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Abstract
The application of wheeled mobile robots (WMRs) is currently expanding from rather
controlled industrial or domestic scenarios into more complex urban or outdoor environ-
ments, allowing a variety of new use cases.

One of these new use cases is described in this thesis: An intelligent personal mobility
assistant, based on an electrical rollator. Such a system comes with several requirements:
It must be safe and robust, lightweight, inexpensive and should be able to navigate in
real-time in order to allow direct physical interaction with the user. As these properties
are desirable for most WMRs, all methods proposed in this thesis can also be used with
other WMR platforms.

First, a visual odometry method is presented, which is tailored to work with a down-
ward facing RGB-D camera. It projects the environment onto a ground plane image and
uses an efficient image alignment method to estimate the vehicle motion from consecu-
tive images.

As the method is designed for use on a WMR, further constraints can be employed to
improve the accuracy of the visual odometry. For a non-holonomic WMR with a known
vehicle model, either differential drive, skid steering or Ackermann, the motion param-
eters of the corresponding kinematic model, instead of the generic motion parameters,
can be estimated directly from the image data. This significantly improves the accuracy
and robustness of the method. Additionally, an outlier rejection scheme is presented that
operates in model space, i.e. the motion parameters of the kinematic model, instead of
data space, i.e. image pixels.

Furthermore, the projection of the environment onto the ground plane can also be
used to create an elevation map of the environment. It is investigated if this map, in
conjunction with a detailed vehicle model, can be used to estimate future vehicle poses.
By using a common image-based representation of the environment and the vehicle, a
very efficient and still highly accurate pose estimation method is proposed.

Since the traversability of an area can be determined by the vehicle poses and poten-
tial collisions, the pose estimation method is employed to create a novel real-time path
planning method. The detailed vehicle model is extended to also represent the vehicle’s
chassis for collision detection. Guided by an A*-like planner, a search graph is con-
structed by propagating the vehicle using its kinematic model to possible future poses
and calculating a traversability score for each of these poses. The final system performs
safe and robust real-time navigation even in challenging indoor and outdoor environ-
ments.
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Kurzfassung
Durch die technische Entwicklung im Bereich der radbasierten mobilen Roboter (WMRs)
erweitern sich deren Anwendungsszenarien. Neben den eher strukturierten industriellen
und häuslichen Umgebungen sind nun komplexere städtische Szenarien oder Außenbe-
reiche mögliche Einsatzgebiete.

Einer dieser neuen Anwendungsfälle wird in dieser Arbeit beschrieben: ein intelli-
genter persönlicher Mobilitätsassistent, basierend auf einem elektrischen Rollator. Ein
solches System hat mehrere Anforderungen: Es muss sicher, robust, leicht und preiswert
sein und sollte in der Lage sein, in Echtzeit zu navigieren, um eine direkte physische
Interaktion mit dem Benutzer zu ermöglichen. Da diese Eigenschaften für fast alle Arten
von WMRs wünschenswert sind, können alle in dieser Arbeit präsentierten Methoden
auch mit anderen Typen von WMRs verwendet werden.

Zuerst wird eine visuelle Odometriemethode vorgestellt, welche auf die Arbeit mit ei-
ner nach unten gerichteten RGB-D-Kamera ausgelegt ist. Hierzu wird die Umgebung auf
die Bodenebene projiziert, um eine 2-dimensionale Repräsentation zu erhalten. Nun wird
ein effizientes Bildausrichtungsverfahren verwendet, um die Fahrzeugbewegung aus auf-
einander folgenden Bildern zu schätzen.

Da das Verfahren für den Einsatz auf einem WMR ausgelegt ist, können weitere An-
nahmen verwendet werden, um die Genauigkeit der visuellen Odometrie zu verbessern.
Für einen nicht-holonomischen WMR mit einem bekannten Fahrzeugmodell, entweder
Differentialantrieb, Skid-Lenkung oder Ackermann-Lenkung, können die Bewegungs-
parameter direkt aus den Bilddaten geschätzt werden. Dies verbessert die Genauigkeit
und Robustheit des Verfahrens erheblich. Zusätzlich wird eine Ausreißererkennung vor-
gestellt, die im Modellraum, d.h. den Bewegungsparametern des kinematischen Models,
arbeitet. Üblicherweise wird die Ausreißererkennung im Datenraum, d.h. auf den Bild-
punkten, durchgeführt.

Mittels der Projektion der Umgebung auf die Bodenebene kann auch eine Höhenkarte
der Umgebung erstellt werde. Es wird untersucht, ob diese Karte, in Verbindung mit ei-
nem detaillierten Fahrzeugmodell, zur Abschätzung zukünftiger Fahrzeugposen verwen-
det werden kann. Durch die Verwendung einer gemeinsamen bildbasierten Darstellung
der Umgebung und des Fahrzeugs wird eine sehr effiziente und dennoch sehr genaue Po-
senschätzmethode vorgeschlagen. Da die Befahrbarkeit eines Bereichs durch die Fahr-
zeugposen und mögliche Kollisionen bestimmt werden kann, wird diese Methode für
eine neue echtzeitfähige Pfadplanung verwendet.

Aus der Fahrzeugpose werden verschiedene Sicherheitskriterien bestimmt, die als
Heuristik für einen A*-ähnlichen Planer verwendet werden. Hierzu werden mithilfe des
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Kurzfassung

kinematischen Models mögliche zukünftige Fahrzeugposen ermittelt und für jede dieser
Posen ein Befahrbarkeitswert berechnet.

Das endgültige System ermöglicht eine sichere und robuste Echtzeit-Navigation auch
in schwierigen Innen- und Außenumgebungen.
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Chapter 1

Introduction

1.1 Motivation

In recent years, wheeled Mobile Robots (WMRs) made a transition from prototypes in
research facilities or automated guided vehicles in warehouses to robots that can also
operate in public spaces. This was possible due to the increasingly powerful mobile
hardware, the availability of new sensors and, most of all, the accelerating development
of new methods in the areas localization, navigation and perception for mobile robots.

The field of autonomous driving is considered one of the key technologies of the com-
ing decades and has attracted a lot of public attention. Companies from different in-
dustries are putting large efforts into creating autonomous transportation systems. This
includes tech companies like Google with Waymo (Waymo LLC, 2019), transportation
service providers like Uber (Uber Technologies Inc., 2019), uprising car manufacturers
like Tesla (Tesla, Inc., 2019), established car manufacturers like Daimler (Daimler AG,
2019) or automotive suppliers like Bosch (Bosch, 2019).

Another big application area of WMRs is logistics: While automatic guided vehicles
are already widely used for in-plant transportation of goods, these application scenarios
benefit from the possibility to install infrastructure that supports the vehicle localization
and the structured environment, which can be designed for autonomous robot operation.
For delivery robots that operate in urban areas, the task is significantly more challenging:
Dynamic obstacles, like pedestrians or bicyclists, require a reliable and reactive obstacle
avoidance. Also, since the environment is not specifically built for mobile robots, path
planning has a much higher complexity. Despite these challenges, several prototypes
from different companies exist. The Starship delivery robots (Starship Technologies,
Inc., 2019), first presented in 2016, are designed to perform last-mile delivery within
an 6km radius. They were already undergoing field tests, e.g. in Hamburg, Germany.
In early 2019 Amazon revealed its delivery robot Scout (Amazon.com, 2019) in a rather
early state. It is also designed for short-range last mile delivery. The vehicle developed by
Nuro.ai (nuro.ai, 2019) is larger than the ones from Starship and Amazon and drives on
the road instead of the sidewalk, making it more like an autonomous car than a delivery
robot.

Reliable autonomy is also one of the key aspects for agricultural robots. If too much
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Chapter 1 Introduction

user interaction is required, the economical benefits of such a robot are reduced. While
current commercially available systems, e.g. (ecoRobotix Ltd, 2019) or (FarmWise Labs,
Inc. , 2019), are designed to work in environments with rather low geometric complexity,
the fields are almost planar and the crops are usually organized in straight rows, improved
localization and especially model aware path planning would increase the number of
possible application scenarios.

Another area with high requirements towards localization and safe driving are plan-
etary rovers: Due to long signal traveling time from the control station to the vehicle,
direct remote control of the vehicle is not feasible. Therefore drive commands for longer
durations are sent and the vehicle executes these commands autonomously. Nasa’s twin
Mars Exploration Rovers (NASA, 2019a), the last one ended it’s mission in early 2019,
and the larger Mars Science Laboratory (NASA, 2019b), also known as Curiosity, per-
form on-board path planning to execute the received control command. The usually
highly unstructured environment requires a very detailed representation and also knowl-
edge of the vehicle model in order to perform path planning.

While all of the above systems are designed to drive in outdoor environments, large
scale industry environments or even on other planets, there are also robots that are de-
signed to work in domestic environments.

An example of widely used domestic robots are vacuum cleaner robots, which are
increasingly successful since the introduction of iRobot’s Roomba (iRobot Corporation,
2019) in 2002. Other domestic service robots like mopping robots or window cleaning
robots exist, but are not as widely spread.

Most of the above systems are designed to work in environments that are shared with
humans, but they are not designed to intentionally interact with them.

This leads to a special class of robots that operates in indoor/outdoor environments
while constantly interacting with the user: Mobility assistance robots for elderly or im-
paired persons. These include electric wheelchairs, e.g. (Kuipers, 2019), and electric
rollators. Safety requirements are high for all kinds of mobile robots, but for assistance
robots they are even more important. Since the user depends on the support by the robot,
he cannot go without the robot in case of malfunction. Also, an assistance robot acci-
dentally driving down a stair or a similar obstacle might not only damage the robot, but
also cause serious harm to the user. On the other hand, the intention behind using an
assistance robot is to improve the individual mobility of the user. Maximizing the user’s
freedom while still guaranteeing a high degree of safety is one of the main challenges in
the area of mobility assistance robotics. For intelligent rollators, there is an additional
constraint: They are shared control vehicles and therefore must continuously interact
with the user, this prohibits long planning times during which the user cannot move.
This real-time constraint is even more challenging as the complexity of the environment
increases.

Due to the demographic change in western Europe, elderly care became an increas-
ingly important topic over the recent years. Thus several projects with the goal of creat-
ing an intelligent rollator were funded all over Europe.

2



1.1 Motivation

The Acanto Project (Acanto Consortium, 2019) included the development of the robotic
walker FriWalk. The FriWalk is designed to stay within a reasonable price range and uses
a RGB-D camera as main sensor for obstacle avoidance. It is a follow-up project of the
DALi project (DALi - Consortium, 2019). Both projects are focused on large indoor
environments.

The most advanced intelligent rollator project is the lean elderly assistant (LEA) from
Robot Care Systems, a company based in the Netherlands (Robot Care Systems, 2019).
LEA was initially developed in the course of the EU funded project SILVER (SILVER
Consortium, 2019), which ended in 2016, and then development was continued by Robot
Care Systems. LEA is the only intelligent rollator available for purchase in the moment
and costs roughly 10,000€. While the prototype had a LIDAR and a depth camera, the
sensor configuration of the commercial version is not stated by the manufacturer. But it is
stated that LEA’s obstacle avoidance is not working in outdoor environments. This could
be due to the usage of a structured light sensor or the lack of an appropriate obstacle
avoidance method.

This thesis was created in the course of the BMBF-funded project MobilAssist, which
aimed at developing an intelligent rollator based on the already existing beActive+e elec-
tric rollator created by Bemotec GmbH. The focus was mainly on the robotics part of the
project: Localization, Navigation and Mapping. The project was funded under grant
number 01IS15049A for a duration of three years.

Although all of the use cases presented in this chapter highlight the importance of
accurate localization and path planing, their methods are not often suited for the use on
an intelligent rollator: Autonomous cars are usually operating at higher speeds on roads.
Delivery robots face similar problems as an intelligent rollator, as they also drive on the
sidewalk, but do not have to interact with a user directly. Agricultural robots operate
in areas which are entirely different from those inhabited by a rollator. The terrain a
planetary rovers drives on is highly challenging and also the safety requirements are very
high, but there is no real time requirement. Anyway, the navigation methods developed
for planetary rovers are the ones most suitable as a starting point for the development of
a novel navigation method for an intelligent rollator.

The presented domestic service robots are not designed to operate in outdoor areas at
all. Finally, none of the presented mobility assistance vehicles, wheel chairs or rollators,
provides the navigation capabilities envisaged for the MobilAssist intelligent rollator.

Therefore, this thesis describes the creation of a navigation system that enables an
WMR to navigate in complex indoor and outdoor environments. Since this system is
designed for an intelligent rollator, there were several restrictions that had to be taken
into consideration:

• Inexpensive: In order to be affordable for potential customers, a rollator has a cer-
tain cost limit. This prohibits the use of expensive sensors or high-end computation
hardware.

3



Chapter 1 Introduction

• Lightweight: Although the rollator is able to support the user through its motors, it
should still be as lightweight as possible. Additional weight influences the agility
of the rollator, decreases battery run-time and, most importantly, can negatively
impact the handling by the user.

• Real-Time: Since an intelligent rollator is a shared-control vehicle, it directly in-
teracts with the user. Since the user’s intention is not known beforehand, it has
to quickly adapt to the user’s input. The whole navigation process, including map
building and path planning, has to be done in real time.

Although most of these points also apply to other robots, the combination of all three
requirements is usually not as stringent. Anyway, meeting these requirements makes the
proposed methods also attractive for other WMRs.

1.2 Outline and Contributions
This thesis addresses two main topics: Ground plane based Visual Odometry and
Traversability Analysis. Both topics are highly important for autonomous WMR oper-
ation, a precise self localization is crucial for creating the map representing the envi-
ronment for traversability analysis. Furthermore, both methods share the orthographic
projection of the RGB-D data that is used to create the corresponding environment rep-
resentation.

The chapters 2 and 3 of this thesis describe some mathematical and technical founda-
tions that are used by the later chapters.

Chapter 2 describes the hardware and software used for development and evaluation
of the proposed methods, as well as the mathematical basics of the camera model and
image alignment.

Chapter 3 describes the mapping method that provides the input for the proposed meth-
ods. This includes the orthogonal projection used to transform the data from the RGB-D
camera into color images and elevation maps.

Chapter 4 describes an efficient and robust method for calculating visual odometry
from a downward facing camera. By using an efficient image alignment technique, the
vehicle motion is estimated by finding the image warping parameters that minimize the
photometric error between two consecutive ground plane images. In order to remove
image regions that do not reflect the vehicle ego motion, a block-wise image alignment
step is introduced. This chapter is based on the paper:

• Jordan, J. and Zell, A. (2016). Ground plane based visual odometry for rgb-d
cameras using orthogonal projection. IFAC-PapersOnLine, 49(15), 108–113

The method from chapter 4 is extended in chapter 5:
Instead of estimating the image warping parameters to calculate the visual odometry,

the motion parameters of the kinematic model are directly estimated from the image data.
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1.2 Outline and Contributions

This significantly improves the accuracy of the visual odometry, even compared to other
state-of-the-art methods that also use the kinematic model to constrain the parameter
estimation. In addition, the block-wise image alignment is replaced by a novel outlier
rejection scheme that does not actually align the blocks, but rejects blocks based on their
motion parameter estimate and joins the data from all remaining blocks to calculate the
final estimate. The method was published in:

• Jordan, J. and Zell, A. (2017a). Kinematic model based visual odometry for dif-
ferential drive vehicles. In 2017 European Conference on Mobile Robots (ECMR),
pages 1–7. IEEE

Since the visual odometry already performs a projection of RGB-D image data onto the
ground plane, the same method can be used to create an elevation map of the environ-
ment. Chapter 6 describes a novel method for estimating future vehicle poses based on
the vehicle model and the elevation map created from the current RGB-D data. Both the
elevation map and the vehicle model can have a sub-centimeter resolution and therefore
allow a highly accurate pose estimation. Due to the efficient image-based representation
and the optimized algorithms, this method is able to perform several hundred thousand
pose estimates per second. Other state-of-the-art pose estimation methods, that provide
similarly detailed pose estimates, are at least one order of magnitude slower. The work
was published in the following conference paper:

• Jordan, J. and Zell, A. (2017b). Real-time pose estimation on elevation maps for
wheeled vehicles. In 2017 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), pages 1337–1342, Vancouver, Canada

Chapter 7 extends the method from 6 by chassis collision checking and an improved
wheel model and employs it to perform real-time model based path planning even in
complex environments. The pose estimates and collision information are weighted, ac-
cording to the safety criteria of the vehicle, to provide a score, which is used as a heuristic
value for an A*-like planning strategy. The method was published in the following con-
ference proceedings:

• Jordan, J. and Zell, A. (2019). Real-time model based path planning for wheeled
vehicles. In IEEE International Conference on Robotics and Automation (ICRA),
pages 5787–5792, Montreal, Canada.

An evaluation in different indoor and outdoor environments proves that the method is
able to deal with complex environments and still is fast enough to avoid highly dynamic
obstacles. Currently there are no other publicly available methods that offer a comparable
combination of planning speed and planning accuracy, given the possible complexity of
the environments.

Finally, chapter 8 concludes this thesis by summarizing the current state and giving an
outlook to possible future research.
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Chapter 2

Background

This chapter introduces the two mobile platforms that were used for the development
and evaluation of the methods presented in this thesis. It also gives an overview of the
employed sensors, and describes the software configuration that was used to run the
methods proposed in this thesis. Finally, it gives a short introduction to the mathematical
foundations required in the later chapters.

2.1 Platforms

Two robotic platforms were used in this thesis: The Bemotec beActive+e electric rollator
and the Robotnik Summit XL outdoor robot. Although this thesis was created in the
course of the MobilAssist project, which was solely dedicated to the development of
an intelligent rollator, the second mobile platform was used because it is more outdoor
capable and it also demonstrates that the proposed methods can work on different mobile
platforms.

2.1.1 Bemotec beActive+e

The Bemotec beActive+e is an electric rollator with two powered rear wheels and two
caster-like front wheels (Bemotec, 2019), manufactured by Bemotec GmbH. It is already
an authorized medical product and is available to the end user for purchase. The intended
user groups of the standard version are elderly people, who have unimpaired or just
slightly impaired cognitive capabilities, but require a certain amount of physical support
or persons undergoing a physical rehabilitation at hospitals. Since the beActive+e is
already sold to end costumers, the main feature, the electrical support of walking, is very
stable and thoroughly tested.

The maximum electrically supported velocity is 0.8 m/s, the maximum walking dis-
tance with a full battery charge is up to 20km and the typical running time is approxi-
mately 10 hours (Bemotec, 2019). Through capacity based touch sensors in each han-
dlebar, the rollator can detect if the respective handlebar is touched by the user. Since the
sensor and computer configuration changed several times during the project, the sensor
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and computer hardware setup used for the evaluation of the presented methods will be
specified in the according chapters.

Figure 2.1: Left: The standard Bemotec beActive+e electric rollator without sensors.
Right: The latest prototype with sensors and touchscreen.

Communication Interface

For creating an intelligent rollator, it is necessary to read out the wheel odometry and
handle sensor measurements as well as sending new motor commands and setting the
motor status. Since the motors and sensors are connected to the controller board, they
cannot be interfaced directly. In order to control the rollator from the on-board com-
puter, a communication interface is required. The communication is realized by a serial
connection and is depicted in Fig. 2.2.

Wheel Odometry

The beActive provides wheel odometry for the two powered rear wheels using Hall effect
sensors. They provide 18 ticks per revolution and the motors have a transmission ratio
of 21:1. With a wheel diameter of 200 mm this results in a resolution of:

200 mm · π
18 · 21

= 1.6622 mm/tick. (2.1)

The number of ticks is counted by the motor controller since its start and the total number
is transmitted to the on-board computer every 10ms. Due to occasional delays in the data
transmission and the lack of information when individual ticks were measured, the actual
velocity has to be estimated over several received tick counts. Despite this drawback the
wheel odometry still provides a good estimate of the position and velocity. A bigger
problem is wheel slip: Since the rollator has its center of mass at the box in the front,
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Wheel Odometry

Battery

Handle Sensors

Motors

Controller Board Onboard Computer

RGB-D Camera

Laser Scanner

IMU

GPS

Touchscreen

PWM Signal

Motor Command

Wheel Odometry

Sensor Status

Figure 2.2: The beActive+e hardware setup. Blue boxes show hardware modules that
are build into the rollator, green boxes show the external hardware and red boxes are the
messages passed between the on-board computer and the rollator controller board.

which contains the battery, the on-board computer, the touchscreen and all sensors, the
rear wheels only have low traction and are therefore prone to wheel slip. In addition, this
mass distribution increases the probability that on uneven ground the two front wheels
have ground contact while one of the rear wheels is lifted.

2.1.2 Robotnik Summit XL
The Summit XL is a skid-steered outdoor robot produced by Robotnik Automation
S.L.L., Spain. It has a maximum velocity of 3.0 m/s and a weight of 45kg (Robot-
nik, 2019). Due to its broad rubber wheels with a rough tire tread it has more traction
than the beActive+e. This, combined with the four powered wheels skid-steered drive,
makes the Summit XL much more off-road capable than the beActive+e. For calculat-
ing the wheel odometry, the measurements of the four Hall effect sensors, one for each
wheel, are fused with a build-in gyroscope. As for the beActive+e, the sensor setup was
changed between the evaluations of the different methods and will be described in the
corresponding chapters. Since the Summit XL is designed as a wheeled mobile robot, it
already comes with an interface, which can be accessed by the onboard computer.

2.2 Sensors
The main sensors for all methods presented in this thesis are RGB-D cameras. Since
the release of the Microsoft Kinect in 2010, RGB-D cameras became increasingly pop-
ular in robotics. The combination of relatively low price, a high resolution and a high
frame rate makes them the first choice for many different robotics applications where
depth and RGB data is required. After the success of the Kinect several other companies
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Figure 2.3: The Summit XL from Robotnik

started developing RGB-D sensors, e.g. Asus with the Xtion family and Orbbec with the
ASTRA series. All these sensors work by projecting a static infrared point pattern onto
the scene, which is perceived by an infrared camera placed a few centimeters apart of
the projector. The depth is estimated by triangulating the points of the pattern. Due to
this infrared point pattern the above cameras are also called ”structured light sensors”.
A major drawback of these type of RGB-D sensors is the sensitivity to natural infrared
light emitted by the sun, significantly reducing the sensor range in outdoor environments
even on a cloudy day and prohibiting depth measurements in areas with direct sunlight.

Asus Xtion Pro Live

As mentioned above the Asus Xtion Pro Live is a structured light sensor. It has a field of
view of 70° diagonal, 58° horizontal and 45° vertical. It provides up to VGA (640x480)
depth resolution and up SXGA (1280x1024) RGB resolution. Due to limitations in the
driver, which is based on Open Natural Interaction (OpenNI) framework, the maximum
usable RGB resolution is VGA. The framerate is up to 30Hz, the operation range is 0.8 m
to 3.5 m.

Orbbec Astra

The Orbbec Astra is also a structured light sensor. The specifications are similar to the
Xtion Pro Live: It has a field of view of 73° diagonal, 60° horizontal and 49.5° vertical. It
provides up to VGA (640x480) depth resolution and up 1280x960 RGB resolution. Due
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to limitations in the driver, the maximum usable RGB resolution is VGA. The framerate
is up to 30Hz, the operation range is 0.4 m to 6.0 m.

In 2015 Intel presented another type of compact, low cost RGB-D sensors: The Intel
Realsense R200. Unlike the structured light sensors, the Realsense uses a stereo camera
setup to estimate the depth. The advantage of stereo triangulation is the independence of
the projected infrared pattern, making these types of sensors also usable in full sunlight.
Additionally, the Realsense can also project an infrared pattern to create features for the
stereo triangulation in lowly textured environments.

Intel Realsense D435

Unlike the two previous sensors, the Intel Realsense D435 is a stereo based RGB-D cam-
era. Although not required for stereo depth estimation, this sensor also can project an
infrared pattern to generate additional features in lowly textured indoor environments.
It therefore can provide depth measurements in sunlit outdoor environments as well as
in rather dark indoor environments. Compared to the other sensors the D435 has an
extended field of view of 94° diagonal, 85.2° horizontal and 58° vertical for the depth
images. It provides a depth resolution up to 1280x720 and up to 1920x1080 RGB reso-
lution. The FoV of the RGB camera is 77° diagonal, 69.4° horizontal and 42.5° vertical.
The framerate is up to 90Hz at VGA resolution. The operation range is 0.2 m up to
10.0 m.

For all the RGB-D sensors, structured light or stereo based, the color and depth images
are recorded by different cameras. Therefore, an additional alignment step is required to
provide a direct correspondence of the depth pixels to the color pixels. With a normal
stereo setup, i.e. with two cameras, the color information comes from one of the cameras
also used for the depth calculation.

2.3 Software Setup

Both platforms run Ubuntu Linux as operating system and use the open source Robot
Operating System (ROS) (Quigley et al., 2009) as middleware. The ROS framework
is widely used in the robotics community and already comes with numerous packages
that contain a wide range of methods and infrastructure required for robot operation. All
methods described in this thesis either are implemented as ROS nodes or come with a
ROS interface. ROS is also used for:

• Accessing the sensors: There are ROS drivers for most sensors that are relevant
for robotics.
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• Streaming data between the different modules: The topic based Publisher/Sub-
scriber model efficiently streams large amounts of data between independently
running software modules.

• Recording data for offline evaluation: All topics in the ROS system can be recorded
to BAG-files and played back later. This simplified the testing and evaluation of
the proposed methods.

• Module Execution: All modules are started through the ROS API. If a module
crashes there are configurable error handling strategies, e.g. restarting the module.

• High Level Control: User commands are also sent via ROS.

• Visualization: All topics can be conveniently displayed. The visualization software
RViz can also send commands to the ROS created from mouse or touch screen
inputs.

2.3.1 GeRoNa
The Generic Robot Navigation framework GeRoNa developed at the University of Tübin-
gen, see Huskić et al. (2018), is an open source project, providing several packages for
ROS. These packages include, among others, path planning, obstacle avoidance, robot
control and a high level interface. It is written in C++ and has a modular architecture
which allows the easy extension and replacement of individual modules.

Figure 2.4: The structure of the GeRoNa framework. Image from Huskić et al. (2018).

GeRoNa is used on both platforms to realize many of the functions required for au-
tonomous driving: Finding a global path, supervision of the vehicle state and error han-
dling. The path planning method presented in this thesis is implemented as an inde-
pendent library and comes with a wrapper that integrates it into GeRoNa as either local
planner module or controller module.
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2.3.2 Localization

Precisely knowing the current pose of the vehicle is one of the key points for successful
mapping and path planning. Due to the general importance of this topic a variety of
methods exists. The first choice for this problem are Simultaneous Localization and
Mapping (SLAM) methods: They perform localization and mapping in parallel and are
able to recognize already visited areas, usually referred to as loop closure. By using the
additional constraints introduced by the loop closure, the map and the pose of the vehicle
are optimized. This is helpful to compensate the inevitable drift of localization methods
that cannot measure absolute positions, e.g. with GPS.

For the intelligent beActive+e such a SLAM system is used to build the naviga-
tion map from laser scans. For the first prototype the HectorSLAM package was used
(Kohlbrecher et al., 2011), the later prototypes use Google Cartographer (Hess et al.,
2016).

While the created occupancy grid map is appropriate for global path planning in indoor
environments, the pose estimates of the SLAM systems are not used for local mapping.
This has two reasons:

First, the optimization of the map and pose induces a jump in the robot pose relative to
the map frame. These discontinuities in the vehicle pose cause errors in the local obstacle
map, as the new data fused into the map will not be consistent with the existing map.

Second, the final version of the intelligent rollator should be able operate without an
expensive LIDAR.

In order to have a consistent local obstacle map from a SLAM system, all RGB-D
data, or at least a subset of it, has to be stored in memory and fused again into a local
obstacle map whenever an optimization is performed. Due to the high data rate of the
RGB-D camera, no current method is able to perform this task with the required latency
on the limited computational resources of the rollator.

Therefore a sensor fusion based localization method is employed to provide a continu-
ous and sufficiently precise pose estimate for the mapping process. A widely used sensor
fusion module for ROS is the ”robot localization” package (RLP) based on the method
described in Moore and Stouch (2014). It employs an extended Kalman Filter to fuse the
measurements of various different inputs. These inputs can be: Odometry messages that
contain the vehicle’s pose as well as linear and angular velocities, IMU messages that
contain angular velocities together with global orientation and linear acceleration, Twist
messages that contain linear and angular velocities and Pose messages that contain the
vehicle’s pose. For the current sensor setup three inputs were used on both platforms:
The Odometry messages from the wheel odometry, odometry messages from a visual
odometry and IMU messages.

Although the ”robot localization” package is widely used, a custom implementation of
an Extended Kalman Filter based sensor fusion was developed. This was required, since
two problems appeared during the experiments: In indoor environments RLP has shown
heavy drift on the z-axis, most likely due to problems with rejecting erroneous visual
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odometry measurements. RLP uses the Mahalanobis distance for outlier rejection, which
does not support individual thresholds for each axis. The second problem concerns the
delay of the visual odometry: While the readings from the wheel odometry and the IMU
do not require further processing, the visual odometry is calculated from RGB-D images.
This takes between 30ms to 100ms, depending on the platform and the used parameters,
causing a delay of the visual odometry messages. During this delay several IMU and
wheel odometry messages already were processed and the current state estimate is ahead
of the visual odometry message. The RLP includes a method to deal with these out of
sync messages: By maintaining a state and message history, the latest state before the
out of sync message can be restored and all following messages can be integrated again.
This way the current state is always up-to-date, but if the delay of the visual odometry
is large and the visual odometry measurements include a significant correction, this can
result in small jumps of the vehicle pose.

The new implementation is described in Yang (2019). By providing individual thresh-
olds for outlier rejection and a different handling strategy of delayed messages, the drift
along the z-axis could be significantly reduced and the jumping due to high visual odom-
etry latency is removed at the cost of an adjustable delay of the pose. See Yang (2019)
for a more detailed comparison of both methods.

2.3.3 Module Overview

The intelligent beActive+e has two operation modes: A shared control mode and an
autonomous driving mode. In the shared control mode the direction of the vehicle is
given by the user. The navigation map can still be displayed in order to support the user
in finding the way, but it is not used for the control of the vehicle. The control commands
are generated based on the user input and obstacles ahead of the rollator, which can be
done using only the local obstacle map, see Fig. 2.5.

For the autonomous driving, a path has to be supplied by the system: In outdoor sce-
narios it is planned on Open Street Map (OSM) data, in indoor scenarios the navigation
map created by the SLAM system is used for path planning. The global path is trans-
formed into the local obstacle map frame and the model based controller attempts to find
a local path as close to the global one as possible. See Fig. 2.6.

On the intelligent beActive+e all modules for shared control and autonomous driving
are running at the same time, allowing the user to switch between both modes on the fly.
Obviously, the shared control mode is not available on the Summit XL.
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Figure 2.5: The module setup for shared control. This setup is specific for the intelli-
gent beActive+e. Red rectangles are sensor nodes, blue rectangles are stand-alone ROS
nodes, green rectangles are part of the GeRoNa-Framework and the yellow rectangle is
the robot interface.
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Figure 2.6: The module setup for autonomous driving. This setup is generic and sup-
ports all differential-drive, Ackermann and skid-steered vehicles. Red rectangles are
sensor nodes, blue rectangles are stand-alone ROS nodes, green rectangles are part of the
GeRoNa-Framework and the yellow rectangle is the robot interface.

2.4 Coordinate Frames
Given two coordinate frames A and B, ATB is a homogeneous transformation matrix that
describes the relative pose of frame B with respect to frame A. When a point B p located
in frame B is transformed with ATB, i.e. right-multiplied with the matrix, the result is the
location of B p in the frame A: A p =A TB

B p. This is extensively used in the later chapters,
e.g. to transform the sensor input into another frame.
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The positions of the sensors on the vehicle and the location of the vehicle in the world
are described by right handed coordinate frames. The construction of these frames fol-
lows the definitions of the ROS enhancement proposal 105 (Meeussen, 2010). For man-
aging the various transformations and their changes over time the ROS transformation
library (TF) (Foote, 2013) is used. For usage with TF the frames must be arranged in a
tree structure, i.e. each frame may only have one parent. For all methods described in
this thesis, an accurate transformation setup for each vehicle is crucial. The transforma-
tion tree describes the position of the robot in the world and the position of each sensor
and each wheel on the robot and allows to transform data from e.g. the sensor coordinate
system into the base-link coordinate system.

Figure 2.7: Transformation tree for the Summit XL.

For looking up a certain transformation at a given time t, the TF library automatically
performs an interpolation between the nearest available transformations. For this purpose
a transformation history is stored internally which contains the last transformations for a
specified time range, usually 10 s.

2.5 Camera Model
Geometric camera models are one part of the description of the image formation pro-
cess that creates a 2D image of the 3D world. Since image formation is fundamental for

16



2.5 Camera Model

all computer vision applications, camera models are described in many computer vision
books, e.g. Forsyth and Ponce (2011) or Jahne (2004). The most basic model is the
pinhole model, which assumes that all rays have to pass an infinitesimally small hole
that is located at the focal point. Although the pinhole model is an approximation, real
cameras have lenses instead of pinholes, the non-modeled effects can either be compen-
sated or are small enough to be neglected. E.g. for lens distortion there are mathematical
descriptions that can be used to undistort the image in a post-processing step.

While normal cameras only record color information, the above described RGB-D
cameras also measure the depth for each image pixel. Using this depth information
allows to reconstruct the 3D position of each image pixel by inverting the process of
projecting a 3D point onto the image. For this reconstruction the simplicity of the pinhole
model is very convenient.

This work uses the pinhole camera model for mapping the pixels of the depth images
back into 3D points, which are further processed into a ground plane image and an eleva-
tion map. This is done by inverting the process of projecting a 3D point p = (px, py, pz)T

onto the image plane and assigning it to an image pixel. The 3D point is required to be
in the camera coordinate system. If the point is described in another coordinate system,
it has to be transformed accordingly. For the reconstruction of the 3D points the images
are assumed to be rectified already, i.e. the distortion coefficients are all zero.

First, the 3D point p is projected onto the image plane, resulting in point p′:

p′ =

p′x
p′y
1

 =

px/pz

py/pz

1

 . (2.2)

Now p′ is the direction of the ray the point lies on. These normalized image coordinates
p′ are now mapped to the corresponding pixel coordinates [u, v] on the sensor chip using
the camera’s projection matrix K:uv1

 =

 fx 0 cx

0 fy cy

0 0 1


p′x
p′y
1

 . (2.3)

Here fx and fy are the focal length f divided by the sensors x- and y-pixel size, respec-
tively, and cx and cy are pixel coordinates of the principal point, which should be the
center of the sensor for an optimally aligned lens. The values u, v are continuous coordi-
nates in the pixel coordinate system, while the coordinates of the image pixels ι = [ix, iy]
themselves are non-negative integers in the pixel coordinate system.

Now, for every pixel ι = [ix, iy] in the depth image Id with a corresponding depth value
d = Id(ix, iy) the 3D point can be calculated by inverting the above projection:

p = (K−1ι)d (2.4)
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where K−1 is:

K−1 =


1
fx

0 −
cx
fx

0 1
fy
−

cy

fy
0 0 1

 . (2.5)

Transformations are described by homogeneous transformation matrices. For conve-
nience two functions are defined: One calculates the homogeneous 3D point from pixel
coordinates and the corresponding depth and one projects a 3D point onto an image. The
function for calculating the homogeneous point is:

Pr(ix, iy, d) =


( ix

fx
−

cx
fx

)d
( ix

fx
−

cx
fx

)d
d
1

 =


px

py

pz

1

 , (2.6)

which is used to create the orthogonal projection of the environment.
And the function for projecting a point onto the image is:

Pp(px, py, pz, 1) =

(
( fx

px
pz

+ cx)
( fy

py

pz
+ cy)

)
=

(
u
v

)
. (2.7)

Now, the color value c for a pixel ι = (ix, iy) from the depth image Id can be calculated:

c = Ic(Pp(CTDPr(ι, Id(ι)))) (2.8)

where CTD is the transformation from the depth to the color Frame and Ic is the color
image. This equation aligns the depth image to the corresponding color image.

2.6 Kinematic Model
For describing the motion of a robot the corresponding kinematic model is required. For
a wheeled robot it models the motion of a robot in 2D space. The kinematic model
presented in this section and used in the later chapters is described in Dudek and Jenkin
(2010).

The motion of a differential drive robot either goes straight when both wheel have the
same velocity, or follows an arc segment when the wheel velocities differ. For the latter
case, a pose update is described as a rotation around a point c that lies on the line going
through the centers of the two powered wheels and has a distance r to the center point
b between these two wheels. The point b is the origin of the robot coordinate system R.
The only vehicle specific parameter is the distance l between these two wheels.

Although the Summit XL is a skid steered vehicle, its kinematics can also be described
by the differential drive kinematic model, see figure 2.8.

A 2D vehicle pose is described by the x- and y- position of robot together with its
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Figure 2.8: Left: Kinematic model of a differential drive vehicle. Right: Since both
wheels on one side of a skid steered vehicle can be treated as one virtual wheel, the
differential drive model can also be used for a skid-steered vehicle.

orientation θ. The 2D vehicle pose at a time t corresponds to the vehicle state: xt =

(xt, yt, θt)T . The forward kinematic model updates the state xt, i.e. propagating the pose,
for a given control command Rvt = (vt, ωt)T :

xt = f(Rvt, xt−1). (2.9)

The control command Rvt, a vehicle velocity, consists of the linear velocity vt and the
angular velocity ωt. The superscript R indicates that the velocity is defined in the robot’s
local coordinate system, in which the robot is located in the origin and is oriented along
the x-axis. A differential drive vehicle is non-holonomic, it cannot perform lateral mo-
tion, and therefore the velocity in y-direction is always zero and not included in the con-
trol command. Positions, poses and velocities without superscript are defined in world
coordinates. Anyway, the model described here requires the velocity to be defined in the
robot coordinate system.

The wheel odometry measures the actual rotation velocity of the left and right wheel,
vtl resp. vtr, and is used to calculate the current vehicle velocity. While small deviations
of the actual velocity to the requested velocity are inevitable when dealing with real
hardware, also larger deviations can occur due to e.g. a change in the forces acting on
the wheels. Therefore the actual velocity usually differs from the requested velocity and
needs to be measured in order to run a control loop.

The kinematic model has two tasks: To propagate the current pose based on the vehicle
velocity, either measured or provided, and to calculate the target wheel velocities from
the control commands.

Since the wheel odometry measures the velocity of each wheel ut = (vtl, vtr)T , not the
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linear and angular velocity, these first must be converted into a corresponding vehicle
velocity:

Rvt = (vt, ωt)T = (
vtl + vtr

2
,

(vtr − vtl)
l

)T . (2.10)

Now, given the vehicle velocity, the distance r from the vehicle’s center to the center of
rotation is calculated with:

r = vt/ωt. (2.11)

When the angular velocity ω = 0 for vtl = vtr, r is not defined. This case needs to be
handled separately and is described later.

The center of rotation is calculated from the distance r, the current position xt, yt and
the current orientation θt:

ct = (ctx, cty)T = (xt − r sin(θt), yt + r cos(θt))T . (2.12)

Now the pose is updated for a time step ∆t. This is done by rotating the position around
the center of rotation and updating the orientation accordingly:

xt+∆t =

xt+∆t

yt+∆t

θt+∆t

 =

cos(ωt∆t) − sin(ωt∆t) 0
sin(ωt∆t) cos(ωt∆t) 0

0 0 1


xt − ctx

yt − cty

θt

 +

 ctx

cty

ωt∆t

 (2.13)

=

 r sin(θt) cos(ωt∆t) + r cos(θt) sin(ωt∆t) − r sin(θt) + xt

−r(cos(θt) cos(ωt∆t) − r sin(θt) sin(ωt∆t) + r cos(θt) + yt

θt + ωt∆t

 . (2.14)

Using the trigonometric identities sin(a) cos(b)+cos(a) sin(b) = sin(a+b) and cos(a) cos(b)−
sin(a) sin(b) = cos(a + b) this can be simplified to:

xt+∆t =

 r sin(θt + ωt∆t) − r sin(θt) + xt

−r cos(θt + ωt∆t) + r cos(θt) + yt

θt + ωt∆t

 =

xt

yt

θt

 +

 r (sin(θt + ωt∆t) − sin(θt))
r (− cos(θt + ωt∆t) + cos(θt))

ωt∆t


(2.15)

For the case ω = 0 the pose update is:

xt+∆t =

xt

yt

θt

 +

cos(θt)vt∆t
sin(θt)vt∆t

0

 (2.16)

For many tasks it is more convenient to specify the robot motion using velocities Rvt

instead of control commands ut. In order to calculate the wheel velocities from the robot
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velocities, the inverse kinematic model is required:

ut =

(
vtl

vtr

)
=

(2vt−lωt
2

2vt+lωt
2

)
(2.17)

2.7 Image Alignment
The task of image alignment, which is also called image registration, is to find a trans-
form that maps one image onto another image. Due to the importance of image registra-

Figure 2.9: Example of image alignment.

tion in many different fields of computer vision, especially medical image processing, a
broad variety of approaches exist, see Zitova and Flusser (2003) or Szeliski et al. (2007)
for an overview of existing approaches. These approaches can be classified into two dif-
ferent classes: Feature based image registration and direct image registration. Feature
based approaches extract feature points in both images, find correspondences between
these points and estimate the transform that warps the position of the features from one
image onto the position of the corresponding features on the other image. Direct im-
age registration searches for a transformation that minimizes the difference of the image
pixels of both images directly. Here, usually a non-linear optimization method is used
to iteratively estimate the transformation parameters. The biggest advantage of feature
based techniques is the position-independent establishing of correspondences: Feature
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correspondences are determined through the similarity of the feature descriptor and do
not depend on the position. Therefore, it is possible to estimate transforms that include
huge rotational and translational motions. This is also the largest drawback of direct
image alignment methods: If the initial estimate does not provide a sufficient overlap,
convergence will fail. The advantage of direct image alignment is the sub-pixel accuracy
and the robustness against motion blur and illumination changes, both effects are prob-
lematic for feature-based approaches. When used for localization, the vehicle’s linear
and angular velocities are limited, therefore a sufficient overlap is given and the advan-
tages of direct image alignment prevail.

2.7.1 Direct Image Alignment
There are two major assumptions required for direct image alignment to work properly:
Photo consistency and image auto correlation.

Photo consistency implies that the same point viewed from two different camera poses
results in the same image, i.e. the same intensity in gray scale images. While there
are several effects that can violate this assumption, e.g. changes in illumination, sensor
noise or motion blur, due to the large number of pixels included in the optimization, these
effects can be compensated up to a certain threshold.

The image auto correlation assumes that the difference of an image to a warped version
of itself is zero for the identity warp and increases with the distance. This usually holds
for real world images up to a certain warping distance.

A visualization of the sum-of-squared differences error function is given in Fig. 2.10.
Comparing these two images shows that the error function and therefore the convergence
radius depends on the content of the images. Larger structures with high contrast increase
the convergence radius and yield higher gradients towards the optimum, thus allow the
optimizer to converge faster. Smaller structures with low contrast texture result in smaller
gradients and therefore slower optimizer convergence. Still, the convergence radius is
sufficiently large. The first direct image alignment is the Lucas-Kanade (LK) algorithm,
described in Lucas and Kanade (1981). It uses a Gauss-Newton iterative non-linear op-
timization to minimize an error function which describes the sum-of-squared differences
between a reference image Ir and a template image Ic. The difference between the pixel
values of the two images is also referred to as photometric error. Meanwhile several
extensions of the Lucas-Kanade algorithm were presented. These extensions introduce
changes to the way the image warping function is updated, the used optimization strat-
egy, the Jacobian calculation and the image difference measure. A good overview and a
comparison of the extensions to Lucas-Kanade algorithm can be found in the tech report
series by Baker and Matthews (2002), Baker et al. (2003a), Baker et al. (2003b) and
Baker et al. (2004). Here the Inverse Compositional (IC) (Baker and Matthews, 2001)
method was found to give the best results. The original approach and the approaches
described by Baker et al. use the sum-of-squared differences (SSD) as error measure.
Alternative measures can be found in e.g. Evangelidis and Psarakis (2008) and Richa
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Figure 2.10: Example of image alignment.
Left: Image from the Middlebury 2014 Stereo dataset. Right: Ground image taken with
a RGB camera.
The green rectangles represent the image template that is translated to test the auto cor-
relation. The heat map and the 3D surface represent the sum of squared differences of
the template translated by x, y and the original image. The red rectangles illustrate the
minimum (−x,−y) and maximum (+x,+y) translation.
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et al. (2011).
For this work the Efficient Second Order Minimization (ESM) from Benhimane and

Malis (2004) is used for image alignment. ESM uses an alternative approximation of the
second order derivative, i.e. the Hessian matrix, of the error function. It has a higher con-
vergence rate and larger convergence radius than the IC method, while requiring slightly
more computational resources. For example, the images shown in Fig. 2.9 do properly
align with the ESM method, while the IC method does not converge at all. The im-
proved performance of the ESM compared to the IC method for image registration is
also described in Benhimane and Malis (2007) and Liang et al. (2018).

2.7.2 Efficient Second Order Minimization

The basic idea of the Lucas-Kanade method and therefore also of the ESM method,
depends on the linear approximation of the behavior of the error function E(m) around
the current parameters m. The derivation of the LK method, Eq. 2.18 to Eq. 2.23, is
described in Baker and Matthews (2004). The following derivation of the ESM method,
Eq. 2.25 to Eq. 2.35, is based on Malis (2004), but uses a different notation to be
consistent with the description of the LK method.

For ESM, as well as for the original method and the IC method, the sum-of-squared
differences is used as error measure:

E(m) =
∑
ι∈ζ

(Ic(ω(ι,m)) − Ir(ι))2. (2.18)

Here, ι = [ix, iy] is the position of one pixel in the image, while ζ = ([ix, iy] : ∀ix ∈

[0,WI[,∀iy ∈ [0,HI[) is the set of all image pixels. WI and HI are the image width
and height, respectively, and I(ι) returns the pixel value at ι. The warping function ω
transforms the image coordinates with respect to the current parameters m.

Assuming that the warped current image Ic is close enough to the reference image Ir,
there exists a parameter update ∆m such that:

Ic(ω(ζ,m + ∆m)) ≈ Ir(ζ)). (2.19)

Since the warped current image is a function of the current parameters m, a linear ap-
proximation around the current parameters can be calculated using a first-order Taylor-
approximation:

Ic(ω(ζ,m + ∆m)) ≈ Ic(ω(ζ,m)) +
∂Ic(ω(ζ,m))

∂m
∆m. (2.20)

The parameter of this approximation is ∆m instead of m. Plugging equation 2.20 into
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2.18 gives:

E′(∆m) =
∑
ι∈ζ

(Ic(ω(ι,m)) +
∂Ic(ω(ι,m))

∂m
∆m− Ir(ι))2. (2.21)

Now E′(∆m) is the error function for the parameter update ∆m instead for the parameters
m. For each iteration ∆m is calculated to update the current parameters m′ = m + ∆m.
For finding the minimum of E′(∆m), the gradient ∇E′(∆m) is required. Deriving E′(∆m)
with regard to ∆m using the chain rule gives:

∇E′(∆m) =
∑
ι∈ζ

2
[
Ic(ω(ι,m)) +

∂Ic(ω(ι,m))
∂m

∆m− Ir(ι)
]
∂Ic(ω(ι,m))

∂m

T

. (2.22)

To find the optimal parameters, ∇E′(∆m) is set equal to zero and solved for ∆m:

∆m =

∑
ι∈ζ

∂Ic(ω(ι,m))
∂m

T ∂Ic(ω(ι,m))
∂m


−1 ∑

ι∈ζ

[
∂Ic(ω(ι,m))

∂m

]
[Ic(ω(ι,m)) − Ir(ι)] . (2.23)

With Jc(ζ,m) =
∂Ic(ω(ζ,m))

∂m being the Jacobian matrix of the current warped image, and
r(m) = Ic(ω(ζ,m)) − Ir(ζ) the residual, this gives the Gauss-Newton update rule for one
iteration m′ = m + ∆m, compare e.g. Nocedal and Wright (2006).

m′ = m +
[
Jc(ζ,m)T Jc(ζ,m)

]−1
Jc(ζ,m)T r(m), (2.24)

which also is the update rule for the LK method described in Lucas and Kanade (1981).
The Jacobians J are matrices of size k × n, where k = WI · HI is the number of image
pixels and n is the number of warp parameters. The image difference r(m), also called
residual, Ia(ζ) − Ib(ζ) is a vector of size k.

For performing a second order minimization an approximation of the second deriva-
tive, i.e. the Hessian matrix H(ζ,m,∆m), is required. Using Eq. 2.19 together with a
second order Taylor expansion of Ic(ω(ζ,m + ∆m)) results in:

Ir(ζ) ≈ Ic(ω(ζ,m + ∆m)) ≈ Ic(ω(ζ,m)) + Jc(ζ,m)∆m +
1
2

H(ζ,m,∆m)∆m, (2.25)

where H(ζ,m,∆m) contains the k Hessian matrices left-multiplied with the transposed
parameter vector:

H(ζ,m,∆m) = (∆mT H1(ι1,m), ...∆mT Hk(ιk,m))T . (2.26)

Since the reference image can be approximated, also the jacobian of the reference
image Jr(ζ) can be approximated, see Malis (2004):

Jr(ζ) ≈ Jc(ζ,m) + H(ζ,m,∆m). (2.27)
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This can be rearranged to get an estimate of the Hessian:

H(ζ,m,∆m) = Jr(ζ) − Jc(ζ,m). (2.28)

Plugging equation 2.28 into 2.25 yields:

Ir(ζ) ≈ Ic(ω(ζ,m + ∆m)) ≈ Ic(ω(ζ,m)) + Jc(ζ,m)∆m +
1
2

[Jr(ζ) − Jc(ζ,m)]∆m. (2.29)

This simplifies to:

Ir(ζ) ≈ Ic(ω(ζ,m)) +
1
2

Jc(ζ,m)∆m +
1
2

Jr(ζ)∆m. (2.30)

Now solve 2.30 for ∆m:

−
1
2

[Jc(ζ,m) + Jr(ζ)]∆m = [Ic(ω(ζ,m)) − Ir(ζ)] (2.31)

[Jc(ζ,m) + Jr(ζ)]∆m = −2[Ic(ω(ζ,m)) − Ir(ζ)]. (2.32)

Since [Jc(ζ,m) + Jr(ζ)] is not a quadratic matrix, the pseudo inverse A+ = (AT A)−1AT is
required:

∆m = −2([Jc(ζ,m) + Jr(ζ)]T [Jc(ζ,m) + Jr(ζ)])−1[Jc(ζ,m) + Jr(ζ)]T [Ic(ω(ζ,m)) − Ir(ζ)]
(2.33)

∆m = −2(Jc(ζ,m) + Jr(ζ))+[Ic(ω(ζ,m)) − Ir(ζ)]. (2.34)

Since the time required to find the parameters that minimize the error function only
depends on the number of iterations, using a minimization gain λ can be used to speed up
the image alignment process. Increasing λ increases the step size and therefore increases
the convergence speed, but too large values inhibit the optimizer to converge properly.

∆m = −2λ(Jc(ζ,m) + Jr(ζ))+[Ic(ω(ζ,m)) − Ir(ζ)] (2.35)

The pseudo-code for the ESM is shown in Alg. 1.
To determine whether the algorithm converged, the magnitude of the parameter update

vector ∆m is used. If the L1-norm, i.e. the sum of absolute values, |∆m|l1 is below a given
threshold εesm, the minimization is considered converged and the algorithm terminates.

The listing Alg. 1 is the generic ESM which can be used with several different warping
functions. These warping functions describe different geometrical transformations, e.g.
pure translation, pure rotation or combined rotation and translation. The actual used
warping function is described in the individual chapters.

In contrast to the ESM, the IC method assumes that the Jacobian of the reference
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2.7 Image Alignment

Algorithm 1: Efficient Second Order Minimization image alignment
input: Ir, Ic

m = initial estimate
calculate Jacobian Jr for refence image Ir

while not converged or max iterations reached:
compute warped image Iwc by warping Ic with current parameters m
calculate Jacobian Jc from Iwc

calculate joint Jacobian Jesm = 1
2 (Jc + Jr)

calculate difference d = Iwc − Ir

get parameter update ∆m = −2(Jesm
T Jesm)−1 Jesm

T d
update parameters m = m + ∆m

return: m

image is close enough to the real Jacobian to use it as an approximation. Since the
gradient, and therefore the Jacobian, of the reference image does not change, it can
be precomputed and reused in every iteration. For comparison the pseudo code of the
inverse compositional method is shown in Alg. 2.

Algorithm 2: Inverse Compositional image alignment
input: Ir, Ic

m = initial estimate
calculate Jacobian Jr for refence image Ir

calculate inverse of Hessian H−1
r = (Jr

T Jr)−1

while not converged or max iterations reached:
compute warped image Iwc by warping Ic with current parameters m
calculate difference d = Iwc − Ir

get parameter update ∆m = −2H−1
r Jr

T d
update parameters m = m ◦ ∆m

return: m

For the use in a ground plane based visual odometry, the ESM method provides sig-
nificantly better convergence properties than the IC method. A comparison of the con-
vergence of both methods is shown in Fig. 2.11.
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Figure 2.11: Comparison of ESM and IC methods on the image shown in Fig. 2.10 top
right. The top image shows the SSD after the optimizer terminated. The bottom image
shows the number of iterations executed until termination. For evaluation, the original
image is translated along the x-axis by an increasing amount. Starting from a translation
offset of 18 pixels in the x-direction, the IC method does not converge to the proper
global minimum anymore. The optimization of the IC method stops due to the small
|∆m|l1, but in the wrong local minimum.
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Figure 2.12: Example of the convergence speed of the ESM and IC methods. For better
visualization the images are taken with 150ms time difference, which equals five frames.
For visual odometry consecutive frames are used, so the initial offset is much smaller.
Top: The images to be aligned. The left image is the current image which is aligned
to the reference image on the right. Middle: Sum of squared differences (SSD) for
different translations along the x and y axis. The red crosses and green dots represent the
translation parameters after each iteration of the corresponding method. Bottom Left:
SSD comparison of the ESM and IC alignment methods. Bottom Right: Norm of the
parameter updates |∆m|l1.
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Chapter 3

Mapping
An efficient, yet task appropriate representation of the environment is one of the most
important prerequisites for autonomous robot operation. Both tasks discussed in this
thesis, visual odometry and traversabitlity analysis, require a detailed representation of
the environment, which is continuously updated. Therefore, the creation of the map
has to be done in real-time with close to sensor frame rate and the map must have a
sufficiently high resolution.

In mobile robotics, there are four main categories of map representations commonly
used with RGB-D cameras: Point clouds, voxel grids, polygon meshes and elevation
maps.

3.1 Related Work
Point clouds are the direct way of creating a map from the RGB-D data. They are easy to
deal with, do not require a discretization of the data and the map size can grow dynami-
cally. The main disadvantage is the huge memory requirement. Since a RGB-D camera
with VGA resolution and 30 Hz records over 9 mio. points per second, storing all points
is infeasible. A common approach for creating point cloud maps stores keyframes at
distinct camera poses and fuses them into a map. Additionally, the later optimization of
the map due to loop closure can be easily integrated. Several widely used SLAM im-
plementations use this approach, e.g. OrbSLAM2 (Mur-Artal and Tardós, 2017), PTAM
(Klein and Murray, 2007) or RTabMap (Labbe and Michaud, 2014).

Voxel grids offer a volumetric representation of the environment and are constructed
by assigning the point cloud into grid cells of a predefined size. Without an additional
compression technique, the memory requirement is too high for large scale maps. A
popular approach to solve this problem is using an Octree (Hornung et al., 2013), which
allows memory efficient storage of the 3D map.

Polygon meshes also allow a memory efficient representation of the environment,
since they only describe the surfaces of the objects and are required to fuse the points
in order to represent them as polygons. The main drawback is the reconstruction of the
surface: RGB-D cameras only measure points and therefore a method for generating the
polygon surface is required. Depending on the environment geometry and other aspects,
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such as sensor noise or camera resolution, this mesh generation can be time consuming.
Still, using a graphics card the reconstruction can be done in real-time, e.g. Newcombe
et al. (2011).

Elevation maps are a rather simple description of the environment: They contain the
height for points arranged in a regular grid with a predefined resolution. Although ele-
vation maps cannot represent arbitrary geometry, due to their efficiency they are widely
used in fields where the computational resources are limited, e.g. for planetary rovers
(Biesiadecki and Maimone (2006), Gennery (1999), Simmons et al. (1996) or Lacroix
et al. (2002)). Elevation maps are used for path planning with wheeled (Kweon and
Kanade, 1992) robots as well as for step planning for legged robots (Herbert et al., 1989)
(Klamt and Behnke, 2017). Compared to the three approaches mentioned above eleva-
tion maps have a major limitation: They can only store one height value per grid cell and
are therefore not capable of properly representing vertical structures or objects like e.g.
tables standing on the ground. This problem can be solved by using multi layer elevation
maps, as described in Triebel et al. (2006). Despite their drawbacks, due to the compact
and efficient representation, elevation maps were selected for describing the environment
for the proposed methods.

3.2 Environment Representation

Elevation maps are widely used in geographic information systems, where several defi-
nitions of elevation maps exists: Digital Elevation Models (DEM), Digital Terrain Model
(DTM) and Digital Surface Model (DSM). DEM is used as generic term for DTMs and
DSMs. To avoid confusion with the different definitions of DEMs, the data representa-
tion for the environment in this thesis is named elevation image (EI). The main difference
of the EI compared to a DEM is the discretization in height.

An elevation image is a gray scale image with a known origin oI = [xo, yo] and size
sI = [xs, ys] on the x-y plane of the corresponding coordinate system. An EI also has a
defined vertical and horizontal pixel size Resp in m/pixel and a height resolution Resh in
1/m. The height resolution Resh is required since the EI is stored as 16Bit-integers, in
order to speed up further processing.

For visual odometry, the appearance of the environment is also required. The color
image (CI) is stored as a RGB or gray scale image with the same resolution, size and
origin as the EI.

Along with the EI and the CI, a mask image and a weight image are created. The
mask image identifies pixels with valid elevation values and the weight image describes
the number of points assigned to each pixel. These images have the same resolution,
origin and dimension as the EI and the CI.
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3.3 Orthographic Projection

The EI and CI are orthographic projections of the data measured by the RGB-D camera
onto the x-y plane of the map coordinate system.

The output of RGB-D cameras are RGB and depth images. Although most camera
drivers also provide a point cloud, these point clouds are generated on the CPU and
not on the camera itself, which requires additional computational resources and also
introduces a delay due to the additional processing. Creating the elevation map directly
from the depth and color image avoids this overhead.

Figure 3.1: Top Left: Input color image. Top right: Input depth image. Bottom: corre-
sponding point cloud shown for better visualization. The depth image is already aligned
to the color image.

The Orthographic Projection of the RGB image Ic and the depth image Id is created as
follows: For each pixel coordinate ι = [ix, iy] in the aligned images, the 3D point p in the
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target coordinate frame F is calculated:

pF =FTC P(ix, iy, Id(ix, iy)) (3.1)

where FTC is the transform from the camera’s color frame C to the target frame F and P
is the projection function 2.6. Using the orthographic projection matrix O, the point is
projected onto the x-y plane of F:

p′ = O pF (3.2)

with

O =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 . (3.3)

The point still is described in unit meters and needs to be transformed into the image
coordinate system, so it has to be mapped to pixel coordinates with ιc = (p′x − xo, p′y −
yo)/Resp. This can be combined with the orthographic projection matrix:

O′ =


1

Resp
0 0 −xo

Resp

0 1
Resp

0 −yo
Resp

0 0 0 0
0 0 0 1

 , (3.4)

resulting in

ιc = [icx, icy] = O′ pF . (3.5)

The z- and w-component are ignored, as they cannot have values other than 0 and 1.

Since points do usually not directly correspond to a pixel position, they are either
assigned to the nearest neighbor pixel or they are assigned to the four closest pixels
using bilinear weighting, see Fig. 3.2 .

The weighting function for a pixel ιg = [igx, igy] in the ground plane image Ig with
bilinear weighting is:

wbi(ιc, ιg) =

(1 − |icx − igx|)(1 − |icy − igy|) if |icx − igx| < 1 and |icy − igy| < 1
0 otherwise

. (3.6)

34



3.3 Orthographic Projection
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Figure 3.2: Example of point to pixel assignment. It can be thought of as the inverse of a
bilinear interpolation. The weights are: a1 = wbi(ιg, ιc) = (1 − x)(1 − y), a2 = wbi(ιg, ιc) =

x(1 − y), a3 = wbi(ιg, ιc) = (1 − x)y and a4 = wbi(ιg, ιc) = xy. The pixel side length in
image coordinates is 1 by definition.

And the nearest neighbor weight is:

wnn(ιc, ιg) =

1 if round(icx) = igx and round(icy) = igy

0 otherwise
. (3.7)

Depending on the resolution of the input and the orthographic image, and the trans-
formation between the camera and the target frame F, most pixels ιg in the orthographic
image Ig get several pixels from the input image assigned. Therefore the weighted aver-
age over the assigned pixels is used:

Ig(ιg) =

∑
ιc∈Γ w(ιc, ιg) v∑
ιc∈Γ w(ιc, ιg)

, (3.8)

where Γ is an array of all input points in pixel coordinates, w is the used weighting
function and v is either the color or height value depending on the output image type.
The sum of weights

∑
ιc∈Γ w(ιc, ιg) is visualized for a typical ground image in Fig. 3.3.

The corresponding intensity images are shown in Fig. 3.4.
For EI creation there is also the option to use the maximum height of all assigned

values instead of the weighted average. While this results in a better description of the
surface, as seen along the negative z-axis, it is significantly more prone to sensor noise.
Which fusion method to use heavily depends on the use-case and the employed sensor.

3.3.1 Local Elevation Map

The Figures 3.5 and 3.4 show the projection of a RGB and the corresponding depth frame
into an intensity and an elevation image located in the base link frame of the vehicle.
These images are sufficient for several tasks, e.g. visual odometry or pose prediction,
have small memory footprint and represent the latest measurements from the sensor.
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Figure 3.3: Left: Visualization of the pixel assign weights for bilinear weighting. Right:
Visualization of the pixel assign weights for nearest neighbor weighting. Brighter pixels
represent higher weights. The bilinear assignment method distributes one input point to
the four closest target pixels, resulting in a smoother weight distribution.

Figure 3.4: Left: Example orthographic projection image with bilinear weighting. Right:
Example orthographic projection image with nearest neighbor weighting. The bilinear
filtered image has fewer pixels with no value assigned and a slightly smoother structure,
which is especially beneficial for visual odometry applications.
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Figure 3.5: Visualization of a height image with bilinear weighting. Right: Visualization
of a height image with nearest neighbor weighting. Brighter pixels represent higher z-
values.

But in order to perform traversability analysis, the robot also requires information
about the environment that is currently not visible, e.g. the ground directly under the
vehicle, which is of great importance for path planning. This requires that all measure-
ments are fused into a locally consistent map, the local elevation image (LEI). Compared
to an EI, the map parameters are similar: The LEI is a 16Bit grayscale image with a
defined pixel resolution Resp in m/pixel and a height resolution Resh in m. The main
difference is the coordinate frame: The position of the LEI is defined in world coordi-
nates, compared to the base link frame, which is used for the images 3.5 and 3.4. This
implies that the robot moves through the map and therefore either the map size needs to
be large enough to hold the complete robot trajectory or the map has to move according
to the vehicle’s motion. Due to the high resolution and the real time requirement, the
latter solution, a robot centric map is used.

This robot centric map is the LEI, a square EI with dimensions approximately two
times the sensors perception range plus a safety buffer. It is axis aligned with the world
coordinate system (WCS) and has an origin oL = (oLx, oLy) in the WCS. In order to keep
the robot in the center of the map, the origin has to move along with the robot. To keep
the amount of shifting operations on the LEI reasonable, the map is only shifted if the
vehicle leaves the center block and not every time the vehicle moves. This central area
is shown in the left image of Fig. 3.6 . The origin of the LEI and the constraint of being
axis aligned with the world coordinate system defines the common local image space
coordinate system (LCS). In the LCS all distances, positions and velocities are defined
in pixels instead of meters to simplify further calculations. For projecting a pixel from
the RGB-D camera into the LEI, the pose of the robot in the world WTB is required:

pLCS = O′(WTB
BTC P(ix, iy, Id(ix, iy))) (3.9)
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where W is the world coordinate system in which the origin of the LCS is described, B
is the base link frame of the robot and O′ again is the orthographic projection matrix that
maps world coordinates to image coordinates, see 3.3.

The fusion of the projected points is done as described in 3.3. The points are first
fused into a temporary map, which contains only the current data, with the same size and
resolution as the LEI. Then each pixel in the temporary map with a weight higher than a
threshold is entered into the LEI and overwrites the existing data. Compared to the direct
weighted fusion of the LEI pixels, overwriting has the advantage that moving obstacles
do not decay slowly, but are directly updated as they move.

Figure 3.6: Left: Example of local elevation image (LEI). The red square is the center
block with side length 1/4 of the total map size. If the vehicle leaves this area, the LEI is
relocated to keep the vehicle inside it. The left side of the LEI is empty due to a shifting
operation. Here the sensor range is higher than the safety buffer. To avoid these artifacts
the map size can be increased. Right: The real scene with a Summit XL mobile robot.

3.3.2 Coordinate Conversion

All positions, poses and coordinate systems in ROS are defined in meters. Since the
methods described in this thesis perform most operations in image space, several utility
methods are required to map data from world to image space. While an image itself is
discretized into pixels, the converted coordinates have the unit pixels for x and y coordi-
nates and are unitless for the z coordinate.

For mapping a pose in world coordinates ρ = [x′, y′, θ′] to a pose in image coordinates
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3.3 Orthographic Projection

Figure 3.7: Left: Example of a LEI in an outdoor scene. The jigsaw structure in the lower
left are artifacts from the shifting operations. Right: Photo of the scene.

p = (x, y, θ) the following function is used:

p = fρ(ρ) =

(x′ − oLx)/Resp

(y′ − oLy)/Resp

θ′

 (3.10)

and the inverse is:

ρ = f −1
ρ (ρ) =

xResp + oLx

yResp + oLy

θ

 . (3.11)

The function for mapping a 3D point % = [x′, y′, z′] to a 3D point q = [x, y, z] in image
coordinates is:

q = f%(%) =

(x′ − oLx)/Resp

(y′ − oLy)/Resp

z′Resh

 (3.12)

and the inverse is:

% = f −1
% (q) =

xResp + oLx

yResp + oLy

z/Resh

 . (3.13)
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For the vehicle velocities only the linear component is affected:

Rv = fv(Rv′) =

(
v/Resp

ω

)
(3.14)

and the inverse is:

Rv′ = f −1
v (Rv) =

(
v Resp

ω

)
, (3.15)

where Rv is the velocity in image space, with linear velocity measured in pixels per
second, and Rv′ in world space, with linear velocity measured in meters per second.

These six functions are used to convert all pose data, velocities, and vehicle properties
provided by ROS into the image space, and to convert the results back into world space.
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Chapter 4

Ground Plane Visual Odometry

4.1 Introduction and Motivation
For electric wheelchairs the usage of RGB-D sensors is quite common for obstacle de-
tection and localization, see for example Kırcalı and Tek (2014), Wei et al. (2013) and
Wu et al. (2013). The goal is to provide comparable sensor capabilities to users of an
intelligent rollator. Since these need to be more lightweight and also are more restricted
in terms of maximum cost, this should be achieved using a single RGB-D sensor. As
this sensor is also used for obstacle detection, it has to be downward facing, in order
to see obstacles that are below the ground plane, such as stairs. Therefore, most infor-
mation visible to the RGB-D camera is the floor, which in many cases like in homes
for the elderly or hospitals, has few objects on it and a repetitive low contrast texture.
Varying lighting conditions and image acquisition problems like over/under exposure,
motion blur and image noise create a very challenging environment for visual odome-
try. But there is one advantage in this scenario: Due to the nature of the platform and
its users it can be assumed that they move in a nearly planar environment with almost
no slope, allowing the proposed method to reduce the number of degrees-of-freedom to
three. Using the method described in the previous chapter, an orthographic projection of
the environment is created. This orthographic projection is sufficient for estimating the
frame-to-frame motion in 3DoF while being more robust than a full 6DoF approach.

The method proposed in this chapter consists of four processing steps: First, an or-
thographic projection of the current RGB-D data is created. Then the projection of the
previous frame is split into a number of image blocks. These blocks are registered us-
ing Efficient Second order Minimization (ESM), each of them giving an estimate of the
global robot motion. The final motion estimate is calculated by removing outliers from
the block estimates and combining them using a weighting function. All these steps can
be performed in real-time on a midrange CPU.

4.2 Related Work
Many different approaches have been presented that solve the odometry estimation prob-
lem using cameras. There are two main classes of visual odometry systems: methods that
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use feature extraction at key points to find point correspondences (feature based methods)
and methods that are estimating the motion by minimizing the photometric error between
two images (direct methods). The planar assumption, describing a vehicle that performs
planar motion parallel to a ground plane, is often used to estimate the ego-motion of a
car. Adding these constraints reduces the number of parameters that need to be estimated
and therefore simplifies the calculation. Additionally, rectifying the image with regard
to the ground plane allows to directly estimate the motion parameters by using image
alignment, either by aligning the complete image or several sub patches. The approach
presented in Stein et al. (2000) uses alignment of rectified image patches and selecting
a subset, based on geometric and photometric constraints, of these patches to increase
robustness. Using a virtual downward looking camera and its advantages is described
in Ke and Kanade (2003). This approach also utilizes patch registration and selection.
A hybrid method using feature correspondences and direct alignment is described by
Azuma et al. (2010). Lovegrove et al. (2011) shows that whole image direct VO (visual
odometry) for an on-road vehicle is possible using a downward facing camera capturing
the planar road surface. But (Lovegrove et al., 2011) also describes two major problems
of the method, that originate in the lack of outlier rejection. In Zienkiewicz and Davison
(2014), this approach is extended and shown that it also works for indoor robots on vari-
ous materials with different texture and reflection properties. Kitt et al. (2011) describes
a method using registration of image patches created from a fronto-parallel projection,
but this method only allows small rotations due to the way these patches are registered.
Extracting features on the ground plane is used in Caglioti and Gasparini (2007) to es-
timate robot motion. Feature extraction is also used in Scaramuzza et al. (2009). By
applying car specific motion constraints a single feature correspondence is sufficient to
perform visual odometry. In Hamme et al. (2015) a similar method is presented that uses
back projection to track features on the ground plane instead in image space. A general
direct visual odometry method using RGB-D data is presented in Kerl et al. (2013b) and
later extended to a full SLAM system in Kerl et al. (2013a). In Klose et al. (2013) three
different image alignment methods are evaluated: Forward Compositional (FC), Inverse
Compositional (IC) and Efficient Second order Minimization (ESM). They also show that
adding a global affine illumination term to the optimisation improves the performance of
all three methods. These three methods are based on the iterative image alignment ap-
proach presented in Lucas and Kanade (1981). The image alignment method used in this
chapter uses ESM as described in Benhimane and Malis (2004), extended with a global
illumination term.

4.3 Proposed Method
The proposed method describes the visual odometry problem as an iterative process that
estimates the camera motion by finding the image warp that transforms one frame to the
next.
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Figure 4.1: Top: The prototype system. Bottom: Schematic drawing with frames B, C
and L .

The motion model assumes that the robot is moving parallel to the ground plane (z = 0
in world coordinates) and therefore the frame to frame motion can be described by three
parameters: m ∈ R3 = (∆x,∆y,∆θ). Further it is assumed that the camera is mounted on
the robot in a known fixed pose C. LTC transforms from the camera coordinate system C
into the local coordinate system L, which has an X-Y plane equal the X-Y plane of the
world coordinate system.

Using the local coordinate system L simplifies the calibration process: First the posi-
tion of the camera relative to the ground plane is calibrated, then the transform from L to
the base link frame B is measured. LTC is defined by three parameters roll φc, pitch ψc

and height hc. In the experiments these parameters were calibrated by placing the robot
on a flat surface and fitting a plane to the point cloud produced by the RGB-D-sensor.
To correctly model the robot’s motion, it is also required to know its center B and the
transform BTL, that also has to be calibrated or measured externally. The robot’s location
is described by the transform WTB and is the product of the inter frame motion B′TB. At
a certain time t, with a current frame It and robot pose B and a previous frame It′ at time
t′ and robot Pose B′, WTB is defined as:

WTB = WTB′
B′TB (4.1)

4.3.1 Orthographic Projection
In order to use an image alignment method, i.e. ESM 1, the RGB image recorded by
the camera is converted into a bird’s eye view image of the environment. If the ground
is planar and the camera pose is known, a homography could be used, compare Love-
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Figure 4.2: Left: Original color image. Right: The corresponding orthographic projec-
tion. The green trapezoid in the original image depicts the region which is projected onto
the ground plane.

grove et al. (2011). But this will fail in non-planar environments, so that additionally
a depth image, aligned to the RGB image, is required. For converting the RGB-D data
recorded by the camera into a ground plane image It, the projection formula 2.6 with the
orthographic projection 3.5 is used:

ιg = G(ιc) = O′ BTCP(icx, icy, Id(icx, icy)) (4.2)

where ιc = [icx, icy] are pixel positions in the color and depth image, ιg are the pixel coor-
dinates on the ground plane image, BTC is the transform from camera to base link frame,
O′ is the orthographic projection matrix and Id is the depth image. Using the bilinear
weighting function 3.6, the color values from the input color image Ic are assigned to the
current image It with Eq. 3.8:

It(ιt) =

∑
ιc∈Ic

w(ιt,G(ιc)) Ic(ιc)∑
ιc∈Ic

w(ιt,G(ιc)
, (4.3)

where ιc ∈ Ic are all pixel positions in Ic and ιt is a pixel position in It. The resulting
image It is shown in figure 4.2

4.3.2 Image registration

For camera based odometry to work, the photo consistency assumption is required (Kerl
et al., 2013a). Two images of the same point p taken with a camera at two different
positions m1 and m2 have the same intensity: I(ι) = I′(ι′) with ι, ι′ being the pixel
coordinates of p in image I and I′ respectively. This requires a static scene with constant
illumination and a noise free sensor. Because this is unlikely in real world scenarios,
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several approaches were presented that try to reduce the error resulting from violating
these constraints (Ishikawa et al., 2002) (Klose et al., 2013) (Kim et al., 2015).

Due to the properties of the orthographic projection, the transform matrix It′TIt that
warps image It′ to the succeeding image It, also reflects the robots motion B′TB.

Therefore, the visual odometry problem can be conveniently solved by aligning con-
secutive images.

4.3.3 Efficient second order minimization

For image registration the Efficient second order minimization method (ESM) (Malis,
2004) described in 2.7.2 is used. In this section the employed image warping function and
its parameterization are described. The warps are described by rigid motions, also called
Euclidean motions, which comprise arbitrary combinations of rotation and translation.
The corresponding Lie Group is the Special Euclidean Group with dimension 2 (SE2)
and its Lie algebra se2.

The photo consistency assumption implies that there exists a set of optimal parameters
ma ∈ R

3 = (x, y, θ) ∈ se2 for which:

It = It′(ω(ζ,ma)) (4.4)

where ζ is the list of all pixel positions in It′ and ω is the image warping function. Ba-
sically ω is a transformation matrix T(m) that is created from m by using the generators
G0,1,2 ∈ R

3x3 of the Lie Group SE(2):

T(x) = exp

 3∑
i=1

miGi

 . (4.5)

The generators Gi are:

G0 =

0 0 1
0 0 0
0 0 0

 , (4.6)

G1 =

0 0 0
0 0 1
0 0 0

 , (4.7)

G2 =

0 −1 0
1 0 0
0 0 0

 . (4.8)

In order to apply the 3x3 matrix on the image coordinates ζ, the coordinates must be
homogeneous: ι ∈ ζ = (ix, iy, 1)T .
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u ◦ v is the composition operator defined by:

∀u, v ∈ R3 : T (u)T (v) = T (u ◦ v). (4.9)

Also the inverse is defined by:

∀u ∈ R3 : T (u)−1 = T (u−1). (4.10)

Now the sum-of-squared-differences of the image pixels should be minimized to find
an approximation m for ma:

E(m) =
∑
ι∈ζ

(It′(ω(ι,m)) − It(ι))2 = 0. (4.11)

This is done by iteratively updating the parameters by calculating the parameter in-
crements using the pseudo inverse of the Jacobian as described in 2.35 and Richa et al.
(2011):

∆m = −2(JT J)−1(JT d), (4.12)

with J being the Jacobian as described in Malis (2004):

J =
1
2

(∇(It) + ∇[It′(ω(ζ,m))]). (4.13)

Let k be the number of pixels of the images It and It′ , then d is a k × 1 vector containing
the per pixel differences d = It′(ω(ζ,m)) − It(ζ) and ∇(I) ∈ Rk×3 are the k × 3 warp
gradients. After each iteration m is updated with ∆m: m′ = m ◦ ∆m.

Each row in the warp gradients ∇(I) represents the gradient for one pixel ι:

∇(I)[ι] = [∇x,∇y,∇y · ix − ∇x · iy]. (4.14)

Here ∇x and ∇y are the image gradients, e.g. calculated with the Sobel-Operator, and ιx
and ιy are the corresponding pixel coordinates. The algorithm stops if either the length of
∆m is below a threshold δ1, E(m) is below certain threshold δ2 or the maximum number
of iterations is reached. Resulting in:

It′TIt = T(m) (4.15)

In the experiments this minimum is reached within 4.2 iterations on average, with the
maximum number of iterations set to 6. Recalling the constraints of the photo consis-
tency assumption, several improvements to the ESM have been proposed to increase its
robustness against violations of these constraints. These also apply to similar methods
based on the approach from Lucas and Kanade (1981). In real world scenarios, illumina-
tion changes in the camera image are more likely to be caused by the change of exposure
time or gain of the camera than by real illumination changes, see Fig. 4.3. An affine
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Figure 4.3: Two consecutive ground images showing the effect of the exposure time
adjustment automatically performed by the camera. The exposure time is longer for the
right image, resulting in higher overall brightness.

global illumination estimate is presented in Klose et al. (2013) and an image patch based
solution in Kim et al. (2015). The problem of non-static scenes and sensor noise can
be solved by calculating the per pixel residuals and use a robust estimator in an iterative
re-weighted least squares approach (Klose et al., 2013). Others propose to reject outliers
by calculating the residuals for a number of image blocks and remove blocks with to big
residuals from the motion estimation (Stein et al., 2000), (Ishikawa et al., 2002), (Kim
et al., 2015).

Since the presented method is based on image blocks, it is sufficient to just add an
illumination offset i in order to compensate for global illumination changes: mi ∈ R

4 =

(∆x,∆y,∆θ, i). The image update function is changed correspondingly:

ω′(I,mi) = I(ω(ζ, [∆x,∆y,∆θ])) − i (4.16)

The image gradients are now ∇′(I) ∈ Rk×4, where the new column is set to 1.

4.3.4 Motion estimation

As mentioned in chapter 2, dense image alignment relies on the photo consistency as-
sumption, that in real world scenarios is barely applicable, thus resulting in errors when
doing visual odometry. To increase robustness against this problem the proposed method
uses subdivision of the orthographic projection image into smaller image blocks. These
are individually registered using ESM. This strategy has two advantages: Local illumina-
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tion changes can be better compensated, since the illumination offset is optimized for the
patch region, not globally. Also it can handle non static scenes, since blocks containing
motion other than the robots ego motion are easily identifiable through their mismatch-
ing motion estimate. As described in Ke and Kanade (2003), the usage of residuals as a
measure for correctness of the estimated transform of a block is problematic in environ-
ments with low contrast or no texture. An overexposed image area that has maximum
intensity value has zero residual and will be weighted very high. The experiments also
have shown that the usage of residuals is not optimal for the presented application case.
The proposed method selects the blocks contributing to the global transform estimate not
by the value of the cost function, that is the squared sum of the residuals, but by selecting
the set of blocks with lowest variance in the motion estimates.

4.3.5 Block creation and registration

The reference image It′ is split into k blocks Bi with size n×m. These blocks can overlap
and are evenly distributed over It′ , the position of block i is denoted Pi. An example of
these blocks is shown in figure 4.4. These blocks are registered to the current image It,
each giving an estimated transform r′i ∈ R

3.
These transforms are clustered to find the best global estimate. For every transform r′i

the proximity to the other transforms is defined by:

Φ(r′i) =

k∑
j=0

W(r′i , r
′
j) (4.17)

with:
W(r′i , r

′
j) = w(dt(r′i , r

′
j)), cd)w(r′i , r

′
j)), cr) (4.18)

where cd and cr are the threshold values for translation and rotation. For two transforms
u, v ∈ R3 the translation difference measure is the euclidean distance:

dt(u, v) =

√
(u∆x − v∆x)2 + (u∆y − v∆y)2

For the rotation we use the absolute difference of the rotation angles:

dr(u, v) = |u∆θ − v∆θ|

The weighting function is based on the Tukey weighting function (Huber, 1996):

w(a, b) =

0 if |a| > b
(1 − ( a

b )2)2 otherwise.
(4.19)

Selecting the transform rs with the highest weight Φ(rs) and creating the weighted sum
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Figure 4.4: Image displaying the patches. Blue patches indicate the original position,
red patches the position after applying the estimated local transformation and green dots
mark the center of patches that have been selected for the global transformation. Note
that the patches can overlap.

over all transforms gives the global transform estimate rg:

rg =
1

Φ(rs)

k∑
j=0

r′jW(rs, r′j) (4.20)

The current inter frame transformation matrix It′TIt = T (rg), which reflects the motion
from B′ to B on the X-Y plane of the frame B′ in image space, is converted to world
space to give the final motion estimate: B′TB = T ( f −1

ρ (rg)), see 3.3.2.

4.4 Evaluation

For evaluation, a set of 8 sequences taken in 4 different indoor environments was used,
see Fig. 4.5, to test the performance of the proposed method (SE2VO) and compare it to
four other state-of-the art methods: 1. Dense Visual Odometry (DVO), a direct method
(Kerl et al., 2013a); 2. RTAB-Map (RTAB), a feature based method (Labbe and Michaud,
2014); 3. Depth Enhanced Monocular Odometry (Demo), a feature based method (Zhang
et al., 2014); 4. Efficient Direct Visual Odometry (EDVO), a direct method (Klose et al.,
2013). The sequences were selected to reflect the problems arising when using visual
odometry in real scenarios, and therefore contain some very challenging environments
and sub sequences. This includes: Sequences with non planar geometry (top left Fig.
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4.5); Low illumination areas, resulting in very dark images with high image noise and
motion blur (top right Fig. 4.5); Regions with reflections of windows or artificial light
(bottom left Fig. 4.5); Regions with direct sunlight that are overexposed (bottom right
Fig. 4.5). The evaluation method is based on the method described in Geiger et al.

Figure 4.5: Example images from the 4 different environments used in the experiments.

(2012). As this method requires input poses to have equal timestamps, the measured
trajectories were linearly interpolated to match the timestamps of the ground truth data.
Since the used RGB-D camera provides images with 30 Hz and the ground truth data,
which is created by a LIDAR, has 15 Hz, the error resulting from this linear interpolation
should be rather small.
For evaluation four error metrics are used:

• Translation error per trajectory length;

• Rotation error per trajectory length;

• Translation error per velocity;

• Rotation error per velocity;
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as described in Geiger et al. (2012):

Erot(F) =
1
|F|

∑
(i, j)∈F

∠[(p̂ j 	 p̂i) 	 (p j 	 pi)], (4.21)

Etrans(F) =
1
|F|

∑
(i, j)∈F

||( p̂ j 	 p̂i) 	 (p j 	 pi)||2. (4.22)

Where F is a set of frames from frame i to frame j, p̂ ∈ S E(3) is the estimated and
p ∈ S E(3) the ground truth camera pose. 	 is the inverse compositional operator and ∠
is the rotation angle.

For each set of frames the errors are evaluated individually, therefore a big rotational
error in the beginning does not affect the translational error of a later sequence. These
error measurements are then binned by trajectory length (2 m–20 m with 6 m step size),
resulting in two different error statistics. Figure 4.6 shows the trajectory of the first
sequence, the results are shown in Tables 4.1 and 4.2. As seen in the plotted trajectory,
the EDVO and DEMO methods have difficulties providing visual odometry information
in this environment, while the results of RTAB, DVO and SE2VO are closer to the ground
truth data, although the fast rotation at the start is problematic for all methods. Tables
5-8 show the mean errors over all 8 sequences. In this overall evaluation the errors were
also binned by velocity (0.25 m/s–0.55 m/s with 0.1 m/s steps). The evaluations show
that the proposed method can perform visual odometry under challenging conditions and
offers increased robustness and accuracy, especially for the translational error, compared
to other state-of-art methods on the tested data.

Table 4.1: Rotation error / trajectory length, first seq.

Method 2 m 8 m 14 m 20 m
DVO 0.0669 0.0327 0.0256 0.0201
RTAB 0.0300 0.0170 0.0140 0.0104
DEMO 0.3908 0.2187 0.1670 0.1159
EDVO 0.3849 0.1177 0.0819 0.0555
SE2VO 0.0178 0.0104 0.0073 0.0044
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Figure 4.6: Plotted trajectories for the first test sequence. Shows the ground truth trajec-
tory together with the trajectories estimated by the evaluated methods.

Table 4.2: Translation error / trajectory length, first seq.

Method 2 m 8 m 14 m 20 m
DVO 0.2638 0.2720 0.2720 0.2230
RTAB 0.0374 0.0597 0.0851 0.1051
DEMO 1.2219 1.1475 1.0349 0.8979
EDVO 1.0009 0.9487 0.8717 0.7028
SE2VO 0.0434 0.0517 0.0689 0.0808
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Table 4.3: Mean rotation error / trajectory length for all 8 sequences

Method 2 m 8 m 14 m 20 m
DVO 0.0571 0.0341 0.0241 0.0187
RTAB 0.0946 0.0533 0.0401 0.0311
DEMO 0.4100 0.2052 0.1491 0.0939
EDVO 0.3451 0.1477 0.0888 0.0673
SE2VO 0.0383 0.0278 0.0230 0.0196

Table 4.4: Mean translation error / trajectory length for all 8 sequences

Method 2 m 8 m 14 m 20 m
DVO 0.3968 0.3884 0.3852 0.3778
RTAB 0.4497 0.4444 0.4403 0.4497
DEMO 0.9865 0.8389 0.7508 0.6964
EDVO 0.9964 0.8522 0.7831 0.7416
SE2VO 0.1696 0.1977 0.2356 0.2671

Table 4.5: Mean rotation error / velocity for all 8 sequences

Method 0.25 m/s 0.35 m/s 0.45 m/s 0.55 m/s
DVO 0.1198 0.0494 0.0362 0.0336
RTAB 0.1860 0.1047 0.0746 0.0500
DEMO 0.6496 0.3698 0.2451 0.2037
EDVO 0.6711 0.3499 0.2203 0.1602
SE2VO 0.0407 0.0303 0.0250 0.0280

Table 4.6: Mean translation error / velocity for all 8 sequences

Method 0.25 m/s 0.35 m/s 0.45 m/s 0.55 m/s
DVO 0.2047 0.1571 0.2454 0.4328
RTAB 0.2161 0.1380 0.2515 0.5237
DEMO 0.7050 0.5276 0.6923 0.8881
EDVO 0.6555 0.5372 0.7359 0.9195
SE2VO 0.1632 0.0850 0.1160 0.2468
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Table 4.7: Mean translation and rotation error over all sub trajectories.

Method Trans (%) Rot (◦/m)
DVO 31.72 2.3835
RTAB 19.42 2.0422
DEMO 85.11 13.1875
EDVO 75.48 9.9438
SE2VO 19.09 1.6257

4.5 Conclusion
This chapter described a method for visual odometry estimation on planar surfaces using
an RGB-D camera. The evaluation on eight real-world image sequences shows increased
accuracy and robustness, compared to other state of the art methods, in lowly textured en-
vironments or under difficult lighting conditions and a comparable performance in highly
textured and well lit environments. It is demonstrated that an orthogonal projection of
the RGB-D data can be used for motion estimation. Furthermore, it is shown that detect-
ing outlier image patches by clustering the estimated transformations is an alternative to
residual based outlier rejection.
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Chapter 5

Kinematic Model Based Visual
Odometry

5.1 Introduction
This chapter introduces two major improvements on the visual odometry described in the
previous chapter: The first is the use of a new warping function based on the kinematic
model of the vehicle and the second is a novel outlier detection method, which greatly
improves the performance, in terms of computation time as well as the outlier rejection,
compared to the previously employed method.

The problem remains the same: Having images largely displaying the ground is not
beneficial for visual odometry for several reasons, especially in indoor environments.
They can have a very low contrast, quickly repeating texture. The ground plane does
not provide geometric information and is comparably close to the camera, increasing the
effect of motion blur. Additionally reflections and overexposure are more likely to occur.
In order to achieve robust and reliable results for the described setup, an adapted visual
odometry is required.

The locally planar environment a wheeled robot moves in is an advantage: It allows to
describe the vehicle motion with three instead of six degrees of freedom. This planarity
also allows the use of a kinematic model of the vehicle, allowing to further decrease the
number of parameters required to estimate to two, if employed on a differential drive
vehicle.

5.1.1 Platform
The vehicle used in this chapter is a Bemotec beActive+e electric rollator shown in Fig.
5.1. It is additionally equipped with a Sick TiM551 LIDAR, a U-Blox GPS Module, a
Razor 9DoF IMU and an Asus Xtion Pro Live, which is the sensor used for recording
the data required by the proposed method. Although it is a shared control vehicle, its
motion can still be described by the kinematic model of a differential drive robot with
two powered rear wheels and two caster-like front wheels. The maximum electrically
supported velocity is 0.81m/s, which is the maximum velocity used for evaluation.
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Figure 5.1: a) The Bemotec beActive+e electric rollator used in this chapter. b) Kobuki
Turtlebot. c) Robotnik Summit XL. d) Metralabs Scitos G5. The proposed method is
suitable for all four vehicles, since their motion can be described by the differential drive
model.

5.1.2 Environment

Nine image sequences for tests and evaluation in different indoor environments were
recorded. The total length of these trajectories is 527m and the total recorded time
17min. They were selected to cover different surface materials under different lighting
conditions, see Fig. 5.2.

5.2 Related Work

Visual odometry and visual SLAM are important components in many robotic appli-
cations, from service robots to autonomous cars. Numerous methods exist, employing
different approaches to estimate the camera motion. Typically they can be classified into
two categories: Feature based and direct methods. Feature based methods use descrip-
tors extracted at key points to establish correspondences between images. This reduction
of data to be processed greatly improves computational performance, but also comprises
the loss of potentially useful information. A popular descriptor is ORB (Rublee et al.,
2011), which is used in Mur-Artal and Tardós (2017) and Labbe and Michaud (2014).
Both methods include loop closure using Bag-of-Words, pose graph optimization and
RANSAC for outlier rejection. Mur-Artal and Tardós (2017) additionally perform bun-
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Figure 5.2: Three different surface types were recorded: Tiles, wood and PVC shown in
Fig. 5.3. The images depict challenging situations the proposed method can handle: low
light conditions and reflections, shadows and non planar environment.

dle adjustment to refine key point poses. Feature based methods are especially prone
to motion blur: if the appearance of a key point changes too much, the correspondence
breaks. If the whole image is affected by motion blur this may cause loss of tracking.

Direct methods try to minimize the photometric error between two or more images,
mostly employing a Lucas-Kanade method (Lucas and Kanade, 1981). Several improve-
ments and extensions of this method were presented: e.g. in Malis (2004) or Baker and
Matthews (2004). They can further be split into sparse methods and dense methods.
Sparse methods select portions of the image, e.g. based on the amplitude of the gradient
as in Klose et al. (2013) and Engel et al. (2017). As for the feature based methods this
information selection can discard useful information, although Engel et al. (2017) de-
scribes that image data is highly redundant and the effect of additional pixels decreases
fast. Dense methods like Kerl et al. (2013b) process the whole image, mitigating the risk
of loosing important information, but increasing the computational requirements. For
outlier rejection, Klose et al. (2013) and Kerl et al. (2013b) use weights that are based
on the image residuals.

For wheeled robots it is possible to reduce the degrees of freedom to three since they
should move in an at least locally planar environment. This constraint allows to per-
form scale free monocular odometry (Zienkiewicz and Davison (2014), Lovegrove et al.
(2011) and Kitt et al. (2011)). All three methods are designed for vehicles with two mo-
tion parameters, but use a three parameter representation for image warping. This may
lead to image alignment results that contradict the vehicle’s motion model. The vehicle’s
motion model can be used to reduce the search space of image alignment, as described
in Scaramuzza et al. (2009).

5.3 Proposed Method
In general, the image alignment process for visual odometry consists of three compo-
nents: (1) an optimization method for iteratively solving the non-linear problem, com-
monly Gauss-Newton or Levenberg-Marquardt are chosen. (2) a linearisation method
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e.g. Forward Compositional, Inverse Compositional or Efficient Second Order Mini-
mization and (3) a warp parameter representation like se2 for 3DoF or se3 for 6DoF
image alignment. See Malis (2004) and Baker and Matthews (2004) for a more de-
tailed description of different methods for optimization, linearisation and warping. As a
wheeled robot moves in an at least locally planar environment the pose can be described
by three parameters: x, y, θ. Given images depicting the ground plane, the visual odom-
etry problem can be solved by finding the warp that minimizes the sum of squared dif-
ferences between these images. Therefore, the se2 parametrization is the obvious choice
for describing the image warp, as shown in Lovegrove et al. (2011) and Zienkiewicz
and Davison (2014). Many wheeled vehicles are non-holonomic, like differential drive
or Ackermann based vehicles, allowing to describe their motion by only two parame-
ters, while the robot itself moves in a 3DoF world. This over-parametrization creates an
ambiguity: Due to the locally linear character of small angle rotations they can be con-
fused with a translation and vice versa. This problem increases with the distance from
the image position to the center of rotation. This, especially in scenes with sub optimal
image quality, can result in a motion estimate that minimizes the photometric error but
describes a motion that is not feasible for the vehicle. Tests have shown that for a dif-
ferential drive vehicle with a camera mounted in front and the two powered wheels in
the back, as depicted in Fig. 5.4, the distance from rotation center to the image pixels of
about 1m is already large enough to observe this effect.

Conversely, if the vehicle performs a motion that cannot be described by the kinematic
model, e.g. due to wheel slip, the proposed method detects this by comparing the values
of the error function of the se2 model and the kinematic model alignment. If the error
ratio exceeds a given threshold, the se2 alignment, as described in the previous chapter
4, is used.

5.3.1 Overview
The proposed method consists of the following processing steps:

1. Orthogonal projection of the RGB image and conversion to a gray scale image.

2. Full image alignment with se2.

3. If rotation and lateral motion are below a threshold, go to 7.

4. Full image alignment with kinematic model.

5. Outlier rejection with kinematic model.

6. If kinematic model alignment is successful, go to 8.

7. Outlier rejection with se2 parametrisation.

8. Update of vehicle pose
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The full image alignment with se2 parametrisation is also used to reduce the number of
iterations of the model based alignment by providing an initial estimate for the motion
parameters.

5.3.2 Orthogonal Projection

In order to perform three degrees of freedom image alignment the images have to be
projected onto the ground plane. Since the RGB-D sensor provides depth information
along with the RGB image, it is possible to perform an orthogonal projection of the input
data along the z-axis. In addition to the RGB or intensity image, a mask image is stored,
describing which pixels are valid. Invalid pixels are not included in the optimization
process. This allows to perform visual odometry in environments that are not planar,
like in Fig. 5.2 d). Only the vehicle motion must follow the planarity constraint. See 3
and 4 for details of this orthogonal projection. For monocular cameras the input images
can be projected onto the previously calibrated ground plane using a homography, but as
described in Lovegrove et al. (2011), every deviation from this ground plane will affect
the estimation result negatively.

Figure 5.3: Left: Original RGB image of a low contrast environment, Center: The or-
thogonal projection. Right: Mask image.

5.3.3 Differential Drive Model

A vehicle pose in a 2D world at time t is described by pt = (pxt, pyt, θt). The differential
drive model describes the vehicle’s motion with two parameters: The distance of the rear
axis center to the center of rotation r and the rotation angle ∆θ, see Fig. 5.4 and section
2.6. Since the vehicle body is rigid, all points on the vehicle perform a rotation around
the same center by the same angle. This includes the position of the camera and it’s field
of view, allowing to estimate the parameters m′ = (r,∆θ) directly from the image data.
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After estimating m′, the robot pose is updated according to 2.15:

pt′ = pt +

 r(sin(θt + ∆θ) − sin(θt))
r(− cos(θt + ∆θ) + cos(θt))

∆θ

 . (5.1)

Bt'

∆θ yr

xr

C

c

Bt

xit'
It'

yit'

xit

yit

It

cx

cy

ox

∆θ

r

Figure 5.4: Scheme of the differential drive model: Bt′ is the base link frame at time t′,
Bt is the base link frame at the current time t, c is the current center of rotation, C is the
camera frame and It is the current image frame. The position of the rotation center in
image coordinates is described by cx and cy. ox is the known distance along the x-axis
between the image origin and the rear axis center Bt′ .

Since the vehicle parameters, like the distance between the rear wheels and the pose
of the camera on the robot, are defined in meters, these first need to be converted into
image space using formula 3.10. The motion estimate itself is done in image space, so
the results also need to be converted back to world space with formula 3.11.
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5.3.4 Image Warp

To directly estimate the vehicle’s motion parameters by minimizing the photometric er-
ror between two images, the image warp used for the optimization process has to be
parametrised accordingly. Since the robot’s motion is described by a rotation around
a point on the rear axis, the same must hold for the images. The warping function is
therefore parametrized with the rotation’s center cx = r − ox and angle ∆θ, see figure 5.4.

The rotation Rc around a point c = (cx, cy) is described by:

Rc = T−1
c RθTc

=

1 0 cx

0 1 cy

0 0 1


 cos(∆θ) sin(∆θ) 0
− sin(∆θ) cos(∆θ) 0

0 0 1


1 0 −cx

0 1 −cy

0 0 1


=

 cos(∆θ) sin(∆θ) −cy sin(∆θ) − cx(cos(∆θ) − 1)
− sin(∆θ) cos(∆θ) cx sin(∆θ) − cy(cos(∆θ) − 1)

0 0 1

 (5.2)

where Tc is the translation matrix to the center and R∆θ is the rotation matrix around
angle ∆θ. Since the image coordinate systems z-axis is flipped, the rotational part is
transposed. While cy is known from the vehicle model, cx and the rotation angle ∆θ are
free parameters. An image can be interpreted as function I(ι) of a point ι = (ix, iy) that
returns an intensity value, warping an image is equivalent with transforming the point
positions by a function ω: I(ω(ι,m))

From [5.2] the function for warping an image point ι by parameters m = (cx,∆θ) is:

ω′(ι,m) =

(
ix cos(∆θ) + iy sin(∆θ) − cy sin(∆θ) − cx(cos(∆θ) − 1)
−ix sin(∆θ) + iy cos(∆θ) + cx sin(∆θ) − cy(cos(∆θ) − 1)

)
. (5.3)

Since the elapsed time between the two images should be ≈ 30ms, the vehicle motion
between the two consecutive images and therefor the rotation change ∆θ should be rather
small. This allows a linearization of ω′(ι,m) around ∆θ = 0 by setting sin(∆θ) = ∆θ and
cos(∆θ) = 1:

ω(ι,m) ≈ ω′(ι,m)|∆θ=0

=

(
ix + iy∆θ − cy∆θ
−ix∆θ + iy + cx∆θ

)
. (5.4)

5.3.5 Image Alignment

Image alignment is done by minimizing the sum of squared differences between the
previous image It′ and the current image It by finding the optimal warp parameters m.
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The error function over all pixels is:

E(m) =
∑
ι∈ζ

(It′(ω(ι,m)) − It(ι))2, (5.5)

Where ζ = ([ix, iy] : ∀ix ∈ [0,WI[,∀iy ∈ [0,HI[) is the set of all image pixels. I(ι) for
ι = [ix, iy] gives the image value at pixel ι and I(ζ) returns a (WI · HI) × 1 column vector
containing all the image values. WI and HI are the width and height of the image. If the
photo-consistency assumption holds, there are parameters mopt for which E(mopt) = 0.
mopt then describes the movement the vehicle performed. To find the warp parameters m
that minimize E(m) between two consecutive images It′(ι) and It(ι) an iterative non-linear
least squares method is used, as formulated in Tarantola (2005):

mn+1 =mn − µn(JT
n C−1

D Jn + C−1
M )−1

(JT
n C−1

D (r) + C−1
M (mn − mprior)) (5.6)

where n is the current optimizer iteration, µn is the step width and usually set to 2, Jn is
the current Jacobian, r = It′(ω(ζ,m)) − It(ζ) is the residual, CD is the data covariance,
CM is the model covariance and mprior is the model prior. The model prior usually is
the initial guess, e.g. provided by the wheel odometry, and is optional. The previous
image It′(ι) is transformed with the current parameter estimate into the warped image
It′(ω(ζ,m)) after each iteration for updating the pixel-wise image differences and the
Jacobian Jn(ζ,m).

In general, the Jacobian J(ι,m) for one pixel ι = (ix, iy) is the derivative of that pixel in
the warped image with regard to the model parameters. This derivative can be calculated
by using the chain rule:

J(ι,m) =
∂I(ω(ι,m))

∂m
=
∂I(ω(ι,m))
∂ω(ι,m)

∂ω(ι,m)
∂m

. (5.7)

Since the output of the warping function are image coordinates ∂ω(ι′,m) = ∂ι, the deriva-
tive of the image with regard to the warping function corresponds to the derivative with
regard to the image coordinates:

∂I(ω(ι′,m))
∂ω(ι′,m)

=
∂I(ι,m)
∂ι

(5.8)

The proposed method is based on the ESM method (Malis, 2004) as described in
subsections 2.7.2 and the warping function 5.4. The ESM based Jacobian is:

Jn(ι,m) =
1
2

(
∂It′(ω(ι,m))
∂ω(ι,m)

+
∂It(ι)
∂ι

)
∂ω(ι,m)
∂m

(5.9)
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Image gradients are obtained by using e.g. a Sobel operator:

∂I′t′(ι)
∂ι

= ∇I′t′(ι) = [∇xI′t′(ι),∇yI′t′(ι)]

∂It(ι)
∂ι

= ∇It(ι) = [∇xIt(ι),∇yIt(ι)] (5.10)

where ∇xI and ∇yI is the gradient image in x resp. y direction and I′t′ = It′(ω(ζ,m)) is
It′ warped with the current parameters. Deriving the warping function 5.4 with regard to
the parameters m gives:

∂ω(ι,m)
∂m

=

(
0 (iy − cy)
θ (−ix + cx)

)
. (5.11)

Plugging equations 5.10 and 5.11 into 5.9 results in the Jacobian for one pixel ι with
position ix, iy, which is one row of the Jn(ζ,m) matrix:

(∇y∆θ,∇x(iy − cy) + ∇y(−ix + cx)) (5.12)

with

∇x =

(
1
2

(∇xIt(ι) + ∇xI′t′(ι)
)

(5.13)

∇y =

(
1
2

(∇yIt(ι) + ∇yI′t′(ι)
)

(5.14)

The data covariance CD in (5.6) is set to 1, all pixels are independent and equally
likely. The model covariance CM has to be set appropriately to achieve fast and robust
convergence of the optimisation. This is necessary because the ranges of the two model
parameters differ by orders of magnitude: While xc can have huge values, in fact for a
straight forward driving vehicle it is ± inf, ∆θ has a typical range of [−0.2, 0.2]. During
evaluation CM was set to:

CM =

(
104 0
0 10−3

)
(5.15)

For the model prior mprior the previously performed motion has shown to be a reasonable
choice. If available, also estimates from other sensors, like wheel odometry or an IMU,
could be used.

5.3.6 Outlier Removal

For visual odometry outliers are image regions that do not reflect the actual motion of
the camera. These must be excluded from the optimization process.
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A popular way for outlier removal is the use of iteratively re-weighted least squares,
as presented in Kerl et al. (2013b) and Klose et al. (2013). After each optimizer iteration
a residual image is created and, based on these pixel wise residuals, a weight for each
pixel is calculated. In the next optimizer iterations these weights are multiplied with the
corresponding Jacobian row to weight the pixel’s influence on the optimization.

The proposed method uses an approach that takes into account that outlier pixels,
except for sensor noise, usually have a spatial relation, since effects like overexposure,
reflections or moving objects are unlikely to appear only pixel-wise.

The outlier rejection is performed after the alignment of the whole image terminated,
the optimized parameters mr are used as the initial estimate for the outlier rejection.

For finding outlier regions the image is split into blocksB of a fixed size, shown in Fig.
5.5. For each block Bk with pixels ζk, the Jacobian Jk(ζk,m) and the image difference
dk = (I′t′(ζk)− It(ζk)) of the contained pixels are calculated. With Jk and dk for each block
a single parameter update step mk is estimated

mk = µn(JT
k Jk + C−1

M )−1(JT
k dk) + C−1

M (mr)). (5.16)

Each mk describes the direction in model space for which the blocks error E(mk) would
decrease. Without outliers and image noise the values of all mk should be similar. Blocks
that contain a significant amount of outliers have a different gradient direction compared
to blocks that correctly describe the vehicle’s motion. Based on the estimated model
parameters mk a clustering in model space is performed by comparing the model space
position of each block to all other blocks. The same weighting function W(v, ε), based
on the Tukey weighting function Huber (1996), as in previous chapter is used:

W(v, ε) =

0 if |v| > ε
(1 − ( v

ε
)2)2 otherwise.

(5.17)

Each model parameter xc, θ has a separate weighting parameter εx, εθ. The cluster weight
of each block is:

Φ(mk) =

n∑
j=0

W(mkcx − m jcx, εcx)W(mkθ − m jθ, εθ), (5.18)

The parameters of the block with the highest Φ(mk) are selected as mf and used as center
for the cluster membership test. To get the new motion estimate, the weighted sums over
the Jacobians and image differences are calculated:

J f =

k∑
j=0

J jW(m f x − m jx, εx)W(m f θ − m jθ, εx) (5.19)
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and

d f =

k∑
j=0

d jW(m f x − m jx, εx)W(m f θ − m jθ, εx). (5.20)

From J f and d f a new estimate for mr is calculated, like in (5.16). The process can be
repeated several times, this might be required if the initial estimate was too far from the
optimum.

Figure 5.5: Left: Visualization of the blocks used for outlier rejection, the number is
φ(mk), green dots mark blocks that contribute to the selected cluster. Right: Residual
image after performing the global image alignment.

5.4 Evaluation
To compare the performance of the proposed method (KMVO) with other approaches 9
sequences in different indoor environments were evaluated, see Sec. 5.1.2 and Fig. 5.10.
The ground truth trajectories were created using a Sick TiM551 LIDAR for data acquisi-
tion and the Hector SLAM system (Kohlbrecher et al., 2011) to integrate the LIDAR data
into a global occupancy map with 0.05m resolution used for localisation. Every ground
truth sequence was checked for map and trajectory inconsistencies and discarded, if any
were found, leaving 9 of 18 originally recorded sequences. In addition to the eight se-
quences used in the previous chapter 4, a new sequence with very challenging lighting
conditions was added. As accuracy measure the visual odometry evaluation method de-
scribed in Geiger et al. (2012) was used. This evaluation method extracts sub paths of
different lengths and calculates two error measures individually for each sub path: the
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Figure 5.6: Top left to right: Reference image, template image, block visualization. Bot-
tom left to right: Residual image after image alignment without outlier rejection, residual
image with residual based outlier rejection, residual image with block based outlier rejec-
tion. A higher intensity corresponds to a higher residual error. For the motion estimate,
the relevant part is the background.
The box, due to its height, gives a slightly different motion estimate and therefore should
receive a lower weight during the alignment process. Without outlier rejection, all image
pixels receive the same weight, resulting in a more uniform residual (bottom left). With
outlier rejection, the box pixels receive lower weights during the alignment process, thus
resulting in a more accurate alignment of the background. This is indicated by the lower
residuals of the background pixels and the higher residuals of the box pixels (bottom
center and bottom right).

66



5.4 Evaluation

Figure 5.7: Top left to right: Reference image, template image, block visualization. Bot-
tom left to right: Residual image after image alignment without outlier rejection, residual
image with residual based outlier rejection, residual image with block based outlier re-
jection. The images are cropped from 5.6. Due to the proportional larger area of the box,
the residual based outlier rejection performs worse, while the block based method is still
able to properly align the ground texture.
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rotation error and the translation error. Each error measure is normalized by path length
to be able to compare the results of sub paths of different lengths.

The proposed method KMVO was compared against five publicly available visual
odometry or SLAM systems and the method described in chapter 4:

1. SE2VO, the predecessor of the proposed method without kinematic model con-
straints.

2. DVO, a dense 6DoF visual odometry by Kerl et al. (2013b).

3. EDVO, a semi-dense 6DoF direct visual odometry method by Klose et al. (2013).

4. RTAB-Map, a versatile feature based SLAM system that includes loop closure and
pose graph optimization by Labbe and Michaud (2014). The method was used
with 3DoF localisation and non-holonomic constraints for motion estimates.

5. ORBSLAM2, a feature based 6DoF SLAM system. Two modes were tested: The
full SLAM system (ORBSLAM) and the visual odometry mode with mapping
disabled (ORBLOC).

6. DEMO, a feature based 6DoF visual odometry by Zhang et al. (2014).

The mean translation error for path lengths of 1m, 2m, 5m, 10m, 15m, 20m, 25m,
30m, 35m and 40m is shown in Fig. 5.8, the mean rotation error in Fig. 5.9. Since the
maximum path length was increased from 20m in the evaluation part in chapter 4 to now
40m the resulting errors differ and cannot be compared directly. Anyway, the relative
performance of the methods compared to each other does not change significantly.

The evaluation shows that two methods are not suited to work with the provided data:
DEMO has problems establishing correct feature correspondences. For EDVO the rea-
son is not as clear, it may be caused by the information selection scheme that selects
data with the strongest Jacobians. Anyway, as errors in setting up theses systems can-
not entirely be ruled out, these results should be regarded with care. ORBSLAM pro-
vides reasonable results as long as the tracking works, but since the pose is not updated
when the tracking is lost, the translation and rotation error raise to maximum for the
remaining trajectory. This happened in 4 out of 9 sequences, requiring to use the visual
odometry only ORBLOC version. The results of ORBSLAM are only shown for com-
pleteness. The remaining methods provide reasonable results, given the very challenging
sequences. RTab offers better accuracy than ORBSLAM and DVO, as it works in 3DoF
and uses non-holonomic constraints, i.e. not allowing strife motions. These options are
not available in ORBSLAM and DVO, which both work with 6DoF. SE2VO without
non-holonomic constraints gives results comparable to RTab. The proposed method per-
forms best across all tests, especially the rotation estimation accuracy could be improved
compared to its predecessor and is over two times better than RTab which also uses 3DoF
and model based constraints.
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Over all evaluated sequences the average processing time of the proposed method was
15.2ms per frame on a single thread of an Intel i5 4300U Mobile CPU with 1.9GHz.
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Figure 5.8: Mean translation error by path length. The proposed KMVO method (solid
red line) consistently has the lowest translation error.

5.5 Conclusions
This chapter presented KMVO, a method for estimating the motion parameters of a dif-
ferential drive vehicle directly from ground plane images. The reduction from three to
two parameters in the optimization process significantly improves the localisation accu-
racy, especially for the rotational part. Also an outlier rejection scheme was presented
that can handle large outlier areas and is computationally efficient. The complete sys-
tem was evaluated on 9 real world data sets and compared to 7 other methods. In the
tested scenarios it outperformed all 7 methods it was compared to. It is also shown that
the system is fast enough to run in real time on a single thread of a mobile CPU. Future
work includes porting the system to monocular cameras and the inclusion of a pose graph
optimization to further improve the accuracy.

The principle of including the kinematic model into the visual odometry system is
not constrained to differential drive vehicles, but can be similarly applied to other non-
holonomic vehicles with two degrees of freedom, e.g. Ackermann steered vehicles.
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Figure 5.9: Mean rotation error by path length. The proposed KMVO method (solid red
line) consistently has the lowest rotation error.

Table 5.1: Mean rotation error divided by subpath length over all subpaths.

Method 1m 10m 25m 40m
DVO 5.0787 1.8475 1.0296 0.6990

EDVO 21.8259 6.5470 2.8199 1.9181
RTAB 3.9840 2.0173 1.0508 0.7558

ORBSLAM 10.2755 4.6794 2.1463 1.5194
ORBLOC 8.1726 3.5842 2.0882 1.4674

DEMO 26.9523 11.2478 4.0126 2.8911
SE2VO 3.0899 1.3491 0.8567 0.7198
KMVO 1.7084 0.9338 0.4827 0.3661
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Table 5.2: Mean translation error divided by subpath length over all subpaths.

Method 1m 10m 25m 40m
DVO 0.3990 0.3589 0.3352 0.3482

EDVO 0.9822 0.7873 0.6446 0.6446
RTAB 0.1821 0.2000 0.2623 0.2942

ORBSLAM 0.8392 0.7040 0.6256 0.6379
ORBLOC 0.6020 0.4762 0.4533 0.4378

DEMO 1.1380 0.9018 0.7080 0.7032
SE2VO 0.1994 0.1959 0.2380 0.2994
KMVO 0.1517 0.1437 0.1663 0.1881

Table 5.3: Mean translation and rotation error over all subpaths.

Method Trans (%) Rot (◦/m)
DVO 36.00 4.10

EDVO 78.40 15.66
RTab 21.83 3.67

ORBSLAM 71.10 8.97
ORBLOC 49.80 7.20

DEMO 89.39 22.03
SE2VO 21.44 2.80
KMVO 15.48 1.69
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Figure 5.10: Plotted trajectories. Shows the ground truth trajectories together with the
trajectories estimated by the evaluated methods. Top: Sequence recorded in the envi-
ronment shown as bottom left image in Fig. 4.5. Bottom: Sequence recorded in the
environment shown as left image in Fig. 5.3.
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Chapter 6

Pose Prediction on Elevation Maps

6.1 Introduction and Motivation
Obstacle detection is a crucial task for all mobile robots, since it is mandatory for being
able to operate in environments that are not completely known beforehand. Since an
obstacle is usually defined as a non-traversable part of the environment, and traversability
can be inferred by the sequence of poses a vehicle has to go through, obstacle detection
can be accomplished by accurately predicting this sequence of poses with a sufficient
resolution. Picking up the idea of a model based approach from the previous chapter,
this chapter describes a method that employs a detailed vehicle model, represented in
image space, to perform efficient pose prediction on elevation maps for wheeled vehicles.
A shared control vehicle, like the intelligent rollator, can be considered a special class
of wheeled robot. It may possess similar perceptual capabilities, but cannot perform
actions arbitrarily due to the human user depending on it. This scenario adds additional
constraints to the already complex task of obstacle avoidance, e.g. see Shen et al. (2004),
Krieg-Brückner et al. (2012). Restrictions to the user’s intended motion should be as
small as possible and interventions by the algorithm should have reasonable causes. This,
combined with the high safety requirements of a personal mobility aid, requires a fast and
still highly accurate pose estimation. Also the spatial relation of possible obstacles has
to be considered: A curbstone edge might not be an obstacle, while a staircase, with each
stair having the same height as the curbstone, has to be detected as obstacle. Therefore
it is not only necessary to detect obstacles locally, but also to consider the state of the
vehicle while traversing an obstacle. This is done by predicting three important stability
criteria for a given position on a digital elevation map (DEM). These criteria are:

• The deviation from the gravity vector, which can be used to estimate the likelihood
of tipping over.

• The tilt angle between the two possible configurations, describing the stability of
the current pose.

• The contact point on the wheel surface, from which the force induced by gravity
can be derived.
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Figure 6.1: The electric wheeled walker prototype used for evaluation and a Summit XL
used as a model in the simulation.

The second criterion describes the vehicle stability and can be used to determine, which
wheels have ground contact. This is especially interesting for the powered wheels of the
vehicle or for estimating the orientation of caster wheels.

Although developed for the intelligent rollator, it is designed to be a generic approach
which can also be used on any four wheeled robot without soft suspensions, as it is shown
in the simulation.

6.2 Related Work
Due to the importance of obstacle detection and traversability analysis for mobile robotics,
numerous different approaches have been presented to solve these problems. Therefore,
only the most relevant ones for this chapter will be described here. An overview and clas-
sification of different approaches is given in Papadakis (2013). According to the criteria
described, the presented method is a geometric method using terrain geometry, robot
geometry and stability criteria. This combination of features is also used in the area of
planetary rovers, for example in GESTALT (Goldberg et al., 2002), based on MORPHIN
(Simmons et al., 1996). Both methods represent the terrain as a DEM, that is split into
overlapping, approximately rover sized patches. A plane is fitted to the cells in the patch,
or to smaller patches in the case of GESTALT, to estimate the roll and pitch angle, while
the residuals of the plane fit are used to describe the terrain roughness. These methods
are computationally efficient, but use only coarse vehicle models. A method for estimat-
ing the vehicle pose on a DEM employing a vehicle model is described in Debain et al.
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(2010), but the vehicle model is rather coarse, e.g. no wheel geometry is considered,
and no numbers on performance are given. More accurate estimates of traversabilty can
be achieved by performing a 3D dynamic simulation using robot and environment mod-
els. In Seegmiller and Kelly (2016) a dynamic model formulation is presented that can
run such a simulation over 1000 times faster than real time, provided a mesh model of
the environment is given. This could be used to perform model-predictive planning, as
presented in Howard (2009), in real time. Another dynamic simulation based method is
described in Norouzi et al. (2012). While the accuracy of the estimated poses is high, the
runtime is not stated. Also, Norouzi et al. (2012) reasons that for a slowly moving robot
the forces acting on it can be sufficiently described by the forces resulting from gravity,
which is also a useful assumption for the method presented in this chapter.

In the area of real-time environment geometry based methods, three approaches domi-
nate: ground plane based, slope based and V-disparity based. V-disparity based methods
are not explicitly discussed, since they are usually employed with a stereo camera and
also rely on a ground plane. Ground plane based methods, e.g. Aeschimann and Borges
(2015), Balta et al. (2013), classify obstacles by the distance to the ground plane, which
makes them fast in terms of computational effort. The drawback is the dependency on the
existence of a visible and flat ground plane that can be accurately estimated (Emadud-
din et al., 2012). A popular approach using geometric-based clustering is described in
Talukder et al. (2002). While being more flexible than a ground plane based approach,
it is also more time consuming. A fast, slope-based method is described in Buck et al.
(2016), which is able to detect small obstacles of about 3cm height up to a distance of
2.3m, but requires depth and intensity images. All these methods have in common that
they do not directly employ a vehicle model and do not take into account the spatial
relation of obstacles.

A comparison of different ground surface reconstruction methods for DEM creation
can be found in Otsu et al. (2014). The creation of an elevation map with uncertainty
estimates and map fusion is described in Fankhauser et al. (2014). The output of these
methods, or any other method creating a DEM, can be used in conjunction with the
proposed pose estimation method, if a sufficient resolution is provided.

6.3 Platform
The test vehicle used in this chapter is the Bemotec beActive+e electrical rollator, also
referred to as wheeled walker (WW), as seen in Fig. 6.1. It is additionally equipped with
a Sick TiM551 LIDAR, a U-Blox GPS Module, a Razor 9DoF IMU and an Asus Xtion
Pro Live, which is the sensor used for recording the depth data required by the proposed
method. Without a user it is a differential drive robot with two powered rear wheels and
two turnable caster wheels in the front. The default velocity is 0.5m/s, the maximum
velocity is 0.81m/s. Additionally, models of a Skid-steered Robotnik Summit XL (SU)
and an Ackermann-steered robot (AR) were used to perform simulation tests.

75



Chapter 6 Pose Prediction on Elevation Maps

6.4 Proposed Method
Wheeled vehicles usually move in a locally planar environment, i.e. on a ground plane,
allowing to describe a pose on this plane by three parameters [x, y, θ], and allowing to
represent the environment as an elevation image (EI), with pixels describing the elevation
in relation to that ground plane.

The basic idea of the proposed method is to take advantage of the fast processing
possible on the 2D data structure of the EI, while still being able to infer the parameters
of the 3D pose. Three models are employed: a 3D vehicle model, a 2D vehicle model
and a 2D wheel model. While the 3D model is represented in world space with units
in meter and radians, the 2D vehicle model and wheel model are represented in image
space with units in pixels and radians. The 3D pose of the vehicle is described by ρ3 =

[x′, y′, z′, φ′, ψ′, θ′], where x′, y′, z′ is the vehicle position, θ′ is the rotation around the
z-axis (yaw), ψ′ is the rotation around the y-axis (pitch) and φ′ the rotation around the
x-axis (roll). The 2D pose is described by ρ2 = [x, y, θ], where x, y describe the position
in pixel coordinates and θ the orientation.

Given a 2D pose and an EI of the environment, the proposed method can estimate the
missing 3D values z′, φ′, ψ′, providing a full 3D pose. This can for example be used for
estimating the full 3D vehicle pose from a 2D trajectory point created with the kinematic
model of the vehicle, allowing to asses the traversabilty of a potential trajectory, see Fig.
6.2.

Figure 6.2: Left: example of an EI with the AR model for scale. Right: Example of tra-
jectory evaluation. The proposed method can be used to evaluate the traversability of 119
trajectories within 6ms. Green poses are well traversable, red poses are not traversable
and orange can be traversed, but the angle α is not optimal.

To describe the safety of a 3D vehicle pose, two main criteria are used: the gravity
angle αg, which is the angle between the current orientation and the gravity vector, and
the tilt angle αt between the two possible configurations for which three wheels have
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contact to the ground. The thresholds for these criteria can either be derived from the
physical properties of the vehicle or can be arbitrarily set. Currently the models are
designed for 4-wheeled vehicles, vehicles with fewer or more wheels obviously require
a different vehicle model.

6.4.1 Vehicle Models

The 3D vehicle model connects the four wheel positions w′i = (w′ix,w
′
iy,w

′
iz = 0) placed

in the base link frame B, the camera frame C and the handle frame R (see Fig. 6.3). The
model also defines the wheel type: Normal wheel or caster wheel. For caster wheels
the wheel position w′i describes the joint position, i.e. the pivot around which the wheel
is rotated. From this 3D vehicle model a 2D model (Fig. 6.4) is created that describes
the 2D wheel positions wi = (wix,wiy) in relation to the 2D base link frame B′. This 2D
model is precomputed for θ ∈ [0, 2π[ with a step width ∆θ and stored in a look-up table
to speed up calculation. In the evaluation an angle step ∆θ = 1◦ was used.
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Figure 6.3: Side view and top view of the electric walker model with the different coordi-
nate systems. The Frame R is only used for recording ground truth data with an external
tracking system.

6.4.2 Elevation Image creation

Similar to the ground plane image used in chapters 4 and 5, an elevation image is a gray
scale image with a known origin oI = [oix, oiy] and size sI = [six, siy] on the x-y plane
of the corresponding coordinate system, B in this case. It also has a defined vertical and
horizontal pixel size Resp in m/pixel and a height resolution Resh in 1/m. The height
resolution Resh is required since the EI is stored as 16Bit-integers, allowing twice the
number of pixels to be processed using a vector instruction compared to 32Bit-float (see
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Figure 6.4: The 2D model created from the 3D model for orientation θ.

Section 6.4.4). Along with an EI a mask image (M) is stored to identify pixels with valid
elevation values.

The EI E is created from the depth image Id recorded by the Asus Xtion Pro Live
RGB-D camera. To determine the global orientation of B another sensor, like an IMU,
or a visual odometry can be used. Otherwise B is assumed to have φ′ = ψ′ = z′ = 0.

As described in 3, all pixels ι = [ix, iy] ∈ ζ from depth image Id are first projected to
3D points and then transformed into the target frame B:

pB =BTC P(ix, iy, Id(ix, iy)). (6.1)

All transformed 3D points pB = [px, py, pz] are assigned to E using the bilinear weighting
function wbi from equation 3.6:

E(ι) =

∑
pB∈Γ

wbi(O′pB, ιe) (pzResH)∑
pB∈Γ

wbi(O′pB, ιe)
, (6.2)

where Γ is the set of all points reprojected from Id and transformed into the base frame
B, ι is a pixel position in E and O′ is the orthographic projection matrix from equation
3.4. This is done for all pixels ι ∈ ζ to create the EI.

Pixels in E without information from at least one depth image pixel, e.g. due to occlu-
sion, are set to a height value of −10m, which is considered not-traversable in the later
processing.

For the evaluation, the EI representing the environment had a length and width of 320
pixels, a x-y resolution Resp = 0.0075m/pixel and a height resolution of Resh = 1/mm.
Therefore it covers an area of 2.4m× 2.4m. Although rather small, the EI dimensions are
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sufficient for the prototype, as the downward facing RGB-D camera only sees about 3m
to 3.5m ahead. Each frame is processed individually into an EI, no integration over time
is done.

There are two reasons to prefer the latest depth information: The number of cloud
points contributing to the height value of an elevation pixel decreases with distance and
the sensor’s depth error increases with distance. Also, since no tracking for dynamic
obstacles is used, the latest data is the most up-to-date representation of the current scene.
Similar arguments can be found in Biesiadecki and Maimone (2006).

6.4.3 Wheel Model
To find the wheel to ground contact points on the EI, an appropriate wheel representa-
tion is required: The representation has to be sufficiently accurate for achieving good
prediction results, and fast enough to perform this operation several thousand times per
millisecond to evaluate multiple trajectories in real-time. The contact point calculation
consists of two steps: identifying EI pixels that are within the wheel area, and therefore
are possible contact points, and calculating the distances of each of these pixels to the
wheel surface. Identifying the wheel region on the EI is done by using a mask image,
that defines which pixels to use in the distance calculation. The lower half of the wheel
surface is represented as an EI that encodes the height of the lower wheel surface for
a wheel resting on a flat ground. For the computation of contact points these two im-
ages are translated to the pixel position closest to the desired location. Therefore the
misplacement of the wheel is limited to:

√
2

2 Resp.
A wheel is described by a radius wr, width ww and the pivot point w j = (w jx,w jy) in

the wheel coordinate frame (see Fig. 6.5). The wheel center wc = (wcx,wcy) is defined
by the center of gravity of the wheel. For Non-Caster wheels the pivot is not used and
w j = wc. From these parameters an EI W of the wheel is created. W has the same pixel
resolution Resp and height resolution Resh as the environment EI E. It is beneficial to
adjust the resolution Resp of E to a fraction of the wheel width, in order to achieve the
best approximation. The wheel image width is chosen to be the smallest multiple of Resp

greater than wr. The function to assign an elevation value zw to a pixel in W with position
ιw = (iwx, iwy) is:

W(ιw) =
(
1 −

√
1 − (iwx − wcx)2

)
wrResh (6.3)

Using this approach, wheels with arbitrary radius can be rendered. Similar to the vehicle
model, the wheel image is precomputed with the same angular resolution (∆θ′ = 1◦)
as the vehicle model. Due to the small memory size of wheel images and 2D vehicle
models, it is not a problem to increase the angular resolution further, but tests have shown
that this does not increase accuracy. In terms of computation time the angular resolution
is irrelevant. In addition to each wheel image, a corresponding mask image mW and the
image origin wo = (wox,woy) is stored. The image origin wo describes the location of the
upper left pixel in relation to w j.
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Figure 6.5: Wheel image with coordinate system.

6.4.4 Wheel Contact Points

The fast calculation of contact points is the key functionality of the proposed method.
Due to the wheel representation as a precomputed image with the same resolution as
the EI, this is simplified to a per-pixel image processing operation. The implementation
uses SIMD (Single Instruction, Multiple Data) instructions: SSE (Streaming SIMD Ex-
tensions) or AVX (Advanced Vector Extensions), depending on the CPU’s capabilities,
to speed up the computation by processing multiple pixels in one operation. With the
resolution and wheel size used for the evaluation, the function for computing the contact
point of one wheel of the WW takes only 49ns with SSE and 40ns with AVX averaged
over all wheel orientations. For evaluation the AVX path was used.

For a wheel EI W, an environment EI E and a wheel image position pw = (pwx, pwy),
the contact point c(pw) = (cx, cy) on the wheel and the contact height z(pw) are found by
calculating the minimum value of the difference image ∆I = W − E. Then c(pw) equals
the location of the minimum and z(pw) equals the negative difference value, see Fig. 6.6.

pw c(pw)

0
z(pw)

E

W

Figure 6.6: Schematic drawing of a wheel contact point.

For caster wheels several orientations, ±24◦ in 4◦ steps from the initial orientation, are
tested to find the orientation θm with the lowest z(pw) value.

6.4.5 Pose Prediction

Since the vehicle’s chassis is almost rigid, i.e. it does not have a soft suspension, and
the four wheel positions are lying on a plane parallel to the x-y plane of the base link
coordinate system, the vehicle’s pitch and roll angles are described by the normal nv =

(nvx, nvy, nvz)T of this plane. For a four wheeled vehicle with a rigid frame standing on
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non-planar ground, there are two diagonally opposing wheels that must have ground
contact (stable wheels). The two remaining wheels cannot have ground contact at the
same time (free wheels). For a free wheel the diagonally opposing wheel must be above
the ground. This allows the vehicle to alternate between these two wheels having ground
contact. If a wheel is not free it must be stable and also the diagonally opposing wheel is
stable. The normals n1 , n2 of the two possible poses are defined by the contact points of
each free wheel and the two stable wheels.

Given an EI E and a pose ρ2 = (x, y, θ), the steps for calculating the wheel z positions
at pose ρ2 are:

• Get wheel positions wi,i=1..4 for angle θ from the vehicle model.

• For each wheel i:

– Get wheel rotation θwi in the vehicle frame.

– Get wheel image W, mask mW and origin woi for angle θ + θwi.

– Calculate wheel image position pwi = (pwix, pwiy) = (x, y) + wi + woi on E.

– Calculate the difference image ∆I = W − E.

– Find the minima of ∆I to get the contact point c(pwi) and the corresponding
elevation z(pwi).

Each wheel can have an individual rotation θwi. This can be useful for modeling an
Ackermann drive vehicle, where the two steering wheels have different orientations when
driving a curve.

With the estimated z-values z(pwi) available, a 3D wheel position for each wheel $i =

(pwix, pwiy, z(pwi)/Resh) is defined. For an arbitrary selected wheel i, a plane Pi is defined
by a normal ni = (nix, niy, niz)T and the distance di:

ni = ($ j −$i) × ($k −$i) (6.4)
di = −ni ·$i (6.5)

where j, k are the indices of i’s neighbours. If the distance δu = ni ·$u+di of the opposing
fourth wheel u to this plane is negative, these wheels (i, u) are free. The resulting normals
are: n1 = ni and n2 = nu. If δu is positive, i, u are the stable wheels, giving normals
n1 = nj and n2 = nk. If δu is zero, the configuration of the vehicle cannot be determined
by this combination of wheels and the next wheel j has to be tested as described above.
If δu is also zero for j, the vehicle stands on flat ground and n1 = n2 = ni. Without
additional knowledge like the robot’s mass distribution and current velocities, it cannot
be determined which normal describes the real pose best. For safety reasons, the one
with greater distance to the inverted gravity vector g is used for calculating the gravity
angle:

αg = max(cos−1(g · n1), cos−1(g · n2)) (6.6)
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The resulting tilt angle is: αt = cos−1(n1 · n2).
Since the 2D wheel positions are not transformed by the pitch and roll angle of the

vehicle, there is a systematic error in the estimated angle:

E(zd, Ls) = sin−1
(
|zd|

Ls

)
− tan−1

(
|zd|

Ls

)
(6.7)

Where zd is the largest difference of z values for two opposing wheels and Ls is the
distance of these two opposing wheels. For zd < Ls

3.037 the error is below 1◦, which is
acceptable for most applications.

6.5 Evaluation

For evaluation the vehicles were driven over different obstacles to create a six degrees
of freedom ground truth trajectory recorded by an optical tracking system or exported
from the simulation. The environment was recorded by a RGB-D camera producing a
sequence of depth images at 30Hz. Three datasets were tested: two simulated datasets
and one real world dataset. The simulated datasets were created by a dynamic simula-
tion of a Summit XL (SU) and an Ackermann-steered robot (AR) with Gazebo (Koenig
and Howard, 2004). These datasets consist of 9 different obstacle setups used for both
simulations, 6 resembling real world obstacles e.g. stairs, ramps and curbstones, and 3
synthetic tests like randomized rough terrain and curves with different slopes, see Fig.6.7.
A total of 15783 (SU) resp. 18525 (AR) depth images were created. The ground truth
was directly exported from the simulation.

Figure 6.7: Summit XL and Ackermann-steered robot models in the simulation environ-
ment.

For the real-world dataset, created with the rollator, mock-ups of different obstacles
and situations were built using wooden boxes and metal ramps, see Fig. 6.8. The ob-
stacles were chosen to represent typical problematic situations, e.g. stairs, ramps and
curbstones. The dataset consists of 28 sequences with different obstacle setups, resulting
in 25851 depth images with corresponding ground truth poses in total. For creating the
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ground truth poses an OptiTrack camera tracking system was used, which allows very
precise global pose measurements for a rigid body marked with retro-reflecting markers.

Figure 6.8: The electric rollator on a mock-up obstacle, stairs as seen by the RGB-D
camera.

6.5.1 Evaluation Method

As the goal of the proposed method is to predict the 3D vehicle pose given a 2D pose and
an EI, the evaluation was done by comparing the physically attained 3D pose, created by
driving the vehicle over obstacles, with the pose predicted from an earlier point in the
trajectory.

Each test data sequence contains a set of n depth images IBt recorded at time t with a
corresponding ground truth transform WTBt, that describes the pose of the base frame B
in the world coordinate system at time t. The transforms WTBt define the driven trajectory
τ = [WTB0, . . .

W TBn].
Evaluation was performed for each depth image IBt individually: First, the correspond-

ing WTBt is selected and its inverse left-multiplied with the sequence of following trans-
forms, giving a new trajectory τ′t that is located in the current base frame:

τ′t = [WTBt
−1WTBt+1, . . . ,

WTBn] (6.8)

Second, each transform WT′Bt ∈ τ
′
t is decomposed into a 3D pose ρ3 = (x′, y′, z′, φ′, ψ′, θ′).

From ρ3 a 2D pose ρ2 = (x, y, θ) and the ground truth normal ngt, describing the roll and
pitch angle, are created. Using the proposed method with ρ2 and the EI created from IBt

as input, the two possible normals n1 and n2 are calculated. For calculating the error ε
between the predicted and ground truth normal, the normal closer to the ground truth is
selected:

ε = cos−1(max(n1 · ngt, n2 · ngt)). (6.9)
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This is necessary since a real vehicle cannot have both configurations simultaneously
and, as described in section 6.4.5, the more probable normal is not known. For every
elevation image several future poses can be tested, resulting in 2.54mio comparisons for
the real world data set and 1.50mio (SU) resp. 2.14mio (AR) for the simulated datasets.
The results of the comparison, the angle between the ground truth normal and the pre-
dicted normal, are sorted into bins defined by the angle αgt between ground truth normal
and the inverted gravity vector. This describes how well the proposed methods perform
depending on the actual vehicle orientation. Fig. 6.9 shows the mean of each bin for the
simulated and real world datasets with a bin size of 1◦ for angles between 0◦ and 22◦.
The mean is calculated over all obstacle set-ups of the respective dataset. The difference
in the simulation results can be explained by the rigid chassis of the AR in contrast to the
SU with suspensions.
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Figure 6.9: Mean angle between ground truth normal and estimated normal for simulated
and real world datasets. Given a ground truth angle αgt, the systematic error can be
expressed as: E′(αgt) = αgt − tan−1(sin(αgt)). The overall performance on the simulated
data is better since some sources of error are not simulated, e.g. the RGB-D camera’s
sensor noise or noise in the acquisition of ground truth poses by the optical tracking
system.

6.5.2 Performance
In order to use the proposed method for reactive obstacle avoidance, it has to be fast
enough to run on the on-board computer of a mobile robot. In the evaluation the average
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runtime of one pose estimation was 0.00049ms (SU) resp. 0.00026ms (AR) for the
simulated vehicles and 0.00147ms for the real system. The difference is due to the wider
wheels of the Summit XL, resulting in larger wheel images, and the two caster wheels of
the wheeled walker: Each wheel has to be tested for 15 rotations, resulting in 32 contact
point tests per pose estimate compared to 4 tests for the Summit XL and the Ackermann-
steered robot with four fixed wheels. With a target frame rate of 30Hz this would allow
up to 22448 (WW) resp. 67346 (SU) resp. 126923 (AR) pose estimates per frame,
which corresponds to testing 84 (WW) resp. 252 (SU) resp. 475 (AR) trajectories of 2m
length using a 0.0075m/pixel resolution. The tests were done using a single thread on
an Intel i5-4300U CPU with 1.9GHz and 8GB DDR3 RAM. A comparison to existing
methods is difficult: The most similar method found in literature (Debain et al., 2010)
does not state any numbers on performance or resolution. Methods that employ a vehicle
model and perform a dynamic simulation can be found in e.g. Norouzi et al. (2012) or
Seegmiller and Kelly (2016). While Norouzi et al. (2012) does not provide numbers
on computational performance, the method in Seegmiller and Kelly (2016) is able to
perform the dynamic simulation over 1000x faster than real time. The method presented
in this thesis can run over 50000x faster than real time, given the parameters used for the
AR evaluation and a vehicle speed of 0.5m/s.

6.6 Conclusions
We described a method for fast and accurate pose estimation on an elevation image that
can be used for obstacle detection and traversability analysis. The method was tested in
a simulation and on an electric rollator. It was compared to ground truth data from an
external source. These tests showed an average angular error of 0.47◦ (SU) resp. 0.36◦

(AR) in the simulation and 0.86◦ on the real system, making the method precise enough
for most applications. The tests also showed that the current implementation is fast
enough to estimate up to 3800 poses in 1ms, allowing the evaluation of many trajectories
in real-time. Although being implemented for four wheeled vehicles, the vehicle model
can be adapted to work with other numbers of wheels. The output of the method are the
two normals defining the possible orientations of a four wheeled robot, and the location
of the contact points on the wheels. The latter can be used to also estimate the forces
acting on the wheels while resting at that position, this is still open to future work.
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Chapter 7

Model Based Traversability Analysis

7.1 Introduction

Finding a safely traversable path efficiently is still a very challenging task in the area
of mobile robots. One reason for the complexity of the problem is the vehicle repre-
sentation: If the vehicle representation is highly simplified, e.g. to a box or circle, path
planning is fast, but many potentially drivable paths are discarded. A common exam-
ple are the split stroller ramps on stairs, recognizing these as traversable is crucial for a
rollator. A fully modeled vehicle representation, with wheels and chassis, can perform
a more fine-grained path planning, but is usually time consuming. For a shared control
vehicle like the Bemotec beActive+e intelligent rollator, safe path planning is an even
more important task, since an unsafe path may not only cause damage to the vehicle but
could also cause harm to the user. Additionally, this application scenario poses addi-
tional challenges: Since the user’s motion direction may change rapidly, the vehicle has
to perform traversability analysis very quickly to provide a responsive user experience.

Using the method presented in the previous chapter 6 for fast pose estimation, a novel
model based traversability analysis method is described. This analysis method fulfills
these requirements: It can perform accurate pose estimation and traversability analysis
on elevation maps using a detailed vehicle model in real time, while it ensures the safety
of the vehicle by satisfying a set of vehicle specific safety requirements, even in complex
environments.

Another limitation are the perception capabilities: The sensors should be as lightweight
and inexpensive as possible. These two criteria are well met by the current generation
of RGB-D and stereo depth sensors. They provide a decent frame rate of at least 30 Hz,
are lightweight and less expensive than 2D- and 3D-LIDARs, but have lower perception
range (RGB-D cameras) or lower depth accuracy (stereo systems) than LIDARs. Due
to these requirements and limitations, the proposed planning method was designed to
provide a local path, with high accuracy and low latency. The traversability analysis can
also be used on larger scales, given a sufficiently detailed elevation map. Although the
proposed method was developed for a shared control vehicle, this chapter focuses on its
application on autonomous mobile robots.
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Figure 7.1: The Robotnik Summit XL and the electric rollator Bemotec beActive+e.

7.2 Related Work

Although a variety of different approaches exist, path planning in an unstructured envi-
ronment with short sensor perception ranges or at higher speeds still is a very challenging
task.

Accurate traversability analysis is highly important in the area of planetary exploration
rovers, where one wrong driving decision endangers the whole mission. The GESTALT
method from Goldberg et al. (2002), employed on Nasa’s twin Mars exploration rovers,
uses a grid-based local traversability map with 20 cm resolution centered around the
rover. The traversability of the grid cells is determined by fitting a plane to the points
contained in a rover sized disk around the cell. Three traversability criteria are used:
Tilt, the angle of the plane to the gravity vector. Roughness, the residual of the plane
fit, describing the distance of the 3D points to the fitted plane. Step Hazard, the largest
distance of any point to the fitted plane. Using these criteria, a set of arc segments,
representing different control commands, is evaluated and the control command with
the highest score is executed. Several extensions of this method exist, e.g. (Utz and
Ruland, 2008). A more detailed robot model, including wheel contact quality and rover
orientation for traversability analysis is used in Rusu (2014) and Iagnemma et al. (1999).

The usage of a rover model with wheel placement is described in Ono et al. (2015).
In addition to the geometric analysis of the DEM, the traversability of the terrain sur-
rounding the rover is estimated with a classifier. The wheel placement is used in the
scoring function, where the geometric and terrain type information are combined, which
provides scores for a rapidly exploring random tree (RRT) planner.

All of the above methods describe a combination of grid based environment repre-
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sentation, traversability analysis and path or trajectory planning. The method proposed
in this chapter improves upon previous methods by employing a more detailed vehicle
model in the planning process.

Path planning for a hybrid driving and stepping robot on an elevation map using a
sufficiently detailed robot model is described in Klamt and Behnke (2017). Although the
planning time is in the range of real-time processing, planning requires a pre-calculated
pose cost map for which no processing time is given.

Methods for path or trajectory planning can be separated into two groups: The ma-
jority of approaches uses a discretization of the search space, while the other group of
methods uses a continuous optimization scheme.

As the method presented in this chapter applies different sampling strategies on the
control space, it belongs to the first group of methods.

The simplest form of discretization is a uniform grid over the control space, e.g. as de-
scribed in Fox et al. (1997). Motion primitives are another way to discretize the control
space: They are path or trajectory segments representing control commands that com-
ply with the kinematic and dynamic constraints of the vehicle. They can also describe
more complex maneuvers, e.g. changing velocities and accelerations over time. Pre-
computing the segments and only use an optimal subset increases the planning efficiency
(Green and Kelly, 2007), (Branicky et al., 2008). Instead in control space, state lattice
based methods create a grid in state space, i.e. the space of vehicle poses, and connect the
nodes with corresponding control commands (Pivtoraiko and Kelly, 2005). This allows
the efficient use of graph search methods like A* or D*.

Due to the rather small local map used for the proposed method, the depth of the search
tree is limited. Therefore, the benefits of a state lattice are negligible.

7.3 Platforms
For evaluation, two robotic platforms were used: A Bemotec beActive+e rollator and a
Robotnik Summit XL, see Fig. 7.1. Both were equipped with an Orbbec Astra RGB-D
camera for indoor or an Intel RealSense D435 for outdoor experiments, a SICK TiM 571
LIDAR and a Razor IMU M0 inertial measurement unit. The electrical rollator beAc-
tive+e, by design a shared control vehicle, has been modified to also support autonomous
operation. Its kinematics can be described by the differential drive model. In addition
to the sensors mentioned above, it provides wheel odometry for the two powered rear
wheels using Hall-effect sensors. The on-board computer is an Intel i5-6260U CPU run-
ning at 1.8 GHz with 16 GB DDR4 RAM. The skid steered Summit XL also provides
Hall-effect sensor based wheel odometry for each wheel. The on-board computer is an
Intel i7-6700HQ CPU running at 2.6 Ghz with 16 GB DDR4 RAM. For both vehicles the
Orbbec Astra was used for indoor and the Intel Realsense D435 for outdoor experiments.
Both sensors on each platform are downward facing with a pitch angle of ≈ 20◦ in order
to see the ground in front of the vehicle. The IMU was used for creating the ground truth
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data for the experiments, the LIDAR was not used at all.

7.4 Proposed Method
The previous chapter 6 presented a method for estimating the orientation of a vehicle on
an elevation map, gave a more detailed description of the vehicle setup and evaluated
the accuracy of the pose estimation. In the current chapter, this pose estimation is used,
along with the improved wheel model, the chassis collision detection and the new local
mapping method, to create a system for real time path planning using model based safety
criteria.

The proposed method consists of three modules: A local mapping module, a pose eval-
uation module and a planning module. The local mapping module integrates depth data
acquired by the RGB-D camera into a local elevation map. The pose evaluation module
uses the local map and a vehicle model to estimate several traversability parameters for
a given 2D pose. The planning module employs an A*-like search strategy to find a safe
local trajectory. The output of the planning module can either be directly sent to the
robot controller as control commands, or the velocity information can be discarded and
the resulting path is sent to a path following controller. Depending on the vehicle type,
several path following controllers included in the navigation, path planning and path fol-
lowing framework GeRoNa (Huskić et al., 2016) (Huskic et al., 2017) can be used. The
usage of the latter option was added to also support platforms with lower computational
capabilities, since the path planning process can be performed with a lower framerate
at the cost of not using the most up-to-date map representation. The proposed method
is designed for reactive driving and therefore is mainly suitable for local path planning.
If an occupancy grid map is available, one of the global path planning methods of the
GeRoNa-framework can be used to find a coarser global path, which can be locally opti-
mized with the proposed method. To perform traversability analysis efficiently, an image
based representation of the environment and the vehicle is used. This allows to reduce
the wheel contact point calculation and chassis collision detection to efficient image pro-
cessing operations.

7.4.1 Local Elevation Map
The local elevation map (LEI) is created from the depth image provided by the RGB-D
camera using the method described in section 3.3.1. It is a 16 Bit gray scale image with
a typical resolution of Resp ≈ 0.0104 m/pixel and Resh = 1 mm. The size of the LEI
covers 8 m x 8 m and the resolution is 768 x 768 pixels. In order to properly integrate
the depth data recorded at different poses, a precise localization is required: Here an
Extended Kalman-Filter is employed to fuse the data from the wheel odometry, the IMU
and a visual odometry, see subsection 2.3.2. When the robot leaves the central block,
depicted in Fig. 7.2, the origin of the LEI in the world coordinate system is updated
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by moving it into the corresponding direction by 1/8 of the map size. The average inte-
gration time of a new depth image is 10.69 ms, averaged over 10875 frames on a single
thread of an Intel I5-4300U CPU with 1.9 Ghz and 8 GB DDR3 RAM.

Figure 7.2: Example of a local elevation image (LEI) taken from the forest sequence
shown in Fig. 7.19. The red square is the center block with side length 1/4 of the total
map size. If the vehicle leaves this area, the LEI is relocated to keep the vehicle inside it.

Since the elevation map creation is implemented in a separate module it can be eas-
ily replaced with another method, e.g. Fankhauser et al. (2014), which also provides
uncertainties but is computationally more demanding.

7.4.2 Vehicle Model

A four wheeled vehicle is described by the positions of its four wheels w1...4 and its
chassis c, see Fig. 7.3 left. All wheel positions and the chassis position are relative to the
base frame B. All positions are in world space, making the vehicle definition independent
of the local map parameters. When the vehicle is set up, all positions and dimensions are
converted into image space using Resp and Resh and the lower half of the wheels and the
chassis are rendered as EIs, shown in the right image of Fig. 7.3. For efficient processing
these EIs must be axis-aligned with the LEI. Since the vehicle parameters are known,
rotated vehicle models are pre-computed in 1◦ degree steps for 360◦ to describe different
orientations. This way the LEI only needs to be shifted while the vehicle is rotated and
translated in the map.
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A vehicle pose p = (px, py, pθ) describes the location and orientation of the base frame
B in the local image space coordinate system (LCS).

The vehicles are assumed to be rigid, i.e. all four wheels lie on one plane and the
distance of each wheel to the chassis is constant. This assumption also implies that for
uneven surfaces, there is the possibility that only three of the four wheels have ground
contact. Therefore two possible vehicle orientations have to be estimated. The vehicle’s
roll and pitch orientation are described as the normal of the plane defined by the four
wheels. Without additional knowledge, like the vehicle’s mass distribution, it is not
possible to determine which orientation is more likely. Therefore two normals n1,n2 are
estimated for each pose, see chapter 6.

Although the Summit XL has a suspension, it is stiff enough for the proposed method
to provide sufficiently accurate pose estimates.

w1

B'

yw

xw

w4

w3

w2

θ
yr

xr

Figure 7.3: Left: Schematic drawing of the rollator vehicle model. Right: The EIs repre-
senting the Summit XL rendered at pθ = 0.4 rad.

7.4.3 Wheel Model

A wheel is defined by a radius wr, a lateral radius wl, width ww, the pivot point w j =

(w jx,w jy) in wheel image coordinates and the position of w j relative to the base frame:
wp = (wpx,wpy). The wheel geometry is described by a slice of an ellipsoid with x- and z-
radius wr and y-radius wl. ww determines the slice width of the ellipsoid along the y-axis.
For Ackermann and skid steered vehicles, the pivot point w j is the wheel’s center, for a
caster wheel it is translated along the wheels x-axis, see Fig. 7.4.

Each wheel model also contains information wether the wheel is turnable or not. Turn-
able wheels are either caster wheels or the steering wheels of an Ackermann vehicle. To
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y
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Wheel
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Figure 7.4: Left: Summit XL wheel representation. Center: Representation of a caster
wheel of the beActive+e. The pivot point w j is not located in the wheel center (light blue
point). Right: Visualization of wheel contact on the elevation map.

correctly estimate the wheel contact, the wheel orientation relative to the vehicle orien-
tation is required. Since the vehicle velocity Rv = (v, ω) is known at all points of the
trajectory, the wheel orientation can be calculated with:

wθ =

0 if ω = 0
atan2(h, v

ω
+ wpy) otherwise,

(7.1)

where h is the distance between the rear and the front wheels.
To keep the vehicle from driving on edges, a wheel support measure wi

s is introduced.
It describes the number of wheel EI pixels not further away from the ground than a given
threshold tws, divided by the number of total wheel pixels.

Given a vehicle pose and the current local elevation map, the following measures are
calculated for each wheel i:

• wi
z: The contact z-value for each wheel.

• wi
c: The contact point in wheel coordinates.

• wi
s: The wheel support value.

• wi
θ: The wheel angle relative to the vehicle’s body.

This is done by subtracting the wheel EI corresponding to wi
θ from the LEI and finding

the minima of the difference image. wi
z is the value and wi

c the location of the minima.
Together these values are the result of one wheel pose estimate: wi

res = [wi
z,wi

c,w
i
s,w

i
θ].

7.4.4 Chassis Model
Similar to the wheels, also the chassis is modeled as an elevation image, the chassis
elevation image (CEI), with the same resolutions Resh and Resp as the LEI and the wheel
images. It is also precomputed for 360° in 1° steps. The chassis model is employed to
detect collisions of the chassis with the environment. Since the chassis orientation and
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height depend on the vehicle normal and the z-position of the wheels, these values are
required to perform the chassis collision detection.

To include the predicted vehicle parameters n1,n2,wi=1...4
z in the chassis model, a warp-

ing function is required, which transforms the chassis model height values:

CEI′(ι) = CEI(ι) + w1
z + ix · ∆x + iy · ∆y, (7.2)

Where ι = (ix, iy) is the position of the current pixel, CEI′ is the warped chassis image,
CEI(ι) is the corresponding height value at ι and ∆x and ∆y are linear factors:

∆x = (npx/npz) · (Resh/Resp) (7.3)
∆y = (npy/npz) · (Resh/Resp). (7.4)

Once the CEI is transformed, the chassis collision is detected by subtracting the cor-
responding part of the LEI. If the difference image contains pixel values below zero, a
chassis collision occurred. The collision point on the CEI is the location of the minimum
of the difference image. This test is done for both possible vehicle orientations.

Figure 7.5: Chassis model for the Summit XL. The grey values represent the distance
to the ground. Left: Chassis image for a vehicle standing on the ground plane. Right:
Warped chassis image for a vehicle driving up a step. The values of the warped image
increase along the x-axis, since the vehicle front now has a higher distance to the ground.

7.5 Traversability
There is no definite definition of the term ”traversability”, but one definition, close to
what is commonly meant in the community, is given in Papadakis (2013): ”The capability
of a ground vehicle to reside over a terrain region under an admissible state wherein it
is capable of entering given the current state, this capability being quantified by taking
into account a terrain model, the robotic vehicle model, the kinematic constraints of the
vehicle and a set of criteria based on which the optimality of an admissible state can be
assessed.” The terrain model and the vehicle model have already been described in this
and the previous chapter, the criteria will be described in this section and the kinematic
constraints are included in the following section.
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A state is clearly not admissible if this state is unrecoverable, e.g. due to the vehicle
has tipped over or none of the wheels has ground contact. For safety reasons, it is usually
not desirable to operate a vehicle in a state that is close to a state that is unrecoverable.
Therefore, thresholds for the criteria that determine the optimality of a state are used to
define the admissibility.

Since the environment and the vehicle itself are discretized into pixels, there is mini-
mum distance the vehicle has to travel to induce a change of the state estimate. In order
to provide the highest possible level of vehicle safety, given the discretization of the
models, the sampling rate should approximately correspond to the map resolution. This
results in a high number of states for which the admissibility has to be assessed.

Using a common image-based representation for the environment and the vehicle al-
lows to reduce the contact point calculation and chassis collision detection to efficient
image processing operations, enabling the evaluation of several thousand vehicle poses
in real-time.

7.5.1 Pose Evaluation

Given the 2D vehicle pose p = (px, py, pθ) in the LCS, a vehicle velocity Rv and a LEI of
the environment, the pose evaluation can be seen as a function PE:

Γ = (γ1, γ2,wi=1...4
res ) = PE(p, v, LEI), (7.5)

with

γ j=1,2 = (nj, p′z j, cc j).

where γ1, γ2 are the results for the two possible vehicle configurations, nj are the vehicle
normals describing the orientation of the vehicle, p′z j are the estimated z-positions of the
base link, cc j are boolean values describing if a chassis collision occurs and wi=1..4

res are the
four wheel result tuples.

The processing steps of one pose estimate are:

• Lookup pre-calculated vehicle model V M for pθ.

• Transform V M to position px, py on the LEI.

• Evaluate all four wheels.

• Calculate the two possible vehicle normals n1,2.

• Check for chassis collision.
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7.5.2 Safety Criteria

From the pose evaluation results four safety criteria are calculated. These criteria were
chosen to reflect the four most critical safety parameters: The inclination angle, the
stability, the angular velocity and the wheel support of the vehicle. The angular velocity
requires two consecutive poses to be calculated, so this criterion is meant for trajectory
or path planning.

The four safety criteria are as follows:

• Gravity Angle, the angle between the gravity vector g and the vehicle normal:
αg = max(cos−1(n1 · g), cos−1(n2 · g))

Figure 7.6: The gravity angle is the angle between the gravity vector (blue arrow) and
the vehicle normal (red arrow).

• Tip Angle, the angle between the two vehicle normals:
αt = cos−1(n1 · n2)

Figure 7.7: The tip angle is the angle between the two possible vehicle poses (green and
red arrows).

• Delta Angle, the angle between the previous and the current orientation: α∆ =

max(cos−1(n1 ·np1), cos−1(n2 ·np2)) where np1 and np2 are the corresponding vehicle
normals at the previous pose.
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Figure 7.8: The delta angle is the angle between the previous pose (green arrow) and the
current pose (red arrow).

• Min Wheel Support, the smallest wheel support value: wsmin = min(w1
s ,w

2
s ,w

3
s ,w

4
s)

Figure 7.9: The wheel support value is the ratio of the wheel surface that is further away
from the ground than the threshold, depicted by the red box.

The gravity angle indicates whether or not the vehicle is likely to tip over. The tip angle
is particularly important for differential drive vehicles such as the rollator, where only
the rear wheels are powered. A larger tip angle indicates that one of these wheels might
not have ground contact or at least a higher chance of wheel slip. The delta angle is a
measure of the angular velocity of the vehicle and can e.g. indicate driving down high
steps. A low wheel support indicates that the vehicle is driving on an edge and one or
more wheels are prone to fall off that edge. A path is considered traversable if these four
criteria do not violate the vehicle specific thresholds: tαg, tαt, tα∆ or tws.

7.6 Local Planner

The local planner consists of three components: The search strategy, a node expander
and a node scorer. Each component is designed to be easily exchangeable, allowing easy
integration of new search strategies, node expanders and scoring functions.

The search space is the space of vehicle velocities Rv = (v, ω), where v is the linear and
ω the angular velocity. This two dimensional search space is limited to the admissible
velocities. A node in the search tree is defined by a velocity, a start pose and a duration:
Ni = (Rv, p,∆t).
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The trajectory of a node Ni is described by the function Tr(Ni,∆t′), which is based on
the kinematic model shown in 2.15 and 2.16:

Tr(Ni,∆t′) =

px

py

pθ

 +

 r (sin(pθ + ω∆t′) − sin(pθ))
r (− cos(pθ + ω∆t′) + cos(pθ))

ω∆t′

 (7.6)

with r =
v
ω

or

Tr(Ni,∆t′) =

px

py

pθ

 +

cos(pθ)v∆t′

sin(pθ)v∆t′

0

 (7.7)

when ω = 0

For an Ackermann vehicle, the control command is Ra = (v, ψ), where ψ is a steering
angle. The steering angle has to be calculated from Rv and the vehicle length la:

ψ = arctan(
ωla

v
). (7.8)

Using the kinematic model to propagate the vehicle, starting at p, with Rv for a given
duration ∆t results in a new pose p′ = Tr(Ni,∆t). Since the velocity is constant for
the duration of a node, and therefore the acceleration is zero, each node describes a
trajectory where for every ∆t′ ∈ [0,∆t] the pose, velocity and acceleration are known:
p∆t′ = Tr(Ni,∆t′). Since the acceleration is zero during a trajectory segment, the velocity
changes instantaneously when transitioning from one node to the next one. Although this
approximation does not respect the vehicle’s maximum acceleration, it has been found
to be sufficient for robot motion planning. A detailed derivation of the error of this
approximation can be found in Fox et al. (1997).

Currently, three different search strategies are implemented: The Dynamic Window
Approach (DWA) (Fox et al., 1997), a depth first search (DFS) (Barraquand and Latombe,
1993) (Rusu, 2014) and a hybrid A* style approach (hA*) (Dolgov et al., 2008) (Huskic
et al., 2017). There are several other promising methods, e.g. Rapidly-Exploring Ran-
dom Trees (RRT) (Lavalle et al., 2000) or RRT variants (Devaurs et al., 2016). There are
three global parameters which are applied to all planners: The search depth dmax, i.e. the
maximum number of nodes between the start node and a leaf, the look-ahead time ∆tlah

and the number of sampling steps along one sub-trajectory nsamples. From these param-
eters the node duration ∆t = ∆tlah/dmax and the sub-sampling interval ∆ts = ∆t/nsamples

are calculated.

98



7.6 Local Planner

Figure 7.10: Path planning visualization and corresponding view from Gazebo. Dots
represent intermediate poses, circles are trajectory end poses and the brown line shows
the direction to the goal. The color describes the state of a pose: Red indicates a high
gravity angle, blue a high tip angle, yellow chassis collision, cyan low wheel support and
green valid poses. The selected path is marked with purple circles.

7.6.1 Node Expansion
The node expansion module is responsible for sampling the search space. It defines the
granularity and range of the search tree in the search space and therefore also determines
the coverage of the model space. The main task is the creation of a set of new velocities
S Vnew based on the current vehicle velocity, the minimum and maximum velocities, the
acceleration limits and the sampling resolution. Each new node has a pointer to the node
it was created from, its parent node, in order to enable backtracking. Due to the modular
design it is easy to implement and use new node expansion methods.

Expanding a node Ni is done by creating a set of new nodes S Nnew using the set of
vehicle velocities S Vnew and the end pose p′ of the current node: p′ = Tr(Ni,∆t):

S Nnew = [(Rv j, p′,∆t),R v j ∈ S Vnew]. (7.9)

As described in Fox et al. (1997), the search window Wnew can be limited to the velocities
reachable within the duration ∆tvd until the next planning process:

Wnew ={(v, ω)|v ∈ [max(vt − v̇max∆tvd, vmin),min(vt + v̇max∆tvd, vmax)] (7.10)
∧ ω ∈ [max(ωt − ω̇max∆tvd,−ωmax),min(ωt + ω̇max∆tvd, ωmax)]}, (7.11)

where vt and ωt are the current linear and angular velocities and v̇max and ω̇max are the
maximum linear and angular accelerations. In addition to the acceleration limits, the
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window is also clipped to the minimum vmin and maximum vmax linear velocity and the
maximum angular velocity ωmax of the vehicle.

How the window is actually sampled to generate S Vnew depends on the planning task:
For generic trajectory planning, it is suitable to sample both, linear and angular velocity,
with a fixed number of uniformly distributed sampling steps for each axis. For the rollator
only the angular velocity is sampled since the linear velocity is given by the user. Also,
one velocity can be expressed as a function of the other, e.g. to reduce the linear velocity
for high angular velocities in order to reduce centrifugal force. The sampling is not
required to be uniform, e.g. the sampling interval could increase with the distance to the
current velocity. An example of three different node expander implementations is shown
in Fig. 7.11.
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Figure 7.11: Node expansion example. The blue circle is the start pose, the green circles
are end poses of the new trajectories. Left: Changed angular velocity and constant linear
velocity. Center: Changed angular velocity with linear velocity being a function of the
angular velocity. Right: Changed angular and linear velocity.

7.6.2 Node Evaluation

While the search space of the local planner is the velocity space of the robot, the testing
of the trajectory poses has to be done in the model space M, i.e. the 2D space in which
the local elevation image and the vehicle model are defined.

Evaluating a node N is done by propagating the vehicle with the kinematic model by
time step ∆ts and evaluate the pose at the new position until the state is not valid or ∆t is
reached 7.6:

Γk = PE(pk,
Rv, LEI). (7.12)

Where pk = (px, py, pθ)T = Tr(N,∆ts · k) is the k-th pose 0 < k ≤ nsamples of node N and
Γk the corresponding pose evaluation result. The velocity Rv is constant for the whole
trajectory of a node and therefore is not described as a function over time. The sampling
rate is controlled by nsamples, see 7.6. The series of poses created by Tr(N,∆ts · k) is the
trajectory of the node.
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To achieve a high level of vehicle safety, a reasonable high sampling rate along the
trajectory is required. The maximum rate is defined by the resolution of the LEI and
the vehicle model: Since both are discretized into pixels, the vehicle needs to move far
enough to reach a new pixel position, otherwise the estimated pose does not change.
There is no minimum rate, but with too large values, small gaps could be skipped, which
might actually pose a thread to the vehicle.

7.6.3 Scoring
The scoring function is used to determine the final trajectory and also as a heuristic for
the hA* search. Scores are passed from one node to all its children, therefore leaf nodes
do not only contain information about their trajectory but also contain the information
from all their parents. It has to be noted that the heuristic is not admissible, and thus the
hA* search does not directly terminate once the goal is reached since there might be a
more optimal solution.

Using the safety criteria from 7.5.2 and 7.12, all nodes are sampled, as described in the
previous section, until either the node duration ∆t is reached or one of the safety criteria
is violated.

If iterating a trajectory terminates, one of these end states is assigned:

1. Chassis collision: A chassis collision occurred.

2. Angle exceeded: Either αg, αt or α∆ exceeded one of the respective thresholds:
tαg, tαt or tα∆.

3. Low wheel support: One or more wheels are below the wheel support threshold
tws.

4. Distant low wheel support: One or more wheels are below the wheel support
threshold, but the pose is further away from the start pose than a given threshold
tΨ. See section 7.6.3 for more details.

5. Goal reached: Goal reached.

6. Valid: Iterating terminated without safety violations.

These end states are exclusive, and the list also represents their priority: The ”Valid”
state only gets assigned if all the prior states are not applicable. Each end state has a
corresponding weight ε(end).

In addition to the thresholds for safety violations, each pose parameter can also be used
in the final score of a leaf node. This allows to minimize or maximize certain parameters
and therefore to adjust the path selection behavior.

The available twelve scores are:

1. Mean and maximum of the gravity angle αg.
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2. Mean and maximum of the tip angle αt.

3. Mean and maximum of the delta angle α∆.

4. Mean and minimum of the wheel support wsmin.

5. Angular velocity difference ∆ω: The absolute sum over all angular velocity differ-
ences of a node and its parent node.

6. The distance to the goal: gd = |[px, py]T − gp|, where gp = [gx, gy]T is the goal
position.

7. The angle to the goal: ga = |pθ − atan2(gy − py, gx − py)|.

8. The distance to the target path: gp = Dp([px, py]T , path), with Dp() being a func-
tion that calculates the smallest distance of a point to the path segments.

The mean and the maximum are calculated over all Γk between the respective leaf node
and the current start node of the planning process. For each of the twelve scores vali=1...12

there is a corresponding weight fi=1...12.
The heuristic function for the hA* search is the sum over all scoring parameters mul-

tiplied with their respective weights:

h(N) =
∑

i=1...12

( fi · vali) (7.13)

The final score of a leaf node is the value of the heuristic function plus the node end
state weight ε(end) and the valid child count nvc with weight fvc:

F(N) = (
∑

i=1...12

( fi · vali)) + fvcnvc + ε(end) (7.14)

The valid child count does not refer to the child count of the leaf, but to the number of
valid leaf children the top-level parent node of the current leaf has, see Fig. 7.15. All
children of this top-level node have the same valid child count. This additional score
can only be calculated after all trajectories were tested and therefore cannot be used
in the heuristic function. The valid child count correlates the traversability of different
trajectories in the search space and serves as a measure of the vicinity to an obstacle.
Since the orientation of the vehicle is considered, two nodes which are very close in
terms of positions might differ in orientation and therefore have a large distance in the
search space. It can be used to encourage the vehicle to select paths with higher distances
to obstacles.
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Distant Low Wheel Support

The distant low wheel support is required to allow the vehicle to approach areas where
no valid depth measurements are available. Reasons for missing depth measurements
can be e.g. occlusions or bad lighting conditions. A typical use case are side walk edges:
To measure the height of the step, the ground directly below needs to be observed. Based
on the camera position on the vehicle, the wheel radius, the required wheel support and
the maximum step height, the maximum distance dmax to determine the traversability of
the step can be calculated:

dmax = 2 wr tws
hc

hs
, (7.15)

where hc is the camera height, hs the maximum step height and wr the wheel radius, see
Fig. 7.12.

hc

hs

dmax

o

Figure 7.12: Distant low wheel support. hc is the height of the camera, hs the step height
and dmax the distance of the camera to the step. The area marked by o is not visible by
the camera and could also contain a non-traversable hole.

In case the step is higher than the allowed step size or the area below the step cannot
be observed, the vehicle has to be able to stop within the remaining distance, i.e. tΨ. An
approximation of the required distance dmin for coming to a full stop from a given linear
velocity v is found in Matthies and Rankin (2003):

dmin =
v2

2µg
+ vT + B, (7.16)

where µ is the friction coefficient, g is the gravity constant, T is the reaction time and B
a safety buffer.

The values dmin and dmax can be used as a lower and upper bound for tΨ.

103



Chapter 7 Model Based Traversability Analysis

7.6.4 Planning

The planner module is the central component of the method described in this chapter:
It utilizes the node expander and scoring method to find the optimal trajectory given the
current map of the environment and the vehicle pose and velocity.

The planning is done in the control space of the vehicle, i.e. linear and angular velocity.
The planner only has knowledge about the nodes and their scores, how the search space
is covered is defined by the node expander module. The calculation of scores is the task
of the scoring module. It gets the pose evaluation results as input and provides a score
for each node. Since the pose estimation method requires a vehicle pose, i.e. a state
in the model space, as input, the function Tr(N,∆t) is required to calculate these poses
for a node and a requested duration. The control space and the model space are both
continuous, the discretization of the LEI and the vehicle model only happens at the very
end of the pipeline when the pose evaluation and the scoring is performed.

In order to have a notion of the distance of two nodes to each other, as required by the
closed set test of the hA* method, a distance test in the model space is used:

Dn(N1,N2) =

1 if |p1 − p2| < td and |θ1 − θ2| < tθ
0 otherwise

(7.17)

where N1,N2 are the nodes to compare, p1, p2 with pi = Tr(Ni,∆t) are the corresponding
end positions, θ1, θ2 are the orientations, td the maximum distance and tθ the maximum
orientation difference. Two nodes are considered equal in terms of planning if this test
evaluates to 1.

The pseudo code of the hybrid A* method is shown in algorithm 3 and the pseudo
code for the depth first search in algorithm 4. The DWA implementation is a special case
of the DFS, with a tree depth limited to one, and therefore is not shown in detail. For
testing and evaluation the hybrid A* method is used, which is also the default planning
method.

7.6.5 Parameter Settings

The most important parameters are the safety critical thresholds tαg, tαt, tα∆ and tws, as
they are responsible for ensuring the safety of the vehicle. Since tαg, tαt and tα∆ have a
direct physical meaning, they can be derived from the vehicle properties and the vehicle’s
desired task. The wheel support threshold tws mainly depends on the wheel width. For
the Summit XL at least half of the wheel should have ground contact (tws = 0.5), for
vehicles with thinner wheels, a higher ratio is recommended, e.g. tws = 0.8 for the
rollator. Among the weighting parameters only either the goal weights fgd and fga or the
path weight fgp are mandatory, as they guide the hA* planner to the goal.

For the experiments with the Summit XL all other weights were set to zero, except
for the minimum wheel support weight, in order to improve the wheel to ground contact.
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Algorithm 3: Hybrid A* method
input: map LEI, robot pose p, robot velocity Rv
## ∆t is fixed
openSet.push N(p,R v,∆t)
closedSet := empty
while not openSet.empty and not max iterations reached:

## expand highest score first
openSet.sort by score
Nc := openSet.pop

## add score of the node’s trajectory
Nc.score := Nc.score + sample trajectory(LEI,Nc)
if Nc.end state = not valid or Nc.level = max level:

## add end state score
Nc.score := Nc.score + F(Nc)
leafs.push Nc

continue
## check if node with a state similar to Nc exists
if closedSet contains Ni with Dn(Tr(Nc,∆t),Tr(Ni,∆t)) < epsilon:

if Ni.score > Nc.score:
## node with higher score exists, skip expansion of Nc

continue

## child nodes initialize with score from Nc

N j=1..n = expand(Nc)
for j = 1..n:

openSet push N j

closedSet push Nc
Nselected = Node in leafs with highest score
trajectory = back track(Nselected)
return: trajectory

Figure 7.13: Pseudo Code of the Hybrid A* method.
The heuristic guiding the hA* search is part of the sample tra jectory(LEI,Nc) function.
Based on the final pose Tr(Ni,∆t) of each node, a heuristic value is calculated using
the distance and angle to the goal and added to the score. Since this heuristic is not
admissible, the search does not stop if one branch reaches the goal, as there might be a
more optimal solution.
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Algorithm 4: Depth First Search method
input: map LEI, robot pose p, robot velocity Rv
Function EvalTree(Nc, LEI,leafs):

## add score of the node’s trajectory
Nc.score := Nc.score + sample trajectory(LEI,Nc)
if Nc.end state = not valid or Nc.level = max level:

## add end state score
Nc.score := Nc.score + F(Nc)
leafs.push Nc

return
## child nodes initialize with score from Nc

N j=1..n expand(Nc)
for j = 1..n:

EvalTree(N j,LEI,leafs)
return

leafs := empty

## ∆t is fixed
Nstart := N(p,R v,∆t)
EvalTree(Nstart,LEI,leafs)
Nselected = Node in leafs with highest score
trajectory = back track(Nselected)
return: trajectory

Figure 7.14: Pseudo Code of the Depth First Search method.
The final trajectory is found by selecting the leaf with the highest score and track it back
to the root node.
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Figure 7.15: A simple search tree. The orange circle is the start pose, the blue circle is
the selected leaf node and the magenta circle is the end pose of the top-level parent of
the selected node. The cyan line is the resulting trajectory.

For the safety critical cases chassis collision, angle exceeded and low wheel support,
the end state weights are negative numbers (-1000) to prevent them from being selected.
The weights are zero for distant low wheel support and the valid end state, and a positive
number (10000) for goal reached. The distant wheel support threshold tΨ depends on the
sensor’s perception range and the desired velocity. The value should be large enough for
the vehicle to perform a full stop. In the experiments the distance driven in 1 s was used
as tΨ.

7.6.6 Implementation

The implementation of the described method is part of the GeRoNa-Framework (Huskic
et al., 2017) and written in C++. It can be used in two different ways: As a local planner
or as a controller. When employed as a local planner, the proposed method receives the
global path and plans a traversable local trajectory. The time and velocity information is
removed, and only a list of positions, i.e. the path, is sent to the current path following
control algorithm (controller). Any of the controllers suitable for differential drive, skid-
steered and Ackermann type vehicles can be used.

When employed as a controller, the proposed method receives a path or goal position
and finds the trajectory with the highest score. The control command of the first parent
node of the selected leaf node is sent to the motor controller.

Since on most mobile plattforms several tasks have to be performed in parallel and
in real time, e.g. visual odometry, map creation, motor control and traversability anal-
ysis, the creation of the LEI and the path planning are implemented as single-threaded
modules.

The core functions for wheel and chassis evaluation come with implementations that
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utilize SIMD instructions to minimize the number of CPU instructions executed. De-
pending on the CPU architecture, there are up to three code paths available: Without
SIMD, SSE4 and AVX2.

7.6.7 Shared Control Mode

In order to allow the user to physically interact with the rollator while the model based
path planning is enabled, a special shared control modul was developed. Here, the
user provides the global direction and the proposed method is employed to perform
traversability analysis of the user’s intended path.

User Intention

Like all rollators also the intelligent rollator should be controlled by pushing and pulling
the handles, i.e. through the force the user applies to the handles. Due to the lack of
force sensors in the handles and torque sensors in the wheels, the only way to estimate
this force are the wheel velocities: The user’s intention is determined by comparing
the requested wheel velocity ur = (vrl, vrr) with the measured wheel velocities um =

(vml, vmr). Since driving up or down slopes also induces a force and therefore changes in
wheel velocities, it cannot be distinguished from user input. Only the angular velocity
is controlled by the user and the linear velocity is set to a fixed value. By reducing
the difference of the requested and measured wheel velocities, the controller attempts to
comply with the users intention. The new wheel velocities u′r are calculated by a simple
control law resembling a P-controller:

u′r = um + (um − ur)ψ, (7.18)

where ψ is the controller gain. From u′r the new angular velocity ω′ is calculated:

ω′ =
v′rr − v′rl

l
, (7.19)

where l is the distance between the wheels, see 2.10. Together with the fixed linear
velocity, this is used to create a short user intention path by propagating the kinematic
model with a specific time step until the look-ahead duration of the local planner is
reached. This user intention path is set as target path for the local planner. The local
planner searches for the closest traversable trajectory using one of the planning methods
described in 7.6.4.
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7.7 Evaluation

7.7.1 Path Planning Evaluation
The path planning quality was evaluated in four simulated (see Fig. 7.16) and two real
world environments (see Fig. 7.18). Due to the beActive+e’s rollator design, most of its
mass is in the front box. Since this box is located above the front wheels, the powered
rear wheels have low friction, resulting in frequent wheel slip. Without a user applying
additional force on the rear wheels the beActive+e cannot drive up or down steeper
slopes. Therefore, the path planning experiments where conducted with the Summit XL
robot. As simulation environment Gazebo was used (Koenig and Howard, 2004). The
experimental setup was the same for the simulated and real world experiments: First
the robot was placed at the initial pose, then a set of waypoints which the robot should
reach in a specific order was sent to the proposed method. While driving, the gravity
angle and the delta angle, both calculated from the vehicle orientation, were recorded. In
simulation, the vehicle orientation was directly exported from Gazebo, for the real world
experiments it was measured using the Razor M0 IMU. The linear velocitiy was set to
0.8 m/s for simulated 0.5 m/s for real experiments, obstacle avoidance was solely done
by changing the angular velocity.

The simulation results are shown in Fig. 7.17. In the natural environment and the
random generated terrain αg was above tαg in three cases by at most 0.147◦. All cases
occurred at higher gravity angles and are within the expected systematic error E(α) =

α − tan−1(sin(α)), described in chapter 6. tα∆ was not violated and no chassis collision
occurred.

The two real world environments are shown in Fig. 7.18 and the corresponding results
in Fig. 7.19.

In the stairs environment, the angle thresholds were not exceeded and no chassis col-
lision occurred. For the forest scene the tαg is exceeded by 0.44◦, which is below the
systematic error described in chapter 6.

7.7.2 Velocity Testing
For assessing the maximum velocity for safe path planning on the two real platforms
two different environment setups, depicted in Fig. 7.20, were tested. Each setup was run
five times for three fixed linear velocities (0.4 m/s, 0.6 m/s, 0.8 m/s for the beActive+e
and 1.0 m/s, 1.5 m/s, 2.0 m/s for the Summit XL) on each platform. Using a constant
linear velocity is also found in Dolgov et al. (2010). A run was considered successful
if no safety criterion was violated, and failed otherwise. For the Summit XL all runs
succeeded for velocities up to 1.5 m/s. With 2.0 m/s four out of five runs resulted in
collisions, the look-ahead time of below 2 seconds is too short for successfully avoiding
the obstacles. The maximum velocity of the rollator is 0.81 m/s; up to this velocity no
violations of the safety criteria occurred.
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Figure 7.16: Simulated environments. Green dots mark the starting position, cyan dots
the waypoints and red dots the goal. The driven path is shown in orange, the blue lines
are just for visualizing the order of waypoints. Top left: Heightmap landscape resem-
bling a natural environment. Top right: A randomly generated terrain. Bottom left: The
Darpa Virtual Robotics Challenge terrain included in the Gazebo model database. Bot-
tom right shows an environment with objects representing different real world situations:
Sidewalk, bridge and stairs.
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Figure 7.17: Simulation results. From top to bottom: natural environment, randomly
generated terrain, Darpa Virtual Robotics Challenge terrain, different real world situa-
tions. tαg = 0.4 rad ≈ 22.9◦ is the maximum allowed gravity angle, at higher angles the
occurrence of wheel slip increase vastly. tα∆ = 0.15 rad ≈ 8.6◦ is the maximum allowed
delta angle and is comparable to driving down a step of 0.12 m height.
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Figure 7.18: Environment used for real world experiments. Left: Stairs with two ramps
the vehicle should drive up. Right: Forest scene with rough terrain and a small hill.
Due to the inclination of the stairs of ∼ 25◦, tαg = 0.5 rad was required. Otherwise the
stairs are not considered traversable. On the soft forest ground wheel slip is a problem
for angles > 0.4 rad. For both environments tα∆ = 0.08 rad ≈ 4.5◦ was used, this is
comparable to driving down a step of 0.07 m height. tαt = 0.15 rad ≈ 8.6◦ and tws = 0.5.

Figure 7.19: Results of the real world experiments. Top: Stairs. Bottom: Forest.
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Figure 7.20: Two test setups used for evaluation. Left: a cluttered environment with
obstacles above the ground plane. Right: a bridge setup for testing negative obstacles.

7.8 Runtime Evaluation
The run time of the complete path planning depends on the search parameters, especially
the sub-sampling rate and tree depth. For evaluation, Resp = 0.0104 m/pixel and a LEI
size of 8 m × 8 m was used. The maximum tree depth was 3 and the sub-sampling rate
20. The average runtime with these parameters was 17.25 ms for an average of 5849
poses on the beActive+e and 20.05 ms for an average of 6749 poses on the Summit XL.
So highly detailed path planning, including wheel contacts and chassis collision, can be
done in 20 ms, resulting in a frequency of 50 Hz.

7.9 Conclusions
This chapter presented an efficient traversability analysis method designed for real-time
operation and short range sensors. By using a detailed vehicle model, highly accurate
pose estimation and collision detection can be performed. This allows a traversability
analysis using vehicle specific safety criteria and is used to perform local path planning
for reactive obstacle avoidance. The performance of the proposed method was demon-
strated on two mobile platforms in different simulated and real world environment setups.
The safety relevant angles never exceeded the thresholds by more than 1.02%, providing
a level of safety sufficient for many robotics applications.

The proposed method is part of the open-source GeRoNa-framework, which is based
on ROS and available under: https://github.com/cogsys-tuebingen/gerona .

A video demonstrating the presented method in different scenarios can be found at:
https://youtu.be/mihJ732VpY4 .
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Chapter 8

Summary and Future Work

8.1 Summary

This dissertation was created in the course of the MobilAssist project, which resulted in
a fully operational intelligent rollator. While this project included the complete system,
from hardware setup, motor calibration, serial communication over mapping and sensor
fusion to human-robot interaction, the research focus was on the creation of an accu-
rate, yet efficient navigation system for wheeled mobile robots. This navigation system
includes localization, mapping and trajectory planning. Although localization and map-
ping are included, it is not a full SLAM system due to the lack of loop closure and only
a very small local map. The downward facing camera is highly beneficial for obstacle
avoidance, since the most relevant area to observe is directly in front of the vehicle. This
posed a big challenge to the existing visual odometry and SLAM methods and inspired
the development of the ground plane based visual odometry described in chapter 4. As
the target platform is a non-holonomic wheeled mobile robot, chapter 5 describes how
the kinematic constraints of this platform are integrated into the visual odometry. In addi-
tion, chapter 5 presents a novel outlier rejection method that performs block based outlier
rejection in model space instead of data space. The results show that these two additions
significantly improved the performance of the ground plane based visual odometry sys-
tem, compared to the method described in chapter 4 and other state-of-the-art methods.

The output of the visual odometry is fused with the wheel odometry data and data from
an IMU to provide a robust pose estimate for the mapping module described in chapter
3. It creates high resolution local elevation maps from the depth images recorded by the
camera.

With these accurate maps, chapter 6 investigates the feasibility of performing pose
estimates using an image based representation of the vehicle. The experiments showed
that the accuracy of the estimated poses is adequate for many real-world applications
and that the proposed method is orders of magnitude faster than other pose estimation
methods found in literature.

Finally, the elevation maps and the image based pose estimation were combined into
the model based planning method described in chapter 7: By using the image based ve-
hicle representation several thousand poses can be tested within a few milliseconds. The
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poses to be tested are generated by altering the vehicle velocities and propagating the ve-
hicle pose using the kinematic model of the vehicle. This enables safe vehicle navigation
even in challenging outdoor environments, as demonstrated in the experiments.

All methods in this thesis were designed considering the limitations and requirements
of an intelligent rollator: Each of them runs on a single thread of a standard mobile CPU
in real-time and they do not require expansive sensors like LIDARs. Since the methods
can be used on any non-holonomic wheeled mobile robot, they are also highly interesting
for other wheeled mobile robot applications.

8.2 Future Work
The final intelligent beActive+e, created in the course of the MobilAssist project and
the tests run with the Summit XL, successfully demonstrated the capabilities of the pro-
posed methods to localize and navigate a mobile robot. The visual odometry methods
described in chapter 4 and chapter 5 could be enhanced to full SLAM systems. Here, the
main challenge is the loop-closure: The ground surface mainly seen by the downward
facing camera has limited visible features and can be repetitive in many environments.
Although the evaluations in the corresponding chapters have shown that feature based
loop closure has problems in this setup, loop closure still should increase the localization
performance. Another option to increase the accuracy and robustness is the integration of
a pose graph optimization over a certain time window: By not only aligning the current
image to the previous one, but to N previous images, a pose graph could be built and
optimized with a pose graph optimization method like g2o (Kümmerle et al., 2011).

For the pose estimation and trajectory planning part described in chapters 6 and 7 also
several possibilities for improvements are conceivable.

One problem which could be addressed are the two possible configurations of the pose
estimation: By including the mass distribution of the vehicle and the vehicle dynamics,
it should be possible to infer which of the configurations is more likely.

Given the high planning frequency, each generated command will only be executed
for fractions of a second. All the path segments evaluated after the first level are only
used for decision making and will never be used as an input for the controller. There-
fore, the planning process might be replaced by reinforcement learning of the control
commands for a given vehicle pose and an elevation map of the environment. Here the
image based representation as an elevation image is very convenient, as it allows to use
a convolutional neural network architecture. For learning the control commands a DQN
(Deep Q-Network) based approach could be a viable option (Mnih et al., 2013). The
method from chapter 6 could be used as a reward function, as it runs much faster than a
full dynamic simulation and still gives reasonably accurate pose estimates.

For improving the path planning, one option would be to pre-calculate a state lattice
to speed up calculations. The time saved could be used to increase the search coverage
of the state space (Pivtoraiko and Kelly, 2005).
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Another option for increasing the search space coverage is the use of optimized path
sets, as described in Branicky et al. (2008) and Green and Kelly (2007).

The image based representation of the environment and the vehicle makes it very
likely that the pose estimation process can be ported to run on the GPU instead of the
CPU. Since the pose tests can be performed in parallel without any drawbacks, this could
greatly increase the number of possible tests. For vehicles like the Summit XL, which
has a dedicated GPU, this would be highly interesting.
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Martı́nez, A. B., Röfer, T., and Stahl, C. (2012). Challenges for indoor and outdoor
mobility assistance. Technik für ein selbstbestimmtes Leben.

Kuipers (2019). The intelligent wheelchair project. https://web.eecs.umich.edu/ kuiper-
s/research/wheelchair/. Accessed 7.6.2019.
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