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Abstract

Machine learning has enabled striking technological advances over the last decades

and has the potential to transform many aspects of our lives. Its application is

especially promising in the health domain, where it can improve our understanding

of increasingly complex health data, accelerate processes such as diagnosis or risk

assessment while also making them more objective, and enable a more personalized

approach to medicine. At the same time, machine learning for health faces particu-

lar challenges. Health data is often temporal and heterogeneous, distributed across

many institutions, and accessible only in modest amounts for a speci�c machine

learning application. Consequently, machine learning for health requires generally

robust methods capable of handling heterogeneous and limited data and models

that are well-tailored to the task at hand. This thesis contributes to both of these

aspects. It includes new methods for unsupervised domain adaptation, which were

designed for high-dimensional molecular health data and improved prediction across

heterogeneous datasets. As a concrete application example, these methods were ap-

plied to the problem of age prediction from DNA methylation data across tissues,

where they improved age prediction on a tissue not used for model training com-

pared to a non-adaptive reference model. In addition, this thesis includes robust

models for the analysis of data from an early clinical trial evaluating the use of

broadly neutralizing antibodies for the treatment of HIV, which were suitable to

account for heterogeneity between patient groups despite a limited sample size.

Another application-speci�c contribution was the development of robust models

for the time-dependent prediction of mortality and early cytomegalovirus reacti-

vation after hematopoietic cell transplantation. These models were validated in a

prospective non-interventional clinical trial and demonstrated similar performance

as experienced physicians in a pilot comparison. Finally, this thesis supported the

development of the XplOit platform, a software platform that facilitates robust

machine learning for health by semantically integrating heterogeneous datasets.
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Kurzfassung

Methoden des maschinellen Lernens haben über die letzten Jahrzehnte beeindru-

ckende technologische Fortschritte ermöglicht und haben das Potenzial, viele Aspek-

te unseres Lebens nachhaltig zu verändern. Besonders vielversprechend ist maschi-

nelles Lernen im Gesundheitsbereich. Hier kann es unser Verständnis immer kom-

plexerer Gesundheitsdaten vertiefen, Prozesse wie Diagnostik und Risikoeinschät-

zung beschleunigen sowie deren Objektivität erhöhen, und eine personalisiertere

medizinische Versorgung ermöglichen. Zugleich steht maschinelles Lernen im Ge-

sundheitsbereich vor besonderen Herausforderungen. Gesundheitsdaten sind häu�g

zeitabhängig und heterogen, über mehrere Institutionen verteilt und nur in be-

grenztem Umfang für spezi�sche Modellierungsanwendungen zugänglich. Infolge-

dessen erfordert das maschinelle Lernen für den Gesundheitsbereich grundsätzlich

robuste Methoden, die für heterogene und im Umfang begrenzte Daten geeignet

sind, sowie besonders auf die jeweilige Anwendung zugeschnittene Modelle. Die-

se Dissertation umfasst Beiträge zu beiden dieser Aspekte. Sie enthält neue Me-

thoden zur unüberwachten Domänenadaptation, die speziell für hochdimensiona-

le molekulare Gesundheitsdaten entwickelt wurden und eine genauere Vorhersage

über heterogene Datensätze hinweg ermöglichen. Als konkretes Anwendungsbei-

spiel wurden diese Methoden auf das Problem der Altersvorhersage basierend auf

DNA-Methylierungsdaten über Gewebe hinweg angewandt. Im Vergleich zu einem

nicht-adaptiven Referenzmodell verbesserten sie hierbei die Vorhersage auf einem

Gewebe, das nicht zum Trainieren der Modelle verwendet wurde. Zusätzlich enthält

diese Dissertation robuste Modelle zur Analyse von Daten einer frühen klinischen

Studie, die die Verwendung von breitneutralisierenden Antikörpern zur Behandlung

von HIV untersuchte. Hier wurden Modelle und Methoden gewählt, die trotz des

begrenzten Stichprobenumfangs Heterogenität zwischen Patientengruppen berück-

sichtigen konnten. Ein weiterer anwendungsspezi�scher Beitrag war die Entwicklung

robuster Modelle zur zeitabhängigen Vorhersage der Mortalität sowie einer Cytome-
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Kurzfassung

galievirus-Reaktivierung nach hämatopoetischer Stammzelltransplantation. Diese

Modelle wurden in einer prospektiven, nicht-interventionellen klinischen Studie va-

lidiert und generierten in einem Pilot-Vergleich eine ähnliche genaue Vorhersage

wie die Einschätzung erfahrener Kliniker. Zusätzlich unterstützte diese Dissertati-

on die Entwicklung der XplOit-Plattform, einer Software-Plattform, die robustes

maschinelles Lernen für den Gesundheitsbereich durch die semantische Integration

heterogener Daten erleichtert.
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1 Introduction

We are living in the information age. Digital communication and storage of infor-

mation have grown exponentially over the last decades, and so has our capacity to

process digital data [1]. This development has enabled analyses and data-driven

decision-making on a scale that has not previously been possible and promises to

transform many aspects of our society.

Machine learning is at the center of this transformation. Merely storing large

amounts of data does not unlock its potential; we need algorithms to process it

in order to draw conclusions from this data and turn it into actionable informa-

tion. Machine learning can extract knowledge from data by discovering previously

unknown associations between variables and can identify patterns that allow the

prediction of future observations [2]. It has already become a standard tool for data-

intensive research across scienti�c �elds [3, 4, 5] and increasingly permeates our

daily lives, whether in social media [6], automated translations [7], or recommender

systems [8]. Applying machine learning in situations with real-life consequences is

not without risks [9, 10] and is viewed with a mix of optimism and skepticism [11].

Nevertheless, doing so in a responsible way inarguably has the potential to improve

our lives.

1.1 Challenges and Potential of Machine Learning for

Health Applications

One area where machine learning could have a highly bene�cial impact is health

care. On the one hand, many processes in health care involve the interpretation

of complex high-dimensional data by clinical experts, for example, for diagnosis or

as a basis for treatment decisions. Humans, however, have only a limited capac-

ity to process and accurately judge high-dimensional data, especially when time is

1



1 Introduction

limited [12]. On the other hand, many individual factors contribute to a person's

health and response to treatments they receive, including genetic factors, lifestyle

choices, age, and disease history. Our understanding of these factors is still incom-

plete, and even if their impact is known, they cannot be accounted for in classical

standardized treatments. Machine learning can advance health care concerning

both issues. Models trained to assign patients to diagnosis labels or risk groups,

for example, can support physicians in quickly drawing the right conclusions from

high-dimensional data. And by incorporating individual health factors, models can

also enable the prediction of patient-speci�c risks and outcomes, which may allow

for more personalized treatments. In cases where diagnosis or treatment decisions

can be fully automated, machine learning models could even improve access to

highly specialized care [13]. Once an automated system has been trained using

expert knowledge, it could be transferred to places where this knowledge would

otherwise not be available.

In pursuit of these goals, machine learning has already become an essential com-

ponent of health research. Several promising models have been developed to di-

agnose medical conditions [14, 15, 16] or predict individual patient risks [17, 18]

based on medical image data or electronic health records, although translation to

clinical practice is still challenging [19]. In health research, machine learning is also

used as a supporting tool to study a host of other fascinating questions. Combined

with bioinformatics approaches, model-based analyses contribute to studying ge-

netic causes and molecular mechanisms underlying diseases [20, 21] and di�ering

responses to treatment [22, 23, 24]. In addition, machine learning techniques are em-

ployed to support and accelerate research on drug discovery and development [25]

or to explore possibilities for drug repurposing [26]. Recently, machine learning

has, for the �rst time, enabled the accurate prediction of three-dimensional pro-

tein structures from amino acid sequences, which could catalyze these e�orts [27].

Overall, machine learning in health research is a fast-evolving �eld and will need to

continue to adapt as we gain the ability to measure biological processes with ever

increasing throughput and level of detail.

However, while machine learning on health data is promising and opens new op-

portunities for health research, it also faces speci�c challenges. Here, health data

refers to any information relating to the health, disease, and medical treatment of

human beings, irrespective of the data type (e.g., unstructured medical documents,

2
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image data, genetic data, blood measurements, vital signs, etc.) and of the location

and purpose of its recording. There are many di�erent kinds of health data, in-

cluding routine clinical data recorded in hospitals or doctor's o�ces, research data

generated in clinical trials, and molecular data collected in biobanks [28] or large-

scale projects like The Cancer Genome Atlas (TCGA) [29] or The Genotype-Tissue

Expression (GTEx) Consortium [30]. The challenges associated with machine learn-

ing for health applications arise from the characteristics of both health data itself

and its management.

For instance, from a machine learning perspective, the sample size in health

datasets is often relatively small. For some research questions, sample sizes are nat-

urally small, for example, when studying rare diseases or novel treatments. Data

from routine clinical practice, on the other hand, is theoretically abundant but

distributed across many institutions. Combining these datasets is still challenging,

mainly because of privacy concerns and a lack of standardization [19]. When work-

ing with molecular health data, even a considerable sample size may seem small

compared to the vast number of features, and correlations between features further

complicate the development of meaningful models.

In addition, health data typically has high variability, originating from both

biological and technical factors. Biological variability can be introduced by the

subjects or patients (through individual health factors as mentioned previously), by

their environment, or by high variability in the studied disease, for example, through

genetic diversity in cancer cells or viruses. Technical variability can additionally

arise from measurement errors, documentation errors, or di�erences in measurement

techniques and treatment protocols across institutions. This high variability makes

it di�cult for a model to separate signal from noise, i.e., to distinguish the variability

related to the phenomenon of interest from all variability caused by other factors,

especially when the dataset available for model training is small.

Similar factors can cause health data to be heterogeneous, meaning that it con-

tains subsets with distinctly di�erent statistical properties. For example, patients

may be sampled inhomogeneously from multiple medical centers following di�erent

treatment protocols or focusing on di�erent diagnoses or age groups. In super-

vised machine learning, heterogeneity within a dataset can give rise to confounding

factors, which are statistically associated with the outcome of interest but have

no biologically meaningful relationship with it. If the goal is inference, such con-
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founding factors may distort the conclusions drawn from a model unless they are

controlled in the study design or accounted for during data analysis. In models built

for a prediction task, confounding factors may lead to an overestimation of model

performance and poor generalization. A prominent recent example are models that

were trained to diagnose COVID-19 based on lung computed-tomography scans

using datasets that combined images from di�erent sources of COVID-19 positive

and negative patients, respectively, sometimes using images of pediatric patients

as controls [31]. In such settings, a model can learn to recognize the image source

or patient age rather than true signs of COVID-19 [31, 32]. Even if the source of

heterogeneity itself is not directly associated with the model output, it can make

prediction tasks more challenging. For instance, the input-output relationship may

di�er between data subsets, requiring more complex model types and larger sample

sizes for model training than in a homogeneous setting.

The heterogeneity of health data may also lead to distribution di�erences between

the data used for model development and data on which the model is later applied.

Even though a model learned a biologically meaningful relationship between input

and output, this relationship might not remain valid, e.g., if the inputs are measured

with a di�erent device or if the model is applied to a distinct patient population.

The distribution of health data may also change over time as health practices evolve.

This problem is known as domain shift or dataset shift [33] and can be an obstacle

to the validation and broad applicability of machine learning models. Dataset shift

may also pose an ethical challenge, e.g., if model performance is not stable across

patients of di�erent ethnicities or genders [34, 35].

Another challenge in health data is its temporal aspect [36]. Participants in

clinical trials or patients who undergo intense or long-term treatment are either

continuously monitored or receive regular follow-up examinations. If a dataset con-

tains longitudinal measurements, individual observations are no longer statistically

independent, which needs to be taken into account during model development.

Time may also be an additional source of variability and heterogeneity. For in-

stance, there may be heterogeneity between groups of patients because they have

di�erent temporal trends or heterogeneity over time if a treatment (or recovery

from it) has di�erent phases.

In response to these challenges, machine learning models for health data need to

be particularly robust. Models for data analysis need to be able to extract useful
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information from data with high variability, even if the sample size for model train-

ing is modest, and should account for external sources of heterogeneity. Models

trained for prediction tasks should ideally be robust to di�erences in data distribu-

tions across patient groups or institutions. And in both situations, models should

be able to integrate longitudinal data despite these challenges.

1.2 Approaches to Robust Machine Learning

Depending on the context and the exact challenge at hand, there are di�erent ways

to approach robust machine learning.

In this thesis, I have focused on supervised learning, where the goal is to learn a

relationship between an input X and an output Y that generalizes well to new data.

Typically, X is a random vector and Y is a random variable, which follow some

unknown joint probability distribution P (X, Y ), and we aim to estimate a function

f such that f(X) is a good approximation of Y , using a set of labeled training

examples drawn from P (X, Y ). Although this is often done by minimizing the

di�erences between predicted and observed output in the training set, the goal is

that this di�erence will be small for new, independent samples drawn from P (X, Y ).

Robustness in this context means that a model should still be able to achieve this

goal even if it is confronted with less than ideal conditions.

If a small sample size and high variability of the training data are the main

challenges, one approach to robust machine learning is to train models with low

capacity. Models with low capacity are limited regarding which functional rela-

tionships f they can represent, which may introduce bias if the true relationship

between X and Y is not part of this restricted class. However, they also have low

variance with respect to changes in the training data, and this reduction in variance

may outweigh the error introduced by a small bias [2]. A model with low capacity

is, e.g., a parametric model with only a few free parameters. Such models make

strong assumptions regarding the relationship between X and Y , but if these as-

sumptions are well justi�ed and guided by prior knowledge, they allow for accurate

models based on small datasets [2, 37].

Alternatively, regularization can reduce the capacity and variance of a generally

�exible model type. In high-dimensional settings, even a linear regression model
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trained by ordinary least squares has many degrees of freedom and may have high

variance. A standard regularization technique is to add a penalty term to the

loss function to penalize large regression coe�cients, typically some norm of the

coe�cient vector. For instance, ridge regression uses the L2 norm to shrink co-

e�cients towards zero [38], and the LASSO uses the L1 norm to perform feature

selection [39]. The elastic net combines the advantages of both methods by using a

convex combination of L1 and L2 norm [40]. It produces a sparse coe�cient vector

like the LASSO but handles correlated features similar to ridge regression and is

still applicable if the number of features exceeds the number of samples.

Overall, a broad range of models and methods are available to reduce variance

and enable generalization, and the best choice is application-speci�c. Some models

include hyperparameters that directly control their capacity [41, 42] or consist of an

ensemble of multiple predictors that are averaged to reduce variance [43, 44]. Even

deep neural networks, which are at the high-capacity end of the scale, bene�t from

regularization [45]. Here, techniques range from classical penalty-based methods

such as weight decay [46] to neural-network-speci�c methods like dropout [47] or

parameter sharing, e.g., in convolutional neural networks [48]. However, in the

context of deep learning, robust machine learning refers mainly to the robustness

against security risks, such as adversarial attacks [49] and data poisoning [50], and

has become a research �eld of its own [51, 52]. Robust deep learning and its security

aspects are not the focus of this thesis.

A more di�cult challenge to address is heterogeneity between data used for model

training and data observed during model deployment. Here, domain adaptation

aims to explicitly design models that are robust to dataset shift [53, 54]. Domain

adaptation is a branch of transfer learning and considers the same prediction task

in two domains, a source domain and a target domain, with related but di�erent

underlying distributions, PS(X, Y ) and PT (X, Y ). The goal is to predict well on

data following the target domain distribution PT (X, Y ), while training mostly on

data drawn from PS(X, Y ). This is only possible if the source and target domain

distributions are su�ciently similar to allow for some transfer of knowledge [53].

Domain adaptation approaches can be categorized based on how much informa-

tion from the target domain is available for model training. In supervised domain

adaptation, a small number of labeled examples from the target domain are avail-

able [55], which allows adjusting the model parameters to optimize target domain
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performance directly. In the more challenging setting of unsupervised domain adap-

tation, only unlabeled examples from the target domain are available at training

time [56]. Blind domain adaptation goes even further and aims to perform the

same task without using any target domain data [57]. Unsupervised and blind

domain adaptation have no way of estimating target domain performance directly

and require assumptions on the similarity and di�erences between PS(X, Y ) and

PT (X, Y ). A common choice is, e.g., the covariate shift assumption, where the

domains di�er only in the marginal distributions PS(X) and PT (X), while the

conditional distributions PS(Y | X) and PT (Y | X) are the same [58]. It is worth

noting that in the context of domain adaptation, the terms supervised and unsuper-

vised refer only to the domain adaptation setting and not to the machine learning

task. All variants of domain adaptation use labeled source domain data and aim

to perform the supervised task of predicting Y based on X in the target domain.

Domain adaptation has many potential applications in the health domain. It

can improve the transferability of models between medical centers and patient col-

lectives, and may even allow transferring knowledge between related diseases when

little data is available on the scenario of interest. Especially methods for unsuper-

vised domain adaptation are attractive since they do not require expensive labeling

for every new target domain. Unsupervised domain adaptation has been studied

extensively for deep neural networks [59, 60, 61] and for classi�cation tasks like sen-

timent classi�cation in natural language processing [62, 63] or object recognition

from digital images [64, 65, 66]. Yet, fewer methods exist for regression tasks and

model types with a lower capacity, and these focus predominantly on supervised do-

main adaptation [67, 68]. Overall, applications of unsupervised domain adaptation

to health-related questions are still rare.

Another way to approach robust machine learning is to consider the uncertainty

of a model and its predictions. Under challenging circumstances, an accurate predic-

tion may not always be possible, and in such cases, a robust model should indicate

that it is uncertain. Probabilistic machine learning aims to estimate the conditional

distribution P (Y | X) instead of making hard predictions [69]. In classi�cation,

this means predicting class probabilities that accurately re�ect observed frequencies

in the real world, which is more challenging than requiring only that the correct

class obtained the highest score [70]. Estimating and communicating uncertainty is

especially relevant in the health domain, where physicians or patients receive and
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interpret model output, and wrong decisions may have severe consequences [71].

For instance, a physician using a decision support system must be able to judge

the con�dence of a prediction to decide whether to follow or overrule it. Similarly,

if an early-warning system predicts some critical event, a physician needs to know

its probability in order to judge the risk to the patient and decide how to react.

Interpretable or explainable models may additionally allow physicians to judge

the plausibility of the model output based on expert knowledge. Models may ei-

ther be interpretable directly, if they have a simple and human-understandable

structure, or explanations may be generated post-hoc by analyzing or approximat-

ing an otherwise non-interpretable model [72]. Such explanations can range from

global descriptions of feature importance [43, 73] to local explanations for indi-

vidual predictions [74, 75, 76]. Although forcing models for health applications

to be interpretable or explainable has also been discussed critically, especially if

it requires further approximating the original predictions [77], accurate explana-

tions can help to reveal artifacts in the data and may allow physicians to act as

a safeguard against implausible predictions [71, 72]. Thus, both probabilistic and

interpretable machine learning can be seen as extending the robustness of a model

to its interactions with humans.

Ensuring model robustness is not only a challenge for method development, but

also an essential responsibility of scientists developing models. Addressing chal-

lenges such as confounders or heterogeneity within a dataset requires careful anal-

ysis and algorithms tailored to the speci�c application. If confounding factors are

known, it may be possible to account for them during model training or to remove

them through normalization or curation of the dataset. Yet, to discover unexpected

confounders or heterogeneity, scientists need to inspect trained models, compare

model performance in data subsets and discuss the interpretation of their results

with experts in the application domain. Ultimately, the robustness of a model can

only be judged once it has been challenged. Verifying model robustness requires

validation in a realistic application scenario, ideally on independent data from a

di�erent source and in a prospective setting to account for potential dataset shift

over time. While it is di�cult to meet all these requirements in the limited scope

of a research project, doing so is crucial for the successful application of any model

in practice.
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The overarching goal of my studies was to develop robust machine learning methods

and models that are tailored to characteristic challenges in health data. My work

towards this goal can be divided into three topics spanning three application areas

in health research.

As a �rst topic, I aimed to develop new methods for unsupervised domain adap-

tation that are suitable for high-dimensional health data. Although this goal is

methodological in nature, it was motivated by the problem of age prediction from

DNA methylation data across di�erent tissues. Here, previous work had shown

poor prediction performance of standard models on data from a tissue that was not

included in the training set [78]. A common challenge associated with molecular

data like DNA methylation is a large number of correlated input features that ex-

ceeds the number of samples. To address both challenges in combination, I aimed

to develop an unsupervised domain adaptation method for the elastic net [40], a

popular robust model type that is well suited for high-dimensional input data.

The second topic involved the model-based analysis of data from current clinical

HIV research. Here, my goal was to contribute robust models for the analysis of

data from an early clinical trial studying the safety and e�cacy of a combination

of two broadly neutralizing antibodies, 3BNC117 and 10-1074, in the treatment

of HIV-1. The main objective of my analyses was to compare outcome measures

between the current trial participants and multiple patient groups from previous

clinical trials who received only one or neither of the two broadly neutralizing anti-

bodies. In particular, I aimed to detect heterogeneity between these patient groups

and to account for relevant di�erences during analysis. Other methodological chal-

lenges were a high variability combined with a small number of participants and

longitudinal data.

The third topic was embedded in the consortium project XplOit: Semantic

Support for Predictive Modeling in Systems Medicine and focused on allogeneic
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hematopoietic stem cell transplantation (HCT) as the area of application. Here,

my goal was to train and evaluate robust models for the prediction of critical events

after HCT based on routine clinical data. More precisely, I aimed to combine recip-

ient and donor baseline data with longitudinal laboratory measurements to predict

patient-speci�c risks of death and cytomegalovirus (CMV) reactivation at multiple

time points after HCT. The main challenges were a high variability and heterogene-

ity over time as the distribution and frequency of laboratory measurements changed

considerably over time after HCT. As a secondary aspect, I aimed to contribute to

the collective goal of the consortium to develop a software platform that supports

the provision and harmonization of health data as well as the development and

validation of prediction models based thereon. Here, the models I developed served

as a use case and �rst application of the platform to obtain feedback on the user

experience from the perspective of a model developer.

10



3 Results and Discussion

In this chapter, I will �rst provide an overview and discussion of my work separately

for each topic and area of application. I will summarize the key ideas and results

of the manuscripts on each topic, emphasizing how they relate to each other and

to the overarching goal of robust machine learning for health applications. Since

each manuscript has multiple authors, I will switch between the use of we and I

depending on whether I discuss our work as a whole or my individual contributions

and views. A detailed contributions statement for each manuscript is included in

the frontmatter of this thesis.

In Chapter 4, I will subsequently provide a joint perspective and connection

points between these three topics in an integrated discussion.

3.1 Methods for unsupervised domain adaptation

In Manuscripts 1 and 2, we developed methods for unsupervised domain adaptation,

which are tailored to challenges in molecular health data. Our methods are designed

for regression tasks with high-dimensional input and modest sample size, and are

adaptations of an elastic net model with improved robustness to heterogeneity

between datasets.

In unsupervised domain adaptation, labeled source domain data and unlabeled

target domain data are available for model training, yet the aim is to predict the

output well in the target domain. If the input is high-dimensional, the heterogeneity

between source and target domain may be caused by only some of the features while

other features behave similar in both domains. The shared core idea of the methods

we developed is to identify features which behave similar, and to train an elastic

net model on source domain data which relies mostly on these robust features. To

identify how reliable features are, we compare the dependencies between features

in source and target domain. This idea is based on the assumption that if a feature
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has the same dependencies with other features in both domains, it will likely also

have the same relationship with the output we aim to predict. A model using these

features should therefore be able to robustly predict the output across domains.

In Manuscript 1, we �rst explored this idea by performing feature selection for

each target domain sample individually. This approach is close to blind domain

adaptation since the only target domain information used for each prediction is the

input for which the prediction is made. In Manuscript 2, we built on these early

experiments to develop the method wenda (weighted elastic net for unsupervised

domain adaptation). Wenda combines information from multiple target domain

inputs to estimate the reliability of each feature more robustly, and prioritizes

features instead of performing strict feature selection.

To evaluate these methods on real-world data, we applied them to the problem

of age prediction from DNA methylation data across di�erent tissues. Although

age is typically measured chronologically, it describes biological changes, which do

not necessarily progress at the same rate for every individual or every cell [79, 80].

In search of an indicator of biological age, researchers have aimed to predict age

from molecular data, and elastic net models based on epigenetic DNA methylation

proved to be particularly accurate [80, 81, 82]. These models were trained to

predict a tissue donor's chronological age, yet their predictions can be interpreted

as a biological epigenetic age of the donor or tissue. An acceleration of epigenetic

aging in comparison to chronological aging is associated with a higher risk for

age-related diseases [83, 84] and a higher all-cause mortality [85], indicating that

epigenetic age could be a more informative descriptor of a person's health status

than chronological age. However, DNA methylation patterns and age-associated

changes within them are, at least in part, tissue-speci�c [86, 87, 88]. Applying an

age prediction model on other tissues than it was trained on is therefore a domain

adaptation problem. Methods which robustly predict age across tissues can enable

age prediction on tissues for which labeled training data is scarce or unavailable,

but can also serve as an example for future prediction tasks based on tissue-speci�c

molecular data.

In our experiments, we used DNAmethylation data from TCGA [89] and GEO [90]

with an intentionally mismatched tissue composition in training and test set. The

focus of our evaluation was on cerebellum samples, which were part of the test set

but not represented in the training data. This tissue is known to be biologically
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distinct even from other brain tissues [87, 91] and its age was poorly predicted

with the model type of a popular age prediction model based on a standard elastic

net [80], which we used as a reference model.

3.1.1 Partially blind domain adaptation for age prediction from

DNA methylation data (Manuscript 1)

In Manuscript 1, we explored the idea to strictly select only the most reliable fea-

tures for each prediction. Using a model-based approach, we estimated a con�dence

score for each feature of a target domain sample, measuring how well this feature

matches the input dependencies observed in the source domain. We then trained

an elastic net model to predict the output for this speci�c sample, using only those

features with the highest con�dence scores.

To estimate con�dence scores, we �rst trained Gaussian process models to capture

the conditional distribution of each feature given all other features in the source

domain. Building on previous work by Jalali and Pfeifer [92], we then de�ned the

con�dence score of each feature based on how likely its observed value is according

to the distribution predicted by the Gaussian process models.

This method can be seen as partially blind domain adaptation. It uses some

target domain information for training since it trains a separate elastic net for each

target domain input using only the selected high-con�dence features. However, just

like in blind domain adaptation, each prediction is only based on the target domain

input for which the prediction is made, in addition to labeled source domain data.

In our experiments, we used a �xed percentage to de�ne high-con�dence features,

and varied it between the top 10% and the top 40%. Applied to age prediction from

DNA methylation data, our method reduced the prediction error for cerebellum

samples compared to the non-adaptive reference model. This reduction was stronger

if the feature set was narrowed down more severely. However, there was a clear

trade-o� between the error on cerebellum samples and the error on the full test set.

While the restriction to a narrow set of high-con�dence features reduced the error

on samples with a distribution mismatch compared to the source domain data, it

also removed features which would have been useful for prediction on samples with

no such distribution mismatch.
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Figure 3.1: Schema illustrating the main idea of wenda. In this example, the aim is
to predict Y based on �ve features X1, . . . , X5 in the target domain. While features
X1, X2 and X3 have the same dependency structure in source and target domain, the
relationship between X4 and X5 (highlighted in orange) is di�erent. To predict Y in the
target domain, wenda trains an elastic net on the source domain examples while enforcing
a stronger regularization on the coe�cients of X4 and X5, reducing their impact on the
predictions. This method is based on the assumption that features with di�erent input
dependencies in source and target domain will likely also have a di�erent relationship with
Y in the two domains.

3.1.2 Weighted elastic net for unsupervised domain adaptation

(Manuscript 2)

In Manuscript 2, we built on these early experiments to develop the unsupervised

domain adaptation method wenda. Instead of strict feature selection, wenda pri-

oritizes features by weighting their contributions to the elastic-net regularization

penalty. It places larger weights on features with a low con�dence score, which

encourages the model to prefer high-con�dence features without excluding any fea-

tures completely. Figure 3.1 shows a schema illustrating this idea. In contrast

to Manuscript 1, wenda averages con�dence scores over the target domain inputs,

estimating only one set of feature con�dences for the whole target domain.

We introduced two versions of wenda, which take di�erent approaches to selecting

the regularization parameter of the elastic net: wenda-pn and wenda-cv. Since

wenda couples domain adaptation and regularization, this parameter in�uences

not only the overall strength of regularization, but also the degree to which high-
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con�dence features are prioritized. Its optimal value can therefore depend on the

size of the distribution mismatch between domains. In wenda-pn, we proposed a

way to use prior knowledge on the size of this mismatch to select the regularization

parameter. For instance, in the application to age prediction across tissues, we

utilized estimates of tissue similarity published by the GTEx consortium [91] as

prior knowledge. Alternatively, wenda-cv uses cross-validation on the labeled source

domain data to select it. The approach taken by wenda-cv determines an optimal

value for the source domain rather than the target domain, which is not ideal for

domain adaptation, but is still applicable if prior knowledge is not available.

To study the behavior of wenda in a controlled setting, we simulated data with

a known distribution mismatch. We used directed acyclic graphs to represent de-

pendencies between features, and modeled the distribution of each child node as a

linear combination of its parent nodes with additive Gaussian noise. To model the

distribution mismatch in the target domain, we selected a subset of features and

altered their dependencies with other features as well as their e�ect on the output.

On simulated data, wenda-pn led to considerable improvements in two out of three

simulated scenarios, in which prior knowledge could be utilized more easily, while

wenda-cv performed similar to or only slightly better than a standard elastic net.

These results show that cross-validation does indeed not select the optimal regu-

larization parameter for the target domain, and that prior knowledge can improve

parameter selection.

Applied to age prediction from DNA methylation data, both wenda-pn and

wenda-cv substantially reduced the error on cerebellum samples and performed

similar to the non-adaptive reference model on the full test set. In contrast to

our experiments with feature selection in Manuscript 1, which showed a trade-o�

between the performance on cerebellum samples and on the full test set, wenda

performed well on all tissues, regardless of whether they had a distribution mis-

match with the source domain data or not. Figure 3.2 shows a direct comparison

of the performance of wenda-pn and the reference model on multiple test tissues.

3.1.3 Discussion

Summarizing Manuscripts 1 and 2, we have shown that feature selection and pri-

oritization can be powerful tools for unsupervised domain adaptation in high-
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Figure 3.2: Prediction performance of wenda-pn on the DNA methylation dataset com-
pared to a non-adaptive reference model. The reference model, en-ls, was a standard
elastic net followed by a linear least-squares �t using only features that obtained non-zero
coe�cients in the elastic net. This model type had been used previously for age prediction
from DNA methylation data [80]. a, Mean absolute error of wenda-pn and en-ls per test
tissue, shown are the mean ± standard deviation derived from cross-validation. b�c, Pre-
dicted versus true chronological age for typical runs of en-ls (b) and wenda-pn (c), samples
are colored by tissue. a�c, Figure and caption adapted from Fig. 2 in Manuscript 2.

dimensional prediction tasks. Compared to a non-adaptive reference model, our

methods both improved age prediction from DNAmethylation data on samples with

a distribution mismatch compared to the labeled training data. In Manuscript 1,

where we used only information from a single target domain input for each predic-

tion and performed strict feature selection, this improvement came at the cost of

a larger error on test samples with no distribution mismatch. In contrast, wenda

in Manuscript 2 performed well on test samples with and without distribution mis-

match. This was achieved by combining information from multiple inputs from the

same target domain and by using a feature weighting in the elastic-net regulariza-

tion penalty instead of strict feature selection.

Both our methods are designed for the situation where the number of features

exceeds the number of samples, which is common in molecular health data. They

are complementary to previous methods performing unsupervised domain adapta-

tion for regularized regression, which reweight samples rather than features [93, 94].

These were developed for the covariate shift case and while they have some proven

theoretical guarantees in this scenario, sample reweighting may lead to high vari-
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ance if the number of samples available for training is not large [56]. In addition,

the covariate shift assumption states that the mismatch between source and tar-

get distribution arises only from sample selection bias and that the relationship

between input and output is the same in both domains. In contrast, our methods

allow some features to have a di�erent impact on the output in source and target

domain. While feature selection has previously been used successfully for super-

vised domain adaptation in an elastic net model [67], both the softer approach of

using a feature weighting and the extension to the more challenging situation of

unsupervised domain adaptation were new in wenda to the best of my knowledge.

By using feature selection or prioritization, our methods detect features which

behave di�erently in source and target domain and reduce their impact on cross-

domain prediction. Recent methods based on deep neural networks go even fur-

ther and learn a new representation of the input data which is similar in both

domains [59, 61, 95]. While this approach is more �exible and may avoid losing

information by discarding some features, it also requires more unlabeled data from

the target domain for training. One strength of wenda is that it requires only few

unlabeled examples from the target domain. In simulations, as few as 100 target

domain inputs were su�cient to learn suitable feature weights, and some target do-

mains in the DNA methylation dataset were even smaller. Nevertheless, it would

be an interesting and challenging next step to extend wenda to allow for correcting

features with a distribution mismatch instead of penalizing them.

In wenda, regularization and domain adaptation are entangled. While this can

make it di�cult to control the strength of regularization and the level of domain

adaptation independently, it allows for an implicit trade-o� between how much

information a feature contains on the output and how similar it behaves across

domains. An alternative approach is transfer component analysis (TCA), which

aims to extract a lower-dimensional feature representation that is transferable be-

tween domains [96]. This representation can subsequently be used in any standard

machine learning model, e.g., in an elastic net, thus separating the two steps of

identifying a representation suitable for domain adaptation and training a model

to predict the output. However, TCA does not make use of the labels available for

source domain data to guide the choice of the feature representation. As a conse-

quence, features with a moderate domain mismatch but a strong in�uence on the

output might be removed by TCA but retained by wenda.
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Without labeled training data from the target domain, unsupervised domain

adaptation requires assumptions on how the distributions in source and target do-

main di�er. The core assumption of both our methods is that di�erences in the

dependencies between inputs are informative of which features allow for a robust

prediction of the output across domains. This assumption is motivated by the

observation that di�erent locations in the (epi)genome interact in a biologically

meaningful way, and that the gene regulatory networks they form can di�er be-

tween tissues [97]. Di�erences in these interactions could indicate parts of the

DNA methylome which are related to tissue-speci�c biological processes and may

therefore not share the same relationship with age across tissues. In Manuscripts 1

and 2, we only assessed this assumption indirectly, through changes in model perfor-

mance, and found that it was appropriate to improve age prediction across tissues.

It would be an interesting route for future work to analyze which features obtained

particularly low con�dences and whether this matches known functional di�erences

between cell types.

Depending on the application scenario, other criteria could be suitable to de-

�ne feature con�dences. For instance, wenda-mar in Manuscript 2 explores the

idea to measure di�erences in the marginal distributions of features rather than

di�erences in the dependencies between them. Although this approach led to a

smaller improvement than the dependency-based versions of wenda in our experi-

ments, it may be useful for domain adaptation on datasets with no (informative)

dependencies between features. An interesting next step would be to combine both

approaches and to measure changes in marginal distributions and in dependencies

simultaneously. Alternatively, extensions of wenda to classi�cation tasks and to

multi-omics settings could be promising directions for further research.

To capture the dependency structure between features, our methods model the

conditional distribution of each feature given all other features. This step is compu-

tationally demanding, especially in a high-dimensional feature space. To accelerate

model training, the initial implementation1 of wenda made use of parallelization

where possible, yet it could only utilize CPUs for model training. Ariel Hippen et

al. later developed wenda_gpu, a wenda implementation based on GPyTorch that

can utilize GPUs, reducing the training time and enabling applications to even

1https://github.com/PfeiferLabTue/wenda
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higher-dimensional settings [98].

An alternative approach to modeling all conditional distributions is to model the

dependencies all at once by learning the joint distribution of all features. Here,

structure learning for Bayesian networks could be applied to learn a network of

dependencies between features [99, 100, 101]. Structure learning is NP hard and

can only be solved approximately for large feature spaces. Nevertheless, a sparse

Bayesian network would be a more concise representation of feature dependencies

and could have additional advantages for wenda. If the relationship between two

features di�ers in source and target domain, both features could receive low con-

�dence in the current version of wenda and the con�dence of other features which

strongly depend on these two could also be in�uenced. A sparse dependency struc-

ture and directionality in feature relationships may help to reduce these e�ects and

to pinpoint more clearly where the di�erence originated.

Finally, wenda could be applied to new prediction tasks based on heterogeneous

molecular health data. An obvious example is age prediction from tissue-speci�c

gene expression data such as transcriptomics [102] or proteomics [103], where similar

heterogeneity e�ects and input dependencies as in DNA methylation data could be

expected. Beyond age prediction, computational oncology o�ers further opportuni-

ties for applications of wenda. For instance, wenda would be promising to improve

the prediction of cancer stage and prognosis across cancer types [104, 105, 106].

Hippen et al. also applied the GPU-accelerated version of wenda to identify loss-

of-function mutations in a tumor suppressor gene across cancer types based on

transcriptomic data [107]. Here, genetic di�erences between cancer types and sub-

types and the genetic diversity of individual cancer cells are additional sources of

heterogeneity. By improving prediction across cancer types, wenda could enable

a more accurate prognosis prediction for rare cancers, where little or no labeled

data is available. More generally, any prediction task across heterogeneous do-

mains, where dependencies between features are informative of domain di�erences,

are promising new application areas for wenda, especially if standard elastic net

models previously proved successful within a domain.
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3.2 Robust model-based analyses for HIV research

In Manuscripts 3 and 4, we developed robust models for the analysis of data from

an early clinical trial evaluating the use of broadly-neutralizing antibodies (bNAbs)

for the treatment of HIV-1.

To date, there is no treatment which can fully eradicate HIV-1 and patients

require lifelong antiretroviral therapy (ART) to suppress the infection [108, 109].

While standard ART can e�ectively reduce the viral load below detectable levels,

it can have side e�ects and needs to be taken every day. A promising candidate for

a new class of therapies for HIV-1 are bNAbs, which neutralize a large number of

virus variants by targeting conserved epitopes [110]. These are developed naturally

by a small fraction of HIV-1 patients and can be isolated from their blood sera [111].

As a treatment for HIV-1, bNAbs could engage the patient's immune system and

might require fewer doses than ART, owing to their long half-lives [112]. Since

treatment with a single bNAb leads to the emergence of resistant HIV-1 variants,

similar to treatment with a single antiretroviral agent, it is likely that a combination

of multiple bNAbs would be needed to enable long-term control of HIV-1 [113, 114].

Both manuscripts report results of a phase 1b clinical trial (NCT02825797)

studying the combination of two potent anti-HIV-1 bNAbs, 3BNC117 [115] and

10-1074 [116]. Although the main purpose of the trial was to evaluate the safety

of this combination therapy in humans for the �rst time, its data also allowed to

gain a �rst glimpse on treatment e�cacy. The trial investigated the e�ect of com-

bination therapy under two di�erent initial conditions. In patients with suppressed

HIV-1, who were previously on ART, it assessed if and for how long combination

therapy could maintain viral suppression when ART was interrupted. In patients

who were initially viremic and not on ART, it assessed if and for how long combina-

tion therapy could reduce the viral load. The trial participants were pre-screened

for sensitivity to 3BNC117 and 10-1074 using an in vitro neutralization assay and

received either one or three infusions of both bNAbs.

Data from early clinical trials is challenging to analyze because patient groups are

small and control groups with well-matched characteristics are not always available.

In our analyses, we compared current trial participants to patients from previous

clinical trials who received only one of the two studied bNAbs or no intervention,

and aimed to identify if there was a statistically signi�cant di�erence between these
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Figure 3.3: Schematic overview of the study design including current trial participants
and historical control groups. a, Manuscript 3 reports on patients who were initially
on antiretroviral therapy (ART) and received 3 infusions of 10-1074 and 3BNC117 while
undergoing analytical treatment interruption (ATI). The time to viral rebound was com-
pared to historical patients who underwent ATI and received only 3BNC117 [117] (2 doses
3 weeks apart or 4 doses at 2-week intervals) or no intervention [118]. b, Manuscript 4
reports on viremic patients o� ART who received 1�3 infusions of combination therapy.
The temporal development of the viral load was compared to viremic patients who re-
ceived a single dose of monotherapy [113, 114]. a�b, Figure and caption adapted from
Fig. 1 in Manuscript 3 and 4, respectively.

patient groups regarding the e�ect of the treatment on HIV-1. Doing so required

robust models and statistical methods, which account for potential heterogeneity

between patient groups and are appropriate for small sample sizes, depending on

the precise application scenario. Figure 3.3 provides a schematic overview of the

study design and control groups.

3.2.1 Combination therapy with anti-HIV-1 antibodies maintains

viral suppression (Manuscript 3)

Manuscript 3 describes the results of the clinical trial for patients who were initially

on ART and underwent analytical treatment interruption (ATI). Here, 15 patients

each received three infusions of both 3BNC117 and 10-1074 at intervals of three

weeks while ART was interrupted. The viral load was monitored regularly and ART

was reinitiated at the time of viral rebound, which was de�ned as the �rst of two
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subsequent viral load measurements detecting >200 copies per ml. We compared

these patients to two control groups from previous clinical trials, who had received

only 3BNC117 monotherapy [117] (n = 13) or no intervention [118] (n = 52) during

ATI.

The main conclusion of Manuscript 3 was that combination therapy with 3BNC117

and 10-1074 can maintain viral suppression in patients sensitive to both bNAbs if

ART is discontinued. Patients with complete viral suppression at the initiation of

ATI had a median time to rebound of 21 weeks, compared to 6�10 weeks in the

control group with 3BNC117 monotherapy and 2.3 weeks in the control group with

no intervention during ATI. Two patients did not rebound in the entire follow-up

period of 30 weeks. Figure 3.4a displays Kaplan-Meier plots of the time to viral

rebound for current trial participants and both control groups. In patients with

con�rmed dual sensitivity to 10-1074 and 3BNC117, rebound only occurred af-

ter the serum concentration of at least one of the two bNAbs was very low and

never earlier than 15 weeks after ATI initiation. Here, 10-1074 had a longer serum

half-life than 3BNC117, leading to a period of e�ective 10-1074 monotherapy after

3BNC117 levels dropped. Although some of the patients consequently developed

HIV-1 variants resistant to 10-1074, these variants remained sensitive to 3BNC117.

Building on previous work by Scheid et al. [117], we performed a statistical anal-

ysis to determine if the di�erences in time to rebound could be explained by any

potential confounders. All statistical tests were performed at signi�cance level

α = 0.05. We used parametric survival regression to describe the time-to-event

data [37]. This model type assumes that the event density function, which de-

scribes the instantaneous rate at which events (in our case viral rebound) occur

as a function of time, is the density of a parametric distribution and that covari-

ates impact some parameter of this distribution via a linear function. Using the

R package �exsurv [119], we �tted multiple parametric models for each available

covariate (such as age, gender, or years on ART), comparing multiple parametric

distributions (exponential, log-normal, Weibull, etc.) and selecting the best-�tting

distribution for each covariate based on Akaike's information criterion. We then

compared each model including a covariate to a null model without covariates, us-

ing a likelihood ratio test to determine if the covariate had a signi�cant impact on

the time to viral rebound. In addition, we tested for di�erences in the distribution

of relevant covariates between patient groups. The only confounder we identi�ed
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was years on ART, which had a signi�cant impact on the time to rebound and was

lower in the control group with no intervention than in current trial participants.

All other available covariates did not di�er signi�cantly between patient groups,

nor did they impact time to rebound.

We then tested whether the treatment group had a signi�cant impact on the

time to rebound while accounting for years on ART using two di�erent methods,

a likelihood ratio test including years on ART as an additional covariate and an

adjusted log-rank test which reweights samples to account for di�erences between

groups [120]. Both methods con�rmed that the time to rebound di�ered signi�-

cantly between patients treated with combination therapy and patients treated with

monotherapy or no intervention, respectively, even when accounting for di�erences

in the covariate years on ART. Although the di�erences in time to rebound were

reported without statements of signi�cance in Manuscript 3, this analysis corrob-

orated their interpretation and the conclusion that combination therapy was more

e�ective than monotherapy.

3.2.2 Safety and antiviral activity of combination HIV-1 broadly

neutralizing antibodies in viremic individuals

(Manuscript 4)

The results in viremic patients are detailed in Manuscript 4. For this part of

the clinical trial, 7 viremic patients received either one infusion or three biweekly

infusions of 3BNC117 and 10-1074. Afterwards, the viral load was monitored for

24 weeks. These patients were compared to a control group of 19 viremic patients

who had received only 3BNC117 (n = 8) or only 10-1074 (n = 11) as monotherapy

in previous clinical trials [113, 114].

Here, we performed a statistical analysis to compare the response to bNAb treat-

ment between current trial participants and the control group. We modeled the

development of the viral load over time using linear mixed-e�ects models, a popular

model type that allows to account for dependencies between repeated measurements

from the same subject [121]. More precisely, we included �xed e�ects for the treat-

ment group and time, treating time as an ordered factor, and a subject-speci�c

e�ect on the intercept to account for variability between individuals. The model

output was de�ned as Yti = log10 (VLti) − log10 (VL0i) for t = 1, . . . , ni, where
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Figure 3.4: Plots summarizing the main results of the clinical trial. a, Kaplan�Meier
plots depicting the time to viral rebound for the participants with <20 copies per ml
two weeks before and at the start of ATI (n = 11, left), for the participants with con-
�rmed sensitivity to both antibodies (n = 9, center), and for the participants that showed
pre-existing resistance to one of the antibodies (n = 2, right). b, Simultaneous con�-
dence bands for the development of the viral load in all viremic participants (n = 7,
left), individuals harboring 3BNC117- and 10-1074-sensitive viruses (n = 4, center), and
participants carrying viruses with partial or full bNAb resistance (n = 3, right). Each dot
represents a viral load measurement. Solid and dashed lines represent the regression �t
and simultaneous con�dence bands at 95% certainty level, respectively. a�b, Figure and
caption adapted from Fig. 1 in Manuscript 3 and Fig. 2 in Manuscript 4.
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VL0i, . . . ,VLnii is the temporal sequence of viral load measurements of subject i.

Thus, the model can be speci�ed as follows.




Y1i

...

Ynii


 = Xβ +




1
...

1


ui +




ε1i
...

εnii


 (3.1)

ui ∼ N(0, σ2
u) (3.2)




ε1i
...

εnii


 ∼ N (0, Ri) (3.3)

Here, X and β are the design matrix and coe�cient vector of a standard linear

model including only the �xed e�ects, ui is a random e�ect describing the subject-

speci�c variation in the intercept, and Ri is the covariance matrix of the residual

vector (ε1i, . . . , εnii)
⊤. In contrast to a standard linear model, Ri is not a scaled

identity matrix but has a structured parametric form that models the dependencies

between repeated measurements of subject i. Measurements of di�erent subjects as

well as ui and the residuals are assumed to be independent. We determined an ap-

propriate correlation structure for Ri by evaluating multiple options and selecting

the best model based on Akaike's information criterion, resulting in a �rst-order

autoregressive correlation structure. Using a likelihood ratio test, we then com-

pared this model to a model without the predictor treatment group. Our analysis

con�rmed a signi�cant di�erence between combination therapy and monotherapy

regarding how strongly and how long they reduced the viral load.

On average, combination therapy reduced the viral load by 1.65 log10 copies per

ml in viremic patients and it took 86 days for the viral load to return to its ini-

tial level. Figure 3.4b shows individual viral load measurements with estimated

simultaneous con�dence bands. Yet, the response varied considerably between in-

dividuals. Manuscript 4 includes a more detailed analysis of the sensitivity of each

patient's circulating viruses to 3BNC117 and 10-1074 before and after combina-

tion therapy, based on single genome ampli�cation (SGA). Although all patients

were pre-screened for sensitivity, SGA revealed HIV-1 variants with resistance or

reduced sensitivity to the studied bNAbs in three patients. Consistent with this
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�nding, these patients showed a weaker or no response to combination therapy.

Viral suppression below detectable levels was achieved in two of the four patients

with con�rmed dual sensitivity, who had the lowest initial viral loads, but not in

the remaining participants. None of the four patients with con�rmed dual sensi-

tivity developed HIV-1 variants resistant to both studied bNAbs. We concluded

that combination therapy with 3BNC117 and 10-1074 may be able to achieve and

maintain viral suppression in sensitive patients with very low initial viral load, but

can not be used to e�ectively treat viremic patients in general.

3.2.3 Discussion

Taken together, Manuscripts 3 and 4 demonstrate both the potential and the lim-

itations of HIV-1 treatment with the combination of 3BNC117 and 10-1074. The

long time to viral rebound in patients who were previously on ART suggests that

this combination might be able to maintain longterm suppression of HIV-1 once it

was established with ART. Replacing longterm ART with a bNAb treatment could

bene�t patients who experience severe side e�ects while on ART, and would allow

for larger intervals between doses. On the other hand, the varying responses of

viremic patients indicate that 3BNC117 and 10-1074 alone would not be su�cient

to establish viral suppression. Achieving suppression of HIV-1 in viremic patients

is harder than maintaining suppression after ART because the large number and

diversity of circulating viruses in viremic patients facilitate the emergence of resis-

tant HIV-1 variants. To potentially reach this second goal without ART, 3BNC117

and 10-1074 could potentially be combined with further bNAbs or drugs.

Our study is an important step towards bNAb treatments for HIV-1. While

treatment with a single bNAb has consistently led to the development of resistant

variants [113, 114], previous studies evaluating combinations of bNAbs during ATI

were limited by the low potency of bNAbs available at the time and showed only

a very short delay in viral rebound, if any [122, 123]. With 3BNC117 and 10-1074,

we combined two newer-generation bNAbs with high potency, which target distinct

epitopes, and demonstrated that longer control of HIV-1 using bNAbs is possible.

In our study, no patient who was con�rmed to be sensitive to both bNAbs devel-

oped dual resistance during the observation period, even among viremic patients.

However, some pre-existing resistances were missed by the initial screening with an
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in vitro neutralization assay and were only revealed by SGA. This highlights that

more reliable methods for sensitivity screening would be needed to apply bNAbs in

clinical practice safely and e�ectively.

From a methodological point of view, the main challenge of this project was to

identify robust models and statistical tests which were appropriate to analyze the

limited and heterogeneous data. For the survival analysis for Manuscript 3, we

preferred parametric survival regression over the popular Cox proportional hazards

model [124]. While the semi-parametric Cox model is generally more �exible than

fully parametric models, it is restricted by the proportional hazards assumption and

requires more samples. In contrast, parametric models make strong assumptions on

the distribution of survival times but are highly e�cient if these assumptions are jus-

ti�ed [37]. To choose the most appropriate assumptions for our data, we compared

multiple parametric models and selected the one with the best �t. In addition, we

took special care to avoid confounding factors when drawing conclusions regarding

the treatment e�ect. In Manuscript 4, we chose a linear mixed-e�ects model to

analyze the repeated viral load measurements of only few subjects. Although this

model is simplistic compared to true viral load dynamics, it can represent correla-

tions between repeated measurements of the same subject and is suitable for small

sample sizes. Since Manuscript 4 includes fewer patients than Manuscript 3, pool-

ing of patients who received either one or three bNAb doses could not be avoided

and some heterogeneity within groups remained. In both manuscripts, we relied on

likelihood ratio tests to detect confounders or to verify our hypotheses regarding

treatment e�ects. This test is well suited for the model types and hypotheses we

considered and has a higher power than competing statistical tests [125].

It should be emphasized that our data and analyses are only a �rst glimpse at

treatment e�cacy. While we made every e�ort to use appropriate robust methods

and to minimize the risk of confounding, we could only perform statistical tests for

variables that were recorded in both the current and the previous clinical trials, and

it is clear that not all external factors can be controlled in early clinical data. If

combination therapy with 3BNC117 and 10-1074 is to advance to a novel treatment

for HIV-1, larger-scale studies will have to con�rm the observed e�ects and com-

pare bNAb treatment to ART, using randomization and blinding where possible.

Nevertheless, our results emphasize that combinations of potent bNAbs are highly

promising for HIV treatment and that further clinical research is justi�ed.

27



3 Results and Discussion

3.3 Robust models for transplantation medicine

In Manuscripts 5 and 6, we worked towards robust machine learning for allogeneic

hematopoietic cell transplantation (HCT).

Allogeneic HCT is an e�ective and potentially curative treatment for hemato-

logical malignancies and other high-risk diseases [126, 127]. After conditioning

therapy, typically with a combination of chemotherapy and total body irradiation,

hematopoietic stem cells extracted from a healthy donor's peripheral blood or bone

marrow are injected into the patient's blood stream. These transplanted stem

cells can substitute the patient's hematopoietic system and produce lymphocytes,

which can eradicate remaining malignant cells [128, 129]. However, HCT comes

with a high treatment-related mortality and can entail several severe complica-

tions. For instance, immunocompetent engrafted T lymphocytes may recognize

antigens presented on healthy recipient cells, resulting in graft-versus-host disease

(GVHD) [130]. Conversely, engraftment may be slow or unsuccessful and leave the

patient prone to infections or reactivation of latent viruses such as cytomegalovirus

(CMV) or Epstein-Barr virus [131]. To minimize complications, physicians need to

weigh these risks and choose the right strategies for conditioning therapy, GVHD

prophylaxis [132] and prophylactic or pre-emptive antiviral treatment [133].

In current clinical practice, HCT risk assessment is based on relatively simple risk

categories and clinical scores like the Hematopoietic Cell Transplantation-speci�c

Comorbidity Index (HCT-CI) [134] or the European Society for Blood and Marrow

Transplantation (EBMT) risk score [135]. Such scores provide a risk assessment

before HCT to guide the decisions of whether HCT is a suitable option and which

conditioning regimen should be used. Machine learning models have been used

to improve some of these scores or to predict more speci�c outcomes [136, 137,

138]. However, the generalization and performance of these models is not yet

satisfactory [138, 139] and there remains a high need for more precise and robust

models to predict outcomes after HCT.

This is in part owing to the limited availability and usability of detailed HCT

data. International registries like the databases of the EBMT [140] or the Center

for International Blood and Marrow Transplant Research (CIBMTR) [141] collect

pre-HCT and outcome data from many HCT centers, but the information on each

patient is limited to comparatively coarse categories. Individual HCT centers store
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richer data on their patients, including the temporal course of laboratory values

and virological tests, but here data formats are heterogeneous and di�er between

sites. In Europe, the integrated use of HCT data across multiple centers is further

challenged by strict rules for the protection of personal health information [142].

Our work followed two di�erent paths to meet these challenges. In Manuscript 5,

we developed robust machine learning models for the accurate, time-dependent

prediction of mortality and CMV reactivation after allogeneic HCT. The core idea

of our models was to utilize longitudinal laboratory values and to update predictions

whenever new measurements become available. In Manuscript 6, we contributed

to the development of the XplOit platform, a software platform for the semantic

integration of heterogeneous health data with a focus on HCT.

3.3.1 Time-dependent prediction of mortality and cytomegalo-

virus reactivation after allogeneic hematopoietic cell

transplantation using machine learning (Manuscript 5)

The vast majority of existing models and scores for HCT-speci�c risk assessment

rely solely on pre-HCT data as input and provide a prediction at a single point

in time [134, 135, 136, 137, 143]. While these methods are valuable tools to guide

the initial choice of the conditioning regimen and whether or not to perform HCT,

they cannot adjust to new data becoming available after HCT. In Manuscript 5,

we hypothesized that including time-dependent laboratory values and updating

predictions whenever new data becomes available would allow for a more precise

prediction of outcomes after HCT. Complementing previous approaches, such mod-

els could allow to adjust prophylactic and pre-emptive treatments to how individual

risks develop after HCT.

We considered two endpoints, death and early CMV reactivation, and started

from an extensive HCT dataset combining multiple data modalities of 1710 patients

who received allogeneic HCT at the University Hospital Essen (UHE). The entire

dataset contained several baseline characteristics of patient and donor, pre-HCT

diagnosis, disease status and conditioning therapy, as well as unstructured medical

letters and the results of routine laboratory tests and virological tests. Based

on a combination of static pre-HCT data and time-dependent laboratory values,

we aimed to predict at multiple time points after HCT whether these endpoints
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would occur in a subsequent time window of 7 or 21 days. We performed standard

data preprocessing but additionally included a time-dependent standardization of

laboratory values to account for its heterogeneity over time. Building on previous

work [17], we then trained a gradient-boosting machine (GBM) model for each task

and calibrated the predicted probabilities as a postprocessing step. To evaluate

the utility of time-dependent features, we compared these models to a baseline

model that was trained for the same time-dependent prediction task but received

only static features. Figure 3.5 depicts an overview of the entire process of data

preparation, model development, and validation.

The �nal GBM models performed well on test data held out from our retrospec-

tive development cohort, which is shown in Figure 3.6 for prediction over a 21-day

time window. Here, the GBM models predicting mortality and CMV reactivation

achieved areas under the receiver operating characteristic of 0.92 and 0.83 and ar-

eas under the precision-recall curve of 0.58 and 0.62, respectively. For mortality

prediction, time-dependent features proved highly valuable, indicating that this ap-

proach could improve current standards for HCT-speci�c risk assessment. Feature

inspection using SHapley Additive exPlanations (SHAP values) [76] showed that

laboratory values, mainly those related to in�ammation or organ function, strongly

in�uenced model predictions. In contrast, using time-dependent features led only to

a modest improvement of CMV prediction. Here, feature inspection revealed that

the CMV models relied mostly on static features like the patient's CMV serostatus

before HCT, in addition to the prediction day after HCT.

To assess the robustness of the developed models, we validated them in a prospec-

tive, non-interventional clinical trial (DRKS00026643) with 403 additional HCT

patients from UHE. Overall, model validation was successful and the performance

remained high on prospective data. While CMV prediction performance was un-

altered, the performance of mortality prediction decreased slightly compared to

retrospective data, more noticeably for the 7-day time window than for prediction

over 21 days. This indicated a dataset shift over time, which was in part explained

by changes in immunosuppression strategies in clinical practice. For 91 of the par-

ticipants, we additionally performed a pilot comparison of the model predictions to

the expectations of experienced HCT physicians. Here, we regularly asked multiple

hematologists at UHE to prospectively estimate their patients' overall performance

and CMV status in 7 and 21 days, respectively. Except for 7-day mortality pre-
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3.3 Robust models for transplantation medicine

Figure 3.5: Overview of model development and evaluation. a, Data preparation, patient
and variable selection. b, Time points and targets for prediction, selecting all days between
HCT and an event or censoring with < 30% missing values as prediction days. c, Machine
learning; models received static baseline data, current laboratory values and the prediction
day after HCT as inputs. d, Model evaluation, using repeated splits into training and
test data during model development and a prospective study including a pilot comparison
with experienced HCT physicians for model validation. a�d, Figure and caption adapted
from Figure 1 in Manuscript 5.
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Figure 3.6: Performance of prediction of mortality (a�c) and CMV reactivation (d�f)
in a 21-day time window on retrospective test data. Shown are the receiver-operating
characteristic (a,d) and the precision-recall curve (b,e) of three models, respectively: a
gradient-boosting machine (GBM) and regularized logistic regression (LR) model using
time-dependent features, and a baseline LR model that received only static features. We
used the de�nition of event recall from [17], i.e., the fraction of events that were predicted
correctly on at least one of the preceding 21 days. c,f, Mean predicted risk of the GBM
model as a function of time to event. Dashed horizontal lines indicate the thresholds
required to achieve an event recall of 0.7, 0.8 and 0.9. a�f, Lines and shaded areas show
the mean ± standard deviation on the test set over 10 random splits into training and
test data. Figure and caption adapted from Figures 2 and 3 in Manuscript 5.
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diction, where only few time points with subsequent event were available for the

comparison, all GBM models performed similar to the physicians. We concluded

that time-dependent outcome prediction after HCT is possible with high accuracy

and is more robust with the larger 21-day time window. An additional advantage of

the larger time window is that it enables an earlier prediction of impending events.

3.3.2 XplOit: An ontology-based data integration platform

supporting the development of predictive models for

personalized medicine (Manuscript 6)

Manuscript 6 describes the XplOit platform, a software platform that supports

various stages of model development for health applications and, in particular, for

HCT. To date, a large proportion of a model developer's time is consumed by data

preparation and integration tasks [144]. The key idea of the XplOit platform was

to accelerate this process by providing e�cient tools for the harmonization and

detailed, semantic annotation of biomedical data. These annotations identify the

precise meaning of each data point using a semantic ontology with clearly de�ned

concepts. Thereby, they allow model developers to gain a deeper understanding

of the data and to integrate datasets provided in di�erent formats or by multiple

institutions.

In the XplOit platform, each data point is annotated not with a single ontological

concept but with an expressive path comprising multiple concepts and relationships

between them. The semantic integration framework, a central platform component,

provides semi-automatic tools for this task. It utilizes the Viral Disease Ontology

Trunk (VDOT)2, a modular domain ontology for biomedical data focusing on trans-

plantation medicine and viral infections. To annotate a data point, it constructs

and ranks all possible paths linking the patient to a matching concept in the on-

tology. Here, paths are preferred if they are similar to previously used annotations

or if they contain concepts similar to the original label of the data point (e.g.,

the column name). VDOT reuses concepts from established ontologies and relates

them with each other, which enables its �exible expansion if no matching concept

is found.

2https://bioportal.bioontology.org/ontologies/VDOT/
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The platform was designed to support heterogeneous data types and o�ers several

additional functionalities. Data owners can upload pseudonymized raw data and

manage data access via project communities. The platform allows to harmonize

data formats using extract-transform-load (ETL) pipelines speci�c to each data

type. After semantic annotation, all data is stored in a data warehouse as a graph

of semantic triples. It can then be searched and visualized by model developers to

assess correlations, data quality, or data di�erences between institutions.

3.3.3 Discussion

Manuscripts 5 and 6 advanced robust machine learning for transplantation medicine

in two di�erent ways. In Manuscript 5, we proposed a new model-based approach

for HCT-speci�c risk assessment and demonstrated that longitudinal laboratory

values allow for the accurate time-dependent prediction of HCT outcomes. In

Manuscript 6, we introduced the XplOit platform, which facilitates the harmoniza-

tion and integration of heterogeneous datasets from multiple HCT centers. Thus,

it may accelerate the development of robust predictive models for HCT in the fu-

ture. The work underlying both manuscripts was highly interconnected. While the

XplOit platform simpli�ed sharing and harmonizing the data we used to train the

models in Manuscript 5, the experience gained from this �rst use case also enabled

further improvements to the platform.

In both cases, our work goes beyond previously existing approaches. While sim-

ilar time-dependent models have been developed to predict circulatory failure [17]

or acute kidney injury [18] in patients requiring intensive care, this approach is

new in HCT-speci�c risk assessment. Here, some existing methods utilize labora-

tory values [145, 143] or other longitudinal measurements [138], but these provide

only a single risk assessment at a prede�ned point in time. Conversely, a recent

web application o�ers personalized survival curves, i.e., a more detailed assessment

than classical risk scores, but utilizes only static pre-HCT data as input [146].

In contrast, our models continuously monitor patient data and provide updated

risk assessments, which are always based on the latest available information. The

XplOit platform exceeds most existing data integration platforms [147, 148] in the

expressivity of semantic annotations. While the p-medicine platform [149] is an

exception that o�ers a similar level of detail, the semi-automatic tools provided by
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the XplOit platform improve the usability of these expressive annotations.

In Manuscript 5, we considered the robustness of the developed models in sev-

eral ways. For instance, we calibrated raw model predictions to ensure that the

predicted risks agreed with observed event probabilities, capturing the uncertainty

in model predictions. This is crucial in the medical application scenario, where

physicians must be able to judge the relevance of predicted risks. In the prospec-

tive validation, we evaluated if the models can be applied robustly on new data

from the same HCT center. Here, we discovered some dataset shift over time, high-

lighting the importance of monitoring model performance in medical applications.

Occasional changes in clinical practice cannot be avoided and may erode model per-

formance over time. To safely apply them in HCT care, models would have to be

monitored continuously and retrained if necessary. That prediction performance

on prospective data remained high overall is encouraging and indicates that the

models may require retraining only at larger intervals. We additionally assessed

the robustness of model performance. During model development, we analyzed

multiple splits into training and test set to evaluate the sensitivity to changes in

the data, and during model validation, we performed bootstrapping to quantify the

uncertainty based on the limited prospective data.

We did not consider robustness across HCT centers in Manuscript 5 since we

did not have access to comparable data from any center except UHE. Although

Saarland University Medical Center (SUMC) also contributed to the XplOit plat-

form, the provision of data from SUMC was delayed and complicated by technical

obstacles. For instance, we did not receive access to the central information man-

agement system of SUMC to export HCT data automatically. While laboratory

measurements and virological tests could be provided by individual departments,

crucial pre-HCT data such as diagnosis or conditioning treatment would have had

to be transcribed manually, a task which was not feasible in the limited time frame

of the project. Consequently, we could use the data provided by SUMC to test

data integration via the XplOit platform, but not to further validate the developed

models.

Evaluating the robustness of the models across HCT centers would require a

multi-center study, which could be conducted utilizing the XplOit platform. Al-

though not described in Manuscript 6, we later extended the platform to allow for

the execution of trained models on new data. Users can upload trained models
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with a speci�cation of the runtime environment and add semantic annotations for

the model input and output parameters. These semantic annotations form a direct

link between models and data, ensuring that the models can be executed robustly

on any annotated dataset, irrespective of its origin and raw format. This makes the

XplOit platform a helpful tool to support model validation and, potentially, model

deployment.

An open question is how the risks predicted by our models would in�uence the

decisions of HCT physicians and, ultimately, patient outcomes. Minimizing com-

plications after HCT is a balancing act, where reducing one risk may increase

another. For instance, reducing immunosuppression may counteract a CMV reac-

tivation but increase the risk of GVHD [131]. Whether or not time-dependent risk

prediction can improve overall survival will depend on the interplay between these

complications, as well as graft failure and relapse. In addition, it will depend on

the acceptance of the predictive models by HCT physicians. Recent studies have

highlighted that medical experts tend to be skeptical of model-based recommen-

dations, particularly if their decisions truly impact patients [150, 151]. Providing

explainable predictions and e�ciently integrating models into the clinical work-

�ow may improve their acceptance [152, 153]. Ultimately, answering this question

would require an interventional clinical trial, in which treatment with and without

time-dependent risk prediction are compared directly.

The dependencies between HCT complications and relapse also pose a method-

ological challenge for model development. Currently, our models capture only part

of these outcomes and are not interdependent. In the supplementary material of

Manuscript 5, we evaluated whether including the result of the last CMV test or the

diagnosis of post-HCT relapse as additional features improved survival prediction,

which was not the case. However, CMV tests were encoded as binary categories,

and the results may di�er if quantitative viral load measurements or continuous

predicted CMV risks are included as additional model features. Extending time-

dependent risk prediction to other outcomes and capturing dependencies between

them, ideally in more than one direction, are interesting steps for future work and

may help physicians to consider multiple risks after HCT jointly.

Another open question and methodological challenge is how to make optimal

use of heterogeneous, time-dependent laboratory measurements. After HCT, lab-

oratory values are measured with varying frequency and follow a characteristic
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nonlinear trend. In Manuscript 5, we performed a time-dependent normalization of

laboratory values using smoothed window-based estimates of the median and quar-

tiles of each laboratory value as a function of time. While our estimation method

is pragmatic and allows for the adaptive selection of window sizes and bandwidths

with varying measurement frequency, nonparametric quantile regression (e.g., us-

ing quantile regression forests [154]) may be a more elegant solution. In addition,

our current models use only the most recent measurement of each laboratory value

at the time of prediction. An obvious next step would be to include information

on their history. We evaluated whether statistics computed in multiple time inter-

vals before the prediction day (such as minimum, maximum, standard deviation,

or slope of a least-squares regression line) could improve model performance. The

results are included in the supplementary material of Manuscript 5 and showed no

notable improvement. However, our approach was relatively simple, and more so-

phisticated methods to represent time-series data concisely despite missing values

and varying measurement frequency may boost model performance.

Several challenges also remain for the XplOit platform. For instance, we cur-

rently represent the annotated data as a graph of semantic triples in the Resource

Description Framework [155]. This data structure is well suited to represent knowl-

edge in a machine-readable form and allows for automatic reasoning. However,

searching it becomes ine�cient when the dataset contains millions of individual

measurements. Machine learning methods typically require tabular data, where

the same parameters are available for many patients. Such data can be stored and

searched e�ciently in a relational database. A promising next step for the XplOit

platform would be to combine the advantages of semantic annotations and rela-

tional databases, e.g., by representing only the meaning of columns in relation to

a generic patient using semantic triples, instead of individual measurements.

To further accelerate model development, automatic tools to assess and improve

data quality would be a valuable addition to the XplOit platform. In its current

version, the platform already performs basic checks of the data types when raw

data is loaded. For categorical parameters, it also allows annotating parameter

values to de�ne permitted values and their meaning. Yet, this proved di�cult in

practice in cases where the categories were obscure or inconsistent in the raw data.

For numerical parameters, the semantic annotations could also be linked to a range

of plausible values. Here, an unresolved challenge is the lack of clear de�nitions
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of such ranges for clinical parameters. While laboratory tests, for instance, have

a de�ned reference range of normal values in healthy individuals, there are typi-

cally no clear limits to distinguish abnormally high or low values from errors and

artifacts. Building a database with expert-de�ned limits for this task would allow

the well-founded automatic �ltering of outliers and artifacts for machine learning

applications.
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conclusions

In my view, health applications remain one of the most promising and most chal-

lenging domains for machine learning. Making the most of available health data

requires both generally robust machine learning methods and models that are care-

fully tailored to the task at hand. With the contributions I made throughout this

thesis, I have advanced both aspects of robust machine learning for health ap-

plications. In Manuscripts 1 and 2, we developed robust methods that improve

prediction performance across heterogeneous datasets and applied them to age pre-

diction from DNA methylation data across tissues. In Manuscripts 3, 4, and 5, we

developed robust models tailored to speci�c tasks either to ensure the appropriate

interpretation of early clinical data on a potential novel treatment for HIV or to

improve risk assessment after HCT. Here, heterogeneous and temporal data were

challenges for both applications, and the HIV models additionally needed to be

suitable for the limited sample size of early clinical trials. Finally, in Manuscript 6,

we developed a software platform that facilitates the development and robust ap-

plication of machine learning models across data formats.

There are several connection points across the application areas addressed in

this thesis. For instance, Manuscripts 3, 4, and 5 all worked with temporal data,

although in di�erent ways. While the HIV model in Manuscript 4 modeled viral load

measurements at multiple time points simultaneously, including correlation between

them, the model for Manuscript 3 used classical parametric survival regression to �t

right-censored time-to-event data. Both models were used for data analysis rather

than prediction and made assumptions on the data distribution to cope with the

small samples size. Manuscript 5 also used right-censored data, but instead of a

statistical analysis of relevant factors, it aimed for the accurate time-dependent

prediction of whether or not an event would occur in a subsequent time window.
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In contrast to both HIV models, the large HCT dataset in Manuscript 5 allowed

training �exible gradient boosting machines, which do not follow a prede�ned model

shape.

Across all three application areas, we took the uncertainty of estimates into ac-

count, either to improve model robustness or to enable the robust interpretation of

health data and model predictions based on it. For instance, in Manuscripts 1 and

2, we utilized uncertainty estimates to quantify di�erences between input depen-

dencies in source and target domain. In Manuscripts 3 and 4, we performed statis-

tical tests to distinguish meaningful di�erences from random �uctuations. And in

Manuscript 5, we ensured calibrated risk predictions to include a measure of un-

certainty in the predictions that would be communicated to physicians in a clinical

application scenario.

The evaluation and potential application of the models for HCT-speci�c risk

assessment in independent HCT centers would o�er additional opportunities for

connections between parts of my work. While the XplOit platform can provide

technical support for an external validation by harmonizing data formats, it does

not adjust distributional di�erences between centers, which might threaten model

performance. If necessary, methods such as wenda could be applied to improve

model generalization across HCT centers. We considered regression rather than

classi�cation in Manuscript 2, but the core idea of using a feature weighting in the

regularization term could be applied directly to the regularized logistic regression

models described in Manuscript 5. Although these had a lower performance than

the more �exible gradient boosting machines, the bene�t of domain adaptation

may outweigh the cost of using a more restrictive model type on datasets with a

distribution mismatch with respect to our training data. Since the HCT models

use a combination of static and time-dependent features, de�ning feature weights

based on the marginal distributions of features, as we did in wenda-mar, would be

more straightforward than modeling all dependencies between them. An additional

challenge would be the inclusion of categorical features in this approach.

Data heterogeneity, which is a common theme of all manuscripts in this thesis, is

still a major obstacle to the successful and robust application of machine learning

models on health data. Confounding factors within health datasets, heterogene-

ity between datasets, and dataset shift over time continue to cause models to fail

prospective or multi-center validation [139, 156] and threaten their fairness [10].
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Domain adaptation methods such as wenda have the potential to improve model

generalization across heterogeneous datasets and over time. Yet, they may also be

more challenging to apply in clinical practice since the prediction mechanism would

change between target domains, which could a�ect both the trust into model pre-

dictions and their regulation as medical devices. In addition, domain adaptation

does not address confounding factors and heterogeneity within the training dataset.

Here, the best approach depends on the application scenario. In Manuscript 3 we

used likelihood ratio tests and a sample weighting scheme to test and account

for known potential confounders. On the larger dataset of Manuscript 5 we uti-

lized SHAP values for model inspection and analyzed model performance in known

heterogeneous subgroups. Generally, discovering unknown or unexpected sources

of heterogeneity is more di�cult than accounting for them once they are known.

While inspecting the features that a trained model relies on can help to uncover

artifacts and confounding factors, analyzing subgroups may reveal whether a model

�ts all parts of a heterogeneous dataset. If substantial heterogeneity between data

subgroups is known or discovered, multi-task models could be used to learn separate

models for subgroups while sharing some information.

Irrespective of how they were developed, machine learning models intended for

use in clinical practice require extensive validation to assess their robustness, ide-

ally on prospective data from independent medical centers. In Manuscript 5, we

performed a prospective validation of our models for HCT-speci�c risk prediction,

including a pilot comparison of model predictions to physicians' expectations. It

showed that despite a minor dataset shift over time, the models remained applica-

ble on prospective data from the same HCT center. Yet, as a single-center study,

it could not assess the transferability of the models between centers. In current

health research, there is a gap between many published machine learning models

and clinical utility, partially due to a lack of thorough validation. The COVID-19

pandemic has especially highlighted this fact [157, 31]. Performing a large-scale

model validation in an academic setting is challenging; it requires willing clinical

partners, overcoming the legal challenge of obtaining access to protected health

data from multiple sites and the technical challenge of integrating it. These steps

are time-consuming and not always feasible in the limited funding period of a typ-

ical academic research project. Depending on the risks of a speci�c application,

using a model in clinical practice may additionally require an interventional clini-
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cal trial to evaluate its e�ect on patient outcomes and continuous monitoring and

maintenance of model performance, entailing additional ethical and �nancial re-

sponsibilities. Advancing an existing model towards actual use in clinical practice

may well be a research project on its own, which is no less demanding but poten-

tially less attractive than developing new predictive models and comes with the risk

of failure. The XplOit platform described in Manuscript 6 can support the techni-

cal part of this challenge by accelerating data integration. Nevertheless, additional

incentives such as dedicated funding for model validation and clinical development

or more scienti�c recognition of this task and of potential negative results may be

needed to bridge the gap between model development and clinical application.

Making health data more accessible for machine learning use cases is perhaps

the most direct way to promote robust machine learning for health. It includes

simplifying data access while ensuring the protection of sensitive information and

improving the usability of health data by developing standardized data structures

and enhancing data quality. While the XplOit platform is a step towards this goal,

a lesson learned during its development is that robust data management should

start as early as possible, ideally as soon as the data is recorded in medical centers.

If column names used within a hospital are unintuitive, no semantic annotation

tool can recover its original meaning automatically. It is also easier to control data

quality while collecting it than to �nd and correct mistakes in a dataset merged

across institutions for large-scale machine learning applications. The German med-

ical informatics initiative is currently addressing some of these issues in Germany

by developing standards for storing and accessing health data across medical cen-

ters in a collaboration of computer scientists and university hospitals [158, 159].

Such e�orts will reduce heterogeneity in data formats and allow to analyze larger

multi-center datasets, reducing the risk of over�tting machine learning models.

However, they can not resolve heterogeneity due to treatment protocols di�ering

between medical centers or changing over time. Here, specialized methods for ro-

bust machine learning will remain vital and need to build on existing approaches

for multi-task learning and domain adaptation.

In conclusion, unlocking the full potential of machine learning for health will

require advancements on multiple levels. The standardization and accessibility of

health data will need to improve to enable larger multi-center datasets for machine

learning applications. More robust machine learning methods will be required to
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learn generalizable patterns from this data and to reduce or avoid model deterio-

ration over time. In addition, extensive model validation will need to assess the

generalization of the developed models and their usefulness in clinical practice.

And �nally, successful models will need to be developed into medical products to

impact patients' lives. Throughout this thesis, I have made contributions to some

aspects of these advancements by developing robust machine learning methods for

prediction across heterogeneous datasets, robust models tailored to speci�c tasks

for HIV research and HCT-speci�c risk assessment, and contributing to a platform

for semantically integrating health data. While much more remains to be done, I

am convinced that the e�ort will ultimately be worth it.

Developing clinically useful models requires extensive interdisciplinary collabo-

ration between machine learning scientists and health experts as well as genuine

interest on both sides in achieving this goal together. Model developers need to

understand the process their model aims to support, and health experts need to

know the potential utility and limits of machine learning to guide model develop-

ment. Close collaborations across �elds as distinct as the computational sciences

and medicine are demanding and intriguing at the same time. I have had the priv-

ilege to work on exciting interdisciplinary projects while preparing this thesis, and

I hope to continue working at the intersection of machine learning and medicine in

the future.
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Abstract

Over the last years, huge resources of biological and medical data have become
available for research. This data offers great chances for machine learning applica-
tions in health care, e.g. for precision medicine, but is also challenging to analyze.
Typical challenges include a large number of possibly correlated features and het-
erogeneity in the data. One flourishing field of biological research in which this is
relevant is epigenetics. Here, especially large amounts of DNA methylation data
have emerged. This epigenetic mark has been used to predict a donor’s “epige-
netic age” and increased epigenetic aging has been linked to lifestyle and disease
history. In this paper we propose an adaptive model which performs feature selec-
tion for each test sample individually based on the distribution of the input data.
The method can be seen as partially blind domain adaptation. We apply the model
to the problem of age prediction based on DNA methylation data from a variety of
tissues, and compare it to a standard model, which does not take heterogeneity into
account. The standard approach has particularly bad performance on one tissue
type on which we show substantial improvement with our new adaptive approach
even though no samples of that tissue were part of the training data.

1 Introduction

Epigenetics, the heritable modification of phenotypes that is not encoded by DNA, has become
an important field in biological research. The best-studied epigenetic mark is DNA methylation,
which was detected to play a role in long-term repression of genes through promoter methylation,
X-chromosomal inactivation and genomic imprinting [1]. It refers to the covalent addition of methyl
groups to the C5 position of cytosines, predominately found in CpG dinucleotides. Due to the
growing number of datasets in this field, a connection between the methylation pattern of genomic
DNA and its donor’s chronological age was reported [2, 3, 4]. On this basis, several studies created
models to predict chronological age from DNA methylation data [5, 6, 7]. They defined the outcome
of the prediction as the “epigenetic age” of the person and linked increased epigenetic aging to
lifestyle factors and disease history. As a concept of biological age, the epigenetic age is more
informative about the individual’s health status than chronological age and can be useful to optimize
disease treatment.

NIPS 2016 Workshop on Machine Learning for Health, Barcelona, Spain.



Due to the large number of sometimes strongly correlated features, DNA methylation data at the
CpG level is challenging to model. Ordinary least squares regression leads to predictors with large
variance because a large positive coefficient of one variable can be compensated by a large negative
coefficient of a correlated variable. One way to prevent this is to use feature selection, e.g., by penal-
izing theL1 norm of the coefficient vector in the loss function (LASSO). This type of regularization
will set many coefficients to zero, leading to sparse and more robust models. An alternative approach
is ridge regression, which penalizes theL2 norm instead. Ridge regression forces coefficients to be
small, but does not strictly set them to zero. In the presence of correlated features, ridge regression
averages the coefficients while LASSO tends to pick one of the correlated variables. The elastic net
penalizes a linear combination of theL1 andL2 norm of the coefficients and has been proposed to
combine the advantages of LASSO and ridge regression [8]. It still performs feature selection, but
tends to average the coefficients of included correlated features in a similar way as ridge regression.

Another difficulty, which is present in many biological and medical datasets, is the heterogeneity of
the data. Small differences in data acquisition and processing (e.g., different protocols in laboratories
or standards in clinics) may lead to biases and make it hard to compare data from different sources.
Domain adaptation attempts to correct for mismatches between distributions in scenarios where
large amounts of data from a source domain and small amounts of data from a target domain are
available [9]. An even harder problem is blind domain adaptation, where data from the target domain
is not available at training time [10].

In this paper, we present an approach which performs feature selection for each test sample individu-
ally to reduce effects of data heterogeneity. We build on ideas from [11] to find features that behave
similarly in training and test data, but do not use a predefined set of weak learners. Instead, we train
a full model for each test sample. Since the models are still trained only on the training data, but
information from the test samples is used to select appropriate features, our setting can be seen as
partially blind domain adaptation. We apply the method to the problem of age prediction based on
a large DNA methylation dataset. The main source of heterogeneity in this data comes from the use
of different tissues, some of which are not present in our training data. We show that our approach
leads to improved test errors for samples from the cerebellum of the human brain, which is the tissue
in our data that leads to the largest errors with standard models that do not account for the bias.

2 Methods

The core idea of our approach is to train test sample-specific models, considering only features in
which we have high confidence for the test sample at hand. In a large heterogeneous dataset, it is
possible that only some features cause the heterogeneity while others behave similarly in training
and test data. Obviously, features that behave very differently should not be used in a predictive
model. Excluding them and relying only on similarly behaving features can thus lead to a more
robust model.

This can be expressed more formally in the framework of domain adaptation. Assume that
the training and test samples are drawn independently from two joint probability distributions
PS(X,Y ) = PS(Y | X) · PS(X) andPT (X,Y ) = PT (Y | X) · PT (X), respectively. HereS
stands for source domain andT for target domain. A classical assumption in domain adaptation is
that the conditional distributions,PS(Y | X) = PT (Y | X), are the same in source and target do-
main while the distributions of input features may be different, i.e.,PS(X) 6= PT (X). This setting
is called the covariate shift case. We weaken the covariate shift assumption by requiring equal condi-
tional distributions only for part of the available features. More precisely, we assume that there is a
subsetM ⊂ {1, . . . ,m} of all features on which the same model can accurately predict the outcome
from training and test inputs. This means thatPS(Y | XM ) = PT (Y | XM ), whereXM denotes
the subvector of the random vectorX containing only features in the reduced feature setM . The
distribution of input features as well as the relationship betweenY and the remaining features may
be different in source and target domain, i.e.,PS(X) 6= PT (X) andPS(Y | XN) 6= PT (Y | XN)
for N = {1, . . . ,m} \ M . In addition, we allow thatM , the set of features that behave similarly
in predictingY , may be different for different test samples. Thus, a good choice ofM has to be
determined for each test sample separately.

For this purpose, we propose a model-based approach to estimate a confidence of each feature for a
given test sample. We then train a full model for each test sample, learning from the training data



and using only high-confidence features. Since we do not know the response variableY for the test
samples, we explore the dependency structure withinX to determine confidences. The underlying
assumption is that if there is a subset of features,M , whose dependency structure is very similar
in training and test data, then the relationship betweenY and these features will also be similar in
training and test data. More formally, writingXf for the value of featuref andX−f for the values
of all other features, we assume that ifPS(Xf |X−f ) ≈ PT (Xf |X−f) holds for all featuresf ∈ M ,
thenPS(Y |XM ) ≈ PT (Y |XM ).

Model types We apply two main model types in this paper: elastic net and Gaussian process
models. The elastic net is a form of regularized linear regression, which penalizes a combination of
theL1 andL2 norm of the coefficient vector [8]. More precisely, it finds

β̂ = argmin
β

(
1

2n
‖y −Xβ‖22 + λ

(
α‖β‖1 +

1− α

2
‖β‖22

))
,

whereX, y is the training data andn is the number of samples that it contains. Whileα ∈ [0, 1]
determines the mixing ratio ofL1 andL2 penalty and is often set to a fixed value,λ ≥ 0 controls
the strength of regularization and is usually determined using cross-validation. Gaussian process
models are a type of non-parametric Bayesian regression, where the prior distribution over regres-
sion functions is a Gaussian process with mean zero and a covariance function which is typically
specified in the form of a kernel [12]. Bayesian models have the advantage that they provide not
only a predicted value, but a distribution of possible output values for any new input. In the setting
applied in this paper this distribution is Gaussian and known explicitly.

Datasets We collected 26 datasets from the Gene Expression Omnibus (GEO,
ncbi.nlm.nih.gov/geo) and the Cancer Genome Atlas (TCGA, cancergenome.nih.gov), which
analyzed DNA methylation by the Illumina Infinium HumanMethylation450 BeadChip. Then, we
combined these datasets using RnBeads [13] and split it into a training and test set consisting of
1866 and 1007 samples, respectively. All samples included were obtained only from healthy tissues.
The training set contains 16 and the test set 6 different tissues, with a focus on blood samples for
both sets. For the training set, samples from donors with chronological ages between 0 and 103
years were used. The age range for the test set is 0-70 years, accordingly. SNP-removal, removal of
gonosomal CpGs and data normalization with the BMIQ method [14] were performed by RnBeads.
We reduced the initial number of features from 466,094 to 12,980 features using an elastic net
model with strong regularization (λ = 1.1 · 10−4). This is necessary for computational reasons
since we train a very large number of models.

Reference model We used a similar type of model as baseline as presented in [5], namely, an
elastic net model withα = 0.8, followed by least squares linear regression based on the selected
features. This model has been trained on our training dataset and the regularization parameterλ has
been selected via 10-fold cross-validation.

Adaptive model To estimate confidences of the features of test samples, we first trained a Gaus-
sian process model for each feature, based on all other features. We chose a linear kernel and addi-
tive Gaussian noise, and determined the kernel parameter and noise variance of each model using
marginal likelihood maximization. For a given test sample,Xi, these models can be used to predict
a posterior distribution ofXi,f (the value ofXi for some featuref ), given the values of all other
features, which we denote byXi,−f . In our setting, we obtain a Gaussian posterior distribution,
N(µgf (Xi,−f ), σ

2
gf
(Xi,−f )). By comparing the observed value,Xi,f , to the predicted distribution,

we can quantify how wellXi,f fits to what is expected according to the training data. We quantify
the confidence of featuref for Xi as proposed in [11] by

cf (Xi) = 2 · Φ
(
−
∣∣∣∣
Xi,f − µgf (Xi,−f )

σgf (Xi,−f )

∣∣∣∣
)
, (1)

whereΦ denotes the cumulative distribution function of the standard normal distribution. This can be
interpreted as the probability that a value likeXi,f or more extreme occurs according to its predicted
distribution. After estimating confidences for all test samples and features, we use this information
to train an age predictor for each test sample individually, based on only its high-confidence features.
Here we used the same model type as for the reference model described in the previous paragraph,



Table 1: Mean and median absolute test errors of the referencemodel for the full test dataset and for
cerebellum (CRBM) samples.

Type of test error Test error

Full test dataset mean 4.82
median 3.45

CRBM samples mean 16.95
median 16.57

Table 2: Mean and median absolute test errors of the adaptive model for the full test dataset and for
cerebellum (CRBM) samples.

Percentage of high-confidence features

Type of test error Top 10% Top 20% Top 30% Top 40%

Full test dataset mean 7.96 6.61 6.16 5.78
median 6.82 5.69 4.87 4.30

CRBM samples mean 12.78 12.96 13.36 14.11
median 10.19 12.63 13.78 14.94

but only 3-fold cross-validation. We tried multiple thresholds for defining high-confidence features,
choosing the top 10%, 20%, 30% or 40% for each test sample. Note that the confidence estimation
(and feature selection) is specific to the test sample, but each model is trained on the same training
data. Moreover, no information on the output of test samples is used.

The adaptive model is computationally expensive since it involves fitting a large number of models.
If m is the number of features andk is the number of test samples, thenm+ k models are fitted in
total. However, each of the main steps (i.e., fittingm models for confidence estimation and fittingk
final models) can easily be parallelized to speed up computations.

3 Results and discussion

Reference model We trained the reference model on the training dataset with 12,980 features. The
optimal regularization parameter determined by cross-validation isλ = 0.01, which corresponds to
436 features with nonzero coefficients. Table 1 shows the mean and median absolute test errors for
the full test dataset and for cerebellum samples separately. We obtained a mean absolute error of
4.82 on the full test dataset. Given the wide range of ages and tissues considered, an error of this size
seems reasonable. For cerebellum samples, however, we obtained a mean absolute error of 16.95,
which is more than three times larger. This is not surprising as cerebellum samples are not present
in our training data, but much larger than desirable. Both for the full test dataset and for cerebellum
samples, the median absolute error is slightly lower than the mean.

Adaptive model In addition, we trained the adaptive model described in Section 2 for different
thresholds defining high-confidence features. The resulting mean and median absolute test errors are
presented in Table 2. For cerebellum samples, each of the adaptive models gave lower errors than the
reference model. The performance on cerebellum samples is best when only features with the top
10% of confidences are used, leading to a mean absolute error of 12.78 and an even lower median
of 10.19. When increasing the threshold, the errors on cerebellum samples slowly become larger,
but still stay well below the corresponding errors of the reference model. These results demonstrate
that restricting the model to high-confidence features can reduce the error on samples for which a
distribution mismatch with the training data is present. A stronger restriction, which corresponds to
a stronger focus on high confidences, leads to a larger improvement. At the same time, the errors on
the full test dataset are larger for the adaptive models than for the reference model. Here we observe
the opposite development. Errors decrease continuously with increasing threshold, from 7.96 for
a threshold of 10% to 5.78 for a threshold of 40% in the case of mean absolute error. This can be
explained by the fact that if all features behave the same way for training and test data, selecting only
the “best” of them will not lead to an improvement. Thus, if no distribution mismatch is present,



restricting the model to far less features than the referencemodel is expected to lead to increased
errors. Despite this, all errors on the full test dataset are still below the errors on cerebellum samples.

4 Conclusions and outlook

Heterogeneous data is ubiquitous in applications of machine learning in biology and medicine. In
this paper we analyzed a large dataset of DNA methylation, which is heterogeneous because it was
derived from multiple tissues. We proposed an adaptive model for predicting the donor’s chrono-
logical age from this data. For each test sample the model selects features according to which the
test sample behaves in a similar way as the training data. Then, it uses only these reliable features
for prediction. Our model performs better than a non-adaptive reference model on samples from the
cerebellum of the human brain. This tissue was not represented in the training data and lead to the
largest errors in the reference model. Thus, we demonstrated that our approach to partially blind
domain adaptation can be a powerful way to reduce test errors on samples that are different from the
training data. This improvement has a price when applying the model to test samples with the same
or a very similar distribution as the training data. The main reason is that strictly excluding features
restricts the model, which is not beneficial if no distribution mismatch is present. Of course, these
findings need to be verified on additional datasets.

One possibility for improvement of the proposed model might be to weight features according to
their confidences instead of including or excluding them strictly. This might improve the perfor-
mance on samples without a distribution mismatch and will be subject of future work.
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Abstract

Motivation: Predictive models are a powerful tool for solving complex problems in computational

biology. They are typically designed to predict or classify data coming from the same unknown

distribution as the training data. In many real-world settings, however, uncontrolled biological or

technical factors can lead to a distribution mismatch between datasets acquired at different times,

causing model performance to deteriorate on new data. A common additional obstacle in computa-

tional biology is scarce data with many more features than samples. To address these problems,

we propose a method for unsupervised domain adaptation that is based on a weighted elastic net.

The key idea of our approach is to compare dependencies between inputs in training and test data

and to increase the cost of differently behaving features in the elastic net regularization term. In

doing so, we encourage the model to assign a higher importance to features that are robust and

behave similarly across domains.

Results: We evaluate our method both on simulated data with varying degrees of distribution mis-

match and on real data, considering the problem of age prediction based on DNA methylation data

across multiple tissues. Compared with a non-adaptive standard model, our approach substantially

reduces errors on samples with a mismatched distribution. On real data, we achieve far lower

errors on cerebellum samples, a tissue which is not part of the training data and poorly predicted

by standard models. Our results demonstrate that unsupervised domain adaptation is possible for

applications in computational biology, even with many more features than samples.

Availability and implementation: Source code is available at https://github.com/PfeiferLabTue/

wenda.

Contact: lisa.handl@uni-tuebingen.de or pfeifer@informatik.uni-tuebingen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Machine learning has gained wide popularity in recent years and has

proved its potential to solve important problems in computational

biology on many occasions (Almagro Armenteros et al., 2017;

Angermueller et al., 2017; Farh et al., 2015; Jansen et al., 2003;

Krogan et al., 2006). Enabled by the increasing amounts of available

data, predictive models have the potential to uncover new relation-

ships, e.g. between genotypes and phenotypes (Leffler et al., 2017;

Stranger et al., 2011), and to improve health care by offering treat-

ment decision support systems to predict critical events (Hoiles and

van der Schaar, 2016) or a patient’s response to treatment

(Lengauer and Sing, 2006).

Traditionally, machine learning assumes that the training data

originates from the same distribution as the data on which the learn-

ed model is later applied. While this assumption forms the statistical

basis of all standard models, it is often violated in real-world set-

tings. If new data does not have exactly the same distribution as the

training data, learned relationships may no longer be valid, causing

model performance to deteriorate.

For example, a model may be developed in a highly controlled

setting, but when it is later put to use in the real world, the

Bioinformatics, 35, 2019, i154–i163

doi: 10.1093/bioinformatics/btz338

ISMB/ECCB 2019



conditions are less ideal. New data might be measured in different

institutions with different devices or protocols, or batch effects

might lead to differences in the distributions of data acquired at dif-

ferent times (Akey et al., 2007; Leek et al., 2010). Biological vari-

ability can also lead to a distribution mismatch, e.g. when cell

composition or other confounders cannot be precisely controlled

(Saito and Sætrom, 2012). A distribution mismatch may even arise

intentionally, if training data for the problem of interest are not dir-

ectly available and different but related data are used as a replace-

ment, e.g. for knowledge transfer between species.

Building predictive models that perform well even on data with a

certain distribution mismatch with respect to the training data is

known as domain adaptation (Pan and Yang, 2010; Patel et al.,

2015). The general setting considers data from two domains with

different but related underlying distributions: a source domain, from

which a sufficient amount of labeled data is available, and a target

domain, from which little or no labeled data are available. The goal

is to predict well on the target domain while training (mostly) on

source domain data. There are multiple flavors of domain adapta-

tion, differing in how much information from the target domain is

known.

A particularly challenging variant is unsupervised domain adap-

tation (Margolis, 2011), where only unlabeled examples from the

target domain are available for training. In this setting, there is no

direct way to measure a model’s predictive performance on the tar-

get domain during training. It is necessary to make assumptions on

the structure of the distribution mismatch, which can vary with the

data type or application of interest. Otherwise, the source and target

distributions could be arbitrarily far apart, eliminating any chance

of successful prediction. For some applications, e.g. in computer vi-

sion for object recognition from digital images, unsupervised do-

main adaptation has been studied extensively with promising results

(Aljundi et al., 2015; Gong et al., 2012, 2013) and especially do-

main adaptation methods based on (deep) neural networks have

proven successful (Ganin et al., 2016; Long et al., 2016).

Despite the recent success of deep learning methods, applications

in computational biology often demand other approaches since

models are required to be interpretable and data are less abundant.

A popular example are regularized regression models like the elastic

net (Zou and Hastie, 2005), which limit the complexity of a model

by penalizing large coefficients. Such models are well suited for pre-

diction problems with a much larger number of possibly correlated

features than samples, and are thus frequently used in computation-

al biology (Garnett et al., 2012; Hughey and Butte, 2015; Schmidt

et al., 2017). Specifically, the elastic net uses a convex combination

of L1 and L2 penalty, combining advantages of LASSO (Tibshirani,

1996) and ridge regression (Hoerl and Kennard, 1970) regarding

sparsity and the handling of correlated features.

In this article we propose wenda (weighted elastic net for un-

supervised domain adaptation). Our method compares the depend-

ency structure between inputs in source and target domain to

measure how similar features behave. It then encourages the use of

similarly behaving features using a target domain-specific feature

weighting. We build on ideas from Jalali and Pfeifer (2016) to meas-

ure the similarity of features in source and target domain, but do not

use strict feature selection or a predefined set of weak learners.

Instead, we learn a full weighted model for each considered target

domain. Wenda retains all advantages of the standard elastic net

regarding interpretability and the effects of regularization, but pri-

oritizes features according to how well they agree in both domains.

As a concrete application example, we consider the problem of

age prediction from DNA methylation data across tissues. DNA

methylation is a well-studied epigenetic mark, which has been

shown to play a role in important gene regulatory processes like the

long-term repression of genes, genomic imprinting and X-chromo-

some inactivation (Schübeler, 2015). In addition, DNA methylation

patterns of genomic DNA have been found to be associated with its

donor’s chronological age (Bell et al., 2012; Heyn et al., 2012;

Teschendorff et al., 2013a). Several studies used DNA methylation

data to predict donor age and elastic net models turned out to be

particularly useful for this task (Florath et al., 2014; Hannum et al.,

2013; Horvath, 2013). While these models were trained on the

DNA methylation and chronological age of healthy donors, their

predictions are interpreted as a biological epigenetic age. Increased

epigenetic aging could be linked to lifestyle factors and disease his-

tory, suggesting that the epigenetic age contains useful information

on an individual’s health status.

DNA methylation patterns are known to be highly tissue specific

(Varley et al., 2013; Ziller et al., 2013). While some age-associated

changes in DNA methylation are similar across tissues (Christensen

et al., 2009; Zhu et al., 2018), this does not hold for all of them

(Day et al., 2013; Fraser et al., 2005). Predicting age on different tis-

sues than the ones that are available for training can therefore be

seen as an unsupervised domain adaptation problem. As more

tissue-specific data have recently become available (Aguet et al.,

2017), predicting age on data from multiple tissues can serve as an

example for many future prediction scenarios, making this problem

an ideal candidate for evaluating wenda on real biological data.

We consider DNA methylation data from multiple tissues and

explicitly unmatched tissue compositions in training and test set.

Compared with a non-adaptive standard model, we show that our

method strongly improves performance on samples from the cerebel-

lum of the human brain, which were not part of the training data

and very poorly predicted by a non-adaptive standard model. In

addition, we study the performance of wenda in simulation experi-

ments, where it is possible to vary the severity of the distribution

mismatch between domains in a controlled setting. We show that

our method reduces test error compared with a simple elastic net

without domain adaptation also in this scenario, suggesting a wide

applicability in computational biology.

2 The wenda method

We assume to have n labeled examples, ðx1; y1Þ; . . . ; ðxn; ynÞ, from
the source domain and m labeled examples, ð~x1; ~y1Þ; . . . ; ð~xm; ~ymÞ,
from the target domain. In both domains, the inputs, fxigni¼1 and

f~xigmi¼1, are p-dimensional vectors with p 2 N, and the outputs,

fyigni¼1 and f~yigmi¼1, are scalars. The goal of our method is to use the

source domain examples and the target domain inputs to come up

with a good prediction of target domain output. The data in source

and target domain follow two different joint probability distribu-

tions PSðX;YÞ ¼ PSðYjXÞ � PSðXÞ and PTðX;YÞ ¼ PTðYjXÞ � PTðXÞ,
respectively. A classical assumption in domain adaptation, called the

covariate shift assumption, is that the difference between these dis-

tributions arises only from the inputs, i.e. PSðXÞ 6¼ PTðXÞ, while the

conditional distributions, PSðYjXÞ ¼ PTðYjXÞ, are identical. We

weaken this assumption by allowing some features to have a differ-

ent influence on the output in source and target domain. More pre-

cisely, we assume that a subset M of all p features, M � f1; . . . ; pg,
that shares the same dependency structure in source and target do-

main will also have the same influence on Y in both domains.

Features which are not in M might influence Y differently in source

and target domain. More formally, the core assumption is

Weighted elastic net for unsupervised domain adaptation



PSðXf jX:f Þ � PTðXf jX:f Þ for all f 2 M

) PSðYjXMÞ � PTðYjXMÞ; (1)

where Xf and X:f denote feature f and all features except f in X, re-

spectively, and XM is the subvector of X containing only features in

M. We propose a model-based approach to quantify how well

PSðXf jX:f Þ and PTðXf jX:f Þ agree for different features. Instead of

strictly including or excluding features, we enforce stronger regular-

ization on features for which larger differences exist. This allows for

a tradeoff between a feature’s suitability for adaptation and its im-

portance for prediction. If PSðYjXf1;...;pgnMÞ and PTðYjXf1;...;pgnMÞ
differ noticeably, reducing the influence of features outsideM on the

model should improve its robustness and capability to transfer be-

tween domains.

Wenda consists of the following three main components, which

we describe in detail in the following sections:

1. Feature models: We estimate the dependency structure between

inputs in the source domain using Bayesian models.

2. Confidence scores: We evaluate the estimated input dependency

structure on the target domain to quantify the confidence into

each feature for domain adaptation.

3. Final adaptive model:We train the final model on source domain

data while adjusting the strength of regularization for each fea-

ture depending on its confidence.

For simplicity, we explain this method considering only one target

domain even though it can easily be applied to multiple target

domains as we do in Sections 3 and 4.

2.1 Feature models
We capture the dependency structure between inputs in the source

domain using Bayesian models. For each feature f, we train a

model gf which predicts f based on all other features using the

source domain inputs, x1; . . . ;xn, as training data. These feature

models estimate all conditional distributions PSðXf jX:f Þ. Since we

consider high-dimensional feature spaces, we use Gaussian process

models (Rasmussen and Williams, 2006) with a simple linear ker-

nel and additive noise. This model has two hyper parameters, the

variance of the prior on the coefficients r2p, and the variance of the

noise r2n, which we determine by maximum marginal likelihood for

each feature. More precisely, we write x�;f ¼ ðx1;f ; . . . ;xn;f Þ> for

the vector containing feature f, and x�;:f for the ðn� ðp� 1ÞÞ-ma-

trix containing all remaining features of the training samples, and

maximize

logpðx�; f jx�;:f Þ ¼ �1

2
x>�; f ðKþ r2nInÞ�1x�; f

�1

2
log jKþ r2nInj �

n

2
logð2pÞ:

(2)

�Here K ¼ r2p x�;:f x>;:f is the linear kernel matrix, In is the n-di-

mensional identity matrix and j:j denotes the determinant. Given r2p
and r2n, the posterior distribution of the coefficients, x, of the linear

model is Gaussian and has the closed-form solution

pðxjx�;f ; x�;:f Þ � N ðr�2
n �A�1 x>;:f x�;f ;A

�1Þ; (3)

where A ¼ r�2
n ; x>�;:f ; x�;:f þ r�2

p Ip�1. The advantage of using

Bayesian models in this step is that they offer not only a single predic-

tion, but a posterior distribution including uncertainty information.

2.2 Confidence scores
This uncertainty information can be used to define a score that

quantifies how closely each feature in the target domain follows the

source-domain dependency structure. Consider a given test input,

~xi, and feature, f. We denote the value of f in ~xi by ~xi;f , and the val-

ues of all features except f in ~xi by ~xi;:f . Given ~xi;:f , the feature

model gf outputs a posterior distribution, describing which values of

~xi;f would be expected according to the source-domain dependency

structure. For Gaussian processes this is a normal distribution,

Nðlgf ð~xi;:f Þ;rgf ð~xi;:f ÞÞ. We quantify how well the observed value,

~xi;f , fits to this predicted distribution using the confidence proposed

by Jalali and Pfeifer (2016),

cf ð~xiÞ ¼ 2 � U �
~xi;f � lgf ð~xi;:f Þ

rgf ð~xi;:f Þ

�����
�����
!
; (4)

where U denotes the cumulative distribution function of a standard

normal distribution. This confidence is the probability that a value as

far from lgf ð~xi;:f Þ as ~xi;f or further occurs in the posterior distribution

predicted by gf. We define the confidence of feature f for prediction on

the target domain as the average of cf ð~xiÞ over all target inputs,

cf ¼
1

m

Xm
i¼1

cf ð~xiÞ: (5)

For each feature, cf describes how well the source-domain dependen-

cies of feature f fit in the target domain and, according to the core

assumption stated in Equation (1), how suitable f is for the consid-

ered domain adaptation task.

2.3 Final adaptive model
To predict the output, ~y1; . . . ; ~ym, in the target domain, we train a

final model on the source domain data using the confidences defined

in Equation (5) to prioritize features. Here we use a weighted ver-

sion of the elastic net, which scales the contributions of features to

the regularization term according to predefined feature weights. The

weighted elastic net solves the problem

b̂ ¼ arg min
b

ðRSSðbÞ þ kJðbÞÞ (6)

JðbÞ ¼ a
Xp
f¼1

wf jbf j þ
1

2
1� að ÞXp

f¼1

wfb
2
f ; (7)

where RSSðbÞ denotes the residual sum of squares on the training

data, wf are the feature weights, k > 0 is the regularization parameter

and a 2 ½0; 1� determines the proportion of L1 and L2 penalty. If

wf ¼1 for all features, Equation (7) reduces to the standard elastic net

penalty. We choose these feature weights based on the confidences

defined in Equation (5) to encourage the use of features which were

estimated to be useful for domain adaptation. More precisely, we set

wf ¼ ð1� cf Þk; (8)

where k>0 is a user-specified model parameter. This means that

coefficients of features with a low confidence are penalized more se-

verely than coefficients of high-confidence features. The parameter k

controls how exactly confidences are translated into weights. For

k¼1, the feature weight increases linearly with decreasing confi-

dence, for higher values of k the model puts an increasingly high

penalty on very low confidences while penalizing medium to high
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confidences less severely. The resulting model still attempts to pre-

dict well on the training data by achieving a small RSSðbÞ, but is
encouraged to prefer features with high confidence. It takes into ac-

count both a feature’s importance for predicting the output accord-

ing to the source domain data and its confidence, i.e. its estimated

suitability for domain adaptation.

2.4 The challenge of parameter selection
Wenda has three external parameters: the weighting parameter k,

the proportion of L1 and L2 penalty a and the regularization param-

eter k. Parameters a and k are inherited from the standard elastic net

and usually optimized via cross-validation on the training data.

Alternatively, a is sometimes treated as a design choice (Horvath,

2013; Hughey and Butte, 2015), as its effect, i.e. the interpolation

between ridge regression and LASSO, is fairly straightforward to

interpret.

Cross-validation approximates the error on unseen samples

drawn from the same distribution as the training data. The goal of

unsupervised domain adaptation, however, is to achieve low error

on samples from the target domain, which follow a different distri-

bution. The absence of labeled output examples from the target do-

main for training is an obstacle for model selection. While

parameters can be optimized with respect to the source-domain dis-

tribution, it is uncertain whether they generalize to the target do-

main. Furthermore, simultaneously optimizing multiple parameters

constitutes a non-negligible computational burden.

Considering these aspects, we treat a as a design choice and keep

it fixed at a ¼ 0:8. Parameter k determines the strength of regular-

ization and can thus not be globally set to one value that performs

well across different datasets. Since data-dependent tuning of k is in-

evitable, we evaluate and compare two approaches, which are

described in Sections 2.5 and 2.6. The parameter k is introduced by

our method, so we evaluate its sensitivity in the empirical studies

(Sections 3 and 4).

2.5 Wenda-pn: prior knowledge on size of mismatch
In wenda, k does not only affect the strength of regularization but

also how strongly the feature weights are taken into account. For

very small k, e.g. all features are weakly penalized and differences

among feature weights have only a minor influence. For large k,

redistributing coefficients between features with different weights

can strongly change the value of the objective function, giving fea-

ture weights a large influence on the final result. Hence, for any tar-

get domain T, the optimal value, kTopt, depends on how much

adaptation is needed for transfer between the source and target

domain.

If the size or severity of the distribution mismatch between

domains has a major influence on which k is optimal, prior know-

ledge on the similarity between the domains could help to choose k.

Note that prior knowledge here refers to information known from

other sources, but not to a prior distribution in the Bayesian sense.

This approach requires:

1. A quantitative measure of similarity or dissimilarity between

source domain and target domain(s).

2. A mapping from domain (dis)similarity to a good choice of k.

If and how prior knowledge on domain similarity is available

depends on the application and will be described in Sections 3.3 and

4.2 for the datasets used in this work.

The mapping usually has to be estimated from data, which is

possible if multiple target domains, T1; . . . ;T‘, are considered and

labeled examples are available for some of them. We model

logðkToptÞ as a linear function of domain similarity since k is non-

negative and typically chosen from a grid of equidistant points on a

logarithmic scale (Friedman et al., 2010).

We call the version of wenda using prior knowledge wenda-pn

and evaluate it using the following cross-validation scheme. We first

partition the indexes f1; . . . ; ‘g of all available target domains into

two subsets, I1 and I2. For all i 2 I1 we determine kTi
opt by varying k

on a grid and choosing the value which leads to the lowest mean ab-

solute error (MAE) on the target domain Ti, disclosing the corre-

sponding labels. Next, we fit the model for the relationship between

domain similarity and kTopt via least squares, using fkTi
optgi2I1 and the

corresponding domain similarities as training data. With this model

we predict kTi
opt for all i 2 I2 and measure the resulting performance

of wenda-pn. This process is repeated for multiple splits of the target

domains into subsets I1 and I2. The exact number and ratio of splits

is problem dependent and will be described in Sections 3.3 and 4.2.

2.6 Wenda-cv: cross-validation on training data
If no knowledge on domain similarity is available, an alternative op-

tion is to still use cross-validation on the training data to determine

k. Cross-validation will choose a regularization strength which is op-

timal on the source domain for the given feature weights, rather

than the target domain. Including the feature weighting can still lead

to an improvement compared with a standard elastic net, but choos-

ing k with cross-validation on source domain data may not fully ex-

ploit its potential. We call this version of our method wenda-cv.

2.7 Implementation
We implemented all models in python 3.5.4., the source code is

available on GitHub (https://github.com/PfeiferLabTue/wenda). For

computing the regularization paths of (weighted or unweighted)

elastic net models, we used python-glmnet (Civis Analytics, 2016), a

python wrapper around the original Fortran code which is also the

basis of the R package glmnet (Friedman et al., 2010). For optimiz-

ing the Gaussian process models needed for the feature models

described in Section 2.1, we used the python package GPy (GPy,

2012).

3 Experiments on simulated data

To evaluate how wenda performs on datasets with varying degrees

of domain mismatch in a controlled setting, we simulate multiple

datasets with dependent inputs and a defined distribution mismatch

between source and target domain. In each simulated dataset we use

1000 inputs, 3000 training samples from the source domain and

1000 test samples from the target domain. To account for variabil-

ity, we run 10 fully independent simulations.

3.1 Source domain model
We model the complex dependency structure between inputs using

Bayesian networks (Pearl, 1988) with Gaussian marginal distribu-

tions. For each simulation, we first randomly generate 20 directed

acyclic graphs (DAGs) with 50 nodes each and a maximum degree

of 5 (indegree þ outdegree) using BNGenerator (Ide and Cozman,

2002). These graphs model 20 groups of input variables with

dependencies within but not between groups. BNGenerator uses a

Markov chain Monte Carlo approach to sample uniformly from all

possible DAGs which satisfy the specified constraints. It additionally

outputs categorical distributions and conditional distributions for

the nodes, which we ignore for this application. Instead of
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categorical distributions, we assign independent standard normal

distributions to all root nodes and define the distributions of all

child nodes as linear combinations of their parent nodes plus a fixed

amount of Gaussian noise. To control the variance of child nodes,

we move through each graph according to its topological ordering,

draw random weights for parent edges from a standard normal dis-

tribution, and scale them to achieve a total variance of 1 (including

noise). We set the noise variance for input dependencies to r2e ¼ 0:1,

i.e. 10% of the marginal variance of each node.

For the output, we use a sparse linear model with Gaussian

noise. We randomly choose 20 out of 1000 coefficients to be non-

zero, one in each of the 20 graphs. As for the relationships between

inputs, we set the noise variance to r2out ¼ 0:1, draw the nonzero

coefficients from a standard normal distribution and scale them to

achieve variance 1.

3.2 Target domain model
To model target domain data with a distribution mismatch, we start

from the source domain model, but make changes to some of the

variables and their influence on the output. The Bayesian networks

allow us to directly change dependencies between inputs in the

model, instead of just distorting simulated data. Depending on the

degree of domain mismatch we wish to introduce, we randomly pick

a certain number of the 20 graphs representing the inputs and multi-

ply the weights of all their edges with �1, thus inverting the depend-

encies they have in the source domain. This is an attractive choice

because it specifically changes the dependencies of inputs while not

strongly distorting their marginal distributions. In addition, we

change the influence of these altered variables on the output by set-

ting the corresponding coefficients in the output model to zero. In

each simulation, we consider four different target domains with

varying size of distribution mismatch: no mismatch, 10%, 20% and

30% altered variables. When training the weighted models, we aver-

age confidences only over groups of 100 samples at a time, to ac-

count for the variability in feature weights caused by smaller target

domain sample sizes.

3.3 Prior knowledge on domain mismatch
Incorporating knowledge on the size of the domain mismatch is sim-

ple for simulated data since the ground truth of how many variables

were altered is known. We define domain similarity as the fraction

of unchanged variables and use leave-one-out cross-validation on

the four sizes of distribution mismatch to evaluate the performance

of wenda-pn (Section 2.5). When predicting with wenda-pn for the

target domains with a certain size of distribution mismatch, we use

the remaining target domains (from all simulations) to learn the rela-

tionship between domain similarity and kTopt.

3.4 Baseline models
We compare the results of wenda-pn and wenda-cv on the simulated

datasets to two baseline models. The first is a simple elastic net with-

out feature weights (en), which is the natural baseline for our adap-

tive model. Here we choose a ¼ 0:8 in agreement with wenda, and

determine k via 10-fold cross-validation on the training data.

The second baseline is a weighted elastic net with a simpler fea-

ture weighting, for which we use the abbreviation wenda-mar. This

model has the same structure as proposed in Section 2, but feature

weights are computed based on the marginal distributions of fea-

tures instead of the dependency structure between them, eliminating

the need to train feature models as described in Section 2.1. It still

detects differences between the distributions of inputs in source and

target domain, but does not utilize dependencies between features to

do so. More precisely, the confidence defined in Equation (4) is

replaced by the simplified version

csf ð~xiÞ ¼ 2 �minfF̂ f ð~xi;f Þ;1� F̂ f ð~xi;f Þg; (9)

where F̂ f denotes the empirical cumulative distribution function of

feature f in the training data. As in wenda-pn and wenda-cv, we

average these confidences over all target-domain inputs and trans-

late them to feature weights in analogy to Equations (5) and (8).

Consistently with wenda-pn and wenda-cv, we keep a ¼ 0:8 fixed

and report results for multiple values of k. To determine the regular-

ization parameter k, we use 10-fold cross-validation on the training

data.

The score csf ð~xiÞ is chosen to be very similar to Equation (4). A

comparison of wenda-mar to an alternative score based on KL diver-

gence can be found in Supplementary Figures S1 and S2.

3.5 Results on simulated data
Figure 1 summarizes the MAE of wenda-pn, wenda-cv and wenda-

mar on the simulated test data. We report all errors relative to the

MAE of the standard (unweighted) elastic net (en), the error bars in-

dicate mean and standard deviation over 10 simulations. A similar

plot of the correlation between true and predicted output is shown

in Supplementary Figure S3.

With wenda-pn we obtain considerable improvements for the

intermediate target domains with 10% and 20% altered variables,

reducing the MAE of en by up to 18.7% and 26.2%, respectively.

For the more extreme target domains the results are mixed. With

30% altered variables we still observe an improvement for some val-

ues of k, but the variability is very high (both within one choice and

between choices of k). For the target domain without mismatch, the

MAE even increases compared with en for high values of k. This can

be explained by the cross-validation scheme we employ to learn the

Fig. 1. Mean absolute error (MAE) of wenda-pn, wenda-cv and wenda-mar on

simulated test data. Each row shows results on one target domain (no mis-

match, 10–30% altered variables). We report all errors relative to the MAE of

en showing the mean6standard deviation over 10 simulations
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relationship between kTopt and domain similarity (Section 3.3). For

each size of distribution mismatch, the model describing this rela-

tionship has been trained on the remaining target domains. This is

an interpolation for the intermediate target domains (10% and 20%

altered variables), but an extrapolation for the target domains with

30% altered variables and no mismatch. Extrapolation is a harder

problem and can lead to a less accurate estimate of kTopt and

increased variability.

It should be noted that using domain adaptation even though

prior knowledge suggests that there is no distribution mismatch be-

tween domains is not a realistic scenario. We include the results of

wenda-pn on data without distribution mismatch for the sake of

completeness.

The other two weighted models, wenda-cv and wenda-mar show

no or only very little improvement over en. On target domains with

mismatch, wenda-cv consistently receives a slightly lower MAE than

en, but the improvement is only 7.6% at best. It uses the same fea-

ture weights as wenda-pn, but obviously chooses a less suitable

value for k. The simpler confidences used by wenda-mar can only

pick up changes in the marginal distributions of features, not in their

dependency structure, leading to almost the same results as en. Only

for 30% altered variables a slight improvement can be noted. Since

marginal distributions are only altered very subtly in the target do-

main model, we expected a weak performance of wenda-mar in this

simulation study.

4 Age prediction from DNA methylation data

Now we consider our primary application on real data, i.e. the prob-

lem of age prediction from DNA methylation data across multiple

tissues.

4.1 DNAmethylation dataset and preprocessing
We use DNA methylation data and donor age from two sources, the

Cancer Genome Atlas (TCGA; Chang et al., 2013) and the Gene

Expression Omnibus (GEO; Edgar et al., 2002). We include only

DNA methylation data which were measured with the Illumina

Infinium HumanMethylation450 BeadChip and only samples from

healthy tissue. Using RnBeads (Assenov et al., 2014), we perform

several preprocessing steps on the DNA methylation data. In par-

ticular, we remove SNPs and gonosomal CpGs, and normalize the

data with the BMIQ method (Teschendorff et al., 2013b). In add-

ition, we impute missing values (<0.5% of all measurements) using

10-nearest-neighbor imputation in the R package impute (Hastie

et al., 2017). Finally, we split the dataset into a training and test set

with 1866 and 1001 samples, respectively.

The final training set contains data from 19 different tissues,

with a focus on blood, and from donors with a chronological age

ranging from 0 to 103 years. The test set consists of data from 13

different tissues initially, including blood as well as tissues which are

not present in the training data, e.g. samples from the cerebellum of

the human brain. We slightly aggregate them, combining ‘blood’,

‘whole blood’ and ‘menstrual blood’, as well as ‘Brain

MedialFrontalCortex’ and ‘Brain FrontalCortex’ to increase sample

sizes per tissue. The range of ages represented in the test set is 0–

70 years. When applying wenda, we keep the training set fixed and

consider each tissue in the test set as a separate target domain.

To limit the computational burden of training feature models,

we reduce the initial number of 466 094 features to 12 980 using a

standard elastic net model with a ¼ 0:8 and fixed regularization par-

ameter, k¼1.1�10�4. Furthermore, we use the following

transformation for the chronological ages, which was proposed by

Horvath (2013). We transform all training ages with the function

FðyÞ ¼ logðyþ 1Þ � logðyadult þ 1Þ; if y 	 yadult
ðy� yadultÞ=ðyadult þ 1Þ; otherwise

�

with adult age yadult ¼ 20 prior to training, and later re-transform

the model’s predictions with the inverse function, F�1. This trans-

formation is logarithmic for ages below and linear for ages above

yadult, which is motivated by the fact that the methylation landscape

changes more quickly and dramatically in childhood and adoles-

cence than later in life. Subsequently, we standardize all data to zero

mean and unit variance.

4.2 Prior knowledge on domain mismatch
As prior knowledge for wenda-pn (Section 2.5), we make use of

published data on similarities between human tissues. The GTEx

consortium published an analysis of a large dataset of (among

others) genotype and gene expression data across 42 human tissues

(Aguet et al., 2017). In this article, Aguet et al. (2017) identified

tissue-specific expression quantitative trait loci (eQTLs), i.e. loca-

tions in the genome where genetic variants have a significant effect

on gene expression levels. Furthermore, the authors estimated

tissue-specific effect sizes for each eQTL using a linear mixed model,

and reported the correlation (Spearman’s q) of effect sizes between

all pairs of tissues (see Figure 2a in Aguet et al., 2017), providing a

comprehensive measure of tissue similarity. Here we focus on the

correlations reported for cis-eQTLs, where the location of the genet-

ic variation is within 1Mb of the target gene’s transcription start

site, since these were identified in larger numbers and with a lower

false discovery rate than trans-eQTLs.

We map each tissue in our data to the corresponding tissue(s)

contained in the GTEx study, allowing multiple matches if the

GTEx classification is more detailed than the one available for our

data (Supplementary Table S1). Next, we compute similarities be-

tween tissues in our data by looking up (and potentially averaging)

the similarities between matched GTEx tissues. Finally, we define

the similarity between each target domain and the source domain as

the average over all pairwise similarities between samples from the

two sets. Our data contains several samples from tissues for which

no close match is available in the GTEx data (240 samples in the

training set, 56 in the test set). For these we impute the similarity to

other tissues with the mean of all pairwise tissue similarities.

When evaluating the performance of wenda-pn, we repeatedly

split the test tissues into one part for fitting the relationship between

domain similarity and kTopt and one part for evaluation (Section 2.5).

Here, we iterate over all combinations of 3 tissues with at least 20

samples each for training and evaluate the performance on the

remaining tissues.

4.3 Baseline models
We compare wenda-pn and wenda-cv to the two baseline models

described in Section 3.4 with the following minor modification:

instead of using a simple elastic net directly, we use en followed by a

linear least-squares fit based only on features which received non-

zero coefficients in en. We refer to this baseline as en-ls. This model

type was suggested by Horvath (2013) for age prediction from DNA

methylation data, who reported that the subsequent least-squares fit

reduced test errors on his dataset. We observe a similar effect on our

data, where en-ls produces lower test errors than en on cerebellum

samples while making almost no difference on the remaining

samples.
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4.4 Results on DNA methylation data
We compare the results of wenda-pn, wenda-cv and the two baseline

models on the dataset described in Section 4.1 and measure perform-

ance by MAE on the test set (Supplementary Figure S4 for correl-

ation instead of MAE). Due to the heterogeneous nature of the data,

the random split of the training data used for 10-fold cross-

validation has a large influence on the results, especially for en-ls.

Hence, we report the mean and standard deviation over 10 runs. For

wenda-pn, we do not perform cross-validation on the training data

but iterate over multiple splits of the test tissues to learn the relation-

ship between domain similarity and kTopt. Here, we measure MAE

only on samples which were not used for the similarity-lambda fit,

and report mean and standard deviation over all splits.

When training the weighted models, we regard each tissue in the

test dataset as a separate target domain. To be precise, we average

the confidences defined in Equation (5) only over samples of the

same tissue and train a separate model for each tissue, using always

the same training data but tissue-specific feature weights.

With en-ls we obtain an MAE of 6.196 0.90 years on the full

test set. Figure 2a illustrates the MAE of en-ls and a representative

example of a weighted model (wenda-pn, k¼3) on each test tissue.

It shows that en-ls yields a considerably higher MAE on cerebellum

samples than on other tissues. Figure 2b shows the predicted versus

true ages for the test set in a typical cross-validation run, colored by

tissue, and reveals that the predicted age is consistently far below

the true chronological age. Both plots demonstrate that en-ls pre-

dicts age well on all test tissues except cerebellum. In fact, on cere-

bellum samples en-ls produces an MAE of 18.756 7.18 years.

Cerebellum samples are especially hard to predict for two rea-

sons: they are not represented in the training data and they are

known to be biologically very different even from other brain tissues

regarding function and gene expression patterns (Aguet et al., 2017;

Fraser et al., 2005). Therefore, the focus of our evaluation is

whether domain adaptation as implemented by wenda can improve

performance on these samples.

The predictions of wenda-pn with k¼3 versus the true ages are

shown in Figure 2c. Here, we plot the predictions of a typical run

for each tissue by choosing the model with closest to median per-

formance among all models with this tissue in the holdout set. The

ages predicted by wenda-pn for cerebellum samples are far closer to

the corresponding true ages than they were for en-ls (Fig. 2b), and

predictions of wenda-pn on the remaining test tissues are of a similar

quality as those of en-ls. This observation is confirmed by the quan-

titative comparison in Figure 2a, where wenda-pn has far lower

errors than en-ls on cerebellum samples, and similar or better per-

formance than en-ls on the remaining test tissues.

While en-ls predicts age far worse on cerebellum samples than

on other tissues, wenda-pn shows no major difference in prediction

quality between cerebellum samples and the remaining test tissues.

Consequently, wenda-pn demonstrates to be considerably more ro-

bust to the distribution mismatch between cerebellum samples and

the training data than en-ls.

Figure 3 shows the MAE of all models on cerebellum samples.

Here, all weighted models strongly improve upon en-ls. The lowest

errors on cerebellum samples are achieved by wenda-cv, reaching as

low as 6.076 0.10 years for k¼4. This is closely followed by

wenda-pn, which achieves an MAE between 7.60 and 8.70 years on

average on cerebellum samples for k 	 4. Even wenda-mar, which

uses only marginal distributions to weight features, improves upon

en-ls with an MAE of 9.426 0.69 years at best. All weighted models

achieve their best result for k between 2 and 4 with not too much

variation in this range. However, even when k is far from optimal

for cerebellum samples, they still perform better than en-ls.

A comparison of the MAE of all models on the full test set is

shown in Figure 4 and indicates an overall similar performance of

wenda and the two baselines. For k 	 4, wenda-cv and wenda-mar

yield a slightly lower MAE than en-ls, and for large k, wenda-cv and

wenda-pn yield a slightly higher MAE than en-ls. Given that en-ls al-

ready shows acceptable performance on all tissues except cerebel-

lum, we did not expect a big improvement here. The results show,

however, that the improvement on cerebellum samples is not bought

by a loss of performance on other tissues.

5 Discussion

Predictive models are widely used in computational biology, but dif-

ferences between the distribution of their training data and new data

to which they are later applied can severely threaten their

(a) (b) (c)

Fig. 2. (a) Mean absolute error of en-ls and wenda-pn with k¼ 3 per test tissue. We show the mean 6 standard deviation over 10 runs of 10-fold cross-validation

for en-ls, and over all splits of the test tissues where the tissue of interest was in the evaluation set for wenda-pn. Predicted versus true chronological age for typ-

ical runs of en-ls (b) and wenda-pn with k¼3 (c). In each plot, we show samples colored by tissue. As a typical run for en-ls we show the one with closest to me-

dian performance on cerebellum samples and full test set. For wenda-pn, we choose a typical run for each tissue: among all models with this tissue in the

holdout set, we plot predictions of the one with closest to median performance

L.Handl et al.



performance. In this article we propose wenda, a method for un-

supervised domain adaptation based on the elastic net. It detects dif-

ferences in the dependency structure between inputs in source and

target domain and enforces stronger regularization on features that

behave differently. Our method is different from previous studies on

the combination of the elastic net and domain adaptation techniques

(Li et al., 2015; Wachinger and Reuter, 2016). Both consider only

the easier problem of supervised domain adaptation, i.e. the situ-

ation where some labeled examples from the target domain are

available for training, and are not applicable in the setting we con-

sider. Our method is also different from the approach proposed by

Cortes and Mohri (2011), which uses a sample weighting rather

than a feature weighting and is thus better suited for situations with

n>p than for the ones we consider.

The key idea of our approach, which separates it from many

other domain adaptation methods, is to learn the dependency struc-

ture between inputs for calculating feature weights. This property is

of particular relevance to applications within computational biology

where, in contrast to, e.g. image analysis, the dependency structure

is irregular and not known a priori. For example, even distant loca-

tions in the (epi)genome can interact and form complex gene regula-

tory networks, which vary with cell type and differentiation state

(Thompson et al., 2015). While we used Gaussian process models

with linear kernels as feature models, any other Bayesian model type

would be applicable in principle, subject only to the data and com-

putational resources.

Like any domain adaptation method, wenda makes the assump-

tion that source and target distribution are not too far apart, so that

some features are useful for predicting the output and behave simi-

larly in source and target domain. Another central assumption of

our method is that the dependency structure between inputs is in-

formative of which features are useful for domain adaptation. There

are certain extreme cases, where this is clearly violated. For ex-

ample, when features are entirely independent, the distribution pre-

dicted by each feature model gf would be approximately the

feature’s marginal distribution, and wenda-pn and wenda-cv would

behave similarly to wenda-mar. Another such case is the presence of

duplicates or extremely strong correlations between variables. These

could arise, e.g. in sequencing-based methylation assays, where the

DNA methylation of consecutive CpG sites is highly correlated in all

tissues. Thus, each feature would always be well predicted by its

neighbor, regardless of changes on a larger scale. In situations like

this, we suggest to aggregate extremely correlated features before

training, which is also advisable for a standard elastic net.

Our method is computationally demanding since it requires to

train one Bayesian model per feature (for confidence estimation)

and one weighted elastic net per target domain (for prediction).

While both of these steps can be parallelized to speed up calcula-

tions, fitting the feature models remains challenging for large data-

sets. For example, training 12 980 feature models for the DNA

methylation data on 10 CPUs of the type Intel Xeon CPU E7-4850

with 2.30 GHz takes about 51 h.

However, the structure of wenda allows additional speed-ups, as

feature models have to be trained only once (as long as the training

data remain fixed) and can be reused to predict on multiple target

domains or with different parameter settings. If the confidence scores

for a given test dataset are precomputed as well, the final model for

one target domain is only a weighted elastic net trained on the train-

ing data, whose regularization path can be computed quickly, e.g.

with glmnet. With the same computational setup as before and with

precomputed feature models and confidence scores, training all mod-

els required for wenda-pn with k¼3 (Fig. 2c) takes about 43 s.

Wenda allows to incorporate prior knowledge on the size of the

domain mismatch (wenda-pn), but a simplified version can also be

applied without it (wenda-cv). Wenda-cv uses cross-validation on

the training data to determine k, which is not ideal in a domain

adaptation setting. Nevertheless, our results on the DNA methyla-

tion data demonstrate that it can still lead to a surprisingly large im-

provement over a non-adaptive model. This makes it a valuable

alternative to wenda-pn, especially if no prior knowledge on the size

of domain mismatch is available.

Wenda introduces a new parameter k, which controls how confi-

dences are translated into feature weights. We empirically studied

the impact of choosing k on the MAE and observed satisfying per-

formance in the interval k 2 ½2;4�. Hence, k¼3 might constitute a

relatively robust choice for future applications, albeit it is unlikely

that any single parameter choice is optimal for each and every target

domain. We note that wenda never performs substantially worse

than the non-adaptive reference. Hence, the precise value of k deter-

mines only the magnitude of improvement obtained and a

Fig. 3. Mean absolute error of all models on cerebellum samples. We show

the mean and standard deviation over 10 runs of 10-fold cross-validation or,

in case of wenda-pn, over all splits where cerebellum samples were in the

evaluation set

Fig. 4. Mean absolute error (MAE) of all models on the full test set of DNA

methylation data. We show the mean and standard deviation over 10 runs of

10-fold cross-validation. In case of wenda-pn, we compute the MAE only

based on samples in the evaluation set, and plot the mean and standard devi-

ation over all considered splits of the test tissues

Weighted elastic net for unsupervised domain adaptation



suboptimal choice poses relatively little risk. Nevertheless, without

labeled training examples from the target domain, parameter selec-

tion remains a non-trivial problem. Finding a data-driven way to de-

termine an optimal choice for k, or evaluating whether a can be

optimized additionally, are challenging themes for future research.

6 Conclusions

In this article we propose wenda, a method for unsupervised domain

adaptation which is based on the elastic net and utilizes dependen-

cies between inputs to detect differences between source and target

domain. Using a weighted elastic net penalty, wenda enforces stron-

ger regularization on features that behave differently in the two

domains, reducing the effects of a distribution mismatch.

We compare two variants of our method, wenda-pn and wenda-

cv, on simulated datasets and on real data, where we considered the

problem of age prediction from DNA methylation data across tis-

sues. Our experimental results demonstrate that both variants can

reduce test errors on samples with a distribution mismatch. While

wenda-cv outperforms the non-adaptive reference only on real data,

wenda-pn strongly reduces errors on test samples with a distribution

mismatch both on real and simulated data, which makes it the more

promising variant for future applications.

From a wider perspective, this article demonstrates that the am-

bitious goal of unsupervised domain adaptation is indeed feasible

not only for big data analysis with deep learning methods, but also

for traditional machine learning methods that are useful for analyz-

ing relatively small datasets as they frequently occur in computation-

al biology and medicine.

Acknowledgements

We would like to thank Dr Alexis Battle and Ben Strober for kindly providing

the matrix of similarities plotted in Figure 2a in Aguet et al. (2017). We add-

itionally thank Martina Feierabend for reviewing the mapping of tissues be-

tween their data and ours.

Funding

This work was prepared within the project XplOit of the initiative ‘i: DSem—

Integrative Datensemantik in der Systemmedizin’, funded by the German

Federal Ministry of Education and Research (BMBF).

Conflict of Interest: none declared.

References

Aguet,F. et al. (2017) Genetic effects on gene expression across human tissues.

Nature, 550, 204–213.

Akey,J.M. et al. (2007) On the design and analysis of gene expression studies

in human populations.Nat. Genet., 39, 807–808.

Aljundi,R. et al. (2015) Landmarks-based kernelized subspace alignment for

unsupervised domain adaptation. In: Proceedings of the 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2015:

8–10 June, 2015, pp. 56–63. Boston, Massachusetts, USA.

Almagro Armenteros,J.J. et al. (2017) DeepLoc: prediction of protein subcellu-

lar localization using deep learning. Bioinformatics, 33, 3387–3395.

Angermueller,C. et al. (2017) DeepCpG: accurate prediction of single-cell

DNAmethylation states using deep learning.Genome Biol., 18, 67.

Assenov,Y. et al. (2014) Comprehensive analysis of DNA methylation data

with RnBeads.Nat. Methods, 11, 1138–1140.

Bell,J.T. et al. (2012) Epigenome-wide scans identify differentially methylated

regions for age and age-related phenotypes in a healthy ageing population.

PLOS Genet., 8, e1002629.

Chang,K. et al. (2013) The cancer genome atlas pan-cancer analysis project.

Nat. Genet., 45, 1113–1120.

Christensen,B.C. et al. (2009) Aging and environmental exposures alter

tissue-specific DNA methylation dependent upon CpG island context.

PLOS Genet., 5, e1000602.

Civis Analytics (since 2016) python-glmnet: A Python Port of the glmnet

Package for Fitting Generalized Linear Models via Penalized Maximum

Likelihood. Python Package Version 2.0.0. http://github.com/civisanalytics/

python-glmnet (10May 2019, date last accessed).

Cortes,C. and Mohri,M. (2011) Domain adaptation in regression. In:

Proceedings of the 2011 International Conference on Algorithmic Learning

Theory (ALT), 5–7October, 2011, pp. 308–323. Espoo, Finland.

Day,K. et al. (2013) Differential DNA methylation with age displays both

common and dynamic features across human tissues that are influenced by

CpG landscape.Genome Biol., 14, R102.

Edgar,R. et al. (2002) Gene expression omnibus: NCBI gene expression and

hybridization array data repository.Nucleic Acids Res., 30, 207–210.

Farh,K.K.-H. et al. (2015) Genetic and epigenetic fine mapping of causal auto-

immune disease variants.Nature, 518, 337–343.

Florath,I. et al. (2014) Cross-sectional and longitudinal changes in DNA

methylation with age: an epigenome-wide analysis revealing over 60 novel

age-associated CpG sites.Hum. Mol. Genet., 23, 1186–1201.

Fraser,H.B. et al. (2005) Aging and gene expression in the primate brain.

PLOS Biol., 3, e274.

Friedman,J. et al. (2010) Regularization paths for generalized linear models

via coordinate descent. J. Stat. Softw., 33, 1–22.

Ganin,Y. et al. (2016) Domain-adversarial training of neural networks.

J. Mach. Learn. Res., 17, 1–35.

Garnett,M.J. et al. (2012) Systematic identification of genomic markers of

drug sensitivity in cancer cells.Nature, 483, 570–575.

Gong,B. et al. (2012) Geodesic flow kernel for unsupervised domain adapta-

tion. In: Proceedings of the 2012 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 16–21 June, 2012, pp. 2066–2073. Rhode

Island, USA.

Gong,B. et al. (2013) Connecting the dots with landmarks: discriminatively

learning domain-invariant features for unsupervised domain adaptation. In:

Proceedings of the 30th International Conference on Machine Learning

(ICML), 16–21 June, 2013, pp. 222–230. Atlanta, Georgia, USA.

GPy (since 2012) GPy: A Gaussian Process Framework in Python. Python

Package Version 1.5.3. http://github.com/SheffieldML/GPy (10 May 2019,

date last accessed).

Hannum,G. et al. (2013) Genome-wide methylation profiles reveal quantita-

tive views of human aging rates.Mol. Cell, 49, 359–367.

Hastie,T. et al. (2017) impute: Imputation for Microarray Data. R Package

Version 1.52.0. http://www.bioconductor.org/packages/release/bioc/html/

impute.html (10May 2019, date last accessed).

Heyn,H. et al. (2012) Distinct DNA methylomes of newborns and centenar-

ians. Proc. Natl. Acad. Sci. U.S.A., 109, 10522–10527.

Hoerl,A.E. and Kennard,R.W. (1970) Ridge regression: biased estimation for

nonorthogonal problems. Technometrics, 12, 55–67.

Hoiles,W. and van der Schaar,M. (2016) A non-parametric learning method

for confidently estimating patient’s clinical state and dynamics. Adv. Neural

Inform. Process. Syst., 29, 2020–2028.

Horvath,S. (2013) DNA methylation age of human tissues and cell types.

Genome Biol., 14, R115.

Hughey,J.J. and Butte,A.J. (2015) Robust meta-analysis of gene expression

using the elastic net.Nucleic Acids Res., 43, e79.

Ide,J.S. and Cozman,F.G. (2002) Random generation of Bayesian networks.

In: Advances in Artificial Intelligence, Lecture Notes in Computer Science,

Springer, Berlin.

Jalali,A. and Pfeifer,N. (2016) Interpretable per case weighted ensemble

method for cancer associations. BMCGenom., 17, 501.

Jansen,R. et al. (2003) A Bayesian networks approach for predicting

protein-protein interactions from genomic data. Science, 302, 449–453.

Krogan,N.J. et al. (2006) Global landscape of protein complexes in the yeast

Saccharomyces cerevisiae.Nature, 440, 637–643.

Leek,J.T. et al. (2010) Tackling the widespread and critical impact of batch

effects in high-throughput data.Nat. Rev. Genet., 11, 733–739.

L.Handl et al.



Leffler,E.M. et al. (2017) Resistance to malaria through structural variation of

red blood cell invasion receptors. Science, 356, eaam6393.

Lengauer,T. and Sing,T. (2006) Bioinformatics-assisted anti-HIV therapy.

Nat. Rev. Microbiol., 4, 790–797.

Li,Y. et al. (2015) Constrained elastic net based knowledge transfer for health-

care information exchange.Data Min. Knowl. Discov., 29, 1094–1112.

Long,M. et al. (2016) Unsupervised domain adaptation with residual transfer

networks. Adv. Neural Inform. Process. Syst., 29, 136–144.

Margolis,A. (2011) A Literature Review of Domain Adaptation with

Unlabeled Data. Technical Report, University of Washington.

Pan,S.J. and Yang,Q. (2010) A survey on transfer learning. IEEE Trans.

Knowl. Data Eng., 22, 1345–1359.

Patel,V.M. et al. (2015) Visual domain adaptation: a survey of recent advan-

ces. IEEE Signal Process. Mag., 32, 53–69.

Pearl,J. (1988) Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco.

Rasmussen,C.E. and Williams,C.K.I. (2006) Gaussian Processes for Machine

Learning. MIT Press, Cambridge, MA.

Saito,T. and Sætrom,P. (2012) Target gene expression levels and competition

between transfected and endogenous microRNAs are strong confounding

factors in microRNA high-throughput experiments. Silence, 3, 3.

Schmidt,F. et al. (2017) Combining transcription factor binding affinities with

open-chromatin data for accurate gene expression prediction.Nucleic Acids

Res., 45, 54–66.
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ARTICLE
https://doi.org/10.1038/s41586-018-0531-2

Combination therapy with anti-HIV-1 
antibodies maintains viral suppression
Pilar Mendoza1,19, Henning Gruell2,3,4,19, Lilian Nogueira1, Joy A. Pai1, Allison L. Butler1, Katrina Millard1, Clara Lehmann3,4,5, 

Isabelle Suárez3,4,5, Thiago Y. Oliveira1, Julio C. C. Lorenzi1, Yehuda Z. Cohen1, Christoph Wyen3,6, Tim Kümmerle3,6,  

Theodora Karagounis1, Ching-Lan Lu1, Lisa Handl7, Cecilia Unson-O’Brien1, Roshni Patel1, Carola Ruping2, Maike Schlotz2, 

Maggi Witmer-Pack1, Irina Shimeliovich1, Gisela Kremer3, Eleonore Thomas3, Kelly E. Seaton8, Jill Horowitz1,  

Anthony P. West Jr9, Pamela J. Bjorkman9, Georgia D. Tomaras8,10,11,12, Roy M. Gulick13, Nico Pfeifer7,14,15,16, Gerd Fätkenheuer3,4, 

Michael S. Seaman17, Florian Klein2,4,5,20*, Marina Caskey1,20* & Michel C. Nussenzweig1,18,20*

Individuals infected with HIV-1 require lifelong antiretroviral therapy, because interruption of treatment leads to rapid 

rebound viraemia. Here we report on a phase 1b clinical trial in which a combination of 3BNC117 and 10-1074, two 

potent monoclonal anti-HIV-1 broadly neutralizing antibodies that target independent sites on the HIV-1 envelope spike, 

was administered during analytical treatment interruption. Participants received three infusions of 30 mg kg−1 of each 

antibody at 0, 3 and 6 weeks. Infusions of the two antibodies were generally well-tolerated. The nine enrolled individuals 

with antibody-sensitive latent viral reservoirs maintained suppression for between 15 and more than 30 weeks (median 

of 21 weeks), and none developed viruses that were resistant to both antibodies. We conclude that the combination of 

the anti-HIV-1 monoclonal antibodies 3BNC117 and 10-1074 can maintain long-term suppression in the absence of 

antiretroviral therapy in individuals with antibody-sensitive viral reservoirs.

During infection, HIV-1 is reverse transcribed and integrated as a provirus  
into the host genome. Although the vast majority of infected cells die 
by apoptosis or pyroptosis1, a small percentage survive and harbour  
transcriptionally silent, integrated proviruses that comprise a reservoir 
that can be reactivated. Once established, the latent reservoir has an  
estimated half-life of 44 months, resulting in the lifelong requirement for 
antiretroviral therapy (ART)2. Passive administration of potent broadly 
neutralizing monoclonal anti-HIV-1 antibodies (bNAbs) represents  
a potential alternative to antiretroviral drugs because, in addition to 
neutralizing the virus, antibodies engage the host immune system and 
have long half-lives3–5.

In human clinical trials, viraemic individuals who received 3BNC117 
or VRC01, two related bNAbs that target the CD4 binding site on the 
HIV-1 envelope spike, or 10-1074, a bNAb that targets the base of 
the V3 loop and surrounding glycans, showed significant reductions 
in viremia6–8. Moreover, in HIV-1-infected individuals undergoing  
analytical treatment interruption (ATI) of antiretroviral therapy, four 
infusions of 3BNC117 maintained virus suppression for a median of 
10 weeks compared to 2.3 weeks in historical controls9,10. By contrast, 
six infusions of VRC01 maintained suppression for 5.6 weeks11. The 
difference in activity between VRC01 and 3BNC117 in preclinical 
experiments12,13 and clinical trials6,7,9,11 is consistent with the lower 
relative neutralization potency of VRC01.

Across all bNAb clinical trials to date, and similar to monotherapy 
with antiretroviral drugs, treatment with any single bNAb was associated  
with the emergence of antibody-resistant viral variants6–9,11. Like 

antiretroviral drugs, combinations of bNAbs are more effective than 
individual antibodies in HIV-1 infected humanized mice and sim-
ian/human immunodeficiency virus (SHIV)-infected macaques14–16. 
By contrast, antibody combinations showed little if any efficacy in  
suppressing viraemia during ATI in humans17,18. However, these  
earlier studies were performed using bNAbs that were less potent 
than 3BNC117 and 10-1074. Here we investigate whether the bNAb  
combination of 3BNC117 and 10-1074 can maintain viral suppression 
during ATI in HIV-1-infected humans.

Combination bNAb infusion is well-tolerated
To evaluate the effects of the combination of 3BNC117 and 10-1074 
on maintaining HIV-1 suppression during ATI, we conducted a phase 
1b clinical trial (Fig. 1a). HIV-1-infected individuals on ART were  
pre-screened for 3BNC117 and 10-1074 sensitivity of bulk outgrowth 
culture-derived viruses in an in vitro neutralization assay using TZM-bl 
cells19. Consistent with previous results, 64% and 71% of the outgrowth 
viruses were sensitive to 3BNC117 and 10-1074, respectively, and 48% 
were sensitive to both8,9,20 (half-maximum inhibitory concentration 
(IC50) ≤ 2 μg ml−1; Extended Data Fig. 1a and Supplementary Table 1).

Study eligibility criteria included ongoing ART for at least 24 months 
with plasma HIV-1 RNA levels of <50 copies per ml for at least 
18 months (one blip <500 copies per ml was allowed) and <20 copies  
per ml at screening, as well as CD4+ T cell counts >500 cells 
per μl (Extended Data Figs. 1b, 2a). Enrolled participants received 
three infusions of 30 mg kg−1 of 3BNC117 and 10-1074 each at 
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three-week intervals beginning two days before treatment interruption  
(Fig. 1a). Individuals whose regimens contained non-nucleoside 
reverse transcriptase inhibitors were switched to an integrase inhibitor- 
based regimen four weeks before discontinuing ART (Extended 
Data Figs. 1b, 2a). Viral load and CD4+ T cell counts were monitored 
every 1–2 weeks (Supplementary Table 2). ART was reinitiated and  
antibody infusions were discontinued if viraemia of >200 copies per 
ml was confirmed. Time of viral rebound was defined as the first of 
two consecutive viral loads of >200 copies per ml. Fifteen individuals 
were enrolled, but four of them showed viral loads of >20 copies per 
ml two weeks before or at the time of the first bNAb infusion and 
they were excluded from efficacy analyses (Extended Data Fig. 1b and 
Supplementary Table 2).

Antibody infusions were generally safe and well-tolerated with no 
reported serious adverse events or antibody-related adverse events, 
except for mild fatigue in two participants (Supplementary Table 3). 
The mean CD4+ T cell count was 685 and 559 cells per μl at the time 
of first antibody infusion and at rebound, respectively (Extended Data 
Fig. 2b and Supplementary Table 2). Reinitiation of ART after viral 
rebound resulted in resuppression of viraemia (Supplementary Table 2). 
We conclude that combination therapy with 3BNC117 and 10-1074 is 
generally safe and well-tolerated.

The serum half-life of each antibody was measured independently 
by TZM-bl assay and anti-idiotype enzyme-linked immunosorbent 
assay (ELISA, Extended Data Fig. 2c, d and Supplementary Table 2). 
3BNC117 had a half-life of 12.5 and 17.6 days as measured using 
TZM-bl and ELISA, respectively (Extended Data Fig. 2c, d). The 
half-life of 10-1074 was 19.1 and 23.2 days as measured by TZM-bl 
and ELISA, respectively; significantly longer than 3BNC117 in both 
assays (P = 0.0002 and P = 0.02, Extended Data Fig. 2e, f). These 
measurements are similar to those observed when each antibody was 
administered alone in ART-treated HIV-1-infected individuals6,8,9. We 
conclude that the pharmacokinetic profiles of 3BNC117 and 10-1074 
are not altered when they are used in combination.

The combination of bNAbs maintains viral suppression
For the 11 individuals who had complete viral suppression (HIV-1 RNA 
<20 copies per ml) during the screening period and at day 0, combination 
antibody therapy was associated with maintenance of viral suppression  
for between 5 and more than 30 weeks (Fig. 1b, c and Supplementary 
Table 2). The median time to rebound was 21 weeks compared 
to 2.3 weeks for historical controls who participated in previous  
non-interventional ATI studies10 and 6–10 weeks for monotherapy with 
3BNC1179 (Fig. 1c). Together, 9 of the 11 participants maintained viral 
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Fig. 1 | Delayed viral rebound with 3BNC117 and 10-1074 combination 
therapy during ATI. a, Study design. Red and blue triangles represent 
3BNC117 and 10-1074 infusions, respectively. b, Plasma HIV-1 RNA 
levels (black; left y axis) and bNAb serum concentrations (3BNC117, red; 
10-1074, blue; right y axis) in the nine bNAb-sensitive participants (left) 
and the two participants with pre-existing resistance against one of the 
antibodies (right). Red and blue triangles indicate 3BNC117 and 10-1074 
infusions, respectively. Serum antibody concentrations were determined 
by TZM-bl assay. Grey-shaded areas indicate time on ART. Lower limit 
of detection of HIV-1 RNA was 20 copies per ml. c, Kaplan–Meier plots 
summarizing time to viral rebound for the participants with HIV-1 

RNA <20 copies per ml two weeks before and at the start of ATI (n = 11, 
left), for the participants sensitive to both antibodies (n = 9, centre), and 
for the participants that showed pre-existing resistance to one of the 
antibodies (n = 2, right). The y axis shows the percentage of participants 
that maintain viral suppression. The x axis shows the time in weeks after 
start of ATI. Participants receiving the combination of 3BNC117 and 
10-1074 are indicated by the blue line. Dotted red lines indicate a cohort 
of individuals receiving 3BNC117 alone during ATI9 (n = 13) and dotted 
black lines indicate a cohort of participants who underwent ATI without 
intervention10 (n = 52).
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suppression for at least 15 weeks, although two rebounded at weeks 5 
and 7 (Fig. 1b, c).

Quantitative and qualitative viral outgrowth assays (Q2VOA) were 
used to retrospectively analyse the replication-competent latent viral 
reservoir in all individuals. Phylogenetic analysis showed that the 
trial participants were infected with epidemiologically distinct clade 
B viruses (Extended Data Fig. 3). Q2VOA analysis revealed that the 
pre-infusion latent reservoir in the two individuals who rebounded 
early, 9245 and 9251, harboured 10-1074- or 3BNC117-resistant viruses, 
respectively (Fig. 2 and Supplementary Table 4). Therefore, these 
two individuals were effectively subjected to antibody monotherapy,  
because there was pre-existing resistance in the reservoir of these  
individuals to one of the two bNAbs. Consistent with this idea, the delay 
in rebound in these two participants was within the anticipated range of 
antibody monotherapy9,11 (Fig. 1c). In addition, all four of the individuals  
excluded from the analysis due to incomplete viral suppression showed 
pre-existing resistance or viruses that were not fully neutralized by one 
or both of the antibodies and these individuals rebounded before week 
12 (Extended Data Figs. 4, 5 and Supplementary Table 4).

To examine the viruses that arose in the early rebounding individuals, 
we performed single genome analysis (SGA) of plasma viruses obtained 
at the time of rebound. In addition to the pre-existing sequences asso-
ciated with resistance in the 10-1074 target site (N332T and S334N, 
Fig. 2a), rebound viruses in 9245 also carried an extended V5 loop 
and potential N-linked glycosylation sites that could interfere with 
3BNC117 binding (Extended Data Fig. 6). Conversely, genetic features 
associated with resistance to 3BNC117 were found in the pre-infusion 
reservoir of 9251 and were accompanied by mutations in the 10-1074 
target site in the rebounding viruses (S334N, Fig. 2a and Extended 

Data Fig. 6). For both individuals, resistance of rebound viruses to both 
antibodies was confirmed by the TZM-bl neutralization assay (Fig. 2b, c  
and Supplementary Table 4). Thus, bulk outgrowth cultures used for 
screening failed to detect pre-existing resistance in the reservoir of 2 
of the 11 studied individuals. This result is not surprising given that 
bulk cultures are dominated by a limited number of rapidly growing 
viral species that may not be representative of the diversity of the latent 
reservoir.

The median time to rebound in the seven individuals that had no 
detectable resistant viruses in the pre-infusion latent reservoir, and 
rebounded during the study period, was also 21 weeks and different 
from the 6–10 weeks found for monotherapy with 3BNC1179 (Fig. 1c). 
In these participants, viral suppression was maintained for 15–26 weeks 
after ART discontinuation (Supplementary Table 2). The two remaining 
participants (9254 and 9255) completed study follow-up at 30 weeks 
without experiencing rebound (Supplementary Table 2). Notably, viral 
rebound never occurred when the concentration of both administered 
antibodies was above 10 μg ml−1. The average serum concentration 
of 3BNC117 (determined by TZM-bl assay) at the time of rebound 
in sensitive individuals that rebounded during study follow-up was 
1.9 μg ml−1 (Fig. 1b and Supplementary Table 2). By contrast, the 
average serum concentration of 10-1074 at rebound was 14.8 μg ml−1 
(Fig. 1b and Supplementary Table 2). The difference in the antibody 
concentrations at the time of rebound is consistent with the longer 
half-life of 10-1074, which resulted in a period of 10-1074 monotherapy 
(Fig. 1b, Extended Data Fig. 2c–f and Supplementary Table 2). Finally, 
these nine individuals showed little or no pre-existing neutralizing 
antibodies against a diagnostic panel of viruses before bNAb infusion 
(Supplementary Table 5).
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Rebound and latent viruses
To examine the relationship between rebound viruses and the circulating  
latent reservoir, we compared env sequences obtained from plasma 
rebound viruses by SGA with sequences obtained by Q2VOA from both 
pre-infusion and week 12 samples. In addition, we measured the sensi-
tivity of rebound outgrowth viruses and/or pseudoviruses to 3BNC117 
and 10-1074 using the TZM-bl neutralization assay (Fig. 2b, c, 3, 
Extended Data Fig. 7 and Supplementary Table 4). A total of 154 viral 
env sequences obtained by plasma SGA were analysed and compared to 
408 sequences obtained from the latent reservoir by Q2VOA. Although 
rebound and reservoir viruses clustered together for each individual 
(Extended Data Fig. 3), we found no identical sequences between the 
two compartments in any of the individuals studied (Figs. 3, 4a and 
Extended Data Fig. 7). The difference could be accounted for by distinct 
requirements for HIV-1 reactivation in vitro and in vivo, compartmen-
talization of reservoir viruses, HIV-1 mutation during the course of the 
trial and/or by viral recombination in some individuals20,21 (Extended 
Data Fig. 8). Whether or not bNAb therapy influences selection for 
recombination events remains to be determined.

Similar to 3BNC117 monotherapy, the vast majority of rebounding 
viruses clustered within low-diversity lineages consistent with expan-
sion of 1–2 recrudescent viruses9 (Fig. 3, Extended Data Figs. 7, 9). By 
contrast, rebound viruses are consistently polyclonal during ATI in 
the absence of antibody therapy22,23. Thus, the antibodies restrict the 
outgrowth of latent viruses in vivo.

The emerging viruses in 6 of the 7 individuals who rebounded when 
the mean 3BNC117 and 10-1074 serum concentrations were 1.9 and 
14.8 μg ml−1, respectively, carried resistance-associated mutations in 
the 10-1074 target site (Figs. 1b, 2a). Consistent with the sequence data, 

these rebound viruses were generally resistant to 10-1074, as shown by 
the TZM-bl neutralization assay, but remained sensitive to 3BNC117 
(Fig. 2b, c and Supplementary Table 4). The level of sensitivity to 
3BNC117 in these emerging viruses was similar to that found in the 
reservoir viruses in each of the individuals (Fig. 2b and Supplementary 
Table 4). One individual, 9244, showed rebound viruses that remained 
sensitive to both antibodies in TZM-bl neutralization assays. Rebound 
occurred when 3BNC117 and 10-1074 concentrations in serum of this 
individual were undetectable and 11.6 μg ml−1, respectively (Fig. 1b 
and Supplementary Table 2). The sensitivity of the plasma rebound 
viruses was similar to that of latent pre-infusion and week 12 viruses 
obtained in viral outgrowth cultures (Fig. 2b, c and Supplementary 
Table 4). Therefore, this individual did not develop resistance to either 
of the antibodies despite prolonged exposure to both. In conclusion, 
none of the nine individuals with pre-infusion reservoirs containing 
viruses that were sensitive to both antibodies developed double resist-
ance during the observation period.

The latent reservoir
To determine whether there were changes in the circulating reservoir 
during the observation period, we compared the results of Q2VOA 
assays performed at entry and 12 weeks after the start of ATI for 8 
of the 9 individuals that remained suppressed for at least 12 weeks 
(Fig. 4 and Extended Data Fig. 10). Similar to previous reports, 63% 
of all viruses obtained by Q2VOA belonged to expanded clones20,24–26 
(Extended Data Fig. 10a, b). Comparison of the env sequences of the 
viruses that emerged in outgrowth cultures revealed that 60% of the 
sequences could be found at both time points. However, there were 
numerous examples of clones that appeared or disappeared between 
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Fig. 3 | Comparison of the circulating latent reservoir and rebound 
viruses. Maximum likelihood phylogenetic trees of full-length env 
sequences of viruses isolated from Q2VOA, rebound plasma SGA and 
rebound PBMC outgrowth cultures from three out of seven participants 
(9242, 9243 and 9252) that rebounded before week 30 (9241, 9244, 9247 
and 9246 are depicted in Extended Data Fig. 7). Open and closed black 
rectangles indicate Q2VOA-derived viruses from week −2 and week 12, 
respectively. Viruses obtained at the time of rebound are indicated by 

red rectangles (plasma SGA) and red stars (rebound PBMC outgrowth 
cultures). Asterisks indicate nodes with significant bootstrap values 
(bootstrap support ≥70%). Clones are denoted by coloured lines 
mirroring the colours of slices in Extended Data Fig. 10a. Boxes indicate 
IC80 values (μg ml−1) of 3BNC117 and 10-1074 against representative 
viruses throughout the phylogenetic tree and clones, when possible 
(Supplementary Table 4). nt, nucleotide.
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the time points and some of the changes were significant (Extended 
Data Fig. 10a). To determine the number of infectious units per million  
(IUPM, http://silicianolab.johnshopkins.edu/), 6.0 × 107–6.2 × 108 
CD4+ T cells were assayed by Q2VOA for each time point for each  
individual (Fig. 4b). The difference between the two time points was 
never greater than 6.5-fold for any individual, and the IUPM values 
at the two time points were not statistically different (P = 0.078). 
Moreover, time to rebound was not directly correlated with IUPM 
(Extended Data Fig. 10c). Additional time points would be required 
to calculate the half-life of the reservoir in individuals who received 
immunotherapy27.

Discussion
First-generation anti-HIV-1 bNAbs were generally ineffective in sup-
pressing viraemia in animal models and humans leading to the con-
clusion that this approach should not be pursued17,18,28. The advent 
of new methods for anti-HIV-1 antibody cloning29 and subsequent 
discovery of a new, more potent generation of bNAbs revitalized this 
area of research30,31.

bNAb monotherapy with 3BNC117 or VRC01 is not enough to maintain  
control during ATI in HIV-1-infected humans9,11. Similar results 
were obtained in participant 9251 who effectively received 10-1074  
monotherapy due to pre-existing resistance to 3BNC117. By contrast 
the combination of 3BNC117 and 10-1074 is sufficient to maintain viral 
suppression in sensitive individuals when the concentration of both 
antibodies remains above of 10 μg ml−1 in serum. Rebound occurred 
when 3BNC117 levels dropped below 10 μg ml−1 effectively leading 
to 10-1074 monotherapy, from which viruses in nearly all individuals 
rapidly escaped by mutations in the 10-1074 contact site. The obser-
vation that nine individuals infected with distinct viruses were unable 
to develop viruses who were resistant to both antibodies over a median 
period of 21 weeks suggests that viral replication was severely limited 
by this combination of antibodies.

In human studies, monotherapy with 3BNC117 is associated with 
enhanced humoral immunity and accelerated clearance of HIV-1-
infected cells5,32. In addition, when administered early to macaques 
infected with the chimeric simian/human immunodeficiency virus 
SHIVAD8, combined 3BNC117 and 10-1074 immunotherapy induced 
host CD8+ T cell responses that contributed to the control of viraemia 
in nearly 50% of the animals3. However, virus-specific CD8+ T cells that 
were responsible for control of viraemia in these macaques were not 
detected in the circulation, and their contribution to viral suppression 
was only documented after CD8+ T cell depletion3. In most macaques 
that maintained viral control, complete viral suppression was only 
established after rebound viraemia that followed antibody clearance3.

Two individuals in this study remained suppressed for over 30 weeks 
after ATI, 9254 and 9255. Neither participant had detectable levels of 

ART in the blood or carried the B*27 and B*57 HLA alleles that are 
most frequently associated with elite control33. The first, 9254, reports 
starting ART within 4–5 months after probable exposure to the virus 
with an initial viral load of 860,000 copies per ml. Despite relatively 
early therapy, and excellent virological control for 21 years on therapy,  
this individual had an IUPM of 0.68 by Q2VOA at the 12-week time 
point (Extended Data Fig. 10b). The second individual, 9255, showed 
several viral blips that were spontaneously controlled beginning 
15 weeks after ATI when antibody levels were waning. This individual 
was infected for at least 7 months before starting ART with an initial  
viral load of 85,800 copies per ml and had an IUPM of 1.4 at the 
12-week time point. A small fraction of individuals on ART10 show
spontaneous prolonged virologic control after ART is discontinued,
and this number appears to increase when ART treatment is initiated 
during the acute phase of infection34–38. Whether antibody-enhanced 
CD8+ T cell responses contribute to the prolonged control in the two
out of nine individuals who received combination immunotherapy and 
whether this effect can be enhanced by latency reactivating agents or 
immune checkpoint inhibitors remains to be determined.

A substantial fraction of the circulating latent reservoir is composed 
of expanded clones of infected T cells24,26,39–42. These T cell clones 
appear to be dynamic in that the specific contribution of individual 
clones of circulating latently infected CD4+ T cells to the reservoir of 
individuals receiving ART fluctuates over time24,25. Individuals that 
maintain viral suppression by antibody therapy appear to show similar 
fluctuations in reservoir clones that do not appear to be associated 
with antibody sensitivity. Whether the apparent differences observed 
in the reservoir during immunotherapy lead to changes in the reservoir 
half-life cannot be determined from the available data and will require 
reservoir assessments in additional individuals at multiple time points 
over an extended observation period.

Individuals harbouring viruses sensitive to 3BNC117 and 10-1074 
maintained viral suppression during ATI for a median of almost four 
months after the final antibody administration. However, HIV-1 is a 
highly diverse virus with varying levels of sensitivity to specific bNAbs. 
As a result, maintenance therapy with just the combination of 3BNC117 
and 10-1074 would only be possible for the approximately 50% of clade 
B-infected individuals that are sensitive to both antibodies. This problem  
may be overcome by addition of or substitution with other antibod-
ies14,15,43, or long-acting small-molecule antiretroviral drugs.

In macaques, the therapeutic efficacy of anti-HIV-1 antibodies 
is directly related to their half-life4,12,13, which can be extended by  
mutations that enhance Fc domain interactions with the neonatal Fc 
receptor4,13,44. These mutations also increase the half-life of antibodies 
in humans by 2–4-fold45. Our data suggest that a single administration  
of combinations of bNAbs with extended half-lives could maintain  
suppression for 6–12 months in individuals harbouring sensitive viruses.
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viruses. a, Venn diagrams showing sequence identity between env 
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CD4+ T cells at weeks −2 and 12 as determined by Q2VOA. Participants 
with IUPMs that were higher and lower than 0.1 are shown at the top and 
bottom, respectively. Participant 9254 is not shown owing to lack of sample 
availability. The two time points were not statistically different (P = 0.078 
(paired Student’s t-test)).
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METHODS
Study design. An open-label phase 1b study was conducted in HIV-1-infected 
participants who were virologically suppressed on ART (http://www.clinicaltrials.
gov; NCT02825797; EudraCT: 2016-002803-25). Study participants were enrolled 
sequentially according to eligibility criteria. Participants received 3BNC117 and 
10-1074 intravenously at a dose of 30 mg kg−1 body weight of each antibody, at
weeks 0, 3 and 6, unless viral rebound occurred. ART was discontinued 2 days 
after the first infusion of antibodies (day 2). Plasma HIV-1 viral RNA levels were  
monitored weekly and ART was resumed if the viral load increased to ≥200 copies 
per ml or CD4+ T cell counts decreased to <350 cells per μl in two consecutive
measurements. Time to viral rebound was determined by the first of two consecutive 
viral loads of >200 copies per ml. Study participants were followed for 30 weeks 
after the first infusion. Safety data are reported until the end of study follow-up. 
All participants provided written informed consent before participation in the 
study and the study was conducted in accordance with Good Clinical Practice. 
The protocol was approved by the Federal Drug Administration in the USA, the 
Paul-Ehrlich-Institute in Germany, and the Institutional Review Boards (IRBs) at 
the Rockefeller University and the University of Cologne.
Study participants. Study participants were recruited at the Rockefeller University
Hospital, New York, USA, and the University Hospital Cologne, Cologne,
Germany. Eligible participants were adults aged 18–65 years, HIV-1-infected, on 
ART for a minimum of 24 months, with plasma HIV-1 RNA levels of <50 copies 
per ml for at least 18 months (one viral blip of >50 but <500 copies per ml during 
this 18-month period was allowed), plasma HIV-1 RNA levels <20 copies per 
ml at the screening visit, and a current CD4+ T cell count >500 cells per μl. In 
addition, participants were prescreened for sensitivity of latent proviruses against 
3BNC117 and 10-1074 by bulk PBMC viral outgrowth culture as described in 
‘Prescreening bulk PBMC cultures’. Sensitivity was defined as an IC50 < 2 μg ml−1

for both 3BNC117 and 10-1074 against outgrowth virus. Participants on an ART 
regimen that included a non-nucleoside reverse transcriptase inhibitor (NNRTI) 
were switched to an integrase inhibitor-based regimen (dolutegravir plus tenofovir 
disoproxil fumarate and emtricitabine) four weeks before treatment interruption 
due to the prolonged half-life of NNRTIs. Exclusion criteria included reported 
CD4+ T cell nadir of <200 cells μl−1, concomitant hepatitis B or C infection, previ-
ous receipt of monoclonal antibodies of any kind, clinically relevant physical find-
ings, medical conditions or laboratory abnormalities, and pregnancy or lactation.
Study procedures. 3BNC117 and 10-1074 were administered intravenously at a
dose of 30 mg kg−1. The appropriate stock volume of 3BNC117 and 10-1074 was 
calculated according to body weight and diluted in sterile normal saline to a total 
volume of 250 ml per antibody. Monoclonal antibody infusions were administered 
sequentially and intravenously over 60 min. Study participants were observed at 
the Rockefeller University Hospital or the University Hospital Cologne for 1 h after 
the last antibody infusion. Participants returned for weekly follow-up visits during 
the ATI period for safety assessments, which included physical examination and 
measurements of clinical laboratory parameters such as haematology, chemistries,  
urinalysis and pregnancy tests (for women). Plasma HIV-1 RNA levels were 
monitored weekly during the ATI period and CD4+ T cell counts were measured 
every 1–2 weeks. After ART was re-initiated, participants returned for follow-up 
every two weeks until viral re-suppression was achieved, and every eight weeks 
thereafter. Study investigators evaluated and graded adverse events according 
to the Division of AIDS (DAIDS) Table for Grading the Severity of Adult and 
Pediatric Adverse Events (version 2.0, November 2014) and determined causality.  
Leukapheresis was performed at the Rockefeller University Hospital or at the 
University Hospital Cologne at week –2 and week 12. Blood samples were collected 
before and at multiple times after 3BNC117 and 10-1074 infusions. Samples were 
processed within 4 h of collection, and serum and plasma samples were stored at 
−80 °C. PBMCs were isolated by density gradient centrifugation. The absolute 
number of PBMCs was determined using an automated cell counter (Vi-Cell XR; 
Beckman Coulter) or manually, and cells were cryopreserved in fetal bovine serum 
plus 10% DMSO.
Plasma HIV-1 RNA Levels. HIV-1 RNA levels in plasma were measured at the time
of screening, at week –2, day 0 (before infusion), weekly during ATI, and every two 
weeks to every eight weeks after viral rebound had occurred. HIV-1 RNA levels were 
determined using the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 Assay 
(version 2.0) or the Roche COBAS HIV-1 quantitative nucleic acid test (COBAS 
6800), which quantify HIV-1 RNA over a range of 2 × 101 to 1 × 107 copies per ml.
These assays were performed at LabCorp or at the University Hospital Cologne.
CD4+ T cells. CD4+ T cell counts were determined by clinical flow cytometry
assay, performed at LabCorp or at the University Hospital Cologne, at screening, 
week 0 (before infusion), weeks 2, 3, 5, 6, 8, 10, and weekly thereafter, while par-
ticipants remained off ART.
Determination of baseline neutralizing antibody activity. Purified IgG (Protein
G Sepharose 4 Fast Flow, GE Life Sciences) obtained before antibody infusions 
was tested against a panel of 12 HIV-1 pseudoviruses as described previously5.

Measurement of 3BNC117 and 10-1074 serum levels. Blood samples were  
collected before, at the end of each 3BNC117 infusion and at the end of each 
10-1074 infusion at weeks 0, 3 and 6, and weekly during the ATI period, up to
week 30. Serum levels of 3BNC117 and 10-1074 were determined by a TZM-bl 
assay and by ELISA from samples obtained before and after each antibody 
infusion, and approximately every three weeks during follow-up as well as at the 
time of viral rebound.

Serum concentrations of 3BNC117 and 10-1074 were measured by a validated 
sandwich ELISA. High-bind polystyrene plates were coated with 4 μg ml−1 of an 
anti-idiotypic antibody that specifically recognizes 3BNC117 (anti-ID 1F1-2E3 
monoclonal antibody) or 2 μg ml−1 of an anti-idiotypic antibody that specifically 
recognizes 10-1074 (anti-ID 3A1-4E11 monoclonal antibody), and incubated over-
night at 2–8 °C. After washing, plates were blocked with 5% Milk Blotto (w/v), 
5% NGS (v/v) and 0.05% Tween 20 (v/v) in PBS. Serum samples, quality controls 
and standards were added (1:50 minimum dilution in 5% Milk Blotto (w/v), 5% 
NGS (v/v) and 0.05% Tween 20 (v/v) in PBS) and incubated at room temperature.  
3BNC117 or 10-1074 were detected using a horseradish peroxidase (HRP)-
conjugated mouse anti-human IgG kappa-chain-specific antibody (Abcam) for 
3BNC117 or an HRP-conjugated goat anti-human IgG Fc-specific antibody for 
10-1074 (Jackson ImmunoResearch) and the HRP substrate tetra-methylbenzidine.  
3BNC117 and 10-1074 concentrations were then calculated from the standard 
curves of 3BNC117 or 10-1074 that were run on the same plate using a 5-PL 
curve-fitting algorithm (Softmax Pro, v.5.4.5). Standard curves and positive 
controls were created from the drug product lots of 3BNC117 and 10-1074 used 
in the clinical study. The capture anti-idiotypic monoclonal antibodies were 
produced using a stable hybridoma cell line (Duke Protein Production Facility6).
The lower limit of quantification for the 3BNC117 ELISA is 0.78 μg ml−1 and for 
the 10-1074 ELISA is 0.41 μg ml−1. The lower limit of detection was determined
to be 0.51 μg ml−1 and 0.14 μg ml−1 in HIV-1 seropositive serum for the 3BNC117
and 10-1074 ELISA, respectively. For values that were detectable (that is, positive 
for the monoclonal antibodies) but were below the lower limit of quantification, 
values are reported as <0.78 μg ml−1 and <0.41 μg ml−1 for 3BNC117 and 10-1074
ELISA, respectively. If day 0 baseline samples had measurable levels of antibody 
by the respective assays, the background measured antibody level was subtracted 
from subsequent results. In addition, samples with antibody levels measured to 
be within threefold from background were excluded from the analysis of pharma-
cokinetic parameters.

Serum concentrations of active 3BNC117 and 10-1074 were also measured 
using a validated luciferase-based neutralization assay in TZM-bl cells as previously 
described19. In brief, serum samples were tested using a primary 1:20 dilution with a 
fivefold titration series against HIV-1 Env pseudoviruses Q769.d22 and X2088_c9, 
which are highly sensitive to neutralization by 3BNC117 and 10-1074, respectively, 
while fully resistant against the other administered antibody. In the case of the 
post-infusion time points of 10-1074, instances for which the serum 50% inhibitory  
dilution (ID50) titres against X2088_c9 were >100,000, serum samples were also 
tested against a less sensitive strain, Du422 (Supplementary Table 2). To generate 
standard curves, clinical drug products of 3BNC117 and 10-1074 were included 
in every assay set-up using a primary concentration of 10 μg ml−1 with a fivefold 
titration series. Serum concentrations of 3BNC117 and 10-1074 for each sample 
were calculated as follows: serum ID50 titre (dilution) × 3BNC117 IC50 or 10-1074 
IC50 titre (μg ml−1) = serum concentration of 3BNC117 or 10-1074 (μg ml−1).  
Env pseudoviruses were produced using an ART-resistant backbone vector that 
reduces background inhibitory activity of antiretroviral drugs if present in the 
serum sample (SG3ΔEnv/K101P.Q148H.Y181C; M.S.S., unpublished data). Virus 
that was pseudotyped with the envelope protein of murine leukaemia virus (MuLV) 
was used as a negative control. Antibody concentrations were calculated using 
the serum ID80 titre and monoclonal antibody IC80 if non-specific activity against 
MuLV was detected (ID50 > 20; 9246, week 30; 9248, baseline, day 0, week 18). 
All assays were performed in a laboratory that meets Good Clinical Laboratory 
Practice standards.
Prescreening bulk PBMC cultures. To test HIV-1 viral strains for sensitivity to 
3BNC117 and 10-1074, we performed bulk viral outgrowth cultures by coculturing  
isolated CD4+ T cells with the MOLT-4/CCR-5 cell line (NIH AIDS Reagent 
Program, Ca. No. 4984) or CD8+ T cell-depleted healthy donor lymphoblasts. 
PBMCs for prescreening were obtained up to 72 weeks (range 54–505 days) before 
enrollment under separate protocols approved by the IRBs of the Rockefeller 
University and the University of Cologne. Sensitivity was determined by TZM-bl 
neutralization assay as described below. Culture supernatants with IC50 < 2 μg ml−1 
were deemed sensitive.
Quantitative and qualitative viral outgrowth assay. The Q2VOA was performed 
using isolated PBMCs from leukapheresis at week –2 and week 12 as previously 
described24. In brief, isolated CD4+ T cells were activated with 1 μg ml−1 phyto-
haemagglutinin (PHA; Life Technologies) and 100 U ml−1 IL-2 (Peprotech) and 
cocultured with 1 × 106 irradiated PBMCs from a healthy donor in 24-well plates. 

© 2018 Springer Nature Limited. All rights reserved.



ARTICLERESEARCH

A total of 6 × 107–6.2 × 108 cells were assayed for each individual at each of the two 
time points. After 24 h, PHA was removed and 0.1 × 106 MOLT-4/CCR5 cells were 
added to each well. Cultures were maintained for two weeks, splitting the MOLT- 4/
CCR5 cells in half seven days after the initiation of the culture and every other day 
after that. Positive wells were detected by measuring p24 by ELISA. The frequency 
of latently infected cells was calculated through the IUPM algorithm developed by 
the Siliciano laboratory (http://silicianolab.johnshopkins.edu).
Rebound outgrowth cultures. CD4+ T cells isolated from PBMCs from the 
rebound time points were cultured at limiting dilution exactly as described for 
Q2VOA. CD4+ T cells were activated with T cell activation beads (Miltenyi) at 
a concentration of 0.5 × 106 beads per 106 CD4+ T cells and 20 U ml−1 of IL-2. 
Rebound outgrowth cultures were performed using PBMCs from the highest viral 
load sample (usually the repeat measurement ≥200 copies per ml). Viruses for 
which the sequences matched the SGA env sequences, and therefore were identical 
to those present in plasma, as opposed to potentially reactivated PBMC-derived 
latent reservoir viruses, were selected to test for neutralization.
Viral sensitivity testing. Supernatants from p24-positive bulk PBMC cultures, 
rebound PBMC outgrowth cultures and Q2VOA wells were tested for sensitivity to 
3BNC117 and 10-1074 by TZM-bl neutralization assay as previously described19.
Sequencing. HIV-1 RNA extraction and single-genome amplification was 
performed as previously described46. In brief, HIV-1 RNA was extracted 
from plasma samples or Q2VOA-derived virus supernatants using the 
MinElute Virus Spin kit (Qiagen) followed by first-strand cDNA synthesis  
using SuperScript III reverse transcriptase (Invitrogen). cDNA synthesis  
for plasma-derived HIV-1 RNA was performed using the antisense primer 
envB3out 5′-TTGCTACTTGTGATTGCTCCATGT-3′. gp160 was amplified 
using envB5out 5′-TAGAGCCCTGGAAGCATCCAGGAAG-3′ and envB3out  
5′-TTGCTACTTGTGATTGCTCCATGT-3′ in the first round and in the  
second round with nested primers envB5in 5′-CACCTTAGGCATCTCCTAT 
GGCAGGAAGAAG-3′ and envB3in 5′-GTCTCGAGATACTGCTCCCACCC-3′. 
PCRs were performed using High Fidelity Platinum Taq (Invitrogen) and run at 
94 °C for 2 min; 35 cycles of 94 °C for 15 s, 55 °C for 30 s and 68 °C for 4 min; and 
68 °C for 15 min. Second-round PCR was performed with 1 μl of the PCR product  
from the first round as template and High Fidelity Platinum Taq at 94 °C for 2 min; 
45 cycles of 94 °C for 15 s, 55 °C for 30 s and 68 °C for 4 min; and 68 °C for 15 min. 
cDNA synthesis for Q2VOA-derived HIV-1 RNA was performed using the anti-
sense primer R3B6R 5′-TGAAGCACTCAAGGCAAGCTTTATTGAGGC-3′. 
The env 3′ half-genome was amplified in a single PCR using B3F3 primer 
5′-TGGAAAGGTGAAGGGGCAGTAGTAATAC-3′ and R3B6R primer 
5′-TGAAGCACTCAAGGCAAGCTTTATTGAGGC-3′. PCR was performed 
using High Fidelity Platinum Taq and run at 94 °C for 2 min; 45 cycles of 94 °C for 
15 s, 55 °C for 30 s and 68 °C for 5 min; and 68 °C for 15 min.
Pseudovirus generation. Selected single genome sequences from out-
growth culture supernatants and plasma were used to generate pseudovi-
ruses that were tested for sensitivity to bNAbs in a TZM-bl neutralization 
assay. To produce the pseudoviruses, plasmid DNA containing the cytomeg-
alovirus (CMV) promoter was amplified by PCR using forward primer 
5′-AGTAATCAATTACGGGGTCATTAGTTCAT-3′ and reverse primer 
5′-CATAGGAGATGCCTAAGCCGGTGGAGCTCTGCTTATATAGACCTC-3′. 
Individual env amplicons were amplified using forward primer 5′-CACC 
GGCTTAGGCATCTCCTATGGCAGGAAGAA-3′ and reverse primer 
5′-GTCTCGAGATACTGCTCCCACCC-3′. The CMV promoter amplicon 
was fused to individual purified env amplicons by PCR using forward primer 
5′-AGTAATCAATTACGGGGTCATTAGTTCAT-3′ and reverse primer 
5′-ACTTTTTGACCACTTGCCACCCAT-3′. Overlapping PCR was carried out 
using the High Fidelity Platinum Taq (Invitrogen) in a 50-μl reaction consisting 
of 1 ng purified CMV promoter amplicon, 0.125 μl purified env SGA amplicon, 
400 nM each forward and reverse primers, 200 μM dNTP mix, 1× Buffer HiFi and 

1 μl DNA polymerase mix. PCR was run at 94 °C for 2 min; 25 cycles of 94 °C for 12 s, 
55 °C for 30 s and 68 °C for 4 min; and 72 °C for 10 min. Resulting amplicons were 
analysed by gel electrophoresis, purified by gel extraction, and cotransfected with 
pSG3∆env into HEK293T cells to produce pseudoviruses as described previously47.
Sequence and phylogenetic analysis. Nucleotide alignments of intact env 
sequences were translation-aligned using ClustalW v.2.148 under the BLOSUM cost 
matrix. Sequences with premature stop codons and frameshift mutations that fell in 
the gp120 surface glycoprotein region were excluded from all analyses. Maximum 
likelihood phylogenetic trees were then generated from these alignments with 
PhyML v.3.149 using the GTR model with 1,000 bootstraps. For the combined 
analysis of sequences from all participants, env sequences were aligned using 
MAFFT v.7.309 and clustered using RAxML v.8.2.950 under the GTRGAMMA 
model with 1,000 bootstraps. To analyse changes between reservoir and rebound 
viruses, env sequences were aligned at the amino acid level to a HXB2 reference 
using ClustalW v.2.1.
Statistical analyses. For sample size considerations, one-sided Clopper-Pearson 
confidence intervals were calculated for varying number of observed rebounds. A 
sample size of 15 HIV-1 infected individuals was determined to allow for the rejection  
of the null hypothesis (rate = 0.85) with 80% power for an effect size equal to or 
higher than 0.33, if at least 6 out of 15 enrolled participants did not experience viral 
rebound by week 8 (2 weeks after the last antibody infusions). Pharmacokinetic 
parameters were estimated by performing a non-compartmental analysis using 
Phoenix WinNonlin Build 8 (Certara), using all available PK data starting with 
the time point after the last infusion of 10-1074 from either TZM-bl assay (using 
the X2088_c9 pseudovirus to determine 10-1074 levels) or ELISA, and compared 
by a two-tailed unpaired Student’s t-test. CD4+ T cell counts on day 0 and at the 
time of viral rebound were compared by two-tailed paired Student’s t-test. IUPMs 
determined at week –2 and week 12 were compared using a two-tailed paired 
Student’s t-test. Time to rebound in current trial participants (combination therapy 
with 3BNC117 and 10-1074), participants receiving 3BNC117 monotherapy9 and 
participants in previous non-interventional ATI studies conducted by ACTG10 
were plotted using Kaplan–Meier survival curves. Potential correlation between 
IUPM and time to rebound was analysed by two-tailed Pearson’s correlations.
Recombination analysis of env sequences. Multiple alignment of nucleotide 
sequences guided by amino acid translations of env sequences was performed 
by TranslatorX (http://translatorx.co.uk/). Latent and rebound sequences were 
analysed for the presence of recombination using the 3SEQ recombination algo-
rithm (http://mol.ax/software/3seq/). Sequences that showed statistical evidence 
of recombination (rejection of the null hypothesis of clonal evolution) in which 
‘parent’ sequences were derived from the latent reservoir and the ‘child’ sequence 
was a rebound sequence are represented in a circos plot (http://circos.ca/).
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
The sequences from all isolated viruses are available in GenBank, accession num-
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108   Bulk viral outgrowth  
   cultures pre-screened

14 3BNC117 and 10-1074
25 3BNC117 only
17 10-1074 only

IC50 ≥ 2 μg/ml 

56 Antibody IC50s ≥ 2 μg/ml 
against bulk outgrowth virus

52 Antibody IC50s < 2 μg/ml 
against bulk outgrowth virus

8 Not interested in participating
5 No show
4 Comorbidities

28 Not considered for 
trial screening procedure

3 Low CD4+ T cell nadir
2 ART suppression < 18 months
2 Did not reach IC80 for 10-1074
2 Enrolled in another study
1 Previous participation in 

CD4-CCR5 ZFN trial
1 Low WBC24 Participated in trial 

sceening procedure

15 Received investigational 
products

15 Completed dosing 
regimen per protocol

9 Screening Failures

3 Abnormal LFTs
3 No longer interested
1 Viral blips in past 18 months
1 HIV-1 RNA > 20 copies/ml

at screening
1 Low CD4+ T cell count

a

b

ID Age Gender Race IC50 IC80 IC50 IC80 Scr Wk -2 d0

9241 40 M White/Hisp 6 5 5 EVG/cobi/    
TDF/FTC - 500 n.d. 0.809 2.212 0.090 0.243 515 <20 <20 <20 21

9242 43 M White/Hisp 3 3 2 EVG/cobi/    
TDF/FTC - 450 n.d. 0.160 0.433 0.144 0.389 654 <20 <20 <20 15

9243 29 M Amer 
Indian/Hisp 5 5 5 RPV/TDF/FTC DTG/TDF/ 

FTC 350 n.d. 0.641 2.913 0.072 0.241 583 <20 <20 D <20 D 20

9244 36 M Amer 
Indian/not Hisp 9 5 5 EFV/TDF/FTC DTG/TDF/ 

FTC 730 n.d. 0.277 0.966 0.025 0.068 1,110 <20 <20 <20 21

9245 22 M White/Hisp 5 5 5 EVG/cobi/    
TAF/FTC - 360 n.d. 0.417 1.423 0.038 0.089 736 <20 <20 <20 5

9246 30 M Black 5 5 5 EVG/cobi/    
TAF/FTC - 500 n.d. 0.144 0.387 0.040 0.105 745 <20 <20 <20 D 19

9247 31 M Black 6 6 6 EVG/cobi/    
TAF/FTC - 600 n.d. 0.556 1.930 0.072 0.326 728 <20 <20 <20 26

9248 52 M White 11 11 11 DRV/RTV/   
TAF/FTC - 310 n.d. 1.863 9.738 0.676 2.252 730 <20 D <20 D 58 12

9249 49 M White 23 20 6 DRV/RTV    
ABC/3TC - 426 n.d. 0.562 2.095 0.260 0.983 860 <20 D <20 D 32 3

9250 55 M White 7 5 5 EVG/cobi/    
TAF/FTC - 350 n.d. 0.558 3.174 0.447 2.644 550 <20 40 50 6

9251 40 M Black 6 2 2 EVG/cobi/    
TDF/FTC - 1,000 n.d. 1.200 3.125 0.073 0.153 672 <20 <20 <20 7

9252 51 F Black 11 11 11 EFV/TDF/FTC DTG/TDF/ 
FTC 270 n.d. 0.630 3.074 0.243 0.640 598 <20 <20 <20 22

9253 41 M White 5 2 2 DTG/TAF/FTC - 387 n.d. 0.558 2.644 0.020 0.317 950 <20 41 <20 D 5

9254 48 M White 21 21 21 EVG/cobi/    
TAF/FTC - 590 A1,29  

B38,44 0.142 0.386 0.085 0.240 860 <20 <20 <20 >30

9255 30 M White 5 4 4 EVG/cobi/    
TAF/FTC - 779 A3,25  

B18,44 0.324 0.833 0.006 0.015 1,360 <20 <20 D <20 >30

Weeks 
to viral 

rebound

Uninterr. 
ART before 

ATI (yrs)
ART at 

Screening*
Switched 

ART**

3BNC117 10-1074Reported 
CD4 
nadir

HLA
alleles

Pre-Screen Sensitivity (μg/ml)***Years since

HIV-1 
dx

first 
ART

CD4 
count  
(d0)

HIV-1 RNA (cp/ml)#

Extended Data Fig. 1 | Study participant selection and demographics.  
a, Flow diagram indicating the selection of study participants.  
b, Individual participant demographics and baseline clinical 
characteristics. Grey-shaded rows indicate participants who were found 
to have detectable viraemia (HIV-1 viral load of >20 copies ml−1) at week 
−2 or day 0. These participants were not included in the efficacy analyses 
given the lack of viral suppression at baseline. Amer Indian, American 
Indian; Hisp, Hispanic. *3TC, lamivudine; ABC, abacavir; cobi, cobicistat; 
DRV, darunavir; DTG, dolutegravir; EFV, efavirenz; EVG, elvitegravir; 

FTC, emtricitabine; RPV, rilpivirine; RTV, ritonavir; TAF, tenofovir 
alafenamide fumarate; TDF, tenofovir disoproxil fumarate. **NNRTI-
based regimens were switched four weeks before ART interruption due 
to longer half-lives of NNRTIs. ***Pre-screening of bulk outgrowth 
virus obtained from PBMC cultures by TZM-bl assay. #All participants 
harboured clade B viruses. Viral load <20 D, plasma HIV-1 RNA detected 
but not quantifiable by clinical assay. d0, day 0; Dx, diagnosis; Scr, 
screening; Wk −2, week −2.

© 2018 Springer Nature Limited. All rights reserved.
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t1/2 = 23.2 d

14 (93%)
40 (22-55)

White non-Hispanic 6 (40.0%)
Black non-Hispanic 4 (26.7%)
Hispanic, regardless of race 4 (26.7%)
Multiple, non-Hispanic 1 (6.7%)

6 (3-23)

< 20 copies/ml   (screen) 15 (100%)
< 20 copies/ml   (week -2 and day 0) 11 (73%)

Day 0 730 (515-1,360)
Reported nadir 450 (270-1,000)

First ART 5 (2-21)
Uninterrupted ART 5 (2-21)

Integrase inhibitor-based 10 (66.7%)
NNRTI-based 3 (20.0%)
Protease inhibitor-based 2 (13.3%)

Male sex - n  (%)
Age - Median years (range) 
Race or ethnicity - n  (%)

HIV-1 RNA level prior to ATI - n  (%)

 Baseline characteristics of participants (n=15)

Years since HIV-1 diagnosis - Median (range)
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ART regimen at screening – n  (%)
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Extended Data Fig. 2 | Demographics, CD4+ T cells during study 
period in participants and pharmacokinetics of 3BNC117 and 10-1074. 
a, Baseline participant demographics. b, Absolute CD4+ T cell counts and 
percentage of CD4+ T cells among CD3+ T cells at screening (n = 15), day 
0 (n = 15), at the time of viral rebound (n = 13) and at the end of the study 
are shown (n = 15) (see also Supplementary Table 2). The last available 
time point after resuppression was used as end of the study time point for 
the participants that reinitiated ART. Red lines indicate mean, error bars 
indicate standard deviation and individual participants are shown as dots. 
P values were obtained using a two-tailed paired Student’s t-test comparing 
CD4+ T cell counts between day 0 and the time of viral rebound.  
c, d, 3BNC117 (red) and 10-1074 (blue) levels in serum (n = 15) as 
determined by TZM-bl assay (c) and ELISA (d). In cases in which 
participants only received 2 infusions due to early viral rebound (9245, 

9249 and 9253), only antibody concentrations up to the second infusion 
were included. Half-life of each bNAb is indicated in days. Curves  
indicate mean serum antibody concentrations and error bars represent 
standard deviation. Red and blue triangles indicate 3BNC117 and  
10-1074 infusions, respectively. c, In the TZM-bl assay, lower limits of 
quantification were 0.46 μg ml−1 and 0.10 μg ml−1 for 3BNC117 and
10-1074, respectively. d, In the ELISA, lower limits of detection were 
0.78 μg ml−1 and 0.41 μg ml−1, respectively. e, f, Half-lives of both
antibodies as measured by TZM-bl assay (e) and ELISA (f). Each dot
represents a single participant. The half-lives of both antibodies from 
the 15 participants enrolled in the study are represented. Black lines 
indicate the mean value and standard deviation (n = 15). P values were
obtained using a two-tailed unpaired Student’s t-test comparing the two 
antibodies.
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Extended Data Fig. 3 | Phylogenetic tree of viruses from all enrolled 
participants. Maximum likelihood phylogenetic trees of full-length env 
sequences containing all sequences obtained from Q2VOA cultures and 
rebound viruses from SGA or rebound outgrowth of the 15 participants 
enrolled in the study. Participants are indicated by individual colours.
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Extended Data Fig. 4 | Viral rebound, amino acid variants at 10-1074 
contact sites and sensitivities of latent and rebound viruses in the 
participants with detectable viraemia (>20 copies per ml) two weeks 
before or at the start of ATI. a, Plasma HIV-1 RNA levels (black; left  
y axis) and bNAb serum concentrations (3BNC117, red; 10-1074, blue; 
right y axis). Red and blue triangles indicate 3BNC117 and 10-1074 
infusions, respectively. Serum antibody concentrations were determined 
by TZM-bl assay. Grey-shaded areas indicate time on ART. Lower limit 
of detection of HIV-1 RNA was 20 copies per ml. b, Kaplan–Meier plots 
summarizing time to viral rebound. The y axis shows the percentage of 
participants that maintained viral suppression. The x axis shows the time 
in weeks after the start of ATI. Participants receiving the combination  
of 3BNC117 and 10-1074 are indicated by the blue line (n = 4). The dotted 
red line indicates a cohort of individuals receiving 3BNC117 alone  
during ATI9 (n = 13) and the dotted black line indicates a cohort  
of participants who underwent ATI without any intervention10 (n = 52). 
c, Colour charts show Env contact sites of 10-1074 at the G(D/N)IR motif 
(positions 324–327, according to HXB2 numbering) and the glycan at 
the potential N-linked glycosylation site at position 332 (NxS/T motif at 
positions 332–334). LR, latent reservoir viruses isolated by Q2VOA  

(week −2); RB, rebound viruses isolated by SGA (plasma) or viral 
outgrowth (PBMCs). Each amino acid is represented by a colour and the 
frequency of each amino acid is indicated by the height of the rectangle. 
Shaded rectangles indicate the lack of variation between latent reservoir 
and rebound viruses at the indicated position. Full-colour rectangles 
represent amino acid residues with changes in distribution between 
reservoir and rebound viruses. d, Dot plots showing the IC80 (μg ml−1) 
of 3BNC117 (left) and 10-1074 (right) against latent and rebound viruses 
determined by TZM-bl neutralization assay. Q2VOA-derived latent 
viruses from week −2 are shown as black circles. For outgrowth culture-
derived rebound viruses, the highest IC80 determined is shown as red 
circle. For 9250 and 9253, no viruses could be obtained from rebound 
outgrowth cultures and pseudoviruses were made from env sequences of 
the latent reservoir (Q2VOA) and rebound viruses (plasma SGA). Note 
that 9249 and 9253 had pre-existing resistant viruses in the reservoir 
(IC50 > 2 μg ml−1). 9248 and 9250 had pre-existing viruses that failed to 
reach an IC100 when tested up to 50 μg ml−1 for 3BNC117 (Extended Data 
Fig. 5). Rebound viruses of all four participants had an IC80 or IC100 of 
>50 μg ml−1 for both 3BN117 and 10-1074.
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Extended Data Fig. 5 | Phylogenetic env trees and TZM-bl 
neutralization curves for individuals with viral blips. a, Circulating 
reservoir and viral rebound in study participants with detectable viraemia 
at week −2 or day 0. Maximum likelihood phylogenetic trees of full-
length env sequences of viruses isolated from week −2 Q2VOA cultures, 
rebound plasma SGA and rebound outgrowth from the four participants 
with viral blips. Open black rectangles indicate Q2VOA-derived viruses 
from week −2. Viruses obtained at the time of rebound are indicated by 
red rectangles (plasma SGA) and red stars (rebound PBMC outgrowth 
cultures), respectively. Asterisks indicate nodes with significant bootstrap 
values (bootstrap support ≥70%). Clones are denoted by coloured lines. 
Boxes indicate IC80 values (μg ml−1) of 3BNC117 and 10-1074 against 

individual clones, with asterisks indicating IC100 > 50 μg ml−1. b, Latent 
reservoir virus TZM-bl neutralization curves for two participants that 
had a viral load of >20 copies per ml at day 0 (9248 and 9250). Curves 
show neutralization titres by 3BNC117 (blue), 10-1074 (red) and other 
bNAbs, when available, for week −2 Q2VOA-derived viruses present in 
the circulating reservoir. Three representative viruses from 9248 (left) and 
9250 (right) are shown. Although these viruses had low 3BNC117 and 
10-1074 IC50 or IC80 titres, the IC100 (black dotted line) is reached only
at a high concentration or not reached at all. The neutralization titre was 
measured by TZM-bl neutralization assay using a five-parameter curve fit 
method.
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Extended Data Fig. 6 | Amino acid variants at 3BNC117 contact 
sites of reactivated latent and rebound viruses. Colour charts show 
3BNC117 contact sites in Env according to HXB2 numbering. Diagram 
shows the 13 participants that experienced viral rebound before week 
30. LR, latent reservoir viruses isolated by Q2VOA (on weeks −2 and 12
when available); RB, rebound viruses isolated by SGA (plasma) and viral 

outgrowth (PBMCs). Each amino acid is represented by a colour and the 
frequency of each amino acid is indicated by the height of the rectangle. 
Shaded rectangles indicate the lack of variation and full-colour rectangles 
represent amino acid residues with changes in the distribution between the 
reservoir and rebound.
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Extended Data Fig. 7 | Comparison of the circulating latent reservoir 
and rebound viruses. Maximum likelihood phylogenetic trees of 
full-length env sequences of viruses isolated from Q2VOA, rebound 
plasma SGA and rebound PBMC outgrowth cultures from participants 
9241, 9244, 9246 and 9247, who rebounded before week 30. Open and 
closed black rectangles indicate Q2VOA-derived viruses from week −2 
and week 12, respectively. Viruses obtained at the time of rebound are 

indicated by red rectangles (plasma SGA) and red stars (rebound PBMC 
outgrowth cultures). Asterisks indicate nodes with significant bootstrap 
values (bootstrap support ≥70%). Clones are denoted by coloured lines 
mirroring the colours of slices in Extended Data Fig. 10a. Boxes indicate 
IC80 values (μg ml−1) of 3BNC117 and 10-1074 against representative 
viruses throughout the phylogenetic tree and clones, when possible 
(Supplementary Table 4). Asterisks in boxes indicate IC100 > 50 μg ml−1.
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Extended Data Fig. 8 | Recombination events in rebound viruses.  
a, Maximum likelihood phylogenetic trees of full-length env sequences 
of viruses isolated from Q2VOA cultures and rebound SGA in the four 
participants for whom rebound viruses showed recombination events. 
Open and closed black rectangles indicate Q2VOA-derived viruses from 
week −2 and week 12, respectively. Rebound plasma SGA- or outgrowth-
derived viruses are indicated by closed red rectangles. Green stars 

represent parent sequences that underwent recombination to produce 
the child sequences (red stars). b, Circos plots indicating the relationship 
between the parent sequences and the recombinants. Open and closed 
black rectangles indicate Q2VOA-derived sequences from week −2 and 
week 12, respectively. Rebound virus sequences are indicated by red 
rectangles. The thickness of the black outer bars represents the number of 
sequences obtained from that particular clone.
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Extended Data Fig. 9 | Phylogenetic trees of participants 9245, 9251, 
9254 and 9255. Maximum likelihood phylogenetic trees of full-length 
env sequences of viruses isolated from Q2VOA cultures and rebound 
plasma SGA and rebound outgrowth from the two participants (9245 
and 9251) with pre-existing resistance to one of the two antibodies and 
the two sensitive participants (9254 and 9255) who maintained viral 
suppression for >30 weeks (end of the study). Open and closed black 

rectangles indicate Q2VOA-derived viruses from week −2 and week 12, 
respectively. Rebound plasma SGA viruses are indicated by closed red 
rectangles. Asterisks indicate nodes with significant bootstrap values 
(bootstrap support ≥ 70%). Clones are denoted by coloured lines beside 
the phylogenetic tree. Numbers correspond to 3BNC117 and 10-1074 IC80 
neutralization titres.
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Extended Data Fig. 10 | Clonal distribution of the circulating latent 
reservoir and IUPM changes. a, Pie charts depicting the distribution of 
Q2VOA-derived env sequences obtained at weeks −2 (W−2) and week 12 
(W12). Number in the inner circle indicates the total number of analysed 
env sequences. White represents sequences isolated only once across both 
time points and coloured slices represent identical sequences that appear 
more than once (clones). The size of each pie slice is proportional to the 

size of the clone. Red arrows denote clones that significantly change in size 
(P ≤ 0.05 (two-sided Fisher’s exact test)) between the two time points.  
b, Summary of clonal env sequences and IUPM in the nine individuals 
with an antibody-sensitive reservoir. c, IUPM versus time of viral rebound 
in the antibody-sensitive individuals (n = 7) who rebounded within the 
study observation period (30 weeks). P values were obtained using a  
two-tailed Pearson correlation test comparing the two variables.



A.4 Manuscript 4

A.4 Manuscript 4

Title:

Safety and antiviral activity of combination HIV-1 broadly neutralizing

antibodies in viremic individuals

Authors:

Yotam Bar-On, Henning Gruell, Till Schoofs, Joy A. Pai, Lilian Nogueira, Allison

L. Butler, Katrina Millard, Clara Lehmann, Isabelle Suárez, Thiago Y. Oliveira,

Theodora Karagounis, Yehuda Z. Cohen, Christoph Wyen, Stefan Scholten, Lisa

Handl, Shiraz Belblidia, Juan P. Dizon, Jörg J. Vehreschild, Maggi Witmer-Pack,

Irina Shimeliovich, Kanika Jain, Kerstin Fiddike, Kelly E. Seaton, Nicole L. Yates,

Jill Horowitz, Roy M. Gulick, Nico Pfeifer, Georgia D. Tomaras, Michael S. Sea-

man, Gerd Fätkenheuer, Marina Caskey, Florian Klein & Michel C. Nussenzweig

Published in:

Nature Medicine, Volume 24, Pages 1701�1707

https://doi.org/10.1038/s41591-018-0186-4

Time of Publication:

September 2018

License information:

As part of their editorial policies, Springer Nature allows authors to reuse the ver-

sion of record of their article published in any Nature portfolio journal in their own

dissertation without obtaining an additional, explicit written permission (https://

www.nature.com/nature-portfolio/editorial-policies/self-archiving-and-

license-to-publish).

103

https://doi.org/10.1038/s41591-018-0186-4
https://www.nature.com/nature-portfolio/editorial-policies/self-archiving-and-license-to-publish
https://www.nature.com/nature-portfolio/editorial-policies/self-archiving-and-license-to-publish
https://www.nature.com/nature-portfolio/editorial-policies/self-archiving-and-license-to-publish




LETTERS
https://doi.org/10.1038/s41591-018-0186-4

1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA. 2Laboratory of Experimental Immunology, Institute of Virology, 

University Hospital Cologne, Cologne, Germany. 3Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany. 4German Center for 

Infection Research, Partner Site Bonn–Cologne, Cologne, Germany. 5Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, 

Germany. 6Praxis am Ebertplatz, Cologne, Germany. 7Praxis Hohenstaufenring, Cologne, Germany. 8Methods in Medical Informatics, Department of 

Computer Science, University of Tübingen, Tübingen, Germany. 9Duke Human Vaccine Institute, Duke University, Durham, NC, USA. 10Division of Infectious 

Diseases, Weill Cornell Medicine, New York, NY, USA. 11Medical Faculty, University of Tübingen, Tübingen, Germany. 12German Center for Infection 

Research, Partner Site Tübingen, Tübingen, Germany. 13Max Planck Institute for Informatics, Saarbrücken, Germany. 14Departments of Surgery, Immunology 

and Molecular Genetics and Microbiology, Duke University, Durham, NC, USA. 15Center for Virology and Vaccine Research, Beth Israel Deaconess Medical 

Center, Harvard Medical School, Boston, MA, USA. 16Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA. 17These authors 

contributed equally: Yotam Bar-On, Henning Gruell.18These authors jointly supervised this work: Marina Caskey, Florian Klein, Michel C. Nussenzweig. 

*e-mail: mcaskey@rockefeller.edu; florian.klein@uk-koeln.de; nussen@rockefeller.edu

Monotherapy of HIV-1 infection with single antiretroviral 
agents is ineffective because error-prone HIV-1 replication 
leads to the production of drug-resistant viral variants1,2. 
Combinations of drugs can establish long-term control, how-
ever, antiretroviral therapy (ART) requires daily dosing, can 
cause side effects and does not eradicate the infection3,4. 
Although anti-HIV-1 antibodies constitute a potential alterna-
tive to ART5,6, treatment of viremic individuals with a single 
antibody also results in emergence of resistant viral vari-
ants7–9. Moreover, combinations of first-generation anti-HIV-1 
broadly neutralizing antibodies (bNAbs) had little measur-
able effect on the infection10–12. Here we report on a phase 
1b clinical trial (NCT02825797) in which two potent bNAbs, 
3BNC11713 and 10-107414, were administered in combination 
to seven HIV-1 viremic individuals. Infusions of 30�mg�kg−1 of 
each of the antibodies were well-tolerated. In the four indi-
viduals with dual antibody-sensitive viruses, immunotherapy 
resulted in an average reduction in HIV-1 viral load of 2.05 
log10 copies per ml that remained significantly reduced for 
three months following the first of up to three infusions. In 
addition, none of these individuals developed resistance to 
both antibodies. Larger studies will be necessary to confirm 
the efficacy of antibody combinations in reducing HIV-1 vire-
mia and limiting the emergence of resistant viral variants.

3BNC117 and 10-1074 are potent bNAbs that target the CD4 
binding site and the base of the V3 loop on the HIV-1 envelope 
spike, respectively13,14. Infusion of the combination of 3BNC117 and 

10-1074 during ART interruption maintains suppression of viremia 
and prevents the emergence of resistant variants15.

Controlling infection in viremic individuals represents a much 
more difficult problem than maintaining suppression in ART-treated 
individuals undergoing treatment interruption simply because of 
the large diversity of circulating HIV-1 variants that are present dur-
ing active infection. Thus, although monotherapy with any one of 
three different bNAbs reduced viremia by 1.1–1.5 log10 copies per 
ml, these effects were transient and superseded by the emergence of 
antibody-resistant viral variants7–9. To determine whether the com-
bination of 3BNC117 and 10-1074 is safe and results in improved 
antiviral activity against HIV-1 compared to monotherapy, we con-
ducted a phase 1b trial in viremic individuals (Fig. 1a).

Viremic participants were selected from a cohort that was 
screened for sensitivity to 3BNC117 and 10-1074 by TZM-bl cell 
neutralization assays performed on viruses derived from bulk CD4+ 
T cell outgrowth cultures16 (Supplementary Fig. 1). In agreement 
with previous reports, 67 and 58% of the individuals tested showed 
half-maximum inhibitory concentration (IC50) values of < 2 μ g ml−1 
to 3BNC117 and 10-1074, respectively, and 40% were sensitive to 
both8,17,18 (Supplementary Table 1). The seven viremic participants 
had been diagnosed with HIV-1 infection for a median of five years 
and had a geometric mean viral load of 11,494 copies per ml on the 
day of the first infusion (Fig. 1b and Supplementary Tables 2, 3). In 
addition, eight individuals on ART with viral loads below the limit of 
detection were included for safety and pharmacokinetic assessments 
(Fig. 1a, Supplementary Fig. 1 and Supplementary Tables 2, 3).

Safety and antiviral activity of combination 
HIV-1 broadly neutralizing antibodies in viremic 
individuals
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Participants received either a single intravenous infusion of 
3BNC117 and 10-1074 at a dose of 30 mg kg−1 per antibody, or three 
infusions of 30 mg kg−1 per antibody every two weeks (Fig. 1a). 
Viral loads, antibody serum levels, CD4+ T cell counts and clini-
cal parameters were monitored for 24 weeks after the last antibody 
infusion (Fig. 1 and Supplementary Tables 3, 4).

Administration of both antibodies was well-tolerated. No serious 
adverse events or treatment-related adverse events graded as mod-
erate or severe were observed (Supplementary Table 4). CD4+ T cell 

counts did not change significantly during the observation period 
(Supplementary Fig. 2 and Supplementary Table 3). We conclude 
that the combination of 3BNC117 and 10-1074 is generally safe and 
well-tolerated.

3BNC117 and 10-1074 antibody levels in serum were determined 
via enzyme-linked immunosorbent assays (ELISAs) using anti-idio-
typic antibodies and the TZM-bl assay, which measures the neutral-
izing activities of the antibodies in serum. In viremic individuals, 
the half-lives of 3BNC117 and 10-1074 were 11.1 and 12.2 days 
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Fig. 1 | Study design and pharmacokinetics of 3BNC117 and 10-1074 in HIV-1-infected individuals. a, Schematic representation of the study design. 

i.v., intravenous. b, Baseline demographics of study participants. c, Serum concentrations (μ g�ml−1) of 3BNC117 (red) and 10-1074 (blue) in viremic 

individuals after a single infusion (top) and three infusions given every two weeks (bottom) of 3BNC117 and 10-1074 (30�mg�kg−1 of each antibody). bNAb 

concentrations were determined by TZM-bl assay (left) and ELISA (right). Lines indicate arithmetic mean concentration and standard deviation. Dotted 

grey lines indicate lower limits of quantitation (TZM-bl, 0.46�μ g�ml−1 and 0.1�μ g�ml−1 for 3BNC117 and 10-1074, respectively; ELISA, 0.78�μ g�ml−1 and  
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when measured using ELISA, and 8.5 and 11.5 days when deter-
mined by the TZM-bl assay, respectively (Fig. 1, Supplementary 
Figs. 3, 4 and Supplementary Tables 3, 5). In ART-treated individu-
als, half-lives of 3BNC117 and 10-1074 were 14.5 and 19.0 days as 
measured using ELISA, and 11.5 and 18.4 days in the TZM-bl assay, 
respectively (Supplementary Figs. 3, 4 and Supplementary Table 5). 
Viremic individuals generally showed lower antibody half-lives than 
individuals on ART with suppressed viral loads, possibly owing to 

an antigen sink effect7,8,19. Overall, these values are consistent with 
the results obtained when both antibodies were administered indi-
vidually7,8,17 (Supplementary Fig. 3). Thus, pharmacokinetics of 
3BNC117 and 10-1074 do not appear to be altered when the anti-
bodies are administered in combination.

Plasma HIV-1 RNA levels were measured on a weekly basis for 
four weeks after antibody infusions and every 2–4 weeks thereafter 
(Fig. 2a–c, Supplementary Fig. 4 and Supplementary Table 3). The 
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Fig. 2 | Viral load following 3BNC117/10-1074 infusions in HIV-1-infected participants. a–c, Changes in viremia and bNAb serum concentrations in HIV-1-

infected participants showing late rebound (a), early rebound (b) or no response (c) after 3BNC117 and 10-1074 combination therapy. Top, HIV-1 RNA in 
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d–f, Simultaneous confidence band estimation to determine time of significant suppression (red dotted lines) of HIV-1 viremia in all viremic participants 

(d; n�= �7, participants shown in a–c), individuals harboring 3BNC117- and 10-1074-sensitive viruses (e; n�= �4, participants shown in a), and participants 
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average drop in viral load for all viremic individuals was 1.65 log10 
copies per ml and viremia remained significantly reduced until day 
86 (Fig. 2d). The four individuals with sensitive viruses (see below) 
showed a more pronounced drop in viral load compared to the 
other individuals (average of 2.05 log10 copies per ml) and were sig-
nificantly suppressed until day 94 (Fig. 2a,e,f). In comparison to a 
single infusion of either 3BNC1177 or 10-10748, viremic individuals 
receiving one or three infusions of the combination of both antibod-
ies showed significantly prolonged viral suppression (P =  0.00018) 
(Fig. 2d and Supplementary Fig. 5). We conclude that the combi-
nation of 3BNC117 and 10-1074 is more effective in suppressing 
viremia than either antibody alone.

Despite the pronounced difference in the duration of viremia 
reduction between monotherapy and combination therapy, there 
was considerable variation in the response of individual participants 
receiving 3BNC117 and 10-1074 combination treatment (Fig. 2 and 
Supplementary Table 3). To define the relationship between individ-
ual responses to antibody therapy and circulating virus sensitivity 
to the antibodies, we performed single genome amplification (SGA) 

of plasma viruses. Initially, 382 intact full-length env sequences 
were analyzed from the seven viremic participants (Supplementary 
Fig. 6). All of these individuals were infected with epidemiologi-
cally distinct clade B virus (Fig. 3a). In addition, sequences of cir-
culating viruses at the time of viral rebound were polyclonal, and 
as expected for viremic individuals, recombination events were 
detected between circulating viruses in most individuals (Fig. 3b,c).

Pseudoviruses constructed from plasma SGA were tested for 
bNAb sensitivity in the TZM-bl assay (Fig. 4a and Supplementary 
Table 6). Participant 91C33, who failed to respond to antibody infu-
sions, had preexisting circulating viruses that were resistant to both 
antibodies (Fig. 4a and Supplementary Table 6). These viruses car-
ried mutations in 3BNC117 contact sites (N280S and A281H) and 
in 10-1074 contact sites (N332T and S334N, Supplementary Fig. 6). 
Two individuals, 91C35 and 9341, responded to antibody therapy 
with a decrease in viremia of − 1.58 and − 1.32 log10 copies per ml 
but HIV-1 RNA levels returned to baseline within 3 and 4 weeks, 
respectively (Fig. 2b). 91C35 was found to have pre-infusion cir-
culating viruses with reduced sensitivity to 3BNC117, and carried 
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a CD4 contact residue mutation (A281T) that was associated with 
viral escape from 3BNC11720 (Fig. 4a, Supplementary Figs. 6 and 
7 and Supplementary Table 6). Pre-infusion viruses derived from 
bulk CD4+ T cell outgrowth cultures of 9341 showed a 10-1074 IC80 
that was 1.3 log10 higher than the geometric mean IC80 of all other 
enrolled viremic individuals (Supplementary Table 1). In both of 
these cases, rebounding viruses were resistant to both antibodies 
and carried mutations resulting in the loss of the potential N-linked 
glycosylation site at position 332 that is critical for 10-1074 binding 
(Fig. 4a,b, Supplementary Figs. 6, 7 and Supplementary Table 6).  
In addition, rebound viruses from 91C35 and 9341 contained 
G471E and N276D mutations, respectively, that are associated with 
increased resistance to 3BNC117 (Supplementary Fig. 6)7,17,21,22. 
These mutations were not found in the pre-infusion circulat-
ing viruses described above or in the additional 113 pre-infusion 
env sequences that were analyzed from these two participants 

(Supplementary Fig. 8). Thus, 91C35 and 9341 were infected with 
viruses with reduced sensitivity to one of the two antibodies and 
resemble individuals that received antibody monotherapy, both in 
the magnitude of the drop in viremia and time required to return to 
baseline viremia7–9. We conclude that the bulk outgrowth cultures 
used for initial screening failed to detect partial or complete pre-
existing resistance against one or both of the antibodies in three of 
the seven individuals studied.

The four remaining individuals showed no detectable pre-exist-
ing resistant viruses in circulation and experienced significantly 
suppressed viremia until day 94 after the first antibody infusion 
with an average maximum drop in viral load of − 2.05 log10 copies 
per ml (Figs. 2a,e, 4a and Supplementary Table 6). The individual 
in this group with the highest initial viral load (97,800 copies per 
ml; patient 9343) was the first to rebound at eight weeks (Fig. 2a 
and Supplementary Table 3). The two individuals with the lowest  
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initial viral loads, 91C22 and 9342 (750 and 2,550 copies per ml, 
respectively), demonstrated suppression to near or below the 
limit of detection for 12 and 16 weeks, respectively (Fig. 2a and 
Supplementary Table 3). Finally, viremia in participant 91C34 was 
reduced for a period of 12 weeks, however it never dropped below 
810 copies per ml. Despite the persistent viremia, no resistance 
against both antibodies developed in this individual for as long as 
bNAb serum levels were above 10 μ g ml−1 (Supplementary Figs. 7, 9 
and Supplementary Table 3).

In three of the four initially sensitive individuals, rebound vire-
mia was associated with the appearance of viruses that were resistant 
to 10-1074, but these individuals remained sensitive to 3BNC117 
(Fig. 4a and Supplementary Table 6). This is consistent with the rel-
atively shorter half-life of 3BNC117, which means that participants 
were effectively exposed to 10-1074 monotherapy at the end of the 
observation period. In accordance with the increased resistance to 
10-1074, rebound viruses carried mutations in 10-1074 contact sites 
(Fig. 4b and Supplementary Figs. 6, 7). By contrast, there was no
accumulation of de novo mutations in 3BNC117 contact sites (Fig. 4b
and Supplementary Figs. 6, 7). 91C22, the participant with the low-
est initial viral load, only returned to baseline viremia after both
antibodies were below the limit of detection, and rebound viruses
remained sensitive to both antibodies (Fig. 2a, Supplementary Fig. 4 
and Supplementary Tables 3, 6). Overall none of the four partici-
pants that were initially sensitive to the two antibodies developed
de novo resistance to 3BNC117 over a cumulative observation
period of over one year (56 weeks), despite the residual viremia
observed in three of these participants and frequent recombination
events between circulating viruses (Fig. 3c).

Combination bNAb therapy for HIV-1 in humans showed a 
number of similarities with bNAb therapy for macaques infected 
with chimeric simian/human immunodeficiency virus AD8. For 
example, suppression was incomplete in macaques with higher ini-
tial viral loads; however, despite persistent low-level viremia, there 
was no emergence of 3BNC117 and 10-1074 double-resistant vari-
ants23. In contrast to the macaque infection with a clonal virus, each 
of the four antibody-sensitive individuals in this study was infected 
with a uniquely diverse swarm of viruses. Thus, the relative difficulty 
of HIV-1 to develop resistance to the combination of 3BNC117 and 
10-1074 is not limited to any particular strain of HIV-1. Macaque
CD8+ T cell responses can control viremia and this type of cellular
immunity can be enhanced by bNAb therapy24. CD8+ T cells have
also been implicated in HIV-1 control in humans25. Whether such
responses can also be enhanced by immunotherapy in humans
remains to be determined.

3BNC117 and 10-1074 target distinct epitopes on the Env tri-
mer. 3BNC117 interacts with the CD4 binding site, which is critical 
for HIV-1 binding to its cellular receptor CD4. Thus, escape muta-
tions from 3BNC117 are limited by the requirement of continued 
affinity to CD4 and are associated with a reduction in viral fit-
ness26. Combinations of just two antibodies that synergize to further 
restrict viral escape may be even more effective than 3BNC117 and 
10-107427.

Should antibodies enter clinical practice for HIV-1, adequate
safeguards will be required to minimize the emergence of resistant 
variants. Reliable screening methods that identify viral resistance 
against individual drugs facilitate the selection of antiretroviral 
drug combinations with full activity. By contrast, the culture-based 
method used to screen for resistance in this study failed to detect 
partial or complete pre-existing antibody resistance in three of the 
seven viremic participants. This is likely due to outgrowth of a lim-
ited set of viruses in vitro that fails to represent the entire population 
that is circulating or archived in vivo8,15,17. Sequence-based screen-
ing methods that encompass a much larger group of viruses are cur-
rently being developed and should be far more effective than the 
bulk cultures.

This study highlights some of the limitations of immunotherapy 
with the combination of 3BNC117 and 10-1074 in viremic individ-
uals. 3BNC117 and 10-1074 infusions failed to suppress viremia to 
undetectable levels in the two dual antibody-sensitive individuals 
with the highest pre-infusion viral load despite persistent reduc-
tions for up to 12 weeks. Sustained suppression of plasma HIV-1 
RNA levels to below 20 copies per ml was only achieved in individ-
ual 91C22, who had the lowest pre-infusion viral load (730 copies 
per ml). Thus, whereas two antibodies may be sufficient to achieve 
and/or maintain suppression in sensitive individuals with very low 
levels of viremia or ART-suppressed individuals undergoing analyt-
ical treatment interruption15, additional antibodies or combinations 
of small molecule drugs and antibodies would be required if this 
type of therapy is to be considered for viremic individuals.

This trial was limited to three bNAb infusions. However, despite 
the small number of infusions, sensitive individuals maintained 
reductions in viral load for up to three months after the last infu-
sion. In the case of anti-RSV antibodies and the anti-HIV-1 anti-
body VRC01, antibody half-life can be increased by up to more 
than a factor of 4 by mutations that alter binding to the neonatal Fc 
receptor28–30. In macaques, the same half-life extension mutations 
lead to a significant increase in the half-life and protective efficacy 
of 3BNC117 and 10-107431. Should they also do so in humans, 
intermittent infusions of combinations of antibodies or antibodies 
plus long-acting antiretroviral drugs every 3–6 months might be an 
alternative to daily ART.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41591-018-0186-4.
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Methods
Study design. We conducted a dose-escalation phase 1b study in HIV-1-infected 
individuals to evaluate the safety, pharmacokinetics and antiretroviral activity 
of the combination of the antibodies 3BNC117 and 10-1074 (http://www.
clinicaltrials.gov; NCT02825797; EudraCT: 2016-002803-25). Study participants 
were enrolled sequentially into groups 1A, 1B, 1C and 3 according to eligibility 
criteria (Supplementary Fig. 1). Participants in groups 1A and 1B were virologically 
suppressed on ART and were randomized in a 2:1 ratio (six participants per group) 
to receive one intravenous infusion of 3BNC117 and 10-1074 (group 1A, 10 mg kg−1 
per antibody; group 1B, 30 mg kg−1 per antibody) or placebo (sterile saline). Study 
participants and investigators were blinded to the assignment in groups 1A and 1B. 
Placebo recipients were not included in the data analysis. Viremic individuals off 
ART were enrolled in group 1C (four participants) or group 3 (three participants), 
and received one intravenous infusion (group 1C) or three intravenous infusions 
(group 3, every two weeks) of 3BNC117 and 10-1074 at a dose of 30 mg kg−1. 
Participation in groups 1C and 3 was open-label. All study participants were 
followed for 24 weeks after the last administration of the antibodies or placebo. 
Participants off ART were encouraged to initiate ART six weeks after the last 
antibody infusion. Safety data are reported until the end of study follow-up. All 
participants provided written informed consent before participation in the study 
and the trial was conducted in accordance with Good Clinical Practice. The study 
protocol was approved by the Food and Drug Administration in the USA, the 
Paul-Ehrlich-Institute in Germany, and the Institutional Review Boards at the 
Rockefeller University and the University of Cologne.

Study participants. Study participants were recruited at the Rockefeller University 
Hospital, New York, USA, and at the University Hospital Cologne, Cologne, 
Germany. Eligible participants were HIV-1-infected adults aged 18–65 years with 
a current CD4+ T cell count > 300 cells per μ l. Individuals on ART were eligible for 
participation and enrollment in groups 1A and 1B if HIV-1 RNA levels were  
< 20 copies per ml at screening. Viremic individuals were eligible for enrollment in 
groups 1C and 3, if they were off ART with detectable HIV-1 RNA plasma levels of 
< 100,000 copies per ml. Exclusion criteria included concomitant hepatitis B or C 
infection, previous receipt of monoclonal antibodies of any kind, clinically relevant 
physical findings, medical conditions or laboratory abnormalities, and pregnancy 
or lactation. Viremic participants were prescreened for the sensitivity of bulk CD4+ 
T cell outgrowth culture-derived viruses to 3BNC117 and 10-1074 as described 
below. Antibody sensitivity was defined as an IC50 <  2 μ g ml−1 for both 3BNC117 
and 10-1074 measured in a TZM-bl neutralization assay.

Study procedures. The required stock volume of 3BNC117 or 10-1074 was 
calculated according to body weight and diluted in sterile normal saline to a total 
volume of 250 ml. Each monoclonal antibody was administered intravenously over 
60 min. Both antibodies were administered individually and sequentially. Placebo 
recipients received equivalent volumes of sterile normal saline. Study participants 
were observed at the Rockefeller University Hospital or the University Hospital 
Cologne for 4 h (groups 1A–C) or 1 h (group 3) after the last antibody infusion. 
Participants returned for scheduled follow-up visits for safety assessments, 
which included physical examination as indicated and measurements of clinical 
laboratory parameters, such as hematology, CD4+ T cell counts, chemistries, 
urinalysis and pregnancy tests. Plasma HIV-1 RNA levels were monitored at each 
visit. Study investigators evaluated and graded adverse events according to the 
Division of AIDS (DAIDS) Table for Grading the Severity of Adult and Pediatric 
Adverse Events (version 2.0, November 2014) and determined the causality 
of events. Blood samples were collected before and at multiple times after the 
infusions of 3BNC117 and 10-1074 or placebo. Samples were processed within 4 h 
of collection. Serum and plasma samples were stored at − 80 °C. Peripheral blood 
mononuclear cells (PBMCs) were isolated by density gradient centrifugation and 
the absolute number of PBMCs was determined using an automated cell counter 
(Vi-Cell XR; Beckman Coulter) or manually. Isolated cells were cryopreserved in 
fetal bovine serum and 10% DMSO.

Plasma HIV-1 RNA levels. Plasma HIV-1 RNA levels were determined at every 
study visit, including the screening (day − 49 to − 7) and pre-infusion (day − 42 
to − 2) visits, as well as before the first infusion on day 0 and two days after each 
infusion. Following the last infusion, HIV-1 RNA levels were monitored weekly 
for four weeks, and continued to be monitored with two- to four-week intervals 
and at the final study visit. HIV-1 RNA levels were determined using the Roche 
COBAS AmpliPrep/COBAS TaqMan HIV-1 Assay (version 2.0) or the Roche 
COBAS HIV-1 quantitative nucleic acid test (COBAS 6800). These assays have a 
linear quantification range between 2 ×  101 and 1 ×  107 viral copies per ml and were 
performed at LabCorp or at the University Hospital Cologne.

CD4+ and CD8+ T cell counts. CD4+ and CD8+ T cell counts were determined 
using a clinical flow cytometry assay performed at LabCorp or at the University 
Hospital Cologne every 2–4 weeks and at the final study visit.

TZM-bl neutralization assay to measure 3BNC117 and 10-1074 serum levels. 
This assay was performed as previously described16. In brief, serum samples were 

heat-inactivated for 1 h at 56 °C and tested using a primary 1:20 dilution and a 
fivefold titration series against HIV-1 Env pseudoviruses Q769.d22 and X2088_c9. 
These pseudoviruses are highly sensitive to neutralization by 3BNC117 and 10-
1074, respectively, and fully resistant against the other administered antibody.  
If serum half-maximum inhibitory dilution (ID50) titers exceeded 100,000 against 
X2088_c9, immediate post-infusion levels of 10-1074 were also determined using 
the less sensitive Du422 strain. 3BNC117 and 10-1074 clinical drug products were 
tested in parallel at a starting concentration of 10 μ g ml−1 with a fivefold titration 
series. Pseudoviruses were produced with an ART-resistant backbone vector that 
reduces the inhibitory activity of antiretroviral drugs (SG3Δ Env/K101P.Q148H.
Y181C, M.S.S., unpublished data). In viremic individuals, serum concentrations 
of 3BNC117 and 10-1074 were calculated by multiplying the determined ID50 titer 
of the respective serum sample and the determined IC50 concentration of each 
monoclonal standard antibody. In individuals on ART, serum bNAb concentrations 
were calculated using the ID80 serum titers and IC80 values of the monoclonal 
antibodies as described above to minimize the influence of nonspecific ART-
mediated background activity. Viruses pseudotyped with the envelope protein 
murine leukemia virus (MuLV) were used as negative control and measurements 
were excluded if nonspecific serum activity against MuLV-pseudotyped viruses 
was observed (ID50 or ID80 >  20 in viremic individuals or individuals on ART, 
respectively). All assays were performed in a laboratory that met Good Clinical 
Laboratory Practice standards. The lower limit of detection was determined to 
be 0.24 μ g ml−1 and 0.10 μ g ml−1 for the 3BNC117 and 10-1074 TZM-bl assay, 
respectively. The lower limit of quantification was 0.46 mcg/ml for 3BNC117 and 
0.1 mcg/ml for 10-1074.

ELISA-based measurement of 3BNC117 and 10-1074 serum levels. Serum 
concentrations of 3BNC117 and 10-1074 were measured by a validated sandwich 
ELISA. High bind polystyrene plates were coated overnight at 2–8 °C with  
4 μ g ml−1 of an anti-idiotypic antibody that specifically recognizes 3BNC117 
(anti-ID 1F1-2E3 monoclonal antibody) or 2 μ g ml−1 of an anti-idiotypic antibody 
that specifically recognizes 10-1074 (anti-ID 3A1-4E11 monoclonal antibody). 
After washing, plates were blocked with 5% Milk Blotto (w/v), 5% normal goat 
serum (v/v), and 0.05% Tween 20 (v/v) in PBS. Serum samples, quality controls 
and standards were added (1:50 minimum dilution in 5% Milk Blotto (w/v), 5% 
normal goat serum (v/v) and 0.05% Tween 20 (v/v) in PBS) and incubated at room 
temperature. A horseradish peroxidase (HRP)-conjugated mouse anti-human IgG 
kappa-chain-specific antibody (Abcam) was used to detect 3BNC117 and an HRP-
conjugated goat anti-human IgG Fc-specific antibody (Jackson ImmunoResearch) 
to detect 10-1074. For detection, the HRP substrate tetra-methylbenzidine was 
added. A 5-PL curve-fitting algorithm (Softmax Pro, v.5.4.5, Molecular Devices) 
was used to calculate serum concentrations of 3BNC117 and 10-1074 from 
respective standard curves run on the same plate. Standards and positive controls 
were created from the drug product lots of 3BNC117 and 10-1074 that were 
used in the clinical study. The capture anti-idiotypic monoclonal antibodies were 
produced in a stable hybridoma cell line (Duke Protein Production Facility7). If day 
0 samples had measurable levels of antibody by the respective assays, the measured 
background antibody level was subtracted from subsequent results. In addition, 
samples with measured antibody levels within threefold of background values were 
excluded from the analysis of pharmacokinetic (PK) parameters. The lower limit of 
detection was determined to be 0.51 μ g ml−1 and 0.14 μ g ml−1 in HIV-1 seropositive 
serum for the 3BNC117 and 10-1074 ELISA, respectively. For values that were 
detectable (that is, positive for monoclonal antibodies) but below the lower limit of 
quantification, values are reported as < 0.78 μ g ml−1 and < 0.41 μ g ml−1 for 3BNC117 
and 10-1074 ELISA.

SGA of viral env genes. SGA and sequencing of HIV-1 env genes was performed 
for plasma samples as described previously17,33. All env sequences were translated 
to amino acids and aligned using ClustalW34. Sequences containing premature 
stop codons or large internal deletions that would compromise Env functionality 
were removed from downstream analysis. Frequency plots were produced to 
analyze changes in 3BNC117 and 10-1074 binding sites between day 0 and 
rebound viruses. Amino acids were numbered according to the HXB2 env 
sequence (GenBank accession number K03455). Logo plots were generated using 
the ‘longitudinal antigenic sequences and sites from intra-host evolution’ tool 
(LASSIE)35. Maximum likelihood phylogenetic trees were generated from the 
alignments with PhyML v.3.136 using the GTR model37 with 1,000 bootstraps. 
For the combined analysis of sequences from all participants, env sequences were 
aligned using MAFFT v.7.30938 and clustered using RAxML v.8.2.9 using the 
GTRGAMMA model37 with 1,000 bootstraps.

Pseudovirus production. Selected viral sequences that were isolated from the 
plasma of each participant by SGA were used to generate CMV-promoter-based 
pseudoviruses as previously described33,39. The CMV promoter was amplified using 
the forward primer 5′ -AGTAATCAATTACGGGGTCATTAGTTCAT-3′  and the  
reverse primer 5′ -CATAGGAGATGCCTAAGCCGGTGGAGCTCTGCTTATA 
TAGACCTC-3′ . Individual env amplicons were amplified using the forward 
primer 5′ -CACCGGCTTAGGCATCTCCTATGGCAGGAAGAA-3′  and the 
reverse primer 5′ -GTCTCGAGATACTGCTCCCACCC-3′ . To fuse the individual 
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purified env amplicons to the CMV promoter, overlapping PCR was performed 
using the forward primer 5′ -AGTAATCAATTACGGGGTCATTAGTTCAT-3′  and 
the reverse primer 5′ -ACTTTTTGACCACTTGCCACCCAT-3′ . Pseudoviruses 
were generated by transfecting HEK293T cells as previously described39.

Prescreening bulk PBMC culture. Candidate viremic individuals were 
prescreened for sensitivity of bulk culture-derived outgrowth viruses against 
3BNC117 and 10-1074 as described previously7,8,15,17. PBMCs for prescreening were 
obtained a median of 27 weeks (range 4.9–38 weeks) before enrollment under 
separate protocols approved by the Institutional Review Boards of the Rockefeller 
University and the University of Cologne. In brief, isolated CD4+ T cells were 
cocultured with the MOLT-4/CCR-5 cell line (NIH AIDS Reagent Program, cat. 
no. 4984) or CD8+ T cell-depleted donor lymphoblasts and culture supernatants 
were regularly monitored for p24 levels. Viral supernatants from p24-positive 
cultures were tested for sensitivity against 3BNC117 and 10-1074 by the TZM-bl 
neutralization assay as described below. Cultures were deemed sensitive if the 
determined individual IC50 values for 3BNC117 and 10-1074 were < 2 μ g ml−1.

Virus neutralization assays. Supernatants from p24-positive bulk CD4+ T cell 
cultures and pseudoviruses were tested for sensitivity to antibodies as previously 
described16.

Pharmacokinetic analyses. PK parameters were estimated by performing a non-
compartmental analysis using Phoenix WinNonlin Build 8 (Certara), using all 
PK data available starting with the time point after the infusion of 3BNC117 from 
either TZM-bl assay or ELISA.

Viral env recombination analysis. Multiple sequence alignment of env genes 
guided by amino acid translations of env sequences was done by TranslatorX 
(http://translatorx.co.uk/). The 3SEQ recombination algorithm (http://mol.
ax/software/3seq/) was used to detect recombination between day 0 viruses 
and rebound viruses or between different rebound viruses. Instances in which 
statistical evidence of recombination was found (rejection of the null hypothesis of 
clonal evolution) are shown in a circos plot (http://circos.ca/).

Statistical analyses. The sample size to detect a decline in viremia of > 0.9 
log10 copies per ml with 80% power at 5% significance level with P of 0.05 was 
determined to be six viremic HIV-1-infected individuals, assuming that the 
standard deviation would be similar to 3BNC117 or 10-1074 monotherapy 
in humans (s.d. of 0.75 and 0.6, respectively)7,8. To measure the effect of the 
combination treatment on viral load, we estimated simultaneous confidence bands 
for the Δ log10 viral loads. The viral load was considered significantly suppressed 
whenever the two dashed lines representing the simultaneous confidence bands 
at 95% certainty level excluded zero (Fig. 2d–f). We computed simultaneous 
confidence bands with the R package locfit (version 1.5–9.1) using the Gaussian 
family for the local likelihood function (Fig. 2d–f). To estimate whether there is 
a significant difference between the 3BNC117 and 10-1074 combination therapy 
and 3BNC117 or 10-1074 monotherapy in viremic individuals off antiretroviral 
therapy, we fit a linear mixed-effects model to the data, using time and treatment 
as fixed effects and a random intercept for each participant. Data for 3BNC117 
and 10-1074 monotherapy have been published previously and only time points 

from viral load measurements off antiretroviral therapy and subjects responding 
to antibody infusions by a drop in viremia were included7,8. We compared it to a 
model without treatment as predictor using a likelihood ratio test. The time point 
of viral load measurement was modeled as an ordered factor and the correlation 
structure between measurements from the same individual was modeled based on 
the order of measurements using different options available in nlme (exponential, 
linear, rational quadratic and spherical correlation structure, as well as different 
combinations of autocorrelation and moving average). The models were fitted 
maximizing the log-likelihood with the lme function of the R package nlme 
(version 3.1–131). We decided on the best model using Akaike information 
criterion (see Supplementary Fig. 5). Time points were restricted to day 0, week 1, 
week 2, week 3, week 4, week 6, week 8, week 12, week 16, week 20 and week 24 to 
have a sufficient number of measurements per time point. Marginal means (also 
known as least-squares means) are shown in Supplementary Fig. 5. CD4+ T cell 
counts before and after 3BNC117 plus 10-1074 infusions were compared by one-
way ANOVA using GraphPad Prism (version 7.0).

Reporting Summary. Further information on research design can be found in the 
Nature Research Reporting Summary linked to this article.

Data availability
All requests for raw and analyzed data and materials are promptly reviewed by the 
Rockefeller University to verify whether the request is subject to any intellectual 
property or confidentiality obligations. Patient-related data not included in 
the paper were generated as part of clinical trials and may be subject to patient 
confidentiality. Any data and materials that can be shared will be released via a 
Material Transfer Agreement. HIV-1 envelope SGA data are available in GenBank, 
accession numbers MH632763–MH633255.
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Abstract

Allogeneic hematopoietic cell transplantation (HCT) effectively treats high-risk hema-

tologic diseases but can entail HCT-specific complications, which may be minimized

by appropriate patient management, supported by accurate, individual risk estima-

tion. However, almost all HCT risk scores are limited to a single risk assessment

before HCT without incorporation of additional data. We developed machine learn-

ing models that integrate both baseline patient data and time-dependent laboratory

measurements to individually predict mortality and cytomegalovirus (CMV) reactiva-

tion after HCT at multiple time points per patient. These gradient boosting machine

models provide well-calibrated, time-dependent risk predictions and achieved areas

under the receiver-operating characteristic of 0.92 and 0.83 and areas under the

precision–recall curve of 0.58 and 0.62 for prediction of mortality and CMV reactiva-

tion, respectively, in a 21-day time window. Both models were successfully validated

in a prospective, non-interventional study and performed on par with expert hema-

tologists in a pilot comparison.
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1 | INTRODUCTION

Allogeneic hematopoietic cell transplantation (HCT) is an effective

and potentially curative treatment for patients suffering from high-risk

hematological malignancies and other non-malignant and congenital

disorders.1 Despite its success and continuous improvement over the

past decades,2,3 the treatment-related non-relapse mortality (NRM)

after HCT remains high. HCT recipients are at risk for multiple poten-

tially life-threatening complications, such as graft-versus-host disease

(GVHD) or cytomegalovirus (CMV) reactivation. Accurate risk assess-

ment and an appropriate choice of prophylactic and pre-emptive

treatments are crucial to minimize these risks.4,5 Registries such as the

databases of the European Society for Blood and Marrow Transplan-

tation (EBMT) or of the Center for International Blood and Marrow

Transplant Research (CIBMTR) collect individual patients' pre-HCT

and outcome data from centers via standardized reporting forms.6,7

Using these databases, the prevalence and risk factors of HCT compli-

cations can be analyzed on a large scale. Due to the data collection

process, registry data per patient is limited to a set of categorical vari-

ables. While time-dependent endpoint data are available regarding

the time of relapse or death, continuously measured laboratory values

from electronic health records (EHR), or unstructured data from

reports cannot yet be integrated into these registries. Since the

2000s, a number of relevant predictive risk scores have been devel-

oped utilizing static registry data to improve outcome assessment

before HCT and to adjust the toxicity of the intervention by reducing

the conditioning intensity. The hematopoietic cell transplantation-

specific comorbidity index (HCT-CI)8 is to date the most relevant and

utilized score to predict NRM. Other Cox-regression models based on

categorical, pre-HCT variables, such as the EBMT risk score9 or the

disease risk index,10 have additionally improved pre-HCT and relapse

risk assessment for different hematologic malignancies. However, the

overwhelming majority of existing methods for assessing such HCT-

specific risks offer only a single risk assessment before HCT.

Across medical areas, machine learning (ML) techniques have

proven their value as powerful tools for diagnosis11–14 or risk

assessment.15–17 ML models are ideally suited to discover associa-

tions in large datasets and can automatically identify important param-

eters and relationships between them without the need for a

predefined model shape. In recent years, several ML models have

been proposed for HCT-specific risk assessment at a single point in

time.18–20 For instance, an alternating decision tree model produced

more accurate predictions of 100-day mortality after HCT than the

EBMT score for acute leukemia patients,18 demonstrating that ML

can improve standard scores for pre-HCT risk assessment.

The endothelial activation and stress index (EASIX) measured

before conditioning therapy is associated with overall survival after

HCT, highlighting the potential of including laboratory parameters in

pre-HCT risk assessment.21 Additionally, EASIX measured at the onset

of acute GVHD predicts overall survival after GVHD onset.22 Despite

its added value, EASIX is calculated from a limited set of three param-

eters (creatinine, platelets, LDH) using a predefined formula, and each

study only evaluated its prognostic value at a single point in time.

Integrating time-dependent measurements into ML models can

not only improve predictive performance but also allows to update

risk assessments whenever new data become available. For instance,

early-warning systems developed for intensive care units (ICU) contin-

uously monitor patient data and predict critical events such as acute

kidney injury16 or circulatory failure,17 which may help physicians to

react earlier to critical events or to prevent them. Given the high vari-

ability of individual outcomes after HCT and the importance of opti-

mal patient management, we hypothesized that ML-based models for

precise, time-dependent risk prediction after HCT may provide a valu-

able tool to support treatment decisions. Compared with the large,

annotated, public EHR datasets of ICU patients,17,23 time-dependent

HCT data are scarce. Their use in ML models is further challenged by

high variability in laboratory measurement frequencies and a charac-

teristic nonlinear development of laboratory values after HCT, which

requires context-dependent evaluation of identical numerical results.

In addition, longer observation times may entail missing values and

censored data. Major national and international efforts are currently

directed toward digitizing medicine,24,25 developing unified standards

for data management, and facilitating the increasingly widespread use

of EHR systems. As a consequence, we expect the accessibility and

usability of health data to improve, with impacts on different fields of

medicine including HCT care.

In this article, we describe the development and prospective vali-

dation of ML models, which accurately predict death and early CMV

reactivation at multiple time points after HCT. These are the first

models for continuous time-dependent risk assessment of these out-

comes after HCT.

2 | METHODS

2.1 | Patients

Between January 2005 and June 2020, 2191 patients with hemato-

logic malignancies, inherited stem cell disorders, or acquired bone

marrow failure underwent allogeneic HCT in the Department of

Hematology and Stem Cell Transplantation of the West-German Can-

cer Center at University Hospital Essen (UHE). Patients with HCT

before September 1, 2017 were included in the retrospective cohort.

Patients with HCT between September 2017 and June 2020 were

prospectively recruited into the non-interventional XplOit validation

study (Figure S1). We excluded patients with multiple allogeneic

HCTs, with hemoglobinopathies or without data on relevant labora-

tory tests, resulting in retrospective and prospective cohort sizes of
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1710 and 403 patients, respectively. For models and analyses related

to CMV reactivation, we additionally excluded patients without CMV

data before day +30 after HCT. Donors were HLA-matched related

donors (MRD, 23.0%), haploidentical related donors (haplo, 3.8%),

10/10 HLA-A-, -B, -C, -DRB1, -DQB1 matched unrelated donors

(MUD, 53.6%), or mismatched unrelated donors (MMUD, 19.6%;

Table S1). HLA-DPB1 was not considered for donor–recipient match-

ing. Typically, patients were followed up for 60 months after trans-

plantation. Long-term surviving patients were censored. Early

supportive and follow-up care was identical for all patients. In the ret-

rospective cohort, the predominant calcineurin inhibitor based GVHD

prophylaxis consisted of Ciclosporin A plus Methotrexate. Patients

with higher GVHD risk were assigned to additional in vivo T cell

depletion using anti-T-Lymphocyte globulin (ATG) based on standard-

ized clinical treatment protocols.

2.2 | Ethics

This study was conducted in accordance with German legislation and

the revised Helsinki Declaration. Study design and data acquisition

were evaluated by the institutional review board (IRB) of the Univer-

sity Duisburg-Essen (Protocol No. 17-7576-BO) and by the IRB of the

medical association of the Saarland (Protocol No. 33/17). All patients

included in the prospective, non-interventional XplOit study (regis-

tered in the German Clinical Trials Register (DRKS), registration

No. DRKS00026643) have given written consent to collection, elec-

tronic storage, and scientific analysis of pseudonymized HCT-specific

patient data.

2.3 | Data preparation, endpoint assessment, and
statistical analysis

The sections on data preparation, endpoint assessment, and statistical

analysis are detailed in the supplementary material.

2.4 | Preprocessing

We selected 60 features for model development, including all static fea-

tures available in structured format, the prediction day, and 34 of the

most frequently performed laboratory tests (Table S3). For time-

dependent laboratory tests, we only used the most recent value of each

parameter at the time point of prediction. Static and time-dependent fea-

tures were preprocessed separately and concatenated directly before

model training. Preprocessing is detailed in the supplement.

2.5 | Prediction times and classification target

We aimed for the application scenario where models are executed

once per day whenever new time-dependent data become available.

Therefore, we considered all days between HCT and the event of

interest (or censoring) where any laboratory measurements were

reported as potential prediction days.

For each event (death or CMV reactivation), we defined binary

classification targets based on two different window sizes d of 7 and

21 days, respectively. Each time point was labeled with 1 (positive) if

the event occurred within the following d days and 0 (negative) other-

wise. We excluded time points where patients were censored in this

time window or where more than 30% of time-dependent features

were missing after forward filling. For prediction of CMV reactivation,

we considered only events in the first 100 days and excluded predic-

tion days after day 100 � d. The final number of time points is listed

in Table S5 for each prediction task.

2.6 | Machine learning models and training

We trained gradient boosting machine (GBM) models using

LightGBM, which provides an efficient implementation of a gradient

boosted ensemble of decision trees.26 For the comparative L2-regu-

larized logistic regression (LR) model and baseline we used the Logisti-

cRegressionCV class in scikit-learn.27

For both model types, we optimized hyperparameters with grid

search and five-fold cross-validation (CV). CV folds were defined on

patient level to ensure their independence and were stratified by the

maximum label per patient. We selected the parameters producing

the highest mean sample-AUPRC and retrained on the full training set

with these parameters. For GBM models, we used early stopping dur-

ing CV to determine the number of boosted trees in the ensemble.

For each combination of hyperparameters, model training was

stopped early when the mean logistic loss over CV folds did not

improve for 50 iterations. When retraining on the full training set, we

used the number of boosted trees, which produced the lowest logistic

loss during CV. The exact parameter choices, grids, and optimal values

are provided in Table S6.

To evaluate model performance and variability on retrospective

data, we repeatedly split the patients of the retrospective cohort into

two-thirds training and one-third test set (stratified by the maximum

label per patient). We ran the entire training process, including impu-

tation, normalization, and hyperparameter search, on each training set

independently and evaluated model performance on the correspond-

ing test set using AUROC, sample-AUPRC, and event-AUPRC. Here,

sample-AUPRC is the standard area under the precision–recall curve,

where recall is defined as the fraction of correctly predicted samples

(i.e., time points) with positive label (sample recall). In contrast, event-

AUPRC defines recall as the fraction of events, which were correctly

predicted on at least one of the positive labeled time points (event

recall) and was previously introduced for time-dependent event pre-

diction.17 Unless specified otherwise, model performance on retro-

spective data is reported as mean and SD over 10 random splits into

training and test set. Using the same methodology, we additionally

trained a final model on the entire retrospective cohort for prospec-

tive validation.
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2.7 | Models with additional features

We evaluated whether additional information from unstructured med-

ical letters or information on the history of laboratory values improved

the performance of survival and CMV prediction. For this purpose, we

trained two further GBM models per task, which received additional

input features (Table S8). Since the added features led to little or no

performance improvement on the retrospective data (Figure S15), we

F IGURE 1 Legend on next page.
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selected only the simpler models with the initial feature set for pro-

spective validation. An overview of all developed models and the

included features is provided in Table S9.

2.8 | Model calibration

We calibrated all trained models as a postprocessing step using iso-

tonic regression. For this purpose, we trained a separate calibrator

for each split of the retrospective cohort into training and test set,

using the raw model predictions on the test set. To apply calibra-

tion to any of the models trained for these splits, we averaged the

output of the nine calibrators trained on the remaining splits

(Figure 1C). The predicted probabilities of the final model trained

on the entire retrospective cohort were calibrated using the aver-

age over all 10 calibrators.

2.9 | Prospective validation

In order to prospectively validate the developed models on an inde-

pendent cohort, we recruited 408 patients to the prospective non-

interventional XplOit study (inclusion criteria: first allogeneic HCT,

≥18 years, written informed consent) from September 2017 to June

2020. We applied the final GBM and LR models to generate predic-

tions on the prospective cohort, selecting prediction times with the

same methodology described for the retrospective cohort. Through-

out the prospective study, both physicians and patients were blinded

for the model predictions.

We compared model predictions to the observed outcome and

measured performance with the same metrics used on retrospective

data. To assess variability in performance measures, we applied boot-

strapping with 10 000 bootstrap samples on the prospective dataset.

During bootstrapping, we kept the total number of positive labeled

samples fixed at its original value and adjusted the number of negative

labeled samples to obtain the same positive fraction as observed in

the retrospective dataset to enable a direct performance comparison

between retrospective and prospective cohort.

2.10 | Head-to-head comparison to physicians'
expectations

Within the last quarter of prospectively recruited patients, we per-

formed a pilot study to compare the performance of the developed

ML models to the expectations of experienced physicians regarding

early complications after HCT. For 91 patients in the prospective

cohort, we prospectively assessed the expectations of the treating

physicians regarding overall survival and CMV reactivation between

day 0 and day +100 after HCT. Physicians were requested to esti-

mate each patient's performance status (ECOG, 0–5) and risk to have

a CMV reactivation (low, moderate, high) in 7 and 21 days after the

assessment date. Assessment was performed weekly between day �7

and day +100 after HCT by physicians of the Department of Hema-

tology and Stem Cell Transplantation at UHE. Whenever an assess-

ment was made (starting at HCT), the GBM and LR models were

executed on the most recent available data to allow for a head-to-

head comparison of the predictions. Treating and risk assessing physi-

cians were blinded for the model predictions.

To enable model predictions on the day of each assessment, we

used indefinite forward filling on laboratory measurements for this

analysis. Since the physicians' assessments were recorded as catego-

ries rather than probabilities, we binarized their answers and the

model predictions, and compared performance measures on these

binary predictions. Specifically, we compared Matthews correlation

coefficients (MCC) and F1 scores, choosing the optimal binarization

threshold for models and physicians, respectively. To assess variabil-

ity, we repeated this evaluation on 10 000 bootstrap samples drawn

from the dataset for this pilot comparison. Here, we kept the positive

fraction fixed by drawing the same number of samples with positive

and negative labels, respectively, as were originally in the dataset.

2.11 | Implementation

Preprocessing was in part performed within the XplOit platform (ver-

sion 20201130_1700) using extract–transform–load pipelines specific

to each data type. All remaining steps of preprocessing, model

F IGURE 1 Overview of model development and evaluation. (A) Data preparation. Raw data tables were pseudonymized and combined into
one coherent dataset. After patient and variable selection, sparsity in laboratory values was reduced by forward filling with variable-specific time
limits and categorical features were converted into a binary representation. (B) Time points and targets for prediction. Of the two considered
events, death was directly documented and CMV reactivation was extracted from virological tests as the first positive CMV test, which was not
an isolated positive. We selected all days between HCT and an event or censoring as prediction days where new laboratory values were
measured and <30% of them were missing. Each prediction day was labeled positive if the event occurred in a fixed subsequent time window,
and negative otherwise. (C) Machine learning. Models received static baseline data, current laboratory values, and the prediction day after HCT as

inputs. We randomly split the retrospective cohort into training and test sets 10 times, and trained a separate model on the training set of each
split and a final model on the full retrospective cohort. We defined the splits on patient level and stratified the proportion of patients with at least
one positive labeled time point. Preprocessing included a time-dependent normalization and imputation of laboratory values. We trained one
calibrator for each split into training and test set. To calibrate each model, we averaged over the calibrators trained on the remaining splits or over
all calibrators in case of the final model. (D) Model evaluation. During model development, performance was evaluated on the test set of the
10 splits of the retrospective cohort. In a prospective validation study, we additionally evaluated the performance of the final model on
403 prospectively recruited patients and, in a subset of 91 patients, performed a pilot comparison with experienced HCT physicians.
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building, and analysis were implemented in python (version 3.8.2)

using scikit-learn (version 0.22.1),27 numpy (version 1.18.1),28 and

pandas (version 1.0.3).29 GBM models were trained with LightGBM

(version 2.3.1)26 and SHAP values for these models were computed

using the TreeExplainer implemented in shap (version 0.37.0).30

3 | RESULTS

Using ML, we developed GBM and LR models to predict at multiple

time points after HCT whether an event, that is, death or CMV reacti-

vation, would occur in a subsequent time window of 21 or 7 days

(Figure 1A–C). Each model received a combination of routinely col-

lected static and time-dependent HCT data as input and was trained

to predict a continuous risk score for one specific event. We then vali-

dated these ML models in the prospective non-interventional XplOit

study, which also included a pilot comparison between ML model pre-

dictions and prospectively collected outcome expectations of experi-

enced HCT physicians (Figure 1D).

3.1 | Assembling an extensive longitudinal HCT
dataset

Utilizing the XplOit data integration platform for medical research,31

we assembled an extensive, well-annotated retrospective dataset

incorporating static and time-dependent data of 1710 HCT patients

to form the basis of model development. Based on their relevance, we

selected 60 parameters as input features for the ML models

(Figure 1), including static pre-HCT constellations, such as diagnosis,

conditioning regimen, and donor information, as well as the day of the

prediction and current laboratory values (Table S3). During the non-

interventional XplOit validation study, we additionally recruited

403 patients for prospective model validation.

Relevant baseline characteristics were balanced between the

development and validation cohort and are detailed in Table S1. As

expected, the largest fraction of patients presented with acute mye-

loid leukemia for HCT. Cyclosporin A (CSA) was the predominant

calcineurin inhibitor for baseline immunosuppression. Following

changes in HCT practices, such as the introduction of post-

transplant cyclophosphamide, the prospective cohort had a higher

proportion of patients with tacrolimus-based immunosuppression.

Time-dependent laboratory values were available at 163 425 and

31 889 time points in the retrospective and prospective cohort,

respectively, comprising more than 5.4 million individual measure-

ments in total. In accordance with international best-practice HCT

guidelines, the measurement intervals were shortest during the inpa-

tient care of 35–40 days and were extended for outpatients

(Figure S5).

The endpoints of this study were adequately covered by the ana-

lyzed data. The time of death was known for 1134 patients (53.7%),

and 925 patients (43.8%) developed an early CMV reactivation (within

100 days after HCT), with the median first episode of CMV

reactivation at day +34. After 24 months, the overall survival

(OS) rate was 55% in the retrospective cohort (Figure S2a), which is

representative of HCT outcomes across different risk groups in real-

world data. After a median follow-up of 14.4 months, the median

overall survival was not reached in the prospective XplOit study

(Figure S2b). While the cumulative incidence of NRM was comparable

between the retrospective and prospective cohort, overall survival dif-

fered significantly consistent with reduced relapse rates in recent

HCT (Figure S2c). The GBM model predicts 21-day mortality with an

AUROC of 0.92 and an event-AUPRC of 0.58.

We evaluated model performance using the standard area under

the receiver-operating characteristic (AUROC) and two versions of

the area under the precision–recall curve (AUPRC), event-AUPRC and

sample-AUPRC. While sample-AUPRC is based on the standard recall

on individual samples, event-AUPRC defines recall as the fraction of

correctly predicted events and specifically addresses time-dependent

event prediction.17 Following data preprocessing, as detailed in the

Methods section, the retrospective dataset for the development of

21-day mortality models contained 143 669 time points of 1695

patients, 7354 of these time points (5.14%) were labeled positive

(death occurred within 21 days).

The developed GBM model for 21-day mortality prediction

achieved a very high AUROC of 0.918 and good event AUPRC of

0.584 (Figure 2A,B). It outperformed the LR model, which had an

AUROC of 0.900 and an event-AUPRC of 0.524. To assess the

value of including time-dependent data for outcome prediction, we

compared these models with a baseline LR model receiving only

static input data. The time-dependent GBM and LR models both

vastly outperformed the static LR baseline, which achieved an

AUROC of only 0.594 and event-AUPRC of 0.085. The same trend

was observed in sample-AUPRC (Figure S6). After calibration, we

obtained very close agreement between predicted and observed

risk, with areas of 0.04 and 0.06 between the line representing ideal

calibration and the calibration curve of the GBM and the LR model,

respectively (Figure S7).

We then analyzed the performance of the GBM model for 21-day

mortality prediction over time in more detail. As expected, the fraction

of correctly predicted events increased with shorter time to the event

(Figure S3a). This finding was independent of the exact threshold cho-

sen to convert continuous risks into binary event predictions. With a

threshold chosen to obtain an overall event recall of 0.8, the majority

of events was predicted at least 2 weeks in advance. The predicted

continuous risks evolved similarly with a steady increase as patients

approached an event (Figure 2C), which supports the plausibility of

the model. Compared with the average risk predicted for negatively

labeled time points, that is, without any event in the subsequent

21 days, this increase was detectable as early as 85 days before the

event. Although the GBM model recognized initial signs of an impend-

ing event much earlier than 21 days before, these were not yet suffi-

cient for a confident event prediction. Analyzing GBM model

performance as a function of the prediction day after HCT, we found

that AUROC increased slightly over time (Figure 2D). Sample-AUPRC

varied more noticeably; it was lower early after HCT and highest
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F IGURE 2 Performance and feature importance of the GBM model for 21-day mortality prediction. (A) Receiver-operating characteristic of
GBM and LR model, which received a combination of static and time-dependent input features, and a baseline model which received only static
features. (B) Precision–recall curve for the same models as shown in (A), based on event recall, that is, the fraction of events that were correctly
predicted on any of the previous 21 days. (C) Mean predicted risk of the GBM model as a function of time to event. For reference, the orange
horizontal line indicates the mean predicted risk over all time points labeled negative. Dashed horizontal lines indicate the thresholds to reach the
target event recall stated in the figure legend. (D) AUROC and sample-AUPRC of the GBM model and fraction of samples with positive label as
functions of time after HCT. Bin size increases because fewer samples were available late after HCT. (A–D) Lines and shaded areas show the
mean ± SD on the test set over 10 random splits into training and test data. (E) Layered violin plot of SHAP values of the GBM model for the
20 features with highest mean absolute SHAP value. The thickness of the violins corresponds to the estimated density of each feature's SHAP
values, colors show the magnitude of feature values (percentiles). For features marked with ◇, the feature value is the time-normalized score that
the model received as input, not the raw value in its original unit. For categorical features, the colors are based on an integer representation and
should not be interpreted as ordered. All SHAP values were computed based on raw model output in log-odds space. (F–G) Scatter plots of
individual SHAP values over feature values. Shown are plots for the feature prediction day after HCT on the entire range of feature values (F) and
zoomed in on the first year after HCT (G).
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between days 80 and 150. This correlated with the fraction of posi-

tive labeled samples at different times after HCT since a small positive

fraction makes it difficult to achieve a high precision score.

3.2 | Prediction day, CRP, and urea nitrogen had
the highest impact on mortality predictions

Using SHapley Additive exPlanations (SHAP values),30 we analyzed

the impact of individual features on GBM model predictions

(Figure 2E). SHAP values indicate how much the value of a feature

has contributed to the prediction generated for a specific sample.

High values (>0) indicate that the feature value increased the pre-

dicted risk, while low values (<0) indicate that it reduced the predicted

risk. For the GBM model predicting 21-day mortality, the most impor-

tant features were the day of the prediction (in days after HCT),

C-reactive protein (CRP), blood urea nitrogen, glutamate oxaloacetate

transaminase (GOT), and protein levels (Figure 2E). Especially high

blood levels of CRP, urea nitrogen, and GOT as compared with other

patients at the same time after HCT led the model to predict an

increased mortality risk. In contrast, high values of total protein led to

a lower predicted risk. These features are markers of inflammation or

infection, or reflect liver or kidney function. For the prediction day

after HCT, the relationship between feature value and SHAP value

was more complex. Within the first year after HCT, the prediction day

appeared to increase the predicted risk, while after 1 year the SHAP

values continuously decreased, falling below zero about 3 years after

HCT (Figure 2F). A closer inspection of the first year after HCT

revealed that prediction days up to day +40 decreased the predicted

risk, while all later prediction days of the first year had constantly high

SHAP values (Figure 2G).

For 7-day mortality prediction, the GBM and LR models both had

a higher AUROC and lower event- and sample AUPRC than the corre-

sponding 21-day models (Figure S8). As a consequence of the nar-

rower time window, fewer samples were labeled positive (1.88% for

7-day prediction), which can partially explain the lower event and

sample-AUPRC. Detailed results for the 7-day prediction models are

provided in the supplementary material (Figures S8 and S9). While

these models focused on all-cause mortality to enable prediction for

all HCT patients, independently of their relapse status, we also tested

if our modeling approach would result in comparable prediction per-

formance for NRM, which was indeed confirmed (Table S10b).

3.3 | The performance of 21-day mortality
prediction models remained high on prospective data

In the second step, we validated the developed ML models on an

independent prospectively recruited cohort (n = 403) from the same

HCT center (Table 1A). Depending on the time window for predic-

tion, we observed specific differences in the performance of mortal-

ity prediction on prospective data. The models for 21-day mortality

prediction remained relatively stable; AUROC and event-AUPRC of

the GBM model faded only slightly from 0.918 to 0.895 and from

0.584 to 0.522, respectively. Responding to changes in HCT prac-

tices, we additionally compared subgroups of the two main distinct

immunosuppressive regimens (CSA and TAC) within the prospective

cohort (Table S2), and found no major differences between these

subgroups. However, for 7-day prediction, we observed a quite pro-

nounced decrease in model performance on prospective data, with

AUROC and event-AUPRC of the GBM model dropping from 0.951

to 0.931 and from 0.525 to 0.372, respectively. Here, model perfor-

mance was noticeably higher for patients with CSA instead of TAC

immunosuppression, which were better represented in the retro-

spective cohort. Model calibration remained appropriate on prospec-

tive data (Figure S10).

Despite some differences between retrospective and prospective

patient outcomes and model performance, the AUROC of both GBM

and LR models remained high on prospective data. Event- and

sample-AUPRC were also acceptable given the low fraction of posi-

tive labeled time points. Next, we tested if the models trained to pre-

dict all-cause mortality could also be leveraged to predict NRM. The

validation of the GBM model for 21-day mortality on the subgroup of

361 prospectively recruited patients without relapse resulted in a

comparably high AUROC of 0.900, an event-AUPRC of 0.536, and a

sample-AUPRC of 0.428 (Table S10a). Thus, the developed ML

models were successfully validated on the prospective dataset for

both all-cause mortality and NRM.

3.4 | For 21-day mortality prediction the GBM
models performed similar to HCT physicians

In a pilot study, which was part of the prospective validation, we addi-

tionally compared the predictive performance of the final GBM and

LR models during the first 100 days after HCT to the outcome expec-

tations of experienced HCT physicians. Within the last year of the

prospective XplOit study, each treating physician was requested once

per week to estimate their patients' expected Eastern Cooperative

Oncology Group (ECOG) performance score and risk of CMV reactiva-

tion (low, medium, high) in 7 and 21 days. In total, we collected

649 forms containing post-HCT assessments for 91 patients. In paral-

lel, we executed GBM and LR models at the time of each assessment

with the latest available time-dependent data. All physicians were

blinded to the model predictions.

The results of this comparison are displayed in Table 1B. For

21-day mortality prediction, GBM model and physicians showed a

similar performance, as measured by MCC values of 0.461 ± 0.086

and 0.488 ± 0.089, respectively. Although the differences were small

compared with the SD derived from bootstrapping, trends showed a

slight advantage of the physicians' expectations over the GBM

model predictions and of the GBM model over the LR model. For

7-day prediction, the physicians achieved a very high MCC and F1

score of 0.796 ± 0.180 and 0.767 ± 0.214, respectively,
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outperforming both ML models. However, the dataset for comparing

predictive performance over a 7-day window in this pilot sub-study

was limited due to a low number of fatalities preceded by prospec-

tive assessments. In addition, these deceased patients were less rep-

resentative of the training cohort since they received TAC

immunosuppression.

3.5 | The GBM models for 21-day CMV prediction
had AUROC 0.83 and event-AUPRC 0.62

For two reasons, the dataset for the development of models pre-

dicting early CMV reactivation was smaller than for mortality predic-

tion: first, we focused on the first 100 days after HCT, where the

TABLE 1 Model performance on
prospective data and comparison of the
prediction performance of ML models
and treating physicians

A. Comparison of model performance on retrospective and prospective cohorta

Prediction task Model Performance metric Retrospective cohort Prospective cohort

Mortality 21 days GBM AUROC 0.918 ± 0.009 0.895 ± 0.005

Event-AUPRC 0.584 ± 0.046 0.522 ± 0.023

Sample-AUPRC 0.488 ± 0.042 0.414 ± 0.015

LR AUROC 0.900 ± 0.010 0.866 ± 0.006

Event-AUPRC 0.524 ± 0.048 0.549 ± 0.021

Sample-AUPRC 0.445 ± 0.043 0.413 ± 0.015

Mortality 7 days GBM AUROC 0.951 ± 0.006 0.931 ± 0.006

Event-AUPRC 0.525 ± 0.038 0.372 ± 0.029

Sample-AUPRC 0.410 ± 0.034 0.303 ± 0.021

LR AUROC 0.940 ± 0.008 0.894 ± 0.009

Event-AUPRC 0.464 ± 0.038 0.348 ± 0.026

Sample-AUPRC 0.375 ± 0.023 0.269 ± 0.020

CMV 21 days GBM AUROC 0.825 ± 0.006 0.846 ± 0.004

Event-AUPRC 0.620 ± 0.040 0.574 ± 0.011

Sample-AUPRC 0.565 ± 0.025 0.549 ± 0.009

LR AUROC 0.793 ± 0.013 0.818 ± 0.004

Event-AUPRC 0.532 ± 0.050 0.515 ± 0.012

Sample-AUPRC 0.502 ± 0.033 0.496 ± 0.009

CMV 7 days GBM AUROC 0.846 ± 0.010 0.875 ± 0.005

Event-AUPRC 0.335 ± 0.023 0.323 ± 0.015

Sample-AUPRC 0.295 ± 0.017 0.302 ± 0.012

LR AUROC 0.777 ± 0.014 0.802 ± 0.006

Event-AUPRC 0.192 ± 0.017 0.176 ± 0.007

Sample-AUPRC 0.188 ± 0.014 0.181 ± 0.006

B. Comparison of the prediction performance of ML models and treating physiciansb

Prediction task Performance metric Physicians GBM LR

Mortality 21 days MCC 0.488 ± 0.089 0.461 ± 0.086 0.417 ± 0.087

F1 score 0.453 ± 0.086 0.427 ± 0.085 0.360 ± 0.084

Mortality 7 days MCC 0.796 ± 0.180 0.377 ± 0.064 0.304 ± 0.069

F1 score 0.767 ± 0.214 0.272 ± 0.077 0.204 ± 0.069

CMV 21 days MCC 0.234 ± 0.051 0.329 ± 0.062 0.266 ± 0.023

F1 score 0.289 ± 0.055 0.322 ± 0.049 0.281 ± 0.026

CMV 7 days MCC 0.170 ± 0.067 0.147 ± 0.033 0.143 ± 0.042

F1 score 0.168 ± 0.063 0.110 ± 0.025 0.117 ± 0.030

aFor the retrospective cohort, the table displays mean ± SD on the test set over 10 random splits into

training and test data. For the prospective cohort, it shows the performance of the final models, trained

on the entire retrospective cohort, as mean ± SD over 10 000 bootstrap samples.
bPerformance of models and physicians was measured using Matthews correlation coefficient (MCC) and

F1 score after binarization with the respective optimal threshold. Displayed is the mean ± SD over

10 000 bootstrap samples.
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earliest episode of CMV reactivation almost exclusively occurs in

the absence of prophylaxis. Second, we excluded patients without

CMV testing during the first 30 days after HCT since the earliest

CMV episode could have been missed without regular tests. For

CMV prediction over 21 days, the dataset contained 52 008 time

points from 1561 patients, of which 12 413 (23.87%) were labeled

positive.

Here, the GBM model also had the best performance with an

AUROC of 0.825 compared with 0.793 and 0.779 for LR and baseline,

respectively (Figure 3A). The same trend was observed in event-

AUPRC (Figure 3B), which was 0.620, 0.532, and 0.473 for GBM, LR,

and baseline models, respectively, and in sample-AUPRC (Figure S6).

For CMV prediction, the gap between models using time-dependent

data (GBM and LR) and the static baseline was much smaller than for

mortality prediction. The primary reason is that even the CMV models

with access to time-dependent data relied on static features for their

predictions, while time-dependent laboratory values had only a minor

impact (Figure 3E). Calibrated predictions agreed closely with the

observed risk; GBM and LR models both had an area of 0.05 between

the calibration curve and the line representing perfect calibration

(Figure S11).

We performed the same analysis of GBM model performance

over time for 21-day CMV prediction as described for 21-day mortal-

ity prediction. Again, the fraction of correctly predicted events

increased while approaching the event, and this trend was indepen-

dent of the exact decision threshold chosen (Figure S3b). With a

threshold offering an event recall of 0.8, the GBM model predicted

60% of events at least 2 weeks before they occurred. For patients

approaching a CMV event, the mean predicted risk rose almost line-

arly, starting about 40 days beforehand (Figure 3C). While AUROC

remained nearly constant over time after HCT, sample-AUPRC

dropped after day +40 post-HCT as fewer events occurred

(Figure 3D).

3.6 | The CMV predictions were mainly based on
prediction day and static features

SHAP value analysis of the GBM model for 21-day CMV prediction

revealed that patient CMV serostatus had the highest impact on

model predictions, followed by prediction day after HCT and underly-

ing hematologic disorder (Figure 3E). Conditioning regimen, anti-

thymocyte globulin as GVHD prophylaxis, donor CMV serostatus, and

patient age were also relevant. Interestingly, the time-dependent labo-

ratory values had only a minor role in the predictions of this CMV

model, with the exception of the percentage of lymphocytes, which

ranked among the top 10 features. Consequently, the CMV model

relied predominantly on static data. The joint analysis of feature

values and SHAP values confirmed that a positive patient CMV seros-

tatus led to a strongly increased risk prediction, while a negative ser-

ostatus reduced the predicted risk (Figure 3F). This dichotomy was

even more pronounced among patients who received additional T cell

depletion with anti-thymocyte globulin as GVHD prophylaxis. The

SHAP values for the prediction day after HCT peaked between days

+20 and +50, indicating a typical timing for early CMV reactivation

events (Figure 3G). This peak was most pronounced for patients with

recipient-positive CMV serostatus. Interestingly, donor age did not

have a differential impact on the risk of CMV reactivation predicted

by the GBM model, except for very young donors (<17 years)

(Figure S4b). However, these samples were limited in our dataset and

were also associated with young patient age.

For prediction of CMV reactivation over 7 days, the GBM and LR

models both had a similar AUROC but considerably lower event- and

sample-AUPRC than the corresponding models for prediction over

21 days. Again, this may be influenced by the lower positive fraction

of 7.50% with the narrower 7-day time window. An analysis of model

performance over time and of the impact of individual features on

predictions of the 7-day GBM are included in the supplementary

material (Figures S12 and S13).

3.7 | CMV models were successfully validated and
performed similar to HCT physicians

In the prospective validation cohort (n = 398), the performance of all

CMV models remained very close to their performance on retrospec-

tive data (Table 1A). Compared with the retrospective cohort, the

AUROC of the GBM model for 21-day CMV prediction increased

slightly from 0.825 to 0.846, while its event-AUPRC decreased

slightly from 0.620 to 0.574. This performance remained stable across

patient subgroups with distinct immunosuppressive regimens

(Table S2). In contrast, the 21-day LR model had a higher performance

for patients who received CSA instead of TAC immunosuppression.

For prediction over 7 days, both models demonstrated very similar

performance on retrospective and prospective data, and a trend

toward higher performance for patients with CSA immunosuppres-

sion. All CMV models remained well calibrated on prospective data,

concluding the successful prospective validation (Figure S10).

In a pilot study, we compared the predictive performance of the

ML models to the risk of CMV reactivation estimated by experienced

HCT physicians. The results are shown in Table 3B. For 21-day predic-

tion, the GBM model had the best performance, with an MCC of

0.329 ± 0.062 compared with 0.266 ± 0.023 and 0.234 ± 0.051 for

LR model and physicians, respectively. On the other hand, the physi-

cians had a small lead over both ML models for prediction over 7 days.

In both cases, these differences in average performance were not

decisive, given the limited dataset for this comparison.

4 | DISCUSSION

In response to persisting difficulties to predict relevant complications

in HCT patients and to support clinical assessment, we developed and

validated the first ML models for time-dependent prediction of mor-

tality and CMV reactivation after HCT. These ML models accurately

predict patient-specific event risks within a specified time window
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F IGURE 3 Performance and feature importance of the GBM model for 21-day prediction of CMV reactivation. (A) Receiver-operating
characteristic of GBM and LR model, which received a combination of static and time-dependent input features, and a baseline model which
received only static features. (B) Precision–recall curve for the same models shown in (A) based on event recall, i.e. the fraction of events that
were correctly predicted on any of the previous 21 days. (C) Mean predicted risk of the GBM model as a function of time to event. For reference,
the orange horizontal line indicates the mean predicted risk over all time points labeled negative. Dashed horizontal lines as in Figure 2.
(D) AUROC and sample-AUPRC of the GBM model and fraction of samples with positive label as functions of time after HCT. (A–D) Lines and
shaded areas show the mean ± SD on the test set over 10 random splits into training and test data. (E) Layered violin plot of SHAP values of the
GBM model for the 20 features with highest mean absolute SHAP value. The thickness of the violins corresponds to the estimated density of
each feature's SHAP values, colors show the magnitude of feature values (percentiles). For features marked with◇, the feature value is the time-
normalized score that the model received as input, not the raw value in its original unit. For categorical features, the colors are based on an

integer representation and should not be interpreted as ordered. All SHAP values were computed based on raw model output in log-odds space.
(F–G) Scatter plots of SHAP values over feature values. Samples are colored by the value of a second feature to reveal interactions, which show
as vertical color patterns. Displayed are plots for the feature patient CMV serostatus colored by anti-thymocyte globulin (F) and prediction day
after HCT colored by patient CMV serostatus (G).
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and at multiple time points after HCT and pave the way toward clini-

cal decision support systems for transplantation medicine. While

existing predictive models18–20 and scores8,9,32 for HCT-specific risk

assessment predominantly focus on pre-HCT assessment to support

treatment and donor selection, time-dependent risk assessment may

enable physicians to refine and individually adjust treatments and pre-

ventive measures after HCT to obtain the best possible outcome for

each patient.

Our ML models combine static patient information as used in pre-

vious HCT ML models18 with longitudinal laboratory data and update

their predictions whenever new time-dependent data become avail-

able. Although this study builds on previous research on ICU data,17

our ML models prove the applicability of this new approach in the

field of HCT and on a much larger time scale with varying data granu-

larity, which underlines the relevance of this study beyond the field of

transplantation.

Recent ML models in patients with leukemia combined static

patient data at diagnosis with time series of laboratory measurements

to predict patient outcome at a single point in time.33 While these

models included HCT as an input parameter, they neither predicted

the outcome after HCT nor at multiple time points. Another ML study

using longitudinal HCT data integrated patients' vital signs and pre-

dicted graft-versus-host disease by day +100 with a modest AUROC

of 0.66,34 allowing for a single prediction on day +10 after HCT. Per-

sonalized ML survival models for HCT patients refined prognosis at

the time of HCT but exclusively relied on static pre-HCT data as input

parameters without adapting to complications occurring after HCT.35

Most recently, the integration of multiple time-dependent variables

into an ML model improved the prediction of acute GVHD (AUROC

0.78) in HCT recipients.36

Although our final models update their predictions whenever new

data become available, they use only the most recent laboratory result

for each prediction. On large EHR databases, recurrent deep neural

networks, for example, using long short-term memory (LSTM) units,

have demonstrated high prediction performances utilizing entire time

series as model input.16,37,38 A limitation of LSTMs is, however, their

dependence on very large training data, which are not available in all

medical domains. For instance, LSTMs did not outperform GBM

models for the time-dependent prediction of circulatory failure based

on a large single-center ICU dataset.17 Since additional features

describing the history of laboratory values did not improve the perfor-

mance of our GBM models (Figure S15), we did not pursue more com-

plex approaches for time series data.

In this article, we considered multiple endpoints and time win-

dows for prediction. Across these tasks, GBM models consistently

outperformed LR and provided well-calibrated time-dependent risk

predictions. Prediction performance was best for prediction of 21-day

mortality, where we obtained very high AUROC and high event-

AUPRC. High predictive performance, in addition to validity and inde-

pendent replication, is a core requirement for the clinical use of

predictive models in decision support systems39 since it is the first

indicator of health impact and effectiveness. Yet, identifying the opti-

mal performance threshold for effectiveness and impact is also subject

to medical,40 technical, and ethical41 considerations relating to the

predicted outcome, potential consequences of false predictions, and

implementation issues. Our pilot comparison to physicians' expecta-

tions indicates that the developed models will likely provide relevant

practical use, for example, as a risk screening tool for post-HCT outpa-

tients. Given the possibilities of intervening via anti-infective or immu-

nosuppressive drugs and hospitalization, such warning systems might

prevent fatal outcomes. The immediate availability of the features

used by our models in most HCT centers, including both the static

HCT parameters and the continuously measured standardized labora-

tory variables, is a major advantage for its clinical application for deci-

sion support. Finally, successful implementation in clinical practice can

also be influenced by physicians' trust in ML models, which may be

increased by providing understandable explanations for individual

predictions,40 for example, via SHAP values.

Since a direct comparison to existing scores designed for pre-

HCT risk assessment is not possible, we compared our models to a

baseline model, which was trained for the time-dependent prediction

task but used only static input features. Interestingly, time-dependent

input features proved highly valuable for mortality prediction but only

offered modest improvement for CMV prediction, indicating that

time-dependent outcome prediction may improve HCT-specific risk

assessment beyond current standards, but possibly not for all end-

points in equal measure.

The final ML models were successfully validated on an indepen-

dent, prospectively recruited cohort, as shown by the overall high pre-

dictive performance of the developed models on prospective data.

For mortality prediction, model performance decreased slightly com-

pared with the retrospective cohort, which was in part explained by

changes in immunosuppression strategies. However, the slight perfor-

mance drop also in patients with identical baseline immuno-

suppression indicates a dataset shift over time. This is well in line with

a recent EBMT analysis of HCT data up to the year 2016, showing

decreasing NRM over time.3 Given the small differences in prediction

performance between the retrospective and prospective cohort, the

applicability of the mortality prediction models remains unaffected.

The importance of prospective validation has been previously

shown42 and is also reflected in our study design. Indeed, predictive

models developed for use in clinical practice require continuous moni-

toring and, if necessary, refinement. Possibly due to the large impact

of static features, the performance of models predicting CMV reacti-

vation was not affected by this dataset shift and remained stable.

Our exploratory head-to-head comparison with experienced HCT

physicians revealed that GBM models performed approximately on

par for 21-day prediction of mortality and CMV reactivation. Despite

the limitations of this pilot comparison, trends showed that the physi-

cians performed slightly better in mortality prediction while the GBM

model was better in predicting CMV reactivation. Since the physicians

had direct contact with their patients, and therefore access to more

information than the 60 input features of the ML models, these

results underline the promising potential for future use of such GBM

models in clinical practice. Integrating additional features, such as vital

signs or current medication, could potentially increase model

EISENBERG ET AL.



performance further. However, the current feature set used by our

final models is readily available in most HCT centers, which is a pre-

requisite for the implementation as a clinical decision support system.

Although this is a topic of active discussion in the scientific

community,43 better interpretability or explainability of ML models in

healthcare may improve trust into model predictions44 and even the

quality of decision support systems.45 Here, SHAP values provide

insight into the impact of specific features on model predictions and

offer a comprehensive approach to explore underlying biological

mechanisms. In the GBM models for mortality prediction, mainly fea-

tures related to organ function and inflammation (CRP, urea nitrogen,

GOT, protein) affected the predicted risk. In contrast, the GBM

models predicting CMV reactivation strongly relied on static patient

data (CMV serostatus, diagnosis, conditioning regimen). For both end-

points, the prediction day after HCT had a large impact on the pre-

dicted risks indicating a typical time period for potential complications

after HCT, which is in line with previous reports.1 While SHAP values

can provide valuable insight into the features contributing to individ-

ual model predictions, it is important to note that they do not repre-

sent causal relationships.

The time-dependent prediction problems we considered were

imbalanced, meaning that our data contained few samples with a posi-

tive label. In this situation, AUPRC is a more informative performance

measure than AUROC.17 However, the exact positive fraction in our

data varied across prediction tasks, and we observed that event- and

sample-AUPRC were strongly correlated with it. This made it difficult

to compare models for different endpoints and time windows directly.

Sampling methods could be used to adjust the positive fraction for

such comparisons, but then performances would no longer be mea-

sured on the data distribution of a realistic application scenario, where

the positive fraction is determined by the prevalence of events. By

design, the positive fraction for 21-day prediction tasks was higher

than for 7-day prediction. Quite unexpectedly, this made 21-day pre-

diction the easier task for ML methods, leading to more robust results

even though the distance from positive labeled prediction days to the

event was longer. In addition, the 21-day prediction models have a

greater potential clinical applicability because they may enable an ear-

lier intervention to prevent or treat complications.

This study has limitations and strengths. It included only data

from a single center, which may limit the general applicability of the

developed models. However, the models were built on a homoge-

neous and large dataset of several million data points, and the patient

characteristics and HCT practice standards reflected those of major

international centers. The precise predictions of our models using

standard laboratory features available in all HCT centers pave the way

toward the implementation of decision support systems in HCT. Ulti-

mately, its routine use as a medical device requires a prospective clini-

cal trial for safety and efficacy, according to, for example, the EU

medical device regulation (EU 2017/745). As in many previous

studies,46,47 we defined CMV reactivation events only based on

detectability, combining data of different quantitative and qualitative

CMV tests. However, more recent studies have demonstrated that

the severity of CMV disease may be revealed by viral load

kinetics.48,49 It would be interesting for future work to attempt time-

dependent prediction of CMV reactivation with a narrower event

definition based on a threshold for the viral load.

The developed ML models predict mortality and CMV reactiva-

tion for HCT patients reliably and in a time-dependent manner, and

therefore may potentially improve patient outcomes once implemen-

ted as decision support systems in post-HCT care.
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Abstract. Predictive models can support physicians to tailor interventions and 

treatments to their individual patients based on their predicted response and risk of 

disease and help in this way to put personalized medicine into practice. In alloge-

neic stem cell transplantation risk assessment is to be enhanced in order to respond 

to emerging viral infections and transplantation reactions. However, to develop 

predictive models it is necessary to harmonize and integrate high amounts of het-

erogeneous medical data that is stored in different health information systems. 

Driven by the demand for predictive instruments in allogeneic stem cell transplan-

tation we present in this paper an ontology-based platform that supports data own-

ers and model developers to share and harmonize their data for model develop-

ment respecting data privacy. 

Keywords. Predictive models, semantic data annotation, semantic integration 

1. Introduction

Patterns in individual health data and personalized multiscale models of diseases can 

predict future events and outcome. Such predictive models are able to support decisions 

by physicians in all aspects of personalized diagnosis and treatment. Especially in the 

area of stem cell transplantation (SCT) predictive models are needed, since complica-
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tions, e.g. viral infections, graft-versus-host disease (GvHD) or relapse, can be life-

threatening. It is currently not possible to predict the course of SCT and therefore in a 

number of patients lifesaving interventions cannot be applied on time. Despite the pop-

ularity of predictive research, the development of required models lacks behind expec-

tations [1].  

Model developers need a reliable methodology to easily collect and correlate data 

from different hospitals and diverse sources (health information or laboratory systems, 

medical reports, etc.) in order to reach a sufficient study cohort. It is a tedious task to 

do so manually and it is estimated that currently 50%-80% of a data scientist’s time is 

spent on data integration [2]. An expressive description of data using emerging stand-

ards is necessary to maximize the quality and applicability of the developed models. 

Hence, in the XplOit project we are developing a platform that enhances and acceler-

ates development of predictive models with an innovative approach for semantic data 

integration. The XplOit Platform enables data owners to easily share and harmonize 

their data respecting data protection. Model developers can inspect and analyze cross-

institutional harmonized data. In the following, we describe our approach to semantic 

data integration and the architecture of the XplOit Platform.  

2. Methods – Ontology-Based Data Integration

Establishment of reliable predictive models requires a profound understanding of the 

meaning and the correlation of cross-institutional data. Therefore, expressive data an-

notations and deep semantic data integration is required. Hence, we have chosen an 

ontology-based data integration approach [2] with the following features: (1) As global 

scheme, we use an ontology that is an expressive standardized description of the do-

main formalized in the Web Ontology Language OWL [3]. (2) Unlike most current 

medical data integration approaches, which use merely concepts from the ontology as 

annotations, we allow complex descriptions to realize deep expressiveness. (3) We aim 

to enable data owners themselves to perform the data integration tasks, i.e. extend on-

tology and create data annotations, since they know the meaning of the data and can 

decide which data is needed. 

Our work exceeds approaches in most other medical data integration platforms as 

e.g. tranSMART [4] or i2B2 [5] in the expressivity of metadata. There are only few

approaches, e.g. the p-medicine platform [6], with comparable expressivity in their

metadata. However, in these approaches annotations have to be created mostly manual-

ly, browsing complex ontologies, a tedious and time-consuming task. We, in contrast,

provide easy-to-use semi-automatic tools as described in the following.

2.1. VDOT-Ontology and Ontology Aggregator Tool 

The global scheme of our data integration approach is the Viral Disease Ontology 

Trunk (VDOT)
2
, a modular, domain ontology. It provides formal, human-and comput-

er-understandable axiomatic semantic descriptions of concepts and expressions for the 

description of biomedical data and predictive models. VDOT is standardized by reus-

ing parts of established ontologies relating them in an axiomatic new framework. It 

2
VDOT is stored in the library of biomedical ontologies: www.ifomis.org/vdot.
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does not contain all concepts needed for data annotation purposes, but rather provides a 

framework, which can easily be extended by users to cover their individual annotation 

needs.  VDOT extensions can be semi-automatically generated by end users with the 

Ontology Aggregator Tool. This tool searches a semantic repository, with standardized 

ontologies and can automatically relate needed concepts with others in VDOT.  

2.2. Semantic Data Annotation

We realize data annotations as paths relating ontology concepts by axiomatically de-

fined relations, allowing to describe the meaning of a data element with different in-

formation. The annotation service supports data owners to easily annotate a data object 

type (DOT) that describes similar data files with paths from the ontology: For each data 

element an ontology path is semi-automatically created in three steps as follows:

1. Matching concepts. A string matching algorithm searches matching concepts for

the data element. The label of the data element is compared to labels and syno-

nyms in the ontology. If no concept can be found, the data owner can specify alias-

es. If still nothing can be found the Ontology Aggregator Tool can be used to semi

automatically extend the ontology.

2. Ontology paths. For the matched concepts potential ontology paths are created.

The starting point of the path is the patient, the ending point the matched concept.

Automatically all possible paths can be created by iteratively searching VDOT uti-

lizing axiomatic constrains of its concepts (ontological relations).

3. Selection of path. If more than one path is found, the paths are ranked according to

their likelihood that grows when: 1) Same path is already used in other DOTs. 2)

Path is similar to paths related to other data elements in the DOT. 3) Path contains

concept with a high string matching similarity. The ranked paths are shown to the

data owner with additional descriptions from the ontology, enabling him to select

the right path.

From the annotations a formal annotation template is generated, storing the information 

to translate uploaded data matching the DOT into an RDF triple graph and integrate it 

with other data. The information stored in the graph is sufficient to provide model de-

velopers with extensive search and analysis functionality as described in the next chap-

ter.  

3. Results – The XplOit Platform

The XplOit Platform is a web-based platform for model developers and clinicians 

working in a modelling project together. For modelling projects, a community can be 

founded, which allows data sharing with their members respecting data protection. A 

community manager, who is in general a data owner, is responsible that only author-

ized persons can become a member of the community in order to guarantee data priva-

cy. The data owners from different hospitals upload their pseudonymized data. After 

annotating as described above the data is harmonized by representing them as triples in 

a data store, and model developers can search and analyze it. In the following we de-

scribe the main components and services of the platform as depicted in Figure 1. 
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The De-Identification and Pseudonymisation Services are locally installed in the 

hospitals to semi-automatically pseudonymize and deidentify structured (Mainzelliste 

[7]) and unstructured data (deID-Tool [8]), as e.g. medical reports. The Information 

Extraction Framework (IEF) provides user friendly tools for data owners to share 

and harmonize their data. It processes structured and unstructured heterogeneous data 

to store the raw data as well as the processed triples data in the data warehouse. The 

IEF enables to integrate different pipelines for a flexible ETL (Extract, Transform and 

Load) processing of the provided data according to configured DOTs. These pipelines 

can be designed as Pentaho Data Integration [9] transformations and uploaded via the 

XplOit portal. The Data Warehouse is the central database of the XplOit Platform. It 

consists of an OpenLink Virtuoso quad store [10], for storing the RDF graph, and a 

MongoDB database [11], for storing application specific data as e.g. user information. 

The Semantic Integration Framework implements the described data integration 

approach. The Modeling Workbench enables model developers to search and analyze 

the integrated data to check data quality, possible correlations and generate first hy-

potheses. It is possible to search for parameters using standardized search terms from 

the ontology, while restricting the data ranges of values. For inspecting the data, it can 

be chosen between a tabular and various graphical views as e.g. histogram, box plots, 

scatterplots and parallel coordinates. The Security Services ensure data protection and 

data integrity. They manage secure data access and provide an audit trail. 

Figure 1. Architecture of the XplOit Platform. 
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4. Conclusion

We have presented a semantic data integration platform for enhancing and accelerating 

the development of predictive models. It allows clinicians and model developers to 

work together efficiently. Data owners can easily harmonize and share heterogeneous 

health data while respecting data privacy. This is achieved through an innovative se-

mantic data integration approach that enables model developers to quickly gain a deep 

understanding of meaning and correlation of data providing them with data-inspecting, 

-analyzing and -export tools enhancing and accelerating their work.

 First tests with clinicians and model developers are promising. They have shown 

that both user groups are able to efficiently work with the platform and confirmed that 

important preliminary work for model development can be conducted. Currently our 

platform is applied for developing predictive models for stem cell transplantation utiliz-

ing data from two university hospitals. 

In the future, we will also support transfer of predictive models from bench to bed-

side. Model developers will be able to upload their models into a model repository. The 

models can be validated with prospective clinical trials using the ontology-based trial 

management system ObTiMA [12]. Following validation, clinicians can apply the 

models in patient treatment. Furthermore, data pipelines for miRNA and imaging data 

will be integrated. The presented ontology-based data integration approach can be also 

applied to other kinds of biomedical data integration scenarios. 
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