Figure 5.4 enables compiling functional-style UDFs with table-valued return types.
```

CREATE FUNCTION f(\overline{args}) REIURNS TABLE(\overline{vals})

AS $$
WITH RECURSIVE call_graph(in,site,out,\overline{vals, "empty?",rid) AS (}
 <see Figure 5.13>
),
base_cases(in, vals, "empty?",rid,ref,fanout) AS (
 SELECT g.in, g.val, g. "empty?", g.rid, g_ref.in, g_ref.fanout
 FROM call_graph AS g,
 call_graph AS g_ref
 WHERE g.fanout = 0
 AND (g_ref.fanout > 0 OR g_ref.fanout IS NULL)
 AND g.in = g_ref.out
),
evaluation(in,\overline{vals}, "empty?",rid,ref,fanout) AS (
 <see Figure 5.14>
)
SEIECT (e.vals).* TblResult
FROM evaluation AS e
WHERE e.fanout IS NULL
AND NOT e. "empty?";
$$ LANGUAGE SQL STABLE STRICT;

```

Figure 5.15: The compiled SQL code with support for table-valued return types TABLE( \(\overline{\mathrm{vals}})\).

\subsection*{5.2 Table-Valued Functions}

Tweaking the template in Section 5.1 further enables functional-style UDFs with table-valued return types TABLE ( \(\overline{\mathrm{vals}}\) ) i.e., enable the recursive CTEs call_graph and evaluation to accommodate for return values that have multiple rows. The general idea here is to return all value columns val in those recursive CTEs into a table-valued context. Furthermore, the case where an empty table is returned must now be considered.

\subsection*{5.2.1 Tweaking the SQL Template}

The changes to the templates are highlighted with regions in Figures 5.13 to 5.15. We highlight some in detail:
riblvalues Base cases are now stored inside values CTE instead of being inlined inside the SELECT-clause directly. The values CTE is defined through:
replace (body \((f,[(\) VALUES \(\overline{\mathrm{NULL}}), \ldots,(\) VALUES \(\overline{\mathrm{NULL}})]),[(\) g.out \()\).args \(])\) First, the function body of \(f\) is passed to body which replaces all call sites \(f(\operatorname{args})\) with (VALUES \(\overline{\text { NULL }}\) ),
where \(\overline{\text { NULL }}\) expands to a row (NULL, \(\ldots\), NULL) with the same number of columns as table-valued return type TABLE(vals). Then, replace replaces each of \(f\) 's arguments \(\overline{\operatorname{args}}\) in \(f\) 's body with [(g.out). args].
TblConstruct Window function ROW_NUMBER() OVER () [97] adds a row id rid for each row in values to prevent the recursive UNION of call_graph from pruning duplicate rows. We add a third case where column "empty?" is TRUE, only if no new recursive call sites in calls nor base cases in values are present (see lines 29-31 in Figure 5.13).
TblSchedule Collect referee nodes ref whose recursive call results are all present in the working table of evaluation. Indeed, it is sufficient to only check for rows with rid \(=1\).
TblBody \(\operatorname{Similar}\) to \(\operatorname{lookup}(f, \ell)\) in Section 5.1.1, \(\operatorname{lookup}_{\text {Tbl }}(f, \ell)\) looks up the result of recursive call in of call graph edge ref \(\cdot\) site \(\rightarrow\) in i.e., the result of recursive call in at site called from ref:
\[
\begin{aligned}
& \text { SELECT e.vals FROM e } \\
& \text { WHERE e.ref = go.in } \\
& \text { AND } \\
& \text { e.site }=\ell \\
& \text { AND } \\
& \text { e.in }=\operatorname{call}(f, \ell) \\
& \text { AND } \\
& \text { NOT e. "empty?" }
\end{aligned}
\]
lookup \(_{\text {Tb1 }}\) adds predicate NOT e. "empty?" to ensure that the subquery returns no rows, if the result of recursive call site \(\operatorname{call}(f, \ell)\) is an empty table.

\subsection*{5.2.2 Runtime Experiments}

When compiling and evaluating functions with table-valued return types, we can expect the working table of the evaluation CTE to be much larger compared to functions with scalar return types. Take, for example, function \(\operatorname{bom}\left(p_{b}\right)\), which returns the table of all subparts of \(p_{b}\) i.e., the bill of materials. The materials are stored in table \(M(p, s, q)\), which holds all parts \(p\) and its subparts \(s\) with quantity \(q\). Function bom, which returns a table with schema \(\left(p_{r}, s_{r}, q_{r}\right)\), is recursively defined using well known


Figure 5.16: Evaluating table-valued \(\operatorname{bom}(p)\), where \(p\) is a part made out of \(i\) (nested) subparts in total.
relational algebra operators \(\sigma\) (selection), \(\pi\) (projection), \(\cup(\) union \()\) and \(\bowtie(\) join \():\)
\[
\begin{equation*}
\operatorname{bom}\left(p_{b}\right)=\sigma_{p=p_{c}}(M) \cup \pi_{p_{r}, s_{r}, q \times q_{r}}\left(\bigcup_{(p, s, q) \in M}\left(\{(p, s, q)\} \bowtie_{p=p r} \operatorname{bom}(s)\right)\right) . \tag{bom}
\end{equation*}
\]

Figure 5.16 reports a runtime improvement not as drastic as with compiled functions with scalar return types. Indeed, despite having call sharing and reference counting enabled, a single call result in the working table of CTE evaluation may still encode a large table (possibly multiple times, due to reference counting). Appendix C shows the implementation of functional-style UDF bom, as well as its compiled and manually crafted counterparts.

\subsection*{5.2.3 Summary}

We show that we support compilation of functions with table-valued return types by tweaking the template introduced in Section 5.1. However, there is a price to pay which leads to a not-so-drastic runtime improvement when compiled. If runtimes are a high priority for the developer and the decline of readability acceptable, writing handcrafted recursive CTEs for table-valued functions may be the preferred option. Note that tail-recursive functions with table-valued return types do not face this problem, as we will see later in Section 5.4.
```

[WITH RECURSIVE] evaluation(in,val,ref,site,fanout) AS (
TABLE base_cases
UNION AL\overline{L}}\mathrm{ -- recursive UNION ALL
(WITH e(in,val,ref,site,fanout) AS (TABLE evaluation),
returns(in,val) AS (
SEIECT go.in,
(replace(body(f,[lookup(f, 1), .., lookup(f,n)]),
[(go.in).\overline{args}])) AS val
FROM (SEIECT e.ref
FROM e
GROUP BY e.ref, e.fanout
HAVING COUNT(*) = e.fanout
) AS go(in) RefSchedule
)
SELECT r.*, g.in, g.site, g.fanout
FROM returns AS r, call_graph AS g
WHERE r.in = g.out
)
)

```

Figure 5.17: This template for evaluation used for linear recursive functions is based on the template found in Figure 5.4.

\subsection*{5.3 Linear Recursion}

Linear recursive functions [55] exhibit common recursion patterns that allow the compiler to assume a certain call graph structure which simplifies bottom-up traversal CTE evaluation. Such functions \(f\) can be characterized by their (prefix tree of) evaluation paths (recall Section 4.6 and more specifically Figure 4.16). Specifically, function \(f\) is linear recursive if each subtree of paths rooted in a control flow label © contains at most one recursive call site. In the grammar of Chapter 3, dark control flow labels are associated with CASE expressions. Because any invocation of a linearrecursive function \(f\) performs at most one recursive call, the resulting call graph will be a chain. Graph traversal thus does not have to keep older results and thus no reference counting is required i.e. precisely one node will be ready for evaluation in each iteration of bottom-up traversal.

\subsection*{5.3.1 Tweaking the SQL Template}

The compiler exploits linear recursion by simplifying the SQL template for evaluation (see Figure 5.17). As the evaluation process walks the chain back to the root node, we
```

CREATE FUNCTION f(\overline{args}) RETURNS }

AS $$
WITH RECURSIVE call_graph(in,site,fanout,out,val) AS (
 <see Figure 4.8>
), Graph
base_cases(in,val,ref,site,fanout) AS (
 SELECT g.in, g.val, g_ref.in, g_ref.site,g_ref.fanout
 FROM call_graph AS g,
 call_graph AS g_ref
 WHERE g.fanout = 0
 AND (g_ref.fanout > O OR g_ref.fanout IS NULL)
 AND g.in = g_ref.out
),
evaluation(in,val,ref,site,fanout) AS (
 <see Figure 5.17> LinEval
)
SELECT e.val RefResult
FROM evaluation AS e
WHERE e.fanout IS NULL;
$$ LANGUAGE SQL STABLE STRICT;

```

Figure 5.18: This SQL code is emitted, whenever the compiler detects linear recursion.
only keep the most recent result in the working table discarding all that came before (see LinTraverse). Note that the linear recursion tweaks can be applied independently of the other compiler tweaks presented in this chapter. Figure 5.18 show the SQL template for linear recursive functions which the compiler emits. Templates with all tweaks enabled can be found in Appendix B, where their modular nature is highlighted.

\subsection*{5.3.2 Runtime Experiments}

Function paths ( \(d\) ) reconstructs the path of a directory \(d\) in a filesystem [87]. A directory \(d\) has a name \(n_{d}\) and a parent directory \(p_{d}\). If \(d\) is the root directory, then its parent directory \(p_{d}\) is NULL. Function paths is recursively defined using string concatenation || as:
\[
\text { paths }(d)= \begin{cases}\prime /, & \text { if } p_{d} \text { is NULL } \\ \text { paths }\left(p_{d}\right)| | n_{d}| | ' /, & \text { otherwise } .\end{cases}
\]
(paths)

Function paths is linear recursive, which the compiler detects. In Figure 5.19, we compare function paths before compilation ( \(\Omega^{\alpha}\) ) with its compiled counterpart


Figure 5.19: Evaluating paths \((d)\) reconstructs the path of a directory \(d\) nested inside \(i\) parent directories in a file system. With increasing \(i\), evaluation of fsm pre-compilation ( terminates prematurely due to stack overflow (A).
with \(\left(\oplus_{\infty} \infty^{\oplus}\right)\) and without ( \({ }^{\infty}\) ) linear recursion enabled. Observing paths before compilation with increasing directory nesting \(i\) quickly reaches the stack size limit at \(i=2400\) and terminates prematurely (marked with \(\mathbf{A}\) ). Compilation removes any recursive calls and thus the stack size limit. However, linear recursion does not save us from joining each new result with call_graph which prevents them from reaching linear complexity where it would be expected. Indeed, Figure 5.19 reports that linear recursive optimizations do not further improve the execution times, which remain far above the execution times of carefully hand-crafted CTEs ( \(\sim^{*}\) ). Recursive CTEs allow implementations of linear recursions to exhibit linear complexity, thus making them a great match for traversing hierarchical data structures in a linear fashion in terms of runtime performance. Another linear recursive use case can be found in Section D. 5 which implements a finite state machine.

\subsection*{5.3.3 Summary}

The characteristic call chain of a linear-recursive function puts the spotlight on the stack size limit imposed on recursive functions by the underlying database engine and
```

CREATE FUNCTION f(\overline{args}) REIURNS }

AS $$
WITH { ITERATE RECURSIVE } call_graph(in,site,fanout,out,val) AS (
 <see Figure 4.8〉
)
SELECT g.val
FROM call_graph AS g
WHERE g.fanout = 0;
$$ LANGUAGE SQL STABLE STRICT;

```

Figure 5.20: This SQL code is emitted, whenever the compiler detects tail recursion.
the operating system. Indeed, compiling the function removes any recursive call sites, and thus the function evaluates calls that would typically exceed the recursion depth limit. Detecting linear recursion also allows the compiler to apply minimal tweaks to the SQL template. However, the execution times improvements are only marginal. In Section 5.4, we build upon linear recursion optimization and improve execution times significantly whenever the compiler detects a tail-recursive function.

\subsection*{5.4 Tail Recursion}

Function \(f\) is tail-recursive, if \(f\) is linear recursive and all recursive call sites immediately follow their control flow label without other labels in between. A tail-recursive function \(f\) does not perform any computation after it returns from its (one) recursive tail call [103]. Instead, computation is performed in accumulating function arguments. The accumulators form the final result once the function reaches its base case.

\subsection*{5.4.1 Tweaking the SQL Template}

When call graph construction is complete, the final return value of \(f\) is already known by the only base case edge. Bottom-up graph traversal is not required, and we can immediately read the result off of the base case edge. A separate evaluation step base_case and evaluation are not required here. Thus, a much more compact template develops which the compiler emits when processing tail-recursive functions (see Figure 5.20). Note how railResult extracts the return value from the node with a fanout of 0 as soon as call graph construction concludes. As before, this tail recursion tweak can be
applied independently of other compiler tweaks presented in this chapter. Templates with all tweaks enabled can be found in Appendix B, where their modular nature is highlighted.

\subsection*{5.4.2 Runtime Experiments}

Compiling tail-recursive functions removes the need to traverse the call graph bottomup. Thus, we have to CTE scan call_graph only once when looking up the final result, which removes the bottleneck that kept compiled functions from ever reaching linear runtime complexity.
vm Take, for example, function vm previously introduced in Chapter 1. Function vm \(\left(\mathrm{P}_{i}, \mathrm{R}\right)\) takes an initial register state R and a program instruction \(\mathrm{P}_{i}\) at position \(i>0\) of program P and computes its result. Single registers in R at position \(j\) can be accessed with \(\mathrm{R}[j]\). Binary operator \(\mathrm{R}[\mathrm{t}] \leftarrow e\) replaces the value of the single register t in R with the result of expression \(e\) and returns the modified registers. Function vm is recursively defined as:
\[
\begin{align*}
& \mathrm{vm}((\mathrm{i}, \mathrm{hlt}, \mathrm{~s}), \mathrm{R}) \quad=\mathrm{R}[\mathrm{~s}] \\
& \mathrm{vm}((\mathrm{i}, \mathrm{lod}, \mathrm{t}, \mathrm{x}), \mathrm{R}) \quad=\mathrm{vm}\left(\mathrm{P}_{\mathrm{i}+1}, \mathrm{R}[\mathrm{t}] \leftarrow \mathrm{x}\right) \\
& \mathrm{vm}((\mathrm{i}, \mathrm{mov}, \mathrm{t}, \mathrm{~s}), \mathrm{R}) \quad=\mathrm{vm}\left(\mathrm{P}_{\mathrm{i}+1}, \mathrm{R}[\mathrm{t}] \leftarrow \mathrm{R}[\mathrm{~s}]\right) \\
& \mathrm{vm}\left(\left(\mathrm{i}, \mathrm{add}, \mathrm{t}, \mathrm{~s}_{1}, \mathrm{~s}_{2}\right), \mathrm{R}\right)=\mathrm{vm}\left(\mathrm{P}_{\mathrm{i}+1}, \mathrm{R}[\mathrm{t}] \leftarrow \mathrm{R}\left[\mathrm{~s}_{1}\right]+\mathrm{R}\left[\mathrm{~s}_{2}\right]\right) \\
& \mathrm{vm}\left(\left(\mathrm{i}, \mathrm{mul}, \mathrm{t}, \mathrm{~s}_{1}, \mathrm{~s}_{2}\right), \mathrm{R}\right)=\mathrm{vm}\left(\mathrm{P}_{\mathrm{i}+1}, \mathrm{R}[\mathrm{t}] \leftarrow \mathrm{R}\left[\mathrm{~s}_{1}\right] * \mathrm{R}\left[\mathrm{~s}_{2}\right]\right) \\
& \operatorname{vm}\left(\left(\mathrm{i}, \operatorname{div}, \mathrm{t}, \mathrm{~s}_{1}, \mathrm{~s}_{2}\right), \mathrm{R}\right)=\mathrm{vm}\left(\mathrm{P}_{\mathrm{i}+1}, \mathrm{R}[\mathrm{t}] \leftarrow \mathrm{R}\left[\mathrm{~s}_{1}\right] / \mathrm{R}\left[\mathrm{~s}_{2}\right]\right)  \tag{vm}\\
& \mathrm{vm}\left(\left(\mathrm{i}, \mathrm{mod}, \mathrm{t}, \mathrm{~s}_{1}, \mathrm{~s}_{2}\right), \mathrm{R}\right)=\mathrm{vm}\left(\mathrm{P}_{\mathrm{i}+1}, \mathrm{R}[\mathrm{t}] \leftarrow \mathrm{R}\left[\mathrm{~s}_{1}\right] \% \mathrm{R}\left[\mathrm{~s}_{2}\right]\right) \\
& \mathrm{vm}(\mathrm{i}, \mathrm{jmp}, \mathrm{a}), \mathrm{R}) \quad=\mathrm{vm}\left(\mathrm{P}_{\mathrm{a}}, \mathrm{R}\right) \\
& v m((i, j \text { eq }, t, s, a), R)=\left\{\begin{array}{l}
v m\left(P_{a}, R\right), R[s]=R[t] \\
v m\left(P_{i+1}, R\right), \text { otherwise } .
\end{array}\right.
\end{align*}
\]

In Figure 5.21, we compare function vm before ( \(\Omega^{\infty}\) ) and after compilation which is separated depending on whether tail-recursive optimization is enabled \(\left({ }_{8}{ }^{-\infty}\right)\) or not ( \(\sim \infty\) ). Comparing vm with and without tail recursion optimization highlights the benefits of such optimizations. Indeed, removing the need to traverse the call graph pushes the runtime complexity for vm into linear range \(O(n)\), which further


Figure 5.21: Evaluate \(\operatorname{vm}(r)\), where \(r\) is the initial register state which repeats a loop \(i\) times. With increasing \(i\), evaluation of vm pre-compilation ( \(\Lambda^{\wedge}\) ) terminates prematurely due to stack overflow (A).
closes the gap between compilation and carefully hand-crafted implementation. Functional-style UDF vm and its compiled and manually crafted counterparts can be found in Appendix C.
parcels Function parcels \((s)\) begins at parcel station \(s\) and visits all subsequent parcel stations until it reaches one which stores items \(I_{s}\) and returns them. A parcel station \(s\) points to precisely one other parcel station \(n_{s}\). The parcel stations are always arranged so that following them one after another leads to a target station containing items. Function has_items (s) simply returns TRUE, if station \(s\) has items. Function parcels is recursively defined as:
\[
\begin{align*}
& \operatorname{parcels}(s, \operatorname{TRUE})=\mathrm{I}_{\mathbf{s}} \\
& \operatorname{parcels}(s, \operatorname{FALSE})=\operatorname{parcels}\left(n_{s}, \text { has_items }\left(n_{s}\right)\right) . \tag{parcels}
\end{align*}
\]

The functional-style implementation of this function expects to return many rows. Figure 5.22 reports that tail-recursive functions improve runtime performance even when expecting table-valued return types. Indeed, this results from not having to traverse the call graph bottom-up.
Other use cases can be found in Appendix D. Among them are queries over geometric


Figure 5.22: Evaluating parcels(s). Starting at station \(s\), parcels visits \(i\) other stations before it finds all parcels ready and returns them.
shapes (Section D.6) and queries that generate fractals (Section D.7).

\subsection*{5.4.3 WITH ITERATE}

Beyond runtime savings, tail recursion promises to be space-efficient as "tail recursion needs no stack.". PostgreSQL fails to exploit this potential when it executes noncompiled functional-style UDFs. We describe a way to allow the developer to exploit this fact for tail-recursive functions by adding the optional tag ITERATE (see Chapter 3). When we use WITH RECURSIVE to construct the call graph of a function \(f\), we effectively construct a trace of all invocations and their respective arguments. If \(f\) is tail-recursive, accumulating this trace is wasted effort: no evaluation step ever revisits the graph and the SQL template of Figure 5.20 only extracts its single base case edge. Keeping the most recently generated row in table call_graph thus would suffice. This is precisely the behavior of the hypothetical WITH ITERATE construct [72]. Adding the construct to PostgreSQL 13 amounts to a modest local change. If the developer enables this tail-recursive exclusive optimization, WITH ITERATE replaces WITH RECURSIVE in the template of Figure 5.20. The system then allocates only a single-row working table during the entire function evaluation process. Figure 5.23 reports, however, that


Figure 5.23: Evaluate \(\operatorname{vm}(r)\), where \(r\) is the initial register state which repeats a loop \(i\) times.
the time-saving improvements of WITH ITERATE \(\left(x^{-x}\right)\) are only slight when compared to WITH RECURSIVE \(\left({ }_{8} \otimes^{8}\right)\) and do not push runtimes significantly closer to that of the carefully hand-crafted recursive CTE (~). Thus, we conclude that WITH ITERATE, despite its slight time-saving improvements, is not something we see as a must-have feature when compiling tail-recursive functions.

\subsection*{5.4.4 Summary}

Detecting a tail-recursive function allows the compiler to target a template that has no need for bottom-up traversal of the call graph. Constructing the call graph and returning the result is all that has to be done for tail-recursive functions. Indeed, this improves the lower bound of the runtime complexity to be linear. Thus, if the original function runtime characteristic is linear, then this holds for compiled function as well which.

\subsection*{5.5 Memoization}

Evaluating a compiled UDF \(f\) is a two-phase approach where we first construct the call graph top to bottom by collecting all necessary calls on the way down and then evaluate the call graph bottom-up. Thus, we can assume that on the way up, each call in the call graph will have its results stored in the evaluation CTE. So far, the compiled UDF \(f\) extracts exactly the result associated with the call graph's root \(\overline{\text { args }}\) (see RefResuit in Figure 5.5), returns it and then drops all results. However, the return values of all intermediate recursive calls are just as precious, provided that
- we can expect \(f\) to be called many times (in a database setting where UDF invocations are embedded in queries, this would be the rule rather than the exception), and
- we know that \(f\) is referentially transparent [82], either generally or at least within a defined context (e.g., inside a transaction). In PostgreSQL, these degrees of referential transparency are declared via the function modifiers IMMUTABLE or STABLE, respectively [97, \$38.7].
Entries in table evaluation can be used to accelerate the evaluation of future calls to \(f\). To implement this style of memoization [89] for compiled function \(f\), we follow two simple steps:
1. After an evaluation of \(f\), add the contents of evaluation to a table memo (in, val), discarding duplicate rows.
2. Upon subsequent invocations \(f(\overline{\mathrm{args}})\), treat the entries found in memo like additional base cases.
In the call graph construction, each such extra base case edge in - val replaces an entire subgraph (with root in) whose recursive calls need not be evaluated since val is already available. Figure 5.24 b shows the call graph for \(\mathrm{dtw}(3,3)\) which has been constructed based on the return values of an earlier \(\mathrm{dtw}(2,2)\) invocation (See Figure 5.24a). In this case, only the 7 calls at the fringes of the graph for \(\operatorname{dtw}(3,3)\) remain to be evaluated (down from 16 calls without memoization). Note that this particular flavor of memoization is already beneficial if the memo table holds the root(s) of any subgraph of the current call graph [62]. In a sequence of invocations of \(f\), we can thus expect to start saving evaluation effort early on. This is in contrast to plain memoization, which only remembers the single return value at the root of an evaluated call graph [94].

(a) memo after \(\operatorname{dtw}(2,2)\).

(b) Memoization prunes the call graph for \(\operatorname{dtw}(3,3)\).

Figure 5.24: With memoization enabled: evaluate \(\operatorname{dtw}(2,2)\), then \(\operatorname{dtw}(3,3)\).

\subsection*{5.5.1 Tweaking the SQL Template}

Figures 5.25 and 5.26 present the SQL templates used when memoization is enabled which are based on the template introduced in Section 5.1. We highlight the necessary changes:
MemLookup If the current recursive call can be found in the memo table, return its result and treat it as a base case later in Memconstruct. Otherwise, continue constructing the call graph as usual.
Memstore Once evaluation concludes, add all (intermediate) results (in, val) found in evaluation to table memo. The clause ON CONFLICT DO NOTHING [97] silently discards any results already stored in memo to avoid duplicate entries.
Note that the memoization tweaks can be applied independently of other (optional) compiler tweaks presented in this chapter. Templates with all tweaks enabled can be found in Appendix B, where their modular nature is highlighted. Furthermore, tailrecursive optimization (recall Section 5.4) does not traverse the call graph bottum-up, thus, memoization on top of tail recursion only stores the root result but may still profit from these results in the call graph construction phase.
```

WITH RECURSIVE call_graph(in, site, fanout, out, val) AS (
SELECT ROW(f.args) AS in, NULL::int, NULL::bigint, ROW(f.
UNION -- recursive UNION
SELECT g.out, edges.*
FROM call_graph AS g,
LATERAL (
WITH memoization(site, fanout, out, val) AS (
SELECT NULL::int, 0, m.in, m.val
FROM memo AS m
WHERE g.out = m.in
), MemLookup
slices(site, out) AS (
SEIFCT 1 AS site, out FROM (replace(slice(f, s1),[(g.out).\overline{args}])) AS _(out)
uNITON
unION
SELECT n AS site, out FROM (replace(slice(f, sn), [(g.out)./args}])) AS _(out
),
calls(site, fanout, out, val) AS (
SELECT s.site, COUNT(*) OVER ()AS fanout, s.out, NULL::\tau AS val
FROM slices AS s
WHERE s.out <> \perp
)
TABLE memoization
UNION ALL
SELECT *
FROM calls
WHERE NOT EXISTS (TABLE memoization)
UNION ALL
SELECT NULL::int AS site, 0 AS fanout, ROW((g.out).\overline{args}) AS out,
(replace(body(f, [NULL: : \tau, .., NULL: : \tau]),
[(g.out).args}])) AS va
WHERE NOT EXISTS (TABLE memoization)
AND NOT EXISTS (TABLE calls)
) AS edges(site, fanout, out, val) MemConstruct
WHERE g.fanout > O OR g.fanout IS NULL
)

```

Figure 5.25: Tweaking the template of Figure 4.8 in Chapter 4 enables memoization for compiled functional-style UDFs.
```

CREATE FUNCTION f(\overline{args}) REIURNS }

AS $$
WITH RECURSIVE call_graph(in,site,out,val) AS (
 <see Figure 5.25>
), MemGraph
base_cases(in,val,ref,site,fanout) AS (
 SELECT g.in, g.val, g_ref.in, g_ref.site,g_ref.fanout
 FROM call graph AS g,
 call_graph AS g_ref
 WHERE g.fanout = 0
 AND (g_ref.fanout > O OR g_ref.fanout IS NULL)
 AND g.in = g_ref.out
),
evaluation(in,val,ref,site,fanout) AS (
 <see Figure 5.4>
),
 store AS (
 INSERT INTO memo
 SELECT e.in, e.val
 FROM evaluation AS e
 ON CONFLICT DO NOTHING
)
 SELECT e.val RefResult
 FROM evaluation AS e
 WHERE e.fanout IS NULL;
$$ LANGUAGE SQL VOLATILE STRICT;

```

Figure 5.26: The compiled SQL code with memoization enabled. As part of the evaluation process, store (intermediate) results of CTE evaluation in memo for later use in CTE call_graph.
call graph size (\# of nodes)


Figure 5.27: Series of \(\operatorname{dtw}(i, i)\) invocations: Re-using memo table entries effectively cuts down call graph size.


Figure 5.28: Compare evaluation of \(\operatorname{dtw}(i, i)\) with and without memoization enabled. Table memo is created with index on column in and has been previously populated with \(10,000,000\) rows unrelated to any calls \(\operatorname{dtw}(i, i)\).

\subsection*{5.5.2 Indexing Table memo}

Assume that memoization has been enabled over many subsequent function invocations and table memo collected quite the amount of rows - 10,000,000 in fact. Each node found in the process of call graph construction tries to look up a previously evaluated result in table memo. And every time this is done, this takes about 500 milliseconds without an index - a very steep price to pay. Thus, when enabling memoization we always create a B-tree index [59] on column in for table memo to ease the workload when memoization is enabled. With the index, even a quite sizable memo table which does not contain any rows that help shrink the call graph heavily mitigates the impact of a large, but useless, memo table. In fact, Figure 5.28 compares a function invocation of compiled \(\operatorname{dtw}(i, i)\) with increasing \(i\) and memoization enabled \((\),\() to the same\) function invocation with memoization disabled ( \({ }^{\infty}\) ). Here, table memo is populated with rows that never come up when constructing the call graph. Indeed, this index is always created in the following runtime experiments.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline UDF & Recursion & \multicolumn{3}{|l|}{Avg. Call Time [ms] root memo table} & Call Times 100 invoc.s & \[
\underset{\substack{\text { Avg. } \mathrm{C} \\ \text { root }}}{ }
\] & Graph Size memo table & |memo| \\
\hline shortest & n-fold & 443 & 12 & (2.7\%) & & 1,455 & 32 & 1,965 \\
\hline dtw & 3 -fold & 327 & 23 & (7.0\%) & & 5,863 & 310 & 10,201 \\
\hline knapsack & 2 -fold & 356 & 26 & (7.3\%) & 山. & 7,857 & 412 & 20,301 \\
\hline needleman & 3 -fold & 278 & 29 & (10.4\%) & & 3,979 & 251 & 8,291 \\
\hline paths & linear & 138 & 9 & (6.5\%) & L. & 1,025 & 21 & 1,997 \\
\hline parcels & tv tail & 207 & 15 & (7.2\%) & & 45,027 & 1,531 & 3,000 \\
\hline bom & tv n-fold & 119 & 146 & (122.7\%) & \(\downarrow\) & 6 & 1,067 & 131,055 \\
\hline split & 2-fold & 249 & 270 & (108.4\%) &  & 5,022 & 5,022 & 334,748 \\
\hline vm & tail & 264 & 358 & (135.6\%) & Hillimillill & 18,027 & 18,027 & 56 \\
\hline
\end{tabular}

Table 5.1: A collection of SQL UDFs in functional style compiled with root memoization (root) and non-root memoization (memo table) enabled.

\subsection*{5.5.3 Runtime Experiments}

Figure 5.27 plots the call graph sizes we observed during a sequence of 100 invocations of \(\operatorname{dtw}(i, i)\) with random \(i \in\{1, \ldots, 100\}\). As expected, memoizing the top-most root call reduces the call graph sizes over time ( \(\quad\) ). However, memoization of subgraph roots ( \(\quad\) ) is by more effective, bringing call graphs down to size 1 already after only a dozen calls. We repeated the random invocations sequence multiple times and reported average call graph sizes here.
The results in Table 5.1 report on runtime and call graph size averages over 100 random calls. We compare compiled use cases with memoization of only root calls to compiled use cases with memoization of all non-root results stored in the memo table. Each function is grouped into one of the following: recursion with correlated call sites ( n -fold recursion, recall Section 5.1), recursion with fixed call sites (for example, 3 -fold recursive function dtw), linear recursion and tail recursion. Prefix \(t v\) marks use cases that use table-valued return types.
- Compilation reduces average call time for all UDFs; some functions execute in less than \(5 \%\) of the time needed by their originals. We address particulars below.
- The execution of a whole series of function invocations offers opportunities for memoization. The bars in the plots under Call Times record how the evaluation time of single invocations develops across the series. We see that shortest, dtw,
knapsack, needleman, paths, and parcels can effectively reuse prior evaluation efforts while split and vm fail to do so. bom is table-valued and thus a special case we describe below.
- The divergence of the call graph sizes for the original and compiled UDFs is another indicator of the memoization potential (columns under Avg. Call Graph Size). Memoization turns entire call subgraphs into base cases and can thus lead to a drastic reduction in the number of calls performed. The price for memoization is the space used by table memo. Column |memo| reports its size (in rows) after all 100 invocations have been performed.
Taking a closer look at some of these use cases leads to interesting observations about the functions' behavior at runtime:
shortest: This is an optimal use case where memoization really shines. The non-root results stored in memo decrease the call graph size very early.
paths: A file system is structured as a directory tree. Thus, as the function climbs the directory tree to reconstruct the path, there is a high chance of overlap with previous calls improving runtimes for linear recursion.
parcels: Even though we only memoize root call results for tail-recursive functions, we still look for results of root calls already present in the memo table as we construct the call_graph. Indeed, especially this use case shows very promising results even though we store only root calls in memo. This is not generally the case for tail-recursive functions. however (as we will see with vm).
bom: For table-valued functions, enabling memoization may be detrimental. Whenever call graph construction finds table-valued results with many rows in memo, these rows are then all added to the call_graph CTE increasing the call graph size potentially by the number of rows. This increases the cost of the join with the call_graph CTE in each bottom-up traversal step. Indeed, we measure the impact this has with this use case (cf. the average call graph sizes for bom). Thus, the decision to enable memoization when dealing with table-valued functions is something the developer must carefully consider. It highly depends on the number of rows the developer expects for each table-valued result.
split: For this use case, none of the random calls have overlapping call graphs (unless it is the same call). Thus, we only pay for the overhead of memoization without its
benefits (cf. the average call time of split). Some use cases like this and vm require the developer to consider the call graph structure a function produces before enabling memoization.
vm : As with split, each invocation always produces a unique call graph without overlap. Evaluation of vm either scans memo in each call graph construction step without success or exactly once at the very beginning of call graph construction.

\subsection*{5.5.4 Summary}

Memoization of non-root results store all intermediate results a function produces when traversing the call graph bottom-up. Indeed, enabling memoization for tailrecursive functions inherently only stores the root result when compiled. However, tail-recursive functions (when compiled) still may look up results in the memo table early in the process of call graph construction. Thus, they may still profit off of memoization in the long run, as we have seen with use case parcels in Table 5.1.

On the other hand: in some cases, the developer may want to hold back on enabling memoization. Functions where different calls rarely lead to any hits in the memo table during call graph constructions are left with the memoization overhead and without its benefits (see split and vm). Furthermore, table-valued functions that are not tailrecursive can also be a bad fit for memoization. The call graph size may increase overall when a huge table-valued result is found in the memo table, which makes the CTE scan of the call_graph CTE required in each step of the bottom-up traversal increasingly more expensive (see bom).

(a) Call graph.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
call_graph \\
in site fanout out val
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{i \({ }^{\text {j }}\)} \\
\hline \((2,2)\) & \(\square\) & \(\square\) & \((2,2)\) & \(\square\) \\
\hline \((1,1)\) & \(\square\) & \(\square\) & \((1,1)\) & \(\square\) \\
\hline \((0,0)\) & \(\square\) & \(\square\) & \((0,0)\) & \(\square\) \\
\hline \((2,2)\) & 1 & 3 & \((1,1)\) & \(\square\) \\
\hline \((2,2)\) & 2 & 3 & \((1,2)\) & \(\square\) \\
\hline \((2,2)\) & 3 & 3 & \((2,1)\) & \(\square\) \\
\hline \((1,1)\) & 1 & 3 & \((0,0)\) & \(\square\) \\
\hline \((1,1)\) & 2 & 3 & \((0,1)\) & \(\square\) \\
\hline \((1,1)\) & 3 & 3 & \((1,0)\) & \(\square\) \\
\hline \((1,2)\) & 1 & 3 & \((0,1)\) & \(\square\) \\
\hline \((1,2)\) & 2 & 3 & \((0,2)\) & \(\square\) \\
\hline \((1,2)\) & 3 & 3 & \((1,1)\) & \(\square\) \\
\hline \((2,1)\) & 1 & 3 & \((1,0)\) & \(\square\) \\
\hline \((2,1)\) & 2 & 3 & \((1,1)\) & \(\square\) \\
\hline \((2,1)\) & 3 & 3 & \((2,0)\) & \(\square\) \\
\hline \((0,0)\) & \(\square\) & 0 & \((0,0)\) & 0.0 \\
\hline \((0,1)\) & \(\square\) & 0 & \((0,1)\) & \(\infty\) \\
\hline \((1,0)\) & \(\square\) & 0 & \((1,0)\) & \(\infty\) \\
\hline \((0,2)\) & \(\square\) & 0 & \((0,2)\) & \(\infty\) \\
\hline \((2,0)\) & \(\square\) & 0 & \((2,0)\) & \(\infty\) \\
\hline
\end{tabular}
(b) Tabular representation of the call graph.

Figure 5.29: Call graph of \(\operatorname{dtw}([(2,2),(1,1),(0,0)])\) and its tabular representation. The call graphs of \(\operatorname{dtw}(2,2), \operatorname{dtw}(1,1)\) and \(\operatorname{dtw}(0,0)\) collapse into one.

\subsection*{5.6 Batching}

Batching is a technique derived from data-parallel languages [63]. Another technique, called flattening, also bears strong similarities in its concept of lifting functions to arbitrary orders [106]. However, batching is exclusively concerned with first-order flattening: \(f: a \rightarrow b\) to \(f^{\prime}:[a] \rightarrow[b]\).

Assume that function \(f\) is invoked many times, say \(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\). Compiled without batching, each invocation constructs an independent call graph top to bottom. Compiling \(f\) with batching enabled changes the function from accepting one vector of arguments \(f(x)\) at a time to accepting many vectors of arguments \(f^{\prime}([x, \ldots, x])\). Thus, each individual function invocation \(f\left(x_{i}\right)\) collapses into a single call \(f^{\prime}\left(\left[x_{1}, \ldots, x_{n}\right]\right)\) that constructs a single call graph with up to \(n\) root nodes. Indeed, batching collapses all redundant subgraphs into one.

For example, take dtw (compiled with batching enabled) with a function invo-
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{luation} \\
\hline \multicolumn{6}{|r|}{in val ref sitefanout} \\
\hline \multicolumn{6}{|l|}{\(i \quad \mathrm{i} \mid \mathrm{j}\)} \\
\hline & \((0,0)\) & 0.0 & \((1,1)\) & 1 & 3 \\
\hline & \((0,1)\) & \(\infty\) & \((1,1)\) & 2 & 3 \\
\hline & \((1,0)\) & \(\infty\) & \((1,1)\) & 3 & 3 \\
\hline 1 & \((0,1)\) & \(\infty\) & \((1,2)\) & 1 & 3 \\
\hline & \((0,2)\) & \(\infty\) & \((1,2)\) & 2 & 3 \\
\hline & \((1,0)\) & \(\infty\) & \((2,1)\) & 1 & 3 \\
\hline & \((2,0)\) & \(\infty\) & \((2,1)\) & 3 & 3 \\
\hline & \((0,0)\) & 0.0 & \((0,0)\) & \(\square\) & \(\square\) \\
\hline & \((0,1)\) & \(\infty\) & \((1,2)\) & 1 & 3 \\
\hline & \((0,2)\) & \(\infty\) & \((1,2)\) & 2 & 3 \\
\hline & \((1,0)\) & \(\infty\) & \((2,1)\) & 1 & 3 \\
\hline 2 & \((2,0)\) & \(\infty\) & \((2,1)\) & 3 & 3 \\
\hline & \((1,1)\) & 0.0 & \((2,2)\) & 1 & 3 \\
\hline & \((1,1)\) & 0.0 & (1,2) & 3 & 3 \\
\hline & \((1,1)\) & 0.0 & \((2,1)\) & 2 & 3 \\
\hline & \((1,1)\) & 0.0 & \((1,1)\) & \(\square\) & - \\
\hline & \((1,1)\) & 0.0 & \((2,2)\) & 1 & 3 \\
\hline 3 & \((1,2)\) & 1.0 & \((2,2)\) & 2 & 3 \\
\hline & \((2,1)\) & 0.0 & \((2,2)\) & 3 & 3 \\
\hline & \((2,2)\) & 1.0 & \((2,2)\) & \(\square\) & \(\square\) \\
\hline
\end{tabular}
(a) Bottom-up traversal.

(b) Result table.

Figure 5.30: Bottom-up traversal and result table of batched call \(\operatorname{dtw}([(2,2),(1,1),(0,0)])\).
```

WITH RECURSIVE call_graph(in, site, fanout, out, val) AS (
SELECT args, NUL:: :int, NULL: :bigint, args, NULL: :\tau
FROM unnest(f.[args]) AS args
BatAnchor
UNION -- recursive UNION
SELECT g.out, edges.*
FROM call_graph AS g,
LATERAL (
WITH slices(site, out) AS (
SELECT 1 AS site, out FROM (replace(slice(f, s1),[(g.out)./\overline{args}])) AS _(out)
UNION
UNION
SELECT }n\mathrm{ AS site, out FROM (replace(slice(f, sn),[(g.out).\args}])) AS _(out
),
calls(site, fanout, out, val) AS (
SELECT s.site, COUNT(*) OVER () AS fanout, s.out, NUL:: :\tau AS val
FROM slices AS s
WHERE s.out <> \perp
)
TABLE calls
UNION ALL
SELECT NULL: :int AS site, O AS fanout, ROW((g.out).args) AS out,
(replace(body(f,[NULL::\tau,..,NULL::\tau]),
[(g.out).args}])) AS va
WHERE NOT EXISTS (TABLE calls)
) AS edges(site, fanout, out, val)
WHERE g.fanout > O OR g.fanout IS NULL
)

```

Figure 5.31: Tweaking the template of Figure 4.8 in Chapter 4 enables batching for compiled functional-style UDFs.
cation such as \(\operatorname{dtw}([(2,2),(1,1),(0,0)])\). The call graphs for calls \(\operatorname{dtw}(1,1)\) and \(\operatorname{dtw}(0,0)\) become subgraphs of \(\operatorname{dtw}(2,2)\) (see Figure 5.29). This is not generally the case but highlights the potential benefits of batching.

\subsection*{5.6.1 Tweaking the SQL Template}

Except for the signature change of function \(f\), compilation with batching enabled requires only very minor tweaks in two regions: BatAnchor and BatResult. We highlight these changes that lead to the templates in Figures 5.31 and 5.32:
BatAnchor The function unnest ([ \(\overline{\operatorname{args}]}\) ) [97] takes the array of arguments [args] and turns it into a table with one column where each row holds one of the call graph roots \(\overline{\text { args }}\).
BatResult The resulting query returns a table that matches the signature of \(f\) such that it returns a table where each row is a pair of root calls and results: ((in), (val)).

Note that the batching tweaks can be applied independently of other (optional)

```

AS $$
WITH RECURSIVE call_graph(in,site,fanout,out,val) AS (
 <see Figure 5.31>
), BatGraph
base_cases(in,val,ref,site,fanout) AS (
 SELECT g.in, g.val, g_ref.in, g_ref.site,g_ref.fanout
 FROM call_graph AS g,
 call_graph AS g_ref
 WHERE g.fanout = 0
 AND (g_ref.fanout > 0 OR g_ref.fanout IS NULL)
 AND g.in = g_ref.out
), RefBase
evaluation(in,val,ref,site,fanout) AS (
 <see Figure 5.4>
)
SELECT e.in, e.val BatResult
FROM evaluation AS e
WHERE e.fanout IS NULL;
$$ LANGUAGE SQL STABLE STRICT;

```

Figure 5.32: We insert Figure 5.31 as the call_graph CTE and apply minor tweaks to the function signature and BatResult.
compiler tweaks presented in this chapter. Templates with all tweaks enabled can be found in Appendix B, where their modular nature is highlighted.

\subsection*{5.6.2 Runtime Experiments}

The results in Table 5.2 report the total call time and total call graph size for a selection of compiled use cases with and without batching enabled. For the arguments, we use those found in each use case's runtime experiment plots. For example, the input for UDF dtw is found in Figure 5.9. Many of the use cases profit from batching because of their overlapping call graphs over many calls: shortest, dtw, knapsack, needleman, and paths. We highlight a few use cases:
bom: High overlap between subgraphs allows the compiled function with batching enabled to discard \(83 \%\) of the nodes. Indeed, as with other use cases, not all function calls construct highly overlapping call graphs. However, when they do, batching is a good way to profit from it in terms of runtime optimization.
vm : This (and parcels) are tail-recursive functions which both do not profit from batching. Each call graph is disjunct from one another, increasing the overall size of
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{UDF} & \multirow[t]{2}{*}{Recursion} & \multirow[t]{2}{*}{Arguments} & \multicolumn{2}{|r|}{\(\Sigma\) Call Time [ms]} & \multicolumn{2}{|l|}{\(\Sigma\) Call Graph Size} \\
\hline & & & compiled & batched & compiled & batched \\
\hline shortest & n -fold & Figure 5.12 & 5,002 & 906 (18.1\%) & 13,779 & 2,723 \\
\hline dtw & 3 -fold & Figure 5.9 & 6,400 & 1,909 (29.8\%) & 116,825 & 30,216 \\
\hline knapsack & 2 -fold & Figure 5.10 & 7,165 & 2,115 (29.5\%) & 156,680 & 40,417 \\
\hline needleman & 3 -fold & Figure 5.11 & 19,835 & 5,563 (28.0\%) & 115,114 & 29,915 \\
\hline paths & linear & Figure 5.19 & 27,847 & 6,756 (24.3\%) & 65,517 & 10,017 \\
\hline bom & tv n-fold & Figure 5.16 & 5,205 & 2,697 (51.8\%) & 1,003 & 171 \\
\hline parcels & tv tail & Figure 5.22 & 11,540 & 11,431 (99.0\%) & 2,779,480 & 2,779,480 \\
\hline vm & tail & Figure 5.21 & 3,493 & 3,232 (92.5\%) & 232,950 & 232,950 \\
\hline split & 2-fold & Figure 5.7 & 1,744 & 4,762 (273.1\%) & 24,549 & 24,549 \\
\hline
\end{tabular}

Table 5.2: A collection of SQL UDFs in functional style compiled with and without batching enabled.
the batched call graph. Indeed, because of the tail-recursive optimization, which removes the need for bottom-up traversal, we measure neither significant improvements nor declines in call times.
split: This function does not exhibit any partially overlapping subgraphs in each function invocation. Indeed, this means the batched function call and its bottom-up traversal must now deal with an overinflated call graph. Recall in Section 5.1.1, bottom-up traversal enforces a runtime complexity lower bound by the call graph size: \(\mid\) call_graph \(\left.\right|^{2}\). Without batching, each function call has (at most) a size of 12,287. Compare this to the single batched call graph with 24,549 . As expected, the increased call graph size almost triples the call times of the batched function compared to the sum of the time each call needs. This represents a worst-case scenario for batching.

\subsection*{5.6.3 Summary}

Batching exploits functions whose call graphs over many independent invocations overlap, which can benefit execution times. However, this puts the burden of handling this change to the function arguments and return type (i.e., \(f: a \rightarrow b\) to \(f^{\prime}:[a] \rightarrow[b]\) ) on the developer who maintains the surrounding queries which invoke this function. Indeed, not all functions benefit from this optional optimization flag. A function,
such as split, exhibits no partially overlapping subgraphs. Batching significantly increases its call graph size, thus worsening the execution times.

Let us close this chapter with a few final remarks: The tweaks and improvements presented in this chapter give the developer many optimization switches that may improve runtime for their complex computation pushed inside the RDBMS. Indeed, with the exception of ITERATE (recall Section 5.4), the benefits of compiling functionalstyle UDFs are readily available in all RDBMS that implements SQL:1999 [101] which the compiler can target without intrusive changes to the RDBMS itself. However, in some cases, developers must understand the shape of their functional-style UDF's call graph structure before they decide to compile them. Functions, such as split, may be more suited to be implemented as a carefully hand-crafted CTE wherever performance concerns outweigh readability.

\section*{6}

\section*{Conclusion}

In this publication, we set out to measure the viability for developers to write functionalstyle UDFs, giving developers more ways to push their computation close to the data [98]. We found our answer on two fronts: readability from the viewpoint of the developer and runtime performance.

First, we measured the readability aspect of functional-style UDFs by performing a user study (Chapter 2). We found that functional-style UDFs are a welcome addition to the bag of tools of developers using SQL aside from recursive CTEs aiming to implement complex computations. Some developers may even unanimously prefer the use of functional-style for some computations. Indeed, when we let the participants decide whether to implement the algorithm to solve the 0-1 Knapsack problem [88] in functional-style or as a recursive CTE, not a single submission even tried implementing it using recursive CTEs. We suspect that other development tools, such as a debugger for functional-style UDFs, maybe one future branch of research to support developers in their endevours.

Besides functional-style UDFs, other alternatives should also be studied further in this manner: Some of them are already published, where the developer is allowed to implement functions with complex control flows in PL/PgSQL [97] or Python, which
are then compiled to pure SQL functions [81, 76]. Another way to support recursive CTEs in their mission to allow developers to implement complex computations is to break up the rigid semantics of recursive CTEs. When evaluating recursive CTEs, each iteration step builds a new intermediate table from scratch, becoming the working table for the next iteration. And only if the intermediate table is empty, does evaluation stop. Current research asks if we could express some algorithms more elegantly if alternative semantics were available to the developer. One such alternative imagines that the working table is not built from scratch with each iteration. Instead, keep the working table at the start of the iteration and only insert new rows and update old ones in each iteration.

Second, we measured the runtime performance aspect of functional-style UDFs (Chapters 4 and 5). Running functional-style UDFs as is, comes with a list of restrictions for many RDBMS. SQLite3 does not support SQL UDFs in general [102]. MySQL 8.0's SQL UDFs do not allow for recursive self-invocations within their function bodies [90]. Microsoft SQL Server 2022 supports recursive self-invocations in SQL UDFs, but only with a hard-coded recursion depth limit of 32 [100]. Oracle 19c [95] and PostgreSQL 13 [97] allow for more meaningful usage of functional-style UDFs, where the recursion depth can go beyond the 10,000 mark. However, the recursion depth is still limited and its value cannot exceed the maximum stack size set by the operating system. On top of these restrictions, PostgreSQL does not optimize for recursion in functional-style UDFs as far as we can tell. Moreover, PostgreSQL repeatedly parses and plans the function body for each recursive call due to the absence of plan caching.

We chose to approach this problem by compiling functional-style UDFs which removes all recursive self-invocations (Chapter 4). Instead, the compiler targets recursive CTEs that ultimately evaluate the function in a two-phased approach that constructs the call graph and then evaluates it by traversing it bottom-up. If an RDBMS supports recursive CTEs, then this enables that system to support functionalstyle UDFs efficiently through SQL-to-SQL compilation. This applies to systems like SQLite3, which do not implement UDFs at all (compiler simply inlines the compiled body at the call site to obtain a function-free query), as well as MySQL, Microsoft SQL Server and Oracle, where compiled UDFs are not limited by the strin-
gent restrictions on recursion depth. In PostgreSQL, not only does compilation of functional-style UDFs work around recursion depth limits. It also allows many UDFs to evaluate significantly faster (compared to before compilation) without requiring intrusive changes to the underlying database engine. Indeed, this is due to the various optimizations this approach comes with discussed in Chapter 5.

In future work, we may enable the compiler to target other RDBMSs. Further optimization potential may still remain untapped, waiting to be discovered. One such work observes the benefits of different storage methods of the call graph at runtime. For example, Madeleine Mauz's master thesis explored the benefits of storing the call graph into a hash table at runtime, allowing call graph traversal speedy lookup of parent nodes in the call graph. Thus, traversing the call graph more efficiently bottom-up.

In conclusion, as developers face larger growing data sets every day without an end in sight, so too must SQL provide more approachable options for developers looking to query computational results instead of just the data. Functional-style UDFs, as presented in this publication, mark another viable step towards this goal.

\section*{A}

\section*{User Study - Online Form}

\section*{Introduction}

Thank you for participating in this anonymous user study!
Like any programming language, SQL allows you to express complex computation in various (equivalent) forms. This survey studies two particular forms of authoring user-defined SQL functions (UDFs). Both forms are used to implement the same recursive programming problems-but the forms read differently:
- one uses recursive CTES (WITH RECURSIVE),
- the other is based on recursive function invocation.

This survey compares these two forms in terms of readability and thus focuses on your ability to read and understand snippets of SQL code. We therefore ask you to work through the study without the use of external programs: answer the questions below without executing the UDFs on a SQL database system. Use pen and paper only (if required at all). Thank you!

The SQL dialect presented to you in this survey leans heavily on PostgreSQL 12. If any feature found in the following queries is new to you, feel free to look them up here.

Important: We will also ask you for the time it took you to complete each task. As you complete each task, keep track of the required time and enter it in the boxes below. Please answer truthfully. Each task should take about \(5-10\) minutes, if you find yourself exceeding this timespan, please feel free to skip to the next task (in this case, please tick the corresponding box).

The entire survey should take about \(30-45\) minutes to complete. Once done, please make sure to press the Submit your results!-button at the end.

Before we begin, please list the three (regular) programming languages that you are most familiar with:


\section*{Part 1: Fibonacci Numbers}

Graham et. al. define the Fibonacci number function in Concrete Mathematics, 2nd edition as:
\[
\begin{align*}
& f i b(0)=0 \\
& \text { fib }(1)=1  \tag{1}\\
& \text { fib }(n)=f i b(n-1)+f i b(n-2)
\end{align*}
\]

We propose the following UDFs which aim to compute the Fibonacci number of \(n\) using SQL. You can assume that each of the UDFs are syntactically sound but only some of them implement the Fibonacci number function correctly.
1. Keep track of how long it takes for you to choose which of the following CTE-based UDFs implement the Fibonacci number function correctly (there may be more than one):
\begin{tabular}{|c|}
\hline \multirow[t]{14}{*}{```
CREATE FUNCTION fib(n int)
RETURNS int AS $$
    WITH RECURSIVE
    fib(i, prev_n, curr_n) AS (
        VaLUES (1, 0, 1)
            UNION
        SELECT f.i + 1,
                        f.curr_n,
            f.prev_n - f.curr_n
        FROM fib AS f
        WHERE f.i <= n
    )
    SELECT f.curr_n
    FROM fib AS f
    WHERE f.i = n;
```

\$\$ LANGUAGE SOL;}

\hline

\hline
\end{tabular}

		CREATE FUNCTION fib(n int) RETURNS int AS \$\$
CREATE FUNCTION fib(n int) RETURNS int AS \$\$ WITH RECURSIVE		
		with recursive
fib(i, prev_n, curr_n) AS (fib(i, prev_n, curr_n) AS (
SELECT 1, 0, 1		VALUES ($1,0,1$)
		UNION ALL
f.prev_n + f.curr_n	\square	f.prev_n + f.curr_n
FROM fib AS ${ }^{-}$		FROM fib AS ${ }^{-}$
Where f.i between 0 and n		WHERE f.i < n
))
SELECT f.curr_n		SELECT f.prev_n
FROM fib AS ${ }_{\text {f }}$		FROM fib AS ${ }^{\text {f }}$
WHERE f.i < n;		ORDER BY f.i desc
\$		LIMIT 1;
		\$

Solving this task took about \square minutes.
Or, tick this (\square) if you want to skip it.
2. Keep track of how long it takes for you to choose which of the following recursive UDFs implement the Fibonacci number function correctly (there may be more than one):


```CREATE FUNCTION fib(n int) RETURNS int AS \$\$ SELECT CASE WHEN \(\mathrm{n}=0\) THEN 0 WHEN \(\mathrm{n}=1\) THEN 1 ELSE \(\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2)\) END; \$\$ LANGUAGE SOL;```	$\square$	```CREATE FUNCTION fib(n int) RETURNS int AS $$ SELECT CASE WHEN n = 0 THEN 0 When n = 1 then 1 ELSE fib(n-1) - fib(n-2) END; $$ LANGUAGE SQL;```



Solving this task took about $\square$ minutes.
Or, tick this $(\square)$ if you want to skip it.

## Part 2: Greatest Common Divisor

Knuth et. al. define the calculation of the greatest common divisor in The Art of Programming (vol. 2 Seminumerical Algorithms), 3rd edition as:

$$
\begin{align*}
& \operatorname{gcd}(n, 0)=n  \tag{2}\\
& \operatorname{gcd}(n, k)=\operatorname{gcd}(k, n \bmod k)
\end{align*}
$$

We propose the following SQL UDFs which aim to compute the greatest common divisor of $u$ and $v$. You can assume that each of the UDFs are syntactically sound but only some of them implement the greatest common divisor function correctly.

1. Keep track of how long it takes for you to choose which of the following recursive UDFs compute the greatest common divisor correctly (there may be more than one):

CREATE FUNCTION gcd( $n$ int, $k$ int)
RETURNS int AS $\$ \$$
SELECT CASE
WHEN $k=0$ THEN $n$
ELSE $\operatorname{gcd}(k, \operatorname{MOD}(n, k))$
END;
\$ LANGUAGE SOL;


$\operatorname{SELECT} \operatorname{gcd}(k, \operatorname{MOD}(\mathrm{n}, \mathrm{k}))$
$\operatorname{SELECT} \operatorname{gcd}(k, \operatorname{MOD}(\mathrm{n}, \mathrm{k}))$
\$ $\$$ LANGUAGE SQL;
\$ $\$$ LANGUAGE SQL;

Solving this task took about $\square$ minutes.
Or, tick this $(\square)$ if you want to skip it.
2. Keep track of how long it takes for you to choose which of the following CTE-based UDFs compute the greatest common divisor correctly (there may be more than one):


	CREATE FUNCTION gcd( $n$ int, $k$ int) RETURNS int AS \$\$
	WITH RECURSIVE SELECT $\mathrm{n}, \mathrm{k}$
	UNION
	SELECT g.k, MOD(g.n,g.k)
	FROM gcd AS g
	WHERE g.k > 0
	$)$ )
	SELECT g.n
	FROM ged AS g
	ORDER BY g.k
	LImit 1;
	\$




Solving this task took about $\square$ minutes.
Or, tick this $(\square)$ if you want to skip it.

Part 3: Comprehension I
Consider the following table s:

$$
\begin{aligned}
& \text { CREATE TABLE s ( } \\
& \text { a serial PRIMARY KEY } \\
& \text { b float NOT NULL } \\
& \text { ); }
\end{aligned}
$$

We define the following function $f(i, j, k)$ which evaluates over table $s$ :

```
CREATE FUNCTION f(i int, j int, k float)
 RETURNS float AS $S
 SElect CASE
 ELSE (SELECT f(i+1, j, s.b + 0.5 * k)
 FROM
 WHERE s.a = i)
END;
```

\$ LANGUAGE SOL

Keep track on how long it takes you to describe (in 100 words or less) what the function $f(i$ int, $j$ int, 0 ) does:

$$
\text { What does } f(i \text { int, } j \text { int, } 0) \text { do? }
$$

WRITE YOUR YOUR ANSWER HERE

Solving this task took about $\square$ minutes.
Or, tick this $(\square)$ if you want to skip it.

Part 4: Comprehension II
Consider the following table $t$ :

> CREATE TABLE $t$ ( x int PRIMARY KEY, y int REFERENCES $\mathrm{t}(\mathrm{x})$, z int NOT NULL $) ;$

Consider the following function g ( a int) which evaluates over table t :

$$
\begin{aligned}
& \text { CREATE FUNCTION g(a int) } \\
& \text { ETURNS bigint AS } \\
& \text { WITH RECURSIVE } \\
& \text { SELECT t.x, t.y, t.z } \\
& \begin{array}{l}
\text { SELECT } t . \\
\text { FROM }
\end{array} \\
& \text { WHERE t. } \mathrm{x}= \\
& \text { UNION } \\
& \text { SELECT r.x, t.y, t.z } \\
& \text { FROM } r, t \\
& \text { SELECT SUM(r.z) } \\
& \text { FROM }
\end{aligned}
$$

Keep track on how long it takes you to describe (in 100 words or less) what the function $g$ (a int) does:

[^0]Part 5: Evaluation
Important: This part builds on functions found in part 3 and part 4 of this survey. Make sure to answer these parts first, before you continue here.

1. Consider the following instance for table s from part 3 :

$$
\text { INSERT INTO } \mathrm{s}(\mathrm{a}, \mathrm{~b}) \text { VALUES }(1,4),(2,2.5),(3,1.5) ;
$$

Keep track on how long it takes you to compute (using pen and paper) the result of the function from part 3 when called as $f(1,3,0)$. Write down the result:

```
1 The result of f(1,3,0)
```

3 WRITE YOUR YOUR ANSWER HERE!
2. Consider the following instance for table $t$ from part 4:

$$
\text { INSERT INTO } t(x, y, z) \text { VALUES }(1,2,5),(2,4,3),(3,2,2),(4,3,1) \text {; }
$$

Keep track on how long it takes you to compute (using pen and paper) the result of the function from part 4 when called as $g(4)$. Write down the result:

```
The result of g(4)?
WRITE YOUR YOUR ANSWER HERE
```

Solving this task took about $\square$ minutes.
Or, tick this $(\square)$ if you want to skip it.

## Part 6: 0-1 Knapsack Problem

Martello et. al. define the 0-1 Knapsack Problem in Knapsack Problems - Algorithms and Computer Implementations as follows:
Consider items $i \in\{1, \ldots, n\}$ where each item has a weight $w_{i}$ and a value $p_{i}$. Then $k n a p(n, w)$ maximizes the sum of values of items that fit into a knapsack of weight $w$ and is defined as:

$$
\begin{align*}
& \operatorname{knap}(1, u)=0 \\
& \operatorname{knap}(k, u)= \begin{cases}\operatorname{knap}(k-1, u) & , \text { if } w_{k}>u \\
\max \left(\operatorname{knap}(k-1, u), \operatorname{knap}\left(k-1, u-w_{k}\right)+p_{k}\right) & , \text { otherwise }\end{cases} \tag{3}
\end{align*}
$$

Keep track of how long it takes you to complete the SQL function knap( $\mathrm{n}, \mathrm{w}$ ) which solves the $0-1$ Knapsack problem either using a recursive or CTE-based UDF. Submit your solution in the following textbox in which we also provide to you the definition of table items which holds all items $i$ and their respective weight $w$ and value $p$ to be used in this task.

```
CREATE TABLE items (
 i serial PRIMARY K
 p int NOT NULL,
 4,p in
CREATE FUNCTION knap(k int, u int
 RETURNS int AS $$
 /* YOUR CODE HERE */
 O $ LANGUAGE SOL;
```


## All done?

Thank you for participating!

## B

## Complete Templates

Templates used for compiling functional-style UDFs in general and with linear and tail recursion optimizations (see Sections 5.1, 5.3 and 5.4). Each has all features (tablevalued return type, memoization, and batching) enabled can be found in Figures B. 1 to B.3. In each Figure, we highlight the independent code regions that enable tablevalued return types ( ) , memoization ( $/ / / /$ ) , and batching ( N ). These features are discussed in detail in Chapter 5.

```
CREATE FUNCTION f([args)) REIURNS TABLE(args, vals)
AS $$
WITH RECURSIVE call_graph(in,site,fanout,out, vals, "empty?",rid) AS (
 SELECT args, NULL: :int, NULL: :bigint, args, NULL, false, NULL: :bigint
 FROM unnest(f.[args]) AS args
 UNION -- recursive UNION
 SEIECT g.out, edges.*
 FROM call_graph AS g,
 LATERAL (
 WITH memoization(site,fanout,out, vals, "empty?",rid) AS (
 SEIECT NUL::int, 0, m.in, m.vals, m. "empty?", m.rid
 FROM memo AS m
 WHERE g.out = m.in
),
 slices(site,out) AS (
 SELECT 1 AS site, out FROM (replace(slice(f, s1), [(g.out).\overline{args}])) AS _(out)
 UNION
 UNİON
 SELECT }n\mathrm{ AS site, out FROM (replace(slice(f, sn),[(g.out).]
),
 calls(site,fanout,out,\overline{vals, "empty?",rid) AS (}
 SELECT s.site, COUNT(*) OVER () AS fanout, s.out, NULL, false, NULL: :bigint
 FROM slices AS s
 WHERE s.out <> \perp
),
 values(\overline{vals) AS (}
 replace(body(f,[(VALUES \overline{NULL}),\ldots,(VALUES \overline{NULL})]), [(g.out).\overline{args}])
)
 TABLE memoization
 UNION ALI
 SELECT *
 FROM calls
 WHERE NOT EXISTS (TABLE memoization)
 UNION ALL
 SELECT NULL: :int AS site, O AS fanout, ROW((g.out).\overline{args}) AS out,
 v.\overline{vals, false, ROW_NUMBER() OVER ()}
 FROM values AS v
 WHERE NOT EXISTS (TABLE memoization)
 AND NOT EXISTS (TABLE calls)
 UNION ALL
 SELECT NULL: :int AS site, 0 AS fanout, ROW((g.out).args) AS out, NULL, true, 1
 WHERE NOT EXISTS (TABLE memoization)
 AND NOT EXISTS (TABLE calls)
 AND NOT EXISTS (TABLE values)
) AS edges(site,fanout,out,\overline{vals, "empty?",rid)}
WHERE g.fanout > 0 OR g.fanout IS NULL
),
```

〈Continued on next page〉

〈Continued from previous page〉

```
base_cases(in,vals, "empty?",rid,ref,site,fanout) AS (
 SELECT g.in, g.vals, g."empty?", g.rid, g_ref.in, g_ref.site, g_ref.fanout
 FROM call_graph AS g,
 call_graph AS g_ref
 WHERE g.fanout = 0
 AND (g_ref.fanout > 0 OR g_ref.fanout IS NULL)
 AND g.in = g_ref.out
),
evaluation(in,\overline{vals, "empty?",rid,ref,site,fanout) AS (}
 TABLE base_cases
 UNION ALL -- recursive UNION ALL
 (WITH e(in,\overline{vals, "empty?",rid,ref,site,fanout) AS (TABLE evaluation),}
 returns(in,\overline{vals, "empty?",rid) AS (}
 SELECT go.in, result.*
 FROM (SELECT e.ref
 FROM e
 WHERE e.rid = 1
 GROUP BY e.ref, e.fanout
 HAVING COUNT(*) = e.fanout
) AS go(in),
 LATERAL (
 WITH result(\overline{vals) AS (}
 replace(body(f,[lookup
 [(go.in).\overline{args}])
)
 SELECT r.*, false, ROW_NUMBER() OVER () FROM result AS r
 UNION ALL
 SELECT NULL, true, 1 WHERE NOT EXISTS (TABLE result)
) AS result(\overline{vals, "empty?",rid)}
)
 SELECT *
 FROM e
 WHERE e.fanout IS NOT NULL
 AND NOT EXISTS (SELECT FROM returns AS r WHERE r.in = e.ref)
 UNION ALL
 SELECT r.*, g.in, g.site, g.fanout
 FROM returns AS r, call_graph AS g
 WHERE r.in = g.out
)),
store AS (
 INSERT INTO memo
 SEEFCT e,in, e.vals, e. "empty?", e.rid
 FROM evaluation AS e
 ON CONFLICT DO NOTHING
)
SELECT e.in, e.vals
FROM evaluation AS e
WHERE e.fanout IS NULL
AND NOT e. "empty?";
$$ LANGUAGE SQL VOLATILE STRICT;
```

Figure B.1: SQL code emitted when compiling functional-style UDFs with table-valued return type ( ), memoization ( $/ / / /$ ) and batching ( ) enabled.

```
CREATE FUNCTION f([args)) REIURNS TABLE(args,
AS $$
WITH RECURSIVE call_graph(in,site,fanout,out,vals, "empty?",rid) AS (
 SELECT args, NUL:: :int, NULL: :bigint, args, NULL, false, NULL: :bigint
 FROM unnest(f.[args]) AS args
 UNION ALL -- recursive UNION ALL
 SELECT g.out, edges.*
 FROM call_graph AS g,
 LATERAL (
 WITH memoization(site,fanout,out,vals, "empty?",rid) AS (&
 SELECT NUL:: int, 0, m.in, m.vals, m. "empty?", m.rid
 FROM memo AS m
 WHERE g.0ut = m.in
)
 slices(site,out) AS (
 SELECT 1 AS site, out FROM (replace(slice(f, s1), [(g.out).\overline{args}])) AS _(out)
 UNT\ON
 unioN
 SELECT n AS site, out FROM (replace(slice(f, sn),[(g.out).\overline{args}]))AS _(out)
),
 calls(site,fanout,out,vals, "empty?",rid) AS (
 SELECT s.site, COUNT(*) OVER () AS fanout, s.out, NULL, false, NULL: :bigint
 FROM slices AS s
 WHERE s.out <> \perp
),
 values(vals) AS (
 replace(body(f,[(VALUES \overline{NULL}),..,(VALUES \overline{NULL})]), [(g.out).\overline{args}])
)
 TABLE memoization
 UNION ALI
 SELECT *
 FROM calls
 WHERE NOT EXISTS (TABLE memoization)
 UNION ALL
 SELECT NULL::int AS site, 0 AS fanout, ROW((g.out).\overline{args}) AS out,
 v.vals, false, ROW_NUMBER() OVER ()
 FROM values AS v
 WHERE NOT EXISTS (TABLE memoization)
 AND NOT EXISTS (TABLE calls)
 UNION ALL
 SELECT NULL::int AS site, O AS fanout, ROW((g.out).\overline{args})AS out, NULL, true, 1
 WHERE NOT EXISTS (TABLE memoization)
 AND NOT EXISTS (TABLE calls)
 AND NOT EXISTS (TABLE values)
) AS edges(site,fanout,out,vals, "empty?",rid)
WHERE g.fanout > 0 OR g.fanout IS NULL
),
```

〈Continued on next page〉

〈Continued from previous page〉

```
base_cases(in,\overline{vals, "empty?",rid,ref,site,fanout) AS (}
 SELECT g.in, g.vals, g."empty?", g.rid, g_ref.in, g_ref.site, g_ref.fanout
 FROM call_graph AS g,
 call_graph AS g_ref
 WHERE g.fanout = 0
 AND (g_ref.fanout > 0 OR g_ref.fanout IS NULL)
 AND g.in = g_ref.out
),
evaluation(in, \overline{vals, "empty?",rid,ref,site,fanout) AS (}
 TABLE base_cases
 UNION ALE} -- recursive UNION ALL
 (WITH e(in,vals, "empty?",rid,ref,site,fanout) AS (TABLE evaluation),
 returns(in, \overline{vals, "empty?",rid) AS (}
 SELECT go.in, result.*
 FROM (SELECT e.ref
 FROM e
 WHERE e.rid = 1
 GROUP BY e.ref, e.fanout
 HAVING COUNT(*) = e.fanout
) AS go(in),
 LATERAL (
 WITH result(vals) AS (
 replace(body(f,[lookup Tbl }(f,1),\ldots,\mp@subsup{\operatorname{lookup}}{\textrm{Tbl}}{}(f,n)])
 [(go.in).\overline{args}])
)
 SEIECT r.*, false, ROW_NUMBER() OVER () FROM result AS r
 UNION ALL
 SELECT NULL, true, 1 WHERE NOT EXISTS (TABLE result)
) AS result(\overline{vals, "empty?",rid)}
)
 SELECT r.*, g.in, g.site, g.fanout
 FROM returns AS r, call_graph AS g
 WHERE r.in = g.out
)),
store AS (
 INSERT INTO memo
 SEIFCT e.in, e.vals, e. "empty?", e.rid
 FROM evaluation AS e
 ON CONFLICT DO NOTHING
3
SELECT e.in, e.vals
FROM evaluation AS e
WHERE e.fanout IS NULL
AND NOT e. "empty?";
$$ LANGUAGE SQL VOLATILE STRICT;
```

Figure B.2: SQL code emitted when compiling linear recursive functional-style UDFs with table-valued return type ( ), memoization (/V/) and batching () enabled.

```
CREATE FUNCTION f([args)) REIURNS TABLE(args,
AS $$
WITH RECURSIVE call_graph(in,site,fanout,out,vals, "empty?",rid) AS (
 SELECT args, NUL:: :int, NULL: :bigint, args, NULL, false, NULL: :bigint
 FROM unnest(f.[args]) AS args
 UNION ALL -- recursive UNION ALL
 SEIECT g.out, edges.*
 FROM call_graph AS g,
 LATERAL (
 WITH memoization(site,fanout,out,vals, "empty?",rid) AS (
 SELECT NUL:: int, 0, m.in, m.vals, m. "empty?", m.rid
 FROM memo AS m
 WHERE g.0ut = m.in
)
 slices(site,out) AS (
 SELECT 1 AS site, out FROM (replace(slice(f, s1), [(g.out).\args}])) AS _(out
 UNT\ON
 unioN
 SELECT n AS site, out FROM (replace(slice(f, sn),[(g.out).\overline{args}]))AS _(out)
),
 calls(site,fanout,out,vals, "empty?",rid) AS (
 SELECT s.site, COUNT(*) OVER () AS fanout, s.out, NULL, false, NULL: :bigint
 FROM slices AS s
 WHERE s.out <> \perp
),
 values(vals) AS (
 replace(body(f,[(VALUES \overline{NULL}),..,(VALUES \overline{NULL})]), [(g.out).\overline{args}])
)
 TABLE memoization
 UNION ALI
 SELECT *
 FROM calls
 WHERE NOT EXISTS (TABLE memoization)
 UNION ALL
 SELECT NULL::int AS site, 0 AS fanout, ROW((g.out).\overline{args}) AS out,
 v.vals, false, ROW_NUMBER() OVER ()
 FROM values AS v
 WHERE NOT EXISTS (TABLE memoization)
 AND NOT EXISTS (TABLE calls)
 UNION ALL
 SELECT NULL::int AS site, O AS fanout, ROW((g.out).\overline{args})AS out, NULL, true, 1
 WHERE NOT EXISTS (TABLE memoization)
 AND NOT EXISTS (TABLE calls)
 AND NOT EXISTS (TABLE values)
) AS edges(site,fanout,out,vals, "empty?",rid)
WHERE g.fanout > 0 OR g.fanout IS NULL
),
```

〈Continued on next page〉

〈Continued from previous page〉

```
store AS (
 INSERT INTO memo
 SEIFCT g.in, g.vals, g. "empty?", g.rid
 FROM call graph AS g
 WHERE g.fanout = 0
 ON CONFLICT DO NOTHING
)
SELECT g.in, g.vals
FROM call_graph AS g
WHERE g.fanout = 0
AND NOT g. "empty?";
$$ LANGUAGE SQL VOLATIIE STRICT;
```

Figure B.3: SQL code emitted when compiling tail recursive functional-style UDFs with table-valued return type ( ), memoization (/V/) and batching () enabled.


## Selected Functional-Style SQL UDFs

We hand-picked a selection of functional-style SQL UDFs and list their SQL implementation (Appendix C), their compiled SQL function (Section C.2), and their hand-crafted recursive CTE formulation (Section C.3).

## C. 1 Implementation

Figures C. 1 to C. 4 show the functional-style SQL UDFs for ther respective selected use-cases. Each figure also shows the required table and type definitions.

```
CREATE TABLE X (
 t int PRIMARY KEY,
 x real
);
CREATE TABLE Y (
 t int PRIMARY KEY,
 y real
);
CREATE FUNCTION dtw(i int, j int) RETURNS real
AS $$
 CASE
 WHEN i=O AND j=0 THEN 0.0
 WHEN i=0 OR j=0 THEN \infty -- 'Infinity': :real
 ELSE (SELECT abs(Z.x - Z.y)
 LEAST(}\mp@subsup{}{}{1}\textrm{dtw}(\textrm{i}-1, j-1)
 '2dtw(i-1, j),
 3}\operatorname{dtw(i , j-1))
 FROM (X JOIN Y
 ON ((X.t,Y.t) = (i,j))) AS Z)
 END;
$$ LANGUAGE SQL STABLE STRICT;
```

Figure C.1: The functional-style dtw. 1, 2, and 3 mark the recursive call sites. Function dtw is 3-fold recursive.

```
CREATE FUNCTION split(x real, y real) REIURNS int
AS $$
 CASE
 WHEN ABS (x-y) <= 1.0 THEN 1
 ELSE }\mp@subsup{}{}{1}\mathrm{ Split(x,x+ABS(x-y)/2.0)
 +
 2 Split(x+ABS (x-y)/2.0,y)
 END;
$$ LANGUAGE SQL STABLE STRICT;
```

Figure C.2: The functional-style split. 1 and 2 mark the recursive call sites. Function split is 2-fold recursive.

```
CREATE TABLE materials (
 part int,
 sub int,
 quantity int
);
CREATE FUNCTION bom(part int)
REIURNS TABLE(part int, sub int, quantity int)
AS $$
 SELECT m.part, m.sub, m.quantity
 FROM materials AS m
 WHERE m.part = part
 UNION ALL
 SELECT b.part, b.sub, m.quantity * b.quantity
 FROM materials AS m JOIN LATERAL }\mp@subsup{}{}{1}\mathrm{ bom(m.sub) AS b
 ON (m.part = part);
16 $$ LANGUAGE SQL STABLE STRICT;
```

Figure C.3: The functional-style bom. 1 marks the recursive call site. Function bom is $n$-fold recursive with a table-valued return type.

```
-- Currently supported VM instruction set
CREATE TYPE opcode AS ENUM (
 'lod', -- lod t, x load literal x into target register Rt
 'mov', -- mov t, s move from source register Rs to target register Rt
 ',jeq', -- jeq t, s, @a if Rt = Rs, jump to location a, else fall through
 'jmp', -- jmp @a jump to location a
 'add', -- add t, s1, s2 Rt <- Rs1 + Rs2
 'mul', -- mul t, s1, s2 Rt <- Rs1 * Rs2
 'div', -- div t, s1, s2 Rt <- Rs1 / Rs2
 'mod', -- mod t, s1, s2 Rt <- Rs1 mod Rs2
 'hlt'' -- htl s halt program, result is register Rs
);
-- VM instructions
CREATE TYPE instruction AS (
 loc int, -- location
 opc opcode, -- opcode
 reg1 int, -- \
 reg2 int, -- } up to three work registers
 reg3 int -- /
);
CREATE TABLE program OF instruction;
CREATE FUNCTION vm(ins instruction, regs int[])
RETURNS int AS $$
 CASE ins.opc
 WHEN 'lod' THEN '1 vm(SELECT p
 FROM program AS p
 WHERE p.loc = ins.loc+1),
 regs[:ins.reg1-1]||ins.reg2| | regs[ins.reg1+1:])
 WHEN 'mOv' THEN 2 vm((SELECT p
 FROM program AS p
 WHERE p.loc = ins.loc+1),
 regs[:ins.reg1-1] | regs[ins.reg2] | |regs[ins.reg1+1:])
 WHEN 'jeq' THEN 3 vm((SELECT p
 FROM program AS p
 WHERE p.loc = CASE WHEN regs[ins.reg1] = regs[ins.reg2]
 THEN ins.reg3
 ELSE ins.loc + 1
 END),
 regs)
 WHEN 'jmp' THEN 4
 FROM program AS p
 WHERE p.loc = ins.reg1),
 regs)
 WHEN 'add' THEN 5
 FROM program AS p
 WHERE p.loc = ins.loc+1),
 regs[:ins.reg1-1]|regs[ins.reg2] + regs[ins.reg3]|regs[ins.reg1+1:])
 WHEN 'mul' THEN 6 vm((SELECT p
 FROM program AS p
 WHERE p.loc = ins.loc+1),
 regs[:ins.reg1-1]|regs[ins.reg2] * regs[ins.reg3]|regs[ins.reg1+1:])
 WHEN 'div' THEN }\mp@subsup{\nabla}{\mathrm{ vm((SELECT p}}{
 FROM program AS p
 WHERE p.loc = ins.loc+1),
 regs[:ins.reg1-1]|regs[ins.reg2] / regs[ins.reg3]||regs[ins.reg1+1:])
 WHEN 'mod' THEN 8
 FROM program AS p
 WHERE p.loc = ins.loc+1),
 regs[:ins.reg1-1]|regs[ins.reg2] % regs[ins.reg3]|regs[ins.reg1+1:])
 WHEN 'hlt' THEN regs[ins.reg1]
 END;
$$ LANGUAGE SQL STABLE STRICT;
```

Figure C.4: The functional-style vm. 1, 2, ..., 8 mark the recursive call sites. Function vm is tail-recursive. Each CASE-branch directrly calls exactly one call site.

## C. 2 Compilation

Compiling the functional-style UDF replaces their function body as described in Chapters 4 and 5. The functions in Figures C. 6 to C. 8 present the compiled functionalstyle UDFs of Figures C. 1 to C. 4 respectively. In each figure, we marked the sections which were modified by slice, replace, and body ( $\square$ ) and how it was modified ( $\square$ ).

```
CREATE FUNCTION dtw(i int, j int) RETURNS real
AS $$
WITH RECURSIVE
call_graph(in_i, in_j, site, fanout, out_i, out_j, val) AS (
 SEIECT i, j, NULL : : int, NULL :: bigint, i, }\overline{j}\mathrm{ , NULL: :real
 UNION -- Recursive UNION
 SELECT g.out_i, g.out_j, edges.*
 FROM call_graph AS g,
 LATERAL (
 WITH
 slices(site, out) AS (
SELECT 1 AS site, out FROM (
SELECT *
FROM (SELECT (NULL, false) :: lifted_args) AS _
WHERE (g.out_i = 0 AND g.out_j = 0)
 UNION ALL
SELECT *
FROM (SELECT (NULL, false) :: lifted_args) AS _
WHERE NOT (g.out_i = 0 AND g.out_j = 0) AND (g.out_i = 0 OR g.out_j = 0)
 UNION ALL
SEIECT *
FROM (SELECT (ROW(g.out_i - 1, g.out_j - 1), true) :: lifted_args
 FROM (X JOIN Y
 ON ((X.t,Y.t) = (g.out_i,g.out_j))) AS Z) AS _
WHERE NOT ((g.out_i = O AND g.out_j = 0) OR (g.out_i = O OR g.out_j = 0))
) AS _(out) UNION SELECT 2 AS site, out FROM (
SELECT *
FROM (SELECT (NULL, false) :: lifted_args) AS _
WHERE (g.out_i = 0 AND g.out_j = 0)
 UNION ALL
SELECT *
FROM (SELECT (NULL, false) :: lifted_args) AS _
WHERE NOT (g.out_i = O AND g.out_j = 0) AND (g.out_i = O OR g.out_j = 0)
 UNION ALL
SELECT *
FROM (SELECT (ROW(g.out_i - 1, g.out_j), true) :: lifted_args
 FROM (X JOIN Y
 ON ((X.t,Y.t) = (g.out_i,g.out_j))) AS Z) AS _
WHERE NOT ((g.out_i = O AND g.out_j = 0) OR (g.out_i = O OR g.out_j = 0))
)AS _(out) UNION SELECT 3 AS site, out FROM (replace(slice(dtw,`),[g.out_i,g.out_j])
SELECT *
FROM (SELECT (NULL, false) :: lifted_args) AS _
WHERE (g.out_i = 0 AND g.out_j = 0)
 UNION ALL
SELECT *
FROM (SELECT (NULL, false) :: lifted_args) AS _
WHERE NOT (g.out_i = 0 AND g.out_j = 0) AND (g.out_i = 0 OR g.out_j = 0)
 UNION ALL
SELECT *
FROM (SELECT (ROW(g.out_i, g.out_j - 1), true) :: lifted_args
 FROM (X JOIN Y
 ON ((X.t,Y.t) = (g.out_i,g.out_j))) AS Z) AS _
WHERE NOT ((g.out_i = O AND g.out_j = 0) OR (g.out_i = O OR g.out_j = 0))
) AS _(out)),
 call\s(site, fanout, i, j, val) AS (
 SELECT s.site, COUNT(*) OVER (), (s.out).args.i, (s.out).args.j, NULL:real
 FROM slices AS s
 WHERE (s.out).not_bottom)
 TABLE calls
 UNION ALL
 SELECT NULL :: int, 0, g.out_i, g.out_j, (
SELECT CASE
 WHEN g.out_i = 0 AND g.out_j = 0 THEN 0: :real
 WHEN g.out_i = 0 OR g.out_j = 0 THEN 'infinity': :real
 ELSE (SELECT abs(Z.x - Z.y) + LEAST(NULL: :real,NULL: :real,NULL: :real)
 FROM (X JOIN Y
 ON ((X.t,Y.t) = (g.out_i,g.out_j))) AS Z)
END)
 WHERE NOT EXISTS (TABLE calls)
) AS edges(site, fanout, i, j, val)
 WHERE g.fanout > 0 OR g.fanout IS NUL),
```

〈Continued on next page〉

$$
\langle\text { Continued from previous page〉 }
$$

```
base_cases(in_i, in_j, val, ref_i, ref_j, ref_site, ref_fanout) AS (
 SELECT g.in_i, g.in_j, g.val, g_ref.in_i, g_ref.in_j, g_ref.site, g_ref.fanout
 FROM call_graph AS g, call_graph AS g_ref
 WHERE g.fanout = O AND (g_ref.fanout > O OR g_ref.fanout IS NULL)
 AND (g.in_i, g.in_j) = (g_ref.out_i, g_ref.out_j)
),
evaluation(in_i, in_j, val, ref_i, ref_j, ref_site, ref_fanout) AS (
 TABLE base_cases
 UNION ALLL(
 WITH e AS (TABLE evaluation),
 returns(in_i, in_j, val) AS (
 SELECT go.in_i, go.in_j, (replace(body(dtw,[lookup(dtw,(1),lookup(dtw,0),lookup(dtw,`)]),[go.in_i,go.in_j])
SELECT CASE
 WHEN go.in_i = 0 AND go.in_j = 0 THEN 0: :real
 WHEN go.in_i = 0 OR go.in_j = 0 THEN 'infinity': :real
 ELSE (SELECT abs(Z.x - Z.y) + LEAST(
 (SELECT e.val
 FROM e
 WHERE (e.in_i , e.in_j) = (go.in_i - 1, go.in_j - 1)
 AND (e.ref_i, e.ref_j) = (go.in_i, go.in_j)
 AND e.ref_site = 1),
 (SEIECT e.val
 FROM e
 WHERE (e.in_i , e.in_j) = (go.in_i - 1, go.in_j)
 AND (e.ref_i, e.ref_j) = (go.in_i, go.in_j)
 AND e.ref_site = 2),
 (SELECT e.val
 FROM e
 WHERE (e.in_i , e.in_j) = (go.in_i , go.in_j - 1)
 AND (e.ref_i, e.ref_j) = (go.in_i, go.in_j)
 AND e.ref_site = 3))
 FROM (X JOIN Y
 ON ((X.t,Y.t) = (go.in_i,go.in_j))) AS Z)
END)
 FROM (
 SEIECT e.ref_i, e.ref_j
 FROM e
 GROUP BY (e.ref_i, e.ref_j), e.ref_fanout
 HAVING COUNT(*) = e.ref_fanout
) AS go(in_i, in_j)
)
 SELECT *
 FROM e
 WHERE NOT e.ref_fanout IS NULL
 AND NOT EXISTS (SELECT
 FROM returns AS r
 WHERE (r.in_i, r.in_j) = (e.ref_i, e.ref_j))
 UNION ALL
 SEIECT r.in_i, r.in_j, r.val, g.in_i, g.in_j, g.site, g.fanout
 FROM returns AS r, call_graph AS g
 WHERE (r.in_i, r.in_j) = (g.out_i, g.out_j)
))
SELECT e.val
FROM evaluation AS e
WHERE e.ref_fanout IS NULL;
$$ LANGUAGE SQL STABLE STRICT;
```

Figure C.5: The compiled function dtw using the template described in Section 5.1.

```
CREATE FUNCTION split(x real, y real) RETURNS int
AS $$
WITH RECURSIVE
call_graph(in_x, in_y, site, fanout, out_x, out_y, val) AS (
 SELECT x, y, NULL : : int, NULL : : bigint, x, y, NULL :: int
 UNION -- Recursive UNION
 SELECT g.out_x, g.out_y, edges.*
 FROM call_graph AS g,
 LATERAL (
 WITH
 slices(site, out) AS (
 SELECT 1 AS site, out FROM (
SELECT *
replace(slice(split,(1),[g.out_x,g.out_y])
FROM (SELECT (SELECT (NULL, false) :: lifted_args)) AS _
WHERE ABS(g.out_x-g.out_y) <= 1.0
 UNION ALL
SELECT *
FROM (SELECT (ROW(g.out_x,g.out_x+ABS(g.out_x-g.out_y)/2.0), true) : : lifted_args) AS _
WHERE NOT ABS(g.out_x-g.out_y) <= 1.0
) AS _(out) UNION SELECT 2 AS site, out FROM (
 replace(slice(split,0),[g.out_x,g.out_y])
SELECT *
FROM (SEIECT (SELECT (NULL, false) :: lifted_args)) AS
WHERE ABS(g.out_x-g.out_y) <= 1.0
 UNION ALL
SELECT *
FROM (SELECT (ROW(g.out_x+ABS(g.out_x-g.out_y)/2.0,g.out_y), true) :: lifted_args) AS _
WHERE NOT ABS(g.out_x-g.out_y) <= 1.0
) AS (out)),
 calls(site, fanout, x, y, val) AS (
 SELECT s.site, COUNT(*) OVER (), (s.out).args.x, (s.out).args.y, NULL :: int
 FROM slices AS s
 WHERE (s.out).not_bottom
)
 TABLE calls
 UNION ALL
 SELECT NULL : : int, 0, g.out_x, g.out_y, (
SEIECT CASE
 WHEN ABS(g.out_x-g.out_y) <= 1.0 THEN 1
 ELSE NULL: :real
 +
 NULL: :real
END)
 WHERE NOT EXISTS (TABLE calls)
) AS edges(site, fanout, x, y, val)
 WHERE g.fanout > O OR g.fanout IS NULL),
```

〈Continued on next page〉

```
base_cases(in_x, in_y, val, ref_x, ref_y, ref_site, ref_fanout) AS (
 SELECT g.in_x, g.in_y, g.val, g_ref.in_x, g_ref.in_y, g_ref.site, g_ref.fanout
 FROM call_graph AS g, call_graph AS g_ref
 WHERE g.fanout = 0 AND (g_ref.fanout > O OR g_ref.fanout IS NUL)
 AND (g.in_x, g.in_y) = (g_ref.out_x, g_ref.out_y)
),
evaluation(in_x, in_y, val, ref_x, ref_y, ref_site, ref_fanout) AS (
 TABLE base_cases
 UNION ALLL
 WITH e AS (TABLE evaluation),
 returns(in_x, in_y, val) AS (
 SEIFCT go.in x, go.in y, (
SELECT CASE
 WHEN ABS(go.in_x-go.in_y) <= 1.0 THEN 1
 ELSE (SELECT e.val
 FROM e
 WHERE (e.in_x , e.in_y) = (go.in_x,go.in_x+ABS(go.in_x-go.in_y)/2.0)
 AND (e.ref_x, e.ref_y) = (go.in_x, go.in_y)
 AND e.ref_site = 1)
 (SELECT e.val
 FROM e
 WHERE (e.in_x , e.in_y) = (go.in_x+ABS(go.in_x-go.in_y)/2.0,go.in_y)
 AND (e.ref_x, e.ref_y) = (go.in_x, go.in_y)
 AND e.ref_site = 2)
END)
 FROM (
 SELECT e.ref_x, e.ref_y
 FROM e
 GROUP BY (e.ref_x, e.ref_y), e.ref_fanout
 HAVING COUNT(*) = e.ref_fanout
) AS go(in_x, in_y)
)
 SELECT *
 FROM e
 WHERE NOT e.ref_fanout IS NULL
 AND NOT EXISTS (SELECT
 FROM returns AS r
 WHERE (r.in_x, r.in_y) = (e.ref_x, e.ref_y))
 UNION ALL
 SELECT r.in_x, r.in_y, r.val, g.in_x, g.in_y, g.site, g.fanout
 FROM returns AS r, call_graph AS g
 WHERE (r.in_x, r.in_y) = (g.out_x, g.out_y)
))
SELECT e.val
FROM evaluation AS e
WHERE e.ref_fanout IS NULL;
$$ LANGUAGE SQL STABLE STRICT;
```

Figure C.6: The compiled function split using the template described in Section 5.1.

```
CREATE FUNCTION bom(part int)
REIURNS TABLE(part int, sub int, quantity int)
AS $$
WITH RECURSIVE
call_graph(in_part, site, fanout, out_part, part, sub, quantity, "empty?", rid) AS (
 SELECT part, NULL : : int, NULL : : bigint, part, NULL: :int, NULL: :int, NULL: :int, false, NULL : : bigint
 UNION -- Recursive UNION
 SEIECT g.out_part, edges.*
 FROM call_graph AS g,
 LATERAL (
 WITH
 slices(site, out) AS (
 SELECT }1\mathrm{ AS site, out FROM (
replace(slice(bom,@),[g.out_part])
SELECT b.*
FROM materials AS m JOIN LATERAL (SELECT (ROW(m.sub), true) :: lifted_args) AS b
 ON m.part = g.out_part
) AS _(out)),
 calls(site, fanout, out_part, part, sub, quantity, "empty?", rid) AS (
 SELECT s.site, COUNT(*) OVER (), (s.out).args.part, NULL: :int, NULL: :int,
 NULL: :int, false, NULL : : bigint
 FROM slices AS s
 WHERE (s.out).not_bottom),
 values(part, sub, quantity) AS (
SEIECT m.part, m.sub, m.quantity
FROM materials AS m
WHERE m.part = g.out_part
 UNION ALL
SELECT b.part, b.sub, m.quantity * b.quantity
FROM materials AS m JOIN LATERAL (VALUES (NULL: :int,NULL: :int,NULL::int)) AS b(part,sub,quantity)
 ON m.part = g.out_part) replace(body(bom,[(VALUES (NULL))]),[g.out_part])
 TABLE calls
 UNION ALL
 SELECT NULL : : int, 0, g.out_part,
 v.*, false, ROW_NUMBER() OVER ()
 FROM values AS v
 WHERE NOT EXISTS (TABLE calls)
 UNION ALL
 SELECT NULL :: int, 0, g.out_part, NULL: :int, NULL: :int, NULL: :int, true, 1
 WHERE NOT EXISTS (TABLE calls)
 AND NOT EXISTS (TABLE values)
) AS edges(site, fanout, out_part, part, sub, quantity, "empty?", rid)),
```

〈Continued on next page〉

```
base_cases(in_part, part, sub, quantity, "empty?", rid, ref_part, ref_site, ref_fanout) AS (
 SELECT g.in_part, g.part, g.sub, g.quantity, g."empty?", g.rid, g_ref.in_part, g_ref.site, g_ref.fanout
 FROM call_graph AS g, call_graph AS g_ref
 WHERE g.fanout = 0 AND (g_ref.fanout > 0 OR g_ref.fanout IS NUL)
 AND (g.in_part) = (g_ref.out_part)
),
evaluation(in_part, part, sub, quantity, "empty?", rid, ref_part, ref_site, ref_fanout) AS (
 TABLE base_cases
 UNION ALL (
 WITH e AS (TABLE evaluation),
 returns(in_part, part, sub, quantity, "empty?", rid) AS (
 SELECT go.in_part, result.*
 FROM (
 SELECT e.ref_part
 FROM e
 WHERE e.rid = 1
 GROUP BY (e.ref_part), e.ref_fanout
 HAVING COUNT(*) = e.ref_fanout
) AS go(in_part),
 LATERAL (
 WITH result(part, sub, quantity) AS (
SEIECT m.part, m.sub, m.quantity
FROM materials AS m
WHERE m.part = go.in_part
UNION ALL
SELECT b.part, b.sub, m.quantity * b.quantity
FROM materials AS m JOIN LATERAL (SELECT e.part, e.sub, e.quantity
 FROM e
 WHERE NOT e. "mpty?"
 AND (e.in_part) = (m.sub)
 AND (e.ref_part) = (go.in_part)
 AND e.ref_site = 1) AS b(part,sub,quantity)
 ON m.part = go.in_part
)
 SEIECT r.*, false, ROW_NUMBER() OVER ()
 FROM result AS r
 UNION ALL
 SELECT NULL: :int, NULL::int, NULL: :int, true, 1
 WHERE NOT EXISTS (TABLE result)
) AS result(part, sub, quantity, "empty?")
)
 SEIECT *
 FROM e
 WHERE NOT e.ref_fanout IS NULL
 AND NOT EXISTS (SELECT
 FROM returns AS r
 WHERE (r.in_part) = (e.ref_part))
 UNION ALL
 SELECT r.in_part, r.part, r.sub, r.quantity, r. "empty?", r.rid, g.in_part, g.site, g.fanout
 FROM returns AS r, call_graph AS g
 WHERE (r.in_part) = (g.out_part)
))
SEIECT e.part, e.sub, e.quantity
FROM evaluation AS e
WHERE e.ref_fanout IS NULL
AND NOT e. "empty?";
$$ LANGUAGE SQL STABLE STRICT;
```

Figure C.7: The compiled function bom with table-valued return type using the template described in Section 5.2.

```
CREATE FUNCTION vm(ins instruction, regs int[])
RETURNS int AS $$
WITH RECURSIVE
call_graph(in_ins, in_regs, site, fanout, out_ins, out_regs, val) AS (
 SEIECT ins, regs, NüLL :: int, NULL :: bigint, ins, regs, NULL :: int
 UNION ALL
 SEIECT g.in_ins, g.in_regs, edges.*
 FROM call_graph AS g,
 LATERAL (
 WITH
 slices(site, out) AS (
SELECT 1 AS site, out FROM (
(SELECT * FROM (SELECT (ROW(SELECT p FROM program AS p WHERE p.loc = (g.out_ins).loc+1),
 (g.out_regs) [: (g.out_ins).reg1-1] || (g.out_ins).reg2| | (g.out_regs) [(g.out_ins).reg1+1:]),
 true) :: lifted_args) AS _ WHERE (g.out_ins).opc = 'lod'
 UNION ALL
SELECT * FROM (SELECT (NULL, false) :: lifted_args) AS _ WHERE (g.out_ins).opc = 'hlt')
) AS _(out) UNION SELECT 2 AS site, out FROM (
 replace(slice(vm,Q),[g.out_ins,g.out_regs]
(SEIECT * FROM (SELECT (ROW((SEIECT p FROM program AS p WHERE p.loc = (g.out_ins).loc+1),
 (g.out_regs) [: (g.out_ins).reg1-1]|| (g.out_regs) [(g.out_ins).reg2] | (g.out_regs) [(g.out_ins).reg1+1:]),
 true) : : lifted_args) AS _ WHERE (g.out_ins).opc = 'mov'
 UNION ALL
SELECT * FROM (SEIECT (NULL, false) :: lifted_args) AS _ WHERE (g.out_ins).opc = 'hlt')
) AS _(out) UNION SELECT 3 AS site, out FROM (
 replace(slice(vm,ఆ),[g.out_ins,g.out_regs])
(SELECT * FROM (SELECT (ROW((SELECT p FROM program AS p
 WHERE p.loc = CASE WHEN (g.out_regs)[(g.out_ins).reg1] = (g.out_regs)[(g.out_ins).reg2]
 THEN (g.out_ins).reg3 ELSE (g.out_ins).loc + 1 END),
 (g.out_regs)), true) :: lifted_args) AS _ WHERE (g.out_ins).opc = 'jeq'
 UNION ALL
SELECT * FROM (SEIECT (NULL, false) :: lifted_args) AS _ WHERE (g.out_ins).opc = 'hlt')
) AS _(out) UNION SELECT 4 AS site, out FROM (replace(slice(vm,@),[g.out_ins,g.out_regs])
(SELECT * FROM (SELECT (ROW((SEIECT p FROM program AS p WHERE p.loc = (g.out_ins).reg1), (g.out_regs)),
 true) :: lifted_args) AS _ WHERE (g.out_ins).opc = 'jmp'
 UNION ALL
SELECT * FROM (SELECT (NULL, false) :: lifted_args) AS _ WHERE (g.out_ins).opc = 'hlt')
) AS _(out) UNION SEIECT 5 AS site, out FROM
 replace(slice(vm,@),[g.out_ins,g.out_regs]
(SEIECT * FROM (SELECT (ROW((SEIECT p FROM program AS p WHERE p.loc = (g.out_ins).loc+1),
 (g.out_regs)[: (g.out_ins).reg1-1]|| (g.out_regs)[(g.out_ins).reg2] +
 (g.out_regs) [(g.out_ins) .reg3] | | (g.out_regs) [(g.out_ins).reg1+1:]),
 true) :: lifted_args) AS _ WHERE (g.out_ins).opc = 'add'
 UNION ALL
SELECT * FROM (SELECT (NULL, false) :: lifted_args) AS _ WHERE (g.out_ins).opc = 'hlt')
) AS _(out) UNION SELECT 6 AS site, out FROM (
 replace(slice(vm,৫),[g.out_ins,g.out_regs])
(SELECT * FROM (SELECT (ROW((SELECT p FROM program AS p WHERE p.loc = (g.out_ins).loc+1),
 (g.out_regs) [: (g.out_ins).reg1-1]|| (g.out_regs) [(g.out_ins).reg2] *
 (g.out_regs) [(g.out_ins).reg3] || (g.out_regs) [(g.out_ins).reg1+1:]),
 true) :: lifted_args) AS _ WHERE (g.out_ins).opc = 'mul'
 UNION ALL
SELECT * FROM (SELECT (NULL, false) :: lifted_args) AS _ WHERE (g.out_ins).opc = 'hlt')
) AS _(out) UNION SELECT 7 AS site, out FROM (
 replace(slice(vm,0),[g.out_ins,g.out_regs])
(SELECT * FROM (SELECT (ROW((SELECT p FROM program AS p WHERE p.loc = (g.out_ins).loc+1),
 (g.out_regs)[:(g.out_ins).reg1-1]|| (g.out_regs)[(g.out_ins).reg2] /
 (g.out_regs)[(g.out_ins).reg3]| (g.out_regs) [(g.out_ins).reg1+1:]),
 true) :: lifted_args) AS _ WHERE (g.out_ins).opc = 'div'
 UNION ALL
SELECT * FROM (SEIECT (NULL, false) :: lifted_args) AS _ WHERE (g.out_ins).opc = 'hlt')
) AS _(out) UNION SELECT }8\mathrm{ AS site, out FROM (
 replace(slice(vm,`),[g.out_ins,g.out_regs])
(SELECT * FROM (SELECT (ROW((SELECT p FROM program AS p WHERE p.loc = (g.out_ins).loc+1),
 (g.out_regs) [: (g.out_ins).reg1-1]|| (g.out_regs) [(g.out_ins).reg2] %
 (g.out_regs) [(g.out_ins).reg3] | | (g.out_regs) [(g.out_ins).reg1+1:]),
 true) :: lifted_args) AS _ WHERE (g.out_ins).opc = 'mod'
 UNION ALL
SELECT * FROM (SELECT (NULL, false) :: lifted_args) AS _ WHERE (g.out_ins).opc = 'hlt')
) AS _(out)
),
```

〈Continued on next page〉

## 〈Continued from previous page〉

```
 calls(site, fanout, ins, regs, val) AS (
 SELECT s.site, 1, (s.out).args.ins, (s.out).args.regs, NULL :: int
 FROM slices AS s
 WHERE (s.out).not_bottom
)
 TABLE calls
 UNION ALL
 SELECT NULL :: int, 0, g.out_ins, g.out_regs, (
SELECT CASE (g.out_ins).opc
 WHEN 'lod' THEN NULL :: int
 WHEN 'mOv' THEN NULL : : int
 WHEN 'jeq' THEN NULL :: int
 WHEN 'jmp' THEN NULL : : int
 WHEN 'add' THEN NULL : : int
 WHEN 'mul' THEN NULL :: int
 WHEN 'div' THEN NULL :: int
 WHEN 'mod' THEN NULL : : int
 WHEN 'hlt' THEN (g.out_regs)[(g.out_ins).reg1]
END
replace(body(vm,[NULL: :real,NULL: :real,...,NULL: :real]),[g.out_ins,g.out_regs])
 WHERE NOT EXISTS (TABLE calls)
) AS edges(site, fanout, ins, regs, val)
 WHERE g.fanout > O OR g.fanout IS NULL
)
 SELECT g.val
 FROM call_graph AS g
 WHERE g.fanout = 0;
 $$ LANGUAGE SQL STABLE STRICT;
```

Figure C.8: The compiled tail-recursive function vm using the template described in Section 5.4.

## C. 3 Hand-Crafted Recursive CTEs

Figures C. 9 to C. 12 present the hand-crafted recursive CTEs formulation of each usecase found in Figures C. 1 to C. 4 without recursive self-invocations. These hand-crafted translations have been meticulously optimized and are used for runtime performance comparison throughout this publication.

```
CREATE TABLE X (
 t int PRIMARY KEY,
 x real
);
CREATE TABLE Y (
 t int PRIMARY KEY,
 y real
);
CREATE FUNCTION dtw(i int, j int) REIURNS real
AS $$
WITH RECURSIVE
warp(i,j,val) AS (
 (SELECT X.t, Y.t, abs(X.x - Y.y)
 FROM X, Y
 ORDER BY X.t, Y.t
 LIMIT 1)
UNION
 SELECT step.i, step.j, MIN(step.val)
 FROM (
 SELECT step.i, step.j, warp.val + step.val
 FROM warp, (VALUES (1,1), (0,1), (1,0)) AS d(i,j),
 LATERAL (
 SELECT warp.i+d.i, warp.j+d.j, abs(X.x - Y.y)
 FROM X, Y
 WHERE (X.t,Y.t) = (warp.i+d.i,warp.j+d.j)
) AS step(i,j,val)
 WHERE step.i <= dtw.i AND step.j <= dtw.j
) AS step(i,j,val)
 -- GROUP BY is a carefully placed optimization.
 GROUP BY step.i, step.j)
SEIECT MIN(warp.val) AS dtw
FRDM warp
WHERE (warp.i,warp.j) = (dtw.i,dtw.j);
$$ LANGUAGE SQL STABLE STRICT;
```

Figure C.9: The hand-crafted SQL UDF dtw. Written by Denis Hirn.

```
1 CREATE FUNCTION split(x real, y real) REIURNS int
2 AS $$
3 WITH RECURSIVE
4 sp(x,y) AS (
5 SELECT split.x, split.y
 UNION ALL
 SELECT a,b
 FROM sp AS s,
 LATERAL (SELECT s.x, s.x+ABS(s.x-s.y)/2.0
 UNION ALL
 SELECT s.x+ABS(s.x-s.y)/2.0,s.y) AS _(a,b)
 WHERE ABS(s.x-s.y) > 1.0
)
SELECT COUNT(*)
FROM sp AS s
WHERE ABS(s.x-s.y) <= 1.0;
17 $$ LANGUAGE SQL STABLE STRICT;
```

Figure C.10: The hand-crafted SQL UDF split.

```
CREATE TABLE materials (
 part int,
 sub int,
 quantity int
);
CREATE FUNCTION bom(part int)
REIURNS TABLE(part int, sub int, quantity int)
AS $$
WITH RECURSIVE
included(top, part, sub, quantity) AS (
 SELECT bom.part, m.part, m.sub, m.quantity
 FROM materials AS m
 WHERE bom.part = m.part
 UNION ALL
 SEIECT i.top, m.part, m.sub, i.quantity * m.quantity
 FROM included AS i, materials AS m
 WHERE i.sub = m.part
8)
SELECT i.top, i.sub, i.quantity :: int
FROM included AS i, parts AS p
WHERE i.part = p.id;
$$ LANGUAGE SQL STABLE STRICT;
```

Figure C.11: The hand-crafted SQL UDF bom without recursive calls. This function is loosely based on the sample function found in the PostgreSQL documentation [97].

```
-- Currently supported VM instruction set
CREATE TYPE opcode AS ENUM (
 'lod', -- lod t, x load literal x into target register Rt
 'mov', -- mov t, s move from source register Rs to target register Rt
 'jeq', -- jeq t, s, @a if Rt = Rs, jump to location a, else fall through
 'jmp', -- jmp @a jump to location a
 'add', -- add t, s1, s2 Rt <- Rs1 + Rs2
 'mul', -- mul t, s1, s2 Rt <- Rs1 * Rs2
 'div', -- div t, s1, s2 Rt <- Rs1 / Rs2
 'mod', -- mod t, s1, s2 Rt <- Rs1 mod Rs2
 'hlt'' -- htl s halt program, result is register Rs
);
-- VM instructions
CREATE TYPE instruction AS (
 loc int, -- location
 opc opcode, -- opcode
 reg1 int, -- \
 reg2 int, -- } up to three work registers
 reg3 int -- /
);
CREATE TABLE program OF instruction;
CREATE FUNCTION vm(ins instruction, regs int[])
RETURNS int
AS $$
WITH RECURSIVE
run(ins, regs) AS (
 SEIECT vm.ins, vm.regs
 UNION ALL
 SELECT p, n.regs
 FROM run AS r, program AS p,
LATERAL (
 SELECT r.regs[:(r.ins).reg1-1]| (r.ins).reg2||r.regs[(r.ins).reg1+1:] WHERE (r.ins).opc = 'lod'
 UNION ALL
 SEIECT r.regs[:(r.ins).reg1-1]||r.regs[(r.ins).reg2]| |.regs[(r.ins).reg1+1:] WFERE (r.ins).opc = 'mov'
 UNION ALL
 SELECT r.regs WHERE (r.ins).opc = 'jeq'
 UNION ALL
 SELECT r.regs WHERE (r.ins).opc = 'jmp'
 UNION ALL
 SELECT r.regs[:(r.ins).reg1-1]||r.regs[(r.ins).reg2]+r.regs[(r.ins).reg3] | r.regs[(r.ins).reg1+1:]
 WHERE (r.ins).opc = 'add'
 UNION ALL
 SELECT r.regs[: (r.ins).reg1-1]|r.regs[(r.ins).reg2]*r.regs[(r.ins).reg3]|r.regs[(r.ins).reg1+1:]
 WHERE (r.ins).opc = 'mul'
 UNION ALL
 SELECT r.regs[: (r.ins).reg1-1]|r.regs[(r.ins).reg2]/r.regs[(r.ins).reg3]|r.regs[(r.ins).reg1+1:]
 WHERE (r.ins).opc = 'div'
 UNION ALL
 SEIECT r.regs[:(r.ins).reg1-1]|r.regs[(r.ins).reg2]%r.regs[(r.ins).reg3]|r.regs[(r.ins).reg1+1:]
 WHERE (r.ins).opc = 'mod'
) AS n(regs)
 WHERE (r.ins).opc <> 'hlt'
 AND p.loc = CASE (r.ins).opc
 WHEN 'jeq' THEN CASE WHEN r.regs[(r.ins).reg1] = r.regs[(r.ins).reg2]
 THEN (r.ins).reg3
 ELSE (r.ins).loc+1 END
 WHEN 'jmp' THEN (r.ins).reg1
 WHEN 'hlt' THEN (r.ins).loc
 ELSE (r.ins).loc+1
 END)
SELECT r.regs[(r.ins).reg1] FROM run AS r WHERE (r.ins).opc = 'hlt';
$$ LANGUAGE SQL STABLE STRICT;
```

Figure C.12: The hand-crafted SQL UDF vm.

## D

## Additional Use Cases

## D. 1 Binomial Coefficient

Function binomial ( $n, k$ ) implements the recursive formula to compute the binomial coefficient defined as:

```
\(\operatorname{binomial}(n, 0)=1\)
binomial \((n, n)=1\)
\(\operatorname{binomial}(n, k)=\operatorname{binomial}(n-1, k)+\operatorname{binomial}(n-1, k-1)\)
\(\operatorname{binomial}(n, k)=\operatorname{binomial}(n-1, k)+\operatorname{binomial}(n-1, k-1)\)
```

Function binomial is 2 -fold recursive. Figure D. 1 compares execution times of binomial before and after compilation.

## D. 2 Floyd-Warshall Algorithm

Given a graph with $n$ nodes, where $w_{i \rightarrow j}$ denotes the weight of an edge $i \rightarrow j$ between two nodes $v_{i}$ and $v_{j}$ with $i, j \in 1, \ldots, n$. Function $\operatorname{floyd}(n, i, j)$ finds the length of the shortest path from node $v_{i}$ to $v_{j}$ and is recursively defined based on Cormen et al. [67] as:


Figure D.1: Evaluating binomial ( $i,\left\lfloor\frac{i}{4}\right\rfloor$ ).

$$
\begin{align*}
& \operatorname{floyd}(i, j, 0)=w_{i \rightarrow j} \\
& \operatorname{floyd}(i, j, k)=\min \left\{\begin{array}{c}
\quad \operatorname{floyd}(k-1, i, j) \\
\operatorname{floyd}(k-1, i, k)+f l o y d \\
(k-1, k, j)
\end{array}\right\} . \tag{floyd}
\end{align*}
$$

Function floyd is 3 -fold recursive. Figure D. 2 compares execution times of floyd before and after compilation.

## D. 3 Longest Common Subsequence

Function $\operatorname{lcs}(1,1)$ finds the length of the longest common subsequence of string $s$ and $t$ where $|s|=|t|=n$. We denote $s[k]$ to access a single character in $s$ at position $k \in 1, \ldots, n$. For example: For $s=\operatorname{acd}$ and $t=\mathrm{abc}, \operatorname{lcs}_{s, t}(1,1)=2$ because ac is the longest common subsequence. The function is recursively defined as:

$$
\begin{align*}
& \operatorname{lcs}(i, n)=0 \\
& \operatorname{lcs}(n, j)=0 \\
& \operatorname{lcs}(i, j)=\left\{\begin{array}{c}
1+\operatorname{lcs}(i+1, j+1) \\
\min \left\{\begin{array}{l}
\operatorname{lcs}(i+1, j \\
\operatorname{lcs}(i
\end{array}, j+1\right)
\end{array}\right\}, \text { if } s[i]=t[j] . \tag{lcs}
\end{align*}
$$



Figure D.2: Evaluating floyd( $i, i, 1$ ).

Function lcs is 2 -fold recursive. Figure D. 3 compares execution times of 1 cs before and after compilation.

## D. 4 Reachability

Function reach $\left(v_{s}, v_{t}\right)$ returns TRUE, if $v_{t}$ can be reached starting from $v_{s}$ in a DAG with $n$ nodes, where $s, t \in 1, \ldots, n$. Edge $e_{s \rightarrow t}$ connects $v_{s}$ with $v_{t}$. Function reach is $n$-fold and recursively defined as:

$$
\begin{align*}
& \operatorname{reach}\left(v_{i}, v_{i}\right)=\operatorname{TRUE} \\
& \operatorname{reach}\left(v_{i}, v_{j}\right)=\bigvee_{e_{i \rightarrow k}} \operatorname{reach}\left(v_{k}, v_{j}\right) \tag{reach}
\end{align*}
$$

Its call site is correlated and thus function reach is $n$-fold recursive. The DAG is set up so each node has a fanout of 1 or 2 and an average fanout of $\sim 1.5$. To reach $v_{n}$ from $v_{1}$ reach passes through all nodes $v_{2}, v_{3}, \ldots, v_{n-1}$ at least once. Figure D. 4 compares execution times of reach before and after compilation.

## D. 5 Finite State Machine

Function $\mathrm{fsm}(p, s, n)$ returns TRUE, if input $p$ with length $n$ is accepted by a finite state machine starting at state $s$. The transition function $q(p, s, n)$ returns the next state


Figure D.3: Evaluating $\operatorname{lcs}\left(s_{1}, s_{2}\right)$. Both strings $s_{1}$ and $s_{2}$ of length 100 contain different characters at $i$ places.


Figure D.4: Evaluating reach $\left(v_{1}, v_{n}\right)$.


Figure D.5: Evaluating $\mathrm{fsm}(\mathrm{p})$ returns true, if protein sequence $p$ of length $i$ is accepted by a finite state machine. With increasing $i$, evaluation of fsm before compilation evaluation terminates prematurely due to stack overflow (4).
following state $s$ with input $p$ at position $n$. Function is_final(s) only returns TRUE, if state $s$ is an accepting state. Function default $(e, d)$ returns the result of expression $e$, unless $e$ evaluates to $\varnothing$ in which case it returns default value $d$. Function fsm is recursively defined as:

$$
\begin{align*}
& \operatorname{fsm}(p, s, 0)=\text { is_final }(s) \\
& \operatorname{fsm}(p, s, n)=\operatorname{default}\left(\left\{\operatorname{fsm}\left(p, s^{\prime}, n-1\right) \mid s^{\prime}=q(p, s, n)\right\}, \text { FALSE }\right) \tag{fsm}
\end{align*}
$$

Function fsm is linear recursive. Figure D. 5 compares execution times of fsm before and after compilation.

## D. 6 Bounding Box

Function bbox $\left(p_{c}, p_{g}, b\right)$ produces the minimum bounding box of a 2D object. The minimum bounding box algorithm slightly modifies the marching cubes algorithm [86] to compute the bounding box of a 2 D object. Function move ( $p$ ) takes a 2D point on the edge of a 2D object and moves it along the edge counterclockwise. Function box $\left(p_{1}, p_{2}\right)$ returns a 2D box from two 2D points $p_{1}$ and $p_{2}$. Binary operator $b_{1} \boxplus b_{2}$


Figure D.6: Evaluating bbox $(\operatorname{move}(p), p$, $\operatorname{box}(p, p)$ ) finds the bounding box of a perfect 2D circle with diameter $i$ beginning at position $p$ located on the edge of the 2D circle.
returns the 2D bounding box of two 2 D boxes $b_{1}$ and $b_{2}$. Function bbox is recursively defined as:

$$
\begin{align*}
& \operatorname{bbox}\left(p_{c}, p_{c}, b\right)=b \\
& \operatorname{bbox}\left(p_{c}, p_{g}, b\right)=\operatorname{bbox}\left(\operatorname{move}\left(p_{c}\right), p_{g}, b \boxplus \operatorname{box}\left(p_{c}, p_{c}\right)\right) \tag{bbox}
\end{align*}
$$

Function bbox is tail-recursive. Figure D. 6 compares execution times of bbox before and after compilation. Note, that evaluation of bbox before compilation terminates prematurely due to stack overflow at $i=4,000$ after about 8 seconds.

## D. 7 Mandelbrot Set Fractals

Function mandel $\left(0, x_{c}, y_{c}, x_{c}, y_{c}, p\right)$ computes the iteration number of the Mandelbrot set at position $\left(x_{c}, y_{c}\right)$ with precision $p$. It is recursively defined as:


Figure D.7: Evaluating mandel $\left(0, x_{c}, y_{c}, x_{c}, y_{c}, p\right)$ calculates the iterations of the Mandelbrot set at pixel $\left(x_{c}, y_{c}\right)$ with precision $p$ requiring $n$ iterations.

```
\(\operatorname{mandel}\left(i, x_{c}, y_{c}, x, y, i\right)=i\)
\(\operatorname{mandel}\left(i, x_{c}, y_{c}, x, y, p\right)= \begin{cases}i & , x^{2}+y^{2} \geqslant p \\ \operatorname{mandel}\left(i+1, x_{c}, y_{c}, x^{2}-y^{2}+x_{c}, 2 x y+y_{c}, p\right), & \text { otherwise } .\end{cases}\)
```

Function mandel is tail-recursive. Figure D. 7 compares execution times of mandel before and after compilation. Evaluation of mandel before compilation terminates prematurely due to stack overflow at $n=27,502$ after about 1 second.

## Bibliography

[55] Abelson, H., Sussman, G., \& Sussman, J. (1996). Structure and Interpretation of Computer Programs. The MIT Press.
[56] Advanced SQL (2020). Advanced SQL Lecture. https://db.inf. uni-tuebingen.de/teaching/AdvancedSQLSS2020.html.
[57] Aranda, G., Nieva, S., Sáenz-Pérez, F., \& Sánchez-Hernández, J. (2013). R-SQL: An SQL Database System with Extended Recursion. Electronic Communications of the EASST, 64.
[58] Barraclough, R., Binkley, D., Danicic, S., Harman, M., Hierons, R., Kiss, A., Laurence, M., \& Ouarbya, L. (2010). A Trajectory-Based Strict Semantics for Program Slicing. Theoretical Computer Science, 411(11-13).
[59] Bayer, R. \& McCreight, E. (1970). Organization and Maintenance of Large Ordered Indices. SIGFIDET ' 70 (pp. 107-141). New York, NY, USA: Association for Computing Machinery.
[60] Berndt, D. \& Clifford, J. (1994). Using Dynamic Time Warping to Find Patterns in Time Series. In Proceedings of the KDD Workshop Seattle, WA, USA.
[61] Binnig, C., Behrmann, R., Faerber, F., \& Riewe, R. (2012). FunSQL: It is Time to Make SQL Functional. In Proceedings of the EDBT/ICDT DanaC Workshop Berlin, Germany.
[62] Bird, R. (1980). Tabulation Techniques for Recursive Programs. ACM Computing Surveys, 12(4).
[63] Blelloch, G. (1996). Programming Parallel Algorithms. Commun. ACM, 39(3), 85-97.
[64] Boehm, M., Kumar, A., \& Yang, J. (2019). Data Management in Machine Learning Systems. Synthesis Lectures on Data Management. Morgan \& Claypool.
[65] Burghardt, T., Hirn, D., \& Grust, T. (2022). Functional Programming on Top of SQL Engines. In J. Cheney \& S. Perri (Eds.), Practical Aspects of Declarative Languages (pp. 59-78). Cham: Springer International Publishing.
[66] Codd, E. (1979). Extending the Database Relational Model to Capture More Meaning. ACM Trans. Database Syst., 4(4), 397-434.
[67] Cormen, T., Leiserson, E., Rivest, R., \& Stein, C. (2009). Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition.
[68] DBWorld (2020). DBWorld Mailing List. https://dbworld.sigmod.org/ (formerly: https://research.cs.wisc.edu/dbworld/browse.html).
[69] Dragicevic, P. (2015). HCI Statistics without p-values. Research Report RR-8738, Inria.
[70] Duta, C. (2022). Another Way to Implement Complex Computations: Functional-Style SQL UDF. In Proceedings of the Workshop on Human-In-the-Loop Data Analytics, HILDA '22 New York, NY, USA: Association for Computing Machinery.
[71] Duta, C. \& Grust, T. (2020). Functional-Style SQL UDFs With a Capital 'F'. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, SIGMOD '20 (pp. 1273-1287). New York, NY, USA: Association for Computing Machinery.
[72] Duta, C., Hirn, D., \& Grust, T. (2020). Compiling PL/SQL Away. In Proceedings of the 10th CIDR Conference Amsterdam, The Netherlands.
[73] Fan, J., Gerald, A., Raj, S., \& Patel, J. (2015). The Case Against Specialized Graph Analytics Engines. In Proceedings of the 7th CIDR Conference Asilomar, CA, USA.
[74] Fawaz, H.I. Forestier, G., Weber, J., Idoumghar, L., \& Muller, P.-A. (2019). Deep Learning for Time Series Classification: A Review. Data Mining and Knowledge Discovery, 33(4).
[75] Finkelstein, S. J., Mattos, N., Mumick, I., \& Pirahesh, H. (1996). Expressing Recursive Queries with SQL. ISO Technical report.
[76] Fischer, T., Hirn, D., \& Grust, T. (2022). Snakes on a plan: Compiling python functions into plain sql queries. SIGMOD '22 (pp. 2389-2392). New York, NY, USA: Association for Computing Machinery.
[77] Fredman, M. (1982). The Complexity of Maintaining an Array and Computing its Partial Sums. JACM, 29(1).
[78] Graham, R., Knuth, D., \& O., P. (1994). Concrete Mathematics: A Foundation for Computer Science, 2nd. Addison-Wesley.
[79] Guo, P. \& Engler, D. (2011). Using Automatic Persistent Memoization to Facilitate Data Analysis Scripting. In Proceedings of the ISSTA Conference Toronto, Canada.
[80] Hirn, D. \& Grust, T. (2020). PL/SQL Without the PL. In Proceedings of the 39th SIGMOD Conference Portland, OR, USA.
[81] Hirn, D. \& Grust, T. (2021). One WITH RECURSIVE is Worth Many GOTOs, (pp. 723-735). Association for Computing Machinery: New York, NY, USA.
[82] Horowitz, E. (1983). Fundamentals of Programming Languages. Springer.
[83] Hudak, P., Hughes, J., Peyton-Jones, S., \& Wadler, P. (2007). A History of Haskell: Being Lazy with Class. In Proceedings of the HOPL III Conference San Diego, CA, USA.
[84] Knuth, D. (1998). The Art of Computer Programming, Volume II: Seminumerical Algorithms, $3 r d$ Edition. Addison-Wesley.
[85] Libkin, L. (2003). Expressive Power of SQL. Theor. Comput. Sci., 296(3), 379-404.
[86] Lorensen, W. \& Cline, H. (1987). Marching Cubes: A High Resolution 3D Surface Construction Algorithm. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '87 (pp. 163-169). New York, NY, USA: Association for Computing Machinery.
[87] Marsh, R. (2022). How to Solve This Issue With CTE? Stack Overflow. https://stackoverflow.com/q/18789502.
[88] Martello, S. \& Toth, P. (1990). Knapsack Problems: Algorithms and Computer Implementations. USA: John Wiley \& Sons, Inc.
[89] Michie, D. (1968). "Memo" Functions and Machine Learning. Nature, 218(306).
[90] MySQL (2022). MySQL 8.0 Documentation. http://dev.mysql.com/doc/.
[91] Needleman, S. \& Wunsch, C. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443-453.
[92] Neumann, T. (2011). Efficiently Compiling Query Plans for Modern Hardware. Proceedings of the VLDB Endowment, 4(9).
[93] Neumann, T. \& Freitag, M. (2020). Umbra: A Disk-Based System with InMemory Performance. In Proceedings of the 10th CIDR Conference Amsterdam, The Netherlands.
[94] Norvig, P. (1991). Techniques for Automatic Memoization with Applications to Context-Free Parsing. Computational Linguistics, 17(1).
[95] Oracle (2022). Oracle 19c Documentation. http://docs.oracle.com/.
[96] Passing, L., Then, M., Hubig, N., Lang, H., Schreier, M., Günnemann, S., Kemper, A., \& Neumann, T. (2017). SQL- and Operator-Centric Data Analytics in Relational Main-Memory Databases. In Proceedings of the 20th EDBT Conference Venice, Italy.
[97] PostgreSQL (2022). PostgreSQL 13 Documentation. http://www. postgresql. org/docs/13/.
[98] Rowe, L. \& Stonebraker, M. (1987). The POSTGRES Data Model. In Proceedings of the 13th VLDB Conference Brighton, UK.
[99] S., H. \& J., H. (1992). Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences, 89(22), 10915-10919.
[100] SQL Server (2022). Microsoft SQL Server 2019 Documentation. http://docs. microsoft.com/en-us/sql.
[101] SQL:1999 (1999). SQL:1999 Standard. Database Languages-SQL-Part 2: Foundation. ISO/IEC 9075-2:1999.
[102] SQLite3 (2022). SQLite3 Documentation. https://www.sqlite.org/ appfunc.html.
[103] Steele Jr, G. (1977). Debunking the "Expensive Procedure Call" Myth or, Procedure Call Implementations Considered Harmful or, LAMBDA: The Ultimate GOTO. In Proceedings of the ACM Conference Seattle, WA, USA.
[104] Tip, F. (1995). A Survey of Program Slicing Techniques. Journal of Programming Languages, 3(3).
[105] Torczon, L. \& Cooper, K. (2007). Engineering a Compiler. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2nd edition.
[106] Ulrich, A. \& Grust, T. (2015). The Flatter, the Better: Query Compilation Based on the Flattening Transformation. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, SIGMOD '15 (pp. 1421-1426). New York, NY, USA: Association for Computing Machinery.
[107] Weiser, M. (1982). Programmer Use Slices When Debugging. Communications of the $A C M, 25(7)$.
[108] Weiser, M. (1984). Program Slicing. IEEE Transactions on Software Engineering, SE-10(4).


[^0]:    What does g(a int) do?
    WRITE YOUR YOUR ANSWER HERE!

