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Abstract

The inclusion of recursive common table expressions (recursive CTEs) in the SQL:1999
standard enabled the developer to implement complex in-database computations,
e.g., graph algorithms and others. However, their awkward syntax and rigid fixed-
point evaluation method requires highly-specialized expert knowledge in SQL to
implement complex computations. This sets the bar quite high for developers to
consider implementing such queries.
We propose an alternative way to implement complex in-database computations,

which we call functional-style SQL UDFs. UDFs implemented in functional-style
allow recursive self-invocation inside their own function body. In this publication,
we measure the viability of functional-style UDFs from two angles: readability and
runtime performance.

To measure the readability of functional-style UDFs, we conducted a user study in
2020. We presented the participants with tasks from the following topics:
• Choose the correct implementations of the algorithms for the fibonacci numbers
and greatest common divisor formulated in functional-style and recursive CTE.

• Describe and evaluate two unknown UDFs. One is formulated in functional-style
and the other as a recursive CTE.

• Implement the 0-1 Knapsack algorithm based on its textbook style formulation in
either functional-style or recursive CTE formulation.

Each participant is then graded based on the score and time needed. In Chapter 2,
we present the user study results and compare how well the participants handle
these functional-style UDFs compared to recursive CTEs. We discuss if functional-
style UDFs can help improve readability for such complex queries.

Besides readability, developers are also interested in the runtime performance of
functional-style UDFs. We find that some RDBMSs such as PostgreSQL, Oracle, Mi-
crosoft SQL Server, MySQL and SQLite have trouble handling functional-style UDFs
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as-is. Performance issues, strict recursion depth limitations, or even outright denying
evaluation of functional-style UDFs are the main issues we encountered. In Chapter 4,
we describe a SQL-to-SQL compiler which accepts functional-style UDFs, as defined
in Chapter 3. The compiler produces standard SQL:1999 recursive CTEs, which
replaces the function body of functional-style UDFs so that it no longer exhibits
recursive self-invocations. The compiled function body evaluates in a two-phased
fashion that
(1) constructs a call graph top-down and then
(2) traverses the call graph bottom-up until its root node is reached and the result is

returned.
Indeed, the compiler does not rely on intrusive changes to the underlying database
engine. Furthermore, this two-phased approach enables optimizations (call sharing, ref-
erence counting, linear- and tail-recursion detection, memoization, batching) through
small tweaks and improvements to the compiler, which we describe in Chapter 5. We
also measure the execution times of various algorithms before and after compilation
and discuss the results. We find the runtime performance a developer experiences when
compiling functional-style UDFs can improve which is supported by the experiments.
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Move your computation close to the data!

L.A. Rowe, M. Stonebraker (1987)

1
Introduction

More and more developers find themselves in a situation where they want computa-
tions performed inside a Relational Database Management System (RDBMS). Most
popular RDBMSs provide these developers with rich SQL dialects, which come with
an extensive toolbox of features to help them implement these computations. But, the
more complex these computations become, say recursive algorithms over tabular data,
e.g., graph processing or machine learning [73, 64], the deeper the developer must

1 WITH RECURSIVE
2 T(c1,...,cn) AS (
3 q0
4 UNION
5 q

ö

pTq

6 )
7 TABLE T;

(a) Recursive CTE.

1 u Ð distinct(q0)
2 w Ð u
3 loop

4 i Ð distinct(q

ö

(w)zu)
5 if i = H then break

6 u Ð u Ÿ i
7 w Ð i
8 end

9 return u

(b) Pseudo code.

Figure 1.1: The general form of a recursive query T (a) and its evaluation strategy formulated
as pseudocode (b). Evaluation requires keeping track of three bag variables: i (intermediate
table), u (union table), and w (working table).
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1 CREATE FUNCTION knap(k int,u int)
2 RETURNS int AS $$
3 CASE
4 WHEN k = 1 THEN 0
5 ELSE (
6 SELECT CASE
7 WHEN i.w > u THEN knap(k-1,u)
8 ELSE
9 GREATEST

ˆ

knap(k-1,u),
knap(k-1,u-i.w)+i.p

˙

10 END
11 FROM items AS i
12 WHERE i.i = k
13 )
14 END;
15 $$ LANGUAGE SQL STABLE STRICT;

(a) Functional-style UDF.

knap(1,u) “ 0

knap(k,u) “

$

&

%

knap(k-1,u) , wk > u

max
"

knap(k-1,u),
knap(k-1,u-wk)+pk

*

, otherwise

(b) Textbook-style.

1CREATE FUNCTION knap(k int,u int)
2RETURNS int AS $$
3WITH RECURSIVE sack(i,w,p) AS (
4SELECT 1,0,0
5UNION
6SELECT s.i+1,s.w+c.w,s.p+c.p
7FROM sack AS s,items AS i,
8LATERAL (
9VALUES (0,0),(i.w,i.p)
10) AS c(w,p)
11WHERE s.w+i.w <= u
12AND i.i = s.i+1
13AND s.i <= k)
14SELECT MAX(s.p) FROM sack AS s;
15$$ LANGUAGE SQL STABLE STRICT;

(c) Recursive CTE.

Figure 1.2: Each formulation in (a) – (c) describes the same algorithm to solve the 0-1
Knapsack problem. A rough comparison of the function body in (a) with the body found in
(b) shows strong similarities when set side by side. However, compared to (c), the function
bodies look almost unrecognizably different.

reach into the SQL toolbox going beyond SELECT-FROM-WHERE clauses. The developer
may have to resort to using more expressive language constructs like recursive common
table expression (recursive CTE) [85], which many popular RDBMSs have adopted
since its introduction in SQL:1999 [101].
However, this often requires developers to heavily restructure their computations

such that it fits the rigid fixed-point semantics of recursive CTEs. Figure 1.1b outlines
how recursive CTEs (in the form described in Figure 1.1a) are evaluated. This is the
mold developers have to fit their complex computations into if they need to run such
computations inside an RDBMS using standard SQL. Finkelstein et al. argue in favor
of the potential benefits recursive CTEs provide through their rigidness [75], but
many RDBMS, like PostgreSQL, implement only the restrictions, and none of the
benefits [97]. We found that simple syntactic cover-ups lift some of these restrictions,
enabling even recursive CTEs that use grouping, aggregates, and anti-joins. So we
asked:

“Is there another way to move computation close to the data?”
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1.1 Functional-Style SQL User-Defined Functions

We propose functional-style SQL user-defined functions (we call functional-style
UDFs), which give developers another way of expressing complex computations.
Essentially, functional-style UDFs are your run-of-the-mill SQL functions that allow
recursive self-invocations within their function body.
Consider the 0-1 Knapsack problem [88], for example. Given items i P t1, ... , nu

where each item has a weight wi and a value pi. Function knap(n,w), recursively
defined in its textbook-style formulation in Figure 1.2b, maximizes the sum of values
of items that fit into a knapsack of weight w. The recursive CTE formulation (Fig-
ure 1.2c) reads almost unrecognizably different from its textbook-style counterpart.
The functional-style UDF formulation (Figure 1.2a) fares much better, not signifi-
cantly altering the textbook-style form. In Chapter 2, we discuss the result of a user
study that gauges whether functional-style UDFs are as feasible for developers looking
to implement complex computation close to the data. We define the grammar of
functional-style UDFs in Chapter 3.

1.2 Performance of Functional-Style SQL UDFs in RDBMSs

It turns out, however, that the native runtime performance of functional-style UDFs in
popular RDBMSs is disappointing. We benchmarked five well-known RDBMS to see
how well they support functional-style UDFs. SQLite3 does not support SQL UDFs
in general [102]. MySQL 8.0’s SQL UDFs do not allow for recursive self-invocations
within their function bodies [90]. Their recursive procedures do, albeit with a meager
recursion depth of up to 255 set by the max_sp_recursion_depth variable [90, §5.1.8].
Microsoft SQL Server 2022 supports recursive self-invocations in SQL UDFs, but
only with a hard-coded recursion depth limit [100]. Its @@NESTLEVEL variable tracks
the recursion depth, and when it exceeds 32, the transaction terminates prematurely.
Oracle 19c [95] and PostgreSQL 13 [97] allow for meaningful usage of functional-style
UDFs, where the recursion depth can go beyond the 10,000 mark. However, the
recursion depth is still limited. Specifically in PostgreSQL 13 we find the recursion
depth limited by max_stack_depth [97, §19.4.1]. Its value cannot exceed the maximum
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1 2 3 4 5
time (t)

x

0
1

X

y
0
1

Y

(a) Time series X, Y.

X
t x
1 0
2 0
3 1
4 0
5 0

Y
t y
1 0
2 1
3 1
4 1
5 0

(b) Encoding.

¨

˚

˚

˚

˝

˛

‹

‹

‹

‚

1 00 00 1 1 1
2 1 1 00 1 2

j 3 2 2 00 1 2
4 3 3 00 1 2
5 3 3 1 00 00

1 2 3 4 5
i

(c) Matrix dtw(5,5).

Figure 1.3: Time series X “ xi, Y “ yj, and their tabular encodings. The path of 0s in
matrix dtw(5,5) indicates how to warp the series (e.g., x4 warps to y5, shown as in (a))
for an overall distance of dtw(5,5) = 0.

stack size set by the operating system. On top of these restrictions, PostgreSQL 13 does
not optimize for recursion in functional-style UDFs as far as we can tell. Moreover,
the function body is repeatedly parsed and planned for each recursive call due to the
absence of plan caching.

Take, for example, dynamic time warping (dtw). A widely used time series classifica-
tion for machine learning [74] and other domains. Given two times series X “ xi and
Y “ yj (see Figures 1.3a and 1.3b), where i Pt1, ... , nu and j Pt1, ... , mu, dtw measures
the distance between X and Y if we stretch (or compress) them along the time axis to
align both optimally [60]. Its recursive definition in textbook-style reads:

dtw(0,0) “ 0
dtw(i,0) “ dtw(0,j) “ 8

dtw(i,j) “
ˇ

ˇxi ´ yj

ˇ

ˇ ` min

$

’

&

’

%

dtw(i - 1,j - 1)
dtw(i - 1,j )
dtw(i ,j - 1)

,

/

.

/

-

.
(dtw)

Figure 1.3 shows how dtw maps ("warps") the series’ elements onto each other and
measures their overall distance. With tables X and Y of Figure 1.3b in place, developers
have two choices of how to implement dtw as a SQL function inside PostgreSQL 13:
• functional-style (Figure 1.4a), which roughly resembles the textbook-style but
struggles in terms of runtime performance, or

• as a recursive CTE (Figure 1.4b), which does not resemble the textbook-style but

7



1 CREATE FUNCTION dtw(i int, j int)
2 RETURNS real AS $$
3 CASE
4 WHEN i=0 AND j=0 THEN 0.0
5 WHEN i=0 OR j=0 THEN ∞ -- ’Infinity’::real
6 ELSE (SELECT abs(Z.x - Z.y)
7 +
8 LEAST( 1 dtw(i-1, j-1),
9 2 dtw(i-1, j ),
10 3 dtw(i , j-1))
11 FROM (X JOIN Y
12 ON ((X.t,Y.t) = (i,j))) AS Z)
13 END;
14 $$ LANGUAGE SQL STABLE STRICT;

(a) Functional-style UDF.

1CREATE FUNCTION dtw(i int, j int)
2RETURNS real AS $$
3WITH RECURSIVE
4warp(i,j,val) AS (
5(SELECT X.t, Y.t, abs(X.x - Y.y)
6FROM X, Y
7ORDER BY X.t, Y.t
8LIMIT 1)
9UNION
10SELECT step.i, step.j, MIN(step.val)
11FROM (
12SELECT step.i, step.j, warp.val + step.val
13FROM warp,(VALUES (1,1),(0,1),(1,0)) AS d(i,j),
14LATERAL (
15SELECT warp.i+d.i, warp.j+d.j, abs(X.x - Y.y)
16FROM X, Y
17WHERE (X.t,Y.t) = (warp.i+d.i,warp.j+d.j)
18) AS step(i,j,val)
19WHERE step.i <= dtw.i AND step.j <= dtw.j
20) AS step(i,j,val)
21GROUP BY step.i, step.j)
22SELECT MIN(warp.val) AS dtw
23FROM warp
24WHERE (warp.i,warp.j) = (dtw.i,dtw.j);
25$$ LANGUAGE SQL STABLE STRICT;

(b) Recursive CTE ` optimizations.

Figure 1.4: Functional-style and recursive CTE Implementations of dtw. 1 , 2 , and 3 in (a)
mark the recursive self-invocations (call sites).

1 5 10 50 100

10

100

1,000

10,000

dtw
compiled

recursive CTE

recursive CTE
(optimized)

i

t
rm

ss

Figure 1.5: Evaluating dtw(i,i): Shows the impact of compilation. Note, how the uncompiled
functional-style UDF dtw struggles even when compared to the unoptimized recursive CTE.
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allows for intricate optimizations.
In terms of runtime performance, Figure 1.5 reports on the execution times of the
functional-style and recursive CTE implementation dtw (see ). These and all
following experiments were performed with PostgreSQL 13 running on a 64-bit Linux
x86 host with 8 Intel Core™ i7 CPUs clocked at 3.66 GHz and 64 GB of RAM, of
which 128 MB were dedicated to the database buffer. Timings were averaged over ten
runs, with worst and best runtimes disregarded.

Note how carefully placed optimizations (highlighted in Figure 1.4b) improve per-
formance of the recursive CTE (compare with in Figure 1.5). Optimizations
on this level, however, require a well-developed understanding of recursive CTEs
and may be easily overlooked. Thus, we find that, unless we do something about it,
neither recursive CTEs nor functional-style UDFs in their natural form satisfy both
readability and runtime performance.

1.3 Compiling Functional-Style SQL UDFs to Recursive CTEs

In this publication, we propose a SQL-to-SQL compiler that
• accepts a functional-style UDF, say f (for example dtw, see Figure 1.4a),
• compiles the function body of f into semantically equivalent recursive CTEs which
do not require any recursive self-invocations, and

• promises this without invasive modifications to the underlying RDBMS.
Once compiled, f is entirely replaced by its compiled counterpart, which makes
it also feasible for systems that do not natively allow for such UDFs in functional-
style. The compiled function body of f may even be inlined into the SQL query
that invokes f , which enables functional-style UDFs for systems that lack any UDF
support. In Chapter 4, we describe the SQL-to-SQL compiler in detail. Using function
compilation is only the first step for functional-style UDFs to free developers from
the need to come up with hand-crafted CTEs.

9



dtw(2,2)

(1,2) (1,1) (2,1)

(0,2) (0,1) (0,0) (1,0) (2,0)

∞ ∞ 0.0 ∞ ∞

12 3

12 312
3

1
2

3

(a) The call graph describes edges representing
either a recursive call in outsite or a non-
recursive base case in val .

call_graph
in sitefanout out val

i j i j
(2,2) � � (2,2) �
(2,2) 1 3 (1,1) �
(2,2) 2 3 (1,2) �
(2,2) 3 3 (2,1) �
(1,1) 1 3 (0,0) �
(1,1) 2 3 (0,1) �
(1,1) 3 3 (1,0) �
(1,2) 1 3 (0,1) �
(1,2) 2 3 (0,2) �
(1,2) 3 3 (1,1) �
(2,1) 1 3 (1,0) �
(2,1) 2 3 (1,1) �
(2,1) 3 3 (2,0) �
(0,0) � 0 (0,0) 0.0
(0,1) � 0 (0,1) ∞
(1,0) � 0 (1,0) ∞
(0,2) � 0 (0,2) ∞
(2,0) � 0 (2,0) ∞

(b) Tabular representation of the call
graph in (a). We use � to abbreviate
SQL’s NULL.

Figure 1.6: The call graph for invocation of dtw(2,2).

The ultimate goal is to tweak and improve the compiler such that the execution times
of the compiled UDFs approach that of its hand-crafted recursive CTE counterparts.
Compilation enables developers to utilize optimizations such as sharing, linear- and
tail-recursion optimization, memoization, and batching (Chapter 5). These optimiza-
tions are independently applicable and rely on an explicit tabular representation of the
UDF’s call graphwhich the compiled function f internally maintains. Figure 1.5 (specif-
ically ) gives a preview of what to expect when compiling dtw with optimizations
enabled.

Sharing

Figure 1.6a shows the call graph of dtw(2,2). An edge x ys in the call graph of a
recursive function f indicates that the evaluation of f pxq has led to a recursive call
f pyq at call site s . Recursive calls that are shared by multiple invocations of f—like
(1,1),(0,1), and (1,0) in Figure 1.6a—indicate the potential to avoid repeated compu-
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tations. The naive evaluation of dtw(i,i) with i ą 0 leads to about 0.87 ˆ p5.83i
{
?

iq

recursive calls [77]. Enabling sharing collapses all recursive calls shared by multiple
invocations into one node, which can drastically reduce the call graph size and thus
evaluation effort (see Figure 1.6b for its tabular representation). In the case of dtw(i,i)
from Op5.83iq down to Opi2q. Indeed, the recursive CTEs (generated by the function
compiler) build such call graphs that exploit sharing opportunities for increased eval-
uation speed (Section 4.1.2). Contemporary RDBMS do not take advantage of call
sharing when evaluating recursive UDFs, as far as we can tell.

100 400 800 1,2
00

1,6
00

2,0
00

0

4

8

12

16

20

vm

compiled

▲!

i

t
rs

s

20,
000

40,
000

60,
000

80,
000

100
,00

0

compiled
(tail recursion)

recursive CTE

Figure 1.7: Evaluating vm(I0,R) where R is the initial register state which is set to repeat a
loop i times. With increasing i, evaluation of vm before compilation terminates prematurely
due to recursion depth limitation (▲! ).

Linear- and Tail-Recursion

Evaluating linear- or tail-recursive functions produces call graphs that are branch-
less chains. This assumption allows the compiler to utilize additional optimization
opportunities, which we explore in Sections 5.3 and 5.4. Take, for example, program
interpretation implemented in functional-style: vm(Ip,R) takes a program instruction
Ip at position p ą 0 and an initial register state R and continues evaluating instructions
until a hlt-instruction is reached and a register value is returned. Single registers in R
at position k can be accessed with R[k]. Binary operator R[t]ÐSS e replaces the value of
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dtw(2,2)

(1,2) (2,1)

(1,1)

(0,2) (0,1)(0,0)(1,0) (2,0)

∞ ∞ 0.0 ∞ ∞

ev
al
ua
tio

n
or
de
r

(a) Layer-wise call graph traversal.

memo
in val

i j
(2,2) 1.0
(1,2) 1.0
(2,1) 0.0
(1,1) 0.0
(0,2) ∞
(0,1) ∞
(0,0) 0.0
(1,0) ∞
(2,0) ∞

(b) Results.

Figure 1.8: A bottom-up call graph traversal populates table memo with the results of all
recursive calls performed during the evaluation of dtw(2,2).

a single register t in R with the result of expression e and returns the modified registers.
Function vm is recursively defined as:

vm((i,hlt,s),R) “ R[s]
vm((i,lod,t,x),R) “ vm(Ii+1,R[t]ÐSSx)
vm((i,mov,t,s),R) “ vm(Ii+1,R[t]ÐSSR[s])
vm((i,add,t,s1,s2),R) “ vm(Ii+1,R[t]ÐSS R[s1]+R[s2])
vm((i,mul,t,s1,s2),R) “ vm(Ii+1,R[t]ÐSS R[s1]*R[s2])
vm((i,div,t,s1,s2),R) “ vm(Ii+1,R[t]ÐSS R[s1]/R[s2])
vm((i,mod,t,s1,s2),R) “ vm(Ii+1,R[t]ÐSS R[s1]%R[s2])
vm((i,jmp,a),R) “ vm(Ia,R)

vm((i,jeq,t,s,a),R) “

#

vm(Ia,R) , R[s] “ R[t]
vm(Ii+1,R) , otherwise.

(vm)

Function vm is tail-recursive, as each branch recursively calls vm directly. Figure 1.7
reports that running vm precompilation terminates prematurely whenever evaluating
reaches roughly the 1,000th instruction due PostgreSQL’s limited recursion depth [97].
Compiling this function with tail-recursion detection disabled (compiled) is not bound
by recursion depth, but performance is disappointing compared to the hand-crafted
recursive CTE. With tail recursion detection, execution times close in on the perfor-
mance of the hand-crafted recursive CTE.

12



dtw(2,2)

(1,2) (1,1) (2,1)

(0,2) (0,1) (0,0) (1,0) (2,0)

∞ ∞ 0.0 ∞ ∞

12 3

12 312 3 12 3

(a) Sharing in the call graph for dtw(2,2).

dtw(3,3)

(2,3) (3,2)

(1,3) (3,1)

(0,3) (3,0)

∞ ∞

(2,2)

(1,2) (2,1)

(0,2) (2,0)

∞

1.0

1.0

0.0

∞

12 3

12 3 12 3

12 3 12 3

found in memo (not evaluated)

(b) Memoization prunes the call graph for dtw(3,3).

Figure 1.9: Call graphs for two consecutive invocations of UDF dtw showcasing memoization.

Memoization

Compilation allows us to store the results of all invocations of f in a table memo (Fig-
ure 1.8), which can then be used in future function invocations to trim the call graph
size. Figure 1.9 shows the trimmed call graph of dtw(3,3) after dtw(2,2) has been
evaluated and its intermediate calls memoized earlier. Memoization of recursive calls
acts much like base cases and immediately return a value that prunes entire call sub-
graphs. We discuss memoization in Section 5.5. Automatic memoization based on
trimming an explicitly represented call graph contrasts with the programming language
implementation of memoization. The latter dynamically discovers a function’s call
graph through program or interpreter instrumentation, typically realized in terms of
higher-order functions or macro facilities [94, 79]. Since both are unavailable in an
RDBMS, we opt for the first-order call graph as data implementation, with no changes
to the underlying RDBMS or its query evaluator required.

Batching

Developers can expect that a function f is invoked many times independently, say
f px1 q, ... , f pxnq. Enabling batching when compiling f changes its signature from f pxq

to f 1prx , ... , xsq. Therefore allowing each individual function invocation f pxiq to be
batched into a single call f 1prx1 , ... , xnsq. Lifted function f 1 constructs a call graph
with up to n root nodes and returns a table that maps each argument xi to its result.
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dtw(2,2)

(1,2) dtw(1,1) (2,1)

(0,2) (0,1) dtw(0,0) (1,0) (2,0)

∞ ∞ 0.0 ∞ ∞

12 3

12 312
3

1
2

3

(a) The call graphs of dtw(2,2) , dtw(1,1) and
dtw(0,0) collapse into one.

call_graph
in sitefanout out val

i j i j
(2,2) � � (2,2) �
(1,1) � � (1,1) �
(0,0) � � (0,0) �
(2,2) 1 3 (1,1) �
(2,2) 2 3 (1,2) �
(2,2) 3 3 (2,1) �
(1,1) 1 3 (0,0) �
(1,1) 2 3 (0,1) �
(1,1) 3 3 (1,0) �
(1,2) 1 3 (0,1) �
(1,2) 2 3 (0,2) �
(1,2) 3 3 (1,1) �
(2,1) 1 3 (1,0) �
(2,1) 2 3 (1,1) �
(2,1) 3 3 (2,0) �
(0,0) � 0 (0,0) 0.0
(0,1) � 0 (0,1) ∞
(1,0) � 0 (1,0) ∞
(0,2) � 0 (0,2) ∞
(2,0) � 0 (2,0) ∞

(b) Tabular representation of the call
graph in (a).

Figure 1.10: The call graph for invocation of dtw([(2,2),(1,1),(0,0)]) showcasing batching.

Figure 1.10 shows the call graph of the batched function call dtw([(2,2),(1,1),(0,0)]).
Note how each call graph of function invocations (1,1) and (0,0) become subgraphs
of the call graph of (2,2). Similar to sharing, the more the constructed call graphs of
each argument x1, ... , xn overlap, the smaller the total size of the batched call graph
becomes (Section 5.6). Batching is a technique derived from data-parallel languages [63].
Another technique, called flattening, also bears strong similarities in its concept of
lifting functions to arbitrary orders [106]. However, batching is exclusively concerned
with first-order flattening: f : a Ñ b to f 1 : ras Ñ rbs.

1.4 More Related Work

The compilation technique described in this publication is far from the only work done
to allow developers to implement complex computations close to the data. Recent
research presents other methods for recursive SQL UDF compilation. One such
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research effort takes the function body of function f with recursive self-invocations
and compiles it, using a form of continuation-passing style transformation [65]. This
represents an alternative approach for recursive UDF compilation targeting recursive
CTEs.

Another method, called R-SQL [57], translates SQL UDFs with recursive self-invoca-
tion into a set of queries with SELECT and INSERT statements. An external program
written in Python repeatedly evaluates these statements until it reaches a fixed point.
Consequently, R-SQL has to repeatedly cross over the DB/PL line at query runtime,
which is precisely what we want to avoid with our present work.

So far, we have focused strictly on SQL UDFs with recursive self-invocations. How-
ever, other research efforts exist to identify ways to give developers options to express
complex algorithms. Some RDBMS, for example, offer a non-standard procedural
extension to SQL such as PL/pgSQL that ships with PostgreSQL [97]. Its language
features were heavily influenced by the PL/SQL language extension of the Oracle
database [95]. However, the performance of PL/pgSQL-functions can be disappointing
when embedded SQL queries are involved. Such embedded SQL queries require a
cost-intensive context switch from extension executor to query executor and back.
Compilation rewrites these functions into their semantically equivalent LANGUAGE SQL
counterpart targeting recursive CTEs [81, 80].

FunSQL [61] proposes a PL/SQL-like (functional) language which enables developers
to write functions in static single assignment form which embeds SQL expressions.
Such functions are compiled into a data-flow graph of algebraic operators. We believe
SQL itself should be the focus and aim to use it to its full potential, both as the language
in which computation is expressed and as the compilation target.
Further research was conducted for HyPer [92], extending the SQL language itself

by adding an ITERATE-operator [96]. This operator allows for an iterative subquery
inside a SQL query. The ITERATE-operator works similarly to a for-loop, where the
developer defines each: initialize, iterate, and stop-expression. In contrast to such
research efforts, our approach avoids modifying the underlying RDBM and depends
only on standard SQL, which makes it usable without the slow turn-around of patching
non-standard changes into the RDBMS.
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1.5 Research Focus and Contribution

We aim to measure the viability of functional-style SQL UDFs to implement complex
computation. We measure the viability of functional-style UDFs from two angles:
readability and runtime performance. This publication is separated into four parts:
1. The discussion of the user study (Chapter 2) aims to measure the readability and

ease of handling functional-style UDFs compared to recursive CTEs.
2. The grammar definition for functional-style UDFs (Chapter 3).
3. The description of the SQL-to-SQL compiler (Chapter 4), which compiles a function-

al-style UDF using recursive CTEs as their target and removing any recursive self-
invocations in the process. Compiling such UDFs improves runtime performance
and enables a list of optimization opportunities which we discuss in Chapter 5.

4. The conclusion presents the overall assessment regarding the viability of functional-
style UDFs and gives a short outline for future work (Chapter 6).

This work builds upon work previously published by us [70, 71].
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2
Recursion in SQL - User Study

In 2020, we conducted an anonymous online study tasking developers to solve problems
related to functional-style UDFs and recursive CTEs. The study aimed to gauge the
readability and ease of handling functional-style UDFs and recursive CTEs comparing
each to the other.
The user study targeted three demographics: students that have attended the Ad-

vanced SQL lecture of summer semester 2020 [56], users subscribed to the DBWorld
mailing list [68], and interested students, as well as staff of the University of Tübin-
gen, subscribed to the user study mailing list. Students that attended Advanced SQL
were not introduced to functional-style UDFs before this study. The course focused
on other SQL features like (recursive) CTEs, window functions, and other features
beyond the common SELECT-FROM-WHERE-query.
We went through the following steps to conduct the user study: whenever an

interested participant contacted us, they received a link with a randomly generated
token. They were eligible to participate in the user study exactly once with this
token. When the participant submits their result, it is automatically assigned a random
identification number, decoupling the submission from the user. Out of 52 interested
participants who received a generated token, 19 submitted their results. Dragicevic [69]
deems this sufficient to draw meaningful conclusions. The following discussion is

17



centered around each task’s aggregated scores and times (in minutes). Every discussion
that centers exclusively around aggregated values is based on a 95% confidence interval
(CI (95%)) and the p-value (p-Val). Skipped tasks do not factor into the statistics.

The study itself is segmented into four general topics: choose the correct imple-
mentations (Section 2.1), describe a user-defined function (Section 2.2), manually
evaluate a user-defined function (Section 2.3), and implement the 0-1 knapsack al-
gorithm (Section 2.4). The complete online form of the user study can be found
in Appendix A.

User study introduction. Before the user study proper, an introductory text asked
each participant not to use external programs to run queries found in this study.
Instead, we asked them to use pen and paper only, if at all. Then, they had to list
three regular programming languages they were familiar with and if they had some
exposure to functional programming before this study. This helped us gain insight
into the participant’s background as a programmer.

We found that the 19 participants form a homogenous group where all are familiar
with at least one imperative programming language, the majority being Java and
Python, 15 of which had at least some exposure to Functional Programming. Recursive
self-invocation and function definition by case distinction are staples of functional
programming as it is used in, for example, Haskell [83]. Thus, we assume that most
participants are familiar with these concepts, which functional-style UDFs depend on
as well.

2.1 Choose the Correct Implementations

The first topic gauges the accuracy and speed required of the participants to distinguish
between correct and incorrect implementations. The topic is separated into two tasks,
each with its own textbook-style algorithm: Fibonacci Numbers [78]:

fib(0) “ 0
fib(1) “ 1
fib(n) “ fib(n-1) + fib(n-2) ,

(fib)
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Task Points CI (95%) p-Val
min avg max Σ

fib
Functional-Style UDF 0.0 2.6 4.0 50 r1.89, 3.37s 0.3347Recursive CTE -2.0 2.9 4.0 54 r1.98, 3.80s

gcd
Functional-Style UDF 0.0 2.5 4.0 48 r1.94, 3.11s 0.2627Recursive CTE -2.0 2.0 4.0 38 r0.92, 3.08s

(a) Aggregated Scores.

Task Time [min] CI (95%) p-Val
min avg max

fib
Functional-Style UDF 1:00 2:47 6:00 r2:03, 3:32s 0.0006Recursive CTE 3:00 5:47 12:00 r4:23, 7:11s

gcd
Functional-Style UDF 1:00 2:16 7:00 r1:37, 2:55s 0.0002Recursive CTE 2:00 4:15 8:00 r3:32, 4:58s

(b) Aggregated Times.

Table 2.1: The aggregated scores and times of the tasks Fibonacci Numbers (fib) and
Greatest Common Divisor (gcd).
Scoring scheme of (a): participants gain 1 point, if a selection is correct and lose 1 point, if
incorrect.
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and Greatest Common Divisor [84]:

gcd(n,0) “ n
gcd(n,k) “ gcd(k,n % k) .

(gcd)

These algorithms were chosen for their concise textbook-style formulation and com-
paratively simple implementations as recursive CTE and functional-style UDF.

At first, each task presents the participants with the definition of the textbook-style
function. Then, they are given a choice of four similar-looking recursive CTEs, and
four similar-looking functional-style UDFs for fib (and vice versa, for gcd). Finally,
they are asked to select only those snippets that correctly implement the algorithm.
The participants also submit the time they need to complete this task.

Scores and times of each task fib and gcd are aggregated in Tables 2.1a and 2.1b.
For each task, the aggregated times for functional-style UDFs are significantly lower
than recursive CTEs. One participant skipped both recursive CTE parts of fib and
gcd.

Conclusion. The aggregated scores Table 2.1a suggest that participants perform
similarly well when differentiating between correct and incorrect implementations of
functional-style UDFs and recursive CTEs. However, participants require only about
half the time for functional-style UDFs.
Recursive CTEs disfigure the simple formulation of the textbook-style form, and

thus it becomes much more time-consuming to detect subtle errors. Functional-style
UDFs, on the other hand, can be compared almost verbatim to the textbook-style
form, which is ideal when quickly validating code.

2.2 Describe a User-Defined Function

The second topic is separated into two tasks (Comprehension I and Comprehension II ).
It gauges the ability and speed with which each participant understands and correctly
describes an unknown SQL user-defined function. Both UDFs were chosen for their
concise formulation befitting their respective style:
• functional-style UDF f(i,j,k) which applies an error that propagates over time
(see Figure 2.1), and
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1 CREATE FUNCTION f(i int, j int, k float)
2 RETURNS float AS $$
3 SELECT CASE
4 WHEN i > j THEN k
5 ELSE (SELECT f(i+1, j, s.b + 0.5 * k)
6 FROM s
7 WHERE s.a = i)
8 END;
9 $$ LANGUAGE SQL STABLE STRICT;

Figure 2.1: Functional-style UDF f(i,j,k).

1CREATE FUNCTION g(a int)
2RETURNS bigint AS $$
3WITH RECURSIVE
4r(x, y, z) AS (
5SELECT t.x, t.y, t.z
6FROM t
7WHERE t.x = a
8UNION
9SELECT r.x, t.y, t.z
10FROM r, t
11WHERE r.y = t.x
12)
13SELECT SUM(r.z)
14FROM r;
15$$ LANGUAGE SQL STABLE STRICT;

Figure 2.2: Recursive CTE g(a).

1 WITH RECURSIVE
2 T(c1,...,cn) AS (
3 q0
4 UNION
5 q

ö

pTq

6 )
7 TABLE T;

(a) Recursive CTE.

1 u Ð distinct(q0)
2 w Ð u
3 loop

4 i Ð distinct(q

ö

(w)zu)
5 if i = H then break

6 u Ð u Ÿ i
7 w Ð i
8 end

9 return u

(b) Pseudo code.

Figure 2.3: The general form of a recursive query T (a) and its semantics described in pseudo
code (b). Evaluation requires keeping track of three bag variables: i (intermediate table), u
(union table), and w (working table). Figure appeared before in Chapter 1.

• recursive CTE g(a) which traverses a directed graph and sums up each edge weight
it passes once (see Figure 2.2).

The participants also submit the time they need to complete this task. Scores and
times are aggregated in Tables 2.2a and 2.2b. On average, participants performed better
describing functional-style UDF f in about the same time. Two participants skipped
the recursive CTE in Comprehension II.

Conclusion. The aggregated scores in Table 2.2a show that twice as many participants
described the functional-style UDF correctly (i.e. scored two or more points). Over
half of the participants had difficulty explaining the recursive CTE and did not discover
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Task Points Skip
0 1 2 3 Σ avg

Functional-Style UDF 3 4 5 7 35 1.84 0
Recursive CTE 6 5 1 5 22 1.29 2

(a) Aggregated Scores.

Task Time [min] CI (95%) p-Val
min avg max

Functional-Style UDF 2:00 6:54 12:00 r5:44, 8:03s 0.0497Recursive CTE 1:00 5:21 11:00 r4:04, 6:38s

(b) Aggregated Times.

Table 2.2: The aggregated scores and times of tasks Comprehension I and Comprehension II.

Scoring scheme of (a): Incorrect description (0 points), partially correct description (1 point),
correct description without discovering its intended purpose (2 points), correct description
of its intended purpose (3 points).

its intended purpose. We point to the convoluted nature of evaluating recursive CTEs
to explain why (see Figure 2.3). Thus, it is hard to imagine the participants easily
keeping track of all the moving parts of function g and its recursive CTE. Compare
this to function f, which has all its functionality explicitly visible. We conclude that
developers are more likely to provide a correct description of an unknown functional-
style UDF than they would an unknown recursive CTE in roughly the same amount
of time.

2.3 Manually Evaluate a User-Defined Function

The third topic, Evaluation, builds upon the functions f and g (recall Figures 2.1
and 2.2) of the previous tasks Comprehension I and Comprehension II in Section 2.2.
We gauge the ability and speed of the participants to manually evaluate (i.e. without
computational aid) each function invocation f(1,3,0) and g(4). The participants
then submit the results of these function calls and the time they need to complete this
task.
Scores and times of this task are aggregated in Tables 2.3a and 2.3b. On average,
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Task Points Skip
0 1 2 Σ avg

Functional-Style UDF 3 4 12 28 1.47 0
Recursive CTE 8 0 9 18 1.06 2

(a) Aggregated Scores.

Task Time [min] CI (95%) p-Val
min avg max

Functional-Style UDF 1:00 3:21 10:00 r2:05, 4:36s 0.2806Recursive CTE 0:30 2:51 10:00 r1:52, 3:50s

(b) Aggregated Times.

Table 2.3: The aggregated scores and times of task Evaluation.
Scoring scheme of (a): Incorrect result (0 points), partially correct intermediate steps
(1 point), the correct result (2 points).

1. Inititalize
Line 1,2

u “ * r4+ w “ * r4+

2. Iterate
Line 4,6,7

i “ * r3+ u “ * r4 r3+ w “ * r3+

3. Iterate
Line 4,6,7

i “ * r2+ u “ * r4 r3 r2+ w “ * r2+

4. Stop
Line 4,5

i “ * + ãÑ return u

(a) Bag Variable Trace.

t
x y z
1 2 5
2 4 3
3 2 2
4 3 1

r1 :
r2 :
r3 :
r4 :

(b) Sample table.

Figure 2.4: The complete variable trace of function g (Figure 2.2) for call g(4). Evaluating a
recursive CTE manually requires the developer to keep track of three bag variables i, u, and
w (recall Figure 2.3). * + denotes bags of rows.
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1 CREATE FUNCTION knap(k int,u int)
2 RETURNS int AS $$
3 CASE
4 WHEN k = 1 THEN 0
5 ELSE (
6 SELECT CASE
7 WHEN i.w > u THEN knap(k-1,u)
8 ELSE
9 GREATEST

ˆ

knap(k-1,u),
knap(k-1,u-i.w)+i.p

˙

10 END
11 FROM items AS i
12 WHERE i.i = k
13 )
14 END;
15 $$ LANGUAGE SQL STABLE STRICT;

(a) Functional-style UDF.

knap(1,u) “ 0

knap(k,u) “

$

&

%

knap(k-1,u) , wk > u

max
"

knap(k-1,u),
knap(k-1,u-wk)+pk

*

, otherwise

(b) Textbook-style.

1CREATE FUNCTION knap(k int,u int)
2RETURNS int AS $$
3WITH RECURSIVE sack(i,w,p) AS (
4SELECT 1,0,0
5UNION
6SELECT s.i+1,s.w+c.w,s.p+c.p
7FROM sack AS s,items AS i,
8LATERAL (
9VALUES (0,0),(i.w,i.p)
10) AS c(w,p)
11WHERE s.w+i.w <= u
12AND i.i = s.i+1
13AND s.i <= k)
14SELECT MAX(s.p) FROM sack AS s;
15$$ LANGUAGE SQL STABLE STRICT;

(c) Recursive CTE.

Figure 2.5: Each formulation in (a) – (c) describes the same algorithm to solve the 0-1
Knapsack problem. A rough comparison of the function body in (a) with the body found in
(b) shows strong similarities when set side by side. However, compared to (c), the function
bodies look almost unrecognizably different. Figure appeared before in Chapter 1.

participants performed better evaluating functional-style UDF f in about the same
time. Two participants skipped evaluating the function of Comprehension II.

Conclusion. We find that the score of participants describing functions f and g in the
previous task (Section 2.2) correlated to the score in this task. Thus, participants that
understood a function were almost certainly going to evaluate them correctly.
Furthermore, the way most developers with at least some knowledge about func-

tional programming would evaluate f(1,3,0) is very straightforward: they first keep
track of each function call until they reach a base case. Then, they backtrack until
they reach the original function call, which returns the final result. This stands in
stark contrast with recursive CTEs. Developers have to juggle many implicit variables
throughout the evaluation process (recall Figure 2.3). Its complete bag variable trace
in Figure 2.4 highlights the cognitive load for a developer to manually evaluate the
function call g(4). These results only reinforce the argument that recursive CTEs
still put a heavy mental burden on the developers even when a concise formulation is
found.
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Task Ratings Skip
wrong minor syntax correct

Functional-Style UDF 3 2 4 2 8Recursive CTE - - - -

(a) Scores.

Task Time [min]
min avg max

Functional-Style UDF 3:00 9:06 19:00
Recursive CTE - - -

(b) Aggregated Times.

Table 2.4: The scores and aggregated times of task 0-1 Knapsack.
Rating scheme of (a): unrecognizable or unfixable (wrong), easily fixable mistakes, e.g., >=
instead of > or missing edge cases (minor), valid but with syntax errors, a compiler would
detect, e.g., write MAX instead of GREATEST or missing ’)’ (syntax), correct implementation
(correct).

2.4 Implement the 0-1 Knapsack Algorithm

This final topic, 0-1 Knapsack, asks the participants to choose between writing a
functional-style UDF or a recursive CTE. First, the topic presents the participants with
the textbook-style definition of the 0-1 Knapsack algorithm [88] (recall Figure 2.5b).
The participants then submit their implementation and the time they need to complete
this task.
Scores and times of task 0-1 Knapsack are aggregated in Tables 2.4a and 2.4b. No
participants even tried implementing the 0-1 Knapsack algorithm as a recursive CTE.
Thus, we only discuss aggregated scores and times of the functional-style UDF imple-
mentations. Eight participants skipped this task.

Conclusion. We chose the textbook-style 0-1 Knapsack algorithm for this task. Both
implementations as functional-style UDF (Figure 2.5a) and recursive CTE (Figure 2.5c)
are similar in size, thus making them comparable to each other. Indeed, only the
functional-style UDF resembles the textbook-style algorithm.

Combined with the submitted results, we argue that algorithms like 0-1 Knapsack do
not lend themselves to be easily rewritten into their equivalent recursive CTE formu-
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lation. Thus we conclude that if developers have the choice, they unanimously prefer
functional-style UDFs over recursive CTEs when implementing such algorithms.

2.5 Summary

This study aimed to measure the performance of experienced developers working
with functional-style UDFs and recursive CTEs. We found that developers require
less time distinguishing correct from incorrect functional-style UDFs. They are also
more likely to describe and manually evaluate a functional-style UDF accurately. Fur-
thermore, given a choice, they overwhelmingly prefer functional-style UDFs over
recursive CTEs to implement the 0-1 Knapsack algorithm. Thus, showing that there
exist algorithms, such as these recursive textbook-style algorithms, that developers
would prefer in functional-style. Indeed, some algorithms fit recursive CTEs better.
Take, for example, the function g (recall Section 2.2), which describes an algorithm
applied to a weighted graph. However, we can confidently say that developers appreci-
ate functional-style UDFs as another pillar of support for moving computation close
to the data.
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3
Grammar of Functional-Style UDFs

We pursue a SQL source-to-source translation that accepts an input UDF f that adheres
to the SQL dialect described by the grammar of Figure 3.1. Start symbol udf restricts
our treatment to functions that
• are free of side effects (in PostgreSQL, such UDFs may be tagged as STABLE (or

IMMUTABLE) [97, §38.7]), and
• return values of some scalar type τ or tabular type TABLE(id,...,id) with unique
column identifiers id .

Furthermore, function f must be STRICT and assumes a call-by-value evaluation of f

where only actual values are passed as arguments [105]. Indeed, this excludes passing
NULL as parameters to f , which represents a value currently unknown [66] and thus is
incompatible with this restriction. Optional tags MEMO, BATCH and ITERATE allow the
user to enable optimizations we discuss in Section 5.5, Section 5.6 and Section 5.4.3
respectively.

The UDF’s body is formed top-level by
• set operations that link together two or more subqueries q,
• tabular conditionals where each branch may be a scalar or tabular subexpression q,
and

• a SELECT-FROM-WHERE block in which scalar and tabular subexpressions (cf. non-
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udf ::“ CREATE FUNCTION f (id, ... ,id) RETURNS T AS
$$ q $$
LANGUAGE SQL STABLE STRICT [MEMO] [BATCH] [ITERATE];

q ::“ ℓ setop(q, ... ,q) (n-ary set operator)
| CASE ℓ WHEN sql THEN q ELSE q END (tabular conditional)
| [ ℓ WITH id AS(sql), ... ,id AS(sql) ] (optional WITH)

ℓ SELECT e AS id, ... ,e AS id
[ ℓ FROM j ] (optional FROM)
[ ℓ WHERE e ] (optional WHERE)
[ ℓ GROUP BY sql, ... ,sql [HAVING sql ] ] (optional GROUP BY)
[ ℓ ORDER BY sql, ... ,sql ] (optional ORDER BY)
[ ℓ LIMIT sql ] (optional LIMIT)
[ ℓ OFFSET sql ] (optional OFFSET)

e ::“ ℓ f (sql, ... ,sql) (scalar recursive call site)
| (CASE ℓ WHEN sql THEN e ELSE e END) (scalar conditional)
| ℓ ⊗(e, ... ,e) (n-ary operator ⊗)
| ℓ agg(e [ORDER BY sql ]) rOVER (over)s (aggregate function)
| ℓ (q) (scalar subquery)
| ℓ sql (any scalar expression)

j ::“ t AS id
| ( j [LEFT|FULL] JOIN t AS id ℓ ON(sql))AS id (JOIN clause)

t ::“ ℓ f (sql, ... ,sql) (tabular recursive call site)
| ℓ id (table name)
| [LATERAL] ℓ (q) (tabular subquery)
| ℓ sql (any tabular expression)

setop ::“ UNION [ALL] (set union)
| INTERSECT [ALL] (set intersection)
| EXCEPT [ALL] (set difference)

T ::“ τ (scalar SQL type)
| TABLE(id,...,id) (tabular SQL type)

sql ::“ any SQL expression without recursive call sites
over ::“ OVER clause expression without recursive call sites

f ::“ name of recursive SQL UDF to be compiled
agg ::“ name of aggregate function

id ::“ SQL identifier (table, column, alias, parameter)
ℓ , ℓ ::“ unique expression labels

Figure 3.1: The grammar for functional-style SQL UDFs. Expression labels ( ℓ , ℓ ) are
internal annotations.
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terminals e and j ) may nest to arbitrary depth. A variety of optional clauses such as
WITH, GROUP BY, ORDER BY, LIMIT and OFFSET are supported.

The grammar distinguishes scalar (and tabular) expressions that may contain self-
invocations (e, q, j , and t ) and those that may not (sql and over ). The non-terminals sql
and over function as catch-alls for scalar and tabular subexpressions containing no
recursive call sites. The grammar already rules out some queries in which calls to f

depend on each other. Ultimately, slicing (Section 4.6) will identify all queries that
exhibit such problematic interdependencies. Furthermore, some SQL constructs
have been omitted for the sake of simplicity. This does not, however, deter from
the expressiveness of functional-style UDFs. Unique labels ℓ and ℓ are assigned to
subexpressions, e.g., a recursive call site. These labels are only internally represented
in the parse tree.
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4
Compiling Functional-Style UDFs

Let f be a SQL UDF in functional-style that adheres to the grammar defined in
Chapter 3. Recursion is expressed in terms of self-invocations of f at, in general,
several call sites (cf. 1 to 3 in the body of dtw in Figure 4.1). The compilation of f

replaces its body with SQL code that will evaluate a call, say fpargsq, in two steps:
1. Construct call graph g that originates in root args and records the arguments of

all recursive calls that f would perform. Since we do not evaluate these calls yet, f ’s
recursive calls may only depend on args and any other database-wide accessible
data, but not on f ’s return values. The leaves of g are the non-recursive base cases
entered by f (cf. 4 and 5 in the body of dtw in Figure 4.1).

2. Traverse g bottom up, evaluating the body of f for the recorded arguments. Evalu-
ating the body for root args yields the overall result for the original call fpargsq.

We elaborate on this two-step evaluation with pseudo code in Sections 4.1 and 4.2 and
discuss its SQL representation, which requires the compiler to utilize the well-known
program slicing technique [108, 104], in Sections 4.3 to 4.6.
The main objective of this chapter is to bridge the gap between the theoretical

description and the SQL implementation the compiler emits. For brevity, we keep
the SQL implementation described in this chapter quite vanilla, exhibiting restric-
tions and missing improvements in favor of conciseness. For example, the vanilla
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1 CREATE FUNCTION dtw(i int, j int)
2 RETURNS real AS $$
3 CASE
4 WHEN i=0 AND j=0 THEN 4 0.0
5 WHEN i=0 OR j=0 THEN 5∞ -- ’Infinity’::real
6 ELSE (SELECT abs(Z.x - Z.y)
7 +
8 LEAST( 1 dtw(i-1, j-1),
9 2 dtw(i-1, j ),
10 3 dtw(i , j-1))
11 FROM (X JOIN Y
12 ON ((X.t,Y.t) = (i,j))) AS Z)
13 END;
14 $$ LANGUAGE SQL STABLE STRICT;

Figure 4.1: The Dynamic Time Warp (DTW, recall Equation (dtw) in Chapter 1) as a
recursive SQL UDF written in functional style. 1 , 2 , and 3 mark the recursive call sites, 4
and 5 designate the non-recursive base cases.

dtw(2,2)

(1,2) (1,1) (2,1)

(0,2) (0,1) (0,0) (1,0) (2,0)

∞ ∞ 0.0 ∞ ∞

12 3

12 312
3

1
2

3

Figure 4.2: The call graph for invocation of dtw(2,2) (recall Figure 4.1). The call graph
describes edges representing either a recursive call in outsite or a non-recursive base
case in val .

compilation does not yet support functions that exhibit recursive call site invocations
dependent on surrounding row variables and table-valued return values. Indeed, in
subsequent Chapter 5, we build upon this vanilla SQL implementation to lift these
restrictions (see Sections 5.1 and 5.2) and introduce other tweaks and improvements
such as linear- and tail-recursion optimization, memoization, and batching.

4.1 Step 1: Call Graph Construction

The call graph provides us with an explicit runtime representation of the work needed
to be performed to evaluate f pargsq. Figure 4.2, for example, shows the graph we
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Slices+Calls

Construct

Invoke

call_graphpf, in, graphq:
1 calls Ð r s

2 for each call site site of f that would recursively
invoke fpoutq if the arguments are in do

3 callsrsites Ð out
4 edges Ð ∅
5 if calls ‰ r s then
6 for each psite, outq in calls do

7 add in outsite to edges
8 else

9 val Ð evaluate body of f for arguments in
10 add in val to graph
11 edges Ð edgeszgraph
12 for each ¨ out¨ in edges do

13 add call_graphpf, out, graph Y edgesq to graph
14 return graph

Figure 4.3: Call graph construction (pseudo code). Invoked via call_graphpf, in,∅q, returns
a set of edges.

construct for dtw(2,2). Call graphs contain either of two edges:
‚ Edges in outsite embody an invocation with arguments in which leads f to
call itself at site site with new arguments out (recall the function body of dtw
in Figure 4.1 and its recursive call sites 1 , 2 , and 3 ).

‚ Edges in val indicate that f pinq enters a non-recursive base case that returns result
value val (recall the function body of dtw in Figure 4.1 and its base cases 4 and 5 ).

4.1.1 Pseudo Code

Call graph construction can be described as a generic recursive process that accepts
a function f and arguments in that returns the call graph. The pseudo code routine
call_graphpf , in, graphq of Figure 4.3 does exactly that. Parameter graph, initially ∅,
is used to accumulate the set of edges for the call graph of f pinq and is then returned.
This and the following routines are formulated in a style that allows their direct
transcription into SQL. You will find the SQL code regions in Sections 4.3 to 4.5 to
carry corresponding labels :
Slices+Calls With the incoming argument in, we collect the arguments out of all
immediate outgoing calls of f (if any) in associative array calls. For this, we have
to utilize a sliced version of f ’s body which computes exactly the arguments out
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without performing recursive calls. We focus on slicing f in Section 4.6.
Construct If we found that f pinq leads to outgoing calls, construct corresponding
edges in outsite with array calls and add them to the call graph. Otherwise,
argument in led f into a base case, a case without recursive calls, where we then
compute f ’s return value val and add in val to the call graph.

Invoke Continue call graph construction for any outgoing argument out we have
not encountered earlier, accumulating constructed edges in set graph. Once the call
graph is complete, return it.

Note that call_graphpf , args, Hq constructs a directed acyclic graph (or DAG) if the
original UDF invocation f pargsq terminates. A circular call graph would indicate a
lack of recursion progress in f looping indefinitely.

4.1.2 Optimization: Call Sharing

1 20 40 60 80 100

10

103

105

107

compiled dtw
pi ` 1q2

dtw (no sharing)
« 5.83i

i

call graph size for dtw(i,i)

Figure 4.4: Sharing saves
function invocations.

Any node in in the call graph — except the root — may have
an in-degree greater than one (see node (1,1) in Figure 4.2, for
example). As we assume f to be a pure function without side
effects, any call f pinq will yield the same computation. Thus,
all evaluation effort of node in and its sub-graphs below may
be shared by all callers. The call_graph routine implements
this sharing by accumulating a set of edges. Enabling such
sharing can drastically reduce the call graph size and, thus
evaluation effort. The naive evaluation of dtw(i,i)with ią0
leads to about 0.87ˆp5.83i

{
?

iq recursive calls [77], see
in Figure 4.4. With sharing enabled, the call graph size for
dtw(i,i) reduces down to pi`1q2, see . Indeed, we found
PostgreSQL does not share the evaluation effort of individual

calls (this applies even if uncompiled function f is explicitly marked as being free of
side effects [97, §38.7]). Without sharing, the nine inner nodes of the dtw(2,2) call
graph in Figure 4.2 would already unfold into a graph of 19 invocations. In general,
PostgreSQL’s built-in function evaluation faces dtw call graphs of exponential size
( ), which ultimately leads to disastrous function runtimes.
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dtw(2,2)

(1,2) (2,1)

(1,1)
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(a) Layer-wise call graph traversal.

evaluation
in val

i j
(2,2) 1.0
(1,2) 1.0
(2,1) 0.0
(1,1) 0.0
(0,2) ∞
(0,1) ∞
(0,0) 0.0
(1,0) ∞
(2,0) ∞

(b) Results.

Figure 4.5: A bottom-up call graph traversal populates table evaluation with the results of
all recursive calls performed during the evaluation of dtw(2,2).

4.2 Step 2: Bottom-Up Traversal and Evaluation

Once the call graph is constructed, the second phase begins evaluation traversing f ’s
call graph bottom-up. Figure 4.5a depicts this traversal for a sample call graph of
dtw(2,2) shown in Figure 4.2. The graph is traversed layer-by-layer, starting with
the bottommost layer in which the call graph’s base case edges in val indicate that
f pinq “ val. We record these discoveries as rows pin, valq in the two-column table
evaluation (see Figure 4.5b). This table is initially empty but will hold the results of
all recursive function calls once evaluation is complete. In each evaluation step, a call
graph node in with its n recursive calls, in out1

outn
sn

s1 ... , becomes available for evaluation
in the next higher layer once all n return values of function calls f pout1q, ... , f poutnq

are available in table evaluation, i.e. if tpout1, val1, ... , outn, valnqu Ď evaluation.
With these return values, we can then evaluate f pinq using a simplified function body
where each recursive call site si has been replaced by val i (i “ 1, ... , n). This returns
value val, which we insert as a new row pin, valq into table evaluation. Figure 4.5
shows that this iterative evaluation process partitions the call graph for dtw(2,2) into
four layers, traversed upwards from the leaves (dark to light). Once the fourth iteration
concludes, table evaluation holds row ((2,2),1.0) which ends the evaluation which
returns the final result dtw(2,2) = 1.0.
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Schedule

Body

Traverse

evaluationpf, args, e, graphq:
1 go Ð r s

2 for each in ¨¨ in graph such that erins “ � do

3 ret Ð r s

4 for each such call in outsite do

5 if erouts “ � then

6 continue at 2

7 retrsites Ð erouts

8 gorins Ð ret
9 returns Ð r s

10 for each pin, retq in go do

11 val Ð

evaluate body of f for arguments in
with the nth recursive call site replaced by retrns

12 returnsrins Ð val
13 e Ð e Y returns
14 if erargss “ � then

15 return evaluationpf, args, e, graphq
16 return e

Figure 4.6: Call graph traversal (pseudo code).

4.2.1 Pseudo Code

The pseudo code routine evaluationpf , args, e, graphq of Figure 4.6 realizes the in Sec-
tion 4.2 described traversal for call graph graph with root node args. While we traverse
graph bottom-up, we use parameter e to accumulate the table of result rows. Initially,
we expect e to only have rows pin, valq that derive from graph’s base case edges in val .
Schedule Populate associative array go with those in nodes not yet present in e (i.e.

erins “ �) and have the return values of all outgoing recursive calls ready in e.
Store an array ret in gorins which maps f ’s recursive call sites to their return value
recorded in e based on their position.

Body For each scheduled node in, evaluate the body of f in which recursive call sites
have been replaced with their corresponding return values of array ret found in
gorins. Use returns to record the result val of the body evaluation for argument in.

Traverse Accumulate result rows in e. If graphs’s root args is not found in e yet,
continue the traversal (on the next higher layer). Otherwise, the evaluation is
complete, and e is returned.
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Graph
Base

Eval

Result

fpargsq:
1 graph Ð call_graphpf, args,∅q

2 base cases Ð r s
3 for each in val in graph do

4 base casesrins Ð val
5 e Ð evaluationpf, args, base cases, graphq

6 return erargss

Figure 4.7: (Pseudo) code to replace the original body of UDF f . A SQL formulation is
developed later in this chapter.

4.2.2 Compiled UDF = Call Graph Construction + Bottom-Up Traversal

To complete compilation of function f , we replace its original body with the compo-
sition of call graph construction (Section 4.1) and bottom-up traversal (Section 4.2).
Figure 4.7 shows the corresponding pseudo code we will transcribe into proper SQL
in Section 4.5. Note how Base prepares base cases using graph’s base case edges.

4.3 SQL Template: Call Graph Construction

The recursive common table expression of Figure 4.8 computes a tabular encoding
of the call graph for f pargsq. We use overlines to abbreviate comma-separated lists of
columns. Figure 4.9, for example, shows the call graph of dtw(2,2) (Figure 4.9a) and
its tabular encoding call_graph (Figure 4.9b). A call edge in outsite is encoded as
row pin, site, fanout, out, �q in which fanout indicates that a call fpinq leads to a total
of fanout immediate recursive invocations. For example, fanout “ 3 characterizes
dtw’s 3-fold recursion. Likewise, base case edge in val maps to row pin, �, 0, in, valq.
We use � to abbreviate SQL’s NULL. Furthermore, the cursive type in Figure 4.8 indicates
template text that needs to be replaced. And, for f pargsq ” dtw(i,j), f .args denotes
dtw.i,dtw.j.

To illustrate their workings, regions in the SQL code directly relate to those in the
pseudo code for Figure 4.3:
Slices Compute two-column table slices in which a row pi, out iq indicates that the
evaluation of f pargsq reaches call site si and would invoke f poutiq. If call site si is not
reached for arguments args, record pi,

T

q in slices instead. Any distinguishable SQL
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Slices

Calls

Construct

Invoke

1 WITH RECURSIVE call_graph(in, site, fanout, out, val) AS (
2 SELECT ROW(f .args), NULL::int, NULL::bigint, ROW(f .args), NULL::τ

3 UNION -- recursive UNION

4 SELECT g.out, edges.*
5 FROM call_graph AS g,
6 LATERAL (
7 WITH slices(site, out) AS (
8 SELECT 1 AS site, out FROM (replacepslicepf , s1q, r(g.out).args sq) AS _(out)
9 UNION
10

...
11 UNION
12 SELECT n AS site, out FROM (replacepslicepf , snq, r(g.out).args sq) AS _(out)
13 ),
14 calls(site, fanout, out, val) AS (
15 SELECT s.site, COUNT(*) OVER () AS fanout, s.out, NULL::τ AS val
16 FROM slices AS s
17 WHERE s.out <>

T

18 )
19 TABLE calls
20 UNION ALL
21 SELECT NULL::int AS site, 0 AS fanout, ROW((g.out).args) AS out,
22 (replacepbodypf , rNULL::τ,...,NULL::τsq,
23 r(g.out).args sq) AS val
24 WHERE NOT EXISTS (TABLE calls)
25 ) AS edges(site, fanout, out, val)
26 WHERE g.fanout > 0 OR g.fanout IS NULL
27 )

Figure 4.8: Call graph construction (SQL template, compare with pseudo code in Figure 4.3).

dtw(2,2)

(1,2) (1,1) (2,1)

(0,2) (0,1) (0,0) (1,0) (2,0)

∞ ∞ 0.0 ∞ ∞

12 3

12 312
3

1
2

3

(a) The call graph describes edges representing
either a recursive call in outsite or a non-
recursive base case in val .

call_graph
in sitefanout out val

i j i j
(2,2) � � (2,2) �
(2,2) 1 3 (1,1) �
(2,2) 2 3 (1,2) �
(2,2) 3 3 (2,1) �
(1,1) 1 3 (0,0) �
(1,1) 2 3 (0,1) �
(1,1) 3 3 (1,0) �
(1,2) 1 3 (0,1) �
(1,2) 2 3 (0,2) �
(1,2) 3 3 (1,1) �
(2,1) 1 3 (1,0) �
(2,1) 2 3 (1,1) �
(2,1) 3 3 (2,0) �
(0,0) � 0 (0,0) 0.0
(0,1) � 0 (0,1) ∞
(1,0) � 0 (1,0) ∞
(0,2) � 0 (0,2) ∞
(2,0) � 0 (2,0) ∞

(b) Tabular representation of the call
graph in (a). We use � to abbreviate
SQL’s NULL.

Figure 4.9: The call graph for invocation of dtw(2,2).

37



replacepslicepdtw, 1 q, ri, jsq “

1 CASE
2 WHEN i=0 AND j=0 THEN 4

T

3 WHEN i=0 OR j=0 THEN 5

T

4 ELSE (SELECT 1 (SELECT ROW(i-1, j-1))
5 FROM (X JOIN Y
6 ON ((X.t,Y.t) = (i,j))) AS Z)
7 END;

Figure 4.10: Slice of the body of UDF dtw for call site 1 . Subexpressions irrelevant to
the computation of the arguments i-1, j-1 at call site 1 have been removed. Then, all
references to dtw’s arguments are replaced by i and j.

value may be used to represent T("bottom"). Table sliceswill carry n rows, if f has
n recursive call sites. For dtw, this would be n “ 3, where si “ i . To obtain outi, we
evaluate replacepslicepf , siq, rx1, x2, ...sq. slicepf , siq produces a sliced variant of the
body of f in which all subexpressions have been removed that are irrelevant to the
evaluation of f ’s argument outi at call site si. Slicing [108, 104, 107] is an established
code transformation technique that we adapt for SQL in subsequent Section 4.6.
Finally, replacepf , rx1, x2, ...sq produces outi, where all references to f ’s arguments
args in f ’s body are replaced with x1, x2, .... Figure 4.10, for example, shows the
result of replacepslicepdtw, 1 q, ri, jsq.

Calls For each recursive call site si that has been reached, collect (the tail of) its call
graph edge outisi in table calls. We use aggregate COUNT(*)OVER() [97, §4.2.8]
over the non-empty slices to find the number of recursive calls (fanout) performed
by fpargsq.

Construct If, instead, arguments args led to a base case (i.e, table calls is empty), eval-
uate the body of f for args to obtain return value val of scalar type τ . Construct (the
tail of the) base case edge val . We use replacepbodypf , re1, e2, ...sq, rx1, x2, ...sq to
modify the body of f . bodypf , re1, e2, ...sq replaces the call sites of f with expressions
e1, e2, ... and replacepf , rx1, x2, ...sq takes all references to the arguments of f in its
body and replaces them with x1, x2, .... Figure 4.11, for example, shows the result
of replacepbodypf , re1, e2, e3sq, ri, jsq. Since the recursive call sites are irrelevant in
the base case, the template sets ei to NULL of type τ .

Invoke Add edges to the call graph in each iteration. Proceed with the call graph
construction using the arguments out of the added graph edges g from the directly
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replacepbodypf , re1, e2, e3sq, ri, jsq “

1 CASE
2 WHEN i=0 AND j=0 THEN 4 0.0
3 WHEN i=0 OR j=0 THEN 5 ’∞’ -- ’Infinity’::real
4 ELSE (SELECT abs(Z.x - Z.y)
5 +
6 LEAST( 1 e1,
7 2 e2,
8 3 e3)
9 FROM (X JOIN Y
10 ON ((X.t,Y.t) = (i,j))) AS Z)
11 END;

Figure 4.11: Body of UDF dtw with its call sites and arguments replaced by e1, e2, e3 and i, j,
respectively.

previous iteration as arguments to f . As per the semantics of the recursive UNION,
the construction will terminate once no new graph edges are discovered, i.e. all
edges are base cases with fanout = 0.

4.4 SQL Template: Bottom-Up Traversal

The SQL template of Figure 4.12 realizes the layer-by-layer call graph traversal as
introduced in Figure 4.6. Like the pseudo code, it returns binary table evaluation
whose rows ppinq, pvalqq indicate that f pinq “ val . This SQL piece assumes that (1) f ’s
return values for base cases are found in table base_cases(in,val), and (2) the tabular
encoding of the call graph is found in call_graph (recall Figure 4.5):
Schedule Identify unevaluated nodes g whose recursive calls (of which there are

g.fanout many) are all found in table evaluation. Like the pseudo code, we collect
the return values of these recursive calls in an SQL array ret using the custom aggre-
gate array_gather(v,i) which builds array a where a[i] = v. Subsequent tweaks
and improvements to the template in Chapter 5 will not require array_gather(v,i)
anymore.
Note that throughout the bottom-up traversal, each row in the evaluation CTE
is joined with the call_graph CTE, prompting a full CTE scan every time. Thus,
the runtime complexity of compiled function f is |evaluation| ˆ |call_graph|,
where |evaluation| ą |call_graph| i.e. the lion share of the total execution time
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Schedule

Body

Traverse

1 rWITH RECURSIVEs evaluation(in,val) AS (
2 TABLE base_cases
3 UNION ALL -- recursive UNION ALL
4 (WITH e(in,val) AS (TABLE evaluation),
5 returns(in,val) AS (
6 SELECT go.in,
7 (replacepbodypf, rgo.ret[1],...,go.ret[n]sq,
8 r(go.in).args sq) AS val
9 FROM (SELECT g.in, array_gather(e.val,g.site) AS ret
10 FROM call_graph AS g, e
11 WHERE g.out = e.in
12 AND NOT EXISTS (SELECT FROM e WHERE e.in = g.in)
13 GROUP BY g.in, g.fanout
14 HAVING COUNT(*) = g.fanout
15 ) AS go(in,ret)
16 )
17 SELECT results.*
18 FROM (TABLE e UNION ALL TABLE returns) AS results(in,val)
19 WHERE NOT EXISTS (SELECT FROM e WHERE e.in = ROW(f .args))
20 )
21 )

Figure 4.12: Bottom-up call graph traversal (SQL template, compare with pseudo code
in Figure 4.6).

to evaluate function f . Indeed, depending on function f , the size of evaluation
can be many times the size of call_graph. For example, measuring the size of
call_graph and evaluation for invocation of compiled function dtw(100,100)
yields |evaluation| “ 108,721 and |call_graph| “ 10,201. Chapter 5 discusses ways
to improve this through reference counting.

Body For each node go, evaluate the body of f with its call sites replaced by the
return values found in go.ret. We use replacepbodypf , re1, e2, ...sq, rx1, x2, ...sq to
modify the body of UDF f in which bodypf , re1, e2, ...sq replaces the call sites of
f with expressions e1, e2, ... and replacepf , rx1, x2, ...sq replaces all references to
the arguments of f in its body with x1, x2, .... Figure 4.11, for example, shows
the result of replacepbodypf , re1, e2, e3sq, ri, jsq. Record the found results in table
returns(in,val).

Traverse Add returns to evaluation to form the overall known results so far. The
CTE will continue to iterate until the result for argument f .args is finally found in
results.
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Graph

Base

Eval

Result

1 CREATE FUNCTION f(args) RETURNS τ
2 AS $$
3 WITH RECURSIVE call_graph(in,site,fanout,out,val) AS (
4 xsee Figure 4.8y
5 ),
6 base_cases(in,val) AS (
7 SELECT g.in, g.val
8 FROM call_graph AS g
9 WHERE g.fanout = 0
10 ),
11 evaluation(in,val) AS (
12 xsee Figure 4.12y
13 )
14 SELECT e.val
15 FROM evaluation AS e
16 WHERE e.in = ROW(f .args);
17 $$ LANGUAGE SQL STABLE STRICT;

Figure 4.13: Compiled SQL code replaces the functional-style UDF f. (Compare with pseudo
code in Figure 4.7.)

Note that the code regions Schedule and Traverse in Figure 4.12 hint at a non-
monotonic SQL query through its usage of aggregates and NOT EXISTS that some
RDBMSs rule out syntactically if they appear in a recursive CTE. However, line 4
of Figure 4.12 references evaluation exactly once and stores only its most recent rows
into CTE e, which works around this problem. We find that the templates discussed
here are accepted by postgreSQL [97], HyPer [92], or Umbra [93], for example.

4.5 Emitting Code

The compiler completes its job by emitting the SQL function f of Figure 4.13 which
glues the two SQL templates of Sections 4.3 and 4.4 together. Just like the pseudo code
of Figure 4.7, Graph and Base prepare the call graph and base case tables as expected
by Eval . From table evaluation, Result extracts f ’s return value for arguments args
to deliver the function’s final result. This purely CTE-based form of f serves as the
drop-in replacement for the original functional-style UDF and already improves the
runtimes compared to the uncompiled function (see and in Figure 4.14).

This vanilla approach does not yet enable recursive call sites to reference surrounding
row variables, table-valued return types, and other runtime optimizations. In subse-
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Figure 4.14: Evaluating dtw(i,i). Compares the runtimes before and after compilation.

quent Chapter 5, we lift these restrictions and further exploit this call graph-centric
approach to UDF compilation. Besides the opportunity to share calls and thus evalua-
tion effort, we find that
• some functions lead to simpler call graphs (i.e. call chains), which the compiler can
use to optimize code (see Sections 5.3 and 5.4).

• Traversal-based evaluation creates a table filled with the results of all intermediate
recursive calls. Future calls to f can benefit when these are stored for future use
(see Section 5.5).

• Call graph construction allows the user to batch together many function invoca-
tions into one enabling sharing beyond the boundaries of a single function call
(see Section 5.6).

4.6 Slicing Functional-Style SQL UDFs

With slicepf, siq, we are after a minimal version of function f ’s original body – a
slice – which still retains those expressions relevant to the evaluation of the argument
expressions at call site with label si. All argument expressions of si must evaluate the
same in the sliced body as they would in the original. This closely resembles program
slicing [108] in which a program is reduced to contain only statements relevant to
executing a statement s called slicing criterion. We adapt slicing to aid in compiling

42



functional-style UDFs (recall use of slicepf, siq in SQL template in Figure 4.8).

4.6.1 Evaluation Paths

In the statement-by-statement execution of an imperative program, we can mechan-
ically identify the trace of statements [58] which are required for evaluating slicing
criterion s. In an expression-based language like SQL, an expression e1 is entered before
e2 if an expression evaluator begins the evaluation of e1 before it starts to evaluate e2.
This is the case if
• e2 is subexpression of e1 (in this case, the evaluation of e2 is done before e1), or
• e1 binds a variable that is in scope of e2, or
• e1 is a predicate that may inhibit the evaluation of e2.
Given a query q, we use q ‚Ñ tp1, . . . , pnu to compute its set of evaluation paths. Each
path pi is a sequence of expression labels r ℓ , . . . s (recall grammar in Chapter 3) which
stand in for their associated expressions eℓ. Label 1 precedes 2 in pi (or: 1 ăpi

2 ),
if e1 is entered before e2 in q. Figure 4.15 defines ‚Ñ in terms of inference rules that
inspect the syntax of q.
Note that, for brevity, we write the elements of the FROM-list as T1 # ...# Tf which

recursively expands to

T1 ” t1 AS id21

T1 # T2 ” (T1 rLEFT|FULLs JOIN t2 AS id N2ON sql) AS id22

T1 # ... # Tf´1 # Tf ” (T1 # ... # Tf´1 rLEFT|FULLs JOIN tf AS id NfON sql) AS id2f .

Figure 4.16 superimposes the evaluation paths of UDF dtw on its body query. We
see that evaluation path r A , 4 s contains the expressions entered before base case
literal 0.0 (label 4 ) is evaluated. One evaluation path leading to call site 1 is p “

r A , B , C , D , E , F , G , H , I , K , 1 s. We find the FROM clause ( D ) and table X ( E ) and
table Y ( F ) in p as these bind row variables X and Y to ON clause ( G ). Its predicate
controls wether 1 is evaluated for a given variable binding, thus we find G ăp 1 as
well.

Note that evaluation paths reflect dependencies between the query subexpression
prescribed by the SQL semantics [101] and are independent of any particular order an
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ℓ f(sql1,...,sqln) ‚Ñ tr ℓ su ℓ sql ‚Ñ tr ℓ su ℓ id ‚Ñ tr ℓ su

q ‚Ñ π

ℓ (q) ‚Ñ tr ℓ su ‘ π

ei ‚Ñ πi

ˇ

ˇ

i“1...n

ℓ ⊗(e1,...,en) ‚Ñ tr ℓ su ‘
ď

i“1...n

πi

e1 ‚Ñ π1 e2 ‚Ñ π2

CASE ℓ WHEN sql THEN e1
ELSE e2

END
‚Ñ tr ℓ su ‘ pπ1 Y π2q

q1 ‚Ñ π1 q2 ‚Ñ π2

CASE ℓ WHEN sql THEN q1
ELSE q2

END
‚Ñ tr ℓ su ‘ pπ1 Y π2q

qi ‚Ñ πi

ˇ

ˇ

i“1...n

ℓ setop(q1,...,qn) ‚Ñ tr ℓ su ‘
ď

i“1...n

πi

e ‚Ñ π

ℓ agg(e ORDER BY sql)
OVER (over)

‚Ñ tr ℓ su ‘ π

ei ‚Ñ π1i

ˇ

ˇ

i“1...s
tj ‚Ñ π2j

ˇ

ˇ

j“1...f
e ‚Ñ π

T WITH id1 AS (sql1),...,idt AS (sqlt)
S SELECT e1 AS id11,...,es AS id1s
F FROM T1 # ...# Tf
WWHERE e
GGROUP BY sql1,...,sqlg HAVING sql
OORDER BY sql1,...,sqlo
LLIMIT sql
EOFFSET sql

‚Ñ
tr T , F su ‘ π21 ‘ π22 ‘ trN2su ... ‘ π2j ‘ trNf su ‘

trW su ‘ π ‘ trG , O , L , E , S su ‘
ď

i“1...s

π1i

Figure 4.15: q ‚Ñ π derives the set π of evaluation paths for SQL query q. Operator ‘ com-
bines two path sets: π1 ‘ π2 “ tp1 } p2 | p1 P π1, p2 P π2u where } denotes path concatenation.
Any Tj

ˇ

ˇ

j“1...f
uniquely identifies tabular expression tj (and label Nj, if j ą 1).
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1 CASE
2 WHEN i=0 AND j=0 THEN 0.0
3 WHEN i=0 OR j=0 THEN ’∞’
4 ELSE ( SELECT abs(Z.x - Z.y)
5 +
6 LEAST( dtw(i-1, j-1),
7 dtw(i-1, j ),
8 dtw(i , j-1))
9 FROM ( X JOIN Y
10 ON ((X.t, Y.t) = (i, j))) AS Z)
11 END;

A
B

4
5

C H J
I

K 1
2
3

D E F
G

Figure 4.16: (Prefix tree of) Evaluation paths of UDF dtw superimposed on its body.
r A , B , C , ...s shown as A B C ¨¨¨.

RDBMS may choose to evaluate q. This also means the evaluation path is produced
independent of any alterations that specific query optimizations would have applied.
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ℓ f(sql1,...,sqln)
ŕ

ŕ

ő

C
“

#

ℓ (SELECT ROW(sql1, ... , sqln)) if ℓ P C

T otherwise
pRecq

ℓ sql
ŕ

ŕ

ő

C
“

#

ℓ sql if ℓ P C

T otherwise
pSqlq

ℓ ⊗(e1,...,en)
ŕ

ŕ

ő

C
“

#

eióC if E “ tiu

T otherwise
with E “ ti P 1 ... n | eióC ‰

T

u pOpq

ℓ (q)
ŕ

ŕ

ő

C
“ ℓ (qóC) pSubq

ℓ id
ŕ

ŕ

ő

C
“

#

ℓ id if ℓ P C

T otherwise
pTblq

CASE ℓ WHEN sql THEN e1
ELSE e2

END

ŕ

ŕ

ŕ

ŕ

ŕ

ő

C

“

(SELECT * FROM (SELECT e1óC ) AS _ WHERE sql
ℓ UNION ALL

SELECT * FROM (SELECT e2óC ) AS _ WHERE NOT sql)
pCaseeq

CASE ℓ WHEN sql THEN q1
ELSE q2

END

ŕ

ŕ

ŕ

ŕ

ŕ

ő

C

“

(SELECT * FROM (q1óC ) AS _ WHERE sql
ℓ UNION ALL

SELECT * FROM (q2óC ) AS _ WHERE NOT sql)
pCaseqq

ℓ setop(q1,...,qn)
ŕ

ŕ

ő

C
“

#

qióC if Q “ tiu

T otherwise
with Q “ ti P 1 ... n | eióC ‰

T

u pSetq

ℓ agg(e ORDER BY sql)
OVER (over)

ŕ

ŕ

ŕ

ő

C

“ (eóC) pAggq

Figure 4.17: qóC (eóC) slices SQL query q (expression eóC) to expose the arguments of the
recursive call at the call site identified by C. Continued in Figure 4.18.
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4.6.2 Call Site Slices

We build upon evaluation paths (from previous Section 4.6.1) and define slicepf, siq

as follows:
(1) Let q denote the query body of UDF f . Derive its set π of evaluation paths via

q ‚Ñ π. Then, let πrsis Ď π hold the subset of paths that contain call site label si.
(2) The labels in C “ tsiu Y

Ť

pPπrsis
tc | c ăp siu are those expressions in q that are

entered before si on some evaluation path. To ensure that the resulting slice does
not depend on other self-invocations of f , we impose the syntactic restriction that
C may not contain call site labels other than si.

(3) Find and return the sliced query q´ “ q óC , which is stripped of expressions
irrelevant to evaluating the arguments at call site si. ¨ óC is defined in Figures 4.17
and 4.18 and discussed in further detail below.

SQL transformation q óC is defined by syntactic case analysis on q guided by set C.
The slicing replaces any irrelevant subexpression with T, an arbitrary yet unique SQL
value which signifies that the evaluation of q has not entered call site si.

Rec If this is the call site we are after (i.e. ℓ P C ), remove the recursive call to f and
only keep its n arguments packaged inside a row constructor inside a SELECT-clause.
Otherwise, the expression is irrelevant.

Sql Do not descend further into any SQL expression sql which does not contain a
call site (recall Figure 3.1).

Op If the call site found in the ith argument of n-ary operator ⊗ (meaning ei óC‰

T

and thus E “ tiu), keep slicing that argument ei only. Otherwise, discard the
operator entirely.

Casee{q Preserve the branches e1 and e2 (or q1 and q2) such that they are (not) evaluated
under the same conditions as the original query. In any case, we transform the CASE-
clause into its equivalent SELECT-WHERE-clauses as part of this process, lifting the
scalar conditional expression into its tabular representation. Recursive application
of ¨ óC discards irrelevant branches with T.

Set If the call site found in the ith argument of n-ary set-operator setop (meaning
qi óC‰

Tand thus Q “ tiu), keep slicing that argument qi. Otherwise, discard the
operator entirely.
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Select For a call site found in the SELECT expression ei, discard any other expression.
Then, move ei into a LATERAL subquery appended with a cross-join (,) at the end
of FROM T1 # ...# Tf . The LATERAL subquery is assigned a unique row variable id.
Expression id.* replaces all expressions in the SELECT-clause to extract and observe
the call’s argument values. This lifts ei from a (possibly) scalar expression into a
tabular context.

Where Similar to Select, except we append the WHERE predicate e at the end of
FROM T1 # ...# Tf .

From For a call site found in the FROM tabular expression tj (j P 1, ... , f ), we keep
only T1 # ...# Tj´1 and append tj with a cross-join (,) at the end of it. Then, we
move id2j.* into the SELECT-clause where we extract and observe the call’s argument
values.

slicepdtw, 1 q “

1 CASE
2 WHEN i=0 AND j=0 THEN

T

3 WHEN i=0 OR j=0 THEN

T

4 ELSE ( SELECT (SELECT ROW(i-1, j-1))
5 FROM ( X JOIN Y
6 ON ((X.t, Y.t) = (i, j))) AS Z)
7 END;

A
B

4
5

C H 1
D E F

G

Figure 4.19: Slice of the body of UDF dtw for call site 1 . Subexpressions irrelevant to the
computation for the arguments i-1, j-1 at call site 1 have been removed.

For example, the Figure 4.19 shows the result of slicepdtw, 1 q. For readability sake, we
refrain from rewriting the CASE as its SELECT-WHERE-clause (recall Casee in Figure 4.17).
The set C is t A , B , C , D , E , F , G , H , I , K , 1 u. The result is a valid SQL slice that
either returns the arguments ROW(i-1,j-1) of the call at site with label 1 or Tif the
invocation of dtw enters a base case branch ( 4 or 5 ).

Now that we described the vanilla compilation method and its implementation, we
can tweak and improve it in Chapter 5. There, we will lift restrictions and expoit the
call graph for further optimizations.
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5
Tweaks and Improvements

The vanilla compilation method described in previous Chapter 4 already has a positive
impact on the execution times of functional-style UDFs. This chapter introduces
tweaks and improvements to this vanilla compilation technique to lower execution
times even further as well as lift syntactical restrictions previously imposed. In-
deed, as Figure 5.1 indicates, some of these improvements to the compiled functional-
style UDF dtw ( ) moves execution times close to the runtime performance of a
hand-crafted and carefully optimized CTE ( ).
In Section 5.1, we ultimately replace the vanilla evaluation CTE with one that

applies reference counting to the bottom-up traversal process and lifts the restriction
where recursive call sites were not allowed to reference surrounding row variables. Fur-
ther improvements in all subsequent sections build upon this tweaked SQL template.
In Section 5.2, we describe necessary tweaks to the SQL template that enables compila-
tion of functional-style UDFs with table-valued return type. In Sections 5.3 and 5.4,
if the compiler identifies the functional-style UDF as linear- or tail-recursive, we can
further simplify the SQL templates the compiler produces. Finally, we introduce two
more optimizations developers can enable when compiling functional-style UDFs:
‚ Memoization retains the results of all intermediate recursive calls for future calls (Sec-
tion 5.5), and
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Figure 5.1: Evaluating dtw(i,i): Execution time comparison of compilation with sharing and
reference-counting enabled with the uncompiled functional-style UDF dtw and the (optimized)
hand-crafted CTE. The definition of dynamic time warping (dtw) and this plot appeared
in Chapter 1 before.

‚ Batching turns function f , that processes a single argument list f (args), into a
function f 1 that evaluates an array of argument lists f 1([args,...,args]) batched
together in a single call (Section 5.6).

Note that tweaks, such as table-valued return types, memoization, and batching, work
independently of each other for functional-style UDFs which are compiled either as
general-, linear-, and tail-recursive. Templates with all tweaks enabled can be found
in Appendix B, where their modular nature is highlighted. All experiments in this
chapter were performed with PostgreSQL 13 running on a 64-bit Linux x86 host with
8 Intel Core™ i7 CPUs clocked at 3.66 GHz and 64 GB of RAM, of which 128 MB
were dedicated to the database buffer. Timings were averaged over 10 runs, with worst
and best runtimes disregarded.
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1 CREATE FUNCTION dtw(i int, j int)
2 RETURNS real AS $$
3 CASE
4 WHEN i=0 AND j=0 THEN 4 0.0
5 WHEN i=0 OR j=0 THEN 5∞ -- ’Infinity’::real
6 ELSE (SELECT abs(Z.x - Z.y)
7 +
8 LEAST( 1 dtw(i-1, j-1),
9 2 dtw(i-1, j ),
10 3 dtw(i , j-1))
11 FROM (X JOIN Y
12 ON ((X.t,Y.t) = (i,j))) AS Z)
13 END;
14 $$ LANGUAGE SQL STABLE STRICT;

Figure 5.2: DTW as a recursive SQL UDF written in functional style. 1 , 2 , and 3 mark the
recursive call sites, 4 and 5 designate the non-recursive base cases.

evaluation
in val ref sitefanout

i i j i j
(0,0) 0.0 (1,1) 1 3
(0,1) ∞ (1,1) 2 3
(1,0) ∞ (1,1) 3 3

1 (0,1) ∞ (1,2) 1 3
(0,2) ∞ (1,2) 2 3
(1,0) ∞ (2,1) 1 3
(2,0) ∞ (2,1) 3 3
(0,1) ∞ (1,2) 1 3
(0,2) ∞ (1,2) 2 3
(1,0) ∞ (2,1) 1 3

2 (2,0) ∞ (2,1) 3 3
(1,1) 0.0 (2,2) 1 3
(1,1) 0.0 (1,2) 3 3
(1,1) 0.0 (2,1) 2 3
(1,1) 0.0 (2,2) 1 3

3 (1,2) 1.0 (2,2) 2 3
(2,1) 0.0 (2,2) 3 3

4 (2,2) 1.0 (2,2) � �

Figure 5.3: Table evaluation for dtw(2,2) with reference counting enabled. Note how in
each evaluation step i, we keep only those rows in the working table that have not yet used
to produce a new result.
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5.1 Reference Counting

In each iteration of a recursive common table expression,

WITH RECURSIVE t AS (q1 UNION ALL q2)

query q2 finds in t all rows that were produced in the CTE’s previous iteration [101].
SQL implementations hold these newly found rows of t in the so-called working
table [97, §7.8], ready to be read by q2. In the vanilla compilation (recall Chapter 4),
the evaluation CTE of Figure 4.12 keeps both known and new results (see Line 18
in Traverse ) to ensure that Schedule sees all results found so far. Thus, the evaluation
of a call graph node may depend on the result of a node found in any lower layer of
the bottom-up graph traversal. For example, reusing the dynamic time warp (dtw)
from previous Chapter 4, the evaluation of call graph node (1,2) in Figure 4.5a
depends on result for nodes (0,2), (0,1), and (1,1) to be present in the working table.
As evaluation continues, this leads to monotonically increasing working table sizes
containing all these previous (possibly obsolete) results, negatively affecting runtime
performance. We find that the in-degree of a call graph node determines how often its
return value is referenced during the evaluation of parent calls. Thus, the following
adaption of the compilation scheme enables reference counting, which removes such
obsolete results from working tables throughout the bottom-up traversal of the call
graph:
1. To the tabular encoding of the results in theevaluationCTE, add utility columnsref,

site, and fanout. Together with in, these columns represent call graph edges
ref insite . Referee ref functionally determines fanout. Thus, if the count of
rows with the same ref is equal to fanout, evaluate the result of outgoing call f prefq

and store the newly evaluated results in the working table.
2. Mark those rows used to evaluate f prefq as referenced and drop them from subse-

quent working tables.
3. For all newly evaluated results of outgoing call f prefq, we look up their referee’s

ref, site, and fanout in the call graph and add them to the working table.
Figure 5.3 shows the working tables of each iteration i when evaluating dtw(2,2) with
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RefSchedule

RefBody

RefTraverse

1 rWITH RECURSIVEs evaluation(in,val,ref,site,fanout) AS (
2 TABLE base_cases
3 UNION ALL -- recursive UNION ALL
4 (WITH e(in,val,ref,site,fanout) AS (TABLE evaluation),
5 returns(in,val) AS (
6 SELECT go.in,
7 (replacepbodypf , rlookuppf , 1 q, ... , lookuppf , n qsq,
8 r(go.in).args sq) AS val
9 FROM (SELECT e.ref
10 FROM e
11 GROUP BY e.ref, e.fanout
12 HAVING COUNT(*) = e.fanout
13 ) AS go(in)
14 )
15 SELECT *
16 FROM e
17 WHERE e.fanout IS NOT NULL
18 AND NOT EXISTS (SELECT FROM returns AS r WHERE r.in = e.ref)
19 UNION ALL
20 SELECT r.*, g.in, g.site, g.fanout
21 FROM returns AS r, call_graph AS g
22 WHERE r.in = g.out
23 )
24 )

Figure 5.4: Tweaking the template of Figure 4.12 in previous Chapter 4 implements reference
counting and enables functional-style UDFs with call sites that reference surrounding row
variables.

reference counting enabled. The final step (i “ 4) lists only the result for (2,2) and,
thus, marks the end of the bottom-up traversal and evaluation.

5.1.1 Tweaking the SQL Template

The vanilla templates are tweaked to implement reference counting. Reference count-
ing also lifts the restriction where recursive call sites were not allowed to reference
surrounding row variables as a side effect. Such call sites that reference surrounding
row variables we call correlated. For correlated call sites, fanout depends on the un-
known number of rows the row variable references. Thus, we identify functions with
correlated call sites as n-fold recursive. Compare this to dtw (see Figure 5.2) which has
no correlated call site and which identifies it as 3-fold recursive.
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We highlight those changes that lead to the template in Figure 5.4:
RefSchedule Collect referee nodes ref whose recursive call results are all present in
the working table of evaluation. This decides whether outgoing call f prefq is ready
for evaluation or not. Notice, that custom aggregate array_gather is not required
anymore, because we look up results in RefBody directly from the working table.

RefBody For each referee node in go, evaluate the body of f with its call sites replaced
by subquery:

lookuppf , ℓ q “ (

SELECT e.val FROM e
WHERE e.ref = in
AND e.site = ℓ

AND e.in = callpf , ℓ q

) .

The subquery lookuppf , ℓ q looks up the result of recursive call in of call graph
edge ref insite i.e. the result of in at site called by ref. Recursive call in is
determined by callpf, ℓ q which extracts the call site argument expressions at ℓ . For
example: callpdtw, 1 q “ (i-1, j-1) (see call site 1 in Figure 5.2). Extracting the
call site arguments and looking up the results in the working table of evaluation
makes the custom aggregate array_gather obsolete and, as a side effect, allows
compilation of functional-style UDFs with correlated call sites.

RefTraverse Do not keep results in the working table of evaluation that have
been used in this evaluation step. For each result of in in CTE returns find
all its referees ref in call_graph and add the result of in at site called by ref
representing call graph edge ref outsite ). Indeed, duplicates of the same results
are added to the working table if more than one node ref depends on in. For
example, recall (1,1) in Figure 4.5a which has its result added three times, be-
cause nodes (2,1), (2,2), and (1,2) are its referees. However, this is a small
price to pay since, with this tweak, we only join newly discovered results with
call_graph instead of the entire evaluation CTE. The number of newly discov-
ered results is exactly the number of nodes in the |call_graph|. This improves
runtime complexity from |evaluation| ˆ |call_graph| to |call_graph|2 (recall that
|evaluation| ą |call_graph|). Bottom-up traversal continues until we reach the
initial function call, which ends the evaluation and produces the result of f .
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Graph

RefBase

RefEval

RefResult

1 CREATE FUNCTION f(args) RETURNS τ
2 AS $$
3 WITH RECURSIVE call_graph(in,site,fanout,out,val) AS (
4 xsee Figure 4.8y
5 ),
6 base_cases(in,val,ref,site,fanout) AS (
7 SELECT g.in, g.val, g_ref.in, g_ref.site,g_ref.fanout
8 FROM call_graph AS g,
9 call_graph AS g_ref
10 WHERE g.fanout = 0
11 AND (g_ref.fanout > 0 OR g_ref.fanout IS NULL)
12 AND g.in = g_ref.out
13 ),
14 evaluation(in,val,ref,site,fanout) AS (
15 xsee Figure 5.4y
16 )
17 SELECT e.val
18 FROM evaluation AS e
19 WHERE e.fanout IS NULL;
20 $$ LANGUAGE SQL STABLE STRICT;

Figure 5.5: The compiled SQL code enables reference counting and allows correlated call
sites in functional-style UDFs.

In Figure 5.5, regions RefBase , RefEval , and RefResult replace their vanilla counter-
parts. As before, the base_cases CTE initializes the first results at the very bottom
layer of the traversal. Indeed, as with RefTraverse in CTE evaluation, multiple
copies of the same result may be stored in base_cases if multiple ancestors depend on
it. From table evaluation, RefResult extracts f ’s return value, which has fanout set
to �, to deliver the function’s final result.

Figure 5.6a traces the working table size as CTE evaluation traverses the call graph for
dtw(100,100). The vanilla evaluation CTE of Figure 4.12 indeed processes working
tables of monotonically increasing size, growing from 201 to 10,201 rows across
the 200 iterations. This incurs a noticeable runtime penalty for evaluation processes
that recurse deeply ( in Figures 5.6a and 5.6b). With reference counting, theworking
table size never exceeds 400 rows and decreases sharply as the traversal approaches the
ever-narrower layers at the top of dtw’s call graph. These savings add up favorably at
runtime (see in both figures). While sharing helps to keep working table sizes
in check during call graph construction, reference counting does the same during
evaluation. The evaluation of dtw(300,300) builds a working table that never exceeds
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(b) Run time reduction.

Figure 5.6: Evaluating dtw(100,100): Impact of reference counting on working table size and
CTE runtime.

1200 rows if reference counting is performed. To put into perspective how far we
have come, recall Figure 5.1 as it compares dtw between the original UDF (before
compilation) and the final compiled UDF.

5.1.2 The Impact of Call Sharing

Some functional-style UDFs never share recursive calls throughout call graph construc-
tion. Take, for example, function split(x,y) where x and y represent the boundaries
of a range rx, ys. split divides this range in the middle and continues to do so recur-
sively until |x ´ y| ď 1, at which point it returns 1. We define split recursively as
follows:

split(x, y) “

#

1 , |x ´ y| ď 1
split(x,x `

|x´y|

2 ) ` split(x `
|x´y|

2 , y), otherwise . (split)

split will never produce the same recursive call twice during its evaluation. Figure 5.7
shows a direct comparison of split before compilation ( ), after compilation with-
out the benefit of call sharing ( ) and, the function implemented as a hand-crafted
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Figure 5.7: Evaluating split(i,i2).

CTE ( ). Some functional-style UDFs, whether compiled or not, fall far behind
when compared to the execution times of a hand-crafted CTE (found in Section C.3).
Thus, developers must take into consideration whether their complex computation
exhibits call sharing potential before deciding between writing a functional-style UDF
(and compiling it) and a hand-crafted implementation using recursive CTEs. In such
cases, the developer may be faced with a compromise between readability and per-
formance. Indeed, this underlines that functional-style UDFs are not here to replace
recursive CTEs but to give the developer additional options to implement complex
computations.
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Figure 5.8: Evaluating dtw(i,i). Compares the runtime difference of the compiled UDF using
reference counting with a database buffer size set to 4 MB and 128 MB. Only when the
database buffer size is set to 4 MB, do we measure any I/O operations.

5.1.3 Runtime Experiments

Pushing the approach further, we measure dtw(i,i) until we reach i “ 600 exhibiting
a call graph with 361,201 nodes. Figure 5.8 reports that the call_graph CTE will
exceed the PostgreSQL 13 default database buffer size of 4MB [97] beginning with
dtw(140,140) (see ). As a consequence, PostgreSQL writes the excess pages of
the database buffer to disk and, thus, evaluation CTE must now read from disk
when joining with the call_graph CTE. The bar chart ( ) plots the throughput of
I/O operations measured in pages (the size of a single page is set to the PostgreSQL
default: 8192 byte [97]). Increasing the database buffer size to a modest 128MB (i.e.,
0.2% of the host’s RAM of 64GB), not a single buffer read or write I/O operation
is performed by PostgreSQL (see ). For example: dtw(600,600) with a database
buffer size of 4MB requires 6,671,512 I/O operations (of which only 99.7% are read
operations). Increasing the database buffer size to 128MB then improves its runtimes
from 258.7 seconds to 234.9 seconds, shaving off almost 10% of the time needed to
produce the result with minimal effort. In other words, the I/O operations cost us
23.8 seconds extra unless the buffer size is moderately increased to fit the call_graph.
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Figure 5.9: Evaluating eval(e) where e is an expression which evaluates 2n binary operators.

The rest of this section compares other functional-style UDF use cases:
eval: Function eval(ek) evaluates an arithmetic expression ek “ pop, el, er, vq.

‚ Each expression ei is uniquely identified by integer i,
‚ op can either be a binary operator (`, ´, ˆ, ˜) or ℓ, and
‚ v can be any real number.
We assume that the same expressions also have the same identifier k. Function eval
is recursively defined as:

eval(pℓ , el, er, vq) “ v

eval(p`, el, er, vq) “ evalpelq ` evalperq

eval(p´, el, er, vq) “ evalpelq ´ evalperq

eval(pˆ, el, er, vq) “ evalpelq ˆ evalperq

eval(p˜, el, er, vq) “ evalpelq ˜ evalperq .

(eval)

Function eval exhibits 2-fold recursion. Compilation enables sharing of common
subexpressions and improves runtimes by order of magnitude compared to eval
before compilation (see Figure 5.9). Compilation also turns the original top-down
expression interpreter into a bottom-up variant that processes all independent subex-
pressions step by step in the evaluation CTE.
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Figure 5.10: Evaluating knap(i,i).

knap: Function knap(k,u) implements an algorithm to solve the 0-1 Knapsack prob-
lem [88]. Given items i P 1, ... , n where each item has weight wi and value pi.
Then knap(k,u) maximizes the sum of values of k items that fit into a knapsack
with carrying capacity u. Function knap is recursively defined as:

knap(1, u) “ 0

knap(k, u) “

$

’

’

&

’

’

%

knap(k´1, u) , wk ą u

max
#

knap(k´1, u)
knap(k´1, u´wk)`pk

+

, otherwise .

(knap)

Function knap exhibits 2-fold recursion. The 0-1 Knapsack algorithm is used as the
running example in Chapter 2 to highlight one of the functions developers would
prefer to implement in functional-style. Figure 5.10 reports that, if a developer
then also compiles knap, the runtime improves significantly. Call sharing turns the
brute force approach into one that utilizes dynamic programming, where redundant
subproblems are evaluated once instead of many times. Thus, for this use case,
developers can expect both: readability and runtime improvements.
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Figure 5.11: Evaluating needleman(p,q,n,n,g) compares two protein sequences p and q of
length n with gap penality g “ ´5.

needleman: Function needleman(p,q,n,n,g) implements the Needleman-Wunsch
algorithm [91] which compares two protein sequences p and q of length n and
rates them based on gap penality g and a two-dimensional scoring matrix M (here:
BLOSUM62 [99]). Notation si accesses a single amino acid in protein sequence s at
position i. The scoring matrix M takes two single amino acids a and b and produces
a score (in short: M[a][b]). Function needleman is a well-known algorithm in
Bioinformatics and is recursively defined as:

needleman(p, q, 0, 0, g) “ 0
needleman(p, q, i, 0, g) “ i ˆ g

needleman(p, q, 0, j, g) “ j ˆ g

needleman(p, q, i, j, g) “ max

$

’

&

’

%

needleman(p, q, i ´ 1, j , g) ` g

needleman(p, q, i , j ´ 1, g) ` g

needleman(p, q, i ´ 1, j ´ 1, g) ` M[pi][qj]

,

/

.

/

-

.

(needleman)

Function needleman exhibits 3-fold recursion. Figure 5.11 reports on the runtime
of comparing two sequences p and q of equal length n. The call graph is structured
almost identically to dtw and, thus, compiling improves its exponential growth to
Opn2q through call sharing.
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Figure 5.12: Evaluating shortest(n1, n2) where n1 and n2 are nodes where finding the
shortest path between them involves visiting exactly i nodes. Average fanout of 1.5.

shortest: Given a graph with n nodes, where wiÑj denotes the weight of an edge
iÑj between two nodes vi and vj with i, j P 1, ... , n. Function shortest(i,j) finds
the shortest path length between two nodes vi and vj and returns 8 if there is none.
Function shortest is recursively defined as:

shortest(i, i)“ 0
shortest(i, j)“ minptwiÑk ` shortest(k, j) | @i Ñ ku Y t8uq .

(shortest)

shortest call site is correlated and, thus, exhibits n-fold recursion. Before compi-
lation and without call sharing, any edge between two nodes may be visited many
times. Call sharing prevents this; thus, any edge is traversed exactly once. Figure 5.12
reports that execution runtime improves significantly after compilation.

Functional-style UDFs dtw and split, as well as their compiled and manually crafted
counterparts, can be found inAppendix C.Other use cases can be found inAppendixD.
Among them are queries on mathematical problems (Section D.1), more queries over
graphs (Section D.2, Section D.4) and string processing queries (Section D.3).
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5.1.4 Summary

The tweaks we describe in this section are a general improvement over the vanilla
templates introduced in the previous Chapter 4. Introducing reference counting
improves execution times and, as a side effect, enables compilation of functional-style
UDFs which exhibit correlated call sites. However, functions such as split highlight
that not all functional-style UDFs have improved execution times when compiled.
Generally speaking: compilation leads to better performance for general recursive
functions, depending on how much the call graph can be shrunk by call sharing. In
later Sections 5.3 to 5.6, we describe other methods (besides call sharing) that allow the
compiler to exploit the presence of a call graph in the evaluation process. Note that
all tweaks in the following sections use this improved template as their foundation.
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Slices

Calls

TblValues

TblConstruct

Invoke

1 WITH RECURSIVE call_graph(in, site, fanout, out, vals, "empty?",rid) AS (
2 SELECT ROW(f.args),NULL::int,NULL::bigint,ROW(f.args),NULL,false,NULL::bigint

3 UNION -- recursive UNION

4 SELECT g.out, edges.*
5 FROM call_graph AS g,
6 LATERAL (
7 WITH slices(site, out) AS (
8 SELECT 1 AS site, out FROM (replacepslicepf , s1q, r(g.out).args sq) AS _(out)
9 UNION
10

...
11 UNION
12 SELECT n AS site, out FROM (replacepslicepf , snq, r(g.out).args sq) AS _(out)
13 ),
14 calls(site, fanout, out, vals, "empty?",rid) AS (
15 SELECT s.site, COUNT(*) OVER () AS fanout, s.out, NULL, false, NULL::bigint
16 FROM slices AS s
17 WHERE s.out <>

T

18 ),
19 values(vals) AS (
20 replacepbodypf , r(VALUES NULL),...,(VALUES NULL)sq, r(g.out).args sq
21 )
22 TABLE calls
23 UNION ALL
24 SELECT NULL::int AS site, 0 AS fanout, ROW((g.out).args) AS out, v.vals, false,
25 ROW_NUMBER() OVER ()
26 FROM values AS v
27 WHERE NOT EXISTS (TABLE calls)
28 UNION ALL
29 SELECT NULL::int AS site, 0 AS fanout, ROW((g.out).args) AS out, NULL, true, 1
30 WHERE NOT EXISTS (TABLE calls)
31 AND NOT EXISTS (TABLE values)
32 ) AS edges(site, fanout, out, vals, "empty?", rid)
33 WHERE g.fanout > 0 OR g.fanout IS NULL
34 )

Figure 5.13: Tweaking the template of Figure 4.8 in Chapter 4 enables functional-style UDFs
with table-valued return types.
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TblSchedule

TblBody

RefTraverse

1 rWITH RECURSIVEs evaluation(in,vals,"empty?",rid,ref,fanout) AS (
2 TABLE base_cases
3 UNION ALL -- recursive UNION ALL
4 (WITH e(in,vals,"empty?",rid,ref,fanout) AS (TABLE evaluation),
5 returns(in,vals,"empty?",rid) AS (
6 SELECT go.in, result.*
7 FROM (SELECT e.ref
8 FROM e
9 WHERE e.rid = 1
10 GROUP BY e.ref, e.fanout
11 HAVING COUNT(*) = e.fanout
12 ) AS go(in),
13 LATERAL (
14 WITH result(vals) AS (
15 replacepbodypf , rlookupTblpf , 1 q, ... , lookupTblpf , n qsq,
16 r(go.in).args sq
17 )
18 SELECT r.*, false, ROW_NUMBER() OVER () FROM result AS r
19 UNION ALL
20 SELECT NULL, true, 1 WHERE NOT EXISTS (TABLE result)
21 ) AS result(vals,"empty?")
22 )
23 SELECT *
24 FROM e
25 WHERE e.fanout IS NOT NULL
26 AND NOT EXISTS (SELECT FROM returns AS r WHERE r.in = e.ref)
27 UNION ALL
28 SELECT r.*, g.in, g.fanout
29 FROM returns AS r, call_graph AS g
30 WHERE r.in = g.out
31 )
32 )

Figure 5.14: Tweaking the template of Figure 5.4 enables compiling functional-style UDFs
with table-valued return types.
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TblGraph

TblBase

TblEval

TblResult

1 CREATE FUNCTION f(args) RETURNS TABLE(vals)
2 AS $$
3 WITH RECURSIVE call_graph(in,site,out,vals,"empty?",rid) AS (
4 xsee Figure 5.13y
5 ),
6 base_cases(in,vals,"empty?",rid,ref,fanout) AS (
7 SELECT g.in, g.val, g."empty?", g.rid, g_ref.in, g_ref.fanout
8 FROM call_graph AS g,
9 call_graph AS g_ref
10 WHERE g.fanout = 0
11 AND (g_ref.fanout > 0 OR g_ref.fanout IS NULL)
12 AND g.in = g_ref.out
13 ),
14 evaluation(in,vals,"empty?",rid,ref,fanout) AS (
15 xsee Figure 5.14y
16 )
17 SELECT (e.vals).*
18 FROM evaluation AS e
19 WHERE e.fanout IS NULL
20 AND NOT e."empty?";
21 $$ LANGUAGE SQL STABLE STRICT;

Figure 5.15: The compiled SQL code with support for table-valued return types TABLE(vals).

5.2 Table-Valued Functions

Tweaking the template in Section 5.1 further enables functional-style UDFs with
table-valued return types TABLE(vals) i.e., enable the recursive CTEs call_graph
and evaluation to accommodate for return values that have multiple rows. The
general idea here is to return all value columns val in those recursive CTEs into a
table-valued context. Furthermore, the case where an empty table is returned must
now be considered.

5.2.1 Tweaking the SQL Template

The changes to the templates are highlighted with regions in Figures 5.13 to 5.15. We
highlight some in detail:
TblValues Base cases are now stored inside values CTE instead of being inlined
inside the SELECT-clause directly. The values CTE is defined through:
replacepbodypf , r(VALUES NULL), ... , (VALUES NULL)sq, r(g.out).argssqFirst, the func-
tion body of f is passed to body which replaces all call sites f pargsqwith(VALUES NULL),
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where NULL expands to a row (NULL,...,NULL) with the same number of columns as
table-valued return type TABLE(vals). Then, replace replaces each of f ’s arguments
args in f ’s body with r(g.out).argss.

TblConstruct Window function ROW_NUMBER() OVER () [97] adds a row id rid for
each row in values to prevent the recursive UNION of call_graph from pruning
duplicate rows. We add a third case where column "empty?" is TRUE, only if no
new recursive call sites in calls nor base cases in values are present (see lines 29-31
in Figure 5.13).

TblSchedule Collect referee nodes ref whose recursive call results are all present in
the working table of evaluation. Indeed, it is sufficient to only check for rows with
rid = 1.

TblBody Similar to lookuppf , ℓ q in Section 5.1.1, lookupTblpf , ℓ q looks up the result
of recursive call in of call graph edge ref insite i.e., the result of recursive call in
at site called from ref:

lookupTblpaq “ (

SELECT e.vals FROM e
WHERE e.ref = go.in
AND e.site = ℓ

AND e.in = callpf , ℓ q

AND NOT e."empty?"

) .

lookupTbl adds predicate NOT e."empty?" to ensure that the subquery returns no
rows, if the result of recursive call site callpf , ℓ q is an empty table.

5.2.2 Runtime Experiments

When compiling and evaluating functions with table-valued return types, we can
expect the working table of the evaluation CTE to be much larger compared to
functions with scalar return types. Take, for example, function bom(pb), which returns
the table of all subparts of pb i.e., the bill of materials. The materials are stored in table
Mpp, s, qq, which holds all parts p and its subparts s with quantity q. Function bom,
which returns a table with schema ppr, sr, qrq, is recursively defined using well known
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Figure 5.16: Evaluating table-valued bom(p), where p is a part made out of i (nested) subparts
in total.

relational algebra operators σ (selection), π (projection), Y (union) and ’ ( join):

bom(pb)“ σp“pcpMq Y πpr,sr,qˆqr p
Ť

pp,s,qqPM ptpp, s, qqu ’p“pr bom(s)qq . (bom)

Figure 5.16 reports a runtime improvement not as drastic as with compiled functions
with scalar return types. Indeed, despite having call sharing and reference counting
enabled, a single call result in the working table of CTE evaluation may still encode
a large table (possibly multiple times, due to reference counting). Appendix C shows
the implementation of functional-style UDF bom, as well as its compiled and manually
crafted counterparts.

5.2.3 Summary

We show that we support compilation of functions with table-valued return types
by tweaking the template introduced in Section 5.1. However, there is a price to pay
which leads to a not-so-drastic runtime improvement when compiled. If runtimes are a
high priority for the developer and the decline of readability acceptable, writing hand-
crafted recursive CTEs for table-valued functions may be the preferred option. Note
that tail-recursive functions with table-valued return types do not face this problem,
as we will see later in Section 5.4.
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RefSchedule

RefBody

LinTraverse

1 rWITH RECURSIVEs evaluation(in,val,ref,site,fanout) AS (
2 TABLE base_cases
3 UNION ALL -- recursive UNION ALL
4 (WITH e(in,val,ref,site,fanout) AS (TABLE evaluation),
5 returns(in,val) AS (
6 SELECT go.in,
7 (replacepbodypf , rlookuppf , 1 q, ... , lookuppf , n qsq,
8 r(go.in).args sq) AS val
9 FROM (SELECT e.ref
10 FROM e
11 GROUP BY e.ref, e.fanout
12 HAVING COUNT(*) = e.fanout
13 ) AS go(in)
14 )
15 SELECT r.*, g.in, g.site, g.fanout
16 FROM returns AS r, call_graph AS g
17 WHERE r.in = g.out
18 )
19 )

Figure 5.17: This template for evaluation used for linear recursive functions is based on the
template found in Figure 5.4.

5.3 Linear Recursion

Linear recursive functions [55] exhibit common recursion patterns that allow the
compiler to assume a certain call graph structure which simplifies bottom-up traversal
CTE evaluation. Such functions f can be characterized by their (prefix tree of)
evaluation paths (recall Section 4.6 and more specifically Figure 4.16). Specifically,
function f is linear recursive if each subtree of paths rooted in a control flow label ℓ

contains at most one recursive call site. In the grammar of Chapter 3, dark control
flow labels are associated with CASE expressions. Because any invocation of a linear-
recursive function f performs at most one recursive call, the resulting call graph will
be a chain. Graph traversal thus does not have to keep older results and thus no
reference counting is required i.e. precisely one node will be ready for evaluation in
each iteration of bottom-up traversal.

5.3.1 Tweaking the SQL Template

The compiler exploits linear recursion by simplifying the SQL template for evaluation
(see Figure 5.17). As the evaluation process walks the chain back to the root node, we
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Graph

RefBase

LinEval

RefResult

1 CREATE FUNCTION f(args) RETURNS τ
2 AS $$
3 WITH RECURSIVE call_graph(in,site,fanout,out,val) AS (
4 xsee Figure 4.8y
5 ),
6 base_cases(in,val,ref,site,fanout) AS (
7 SELECT g.in, g.val, g_ref.in, g_ref.site,g_ref.fanout
8 FROM call_graph AS g,
9 call_graph AS g_ref
10 WHERE g.fanout = 0
11 AND (g_ref.fanout > 0 OR g_ref.fanout IS NULL)
12 AND g.in = g_ref.out
13 ),
14 evaluation(in,val,ref,site,fanout) AS (
15 xsee Figure 5.17y
16 )
17 SELECT e.val
18 FROM evaluation AS e
19 WHERE e.fanout IS NULL;
20 $$ LANGUAGE SQL STABLE STRICT;

Figure 5.18: This SQL code is emitted, whenever the compiler detects linear recursion.

only keep the most recent result in the working table discarding all that came before
(see LinTraverse ). Note that the linear recursion tweaks can be applied independently
of the other compiler tweaks presented in this chapter. Figure 5.18 show the SQL
template for linear recursive functions which the compiler emits. Templates with all
tweaks enabled can be found in Appendix B, where their modular nature is highlighted.

5.3.2 Runtime Experiments

Function paths(d) reconstructs the path of a directory d in a filesystem [87]. A
directory d has a name nd and a parent directory pd. If d is the root directory, then
its parent directory pd is NULL. Function paths is recursively defined using string
concatenation || as:

paths(d)“

#

’/’ , if pd is NULL
paths(pd)||nd||’/’ , otherwise .

(paths)

Function paths is linear recursive, which the compiler detects. In Figure 5.19, we
compare function paths before compilation ( ) with its compiled counterpart
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Figure 5.19: Evaluating paths(d) reconstructs the path of a directory d nested inside i
parent directories in a file system. With increasing i, evaluation of fsm pre-compilation ( )
terminates prematurely due to stack overflow (▲! ).

with ( ) and without ( ) linear recursion enabled. Observing paths before
compilation with increasing directory nesting i quickly reaches the stack size limit at
i “ 2400 and terminates prematurely (marked with▲! ). Compilation removes any
recursive calls and thus the stack size limit. However, linear recursion does not save
us from joining each new result with call_graph which prevents them from reaching
linear complexity where it would be expected. Indeed, Figure 5.19 reports that linear
recursive optimizations do not further improve the execution times, which remain far
above the execution times of carefully hand-crafted CTEs ( ). Recursive CTEs allow
implementations of linear recursions to exhibit linear complexity, thus making them
a great match for traversing hierarchical data structures in a linear fashion in terms of
runtime performance. Another linear recursive use case can be found in Section D.5
which implements a finite state machine.

5.3.3 Summary

The characteristic call chain of a linear-recursive function puts the spotlight on the
stack size limit imposed on recursive functions by the underlying database engine and
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Graph

TailResult

1 CREATE FUNCTION f(args) RETURNS τ
2 AS $$
3 WITH

!

ITERATE
RECURSIVE

)

call_graph(in,site,fanout,out,val) AS (
4 xsee Figure 4.8y
5 )
6 SELECT g.val
7 FROM call_graph AS g
8 WHERE g.fanout = 0;
9 $$ LANGUAGE SQL STABLE STRICT;

Figure 5.20: This SQL code is emitted, whenever the compiler detects tail recursion.

the operating system. Indeed, compiling the function removes any recursive call sites,
and thus the function evaluates calls that would typically exceed the recursion depth
limit. Detecting linear recursion also allows the compiler to apply minimal tweaks
to the SQL template. However, the execution times improvements are only marginal.
In Section 5.4, we build upon linear recursion optimization and improve execution
times significantly whenever the compiler detects a tail-recursive function.

5.4 Tail Recursion

Function f is tail-recursive, if f is linear recursive and all recursive call sites immediately
follow their control flow label without other labels in between. A tail-recursive
function f does not perform any computation after it returns from its (one) recursive
tail call [103]. Instead, computation is performed in accumulating function arguments.
The accumulators form the final result once the function reaches its base case.

5.4.1 Tweaking the SQL Template

When call graph construction is complete, the final return value of f is already known
by the only base case edge. Bottom-up graph traversal is not required, and we can im-
mediately read the result off of the base case edge. A separate evaluation step base_case
and evaluation are not required here. Thus, a much more compact template develops
which the compiler emits when processing tail-recursive functions (see Figure 5.20).
Note how TailResult extracts the return value from the node with a fanout of 0 as
soon as call graph construction concludes. As before, this tail recursion tweak can be
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applied independently of other compiler tweaks presented in this chapter. Templates
with all tweaks enabled can be found in Appendix B, where their modular nature is
highlighted.

5.4.2 Runtime Experiments

Compiling tail-recursive functions removes the need to traverse the call graph bottom-
up. Thus, we have to CTE scan call_graph only once when looking up the final
result, which removes the bottleneck that kept compiled functions from ever reaching
linear runtime complexity.
vm Take, for example, functionvmpreviously introduced inChapter 1. Functionvm(Pi,R)
takes an initial register state R and a program instruction Pi at position i ą 0 of
program P and computes its result. Single registers in R at position j can be accessed
with R[j]. Binary operator R[t]Ð e replaces the value of the single register t in R
with the result of expression e and returns the modified registers. Function vm is
recursively defined as:

vm((i,hlt,s),R) “ R[s]
vm((i,lod,t,x),R) “ vm(Pi+1,R[t]Ðx)
vm((i,mov,t,s),R) “ vm(Pi+1,R[t]ÐR[s])
vm((i,add,t,s1,s2),R) “ vm(Pi+1,R[t]Ð R[s1]+R[s2])
vm((i,mul,t,s1,s2),R) “ vm(Pi+1,R[t]Ð R[s1]*R[s2])
vm((i,div,t,s1,s2),R) “ vm(Pi+1,R[t]Ð R[s1]/R[s2])
vm((i,mod,t,s1,s2),R) “ vm(Pi+1,R[t]Ð R[s1]%R[s2])
vm((i,jmp,a),R) “ vm(Pa,R)

vm((i,jeq,t,s,a),R) “

#

vm(Pa,R) , R[s] “ R[t]
vm(Pi+1,R) , otherwise .

(vm)

In Figure 5.21, we compare function vm before ( ) and after compilation which
is separated depending on whether tail-recursive optimization is enabled ( ) or
not ( ). Comparing vm with and without tail recursion optimization highlights
the benefits of such optimizations. Indeed, removing the need to traverse the call
graph pushes the runtime complexity for vm into linear range Opnq, which further
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Figure 5.21: Evaluate vm(r), where r is the initial register state which repeats a loop i times.
With increasing i, evaluation of vm pre-compilation ( ) terminates prematurely due to
stack overflow (▲! ).

closes the gap between compilation and carefully hand-crafted implementation.
Functional-style UDF vm and its compiled and manually crafted counterparts can
be found in Appendix C.

parcels Function parcels(s) begins at parcel station s and visits all subsequent
parcel stations until it reaches one which stores items Is and returns them. A parcel
station s points to precisely one other parcel station ns. The parcel stations are
always arranged so that following them one after another leads to a target station
containing items. Function has_items(s) simply returns TRUE, if station s has items.
Function parcels is recursively defined as:

parcels(s, TRUE) “ Is

parcels(s, FALSE) “ parcels(ns, has_items(ns)) .
(parcels)

The functional-style implementation of this function expects to return many rows.
Figure 5.22 reports that tail-recursive functions improve runtime performance even
when expecting table-valued return types. Indeed, this results from not having to
traverse the call graph bottom-up.

Other use cases can be found in Appendix D. Among them are queries over geometric
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Figure 5.22: Evaluating parcels(s). Starting at station s, parcels visits i other stations
before it finds all parcels ready and returns them.

shapes (Section D.6) and queries that generate fractals (Section D.7).

5.4.3 WITH ITERATE

Beyond runtime savings, tail recursion promises to be space-efficient as “tail recursion
needs no stack.”. PostgreSQL fails to exploit this potential when it executes non-
compiled functional-style UDFs. We describe a way to allow the developer to exploit
this fact for tail-recursive functions by adding the optional tag ITERATE (see Chapter 3).
When we use WITHRECURSIVE to construct the call graph of a function f , we effectively
construct a trace of all invocations and their respective arguments. If f is tail-recursive,
accumulating this trace is wasted effort: no evaluation step ever revisits the graph
and the SQL template of Figure 5.20 only extracts its single base case edge. Keeping
the most recently generated row in table call_graph thus would suffice. This is
precisely the behavior of the hypothetical WITHITERATE construct [72]. Adding the
construct to PostgreSQL 13 amounts to a modest local change. If the developer enables
this tail-recursive exclusive optimization, WITHITERATE replaces WITHRECURSIVE in the
template of Figure 5.20. The system then allocates only a single-row working table
during the entire function evaluation process. Figure 5.23 reports, however, that
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Figure 5.23: Evaluate vm(r), where r is the initial register state which repeats a loop i times.

the time-saving improvements of WITHITERATE ( ) are only slight when compared
to WITHRECURSIVE ( ) and do not push runtimes significantly closer to that of the
carefully hand-crafted recursive CTE ( ). Thus, we conclude that WITHITERATE,
despite its slight time-saving improvements, is not something we see as a must-have
feature when compiling tail-recursive functions.

5.4.4 Summary

Detecting a tail-recursive function allows the compiler to target a template that has
no need for bottom-up traversal of the call graph. Constructing the call graph and
returning the result is all that has to be done for tail-recursive functions. Indeed, this
improves the lower bound of the runtime complexity to be linear. Thus, if the original
function runtime characteristic is linear, then this holds for compiled function as well
which.
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5.5 Memoization

Evaluating a compiled UDF f is a two-phase approach where we first construct the
call graph top to bottom by collecting all necessary calls on the way down and then
evaluate the call graph bottom-up. Thus, we can assume that on the way up, each
call in the call graph will have its results stored in the evaluation CTE. So far, the
compiled UDF f extracts exactly the result associated with the call graph’s root args
(see RefResult in Figure 5.5), returns it and then drops all results. However, the
return values of all intermediate recursive calls are just as precious, provided that
• we can expect f to be calledmany times (in a database setting where UDF invocations
are embedded in queries, this would be the rule rather than the exception), and

• we know that f is referentially transparent [82], either generally or at least within
a defined context (e.g., inside a transaction). In PostgreSQL, these degrees of ref-
erential transparency are declared via the function modifiers IMMUTABLE or STABLE,
respectively [97, §38.7].

Entries in table evaluation can be used to accelerate the evaluation of future calls to f .
To implement this style of memoization [89] for compiled function f , we follow two
simple steps:
1. After an evaluation of f , add the contents of evaluation to a table memo(in,val),

discarding duplicate rows.
2. Upon subsequent invocations f(args), treat the entries found in memo like additional

base cases.
In the call graph construction, each such extra base case edge in val replaces an entire
subgraph (with root in) whose recursive calls need not be evaluated since val is already
available. Figure 5.24b shows the call graph for dtw(3,3) which has been constructed
based on the return values of an earlier dtw(2,2) invocation (See Figure 5.24a). In this
case, only the 7 calls at the fringes of the graph for dtw(3,3) remain to be evaluated
(down from 16 calls without memoization). Note that this particular flavor of memo-
ization is already beneficial if the memo table holds the root(s) of any subgraph of the
current call graph [62]. In a sequence of invocations of f , we can thus expect to start
saving evaluation effort early on. This is in contrast to plain memoization, which only
remembers the single return value at the root of an evaluated call graph [94].
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(a) memo after dtw(2,2).
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(b) Memoization prunes the call graph for dtw(3,3).

Figure 5.24: With memoization enabled: evaluate dtw(2,2), then dtw(3,3).

5.5.1 Tweaking the SQL Template

Figures 5.25 and 5.26 present the SQL templates used when memoization is enabled
which are based on the template introduced in Section 5.1. We highlight the necessary
changes:
MemLookup If the current recursive call can be found in the memo table, return its result
and treat it as a base case later in MemConstruct . Otherwise, continue constructing
the call graph as usual.

MemStore Once evaluation concludes, add all (intermediate) results (in,val) found
in evaluation to table memo. The clause ON CONFLICT DO NOTHING [97] silently
discards any results already stored in memo to avoid duplicate entries.

Note that the memoization tweaks can be applied independently of other (optional)
compiler tweaks presented in this chapter. Templates with all tweaks enabled can be
found in Appendix B, where their modular nature is highlighted. Furthermore, tail-
recursive optimization (recall Section 5.4) does not traverse the call graph bottum-up,
thus, memoization on top of tail recursion only stores the root result but may still
profit from these results in the call graph construction phase.
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MemLookup

Slices

Calls

MemConstruct

Invoke

1 WITH RECURSIVE call_graph(in, site, fanout, out, val) AS (
2 SELECT ROW(f .args) AS in, NULL::int, NULL::bigint, ROW(f .args), NULL::τ

3 UNION -- recursive UNION

4 SELECT g.out, edges.*
5 FROM call_graph AS g,
6 LATERAL (
7 WITH memoization(site, fanout, out, val) AS (
8 SELECT NULL::int, 0, m.in, m.val
9 FROM memo AS m
10 WHERE g.out = m.in
11 ),
12 slices(site, out) AS (
13 SELECT 1 AS site, out FROM (replacepslicepf , s1q, r(g.out).args sq) AS _(out)
14 UNION
15

...
16 UNION
17 SELECT n AS site, out FROM (replacepslicepf , snq, r(g.out).args sq) AS _(out)
18 ),
19 calls(site, fanout, out, val) AS (
20 SELECT s.site, COUNT(*) OVER () AS fanout, s.out, NULL::τ AS val
21 FROM slices AS s
22 WHERE s.out <>

T
23 )
24 TABLE memoization
25 UNION ALL
26 SELECT *
27 FROM calls
28 WHERE NOT EXISTS (TABLE memoization)
29 UNION ALL
30 SELECT NULL::int AS site, 0 AS fanout, ROW((g.out).args) AS out,
31 (replacepbodypf ,[NULL::τ,...,NULL::τ]q,
32 r(g.out).args sq) AS val
33 WHERE NOT EXISTS (TABLE memoization)
34 AND NOT EXISTS (TABLE calls)
35 ) AS edges(site, fanout, out, val)
36 WHERE g.fanout > 0 OR g.fanout IS NULL
37 )

Figure 5.25: Tweaking the template of Figure 4.8 in Chapter 4 enables memoization for
compiled functional-style UDFs.
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MemGraph

RefBase

RefEval

MemStore

RefResult

1 CREATE FUNCTION f(args) RETURNS τ
2 AS $$
3 WITH RECURSIVE call_graph(in,site,out,val) AS (
4 xsee Figure 5.25y
5 ),
6 base_cases(in,val,ref,site,fanout) AS (
7 SELECT g.in, g.val, g_ref.in, g_ref.site,g_ref.fanout
8 FROM call_graph AS g,
9 call_graph AS g_ref
10 WHERE g.fanout = 0
11 AND (g_ref.fanout > 0 OR g_ref.fanout IS NULL)
12 AND g.in = g_ref.out
13 ),
14 evaluation(in,val,ref,site,fanout) AS (
15 xsee Figure 5.4y
16 ),
17 store AS (
18 INSERT INTO memo
19 SELECT e.in, e.val
20 FROM evaluation AS e
21 ON CONFLICT DO NOTHING
22 )
23 SELECT e.val
24 FROM evaluation AS e
25 WHERE e.fanout IS NULL;
26 $$ LANGUAGE SQL VOLATILE STRICT;

Figure 5.26: The compiled SQL code with memoization enabled. As part of the evaluation
process, store (intermediate) results of CTE evaluation in memo for later use in CTE call_graph.

1 10 20 30 40 50 60 70 80 90 100
0

1,000
2,000
3,000
4,000
5,000 memoize root result

memo table

# of invocations of dtw(i,i) with random i P t1,...,100u

call graph size (# of nodes)

Figure 5.27: Series of dtw(i,i) invocations: Re-using memo table entries effectively cuts down
call graph size.
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Figure 5.28: Compare evaluation of dtw(i,i) with and without memoization enabled. Ta-
ble memo is created with index on column in and has been previously populated with 10,000,000
rows unrelated to any calls dtw(i,i).

5.5.2 Indexing Table memo

Assume that memoization has been enabled over many subsequent function invoca-
tions and table memo collected quite the amount of rows — 10,000,000 in fact. Each
node found in the process of call graph construction tries to look up a previously evalu-
ated result in table memo. And every time this is done, this takes about 500 milliseconds
without an index — a very steep price to pay. Thus, when enabling memoization we
always create a B-tree index [59] on column in for table memo to ease the workload
when memoization is enabled. With the index, even a quite sizable memo table which
does not contain any rows that help shrink the call graph heavily mitigates the impact
of a large, but useless, memo table. In fact, Figure 5.28 compares a function invocation
of compiled dtw(i,i) with increasing i and memoization enabled ( ) to the same
function invocation with memoization disabled ( ). Here, table memo is populated
with rows that never come up when constructing the call graph. Indeed, this index is
always created in the following runtime experiments.
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UDF Recursion Avg. Call Time rmss Call Times Avg. Call Graph Size |memo|

root memo table 100 invoc.s root memo table

shortest n-fold 443 12 p2.7%q 1,455 32 1,965
dtw 3-fold 327 23 p7.0%q 5,863 310 10,201

knapsack 2-fold 356 26 p7.3%q 7,857 412 20,301
needleman 3-fold 278 29 p10.4%q 3,979 251 8,291

paths linear 138 9 p6.5%q 1,025 21 1,997
parcels tv tail 207 15 p7.2%q 45,027 1,531 3,000

bom tv n-fold 119 146 p122.7%q 6 1,067 131,055
split 2-fold 249 270 p108.4%q 5,022 5,022 334,748

vm tail 264 358 p135.6%q 18,027 18,027 56

Table 5.1: A collection of SQL UDFs in functional style compiled with root memoization
(root) and non-root memoization (memo table) enabled.

5.5.3 Runtime Experiments

Figure 5.27 plots the call graph sizes we observed during a sequence of 100 invocations
of dtw(i,i) with random i P t1, ... , 100u. As expected, memoizing the top-most root
call reduces the call graph sizes over time ( ). However, memoization of subgraph
roots ( ) is by more effective, bringing call graphs down to size 1 already after only a
dozen calls. We repeated the random invocations sequence multiple times and reported
average call graph sizes here.

The results in Table 5.1 report on runtime and call graph size averages over 100 random
calls. We compare compiled use cases with memoization of only root calls to compiled
use cases with memoization of all non-root results stored in the memo table. Each
function is grouped into one of the following: recursion with correlated call sites
(n-fold recursion, recall Section 5.1), recursion with fixed call sites (for example, 3-fold
recursive function dtw), linear recursion and tail recursion. Prefix tv marks use cases
that use table-valued return types.
• Compilation reduces average call time for all UDFs; some functions execute in less
than 5% of the time needed by their originals. We address particulars below.

• The execution of a whole series of function invocations offers opportunities for
memoization. The bars in the plots under Call Times record how the evaluation
time of single invocations develops across the series. We see that shortest, dtw,
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knapsack, needleman, paths, and parcels can effectively reuse prior evaluation
efforts while split and vm fail to do so. bom is table-valued and thus a special case
we describe below.

• The divergence of the call graph sizes for the original and compiled UDFs is another
indicator of the memoization potential (columns under Avg. Call Graph Size).
Memoization turns entire call subgraphs into base cases and can thus lead to a drastic
reduction in the number of calls performed. The price for memoization is the space
used by table memo. Column |memo| reports its size (in rows) after all 100 invocations
have been performed.

Taking a closer look at some of these use cases leads to interesting observations about
the functions’ behavior at runtime:
shortest: This is an optimal use case where memoization really shines. The non-root
results stored in memo decrease the call graph size very early.

paths: A file system is structured as a directory tree. Thus, as the function climbs
the directory tree to reconstruct the path, there is a high chance of overlap with
previous calls improving runtimes for linear recursion.

parcels: Even though we only memoize root call results for tail-recursive functions,
we still look for results of root calls already present in the memo table as we construct
the call_graph. Indeed, especially this use case shows very promising results even
though we store only root calls in memo. This is not generally the case for tail-recursive
functions. however (as we will see with vm).

bom: For table-valued functions, enabling memoization may be detrimental. When-
ever call graph construction finds table-valued results with many rows in memo, these
rows are then all added to the call_graph CTE increasing the call graph size poten-
tially by the number of rows. This increases the cost of the join with the call_graph
CTE in each bottom-up traversal step. Indeed, we measure the impact this has with
this use case (cf. the average call graph sizes for bom). Thus, the decision to enable
memoization when dealing with table-valued functions is something the developer
must carefully consider. It highly depends on the number of rows the developer
expects for each table-valued result.

split: For this use case, none of the random calls have overlapping call graphs (unless
it is the same call). Thus, we only pay for the overhead of memoization without its
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benefits (cf. the average call time of split). Some use cases like this and vm require
the developer to consider the call graph structure a function produces before enabling
memoization.

vm: As with split, each invocation always produces a unique call graph without
overlap. Evaluation of vm either scans memo in each call graph construction step
without success or exactly once at the very beginning of call graph construction.

5.5.4 Summary

Memoization of non-root results store all intermediate results a function produces
when traversing the call graph bottom-up. Indeed, enabling memoization for tail-
recursive functions inherently only stores the root result when compiled. However,
tail-recursive functions (when compiled) still may look up results in the memo table
early in the process of call graph construction. Thus, they may still profit off of
memoization in the long run, as we have seen with use case parcels in Table 5.1.

On the other hand: in some cases, the developer may want to hold back on enabling
memoization. Functions where different calls rarely lead to any hits in the memo table
during call graph constructions are left with the memoization overhead and without
its benefits (see split and vm). Furthermore, table-valued functions that are not tail-
recursive can also be a bad fit for memoization. The call graph size may increase
overall when a huge table-valued result is found in the memo table, which makes the
CTE scan of the call_graph CTE required in each step of the bottom-up traversal
increasingly more expensive (see bom).
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(a) Call graph.

call_graph
in sitefanout out val

i j i j
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(0,0) � � (0,0) �
(2,2) 1 3 (1,1) �
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(1,1) 2 3 (0,1) �
(1,1) 3 3 (1,0) �
(1,2) 1 3 (0,1) �
(1,2) 2 3 (0,2) �
(1,2) 3 3 (1,1) �
(2,1) 1 3 (1,0) �
(2,1) 2 3 (1,1) �
(2,1) 3 3 (2,0) �
(0,0) � 0 (0,0) 0.0
(0,1) � 0 (0,1) ∞
(1,0) � 0 (1,0) ∞
(0,2) � 0 (0,2) ∞
(2,0) � 0 (2,0) ∞

(b) Tabular representation of the call
graph.

Figure 5.29: Call graph of dtw([(2,2),(1,1),(0,0)]) and its tabular representation. The call
graphs of dtw(2,2) , dtw(1,1) and dtw(0,0) collapse into one.

5.6 Batching

Batching is a technique derived from data-parallel languages [63]. Another technique,
called flattening, also bears strong similarities in its concept of lifting functions to
arbitrary orders [106]. However, batching is exclusively concerned with first-order
flattening: f : a Ñ b to f 1 : ras Ñ rbs.
Assume that function f is invoked many times, say f px1 q, ... , f pxnq. Compiled

without batching, each invocation constructs an independent call graph top to bottom.
Compiling f with batching enabled changes the function from accepting one vector of
arguments f pxq at a time to accepting many vectors of arguments f 1prx , ... , xsq. Thus,
each individual function invocation f pxiq collapses into a single call f 1prx1 , ... , xnsq

that constructs a single call graph with up to n root nodes. Indeed, batching collapses
all redundant subgraphs into one.
For example, take dtw (compiled with batching enabled) with a function invo-
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evaluation
in val ref sitefanout

i i j i j
(0,0) 0.0 (1,1) 1 3
(0,1) ∞ (1,1) 2 3
(1,0) ∞ (1,1) 3 3

1 (0,1) ∞ (1,2) 1 3
(0,2) ∞ (1,2) 2 3
(1,0) ∞ (2,1) 1 3
(2,0) ∞ (2,1) 3 3
(0,0) 0.0 (0,0) � �

(0,1) ∞ (1,2) 1 3
(0,2) ∞ (1,2) 2 3
(1,0) ∞ (2,1) 1 3

2 (2,0) ∞ (2,1) 3 3
(1,1) 0.0 (2,2) 1 3
(1,1) 0.0 (1,2) 3 3
(1,1) 0.0 (2,1) 2 3
(1,1) 0.0 (1,1) � �

(1,1) 0.0 (2,2) 1 3
3 (1,2) 1.0 (2,2) 2 3

(2,1) 0.0 (2,2) 3 3
4 (2,2) 1.0 (2,2) � �

(a) Bottom-up traversal.

dtw
in val

i j
(0,0) 0.0
(1,1) 0.0
(2,2) 1.0

(b) Result table.

Figure 5.30: Bottom-up traversal and result table of batched call dtw([(2,2),(1,1),(0,0)]).
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Slices
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Construct

Invoke

1 WITH RECURSIVE call_graph(in, site, fanout, out, val) AS (
2 SELECT args,NULL::int,NULL::bigint,args,NULL::τ
3 FROM unnest(f.[args]) AS args

4 UNION -- recursive UNION

5 SELECT g.out, edges.*
6 FROM call_graph AS g,
7 LATERAL (
8 WITH slices(site, out) AS (
9 SELECT 1 AS site, out FROM (replacepslicepf , s1q, r(g.out).args sq) AS _(out)
10 UNION
11

...
12 UNION
13 SELECT n AS site, out FROM (replacepslicepf , snq, r(g.out).args sq) AS _(out)
14 ),
15 calls(site, fanout, out, val) AS (
16 SELECT s.site, COUNT(*) OVER () AS fanout, s.out, NULL::τ AS val
17 FROM slices AS s
18 WHERE s.out <>

T

19 )
20 TABLE calls
21 UNION ALL
22 SELECT NULL::int AS site, 0 AS fanout, ROW((g.out).args) AS out,
23 (replacepbodypf , rNULL::τ,...,NULL::τsq,
24 r(g.out).args sq) AS val
25 WHERE NOT EXISTS (TABLE calls)
26 ) AS edges(site, fanout, out, val)
27 WHERE g.fanout > 0 OR g.fanout IS NULL
28 )

Figure 5.31: Tweaking the template of Figure 4.8 in Chapter 4 enables batching for compiled
functional-style UDFs.

cation such as dtw([(2,2),(1,1),(0,0)]). The call graphs for calls dtw(1,1) and
dtw(0,0) become subgraphs of dtw(2,2) (see Figure 5.29). This is not generally
the case but highlights the potential benefits of batching.

5.6.1 Tweaking the SQL Template

Except for the signature change of function f , compilation with batching enabled
requires only very minor tweaks in two regions: BatAnchor and BatResult . We
highlight these changes that lead to the templates in Figures 5.31 and 5.32:
BatAnchor The function unnest([args]) [97] takes the array of arguments [args]
and turns it into a table with one column where each row holds one of the call
graph roots args.

BatResult The resulting query returns a table that matches the signature of f such
that it returns a table where each row is a pair of root calls and results: ((in),(val)).

Note that the batching tweaks can be applied independently of other (optional)
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BatGraph

RefBase

RefEval

BatResult

1 CREATE FUNCTION f([args]) RETURNS TABLE(args, τ)
2 AS $$
3 WITH RECURSIVE call_graph(in,site,fanout,out,val) AS (
4 xsee Figure 5.31y
5 ),
6 base_cases(in,val,ref,site,fanout) AS (
7 SELECT g.in, g.val, g_ref.in, g_ref.site,g_ref.fanout
8 FROM call_graph AS g,
9 call_graph AS g_ref
10 WHERE g.fanout = 0
11 AND (g_ref.fanout > 0 OR g_ref.fanout IS NULL)
12 AND g.in = g_ref.out
13 ),
14 evaluation(in,val,ref,site,fanout) AS (
15 xsee Figure 5.4y
16 )
17 SELECT e.in, e.val
18 FROM evaluation AS e
19 WHERE e.fanout IS NULL;
20 $$ LANGUAGE SQL STABLE STRICT;

Figure 5.32: We insert Figure 5.31 as the call_graph CTE and apply minor tweaks to the
function signature and BatResult .

compiler tweaks presented in this chapter. Templates with all tweaks enabled can be
found in Appendix B, where their modular nature is highlighted.

5.6.2 Runtime Experiments

The results in Table 5.2 report the total call time and total call graph size for a selection
of compiled use cases with and without batching enabled. For the arguments, we use
those found in each use case’s runtime experiment plots. For example, the input for
UDF dtw is found in Figure 5.9. Many of the use cases profit from batching because
of their overlapping call graphs over many calls: shortest, dtw, knapsack, needleman,
and paths. We highlight a few use cases:
bom: High overlap between subgraphs allows the compiled function with batching
enabled to discard 83% of the nodes. Indeed, as with other use cases, not all function
calls construct highly overlapping call graphs. However, when they do, batching is a
good way to profit from it in terms of runtime optimization.

vm: This (and parcels) are tail-recursive functions which both do not profit from
batching. Each call graph is disjunct from one another, increasing the overall size of
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UDF Recursion Arguments Σ Call Time rmss Σ Call Graph Size
compiled batched compiled batched

shortest n-fold Figure 5.12 5,002 906 p18.1%q 13,779 2,723
dtw 3-fold Figure 5.9 6,400 1,909 p29.8%q 116,825 30,216

knapsack 2-fold Figure 5.10 7,165 2,115 p29.5%q 156,680 40,417
needleman 3-fold Figure 5.11 19,835 5,563 p28.0%q 115,114 29,915

paths linear Figure 5.19 27,847 6,756 p24.3%q 65,517 10,017
bom tv n-fold Figure 5.16 5,205 2,697 p51.8%q 1,003 171

parcels tv tail Figure 5.22 11,540 11,431 p99.0%q 2,779,480 2,779,480
vm tail Figure 5.21 3,493 3,232 p92.5%q 232,950 232,950

split 2-fold Figure 5.7 1,744 4,762p273.1%q 24,549 24,549

Table 5.2: A collection of SQL UDFs in functional style compiled with and without batching
enabled.

the batched call graph. Indeed, because of the tail-recursive optimization, which re-
moves the need for bottom-up traversal, wemeasure neither significant improvements
nor declines in call times.

split: This function does not exhibit any partially overlapping subgraphs in each
function invocation. Indeed, this means the batched function call and its bottom-up
traversal must now deal with an overinflated call graph. Recall in Section 5.1.1,
bottom-up traversal enforces a runtime complexity lower bound by the call graph
size: |call_graph|2. Without batching, each function call has (at most) a size of
12,287. Compare this to the single batched call graph with 24,549. As expected,
the increased call graph size almost triples the call times of the batched function
compared to the sum of the time each call needs. This represents a worst-case scenario
for batching.

5.6.3 Summary

Batching exploits functions whose call graphs over many independent invocations
overlap, which can benefit execution times. However, this puts the burden of handling
this change to the function arguments and return type (i.e., f : a Ñ b to f 1 : ras Ñ rbs)
on the developer who maintains the surrounding queries which invoke this function.
Indeed, not all functions benefit from this optional optimization flag. A function,
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such as split, exhibits no partially overlapping subgraphs. Batching significantly
increases its call graph size, thus worsening the execution times.

Let us close this chapter with a few final remarks: The tweaks and improvements
presented in this chapter give the developer many optimization switches that may
improve runtime for their complex computation pushed inside the RDBMS. Indeed,
with the exception of ITERATE (recall Section 5.4), the benefits of compiling functional-
style UDFs are readily available in all RDBMS that implements SQL:1999 [101] which
the compiler can target without intrusive changes to the RDBMS itself. However, in
some cases, developers must understand the shape of their functional-style UDF’s call
graph structure before they decide to compile them. Functions, such as split, may be
more suited to be implemented as a carefully hand-crafted CTE wherever performance
concerns outweigh readability.
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6
Conclusion

In this publication, we set out tomeasure the viability for developers towrite functional-
style UDFs, giving developers more ways to push their computation close to the
data [98]. We found our answer on two fronts: readability from the viewpoint of the
developer and runtime performance.

First, we measured the readability aspect of functional-style UDFs by performing a
user study (Chapter 2). We found that functional-style UDFs are a welcome addition
to the bag of tools of developers using SQL aside from recursive CTEs aiming to
implement complex computations. Some developers may even unanimously prefer the
use of functional-style for some computations. Indeed, when we let the participants
decide whether to implement the algorithm to solve the 0-1 Knapsack problem [88] in
functional-style or as a recursive CTE, not a single submission even tried implementing
it using recursive CTEs. We suspect that other development tools, such as a debugger
for functional-style UDFs, maybe one future branch of research to support developers
in their endevours.

Besides functional-style UDFs, other alternatives should also be studied further in
this manner: Some of them are already published, where the developer is allowed to
implement functions with complex control flows in PL/PgSQL [97] or Python, which
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are then compiled to pure SQL functions [81, 76]. Another way to support recur-
sive CTEs in their mission to allow developers to implement complex computations is
to break up the rigid semantics of recursive CTEs. When evaluating recursive CTEs,
each iteration step builds a new intermediate table from scratch, becoming the working
table for the next iteration. And only if the intermediate table is empty, does evaluation
stop. Current research asks if we could express some algorithms more elegantly if
alternative semantics were available to the developer. One such alternative imagines
that the working table is not built from scratch with each iteration. Instead, keep the
working table at the start of the iteration and only insert new rows and update old
ones in each iteration.

Second, we measured the runtime performance aspect of functional-style UDFs (Chap-
ters 4 and 5). Running functional-style UDFs as is, comes with a list of restrictions for
many RDBMS. SQLite3 does not support SQL UDFs in general [102]. MySQL 8.0’s
SQL UDFs do not allow for recursive self-invocations within their function bod-
ies [90]. Microsoft SQL Server 2022 supports recursive self-invocations in SQL UDFs,
but only with a hard-coded recursion depth limit of 32 [100]. Oracle 19c [95] and
PostgreSQL 13 [97] allow for more meaningful usage of functional-style UDFs, where
the recursion depth can go beyond the 10,000 mark. However, the recursion depth is
still limited and its value cannot exceed the maximum stack size set by the operating
system. On top of these restrictions, PostgreSQL does not optimize for recursion in
functional-style UDFs as far as we can tell. Moreover, PostgreSQL repeatedly parses
and plans the function body for each recursive call due to the absence of plan caching.
We chose to approach this problem by compiling functional-style UDFs which

removes all recursive self-invocations (Chapter 4). Instead, the compiler targets re-
cursive CTEs that ultimately evaluate the function in a two-phased approach that
constructs the call graph and then evaluates it by traversing it bottom-up. If an
RDBMS supports recursive CTEs, then this enables that system to support functional-
style UDFs efficiently through SQL-to-SQL compilation. This applies to systems
like SQLite3, which do not implement UDFs at all (compiler simply inlines the
compiled body at the call site to obtain a function-free query), as well as MySQL,
Microsoft SQL Server and Oracle, where compiled UDFs are not limited by the strin-
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gent restrictions on recursion depth. In PostgreSQL, not only does compilation of
functional-style UDFs work around recursion depth limits. It also allows many UDFs
to evaluate significantly faster (compared to before compilation) without requiring
intrusive changes to the underlying database engine. Indeed, this is due to the various
optimizations this approach comes with discussed in Chapter 5.

In future work, we may enable the compiler to target other RDBMSs. Further
optimization potential may still remain untapped, waiting to be discovered. One such
work observes the benefits of different storage methods of the call graph at runtime.
For example, Madeleine Mauz’s master thesis explored the benefits of storing the
call graph into a hash table at runtime, allowing call graph traversal speedy lookup
of parent nodes in the call graph. Thus, traversing the call graph more efficiently
bottom-up.

In conclusion, as developers face larger growing data sets every day without an end in
sight, so too must SQL provide more approachable options for developers looking
to query computational results instead of just the data. Functional-style UDFs, as
presented in this publication, mark another viable step towards this goal.
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A
User Study - Online Form

RECURSION IN SQL
User Study

Introduction

Thank you for participating in this anonymous user study!

Like any programming language, SQL allows you to express complex computation in various (equivalent) forms. This survey studies two
particular forms of authoring user-defined SQL functions (UDFs). Both forms are used to implement the same recursive programming
problems—but the forms read differently:

one uses recursive CTEs (WITH RECURSIVE),
the other is based on recursive function invocation.

This survey compares these two forms in terms of readability and thus focuses on your ability to read and understand snippets of SQL code.
We therefore ask you to work through the study without the use of external programs: answer the questions below without executing
the UDFs on a SQL database system. Use pen and paper only (if required at all). Thank you!

The SQL dialect presented to you in this survey leans heavily on PostgreSQL 12. If any feature found in the following queries is new to
you, feel free to look them up here.

Important: We will also ask you for the time it took you to complete each task. As you complete each task, keep track of the required time
and enter it in the boxes below. Please answer truthfully. Each task should take about 5 − 10 minutes, if you find yourself exceeding this
timespan, please feel free to skip to the next task (in this case, please tick the corresponding box).

The entire survey should take about 30 − 45 minutes to complete. Once done, please make sure to press the Submit your results!-button at
the end.

Before we begin, please list the three (regular) programming languages that you are most familiar with:

1. 
2. 
3. 

I have had some exposure to Functional Programming:
 Yes No

Part 1: Fibonacci Numbers

Graham et. al. define the Fibonacci number function in Concrete Mathematics, 2nd edition as:

We propose the following UDFs which aim to compute the Fibonacci number of  using SQL. You can assume that each of the UDFs are
syntactically sound but only some of them implement the Fibonacci number function correctly.

1. Keep track of how long it takes for you to choose which of the following CTE-based UDFs implement the Fibonacci number function
correctly (there may be more than one):

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
  WITH RECURSIVE 
  fib(i, prev_n, curr_n) AS ( 
    VALUES (1, 0, 1) 
      UNION  
    SELECT f.i + 1, 
           f.curr_n, 
           f.prev_n - f.curr_n 
    FROM   fib AS f 
    WHERE  f.i <= n 
  ) 
  SELECT f.curr_n  
  FROM   fib AS f 
  WHERE  f.i = n; 
$$ LANGUAGE SQL;

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
  WITH RECURSIVE 
  fib(i, prev_n, curr_n) AS ( 
    SELECT 1, 0, 1 
      UNION  
    SELECT f.i + 1, 
           f.curr_n, 
           f.prev_n + f.curr_n 
    FROM   fib AS f 
    WHERE  f.i BETWEEN 0 AND n 
  ) 
  SELECT f.curr_n 
  FROM   fib AS f 
  WHERE  f.i < n; 
$$ LANGUAGE SQL;

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
 WITH RECURSIVE 
 fib(i, prev_n, curr_n) AS ( 
   VALUES (1, 0, 1) 
     UNION ALL 
   SELECT f.i + 1, 
          f.curr_n, 
          f.prev_n + f.curr_n 
   FROM   fib AS f 
   WHERE  f.i <= n 
 ) 
 SELECT   f.prev_n 
 FROM     fib AS f 
 ORDER BY f.i DESC 
 LIMIT 1; 

$$ LANGUAGE SQL;  

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
  WITH RECURSIVE 
  fib(i, prev_n, curr_n) AS ( 
    VALUES (1, 0, 1)
      UNION ALL 
    SELECT f.i + 1, 
           f.curr_n, 
           f.prev_n + f.curr_n 
    FROM   fib AS f 
    WHERE  f.i < n 
  ) 
  SELECT   f.curr_n 
  FROM     fib AS f 
  ORDER BY f.i  
  LIMIT 1; 
$$ LANGUAGE SQL;

Solving this task took about  minutes.
 Or, tick this ( ) if you want to skip it.

2. Keep track of how long it takes for you to choose which of the following recursive UDFs implement the Fibonacci number function
correctly (there may be more than one):

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
  SELECT 0 
  WHERE  n <= 1 
    UNION ALL 
  SELECT fib(n-1) + fib(n-2)
  WHERE  n > 1
$$ LANGUAGE SQL;

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
  SELECT CASE 
    WHEN n = 0 THEN 0 
    WHEN n = 1 THEN 1 
    ELSE fib(n-1) + fib(n-2) 
  END; 
$$ LANGUAGE SQL;

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
  SELECT CASE 
    WHEN n = 0 THEN 0 
    WHEN n = 1 THEN 1 
    ELSE fib(n-1) - fib(n-2) 
  END; 
$$ LANGUAGE SQL;

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
  SELECT 1 
  WHERE  n <= 2 
    UNION ALL 
  SELECT fib(n-1) + fib(n-2) 
  WHERE  n > 2 
$$ LANGUAGE SQL;

Solving this task took about  minutes.
 Or, tick this ( ) if you want to skip it.

Part 2: Greatest Common Divisor

Knuth et. al. define the calculation of the greatest common divisor in The Art of Programming (vol. 2 Seminumerical Algorithms), 3rd edition as:

We propose the following SQL UDFs which aim to compute the greatest common divisor of  and . You can assume that each of the UDFs
are syntactically sound but only some of them implement the greatest common divisor function correctly.

1. Keep track of how long it takes for you to choose which of the following recursive UDFs compute the greatest common divisor
correctly (there may be more than one):

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$ 
  SELECT CASE 
    WHEN k = 0 THEN n 
    ELSE gcd(k, MOD(n,k)) 
  END; 
$$ LANGUAGE SQL;

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$ 
  SELECT n 
  WHERE  k = 0 
    UNION ALL 
  SELECT gcd(k, MOD(k,n)) 
  WHERE  k > 0;
$$ LANGUAGE SQL;

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$ 
 SELECT CASE 
   WHEN n = 0 THEN k 
   ELSE gcd(k, MOD(k,n)) 
 END; 
$$ LANGUAGE SQL;

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$
  SELECT k 
  WHERE  k = 0 
    UNION  
  SELECT gcd(k, MOD(n,k)) 
  WHERE  k > 0; 
$$ LANGUAGE SQL;

Solving this task took about  minutes.
 Or, tick this ( ) if you want to skip it.

2. Keep track of how long it takes for you to choose which of the following CTE-based UDFs compute the greatest common divisor
correctly (there may be more than one):

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$ 
  WITH RECURSIVE gcd(n,k) AS ( 
    SELECT n, k 
      UNION ALL 
    SELECT g.k, MOD(g.n,g.k) 
    FROM   gcd AS g 
    WHERE  g.k <> 0 
  ) 
  SELECT g.n 
  FROM   gcd AS g 
  WHERE  g.k = 0; 
$$ LANGUAGE SQL;

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$ 
  WITH RECURSIVE gcd(n,k) AS ( 
    SELECT n, k 
      UNION  
    SELECT g.k, MOD(g.n,g.k) 
    FROM   gcd AS g 
    WHERE  g.k > 0 
  ) 
  SELECT   g.n 
  FROM     gcd AS g 
  ORDER BY g.k 
  LIMIT 1; 
$$ LANGUAGE SQL;

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$ 
 WITH RECURSIVE gcd(n,k) AS ( 
   SELECT n, k 
     UNION ALL 
   SELECT g.k, MOD(g.n,g.k) 
   FROM   gcd AS g 
   WHERE  g.k <> 0 
 ) 
 SELECT g.k 
 FROM   gcd AS g 
 WHERE  g.k = 0; 
$$ LANGUAGE SQL;

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$
  WITH RECURSIVE gcd(n,k) AS ( 
    SELECT n, k 
      UNION ALL 
    SELECT g.k, MOD(g.n,g.k) 
    FROM   gcd AS g 
    WHERE  g.k = 0 
  )
  SELECT   g.n 
  FROM     gcd AS g 
  ORDER BY g.k DESC 
  LIMIT 1; 
$$ LANGUAGE SQL;

Solving this task took about  minutes.
 Or, tick this ( ) if you want to skip it.

Part 3: Comprehension I

Consider the following table s:

CREATE TABLE s ( 
  a serial PRIMARY KEY, 
  b float  NOT NULL 
);

We define the following function f(i,j,k) which evaluates over table s:

CREATE FUNCTION f(i int, j int, k float)  
RETURNS float AS $$ 
  SELECT CASE 
    WHEN i > j THEN k  
    ELSE (SELECT f(i+1, j, s.b + 0.5 * k) 
          FROM   s 
          WHERE  s.a = i) 
  END; 
$$ LANGUAGE SQL;

Keep track on how long it takes you to describe (in 100 words or less) what the function f(i int, j int, 0) does:

Solving this task took about  minutes.
 Or, tick this ( ) if you want to skip it.

Part 4: Comprehension II

Consider the following table t:

CREATE TABLE t ( 
  x int PRIMARY KEY,  
  y int REFERENCES t(x), 
  z int NOT NULL  
);

Consider the following function g(a int) which evaluates over table t:

CREATE FUNCTION g(a int)  
RETURNS bigint AS $$ 
  WITH RECURSIVE  
  r(x, y, z) AS ( 
    SELECT t.x, t.y, t.z 
    FROM   t 
    WHERE  t.x = a 
      UNION  
    SELECT r.x, t.y, t.z 
    FROM   r, t 
    WHERE  r.y = t.x 
  ) 
  SELECT   SUM(r.z)  
  FROM     r; 
$$ LANGUAGE SQL;

Keep track on how long it takes you to describe (in 100 words or less) what the function g(a int) does:

Solving this task took about  minutes.
 Or, tick this ( ) if you want to skip it.

fib(0) = 0

fib(1) = 1

fib(𝑛) = fib(𝑛 − 1) + fib(𝑛 − 2)

(1)

𝑛

gcd(𝑛, 0) = 𝑛

gcd(𝑛, 𝑘) = gcd(𝑘, 𝑛 mod 𝑘)
(2)

𝑢 𝑣

What does f(i int, j int, 0) do?
 
WRITE YOUR YOUR ANSWER HERE!

What does g(a int) do?
 
WRITE YOUR YOUR ANSWER HERE!

1
2
3

1
2
3
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RECURSION IN SQL
User Study

Introduction

Thank you for participating in this anonymous user study!

Like any programming language, SQL allows you to express complex computation in various (equivalent) forms. This survey studies two
particular forms of authoring user-defined SQL functions (UDFs). Both forms are used to implement the same recursive programming
problems—but the forms read differently:

one uses recursive CTEs (WITH RECURSIVE),
the other is based on recursive function invocation.

This survey compares these two forms in terms of readability and thus focuses on your ability to read and understand snippets of SQL code.
We therefore ask you to work through the study without the use of external programs: answer the questions below without executing
the UDFs on a SQL database system. Use pen and paper only (if required at all). Thank you!

The SQL dialect presented to you in this survey leans heavily on PostgreSQL 12. If any feature found in the following queries is new to
you, feel free to look them up here.

Important: We will also ask you for the time it took you to complete each task. As you complete each task, keep track of the required time
and enter it in the boxes below. Please answer truthfully. Each task should take about 5 − 10 minutes, if you find yourself exceeding this
timespan, please feel free to skip to the next task (in this case, please tick the corresponding box).

The entire survey should take about 30 − 45 minutes to complete. Once done, please make sure to press the Submit your results!-button at
the end.

Before we begin, please list the three (regular) programming languages that you are most familiar with:

1. 
2. 
3. 

I have had some exposure to Functional Programming:
 Yes No

Part 1: Fibonacci Numbers

Graham et. al. define the Fibonacci number function in Concrete Mathematics, 2nd edition as:

We propose the following UDFs which aim to compute the Fibonacci number of  using SQL. You can assume that each of the UDFs are
syntactically sound but only some of them implement the Fibonacci number function correctly.

1. Keep track of how long it takes for you to choose which of the following CTE-based UDFs implement the Fibonacci number function
correctly (there may be more than one):

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
  WITH RECURSIVE 
  fib(i, prev_n, curr_n) AS ( 
    VALUES (1, 0, 1) 
      UNION  
    SELECT f.i + 1, 
           f.curr_n, 
           f.prev_n - f.curr_n 
    FROM   fib AS f 
    WHERE  f.i <= n 
  ) 
  SELECT f.curr_n  
  FROM   fib AS f 
  WHERE  f.i = n; 
$$ LANGUAGE SQL;

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
  WITH RECURSIVE 
  fib(i, prev_n, curr_n) AS ( 
    SELECT 1, 0, 1 
      UNION  
    SELECT f.i + 1, 
           f.curr_n, 
           f.prev_n + f.curr_n 
    FROM   fib AS f 
    WHERE  f.i BETWEEN 0 AND n 
  ) 
  SELECT f.curr_n 
  FROM   fib AS f 
  WHERE  f.i < n; 
$$ LANGUAGE SQL;

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
 WITH RECURSIVE 
 fib(i, prev_n, curr_n) AS ( 
   VALUES (1, 0, 1) 
     UNION ALL 
   SELECT f.i + 1, 
          f.curr_n, 
          f.prev_n + f.curr_n 
   FROM   fib AS f 
   WHERE  f.i <= n 
 ) 
 SELECT   f.prev_n 
 FROM     fib AS f 
 ORDER BY f.i DESC 
 LIMIT 1; 

$$ LANGUAGE SQL;  

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
  WITH RECURSIVE 
  fib(i, prev_n, curr_n) AS ( 
    VALUES (1, 0, 1)
      UNION ALL 
    SELECT f.i + 1, 
           f.curr_n, 
           f.prev_n + f.curr_n 
    FROM   fib AS f 
    WHERE  f.i < n 
  ) 
  SELECT   f.curr_n 
  FROM     fib AS f 
  ORDER BY f.i  
  LIMIT 1; 
$$ LANGUAGE SQL;

Solving this task took about  minutes.
 Or, tick this ( ) if you want to skip it.

2. Keep track of how long it takes for you to choose which of the following recursive UDFs implement the Fibonacci number function
correctly (there may be more than one):

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
  SELECT 0 
  WHERE  n <= 1 
    UNION ALL 
  SELECT fib(n-1) + fib(n-2)
  WHERE  n > 1
$$ LANGUAGE SQL;

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
  SELECT CASE 
    WHEN n = 0 THEN 0 
    WHEN n = 1 THEN 1 
    ELSE fib(n-1) + fib(n-2) 
  END; 
$$ LANGUAGE SQL;

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
  SELECT CASE 
    WHEN n = 0 THEN 0 
    WHEN n = 1 THEN 1 
    ELSE fib(n-1) - fib(n-2) 
  END; 
$$ LANGUAGE SQL;

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
  SELECT 1 
  WHERE  n <= 2 
    UNION ALL 
  SELECT fib(n-1) + fib(n-2) 
  WHERE  n > 2 
$$ LANGUAGE SQL;

Solving this task took about  minutes.
 Or, tick this ( ) if you want to skip it.

Part 2: Greatest Common Divisor

Knuth et. al. define the calculation of the greatest common divisor in The Art of Programming (vol. 2 Seminumerical Algorithms), 3rd edition as:

We propose the following SQL UDFs which aim to compute the greatest common divisor of  and . You can assume that each of the UDFs
are syntactically sound but only some of them implement the greatest common divisor function correctly.

1. Keep track of how long it takes for you to choose which of the following recursive UDFs compute the greatest common divisor
correctly (there may be more than one):

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$ 
  SELECT CASE 
    WHEN k = 0 THEN n 
    ELSE gcd(k, MOD(n,k)) 
  END; 
$$ LANGUAGE SQL;

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$ 
  SELECT n 
  WHERE  k = 0 
    UNION ALL 
  SELECT gcd(k, MOD(k,n)) 
  WHERE  k > 0;
$$ LANGUAGE SQL;

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$ 
 SELECT CASE 
   WHEN n = 0 THEN k 
   ELSE gcd(k, MOD(k,n)) 
 END; 
$$ LANGUAGE SQL;

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$
  SELECT k 
  WHERE  k = 0 
    UNION  
  SELECT gcd(k, MOD(n,k)) 
  WHERE  k > 0; 
$$ LANGUAGE SQL;

Solving this task took about  minutes.
 Or, tick this ( ) if you want to skip it.

2. Keep track of how long it takes for you to choose which of the following CTE-based UDFs compute the greatest common divisor
correctly (there may be more than one):

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$ 
  WITH RECURSIVE gcd(n,k) AS ( 
    SELECT n, k 
      UNION ALL 
    SELECT g.k, MOD(g.n,g.k) 
    FROM   gcd AS g 
    WHERE  g.k <> 0 
  ) 
  SELECT g.n 
  FROM   gcd AS g 
  WHERE  g.k = 0; 
$$ LANGUAGE SQL;

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$ 
  WITH RECURSIVE gcd(n,k) AS ( 
    SELECT n, k 
      UNION  
    SELECT g.k, MOD(g.n,g.k) 
    FROM   gcd AS g 
    WHERE  g.k > 0 
  ) 
  SELECT   g.n 
  FROM     gcd AS g 
  ORDER BY g.k 
  LIMIT 1; 
$$ LANGUAGE SQL;

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$ 
 WITH RECURSIVE gcd(n,k) AS ( 
   SELECT n, k 
     UNION ALL 
   SELECT g.k, MOD(g.n,g.k) 
   FROM   gcd AS g 
   WHERE  g.k <> 0 
 ) 
 SELECT g.k 
 FROM   gcd AS g 
 WHERE  g.k = 0; 
$$ LANGUAGE SQL;

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$
  WITH RECURSIVE gcd(n,k) AS ( 
    SELECT n, k 
      UNION ALL 
    SELECT g.k, MOD(g.n,g.k) 
    FROM   gcd AS g 
    WHERE  g.k = 0 
  )
  SELECT   g.n 
  FROM     gcd AS g 
  ORDER BY g.k DESC 
  LIMIT 1; 
$$ LANGUAGE SQL;

Solving this task took about  minutes.
 Or, tick this ( ) if you want to skip it.

Part 3: Comprehension I

Consider the following table s:

CREATE TABLE s ( 
  a serial PRIMARY KEY, 
  b float  NOT NULL 
);

We define the following function f(i,j,k) which evaluates over table s:

CREATE FUNCTION f(i int, j int, k float)  
RETURNS float AS $$ 
  SELECT CASE 
    WHEN i > j THEN k  
    ELSE (SELECT f(i+1, j, s.b + 0.5 * k) 
          FROM   s 
          WHERE  s.a = i) 
  END; 
$$ LANGUAGE SQL;

Keep track on how long it takes you to describe (in 100 words or less) what the function f(i int, j int, 0) does:

Solving this task took about  minutes.
 Or, tick this ( ) if you want to skip it.

Part 4: Comprehension II

Consider the following table t:

CREATE TABLE t ( 
  x int PRIMARY KEY,  
  y int REFERENCES t(x), 
  z int NOT NULL  
);

Consider the following function g(a int) which evaluates over table t:

CREATE FUNCTION g(a int)  
RETURNS bigint AS $$ 
  WITH RECURSIVE  
  r(x, y, z) AS ( 
    SELECT t.x, t.y, t.z 
    FROM   t 
    WHERE  t.x = a 
      UNION  
    SELECT r.x, t.y, t.z 
    FROM   r, t 
    WHERE  r.y = t.x 
  ) 
  SELECT   SUM(r.z)  
  FROM     r; 
$$ LANGUAGE SQL;

Keep track on how long it takes you to describe (in 100 words or less) what the function g(a int) does:

Solving this task took about  minutes.
 Or, tick this ( ) if you want to skip it.

fib(0) = 0

fib(1) = 1

fib(𝑛) = fib(𝑛 − 1) + fib(𝑛 − 2)

(1)

𝑛

gcd(𝑛, 0) = 𝑛

gcd(𝑛, 𝑘) = gcd(𝑘, 𝑛 mod 𝑘)
(2)

𝑢 𝑣

What does f(i int, j int, 0) do?
 
WRITE YOUR YOUR ANSWER HERE!

What does g(a int) do?
 
WRITE YOUR YOUR ANSWER HERE!

1
2
3

1
2
3



RECURSION IN SQL
User Study

Introduction

Thank you for participating in this anonymous user study!

Like any programming language, SQL allows you to express complex computation in various (equivalent) forms. This survey studies two
particular forms of authoring user-defined SQL functions (UDFs). Both forms are used to implement the same recursive programming
problems—but the forms read differently:

one uses recursive CTEs (WITH RECURSIVE),
the other is based on recursive function invocation.

This survey compares these two forms in terms of readability and thus focuses on your ability to read and understand snippets of SQL code.
We therefore ask you to work through the study without the use of external programs: answer the questions below without executing
the UDFs on a SQL database system. Use pen and paper only (if required at all). Thank you!

The SQL dialect presented to you in this survey leans heavily on PostgreSQL 12. If any feature found in the following queries is new to
you, feel free to look them up here.

Important: We will also ask you for the time it took you to complete each task. As you complete each task, keep track of the required time
and enter it in the boxes below. Please answer truthfully. Each task should take about 5 − 10 minutes, if you find yourself exceeding this
timespan, please feel free to skip to the next task (in this case, please tick the corresponding box).

The entire survey should take about 30 − 45 minutes to complete. Once done, please make sure to press the Submit your results!-button at
the end.

Before we begin, please list the three (regular) programming languages that you are most familiar with:

1. 
2. 
3. 

I have had some exposure to Functional Programming:
 Yes No

Part 1: Fibonacci Numbers

Graham et. al. define the Fibonacci number function in Concrete Mathematics, 2nd edition as:

We propose the following UDFs which aim to compute the Fibonacci number of  using SQL. You can assume that each of the UDFs are
syntactically sound but only some of them implement the Fibonacci number function correctly.

1. Keep track of how long it takes for you to choose which of the following CTE-based UDFs implement the Fibonacci number function
correctly (there may be more than one):

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
  WITH RECURSIVE 
  fib(i, prev_n, curr_n) AS ( 
    VALUES (1, 0, 1) 
      UNION  
    SELECT f.i + 1, 
           f.curr_n, 
           f.prev_n - f.curr_n 
    FROM   fib AS f 
    WHERE  f.i <= n 
  ) 
  SELECT f.curr_n  
  FROM   fib AS f 
  WHERE  f.i = n; 
$$ LANGUAGE SQL;

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
  WITH RECURSIVE 
  fib(i, prev_n, curr_n) AS ( 
    SELECT 1, 0, 1 
      UNION  
    SELECT f.i + 1, 
           f.curr_n, 
           f.prev_n + f.curr_n 
    FROM   fib AS f 
    WHERE  f.i BETWEEN 0 AND n 
  ) 
  SELECT f.curr_n 
  FROM   fib AS f 
  WHERE  f.i < n; 
$$ LANGUAGE SQL;

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
 WITH RECURSIVE 
 fib(i, prev_n, curr_n) AS ( 
   VALUES (1, 0, 1) 
     UNION ALL 
   SELECT f.i + 1, 
          f.curr_n, 
          f.prev_n + f.curr_n 
   FROM   fib AS f 
   WHERE  f.i <= n 
 ) 
 SELECT   f.prev_n 
 FROM     fib AS f 
 ORDER BY f.i DESC 
 LIMIT 1; 

$$ LANGUAGE SQL;  

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
  WITH RECURSIVE 
  fib(i, prev_n, curr_n) AS ( 
    VALUES (1, 0, 1)
      UNION ALL 
    SELECT f.i + 1, 
           f.curr_n, 
           f.prev_n + f.curr_n 
    FROM   fib AS f 
    WHERE  f.i < n 
  ) 
  SELECT   f.curr_n 
  FROM     fib AS f 
  ORDER BY f.i  
  LIMIT 1; 
$$ LANGUAGE SQL;

Solving this task took about  minutes.
 Or, tick this ( ) if you want to skip it.

2. Keep track of how long it takes for you to choose which of the following recursive UDFs implement the Fibonacci number function
correctly (there may be more than one):

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
  SELECT 0 
  WHERE  n <= 1 
    UNION ALL 
  SELECT fib(n-1) + fib(n-2)
  WHERE  n > 1
$$ LANGUAGE SQL;

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
  SELECT CASE 
    WHEN n = 0 THEN 0 
    WHEN n = 1 THEN 1 
    ELSE fib(n-1) + fib(n-2) 
  END; 
$$ LANGUAGE SQL;

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
  SELECT CASE 
    WHEN n = 0 THEN 0 
    WHEN n = 1 THEN 1 
    ELSE fib(n-1) - fib(n-2) 
  END; 
$$ LANGUAGE SQL;

CREATE FUNCTION fib(n int) 
RETURNS int AS $$ 
  SELECT 1 
  WHERE  n <= 2 
    UNION ALL 
  SELECT fib(n-1) + fib(n-2) 
  WHERE  n > 2 
$$ LANGUAGE SQL;

Solving this task took about  minutes.
 Or, tick this ( ) if you want to skip it.

Part 2: Greatest Common Divisor

Knuth et. al. define the calculation of the greatest common divisor in The Art of Programming (vol. 2 Seminumerical Algorithms), 3rd edition as:

We propose the following SQL UDFs which aim to compute the greatest common divisor of  and . You can assume that each of the UDFs
are syntactically sound but only some of them implement the greatest common divisor function correctly.

1. Keep track of how long it takes for you to choose which of the following recursive UDFs compute the greatest common divisor
correctly (there may be more than one):

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$ 
  SELECT CASE 
    WHEN k = 0 THEN n 
    ELSE gcd(k, MOD(n,k)) 
  END; 
$$ LANGUAGE SQL;

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$ 
  SELECT n 
  WHERE  k = 0 
    UNION ALL 
  SELECT gcd(k, MOD(k,n)) 
  WHERE  k > 0;
$$ LANGUAGE SQL;

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$ 
 SELECT CASE 
   WHEN n = 0 THEN k 
   ELSE gcd(k, MOD(k,n)) 
 END; 
$$ LANGUAGE SQL;

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$
  SELECT k 
  WHERE  k = 0 
    UNION  
  SELECT gcd(k, MOD(n,k)) 
  WHERE  k > 0; 
$$ LANGUAGE SQL;

Solving this task took about  minutes.
 Or, tick this ( ) if you want to skip it.

2. Keep track of how long it takes for you to choose which of the following CTE-based UDFs compute the greatest common divisor
correctly (there may be more than one):

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$ 
  WITH RECURSIVE gcd(n,k) AS ( 
    SELECT n, k 
      UNION ALL 
    SELECT g.k, MOD(g.n,g.k) 
    FROM   gcd AS g 
    WHERE  g.k <> 0 
  ) 
  SELECT g.n 
  FROM   gcd AS g 
  WHERE  g.k = 0; 
$$ LANGUAGE SQL;

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$ 
  WITH RECURSIVE gcd(n,k) AS ( 
    SELECT n, k 
      UNION  
    SELECT g.k, MOD(g.n,g.k) 
    FROM   gcd AS g 
    WHERE  g.k > 0 
  ) 
  SELECT   g.n 
  FROM     gcd AS g 
  ORDER BY g.k 
  LIMIT 1; 
$$ LANGUAGE SQL;

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$ 
 WITH RECURSIVE gcd(n,k) AS ( 
   SELECT n, k 
     UNION ALL 
   SELECT g.k, MOD(g.n,g.k) 
   FROM   gcd AS g 
   WHERE  g.k <> 0 
 ) 
 SELECT g.k 
 FROM   gcd AS g 
 WHERE  g.k = 0; 
$$ LANGUAGE SQL;

CREATE FUNCTION gcd(n int, k int) 
RETURNS int AS $$
  WITH RECURSIVE gcd(n,k) AS ( 
    SELECT n, k 
      UNION ALL 
    SELECT g.k, MOD(g.n,g.k) 
    FROM   gcd AS g 
    WHERE  g.k = 0 
  )
  SELECT   g.n 
  FROM     gcd AS g 
  ORDER BY g.k DESC 
  LIMIT 1; 
$$ LANGUAGE SQL;

Solving this task took about  minutes.
 Or, tick this ( ) if you want to skip it.

Part 3: Comprehension I

Consider the following table s:

CREATE TABLE s ( 
  a serial PRIMARY KEY, 
  b float  NOT NULL 
);

We define the following function f(i,j,k) which evaluates over table s:

CREATE FUNCTION f(i int, j int, k float)  
RETURNS float AS $$ 
  SELECT CASE 
    WHEN i > j THEN k  
    ELSE (SELECT f(i+1, j, s.b + 0.5 * k) 
          FROM   s 
          WHERE  s.a = i) 
  END; 
$$ LANGUAGE SQL;

Keep track on how long it takes you to describe (in 100 words or less) what the function f(i int, j int, 0) does:

Solving this task took about  minutes.
 Or, tick this ( ) if you want to skip it.

Part 4: Comprehension II

Consider the following table t:

CREATE TABLE t ( 
  x int PRIMARY KEY,  
  y int REFERENCES t(x), 
  z int NOT NULL  
);

Consider the following function g(a int) which evaluates over table t:

CREATE FUNCTION g(a int)  
RETURNS bigint AS $$ 
  WITH RECURSIVE  
  r(x, y, z) AS ( 
    SELECT t.x, t.y, t.z 
    FROM   t 
    WHERE  t.x = a 
      UNION  
    SELECT r.x, t.y, t.z 
    FROM   r, t 
    WHERE  r.y = t.x 
  ) 
  SELECT   SUM(r.z)  
  FROM     r; 
$$ LANGUAGE SQL;

Keep track on how long it takes you to describe (in 100 words or less) what the function g(a int) does:

Solving this task took about  minutes.
 Or, tick this ( ) if you want to skip it.

fib(0) = 0

fib(1) = 1

fib(𝑛) = fib(𝑛 − 1) + fib(𝑛 − 2)

(1)

𝑛

gcd(𝑛, 0) = 𝑛

gcd(𝑛, 𝑘) = gcd(𝑘, 𝑛 mod 𝑘)
(2)

𝑢 𝑣

What does f(i int, j int, 0) do?
 
WRITE YOUR YOUR ANSWER HERE!

What does g(a int) do?
 
WRITE YOUR YOUR ANSWER HERE!

1
2
3

1
2
3

97



Part 5: Evaluation

Important: This part builds on functions found in part 3 and part 4 of this survey. Make sure to answer these parts first, before you
continue here.

1. Consider the following instance for table s from part 3:

INSERT INTO s(a,b) VALUES (1,4),(2,2.5),(3,1.5);

Keep track on how long it takes you to compute (using pen and paper) the result of the function from part 3 when called as f(1,3,0).
Write down the result:

Solving this task took about  minutes.
Or, tick this ( ) if you want to skip it.

2. Consider the following instance for table t from part 4:

INSERT INTO t(x,y,z) VALUES (1,2,5),(2,4,3),(3,2,2),(4,3,1);

Keep track on how long it takes you to compute (using pen and paper) the result of the function from part 4 when called as g(4).
Write down the result:

Solving this task took about  minutes.
Or, tick this ( ) if you want to skip it.

Part 6: 0-1 Knapsack Problem

Martello et. al. define the 0-1 Knapsack Problem in Knapsack Problems - Algorithms and Computer Implementations as follows:

Consider items  where each item has a weight  and a value . Then  maximizes the sum of values of items that
fit into a knapsack of weight  and is defined as:

Keep track of how long it takes you to complete the SQL function knap(n,w) which solves the 0-1 Knapsack problem either using a
recursive or CTE-based UDF. Submit your solution in the following textbox in which we also provide to you the definition of table items
which holds all items i and their respective weight w and value p to be used in this task.

Solving this task took about  minutes.
Or, tick this ( ) if you want to skip it.

All done?

Thank you for participating!

Submit Your Results!

formatted by Markdeep 1.10  

𝑖 ∈ {1, … , 𝑛} 𝑤𝑖 𝑝𝑖 knap(𝑛, 𝑤)

𝑤

knap(1, 𝑢) = 0

knap(𝑘, 𝑢) = {
knap(𝑘 − 1, 𝑢)

max(knap(𝑘 − 1, 𝑢),  knap(𝑘 − 1, 𝑢 − ) + )𝑤𝑘 𝑝𝑘

, if  > 𝑢𝑤𝑘

, otherwise

(3)

✒

The result of f(1,3,0)?
 
WRITE YOUR YOUR ANSWER HERE!

The result of g(4)?
 
WRITE YOUR YOUR ANSWER HERE!

CREATE TABLE items (
  i serial PRIMARY KEY, 
  w int    NOT NULL, 
  p int    NOT NULL
);
 
CREATE FUNCTION knap(k int, u int) 
RETURNS int AS $$
  /* YOUR CODE HERE */
$$ LANGUAGE SQL;

1
2
3

1
2
3

1
2
3
4
5
6
7
8
9
10
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Part 5: Evaluation

Important: This part builds on functions found in part 3 and part 4 of this survey. Make sure to answer these parts first, before you
continue here.

1. Consider the following instance for table s from part 3:

INSERT INTO s(a,b) VALUES (1,4),(2,2.5),(3,1.5);

Keep track on how long it takes you to compute (using pen and paper) the result of the function from part 3 when called as f(1,3,0).
Write down the result:

Solving this task took about  minutes.
Or, tick this ( ) if you want to skip it.

2. Consider the following instance for table t from part 4:

INSERT INTO t(x,y,z) VALUES (1,2,5),(2,4,3),(3,2,2),(4,3,1);

Keep track on how long it takes you to compute (using pen and paper) the result of the function from part 4 when called as g(4).
Write down the result:

Solving this task took about  minutes.
Or, tick this ( ) if you want to skip it.

Part 6: 0-1 Knapsack Problem

Martello et. al. define the 0-1 Knapsack Problem in Knapsack Problems - Algorithms and Computer Implementations as follows:

Consider items  where each item has a weight  and a value . Then  maximizes the sum of values of items that
fit into a knapsack of weight  and is defined as:

Keep track of how long it takes you to complete the SQL function knap(n,w) which solves the 0-1 Knapsack problem either using a
recursive or CTE-based UDF. Submit your solution in the following textbox in which we also provide to you the definition of table items
which holds all items i and their respective weight w and value p to be used in this task.

Solving this task took about  minutes.
Or, tick this ( ) if you want to skip it.

All done?

Thank you for participating!

Submit Your Results!

formatted by Markdeep 1.10  

𝑖 ∈ {1, … , 𝑛} 𝑤𝑖 𝑝𝑖 knap(𝑛, 𝑤)

𝑤

knap(1, 𝑢) = 0

knap(𝑘, 𝑢) = {
knap(𝑘 − 1, 𝑢)

max(knap(𝑘 − 1, 𝑢),  knap(𝑘 − 1, 𝑢 − ) + )𝑤𝑘 𝑝𝑘

, if  > 𝑢𝑤𝑘

, otherwise

(3)

✒

The result of f(1,3,0)?
 
WRITE YOUR YOUR ANSWER HERE!

The result of g(4)?
 
WRITE YOUR YOUR ANSWER HERE!

CREATE TABLE items (
  i serial PRIMARY KEY, 
  w int    NOT NULL, 
  p int    NOT NULL
);
 
CREATE FUNCTION knap(k int, u int) 
RETURNS int AS $$
  /* YOUR CODE HERE */
$$ LANGUAGE SQL;
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B
Complete Templates

Templates used for compiling functional-style UDFs in general and with linear and
tail recursion optimizations (see Sections 5.1, 5.3 and 5.4). Each has all features (table-
valued return type, memoization, and batching) enabled can be found in Figures B.1
to B.3. In each Figure, we highlight the independent code regions that enable table-
valued return types ( ), memoization ( ), and batching ( ). These features are
discussed in detail in Chapter 5.
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1 CREATE FUNCTION f([args]) RETURNS TABLE(args, vals)
2 AS $$
3 WITH RECURSIVE call_graph(in,site,fanout,out,vals,"empty?",rid) AS (
4 SELECT args,NULL::int,NULL::bigint,args,NULL,false,NULL::bigint
5 FROM unnest(f.[args]) AS args
6 UNION -- recursive UNION
7 SELECT g.out, edges.*
8 FROM call_graph AS g,
9 LATERAL (
10 WITH memoization(site,fanout,out,vals,"empty?",rid) AS (
11 SELECT NULL::int, 0, m.in, m.vals, m."empty?", m.rid
12 FROM memo AS m
13 WHERE g.out = m.in
14 ),
15 slices(site,out) AS (
16 SELECT 1 AS site, out FROM (replacepslicepf , s1q, r(g.out).args sq) AS _(out)
17 UNION
18

...
19 UNION
20 SELECT n AS site, out FROM (replacepslicepf , snq, r(g.out).args sq) AS _(out)
21 ),
22 calls(site,fanout,out,vals,"empty?",rid) AS (
23 SELECT s.site, COUNT(*) OVER () AS fanout, s.out, NULL, false, NULL::bigint
24 FROM slices AS s
25 WHERE s.out <>

T

26 ),
27 values(vals) AS (
28 replacepbodypf ,[(VALUES NULL),...,(VALUES NULL)]q, r(g.out).args sq
29 )
30 TABLE memoization
31 UNION ALL
32 SELECT *
33 FROM calls
34 WHERE NOT EXISTS (TABLE memoization)
35 UNION ALL
36 SELECT NULL::int AS site, 0 AS fanout, ROW((g.out).args) AS out,
37 v.vals, false, ROW_NUMBER() OVER ()
38 FROM values AS v
39 WHERE NOT EXISTS (TABLE memoization)
40 AND NOT EXISTS (TABLE calls)
41 UNION ALL
42 SELECT NULL::int AS site, 0 AS fanout, ROW((g.out).args) AS out, NULL, true, 1
43 WHERE NOT EXISTS (TABLE memoization)
44 AND NOT EXISTS (TABLE calls)
45 AND NOT EXISTS (TABLE values)
46 ) AS edges(site,fanout,out,vals,"empty?",rid)
47 WHERE g.fanout > 0 OR g.fanout IS NULL
48 ),

xContinued on next pagey
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xContinued from previous pagey

49 base_cases(in,vals,"empty?",rid,ref,site,fanout) AS (
50 SELECT g.in, g.vals, g."empty?", g.rid, g_ref.in, g_ref.site, g_ref.fanout
51 FROM call_graph AS g,
52 call_graph AS g_ref
53 WHERE g.fanout = 0
54 AND (g_ref.fanout > 0 OR g_ref.fanout IS NULL)
55 AND g.in = g_ref.out
56 ),
57 evaluation(in,vals,"empty?",rid,ref,site,fanout) AS (
58 TABLE base_cases
59 UNION ALL -- recursive UNION ALL
60 (WITH e(in,vals,"empty?",rid,ref,site,fanout) AS (TABLE evaluation),
61 returns(in,vals,"empty?",rid) AS (
62 SELECT go.in, result.*
63 FROM (SELECT e.ref
64 FROM e
65 WHERE e.rid = 1
66 GROUP BY e.ref, e.fanout
67 HAVING COUNT(*) = e.fanout
68 ) AS go(in),
69 LATERAL (
70 WITH result(vals) AS (
71 replacepbodypf , rlookupTblpf , 1 q, ... , lookupTblpf , n qsq,
72 r(go.in).args sq
73 )
74 SELECT r.*, false, ROW_NUMBER() OVER () FROM result AS r
75 UNION ALL
76 SELECT NULL, true, 1 WHERE NOT EXISTS (TABLE result)
77 ) AS result(vals,"empty?",rid)
78 )
79 SELECT *
80 FROM e
81 WHERE e.fanout IS NOT NULL
82 AND NOT EXISTS (SELECT FROM returns AS r WHERE r.in = e.ref)
83 UNION ALL
84 SELECT r.*, g.in, g.site, g.fanout
85 FROM returns AS r, call_graph AS g
86 WHERE r.in = g.out
87 )),
88 store AS (
89 INSERT INTO memo
90 SELECT e.in, e.vals, e."empty?", e.rid
91 FROM evaluation AS e
92 ON CONFLICT DO NOTHING
93 )
94 SELECT e.in, e.vals
95 FROM evaluation AS e
96 WHERE e.fanout IS NULL
97 AND NOT e."empty?";
98 $$ LANGUAGE SQL VOLATILE STRICT;

Figure B.1: SQL code emitted when compiling functional-style UDFs with table-valued return
type ( ), memoization ( ) and batching ( ) enabled.
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1 CREATE FUNCTION f([args]) RETURNS TABLE(args, vals)
2 AS $$
3 WITH RECURSIVE call_graph(in,site,fanout,out,vals,"empty?",rid) AS (
4 SELECT args,NULL::int,NULL::bigint,args,NULL,false,NULL::bigint
5 FROM unnest(f.[args]) AS args
6 UNION ALL -- recursive UNION ALL
7 SELECT g.out, edges.*
8 FROM call_graph AS g,
9 LATERAL (
10 WITH memoization(site,fanout,out,vals,"empty?",rid) AS (
11 SELECT NULL::int, 0, m.in, m.vals, m."empty?", m.rid
12 FROM memo AS m
13 WHERE g.out = m.in
14 ),
15 slices(site,out) AS (
16 SELECT 1 AS site, out FROM (replacepslicepf , s1q, r(g.out).args sq) AS _(out)
17 UNION
18

...
19 UNION
20 SELECT n AS site, out FROM (replacepslicepf , snq, r(g.out).args sq) AS _(out)
21 ),
22 calls(site,fanout,out,vals,"empty?",rid) AS (
23 SELECT s.site, COUNT(*) OVER () AS fanout, s.out, NULL, false, NULL::bigint
24 FROM slices AS s
25 WHERE s.out <>

T

26 ),
27 values(vals) AS (
28 replacepbodypf ,[(VALUES NULL),...,(VALUES NULL)]q, r(g.out).args sq
29 )
30 TABLE memoization
31 UNION ALL
32 SELECT *
33 FROM calls
34 WHERE NOT EXISTS (TABLE memoization)
35 UNION ALL
36 SELECT NULL::int AS site, 0 AS fanout, ROW((g.out).args) AS out,
37 v.vals, false, ROW_NUMBER() OVER ()
38 FROM values AS v
39 WHERE NOT EXISTS (TABLE memoization)
40 AND NOT EXISTS (TABLE calls)
41 UNION ALL
42 SELECT NULL::int AS site, 0 AS fanout, ROW((g.out).args) AS out, NULL, true, 1
43 WHERE NOT EXISTS (TABLE memoization)
44 AND NOT EXISTS (TABLE calls)
45 AND NOT EXISTS (TABLE values)
46 ) AS edges(site,fanout,out,vals,"empty?",rid)
47 WHERE g.fanout > 0 OR g.fanout IS NULL
48 ),

xContinued on next pagey

103



xContinued from previous pagey

49 base_cases(in,vals,"empty?",rid,ref,site,fanout) AS (
50 SELECT g.in, g.vals, g."empty?", g.rid, g_ref.in, g_ref.site, g_ref.fanout
51 FROM call_graph AS g,
52 call_graph AS g_ref
53 WHERE g.fanout = 0
54 AND (g_ref.fanout > 0 OR g_ref.fanout IS NULL)
55 AND g.in = g_ref.out
56 ),
57 evaluation(in,vals,"empty?",rid,ref,site,fanout) AS (
58 TABLE base_cases
59 UNION ALL -- recursive UNION ALL
60 (WITH e(in,vals,"empty?",rid,ref,site,fanout) AS (TABLE evaluation),
61 returns(in,vals,"empty?",rid) AS (
62 SELECT go.in, result.*
63 FROM (SELECT e.ref
64 FROM e
65 WHERE e.rid = 1
66 GROUP BY e.ref, e.fanout
67 HAVING COUNT(*) = e.fanout
68 ) AS go(in),
69 LATERAL (
70 WITH result(vals) AS (
71 replacepbodypf , rlookupTblpf , 1 q, ... , lookupTblpf , n qsq,
72 r(go.in).args sq
73 )
74 SELECT r.*, false, ROW_NUMBER() OVER () FROM result AS r
75 UNION ALL
76 SELECT NULL, true, 1 WHERE NOT EXISTS (TABLE result)
77 ) AS result(vals,"empty?",rid)
78 )
79 SELECT r.*, g.in, g.site, g.fanout
80 FROM returns AS r, call_graph AS g
81 WHERE r.in = g.out
82 )),
83 store AS (
84 INSERT INTO memo
85 SELECT e.in, e.vals, e."empty?", e.rid
86 FROM evaluation AS e
87 ON CONFLICT DO NOTHING
88 )
89 SELECT e.in, e.vals
90 FROM evaluation AS e
91 WHERE e.fanout IS NULL
92 AND NOT e."empty?";
93 $$ LANGUAGE SQL VOLATILE STRICT;

Figure B.2: SQL code emitted when compiling linear recursive functional-style UDFs with
table-valued return type ( ), memoization ( ) and batching ( ) enabled.
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1 CREATE FUNCTION f([args]) RETURNS TABLE(args, vals)
2 AS $$
3 WITH RECURSIVE call_graph(in,site,fanout,out,vals,"empty?",rid) AS (
4 SELECT args,NULL::int,NULL::bigint,args,NULL,false,NULL::bigint
5 FROM unnest(f.[args]) AS args
6 UNION ALL -- recursive UNION ALL
7 SELECT g.out, edges.*
8 FROM call_graph AS g,
9 LATERAL (
10 WITH memoization(site,fanout,out,vals,"empty?",rid) AS (
11 SELECT NULL::int, 0, m.in, m.vals, m."empty?", m.rid
12 FROM memo AS m
13 WHERE g.out = m.in
14 ),
15 slices(site,out) AS (
16 SELECT 1 AS site, out FROM (replacepslicepf , s1q, r(g.out).args sq) AS _(out)
17 UNION
18

...
19 UNION
20 SELECT n AS site, out FROM (replacepslicepf , snq, r(g.out).args sq) AS _(out)
21 ),
22 calls(site,fanout,out,vals,"empty?",rid) AS (
23 SELECT s.site, COUNT(*) OVER () AS fanout, s.out, NULL, false, NULL::bigint
24 FROM slices AS s
25 WHERE s.out <>

T

26 ),
27 values(vals) AS (
28 replacepbodypf ,[(VALUES NULL),...,(VALUES NULL)]q, r(g.out).args sq
29 )
30 TABLE memoization
31 UNION ALL
32 SELECT *
33 FROM calls
34 WHERE NOT EXISTS (TABLE memoization)
35 UNION ALL
36 SELECT NULL::int AS site, 0 AS fanout, ROW((g.out).args) AS out,
37 v.vals, false, ROW_NUMBER() OVER ()
38 FROM values AS v
39 WHERE NOT EXISTS (TABLE memoization)
40 AND NOT EXISTS (TABLE calls)
41 UNION ALL
42 SELECT NULL::int AS site, 0 AS fanout, ROW((g.out).args) AS out, NULL, true, 1
43 WHERE NOT EXISTS (TABLE memoization)
44 AND NOT EXISTS (TABLE calls)
45 AND NOT EXISTS (TABLE values)
46 ) AS edges(site,fanout,out,vals,"empty?",rid)
47 WHERE g.fanout > 0 OR g.fanout IS NULL
48 ),

xContinued on next pagey
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xContinued from previous pagey

49 store AS (
50 INSERT INTO memo
51 SELECT g.in, g.vals, g."empty?", g.rid
52 FROM call_graph AS g
53 WHERE g.fanout = 0
54 ON CONFLICT DO NOTHING
55 )
56 SELECT g.in, g.vals
57 FROM call_graph AS g
58 WHERE g.fanout = 0
59 AND NOT g."empty?";
60 $$ LANGUAGE SQL VOLATILE STRICT;

Figure B.3: SQL code emitted when compiling tail recursive functional-style UDFs with
table-valued return type ( ), memoization ( ) and batching ( ) enabled.
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C
Selected Functional-Style SQL UDFs

We hand-picked a selection of functional-style SQL UDFs and list their SQL im-
plementation (Appendix C), their compiled SQL function (Section C.2), and their
hand-crafted recursive CTE formulation (Section C.3).

C.1 Implementation

Figures C.1 to C.4 show the functional-style SQL UDFs for ther respective selected
use-cases. Each figure also shows the required table and type definitions.
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1 CREATE TABLE X (
2 t int PRIMARY KEY,
3 x real
4 );

5 CREATE TABLE Y (
6 t int PRIMARY KEY,
7 y real
8 );

9 CREATE FUNCTION dtw(i int, j int) RETURNS real
10 AS $$
11 CASE
12 WHEN i=0 AND j=0 THEN 0.0
13 WHEN i=0 OR j=0 THEN ∞ -- ’Infinity’::real
14 ELSE (SELECT abs(Z.x - Z.y)
15 +
16 LEAST( 1dtw(i-1, j-1),
17 2dtw(i-1, j ),
18 3dtw(i , j-1))
19 FROM (X JOIN Y
20 ON ((X.t,Y.t) = (i,j))) AS Z)
21 END;
22 $$ LANGUAGE SQL STABLE STRICT;

Figure C.1: The functional-style dtw. 1 , 2 , and 3 mark the recursive call sites. Function
dtw is 3-fold recursive.

1 CREATE FUNCTION split(x real, y real) RETURNS int
2 AS $$
3 CASE
4 WHEN ABS(x-y) <= 1.0 THEN 1
5 ELSE 1split(x,x+ABS(x-y)/2.0)
6 +
7 2split(x+ABS(x-y)/2.0,y)
8 END;
9 $$ LANGUAGE SQL STABLE STRICT;

Figure C.2: The functional-style split. 1 and 2 mark the recursive call sites. Function
split is 2-fold recursive.
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1 CREATE TABLE materials (
2 part int,
3 sub int,
4 quantity int
5 );

6 CREATE FUNCTION bom(part int)
7 RETURNS TABLE(part int, sub int, quantity int)
8 AS $$
9 SELECT m.part, m.sub, m.quantity
10 FROM materials AS m
11 WHERE m.part = part
12 UNION ALL
13 SELECT b.part, b.sub, m.quantity * b.quantity
14 FROM materials AS m JOIN LATERAL 1bom(m.sub) AS b
15 ON (m.part = part);
16 $$ LANGUAGE SQL STABLE STRICT;

Figure C.3: The functional-style bom. 1 marks the recursive call site. Function bom is n-fold
recursive with a table-valued return type.
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1 -- Currently supported VM instruction set
2 CREATE TYPE opcode AS ENUM (
3 ’lod’, -- lod t, x load literal x into target register Rt
4 ’mov’, -- mov t, s move from source register Rs to target register Rt
5 ’jeq’, -- jeq t, s, @a if Rt = Rs, jump to location a, else fall through
6 ’jmp’, -- jmp @a jump to location a
7 ’add’, -- add t, s1, s2 Rt <- Rs1 + Rs2
8 ’mul’, -- mul t, s1, s2 Rt <- Rs1 * Rs2
9 ’div’, -- div t, s1, s2 Rt <- Rs1 / Rs2
10 ’mod’, -- mod t, s1, s2 Rt <- Rs1 mod Rs2
11 ’hlt’ -- htl s halt program, result is register Rs
12 );

13 -- VM instructions
14 CREATE TYPE instruction AS (
15 loc int, -- location
16 opc opcode, -- opcode
17 reg1 int, -- \
18 reg2 int, -- } up to three work registers
19 reg3 int -- /
20 );
21 CREATE TABLE program OF instruction;

22 CREATE FUNCTION vm(ins instruction, regs int[])
23 RETURNS int AS $$
24 CASE ins.opc
25 WHEN ’lod’ THEN 1vm((SELECT p
26 FROM program AS p
27 WHERE p.loc = ins.loc+1),
28 regs[:ins.reg1-1]||ins.reg2||regs[ins.reg1+1:])
29 WHEN ’mov’ THEN 2vm((SELECT p
30 FROM program AS p
31 WHERE p.loc = ins.loc+1),
32 regs[:ins.reg1-1]||regs[ins.reg2]||regs[ins.reg1+1:])
33 WHEN ’jeq’ THEN 3vm((SELECT p
34 FROM program AS p
35 WHERE p.loc = CASE WHEN regs[ins.reg1] = regs[ins.reg2]
36 THEN ins.reg3
37 ELSE ins.loc + 1
38 END),
39 regs)
40 WHEN ’jmp’ THEN 4vm((SELECT p
41 FROM program AS p
42 WHERE p.loc = ins.reg1),
43 regs)
44 WHEN ’add’ THEN 5vm((SELECT p
45 FROM program AS p
46 WHERE p.loc = ins.loc+1),
47 regs[:ins.reg1-1]||regs[ins.reg2] + regs[ins.reg3]||regs[ins.reg1+1:])
48 WHEN ’mul’ THEN 6vm((SELECT p
49 FROM program AS p
50 WHERE p.loc = ins.loc+1),
51 regs[:ins.reg1-1]||regs[ins.reg2] * regs[ins.reg3]||regs[ins.reg1+1:])
52 WHEN ’div’ THEN 7vm((SELECT p
53 FROM program AS p
54 WHERE p.loc = ins.loc+1),
55 regs[:ins.reg1-1]||regs[ins.reg2] / regs[ins.reg3]||regs[ins.reg1+1:])
56 WHEN ’mod’ THEN 8vm((SELECT p
57 FROM program AS p
58 WHERE p.loc = ins.loc+1),
59 regs[:ins.reg1-1]||regs[ins.reg2] % regs[ins.reg3]||regs[ins.reg1+1:])
60 WHEN ’hlt’ THEN regs[ins.reg1]
61 END;
62 $$ LANGUAGE SQL STABLE STRICT;

Figure C.4: The functional-style vm. 1 , 2 , ..., 8 mark the recursive call sites. Function vm is
tail-recursive. Each CASE-branch directrly calls exactly one call site.
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C.2 Compilation

Compiling the functional-style UDF replaces their function body as described in
Chapters 4 and 5. The functions in Figures C.6 to C.8 present the compiled functional-
style UDFs of Figures C.1 to C.4 respectively. In each figure, we marked the sections
which were modified by slice, replace, and body ( ) and how it was modified ( ).
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replacepslicepdtw,1q,rg.out_i,g.out_jsq

replacepslicepdtw,2q,rg.out_i,g.out_jsq

replacepslicepdtw,3q,rg.out_i,g.out_jsq

replacepbodypdtw,rNULL::real,NULL::real,NULL::realsq,rg.out_i,g.out_jsq

1 CREATE FUNCTION dtw(i int, j int) RETURNS real
2 AS $$
3 WITH RECURSIVE
4 call_graph(in_i, in_j, site, fanout, out_i, out_j, val) AS (
5 SELECT i, j, NULL :: int, NULL :: bigint, i, j, NULL::real
6 UNION -- Recursive UNION
7 SELECT g.out_i, g.out_j, edges.*
8 FROM call_graph AS g,
9 LATERAL (
10 WITH
11 slices(site, out) AS (
12 SELECT 1 AS site, out FROM (
13 SELECT *
14 FROM (SELECT (NULL, false) :: lifted_args) AS _
15 WHERE (g.out_i = 0 AND g.out_j = 0)
16 UNION ALL
17 SELECT *
18 FROM (SELECT (NULL, false) :: lifted_args) AS _
19 WHERE NOT (g.out_i = 0 AND g.out_j = 0) AND (g.out_i = 0 OR g.out_j = 0)
20 UNION ALL
21 SELECT *
22 FROM (SELECT (ROW(g.out_i - 1, g.out_j - 1), true) :: lifted_args
23 FROM (X JOIN Y
24 ON ((X.t,Y.t) = (g.out_i,g.out_j))) AS Z) AS _
25 WHERE NOT ((g.out_i = 0 AND g.out_j = 0) OR (g.out_i = 0 OR g.out_j = 0))
26 ) AS _(out) UNION SELECT 2 AS site, out FROM (
27 SELECT *
28 FROM (SELECT (NULL, false) :: lifted_args) AS _
29 WHERE (g.out_i = 0 AND g.out_j = 0)
30 UNION ALL
31 SELECT *
32 FROM (SELECT (NULL, false) :: lifted_args) AS _
33 WHERE NOT (g.out_i = 0 AND g.out_j = 0) AND (g.out_i = 0 OR g.out_j = 0)
34 UNION ALL
35 SELECT *
36 FROM (SELECT (ROW(g.out_i - 1, g.out_j), true) :: lifted_args
37 FROM (X JOIN Y
38 ON ((X.t,Y.t) = (g.out_i,g.out_j))) AS Z) AS _
39 WHERE NOT ((g.out_i = 0 AND g.out_j = 0) OR (g.out_i = 0 OR g.out_j = 0))
40 ) AS _(out) UNION SELECT 3 AS site, out FROM (
41 SELECT *
42 FROM (SELECT (NULL, false) :: lifted_args) AS _
43 WHERE (g.out_i = 0 AND g.out_j = 0)
44 UNION ALL
45 SELECT *
46 FROM (SELECT (NULL, false) :: lifted_args) AS _
47 WHERE NOT (g.out_i = 0 AND g.out_j = 0) AND (g.out_i = 0 OR g.out_j = 0)
48 UNION ALL
49 SELECT *
50 FROM (SELECT (ROW(g.out_i, g.out_j - 1), true) :: lifted_args
51 FROM (X JOIN Y
52 ON ((X.t,Y.t) = (g.out_i,g.out_j))) AS Z) AS _
53 WHERE NOT ((g.out_i = 0 AND g.out_j = 0) OR (g.out_i = 0 OR g.out_j = 0))
54 ) AS _(out)),
55 calls(site, fanout, i, j, val) AS (
56 SELECT s.site, COUNT(*) OVER (), (s.out).args.i, (s.out).args.j, NULL::real
57 FROM slices AS s
58 WHERE (s.out).not_bottom)
59 TABLE calls
60 UNION ALL
61 SELECT NULL :: int, 0, g.out_i, g.out_j, (
62 SELECT CASE
63 WHEN g.out_i = 0 AND g.out_j = 0 THEN 0::real
64 WHEN g.out_i = 0 OR g.out_j = 0 THEN ’infinity’::real
65 ELSE (SELECT abs(Z.x - Z.y) + LEAST(NULL::real,NULL::real,NULL::real)
66 FROM (X JOIN Y
67 ON ((X.t,Y.t) = (g.out_i,g.out_j))) AS Z)
68 END)
69 WHERE NOT EXISTS (TABLE calls)
70 ) AS edges(site, fanout, i, j, val)
71 WHERE g.fanout > 0 OR g.fanout IS NULL),

xContinued on next pagey
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xContinued from previous pagey

replacepbodypdtw,rlookuppdtw,1q,lookuppdtw,2q,lookuppdtw,3qsq,rgo.in_i,go.in_jsq

72 base_cases(in_i, in_j, val, ref_i, ref_j, ref_site, ref_fanout) AS (
73 SELECT g.in_i, g.in_j, g.val, g_ref.in_i, g_ref.in_j, g_ref.site, g_ref.fanout
74 FROM call_graph AS g, call_graph AS g_ref
75 WHERE g.fanout = 0 AND (g_ref.fanout > 0 OR g_ref.fanout IS NULL)
76 AND (g.in_i, g.in_j) = (g_ref.out_i, g_ref.out_j)
77 ),
78 evaluation(in_i, in_j, val, ref_i, ref_j, ref_site, ref_fanout) AS (
79 TABLE base_cases
80 UNION ALL (
81 WITH e AS (TABLE evaluation),
82 returns(in_i, in_j, val) AS (
83 SELECT go.in_i, go.in_j, (
84 SELECT CASE
85 WHEN go.in_i = 0 AND go.in_j = 0 THEN 0::real
86 WHEN go.in_i = 0 OR go.in_j = 0 THEN ’infinity’::real
87 ELSE (SELECT abs(Z.x - Z.y) + LEAST(
88 (SELECT e.val
89 FROM e
90 WHERE (e.in_i , e.in_j) = (go.in_i - 1, go.in_j - 1)
91 AND (e.ref_i, e.ref_j) = (go.in_i, go.in_j)
92 AND e.ref_site = 1),
93 (SELECT e.val
94 FROM e
95 WHERE (e.in_i , e.in_j) = (go.in_i - 1, go.in_j )
96 AND (e.ref_i, e.ref_j) = (go.in_i, go.in_j)
97 AND e.ref_site = 2),
98 (SELECT e.val
99 FROM e
100 WHERE (e.in_i , e.in_j) = (go.in_i , go.in_j - 1)
101 AND (e.ref_i, e.ref_j) = (go.in_i, go.in_j)
102 AND e.ref_site = 3))
103 FROM (X JOIN Y
104 ON ((X.t,Y.t) = (go.in_i,go.in_j))) AS Z)
105 END)
106 FROM (
107 SELECT e.ref_i, e.ref_j
108 FROM e
109 GROUP BY (e.ref_i, e.ref_j), e.ref_fanout
110 HAVING COUNT(*) = e.ref_fanout
111 ) AS go(in_i, in_j)
112 )
113 SELECT *
114 FROM e
115 WHERE NOT e.ref_fanout IS NULL
116 AND NOT EXISTS (SELECT
117 FROM returns AS r
118 WHERE (r.in_i, r.in_j) = (e.ref_i, e.ref_j))
119 UNION ALL
120 SELECT r.in_i, r.in_j, r.val, g.in_i, g.in_j, g.site, g.fanout
121 FROM returns AS r, call_graph AS g
122 WHERE (r.in_i, r.in_j) = (g.out_i, g.out_j)
123 ))
124 SELECT e.val
125 FROM evaluation AS e
126 WHERE e.ref_fanout IS NULL;
127 $$ LANGUAGE SQL STABLE STRICT;

Figure C.5: The compiled function dtw using the template described in Section 5.1.
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replacepslicepsplit,1q,rg.out_x,g.out_ysq

replacepslicepsplit,2q,rg.out_x,g.out_ysq

replacepbodypsplit,rNULL::real,NULL::realsq,rg.out_x,g.out_ysq

1 CREATE FUNCTION split(x real, y real) RETURNS int
2 AS $$
3 WITH RECURSIVE
4 call_graph(in_x, in_y, site, fanout, out_x, out_y, val) AS (
5 SELECT x, y, NULL :: int, NULL :: bigint, x, y, NULL :: int
6 UNION -- Recursive UNION
7 SELECT g.out_x, g.out_y, edges.*
8 FROM call_graph AS g,
9 LATERAL (
10 WITH
11 slices(site, out) AS (
12 SELECT 1 AS site, out FROM (
13 SELECT *
14 FROM (SELECT (SELECT (NULL, false) :: lifted_args)) AS _
15 WHERE ABS(g.out_x-g.out_y) <= 1.0
16 UNION ALL
17 SELECT *
18 FROM (SELECT (ROW(g.out_x,g.out_x+ABS(g.out_x-g.out_y)/2.0), true) :: lifted_args) AS _
19 WHERE NOT ABS(g.out_x-g.out_y) <= 1.0
20 ) AS _(out) UNION SELECT 2 AS site, out FROM (
21 SELECT *
22 FROM (SELECT (SELECT (NULL, false) :: lifted_args)) AS _
23 WHERE ABS(g.out_x-g.out_y) <= 1.0
24 UNION ALL
25 SELECT *
26 FROM (SELECT (ROW(g.out_x+ABS(g.out_x-g.out_y)/2.0,g.out_y), true) :: lifted_args) AS _
27 WHERE NOT ABS(g.out_x-g.out_y) <= 1.0
28 ) AS _(out)),
29 calls(site, fanout, x, y, val) AS (
30 SELECT s.site, COUNT(*) OVER (), (s.out).args.x, (s.out).args.y, NULL :: int
31 FROM slices AS s
32 WHERE (s.out).not_bottom
33 )
34 TABLE calls
35 UNION ALL
36 SELECT NULL :: int, 0, g.out_x, g.out_y, (
37 SELECT CASE
38 WHEN ABS(g.out_x-g.out_y) <= 1.0 THEN 1
39 ELSE NULL::real
40 +
41 NULL::real
42 END)
43 WHERE NOT EXISTS (TABLE calls)
44 ) AS edges(site, fanout, x, y, val)
45 WHERE g.fanout > 0 OR g.fanout IS NULL),

xContinued on next pagey
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replacepbodypslice,rlookuppslice,1q,lookuppslice,2qsq,rgo.in_x,go.in_ysq

46 base_cases(in_x, in_y, val, ref_x, ref_y, ref_site, ref_fanout) AS (
47 SELECT g.in_x, g.in_y, g.val, g_ref.in_x, g_ref.in_y, g_ref.site, g_ref.fanout
48 FROM call_graph AS g, call_graph AS g_ref
49 WHERE g.fanout = 0 AND (g_ref.fanout > 0 OR g_ref.fanout IS NULL)
50 AND (g.in_x, g.in_y) = (g_ref.out_x, g_ref.out_y)
51 ),
52 evaluation(in_x, in_y, val, ref_x, ref_y, ref_site, ref_fanout) AS (
53 TABLE base_cases
54 UNION ALL (
55 WITH e AS (TABLE evaluation),
56 returns(in_x, in_y, val) AS (
57 SELECT go.in_x, go.in_y, (
58 SELECT CASE
59 WHEN ABS(go.in_x-go.in_y) <= 1.0 THEN 1
60 ELSE (SELECT e.val
61 FROM e
62 WHERE (e.in_x , e.in_y) = (go.in_x,go.in_x+ABS(go.in_x-go.in_y)/2.0)
63 AND (e.ref_x, e.ref_y) = (go.in_x, go.in_y)
64 AND e.ref_site = 1)
65 +
66 (SELECT e.val
67 FROM e
68 WHERE (e.in_x , e.in_y) = (go.in_x+ABS(go.in_x-go.in_y)/2.0,go.in_y)
69 AND (e.ref_x, e.ref_y) = (go.in_x, go.in_y)
70 AND e.ref_site = 2)
71 END)
72 FROM (
73 SELECT e.ref_x, e.ref_y
74 FROM e
75 GROUP BY (e.ref_x, e.ref_y), e.ref_fanout
76 HAVING COUNT(*) = e.ref_fanout
77 ) AS go(in_x, in_y)
78 )
79 SELECT *
80 FROM e
81 WHERE NOT e.ref_fanout IS NULL
82 AND NOT EXISTS (SELECT
83 FROM returns AS r
84 WHERE (r.in_x, r.in_y) = (e.ref_x, e.ref_y))
85 UNION ALL
86 SELECT r.in_x, r.in_y, r.val, g.in_x, g.in_y, g.site, g.fanout
87 FROM returns AS r, call_graph AS g
88 WHERE (r.in_x, r.in_y) = (g.out_x, g.out_y)
89 ))
90 SELECT e.val
91 FROM evaluation AS e
92 WHERE e.ref_fanout IS NULL;
93 $$ LANGUAGE SQL STABLE STRICT;

Figure C.6: The compiled function split using the template described in Section 5.1.
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replacepslicepbom,1q,rg.out_partsq

replacepbodypbom,r(VALUES(NULL))sq,rg.out_partsq

1 CREATE FUNCTION bom(part int)
2 RETURNS TABLE(part int, sub int, quantity int)
3 AS $$
4 WITH RECURSIVE
5 call_graph(in_part, site, fanout, out_part, part, sub, quantity, "empty?", rid) AS (
6 SELECT part, NULL :: int, NULL :: bigint, part, NULL::int, NULL::int, NULL::int, false, NULL :: bigint
7 UNION -- Recursive UNION
8 SELECT g.out_part, edges.*
9 FROM call_graph AS g,
10 LATERAL (
11 WITH
12 slices(site, out) AS (
13 SELECT 1 AS site, out FROM (
14 SELECT b.*
15 FROM materials AS m JOIN LATERAL (SELECT (ROW(m.sub), true) :: lifted_args) AS b
16 ON m.part = g.out_part
17 ) AS _(out)),
18 calls(site, fanout, out_part, part, sub, quantity, "empty?", rid) AS (
19 SELECT s.site, COUNT(*) OVER (), (s.out).args.part, NULL::int, NULL::int,
20 NULL::int, false, NULL :: bigint
21 FROM slices AS s
22 WHERE (s.out).not_bottom),
23 values(part, sub, quantity) AS (
24 SELECT m.part, m.sub, m.quantity
25 FROM materials AS m
26 WHERE m.part = g.out_part
27 UNION ALL
28 SELECT b.part, b.sub, m.quantity * b.quantity
29 FROM materials AS m JOIN LATERAL (VALUES (NULL::int,NULL::int,NULL::int)) AS b(part,sub,quantity)
30 ON m.part = g.out_part)
31 TABLE calls
32 UNION ALL
33 SELECT NULL :: int, 0, g.out_part,
34 v.*, false, ROW_NUMBER() OVER ()
35 FROM values AS v
36 WHERE NOT EXISTS (TABLE calls)
37 UNION ALL
38 SELECT NULL :: int, 0, g.out_part, NULL::int, NULL::int, NULL::int, true, 1
39 WHERE NOT EXISTS (TABLE calls)
40 AND NOT EXISTS (TABLE values)
41 ) AS edges(site, fanout, out_part, part, sub, quantity, "empty?", rid)),

xContinued on next pagey
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replacepbodypbom,rlookuppbom,1qsq,rgo.in_partsq

42 base_cases(in_part, part, sub, quantity, "empty?", rid, ref_part, ref_site, ref_fanout) AS (
43 SELECT g.in_part, g.part, g.sub, g.quantity, g."empty?", g.rid, g_ref.in_part, g_ref.site, g_ref.fanout
44 FROM call_graph AS g, call_graph AS g_ref
45 WHERE g.fanout = 0 AND (g_ref.fanout > 0 OR g_ref.fanout IS NULL)
46 AND (g.in_part) = (g_ref.out_part)
47 ),
48 evaluation(in_part, part, sub, quantity, "empty?", rid, ref_part, ref_site, ref_fanout) AS (
49 TABLE base_cases
50 UNION ALL (
51 WITH e AS (TABLE evaluation),
52 returns(in_part, part, sub, quantity, "empty?", rid) AS (
53 SELECT go.in_part, result.*
54 FROM (
55 SELECT e.ref_part
56 FROM e
57 WHERE e.rid = 1
58 GROUP BY (e.ref_part), e.ref_fanout
59 HAVING COUNT(*) = e.ref_fanout
60 ) AS go(in_part),
61 LATERAL (
62 WITH result(part, sub, quantity) AS (
63 SELECT m.part, m.sub, m.quantity
64 FROM materials AS m
65 WHERE m.part = go.in_part
66 UNION ALL
67 SELECT b.part, b.sub, m.quantity * b.quantity
68 FROM materials AS m JOIN LATERAL (SELECT e.part, e.sub, e.quantity
69 FROM e
70 WHERE NOT e."empty?"
71 AND (e.in_part) = (m.sub)
72 AND (e.ref_part) = (go.in_part)
73 AND e.ref_site = 1) AS b(part,sub,quantity)
74 ON m.part = go.in_part
75 )
76 SELECT r.*, false, ROW_NUMBER() OVER ()
77 FROM result AS r
78 UNION ALL
79 SELECT NULL::int, NULL::int, NULL::int, true, 1
80 WHERE NOT EXISTS (TABLE result)
81 ) AS result(part, sub, quantity, "empty?")
82 )
83 SELECT *
84 FROM e
85 WHERE NOT e.ref_fanout IS NULL
86 AND NOT EXISTS (SELECT
87 FROM returns AS r
88 WHERE (r.in_part) = (e.ref_part))
89 UNION ALL
90 SELECT r.in_part, r.part, r.sub, r.quantity, r."empty?", r.rid, g.in_part, g.site, g.fanout
91 FROM returns AS r, call_graph AS g
92 WHERE (r.in_part) = (g.out_part)
93 ))
94 SELECT e.part, e.sub, e.quantity
95 FROM evaluation AS e
96 WHERE e.ref_fanout IS NULL
97 AND NOT e."empty?";
98 $$ LANGUAGE SQL STABLE STRICT;

Figure C.7: The compiled function bom with table-valued return type using the template
described in Section 5.2.
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replacepslicepvm,1q,rg.out_ins,g.out_regssq

replacepslicepvm,2q,rg.out_ins,g.out_regssq

replacepslicepvm,3q,rg.out_ins,g.out_regssq

replacepslicepvm,4q,rg.out_ins,g.out_regssq

replacepslicepvm,5q,rg.out_ins,g.out_regssq

replacepslicepvm,6q,rg.out_ins,g.out_regssq

replacepslicepvm,7q,rg.out_ins,g.out_regssq

replacepslicepvm,8q,rg.out_ins,g.out_regssq

1 CREATE FUNCTION vm(ins instruction, regs int[])
2 RETURNS int AS $$
3 WITH RECURSIVE
4 call_graph(in_ins, in_regs, site, fanout, out_ins, out_regs, val) AS (
5 SELECT ins, regs, NULL :: int, NULL :: bigint, ins, regs, NULL :: int
6 UNION ALL
7 SELECT g.in_ins, g.in_regs, edges.*
8 FROM call_graph AS g,
9 LATERAL (
10 WITH
11 slices(site, out) AS (
12 SELECT 1 AS site, out FROM (

13 (SELECT * FROM (SELECT (ROW((SELECT p FROM program AS p WHERE p.loc = (g.out_ins).loc+1),
14 (g.out_regs)[:(g.out_ins).reg1-1]||(g.out_ins).reg2||(g.out_regs)[(g.out_ins).reg1+1:]),
15 true) :: lifted_args) AS _ WHERE (g.out_ins).opc = ’lod’
16 UNION ALL
17 SELECT * FROM (SELECT (NULL, false) :: lifted_args) AS _ WHERE (g.out_ins).opc = ’hlt’)
18 ) AS _(out) UNION SELECT 2 AS site, out FROM (

19 (SELECT * FROM (SELECT (ROW((SELECT p FROM program AS p WHERE p.loc = (g.out_ins).loc+1),
20 (g.out_regs)[:(g.out_ins).reg1-1]||(g.out_regs)[(g.out_ins).reg2]||(g.out_regs)[(g.out_ins).reg1+1:]),
21 true) :: lifted_args) AS _ WHERE (g.out_ins).opc = ’mov’
22 UNION ALL
23 SELECT * FROM (SELECT (NULL, false) :: lifted_args) AS _ WHERE (g.out_ins).opc = ’hlt’)
24 ) AS _(out) UNION SELECT 3 AS site, out FROM (

25 (SELECT * FROM (SELECT (ROW((SELECT p FROM program AS p
26 WHERE p.loc = CASE WHEN (g.out_regs)[(g.out_ins).reg1] = (g.out_regs)[(g.out_ins).reg2]
27 THEN (g.out_ins).reg3 ELSE (g.out_ins).loc + 1 END),
28 (g.out_regs)), true) :: lifted_args) AS _ WHERE (g.out_ins).opc = ’jeq’
29 UNION ALL
30 SELECT * FROM (SELECT (NULL, false) :: lifted_args) AS _ WHERE (g.out_ins).opc = ’hlt’)
31 ) AS _(out) UNION SELECT 4 AS site, out FROM (

32 (SELECT * FROM (SELECT (ROW((SELECT p FROM program AS p WHERE p.loc = (g.out_ins).reg1), (g.out_regs)),
33 true) :: lifted_args) AS _ WHERE (g.out_ins).opc = ’jmp’
34 UNION ALL
35 SELECT * FROM (SELECT (NULL, false) :: lifted_args) AS _ WHERE (g.out_ins).opc = ’hlt’)
36 ) AS _(out) UNION SELECT 5 AS site, out FROM (

37 (SELECT * FROM (SELECT (ROW((SELECT p FROM program AS p WHERE p.loc = (g.out_ins).loc+1),
38 (g.out_regs)[:(g.out_ins).reg1-1]||(g.out_regs)[(g.out_ins).reg2] +
39 (g.out_regs)[(g.out_ins).reg3]||(g.out_regs)[(g.out_ins).reg1+1:]),
40 true) :: lifted_args) AS _ WHERE (g.out_ins).opc = ’add’
41 UNION ALL
42 SELECT * FROM (SELECT (NULL, false) :: lifted_args) AS _ WHERE (g.out_ins).opc = ’hlt’)
43 ) AS _(out) UNION SELECT 6 AS site, out FROM (

44 (SELECT * FROM (SELECT (ROW((SELECT p FROM program AS p WHERE p.loc = (g.out_ins).loc+1),
45 (g.out_regs)[:(g.out_ins).reg1-1]||(g.out_regs)[(g.out_ins).reg2] *
46 (g.out_regs)[(g.out_ins).reg3]||(g.out_regs)[(g.out_ins).reg1+1:]),
47 true) :: lifted_args) AS _ WHERE (g.out_ins).opc = ’mul’
48 UNION ALL
49 SELECT * FROM (SELECT (NULL, false) :: lifted_args) AS _ WHERE (g.out_ins).opc = ’hlt’)
50 ) AS _(out) UNION SELECT 7 AS site, out FROM (

51 (SELECT * FROM (SELECT (ROW((SELECT p FROM program AS p WHERE p.loc = (g.out_ins).loc+1),
52 (g.out_regs)[:(g.out_ins).reg1-1]||(g.out_regs)[(g.out_ins).reg2] /
53 (g.out_regs)[(g.out_ins).reg3]||(g.out_regs)[(g.out_ins).reg1+1:]),
54 true) :: lifted_args) AS _ WHERE (g.out_ins).opc = ’div’
55 UNION ALL
56 SELECT * FROM (SELECT (NULL, false) :: lifted_args) AS _ WHERE (g.out_ins).opc = ’hlt’)
57 ) AS _(out) UNION SELECT 8 AS site, out FROM (

58 (SELECT * FROM (SELECT (ROW((SELECT p FROM program AS p WHERE p.loc = (g.out_ins).loc+1),
59 (g.out_regs)[:(g.out_ins).reg1-1]||(g.out_regs)[(g.out_ins).reg2] %
60 (g.out_regs)[(g.out_ins).reg3]||(g.out_regs)[(g.out_ins).reg1+1:]),
61 true) :: lifted_args) AS _ WHERE (g.out_ins).opc = ’mod’
62 UNION ALL
63 SELECT * FROM (SELECT (NULL, false) :: lifted_args) AS _ WHERE (g.out_ins).opc = ’hlt’)
64 ) AS _(out)
65 ),

xContinued on next pagey
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xContinued from previous pagey

replacepbodypvm,rNULL::real,NULL::real,...,NULL::realsq,rg.out_ins,g.out_regssq

50 calls(site, fanout, ins, regs, val) AS (
51 SELECT s.site, 1, (s.out).args.ins, (s.out).args.regs, NULL :: int
52 FROM slices AS s
53 WHERE (s.out).not_bottom
54 )
55 TABLE calls
56 UNION ALL
57 SELECT NULL :: int, 0, g.out_ins, g.out_regs, (
58 SELECT CASE (g.out_ins).opc
59 WHEN ’lod’ THEN NULL :: int
60 WHEN ’mov’ THEN NULL :: int
61 WHEN ’jeq’ THEN NULL :: int
62 WHEN ’jmp’ THEN NULL :: int
63 WHEN ’add’ THEN NULL :: int
64 WHEN ’mul’ THEN NULL :: int
65 WHEN ’div’ THEN NULL :: int
66 WHEN ’mod’ THEN NULL :: int
67 WHEN ’hlt’ THEN (g.out_regs)[(g.out_ins).reg1]
68 END
69 )
70 WHERE NOT EXISTS (TABLE calls)
71 ) AS edges(site, fanout, ins, regs, val)
72 WHERE g.fanout > 0 OR g.fanout IS NULL
73 )
74 SELECT g.val
75 FROM call_graph AS g
76 WHERE g.fanout = 0;
77 $$ LANGUAGE SQL STABLE STRICT;

Figure C.8: The compiled tail-recursive function vm using the template described in Sec-
tion 5.4.
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C.3 Hand-Crafted Recursive CTEs

Figures C.9 to C.12 present the hand-crafted recursive CTEs formulation of each use-
case found in Figures C.1 to C.4 without recursive self-invocations. These hand-crafted
translations have been meticulously optimized and are used for runtime performance
comparison throughout this publication.
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1 CREATE TABLE X (
2 t int PRIMARY KEY,
3 x real
4 );

5 CREATE TABLE Y (
6 t int PRIMARY KEY,
7 y real
8 );

9 CREATE FUNCTION dtw(i int, j int) RETURNS real
10 AS $$
11 WITH RECURSIVE
12 warp(i,j,val) AS (
13 (SELECT X.t, Y.t, abs(X.x - Y.y)
14 FROM X, Y
15 ORDER BY X.t, Y.t
16 LIMIT 1)
17 UNION
18 SELECT step.i, step.j, MIN(step.val)
19 FROM (
20 SELECT step.i, step.j, warp.val + step.val
21 FROM warp, (VALUES (1,1),(0,1),(1,0)) AS d(i,j),
22 LATERAL (
23 SELECT warp.i+d.i, warp.j+d.j, abs(X.x - Y.y)
24 FROM X, Y
25 WHERE (X.t,Y.t) = (warp.i+d.i,warp.j+d.j)
26 ) AS step(i,j,val)
27 WHERE step.i <= dtw.i AND step.j <= dtw.j
28 ) AS step(i,j,val)
29 -- GROUP BY is a carefully placed optimization.
30 GROUP BY step.i, step.j)
31 SELECT MIN(warp.val) AS dtw
32 FROM warp
33 WHERE (warp.i,warp.j) = (dtw.i,dtw.j);
34 $$ LANGUAGE SQL STABLE STRICT;

Figure C.9: The hand-crafted SQL UDF dtw. Written by Denis Hirn.
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1 CREATE FUNCTION split(x real, y real) RETURNS int
2 AS $$
3 WITH RECURSIVE
4 sp(x,y) AS (
5 SELECT split.x, split.y
6 UNION ALL
7 SELECT a,b
8 FROM sp AS s,
9 LATERAL (SELECT s.x, s.x+ABS(s.x-s.y)/2.0
10 UNION ALL
11 SELECT s.x+ABS(s.x-s.y)/2.0,s.y) AS _(a,b)
12 WHERE ABS(s.x-s.y) > 1.0
13 )
14 SELECT COUNT(*)
15 FROM sp AS s
16 WHERE ABS(s.x-s.y) <= 1.0;
17 $$ LANGUAGE SQL STABLE STRICT;

Figure C.10: The hand-crafted SQL UDF split.

1 CREATE TABLE materials (
2 part int,
3 sub int,
4 quantity int
5 );

6 CREATE FUNCTION bom(part int)
7 RETURNS TABLE(part int, sub int, quantity int)
8 AS $$
9 WITH RECURSIVE
10 included(top, part, sub, quantity) AS (
11 SELECT bom.part, m.part, m.sub, m.quantity
12 FROM materials AS m
13 WHERE bom.part = m.part
14 UNION ALL
15 SELECT i.top, m.part, m.sub, i.quantity * m.quantity
16 FROM included AS i, materials AS m
17 WHERE i.sub = m.part
18 )
19 SELECT i.top, i.sub, i.quantity :: int
20 FROM included AS i, parts AS p
21 WHERE i.part = p.id;
22 $$ LANGUAGE SQL STABLE STRICT;

Figure C.11: The hand-crafted SQL UDF bom without recursive calls. This function is loosely
based on the sample function found in the PostgreSQL documentation [97].
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1 -- Currently supported VM instruction set
2 CREATE TYPE opcode AS ENUM (
3 ’lod’, -- lod t, x load literal x into target register Rt
4 ’mov’, -- mov t, s move from source register Rs to target register Rt
5 ’jeq’, -- jeq t, s, @a if Rt = Rs, jump to location a, else fall through
6 ’jmp’, -- jmp @a jump to location a
7 ’add’, -- add t, s1, s2 Rt <- Rs1 + Rs2
8 ’mul’, -- mul t, s1, s2 Rt <- Rs1 * Rs2
9 ’div’, -- div t, s1, s2 Rt <- Rs1 / Rs2
10 ’mod’, -- mod t, s1, s2 Rt <- Rs1 mod Rs2
11 ’hlt’ -- htl s halt program, result is register Rs
12 );

13 -- VM instructions
14 CREATE TYPE instruction AS (
15 loc int, -- location
16 opc opcode, -- opcode
17 reg1 int, -- \
18 reg2 int, -- } up to three work registers
19 reg3 int -- /
20 );
21 CREATE TABLE program OF instruction;

22 CREATE FUNCTION vm(ins instruction, regs int[])
23 RETURNS int
24 AS $$
25 WITH RECURSIVE
26 run(ins, regs) AS (
27 SELECT vm.ins, vm.regs
28 UNION ALL
29 SELECT p, n.regs
30 FROM run AS r, program AS p,
31 LATERAL (
32 SELECT r.regs[:(r.ins).reg1-1]||(r.ins).reg2||r.regs[(r.ins).reg1+1:] WHERE (r.ins).opc = ’lod’
33 UNION ALL
34 SELECT r.regs[:(r.ins).reg1-1]||r.regs[(r.ins).reg2]||r.regs[(r.ins).reg1+1:] WHERE (r.ins).opc = ’mov’
35 UNION ALL
36 SELECT r.regs WHERE (r.ins).opc = ’jeq’
37 UNION ALL
38 SELECT r.regs WHERE (r.ins).opc = ’jmp’
39 UNION ALL
40 SELECT r.regs[:(r.ins).reg1-1]||r.regs[(r.ins).reg2]+r.regs[(r.ins).reg3]||r.regs[(r.ins).reg1+1:]
41 WHERE (r.ins).opc = ’add’
42 UNION ALL
43 SELECT r.regs[:(r.ins).reg1-1]||r.regs[(r.ins).reg2]*r.regs[(r.ins).reg3]||r.regs[(r.ins).reg1+1:]
44 WHERE (r.ins).opc = ’mul’
45 UNION ALL
46 SELECT r.regs[:(r.ins).reg1-1]||r.regs[(r.ins).reg2]/r.regs[(r.ins).reg3]||r.regs[(r.ins).reg1+1:]
47 WHERE (r.ins).opc = ’div’
48 UNION ALL
49 SELECT r.regs[:(r.ins).reg1-1]||r.regs[(r.ins).reg2]%r.regs[(r.ins).reg3]||r.regs[(r.ins).reg1+1:]
50 WHERE (r.ins).opc = ’mod’
51 ) AS n(regs)
52 WHERE (r.ins).opc <> ’hlt’
53 AND p.loc = CASE (r.ins).opc
54 WHEN ’jeq’ THEN CASE WHEN r.regs[(r.ins).reg1] = r.regs[(r.ins).reg2]
55 THEN (r.ins).reg3
56 ELSE (r.ins).loc+1 END
57 WHEN ’jmp’ THEN (r.ins).reg1
58 WHEN ’hlt’ THEN (r.ins).loc
59 ELSE (r.ins).loc+1
60 END)
61 SELECT r.regs[(r.ins).reg1] FROM run AS r WHERE (r.ins).opc = ’hlt’;
62 $$ LANGUAGE SQL STABLE STRICT;

Figure C.12: The hand-crafted SQL UDF vm.
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D
Additional Use Cases

D.1 Binomial Coefficient

Function binomial(n,k) implements the recursive formula to compute the binomial
coefficient defined as:

binomial(n,0) “ 1
binomial(n,n) “ 1
binomial(n,k) “ binomial(n ´ 1,k) ` binomial(n ´ 1,k ´ 1)

. (binomial)

Function binomial is 2-fold recursive. Figure D.1 compares execution times of
binomial before and after compilation.

D.2 Floyd-Warshall Algorithm

Given a graph with n nodes, where wiÑj denotes the weight of an edge i Ñ j between
two nodes vi and vj with i, j P 1, ... , n. Function floyd(n,i,j) finds the length of
the shortest path from node vi to vj and is recursively defined based on Cormen et
al. [67] as:
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Figure D.1: Evaluating binomial(i,t i
4 u).

floyd(i,j,0) “ wiÑj

floyd(i,j,k) “ min
#

floyd(k ´ 1,i,j)
floyd(k ´ 1,i,k) ` floyd(k ´ 1,k,j)

+

. (floyd)

Function floyd is 3-fold recursive. Figure D.2 compares execution times of floyd
before and after compilation.

D.3 Longest Common Subsequence

Function lcs(1,1) finds the length of the longest common subsequence of string s

and t where |s| “ |t| “ n. We denote s[k] to access a single character in s at position
k P 1, ... , n. For example: For s “ acd and t “ abc, lcss,t(1,1) “ 2 because ac is the
longest common subsequence. The function is recursively defined as:

lcs(i,n) “ 0
lcs(n,j) “ 0

lcs(i,j) “

$

’

&

’

%

1 ` lcs(i ` 1,j ` 1) , if s[i] “ t[j]

min
#

lcs(i ` 1,j )
lcs(i ,j ` 1)

+

, otherwise

. (lcs)
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Figure D.2: Evaluating floyd(i,i,1).

Function lcs is 2-fold recursive. Figure D.3 compares execution times of lcs before
and after compilation.

D.4 Reachability

Function reach(vs,vt) returns TRUE, if vt can be reached starting from vs in a DAG
with n nodes, where s, t P 1, ... , n. Edge esÑt connects vs with vt. Function reach is
n-fold and recursively defined as:

reach(vi,vi) “ TRUE
reach(vi,vj) “

Ž

eiÑk

reach(vk,vj)
. (reach)

Its call site is correlated and thus function reach is n-fold recursive. The DAG is
set up so each node has a fanout of 1 or 2 and an average fanout of „ 1.5. To reach
vn from v1 reach passes through all nodes v2, v3, ... , vn´1 at least once. Figure D.4
compares execution times of reach before and after compilation.

D.5 Finite State Machine

Function fsm(p,s,n) returns TRUE, if input p with length n is accepted by a finite state
machine starting at state s. The transition function qpp, s, nq returns the next state
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Figure D.3: Evaluating lcs(s1,s2). Both strings s1 and s2 of length 100 contain different
characters at i places.
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Figure D.4: Evaluating reach(v1,vn).
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Figure D.5: Evaluating fsm(p) returns true, if protein sequence p of length i is accepted by
a finite state machine. With increasing i, evaluation of fsm before compilation evaluation
terminates prematurely due to stack overflow (▲! ).

following state s with input p at position n. Function is_final(s) only returns TRUE,
if state s is an accepting state. Function default(e,d) returns the result of expression
e, unless e evaluates to H in which case it returns default value d. Function fsm is
recursively defined as:

fsm(p,s,0) “ is_final(s)
fsm(p,s,n) “ default(tfsm(p,s1,n ´ 1) | s1 “ qpp, s, nqu, FALSE)

. (fsm)

Function fsm is linear recursive. Figure D.5 compares execution times of fsm before
and after compilation.

D.6 Bounding Box

Function bbox(pc,pg,b) produces the minimum bounding box of a 2D object. The
minimum bounding box algorithm slightly modifies the marching cubes algorithm [86]
to compute the bounding box of a 2D object. Function move(p) takes a 2D point
on the edge of a 2D object and moves it along the edge counterclockwise. Function
box(p1,p2) returns a 2D box from two 2D points p1 and p2. Binary operator b1‘ b2
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Figure D.6: Evaluating bbox(move(p),p,box(p,p)) finds the bounding box of a perfect 2D
circle with diameter i beginning at position p located on the edge of the 2D circle.

returns the 2D bounding box of two 2D boxes b1 and b2. Function bbox is recursively
defined as:

bbox(pc,pc,b) “ b

bbox(pc,pg,b) “ bbox(move(pc),pg,b ‘ box(pc,pc))
. (bbox)

Function bbox is tail-recursive. Figure D.6 compares execution times of bbox before
and after compilation. Note, that evaluation of bbox before compilation terminates
prematurely due to stack overflow at i “ 4,000 after about 8 seconds.

D.7 Mandelbrot Set Fractals

Function mandel(0,xc,yc,xc,yc,p) computes the iteration number of the Mandelbrot
set at position pxc, ycq with precision p. It is recursively defined as:
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Figure D.7: Evaluating mandel(0,xc,yc,xc,yc,p) calculates the iterations of the Mandelbrot
set at pixel pxc, ycq with precision p requiring n iterations.

mandel(i,xc,yc,x,y,i) “ i

mandel(i,xc,yc,x,y,p) “

#

i , x2 ` y2 ě p

mandel(i ` 1,xc,yc,x2 ´ y2 ` xc,2xy ` yc,p) , otherwise.

(mandel)

Function mandel is tail-recursive. Figure D.7 compares execution times of mandel
before and after compilation. Evaluation of mandel before compilation terminates
prematurely due to stack overflow at n “ 27,502 after about 1 second.
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