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Abstract

In December 2019, the world was hit by the global SARS-CoV-2 pandemic. Two years
later, the number of infections and deaths is still increasing, affecting everyday’s life.
Although several vaccines have been successfully approved for SARS-CoV-2, therapeu-
tic strategies are still minimal. As viruses rely on the host’s metabolism for replica-
tion, analyzing the viral reprogramming of the host cells might reveal potential antiviral
targets. Such metabolic alterations can be evaluated and analyzed using genome-scale
metabolic models (GEMs). These models represent large metabolic networks that con-
nect metabolites with biochemical reactions facilitated by proteins and encoded by genes.
With the help of genomic information, the so-called genotype, we can create metabolic
models that can predict the phenotypic behavior of an organism. However, these GEMs
can be used to analyze virus-host interactions and predict potential antiviral targets and
understand the genotype-phenotype relationship of pathogens and commensals such as
Staphylococcus aureus. High-quality models with a high predictive value help us to
better understand an organism, determine metabolic capabilities in health and disease,
identify potential targets for treatment interventions, and analyze the interplay between
different cells and organisms. Such models can answer relevant and urgent questions of
our time quickly and efficiently and become an indispensable constituent in future re-
search.

In this thesis, I demonstrate (I) how the quality and predictive value of an existing
genome-scale metabolic model can be assessed, (II) how high-quality genome-scale
metabolic models can be curated, and (III) how high-quality genome-scale metabolic
models can be used for model-driven discoveries.

All three points are addressed in the context of pathogens and commensals in the
human respiratory tract. To assess the quality and predictive value of GEMs, we col-
lected all currently available models of the pathogen Staphylococcus aureus, which col-
onizes the human nose. We evaluated the models concerning their validity, compliance
with the FAIR data principle, quality, simulatability, and predictive value. Using high-
quality models with a high predictive value enables model-driven hypotheses and dis-
coveries. However, if no such model is available, one needs to curate a high-quality
model. For this purpose, we developed a pipeline that focuses on the model curation of
nasal pathogens and commensals. This pipeline is adaptable to incorporate other tools
and bacteria, pathogens, or cells while maintaining certain community standards. We
demonstrated the applicability of this pipeline by curating the first model of the nasal
commensal Dolosigranulum pigrum. We showed how to use high-quality GEMs for
model-driven discoveries by identifying novel antiviral targets. To do so, we virtually
infected human alveolar macrophages in the lung with SARS-CoV-2.
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Kurzfassung

Im Dezember 2019 wurde die Welt von der globalen SARS-CoV-2 Pandemie heimge-
sucht. Zwei Jahre später nimmt die Zahl der Infektionen und Todesfälle immer noch zu
und beeinträchtigt das tägliche Leben der Menschen. Obwohl bereits mehrere Impfstoffe
gegen SARS-CoV-2 zugelassen wurden, gibt es nur sehr wenige therapeutische Ansätze.
Da Viren für ihre Replikation auf den Stoffwechsel des Wirts angewiesen sind, könnten
Analysen der viralen Umprogrammierung der menschlichen Zellen mögliche antivirale
Ziele aufzeigen. Solche Stoffwechselveränderungen können mithilfe von genom-skaligen
Stoffwechselmodellen ausgewertet und analysiert werden. Diese Modelle stellen große
Stoffwechselnetzwerke dar, die Metabolite durch biochemische Reaktionen miteinander
verbinden, die durch Proteine ermöglicht und von Genen kodiert werden. Mit Hilfe geno-
mischer Information, dem so genannten Genotyp, können wir also Modelle erstellen, die
das phänotypische Verhalten eines Organismus vorhersagen können. Diese Stoffwech-
selmodelle können jedoch nicht nur für die Analyse von Virus-Wirt-Interaktionen und
die Vorhersage potentieller antiviraler Ziele verwendet werden, sondern auch zum bes-
seren Verständnis der Genotyp-Phänotyp-Beziehung von Pathogenen und Kommensalen
wie Staphylococcus aureus. Qualitativ hochwertige Modelle mit einem hohen Vorher-
sagewert helfen uns, einen Organismus besser zu verstehen, Stoffwechselfähigkeiten in
Gesundheit und Krankheit zu bestimmen, potenzielle Ziele für Behandlungsmaßnahmen
zu identifizieren und das Zusammenspiel zwischen verschiedenen Zellen und Organis-
men zu analysieren. Solche Modelle können relevante und dringende Fragen unserer Zeit
schnell und effizient beantworten und werden zu einem unverzichtbaren Bestandteil der
künftigen Forschung.

In dieser Arbeit zeige ich, (I) wie die Qualität und der Vorhersagewert eines beste-
henden genom-skaligen Modells bestimmt werden kann, (II) wie qualitativ hochwertige
Stoffwechselmodelle auf Genomebene kuratiert werden können und (III) wie qualita-
tiv hochwertige Stoffwechselmodelle für modellgestützte Entdeckungen genutzt werden
können.

Alle drei Punkte werden im Zusammenhang mit Krankheitserregern und Kommen-
salen im menschlichen Respirationstrakt behandelt. Um die Qualität und den Vorher-
sagewert von Stoffwechselmodellen zu bewerten, haben wir alle derzeit verfügbaren
Modelle des Erregers Staphylococcus aureus gesammelt, der in der menschliche Nase
vorkommt. Wir bewerteten die Modelle hinsichtlich ihrer Gültigkeit, der Einhaltung des
FAIR-Datenprinzips, der Qualität, der Simulierbarkeit und des Vorhersagewerts. Die Ver-
wendung hochwertiger Modelle mit einem großen Vorhersagewert ermöglicht modell-
gestützte Hypothesen und Entdeckungen. Steht jedoch kein solches Modell zur Verfügung,
muss ein hochwertiges Modell selbst erstellt werden. Zu diesem Zweck haben wir eine
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Kurzfassung

Anleitung geschrieben, die sich auf die Modellerstellung von nasalen Pathogenen und
Kommensalen konzentriert. Diese Anleitung ist anpassbar, um andere Programme, aber
auch andere Bakterien, Krankheitserreger oder Zellen unter Einhaltung gewisser Stan-
dards einzubeziehen. Wir haben die Anwendbarkeit dieser Anleitung durch die Erstel-
lung des ersten Modells des nasalen Kommensalen Dolosigranulum pigrum demons-
triert. Darüber hinaus haben wir gezeigt, wie hochwertige Stoffwechselmodelle für mo-
dellgestützte Entdeckungen genutzt werden können, indem wir neue antivirale Targets
identifiziert haben. Zu diesem Zweck haben wir menschliche Alveolarmakrophagen in
der Lunge virtuell mit SARS-CoV-2 infiziert.

xii



List of Accepted Publications

1. FBA reveals guanylate kinase as a potential target for antiviral therapies
against SARS-CoV-2.
Alina Renz, Lina Widerspick, and Andreas Dräger,
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Ask five different astrophysicists to de-
fine a black hole, the saying goes, and
you’ll get five different answers. But
ask five biomedical researchers to de-
fine systems biology, and you’ll get 10
different answers . . . or maybe more.

— Christopher Wanjek 1
Introduction

In December 2019, the world was hit by a global pandemic: the novel SARS-CoV-2
caused the coronavirus disease 2019 (COVID-19). Almost two years later, the virus
is still spreading, and the number of infections and deaths increases by the day. As of
November 2021, more than 250 million cases and over 5 million deaths due to COVID-19
have been reported [1].

This is, however, by far not the first pandemic of mankind. One of the most famous and
fatal pandemics was the Black Death, caused by the bacterium Yersinia pestis. It spread
in Europe, Asia, and North Africa in the 14th century. During this pandemic, 30-60%
of the European population deceased [2]. Also, the Spanish flu, caused by the influenza
type A virus H1N1 in the early 20th century, led to approximately 17-50 million deaths
worldwide [3, 4]. The Spanish flu was followed by the Asian flu pandemic of influenza A
virus subtype H2N2 in 1957 and the Hong Kong flu of influenza A virus subtype H3N2
in 1968 [5].

The currently spreading SARS-CoV-2 belongs to the genus of β-coronaviruses. The
members of this genus are enveloped, positive-sense, single-stranded RNA viruses. The
genome of SARS-CoV-2 was first isolated and sequenced on January 5, 2020 [6], reveal-
ing its genome size of approximately 30 kB [7]. The virus has 14 open reading frames
that encode for 26 proteins. Included in these 26 proteins are the four structural proteins:
spike (S) protein, envelope (E) protein, membrane (M) protein, and nucleocapsid (N)
protein. SARS-CoV-2 infects epithelial cells in the upper and lower respiratory tract
[8, 9, 10] and immune cells such as alveolar macrophages [11]. Upon infection, most
clinical presentations are mild and include fever, cough, malaise, myalgia, headache, as
well as taste and smell disturbances. However, in some cases, pneumonia or severe lung,
heart, liver, kidney, neurological, or gastrointestinal dysfunction are reported [12, 13].

The severe acute respiratory syndrome coronavirus type 1 (SARS-CoV-1) and the
Middle East respiratory syndrome coronavirus (MERS-CoV) are prominent represen-
tatives of β-coronaviruses besides SARS-CoV-2: SARS-CoV-1 provoked the respiratory
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Chapter 1 Introduction

disease severe acute respiratory syndrome (SARS) during an epidemic outbreak from
2003 to 2004, and MERS-CoV caused the Middle East respiratory syndrome (MERS)
in an epidemic outbreak in 2012 [14]. After the SARS-CoV-1 epidemic, researchers
warned about new genotypes and resulting outbreaks of coronaviruses due to their po-
tential of genetic recombination, the large reservoir in bats, and the culture of eating
exotic animals [15]. However, not only coronaviruses hold the potential for hazardous
developments: the World Health Organization (WHO) is, for example, closely monitor-
ing the changes in influenza viruses. For that purpose, the global influenza surveillance
and response system and the pandemic influenza preparedness framework were initiated
as an early warning system for flu outbreaks [16]. Besides influenza and coronaviruses,
several other virus families, including α-viruses, filoviruses, henipaviruses, flaviviruses,
and bunyaviruses, are considered to have a pandemic potential [17].

Not only viral infections hold the potential for worldwide pandemics. The rise of
antibiotic resistance is one of the biggest global threats [18, 19, 20]. After Alexander
Fleming identified penicillin in 1928, antibiotics have changed the approaches to treat
infectious diseases, revolutionized modern medicine, and saved millions of lives [20, 21].
However, during the last decade, the proportion and the absolute number of multi-drug
resistant pathogens have increased dramatically. National and international organizations
such as the European Centre for Disease Prevention and Control (ECDC), the US Centers
for Disease Control and Prevention (CDC), and the WHO consider infectious diseases by
multi-drug resistant bacteria as an emergent global threat [19]. The WHO has published a
list of bacteria for which new antibiotics are urgently needed. In this list, twelve so-called
‘priority pathogens’ are cataloged, posing the greatest threat to human health. Based on
the urgency of new antibiotics, this list is divided into the three following categories:
critical, high, and medium priority (see Table 1.1) [22].

One of the most critical bacterial pathogens of our time is Pseudomonas aeruginosa,
together with Acinetobacter baumannii and Enterobacteriaceae species [22]. A. bau-
mannii and P. aeruginosa are relevant pathogens in the human respiratory tract [23, 24].
P. aeruginosa is a Gram-negative opportunistic pathogen. It is one of the most common
causes of nosocomial infections [28], causing wound, skin, and urinary tract infections,
pneumonia, and sepsis [24]. P. aeruginosa is especially prevalent in patients with lo-
cal or systemic immune deficits, such as burn wounds, cystic fibrosis, acute leukemia,
or organ transplants [29]. It is challenging and complicated to treat these patients ef-
ficiently due to P. aeruginosa’s intrinsic resistance and its ability to acquire additional
resistance mechanisms to various antimicrobial agents [28, 30]. It is also listed in the
ECDC’s annual epidemiological report about antimicrobial resistance in the European
Union. According to their report from 2019, a small but significant decreasing trend in
resistances was noted for P. aeruginosa compared to 2015. However, high resistance per-
centages for single and multiple antibiotics persist: more than 30% of the P. aeruginosa
isolates were resistant to at least one antimicrobial group under surveillance [30].

Besides P. aeruginosa, Staphylococcus aureus is highly prioritized in the urgency for
new antibiotics [22]. Like Pseudomonas, S. aureus is an opportunistic pathogen. It
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Table 1.1: WHO priority pathogens with urgency for new antibiotics [22]. The checkmark (4) in the
column ‘Respiratory relevance’ indicates whether the pathogen has a relevance in the respiratory tract.

Priority Pathogen Respiratory relevance

Priority 1: CRITICAL
Acinetobacter baumannii 4 [23]
Pseudomonas aeruginosa 4 [24]
Enterobacteriaceae

Priority 2: HIGH

Enterococcus faecium
Staphylococcus aureus 4 [25]
Helicobacter pylori
Campylobacter spp.
Salmonellae
Neisseria gonorrhoeae

Priority 3: MEDIUM
Streptococcus pneumoniae 4 [26]
Haemophilus influenzae 4 [27]
Shigella spp.

asymptomatically colonizes the nose of approximately one-third of the population [25].
It is a commensal of the human skin and the mucosae but can also be the causative
agent of severe bloodstream infections with high morbidity and mortality [31]. The
methicillin-resistant form of S. aureus, known as MRSA, is one of the most successful
modern pathogens as it is the leading cause of severe infections. Besides bacteremia,
S. aureus, especially MRSA, can cause endocarditis, bone and joint infections, skin and
soft tissue infections, and hospital-acquired infections. Almost any item with skin con-
tact, ranging from white coats to pens and mobile phones, can serve as a fomite for
MRSA transmission [32]. The ECDC reports a stabilizing or even decreasing percentage
of MRSA in the majority of the countries under observation. Nonetheless, it remains an
important pathogen in Europe and the US. Besides recommendations for prevention and
control of the device- and procedure-associated infections and the prudent use of antimi-
crobial therapies, the development of new and novel prevention and treatment strategies
are required [30, 33].

Despite the recent development of several new antimicrobial and antistaphylococ-
cal drugs, S. aureus, and particularly the MRSA strains, remain major pathogens as
they evolve and develop new resistance mechanisms [32, 34]. Thus, novel and non-
conventional technologies are of high interest to address antimicrobial resistance, not
only in S. aureus but also in P. aeruginosa and other pathogenic bacteria. Approaches
range from blocking bacterial virulence factors, monoclonal antibodies to targeting host
factors, microbiome interventions, and probiotics [35, 36].

In microbiome interventions, the effect of bacterial interaction and competition is
used. For example, after administering broad-spectrum antibiotics, a large portion of
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Chapter 1 Introduction

the commensal bacteria in the gut microbiome is eliminated, allowing opportunistic
pathogenic bacteria to establish. Introducing a ‘healthy’ gut microbiome with commen-
sal bacteria can help eliminating the pathogens by faster repopulation of the patient [35].
A similar approach is used for interventions with probiotics. Probiotic effects can be
mediated by direct competitive exclusion of bacteria or the production of acids or in-
hibitors [37]. Studies have indicated that regular intake of probiotics reduced the nasal
colonization with pathogenic bacteria, including S. aureus [38]. One bacterial commen-
sal of interest in the human nasal microbiome is Dolosigranulum pigrum. Its presence in
the nasopharyngeal passage is associated with a healthy upper respiratory tract. Together
with Corynebacterium pseudodiptheriticum, D. pigrum is considered a probiotic candi-
date [39]. Furthermore, the presence of D. pigrum is negatively associated with S. aureus
in the human nasal microbiome, suggesting its inhibiting and antistaphylococcal effect
[40]. However, the overall molecular mechanisms behind the bacterial interaction and
inhibition remain mostly unclear.

These non-conventional approaches can not only be used to combat antibiotic resis-
tance but also to fight SARS-CoV-2. During the current pandemic, the development of
vaccines gained a lot of attention and governmental sponsorship, leading to successful
approvals of several vaccines. To this date, however, the number of approved therapeutic
strategies against SARS-CoV-2 is minimal. As viruses rely on the host’s metabolism
for their replication, the non-conventional approach of targeting host factors seems rea-
sonable. Upon infection, the host cell is reprogrammed to produce viral components,
resulting in metabolic changes. These metabolic changes can be analyzed and used to
identify potential targets for antiviral therapies. Additionally, targeting host factors holds
the benefit of robustness: While targeting capsid proteins of enveloped viruses with small
molecules works for some viral infections [41, 42], only a few mutational events might
be sufficient for the virus to develop a resistance against the drug. However, viruses are
less able to develop resistances against antivirals targeting the host [43].

As the metabolism of human cells is rather complex, the effect of individual changes
on the whole metabolic system upon viral infection is challenging to analyze in detail.
The same accounts for the metabolism of individual bacteria and the even more complex
interaction between commensals and pathogens. One way to understand the complex in-
terplay of genes, proteins, reactions, compounds, and other cellular components is to use
systems biology. Systems biology studies biological systems at the system level [44]. It
aims to understand the interaction of cellular components, how they form networks, and
how they function in the whole cell to generate observable phenotypes [45]. Thus, sys-
tems biology does not focus on the components or cellular molecules and their function
as in molecular biology; instead, it focuses on the links and relationships that connect
these cellular components to form a biochemical reaction network [46]. One of the ma-
jor modeling approaches for metabolic studies at a systems level is the reconstruction
and use of genome-scale metabolic models (GEMs). A GEM mathematically repre-
sents the metabolism of an organism. Its reconstruction is facilitated by the advances
in high-throughput techniques and whole-genome sequencing in the last 10 to 15 years
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Figure 1.1: The concept of GPRs. In so-called gene-protein-reaction (GPR) associations, the genes on
the genome are linked to their gene products, also referred to as proteins. Proteins that act as biocatalysts
are also referred to as enzymes. These enzymes facilitate biochemical reactions. An enzyme can catalyze
either one reaction (Enzyme 1) or multiple reactions (Enzyme 4). The latter are also known as promiscuous
enzymes. Enzymes 2 and 3 are isozymes as both can catalyze the second reaction in the shown network.
Enzymes 5 and 6 form an enzyme complex and are both required to catalyze the final reaction. This Figure
was created with BioRender.com.

[47, 46]. The information obtained by whole-genome sequencing forms the basis for
the GEMs and, thus, understanding the genotype-phenotype relationship. In so-called
gene-protein-reaction (GPR) associations, the genes on the genome are linked to their
gene products, also referred to as proteins. These proteins, in turn, facilitate biochemi-
cal reactions. Various biochemical metabolic reactions are linked via the compounds or
metabolites, forming a more extensive network (see Figure 1.1). Eventually, the large
metabolic network based on the genotype can simulate the phenotypic behavior of the
studied organism [46]. In addition to the genome sequence, experimentally obtained bio-
chemical information, transcriptomics, proteomics, metabolomics, and fluxomics can be
incorporated to formulate stoichiometry-based and mass-balanced metabolic reactions.

Looking at the GEM from a network point of view, the nodes represent the compounds,
and the reactions represent the edges (see bottom graph of Figure 1.1). Besides the
graphical representation of the network in the form of a map, the network can also be
represented mathematically in a stoichiometric matrix S. In this matrix, rows list the
model’s compounds and metabolites while columns represent the model’s reactions. The
stoichiometric coefficients of this matrix are integer numbers that indicate the number
of metabolites participating in the respective reactions. Constraints need to be defined
for the metabolic model to simulate the behavior of a GEM in silico realistically. As
GEMs follow physiochemical laws and rely on environmental conditions, constraints
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Chapter 1 Introduction

need to be applied. A physiochemical constraint is the flux balance. As we assume
a steady-state for the internal metabolites, all fluxes through the network need to be
balanced. In a steady-state, the concentration of the metabolites would not change over
time. Thus, the multiplication of the stoichiometric matrix S with a flux vector v needs
to equal zero [48, 46]. To follow the basic laws of thermodynamics, another constraint
claims that the overall energy E needs to be balanced and conserved [49]. Additional
constraints define the bounds of a reaction in the network and regulate the environmental
availability of nutrients based on enzyme or transporter capacity and thermodynamics.
These constrains can be mathematically formulated as:

(a) flux balance: S · v = 0,
(b) energy balance: ∆E = 0,
(c) enzyme or transporter capacity: vi ≤ vmax,
(d) thermodynamics: 0 ≤ vmin ≤ vi.

The constraints span a convex polytope that contains all steady-state flux distributions.
An objective function needs to be defined to identify a particular functional state within
the solution space. One of the most essential and interesting groups of objectives com-
prises functions representing expected physiological functions. One such physiological
function is the maximization of biomass production and, thus, the growth of an organ-
ism. Others include minimizing the adenosine triphosphate (ATP) production or nutrient
uptake, or maximizing metabolite production [46, 50]. Using biomass maximization as
the objective function and constraints, the model can be optimized using flux balance
analysis (FBA) to predict the growth behavior in different environments or conditions.

To summarize, constraint-based reconstruction and analysis of genome-scale metabolic
models can be used to predict metabolic alterations. These metabolic changes can, for
example, be caused by infections of host cells with a virus. The changes can be ana-
lyzed and utilized to identify potential antiviral targets. Moreover, bacterial metabolism
can change in different environments. These environments can, for example, be the hu-
man nose or lung. The bacterial metabolism is also altered when interacting with other
commensals or pathogens. Tracking and understanding the metabolic changes in dif-
ferent conditions will pave the way towards new antiviral and antimicrobial therapeutic
strategies. With the help of GEMs and systems biology approaches, we have tools at
hand to understand and fight the upcoming challenges in future pandemics and antibiotic
resistance.
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Nothing in life is to be feared, it is only
to be understood. Now is the time to
understand more, so that we may fear
less.

— Marie Curie

2
Objectives

Systems biology in general and genome-scale metabolic models, in particular, are pow-
erful tools to investigate metabolic changes and potential novel antimicrobial or antiviral
targets. As indicated previously, S. aureus is a relevant pathogen colonizing the human
nose. Due to its high prevalence in the population, antibiotic resistance, and infectious
potential, its investigation is crucial. Several S. aureus models have already been pub-
lished, however, with varying quality. To investigate the pathogenicity, resistance mecha-
nisms, and potential antimicrobials, we need a high-quality model with a good predictive
value. To identify such a model, we need quality measures for evaluating different as-
pects of GEMs, such as compliance with standards or the inclusion of laboratory data.
High-quality GEMs with high predictive value will be the key to combating antimicro-
bial resistance and identifying novel treatment strategies using systems biology. One
novel treatment strategy is to use the probiotic effect of commensals. D. pigrum, for
example, is negatively associated with S. aureus in the human nose. While several mod-
els of S. aureus existed but no GEM of D. pigrum, we needed to curate a high-quality
model of this commensal to enable the investigation of microbial interactions. Having
high-quality models at hand facilitates model-driven discoveries for urgent questions of
our time, treatment options and antiviral targets in a worldwide pandemic.

Thus, this thesis aims at answering the following three questions:

(I) How can we assess the quality and predictive value of an existing genome-scale
metabolic model?

(II) How can we curate high-quality genome-scale metabolic models?

(III) How can we use high-quality genome-scale metabolic models for model-driven
discoveries, such as identifying novel antiviral targets against SARS-CoV-2?

All three questions will be answered in the context of pathogens in the human res-
piratory tract. For questions (I) and (II), we will focus on the upper respiratory tract,
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Chapter 2 Objectives

Alveolar  
macrophage infected 

with SARS-CoV-2 

Nasal microbes 

Figure 2.1: Focus of this thesis. In the first and second part of this thesis, we will focus on the upper
respiratory tract, namely the nose and human nasal microbes. We will answer the questions (I) how we
can assess the quality and predictive value of an existing GEM and (II) how we can curate high-quality
GEMs. In the third part of the thesis, we will focus on the lower respiratory tract and (III) investigate
potential antiviral targets against SARS-CoV-2. This Figure was created with BioRender.com.

specifically on the human nose and its inhabitants. We will shift the focus from bacteria
in the upper respiratory tract to viral infections in the lower respiratory tract to answer
question (III). With this transition of the pathogen and infection site, the versatile and
adaptable applicability of the methods in systems biology is demonstrated. In Figure 2.1,
the human pathogens and the infection or colonization sites are illustrated.
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In fact, biology is chaos. Biological
systems are the product not of logic but
of evolution, an inelegant process. Life
does not choose the logically best de-
sign to meet a new situation. It adapts
what already exists... The result, unlike
the clean straight lines of logic, is often
irregular, messy.

— John M Barry 3
Results

This chapter consists of three parts. We will focus on each of the three questions stated
in Chapter 2. The answers to the questions are part of the following publications:

(I) How can we assess the quality and predictive value of an existing genome-scale
metabolic model?
Curating and comparing 114 strain-specific genome-scale metabolic models
of Staphylococcus aureus.

(II) How can we curate high-quality genome-scale metabolic models?

a) First Genome-Scale Metabolic Model of Dolosigranulum pigrum Con-
firms Multiple Auxotrophies.

b) An updated genome-scale metabolic network reconstruction of Pseudomonas
aeruginosa PA14 to characterize mucin-driven shifts in bacterial meta-
bolism.

(III) How can we use high-quality genome-scale metabolic models for model-driven
discoveries, such as identifying novel antiviral targets against SARS-CoV-2?

a) FBA reveals guanylate kinase as a potential target for antiviral therapies
against SARS-CoV-2.

b) Genome-Scale Metabolic Model of Infection with SARS-CoV-2 Mutants
Confirms Guanylate Kinase as Robust Potential Antiviral Target.
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3.1 Assessing the quality and predictive value of GEMs
The first genome-scale metabolic model represents the metabolism of Haemophilus in-
fluenzae published in 1999 [51]. It was followed by one of the best-studied bacteria,
Escherichia coli in 2000 [52]. The first eukaryotic reconstruction was available three
years later for Saccharomyces cerevisiae [53]. Since then, the number of modeled or-
ganisms and curated reconstructions has increased steadily [46]. The scope of recon-
structions is not limited anymore to prokaryotes or single-cell eukaryotes. In 2007, the
publication of the first human reconstruction Recon1 [54] paved the way for cell- and
tissue-specific metabolic models that can be combined to multi-tissue models. In 2020,
the first sex-specific whole-body metabolic reconstructions became available. It com-
prises 26 organs and six blood cell types [55]. As the number of models increased, the
necessity for model databases emerged. Today, various databases exist, such as the BiGG
Models database [56], BioModels database [57], including the Path2Models project [58],
and the virtual metabolic human (VMH) database [59]. The BiGG Models database cur-
rently comprises 108 metabolic reconstructions. The BioModels database contains over
1000 manually curated and non-curated mathematical models of biological and biomed-
ical systems, respectively, and 833 auto-generated models. Of these models, 168 are
constraint-based models. Within the Path2Models project, over 140,000 models were
automatically generated from pathway resources. The VMH database includes one hu-
man and 818 microbe reconstructions. In addition to the mentioned model databases,
models can be found and obtained from the supplementary material of relevant scientific
publications [60].

The available models are of varying quality. Some comply with the FAIR data princi-
ple: they are Findable, Accessible, Interoperable, and Reusable. Especially the upload to
a model database and assignment of a specific identifier facilitates the first data principle.
By uploading the model to a database and making it publicly available, the model is, in
turn, accessible to the research community. Making models available upon request ham-
pers the accessibility, especially when contact information is missing or outdated. The
community standard file format for constraint-based reconstructions is Systems Biology
Markup Language (SBML) [61]. This format assures the exact representation of a model
in different tools and removes translational errors. Thus, SBML files can be imported,
read, interpreted, and exported by different software systems, making SBML models in-
teroperable. Using SBML with annotations facilitates the model’s reusability as users
receive additional information on model instances.

Not all models meet the FAIR data principles. Some models are only available from
the supplementary material of scientific publications, others only upon request. Not all
models are available in the SBML file format. Instead, publications may also include
models in other formats such as Excel spreadsheets, Matlab files, or tabular formats.
Parsing these tables into the SBML format is time-consuming, error-prone, and does not
ensure a simulatable model. However, even the availability of a model in SBML format
does not guarantee a valid and simulatable model.
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We will now elaborate on accessing and assessing different models. To demonstrate
this process, we collected all available GEMs of the human pathogen Staphylococcus
aureus. As mentioned before, S. aureus colonizes the nose of approximately one-third
of the human population, leading to high morbidity and mortality worldwide. Due to the
high interest in this human pathogen, many models are available. In total, we collected
114 GEMs of S. aureus from seven different resources. The models were downloaded
from the BiGG Models database, BioModels database, VMH database, and relevant pub-
lications’ supplements. The first S. aureus model was published in 2005 by Becker et al.
[62], the latest one in 2019 by Seif et al. [63]. Lee et al. [64], Bosi et al. [65], and the
Path2Models project [58] published a collection of different S. aureus strains. Figure 3.1
gives an overview of all available GEMs and their features and properties.

After downloading, all SBML models were validated using the built-in validation
function in the COnstraint-Based Reconstruction and Analysis for Python (COBRApy)
package [69]. Models that were not available in a valid SBML format underwent debug-
ging and improvement steps. These steps were, for example, conducted for the model
collection by Bosi et al., which contained some syntactical errors. The debugging steps
included a) adding the missing XML declaration, b) fixing invalid model instance iden-
tifiers, c) filling empty compartment lists, d) fixing invalid charge values and characters
in chemical formulas, and e) adding missing metabolite compartments. The reader is
referred to Figure 3 of the underlying publication [70] in Appendix B.4 on page 104 to
see the detailed debugging description of the Bosi models. The models from Lee et al.
were only available as Excel spreadsheets and converted into the SBML format. Having
all models available as valid SBML files facilitates the interoperability of these models.

The valid SBML models were evaluated using the genome-scale metabolic model test
suite memote. The standardized testing suite for GEMs provides a library of tests that
cover the formal representation of a model, syntactic conventions and annotations, and
conceptual and biological integrity for quality control and quality assurance. The score
ranges from 0% to 100% and indicates the compliance with community standards and
functionality with increasing score [68]. A large part of the score is based on annotation
tests, as a lack of standardized annotations hinders the reuse, comparison, and extension
of GEMs. Thus, models with a high memote score comply with community standards
and include annotations according to the minimum information required in annotation of
models (MIRIAM) principle, enabling the reusability of the models.

Another aspect of reusability is the immediate simulatability of models. We simulated
the valid SBML models in the default medium they were published to test this aspect.
The initial ability to grow depends on a provided objective function that can be opti-
mized, correctly defined constraints, and a model that can produce all constituents of
the objective function. Despite the manual effort of translating the Excel spreadsheet
into valid SBML files, the models from Lee et al. did not show any growth. The same
accounts for the models from the Path2Models project. These models do not possess
any objective function and instead may rather act as a collection of potential reactions,
metabolites, and genes than a functioning model.
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Figure 3.1: Available GEMs of S. aureus. All 114 available GEMs of S. aureus were downloaded. A col-
lection of different S. aureus strains was published by Lee et al. [64], Bosi et al. [65], and the Path2Models
project [58]. The average number of model instances is given together with the standard deviation. The
score of the genome-scale metabolic model test suite memote ranges from 0% to 100% and indicates with
increasing score the compliance with community standards and functionality [68]. The curation method
indicates whether a model was curated manually (m), semi-automatically (s), or automatically (a). The
row of initial growth indicates whether the respective models were simulatable directly after downloading
and, thus, are directly reusable. The adaptive growth gives information about the in silico flexibility of the
organism to react to different environmental conditions. We tested the adaptive growth under six different
environmental conditions where S. aureus grows in vitro or in vivo, and in silico growth should be enabled.
Checkmarks (4) indicate whether initial or adaptive growth was possible. Based on the information from
the curation, simulatability, and inclusion of additional laboratory data, a scoring system was developed
and applied to all models. The higher the final score, the higher the quality and predictive value of the
model.
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In addition to the syntactic and initial growth check, we evaluated the predictive value
of the models. To this end, we analyzed the growth of the simulatable models in six
different environments S. aureus is known to grow. Amongst these media was the syn-
thetic nasal medium (SNM), as the primary ecological niche of S. aureus is the human
nose. Additionally, a chemically defined medium (CDM) was tested with either no car-
bon source, or glucose or galactose as a carbon source. Furthermore, S. aureus occurs
in the gut and can colonize the lungs of patients with cystic fibrosis (CF). For these en-
vironments, chemical definitions exist that enable in silico simulations. The model by
Heinemann et al. [66] had the most versatile adaptability to varying environments. Some
of the Bosi models and the model by Seif et al. simulated growth in at least four of the
six tested media.

A model’s predictive value also increases when laboratory data is included or in silico
observations are tested in laboratory experiments and vice versa. The model publications
were reviewed for information about the inclusion of or verification with experimental
data. Amongst others, the growth behavior in different environments, including aero-
bic and anaerobic conditions, can give valuable insights into the predictive value of a
model, as already tested. Additionally, the comparison of predicted gene essentialities,
the verification of observed auxotrophies, and the prediction of carbon utilization and
catabolism facilitate the assessment of GEMs. However, one always needs to be aware
of the strain-specific properties of the organism of interest. Comparing the in silico re-
sults of one strain with experimental data of another strain has to be conducted only if no
strain-specific experimental data is available.

If several strain-specific models of an organism are available, the models can be com-
pared. Identifiers of different databases, however, complicate such a comparison. For
S. aureus, models with BiGG, Kyoto Encyclopedia of Genes and Genomes (KEGG)
[71], VMH, and numerical identifiers were available. Another widely used resource
for identifiers is ModelSEED [72]. If the models are well annotated and contain cross-
references to various databases, these annotations can facilitate the comparison. How-
ever, the cross-references, and following comparisons, are only feasible when the in-
stances are present and up-to-date in both databases. A tool for the complete mapping
of identifiers is currently not available. The ModelPolisher, for example, accesses the
BiGG Models database and extracts annotations and autocompletion of SBML models
[73]. However, the ModelPolisher mainly relies on BiGG identifiers. The broad range
of possible reaction and metabolite identifiers complicates the comparability of the mod-
els. Comparing the models’ gene sets is another alternative. By comparing different
strain-specific models, one can identify similarities and differences, search for metabolic
modules of interest, or expand and merge the models to obtain the model that fits a par-
ticular research question.

After collecting and evaluating all these different model properties and features, we
scored the models based on their predictive value. We took model simulatability, growth
capabilities in different environments, and experimental verification procedures, includ-
ing auxotrophies or compliance with physiological data, into account. For this example,
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Figure 3.2: Assessment of a GEM’s quality and predictive value. Valid models should be stored in
a modeling database in SBML format to ensure that models are findable, accessible, interoperable, and
reusable (FAIR). Storing models in the supplements of scientific publications or upon request is not
recommended. Likewise, storing models as Excel spreadsheets or Matlab files hinders interoperability.
GEMs can be validated using the genome-scale metabolic model test suite memote. This test suite also
returns a quality score for each model. Models with a high degree of annotations receive a higher memote
score than poorly annotated models. A model’s predictive value can be determined by comparing model
predictions with laboratory data and experiments. These experiments can include growth observations in
different environments, identified auxotrophies, different physiological states, or gene essentialities. The
larger the overlap between simulation and laboratory observations, the higher the model’s predictive value.

the gene essentiality predictions were not included in the score, as experimentally veri-
fied essential genes were only available for a few strains. For a detailed description of the
scoring of the predictive value, the reader is again referred to the underlying publication
starting on page 104 [70].

In conclusion, when assessing the quality and predictive value of available models,
one needs to consider several aspects, as summarized in Figure 3.2. Models are easily
findable and accessible when they are deposited in modeling databases. These modeling
databases are, for instance, the BiGG Models database, BioModels database, including
the Path2Models project, and the VMH database. Making models available in the sup-
plements of scientific publications is not recommended, as they are more challenging
to find, access, and revise. Models stored in the standardized SBML format are inter-
operable with various modeling tools and software. The use of Excel spreadsheets or
Matlab files often necessitates a translation or transfer to have interoperable models. To
make models reusable, they should be valid files with a high degree of annotations. The
genome-scale metabolic model test suite memote can validate SBML files and assess
the degree of annotations. The higher the memote score, the higher the quality of the
model. These aspects cover the FAIR data principles. A model’s predictive can be de-
termined by comparing the model simulations to laboratory data and experiments. If an
organism grows under certain conditions or in different environments, the model sim-
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ulation should reflect this behavior. However, comparing the growth behavior in silico
and in vitro requires a detailed chemical definition of the growth medium. Auxotrophies
or physiological properties observed in laboratory experiments should also be present in
the model simulations. If essential genes of an organism are known, they can further
be used to assess the predictive value of a GEM. By incorporating genomics, transcrip-
tomics, proteomics, metabolomics, or fluxomics data, the predictive value of a model can
increase. Using high-quality models with a high predictive value enables model-driven
hypotheses to close knowledge gaps and drive model-driven discoveries. If, however, no
such model is available, one needs to curate a high-quality GEM. The following section
will focus on the steps necessary to curate high-quality GEMs.
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3.2 Curating high-quality GEMs
In 2010, Thiele and Palsson published a protocol for generating high-quality genome-
scale metabolic reconstructions [74]. This protocol comprises 96 steps in the following
five stages: 1. reconstruction of the draft, 2. refinement of the reconstruction, 3. con-
version of the reconstruction into a computable format, 4. evaluation of the network,
and 5. prospective use [74]. Today, multiple tools are available to curate GEMs auto-
matically. Amongst these tools are CarveMe [75], AutoKEGGRec [76], AuReMe [77],
RAVEN [78], ModelSEED [72], and gapseq [79]. All available tools have their strengths,
advantages, but also weaknesses. Mendoza et al. systematically assessed available re-
construction tools in 2019 [80]. They concluded that CarveMe and ModelSEED provide
ready-to-use GEMs. Furthermore, CarveMe generates networks with high reaction sets,
similar to manually curated networks.

Draft reconstruction
We decided to build our workflow upon the reconstruction tool CarveMe to curate the
first draft of a strain-specific GEM. CarveMe starts with a universal model from the
BiGG Models database [56] and an annotated genome sequence. Applying a top-down
approach, CarveMe uses the universal model, specialized templates, and gene annota-
tions to score the certainty that a reaction is present in the organism of interest. The
universal model is converted into an organism-specific model by removing all reactions
and associated metabolites with low certainty in the model carving step. However, Men-
doza et al. highlighted in their review on reconstruction tools that users need to be aware
of possible false results. For that reason, manual refinement of the initial draft recon-
struction is required.

As mentioned in the previous section, memote evaluates the quality of GEMs, not only
concerning the content but also the standards [68]. Thus, memote is a valuable tool to
track the development of the GEM’s curation and refinement process. Another helpful
tool is the ModelPolisher [73]. The ModelPolisher accesses the BiGG Models database
to autocomplete and annotate models. As CarveMe curates models based on the BiGG
Models database, it is possible to use the ModelPolisher to annotate and autocomplete
the initial draft reconstructions. Moreover, the ModelPolisher can fix apparent errors in
the models and add annotations by using mappings from AnnotateDB [81].

Annotations
Annotations are particularly helpful when comparing various models. Therefore, a high
degree of annotations for all model instances is essential for a high-quality GEM. The
ModelPolisher adds numerous annotations to the model’s metabolites and reactions. The
genes, however, are strain-specific, and their annotations need to be included addition-
ally. To curate GEMs with CarveMe, we can use the annotated gene or protein se-
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quence files from the National Center for Biotechnology Information (NCBI) database
[82]. CarveMe then includes the NCBI gene identifier as GPRs into the model. One
possibility to further annotate the genes is to map the NCBI gene or protein identifiers to
their respective locus tags. These locus tags are also used in KEGG as gene identifiers
of specific species and strains. KEGG has additional cross-references to other databases,
including UniProt [83] and NCBI protein identifiers [82].

In addition to cross-references to other databases, the model’s instances can be anno-
tated using Systems Biology Ontology (SBO) terms [84]. The SBO comprises a set of
controlled, relational vocabularies used in systems biology and computational modeling.
SBO terms provide semantic information to a model’s standard description to facilitate
its efficient reuse. We developed a pipeline that automatically assigns SBO terms to enti-
ties in SBML models. Although memote reports missing terms and suggests appropriate
ones, we aimed to increase the information content by assigning as specific SBO terms
as possible, especially for the reactions. The SBO terms for metabolites and genes are
SBO:0000247 for simple chemicals and SBO:0000243 for genes. These terms are al-
ready the most specific descriptions of the model instances. For reactions, however, a
variety of SBO terms exists. The most general term is SBO:0000176 for biochemical
reactions. Our pipeline uses the Enzyme Commission (EC) numbers stored in the an-
notations of reactions to identify more specific SBO terms. These specific terms range
from acetylations, phosphorylations, methylations, and glycosylations, to hydrolysis and
various transport reactions. Using SBO terms that describe the biochemical reaction in
more detail, we facilitate the analysis and reuse of the curated models and, thus, comply
with the FAIR data principle.

Evidence and Conclusion Ontology (ECO) terms can describe the types of scientific
evidence for a model’s instances. These terms give information about the type of ev-
idence within the biological research domain, such as laboratory experiments, compu-
tational methods, or literature curation [85]. The curator can store information about
the confidence and evidence of reactions using ECO terms. We developed a workflow
to automatically annotate reactions with ECO terms based on their confidence score.
Reactions are first checked for their GPRs. If no GPR is available, the reaction is as-
signed the ECO term with the lowest confidence. Subsequently, each gene is looked up
in the UniProt database, and information about the corresponding protein’s existence is
extracted. ECO terms are then assigned following the reported protein existence level.
As for the SBO terms, the addition of ECO terms facilitates the reusability of the model
and, thus, complies with the FAIR data principle.

Besides adding SBO and ECO terms, we can further add the pathways to the reactions’
annotations, in which the reactions occur. To do so, we can extract the KEGG identifiers
from the annotations and looked up associated pathways. These pathways are added to
the annotations using the biological qualifier BQB OCCURS IN.
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Corrections and improvements

As automatically curated reconstructions can contain obscurities, inaccuracies, or er-
rors, several correction and improvement steps are required. The metabolites’ chemical
formulas and charges are retrieved from the universal BiGG model. However, several
chemical formulas and charges are reported for multiple metabolites in the BiGG Mod-
els database. The presence and accuracy of the chemical formula and the charge needs to
be verified for each metabolite. In cases of uncertainty, other databases, such as Model-
SEED [72] or BioCyc [86], can be browsed to guide the decision for choosing the correct
chemical formula and charge.

When every metabolite has a chemical formula and charge, reactions can be evaluated
for their mass and charge balance. Imbalanced reactions are indicators for inconsisten-
cies or errors in the model. These imbalances can be explained by (i) incorrectly chosen
chemical formulas or charges, (ii) missing metabolites in the reaction equation, such
as protons, or (iii) a knowledge gap and, consequently, missing information. For the
first two reasons, literature research and look-ups in already mentioned databases may
dissolve the imbalances. A knowledge gap can only be closed with new insights and ad-
ditional information. This information can, e.g., be obtained by laboratory experiments.
When looking at imbalanced reactions, we must consider that pseudoreactions might not
be balanceable. Examples of imbalanced pseudoreactions are exchange, sink, demand,
or biomass reactions.

Besides imbalanced reactions, a model can contain orphan and dead-end metabolites.
These metabolites are characterized by their low connectivity within the metabolic net-
work. Orphan metabolites are only consumed but not produced by reactions, whereas
dead-end metabolites are only produced but not consumed. We can identify additional
connecting reactions by browsing different databases, including KEGG [71] and BioCyc
[86]. These reactions can then be added to the model to increase the connectivity of the
orphan and dead-end metabolites.

GEMs can contain thermodynamically infeasible energy-generating cycles (EGC).
Such cycles can produce energy, e.g., in the form of ATP, without consuming any nu-
trients. Fritzemeier et al. summarized 14 energy metabolites that need to be checked
for EGCs [87]. A dissipation reaction needs to be added to the model for each energy
metabolite. Each dissipation reaction is sequentially maximized after constraining all up-
take reactions to zero. Objective values unequal to zero indicate the presence of EGCs,
which subsequently need to be eliminated.

CarveMe adds a universal biomass objective function (BOF) to the model. We can
improve and specify the BOF of our target organism to increase the predictive value of
our model. To do so, we need additional information and data, such as genomics, tran-
scriptomics, proteomics, metabolomics, or lipidomics. The Python package BOFdat can
generate and improve a BOF based on organism-specific experimental data [88]. With
the provided experimental data, this tool can calculate the stoichiometric coefficients for
major macromolecules, inorganic ions and coenzymes, and remaining species-specific
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metabolic biomass precursors.

Model extension
As reactions are added to the model to reduce the number of orphan or dead-end metabo-
lites, the model can be further extended to increase its scope. The model can be expanded
using the information from additional databases. For example, if the organism and strain
of interest have an entry in the KEGG database, we can search for metabolic genes that
are so far not included in the model. These genes are linked to reactions and can be incor-
porated into the model. Another helpful resource is the BioCyc database, where strain-
specific information is stored. Depending on the organism, further organism-specific
databases might exist. It should be avoided to add orphan or dead-end metabolites or
reactions that are not connected to the rest of the network during the model extension
step. While adding new reactions, metabolites, and genes, we need to consider the pre-
viously mentioned steps and issues concerning annotations, corrections, and improve-
ments. Only reactions associated with strain-specific genes should be added. Including
relevant reactions, metabolites, and genes increases the model’s scope and, thus, its pre-
dictive value.

Model validation
We can compare the in silico results to laboratory experiments to evaluate the model’s
predictive value. As already highlighted in the previous chapter in Figure 3.2, we can
evaluate the model’s predictive value by testing the growth behavior of our organism
in defined environments and under certain growth conditions or confirming described
auxotrophies. Physiological features or gene essentialities can additionally be used to
evaluate and validate the model. These laboratory results might be obtained from already
published literature. If possible, own experiments or collaborations with laboratories can
be conducted to verify model predictions. The more accordance we observe between
laboratory and simulation results, the higher our curated model’s predictive value. Thus,
comparing as many physiological features, growth behaviors, auxotrophies, and gene
essentialities as possible, is highly recommended. While comparing in silico with in
vitro results, we must consider the strains. If laboratory results are only available for
a different strain, we cannot guarantee the accordance between the in silico and in vitro
results. Additionally, we need to consider and simulate the setting in which the laboratory
data was collected. For example, the essentiality of genes is dependent on the growth
conditions. Thus, simulating the laboratory growth conditions under which the essential
genes were determined is essential to make the results comparable.

As we are particularly interested in microbes colonizing the human nose, our model
validation should also include evaluating the in silico growth behavior in the nasal en-
vironment. The synthetic nasal medium (SNM) was developed based on metabolomics
data of human nasal secretions to mimic the environmental conditions in the human
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nose [89]. As SNM is chemically defined, we can simulate a microbe’s growth in this
medium. If the organism of interest does not grow in SNM but is reported to occur in the
human nose, we have to identify the reason for the missing growth. One reason could
be the absence of additionally required reactions in the model. These reactions need to
be identified by literature research and model analyses. Subsequently, they need to be
added to the model. Another reason could be the isolated examination of the microbe.
In the human nose, a magnitude of commensals and pathogens exists and interacts with
each other. During these interactions, essential metabolites can be exchanged that are
not part of the SNM. We need to identify such metabolites required for growth but not
defined in SNM. In following co-culture or community model simulations and in in vitro
experiments, we can evaluate the role of the identified metabolites.

Model publication
In a final step, the model should be made publicly available to the scientific community
to meet the FAIR data principle. For this reason, the model should be uploaded to a
model database to make it findable and accessible. Suitable databases are, for instance,
the BiGG Models database or the BioModels database. To ensure the interoperability
of the model, we need to provide a valid SBML file. As the model includes numer-
ous annotations after the manual refinement steps, the reusability is assured. Thus, a
novel high-quality GEM is available to the scientific community. The whole protocol on
building high-quality GEMs of (nasal) bacteria can be found in Appendix A on page 53.

Example 1: Novel GEM of Dolosigranulum pigrum
Dolosigranulum pigrum is a relatively newly identified opportunistic pathogen [90]. It is
a Gram-positive coccus growing in pairs, tetrads, and clusters [91]. D. pigrum is sporad-
ically associated with diseases [90, 91]. However, it is also reported to have a potential
probiotic effect as its presence is associated with a healthy upper respiratory tract (URT)
and a resistance to recurrent ear infections [92]. The URT also includes the human nose,
where D. pigrum plays a pivotal role in the nasal microbiome [40]: Its presence is nega-
tively associated with Staphylococcus aureus and Streptococcus pneumoniae, both listed
in the WHO’s priority pathogens list (see Table 1.1). Brugger et al. even identified
an inhibiting effect on S. aureus, strengthening D. pigrum’s role as a potential probi-
otic. However, the overall mechanism behind this inhibiting effect remains unclear but
could be evaluated using GEMs of the organisms of interest. As reported in the previous
section, 114 GEMs of S. aureus are currently available, but until 2021 none of D. pi-
grum. Due to its increasing importance in microbial communities and interactions with
pathogens, we curated the first GEM of D. pigrum strain 83VPs-KB5.

We followed the steps described in this section to curate a high-quality GEM. As no
model of D. pigrum existed in any modeling database, we generated a first draft recon-
struction using CarveMe. We added extensive annotations for metabolites, reactions,
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and genes, including cross-references to various databases and SBO terms. Reactions
were further annotated with ECO terms and associated KEGG pathways. In manual
curation steps, we checked the chemical formulas and charges of the metabolites, cor-
rected mass and charge imbalanced reactions, and reduced the amount of orphan and
dead-end metabolites. We extended the model using the KEGG database by searching
for metabolic genes missing in the model and their associated reactions. The model
was then validated using all to date publicly available experimental data. These exper-
imental results included several auxotrophies and the biosynthesis of L-glutamine [40].
We confirmed these auxotrophies and the biosynthesis in our in silico simulations. Ad-
ditionally, the carbohydrate metabolism was investigated. Brugger et al. found that
D. pigrum does not have a tricarboxylic acid (TCA) cycle, which we could confirm
with our model. We evaluated the growth behavior in four different environments in the
last verification step, including the chemically defined SNM mimicking the human nose
[93]. In single culture, three additional metabolites were required for growth in SNM:
L-isoleucine and L-methionine, for which auxotrophies were already reported, and meso-
2,6-diaminoheptanedioate. For the latter, no biosynthetic pathways could be identified in
any database, suggesting either a knowledge gap or an unknown auxotrophy [94].

As D. pigrum is difficult to cultivate in laboratories, we defined a minimal medium.
This minimal medium contains 13 amino acids that cannot be synthesized de novo by
D. pigrum, 13 trace minerals, D-glucose as carbon source, tree vitamins, two addi-
tional compounds, and oxygen to enable in silico aerobic growth. The detailed minimal
medium composition can be retrieved from Table 2 of the underlying publication [94] in
Appendix B.2 on page 65. This example of the minimal medium definition shows that
model-driven hypotheses could help laboratory experiments.

To meet the FAIR data principle described in the previous section, our model is avail-
able in the BioModels database as a valid SBML Level 3 version 1 [95] file under the
accession number MODEL2012220003. With 86%, the model holds a high memote score,
confirming its reusability and a high degree of annotations.

Example 2: Updated GEM of Pseudomonas aeruginosa
The described protocol to curate high-quality GEMs can not only be applied to gener-
ate new models. It can also be used to update and refine already existing models. We
conducted several steps on the Pseudomonas aeruginosa PA14 model from Bartell et al.
[96]. The initial GEM was published in 2007 as SBML Level 2 Version 1 [97] file on the
lab’s website. It has a memote score of 26%.

We first upgraded the SBML version to the latest SBML edition (Level 3) [61] and en-
abled the fbc-plugin [98] and the groups-plugin [99]. The low total memote score of the
initial model indicates a low degree of annotations. As mentioned previously, ModelPol-
isher mainly relies on identifiers from the BiGG Models database. The P. aeruginosa
PA14 model, however, contains identifiers from the ModelSEED database. We manually
and semi-automatically retrieved the respective BiGG Models identifier for all metabo-
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lites and reactions, where available. These identifiers were added as annotations. With
the help of the ModelPolisher, we added cross-references to several other databases, such
as KEGG, MetaNetX [100], or MetaCyc [101]. Using the KEGG annotations, we added
associated KEGG pathways to the reactions and annotations to the genes. Finally, we
also added SBO terms to the model instances.

After improving the annotations, we corrected mass and charge imbalances. In to-
tal, 137 changes were performed to eliminate as many mass and charge imbalances as
possible. These changes mainly included adding or removing protons from reactions or
changing the chemical formulas or charges of metabolites based on literature or database
evidence. During the test for EGC, we saw that the model was able to generate ATP. This
EGC was resolved by adding the periplasmic compartment and correcting the reversibil-
ity of four reactions in the electron transport chain. The BOF was evaluated and updated
to include lipopolysaccharides present in Gram-negative bacteria [102]. It was also re-
organized into macromolecular categories to better represent the components required
for growth.

The KEGG and MetaCyc database were used to incorporate additional reactions,
metabolites, and genes to increase the model’s predictive value. Reactions were only
added if sufficient evidence was provided in the literature. The updated and corrected
model was evaluated using gene essentiality, carbon utilization, and growth predictions.
Additionally, transcriptomics data was integrated into the updated P. aeruginosa PA14
model.

With these changes and updates, the memote score was increased to 88%. The fi-
nal updated model is available as SBML Level 3 Version 1 [95] file in the BioModels
database under the accession number MODEL2106110001 [103].
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3.3 Identifying potential antiviral targets against
SARS-CoV-2

After we elaborated on the characteristics of high-quality GEMs and how to build them,
we want to focus on working with these models. Having high-quality models with a good
predictive value enables us to create model-driven hypotheses. The advantage of such
model-driven hypotheses is their targeted and tailored validation in laboratory experi-
ments. Thus, these targeted laboratory experiments may reveal more promising results
than conventional experiments. Additionally, positive results may be retrieved faster.
Fast and positive results are crucial for questions of high urgency and high importance,
like in a worldwide pandemic.

In December 2019, a pneumonia outbreak in Wuhan, China, became the starting point
of the worldwide COVID-19 pandemic. COVID-19 is caused by the severe acute res-
piratory syndrome coronavirus type 2 (SARS-CoV-2). In November 2021, almost two
years after the first reported COVID-19 cases, more than 250 million cases and over
5 million deaths were registered [104]. During the first year of the pandemic, the de-
velopment of vaccines gained a lot of attention and governmental sponsorship. Several
vaccines against SARS-CoV-2 are currently available. However, the number of approved
therapeutic strategies is still minimal.

We wanted to fill the gap of the urgently needed therapeutic strategies. In 2018, Aller
et al. published a methodology to curate integrated human-virus metabolic models [105].
As viruses rely on the host cell’s metabolism, a relevant human cell type model was
required for our analyses to be infected with SARS-CoV-2 in silico. Aller et al. used a
model of human alveolar macrophages as proof of concept for their methodology. This
human alveolar macrophage model was published in 2010 by Bordbar et al. to give
insight into Mycobacterium tuberculosis infections [106]. As the model was already
used for several studies and human alveolar macrophages are relevant for SARS-CoV-2
infections [107, 11, 10], we chose this cell type as the host cell. For the integration of
the virus, we first used the published annotated genome sequence of SARS-CoV-2 to
calculate the stoichiometric coefficients of the viral biomass objective function (VBOF).
In subsequent analyses, we additionally used sequencing information about the most
common mutational variants of the novel coronavirus. In particular, we evaluated the
following variants: (i) Alpha, lineage B.1.1.7, (ii) Beta, lineage B.1.351, (iii) Gamma,
lineage P.1, (iv) Delta, lineage B.1.617, and (v) Epsilon, lineage B.1.427/429. At the
time of evaluation, all variants were either variants of concern (VOC) or variants of
interest (VOI) [108, 109]. By November 2021, the Alpha and Epsilon variants have
become de-escalated variants, while the Beta, Gamma, and Delta variants are still VOC
[110].

We developed a pipeline to automatically calculate the VBOF of the novel corona-
virus and its variants. Besides the already mentioned annotated genome sequences, we
incorporated information about the virus replication method, the number of genomic

23



Chapter 3 Results

copies per virion, and information about the copy number of the four structural proteins
spike (S), envelope (E), membrane (M), and nucleocapsid (N). The nucleotide invest-
ment, the amino acid investment, the ATP requirements, and the phosphate liberation
were calculated with this information. The stoichiometric coefficients were estimated
with the total viral molar mass, and the final VBOF was constructed [111]. In subse-
quent analyses, we further elaborated on the effect of incorporating lipids into the VBOF.
As Aller et al. did not consider lipids in their VBOF, we extended their methodology
to include relevant fatty acids occurring in the capsid of SARS-CoV-2 into the VBOF
[112].

Having the automated pipeline to construct VBOFs at hand, we evaluated the host’s
metabolic changes upon infections with the SARS-CoV-2 reference genome and its men-
tioned mutational variants. We wanted to identify potential antiviral targets by knock-
ing out every reaction and evaluating the effect on the host’s maintenance and the vi-
ral replication capacity. Promising antiviral targets were defined as reactions whose
knock-out significantly decreased or completely inhibited viral replication while only
minimally affecting the host’s maintenance. With this approach, we identified guanylate
kinase1 (GK1) as an antiviral target against SARS-CoV-2. GK1 was even robust against
the occurring mutational variants.

With this pipeline and high-quality GEMs, the identification of potential antiviral tar-
gets can be extended. On the one hand, infections with other viruses can be simulated,
as already shown for the mutational variants of SARS-CoV-2. The WHO published a
high-priority pathogens list for bacterial infections (see Table 1.1) and for viral infec-
tious diseases. The latter list includes, for example, the nairovirus, the Marburg virus,
the Ebola virus, and the family of human coronaviruses [113]. This list could guide fur-
ther antiviral target identification studies. On the other hand, we can also vary the host
cell using our pipeline to study the effect of specific virus infections in various host cell
types. We can identify more robust antiviral targets using different host cell types for
the integrated host-virus interaction models. One possibility is to use human single-cell
sequencing data and available tools to curate cell-specific GEMs. These GEMs can then
be used as input for our pipeline and subsequent identification of robust antiviral targets.
By combining these two approaches of varying human host cells and the infecting virus,
broadly-acting antiviral targets may eventually be identified.

With this example of identifying potential antiviral targets against SARS-CoV-2, we
showed that well-curated, high-quality models could be helpful for model-driven dis-
coveries and hypotheses. Potential targets are quickly identified in silico and could be
validated in targeted laboratory experiments. Especially during a world-threatening pan-
demic, fast and efficient ways to identify therapeutic approaches are imperative. Besides
the high predictive value of the model, the availability and reusability of the models are
of high importance to enable the replicability of the results and the extension to fur-
ther viruses or cell types. With these tools and high-quality models at hand, we might
be better prepared for future pandemics and a faster and more efficient development of
therapeutic approaches.
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Figure 3.3: Procedure to identify potential antiviral targets against SARS-CoV-2. Integrated host-
virus interaction models can be used to examine metabolic shifts in the host’s metabolism upon viral
infection. We chose human alveolar macrophages as host cells and simulated infections with the mu-
tational variants Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1 or B.1.28), Delta (B.1.617), and Epsilon
(B.1.427/429). In silico knock-out experiments were conducted to investigate metabolic necessities for the
host cell’s maintenance and the viral replication capacity. Knock-outs that significantly inhibited the viral
replication capacity while harming the host cell at a minimum level were reported as potential antiviral
targets.
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The important thing is not to stop ques-
tioning. Curiosity has its own reason
for existence. One cannot help but be in
awe when he contemplates the myster-
ies of eternity, of life, of the marvelous
structure of reality. It is enough if one
tries merely to comprehend a little of
this mystery each day.

— Albert Einstein 4
Discussion and Perspectives

In this thesis, I demonstrated (I) how the quality and predictive value of existing GEMs
can be assessed, (II) how models of high quality can be curated, and (III) how these
models can be used for model-driven discoveries.

When we assess a GEM’s quality and predictive value, the result might be variable,
depending on the research question. If someone is, for example, interested in evaluating
a specific metabolic pathway, then one might focus on a model with more detailed infor-
mation on that specific pathway. If someone, however, is interested in predicting knock-
out experiments, then one would choose a model with the highest accordance with gene
essentiality data. These two examples demonstrate that there might be no unique answer
for the ‘best’ metabolic model. The answer depends on the research question and the
focus of interest. Additionally, not all information or experimental data is available for
every organism or strain. Thus, comparing model predictions with in vitro experiments
is not always possible. This lack might not necessarily imply a model of poorer quality.
It rather illustrates the need for further reasonable experiments to fill knowledge gaps.
However, one should keep in mind to compare model predictions to experimental data as
soon as they become available. Nonetheless, all models should meet the FAIR data prin-
ciple to be findable, accessible, interoperable, and reusable. These aspects should apply
to all GEMs to ensure good scientific practice when working with models. As mentioned
before, storing valid models in modeling databases makes them findable and accessible
and, thus, reusable. The use of standard formats, such as the SBML file format, is highly
recommended to ensure the interoperability of the GEM. To conclude, high-quality mod-
els need to meet the FAIR data principle. The decision for a good model, however, might
depend on the user’s research question.

If no model of an organism is available, or the model is of insufficient quality for a
research question, we need to curate a model. In this thesis, we focused on curating a
model based on a CarveMe draft. Several other software and tools are currently avail-
able for building and curating GEMs – and even more will probably become public.

27



Chapter 4 Discussion and Perspectives

As mentioned in Chapter 3.2, all these tools have their strengths, advantages, but also
weaknesses. Depending on the used tool or software, the pipeline proposed in this thesis
might be adapted. The same accounts for newer versions of CarveMe. The standards
for the SBML file format, the FAIR data principle, and the MIRIAM principle need to
be monitored. Novel or updated standards need to be included in the pipeline to guar-
antee the high quality of GEMs. Furthermore, we need to keep in mind that models
can constantly be improved. Every day, new data is collected that can be incorporated
into our models. For example, the first GEM of Escherichia coli was published in 2000
[52]. As E. coli is one of the best-studied microbes, a wealth of data is available for that
organism. Thus, several updates, extensions, and expansions of E. coli GEMs are avail-
able: 20 E. coli GEMs are currently uploaded in the BiGG Models database [56] and
21 in the BioModels database [57]. Besides the adaption of the pipeline for other tools
and novel standards, the pipeline might further be adjusted for personal use and research
focus. We are highly interested in the human nasal microbiome and, thus, added the
growth evaluation in the synthetic nasal medium to the pipeline. Researchers interested
in other environments, phenotypes, or other physiological and metabolic features might
want to add additional steps or modify existing ones in the pipeline. However, the model
annotation, validation, and publication should always be part of the pipeline to ensure a
high-quality model and to meet the FAIR data principle.

We can formulate model-driven hypotheses and make model-driven discoveries with
a high-quality GEM. However, we have to keep in mind that we use models. A model is
a simplified representation of reality. As it is a simplification, the model does not include
all details and information as present in reality. Thus, the simplification can result in the
loss of potentially essential information and inaccurate predictions. For that reason, it
is crucial to test and validate the model’s predictive value with already existing labora-
tory data. By using GEMs with a high predictive value, we can formulate more precise
model-driven hypotheses. These model-driven hypotheses can form an educated guess
for targeted experiments or tailor the search area. Furthermore, with GEMs, we look at
the systemic level and not the molecular level of individual metabolites or reactions. This
systemic view can identify off-target effects that might be missed when focusing on indi-
vidual reactions or pathways. In the example in Chapter 3.3, we identified potential anti-
viral targets in human alveolar macrophages against SARS-CoV-2. Aller et al. validated
this technique for targets against Chikungunya, Dengue, and Zika viruses: Their predic-
tions recovered known targets for existing antiviral drugs [105]. As the technique was
already validated for other viruses, we are confident about our identified antiviral targets
against SARS-CoV-2. Model-driven hypotheses and discoveries, however, have a much
larger field of application than identifying potential antiviral targets. We can predict,
for example, growth requirements in a specific environment to facilitate or enable a mi-
crobe’s cultivation in vitro. Other applications include developing or engineering strains
to produce specific metabolites, drug targeting in pathogens in general, understanding
the metabolism of humans, animals, and pathogens, modeling of interactions between
different cells or organisms, and predicting enzyme functions [47]. This wide range of
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applications illustrates the usefulness of GEMs: We can rapidly generate experimentally
testable hypotheses. By experimentally validating those model-driven hypotheses, we
gain novel insights and data, which in turn can be incorporated into the model. This
iterative process refines the GEMs and increases their predictive value, by which even
better and more accurate model-driven hypotheses can be formulated.

Perspectives
The pipeline proposed in Chapter 3.2 can be used to curate other GEMs. As we are par-
ticularly interested in the human nasal microbiome, we can curate, update, or upgrade
models of nasal inhabitants. Liu et al. have identified bacteria with high prevalence and
proportional abundance in seven distinct nasal community state types. Amongst these
bacteria are Moraxella spp., such as Moraxella catarrhalis [114]. M. catarrhalis is a
human-restricted pathogen of the upper and lower respiratory tract [115]. In the elderly
population, however, a nasal microbiome dominated by Moraxella species is associated
with respiratory health [116]. Due to its high prevalence in one of the nasal community
state types, its association with respiratory health in the elderly, and its pathogenic prop-
erties, a GEM can help to elucidate the beneficial or harmful interplay with other nasal
commensals or pathogens.

Another highly prevalent commensal in the human nose is Staphylococcus epidermidis
[114, 25], which contributes to a healthy maturation of the nasal microbiome [117].
S. aureus’s colonization is negatively associated with S. epidermidis’ presence [118].
Additionally, S. epidermidis mediates antiviral protection against influenza A virus in-
fections [119]. With a GEM of this commensal, not only the role of host-bacterial in-
teractions in antiviral responses might be further investigated. It might also give insight
into its negative correlation with S. aureus.

A third highly prevalent group of commensals in the human nasal microbe include
Corynebacterium species. A low prevalence of Corynebacterium is a predictor of high
S. aureus abundance [114]. Artificial implantation of Corynebacterium species into hu-
man noses even resulted in eradicating S. aureus [120]. One theory for this eradication
is that a commensal competition including virulence components may hold the poten-
tial for novel antimicrobial compounds [121]. Such competitive interactions could be
investigated using high-quality GEMs.

These were just three examples of how this thesis’s work could be extended and ap-
plied to additional relevant and interesting microbes in the human nose. However, the
application is not restricted to nasal bacteria. Almost any bacterium’s metabolism can be
simulated in silico when basic information, like a annotated genome sequence, is avail-
able. Additionally, we can expand the scope to viral infections, as shown in Chapter 3.3.
The proposed pipeline to identify potential antiviral targets can be applied to other in-
fecting viruses, such as the Dengue, influenza, or measles virus. Furthermore, not only
human alveolar macrophages can be virally infected in silico; The pipeline can be ex-
tended to any other cell type with an existing GEM. These features make the proposed
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pipelines and applications highly flexible, adaptable, and reusable.

Conclusion
This thesis provided an overview of quality measures for evaluating different aspects of
GEMs. These aspects include compliance with standards, such as the FAIR data prin-
ciple, the inclusion of laboratory data, and the predictive value. The quality measures
were applied to evaluate all currently available models of the human pathogen S. aureus
responsible for severe infections with high morbidity and mortality. High-quality models
with a high predictive value help us better understand an organism, identify metabolic
capabilities in health and disease, identify potential targets for treatment interventions,
and analyze the interplay between different cells and organisms. If, however, no high-
quality model exists, a novel GEM needs to be curated. For that purpose, we developed
and adapted a guide to curate high-quality GEMs, especially of nasal bacteria. We can
use such models for answering relevant and urgent questions of our time quickly and
efficiently. These questions are, however, not restricted to bacteria or the nasal environ-
ment: they can be expanded to various pathogens, including viruses, cells, or even tissues
and organs in diverse environments. Thus, we evaluated not only the pathogen S. au-
reus and the commensal D. pigrum in the nasal environment but also identified potential
antiviral targets for human alveolar macrophages infected with SARS-CoV-2. With the
transition of the pathogen and infection site, the versatile and adaptable applicability
of the methods in systems biology is demonstrated. As we showed how high-quality
genome-scale metabolic models can be curated easily and efficiently, they can become
an indispensable constituent in future research.

30



Bibliography

[1] Ensheng Dong, Hongru Du, and Lauren Gardner. An interactive web-based dash-
board to track COVID-19 in real time. The Lancet Infectious Diseases, 20(5):533–
534, 2020. doi:10.1016/S1473-3099(20)30120-1.

[2] Lizzie Wade. From black death to fatal flu, past pandemics show why people on
the margins suffer most. Science, 2020.

[3] Peter Spreeuwenberg, Madelon Kroneman, and John Paget. Reassessing the
Global Mortality Burden of the 1918 Influenza Pandemic. American Journal of
Epidemiology, 187(12):2561–2567, 2018. doi:10.1093/aje/kwy191.

[4] Niall P. A. S. Johnson and Juergen Mueller. Updating the accounts: Global mor-
tality of the 1918-1920 ‘spanish’ influenza pandemic. Bulletin of the History
of Medicine, 76(1):105–115, 2002. URL: http://www.jstor.org/stable/
44446153.

[5] Edwin D. Kilbourne. Influenza pandemics of the 20th century. Emerging Infec-
tious Diseases, 12(1):9–14, 2006. doi:10.3201/eid1201.051254.

[6] Nucleotide [Internet]. Bethesda (MD): National Library of Medicine (US), Na-
tional Center for Biotechnology Information; [1988]. Wuhan seafood market
pneumonia virus isolate Wuhan-Hu-1, complete genome - Nucleotide - NCBI
– Accession No. NC 045512.1. URL: https://www.ncbi.nlm.nih.gov/

nuccore/NC_045512.1.

[7] Yinon M. Bar-On, Avi Flamholz, Rob Phillips, and Ron Milo. SARS-CoV-2
(Covid-19) by the numbers. eLife, 9, 2020. arXiv:2003.12886, doi:10.7554/
eLife.57309.

[8] Yu Chen, Qianyun Liu, and Deyin Guo. Emerging coronaviruses: Genome struc-
ture, replication, and pathogenesis. Journal of Medical Virology, 92(4):418–423,
2020. doi:10.1002/jmv.25681.

[9] Chaolin Huang, Yeming Wang, Xingwang Li, Lili Ren, Jianping Zhao, Yi Hu,
Li Zhang, Guohui Fan, Jiuyang Xu, Xiaoying Gu, Zhenshun Cheng, Ting Yu,
Jiaan Xia, Yuan Wei, Wenjuan Wu, Xuelei Xie, Wen Yin, Hui Li, Min Liu,
Yan Xiao, Hong Gao, Li Guo, Jungang Xie, Guangfa Wang, Rongmeng Jiang,
Zhancheng Gao, Qi Jin, Jianwei Wang, and Bin Cao. Clinical features of pa-
tients infected with 2019 novel coronavirus in Wuhan, China. The Lancet,
395(10223):497–506, 2020. doi:10.1016/S0140-6736(20)30183-5.

31

http://dx.doi.org/10.1016/S1473-3099(20)30120-1
http://dx.doi.org/10.1093/aje/kwy191
http://www.jstor.org/stable/44446153
http://www.jstor.org/stable/44446153
http://dx.doi.org/10.3201/eid1201.051254
https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.1
https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.1
http://arxiv.org/abs/2003.12886
http://dx.doi.org/10.7554/eLife.57309
http://dx.doi.org/10.7554/eLife.57309
http://dx.doi.org/10.1002/jmv.25681
http://dx.doi.org/10.1016/S0140-6736(20)30183-5


Bibliography

[10] Louise Dalskov, Michelle Møhlenberg, Jacob Thyrsted, Julia Blay-Cadanet,
Ebbe Toftgaard Poulsen, Birgitte Holst Folkersen, Søren Helbo Skaarup, David
Olagnier, Line Reinert, Jan Johannes Enghild, Hans Jürgen Hoffmann, Chris-
tian Kanstrup Holm, and Rune Hartmann. SARS-CoV-2 evades immune de-
tection in alveolar macrophages. EMBO reports, 21(12):e51252, 2020. doi:

10.15252/embr.202051252.

[11] Hin Chu, Jasper Fuk-Woo Chan, Yixin Wang, Terrence Tsz-Tai Yuen, Yue Chai,
Yuxin Hou, Huiping Shuai, Dong Yang, Bingjie Hu, Xiner Huang, Xi Zhang,
Jian-Piao Cai, Jie Zhou, Shuofeng Yuan, Kin-Hang Kok, Kelvin Kai-Wang To,
Ivy Hau-Yee Chan, Anna Jinxia Zhang, Ko-Yung Sit, Wing-Kuk Au, and Kwok-
Yung Yuen. Comparative Replication and Immune Activation Profiles of SARS-
CoV-2 and SARS-CoV in Human Lungs: An Ex Vivo Study With Implications for
the Pathogenesis of COVID-19. Clinical Infectious Diseases, 71(6):1400–1409,
2020. doi:10.1093/cid/ciaa410.

[12] Muge Cevik, Krutika Kuppalli, Jason Kindrachuk, and Malik Peiris. Virology,
transmission, and pathogenesis of SARS-CoV-2. The BMJ, 371, 2020. doi:

10.1136/bmj.m3862.

[13] Mona Sadat Mirtaleb, Amir Hossein Mirtaleb, Hassan Nosrati, Jalal Heshmat-
nia, Reza Falak, and Reza Zolfaghari Emameh. Potential therapeutic agents to
COVID-19: An update review on antiviral therapy, immunotherapy, and cell ther-
apy. Biomedicine and Pharmacotherapy, 138:111518, 2021. doi:10.1016/j.

biopha.2021.111518.

[14] Zeinab Abdelrahman, Mengyuan Li, and Xiaosheng Wang. Comparative Review
of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A Respiratory Viruses.
Frontiers in Immunology, 11:2309, 2020. doi:10.3389/fimmu.2020.552909.

[15] Vincent C.C. Cheng, Susanna K.P. Lau, Patrick C.Y. Woo, and Yung Yuen
Kwok. Severe acute respiratory syndrome coronavirus as an agent of emerging
and reemerging infection. Clinical Microbiology Reviews, 20(4):660–694, 2007.
doi:10.1128/CMR.00023-07.

[16] Alan J. Hay and John W. McCauley. The WHO global influenza surveillance and
response system (GISRS) — A future perspective. Influenza and other Respira-
tory Viruses, 12(5):551–557, 2018. doi:10.1111/irv.12565.

[17] Rita M. Meganck and Ralph S. Baric. Developing therapeutic approaches
for twenty-first-century emerging infectious viral diseases. Nature Medicine,
27(3):401–410, 2021. doi:10.1038/s41591-021-01282-0.

32

http://dx.doi.org/10.15252/embr.202051252
http://dx.doi.org/10.15252/embr.202051252
http://dx.doi.org/10.1093/cid/ciaa410
http://dx.doi.org/10.1136/bmj.m3862
http://dx.doi.org/10.1136/bmj.m3862
http://dx.doi.org/10.1016/j.biopha.2021.111518
http://dx.doi.org/10.1016/j.biopha.2021.111518
http://dx.doi.org/10.3389/fimmu.2020.552909
http://dx.doi.org/10.1128/CMR.00023-07
http://dx.doi.org/10.1111/irv.12565
http://dx.doi.org/10.1038/s41591-021-01282-0


Bibliography

[18] Ruifang Zhang, Karen Eggleston, Vincent Rotimi, and Richard J. Zeckhauser. An-
tibiotic resistance as a global threat: Evidence from China, Kuwait and the United
States. Globalization and Health, 2:6, 2006. doi:10.1186/1744-8603-2-6.

[19] I. Roca, M. Akova, F. Baquero, J. Carlet, M. Cavaleri, S. Coenen, J. Cohen,
D. Findlay, I. Gyssens, O. E. Heure, G. Kahlmeter, H. Kruse, R. Laxminarayan,
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Edirisinghe, José P. Faria, Adam M. Feist, Georgios Fengos, Ronan M.T. Flem-
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as a potential target for antiviral therapies against SARS-CoV-2. Bioinformatics,
36(Supplement 2):i813–i821, 2020. doi:10.1093/bioinformatics/btaa813.

[112] Alina Renz, Lina Widerspick, and Andreas Dräger. Genome-Scale Metabolic
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Appendix A How to build high-quality GEMs

Protocol: How to build high-quality GEMs

 

 

1 How to build GEMs 
 

Draft reconstruction 

How to build (nasal)  
genome-scale metabolic models (GEMs) 

 
 

▢ 1. Decide on an organism of interest 
Which organism do you want to work on?  _____________________________ 
Which specific strain?     _____________________________ 

 

▢ 2. Browse different databases 
Search in different databases for already existing models of your organism: 

▢ BioModels database 
  ▢ Path2Models database 
  ▢ BiGG Models database  
  ▢ Virtual Metabolic Human (VMH) database 
  ▢ Further databases:  _____________________________ 
 
 
 
 
▢ 3. Generate a first draft of your GEM with CarveMe 

CarveMe version: ____________ 
Diamond version:  ____________ 
CPLEX version:   ____________ 

 
NCBI-accession number of the genome:  _____________________________ 
KEGG-ID (if available):     _____________________________ 

 

▢ 4. Initially analyze the model 
Initial properties of the model:  
  __________ Reactions   
  __________ Metabolites   
  __________ Genes  
   
SBML-Version:  __________  
Memote score: __________ 

 
How many genes does the organism have?      __________ 
How many genes code for hypothetical proteins?     __________ 
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2 How to build GEMs 
 

Annotations 

How many genes are still missing in the model (excluding hypothetical)?  __________ 
 
 
 
 
▢ 5. Add annotations 

Add annotations to the model. Either extract them from the 'notes' field or use 
ModelPolisher. When you use the ModelPolisher, remember to re-check all bounds, the 
objective function, and the genes! 

 
ModelPolisher version:  __________ 
▢ Bounds 
▢ Objective function 
▢ Genes 

 
Memote score:   __________ 
 

▢ 6. Add gene annotations 
If your organism also occurs in the KEGG database, add the KEGG gene IDs (locus tags) 
as gene annotations. The KEGG REST API can subsequently be used to add cross-
references to gene IDs in other databases. 

 
Memote score:   __________ 

 

▢ 7. Add SBO terms 
The Systems Biology Ontology (SBO) contains a set of controlled vocabularies commonly 
used in systems biology. Every instance in our GEM can be labeled with an SBO term, 
including all genes, metabolites, and reactions. SBO terms can be added using libSBML.  

 
▢ SBO terms for genes 
▢ SBO terms for metabolites 
▢ SBO terms for reactions 

 
Memote score:   __________ 
 

▢ 8. Add ECO terms 
The Evidence and Conclusion Ontology (ECO) terms provide information about the 
curator's confidence about a reaction's inclusion into the model. The use of ECO terms 
is advised over the use of confidence scores, as confidence scores are not uniquely 
defined in the literature.  ECO terms may be added based on the genes' evidence in a 
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3 How to build GEMs 
 

Corrections and improvements 

reaction's gene-protein-reaction association (GPR). If no GPR is associated with a 
reaction, the reaction obtains the ECO term with the lowest confidence score. Based on 
the evidence level of the genes in the GPR, ECO terms are added to the reactions. A 
helpful resource is the UniProt database, where the protein existence column gives 
information about the evidence level of a particular gene (inferred from homology, 
evidence at protein level, etc.).  
 

▢ 9. Add KEGG Pathways 
If your organism occurs in the KEGG database, extract the KEGG reaction ID from the 
annotations of your reactions and identify in which KEGG pathways this reaction occurs. 
Add all KEGG pathways for a reaction as annotations with the biological qualifier' 
OCCURS_IN.'  
 

 
 

▢ 10. Check the chemical formulas 
CarveMe adds the chemical formula of a metabolite to the 'notes' field (depending on 
the used CarveMe version). Transfer the chemical formula from the 'notes' field to the 
species description using the libSBML fbc-package. If you used the --fbc2 option during 
the model generation with CarveMe, check whether the chemical formulas were 
correctly transferred from the 'notes' field. 

 
Memote score:   __________ 

 

▢ 11. Check the charges 
Charges are missing in the description of the model's metabolites. The BiGG Models 
database can be used to identify the charge for a given metabolite. Keep in mind that 
sometimes, more than one charge is provided in the database. 
 
Memote score:   __________ 
 

▢ 12. Correct mass and charge imbalances 
Mass and charge imbalanced reactions can be reported by COBRApy, but also memote 
returns a list of mass and charge imbalanced reactions in the report. Evaluate the mass 
and charge imbalanced reactions and try to fix them.  

 
Memote score:   __________ 
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4 How to build GEMs 
 

Model extension 

▢ 13. Reduce or eliminate orphan and dead-end metabolites 
Get a list of dead-end and orphan metabolites and try to identify reactions that can be 
added to connect the metabolites further to the network. 

 
Number of dead-end and orphan metabolites before:  __________ 
Number of dead-end and orphan metabolites after:   __________ 

 
Memote score:   __________ 
 

▢ 14. Check for energy-generating cycles (EGC) 
Models may contain thermodynamically infeasible energy-generating cycles. These 
models can produce energy without consuming nutrients. Fritzemeier et al. 
(DOI: 10.1371/journal.pcbi.1005494) suggested a pipeline to identify the 14 different 
energy metabolites ATP, CTP, GTP, UTP, ITP, NADH, NADPH, FAD, FADH, ubiquinol-8, 
menaquinol-8, 2-demethylmenaquinol 8, acetyl-CoA, and L-glutamate. Add a dissipation 
reaction for each metabolite, constrain all uptake rates to zero and subsequently 
maximize each dissipation reaction. If any optimization returns a result unequal zero, 
you have identified an energy-generating cycle that needs to be eliminated. 
 
Memote score:   __________ 
 

▢ 15. Improve the biomass objective function (BOF) 
As CaveMe provides a universal biomass equation, you can further improve and specify 
the BOF of your organism. One possibility is to use the Python package BOFdat 
(DOI: 10.1371/journal.pcbi.1006971). The stoichiometric coefficients for (i) major 
macromolecules, (ii) inorganic ions and coenzymes, and (iii) the remaining species-
specific metabolic biomass precursors are calculated and incorporated into the BOF. If 
genomics, transcriptomics, proteomics, lipidomics, or other experimental data is 
available, you can use BOFdat to refine your organism's BOF.  
 
Memote score:   __________ 
 
 
 

▢ 16. Add further reactions 
If your organism occurs in the KEGG or BioCyc database, search for metabolic genes that 
are so far not included in the model. Identify the reactions associated with those genes 
and add these reactions to the model.  
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Protocol: How to build high-quality GEMs

 

 

5 How to build GEMs 
 

Model validation 

Properties of the model: 
__________ Reactions   
__________ Metabolites   
__________ Genes   

 
Memote score:  __________ 
 
 
 

▢ 17. Compare model predictions to experimental data 
To validate your GEM, search the literature for experimental results from your organism, 
or even strain, of interest. These results could include additional growth media (e.g., M9 
or LB), auxotrophies, gene essentialities, or other physiological properties. Simulate the 
conditions described in the laboratory experiment and compare the in silico and in vitro 
results.  
 
Do your in silico results agree with the in vitro results?  ▢ Yes  ▢ No 
 
If your results do not agree with the experimental results, identify where the 
discrepancy comes from. Check whether you 
 
▢ need to add reactions to the model 
▢ need to eliminate reactions from the model 
▢ need to change the directionality of reactions 
▢ have identified a knowledge gap 
 
Repeat this procedure for every experimental result. 
 

▢ 18. Test growth on SNM 
We are highly interested in organisms that grow in the human nose. In Tübingen, a 
medium that mimics the nasal environment was experimentally developed: the 
Synthetic Nasal Medium (SNM) (DOI: 10.1371/journal.ppat.1003862). 
Use the defined medium to simulate the growth of your organism in the human nose. 
To do so, change the respective metabolite's uptake rate (lower bound) to 10.0 
mmol/(gDW·h). Oxygen should get an uptake rate of 20.0 mmol/(gDW·h). All other 
exchange reactions for metabolites that are not listed as components of the SNM should 
have an uptake rate of 0 mmol/(gDW·h).  

 
Does your organism grow on SNM?    ▢ Yes  ▢ No 

 
If your organism does not grow on SNM, identify which additional compounds are 
required to enable growth. For example, you can compare the originally active exchange 
reactions to the exchange reactions defined in the SNM. 

52



Protocol: How to build high-quality GEMs

 

 

6 How to build GEMs 
 

Model publication 

 
If you have identified metabolites required for growth but not defined in SNM, do some 
literature research to figure out whether the specific metabolite can internally be 
produced in your organism. If this is the case, add the missing reactions, metabolites, 
and genes to the model and test the growth on SNM again. 

 
Does your organism grow on SNM now?  ▢ Yes  ▢ No 

 
 
 
 
▢ 19. Make the model available 

Make your model available in a modeling database to meet the FAIR data principle 
(findable, accessible, interoperable, and reusable). Before uploading the model, check 
one last time whether your model is a valid SBML file. 
 
Is your model a valid SBML file?  ▢ Yes  ▢ No 
  
Additionally, check whether your model complies with the minimum standardized 
content for a metabolic network reconstruction (DOI: 10.15252/msb.20199235, Box 2). 
 
Does your model comply with the standards?   ▢ Yes  ▢ No 
 
 
Final model properties: 

__________ Reactions   
__________ Metabolites   
__________ Genes 
 

Final memote score:  __________ 
 
Upload the valid SBML file to, e.g., BioModels. You can use a COMBINE archive and the 
OMEX file format (DOI: 10.1186/s12859-014-0369-z) to share all information of your 
model, including, e.g., media definitions. For BioModels, you can gain reviewers' access 
there. Then, the model is initially only visible with the corresponding log-in credentials. 
After publishing your model in, e.g., a scientific journal, don't forget to make your model 
publicly available to everyone.  
 
Is your model available to the scientific community?   ▢ Yes  ▢ No 
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Abstract

Motivation: The novel coronavirus (SARS-CoV-2) currently spreads worldwide, causing the disease COVID-19. The
number of infections increases daily, without any approved antiviral therapy. The recently released viral nucleotide
sequence enables the identification of therapeutic targets, e.g. by analyzing integrated human-virus metabolic mod-
els. Investigations of changed metabolic processes after virus infections and the effect of knock-outs on the host and
the virus can reveal new potential targets.

Results: We generated an integrated host–virus genome-scale metabolic model of human alveolar macrophages
and SARS-CoV-2. Analyses of stoichiometric and metabolic changes between uninfected and infected host cells
using flux balance analysis (FBA) highlighted the different requirements of host and virus. Consequently, alterations
in the metabolism can have different effects on host and virus, leading to potential antiviral targets. One of these po-
tential targets is guanylate kinase (GK1). In FBA analyses, the knock-out of the GK1 decreased the growth of the virus
to zero, while not affecting the host. As GK1 inhibitors are described in the literature, its potential therapeutic effect
for SARS-CoV-2 infections needs to be verified in in-vitro experiments.

Availability and implementation: The computational model is accessible at https://identifiers.org/biomodels.db/
MODEL2003020001.

Contact: renz@informatik.uni-tuebingen.de or draeger@informatik.uni-tuebingen.de

1 Introduction

In December 2019, an outbreak of pneumonia in Wuhan, Hubei
province, in China, has aroused the interest of the international
community by showing alarming similarities to the outbreaks
caused by other b-coronaviruses (b-CoV) like the Severe Acute
Respiratory Syndrome (SARS) virus (Huang et al., 2020; Hui et al.,
2020).

The febrile respiratory illness caused by the novel coronavirus
(SARS-CoV-2) is thought to have spread as a zoonosis from the
Huanan Seafood Wholesale Market, which was as a consequence
shut down on January 1, 2020 to prevent further transmission
events (Hui et al., 2020).

On January 7, first isolation and subsequent deep-sequencing of
SARS-CoV-2 from the human lower respiratory tract samples have
made the genetic sequence of the virus available to the public by
January 12, 2020, thus allowing for the identification of the virus as
a Group 2B b-CoV (Huang et al., 2020; Hui et al., 2020). SARS-
CoV-2 has 82% sequence similarity with the SARS virus, which has
caused an outbreak originating in China in 2002 (Hui et al., 2020;
Zhang et al., 2020). The outbreak in 2002 has peaked at a total of
8098 documented cases with a case fatality rate of 9.6% (Huang
et al., 2020; Hui et al., 2020). In contrast, the ongoing SARS-CoV-2
has reached, at time of writing, a total of �3 million cases

worldwide and caused over 200 000 deaths (John Hopkins
University, 2020; WHO, 2020). The resemblance and the severe glo-
bal health threat have initiated a swift and determined implementa-
tion of public health measures by the Chinese Authorities (Chen
et al., 2020; Hui et al., 2020).

While human-to-human transmissions in a nosocomial setting
were the primary route of transmission of the SARS virus outbreak,
Chinese horseshoe bats have been identified as putative primary res-
ervoir and source of zoonosis for SARS (Huang et al., 2020; Hui
et al., 2020; Paraskevis et al., 2020). Moreover, Himalayan palm
civets, raccoon dogs and Chinese ferret badgers from the
Guangdong wet markets (live animal retail markets) were identified
as intermediate reservoirs of zoonosis (Hui et al., 2020; Perlman and
Netland, 2009). In the case of SARS, the switch to the human host
was allowed by an adaption of the receptor binding domain of the
spike (S) protein, conferring to binding capabilities to the human
angiotensin-converting enzyme 2 (ACE2) (Huang et al., 2020;
Perlman and Netland, 2009). For the SARS-CoV-2, there was ini-
tially no proof of efficient human-to-human transmission, however,
the rapid increase in cases and distinct clustering of the disease have
made it clear that an efficient transmission route in-between humans
exists (Chan et al., 2020; Hui et al., 2020). Moreover, Paraskevis
et al. (2020) have suggested, based on full-genome evolutionary ana-
lysis, a zoonosis of SARS-CoV-2 from bats to humans. Accordingly,
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Letko et al. have recently identified ACE2 as the SARS-CoV-2 entry
receptor (Letko and Munster, 2020).

As mentioned above, the SARS-CoV-2 belongs to the subfamily
of b-CoV (Huang et al., 2020; Hui et al., 2020). The members of the
family are enveloped, single-stranded RNA (ssRNA) viruses with a
positive polarity genome of up to 34 kb (Chen et al., 2020; Huang
et al., 2020; Zhang et al., 2020). Replication of the RNA genome is
performed via an RNA-dependent RNA polymerase (RdRP) in
double-membrane vesicles (DMVs), modified to form a reticulove-
sicular network (Chen et al., 2020; de Wilde et al., 2015; Perlman
and Netland, 2009). In the DMVs, the 16 non-structural proteins
(NSPs) are directly expressed as polyproteins pp1a and pp1ab from
the (þ)RNA genome (Chen et al., 2020). Processing of pp1a/1ab by
the viral main protease (Mpro) is essential to form the replication-
transcription complex for the subsequent expression of the viral
structural proteins (Chen et al., 2020; Perlman and Netland, 2009).

In total, the NSPs constitute two thirds of the genome’s coding
capacity (Chen et al., 2020). The rest encodes for structural proteins,
such as the spike (S), membrane (M) and envelope (E) proteins,
which cover a helical nucleocapsid made up of the nucleocapsid (N)
proteins (Chen et al., 2020; Perlman and Netland, 2009). Unlike
NSPs, the structural and additional accessory proteins of coronavi-
ruses require synthesis as subgenomic messenger RNAs via discon-
tinuous transcription from (-)RNA templates (Chen et al., 2020).

Clinically, the SARS-CoV-2 seems to be milder than the former
SARS virus, although they share the symptoms of febrile illness and
pneumonia (Chen et al., 2020; Huang et al., 2020; Hui et al., 2020).
It was recently shown that the SARS-CoV-2 does not only infect
lower respiratory tract cells, but also upper cells in the pharyngeal
region (Chen et al., 2020; Huang et al., 2020). Moreover, many
coronaviruses also infect macrophages and subsequently inhibit an
interferon-stimulated genes-mediated antiviral response, increasing
immune evasion and pathogenicity (Chen et al., 2020; Cheung et al.,
2005; Deng et al., 2017; Huang et al., 2020).

By now, no antiviral treatment for coronaviruses has been pro-
ven efficacious in a clinical trial (Chen et al., 2020; Huang et al.,
2020). Recently, Zhang et al. (2020) have found a-ketoamides to be
broad-spectrum inhibitors of coronaviruses by tissue-dependently
inhibiting the Mpro of SARS in Vero cells. This inhibition has
occurred in a micromolar EC50 range, indicating a-ketoamides to be
a potential antiviral for the SARS-CoV-2 (Zhang et al., 2020).
However, since no therapy or vaccination is available for clinical
use, the current standard of care for a SARS-CoV-2 infection is lim-
ited to the supportive treatment of symptoms (Chen et al., 2020;
Huang et al., 2020).

As no antiviral treatment is currently available for coronaviruses,
the identification of potential antiviral targets is of great interest. One
possibility of identifying new targets is the analysis of metabolic
changes in infected cells. Aller et al. introduced a procedure for inte-
grated human-virus metabolic models to predict host-based antiviral
targets against Chikungunya, Dengue and Zika viruses. The analysis
of the integrated human-virus models predicted inhibiting effects of
constrained host-reactions on virus production. These predictions
included already known targets of existing antiviral drugs, demon-
strating the applicability of such analysis methods (Aller et al., 2018).

In our study, we integrated and analyzed a human genome-scale
metabolic model (GEM) infected with SARS-CoV-2. As it is shown
that coronaviruses infect alveolar macrophages (Cheung et al.,
2005; Deng et al., 2017; Joel Funk et al., 2012), and Bordbar et al.
(2010) already published an extensive metabolic model of human al-
veolar macrophages, this model was used as a host model. For
SARS-CoV-2, a virus biomass objective function (VBOF) was gener-
ated according to Aller et al. (2018). Subsequent analysis of the inte-
grated host-virus model revealed potential targets for antiviral
therapies.

2 Materials and methods

The methods used in this article are based on the article by Aller
et al. (2018). Methods and analyses were adapted and expanded for
the coronavirus SARS-CoV-2.

2.1 Generation of VBOF
Analogous to the biomass production or maintenance function in
prokaryotic or eukaryotic metabolic models, the VBOF is a pseudo-
reaction simulating the production of virus particles. It comprises
nucleotides, amino acids and associated energy metabolites required
for the production of the virus particles. Due to a lack of knowledge,
the stoichiometric information of the virus envelope, and the dy-
namic information of lipids are not included in the VBOF. Hence,
virus entry or exit cannot be modeled. The generation of the VBOF
was performed following the seven steps described by Aller et al.
(2018).

1. Step 1: Virus genome and protein information. The recently pub-

lished virus genome and protein sequence were obtained from

the NCBI database (Geer et al., 2010) with the accession number

NC_045512.2 in February 2020. Essential for the calculation

of the nucleotide count is the classification of the SARS-CoV-2

in the Baltimore Classification System (Baltimore, 1971) that

characterizes viruses based on the replication method.

Coronaviruses fall into the Group IV classification. These viruses

replicate their positive single-stranded RNA (þssRNA) genomes

via a complementary negative ssRNA. The nucleotide counts of

the positive strand can be taken from the genome sequence. The

nucleotides of the negative strand can be calculated by counting

the complementary nucleotides of the positive strand. Both

nucleotides are summed up to receive the total nucleotide count.

SARS-CoV-2 has a total of 12 proteins, four structural proteins,

and 8 NSPs. Structural and NSPs are not expressed equally, and

this ratio needs to be considered during the calculation of the

VBOF. To this date, no information about the copy number of

structural proteins in Coronaviruses is reported.

2. Step 2: Nucleotide investment. The nucleotide count of the virus

genome and its replication intermediate are summed per nucleo-

tide. The genome copy number (Cg) was assumed to be one.

According to Aller et al., the moles of nucleotides were con-

verted into grams of nucleotides per mole of the virus. After

similar calculations of the amino acids and the calculation of the

total molar weight of the virus based on nucleotide and amino

acid content, the stoichiometric coefficients of each nucleotide in

the VBOF were calculated.

3. Step 3: Amino acid investment. Analogous to the nucleotide in-

vestment, the stoichiometric coefficient of each amino acid was

calculated. Instead of the genome copy number, a copy number

for structural and NSPs is required. As already mentioned, the

copy number of structural proteins is not reported to date.

Therefore, we repeated all analyses described in this article for

copy numbers of structural proteins Csp¼200, 500, 800 and

1200. With the information of the total count of each amino

acid, weighted by the copy number of structural proteins, and

the inclusion of the respective molar mass, the total viral molar

mass was calculated (see also Step 6) to eventually calculate the

stoichiometric coefficient for every amino acid.

4. Steps 4 and 5: Adenosine triphosphate (ATP) requirements, and

pyrophosphate liberation. The calculations of the ATP require-

ments for the polymerization of amino acids and the calculation

of pyrophosphate (PPi) liberation from the nucleotide polymer-

ization were performed as described by Aller et al. based on the

results of the previous steps. The constants kATP ¼ 4 and kPPi ¼
1 were chosen, as suggested by Aller et al. kATP is the required

amount of four ATP molecules for the polymerization of amino

acid monomers. The constant kPPi stands for the liberation of

one diphosphate molecule per polymerization of nucleotide

monomers.
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5. Steps 6 and 7: Total viral molar mass and final construction of

the VBOF. The total molar mass of SARS-CoV-2 and the final

VBOF were calculated and constructed in accordance with Aller

et al.

2.2 Integration of the SARS-CoV-2 virus into

iAB-AMØ-1410
Since Coronaviridae infect alveolar macrophages (Cheung et al.,
2005; Deng et al., 2017), the cell-specific GEM of human alveolar
macrophages iAB-AMØ-1410 was utilized. This GEM was pub-
lished in 2010 by Bordbar et al. (2010) to give insight into human al-
veolar macrophages infected with Mycobacterium tuberculosis. The
cell-specific GEM was constructed based on the human metabolic
reconstruction Recon 1 (Duarte et al., 2007). It consists of 3394
reactions and 2572 metabolites. The model was downloaded in
SBML Level 2 Version 4 format (Hucka et al., 2008) and upgraded
to SBML Level 3 Version 1 format (Hucka et al., 2018) using
libSBML (Bornstein et al., 2008). The VBOF was incorporated into
the existing macrophage model, using flux bounds of 0 and 1000 as
lower and upper bounds. Additionally, aggregated subsystems were
added to the reactions as additional information for further analyses
(Aller et al., 2018; Zielinski et al., 2015).

2.3 Identification of stoichiometric differences
The human alveolar macrophage model iAB-AMØ-1410 included
now two pseudo-reactions for the production or maintenance of the
virus and hosts biomass, respectively. The stoichiometric coefficients
of shared metabolites within these pseudo-reactions can be com-
pared to identify differences in nucleotide or amino acid require-
ments. First, the individual amino acid and nucleotide
stoichiometric coefficients were normalized against the sum of all
metabolites present in the respective biomass objective function
(BOF), except for the metabolites for energy requirements. Then,
the fold-change (FC) of the normalized amino acid or nucleotide
was calculated:

FCi ¼ log2

SVi =
P

k S
V
k

SHi =
P

k S
H
k

 !
; (1)

with index i over nucleotides or amino acids and k over all biomass
precursors (except for energy requirements). Subscripts H and V rep-
resent the use of either the host or virus biomass function. Positive
values imply higher usage of nucleotides or amino acids in the virus
compared to the host, while negative values imply a lower usage.

2.4 Flux balance analysis and flux variability analysis for

the comparison of host- and virus-optimized states
The integration of the VBOF into the iAB-AMØ-1410 model paved
the way for the analysis of metabolic changes between host and
virus-optimized states. To identify an optimal state, an objective
function that is optimized needs to be defined. In general, every reac-
tion in the GEM can serve as objective function. However, biologic-
ally meaningful objective functions depend on the research question.
For analyses of the growth or survival of the studied organism or
cell, biomass production or maintenance reactions can be intro-
duced into the model as pseudo-reactions. In industrial settings, the
production of a specific metabolite might be of interest, and hence
its production reaction can be set as the objective function. The
defined objective function is then optimized with flux balance ana-
lysis (FBA). FBA is a mathematical approach using linear optimiza-
tion to analyze the flow of metabolites through a metabolic network
while optimizing for an objective function (Orth et al., 2010). This
objective function is optimized under a set of constraints. These con-
straints are, on the one hand, defined by the stoichiometry of the
reactions, and, on the other hand, by limitations of reaction fluxes
through upper and lower bounds. Hence, not only the biomass pro-
duction or maintenance reaction can be adapted to a specific organ-
ism or cell type, but also the environment, in which it occurs, can be

adapted accordingly, e.g. by constraining exchange fluxes. In this
work, we optimized the host–virus integrated iAB-AMØ-1410
model for either the host biomass maintenance function or the
VBOF using FBA.

Since the solutions calculated by FBA are often not unique, the
flux variability analysis (FVA) is a method to identify alternate opti-
mal solutions. In FVA, the maximum and minimum possible flux
for each reaction in the network is evaluated while constraining the
objective value equal or close to the optimal flux (Orth et al., 2010).
As for the FBA, the FVA was conducted for both the host- and
virus-optimized states. The results of the FVA were used in the sub-
sequent host-derived enforcement to define the upper and lower
bounds.

2.4.1 Copy number analysis

As the copy number of structural proteins in SARS-CoV-2 or coro-
naviruses, in general, is not reported so far, we evaluated the effect
of different Csp values on the growth rate in the virus-optimized
state. To do so, we varied the copy number Csp between 1 and 1500.
The variation of Csp leads to changing stoichiometric coefficients in
the VBOF. Since the VBOF is optimized in the virus-optimized state,
changing VBOF reactions can lead to changing optimization results.

2.4.2 Optimization analysis

The host-virus integrated model holds both the host biomass main-
tenance and the VBOF reaction. First, each biomass reaction was
optimized individually using FBA. The objective function is defined
by setting the objective coefficient to 1. In general, only one reaction
(the objective function) has an objective coefficient of 1. However,
one can also set the objective coefficient of several reactions to 1 to
optimize for both reactions. Hence, the objective coefficient of both
biomass functions from host and virus was set to 1 to optimize for
both functions. Last, we used COBRApy’s (Ebrahim et al., 2013)
tailored objectives option to weight the influence of the two biomass
reactions on the objective function. To do so, we created a linear
combination of the two biomass reactions weighted by factors vary-
ing between 0 and 1, and not exceeding 1 in total. When the host
maintenance function weighted 0.2, the VBOF had a weight of 0.8
in the objective function. For each combination, the model was opti-
mized using FBA, and the flux through the two biomass reactions
was reported. This analysis was repeated using the results from the
host-derived enforcement analysis by adapting the bounds of the
reported reactions (Section 2.5.2).

2.4.3 Metabolic analysis

The metabolic analysis was performed for the host- and virus-
optimized states. The fluxes of each reaction in the two optimized
states were compared by calculating the FCr:

FCr ¼ log2ðFV
r =F

H
r Þ ; (2)

where the indexation r is over all reactions of the model, and the
superscript H indicates flux values from the host and V from the
virus-optimized models. The FCs were aggregated into the included
subsystems.

2.5 Antiviral target identification
For the identification of potential antiviral targets that preferentially
alter the virus growth rate while maintaining the host’s biomass
maintenance, each reaction in the model was evaluated using two
different approaches.

2.5.1 Reaction knock-out

The first approach is a reaction knock-out that is already imple-
mented in COBRApy. The single_reaction_deletion func-
tion subsequently sets both bounds of every reaction to zero and
optimizes for the chosen objective function. We ran this function
twice, once with the host maintenance reaction as the objective func-
tion and once with the VBOF. Possible targets were only reported
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when the growth of the virus was diminished (<99% of its initial
growth rate) and when the growth rate of the virus was below the
growth rate of the host-optimized state.

2.5.2 Host-derived enforcement

In the second approach, the effects of changes in flux ranges of the
reactions on the VBOF are analyzed, while the metabolic system of
the host-optimized state is maintained. To change the flux bounds
ensuring maximal biomass maintenance of the host while optimizing
for the VBOF, the results of the FVA were utilized. For each reac-
tion, the flux range was defined as described by Aller et al. The cor-
responding minimum (F–) and maximum (Fþ) flux values from the
FVA of the host (H) and virus (V) optimization and their relation de-
fine the minimum (e�) and maximum (eþ) flux values. Since the
cases suggested by Aller et al. did not cover all reactions, we added
the two more conditional arguments cases 3 and 7:

continue if Fþ
H ¼ Fþ

V ^ F�
H ¼ F�

V ð3Þ
eþ ¼ Fþ

H

e� ¼ Fþ
H � Fþ

H � Fþ
V

2

if Fþ
H > Fþ

V ^ F�
H � F�

V ð4Þ

eþ ¼ F�
H � F�

H � F�
V

2
e� ¼ F�

H

if Fþ
H � Fþ

V ^ F�
H < F�

V ð5Þ

eþ ¼ Fþ
H

e� ¼ F�
H

if Fþ
H < Fþ

V ^ F�
H > F�

V ð6Þ

eþ ¼ Fþ
H � Fþ

H � Fþ
V

2

e� ¼ F�
H � F�

H � F�
V

2

if Fþ
H � Fþ

V ^ F�
H � F�

V ð7Þ

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

The flux values e� and eþ are set as upper and lower bounds of
the corresponding reactions and the model was optimized for the
VBOF. The resulting optimization result was compared to the ori-
ginal VBOF growth rate. When the growth rate with adapted
bounds was below the threshold of 80% of the initial growth rate,
the reaction was reported as potential antiviral target.

3 Results

We developed a GEM of a human macrophage infected with the
SARS-CoV-2. To integrate the virus into the human macrophage, a
virus biomass reaction representing the virus particle production
was added to the model. This virus biomass reaction was generated
based on the nucleotide and amino acid sequence.

3.1 Stoichiometric differences
The human alveolar macrophage biomass maintenance function is
comprised of several macromolecules, including amino acids, deoxy-
ribonucleic acid (DNA) and RNA nucleotides, components for the
energy requirements and others, such as fatty acids or phospholi-
pids. In contrast, the VBOF only consists of amino acids, RNA
nucleotides and the components for the energy requirements. The
stoichiometric coefficients of amino acids and nucleotides are com-
pared by calculating the FC. The result is visualized in Figure 1. The
stoichiometric coefficients of L-asparagine (N), L-phenylalanine (F),
L-threonine (T) and L-tyrosine (Y) are increased. In contrast, the
coefficients of L-glutamate (E), L-histidine (H) and L-methionine
(M) are reduced. These findings might indicate an up- or down-
regulation of the respective metabolic pathways.

3.2 Influence of the copy number of the structural

proteins
The calculations for obtaining a virus VBOF include the parameter
for the copy number of the structural proteins (Csp). The copy num-
ber of structural proteins for some viruses, such as Alpha- and
Flaviviruses, is known and ranges from 180 for Flaviviruses
(Mukhopadhyay et al., 2005) to 240 for Alphaviruses (Strauss and
Strauss, 1994). Coronaviruses have four major structural proteins:

the envelope (E) protein, membrane (M) protein, nucleocapsid (N)
protein and the spike (S) protein (Masters, 2006; Mortola and Roy,
2004; Wang et al., 2017). However, the copy number of those struc-

tural proteins is not reported so far. To evaluate the influence of the
copy number on the modeling results, we varied the parameter Csp

between 1 and 1500. As shown in Figure 2, the optimization result
of the VBOF depends on the copy number. The growth rate
increases for copy numbers ranging from 1 to 58 and decreases for

higher copy numbers. For very high copy numbers of structural pro-
teins, the growth rate seems to reach a steady state.

Coronaviruses have a diameter of �80–120 nm (Guy et al.,
2000), while Alpha- and Flaviviruses have only a diameter of �40–

80 nm and 30–50 nm, respectively (Fraenkel-Conrat and Wagner,
1974). However, not only the virus size is larger, but also the size of
its structural proteins. Since no value for the structure protein copy

number in coronaviruses was available, we continued our analyses
with a Csp value of 500 and verified the results with Csp values of
200, 800 and 1200.

3.3 Optimization of host and virus metabolism
Potential changes in the human alveolar macrophage metabolism

during virus infection were first examined by analyzing the follow-
ing two scenarios: (i) the host cell is not infected and the metabolic
system is optimized for the already included maintenance biomass

reaction (host optimization). This scenario reflects the normal
physiological state of human alveolar macrophages; (ii) the host cell

is infected by the virus and is optimized solely for the production of
the virus particles (virus optimization). The host optimization results
in a biomass maintenance flux of 0.0267 mmol/(gDW�h), while the

virus optimization returns a flux of 0.0147 mmol/(gDW�h). When
defining both the host maintenance and the virus biomass function

as objective functions by assigning both an objective coefficient of
one simultaneously, the model only optimizes for the host mainten-
ance reaction while the flux through the VBOF is zero. Last, the op-

timization result of host and virus metabolism was compared using
a new constraint. With varying percentages of the host maintenance
reaction and the VBOF on the objective expression, the effect on the

respective biomass maintenance or growth function was investi-
gated. The model does not predict an equilibrium state, where both

the host maintenance reaction and the VBOF are active. As dis-
played in Figure 3, the switch between the maintenance of the host
metabolism and the growth of the virus is at 65% of VBOF contri-

bution to the objective expression. This switch in biomass produc-
tion is rather insensitive to the structural proteins’ copy number. For

Csp¼200, the switch occurs at 63% virus BOF contribution, and for
Csp¼800 and Csp¼1200 at 66%.

3.4 Metabolic changes in alveolar macrophages after

virus infection
The flux distribution for the host- and the virus-optimized states

were compared using FBA and FC calculations. For 256 reactions
(7.8% of all model reactions), a FC was calculated. As expected
from the stoichiometric analysis, reactions related to amino acid and

nucleotide metabolism were altered. The main portion of changed
reactions consists of transport reactions. However, also several reac-

tions from other subsystems, such as the steroid, fatty acid synthesis
and central metabolism, are altered. An overview of altered reac-
tions concerning their FC is given in Figure 4. One needs to keep in

mind that the FC can only be calculated if neither of the reaction
fluxes in the host- and virus-optimized state was zero. Hence, we

calculated the absolute change for reactions that have either in the
host- or the virus-optimized state a flux of zero. A total of 97 reac-
tions (2.9% of all model reactions) either turned on a previously

turned off reaction or vice versa. For example, in the virus-
optimized state, the virus turned off 14 reactions related to lipid
metabolism.
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3.5 Identification of metabolic targets for antiviral

strategies
FBA and FVA can be used to identify metabolic targets for antiviral
strategies by comparing the host- and virus-optimized states after
alterations in metabolic pathways.

3.5.1 Knock-out of reactions reveals first promising metabolic target

for antiviral strategies

The results from the stoichiometric differences and metabolic
changes in alveolar macrophages after virus infections with corona-
virus SARS-CoV-2 indicate alternative host- and viral-optimal
states. The diverging flux distribution in the two states provides an
opportunity for the identification of potential antiviral targets. To
identify potential antiviral targets that limit virus production, we
implemented two different analysis methods: (i) reaction knock-outs
and (ii) host-derived enforcement. The reaction knock-out revealed
exactly one reaction (over all tested copy numbers of structural pro-
teins), whose knock-out reduces the flux of the virus biomass to
zero, while maintaining the host biomass maintenance at 100%:
The guanylate kinase (GK1) reaction that converts ATP and guano-
sine monophosphate (GMP) to adenosine diphosphate and guano-
sine diphosphate (GDP):

ATP þ GMP �
GK1

ADP þ GDP : (8)

3.5.2 Host-derived enforcement substantiates the metabolic target

and reveals further points of action

This reaction is also observed as a potential target in the second ana-
lysis method, the host-derived enforcement. In this approach, the re-
action fluxes are constrained to ranges derived from FVA. With flux

ranges outside of the optimal state of the virus, the virus production
is perturbed while the host maintenance is not affected. For struc-
tural protein copy numbers between 500 and 1200, we identified
four possible targets, including the GK1 that reduced the virus
growth flux to below a threshold of 80% of its initial value. Further
potential targets concern the availability of the amino acids L-isoleu-

cine (I), and L-lysine (K), either via the alteration of exchange reac-
tions, or, in case of L-isoleucine, also via the L-isoleucine
transporter. In contrast to GK1, where the flux through the reaction
is down-regulated (or in case of the reaction knock-outs completely
knocked out), the alterations of the mentioned exchange, and trans-
port reactions go into the other direction: the uptake of the amino
acids is enabled or even enforced, leading to the host’s maintenance

while decreasing the growth of the virus to 50% of its initial growth.
The enforcement of exchange reactions can be reached by a suffi-
cient supply of the respective amino acid.

Fig. 1. FC differences in amino acid and nucleotides usage. The stoichiometric coefficients of the alveolar macrophage biomass maintenance function and the VBOF are com-

pared using Equation (1). The left panel displays the FC of all 20 proteinogenic amino acids. The one letter code of the amino acids is used for labeling the x-axis. The right

panel displays the FC of the four RNA nucleotides. The one letter code of the RNA nucleotides is used for labeling the x-axis

Fig. 2. Influence of Csp on the growth rate. The copy number of structural proteins

Csp in coronaviruses is not yet reported in literature. Hence, its influence on the

growth rate in the virus-optimized state is evaluated by varying Csp between 1 and

1500. For each copy number, the integrated host-virus model was optimized for the

VBOF. For Csp values between 58 and 1500, the growth rate decreases
Fig. 3. Linear combination of weighted biomass functions. The objective function

was defined as linear combination of the host maintenance and VBOF by weighting

the proportion of the respective biomass functions between 0 and 1. The sum of the

two weights always sums up to 1. At 65% of virus BOF contribution to the object-

ive expression, a switch between host maintenance and virus production occurs
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If the host has enough L-lysine in its environment, the mainten-
ance of the host cell is ensured, while the growth of the virus is
diminished. We repeated the analysis that evaluates the effect on the
growth rates based on the percental involvement of the two biomass
functions within the setting of L-lysine excess. Figure 5 illustrates
the virus inhibiting effect of L-lysine availability in the environment.
Even when the objective function is solely defined by the VBOF (%
of virus BOF in objective ¼100%), the growth rate of the host still
exceeds the growth rate of the virus.

Analogous to L-lysine, the availability of L-isoleucine and L-
tyrosine has a positive effect on the growth of the host while
decreasing the growth rate of the virus by 50%. The last potential
metabolic target for antiviral strategies using the host-derived
enforcement approach concerns one transport reaction of L-
isoleucine (ILEtec). Enforcing a minimal import of L-isoleucine
via this transport has the same effect as the other three targets and
results in a diminution of 50% of the virus growth. All targets
obtained from the host-derived enforcement for the structural
protein copy numbers Csp¼500, 800 and 1200 are summarized in
Table 1.

The analysis of the host-derived enforcement for Csp¼200
showed among Table 1 listed 29 reactions as potential antiviral
targets that decrease the virus growth below the threshold of 80%.
While the four already known targets again reduced the growth
rate by 50%, the growth reduction of the other targets varies be-
tween 70% and 80% of the initial value. Of the 25 new targets, al-
most half (12 reactions) are associated with nucleotide
metabolism. Only four further reactions are affecting the amino
acid metabolism and transport mechanisms, respectively. The
other reactions affected are part of the central metabolism and mis-
cellaneous reactions.

3.6 Existing drugs can target the predicted reactions
For the identified potential targets for antiviral therapies, we have
searched for existing drugs or compounds.

Fig. 4. Altered reactions in virus-optimized state sorted by subsystems. The integrated virus–host model was optimized for the host maintenance and VBOF using FBA. The FC

was calculated using Equation (2) and the reactions with FCs were grouped into the aggregated subsystems. Many altered reactions belong to the transport subsystem, or

amino acid and nucleotide metabolism

Fig. 5. Linear combination of weighted biomass function with adapted boundaries

for L-lysine exchange. The objective function was defined as linear combination of

the host maintenance and VBOF by weighting the proportion of the respective bio-

mass functions between 0 and 1. The sum of the two weights always sums up to 1.

The upper and lower bounds of the L-lysine exchange were adapted based on the

host-derived enforcement results (see Section 2.5.2). Even when the objective func-

tion is solely defined by the VBOF (% of virus BOF in objective ¼100%), the

growth rate of the host still exceeds the growth rate of the virus
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3.6.1 Direct inhibition of GK1

As GK1, also known as guanosine monophosphate kinase, was
found to be an essential factor for viral growth in this study, the in-
hibition of the enzyme may be a feasible target in SARS-CoV-2 ther-
apy. The enzyme catalyzes the reversible turnover of GMP or
deoxyguanosine monophosphate to GDP or deoxyguanosine di-
phosphate by binding and transferring a phosphoryl from ATP to
GMP (Hible et al., 2006; Khan et al., 2019). GK1 has a highly con-
served structure, with a core domain, a GMP-binding domain, a lid
domain with catalytic residues, as well as an ATP binding (P)-loop
(Hible et al., 2006; Khan et al., 2019). Through activation of gancic-
lovir in herpes virus treatment and 6-thioguanine or 6-mercaptopur-
ine activation in tumor treatment, GK1 plays an essential role in
diverse treatment strategies (Hible et al., 2006; Khan et al., 2019).

Based on the results of this study, we propose a direct inhibitor
of GK1 to harbor the potential of SARS-CoV-2 inhibition.
Interestingly, such inhibitors have already been described in the con-
text of antiviral therapies (Hible et al., 2006; Jain et al., 2016; Khan
et al., 2019; Navé et al., 1992). For instance, Hible et al. have dem-
onstrated P1-(5’-adenosyl) P5-(5’-guanosyl) pentaphosphate (Ap5G)
to be a potent, bi-substrate inhibitor of GK1 (Hible et al., 2006; Jain
et al., 2016). Although Hible et al. have only shown the high po-
tency of the inhibition in Escherichia coli, Khan et al. have demon-
strated the binding of Ap5G to introduce a complete closure of the
human GK1, indicating inaccessibility of the substrates upon inhibi-
tor binding (Hible et al., 2006; Jain et al., 2016; Khan et al., 2019).

Potent GK1 inhibitors have also been presented by Navé et al.
(1992). Accordingly, 9-phosphonoalkyl derivates, such as 9-(6-phos-
phonohexyl)guanine and 9-(6,6-difluoro-6-phosphonohexyl)gua-
nine, impede GK1 activity via competitive inhibition of GMP and
non-competitive inhibition of ATP (Navé et al., 1992).

3.6.2 Acyclonucleotide analogues require GK1 activation

In subsequent work, Navé et al. (1995) have tested the antiviral ac-
tivity of 9-phosphonopentenyl derivatives of guanine operating as
acyclonucleotide analogues. Acyclonucleotide analogs are pro-
drugs, which require the activation by GK1 to form nucleoside tri-
phosphate analogues (Navé et al., 1995). These are known to inhibit
viral DNA polymerases via chain termination in diverse herpes
virus and retrovirus infections (Navé et al., 1995). In
accordance with this, the authors have identified vinyl phosphonates
(E)-9-(5-Phosphonopent-4-enyl)guanine and (E)-9-[3-(hydroxy-
methyl)-5-phosphonopent-4-enyl]guanine to be inhibitors of the
human immunodeficiency virus 1 (HIV-1) and human cytomegalo-
virus (Navé et al., 1995).

As this study has found increased flux through GK1 in SARS-
CoV-2 infected cells, a process of pro-drug activation relying on
GK1 may allow for increased activation of terminating nucleoside
triphosphate analogs in infected cells compared to healthy cells.
However, coronaviruses are þssRNA viruses replicated by an
RdRP, unlike most viruses targeted by available acyclonucleotide
analogs, such as ganciclovir and acyclovir (Chen et al., 2020; Navé
et al., 1995; Navé et al., 1992). Moreover, coronaviruses lack a viral
kinase required for activation of these acyclonucleotide analogs

(Chen et al., 2020; Hible et al., 2006). Despite these limitations,
some market-available analogs, such as cidofovir, brincidofovir or
favipiravir, do not require a viral kinase activation, and have shown
in vitro activity against other RNA viruses (Ebola virus) and retrovi-
ruses (HIV-1) (Arias et al., 2014; Dunning et al., 2016; Garcia et al.,
1998; McCarthy et al., 2016; Navé et al., 1995). Thus, they may be
drug candidates worth an exploration in the face of the findings in
this study and the current SARS-CoV-2 outbreak.

4 Discussion

As proposed by Aller et al. (2018), computational approaches com-
bining FBA and FVA to recover new metabolic antiviral targets are
useful, especially in cases of new and emerging viruses, such as the
SARS-CoV-2. In this study, we presented a host-virus integrated
GEM using the human alveolar macrophage model iAB-AMØ-1410
as host cells and SARS-CoV-2 as virus. We identified potential tar-
gets for antiviral therapies using reaction knock-outs and host-
derived enforcement approaches and analyzing their metabolic
effects on host- and virus-optimized states by optimizing either for
the host maintenance or the VBOF.

However, the VBOF constructed in this study only considers
amino acids, nucleotides and energy requirements. It does not con-
sider or include virus-host cell recognition, viral entry or the lipid
envelope production or release (Timm and Yin, 2012). Especially
the metabolic process of lipid envelope production of viruses can
give further insight into potential targets for antiviral therapies. First
studies with other coronaviruses, such as the human coronavirus
229E, suggest elevated and perturbed glycerophospholipids and
fatty acids production rates in infected cells (Yan et al., 2019). Yan
et al. (2019) suggest the lipid metabolism regulation as a potential
druggable target for coronavirus infections. Further information
about the lipid metabolism of coronaviruses can enable the integra-
tion of lipids into the VBOF. Analyses with the adapted VBOF could
highlight additional potential targets for antiviral therapies.

As their coding capacity is limited, coronaviruses strategically
regulate host immune response, cell cycle, signaling and metabolism
to create a favorable environment for viral replication (de Wilde
et al., 2015; Dirmeier et al., 2020; Perlman and Netland, 2009).
Accordingly, the viroids depend on cellular enzymes for the forma-
tion of progeny, which makes host cell resources a potential target
to limit virion production (de Wilde et al., 2015; Dirmeier et al.,
2020). The viral hijacking of the cellular metabolic pathways, such
as glycolysis, nucleotide and lipid biosynthesis, may shift the envir-
onment of the virus to a proliferation promoting environment
(Thaker et al., 2019). In this study, we have also demonstrated that
SARS-CoV-2 interferes with the host cell organisms, more precisely,
the purine biosynthesis pathway to provide for the production of its
biomass and, thus, replication.

In our study, we used a GEM. This type of model enables the ana-
lysis of metabolic changes under certain constraints. However, only
the metabolic changes can be investigated. Further network reconstruc-
tions, such as dynamic signaling, regulatory or kinetic network models,
can give further insight into changes in signal transduction, regulatory
processes or kinetic properties (Bernhard, 2011) of virus infections.
Ravindran et al. (2019), e.g. analyzed the effect of HIV-1 and hepatitis
C virus infections using a large human signaling network. They dem-
onstrated how the infecting virus could bring the dynamically organ-
ized host system into its control. Tan et al. developed a mathematical
model describing the virus-induced interferon (IFN) signaling process.
Dynamic analysis and numerical simulations led to the suggestion that
a balance between viral replication and IFN-induced regulation is re-
sponsible for the dynamic behavior of virus-triggered signaling and
also for antiviral responses (Tan et al., 2012). Dynamic modeling of
infections with coronaviruses, especially with SARS-CoV-2, could
broaden the understanding of its effects on the host and give further in-
sight into potential targets for antiviral therapies.

In this study, we used the already published iAB-AMØ-1410
GEM of human alveolar macrophages. This model does currently
not include any genes or annotations. It is built upon the first human
reconstruction Recon 1 (Duarte et al., 2007). By now, the human

Table 1. Host-derived enforcement of reactions reduced the growth

of the virus

Reaction ID Growth host

(mmol/gDW�h-1)

Growth virus

(mmol/gDW�h-1)

Regulation

GK1 0.027 0.00736 Down

EX_ile__L(e) 0.027 0.00736 Up

EX_lys__L(e) 0.027 0.00736 Up

ILEtec 0.027 0.00736 Up

Note: The host-derived enforcement analysis (see Section 2.5.2) disclosed

reactions reducing the virus growth (initial growth rate 0.0147 mmol/gDW�h-1),

while maintaining the host’s growth rate at 100%.
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reconstruction Recon3D is available with more than 10 000 reac-
tions, 2000 genes and almost 6000 metabolites (Brunk et al., 2018),
including numerous annotations. Following the protocol of Bordbar
et al. (2010), a new model of the human alveolar macrophage could
be generated based on the newer version of the human reconstruc-
tion, Recon3D. The newly curated model could then be used to ver-
ify the findings from this study and to identify further targets.

As coronaviruses are reported to infect human alveolar macro-
phages, and a model for these cells was available, we integrated
SARS-CoV-2 into this model. Nevertheless, SARS-CoV-2 is reported
also to infect upper and lower respiratory tract cells, including pha-
ryngeal regions (Chen et al., 2020; Huang et al., 2020). GEMs for
bronchial epithelial cells and airway epithelial cells (AEC) are al-
ready available. Wang et al. reconstructed 126 human tissue-specific
GEMs using the metabolic Context-specificity Assessed by
Deterministic Reaction Evaluation algorithm. Those models are also
built upon Recon 1. Furthermore, the models include fewer numbers
of reactions (1242 and 1296, respectively) and lack a biomass main-
tenance function. Following the protocol for generati9.5 ng high-
quality genome-scale metabolic reconstructions by Thiele and
Palsson, meaningful models of human bronchial and AEC could be
generated (Thiele and Palsson, 2010). However, generating a bio-
mass maintenance function requires much data. Tools, such as
BOFdat, can be beneficial for the generation of an appropriate BOF
(Lachance et al., 2019). These models can then be used to verify the
potential antiviral targets that were found in alveolar macrophages.

The integrated host–virus model suggested the supplementation
of L-isoleucine and L-lysine as a potential target for antiviral thera-
pies, as well as the inhibition of the GK1. Since compounds that dir-
ectly inhibit GK1 are already known, their evaluation and
verification in cell culture experiments are required for fast
responses to the current spread of SARS-CoV-2 worldwide.
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Abstract: Dolosigranulum pigrum is a quite recently discovered Gram-positive coccus. It has gained
increasing attention due to its negative correlation with Staphylococcus aureus, which is one of the most
successful modern pathogens causing severe infections with tremendous morbidity and mortality
due to its multiple resistances. As the possible mechanisms behind its inhibition of S. aureus remain
unclear, a genome-scale metabolic model (GEM) is of enormous interest and high importance to better
study its role in this fight. This article presents the first GEM of D. pigrum, which was curated using
automated reconstruction tools and extensive manual curation steps to yield a high-quality GEM. It
was evaluated and validated using all currently available experimental data of D. pigrum. With this
model, already predicted auxotrophies and biosynthetic pathways could be verified. The model was
used to define a minimal medium for further laboratory experiments and to predict various carbon
sources’ growth capacities. This model will pave the way to better understand D. pigrum’s role in the
fight against S. aureus.

Keywords: Dolosigranulum pigrum; genome-scale metabolic model; Staphylococcus aureus; interaction;
auxotrophy; nose microbiome

1. Introduction

Dolosigranulum pigrum is a rare and rather newly identified opportunistic pathogen [1].
While other microbes, such as Escherichia coli, were already detected in the late 19th
century [2], D. pigrum was first described in 1993 by Aguirre et al. [3]. D. pigrum is a
Gram-positive, catalase-negative coccus growing in pairs, tetrads, and clusters [3]. In
sporadic cases, D. pigrum is associated with diseases [1,3–7].

In 2000, the antimicrobial susceptibility and the sources of 27 clinical isolates of
D. pigrum were determined [8]. The isolation sources ranged from blood and eye cultures
from nasopharyngeal swab, sputum, sinus, gastric, and urine specimens to a spinal cord
autopsy. The 27 clinical isolates were tested for their susceptibility to 15 antimicrobial
agents. D. pigrum is a potential pathogen for humans with exceptional resistance to
erythromycin but susceptibility to a wide range of other antimicrobial agents [8].

The focus shifted from D. pigrum as an opportunistic pathogen to its potential probiotic
effect in upper respiratory tract infections in the last years. Together with Corynebacterium
pseudodiphteriticum, D. pigrum was identified as the nasopharyngeal species associated
with a healthy upper respiratory tract (URT) and resistance to recurrent ear infections [9].
Multiple studies strengthen this positive association between a healthy URT and D. pigrum,
especially in children [10–19]. Several studies indicate a decrease in the abundance of D. pi-
grum after antibiotic treatment [14,18,20], while otopathogenic genera were not affected by
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antibiotic treatment [21]. Together with the antimicrobial susceptibility study by LaClaire
and Facklam [8] and Lopes et al. [22], this might indicate a high sensitivity of D. pigrum to
antibiotic agents.

D. pigrum is relevant for the URT and further parts of the respiratory tract. The
abundance of D. pigrum is decreased in children with cystic fibrosis (CF) compared to
healthy children [20]. D. pigrum seems to produce significantly less biomass than the
conventional CF pathogen P. aeruginosa but is crucial for increasing tolerance of the mixed
biofilm to most antibiotics [22,23]. However, the role of D. pigrum within the microbial
communities in patients with CF is currently still not fully understood [24].

As the human nose is part of the upper respiratory tract, D. pigrum also plays a
pivotal role in the human nasal microbiota [25]. Additionally to the negative association of
D. pigrum with Streptococcus pneumoniae, it is also negatively associated with Staphylococcus
aureus. Approximately one-third of the human population is permanently colonized by
S. aureus [26]. It can cause severe infections with high morbidity and mortality [27]. Its
methicillin-resistant strains are one of the most successful modern pathogens [28]. Liu et al.
identified D. pigrum as a predictor of the presence or absence of S. aureus [29]. Brugger
et al. strengthened the relevance of D. pigrum as a potential probiotic due to its inhibiting
effects on S. aureus. However, the overall mechanisms behind the inhibition remain unclear.
Possible mechanisms include nutrient competition or the excretion of primary or secondary
metabolites [25].

Such hypotheses could be tested using genome-scale metabolic models (GEMs) of the
organisms of interest, e.g., D. pigrum and S. aureus. Currently, 114 GEMs of S. aureus are
available [30], but no single GEM of D. pigrum exists. Due to its increasing importance in
the community with other microbes, such as S. aureus, S. pneumoniae, or P. aeruginosa, the
need for a comprehensive and meaningful GEM is of high interest and high significance.

With a community model of D. pigrum and other microbes, its interactions and poten-
tial probiotic effect could be elucidated. Such interactions are complex and challenging to
understand but vital for successful interventions [31]. Especially for the microbial commu-
nity in the human gut, several studies already investigated the effect of gene knockouts
or the absence of a community member [32,33]. The increasing interest and relevance in
studying interactions in microbial communities are also highlighted by the increasing num-
ber of available tools for modeling bacterial communities, including OptCom, BacArena,
or MICOM [32,34,35].

In this work, we introduce the first genome-scale metabolic model of D. pigrum strain
83VPs-KB5. This high-quality model comprises multiple annotations and extensive manual
curation steps. It was evaluated and validated using all publicly available experimental
data to this date. With this model, several auxotrophies were confirmed and additional
auxotrophies were identified. To facilitate future laboratory experiments, we developed
a chemically defined minimal medium with all the nutritional requirements to cultivate
D. pigrum. These new findings will pave the way to better understanding D. pigrum’s role
in the fight against S. aureus.

2. Results

The model presented in this article is the first publicly available GEM of D. pigrum
strain 83VPs-KB5. Based on the latest recommended naming conventions of the community
standardization of metabolic models [36], this model is called iDPM21RW. DPM is the
species indicator and simultaneously the organism’s prefix in KEGG [37]. The curators’
names and the year of curation were chosen as iteration identifiers. This GEM of D. pigrum
comprises 1241 metabolites in 1668 reactions and are encoded by 622 genes. It includes
the three compartments cytosol, periplasm, and the extracellular space, which hold 974,
55, and 17 reactions, respectively, excluding transport and exchange reactions. MEMOTE

is a metabolic model testing suite that determines for each tested GEM an independent
and comparable score within a comprehensive overview. Standardized metabolic model
tests and the evaluation of a model’s annotations constitute the score [38]. The final
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MEMOTE score of iDPM21RW amounts to 86%. For comparison, the GEM iML1515 of
Escherichia coli [39], for which the first version was published in [40], became steadily
updated and improved over the last 20 years by the modeling community and has now
reached a MEMOTE score of 91%.

2.1. Properties of the Constructed GEM

The basis for the manual extension was the draft reconstruction automatically cu-
rated with CarveMe [41]. It only requires an annotated genome file of the organism of
interest. In a simple command line interface, the model can be “carved”. Other tools for
the automated reconstruction of GEMs exist besides CarveMe, such as ModelSEED [42],
gapseq [43], or KBase [44]. We chose CarveMe as a curation tool as it accesses the BiGG
Models database [45] and uses its identifiers. These identifiers are required for subsequent
successful use of the ModelPolisher [46] for adding extensive annotations. ModelSEED and
gapseq both use ModelSEED identifiers, and thus, applying the ModelPolisher is currently
not feasible.

The initial draft reconstruction from CarveMe included only 1499 reactions, 1095
metabolites, and 632 genes. Despite the first impression of a decrease in the number
of genes, it needs to be stated that 142 genes were included twice in the initial draft
model: once with the prefix G_ and once without this prefix. The duplicated genes were
removed, and the 620 genes in the final reconstruction is the number of unique genes.
This means that 132 additional genes, 169 reactions, and 146 metabolites were added
to the model during the whole manual refinement process. During manual extension
based on the KEGG database, 161 reactions, 143 metabolites, and 129 genes were added
to the model. An overview of these numbers is given in Figure 1. Metabolic models
may contain thermodynamically impossible energy-generating cycles. These models can
charge currency metabolites such as adenosine triphosphate (ATP) or reduced nicotinamide
adenine dinucleotide phosphate (NADPH) without nutrient consumption [47]. The model
iDPM21RW was evaluated for the production of 15 energy metabolites while no nutrients
were available. None of the tested energy metabolites were produced, and thus, the
final model does not contain energy-generating cycles. Of the 1499 reactions, 6.23% are
blocked reactions, which means that they cannot carry any flux during flux variability
analysis (FVA):x. These blocked reactions might be indicators of knowledge gaps.

2.1.1. Mass and Charge Imbalances

The initial draft model had 858 mass and/or charge imbalanced reactions. After
manual refinement of these mass and charge imbalances, more than 82% of the 858 im-
balanced reactions were balanced. This increase in balanced reactions is also confirmed
by MEMOTE when looking at the mass and charge balance score: The mass balance score
increased from 52.7% to 95.6%, and the charge balance score increased from 43.2% to 93.3%.
However, 137 reactions were still mass and/or charge imbalanced, none of which were
blocked reactions. With novel insights into metabolites’ protonation statuses, the actual
participation of metabolites in these reactions and their accurate stoichiometry, and further
manual refinement, this number might be reduced even further.

2.1.2. Annotations

The model comprises annotations to various databases. These annotations were
added using ModelPolisher [46] and extended manually. For the model reactions, cross-
references to the databases MetaNetX [48], Biochemically, Genetically, and Genomically
Structured (BiGG) Models [45], UniProt [49], Kyoto Encyclopedia of Genes and Genomes
(KEGG) [37], RHEA [50], and BioCyc [51] are included, as are the corresponding EC-
numbers, where available. The annotations of the model metabolites contain cross-
references to the databases KEGG [37], BiGG [45], BioCyc [51], the Human Metabolome
Database (HMDB) [52], MetaNetX [48], and lipidmaps [53]. The gene annotations contain
cross-references to KEGG [37] and the NCBI protein database [54].
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Additionally, all genes, metabolites, and reactions were further annotated with a
term from the Systems Biology Ontology (SBO) [55]. All metabolites were assigned the
SBO term SBO:0000247 for “simple chemical”, and all model genes received the SBO
term SBO:0000243 coding for “gene”. In total, 22 different SBO terms were assigned to
the reactions. The most prominent SBO term with a relative abundance of 31.32% is
the SBO:0000176, coding for “biochemical reaction”. All other SBO terms describe more
precisely the biochemical reactions, such as the SBO term SBO:0000216 with a relative
abundance of 6.5%, coding for a “phosphorylation” reaction. The relative occurrence of all
22 SBO terms is depicted in Figure 1.

The model reactions were further annotated using terms from the Evidence and Con-
clusion Ontology (ECO) [56]; 38.7% of the model reactions were inferred from background
scientific knowledge, 10.1% had similarity evidence, 20.5% held a computational inference,
and 30.7% even had sequence similarity evidence. The overall occurrence of the ECO terms
is displayed in Figure 1.

A B

C

Figure 1. Properties of the genome-scale metabolic model (GEM) iDPM21RW. This figure illustrates various model proper-
ties. (A) The number of model instances in the draft and the refined final reconstruction is indicated. In total, 132 genes,
169 reactions, and 146 metabolites were added to the final reconstruction. (B) Evidence and Conclusion Ontology (ECO)
terms indicate the confidence of inclusion for the model’s reactions. Increasing color intensity corresponds to increasing
confidence. (C) Systems Biology Ontology (SBO) terms were used to annotate the models’ reactions further [57]. The axis of
the relative occurrence is given as a log scale.
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2.1.3. Biomass Objective Function

CarveMe creates a general biomass objective function (BOF) during the curation pro-
cess [41]. This initial BOF was updated using BOFdat [58]. BOFdat is a Python package to
generate and improve a BOF based on organism-specific experimental data. In three steps,
the stoichiometric coefficients for major macromolecules, inorganic ions and coenzymes,
and other species-specific metabolic biomass precursors were calculated and incorporated
into the BOF. With the help of the DNA sequence of D. pigrum, five stoichiometric coef-
ficients associated with the macromolecule DNA (deoxyadenosine triphosphate (dATP),
deoxythymidine triphosphate (dTTP), deoxycytidine triphosphate (dCTP), deoxyguano-
sine triphosphate (dGTP), and diphosphate)were updated using the first step of the BOFdat
algorithm. In the second step of the BOF dat algorithm, the coefficients of inorganic ions
and coenzymes were calculated and updated based on macromolecular weight fractions.
Fifteen stoichiometric coefficients associated with coenzymes and inorganic ions were
updated, and nine were additionally integrated into the BOF. The coefficients of other
macromolecules, such as RNA, proteins, or lipids, could not be updated due to a lack of
available experimental data. The same was found for the stoichiometric coefficients of
other species-specific metabolic biomass precursors as no required gene essentiality data
was available. All metabolites included in the BOF, and their stoichiometric coefficients are
listed in the supplementary Table S2.

2.1.4. Subsystems and Groups

The group plugin is available from SBML Level 3 [59]. In total, 82 subsystems were
added to the plugin as groups. Reactions associated with these subsystems or pathways
were added as members to the respective groups. It needs to be highlighted that the
subsystems and pathways were extracted from the KEGG database [37]. Thus, only
reactions with annotated KEGG identifiers could be mapped to the respective groups.
Among the three groups with the most members and, thus, reactions is the subsystem of
metabolic pathways with 411 members, the group of biosynthesis of secondary metabolites
with 95 members, and the subsystem of microbial metabolism in diverse environments
with 79 associated reactions.

2.2. Evaluating Auxotrophies and Predicted Biosynthesis

After creating and refining a draft reconstruction and its conversion into a mathe-
matical model, the model needs to be verified, evaluated, and validated. In this step,
the model-predicted phenotypes are compared with the experimental data [60]. Brugger
et al. predicted the biosynthesis, uptake, and degradation of amino acids, carbohydrates,
polyamines, and enzyme cofactors in eleven D. pigrum strains by evaluating their genetic
content [25]. COBRApy [61] was used for all evaluation steps.

2.2.1. Auxotrophies and Biosynthesis

Brugger et al. identified a methionine auxotrophy in all evaluated D. pigrum strains. In
our model, growth without methionine supplementation was initially possible, indicating
the potential for model adaption and refinement. Nineteen reactions were associated
with methionine, which were all carefully checked. We identified and removed four
reactions without evidence in KEGG [37], BioCyc [51], or a significant hit in a BLAST
search [62]. With these alterations, the model is now incapable of producing methionine,
as Brugger et al. observed in their study [25]. An ATP-binding cassette (ABC) transporter
for the uptake of methionine is present in the model.

D. pigrum has a likely auxotrophy for arginine [25]. We could confirm this observation
with our in silico predictions.

Further auxotrophies for the polyamines putrescine and spermidine were predicted [25].
We could also confirm these observations based on our in silico simulations. Addition-
ally, the identified putative ABC-type spermidine transporter and the putative putrescine
transporter were already included in the model.
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The predicted biotin auxotrophy was initially not observed in the model. For that
reason, two biosynthesis reactions were removed from the model, both of which did
not have gene–protein reaction (GPR) associations. Instead, the biotin energy-coupling
factor (ECF) transporter was added. Brugger et al. identified a biotin-protein ligase in two
of the eleven investigated strains. We found the gene for the biotin-protein ligase in the
genome of D. pigrum strain 83VPs-KB5. Thus, the respective reaction was added to the
model.

The last predicted auxotrophy pertained to nicotinic acid (niacin) [25]. This auxotrophy
was also observed in the in silico simulations. The identified transporter [25] was already
present in the model. The same was found for additional reactions in the conversion
of niacin or nicotinamide to NAD+ and NADP+ with their respective genes. Only one
reaction was adapted, as the described enzyme was reclassified into another Enzyme
Commission (EC) number with slightly different reactants. The reaction now additionally
requires ATP and water instead of a proton and produces adenosine diphosphate (ADP)
and a phosphate.

D. pigrum is capable of synthesizing L-glutamine from L-glutamate [25]. All required
reactions are included in the model, and in silico simulations verify the production of
L-glutamine. All predicted auxotrophies and biosynthesis are summarized in Table 1.

Table 1. Overview of reported auxotrophies and biosynthetic pathways. Brugger et al. investigated auxotrophies and
biosynthetic pathways based on functional genomic predictions [25]. Reported auxotrophies and biosynthesis were verified
using iDPM21RW and in silico predictions. Additionally, reported reactions and transporters were checked for their
presence. A black check-mark (4) indicates a correct prediction or occurrence of the model’s instance; a check-mark in gray
(4) indicates a correct prediction or occurrence after model modifications; and a black cross (8) indicates a discrepancy
between the functional genomic predictions and the model. However, we could not find any discrepancy for auxotrophies
and biosynthetic pathways.

Methionine Arginine Glutamine Putrescine Spermidine Biotin Niacin
Auxotrophy 4 4 4 4 4 4

Biosynthesis 4

Reported
reactions 4 4 4

Transporter 4 4 4 4 4

Several auxotrophies in D. pigrum are already reported in the literature [25]. Thus, we
investigated further amino acid auxotrophies or de novo biosynthesis capabilities in silico.
As seen in Figure 2, only the seven amino acids L-alanine, L-aspartate, L-glutamine, glycine,
L-serine, L-asparagine, and L-tyrosine could be synthesized de novo in our simulation. For
all other amino acids, D. pigrum seems to be dependent on external sources.

2.2.2. Carbohydrate Metabolism

Besides auxotrophies, Brugger et al. also investigated the carbohydrate metabolism of
eleven D. pigrum strains using functional genomic predictions [25]. They found that there
is no tricarboxylic acid (TCA) cycle in D. pigrum. Our in silico investigations confirmed this
finding: only the two reported reactions catalyzed by fumarate-hydratase (FUM) and the
TCA-associated dihydrolipoyl dehydrogenase (AKGDH) are present in the model. Those
two reactions are illustrated in Figure 3.
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Figure 2. Amino acid production in D. pigrum. The exchange reaction of the amino acid of interest
was closed to investigate the amino acid production capacity of D. pigrum in silico. A sink reaction
of the respective amino acid was optimized while maintaining the growth rate at a fixed value
of 0.2 mmol/(gDW · h) and maximum growth rate 0.278 mmol/(gDW · h). Only the seven shown
amino acids could be synthesized de novo. For every amino acid, the ATP requirement and the
CO2 production were calculated. The color indicates the amino acid production rate concerning the
carbon source (glucose). Amino acids are shown with their respective three-letter code.

Brugger et al. identified V-type ATPases in all investigated strains, which can hy-
drolyze but not synthesize ATP [25]. The model iDPM21RW does not currently include
any V-type ATPase as there is no corresponding reaction in the BiGG Models database [45].

The authors investigated anaerobic respiratory reductases and did not identify butyryl-
CoA-reductases [25]. iDPM21RW does not contain the corresponding reaction BTCOARx,
confirming the findings by Brugger et al.

Further investigations concerned ten reactions from glycolysis, including glucokinase,
phosphoglycerate kinase, and pyruvate kinase. All ten reactions were confirmed with
iDPM21RW. Additionally, Brugger et al. predicted the presence and absence of various
enzymes relevant for homofermentation to lactate. Each enzyme and its corresponding
reaction were checked in our model.
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Figure 3. Missing TCA cycle in D. pigrum. As predicted by Brugger et al., D. pigrum does not have a
tricarboxylic acid (TCA) cycle but only two associated reactions. The two reactions are the fumarate-
hydratase (FUM) and the TCA-associated dihydrolipoyl dehydrogenase (AKGDH). The map was
drawn using Escher [63]. See the Supplementary Materials for a complete map.

In the last step, Brugger et al. predicted that putative sialidases utilize sialic acids.
Sialic acids comprise a family of monosaccharides with a nine-carbon backbone and
significant structural diversity [64]. Currently, no sialidase or sialic acidis is present in our
model. As more knowledge about D. pigrum and its potential utilization of sialic acids
becomes available, the corresponding metabolites and reactions can be included in the
model.

2.3. Evaluating Growth Capabilities

D. pigrum was isolated from the sputum, sinuses, the nasopharyngeal tract, blood,
and the gastric tract [8]. Thus, it can be assumed that D. pigrum can grow in these habitats.
The growth of iDPM21RW was simulated in chemically defined media, including synthetic
nasal medium (SNM) [65], synthetic cystic fibrosis medium (SCFM) [66], an adapted blood
medium [67,68], and a gut medium [69,70]. Within these media, the growth rate should
not exceed the growth rate of the fastest growing organism, namely Vibrio natriegens,
with a doubling time of 14.8 min [71], resulting in a flux through the biomass reaction
of 2.81 mmol/(gDW · h). Thus, a growth rate below this threshold is considered to be
realistic [38].

2.3.1. Growth in SNM

D. pigrum is known to grow in the human nose [25]. With the help of the chemically
defined synthetic nasal medium (SNM), which mimics the nasal habitat [72], the in silico
growth of D. pigrum was tested in this niche. However, without additional metabolites,
D. pigrum did not show any growth in a single culture. We first added the already identified
amino acids to the medium, for which D. pigrum has auxotrophies: L-isoleucine and L-
methionine. Additionally, we identified auxotrophy for meso-2,6-diaminoheptanedioate.
This metabolite is required for peptidoglycan metabolism. Despite extensive literature
research, including database searches on the KEGG database [37] and BioCyc [51], we
could not identify any biosynthetic pathway, suggesting either a knowledge gap or a, so
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far, unknown auxotrophy. After those three additions to the medium, the model predicted
a realistic growth rate of 0.2824 mmol/(gDW · h) in the SNM.

2.3.2. Growth in SCFM

D. pigrum is also reported to play a role in CF patients, although its role within
the microbial community is currently not fully understood [24]. A chemically defined
medium is available, mimicking the lungs of patients with CF. The in silico growth
capabilities of D. pigrum in this synthetic cystic fibrosis medium (SCFM) were evaluated.
Similar to the in silico growth of D. pigrum in the SNM, the bacterium did not grow in the
SCFM without supplementing additional metabolites. Since we expect the trace elements
manganese, zinc, copper, cobalt, and nickel to be contained in the medium even without
explicit addition, they are not further examined here. The trace elements were simply
added to the medium definition. The other required metabolites were riboflavin, thiamine,
nicotinate, 4-aminobenzoate, and, as in the SNM, meso-2,6-diaminoheptanedioate. In
their preprint from 2019, Brugger et al. stated that all eleven investigated strains of
D. pigrum lacked genes for the biosynthesis of thiamine and the de novo synthesis of
niacin/nicotinate/nicotinamide [73]. For riboflavin, ten of the eleven strains lacked the
synthesis cluster of riboflavin. Our model strain D. pigrum 83VPs KB was, however,
not among the investigated strains. A literature search in several databases, including
KEGG [37] and BioCyc [51], and BLAST searches for relevant biosynthetic enzymes did
not reveal any hits for the synthesis of thiamine, riboflavin, and nicotinate, confirming the
findings of Brugger et al. For the metabolite 4-aminobenzoate, no information was found
in the literature. In KEGG [37] and BioCyc [51], the metabolite was reported in D. pigrum,
but no synthesis pathways were available. No significant BLAST hits were detected for the
enzyme aminodeoxychorismate lyase, which catalyzes the synthesis of 4-aminobenzoate.
After adding the required metabolites to the medium, the growth rate of D. pigrum in
SCFM was 0.2824 mmol/(gDW · h).

2.3.3. Growth in the Blood Medium

D. pigrum was isolated from blood samples and even cultivated in aerobic and anaer-
obic blood culture bottles [1,8]. A chemically defined medium simulating the human
blood is available and was used for the in silico simulations [67]. This medium defini-
tion was slightly modified and adapted [68]. For the SCFM medium, the trace elements
manganese, zinc, copper, cobalt, and nickel are required for growth but are not further
investigated here and are only added to the medium definition. Analogously, the com-
pounds 4-aminobenzoate and meso-2,6-diaminoheptanedioate are required for growth,
as D. pigrum seems to be auxotrophic for those compounds. The in silico simulations
predicted a realistic growth rate of 1.908 mmol/(gDW · h) with these metabolites.

As stated above, D. pigrum can grow anaerobically in blood cultures. Despite diverse
approaches, we could not yet simulate these conditions in our in silico model. There is
still much to discover about D. pigrum, and with additional information and laboratory
experiments, the model could be extended to simulate anaerobic growth in blood cultures.

2.3.4. Growth in the Gastrointestinal Tract

The growth of D. pigrum was simulated in the gastrointestinal tract. A defined medium
of the European diet from the Virtual Metabolic Human (VMH) database was used for this
purpose [69,70]. As in the previously tested media, trace minerals, such as manganese,
cobalt, zinc, nickel, and sulfate, were missing in the defined gut medium. The compounds 4-
aminobenzoate and meso-2,6-diaminoheptanedioate were again required to enable growth
aerobically with a growth rate of 1.088 mmol/(gDW · h).

2.3.5. Definition of a Minimal Medium for D. pigrum

The previous analysis of D. pigrum’s growth behavior and the investigated auxotro-
phies indicate specific requirements for its environment and successful colonization. To
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obtain a detailed picture of all environmental requirements for successful growth, we
defined a minimal medium for the growth of D. pigrum with the help of iDPM21RW (Sup-
plementary Table S3). This minimal medium contains 33 metabolites, which are all listed
in Table 2. It includes the 13 amino acids that cannot be synthesized de novo (also see
Figure 2) and 13 trace minerals. As a carbon source, D-glucose was chosen. However, in
the following section, the growth on different carbon sources is investigated. The three
vitamins thiamine (vitamin B1), riboflavin (vitamin B2), and niacin (vitamin B3) are also
required to enable growth. 4-aminobenzoate was already mentioned several times to be
crucial for D. pigrum’s growth. For this reason, it was also included in the minimal medium.
The same was found for meso-2,6-diaminoheptanedioate, which was also added to the
minimal medium definition. Finally, oxygen is also required for the growth simulations, as
anaerobic growth is not yet enabled. Within this minimal medium, the simulated growth
rate amounts to 0.2784 mmol/(gDW · h).

Table 2. Definition of a minimal medium for D. pigrum. Since D. pigrum holds many auxotrophies
and several requirements for its environment to grow, we defined a minimal medium containing all
relevant metabolites. The minimal medium comprises in total 33 compounds, including the 13 amino
acids that cannot be produced, 13 trace minerals, D-glucose as a carbon source, and additional
vitamins and required compounds.

Amino Acids Trace Minerals Other Molecules
L-leucine Cl– (chloride) D-glucose
L-threonine K+ (potassium) 4-aminobenzoate
L-arginine Ca2+ (calcium) riboflavin
L-lysine Mg2+ (magnesium) thiamine
L-proline Mn2+ (manganese) niacin
L-glutamate Co2+ (cobalt) meso-2,6-diaminoheptanedioate
L-histidine Zn2+ (zinc) O2 (oxygen)
L-isoleucine Cu2+ (copper)
L-methionine Fe2+ (iron II)
L-tryptophane Na+ (sodium)
L-valine Ni2+ (nickel)
L-cysteine SO4

2 – (sulfate)
L-phenylalanine HPO4

2 – (phosphate)

2.3.6. Growth on Different Carbon Sources

Little is known about D. pigrum. The previous analysis confirmed several auxotrophies
and biosynthetic capacities. To further evaluate the metabolic capabilities, the growth on
different carbon sources within the previously defined minimal medium was evaluated.
The uptake rate of each tested carbon source was set to 10 mmol/(gDW · h). The available
mono-, di-, and trisaccharides were tested as sole carbon sources, as seen in Figure 4. As
expected, the growth rate increases with increasing amounts of carbon available. Glucose,
fructose, and mannose allow the best growth rates for simulations on monosaccharides as
sole carbon sources.
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Figure 4. Growth on different carbon sources. D. pigrum’s ability to utilize different carbon sources
was investigated using the previously defined minimal medium. The available mono-, di-, and
trisaccharides were examined concerning the resulting growth rate. As expected, trisaccharides result
in a higher growth rate compared to di- and monosaccharides.

2.4. Visualization

A comprehensive map of D. pigrum’s metabolism was drawn using Escher [63]. Since a
figure would not appropriately capture its large size, the map is included as Supplementary
Figure S1 of this publication.

3. Discussion

In this work, we generated iDPM21RW: the first genome-scale metabolic model of
Dolosigranulum pigrum. The basis for the manual extension was the draft reconstruction
automatically curated with CarveMe [41].

Models curated by ModelSEED and gapseq could be used to extend the already
existing model iDPM21RW further. This procedure, however, can be challenging because
identifier mapping still holds several difficulties. For this purpose, correct and extensive
annotations are indispensable. During curation, we put particular focus on the annotations
of reactions, metabolites, and genes. Extensive annotations can hold cross-references to
other databases, which facilitates the comparability and interoperability of iDPM21RW
with models from other databases.

ModelPolisher annotates model instances, such as reactions, metabolites, or compart-
ments but not the genes because they are organism- or even strain-specific. Therefore, the
manual addition of gene annotations was required. This was a challenging step because the
gene annotations should be strain-specific KEGG identifiers. A direct mapping between
the NCBI protein identifiers and the KEGG identifiers was not possible since the NCBI
protein identifiers often corresponded to so-called “MULTISPECIES” entries that are not
uniquely associated with D. pigrum. Reaction or metabolite identifiers are often from
different databases, and as already mentioned, mapping is challenging. Strain-specific
gene identifiers are, however, sometimes more comfortable to map with the corresponding
gene and protein annotation files, and the locus-tag information included. This simplifies
model comparisons on gene level.

We added cross-references to several other databases and Systems Biology Ontol-
ogy (SBO) and Evidence and Conclusion Ontology (ECO) terms. ECO terms [56] provide
information about the curator’s confidence about a reaction’s inclusion into the model. Con-
fidence scores were previously defined by Thiele and Palsson [60] and the Constraint-Based
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Reconstruction and Analysis (COBRA) Toolbox. Thiele and Palsson’s confidence score 0
indicates the lowest confidence and 4 indicates the highest confidence with biochemical
data evidence. To avoid confusion using only numbers, we decided to use ECO terms.
These terms are uniquely defined and can directly be accessed via the Minimal Information
Requested in the Annotation of Models (MIRIAM) registry initiative at identifiers.org (ac-
cessed on 7 April 2021) [74]. Each reaction was assigned one unique ECO term. However,
multiple genes can occur within a GPR. We decided to use a conservative approach and to
assign the lowest ECO term of all genes to the reaction. One could also think of assigning
the highest identified ECO term, but this might require additional manual verification to
avoid inducing false confidence.

The biomass objective function (BOF) was improved using the only available omics
data, namely genomics. No transcriptomics, proteomics, or lipidomics data are available,
which could be used to further improve the BOF and the model itself by adding detected
metabolites, reactions, and genes.

Multiple auxotrophies are reported in D. pigrum. Brugger et al. predicted that no
tricarboxylic acid (TCA) cycle is present [25]. The TCA cycle belongs to the most impor-
tant central metabolic pathways for energy conservation and biosynthesis of key cellular
intermediates, including the amino acid biosynthesis [75]. Thus, it seems not surprising
that D. pigrum has several auxotrophies, especially for amino acids, resulting from the
lacking TCA cycle. D. pigrum is not the only microbe missing parts of the TCA cycle. A
large number of bacteria are reported to have incomplete or unusual TCA cycles [76,77].
This incompleteness or even absence of the TCA cycle might go back to adaptions to the
organism’s metabolic lifestyle [76]. However, it might also be the case that apparently
“missing” genes are only missing in genome analysis but are revealed in actual biochemical
experiments [77]. The observations of Brugger et al. are based on functional genomic
prediction, and model curation is based on the genome sequence of D. pigrum. Biochemical
experiments are required to either confirm the missing TCA cycle or refine the model by
adding newly identified reactions.

Further auxotrophies concerned polyamines and vitamins. The polyamines spermidine
and putrescine are synthesized from L-arginine and L-methionine in Escherichia coli [78], for
which D. pigrum already harbors auxotrophies. Additionally, D. pigrum seems to be aux-
otrophic for the vitamins thiamine (vitamin B1), riboflavin (vitamin B2), and niacin (vitamin
B3). Vitamin B1 has importance for primary carbohydrate and amino acid metabolism [79].
Our analysis further revealed a 4-aminobenzoate, also called p-Aminobenzoate (PABA),
auxotrophy. PABA is a component of folate (vitamin B9) [80] and, thus, is also associated
with the B-vitamins. Rodionov et al. identified transporter proteins for vitamins in various
human pathogens, which strictly depend on vitamin uptake [81]. As these transporters
are also reported in D. pigrum, one could assume that it is also dependent on uptake of
the reported B-vitamins. Biochemical experiments are required to confirm all reported
auxotrophies.

Having discussed the multiple auxotrophies, it seems apparent that D. pigrum has
difficulties growing on certain media. The synthetic nasal medium (SNM) and synthetic
cystic fibrosis medium (SCFM) mimic two niches, where D. pigrum is observed. These
habitats, however, are relatively low in nutrient supply. For that reason, metabolites need to
be added to the medium definition to enable growth in silico. However, one needs to keep
in mind that only single-culture in silico experiments were conducted, combined with in
vivo observations. Additional single-culture in vitro growth experiments and coculture in
silico experiments might clarify the role of the added metabolites. Sokolovskaya et al. have
shown that microbial communities share vitamins. They showed that various mutualisms
have evolved between organisms to import and deliver variants of cobamides, including
vitamin B12 [82]. It needs to be investigated whether the in silico required nutrients are due
to the single culture experiments and are obsolete in multi-culture settings. The same was
found for the analysis in the nutrient-rich media simulating the blood and gastrointestinal
tract.

Appendix B Accepted publications

76



Metabolites 2021, 11, 232 13 of 22

Comparing the growth rates between the in silico simulations in the SNM and SCFM to
the blood and the gastrointestinal medium, one can observe an increased growth rate for the
latter two media. This observation seems reasonable, as the blood and the gastrointestinal
medium are rich in nutrients that can be taken up and metabolized compared to the media
SNM and SCFM.

With our high-quality model, iDPM21RW, we were able to confirm predicted auxotro-
phies and growth behaviors. Laboratory and biochemical experiments as well as additional
omics data can be used to further refine this first-time genome-scale metabolic model of
Dolosigranulum pigrum. This model will pave the way to better understand its metabolism
and its interaction and extrusion of the human pathogen Staphylococcus aureus.

4. Materials and Methods

The first draft reconstruction of Dolosigranulum pigrum was initially curated using an
automated reconstruction tool. Subsequent automated and manual refinement lead to the
first genome-scale metabolic model (GEM) of D. pigrum.

4.1. Building the Draft Reconstruction

Several tools were used for the draft reconstruction and validation, as explained
subsequently.

4.1.1. CarveMe

CarveMe is a fast and automated reconstruction tool for curating genome-scale
metabolic models of microbial species and communities [41]. It was used to curate the first
draft reconstruction of D. pigrum strain 83VPs-KB5. This strain was chosen, as its NCBI
assembly level is the only complete genome assembly of D. pigrum. Additionally, this strain
is the only D. pigrum strain in the KEGG database [37]. The coding domain sequence (CDS)
of this strain was downloaded from the NCBI assembly database [83], using the accession
code ASM19771v1 (RefSeq assembly accession: GCF_007197715.1). With this annotated
genome sequence and the default settings of CarveMe version 1.2.2, the initial draft of
D. pigrum in SBML Level 3 Version 1 format [84] was curated.

4.1.2. ModelPolisher

Subsequently, the ModelPolisher version 2.0.1 was used to annotate the initial draft re-
construction extensively [46]. ModelPolisher matches the identifiers of the model’s entities
against the BiGG Models database [45]. For each corresponding entry in BiGG, all available
information and data about the matched instance are incorporated as annotations into the
initial draft reconstruction. ModelPolisher was run within a docker environment using the
additional settings –annotate-with-bigg=true, –add-adb-annotations=true, and –output-
combine=true. After this annotation step, all gene–protein reaction (GPR) associations,
reaction boundaries, and objective coefficients were unreadable by COBRApy [61] due to
inter-conversion difficulties with the SBML flux balance constraints (fbc) package [85]. All
unreadable instances were converted to the respective fbc package instances.

4.1.3. MEMOTE

The metabolic model testing suite, MEMOTE determines for each tested GEM an
independent and comparable score within a comprehensive overview. Standardized
metabolic model tests and the evaluation of a model’s annotations constitute the score.
Well-annotated and consistent models have a high MEMOTE score [38]. Each improvement
step of the D. pigrum model was closely monitored by determining the MEMOTE score in
each iteration. MEMOTE was used in its command line version.

4.2. Refining the Reconstruction Using Literature Evidence

After the initial draft was curated and annotated, manual refinement steps followed.
All manual steps were conducted using COBRApy [61] and libSBML [86].
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4.2.1. Mass and Charge Imbalances

The chemical formula and charge were missing for 65 of the metabolites. They were
retrieved from the BiGG Models database [45], added to the respective instance, and used
to balance reactions in which they participate.

4.2.2. Add Gene Annotations

The ModelPolisher added annotations for all model instances except for the genes. To
this point, only the NCBI protein accession numbers from the CDS file were included in
the model. A BLAST [62] search was conducted for every NCBI protein accession number
to retrieve the respective GenBank [87] identifiers and to increase the gene annotations’
scope. With the help of these GenBank identifiers, the locus tags of the D. pigrum genes
were identified. These locus tags are also used in the KEGG database [37]. All additionally
identified gene annotations were added to the model using libSBML.

4.2.3. Extend Model Manually Using the KEGG Database

Information about D. pigrum strain 83VPs KB5 can be found in the KEGG database [37].
The previously retrieved gene annotations were used to compare the already included
model genes with the genes listed in the KEGG database to increase the initial reconstruc-
tion’s scope. Therefore, the identified metabolic reactions, including GPRs, and probable
new metabolites, were added to the model. In the next step, dead-end metabolites were
identified. Despite an ortholog and homolog search of related nasal microbes available in
the BiGG database, the number of dead-end metabolites could not be decreased. Further
genes and reactions were added to the model based on these identified metabolites.

4.2.4. Test for Energy-Generating Cycles

GEMs can contain so-called energy-generating cycles. These cycles are thermodynam-
ically impossible since models with such cycles can charge energy metabolites without
nutrient consumption [47]. Fritzemeier et al. suggested a pipeline to identify 14 different
energy metabolites, including adenosine triphosphate (ATP), cytidine triphosphate (CTP),
guanosine triphosphate (GTP), uridine triphosphate (UTP), inosine triphosphate (ITP),
reduced nicotinamide adenine dinucleotide (NADH), NADPH flavine adenine mononu-
cleotide and dinucleotide, ubiquinol-8, menaquinol-8, 2-demethylmenaquinol 8, acetyl-coA,
and L-glutamate as well as the proton exchange between cytosol and periplasm. For each
metabolite, a dissipation reaction was defined based on Fritzemeier et al. After constraining
all uptake reactions to zero, the 15 dissipation reactions were maximized.

4.2.5. Add More Precise SBO Terms

MEMOTE assesses the annotation of model instances with Systems Biology Ontology
(SBO) terms [55]. SBO terms provide semantic information about the model instances and
allows for explicit and unambiguous understanding of its meaning: the more detailed SBO
a term chosen, the more explicit the description given. Metabolites and genes received
the general SBO terms for “simple chemical” (SBO:0000247) and “gene” (SBO:0000243),
respectively. The reactions’ SBO terms were chosen as precisely as possible using an
in-house pipeline [57].

4.2.6. Improve Biomass Objective Function

CarveMe adds a universal biomass equation to the carved model. However, this
equation was adapted from the biomass composition of Escherichia coli [88] to a universal
biomass composition [41,89]. To further improve the biomass objective function (BOF)
of the D. pigrum reconstruction, BOFdat was used [58]. BOFdat is a Python package to
generate and improve a BOF based on organism-specific experimental data. In three steps,
the stoichiometric coefficients for (i) the major macromolecules, (ii) inorganic ions and coen-
zymes, and (iii) the remaining species-specific metabolic biomass precursors are generated
and incorporated into the BOF. For refinement of the BOF of D. pigrum, its genomic DNA
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sequence was used as input in the first step. Furthermore, parameters for the dry weight
composition are required. Since, at the time of writing, no information about the dry weight
composition of D. pigrum was available, these parameters were chosen as suggested in
the BOFdat documentation. With the DNA sequence and the dry weight composition, the
stoichiometric coefficients of the DNA nucleotides deoxyadenosine triphosphate (dATP),
deoxythymidine triphosphate (dTTP), deoxyguanosine triphosphate (dGTP), and deoxycy-
tidine triphosphate (dCTP) as well as for diphosphate (ppi) were determined and updated
in the BOF. At the time of writing, no transcriptomic, proteomic, or lipidomic data are
publicly available. Therefore, the RNA, protein, and lipid macromolecules’ coefficients
could not be refined within this work.

After determining the stoichiometric coefficients of the macromolecules, the stoichio-
metric coefficients of the inorganic ions and coenzymes followed. For this step, the BOFdat
script was adapted to run in the latest Python version. All inorganic ions or coenzymes
were either added to the BOF, or their stoichiometric coefficients were updated.

Experimental gene essentiality data are required for the inclusion and update of
additional species-specific metabolic biomass precursors in step (iii). This step aims to
identify condition- and species-specific metabolic end goals. As gene essentiality data are
also not publicly available at the time of writing, this step was skipped.

4.2.7. Add ECO Terms

The Evidence and Conclusion Ontology (ECO) comprises classes and terms describing
different evidence and assertion methods. These terms capture, e.g., the type of evidence
that a gene product or a reaction has. ECO terms are helpful for quality control of a model.
For every reaction in the model, the GPR association was extracted. All reactions without a
GPR were assigned the ECO term ECO:0000001. This term is defined as an inference from
background scientific knowledge. For all remaining genes from the GPRs, the UniProt
database [49] was consulted. Protein existences were defined as (i) inferred from homology,
(ii) predicted, or (iii) evidence at the transcript level. These existences were assigned to
their corresponding ECO terms. All assignments are listed in Table 3. If a GPR consists
of only one gene, the corresponding ECO term was added to the reaction. If a reaction
had a GPR with multiple genes, the gene with the lowest evidence score was added. The
ECO terms in Table 3 are sorted from the lowest to the highest evidence scores. Genes
that were not found in the UniProt database were assigned the ECO term ECO:0000251 for
the similarity evidence used in the automatic assertion. Hence, if one gene in a GPR with
multiple genes was not found in UniProt, the reaction was assigned the lowest evidence
score, which is the one for genes not found in UniProt.

Table 3. ECO terms and their names and assignments. For every Evidence and Conclusion Ontology
(ECO) term, the corresponding name is given together with the assignment. ECO terms are ordered
in ascending evidence order.

ECO Term Term Name Assignment

ECO:0000001 inference from background
scientific knowledge no GPR

ECO:0000251 similarity evidence used in
automatic assertion GPR but no hit in UniProt

ECO:0000363 computational inference used
in automatic assertion UniProt: ‘Predicted’

ECO:0000044 sequence similarity evidence UniProt: ‘Inferred from
homology’

ECO:0000009 transcript expression evidence UniProt: ‘Evidence at
transcript level’

All ECO terms were added as annotations with the biological qualifier type BQB_IS_-
DESCRIBED_BY.
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4.2.8. Remove Redundant Information

CarveMe stores information about annotations and other databases in the SBML notes
field. However, this information is better stored in the annotations field. Since CarveMe and
ModelPolisher use the BiGG Models database, the same annotation information is stored
twice: once in the notes by CarveMe and once in the annotations field by the ModelPolisher.
To avoid this redundancy and to decrease the file size, the annotation information was
removed from the notes field.

4.2.9. Add Subsystems and Groups

With the added annotations, the pathways in which a reaction occurs are included
in the model. For every reaction that has an annotated KEGG [37] ID, the KEGG repre-
sentational state transfer (REST) application programming interface (API) was used to
retrieve the associated pathways. These pathways were added as further annotations to the
reaction with the biological qualifier type BQB_OCCURS_IN. Furthermore, the “groups”
plugin [90], available from SBML Level 3 [59,91], was enabled. Every pathway was defined
as a group instance, and every reaction occurring in this pathway was added as a member.

4.3. Evaluation and Validation of the Reconstruction

Available knowledge about D. pigrum was used and simulated in silico to evaluate
and validate iDPM21RW as detailed below.

4.3.1. Evaluating Auxotrophies, Biosynthesis Capabilities, and Carbohydrate Metabolism

We mainly used the results from the functional genomic predictions by Brugger et al. [25]
to evaluate the auxotrophies and biosynthetic capabilities. All stated auxotrophies were
carefully verified by limiting the respective metabolite’s availability and subsequently
optimizing the model. If the in silico simulations revealed no growth after limiting the
metabolite’s availability, the auxotrophy was considered confirmed. If growth was possible
despite the limitation of its availability, the complete biosynthetic pathway of the respective
metabolite was evaluated and carefully checked for every individual reaction. Reactions
with limited or insufficient genetic proof were removed from the model. For this evaluation
step, we mainly relied on literature research, the two databases KEGG [37] and BioCyc [51],
and BLAST searches [62]. For predicted reactions and transporters, the model was checked
for the presence of the reported reaction and transporters. Missing reactions or transporters
were added to the model with its corresponding genes.

4.3.2. Identification of Additional Auxotrophies

A sink reaction for every amino acid was added to identify additional auxotrophies.
This sink reaction was maximized after closing the respective exchange reaction to limit
its availability. The growth rate was fixed to 0.2 mmol/(gDW · h). As a medium, the self-
defined minimal medium was used (see also Section 4.3.4). If no amino acid production or
growth was possible after closing the amino acid’s exchange reaction, D. pigrum was con-
sidered auxotrophic. If the amino acid could be produced, the amino acid production was
set in relation to the sole carbon source (D-glucose). The ATP requirement was calculated
by summing up all fluxes of ATP-consuming reactions and by putting them in relation to
the amino acid production rate. The CO2 production rate was computed by setting the
CO2 transport reaction rate in relation to the amino acid production rate.

4.3.3. Evaluating Growth Capabilities in Different Media

The model iDPM21RW was further validated by simulating its growth capabilities in
four different environments. The first evaluated habitat was the human nose. For this niche,
a chemically defined synthetic nasal medium (SNM) is available [65,72]. As no growth
could be simulated with the defined metabolites in the SNM, the identified amino acids
for which D. pigrum is auxotrophic were added as well. As still no growth was possible,
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we further evaluated and identified missing components until a growth in the defined
medium could be simulated.

This procedure was repeated for the other three media. The synthetic cystic fibrosis
medium (SCFM) mimics the lung of patients with CF and was defined by Palmer et al. [66].
For the blood simulations, an adapted medium initially created for the human recon-
struction Recon 2.2 [67] was used. The definition for the European diet was extracted
from the Virtual Metabolic Human (VMH) database [69,70]. Each metabolite’s exchange
reaction and, thus, availability in the analyzed medium was set to 10 mmol/(gDW · h) for
determination of the growth rate.

4.3.4. Defining a Minimal Medium for D. pigrum

D. pigrum holds many requirements for its environment regarding nutrients due to
its multiple auxotrophies. We defined a minimal medium specifically for D. pigrum to
better cultivate this organism in laboratory settings. For this purpose, we used the SNM
medium definition and investigated which metabolites could be removed from the medium
while maintaining a realistic growth rate. The uptake rate of each metabolites was set to
10 mmol/(gDW · h). The complete list of minimal medium components is given in Table 2.

4.3.5. Evaluating Growth Capabilities on Different Carbon Sources

With the previously defined minimal medium, the in silico growth capabilities of
D. pigrum on different carbon sources were examined. All available sugar exchange fluxes
were extracted from the model and sorted into mono-, di-, and trisaccharides. Each carbon
source was tested individually by only enabling the tested carbon source’s exchange
reaction and by optimizing the model for growth. Growth was also possible for the
available polysaccharides, but these were not further investigated.

4.4. Visualization

Escher is a web application for building pathway maps. Reactions, metabolites, and
genes can be contextualized within the metabolism of an organism [63]. Besides the
web application, an Escher Python package can be run and customized within Jupyter
Notebooks [92]. The package can process models using COBRApy [61]. This Python
version of Escher was used to draw parts of D. pigrum’s metabolism.

Supplementary Materials: The following are available at https://www.mdpi.com/2218-1989/11/4
/232/s1, Figure S1: Metabolic map of D. pigrum, Table S2: Stoichiometric coefficients of the biomass
objective function (BOF), Table S3: Minimal medium for D. pigrum.
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Abstract: The current SARS-CoV-2 pandemic is still threatening humankind. Despite first successes
in vaccine development and approval, no antiviral treatment is available for COVID-19 patients.
The success is further tarnished by the emergence and spreading of mutation variants of SARS-
CoV-2, for which some vaccines have lower efficacy. This highlights the urgent need for antiviral
therapies even more. This article describes how the genome-scale metabolic model (GEM) of the
host-virus interaction of human alveolar macrophages and SARS-CoV-2 was refined by incorporating
the latest information about the virus’s structural proteins and the mutant variants B.1.1.7, B.1.351,
B.1.28, B.1.427/B.1.429, and B.1.617. We confirmed the initially identified guanylate kinase as a
potential antiviral target with this refined model and identified further potential targets from the
purine and pyrimidine metabolism. The model was further extended by incorporating the virus’
lipid requirements. This opened new perspectives for potential antiviral targets in the altered lipid
metabolism. Especially the phosphatidylcholine biosynthesis seems to play a pivotal role in viral
replication. The guanylate kinase is even a robust target in all investigated mutation variants currently
spreading worldwide. These new insights can guide laboratory experiments for the validation of
identified potential antiviral targets. Only the combination of vaccines and antiviral therapies will
effectively defeat this ongoing pandemic.

Keywords: SARS-CoV-2; COVID-19; flux balance analysis (FBA); genome-scale metabolic mod-
els; target identification; reaction knock-out; structural proteins; purine metabolism; pyrimidine
metabolism; B.1.1.7; B.1.351; B.1.617; B.1.28; B.1.427/B.1.429

1. Introduction

Since its emergence in December 2019 [1], individual cases of Severe Acute Respira-
tory Syndrome (SARS) coronavirus (CoV) type 2 (SARS-CoV-2) infections have evolved
into an uncontrolled pandemic. As a result, more than 2.8 million people have lost their
lives to or with Coronavirus Disease 19 (COVID-19) by March 2021. COVID-19 symptoms
range from pneumonia to severe lung, heart, liver, kidney, neurological or gastrointestinal
dysfunction [2]. While great efforts have been employed to provide effective SARS-CoV-2
vaccines [3,4], their success is overshadowed by the emergence of viral escape mutants
and the shortcomings in developing targeted antiviral treatments. A meta-analysis by [5]
demonstrates that in non-severe cases of COVID-19, there is little to no evidence for effec-
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tive use of ribavirin, hydroxychloroquine, umifenovir, lopinavir/ritonavir, or interferon [5].
Even the putative effectiveness of remdesivir is questionable [6,7].

While antiviral medication development was less fruitful, as of March 2021, there
are 13 vaccines for SARS-CoV-2 in use, most of them targeting the spike (S) protein [3,8].
Albeit the successes in vaccine development, reports of mutations are increasing. Some of
these mutations are even bypassing the immunity provided by several vaccine candidates.
Five mutation variants have prevailed, disseminate rapidly, and are classified as variants
of concern or variants of interest: (i) B.1.1.7, first detected in the United Kingdom; (ii) P.1
(also called B.1.1.28), first detected in Japan and Brazil; (iii) B.1.351, first detected in South
Africa; (iv) B.1.427/B.1.429, first detected in the US [9,10]; and (v) B.1.617, first detected in
India [11]. While the consequences of some of these mutations for vaccine efficacy have
been reported, the metabolic implications of them remain unclear.

SARS-CoV-2 is a member of the Betacoronavirus genus within the Nidovirales order [4,12].
The virus has a 27 kb to 32 kb positive sense, single-stranded RNA genome encoding 26
proteins, including the four structural proteins spike (S), envelope (E), membrane (M)
and nucleocapsid (N) [4,13]. The S trimers [14,15] scan the host cells surface for the viral
entry receptor angiotensin converting enzyme 2 (ACE-2) and therefore initiate the entry
process [1,4]. The structural proteins E and M facilitate viral transport, assembly, budding,
and release of SARS-CoV-2 virions from infected host cells [1,4]. While N is expressed
within the host cytoplasm, the other structural proteins S, E, and M are translated within
the endoplasmic reticulum–Golgi intermediate compartment (ERGIC) of the host cell [2,4].
SARS-CoV-2 N supports replicating the viral genome in the cytoplasm and encloses novel
viral RNA to form viral ribonucleoprotein complexes (vRNPs) [2]. During the viral replica-
tion process’s final steps, these cytoplasmic vRNPs are assembled with S, E, and M proteins
within the ERGIC [2,4]. The mature virions bud at the ERGIC membrane, forming vesicles
which are subsequently released from the host cell via exocytosis [2,4].

Viral lipid envelopes protect the vRNPs and facilitate the particles’ entry into host
cells [16]. They are usually acquired via budding from the plasma membrane or other
cellular organelles [16,17]. Viruses specifically modify host membrane structures, the com-
position, and the whole host lipid metabolism to favor viral replication [16,18,19]. Many
viruses exploit spatiotemporally enriched microdomains or rafts containing different lipid
species [19]. To this end, cholesterol, for instance, increases host membrane fluidity for
efficient viral entry, replication, and budding, while phosphatidylserine supports viral
entry [19]. Altogether, various modifications in viral egress areas determine the differing
composition of viral envelopes, thereby influencing their stability and infectivity [19]. As
SARS-CoV-2 buds from the ERGIC [2,4], its envelope lipid bilayer resembles this host or-
ganelle’s composition [2,4]. The viral membrane formation mostly requires cholesterol and
phospholipids, while sphingomyelin and cardiolipin are presumably less abundant [20,21].

In our previous work, we have generated an integrated human-virus metabolic model,
which combines flux balance analysis (FBA) and flux variability analysis (FVA) to model
the metabolic changes within SARS-CoV-2 infected human alveolar macrophages [22]. The
GEM is based on the already published and well-developed human alveolar macrophage
model iAB-AMØ-1410 by by Bordbar et al. [23]. Disabling viral replication in human alveo-
lar macrophages might be an early way of intervention and prevention of the virus’s further
spread. The model was employed to predict putative antiviral targets such as guanylate
kinase 1 (GK1) or the availability of L-isoleucine and L-lysine [22]. Some of these potential
targets may be directly targeted by small molecules or antivirals [24–26]. Increasing knowl-
edge of SARS-CoV-2 facilitates the model’s improvement by incorporating recent findings
of the copy number of the structural proteins [22,27]. The stoichiometric coefficients of
the metabolic requirements for amino acids and nucleotides and energy requirements can
be refined to predict the viral replication capacity better. Additionally, the lipid require-
ments were now accounted for in the viral biomass objective function (VBOF). This study
presents an updated version of the integrated alveolar macrophage SARS-CoV-2 GEM and
the consequences of prominent mutations for predicted metabolic targets.
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2. Materials and Methods
2.1. Correcting the Copy Number of Structural Proteins

In the previous version of the VBOF, the copy number of structural proteins was not
yet known. We conducted extensive literature research to identify the precise copy number
of each structural protein individually. The search was mainly focused on SARS-CoV-2
directly. However, if no information was found for the novel coronavirus, we also searched
for information on closely related coronaviruses.

With the identified copy numbers (see Table 2), the stoichiometric coefficients of
the nucleotides, amino acids, and energy requirements were re-calculated, as Renz et al.
state [22]. However, instead of using a general copy number for all structural proteins, as
Aller et al. describe [27], the individual copy numbers of the respective structural proteins
were used.

After the VBOF was updated with the corrected stoichiometric coefficients, the knock-
out and host-derived enforcement analyses were repeated, as Renz et al. describe [22]. The
knock-out experiments were performed by subsequently knocking out each reaction and
evaluating its effect on the host’s maintenance and viral replication capacity (VBOF). For
the host-derived enforcement analyses, the FVA was used to determine flux ranges that
allow for 100% maintenance of the host, while decreasing the viral growth by at least 20%.
The adapted host-derived enforcement algorithm was used, as Renz et al. describe [22].

2.2. Testing the Targets’ Robustness against for Several Mutations

The Global Initiative on Sharing All Influenza Data (GISAID) database has a col-
lection of more than 1.5 million viral sequences of SARS-CoV-2 (May 2021). We set the
following filters for the sequences: (i) variant (VUI202012/01 GRY (B.1.1.7) for variant
B.1.1.7; GH/501Y.v2 (B.1.351) for variant B.1.351; GR/501Y.V3 (P.1) for variant B.1.1.28;
GH/452R.V1 (B.1.429+B.1.427) for variants B.1.429 and B.1.427; and G/452R.V3 (B.1.617+)
for variant B.1.617) and (ii) location (Europe/United Kingdom for variant B.1.1.7; Africa
for variant B.1.351; South America for variant B.1.1.28; North America/USA for variants
B.1.429 and B.1.427; and Asia/India for variant B.1.617). We randomly downloaded ten
sequences from each mutation variant with the filters set as described. In addition to the
sequences, we downloaded the mutation information given in the metadata. All tested
mutations are listed in the Supplementary Table S1. With this information, the stoichio-
metric coefficients for the VBOF were calculated for every downloaded mutation. As the
calculation of the nulceotides’ stoichiometric coefficients requires the nulceotide sequence,
the downloaded sequences were used directly for this step. For the calculation of the amino
acids’ coefficients, we used the annotated protein sequence of the SARS-CoV-2 reference
sequence (NCBI accession: NC_045512.2) and the mutation information extracted from the
metadata files. An algorithm adapted the amino acids from the protein sequence in accor-
dance with the defined mutations, including substitutions, deletions, and introductions of
stop codons. With the calculation of the energy requirements and pyrophosphate liberation,
all stoichiometric coefficients for the VBOF were available and could be compared. For the
first comparison, the mean and standard deviation of all mutations was calculated for each
coefficient. These mean values were compared to the wildtype stoichiometric coefficients
by calculation the difference. In subsequent analysis, the mean was calculated for the five
mutation variants and was then compared to the wildtype. Again, the difference between
the coefficients was calculated and visualized. With all generated VBOFs, the reaction
knock-out experiments were repeated, as described in the previous section.

2.3. Lipids as Part of the Viral Biomass Objective Function

Literature research was conducted to identify potential fatty acids that occur in the
capsid of SARS-CoV-2. As no lipidomics data of SARS-CoV-2 existed at the time of writing,
we focused on the five identified lipids phosphatidylcholine, phosphatidylethanolamine,
phosphatidylinositol, phosphatidylserine, and cholesterol. The influence of the individual
lipids’ inclusion into the VBOF on the objective value when optimizing for the VBOF was
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evaluated. An overview of the overall procedure for testing the lipids’ influence is given in
Figure 1.

Analysis

VBOF 
+ cpchol × pchol
+ cpe × pe
+ cpail × pail
+ cps × ps
+ cchstol × chstol

VBOF + cpchol × pchol 
VBOF + cpe × pe
VBOF + cpail × pail 
VBOF + cps × ps VBOF 
+ cchstol × chstol

Influence on VBOF 
objective value

Potential antiviral targets
via reaction knock-outs

Varying coefficient cAdding lipid(s) to VBOF

clipid = cmacrophage × m 

m	∈	[0, 10]	

clipid = a

a	∈	[0, 0.5]	

Figure 1. Workflow for the investigation of lipids’ influence on the VBOF. The five lipids
phosphatidylcholine (pchol), phosphatidylethanolamine (pe), phosphatidylinositol (pail), phos-
phatidylserine (ps), and cholesterol (chstol) were added together and individually to the VBOF.
The stoichiometric coefficients were either an absolute value identical for all lipids, or the initial
stoichiometric coefficient from the macrophage biomass function factorized with a multiplication-
coefficient. For all scenarios, the influence of the different VBOFs on the objective value was analyzed.
Additionally, potential antiviral targets were examined using reaction knock-outs.

As no data were available for the amount of the respective lipids in one virion, we
varied the stoichiometric coefficients between 0 and 0.5. The stoichiometric coefficients of
the lipids within the macrophage’s biomass maintenance function varied from 0.00102 for
phosphatidylserine to 0.0315 for phosphatidylcholine (see also Table 1).

Table 1. Stoichiometric coefficients of the five lipids in the macrophage’s maintenance function.
The stoichiometric coefficients of the five lipids were extracted from the macrophage’s maintenance
function. Additionally, the BiGG identifiers [28] of the lipids are given. These stoichiometric coeffi-
cients formed the starting point for evaluating the lipids’ influence on the viral biomass objective
function (VBOF).

Lipid BiGG ID Coefficient

Phosphatidylcholine pchol_hs_c 0.03152
Phosphatidylethanolamine pe_hs_c 0.02110

Phosphatidylinositol pail_hs_c 0.00374
Phosphatidylserine ps_hs_c 0.00102

Cholesterol chsterol_c 0.02093

With the variation of the stoichiometric coefficients between 0 and 0.5, we covered the
14 to 490-fold increase of the stoichiometric coefficients, depending on their initial value. In
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the next step, all lipids were added simultaneously to the VBOF. We evaluated the VBOF’s
objective value using both the lipids’ stoichiometric coefficients from the macrophage’s
maintenance function and their ten-fold value.

To evaluate the effect of the lipids’ inclusion on the potential antiviral targets, we
again used the stoichiometric coefficients of the macrophage’s maintenance function and
a multiplication coefficient, ranging from 0 to 10 as the actual coefficient of the lipids is
unknown. We conducted the knock-out experiments as Renz et al. describe [22] for each
tested coefficient by knocking out each reaction individually and analyzing its effect on
both the viral growth and the host’s maintenance function. While varying the multiplica-
tion coefficient, two additional reactions occurred, whose knock-out decreased the viral
growth rate.

To investigate, which lipid influences the knock-out experiments most, we again
analyzed the lipids individually. As done for the effect on the VBOF’s objective value, we
first varied the stoichiometric coefficients between 0 and 0.5. Subsequently, we used a
multiplication coefficient ranging from 0 to 10, which was multiplied with the coefficient
of the macrophage’s maintenance function (see Table 1).

3. Results
3.1. Correcting the Copy Number of Structural Proteins

The single-stranded RNA genome of SARS-CoV-2 has 26 proteins [13], including four
structural proteins. These four structural proteins need to be produced by the host in
higher amounts than the non-structural proteins. However, the actual number of copies
of each structural protein was unknown when the novel coronavirus arose, and the first
studies were conducted at the beginning of the year 2020.

After extensive literature research, we collected the latest information about the copy
number of the structural proteins of SARS-CoV-2. [15] identify on average 40 copies of the
trimeric spike (S) protein on the surface of SARS-CoV-2, resulting in 120 copies of the S
protein. [14] estimate the number of S trimers per virion to be 48, resulting in a similar copy
number range as [15]. Since [15] use in situ structural analysis and [14] use mathematical
estimations, we chose to use a copy number of 120 S proteins for further analysis (see
Table 2). The number of the envelope (E) proteins is approximated to 20 copies [29]
based on analyses of the OC43 human coronavirus (hCOV) [30] and the transmissible
gastroenteritis virus (TGEV) [31]. Exactly like SARS-CoV-2, both viruses belong to the
family of Coronaviridae, and hCOV also belongs to the same genus Betacoronavirus as SARS-
CoV-2. Currently, no numbers for the E protein are available for SARS-CoV-2. For that
reason, the number is approximated from related coronaviruses. The nucleocapsid (N)
packs the viral RNA in so-called vRNPs. [14] observe 38 vRNPs per SARS-CoV-2 virion [14].
Approximately 12 copies of the N protein are located in one vRNP in SARS-CoV-2 [32,33].
Multiplying those two numbers results in 456 copies of the N protein. The amount of
membrane proteins is not yet determined for SARS-CoV-2. [13] provide key numbers about
SARS-CoV-2, including the copy numbers of the S, M, N, and E protein. However, all copy
numbers are derived from SARS-CoV-1 or TGEV. We found precise numbers for the copy
number of N proteins in SARS-CoV-2, and [34] determine the estimated ratios of M to N
proteins ranging from 3M:1N to 1M:1N with 730 to 2200 N proteins per virion [34]. With
this information at hand, we estimated the copy number of M proteins to 1000 by doubling
the number of N proteins and rounding them up. The ratio of 2M:1N was chosen based on
the article of [13], where the number of N proteins is stated as 1000 copies for SARS-CoV-1
and the number of M proteins as 2000. All used copy numbers are listed in Table 2.

With the updated copy numbers, the stoichiometric coefficients of the nucleotides,
amino acids, and energy requirements were re-calculated for the viral biomass objective
function (VBOF) of SARS-CoV-2. The subsequent analyses for identifying potential antivi-
ral targets consisted of knock-out and host-derived enforcement experiments, as Renz et al.
describe [22]. The guanylate kinase 1 (GK1) remains a promising antiviral target after the
adaptions of the copy number of structural proteins based on the knock-out experiments.
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Table 2. Copy number of structural proteins. The Copy number of structural proteins (Csp) was
determined based on extensive literature research. Besides the reference and the copy number of
structural proteins, the investigated organism is given as a source.

Protein Name Reference Source Csp

S spike [15] SARS-CoV-2 120
E envelope [29] hCOV, TGEV 20
N nucleocapsid [14,32] SARS-CoV-2 456
M membrane [34] SARS-CoV-1 1000

The results of the host-derived enforcement analyses were dependent on the Copy
number of structural proteins [22]. As we now identified more precise copy numbers,
we can also determine the host-derived enforcement analysis results more precisely. In
total, 21 reactions were identified, whose inhibition decreases the viral replication ca-
pacity by at least 20% without harming the host’s maintenance (100%). These reac-
tions, their inhibition range, and the reduction of the VBOF are visualized in Figure 2.
Reactions could be inhibited between 72% and 89%. As seen in the knock-out exper-
iments, the guanylate kinase 1 (GK1) is the only reaction where a complete inhibition
(100%) is possible. The ribose-5-phosphate isomerase (RPI) and phosphoribosylpyrophos-
phate synthetase (PRPPS) are part of the pentose phosphate pathway. glutamine phos-
phoribosyldiphosphate amidotransferase (GLUPRT), phosphoribosylglycinamide syn-
thase (PRAGSr), phosphoribosylglycinamide formyltransferase (GARFT), phosphoribosyl-
formylglycinamidine synthase (PRFGS), phosphoribosylaminoimidazole synthase (PRAIS),
Phosphoribosylaminoimidazole carboxylase (AIRCr), phosphoribosylaminoimidazole-
succinocarboxamide synthase (PRASCS), phosphoribosylaminoimidazolecarboxamide
formyltransferase (AICART), and inosine monophosphate (IMP) cyclohydrolase (IMPC)
are involved in the purines’ biosynthetic pathway, more precisely in the biosynthesis of
IMP [35]. Reactions associated with the purine adenosine monophospate (AMP) biosyn-
thesis were also identified as potential targets, namely adenylosuccinate synthase (ADSS),
and adenylosuccinate lyase 1 and 2 (ADSL1, ADSL2) [35].

0%10%20%30%40%50%60%70%80%90%100%

ADSL1
ADSL2
ADSS
AICART
AIRCr
ASPCTr
CBPS
DHORD9
DHORTS
GARFT
GK1
GLUPRT
IMPC
OMPDC
ORPT
PRAGSr
PRAIS
PRASCS
PRFGS
PRPPS
RPI

Range of reaction inhibition
0% 10% 20% 30% 40% 50%

Reduction of VBOF after reaction inhibition

Figure 2. Results of the host-derived enforcement experiments. With the help of the host-derived
enforcement, the range and effect of reaction inhibitions on the VBOF can be investigated while
keeping the host’s maintenance at 100%. The minimum possible reaction inhibition rate to reduce the
viral replication capacity (VBOF) is given in dark blue. The maximum inhibition of the reaction does
not harm the host’s maintenance and is indicated in light blue. The reduction of the VBOF is given in
comparison to the un-inhibited state. All reaction identifiers are BiGG identifiers [28]. Table A1 lists
all reaction identifiers with their corresponding reaction name and the subsystem they occur in.
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Besides the reactions associated with the purine metabolism, the host-derived en-
forcement analysis also reported reactions from the pyrimidine biosynthesis, such as the
carbamoyl-phosphate synthase (CBPS), aspartate carbamoyltransferase (ASPCTr), dihy-
droorotase (DHORTS), dihydoorotic acid dehydrogenase (DHORD9), orotate phosphori-
bosyltransferase (ORPT), and orotidine-5’-phosphate decarboxylase (OMPDC) [36].

3.2. Testing the Targets’ Robustness for Several Mutations
3.2.1. Analysis of Mutant-Specific Variations in the Viral Biomass

Novel mutations of SARS-CoV-2 emerge on a daily basis. Five mutation variants
have prevailed, disseminate rapidly, and are classified as variants of concern or variants of
interest: (i) B.1.1.7, (ii) P.1 (also called B.1.1.28), (iii) B.1.351, (iv) B.1.427/B.1.429 [9,10], and
(v) B.1.617 [11]. The GISAID was launched in 2008 to promote the international sharing
of virus data [37,38]. When the novel coronavirus emerged, GISAID was expanded by
a database for sharing sequenced viral genomes of SARS-CoV-2 globally. At the time of
writing, more than 1.5 million viral sequences of SARS-CoV-2 are collected in the database.
To investigate the mutations’ effect on the previously identified potential antiviral targets,
sequences of each mutation variant were downloaded from GISAID and analyzed. The
stoichiometric coefficients of each variant were calculated as Renz et al. describe [22]:
For the calculation of the nucleotides’ stoichiometric coefficients, the downloaded RNA
sequence was used. The amino acids’ stoichiometric coefficients were calculated using
the provided information about the identified mutations and the reference (wildtype)
protein sequence of the first sequenced SARS-CoV-2. With this information, the abundance
of the different amino acids in the different proteins was adapted for each mutation
variant. The nucleotide and amino acid counts were subsequently used to calculate the
pyrophosphate liberation and the adenosine triphosphates (ATPs) requirements. For each
downloaded mutation variant, an individualized VBOF was created with the calculated
stoichiometric coefficients.

To assess the mutations’ effect on the VBOF’s stoichiometric coefficients, we first
calculated the mean and standard deviation from all stoichiometric coefficients for all
mutations and compared them to the wildtype (WT) coefficients. The mean stoichiometric
coefficients of the mutations are very similar to the wildtpye’s stoichiometric coefficents.
The largest difference is observed for the amino acid L-aspartate: The stoichiometric
coefficient for L-aspartate is decreased by on average 0.005 in the mutations compared to
the wildtype. Figure 3 visualizes the comparison of the mutations’ mean stoichiometric
coefficients with the wildtype coefficients.

Since we analyzed five distinct mutation variants, the differences in the stoichiometric
coefficients were examined further based on these variants. The mean for each stoichiomet-
ric coefficient was calculated variant-wise. With this mean, the deviation from the wildtype
coefficient was calculated and visualized as a heat-map in Figure 4. This analysis gives
further insight into the properties of the individual mutations.

One can observe a pattern for the stoichiometric coefficients of adenosine diphos-
phate (ADP) and ATP: While the mutation variants B.1.1.7 and B.1.1.28 have decreased
stoichiometric coefficients (−0.01) compared to the wildtype, the variants B.1.351 and
B.1.427/429 have increased stoichiometric coefficients (0.019 to 0.021). This pattern is most
apparent for ADP and ATP, but can also be observed for other stoichiometric coefficients,
such as for diphosphate (PPi), L-lysine, L-threonine, or L-valine. To further investigate
this pattern, we examined the calculation for the stoichiometric coefficients. Each coef-
ficient is set in relation to the total viral molar mass (Mv), which is the sum of the total
molar mass of all nucleotides (Gi) and amino acids (Gj). The mutation variants B.1.1.7 and
B.1.1.28 have a higher total viral molar mass compared to the mutation variants B.1.351
and B.1.427/429. This increased total viral molar mass is based on an increased molar mass
of both nucleotides (Gi) and amino acids (Gj). As the stoichiometric coefficients for ADP
and ATP larger than the other coefficients, this pattern is more apparent.
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Figure 3. Difference of stoichiometric coefficients between wildtype (WT) and all mutations. The
stoichiometric coefficients for all metabolites participating in the viral biomass objective function
(VBOF) are compared. WT stoichiometric coefficients are indicated in red, the mean stoichiometric
coefficients of all mutation variants are indicated in orange, including standard deviations (black). If
the difference of the stoichiometric coefficients between WT and mutation variants was more than
0.001, the difference is indicated above the bars. The stoichiometric coefficients for the metabolites
ATP, ADP and PPi, are higher compared to the other coefficients. The mutation variants’ mean
coefficients show little deviation. Additionally, the differences between the stoichiometric coefficients
of WT and mutation variants are very small.

However, this pattern does not emerge in all stoichiometric coefficients. There are
deviations for, e.g., L-serine. Only the mutation variant B.1.1.7 shows a decreased stoi-
chiometric coefficient compared to the wildtype. We analyzed the documented mutations
for this variant and identified two mutations in structural proteins, Spike S982A and N
S235F, which only occur in this variant. In both cases, the amino acid L-serine is substi-
tuted by another amino acid. As both mutations occur in structural proteins with copy
numbers of 120 and 456, respectively, their influence on the amount of amino acid and,
thus, the stoichiometric coefficient, is noticeable. Compared to the other mutation variants,
variant B.1.1.28 has the highest increase in the stoichiometric coefficient for L-serine. This
could be explained by two mutations specific for this variant in the structural spike protein:
Spike P26S and Spike R190S. In both cases, other amino acids are replaced by L-serine.
As explained for the mutation variant B.1.1.7, the spike protein has a copy number of 120.
Changes in these structural proteins can be measurable and influence the stoichiometric
coefficient stronger than mutations in non-structural proteins.

The mutation variant B.1.617 does not fit in this pattern. As the variants B.1.315 and
B.1.427/429, its stoichiometric coefficients for ADP and ATP are increased, but not as much.
Variant B.1.617 has a similar total viral molar mass as B.1.1.7. However, the amount of the
nucleotides adenine and uridine is more similar to the variants B.1.315 and B.1.427/429.
Having similarities with both pattern groups, variant B.1.617 does fit in neither of the
groups. Variant B.1.617 needs less L-isoleucine compared to the wildtype.

3.2.2. Analysis of the Effects of Single Gene Deletions

After highlighting the differences in the stoichiometric coefficients for the different
mutation variants, we tested the robustness of our previously identified potential antiviral
targets [22]. To do so, we repeated the single-gene-deletion experiments for every mutation
variant. Our analysis revealed that in all mutation variants, the guanylate kinase 1 (GK1) is
a robust potential antiviral target.
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Figure 4. Difference of stoichiometric coefficients between wildtype (WT) and the individual muta-
tions. The deviation between WT and the mean of the individual mutation variants was calculated.
Higher stoichiometric coefficients in the mutation compared to the WT are indicated in blue, while
lower stoichiometric coefficients are indicated in red. Based on similar sequence length for the muta-
tion variants B.1.1.7 and B.1.1.28 and resulting similar total viral molar masses, a pattern emerges,
which is most apparent for the stoichiometric coefficients of ATP and ADP. This pattern, however,
is not present for all stoichiometric coefficients. The coefficient for L-serine, for example, is only
decreased in the mutation variant B.1.1.7 based on two mutations in two structural proteins. Overall,
the deviations from the WT are very small.

3.3. Lipids as Part of the Viral Biomass Objective Function

The transmembrane domain of the envelope (E) protein is located in lipid bilayers mim-
icking the ERGIC membrane [21]. Ref. [20] described this ERGIC membrane [20] in 1994.
The four phospholipids, phosphatidylcholine, phosphatidylethanolamine, phosphatidyli-
nositol, and phosphatidylserine, were observed in the ERGIC while sphingomyelin and
cardiolipin were not present [20]. Ref. [21] use an ERGIC-mimetic consisting of the four
described phospholipids and cholesterol to investigate the E-protein’s transmembrane do-
main [21]. The five lipids are also participating in the macrophage’s maintenance function.
Thus, their role and influence on the VBOF and antiviral targets were examined.

As the actual amount of lipids in the SARS-CoV-2 virion is not yet determined, we
evaluated varying stoichiometric coefficients. In the first experiments, the individual lipids’
effect on the VBOF’s objective value was analyzed. The objective coefficients from the
macrophage’s maintenance function varied between 0.001 for phosphatidylserine and
0.031 for phosphatidylcholine. Therefore, we first varied all lipids’ coefficients between 0
and 0.5 and subsequently used a multiplication coefficient between 0 and 10 to multiply
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the macrophage’s coefficients. Despite an up to 490-fold increase of the stoichiometric
coefficient (for phosphatidylserine) compared to its initial value in the macrophage’s
maintenance function, the VBOF’s objective value remained at 0.01886 mmol/(gDW · h).
This was also the case when all five lipids were added to the VBOF simultaneously.

Knock-out experiments were conducted to identify additional potential antiviral
targets. All lipids were included in the VBOF, and the coefficients were varied using a
multiplication coefficient. At the five-fold increase of the initial stoichiometric coefficients,
two novel reactions emerged as new potential antiviral targets: the methionine synthase
(METS) and the 5,10-methylenetetrahydrofolate reductase (FADH2) (MTHFR). To identify,
which lipids are responsible for the emergence of the novel antiviral target, we repeated
the described analysis for every lipid individually, once using absolute stoichiometric
coefficients ranging from 0 to 0.5 and once using the above-described multiplication co-
efficient ranging between 0 and 10. By this approach, we identified phosphatidylcholine
to be the responsible lipid for the additional antiviral targets. When increasing the initial
macrophage’s stoichiometric coefficient of phosphatidylcholine by at least 4.76, the two en-
zymes emerge as potential antiviral targets. At a five-fold increase of phosphatidylcholine
and the knock-out of either the methionine synthase or the 5,10-methylenetetrahydrofolate
reductase (FADH2), the viral growth can be inhibited by approximately 1.5%. With in-
creasing amounts of phosphatidylcholine in the VBOF, the knock-out influence of the two
reactions on the viral growth increases, as seen in Figure 5: at an eleven-fold increase of
phosphatidylcholine, the viral growth rate is decreased by approximately 50%. A twenty-
fold increase of phosphatidylcholine inhibits the viral growth even to 30% of its initial
growth rate.

It needs to be highlighted that the guanylate kinase 1 (GK1) was a potential antiviral
target during all conducted in silico experiments evaluating the lipids’ effect on poten-
tial targets.
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Figure 5. Influence of stoichiometric coefficient on reduction of VBOF during METS knock-out. With
increasing factorization of phosphatidylcholine’s stoichiometric coefficient, the objective value of
the VBOF’s optimization decreases during the knock-out of the methionine synthase (METS) reaction.
The hosts growth maintenance stays at 100%. At an eleven-fold increase of the initial stoichiometric
coefficient extracted from the host’s maintenance function results in a 50% decrease of the viral
growth rate.

4. Discussion

This study presents an updated viral biomass objective function (VBOF) for the novel
coronavirus SARS-CoV-2 based on the latest information of its structural proteins. This
VBOF was integrated into an already validated model of human alveolar macrophages [23].
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The tissue tropism of SARS-CoV-2 comprises most cell types expressing the entry
receptor ACE-2, mainly including cell types of the lung, liver, stomach, ileum, kidney,
and colon [39,40]. Although SARS-CoV-2 enters the host via the airways, the expression of
ACE-2 is comparably low, highlighting the role of possible co-receptors [40]. Nonetheless,
human alveolar type 2 cells robustly express ACE-2, while alveolar macrophages possibly
express low levels of the entry receptor [40]. It is known that different coronaviruses infect
macrophages, such as the human coronavirus strain 229E [41], the Middle East Respiratory
Syndrome (MERS) coronavirus [42], and the SARS coronavirus [43]. Also, the novel
coronavirus SARS-CoV-2 is reported to infect alveolar macrophages [44]. However, other
in vitro studies suggest that challenging alveolar macrophages with SARS-CoV-2 does not
lead to a productive infection [45]. However, even without productive infection, alveolar
macrophages could serve as Trojan horses, which enable viral anchoring within pulmonary
parenchyma [39]. Ref. [45] demonstrate that the tissue-resident alveolar macrophages play
a crucial role in SARS-CoV-2 immune evasion [44,45] and are hypothesized to support
viral pathogenesis [39]. Disabling viral replication in human alveolar macrophages might
be an early way of intervention and prevention of the virus’s further spread.

We corrected the copy number of structural proteins and the stoichiometric coeffi-
cients in the viral biomass objective function (VBOF). The amount of the spike (S) and
nucleocapsid (N) proteins were derived from studies on SARS-CoV-2 [14,15,32]. The copy
number of the envelope (E) protein is derived from the human coronavirus and the trans-
missible gastroenteritis virus [29]. Numbers for SARS-CoV-2 are currently not available.
Same accounts for the copy number of membrane (M) proteins, where information is only
available for SARS-CoV-1 [34]. Especially for the M proteins, a range of potential copy
numbers exists, as the ratio of M and N proteins ranges from 3M:1N to 1M:1N [34]. With
the N protein’s copy number of 456, the M protein’s copy number ranges from 456 to 1368.
As soon as additional information on the copy numbers of the E and M protein is available
for SARS-CoV-2, the stoichiometric coefficients can be refined further.

However, the current refinement still confirmed the guanylate kinase 1 (GK1) as a
potential antiviral target. Even for the investigated mutations, the guanylate kinase seems
to be a robust target in human alveolar macrophages to interrupt SARS-CoV-2 replication.
Ref. [46] conduct a similar study with the human reconstruction RECON2.2 [47] containing
a lung biomass objective function and a viral biomass objective function [46]. They also
report the guanylate kinase as a potential target for antiviral therapies [46]. In our previous
study, we suggested potential drugs that could be repurposed to fight this SARS-CoV-2
pandemic. Amongst these drugs were cidofovir, brincidofovir, and favipiravir [22]. A
virtual screening method identified cidofovir as a potentially effective therapeutic against
SARS-CoV-2 [48]. A molecular docking study suggests the repurposing of brincidofovir
against SARS-CoV-2 [49]. For favipiravir, several clinical trials are listed in the Clinical-
Trials database hosted by the U.S. National Library of Medicine [50], running in several
countries, including Italy (NCT04336904), Turkey (NCT04474457), and the United States
(NCT04358549). However, these therapeutics are only analogs and do not directly inhibit
the guanylate kinase. No direct inhibitor of the guanylate kinase is tested for its antiviral
effect on SARS-CoV-2 infections at the time of writing. As the guanylate kinase is a robust
target for all currently occurring mutation variants, further investigations could be of high
interest to fight this pandemic.

Besides the guanylate kinase, additional potential antiviral targets were identified
using the host-derived enforcement analysis. These antiviral targets are located in the
pentose phosphate pathway, the purine, and the pyrimidine metabolism. It is shown that
the pentose phosphate pathway is remarkably deregulated during SARS-CoV-2 replication,
which shows potential implications for antiviral therapies [51]. The purine biosynthesis
pathway is enhanced upon SARS-CoV-2 infection to support the de novo synthesis of
purines [52]. First in vitro experiments show that the FDA-approved inhibitor of purine
biosynthesis methotrexate potently inhibits viral replication [53,54], protein synthesis,
and release [53]. The pyrimidine metabolism is also reported as a potential antiviral target,
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especially the dihydroorotate dehydrogenase. Its inhibition by, for example, brequinar or
leflunomide is already demonstrated to have antiviral activity against other viruses [55–57],
such as rotavirus [58] and Ebola virus [59]. The dihydroorotate dehydrogenase inhibitor
PTC299 is shown to arrest SARS-CoV-2 replication in vitro [60]. The dihydroorotate
dehydrogenase inhibitors S312 and S416 are validated to have high antiviral efficacy
in vivo [61]. To conclude, our identified antiviral targets are currently under discussion in
the scientific community, and for some, the influence and relevance for viral replication
are confirmed.

Analyses of the documented mutations revealed that virus variant B.1.617 needs less
L-isoleucine compared to the wildtype because of a mutation in the membrane protein,
M I82T, where L-isoleucine is substituted by L-threonine. As the membrane protein has
a copy number of 1000, its replacement could influence the stoichiometric coefficient of
the replaced amino acid. Same accounts for the mutation N D402H in the nucleocapsid
protein, where L-aspartate is replaced by L-histidine, which might explain the decreased
stoichiometric coefficient for L-aspartate. Changes in these structural proteins can be
measurable and influence the stoichiometric coefficient stronger than mutations in non-
structural proteins.

Alongside the mutation variants that could complicate the fight against SARS-CoV-2
with vaccines, the S protein’s glycosylation could impact antibodies’ ability to bind to a
pathogenic S glycoprotein by shielding its surface [62,63]. Currently, this glycosylation
process is not reflected in the VBOF or the model. As soon as more information about
the glycosylation is available that can be used to determine a range or precise stoichio-
metric coefficients, the glycosylation of the spike protein can be incorporated into the
model simulations.

The inclusion of lipids in the VBOF opens new perspectives for potential antiviral tar-
gets. It is shown that virus infections can dramatically impact on lipid metabolism [64–67].
Upon rhinovirus infection multiple lipid pathways are altered, and changes in phospho-
lipids, lysophospholipids, fatty acids, and inositol phospholipids are observed [66]. For
the human coronavirus 229E (hCoV-229E), the host cell lipid response upon infection was
comprehensively characterized. Glycerophospholipids and fatty acids were significantly
elevated. Lysophosphatidylcholine, which is hydrolyzed from phosphatidylcholine, was
significantly elevated and accounted for approximately 60% of all identified lipids with
significant elevation [68]. Our study also highlighted phosphatidylcholine as an essen-
tial lipid upon SARS-CoV-2 infection, confirming the findings from [68] for hCoV-229E.
As metabolic alterations harbor potential antiviral targets, regulating or targeting the
lipid metabolism is suggested and discussed [64,66,68]. We identified two novel poten-
tial antiviral targets connected with lipid metabolism: the methionine synthase and the
5,10-methylenetetrahydrofolate reductase (FADH2). S-adenosyl-L-methionine is a pivotal
methyl donor in the synthesis of phosphatidylcholine [69,70]. Thus, the synthesis of L-
methionine by the 5,10-methylenetetrahydrofolate reductase (FADH2) and methionine
synthase seem to be an antiviral target to disrupt the synthesis of phosphatidylcholine.
These novel insights could guide further laboratory experiments for investigating and
validating the lipid’s role in SARS-CoV-2 infections.

This study confirmed the guanylate kinase 1 (GK1) as a robust antiviral target against
SARS-CoV-2 and its arising mutation variants. With the refined copy numbers of structural
proteins, the list of further potential antiviral targets was improved, and some targets are al-
ready under discussion or even under validation. The inclusion of the lipids into the VBOF
opened new perspectives for additional metabolic targets to fight against this pandemic.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
425/12/6/796/s1, Table S1: List of tested variants. The tested variants are listed together with
their GISAID accession number and the observed mutations. The stoichiometric coefficients for the
VBOF’s compounds in the different virus mutations are listed.
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Abbreviations
The following abbreviations are used in this manuscript:

ACE-2 angiotensin converting enzyme 2
ADP adenosine diphosphate
ADSL1 adenylosuccinate lyase 1
ADSL2 adenylosuccinate lyase 2
ADSS adenylosuccinate synthase
AICART phosphoribosylaminoimidazolecarboxamide formyltransferase
AIRCr Phosphoribosylaminoimidazole carboxylase
AMP adenosine monophospate
ASPCTr aspartate carbamoyltransferase
ATP adenosine triphosphate
CBPS carbamoyl-phosphate synthase
COMBINE Computational Modeling in Biology Network
COVID-19 Coronavirus Disease 19
Csp Copy number of structural proteins
DHORD9 dihydoorotic acid dehydrogenase
DHORTS dihydroorotase
E envelope
ERGIC endoplasmic reticulum–Golgi intermediate compartment
FBA flux balance analysis
fbc flux balance constraints
FVA flux variability analysis
GARFT phosphoribosylglycinamide formyltransferase
GEM genome-scale metabolic model
GISAID Global Initiative on Sharing All Influenza Data
GK1 guanylate kinase 1
GLUPRT glutamine phosphoribosyldiphosphate amidotransferase
hCOV human coronavirus
hCoV-229E human coronavirus 229E
ID identifier
IMP inosine monophosphate
IMPC IMP cyclohydrolase
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M membrane
MERS Middle East Respiratory Syndrome
Mv viral molar mass
N nucleocapsid
OMEX Open Modeling EXchange format
OMPDC orotidine-5’-phosphate decarboxylase
ORPT orotate phosphoribosyltransferase
PPi diphosphate
PRAGSr phosphoribosylglycinamide synthase
PRAIS phosphoribosylaminoimidazole synthase
PRASCS phosphoribosylaminoimidazolesuccinocarboxamide synthase
PRFGS phosphoribosylformylglycinamidine synthase
PRPPS phosphoribosylpyrophosphate synthetase
RPI ribose-5-phosphate isomerase
S spike
SARS Severe Acute Respiratory Syndrome
SARS-CoV-2 Severe Acute Respiratory Syndrome coronavirus type 2
SBML Systems Biology Markup Language
TGEV transmissible gastroenteritis virus
VBOF viral biomass objective function
vRNP viral ribonucleoprotein complex
WT wildtype

Appendix A

Table A1. Reactions from the host-derived enforcement experiments. The reaction identifiers listed in Figure 2 are BiGG
identifiers [28]. In this table, the BiGG reaction identifiers are given, together with the reaction name and the subsystem,
they occur in.

Reaction-ID Reaction Name Subsystem

ADSL1 adenylosuccinate lyase 1 Purine metabolism
ADSL2 adenylosuccinate lyase 2 Purine metabolism
ADSS adenylosuccinate synthase Purine metabolism
AICART phosphoribosylaminoimidazolecarboxamide formyl-

transferase
Purine metabolism

AIRCr Phosphoribosylaminoimidazole carboxylase Purine metabolism
ASPCTr aspartate carbamoyltransferase Pyrimidine metabolism
CBPS carbamoyl-phosphate synthase Pyrimidine metabolism
DHORD9 dihydoorotic acid dehydrogenase Pyrimidine metabolism
DHORTS dihydroorotase Pyrimidine metabolism
GARFT phosphoribosylglycinamide formyltransferase Purine metabolism
GK1 guanylate kinase 1 Purine metabolism
GLUPRT glutamine phosphoribosyldiphosphate amidotrans-

ferase
Purine metabolism

IMPC IMP cyclohydrolase Purine metabolism
OMPDC orotidine-5’-phosphate decarboxylase Pyrimidine metabolism
ORPT orotate phosphoribosyltransferase Pyrimidine metabolism
PRAGSr phosphoribosylglycinamide synthase Purine metabolism
PRAIS phosphoribosylaminoimidazole synthase Purine metabolism
PRASCS phosphoribosylaminoimidazolesuccinocarboxamide

synthase
Purine metabolism

PRFGS phosphoribosylformylglycinamidine synthase Purine metabolism
PRPPS phosphoribosylpyrophosphate synthetase Pentose phosphate pathway
RPI ribose-5-phosphate isomerase Pentose phosphate pathway

Appendix B Accepted publications

100



Genes 2021, 12, 796 15 of 17

References
1. Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak

associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [CrossRef] [PubMed]
2. Mirtaleb, M.S.; Mirtaleb, A.H.; Nosrati, H.; Heshmatnia, J.; Falak, R.; Zolfaghari Emameh, R. Potential therapeutic agents to

COVID-19: An update review on antiviral therapy, immunotherapy, and cell therapy. Biomed. Pharmacother. 2021, 138, 111518.
[CrossRef] [PubMed]

3. Li, D.D.; Li, Q.H. SARS-CoV-2: Vaccines in the pandemic era. Mil. Med. Res. 2021, 8, 1. [CrossRef] [PubMed]
4. Zhao, J.; Zhao, S.; Ou, J.; Zhang, J.; Lan, W.; Guan, W.; Wu, X.; Yan, Y.; Zhao, W.; Wu, J.; et al. COVID-19: Coronavirus Vaccine

Development Updates. Front. Immunol. 2020, 11, 602256. [CrossRef] [PubMed]
5. Liu, W.; Zhou, P.; Chen, K.; Ye, Z.; Liu, F.; Li, X.; He, N.; Wu, Z.; Zhang, Q.; Gong, X.; et al. Efficacy and safety of antiviral

treatment for COVID-19 from evidence in studies of SARS-CoV-2 and other acute viral infections: A systematic review and
meta-analysis. CMAJ 2020, 192, E734–E744. [CrossRef]

6. Valle, C.; Martin, B.; Touret, F.; Shannon, A.; Canard, B.; Guillemot, J.C.; Coutard, B.; Decroly, E. Drugs against SARS-CoV-2:
What do we know about their mode of action? Rev. Med. Virol. 2020, 30, 1–10. [CrossRef]

7. Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M.L.; Lescure, F.X.; et al.
Compassionate Use of Remdesivir for Patients with Severe Covid-19. N. Engl. J. Med. 2020, 382, 2327–2336. [CrossRef]

8. Tregoning, J.S.; Brown, E.S.; Cheeseman, H.M.; Flight, K.E.; Higham, S.L.; Lemm, N.M.; Pierce, B.F.; Stirling, D.C.; Wang, Z.;
Pollock, K.M. Vaccines for COVID-19. Clin. Exp. Immunol. 2020, 202, 162–192. [CrossRef]

9. European Centre for Disease Prevention and Control. Risk Related to Spread of New SARS-CoV-2 Variants of Concern in the EU/EEA,
First Update; Technical Report; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2021.

10. Centers for Disease Control and Prevention (US). SARS-CoV-2 Variants of Concern; U.S. Department of Health and Human
Services, Centers for Disease Control and Prevention: Atlanta, GA, USA, 2021.

11. European Centre for Disease Prevention and Control. Emergence of SARS-CoV-2 B.1.617 Variants in India and Situation in the
EU/EEA—11 May 2021; Technical Report; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2021.

12. Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [CrossRef]
13. Bar-On, Y.M.; Flamholz, A.; Phillips, R.; Milo, R. Sars-cov-2 (Covid-19) by the numbers. eLife 2020, 9, e57309. [CrossRef]
14. Klein, S.; Cortese, M.; Winter, S.L.; Wachsmuth-Melm, M.; Neufeldt, C.J.; Cerikan, B.; Stanifer, M.L.; Boulant, S.; Bartenschlager,

R.; Chlanda, P. SARS-CoV-2 structure and replication characterized by Situ Cryo-Electron Tomogr. Nat. Commun. 2020, 11, 5885.
[CrossRef] [PubMed]
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Curating and comparing 114 strain-specific genome-scale
metabolic models of Staphylococcus aureus
Alina Renz 1,2,3 and Andreas Dräger 1,2,3,4✉

Staphylococcus aureus is a high-priority pathogen causing severe infections with high morbidity and mortality worldwide. Many
S. aureus strains are methicillin-resistant (MRSA) or even multi-drug resistant. It is one of the most successful and prominent modern
pathogens. An effective fight against S. aureus infections requires novel targets for antimicrobial and antistaphylococcal therapies.
Recent advances in whole-genome sequencing and high-throughput techniques facilitate the generation of genome-scale
metabolic models (GEMs). Among the multiple applications of GEMs is drug-targeting in pathogens. Hence, comprehensive and
predictive metabolic reconstructions of S. aureus could facilitate the identification of novel targets for antimicrobial therapies. This
review aims at giving an overview of all available GEMs of multiple S. aureus strains. We downloaded all 114 available GEMs of
S. aureus for further analysis. The scope of each model was evaluated, including the number of reactions, metabolites, and genes.
Furthermore, all models were quality-controlled using MEMOTE, an open-source application with standardized metabolic tests.
Growth capabilities and model similarities were examined. This review should lead as a guide for choosing the appropriate GEM for
a given research question. With the information about the availability, the format, and the strengths and potentials of each model,
one can either choose an existing model or combine several models to create models with even higher predictive values. This
facilitates model-driven discoveries of novel antimicrobial targets to fight multi-drug resistant S. aureus strains.

npj Systems Biology and Applications (2021)7:30 ; https://doi.org/10.1038/s41540-021-00188-4

INTRODUCTION
Staphylococcus aureus is an opportunistic pathogen that asymp-
tomatically and permanently colonizes the nose of up to one
third of the human population1. It is a commensal of the mucosae
and the human skin, but can also cause severe infections with
high morbidity, mortality, and healthcare-associated costs2.
Methicillin-resistant S. aureus (MRSA) is one of the most successful
modern pathogens3. In 2017, the WHO published a priority
pathogens list for the research and development of new
antibiotics. Among the clarithromycin-resistant Helicobater pylori
and the vancomycin-resistant Enterococcus faecium, S. aureus,
especially the methicillin-resistant S. aureus (MRSA), vancomycin
intermediate (VISA), and vancomycin resistant strains (VRSA), are
high priority pathogens4.
Staphylococcus aureus bacteremia (SAB) is a common infection5.

The incidence rate ranges from approximately 20 cases per 100,000
persons per year in Canada6 to approximately 50 cases per 100,000
persons, inferred from the United States surveillance data7. The
higher incidence rate might be due to the greater burden of MRSA5.
SAB can be classified into three categories: (1) Hospital onset of
health-care associated infections, e.g., nosocomial; (2) Community
onset of health-care associated infections, and (3) community
acquired infections8. Besides SAB, S. aureus, and especially MRSA, is
the leading cause of endocarditis, bone and joint infections, skin and
soft tissue infections, and further hospital-acquired infections3. A
study from 2013 revealed over 80,000 invasive infections and 11,000
deaths per year due to MRSA in the United States. Compared to the
previous years, the number of invasive MRSA infections declined
slightly9. Unfortunately, the rate decline of MRSA infections has
recently slowed down according to the “Morbidity and Mortality
Weekly Report” of the Centers for Disease Control and Prevention10,

while the number of methicillin-susceptible S. aureus (MSSA)
bloodstream infections even slightly increased. In 2017, nearly
120,000 S. aureus bloodstream infections and 20,000 associated
deaths occurred in the United States10. Hence, strategies for
preventing infections inside and outside acute care settings are
required to further reduce the amount of invasive MRSA infections.
The transmission of S. aureus in general, and MRSA in

particular, is facilitate by the long persistence time of S. aureus
colonization. Nearly any item with skin contact can serve as
fomes. In a hospital setting, this can include coats and clothes
from doctors and nursing staff, pens, and mobile devices, such as
cell phones3. Studies also suggest that infecting S. aureus isolates
also persist in households three months after skin infections11.
Even across and within athletic fitness facilities, S. aureus is found
on different surfaces, including weight plates and treadmill
handles12.
Besides the challenge of controlling S. aureus colonization in

multiple environments, S. aureus strains evolve and adapt to
different environments due to variability in diversity, mobile
genetic elements (MGEs), and accumulation of mutations13–15.
Mediators of virulence, immune evasion, and antibiotic resis-
tance are commonly found within the accessory components of
the S. aureus genomes, consisting of MGEs with pathogenicity
islands, chromosomal cassettes, transposons, plasmids, and
bacteriophages. Compared to the core genome, the accessory
genome is more variable and also often more strain-specific3.
MGEs in S. aureus can carry antibiotic resistance genes for
resistances against penicillin, trimethoprim, erythromycin, clin-
damycin, and tetracyclines15. However, strains not only evolve
and develop antibiotic resistances, they even replace each other
within the same host14.
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To fight S. aureus infections, several new antimicrobial and
antistaphylococcal drugs have been developed recently3,13,
including oritavancin and ceftaroline16,17. Despite the develop-
ment of new antibiotics, S. aureus in general, and MRSA in
particular, remains a prominent pathogen with persisting high
mortality3. Since S. aureus will continue to evolve and develop
new resistances13, the research on S. aureus and the development
of new antimicrobials is of urgency to fight S. aureus infections.
One possibility for the identification of novel targets for

antimicrobial therapies is the use of genome-scale metabolic
models (GEMs). Advances in high-throughput techniques and
whole-genome sequencing facilitate the construction of
GEMs18,19. They are reconstructed based on information from
genome sequences and experimentally obtained biochemis-
try19,20. With this information, stoichiometry-based and mass-
balanced metabolic reactions can be formulated using gene-
protein-reaction associations (GPRs). These stoichiometry-based
GEMs can predict metabolic flux values within the constructed
network21 and optimization techniques. Optimization techniques,
such as flux balance analysis (FBA), use linear programming20.
Recent advances in the reconstruction of GEMs and the fast
analysis and integration of omics data enabled metabolic studies
with model-driven hypotheses and context-specific simula-
tions22,23. Among the multiple applications of GEMs is the drug
targeting in pathogens and the modeling of interactions among
multiple cells or organisms20. These approaches could be used to
investigate and develop novel antimicrobials or antistaphylococ-
cals. However, depending on the pathogen and strain, various
models of S. aureus strains might be required to investigate the
best antistaphylococcal target for a certain S. aureus strain.
In this review, we present all currently available GEMs of

S. aureus from various databases. The available models were
compared regarding their scope, their availability, their format,
and their immediate usability. For various reasons, some of the
models required revisions, such as converting spreadsheet file
formats to SBML24 or ensuring the syntactic validity of SBML files.
After having all models available as syntactically valid SBML files,
their growth-capabilities, their predictive value, and the similarities
between the various models were investigated. This review gives
an overview of the available models and their properties to
identify the appropriate model for a specific research question.

MODEL OVERVIEW

Introduction of the models
Databases such as BiGG25 or BioModels26 comprise a variety of
genome-scale metabolic models. Together with models from
other databases and supplementary information from scientific
publications, a large number of genome-scale metabolic models
of S. aureus is available: The BioModels database contains two
models of S. aureus by Becker et al.27 and Heinemann et al.28, both
build in 2005. The BioModels database also harbors the models
created within the Path2Models project29. In this project, 33 whole
genome metabolism models of S. aureus were automatically
created and curated between 2012 and 201329. The BiGG Models
Database contains two GEMs of S. aureus: the already mentioned
model by Becker et al.27 and a recently published model by Seif
et al.30 from 2019. Lee et al. published thirteen genome-scale
metabolic reconstructions of multiple Staphylococcus aureus
strains in 200931. In 2016, Bosi et al.32 curated and published 64
genome-scale metabolic models of various S. aureus strains.
Together with the S. aureus model published within the gut
microbiota resource of the Virtual Metabolic Human (VMH)
Database33,34, a total number of 114 genome-scale metabolic
models of Staphylococcus aureus exists today.

All models were downloaded, tested, and evaluated using
COBRApy35 and MEMOTE36. MEMOTE is an open-source software
that contains a standardized and community-maintained set of
metabolic model tests36. The overall MEMOTE score comprises
information about annotations of metabolites, reactions, and
genes, the inclusion of Systems Biology Ontology (SBO) terms, and
the model’s consistency. Within the annotations sections, the
presence and conformity of different database identifiers is
evaluated. In the SBO term section, the annotation of model
instances with appropriate SBO terms is assessed. The model
consistency check comprises tests to evaluate the stoichiometric
consistency, mass and charge balances, metabolite connectivity,
and unbounded fluxes in default medium36. However, the
MEMOTE score currently does not consider information about
e.g., realistic growth rates, orphan or dead-end metabolites,
stoichiometrically balanced cycles, or duplicated reactions. MEM-
OTE includes this information in its report but does not
incorporate it into the calculated score. The number of model
instances and their MEMOTE score are indicated in Fig. 1.

iSB619—GEM by Becker et al. The first, initial draft of an S. aureus
genome-scale reconstruction was curated by Becker and Palsson
in 2005. They reconstructed the S. aureus strain N315 with 619
genes, 743 reactions, and 655 metabolites. The GEM was curated
based on the key metabolic pathways in the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database37. Subsequently, The
Institute for Genomic Research (TIGR) website38 was browsed for
additional reactions. 91% of all reactions are linked with genes or
open reading frames in so-called gene-protein-reaction associa-
tions (GPRs). This first-draft GEM is almost completely elementally
and charge balanced. The biomass objective function was
formulated based on the biomass data from Bacillus subtilis39

and substituted where necessary. It contains metabolites, such as
amino acids, nucleotides, lipids, and cell wall constituents27. The
first S. aureus GEM reached a MEMOTE score of 67% and is
available as a file in SBML Level 3 Version 140 format with flux
balance constraints (fbc) extension41 and BiGG identifiers.

iMH551—GEM by Heinemann et al. In the same year, the second
genome-scale reconstruction of S. aureus was published by
Heinemann et al. Both research groups curated the S. aureus
strain N315 and used the KEGG37 and TIGR database38, together
with literature for genome regions with limited sequence
homology for gene function assignments. A new biomass
objective function was specifically defined for S. aureus based
on integration of literature data from a variety of different
S. aureus strains. The biomass objective function was build upon
the five polymer categories DNA, RNA, proteins, lipids, and cell
wall components, and extended by pool solutes. The reconstruc-
tion includes 801 metabolites and 860 reactions that are based on
551 genes and simulates aerobic and anaerobic growth28. This
S. aureus GEM reached a MEMOTE score of 35% and is also
available as SBML Level 3 file with fbc extension. The genes are
not included in the SBML file.

GEMs by Lee et al. Lee et al. utilized the ERGOTM bioinformatics
suite42 and the KEGG ligand/reaction database37 to curate
metabolic reconstructions of multiple S. aureus genomes. The
DNA sequence and associated open reading frames (ORFs) or
protein sequences were integrated into the ERGO genome
database. ORFs were called via a combination of programs and
annotated automatically or manually. BLAST was used to compute
the protein similarities. Functional assignments, relationship com-
putation, and pathway analyses based on existence of ortholog and
protein family clusters led to automated metabolic reconstructions.
Manual steps included the review of every gene in the genome,
pathway curations, and the consideration and reconciliation of
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motif/domain database results for functional assignments. For
identified missing steps within a certain pathway, Lee et al.
searched for orthologs or published biochemical activities. For all
complete, incomplete, or partial EC number annotations, associated
reactions were identified via the ERGO pathway collections and
KEGG database. Lee et al. used both biomass compositions from
Becker et al.27 and Heinemann et al.28 for their analyses. On
average, the thirteen S. aureus reconstructions included 1476 ± 14
reactions and 1406 ± 11 metabolites. All models are available as
Excel spreadsheet files with KEGG identifiers.

GEMs from Path2Models. More than 140,000 freely available and
automatically generated mathematical models from pathway
representations are available through the Path2Models project.
KEGG37, BioCharta43, MetaCyc44, and SABIO-RK45 served as
databases to generate three types of models, including
genome-scale metabolic reconstructions. The pipeline for
generating GEMs starts with the extraction of pathway data
from KEGG37 and MetaCyc44. To reconcile the different
metabolite and reaction identifiers, MNXref was used46. MNXref
was further used to define default metabolite formulas and
charge states. It allowed the mapping to different databases for
a semantical annotation in accordance with the Minimal
Information Required In the Annotation of Models (MIRIAM)
guidelines47. To all GEMs, a default biomass objective function
containing all 20 amino acids, RNA and DNA nucleotide
precursors, glycogen, and ATP was added. Between 2012 and
2013, 33 S. aureus GEMs were curated with the help of this
pipeline, including one bovine strain. This strain had 6110
reactions, 4416 metabolites, and 1198 genes. The
other S. aureus GEMs have on average 3064 ± 103 reactions,
2186 ± 75 metabolites, and 519 ± 12 genes. All models have a
MEMOTE score of 48% and are available at the BioModels
database as SBML Level 2 files48 with mixed nomenclature.

GEMs by Bosi et al. In 2016, Bosi et al. constructed 64 GEMs of
different S. aureus strains. They started by extending and adding
content from KEGG37, Model SEED49, and MetaCyc44 to the S.
aureus N315 model iSB619 by Becker et al. This manually curated
model was used as reference for other S. aureus strains. Shared
genes and reactions were identified and subsequently, strain-
specific metabolic content available from KEGG37, Model SEED49,
and BioCyc50 was manually added to the strain-specific GEMs.
Since an S. aureus biomass composition was not available, the
biomass objective functions from Becker et al.27 and Heinemann
et al.28 were combined and S. aureus-specific data regarding the
fatty acid composition in the biomass were used to adjust the
biomass objective function. A gap-filling step further refined the
models. On average, the models have 1460 ± 94 reactions, 1446 ±
47 metabolites, and 788 ± 116 genes with an average MEMOTE
score of 36 ± 1%. All models are available as SBML Level 3 files51

with fbc extension and BiGG nomenclature.

GEM by Magnúsdóttir et al. To elucidate the role of microbial
communities in human metabolism and health, Magnúsdóttir
et al. semi-automatically generated genome-scale metabolic
reconstructions of 773 human gut bacteria, including S. aureus
USA300-FPR375733. By using a comparative metabolic reconstruc-
tion method that propagates refinements from one metabolic
reconstruction to others, the model quality of all 773 models was
improved. The basis for each reconstruction were draft GEMs from
Model SEED49 and KBase52 including gap-filling, refinement via
rBioNet53, and quality control and quality assurance testing.
Further refinement steps included the verification of reaction
directionalities as well as mass and charge imbalances. The
reconstructions were extended by gut-microbiota specific

subsystems and central metabolic subsystems, and anaerobic
growth was enabled. Leak tests and the removal of infeasible flux
loops further refined the model. The S. aureus model contains
1403 reactions, 1193 metabolites, and 859 genes, and reached a
MEMOTE score of 45%. It is available as SBML Level 3 file with fbc
extension and VMH nomenclature.

iYS854—GEM by Seif et al. Seif et al. manually reconstructed a
comprehensive genome-scale metabolic model of S. aureus
USA300 str. JE2 containing 886 genes, 1455 reactions, 1335
metabolites, and 673 three-dimensional protein structures. The
GEM was build upon one of the reconstructions of Bosi et al.32.
Extensive and detailed manual curation was supported by
literature reviews and network evaluations. The initial model was
extended by an updated biomass objective function. Model
instances, such as genes, reactions, and metabolites, were
enriched with cross-references and metadata. More than 50
metabolic sub-modules were examined, curated, and added to the
GEM, together with over 200 confidence scores and 300
references. By this manual curation, 569 new metabolic processes,
214 new ORF assignments and 207 new metabolites were added.
Experimental validation of the model revealed an 85% agreement
with gene essentiality data and 68% agreement with experimental
physiological data30. A model evaluation with MEMOTE revealed
with 81% the highest MEMOTE score of all tested models. The
model is available as SBML Level 3 file with fbc extension and
BiGG identifiers.

Fig. 1 Properties of all available S. aureus models and their
scopes. For all models, the number of reactions, metabolites, and
genes in the model is illustrated. MEMOTE conducts standardized
and community-maintained metabolic tests for quality control and
quality assurance of genome-scale metabolic models (GEMs) and
assigns the tested model a score ranging from 0 to 100%. Lee
et al.31, Bosi et al.32, and the Path2Models Project29 published a
collection of different S. aureusmodels. For the collections, the mean
number of model instances is shown and the error bar indicates the
standard deviation (s.d.).
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Presence of strains
The 114 currently available GEMs divide into 65 different S. aureus
strains. In Fig. 2, the diverse S. aureus strains and their occurrence
in the different publications is illustrated. Some strains, such as
USA300-FPR3757 or N315 occur several times in different
databases. Others, like the GEM for S. aureus strain JE2 occur only
once in literature so far. The colors indicate the metabolite and
reaction identifier in the respective model. Among the five models
of the strain N315, two models exist that both carry BiGG
identifiers. Models with same identifiers can be compared more
easily than models with discriminating identifiers. Thirteen
S. aureus strains occur at least in three different databases or
publications with varying identifiers.
Due to the vast amount of different S. aureus strains, we

elucidate only the strains that are shared over multiple databases.
As already mentioned, the GEMs of the S. aureus strain N315 are
the most prevalent. This strain was isolated from the pharyngeal
smear of a Japanese patient in 198254. It is a methicillin-resistant
S. aureus (MRSA). The only effective antibiotic against it was
vancomycin. However, in 1997, a vancomycin-resistant MRSA
strain, Mu50, was discovered in a Japanese infant with a surgical
wound infection54. The closely related strain Mu3 is a hetero
vancomycin-intermediate MRSA strain. Strains with heteroge-
neous vancomycin resistance can spontaneously produce cells
with increasing resistance against vancomycin55,56.
The isolates JH1 and JH9 stem from a series of MRSA isolates

obtained from a patient receiving extensive therapy. These strains
are also vancomycin-intermediate S. aureus. The first isolate, JH1,
was taken before the chemotherapy and was fully susceptible to
vancomycin. The last isolate, JH9, from the end of the therapy
showed decreased susceptibility to vancomycin57.
The S. aureus strains of type USA300 are clones of the

community-acquired MRSA58,59. It causes invasive infections in
children and adults in the USA58, but also in Canada and Europe59.
It is suggested that USA300 is more virulent than other
community-acquired MRSA strains58. FPR3757 is a multidrug-
resistant USA300 strain with acquired mobile genetic elements
(MGEs) encoding resistance and virulence determinant that
probably lead to enhanced pathogenicity59. The other USA300
isolate, TCH1516, also named USA300-HOU-MR, was isolated at
the Texas Children’s Hospital in 2007. Significant differences to
other MRSA strains lie within the plasmid content and the
antibiotic susceptibility profiles58.
MW2 is another community-acquired MRSA isolate. It carries a

wide range of virulence and resistance genes60. At the moment,
more than fifteen different pathogenicity islands are identified in
S. aureus. Interestingly, MW2 contains almost the same complement
of pathogenicity islands as USA300-TCH151658. In contrast, the
S. aureus strain COL contains six pathogenicity islands, such as
Mu50, but in different combinations58. COL is one of the first MRSA

isolates from the early 1960s. It is a penicillinase-negative strain61,62.
In contrast to the highly virulent MW2 strain, where virulence
factors are found outside of prophages, fewer virulence factors are
found outside of prophages in S. aureus strain Newman. This strain
carries four integrated prophages and two large pathogenicity
islands with important contributions for the pathogenesis. This
S. aureus strain is susceptible to methicillin63.
As the Newman strain, the S. aureus isolate MSSA476 is a

methicillin-susceptible clone. It is a community-acquired strain,
such as MW2. It was isolated in 1998 and susceptible to most
commonly used antibiotics, excluding penicillin and fusidic acid64.
In contrast MRSA252 is a clinically important hospital-acquired
MRSA lineage. It is genetically diverse to other S. aureus strains64.
S. aureus does not only infect humans, it is also the cause of a

mastitis in cattle. Strain RF122 contains genomic features that
distinguish the human and the bovine pathogens65.
Eight different S. aureus isolates belong to the South German

clone lineage ST228. This clone spread over 10 years in a hospital
in Switzerland. The isolates were collected between 2001 and
2008. The eight isolates represent the evolutionary history of the
clone. As many others, it is an MRSA66.

MODEL IMPROVEMENTS
A variety of different S. aureus models from various strains is
available. However, not all 114 downloaded S. aureus models were
of the same quality: Some SBML files were syntactically invalid,
others utilized an older SBML format, or were not available as
SBML file at all. To provide a collection of usable and updated
SBML models, we performed debugging and/or improvement
steps on some of the models. Models with valid SBML files of the
latest level were not improved. All debugging and improvement
steps served the purpose of standardizing and annotating the
models. No content changes were performed that affect model
calculations.

GEMs by Bosi et al.
The 64 S. aureus models by Bosi et al.32 were downloaded and
evaluated using COBRApy35. The built-in validity check for SBML
files returned a number of errors. In a first step, a pipeline for
debugging the errors was created. All files lacked the XML
declaration, which was added together with the XML version
number and the encoding attribute. According to the SBML
language specifications, metabolite, reaction, and model identifier
need to fulfill certain properties67, e.g., model identifiers cannot
start with a number. The identifiers were adapted according to the
guidelines. The downloaded SBML file contained an empty
compartment list, which was filled with the compartments during
the debugging. As the compartment list comprises all cellular
compartments in which metabolites and reactions occur, the

Fig. 2 Occurrence of models for S. aureus strains. Sixty-five different strains of S. aureus are available over the seven publications. Some
S. aureus strains, such as the S. aureus strain USA300-FPR3757, occur in several publications, for other strains, only one publication is available.
The colors indicate the utilized metabolite and reaction identifiers in the respective models. Models with similar or same identifiers can be
compared more easily.
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different compartments were extracted from the metabolites’
information and subsequently incorporated into the compartment
list. The charges, chemical formulas, and compartments of the
models’ metabolites were adapted or added, where necessary.
After these debugging steps, the models were exported as valid
SBML files and evaluated with MEMOTE. The MEMOTE score of
36% in Table 1 is the score after these debugging steps, since
MEMOTE requires a syntactically valid SBML file as input.
Since a pipeline for altering all 64 S. aureus GEMs already

existed, we added further steps to the pipeline to extend the
models with respect to their annotations. With the use of the
Systems Biology Ontology (SBO), semantic information about
model components can be provided. This information allows an
explicit and unambiguous understanding of the components’
meaning68. For the model genes and metabolites, appropriate
SBO terms were defined. Reactions were divided into metabolic
and transport reactions, each receiving different SBO terms.
Transport reactions were even further refined to active, passive, or
co-transport with antiporters or symporters. After the assignment
of appropriate SBO terms, further annotations were added using
ModelPolisher69. ModelPolisher accesses the BiGG Models Data-
base for the annotation and autocompletion of SBML models69.
With the help of the ModelPolisher, additional metadata was
incorporated for the different model instances. After those
extensions, the MEMOTE score of the 64 GEMs increased on
average to 83 ± 1%, which is an average improvement of 47%. The
complete pipeline for debugging and extending all 64 models and
saving them as valid SBML files is summarized in Fig. 3.
All debugging and extension steps served the purpose of

making the models simulatable. Since reaction-sets, metabolite-
sets, or gene-sets were not altered, the models’ simulation
behavior is not affected. However, the models can now directly
be used, as they are now all available as valid SBML files.

GEMs by Lee et al.
The thirteen GEMs by Lee et al. were available as Excel
spreadsheet. For all reactions and metabolites in the list, the
respective information, such as reaction or metabolite name, or
chemical formula was extracted from the KEGG database37, where
available. Based on the information from the KEGG database and
the Excel spreadsheet, a consensus model including all reactions
was created. Both biomass objective functions from Becker et al.27

and Heinemann et al.28 were added to the consensus model, as
well as exchange reactions for all extracellular metabolites.
ModelPolisher69 was used for annotating the model. Based on
this consensus model, the individual models of the thirteen
S. aureus strains were curated: The strain-specific reactions listed in
the Excel spreadsheet were added to the respective models, and

the biomass objective function from Becker et al. was adapted
strain-specifically. The KEGG database was browsed for the strain-
specific gene identifiers. The models now include on average
491 ± 8 genes, except for S. aureus strain RF122, where no strain-
specific KEGG gene identifier was available. Further annotations,
such as KEGG annotations and EC-codes were added to the
models. Despite manual effort, all thirteen models do not show
growth for neither of of the biomass objective functions.
The MEMOTE score for all models excluding the model for the
S. aureus strain RF122 reached 66%. Since the GEM for the
RF122 strain does not contain any genes, its MEMOTE score only
adds up to 57%. Comparing the originally published models
concerning model simulations and growth predictions is not
possible, because only Excel spreadsheets with reactions and
metabolites were available.

GEMs from Path2Models
The 33 models from the Path2Models project are the only models
of S. aureus that are still SBML Level 2 Version 470. Since the fbc
package is officially only available from Level 3, it is not yet
integrated in the files. We updated all models to SBML Level 3
Version 140 with the fbc package enabled using libSBML71.
However, the original chemical formulas did not match the
scheme that the official fbc package72 requires. In order to avoid
creating syntactically invalid SBML files, all chemical formulas
needed to be adapted according to the fbc specification72. The
original chemical formulas can still be found in the notes field.
This notes field further contained a variety of annotations from
different databases, including BRENDA73, KEGG37, MetaCyc44,
MetaNetX46, Rhea74, BiGG25, Reactome75, Model SEED49, Unipath-
way76, the Human Metabolome Database (HMDB)77, ChEBI78, and
InChI79. All database annotations that can be found in the
identifiers.org47 registry were transferred to the annotations, using
identifiers.org uniform Resource Identifiers (URIs). The service
identifiers.org provides directly resolvable identifiers from a
multitude of different databases. The final and valid SBML files
were evaluated using MEMOTE. The total score for the GEMs from
the Path2Models project increased from 48 to 59% and all models
are now available as SBML Level 3 files. Again, no changes on the
reaction, metabolite, or gene content were performed, which
would affect the model simulations.

MODEL ANALYSIS
In the following section, we examined the available models for
their predictive value and their similarity. As the growth behavior
of S. aureus is reported in various defined media, the models’
capability of reflecting growth under these conditions indicates

Table 1. Overview over the available S. aureus models.

Model Year Model count Availability Format MEMOTE score Initial growth Curation

iSB61927 2005 1 BiGG & BioModels Database SBML L3V1 with fbc 67% ✓ m

iMH55128 2005 1 BioModels Database SBML L3V1 with fbc 36% ✓ m

Lee31 2009 13 Supplements Excel spreadsheet file 65% s

Path2Models29 2013 33 BioModels Database SBML L2V4 48% a

Bosi32 2016 64 Supplements SBML L3V1 with fbc 36% ✓ s

Magnúsdóttir33 2017 1 Virtual Metabolic Human (VMH) Database SBML L3V1 with fbc 45% ✓ s

iYS85430 2019 1 BiGG Models Database SBML L3V1 with fbc 81% ✓ m

All GEMs were downloaded from the respective database or from the supplements of the publication. Their format and SBML version were determined. The
initial growth was tested (indicated with the symbol ✓ in case of success) and the MEMOTE36 score was calculated for each model. The information for the
models by Bosi et al. was determined after the debugging steps (see Fig. 3 steps 1–7). These debugging steps only served the purpose of generating valid
SBML files. No additional improvements, which could increase the MEMOTE score, were performed at this point. The curation column indicates, whether the
model was curated manually (m), automatically (a), or semi-automatically (s).
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the predictive value of the model. Subsequently, the publications
were checked for the inclusion of experimental data in the models
or the verification of model-driven hypothesis. Additionally, the
predictions of gene essentialities using different models are
compared. In the last step, the models’ similarities were examined
concerning their reaction and gene content.

Growth capabilities
The growth of genome-scale metabolic models on different media
is an important characteristic of a model’s capabilities and
flexibility to reflect the organisms behavior in different environ-
ments. Since S. aureus is known to grow in a variety of different
environments, its growth was simulated in chemically defined
environments to investigate the model’s capabilities.

Chemically defined medium (CDM). The CDM is a complete
defined medium with 18 amino acids, two purines, and six
vitamins and initially developed to study the slime production by
coagulase-negative staphylococci80. It was used by Halsey et al. to
study the amino acid catabolism in S. aureus81. Either no carbon
source was added (CDM), or glucose (CDM_glc) or galactose
(CDM_gal) was added to the medium. The growth of S. aureus
strain JE2 is already computationally and experimentally validated
and verified on CDM and its variants30.

Synthetic nasal medium (SNM). The primary ecological niche of
S. aureus is the human nose82,83. Krismer et al. developed a
defined synthetic nasal medium (SNM) based on the composition
of nasal fluid components determined by metabolomics84,85. This
medium was initially developed to monitor the growth of S. aureus
under similar physiological conditions as in the nose. Growth in

this medium is experimentally verified for the S. aureus strains
USA300 LAC and Newman. Since the medium is chemically
defined, it can also be established in growth simulations in
systems biology.

Gut medium. Already in the 1950s and 1960s, the intestinal
colonization of S. aureus was reported82. Recent interest in the gut
microbiome revealed and enlightened the relevant role and
influence of S. aureus on the intestinal microbial ecology and
diversity83,86–89. Intestinal colonization by S. aureus is, e.g.,
assumed to induce pseudo-membranous colitis and to change
the gut microbial ecology89. Alterations in the composition of the
gut microbiota can result in the development of chronic diseases,
such as type 2 diabetes, colorectal cancer, and obesity90. Hence,
studying the role of S. aureus in the context of the gut microbiome
is of high relevance. Magnúsdóttir et al. generated 773 genome-
scale metabolic reconstructions for 773 members of the human
gut microbiome, including S. aureus. To simulate the growth in the
gut, they chemically defined a medium according to experimental
data. The medium definition was extracted from the S. aureus
model created by Magnúsdóttir et al.33. Magnúsdóttir et al.
validated two of the 773 genome-scale reconstructions experi-
mentally, where S. aureus was not included. However, as their
model grew in the defined medium, and S. aureus is reported to
colonize the intestine, we inferred that growth should be possible.

SCFM. S. aureus does not only occur on the human skin, in the
human nose82,83, or the nasopharyngeal tract91,92. It is furthermore
observed in patients, especially in children, with cystic fibrosis
(CF)93, an autosomal recessive disease. As one of the earliest and
also most prevalent pathogens, S. aureus causes chronic airway
infections in patients with CF94. To investigate the role of S. aureus

Fig. 3 Debugging and extension steps in GEMs by Bosi et al. Not all the 64 SBML files downloaded from the supplement of Bosi et al. did
directly pass the syntactic validation. In seven steps, the errors reported in the validity check were solved to receive valid SBML files. The valid
files were then further extended with appropriate SBO terms for genes, species, and reactions. In a final step, annotations were added to the
model using ModelPolisher69.

A. Renz and A. Dräger

6

npj Systems Biology and Applications (2021) 30 Published in partnership with the Systems Biology Institute

B.4 Curating and comparing 114 stain-specific GEMs of S. aureus

109



and other associated pathogens, such as Pseudomonas aerugi-
nosa93, Palmer et al. developed a synthetic cystic fibrosis medium
(SCFM), mimicking the nutritional composition of the sputum of
patients with CF by chromatographic and enzymatic analyses of
the CF sputum. This medium was initially created to analyze the
nutritional behavior of Pseudomonas aeruginosa in CF sputum95.
Clinical isolates of S. aureus are reported to grow in SCFM96.
Since the thirteen models by lee et al. and the 33 models from

the path2models project did not exhibit any growth in full
medium, these models were not included in the analysis of
growth capabilities. During the analysis, three of the models by
Bosi et al. reported a low growth rate of 0.00186 mmol/(gDW × h)
without any active exchange reactions (models sa_118, sa_gr1,
and sa_lct). A positive growth rate without active exchange
reactions can be an indicator for futile cycles and a necessity for
manual verification and refinements.
Not all models by Bosi et al. were capable of growing on any of

the tested media. In total, 33 out of the 61 remaining models were
not able to grow on any of the tested media. This might be
explained by the auxotrophies for amino acids and vitamins in
several S. aureus strains observed by Bosi et al.32. None of the
models by Bosi et al. grew on the SCFM or the gut medium. For
SNM and the CDM compositions, different patterns emerged: ten
strains, including N315, only grew on SNM, while six strains only
grew on the CDM with galactose. Seven strains grew on all three
variants of the CDM and the remaining five strain models grew on
both the SNM and all CDM. The model iSB619 by Becker et al. only
grew on the gut medium, while the model iMH551 by Heinemann
et al. returned a positive growth rate for all tested media types.
The model iYS854 exhibits growth on almost all tested media,
except for the SCFM and the gut medium. It is comparable to the
models by Bosi et al., with the difference of a higher growth rate.
The model by Magnúsdóttir only grew on its own gut medium. In
Fig. 4, the growth capabilities of the various S. aureus GEMs under
different environmental conditions is illustrated.

Presence of experimental data
Besides the correct prediction of growth in a defined environ-
ment, a model’s predictive value also increases when laboratory
data is included or in silico observations are verified in laboratory
experiments.

Automatically curated GEMs. The models from the Path2Models
project were automatically constructed. Within automated recon-
struction processes, the inclusion of experimental data for
individual models is complicated. For this reason, the GEMs from
the Path2Models project do not contain experimental data29.
Moreover, the models are not simulatable and, thus, can also not
predict any growth. Verification of model predictions is hence not
possible.

Semi-automatically curated GEMs. Curating a collection of multi-
ple GEMs is time and labor intense. Manual reconstruction would
take a significant amount of time. Thus, the models from Lee et al.,
Bosi et al., and Magnúsdóttir et al. were constructed semi-
automatically.
Lee et al. verified their models using gene essentially analysis

and growth experiments of two models. They found literature
evidence and experimental verification for six of the 44 identified
genes that were essential in all strains in silico. The growth
experiments supported their minimal-medium predictions31.
The models from Bosi et al. were examined for the correct

simulation of already known auxotrophies. Furthermore, the
predictions of the growth capability in the presence of spermidine,
and the growth on chemically defined media were verified in
laboratory experiments for several strains32.
The model from Magnúsdóttir et al. was curated based on

literature-derived experimental data. However, it is not specified
which experimental data is used exactly. Metabolic predictions of
two of the 773 reconstructions were validated against experi-
mental data33.

Manually curated GEMs. Becker et al., Heinemann et al., and Seif
et al. manually curated their strain-specific GEMs. The in silico
growth predictions of the model iSB619 in a minimal medium
were compared to laboratory experiments. Becker et al. addition-
ally predicted essential genes. As this was the first available GEM
of S. aureus, no experimental data was available to compare the
predicted essential genes with27. The model iMH551 was
compared to available knowledge about auxotrophies in S. aureus.
The model’s growth predictions under aerobic and anaerobic
conditions were validated against available experimental evi-
dence28.
The model iYS854 underwent the most experimental verifica-

tions compared to all other models. Its predictions are in 85%

Fig. 4 Growth rate of S. aureus GEMs in different media. All models with initial growth (see Table 1) were tested on the different media. For
the GEMs by Bosi et al.32, the prefix “Bosi” was added to the model strain name. The other models are named according to their published
model ID or, in case of the model from the VMH database, by the author. Media types are the synthetic nasal medium (SNM), synthetic cystic
fibrosis medium (SCFM), gut medium, chemically defined medium (CDM), CDM with glucose (CDM_glc), and CDM with galactose (CDM_gal).
Models that did not show growth in any of the tested media were excluded. The color-bar indicates the growth rate: the darker the color, the
higher the growth rate of the model organism on the given medium.
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agreement with gene essentiality experiments. The in silico
predictions of the catabolism of carbon sources are in 68%
agreement with experimental physiological data. They compared
the models’ growth predictions on various media with laboratory
experiments, and performed extensive condition-specific GEM
validation and evaluation in the presence and absence of
glucose.

Prediction of gene essentialities
Another indicator for the predictive value of a model is the
correctness of predicted gene essentialities. The essentiality of a
gene depends on the environment and the availability of
nutrients. To identify essential genes in silico, each gene is
individually knocked out in a so-called single gene deletion
analysis and its effect on the growth rate is evaluated. This
analysis, however, requires a model’s capacity to simulate growth
in the investigated environment. As the models from the
Path2Models project and Lee et al. did not show any initial
growth (see Table 1), these models were excluded from the single
gene deletion analysis. Additionally, this review aims to compare
models from different sources. Since the models from the
Path2Models project and Lee et al. were already excluded from
this analysis, only two strains remain with more than one model:
S. aureus USA300-FPR3757 and S. aureus N315. Two models from
Bosi et al. and Magnúsdóttir et al. are available for the strain
USA300-FPR3757, which can simulate growth. The model from
Magnúsdóttir et al. contains gene identifiers that cannot be
resolved within the PATRIC database97, leading to its exclusion
from this analysis. With only one remaining model from Bosi et al.,
a comparison of predicted gene essentialities for the strain
USA300-FPR3757 is not possible anymore.
Becker et al., Heinemann et al., and Bosi et al. curated models

for the strain N315 simulating growth. The model from
Heinemann et al., however, had to be excluded from the single-
gene-deletion analysis as the model did not contain any GPRs and,
thus, no genes. We downloaded the list of 302 essential genes for
N315 from the Database of Essential Genes (DEG)98 and mapped
all genes to the respective KEGG gene identifier. The medium is
indicated as a rich medium in the DEG, but no further description
of the chemical definition is given. Therefore, all exchange
reactions were opened for the single gene deletion analysis.
The model from Bosi et al. predicted 117 essential genes, while

the model from Becker et al. predicted 80. Of the 302 essential
genes from the DEG, only 176 and 107 genes were present in the
models from Bosi et al. and Becker et al., respectively. From the
117 predicted essential genes by Bosi et al., 27 (23.1%) were
predicted correctly, while 90 (76.9%) of the predicted essential
genes are not in accordance with the experimentally derived
essential genes. Similarly, from the 80 predicted essential genes by
Becker et al., 18 (22.5%) were predicted correctly, while 62 (77.5%)
of the predicted essential genes are not listed in the DEG. One
possible explanation for the similar predictions of essential genes
is that the models from Bosi et al. are based on the model from
Becker et al. The low number of true positive predicted essential
genes could indicate further refinement potential of the two
models.

Similarities between models
The analysis of the growth capabilities implied a clustering of
models with similar growth behavior, especially for the models by
Bosi et al. To identify further similarities between the models, the
reaction sets were compared. Mapping identifiers between
different databases induces a bias, since a complete mapping is
currently not feasible. Tools, such as ModelPolisher69, can be
helpful for annotating and comparing models. However, these
tools rely on cross-references in various databases, which holds
some challenges: The tools can only search with the correct

identifier; if a model, however, has identifiers not included in the
database, the tools will not find any annotations for that model
instance. One other challenge lies within the administration and
topicality of the databases. Changes in one database might not be
reported or updated in the cross-references of other databases,
leading to erroneous allocations that would bias the result of the
comparison.

Heat maps of reaction similarity. Since the models have diverging
identifiers, we divided them into three different groups. The first
group comprises the 33 models from the Path2Models project
with consistently mixed identifiers The second group includes all
thirteen models by Lee et al. with KEGG IDs. The third group
includes all models with BiGG identifiers, namely all models by
Bosi et al., as well as the models iSB619 and iYS854. Furthermore,
this third group contains the model created by Magnúsdóttir et al.
This model possesses VMH identifiers, however, those identifiers
can easily be converted to BiGG identifiers since they bear a
resemblance to the BiGG IDs. Within these groups, all reactions
were listed and checked for their occurrence in the models. With
this table of reaction occurrences, the Jaccard distance was
calculated between all pairwise combinations of the models.
With this distance matrix, the heat-map in Fig. 5 was created.

The models iSB619, Magnúsdóttir, and iYS854 vary widely
between each other and the models by Bosi et al. Within the
Bosi models, clusters of more and less similar models can be
identified (Fig. 5c). Such clusters are expected, as we assumed that
genetically similar strains also lead to more similar GEMs, due to
the gene–protein-reaction associations (GPRs). For example, the
two closely related USA300 strains TCH1516 and FPR3757 have a
distance value of 0.015, while the distance to one of the isolates of
the ST228 lineage (ST228-16035) is 0.160. Strain MRSA252 is
reported to be genetically diverse compared to other S. aureus
strains. Its distance, however, to the USA300-TCH1516 strain is
smaller (0.06) than the distance to the isolates of the ST228
lineage. Hence, the genetic differences between the different
strains are not necessarily reflected in their respective GEMs so far.
The distances between the models with BiGG IDs (group three)

ranged from 0 to 0.8, with the maximal distances between the
models iSB619, Magnúsdóttir, and iYS854. The models by Lee
et al., however, are more similar, indicated by the scaling of the
color-bar that ranges from 0 to 0.05. The model of the S. aureus
strain TCH1516 differs the most from all other models (Fig. 5b).
Unlike the models from Bosi et al., the two USA300 strains
(TCH1516 and USA300) do not cluster. They have a distance of
0.037. In contrast to the models of Lee et al., the strain TCH1516
does not stand out in the groups with BiGG IDs and the
Path2Models models.
Most distances between the models from the Path2Models

project (group one), ranged from 0.25 to 0.35. However, the model
of strain RF122 protrudes with a mean distance of 0.62. This trend
can also be observed in the heat-map of the models by Lee et al.,
but not as prominent as in Fig. 5a. One possible explanation is
given in the taxonomy for the S. aureus strain RF122, which is an
bovine mastitis-associated isolate with notable differences to
human clones of S. aureus99. This difference is, however, not as
obvious in the Models of Bosi et al. compared to the models of Lee
et al. and the Path2Models project.

Venn diagrams of gene similarity. Despite significant effort to
standardize and consistently annotate all models using different
annotating tools, such as the ModelPolisher, or database requests
for aliases from databases like BiGG or ModelSEED, a satisfying
comparison of the reaction sets between different identifiers is still
not possible. For example, for the models with KEGG identifiers
from Lee et al., we could not use the ModelPolisher, as this
annotation tool currently requires BiGG identifiers. For that reason,
we browsed the BiGG Models Database locally for cross-references

A. Renz and A. Dräger

8

npj Systems Biology and Applications (2021) 30 Published in partnership with the Systems Biology Institute

B.4 Curating and comparing 114 stain-specific GEMs of S. aureus

111



Fig. 5 Model comparison based on Jaccard distance between reaction sets. The models were divided into three groups based on their
metabolite and reaction identifiers: (a) has all models of the Path2Models project with consistently mixed identifiers, (b) has all models with
KEGG identifiers (hence, all GEMs by Lee et al.), and (c) contains all models with BiGG identifiers. Within the three groups, all pairwise Jaccard
distances were calculated based on the models’ reaction sets. The distances are displayed in the heat map. The color bar range is equal for (a)
and (c) for better comparison. As the distances in (b) are much smaller, the color bar’s range was adapted.
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to KEGG identifiers. Unfortunately, 842 out of 1486 KEGG reaction
identifier were not referenced at all in BiGG, 359 KEGG identifiers
were not uniquely mapped to a BiGG identifier, and only 285
identifiers were uniquely mapped. We checked some of the non-
referenced KEGG identifiers in the ModelSEED database for aliases
but could not determine the respective identifiers.
For that reason, we looked at the gene content of the models.

Most models used KEGG gene identifiers, regardless of the
identifier database of the reactions and metabolites. As the
different strains have strain-specific gene identifiers, the following
analysis was conducted strain-wise. Strains with at least three
models from various resources were taken into account (see also
Fig. 2): For eleven strains, three models are available, for the strain
USA300-FPR3757, four models are present in this collection, and
for the strain N315, five models are available. However, the SBML
file of the N315 model by Heinemann et al. does not include any
genes. Thus, the model was excluded from the comparison. Same
accounts for the RF122 strain-specific model by Lee et al., which
also does not contain any genes. For this reason, the model was
also excluded from the analysis. By that, the strain RF122 did no
longer fulfill the criterion of at least three available models.
The gene sets from the remaining models were compared. As

indicated, most models used KEGG gene identifiers, but not all.
The model by Magnúsdóttir et al. included strain-specific and
unspecific PATRIC identifiers97. With the help of the PATRIC ID
mapping service, the respective KEGG gene identifiers were
extracted. However, this was only feasible for the strain-specific
identifiers. Despite significant effort, the unspecific identifiers
could not be resolved, as no mapping scheme could be identified.
Thus, from the 859 genes included in the Magnúsdóttir model,
only 192 could be resolved to KEGG identifiers.
Model iSB619 contained new locus tags, whereas the KEGG

identifiers correspond to the old locus tags. With the GenBank flat
file (gbff)100 of S. aureus strain N315, the locus tags were mapped.
For the 619 new locus tags 611 respective old locus tags, and thus
KEGG identifiers, were extracted.
The models by Bosi et al. included mostly KEGG gene identifiers.

Within the strains JH1 and JH9, the gene identifiers were
truncated by the included word “DRAFT” to make them consistent
with the actual KEGG identifiers. For example, the initial identifier
SaurJH1DRAFT_0595 was truncated to the correct KEGG
identifier SaurJH1_0595.
After these mapping and adapting steps, the gene sets within

the different strains from the different resources were compared,
and Venn diagrams were created as shown in Fig. 6. Across all
twelve comparisons, the models by Bosi et al. have the largest
portion of genes that are solely reflected in these models. This
number varies between 20.1% in the N315 strain and 59% in the
Newman strain. As these models have the highest gene content
on average with approximately 788 ± 116 genes per model, this
seems apparent. The models from the Path2Models project have
an average gene content of 519 ± 12 genes per model, and the
models by Lee et al. contain 488 ± 149 genes on average. It was
already mentioned that the gene identifiers from the JH1 and JH9
models by Bosi needed to be adapted. Despite this adaption, only
half of the gene content is present in the other models as well. For
the Newman, MW2, and Mu3 strains, we further analyzed the gene
identifiers after these observed discrepancies between the gene
contents with the models from the other two databases. These
three strain-specific models from Bosi include non-strain-specific
gene identifiers, which could not be mapped to the correspond-
ing strain-specific gene identifier.

The models from Lee et al. and the Path2Models project are
relatively similar concerning their gene content. Since both
models are curated based on the KEGG database, this similarity
is evident. The four models of the S. aureus USA300-FPR3757 strain
have a gene content overlap of 15.7%. The model by

Magnúsdóttir et al. has only 0.3% gene content that is not
reflected in the other three models. However, one needs to keep
in mind that many genes in the model are not strain-specific and
could not be mapped and compared.
With these twelve gene content comparisons, we again

calculated the Jaccard distance between the models from Bosi
et al., Lee et al., and the Path2Models project. As already visible
from the Venn diagrams, the models from Lee and the
Path2Models project are most similar with respect to their gene
content. They have a mean Jaccard distance of 0.288 ± 0.004.
However, one might have speculated that the models are more
similar based on the Venn diagrams. It needs to be highlighted
that the Venn diagrams are calculated based on the gene content
of all compared models. In contrast, the Jaccard distance
calculates pairwise distances and, thus, only considers two models
at once. For that reason, the models from Lee et al. and the
Path2Models project are still the most similar ones, but their
identity might not be as large as first expected when looking at
the Venn diagrams. The Bosi models have a mean distance to the
Lee models of 0.666 ± 0.179 and to the Path2Models project
models a mean distance of 0.616 ± 0.203.
Although the different models from the various databases

reflect the same strain, the models have distinct diversities. This
can be explained by the differences in the reconstruction process.
How the model is curated seems to play a pivotal role for the final
model and its model instances. Thus, the reconstruction method
needs to be chosen carefully, and manual or semi-automated
additions might be required.

Decision guidance
With the vast amount of different strain-specific S. aureus models,
the identification of the suitable GEM for a specific research
question or purpose might become difficult. Table 2 gives an
overview about the main features of the S. aureus GEMs. The
features were assigned based on the strengths of the different
models or model collections after the model improvement steps. If
one is interested in simulatable models, the table guides the reader
to the corresponding models. By combining different required
features, the selection can be tailored. If one needs, e.g., a model
with BiGG IDs that grows on different media, the models by Bosi
et al. or the model iYS854 are suggested, depending on the desired
strain. High MEMOTE scores indicate a high degree of annotations,
which facilitates the re-usability and comparability of a model.
A predictive value score was calculated based on the model

analysis regarding their growth capabilities and the presence of
experimental data. If a model was not simulatable, it received a
predictive value score of 0. Otherwise, a score of 1 was added. For
growth capabilities in one environment, a score of 1 was added;
for growth in multiple environments, 2 was added. For every
experimental verification procedure, such as growth verifications,
auxotrophies, compliance with physiological data, or other
experiments, a score of 1 was added. The prediction of essential
genes was not included in this score, as this analysis was only
conducted for two models. By this scheme, the model iYS854 had
the highest predictive value score of 7, followed by iMH551 and
some models by Bosi et al. The models by Bosi et al. received a
score between 3 and 5, as some models do not predict growth in
any tested environment, while others do. As the models from Lee
et al. and the Path2Models project are not simulatable, they
received a predictive value score of 0. Models with high predictive
value score and high MEMOTE score are recommended for further
use, while models with low predictive value score might need
further refinement and experimental verification before usage.
This table does not contain strain-specific information. Including

the information from Figs. 2 and 4 will further guide the decision
for a suitable model.
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Fig. 6 Strain-specific model comparison based on gene sets. For all models occurring in at least three different resources, the gene content
was compared strain-specifically. After unifying the gene identifiers to KEGG IDs, Venn diagrams were created comparing the gene content. The
models from Bosi et al. have, on average, the highest gene content, explaining the large fraction of genes occurring only in these models.
The models by Lee et al. and the Path2Models project seem more similar, which could be explained by the fact that both are curated based on
the KEGG database. Although all models in one Venn diagram (and thus, one comparison) represent the same strain, the models have
differences, indicating the influence of the reconstruction method on the final model content.
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DISCUSSION
The analyses show that despite genomic and genetic similarities,
GEMs of related strains are not necessarily similar to each other.
This accounts for both models of the same strain curated by
different research groups and to related strains curated by the
same group. One example is the model from Magnusdóttir et al.
with the S. aureus strain USA300-FPR3757 and the corresponding
model from Bosi et al. Despite it is the same strain, the GEMs are
quite different in their reaction content. In contrast, the two strain-
specific models of the strains MRSA252 and USA300-TCH1516 by
Bosi et al. are quite similar despite the genetic diversity of the
strain MRSA252. This observation might have several reasons. The
first, and probably most striking, reason is the incompleteness of
the models. As high-quality genome-scale metabolic reconstruc-
tions require manual curation and evaluation101, and many
models introduced in this review were created automatically or
semi-automatically, some models might lack general or strain-
specific reactions. This lack of required reactions is also visible
when optimizing the flux distributions of the models. For multiple
models, no growth could be simulated in FBA, not even in full
medium. This was especially the case for the automatically curated
models from the Path2Models project and the semi-automatically
curated models from Lee et al. But also some of the semi-
automatically curated models from Bosi et al. did not show any
growth. Thus, a connection between automated or semi-
automated curation and the functionality of the models seems
to exist. However, automated or semi-automated curation does
not necessarily result in poor growth prediction, especially when
the basis for the (semi-) automated processes underwent
significant manual curation. The other models from Bosi et al.
showed growth on up to four different media. The semi-
automatically constructed model by Magnusdóttir et al. could be
simulated on one medium, which is also the case for the manually
curated model iSB619. Furthermore, some of the S. aureus strains
have plasmids carrying additional genes. For a strain-specific
model, these additional genes need to be incorporated into the
GEM as well. Especially the metabolic and transporter genes are
relevant for the strain-specific model. The plasmid of the S. aureus
strain N315, e.g., carries a gene for the cadmium resistance
transporter CadD, which facilitates the export of cadmium ions
and other cationic compounds102. Besides further proteinogenic
genes, the plasmid of strain N315 also carries a gene for the
penicillin-hydrolyzing class A β-lactamase enzyme. These two
genes are, e.g., also present on the plasmid of the S. aureus strain
USA300-TCH1516.
As explained previously, the challenge lies within the different

reaction and metabolite identifiers. In this review, we additionally
tried to annotate the GEMs further to simplify the comparison of
models with differing identifiers. However, only approximately

one third of all reactions and metabolites are annotated with
identifiers of external databases. It is still challenging to find all
cross-references for a particular metabolite or reaction in a specific
database. For that reason, we additionally evaluated the gene
content of the strain-specific models, as most models contained
identifiers from the KEGG database. The gene identifiers from
other databases were mapped to the KEGG identifiers. Again, a
bias is introduced when identifiers are mapped between
databases: On the one hand, not all identifiers can be resolved
in the other database. On the other hand, some identifiers do not
comply with the databases’ identifiers scheme and do not have
annotations. This makes an automated mapping of several
hundred identifiers infeasible. Extensive manual labor would be
necessary to map these identifiers. The usage of consistent
identifiers that comply with the database scheme and additional
annotations is highly recommended and would simplify the re-
usability, translatability, and comparability of models103. The
comparison of the strain-specific models’ gene content confirmed
that GEMs from different resources could vary, despite their
genetic equality, highlighting the relevance of the curation
process on the resulting GEM. This observation is even more
explicit when comparing the models by Lee et al. and from the
Path2Models project: both rely on the KEGG database. However,
the models are not equal, as the two groups used different
approaches for the curation of the models.
Missing reactions and strain-specific genes might also affect the

growth behavior of a strain-specific model on a given medium.
Only the model iMH551 showed growth on all tested media.
Additional growth experiments for specific S. aureus strains can
help to identify the missing growth capabilities of the model. The
model’s ability to adapt to different environmental conditions is
crucial to simulate an organism in silico. This is also reflected in the
predictive value score, which was assigned to the models.
Especially for models with a low predictive value score, additional
experiments would help determine and also increase the
predictive value of the model.
The models from Lee et al., the Path2Models project, Bosi et al.,

and Magnúsdóttir et al. are curated automatically or semi-
automatically. Except for the models from Bosi et al., all models
have a comparatively low predictive value score than the
manually curated models. The models from the Path2Models
project and Lee et al. have a score of 0. The low score from the
Path2Models projects’ models might go back to the lack of
experimental data in both the curation and verification process,
thus highlighting its importance for predictive genome-scale
metabolic reconstructions. The low score for the models from Lee
et al. accentuates the importance of standardized GEMs, which
allow re-usability. Although the models from Bosi et al. are curated
semi-automatically, their predictive value scores are comparable

Table 2. Feature-based decision guidance.

Feature iSB619 iMH551 Lee Path2Models Bosi Magnúsdóttir iYS854

Database ✓

Simulatable models ✓ ✓ ✓ ✓ ✓

BiGG IDs ✓ ✓ ✓

Kyoto Encyclopedia of Genes and Genomes (KEGG) IDs ✓

Growth on different media ✓ ✓ ✓

High MEMOTE score ✓ ✓ ✓ ✓

Predictive value score 3 5 0 0 3–5 2 7

The main features of the S. aureus GEMs are listed and indicated with the symbol ✓ when present. The models are assigned to the features based on their
strengths after the model improvement steps. A predictive value score was calculated as described in the section “Decision guidance”. With the help of the
features and the predictive value score, one can identify the best suited model for the research question of interest.
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high. They based their pipeline on a manually refined model and
verified their predictions with experimental data. More experi-
mental data accompany more knowledge. The latest model,
iYS854 has the highest predictive value score, was manually
curated, and extensively experimentally validated. The result of
such a time- and labor-intensive work is a GEM with a high
predictive value and a strong recommendation for future usage.

CONCLUSION AND OUTLOOK
In this review, all 114 currently available genome-scale metabolic
models (GEMs) of Staphylococcus aureus were presented and
evaluated. It serves as guide for the different available reconstruc-
tions in various databases, using differing metabolite and reaction
identifiers. Some models originally comprise a large number of
reactions, metabolites, and genes, after undergoing several manual
curation steps and extensive annotating. Such models have a high
MEMOTE score. The model with the highest MEMOTE score is the
iYS854 model by Seif et al. Other models have a vast amount of
reactions and metabolites, such as the reconstructions of the
Path2Models project. Such models could, e.g., serve as information
sources for the reconstruction or refinement of already existing
strain-specific models. Based on the information regarding
availability, model format, MEMOTE score, growth behavior, used
database identifiers, predictive value, and similarities between
models, together with a previously defined research question, the
appropriate genome-scale reconstruction can be chosen from the
vast amount of available GEMs. Another approach would be to use
the strengths of every reconstruction and incorporate it into
merged or combined models, which increase the correctness and
the predictive value of a strain-specific model. Despite the vast
amount of presented models in this review, there is no suitable
model for every S. aureus strain available. Furthermore, missing
annotations or identifiers that do not comply with the database
identifier scheme impede the models’ re-usability and compar-
ability. Standardization of all models would be desirable but is
currently not feasible with the available tools without extensive
manual labor for hundreds of identifiers. No omics data was
incorporated into many of the published GEMs so far. Information
about transcription profiles, for example, can help to refine
metabolic reconstructions to better reflect the metabolic state of
an organism in a defined environment. The incorporation of omics
data can thus increase the predictive value of genome-based
metabolic reconstructions104.

However, with the help of the already available reconstructions
and further information, strain-specific models could be created or
extended. Information from literature, merging of strain-specific
models, and manual curation steps could further improve the
predictive value of simulations and analyses of metabolic features
of S. aureus. Having predictive GEMs can eventually lead to the
identification of novel targets for antimicrobial therapies in the
fight against antibiotic resistant strains of S. aureus.

DATA AVAILABILITY
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ARTICLE OPEN

An updated genome-scale metabolic network reconstruction of
Pseudomonas aeruginosa PA14 to characterize mucin-driven
shifts in bacterial metabolism
Dawson D. Payne 1, Alina Renz 2,3,4,7, Laura J. Dunphy1,7, Taylor Lewis5, Andreas Dräger 2,3,4,6 and Jason A. Papin 1✉

Mucins are present in mucosal membranes throughout the body and play a key role in the microbe clearance and infection
prevention. Understanding the metabolic responses of pathogens to mucins will further enable the development of protective
approaches against infections. We update the genome-scale metabolic network reconstruction (GENRE) of one such pathogen,
Pseudomonas aeruginosa PA14, through metabolic coverage expansion, format update, extensive annotation addition, and
literature-based curation to produce iPau21. We then validate iPau21 through MEMOTE, growth rate, carbon source utilization, and
gene essentiality testing to demonstrate its improved quality and predictive capabilities. We then integrate the GENRE with
transcriptomic data in order to generate context-specific models of P. aeruginosa metabolism. The contextualized models
recapitulated known phenotypes of unaltered growth and a differential utilization of fumarate metabolism, while also revealing an
increased utilization of propionate metabolism upon MUC5B exposure. This work serves to validate iPau21 and demonstrate its
utility for providing biological insights.

npj Systems Biology and Applications (2021)7:37 ; https://doi.org/10.1038/s41540-021-00198-2

INTRODUCTION
The mucosal barrier is a hydrated mucus gel that lines wet
epithelial cells throughout the body, including eyes, mouth, lungs,
and the gastrointestinal and urogenital tracts1,2. It serves as a key
mechanism of protection against pathogens. The component
responsible for the gel-like properties of the mucosal layer is the
glycoprotein mucin3. The dysregulation of mucins underlies
diseases like cystic fibrosis4 and chronic obstructive pulmonary
disorders2. As mucins are involved in the clearance of microbes5, a
dysregulation of mucins can result in pathogen overgrowth and
severe infections6. While some bacterial species, including
pathogenic strains of Pseudomonas3, are capable of residing
within the mucosal layer, mucins typically impair the formation of
biofilms and surface attachment7. Furthermore, mucins are
reported to downregulate virulence genes involved in siderophore
biosynthesis, quorum sensing, and toxin secretion1. By disturbing
these key mechanisms of infection, mucins attenuate the
virulence and infective potential of P. aeruginosa.
Elucidating the metabolic responses of P. aeruginosa to mucins

can enable the development of protective approaches against
infection8. Genome-scale metabolic network reconstructions
(GENREs) and associated genome-scale metabolic models (GEMs)
are well suited for this purpose as they can enable the prediction
of cellular behavior under different biological conditions such as
the absence or presence of different mucins in an environment9. A
GENRE can also be used to contextualize high-throughput data,
such as transcriptomics or proteomics data10. Gene expression
data can, for example, be used to constrain specific predicted
metabolic fluxes11 and thereby increase the predictive value of the
model. Metabolically active pathways under different conditions

can be identified by integrating high-throughput data with a
metabolic network12.
P. aeruginosa is a critical bacterial species in the ‘Priority

Pathogens List’ for research and development of new antibiotics
published by the World Health Organization (WHO)13. However,
the lack of novel antibiotics14,15 emphasizes the need for
the development of innovative and protective therapeutic
approaches. This pressing need for protective strategies coupled
with new insights from recent research present an opportunity to
further refine the GENRE of the highly virulent strain UCBPP-PA14
by Bartell et al.16. An updated GENRE can be used to better
understand the metabolic underpinnings of P. aeruginosa infec-
tions and ultimately develop new therapeutic strategies from
those insights.
Here, we present iPau21, an updated GENRE of P. aeruginosa

strain UCBPP-PA14 metabolism. We improve predictions of carbon
source utilization and growth yields in order to better recapitulate
the behavior of the pathogen. Metabolic network coverage is
expanded through the addition of genes, reactions, and
metabolites supported by literature evidence. The quality of the
reconstruction was improved through an update of standardized
formatting, improved annotation, and the addition of binning
metabolites representing macromolecular categories to assist with
analysis. The metabolic network model was validated by compar-
ing phenotypic predictions to experimental datasets16–21 and the
quality of the reconstruction was assessed with the MEMOTE
benchmarking software22. This updated reconstruction was
further contextualized with recently published transcriptomic
data1 in order to demonstrate its utility in elucidating the
metabolic shifts of P. aeruginosa after exposure to mucins. The
validated reconstructions will serve as a key resource for the

1Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA. 2Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen,
Tübingen, Germany. 3Department of Computer Science, University of Tübingen, Tübingen, Germany. 4Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of
Tübingen, Tübingen, Germany. 5Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA. 6German Center for Infection Research (DZIF)
partner site, Tübingen, Germany. 7These authors contributed equally: Alina Renz, Laura J. Dunphy. ✉email: papin@virginia.edu

www.nature.com/npjsba

Published in partnership with the Systems Biology Institute

1
2
3
4
5
6
7
8
9
0
()
:,;

B.5 An updated GEM of P. aeruginosa PA14 to characterize mucin-driven shifts

119



Pseudomonas and microbial metabolic modeling communities and
the insights into mucin-driven metabolic shifts in P. aeruginosa
may serve to inform the future development of therapeutic
strategies.

RESULTS
An updated network reconstruction of Pseudomonas
aeruginosa metabolism
A metabolic network reconstruction of P. aeruginosa PA14
(iPau1129) was previously published16 and served as a starting
point for an updated reconstruction (iPau21). The metabolic
coverage of the reconstruction was expanded, the format and
annotations were updated, and an ATP-generating loop was
resolved in order to produce a refined model with improved
accuracy and extensive annotation.
We expanded iPau1129 by 40 genes, 24 metabolites, and 76

reactions (Fig. 1a) through manual curation based on literature
evidence (Supplementary Data 1). Many of these additions served
to increase the utility of the reconstruction for simulation (such as
the addition of 33 exchange reactions), while others expanded
metabolic pathways for amino acid metabolism and glyceropho-
spholipid metabolism. A periplasmic compartment containing
hydrogen was added to the reconstruction to better represent the
electron transport chain and ATP synthase, which eliminated all
ATP-generating loops in the metabolic network. The format was
updated from SBML Level 223 to Level 324, which enables
additional functionality such as the utilization of several extension
packages and the transfer of information content to dedicated
new data structures. Annotations from various databases were
added to metabolites, reactions, and genes where possible.
The overall quality of the updated reconstruction was assessed

using MEMOTE22, a recently developed GENRE test suite. The
MEMOTE score of iPau21 improved in all subcategories when
compared to iPau1129 resulting in an increase of the overall score
from 30% to 89% (Fig. 1b and Supplementary Materials). The
scores in annotation subcategories were increased by adding
annotations and SBO terms to metabolites, reactions, and genes in
the updated GENRE. The consistency of the metabolic network
was improved through the correction of imbalanced reactions and
the resolution of energy generating cycles that were present in
iPau1129.
The biomass objective function (BOF) was updated to better

reflect the macromolecular components found experimentally in
P. aeruginosa including the inclusion of lipopolysaccharide25–27.
BOF substrates were organized into corresponding macromole-
cular categories (i.e., DNA, RNA, protein, lipid) to better represent
the categories of components that are required for growth.

Model validation
Validation of iPau21 was performed by comparing in silico
predictions of biomass flux, carbon source utilization, and gene
essentiality to experimental data. Biomass flux and subsequent
doubling time predictions in simulated lysogeny broth (LB),
synthetic cystic fibrosis media (SCFM), and glucose minimal media
were compared to experimental values found in literature (Fig. 2a,
Supplementary Data 2)17–19. Doubling time predictions of iPau21
were 25%, 19%, and 22% more accurate than those of iPau1129 in
simulated LB, SCFM, and glucose minimal media, respectively.
Compared to the original model, iPau21 doubling times are
higher, which reflects the resolution of the ATP-generating loop
that previously allowed the model to costlessly convert ADP to
ATP. The iPau21 doubling time prediction on glucose minimal
media of 40.2 min showed agreement with experimental data,
falling within the range of experimentally determined values19.
Model doubling time predictions on LB and SCFM were faster than
observed experimentally, which is consistent with metabolic
network models that are structured to predict the optimal growth
of an organism.
Carbon source utilization predictions were compared to

previously collected experimental results across 91 carbon
sources16. Utilization was predicted by iPau21 with an accuracy
of 89% and Matthews correlation coefficient (MCC) of 0.78, while
iPau1129 demonstrated an accuracy of 80% and MCC of 0.62 (Fig.
2b and Supplementary Data 3). This increase in accuracy was
achieved through the completion of pathways that allow for the
utilization of more carbon sources and the removal of an
unsupported reaction that previously allowed for the utilization
of D-malate. Carbon source predictions of iPau21 remain incorrect
for 10 carbon sources. Five of the incorrect predictions are due to
the absence of metabolic pathways required for growth on certain
carbon sources. When addressing these predictions, our literature
survey was unable to provide sufficient evidence for these
pathways so the predictions remain incorrect and we opted to
not gapfill without that additional evidence. To correct these
predictions, summary reactions could be added to the reconstruc-
tion, but these reactions would lack the mechanistic granularity of
associated genes and could have negative impacts on other
aspects of the reconstruction. The other five incorrect predictions
were caused by the presence of metabolic pathways that allow for
the erroneous growth on the associated carbon sources. In each of
these cases, the pathway was investigated and the corresponding
genes were verified through the KEGG28 and ModelSEED29

databases, but there was not strong enough evidence to warrant
changes in the reconstruction28,30. Some of these discrepancies
may be due to considerations that are outside of the scope of the
network, such as transcriptional processes. For example, in the
case of D-serine, PA14 has the ability to metabolize this carbon
source but expression of this gene is not triggered by the

Fig. 1 Characteristics and MEMOTE benchmarking of iPau21. a Properties of iPau21 as compared to iPau1129. b MEMOTE scores of iPau21,
iPau1129, and iML1515, a high-quality reconstruction of E. coli.
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presence of D-serine so it is unable to grow on this single carbon
source in vitro31. These inaccurate predictions could be improved
by modifying constraints in the metabolic network model.
However, since the gene-protein-reaction (GPR) rules were found
to be valid and the prediction error could be due to unaccounted
for regulatory control, we opted to leave the pathways intact.
Overall, we were able to increase carbon source utilization
prediction accuracy by 9% in comparison to the previously
published model.
Gene essentiality predictions were compared to a published

dataset comprised of the overlap of essential genes identified
through the growth of strains PAO1 and PA14 transposon
insertion mutants in LB media20,21. The number of genes
accounted for by iPau21 was expanded to 1169 and the gene
essentiality prediction accuracy was maintained at 91%, which is
equivalent to iPau1129 (Supplementary Data 4). Gene essentiality
was predicted by iPau21 with a MCC of 0.50, compared to a value
of 0.44 by iPau1129. Three genes labeled as “SPONTANEOUS,”
“unassigned,” and “Unassigned” were removed from the recon-
struction given that these labels did not correspond to genes
belonging to P. aeruginosa. Gene essentiality data was not used
for curation of the metabolic network given the variability in gene
essentiality screens and the resultant challenges with data
interpretation32. Instead, model predictions were compared to
gene essentiality data as one facet of validation. As a reference,
iPau21 has a gene essentiality prediction accuracy of 91%, which is
near the 93% accuracy of iML1515, a well-curated reconstruction
of Escherichia coli33.

Transcriptome-guided modeling of P. aeruginosa metabolism
in the presence of human mucins
Mucins are the primary macromolecules in mucosal layers known
to modulate microbial phenotypes2. In order to investigate how
the metabolism of P. aeruginosa shifts when it comes into contact
with mucins, in vitro transcriptomic data was integrated with
iPau21 to generate contextualized models that offer more

biologically accurate representations of associated metabolic
phenotypes. Analysis of the structure and pathway utilization in
these transcriptome-guided models offers insights into the
metabolic shifts that arise when P. aeruginosa is exposed to
mucins.
Transcriptomic profiles of P. aeruginosa PAO1 grown in

agrobacterium minimal medium with thiamine, glucose, and
casamino acids (ABTGC) medium supplemented with either
MUC5AC, MUC5B, or mucin-glycans were collected from litera-
ture1,34. MUC5AC and MUC5B are mucin types found both
individually and together at different sites of the human body
that P. aeruginosa is known to infect8. The mucin-glycans used in
the published experiments were isolated from the backbone of
MUC5AC. The experiments were performed with strain PAO1,
which has a highly similar genome to strain PA1435. The main
difference between the strains is the presence of additional gene
clusters in PA14 (most linked to virulence) that we would not
expect to have a large effect on overall metabolism. PAO1 genes
in the transcriptomic dataset were mapped to PA14 orthologs and
then the data was integrated with the iPau21 using the RIPTiDe
algorithm36. RIPTiDe uses transcriptomic evidence to create
context-specific metabolic models representative of a parsimo-
nious metabolism consistent with the transcriptional investments
of an organism. This analysis resulted in four contextualized
models that more accurately represent the metabolism of P.
aeruginosa when grown without mucin exposure (ABTGC) and
when exposed to MUC5AC, MUC5B, and glycans.
Flux samples were generated for each model and BOF flux did

not vary significantly among the contextualized models (less than
five percent change), recapitulating the phenotype that was
observed experimentally1. The flux distributions underlying the
BOF values were compared across models using non-metric
multidimensional scaling (NMDS) in order to compare the
metabolic mechanisms of growth utilized by the condition-
specific metabolisms (Fig. 3a). The fluxes from the 378 consensus
reactions (shared across all models) were used for this analysis.

Fig. 2 Updated reconstruction of P. aeruginosa enables accurate growth rate, gene essentiality, and carbon source utilization
predictions. a Model doubling time predictions compared to experimental results gathered from literature. Gray bar represents the
experimental range. b Model carbon source utilization predictions compared to results gathered from literature.
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NMDS analysis revealed that among the tested conditions, the
sampled flux distributions from the MUC5B model clustered the
furthest from the ABTGC condition. This result indicates that
although there was not a significant difference in the BOF value,
exposure to MUC5B caused the largest shift in the metabolic
pathways utilized for growth. MUC5AC clustered the second
furthest away, while Glycans clustered most closely to the ABTGC
model, showing that there was a variable metabolic response to
different mucins and glycans by P. aeruginosa. Mucin-glycans do
not contain the same level of structural and biochemical
complexity as MUC5AC and MUC5B, which may account for the
slight metabolic shift observed in the Glycans model relative to
the MUC5AC and MUC5B models. MUC5AC and MUC5B are known
to differ from each other in terms of charge, shape, and
glycosylation37. These differences could explain the variable
metabolic response they elicit in P. aeruginosa. Additionally, of
the two only MUC5B has been shown to be critical for murine
mucociliary transport and antibacterial defense38. One mechanism
of MUC5B antibacterial effects could be through modulation of
pathogen metabolism, which would explain the larger shift in
metabolism observed when P. aeruginosa was exposed to MUC5B.
The conserved BOF flux values and separation observed between
clusters of flux samples suggest that while P. aeruginosa
metabolism is modulated by the presence of mucins, its versatility
allows for the utilization of alternative metabolic pathways in
order to avoid a growth defect.
The differences between networks were further investigated

through the metabolites that were produced and consumed by
models in silico. This analysis offers a snapshot of the substrates
used and byproducts of particular metabolic states, which can be
informative of the metabolism underlying that state. All models
were found to consume the same metabolites with some small
differences in specific flux values however, there were key
differences in the metabolites that models produced (Supple-
mentary Data 5). The graded differences between models seen in
NMDS were highlighted by the production of formate by the
models. The ABTGC and Glycans models produced substantially
higher amounts of formate than the MUC5AC model, while the
MUC5B model did not contain the formate exchange reaction.
Therefore, with our model, we are able to predict subtle shifts in P.
aeruginosa metabolism in response to different environmental
mucins.

Human mucins shift P. aeruginosa metabolism
Further analysis was conducted on the contextualized models to
better understand the shifts in metabolism that resulted in the
observed dissimilarities in the NMDS analysis. Reactions not

shared across all models (non-consensus reactions) were identi-
fied and compared to investigate how network structure varies
across models (Fig. 3b). This analysis revealed a set of 13 reactions
shared by the ABTGC, MUC5B, and Glycans models but absent
from the MUC5AC network. This result suggests that while MU5B
displayed the largest functional differences in metabolism,
MUC5AC is the most structurally unique of our models.
Additionally, we found that there was no correlation between
network structure and utilization among our contextualized
models (Fig. 4, p-value= 0.92). Since the NMDS analysis revealed
that the ABTGC and MUC5B models had the largest difference in
functional metabolism, these two models were further investi-
gated to find key attributes that underlie these large differences.
Random forest analysis was conducted on the flux samples from
consensus reactions of the ABTGC and MUC5B models to find
which reactions were most differentially utilized between the two
cases (Fig. 5). Two reactions corresponding to fumarate transport
were in the top seven most discriminating reactions between
models, suggesting that there was a differential utilization of
reactions involved in fumarate metabolism. The MUC5B model
utilized the fumarate reactions more highly than the ABTGC model
and contained a fumarase reaction that was not present in the
ABTGC model, which further suggests that fumarate metabolism is
a key point of difference between the models. This observation
recapitulates what was noted in the original paper that produced
the transcript data used for contextualization1. Of the top six most

Fig. 4 Network utilization does not correlate with network
structure. The distance between median NMDS coordinates for
each pair of networks was calculated as a metric of difference in
network utilization, while the Jaccard distance of network reactions
for each pair of networks was calculated as a metric of structural
difference. Spearman’s correlation shows an insignificant relation
between the two metrics (p= 0.92).

Fig. 3 Contextualization of updated reconstruction shows shifts in P. aeruginosa metabolism in response to mucins and mucin
components. a NMDS analysis of flux samples (n= 500) from each contextualized model. b Comparison of non-consensus reactions present
within models displays subsets of reactions that are shared by groups of contextualized models.
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discriminating reactions, five corresponded to propionate meta-
bolism and were more highly utilized by the MUC5B model than
the ABTGC model. While there was no propionate in the simulated
(or in vitro) media, it is a known byproduct of mucin fermenters
and has anti-lipogenic and anti-inflammatory properties in
humans39,40. This analysis revealed that the exposure to MUC5B
elicited the largest shift in metabolism compared to MUC5AC and
Glycans. Further, an increased utilization of fumarate and
propionate metabolism during simulated growth was responsible
for this shift.

DISCUSSION
We generated an updated network reconstruction of P. aeruginosa
PA14 metabolism with considerable improvements in model
annotation and accuracy of growth rate and carbon source
utilization predictions. The metabolic reaction coverage of the
reconstruction was expanded, the format and annotations were
updated to be consistent with current best practices, and an ATP-
generating loop was resolved. Model improvements were
quantified through various metrics such as accuracy of growth
yield and carbon source utilization predictions as well as MEMOTE
benchmarking22.

The updated network reconstruction was contextualized using
transcriptomic data in order to investigate the shifts in metabo-
lism that occur when P. aeruginosa is exposed to mucins present
in the human body. This analysis recapitulated an unaltered
growth rate and differential fumarate metabolism that has been
reported in literature and also revealed an increased utilization of
propionate metabolism in the presence of mucins. Propionate is a
short chain fatty acid with beneficial effects to human health such
as anti-lipogenic, anti-inflammatory, and anti-carcinogenic
action39,41. While propionate is not present in the ABTGC medium,
it is known to be produced by bacteria such as Akkermansia
muciniphila when they come into contact with and catabolize
mucins40. This shift of P. aeruginosa metabolism towards
propionate metabolism may indicate a cross-feeding mechanism
where MUC5B mucins signal to Pseudomonas to prepare to
metabolize the propionate produced by other microbes as they
break down the mucins. Once validated, this insight could be used
to develop therapeutic strategies for P. aeruginosa infections of
body sites containing MUC5B such as the lung, oral cavity, and
middle ear1. Antibiotics could be designed to target proteins for
propionate metabolism in order to combat drug-resistant strains
that cannot be treated with traditional antibiotics.
While the updates made to the model broadly improved the

model accuracy, there were incorrect predictions about carbon
source utilization, gene essentiality, and growth rate that were
not able to be addressed. Some incorrect predictions are due to
a lack of literature evidence, such as incorrect carbon source
utilization predictions that are due to the absence of metabolic

pathways in the model. Other incorrect predictions are due to
factors that are outside of the scope of the model, such as the
incorrect prediction of growth on D-serine that is caused by the
transcriptional regulation of dsdA31. There are other opportu-
nities for further curation that would result in additional
improvements to the MEMOTE score, which can be further
interrogated by uploading the iPau21 reconstruction to the
MEMOTE website (memote.io).
The transcriptomic data that was used to contextualize the

model was collected through experiments with P. aeruginosa
strain PAO1. Therefore, the genes in the transcriptomic dataset
were mapped to their PA14 orthologs before being integrated
with the network reconstruction. While the genomes of PAO1 and
PA14 are highly similar, the PA14 (6.5 Mb) genome is slightly larger
than PAO1 (6.3 Mb) and contains gene clusters that are not
present in PAO135. The genes absent in PAO1 therefore would not
be accounted for in the transcriptomic dataset. However, since
most of these genes are linked to virulence, they should not have
large effects on whole metabolism as simulated here. Therefore,
we expect that this application of the model would allow the
identification of broad shifts in metabolism due to exposure to
mucins irrespective of the specific strain simulated.
The improvements in the P. aeruginosa metabolic network

reconstruction were made to reconcile key disagreements
between in silico predictions and in vitro results, ultimately
producing a higher quality metabolic network reconstruction.
Through the update process, we identified key predictions that
remain incorrect and offer targets for further curation. The
application of the model to investigate metabolic shifts that
occur upon exposure to mucins recapitulated phenotypes
observed in literature and offered mechanistic insights that would
be difficult to delineate experimentally. This application of the
reconstruction serves as an example of how the reconstruction
and associated models can provide insights into context-specific
metabolism. Ultimately, this reconstruction can serve as a resource
for investigating the metabolism of P. aeruginosa in a variety of
settings and conditions.

METHODS
Genome-scale metabolic reconstructions and models (GENREs
and GEMs)
GENREs are network reconstructions that represent the metabolic
capabilities of an organism and can be analyzed for various applications.
An organism’s genes are connected to the proteins they code for and the
reactions that those proteins catalyze. These associations are stored as
gene-protein-reaction (GPR) relationships with the reactants and products
of each reaction cataloged in a stoichiometric matrix. Metabolites in the
reconstruction are assigned to compartments that mirror biologically
discrete spaces such as the cytosol and the extracellular space. Exchange
and transport reactions allow metabolites to flow between the compart-
ments in the reconstruction. A GENRE is turned into a GEM (Genome-Scale
Metabolic Model) by adding reaction bounds that capture the flux
constraints and the reversibility of reactions. The flux bounds dictate the
amount and direction of flux that a reaction can carry. Objective functions
(OFs) that represent metabolic goals are added to the model to simulate
biological processes. GEMs can be analyzed using flux balance analysis
(FBA)-based methods to investigate and gain insights into the metabolic
state of a network42. The updated GENRE was named iPau21 according to
the community standard naming convention43.

Adding annotations
Initially, the PA14 reconstruction did not contain extensive annotations for
metabolites, reactions, or genes. ModelPolisher44 can be used to annotate
metabolites and reactions of a metabolic model. To do so, identifiers of the
BiGG database45 (BiGG-IDs) are required as metabolite or reaction
identifiers, respectively. Since the identifiers of the model were obtained
from the ModelSEED database30, BiGG-IDs needed to be determined. For
each metabolite, the BiGG-IDs were assessed manually. Since this is a very

Fig. 5 Random forest analysis between ABTGC and MUC5B shows
the networks differ most in terms of propionate and fumarate
metabolism utilization. The top seven most discriminating reac-
tions between the two models belong to propionate and fumarate
metabolism. MUC5B utilizes these two types of metabolism more
highly than the ABTGC model.
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time-consuming procedure, the BiGG-IDs for the reactions were resolved in
a semi-automated way: The cross-references of the ModelSEED database to
other databases, such as BiGG or KEGG28, were used to automatically
obtain the BiGG-IDs for the respective ModelSEED reaction identifier. If
more than one BiGG-ID was returned, the correct identifier was
determined by manual inspection of the respective reaction. The BiGG-
IDs of the metabolites and reactions were added as biological qualifier
(‘BQB_IS’) annotations to the model using libSBML Version 5.17.046. The
annotations were added in accordance with the MIRIAM guidelines47. After
adding the BiGG-IDs to the model, ModelPolisher was used for further
annotations of the model’s reactions and metabolites for references to
other databases, such as KEGG, MetaNetX48, or MetaCyc44.
For the reactions, the obtained KEGG annotations were used to further

add all pathways that are associated with the respective reaction to the
model. The pathways were obtained using the KEGG-ID and KEGG API to
request all associated pathways. The pathways were then added to the
respective reactions using the biological qualifier “BQB_OCCURS_IN” in
libSBML.
The identifiers of the model genes are from the KEGG database. With the

help of libSBML, the KEGG gene annotation was added to the model. For
further gene annotations, the KEGG API was used to request NCBI49 Protein
IDs and Uniprot50 IDs, which were subsequently added as respective
annotations to the model. Additionally, the ID mapper from PATRIC51 was
used to request RefSeq and NCBI49 gene identifiers, as well as identifiers of
the ASAP database.
Systems Biology Ontology (SBO)52 terms can give semantic information

or be used for annotation purposes. In our network reconstruction, all
genes were labeled as genes with the SBO-term “SBO:0000243”. All
metabolites without a valid SBO-term were labeled as simple chemicals
with the SBO-term “SBO:0000247”. Transport reactions were divided into
(1) active transport if ATP is required for the respective transport reaction
(SBO:0000657), (2) passive transport if no external energy is required
(SBO:0000658), (3) symporter-mediated transport if two or more molecules
are transported into the same relative direction across a membrane
(SBO:0000659), or (4) antiporter-mediated transport if two or more
molecules are transported in relative opposite directions across a
membrane (SBO:0000660). All metabolic reactions were labeled as
biochemical reactions with the SBO-term “SBO:0000176”.

Upgrading SBML version
The initial PA14 reconstruction was represented in SBML Level 2 Version
153. The current reconstruction was updated to the latest SBML edition
(Level 3)54. With the help of libSBML, both the fbc-plugin55 and the groups-
plugin56 were enabled. Initially, the chemical formulas and charges of the
metabolites were stored in the notes field. With the fbc-plugin, the charges
were added as features of the metabolites to the reconstruction. The fbc-
plugin also enables the addition of gene products to the reconstruction. In
the initial reconstruction, the subsystems of the reactions were saved in
the notes field. With libSBML and the groups-plugin, the subsystems were
extracted from the notes field and added as groups to the reconstruction.
For each subsystem, a list of reactions associated with that pathway
according to the notes was created and added to the subsystem as
members.

Correcting charge and mass imbalances
A list of all mass- and charge-imbalanced reactions was extracted from the
reconstruction. From this list, all exchange, sink, demand and biomass
reactions were excluded. Each remaining reaction was manually checked
by looking up the reaction-ID in ModelSEED29: (1) If the reaction status in
ModelSEED was balanced (“OK”), but differed from the reaction equation in
the reconstruction, the reaction was adapted according to ModelSEED and
again checked for imbalances. (2) If the reaction in ModelSEED also had an
imbalanced reaction status, other databases like MetaCyc57, BiGG45, or
KEGG28 were explored and the reactions were adapted according to the
respective reactions in the external databases. Where required, chemical
formulas, charges, and coefficients were corrected, or chemical com-
pounds were added or subtracted from the reactions according to the
respective database reaction. All changed reactions are listed in
Supplementary Data 1.

Assessing the quality of the reconstruction
MEMOTE is an open-source software that provides a measure for model
quality22. Every change and improvement of the model was continuously

documented and quality-assessed using MEMOTE Version 0.9.11. Full
MEMOTE reports are provided for iPau1129, iPau21, and iML1515
(Supplementary Materials). Gene essentiality predictions were compared
to a published dataset that was originally used to validate iPau112916. This
dataset comprises the overlap of essential genes identified through the
growth of PAO1 and PA14 transposon insertion mutants in LB media20,21.
Carbon source utilization predictions were compared to previously
collected experimental results16. Prediction accuracy was calculated as
the number of correction predictions divided by the number of total
predictions. Matthews correlation coefficient (MCC) was calculated in order
to assess the quality of predictions58. Biomass flux and subsequent
doubling time predictions in lysogeny broth (LB), synthetic cystic fibrosis
media (SCFM), and glucose minimal media were compared to experi-
mental values found in literature (Fig. 1c)17–19.

Literature-based updates
Previous work identified multiple areas where the original reconstruction
(iPau1129) was unable to accurately recapitulate experimental data. This
assessment included 18 incorrect carbon source predictions16 and several
incorrect gene essentiality predictions59. Pathways and gene-protein-
reaction rules related to each incorrect prediction were manually curated
to reflect the most recent evidence from literature, KEGG, and MetaCyc. In
the absence of sufficient evidence, no changes were made, even if this
absence of a change meant a prediction would remain uncorrected.

Evaluating and updating the BOF
Macromolecular categories represented in the dry weight of P. aeruginosa
were identified through a literature survey. Metabolites in the biomass
objective function (BOF) were organized into these macromolecular
categories in order to better represent the components required for
growth. During organization, no additional metabolites were added and
the ratios of metabolites in the BOF were kept the same.
The BOF was also updated to include lipopolysaccharide (cpd17065) to

reflect its presence in Gram-negative bacteria60. A metabolite representing
biomass was also added to the products of the BOF to represent the
accumulation of biomass.

Addition of exchange reactions
A list of all extracellular metabolites in the reconstruction was compiled
and compared to a list of all exchange reactions in the reconstruction.
Exchange reactions were added for 33 extracellular metabolites that
previously did not have one.

Removal of energy generating cycles
Exchange reactions were closed and the objective function was set to
energy dissipation reactions for electron carriers (ATP, NADH, NADPH,
FADH2, and H+). The model was able to generate flux for only the ATP
energy dissipation objective function, which indicated that an energy
generating cycle existed. The cycle was resolved through the addition of a
periplasm compartment to contain hydrogen involved in the electron
transport chain and correcting the reversibility of four participating
reactions.

RIPTiDe contextualization & analysis
Published transcriptomic data was integrated with the model using
RIPTiDe36. The transcriptomic data was normalized then translated from
PAO1 genes to the orthologous PA14 genes prior to integration61. ABTGC
medium was simulated in silico and applied to the model (Supplementary
Data 2). Then, RIPTiDe was used to produce the contextualized models for
in vitro media conditions.
NMDS analysis was conducted on flux samples from each contextualized

model (n= 500 samples per model) using the Vegan package in R62. Only
consensus reactions across all four contextualized models were included in
the flux sample dataset and a constant was added to each flux value in the
dataset to make all data points positive to facilitate comparison. Median
fluxes for every reaction in each model are provided in Supplementary
Data 6.
Random forest analysis was conducted on flux sampling data (n=

500 samples per model) from the consensus reactions of the ABTGC and
MUC5B models using the randomForest package in R63. Reactions that
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were differentially present in contextualized models were identified and
connected to their corresponding metabolic pathways manually.
The Jaccard distance of network structures was calculated by comparing

the reactions contained in pairs of networks64. The NMDS distance was
calculated as the distance between the median NMDS coordinates of
network pairs. Spearman’s correlation was used to calculate a p-value for
the relationship between network structure and network utilization across
all pairs of networks.
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