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Abstract

Protoplanetary disks are the birthplace of planets. Before these gaseous disks are
dispersed by the radiation from their host star they interact with the planets that
form out of them. This interaction causes the planets to change their orbits and the
disk to be sculpted by the planets if these are sufficiently massive. Transition disks
constitute a subset of the protoplanetary disks that feature an inner hole while
mass accretion onto the star is ongoing. While transition disks with small inner
holes and low accretion rates have already been explained by photoevaporation,
the origin of transition disks with large inner holes up to tens of astronomical units
wide and high mass accretion rates remains unclear.
In this thesis, I explain, using two-dimensional fluid dynamics simulations, how

an outward migrating pair of planets can reproduce the characteristics of transition
disks with large holes and high accretion rates.
In addition, I describe a newly-found phenomenon in the realm of planet–disk

interaction. During the process which I call a migration jump, a pair of giant
planets resonantly migrates outward which excites the eccentricity of the planets
and creates a vortex in the outer disk. Through interaction with the vortex, the
outer planet enters an accelerated phase of outward migration allowing it to cover
tens of astronomical units in only a few thousand years, before it quickly migrates
back into the initial configuration with the inner planet.
Sparked by the prominence of the vortex in the migration jump, I studied the

properties of planet-induced large-scale vortices in protoplanetary disks and their
dependence on the thermal relaxation timescale and the level of viscosity of the
disk. For the detection and analysis of vortices in simulation data, I developed a
novel detection pipeline based on computer vision algorithms. The vortices tend to
live longest in disks with low viscosity and short thermal relaxation timescale and
live shortest in disks with thermal relaxation timescales comparable to the orbital
period.
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Kurzfassung

Protoplanetare Scheiben sind die Geburtsstätte von Planeten. Bevor diese Gas-
scheiben von der Strahlung ihres Zentralsterns zerstreut werden, interagieren sie mit
den Planeten, die aus ihnen entstehen. Diese Interaktion führt zu einer Veränderung
der Planetenorbits, und falls die Planetenmassen hoch genug sind, führt sie zu ei-
ner Formung der Scheibe selbst. Eine Untergruppe der protoplanetaren Scheiben
sind die Übergangsscheiben, welche in Beobachtungen im Zentrum ein Loch auf-
weisen und gleichzeitig Massenakkretion auf den Zentralstern erlauben. Während
die Übergangsscheiben mit kleinen Löchern und geringen Akkretionsraten bereits
durch Photoevaporation erklärt werden können, bleibt die Herkunft von denjeni-
gen mit großen Löchern bis zu einigen zehn astronomischen Einheiten und hohen
Akkretionsraten unklar.
In dieser Doktorarbeit erkläre ich anhand von zweidimensionalen Strömungs-

dynamiksimulationen, wie ein nach außen migrierendes Planetenpaar die Übergangs-
scheiben mit großen Löchern und hohen Akkretionsraten erklären kann.
Außerdem beschreibe ich ein neu entdecktes Phänomen im Bereich der Planet-

Scheiben Wechselwirkung. In dem Prozess, den ich Migrationssprung nenne, mi-
griert ein Planetenpaar in Resonanz nach außen, wodurch die Exzentrizitäten der
Planeten erhöht werden und ein Wirbel in der äußeren Scheibe entsteht. Durch die
Interaktion mit dem Wirbel beginnt der äußere Planet eine Phase von beschleunig-
ter, nach außen gerichteter Migration, während welcher er mehrere zehn astronomi-
sche Einheiten in nur wenigen Tausend Jahren zurücklegen kann, bevor er wieder
rasch in die ursprüngliche Konfiguration mit dem inneren Planeten zurückkehrt.
Inspiriert durch die prominente Rolle des Wirbels in den Migrationssprüngen

untersuchte ich die Eigenschaften von großen Wirbeln, die von Planeten erzeugt
werden, und deren Abhängigkeit von der thermischen Relaxationszeit und der Vis-
kosität der Scheibe. Zur Detektion und Analyse von Wirbeln in Simulationsdaten
entwickelte ich ein neues Vorgehen basierend auf Bilderkennungsalgorithmen. Die
Wirbel leben am längsten in Scheiben mit geringer Viskosität und kurzer thermi-
scher Relaxationszeit und leben am kürzesten in Scheiben mit einer thermischen
Relaxationszeit, die mit der Umlaufperiode des Planeten vergleichbar ist.
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1 Introduction

Countless civilizations have attributed gods of all different kinds to Nature’s
various phenomena that govern our lives, to the elements and to the celestial bodies.
In many cultures, the sun god takes the role of a king of gods being associated with
consciousness itself, as is the case for Egyptian mythology with its sun god Ra and
his offspring, the god of the sky Horus whose two eyes are the sun and the moon.

Living in an age of never-ending technological marvels and having access to elec-
trical light at any time, the importance of the sun for daily life might be less striking
to us than to our ancestors, but being in the presence of a view of the night sky,
unimpeded by light pollution, is still one of the most awe-inspiring experiences pos-
sible. In the night sky, the colorful wanderers — the ancient Greek word planētai

translates to wanderers — are very prominent, being the brightest objects together
with our moon.

For many humans, curiosity accompanies awe and observing that the planets are
large objects orbiting the sun, the next questions to ask are: how do these planets
form? And what about the moon and the sun? As it turns out, these questions are
intricately connected.

1.1 A brief story of planet formation

Stars are giant bodies of gas that are so massive that the gravitational attraction
they exert on themselves is enough to trigger and sustain nuclear fusion in their
interiors. They form during the collapse of gaseous cores inside a giant molecular
cloud, usually together with many other stars, which is reflected in the fact that
over half of the observed stars are in binary or multiple start systems (Offner et al.
2022). Different stages of the collapse process are sketched in Fig. 1.1. After the
first 104–105 years, part of the collapsing cloud has accumulated into a protostar,
not yet producing its radiated energy by nuclear fusion but by contraction heating.
At this stage, the protostar is still embedded in an opaque cloud.

Because the initial cloud is subject to internal differential motion, the cloud
generally has a non-zero angular momentum. Because of angular momentum con-
servation, the cloud can only freely fall onto the star parallel to the rotation axis.
In the plane perpendicular to the rotation axis, some material needs to stay at a
distance while orbiting the central protostar. In addition, jets can emerge parallel
to the rotation axis, fueled by gravitational energy which is released as the material
moves closer to the central star.

During an intermediate stage of the star formation process which lasts several
105–106 yr (Haisch et al. 2001) when the star is in the T Tauri phase (named after
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1 Introduction

Dark cloud cores

Gravitational collapse

Protostar embedded in 
8000 au envelope, disk, 
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T Tauri star, disk, outflow

Pre-main-sequence star, 
remnant disk

Main-sequence star, 
planetary system

Figure 1.1: Sketch of the multiple stages of star formation from a giant molecular
cloud to a planetary system. Credit: André Oliva, adapted from Greene (2001).

a particular star in the Taurus constellation), a disk-like structure exists around
the protostar which is the result of angular momentum conservation and which is
surrounded by a thin envelope. Most of the accretion (mass accumulation) onto
the star ensues through the disk at this stage — hence the name accretion disk.
It is in these disks where planets are formed — accordingly, they are often called
protoplanetary disks (PPDs). The gas in a PPD is finally either accreted onto
the protostar or expelled from the disk by photoevaporation until only small solid
objects and planets remain.

Akin to the interstellar medium (ISM) they emerge out of, it is assumed that
PPDs have a similar chemical composition with around 1% being µm-sized dust
(Mathis et al. 1977). These dust particles are the fundamental building blocks for
terrestrial planets.

In the most widely accepted scenario, the core accretion scenario, planets form by
the agglomeration of this µm-sized dust into larger dust grains, which collide and
stick together to form meter-sized pebbles and boulders and finally km-sized plan-
etesimals. Planetesimals are then able to gravitationally attract additional solid
particles until they grow to terrestrial planets. The left-over small solid bodies
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1.2 Accretion disks

and the fragments caused by the collision of larger objects end up as comets and
asteroids. The resulting bodies can be a discerning factor in assessing solar system
formation theories by a comparison of the statistics of observed bodies in the as-
teroid and Kuiper belt to predictions from models (Nesvorný 2018). While smaller
terrestrial planets are able to retain a small gaseous atmosphere (the atmosphere
of the Earth accounts for ∼ 10−6 of its total mass), larger rocky planets (with a
mass of 10–20M⊕, Mizuno 1980; Ikoma et al. 2000) can accrete much more gas and
grow to become gas giants like Jupiter.

1.2 Accretion disks

A characteristic property of PPDs is that they are accretion disks. Accretion rates
onto young T Tauri stars range from 10−9–10−7 M⊙/yr with a median at 10−8 M⊙/yr
(Hartmann et al. 1998). Disk masses around young stellar objects range from 10−4

to a few 10−1 M⊙ (Andrews & Williams 2005). Because of angular momentum
conservation, an accretion disk must facilitate angular momentum transport from
the inside out — otherwise, the disk material would stay at a fixed orbit, analogous
to how planets stay on fixed orbits if not perturbed. Accretion disks can be thought
of as machines that transport angular momentum away and mass towards the star.

Therefore, an angular momentum transport mechanism is needed. Viscosity, the
resistance to shear within the fluid of the disk, is a suitable candidate as can be
shown with simple 1D disk models (Lynden-Bell & Pringle 1974). However, the
molecular viscosity of the gas is much too small to sustain the observed mass ac-
cretion through the disk, and thus turbulence has been proposed to be the driving
mechanism of angular momentum transport — resulting in an effective turbulent
viscosity. This is a widely used assumption and encapsulated in the α-viscosity
model (Shakura & Sunyaev 1973) where the turbulence is parameterized as an
effective viscosity through the viscous stress tensor. During the last decades, nu-
merous different types of turbulence and instabilities with the ability to transport
angular momentum have been identified. The list includes the magneto-rotational
instability (MRI, Balbus & Hawley 1990), the gravitational instability (Gammie
2001), and the vertical shear instability (VSI, Nelson et al. 2013). All these insta-
bilities occur under different sets of conditions which sometimes overlap, leading
to one instability attacking the structures formed by a previous instability. The
efficiency of these instabilities and their turbulence in transporting angular mo-
mentum can usually not be evaluated analytically, and thus numerical simulations
have been performed to assess it. The angular momentum transport efficiency due
to instabilities ranges from α = 10−5–10−3 for the VSI (Nelson et al. 2013; Stoll &
Kley 2014; Flock et al. 2017; Barraza-Alfaro et al. 2021) and α = 10−3–10−2 for
the MRI (Hawley et al. 1995). These values are consistent with the mass accretion
rates observed for young stars (Hartmann et al. 1998).
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1 Introduction

Figure 1.2: Left: Disk observations using high resolution radio observations with
ALMA from the DSHARP survey (Andrews et al. 2018) revealing many substruc-
tures. Right: ALMA (Keppler et al. 2018) and near-IR observations using the VLT
(insert on the right, Müller et al. 2018) of the unique PDS 70 system in which two
giant planets were directly observed while still accreting and being embedded in
their disk (Haffert et al. 2019).

Contemporary observations are able to resolve the disk with the help of inter-
ferometry, either in radio wavelengths, e.g. with the Atacama Large Millimeter
Array (ALMA, see left and center panel Fig. 1.2), or in infrared with the Very
Large Telescope (VLT, see right panel Fig. 1.2), in combination with sophisticated
data analysis and interpretation techniques. Many of the resolved disk observa-
tions show substructures in the disks (see Fig. 1.2) including holes, rings, arcs and
localized intensity maxima. The sizes of the resolved disks vary from some tens to
some hundreds of au.

1.3 Transition disks

While an observed accretion rate indirectly hints at the existence of an accretion
around a young star, the existence of a disk can also be directly identified by the
spectrum of emission due to thermal radiation from the µm-sized to mm-sized dust
grains. As illustrated in the left panel of Fig. 1.3, the disk appears as a plateau in
the spectrum of the star-disk system at the Rayleigh end of the stellar blackbody
spectrum, because the disk is considerably cooler than the stellar surface, but with
a much larger surface area. Because the temperature in the disk midplane usually
decreases outward, the disk spectrum is a superposition of a range of blackbody
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1.3 Transition disks

Figure 1.3: Schematic spectrum of a protostar and its disk (left, from Dullemond
et al. 2007) and the observational spectrum of the transition disk DM Tau (blue)
along with the stellar spectrum (dashed line) and the median spectral energy dis-
tribution (red dots) of PPDs in the Taurus star-forming region (right, from Owen
2016).

spectra with different temperatures, emitted at different radii within the disk. As a
consequence, different parts of the spectrum can be associated with different radii
in the disk (see the left panel of Fig. 1.3).
Observationally, PPDs were first identified and distinguished from isolated stars

by their emission in the near- and mid-infrared. In addition to smooth disks and
isolated stars, there was a third class of observed objects that were believed to be in
an intermediary state during which the stars lose their disk (Kenyon & Hartmann
1995). Owing to this hypothesized transitional state, these objects were termed
transition disks (TDs).
Spectral observations of TDs reveal an even clearer way to define this subclass

of disks. TDs lack emission in the near-infrared which results in a valley in their
spectrum between the stellar and disk contributions (see the blue line in the right
panel in Fig. 1.3). Relying on the fact that the wavelength of the emission is linked
to the distance from the star, this missing near-infrared emission indicates that
TDs have holes in their dust distribution close to the star.
Owen (2016) classified TDs into two opposing categories. TDs with low millimeter-

fluxes (mm-flux), small inner hole sizes (≲ 10 au) and low accretion rates
(1010–10−9 M⊙/yr) were classified as type I. TDs with high mm-fluxes, large inner
hole sizes (≳ 20 au) and high accretion rates (10−8 M⊙/yr) were classified as type
II.
Type I disks can mostly be explained by X-ray photoevaporation (Owen 2016;

Picogna et al. 2019). Because photoevaporation is most efficient close to the star,
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1 Introduction

photoevaporative disk dispersal happens from the inside out. It starts at the dis-
tance from the star, where thermal energy input from stellar irradiation is suffi-
ciently high to overcome the gravitational attraction by the star.
Type II disks appear as a paradox. They simultaneously have large inner holes

but show large accretion rates at the same time. Here, however, a caveat is impor-
tant. The observations, spectra and images, show dust emission. As a consequence,
there might just be a hole in the dust distribution and the gas disk might be con-
tinuous.
It is known from analytical theory (Goldreich & Tremaine 1979, 1980) that giant

planets in PPDs open gaps — a fact which was verified in hydrodynamics simula-
tions many times (e.g. Kley 1999; Crida et al. 2006; Kanagawa et al. 2017). This
suggests a possible explanation of type II disks in which a system of giant planets
opens a large hole in the disk via gravitational interaction.

1.4 Migration and gap opening

As outlined in Sect. 1.1, planets form in and out of accretion disks around young
stars. This means that there must be a time when both the planets and their parent
disk coexist. During this time, the planets and the disk interact gravitationally and
exchange angular momentum. The change of the angular momentum of a planet
results in migration — a change in the distance to the host star — as well as
changes in eccentricity and inclination, and precession of the orbit. For typical disk
parameters and planet masses up to several MJ, the planets lose angular momentum
which causes the planets to migrate closer to the star Ward (1997); Kley & Nelson
(2012). See Sect. 2.3 for more details on planet migration.
Planets with sufficiently large mass can push away material from their orbit

and thus create a gap in the disk (e.g. Goldreich & Tremaine 1980; Ward 1997;
Kanagawa et al. 2017), much like the planets in the solar system clear their orbits
from asteroids and how the moons around Saturn create the gaps in its rings. For
a PPD, this process is governed by a balance between the angular momentum flux
carried by density waves launched close to the planet and the angular momentum
flux of the viscous disk evolution that refills the gap. Thus, the mass needed to
open a gap scales with the efficiency of the disk to open a planet. For a relatively
cold disk with an aspect ratio of h = 0.05 and a low viscosity α ≲ 10−4, this
planet mass can be as low as one Neptune mass MNep ≈ 0.05MJ ≈ 5 × 10−5 M⊙

(Kanagawa et al. 2015). This gap opening capability was repeatedly invoked to
explain rings in observations of PPDs, e.g. for the first image of a PPD produced
by ALMA (the disk around HL Tau, ALMA Partnership et al. 2015) or for the disks
in the DSHARP survey (Andrews et al. 2018, see also the left panel of Fig. 1.2 for
examples of rings).
For a special case of resonant migration of a pair of two giant planets (Mp ≳ 3MJ),
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1.5 Vortices

the overlapping gaps of both planets can reach widths that are comparable to their
distance to the central star (Masset & Snellgrove 2001). This property is what
makes them ideal candidates for carving the gaps and holes in type II TDs (Owen
2016). The formation of a gap can also stop dust particles from drifting inward
further than the outer gap edge. Just outside the outer gap edge, a radial pressure
maximum forms as a consequence of the gap opening. For the dust sizes that are
observable by ALMA, this pressure maximum acts as a barrier, halting the inward
drift of the dust particles (Weidenschilling 1977). This creates a scenario in which
a planetary system carves a large gap that is visible as a large inner hole in dust
observations.

Coincidentally, the only system in which we observed planets in their natal disk
that are actively accreting is one with such properties. The disk around PDS 70
(see Fig. 1.2 for observations with ALMA and the VLT) features a large inner hole
of around 40 au and two super-Jupiter-mass planets in a configuration compatible
with resonant outward migration (Müller et al. 2018; Keppler et al. 2019; Bae et al.
2019; Rometsch et al. 2020, see also Sect. 4.3 for more details about the modelling
of this system).

1.5 Vortices

One consequence of gap opening by embedded planets is the possibility of the
emergence of vortices in the disk (Li et al. 2005; Val-Borro et al. 2007). Conditions
for their formation exist either during the planet formation process when a gap
is created for the first time or during the dynamical interplay of multiple giant
planets.

Vortices and eddies are the fundamental building blocks of turbulence (Lyra
& Umurhan 2019) and can exist on a range of length scales in a given system.
Depending on the type of turbulence as characterized by the power law exponent
of its spectral energy density, turbulent energy is moved from large scales to very
small scales, where the energy is dissipated into heat, or from small scales to large
scale, resulting in the formation of large-scale vortices.

In the context of PPDs, there are several ways, including instabilities, that enable
the growth or destruction of vortices. Growth can be sustained by the Rossby-
wave instability (RWI, Lovelace et al. 1999), the subcritical baroclinic instability
(SBI, Klahr & Bodenheimer 2003; Lesur & Papaloizou 2010), or the zombie vortex
instability (ZVI, Marcus et al. 2015, 2016). The RWI can occur in PPDs at the
edge of a gap in the disk, which can either be opened by embedded giant planets (Li
et al. 2005; Val-Borro et al. 2007) or at viscosity transitions which are expected to
happen at the interface of a dead zone (Godon & Livio 1999). Vortex decay can be
brought about by viscous spreading that attacks the vortex boundary and diffuses
the vortex, or from within the vortex, e.g. by the elliptical instability (Lesur &
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1 Introduction

Papaloizou 2009). Vortex properties, including their lifetime, not only depend on
viscosity, but also on the thermodynamic properties of the disk which influence the
kinematic viscosity via the temperature in the α prescription (Pierens & Lin 2018;
Tarczay-Nehéz et al. 2020) or directly via vortensity generation at the planetary
spiral arm shocks (Cimerman & Rafikov 2021).
There is a large number of substructures found in resolved protoplanetary disks

(Andrews 2020). Some of these observations include non-axisymmetric and lopsided
structures. Possible explanations range from dust trapped in the Lagrange points
of gap-opening planets (Rodenkirch et al. 2021) to the presence of vortices (Barge
& Sommeria 1995; Marel et al. 2013; Bae et al. 2016; Pérez et al. 2018; Hammer
et al. 2019). Fig. 1.4 shows a collection of vortices as they emerge in non-linear
fluid dynamics simulations and as they appear in observations of PPDs.
The basic argument of employing vortices for the explanation of non-axisymmetric

structures in disk observations is their tendency to accumulate dust (Barge & Som-
meria 1995; Tanga et al. 1996; Johansen et al. 2004). Dust particles follow pressure
gradients in the disk and as a result, they accumulate in the center of a pressure
maximum. Anticyclonic vortices in PPDs correspond to pressure maxima (Lyra &
Umurhan 2019) and thus accumulate dust naturally. Because ALMA images the
dust content of PPDs close to the midplane (Andrews 2020), a lopsided structure
in a disk is a plausible hint at the existence of a vortex.
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1.5 Vortices

Figure 1.4: Vortices in PPD models and observations with large-scale asymmetries
in brightness interpreted as vortices. Left: a numerical fluid dynamics simulations
in which a vortex formed at a jump in density due to a viscosity transition (top,
Godon & Livio 1999) and due to a gap carved by a giant planet (bottom, Val-Borro
et al. 2007). Center: the asymmetry in the IRS 48 disk observed with ALMA (Marel
et al. 2013) in dust continuum (top) and µm-sized and mm-sized dust (bottom).
Right: the disk of HD 135344 in scattered light observations (top, Garufi et al.
2013) and in dust continuum emission with ALMA (bottom, Pérez et al. 2014).
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1 Introduction

1.6 Aims

Transition disks inhabit the space between smooth accretion disks and planetary
systems. Planets have been invoked to explain their characteristics based on their
ability to carve gaps into the disks (Rice et al. 2003; Quillen et al. 2004; Calvet
et al. 2005) From previous numerical modeling of these disks with embedded plan-
ets, the expectation arises that they show various types of substructures including
spirals (Ogilvie & Lubow 2002), rings (Rafikov 2002) and non-axisymmetric fea-
tures such as vortices (Val-Borro et al. 2007). Indeed, resolved disk observations
show a plethora of such substructures (Andrews et al. 2018).
This thesis aims to study the more concrete hypothesis proposed by Owen (2016)

that type II transition disks — those with large hole size, high accretion

rate and high mm-flux — can be explained by a system of embedded

planets using two-dimensional fluid dynamics simulations. Along with the attempt
of reproducing type II TDs, the dynamical evolution of the embedded planetary
system is investigated.
The emergence of vortices during the interaction of disks with embedded giant

planets (Val-Borro et al. 2007) and their importance in the observed dynamical
effects in the first part of this thesis motivated a further investigation into the
properties of planet-induced vortices with a focus on the role of radiative effects
which have been demonstrated to be of vital importance for the simulation of disk-
planet systems (Ziampras et al. 2020; Miranda & Rafikov 2020).
For both investigations, the influence of physical and numerical choices such as

the thermal relaxation timescale, the level of turbulence, the inclusion of self-gravity
and radiative processes, and the resolution are studied to support the validity of
the results.
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2 Theoretical background and

methods

This chapter describes the methods and theoretical background used to answer
the astrophysical questions in this thesis. The chapter gives an overview of the fluid
dynamics equations, a typical PPD model, the gravitational interaction between
planets and PPDs, and vortices. Additionally, the simulation tool and a typical
simulation workflow are described.

2.1 Fluid dynamics

The theoretical basis for the description of many astrophysical systems is fluid
dynamics (Shu 1992). On a conceptual level, fluid dynamics can be derived from
three types of conservation laws: conservation of mass, momentum and energy. In
a mathematical formulation, the three conservation laws take the form (see, e.g.
Shu 1992)

∂ρ

∂t
+∇ · (ρu⃗) = 0 , (2.1a)

∂(ρu⃗)

∂t
+∇ · (ρu⃗⊗ u⃗) = −∇p+ ρk⃗ +∇τ , (2.1b)

∂(ρε)

∂t
+∇ · (ρεu⃗) = −p∇ · u⃗+ S , (2.1c)

where ρ is the mass density, u⃗ is the velocity, ⊗ denotes the tensor product, ε is
the specific internal energy, p is the pressure, k⃗ is the acceleration due to external
forces, τ is the viscous stress tensor, and S are radiative sources and sinks. The
inviscid form of Eqs. (2.1) (with τ = 0) are also called the Euler equations.
The viscous stress tensor is defined as (see, e.g. Shu 1992)

τij = 2µ

[

1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

− δij
3
∇u⃗

]

+ ζδij∇u⃗ , (2.2)

where i, j ∈ {1, 2, 3} indicate the spatial directions, µ and ζ are the shear and bulk
viscosity, respectively, and δij is the Kronecker δ. In the case of PPDs, ζ can usually
be neglected and one can write µ = νρ with the kinematic viscosity denoted by ν.
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2 Theoretical background and methods

Equations (2.1a) to (2.1c) are usually called the Navier–Stokes equations and
represent five partial differential equations (PDEs), counting each component of u⃗
separately plus the scalar continuity and energy equations. Yet, a fluid is described
by six quantities: ρ, ε, the three components of u⃗, and p. In order to solve the
system of PDEs, an additional relationship between the pressure and the other
quantities is needed. Such a relation that enables the solution of a system of PDEs
is usually called a closure relation and in the context of fluid dynamics, it is called
the equation of state (EOS). The EOS links p to ρ and ε of the fluid or, equivalently,
to ρ and the temperature T .

In the context of PPDs and astrophysics in general, the fluid is often assumed to
be an ideal gas, which is justified by the very low volume densities involved (Shu
1992). The EOS then takes the form

p =
RG

µ
Tρ , (2.3)

with the gas constant RG = kB/mH, the Boltzmann constant kB, the hydrogen mass
mH, and the mean molecular weight µ in units of mH.

There exists no closed solution to Eqs. (2.1), so numerical methods are used to
solve them in a discretized way or approximations have to be utilized.

2.2 A simplified protoplanetary disk model

Even though the Navier–Stokes equations have no analytical solution, approximate
solutions under various conditions can be achieved. This section presents common
assumptions which lead to the disk models which are commonly used to study
PPDs (for more details, see the review by Lodato 2008).

One suitable approximation for PPDs is that the disk is very thin, meaning
that their vertical extent, as measured by the vertical pressure scale height H, is
much smaller than the radius r at each location in the disk. The aspect ratio,
h = H/r ≪ 1, is set by the balance between (thermal) pressure and gravity from
the central object and the disk itself. Temperature and (as a consequence) pressure
are increased by heating from viscous dissipation and stellar or cosmic irradiation
and lowered by emission from the surfaces of the disk (Hubeny 1990). All these
processes depend on the particulars of the environment and the microphysics and
chemistry of the disk which, e.g., determine the opacities and thus influence all
radiative processes.

As a first consequence of the small aspect ratio, PPD models are often treated
using the vertically integrated form of the fluid dynamics equations Eqs. (2.1).
They are obtained by vertical integration (

∫∞

−∞
dz . . . ) in a cylindrical coordinate
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2.2 A simplified protoplanetary disk model

system (r, ϕ, z) in which the disk coincides with the z = 0 plane:

∂Σ

∂t
+∇ · (Σu⃗) = 0 , (2.4a)

∂(Σu⃗)

∂t
+∇ · (Σu⃗⊗ u⃗) = −∇P + Σk⃗ +∇τ , (2.4b)

∂(Σε)

∂t
+∇ · (Σεu⃗) = −P∇ · u⃗+ S , (2.4c)

where the density ρ is replaced by the surface density Σ =
∫∞

−∞
ρ dz, pressure p

is replaced by vertically integrated pressure P =
∫∞

−∞
p dz, and the velocities are

restricted to the disk plane such that uz = 0. External forces k⃗, the stress tensor τ
and energy source terms S change their meaning accordingly.

For these 2D disks, equilibrium solutions can be derived assuming the disks to
be axially symmetric (e.g. Lynden-Bell & Pringle 1974). For this case, the surface
density and temperature can be expressed as power laws,

Σ(R) = Σ0

(

r

r0

)s

(2.5)

and

T (R) = T0

(

r

r0

)q

, (2.6)

with a reference radius r0, a reference density Σ0 and a reference temperature T0.
The sound speed and aspect ratio are then given by cs = c0(r/r0)

q/2 and h =
h0(r/r0)

(q+1)/2. Choosing the exponents s and q appropriately, the mass accretion
rate through the disk Ṁ = 3πνΣ is constant for an α viscosity model (Lynden-Bell
& Pringle 1974). For a PPD, typical order of magnitude estimates at r0 = 1au
are T0 = 100–1000K, h0 = 0.03–0.1, and Σ0 = 100–3000 g/cm2 (Williams & Cieza
2011).

Simulating the radiative processes with the full radiative transport equations is
prohibitively expensive, as it would require following all possible paths of photons
within the disk. Alternatively, PPD models often assume that the disk is locally
isothermal, meaning it has a constant temperature on cylindrical shells around
the star and that it does not change with time. Then, Eq. (2.6) describes the
temperature in the disk for all times. This assumption can be justified when the
disk cools through its surfaces on a timescale that is very short compared to the
orbital period, which is expected for the outer parts of the disk at a distance of
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some tens to hundreds of astronomical units. In addition to the benefit of reduced
complexity of the model, assuming a locally isothermal temperature sidesteps the
need of solving the energy equation Eq. (2.4c) which reduced the computational
costs of numerical PPD models.

Recent studies have shown that the locally isothermal assumption causes several
issues concerning the angular momentum deposition by the planetary spiral waves
(Ziampras et al. 2020; Miranda & Rafikov 2020). This can result in the appearance
of unphysical pressure maxima in the disk, which can influence the dynamics of gas
and dust. The next simplest but still a more accurate treatment of radiative effects
is the so-called β-cooling prescription (Gammie 2001), in which the temperature is
relaxed back to a background state according to

dT

dt
= −T − T0

τrelax
(2.7)

with the relaxation timescale τrelax = β/ΩK which depends on the Keplerian angu-
lar velocity ΩK =

√

GM∗/r3. One major advantage of this treatment of radiative
processes is the possibility to utilize dimensionless units. All complexity of the radi-
ation physics is incorporated within the single β parameter, allowing the simulation
results to be scaled to different physical radii, as long as the local thermal cool-
ing and heating rates are compatible and no other choices of physical parameters
interfere.

In cases where simulations are compared to disk observations directly, the physi-
cal parameters such as the size of the disk, location of the planets and the temper-
ature can be chosen to match the observational values. Then, heating and cooling
can be treated explicitly by incorporating them into the source term S in the energy
equation Eq. (2.4c)

S = Qvisc +Qirrad +Qcool (2.8)

where

Qvisc =
1

2νΣ
Tr(τ 2) (2.9)

is the viscous heating term. Irradiation from the star causes a heating rate

Qirrad = 2
L∗

4πr2
(1− ϵ)

(

dlogH

dlogr
− 1

)

h
1

τeff
(2.10)

where L∗ is the luminosity of the star, ϵ the disk albedo and τeff is an effective optical
depth taking into account the vertical structure of the disk (Hubeny 1990; Müller
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& Kley 2012). The radiative losses from both surfaces of the disk are modeled with

Qcool = 2σSB
T 4

τeff
(2.11)

with the Stefan-Boltzmann constant σSB.

2.3 Planet–disk interaction

The process of planet migration can be studied using either analytical approxi-
mations in the form of linear theory, which by necessity focus on the special case
of a small parameter, or by using numerical fluid dynamics simulations, which in-
corporate the full non-linear interaction with the downside of limited resolution
and runtime constraints. The simulation strategy also poses the challenge of inter-
preting the results and linking patterns observed in them to underlying physical
processes.

In numerical simulations, the gravitational torque exerted by the disk onto the
planet can be obtained by integrating the torque density over the whole volume

T⃗ = −
∫

dV r⃗p ×
GMpρ(r⃗)

|r⃗ − r⃗p|2
r⃗ − r⃗p
|r⃗ − r⃗p|

, (2.12)

where G is the gravitational constant, Mp is the planet mass, and r⃗ and r⃗p are the
position vectors of a point in the disk and the planet, respectively. These simu-
lations include the full non-linear response of the disk to the perturbation by the
planet, but they give no direct insight into which regions of the disk interact most
strongly with the planet. Insight can be gained to some degree by evaluating the
torque density, the integrand in Eq. (2.12), using suitable spatial and time averages.
However, in systems with multiple planets with moderate to high eccentricities the
torque density can vary strongly in time, making the interpretation of the torque
density significantly more challenging.

Insight into the qualitative behavior of the interaction can be gained by analytical
calculations via an asymptotic expansion of the gravitational potential of the planet
in a small parameter, e.g. the eccentricity of the orbit (Goldreich & Tremaine 1979,
1980; Lin & Papaloizou 1979; Artymowicz 1993; Ward 1997). The resulting linear
reaction of the disk to the perturbation and the contributions to the torque onto
the planet which were identified by these authors are still the main concepts used
today.

To identify the regions that mainly contribute to the torque, consider the gravi-
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tational potential of a planet on a circular orbit in a polar coordinate system

Φ(r, ϕ, t) = − GMp

|r⃗ − r⃗p|
. (2.13)

Expressing the potential as a Fourier series yields (see, e.g. Goldreich & Tremaine
1980)

Φ(r, ϕ, t) =
∞
∑

l=−∞

∞
∑

m=0

Φl,m(r) cos (mϕ− lΩpt) , (2.14)

where Ωp is the angular velocity of the planet, and l and m are, respectively, the
indices for the radial and azimuthal decomposition. The pattern speed of each
component of the potential is Ωl,m = Ωp l/m.
The coefficients Φl,m can be calculated which results in a dependence on the

eccentricity of the planet e as Φl,m ∝ e|l−m|. This allows one to interpret the
Fourier series in terms of an asymptotic expansion. Assuming a low eccentricity of
the planet (e ≪ 1), all terms of e2 and higher can be neglected, which effectively
selects l to be equal to m or m± 1 up to first order.
Only at locations in the disk where the frequency of the response of the disk

to perturbations, which is roughly the epicyclic frequency κ, matches the pattern
speed of the potential, the gravitational interaction can result in a significant torque
(Goldreich & Tremaine 1980). This resonance condition

ϵκ(r) = m(Ωl,m − Ω(r)) , ϵ ∈ {−1, 0, 1} (2.15)

can be translated to resonance locations by assuming that κ(r) ≈ Ω(r) ≈ ΩK(r) to
yield

rl,m = rp

(

m+ ϵ

l

)2/3

. (2.16)

Approximating κ(r) ≈ Ω(r) overestimates the torque resulting from the feedback
of the disk onto the planet. Thus, the κ(r) itself has to be considered in calculat-
ing migration rates of planets (e.g. Ward 1997). ϵ = 0 corresponds to corotation
resonances, where the disk locally orbits with the same angular velocity as the per-
turbation. For l = m, which are the dominant modes in Eq. (2.14), this corresponds
to a corotation with the planet. ϵ = ±1 are the so-called Lindblad resonances. The
resulting changes in the orbital elements as a result of the torques acting at these
resonances can be estimated analytically (Goldreich & Tremaine 1980). While
for l = m both corotation resonances and Lindblad resonance lead to migration,
higher-order modes with l = m± 1 either excite eccentricity (Lindblad) or damp it
(corotation). The torque at Lindblad resonances arises from density waves that are
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2.3 Planet–disk interaction

launched at the resonance locations and that travel in a direction away from the
planet while carrying away angular momentum. The torque contribution from the
inner Lindblad resonances are positive while the outer (usually dominant) contribu-
tions are negative. This density wave then gets sheared as it travels into the outer
(inner) disk, where the disk orbits at a slower (faster) rate compared to the planet
which results in a spiral arm pattern that orbits with the same angular velocity as
the planet.
The migration behavior in viscous disks described in the literature and found

in non-linear numerical simulations can be divided into four categories, which are
explained in the following paragraphs.
Solid bodies in the meter to kilometer range drift towards the star due to gas drag,

which is sometimes called type 0 migration. This process is very fast and bodies
can reach the star on the order of hundreds to thousands of years (Weidenschilling
1977). With larger object mass, gas drift becomes slower and for planetesimal-sized
objects with radii of 10 km and above the drift timescale becomes much larger than
the disk lifetime.
At higher masses, wave torques, corotation torques and the horseshoe drag be-

come dominant (first introduced by Goldreich & Tremaine 1979, 1980). Wave
torques are a result of the gravitational interaction of the planet with the gas lo-
cated at the first-order Lindblad resonances while corotation torques result from
the interaction with the gas that is on horseshoe orbits around the planet. This
so-called type 1 migration (Ward 1997) is sensitive to the properties of the disk such
as the radial gradient of surface density and temperature, as well as the strength of
radiative diffusion and viscosity. It can be very rapid with migration timescales on
the order of 105 years for larger planet masses because the wave torque scales with
the square of planet mass, which would result in all large planets being swallowed
by their host star if this was the only mode of migration. Because the planet ex-
changes angular momentum with a region of the disk that coorbits with the planet,
the angular momentum reservoir to be exchanged is limited. After the gas has
performed one horseshoe orbit, it can not again supply or take angular momentum
again. Thus, the migration speed of this type of migration depends on how effi-
ciently the disk can supply new angular momentum to the horseshoe region which
is mainly governed by the level of viscosity (for more detail, see Kley & Nelson
2012; Baruteau & Masset 2013; Paardekooper et al. 2022).
Higher-mass planets are capable of opening a gap in the disk (e.g. Goldreich &

Tremaine 1980; Kley 1999). The gap opening process is governed by a balance
between the removal of gas by the wave torques exerted by the planet at the Lind-
blad resonances and the refilling of gas into the gap region by viscous accretion
and diffusion or migration of the planet. Initially, a type 2 migration regime was
proposed in which the planet was locked inside such a gap with no material flowing
through the gap and migration would only be possible together with the disk itself
on its viscous timescale (Ward 1997). Multiple non-linear numerical simulations
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have since shown that the planet can migrate independently of the gap, recreating
it as it migrates (e.g. Dürmann & Kley 2015). While still being the subject of
ongoing research, the updated type 2 migration is attributed to the wave torques
acting through the spiral arms which are present in the disk interior and exterior of
the planet. Qualitatively, the migration can be explained by the interaction of the
spiral arms which are launched at the Lindblad resonance with the inner and outer
disk (Goldreich & Tremaine 1979; Dürmann & Kley 2017). The balance of the re-
sulting inner and outer torques yields a torque onto the planet which is net-negative
for most disk conditions, causing inward migration. However, the migration speeds
are much smaller compared to type 1 migration, explaining in part why not all
giant planets migrated quickly into their host stars.
The final case of viscous single planet migration is type 3 migration (Masset &

Papaloizou 2003; D’Angelo & Lubow 2008; Lin & Papaloizou 2010), which is the
result of an asymmetry in the co-orbital and horseshoe regions which arise due to
the migration of the planet. Because the process is dependent on the migration
speed itself it can result in runaway migration leading to an exponential behavior
of the semi-major axis which is either directed inward or outward, depending on the
initial direction of migration. In the case of inviscid disks, the migration landscape
can become even more complicated as additional effects can become dominant. For
an overview of these additional processes, see McNally et al. (2019).
When planets orbit at distances such that the ratio of their periods is a rational

number, they are said to be in resonance. Resonances are special dynamical con-
figurations that can lead to increased stability of the system (Murray & Dermott
2000). For two planets, 1 and 2, with semi-major axes a1,2 and orbital periods
around the central star P1,2, the planets are in a mean motion resonance (MMR)
when P2/P1 = (p+ q)/p for some integers p and q where q is called the order of the
resonance.
Due to differential migration speeds, planets can migrate into a resonance. In

several resonances, planets can remain locked in the resonance, e.g. in the 3:2 and
the 2:1 MMRs. Masset & Snellgrove (2001) observed an interesting consequence
of the dynamical coupling of giant planets in MMR. As long as the planets are
massive enough to clear a common gap and the inner planet is more massive than
the outer one, the migration direction can be reversed and the pair of planets can
undergo a phase of resonant outward migration.
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2.4 Vortices in disks

2.4 Vortices in disks

A vortex is a patch of fluid revolving around a common center. Vortices might
either be isolated in a laminar background flow or appear in a multitude. The
vorticity

ω⃗ = ∇× u⃗ (2.17)

is the fundamental quantity for the characterization of vortices. Depending on the
rotation direction of a vortex (in a certain definition of the coordinate system), a
vortex might either raise or lower the vorticity compared to a laminar background
flow.

The temporal and spatial evolution of the vorticity can be calculated starting
from the fluid dynamics equations Eqs. (2.1) to yield

∂ω⃗

∂t
+ (u⃗ · ∇)ω⃗ = (ω⃗ · ∇)u⃗− ω⃗(∇ · u⃗) + 1

ρ2
∇ρ×∇p+∇×

(∇τ

ρ
+ k⃗

)

. (2.18)

The term 1
ρ2
∇ρ × ∇p is called the baroclinic term. This term vanishes for a

barotropic flow for which pressure is only a function of density, i.e. p = p(ρ).
In the case that the external force is conservative, as it is for gravity, the corre-
sponding term k⃗ vanishes as well. Because τ depends linearly on the shear viscosity
µ, the changes of vorticity due to viscous effects can be expected to scale linearly
with viscosity.

In the context of thin disks, for which the vertically integrated equations are
often used, the vortensity

ϖ =
ω⃗ · ẑ
Σ

(2.19)

is a useful quantity, where ẑ is the unit vector in the vertical direction. Its evolution
equation can be derived starting with Eq. (2.18) and reads

∂ϖ

∂t
+ (u⃗ · ∇)ϖ =

∇Σ×∇P

Σ3
· ẑ + 1

Σ

(

∇× ∇τ

Σ

)

+
1

Σ

(

∇× k⃗
)

. (2.20)

In the case of an inviscid and barotropic flow subject to a conservative force, the
terms on the right hand side vanish and ϖ is conserved along streamlines.

In mathematical terms, a vortex is a patch of constant vorticity that is different
from a background flow (e.g. a homogenous velocity field or a rotating disk). There
are exact solutions to the Euler equations (Eqs. (2.1) without viscosity) in the form
of elliptical vortices (Kida 1981). Even in the case of disks orbiting a central object,
analytical vortex solutions exist (Goodman et al. 1987). They also have an elliptical
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shape, but this time in the rϕ-plane of cylindrical or polar coordinates.

From the analytical solutions for vortices in disks, it follows that the density
peak is expected to follow a Gaussian bell shape elongated according to the vortex
aspect ratio (Lin & Pierens 2018, see their Sect. 3.1 for a good explanation). In
cylindrical coordinates, the density peak then follows

ρ(r, ϕ, z) = ρp exp

(

−(r − r0)
2

2σ2
r

− (ϕ− ϕ0)
2

2σ2
φ

− (z − z0)
2

2σ2
z

)

(2.21)

where r0, ϕ0, and z0 are the coordinates of the vortex center, σr, σφ, σz are the
spread of the Bell curve in each direction, and ρp is the peak density. For a vertically
integrated 2D disk model, the last term in the exponential function is dropped and
ρ is replaced by Σ. In Rometsch et al. (2021), I used the fact that vortices are
patches of constant vorticity — even though the edges are smeared out by viscosity
and numerical diffusion and the inside of a vortex might change due to instabilities
(Lesur & Papaloizou 2009) — and the functional form of the density peak to detect
and characterize vortices.

2.5 Numerical simulations

The simulation program I used in this thesis is a continuation of the FARGO
code, initially developed by Masset (2000). The code is based upon a second-order
upwind scheme first introduced in Stone & Norman (1992), meaning it is accurate
up to second order in space and up to first order in time. Masset (2000) expanded
the scheme with the fast advection of rotating gaseous objects algorithm (FARGO),
which uses the axisymmetry present in the flow of accretion disks to allow for the
use of a much larger timestep which significantly reduces computational costs.

Figure 2.1 shows a flowchart of the typical simulation workflow. At first, the
simulations are initialized with equilibrium profiles of unperturbed disks. Then,
simulations are allowed to adjust to the perturbations by the embedded planets
over an equilibration time Teq. During this time, the mass of the planet is grad-
ually increased in order to avoid unnecessary shocks. To avoid unphysically fast
migration, the planets are kept on fixed orbits by ignoring the gravitational force
from the disk onto the planets until a gap has formed. After the simulation has
reached a quasi-steady state, the current state of the system can be taken as the
physical initial condition of the model and the planets are released and free to mi-
grate. It then continues for the time Tsim which might either be dynamically chosen
according to some criterion, e.g. until the planets migrated to a certain point, or
predetermined due to theoretical considerations.

During the execution of the simulations, the state of the system, i.e. the main
quantities ρ, ϵ, and u⃗, are regularly saved to permanent storage in order to be
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Figure 2.1: Visualization of the simulation procedure. Adapted from Rometsch
et al. (2020).

able to analyze the simulations at a later point in time or to restart them after
the allocated runtime expired when run on a compute cluster. Additionally, many
quantities that are derived from the basic system variables are monitored, usually
at a much higher frequency compared to the frequency of full outputs, which require
much more storage space. These monitored quantities might be averages or sums of
the system variables, such as the total mass of the disk or the average temperature,
or more complex variables like the time-averaged mass flux across a simulation
boundary, which can not be reconstructed from the primitive quantities due to
the longer time interval between full snapshots. In addition, the properties of the
planets and their orbits are usually also saved at the high output frequency.
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3 Publications

This chapter introduces my publications written in the context of this thesis by
describing the methodological approach and outlining my own and the contributions
of my co-authors. The two publications are:

1. Rometsch et al. (2020): (paper 1)
T. Rometsch, P. J. Rodenkirch, W. Kley, and C. P. Dullemond
Migration jumps of planets in transition disks

Astronomy & Astrophysics, 643, A87, November 2020

2. Rometsch et al. (2021): (paper 2)
T. Rometsch, A. Ziampras, W. Kley, W. Béthune
Survival of planet-induced vortices in 2D disks

Astronomy & Astrophysics, 656, A150, December 2021

At the end of this document, publications 1 and 2 are reprinted in the versions
published in the journal Astronomy & Astrophysics. They are reproduced with
permission from Astronomy & Astrophysics, © ESO.

Paper 1 assesses the proposition that type II TDs can be explained by a system
of embedded planets. Simulations of disks with pairs of embedded giant planets
are performed to study the emerging structures in the disks and the accretion rate
across the common gap and onto the planets. A parameter study is conducted
by varying the mass and initial location of the planets and the disk mass, and
different numerical and physical choices are considered. Furthermore, synthetic
observations of the simulated systems are produced to compare the appearance
to real disks. Finally, models resembling the PDS 70 system — a PPD with two
accreting embedded planets — are used to assess the state of migration in this
system.

This publication was created in collaboration with Peter Rodenkirch (PR), Prof.
Dr. Wilhelm Kley (WK), and Prof. Dr. Cornelis Dullemond (CP). All the simu-
lations and analysis of the results were performed by me. Most of the manuscript
was written by myself with two exceptions. The introduction and summary were
partly provided by WK and the synthetic observations and the section describing
them were produced by PR.

In paper 2, the lifetime of properties of vortices that are created by the growth
of giant planets is revisited with improved treatment of radiative processes while
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varying the viscosity parameter and conducting a detailed resolution study. Simu-
lations are conducted with two simulation codes using different numerical schemes,
FARGO and PLUTO, in order to fortify the validity of the numerical results.
The paper was written in collaboration with Alexandros Ziampras (AZ), Prof.

Dr. Wilhelm Kley (WK), and Dr. William Béthune (WB). The majority of models
were simulated with both simulation codes. AZ conducted the PLUTO simulations
and the FARGO simulations were done by myself. Analysis of the simulations was
done in collaboration with AZ. In order to extract vortex properties out of the sim-
ulation output, I developed a new methodology that enables automatic detection
and analysis of vortices. This framework is available as a Python library under
https://github.com/rometsch/vortector. AZ and I contributed to all parts of
the paper while WK and WB mainly provided feedback and WK contributed a few
passages throughout the paper. AZ wrote most of the methodology section, the ap-
pendix about numerical convergence, and the discussions about in-plane radiation
transport and the differences between the two codes. The rest of the paper, i.e.,
the introduction, the results sections, the remaining discussions and the summary
were mostly written by myself.
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4 Results

This chapter summarizes the most important results from the publications pre-
sented in Chapter 3 and adds some additional findings. Its starts with the study
of the dynamical evolution of embedded planetary systems and the reproduction
of the observable characteristics of type II TDs by the models. This is followed by
the description of the newly discovered phenomenon of migration jumps and finally,
the study of planet-induced vortices and their properties is presented. The results
are discussed later in Chapter 5.

4.1 Planetary systems can shape type II

transition disks

Paper 1 studied the evolution of a system of two planets in the range of 3 to 9
Jupiter masses (MJ) which were embedded in a disk. The system was simulated in
two dimensions (see Sect. 2.2) in the rϕ–plane using the FARGO code. Planets were
treated as point masses with a smoothed potential and were allowed to interact
gravitationally with the disk and each other. They were also allowed to accrete
mass from their surroundings. The disk was treated as a viscous gas which was
assumed to be either locally isothermal or to follow the ideal gas law with the
inclusion of viscous heating, irradiation from the star, and radiative cooling off the
disk surfaces (see Sect. 2.2).

Two different behaviors were observed for the migration of the pair of embedded
planets. While for any ratio of planet masses tested the planets engaged in a 2:1
resonance, more massive outer planets caused the planets to migrate inward. For
a more massive inner planet, the migration was reversed and directed outward
(mass ratios of 2:1 and 3:1 were tested). This is in line with the results of previous
numerical studies which found outward migration for a pair of planets in MMR
(Masset & Snellgrove 2001; Pepliński et al. 2008; Crida et al. 2009). In addition to
smooth inward and outward migration, a new migration phenomenon was observed
for which the outer planet can migrate very quickly, leaving the common gap, only
to return to the MMR with the inner planet shortly after. This phenomenon is
presented in Sect. 4.2.

To be able to compare the numerical results to observations of TDs, the accretion
rate onto the central star Ṁ∗, which is one of the characteristic observables of
TDs, was monitored throughout the simulations. For outward migration, Ṁ∗ was
significantly higher compared to the inward migration, up to more than one order
of magnitude (see also Fig. 9 in paper 1 for an illustrative example). The increase
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Figure 4.1: Mass flow through the planetary gap and accretion rates in dependence
of the migration direction. Top: semi-major axis of the two planets a1,2 and the gap
location rgap = (a1 + a2)/2 (smoothed over 0.52 kyr). Bottom: mass flow through
the inner boundary Fin (which is identified with Ṁacc) and through the gap Fgap.
The data is taken from model L in paper 1 (see Fig. 9 therein).

results from an exchange of angular momentum between the planets and the disk.
As they migrate outward, they gain angular momentum which must be supplied by
the disk material. In turn, the gas in the disk loses angular momentum which results
in some of the gas moving inward. This shoveling action of the planets demonstrates
that a wide common planetary gap is no barrier to gas accretion. Mass accretion
in the simulated disk was as high as 10−7 M⊙/yr, an order of magnitude higher
than the viscous mass accretion rate of the unperturbed disk of ∼ 10−8 M⊙/yr.
The increase is only present during phases of outward migration and disappears for
inward migration. The mechanism is, therefore, able to produce the mass accretion
characteristic of type II TDs.

To support the argument that mass flow through the common planetary gap Fgap

is responsible for the increase in stellar mass accretion Ṁacc, I calculated Fgap for
model L (outer boundary at 502 au) from paper 1. In this model, the pair of planets
first migrates outward via the Masset–Snellgrove mechanism before they swap their
order, resulting in a configuration where the pair of planets migrates back inward.
Thus, the model shows the consequences of outward and inward migration for mass
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accretion onto the star.
Figure 4.1 shows the time evolution of the semi-major axis of both planets a1,2 and

the gap location rgap (top), and the mass flow through the inner boundary Fin and
through the gap Fgap (bottom). The gap location is defined to be rgap = (a1+a2)/2
which is then averaged over a rolling window of 0.52 kyr to avoid strong fluctuations.
The mass flow through the gap, Fgap is calculated by tracking the change of the
mass interior to rgap, Min, and the mass flow through the boundaries. Using the
conservation of mass, the flow through the gap then follows from Ṁin+Fgap+Fin =
0. The mass flow through the inner boundary Fin is an output variable of the
simulations. The change of the mass of the inner disk Ṁin is calculated from the
density field in the simulation output data by summing up the mass interior to rgap
and using a first-order time derivative. In paper 1, the mass flow through the inner
boundary was identified with the accretion onto the star, thus, Ṁacc = −Fin.
The top panel of Fig. 4.1 shows the change from outward to inward migration at

t ≈ 300 kyr as a consequence of the more massive planet moving to the outside of
the pair. During the time that planets are on fixed orbits (until 64 kyr) and up to
around 100 kyr, the accretion rate drops as the inner disk is accreted away through
the inner boundary. At around 100 kyr the trend reverses, as the planetary orbits
get more eccentric and more mass is transferred through the gap. The bottom
panel of Fig. 4.1 illustrates the connection between Fgap and Ṁacc. As more mass is
shoveled across the gap, accretion also rises. This is due to the increase in surface
density in the inner disk which is then accreted onto the star.
By the process of outward migration, the outer planet can easily reach tens of

astronomical units. Therefore, the common planetary gap can extend out to similar
distances. Though not simulated in paper 1, dust can be expected to stop close to
the outer gap edge. Just outside the outer gap, a radial pressure maximum exists,
which acts as a barrier for dust drift (Weidenschilling 1977). In the inner disk,
dust drift can continue unhindered while the dust accretion from the outer disk is
stopped. This causes the inner disk to become devoid of gas on a short timescale
(Marzari et al. 2019; Bae et al. 2019). Following this line of argument, the location
of the outer gap edge with its pressure maximum corresponds to the distance from
the star inside of which nearly no dust is present in the disk anymore. This missing
dust in the inner parts of the disk would then show up as a large hole in continuum
dust emissions of these disks or as missing near-infrared flux (see Fig. 10 of paper
1) which reproduced the second characteristic property of type II TDs.
Figure 4.2 shows a combination of TD observations and selected disks from the

simulations in a Ṁacc–rhole diagram. It summarized the previous two results and
contextualizes the simulations in paper 1 by placing the disks from the models at
different times during their evolution in the same diagram as observational data
from Ercolano & Pascucci (2017) and the parameter space which can be explained
by X-ray photoevaporation (Picogna et al. 2019). The orange shaded region encloses
the area of the parameter space which was explained by X-ray photoevaporation
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Figure 4.2: Ṁacc–rhole diagram showing observed TDs (gray hexagons), planetary
system models (colored data points as indicated in the legend), and the parameter
space explained by X-ray photoevaporation (orange shaded area). The observa-
tional data is reproduced based on Fig. 5 of Ercolano & Pascucci (2017). The
parameter space explained by X-ray photoevaporation is extracted from Fig. 10 in
Picogna et al. (2019). Planetary system models are taken from paper 1 (refer to
Table 1 therein for simulation parameters of the model names in the legend) where
the rhole is assumed to be the location of the outer planet. For these models, data
points throughout the evolution of the system are shown resulting in streaks of
data points. The 3P model is the one discussed in Sect. 4.2 and the RJUP model
is analogous to the M9-3 model but with the planet initialized further in such that
the inner planet starts at 5.2 au.

models in Picogna et al. (2019) (see the center panel of Fig. 10 therein). The
mass accretion rate Ṁacc is calculated as the mass flow over the inner simulation
boundary and the hole size is taken to be the apastron distance to the star of
the outer planet which is an approximation to the location of the outer gap edge.
Each simulation data point, represented by a semi-transparent colored circle, was
sampled from the respective simulation from paper 1, where each sample is 0.24 kyr
apart from the last one. The dynamical evolution of the system then creates the
colored streak as the system moves through the parameter space. Table 1 in paper
1 explains the meaning of the names in the legend, except for the 3P model which
has three embedded planets (see Sect. 4.2) and the RJUP model which has the inner
planet initialized at r = 5.2 au and the outer planet just outside 2:1 MMR.
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4.2 Migration jumps

Most simulation data points cluster in the rhole range between 36.4 au (the initial
location of the outer planet) and 140 au, and between Ṁacc = 10−8–10−7 M⊙/yr
which is above the viscous accretion rate of the unperturbed disk Ṁvisc = 3πνΣ =
5 × 10−9 M⊙/yr at r = 2 au. There are three apparent exceptions to this behav-
ior. The first is the M3-9 model (orange) in which the inner planet is less massive
than the outer planet, in which migration is directed inward and the system moves
towards the lower left as rhole decreases due to the inward migration and Ṁacc

shrinks as the inner disk is accreted away. The same effect happens for the L model
(brown), which nearly reaches the parameter space explained by X-ray photoevap-
oration. Model RJUP on the other side has an outward migrating pair of planets
that starts further in. It moves towards the lower right as rhole increases while Ṁacc

decreases again as the disk is accreted away.
In summary, we see that outward migrating pairs of planets can lead to an

increased mass accretion rate while reaching large distances to their host star at
the same time. Hence, this scenario can explain the two dynamic characteristics of
type II TDs, mass accretion rate and hole size.

4.2 Migration jumps

Aside from the explanation for type II TDs, the parameter study in paper 1 revealed
a new phenomenon which I called a migration jump. An example of a migration
jump for a system with a 9MJ inner planet and 3MJ outer planet is shown in
Fig. 4.3. From top to bottom, the panels show the semi-major axis, eccentricity,
and the 2:1 and 4:1 MMR angles for the inner and outer planet in orange and blue,
respectively. If an MMR angle is librating, the planets are in the respective MMR.
The migration jump is visible as the peak in the semi-major axis of the outer planet.
For models exhibiting outward migration via the Masset–Snellgrove mechanism,

a vortex formed in the outer disk. Due to mutual gravitational interaction between
the planets, eccentricities build up before the migration jump, where especially
the eccentricity of the inner planet undergoes a steady increase. The eccentricity
and semi-major axis of the outer planet begin to fluctuate substantially before the
migration jump, which is a sign of interaction with a vortex.
Just before the migration jump, the inner planet loses eccentricity and thereby

increases its angular momentum — the angular momentum of a planet is given by
L = Mp

√

a(1− e2) — which is supplied by the outer planet. The outer planet
in turn decreases its angular momentum by gaining eccentricity. This gain in ec-
centricity is sufficiently large for the outer planet to come into contact with the
outer gap edge which gives the outer planet access to gas in its co-orbital region
and triggers a phase of type 3 rapid outward migration (see Sect. 2.3). The planet
migrates several tens of au in only a few thousand years.
As a consequence of the type 3 migration, the eccentricity of the outer planet is
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Figure 4.3: Migration jumps as seen in the time evolution of orbital elements of
a system with two massive embedded planets. From top to bottom, the panels
show the semi-major axis, eccentricity, and the 2:1 MMR resonant angles for the
inner and outer planet in orange and blue, respectively. The figure shows the M9-3
simulation (9MJ inner and 3MJ outer planet) from paper 1 (see Fig. 4 therein)
over its full duration.

dampened down by about an order of magnitude. Rapid outward migration stops,
roughly after the planet passed the radial extent of the vortex. For some cases,
this stopping location coincides with another MMR (4:1 with the inner planet in
the example case), but no direct link between the stopping location and MMR
locations could be established in general. After spending several thousand years at
the stopping location, the planet then quickly migrated back inward into 2:1 MMR
with the inner planet over a span of, again, only several to tens of thousands of
years.

The process can then repeat, given that the disk is large enough to accommodate
the outward movement. Inspired by the relative quickness and the back and forth
movement I called this phenomenon a migration jump.

From the set of simulations carried out in paper 1, three conditions for the
occurrence of migration jumps can be extracted:

1. the embedded planets must be gas giants that open a common gap,
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Figure 4.4: Migration jump in a system of three embedded giant planets (9, 3, and
1MJ from inside out). From top to bottom, the panels show the semi-major axis,
eccentricity, and MMR resonant angles. The mean motion angles are for a 2:1
MMR for the inner pair (orange) and a 5:3 MMR for the outer pair (green). At
26 kyr, the planets are released from the initial fixed orbits.

2. the inner planet must be more massive than the outer one to facilitate reso-
nant outward migration, and

3. the disk must be massive enough such that the outward migration rate is
high enough to cause vortex formation and the triggering of type III rapid
migration.

To test the robustness of the phenomenon, analogous simulations with pairs
of embedded planets were carried out while varying the choices of physical and
numerical parameters. The variations include

• resolutions higher and lower by a factor of
√
2 in each direction,

• different equations of state including locally isothermal with a flared and
non-flared disk, and ideal gas with radiative cooling, viscous heating, and
irradiation,

• different domain sizes with r ∈ [2.08, 520] au,
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• the inclusion of planetary accretion,

• outflow, reflective, and viscous damping inner boundary conditions with and
without a wave-damping zone, and

• the inclusion of self-gravity.

Migration jumps appeared in all of the tested combinations as long as the three
conditions mentioned above were fulfilled.
As an extension to paper 1, I checked for the existence of migration jumps in

systems with three embedded planets by modifying the fiducial M9-3 model by
adding a third planet. Figure 4.4 shows the results of a simulation with a chain of
three planets with masses of 9, 3, and 1MJ from the inside out. The figure shows,
from top to bottom, the semi-major axis and eccentricity for all three planets and
two MMR angles. For the inner and middle planets, the 2:1 MMR angle is shown
in orange and for the middle and outer planets, the 5:3 MMR angle is shown in
green.
The inner two planets were again initialized close to 2:1 MMR and the outer

planet was initialized further out at 130 au. If the planet is initialized further in,
the outer planet pair can enter into 2:1 MMR earlier than the inner pair resulting
in a situation in which the inner planet is left behind and the outer pair migrates
outward, which effectively results in a two-planet case again.
A migration jump is observed for the outer planet at around 130 kyr. In the case

of three planets, the situation is slightly different compared to the explanations
above. The inner two planets are in 2:1 MMR and the outer planets are in 5:3
MMR before and after the migration jump, which is shown by the libration of the
respective 2:1 and 5:3 MMR angles in the bottom panel of Fig. 4.4. Additionally,
there is not one large-scale vortex developing in the outer disk but multiple small
vortices and the eccentricity of the outer planet just before the jump is smaller.
Nonetheless, this result demonstrates that the Masset–Snellgrove effect also works
for a resonant chain of 3 planets and that migration jumps also happen in such a
configuration.
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Figure 4.5: Simulated ALMA observations at 855µm of the disk in model M9-3 in
paper 1 with a beam size of 33 × 30mas where the disk is assumed to be face-on
located at 100 pc distance. The panels show the disk prior (a and b), during (c and
d), and after (e and f) the migration jump. The location of the star is indicated
by the × symbol, the location of the planets and the size of their Hill spheres are
shown with white circles and the instantaneous planetary orbits are marked with
dotted lines. Taken from paper 1.

4.3 A bridge between models and reality

With the advent of high-resolution disk observations with ALMA (ALMA Partner-
ship et al. 2015), substructures inside of PPDs became accessible by observational
means. This means that direct links between the structure of model disks and
observations can be made.
To simulate how the model disks would appear in ALMA observations, the two-

dimensional models were first expanded to three-dimensional models by assuming
the disks to be in hydrostatic equilibrium at every point in the disk and then ex-
panding the vertically integrated surface densities to volume densities. Additionally,
it was assumed that the dust is distributed with a constant dust-to-gas ratio of 1%
throughout the disk and that the dust size distribution follows an MRN distribution
(the number density of dust particles with size a scales as n(a) ∝ a−3.5). Then, the
dust temperatures due to irradiation from the central star and thermal emission
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were simulated using the Monte-Carlo radiative transfer code RADMC3D (Dullemond
et al. 2012). Finally, an ALMA observation at 855µm for the disk located face-
on at a distance of 100 pc was simulated using the CASA package (McMullin et al.
2007), making use of the best capabilities of the ALMA observatory.
Figure 4.5 shows simulated observations from the fiducial M9-3 model from paper

1 prior (panels a and b), during (panels b and c) and after the first migration jump.
The location of the star is indicated by the cross in the center of the panels, the
instantaneous orbits of the planets are shown with dotted white lines and their
location is shown with white circles which also show the size of the corresponding
planet’s Hill sphere. Prominent features include a lopsided structure due to the
vortex (panel b) where the planet is close to the outer gap edge, voids behind the
planet during the migration jump (panels c and d), and material inside of the gap
region (panel e and f). These features can be regarded as observational tracers of
strong dynamic interactions of planets with their host disks.
To make the link between models and reality stronger, a model was tuned to the

PDS 70 system (which has observational parameters compatible with the scenario
studied in the models in paper 1) and the observability of a migration jump was
assessed for this case. To this date, PDS 70 is the only system in which planets were
observed embedded in a PPD while still accreting (Haffert et al. 2019). Located
at a distance of 113.43 ± 0.52 pc (Gaia Collaboration et al. 2018), PDS 70a is a
0.76± 0.02M⊙ star (Müller et al. 2018) and the two giant planets are located at a
distance of 20.6±1.2 au and 34.5±2 au (Keppler et al. 2018, 2019; Haffert et al. 2019)
with masses estimated to be between 5–14MJ and 4–12MJ (Haffert et al. 2019).
The results of the PDS 70 models indicate that the mass of its disk is too low for a
migration jump to occur, but if it were sufficiently high, it would be observable as
an arc-like feature intruding into the gap region in very high-resolution observations
(see Fig. 12 in paper 1).
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Figure 4.6: Typical life track of a vortex formed at the outer gap edge caused by
a growing giant planet. In each panel, the planet is located at ϕ = 0 and r = 0,
outside of the panel towards the bottom center. The left column shows the surface
density and the right column shows the vortensity, each normalized by the initial
profile. Vortices correspond to bright spots in both quantities. The horizontal
dashed lines mark the final location of the vortex. From top to bottom, the rows
show the emergence of multiple small vortices due to the RWI, the merging of the
small vortices into one large-scale vortex and its subsequent decay. Taken from
paper 2.
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4.4 Vortices

Substructures such as gaps and rings are inevitable in the presence of embedded
giant planets. Additionally to these axis-symmetric disk substructures, lopsided
substructures frequently appear due to the interaction of the planets with the disk.
Large-scale vortices play an important role in the migration jump phenomenon
and are also expected to be detectable in observations due to their property of
accumulating dust particles (Marel et al. 2013; Bae et al. 2016).
In paper 2, planet-induced vortices in PPDs were studied by means of two-

dimensional fluid dynamics simulations using the FARGO and PLUTO codes, thus
employing two different numerical schemes. The gas was assumed to be an ideal
gas with radiative processes being parameterized by the β formalism and viscosity
following the α model. A focus was put on vortices emerging at the outer edge of
the gap created by a single Jupiter mass planet, treated as a non-accreting point
mass, which was artificially grown over a timescale of 100 or 1000 planetary orbits.

The typical life track of a vortex in the simulations is visualized in Fig. 4.6.
It shows the region of the disk just outside the planet for different stages during
its lifetime. The left and right columns show the normalized surface density and
vortensity, respectively. Vortices are visible as bright spots on either side. The
bright streak on the left side of each panel is the planetary spiral arm. The life
track begins with the embedded planet carving a gap in the disk as its mass is
increased over 100 or 1000 orbits. The gap edge steepens as the gap becomes
deeper triggering the RWI (Lovelace et al. 1999). Multiple small vortices form (top
row) which successively merge (second row) into one large-scale vortex (center row)
over less than the planetary growth time.
Figure 4.7 shows an overview of the vortex lifetimes as a function of the cooling

timescale parameter β (see Sect. 2.2) where results from simulations at 8 cps and
16 cps are shown on the left and right, respectively. The viscous α is encoded with
color and the symbol shape refers to the simulation code. Vortex lifetime increases
for decreasing α, which is the expected behavior (Godon & Livio 1999; Val-Borro
et al. 2007; Ataiee et al. 2013; Fu et al. 2014; Regály & Vorobyov 2017). While
vortices decay nearly immediately for α = 10−3, they live for up to 1000 orbits for
α = 10−4 and up to several thousand orbits for even lower α. In simulations with
self-gravity, the initial vortices did not merge into one large vortex but remained as
two to three separate smaller vortices which then decayed faster leading to reduced
lifetimes. This consistent with earlier studies (Lovelace & Hohlfeld 2013; Zhu &
Baruteau 2016; Regály & Vorobyov 2017; Pierens & Lin 2018).
In contrast to previous numerical studies, increasing the planet growth timescale

from 100 to 1000 planetary orbits only extended the vortex formation process (Ham-
mer et al. 2017). After the vortex has fully formed, the decay process is nearly
identical for both planet growth timescales (see also Fig. 6 in paper 2).
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Figure 4.7: Vortex lifetime as a function of the β-parameter for different choices
of α. The left and right panels show lifetimes for resolutions of 8 cps and 16 cps,
respectively. Circles indicate PLUTO results, crosses and triangles indicated FARGO

results without and with the inclusion of self-gravity, respectively, and hexagons
indicate an average between PLUTO and FARGO results. Lines are added as visual
guides to highlight trends. Note the increase of lifetime with α, the decrease of
lifetime for the inclusion of self-gravity, and the long-lived vortices for β = 0.01 and
low α at 16 cps. Taken from paper 2.

The dependence of vortex lifetime on the cooling parameter β in the presence
of a planet is one of the new results of the study. For α = 10−3 and 10−4, the
lifetime decreases with increasing β whereas for lower α the shortest lifetimes are
observed for β = 1. While there is a discrepancy between the results of the two
simulation codes in the lower resolution 8 cps simulations, the results agree well with
a resolution of 16 cps. For the higher resolution case with α ≤ 10−5, vortex lifetimes
are around 2000 orbits for β = 1, slightly higher for β = 100, but significantly higher
for β = 0.01 with lifetimes exceeding 10 000 orbits. The excess in lifetime indicates
that vortex evolution happens in a separate, long-lived regime for β = 0.01 with
α ≤ 10−5, which is only resolved at higher resolutions.
In models with a long-lived vortex, the vortex was observed to migrate outward

towards a second pressure bump (Paardekooper et al. 2010). The second pressure
dump is a result of the vortex spiral arms transporting angular momentum. Be-
tween the migrated vortex and the planet, additional short-lived vortices formed in
some cases. One such example is illustrated in Fig. 4.8 which shows a 16 cps FARGO
model with α = 10−6 and β = 0.01 as analyzed by the vortector tool.
In summary, the results in paper 2 show that the lifetime and properties of

vortices are sensitive to the thermodynamics of the disk, the viscosity, the inclusion
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Figure 4.8: A long-lived vortex that has migrated outward and a secondary short-
lived vortex to its left in the FARGO model with α = 10−6, β = 0.01, and 16 cps
resolution at time t = 7150 orbits. The left and right panels shows vortensity
and surface density, respectively, normalized by the values of the initial conditions.
The two vortices which are detected by the vortector tool are marked by the
ellipses indicating the full width at half maximum of the Gaussian fits of vortensity
(blue) and surface density (green). To the sides of the heatmap panels, radial (top)
and azimuthal (right) cuts through the main vortex (marked by the crosshair) are
shown. Reproduction of Fig. B.2 in paper 2.

of self-gravity, and choices concerning the numerics of the simulations. Special care
has to be taken in the simulations of large-scale vortices to resolve the physics, as
seen by the dependence of vortex lifetime on resolution. Vortices are strongest and
live longest for low viscosity, short cooling timescales and low disk masses due to
the weaker effects of self-gravity.
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This chapter discusses the results presented in Chapter 4 and provides an outlook
on the different topics. The sections cover the explanation of type II TDs, migration
jumps and the complex interactions of multi-planet systems, large-scale vortices,
and the comparison of models to observations.

5.1 Explaning transition disks

Two of the three characteristics of type II TDs as defined by Owen (2016) were
shown to be explained by a system of embedded planets in paper 1: the wide
hole sizes of tens of astronomical units and the large accretion rates. Fig. 4.2
shows that the outward migration scenario can explain the large rhole and high
Ṁacc quadrant of the parameter space of observed TDs, extending the region already
explained by X-ray photoevaporation (Picogna et al. 2019). The third characteristic
property, the mm-brightness, is still missing in the explanation. At this stage of
the models, however, the mm-brightness of the disks can not be reliably assessed
because it depends on too many unknowns, such as the dust distribution and the
dust properties and opacities, all of which were not addressed in the models and
leave room for improvements in many directions.

The models in paper 1 were not tuned to reproduce the largest possible area of
the parameter space, but the parameters were simply an estimate to achieve a mass
accretion rate of the order of 10−8 M⊙/yr. The area of parameter space covered by
the dynamical evolution of the embedded planetary system is therefore remarkable.
The fact that no fine-tuning is required can be taken as an indication that the
outward migration scenario is indeed a viable option to explain type II disks.

From the tendency of Ṁacc to decrease over time in the planetary scenario with
a viscous disk model, it can be expected that more of the parameter space below
Ṁacc = 10−8 M⊙/yr can be explained by simply evolving the models for a longer
time. Viscous mass accretion scales as Ṁvisc = 3πνΣ (Lynden-Bell & Pringle 1974),
and therefore two additional possibilities to lower Ṁacc are using lower α values or
using models with lower initial disk masses. However, the limits of these basic
scaling arguments are not yet known. One natural question in this context is, how
much of the parameter space can actually be explained by varying the parameters
of the planet models and where the limits of this scenario lie.

A possible improvement to this study is the inclusion of dust particles of microm-
eter to centimeter sizes in the simulations in a similar way as done by Marzari et al.
(2019) and additionally monitoring the accretion rates of solids across the common
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planetary gap, as well as the accretion of solids onto the planets and onto the star.
The version of the FARGO code used in this thesis is already equipped with a mod-
ule for the evolution of small solid particles. This would need to be extended by a
model of dust diffusion, otherwise, all dust particles with a Stokes number close to
unity would end up in pressure maxima such as vortices, having no restoring force
that moves them away from the pressure maxima after they drifted there. Smaller
dust particles are well coupled to the gas and trace its density distribution and are
not susceptible to the pressure gradients to such a large degree and even larger par-
ticles are decoupled from the gas enough and practically unaffected by dust traps.
The availability of information about the distribution of millimeter-sized dust in
the disks would also improve the predictive power of synthetic observations because
those presented rely on the assumption that the millimeter-sized dust is distributed
exactly like the gas is distributed. However, in a more realistic model, the dust is
actually filtered at the outer gap edge and accumulates in vortices (Marzari et al.
2019). Additionally, having access to the dust distribution would allow for an in-
formed measurement of the mm-brightness of the model disks, addressing the third
characteristic property in the Owen (2016) TD classification.

5.2 The complex dance of disk and planets

Migration jumps are presented in Sect. 4.2. They are a composite phenomenon
where the dynamical gravitational interaction between the planets and the interac-
tion with a vortex in a disk lead to emergent behavior. To my knowledge, paper 1
contains the first description of this process. However, the phenomenon previously
appeared unmentioned in the literature, e.g. in Fig. 7b of Chametla et al. (2020).

With the range of physical and numerical choices that were tested, one can
be confident that the migration jumps are not a numerical artifact but indeed a
physical feature of the model. Further study of this phenomenon could go in several
directions. The local conditions in the disk during the migration jump need to be
investigated in more detail as the study in paper 1 left some questions unanswered.
Why does the planet stop at a specific location, and why is it sometimes a resonance
location with the inner planet? What determines the migration speed back into
resonance? What role does the vortex play in determining these processes?

Reproducing the phenomenon with another code than FARGO would further evi-
dence that the phenomenon is indeed physical. Following the publication, I tested
an equivalent setup with the FARGO3D code (Beńıtez-Llambay & Masset 2016) which
also showed a migration jump. However, FARGO3D is based on the same ZEUS2D

(Stone & Norman 1992) scheme, so additional simulations with a code such as
PLUTO (Mignone et al. 2007) with a different underlying scheme would be helpful.

The three-planet configuration introduces a much wider configuration space con-
cerning the initial conditions. Which combination of planet masses enables outward
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migration in a resonant chain via the Masset–Snellgrove effect? With up to how
many planets does the Masset–Snellgrove effect work? Do the planets need to
decrease in mass with radius outward for the chain to remain stable?

Repeating the experiment in three dimensions could even further fortify the phe-
nomenon. In three dimensions, especially the phase of fast outward migration is
of interest because it is mainly determined by the flow around the planet and the
interaction with the vortex. Both the flow of gas around the planet (e.g. Szulágyi
et al. 2014; Teague et al. 2019) and vortices (e.g. Lesur & Papaloizou 2009) can
show different behavior in three dimensions.

Another open question is where the outward migration stops. This question was
already studied previously to some extent (Crida et al. 2009), but only for very high
viscosity where the stopping location is determined by the disk’s ability to close the
gap of the outer, less massive planet. In one of the simulations in paper 2, the outer
planet migrated out to a distance of 133 au after 226 kyr. The reached distance can
be expected to be a balance between initial disk size, migration rates, and the disk
dispersion timescale. All three were not varied in this study, so including a model
to properly account for disk size by using a disk with an exponential cutoff at the
outside, varying the disk mass to achieve different migration rates, and accounting
for disk dispersal (e.g. via an exponentially decreasing mass similar to the models
in Bae et al. 2019), would provide a more controlled environment. Learning more
about the stopping location of outward migrating chains of planets might reveal
more about this possible formation route for directly observed systems such as
HR 8799 which is in a 8:4:2:1 configuration (Marois et al. 2010; Goździewski &
Migaszewski 2014) where the outer planet is located at around 70 au (Wang et al.
2018).

5.3 Simulating large-scale vortices in PPDs

Previous studies either manually identified vortices, centered the vortex around the
coordinate center in sheering sheet simulations (Lesur & Papaloizou 2009; Lin &
Pierens 2018; Tarczay-Nehéz et al. 2020; Fung & Ono 2021) or used techniques such
as taking extremes or averages of vorticity or surface density in some restricted re-
gion in order to describe the vortex (Godon & Livio 1999; Les & Lin 2015; Hammer
et al. 2017). To reduce the error introduced by the manual detection of vortices,
I developed a novel method based on the elliptical shape of vortensity and surface
density iso-value lines and their detection with a computer vision algorithm, which
can be expected to work in a wide range of systems and conditions. This allows
for the detection of any number of vortices in arbitrary locations in the simulation
domain which enables the study of processes like vortex migration. Additionally,
the vortices are characterized based on 2D Gaussian fits to the surface density
which allows for detailed statistics about size, strength and internal structure. The
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process is implemented in the Python tool vortector which is freely available to
the community.
Paper 2 shows the importance of the thermal relaxation timescale parameterized

in the β formalism for the lifetime of vortices that emerge at the edge of a planet-
opened gap. This confirms earlier results that found a dependence of vortex lifetime
on β in shearing sheet simulations of a vortex forming at the edge of a viscosity
transition. They found that vortex lifetime is smaller when increasing β from the
locally isothermal regime (β → 0) towards β of the order of 1 (Tarczay-Nehéz et al.
2020) and a minimum in vortex lifetime for intermediate values of β (Fung & Ono
2021).
Tarczay-Nehéz et al. (2020) argued that the shorter lifetimes are due to higher

temperatures which increase viscosity as ν ∝ c2s ∝ T , and thus viscous dissipation
should be enhanced accordingly. Although temperatures were found to be higher in
the models with β = 100, the increase in the vortex region was usually lower than
10%. Given that viscous dissipation is expected to scale linearly with viscosity (see
Eq. (2.20)), this can not be the explanation for the two different regimes found in
paper 2 which are separated by at least one order of magnitude.
The remaining term in Eq. (2.20) is the baroclinic term. Fung & Ono (2021)

recently proposed an explanation of the variation of the lifetime with β based on a
multipole structure of the baroclinic term centered on the vortex and the elliptical
motion of gas around the vortex. Contrary to this, the simulations with planets in
paper 2 show a dipolar structure of the baroclinic term which is to be expected for
a density maximum and a radial temperature gradient.
However, the baroclinic term is significantly impacted by the presence of the

planetary spiral arm (see Fig. 10 in paper 2). Vortensity generation at the spiral
arm shock (Kevlahan 1997; Lin & Papaloizou 2010; Cimerman & Rafikov 2021)
might play an important role. The question of how thermal relaxation, and there-
fore radiative processes, affect vortex lifetime seems not yet answered and further
investigations will be necessary.
The numerical viscosity in the simulations of paper 2 was gauged to be of the or-

der of α = 10−6 for 16 cps and in the range α = 10−6–10−5 for 8 cps. Simulations of
vortices at 16 cps should therefore be conducted with α ≥ 10−6 to have a controlled
numerical experiment, otherwise, numerical diffusion can dominate processes such
as the dissipation of vortices. Alternatively, the simulations can be performed at
higher resolution with the cost of higher runtime (for an example of this strategy,
see McNally et al. 2019). The runtime of a smooth disk simulation without tur-
bulence can be expected to scale cubically with linear resolution — one power for
the increased number of cells in both directions and one power for the stricter time
step criterion because of the shrunken minimum cell size — which sets a practical
limit on the resolution that can be used, given that the 16 cps simulations in paper
2 ran for around one month on the University of Tübingen’s local HPC cluster with
the number of processors chosen for optimal scaling for the given system.
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5.4 Towards comparing models and observations

The simulations presented in paper 2 were performed in two dimensions. How-
ever, there are important 3D effects such as the elliptical instability (Lesur & Pa-
paloizou 2009) that attack vortices and can lead to faster decay and shorter life-
times. At the same time, the SBI could sustain the vortices through its vertical
modes (Klahr & Bodenheimer 2003; Lesur & Papaloizou 2010) and the VSI might
lead to either vortex growth or decay (Flock et al. 2020). It is therefore important
to investigate the dependence of vortex properties on β using 3D simulations. To
estimate the impact of 3D effects on vortex properties for the models in paper 2,
I conducted one 8 cps 3D simulation using FARGO3D (Beńıtez-Llambay & Masset
2016) which took four months to simulate on four NVIDIA K80 GPUs to reach
a simulation time of 7000 orbits after which the vortex dissipated. Given that the
resolution requirements to observe the long-lived vortex regime was 16 cps, an anal-
ogous 3D simulation to reproduce this effect can be expected to take of the order
of years (over 5 years with the same number of GPUs by estimating the runtime
increase with an additional factor of 2 for all three spatial directions and an addi-
tional factor of 2 for the decreased timestep) which practically rules out a parameter
study. To solve this problem, the simulation grid in paper 2 can be used to guide
the selection of two or three promising models.

5.4 Towards comparing models and observations

The consequences of migration jumps for the substructure of the disk were assessed
in paper 1 by simulating the dust continuum emission of the model disks and the
observation with ALMA relying on the assumption of constant dust-to-gas ratio
and the MRN dust size distribution. The appearance of the disk and the visible
substructure was dependent on the phase of the migration jump in which the system
was, demonstrating that a single disk can appear with a different substructure
depending on the dynamical state of the embedded planetary system. Previous
studies with an outward migrating pair of planets and the inclusion of dust dynamics
have already shown that effects such as dust trapping and filtration at the outer
gap edge are important for the dust distribution Bae et al. (2019); Marzari et al.
(2019). Therefore, one important improvement to the models presented in paper 1
and paper 2 is the inclusion of proper dust treatment.

Based on the simulation results, the long-lived regime for β → 0 especially, and
the expected values of β to decrease radially outward in PPDs (Ziampras et al.
2020), vortices should be expected to be observed primarily in the outer parts of
disks. However, there are already observations hinting at vortices in the inner region
of disks, e.g. in the inner 0.3 au of the disk of HD 163296 (Varga et al. 2021).

Testing these predictions made by the numerical experiments requires a careful
comparison between models and observations for each individual example where
one disk is simulated (see, e.g. the models of PDS 70), but also on a statistical
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basis where the properties of whole populations need to be studied. This requires
the conception of suitable parameter studies and the selection of observed systems
to be reproduced.
One prominent example of an individual observed disk is PDS 70, which displays

multiple physical effects important for planet formation, e.g. dust size filtration
(Bae et al. 2019), and most prominently the existence of two massive embedded
planets (Keppler et al. 2018; Müller et al. 2018; Haffert et al. 2019). During my
work on this thesis, I used both strategies, reproducing the characteristic properties
of type II TDs on one hand and trying to model PDS 70 on the other hand.
Both attempts will profit from a proper dust treatment to close the gap between
numerical models and observations.
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6 Summary

The goal of this thesis was to study the hypothesis that type II transition disks
— protoplanetary disks with large inner holes or wide gaps and high mass accretion
rates onto the central star — can be explained by an embedded system of planets.
Using two-dimensional fluid dynamics simulations, I was able to show that an

outward migrating pair of giant planets can explain large parts of the previously
unexplained parameter space in the stellar mass accretion vs. inner hole size domain
(see Sec. 4.1).
During this investigation, I discovered and described a novel dynamical phe-

nomenon in the realm of planet–disk interactions called a migration jump (see
Sec. 4.2). During resonant outward migration of a giant pair of planets, the outer
planet can suddenly speed up its migration exponentially and shoot out by several
tens of astronomical units in only some thousands of years, before migrating back
into resonance with the inner planet. This process is a result of the excitation of
eccentricities of the planets, the excitation of a vortex in the outer disk just outside
the outer gap edge, and the interaction of the outer planet with the vortex.
In addition to the dynamical analysis, synthetic ALMA observations of the sim-

ulated systems were produced in order to predict the observational features of
migration jumps (see Sec. 4.3). Due to the similarity between the model systems in
which migration jumps were found in the simulations and the real protoplanetary
disk and planet system PDS 70, models geared towards this system were analyzed
to answer the question of whether migration jumps might happen in PDS 70. This
scenario turns out to be unlikely because the surface density in the disk of PDS 70
is lower than that required for a migration jump.
Sparked by the role of the vortex in migration jumps, an investigation into large-

scale vortices in protoplanetary disks was performed to identify the role of the
timescale of thermal cooling in the disk on the lifetime of vortices (see Sec. 4.4).
Two-dimensional fluid dynamics simulations with two different simulation tools
were performed for each set of parameters scanning the parameter space of thermal
cooling timescale and viscosity. Vortices were strongest and lived longest for low vis-
cosities and low cooling timescales while they lived shortest for cooling timescales
comparable to the orbital period, largely consistent with previous studies. For
the detection of vortices in fluid dynamics simulations of PPDs, a novel framework
called vortector was developed. This framework is based on computer vision algo-
rithms and implemented in the Python programming language and made available
to the astrophysics community.
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help. Also a big thanks to Aaron, André, Anna, Barbara, Christoph, Christoph,
Daniel, Dennis, Evita, Gabriel, Hugo, Heike, Jibin, Johannes, Jonas, Marius, Max,
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and the German Research Foundation (DFG) through grant no INST 37/935-1
FUGG.

51





Bibliography
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Beńıtez-Llambay, P. & Masset, F. S. 2016, The Astrophysical Journal Supplement
Series, 223, 11, doi:10.3847/0067-0049/223/1/11

Calvet, N., D’Alessio, P., Watson, D. M., et al. 2005, The Astrophysical Journal,
630, L185, doi:10.1086/491652

53

https://doi.org/10.1088/2041-8205/808/1/L3
https://doi.org/10.1146/annurev-astro-031220-010302
https://doi.org/10.3847/2041-8213/aaf741
https://doi.org/10.1086/432712
https://doi.org/10.1086/173469
https://doi.org/10.1051/0004-6361/201321125
https://doi.org/10.3847/2041-8213/ab46b0
https://doi.org/10.3847/0004-637X/819/2/134
https://ui.adsabs.harvard.edu/abs/1990BAAS...22.1209B/
https://ui.adsabs.harvard.edu/abs/1995A&A...295L...1B/
https://doi.org/10.1051/0004-6361/202140535
https://doi.org/10.1007/978-3-642-32961-6_6
https://doi.org/10.3847/0067-0049/223/1/11
https://doi.org/10.1086/491652


Bibliography

Chametla, R. O., D’Angelo, G., Reyes-Ruiz, M., & Sánchez-Salcedo, F. J.
2020, Monthly Notices of the Royal Astronomical Society, 492, 6007,
doi:10.1093/mnras/staa260

Cimerman, N. P. & Rafikov, R. R. 2021, Monthly Notices of the Royal Astronomical
Society, 508, 2329, doi:10.1093/mnras/stab2652

Crida, A., Masset, F., & Morbidelli, A. 2009, The Astrophysical Journal, 705, L148,
doi:10.1088/0004-637X/705/2/L148

Crida, A., Morbidelli, A., & Masset, F. 2006, Icarus, 181, 587,
doi:10.1016/j.icarus.2005.10.007

D’Angelo, G. & Lubow, S. H. 2008, The Astrophysical Journal, 685, 560,
doi:10.1086/590904

Dullemond, C. P., Hollenbach, D., Kamp, I., & D’Alessio, P. 2007, in Protostars
and Planets V (University of Arizona Press), 555–572, ADS:2007prpl.conf..555D

Dullemond, C. P., Juhasz, A., Pohl, A., et al. 2012, RADMC-3D: A multi-purpose
radiative transfer tool, ADS:2012ascl.soft02015D
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ABSTRACT

Context. Transition discs form a special class of protoplanetary discs that are characterised by a deficiency of disc material close to
the star. In a subgroup, inner holes in these discs can stretch out to a few tens of au while there is still mass accretion onto the central
star observed at the same time.
Aims. We analyse the proposition that this type of wide transition disc is generated by the interaction of the disc with a system of
embedded planets.
Methods. We performed two-dimensional hydrodynamics simulations of a flat disc. Different equations of state were used including
locally isothermal models and more realistic cases that consider viscous heating, radiative cooling, and stellar heating. Two massive
planets (with masses of between three and nine Jupiter masses) were embedded in the disc and their dynamical evolution due to disc–
planet interaction was followed for over 100 000 yr. The simulations account for mass accretion onto the star and planets. We included
models with parameters reminiscent of the system PDS 70. To assess the observability of features in our models we performed synthetic
ALMA observations.
Results. For systems with a more massive inner planet, there are phases where both planets migrate outward engaged in a 2:1 mean
motion resonance via the Masset-Snellgrove mechanism. In sufficiently massive discs, the resulting formation of a vortex and the
interaction with it can trigger rapid outward migration of the outer planet where its distance can increase by tens of au in a few
thousand years. After another few thousand years, the outer planet rapidly migrates back inwards into resonance with the inner planet.
We call this emerging composite phenomenon a migration jump. Outward migration and the migration jumps are accompanied by
a high mass accretion rate onto the star. The synthetic images reveal numerous substructures depending on the type of dynamical
behaviour.
Conclusions. Our results suggest that the outward migration of two embedded planets is a prime candidate for the explanation of
the observed high stellar mass accretion rate in wide transition discs. The models for PDS 70 indicate it is not currently undergoing a
migration jump but might very well be in a phase of outward migration.

Key words. accretion, accretion disks – protoplanetary disks – planet–disk interactions – hydrodynamics – methods: numerical

1. Introduction

Observationally, transition discs are characterised by a lack of
flux in the micrometre (near- to mid-infrared) range as seen in
the spectral energy distributions (SEDs) of young stars. This flux
deficit is typically associated with “missing” dust and with tem-
peratures of 200–1000 K (Calvet et al. 2002; D’Alessio et al.
2005) corresponding to the inner regions of accretion discs.
Despite this lack of dust, there are still signatures of gas accre-
tion in several systems with large inner (dust) holes that are a few
tens of astronomical units (au) in width (see e.g. Espaillat et al.
2014).

The observational properties of transitional discs (TDs)
and previous modelling attempts have been reviewed by Owen
(2016) and here we mention only the main aspects relevant to
this paper. The origin of the inner disc clearing is primarily
attributed to three different processes: photoevaporation from
the inside out through high-energy radiation from the central
young protostar (e.g. Shu et al. 1993; Alexander et al. 2006),
magnetically driven disc winds (e.g. Rodenkirch et al. 2020),
or embedded massive companions that carve deep gaps into
the disc (e.g. Varnière et al. 2006). Additionally, TDs appear
to come in two flavours, millimetre(mm)-faint discs with low

mm fluxes, small inner holes (.10au), and low accretion rates
onto the stars (≈10−10−10−9 M⊙ yr−1), and mm-bright discs with
large mm fluxes, large holes (&20 au), and high accretion rates
≈10−8 M⊙ yr−1 (Owen & Clarke 2012) to which we refer here as
Type I and Type II discs, respectively.

While photoevaporation is certainly at work in some systems
(Type I TDs), it is believed that it can only operate for systems
with a sufficiently low mass accretion rate below 10−8M⊙ yr−1

and is otherwise quenched by the accretion flow (Owen & Clarke
2012). At the same time the persistence of gas accretion within
the inner (dust) holes is taken as an additional indication that
other mechanisms should operate that create these gaps (Manara
et al. 2014). The very likely mechanism for this second class
of TDs is related to the growth of planets in the discs, because
young planets embedded in their nascent discs will not only open
a gap in the gas disc but will create an even stronger depletion
of the dust near the planetary orbit (Paardekooper & Mellema
2004).

Consequently, it was suggested early on that the presence
of a massive (Jupiter-sized) planet might be responsible for the
gap creation (Varnière et al. 2006; Rice et al. 2006), but at the
same time it has been reported that the gap created by a sin-
gle embedded planet is significantly narrower than suggested by
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observations of transition discs. Given the problems with a sin-
gle planet and the photoevaporation models, it has been proposed
that the main observational features can be created by the pres-
ence of a system of (three to four) massive planets. Following this
line of thought, Zhu et al. (2011) and Dodson-Robinson & Salyk
(2011) performed numerical simulations and argue that TDs are
in fact signposts of young multi-planet systems. In this scenario,
the embedded planets act as a “barrier” for the gas flow through
the disc, allowing some gas to enter the inner region, causing the
observed accretional features near the star, while the dust is fil-
tered out at the pressure maximum just beyond the outer edge of
the gap and cannot enter the inner disc regions. Following this
line of thought, theoretical models with embedded planets and
dust in discs have been constructed to match the observed spec-
tral energy distributions at sub-millimetre wavelengths (de Juan
Ovelar et al. 2013; Pinilla et al. 2015).

New ALMA observations focusing on CO-rotational lines
have allowed the gas content to be determined in the inner disc
region in more detail. These results show that the inner disc gas
depleted by factors of about 102 (van der Marel et al. 2015), or
even by a factor of 104 with gas holes about a factor 2–3 smaller
than the dust gaps (van der Marel et al. 2016), which is taken
as another example of massive planets in discs (Ho 2016). The
conclusion that all or the majority of Type II TDs are shaped by
massive planets was questioned by Dong & Dawson (2016) who
argue that there may not be enough giant planets to explain all
the observed Type II TDs; see also Cumming et al. (2008) for
the occurrence rate of massive planets at larger separations. The
solution to this problem is either that current numerical mod-
els of planet–disc interactions are too inefficient at gap opening
compared to what is seen in nature, or that Type II TDs are intrin-
sically rare objects rather than being common and short-lived as
is probably the case for their Type I counterparts. Considering
that the arguments of Dong & Dawson (2016) are based on ana-
lytical approximations of gap widths and sizes that are based on
isothermal disc models, it may well be that the theoretical mod-
els have not reached the degree of sophistication necessary to
produce reliable results.

Recent evidence in favour of the planet-based origin of
Type II TDs came through the direct detection of embedded
planets in such systems. For the T Cha system, the presence
of a planet was suggested based on observations in the L-band
(Huélamo et al. 2011) which were later supported by ALMA
observations indicating a gap in the disc ranging from 18
and 28 au compatible with a 1.2 MJup planet (Hendler et al.
2018). However, direct confirmation is still pending. A point-like
source was detected in the L-band in the transition disc system
MWC 758 at a deprojected distance of about 20 au from the
star (Reggiani et al. 2018), directly hinting at the presence of an
embedded planet. However, the clearest evidence comes from the
PDS 70 system. A first point like object was detected in the near-
infrared at a projected distance of 22 au, which was attributed
to a planet (PDS 70b) orbiting within a gap that stretches from
about 17–54 au in size (Keppler et al. 2018). The large gap size in
PDS 70 suggested a second companion which was detected last
year (Haffert et al. 2019). The authors confirmed the earlier Hα
detection of PDS 70b and found a second point-like Hα source
near the outer edge of the gap. This Hα emission is taken as evi-
dence for ongoing accretion onto two proto-planets (Haffert et al.
2019). In addition, the spatial separation of the two planets indi-
cates that they are close to a 2:1 mean motion resonance (MMR).

With respect to PDS 70, a few simulations of embedded plan-
ets have been performed. The first study (Muley et al. 2019)
considered only one planet and a possible explanation of the

wide gap was the creation of a large eccentric cavity by a mas-
sive planet of about 2.5 MJup. While this is in principle a possible
scenario for sculpting transition discs, as shown also by Müller
& Kley (2013), the direct observation of a second planet ruled
out this scenario for PDS 70. Consequently, two-planet simula-
tions were presented that show that a system engaged in a 2:1
MMR can in fact be stable for several million years (Bae et al.
2019).

In this paper we study the evolution of planets embedded
in protoplanetary discs using two-dimensional hydrodynamical
simulations. Our simulations include planet migration and mass
accretion and either assume a locally isothermal equation of state
or incorporate stellar heating and radiative cooling from the disc.
This work extends an earlier study (Müller & Kley 2013) where
only one planet was considered, which remained on a fixed orbit
around the star and was not allowed to migrate through the disc.
First, we present generic models to demonstrate our new findings
on the occurrence of migration jumps. We then present our study
of the system PDS 70. For both cases, we generate synthetic
images and discuss the observability of the features.

In Sect. 2, we introduce our numerical model. In Sect. 3, we
present the evolution of the planetary system in our numerical
simulations and describe migration jumps in detail. In Sect. 4,
we generate synthetic images of a disc in our simulations and
identify possible observational features. Section 5 is a case study
of how migration jumps apply to the PDS 70 system. We discuss
our findings in Sect. 6 and give a summary in Sect. 7.

2. Modelling

In this section we describe the physical and numerical setup used
in our simulations. To give an overview of the cases investigated,
Table 1 lists all models and summarises their most important
parameters. Specific models are referred to using a short label
in sans serif font.

2.1. Physical setup

We model an accretion disc around a young protostar solving the
two-dimensional (2D, r−φ) viscous hydrodynamical equations
obtained by averaging over the vertical direction. Most of our
models assume a locally isothermal equation of state (T =T (r)
is constant over time). For selected models (IRR, PDS70 IRR,
PDS70 IRR M/5) we solve the energy equation and include
heating by irradiation from the star (analogous to Ziampras et al.
2020), viscous heating, and radiative cooling, using an averaged
opacity. All the details of the used set of equations are stated in
Müller & Kley (2012, 2013). Here, we do not solve for radiative
transport within the plane of the disc.

For the systems investigated here, the locally isothermal
assumption and the inclusion of the radiative effects yield
comparable results as the test in Appendix B shows.

Viscosity is parameterised with the α viscosity model
(Shakura & Sunyaev 1973) using a value α= 10−3. The kinematic
viscosity is then ν=αcsH with the sound speed cs and the verti-
cal pressure scale height of the disc H. Together with the choices
for Σ and H/r (as given below) this value of α corresponds to a
viscous mass accretion rate Ṁdisc = 3πΣν= 5.3 × 10−9 M⊙ yr−1 at
2 au for the initial profile (see also panel 2 of Fig. 1).

The host star mass is M∗ = 1 M⊙. There are two planets
embedded in the disc. The inner planet (1) is initially located at
a1 = 4 aJup = 20.8 au with a mass of M1 = 3–9 MJup and the outer
planet (2) is initially located at a2 = 7 aJup = 36.4 au with a mass
of M2 = 1–9 MJup. These models are labelled with Mk-l where k/l
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Table 1. Model parameters and outcome of the simulations.

Label Bound (a) Res (b) M1
(c) M2

(c) facc Σ
(d) Migration (e) Jump ( f ) Events (g) Fig.

M9-3, A0.0 O 9 3 ր X (h)

M6-2 O 6 2 ր X

M3-1 O 3 1 ր X

M9-4.5 O 9 4.5 ր X DS 3
M6-3 O 6 3 ր X

M6-6 O 6 6 ց 3

M3-9 O 3 9 ց 3
M2-6 O 2 6 ց
M3-1.5 O 3 1.5 ց
M9-3 HR O 1/2 9 3 ր X A.1
M9-3 DR O 2 9 3 ր X A.1
M9-3 M/10 O 9 3 1/10 ր
IRR O 9 3 ր X B.1, B.2
FLARE O 9 3 ր X B.1, B.2

A0.0001 O 9 3 10−4 ր X 7, 8
A0.001 O 9 3 10−3 ր X 7, 8
A0.01 O 9 3 10−2 ր X DS 7, 8
A0.1 O 9 3 10−1 ր X 7, 8

L O 1/2 9 3 րց X S 9
L M/2 O 1/2 9 3 1/2 ր X

L M/10 O 1/2 9 3 1/10 ր
VB V 9 3 ր X E
VB5 V5 9 3 ր X E
WD O+WD 1/2 9 3 ր X E
WDR R+WD 1/2 9 3 ր X E

VB-P V 9 3 ր X

VB5-P V5 9 3 ր X

WD-P O+WD 1/2 9 3 ր X

WDR-P R+WD 1/2 9 3 ր X

SG V5 9 3 րց X S
SG IRR V5 9 3 րց X DS, S

PDS70 ISO O 9 3 ր X 11
PDS70 IRR O 9 3 ր X 11
PDS70 IRR M/5 O 9 3 1/5 ր 11

Notes. If a field is empty in the Res, facc, or Σ column, the values are the same as for the reference model M9-3. (a)For the inner boundary,
the following choices are possible: O means an outflow boundary, R a closed reflective boundary, V a viscous boundary, V5 a viscous boundary
with five times viscous speed, and +WD indicates an additional wave damping zone close to the inner boundary, see Sect. 2.4 for more detail.
(b)The factor refers to the 2D resolution compared to the M9-3 case (Sect. 2.2). (c)Planet masses in units of MJup. (d)Surface density in units of the
reference density Σ0 (see Eq. (1)). (e)Direction of migration whereր andց indicate outward and inward migration, respectively. ( f )X, if at least
one migration jump happened in the simulation. (g)Additional events of interest, where S indicates a single orbit swap, DS a double orbit swap, and
E stands for planet ejection. (h)The standard model M9-3 is used in Figs. 3, 4, 5, 6, 8, A.1, B.1, B.2, 6 and C.1.

is the mass of the inner/outer planet in MJup, respectively. The
exact combinations of masses can be found in Table 1. For all
combinations of planet masses, a large deep gap can be expected
in the disc.

To simplify the simulations, self-gravity of the disc is
neglected in most of them. For the initial conditions of our stan-
dard model M9-3 the Toomre Q parameter is above 3 at 100 au
and above 8 close to the location of the planet. Thus, self-gravity
should not play a dominant role in the system considered. This
assumption is verified by two additional models with self-gravity
included. The corresponding models are described in Sect. 2.8.

2.2. Simulation code

The hydrodynamics equations are solved on a 2D polar grid
(using r−φ coordinates). Radially, the domain ranges from 2.08–
208 au covered by 602 cells that are logarithmically spaced.
Azimuthally, the grid is uniformly spaced from 0 to 2π with
821 cells.

We use a custom version of the FARGO code (Masset 2000),
which was also used by Müller & Kley (2013) in an earlier ver-
sion, and is further developed and maintained by our group at the
University of Tübingen. N-body calculations are performed with
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Fig. 1. Initial conditions for the disc around the 1 M⊙ star used in our
simulations (blue). These are compared to the initial conditions of the
disc in Bae et al. (2019) (green) in which the PDS70 system (0.85 M⊙
star) was modelled. For context, the surface density of the minimum
mass solar nebula (MMSN; Hayashi 1981) is plotted in orange. Physical
initial conditions after the equilibration phase (see Fig. 2) at t= 26 kyr
are shown for model M9-3 as a dashed blue line. The panels, from top
to bottom, show the radial profile of the: surface density, viscous mass
accretion rate (Ṁdisc = 3πΣν with α= 10−3), temperature, and aspect
ratio. The initial location of the planets are marked by the vertical, dot-
ted lines which span over all panels and are indicated by the red and
cyan circles.

the IAS15 integrator in REBOUND (Rein & Liu 2012) which is
integrated into our version of FARGO.

2.3. Initial conditions

Initially, the surface density of the disc Σ is set to a power-law
profile of the form

Σ(r)=Σ0

(

r

au

)−1

, Σ0 = 461.76
g

cm2
. (1)

The aspect ratio of the disc is chosen as h= H
r
= 0.05 throughout

the disc, which is equivalent to choosing a temperature power
law of

T (r)=T0

(

r

au

)−1

, T0 = 632.86 K. (2)

We checked this assumption by performing additional simula-
tions using irradiated discs; see Appendix B.

Both initial conditions are visualised in Fig. 1. The top panel
shows Σ(r). The second panel from the top shows the viscous
mass accretion rate, Ṁdisc = 3πΣν, at each radius in the disc
assuming α= 10−3. The panel below that, and the bottom panel,
show T (r) and the resulting disc aspect ratio, H/r, respectively.
To establish a context, we also show the initial conditions of a
PDS 70 simulation by Bae et al. (2019, hereafter B19) and the
minimum mass solar nebula (MMSN; Hayashi 1981). Our disc
has a lower Σ than the MMSN in the inner ≈60 au and is about
five times larger than the Σ in B19, who model the 5.4 Myr old

time

initialize simulation

physical initial conditions

26
 k

yr

stop

10
0 

ky
r

reaching equilibrium

physical simulation

planets start to feel disk

Fig. 2. Flow chart illustrating the equilibration and simulation phase.
The disc properties are initialised according to the power laws in
Eqs. (1) and (2). During the equilibration process (taking 26 kyr, equiva-
lent to 274 orbits at the initial location of the inner planet) where the disc
begins to “feel” the planets, the density profile changes significantly; see
the first panel of Fig. 1 for the difference, where the equilibrated profile
is shown as the dashed blue line.

PDS 70 system with a 0.85 M⊙ star. Their disc is lighter, as might
be expected for an older system due to disc dispersal, and has
lower temperatures in the inner parts of the disc due to lower
stellar luminosity. The first panel also displays Σ(r) after the ini-
tial equilibration phase as the dashed blue line. The locations of
the planets are marked by the dotted vertical lines and the red
and cyan circles in the top panel.

These power-law initial conditions do not take into account
the presence of embedded planets. To obtain more physical ini-
tial conditions which are consistent with two massive embedded
planets, we insert the planets by ramping up their masses over
0.5 kyr while they are fixed at their orbits for an initial equili-
bration time, Teq. During this time, the N-body system evolves
without being subjected to the gravitational force of the disc
while the disc is exposed to the forces of the N-body system
and a common gap forms around the planets. To determine Teq,
we analysed test simulations and checked for the time when the
density waves caused by the insertion of the planets left the com-
putational domain and the time after which the gap depth no
longer changed significantly. The second condition is fulfilled
at a later time and yields Teq = 26 kyr which corresponds to 274
orbits at the initial location of the inner planet. After this time,
the disc feedback onto star and planets is turned on which causes
them to migrate. The equilibration process is sketched by the
flow chart in Fig. 2.

2.4. Boundary conditions

We employ an outflow boundary (O) condition at both radial
boundaries, Rmin and Rmax. This is done to let the disc evolve
on its own, for example by allowing for an eccentric disc close to
the inner boundary which might be unphysically suppressed by
the use of a wave damping boundary, for example, that imposes
an azimuthal symmetry close to the boundary. Additionally, this
choice of boundary condition allows density waves that are cre-
ated by the insertion of the planets to leave the computational
domain.

For our outflow boundary condition, only mass flow leaving
the domain is allowed. This is implemented by enforcing a van-
ishing gradient of the energy density and Σ, and by setting the
radial velocity to zero at the boundary in cases where the velocity
vector points into the domain and by setting its gradient to zero
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otherwise. This way, no mass can be generated. The azimuthal
velocity is left unchanged.

In order to check the validity of these boundary conditions
for our physical setup, we studied other options. This is important
because the open boundary condition leads to an unphysical drop
in surface density close to the boundary, as can be seen in the top
panel of Fig. 1.

One alternative is to employ an additional wave damping
(WD) zone (de Val-Borro et al. 2006) between Rmin and 2 Rmin
where Σ and the velocities are exponentially damped to their ini-
tial values on a timescale of 5% of the orbital timescale at Rmin
(models WD at half resolution). We combine this wave damp-
ing zone with the outflow boundary and with another common
choice: a closed, reflective boundary. This reflective boundary
does not allow mass flow through the boundary which is imple-
mented by applying a zero gradient for energy density and Σ,
and by setting the radial velocities of the ghost cells to zero at
the boundary and to the negative of the first active cell’s radial
velocity at the next ghost cell interface, thus reflecting momen-
tum at the boundary. A combination of a reflective boundary and
a wave damping zone is used in model WDR.

An outflow boundary as used in our simulations might over-
estimate the mass flow across the inner domain. In a real system,
the properties of the accretion process onto the star are likely to
limit the mass flow at the inner disc edge. To test for the implica-
tion of this, we also employed a viscous internal boundary. For
this, the velocities of the inner ghost cells are set to a multiple of
the viscous speed:

v(rin)= β vvisc(rin) , vvisc(rin)=−
3ν

2rin
, (3)

with ν being kinematic viscosity. We used β= 1 (model VB) and
β= 5 (model VB5) which was found to yield a boundary compa-
rable to simulations where the 2D grid is embedded in a larger
1D domain (Crida et al. 2007). This boundary is also used to
compare to similar models in the literature (e.g. Marzari et al.
2019).

2.5. Centre-of-mass frame

Many simulations of planet–disc interactions use a grid centred
on the primary star. If there is only one gravitating object, this
is an inertial frame. However, with the addition of one or more
planets, it is not an inertial system any more and the so-called
indirect term, which is the negative of the force acting on the star,

Find, star = −
(

Fdisc + Fplanets

)

, (4)

has to be applied to the bodies and the gas. For more massive
planets, this causes the disc to oscillate for as much as the star
oscillates around the centre of mass, which is undesirable from
a numerical point of view. For a full planetary system, we obtain
an inertial system by choosing the centre of mass of the N-body
system as the origin. The indirect term therefore vanishes except
for the contribution from the disc, which reads

aind., COM =−
1

∑

n Mn

∑

n

Mn adisc, n, (5)

for all N-body objects indexed by n with mass Mn. To avoid any
numerical drift of the centre of mass away from the origin, we
shift the whole N-body system at every hydrodynamical time-
step such that the centre of mass coincides with the origin, see
also Thun & Kley (2018).

2.6. Gravitational interactions

Star and planets are modelled as point masses. The gravitational
pull from the point masses onto the disc is implemented via their
gravitational potential, which is

Ψ(r)=−G
∑

n

Mn
√

(r − rn)2
+ ǫ2sm

(6)

at location r, and the index n runs over all point masses with
masses Mn and position vectors rn. The smoothing length is cho-
sen to be ǫsm = 0.6H(r), with the local disc scale height H(r), to
approximate the gravitational force in a 3D disc (Müller et al.
2012).

The back reaction from the disc onto the point masses is
calculated by direct summation over all grid cells, which are
indexed by k, and have masses mk and positions rk. The total
disc force acting on a point mass with index n is

Fdisc, n =−GMn

∑

k

mk

(rn − rk)2
+ ǫ2sm

rn − rk

|rn − rk|
, (7)

where ǫsm is the same as used for the potential.

2.7. Implementation of planetary accretion

In some simulations we include the possibility of mass accre-
tion onto the embedded planets. We use the prescription from
Dürmann & Kley (2017) and remove a fraction of mass every
time-step ∆t from the hydrodynamical simulation in the vicin-
ity of the planet. More mass is removed from close to the planet
than from further away. No mass is removed beyond a distance of
0.5 RHill from the planet’s location. For full details see Dürmann
& Kley (2017). The mass removed at each time-step follows the
relation

∆M = facc Mvicinity ∆tΩK, (8)

where facc is a free parameter to control the efficiency of the
accretion process. We use values of facc = 10−4, 10−3, 10−2 and
10−1 (models A facc with facc in decimal notation). Mass and
angular momentum are conserved by adding the mass removed
from the hydrodynamical simulation to the mass of the planet
and adding an equivalent amount of angular momentum.

2.8. Additional models

In order to test our model choices, we ran additional simulations
with different parameters.

To check the impact of a constant aspect ratio, we reran
the standard model M9-3 with a flaring aspect ratio of

h(r)= 0.019
(

r
au

)2/7
(model FLARE). This flaring corresponds

to a disc dominated by irradiation and h= 0.05 is reached at
30 au.

A resolution test was carried out by reducing or increasing
the resolution by a factor of two (

√
2 in each direction, models

M9-3 HR and M9-3 DR). See Appendix A for the comparison.
To test the influence of the domain size, half resolution models
(same ∆r/r as M9-3 HR) were done with a larger grid spanning
from 5.2 to 520.0 au (models L, L M/2, L M/10). For the larger
domain, density waves which are caused by the insertion of plan-
ets take longer to leave the domain. Therefore, Teq = 59 kyr is
chosen.
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Some models were run with a lower surface density but oth-
erwise identical parameters to their sibling models. These are
indicated by the M/N in their label and were initialised with N
times smaller surface density compared to Eq. (2) (models M9-3
M/10, L M/2, L M/10 and PDS70 IRR M/5).

To test the effect of the centre of mass frame, we repeated
some models with a coordinate system centred on the primary
star. These are indicated by a -P in their labels (models VB-P,
VB5-P, WD-P, WDR-P).

Most of our models do not include self-gravity. To test the
implications of self-gravity, we ran two additional models with
self-gravity included. This was implemented in the same way as
in Baruteau (2008), but with a modified smoothing length that
includes a dependence on radius in order to fulfil Newton’s third
law (Moldenhauer & Kley, in prep.). The two models are based
on model VB5-P for runtime reasons because this model has the
largest time-step. Model SG has only self-gravity enabled and
SG IRR additionally solves the energy equation and considers
irradiation like model IRR.

We also ran a set of models to simulate the PDS 70 system.
The parameters and results are discussed separately in Sect. 5.

3. Results

In this section, we analyse the simulations listed in Table 1 with
respect to their dynamical evolution and accretion properties.
Each effect is described in a separate subsection.

Due to the large number of simulations performed, we do not
visualise all of them. Instead, we used a representative selection
to highlight the various dynamical evolutions. Unless stated oth-
erwise, the features observed in those simulations that are not
displayed are very similar but might happen at a different point
in time.

The simulation outcomes are described in the following sec-
tions and an overview can be found in Table 1. The different
properties listed are: outward and inward migration (ր and ց,
Sect. 3.1), migration jumps (indicated by X, Sect. 3.2), sin-
gle/double orbit swaps (S/DS, Sect. 3.3), and planet ejections
(E, Sect. 3.6). Table 1 also refers to the corresponding figures,
which show the migration history of the respective simulations.

3.1. Direction of migration

In all simulations, the planets start to migrate after gravita-
tional feedback from the disc onto the planets is turned on. A
selection of migration tracks for simulations with different plan-
etary masses and mass ratios is shown in Fig. 3. The selection
showcases the different possible behaviours of the systems.

For all combinations of planetary masses, the inner planet is
migrating outward for the first 10 kyr because it only feels the
positive torque contribution from the inner disc. There is no sub-
stantial contribution to the torque from the outer disc because of
the large common gap opened by the two planets. Regions where
the interaction of the disc would be strongest (Ward 1997) are
cleared by the outer planet (Sándor et al. 2007). Vice versa, the
outer planet migrates inward for the first 10 kyr. After this time,
the planets are captured in a 2:1 MMR. We verified this by check-
ing the resonant angles for an inner MMR,Θ2:1

1,2
= 2λ2 −λ1 −̟1,2

(Forgács-Dajka et al. 2018), where λ=M +̟ is the mean orbital
longitude with the mean anomaly, M, and ̟=ω + Ω is the lon-
gitude of periapsis with the argument of periapsis, ω, and the
longitude of the ascending node, Ω. These angles are indeed
librating around zero (see Fig. 4 whereΘ2:1

1,2
are displayed). Being
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Fig. 3. Migration history for a selection of models described in Table 1
to highlight the different possible dynamical evolution of the embed-
ded planets. The panels show, from top to bottom, the evolution of: the
semi-major axis, a, of the outer and inner planet, their eccentricities,
e, and their period ratio. The release time of the planets is marked by
the vertical dotted line. Most prominent is the occurrence of fast out-
ward migration (migration jump) for model M9-3 (blue) between 60
and 80 kyr, and a double orbit swap at 110 kyr followed by a migra-
tion jump for model M9-4.5. At the time of the double orbit swap at
t∼ 110 kyr, ein = 0.38 and eout = 0.58. They are cut out to increase the
visibility of the rest of the data.

locked in resonance, the planets then migrate in unison with
a direction that depends on whether the positive torque contri-
bution of the inner disc (inside the common gap) is larger in
magnitude than the negative torque contribution from the outer
disc (outside the common gap). As these torque contributions
depend on the respective planetary mass, the direction of migra-
tion can vary. If the inner planet is more massive than the outer
planet, the system can migrate outwards as found initially for the
Jupiter–Saturn system by Masset & Snellgrove (2001). Indeed,
Fig. 3 shows outward migration for the M9-3 and M9-4.5 mod-
els for which the inner planet is more massive than the outer one.
Conversely, the planets migrate inward for a more massive outer
planet as in model M3-9. For equal-mass planets (M6-6), the
system still migrates inward, but with a lower migration rate.

3.2. Migration jumps

Simulations in which the planet pair shows outward migra-
tion occasionally exhibit an additional process, which we call
a “migration jump”:

1. the outer planet embarks on a rapid outward migration
covering tens of au in a time period of a few thousand years;

2. after reaching a maximum radius, it stays in this region for
several thousand years, occasionally for up to tens of thousands
of years;

3. it migrates back inward, again on a short timescale, until
it locks back into resonance with the inner planet.
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Fig. 4. Zoom-in on a migration jump in model M9-3 including the
time leading up to and following the event. The panels show, from
top to bottom, the evolution of: the semi-major axis of both planets,
their eccentricities, the 2:1 MMR angles, Θ2:1
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4:1 MMR angles, Θ4:1
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= 4λ2 − λ1 − 3̟1,2. The vertical lines correspond

to the snapshots shown in Fig. 5.

Two examples of a migration jump can be seen in Fig. 3. This
process can repeat itself multiple times (see Fig. B.1).

Figure 4 shows a zoom into one migration jump of our stan-
dard M9-3 model focussed on the time leading up to the event
and some time afterwards. It shows from top to bottom: the semi-
major axis of both planets, their eccentricities, the 2:1 MMR
angles, and the 4:1 MMR angles. The MMR angle variables
correspond to an inner MMR (Forgács-Dajka et al. 2018). The
two-dimensional surface density distribution of model M9-3 is
displayed in Fig. 5, where panels a–f show the disc prior, during,
and after the migration jump. The times of the individual snap-
shots are indicated in Fig. 4 by the vertical lines. Panel a of Fig. 5
shows the disc at that point in time when disc feedback is turned
on and the planets are allowed to migrate.

In the following paragraphs we examine the migration jump
process more closely by analysing the behaviour around the time
of each of the six snapshots of model M9-3.

a) Prior to the migration jump, both planets migrate out-
ward in 2:1 MMR. During this time, the eccentricity of the inner
planet, ein, grows up to 0.15, while the eccentricity of the outer
planet, eout, fluctuates up to 0.125. The increase in eccentricity
comes from the interaction of the planets with the vortex that is
formed outside the common gap. Faint spiral arms are visible in
the common gap during this epoch (see panel b in Fig. 5).

b) At 64 kyr, ein drops significantly while eout rises up to
0.2 and the 2:1 MMR is broken. Due to its eccentric orbit, the
outer planet comes close to the inner edge of the outer disc (see
panel b of Fig. 5). This is close enough to sufficiently enhance
the mass flow across the planet’s orbit and produce co-orbital
torques. These torques are positive, because gas with higher
angular momentum flows inwards where it has a lower angular

momentum. The difference in angular momentum is deposited
onto the planet causing a positive torque. What follows is a phase
of type III rapid outward migration (Pepliński et al. 2008) and the
outer planet moves out from 40 au at 65 kyr to 72 au at 70 kyr,
covering 32 au in only 5 kyr. More complex structures can be
seen in the disc (see panel c in Fig. 5) which are the result of over-
lapping spiral arms and the outer planet opening a gap. During
this time eout relaxes back to low values.

c) The fast outward migration stops at the location of the
4:1 MMR with the inner planet (see the third panel from the
top in Fig. 4 where the resonant angles Θ4:1

1,2
are displayed). The

two planets remain in the 4:1 MMR for about 4 kyr at t∼ 70 kyr,
where the outer planet remains around 75 au.

d) Afterwards the 4:1 resonance is broken and the outer
planet migrates back inward by 22 au within 3.5 kyr.

e) It ends up back in 2:1 MMR with the inner planet. The
inner planet migrates outwards during the jump since the posi-
tive torque from the inner disc is dominating over the negative
contribution from the outside which is weakened due to the
common gap.
Migration jumps occur in a variety of models but details such
as the distance or duration of specific sub-processes vary from
model to model. The location where the jump stops is not nec-
essarily at the 4:1 period commensurability for all simulations,
as can be seen for example in Fig. B.1 which also shows period
ratios close to 4.5 and 5. In general, the location can be expected
to be determined by the interplay of N-body dynamics (the res-
onances), gas dynamics, and the rearrangement of gas density
around the outer planet. Migration jumps only happen in the
models in which: migration is directed outward, a vortex forms
outside the common gap, and the disc mass is sufficiently high.

From these observations we can decipher two criteria that
must be met for migration jumps to occur. First, the planet mass
ratio must be such that the pair of planets migrates outwards.
This can be the case when the inner planet is more massive than
the outer one. Second, the disc mass needs to be high enough
to facilitate sufficiently fast outward migration. This migration
speed is needed to allow for the formation of a significantly mas-
sive vortex which in turn leads to large eccentricities of the outer
planet. These large eccentricities are needed for type III rapid
outward migration to be triggered. For insufficiently high disc
masses, the system only migrates outward smoothly and no vor-
tex forms (see also the low-disc-mass results for model PDS70
IRR M/5, Fig. 11).

3.3. Orbit swaps

In addition to migration jumps, some models show other features
as well. For example, the planets in model M9-4.5 swap their
orbits in close succession just before a migration jump (Fig. 3 at
110 kyr). The orbital eccentricities reach very high values during
the swapping process, for example eout = 0.58 in model M9-4.5.
The accreting model, A0.01, also experiences a double swap
(Fig. 7 at 90 kyr). A model with different resolution, model L,
shows a single orbit swap (see Fig. 9). As a consequence, the
inner planet is less massive than the outer one and the migration
direction changes from outward to inward. Just after the single
orbit swap, the outer, more massive planet undergoes a small
migration jump (5 au). The models with self-gravity enabled also
show orbit swaps. Model SG shows a single orbit swap follow-
ing two migration jumps and model SG IRR shows a migration
jump followed by a double orbit swap and a subsequent sin-
gle orbit swap. In each of our non-self-gravitating simulations
where an orbit swap (single or double) happens, a migration
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Fig. 5. Snapshots of the surface density for model M9-3 showing the disc at different times: prior (panels a and b), during (c and d), and after (e
and f) a migration jump. The current orbits of the two planets are marked by the dotted white ellipses and the planetary Hill spheres are indicated
by the small circles. Coordinate labels show the position in au. The snapshots are rotated to have the outer planet fixed on the horizontal axis to the
right of the origin. Time inside the simulation is shown in the upper right corner. The time of a particular snapshot in the time-line of the simulation
can be located on the annotated vertical lines in Fig. 4. For synthetic observations of the snapshots, see Fig. 10.

jump follows after a few more orbits. Events like orbit swaps
have already been observed in the literature, especially in plan-
etary systems with more than two massive planets (e.g. Marzari
et al. 2010; Zhu et al. 2011).

3.4. Vortex outside the gap

During the regular outward migration of the planet pair, an
overdensity is formed just outside the common gap, which is vis-
ible as the banana-shaped high-density structure just beyond the
outer planet in panel b of Fig. 5. This is a sign of vortex for-
mation by embedded planets in discs, which are known to occur
for massive planets and/or low viscosity discs (e.g. Koller et al.
2003; Ataiee et al. 2013). Figure 6 shows a zoomed-in view of
the overdensity and shows the surface density and streamlines
in a system corotating with the overdensity. The eye of the vor-
tex is visible in the upper right quadrant. Vortensity and surface
density are analysed in more detail in Appendix C, where it is
confirmed that the overdensity is indeed a vortex. In all our sim-
ulations in which a migration jump happened we also observed
a vortex forming outside the common gap.

3.5. Accretion onto the star and planets

3.5.1. Planetary accretion

The accretion rates onto the planets and the star are shown
alongside the dynamical evolution of the system in Fig. 7. Mass
accretion onto the planets is turned on when the planets are
released. The accretion rates onto the inner planet and the outer
planet, Ṁin/out, scale approximately linearly with facc, as one
might expect (see Eq. (8)). This behaviour holds during the
inward migration of the outer planet into 2:1 MMR and during
outward migration of the pair as long as the eccentricity of the
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Fig. 6. Zoom-in on panel b of Fig. 5 showing the surface density and
velocity streamlines. The streamlines are computed in a frame coro-
tating with the disc at 59 au. The streamlines are closed in the region
indicated by the black arrow, showing that the overdensity is a vortex.
The orbits of the planets are indicated as the green dotted lines.

outer planet remains below eout = 0.1. Due to the larger relative
size of the inner planet’s Hill sphere (RHill/a ∝ M

1/3

pl ) and its

smaller orbital period, Ṁin is larger than Ṁout. This is because
the mass available for accretion onto the inner planet is sup-
plied via the streamers within the common gap. The accretion
rate is then determined by the ratio between a planet’s region
of influence (RHill) and the length of its orbit (a), that is, by
how much of the mass around its orbit is accessible to it, and
by its orbital frequency, in other words, how often it encoun-
ters these streamers. The larger accretion rate of the inner planet
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Fig. 7. Evolution of accretion rates, migration, and eccentricities for the
models with planetary accretion. Then panels show from top to bottom:
the semi-major axis of both planets, ain/out, the eccentricity of the inner
planet and that of the outer planet, ein/out, planetary mass accretion rate
onto the inner and outer planet, Ṁin/out, and the mass accretion rate onto
the star smoothed with a moving average of length 1.185 kyr, Ṁ∗. The
vertical dashed lines indicate events of interest and are referred to in
Sect. 3.5. Model A0.0 is an alias for model M9-3.

also shows that the outer planet only receives a small fraction of
the gas that otherwise travels through the common gap and does
not starve the accretion of the inner planet. During these qui-
eter times, the models behave very similarly, and independently
of facc, although the facc = 0.1 case shows the same events at a
slightly earlier time.

Around t= 47 kyr (first vertical dashed line in Fig. 7) when
eout rises to values above 0.1, Ṁin/out increases as well. This can
be explained by the following argument. When the outer planet
comes close to the outer gap edge at apastron, it “shovels” disc
material inwards into the common gap (see panel b in Fig. 5
for the emerging structures). Thus, there is more gas available
inside the planets’ Hill spheres to be accreted. This way, outward
migration with pumping of eccentricities can enhance planetary
accretion. Variabilities of Ṁin/out occur on timescales of around
two times the period of the outer orbit. Ṁin follows the same
trends as Ṁout with a delay of around one outer period (∼200 yr)
because of the finite gap-crossing time.

At around t= 50 kyr (second vertical dashed line in Fig. 7),
Ṁin/out reach their highest values prior to the migration jumps
before they decrease when eout relaxes to lower values. During
the smooth phase of outward migration, Ṁin/out can be increased
by a factor of 10–20 compared to inward migration.

Just before the onset of a migration jump (third verti-
cal dashed line in Fig. 7), eout and Ṁin/out rise again. Models
A0.0001, A0.001, and A0.1 show a migration jump soon after,
at around t∼ 66 kyr. During the jump (fourth vertical dashed line
in Fig. 7), Ṁout is comparable to Ṁin because the outer planet
moves through the disc and has a higher density of gas inside its
Hill sphere. Ṁin also rises as significant amounts of gas are scat-
tered inward during the jump. This can result in a 50–100 fold
increase compared to the values during inward migration.

A notable exception to the described behaviour is model
A0.01. There, the first migration jump fails, which gives rise to
another distinct behaviour. Similar to the other models, the outer
planet increases the mass flow through the gap by “shovelling”
gas into it. However, unlike the other models, it does not embark
on a jump and continues to supply material to the inner planet.
This causes the gas density of the inner planets Hill sphere to rise
and Ṁin to rise tenfold, matching the rates of the A0.1 model. At
t= 91.7 kyr (fifth vertical dashed line in Fig. 7), Ṁout on A0.01
also matches the values of A0.1, where it finally embarks on a
jump and its eccentricity has risen to eout = 0.2.

Figure 8 shows the time evolution of the mass accreted onto
the planets and the star and the total disk mass. Depending on
the efficiency of planetary accretion, facc, the changes in planet
mass can be substantial, as seen in the first two panels. The most
extreme case is the outer planet of model A0.1 which has almost
doubled its mass at the end of the simulation.

3.5.2. Stellar accretion

Mass accretion onto the star, Ṁ∗, is calculated by summing
the mass that leaves the inner boundary over the output inter-
val of 11.8 yr. It does not show a dependence on the efficiency
of planetary accretion, facc. The mass lost through the inner
boundary is not added to the primary star because its con-
tribution to the total stellar mass over the time-span of the
simulations would be smaller than 1% (see third panel of Fig. 8)
and can be neglected. For a theoretical estimate of the stellar
mass accretion rate we can use the viscous mass accretion rate
of the unperturbed disc at the inner boundary (≈2 au) which is
Ṁdisc = 3πΣν= 5.3× 10−9 M⊙ yr−1. In the simulations, the mass
accretion rates onto the star through the inner boundary fluctu-
ate between 10−8 and 10−7 M⊙ yr−1. One should keep in mind
that the theoretical estimate does not take into account the pres-
ence of the massive embedded planets, which can be expected
to substantially alter the dynamics of the disc. This discrepancy
could be explained by the inner outflow boundary and changes in
the disc structure. Because there is no pressure support from the
inside, there is a high mass flow in the radial direction. An addi-
tional contribution arises when the disc becomes eccentric in its
inner region. The simulations show gas eccentricities between
0.1 and 0.4 in the inner 10 au of the domain, which are a result
of the gravitational interaction of the planets and the disc. Since
the boundary is perfectly circular by design, any gas that is on an
eccentric orbit which overlaps with the boundary is lost through
the boundary because it cannot reenter, although its orbit would
bring it back into the domain. Therefore, the accretion rate onto
the star, Ṁ∗, can only be seen as an upper limit.

Models VB-P and VB5-P, which employ a viscous boundary
to avoid abnormally high mass flow through the inner bound-
ary, show mass accretion rates at a similar level, with values
around Ṁ∗ ∼ 2× 10−8 M⊙ yr−1 for both choices of vin (β= 1 or
5 in Eq. (3)). This means, that the surface density of the inner
disc must be enhanced compared to the initial condition, which
is indeed the case for simulations showing outward migration.
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the disk mass for the models with planetary accretion. The panels show
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the accreted masses and in stellar masses for the disc mass. The dashed
vertical lines correspond to the ones in Fig. 7.

This result can be taken as an indication that the outflow bound-
ary in our simulations does not strongly overestimate the mass
accretion through the inner boundary. On the contrary, in our
simulations, the stellar accretion rate seems to be determined by
the amount of gas that can be supplied from further out in the
disc.

A special behaviour was observed in model L which exhibits
a single orbit swap, as explained in Sect. 3.3. Because migration
changes from outward to inward in an otherwise unchanged disc,
this model gives us the opportunity to study how Ṁ∗ depends
on the direction of migration and the ordering of the planets.
Figure 9 shows migration and eccentricities of both planets (top
and middle panel) and Ṁ∗ smoothed with a moving average of
length 1.185 kyr (bottom panel) for model L. The small Ṁ∗ at
t= 100 kyr is due to the initialisation phase when the inner disc
is mostly depleted by accretion through the inner boundary. In
the time after planet release, the inner disc recovers parts of
its mass and reaches up to a tenth of its initial value of Σ at
t= 150 kyr and a fourth at t= 250 kyr by mass transfer through
the gap. This is enough to start outward migration. In the 120 kyr
of outward migration leading up to the migration jump, accre-
tion is enhanced to Ṁ∗ ≈ 2× 10−8 M⊙ yr−1 (see bottom panel
of Fig. 9). After the planets swap orbits at 300 kyr, migration
changes its direction to inward and accretion deceases to val-
ues Ṁ∗ < 10−9 M⊙ yr−1. The eccentricity of the massive planet
and the value of Ṁ∗ follow similar trends (see Fig. 9). However,
both values are not proportional which can be seen by compar-
ing the values at 200 and 520 kyr where the eccentricity of the
massive planet is at a value of 0.1, but Ṁ∗ is at least ten times
smaller at the later time. This rules out the possibility that the
increase in Ṁ∗ during outward migration is a result of the out-
flow boundary effect explained in the last paragraph. During the
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Fig. 9. Migration and accretion for model L showing the orbit swap and
how Ṁ∗ depends on the direction of migration. The panels show (top)
semi-major axis, a, (middle) eccentricity, e, and (bottom) migration onto
the star Ṁ∗. The vertical dashed line indicates the time when planets are
allowed to migrate.

event of the orbit swap, there is no abnormally high mass loss of
the disc. The disc mass in the whole domain only changes from
0.145 to 0.14 M⊙ after the planets are released, and so the change
in Ṁ∗ cannot be explained by the disc suddenly loosing most of
its mass. Thus, Ṁ∗ depends on the direction of migration and
it is enhanced for outward-directed migration. The model also
shows that mass can be transported through a common planet
gap at a substantial rate. Summarising the results, we can report
the following findings:

1. Mass accretion through the disc can be sustained even in
the presence of a large common gap carved by a pair of massive
planets.

2. Planetary accretion can be substantially increased when
a pair of planets is migrating outward in 2:1 MMR where the
increase in mass accretion can be 10–20 fold compared to inward
migration.

3. During extreme events like a migration jump, when a
planet travels through previously unperturbed disc regions, the
increase can be even higher with values increased 50–100 fold
compared to inward migration.

4. Migration rates seem not to be affected by the choice of
facc during times of smooth outward migration. However, the
accretion efficiency can change the type of occurring events and
the timing when they happen.

5. Mass accretion rates onto the star seem not to be affected
by the choice of facc.

3.6. Planet ejection

In some models, the planetary system is ejected either during a
first or second migration jump. The outer planet is ejected first
and the inner planet is ejected 2–3 kyr later. The models affected
are VB, VB5, WD, and WDR. All of them use a disc (hydro-
dynamical simulation) centred around the centre of mass of the
star and the two planets and have an inner boundary condition
different from outflow. The affected inner boundary conditions
are the viscous boundary with vin = vvisc and vin = 5vvisc, the
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outflow boundary with an additional wave-damping zone, and
the reflective boundary with an additional wave-damping zone.
We repeated all the affected models with the disc (hydrody-
namical simulation) centred on the primary star (models VB-P,
VB5-P, WD-P, and WDR-P). In the primary frame, no ejection
occurred during the simulation time which was chosen to be at
least 50 kyr longer than the time when the ejection happened in
the corresponding centre-of-mass model.

In all the models, the inner boundary is located at 2.08 au
and the wave damping zone stretches from the inner boundary
to 4.16 au. This comparison shows that the inner boundary can
be crucial for determining the fate of an embedded planetary
system, even if planets are further out at around 50 au.

All ejection occurred in models where the primary star was
moving with respect to the boundary. In the centre-of-mass
frame, the primary moves up to 0.4 au, which is 20% of the inner
boundary radius. This equivalently means that the boundary is
moving 0.4 au relative to the star.

The difference is not only a numerical artefact, but the
physical boundary condition is different for the models in the
centre-of-mass frame compared to the primary frame. Using the
viscous boundary condition in the primary frame for example,
the radial speed at a fixed radius from the star is set to the viscous
speed. This is a physically motivated choice. Since the hydrody-
namical grid is centred on the primary, this boundary condition
can be implemented in a simple way by setting the velocity at
the inner boundary, which is at a constant distance from the star
in all directions. Using the same implementation in a centre-of-
mass frame, as we did in our models, the distance at which the
radial velocity is set to the viscous speed is different depending
on the azimuthal direction and is even varying over time. Thus,
the resulting boundary condition is physically different from the
case of the primary frame and is no longer physically plausible.

In all cases, except the zero-gradient boundary condition
case, the unphysical boundary condition leads to strong pertur-
bations close to the inner boundary, which at some point in time
can no longer be resolved by the hydrodynamical simulations.
In the resulting numerical instability, the perturbations grow
unbound and destroy the disc and coincidently also eject the
planets without any close encounter or instability in the N-body
system.

3.7. Final location of outward migration

Most models were run for a simulation time of 120 kyr. At this
point in time, outward migration did not halt in any of the mod-
els. Some models were integrated for a longer time, such as
for example the M9-3 model in which the outer planet reached
133 au at t= 226 kyr. In this specific case, the outer gap edge is
located at 162 au and the surface density of the outer disc is two
orders of magnitude lower than that of the inner disc. As a result,
the negative torque contribution from the outer disc becomes
diminished and outward migration continues. Our models sug-
gest that, in the scenario studied here, in the case of outward
migration of a pair of planets in a disc of sufficiently high mass,
the final location of the planet pair will be near the outer edge of
the disc.

4. Observability

To evaluate the possibility whether or not the effects of migra-
tion jumps could be observed in real systems we performed
synthetic observations. Though the timescale of the processes
discussed here is quite short, some tens of thousands of years if

we also include the time the structural changes last in the disc
(see panels e and f of Figs. 5 and 10), the synthetic observa-
tions might be applicable to systems in which we directly observe
embedded planets, such as PDS 70. These observations are, after
all, just snapshots in time of the real system. With a disc lifetime
of the order of roughly 1 Myr, the migration jump timescale of
10 kyr amounts to a significant fraction, that is, in the region of
1%. Considering the ever-increasing number of detected (proto-
)planetary systems and the apparent richness in substructure
therein (Andrews et al. 2018), the following synthetic images
might provide an explanation for a subset of future disc obser-
vations. Our synthetic images were produced by calculating the
thermal emission using RADMC3D (Dullemond et al. 2012).
This emission was then postprocessed using the CASA pack-
age (McMullin et al. 2007) to simulate the instrumental effects
produced by ALMA. The resulting synthetic observations of the
M9-3 model are shown in Fig. 10 and can be directly compared
to the plots of surface density in Fig. 5. The simulation snapshots
are the same in the respective panels.

4.1. Radiative transfer model

In order to compute the thermal dust emission for the individ-
ual snapshots of the M9-3 model we convert the gas surface
density profiles into a three-dimensional dust density model
which serves as input for the radiative transfer calculations with
RADMC3D. Please keep in mind that, in principle, dust follows
its own dynamics and is only partially coupled to the gas. Our
synthetic images are therefore only an approximation of what
would be the result of the actual dust distribution taking into
account the proper gas–dust interaction. In the model we employ
eight dust species with a combined dust to gas mass ratio of 10−2.
The dust grain sizes are logarithmically evenly spaced, ranging
from 0.1 µm to 1 mm. The number density size distribution of
the dust grains follows the MRN distribution n(a) ∝ a−3.5, where
a is the grain size.

Dust settling towards the midplane is considered following
the diffusion model of Dubrulle et al. (1995) with dust vertical
scale height:

Hd =

√

α

α + St
H, (9)

where St is the local Stokes number,

St= tstopΩK =
π

2

a ρd

Σ
, (10)

where the grain density ρd = 3.0 g cm−3. We assume a Schmidt
number of one. Furthermore, the aspect ratio is assumed to be
flared with radius, that is, H/r scales as (r/r0)γ where γ is the
flaring index. In all the synthetic images, a flaring index of
γ= 0.25 was chosen.

For the extension in the polar direction, 32 cells are equally
spaced in their angular extent between θlim = π/2± 0.3 resulting
in a maximal spacial extent of zlim = r sin(±0.3). The vertical
disc density profile is assumed to be isothermal and the con-
version from the surface density to the local volume density is
calculated as follows:

ρcell =
Σ

√
2πHd

· erf−1

(

zlim√
2Hd

)

(11)

·
π

2
Hd

[

erf

(

z+√
2Hd

)

− erf

(

z−√
2Hd

)]

z+ − z−
. (12)

A87, page 11 of 20

71



A&A 643, A87 (2020)

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

[a
rc

se
c]

a) b) c)

-100 -50 0 50 100
[au]

-100

-50

0

50

100

[a
u]

d) e) f)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
2.00

I 
[m

Jy
/b

ea
m

]

Fig. 10. Synthetic ALMA observations at 855 µm of the disc in model M9-3 (assuming a distance of 100 pc) at different times: prior (a and b),
during (c and d), and after (e and f ) a migration jump. The panels coincide with the ones in Fig. 5 but they show the intensity from simulated
observations instead of surface density and are zoomed-in to the inner ±100 au of the disc. Coordinate ticks are the same in all panels and values
are given in arcseconds in the top left panel and the corresponding values in au are shown in the bottom left panel. The ellipse in the bottom right
corner of each panel indicates the beam size of 33× 30 mas. The location of the star is indicated by the small cross symbol in the centre. The
current orbits of the two planets are marked by the dotted white ellipses and the planetary Hill spheres are indicated by the small circles.

The error function term is a correction for the limited domain
extent in the vertical direction that would otherwise lead to an
underestimation of the total dust mass. Similarly, the second cor-
rection term accounts for the finite vertical resolution, which
is especially important for thin dust layers with strong settling
towards the midplane. The coordinates z+ and z− are the cell
interface locations in the polar direction along the numerical
grid. For each grain size bin and a wavelength of 855 µm, the
corresponding dust opacities were taken from the dsharp_opac
package which provides the opacities presented in Birnstiel et al.
(2018). These opacities are based on a mixture of water ice, sili-
cate, troilite, and refractory organic material. In the RADMC3D
model, the central star is assumed to have solar properties with
an effective temperature of 6000 K at a distance of 100 pc.
For the thermal Monte-Carlo simulation a number of nphot = 108

photon packages were used, and nphot_scat = 107 photon packages
were used for the image reconstruction. Scattering of photons is
assumed to be isotropic.

As a result of our assumption that gas and dust share the same
spacial distribution, the surface density of dust in the inner disc
is very high. This leads to the formation of a hot dusty wall on
the inside that prevents us from seeing the features in the outer
disc close to the planets. Therefore, we reduce the dust density
for the inner region by a factor of 10−5 in the radiative trans-
fer model. The cutoff radius for this reduction in dust density
is set to 23 au for the first five snapshots in Fig. 10 whereas
this is extended to 26 au in Fig. 10. Since dust is expected to
drift within the inner disc isolated by the two planets, which
leads to a reduction in dust density there, this numerically moti-
vated measure has also some physical foundation. However, full
consideration of the gas–dust interaction would be necessary to

clarify the difference in strength between the effects. Here, the
reduction is a numerical measure to help visualisation.

RADMC3D uses different and arguably more realistic opac-
ities to calculate the dust temperatures compared to the opacities
used in the hydrodynamical simulations, which is why the dust
temperatures are different. Compared to the gas temperature in
the IRR model (Fig. B.2) and depending on the dust grain size,
the resulting dust temperatures are three to five times higher
in the gap region, which is directly illuminated because of the
reduction in dust density of the inner disc, and two to three times
higher in the outer disc close to the gap and approximately the
same value at 100 au.

4.2. Synthetic imaging

We use the task simalma from the CASA-5.6.1 software to simu-
late the detectability of the various features present in the model.
A combination of the antenna configurations alma.cycle5.8
and alma.cycle5.5 was chosen. The simulated observation
time for configuration “8” is 4 h while the more compact
configuration is integrated over a shorter time of 53 min.

A simple auto-cleaning procedure was applied to reduce
the artificial artefacts from the incomplete uv-coverage. In the
scope of this paper the prescription is sufficient for estimating
the observability of the features of interest. Consistent with the
radiative transfer model, the observed wavelength is simulated
to be at 855 µm, corresponding to ALMA band 7. The result-
ing beam size is 33× 30 mas. For model M9-3, the rms noise
intensity ranges from 40 µJy beam−1 to 70 µJy beam−1. The syn-
thetic images are shown in Fig. 10. In the rest of this section,
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Fig. 11. Migration history (as in Fig. 3) for the PDS 70 models. A
migration jump occurs for both equations of state in the case of a high-
surface-density model (PDS70 ISO and PDS70 IRR). The model with
a fifth of the surface density (PDS70 IRR M/5) shows only very mod-
erate outward migration. The left vertical dotted line shows the time
of planet release. The right vertical dotted line shows the time of the
synthetic observations shown in Fig. 12.

we describe the different features that are visible in the synthetic
images. All references are to Fig. 10, unless stating otherwise.

4.3. Features in synthetic images

Our synthetic images show a large inner hole in the disc which
is growing over time. This can appear as a circular hole at some
points in time (panels a and f of Fig. 10) or as an eccentric hole
at other times (panels b–d). As we removed the dust artificially,
the inner hole might actually be partially filled with dust and still
be showing a visible inner disc. Because our cut-off radius is
26 au at maximum, such a system with an inner disc would show
a large gap ranging from about 20 au in size for panel b to around
75 au for the disc in panel f. For an example where only part of
the dust is removed, see the PDS 70 models in Fig. 12.

Our simulations produce a number of non-axisymmetric fea-
tures in the synthetic observations. In the following sections, we
investigate these in more detail. Emission from the location of
the planets is clearly visible in the synthetic observations. Very
localised, point-like features around the planet are visible either
from a single planet (panels a, c, and d) or from both planets
(panels b, e, and f). These emerge because of mass accumu-
lations in the planets’ Hill spheres. During a migration jump
(panels c and d), the outer planet is deeply embedded in the disc,
and so no separate point-like emission is visible from the outer
planet.

The vortex discussed in Sect. 3.4 is also visible in the syn-
thetic images. It appears as a bright region on the right side
of panel b causing a visible non-axisymmetric feature. Depend-
ing on the line-of-sight inclination of the disc and beam size,
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Fig. 12. Synthetic observations of the PDS 70 models. Disc mass
increases from left to right and resolution decreases from top to bottom.
For a lower disc mass, the appearance is smooth and symmetric, show-
ing a large gap. At higher disc mass, azimuthal asymmetries appear and
additional substructures emerge for higher resolution. Left column (a
and c): low-disc-mass model (PDS70 IRR M/5) at t= 70.3 kyr (see ver-
tical line in Fig. 11) and right column (b and d): high-disc-mass model
(PDS70 IRR) at the same point in time. Top row (a and b): gener-
ated with the same angular resolution as Fig. 10 while only the smaller
ALMA antenna configuration was used for the bottom row (c and d),
resulting in a larger beam size. The beam size is indicated in the bottom
right corner of each image.

the asymmetry caused by the vortex can even be enhanced (see
panels b and d of Fig. 12).

When the outer or inner planet gets close to the gap edge,
the outer part of the spiral arm can be visible in the synthetic
images, connecting the planet with the outer disc with a visible
spur. This is the case for panels b, e and f with the outer planet
and panels c and e with the inner planet.

At the time when the planets are released, there is still some
material present in the L4 and L5 points of the outer planet.
This is an artefact of the initialisation process. Although it is
also visible in the synthetic observations (panel a), it does not
constitute a realistically observable feature but rather an artefact
of the initialisation and the assumption that dust and gas share
the same spacial distribution. However, when the outer planet
migrates back in during a migration jump, a substantial amount
of material survives as a mass accumulation in Lagrangian point
L5 (trailing the planet). The accumulation is clearly visible in
panel e. This feature can persist for more than 20 kyr as shown
by its presence in panel f.

During times of high mass transfer through the common gap,
surface density in the spiral arms in enhanced. Panels b, c, and
e show clear signs of spiral arms even in the synthetic images.
The spiral arms of both planets are periodically cut off by the
passing of the other planet and locally merge with parts of other
spiral arms. This causes additional arc-like features such as the
ones in panels b and e.

Another arc-like feature can be produced during the migra-
tion jump. Panels c and d show a void behind the planet in the
lower right quadrant at a radius of approximately 75 au. These
voids are 30 deg (panel c) to 60 deg (panel d) in width in the
azimuthal direction and are caused by the gap being carved into
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the previously unperturbed disc during rapid outward migration
(Pepliński et al. 2008).

Just after the migration jump (panel e), multiple substruc-
tures can be seen inside the orbits of the planets. This shows that
more than one of the features presented above can exist in a disc
at the same time.

5. Modelling of a real system: PDS 70

PDS 70a is a 5.4± 1.0 Myr-old K7-type star with a mass
of 0.76± 0.02 M⊙ and luminosity outflow L∗ = 0.35± 0.09 L⊙
(Müller et al. 2018). It is at a distance of 113.43± 0.52 pc (Gaia
Collaboration 2018). Recently, it was found to host two giant
planets, PDS 70b and PDS 70c, which were observed via direct
imaging. Their orbits are close to a 2:1 MMR with distances
of about ab = 20.6± 1.2 au and ac = 34.5± 2 au (Keppler et al.
2018; Haffert et al. 2019). The inner planet is believed to be
more massive than the outer one while their mass estimates
are still uncertain at Mb = 5−14 MJup (Keppler et al. 2018) and
Mc = 4−12 MJup (Haffert et al. 2019). These masses were esti-
mated by comparing photometry of the sources to synthetic
colours from planet evolution models.

Recently, Bae et al. (2019) showed that ALMA dust contin-
uum observations at 890 µm can be convincingly reproduced by
a pair of outward migrating planets. These latter authors per-
formed 2D locally isothermal hydrodynamical simulations with
a temperature profile obtained from radiative transfer calcula-
tions and using a stellar mass of 0.85 M⊙ and two planets close
to 2:1 MMR with masses of Mb = 10 MJup and Mc = 2.5 MJup.
They found the system to be stable for 1 Myr while smoothly
migrating outward.

We ran additional simulations to model PDS 70 in order to
test whether migration jumps could occur in that system. The
PDS 70 models differ only slightly from our standard M9-3
setup, that is, the stellar mass is lowered to M∗ = 0.76 M⊙. One
PDS 70 simulation uses the locally isothermal equation of state
(PDS70 ISO), while a second and third one use the ideal equa-
tion of state with irradiation from the star, like the IRR model
above, with stellar luminosity L∗ = 0.35± 0.09 L⊙ (Müller et al.
2018). The first two models use the standard Σ(r) profile (PDS70
ISO, PDS70 IRR) and the last one has a five-times-smaller Σ
(PDS70 IRR M/5). All three models were integrated for 100 kr
and are included in Table 1. Our models have a higher surface
density compared to the ones in Bae et al. (2019). At a distance of
40 au this amounts to Σ= 11.6 g cm−2 and Σ= 2.4 g cm−2 (PDS
70 IRR M/5) in our models compared to their Σ= 1 g cm−2.

5.1. Dynamical results

Figure 11 shows the dynamical outcome of the PDS 70 models.
The model with a lighter disc (PDS70 IRR M/5) shows no spe-
cial events. The inner planet migrates outward very slowly while
the outer planet migrates inward until the system is locked into
2:1 MMR around t ≈ 80 kyr (54 kyr after planet release). The
system then migrates slowly outward together, maintaining the
2:1 resonance. The inner planet moves less than 0.5 au over the
remaining 20 kyr.

Both models with high Σ show one migration jump until the
end of the simulation at 100 kyr. The outer planet first migrates
inward for approximately 10 kyr until the planets lock in 2:1
MMR. Rapid outward migration then starts in both cases leading
up to a migration jump 30 kyr later.

In the PDS70 ISO case, the outer planet travels 10 au during
that time and a migration jump takes it out to nearly 70 au with

a period commensurability of Pout/Pin ≈ 4. During the 16 kyr
duration of the migration jump, the inner planet travels out by
5 au, because the negative torque contribution from the outside
is missing. Due to the fast outward migration of the inner planet,
when the outer planet migrates back in from the jump, the loca-
tion of the 2:1 MMR is much further out. When the system goes
back into 2:1 MMR, the outer planet is at 60 au from which point
outward migration continues.

The sibling simulation with a more realistic equation of
state and irradiation from the star (PDS70 IRR) shows simi-
lar, though less extreme effects. The outer planet travels out by
4 au following the point at which the planets become locked
into resonance 30 kyr before the migration jump is about to
happen. The smaller migration jump moves the outer planet fur-
ther out by 6–46 au, where it has a period commensurability of
Pout/Pin ≈ 2.75. Again, the migration jump takes around 16 kyr,
but the inner planet only migrates approximately 1 au during that
time. Thus the location of 2:1 MMR for the outer planet is further
in, at 44 au, to where it migrates back over a time-span of 6 kyr
(instead of jumping back) until it locks into 2:1 MMR again. The
different stopping location of the jump between models PDS70
and PDS70 IRR does not seem to stem from a difference in
aspect ratio. Indeed, the aspect ratio in model PDS70 IRR is
nearly identical to the one in model IRR, which is displayed
in Fig. B.2, and is close to 0.05 around 40 au, exactly as in the
locally isothermal model.

Along with the migration jumps, both models with a higher
surface density show the formation of a vortex outside the gap
already when the planets lock into 2:1 MMR. In the PDS70 IRR
model, the vortex survives the small migration jump and lives on
until the end of the simulation. In the PDS70 ISO model, it lives
until the migration jump when it is disrupted by the outer planet
and does not form again during the simulation time.

5.2. Synthetic images

Similarly to the model outcomes presented in Sects. 4.1 and 4.2,
the outcomes of the PDS 70 models are post-processed in order
to allow a comparison to the observed system. A modification
of the procedure was made regarding the temperature and radius
of the central star which have been set to 3972 K and 1.26 R⊙,
respectively (Keppler et al. 2018). The mass of the inner disc was
reduced by a factor of 10−2 instead of 10−5 to keep some emis-
sion from the inner disc which can be seen in the observation
(Keppler et al. 2019). We additionally apply an inclination angle
of 51.7 degrees and a position angle of 156.7 degrees.

Figure 12 shows the synthetic observations of the model
PDS70 IRR (panels b and d) and the model with lower disc
mass PDS70 IRR M/5 (panels a and c), where the syn-
thetic observations are calculated using two different ALMA
antenna configurations. The first configuration (panels a and b) is
unchanged from the one in Sect. 4.2. The second configuration
(panels c and d) only uses the smaller alma.cycle5.5 antenna
configuration which results in a larger beam size.

Because the inner disc is more massive in gas, our assump-
tion of a gas to dust ratio of 100 results in a very bright inner disc
for higher disc masses. For each configuration, the colour scale
is chosen such that its maximum value is the maximum intensity
from the low-disc-mass models (panels a and c). This is done to
make the outer parts of the disc visible in both models on the
same colour scale.

The low-mass disc at high resolution (panel a) shows a hole
in the inner disc. This is due to the inner hole of the compu-
tational domain. In the high-disc-mass case (panel b) this is no
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longer visible due to the selection of the maximum value for the
colour scale. For the smaller ALMA configuration with larger
beam size (panels c and d), the hole is simply smeared out.

There is a clear difference between the model PDS70 IRR
M/5 with lower disc mass and smooth outward migration (pan-
els a and c) and model PDS70 IRR with higher disc mass and
a migration jump (panels b and d). The low-disc-mass model
(panels a and c) qualitatively reproduces the dust continuum
observations presented in Keppler et al. (2019) showing the
dust ring at a large distance from the star and a clearly visible
and wide gap. Here, the location of the dust ring is closer in
compared to the observations.

For a higher disc mass, the ring becomes azimuthally asym-
metric with the right side being pronounced due to the existence
of a vortex. At lower resolution (panel d), only the brighter right
side is visible. At higher resolution (panel b), additional sub-
structure is visible in the disc; for example the spur feature is
visible to the right of the centre. Also clearly visible is an arc-like
feature in the gap in the bottom left quadrant. The arc is located
closer to the centre of the gap and emerges because the spiral
arm of the inner planet is enhanced in density at that point in
time. During the previous orbits, the outer planet came close to
the outer gap edge on its eccentric orbit which results in a higher
mass flow across its orbit. This higher mass flow across the orbit
of the outer planet subsequently leads to higher densities in the
spiral arm of the inner planet. Therefore, the arc is a result of the
dynamic nature of the system with its high eccentricities.

6. Discussion

In this section, we discuss the implications of our findings, put
them into context, and discuss their limitations. Results are dis-
cussed in reverse chronological order starting with our PDS 70
models (Sect. 6.1) and followed by the synthetic observations
(Sect. 6.2), their implications (Sect. 6.3), and migration jumps
(Sect. 6.4). We then go on to discuss simulation aspects such as
the role of the inner boundary condition (Sect. 6.5) and choices
concerning the equation of state and self-gravity (Sect. 6.6). We
conclude by discussing the implications of our findings for tran-
sition discs (Sect. 6.7) and directly imaged systems of planets at
large distances from their host stars (Sect. 6.8).

6.1. PDS 70

Our synthetic observations of the PDS 70 system show a dust
ring at slightly smaller radii compared to Keppler et al. (2019). If
we had simulated the system for a longer time, the pair of planets
would have migrated further out also pushing the location of the
ring further out. This way the synthetic models could be fine-
tuned to match the actual observations.

In the case of PDS 70, our results suggest that no migra-
tion jump is happening in the system at this moment in time.
This is likely due to the disc mass being lower than needed for
migration jumps to happen, as the comparison between mod-
els PDS70 IRR and PDS70 IRR M/5 shows. Following this
line of thought, our results might be used to put an upper limit
on the disc mass. The disc mass must be lower than the one
in model PDS70 IRR, Mdisc = 0.048 M⊙, at the time when the
migration jump happens. We note that for simulations, the disc
mass depends on the extent of the domain and the numbers
quoted here refer to a disc with the inner and outer radius of
our models, rin = 2.08 au and rout = 208 au. Scaled with a power-
law profile as in Eq. (1), this corresponds to a surface density

of Σ= 8.24 g cm−2 at 40 au which is in agreement with the
Σ ≈ 1 g cm−2 at 40 au which has been used in models of PDS70
before (Keppler et al. 2018, 2019). Another upper bound could be
obtained by verifying the non-existence of features due to grav-
itational instability such as fragmentation which would require
even more massive discs. Our threshold is lower than this self-
gravity-induced upper bound because our discs have a Σ which
is lower than the value required for fragmentation. The Toomre
Q parameter is larger than 1 at any location and time. The upper
bound could likely be improved by performing a parameter study
which is out of the reach of this work.

Given the age of PDS 70, namely 5.4± 1.0 Myr, it cannot
be ruled out that a migration jump happened at earlier times,
and that the system relaxed back into a quieter state as the disc
dispersed due to effects like photoevaporation or magnetically
driven disc winds (Rodenkirch et al. 2020). Long-term simula-
tions including disc dispersal effects would be required to answer
this question.

In our synthetic images, we also observe the spur at the
outer gap edge reported by Keppler et al. (2018, 2019) which has
already been reproduced using a similar model to ours (Bae et al.
2019). Such a feature also appeared in our generic models (see
Fig. 10 panels b, e, and f), suggesting that this kind of feature can
generally appear for an outward migrating pair of planets.

6.2. Synthetic observations and dust treatment

In Sect. 4.2, we model dust emission by assuming a uniform
dust-to-gas mass ratio of 10−2. Thus, we use gas dynamics as
a proxy for dust dynamics. As a result, effects like dust drift,
dust size filtration, and dust diffusion (Weber et al. 2018), which
are probably at play in a protoplanetary disc, are not considered.
The inclusion of a proper dust treatment might therefore change
the appearance of some features in the synthetic images.

Nonetheless, similar features have been observed to also
emerge when dust is handled properly. A dust ring growing in
size because of outward migration of a pair of massive planets
was reported by Marzari et al. (2019) for a close-in (inside 10 au)
Jupiter–Saturn pair in a massive disc (Σ0(10 au)= 75 g cm−2 ver-
sus Σ0(10 au) ≈ 46 g cm−2 here) and by Bae et al. (2019) for a
model of the PDS 70 system with 10 and 2.5 MJup planets in a
lighter disc (Σ0(10 au) ≈ 9 g cm−2). The latter study also found
the PDS 70 spur feature (Keppler et al. 2019; Bae et al. 2019),
supporting the idea that similar features also appear with proper
dust treatment. However, to judge how dust dynamics influences
the features found in our synthetic observations, simulations
including dust treatment are needed. We plan to investigate this
in a follow-up study.

We want to highlight that multiple distinct observational fea-
tures can be created by the same planetary system at different
points in time if the system exhibits sufficiently strong dynamic
effects such as a migration jump. Except for the choice of planet
mass ratio, all presented observational features emerged for a
disc with standard parameters without the need of fine-tuning.

6.3. Observational signposts for dynamic effects

For our PDS 70 models (see Sect. 5), we observed non-
axisymmetric features in the higher disc mass model. The higher
surface density caused faster outward migration and thus a
higher mass flow through the common gap. The first effect was
the appearance of a vortex, visible as asymmetry in the intensity
distribution (Figs. 12 b and d). The second effect was an arc-like
feature in the gap region caused by an enhancement of density in
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the spiral arm of the inner planet. Together with the spur feature
discussed above, if detected in real observations, these features
might hint at outward migration and enhanced mass flow through
the gap region.

Contrasting the smooth synthetic observations of our low-
mass PDS 70 model, or the model by Bae et al. (2019) in which
the planetary system undergoes smooth and slow outward migra-
tion, with our synthetic observations in Fig. 10, we can identify
which features could be “signposts” for strong dynamical effects
like migration jumps. We can identify these potential signposts
as very eccentric holes or gaps, vortices, arc-shaped voids, mass
accumulations in Lagrangian points, and visible spiral arms. The
latter two might be the easiest to discover in real observations
because they are located in the gap region where the surrounding
emission is weak. Indeed, similar features such as an arc inside
a gap have already been observed, for example in the disc of
HD 163296 (Isella et al. 2018). Fast outward migration of a single
planet might lead to comparable observational signatures such as
arc-shaped voids behind the planet (Pepliński et al. 2008). There-
fore, only the combination of one of the signposts listed above
with a large gap will provide a strong indication for a migration
jump.

Our simulations show that a higher disc mass facilitates
stronger planetary system dynamics. Thus, by pointing toward
strong dynamic effects, these signposts might indirectly hint at a
high gas mass.

6.4. Migration jumps

Migration jumps are introduced in Sect. 3.2. To our knowledge,
we are the first to name, describe, and analyse this dynamical
process in detail. We observed migration jumps for different res-
olutions (Appendix A), for different choices of equation of state
and treatments of the energy equation (Sect. 5 and Appendix B),
for different domain sizes (models L and L M/2), independent of
accretion onto the planet (Sect. 3.5), for different choices of inner
boundary conditions (models VB* and WD*), and for models
with and without self-gravity (models SG and SG IRR). These
tests reinforce our confidence that migration jumps are indeed a
physical effect.

There is at least one example in the literature where migra-
tion jumps appeared in simulations. Figure 1 of Chametla et al.
(2020) shows two migration jumps in their model 7b in which
a Jupiter–Saturn pair (mass ratio 3:1) is migrating outwards in
3:2 MMR and experiences two small migration jumps between
5 and 8 au. This indicates that migration jumps can also happen
for other types of MMRs, at smaller radii, and for planet masses
down to a Jupiter–Saturn-sized pair. A natural question to ask
refers to why migration jumps were not found before, in studies
like Marzari et al. (2019) or Bae et al. (2019), for example.

For the case of Marzari et al. (2019), we repeated similar sim-
ulations with different boundary conditions and the domain size
from 0.5 to 15 au. We found smooth outward migration at similar
rates. In these simulations, the surface density, Σ, is about twice
as high as in our model M9-3. The non-appearance of a migra-
tion jump is likely due to the non-existence of a vortex in these
simulations. This is probably due to the smaller outer radius and
the wave damping zone close to the outer boundary which pre-
vents the formation of a vortex at the location where we would
expect it by scaling down the location from our simulations.
This suggests that vortices are important for the mechanism of
migration jumps.

In the case of Bae et al. (2019), the non-appearance of migra-
tion jumps is very likely due to the lower value of Σ, which is

comparable to that of our model M9-3 M/10 which also does
not show a migration jump.

Migration jumps could have profound effects for planetary
systems. During the jump, dust can be gravitationally scattered
by the planets which might be a way to redistribute dust trapped
in a pressure maximum and possibly even dust trapped in the
vortex. We plan to perform simulations with embedded dust to
explore these hypotheses.

A jump might also have significant effects for the accretion
process as shown in Sect. 3.5. Mass accretion rates onto the plan-
ets can be enhanced by two orders of magnitude by moving the
outer planet to regions outside the planet gap where the surface
density is high. This in turn also increases the mass accretion
onto the inner planet. Together this might provide a mechanism
by which massive planets can accrete mass more efficiently by
tapping into mass reservoirs far away from their initial orbit.

In our view, migration jumps are a composite phenomenon in
which resonant outward migration via the Masset & Snellgrove
(2001) mechanism, the interaction of a planet with a vortex, and
the subsequently triggered type III rapid outward migration are
combined to give rise to an emerging effect.

6.5. Planet ejections and internal boundary condition

Planet ejections occurred in models where an inner boundary
different from outflow was used in combination with a disc
centred in the centre of mass of the N-body system due to a
numerical instability (Sect. 3.6). Our results suggest that if a vis-
cous boundary, a reflective boundary, or wave-damping zones
are used, the hydrodynamical simulation should be centred on
the primary star. It might also be possible to adjust the bound-
ary condition to follow the moving star in the other case, but we
did not implement this more complicated feature. Such a depen-
dence of the dynamical behaviour of planets on the treatment of
the inner boundary, which lies well inside the actual realm of
the planets, has been observed in other simulations of embedded
planets, for example for the system GJ 876 (Crida et al. 2008;
Cimerman et al. 2018). The outflow boundary condition seems
to give more freedom to the inner disc by allowing a moving
inner disc edge. Indeed, this boundary condition is also a good
choice to simulate eccentric discs around binary stars (Thun &
Kley 2018).

6.6. Equation of state and self-gravity

Recent studies have shown that radiative effects can play an
important role for the spiral arm and gap structure in the case
of low-mass planets where radiative effects cause significant
changes compared to a purely locally isothermal assumption
(Ziampras et al. 2020). In our case, we see a qualitatively
similar behaviour for locally isothermal simulations and simula-
tions considering radiative effects (see Appendix B). However,
the size of migration jumps and the rate of outward migra-
tion depend on the inclusion of radiative effects in our PDS 70
models (Sect. 11). The appearance of migration jumps for both
radiative and locally isothermal models hints at the dynamic
nature of the process. Migration jumps are likely dominated
by resonant N-body interactions pumping eccentricities and the
interaction with the vortex formed outside the gap.

For reasons of simplicity and runtime, we neglected self-
gravity in most of our simulations. Judging by the value of the
Toomre Q parameter which stays above 1 at all times, the disc is
not prone to fragmentation. However, other processes might be
slightly altered when self-gravity is taken into account. Firstly,
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self-gravity might play a role in the migration of massive plan-
ets as is the case for low-mass planets (Ataiee & Kley 2020).
Secondly, in our simulations, the occurrence of migration jumps
coincides with the existence of a vortex. When self-gravity is
considered, vortices will weaken and can stretch out even for
low-mass discs as long as the Toomre Q parameter is lower than
50 or h Q . π

2
(Lovelace & Hohlfeld 2013; Regály & Vorobyov

2017; Zhu & Baruteau 2016). Both conditions are fulfilled in the
standard M9-3 model with Q ≈ 6 and h Q ≈ 0.3 for the initial
profile at the location of the vortex.

Models SG and SG IRR with self-gravity enabled indeed
show that there is no disc fragmentation, but stretching of the
vortex. Hence, our finding that migration jumps still occur with
self-gravity considered is one more indication that they are
indeed a physical phenomenon.

6.7. Mass accretion and Type II transition discs

In all our models, mass accretion onto the star, as measured
by the mass flow rate through the inner boundary, was higher
(10−8 to 10−7 M⊙ yr−1) than the viscous mass accretion rate of
the unperturbed disc (<10−8 M⊙ yr−1). The inner disc was build-
ing up mass over time in these models, showing higher surface
densities compared to the initial profile. We suspect that mass
transfer through the gap is enhanced by the “shoveling” mecha-
nism (Sect. 3.5). As the outer planet comes close to the outer gap
edge at apastron on its eccentric orbit, it scatters mass inwards.
Additionally, outward migration must necessarily enhance mass
flow through the gap. When the planets migrate outward, they
gain angular momentum. Because angular momentum is con-
served, the angular momentum gained by the planets has to be
extracted from the gas requiring that some gas has to move from
outside the gap (outside the planetary orbits) to inside the gap
(inside the planetary orbits) to supply the angular momentum.
This mechanism of shovelling matter from outside in is after all
the basic mechanism behind the Masset–Snellgrove mechanism
of outward migration, as the material crossing the joint gap is
collected in the inner disc which generates the positive torque
to drive the planets outward (Masset & Snellgrove 2001). Our
models serve to quantify this process in more detail.

A particularly clear example of this mechanism is model L
for which we reported the dependency of mass accretion through
the gap on the direction of migration in Sect. 3.5. There, mass
flow through the gap is present during both in- and outward
migration but is strongly enhanced for the outward case. This
means that the common gap formed by the planets is not an
impermeable barrier for mass accretion. Model L illustrates that
mass flow through the gap is possible for both directions of
migration and that it can be enhanced by over one order of
magnitude in the case of outward migration.

The large gap in dust emission reported in Sects. 4 and 5
(see also Marzari et al. 2019; Bae et al. 2019) together with an
enhanced stellar mass accretion make outwardly migrating pairs
of planets prime candidates for a consistent explanation of Type
II transition discs (Owen & Clarke 2012) which feature large
gaps or holes and high accretion rates at the same time.

6.8. Directly imaged planets at large distances

There are several examples of giant planets observed at large
distances from their host star. At such large distances, in situ
formation by gravitational instability is challenging (Zhu et al.
2012). Assuming they formed further in, it is still challenging
to explain how they moved outwards over long distances, even

though models based on the smooth outward resonant migra-
tion have been invoked to explain such systems (Pepliński et al.
2008; Crida et al. 2009; Kimmig et al. 2020). The advantage of
our migration jumps is the very short timescale on which they
occur and the large radial range covered.

PDS 70 is one example, with the outer planet located at
35.5± 2 au (Haffert et al. 2019), for which outward migration
seems a promising scenario, as a comparison with our sim-
ulations shows. In our simulations, the outer planet reaches
distances from its host star of up to 133 au after 226 kyr, provid-
ing an explanation of how planets can reach such large distances
from their host after being formed further inside. The actual pro-
cess is likely a balance between speed of migration and dispersal
of the disc, allowing for a range of final locations.

HR 8799 is another famous example of a directly observed
planetary system that features a chain of four planets which
might be in 8:4:2:1 resonance (Marois et al. 2010; Goździewski
& Migaszewski 2014). There, the outer planet HR 8799 b is
located around 70 au (Wang et al. 2018). It is unclear whether
or not outward migration in resonance can also produce such an
intricate system, yet formation of the planets closer to the star
followed by outward migration should be considered as a forma-
tion scenario. More extended simulations with more planets are
needed to elucidate this problem.

7. Summary

We studied the dynamical evolution of a system of two massive
planets (in a mass range of 3–9 MJup) embedded in a proto-
planetary disc using two-dimensional, viscous hydrodynamical
simulations carried out with the FARGO code. The planets were
treated as smoothed point masses that in some simulations were
allowed to accrete mass which was added to their dynamical
mass. For the disc, we assumed either a locally isothermal equa-
tion or a more realistic situation where we solved for an energy
equation that included viscous heating, radiative cooling, and
stellar irradiation.

Concerning the migration of the planets, we found two dif-
ferent basic behaviours depending on the mass order of the two
planets. In the case of a more massive outer planet, the planets
migrate inward engaged in 2:1 MMR. For a more massive inner
planet with mass ratios of 2:1 or 3:1, we find outward migration
of both planets, again engaged in a 2:1 MMR. As found before,
this resonant migration process, originally described by Masset
& Snellgrove (2001) for the Jupiter–Saturn system, can lead to a
resonant outward migration in 2:1 MMR in the case of massive
planets (Pepliński et al. 2008; Crida et al. 2009).

The new feature that we discovered is an occurrence of what
we call a “migration jump”. A migration jump is a composite
phenomenon in which outward migration in resonance and inter-
action with a vortex cause conditions such that type III rapid
outward migration is triggered. The outer (lighter) planet cov-
ers a large radial distance on a very short timescale, for example
from 40 to 72 au in only 5000 yr; see Fig. 4. The phase of outward
migration is usually followed by a phase of inward migration
back into the initial resonant configuration. Migration jumps are
a generic, robust feature of our models. They occur for differ-
ent equations of state and accretion rates onto the planet, with or
without self-gravity, and for different resolutions, as long as the
surface density of the disc is sufficiently high.

In addition to the dynamical behaviour of the embedded
planets, we monitored the mass accretion onto the central star,
as this is a standard observable feature in transition discs (Owen
2016). For our models we find that during the smooth outward
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migration phase of the resonantly locked planet pair the accre-
tion rate is significantly higher than in the situation when the
outer planet has a higher mass and the planets migrate inward.
During the outward migration phases the planetary system gains
angular momentum which is lost by the disc. As a consequence,
the disc material moves inwards and is “shovelled” towards the
star by the pair of planets. This increases the mass flow rate onto
the star by more than one order of magnitude, much higher than
in the regular phases of smooth inward migration. This effect can
be even more enhanced during the short phase of a migration
jump; see Figs. 7 and 9. A combination of outward migration
and high stellar mass accretion, as found in our models, could
serve as a consistent explanation for the phenomenon of Type
II transition discs with large inner holes and nevertheless high
stellar accretion rates (Owen & Clarke 2012).

Using the outcome of our hydrodynamical models, we cal-
culated synthetic images that show a surprising variety of non-
axisymmetric features appearing over time in a single system;
see Fig. 10. Depending on their dynamical state, a bright ring
just beyond the planets was seen, followed by vortex structures,
and then additional structures in the main gap created by the
planets. These initial images were based on a constant dust-to-
gas ratio and for more realistic cases the dust dynamics will
have to be followed simultaneously to the gas dynamics. Nev-
ertheless, the initial models provide insight into the possible
observational effects generated by the planets. In our study, we
also included models with parameters reminiscent of the system
PDS 70, which contains two massive embedded planets. From
our synthetic images for this system we may conclude that it
does not currently undergo a migration jump but might very
well be in a phase of outward migration, compatible with Bae
et al. (2019). The non-occurrence of the signposts of a migration
jump indicates a disc mass lower than Mdisc < 0.048 M⊙ for a
disc extending out to 200 au which serves an independent upper
bound compatible with radiative transfer models reproducing the
observations of the system (Keppler et al. 2018, 2019). A more
detailed comparison between simulations and observations will
have to consider dust embedded in the disc. From our models
we can finally conclude that Type II transition discs with large
inner holes but significant stellar accretion are indeed signposts
for highly dynamic embedded planetary systems.
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Appendix A: Convergence with resolution
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Fig. A.1. Migration history of models with standard, double (DR), and
half (HR) 2D resolution to test convergence with spacial resolution. The
panels show, from top to bottom, evolution of the semi-major axis of the
outer planet, same for the inner planet, their eccentricities (middle and
following panel), and their period ratio.

To test convergence of the simulations with respect to spatial
resolution, we ran a model with the 2D resolution lowered and
increased by a factor of two, i.e. in each direction the resolu-
tion is changed by a factor of

√
2. Model M9-3 HR has Nr ×

Nφ = (426, 580) and model M9-3 DR has Nr ×Nφ = 851× 1161
cells. They are otherwise identical to the M9-3 model which has
Nr ×Nφ = 602× 821 cells.

A comparison of the planet migration for the three cases is
shown in Fig. A.1. The overall qualitative behaviour is the same;
the most noticeable difference is the time at which the migration
jump occurs. For the first jump, this is only slightly different.
Since the changes are small, we conclude that the simulations are
converged with respect to resolution. In fact, the lower resolution
is already sufficient to resolve the dynamics.

Appendix B: Dependence on equation of state

Using the locally isothermal equation of state is a valid approxi-
mation in the case of low optical thickness and negligible viscous
heating compared to stellar irradiation. For the outer disc region,
in which the planets in our simulations are located, this should
be well justified. To test the assumption, we ran additional simu-
lations where the energy equation is solved and viscous heating
and cooling from the disc surfaces are included as in Müller &
Kley (2012), and irradiation from the star is treated analogously
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Fig. B.1. Comparison of the migration history of the standard M9-3
model and the more realistic and radiative model IRR and the model
FLARE. Panels as in Fig. A.1.

to Ziampras et al. (2020) with their choices of parameters. Addi-
tionally, we repeated the standard M9-3 with a radial temperature
profile that is set by stellar irradiation, which resembles the tem-
perature profile in model IRR very well resulting in a flared disc
(see Fig. B.2 below).

Figure B.1 shows a comparison of the migration history
between the reference model M9-3 and the irradiation model
IRR. Although the outward migration happens with a slower
speed, a migration jump still occurs. Model IRR shows a first
event at around 80 kyr where the eccentricity of the outer planet
suddenly drops from 0.2 down to small values, but only jumps
about 5 au. A second event occurs around 170 kyr where the
outer planet jumps 45 au, comparable to the migration jumps
observed in the M9-3 run. Model FLARE, which employs a
locally isothermal equation of state, first follows the IRR model
but instead of the failed small jump at 80 kyr it undergoes a full
large jump. The comparison shows that, although details such as
the migration rate depend on the aspect ratio profile, migration
jumps appear also for flared discs.

Figure B.2 shows the temperature and aspect ratio profiles
for the three models. Around the region where the planets are
located, the aspect ratios are comparable with values around
0.05. However, at the location where the planet jumps hap-
pens, h has increased to ∼0.07 for the IRR and FLARE models.
This might explain the difference in amplitude and period ratios
during the migration jump. Finally, as there are only small
qualitative differences, we conclude that the locally isothermal
assumption is justified in this case to capture the most important
dynamics.
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Fig. B.2. Temperature (top) and aspect ratio H / r (bottom) for the
standard model M9-3, model IRR and model FLARE at 200 kyr.

Appendix C: Identification of the vortex

During the periods of resonant outward migration, a banana-
shaped overdensity appears just outside the common gap. In this
section, we analyse the snapshot in panel b of Fig. 5 of model
M9-3 in more detail.

Figure C.1 shows the vortensity ω/Σ normalised by its
value from the initial profile. The numerator is the vorticity,
which is defined as the z-component of the curl of the veloc-
ity, ω= (∇× u)z. The orbits of both planets are shown as a dotted
green line and the locations of the planets are indicated by the
green crosses. By dividing the current value of the vortensity by
the initial one at each location, the dependence on the steepness
of the initial density profile and the background vorticity of the
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Fig. C.1. Vortensity normalized by the initial vortensity in r−φ coor-
dinates for a ±100 au zoom-in to panel b of Fig. 5. The overdensity
appears as a region of lower vortensity compared to its surroundings
indicating that it is indeed a vortex. The orbits of the planets are shown
as dotted green lines and the location of each planet is indicated by a
small green cross symbol.

Keplerian disc are factored out. This results in a clear picture of
what happens locally with the velocity field. A vortex in a disc
appears as a region of lower vortensity as compared to its sur-
roundings, due to its anticyclonic nature as seen in Fig. 6. This
clearly identifies the overdensity at 59 au as a vortex.
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ABSTRACT

Context. Several observations of protoplanetary disks reveal non-axisymmetric features, which are often interpreted as vortices.
Numerical modeling has repeatedly shown that gap-opening planets are capable of producing large and long-lasting vortices at their
outer gap edge, making massive planets popular candidates as the source of such features.
Aims. We explore the lifetime of vortices generated by Jupiter-sized planets as a function of the thermal relaxation timescale, the level
of turbulence, and the effect of disk self-gravity.
Methods. We conduct 2D numerical simulations using the hydrodynamics codes PLUTO and FARGO, scanning through several physical
and numerical parameters. Vortex properties are automatically extracted from thousands of simulation snapshots.
Results. We find that vortices that spawn at the outer gap edge can survive for about 100–3000 planetary orbits, with the shortest life-
times occurring for moderately efficient dissipation and cooling. However, we also observe a different regime of long-lasting vortices
with lifetimes of at least 15 000 orbits for very low viscosity and very short thermal relaxation timescales. Disk self-gravity significantly
shortens the lifetime of regular vortices but still allows long-lived ones to survive.
Conclusions. Our results suggest that the cooling timescale plays an important role in vortex formation and lifetime and that planet-
generated vortices should be observable at large distances from the star for typical thermal relaxation timescales and low turbulence
levels.

Key words. protoplanetary disks – planet-disk interactions – hydrodynamics – methods: numerical

1. Introduction

Planets are born and grow in accretion disks around young stars.
This is supported by observations of protoplanets embedded in
a disk of gas and dust captured during their growth phase (e.g.,
Keppler et al. 2018). A protoplanet interacts with the disk around
it in every stage of its growth (Kley & Nelson 2012), for example
via exchange of angular momentum. This results in the launch-
ing of spiral arms (Ogilvie & Lubow 2002); if the planet is
massive enough, the opening of a gap; and, in some cases, the

formation of multiple rings around the planet’s orbit (Rafikov
2002). The number of spirals, gaps, and rings as well as their
contrast scales with the planet mass, such that Jupiter-sized plan-
ets can have a strong impact on their environment in the right
conditions, possibly resulting in multiple ring-like and nonax-
isymmetric observable features (Zhang & Zhu 2020; Miranda
& Rafikov 2020a). This makes the planet–disk interaction sce-
nario a popular interpretation of such features in the numerous
high-fidelity ALMA observations.

One promising scenario to explain observational asymme-
tries is the existence of vortices because they naturally accumu-
late dust at the pressure maxima in their center (see e.g., Marel
et al. 2013; Bae et al. 2016; Pérez et al. 2018; Hammer et al. 2019;
Barge & Sommeria 1996). Among the various ways to form
vortices, the Rossby-wave instability (RWI, Lovelace et al. 1999)
is particularly relevant in the vicinity of gaps. The RWI readily
happens in 2D disks at the outer and inner edge of planet-opened
gaps (Li et al. 2005; De Val-Borro et al. 2007). Additional mech-
anisms that could be relevant in this context are the subcritical
baroclinic instability (SBI, Klahr & Bodenheimer 2003; Lesur
& Papaloizou 2010) and the zombie-vortex instability (ZVI,

Marcus et al. 2015, 2016). Vortices are then susceptible to
viscous spreading as well as secondary instabilities such as
the elliptical instability (Lesur & Papaloizou 2009), which
cause vortex decay. The lifetime of vortices is therefore deter-
mined by a competition between vortex-forming and -decaying
mechanisms.

Aside from possibly causing observable features in the disks,
vortices can also affect planet migration in a stochastic fash-
ion (Regály et al. 2013; Ataiee et al. 2014; McNally et al.
2019) and even cause temporary outward migration (Lega et al.
2021) for otherwise inwardly migrating planets. Understanding
their formation pathways and lifetimes is therefore critical to
the modeling of planet migration using global, low-viscosity
simulations.

In previous numerical studies, vortex properties have been
found to depend on various physical processes such as turbulent
viscosity and disk self-gravity. Lower viscosity allows vortices
to live longer (Godon & Livio 1999; De Val-Borro et al. 2007;
Ataiee et al. 2013; Fu et al. 2014; Regály et al. 2017) whereas
the inclusion of self-gravity tends to weaken vortices, shortening
their lifespan (Lin & Papaloizou 2011; Zhu & Baruteau 2016;
Regály & Vorobyov 2017; Pierens & Lin 2018).

In recent numerical studies, radiative effects have been dis-
covered to have a significant impact on the gap-opening capabil-
ities of planets and therefore the structure of the gaps themselves
(Ziampras et al. 2020b; Miranda & Rafikov 2020b), affecting
the development of the RWI and by extension vortices around
their edge (Tarczay-Nehéz et al. 2020). The aim of the present
study is to investigate the role of radiative effects for proper-
ties of vortices created by planets. More precisely, we explore
how the thermal relaxation timescale of the gas affects the
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lifetime of vortices created during the growth of Jupiter-sized
planets.

The impact of thermal relaxation on vortex formation and
lifetime was studied for nearly inviscid disks by Les & Lin
(2015), and recently Fung & Ono (2021) ran 2D shearing box
simulations of RWI-induced vortices. As their simulations did
not include a planet, the RWI was triggered by an artificial den-
sity bump. These authors described a baroclinic effect that spins
down vortices where the decay is fastest for thermal relaxation
times of the order of a tenth of the vortex turnover time.

We ran a suite of global two-dimensional hydrodynamics
simulations with an embedded Jupiter-sized planet – which nat-
urally creates vortices in the disk – for different choices of
turbulent viscosity and thermal relaxation timescales, among
other physical parameters. The results of these simulations are
then post-processed with our newly developed pipeline for the
detection and characterization of vortices.

In Sect. 2 we describe our physical model and numerical
setup. We present a typical life track of a vortex in our models in
Sect. 3, report the dependence of vortex properties on physical
parameters in Sect. 4, and present the case of long-lived vortices
in Sect. 5. We discuss and comment on our findings in Sect. 6.
Finally, Sect. 7 contains a summary of our main results and our
conclusions.

2. Physics and numerics

In this section, we describe the physical and numerical frame-
work that we used in our simulations. We justify the approxima-
tions in our model, explain in detail the initialization process, and
list technical parameters such as our grid setup and parameter
space.

2.1. Hydrodynamics

We consider a thin disk of neutral, ideal gas with adiabatic
index γ= 7/5 and mean molecular weight µ= 2.353 that is
orbiting around a star with one solar mass M⋆ =M⊙. The two-
dimensional, vertically integrated Navier-Stokes equations in a
polar coordinate system {r, φ} read

∂Σ

∂t
+ u · ∇Σ= − Σ∇ · u, (1a)

Σ
∂u

∂t
+ Σ(u · ∇)u= − ∇p + Σg + ∇ · σ, (1b)

∂(Σε)

∂t
+ u · ∇(Σε)= − γΣε∇ · u + Qvisc + Qrelax, (1c)

where u= (ur, uφ) and ε are the velocity and specific internal
energy of the gas evaluated at the midplane, and Σ is the surface
density. The vertically integrated pressure p is defined through
the ideal gas law p= (γ − 1)Σε=RgΣT/µ, with Rg being the gas
constant and T the gas temperature. The isothermal sound speed

of the gas is then given by cs,iso =
√

p/Σ=
√

RgT/µ and relates
to the adiabatic sound speed cs as cs,iso = cs/

√
γ. For a disk in

Keplerian motion and vertical hydrostatic equilibrium, we can

also write cs,iso =HΩK, where ΩK =

√

GM⋆/r3 is the Keplerian
orbital frequency at radius r and H is the pressure scale height
of the gas.

The viscous stress tensor σ (following Tassoul 1978) appears
in both the momentum Eq. (1b) and the dissipation function:

Qvisc =
1

2νΣ
Tr(σ2)=

1

2νΣ

(

σ2
rr + 2σ2

rφ + σ
2
φφ + σ

2
zz

)

, (2)

where ν=αcsH is the kinematic viscosity parametrized accord-
ing to the α-viscosity model of Shakura & Sunyaev (1973). Here,
α is a parameter that captures both radial angular momentum
transport – that leads to accretion onto the star – and heat-
ing of the disk due to viscous friction. Numerical simulations
of (magneto)hydrodynamical instabilities such as the vertical
shear instability (VSI, Nelson et al. 2013) or the magneto-
rotational instability (MRI, Balbus & Hawley 1991) have pro-
vided numerical estimates of α, while observations of young
stellar objects surrounded by disks have constrained these esti-
mates (Dullemond et al. 2018). To probe a wide range of diffu-
sion regimes from practically inviscid to moderately viscous, we
choose α ∈ {10−6, 10−5, 10−4, 10−3} for our models.

Viscous dissipation leads to the heating of the disk. An
embedded planet can also deposit significant amounts of ther-
mal energy via the dissipation of spiral shocks (Rafikov 2016;
Ziampras et al. 2020a). As a cooling solution, we allow the disk
to relax to a prescribed temperature profile T0 (see, Eq. (5)) over
a relaxation timescale τrelax = β/ΩK (Gammie 2001).

The thermal relaxation term appears as an additional source
term to the energy equation

Qrelax =−Σcv

T − T0

β
ΩK ⇒

∂T

∂t
=−T − T0

τrelax

, (3)

where cv =
Rg

µ(γ−1)
is the heat capacity of the gas at constant

volume. The parameter β controls the relaxation timescale, as
well as the overall planet–disk interaction process (Miranda &
Rafikov 2020b); we choose the values β ∈ {0.01, 1, 100} which
correspond to very fast, moderate, and very slow relaxation.

The gravity of the star and planet are included as a source
term in g. We work in a star-centered coordinate system and
embed a planet with mass Mp at a position rp. Thus, the source
term reads

g= g⋆ + gp + gind

=−GM⋆

r3
r −

GMp

(d2 + ǫ2)3/2
d −

GMp

r3
p

rp, d= r − rp.
(4)

The terms g⋆, gp, and gind denote the acceleration due to the star,
the planet, and the indirect term which is a correction needed
because the star-centered frame is not an inertial frame. As we
are considering fixed, nonmigrating planets, disk feedback on
the star and planet is neglected. The planet’s gravitational pull
(second term in the RHS of Eq. (4)) is smoothed using a Plum-
mer potential with a smoothing length ǫ = 0.6H(r) that captures
the effect of the vertical structure of a more realistic 3D disk
(Müller et al. 2012) and prevents singularities near the location
of the planet.

For simplicity, we do not allow the planet to migrate. We
chose to limit the degrees of freedom in our model to focus on
the dynamics of the vortex and avoid complex and potentially
chaotic interplay between the vortex and the planet (Lega et al.
2021). For the same reason of simplicity, we neglect planetary
accretion in our models.

2.2. Numerics

We use two different codes for our numerical models: PLUTO
4.2 (Mignone et al. 2007), a finite-volume, energy-conserving,
shock-capturing code that treats transport by solving the Rie-
mann problem across the interfaces of adjacent cells in both
directions (r, φ) in an unsplit fashion; and our custom FARGO
(Masset 2000) version, FargoCPT (Rometsch et al. 2020),
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which uses a finite-difference, dimensionally split, second-order
upwind method for gas advection. Both codes utilize the FARGO
method (implemented into PLUTO by Mignone et al. 2012), in
which orbital advection is essentially performed via the Keple-
rian rotation on top of which the code solves for the residual
velocity deviations, significantly relaxing time-step limitations
and reducing numerical dissipation in the process (Masset 2000).

The inherent differences between the two numerical schemes
make it worthwhile to carry out our simulations using both
codes, to verify the robustness of our results, and to test for
numerical convergence. Namely, the strictly energy-conserving
nature of PLUTO and the necessity for artificial viscosity to
stabilize FargoCPT are discussed in more detail in Sect. 6.7,
among others.

2.2.1. Grid setup

Our computational domain spans the full azimuthal extent and
a radial range of r ∈ [0.2, 5.0] rp = [1.04, 26.0] au, with square
cells logarithmically spaced so that the cell aspect ratio is pre-
served. After carrying out a thorough investigation of the effects
of our numerical resolution of the recovery of both radial and
azimuthal features caused by the planet, we decided to exe-
cute our simulations using a resolution of 8 and 16 cells per
scale height (hereafter “cps”) in both directions (r, φ). Because
we use a constant aspect ratio together with a logarithmically
spaced radial grid, the resolution in cps is constant throughout
the domain.

At this resolution, the two codes reach good convergence in
terms of the presence and contrast of features shaped by the
planet and results agree between the codes. This translates to
a fiducial resolution of (Nr,Nφ)= (528, 1024) cells for 8 cps, or
(1056, 2048) cells for 16 cps. In addition, using the same resolu-
tion in both directions in terms of cps ensures that the effects of
numerical viscosity are isotropic (see Appendix A).

2.2.2. Initial and boundary conditions

Our disk is initially axisymmetric and in equilibrium in the radial
direction, such that the initial radial velocity profile results in a
constant accretion rate through the disk. The azimuthal veloc-
ity is close to the Keplerian profile, with the correction due
to the radial pressure gradient. The initial surface density and
temperature profiles are simple power laws such that

Σ0(r)= 222 g cm−2

(

r

rp

)−1/2

, T0(r)= 120.7 K

(

r

rp

)−1

, (5)

with rp = 5.2 au. This temperature profile translates to a disk with
a constant aspect ratio h(r)=H/r= 0.05. While the general con-
sensus is that protoplanetary disks are flared (i.e., the aspect ratio
increases with distance, see e.g., Dullemond 2000), we choose to
use a constant aspect ratio because the behavior and lifetime of
vortices depends on this quantity (Hammer et al. 2021). Thus,
we can isolate the dependence of vortices on the physical and
numerical parameters in our suite of simulations.

The radial and azimuthal velocity components at t= 0 are
then

ur(r)= − 3

2

ν

r
, uφ(r)= rΩK

√
1 − 1.5 h2. (6)

Near the boundaries, within the radial extent r ∈ [0.2, 0.25] ∪
[4.2, 5.0] rp, the surface density and velocity are both damped
to their initial profiles (see Eqs. (5) and (6)) using the method
of De Val-Borro et al. (2006) over a damping timescale of

0.3 periods at the respective boundary. While the radial bound-
ary edges are closed, this minimizes the reflection of spiral
waves back into the computational domain. The boundaries are
periodic in the azimuthal direction.

We then embed a Jupiter-sized planet (Mp = 1 MJ = 10−3M⋆)
in most models, with some simulations instead containing a
less massive planet of Mp = 0.5 MJ. To smoothly introduce the
planet into the disk, we typically allow the planet to grow over
100 orbits at rp using the formula by De Val-Borro et al. (2006).
The importance of the growth timescale and planet mass are
discussed in Sect. 4.

2.3. Vortex detection

We use the gas vortensity

̟=
(∇×u) · ẑ
Σ

, (7)

– where ẑ is the unit vector in the vertical direction – as a proxy to
detect and track the evolution of vortices over hundreds of snap-
shots for every model. As these vortices consist of anticyclonic
motion, the center of a vortex corresponds to a local minimum
in vorticity, ω= (∇×u) · ẑ. Because vortices tend to accumulate
mass towards their center and Σ is enhanced inside the vortex,
the transition from the background flow to the vortex region is
stronger and the vortex is more easily identified in a map of ̟
than in the case of ω alone.

More precisely, we use the gas vortensity normalized by
the background vortensity from the initial conditions, ̟0 =

(∇×uK) · ẑ /Σ0. This eliminates the radial dependence of the
Keplerian velocity and the disk’s surface density and ensures that
our vortex proxy quantity,̟/̟0, is of order unity everywhere in
the disk except for the gap region due to its very low surface den-
sity. The quantity ̟/̟0 usually varies between −1, for strongly
counter-rotating vortices, and 1 for the background flow.

We use our new Python module, Vortector, which extracts
iso-vortensity contours using the computer vision library
OpenCV (Bradski 2000) to detect vortex candidates and then fits
a 2D Gaussian to the vortensity and surface density data. The
FWHM (or 2.355σ) of this Gaussian is used to define the radial
and azimuthal extent of a vortex. Using this method, we also
extract information about the shape of the vortex, including its
radial and azimuthal extent and the mass it encloses. A more
detailed description can be found in Appendix B.

One drawback is that this automated process sometimes pro-
duces detection artifacts, as can be seen for example in Fig. 6
below (top panel, dashed orange line), such that the vortex size
(and therefore its mass) is overestimated near the end of its life-
time as it blends into the disk background. While this effect is
partly counteracted by using a median filter in time, we do not
manually edit the output of the Vortector on a model-by-model
basis.

In the following three sections, we present the results of our
simulations. First, we present a typical example of vortex for-
mation and evolution (Sect. 3). We then go on to describe the
dependence of vortices on physical parameters for the group of
vortices with short and intermediate lifetimes (Sect. 4). Finally,
long-lived and migrating vortices are presented (Sect. 5).

3. Typical life track of a vortex

The Jupiter-sized embedded planet opens a deep gap in all of
our simulations. Figure 1 shows maps of Σ (left) and ̟ (right)
normalized by their initial values at five time-stamps during the
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Fig. 1. Multiple snapshots of the α= 10−5, β= 1, 8 cps model showcasing the vortex merging process during the early stage of gap opening, the
fully grown size of the resulting vortex, and its subsequent decay. The surface density and vortensity contrast compared to their initial profiles is
shown in the left and right panels, respectively. Time is quoted in units of planetary orbits. The horizontal line at r= 1.45 rp serves to highlight the
outward radial movement of those structures as the gap around the planet grows wider. The planet is located at r= 1 rp and φ= 0.

vortex lifetime for a model with α= 10−5, β= 1, and a resolution
of 8 cps performed with the FargoCPT code. Horizontal dotted
lines at r= 1.45 rp are superimposed as a reference marking the
final location of the vortex center. Here, four small-scale vortices
(top row) first merge into two slightly larger vortices (second
row) and then finally into one massive vortex (middle) that will
last for a little over 1100 orbits. The vortex slowly decays over
time, maintaining a large size (fourth row). In the later stages,
the vortex is no longer present (bottom row). The nonaxisym-
metric structure still visible exists due to the planet’s spiral arm
and is corotating with the planet.

Early in the gap-opening process, the outer gap edge grows
Rossby-wave unstable (Lovelace et al. 1999) and several small-
scale vortices form around it (top two rows). Figure 2 shows
radial profiles of the Lovelace parameter, L, (top) and Σ (bot-
tom) at different time-stamps during the vortex formation up
until t= 180 orbits. The Lovelace parameter is defined as

L= S 2/γ

̟
, (8)

with the entropy S = P/Σγ. The development of a maximum in
L is visible, which is one condition for the onset of the RWI.
Vertical lines at the center of the L maxima (as determined by
eye) are added to both panels to guide the eye for a comparison of
the location of the maxima inL and Σ at each time-stamp. TheL
maxima are located on the slope of the gap edge slightly inward
from the Σ maxima and coincide with the location of the small
vortex centers. The maximum in Lmoves outward following the
maximum in Σ as the gap opens. This illustrates that the vortices
form due to the RWI at the slope of the outer gap edge.

In the absence of self-gravity, these small vortices then
quickly merge together (within ∼100 planet orbits) into a sin-
gle large vortex that slowly moves outwards following the gap
edge as the gap deepens and widens (third and fourth rows in
Fig. 1). The surviving vortex then typically decays over ∼200–
2000 orbits. The evolution of three vortex properties is illustrated
in Fig. 3, where we show, from top to bottom, the mass Mvort

enclosed within the FWHM ellipse of the 2D Gaussian fit to
Σ, the location of the center of the vortex rvort and the radial
FWHM width ∆r as the shaded area, and the vortensity at the
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Fig. 2. Evolution of radial Lovelace parameter (see Eq. (8)) and Σ pro-
files during vortex formation over the first 200 orbits of the sample case
from Sect. 3. The vertical lines indicate the center of the plateau in L
(estimated by eye) to guide the eye to the corresponding location of the
Σ profile. L is calculated as the azimuthal average at each radius. The
dotted horizontal line in the bottom panel marks 10% of Σ0, which we
define as the location of the gap edge.
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Fig. 3. Evolution of vortex properties for the showcase simulations
presented in Sect. 3. The panels show, from top to bottom, the mass
enclosed in the FWHM ellipse of the vortex fit Mvort in Jupiter masses,
the radial location of the vortex rvort, and its FWHM ∆r, indicated by
the shaded area, and the ratio between minimum vortensity inside the
vortex and the azimuthal median of vortensity at the radial location of
the vortensity minimum. A dotted vertical line indicates the time when
the planet has reached its final mass. The curves are smoothed with a
median filter that spans over the preceding and following five datapoints
(±50 orbits at rp). The orange parts of the line in the bottom panel show
the evolution of the vortensity prior to the “birth” and after the “death”
of the vortex.

vortex center normalized by the azimuthal median. The vertical
dotted lines indicate the time when the planet reached its full
mass (typically 100 orbits). A short phase of vortex formation
is followed by a slow and steady decay process, as can be seen

in the decrease of mass and radial size. Because the vortensity
contribution of the anticyclonic vortex is negative, an increase in
vortensity indicates a decay as well. The line in the bottom panel
of Fig. 3 is continued (in orange) for another 100 orbits after the
vortex has decayed – according to our criterion presented below
in Sect. 4.1 – in order to illustrate the return of the curve to 1,
which corresponds to an azimuthally symmetric state.

During its lifetime, the vortex can become as large as
∆r= 0.4 rp (2 au for rp = 5.2 au) with a typical vortex aspect ratio
(r∆φ/∆r) of 6-10. Its mass, Mvort, is typically some tenths of MJ

but can be as large as one MJ, with a surface density enhanced
by a factor of up to seven compared to the initial value.

The vortices form around the location where the radial Σ pro-
file reaches 10% of its initial value (see bottom panel of Fig. 2),
which we define as the gap edge in a similar way to Crida et al.
(2006). During their lifetime, most vortices tend to stick to this
gap edge in the sense that their inner boundary, rvort − ∆r/2,
roughly coincides with the location of the gap edge. For some
models, we observe that the vortex detaches from the outer gap
edge after several hundred orbits and starts migrating outward.
These models are discussed in Sect. 5.

4. Dependence of vortex properties on physical

parameters

Having described a typical lifetrack of a vortex in our sim-
ulations, we now present the effects of different physics and
numerics on vortex lifetime, location, and impact on the over-
all disk structure. The model parameters are listed with the main
results in Table C.1.

4.1. Vortex lifetime

We define the vortex lifetime as the time difference between its
“birth” and “death” by analyzing the ratio of ̟ to the azimuthal
median value ˜̟ as a function of time. The normalization with ˜̟
instead of ̟0 is done to eliminate the ̟ evolution of the back-
ground disk due to changes in Σ and radial pressure gradients,
which affect (∇×u) · ẑ by changing the azimuthal velocity.

The “birth” is identified as the time when ̟/ ˜̟ drops from
its initial value of 1 (for an axisymmetric disk) down to lower
values (see bottom panel of Fig. 3). Because̟/ ˜̟ drops already
for small vortices, the lifetime also includes the stage where there
are multiple small vortices (see Sect. 3).

The “death” of the vortex on the other hand is less obvious
to identify. At this stage, ̟/ ˜̟ usually slowly rises back to the
value of the background disk. Usually, there is a “knee” visible
in̟/ ˜̟ at or slightly after the point in time where the vortex dies
and where ̟ approaches the background flow (see the orange
part of the line in the bottom panel of Fig. 3 where ̟/ ˜̟ is
continued for another 100 orbits after the vortex disappeared at
t= 1250 orbits). For some models, this knee is not visible, and we
manually inspect the 2D contour plots of ̟/ ˜̟ and identify the
point after which no further closed iso-value lines (with spac-
ing in ̟/ ˜̟ of 0.05) are present. As an additional measure for
less obvious cases, we analyze the gas streamlines at different
time-stamps.

In our models, the drop in ̟/ ˜̟ happens in a matter of tens
of orbits. A conservative estimate for the uncertainty of this
birth time measurement is 50 planetary orbits. From applying
the manual method to models where the knee exists in the ̟/ ˜̟
curve (implying the death of the vortex), we estimate a con-
servative uncertainty to be 100 planetary orbits. This leaves a
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Fig. 4. Lifetime of vortices as a function of β for 8 cps (left) and 16 cps resolution (right). Colors encode α, and the different symbols denote
the code and the inclusion of self-gravity. The solid lines help guide the eye and connect the lifetime averages between the two codes (without
self-gravity) for each value of α, where the two codes agree sufficiently. For parameters where there is a difference between the codes, dashed and
dotted lines connect to the datapoints of the FargoCPT and PLUTO runs, respectively. A “7→” next to a symbol marks models that were terminated
due to runtime constraints but still contain an active vortex. The horizontal gray line in the right panel indicates the top of the y-axis of the left
panel. A list of all vortex lifetimes shown here is provided in Table C.1.

total uncertainty of 150 planetary orbits for the lifetime of our
vortices.

The lifetime of vortices in our grid of simulations is shown
as an overview in Fig. 4. The left and right panels show vortex
lifetimes as a function of β for 8 and 16 cps, respectively. The
viscous α is encoded in color, and the symbol indicates the sim-
ulation code and the inclusion of self-gravity. For each value of
α and β, we calculated the average (“avg(f,p)”) between the two
codes (not including the self-gravity models) when the results
are close together. The solid-colored lines connect the averages
to help visualize the trends. For parameters for which the two
codes showed different vortex lifetimes, we added separate lines
connecting the average to the FargoCPT and PLUTO results to
highlight the differences.

Lifetimes range from approximately 200–2000 orbits for the
shorter-lived vortex group up to at least 15 000 orbits for the
long-lived vortices discussed later in Sect. 5. The most promi-
nent features of the distribution are the trend of decreasing
lifetime with increasing α and the minimum vortex lifetime at
β= 1 for low α and high resolution. In the following sections, we
address the influence of our model parameters on vortex lifetime.

4.2. Influence of the thermal relaxation timescale

The dimensionless thermal relaxation timescale β has a strong
effect on vortex lifetime. For α= 10−4, lifetimes are of the
order of several hundred to 1000 orbits with a downward
trend as β increases. Vortex lifetimes are shortest for β= 1
(around 1250 orbits) and increase towards both sides to around
2000 orbits for β= 100 and to values of the order of 10 000 orbits
for β= 0.01, high-resolution runs. This decrease in lifetime for
nonisothermal disks is consistent with the results of Tarczay-
Nehéz et al. (2020). Exceptions to this trend are the 8-cps PLUTO
models for α= 10−5–10−6 and β= 100. We were not able to
identify the reason why the two codes did not agree for these
parameters, but we note that the two codes match well once again

for 16 cps in the same configurations. Models with very long
vortex lifetimes are analyzed in Sect. 5.

Fung & Ono (2021) reported a similar trend in vortex life-
time in 2D shearing-box simulations without planets, in which
the vortex was introduced by initializing the simulation with a
radial density bump. These authors found that vortex decay is
fastest for intermediate β in the range 1–10, but their disk model
assumes a constant background disk without gradients in T and
Σ, which change baroclinic effects. Our results indicate that a
similar mechanism might be at play in the presence of an embed-
ded planet with strong spiral-arm shocks. However, the strong
enhancement of vortex lifetime for β= 0.01 hints at the presence
of an additional mechanism which keeps the vortices alive. We
discuss these hypotheses further in Sect. 6.1.

For a comparison of vortex evolution at different β, see
Fig. 5, where the evolution of vortex properties (analogous to
Fig. 3) of three FargoCPT simulations at 8 cps resolution with
β= 0.01, 1, and 100 is shown. The absolute radial location of
vortices varies with β as well. This is due to the tendency of the
vortices to form and subsequently stick to the outer planet gap
edge and the gap-opening process being strongly influenced by
β. Miranda & Rafikov (2020b) showed that “extreme” values of β
(i.e., β→ 0 or β→ ∞) result in narrower planet-opened gaps but
additional gaps in the inner disk, whereas intermediate values of
β ∼ 0.1–10 lead to a single, wide gap around the orbit of the
planet. In our simulations, models with β= 0.01 show the widest
gaps, narrower gaps are present for β= 1, and β= 100 models
showed an even slightly narrower gap. This is reflected in the
vortex locations which are further in for higher β (see the center
panel of Fig. 5). The difference between our results and those of
Miranda & Rafikov (2020b) might be due to the presence of the
vortex.

4.3. Planet growth timescale

Hammer et al. (2017) observed that the lifetime of planet-induced
vortices can depend on the timescale over which the planet mass
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Fig. 5. Evolution of vortex properties for varying values of the thermal
relaxation β parameter. The panels are as in Fig. 3. Shown are mod-
els run with the FargoCPT code with α= 10−5 and at 8 cps resolution
(orange “f8” dots in Fig. 4).

is increased in order to introduce the planet into the simula-
tion. These authors found that vortex lifetime decreased with a
longer planet growth time. In our models, increasing the planet
growth timescale from 100 to 1000 orbits caused vortices to
live longer by 470 orbits for β= 1, and by up to 1900 orbits
for β= 0.01. Figure 6 shows the evolution of vortex quantities
comparing the FargoCPT runs with a τramp = 100 orbits, already
presented in Fig. 5, with their respective counterparts with
τramp = 1000 orbits. The curves of runs with τramp = 100 orbits are
shifted to the right by the difference in lifetime ∆t compared to
the respective τramp = 1000 orbits model. This shift clearly illus-
trates that the decay of these vortices is almost the same for
both values of τramp in terms of their mass, location, and vorten-
sity curves. The only difference caused by the planet injection
timescale appears in the time it takes for the vortex to reach the
turnover point, after which it starts to decay.

4.4. Planet mass

From our Mp = 0.5 MJ models we cannot draw any conclusions
regarding the dependence of vortex lifetime on planet mass,
because for the set of parameters β= 0.01 and α= 10−5 the vor-
tices are long-lived outliers like the ones discussed in Sect. 5.
However, the location of the vortex is also influenced by the
planet mass. Lower-mass planets open narrower gaps and cause
the location of the vortex to be further in compared to more mas-
sive planets because this location is linked to the location of the
gap edge. In our models, the vortices in the Mp = 0.5 MJ were
located ∼0.15 rp closer to the star.

4.5. Viscosity

The observed vortex lifetime typically increases with lower val-
ues of α. Simulations with α= 10−3 show only small vortices
forming. These disappear within 100 orbits, and are therefore
already gone by the time the planet has grown to its full mass.
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Fig. 6. Influence of the planet introduction time on the evolution of
vortex properties. The panels are as in Fig. 3. Solid and dashed lines
show models with τramp = 100 orbits and 1000 orbits, respectively. The
τramp = 100 orbits curves are shifted to the right (see the horizontal lines)
to illustrate that the curves have the same shape in the decay phase,
independent of τramp. We note that the final evolution of the vortex, after
it has reached its minimum in vortensity, is the same independent of
planet introduction time.

For models with α= 10−4, we observe vortex lifetimes of up to
around 1000 orbits.

Simulations with a lower viscosity (α= 10−6–10−5) show
even longer lifetimes, usually in the range between 1000 and
2000 orbits, excluding the outliers that we discuss later in Sect. 5.
For this range of α, vortices usually have similar lifetimes for
simulations sharing the same β value. An example of this is
shown in See Fig. 7, which shows, from top to bottom, the evo-
lution of the mass enclosed in the region of the vortex (FWHM),
the location and radial extent (in FWHM) of the vortex as deter-
mined by the surface density fit, and the ratio of normalized
vortensity to the azimuthal median of the latter at the location
of the vortex.

The vortex location is not influenced by viscosity. Although

the gap-opening time is tgap ≈ 2700
(

α
10−3

)−3/2
Torb according to

the estimate in Kanagawa et al. (2017), the bulk of the gas in
the vicinity of the planet is cleared within the first few hundred
orbits. During this time, Σ is lowered by two orders of magnitude
within the gap region, and the radial gradient of Σ becomes steep
enough to facilitate vortex formation.

4.6. Self-gravity

Several studies showed that vortices in weakly or strongly self-
gravitating disks might not grow as large because small vortices
do not merge into one large vortex (Lin & Papaloizou 2011) and
dissipate more rapidly because of stretching in the azimuthal
direction (Lovelace & Hohlfeld 2013; Regály & Vorobyov 2017;
Zhu & Baruteau 2016). This can be the case even for low-mass
disks as long as the Toomre stability parameter Q is lower than
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Fig. 7. Evolution of vortex properties for varying values of α. Panels are
shown as in Fig. 3. Shown are models run with the FargoCPT code with
β= 1 and at 8 cps resolution. The α= 10−3 run is excluded because no
vortex forms. In addition, a run with disk self-gravity enabled is added
for the α= 10−5 case. The similarity between simulations with α= 10−5

and 10−6 is apparent.

50 or hQ 6 π
2
. For the choice of parameters in our models, the

Toomre parameter is Q ≈ 25 (r/rp)−3/2 (hQ ≈ 1.25 (r/rp)−3/2),
dropping under 5 at roughly r/rp = 2.8. To check the effect that
disk self-gravity has in our models, we ran additional simulations
with FargoCPT with self-gravity activated for all three values of
β (0.01, 1, and 100) and α= 10−5.

The lifetimes of vortices in these simulations are shown
in Fig. 4 as the rightmost datapoint in each column (models
“f8sg”). An example evolution of their properties is shown in
Fig. 7.

Self-gravity inhibits the merging of the small initially formed
vortices into one large vortex. Instead, two smaller vortices usu-
ally remain until they decay. This leads to a significantly shorter
lifetime compared to the analogous simulations without self-
gravity, which is consistent with the findings of the studies
mentioned above. However, this does not apply to the long-lived
migrating vortices discussed in Sect. 5.

Figure 7 shows that the center of the vortex in a model
with self-gravity and β= 1 is further in compared to its nonself-
gravitating counterpart. This is due to the smaller radial extent
of the vortex in the run with self-gravity and the tendency of the
inner edge of each vortex to coincide with the gap edge. Because
self-gravity does not noticeably change the radial disk profile for
the mass regime of our models, the inner edge of the vortices
is at the same location, independent of whether self-gravity is
included or not. The same effect is also observed for β= 0.01
and β= 100.

5. Long-lived and migrating vortices

In some of the cases, a much longer lived vortex is observed. In
these models, vortices stay close to their peak mass for several
thousand orbits, and in some cases migrate outwards after having
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Fig. 8. Selection of models with long-living and migrating vortices at
16 cps resolution for the two different codes. Both codes agree remark-
ably well for the blue and orange cases. The panels are as in Fig. 3. In
models shown here, β= 0.01. The values of α, the resolution, and the
code used are indicated in the legend.

stayed at the planet gap edge. This happens only for very low
viscosities (α ≤ 10−5) and β= 0.01 or locally isothermal simula-
tions (β→ 0). For our standard Mp = 1 MJ planets, the long-lived
outliers appear only at the highest resolution of 16 cps but not
at 8 cps. For the corresponding Mp = 0.5 MJ model, the long-
lived vortex also appeared at 8 cps. Spiral arms launched by the
vortex are clearly visible for these long-lived large vortices (see
Fig. B.2). They are more pronounced for lower values of α.

Figure 8 shows the evolution of vortex properties for a selec-
tion of models to highlight the observed behavior. The most
prominent example is the model with α= 10−5, β= 0.01, and a
16 cps resolution. The vortex in those runs lived for 15 100 orbits
before we terminated the two simulations because of their long
runtime. Both codes, PLUTO and FargoCPT, agree well for the
long-lived cases. Specifically, they are in exceptionally close
agreement for α= 10−5 and only differ at later stages for α= 10−6

(see orange and blue lines in Fig. 5). We do not currently fully
understand the mechanism that allows these long-lived vortices
to sustain themselves for such long timescales. We attempt to
provide a speculative explanation in Sect. 6.1.

For β, 1, a secondary radial density and pressure bump is
observed in the outer disk. This is the result of the vortex gener-
ating spiral arms which transport angular momentum. Radially
outwards, this results in the accumulation of mass in a second
bump (see panels for β, 1 in Fig. 9). This does not happen
for β= 1 because of the less efficient angular momentum trans-
port by spiral arms for this intermediate value of β (Miranda
& Rafikov 2020b). For β= 0.01, some models show vortices
migrating radially outwards (e.g., the α= 10−6 models in Fig. 8).
This is likely related to the formation of the secondary bump
outside of the vortex location (see Fig. 9) and the fact that vor-
tices typically migrate towards pressure bumps (Paardekooper
et al. 2010). For vortices that migrate far enough outside, which
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Fig. 9. Azimuthally averaged surface density profiles as a function of different physical (α, β) and numerical (cps) parameters at two different
time-stamps. The peak around r/rp = 1.5–1.6 corresponds to the pressure bump formed by the planet as the latter pushes material away, forming a
gap around its orbit. The smaller, secondary peak at around r/rp = 2.1 is caused by the vortex that forms near the primary, planet-generated bump.
Top: radial profiles at t= 1000 orbits. At this stage, all models pictured feature a vortex near the primary bump. We note the absence of a secondary
bump for the models with β= 1. Bottom: same profiles at t= 5000 orbits. Here, the primary bump has moved radially outwards as the planet’s gap
gets deeper and wider. We highlight the depletion of gas near the primary pressure bump for the second panel from the left (β= 0.01). This is
caused by the combination of a vortex migrating outwards to the secondary bump, and the inability of the planet to resupply that zone with material
from its now-depleted gap region. We also note the difference between resolutions of 8 and 16 cps (dashed and solid lines), especially for the
β= 100 models and the β= 0.01, α= 10−5 model (the evolution of this model is shown as the orange line in Fig. 8).

only happens for β= 0.01, a weaker secondary vortex appears
between them and the edge of the planet-generated gap (see
Fig. B.2). These secondary vortices then decay over a few hun-
dred orbits, already having decayed by the time the primary
vortex disappears. While they are treated as independent entities,
these secondary vortices are not included in Fig. 4 or the discus-
sion above; their occurrence is likely the result of a multistage
process which begins with the secondary bump forming and the
primary vortex migrating radially outwards towards it and mean-
while supplying mass towards the edge of the planet-generated
gap. This then feeds the emerging “secondary” vortex.

6. Discussion

In this section, we address some ways in which our results could
be interpreted and their relevance in explaining observations. We
also underline some caveats of our models.

6.1. The conditions needed to form and sustain a vortex

To form a vortex, one needs to create a local vortensity
extremum. In the absence of nonconservative forces, the evolu-
tion equation for the vortensity in a 2D flow reads

∂̟

∂t
+ u · ∇̟= ∇Σ×∇P

Σ3
· ẑ +V=B +V, (9)

where B= ∇Σ×∇P
Σ3 · ẑ is the baroclinic term and V describes

viscous diffusion of vortensity which can lead to vortex decay.

As outlined in the introduction, several instabilities have
been discovered that provide a mechanism to form or destroy
large-scale vortices, but they all fundamentally rely on Eq. (9)
to change the vortensity of the flow. The mechanism responsible
for the formation of the vortex in our simulations is most likely
the RWI which is triggered during the gap-opening process, as
we demonstrated in Sect. 3 and Fig. 2.

To check whether vortices can only form during the gap-
opening process and not in the quasi-steady state after the bulk
of the gas has been pushed out of the gap region, we removed
the long-lived vortex from the α= 10−5, β= 0.01, 16 cps model
by replacing the velocities and Σ with their azimuthal median
values for r > rp during the peak of its activity (t= 1880 orbits).
The fact that there is no vortex forming again is an indication
that the formation of vortices in our simulations depends on the
gap-opening process to produce conditions that can trigger the
RWI. This is also supported by the observation that the peak in
L is strongest for an intermediate time, t= 70 orbits, during the
gap opening process, after which the maximum disappears and a
plateau in L forms.

Vortex decay happens due to at least two mechanisms. Vis-
cous spreading attacks the vortices for high α= 10−4–10−3, as
illustrated by the trend of lower vortex lifetime for higher α, and
vortex stretching due to self-gravity effects additionally limits
the vortex lifetime, if it is considered (Lin & Papaloizou 2011;
Zhu & Baruteau 2016; Regály & Vorobyov 2017). For suffi-
ciently low α, another process that depends on β starts to be
dominant. We do not fully understand the mechanism but we
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Fig. 10. Baroclinic term (RHS of Eq. (10)) in the outer disk for a short-
lived model (β= 1 at t= 1000 orbits) and a long-lived vortex (β= 0.01
at t= 7150 orbits, see also Fig. B.2) with α= 10−5 and 16 cps resolution
on the left and right side, respectively. The top row shows maps of the
baroclinic term with the detected vortices indicated with green ellipses
as obtained from the Σ fit. The bottom row shows the radial Σ profile in
orange, the azimuthally averaged baroclinic term in blue and the region
between its minimum and maximum shaded in gray.

observed some similarities to the recent work by Fung & Ono
(2021). These latter authors find that, in their simulations, vor-
tices decay the fastest for β= 1–10 and decay slower for both
smaller and larger β. Vortex lifetime in their simulations changes
by up to an order of magnitude depending on β. We also find a
minimum in vortex lifetime for β= 1 with lifetimes increasing as
β, 1.

Fung & Ono (2021) explained the decay mechanism by
asymmetries in the structure of B around the vortex center,
which they found to be quadrupolar (see their Fig. 6) and to
change with β. We also find asymmetries in the structure of
B, but our simulations differ from theirs in some fundamental
aspects. Our simulations are global with radially varying Σ and
T profiles and include a planet that continually perturbs the disk,
whereas the simulations of Fung & Ono (2021) consider a local
shearing sheet with a constant background Σ and T , with only an
initial perturbation in the form of a density bump. As a conse-
quence of the radially varying T in our simulations, the structure
of B around the vortex center is dipolar in the azimuthal direc-
tion, as can be expected for a Gaussian-like density maximum.
Additionally, the planetary spiral arms strongly influence B.
Figure 10 shows a 2D map ofB for two simulations with α= 10−5

and 16 cps resolution. The left panels show a short-lived vor-
tex with β= 1 at t= 1000 orbits and the right panels show the
long-lived vortex model which exhibits the secondary vortex (see
Sect. 5 for a description and Fig. B.2 for ̟ and Σ maps at the
same time). The actual shape of the perturbation of B inside
and around the vortex varies in time because it depends on the
phase with respect to the spiral arm. It is currently not clear to
us how the changes in structure of B lead to the change in vortex
decay and how this proposed mechanism depends on the various
parameters in our system.

The long-lived group of vortices for low β (see Sect. 5) indi-
cates that there might be another vortex formation mechanism at
play. Given that the RWI already caused finite perturbations in

the disk and our disks exhibit a radial entropy gradient, the SBI
(Klahr & Bodenheimer 2003; Lesur & Papaloizou 2010) seems
to be a natural candidate. However, we verified that the SBI is
not active in our disks by analyzing the Richardson number, the
ratio of the buoyancy (also called Brunt-Väisälä) frequency to
the shear rate, which needs to be negative in a radially extended
region over the full azimuth of the disk for the SBI to operate.
The Richardson number in our simulation is positive, except for
narrow stripes following the spiral arms, which rules out that the
SBI is active.

To rule out that the difference in lifetime is a result of the ini-
tial vortex formation during gap opening, we took the long-lived
vortex out of the α= 10−5, β= 0.01, 16 cps model and inserted
it into the α= 10−5, β= 1, 16 cps model. Although this artificial
vortex has the same structure as in its original β= 0.01 model,
it decays over nearly the same time as the standard β= 1 vortex.
This is an additional indication that the difference in lifetime is
caused by the dependence of the decay process on β or a possi-
ble additional vortex formation channel that sustains the vortex
at low β.

This leaves us with the hypothesis that the interaction of
the spiral arms with the vortices might play a major role in
either slowing down vortex decay or providing an additional
vortex formation channel. This hypothesis is motivated by the
strong impact of the spiral arms on B and the dependence of
spiral-arm properties on β (Ziampras et al. 2020b; Miranda &
Rafikov 2020b). Another contribution might be the vortensity
jump across the spiral-arm shock, which was recently illus-
trated to be important for the evolution of vortensity in the
case of subthermal-mass planets (Cimerman & Rafikov 2021).
Providing an analysis of both mechanisms in our context is
unfortunately out of the scope of the present explorative study.

6.2. Effect of in-plane radiation transport

It has been shown that parametrizing radiative effects with β
while omitting the effects of in-plane radiation transport can
result in a potentially inaccurate radial surface density struc-
ture, mainly in the inner disk and around the gap, due to the
impact of β on the capability of a planet to open multiple sec-
ondary gaps at r < rp (Miranda & Rafikov 2020b). Here, we
are not interested in the annular structures of the inner disk,
and so we chose to ignore in-plane radiation transport. Neverthe-
less, to check for possible effects of in-plane radiation transport
on the vortex dynamics, we repeated the α= 10−5, β= 1 model
at 8 cps. This time we included a flux-limited diffusion (FLD)
approach (Levermore & Pomraning 1981) similar to Ziampras
et al. (2020a), but by parametrizing the diffusion coefficient Drad

following Eqs. (12)–(14) of Flock et al. (2017):

tcool ≈
l2
thin

3Drad

+
H2

Drad

= βΩ−1
K ⇒ Drad =

ΩK

β













l2
thin

3
+ H2













, (10)

where lthin is the photon mean free path. We found that includ-
ing FLD slightly changes the radial surface density structure in
the inner disk as predicted by Miranda & Rafikov (2020b) and
reduces the vortex lifetime from 1200 to 900 orbits. Studying
the effect of in-plane radiation transport in more detail requires
further investigation.

6.3. The assumption of a 2D disk

One of the main limitations of our models is the 2D assumption,
which was chosen because of runtime constraints in our rather
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wide exploration of the parameter space. It is entirely possible
that various 3D effects can result in quantitative differences in
vortex properties. Three-dimensional vortices can be suscepti-
ble to the elliptical instability (Lesur & Papaloizou 2009) which
would lower their lifetime. On the other hand, the vertical modes
of the SBI could provide an additional channel to sustain the vor-
tices, and vertical gas circulation due to the VSI might interfere
with vortex growth and decay (Flock et al. 2020).

To estimate the impact of including full-3D effects, we ran
one 3D simulation with FARGO3D (Benítez-Llambay & Masset
2016) using a setup analogous to our 2D setup. We chose β= 2π,
α= 0 and a resolution of 8 cps in all three directions. The sim-
ulation assumed symmetry about the midplane and covered four
scale heights in the vertical direction. Similar to our 2D mod-
els, a large vortex formed at the outer gap edge and lived for
7000 orbits. This illustrates that while there are differences, large
vortices can survive in 3D disk simulations for a long time, even
longer than in 2D for our example. We limited the 3D runs to
this one test because its runtime at 8 cps resolution was close
to 4 months with the simulation performed on four NVIDIA
K80 GPUs.

6.4. Observability of vortices at large radii

Section 4.2 illustrates that vortex lifetime is affected by the ther-
mal cooling timescale β. The latter is expected to vary with
radius in a disk, with values of 1–10 at 5 au, 0.1 at ∼10 au,
and below 0.1–0.01 at ∼50 au (Ziampras et al. 2020b). Thus, we
expect vortices to be in the short-lived regime close to the star
and in the long-lived regime far from the star. From Fig. 4 we
can estimate the lifetime of vortices in disks with α ≤ 10−4 to
be between 500 and 3000 orbits for β > 1 and between 1000 and
15 000 orbits for β < 1 for α ≤ 10−4. Assuming a solar-mass star,
this yields estimated lifetimes for a planet-induced vortex in the
range of 6–30 kyr at 5 au, 175–700 kyr at 50 au, and 1–15 Myr at
100 au. On the basis of a simple lifetime-centered argument, our
results therefore suggest that planet-induced vortices are more
likely to be observed at larger radii.

It should be noted that planet growth timescales of 100 and
1000 planetary orbits are at the very low end of the spectrum of
physically expected planet growth times. Hammer et al. (2017)
provided estimates for more realistic planet growth times of sev-
eral thousand to tens of thousands of orbits. It remains to be
seen whether the effects observed in this study still appear for
longer, more realistic planet-growth timescales. However, sim-
ulating the disks at the required resolution of at least 16 cps
for longer planet-growth times along with the additional vortex
evolution time is still computationally expensive.

6.5. Using the lifetime of vortices in simulations to explain
observations

In the suite of simulations we carried out, the lifetime of vortices
in models with identical physical parameters varies significantly
with resolution. This was the case for low values of the viscous
α parameter (α= 10−5, 10−6). We argue that the numerical vis-
cosity of our simulation codes is comparable to αnum . 10−5.
This suggests that simulations with a prescribed viscosity of
the order of the numerical viscosity cannot be used as a con-
trolled numerical experiment, at least as far as the occurrence
and persistence of vortices is concerned. For prescribed viscosi-
ties well above the estimated numerical viscosity (α= 10−4, 10−3

in our case), the consistency of vortex lifetimes between the two

codes and numerical choices supports the idea that the numerical
experiment is indeed a controlled one.

Recent observations of molecular line broadening (e.g.,
Flaherty et al. 2018) and numerical studies of VSI turbulence
(e.g., Flock et al. 2017) and planet–disk interaction (e.g., Zhang
et al. 2018) point to low α values. The requirement of a numeri-
cal viscosity lower than the physical viscosity necessitates high
resolution, which poses a challenge for simulations of vortices in
protoplanetary disks.

6.6. Resolution and numerical viscosity

Vortex evolution in “inviscid” disks is often studied using very
high-resolution grids to minimize the effects of numerical vis-
cosity (Li et al. 2005; Paardekooper et al. 2010; Lin & Papaloizou
2011; Zhu & Baruteau 2016; Hammer et al. 2017, 2021; McNally
et al. 2019; Fung & Ono 2021). While the resolution of 8 and 16
cells per scale height is likely enough to resolve planet-generated
features such as the gap shape and spiral arms (see Appendix A),
the numerical viscosity also needs to be low enough not to
interfere with vortex decay.

An estimation of the numerical viscosity, valid for first-order

schemes, is νnum ∼ ∆x2

∆t
, with a representative cell size ∆x and

the time-step ∆t. For our choices of parameters and assuming
∆t ≈ ∆x

cs
this corresponds to αnum ∼ 10−2–10−1. Clearly, we see

substantial changes in dynamics down to much lower values of
the prescribed α. Because we employ a higher-order scheme,
this simple estimate is not applicable. To our knowledge, there
exists no formula to estimate the numerical viscosity for the
higher-order schemes employed in this study, and so we attempt
to estimate it by comparing the results of our simulations at
different values of α.

In general, we observe similar behavior between models with
α= 10−5 and 10−6, in terms of both the behavior of vortices dur-
ing their lifetime (size, mass, migration patterns) and the overall
lifetime itself (see Fig. 4). This is also true across both codes
that we used in this study, with the exception of the 8 cps models
for β= 100. We attribute the similarity to the numerical dif-
fusion inherent in the different advection schemes of the two
codes and expect that this translates to an effective αnum between
10−6 and 10−5 for our given choices of grid resolution. This
implies that our experiments with α= 10−6 are most likely not
controlled ones, and for this reason, we typically group models
with α ≤ 10−5 together.

Nevertheless, we still observe a different behavior for some
models with α= 10−6 when comparing them to those with
α= 10−5, such as the migration of the long-lived models pre-
sented in Sect. 5 (see the different tracks of rvort(t) in Fig. 8),
most of which have a 16 cps resolution. This hints at a lower
numerical diffusion for 16 cps of αnum ∼ 10−6. Because the
numerical viscosity in the 8 cps models might interfere with
the prescribed α ≤ 10−5, our 8 cps simulations might not be as
trustworthy as our higher resolution 16 cps, α ≤ 10−5 runs.

6.7. Effects of the different numerics of the two codes

We used two codes (PLUTO and FargoCPT) with fundamen-
tally different numerical properties. The fact that the two codes
agree in terms of results (see the orange lines in Fig. 8 for one
striking example) is reassuring, but it is worth discussing their
differences nonetheless.
FargoCPT requires an artificial viscosity prescription to sta-

bilize the upwind method near regions of strong compression
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such as shocks. This provides additional dissipation which could
affect the evolution of vortices whenever they interact with the
spiral shocks induced by the planet. With the exception of the
8 cps models for β= 100, we found no significant differences in
vortex lifetimes between the two codes. The one case for which
the codes disagreed might be a result of insufficient resolution
because the differences disappear for 16 cps.

On the other hand, PLUTO’s strictly energy-conserving nature
means that the evolved quantity in the energy equation is the
sum of kinetic and thermal energy. As kinetic energy domi-
nates over thermal in typical Keplerian flows (for our setup,

Ekin/Eth ≈ γ−1

2h2 = 80), numerical errors in the calculation of total
energy could affect the thermal energy budget of the disk due to
subtractive cancellation error. In order to check this effect, we
reran our fiducial model using the ENTROPY_SWITCH option of
PLUTO, which ensures entropy conservation outside of the vicin-
ity of shocks (which by definition do not conserve entropy, but
are captured accurately by the Riemann solver). We find that this
does not affect the life track of the generated vortex.

Finally, we also reran the fiducial model with PLUTO using
a third-order solver and parabolic reconstruction instead of the
standard second-order solver and linear reconstruction setup. We
find no differences in vortex evolution or lifetime. On the basis of
our tests and the agreement of the codes for high resolution, we
conclude that the vortex dynamics and effects we observed in our
simulations are not numerical artifacts but are indeed physical.

7. Summary

We studied vortices created by planets in protoplanetary disks
using 2D viscous hydrodynamics simulations. The equation
of state was assumed to follow an ideal gas, turbulence was
included following the α parametrization, and thermal processes
were considered by prescribing a thermal relaxation timescale
using the β formalism. Our focus was on vortices exterior to the
gap opened by the planet. In order to verify our results, we car-
ried out the simulations with both the FARGO and PLUTO codes
which use different numerical schemes. The planet was treated as
a nonaccreting point mass with a smoothed gravitational poten-
tial and kept on a fixed circular orbit. Properties of vortices were
automatically extracted using our newly developed Vortector
Python tool, which identifies and characterizes vortices. Vortex
identification was performed by looking for elliptical shapes in
iso-vortensity lines in the r-φ plane, and characterization was
performed by fitting a 2D Gaussian to the vortensity and surface
density.

Vortices form during the gap-opening process as the embed-
ded Jupiter-mass planet is introduced into the simulation. At the
outer gap edge, multiple small vortices form that usually merge
into a single large vortex that lives, depending on parameters,
between 200 and several thousand orbits. These vortices have a
FWHM (as determined by the fitted 2D Gaussian) of up to 0.4 rp

(several au for a planet at rp = 5.2 au). The mass enclosed in this
vortex area is up to one planetary mass (one Jupiter-mass in our
models) for our choice of disk mass.

Vortex lifetime depends on the thermal relaxation timescale
such that vortices live shortest for intermediate cooling times
(β= 1), a result also found by Fung & Ono (2021). We find
two regimes for the lifetimes of vortices. A short-lived regime
with vortex lifetimes of up to 3000 orbits is observed for
slowly cooling disks (β ≥ 1), in which the vortices decay faster
than expected from viscous dissipation alone. In the long-lived
regime, which is observed for fast cooling (β ≪ 1) with the

isothermal assumption as an extreme, vortices live for a much
longer time and do not decay rapidly. Vortex lifetimes are consid-
erably longer in this regime, with a lower bound on the maximum
lifetime being 15 000 orbits (the model was terminated while the
vortex was still alive due to runtime constraints). From our anal-
ysis, we suspect that the long lifetime for small β is connected
to the interaction of the vortex with the spiral arms, which are a
source of vorticity. Details are left to future studies.

Additionally, including the disk’s self-gravity in our models
with a Toomre parameter Q ≈ 25 usually shortens the lifetime
of vortices and stops the small initial vortices from merging into
one large vortex. Typically, in our models, two smaller vortices
remain after the initial gap opening process, which then decay
faster compared to those in models where disk self-gravity is
not accounted for. This finding that self-gravity is detrimental
to vortex survival is in line with previous studies (Lovelace &
Hohlfeld 2013; Zhu & Baruteau 2016; Regály & Vorobyov 2017;
Pierens & Lin 2018).

Outward migration of the vortex is observed in some of the
models with β ≪ 1 and β ≫ 1. In those cases, a second density
(and thus pressure) bump forms outside of the vortex location,
towards which the vortex then migrates (Paardekooper et al.
2010). In some β= 0.01 models, a small, short-lived, secondary
vortex forms between the planet gap and the primary vortex.

Concerning the dependence of vortex lifetime on viscos-
ity, we find the expected behavior that this lifetime is shorter
for higher viscosity (Godon & Livio 1999; De Val-Borro et al.
2007; Ataiee et al. 2013; Fu et al. 2014; Regály et al. 2017).
For the highest viscosity of α= 10−3, practically no vortices are
observed. For α= 10−5 and 10−6 we find nearly identical results,
suggesting that the numerical viscosity in our models with a
resolution of 8 and 16 cells per scale height is of the order of
α8cps . 10−5 and α16cps ≈ 10−6.

Allowing the planet to grow over a longer time, 1000 instead
of 100 orbits, leads to longer vortex lifetimes in all the cases we
tested. This disagrees with the findings of Hammer et al. (2017),
who found reduced vortex lifetimes for longer planet-growth
times. In our models, vortices take longer to form in the case
of the more slowly growing planet. During their decay, however,
their evolution is very similar, independent of planet introduction
time (see Fig. 6), which in total increases their lifetime. The fact
that vortex lifetime increases for longer planet-growth timescales
could be an indication that the effects presented in this study,
including the long-lived vortex regime, are also applicable to
longer, and arguably more realistic planet-growth timescales of
around 10 000 orbits.

Estimating vortex lifetime from our results, vortices are
expected to live much longer at larger distances away from
their host star. The increase in expected lifetime is firstly due
to the longer orbital period at large radii, but also because the
expected β values – the thermal relaxation timescale compared
to the orbital timescale – are much lower and vortices then
likely belong to the long-lived regime (see Sect. 5). From order-
of-magnitude calculations, we find that large planet-induced
vortices exterior to the planet at 50–100 au might live for up
to several million years for low-viscosity disks (α . 10−4).
Considering the sensitivity of instruments like ALMA at these
distances from the star, this suggests that these vortices should be
observable more easily than planet-induced vortices at smaller
radii.
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Appendix A: Grid resolution and numerical

convergence

A grid resolution of 8 cells per scale height (cps) is often adopted
in models of planet–disk interaction in the literature. While it
is widely agreed upon as sufficient, we test this statement by
performing a series of test simulations with both PLUTO and
FargoCPT using the same physical parameters as our locally
isothermal models (α = 10−5), but using varying grid resolutions
with 1, 2, 4, 8, and 16 cps in both directions (always maintaining
square cells).

We find that we achieve numerical convergence on large-
scale features such as the gap width and pressure bumps for a
resolution of 4 cps. Convergence on more numerically sensitive
features such as gap depth and vortex formation is reached for
a resolution of 8 cps, with 16 cps affecting the picture relatively
weakly. This was observed across both codes, with the two show-
ing very good agreement with each other both in terms of the
resolution at which different features converge and the physical
properties of said features across codes.
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Fig. A.1. Results for our resolution study using FargoCPT. The overall
shape of the gap is resolved with around 4 cps, while it takes 8 cps to
properly resolve the gap depth and the contrast of most pressure bumps
far from the gap. We are interested in the region between 0.5–2.0 rp.
Extending the outer boundary to r = 10 rp in the “8-8-ext” model prac-
tically made no difference. It should be noted that the 16× 16 cps model
develops some small-scale vortices in the inner disk, which causes these
differences around 0.7 rp. Interestingly, a model that resolves the radial
and azimuthal directions with 4 and 1 cps, respectively, captures these
radial features almost as well as one with 4 cps in both directions.

Appendix B: The Vortector

A major task in this study was the identification and charac-
terization of vortices in simulation data. For this purpose, we
developed a Python package, the Vortector, which automates
the process for relatively generic 2D hydrodynamics planet–disk
simulations.

The Vortector package allows one to visualize the vortex
detection results (an example is shown in Fig. B.2), and includes
information about the location, extent, and mass of a vortex
along with various statistics related to the contour.

The package is publicly available on GitHub1. We hope to
make the detection and characterization of vortices in simulation
data easier for other members of the community and facilitate
quantitative comparison of vortices between studies by providing
a common detection pipeline.

To search for possible vortex candidates, a simple search
for the location of minimum vortensity is sometimes enough
to find the location of a vortex. Then, the value of the vortic-
ity ω = (∇ × u) · ẑ can be used to learn how strongly the vortex
rotates and the local surface density can be used as an indication
for the mass enclosed in the vortex. However, this method fails
for many simulations, e.g., when the vortensity in a very small
region close to a spiral arm of the planet is lower than inside a
vortex candidate, or when the gap region intrudes into the outer
disk, which can induce strong anticyclonic motion at the outer
gap edge.

To get around these issues, the Vortector uses the geo-
metrical shape of vortices as they appear in a face-on image
of the disk. Looking down on the surface of a disk, vortices
appear as crescent-shaped objects. In the r-φ plane, which is
more suitable for this task, large vortices appear as elliptical
objects (see also Fig. 1 of Lesur & Papaloizou 2009). In fact,
contour lines of the vortensity closely resemble ellipses in the
r-φ plane. We can therefore identify vortices in a disk by finding
closed contour lines that closely resemble ellipses. To solve this
task programmatically, we can make use of the computer vision
library OpenCV (Bradski 2000).

Our strategy to extract vortex candidates from a simulation
snapshot can be then subdivided into three tasks:

1. Extract contour lines in the r-φ map of the vortensity,

2. identify nearly elliptical contours as vortex candidates, and

3. fit 2D Gaussians to ̟ and Σ for characterization.

The algorithm step by step

This section describes the vortex detection process using the
model presented in Sect. 5 (FargoCPT, α = 10−5, β = 0.01,
16 cps) which shows the emergence of a secondary vortex. The
data used for this analysis corresponds to a time t = 7150 orbits.

Before the analysis is performed on ̟, the map is periodi-
cally extended in the φ direction in order to be able to identify
vortices that intersect the periodic azimuthal boundary. The
resulting image is shown in the left panel of Fig. B.1. There, the
original domain is indicated by the thick solid rectangle, which
spans the azimuthal range from 0 to N, where N is the image size
in pixels in the azimuthal direction. The top and bottom areas
of the domain (orange and green) are repeated at the lower and
upper boundaries, respectively.

Task 1: Contour lines

Contour lines are extracted for a range of̟ values ranging from
0 to 1 in increments of 0.05. For each value̟crit, a binary image
is produced by setting each cell with ̟ ≥ ̟crit to 1 and 0 other-
wise. The binary image is then analyzed using findContours
from OpenCV. Only closed contours are retained. This step usu-
ally results in up to a few thousand contours, depending on the
dynamical state of the disk and the choice of increments in ̟.

1 https://github.com/rometsch/vortector
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Fig. B.1. Periodically continued iso-vortensity line image (left) used
for extracting contours for vortex candidates and an example con-
tour illustrating the ellipse fit (right). The snapshot shown is at time
t = 7150 orbits of the model with the secondary vortex that was dis-
cussed in Sect. 5. The left panel shows how the data array is mirrored
in order to allow the detection of vortices that overlap with the periodic
boundary. Areas with the same color are copies of one another. The red
line indicates the outline of the grey area in the right panel. The original
size is marked by the black rectangle ranging from 0 to N on the vertical
axis. The area shaded in blue in the right panel illustrates the definition
of the deviation from the ellipse that is used to select the vortex can-
didates from the closed contours. For the example shown, the ratio of
difference area (blue) to the total contour area is 0.122, which is below
the 0.15 threshold.

Task 2: Find closed contours resembling ellipses

Next, the fitEllipse function from OpenCV is used to fit an
ellipse to each closed contour. One example of this is shown
in the right panel of Fig. B.1, where the ellipse is visible as an
orange line in the zoom-in.

The difference in area between the contour and fit is used as
a measure of deviation. The deviation from an ellipse is then
defined as the ratio of this difference and the area enclosed
by the contour. We only keep contours for which the devia-
tion is smaller than 0.15. The example contour in Fig. B.1 has
a deviation of 0.122.

Finally, all the contours that are contained within the largest
contour that satisfies this criterion are discarded, which leaves
the example red contour in Fig. B.1 as the selected vortex
candidate (see also the white contour line in Fig. B.2).

We only retain contours that enclose at least two other con-
tours. With this restriction, we make sure that ̟/̟0 changes by
a value of 0.1 from the outside to the inside of the vortex candi-
date. This has proven to be useful to filter out small fluctuations
in the disk that otherwise appear as small transient vortices.

At this point, it becomes clear that the extent of the vortex
and derived quantities such as the mass contained within are
influenced by the choice of the levels used to produce the contour
lines and the choice of the maximum relative ellipse devia-
tion. The properties of the contour give an order-of-magnitude
estimate nonetheless.

Task 3: Fit a 2D Gaussian

To remove the influence of the threshold parameters in the detec-
tion of the contour, a process that does not depend on our
parameter choices but on the underlying data is needed.

Upon inspection of the curves of vortensity and surface den-
sity along a cut through the vortex, either radial or azimuthal, it
becomes clear that these lines resemble Gaussian functions (see
curves in Fig. B.2 around the 2D maps)

f (r, φ) = c + a exp

(

− (r − r0)2

2σ2
r

)

exp















− (φ − φ0)2

2σ2
φ















. (B.1)

Here, σr and σφ provide a measure for the vortex size and
can even be used to give a definition of the vortex region that
does not depend on additional parameters. In combination with
the center coordinates r0 and φ0, σr and σφ can be used to define
the vortex as the disk material contained within the ellipse given
by

(

r − r0

hr

)2

+

(

φ − φ0

hφ

)2

= 1 , (B.2)

where hr =
√

2 ln(2)σr and hφ =
√

2 ln(2)σφ denote the half
width at half maximum of the 2D Gaussian function defined in
Eq. (B.1). We usually use the values obtained from the surface
density fit because these are less time-sensitive compared to the
vortensity fit and because the shape of Σ curves more closely
resemble Gaussians (see Fig. B.2).
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Fig. B.2. Overview of the results produced by the Vortector package for a model showing a secondary vortex discussed in Sect. 5 at t =
7150 orbits, with a 2D map of the vortensity on the left and surface density on the right. All detected vortex candidates are indicated in the 2D
plots. The extracted contour (shown in Fig. B.1) is marked with a white line, the ellipse of the vortensity fit is shown in blue and the ellipse of the
surface density fit is shown in green. Note that these ellipses are defined by σr and σφ from the fit of Eq. (B.2) and are different from the ellipse
used to fit the contour. The ellipses of the most massive vortex include a crosshair indicating the center of the fit. Each 2D plot is accompanied by
1D plots of slices through the main vortex. The plots also show the values of the respective Gaussian fit in blue for vortensity and green for surface
density. In this figure, the planet is located at r = 1 and φ = 0.
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Appendix C: Data table

The lifetimes and parameters of all models mentioned in Sects. 4
and 5 are listed in Table C.1.

Table C.1. Lifetimes of vortices in the simulations.

code β α cps τintro
a special b in Fig. 4 Tvort

c code β α cps τintro
a special b in Fig. 4 Tvort

c

fargo 0.01 10−6 16 100 x >8784 fargo 1 10−5 8 1000 1279

pluto 0.01 10−6 16 . . . x 9548 fargo 1 10−5 8 x 1179

fargo 0.01 10−6 8 x 1679 fargo 1 10−5 8 sg x 289

pluto 0.01 10−6 8 x 2013 fargo 1 10−5 8 1000 sg 509

fargo 0.01 10−5 32 >739 pluto 1 10−5 8 x 1136

fargo 0.01 10−5 16 x 8774 pluto 1 10−5 8 1000 956

fargo 0.01 10−5 16 sg >4567 fargo 1 10−4 16 x 709

pluto 0.01 10−5 16 x >15100 pluto 1 10−4 16 x 757

pluto 0.01 10−5 16 5762 fargo 1 10−4 8 x 659

pluto 0.01 10−5 16 vort rem 1843 pluto 1 10−4 8 x 607

fargo 0.01 10−5 8 1000 3897 fargo 1 10−3 16 x 0

fargo 0.01 10−5 8 x 2288 pluto 1 10−3 16 x 49

fargo 0.01 10−5 8 7845 fargo 1 10−3 8 x 59

fargo 0.01 10−5 8 sg x 1299 pluto 1 10−3 8 x 0

fargo 0.01 10−5 8 1000 sg 1269 fargo 100 10−6 16 x 1729

pluto 0.01 10−5 8 x 2611 pluto 100 10−6 16 x 2441

pluto 0.01 10−5 8 1000 2691 fargo 100 10−6 8 x 3108

pluto 0.01 10−5 8 10638 pluto 100 10−6 8 x 946

fargo 0.01 10−4 16 x 1129 fargo 100 10−5 16 x 1888

pluto 0.01 10−4 16 x 1335 pluto 100 10−5 16 x 1943

fargo 0.01 10−4 8 x 979 fargo 100 10−5 8 1000 3048

pluto 0.01 10−4 8 x 887 fargo 100 10−5 8 x 2708

fargo 0.01 10−3 16 x 79 fargo 100 10−5 8 sg x 589

pluto 0.01 10−3 16 x 0 fargo 100 10−5 8 1000 sg 499

fargo 0.01 10−3 8 x 69 pluto 100 10−5 8 x 857

pluto 0.01 10−3 8 x 29 pluto 100 10−5 8 1000 0

fargo 1 10−6 16 x 1309 fargo 100 10−4 16 x 699

pluto 1 10−6 16 x 1694 pluto 100 10−4 16 x 797

fargo 1 10−6 8 x 1189 fargo 100 10−4 8 x 569

pluto 1 10−6 8 x 1106 pluto 100 10−4 8 x 478

fargo 1 10−5 16 x 1359 fargo 100 10−3 16 x 0

fargo 1 10−5 16 sg 649 pluto 100 10−3 16 x 0

pluto 1 10−5 16 x 1445 fargo 100 10−3 8 x 0

pluto 1 10−5 16 art vort 916 pluto 100 10−3 8 x 0

Notes. Models with a resolution of 8, 16, and 32 cps have 528 × 1024, 1056 × 2048, and 2112 × 4096 cells, respectively. (a)Planet introduction

time. 100 orbits if empty. (b)Special propertiy of the model. “sg” if self-gravity is included. “vort rem” and “art vort” refer to the models discussed

in Sect. 6.1 with the removed vortex and the artificial vortex, respectively. (c)Lifetime of the vortex in planetary orbits. “>” indicates that the vortex

still exists at the end of the simulation.
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