Das Cystein-reiche LIM-Protein 4 (CRP4) beeinflusst patho-/physiologische Funktionen vaskulärer Glattmuskelzellen der Aorta

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)

> vorgelegt von M. Sc. Natalie Längst aus Stuttgart

> > Tübingen 2022

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation:	13.07.2022
Dekan:	Prof. Dr. Thilo Stehle
1. Berichterstatter:	Prof. Dr. Robert Lukowski
2. Berichterstatter:	Prof. Dr. Achim Schmidtko

Inhaltsverzeichnis

INHAL	TSVER	ZEICHNIS	. V
ABBIL	DUNGS	SVERZEICHNIS	IX
TABEL	LENVE	ERZEICHNIS	XI
ABKÜI	RZUNG	SVERZEICHNIS	XII
1. El	NLEITU	JNG	1
1.1	Phys	siologische Funktionen der Gefäßmuskulatur	. 1
1.	1.1	Aufbau und Funktion der großen Gefäße	. 1
1.	1.2	Differenzierung von vaskulären Glattmuskelzellen	. 2
1.	1.3	Regulation des Gefäßtonus in vaskulären Glattmuskelzellen	. 3
1.	1.4	Aufbau des Zytoskeletts vaskulärer Glattmuskelzellen	. 6
1.	1.5	Die Migration von vaskulären Glattmuskelzellen	. 8
1.2	Path	ophysiologische Veränderungen der Gefäßmuskulatur	. 9
1.:	2.1	Epidemiologie und Ätiologie proliferativer Gefäßerkrankungen	. 9
1.:	2.2	Phänotypische Modulation in vaskulären Glattmuskelzellen	11
1.:	2.3	Pathophysiologische Mechanismen der Atherosklerose	12
1.:	2.4	Pathophysiologische Mechanismen der Restenose	14
1.3	Cyst	ein-reiche LIM-Proteine	15
1.	3.1	Cystein-reiches LIM-Protein 4 (CRP4)	16
1.	3.2	Cystein-reiches intestinales Protein 1 (CRIP1)	20
1.4	Der	NO/cGMP/cGKI-Signalweg	21
1.4	4.1	Mechanismus und physiologische Funktionen des Signalwegs im Organismus	22
1.4	4.2	Die Rolle der cGKI für die Regulation der Glattmuskelzellfunktion und -pathologie	25
1.4	4.3	cGMP-modulierende (experimentelle) Substanzen und Arzneistoffe	27
1.5	Нуро	othese und Zielsetzung der Arbeit	29
2. M	ATERIA	AL	32
2.1	Allge	emeine Materialien	32
2.	1.1	Mauslinien	32
2.	1.2	Geräte	32
2.	1.3	Software	34
2.	1.4	Allgemeine Verbrauchsmaterialien	34
2.2	Vers	uchsspezifische Verbrauchsmaterialien, Chemikalien, Kitsysteme und Antikörper	35
2.	2.1	Genotypisierung	35
2.	2.2	Organentnahmen und Zellkultur	37
2.	2.3	Histologische Untersuchungen von Aortenschnitten und VSMC-Kulturen	38
2.	2.4	RNA-Analytik	42
2.	2.5	Proteinanalytik	43
2.	2.6	Kompetitiver cGMP-ELISA	48
2.	2.7	xCELLigence Messungen	48
2.	2.8	Migrations-Assay	48
2.	2.9	Ca ²⁺ -Messungen	49
2.	2.10	In vivo Experimente	49

3. METHOD	DEN	. 52
3.1 Mau	iszucht	. 52
3.1.1	Tierhaltung	. 52
3.1.2	Verpaarung und Generierung von Versuchstieren – CRP4-Knockout-Mauslinie	. 52
3.1.3	In vivo Atherosklerose-Mausmodell	. 53
3.2 Gen	otypisierung der Eltern- und Versuchstiere	. 54
3.2.1	DNA-Isolierung aus Ohrbiopsien	. 54
3.2.2	DNA-Amplifikation mittels Polymerasekettenreaktion (PCR)	. 55
3.2.3	Detektion der PCR-Fragmente mittels Agarose-Gelelektrophorese	. 56
3.3 Isoli	erung muriner vaskulärer Glattmuskelzellen	. 57
3.3.1	Organentnahme und Zellkultur	. 57
3.3.2	Migrationsmessungen	. 58
3.3.3	Proliferationsmessungen	. 59
3.3.4	Ratiometrische Visualisierung der intrazellulären Calciumsignale in VSMCs	. 59
3.3.4.1	Fluoreszenz-basierte Calcium-Messapparatur	. 60
3.3.4.2	Durchführung der Calciummessungen	. 61
3.3.5	ELISA-basierte cGMP-Bestimmung	. 62
3.4 RNA	A-Analytik	. 65
3.4.1	RNA-Extraktion	. 65
3.4.2	cDNA-Synthese	. 66
3.4.3	RNA-Analytik mittels qRT-PCR	. 67
3.5 Prot	einbiochemische Analysen	. 69
3.5.1	Proteinextraktion	. 69
3.5.1.1	Aortenlysate	. 69
3.5.1.2	Lysate kultivierter VSMCs (P0 und P10 - 15)	. 70
3.5.1.3	Subzelluläre Proteom-Analyse	. 70
3.5.1.4	Proteom-Analyse in VSMCs via LC-MS/MS	. 71
3.5.2	Co-Immunpräzipitation	. 72
3.5.3	Quantitative Proteinbestimmung nach Bradford	. 74
3.5.4	SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)	. 75
3.5.5	Semi-dry Western Blot und Detektion der Proteine	. 76
3.6 In vi	ivo Experimente	. 77
3.6.1	Telemetrische Blutdruckmessungen	. 77
3.6.1.1	Telemetrische Blutdruckmessungen im Atherosklerose-Modell	. 78
3.6.1.2	Telemetrische Blutdruckmessungen unter dem Einfluss cGMP-modifizierender Substanzen	. 78
3.6.2	In vivo Atherosklerose-Mausmodell	. 79
3.6.2.1	En face Ölrotfärbung der Aorta	. 80
3.6.2.2	Anfertigung von Kryoschnitten der Aorta	. 81
3.6.3	Neointimamodell der Carotis-Ligatur	. 82
3.7 Hist	ologie	. 83
3.7.1	Immunhistochemie zum Nachweis von CRP4	. 84
3.7.2	Immunfluoreszenzfärbung	. 85

	3.7.3	3	Hämatoxylin- und Eosin-Färbung	85
	3.7.4	1	Ölrot-O Färbung	86
	3.7.5	5	Masson-Trichrom-Färbung	86
	3.7.6	6	Elastika van Gieson Färbung	87
	3.7.7	7	Alizarinrot S Färbung	88
3	8.8	Stat	istik	88
4.	ERG	EBN	IISSE	89
2	l.1	CRF	P4-Expression in Aorten und glatten Gefäßmuskelzellen	89
Z	1.2	Phys	siologische Funktionen von CRP4 in der Gefäßmuskulatur	90
	4.2.1	I	Transkription typischer glattmuskulärer Gene in P0 VSMCs	90
	4.2.2	2	Regulation der Migration in glatten Muskelzellen	91
Z	1.3	CRF	P4 als potentielles Substrat der glattmuskulären cGKI	92
	4.3.1	l	CRP4-abhängige Expression von NO-GC/cGKI	93
	4.3.2	2	Effekte von cGMP auf die subzelluläre CRP4-Lokalisation	95
	4.3.3	3	CRP4-Status und Aktivität des cGMP/cGKI-Signalwegs	96
Z	1.4	cGN	IP/CRP4-abhängige Regulation des Vasotonus und Blutdrucks	97
	4.4.1	l	CRP4 beeinflusst NO/cGMP/cGKI-modulierte [Ca2+]-Signale in primären VSMCs	97
	4.4.2	2	CRP4 moduliert die cGMP-Generierung in VSMCs	101
	4.4.3	3	Die cGMP-abhängige Relaxation von Aorten wird durch CRP4 reguliert	102
	4.4.4	1	Die Rolle von CRP4 für die Blutdruckregulation durch NO/cGMP/cGKI	105
	4.4.5	5	Identifikation cGMP-abhängiger CRP4-Interaktionspartner in VSMCs	107
2	1.5	Die	Rolle von CRP4 bei vaskulo-proliferativen Erkrankungen	109
	4.5.1	I	In vivo Atherosklerose-Modell	109
	4.5.2	2	Gesteigerte atherosklerotische Plaquebildung in CRP4 WT Mäusen nach 16 Woche WD	en 111
	4.5.3	3	Hämodynamische Parameter doppelmutanter CRP4/ApoE KO Mäuse	112
	4.5.4	1	Expression von α -SMA in atherosklerotischen Plaques	113
	4.5.5	5	Vermehrte Proliferation in CRP4 KO/ApoE KO Läsionen	115
	4.5.6	6	Regulation der Expression glattmuskulärer Proteine in synthetischen VSMCs	117
	4.5.7	7	Die CRP4-abhängige Regulation von PRDX4 in atherosklerotischen Aorten	121
	4.5.8	3	Einfluss von CRP4 auf den oxidativen Stress in atherosklerotischen Plaques	122
	4.5.9)	Putative Bedeutung der CRP4-Interaktionspartner Cdc42, Fbln2, HSP47 und Tpm2 Plaquewachstum und -zusammensetzung	für 124
	4.5.1	0	Vulnerabilität atherosklerotischer Plaques von ApoE KO CRP4 Mäusen	124
	4.5.1	1	Die CRP4-abhängige Expression von CRIP1 in VSMCs und atherosklerotischen Plaques	126
5.	DIS	KUSS	SION	129
5	5.1	Phys	siologische Funktionen von CRP4	129
	5.1.1	I	CRP4 als Effektor des cGMP/cGKI-Signalwegs	130
5	5.2	cGN	IP-abhängige Regulation des Vasotonus	132
	5.2.1	I	Regulation von Gefäßtonus und Ca2+-Desensitivierung via CRP4	133
	5.2.2	2	Regulation der VSMC-Relaxation über Ca2+-abhängige Mechanismen	133
	5.2.3	3	Beeinflussung der Aktin-Polymerisierung	135
5	5.3	Path	hophysiologische Funktionen von CRP4	136

	5.3.1	Atherogene Effekte von CRP4 durch die Beeinflussung der VSMC Migration	137
	5.3.2	2 CRP4-abhängige Regulation der Proliferation im synthetischen VSMC Phänotyp	138
	5.3.3	Einfluss oxidativer Stressfaktoren auf die CRP4-abhängige Atherogenese	139
	5.3.4	Vergleich der Proteinexpression synthetischer CRP4 WT und KO VSMCs	140
	5.3.5	5 Interaktionspartner von CRP4 in synthetischen VSMCs	144
	5.3.6	8 Regulation der CRIP1-Expression im pathophysiologischen Modell	145
ł	5.4	Limitationen der Arbeit und Ausblick	146
6.	ZUS	AMMENFASSUNG	149
7.	ANH	IANG	153
	7.1	cGMP-abhängige Migration von P0 VSMCs	153
	7.2	Etablierung der telemetrischen Blutdruckmessungen bei i.p. Injektion	154
	7.3	Etablierung der Co-IP in synthetischen VSMCs	155
	7.4	cGMP-regulierte CRP4-Interaktionspartner	156
	7.5	Untersuchung der metabolischen Parameter im in vivo Atherosklerose-Modell	158
	7.6	Auswertungsmethode der H&E-Färbungen	159
	7.7	Telemetrische Blutdruckmessungen nach 12 Wochen WD	160
	7.8	Ki-67 Messungen in atherosklerotischen Plaques nach 8 Wochen WD	161
	7.9	In vivo Restenose-Modell (Neointima-Ligatur)	162
	7.10	Migrationsverhalten von hochpassagierten P10 - 15 VSMCs	163
	7.11	Basale Proteom-Analyse in P10 - P15 VSMCs aus CRP4 WT und KO Mäusen	164
	7.12	Identifikation von CRP4-Interaktionspartnern mittels Co-IP	170
8.	LITE	RATURVERZEICHNIS	173
9.	PUB	LIKATIONEN UND KONGRESSBEITRÄGE	193
9	9.1	Publikationen	193
9	9.2	Kongressbeiträge	193

Abbildungsverzeichnis

Abbildung 1.1: Einteilung der Aorta und Aufbau der großen Gefäße	2
Abbildung 1.2: Schematische Übersicht über die Regulation der Kontraktilität in VSMCs	5
Abbildung 1.3: Schematische Übersicht über vaskuläre Zvtoskelett-Strukturen	7
Abbildung 1.4. Schematische Darstellung der phänotypischen Modulation von VSMCs	11
Abbildung 1.5: Schematische Darstellung des atherosklerotischen Pathomechanismus	13
Abbildung 1.6: Constische Übereinstimmung der Vertreter der CPP- und CPIP-Familie	16
Abbildung 1.0. Geneusche Obereinstimmung der Vertreter der CICF- und CICIF-Familie	. 10
Abbildung 1.9. Consciences Effectores and Abbeu von cCMD	. 17
Abbildung 1.8. Genenerung, Ellektoren und Abbau von CGMP	24
Abbildung 1.9: Schematische Darstellung der CGMP/CGKI-Vermittelten Signaltransduktion in VSMC	,S
	. 25
Abbildung 3.1: Ohrlochschema zur Identifizierung und Genotypisierung der Versuchstiere	. 54
Abbildung 3.2: Genotypisierung und Identifizierung der Versuchstiere	. 57
Abbildung 3.3: Aufbau der Calcium-Messapparatur	. 61
Abbildung 3.4: Durchführung der Calciummessungen	. 62
Abbildung 3.5: Schematische Darstellung der ELISA-Messung	. 63
Abbildung 3.6: Pipettierschema der 96-Lochplatte für die ELISA-Messung	65
Abbildung 3.7: Schematischer Ablauf der Co-Immunpräzipitation	73
Abbildung 3.8: Wochenablauf der telemetrischen Blutdruckmessungen	. 79
Abbildung 3.9: Zeitschema für den Ablauf des in vivo Atherosklerose-Modells	80
Abbildung 3.10: Aortenpräparation aus ApoE KO CRP4 doppelmutanten Mäusen	81
Abbildung 3 11 [.] Schematische Darstellung der Neointima-Ligatur	82
Abbildung 4.1: CRP4 Expressions analyse in Aorten und VSMCs	89
Abbildung 4.2: Expression kontraktiler und zvtoskelettaler Proteine in isolierten P0 VSMCs	Q1
Abbildung 4.2: Expression kontraktilen D0 VSMCs und Integrin β_{0} Expression in Aorton	02
Abbildung 4.3. Migration in Kontraktien PO Volvics und integrin p3-Expression in Aorten	0/
Abbildung 4.4. CRF4-abilangige NO-GCp1- und CGRI-Expression int vaskulaten System	94
ADDITUUNG 4.5. Charaktensierung der CRP4-Lokalisation in subzeitularen Kompartimenten ±o-di-	05
	95
Abbildung 4.6: VASP-Phosphorylierungslevel als Biomarker für die CGKI-Aktivität	96
Abbildung 4.7: Ca ²⁺ -Messungen in P0 VSMCs nach 8-Br-cGMP Stimulation	98
Abbildung 4.8: Ca ²⁺ -Messungen in P0 VSMCs nach DEA/NO-Stimulation	. 99
Abbildung 4.9: Ca ²⁺ -Messungen in P0 VSMCs nach Cinaciguat-Stimulation	100
Abbildung 4.10: CRP4-abhängige cGMP-Generierung in VSMCs nach NO-GC-Aktivierung	102
Abbildung 4.11: CRP4-abhängige Kontraktion und Relaxationsvorgänge in Aortenringen	103
Abbildung 4.12: MYPT1- und MLC2-Expression und -Phosphorylierungslevel in P0 VSMCs	104
Abbildung 4.13: Blutdruckmessungen in CRP4 WT und KO Mäusen nach Applikation cGMP-	
stimulierender Substanzen	106
Abbildung 4.14: Co-IP von CRP4 nach 8-Br-cGMP-Stimulation und Interaktion mit Cofilin	108
Abbildung 4.15: Gewichtskurve und Lipidanalyse in CRP4 WT/ApoE KO und dKO Mäusen	109
Abbildung 4.16: CRP4-Expression in ApoE KO Mäusen nach 16 Wochen CD oder WD	110
Abbildung 4.17: Verminderte athero-sklerotische Plaqueentwicklung in dKO Mäusen nach 16 Woch	nen
WD	111
Abbildung 4 18 [.] Intima/Media-Ratio in Kryoschnitten atherosklerotischer Aorten	112
Abbildung 4 19: Telemetrische Blutdruck- und Aktivitätsmessungen nach 16 Wochen WD	113
Abbildung 4.20: Geringere g-SMA-Expression in CRP4-defizienten atherosklerotischen Plagues	114
Abbildung 4.21: Proliferation in atherosklerotischen Plagues nach 16 Wochen WD	116
Abbildung 4.22: CPD4 abbängiga Drotoom Analyza in ayathatiaahan VSMCa	110
Abbildung 4.22. CRF4-abhangige Floteoni-Analyse in synthetischen VOMOs	110
Abbildung 4.23: Expression der CRP4-regulierten Proteine in synthetischen VSMCS	120
Abbildung 4.24: PKDX4-Expression in CKP4 KO/ApoE KO Aorten	122
Abbildung 4.25: Analyse der oxLDL-Level und der Kalzifizierung atherosklerotischer Plaques	123
Abbildung 4.26: Beurteilung der Plaquevulnerabilität in atherosklerotischen Aorten	125
Abbildung 4.27: Mac2-Expression in ApoE KO CRP4 doppelmutanten Aorten	126
Abbildung 4.28: CRIP1-Expression in VSMCs und ApoE KO Aorten	128
Abbildung 7.1: cGMP-abhängige Migration von P0 VSMCs	153
Abbildung 7.2: Telemetrische Blutdruckmessungen nach Aqua ad inject. i.p. Applikation	154
Abbildung 7.3: Etablierung der Co-IP mit CRP4 in synthetischen VSMCs	155

Abbildung 7.4: Exemplarische Bilder zur Veranschaulichung der Auswertung der H&E-Färbung Abbildung 7.5: Telemetrische Blutdruckmessungen nach 12 Wochen WD im <i>in vivo</i> Atheroskleros	.159 e-
Modell	. 160
Abbildung 7.6: Proliferation in atherosklerotischen Plaques nach 8 Wochen WD	. 161
Abbildung 7.7: Neointima-Formation im Rahmen des in vivo Ligatur-Modells	. 162
Abbildung 7.8: Migration in synthetischen P10 - 15 VSMCs von CRP4 WT vs. KO Mäusen	. 163
Abbildung 7.9: Co-IP synthetischer VSMCs und WB-Analyse einiger CRP4-Interaktionspartner	. 170

Tabellenverzeichnis

Tabelle 3.1: Pipettierschemata zur DNA-Vervielfältigung mittels PCR	55
Tabelle 3.2: Temperaturprotokolle für die Genotypisierung	56
Tabelle 3.3: Temperaturprotokoll für die cDNA-Synthese	67
Tabelle 3.4: Temperaturprotokoll für die qRT-PCR	69
Tabelle 4.1: Signifikante CRP4-regulierte Proteine in P10 - 15 VSMCs	119
Tabelle 7.1: CRP4-Interaktionspartner nach 8-Br-cGMP-Stimulation	157
Tabelle 7.2: Metabolische Parameter im in vivo Atheroklerose-Modell	158
Tabelle 7.3: Signifikante Proteine aus der basalen Proteom-Analyse in P10 - 15 VSMCs	169
Tabelle 7.4: Auflistung aller signifikanter CRP4-Interaktionspartner	171
Tabelle 7.5: Analyse von CRP4-Interaktionspartnern mit Relevanz für die VSMC Plastizität und/or	der
Atherosklerose bzw. das Remodeling des Aktin-Zytoskeletts	172

Abkürzungsverzeichnis

%	Prozent	DAG	Diacylglycerol
[Ca ²⁺]e	extrazelluläre Calcium-	DCM	Dilatative Kardiomyopathie
	Ionenkonzentration	DEA/NO	Diethylamin NONOat
[Ca ²⁺]i	intrazelluläre Calcium-	DEPC	Diethylpyrocarbonat
	Ionenkonzentration	dH₂O	deionisiertes Wasser
°C	Grad Celsius	DNA	Desoxyribonukleinsäure
α-SMA	alpha-smooth muscle actin	dNTP	Desoxynukleotidtriphosphat
μl	Mikroliter	DTNB	2-Nitrobenzoesäure
μm	Mikrometer	DTT	Dithiothreitol
μM	Mikromolar	ECM	extrazelluläre Matrix
Acadl	Acyl-CoA-Dehydrogenase	EDTA	Ethylendiamintetraessigsäure
ACC	Arteria carotis communis	EEL	äußere elastische Lamina
AChE	Acetylcholinesterase	ELISA	enzyme-linked immunosorbent
AK	Antikörper		assay
ANP	atriales natriuretisches Peptid	eNOS	endotheliale NO-Synthase
ApoE	Apolipoprotein E	EvG	Elastika van Gieson
AP	Alkalische Phosphatase	FA	Fokaladhäsionen
APS	Ammoniumpersulfat	FAK	fokale Adhäsionskinase
AS	Aminosäure	Fura-2 AM	Fura-2 Acetoxymethylester
ATP	Adenosintriphosphat	GC-A	partikuläre Guanylyl-cyclase A
ATPasen	Adenosintriphosphatasen	GC-B	partikuläre Guanylyl-cyclase B
AUC	area under the curve	GDP	Guanosindiphosphat
Bcam	basal cell adhesion molecule	GEE	GTP-Austauschfaktor <i>quanine</i>
BCIP	5-Brom-4-Chlor-3-Indovi-	OLI	nucleotide exchange factor
DOI	nhosphat	Gane1	Geranylgeranyl-Diphosphat-
RE	Blutentnahme	Ogpsi	Synthese
BKo	spannungs- und Ca ²⁺ -	GPCR	G-Protein-gekonnelter 7-
DICa	abhängiger Kaliumkanal mit	GFOR	Transmombranholiy-Pozontor
	abhar Loitfäbigkoit	OTN	Chaoroltripitrot
	honer Lettanigkeit		Giycerollinillal
DINF	pontido	GIF LIOF	
	Pepulue 9 Promo zukliachao		high density linenrotain
0-DI-CGIVIP	O-DIOINO-Zykiisches		Hypoventhin pheepheriheevil
		TFR12	hypoxaninin-phosphonbosyi-
DOA	bovines Serumabumin		
ospw	oCMD obbängige Protein		Serpin II
CGNI	CGMP-abhangige Protein-		neal shock protein ou
	kinase Typ T	IBIVIX	
CGIMP	Zyklisches Guanosin-3,5-	IEL	Innere elastische Lamina
0.14	monopnospnat	IF If the O	Immuntluoreszenz
CalM	Calmodulin	lfitm3	interferon-induced
CD	Kontrolldiat		transmembrane protein 3
Cdc42	cell division cycle 42	IHC	Immunhistochemie
CDNA	copy Desoxyribonukleinsaure	ILK	integrin-linked kinase
	Kohlenstoffdioxid	INOS	induzierbare NO-Synthase
CNP	C-type natriuretic peptide	ı.p.	Intraperitoneal
Co-IP	Co-Immunprazipitation	IP ₃	Inositol-1,4,5-triphosphat
Cgnl1	Cingulin-ahnliches Protein 1	IP-SN	Immunoprazipitationsuberstand
CPI-17	protein phosphatase 1		(super natant)
	regulatory inhibitor subunit	IRAG	IP3-Rezeptor-assoziiertes
	14A		cGMP-Kinase Substrat
CRIP1	Cystein-reiches intestinales	ISMN	Isosorbidmononitrat
	Protein 1	ITGB3	Integrin β ₃
CRP1	Cystein-reiches LIM-Protein 1	JAG1	jagged canonical Notch ligand
CRP2	Cystein-reiches LIM-Protein 2		1
CRP3	Cystein-reiches LIM-Protein 3	KG	Körpergewicht
CRP4	Cystein-reiches LIM-Protein 4	KO	knockout
Ct	cycle threshold	LC-MS/MS	Flüssigchromatographie mit
CTR	Kontrolle		Massenspektrometrie-
CVD	Herz-Kreislauf-Erkrankungen		Kopplung

LTCC spannungsabhängige L-typ sec Sekunde Mac2 Galectin-3 Ser Serin MAP Arterieller mittlerer Blutdruck SERCA Ca ²⁺ -ATPase des MDB membrane desalting buffer sarkoplasmatischen u endoplasmatischen u MgCl2 regulatorische leichte Kette SDS- Sodium-Dodecylsulfa des Myosins PAGE Polyacrylamid- MLCK Myosin-leichte-Ketten-Kinase SMMHC smooth muscle myos. MLCR Myosin-leichte-Ketten-Kinase SMMHC smooth muscle myos. Mical2 Mikrotubuli-assoziierte SMM yosin glattmuskuläres Myos MT Masson-Trichrom SNP Sodiumnitroprussid MYOCD Myocardin SR sarkoplasmatisches F MYPT1 myosin phosphatase target SSH slingshot phosphatase NA Naradrenalin SSH1L protein phosphatase NACI Natriumchlorid TBB TrueBlot IP-Beads NDS Eselnormalserum TGFβ transcring growth function NOS Seigenormalserum TGFβ transchnigterylendia	nd etikulums <i>n heavy</i> in vom
Ca ²⁺ -KanäleSEMStandardfehlerMac2Galectin-3SerSerinMAPArterieller mittlerer BlutdruckSERCACa ²⁺ -ATPase desMDBmembrane desalting bufferendoplasmatischen RMgCl2Magnesiumchloridendoplasmatischen RMLC2regulatorische leichte KetteSDS-MLC4Myosin-leichte-Ketten-KinasePAGEPhosphataseSMMHCMical2Mikrotubuli-assoziierteSMMHCMonoxygenase 2SM Myosinglattmuskuläres MyocIITTMason-TrichromSNPSodium-ItopustiSSHMYPT1myosin phosphatase targetSRFsuburit 1SSH1glattmuskuläres MyosNANoradrenalinSSH1NASSziegennomalserumTGFβNASziegennomalserumTGFβNASziegennomalserumTGFβNOSneuronale NO-SynthaseThrNO-GClösliche Guanylyl-cyclaseUba1ubiquitin Ike modifiervascular cell adhesionNO-GClösliche Guanylyl-cyclaseVasPVascular cell adhesionVasuvascular cell adhesionPDEPhosphatasetrasevs.versusPDEPhosphodiesterasevs.versusPDF-BBplatelet-derived growth factorVSMCvascular smooth musPDF-BBplatelet-derived growth factorVSMCvascular smooth fmusPDF-ABplatelet-derived growth factorVSMCvascular smooth mus<	nd etikulums <i>n heavy</i> in vom
Mac2Galectin-3SerSerSerMAPArterieller mittlerer BlutdruckSERCACa ²⁺ -ATPase desMDBmembrane desalting buffersarkoplasmatischen RMLC2regulatorische leichte KetteSDS-Sodium-Dodecylsulfades MyosinsPAGEPolyacrylamid-GeleektrophoreseGeleektrophoreseMLCPMyosin-leichte-Ketten-KinaseGeleektrophoreseMLCPMyosin-leichte-Ketten-SM22αTransgelinPhosphataseSMMHCsmooth muscle myosmiRNAmicro RibonukleinsäureIITyp IIMTMasson-TrichromSNPSodiumnitroprussidMYOCDMyocardinSRsarkoplasmatisches FMYPT1myosin phosphatase targetSRFserum response factsuburit 1SSH1Lprotein phosphatasehonolog 1NANoradrenalinSSH1Lprotein phosphataseNACINatriumchloridTBBTrueBiot IP-BeadsNDSEselnormalserumTGFβtransforming growth faNOSneuronale NO-SynthaseThrThreoninNO-GClösliche Guanylyl-cyclaseUba1ubiquitin-Proteason-1molocular forterinUPSVasodilatator-stimulieSAK2p21-activated protein kinasev.a.vorallemPBSPhosphodiesterasev.a.vorallemPDEPhosphodiesterasev.s.versusPDEPhosphodiesterasev.s.versusPDEPhosphodiesterasev.s. <td>nd etikulums <i>n heavy</i> in vom</td>	nd etikulums <i>n heavy</i> in vom
MAPArterieller mittlerer BlutdruckSERCACa²+-ATPase des sarkoplasmatischen L endoplasmatischen RMgCl₂Magnesiumchloridendoplasmatischen R endoplasmatischen RMLC2regulatorische leichte KetteSDS- Sodium-Dodecylsulfa- GelelektrophoreseMLC4Myosin-leichte-Ketten-KinasePAGEMLC7Myosin-leichte-Ketten- PhosphataseSM22aMical2Mikrotubuli-assoziierte Monoxygenase 2SM Myosin glattmuskuläres MyosMTMason-TrichromSNPSodiumitorprussidSRMYCDMyosin phosphatase target suburit 1SRSNANoradrenalinSSH1MSTNitroblau-TetrazoliumchloridNBTNitroblau-TetrazoliumchloridNBSZiegennormalserumTGFβTrueBiot IP-BeadsThrNOStickstoffmonoxidNOStickstoffmonoxidNOStickstoffmonoxidNOStickstoffmonoxidNOStickstoffmonoxidPAK2p21-activated protein kinaseVAPolyentereVASPVascular cell adhesion molecule 1PAK2p21-activated growth factorPDEPhosphatasePDEPhosphatasePDIProteindustrid-lisomeraseWWVersuchswochenPDIProteindustrid-lisomeraseWSVersuchswochenPDIProteindustrid-lisomeraseWSProsphatase-InhibitorWTWildtypPIP2Phosphatase-InhibitorWT </td <td>nd etikulums <i>n heavy</i> in vom</td>	nd etikulums <i>n heavy</i> in vom
MDBmembrane desalting buffersarkoplasmatischen LMgCl2Magnesiumchloridendoplasmatischen RMLC2regulatorische leichte KetteSDS-des Myosin-leichte-Ketten-KinasePAGEPolyacrylamid-MLCPMyosin-leichte-Ketten-SM22aTransgelinPhosphataseSMMHCsmooth muscle myosMical2Mikrotubuli-assoziierteSMMHCsmooth muscle myosMical2Mikrotubuli-assoziierteSNPSodium-toolexylauidaMTMasson-TrichromSNPSodiumnitroprussidMYOCDMyocardinSRsarkoplasmatisches FMYPT1myosin phosphatase targetSRFserum response factosubunit 1SSHslingshot phosphatase targetSHLNANoradrenalinSSH1Lprotein phosphatase targetNaCINatriumchloridTBBTrueBlot IP-BeadsNBSEselnormalserumTGFβtransforming growth fNOSselenormalserumTGFβtransforming growth fNOStickstoffmonoxidTpmTropomyosinNO-GClösliche Guanylyl-cyclaseUba1ubiquitin-Proteasom-1noLLoxidized low densityUPSUbiquitin-Proteasom-1moldsalzlösungVasPVasodilatator-stimuliePAK2p21-activated protein kinasev.a.vor allemPDEPhosphodiesterasevs.versusPDEPhosphodiesterasevs.versusPDEPhosphodiesterasevs.versus <t< td=""><td>nd etikulums <i>n heavy</i> in vom</td></t<>	nd etikulums <i>n heavy</i> in vom
MgCl2 Magnesiumchlorid endoplasmatischen R MLC2 regulatorische leichte Kette SDS- Sodium-Dodecylsulfa MLC4 Myosin-leichte-Ketten-Kinase PAGE Polyacrylamid- MLC4 Myosin-leichte-Ketten-Kinase SM22α Transgelin MLC4 Myosin-leichte-Ketten-Kinase SM22α Transgelin Mical2 Mikrotubuli-assoziierte SMMHC smooth muscle myos Mical2 Mikrotubuli-assoziierte II Typ II MT Masson-Trichrom SNP Sodiumnitroprussid MYOCD Myocardin SR sarkoplasmatisches F MYPT1 myosin phosphatase target SRF serum response factor suburit 1 SSH SSH1L protein phosphatase target NA Noradrenalin SSH1L protein phosphatase target NAS Eselnormalserum TEMED Tetramethylethylendia NGS Ziegennormalserum TEMED Tetramethylethylendia NOS neuronale NO-Synthase Thr Threonin NO Stickstoffmonoxid Tpm Tropomyosin	n heavy in vom
MLC2regulatorische leichte Kette des MyosinsSDS- PAGESodium-Dodecylsulfa GelektrophoreseMLC4Myosin-leichte-Ketten- PhosphataseSM22α TransgelinTransgelin Smoth muscle myos chainMical2Mikrotubuli-assozierte Monoxygenase 2SM Myosin glattmuskuläres MyosGelektrophorese chainMTMasson-TrichromSNPSodiumnitroprussidMYOCDMyocardinSR sarkoplasmatisches F subunit 1SRF serum response facto nomolg 1NANoradrenalinSSH1L protein phosphatase targendSSH1L protein phosphatase a momolg 1NANoradrenalinSSH1L protein phosphatase a momolg 1NBTNitroblau-Tetrazoliumchlorid lipoproteinTBB 	<i>n heavy</i> in vom
MEOL regulation for the feature PGB Polyacrylamid- Gelelektrophorese MLCK Myosin-leichte-Ketten-Kinase PAGE Polyacrylamid- Gelelektrophorese MLCP Myosin-leichte-Ketten- Phosphatase SM22a Transgelin Mical2 Mikrotubuli-assoziierte SMMHC smooth muscle myos chain Mical2 Mikrotubuli-assoziierte II Typ II MT Masson-Trichrom SNP Sodiumitoprussid MYOCD Myocardin SR sarkoplasmatisches F MYPT1 myosin phosphatase target SRF serum response facto suburit 1 SSH slingshot phosphatase homolog 1 NA Noradrenalin SH1L protein phosphatase NA Noradrenalin TEMED Teraethylethylendit NGS Ziegennormalserum TEMED Teraethylethylendit NGS Ziegennormalserum TGFβ transforming growth f NOS neuronale NO-Synthase Thr Threonin NO Stickstoffmonoxid Tpm Tropomyosin NO-GC lösliche Guanylyl-cyclase Uba1 ubiquitin-Proteasom-1 noklourde apoutein kinase v.a. vor allem PAK2 p21-activated protein kinase v.	<i>n heavy</i> in vom
MLCKMyosin-leichte-Ketten-KinaseGelelektrophoreseMLCPMyosin-leichte-Ketten- PhosphataseSMZ2αTransgelinMical2Mikrotubuli-assoziierte Monooxygenase 2SMMHCsmooth muscle myos chainmiRNAmicro RibonukleinsäureIITyp IIMTMasson-TrichromSNPSodiumnitroprussidMYOCDMyocardinSRsarkoplasmatisches FMYPT1myosin phosphatase target subunit 1SRsarkoplasmatisches FNANoradrenalinSSH1Lprotein phosphatase i homolog 1NANoradrenalinSSH1Lprotein phosphatase i homolog 1NBTNitroblau-TetrazoliumchloridTBBTrueBlot IP-BeadsNDSEselnormalserumTGFβtransforming growth fa nNOS neuronale NO-SynthaseNO-GClösliche Guanylyl-cyclaseUba1ubiquitin like modifier enzyme 1NO-GClösliche Guanylyl-cyclaseUba1ubiquitin like modifier enzyme 1PAK2p21-activated protein kinasev.a.vor allemPBSPhosphat-gepufferte Subtilisin Kexin Typ 9VLDLvery low density lipop PDE PDEPosphatesePDEProsphatase Iragevs.versusPDIProteindisulfid-IsomeraseVSversusPDIProteindisulfid-IsomeraseWBWestern DiätPIPhosphatase-InhibitorWTWildtypPIP2Phosphatigvlinositol-4,5- bisphosphatZyxZyxin	<i>n heavy</i> in vom
MLCR Myosin-leichte-Ketten- Phosphatase SM22α Transgelin Mical2 Mikrotubuli-assoziierte SMMHC smooth muscle myos chain Mical2 Mikrotubuli-assoziierte SM Myosin glattmuskuläres Myos miRNA micro Ribonukleinsäure II Typ II MT Masson-Trichrom SNP Sodiumnitroprussid MYOCD Myocardin SR sarkoplasmatisches F MYPT1 myosin plosphatase target SRF serum response facto subunit 1 SSH slingshot phosphatase inomolog 1 NA Noradrenalin SSH1L protein phosphatase inomolog 1 NBT Nitroblau-Tetrazoliumchlorid TBB TrueBlot IP-Beads NDS Eselnormalserum TGFβ transforming growth finnov finnov finnovid NO Stickstoffmonoxid Tpm Threonin NO Stickstoffmonoxid Tpm Threonin NO Stickstoffmonoxid Tpm Threonin NO Stickstoffmonoxid Tpm Threonin NO Stickstoffmonoxid Tpm Phosphotoprotein	<i>n heavy</i> in vom
MICLFMyosin-field field field fieldSMZ2αTransgeinPhosphataseSMMHCsmooth muscle myosMical2Mikrotubuli-assoziierteSMMHCsmooth muscle myosmiRNAmicro RibonukleinsäureIITyp IIMTMasson-TrichromSNPSodiumnitroprussidMYOCDMyocardinSRsarkoplasmatisches FMYPT1myosin phosphatase targetSRFserum response factosubunit 1SSHslingshot phosphatasehomolog 1NANoradrenalinSSH1Lprotein phosphatase targetsSHNACINatriumchloridTBBTrueBlot IP-BeadsNDSEselnormalserumTGFβtransforming growth fNOSneuronale NO-SynthaseThrThreoninNOStickstoffmonoxidTpmTropomyosinNO-GClösliche Guanylyl-cyclaseUba1ubiquitin-Proteasom-1nubor 2p21-activated protein kinasev.a.vor allemPBSPhosphat-gepufferteVASPVascular cell adhesiorPDF-BBplatelet-derived growth factorVSMCvascular smooth muscPDF-BBplatelet-derived growth factorVSMCvascular smooth fundPDIProteindisulfid-IsomeraseWBWestern BlotPIIPhosphataseWBWestern DiätPIP2PhosphataseVTWildtypPIP2Phosphatage fWDWestern DiätPIP2Phosphatigvlinositol-4,5-z.B.zum Beispiel	<i>n heavy</i> in vom
Mical2Mikrotubuli-assoziierte Monooxygenase 2SMMRCSmouth muscle myos chainmiRNAmicro RibonukleinsäureIITyp IIMTMasson-TrichromSNPSodiumnitroprussidMYOCDMyocardinSRsarkoplasmatisches FMYPT1myosin phosphatase target subunit 1SRFserum response factorNANoradrenalinSSH1Lprotein phosphatase target subunit 1SSHslingshot phosphatase target subunit 1NANoradrenalinSSH1Lprotein phosphatase target subunit 1SSH1Lprotein phosphatase target subunit 1NANoradrenalinSSH1Lprotein phosphatase target subunit 1SSH1Lprotein phosphatase target soft 1P-BeadsNACINatriumchloridTBBTrueBlot IP-Beads transforming growth fNGSZiegennormalserumTGFβtransforming growth fNOSneuronale NO-SynthaseThrThreoninNOStickstoffmonoxidTpmTropomyosinNO-GClösliche Guanylyl-cyclase ulpoproteinUba1ubiquitin-Proteasom-1oxLDLoxidized low density lipoproteinUPSUbiquitator-stimulie PhosphotjestrasePAK2p21-activated protein kinase Subtilisin Kexin Typ 9VLDLversusPDEPhosphodiesterase BBvs.versusPDEPhosphodiesterase 	in vom
MicroLouin-assozuerceChainMonooxygenase 2SM Myosinglattmuskuläres MyosmiRNAmicro RibonukleinsäureIITyp IIMTMasson-TrichromSNPSodiumnitroprussidMYOCDMyocardinSRsarkoplasmatisches FMYPT1myosin phosphatase targetSRFserum response factosubunit 1SSHslingshot phosphataseNANoradrenalinSSH1Lprotein phosphatase targetNaClNatriumchloridTBBTrueBlot IP-BeadsNDSEselnormalserumTGFβtransforming growth fNOSneuronale NO-SynthaseThrThreoninNOStickstoffmonoxidTpmTropomyosinNO-GClösliche Guanylyl-cyclaseUba1ubiquitin-Proteason-1NAC2p21-activated protein kinasev.a.vor allemPAK2p21-activated protein kinasev.a.vor allemPCRPolymerasekettenreaktionVcam-1vascular cell adhesiorPDEPhosphodiesterasevs.versusPDEPhosphodiesterasevs.versusPDIProteindisulfid-IsomeraseWBWestern BlotPFAParaformaldehydWDWestern DiätPIP2Phosphatage-InhibitorWTWildtypPIP2Phosphatidylinositol-4,5-z.B.zum BeispielbisphosphatZyxZyxinSutilisin Kexin Typ	in vom
Minooxygenase 2SM Myosinglatmuskulares MyosinmiRNAmicro RibonukleinsäureIITyp IIMTMasson-TrichromSNPSodiumnitroprussidMYOCDMyocardinSRsarkoplasmatisches FMYPT1myosin phosphatase targetSRFserum response factosubunit 1SSHslingshot phosphataseNANoradrenalinSSH1Lprotein phosphataseNaCINatriumchloridTBBTrueBlot IP-BeadsNDSEselnormalserumTEMEDTetramethylethylendiaNGSZiegennormalserumTGFβtransforming growth faNOStickstoffmonoxidTpmTropomyosinNO-GClösliche Guanylyl-cyclaseUba1ubiquitin like modifieroxLDLoxidized low densityenzyme 1lipoproteinUPSUbiquitin-Proteasom-iPAK2p21-activated protein kinasev.a.vor allemPCRPolymerasekettenreaktionVcam-1vascular cell adhesionPCRPolymerasekettenreaktionVcam-1vascular cell adhesionPDEPhosphodiesterasevs.versusPDEPhosphodiesterasevs.versusPDIProteindisulfid-IsomeraseWBWestern BlotPFAParaformaldehydWDWestern BlotPIP2Phosphatage-InhibitorWTWildtypPIP2Phosphatage-InhibitorZyxZyxin	in vom
miRNAmicro RibonukleinsaureII yp IIMTMasson-TrichromSNPSodiumnitroprussidMYOCDMyocardinSRsarkoplasmatisches FMYPT1myosin phosphatase targetSRFserum response factosubunit 1SSHslingshot phosphataseNANoradrenalinSSH1Lprotein phosphataseNACINatriumchloridTBBTrueBlot IP-BeadsNDSEselnormalserumTGF β transforming growth fNNOSneuronale NO-SynthaseThrThreoninNOStickstoffmonoxidTpmTropomyosinNO-GClösliche Guanylyl-cyclaseUba1ubiquitin like modifieroxLDLoxidized low densityenzyme 1lipoproteinUPSUbiquitin-Proteasom-iPAK2p21-activated protein kinasev.a.vor allemPCRPolymerasekettenreaktionVcam-1vascular cell adhesionPCRPolymerasekettenreaktionVcam-1vascular cell adhesionPDEPhosphodiesterasevs.versusPDIProteindisulfid-IsomeraseWBWestern BlotPFAParaformaldehydWDWestern DiätPIPhosphatase-InhibitorWTWildtypPIP2Phosphatase-InhibitorWTWildtypPIP2Phosphatase-Inhibitor-Af-5-z.B.zum BeispielbisphosphatGrowthifacoGrowthifacoGrowthifacoPKCParaformaldehydWDWestern DiätPIPhosphat	
MTMasson-TrichromSNPSodiumnitroprussidMYOCDMyocardinSRsarkoplasmatisches FMYPT1myosin phosphatase targetSRFserum response factosubunit 1SSHslingshot phosphataseNANoradrenalinSSH1Lprotein phosphataseNaClNatriumchloridTBBTrueBlot IP-BeadsNDSEselnormalserumTEMEDTetramethylethylendiaNGSZiegennormalserumTGFβtransforming growth frNNOSneuronale NO-SynthaseThrThreoninNOStickstoffmonoxidTpmTropomyosinNO-GClösliche Guanylyl-cyclaseUba1ubiquitin like modifieroxLDLoxidized low densityenzyme 1lipoproteinUPSUbiquitin-Proteasom-iPAK2p21-activated protein kinasev.a.vor allemPBSPhosphat-gepufferteVASPVasodilatator-stimuliePCRPolymerasekettenreaktionVcam-1vascular cell adhesioiPCRPolymerasekettenreaktionVcam-1vascular smooth musPDFPhosphodiesterasevs.versusPDFPhosphodiesterasevs.versusPDIProteindisulfid-IsomeraseWBWestern BlotPFAParaformaldehydWDWestern DiätPIP2Phosphatase-InhibitorWTWildtypPIP2Phosphatase-InhibitorZyxZyxin	
MYOCDMyocardinSRsarkoplasmatisches FMYPT1myosin phosphatase targetSRFserum response factosubunit 1SSHslingshot phosphataseNANoradrenalinSSH1Lprotein phosphataseNaClNatriumchloridTBBTrueBlot IP-BeadsNDSEselnormalserumTEMEDTetramethylethylendiaNGSZiegennormalserumTGFβtransforming growth faNOSneuronale NO-SynthaseThrThreoninNOStickstoffmonoxidTpmTropomyosinNO-GClösliche Guanylyl-cyclaseUba1ubiquitin like modifieroxLDLoxidized low densityenzyme 1lipoproteinUPSUbiquitin-Proteasom-iPAK2p21-activated protein kinasev.a.vor allemPCRPolymerasekettenreaktionVcam-1vascular cell adhesionPCK9Proproteinkonvertasemolecule 1versusPDEPhosphodiesterasevs.versusPDIProteindisulfid-IsomeraseWBWestern BlotPFAParaformaldehydWDWestern BlotPFAParaformaldehydWDWestern DiätPIPhosphatase-InhibitorWTWildtypPIP2Phosphatase-InhibitorWTWildtypPIP2Phosphatage-InhibitorWTWildtypPICProteindisulfid-IsomeraseZyxZyxin	
MYPT1myosin phosphatase target subunit 1SRFserum response facto subunit 1NANoradrenalinSSHslingshot phosphatase homolog 1NACINatriumchloridTBBTrueBlot IP-BeadsNBTNitroblau-TetrazoliumchloridTBBTrueBlot IP-BeadsNGSZiegennormalserumTEMEDTetramethylethylendiaNOSneuronale NO-SynthaseThrThreoninNOStickstoffmonoxidTpmTropomyosinNO-GClösliche Guanylyl-cyclaseUba1ubiquitin like modifier enzyme 1oxLDLoxidized low densityenzyme 1lipoproteinUPSUbiquitin-Proteasom-1PAK2p21-activated protein kinasev.a.vor allemPBSPhosphat-gepufferteVASPVascular cell adhesion molecule 1PCRPolymerasekettenreaktionVcam-1vascular cell adhesion molecule 1PDEPhosphotiesterasevs.versusPDGF-BBplatelet-derived growth factorVSMCvascular smooth mus VWPFAParaformaldehydWDWestern BlotPFAParaformaldehydWDWestern DiätPIPhosphatase-InhibitorWTWildtypPIP2Phosphatase-InhibitorWTWildtypPIP2Phosphatase-InhibitorVTWildtypPIP2Phosphatase-InhibitorVTWildtypPIP2Phosphatase-InhibitorVTWildtypPIP3Ptotinkingen CCSyxPIC <t< td=""><td>etikulum</td></t<>	etikulum
subunit 1SSHslingshot phosphatasNANoradrenalinSSH1Lprotein phosphataseNaClNatriumchloridTBBTrueBlot IP-BeadsNDSEselnormalserumTEMEDTetramethylethylendiaNGSZiegennormalserumTGFβtransforming growth frnNOSneuronale NO-SynthaseThrThreoninNOStickstoffmonoxidTpmTropomyosinNO-GClösliche Guanylyl-cyclaseUba1ubiquitin like modifieroxidized low densityenzyme 1ipoproteinUPSUbiquitin-Proteasom-iVPSVasodilatator-stimuliePAK2p21-activated protein kinasev.a.vor allemPBSPhosphat-gepufferteVASPVasodilatator-stimulieSalzlösungPCRPolymerasekettenreaktionVcam-1vascular cell adhesionPCRPolymerasekettenreaktionVcam-1vascular smooth musPDEPhosphodiesterasevs.versusPDEF-BBplatelet-derived growth factorVSMCvascular smooth musBBVWVersuchswochenPDIPFAParaformaldehydWDWestern DiatPIPhosphatase-InhibitorWTWildtypPIP2Phosphatidylinositol-4,5-z.B.zum BeispielbisphosphatZyxZyxinSyxin	r
NANoradrenalinSSH1Lprotein phosphatase homolog 1NaClNatriumchloridTBB $TrueBlot IP$ -BeadsNDSEselnormalserumTEMEDTetramethylethylendiaNGSZiegennormalserumTGF β $transforming growth f.$ NNOSneuronale NO-SynthaseThrThreoninNOStickstoffmonoxidTpmTropomyosinNO-GClösliche Guanylyl-cyclaseUba1ubiquitin like modifieroxLDLoxidized low densityenzyme 1lipoproteinUPSUbiquitin-Proteasom-iPAK2p21-activated protein kinasev.a.vor allemPBSPhosphat-gepufferteVASPVasodilatator-stimuliePCRPolymerasekettenreaktionVcam-1vascular cell adhesionPCSK9Proproteinkonvertasevs.versusPDGF-BBplatelet-derived growth factorVSMCvascular smooth musBBVWVestern BlotPFAPIPhosphatase-InhibitorWTWildtypPIP2Phosphatase-InhibitorZyxZyxinPKCProteindisulfiol-4,5-z.B.zum BeispielDKCParaformaldehydKCProteinbigen C	es e
NaClNatriumchloridhomolog 1NBTNitroblau-TetrazoliumchloridTBB $TrueBlot IP$ -BeadsNDSEselnormalserumTGF β $transforming growth f.$ NGSZiegennormalserumTGF β $transforming growth f.$ NOSneuronale NO-SynthaseThrThreoninNOStickstoffmonoxidTpmTropomyosinNO-GClösliche Guanylyl-cyclaseUba1ubiquitin like modifieroxidized low densityenzyme 1lipoproteinUPSUbiquitin-Proteasom-inPAK2p21-activated protein kinasev.a.vor allemPBSPhosphat-gepufferteVASPVasodilatator-stimuliePCRPolymerasekettenreaktionVcam-1vascular cell adhesionPCSK9Proproteinkonvertasevs.versusPDEPhosphodiesterasevs.versusPDGF-BBplatelet-derived growth factorVSMCvascular smooth musBBVWVersuchswochenPIPIPhosphatase-InhibitorWTWildtypPIP2Phosphatase-InhibitorWTWildtypPIP2Phosphatidylinositol-4,5-z.B.zum BeispielbisphosphatZyxZyxZyxin	lingshot
NBTNitroblau-TetrazoliumchloridTBBTrueBlot IP-BeadsNDSEselnormalserumTEMEDTetramethylethylendiaNGSZiegennormalserumTGFβtransforming growth fnNOSneuronale NO-SynthaseThrThreoninNOStickstoffmonoxidTpmTropomyosinNO-GClösliche Guanylyl-cyclaseUba1ubiquitin like modifieroxLDLoxidized low densityenzyme 1lipoproteinUPSUbiquitin-Proteasom-IPAK2p21-activated protein kinasev.a.vor allemPBSPhosphat-gepufferteVASPVasodilatator-stimuliePCRPolymerasekettenreaktionVcam-1vascular cell adhesionPCSK9Proproteinkonvertasevs.versusPDEPhosphodiesterasevs.versusPDGF-BBplatelet-derived growth factorVSMCvascular smooth musBBVWVersuchswochenPIPFAParaformaldehydWDWestern BlotPIPhosphatase-InhibitorWTWildtypPIP2Phosphatigelinositol-4,5-z.B.zum BeispielbisphosphatZyxZyxinZyxin	-
NDSEselnormalserumTEMEDTetramethylethylendiaNGSZiegennormalserumTGFβtransforming growth f.nNOSneuronale NO-SynthaseThrThreoninNOStickstoffmonoxidTpmTropomyosinNO-GClösliche Guanylyl-cyclaseUba1ubiquitin like modifieroxLDLoxidized low densityenzyme 1lipoproteinUPSUbiquitin-Proteasom-1PAK2p21-activated protein kinasev.a.vor allemPBSPhosphat-gepufferteVASPVasodilatator-stimuliePCRPolymerasekettenreaktionVcam-1vascular cell adhesionPCK9Proproteinkonvertasevs.versusPDEPhosphodiesterasevs.versusPDGF-BBplatelet-derived growth factorVSMCvascular smooth musBBVWVersuchswochenPDIPFAParaformaldehydWDWestern BlotPFAParaformaldehydWTWildtypPIP2Phosphatige-InhibitorWTWildtypPIP2Phosphatilogiol-4,5-z.B.zum BeispielbisphosphatZyxZyxinZyxin	
NGSZiegennormalserumTGFβtransforming growth frnNOSneuronale NO-SynthaseThrThreoninNOStickstoffmonoxidTpmTropomyosinNO-GClösliche Guanylyl-cyclaseUba1ubiquitin like modifieroxLDLoxidized low densityenzyme 1lipoproteinUPSUbiquitin-Proteasom-1PAK2 $p21$ -activated protein kinasev.a.vor allemPBSPhosphat-gepufferteVASPVasodilatator-stimuliePCRPolymerasekettenreaktionVcam-1vascular cell adhesionPCSK9Proproteinkonvertasemolecule 1Subtilisin Kexin Typ 9VLDLvery low density lipopPDEPhosphodiesterasevs.versusPDIProteindisulfid-IsomeraseWBWestern BlotPFAParaformaldehydWDWestern DiätPIPhosphatase-InhibitorWTWildtypPIP2Phosphatiopione.4,5-z.B.zum BeispielbisphosphatZyxZyxinBroteinkingen C	min
NOSneuronale NO-SynthaseThrThreoninNOStickstoffmonoxidTpmTropomyosinNO-GClösliche Guanylyl-cyclaseUba1ubiquitin like modifieroxLDLoxidized low densityenzyme 1lipoproteinUPSUbiquitin-Proteasom-PAK2p21-activated protein kinasev.a.vor allemPBSPhosphat-gepufferteVASPVasodilatator-stimuliePCRPolymerasekettenreaktionVcam-1vascular cell adhesionPCSK9Proproteinkonvertasemolecule 1Subtilisin Kexin Typ 9VLDLvery low density lipopPDEPhosphodiesterasevs.versusPDGF-BBplatelet-derived growth factorVSMCvascular smooth musBBVWVersuchswochenPIPFAParaformaldehydWDWestern BlotPFAPhosphatase-InhibitorWTWildtypPIP2Phosphatidylinositol-4,5-z.B.zum BeispielbisphosphatZyxZyxinPK	actor beta
NOStickstoffmonoxidTimTimeNOStickstoffmonoxidTpmTropomyosinNO-GClösliche Guanylyl-cyclaseUba1ubiquitin like modifieroxLDLoxidized low densityenzyme 1lipoproteinUPSUbiquitin-Proteasom-PAK2p21-activated protein kinasev.a.vor allemPBSPhosphat-gepufferteVASPVasodilatator-stimuliePCRPolymerasekettenreaktionVcam-1vascular cell adhesionPCSK9Proproteinkonvertasemolecule 1Subtilisin Kexin Typ 9VLDLvery low density lipopPDEPhosphodiesterasevs.versusPDGF-BBplatelet-derived growth factorVSMCvascular smooth musBBVWVersuchswochenPDIPTAParaformaldehydWDWestern BlotPFAParaformaldehydWTWildtypPIP2PhosphatigeInoistol-4,5-z.B.zum BeispielbisphosphatZyxZyxinPKC	
NO-GClositisticinininonationruppingruppingruppingNO-GClösliche Guanylyl-cyclaseUba1ubiquitin like modifieroxtDLoxidized low densityenzyme 1lipoproteinUPSUbiquitin-Proteasom-PAK2p21-activated protein kinasev.a.vor allemPBSPhosphat-gepufferteVASPVasodilatator-stimulieSalzlösungPhosphotreenPhosphoproteinPCRPolymerasekettenreaktionVcam-1vascular cell adhesioiPCSK9Proproteinkonvertasemolecule 1Subtilisin Kexin Typ 9VLDLvery low density lipopPDEPhosphodiesterasevs.versusPDGF-BBplatelet-derived growth factorVSMCvascular smooth musBBVWVersuchswochenPDIProteindisulfid-IsomeraseWBWestern BlotPFAParaformaldehydWDWestern DiätPIPhosphatase-InhibitorWTWildtypPIP2Phosphatidylinositol-4,5-z.B.zum BeispielbisphosphatZyxZyxinXin	
No ocInstance Guarry regeneseObsite Guarry regeneseObsite Guarry regeneseoxLDLoxidized low densityenzyme 1lipoproteinUPSUbiquitin-Proteasom-PAK2p21-activated protein kinasev.a.vor allemPBSPhosphat-gepufferteVASPVasodilatator-stimulieSalzlösungPhosphoproteinPhosphoproteinPCRPolymerasekettenreaktionVcam-1vascular cell adhesionPCSK9Proproteinkonvertasemolecule 1Subtilisin Kexin Typ 9VLDLvery low density lipopPDEPhosphodiesterasevs.versusPDGF-BBplatelet-derived growth factorVSMCvascular smooth musBBVWVersuchswochenPDIProteindisulfid-IsomeraseWBWestern BlotPFAParaformaldehydWDWestern DiätPIPhosphatase-InhibitorWTWildtypPIP2Phosphatidylinositol-4,5-z.B.zum BeispielbisphosphatZyxZyxinExponence	activatino
OALDEOAADZed now densityUPSUbiquitin-Proteasom-Iipoproteinp21-activated protein kinasev.a.vor allemPBSPhosphat-gepufferteVASPVasodilatator-stimulieSalzlösungPhosphoproteinPhosphoproteinPCRPolymerasekettenreaktionVcam-1vascular cell adhesionPCSK9Proproteinkonvertasemolecule 1Subtilisin Kexin Typ 9VLDLvery low density lipopPDEPhosphodiesterasevs.versusPDGF-BBplatelet-derived growth factorVSMCvascular smooth musBBVWVersuchswochenPDIProteindisulfid-IsomeraseWBWestern BlotPFAParaformaldehydWDWestern DiätPIPhosphatase-InhibitorWTWildtypPIP2Phosphatidylinositol-4,5-z.B.zum BeispielbisphosphatZyxZyxinXyxin	aouvaung
PAK2p21-activated protein kinasev.a.vor allemPBSPhosphat-gepufferteVASPVasodilatator-stimulieSalzlösungPolymerasekettenreaktionVcam-1vascular cell adhesionPCRPolymerasekettenreaktionVcam-1vascular cell adhesionPCSK9Proproteinkonvertasemolecule 1Subtilisin Kexin Typ 9VLDLvery low density lipopPDEPhosphodiesterasevs.versusPDGF-BBplatelet-derived growth factorVSMCvascular smooth musBBVWVersuchswochenPDIProteindisulfid-IsomeraseWBWestern BlotPFAParaformaldehydWDWestern DiätPIPhosphatase-InhibitorWTWildtypPIP2Phosphatidylinositol-4,5-z.B.zum BeispielbisphosphatZyxZyxinExplanation	Svetom
PAR2 <i>p21-activated protein kinase</i> V.a.Vor allemPBSPhosphat-gepufferteVASPVasodilatator-stimulieSalzlösungPolymerasekettenreaktionVcam-1vascular cell adhesionPCRPolymerasekettenreaktionVcam-1vascular cell adhesionPCSK9Proproteinkonvertasemolecule 1Subtilisin Kexin Typ 9VLDLvery low density lipopPDEPhosphodiesterasevs.versusPDGF-BBplatelet-derived growth factorVSMCvascular smooth musBBVWVersuchswochenPDIProteindisulfid-IsomeraseWBWestern BlotPFAParaformaldehydWDWestern DiätPIPhosphatase-InhibitorWTWildtypPIP2Phosphatidylinositol-4,5-z.B.zum BeispielbisphosphatZyxZyxinXyxin	Jystem
PBSPhosphai-gepulierteVASPVasodilatator-stimuleSalzlösungPhosphoproteinPCRPolymerasekettenreaktionVcam-1vascular cell adhesionPCSK9Proproteinkonvertasemolecule 1Subtilisin Kexin Typ 9VLDLvery low density lipopPDEPhosphodiesterasevs.versusPDGF-BBplatelet-derived growth factorVSMCvascular smooth musBBVWVersuchswochenPDIProteindisulfid-IsomeraseWBWestern BlotPFAParaformaldehydWDWestern DiätPIPhosphatase-InhibitorWTWildtypPIP2Phosphatidylinositol-4,5-z.B.zum BeispielbisphosphatZyxZyxinXixin	tee
PCRPolymerasekettenreaktionVcam-1vascular cell adhesion molecule 1PCSK9Proproteinkonvertase Subtilisin Kexin Typ 9VLDLvery low density lipopPDEPhosphodiesterasevs.versusPDGF-BBplatelet-derived growth factorVSMCvascular smooth mus BBPDIProteindisulfid-IsomeraseWBWestern BlotPFAParaformaldehydWDWestern DiätPIP2Phosphatidylinositol-4,5- bisphosphatz.B.zum Beispiel bisphosphatPKCProteinkingen CPKC	les
PCRPolymerasekettenreaktionVcam-1Vascular cell adhesioi molecule 1PCSK9Proproteinkonvertase Subtilisin Kexin Typ 9WLDLvery low density lipopPDEPhosphodiesterasevs.versusPDGF-BBplatelet-derived growth factorVSMCvascular smooth mus BBPDIProteindisulfid-IsomeraseWBWestern BlotPFAParaformaldehydWDWestern DiätPIPhosphatase-InhibitorWTWildtypPIP2Phosphatidylinositol-4,5- bisphosphatz.B.zum Beispiel bisphosphatPKCProteindisulfid-Somerase CVKVersuchswochen	
PCSK9Proproteinkonvertasemolecule 1Subtilisin Kexin Typ 9VLDLvery low density lipopPDEPhosphodiesterasevs.versusPDGF-BBplatelet-derived growth factorVSMCvascular smooth musBBVWVersuchswochenPDIProteindisulfid-IsomeraseWBWestern BlotPFAParaformaldehydWDWestern DiätPIPhosphatase-InhibitorWTWildtypPIP2Phosphatidylinositol-4,5-z.B.zum BeispielbisphosphatZyxZyxinPKC	1
PDEPhosphodiesterasevs.very low density lipopPDGF-BBplatelet-derived growth factorVSMCvascular smooth musBBVWVersuchswochenPDIProteindisulfid-IsomeraseWBWestern BlotPFAParaformaldehydWDWestern DiätPIPhosphatase-InhibitorWTWildtypPIP2Phosphatidylinositol-4,5-z.B.zum BeispielbisphosphatZyxZyxinPKC	
PDEPhosphodiesterasevs.versusPDGF-BBplatelet-derived growth factorVSMCvascular smooth musBBVWVersuchswochenPDIProteindisulfid-IsomeraseWBWestern BlotPFAParaformaldehydWDWestern DiätPIPhosphatase-InhibitorWTWildtypPIP2Phosphatidylinositol-4,5-z.B.zum BeispielbisphosphatZyxZyxinPKC	rotein
PDGF-BBplatelet-derived growth factorVSMCvascular smooth musBBVWVersuchswochenPDIProteindisulfid-IsomeraseWBWestern BlotPFAParaformaldehydWDWestern DiätPIPhosphatase-InhibitorWTWildtypPIP2Phosphatidylinositol-4,5-z.B.zum BeispielbisphosphatZyxZyxin	
BBVWVersuchswochenPDIProteindisulfid-IsomeraseWBWestern BlotPFAParaformaldehydWDWestern DiätPIPhosphatase-InhibitorWTWildtypPIP2Phosphatidylinositol-4,5- bisphosphatz.B.zum Beispiel ZyxPKCProteinkingso CProteinkingso C	cell
PDIProteindisulfid-IsomeraseWBWestern BlotPFAParaformaldehydWDWestern DiätPIPhosphatase-InhibitorWTWildtypPIP2Phosphatidylinositol-4,5- bisphosphatz.B.zum Beispiel ZyxPKCProteinkingen CProteinkingen C	
PFAParaformaldehydWDWestern DiätPIPhosphatase-InhibitorWTWildtypPIP2Phosphatidylinositol-4,5- bisphosphatz.B.zum Beispiel ZyxPKCProteinkingson CZyxZyxin	
PIPhosphatase-InhibitorWTWildtypPIP2Phosphatidylinositol-4,5- bisphosphatz.B.zum BeispielBKCProteinkingson CZyxZyxin	
PIP2 Phosphatidylinositol-4,5- z.B. zum Beispiel bisphosphat Zyx Zyxin	
bisphosphat Zyx Zyxin	
PKC Protoinkingso C	
PLC Phospholipase C	
PMCA Plasmamembran-Ca ²⁺ -	
n o per oral	
PPDY4 Peroviredovin 4	
PLIEA mohrfach ungesättigte	
For A memiatin ungesattigte	
PVDF Polyvinylideniluond	
qRI-PCR quantitative Echtzeit-	
Polymerasekettenreaktion	
Rac1 ras-related C3 botulinum toxin	
substrate 1	
Rai14 Ankycorbin	
RhoA ras homolog family member A	
RNA Ribonukleinsäure	
ROCK Rho-assoziierte Proteinkinase	
ROS reaktive Sauerstoffspezies	
RT Raumtemperatur	

1. Einleitung

1.1 Physiologische Funktionen der Gefäßmuskulatur

1.1.1 Aufbau und Funktion der großen Gefäße

Die grundlegende Aufgabe der großen Gefäße besteht darin, das Blut vom Herzen durch den Körper und wieder zurück zu transportieren, sowie den Stoffaustausch in den Organen zwischen den Zellen und dem Blut zu gewährleisten. Aus dem linken Herzventrikel entspringt die Hauptschlagader (Aorta), aus der alle Arterien des großen Kreislaufes hervorgehen. Diese lässt sich unterteilen in die aufsteigende Aorta (Aorta ascendens), den Aortenbogen (Arcus aortae) mit den drei supraaortalen Gefäßabgängen (Truncus brachiocephalicus, A. carotis communis sinistra, A. subclavia sinistra) und die absteigende Aorta (Aorta descendens). Die absteigende Aorta lässt sich wiederum in die Brustaorta (Aorta thorakalis) und die Bauchaorta (Aorta abdominalis) untergliedern und endet schließlich in der Aortenbifurkation (Uflacker, 2010). Grundsätzlich bestehen die großen Gefäße aus drei unterschiedlichen Gewebeschichten, deren genaue Zusammensetzung abhängig von der jeweiligen Funktionalität variieren kann (Borysenko et al., 1989). Da die Arterien einem hohen arteriellen Blutdruck standhalten müssen, besitzen diese eine sehr muskelreiche Media (Tunica media), während die Venen, die dem Niederdrucksystem angehören, weniger vaskuläre Glattmuskelzellen (VSMC) beinhalten. Aufgrund der gering ausgebildeten Media besitzen die Venen einen größeren Durchmesser und können dadurch mehr Blut speichern. Der Blutseite zugewandt befindet sich die Intima (Tunica interna), welche im Wesentlichen aus Endothelzellen und einer Basalmembran (Elastika interna) besteht. Diese innerste Schicht der Gefäße dient primär der Abdichtung der Gefäßwand als selektiv permeable Barriere und gewährleistet einen optimalen Blutstrom. Darüber hinaus sind die Endothelzellen der Intima durch Interaktionen mit dem peripheren Nervensystem an der Regulation des Gefäßtonus beteiligt und tragen zu Thrombolyse- und Gerinnungsprozessen bei (Pugsley et al., 2000). Im Rahmen der Initiierung einer Atherosklerose spielen Endothelzellen ebenfalls eine große Rolle, da sie an inflammatorischen Prozessen beteiligt sind und die Lokalisierung der atherogenen Gefäßregionen bestimmen (Li et al., 2018). Der Intima schließt sich als mittlere Gewebeschicht die Media, bestehend aus VSMCs und elastischen Fasern (Elastin), an. Unter physiologischen Bedingungen übernehmen VSMCs biosynthetische, sowie kontraktile Aufgaben innerhalb der Gefäßwand (Rzucidlo et al., 2007). Durch Kontraktion und Relaxation der VSMCs ändert sich der Gefäßdurchmesser, wodurch der Blutdruck reguliert wird (Webb, 2003). Die äußerste Schicht, hauptsächlich aus Bindegewebe bestehend, wird Adventitia (Tunica externa) genannt und dient der Verankerung der Blutgefäße im Gewebe.

Abbildung 1.1: Einteilung der Aorta und Aufbau der großen Gefäße

(A) Die Aorta lässt sich in die Aorta ascendens, den Arcus aortae, sowie die Aorta descendens unterteilen. Der Aortenbogen beinhaltet drei Gefäßabgänge, Truncus brachiocephalicus, A. carotis communis sinistra und die A. subclavia sinistra. (B) Die großen Gefäße bestehen aus drei Gewebeschichten. Der Blutseite zugewandt befindet sich die Tunica intima, gefolgt von der Tunica media und der Tunica adventitia. Die Abbildung 1.1B wurde auf der Grundlage einer ursprünglich von bioRender (biorender.com) stammenden Vorlage erstellt.

1.1.2 Differenzierung von vaskulären Glattmuskelzellen

Die Differenzierung von VSMCs spielt eine große Rolle bei der Ausbildung der Gefäße während der embryonalen Entwicklung. Die VSMCs entwickeln sich in Abhängigkeit ihrer genauen Lokalisation in den Gefäßen aus einem breiten Spektrum an embryonalen Gewebe (Deng et al., 2017). Während die VSMCs des Aortenbogens und der aufsteigenden Aorta aus der Neuralleiste stammen (Majesky, 2007), entwickeln sich die VSMCs der absteigenden und abdominalen Aorta aus dem Mesoderm und die Koronararterien aus dem Pro-Epikardium (Mikawa et al., 1996). Die Differenzierung der Zellen wird durch die dynamische Modulation unterschiedlicher regulatorischer Transkriptionsfaktoren, sowie durch nichtcodierende Ribonukleinsäuren (RNA) gesteuert. Dabei wird auch die Abundanz kontraktiler Proteine innerhalb der VSMCs und somit ihr funktioneller Phänotyp festgelegt (Roostalu et al., 2018). Einer der molekularen Mechanismen, welche die Differenzierung von VSMCs steuern, verläuft über den platelet-derived growth factor BB (PDGF-BB), der als Lockstoff (chemoattractant) auf VSMCs einwirkt und deren Proliferation stimuliert (Hellstrom et al., 1999). Weitere potente Initiatoren der VSMC-Differenzierung sind der transforming growth factor beta (TGFβ) (Guo et al., 2012) und der endothelial exprimierte jagged canonical Notch ligand 1 (JAG1), der die Notch3-abhängige Differenzierung aktiviert (Manderfield et al., 2012). Außerdem fungiert Myocardin (MYOCD), das mit dem DNA-bindenden Transkriptionsfaktor serum response factor (SRF) Komplexe bildet, als bedeutsamer Schalter des kontraktilen Phänotyps, der unter 1.2.2 genauer beschrieben wird (Li et al., 2003; Miano, 2015). Neben den nichtcodierenden

RNAs, wie z.B. *micro RNA* (miRNA) (Uchida et al., 2015; Yu et al., 2014), sind auch epigenetische Chromatin-Modifikationen an der Regulation der VSMC-Differenzierung involviert (Liu et al., 2015). Eine Besonderheit der VSMCs ist, dass sie nicht terminal differenziert sind und somit ihren Phänotyp als Reaktion auf lokale äußere Einflüsse modulieren können.

1.1.3 Regulation des Gefäßtonus in vaskulären Glattmuskelzellen

Die regulatorischen Funktionen von VSMCs in der Gefäßwand beinhalten sowohl physiologische, als auch pathophysiologische Aufgaben (Alexander et al., 2012). Im Wesentlichen gehören zu den physiologischen Eigenschaften der Erhalt der Gefäßstruktur, die Regulation des Gefäßtonus und Gefäßdurchmessers, die Blutdruckregulation und die Blutflussdistribution (Alexander & Owens, 2012; Owens et al., 2004). Dabei erfolgt die Regulation des arteriellen Blutdrucks zum einen über das Herzzeitvolumen und zum anderen über den peripheren Widerstand der Gefäße. Durch die hohe Dichte an elastischen Fasern in der Aorta kann der pulsierende Blutstrom, der durch die rhythmischen Kontraktionen des Herzens entsteht, in einen gleichmäßigen Volumenstrom umgewandelt werden, was als Windkesselfunktion bezeichnet wird (Belz, 1995). Die Blutdruckregulation in den Gefäßen erfolgt dann über die Kontraktion und Relaxation der VSMCs, was sich entsprechend in einer Gefäßengstellung oder Gefäßweitstellung äußert. Bei der Kontraktilität der VSMCs ist vor allem der sekundäre Botenstoff Kalzium (Ca²⁺) von immenser Bedeutung. Es existieren hohe Ca²⁺-Konzentrationsunterschiede zwischen dem extrazellulären ([Ca²⁺]_e) und intrazellulären ([Ca²⁺]_i) Kompartiment, was letztlich in einem ins Zellinnere gerichteten Ca²⁺-Gradienten resultiert (Lee et al., 2002). Die Kontraktion in VSMCs kann auf zwei unterschiedliche Arten eingeleitet werden. Einerseits kann die Initiierung der Kontraktion durch Innervation und einer daraus resultierenden Depolarisation der Plasmamembran aktiviert werden. Dies wird als elektromechanische Kopplung Zum anderen führt die bezeichnet. auch pharmakomechanische Kopplung, eine Aktivierung von Zelloberflächenrezeptoren durch die Interaktion mit entsprechenden Liganden, zur Kontraktion der VSMCs (Somlyo et al., 1968). Beide Mechanismen resultieren in einer Erhöhung der [Ca2+]i. Während bei der elektromechanischen Kopplung das Aktionspotential zur Öffnung spannungsabhängiger Ca²⁺-(LTCC) und somit zum Anstieg der [Ca²⁺]_i führt, werden Kanäle bei der pharmakomechanischen Kopplung (zunächst) Rezeptoren an der VSMC Oberfläche aktiviert. Dies hat wiederum eine Ca²⁺-Freisetzung aus intrazellulären Speichern zur Folge und/oder führt dazu, dass die Ca²⁺-Sensitivität verschiedener Proteine des kontraktilen Apparates erhöht werden (siehe Abb. 1.2A). Hierbei aktiviert z.B. die Liganden-gesteuerte Stimulation αadrenerger G-Protein-gekoppelter 7-Transmembranhelix-Rezeptoren (GPCR) die

3

Phospholipase C (PLC), welche die Hydrolyse des Phosphatidylinositol-4,5-bisphosphats (PIP₂) zu Diacylglycerin (DAG) und Inositol-1,4,5-triphosphat (IP₃) stimuliert. IP₃ bindet an IP₃-Rezeptoren (IP₃R) des sarkoplasmatischen Retikulums (SR) und führt so wiederum zur Freisetzung von Ca²⁺ aus dem SR (Ogut et al., 2003). Das akkumulierte intrazelluläre Ca²⁺ bindet primär an Calmodulin (CaM), das vier Bindungsstellen für Ca²⁺ besitzt (Kretsinger et al., 1973). Die Bildung des (Ca²⁺)₄-CaM-Komplexes führt zur Konformationsänderung von CaM, sodass eine Bindung an die Myosin-leichte-Ketten-Kinase (MLCK) und somit die Aktivierung dieser ermöglicht wird (Ikura et al., 1984; Seamon, 1980). Die Aktivierung der MLCK führt nachfolgend zur Phosphorylierung der regulatorischen leichten Kette des Myosins (MLC2) an Serin 19 (Ser19), das für die Steigerung der Adenosintriphosphatase (ATPase)-Aktivität von Myosin verantwortlich ist.

Im Gegensatz zur Kontraktion, werden Relaxationsprozesse in VSMCs durch sinkendes [Ca²⁺]_i eingeleitet. SR-Ca²⁺-ATPasen (SERCA) in der Membran des SR sind in der Lage Ca²⁺ im Antiport mit Wasserstoff (H⁺) vom Zytoplasma in das SR zu pumpen, was in einer Reduktion von [Ca²⁺]_i resultiert (Periasamy et al., 2007). Des Weiteren führt auch die Plasmamembran-Ca²⁺-ATPase (PMCA) zur Senkung der [Ca²⁺]_i, indem Ca²⁺ wieder in den Extrazellulärraum gepumpt wird (Brini et al., 2011). Zum Ausgleich der MLCK-Aktivität kann die MLC2 durch die Myosin-leichte-Ketten-Phosphatase (MLCP) dephosphoryliert werden (siehe Abb. 1.2A). Hierbei handelt es sich um ein Heterotrimer, das aus einer regulatorischen *myosin phosphatase target subunit* 1 (MYPT1), einer katalytischen Untereinheit und einer kleineren Untereinheit (20 kDa) mit unbekannter Funktion besteht (Alessi et al., 1992). Die Selektivität der MLCP für phosphoryliertes Myosin wird über die MYPT1-Untereinheit vermittelt (Shirazi et al., 1994).

Neben der Ca²⁺-abhängigen Regulation des Gefäßtonus, sind auch Ca²⁺-unabhängige, G-Protein-vermittelte Mechanismen an der Muskelaktivierung beteiligt. Eine Steigerung der Muskelkontraktion kann über eine sogenannte Ca²⁺-Sensitivierung erreicht werden. Dabei spielt zum einen der *ras homolog family member A* (RhoA)-Guanosintriphosphat (GTP)aktivierte Rho-Kinase-Signalweg eine wichtige Rolle (Ogut & Brozovich, 2003). Über die Aktivierung G-Protein-gekoppelter Rezeptoren wird der GTP-Austauschfaktor (GEF) aktiviert, welcher die Aktivierung von RhoA-Guanosindiphosphat (GDP) zu RhoA-GTP unterstützt (Schmidt et al., 2002). Nachfolgend aktiviert RhoA-GTP die Rho-assoziierte Kinase (ROCK), die MYPT1 an Threonin 696 (Thr696) phosphorylieren kann und darüber eine Inhibition der MLCP-Aktivität bewirkt (Kimura et al., 1996; Leung et al., 1995). Des Weiteren spielt auch die *protein phosphatase 1 regulatory inhibitor subunit 14A* (CPI-17) eine Rolle bei der Ca²⁺-Sensitivierung, da CPI-17 sowohl ein Substrat der ROCK, als auch der PLC ist (Kitazawa et al., 2000). Phosphoryliertes CPI-17 bindet als die aktive Form des CPI-17 an die katalytische Untereinheit der MLCP, wodurch deren Enzymaktivität ebenfalls inhibiert wird (siehe Abb.1.2A) (Kitazawa et al., 2003). Neben der Ca²⁺-Sensitivierung kann es Stickstoffmonoxid (NO)-vermittelt auch zu einer Ca²⁺-Desensitivierung kommen, wodurch eine Relaxation der VSMCs initiiert wird. Die genauen Mechanismen der vasorelaxierenden Funktionen von NO werden unter 1.4.2 ausführlich beschrieben. Darüber hinaus sind die dünnen Filamente Caldesmon und Calponin (Morgan et al., 2001), sowie Komponenten des Aktin-Zytoskeletts (Gerthoffer et al., 2001) ebenfalls an der Regulation der Kontraktilität glatter Muskelzellen beteiligt.

Abbildung 1.2: Schematische Übersicht über die Regulation der Kontraktilität in VSMCs

(A) Die elektromechanische (unten) und die pharmakomechanische (oben) Kopplung induzieren die Kontraktion in vaskulären Glattmuskelzellen (VSMC) über verschiedene Signalwege. Das Schema wurde modifiziert nach (Ogut & Brozovich, 2003). (B) Die Darstellung der Relaxation und Kontraktion auf Ebene der kontraktilen Filamente verdeutlicht die Interaktion des phosphorylierten Myosins mit Aktin und der dadurch ausgelöste Querbrückenzyklus. Das Schema wurde modifiziert nach (Schmidt et al., 2011). ATP = Adenosintriphosphat; ADP = Adenosindiphosphat; CaM = Calmodulin, CPI-17 = *protein phosphatase 1 regulatory inhibitor subunit 14A*; DAG = Diacylglycerin; GDP = Guanosindiphosphat; GEF = GTP-Austauschfaktor; GPCR = G-Protein- gekoppelter 7-Transmembranhelix-Rezeptor; GTP = Guanosintriphosphat; IP₃ = Inositol-1,4,5-triphosphat; IP3R = Inositol-1,4,5-triphosphat Rezeptor; LTCC = spannungsabhängige L-typ Ca²⁺-Kanäle; MLC2 = regulatorische leichte Kette 2 des Myosins; MLCK = Myosin-leichte-Ketten-Kinase; MLCP = Myosin-leichte-Ketten-Phosphatase; MYPT1 = *myosin phosphatase target subunit 1*; PLC = Phospholipase C; PIP₂ = Phosphatidylinositol-4,5-bisphosphat; RhoA = *ras homolog family member A*; ROCK = Rho-assoziierte Proteinkinase; SR = Sarkoplasma-tisches Retikulum.

1.1.4 Aufbau des Zytoskeletts vaskulärer Glattmuskelzellen

Das Zytoskelett der VSMCs setzt sich primär aus den Intermediärfilamenten, den Mikrotubuli, sowie dem glattmuskulären Myosin vom Typ II (SM Myosin II) und den Aktinfilamenten zusammen (Yamin et al., 2012). Das Netzwerk der Intermediärfilamente dient dem Zweck, die dreidimensionale Integrität der VSMCs aufrechtzuhalten und ist in Bündeln angeordnet, die mit den sogenannten dense bodies (DB) assoziieren und diese meist umgeben (Berner et al., 1981). Sie setzen sich zusammen aus den Proteinen Vimentin und Desmin. Die genaue Funktion der Mikrotubuli in kontraktilen VSMCs und das Ausmaß der Tubulin Polymerisierung wird aktuell kontrovers diskutiert. Es gilt jedoch als gesichert, dass Tubulin in VSMCs in großen Mengen exprimiert wird (Yamin & Morgan, 2012). Das SM Myosin II besteht aus zwei schweren Ketten, sowie zwei unterschiedlichen Typen von leichten Ketten (MLC20 und MLC17). Jedes individuelle Myosinfilament ist zudem von ungefähr 15 Aktinfilamenten umgeben (Devine et al., 1971; Murphy et al., 1974). Die Bedeutung der Interaktion von SM Myosin II und Aktin ist unter 1.1.3 genauer beschrieben. Im Rahmen der Kontraktion glatter Muskelzellen sind neben der Aktin-Myosin-Interaktion und dem Querbrückenzyklus auch eine Reihe an zytoskelettalen Prozessen und die Polymerisierung von Aktinfilamenten von großer Bedeutung. In VSMCs gibt es vier relevante Isoformen des Aktins. Die großen Arterien enthalten etwa 60% α -SM-Aktin (α -SMA), 20% β -Aktin und zusammen etwa 20% γ -SM- und γ nicht-muskuläres Aktin (Fatigati et al., 1984). Das γ -nicht-muskuläre Aktin ist in seiner Lokalisierung auf den Zellkortex beschränkt, während sich die α -SMA-Filamente in Längsrichtung der Zelle ausrichten und β-Aktin punktförmig mit den DBs und den Fokaladhäsionen (FA) assoziiert (Gallant et al., 2011). Das am Häufigsten vorkommende Protein in VSMCs ist α -SMA, welches sowohl als lösliches, globuläres (G-Aktin), als auch als filamentöses F-Aktin existiert (Gunst et al., 2008). Die G-Aktin-Monomere stehen hierbei in ständigem Austausch mit den Aktin-Monomeren innerhalb der F-Aktinfilamente. F-Aktin besitzt eine polymere Struktur, die aus asymmetrischen, zweilappigen und 42 kDa schweren Aktin-Monomeren besteht. Die Monomere sind in einer doppelsträngigen, helikalen Anordnung organisiert (Gunst & Zhang, 2008). Die Polymerisierung von Aktin-Filamenten ist hauptsächlich von der Anlagerung des ATP-gebundenen G-Aktins an das dynamische (barbed) Ende des F-Aktins abhängig (Fujiwara et al., 2002). Bei der Kontraktion von VSMCs kommt es zu einer Zunahme von F-Aktin und einer Abnahme an G-Aktin (Bárány et al., 2001). Untereinander sind die VSMCs entweder indirekt über Adhäsionen an die extrazelluläre Matrix (ECM) oder direkt über Zell-Zell-Kontakte miteinander verbunden. Die kontraktilen Einheiten von VSMCs sind hierbei über Adhäsionsproteinkomplexe mit den zytoplasmatischen Enden von Transmembranproteinen (Integrine) verknüpft, die wiederum mit ihren extrazellulären Komponenten an die ECM gekoppelt sind (Gerthoffer & Gunst, 2001). Diese Multi-Protein-Komplexe, die für die Verbindung zwischen der ECM und den Aktin-Filamenten verantwortlich

sind, werden als FAs bezeichnet (Zhang et al., 2008). Hierbei sind die Integrine, die aus einer α - und β -Untereinheit bestehen, die hauptsächliche transmembranäre Komponente der FAs und vermitteln sowohl Signale aus dem Zellinneren nach außen (*inside-out*), als auch Signale aus dem Extrazellulärraum ins Zellinnere (*outside-in*) (Gerthoffer & Gunst, 2001; Heerkens et al., 2007; Sun et al., 2005). Zu den Adhäsionsproteinen innerhalb der FAs gehören zum Beispiel die Proteine Vinculin und Talin (Tang et al., 2017). Im Zytosol der VSMCs werden die Aktin-Filamente wiederum durch die DBs, die hauptsächlich aus dem Aktin-Vernetzungsprotein α -Actinin bestehen, quervernetzt (Draeger et al., 1990; Draeger et al., 1989). Die DBs fungieren dabei als Äquivalente der Z-Scheiben in Skelett- und Herzmuskelzellen. Die Verankerung der kontraktilen Elemente an den DBs ist demnach Grundlage der Verkürzungsfähigkeit und Kontraktion der VSMCs.

Abbildung 1.3: Schematische Übersicht über vaskuläre Zytoskelett-Strukturen

Die kontraktilen Einheiten aus Aktin- und Myosin-Filamenten sind über die fokalen Adhäsionen (FA) mit der Zellmembran und über *dense bodies* (DB) untereinander vernetzt. Die transmembranären Integrine vermitteln die Kontakte der Zelle mit der extrazellulären Matrix (ECM). Des Weiteren sorgen Intermediärfilamente für den Erhalt der dreidimensionalen Integrität der VSMCs. Das Schema wurde modifiziert nach (Yamin & Morgan, 2012). Weitere Details im Text (1.1.4).

Verschiedene Aktin-bindende Proteine, wie z.B. Tropomyosin (Tpm), Caldesmon und Calponin, nehmen Einfluss auf die Aktin-Polymerisierung in VSMCs. Tpm wird in VSMCs in hohem Maß exprimiert und kann durch seine Ca²⁺-abhängige Bindung an F-Aktin die Aktomyosin-Interaktion beeinflussen. Die Regulation der Aktin-Polymerisierung durch Tpm kann insoweit interpretiert werden, dass Tpm die Zugänglichkeit anderer Aktin-bindender Proteine zu den Aktinfilamenten kontrolliert und somit als eine Art Torwächter (*gatekeeper*) fungiert (Gallant et al., 2011; Lehman et al., 2012). Caldesmon ist sowohl in der Lage mit polymerisierten Aktin-Filamenten, als auch mit Intermediärfilamenten zu interagieren und ist

an dem Erhalt der jeweiligen Netzwerke in VSMCs beteiligt. Zudem ist Caldesmon durch seine Bindung an Aktin in der Lage die Aktomyosin-ATPase zu inhibieren und damit die Kontraktilität der VSMCs zu beeinflussen (Marston et al., 1992; Pritchard et al., 1989). Calponin spielt eine Rolle bei der Feinregulation der vaskulären Kontraktilität und inhibiert, ähnlich wie Caldesmon, die Aktin-aktivierte Myosin-ATPase und stabilisiert das Aktin-Zytoskelett (Makuch et al., 1991; Winder et al., 1990).

Die Aktin-Polymerisierung wird darüber hinaus durch verschiedene biochemische Signalwege beeinflusst. Hierbei spielt z.B. der RhoA-Signalweg eine besondere Rolle, da RhoA über die Aktivierung von LIM-Kinasen (LIMK) die Phosphorylierung von Cofilin an Serin 3 (Ser3) beeinflussen kann. Durch diese Phosphorylierung wird die von Cofilin-vermittelte Depolymerisierung der Aktin-Filamente inhibiert (Tejani et al., 2011). Zudem ist mit dem Protein *cell division cycle 42* (Cdc42) eine weitere kleine GTPase an der Regulation der Aktin-Polymerisierung beteiligt. Cdc42 aktiviert über eine Phosphorylierung das neuronale-Wiskott-Aldrich Syndrom Protein (N-WASP), das zur Verzweigung der Aktin-Filamente an den FAs führt (Albiges-Rizo et al., 2009). Des Weiteren beeinflusst das Vasodilatator-stimulierte Phosphoprotein (VASP) die Verlängerung der Aktin-Filamente. Es wird während der Zelladhäsion und -invasion an Serin 239 (Ser239) phosphoryliert, was wiederum die Aktin-Polymerisierung und somit auch die Zellmigration fördert (Defawe et al., 2010; Kim et al., 2010).

1.1.5 Die Migration von vaskulären Glattmuskelzellen

Bei der Migration von Zellen handelt es sich um einen polarisierten Prozess, der die aktive Bewegung der Zellen ermöglicht. Eine besondere Rolle kommt dabei dem dynamischen Aktin-Zytoskelett zu. Dieses reguliert die räumliche und zeitliche Protrusion, Adhäsion, Kontraktion und Retraktion ausgehend von der Zellvorderseite. Der Migrationsprozess kann im Allgemeinen in vier Schritte gegliedert werden. Im ersten Schritt kommt es zunächst zur Ausbildung von Ausstülpungen, den sogenannten Lamellipodien, als Reaktion auf Signale der ECM (Tang & Gerlach, 2017). Anschließend löst die Bindung von Integrinen an ein spezifisches Motiv der ECM die Assemblierung der FAs durch eine Induktion der Integrin-Aggregation aus (Tang & Gerlach, 2017). Daraufhin werden Strukturproteine, wie z.B. Talin, Vinculin, α-Actinin und die Integrin-gekoppelte Kinase (ILK), sowie Signalproteine, wie z.B. die fokale Adhäsionskinase (FAK), Paxillin, Cdc42 und das *ras-related C3 botulinum toxin substrate 1* (Rac1), rekrutiert (Tang, 2015). Dadurch wird die Zelle an der ECM verankert und die nachfolgende Ausbildung der Stressfasern wird über die rekrutierten Signalproteine initiiert, was zur Ausdehnung der Zelle führt (Gunst et al 2008). Die sogenannten Stressfasern sind kontraktile Bündel, die Aktin-Filamente und Myosin II-Filamente enthalten. Im letzten Schritt der Migration werden FAs an der Zellrückseite abgebaut, damit sich die gesamte Zelle vorwärts bewegen kann (Cleary et al., 2014; Gerthoffer, 2008; Pollard et al., 2009; Tang & Gerlach, 2017). Der Prozess der Migration wird über verschiedene Proteine und Signalwege reguliert bzw. beeinflusst. Zum einen ist Vimentin in der Lage an der Plasmamembran mit dem zytoplasmatischen Teil von Integrin β_3 zu interagieren und somit die Bindung der Integrine an extrazelluläre Liganden zu beeinflussen (Kim et al., 2016). Des Weiteren induziert die durch das Protein Cdc42 vermittelte Phosphorylierung von Vimentin eine Integrin β_1 -Aktivierung (Leduc et al., 2015). Darüber hinaus wird der Migrationsprozess unter anderem auch von RhoA reguliert, welches die Aktivierung von LIMK vermittelt. Die aktivierten LIMK können Cofilin an Ser3 phosphorylieren und führen dadurch zu einer Inhibition der Depolymerisierung der Aktin-Filamente, wodurch der Aktinumsatz unterdrückt und die Bildung von Stressfasern erhöht wird (Murali et al., 2014; Schoenwaelder et al., 1999).

1.2 Pathophysiologische Veränderungen der Gefäßmuskulatur

Pathophysiologische Veränderungen der Gefäßmuskulatur sind meist charakterisiert durch eine phänotypische Modulation der VSMCs. Hierzu zählen z.B. Atherosklerose, Kalzifizierung der Gefäßwand, sowie Restenose als Folge einer Angioplastie oder Aneurysmen (Deng et al., 2017). Nach einer Gefäßverletzung oder während einer Gefäßerkrankung kommt es zur Dedifferenzierung der VSMCs (Owens, 1995; Wang D-Z et al., 2004) von einem kontraktilen Status hin zu einem proliferativen, synthetischen Phänotyp mit erhöhtem proliferativen und migrierenden Verhalten, sowie einer gesteigerten Synthese an Komponenten der ECM (Chistiakov et al., 2015; Deng et al., 2017; Rzucidlo et al., 2007).

1.2.1 Epidemiologie und Ätiologie proliferativer Gefäßerkrankungen

Weltweit führen Herz-Kreislauf-Erkrankungen (CVD) zu ca. 17,9 Millionen Todesfällen jährlich und zählen damit zur Haupttodesursache (Virani et al., 2020). In Deutschland steht jeder 2. Todesfall mit CVDs in Verbindung mit steigender Prävalenz in den letzten Jahren. CVDs stellen eine Gruppe von Erkrankungen des Herzens und der Blutgefäße dar, wobei die koronare Herzerkrankung, Bluthochdruck, Herzmuskelentzündungen und Herzrhythmusstörungen am häufigsten auftreten. Ursächlich für eine Zunahme der Prävalenz kardiovaskulärer Erkrankungen, welche vor allem im späteren Lebensalter auftreten, sind mitunter eine zunehmende Alterung der Bevölkerung, sowie wachsender Wohlstand, der mit einem Überangebot an Nahrung und körperlicher Inaktivität einhergeht. Dies begünstigt zudem weitere Risikofaktoren für CVDs, wie z.B. Adipositas, Diabetes mellitus, Bluthochdruck

oder Dyslipidämie. Hierbei führt eine Kombination mehrerer Risikofaktoren zu einem exponentiellen Anstieg des kardiovaskulären Gesamtrisikos. Bei der Betrachtung der Epidemiologie fallen geschlechtsspezifische Unterschiede auf. CVDs treten bei Frauen im Schnitt 10 Jahre später auf als bei Männern, was mit einer östrogenen Vasoprotektion der Frauen vor der Menopause in Verbindung gebracht wird (Böckler et al., 2007; Hinrichs, 2007). Die Identifizierung von Patienten mit einem hohen CVD-Risiko und die Sicherstellung einer angemessenen Behandlung sind unerlässlich für die Prävention vorzeitiger Todesfälle. Einer der wichtigsten zugrunde liegenden pathologischen Prozesse kardiovaskulärer Erkrankungen stellt die Entwicklung einer Atherosklerose dar. Die Initiierung kann bereits im frühen Lebensalter beginnen und über einen langen Zeitraum latent und asymptomatisch bleiben, bevor der Krankheitsverlauf in fortgeschrittene Stadien übergeht (Hong, 2010; Jack, 2000; Song et al., 2020). Die große, globale Inzidenz der Gefäßerkrankung konnte in einer Meta-Analyse von Song et al. deutlich gezeigt werden. Es wurde festgestellt, dass weltweit eine verstärkte Intima-Media-Dicke der Arteria carotis communis (ACC), sowie die Plaquebildung in der Carotis häufige Erkrankungen in der allgemeinen Bevölkerung sind und der Nikotinabusus, Diabetes mellitus und Hypertonie die Hauptrisikofaktoren hierfür darstellen (Song et al., 2020).

Die aktuelle Leitlinientherapie der Atherosklerose beinhaltet vor allem die Behandlung der Dyslipidämie mittels Lipidsenkern wie z.B. Statinen, Gallensäurebindern, Cholesterinresorptionshemmern und neuerdings auch mit Antikörpern (AK) (Weingärtner et al., 2020). Diese neue, vielversprechende Therapieoption basiert auf Proproteinkonvertase Subtilisin Kexin Typ 9 (PCSK9)-Inhibitoren, die verhindern, dass das Enzym PCSK9 an low density lipoprotein (LDL)-Rezeptoren auf der Oberfläche von Leberzellen bindet und diese dadurch vermindert abgebaut werden. Dies resultiert in einer vermehrten LDL-Aufnahme in die Leberzellen und verminderten Blut-LDL-Konzentrationen (Sabatine, 2019). Alle genannten Therapieoptionen zielen darauf ab, die Progredienz der Bildung atherosklerotischer Plaques in der Gefäßwand zu reduzieren und somit das kardiovaskuläre Risiko zu senken. Hingegen sind aktuell keine Therapieoptionen zur direkten Stabilisierung bereits bestehender Plagues, bspw. durch die Beeinflussung der Vulnerabilität, verfügbar. Da unter anderem die phänotypische Modulation von VSMCs, die Bildung der fibrösen Kappe, das VSMC-Transdifferenzierungspotential, sowie der Ablauf nekrotischer und apoptotischer Vorgänge innerhalb atherosklerotischer Plagues einen großen Einfluss auf die Vulnerabilität haben, ist es dringend notwendig ihre pathomechanistische Bedeutung für die Erkrankung besser zu verstehen und gezielt einflussnehmende Faktoren zu erforschen. Dies könnte zu einem breiten Spektrum an neuen Therapieansätzen und -möglichkeiten führen, und so letztlich die Prävalenz kardiovaskulärer Ereignisse positiv beeinflussen.

1.2.2 Phänotypische Modulation in vaskulären Glattmuskelzellen

Die phänotypische Modulation der VSMCs wurde das erste Mal in Gewebekulturen beschrieben (Chamley et al., 1974). Sie gilt als Hauptmechanismus, über den VSMCs auf Gefäßverletzungen und -schäden reagieren (Roostalu & Wong, 2018). Da VSMCs nicht terminal differenziert sind, besitzen sie ein hohes Differenzierungspotential und können von einem kontraktilen hin zu einem synthetischen, dedifferenzierten Phänotyp modulieren (Deng et al., 2017; Owens, 1995; Wang & Olson, 2004). Der synthetische, dedifferenzierte Phänotyp ist durch eine reduzierte Expression kontraktiler Marker, wie z.B. α -SMA, *smooth muscle myosin heavy chain* (SMMHC), Transgelin (SM22 α) oder Calponin, gekennzeichnet (Owens, 1995). Neben der veränderten Transkription glattmuskelspezifischer Gene geht die phänotypische Modulation mit einer Veränderung der Morphologie von spindelförmigen zu rautenförmigen Zellen einher, die lichtmikroskopisch beobachtet werden kann (Rensen et al., 2007). Synthetische VSMCs weisen außerdem eine erhöhte Proliferations- und Migrationsrate auf und exprimieren vermehrt Proteine der ECM und pro-inflammatorische Zytokine (Alexander & Owens, 2012; Bennett et al., 2016; Rzucidlo et al., 2007).

Abbildung 1.4: Schematische Darstellung der phänotypischen Modulation von VSMCs

VSMCs sind nicht terminal differenziert und können deshalb infolge unterschiedlicher Stimuli vom kontraktilen, differenzierten zum synthetischen, dedifferenzierten Phänotyp modulieren. Während die kontraktilen VSMCs durch eine hohe Expression glattmuskulärer, kontraktiler Proteine gekennzeichnet sind und somit ein hohes Kontraktionsvermögen aufweisen, sind eine erhöhte Expression an ECM-Proteinen, sowie eine gesteigerte Migration und Proliferation charakteristisch für den synthetischen Phänotyp. Das Schema wurde modifiziert nach (Davis-Dusenbery et al., 2011).

Induziert und reguliert wird die phänotypische Modulation durch Transkriptionsfaktoren (z.B. serum response factor (SRF), GATA6 und nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) (Yoshida et al., 2013)), sowie Myocardin (Ackers-Johnson et al.,

2015; Bennett et al., 2016) und *krueppel-like factor* (KLF) (Deng et al., 2017; Ha et al., 2017; McConnell et al., 2010). Außerdem sind Wachstumsfaktoren (z.B. PDGF-BB (Ha et al., 2015), *transforming growth factor beta* (TGF β) (Chen S et al., 2004; Sinha et al., 2004)), inflammatorische Mediatoren (z.B. *tumor necrosis factor alpha* (TNF α), *interleukin 1 beta* (IL-1 β) (Beamish et al., 2010)) und epigenetische Modulationen beteiligt (Alexander & Owens, 2012; Gomez et al., 2015; Liu et al., 2015; McDonald et al., 2007). Die phänotypische Modulation hat zwar auch physiologische Funktionen, wie z.B. die Reparatur von Gefäßschäden oder die Neovaskularisierung (Chistiakov et al., 2015; Fischer et al., 2006), allerdings ist der synthetische Phänotyp in VSMCs vor allem in Folge einer Verletzung oder Entzündung vorzufinden (Ackers-Johnson et al., 2015) und ist charakteristisch für die pathophysiologischen Prozesse im Rahmen verschiedener Gefäßerkrankungen, wie z.B. Hypertension, Atherosklerose oder Aneurysmen (Castorena-Gonzalez et al., 2014; Owens et al., 2004).

1.2.3 Pathophysiologische Mechanismen der Atherosklerose

Die Atherosklerose stellt als multifaktorielle, chronisch entzündliche Gefäßerkrankung (Bennett et al., 2016; Tabas et al., 2015) ein bedeutender Trigger für kardiovaskuläre Erkrankungen dar, da die Ruptur atherosklerotischer Plaques zur Thrombusbildung mit nachfolgendem Herzinfarkt oder ischämischen Insult führen kann (Allahverdian et al., 2018; Sakakura et al., 2013). Die wichtigsten Risikofaktoren für die Entstehung atherosklerotischer Plaques sind Übergewicht (Rocha et al., 2009; van Rooy et al., 2014), Bluthochdruck und Diabetes mellitus Typ 2 (Glowinska et al., 2003; Grundy, 2002). Die Bereiche, an denen das Gefäß besonders anfällig für eine Atherogenese ist, werden vor allem durch die Funktionalität der Endothelzellen bestimmt, die somit maßgeblich an der Initiierung der Atherosklerose beteiligt sind (Li et al., 2018). Zudem werden mechanische Stimuli in Verbindung mit dem Beginn der Atherogenese, sowie deren Progression gebracht (Sit et al., 2020). Letztendlich führen alle diese Einflüsse zu endothelialen Zellschäden und letztlich zur Dysfunktion des Endothels. Dadurch wird das Eindringen von LDL in die subendotheliale Intima begünstigt und führt zur Oxidation von LDL (Harman et al., 2019; Sitia et al., 2010). Oxidiertes LDL (oxLDL) wiederum lockt Monozyten aus der Blutbahn an. Dies führt zur Monozyten-Diapedese in den subendothelialen Raum, wo diese zu Makrophagen transformiert werden, die oxLDL phagozytieren und sich anschließend zu Schaumzellen entwickeln (Abb. 1.5) (Chistiakov et al., 2015). Im weiteren Verlauf stimulieren von Schaumzellen freigesetzte inflammatorische Mediatoren und Zytokine die Migration der VSMCs von der Media in die subendotheliale Intima. Dort proliferieren diese und exprimieren vermehrt ECM-Proteine (Abb. 1.5). Hierbei durchlaufen die VSMCs eine phänotypische Modulation vom differenzierten, kontraktilen hin zum dedifferenzierten, synthetischen Phänotyp (Alexander & Owens, 2012; Chistiakov et al., 2015; Tabas et al., 2015). Zudem ist bekannt, dass VSMCs an der Bildung der fibrösen Kappe der atherosklerotischen Plaques beteiligt sind und die vermehrt synthetisierten ECM-Proteine zur Plaque-Stabilisierung beitragen (Harman & Jørgensen, 2019).

Abbildung 1.5: Schematische Darstellung des atherosklerotischen Pathomechanismus

Bei der Initiierung der Atherosklerose kommt es durch eine endotheliale Dysfunktion an prädisponierten Stellen zum Eindringen von *low density lipoprotein* (LDL) in den subendothelialen Raum, wo dieses oxidiert wird (oxLDL). Dies führt zur Adhäsion und Diapedese von Monozyten aus der Blutbahn, die im subendothelialen Raum zu Makrophagen differenzieren, oxLDL phagozytieren und sich zu Schaumzellen entwickeln. Von den Schaumzellen werden inflammatorische Zytokine und Wachstumsfaktoren (u.a. PDGF) freigesetzt, die eine phänotypische Modulation der VSMCs und deren Migration von der Media in die Intima induzieren. VSMCs tragen vor allem zur Bildung der fibrösen Kappe bei, können allerdings auch zu Chondrozyten-ähnlichen oder Makrophagen-ähnlichen Zellen transdifferenzieren. Die Plaquevulnerabilität wird von verschiedenen Faktoren, wie der Dicke der fibrösen Kappe, Kalzifizierungen, sowie von apoptotischen und nekrotischen Vorgängen innerhalb der Plaques beeinflusst. Das Schema wurde modifiziert nach (Gargiulo et al., 2016).

Zudem können VSMCs auch weitere, alternative phänotypische Veränderungen z.B. zu Schaumzellen-ähnlichen, Makrophagen-ähnlichen oder Osteochrondrozyten-ähnlichen Subtypen durchlaufen (Basatemur et al., 2019). Hierbei konnte in den letzten Jahren durch *"lineage-tracing"* Studien neue Erkenntnisse über die Herkunft verschiedener Zelltypen in atherosklerotischen Plaques gewonnen werden. Dabei wurde festgestellt, dass eine große

Anzahl an Zellen in den Läsionen von VSMCs abstammen, obwohl diese nicht mehr die "klassischen" kontraktilen Marker (z.B.: α -SMA, SMMHC, Transgelin), sondern Marker anderer Zelltypen (z.B. Mac-2) exprimieren (Chappell et al., 2016; Durham et al., 2018; Feil et al., 2014; Jacobsen et al., 2017; Misra et al., 2018; Wang et al., 2019). Im weiteren Verlauf der Atherosklerose kommt es zum Zelltod der Makrophagen und VSMCs, wobei diese Lipide freisetzen, die im Zentrum der Plaques akkumulieren und den nekrotischen Kern bilden (Harman & Jørgensen, 2019).

Die Vulnerabilität der atherosklerotischen Plaques und damit auch das Risiko einer Plaqueruptur ist durch eine dünne, fibröse Kappe (oft mit Mikro-Kalzifizierungen) und einen lipidreichen, nekrotischen Kern gekennzeichnet (Bennett et al., 2016; Durham et al., 2018; Shankman et al., 2015). In diesem Zusammenhang scheint ein verstärktes proliferierendes Verhalten von VSMCs, welches zur Stabilisierung der fibrösen Kappe beiträgt, v.a. im frühen Stadium der Atherosklerose von Vorteil zu sein (Bennett et al., 2016).

1.2.4 Pathophysiologische Mechanismen der Restenose

Die Ruptur eines atherosklerotischen Plaques führt zur Thrombusbildung mit nachfolgendem Herzinfarkt oder ischämischen Insult durch eine Stenose der entsprechenden Gefäße. Klinisch wird ein Stent eingesetzt, um die Engstelle zu beseitigen und das Gefäß zu stützen. Aufgrund einer übermäßigen Proliferation von VSMCs kann es allerdings an diesen Stellen wiederholt zu einer Verengung der Gefäße kommen, was als Restenose (chronische Neointimabildung) bezeichnet wird. Der Pathomechanismus der Restenose ist bislang nicht vollständig aufgeklärt, aber es wird angenommen, dass die Restenose der Gefäße durch eine Kombination aus einem Umbau (Remodeling) der Arterienwand und einer Neointima-Hyperplasie entsteht (Austin et al., 1985). Zur Aufklärung der komplexen zellulären und biochemischen Mechanismen in vivo werden Tiermodelle herangezogen. Hierbei wurden in der Maus folgende Gefäßverletzungsmodelle etabliert: Die Verletzung der Carotis mit einem Draht (Lindner et al., 1993), die Carotis-Ligatur (Kumar et al., 1997), die perivaskuläre elektronische Verletzung (Carmeliet et al., 1997) und das perivaskuläre Manschetten-Modell (Moroi et al., 1998). Die Ligation der linken Carotis, bei intaktem Endothel, führt durch einen verringerten Blutstrom zur Neointimabildung (Kumar & Lindner, 1997). In vivo wurde bereits gezeigt, dass eine Verringerung des Blutstroms in Gefäßtransplantaten und verletzten Gefäßen zu einer höheren intimalen Läsionsbildung führt, was darauf hinweist, dass die Veränderungen des Blutflusses die Proliferation der VSMCs beeinflusst (Bassiouny et al., 1992; Kohler et al., 1991). Die phänotypische Modulation und die damit einhergehende Proliferation von VSMCs scheinen die wichtigsten Aspekte der arteriellen Reaktion auf Verletzungen in experimentellen Modellen der Restenose zu sein (Ferns et al., 2000). Folglich

erscheint es schlüssig, dass die Bildung neointimaler Zellen mehrheitlich von VSMCs der Media bewerkstelligt wird (Herring et al., 2014; Nemenoff et al., 2011). Die Migration einer Subpopulation medialer VSMCs in die Intima wird von freigesetzten Wachstumsfaktoren, wie z.B. PDGF angetrieben. In der Intima findet anschließend eine hohe Proliferation der VSMCs statt (Ferns et al., 1991; Rutherford et al., 1997). Durch die phänotypische Modulation liegt in der Intima der synthetische Phänotyp der VSMCs vor. Dieser führt zur erhöhten Bildung und Sekretion von ECM-Proteinen (z.B. Hyaluronan und Chondroitinsulfat). Des Weiteren findet im fortschreitenden Verlauf ein Umbau der Gefäße durch den Abbau überschüssiger extrazellulärer Matrix durch Matrix-Metalloproteasen (MMP) statt.

1.3 Cystein-reiche LIM-Proteine

Die Familie der Cystein-reichen LIM-Proteine (CRP) gehören den LIM-only Proteinen an. Die funktional bedeutsamste Domäne der CRP-Proteine bilden multiple LIM-Domänen, bestehend aus tandemartig angeordneten Zinkfingerstrukturen (Sánchez-García et al., 1994). Hochkonservierte Cystein- oder Histidin-reiche Regionen komplexieren hierbei die Zinkionen innerhalb der Zinkfinger, die über zwei Aminosäuren (AS) miteinander verbunden sind. Anschließend an die LIM-Domäne folgt eine Glycin-reiche Sequenz (Louis et al., 1997). Des Weiteren sind CRPs über ihre LIM-Domänen in der Lage zu homomultimerisieren (Huber et al., 2000). Die LIM-only Proteine differieren vor allem in der Anzahl ihrer LIM-Domänen (Kadrmas et al., 2004). Bislang konnten innerhalb der CRP-Familie vier verwandte Proteine identifiziert werden (Abb. 1.6): CRP1 (Csrp1) (Liebhaber et al., 1990), CRP2/smLIM (smooth muscle LIM) (Csrp2) (Weiskirchen et al., 1993), CRP3/MLP (Csrp3) (Arber et al., 1994) und CRP4 (Crip2), das auch als heart LIM protein (HLP) bekannt ist (Okano et al., 1993; Straubinger et al., 2017; Yu et al., 2002; Zhang et al., 2007). Während der Homologiegrad von CRP1, CRP2/smLIM und CRP3/MLP bezüglich ihrer AS-Sequenzen vergleichsweise hoch ist (>65%), zeigt CRP4 eine höhere genetische Übereinstimmung mit den Proteinen der CRIP (Cystein-reiche intestinale Proteine)-Familie (CRIP1 und CRIP3/TLP) auf (Abb. 1.6) (Straubinger et al., 2017). Diese Zugehörigkeit bzw. genetische Ähnlichkeit mit den Proteinen der CRIP-Familie spiegelt sich auch im Gennamen von CRP4 (Crip2) wider. CRP-Proteine sind vor allem im Zytoplasma, an zytoskelettalen Strukturen und im Nukleus lokalisiert. Durch diese Lokalisation können CRPs (CRP1, CRP2/smLIM, CRP3/MLP) über ihre Zinkfinger mit zytoskelettalen Strukturen, wie Zyxin und α -Actinin interagieren und dadurch die dynamische Regulation des Zytoskeletts beeinflussen (Louis et al., 1997). Zudem sind LIM-Proteine allgemein als Adapterproteine bekannt und können teilweise auch direkt mit Nukleinsäuren interagieren (Weiskirchen et al., 2003).

Abbildung 1.6: Genetische Übereinstimmung der Vertreter der CRP- und CRIP-Familie Sowohl mit den Vertretern der CRP-Familie, als auch mit CRIP1 und CRIP3/MLP der CRIP-Familie weist CRP4/HLP homologe Aminosäuresequenzen auf. Hierbei zeigt CRP4/HLP mit CRIP1 interessanterweise die höchste genetische Übereinstimmung (67,5%). Trotzdem wird CRP4 von den meisten Autoren weiterhin zu den CRPs gezählt, lediglich der Genname *Crip2* weist auf die Verwandtschaft mit der CRIP-Familie hin. Das Schema wurde modifiziert nach (Straubinger et al., 2017).

CRP1 und CRP2/smLIM weisen besonders in VSMCs und Fibroblasten eine hohe Expression auf und scheinen bei der Differenzierung von VSMCs eine besondere Rolle zu spielen (Louis et al., 1997). Durch die Interaktion mit den Transkriptionsfaktoren der SRF- und GATA-Familie können CRP1 und CRP2/smLIM außerdem die Expression glattmuskelspezifischer Gene regulieren (Beckerle, 1997; Chang et al., 2003). Des Weiteren konnte gezeigt werden, dass eine Ablation von CRP2/smLIM zu einer verstärkten VSMC-Migration und einer erhöhten Neointimabildung nach einer durch einen Draht induzierten arteriellen Verletzung führt (Wei et al., 2005). In CRP1-defizienten Mäusen wurde interessanterweise der umgekehrte Effekt beobachtet (Lilly et al., 2010). Zudem konnte in CRP1/CRP2-Doppelknockout-Mäusen eine identische Reaktion auf die arterielle Verletzung wie in den entsprechenden Wildtyp-Tieren beobachtet werden, was darauf hindeutet, dass CRP1 und CRP2/smLIM in einer funktionell antagonistischen Weise die VSMC-Aktivität als Reaktion auf eine Gefäßverletzung regulieren können (Lilly et al., 2010).

Im Gegensatz zu CRP1 und CRP2/smLIM wird CRP3/MLP (*muscle LIM protein*) nur in Skelettund Herzmuskelzellen exprimiert (Schneider et al., 1999). Interessanterweise führt eine globale Deletion von CRP3/MLP in Mäusen zu einer dilatativen Kardiomyopathie (DCM) (Arber et al., 1994). Entsprechend werden Mutationen des humanen *Csrp3* Gens auch mit erblich bedingten Kardiomyopathien in Verbindung gebracht (Geier et al., 2003).

1.3.1 Cystein-reiches LIM-Protein 4 (CRP4)

CRP4 wurde nach seiner Erstbeschreibung zunächst als CRP2 benannt (Okano et al., 1993), doch aufgrund der Verwechslungsgefahr mit CRP2/smLIM wurde es 2007 in CRP4 umbenannt (Zhang et al., 2007). Das für CRP4 kodierende Gen (*Crip2*) ist beim Menschen auf dem Chromosom 14 und bei der Maus auf dem Chromosom 12 zu finden und besteht aus 7 Exons

(Karim et al., 1996). Zwischen Mensch und Maus unterscheidet sich die Proteinsequenz von CRP4 in nur 12 AS (Huber et al., 2000). Die Expression von CRP4 konnte im Rattenmodell vor allem im Herzen, in den Gefäßen und der Lunge nachgewiesen werden. Zudem wird CRP4 auch in der Niere, der Leber und Milz, dem Magen und Darm, sowie im Gehirn exprimiert (Okano et al., 1993). Eine besonders hohe mRNA-Expression in den Arterien, im Herzen und in der Lunge von *Crip2* wird ebenfalls im GTEx (Genotype tissue expression)-Portal, einer Gendatenbank zur humanen Genexpression, angegeben (Consortium, 2015).

Das Cystein-reiche LIM-*only* Protein 4 (CRP4) wird zur Familie der LIM-Proteine gezählt und besteht aus zwei LIM-Domänen, mit jeweils zwei tandemartig angeordneten Zinkfingerstrukturen. Die Zinkionen werden von Cystein- oder Histidinreichen Regionen komplexiert. Den LIM-Domänen folgen Glycinreiche Regionen und sie werden durch die Gelenkregion miteinander verbunden. CRP4 besitzt in seiner Gelenkregion das sogenannte RKTS (Arginin-Lysin-Threonin-Serin)-Motiv mit der putativen Phosphorylierungsstelle für die 3',5'-cyclisches Guanosinmonophosphat (cGMP)-abhängige Proteinkinase Typ I (cGKI) an Serin 104. Das Schema wurde modifiziert nach (Huber et al., 2000).

Im Vergleich zu den restlichen Vertretern der CRP-Familie, weicht der Genname von CRP4 von der Standardnomenklatur der CRP-Gene ab. Die Abweichung begründet sich in der Tatsache, dass trotz der Verwandtschaft gewisse Unterschiede zu den anderen CRP-Proteinen bestehen, was sich, wie bereits ausgeführt, auch im Ausmaß der AS-Sequenzidentität zwischen CRP1-3 und CRP4 widerspiegelt, die von 35 % bis zu 80 % variiert (Abb. 1.6) (Straubinger et al., 2017). Das Molekulargewicht von CRP4 beträgt 23 kDa und das Protein ist aus 208 AS aufgebaut (Huber et al., 2000). Hierbei besteht CRP4 aus zwei LIM-Domänen, die jeweils zwei tandemförmig angeordnete Zinkfinger-Strukturen aufweisen (Sánchez-García & Rabbits, 1994). Die Zinkionen werden von den hochkonservierten Cysteinoder Histidin-reichen Regionen komplexiert und zwischen den beiden LIM-Domänen befindet sich eine flexible Linker-Region, welche die beiden Bausteine miteinander verbindet (Abb. 1.7). Über die LIM-Domänen ist CRP4 in der Lage Protein-Protein-Interaktionen mit verschiedenen Signalmolekülen, Transkriptionsfaktoren oder Strukturproteinen einzugehen und die Bildung

multimerer Proteinkomplexe zu ermöglichen (Weiskirchen & Günther, 2003; Weiskirchen et al., 1995).

Eine weitere Besonderheit von CRP4 unter den CRP-Proteinen ist das sogenannte RKTS (Arginin-Lysin-Threonin-Serin)-Motiv innerhalb der Linker-Region. Diese Konsensus-Sequenz enthält Serin 104 (Ser104), das eine putative Phosphorylierungsstelle für die 3',5'-cyclisches Guanosinmonophosphat (cGMP)-abhängige Proteinkinase Typ I (cGKI) darstellt (Huber et al., 2000). Beide Isoformen der cGKI (cGKIa und cGKIB) phosphorylieren CRP4 bereits basal und die Zugabe von cGMP steigert die Phosphorylierung um ein Vielfaches. Währenddessen kann die cGKII CRP4 nur unter cGMP-stimulierten Bedingungen phosphorylieren und hat keinen Einfluss auf die basalen Phosphorylierungslevel von CRP4 (Huber et al., 2000). Bei der cGKI handelt es sich um eine Kinase, die vaskuläre NO- und natriuretisches Peptid (NP)-induzierte cGMP-Signale vermittelt. Dessen Vorkommen und Funktion wird unter 1.4 näher beschrieben. Als mögliches Substrat der cGKI nimmt die cGMP-induzierte Phosphorylierung von CRP4 z.B. im Spinalganglion, wo eine Co-Lokalisation von CRP4 und der cGKI nachgewiesen werden konnte, Einfluss auf die Schmerzverarbeitung im Mausmodell (Schmidtko et al., 2008). Des Weiteren konnte auch in VSMCs und verschiedenen Neuronen des Plexus myentericus und submucosus eine Co-Lokalisation von CRP4 und der cGKI nachgewiesen werden (Huber et al., 2000).

Trotz der erheblichen Unterschiede in der Homologie scheinen alle Vertreter der CRP-Familie als Regulatoren der Differenzierung verschiedener Zelltypen, unter anderem VSMCs, zu fungieren (Chang et al., 2003; Lilly et al., 2010; Wei et al., 2005). Aufgrund der humanen Daten zur mRNA-Expression (GTEx) und der Protein-Expressionsdaten aus der Ratte ist anzunehmen, dass CRP4 durch seine hohe Expression in Gefäßen, auch in VSMCs, die einen großen Teil der Zellen in Arterien ausmachen, stark exprimiert wird und dort eventuell ähnliche Funktionen wie CRP1 und CRP2/smLIM ausübt. In Bezug auf die glattmuskuläre Funktion von CRP4 konnte in Kulturen glattmuskulärer Zelllinien nachgewiesen werden, dass CRP4 von der cGKI phosphoryliert werden kann und dadurch in VSMC-ähnlichen Zellen in der Lage ist, regulatorische Funktionen in Bezug auf die Zellplastizität auszuüben (Zhang et al., 2007). Hierbei wurde gezeigt, dass von der cGKI phosphoryliertes CRP4 im Zellkern über seine Zinkfinger mit den Transkriptionsfaktoren SRF und GATA6 innerhalb der α-SMA-Promotorregion interagieren kann. Dies führt zu einer Stabilisierung der Anordnung der Transkriptionsfaktoren und induziert die Expression glattmuskulärer Gene (Zhang et al., 2007). Allerdings zeigt CRP4 selbst keine intrinsische transkriptionelle Aktivität. Zusätzlich zur Regulation der phänotypischen Modulation von VSMCs wird angenommen, dass CRP4 an der Organisation des Zytoskeletts beteiligt ist und eine Interaktion mit Proteinen der FAs eingehen könnte (Huber et al., 2000). Die physiologische Funktion von CRP4 in VSMCs, die Bedeutung von CRP4 im Rahmen des NO/cGMP/cGKI-Signalwegs, die Regulation der phänotypischen

Modulation im murinen Modell und die Bedeutung von CRP4 für vaskuläre, proliferative Erkrankungen, wie z.B. die Atherosklerose oder Restenose ist bis dato unklar und daher Gegenstand der vorliegenden Dissertation (siehe 1.5).

Die kardiale Rolle von CRP4 wurde bereits von Straubinger et al. (2017) analysiert. Im Rahmen dieser Publikation wurde neben dem kardialen Phänotyp der globalen CRP4-defizienten Maus und der Auswirkungen der CRP4-Ablation auf die Entwicklung einer kardialen Angiotensin II (Ang II)-induzierten Herzhypertrophie, auch die Bedeutung von CRP4 für die cGMP-modulierte Pathophysiologie myokardialer Remodeling-Prozesse analysiert (Straubinger et al., 2017). Es konnte gezeigt werden, dass beide CRP4-Allele intakt sein müssen (CRP4 WT), um eine biologische Expression von CRP4 im Herzen zu erlangen. Innerhalb der Kardiomyozyten konnte CRP4 vor allem an der Plasmamembran und an den Z-Scheiben detektiert werden (Straubinger et al., 2017). Unter basalen Bedingungen wiesen die CRP4-defizienten Mäuse eine leichte Hypotonie auf. Nach einer 7-tägigen Ang II-Infusion der Mäuse führte die globale Ablation von CRP4 über einen Blutdruck-unabhängigen Mechanismus zu einem signifikant verstärkten hypertrophen Wachstum der Kardiomyozyten. Unter diesen Bedingungen war der Blutdruck der CRP4-defizienten und -profizienten Mäuse interessanterweise identisch. Dabei wurde angenommen, dass CRP4 unter anderem über eine positive, autoregulatorische Rückkopplungsschleife in den Kardiomyozyten den BNP/cGMP/cGKI-Signalweg über GATA-Proteine moduliert und so zur Begrenzung der pathogenen Wirkung von Ang II beiträgt (Straubinger et al., 2017). Zusätzlich zu den antihypertrophen Effekten von CRP4 konnten antifibrotische Funktionen von CRP4 im Herzen beobachtet werden (Straubinger et al., 2017). Des Weiteren wurde in den CRP4-defizienten Herzen eine signifikante Anreicherung von CRIP1 beobachtet. Dies führte zu der Annahme, dass CRP4 notwendig ist, um die pathogenen Wirkungen des Ang-II-Signalwegs zu begrenzen, wohingegen während der physiologischen Herzentwicklung eine Hochregulierung von CRIP1 eine unzureichende Menge an funktionellem CRP4 kompensieren kann (Straubinger et al., 2017).

Wie bereits erwähnt, besitzt CRP4 neben den kardiovaskulären Funktionen weitere Funktionen im nozizeptiven System des Rückenmarks und spielt eine Rolle bei der Regulation inflammatorischer Schmerzen. In den *Laminae* I und II des Hinterhorns der Maus konnte eine Co-Lokalisation von CRP4 und der cGKI nachgewiesen werden. Im Rückenmark kann CRP4 ebenfalls von der cGKI phosphoryliert werden und darüber die Regulation inflammatorischer Schmerzen (Schmidtko et al., 2008). Unter physiologischen Bedingungen führt eine globale Deletion von CRP4 in Mäusen zu einem gesteigerten Schmerzempfinden gegenüber inflammatorischen Reizen (Schmidtko et al., 2008), was auf eine inhibitorische Funktion von CRP4 bei der Entwicklung des inflammatorischen Schmerzes hindeutet. Interessanterweise konnte die CRP4-induzierte Inhibition des inflammatorischen Schmerzes durch eine intrathekale Gabe von cGMP-Analoga in CRP4 WT Mäusen aufgehoben werden.

Die Phosphorylierung von CRP4 in Folge der cGKI-Aktivierung führte hierbei zu einer Hyperalgesie in den Kontrolltieren, während der Effekt in den CRP4 KO Mäusen ausblieb (Schmidtko et al., 2008). Im Vergleich zum inflammatorischen Schmerz, scheint CRP4 keinen Einfluss auf akute und neuropathische Schmerzen zu haben (Schmidtko et al., 2008).

1.3.2 Cystein-reiches intestinales Protein 1 (CRIP1)

Das Cystein-reiche intestinale Protein 1 (CRIP1), welches der CRIP-Familie zugehört, besteht aus 77 AS und besitzt im Gegensatz zu CRP4 nur eine LIM-Domäne, die aus zwei Zinkfingern besteht. Zudem verfügt CRIP1 im Vergleich zu CRP4 über keine Gelenkregion mit RKTS-Motiv, weshalb davon auszugehen ist, dass CRIP1 nicht von der cGKI phosphoryliert werden kann (Straubinger et al., 2017). In der Literatur wird das Protein vor allem als Tumormarker beschrieben, während seine kardiovaskuläre Funktion bis vor Kurzem nahezu unbekannt war. Im Bereich der Tumorforschung konnte bereits gezeigt werden, dass CRIP1 Protein-Protein-Interaktionen eingehen und darüber Transkriptionsprozesse regulieren kann (Baumhoer et al., 2011; Ludyga et al., 2013). Im kardiovaskulären Bereich wird CRIP1 hauptsächlich mit der Herzentwicklung (Straubinger et al., 2017), sowie in Monozyten als Marker für die Entstehung einer Hypertonie und kardiovaskuläre Ereignisse in Verbindung gebracht (Schweigert et al., 2021; Zeller et al., 2017). Im Zebrafisch-Modell wurden schwere Herzfehler und ein vorzeitiger Tod durch ein Gen-Silencing von CRIP1 in Zebrafisch Embryos mit Hilfe von Morpholinos festgestellt (Straubinger et al., 2017). Des Weiteren wurden im Rahmen einer Meta-Analyse des humanen, monozytären Transkriptoms die Genexpression mit Bluthochdruck assoziiert. Dabei konnte CRIP1 als signifikant reguliertes Transkript identifiziert werden, welches mit Bluthochdruck korreliert (Zeller et al., 2017). Zusätzlich korrelierte die CRIP1-Genexpression mit dem Auftreten einer kardialen Hypertrophie. Darüber hinaus wurden zirkulierende CRIP1-Level mit einem erhöhten Risiko für das Auftreten eines Schlaganfalls in Verbindung gebracht (Zeller et al., 2017). In einer kürzlich von unserer Arbeitsgruppe publizierten Arbeit über CRIP1 in Monozyten konnte eine Assoziation zwischen der CRIP1 mRNA-Expression in Monozyten und dem Blutdruck bestätigt werden. Dies lässt auf eine Verbindung zwischen CRIP1 und der Blutdruck-Regulation durch das Immunsystem schließen (Schweigert et al., 2021).

Innerhalb der Untersuchungen des kardialen CRP4-Proteoms konnte zudem eine signifikante Überexpression von CRIP1 in Herzen globaler CRP4 KO Mäuse identifiziert werden (Straubinger et al., 2017). Wie bereits erwähnt, stimmen die AS-Sequenzen von CRIP1 und CRP4 zu ca. 67,5% miteinander überein und die Genloci von *Crip1* und *Crip2* befinden sich beide auf dem Chromosom 12. Die beiden Proteine gehen wahrscheinlich keine direkte Interaktion im Herzen miteinander ein, allerdings wird angenommen, dass CRIP1 eine kompensatorische Rolle im Herzen einnimmt, um die CRP4-defizienten Mäuse vor einem noch gravierenderen kardialen Phänotyp zu schützen (Straubinger et al., 2017). Neben der Expression im Herzen wird CRIP1 in hohem Maß in der Lunge, der Aorta und in Immunzellen exprimiert (Schweigert et al., 2021; Straubinger et al., 2017). Auf Transkriptionsebene kann ebenfalls anhand der humanen Gendatenbank GTEx und der murinen Datenbank Tabula Muris, basierend auf Einzelzell-Transkriptomdaten, eine starke Expression von *Crip1* im kardiovaskulären System und besonders im Herzen und der Aorta bestätigt werden (Consortium, 2015; Schaum et al., 2018).

1.4 Der NO/cGMP/cGKI-Signalweg

Bereits vor über 40 Jahren wurde die vasorelaxierende Wirkung des frei diffundierbaren, biologischen Botenstoffs NO bekannt (Furchgott et al., 1980). Bis heute werden organische Nitrate, wie das Nitroglycerin, bei pektanginösen Beschwerden oder der Behandlung einer hypertensiven Krise eingesetzt. Neben den gefäßerweiternden Funktionen werden NO auch modulierende Eigenschaften in Bezug auf die Proliferation von VSMCs zugeschrieben (Garg et al., 1989). NO stellt ein wichtiges Signalmolekül im Körper von Säugetieren dar, das als gasförmiges Molekül in biologischen Flüssigkeiten eine sehr kurze Halbwertszeit von wenigen Sekunden besitzt (Wink et al., 2000). Für die Entdeckung von NO, das bis dahin als unbekannter Faktor unter dem Namen endothelium-derived relaxing factor (EDRF) geführt wurde, erhielten die Wissenschaftler Robert F. Furchgott, Louis J. Ignarro und Ferid Murad 1988 den Nobelpreis für Physiologie oder Medizin (Furchgott & Zawadzki, 1980; Ignarro et al., 1987; Katsuki et al., 1977). Seitdem konnte in etlichen Studien gezeigt werden, dass die Bioverfügbarkeit und die Signalübertragung von NO eine wichtige Rolle bei der Funktionalität des Nerven-, Herz-Kreislauf-, Magen-Darm-, endokrinen und Immunsystems spielt. Zudem ist bekannt, dass NO an der Pathogenese von kardiovaskulären Erkrankungen, wie der Hypertonie, der Atherosklerose und Restenosierung von Gefäßen beteiligt ist (Lloyd-Jones et al., 1996). Dennoch sind viele Fragestellungen in Bezug auf die Bedeutung von NO und dessen nachgeschalteten Signalkaskaden aktuell unbeantwortet und bedürfen weiterer Forschung. In Abhängigkeit der verfügbaren Targets und seiner Konzentration ist NO in der Lage entweder die Generierung von cGMP zu induzieren oder die Aktivität von zellulären Proteinen direkt zu regulieren (Hanafy et al., 2001; Hofmann et al., 2000). Die direkte Modulierung der Aktivität zellulärer Proteine vermittelt NO z.B. über eine Nitrosylierung freier Thiol-Gruppen was zum einen als Schutzmechanismus vor reaktiven Sauerstoffspezies (ROS) dient (Sun et al., 2006) und zum anderen zur Modulation Ca²⁺⁻ und spannungsabhängiger Kaliumkanäle führt (Bolotina et al., 1994; Sampson et al., 2001).

1.4.1 Mechanismus und physiologische Funktionen des Signalwegs im Organismus

Für die Produktion von endogenem NO sind hauptsächlich die sogenannten NO-Synthasen (NOS) verantwortlich. Es wurden bislang drei verschiedene Isoformen der NOS charakterisiert, die in vielen verschiedenen Zelltypen exprimiert werden. Dazu zählen die konstitutiv exprimierten endotheliale (eNOS/NOS-3) und neuronale NOS (nNOS/NOS-1), sowie die induzierbare NOS (iNOS/NOS-2). Die iNOS wird ebenfalls konstitutiv exprimiert, jedoch kann die Expression im Rahmen von Entzündungs- und Abwehrreaktionen durch die Freisetzung von Endotoxinen und Zytokinen um ein Vielfaches erhöht werden. Dies begünstigt die Eliminierung von Bakterien und infizierten Zellen durch zytotoxische Lyse (Radomski et al., 1990). Bei der Generierung von NO katalysieren die NOS mit Hilfe von mehreren Co-Faktoren die Oxidation von L-Arginin zu NO und L-Citrullin (Abb. 1.8) (Nathan et al., 1994). Hierbei ist die enzymatische Aktivität der nNOS und eNOS von Ca2+-CaM abhängig, während die iNOS unabhängig von Ca²⁺-CaM aktiv ist (Marletta, 1994). Da es keine Speicherform für NO gibt, diffundiert es unmittelbar nach seiner Generierung durch die Zellmembran, um seine physiologischen Funktionen in den Zielzellen auszuüben. Dort aktiviert es die lösliche Guanylyl-cyclase (sGC/NO-GC) (Abb. 1.8) (Krumenacker et al., 2004). Die NO-GC setzt sich aus zwei Untereinheiten (α_1/α_2 und β_1) zusammen, was zu zwei katalytisch aktiven, funktional aber weitestgehend identischen Heterodimeren NO-GC1 ($\alpha_1\beta_1$) und NO-GC2 ($\alpha_2\beta_1$) führt. Während die NO-GC1 in fast allen Geweben exprimiert wird, kann die NO-GC2 vorwiegend in der Lunge und dem Gehirn detektiert werden (Koesling et al., 2004). Die Sensitivität der NO-GC wird über eine prosthetische Häm-Gruppe innerhalb der β_1 -Untereinheit, die als Rezeptor für NO fungiert und die Umsetzung von Guanosin-5'-Triphosphat (GTP) zu cGMP katalysiert. vermittelt (Martin et al., 2005; Russwurm et al., 2004). Neben dem NO-abhängigen Signalweg, können zelluläre cGMP-Spiegel auch über membrangebundene, partikuläre Guanylylcyclasen (pGCs) erhöht werden (Abb. 1.8) (Garbers et al., 1994). Diese werden hierbei primär durch NPs, wie das Atriale Natriuretische Peptid (ANP), brain natriuretic peptide (BNP) oder C-type natriuretic peptide (CNP) aktiviert. Die drei Proteine differieren in ihrer Affinität zu den verschiedenen Isoformen der pGCs. Während ANP und BNP vor allem an die Isoform GC-A binden, wird die GC-B vor allem über CNP aktiviert (Kuhn, 2009; Schulz, 2005).

Für den sekundären Botenstoff cGMP konnten bereits einige Zielstrukturen entschlüsselt werden. Zu den entscheidenden Effektoren gehören die cGMP-abhängigen Proteinkinasen (cGKs), sowie die sogenannten CNG-Kanäle (*cyclic nucleotide-gated ion channels*) (Abb. 1.8) (Hofmann et al., 2000; Lohmann et al., 1997; Pfeifer et al., 1998). Die speziellen Ionenkanäle werden durch die Bindung von cGMP geöffnet und induzieren durch den Einstrom von Natrium (Na⁺) und Ca²⁺ eine Membranpotentialänderung in den jeweiligen Zellen (Biel et al., 1998). Die CNG-Kanäle werden abundant im olfaktorischen Epithel, sowie in der Retina exprimiert und
besitzen wichtige Funktionen bei der sensorischen Signalweiterleitung (Kaupp et al., 2002; Lane Brown et al., 2006).

Unter den cGKs, die zu den Serin/Threonin-Kinasen zählen, können die drei Isoformen cGKIa (prkg1), cGKI_β (prkg1)und cGKII (prkg2) unterschieden werden (Hofmann et al., 2000; Scott, 1991). Bei der cGKIa und cGKI β handelt es sich um Produkte des *prkg1* Gens, die sie sich in Exon 1 unterscheiden und von alternativen ATG-Startcodons aus gebildet werden (Pfeifer et al., 1998). Strukturell sind die cGKs aus einer regulatorischen und einer katalytischen Domäne zusammengesetzt und liegen, über das Leucinzipper-Motiv im N-Terminus verbunden, als Homodimere vor (Hofmann et al., 1992). Die katalytische Domäne befindet sich am C-Terminus. Dort existiert zudem eine Bindungsstelle für Magnesium (Mg²⁺)-ATP, wodurch die Überführung eines Phosphatrestes von ATP auf ein Serin oder Threonin der entsprechenden Zielstruktur ermöglicht wird. Des Weiteren weisen die cGKs zwei allosterische Bindungsstellen für cGMP in der regulatorischen Domäne auf. Nach dessen Besetzung durch cGMP folgt eine Autophosphorylierung des N-Terminus, sowie eine Konformationsänderung des Enzyms. Dies bewirkt eine Aufhebung der Autoinhibition der katalytischen Domäne, indem die Pseudosubstratbindestelle freigeben wird. Anschließend kann das jeweilige Substrat von der cGK gebunden und phosphoryliert werden (Doeskeland et al., 1983; HUGGINS et al., 1991). Die Konzentration an benötigtem cGMP für die Aktivierung der cGKI bewegt sich im submikromolaren Bereich, wobei die cGKIα deutlich niedrigere cGMP-Level zur Aktivierung benötigt als die cGKI β (Feil et al., 2002; Ruth et al., 1991). Während die cGKII durch eine Myristoylierung am N-Terminus an der Plasmamembran lokalisiert ist, sind die löslichen Isoformen der cGKI (cGKI α und cGKI β) im Zytosol vorzufinden (Vaandrager et al., 1996). Des Weiteren unterscheiden sich die cGKs in ihrem Expressionsmuster. Die cGKI wird vor allem in der Lunge, dem Herzmuskel, den Thrombozyten, sowie verschiedenen Gehirnregionen und im Nervensystem exprimiert (Hofmann et al., 2000). Im Vergleich dazu sind hohe cGKII-Level in Chondrozyten, der Lunge, Prostata und sämtlichen Gehirnregionen vorzufinden (Lohmann et al., 1997). Zudem werden beide Isoformen etwa im gleichen Ausmaß im Auge, in den VSMCs der Arterien, dem Gastrointestinaltrakt, der Niere und der Trachea exprimiert (Hofmann et al., 2006; Joyce et al., 1986).

Zur Regulation der Dauer, des Ausmaßes und der regionalen Distribution des intrazellulären cGMP-Signals können die zyklischen Nukleotide von Phosphodiesterasen (PDE) wieder abgebaut werden (Abb. 1.8). Bei der Enzymfamilie der PDEs handelt es sich um Proteine, die eine Hydrolyse von zyklischem Adenosin-3',5'-Monophosphat (cAMP) und/oder cGMP zu Adenosin-5'-Monophosphat (AMP) bzw. Guanosin-5'-Monophosphat (GMP) vermitteln (Soderling et al., 1998). Bislang konnten 11 Isoformen der PDEs nachgewiesen werden, wobei die PDE5, 6 und 9 exklusiv cGMP abbauen. Die PDE4, 7 und 8 hydrolysieren wiederum selektiv cAMP. Alle weiteren Isoformen sind in der Lage sowohl cAMP als auch cGMP

umzusetzen (Kass et al., 2007). In VSMCs ist die PDE5-Isoform die bedeutendste cGMPhydrolysierende PDE und spielt eine große Rolle bei der Regulation des vaskulären Tonus. Seine klinische Bedeutung wird auch in der effektiven Anwendung spezifischer Inhibitoren (Sildenafil, Tadalafil, Vardenafil und Avanafil) zur Behandlung der erektilen Dysfunktion und der pulmonalen Hypertonie deutlich (Rybalkin et al., 2003).

Die Schematische Darstellung der Generierung und der Zielstrukturen von zyklischem Guanosin-3',5'-Monophosphat (cGMP) zeigt zum einen die Bildung von Stickstoffmonoxid (NO) aus Arginin und Sauerstoff (O₂) mit Hilfe der NO-Synthasen (NOS). Zum anderen ist die Generierung von cGMP aus Guanosin-5'-triphosphat durch die lösliche Guanylyl-cyclase (sGC) oder die partikuläre Guanylylcyclase (pGC) dargestellt. Des Weiteren gehören zu den bislang bekannten cGMP-Substraten die *cyclic-nucleotide-gated ion channels* (CNG-Kanäle), die cGMP-abhängige Proteinkinase (cGK), sowie die Phosphodiesterasen (PDE). Durch die Modulation der PDE-Aktivität kann cGMP indirekt die cAMP-Spiegel beeinflussen. Das Schema wurde modifiziert nach (Hofmann et al., 2000). ANP = Atriales Natriuretisches Peptid; BND = *brain natriuretic peptide*; CNP = *C-type natriuretic peptide*; eNOS = endotheliale NO-Synthase; iNOS = induzierbare NO-Synthase.

Zusammenfassend kann cGMP über die Bindung an die unterschiedlichen intrazellulären Substrate seine differenzierten Funktionen ausüben. Durch die Bindung von cGMP an mehrere PDEs, die spezifisch für den Abbau von cAMP verantwortlich sind, kann auf diese Weise auch ein intrazellulärer *Cross-Talk* zwischen den beiden zyklischen Nukleotidpools (cGMP und cAMP) stattfinden, indem die Aktivität über die PDEs reguliert wird. Die Beeinflussung der cAMP-Spiegel kann durch cGMP allerdings nicht nur indirekt, sondern auch direkt über eine Kreuzaktivierung der cAMP-abhängigen Proteinkinase (cAK) moduliert werden (Sonnenburg et al., 1994). Unter den cGMP-Zielstrukturen sind die cGKs vermutlich die Bedeutendsten und sind essentiell für die Funktionalität und Weiterleitung des NO/cGMP-Signalwegs (Hofmann et al., 2006).

1.4.2 Die Rolle der cGKI für die Regulation der Glattmuskelzellfunktion und - pathologie

Bei der Charakterisierung cGKI-defizienter Mäuse konnte gezeigt werden, dass die cGKI entscheidend an der cGMP-abhängigen Relaxation der Blutgefäße beteiligt ist und somit eine bedeutende Rolle bei der Regulation des Gefäßtonus spielt (Lukowski et al., 2008; Pfeifer et al., 1998; Sausbier et al., 2000). Im Speziellen konnte die cGKI-Aktivierung mit der [Ca²⁺]_i-Regulation in VSMCs in Verbindung gebracht werden, wobei die cGKI über unterschiedliche Mechanismen zur Senkung der [Ca²⁺]_i und somit zur cGMP-abhängigen Relaxation der VSMCs beiträgt (Abb. 1.9) (Hofmann et al., 2000; Münzel et al., 2003).

Abbildung 1.9: Schematische Darstellung der cGMP/cGKI-vermittelten Signaltransduktion in VSMCs

Die cGMP-vermittelte Aktivierung der cGKI führt über verschiedene Mechanismen zur Hemmung der Kontraktion von VSMCs und dadurch bedingt zur Blutdrucksenkung. Diese Effekte werden von der cGKI unter anderem über eine Phosphorylierung folgender Substrate vermittelt: inositol-1,4,5-triphosphatereceptor-associated cGKI substrate (IRAG), myosin phosphatase target subunit 1 (MYPT1), transforming protein RhoA (RhoA), regulator of G-protein signaling 2 (RGS-2) und der spannungs- und Ca²⁺-abhängige Kaliumkanal mit hoher Leitfähigkeit (BK_{Ca}-Kanal). Über die Hemmung des Vasodilatator-stimulierten Phosphoproteins (VASP) reguliert die cGKI das Remodeling des Aktin-Zytoskeletts in VSMCs. Das Schema wurde modifiziert nach (Schlossmann et al., 2011). eNOS = endotheliale NO-Synthase; GPCR = G-Protein-gekoppelter 7-Transmembranhelix-Rezeptor; GMP = Guanosin-5'-monophosphat; GTP = Guanosin-5'-triphosphat; NOiNOS = induzierbare $IP_3 = Inositol-1, 4, 5$ -triphosphat; MLC2 = Myosin Svnthase: regulatorische leichte Kette 2: MLCK = Myosin-leichte-Ketten-Kinase; MLCP = Myosin-leichte-Ketten-Phosphatase; NO = Stickstoffmonoxid; PDE = Phospho-diesterase; PLC = Phospholipase C; ROCK = Rho-assoziierte Proteinkinase; sGC = lösliche Guanylyl-cyclase.

(1.) Spannungsabhängige und Ca²⁺-sensitive BK_{Ca}-Kanäle mit großer Leitfähigkeit können von der cGKI phosphoryliert werden, wodurch es zu einer Hyperpolarisation durch den Ausstrom von Kalium (K⁺) aus der Zelle kommt und LTCCs gehemmt werden. Dies resultiert in einer Reduktion der [Ca²⁺]_i (Alioua et al., 1998; Fukao et al., 1999). (2.) Ein weiteres Target der cGKIß in VSMCs stellt das ER-assoziierte IRAG dar, das durch die cGKI-vermittelte Phosphorylierung in der Lage ist, die IP₃-induzierte Ca²⁺-Freisetzung aus den intrazellulären Speichern zu hemmen (Schlossmann et al., 2000). (3.) Darüber hinaus kann die cGKI über Ca²⁺-unabhängige Mechanismen, durch die Beeinflussung der Ca²⁺-Sensitivität verschiedener Proteine, die VSMC-Relaxation begünstigen. Bedingt durch die Phosphorylierung der regulatorischen Untereinheit MYPT1 der MLCP an Serin 695 (Ser695) durch die cGKIa kommt es zur vermehrten Aktivität der MLCP (Surks et al., 1999; Wooldridge et al., 2004). Dies führt zur Ca²⁺-Desensitivierung kontraktiler Signaltransduktionsproteine und damit zur Relaxation (SOMLYO et al., 2003). (4.) Des Weiteren konnte gezeigt werden, dass die cGKI-abhängige Phosphorylierung von RhoA an Serin 188 (Ser188) eine Hemmung des RhoA/ROCK-Signalwegs bewirkt und somit zur Relaxation der VSMCs beiträgt (Smolenski et al., 2000). (5.) Als weiteres Substrat der cGKI fungiert das regulator of G-protein signaling 2 (RGS-2), das in phosphoryliertem Zustand an das G_q-Protein bindet und die Aktivität der GTPase von G_q-Proteinen potenzieren kann (Tang et al., 2003). Hierdurch verringert sich die Halbwertszeit gebundenen GTP deutlich, was zur Abschwächung des an G-Proteine der rezeptorvermittelten, Agonisten-induzierten Kontraktion der Gefäße führt (Hepler, 1999). Zusätzlich zur wichtigen Rolle von NO/cGMP/cGKI bei der Regulation des Gefäßtonus und

der endothelialen Permeabilität, wird eine Beteiligung des Signalwegs an der Proliferation und Dedifferenzierung von VSMCs diskutiert. Zahlreiche Befunde implizieren in diesem Zusammenhang auch eine Schlüsselfunktion bei der Pathogenese verschiedener vaskuloproliferativer Erkrankungen wie z.B. der Atherosklerose in vivo (Lehners et al., 2018; Lukowski et al., 2008; Segura-Puimedon et al., 2016; Wolfsgruber et al., 2003). In Bezug auf die Atherogenese scheint der NO-vermittelte Signalweg eine duale Rolle einzunehmen und über verschiedene Mechanismen sowohl anti- als auch pro-atherogene Effekte auszuüben (Wolfsgruber et al., 2003). Hierbei sind die Effekte sowohl vom Ursprung, als auch vom Ausmaß der NO-Generierung abhängig (Knowles et al., 2000; Kuhlencordt et al., 2001). Des Weiteren konnten in murinen Apolipoprotein E (ApoE) KO Mäusen, durch die spezifische Deletion der cGKI in VSMCs, reduzierte atherosklerotische Plagues festgestellt werden (Wolfsgruber et al., 2003). Ursächlich für den pro-atherogenen Effekt der cGKI könnte die in primären VSMCs nachgewiesene cGKI-vermittelte gesteigerte Proliferation sein. Zum anderen wurden in primären VSMCs durch die Aktivierung der cGKI auch anti-apoptotische Effekte, sowie eine erhöhte Zelladhäsion beobachtet (Weinmeister et al., 2008). Die gesteigerte Zelladhäsion wird hierbei vermutlich über Integrine durch die Inhibition des RhoA/ROCK-

Signalwegs vermittelt. In synthetischen VSMCs wurden hingegen cGKI-assoziierte antiproliferative Effekte detektiert (Weinmeister et al., 2007). So ist bereits bekannt, dass die Proteinexpression der cGKI durch die Dedifferenzierung der VSMCs stark herunterreguliert wird (Lincoln et al., 2006). Im Gegensatz zu den pro-atherogenen cGKI-Effekten konnte bei einer experimentell induzierten Restenose nach Ligation der Carotis kein cGKI-vermittelter Einfluss detektiert werden. Daher wird vermutet, dass das NO-induzierte vaskuläre *Remodeling* während der Restenose durch andere d.h. cGMP-unabhängige Signalwege vermittelt wird (Lukowski et al., 2008).

Neben den proliferativen Funktionen in VSMCs, gibt es zahlreiche Hinweise, dass die Aktivierung des NO/cGMP/cGKI-Signalwegs auch an der Regulation der phänotypischen Modulation beteiligt sein könnte (Feil et al., 2005; Lincoln et al., 2001). Im murinen Atherosklerose-Modell konnte eine Inhibition der phänotypischen Modulation durch eine glattmuskelspezifische Ablation der α_1 -Untereinheit der sGC (GUCY1A3) detektiert werden. Dies führt zu der Annahme, dass eine Erhöhung der sGC-Aktivität durch die Induktion der vaskulären Dedifferenzierung pro-atherogene Effekte zur Folge hat (Segura-Puimedon et al., 2016). Kontrovers dazu, wurde in einer anderen Publikation eine verringerte Promotoraktivität des GUCY1A3-Gens mit einem erhöhten Atherosklerose Risiko assoziiert (Kessler et al., 2017). Eine GUCY1A3-Mutation, die zu verringerten sGC- und cGMP-Leveln führte, wird ebenfalls mit einer gesteigerten Thrombusbildung und somit einem erhöhten Myokardinfarktrisiko in Verbindung gebracht (Erdmann et al., 2013; Segura-Puimedon et al., 2016). Inwieweit die glattmuskuläre cGKI an diesen teilweise kontroversen Funktionen der sGC im kardiovaskulären System beteiligt ist, konnte bislang noch nicht geklärt werden. Zudem wird nach wie vor diskutiert, ob eine gesteigerte Aktivität des NO/cGMP/cGKI-Signalwegs im kardiovaskulären System eher protektive oder negative Effekte hervorruft (Kessler et al., 2017; Segura-Puimedon et al., 2016).

Neben den in diesem Kapitel benannten Zielstrukturen der cGKI, ist davon auszugehen, dass noch weitere bislang nicht entschlüsselte Substrate im vaskulären System existieren, die es gilt aufzuklären. CRP4 konnte bereits als weiteres Substrat der cGKI identifiziert werden (Huber et al., 2000), obgleich die Bedeutung von CRP4, sowie die Rolle der putativen Interaktion von cGMP/cGKI mit CRP4 für die Regulation des Gefäßtonus und für proliferative *Remodeling*-Prozesse in den Gefäßen weitgehend unbekannt ist.

1.4.3 cGMP-modulierende (experimentelle) Substanzen und Arzneistoffe

Aufgrund der vielseitigen Funktionen des NO/cGMP/cGKI-Signalwegs auf physiologische und pathophysiologische kardiovaskuläre Prozesse wurden in der Vergangenheit erhebliche Anstrengungen unternommen, mit dem Ziel durch die Entwicklung cGMP-modulierender

Substanzen in die entsprechenden Krankheitsprozesse einzugreifen. In der Tat werden aktuell zahlreiche "cGMP-Modulatoren" klinisch eingesetzt. So wird bspw. Glyceroltrinitrat in Form von Aerosolen als NO-Donator zur Gefäßerweiterung im Rahmen der Standardtherapie zur Kupierung akuter pektanginöser Beschwerden verwendet (Wimalawansa, 2008). Zur prophylaktischen Therapie der Angina Pectoris werden ebenfalls NO-Donatoren wie z.B. Molsidomin oder Isosorbidmononitrat (ISMN) eingesetzt (Schlossmann et al., 2005). Experimentell kann die endogene NO-Freisetzung z.B. durch die NO-Donatoren Diethylamin NONOat (DEA/NO) oder Sodiumnitroprussid (SNP) nachgeahmt werden (Abb.1.10) (Wanstall et al., 2001). Zudem steht mit L-Name ein experimenteller NO-Synthasehemmer zur Verfügung, der die endogene NO-Generierung unterdrückt und somit die Konzentration an freiem NO senkt (Sander et al., 1995).

Die Modulation der sGC stellt eine weitere attraktive therapeutische Angriffsmöglichkeit innerhalb des cGMP/cGKI-Signalwegs dar. Hierbei dienen die neuen und vielversprechenden Wirkstoffe entweder als sGC-Stimulatoren oder als sGC-Aktivatoren, die unabhängig von NO die Aktivität der sGC erhöhen. Wirkstoffe der Gruppe der sGC-Stimulatoren können jedoch nur an der reduzierten Form der sGC, welche eine funktionsfähige Häm-Gruppe besitzt, angreifen. sGC-Aktivatoren sind hingegen in der Lage, die oxidierte Form der sGC zu adressieren, die v.a. unter pathophysiologischen Bedingungen mit hohen oxidativen Stressleveln vorkommt (Evgenov et al., 2006). Hierbei wurde Riociguat als erster sGC-Stimulator zur Behandlung der pulmonalen Hypertonie, sowie der chronischthromboembolischen pulmonalen Hypertonie zugelassen (Ghofrani, D'Armini, et al., 2013; Ghofrani, Galiè, et al., 2013). Mit Vericiguat ist im Jahr 2020 ein weiterer Modulator der sGC zur symptomatischen Behandlung der chronischen Herzinsuffizienz (HFrEF) von der FDA zugelassen worden (Armstrong et al., 2020; Markham et al., 2021). Bislang konnte aus der Familie der sGC-Aktivatoren noch kein Vertreter zugelassen werden, allerdings stellt diese Stoffklasse eine höchst vielversprechende Alternative zu den sGC-Stimulatoren dar. Da sGC-Aktivatoren, wie z.B. Cinaciguat, an die sGC im inaktiven Zustand (oxidiert, Häm-frei) angreifen können, ist besonders unter hohem oxidativen Stress ein deutlicher Vorteil dieser Wirkstoffgruppe zu erwarten (Stasch et al., 2002). So konnte z.B. im Rahmen einer experimentell erzeugten Ischämie unter gleichzeitiger Gabe von Cinaciguat das Infarktareal bei intakter cGKI-Aktivität signifikant reduziert werden (Bice et al., 2014; Methner et al., 2013). Hierbei entsteht vorwiegend durch die Reperfusion der Gefäße infolge der induzierten Okklusion ein Anstieg an ROS, was über unterschiedliche Mechanismen letztendlich zum Zelltod im Infarktareal führt (Ferdinandy et al., 2007; Soltysinska et al., 2014). Die Erhöhung der cGKI-Aktivität durch die induzierte Aktivierung der oxidierten sGC scheint dabei protektive Effekte im Hinblick auf den Reperfusionsschaden zu haben (Methner et al., 2013).

Es sind bislang nur wenige die pGC adressierende Wirkstoffgruppen auf dem Arzneistoffmarkt verfügbar. Darunter befinden sich die neutralen Endopeptidase (NEP)/Neprilysin-Inhibitoren, die den Abbau der NPs unterbinden. Das Präparat Entresto, eine Fixkombination aus dem Ang II-Rezeptor-Blocker (AT1-Blocker) Valsartan und dem Neprilysin-Hemmer Sacubitril, wird in der Therapie der symptomatischen chronischen Herzinsuffizienz mit reduzierter Ejektionsfraktion (HFrEF) angewendet (Fala, 2015). Des Weiteren wurde 2001 das native NP Nesiritide von der FDA für die Behandlung einer akuten Herzinsuffizienz zugelassen (Colucci et al., 2000). Es wurde allerdings festgestellt, dass Nesiritide zu einer Verschlechterung der Nierenfunktion, sowie zu einer erhöhten Sterblichkeit führte (Sackner-Bernstein, Kowalski, et al., 2005; Sackner-Bernstein, Skopicki, et al., 2005). Um die pharmakologischen Wirkungen zu optimieren und unerwünschte Effekte zu minimieren, wird aktuell an der Entwicklung von Designer NPs, die aus den nativen NPs durch Addition, Deletion oder Substitution von AS gewonnen werden, geforscht (Lee et al., 2009; Meems et al., 2016). Zudem wurden vor kurzem niedermolekulare, positive allosterische Modulatoren der GC-A, die den GC-A Rezeptor für endogenes ANP oder BNP sensibilisieren, entdeckt. Diese zeigten ex vivo eine therapeutische Wirkung bei Bluthochdruck und Herzinsuffizienz beim Menschen (Andresen et al., 2022; Sangaralingham et al., 2021).

Ein weiterer Behandlungsansatz zur Erhöhung der cGMP-Konzentration stellt die Wirkstoffklasse der PDE-Inhibitoren dar. Experimentell kann hierbei der unselektive PDE-Hemmer Isobutylmethylxanthin (IBMX) genutzt werden. Zur Therapie der erektilen Dysfunktion werden hingegen schon seit längerem selektive Hemmstoffe der PDE5 (Sildenafil, Tadalafil, Vardenafil) eingesetzt. Das Wirkprinzip beruht auf der verbesserten Durchblutung des *Corpus Cavernosums* durch die erhöhten cGMP-Spiegel und die dadurch induzierte Gefäßrelaxation (Boolell et al., 1996). Zusätzlich sind die PDE5-Inhibitoren auch zur Behandlung der pulmonalen Hypertonie zugelassen und können hier z.B. auch in Kombination mit Endothelin-Rezeptor-Antagonisten eingesetzt werden (Galiè et al., 2015; Seferian et al., 2013).

1.5 Hypothese und Zielsetzung der Arbeit

CVDs sind die Hauptursache für Morbidität und Mortalität im Alter. Therapeutische Behandlungsmöglichkeiten sind daher von immenser Bedeutung für das Gesundheitssystem (Virani et al., 2020). Neben der Hypertonie kann auch die Entwicklung einer Atherosklerose zahlreiche Folgeerkrankungen verursachen, die das Herz-Kreislaufsystem betreffen. Deshalb stellt die Erforschung der Pathogenese, sowie die Therapie der Atherosklerose wichtige Bausteine in der Prävention daraus resultierender Folgeerkrankungen, wie z.B. Herzinfarkte oder Schlaganfälle, dar. Bei der Entstehung von Gefäßerkrankungen sind unter anderem VSMCs entscheidend für den Funktionsstatus von Gefäßen, da sie durch Kontraktions- und

Relaxationsvorgänge den Gefäßtonus und somit auch den Gefäßdurchmesser steuern (Chistiakov et al., 2015). Zudem kann der Phänotyp der VSMCs durch unterschiedliche Einflüsse, wie z.B. Hypertonie, Hyperlipidämie und weitere vaskulär proliferative Ereignisse reguliert werden, da VSMCs nicht terminal differenziert sind. So können VSMCs von einem kontraktilen, differenzierten Phänotyp hin zu einem synthetischen, dedifferenzierten Phänotyp modulieren (Owens, 1995). Dabei ist selbst in gesunden Gefäßen eine heterogene Population aus kontraktilen und synthetischen VSMCs vorzufinden (Muto et al., 2007). Da die phänotypische Modulation der VSMCs zu einer - aus physiologischer Sicht - Dysfunktion des Zelltyps führt, steht diese im direkten Zusammenhang mit vaskulären, proliferativen Erkrankungen, wie der Atherosklerose, Restenose oder Aneurysmen (Owens et al., 2004). Die synthetischen, dedifferenzierten VSMCs weisen im Gegensatz zu den kontraktilen Zellen eine rautenförmige Morphologie auf und sind funktionell durch eine erhöhte Proliferation und Migration charakterisiert. Zudem liegt bei diesem Phänotyp eine niedrigere Expression glattmuskelspezifischer, kontraktiler Markerproteine vor (Owens et al., 2004; Rensen et al., 2007). Dadurch verlieren die synthetischen VSMCs ihr Relaxationsvermögen und können somit auch zu einer Hypertonie beitragen, sowie einen bereits bestehenden Bluthochdruck negativ beeinflussen (Castorena-Gonzalez et al., 2014). Neben der phänotypischen Modulation der VSMCs spielen auch genetische Prädispositionen eine bedeutende Rolle bei der Entstehung vaskulärer Erkrankungen (James et al., 2003; Levy et al., 2000; Wilson et al., 2001).

Der NO/cGMP/cGKI-Signalweg scheint bei der funktionellen Regulation der VSMCs und des Gefäßwiderstands von immenser Bedeutung zu sein (Furchgott & Zawadzki, 1980). Die Aufklärung der potenziellen *downstream* Mechanismen und Effektoren des NO/cGMP/cGKI-Signalwegs ist daher von großem Interesse und sollte zum Verständnis der zugrundeliegenden Pathomechanismen vaskulärer Erkrankungen beitragen.

CRP4 konnte bereits als neues Substrat der cGKI im kardiovaskulären System identifiziert werden (Huber et al., 2000; Straubinger et al., 2017). Daraus leitet sich die Hypothese ab, dass CRP4 durch seine vaskuläre Lokalisation, sowie der potenziellen Funktion innerhalb der Differenzierung von VSMCs als LIM-Protein und Substrat der NO/cGMP/cGKI-Signalkaskade ein putatives pharmakologisches Target für die Behandlung von vaskulären, proliferativen Erkrankungen darstellen könnte. In diesem Zusammenhang wurde in der vorliegenden Arbeit die physiologische, vaskuläre Bedeutung von CRP4, sowie dessen Rolle bei der Entwicklung vaskulärer, proliferativer Umbauprozesse untersucht. Im Rahmen der kombinierten zellbasierten, sowie *in vivo* Charakterisierung von CRP4 lagen weitere Schwerpunkte auf der Analyse des putativen cGMP/cGKI/CRP4-Signalwegs für die Regulation des Gefäßtonus. Die Versuche zur Aufklärung der vaskulären Funktion von CRP4 wurden in CRP4-profizienten *versus* -defizienten Zell- und Ganztiermodellen durchgeführt. Konkret wurden für die

Charakterisierung der **physiologischen** Funktion von CRP4 *in vitro* Experimente mit ganzen Aortenringen und isolierten VSMCs der Passage 0 (P0) aus CRP4 WT und KO Mäusen verwendet. Um die Bedeutung der Regulation des Gefäßtonus durch CRP4 im Rahmen des NO/cGMP/cGKI-Signalwegs in vivo aufzuklären, wurden parallel telemetrische Gabe verschiedener cGMP-modulierender Blutdruckmessungen unter Substanzen durchgeführt. Die Analyse der **pathophysiologischen** Bedeutung von CRP4 wurde hingegen in vitro anhand von primären (P0), sowie passagierten VSMCs (P10 - 15), die dem synthetischen Phänotyp entsprechen, durchgeführt. Diese Versuche wurden durch ein murines Atherosklerose-Modell mit ApoE-defizienten Mäusen ergänzt. Unter Western Diät (WD) wurde hierbei die Bedeutung von CRP4 für die Pathogenese der Atherosklerose und im Speziellen dessen Rolle bei der Regulation der phänotypischen Modulation von VSMCs untersucht.

2. Material

In Abschnitt 2.1 sind die verwendeten Mauslinien, allgemeine Laborgeräte, Software und die verwendeten Verbrauchsmaterialien aufgelistet. Weitere versuchsspezifische Materialien, Substanzen und Puffer sind im darauffolgenden Abschnitt 2.2 aufgeführt.

2.1 Allgemeine Materialien

2.1.1 Mauslinien

Stammbezeichnung	Genetische Bezeichnung	Herkunft
CRP4	129Sv-Crip2 ^{tm1.1/Ruth} /Ruth	Prof. Ruth, Tübingen
АроЕ	B6.129P2-ApoEtm1Unc/J	Charles River Laboratories

2.1.2 Geräte

Gerät	Gerätebezeichnung, Hersteller
Absauganlage in der Zellkultur	Membran-Vakuumpumpe, Laboport
Analysenwaage	Sartorius
Autoklav	VX 55, Systec
	ELV 3870, Tuttnauer
Brutschrank	Hera Cell, Heraeus
Detektionssystem (Western Blot)	Amersham Imager 600, GE-Healthcare
Druckkatheter (Blutdruckmessung)	TA11ETA-F10, DataScience Int.
Eismaschine	Wessamat Type KF35, Kaelte Stiel
Elektrodenplatten (Western Blot)	30034507, Scie-Plas
Elektrophoresekammer (Genotypisierung)	Sub-cell, BioRad
Elektrophoresekammer (Western Blot)	Mini Protean, BioRad
Fluoreszenzlampe (Ca ²⁺ -Messungen)	XBO 75, Carl Zeiss
Fluoreszenzmikroskop (Apotome)	Zeiss Axiolmager Z1, Carl Zeiss
Fluoreszenzmikroskop (Ca ²⁺ -Messungen)	Zeiss Axiovert S100, Carl Zeiss
Gelvisualisierungsanlage	BioDoc Analyze, Biometra
Hamilton Spritze SYR 50µl	705N, Hamilton
Heizblock	Thermomixer® compact, Eppendorf
	Thriller Thermo Incubator, Peqlab
Heizplatte mit Temperaturkontrolle	TCAT-2LV Controller, Physitemp
Histologiescanner	Panoramic Desc, 3D Histech, Sysmex
Isofluran-Absauganlage	LAS, Groppler
Isofluran-Narkoseeinheit	0258- Narkoseeinheit, Völker
Kamera Stereolupe (<i>En face</i> Ölrotfärbung)	Distelkamp-Electronic
Kamera Axiocam MRc Rev.3	Carl Zeiss
Kamera Spot Inside (Ca ²⁺ -Messungen)	Visitron
Kleintierwaage	LS2000H, G&G
Kryotom	Microm HM, Thermo Scientific
Kühlzentrifuge	Centrifuge 5417 R, Eppendorf
Lichtmikroskop (Histologie)	Zeiss Axiovert 200M, Carl Zeiss

Gerät

Lichtmikroskop (Zellkultur) Mehrfachdispenser Messschieber (Tibiae-Vermessung) Mikroplattenreader (ELISA-Reader) Mikrowelle Mobile Tierhaltungssysteme Narkosegerät Narkosemaske PCR-Maschinen

pH-Meter

Photometer Pipetten (10, 20, 100, 200, 1000 µl) Pipetten (10, 100, 1000 µl) Pipettierhilfe Präparierscheren, Pinzetten Präzisionswaage BP2100S qRT-PCR Maschine Reinstwasseraufbereitungsanlage Rektalsonde zur Temperaturüberwachung Schüttler

Shutter (Ca²⁺-Messapparatur) Stereolupe Sterilwerkbank

Strom/Spannungsquelle Telemetriesystem Ultraturrax Vakuumzentrifuge Vortex Wärmelampe Wasserbad xCELLigence RTCA DP Zentrifugen

Gerätebezeichnung, Hersteller

2x Mikroskop DM II LED, Leica Handy StepS, Brand Digitaler Schieblehre, Mitutoyo Tecan Infinite F200 Pro, Tecan MWG 800 FiF Luftstromschränke Uniprotect, Bioscape Groppler Groppler Mastercycler, Eppendorf MastercyclerGradient, Eppendorf pH 540 GLP, WTW pH-Meter 761 Calimatic, Knick Nanophotometer P330, Implen Pipetman, Gilson Research pro, Eppendorf Accu jet pro, Brand FST Sartorius Opticon FD-3200, MJ Research Milli-Q Biocell, Millipore MLT 1404, AD Instruments Unimax 1010, Heidolph Duomax 1030, Heidolph Visitron EZ5 und M80, Leica Safe 2020, Thermo Scientific Herasafe, Heraeus Standard Power Pack 25. Biometra DataScience Int. Dispergieraggregat 1130, Kinematica Concentrator 5301, Eppendorf Genie 2 G560E, Scientific Industries Infrarotlampe, Beurer SW 22, Julabo Roche Centrifuge 5415D, Eppendorf Centrifuge 5417C, Eppendorf Micro 220R, Hettich

2.1.3 Software

Software	Verwendung	Hersteller
Amersham Imager 600	Scan Software Western Blot	GE-Healthcare
AnalySIS 3.2	Fluoreszenzmikroskop	Olympus
Axio Vision Rel.4.8	Histologie	Zeiss
BioDocAnalyze	Geldetektion	Biometra
CaseViewer	Histologie	Sysmex
CFX Manager	qRT-PCR	Bio-Rad
CorelDRAW Graphics Suites	Abbildungen	Corel
2020		
Dataquest A.R.T.3.1	Auswertung Telemetrie-Messungen	DataScience Int.
GraphPad Prism 9	Diagramme, Statistik	Graphpad Software, Inc.
ImageJ	Auswertung IF-Bilder	Wayne Rasband
Image Quant TL 7.0	Western Blot Quantifizierung	GE-Healthcare
Magellan 7.2	ELISA Assay	Tecan
Microsoft Office	Datenaufbereitung, Text	Microsoft
Opticon Analysis 1.4	qRT-PCR Quantifizierung	MJ Research
Perseus	Auswertung Proteomik	MaxQuant
Primer 3	qRT-PCR Primer Design	Visual Sonics
RTCA-Software 2.0	xCELLigence	ACEA Biosciences, Inc.
Visiview Software	Ca ²⁺ -Messungen	Visitron

2.1.4 Allgemeine Verbrauchsmaterialien

Material	Bestellnummer	Bezugsquelle
Einmalhandschuhe Nitrile Powder-Free	290418	Abena
Einmalstripetten		Corning
- 2 ml	4486	
- 5 ml	4487	
- 10 ml	4488	
- 25 ml	4489	
- 50 ml	4490	
Eppendorf-Reaktionsgefäß		
- 1,5 ml	003012.0.086	Eppendorf
- 2,0 ml	72.695.500	Sarstedt
Magnetrührstäbchen (15 - 50 mm)	C267.1	Carl Roth
Parafilm M	PM-9969	Carl Roth
Pasteurpipetten		Carl Roth
- gestopft	E327.1	
- ungestopft	4522.1	
PCR-Reaktionsgefäß 0,5 ml	30.124.537	Eppendorf
Pipettenspitzen, gestopft		Greiner Bio-One
- 10 µl	765288	
- 20 µl	774288	
- 200 µl	739288	
- 1000 μl	740288	
Pipettenspitzen, ungestopft		Sarstedt
- 10 μl	701.116	
- 20-200 µl	70.762.010	
- 1000 μl	70.760.012	

Material	Bestellnummer	Bezugsquelle
Präzisionstücher Kimtech Science	AA64.1	Kimberly Clark
Rotilabo-Spritzenfilter PVDF	P666.1	Carl Roth
Spritzen		
- 1 ml	15000-03	BD
- 2 ml	4606701V	Braun
- 10 ml	4606728V	Braun
Vakuumfiltrationseinheit (Filtropur BT25)	831822	Sarstedt
Waagschalen		Carl Roth
- 41 x 41 x 8 mm	1878.2	
- 89 x 89 x 25 mm	1884.1	
Zählkammer C-Chip DHC-N01	PDHC-N01	Merck Millipore
Zellkulturflaschen		Corning
- 25 cm ²	430639	
- 75 cm ²	430641U	
- 175 cm ²	431080	
Zellkulturplatten 6-well	3516	Corning
Zellkulturschale 8 cm ²	430165	Corning
Zellschaber 25 cm	3010	Corning
Zentrifugenröhrchen		Corning
- 15 ml	430766	
- 50 ml, konisch	430290	
- 50 ml, freistehend	430291	

2.2 Versuchsspezifische Verbrauchsmaterialien, Chemikalien, Kitsysteme und Antikörper

Die verwendeten Standardsubstanzen entsprechen dem höchsten Reinheitsgrad für molekularbiologische Analysen und wurden, sofern nicht anders vermerkt, bei den Firmen Sigma-Aldrich (Taufkirchen) oder Carl Roth (Karlsruhe) gekauft. Des Weiteren wurde für die Herstellung aller Lösungen und Puffer autoklaviertes und mittels der Reinstwasseraufbereitungsanlage deionisiertes Wasser (dH₂O) verwendet. Die verwendeten Oligonukleotide wurden von Eurofins MWG (Ebersberg) bezogen.

2.2.1 Genotypisierung

Substanzen zur DNA-Isolation und PCR

Material/Substanz/Lösung	Bestellnummer	Bezugsquelle
KAPA Mouse Genotyping Hot Start Kit	07-KK7352-02	PeqLab

Mauslinie	Primerbezeichnung	Primersequenz von 5'-3'
CRP4	For 1	AGGCTTTCCATTGGGATGTG
	For 2	ACAGATGGAATCCATGGAGGA
	Rev	GCGCGGTCTAGTGGGCAT
ApoE	For	GCCTAGCCGAGGGAGAGCCG
	Rev 1	GCCGCCCCGACTGCATCT
	Rev 2	TGTGACTTGGGAGCTCTGCAG

Primer zur Genotypisierung

 \rightarrow Die Oligo-DNA-Lyophilisate werden in autoklaviertem, deionisiertem Wasser (dH₂O) rekonstituiert und die Primer-Stocklösung wird auf eine Zielkonzentration von 4 µM eingestellt.

Substanzen und Lösungen für die Agarose-Gelelektrophorese

Material/Substanz/Lösung	Bestellnummer	Bezugsquelle
Agarose	840004	Biozym Scientific
Borsäure	6943.3	Carl Roth
Bromphenolblau	15375	Serva
DNA-Marker (2-Log DNA-Ladder)	32000-S	New England Biolabs
EDTA (Ethylendiamintetraacetat)	8043.2	Carl Roth
Ethidiumbromid	E1510	Sigma-Aldrich
Ficoll 400	CN90.3	Carl Roth
Tris	5429.3	Carl Roth
Xylencyanol	X4126	Sigma-Aldrich

EDTA [0,5 M] pH 8,0

EDTA	186,1 g
dH₂O	ad 1000 ml
→ pH-Wert mit NaOH a	auf 8,0 einstellen

Xylencyanol-Lösung

Xylencyanol	100 mg
dH ₂ O	2 ml
\rightarrow im Ultraschallbad lösen (15 mir	ר)

Bromphenolblau-Lösung

Bromphenolblau	110 mg
dH ₂ O	2 ml

TBE-Puffer 10x

Tris	108 g
Borsäure	55 g
EDTA [0,5 M] pH 8,0	40 ml
dH₂O	ad 1000 ml
→1x TBE-Puffer: 1:10 Verdünr	nung

Agarosegel 2 %

Agarose	2 g
1x TBE-Puffer	100 ml

DNA-Längenstandard

10 µl
20 µl
90 µl

Ladepuffer 6x

Ficoll 400	9 g
EDTA [0,5 M] pH 8,0	12 ml
10x TBE-Puffer	30 ml
Bromphenolblau-Lösung	1,3 ml
Xylencyanol-Lösung	1,5 ml
dH ₂ O	ad 50 ml

 \rightarrow Ficoll, EDTA und 10x TBE 1 h bei 60°C rühren

 \rightarrow mit dH_2O auf 47 ml auffüllen und Farbstofflösungen zugeben

2.2.2 Organentnahmen und Zellkultur

Versuchsspezifische Materialien, Substanzen, Lösungen und Medien für die Isolation von Aorten und die Kultivierung von VSMCs

Material/Substanz/Lösung	Bestellnummer	Bezugsquelle
8-Br-cGMP [100 mM]	7250415	Biolog
BSA (Rinderserumalbumin) [10 mg/ml]	A8806	Sigma-Aldrich
Cinaciguat [50 μM]	-	Bayer AG
Collagenase Sigma Blend Type F [10 mg/ml]	55M4048V	Sigma-Aldrich
DTT (Dithiothretiol) [100 mg/ml]	3483-12-3	Sigma-Aldrich
Dulbecco's modified Eagle Medium (DMEM)	31966-021	Thermo Fisher
FCS (fetales Kälberserum)	42Q1163K	Thermo Fisher
HEPES	H3375	Sigma-Aldrich
Hyaluronidase Typ1 [10mg/ml]	SLBQ4618V	Sigma-Aldrich
3-Isobutyl-1-methylxanthin (IBMX) [1M]	15879	Sigma-Aldrich
Kaliumchlorid (KCI)	P5405	Sigma-Aldrich
Magnesiumchlorid-Hexahydrat (MgCl ₂ ·6H ₂ O)	1.05833.1000	Merck Millipore
Natriumchlorid (NaCl)	S5886	Sigma-Aldrich
Na-Glutamat	6106043	Sigma-Aldrich
Papain [7 mg/ml]	SLBL6472V	Sigma-Aldrich
PBS	14190094	Thermo Fisher
Pen-Strep (10000 U/ml Penicillin G, 10000 µg/ml	1751324	Thermo Fisher
Streptomycin		
Pinzetten	11254-20; 11251-	FST
	35; 11151-10	
Riociguat [2,4 mM]	-	Bayer AG
Schere	15007-08; 14058-	FST
	09	
Sterilfilter	SE2M229104	Carl Roth
Trypsin (10x)	15090046	Thermo Fisher
Ca ²⁺ -freies Medium	Verdau-Lösung A	
No. 01 (1999)		100

Na-Glutamat	14,37 g
NaCl	3,5 g
HEPES	2,38 g
KCI	0,42 g
MgCl ₂ ·6H ₂ O	0,2 g
→ mit dH ₂ O auf 1I auffüllen	
\rightarrow pH 7,4 einstellen	

Papain (0,7 mg/ml)	100 µl
BSA (1 mg/ml)	10 µl
DTT (1 mg/ml)	10 µl
Ca ²⁺ -freies Medium	880 µl
→ Lösung steril filtrieren	
\rightarrow kurzfristige Lagerung (4°C)	

Verdau-Lösung B

Hyaluronidase (1 mg/ml)	100 µl
Collagenase (1 mg/ml)	100 µl
BSA (1 mg/ml)	10 µl
Ca ²⁺ -freies Medium	790 µl
ightarrow Lösung steril filtrieren	
\rightarrow kurzfristige Lagerung (4°C)	

VSMC-Kulturmedium

DMEM	500 ml
Pen-Strep	5 ml
FCS	50 ml
\rightarrow Lagerung bei 8°C	

Trypsin (1x)	
Trypsin (10x)	90 ml
PBS	10 ml
→ Lösung homogenisieren und a → Lagerung bei -20°C	aliquotieren

2.2.3 Histologische Untersuchungen von Aortenschnitten und VSMC-Kulturen

Versuchsspezifische	Materialien	und	Substanzen	für	die	histologischen
Untersuchungen						

Material/Substanz/Lösung	Bestellnummer	Bezugsquelle
8-well Platten (mit Lumox beschichtet)	94.6150801	Sarstedt
Aceton	9371.4	Carl Roth
Alizarinrot S	A5533	Sigma-Aldrich
Aluminiumfolie	2596.1	Carl Roth
Ammoniak (30-33%)	P093.2	Carl Roth
Aquatex	1.08562.0050	Merck Millipore
Bouin's Lösung	HT10132	Sigma-Aldrich
Deckgläser 20x60 High Precision	LH26.1	Carl Roth
DePeX Eindeckmittel	HX069485	VWR
Einbettmedium NEG50	6502	Thermo Scientific
Eosin G (0,5%)	X883.1	Carl Roth
Eselnormalserum (NDS)	017-000-121	Dianova
Essigsäure (100%)	3728.5	Carl Roth
Ethanol (absolut)	32205	Sigma-Aldrich
Haematoxylin nach Harris	X903.1	Carl Roth
Hoechst	33258	Sigma-Aldrich
ImmEdge (Hydrophobic Barrier Pen)	H-4000	Vector Laboratories
Isopropanol	T910.1	Carl Roth
Klingen (Kryotom)	MX35	Thermo Scientific
Levamisol	SP-500	Vector Laboratories
Objektträger SuperFrost® (26 x 76 mm)	1879.1	Carl Roth
Ölrot O	O0625	Sigma-Aldrich
Paraformaldehyd (PFA)	0335.2	Carl Roth
PBS	14190094	Thermo Scientific
PermaFluor	TA-030-FM	Thermo Scientific
Resorcin-Fuchsin-Lösung	X877.1	Carl Roth
Saccharose	4621.2	Carl Roth
Streckglas (39,5 mm)	449990	Thermo Scientific
Toluol	AE06.1	Carl Roth
Tris	5429.2	Carl Roth

Material/Substanz/Lösung	Bestellnummer	Bezugsquelle
Triton X-100	3051.2	Carl Roth
Van Gieson-Lösung	3925	Carl Roth
Weigert's Eisen-Hämatoxylin (A,B)	HT1079-1SET	Sigma-Aldrich
Xylol	9713.3	Carl Roth
Ziegennormalserum (NGS)	S-1000	Vector Laboratories

Lösungen zum Fixieren von Gewebe und Zellen

PFA-Stocklösung 4%

Paraformaldehyd (PFA)	20 g
PBS	500 ml
→ unter Rühren auf 60°C erhitzen	
\rightarrow weitere 30 min bei 60°C	
	~

 \rightarrow 50 ml Aliquots; Lagerung bei -20°C

Saccharose-Lösung 20%

Saccharose	2 g
PBS	ad 10 ml
\rightarrow kurz vor Gebrauch frisch her	stellen

Saccharose-Lösung 10%

PFA-Lösung 2% PFA-Lösung 4%

PBS

Saccharose	1 g
PBS	ad 10 ml
→ kurz vor Gebrauch	frisch herstellen

 \rightarrow 10 ml Aliquots; Lagerung bei -20°C

Saccharose-Lösung 5%

Saccharose	0,5 g
PBS	ad 10 ml
→ kurz vor Gebrauch frisch	herstellen

Lösungen und Puffer die Alizarin-Färbung

Alizarinrot S-Lösung 2%		Aceton-Xylen Gemisch (50:50)	
Alizarinrot S	2 g	Aceton	50 ml
dH ₂ O	ad 100 ml	Xylen	50 ml
→ mit NH4OH auf pH 4,1-	4,3 einstellen		

Lösungen und Puffer für die Ölrot O-Färbung

Ölrot O-Stocklösung		Ölrot O-Arbeitslösung	
Ölrot O	0,5 g	Ölrot O-Stocklösung	6 Teile
100 ml Isopropanol	100 ml	dH ₂ O	4 Teile
		\rightarrow 24h im Dunkeln stehen las	ssen

 \rightarrow Lösung filtrieren; Lagerung bei RT

Lösungen und Puffer für die Elastika van Gieson Färbung

Weigert's Eisen-Hämatoxylin

Lösung A	40 ml
Lösung B	40 ml
\rightarrow kurz vor Gebrauch frisch herstellen	

Kurz vor Gebrauch frisch herstellen

Lösungen und Puffer für die Masson-Trichrom-Färbung

Bezeichnung	Bestellnummer	Bezugsquelle
Trichrom-Färbungskit (Masson)	HT15-1KT	Sigma-Aldrich

Essigsäure 1%

Essigsäure 100%	5 ml
dH₂O	ad 500 ml
\rightarrow kurz vor Gebrauch frisch	n herstellen

Weigert's Eisen-Hämatoxylin

Lösung A	40 ml
Lösung B	40 ml
\rightarrow kurz vor Gebrauch frisch	herstellen

Phosphormolybdänsäure/ Phosphorwolframsäure-Arbeitslösung

Phosphormolybdänsäure	20 ml
Phosphorwolframsäure	20 ml
dH ₂ O	40 ml
\rightarrow kurz vor Gebrauch frisch herstellen	

Lösungen zur Permeabilisierung von Gewebe und Zellen

Triton X-100 in PBS 0,3%		Triton X-100 in PBS 0,1%	
Triton X-100	1,5 ml	Triton X-100	0,5 ml
PBS	ad 500 ml	PBS	ad 500 ml
ightarrow unter Rühren lösen; Lagerung bei 4°C		ightarrow unter Rühren lösen; Lagerung bei 4°	

Lösungen zur Blockade unspezifischer Bindungsstellen

PBS + Serum 10%		PBS + Serum 1,5%		
NGS oder NDS	1 ml	NGS oder NDS	0,150 ml	
PBS	9 ml	PBS	9,85 ml	
ightarrow kurz vor Gebrauch frisch herstellen		\rightarrow kurz vor Gebrauch fri	\rightarrow kurz vor Gebrauch frisch herstellen	

Lösungen und Kits IHC-(AP)-Färbung

Bezeichnung	Bestellnummer	Bezugsquelle
Vectastain® ABC-AP-Kit Standard Alkaline Phosphatase	AK 5000	Vector Laboratories
(ABC-AP-Arbeitslösung)		
Vector® Blue Alkaline Phosphatase Substrat Kit III	SK 5300	Vector Laboratories
(AP-Substrat-Lösung)		

Tris-HCI [0,1 M] pH 8,2

iz, i g
000 ml

ABC-AP-Arbeitslösung

ABC-AP-Arbeitslösung		AP-Substrat-Lösung	
PBS	5 ml	Tris-HCI [0,1 M] pH 8,2	5 ml
Reagenz A	1 Tropfen	Levamisol	2 Tropfen
Reagenz B	1 Tropfen	Reagenz 1	2 Tropfen
\rightarrow 30 min im Dunkeln		Reagenz 2	2 Tropfen
inkubieren		Reagenz 3	2 Tropfen

Verwendete Primärantikörper IHC- und IF-Färbung

Antikörper	Spezies	Verdünnung	Bezugsquelle
Anti-Acadl	Kaninchen	1:100	Proteintech, #17526-1-AP
Anti-α-SMA	Kaninchen	1:500	Abcam, #ab124964
Anti-α-SMA® 647	Kaninchen	1:50	Cell Signaling, #76113S
Anti-cGKI	Kaninchen	1:500	Cell Signaling, #3248S
Anti-Cofilin	Kaninchen	1:500	Cell Signaling, #5175T
Anti-CRIP1	Kaninchen	1:500	Abgent, #AP4707b
Anti-CRP4	Kaninchen	1:2000; 1:100	Pharmakologie AK Ruth
Anti-Cu ²⁺ -oxLDL	Kaninchen	1:500	Merck Millipore,#AB3230
Anti-Ggps1	Kaninchen	1:100	Proteintech, #14944-1-AP
Anti-Ki67	Kaninchen	1:1000	Cell Signaling, #9129S
Anti-Mac2	Kaninchen	1:2000	Abcam, #ab76245
Anti-NO-GCβ₁	Kaninchen	1:500	Prof. Friebe, Würzburg
Anti-PRDX4	Kaninchen	1:100	Proteintech, #10703-1-AP
Anti-Rai14	Kaninchen	1:100	Proteintech, #17507-1-AP
Anti-VASP	Kaninchen	1:500	Cell Signaling, #3132T
Phalloidin® 647	Kaninchen	1:40	Thermo Fisher, # A30107

Verwendete Sekundärantikörper IHC- und IF-Färbung

Antikörper	Spezies	Verdünnung	Bezugsquelle
Alexa 488-Goat-Anti-Rabbit IgG	Ziege	1:800	Thermo Fisher, #A11008
Alexa 555-Goat-Anti-Rabbit IgG	Ziege	1:800	Thermo Fisher, #A32732
Alexa 568-Donkey-Anti-Rabbit IgG	Esel	1:800	Thermo Fisher, #A10042
Biotinylierter Goat-Anti-Rabbit IgG	Ziege	1:500	Vector Laboratories (#BA-
			1000)

Lösungen zum Eindeckeln der Schnitte oder Zellen

Permafluor + Hoechst	
Permafluor	10 ml
Hoechst	10 µl
······································	: 400 1

 \rightarrow vortexen und lichtgeschützt bei 4°C lagern

 \rightarrow mind. 24h vorher herstellen, um Luftblasen zu vermeiden

2.2.4 RNA-Analytik

Versuchsspezifische Materialien und Substanzen

Material/Substanz/Lösung	Bestellnummer	Bezugsquelle
96-well PCR-Platte (Low Multiwell)	MLL-9601	Bio-Rad
DEPC-H ₂ O	T143	Carl Roth
Ethanol (absolut)	32205	Sigma-Aldrich
iScript cDNA Synthesis Kit	170-8891	Bio-Rad
NucleoSpin® RNA-Isolations-Kit	740955.250	Macherey-Nagel
Primer	diverse	Eurofins
RNaseZAP™	R2020	Sigma-Aldrich
SsoAdvanced Universal SYBR Green Supermix	1725274	Bio-Rad
Versiegelungsfolie (Microseal® 'B')	MSB-1001	Bio-Rad
β-Mercaptoethanol	4227.1	Carl Roth

NucleoSpin® RNA Kit (200 Präparationen)

Kit-Bestandteile	Verpackungsgröße	Anmerkung
Collection Tubes (1,5 ml; 2 ml)	250 Stk.	
Membran-Entsalzungs-Puffer (MDB)	125 ml	
NucleoSpin® RNA Säulen	250 Stk.	
NucleoSpin® Filter	250 Stk.	
RA1 Lösung (Lysepuffer)	125 ml	
RA3 Lösung (Waschpuffer Konzentrat)	3 x 25 ml	In 100 ml Ethanol (100%) lösen;
		Lagerung bei RT
RAW2 Lösung (Waschpuffer)	80 ml	
rDNAse (RNAse-frei, lyophilisiert)	5 Vials	In 550 µl RNAse-freiem H ₂ O
		lösen; Lagerung bei -20°C
Reaktionspuffer für die rDNAse	30 ml	
RNAse-freies H ₂ O	60 ml	

iScript cDNA Synthesis Kit

Kit-Bestandteile 5x Reverse Transkription-Reaktionsmix iScript Reverse Transkriptase Nuklease-freies H₂O

Lösungen und Versuchsansätze für RNA-Isolation

Ethanol 70%		Zell-Lyse-Mix	
Ethanol 100%	35 ml	RA1-Lösung	350 µl
dH ₂ O	15 ml	β-Mercaptoethanol	3,5 µl

Lösungen und Versuchsansätze für cDNA-Synthese

+RT-cDNA-Synthese-Lösung

5x iScript-Mix	4 µl
Reverse Transkriptase	1 µl
RNA [0,1 μg/μl]	5 µl
DEPC-H ₂ O	10 µl
→ cDNA 1:7,5 verdünnen	

qRT-PCR-Mastermix

2x Sso Green Supermix	7,5 µl
Vorwärtsprimer [2 µM]	2,25 µl
Rückwärtsprimer [2 µM]	2,25 µl
cDNA	3 µl

Primer für die qRT-PCR

Zielgen	Primertyp	Primersequenz von 5' – 3'
CALD1 (Caldesmon)	For	ACAGAAGTGAAGGCGCAGAA
	Rev	TCAGCTTCCTTGTCCCCACT
CNN1 (Calponin)	For	GCCGGGTTCTGTGAAGAAGG
	Rev	GCCTCAAAGATGTCGTGGGG
CRIP1	For	ATCGTCCCTGCCTGAAGTGT
	Rev	CCCAAACATGGCGGAGTAGC
CRP4	For	ACGATGGCCAGCCCTACT
	Rev	TAGCTGCCCACAGCACCA
GUCY1A3 (NO-GC _{α1})	For	TGAGGTCATGTCTCCCCACG
	Rev	TCACTCCGACAACTCCAGCA
HPRT	For	CATTATGCCGAGGATTTGGA
	Rev	CCTTCATGACATCTCGAGCA
MYH11 (SMMHC)	For	CAAGTGCAGTGATGGGGAGC
	Rev	GCATGCCAGTGACACTCTCC
PRKG1 (cGKI)	For	GGCGATGTGGGGTCACTGGTGT
	Rev	CCATGGTGCAGAGCTTCACGCC
PTK2 (FAK)	For	CGACAGCAGCAGGAAATGGA
	Rev	CTCCCGTCTTCCCTGTCGAT
α-SMA	For	AGAGGCACCACTGAACCCTA
	Rev	GCATAGAGGGACAGCACAGC
TAGLN (Transgelin)	For	CGATGGAAACTACCGTGGAGA
	Rev	AAGGCCAATGACGTGCTTCC
VIRA (View endine)	F	
VIM (Vimentin)	For	
	Kev	CGGTACTCGTTIGACTCCTGC
ZYX (Zyxin)	For	
	Rev	GGGAACAAATGGAGTGGCAAC

 \rightarrow Die Oligonukleotid-Lyophilisate wurden in DEPC-H2O rekonstituiert und auf eine Zielkonzentration von 100 μM eingestellt

2.2.5 Proteinanalytik

Versuchsspezifische Materialien und Substanzen

Material/Substanz/Lösung	Bestellnummer	Bezugsquelle
Ammoniumperoxodisulfat (APS)	9592.2	Carl Roth
Bromphenolblau	15375	Serva
cOmplete Mini Protease-Inhibitor-Tablette	11836170001	Sigma-Aldrich
Coomassie-Brilliant-Blue G250	3862.2	Carl Roth

Material/Substanz/Lösung	Bestellnummer	Bezugsquelle
Dithiothreitol (DTT)	6908.1	Carl Roth
EGTA	E3889	Sigma-Aldrich
Essigsäure (100%)	3738.5	Carl Roth
Glycerin	3783.1	Carl Roth
Glycin	3908.3	Carl Roth
Hamilton-Spritze	X035	Carl Roth
Isopropanol	6752.3	Carl Roth
Methanol	4627.5	Carl Roth
Milchpulver	T145.3	Carl Roth
Natriumazid (NaN ₃)	K305	Carl Roth
Natriumchlorid (NaCl)	3957.2	Carl Roth
Nonidet-P40	74385	Sigma-Aldrich
Phenylmethylsulfonylfluorid (PMSF)	6367.2	Carl Roth
Phosphatase-Inhibitor Cocktail 2	P5726	Sigma-Aldrich
Phosphatase-Inhibitor Cocktail 3	P0044	Sigma-Aldrich
Phosphorsäure (84,5%)	6366.1	Carl Roth
Proteinmarker IV	27-2110	PeqLab
PVDF-Membran (Immobilion®-FL)	IPFL00010	Merck Millipore
Rinderserumalbumin (BSA)	8076.2	Carl Roth
Rotilabo® Blottingpapiere (0,35 mm)	CL67.1	Carl Roth
Rotiphorese® Gel 30 (Acrylamid-Lösung)	3029.2	Carl Roth
Sodiumdodecylsulfat (SDS)	5136.2	Carl Roth
Sterilfilter	BT25	Sarstedt
Tetramethylethylendiamid (TEMED)	263.3	Carl Roth
Tris	5429.3	Carl Roth
Trueblot Beads	00-8000-25	Biomol
Tween 20	9127.1	Carl Roth
UV-Küvetten	0030106300	Eppendorf
VivaSpin® 500, 5.000 MWCO	512-4001	VWR
β-Mercaptoethanol	4227.1	Carl Roth
ε-Aminocapronsäure	A2504	Sigma-Aldrich

Lyse der Proteine und Konzentrationsbestimmung

Tris-HCI [1 M] pH 8,3		PMSF [200 mM]	
Tris	121,14 g	PMSF	348,4 mg
dH_2O \rightarrow mit HCl pH 8,3 einsteller	ad 1000 ml n	Ethanol (absolut) → Lagerung bei -20°C	10 ml

SDS-Lösung 10%

SDS	10 g
dH ₂ O	ad 100 ml

Protease-Inhibitor-Stocklösung 10x

	•
cOmplete Mini	1 Tablette
dH ₂ O	
ightarrow Lagerung bei 4°C	1 ml

SDS-Lysepuffer

Tris-HCI [1 M] pH 8,3	210 µl
SDS 10%	670 µl
β-Mercaptoethanol	170 µl
PMSF [200 mM]	20 µl
dH ₂ O	ad 10 ml

Bradford-Lösung

-

Coomassie Blau G250	100 mg
Ethanol (absolut)	50 ml
Phosphorsäure (84,5%)	100 ml
dH ₂ O	ad 1000 ml

4x Laemmli

SDS	5 g
Tris	2,4 g
Glycerin	40 ml
Bromphenolblau	4 mg
dH ₂ O	ad 100 ml
\rightarrow mit HCl pH 6,7 einstellen	
\rightarrow 1 ml Aliquots	
\rightarrow Lagerung bei -20°C	

Gelelektrophorese

Tris-HCI-Lösung [1,8 M] pH 8,8

Tris	218,052 g
dH ₂ O	ad 1000 ml
\rightarrow mit HCl pH 8,8 einstellen	
\rightarrow autoklavieren	

Ammoniumperoxosulfat	(APS) 30%
----------------------	------	-------

APS	15 g
dH ₂ O	ad 50 ml
\rightarrow 1 ml Aliquots	
\rightarrow kurzfristige Lagerung bei 4°C,	

sonst bei -20°

.

Trenngel 10% (4 Minigele)

dH ₂ O	7,4 ml
Tris-HCI-Lösung [1,8 M] pH 8,8	3,6 ml
Rotiphorese (AA-Lösung)	5,7 ml
SDS 10%	167 µl
TEMED	20 µl
APS 30%	66,6 µl

SDS-Lysepuffer (Phosphoblots)

Tris-HCI [1 M] pH 8,3	210 µl
SDS 10%	670 µl
β-Mercaptoethanol	170 µl
Phosphatase-Inhibitor II	100 µl
Phosphatase-Inhibitor III	100 µl
Protease-Inhibitor-Stock 10x	100 µl
dH ₂ O	ad 10 ml

DTT-Lösung [1 M]

.

DTT	15,425 g
dH ₂ O	ad 100 ml
→ 100 µl Aliquots	
\rightarrow Lagerung bei -20°C	

4x Laemmli + DTT [100 mM]

4x Laemmli	1 ml
DTT [1M]	100 µl
\rightarrow DTT erst kurz vor dem	
Gebrauch hinzugeben	

Tris-HCI-Lösung [0,6 M] pH 6,8

Tris	72,684 g
dH ₂ O	ad 1000 ml
\rightarrow mit HCl pH 6,8 einstellen	
\rightarrow autoklavieren	

Elphor-Puffer 10x

Tris	30 g
Glycin	144 g
SDS	10 g
dH ₂ O	ad 1000 ml
\rightarrow mit HCl pH 8,3 einstellen	
\rightarrow 1x Elphor: 1:10 mit dH ₂ O	

Trenngel 17,5% (4 Minigele)

dH ₂ O	3,4 ml
Tris-HCI-Lösung [1,8 M] pH 8,8	3,6 ml
Rotiphorese (AA-Lösung)	9,7 ml
SDS 10%	167 µl
TEMED	12 µl
APS 30%	56,6 µl

Sammelgel 5% (4 Minigele)

Gammerger 570 (4 minigere)	
dH ₂ O	7,2 ml
Tris-HCI-Lösung [0,6 M] pH 6,8	1 ml
Rotiphorese (AA-Lösung)	1,66 ml
SDS 10%	100 µl
TEMED	20 µl
APS 30%	33,2 µl

Western Blot

Anodenpuffer 1

Anodenpuffer 1		Anodenpuffer 2	
Tris	36,3 g	Tris	3,6 g
Methanol	200 ml	Methanol	200 ml
dH ₂ O	ad 1000 ml	dH ₂ O	ad 1000 ml
\rightarrow pH 10,4 einstellen		\rightarrow pH 10,4 einstellen	

Kathodenpuffer

Tris	3 g
ε-Aminocapronsäure	5,8 g
Methanol	200 ml
dH ₂ O	ad 1000 ml
\rightarrow pH 7,6 einstellen	

1115	5,0 Y
Methanol	200 ml
dH₂O	ad 1000 ml
\rightarrow pH 10,4 einstellen	

10x TBST

Tris	24,2 g
NaCl	164,6 g
Tween 20	10 ml
dH ₂ O	ad 2000 ml
\rightarrow pH 8,0 einstellen	
\rightarrow 1x TBST: 1:10 mit dH ₂ O;	
steril filtrieren	

Milchpulver-Lösung 5%	
Milchpulver	5 g
1x TBST	ad 100 ml
ightarrow frisch herstellen	

AK-Verdünnungslösung

1x TBST	95 ml
BSA	5 g
NaN₃ 10%	500 µl
\rightarrow Lagerung bei 4°C	

Verwendete primäre Antikörper

Antikörper	Spezies	Verdünnung	Bezugsquelle
Anti-Acadl	Kaninchen	1:1000	Proteintech, #17526-1-AP
Anti-α-Adducin	Maus	1:500	Santa Cruz Biotechnology,
			#sc-133079
Anti-γ-Adducin	Maus	1:500	Santa Cruz Biotech., #sc-365178
Anti-β-Aktin	Maus	1:500	Santa Cruz Biotech., #sc-8432
Anti-cGKI	Kaninchen	1:1000	Cell Signaling, #3248S
Anti-Cofilin	Kaninchen	1:1000	Cell Signaling, #5175T
Anti-pCofilin (Ser3)	Kaninchen	1:1000	Cell Signaling, #3313T
Anti-CRIP1	Kaninchen	1:750	Abgent, #AP4707b
Anti-CRP4	Kaninchen	1:2000	Pharmakologie AK Ruth
Anti-Fibulin 2	Maus	1:500	Santa Cruz Biotech., #sc-271843
Anti-GAPDH	Kaninchen	1:1000	Cell Signaling, #2118S
Anti-Ggps1	Kaninchen	1:1000	Proteintech, #14944-1-AP
Anti-HSP60	Kaninchen	1:1000	Santa Cruz Biotech., #sc13966
Anti-Integrin β ₃	Kaninchen	1:1000	Cell Signaling, #4702S

Antikörper	Spezies	Verdünnung	Bezugsquelle
Anti-Lamin A/C	Maus	1:1000	Cell Signaling, #4777T
Anti-Mac2	Kaninchen	1:2000	Abcam, #ab76245
Anti-MLC2	Kaninchen	1:1000	Cell Signaling, #3672S
Anti-pMLC2 (Ser19)	Maus	1:1000	Cell Signaling, #3675S
Anti-MYPT1	Kaninchen	1:1000	Cell Signaling, #8574S
Anti-pMYPT1 (Thr696)	Kaninchen	1:1000	Cell Signaling, #5163T
Anti-NO-GCβ₁	Kaninchen	1:1000	Prof. Friebe, Würzburg
Anti-α-PDE5	Kaninchen	1:500	Sergej Rybalkin, Seattle
Anti-Pirin	Maus	1:500	Santa Cruz Biotech., #sc-271623
Anti-PRDX4	Kaninchen	1:1000	Proteintech, #10703-1-AP
Anti-Serpin B6	Maus	1:500	Santa Cruz Biotech., #sc-374535
Anti-Serpin H1	Maus	1:500	Santa Cruz Biotech., #sc-5293
Anti-α-SMA	Kaninchen	1:1000	Abcam, #ab124964
Anti-Rai14	Kaninchen	1:1000	Proteintech, #17507-1-AP
Anti-VASP	Kaninchen	1:1000	Cell Signaling, #3132T
Anti-pVASP(Ser239)	Kaninchen	1:1000	Cell Signaling, #3114T
Anti-Vimentin	Kaninchen	1:1000	Cell Signaling, #5741T

Verwendete Fluorophor-gekoppelte sekundäre Antikörper

Antikörper	Spezies	Verdünnung	Bezugsquelle
Anti-Mouse Cy 3 ECL Plex	Ziege	1:1500	GE Healthcare, #PA43009
Anti-Rabbit Cy 5 ECL Plex	Ziege	1:2500	GE Healthcare, #PA45011

Subzelluläre Proteomanalyse

Versuchsspezifische Materialien und Substanzen

Material/ Substanz/ Lösung	Bestellnummer	Bezugsquelle
ProteoExtract® Subcellular Proteome Kit	539790-1KIT	Merck Millipore

Co-Immunpräzipitation

IP-Lysepuffer	
Tris-HCI [1 M] pH 7,4	0,3 ml
NaCI [4 M]	475 µl
NP 40 10%	500 µl
EGTA [0,1 M]	500 µl
Phosphatase-Inhibitor 2	100 µl
Phosphatase-Inhibitor 3	100 µl
cOmplete Mini	1 Tablette
dH ₂ O	ad 10 ml

IP-Ladepuffer 2x

Tris-HCI [1 M] pH 8,3	2 ml
SDS	3 g
Glycerol 100%	5 ml
Bromphenolblau	6 mg
dH ₂ O	ad 50 ml

IP-Waschpuffer

Tris-HCI [1 M] pH 7,4	0,3 ml
NaCI [4 M]	475 µl
NP 40 10%	100 µl
EGTA [0,1 M]	500 µl
Phosphatase-Inhibitor 2	100 µl
Phosphatase-Inhibitor 3	100 µl
cOmplete Mini	1 Tablette
dH ₂ O	ad 10 ml

IP-Ladepuffer + DTT

IP-Ladepuffer 2x 95	0 µl
DTT [1 M] 5	0 µl
ightarrow kurz vor Gebrauch herstellen	
\rightarrow 1:1 mit IP-Lysaten verdünnen	

2.2.6 Kompetitiver cGMP-ELISA

Versuchsspezifische Materialien und Substanzen

Material/Substanz/Lösung	Bestellnummer	Bezugsquelle
Calciumchlorid (CaCl ₂)	C1016	Sigma-Aldrich
cGMP EIA kit	Cay581021-96	Cayman Chemical Company
D-Glucose	G7528	Sigma-Aldrich
HEPES	H3375	Sigma-Aldrich
Kaliumchlorid (KCI)	P5405	Sigma-Aldrich
Magnesiumsulfat (MgSO ₄)	M7506	Sigma-Aldrich
Natriumchlorid (NaCl)	S5886	Sigma-Aldrich

Lösungen und Puffer für die cGMP Bestimmung

r (1x) cGMP EIA-Waschpuffer (1x)		⁻ (1x)
10 ml	Waschpuffer (400x)	1 ml
90 ml	dH ₂ O	ad 400 ml
	Polysorbat 20	200 µl
	10 ml 90 ml	cGMP EIA-Waschpuffer10 mlWaschpuffer (400x)90 mldH2OPolysorbat 20

cGMP AChE Tracer

cGMP AChE Tracer	100 dtn
cGMP EIA-Probenpuffer	6 ml

cGMP Standardstocklösung [300 nM]			
cGMP Standard	300 pmol		
cGMP EIA-Probenpuffer	1 ml		
ightarrow rekonstituieren			

 \rightarrow Lagerung bei 4°C

cGMP EIA-Antiserum

cGMP EIA-Antiserum	100 dtn
cGMP EIA-Probenpuffer	6 ml

Tyrode-Lösung

NaCl	8,18 g
HEPES	1,19 g
D-Glucose	1,80 g
KCI [0,5 M]	10 ml
MgSO ₄ [0,12 M]	10 ml
CaCl₂ [1 M]	2 ml
dH₂O	ad 1000 ml
ightarrow Substanzen lösen	
\rightarrow pH 7,4 einstellen	

2.2.7 xCELLigence Messungen

Versuchsspezifische Materialien und Substanzen

Material/Substanz/Lösung	Bestellnummer	Bezugsquelle
E-Plate® 16	2801032	Omni Life Science

2.2.8 Migrations-Assay

Versuchsspezifische Materialien und Substanzen

Material/Substanz/Lösung	Bestellnummer	Bezugsquelle
Culture-Insert 3 Well in μ -Dish 35 mm, hoch	80366	lbidi
μ-Dish 35 mm, hoch Grid-500	81166	Ibidi

2.2.9 Ca²⁺-Messungen

Versuchsspezifische Materialien und Substanzen

Material/Substanz/Lösung	Bestellnummer	Bezugsquelle
8-Br-cGMP [100 mM]	7250415	Biolog
Calciumchlorid (CaCl ₂)	C1016	Sigma-Aldrich
CellView-Zellkulturschalen (35/ 10 MM, Glasboden)	627860	Greiner Bio-One
Cinaciguat [50 μM]	-	Bayer AG
DEA/NO	292500	Sigma-Aldrich
Fura-2 Acetoxymethylester (Fura-2 AM)	344906	Merck Millipore
D-Glucose	G7528	Sigma-Aldrich
HEPES	H3375	Sigma-Aldrich
Immersionsöl Immersol™ 518F	444960-0000-000	Zeiss
Kaliumchlorid (KCI)	P5405	Sigma-Aldrich
Kanüle (0,3 x 13 mm) Microlance 3	03087148	BD
Magnesiumsulfat (MgSO ₄)	M7506	Sigma-Aldrich
Natriumchlorid (NaCl)	S5886	Sigma-Aldrich
(-)-Norepinephrin	A7257	Sigma-Aldrich

Lösungen und Puffer für die Ca²⁺-Messungen

cGMP [1mM]		Cinaciguat [25 nM]	
cGMP [100 mM]	200 µl	Cinaciguat [50 µM]	5 µl
Tyrode	ad 20 ml	Tyrode	ad 10 ml
DEA/NO [10 µM]		Noreninenhrin-Stocklö	suna [100 mM]
DEA/NO [10 mM]	10 ul	Noreninenhrin	10 mg
Tyrode	ad 10 ml	dH ₂ O	4,863 ml
Tyrode			
NaCl	8,18 g		
HEPES	1,19 g		
D-Glucose	1,80 g		
KCI [0,5 M]	10 ml		
MgSO4 [0,12 M]	10 ml		
CaCl ₂ [1 M]	2 ml		
dH ₂ O	987 ml		
\rightarrow Substanzen lösen und pH	ł 7,4 einstellen		
\rightarrow steril filtrieren			

2.2.10 In vivo Experimente

Versuchsspezifische Materialien und Substanzen

Material/Substanz/Lösung	Bestellnummer	Bezugsquelle
Bepanthen Augensalbe	PZN 01578681	Roche
Druckkatheter zur Blutdruckmessung	TA11ETA-F10	DataScience Int.
EDTA	E6760	Sigma-Aldrich
Enthaarungscreme	PZN 4916836	Reckitt Bencksier

Material/Substanz/Lösung	Bestellnummer	Bezugsquelle
Ethilon II 5-0 (Wundverschluss)	EH7823	Ethicon
Ethilon Polyamid 66 7-0 (Neointima-Ligatur)	1696H	Ethicon
Gefäßdehnungspinzette	00276-13	FST
Isofluran	220/96	Aventis
Kanüle (20G, 0,4 x 19 mm) zur Lösungsentnahme	301300	BD
Kanüle (25G, 0,5 x 25 mm) zur i.p. Injektion	PZN 02058009	BD
Kanüle (27G, 0,4 x 19 mm) zur Carotiseröffnung	302200	BD
Katheterhalter	00574-11	FST
Ketamin-ratiopharm® 100 mg	PZN 7538837	Ratiopharm
Leukosilk 1,25 cm x 5 m	00626219	BSN Medical
Nadeln 0,125 mm (Aorta aufpinnen)	10130-05	FST
Natriumchlorid-Lösung, steril (0,9%)	PZN 2159621	Fresenius Kabi
Octenisept	PZN 7463832	Schülke
Ölrot O	O0625	Sigma-Aldrich
Paraformaldehyd (PFA)	0335.2	Carl Roth
PBS	14190094	Thermo Fisher
Perma-Hand Seide 7.0 (Wundverschluss)	EH7464G	Ethicon
Pinzetten	11254-20; 11251-	FST
	35; 11151-10	
Resorba-Seide 7.0/0.5 (Carotisligatur)	R101	Resorba
Rimadyl® vet (Carprofen)	PZN 011208	Pfizer
Rompun 2% (Xylazin)	PZN 1320422	Bayer AG
Saccharose	4621.2	Carl Roth
Scheren	14058-09; 15000-	FST
	03	
Wattestäbchen	PZN 6141575	Heinz Herenz

Lösungen und Puffer für die Ölrot O-Färbung

|--|

- - - -	
Ölrot O	0,5 g
100 ml Isopropanol	100 ml

PFA-Saccharose-Lösung

Saccharose	5 g
PFA-Lösung 4%	ad 100 ml
\rightarrow pH 7,4 einstellen	

EDTA [50 mM]

EDTA	14,612 g	EDTA [50 mM]	10 ml
dH ₂ O	ad 100 ml	dH ₂ O	ad 100 ml
\rightarrow pH 8,0 einstellen			

Ölrot O-Arbeitslösung

EDTA [5 mM]

Ölrot O-Stocklösung	6 Teile		
dH ₂ O	4 Teile		
ightarrow 24h im Dunkeln stehen lassen			
ightarrow Lösung filtrieren; Lagerung bei RT			

Lösungen und Substanzen für die i.p. Injektion (Telemetriemessungen)

Cinaciguat [3 μg/100 μl]		Sodiumnitroprussid [75 µg/100 µl]		
Cinaciguat [1 mg/ml]	3 µl	SNP	7,5 mg	
Aqua ad injectabilia 97 μl		Aqua ad injectabilia	10 ml	
Carbachol [15 µg/100µl]		L-Name [3 mg/100 µl]		
Carbachol	1,5 mg	L-Name	30 mg	
Aqua ad injectabilia	10 ml	Aqua ad injectabilia	1 ml	

3. Methoden

3.1 Mauszucht

3.1.1 Tierhaltung

Die Haltung der Elterntiere und Generierung der Versuchstiere wurden in der S1-Tierhaltung am Pharmazeutischen Institut (Abteilung Experimentelle Pharmakologie, LS Pharmakologie, Toxikologie und Klinische Pharmazie) der Universität Tübingen durchgeführt. Hierfür wurden die Tiere in standardisierten Käfigen in Temperatur- ($22 \pm 2^{\circ}$ C) und Feuchtigkeits-regulierten ($55 \pm 5^{\circ}$), offenen spezifiziert Pathogen-freien (SPF) Haltungssystemen gehalten. Entsprechend der tierschutzrechtlichen Normen wurden die Mäuse in Gruppen von maximal 3 Tieren pro Käfig (Typ II, Makrolon) abgesetzt und die Nachzucht der benötigten Versuchstiere wurde in speziellen Zuchtkäfigen (Typ III, Makrolon) durchgeführt. Der Hell-/Dunkelrhythmus der Räume lag bei 12/12 h mit einer Lichtphase von 6 Uhr – 18 Uhr. Zudem wurde sichergestellt, dass die Tiere *ad libitum* Zugang zu Futter (Altromin, Lage, Deutschland; Sniff Spezialdiäten GmbH, Soest, Deutschland) und Wasser haben. Des Weiteren standen den Tieren als Beschäftigungsgegenstände Holzstreu, Nistmaterial und kleine Kunststoffhäuser zur Verfügung. Alle Tierversuche wurden von der Ethikkommission der Tierschutzbehörde des Regierungspräsidiums Tübingen genehmigt und wurden unter Beachtung des Deutschen Tierschutzgesetzes durchgeführt.

3.1.2 Verpaarung und Generierung von Versuchstieren – CRP4-*Knockout*-Mauslinie

Für die vorliegende Dissertation wurden Wildtyp und globale CRP4-*Knockout* Mäuse (CRP4 WT und CRP4 KO) mit SV129-Hintergrund der CRP4-Mauslinie (129Sv-Crip2^{tm1.1/Ruth}/Ruth) verwendet.

129Sv-Crip2tm1.1/Ruth/Ruth

Durch die Generierung der CRP4-Mauslinie konnte eine globale Deletion an funktionsfähigem CRP4 gewährleistet (Schmidtko et al., 2008) und somit der Einfluss von CRP4 auf den gesamten Organismus untersucht werden. Die *Knockout*-Mauslinie wurde mit Hilfe der Cre/loxP-Technik am Pharmazeutischen Institut (LS Pharmakologie, Toxikologie und Klinische Pharmazie) der Universität Tübingen generiert. Dabei wurden die Exons 2-7 und somit der Großteil des CRP4-Gens deletiert.

Als Kontrolltiere dienten Wildtyp Wurfgeschwister (CRP4 WT, +/+). Zusammen mit CRP4 KO (-/-) Mäusen und heterozygoten Nachkommen wurden die Kontrolltiere durch die Verpaarung heterozygoter Elterntiere (CRP4 Het, +/-) gewonnen. Während für die *in vivo* Versuche nur männliche Nachkommen der heterozygoten Verpaarung herangezogen wurden,

konnten für die *in vitro* Experimente und die Isolation der VSMCs auch weibliche Mäuse im Alter von 6 - 8 Wochen verwendet werden. Um eine höhere Versuchstierzahl für die Isolation der VSMCs zu erzielen, wurde zusätzlich auch mit Versuchstieren einer homozygoten Verpaarung gearbeitet. Im Rahmen der Zellkulturexperimente wurden deshalb CRP4 WT (+/+), sowie auch CRP4 KO (-/-) Mäuse jeweils untereinander verpaart.

3.1.3 In vivo Atherosklerose-Mausmodell

Im Gegensatz zu Menschen, entwickeln Mäuse u.a. aufgrund einer, im Vergleich zum menschlichen Organismus, relativ hohen *high density lipoprotein* (HDL)-Konzentration im Blut auf natürliche Weise keine Atherosklerose. Durch das Eingreifen in den Lipoprotein-Metabolismus, z.B. mit Hilfe einer ApoE-*Knockout*-Mauslinie, steht allerdings ein valides Atherosklerose-Mausmodell zur Verfügung (Daugherty, 2002; Jawień et al., 2004; Kapourchali et al., 2014). Des Weiteren kann die Entwicklung einer Atherosklerose in ApoE KO Mäusen durch die zusätzliche Fütterung einer hochcholerischen Diät beschleunigt werden. Im Rahmen dieser Arbeit wurde ein *in vivo* Atherosklerose-Modell mit ApoE KO CRP4 doppelmutanten Mäusen etabliert und analysiert. Die Versuchstiere mit einem gemischten SV129 x C57BL/6J Hintergrund wurden ab einem Alter von 5 Wochen entweder mit einer WD mit 0,21% Cholesterol (Bestellnr. E15721-34, Sniff Spezialdiäten GmbH, Soest, Deutschland) oder dem entsprechenden Kontrollfutter (CD) (Bestellnr. E15720-04, Sniff Spezialdiäten GmbH, Soest, Deutschland) für 8 bzw. 16 Wochen gefüttert.

129Sv-Crip2tm1.1/Ruth/Ruth x B6.129P2-Apoetm1Unc/J

Zur Generierung der doppelmutanten, CRP4-heterozygoten Elterntiere (ApoE^{-/-} CRP4^{+/-}) der Versuchstierzucht wurden zunächst ApoE KO (-/-) Mäuse mit einem C57BL/6J Hintergrund mit CRP4 KO (-/-) der CRP4-Mauslinie (siehe 3.1.2) verpaart. Hierbei wurden doppelmutante, heterozygote ApoE^{+/-} CRP4^{+/-} Mäuse gewonnen, die wiederum miteinander verpaart werden konnten, um die Elterntiere der hiesigen Zuchtlinie zu generieren. Im Rahmen der Versuchstierzucht konnten schließlich durch die Verpaarung von ApoE^{-/-} CRP4^{+/-} Mäusen CRP4 WT (+/+) und CRP4 KO (-/-) Mäuse mit einem ApoE-negativen Hintergrund als Wurfgeschwister gewonnen werden. Für alle durchgeführten *in vivo* Versuche wurden auch weibliche Wurfgeschwister herangezogen.

3.2 Genotypisierung der Eltern- und Versuchstiere

Zur Identifizierung und Genotypisierung der Eltern- und Versuchstiere wurden diese routinemäßig im Alter von 2 - 3 Wochen mittels eines spezifischen Ohrlochschemas (Abb. 3.1) markiert. Anhand der entnommenen Ohrbiopsien konnte durch DNA-Isolierung und anschließender DNA-Amplifikation mittels Polymerasekettenreaktion (PCR) der Genotyp der entsprechenden Mäuse durch eine Agarose-Gelelektrophorese detektiert und bestimmt werden.

Abbildung 3.1: Ohrlochschema zur Identifizierung und Genotypisierung der Versuchstiere

Das rechte Ohr dient der Markierung der 10-er Zahlen und das linke Ohr markiert die 1-er Zahlen. Somit ergeben sich zur Unterscheidung der Mäuse Zahlen von 1-99.

3.2.1 DNA-Isolierung aus Ohrbiopsien

Zur DNA-Isolierung aus den Ohrbiopsien wurde das kommerziell erwerbliche *KAPA Mouse Genotyping Kit* (siehe 2.2.1) verwendet. Hiermit konnten eine schnelle und einfache Extraktion und Amplifikation der DNA gewährleistet werden. Dieses Kit besteht aus dem Extraktionsenzym (*KAPA Express Extract Enzyme* (1 U/µI)), dem Extraktionspuffer (*KAPA Express Extract Buffer* (10x)) und einem PCR-Mix (*KAPA2G Fast Genotyping Mix* (KAPA2G)). Dieser beinhaltet die DNA-Polymerase, den Reaktionspuffer mit Ladepuffer, Desoxynukleotidtriphosphate (dNTPs) und Magnesiumchlorid (MgCl₂).

Orientierend an der Anzahl der Genotypisierungsansätze (Ohrbiopsien) wurde zunächst ein Mastermix aus je 2 µl Extraktionsenzym, 10 µl Extraktionspuffer, sowie 88 µl dH₂O pro Extraktionsansatz hergestellt. Anschließend erfolgte die Inkubation der Ohrbiopsien in einem Thermoschüttler mit 100 µl des Mastermix bei 75°C und 500 rpm in einem Eppendorf-Reaktionsgefäß (1,5 ml) für 10 min. Die Zellen werden hierbei durch die Protease lysiert, die Proteine und Nukleasen degradiert und dadurch die DNA freigesetzt. Im nächsten Schritt fand die Inaktivierung der Enzymaktivität statt, indem die Proben für 5 min bei 95°C und 500 rpm erhitzt wurden, gefolgt von einer Zentrifugation der Proben. Der DNA-enthaltende Überstand wurde in ein neues Eppendorf-Reaktionsgefäß (1,5 ml) pipettiert und konnte bis zur weiteren Verarbeitung für einen kurzen Zeitraum bei 4°C gelagert werden.

3.2.2 DNA-Amplifikation mittels Polymerasekettenreaktion (PCR)

Die PCR ist eine in vitro Methode, die eine selektive enzymatische Vervielfältigung spezifischer DNA-Sequenzen ermöglicht (Mullis et al., 1987). Hierbei ist der Ablauf der PCR der natürlichen Replikation der DNA sehr ähnlich und wird in einem Thermocylcer durchgeführt. Für die Durchführung müssen die Nukleotidsequenzen der Abschnitte bekannt sein, welche die zu amplifizierende DNA-Sequenz flankieren, damit hierzu entsprechende Oligonukleotidsequenzen (Primer) synthetisiert und eingesetzt werden können. Während der PCR durchläuft die DNA-Probe mehreren PCR-Zyklen (30 Zyklen), die mit Hilfe eines spezifischen Temperaturablaufs jeweils 3 Phasen beinhalten: Denaturierung, Primerhybridisierung und Elongation. Die Denaturierungsphase dient der Spaltung von Wasserstoffbrücken zwischen den DNA-Strängen und resultiert in der Auftrennung der doppelsträngigen DNA. Hierzu wurden die Proben auf 94°C erhitzt. Anschließend erfolgte eine Temperatursenkung auf 57°C (CRP4) bzw. 62°C (ApoE), die jeweils eine Hybridisierung der beiden Primer (siehe 2.2.1) an die flankierenden Sequenzen der einzelsträngig vorliegenden DNA ermöglichte. Dabei lagert sich der Vorwärtsprimer (forward primer, F) an das 3'-Ende des kodierenden DNA-Stranges an und der Rückwärtsprimer (reverse primer, R) hybridisiert an das 3'-Ende des komplementären DNA-Stranges. Eine Rehybridisierung der Einzelstränge wurde dadurch verhindert, dass die Primer im Überschuss zugegeben wurden. Bei einer Temperatur von 72°C erfolgte nun die Elongation durch die DNA-Polymerase (KAPA2G Fast Hot Start DNA Polymerase), welche anhand der verfügbaren dNTPs einen komplementären Strang zum Primer-flankierten DNA-Abschnitt in 5' \rightarrow 3'-Richtung synthetisierte. Die neu synthetisierten DNA-Stränge dienen gleicherweise als Matrize, was zur exponentiellen Amplifikation des spezifischen DNA-Abschnitts führt. Für die Durchführung der PCR wurden 500 µl Eppendorf-PCR-Tubes (siehe 2.2.1) verwendet und die PCRs wurden nach spezifischen Schemata pipettiert (Tabelle 3.1). Dabei wurden jeweils 23,7 µl Mastermix vorgelegt und je 1,3 µl DNA hinzugegeben. In Tabelle 3.2 ist das Thermocylcer-Temperaturprotokoll dargestellt, das zu Beginn eine 3-minütige DNA-Polymerase Aktivierungsphase bei 94°C beinhaltet. Dies ist darin begründet, dass es sich bei der verwendeten Polymerase um eine Hot Start DNA-Polymerase handelt.

Pipettierschema 1 (CRP4)		Pipettierschema 2 (ApoE)		
1,3 µl	DNA	1,3 µl		
12,5 µl	2x KAPA2G Genotyping Mix	12,5 µl		
1 µl	ApoE F (4 μM)	0,5 µl		
1,5 µl	ApoE R1 (4 μM)	1 µl		
1 µl	ApoE R2 (4 μM)	0,5 µl		
7,7 µl	dH ₂ O	9,2 µl		
	1,3 μΙ 12,5 μΙ 1 μΙ 1,5 μΙ 1 μΙ 7,7 μΙ	Pipettierschema 2 (ApoE) 1,3 µl DNA 12,5 µl 2x KAPA2G Genotyping Mix 1 µl ApoE F (4 µM) 1,5 µl ApoE R1 (4 µM) 1 µl ApoE R2 (4 µM) 7,7 µl dH₂O		

Tabelle 3.1: Pipettierschemata zur DNA-Vervielfältigung mittels PCR

	-			
T1	94°C	3 min		
T2	94°C	30 sec		
Т3	57°C	30 sec	30 Zyklen	
T4	72°C	30 sec		
T5	72°C	3 min		
T6	4°C	max. 1 Tag		

PCR-Programm #1 (CRP4)

Tabelle 3.2: Temperaturprotokolle für die Genotypisierung

r GR-i Togranni #2 (ApoL)			
T1	94°C	3 min	
T2	94°C	30 sec	
Т3	62°C	30 sec	30 Zyklen
T4	72°C	30 sec	
T5	72°C	3 min	
T6	4°C	max. 1 Tag	

PCR-Programm #2 (ApoE)

3.2.3 Detektion der PCR-Fragmente mittels Agarose-Gelelektrophorese

Die Detektion der amplifizierten DNA-Fragmente erfolgte im Anschluss an die PCR durch deren Auftrennung mittels der Agarose-Gelelektrophorese in einem elektrischen Feld gemäß der Größe der Fragmente. Infolge der negativen Ladung der Phosphatgruppen des Zucker-Phosphat-Rückgrats der Nukleotid-Einzelbausteine, wandern diese im elektrischen Feld zur Anode. Dabei ist die Geschwindigkeit, mit der die DNA-Fragmente im Agarosegel wandern, aufgrund des elektrischen Widerstands umgekehrt proportional zu ihrer Größe. Während der Auftrennung wird das Gel mit 1x TBE-Puffer (siehe 2.2.1) überschichtet, wodurch die Aufrechterhaltung des pH-Wertes (pH 8,0) und damit der polyionische Zustand der DNA gewährleistet wird. Durch das zusätzliche Auftragen eines Längenstandards (2-Log DNA-Ladder, siehe 2.2.1) kann die Größe der PCR-Fragmente ermittelt werden. Zur Auftrennung der amplifizierten DNA-Fragmente wurden 2%-ige Agarosegele verwendet (siehe 2.2.1). Dazu wurde die Agarose in 1x TBE-Puffer durch Erhitzen in der Mikrowelle gelöst und nachfolgend mit Hilfe eines Magnetrührers auf RT abgekühlt. Das abgekühlte Gel wurde mit 0,1 µg/ml Fluoreszenzfarbstoff (Ethidiumbromid) versetzt und anschließend in die dafür vorgesehene Gelgießkammer (siehe 2.1.1) gegossen, bevor spezielle Kämme zur Generierung der Probentaschen eingesetzt wurden. Bei Ethidiumbromid handelt es sich um einen Fluoreszenzfarbstoff, der in die DNA interkaliert und somit eine Visualisierung der DNA-Fragmente ermöglicht. Im Anschluss an die vollständige Polymerisation des Agarosegels konnten die Geltaschen mit den Proben und dem Längenstandard beladen werden. Die Proben wurden hierzu mit dem 6-fach konzentrierten Ladepuffer (siehe 2.2.1) im Verhältnis 5:1 eingesetzt, dessen hohe Viskosität dafür sorgt, dass die Proben in den Taschen verbleiben und nicht in den Elektrophorese-Puffer diffundieren. Die im Laufpuffer enthaltenen Farbstoffe Xylencyanol (800 bp) und Bromphenolblau (100 bp) wurden dazu verwendet, um die Laufweite der Proben nachvollziehen zu können. Die Auftrennung im elektrischen Feld wurde durch das Anlegen einer Spannung von 80 V für ca. 15 min begonnen. Nachfolgend wurde die Spannung für die restliche Dauer der Elektrophorese (Gesamtdauer ~1 – 2 Stunden) auf 120 V erhöht. Aufgrund des interkalierenden Fluoreszenzfarbstoffs konnten die DNA-Banden mittels eines

UV-Licht basierten Geldetektionsgeräts (siehe 2.1.1) visualisiert werden. Nachfolgend wurde die Größe der PCR-Fragmente anhand des Längenstandards bestimmt und dem jeweiligen Genotyp zugeordnet (Abb. 3.2).

Abbildung 3.2: Genotypisierung und Identifizierung der Versuchstiere

Repräsentative Darstellung der PCR-Ergebnisse von (**A**) heterozygoten CRP4^{+/-} Mäusen, sowie homozygoten CRP4^{-/-} und CRP4^{+/-} Tieren; WT: Wildtyp, 500 bp; KO: *Knockout*, 421 bp. (**B**) PCR-Ergebnisse von heterozygoten ApoE^{+/-} Mäusen und homozygoten ApoE^{-/-} und ApoE^{+/+} Tieren; WT: Wildtyp, 155 bp; KO: *Knockout*, 245 bp; M: DNA-Marker (2-Log DNA-Ladder).

3.3 Isolierung muriner vaskulärer Glattmuskelzellen

3.3.1 Organentnahme und Zellkultur

Zur gezielten molekularbiologischen Analyse der CRP4 Funktion in VSMCs wurden diese aus den Aorten von CRP4 WT und KO Mäusen isoliert und kultiviert. Für die nachfolgenden *in vitro* Experimente wurden sowohl frisch kultivierte (P0) VSMCs, als auch hochpassagierte (P10 – P15) VSMCs verwendet. Dabei wurden für die Isolierung der VSMCs je 4 Aorten aus 6 – 8 Wochen alten Versuchstieren gepoolt. Hierfür wurden diese zunächst mittels Kohlenstoffdioxid (CO₂)-Inhalation in ihren Haltungskäfigen durch langsame Gaseinleitung bei geschlossenem Käfigdeckel euthanasiert. Nach der Feststellung des Todes durch die Prüfung der Zwischenzehenreflexe, wurde der Thorax der Tiere unterhalb des Sternums geöffnet. Die Aorta wurde von dem umliegenden Gewebe frei präpariert und zusammen mit dem Herzen bis kurz oberhalb der Nierenabgänge entnommen. In eiskalter, isotonischer und Phosphatgepufferter Salzlösung (PBS) wurden die Aorten anschließend vom restlichen, anhaftenden Gewebe befreit und in ca. 2 mm lange Stücke geschnitten. Nachfolgend fand der erste enzymatische Verdauungsschritt mit Hilfe von Papain [0,7 mg/ml] statt. Hierzu wurden die Aortenstücke in 250 μ l/Aorta eiskalte Verdaulösung A (siehe 2.2.2) überführt und 60 min bei 37°C im Wasserbad inkubiert. Alle 10 min wurden die Eppendorf-Reaktionsgefäße (2 ml) mit

den Aortenstücken behutsam invertiert, um die enzymatische Verdauung zu beschleunigen. Anschließend wurde für 1 min bei 250 xg zentrifugiert und der enzymatische Überstand abgenommen und verworfen. Nun folgte der zweite Verdauungsschritt mit Hilfe von Hyaluronidase Typ1 [1 mg/ml] und Kollagenase Typ2 [1 mg/ml] in der Verdaulösung B (siehe 2.2.2). Dafür wurden die Aortenstücke unter sterilen Bedingungen in 250 µl/Aorta Verdaulösung B mit einer 1 ml Pipette resuspendiert. Es erfolgte eine erneute Inkubation für 25 min bei 37°C im Wasserbad. Währenddessen wurden die Aortenstücke alle 3 – 4 min mittels einer 1 ml bzw. im weiteren Verlauf der Verdauung mit einer 200 µl Pipette unter sterilen Bedingungen resuspendiert, bis die Aorten vollständig verdaut waren. Der Verdauungsprozess wurde dann durch Zugabe von 10 ml VSMC-Kulturmedium (37°C) (siehe 2.2.2) gestoppt und die Zellen wurden für 7 min bei 300 xg abzentrifugiert. Nach Abnahme des Überstandes konnte das Zellpellet mit 200 µl/Aorta VSMC-Kulturmedium resuspendiert und die Zellen mittels einer 1 ml Pipette vereinzelt werden. Die Analyse der Zellzahl erfolgte mittels einer Neubauer-Zählkammer. Hierzu wurden je 10 µl des Zell-Lysats zur Zellzahlbestimmung in die Kammern pipettiert und jeweils vier Quadranten ausgezählt und gemittelt. Die isolierten VSMCs wurden dann à 150.000 Zellen/Loch auf 6-Loch-Platten ausgebracht und in 3 ml Zellkulturmedium pro Vertiefung bei 37°C und 6% CO₂ im Inkubator kultiviert. Der erste Wechsel des Mediums erfolgte 3 Tage nach der Isolation und danach alle 2 – 3 Tage. Für die Experimente mit P0 VSMCs wurden die Zellen für ca. 7 Tage kultiviert bis diese zu 80% konfluent gewachsen waren. Zur Generierung von hochpassagierten, synthetischen P10 -P15 VSMCs wurden diese 10- bis 15-mal passagiert. Die zahlreichen Passagen bewirken letztlich eine phänotypische Modulation der Zellen. Für den Passagiervorgang wurden die Zellen zunächst 2-mal mit PBS gewaschen und anschließend wurde für 10 min mit 500 µl/Loch 1x Trypsin (siehe 2.2.2) bei 37°C im Inkubator das Ablösen der Zellen induziert. Durch weitere mechanische Behandlung konnte ein nahezu vollständiges Ablösen der Zellen erreicht werden. Diese wurden dann in 10 ml VSMC-Kulturmedium (37°C) aufgenommen, wodurch das Trypsinieren der Zellen gestoppt wurde. Nach einer Zentrifugation bei 1.000 rpm für 10 min konnte das Zellpellet erneut in frischem VSMC-Kulturmedium resuspendiert und in ein nächstgrößeres Zellkulturgefäß überführt werden.

3.3.2 Migrationsmessungen

Für die Durchführung von Migrationsmessungen wurde ein Wundheilungs-Assay mit Hilfe von Migrationsschalen mit einem integrierten 3-Loch-Einsatz von ibidi treat (siehe 2.2.8) verwendet. Nach der VSMC-Isolation wurden jeweils 150.000 Zellen pro Schale in 3 ml VSMC-Kulturmedium ausgebracht und bis zur 80%igen Konfluenz kultiviert. Nachfolgend wurde der 3-Loch-Einsatz entfernt und die Migration der Zellen in die zellfreien Bereiche in einem Intervall
von 24 h beobachtet. Hierzu wurde ein Phasenkontrast-Mikroskop mit einer digitalen Kamera (siehe 2.1.2) verwendet und das Zuwachsen der zellfreien Bereiche wurde mittels der Software AxioVision Rel.4.8 (siehe 2.1.3) quantifiziert. Nach 72 h wurde die Messung beendet. Zu den unterschiedlichen Zeitpunkten wurden jeweils Bilder der exakt gleichen Positionen angefertigt und ausgewertet.

3.3.3 Proliferationsmessungen

Die Messungen der Proliferation von frisch isolierten und P10 – P15 VSMCs wurden mit Hilfe des Impedanz-basierten xCELLigence RTCA DP Analysators (Real Time Cell Analyzer, siehe 2.1.1) durchgeführt. Hierbei handelt es sich um eine Proliferationsmessmethode, bei der das Zellwachstum in Echtzeit analysiert und gemessen werden kann. Die E-Plates® (siehe 2.2.7) sind am Plattenboden mit goldenen Mikroelektroden ausgestattet, über die ein kleiner elektrischer Strom fließen kann. Adhärente Zellen dienen bei der Messmethode als elektrische Isolatoren, welche das Impedanz-Signal, das als dimensionsloser Parameter (Zellindex) gemessen wird, beeinflussen. Während der Messung befindet sich die Messapparatur mit den Sensoren (siehe 2.1.1) in einem Inkubator bei 37°C und 6% CO₂. Zu Beginn jeder Messung wurde jeweils eine basale Hintergrundmessung mit je 100 µl Zellkulturmedium pro Loch für 15 min (1 min Messintervall) durchgeführt. Anschließend wurde die Zellzahl der frisch isolierten oder hochpassagierten Zellen ermittelt und die Zellsuspensionen wurden auf 2x10⁴ Zellen/100 µl (frisch isolierte VSMCs) bzw. 2,5x10³ Zellen/100 µl (P10 – P15 VSMCs) eingestellt. In jedes Loch der E-Plates® wurden jeweils 100 µl des entsprechenden Zell-Lysats pipettiert. Nachfolgend konnte die Messung im Inkubator gestartet werden (15 min Messintervall). Eine Messreihe wurde beendet, sobald der Zellindex ein maximales Plateau erreicht hatte (nach ca. 200 h für frisch isolierte VSMCs und 72 h für hochpassagierte VSMCs). Hierbei wurde pro Kondition und Präparation jeweils eine 4-fach Bestimmung durchgeführt und der jeweilige Mittelwert zur Auswertung herangezogen. Die Analyse und Evaluation der experimentellen Daten wurde mit Hilfe der xCELLigence RTCA-Pro Software (siehe 2.1.3) durchgeführt.

3.3.4 Ratiometrische Visualisierung der intrazellulären Calciumsignale in VSMCs

Zur Untersuchung der [Ca²⁺]_i in VSMCs wurde der membrangängige Fluoreszenzfarbstoff Fura-2 Acetoxymethylester (Fura-2 AM, siehe 2.2.9) verwendet. Der Fluoreszenzfarbstoff kann dank der Veresterung mittels passiver Diffusion über die Zellmembran in die Zellen gelangen und wird im Zytosol durch intrazelluläre Esterasen in die entsprechende hydrophile Fura-2 Form umgewandelt. Dieses kann nun nicht mehr aus der Zelle diffundieren und reichert sich im Zytosol an. Fura-2 bindet Ca²⁺-Ionen reversibel und konzentrationsabhängig, indem es mit freien Ca²⁺-Ionen Chelatkomplexe im Verhältnis 1:1 bildet. Hierbei verschiebt sich die Anregungswellenlänge von 380 nm (ungebunden) nach 340 nm (Ca²⁺ gebunden). Bei der Messung der [Ca²⁺]_i werden nach alternierender Anregung der Zellen bei 340 nm und 380 nm die Emissionsintensitäten bei 510 nm gemessen und das jeweilige (ratiometrische) Verhältnis berechnet (F340/F380) (Moore et al., 1990). Durch die Zunahme von [Ca²⁺]_i nimmt die Fluoreszenzintensität bei 380 nm ab und bei 340 nm zu, wodurch die F340/F380-Ratio ebenfalls zunimmt, was Rückschlüsse auf die Ca²⁺-Signale bzw. konkret den Anstieg von [Ca²⁺]_i zulässt.

3.3.4.1 Fluoreszenz-basierte Calcium-Messapparatur

Die Ca²⁺-Messungen wurden mit P0 VSMCs durchgeführt, die hierfür aus Aorten isoliert (siehe 3.3.1) und 7 – 10 Tage in dafür vorgesehenen Ca²⁺-Messschälchen mit Glasboden (siehe 2.2.9) kultiviert wurden. Pro Ca²⁺-Messschale wurden hierzu 1x10⁵ Zellen/ml in 1 ml Zellkulturmedium ausgebracht. Zudem wurde den Zellen vor den Messungen für 48 h das Serum entzogen. Die Fluoreszenzmessung fand unter Lichtausschluss mit Hilfe eines Fluoreszenzmikroskops (Zeiss Axiovert S100, siehe 2.1.1) mit einem 40x Objektiv statt. An das Mikroskop ist zudem eine Kamera (Spot Inside, siehe 2.1.1) angeschlossen, welche über die Software VisiView (siehe 2.1.3) bedient werden kann. Zusätzlich ist das Mikroskop an eine Xenonlampe (siehe 2.1.1) gekoppelt, über welche Licht mit 340 nm und 380 nm mittels des Shutters erzeugt werden kann. Um während der Messungen einen konstanten Zu- und Ablauf von Tyrode-Lösung (siehe 2.2.9) zu gewährleisten, sowie die Applikation von Substanzen zu ermöglichen, ist die Messapparatur über ein Schlauchsystem mit einem speziell dafür vorgesehenen Plastikring (Messzelle) verbunden, der direkt in das Messschälchen eingesetzt werden kann. Über senkrecht fixierte 50 ml Spritzen, die via 3-Wege-Hähne mit dem Schlauchsystem verbunden sind, können Pufferlösungen (mit Agonisten, cGMP-Modulatoren, usw.) aufgrund ihres hydrostatischen Drucks in die Messschälchen appliziert werden. Der kontinuierliche Abfluss der Lösungen erfolgt über eine Absaugvorrichtung, die an eine Pumpe angeschlossen ist. Für eine erfolgreiche Stimulation der VSMCs, muss die Applikation von Noradrenalin (NA) über eine Kanüle (siehe 2.2.9), die direkt über den zu messenden Zellen platziert wurde, erfolgen. Die Temperatur während der Messung wird ebenfalls über ein Schlauchsystem gewährleistet, das mit 37°C warmem Wasser durchspült wird. Für die Auswertung der Messungen werden die aufgenommenen Bildersequenzen bei 340 nm und 380 nm für jeden Messzeitpunkt mittels der Software ImageJ (siehe 2.1.3) analysiert. Hierzu wird jede Zelle einzeln betrachtet und ausgewertet. Für die graphische Darstellung der Ergebnisse wird die 340/380-Ratio berechnet und gegen die Messzeitpunkte aufgetragen.

Anschließend erfolgt die Bestimmung der Peakhöhe und der *area under the curve* (AUC) des ersten und zweiten Peaks, sowie die Berechnung der Verhältnisse vom zweiten zum ersten Peak.

Abbildung 3.3: Aufbau der Calcium-Messapparatur

Die Ca²⁺-Messapparatur setzt sich aus dem Fluoreszenzmikroskop und einer angeschlossenen Kamera (Spot Inside) zusammen, die über die Software VisiView gesteuert werden kann. Mit Hilfe der Xenonlampe, die an einen Shutter gekoppelt ist, wird abwechselnd Licht mit einer Wellenlänge von 340 nm und 380 nm erzeugt. Die cGMP-Modulatoren und die Pufferlösung werden mittels senkrecht fixierter 50 ml Spritzen über dünne, auf 37°C temperierte Schläuche in die Messzelle geleitet. Die Noradrenalin (NA)-Lösung befindet sich in einer senkrecht fixierten 5 ml Spritze mit 3-Wege-Hahn und wird über eine Kanüle direkt auf die Zellen appliziert. Der Ablauf der Flüssigkeiten wird über einen an eine Absaugpumpe angeschlossenen Ablaufschlauch gewährleistet.

3.3.4.2 Durchführung der Calciummessungen

Zur Durchführung der Ca²⁺-Messungen wurden die Zellen im Abstand von 25 min zweimal mit dem gefäßaktiven Neurohormon NA [2 μ M] stimuliert, um einen Anstieg der [Ca²⁺]_i Signale zu erzeugen. Um den Effekt von pharmakologischen Modulatoren des cGMP-Signalwegs (8-Bromo-cGMP (8-Br-cGMP), Cinaciguat und Diethylamin NONOat (DEA/NO)) zu untersuchen, wurden die Zellen jeweils für 5 min direkt vor der zweiten NA-Stimulation mit den Lösungen der cGMP-Modulatoren inkubiert. Dazu wurden die Substanzen vor der Applikation zunächst auf 37°C erwärmt. Nach dem Serumentzug wurden die Zellen zweimal mit je 1 ml Tyrode-Lösung (siehe 2.2.9) gewaschen. Dann erfolgte unter Lichtausschluss eine 45-minütige Inkubation der Zellen mit 2,5 μ I 1 mM Fura-2 AM Lösung in je 1 ml Tyrode-Lösung. Nach Ablauf der Inkubationszeit wurde die Messschale zusammen mit der Messzelle auf dem Objektiv platziert. Dieses wurde vor Beginn der Messung mit 100%-igem Ethanol gereinigt und mit einem Tropfen Immersol 518F benetzt. Zunächst erfolgte eine 8-minütige Auswaschphase mit der Tyrode-Lösung, um überschüssiges Fura-2 AM zu entfernen. Während dieser Zeit konnte ein geeigneter Zellausschnitt lokalisiert werden, der voneinander isolierte VSMCs mit vitaler Struktur zeigte, und die Kanüle für die NA-Applikation konnte platziert werden. Der Ablauf der Ca²⁺-Messungen ist in Abb. 3.4 graphisch dargestellt. Die eigentliche Messung wurde mit einer 2-minütigen basalen Messung gestartet. Darauf folgte die erste Stimulation der Zellen mit einer 2 μ M NA-Lösung für 5 sec. Zur Regeneration der Zellen und um das NA vollständig auszuwaschen, wurden die Zellen weitere 20 min mit der Tyrode-Lösung perfundiert. Daraufhin wurden die Zellen für 5 min mit einer cGMP-erhöhenden Substanz (siehe 2.2.9) vorstimuliert. Anschließend erfolgte die zweite Stimulation mit 2 μ M NA für 5 sec. Die Messungen wurden nach ca. 30 min beendet, nachdem die Calciumlevel infolge des 2. Peaks wieder das Ausgangsniveau erreicht hatten.

Abbildung 3.4: Durchführung der Calciummessungen

Zeitlicher Ablauf der [Ca²⁺]-Messungen mit zweimaliger Stimulation der VSMCs durch das Neurohormon Nordadrenalin (NA) (blau). Die Vorstimulation (rot) erfolgte mit den cGMP-erhöhenden Substanzen 8-Bromo-cGMP (8-Br-cGMP) [1mM], Cinaciguat [25 nM] und Diethylamin NONOat (DEA/NO) [10 µM]. Dazwischen wurden die Zellen mit Tyrode-Lösung gespült (grau).

3.3.5 ELISA-basierte cGMP-Bestimmung

Die Bestimmung der Konzentration von zyklischem Guanosin-3',5'-monophosphat (cGMP) in hochpassagierten VSMCs von CRP4 WT und KO Mäusen wurde mit einem kommerziell erwerblichen Kitsystem der Firma Cayman Chemical durchgeführt (siehe 2.2.6). Hierbei kann unter Anwendung eines kompetitiven *enzyme-linked immunosorbent assay* (ELISA) die Quantifizierung von cGMP in Zell-Lysaten durchgeführt werden (Abb. 3.5). Der Messbereich des Assay liegt bei 0,23 – 30 pmol/ml und kann mit einer Sensitivität (80% B/B₀) von ca. 1 pmol/ml gemessen werden. Die Methode beruht auf der kompetitiven Bindung von freiem cGMP und einem Acetylcholinesterase (AChE)-gekoppelten cGMP-Konjugat (cGMP-Tracer) an eine limitierte Menge cGMP-spezifischer AKs (Kaninchen AK). Dieser AK bindet wiederum an einen murinen, monoklonalen anti-Kaninchen IgG AK, mit dem die Vertiefungen der ELISA-Platte zuvor beschichtet wurden. Die Menge an cGMP-Tracer wird während des Versuchs konstant gehalten, während die Konzentration an freiem cGMP, in Abhängigkeit der untersuchten Probe, unter verschiedenen Versuchsbedingungen variiert. Die Menge an cGMP-Tracer, die an den cGMP-AK binden kann, ist demnach umgekehrt proportional zur cGMP-Konzentration in dem jeweiligen Versuchsansatz. Im Versuchsverlauf entsteht in den

Vertiefungen der ELISA-Platten durch die enzymatische Spaltung von Acetylcholin zunächst Thiocholin. Die Visualisierung des Thiocholins erfolgt anschließend mit Hilfe des Ellmans-Reagenz, welches das Substrat 5,5'-Dithio-bis-(2-Nitrobenzoesäure) enthält, das mit Thiocholin zu dem farbigen Produkt 5-Thio-2-Nitrobenzoesäure reagiert. Das gelbe Produkt absorbiert stark bei 412 nm, weshalb die Intensität der Farbe mittels photometrischer Messungen detektiert werden kann. Diese verhält sich proportional zur Menge an gebundenem cGMP-Tracer:

Absorption ~ [gebundener cGMP-Tracer] ~ 1/ [freies cGMP]

Abbildung 3.5: Schematische Darstellung der ELISA-Messung

(A) Die Vertiefungen der 96-Lochplatte sind mit murinen, monoklonalen Anti-Kaninchen IgG und einer speziellen Zusammensetzung an blockierenden Proteinen vorbeschichtet. (B) In die Vertiefungen wurde der cGMP-Tracer, das cGMP-ELISA-Antiserum und entweder der Standard oder die Proben mit freiem cGMP pipettiert und über Nacht inkubiert. (C) Nach der Inkubation wurden die ungebundenen Reagenzien mit Hilfe eines Waschpuffers entfernt. (D) Die Entwicklung der Farbreaktion erfolgte durch die Zugabe des Ellmans-Reagenz und 90-minütiger Inkubation im Dunkeln. Die schematische Darstellung wurde auf Grundlage der experimentellen Anleitung des Herstellers (Cayman Chemical) modifiziert.

Das Probenmaterial für den ELISA wurde aus isolierten VSMCs von CRP4 WT und globalen CRP4 KO Mäusen gewonnen, die für 10 – 15 Passagen kultiviert wurden (siehe 3.3.1). Für die Durchführung des Experiments wurden jeweils $2x10^6$ Zellen pro Kondition auf je eine Petrischale ausgebracht und kultiviert bis diese zu 80% konfluent gewachsen waren. Nach 48 h Serumentzug wurden die Zellen in Tyrode-Lösung (siehe 2.2.6) mit dem sGC-Stimulator Cinaciguat [25 nM] oder dem sGC-Aktivator Riociguat [10 µM] mit oder ohne den unspezifischen PDE-Inhibitor IBMX [200 µM] für 10 min stimuliert. Nachfolgend wurde die Lyse der Zellen mit jeweils 400 µl/Petrischale eiskaltem 100%igem Ethanol durchgeführt, gefolgt von einer Zentrifugation des Zell-Lysats bei 13.000 rpm für 5 min. Das Zellpellet wurde zur

Bestimmung der Proteinkonzentration in SDS-Lysepuffer aufgenommen und die Konzentration mittels der Bradford-Methode (siehe 3.5.1) bestimmt. Währenddessen wurde der abgenommene Überstand, welcher das cGMP enthält, zum Abdampfen des Ethanols für mindestens 2 h vakuumzentrifugiert. Das getrocknete, cGMP-haltige Pellet wurde anschließend in 115 µl ELISA-Puffer resuspendiert und bei -20°C gelagert.

Im Anschluss an die Gewinnung des Probenmaterials wurde der ELISA vorbereitet und gemäß den Herstellerangaben durchgeführt. Zur Erstellung einer Standardkurve wurde zunächst der im Kit enthaltene cGMP-Standard in 1 ml ELISA-Puffer diluiert und 100 µl davon mit 900 µl ELISA-Puffer verdünnt (S1 [30 pmol/ml]). In weiteren Verdünnungsschritte (S2 – S8) wurden Lösungen mit absteigenden cGMP-Konzentrationen hergestellt. Hierfür wurden jeweils 500 µl des vorherigen Verdünnungsansatzes entnommen und mit 500 µl ELISA-Puffer verdünnt, sodass die Endkonzentration von S8 bei 0,23 pmol/ml lag. Nachfolgend wurde in die mit IgG-AK überzogene 96-Lochplatte die entsprechenden Substanzen und Lysat-Proben pipettiert (Abb. 3.6). Die Vertiefungen für den Nullabgleich (Blk; Blank) blieben hierbei ungefüllt. Darauf folgten zwei Vertiefungen für die Bestimmung der unspezifischen Bindungen (NSB; nonspecific binding), in die hierzu je 100 µl ELISA-Puffer und 50 µl cGMP-Tracer pipettiert wurden. Drei weitere Vertiefungen dienten der Bestimmung der maximalen Bindung des cGMP-Tracer (B₀) und wurden mit 50 µl ELISA-Puffer, 50 µl cGMP-Tracer, sowie 50 µl cGMP-Antiserum befüllt. Die Verdünnungsreihe (S1 – S8) wurde jeweils als Duplikat pipettiert (50 µl Standard, 50 µl cGMP-Tracer, 50 µl cGMP-Antiserum) während die Proben (1 - 24) als Triplikate in die 96-Lochplatte pipettiert wurden (50 µl Probe, 50 µl cGMP-Tracer, 50 µl cGMP-Antiserum). Es folgte eine Inkubation der Substanzen in der Platte über Nacht, mindestens jedoch für 18 h bei RT unter Anwendung einer Schutzfolie. Nach mindestens 18 h Inkubation wurde die 96-Lochplatte 5-mal mit einem Waschpuffer gespült. Um ein effizientes Waschen zu gewährleisten, wurde die Platte nach jedem Waschschritt auf eine saugfähige Unterlage geklopft. Die Farbentwicklung erfolgte anschließend durch die Zugabe von je 200 µl frisch hergestellten Ellmans-Reagenz. In die Vertiefung für die Bestimmung der totalen Aktivität der AChE (TA) wurde außerdem noch 5 µl des cGMP-Tracer pipettiert. Die Platte wurde nun mit der Schutzfolie versiegelt und 90 min auf einem Schüttler unter Lichtausschluss inkubiert. Anschließend wurde die Absorption jeder Aussparung mittels Photometer (Tecan Sunrise, siehe 2.1.1) bei einer Wellenlänge von 405 nm gemessen. Die Auswertung des cGMP-ELISAs wurde mit Hilfe der Software Magellan 7 (siehe 2.1.3) und einer vorprogrammierten Exceldatei (www.caymanchem.com/analysis/eia) durchgeführt. Hierbei wurden von allen ermittelten Werten der Nullwert (Blk) subtrahiert und nachfolgend durch einen korrigierten B₀-Wert dividiert. Zur Berechnung des korrigierten B₀-Werts wurde von dem ursprünglichen, gemittelten B₀-Wert der NSB-Wert für die unspezifischen Bindungen des cGMP-Tracer subtrahiert. Die berechneten Werte für die Proben konnten nun auf die cGMP-Standardkurve

bezogen und die entsprechenden cGMP-Konzentrationen in pmol ermittelt werden. Diese wurden schlussendlich auf die Proteinmengen der jeweiligen Proben bezogen.

Abbildung 3.6: Pipettierschema der 96-Lochplatte für die ELISA-Messung

Die Abbildung zeigt die Belegung der 96-Lochplatte des cGMP-ELISAs. Blk = Nullabgleich, NSB = unspezifische Bindung des cGMP-Tracer, B_0 = maximale Bindung des cGMP-Tracer, TA = Totale Aktivität der Acetylcholinesterase, S = cGMP-Standard. Weitere Erklärungen im Text. Das Pipettierschema wurde auf Grundlage der experimentellen Anleitung des Herstellers (Cayman Chemical) modifiziert.

3.4 RNA-Analytik

Die Methode der quantitativen Echtzeit-Polymerasekettenreaktion (qRT-PCR) dient zur Bestimmung des mRNA-Gehalts von Geweben und Zellen mit Hilfe von Primern. Die RNA-Analytik wurde mit isolierten P0 VSMCs von CRP4 WT und KO Aorten durchgeführt (siehe 3.3.1). Hierzu wurden die frisch isolierten VSMCs auf 6-Loch Platten in einer Zelldichte von 1,5x10⁵ Zellen/Loch ausgebracht und 7 – 10 Tage kultiviert. Danach erfolgte die RNA-Extraktion und das Umschreiben der RNA in *copy* DNA (cDNA), die zur quantitativen Bestimmung herangezogen wurde. Zur Vermeidung von Kontaminationen der Proben mit RNAsen wurde der Arbeitsplatz vor den jeweiligen Arbeitsschritten mit 80%-igem Ethanol und RNaseZAP[™] (siehe 2.2.4) gereinigt. In den nachfolgenden Arbeitsschritten wurde stets mit RNAse freiem Diethylpyrocarbonat-behandeltem (DEPC) Wasser gearbeitet.

3.4.1 RNA-Extraktion

Die Isolierung der RNA erfolgte mit Hilfe eines kommerziell erwerblichen Kitsystems von Macherey Nagel (*NucleoSpin*® Kit, siehe 2.2.4) und wurde entsprechend der Herstellerangaben durchgeführt. Das Kit stellt eine effiziente, reproduzierbare RNA-Isolationsmethode mit hoher Ausbeute dar, sodass auch die Analyse geringer Mengen an

Probematerial möglich ist. In einem ersten Schritt zur Probennahme wurde zunächst das Zellkulturmedium entfernt und die Zellen einmal mit PBS gewaschen. Dann erfolgte die Zell-Lyse, die mit 350 µl RA1 und 3,5 µl β-Mercaptoethanol pro Isolationsansatz durchgeführt wurde. Hierzu wurde der Zell-Lyse-Mix mit einer Pipette auf die Zellen gegeben und mehrfach mit dieser resuspendiert, bis die Zellen vollständig abgelöst waren. Durch die enorme Menge an chaotropen Salzen in RA1 werden vorhandene RNAsen inaktiviert und eine spätere Adsorption der RNA an eine Silikamembran wird begünstigt. Das gewonnene Lysat wird anschließend auf einen NucleoSpin® Filter (violetter Ring) gegeben und 1 min bei 11.000 xg zur Filtration zentrifugiert. Der Filter wurde abgenommen, das filtrierte Lysat mit 350 µl 70% Ethanol versetzt und 5-mal mit einer Pipette resuspendiert, um die Bindungseigenschaften der RNA zu optimieren. Im Anschluss wurde das Lysat-Ethanol-Gemisch auf die NucleoSpin® RNA-Säule (blauer Ring) pipettiert und 30 sec bei 11.000 xg zentrifugiert. Hierbei bindet die RNA an die Silikamembran der Säulen, sodass der Durchlauf verworfen werden kann. Zur Entsalzung der Silikamembran wurde nachfolgend 350 µl membrane desalting buffer (MDB) auf die Säule gegeben und erneut 1 min bei 11.000 xg zentrifugiert. Daraufhin wurde der DNAse-Verdau mit 100 µl eines rDNAse-Reaktionsgemisches (90 µl rDNAse-Reaktionspuffer + 10 µl rekonstituierte DNAse), das auf die Säule gegeben wurde, durchgeführt. Nach 15 min Inkubation bei RT wurde der DNAse-Verdau mit 200 µl RAW2-Puffer abgestoppt und die Säule für 30 sec bei 11.000 xg zentrifugiert. Darauf folgten zwei Waschschritte mit 600 µl und 200 µl RA3-Puffer bei RT, um Salze, Metabolite und makromolekulare Zellbestandteile zu entfernen. Auf den ersten Waschschritt folgte eine Zentrifugation bei 11.000 xg für 30 sec und nach dem zweiten Waschschritt wurde bei 11.000 xg für 2 min zentrifugiert. Anschließend wurde die gereinigte RNA durch die Applikation von 40 µl RNAse-freiem DEPC-H₂O von der Membran eluiert, indem 1 min bei 11.000 xg und RT zentrifugiert wurde. Das Eluat wurde auf Eis gelagert und die entsprechenden RNA-Konzentrationen am Nanophotometer (siehe 2.1.2) bestimmt. Mit DEPC-H₂O wurde eine Konzentration von 0,1 μ g/ μ l eingestellt.

3.4.2 cDNA-Synthese

Für die cDNA-Synthese wurde das *iScript cDNA Synthesis* Kit von Bio-Rad (siehe 2.2.4) verwendet und die Durchführung erfolgte entsprechend der Herstellerangaben. Durch die Anwendung einer Reversen Transkriptase (RT) kann mittels RT-PCR aus der isolierten, gereinigten RNA die cDNA synthetisiert werden. Hierzu wurden 5 μ l RNA [0,1 μ g/ μ l] mit 4 μ l 5x *iScript* Mix, 1 μ l RT und 10 μ l DEPC-H₂O in ein PCR-Tube pipettiert. Zur Erzeugung einer Negativkontrolle (-RT-cDNA) wurde für jede Probe zusätzlich ein Versuchsansatz mit 5 μ l RNA [0,1 μ g/ μ l], 4 μ l 5x *iScript* Mix und 11 μ l DEPC-H₂O ohne RT hergestellt. Die reverse Transkription der Proben erfolgte anschließend in einem Thermocycler anhand eines

spezifischen Temperaturprotokolls (Tabelle 3.3). Zunächst fand die Anlagerung der im Kit enthaltenen Primer (Oligo-dT-Nukleotide und Random-Hexamer-Oligonukleotide) an die RNA bei 25°C für 5 min statt. Dabei synthetisiert die RT durch ihre RNA-abhängige DNA-Polymeraseaktivität einen zum RNA-Strang komplementären DNA-Hybridstrang. Darauf folgte die reverse Transkription bei 42°C für 30 min, wobei der Abbau des RNA-Strangs durch die RNAse-H⁺-Aktivität der RT bewerkstelligt wird. Zudem wird mittels der RT (DNA-abhängige DNA-Polymeraseaktivität) ein komplementärer DNA-Strang zu dem Einzelstrang synthetisiert. Zur Inaktivierung der RT wurde anschließend für 5 min auf 85°C erhitzt und daraufhin auf 4°C abgekühlt. Die umgeschriebenen cDNA-Proben wurden im Anschluss an die Synthese mit jeweils 180 µl DEPC-H₂O diluiert und bei -20°C zur Lagerung eingefroren.

Tabelle 3.3: Temperaturprotokoll für die cDNA-Synthese

_		
Primeranlagerung	25°C	5 min
Reverse Transkription	42°C	30 min
Inaktivierung der RT	85°C	5 min
Kühlen	4°C	

PCR-Programm

3.4.3 RNA-Analytik mittels qRT-PCR

Die qRT-PCR dient der Amplifikation von DNA-Fragmenten und der zeitgleichen Quantifizierung der entstandenen PCR-Produkte durch eine fluoreszenzbasierte Detektion. Die gemessene Fluoreszenz nimmt dabei proportional zu der Menge an gebildeten PCR-Produkten zu und kann deshalb für die Quantifizierung herangezogen werden (Higuchi et al., 1992; Higuchi et al., 1993; Wittwer et al., 1997). Zur Durchführung der gRT-PCR müssen zunächst die entsprechenden Primer (siehe 2.2.4) generiert und synthetisiert werden. Hierzu wurde die Software Primer 3 und Primer-BLAST (siehe 2.1.3) verwendet und folgende Bedingungen für die Generierung der Primer festgelegt: Primerlänge < 23 bp, Schmelztemperatur 58°C – 64°C und eine Fragmentgröße von 70 bp – 120 bp. Die entsprechend entworfenen Primer wurden von Eurofins bezogen (siehe 2.2.4). Für die PCR wurde zunächst für jedes Primerpaar ein Mastermix hergestellt, der aus dem SsoAdvanced Universal SYBR[®]Green Supermix (siehe 2.2.4), dem Vorwärtsprimer [2 µM] und dem Rückwärtsprimer [2 µM] bestand. Der Supermix beinhaltet einen Fluoreszenzfarbstoff (SYBR[®]Green), eine Polymerase, dNTPs, MgCl₂, spezielle Puffersysteme und Stabilisatoren, sowie die passiven Referenzfarbstoffe ROX und Fluoreszein. Die PCR wurde in einer 96-Lochplatte durchgeführt, in die zunächst 13,5 µl des Mastermix pro Vertiefung vorgelegt wurden. Anschließend wurde je 1,5 µl cDNA pro Vertiefung dazu pipettiert, wobei jede Probe mindestens als Duplikat aufgetragen wurde. Lediglich bei den -RT-cDNA-Proben wurde auf technische Replikate

verzichtet. Die gRT-PCR wurde in einem Thermocylcer (CFX Connect, siehe 2.1.2) mit definiertem Temperaturprotokoll durchgeführt (Tabelle 3.4). Zur initialen Denaturierung und somit zur Aktivierung der Polymerase wurde die Probe zunächst für 1 min auf 98°C erhitzt. Die Aktivierung der DNA-Polymerase basiert darauf, dass die AKs, die an das aktive Zentrum der Polymerase gebunden sind, denaturiert werden. Darauf erfolgte die eigentliche gRT-PCR, angefangen mit einer Denaturierungsphase bei 98°C für 5 sec, bei der die Wasserstoffbrücken zwischen den DNA-Helices aufgebrochen wurden. Anschließend wurde die Temperatur für 15 sec auf 58°C gesenkt, damit die Primeranlagerung stattfinden konnte. Die neu generierten DNA-Stränge wurden dann durch freie Nukleotide bei einer Temperatur von 72°C für 30 sec vervollständigt (Elongationsphase). Da der Fluoreszenzfarbstoff mit hoher Affinität an die DNA-Doppelstränge bindet, kommt es zu einer 1000x Zunahme des Fluoreszenzsignals. Die Zunahme des gRT-Produkts nach jedem Amplifikationszyklus erfolgt exponentiell und kann durch die Detektion des Fluoreszenzsignals in Echtzeit erfasst werden. Anschließend wurde eine Schmelzkurve durch eine kontinuierliche Temperaturerhöhung von 58°C – 95°C (in 0,5°C Schritten) erstellt, um ein Interkalieren des Fluoreszenzfarbstoffes mit unspezifischen DNA-Fragmenten zu analysieren. Zur quantitativen Auswertung der gRT-PCR wurde die Fluoreszenzintensität gegen die Zyklenzahl aufgetragen und der sigmoidale Kurvenverlauf analysiert. Die Quantifizierung erfolgte durch die Bestimmung der Ct-Werte. Der Ct-Wert (cycle threshold. Schwellenwertzyklus) bezeichnet den Schnittpunkt zwischen einer Amplifikationskurve und einer Schwellenwertlinie und stellt ein relatives Maß für die Zielgenkonzentration in der PCR-Reaktion dar. Es werden Ct-Werte für das Zielgen und für ein Referenzgen, welches in seiner Expression unabhängig von genetischen und äußeren Einflüssen ist, bestimmt. Die mRNA-Menge wurde stets in Bezug auf die Referenz berechnet und als relative mRNA-Expression angegeben. Als Referenzgen wurde die Hypoxanthinphosphoribosyl-transferase 2 (HPRT2) verwendet. Da angenommen wird, dass in jedem berechnet:

$\Delta Ct = 2^{(Ct (Referenz) - Ct (Zielsequenz))}$

Nach der Beendigung der qRT-PCR konnte ein Teil der Proben auf ein 3%iges Agarosegel aufgetragen werden und anhand der gebildeten Fragmente Kontaminationen durch genomische DNA ausgeschlossen, sowie die Spezifität der Primer verifiziert werden.

Tabelle 3.4: Temperaturprotokoll für die qRT-PCR

qRT-PCR-Programm

Initiale Denaturierung	98°C	1 min
Denaturierung	98°C	5 sec
Primeranlagerung	58°C	15 sec
Elongation	72°C	30 sec
Fluoreszenzmessung		
\rightarrow 40 Zyklen		
Erstellung der Schmelz-	58°C- 95°C	je 1 sec
kurve in 0,5°C Schritten		
Kühlung	4°C	max. 1 Tag

3.5 Proteinbiochemische Analysen

Für die proteinbiochemische Analyse wurden ganze Aorten, sowie isolierte und kultivierte VSMCs (P0 und P10 - 15) verwendet. Zur Generierung ganzer Aortenlysate wurden Aorten aus CRP4 WT und KO Mäusen von der Aortenwurzel bis auf Höhe des Diaphragmas entnommen. Bei den CRP4 WT und KO Versuchstieren mit ApoE KO Hintergrund im Rahmen des Atherosklerose-Modells wurden die Aorten von der Aortenwurzel bis zu iliakalen Bifurkation entnommen und für die Analyse herangezogen. Alle isolierten und kultivierten VSMCs (siehe 3.3.1) stammten aus CRP4 WT und KO Mäusen. Den P0 Zellen wurden zur Untersuchung des NO/cGMP/cGKI-Signalwegs vor der Proteinextraktion für 48 h Serum entzogen und eine 30-minütige Stimulation mit 8-Br-cGMP [1mM] durchgeführt. Die P10 - P15 VSMCs wurden für 10 – 15 Passagen kultiviert. Vor der Proteinextraktion wurde den Zellen ebenfalls für 48 h Serum entzogen, um eine Zellsynchronisation zu erzielen.

Nach der Proteinextraktion erfolgte die quantitative Bestimmung der Proteinmenge nach Bradford und anschließend wurden die Proteine mit Hilfe einer Natriumdodecylsulfat-Polyacrylamid-Gelelektrophorese (SDS-PAGE) der Größe nach aufgetrennt. Darauf folgte der Transfer der Proteine via Western Blot (WB) auf eine Membran und die AK-basierte Visualisierung der Proteinbanden.

3.5.1 Proteinextraktion

3.5.1.1 Aortenlysate

Nach der Aortenentnahme wurden je zwei Aorten pro Genotyp gepoolt, um genügend Proteinmenge zur proteinbiochemischen Analyse zu erhalten. Diese wurden mit je 400 µl SDS-Lysepuffer (siehe 2.2.5) versetzt und mittels eines Hand-Dispergiergeräts (siehe 2.1.2) auf höchster Stufe aufgeschlossen. Die Proteinlysate wurden anschließend bei 95°C für 10 min erhitzt und nach kurzem Vortexen bei 4°C für 5 min bei 13.000 rpm zentrifugiert, um Gewebetrümmer abzutrennen. Der Überstand wurde in ein frisches Eppendorf-Reaktionsgefäß überführt und die Proteinmenge nach Bradford quantitativ bestimmt (siehe 3.5.3).

3.5.1.2 Lysate kultivierter VSMCs (P0 und P10 - 15)

Zu Beginn der Proteinextraktion wurde das Zellkulturmedium abgenommen und die kultivierten VSMCs 2-mal mit PBS gewaschen. Die Zell-Lyse erfolgte mit Hilfe des SDS-Lysepuffers (siehe nach dem Waschvorgang direkt auf die Zellen 2.2.5), der gegeben wurde (400 µl/Versuchsansatz). Für die Analyse der Phosphorylierungsstellen, wurde ein modifizierter Lysepuffer mit den Phosphatase-Inhibitor-Cocktails (PI II, PI III) verwendet. Der Lysepuffer wurde mehrfach auf und abpipettiert und mit Hilfe eines Zellschabers (siehe 2.2.5) wurden die Zellen vollständig von der Oberfläche der Zellkulturgefäße gelöst. Nachfolgend wurden die Zell-Lysate für 10 min bei 95°C gekocht und nach kurzem Vortexen für 5 min bei 13.000 rpm und 4°C zentrifugiert, um Zelltrümmer abzutrennen. Der Überstand wurde dann mit Hilfe eines VivaSpin 500 Zentrifugalkonzentrators (siehe 2.2.5) auf ein Volumen von ca. 75 µl eingeengt (13.000 rpm, 4°C, ~40 min) und somit aufkonzentriert. Das aufkonzentrierte Zell-Lysat wurde anschließend in ein neues Eppendorf-Reaktionsgefäß pipettiert und die Proteinmenge nach Bradford bestimmt (siehe 3.5.3).

3.5.1.3 Subzelluläre Proteom-Analyse

Die subzelluläre Proteom-Analyse von P0 VSMCs erfolgte anhand eines kommerziell erwerblichen Kits (ProteoExtract® Subcellular Proteome (S-PEK), siehe 2.2.5), mit dessen Hilfe eine schnelle und reproduzierbare Extraktion des subzellulären Proteoms adhärenter Zellen möglich ist. Hierbei wird die unterschiedliche Löslichkeit der definierten subzellulären Kompartimente in 4 ausgewählten Reagenzien genutzt, um die einzelnen Kompartimente voneinander zu trennen. Die Zellen bleiben während der sequenziellen Extraktion so lange auf der Oberfläche der Zellkulturplatten haften, bis das geeignete Extraktionsreagenz der einzelnen Kompartimente zum Einsatz kommt. Somit erhält man am Ende der sequentiellen Extraktion vier getrennte Fraktionen aus jeder Probe: Zytosolische Fraktion (F1), Proteinfraktion mit Membranen und Organellen (F2), Zellkernfraktion (F3) und Zytoskelett-Fraktion (F4). Für die subzelluläre Proteom-Analyse wurden isolierte VSMCs von CRP4 WT und KO Mäusen auf 6-Loch Platten kultiviert und nach Erreichen einer ca. 80%igen Konfluenz wurde den Zellen für 48 h Serum entzogen. In den letzten 24 h des Serumentzugs wurde pro Genotyp die Hälfte der Zellen mit 8-Br-cGMP [1 mM] stimuliert, während die anderen Zellen unter basalen Bedingungen untersucht wurden. Nach dem Serumentzug wurde das Zellkulturmedium vorsichtig abgenommen, ohne hierbei die Zellschicht zu beschädigen, und die Zellen wurden mit jeweils 800 µl Waschpuffer 2-mal für 5 min bei 4°C unter leichtem Schütteln gewaschen. Nach dem letzten Waschschritt wurde der Waschpuffer wieder abgenommen. Anschließend wurden die Zellen mit 400 µl eiskaltem Extraktionspuffer I, der 2 µl des Protease-Inhibitor-Cocktails enthielt, bedeckt und 10 min bei 4°C unter leichtem Schütteln inkubiert. Der Extraktionspuffer I mit der darin gelösten Zellfraktion (F1) wurde erneut abgenommen und bis zur weiteren Verwendung auf Eis gelagert. Zur Separierung der zweiten Fraktion wurden die Zellen mit 400 µl eiskaltem Extraktionspuffer II, dem ebenfalls 2 µl des Protease-Inhibitor-Cocktails zugesetzt wurden, für 30 min bei 4°C unter leichtem Schütteln inkubiert. Anschließend wurde der Überstand mit F2 wieder vollständig abgenommen und auf Eis gelagert. Für die weitere Extraktion wurden 200 µl eiskalter Extraktionspuffer III mit 2 µl Protease-Inhibitor-Cocktail und 0,5 µl Benzoase® Nuclease gemischt und direkt auf die Zellen pipettiert. Nach 10 min Inkubation bei 4°C unter leichtem Schütteln wurde der Überstand (F3) abgenommen und auf Eis gelagert. Die restlichen Zellbestandteile, die dem Zytoskelett angehören, wurden in 200 µl Extraktionspuffer IV mit 2 µl Protease-Inhibitor-Cocktail gelöst und auf Eis gelagert. Anschließend wurden die Proteinkonzentrationen der jeweiligen Fraktionen mit der Bradford-Methode bestimmt (siehe 3.5.3) und die Proben für die weitere proteinchemische Analyse vorbereitet.

3.5.1.4 Proteom-Analyse in VSMCs via LC-MS/MS

Die Proteom-Analyse zur Untersuchung der CRP4-abhängigen Proteinregulation im synthetischen VSMC-Phänotyp wurde mit hochpassagierten (P10 - P15) VSMCs aus CRP4 WT und KO Mäusen durchgeführt. Dabei wurde das Proteom via Flüssigchromatographie mit Massenspektrometrie-Kopplung (LC-MS/MS) analysiert. Hierzu wurden die Zellen in Petrischalen kultiviert und es wurde für 48 h Serum entzogen. Anschließend wurde das Zellkulturmedium abgenommen und die VSMCs wurden 2-mal mit PBS gewaschen. Die Zell-Lyse erfolgte mit dem IP-Lysepuffer (siehe 2.2.5), der auch für die Co-Immunpräzipitation (Co-IP) verwendet wurde. Mit Hilfe eines Zellschabers wurde das komplette Zell-Lysat entnommen und 5 min bei 13.000 rpm und 4°C zentrifugiert, um Zelltrümmer zu entfernen. Der Überstand wurde in ein frisches Eppendorf-Reaktionsgefäß überführt und bei -80°C gelagert. Die nachfolgende LC-MS/MS-Analyse wurde im Proteom Forschungszentrum für Augenheilkunde des Universitätsklinikums Tübingen in der Arbeitsgruppe von Dr. Karsten Boldt durchgeführt (Boldt et al., 2011).

3.5.2 Co-Immunpräzipitation

Bei der Co-IP handelt es sich um eine biochemische Methode zur Identifizierung physiologisch relevanter Protein-Protein-Interaktionen. Mittels für das Zielprotein spezifischer AKs kann das zu untersuchende Protein mitsamt seiner gebundenen Interaktionspartner angereichert und präzipitiert werden. Diese Methode ermöglicht die Analyse und Identifikation neuer Bindungspartner für CRP4. Hierzu wurden CRP4-gekoppelte IP-Agarose-Beads verwendet, die im Pull-down-Verfahren zur Anreicherung von CRP4 und seinen Interaktionspartnern dienten. Diese konnten anschließend mittels LC-MS/MS analysiert werden (Abb. 3.7). Für jeden Co-IP Ansatz wurde je eine CRP4 WT und eine CRP4 KO Probe gleichzeitig generiert. Zur Identifikation von CRP4-Interaktionspartnern in VSMCs unter basalen Bedingungen und in Abhängigkeit von cGMP, wurden isolierte, kultivierte VSMCs der Passagen 10 - 15 zunächst für 48 h unter Serumentzug gestellt. Für die cGMP-abhängige Analyse von CRP4-Interaktionspartnern, wurden die Zellen in den letzten 24 h des Serumentzugs zusätzlich mit 8-Br-cGMP [1mM] stimuliert. Anschließend wurde das Zellkulturmedium abpipettiert und die VSMCs wurden 2-mal mit PBS gewaschen. Die VSMCs wurden mit jeweils 400 µl IP-Lysepuffer lysiert und mit einem Zellschaber vollständig aus der Petrischale in ein Eppendorf-Reaktionsgefäß überführt. Zur Abtrennung von Zelltrümmern wurden die Proben für 2 min bei 10.000 rpm und 4°C zentrifugiert und der Überstand zur Aufkonzentrierung in VivaSpin 500 Säulen (siehe 2.2.5) überführt. Die Proben wurde bei 13.000 rpm in der Kühlzentrifuge (4°C) auf ein Volumen von ca. 75 µl eingeengt. In der Zwischenzeit wurden die TrueBlot IP-Beads (TBB) (200 – 220 µl) zunächst in einem 15 ml Falcontube mit 3 ml PBS gewaschen und bei 3.000 rpm für 2 min zentrifugiert. Dieser Waschvorgang wurde erneut durchgeführt und die TBBs wurden anschließend in 3 ml IP-Lysepuffer (siehe 2.2.5) resuspendiert. Um den CRP4-AK an die Beads zu koppeln, wurden zur Hälfte der TBBs (1,5 ml) 10 µl CRP4-Antiserum in ein Eppendorf-Reaktionsgefäß pipettiert und für 1 h auf einem Reagenzglas-Rotator bei 4°C inkubiert. Die andere Hälfte der TBBs dienten der Generierung der "Wasch-Beads" und wurden für 2 min bei 10.000 rpm und 4°C zentrifugiert und nach Verwerfen des Überstands in 300 µl Lysepuffer resuspendiert. 50 µl der aufkonzentrierten Proteinlysate wurden nun mit je 150 µl Lösung, welche die Wasch-Beads enthielt, vermengt und 45 min auf dem Reagenzglas-Rotator bei 4°C inkubiert. Das restliche Probelysat (~25 µl) wurde mit 25 µl SDS-Ladepuffer (siehe 2.2.5) versetzt und 10 min bei 95°C gekocht. Danach wurden die Lysate, zur Analyse der gesamten VSMC-Proteine, in flüssigem Stickstoff eingefroren und bei -80°C aufbewahrt. Darauf folgte die weitere Aufbereitung der CRP4-AK-gekoppelten IP-Beads (AK-IP-Beads). Diese wurden 3-mal mit je 500 µl IP-Waschpuffer für 2 min bei 10.000 rpm und 4°C zentrifugiert. Auf den letzten Waschschritt folgte die Resuspendierung der AK-IP-Beads in 300 µl IP-Waschpuffer und die anschließende Lagerung auf Eis. Nun wurden die Wasch-Beads durch Zentrifugieren (5 min, 10.000 rpm, 4°C) von den Lysaten getrennt. Der Überstand

mit den Proteinlysaten wurde in ein frisches 1,5 ml Eppendorf-Reaktionsgefäß pipettiert und mit je 150 µl der AK-IP-Beads versetzt. Diese wurden über Nacht (für mind. 16 h) bei 4°C auf dem Reagenzglas-Rotator inkubiert. Die sedimentierten Wasch-Beads wurden ebenfalls 3-mal mit je 500 µl IP-Waschpuffer für 2 min bei 10.000 rpm und 4°C gewaschen und nach dem Verwerfen des Überstands wurden diese mit 50 µl SDS-Ladepuffer für 10 min bei 95°C gekocht. Die Wasch-Beads fungieren als Kontrolle, um unspezifische Bindungen der TBBs ausschließen zu können.

Abbildung 3.7: Schematischer Ablauf der Co-Immunpräzipitation

Zur Identifizierung basaler und cGMP-abhängiger CRP4-Interaktionspartner in synthetischen VSMCs wurde eine Co-IP durchgeführt. (A) Das Proteinlysat für die Durchführung des Experiments wurde aus hochpassagierten (P10 - 15) VSMCs mittels IP-Lysepuffer gewonnen. (B) Die VSMC-Proteine wurden anschließend über Nacht mit den CRP4-AK-gekoppelten Agarose-Beads inkubiert und am darauffolgenden Tag wurden die ungebundenen Proteine durch Waschschritte abgetrennt. Anschließend wurden CRP4 und seine interagierenden Proteine mit Hilfe von Glycin eluiert und für die LC-MS/MS-Analyse herangezogen. Diese wurde im Proteom-Forschungszentrum für Augenheilkunde am Universitätsklinikum Tübingen (Arbeitsgruppe Dr. Karsten Boldt) durchgeführt.

Am darauffolgenden Tag wurden die AK-IP-Beads mit den gebundenen Proteinkomplexen 5 min bei 10.000 rpm (4°C) zentrifugiert. Anschließend wurden 50 µl des AK-IP-Überstands mit 50 µl SDS-Ladepuffer versetzt und 10 min bei 95°C gekocht und eingefroren (-80°C). Der restliche Überstand wurde verworfen und die sedimentierten AK-IP-Beads wurden 3-mal mit je 500 µl IP-Waschpuffer für 2 min bei 10.000 rpm und 4°C gewaschen. Die Präzipitate für die WB-Analyse wurden nun mit 50 µl SDS-Ladepuffer resuspendiert und 10 min bei 95°C gekocht. Dadurch werden die Protein-Protein-Interaktionen gelöst, sodass CRP4 und direkte / indirekte Interaktionspartner unabhängig voneinander analysierbar sind (Texier et al.,

2014). IP-Lysate, die für die LC-MS/MS-Analyse vorgesehen waren, wurden nach dem letzten Waschschritt eluiert. Hierzu wurden die AK-IP-Beads mit den gebundenen Proteinkomplexen mit 150 µl eiskaltem Glycinpuffer [0,2 M] für 10 min bei 4°C unter leichtem Schütteln inkubiert. Die Probe wurde für 1 min zentrifugiert und der Überstand mit den Proteinkomplexen wurde in ein neues Eppendorf-Reaktionsgefäß pipettiert. Bis zur weiteren LC-MS/MS-Analyse im Proteom-Forschungszentrum für Augenheilkunde des Universitätsklinikums Tübingen (Arbeitsgruppe von Dr. Karsten Boldt) (Boldt et al., 2011) wurden die Proben bei -80°C aufbewahrt.

3.5.3 Quantitative Proteinbestimmung nach Bradford

Die quantitative Bestimmung der Proteinmenge erfolgte nach der Bradford-Methode (Bradford, 1976). Hierbei handelt es sich um eine photometrische Methode zur Proteinquantifizierung. Diese beruht auf hydrophoben und ionischen Wechselwirkungen zwischen dem Triphenylmethanfarbstoff Coomassie-Brilliant-Blau G-250 und den kationischen, unpolaren Seitengruppen der Proteine im sauren Milieu. Der ungebundene, braunrote Farbstoff liegt zunächst in seiner kationischen Form vor und besitzt sein Absorptionsmaximum bei 470 nm. Im sauren Milieu kommt es zu einer Verschiebung des Absorptionsmaximums auf 595 nm durch die Entstehung des Farbstoff-Protein-Komplexes, da der Farbstoff dadurch in seine blaue, anionische Sulfatform übergeht. Die Absorptionsverschiebung wird photometrisch gemessen und stellt ein Maß für die Proteinkonzentration der Lösung dar, die auf eine Kalibriergerade, die anhand eines Standardproteins (bovines Serumalbumin (BSA)) erstellt wurde, bezogen werden kann. Zusätzlich zu den Proben mit den Proteinlysaten wurde pro Messung jeweils eine Kontrolle, die lediglich das ungebundene Farbreagenz ohne Proteine enthält, vermessen. Die Bestimmung der Proteinmenge erfolgte in speziellen Plastik-Einwegküvetten (siehe 2.2.5), in die 95 μ l dH₂O vorgelegt und 5 μ l Proteinlösung bzw. Lysepuffer (Kontrolle) zugegeben wurden. Anschließend wurde jeweils 1 ml Bradford-Lösung (siehe 2.2.5) dazu pipettiert und für 5 min unter Lichtausschluss inkubiert. Die Probelösungen wurden jeweils 3-mal vermessen und der Mittelwert der Einzelmessungen zur Proteinkonzentrationsberechnung herangezogen. Die einzelnen Proben wurden anschließend mit dH₂O und Probenpuffer (4x Laemmli mit Dithiothreitol (DTT), siehe 2.2.5) auf die gleiche Konzentration [4 µg/µl] eingestellt. Der in Laemmli enthaltene Farbstoff Bromphenolblau dient der Lauffrontmarkierung im Acrylamidgel, während DTT durch seine Fähigkeit Disulfidbrücken zu reduzieren zur Denaturierung benötigt wird. Das im Probenpuffer enthaltene SDS liegt im Überschuss vor und dient der Denaturierung, sowie der Maskierung der Eigenladung der Proteine. Dies führt dazu, dass alle Proteine eine konstante negative Ladung erhalten, die proportional zu ihrer Masse ist. Zusätzlich enthält der Probenpuffer Glycerin, das durch die Erhöhung der Probendichte für das Absinken der Proben in die Geltaschen benötigt wird. Die Denaturierung der Proteinlysate wurde für 10 min bei 95°C durchgeführt. Daraufhin wurden die Proben direkt für die gelelektrophoretische Auftrennung verwendet oder alternativ bis zur Weiterverarbeitung bei -80°C gelagert.

3.5.4 SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)

Die SDS-PAGE stellt eine gängige Methode zur Auftrennung von Proteinen dar. Diese werden hierbei gemäß ihrer molekularen Masse in einem elektrischen Feld getrennt (Laemmli, 1970). Zur Trennung der Proteine wird ein diskontinuierliches Gel auf Polyacrylamid-Basis verwendet. Die negativ geladenen Proteine wandern im Gel zur Anode und legen dabei eine spezifische Laufstrecke zurück, die umgekehrt proportional zum Logarithmus der Molekülmasse ist. Durch Molekularsiebeffekt der Polyacrylamid-Matrix ist somit eine elektrophoretische den Auftrennung der Proteine möglich. Während das Sammelgel der Konzentrierung der Proteine dient, damit diese während der Elektrophorese zeitgleich in das Trenngel übergehen, fungiert das Trenngel als Trennmedium. Die beiden Gele haben eine unterschiedliche Porengröße, sowie unterschiedliche pH-Werte (Sammelgel: neutraler pH, Trenngel: basischer pH). Die Polyacrylamidgele entstehen durch eine radikalische Polymerisation von Acrylamid und Bisacrylamid, wodurch das Polyacrylamid quervernetzt wird. Die Porengröße wird hierbei durch den Gesamt-Acrylamid/Bisacrylamid-Anteil definiert und orientiert sich an der Größe der aufzutrennenden Zielproteine. Hochprozentige, dichte Gele (z.B. 17,5%) werden für kleine Zielproteine eingesetzt, während für größere Proteine eine Polyacrylamid-Konzentration von 10% verwendet wird. Zum Start der radikalischen Polymerisation wird Ammoniumperoxodisulfat (APS) verwendet, das ein starker Radikalbildner darstellt. Zusätzlich wird Tetramethylethylendiamin (TEMED) als Katalysator eingesetzt. Das Gießen der Gele fand in einer speziellen Gelgieß-Apparatur statt, wobei zunächst das Trenngel und nach dessen Polymerisation das Sammelgel in einen kleinen Spalt zwischen zwei Glasplatten gegossen wurde. Dabei wurde darauf geachtet, dass das Trenngel immer die gleiche Füllhöhe (ca. 75%) aufwies. Während der Polymerisation wurde das Trenngel mit 100% Isopropanol überschichtet, um eine glatte Oberfläche zu generieren und eine Blasenbildung zu vermeiden. Nach dem vollständigen Auspolymerisieren des Trenngels (ca. 1 h) wurde die Isopropanol-Schicht wieder abgenommen und das Sammelgel auf das Trenngel gegossen. In das Sammelgel wurde nun zur Geltaschenbildung ein Probenkamm eingeschoben, der nach der Polymerisation (ca. 1 h) wieder entfernt werden konnte. Die frisch gegossenen Gele wurden, nachdem sie vollständig auspolymerisiert waren, mitsamt der Glasplatten in das innere Modul der Elektrophorese-Kammer eingespannt und die Geltaschen wurden mit VE-Wasser aufgefüllt. Das innere Modul wurde anschließend in die Elektrophorese-Kammer eingesetzt und vollständig mit Elektrophorese-Puffer (1x Elphor-Puffer; siehe 2.2.5) befüllt. Nachdem die Geltaschen mit Hilfe einer Hamilton-Spritze mit den Proben (15 µl) und dem Proteinmarker (3 µl) beladen wurden, konnte auch die äußere Kammer vollständig mit Elektrophorese-Puffer befüllt werden. Der Proteinmarker enthält eingefärbte Proteinfragmente definierter Größen (10 - 170 kDa) und dient dazu, den Grad der Auftrennung visuell beobachten zu können. Die Elektrophorese wurde mit einer Spannung von 80 V gestartet und nach dem Übergang der Proben aus dem Sammelgel ins Trenngel (ca. 15 min) wurde die Spannung auf 120 V erhöht.

3.5.5 Semi-dry Western Blot und Detektion der Proteine

Nach der Auftrennung der Proteine in der SDS-PAGE folgt der Transfer auf eine Trägermembran, wodurch die Proteine konserviert werden und mittels spezifischer AKs detektiert werden können. Hierzu wurde ein sogenannter Semi-Dry Blot mittels einer dafür vorgesehenen WB-Apparatur mit platinbeschichteten Trägerelektroden durchgeführt. Der Transfer erfolgt in horizontaler Ausrichtung auf eine Polyvinylidenfluorid (PVDF)-Membran, indem ein elektrisches Feld angelegt wird. Die negativ geladenen Proteine wandern im Verlauf der Elektrophorese zur Anode, wo die PVDF-Membran positioniert ist. Zu Beginn des Transfers wurden die Elektrodenplatten mit Wasser befeuchtet und drei mit Anodenpuffer I und zwei mit Anodenpuffer II getränkte Filterpapiere wurden mittig auf die Anode gelegt (siehe 2.2.5). Anschließend wurde die hydrophobe PVDF-Membran in Methanol äquilibriert, um eine bessere Benetzung mit dem Transferpuffer zu erreichen. Nach kurzem Eintauchen der Trägermembran in Anodenpuffer II wurde diese ebenfalls auf dem Filterpapierstapel positioniert. Das Gel wurde nun aus den Glasplatten heraus genommen und nach Abtrennen des Sammelgels luftblasenfrei auf der Trägermembran platziert, sodass ein direkter Transfer stattfinden konnte. Zum Schluss wurden 5 in Kathodenpuffer getränkte Filterpapiere auf das Gel positioniert und die befeuchtete Kathodenplatte auf den Stapel gelegt. Um den Transfer zu unterstützen, wurden die Platten mit einer gefüllten 2 I Glasflasche beschwert. Anschließend wurden die Platten an die Stromquelle angeschlossen und der Proteintransfer erfolgte für 60 min bei 60 mA pro Gel und für weitere 15 min bei 90 mA pro Gel.

Die Detektion der Proteine erfolgte im Anschluss an den Proteintransfer mit Hilfe von spezifischen AKs. Dafür wurden zunächst unspezifische Bindungsstellen der Membran mittels einer 5%-igen Milchpulverlösung (siehe 2.2.5) abgesättigt. Die Inkubation der Membran in der Milchpulverlösung wurde auf einem Schüttler für 1 h bei RT durchgeführt. Anschließend wurde die Membran 3-mal für je 10 min in 1x TBST-Puffer (siehe 2.2.5) gewaschen und gegebenenfalls mit einem Skalpell zugeschnitten. Die Membran wurde nun über Nacht bei 4°C auf einem Reagenzglas-Rotator in der primären AK-Lösung inkubiert. Dabei binden die primären AKs an spezifische Epitope des analysierten Proteins. Am nächsten Tag wurde die

Membran 3-mal für je 10 min mit 1x TBST-Puffer gewaschen, um unspezifisch gebundene, sowie ungebundene AKs zu entfernen. Darauf folgte die Inkubation der Membran für 1 h bei RT unter Lichtausschluss in der Sekundärantikörperlösung. Der sekundäre AK ist an einen Fluorophor (Cy3 oder Cy5) gekoppelt und bindet an den Fc-Teil des Primärantikörpers. Aufgrund der Lichtempfindlichkeit des Sekundärantikörpers wurden die nachfolgenden Waschschritte (5x 5 min) in 1x TBST ebenfalls im Dunkeln durchgeführt. Nach dem Waschen wurde die Membran zwischen fusselfreien Tüchern getrocknet. Die trockene Membran wurde anschließend mit dem Amersham Imager 600 (siehe 2.1.2) analysiert und die Proteinbanden bei der entsprechenden Wellenlänge detektiert. Die Quantifizierung und Auswertung der Proteinexpression erfolgten mit Hilfe der Image Quant TL Software (siehe 2.1.3). Hierfür wurden die auf derselben Membran detektierten Banden untereinander normalisiert und die Expression der analysierten Proteine auf ein Referenzprotein (GAPDH, β -Aktin oder HSP60) bezogen. Das Referenzprotein wird unabhängig vom Genotyp und äußeren Einflüssen konstant exprimiert.

3.6 In vivo Experimente

3.6.1 Telemetrische Blutdruckmessungen

Die Bestimmung der basalen Blutdruckwerte, der Herzrate und der Aktivität (Bewegung), sowie eine Echtzeit-Messung der Blutdruckregulation durch cGMP-erhöhende Substanzen wurde mit Hilfe telemetrischer in vivo Blutdruckmessungen durchgeführt. Hierzu wurden CRP4 WT und KO Mäusen mit und ohne ApoE KO Hintergrund in einem Alter von 12 – 16 Wochen TA11PA-C10 Transmitter von Data Science International (DSI, siehe 2.2.10) implantiert (Straubinger et al., 2017). Für die Implantation der Blutdruckkatheter wurden die Tiere zunächst durch eine intraperitoneale Injektion (i.p.) von Ketamin [80 mg/kg Körpergewicht (KG)] und Xylazin [10 mg/kg KG] analgesiert. Darauf folgte die Inhalations-Anästhesie mittels eines Isofluran-Sauerstoff-Gemisches (0,5 - 2%), welches den Mäusen über eine Narkosemaske (siehe 2.1.2) verabreicht wurde. Überschüssiges Gas kann über ein spezielles Schlauchsystem mit konstantem Luftzug wieder abgeleitet werden, um eine Überdosierung zu vermeiden. Die Operation erfolgte auf einer Heizplatte, die kontinuierlich auf 37°C erwärmt wurde. Vor Beginn der Operation wurden die Haare der Versuchstiere an der Inzisionsstelle mittels Enthaarungscreme (siehe 2.2.10) entfernt. Anschließend wurde ein ventraler, submandibulärer kleiner Schnitt durchgeführt und die Speicheldrüsen zur Seite geschoben, um zur linken ACC zu gelangen. Diese wurde nun vom umliegenden Gewebe und dem Nervus vagus freipräpariert und kaudal zur Bifurkation mit einem permanenten Knoten ligiert. Eine weitere reversible Ligation wurde proximal zur ersten Ligation gesetzt. Anschließend wurde die Carotis mit Hilfe einer Kanüle (siehe 2.2.10) angeritzt und der Katheter wurde in das Gefäß

eingeführt und so weit vorgeschoben, bis der vordere Bereich den Aortenbogen erreichte. In dieser Position wurde der Katheter mit zwei weiteren Knoten fixiert und das umliegende Gewebe wurde als Schutz des Katheters wieder darüber gelegt. Nun wurde die linke Flanke mit Hilfe von Gefäßklemmen geweitet und 1 ml Natriumchlorid (NaCl) wurde über eine 1 ml Spritze in den geweiteten Bereich gegeben, um eine Dehydratation vorzubeugen. Der Transmitter wurde anschließend subkutan im Bereich der linken Flanke zwischen den Vorderund Hinterpfoten positioniert und die Schnittstelle wurde mit mehreren Einfachnähten wieder verschlossen. Damit sich die Tiere vollständig erholen können, erfolgte nach der Operation eine 7-tägige Erholungsphase, bevor mit den telemetrischen Blutdruckmessungen begonnen wurde.

3.6.1.1 Telemetrische Blutdruckmessungen im Atherosklerose-Modell

Die basale telemetrische Blutdruckmessung in ApoE KO CRP4 WT und KO Tieren erfolgte nach 16 Wochen WD, wobei die Katheter für die Messung bereits nach 12 Wochen WD implantiert wurden. Eine Katheterimplantation wäre nach 16 Wochen WD aufgrund zu starker atherosklerotischer Ablagerungen in der Carotis vermutlich nicht mehr möglich gewesen. Für die basalen Messungen wurden die Daten der Transmitter (alle 15 min für 5 min) über 3 Tage aufgezeichnet. Hierfür wurden die Tiere in ihren Heimatkäfigen auf den Messplatten platziert.

3.6.1.2 Telemetrische Blutdruckmessungen unter dem Einfluss cGMPmodifizierender Substanzen

Um den Effekt verschiedener cGMP-beeinflussender Substanzen auf die Blutdruckregulation in CRP4 WT und KO Mäusen zu untersuchen, wurden jeweils an drei aufeinander folgenden Tagen pro Woche eine Substanz i.p. injiziert (Abb. 3.8). In fünf aufeinanderfolgenden Versuchswochen (VW) wurde zunächst Aqua ad injectabilia, dann der sGC Stimulator Cinaciguat [1 µg/kg KG], der NO-Donator Sodiumnitroprussid (SNP) [2,5 mg/kg KG], das die endotheliale NO-Freisetzung-beeinflussende Carbachol [0,5 mg/kg KG] und zuletzt der NOS-Hemmer L-Name [100 mg/kg KG] verabreicht. Die Messungen starteten immer zur selben Tageszeit mit einer basalen Blutdruckmessung (30 sec für 15 sec) über 30 min. Anschließend wurde den Mäusen 100 µl der entsprechenden Substanz i.p. injiziert und für weitere 150 min gemessen (30 sec für 15 sec). Nach Beendigung der Messung wurden die Tiere wieder in den Tierhaltungsschränken gehalten. Die Auswertung der generierten Daten erfolgte mit Hilfe der Dataquest A.R.T.3.1 Software von DSI (siehe 2.1.3). Für die basalen Messungen wurde jeweils der Mittelwert aus den Messungen der drei Tagesmessungen (je 12 h) und der drei Nachtmessungen (je 12 h) berechnet, sowie ein gemittelter 24 h-Wert analysiert. Bei den Messungen infolge der i.p.-Injektionen cGMP-beeinflussender Substanzen wurde der Blutdruck gegen die Zeit aufgetragen und jeweils Mittelwerte aus den drei aufeinander folgenden Messungen berechnet und zur Auswertung herangezogen.

Abbildung 3.8: Wochenablauf der telemetrischen Blutdruckmessungen

Sieben Tage nach Transmitterimplantation wurde für eine dreifache Bestimmung an je drei aufeinander folgenden Tagen die gleiche Substanz verabreicht. Danach erfolgte eine viertägige Auswaschphase bevor die nächste Substanz i.p. injiziert wurde. In den fünf Versuchswochen (VW) wurden Aqua ad injectabilia (1.VW), Cinaciguat [1 µg/kg KW] (2.VW), Sodiumnitroprussid (SNP) [2,5 mg/kg KW] (3.VW), Carbachol [0,5 mg/kg KW] (4.VW) und L-Name [100 mg/kg KG] (5.VW) untersucht.

3.6.2 In vivo Atherosklerose-Mausmodell

Da Mäuse auf natürliche Weise keine Atherosklerose entwickeln, wurden zur Untersuchung der atherosklerotischen Plaqueentwicklung in Abhängigkeit von CRP4 Mäuse mit einem atherogenen ApoE KO Hintergrund eingesetzt. Die daraus resultierenden ApoE KO CRP4defizienten Mäuse, sowie die entsprechenden ApoE KO CRP4 WT Tiere wurden im Alter von 5 Wochen entweder mit einer WD oder CD für 8 – 16 Wochen gefüttert (siehe 3.1.3). Die Durchführung der Diäten ist in Abb. 3.9 schematisch dargestellt. Während der Fütterung wurde das Gewicht der Tiere zweimal pro Woche ermittelt und alle 4 Wochen erfolgte eine Blutentnahme aus der Schwanzvene zur Messung der Cholesterol-, Triglyzerid- und Glucose-Werte. Nach 8 bzw. 16 Wochen Fütterung wurden die Tiere dann mittels CO₂-Inhalation euthanasiert und der Brustkorb geöffnet. Die folgenden Schritte der Aortenisolation wurden gemäß eines publizierten Protokolls durchgeführt (Mohanta et al., 2016). Direkt nach der Brustkorberöffnung wurde aus dem rechten Atrium Blut für die Plasmaisolierung entnommen. Dieses wurde bei 2.000 xg und 4°C für 5 min zentrifugiert und die obere farblose Phase, welche das Plasma enthält, wurde abgenommen und in einem 1,5 ml Eppendorf-Reaktionsgefäß bei -20°C bis zur weiteren Verarbeitung eingefroren. Die Plasmaproben wurden im Zentrallabor am Institut für Klinische Chemie und Pathobiochemie des Universitätsklinikums Tübingen von Prof. Dr. Andreas Peter auf unterschiedliche metabolische Parameter via ELISA-Messungen untersucht. Nach der Blutentnahme wurden die Tiere über den linken Ventrikel mittels einer 10 ml Spritze zunächst mit 10 ml eiskalter Ethylendiamintetraessigsäure (EDTA)-Lösung [5 mM in PBS] und anschließend mit 20 ml eiskaltem PBS perfundiert. Nun folgte die Entnahme der Organe, mit Ausnahme der Nieren und des Herzens. Die Aorta wurde vom Herzen bis zur iliakalen Bifurkation mittels einer kleinen Augenschere von dem umliegenden Fettgewebe und von der Adventitia freipräpariert (Abb. 3.10A).

Abbildung 3.9: Zeitschema für den Ablauf des in vivo Atherosklerose-Modells

Im Alter von 5 Wochen begann die Fütterung der ApoE KO CRP4 doppelmutanten Mäuse für 8 oder 16 Wochen mit einer Western Diät (WD) oder mit Kontrollfutter (CD). Alle vier Wochen erfolgte eine Blutentnahme (BE) über die Schwanzvene während der Fütterungszeit. Die finale Untersuchung beinhaltete eine Blutentnahme zur Plasmaisolierung aus dem Herzen, sowie die Aortenisolation für *en face* Ölrotfärbungen, die Anfertigung von Kryoschnitten für Immunfluoreszenz (IF)- und immunhistochemische (IHC)-Analysen und die Proteinisolierung für Western Blot (WB)-Analysen.

3.6.2.1 En face Ölrotfärbung der Aorta

Für die *en face* Ölrotfärbung der Aorta wurde diese zunächst über den linken Ventrikel mit 5 ml 4% Paraformaldehyd (PFA) in PBS perfundiert. Nach 10 min Inkubation wurde anschließend mit 10 ml 5% Saccharose in PBS perfundiert und die Aorta vom Herzen bis zur iliakalen Bifurkation entnommen. Die Aorta wurde auf einer mit schwarzem Wachs bedeckten Petrischale in PBS von restlichem, äußeren Fettgewebe befreit (Abb. 3.10B) und der Länge nach mit einer kleinen Augenschere aufgeschnitten. Nun konnte die Aorta mit Hilfe von kleinen Nadeln (0,125 mm Durchmesser, siehe 2.2.10) auf das Wachs gepinnt werden. Über Nacht folgte eine Inkubation der Aorta in PFA-Saccharose (siehe 2.2.10) bei RT. Am darauffolgenden Tag wurde die Aorta 3-mal mit PBS gewaschen und für 5 min in 60% Isopropanol inkubiert. Nach der Entfernung des Isopropanols, wurde die Aorta mit der Ölrotlösung (siehe 2.2.10) bedeckt und 30 min inkubiert. Danach wurde 3-mal für je 2 sec mit 60% Isopropanol gewaschen, bevor die Aorta mit dH₂O bedeckt wurden. Die Auswertung der Plaqueanzahl und Plaquefläche erfolgte anhand von Bildern, die mit der Mikroskopkamera von Distelkamp-Electronic (siehe 3.1.2) erstellt wurden, und mit Hilfe der AxioVision Rel.4.8 Software (siehe 2.1.3).

3.6.2.2 Anfertigung von Kryoschnitten der Aorta

Zur Anfertigung von Kryoschnitten der Aorta wurde diese vom Herzen bis zur iliakalen Bifurkation präpariert und in zwei thorakale und zwei abdominale Segmente unterteilt (siehe 3.10B). Hierzu wurde die Aorta kurz nach dem Aortenbogen, auf Höhe des Diaphragmas und unterhalb der Nierenabgänge geschnitten. Die Aortensegmente wurden 4 h in 4% PFA in PBS auf einem Schüttler bei 4°C inkubiert und anschließend 3-mal für je 10 min mit PBS gewaschen. Darauf folgte die Inkubation in einem Saccharose-Gradienten, um das in den Aortensegmenten verbleibende Wasser zu entziehen und somit einen besseren Gewebeerhalt beim Einfrieren der Aorten zu erzielen. Dazu wurden die Aortensegmente zunächst in 5% Saccharose in PBS für 1 h, dann in 10% Saccharose in PBS über Nacht und für weitere 24 h in 20% Saccharose in PBS bei 4°C inkubiert. Anschließend wurden die Gewebe in NEG-50™ (siehe 2.2.3) in vorgeformten Alufolie-Behältern bei -80°C eingefroren. Für die Immunfluoreszenz (IF)- und immunhistochemischen (IHC)-Analysen wurden von den eingefrorenen Aortensegmenten an einem Kryotom (siehe 2.1.2) bei -20°C 8 µm dicke Schnitte angefertigt. Die Kryoschnitte wurden auf Glasobjektträger (siehe 2.2.3) aufgenommen und bei -20°C bis zur Durchführung der Färbungen gelagert.

Abbildung 3.10: Aortenpräparation aus ApoE KO CRP4 doppelmutanten Mäusen

(A) Die Organe der ApoE KO CRP4 doppelmutanten Mäuse wurden bis auf das Herz und die Nieren entfernt und die Aorta vom Herzen bis zur iliakalen Bifurkation freipräpariert. (B) Für die Anfertigung von Kryoschnitten wurde die Aorta in 2 thorakale und 2 abdominale Segmente unterteilt, die nebeneinander eingebettet und geschnitten wurden.

3.6.3 Neointimamodell der Carotis-Ligatur

Mit der Durchführung eines *in vivo* Mausmodell zur Untersuchung der Restenose von Gefäßen wurde der Einfluss von CRP4 auf die phänotypische Modulation und die proliferativen VSMC-Eigenschaften weiter untersucht. Es ist bekannt, dass die Regulation des Blutflusses die Entstehung einer Neointima beeinflusst (Kohler et al., 1991). Mit der Methode der Carotis-Ligatur nach einem etablierten Protokoll (Kumar & Lindner, 1997), wird künstlich eine Restenose erzeugt und über 4 Wochen aufrechtgehalten, um die Bildung einer Neointima zu induzieren. Bereits wenige Tage nach der Ligatur der linken ACC sind VSMCs in der Intima nachweisbar, die dort stark proliferieren und das Gefäßlumen gravierend verengen. Zudem vergrößert sich auch die Mediafläche und inflammatorische Zellen lassen sich in der Adventitia und der äußeren Schicht der Media detektieren.

Abbildung 3.11: Schematische Darstellung der Neointima-Ligatur

Der pathologische Gefäßverschluss der linken *Arteria carotis communis* (ACC) proximal zur Bifurkation für 28 Tage führt zur Ausbildung einer Neointima, die das Gefäßlumen stark einengt.

Zur Untersuchung der pathologischen Neointima-Bildung wurden männliche CRP4 WT und CRP4-defiziente Geschwisterpaare im Alter von 12 – 16 Wochen verwendet. Analog zur Implantation von Blutdruckkathetern wurden die Tiere vor dem Operationsbeginn mit einer Mischung aus Ketamin [80 mg/kg KG] und Xylazin [10 mg/kg KG] i.p. injiziert und somit präanalgesiert. Anschließend erfolgte die Einleitung der Inhalationsnarkose, bestehend aus einem Isofluran-Sauerstoffgemisch (0,5 – 2%), über ein Narkosegerät und eine Narkosemaske (siehe 2.1.2). Eine auf 37°C erhitzte Heizplatte diente zur Aufrechterhaltung der Körpertemperatur. Die weiteren Schritte zur Freilegung der linken ACC erfolgten analog zur Implantation der Blutdruckkatheter (siehe 3.6.1). Nachdem der *Nervus vagus* vorsichtig von der linken ACC separiert wurde, erfolgte die Ligatur der linken ACC. Dazu wurde proximal zur Bifurkation mittels eines nicht resorbierbaren Fadens (siehe 2.2.10) ein per Doppelknoten gesicherter, permanenter Gefäßverschluss gesetzt (Abb. 3.11). Anschließend wurde die Wunde durch eine Hautnaht mittels Einzelknopfnähte wieder verschlossen und die Maus wurde bis zum Erwachen unter einer Wärmelampe gehalten, um die Aufrechterhaltung der Körpertemperatur zu gewährleisten. In den darauffolgenden Tagen wurden die Mäuse bei Bedarf analgetisch mit Paracetamol (per oral (p.o.)) versorgt.

28 Tage nach der Operation wurden die Mäuse mit CO_2 euthanasiert und über den linken Ventrikel mit 20 ml 2% PFA in PBS perfundiert, um einen optimalen Gewebeerhalt zu erzielen. Danach wurde die linke ACC vom Aortenbogen bis oberhalb der Ligatur entnommen und es erfolgte analog zu 3.6.2.2 die Kryoprotektion und das Einbetten der ACC für die Anfertigung von Kryoschnitten. Am Kryotom wurden serielle 8 µm dicke Schnitte im Abstand von je 96 µm angefertigt und auf Glasobjektträger aufgenommen. Die Analyse der Mediadicke, der Intimadicke und der Intima-Media-Ratio erfolgte mit Hilfe von H&E-Färbungen (siehe 3.7.2). Die gefärbten Schnitte wurden an einem Histologiescanner (siehe 2.1.2) eingescannt und mit Hilfe der ImageJ Software (siehe 2.1.3) ausgewertet. Dazu wurden folgende Flächen (A)-Berechnungen (in µm²) durchgeführt:

- 1. $A_{Media} = A_{\ddot{a}u\hat{\beta}ere\ elastische\ Lamina\ (EEL)} A_{innere\ elastische\ Lamina\ (IEL)}$
- 2. $A_{Intima} = A_{IEL} A_{Gefäßlumen}$
- 3. Ratio = A_{Intima}/A_{Media}

3.7 Histologie

Im nachfolgenden Abschnitt werden die histologischen Färbungen zur Identifizierung einzelner Proteine oder Gewebestrukturen beschrieben. Hierfür wurden Kryoschnitte von Aorten CRP4defizienter Mäuse und deren Kontrolltiere (CRP4 WT) (siehe 3.3.1), sowie im Rahmen des Atherosklerose-Modells von Aorten ApoE KO CRP4 doppelmutanter Mäuse (siehe 3.6.2) durchgeführt. Die Carotiden von CRP4 WT und KO Mäusen wurden nach der Durchführung der Neointima-Ligatur (siehe 3.6.3) mittels H&E-Färbungen visualisiert (siehe 3.7.3). Die Kryokonservierung, das Einbetten und das Schneiden der Aorten bzw. Carotiden erfolgte wie in 3.6.2.2 beschrieben. Die Immunfärbungen (siehe 3.7.1 und 3.7.2) wurden ebenfalls mit isolierten, kultivierten VSMCs (P0 und P10 - 15) durchgeführt (siehe 3.3.1). Dazu wurden die Zellen vor der Färbung mittels 4% PFA in PBS für 15 min fixiert. Die Detektion und Auswertung der Färbungen erfolgte entweder an dem Panoramic Desc Histologiescanner oder an einem Fluoreszenzmikroskop (siehe 2.1.2).

3.7.1 Immunhistochemie zum Nachweis von CRP4

Der Nachweis von CRP4 in Aortenschnitten und isolierten, fixierten VSMCs wurde unter anderem mit Hilfe einer IHC-Färbung durchgeführt. Diese Methode basiert auf einer spezifischen Antigen-AK-Reaktion. Zunächst findet die hochaffine Bindung eines spezifischen, primären AKs an ein bestimmtes Epitop des Zielproteins statt. Der primäre AK wird wiederum von einem sekundären AK erkannt, der an spezifische, konservierte IgG-Strukturen des Organismus, in dem der primäre AK synthetisiert wurde, bindet und zur Detektion an Enzyme (z.B. Peroxidase oder Alkalische Phosphatase (AP)) gekoppelt ist (siehe 2.2.3). Ca. 30 min vor Beginn der eigentlichen Färbung wurden die Kryoschnitte aufgetaut und mit einem Fettstift (siehe 2.2.3) umrandet, damit die Färbe- und Waschlösungen auf den Objektträgern appliziert werden konnten. Zur Vorbereitung der Zellen wurden die fixierten Zellen zunächst 2-mal mit PBS gewaschen. Die Färbung der Kryoschnitte bzw. Zellen erfolgte in einer feuchten Kammer, um ein Austrocknen während des Färbevorgangs zu verhindern. Im Anschluss an die Vorbereitung der Proben erfolgte die Permeablisierung mit 0,1% (Zellen) oder 0,3% (Kryoschnitte) Triton X-100-Lösung in PBS (siehe 2.2.3) für 15 min. Zur Blockierung unspezifischer Bindungsstellen wurden die Proben danach 3-mal mit PBS gewaschen und mit 10% Eselnormalserum (NDS) in PBS (siehe 2.2.3) für 1 h inkubiert. Anschließend fand die Bindung des primären AKs durch eine Übernacht-Inkubation mit einer 1:1500 Verdünnung des CRP4-Antiserums in 1,5% NDS in PBS bei 4°C statt. Bei jeder Färbung wurde eine Negativ-Kontrolle ohne primären AK mit 1,5% NDS in PBS mitgeführt, um unspezifische Bindungen des sekundären AK auszuschließen. Am darauffolgenden Tag wurden die Proben 5-mal für je 5 min mit 1,5% NDS in PBS gewaschen und 1 h mit dem biotinylierten, sekundären AK (siehe 2.2.3) bei RT im Dunkeln inkubiert. Während dem anschließenden Waschen (5x 5 min mit PBS), wurde die ABC-Arbeitslösung (siehe 2.2.3) hergestellt und 30 min im Dunkeln präinkubiert. Es folgte eine 30-minütige Inkubation der Proben mit der ABC-Arbeitslösung. Dabei bindet Avidin mit hoher Affinität an das Biotin des biotinylierten Sekundärantikörpers. Nachfolgend wurde erneut 3-mal für 10 min mit PBS gewaschen, bevor das AP-Substrat (siehe 2.2.3) appliziert wurde. Das AP-Substrat beinhaltet BCIP (5-Brom-4-Chlor-3-Indovlphosphat) und NBT (Nitroblau-Tetrazoliumchlorid) und wird von der AP zu einem blauen Indigo-Farbstoff umgesetzt. Endogene Phosphatasen wurden vorab durch den Zusatz von 5 Tropfen Levamisol (siehe 2.2.3) inhibiert, um Hintergrundfärbungen zu vermeiden. Die Farbreaktion wurde unter dem Mikroskop beobachtet und nach ca. 10 min mit Hilfe von Leitungswasser (3x 2 min) gestoppt. Nach dem Trocknen der Proben, wurden die Objektträger mit den gefärbten Schnitten bzw. Zellen mit dem wässrigen Einbettmedium Aquatex (siehe 2.2.3) eingebettet.

3.7.2 Immunfluoreszenzfärbung

Analog zur IHC ist die Detektion von Proteinen in Gewebeschnitten und Zellpräparaten anhand spezifischer AKs auch mit Hilfe der IF-Färbung möglich. Im Gegensatz zur AP-Färbung ist der sekundäre AK bei der IF-Färbung direkt an einen Fluorophor gekoppelt. Dadurch entfallen die enzymatische Kopplung, sowie die Umsetzung des Substrats nach der Inkubation mit dem sekundären AK. Die Visualisierung erfolgt durch die Anregung der Fluorophore bei entsprechender Wellenlänge. Anschließend können die durch den Primärantikörper markierten Strukturen mikroskopisch betrachtet werden. Die Kryoschnitte und Zellpräparate wurden, wie bereits in 3.7.1 beschrieben, auf die Färbung vorbereitet und permeabilisiert. Zur Blockierung unspezifischer Bindungsstellen, wurden die Proben danach 3-mal mit PBS gewaschen und je nach Herkunft des sekundären AKs mit 10% Eselnormalserum (NDS) in PBS oder 10% Ziegennormalserum (NGS) in PBS (siehe 2.2.3) für 1 h inkubiert. Anschließend wurde der primäre AK in der jeweiligen Konzentration in 1,5% NDS bzw. NGS in PBS (siehe 2.2.3) appliziert. Die Inkubation mit dem Primärantikörper erfolgte über Nacht bei 4°C. Am nächsten Tag wurden die Proben 5-mal für 5 min mit 1,5% NDS bzw. NGS in PBS gewaschen und mit dem Fluorophor-gekoppelten, sekundären AK für 1 h im Dunkeln inkubiert. Nach weiteren Waschschritten (3x 5 min) mit PBS wurden die Proben getrocknet. Die gefärbten Gewebeschnitte bzw. Zellen wurden anschließend mit einer Mischung aus Permafluor und Hoechst (siehe 2.2.3) eingebettet. Hoechst dient hierbei zur Visualisierung der Zellkerne, da es in die DNA interkaliert. Die Quantifizierung der IF-Färbungen im Rahmen des in vivo Atherosklerose-Modells erfolgte mit Hilfe des Programms ImageJ (siehe 2.1.3) und es wurden entweder die positiven Kerne (Ki-67) auf die Gesamtzellzahl oder die positive Fläche (α -SMA, oxLDL, Mac2) auf die Gesamtfläche der atherosklerotischen Plagues bzw. Media bezogen.

3.7.3 Hämatoxylin- und Eosin-Färbung

Zur Differenzierung verschiedener Zellstrukturen in histologischen Gewebeschnitten wurde die H&E-Färbung durchgeführt (Fischer et al., 2008). Zellkerne und ribosomale Strukturen werden hierbei durch basisches Hämatoxylin aufgrund der hohen Affinität des Farbstoffs zu Nukleinsäuren blau bis lila gefärbt. Zytoplasmatische Proteine, Mitochondrien und Kollagenfasern werden hingegen durch den sauren Farbstoff Eosin rötlich bis pink dargestellt. Zu Beginn der Färbung wurden die histologischen Gewebeschnitte nach dem Auftauen durch das Durchführen einer Ethanol-Reihe in absteigender Konzentration (100%, 90%, 70% und 50%) für je 2 min rehydriert. Danach wurden die Kryoschnitte 3-mal für je 2 min mit dH₂O gewaschen und für 5 sec in der Hämatoxylin-Lösung nach Harris gefärbt (siehe 2.2.3). Nach zweimaligem Waschen für je 2 min in Leitungswasser folgte ein kurzes Eintauchen in 0,1% Ammoniak-Lösung zur Entwicklung der Blaufärbung der Zellkerne. Anschließend wurde 5 min in Leitungswasser gewaschen und 10 min in saurer Eosin-Y-Lösung (0,1%) inkubiert (siehe 2.2.3). Es folgten fünf Waschschritte für je 2 min in Leitungswasser und ein Differenzieren der Färbung in 80% Ethanol für 2 min. Die Schnitte wurden nun für 3 min in 100% Ethanol und 5 min in Toluol dehydriert. Nach dem vollständigen Trocknen der Objektträger mit den gefärbten Gewebeschnitten erfolgte das Einbetten mit dem hydrophoben DePex-Medium (siehe 2.2.3).

3.7.4 Ölrot-O Färbung

Die Ölrot-O Färbung dient der Visualisierung neutraler Lipide in histologischen Geweben. Bei Ölrot-O handelt es sich um einen lipophilen Farbstoff, der aufgrund seines Lösungsverhaltens zu den Gewebelipiden diffundiert und diese leuchtend rot färbt. Bei der folgenden Färbemethode werden die Zellkerne anschließend mit einer Hämatoxylin-Lösung nach Harris (siehe 2.2.3) blau gegengefärbt, um das gesamte Gewebe sichtbar zu machen. Zunächst wurden die Kryoschnitte für 30 min bei RT getrocknet und anschließend für 5 min in 4% PFA in PBS fixiert. Darauf folgte eine 5-minütige Inkubation der Schnitte in 60% Isopropanol. Nun wurden die Objektträger für 10 min in die Ölrot-O Färbelösung (siehe 2.2.3) getaucht und anschließend wieder 3-mal für je 2 sec in 60% Isopropanol gewaschen. Bevor die Kryoschnitte mit der Hämatoxylin-Lösung nach Harris für 6 min gegengefärbt wurden, fand ein kurzer Waschschritt mit Leitungswasser statt. Anschließend wurden die Objektträger mit den Kryoschnitten mehrfach mit Leitungswasser. Die gefärbten Gewebeschnitte wurden im Anschluss direkt mit dem wässrigen Einbettmedium Aquatex (siehe 2.2.3) eingebettet und nach einer Trocknungsphase (mind. 60 min) am Histologiescanner (siehe 2.1.2) analysiert.

3.7.5 Masson-Trichrom-Färbung

Mit Hilfe der Masson-Trichrom (MT)-Färbung können Kollagenfasern in histologischen Geweben visualisiert und quantifiziert werden. Zellkerne werden bei dieser Färbemethode durch Weigert's Eisen-Hämatoxylin lila bis rot gefärbt, während Zytoplasma und Muskelgewebe durch die Bieberich-Scharlach-Säurefuchsin-Lösung blass-rosarot bis schwach bläulich gefärbt wird. Nach einer Behandlung mit Phosphorwolframsäure und Phosphormolybdänsäure kann Kollagen durch Anilinblau in einem kräftigen Blauton dargestellt und vom restlichen Gewebe gut differenziert werden. Am Tag vor der Färbung wurden die Kryoschnitte zunächst für mind. 24 h in Bouin-Lösung fixiert (siehe 2.2.3). Danach folgte ein 3-maliges Waschen der Objektträger für je 2 min in Leitungswasser, bis keine Gelbfärbung mehr zu sehen war. Anschließend wurden die Kryoschnitte zur Färbung der

Zellkerne für 1 min in die Weigert's Eisen-Hämatoxylin-Lösung (siehe 2.2.3) getaucht. Es folgten wieder 3 Waschschritte für je 2 min in Leitungswasser, um die überschüssige Färbelösung zu entfernen. Darauf wurde die Färbung des Zytoplasmas mit der Bieberich-Scharlachrot-Säurefuchsin-Lösung (siehe 2.2.3) für 3 min durchgeführt. Anschließend wurde 3-mal für je 2 min in dH₂O gewaschen. Die Objektträger mit den Kryoschnitten wurden nun für 5 min in der Phosphormolybdän-/Phosphorwolframsäure-Arbeitslösung vorbehandelt und danach direkt für 2 min in der Anilinblau-Lösung inkubiert (siehe 2.2.3). Dadurch wurden die Kollagenfasern blau gefärbt. Zur besseren Differenzierung der Färbung erfolgte noch eine 2-minütige Inkubation in 1% Essigsäure. Die Schnitte wurden anschließend 4-mal für je 2 min mit dH₂O gewaschen und für 2 min in 80% Ethanol differenziert. Eine Dehydrierung fand zunächst für 3 min in 100% Ethanol statt. Darauf folgte eine erneute Dehydrierung mit Xylol für 5 min und die gefärbten Schnitte wurden unter dem Abzug bei RT getrocknet. Nach dem abgeschlossenen Trocknungsvorgang wurde mit dem hydrophoben Einbettmedium DePeX eingebettet (siehe 2.2.3).

3.7.6 Elastika van Gieson Färbung

Die Elastika van Gieson (EvG) Färbung ist dafür geeignet elastische Fasern, sowie kollagene Fasern differenziert darzustellen. Die Zellkerne von histologischen Gewebeschnitten werden hierbei durch die Weigert's Eisen-Hämatoxylin-Lösung schwarzbraun gefärbt, während elastische Fasern durch die van Gieson-Lösung schwarzviolett und kollagene Fasern durch die Resorcin-Fuchsin-Lösung rot gefärbt werden. Die Muskulatur und das Zytoplasma werden durch die Färbemethode gelb dargestellt. Analog zur MT-Färbung wurden die Kryoschnitte zunächst für mind. 24 h in Bouin Lösung fixiert (siehe 2.2.3). Am nächsten Tag wurden die Objektträger 2-mal in Leitungswasser gewaschen und für je 2 min in Ethanol-Lösungen mit absteigender Konzentration (100%, 90% und 80%) getaucht. Anschließend wurden die Kryoschnitte für 35 min in der Resorcin-Fuchsin-Lösung inkubiert (siehe 2.2.3). Die Färbelösung wurde durch 4-maliges Waschen für je 1 min mit Leitungswasser und ein kurzes Eintauchen in dH₂O entfernt. Darauf folgte die Färbung der Zellkerne mittels Weigert's Eisen-Hämatoxylin für 2 min (siehe 2.2.3). Es wurde anschließend 2-mal für je 2 min mit dH₂O und 5-mal für je 2 min mit Leitungswasser gewaschen. Nun wurden die elastischen Fasern durch eine 1-minütige Inkubation der Kryoschnitte in der van Gieson-Lösung gefärbt (siehe 2.2.3). Direkt im Anschluss wurde 2-mal für je 1 min mit 70% Ethanol und für 30 sec in 96% Ethanol gewaschen. Die Dehydrierung der Schnitte erfolgte für 2-mal je 1 min in 100% Ethanol und 5 min in Xylol. Die Objektträger mit den gefärbten Gewebeschnitten wurden getrocknet und anschließend mit dem hydrophoben Einbettmedium DePeX eingebettet (siehe 2.2.3).

3.7.7 Alizarinrot S Färbung

Bei dem Farbstoff Alizarinrot S handelt es sich um eine Anthrachinon Derivatfarbstoff, der zur Identifizierung von Ca²⁺ in histologischen Gewebeschnitten angewendet werden kann (Leroux-Berger et al., 2011). Die Färbereaktion ist zwar nicht 100% spezifisch, da Magnesium-, Strontium-, Barium- und Eisenionen ebenfalls eine Färbung hervorrufen könnten, allerdings sind die Ionen dieser Elemente nur in Spuren im Gewebe zu finden, sodass eine Störung der Färbung nicht zu erwarten ist. Alizarinrot S chelatiert Ca²⁺ zu einem roten, doppelbrechenden Alizarinrot S-Ca²⁺-Komplex. Zu Beginn der Färbung wurden die Kryoschnitte in Ethanol-Lösungen mit absteigenden Konzentrationen (100%, 90% und 70%) für je 2 min rehydriert. Es folgte ein kurzes Eintauchen (30 sec) in dH₂O, bevor die Schnitte für 2 min in der 2% Alizarinrot S-Lösung inkubiert wurden (siehe 2.2.3). Anschließend fand die Dehydrierung zunächst in Aceton, dann in einem Aceton-Xylol (50:50) Gemisch und zuletzt für 5 min in Xylol statt. Nach dem Trocknen der Objektträger mit den gefärbten Gewebeschnitten, wurden diese mit dem hydrophoben Einbettmedium DePeX eingebettet (siehe 2.2.3).

3.8 Statistik

Die statistische Analyse wurde mit der Software GraphPad Prism (siehe 2.1.3) durchgeführt. Alle Ergebnisse dieser Arbeit wurden als Mittelwerte ±Standardfehler (SEM) dargestellt. Die Normalverteilung der zugrunde liegenden Grundgesamtheit einer Stichprobe wurde mit Hilfe des Shapiro-Wilk-Tests und Kolmogorov-Smirnow-Tests überprüft. Zur statistischen Analyse zweier Wertegruppen wurde unter Annahme gleicher Varianzen ein zweiseitiger Student t-Test durchgeführt. Bei dem Vergleich von mehr als zwei Wertegruppen untereinander erfolgte eine zweifaktorielle Varianzanalyse (2-way ANOVA) gefolgt von entsprechenden Post-hoc Tests (siehe Abbildungslegenden). Die Kurvenverläufe der Relaxationsversuche und telemetrischen Blutdruckmessungen (Abb. 4.11 und 4.13) wurden mittels zweifaktorieller Varianzanalyse (2way ANOVA) mit Messwiederholung auf Signifikanzen untersucht und die einzelnen Werte mit Hilfe geeigneter Post-hoc Tests analysiert (siehe Abbildungslegenden). Für die Analyse der Proteom- und Interaktom-Daten (Abb. 4.14, 4.22 und 7.9; Tab. 4.1, 7.1, 7.3, 7.4 und 7.5) wurde der zweiseitige Student t-Test mit permutationsbasierter FDR (false discovery rate)-Bestimmung, sowie der Signifikanz-A/B-Test mit einer Benjamini-Hochberg-basierten FDR-Bestimmung angewendet (Tyanova et al., 2016). Diese Berechnungen wurden mit Hilfe der Perseus Software von Dr. Karsten Boldt im Proteom-Forschungszentrum für Augenheilkunde des Universitätsklinikums Tübingen durchgeführt. Für alle Testarten wurden p-Werte <0,05 als statistisch signifikant betrachtet. Die Differenzierung erfolgte zwischen *p<0,05, **p<0,01 und ***p<0,001. Nicht signifikante Unterschiede (p>0,05) sind nicht dargestellt.

4. Ergebnisse

4.1 CRP4-Expression in Aorten und glatten Gefäßmuskelzellen

Zur Analyse der CRP4-abhängigen Regulation vaskulärer Funktionen wurden sowohl *in vitro*, als auch *in vivo* Experimente an WT und globalen CRP4 KO Mäusen durchgeführt. Die vaskuläre Expression von CRP4 wurde bereits in vorangegangenen Arbeiten anhand von Rattengewebe (Huber et al., 2000) und vaskulären Zelllinien (Zhang et al., 2007) gezeigt. Um die im Rahmen dieser Arbeit erhobenen Daten korrekt interpretieren zu können, musste zunächst das CRP4-Expressionsmuster in Aorten und VSMCs bestätigt werden (Straubinger et al., 2017). Für diese Versuche wurden Aorten und isolierte VSMCs aus CRP4 WT und globalen KO Mäusen mittels qRT-PCR, WB und IHC-basierter AP-Färbung analysiert (Abb. 4.1).

Abbildung 4.1: CRP4 Expressionsanalyse in Aorten und VSMCs

(A) qRT-PCR Expressionsanalysen in VSMCs und (B) WB-Analysen von Aorten und VSMCs aus CRP4 WT und globalen KO Mäusen. Für die qRT-PCR diente Hypoxanthin-phosphoribosyl-transferase (HPRT) als interner Standard, während für die WB-Analysen Glycerinaldehyd-3-phosphatdehydrogenase (GAPDH) als Ladungskontrolle verwendet wurde. Die subzelluläre Lokalisation von CRP4 in Aortenschnitten und isolierten VSMCs (C) wurde mit Hilfe immunhistochemischer Färbungen ermittelt. Die blauen Farbsignale kommen hierbei durch das Umsetzen des AP-Substrats zustande und bestätigen für CRP4 eine hohe Abundanz in der *Tunica media* der Aorten und im Zytoplasma der isolierten VSMCs. In den Zellen zeigte sich darüber hinaus eine perinukleäre Anreicherung von CRP4 und eine geringe Expression im Nukleus. Die Abbildung wurde modifiziert nach (Längst et al., 2022). Dabei konnte CRP4 sowohl auf Transkriptionsebene in VSMCs (Abb. 4.1A), als auch auf Proteinebene in Aorten und VSMCs (Abb. 4.1B) von CRP4 WT Tieren in hoher Abundanz nachgewiesen werden. Zudem zeigten AP-Färbungen von Aortenschnitten eine deutliche Expression von CRP4 in der *Tunica media* (Abb. 4.1C). In isolierten VSMCs war CRP4 ebenfalls mittels immunhistochemischer Färbungen im CRP4 WT detektierbar. Hierbei konnte eine starke zytosolische Lokalisation mit einer perinukleären Anreicherung des Proteins festgestellt werden. Im Zellkern waren ebenfalls geringe Mengen an CRP4 zu erkennen. Proteinlysate von CRP4-defizienten Aorten und VSMCs, sowie die Färbung der entsprechenden Aortenkryoschnitte und fixierter VSMCs waren erwartungsgemäß CRP4 negativ (Abb. 4.1).

4.2 Physiologische Funktionen von CRP4 in der Gefäßmuskulatur

4.2.1 Transkription typischer glattmuskulärer Gene in P0 VSMCs

Zunächst wurde zur Untersuchung der physiologischen Funktion von CRP4 in VSMCs die Expression typischer glattmuskulärer Gene untersucht. Hierzu wurden die mRNA-Expressionslevel dieser Gene in P0 VSMCs von CRP4 WT und KO Mäusen mittels qRT-PCR-Analysen bestimmt. Bei der Untersuchung typischer kontraktiler Markerproteine der VSMCs, wie α-SMA, SMMHC, Calponin und Transgelin, wurden keine genotypspezifischen Unterschiede festgestellt (Abb. 4.2A). Aufgrund der zellulären Lokalisation von CRP4 und da bereits bekannt ist, dass CRPs an Strukturen des Zytoskeletts in VSMCs binden können (Pomiès et al., 1997; Wei et al., 2005), wurden zudem verschiedene Proteine des Zytoskeletts untersucht. Die FAK, Zyxin und Vimentin zeigten hierbei allerdings ebenfalls keine genotypspezifischen Unterschiede (Abb. 4.2B). Während die FAK vor allem an der Ausbildung von FAs beteiligt ist, interagiert Zyxin sowohl mit FAs, als auch mit den F-Aktinfasern des Zytoskeletts (Martino et al., 2018). Vimentin ist wiederum an der Ausbildung der Intermediärfilamente in VSMCs beteiligt (Yamin & Morgan, 2012). Mittels IF wurden zudem die F-Aktinfasern der VSMCs untersucht. Die Detektion von F-Aktin erfolgte mit Hilfe von Phallotoxin, einem F-Aktin-stabilisierenden Zellgift aus dem grünen und weißen Knollenblätterpilz. Dabei deutete die Färbung eine Anreicherung der F-Aktinfasern in CRP4 WT VSMCs im Vergleich zu den CRP4-defizienten Zellen an (Abb. 4.2C). Dies impliziert, dass CRP4 an der Ausbildung der Stressfasern und somit auch an Adhäsions- und Migrationsvorgängen in VSMCs beteiligt sein könnte.

Abbildung 4.2: Expression kontraktiler und zytoskelettaler Proteine in isolierten P0 VSMCs Die quantitative Bestimmung der relativen mRNA-Expression verschiedener kontraktiler Markerproteine und Interaktoren des Zytoskeletts mittels qRT-PCR zeigte keine CRP4-abhängigen Unterschiede. (A) α-SMA, SMMHC, Calponin, Transgelin, sowie (B) FAK, Zyxin und Vimentin wurden hierbei auf den internen Standard HPRT normalisiert (n=6/Genotyp). Die Ergebnisse wurden als Mittelwerte ±SEM dargestellt. (C) IF-Färbungen von filamentösem Aktin (F-Aktin) in P0 VSMCs deuteten auf eine höhere Stressfaserausbildung in CRP4 WT im Gegensatz zu CRP4 KO Mäusen hin. Die F-Aktinfasern wurden mittels Phallotoxin (grün) detektiert, die Kernfärbung wurde mit Hoechst (blau) durchgeführt.

4.2.2 Regulation der Migration in glatten Muskelzellen

Um eine mögliche Beteiligung von CRP4 an der Regulation der VSMC-Migration zu analysieren, wurde ein modifizierter Wundheilungs-Assay (siehe 3.3.2) mit Hilfe eines herausnehmbaren Silikoneinsatzes anhand von P0 Zellen durchgeführt. Hierbei konnte festgestellt werden, dass die CRP4 WT VSMCs nach 24 h und 48 h signifikant schneller in den zellfreien Bereich migrierten als die CRP4-defizienten Zellen (Abb. 4.3A, B). Dieser Unterschied in der Migration ließ sich nur zu den frühen Zeitpunkten (24 h und 48 h nach der Entfernung des zellfreien Stegs) beobachten, zu denen vor allem Adhäsions- und Migrationsvorgänge dominieren. Zu einem späteren Zeitpunkt (72 h nach der Entfernung des Inserts) waren keine genotypspezifischen Unterschiede mehr zu erkennen (Abb. 4.3A, B). Dies könnte damit zusammenhängen, dass das zu diesem Zeitpunkt wahrscheinlich vorherrschende Proliferationsgeschehen das Migrationsgeschehen maskiert. Zur weiteren Untersuchung der Migrationsregulation durch CRP4 wurde die Expression von Integrin β_3 (ITGB3) in ganzen Aortenlysaten analysiert. Integrin β_3 wird in hohem Maße in VSMCs exprimiert und es ist bereits bekannt, dass es eine Rolle bei der Regulation der VSMC-Adhäsion und -Migration spielt (Kappert et al., 2001; Panda et al., 1997). ITGB3 bildet zusammen mit α_V Integrin heterodimere, transmembranäre Komplexe, welche eine Verbindung zwischen der ECM und dem Zytoskelett darstellen. Interessanterweise konnte eine niedrigere ITGB3-Expression in CRP4 KO Aorten im Vergleich zu CRP4 WT Aorten detektiert werden (Abb. 4.3C, D). Dies impliziert eine CRP4-abhängige Aktivierung des Integrin β_3 -Signalwegs, was letztlich zu einer Stimulation des Migrationsverhaltens der P0 VSMCs führt.

Abbildung 4.3: Migration in kontraktilen P0 VSMCs und Integrin β₃-Expression in Aorten

(A) Mit Hilfe von speziellen Silikoneinsätzen wurde ein modifizierter Wundheilungs-Assay mit P0 VSMCs von CRP4 WT und KO Mäusen durchgeführt. Die Zellen wurden alle 24 h über einen Zeitraum von 72 h nach Entfernen des Silikonstegs lichtmikroskopisch beobachtet. (B) Der zellfreie Bereich wurde mittels der Software AxioVision Rel.4.8 quantifiziert. Transient war eine erhöhte Migration in CRP4 WT P0 VSMCs festzustellen (n=4/Genotyp, *p<0,05). (C,D) Die relative Integrin β_3 -Expression war infolge der CRP4-Ablation signifikant reduziert und wurde mittels WB-Analysen von ganzen Aortenlysaten quantifiziert. *Heat shock protein 60* (HSP60) diente als Ladungskontrolle (n=6/Genotyp, *p<0,01). Alle Ergebnisse wurden als Mittelwerte ±SEM dargestellt. Die Signifikanzen wurden mittels dem zweiseitigen Student t-test ermittelt. Modifiziert nach (Längst et al., 2022).

4.3 CRP4 als potentielles Substrat der glattmuskulären cGKI

Im Gastrointestinaltrakt (Huber et al., 2000), im Rückenmark (Schmidtko et al., 2008) und in glattmuskulären Zelllinien (Zhang et al., 2007) konnte CRP4 bereits als Substrat der cGKI identifiziert werden. CRP4 wird dabei an Ser104 der RKTS-Sequenz cGMP/cGKI-abhängig phosphoryliert. Die nachfolgenden Experimente dienten der Verifizierung dieser Befunde in

CRP4 WT und KO Aorten und primären VSMCs und der Analyse der Bedeutung von CRP4 innerhalb des NO/cGMP/cGKI-Signalwegs im vaskulären System. Ein Teil der entsprechenden Daten (4.3.1, 4.3.3, 4.4.1 - 4.4.4) wurde kürzlich veröffentlicht (Längst et al., 2021).

4.3.1 CRP4-abhängige Expression von NO-GC/cGKI

Zunächst wurden unterschiedliche Komponenten des NO/cGMP/cGKI-Signalwegs in CRP4profizienten und -defizienten Aorten und isolierten VSMCs untersucht.. Hierbei war die essentielle β_1 -Untereinheit der NO-GC (NO-GC β_1) mittels IF-Färbungen im Zytosol von PO VSMCs detektierbar (Abb. 4.4A). Obwohl eine direkte Co-Lokalisation aufgrund der identischen Primär-AK-Spezies nicht möglich war, deuten die Ergebnisse der Färbung auf eine intrazelluläre Co-Lokalisation der NO-GCβ₁ mit CRP4 hin (Abb. 4.4D). Die Auswertung der Expressionsanalyse von Zell-Lysaten mittels WB impliziert dabei eine signifikante Reduktion der NO-GC_{β1}-Level in CRP4-defizienten VSMCs. Dieser Expressionsunterschied war unabhängig von der Stimulation der Zellen mit dem membranpermeablen cGMP-Analogon 8-Br-cGMP (Abb. 4.4B, C). Die nachfolgende Expressionsuntersuchung der cGKI mittels IF-Färbungen von Kryoschnitten der Aorta zeigte, dass das Expressionsmuster, welches sich vor allem auf die Tunica media begrenzt (Weinmeister et al., 2008), mit dem von CRP4 (siehe Abb. 4.1) weitestgehend übereinstimmt (Abb. 4.4D). Darüber hinaus deutete die zytosolische Lokalisation der cGKI in isolierten P0 VSMCs auf eine Co-Lokalisation mit CRP4 hin (Abb. 4.4D). Interessanterweise erschien die cGKI-Abundanz in CRP4 KO Aorten dabei im Vergleich zu WT Aorten reduziert zu sein. Dies konnte mittels WB-Analysen von ganzen Aortenlysaten bestätigt und guantitativ erfasst werden (Abb. 4.4E, F). Nach der Isolierung und Kultivierung der Zellen (P0) waren die zuvor identifizierten Expressionsunterschiede allerdings nicht mehr nachweisbar. Sowohl gRT-PCR- als auch WB-Analysen von P0 VSMCs zeigten dementsprechend keine genotypspezifischen Unterschiede für cGKI (Abb. 4.4G-I). Generell hatte auch die 30-minütige Stimulation der Zellen mit 8-Br-cGMP keinen Effekt auf die cGKI-Expressionslevel in VSMCs (Abb. 4.4H, I).

Abbildung 4.4: CRP4-abhängige NO-GCβ1- und cGKI-Expression im vaskulären System

(**A**,**D**) IF-Färbungen von Aortenschnitten und P0 VSMCs von CRP4 WT und KO Mäusen wurden zur Analyse der CRP4-abhängigen Lokalisation der β1-Untereinheit der NO-GC (rot) und der cGKI (rot) durchführt. Die Zellkerne wurden mit Hoechst (blau) visualisiert. (**B**, **C**) WB-Analysen der NO-GCβ1-Expression wurden in isolierten VSMCs ±cGMP-Analogon 8-Br-cGMP [1 mM] durchgeführt. CRP4defiziente VSMCs wiesen unabhängig von der 8-Br-cGMP-Stimulation geringere Expressionslevel auf. GAPDH diente hierbei als Ladungskontrolle (n=6-8/Genotyp, **p<0,01, *p<0,05, 2-way ANOVA, Holm-Šídák's multiple comparisons test). (**E**, **F**) Die Proteinexpression der cGKI war in Aorten CRP4defizienter Mäuse ebenfalls reduziert, (**H**, **I**) während in isolierten VSMCs (P0) keine cGKI-Expressionsunterschiede zwischen CRP4 WT und KO ±8-Br-cGMP [1 mM] detektiert werden konnten. HSP60 (Aorten) und GAPDH (VSMC) dienten als Ladungskontrollen (n=6-8/Genotyp, ***p<0,001, zweiseitiger Student t-test). (**G**) Die mRNA-Expression der cGKI, in isolierten VSMCs (P0) mittels qRT-PCR ermittelt, war ebenfalls unverändert. Als interner Standard diente HPRT. Alle Ergebnisse wurden als Mittelwert ±SEM dargestellt. Modifiziert nach (Längst et al., 2021).
4.3.2 Effekte von cGMP auf die subzelluläre CRP4-Lokalisation

Zhang et al. konnte unter Verwendung einer glattmuskulären Zelllinie zeigen, dass CRP4 cGMP-abhängig im Zellkern mit Transkriptionsfaktoren (SRF, GATA6) interagiert, um so die Transkription glattmuskelspezifischer Gene zu regulieren (Zhang et al., 2007). Um die nukleäre Expression von CRP4 auch in den primären VSMCs von CRP4 WT und KO Mäusen verifizieren zu können, wurden unterschiedliche intrazelluläre Fraktionen (Zytosol, Membran/Organellen, Zellkern und Zytoskelett) der VSMCs generiert (siehe 3.5.1.3) und mittels WB analysiert (Abb. 4.5A). Unter basalen Bedingungen wurde CRP4 vor allem im zytoskelettalen Kompartiment und in etwas geringerer Menge im Zvtosol, an Membranen/Organellen und im Zellkern detektiert (Abb. 4.5A, B). Im Einklang mit der Studie von Zhang et al. war in der nukleären Fraktion keine signifikante Veränderung der CRP4-Expression nach 24 h Stimulation mit 8-Br-cGMP zu beobachten (Abb. 4.5A, B). Im Zytosol und am Zytoskelett waren die CRP4-Level nach 8-Br-cGMP-Stimulation ebenfalls unverändert. Lediglich in der Membran/Organellen-Proteinfraktion zeigte sich nach 8-BrcGMP-Stimulation ein signifikanter Anstieg der CRP4-Signale (Abb. 4.5A, B). Diese Ergebnisse deuten darauf hin, dass CRP4 durch cGMP primär an die membranösen Bestandteile und Organellen der VSMCs transloziert wird. In den CRP4 KO VSMC-Lysaten war das CRP4 Protein erwartungsgemäß nicht nachweisbar (Abb. 4.5A).

Abbildung 4.5: Charakterisierung der CRP4-Lokalisation in subzellulären Kompartimenten ±8-Br-cGMP

Vor der Fraktionierung der Zellbestandteile mit Hilfe des ProteoExtract® Subcellular Proteome kits wurden die P0 VSMCs ±8-Br-cGMP [1 mM] 24 h im serumfreien Medium kultiviert. (**A**) Die einzelnen Fraktionen der P0 VSMCs aus CRP4 WT und KO Mäusen wurden anschließend mittels WB analysiert und (**B**) quantifiziert. Als Ladungskontrollen dienten GAPDH (Zytosol und Membran/Organellen), Lamin A/C (Nukleus) und Vimentin (Zytoskelett) (n=4/Genotyp, *p<0,05, zweiseitiger Student t-test). Die Ergebnisse wurden als Mittelwerte ±SEM dargestellt.

4.3.3 CRP4-Status und Aktivität des cGMP/cGKI-Signalwegs

Als mögliche Ursache für die in CRP4-defizienten Aorten beobachtete Reduktion der cGKI-Expression, sowie für die in CRP4 KO VSMCs nachgewiesene Depletion der NO-GC β_1 -Expression (Abb. 4.4) wurde als nächstes die Aktivität von cGMP/cGKI betrachtet. Hierzu wurden die cGMP-abhängigen Phosphorylierungslevel von VASP in CRP4 WT und KO P0 VSMCs analysiert. VASP ist ein ubiquitär exprimiertes Substrat der cGKI (Smolenski et al., 1998; Weinmeister et al., 2008) und wird durch die Kinase spezifisch an Ser239 phosphoryliert, wodurch es auch als Biomarker für die intrazelluläre Aktivität von cGMP/cGKI geeignet ist.

Abbildung 4.6: VASP-Phosphorylierungslevel als Biomarker für die cGKI-Aktivität

(A) WB-Analysen von VASP und phospho-VASP (pVASP^{Ser239}) in CRP4 WT und KO P0 VSMCs ±30 min 8-Br-cGMP-Stimulation [1 mM]. GAPDH diente als Ladungskontrolle. (B) Basierend auf dem pVASP^{Ser239}/VASP-Verhältnis wurde eine Quantifizierung der Proben in (A) vorgenommen. Dabei wurde die Intensität der Banden auf unstimulierte VSMCs normalisiert (n=6/Genotyp, **p<0,01, zweiseitiger Student t-test). Es sind die Mittelwerte ±SEM gezeigt. (C) IF-Färbungen von VASP (rot) in P0 VSMCs unter basalen Bedingungen und nach 8-Br-cGMP-Stimulation [1 mM]. Die Zellkerne wurden mittels Hoechst (blau) gefärbt. Die Abbildung wurde modifiziert nach (Längst et al., 2021).

Die WB-Analysen zeigten nach 8-Br-cGMP-Stimulation einen signifikanten Anstieg der Ser239 Phosphorylierungslevel von VASP (pVASP^{Ser239}) in den CRP4 KO im Vergleich zu WT VSMCs (Abb. 4.6A, B). Dies lässt auf eine erhöhte cGMP/cGKI-Aktivität in CRP4-defizienten VSMCs schließen und impliziert, dass die Aktivität von cGMP/cGKI CRP4-abhängig moduliert wird. Ergänzende IF-Färbungen von VSMCs deuten zudem auf eine stärkere Lokalisation von VASP an den fokalen Adhäsionen in CRP4 KO VSMCs nach 8-Br-cGMP Stimulation hin, wohingegen unter basalen Bedingungen keine genotypspezifischen Unterschiede im VASP-Lokalisationsmuster erkennbar waren (Abb. 4.6C).

Da VASP über eine Regulation der F-Aktin-Polymerisierung (Benz et al., 2009; Gerthoffer, 2007) eine Rolle bei der Migration glatter Muskelzellen spielt, wurde im Folgenden das Migrationsverhalten der VSMCs betrachtet. Im CRP4 KO zeigte sich nach 8-Br-cGMP-Stimulation eine signifikant höhere Migration der P0 VSMCs als bei unstimuliert belassenen VSMCs (Anhang Abb. 7.1A). Interessanterweise hatte die 8-Br-cGMP-Stimulation dagegen nur einen geringfügigen Effekt auf die Migration der CRP4 WT VSMCs (Anhang Abb. 7.1A). Neben der erhöhten Migration ließ sich nach 8-Br-cGMP-Stimulation auch ein geringeres Caldesmon mRNA-Expressionslevel im CRP4 KO feststellen (Anhang Abb. 7.1B). Caldesmon ist ebenfalls an der vaskulären Regulation von Migrationsprozessen beteiligt und könnte durch CRP4 in seiner Funktion beeinflusst sein (Yokouchi et al., 2006).

Diese Versuche unterstützen die These, dass CRP4 auch in VSMCs ein Substrat des NO/cGMP/cGKI-Signalwegs ist und entweder durch die Phosphorylierung an Ser104 (oder über andere unbekannte Mechanismen) mit cGMP/cGKI interagiert. Durch die Depletion von funktionalem CRP4 wird der cGMP/cGKI-Signalweg wahrscheinlich auf unterschiedlichen Ebenen beeinflusst. Das resultiert möglicherweise in einer überschießenden cGKI-Aktivität, die nur unzureichend durch geringere NO-GC- und cGKI-Expressionslevel ausgeglichen wird.

4.4 cGMP/CRP4-abhängige Regulation des Vasotonus und Blutdrucks

Der NO/cGMP/cGKI-Signalweg spielt eine bedeutende Rolle bei der homöostatischen Regulation des vaskulären Systems (Sausbier et al., 2000). Eine Erhöhung des vaskulären cGMP führt dabei zu einer Vasorelaxation und einer Senkung des Blutdrucks. Die cGKI wurde als wichtigster Mediator der cGMP-vermittelten gefäßregulierenden Effekte identifiziert (Münzel et al., 2003; Pfeifer et al., 1998; Schlossmann & Desch, 2011; Surks et al., 1999). Da CRP4 in den vorangegangenen Versuchen als vaskuläres Substrat der cGKI verifiziert werden konnte, sollte im Folgenden auch die potentielle Bedeutung von CRP4 für die Regulation des Vasotonus und folglich auch des Blutdrucks eruiert werden.

4.4.1 CRP4 beeinflusst NO/cGMP/cGKI-modulierte [Ca²⁺]_i-Signale in primären VSMCs

Die cGMP-vermittelte Vasorelaxation umfasst unter anderem auch die Suppression der durch Agonisten induzierten zytoplasmatischen freien Ca²⁺-Akkumulation in VSMCs (Pfeifer et al.,

1998; Sausbier et al., 2000; Schlossmann et al., 2000). Mit den folgenden Experimenten wurde analysiert, ob CRP4 als Komponente des NO/cGMP/cGKI-Signalwegs an der Unterdrückung des NA-induzierten Ca²⁺-Transienten beteiligt ist. Hierzu wurden Fura-2 AM-basierte Ca²⁺-Messungen (Feil et al., 2002) an P0 VSMCs aus CRP4 WT und KO Mäusen durchgeführt. Die Stimulation mit dem α_1 -adrenergen Rezeptoragonisten NA, führte zu einem Ca²⁺-Einstrom in die Zelle, sowie zur Freisetzung von Ca²⁺ aus dem ER, was als [Ca²⁺]_i-Transient ratiometrisch mittels Fura-2 AM messbar ist.

Abbildung 4.7: Ca²⁺-Messungen in P0 VSMCs nach 8-Br-cGMP Stimulation

In CRP4 WT und KO P0 VSMCs wurden ratiometrische Fura-2 AM Ca²⁺-Messungen durchgeführt. (**A**,**B**) Nach dem ersten [Ca²⁺]_i-Peak, ausgelöst durch Noradrenalin (NA), erfolgte eine 20-minütige Auswaschphase bevor für 5 min mit 8-Br-cGMP [1 mM] superfundiert wurde. Anschließend wurde durch NA ein weiteres [Ca²⁺]_i-Signal ausgelöst. (**C**,**D**) Zur Auswertung wurde das Verhältnis der maximalen Peakhöhe und die *area under the curve* (AUC) des zweiten und ersten Peaks gebildet. Die Reduktion der entsprechenden [Ca²⁺]_i-Parameter war nur im CRP4 WT in beiden Fällen signifikant. Auch die prozentuale Reduktion der maximalen Peakhöhe im CRP4 WT vs. KO erreichte dabei das Signifikanzniveau. Die Ergebnisse zeigen Mittelwerte ±SEM (n=3 mit 8-9 Zellen/Genotyp, *p<0,05, ***p<0,001, 2-way ANOVA, Bonferroni's (**C**) und Tukey (**D**) multiple comparisons test). Die Messungen wurden in Zusammenarbeit mit Felicia Kleusberg im Rahmen ihrer Bachelorarbeit durchgeführt (Kleusberg, 2019). Die Abbildung wurde modifiziert nach (Längst et al., 2021).

Nach einer 20-minütigen Auswaschphase wurde zunächst mit 8-Br-cGMP präinkubiert, bevor durch erneute NA-Stimulation der zweite [Ca²⁺]_i-Transient ausgelöst wurde. In beiden Genotypen wurden im Vergleich zum ersten Peak signifikant niedrigere [Ca²⁺]_i-Transienten gemessen (Abb. 4.7A-C). Allerdings fiel die Reduktion der Peakhöhe in den CRP4 WT Zellen signifikant größer aus als in den CRP4 KO VSMCs (Abb. 4.7A-C). Auch bei der Auswertung der AUC konnte eine deutliche Reduktion der NA-induzierten [Ca²⁺]_i-Signale nach 8-Br-cGMP-Stimulation festgestellt werden, die allerdings nur im CRP4 WT signifikant war (Abb. 4.7D).

Hierbei waren genotypspezifische Unterschiede erkennbar, die jedoch nicht das statistische Signifikanzniveau erreichten (Abb. 4.7D). Die Ergebnisse deuten darauf hin, dass CRP4, vermutlich cGKI-vermittelt, an der Reduktion des NA-induzierten [Ca²⁺]_i-Peaks durch 8-Br-cGMP beteiligt ist (Feil et al., 2002; Kai et al., 1987).

Nachfolgend wurde untersucht, ob der CRP4-abhängige Effekt auf die NA-induzierten [Ca²⁺]_i-Transienten auch durch endogen produziertes cGMP vermittelt wird. Dazu wurden die VSMCs zunächst mit dem NO-Donator DEA/NO stimuliert. DEA-NO setzt NO mit einer Halbwertszeit von 2 min schnell frei und stimuliert die intrazelluläre NO-GC zur cGMP-Generierung. Analog zu den vorherigen Experimenten (Abb. 4.7) wurden die [Ca²⁺]_i-Transienten nach einer DEA/NO-Prä-Inkubation und erneuten NA-Stimulation untersucht und die Werte jeweils auf die Level des primären Peaks bezogen (Abb. 4.8).

Abbildung 4.8: Ca²⁺-Messungen in P0 VSMCs nach DEA/NO-Stimulation

In CRP4 WT und KO P0 VSMCs wurden ratiometrische Fura-2 AM Ca²⁺-Messungen durchgeführt. (**A**,**B**) Nach dem ersten [Ca²⁺]_i-Peak, ausgelöst durch NA, erfolgte eine 20-minütige Auswaschphase bevor für 5 min der NO-Donator DEA/NO [10 µM] superfundiert wurde. Anschließend erfolgte der zweite NA-induzierte [Ca²⁺]_i-Peak. (**C**,**D**) Die Peakhöhe war in beiden Genotypen DEA/NO-sensitiv, jedoch war der Effekt auf deren prozentuale Reduktion signifikant ausgeprägter im CRP4 WT vs. KO VSMCs. Bei der Auswertung wurden die Peakhöhe und die AUC des zweiten Peaks, jeweils auf die des ersten Peaks normiert. Die Ergebnisse zeigen Mittelwerte ±SEM (n=5-6 (9-11 Zellen)/Genotyp, *p<0,05, ***p<0,001, 2-way ANOVA, Bonferroni's multiple comparisons test). Die Messungen wurden in Zusammenarbeit mit Felicia Kleusberg durchgeführt (Kleusberg, 2019) und die Abbildung wurde nach (Längst et al., 2021) modifiziert.

Auch bei diesen Experimenten zeigte sich eine signifikante Reduktion der Peakhöhe nach DEA/NO-Inkubation in beiden Genotypen (Abb. 4.8A-C). In Übereinstimmung mit den Ergebnissen nach 8-Br-cGMP-Stimulation führte auch die DEA/NO-Behandlung zu einer

signifikant höheren Reduktion der [Ca²⁺]_i-Transienten in Gegenwart von CRP4 im Vergleich zu CRP4-defizienten VSMCs (Abb. 4.8A-C). Dies bestätigt, dass auch die von endogenem cGMP hervorgerufenen Effekte auf die NA-induzierten [Ca²⁺]_i-Signale CRP4-abhängig sind. Darüber hinaus wurde infolge der DEA/NO-Applikation in beiden Genotypen eine Reduktion der AUC beobachtet. Dieser Effekt war allerdings nur im CRP4 WT statistisch signifikant (Abb. 4.8D).

Abbildung 4.9: Ca²⁺-Messungen in P0 VSMCs nach Cinaciguat-Stimulation

In CRP4 WT und KO P0 VSMCs wurden ratiometrische Fura-2 AM Ca²⁺-Messungen durchgeführt. (**A**,**B**) Nach dem ersten [Ca²⁺]_i-Peak, ausgelöst durch NA, erfolgte eine 20-minütige Auswaschphase bevor für 5 min der NO-GC-Aktivator Cinaciguat [25 nM] superfundiert wurde. Anschließend wurde erneut ein NA-induziertes [Ca²⁺]_i-Signal ausgelöst. (**C**,**D**) Die Peakhöhe war hierbei unabhängig vom Genotyp Cinaciguat-sensitiv wohingegen keine Effekte der entsprechenden Prä-Inkubation auf die AUC erkennbar waren. Bei der Auswertung wurden die Peakhöhe und die AUC des zweiten Peaks jeweils auf die des ersten Peaks normiert. Die Ergebnisse zeigen Mittelwerte ±SEM (n=3 (5-7 Zellen)/Genotyp, *p<0,05, 2-way ANOVA, Holm-Šídák's multiple comparisons test). Die Messungen wurden in Zusammenarbeit mit Felicia Kleusberg im Rahmen ihrer Bachelorarbeit durchgeführt (Kleusberg, 2019). Die Abbildung wurde modifiziert nach (Längst et al., 2021).

Konträre Ergebnisse lieferten die Experimente zur Untersuchung der NO-GC-Aktivierung mittels Cinaciguat. Hierbei handelt es sich um einen NO-GC-Aktivator, der auch die (eigentlich) dysfunktionale, Häm-freie NO-GC zur cGMP-Bildung anregt (Chester et al., 2009). Cinaciguat führte ebenfalls zu einer Reduktion der Peakhöhe des NA-vermittelten [Ca²⁺]_i-Transienten, allerdings war dieser Effekt unabhängig vom Genotyp der VSMCs (Abb. 4.9A-C). Die Quantifizierung der AUC ergab eine leichte Cinaciguat-vermittelte Reduktion der [Ca²⁺]_i-Signale, die in CRP4 WT und KO VSMCs statistisch nicht signifikant unterschiedlich ausfiel (Abb. 4.9D). Diese Versuche implizieren, dass Cinaciguat CRP4-unabhängige Effekte auf die NA-induzierten [Ca²⁺]_i-Transienten hat. Denkbar ist auch, dass die Cinaciguat-vermittelten

Effekte auf die Häm-freie NO-GC/cGMP-Generierung vom CRP4-Status der VSMCs abhängig sind, was in den nachfolgenden Experimenten (siehe 4.4.2) näher untersucht wurde.

4.4.2 CRP4 moduliert die cGMP-Generierung in VSMCs

Um zu ermitteln, ob die cGMP-Bildung bzw. der -Abbau in VSMCs durch CRP4 reguliert werden, wurden diese zunächst unter basalen Bedingungen mittels eines kompetitiven ELISA-Assays (siehe 3.3.5) analysiert. Für die Durchführung des Assays wurden aufgrund der benötigten großen Zellzahl (2x 10⁶ Zellen/Kondition) passagierte P10 - 15 VSMCs aus CRP4 WT und KO Mäusen verwendet. Unter basalen Bedingungen zeigte sich kein genotypspezifischer Unterschied im cGMP-Gehalt der VSMCs (Abb. 4.10A). Nach Cinaciguatbzw. Riociguat-vermittelter Aktivierung bzw. Stimulation der NO-GC war der cGMP-Gehalt der CRP4 KO Proben im Vergleich zum CRP4 WT signifikant erhöht (Abb. 4.10B, C). Da das im ELISA-Assay gemessene cGMP unter anderem durch cGMP-abbauende PDEs begrenzt wird (Rybalkin et al., 2002; Rybalkin et al., 2003; Zhang L et al., 2019), könnten die deutlich höheren cGMP-Konzentrationen darauf hindeuten, dass die Aktivität der cGMP-degradierenden PDEs bei CRP4-Ablation verändert ist. Entsprechend führte die Hemmung der PDEs mit dem pan-Inhibitor IBMX zu einer Nivellierung der Unterschiede in der cGMP-Freisetzung zwischen CRP4 WT und KO VSMCs (Abb. 4.10B, C). Demnach führt die Stimulation des NO-GC/cGMP-Signalwegs CRP4-abhängig zu einer IBMX-sensitiven Reduktion der cGMP-degradierenden PDE-Aktivität. Zur Verifizierung und weiteren Analyse dieser Hypothese wurde die Expression des PDE Isoenzyms 5 (PDE5) in Aorten und isolierten P0 VSMCs in Abhängigkeit von CRP4 betrachtet. Es ist bereits bekannt, dass die PDE5 zu den wichtigsten cGMP-hydrolysierenden Enzymen in VSMCs gehören, deren Aktivität durch höhere cGMP-Level gesteigert werden kann (Rybalkin et al., 2002; Yan et al., 2003). In Aortenlysaten war mit PDE5-spezifischen AKs kein Expressionsunterschied zwischen CRP4 WT und KO Mäusen darstellbar (Abb. 4.10D, E). Nach Stimulation der P0 VSMCs mit dem cGMP-Analogon 8-Br-cGMP konnte allerdings eine signifikant reduzierte PDE5-Expression in den CRP4-defizienten VSMCs detektiert werden (Abb. 4.10D, F). Dabei wurden die Expressionslevel der stimulierten Proteinlysate auf basale, unstimulierte Proteinlysate normiert.

Zusammenfassend lässt sich feststellen, dass CRP4 keinen Einfluss auf die basale cGMP-Bildung und -Degradierung hat. Bei Aktivierung des NO/cGMP-Signalwegs zeigten sich IBMXsensitive Unterschiede im cGMP-Gehalt der CRP4 WT vs. KO VSMCs. Ursächlich hierfür könnten die basal, sowie nach 8-Br-cGMP-Stimulation beobachteten PDE5-Expressionslevel sein. Generell scheint die Deletion von CRP4 zu einer verminderten cGMP-Degradation durch glattmuskuläre PDEs zu führen.

Abbildung 4.10: CRP4-abhängige cGMP-Generierung in VSMCs nach NO-GC-Aktivierung

(A) Basale cGMP-Konzentrationsmessungen wurden mit Hilfe eines kompetitiven ELISA-Assays in P10 - 15 CRP4 WT und KO VSMCs durchgeführt und wiesen keine genotypspezifischen Unterschiede auf. (**B**, **C**) Nach Inkubation der Zellen mit dem NO-GC-Aktivator Cinaciguat [25 nM] bzw. dem NO-GC-Stimulator Riociguat [10 μ M] nahm der cGMP-Gehalt zu, wobei der Anstieg in CRP4-defizienten VSMCs signifikant höher ausfiel. Diese Experimente wurden in An- oder Abwesenheit des unspezifischen Phosphodiesterase (PDE)-Inhibitors 3-IsobutyI-1-methylxanthin (IBMX) [200 μ M] durchgeführt. Die IBMX-Behandlung resultierte in einer Nivellierung der genotypspezifischen Unterschiede nach NO-GC-Aktivierung bzw. -Stimulation (n=3-4/Genotyp, *p<0,05, ***p<0,001, zweiseitiger Student t-test). (**D**, **E**) WB-Analysen der PDE5 wurden in ganzen Aortenlysaten und in (**D**, **F**) Zell-Lysaten von P0 VSMCs in Abhängigkeit einer 30-minütigen 8-Br-cGMP [1 mM]-Stimulation durchgeführt. Die geringeren PDE5-Expressionslevel in CRP4 KO VSMCs nach 8-Br-cGMP-Stimulation weisen auf eine geringere Aktivität der PDE5 bei Abwesenheit von CRP4 hin (n (Aorten)=4/Genotyp, n (VSMCs)=6-7/Genotyp, *p<0,05, zweiseitiger Student t-test). Alle Ergebnisse wurden als Mittelwerte ±SEM dargestellt. Die Abbildung wurde modifiziert nach (Längst et al., 2021).

4.4.3 Die cGMP-abhängige Relaxation von Aorten wird durch CRP4 reguliert

Die Messungen der [Ca²⁺]_i-Transienten in primären VSMCs (Abb. 4.7, 4.8, 4.9) weisen darauf hin, dass CRP4 an der Suppression der Agonist-induzierten [Ca²⁺]_i-Signale durch den NO/cGMP/cGKI-Signalweg beteiligt ist. Dies führt zu der Annahme, dass CRP4 auch den Vasotonus in Aorten in Abhängigkeit des NO/cGMP/cGKI-Signalwegs beeinflussen könnte. Um dies zu untersuchen, wurden in Kooperation mit der AG Prof. Dr. Tanja Zeller, Universitätsklinikum Hamburg-Eppendorf, Kontraktions- und Relaxationsexperimente anhand von CRP4 WT und KO Aortenringen im Organbad durchgeführt. Zunächst konnte mit Hilfe von Prostaglandin $F_{2\alpha}$ (PGF_{2α}) eine maximale Kontraktion der Aortenringe erreicht werden. Diese maximale Kontraktion, berechnet als delta (Δ) aus der Differenz der basalen und maximalen Kontraktionswerte, war in CRP4 KO Aortenringen signifikant niedriger als in CRP4 WT Aorten (Abb. 4.11A). In Aortenringen von CRP4 KO Mäusen konnte eine signifikant höhere prozentuale Relaxation, bezogen auf die maximale Kontraktion, detektiert werden (Abb. 4.11B-D). Dieser genotypspezifische Unterschied war nach der Stimulation mit Carbachol (Abb. 4.11D) am stärksten, während nach Zugabe des NO-GC-Aktivators Cinaciguat oder des NO-Donators Glyceroltrinitrat (GTN) nur geringe CRP4-abhängige Relaxationskomponenten zu sehen waren, die auch nur bei höheren Cinaciguat- und GTN-Konzentrationen signifikant wurden (Abb. 4.11B, C).

Abbildung 4.11: CRP4-abhängige Kontraktion und Relaxationsvorgänge in Aortenringen.

Die Kontraktions- und Relaxationsexperimente wurden mit Aortenringen aus CRP4 WT und KO Mäusen in einem Organbad durchgeführt. (A) Dabei fiel die maximale Prostaglandin F_{2α}-induzierte Kontraktion der CRP4 WT Aortenringe signifikant höher aus als die der KO Aortenringe (n=8-12/Genotyp, *p<0,05, zweiseitiger Student t-test). (B-D) Anschließend wurde die Dosisabhängige Relaxation der Aortenringe nach einer Prä-Kontraktion mit PGF_{2a} durch (B) Cinaciguat [0,1 nM -1 µM], (C) Glyceroltrinitrat (GTN) [1 nM - 10 mM] und (D) Carbachol [1 nM - 10 mM] untersucht. Die Relaxation wurde hierbei prozentual zur maximalen Kontraktion der jeweiligen Aortenringe berechnet. Insgesamt konnte in CRP4-defizienten Aortenringen ein höheres Relaxationsvermögen festgestellt werden, das durch die Stimulation mit Carbachol am deutlichsten ausfiel. Alle Ergebnisse sind als Mittelwerte ±SEM dargestellt (n (Cinaciguat)=4/Genotyp, n (GTN)=5-6/Genotyp, n (Carbachol)=6-9/Genotyp, *p<0,05, **p<0,01, 2-way ANOVA mit Messwiederholung, uncorrected Fisher's LSD multiple comparisons test). Die Experimente wurden am Universitätsklinikum Hamburg-Eppendorf von Dr. Olga Schweigert (Arbeitsgruppe Prof. Tanja Zeller) durchgeführt. Die Abbildung wurde nach (Längst et al., 2021) modifiziert.

Diese *in vitro* Ergebnisse weisen darauf hin, dass die NO/cGMP/cGKI-induzierte Vasorelaxation von CRP4, möglicherweise im Sinne eines negativen Feedbacks, moduliert wird, was letztlich eine überschießende vasorelaxierende Reaktion verhindert. Auf den ersten

Blick scheinen diese Ergebnisse mit den Daten aus den Ca²⁺-Messungen im Konflikt zu stehen. Aufgrund der verstärkten Unterdrückung der vasokonstriktiven [Ca²⁺]_i-Signale durch cGMP/CRP4 wäre eigentlich ein höheres Relaxationsvermögen der WT Aorten zu erwarten gewesen. Allerdings bestimmen neben Ca²⁺-abhängigen auch Ca²⁺-unabhängige Mechanismen die VSMC Relaxation und Kontraktion. Hierbei spielen die Ca²⁺-Sensitivität (kontraktiler) VSMC Proteine, sowie den Muskeltonus bestimmende Signalkaskaden eine Rolle.

Abbildung 4.12: MYPT1- und MLC2-Expression und -Phosphorylierungslevel in P0 VSMCs

WB-Analysen anhand von Zell-Lysaten aus CRP4 WT und KO P0 VSMCs unter basalen Bedingungen. (**A**, **B**) Die relative Proteinexpression von *myosin phosphatase target subunit 1* (MYPT1) und *myosin regulatory light chain* (MLC) 2 in CRP4 WT und CRP4-defizienten P0 VSMCs wiesen eine signifikant höhere MYPT1-Expression in CRP4 KO VSMCs auf, während die MLC2-Expressionslevel unverändert waren (n=9-10/Genotyp für MYPT1, n=6/Genotyp für MLC2, **p<0,01, zweiseitiger Student t-test). (**A**, **C**) Bei der Quantifizierung der relativen Proteinlevel des phosphorylierten MYPT1 (pMYPT1^{Thr696}) und des phosphorylierten MLC2 (pMLC2^{Ser19}) im Verhältnis zum jeweiligen Gesamtprotein zeigten sich signifikant niedrigere Phosphorylierungslevel von pMYPT1^{Thr696} und pMLC2^{Ser19} bei CRP4-Depletion (n=4/Genotyp für pMYPT^{Thr696} und n=6/Genotyp für pMLC2^{Ser19}, *p<0,05, zweiseitiger Student t-test). GAPDH diente als Ladungskontrolle, worauf alle Proteinkonzentrationen normalisiert wurden. Alle Daten sind als Mittelwerte ±SEM angegeben. Die Abbildung wurde modifiziert nach (Längst et al., 2021).

Konkret sind dabei die Expressionslevel, als auch der Phosphorylierungsstatus der regulatorischen Einheit der MLCP (MYPT1), sowie dem MLCP-Substrat MLC2 bedeutsam. Durch die Phosphorylierung der MLC2 an Ser19 (pMLC2^{Ser19}) kommt es zu einer Ca²⁺unabhängigen Kontraktion der VSMCs (Chacko et al., 1977; SOMLYO & SOMLYO, 2003). Eine cGMP-vermittelte Phosphorylierung der MYPT1 an Ser695 (pMYPT1^{Ser695}) hingegen führt zu einer Aktivierung der MLCP (Khatri et al., 2001; Wooldridge et al., 2004) und verhindert zudem die inhibierende Phosphorylierung der MLCP an Thr696 (pMYPT1^{Thr696}). Die daraus resultierende, gesteigerte Aktivität der MLCP führt anschließend zu einer Dephosphorylierung der MLC2 und einer nachfolgenden Relaxation der VSMCs (Nakamura et al., 2007). In Übereinstimmung mit dem geringeren Kontraktionsvermögen der CRP4 KO Aorten zeigte eine Analyse der MYPT1-Proteinexpression signifikant höhere MYPT1-Level in CRP4-defizienten VSMCs (Abb. 4.12A, B). Das basale MLC2-Proteinexpressionsniveau war in P0 VSMCs dagegen nicht unterschiedlich zwischen den Genotypen (Abb. 4.12A, B). Die CRP4-Defizienz war außerdem mit einer signifikant geringeren Thr696-Phosphorylierung der MYPT1 assoziiert (Abb. 4.12A, C), was auf eine Desinhibition der MYPT1 im CRP4 KO hinweist. Infolgedessen war in den CRP4 KO VSMCs auch ein geringeres pMLC2^{Ser19}-Level detektierbar (Abb. 4.12A, C). Zusammenfassend lassen sich durch die geringeren pMLC2^{Ser19}- und pMYPT1^{Thr696}-Level und die höhere MYPT1-Proteinexpression, die verminderte maximale Kontraktion der Aortenringe, sowie die cGMP-vermittelte erhöhte Relaxation in CRP4 KO Mäusen erklären. Dabei scheinen die Effekte von CRP4 auf die Ca²⁺-Sensitivität biologisch relevanter zu sein als die CRP4-abhängige Regulation der [Ca²⁺]_i.

4.4.4 Die Rolle von CRP4 für die Blutdruckregulation durch NO/cGMP/cGKI

Die in vitro ermittelten Kontraktions- und Relaxationsunterschiede zwischen CRP4 WT und KO Aorten weisen darauf hin, dass CRP4 auch an der cGMP-abhängigen Blutdruckregulation beteiligt sein könnte. Um dies zu untersuchen, wurden in vivo telemetrische Blutdruckmessungen in CRP4 WT und KO Mäusen durchgeführt (Lukowski et al., 2010; Straubinger et al., 2017). Zunächst wurden hierzu der basale Blutdruck bestimmt, um die bereits publizierten Befunde einer milden Hypotonie in CRP4 KO Mäusen zu bestätigen (Abb. 4.13A) (Straubinger et al., 2017). Diese Befunde sind kohärent mit dem geringeren Kontraktionsvermögen der CRP4-defizienten Aortenringe im Vergleich zu den WT Aortenringen. Des Weiteren wurden Modulatoren des NO/cGMP/cGKI-Signalwegs eingesetzt, um deren CRP4-abhängigen Effekt auf den Blutdruck zu eruieren. Vorab wurden Kontrollmessungen nach Agua ad inject Injektionen durchgeführt. Dabei konnten keine Unterschiede in den systolischen Blutdruckwerten (SBD) zwischen CRP4 WT und KO Mäusen detektiert werden (Anhang Abb. 7.2). Erwartungsgemäß resultierte aus der i.p.-Applikation des anhaltend NO-GC-Aktivators Cinaciguat ein signifikant niedrigerer SBD. Der blutdrucksenkende Effekte von Cinaciguat setzte mit einer Verzögerung von ca. 15 min ein und war dabei in den CRP4-defizienten Mäusen ausgeprägter als in den CRP4 WT Mäusen (Abb. 4.13B). Im Vergleich dazu folgte auf die SNP- und Carbacholinjektion eine deutlich schnellere und drastischere Blutdrucksenkung. Auch die SNP- und Carbachol-induzierte Blutdrucksenkung war in den CRP4 KO Mäusen signifikant ausgeprägter (Abb. 4.13C, D). Die Auswertung der MAP und diastolischen Blutdruckwerte zeigten ähnliche Verläufe wie die dargestellten SBD, wiesen allerdings weniger signifikante genotypspezifische Unterschiede auf (Daten nicht gezeigt). In Übereinstimmung mit den Relaxationsexperimenten in Aortenringen (Abb. 4.11) lassen die erhobenen Daten darauf schließen, dass CRP4 eine modulierende Rolle bei der cGMP-abhängigen Blutdruckregulation einnimmt und eine Deletion von CRP4 letztlich den NO-GC/cGMP-Signalweg enthemmt. Im Gegensatz hierzu konnten nach der Applikation des NO-Synthase-Inhibitors L-Name keine Unterschiede im Anstieg des

Blutdrucks zwischen CRP4 WT und KO beobachtet werden (Abb. 4.13E). Es ist deshalb anzunehmen, dass die blutdruckregulierende Rolle von CRP4 nur bei intakter endogener NO-Bioverfügbarkeit zum Tragen kommt.

Zusammenfassend scheint CRP4 an der Feinregulierung des NO/cGMP/cGKI-Signalwegs beteiligt zu sein. Dabei vermindert das cGKI-Substrat CRP4 möglichweise überschießende Reaktionen des Signalwegs und fungiert somit im vaskulären System im Sinne einer negativen Rückkopplung als Modulator der Blutdruck-Homöostase.

Abbildung 4.13: Blutdruckmessungen in CRP4 WT und KO Mäusen nach Applikation cGMPstimulierender Substanzen

(A) Basale telemetrische Blutdruckmessungen in CRP4 WT und KO Mäusen in vivo bestätigten die von Straubinger et al. 2017 publizierte Hypotonie in CRP4 KO Mäusen. Es sind die Mittelwerte der systolischen Blutdruckwerte (SBD) ±SEM dargestellt (n=8/Genotyp, *p<0,05, zweiseitiger Student ttest). Die Auswertung der MAP und diastolischen Blutdruckwerte zeigten ähnliche Verläufe wie die SBD, wiesen allerdings weniger signifikante genotypspezifische Unterschiede auf (Daten nicht gezeigt). (B-D). Die systolische Blutdrucksenkung durch (B) Cinaciguat [100 µg/kg Körpergewicht (KG), i.p.], (C) Sodiumnitroprussid (SNP) [2,5 mg/kg KG, i.p.] oder (D) Carbachol [0,5 mg/kg KG, i.p.] wurde für 60 min nach der i.p.-Injektion in CRP4 WT und KO Mäusen erfasst. Alle verwendeten cGMP-Modulatoren induzierten eine mindestens transiente Blutdrucksenkung, die (teilweise) signifikant deutlicher im CRP4 KO vs. WT ausfiel. Verwendete Tierzahlen: n (Cinaciguat)=8/Genotyp, n (SNP)=7-8/Genotyp, n (Carbachol)=5/Genotyp. Statistische Auswertung: *p<0,05, 2-way ANOVA mit Messwiederholung, uncorrected Fisher's LSD multiple comparisons test. (E) Die Substanz L-NAME [100 mg/kg KG, i.p.] wurde verabreicht, um zu untersuchen, inwiefern aus der Inhibition der endogenen NO-Synthasen CRP4-abhängige Blutdruckeffekte resultieren. Während den 60-minütigen Blutdruckmessungen war in beiden Genotypen ein deutlicher Anstieg des SBD detektierbar. Der Anstieg verlief dabei unabhängig vom CRP4-Status der Versuchstiere (n=5-6/Genotyp). Alle Daten sind als Mittelwerte ±SEM dargestellt. Die Blutdruckmessungen wurden gemeinsam mit Dr. Julia Adler (Experimentelle Pharmakologie, Universität Tübingen) durchgeführt und die Abbildung nach (Längst et al., 2021) modifiziert.

4.4.5 Identifikation cGMP-abhängiger CRP4-Interaktionspartner in VSMCs

Um weitere Hinweise zur Bedeutung von CRP4 als Substrat der cGKI in VSMCs zu erlangen, wurde das CRP4-Interaktom (nach 8-Br-cGMP-Stimulation) in VSMCs charakterisiert. Ausgehend von anti-CRP4-AK-basierten Co-IPs aus synthetischen VSMCs, die für 24 h mit 8-Br-cGMP [1 mM] stimuliert wurden, wurden signifikant angereicherte (direkte oder indirekte) Interaktionspartner mittels LC-MS/MS (siehe 3.5.2) identifiziert (Abb. 4.14A, Anhang Tab. 7.1). Neben Zyxin (Zyx), das eine Rolle bei der glattmuskulären Zelladhäsion und phänotypischen Modulation von VSMCs spielt (Ghosh et al., 2015), konnte auch das pro-inflammatorische Substrat vascular cell adhesion molecule 1 (VCAM-1) (Braun et al., 1999) als cGMPabhängiger CRP4-Interaktionspartner detektiert werden (Abb. 4.14A). Zudem wurde eine cGMP-abhängige Interaktion von CRP4 mit dem Cingulin-ähnlichen Protein 1 (Cgnl1), das als Adapterprotein der GTP-GEF die Aktivität der kleinen GTPasen RhoA und Rac1 beeinflusst. beobachtet (Guillemot et al., 2014) (Abb. 4.14A). Von besonderem Interesse war außerdem die Protein-Protein-Interaktion von CRP4 mit Cofilin, welches bei der Aktin-Polymerisierung und somit auch bei der VSMC-Migration von großer Bedeutung ist (Torres et al., 2011; Yang et al., 1998). Die Aktivität von Cofilin wird über die Phosphorylierung des Proteins an Ser3 dual durch die LIMK und die protein phosphatase slingshot homolog 1 (SSH1L) reguliert (Martín et al., 2008). Zur näheren Analyse der Funktion von Cofilin in Abhängigkeit von CRP4 wurden zunächst IF-Färbungen in P0 VSMCs von CRP4 WT und KO Mäusen angefertigt. Diese zeigten eine hohe zytoplasmatische und nukleäre Lokalisation von Cofilin unter basalen Bedingungen (Abb. 4.14B). Durch die Stimulation der VSMCs mit 8-Br-cGMP [1 mM] konnte in den CRP4 WT Zellen eine Translokation des Cofilins vom Zellkern ins Zytoplasma beobachtet werden, während die CRP4-defizienten Zellen auch unter diesen Bedingungen eine hohe nukleäre Cofilin-Expression aufwiesen (Abb. 4.14B). Welche Relevanz eine Translokation von Cofilin hat und ob diese mit dem Phosphorylierungsstatus und somit der noch von Cofilin zusammenhängt, wird aktuell Aktivität kontrovers diskutiert (Andrianantoandro et al., 2006; Nebl et al., 1996). Interessanterweise war das Ausmaß der Cofilin-Phosphorylierung an Ser3 (pCofilin^{Ser3}) nach 8-Br-cGMP-Stimulation in Zell-Lysaten aus CRP4 WT P0 VSMCs im Vergleich zu den entsprechenden KO Proben signifikant reduziert (Abb. 4.14C, E). Des Weiteren resultierte die 8-Br-cGMP-Stimulation in den CPR4defizienten VSMCs im Vergleich zum CRP4 WT in signifikant geringeren Cofilin-Proteinexpressionsleveln (Abb. 4.14C, D).

Abbildung 4.14: Co-IP von CRP4 nach 8-Br-cGMP-Stimulation und Interaktion mit Cofilin

(A) Zur Identifizierung cGMP-abhängiger CRP4-Interaktionspartner wurden Co-Immunpräzipitationen (Co-IP) in synthetischen CRP4 WT und KO P10 - 15 VSMCs durchgeführt. Hierzu wurden die Zellen vor der Co-IP für 24 h mit oder ohne 8-Br-cGMP [1 mM] in serum-freiem Medium inkubiert. Die CRP4-AK-Präzipitate wurden im Anschluss an die Co-IP via LC-MS/MS-Messungen im Proteom-Forschungszentrum für Augenheilkunde des Universitätsklinikums Tübingen (Arbeitsgruppe von Dr. Karsten Boldt) analysiert (n=5/Genotyp und Kondition, zweiseitiger Student t-test, Signifikanz A-test).
(B) IF-Färbungen von Cofilin (rot), das in der Co-IP als CRP4-Interaktionspartner identifiziert werden konnte, implizierten in CRP4 WT VSMCs eine durch 8-Br-cGMP-Stimulation [1 mM]-induzierte Translokation vom Zellkern ins Zytoplasma. Die Zellkerne wurden mittels Hoechst (blau) angefärbt. (C-E) WB-Analyse des Cofilin-Gesamtproteins, sowie der Ser3-Phosphorylierung von Cofilin (pCofilin^{Ser3}). In CRP4-defizienten VSMCs war nach 30-minütiger Stimulation mit 8-Br-cGMP [1 mM] eine niedrigere Cofilin-Gesamtproteinexpression bei höheren pCofilin^{Ser3}-Leveln erkennbar (n=5/Genotyp und Kondition, *p<0,05, **p<0,01, (D) 2-way ANOVA mit Tukey multiple comparisons test, (E) zweiseitiger Student t-test). Alle Ergebnisse sind als Mittelwerte ±SEM dargestellt.

Die Interaktion mit CRP4, sowie die Unterschiede im Phosphorylierungsstatus und der Expression von Cofilin könnten, zusammen mit den Effekten von CRP4 auf den NO-GC/cGMP-Signalweg, letztlich ursächlich für das aberrante (durch 8-Br-cGMP stimulierbare) Migrationsverhalten der CRP4-defizienten VSMCs sein (Anhang Abb. 7.1A).

4.5 Die Rolle von CRP4 bei vaskulo-proliferativen Erkrankungen

Neben den physiologischen Funktionen von CRP4 in Gefäßen wurden im Rahmen dieser Arbeit auch mögliche pathophysiologische Aspekte von CRP4 bei vaskulo-proliferativen Gefäßerkrankungen adressiert. Ein Teil der entsprechenden Daten (4.16 - 4.21, 4.23 - 4.27) wurde kürzlich veröffentlicht (Längst et al., 2022).

4.5.1 In vivo Atherosklerose-Modell

Zur Induktion der atherosklerotischen Plaquebildung wurden CRP4 WT und KO Mäuse auf einem ApoE KO Hintergrund generiert und für 8 - 16 Wochen mit einer WD oder CD gefüttert (siehe 3.6.2). Unabhängig von ihrem CRP4-Status zeigten alle Mäuse unter WD eine erwartungsgemäß signifikant höhere Gewichtszunahme im Vergleich zu den CD Tieren (Abb. 4.15A). Dahingegen zeigte die Analyse der Triglyzeride und Glukose im Blut keine diät- oder genotypspezifischen Differenzen auf (Abb. 4.15C, D). Lediglich die Cholesterol-Level waren unter der WD signifikant erhöht (Abb. 4.15B). Die erhöhten Cholesterolwerte konnten auch bei der Analyse der Plasmablutfette infolge terminaler Vollblutentnahmen nach 16 Wochen Fütterung unter WD bestätigt werden (Anhang Tab. 7.2). Neben den Cholesterol-Leveln nahmen auch die Lebergewichte der WD-gefütterten Tiere signifikant, aber CRP4unabhängig, zu (Anhang Tab. 7.2). Alle weiteren untersuchten metabolischen Parameter (Leber- und Nierenwerte) zeigten keine Genotyp-abhängigen Unterschiede (Anhang Tab. 7.2). Zusammenfassend deuten die erhobenen Daten darauf hin, dass CRP4 keine bedeutende Rolle für die Regulation metabolischer Parameter im ApoE-defizienten Atherosklerose-Modell zu spielen scheint.

Abbildung 4.15: Gewichtskurve und Lipidanalyse in CRP4 WT/ApoE KO und dKO Mäusen Durch die WD-Fütterung der ApoE KO Mäuse konnte unabhängig vom Genotyp ein Anstieg des (A) Gewichts und der (B) Gesamtcholesterolkonzentration im Vergleich zur CD beobachtet werden. (A) Während der Fütterung der Spezialdiäten (CD oder WD) wurden die ApoE KO CRP4 WT und KO Mäuse 2-mal wöchentlich zur Erstellung einer Gewichtskurve gewogen (n (CD)=12-13/Genotyp, n (WD)=15-21/Genotyp, ***p<0,001, 2-way ANOVA mit Messwiederholung). (B-D) Die Analyse der Cholesterol-, Triglyzerid- und Glukosewerte im Vollblut während der 16-wöchigen Fütterungsphase fand alle 4 Wochen via Punktion der Schwanzvene statt (n (CD)=3-4/Genotyp, n (WD)=6-10/Genotyp, ***p<0,001, zweiseitiger Student t-test). Alle Werte wurden als Mittelwerte ±SEM angegeben.

Ergebnisse

Nachfolgend wurde das CRP4 Expressionsmuster während der atherosklerotischen Pathogenese in den Aorten betrachtet. WB-Analysen ganzer Aortenlysate aus CRP4 WT/ApoE KO und doppelmutanten CRP4 KO/ApoE KO (dKO) Mäusen, die für 16 Wochen mit WD oder CD gefüttert wurden, implizierten in diesem Zusammenhang, dass das CRP4-Proteinexpressionslevel von der Diätzusammensetzung unabhängig ist (Abb. 4.16A, B). In Übereinstimmung mit vorangegangenen Versuchen (Abb. 4.1B) war in den Aorten der dKO Mäuse keine CRP4-spezifische WB-Bande detektierbar (Abb. 4.16A, B). Des Weiteren zeigten IF-Färbungen von Aortenschnitten des Aortenbogens eine deutlich mediale Lokalisation von CRP4 unter CD-Fütterung. In den atherosklerotischen Aorten konnte CRP4 ebenfalls in der *Tunica media*, aber auch im Inneren der Plaques, besonders im Bereich der fibrösen Kappe, von CRP4 WT/ApoE KO Mäusen nachgewiesen werden (Abb. 4.16C), wohingegen in dKO Plaques keine CRP4-Färbung detektiert werden konnte (Abb. 4.16C). Diese Ergebnisse unterstützen die Hypothese, dass CRP4 an der Formation, Entwicklung und/oder Stabilisation atherosklerotischer Plaques im *in vivo* Atherosklerose-Modell beteiligt sein könnte.

Abbildung 4.16: CRP4-Expression in ApoE KO Mäusen nach 16 Wochen CD oder WD

Nach 16 Wochen WD- oder CD-Fütterung wurde die Expression von CRP4 in ApoE-defizienten CRP4 WT und KO Aorten untersucht. (**A**, **B**) Mittels WB-Analysen wurden die CRP4-Expressionslevel in Abhängigkeit von der Diät quantifiziert. Hierbei zeigten sich keine Unterschiede zwischen der CD- und WD-Fütterung. Erwartungsgemäß war CRP4 in den Proteinlysaten doppelmutanter CRP4/ApoE KO Mäuse (dKO) nicht nachweisbar. GAPDH diente als Ladungskontrolle (n=3-4/Genotyp). (**C**) Anhand von IF-Färbungen wurde die Expression von CRP4 (rot) in Aortenschnitten des Aortenbogens nachgewiesen. CRP4 wurde sowohl in der Media, als auch innerhalb der Plaques, vor allem im Bereich der fibrösen Kappe (weiße Pfeilspitzen), exprimiert. Hoechst (blau) diente zur Visualisierung der Zellkerne. Die Abbildung wurde modifiziert nach (Längst et al., 2022).

4.5.2 Gesteigerte atherosklerotische Plaquebildung in CRP4 WT Mäusen nach 16 Wochen WD

Um die Beteiligung von CRP4 für die Atherogenese zu quantifizieren, wurden *en face* Ölrot O-Färbungen der CRP4 WT/ApoE KO und dKO Läsionen angefertigt (Abb. 4.17A). Hierbei zeigte sich unter WD eine signifikant höhere Anzahl an atherosklerotischen Plaques (Abb. 4.17B), sowie eine signifikant größere Läsionsfläche (Abb. 4.17C) in CRP4 WT Aorten im Vergleich zu CRP4 KO Aorten. Dieser pro-atherogene Effekt von CRP4 war vor allem im Bereich des Aortenbogens und im abdominellen Teil auf Höhe der Nierenabgänge der Aorta prominent. Die Aorten zeigten unter CD erwartungsgemäß keine atherosklerotischen Ablagerungen und dienten somit als geeignete Kontrollgruppe für die WD-gefütterten Versuchstiere (Abb. 4.17A).

Abbildung 4.17: Verminderte atherosklerotische Plaqueentwicklung in dKO Mäusen nach 16 Wochen WD

(A) En face Ölrot O-Färbungen des Aortenbogens und der abdominellen Aorta nach 16 Wochen WD oder CD in CRP4 WT/ApoE KO und dKO Mäusen. Vor der Färbung wurde die Aorta entnommen, der Länge nach aufgeschnitten und auf eine schwarze Wachsunterlage gepinnt. In Abwesenheit von CRP4 waren weniger Ölrot O-gefärbte Läsionsareale in den Aorten feststellbar. Zudem wiesen dKO Aorten eine geringere (B) Plaqueanzahl, sowie eine kleinere (C) relative Plaquefläche bezogen auf die gesamte Aortenfläche auf (n=12-14/Genotyp, *p<0,05, zweiseitiger Student ttest). Die Daten sind als Mittelwerte ±SEM dargestellt. Die Abbildung wurde modifiziert nach (Längst et al., 2022).

Zur Verifizierung der Ergebnisse aus den *en face* Ölrot O-Färbungen und zur differenzierten Visualisierung und Quantifizierung der Mediadicke, Intima/Media-Ratio und des nekrotischen Läsionskerns wurden H&E-Färbungen von Kryoschnitten der Aorta aus CRP4 WT/ApoE KO

und dKO Mäusen nach 16 Wochen WD angefertigt (Abb. 4.18A). Die Mediadicke unter den atherosklerotischen Plaques wies dabei keine Unterschiede zwischen den Genotypen auf (Abb. 4.18A, B; Anhang Abb. 7.4A). Das Intima/Media-Verhältnis war, in Übereinstimmung mit den *en face* Ölrot O-Färbungen, im CRP4 WT/ApoE KO dagegen signifikant größer als in den dKO Aorten (Abb. 4.18A, C, Anhang Abb. 7.4B). Interessanterweise war wiederum das nekrotische Areal der dKO Plaques größer als im CRP4 WT/ApoE KO Genotyp (Abb. 4.18A, D). Dabei wurden zellfreie Bereiche innerhalb der atherosklerotischen Plaques als nekrotische Kernbereiche definiert (Anhang Abb. 7.4C).

Abbildung 4.18: Intima/Media-Ratio in Kryoschnitten atherosklerotischer Aorten

(A) H&E-gefärbte Kryoschnitte von Aorten aus CRP4 WT/ApoE KO und dKO Mäusen wurden nach 16 Wochen WD zur näheren Analyse der Plaquezusammensetzung angefertigt. (**B-D**) Die Analyse der Mediadicke zeigte keine CRP4-abhängigen Unterschiede, während die niedrigere Intima/Media-Ratio in CRP4-defizienten Aorten die Ergebnisse der *en face* Ölrot O-Färbungen (Abb. 4.17) unterstützten. Des Weiteren führte die Ablation von CRP4 zu größeren nekrotischen Bereichen innerhalb der Plaques (n=6-7/Genotyp, *p<0,05, zweiseitiger Student t-test). Alle Ergebnisse wurden als Mittelwerte ±SEM dargestellt. Die Abbildung wurde modifiziert nach (Längst et al., 2022).

4.5.3 Hämodynamische Parameter doppelmutanter CRP4/ApoE KO Mäuse

Um zu überprüfen, ob die geringere Plaquebildung in den dKO Mäusen auf blutdruckregulierende Funktionen von CRP4 zurückzuführen ist, wurden nach 16 Wochen WD telemetrische Blutdruckmessungen durchgeführt. Hierbei zeigten sowohl der SBD, als auch die diastolischen Blutdruckwerte, keine signifikanten Unterschiede zwischen den beiden Genotypen (Abb. 4.19A, B). Auch die hämodynamischen Parameter MAP, Pulsamplitude und Herzrate waren von der CRP4-Ablation in dKO Mäusen unbeeinflusst (Abb. 4.19C-E). Lediglich die lokomotorische Aktivität der dKO vs. CRP4 WT/ApoE KO Mäuse war am Tag signifikant höher (Abb. 4.19F).

Abbildung 4.19: Telemetrische Blutdruck- und Aktivitätsmessungen nach 16 Wochen WD

Die telemetrischen Blutdruckmessungen wurden in CRP4 WT/ApoE KO und dKO Mäusen nach 16 Wochen WD-Fütterung an drei aufeinanderfolgenden Tagen (72 h) durchgeführt. Dabei wurden die systolischen (**A**), diastolischen (**B**) Blutdruckwerte, sowie der mittlere arterielle Blutdruck (MAP) (**C**) ermittelt. Zwischen den Genotypen zeigte sich kein Unterschied in diesen Parametern. Des Weiteren wurde auch die Pulsamplitude (**D**), Herzrate (**E**) und die Aktivität der Mäuse (**F**) aufgezeichnet und quantifiziert. Für die Auswertung wurden die Mittelwerte der drei Tage in Abhängigkeit des Tag/Nachtzyklus (12 h/12 h), sowie als 24 h-Wert berechnet (n=6-7/Genotyp, *p<0,05, zweiseitiger Student t-test). Alle Ergebnisse sind als Mittelwerte ±SEM dargestellt. Die Abbildung wurde modifiziert nach (Längst et al., 2022).

Ergänzende telemetrische Blutdruckmessungen wurden zu einem früheren Zeitpunkt d.h. nach 12 Wochen WD durchgeführt. Hierbei wurden ebenfalls keine genotypspezifischen Unterschiede im SBD, MAP, Pulsamplitude, Herzrate und der lokomotorischen Aktivität nachgewiesen (Anhang Abb. 7.5A, C-F). Interessanterweise präsentierten sich die dKO Tiere zu diesem Zeitpunkt mit einem gering aber signifikant niedrigeren diastolischen Blutdruck (Anhang Abb. 7.5B), der isoliert betrachtet wahrscheinlich nicht ursächlich für die reduzierte Plaqueentwicklung der Tiere ist. Insgesamt gesehen liefern diese Ergebnisse einen weiteren Hinweis darauf, dass die pro-atherogenen Effekte hauptsächlich auf blutdruckunabhängige vaskuläre Funktionen von CRP4 zurückzuführen sind.

4.5.4 Expression von α-SMA in atherosklerotischen Plaques

α-SMA ist ein glattmuskelspezifischer Marker, welcher jedoch im Verlauf der atherosklerotischen Pathogenese im Rahmen phänotypischer Modulationen, sowie Transdifferenzierungsprozessen, in seiner Expression stark herunterreguliert sein kann (Feil

et al., 2014; Gomez et al., 2013). In ApoE KO CRP4-positiven atherosklerotischen Plaques konnte eine signifikant größere, prozentuale α -SMA-positive Fläche detektiert werden als in CRP4-defizienten Mäusen (Abb. 4.20A, B). Hingegen war die α -SMA-positive Fläche in der *Tunica media* unterhalb der Plaques in den dKO Aorten signifikant größer als in den CRP4 WT/ApoE KO Aorten (Abb. 4.20A, C).

Abbildung 4.20: Geringere α -SMA-Expression in CRP4-defizienten atherosklerotischen Plaques (A) IF-Färbungen von Aortenschnitten aus CRP4 WT/ApoE KO und dKO Mäusen nach 16 Wochen WD mit α -SMA (rot). Die Zellkerne wurden mit Hoechst (blau) gegengefärbt. (B, C) Aus der Ablation von CRP4 resultierte, in Bezug auf die Plaquegesamtfläche, ein signifikant geringeres, prozentuales α -SMAgefärbtes Läsionsareal. Zudem war das α -SMA-positive Färbeareal in Bezug auf die Fläche der *Tunica media* signifikant größer. (D) Die Bestimmung der Plaque-assoziierten Zellzahl anhand der Zellkerne ergab, bezogen auf die entsprechenden Plaqueflächen, im dKO Genotyp signifikant niedrigere Werte (n=8-9/Genotyp, *p<0,05, zweiseitiger Student t-test). (E, F) WB-Analysen von α -SMA in CRP4 WT/ApoE KO und dKO Aortenlysaten zeigten bei Fütterung der WD eine deutliche Herunterregulierung der α -SMA-Expression im Vergleich zur CD. Dieser Unterschied erreichte nur für den CRP4 WT/ApoE KO Genotyp das Signifikanzniveau (n=4/Genotyp (jeweils aus 2 Aorten), **p<0,01, 2-way ANOVA, Bonferroni's multiple comparisons test). Alle Daten sind als Mittelwerte ±SEM dargestellt. Die Abbildung wurde modifiziert nach (Längst et al., 2022). Kohärent mit der dominierenden α -SMA-Expression im Inneren der Plaques, konnte auch eine signifikant höhere Zellzahl in den Plaques der CRP4 WT/ApoE KO Mäuse detektiert werden (Abb. 4.20A, D). Dies könnte ein Hinweis auf die CRP4-abhängige Migration von VSMCs aus der Media in den atherosklerotischen Plaque sein. Diese Befunde korrelieren mit den ebenfalls im Rahmen dieser Arbeit erhobenen Daten zur Migration der P0 VSMCs, deren Migration auch positiv durch CRP4 beeinflusst wurde (Abb. 4.3A, B). Erwartungsgemäß konnte in den Aortenlysaten der CRP4-profizienten und -defizienten ApoE KO Mäuse nach 16 Wochen WD-Fütterung via WB eine Reduktion der α -SMA-Expressionslevel im Vergleich zur CD detektiert werden (Abb. 4.20E, F). Diese Differenz zwischen den Fütterungsprotokollen war jedoch nur für den CRP4 WT/ApoE KO Genotyp signifikant, was ebenfalls impliziert, dass CRP4 an der phänotypischen Modulation, die Grundlage für das gesteigerte Migrationsverhalten zuvor kontraktiler VSMCs ist, beteiligt ist. Im Zuge der WB-Analyse zeigte die Ablation von CRP4 allerdings keine signifikanten Effekte auf die α -SMA-Expression unter WD-Konditionen (Abb. 4.20E, F). Diese ist in Anbetracht der vergleichsweise geringen Anzahl an Plaquezellen im Vergleich zur Gesamtzahl an VSMCs in der Aorta nicht verwunderlich.

4.5.5 Vermehrte Proliferation in CRP4 KO/ApoE KO Läsionen

Durch die phänotypische Modulation der VSMCs im Verlauf der atherosklerotischen Plaqueentstehung steigt die Proliferationsrate der Zellen. Proliferation scheint dabei überwiegend reparierende Funktionen zu besitzen und wird nicht durchgängig als primärer Treiber der Plaqueentstehung gesehen (Bennett et al., 2016). Zur Untersuchung der proliferierenden Zellzahl in atherosklerotischen Plagues wurden die Aortenschnitte von CRP4 WT/ApoE KO und dKO Mäusen nach 16 Wochen WD mit dem Proliferationsmarker Ki-67 gefärbt. Hierbei zeigte sich eine signifikant erhöhte Anzahl an proliferierenden Zellen im Inneren der CRP4defizienten Plaques (Abb. 4.21A, B). Die Anzahl der Ki-67-postiven Zellen innerhalb der Tunica media unterhalb des Plaqueareals war hingegen deutlich geringer und nicht unterschiedlich zwischen den Genotypen (Abb. 4.21C). Diese Befunde waren unerwartet, da anzunehmen war, dass die Proliferation der Plaquezellen zur Entwicklung der atherosklerotischen Läsionen in CRP4 WT/ApoE KO Mäusen beiträgt. Um aufzuklären inwiefern der synthetische, proliferative Phänotyp der VSMCs zur Entstehung der atherosklerotischen Plagues beiträgt, wurden Impedanz-basierte Messungen zum Proliferationsverhalten hochpassagierter P10 - 15 VSMCs mit dem xCELLigence System durchgeführt (siehe 3.3.3). Dabei zeigten die CRP4defizienten Zellen eine signifikant höhere Proliferationsrate im Vergleich zu den CRP4 WT VSMCs (Abb. 4.21D), was auf anti-proliferative Effekte von endogenem CRP4 in synthetischen VSMCs hindeutet. Interessanterweise waren die genotypspezifischen Unterschiede in der Proliferationsrate der (glattmuskulären) Plague- und Mediazellen zu einem früheren Stadium

115

der atherosklerotischen Plaqueentstehung, d.h. nach 8 Wochen WD, nicht detektierbar (Anhang Abb. 7.6A-C). In Übereinstimmung mit diesem Befund zeigten auch P0 CRP4 WT und KO VSMCs keine Unterschiede in ihrem Proliferationsverhalten (Anhang Abb. 7.6D). Diese Befunde implizieren, dass CRP4 möglicherweise abhängig vom Phänotyp der VSMCs anti-proliferative Effekte aufweist, im späteren Verlauf der Atherogenese aber auch Proliferations-hemmende Funktionen vermittelt.

А АроЕ КО

Abbildung 4.21: Proliferation in atherosklerotischen Plaques nach 16 Wochen WD

Anhand von Kryoschnitten von CRP4 WT/ApoE KO und dKO Mäusen nach 16 Wochen WD wurde die Anzahl proliferierender Zellen im Inneren der Plaques (**B**), sowie in der *Tunica media* unterhalb der Plaques (**C**) quantifiziert. (**A**) Hierzu wurden die Gewebeschnitte mit dem Proliferationsmarker Ki-67 (gelb), sowie dem Zellkernmarker Hoechst (blau) gefärbt. (**B**, **C**) Die Proliferationsrate innerhalb der Plaques war im dKO signifikant erhöht, während innerhalb der Media die Anzahl der Ki-67-positiven Zellen keine genotypspezifischen Differenzen zeigte. Die Proliferation wurde prozentual auf die Gesamtzellzahl in den definierten Gewebebereichen berechnet (n=6-7/Genotyp, *p<0,05, zweiseitiger Student t-test). (**D**) In P10 - 15 CRP4 KO VSMCs wurden, im Rahmen von Impedanz-basierten Proliferationsmessungen mit Hilfe des xCELLigence Systems (Roche), höhere Proliferationsraten festgestellt als bei den entsprechenden CRP4 WT VSMCs (n=3/Genotyp (jeweils aus 4 Aorten isolierte VSMCs), ***p<0,001, zweifaktorielle Varianzanalyse (2-way ANOVA) mit Messwiederholung). Alle Ergebnisse wurden als Mittelwerte ±SEM präsentiert. Die Abbildung wurde modifiziert nach (Längst et al., 2022).

Die anti-proliferativen Effekte von CRP4 in synthetischen VSMCs konnten auch in einem weiteren *in vivo* Mausmodell, das mit vaskulärem *Remodeling* im Zusammenhang steht, nachgewiesen werden. Hierzu wurde eine permanente Ligatur der linken Carotis für 28 Tage

an CRP4 WT und KO Mäusen durchgeführt. Mittels H&E-Färbungen wurde das Ausmaß der Neointima-Formation quantifiziert. Hierbei zeigte sich ca. 1,5 mm hinter der Ligatur eine signifikant stärkere Neointima-Bildung in CRP4-defizienten Mäusen, während die Media keine genotypspezifischen Unterschiede aufwies (Anhang Abb. 7.7A-D). Diese Ergebnisse stimmen mit der anti-proliferativen Funktion von CRP4 in synthetischen VSMCs *in vitro* überein, da die Neointima-Formation im Carotis-Ligatur-Modell ebenfalls mit der phänotypischen Modulation von VSMCs in Zusammenhang gebracht wird (Owens et al., 2004).Die phänotypabhängige Funktion von CRP4 wurde nicht nur in Bezug auf das Proliferationsverhalten der VSMCs betrachtet (Abb. 4.21), sondern auch hinsichtlich des Migrationsverhaltens der Zellen. Während P0 CRP4 WT VSMCs schneller migrierten als CRP4 KO Zellen, wurde die Migration in P10 - 15 VSMCs durch CRP4 gehemmt (Anhang Abb. 7.8A, B). Zur Untersuchung der Migration synthetischer VSMCs wurde analog zu den P0 VSMCs ein modifizierter Wundheilungs-Assay in P10 - 15 CRP4 WT und KO VSMCs durchgeführt. Hierbei wurde der zellfreie Steg zwischen den bewachsenen Zellflächen von CRP4-defizienten VSMCs schneller geschlossen, als von CRP4 WT Zellen (Anhang Abb. 7.8A, B).

Zusammenfassend zeigten die Experimente eine stark phänotypabhängige Funktion von CRP4 im Bezug auf die Proliferation und Migration von VSMCs. Im *in vivo* Atherosklerose-Modell scheint vor allem die Plaqueentstehung durch die migrationsstimulierenden Effekte von CRP4 im vorwiegend kontraktilen VSMC Phänotyp beeinflusst zu werden, wohingegen bei fortgeschrittener Plaqueentwicklung die anti-proliferativen Effekte von CRP4 von eher geringerer pathophysiologischer Relevanz zu sein scheinen. In diesem Zusammenhang ist zu berücksichtigen, dass die Untersuchungen zur Zellproliferation in den atherosklerotischen Plaques nicht nur VSMCs, sondern auch weitere Zelltypen erfassen.

4.5.6 Regulation der Expression glattmuskulärer Proteine in synthetischen VSMCs

Um genauere Erkenntnisse über die CRP4-regulierte phänotypische Modulation der VSMCs zu erlangen, wurden LC-MS/MS-basierte Proteom-Analysen in synthetischen P10 - 15 VSMCs aus CRP4 WT vs. KO Aorten durchgeführt. Hierbei wurden bei CRP4-Defizienz signifikant hoch- bzw. herunterregulierte Proteine identifiziert (Abb. 4.22, Anhang Tab. 7.3). Neben Proteinen, die mit der Entstehung einer Atherosklerose oder mit der Plastizität von VSMCs assoziiert werden konnten, waren auch Proteine reguliert, die mit der Organisation des Aktin-Zytoskeletts in VSMCs in Verbindung gebracht werden konnten (Tab. 4.1). Des Weiteren konnten bei der Analyse gemeinsamer biologischer Prozesse vier Proteine identifiziert werden, die an Oxidations-/Reduktionsprozessen (GO:0055114) beteiligt sind (Tab. 4.1).

Unter den signifikant herunterregulierten Proteinen in CRP4 KO VSMCs konnte die Geranylgeranyl-Diphosphat-Synthase (Ggps1), die bei der post-translationalen Modifikation

von Proteinen eine bedeutende Rolle spielt und z.B. exklusiv für die Prenylierung kleiner GTPasen benötigt wird, identifiziert werden (Foley et al., 2020; Kainou et al., 1999; Wei et al., 2020) (Abb. 4.22, Tab. 4.1). Zudem wurden mit α - und γ -Adducin (Add1 und 3) (Kimura et al., 1998; Matsuoka et al., 2000), Pirin (Pir) (Liu et al., 2013; Pang et al., 2004) und Ankycorbin (Rai14) (Kutty et al., 2006; Peng et al., 2000) Interaktoren des Aktin-Zytoskeletts unter den im CRP4 KO Genotyp herunterregulierten Proteinen detektiert (Abb. 4.22, Tab. 4.1). Des Weiteren zeigte die THO-Komplexuntereinheit 2 (Thoc2) (Kumar et al., 2018; Yuan et al., 2018), die an dem Export von gespleißter VSMC Marker-mRNA beteiligt ist, eine signifikant niedrigere Expression in CRP4-defizienten synthetischen VSMCs (Abb. 4.22, Tab. 4.1).

P10-P15 VSMC

Abbildung 4.22: CRP4-abhängige Proteom-Analyse in synthetischen VSMCs

Proteom-Analyse via LC-MS/MS-Messungen in P10 - 15 VSMCs aus CRP4 WT und KO Mäusen. In dem Scatterblot sind alle signifikant regulierten (Student t-test (rot), Signifikanz B test (grün) oder in beiden Testverfahren (blau) signifikant) Proteine dargestellt (n=5/Genotyp (jeweils aus 4 Aorten isoliert).

Unter den hochregulierten Proteinen konnten mit dem Ubiquitin-ähnlichen Modifikatoraktivierenden Enzym 1 (Uba 1) (Liao et al., 2020; Qin et al., 2016), dem Thrombozyten-Aktivierungsfaktor Acetylhydrolase IB-Untereinheit Gamma (Pafah1b3) (Keyzer et al., 2009; Theilmeier et al., 2000) und Peroxiredoxin-4 (PRDX4) (Xin Guo et al., 2012; Yamada et al., 2018) einige Proteine identifiziert werden, die bereits in früheren Studien mit der Pathogenese der Atherosklerose assoziiert wurden (Abb. 4.22, Tab. 4.1). Neben PRDX4 waren unter den im CRP4 KO hochregulierten Proteinen außerdem die Mikrotubuli-assoziierte Monooxygenase (Mical2) (Grintsevich et al., 2017; Lundquist et al., 2014; Xu et al., 2017), sowie die Acyl-CoA Dehydrogenase (Acadl) (Kurtz et al., 1998; Zhang Y et al., 2019), die ebenfalls an der Redoxregulation von Zellen beteiligt sind (Abb. 4.22, Tab. 4.1).

Im Rahmen von *Pathway-Enrichment*-Analysen mit Hilfe des GetGo-Analysetools (http://getgo.russelllab.org) konnte zudem ein biologischer Prozess identifiziert werden, mit dem vier der CRP4-regulierten Proteinen in Verbindung stehen. So zeigten PRDX4, Mical2, Acadl und Pir eine statistisch signifikante Anreicherung bei Oxidations-/Reduktionsprozessen (GO: 0055114; Fisher's p-Wert = 0,014).

Proteinname	Genname	Relevanz*	p-Wert	Biologische Funktion	Subzelluläre Lokalisation	Referenzen			
Herunterregulierte Proteine in CRP4 KO synthetischen VSMCs									
Geranylgeranyl diphosphate synthase 1	Ggps1		3,9x10 ⁻¹²	Umwandlung von Farnesyl- pryophosphat in Geranylgeranyl- pyrophosphat (GGPP), eine Vorstufe der Prenylierung	Zytoplasma	Kainou T. et al., 1999; Wei L. et al., 2020; Foley et al., 2020			
THO complex subunit 2	Thoc2	x	0,008	Unterstützung des mRNA Exports von gespleißter VSMC marker mRNA	Zellkern	Yuan X. et al., 2018 ; Kumar R. et al., 2018; Heath C. et al., 2016			
Pirin	Pir	ş	0,012	Redox-sensor für den Transkriptionsfaktor NF-ĸB	Zellkern	Liu F. et al., 2013; Wendler W.M.F. et al., 1997; Pang H. et al., 2004			
γ-Adducin	Add3	#	0,024	Förderung von Aktin Spektrin Interaktionen und Regulation der Aktin Polymerisation	Zytoskelett, Plasma- membran	Rangrez A.Y. et al., 2010; Matsuoka Y. et al., 2000 ; Xin M. et al., 2009			
Ankycorbin	Rai14		0,029	Assoziation mit Strukturen des kortikalen Zytoskeletts und mit Stressfasern	Zytoplasma, Zellkern	Kutty R.K. et al., 2006; Peng Y. et al., 2000			
α-Adducin	Add1	#	0,045	Förderung von Aktin Spektrin Interaktionen und Regulation der Aktin Polymerisation	Zytoskelett, Plasma- membran	Fukata Y. et al., 1999; Kimura K. et al., 1998 ; Matsuoka Y. et al., 2000			

Tabelle 4.1: Signifikante CRP4-regulierte Proteine in P10 - 15 VSMCs

Hochregulierte	Proteine	in CRP4 KO	synthetischen	VSMCs
----------------	----------	------------	---------------	-------

Ubiquitin like modifier activating enzyme 1	Uba1	x	0,010	E1 aktivierendes Enzym im Rahmen der Ubiquitin Aktivierung	Mitochondrium, Zellkern, Zytoplasma	Liao J. et al., 2020 ; Qin Z. et al., 2016; Schulmann B. et al., 2009
Basal cell adhesion molecule	Bcam		0,012	Glykoprotein und Rezeptor für das extrazelluläre Matrixprotein Laminin	Plasma- membran, Zellkern	Eyler C. et al., 2006; Kikkawa Y. et al., 2005; Rahuel C. et al., 2008
Peroxiredoxin-4	Prdx4	x, §	0,016	Unterstützung der Disulfidbrückenbindung im ER als multifunktionales Redoxprotein mit Peroxidase Aktivität	Endoplasma- tisches Retikulum	Guo X. et al., 2012 ; Lipinski S. et al., 2019 Yamada S. et al., 2018
Platelet activating factor acetylhydrolase 1b catalytic subunit 3	Pafah1b3	x	0,021	Katalysation der inaktivierenden Acetylgruppen-entfernung vom platelet-activating factor (PAF)	Zytoplasma, Zytoskelett	Evangelou A. et al., 1994; De Keyzer D. et al., 2009; Theilmeier G. et al., 2000
Microtubule associated monooxygenase, Calponin and LIM domain containing 2	Mical-2	#, §	0,025	Induktion des F-Aktin Abbaus durch Oxidation von F-Aktin an Methionin 44/ 47	Zellkern Zytoskelett	Lundquist M.R. et al., 2014; Xu Q. et al., 2017; Grintsevich E.E. et al., 2017
Acyl-CoA dehydrogenase long chain	Acadl	§	0,027	Katalysation des ersten Schritts der mitochondrialen Fettsäure-beta-Oxidation	Mitochondrium	Kurtz D.M. et al., 1998; Zhang Y. et al., 2019
Interferon induced transmembrane protein 3	lfitm3		0,038	antivirale Aktivität (u.a. gegen Influenza A Virus)	lysosomale Membran, Plasma- membran	Zani A. et al., 2018; Kenney A.D. et al., 2019

* Assoziation mit VSMC Plastizität und/oder Atherosklerose (x); Assoziation mit dem "*Remodeling*" des Aktin-Zytoskeletts in VSMCs (#) Biologischer Prozess: *oxidation reduction* (GO:0055114) (§)

Abbildung 4.23: Expression der CRP4-regulierten Proteine in synthetischen VSMCs

(**A**, **B**) Verifizierung der signifikant regulierten Proteine (Tab. 4.1) im Rahmen der Proteom-Analyse in P10 - 15 CRP4 WT vs. KO VSMCs mittels WB. Die Geranylgeranyl-diphosphat-Synthase (Ggps1), Pirin, gamma- und alpha-Adducin (γ - und α -Add) und Ankycorbin (Rai14) waren in CRP4-defizienten VSMCs signifikant herunterreguliert, während die langkettige Acyl-CoA Dehydrogenase (Acadl) und Peroxiredoxin 4 (PRDX4) bei CRP4-Defizienz als signifikant hochregulierte Proteine verifiziert werden konnten. Als Ladungskontrollen dienten GAPDH und β -Actin (n=7-11/Genotyp (jeweils aus 4 Aorten isoliert), *p<0,05, ***p<0,001, zweiseitiger Student t-test). Alle Daten wurden als Mittelwerte ±SEM dargestellt. (**C**) Mit Hilfe von IF-Färbungen synthetischer P10 - 15 CRP4 WT und KO VSMCs konnte die subzelluläre Expression von CRP4, Ggps1, Rai14, Acadl und PRDX4 (rot), sowie die CRP4-abhängige Expressionsregulation dargestellt werden. Hierbei konnte die per LC-MS/MS und WB detektierte Hochregulation von PRDX4 in CRP4 KO VSMCs leider nicht verifiziert werden. Zur Färbung der Zellkerne wurde Hoechst (blau) eingesetzt. Zur Visualisierung der kompletten Zellstruktur wurden die F-Aktinfasern bei der PRDX4-Färbung mit Phalloidin (grün) gegengefärbt. Die IF-Färbungen wurden je 4-mal durchgeführt. Bei den dargestellten Bildern handelt es sich um repräsentative Abbildungen. Die Abbildung wurde modifiziert nach (Längst et al., 2022).

Im WB konnten die Expressionsunterschiede einiger signifikanter CRP4-regulierter Proteine, die in der LC-MS/MS-basierten Proteom-Analyse identifiziert wurden, bestätigt werden (Abb. 4.23A, B). Neben den WB-Analysen wurde die CRP4-abhängige Expression einiger regulierter Proteine, sowie ihre subzelluläre Lokalisation in VSMCs, mittels IF-Färbungen in synthetischen P10 - 15 VSMCs untersucht (Abb. 4.23C). Dabei war Ggps1 vor allem mitochondrial lokalisiert, während Rai14 im Zellkern und im Zytoplasma detektiert werden konnte. In Übereinstimmung mit den WB- und Proteom-Daten konnte eine geringere Expression der beiden Proteine in den CRP4 KO VSMCs festgestellt werden (Abb. 4.23C). Die im CRP4 KO hochregulierten Proteine Acadl und PRDX4 wiesen eine primär zytoplasmatische Lokalisation mit einer perinukleären Anreicherung, ähnlich wie bei CRP4, in den VSMCs auf. Die per LC-MS/MS und WB detektierten Expressionsunterschiede wurden in den entsprechenden IF-Färbungen allerdings nicht deutlich (Abb. 4.23C).

4.5.7 Die CRP4-abhängige Regulation von PRDX4 in atherosklerotischen Aorten

Die Proteom- und WB-Analysen der synthetischen VSMCs implizieren, dass PRDX4 ein besonders vielversprechendes CRP4-reguliertes Protein sein könnte. PRDX4 ist ein Redoxprotein mit einer Thioredoxin-abhängigen Peroxidase-Aktivität, das an der Reduktion von ROS beteiligt ist (luchi et al., 2009; Tavender et al., 2010). Bekannterweise hat eine Überexpression von PRDX4 plaquestabilisierende Effekte und führt zu einer verminderten Plaqueentstehung im Verlauf einer Atherosklerose (Xin Guo et al., 2012; Yamada & Guo, 2018), sowie zu reduziertem oxidativem Stress (luchi et al., 2009; Konno et al., 2015).

Mittels IF-Färbungen von PRDX4 und CRP4 wurde zunächst untersucht, ob und wo PRDX4 innerhalb der atherosklerotischen Plaques exprimiert wird. Hierfür wurden Aortenschnitte von CRP4 WT/ApoE KO vs. dKO Mäusen nach 16 Wochen WD erstellt und mit anti-PRDX4 und α -SMA-AKs inkubiert. Die IF-Färbungen zeigten eine deutliche Expression von PRDX4 in der *Tunica media* und im Inneren der Plaques (Abb. 4.24A). Interessanterweise war einerseits eine deutliche Co-Lokalisation mit α -SMA-positiven Zellen erkennbar, während andererseits PRDX4 auch in weiteren Bereichen der Läsionen detektierbar war (Abb. 4.24A). In Übereinstimmung mit den WB-Daten synthetischer VSMCs (Abb. 4.23A, B) ließ sich eine deutlich stärkere PRDX4-Expression in den dKO Aorten feststellen (Abb, 4.24A). Im Unterschied zu PRDX4 war CRP4 vor allem in den α -SMA-positiven Bereichen, der *Tunica media* und der fibrösen Kappe im CRP4 WT zu erkennen (Abb. 4.24A). Interessanterweise zeigten WB-Analysen von CRP4 WT/ApoE KO und dKO Aortenlysaten nach 16 Wochen CD-Fütterung bei CRP4-Defizienz ein niedrigeres Expressionslevel von PRDX4. Nach 16-

wöchiger WD-Fütterung ließ sich nur in den dKO Aorten eine deutliche und signifikante Expressionssteigerung von PRDX4 beobachten (Abb. 4.24B-D).

А АроЕ КО

Abbildung 4.24: PRDX4-Expression in CRP4 KO/ApoE KO Aorten

(A) IF-basierte Detektion von CRP4 (grün) und PRDX4 (grün) in CRP4 WT/ApoE KO vs. dKO Aortenschnitten nach 16 Wochen WD-Fütterung. Die Schnitte wurden einer simultanen Färbung mit dem glattmuskelspezifischen Marker α-SMA (rot) unterzogen. PRDX4 konnte in der Media und großflächig innerhalb der Läsionen detektiert werden, während CRP4 nur in der Media und im Bereich der fibrösen Kappe zu sehen war. Die Zellkerne wurden mit Hilfe von Hoechst (blau) gegengefärbt. (**B**-**D**) WB-Analysen der PRDX4-Expression in Aortenlysaten nach CD bzw. WD. In den dKO Aorten Proben konnte nach 16 Wochen WD im Vergleich zu CD eine signifikante Hochregulation von PRDX4 detektiert werden. Als Ladungskontrolle diente GADPH (n=2-4/Genotyp (jeweils aus 2 Aorten), *p<0,05, ***p<0,001, zweiseitiger Student t-test (**C**), 2-way ANOVA mit Tukey's multiple comparisons test (**D**)). Alle Ergebnisse wurden als Mittelwerte ±SEM dargestellt. Die Abbildung wurde modifiziert nach (Längst et al., 2022).

4.5.8 Einfluss von CRP4 auf den oxidativen Stress in atherosklerotischen Plaques

Da das CRP4-regulierte Redoxprotein PRDX4 oxidativen Stress moduliert, wurde im Folgenden untersucht, ob die Hochregulation von PRDX4 *in vivo* als Schutzmechanismus vor oxidativen LDL-Modifikationen in atherosklerotischen Plaques zu verstehen ist. Dazu wurden CRP4 WT/ApoE KO und dKO Aortenschnitte nach 16 Wochen WD mit einem anti-Cu²⁺-oxLDL-spezifischen AK inkubiert. Um die Lokalisation der oxLDL-Level innerhalb der Plaques besser zuordnen zu können, wurden die Gefäßwandstrukturen zusätzlich mit α -SMA-AKs gegengefärbt (Abb. 4.25A). Hierbei zeigte sich in CRP4-defizienten Aorten eine signifikant geringere Akkumulation an oxLDL-Komplexen im Inneren der atherosklerotischen Läsionen,

wo sich die Lipidherde primär befinden (Abb. 4.25A, B). Dies könnte darauf hinweisen, dass die (zumindest initial) im dKO beobachtete Potenzierung der PRDX4-Expression die LDL-Oxidation in der Gefäßwand reduziert und somit die Initiierung und Progression atherosklerotischer Plaques limitiert.

Oxidativer Stress in atherosklerotischen Plaques ist auch ein Promotor für die Transdifferenzierung von VSMCs hin zu Osteochondrozyten-ähnlichen Zellen (Byon et al., 2008; Farrokhi et al., 2015; Mody et al., 2001), was wiederum zu Kalziumablagerungen innerhalb der Plaques und im Bereich der *Tunica media* führt. Um die Menge an Kalziumablagerungen zu quantifizieren, wurden die CRP4 WT/ApoE KO und dKO Kryoschnitte mit Hilfe der histochemischen Alizarin-Färbung analysiert. Generell war die mit Alizarin reagierende Plaquefläche bezogen auf die Gesamtfläche der Läsionen klein (Abb. 4.25C, D). Dennoch zeigte sich in den dKO Aorten im Vergleich zu den CRP4 WT/ApoE KO Aorten eine signifikante Reduktion der Alizarin-positiven Kalziumablagerungen (Abb. 4.25C, D).

Abbildung 4.25: Analyse der oxLDL-Level und der Kalzifizierung atherosklerotischer Plaques

(**A**, **B**) Die mittels anti-Cu²⁺-oxLDL-spezifischer AKs (grün) visualisierten oxLDL-Komplexe waren in den atherosklerotischen Plaques von dKO Aorten (16 Wochen WD) signifikant geringer. Die Zellkerne wurden mit Hoechst (blau) gegengefärbt und VSMCs wurden mittels α -SMA (rot) visualisiert (n=6-7/Genotyp, *p<0,05, zweiseitiger Student t-test). (**C**, **D**) Die Kalzifizierung der atherosklerotischen Aorten wurde mittels einer Alizarin-Färbung detektiert und quantifiziert. Auch diese Nachweismethode weist auf weniger Kalziumablagerungen bei CRP4-Ablation hin (n=7/Genotyp, **p<0,01, zweiseitiger Student t-test). Die Ergebnisse wurden als Mittelwerte ±SEM dargestellt. Die Abbildung wurde modifiziert nach (Längst et al., 2022).

4.5.9 Putative Bedeutung der CRP4-Interaktionspartner Cdc42, Fbln2, HSP47 und Tpm2 für Plaquewachstum und -zusammensetzung

Im Rahmen von Co-IP-Analysen (siehe 3.5.2) konnten mittels LC-MS/MS-Messungen neue vaskuläre CRP4-Interaktionspartner identifiziert werden, die an den pro-atherogenen Effekten von CRP4 beteiligt sein könnten. In diesem Zusammenhang erschien Cdc42 von besonderem Interesse und könnte zu den vermehrten Kalziumablagerungen in den atherosklerotischen Plaques der CRP4 WT/ApoE KO Mäuse (Abb. 4.25C, D) beitragen. Das kleine GTP-bindende Protein ist an der Organisation des Aktin-Zytoskeletts beteiligt und wurde als Promotor für Kalziumablagerungen in der Gefäßwand identifiziert (Anhang Abb. 7.9A, Tab. 7.5) (Jaffe et al., 2005; Puetz et al., 2009). Entsprechend erscheint es plausibel, dass die Interaktion von Cdc42 mit CRP4 die Kalziumablagerungen in den atherosklerotischen Plaques beeinflusst. Zudem konnte Fibulin 2 (Fbln2) ebenfalls als CRP4-interagierendes Protein detektiert werden (Anhang Abb. 7.9A, B). Dieses Protein bindet verschiedene extrazelluläre Liganden (z.B. Versican, Hyaluronan) und seine Expression in atherosklerotischen Plaques, sowie die Beeinflussung der VSMC Migration, wurden bereits in der Literatur bestätigt (Anhang Tab. 7.4) (Ström et al., 2006). Des Weiteren interagierte CRP4 mit Serpin B6 und Serpin H1 (HSP47) in synthetischen VSMCs (Anhang Abb. 7.9A, B). HSP47 ist ein Kollagen-spezifisches Chaperon, das bereits in atherosklerotischen Plaques detektiert werden konnte und hier ebenso wie CRP4 besonders im Bereich der fibrösen Kappe lokalisiert war (Anhang Tab. 7.5) (Rocnik et al., 2000; Zhou et al., 2004). Mit β-Tropomyosin (Tpm2) wurde ein weiteres CRP4interagierendes Protein identifiziert, das mit der Pathogenese der Atherosklerose in Zusammenhang steht (Anhang Tab. 7.5) (Meng et al., 2019).

4.5.10 Vulnerabilität atherosklerotischer Plaques von ApoE KO CRP4 Mäusen

Eine erhöhte Konzentration an oxLDL, sowie auch die vermehrte Ablagerung von Ca²⁺ (als Calciumsalze) in der atherosklerotischen Gefäßwand stehen im Zusammenhang mit einer stärkeren Vulnerabilität der Plaques (Kelly-Arnold et al., 2013). Aus diesem Grund wurden im Folgenden weitere Parameter der Plaquevulnerabilität in Abhängigkeit von CRP4 untersucht. Hierbei konnten bei der Untersuchung der neutralen Lipidlevel mittels Ölrot O-Färbungen (Abb. 4.26A, B), der Quantifizierung der Kollagenakkumulation via MT-Färbungen (Abb. 4.26C, D) und der Anzahl der Elastinbrüche mit Hilfe der Elastika van Gieson Färbung (Abb. 4.26E, F) in atherosklerotischen Plaques keine Unterschiede zwischen CRP4 WT/ApoE KO und dKO detektiert werden. Offensichtlich führt die CRP4 Dys-/funktion zu sehr differentiellen Effekten auf diverse mit der Stabilität atherosklerotischer Plaques assoziierter Parameter.

Abbildung 4.26: Beurteilung der Plaquevulnerabilität in atherosklerotischen Aorten

Zur Analyse weiterer Parameter der Vulnerabilität atherosklerotischer Plaques, wurden Kryoschnitte von CRP4 WT/ApoE KO und dKO Mäuse nach 16 Wochen WD mit spezifischen histochemischen Methoden gefärbt. (**A**, **B**) Die Detektion neutraler Lipide in atherosklerotischen Plaques wurde mit Hilfe einer modifizierten Ölrot O-Färbung durchgeführt. Hierbei wurden die Schnitte zur Visualisierung des Gewebes zusätzlich mit Hämatoxylin gegengefärbt (n=6-7/Genotyp). (**C**, **D**) Mit Hilfe von Masson-Trichrom-Färbungen wurde die Kollagenakkumulation innerhalb der atherosklerotischen Plaques quantifiziert (n=6-7/Genotyp). (**E**, **F**) Zur Auszählung der Elastinbrüche/Kryoschnitt wurden die Aorten mit der Elastika van Gieson Methode gefärbt und ausgewertet (n=6-7/Genotyp). Alle Daten sind als Mittelwerte ±SEM angegeben. Die Abbildung wurde modifiziert nach (Längst et al., 2022).

Zusätzlich wurde auch die Infiltration der atherosklerotischen Plaques mit Makrophagen oder Makrophagen-ähnlichen Zellen untersucht. Hierzu wurden IF-Färbungen und WB-Analysen der CRP4 WT/ApoE KO vs. dKO Aorten mit dem Makrophagen-Marker Galectin-3 (Mac2) durchgeführt. Nach 16 Wochen WD konnte im Vergleich zu den Tieren unter CD ein signifikanter Anstieg an Mac2 in den ganzen Aortenlysaten detektiert werden (Abb. 4.27C), allerdings war die Menge an infiltriertem Mac2 sowohl in den IF-Färbungen der Kryoschnitte als auch in den ganzen Aortenlysaten CRP4-unabhängig (Abb. 4.27A-D).

Abbildung 4.27: Mac2-Expression in ApoE KO CRP4 doppelmutanten Aorten

Die Infiltration der atherosklerotischen Aorten durch Makrophagen wurde mit Hilfe des Makrophagen-Markers Galectin-3 (Mac2) durchgeführt. (**A**, **B**) Anhand von IF-Färbungen von Kryoschnitten aus CRP4 WT/ApoE KO vs. dKO Aorten nach 16 Wochen WD konnte die Mac2 (grün)-positive Fläche bezogen auf die Plaquefläche berechnet werden. Dabei konnten keine genotypspezifischen Differenzen detektiert werden (n=6-7/Genotyp). Die Zellkerne wurden durch Hoechst (blau) gefärbt. (**C**, **D**) In Übereinstimmung mit den IF-Färbungen war Mac2 in WB-Analysen nach 16 Wochen WD in CRP4 WT/ApoE KO und dKO Aortenlysaten detektierbar. Es zeigte sich im Vergleich zu CD-gefütterten Kontrolltieren eine CRP4-unabhängige Hochregulation von Mac2 (n=4/Genotyp (jeweils aus 2 Aorten)). Als Ladungskontrolle diente GAPDH. Alle Daten wurden als Mittelwerte ±SEM dargestellt. Die Abbildung wurde modifiziert nach (Längst et al., 2022).

Zusammenfassend konnte CRP4 im Rahmen des *in vivo* Atherosklerose-Modells als proatherogener Faktor identifiziert werden. Hierbei deuten die in Kapitel 4.5.1 bis 4.5.9 präsentierten Befunde darauf hin, dass CRP4 unter anderem die VSMC-Plastizität, die Proteinexpression und Parameter der Plaquestabilität, sowie die oxidativen Stresslevel und damit die atherogene Modifikation von LDL reguliert.

4.5.11 Die CRP4-abhängige Expression von CRIP1 in VSMCs und atherosklerotischen Plaques

Eine CRP4-abhängige Regulation der CRIP1-Expression wurde erstmals durch die Analyse diverser Herzproben nachgewiesen. Konkret konnten Straubinger et al. zeigen, dass CRIP1 im CRP4-defizienten Herz möglicherweise ein effektiver Ersatz für multiple CRP4-Funktionen während der normalen kardialen Entwicklung ist und auch eine gewisse Rolle bei der physiologischen Anpassung des Herzmuskels an Belastung einnimmt (Straubinger et al., 2017). CRP4 (*Crip2*) und CRIP1 (*Crip1*) stammen aus derselben Genfamilie und ihre AS-Sequenzen weisen eine hohe Ähnlichkeit auf. Um zu prüfen, ob CRIP1 auch im vaskulären

System einer CRP4-abhängigen Expressionsregulation unterliegt und ob dies einen Einfluss auf die Pathogenese vaskulärer Erkrankungen haben könnte, wurde die CRIP1-Expression in VSMCs und Aorten analysiert. Im Rahmen von gRT-PCR-Analysen von P0 und P10 - 15 VSMCs aus CRP4 WT und KO Aorten konnte eine signifikante Reduktion von Crip1 in passagierten CRP4 WT VSMCs detektiert werden. Hier scheint es durch die phänotypische Modulation der Zellen zu einer Suppression der Crip1 mRNA-Level in WT Tieren zu kommen. Dies wurde durch die Ablation von CRP4 unterdrückt, was zu signifikant höheren Expressionsleveln im synthetischen Phänotyp CRP4-defizienter VSMCs führte (Abb. 4.28A). Die erhöhte CRIP1-Expression in CRP4 KO VSMCs konnte auf Proteinebene sowohl in IF-Färbungen, als auch in WB-Analysen synthetischer VSMCs bestätigt werden (Abb. 4.28B-D). Die IF-Färbungen von CRP4 KO VSMCs zeigten außerdem eine deutlich höhere CRIP1-Expression im Zytoplasma und im Zellkern, während die zytoplasmatischen CRIP1-Signale in den passagierten CRP4 WT VSMCs kaum detektierbar waren und das CRIP1-Signal im Zellkern deutlich schwächer ausfiel (Abb. 4.28B). Da die synthetischen VSMCs eine große Rolle bei der Pathogenese der Atherosklerose spielen, wurden anschließend auch die CRIP1-Expressionslevel in CRP4 WT/ApoE KO und dKO Aorten nach 16 Wochen WD vs. CD analysiert. Hierbei zeigte sich in WB-Analysen ganzer Aortenlysate ebenfalls eine signifikant erhöhte CRIP1-Proteinexpression in dKO Aorten nach 16 Wochen WD-Fütterung (Abb. 4.28E, F). Bei IF-Färbungen zur Detektion der CRIP1-Lokalisation in atherosklerotischen Aorten zeigte sich eine deutliche Co-Lokalisation von CRIP1 und α-SMA-positiven, sowie Mac2positiven Zellen (Abb. 4.28G). Somit ist anzunehmen, dass CRIP1 in atherosklerotischen Plaques sowohl in VSMC-ähnlichen Zellen in der Media und der fibrösen Kappe, als auch in Makrophagen-ähnlichen Zellen im Inneren der Läsionen exprimiert wird. Interessanterweise wurde CRIP1 kürzlich in Monozyten beschrieben und konnte hier mit Bluthochdruck in Verbindung gebracht werden (Schweigert et al., 2021). Welche Rolle CRIP1 in der Atherogenese, insbesondere im Zusammenhang mit dem CRP4-Status der VSMCs spielt, muss zukünftigen Untersuchungen vorbehalten bleiben.

Abbildung 4.28: CRIP1-Expression in VSMCs und ApoE KO Aorten

(A) Die Analyse der mRNA-Level Crip1 mittels qRT-PCR wurde in P0 und P10 - 15 VSMCs aus CRP4 WT vs. KO Mäusen durchgeführt. In P10 - 15 VSMCs führte CRP4 zu einer signifikant niedrigeren Crip1-Expression (n=6-8/ Genotyp (jeweils aus Aorten isoliert), 4 **p<0,01, ***p<0,001, zweiseitiger Student t-test). HPRT wurde als interner Standard eingesetzt. (B) IF-Färbungen von CRIP1 (rot) und Phalloidin (grün) in P10 - 15 VSMCs aus CRP4 WT und KO Mäusen wurden zur Detektion der intrazellulären Lokalisation von CRIP1 in Abhängigkeit von CRP4 angefertigt. Die Zellkerne wurden mittels Hoechst (blau) gefärbt. (C, D) Bei WB-Analysen von CRP4 und CRIP1 in Proteinlysaten von P10 - 15 VSMCs

konnte ebenfalls eine signifikant niedrigere CRIP1-Expression in Anwesenheit von CRP4 nachgewiesen werden (n=3-4/ Genotyp, *p<0,05, zweiseitiger Student t-test). Als Ladungskontrolle wurde GAPDH verwendet. (**E**, **F**) Auch im Atherosklerose-Modell zeigte sich die signifikant erhöhte CRIP1-Expression in dKO Aortenlysaten nach 16 Wochen WD innerhalb von WB-Analysen (n=2-4/Genotyp (jeweils aus 2 Aorten), *p<0,05, 2-way ANOVA, Bonferroni's multiple comparisons test). GAPDH diente als Ladungskontrolle. (**G**) Die Lokalisation von CRIP1 in der Media und innerhalb der atherosklerotischen Plaques wurde durch serielle Kryoschnitte von CRP4 WT/ApoE KO und dKO Mäusen nach 16 Wochen WD analysiert, die mit CRIP1 (orange), α -SMA (rot) und Mac2 (grün) gefärbt wurden. Die Visualisierung der Kerne fand mit Hoechst (blau) statt. Alle Daten wurden als Mittelwerte ±SEM präsentiert.

5. Diskussion

CRP-Proteine können über LIM-Motive Protein-Protein-Interaktionen vermitteln und hierdurch als vielseitige Adapterproteine fungieren. Diese strukturellen Aspekte scheinen Grundlage der weitreichenden biologischen Bedeutung von LIM-Proteinen bei zellulären Funktionen, wie der Differenzierung, zytosolischen Organisation, Genexpression, sowie Zellteilung und Motilität zu sein (Bach, 2000; Dawid et al., 1998; Kadrmas & Beckerle, 2004; Schmeichel et al., 1997; Weiskirchen & Günther, 2003). Entsprechend wurde auch in VSMCs gezeigt, dass CRP-Proteine in der Lage sind die Organisation des Zytoskeletts zu regulieren, sowie Einfluss auf die Differenzierung der Zellen zu nehmen (Kadrmas & Beckerle, 2004; Lilly et al., 2010; Wei et al., 2005). Darüber hinaus wurde CRP4, als bis dato einziger Vertreter der CRP-Proteine, im enterischen Nervensystem (Huber et al., 2000), in den Spinalganglien des Rückenmarks (Schmidtko et al., 2008), in Kardiomyozyten (Straubinger et al., 2017) und in VSMCs (Zhang et al., 2007) als Substrat der cGKI identifiziert. Die cGKI ist als entscheidende Komponente der NO/cGMP/cGKI-Signalkaskade an der homöostatischen Regulierung des Gefäßsystems (Sausbier et al., 2000) und an vaskulo-proliferativen Prozessen beteiligt (Wolfsgruber et al., 2003). Auch die blutdruckregulierende Bedeutung von CRP4 konnte bereits gezeigt werden. Interessanterweise entwickelten globale CRP4 KO Mäuse dabei eine milde Hypotension (Straubinger et al., 2017). Dieser Befund ist überraschend, da von dem NO/cGMP/cGKI-Signalweg anti-hypertensive und gefäßerweiternde Funktionen ausgehen. Sofern also bluthochdruckassoziierte Effekte von NO/cGMP/cGKI CRP4-abhängig sind, wäre nach der Ablation von CRP4 ein Bluthochdruck zu erwarten gewesen.

Da die physiologischen und pathophysiologischen Funktionen von CRP4 im vaskulären System bislang weitgehend unklar sind, wurden diese Aspekte im Rahmen der vorliegenden Dissertation untersucht. Hierbei wurde vor allem untersucht, inwiefern die physiologischen Funktionen von glattmuskulärem CRP4 in Bezug auf die vaskuläre Kontraktilität und Blutdruckregulation in einem Zusammenhang mit dem cGMP-Signalweg stehen. Ein weiterer Fokus lag dabei auf der Bedeutung von CRP4 für die Entwicklung vaskulo-proliferativer Erkrankungen, im Speziellen bei der Pathogenese der Atherosklerose und Restenosierung von Gefäßen.

5.1 Physiologische Funktionen von CRP4

Die bisherigen Untersuchungen der CRP4-Expression im kardiovaskulären System, basierend auf globalen CRP4 KO und WT Mäusen, zeigten eine deutliche CRP4-Proteinexpression in Herzlysaten, sowie an der Plasmamembran und den Z-Scheiben isolierter Kardiomyozyten (Straubinger et al., 2017). Des Weiteren wurde in Aortenlysaten eine hohe CRP4-Abundanz

detektiert (Straubinger et al., 2017). In der vorliegenden Arbeit konnte die vaskuläre Expression von CRP4 mittels WB-Analyse von Aortenlysaten und immunhistochemischen Färbungen von Feinschnitten der Aorta bestätigt werden (Abb. 4.1B, C). Die Färbungen der Aortenschnitte zeigten zudem eine deutliche Lokalisation des LIM-Proteins in der Tunica media, der VSMC-reichen Schicht der Aorta (Abb. 4.1C). Da die Kryosektionen der Aorta auch Endothelzellen, Pericyten und Bindegewebe erfassen, wurden zusätzlich isolierte VSMCs auf ihre CRP4-Expression untersucht. Hierbei konnte eine deutliche zytoplasmatische Lokalisation von CRP4 mit einer perinukleären Anreicherung, sowie eine moderate nukleäre Expression identifiziert werden (Abb. 4.1C). Die primär zytoplasmatische Lokalisation von CRP4 in VSMCs könnte darauf hindeuten, dass CRP4 an der Regulation des Zytoskeletts beteiligt ist. Entsprechende Funktionen wurden für homologe Vertreter der CRP-Familie (CRP1, CRP2/smLIM) bereits beschrieben (Kadrmas & Beckerle, 2004; Louis et al., 1997). Die Expressionsanalyse verschiedener Interaktoren des Zytoskeletts, wie z.B. FAK, Zyxin und Vimentin, wiesen allerdings keine CRP4-abhängigen Expressionsunterschiede in gRT-PCR-Analysen von P0 VSMCs auf (Abb. 4.2B). Nichtsdestotrotz deutete der Nachweis von F-Aktinfasern im CRP4 WT auf eine ausgeprägtere Ausbildung an Stressfasern als in CRP4defizienten P0 VSMCs hin. Da die Ausbildung von F-Aktinfasern sowohl Einfluss auf die VSMC-Kontraktilität (Bárány et al., 2001), als auch auf die Migrationsprozesse in VSMCs (Gunst & Zhang, 2008) nimmt, weist die erhöhte F-Aktinfaser-Ausbildung darauf hin, dass CRP4 an diesen zellulären Prozessen beteiligt sein könnte.

5.1.1 CRP4 als Effektor des cGMP/cGKI-Signalwegs

In glattmuskulären Zelllinien wurde bereits gezeigt, dass CRP4 ein Substrat der cGKI ist. Infolge der cGKI-abhängigen Phosphorylierung an Ser104 ist CRP4 in der Lage die Transkriptionsfaktoren SRF und GATA6 zu binden und deren Anordnung in der entsprechenden Promotorregion zu stabilisieren. Darüber beeinflusst phosphoryliertes CRP4 die Expression glattmuskelspezifischer Gene, wie z.B. α-SMA (Zhang et al., 2007). Im Rahmen dieser Dissertation wurde untersucht, ob endogenes CRP4 in primären, murinen VSMCs ebenfalls ein cGKI-abhängiges Substrat ist und ob diese Interaktion für die transkriptionelle Regulation glattmuskelspezifischer Gene relevant ist. Wie bereits in Kapitel 5.1 diskutiert, konnte sowohl eine zytoplasmatische als auch eine geringe nukleäre Expression von CRP4 in VSMCs detektiert werden (Abb. 4.1C). Die starke perinukleäre Anreicherung des LIM-Proteins im Zytosol könnte ein Hinweis darauf sein, dass CRP4 ausgehend von dieser Position nukleäre Funktionen erfüllt und/oder, analog zu den in Zelllinien erhobenen Befunden, nukleäres CRP4 nach cGKI-abhängiger Phosphorylierung mit SRF und GATA6 interagiert (Zhang et al., 2007). Des Weiteren konnte in Längst et al. gezeigt werden, dass nach der Inkubation frisch isolierter
Aorten mit Orthophosphat die CRP4-Phosphorylierung, vermutlich an Ser104, über eine vaskuläre cGMP/cGKI-Aktivierung in CRP4 WT Mäusen erfolgt (Längst et al., 2021). Um einen möglichen Einfluss der Phosphorylierung auf die intrazelluläre Lokalisation von CRP4 zu analysieren, wurden mit Hilfe des cGMP-Analogons 8-Br-cGMP Translokationsversuche durchgeführt und die zelluläre Lokalisation von CRP4 bestimmt (siehe 2.2.5). Unter basalen Bedingungen konnte in allen vier Zellkompartimenten (Zytosol, Membran/Organellen, Zellkern, Zytoskelett) CRP4 detektiert werden, wobei der WB-basierte Nachweis für die Zytoskelett-Fraktion die stärksten Signale zeigte (Abb. 4.5). Da nach einer 24-stündigen Stimulation der VSMCs mit 8-Br-cGMP nur in der Membran/Organellen-Fraktion ein signifikanter Anstieg des CRP4 Proteins festgestellt werden konnte (Abb. 4.5), scheint eine bedeutsame Translokation von CRP4 nach cGMP-induzierter Phosphorylierung in primären VSMCs unwahrscheinlich.

Auch wenn die mechanistischen Details aktuell noch unklar sind, scheint CRP4 dennoch die Abundanz verschiedener Komponenten des NO/cGMP/cGKI-Signalwegs zu beeinflussen. So wurden in CRP4-defizienten VSMCs signifikant niedrigere NO-GC β_1 -Proteinlevel, sowie signifikant weniger cGKI-Protein in Aortenlysaten detektiert (Abb. 4.4C, G). Vermutlich als Folge der plastischen Eigenschaften der VSMCs unter Kulturbedingungen, war der Unterschied in der cGKI-Proteinmenge in den entsprechenden Zellen nicht mehr detektierbar (Abb. 4.4E, I). Ob transkriptionelle Regulationsmechanismen für die beobachteten Anpassungen der NO-GCβ₁- und cGKI-Proteinabundanz verantwortlich sind und/oder diese als Teil eines Feedback-Mechanismus zu verstehen sind, was impliziert, dass die CRP4-Ablation zu einer überschießenden Aktivität des NO/cGMP/cGKI-Signalwegs führen könnte, ist aktuell noch unklar. Ein Indiz für eine mögliche Disinhibition der endogenen cGMP/cGKI-Aktivität liefert der nach 8-Br-cGMP-Stimulation beobachtete Anstieg an pVASP^{Ser239} in CRP4defizienten vs. -profizienten VSMCs (Abb. 4.6). Die Phosphorylierung von VASP an Ser239 kann als Biomarker für die Ermittlung der cGKI-Aktivität herangezogen werden (Smolenski et al., 1998). Die in Abb. 4.6 präsentierten Befunde deuten demnach darauf hin, dass CRP4 an der Feinjustierung des cGMP-Signalwegs in VSMCs beteiligt sein könnte und somit eine Fehlregulation und/oder eine überschießende Aktivität von NO/cGMP/cGKI verhindert (Längst et al., 2021). Weiterhin liefert auch die hemmende Funktion von CRP4 auf die durch cGMPinduzierte Stimulation der VSMC Migration (Anhang Abb. 7.1A) einen zusätzlichen Hinweis auf eine Disinhibition der endogenen cGKI-Aktivität in CRP4 KO VSMCs, da auch eine Aktivierung der cGKI in primären VSMCs zu einer erhöhten Adhäsion der Zellen führt (Weinmeister et al., 2008). Alternativ steht die gesteigerte Migration in CRP4 KO Zellen, zumindest teilweise, mit einer cGMP-abhängigen Herunterregulation der Caldesmon-Expression in Zusammenhang (Anhang Abb. 7.1B). Entsprechend begünstigt ein Knockdown von Caldesmon die Migration und Invasion primärer VSMCs erheblich (Gao et al., 2016). Neben der Regulation der Migration beeinflusst das mit F-Aktin interagierende Caldesmon

ebenfalls die Kontraktilität der VSMCs (Marston & Redwood, 1992; Pritchard & Marston, 1989). Zudem wird die Transkription von Caldesmon über die Transkriptionsfaktoren SRF, GATA6 und den Nkx-Homeobox-Faktor reguliert (Nishida et al., 2002). Die postulierte Koordination der Transkriptionsfaktoren SRF und GATA6 durch CRP4 könnte demnach eine Erklärung für die Expressionsunterschiede von Caldesmon nach einer 8-Br-cGMP-Stimulation sein (Zhang et al., 2007).

5.2 cGMP-abhängige Regulation des Vasotonus

Die Bedeutung des NO/cGMP/cGKI-Signalwegs ist aufgrund zahlreicher präklinischer und klinischer Studien zur Regulation des Vasotonus und Blutdrucks unumstritten. So führen z.B. eine Ablation der cGMP-generierenden Enzyme NO-GC (Groneberg et al., 2010) oder GC-A (Lopez et al., 1995) in gentechnisch veränderten Mausmodellen zu einem erhöhten Vasotonus. Auch mittels cGMP-modulierender, pharmakologischer Substanzen konnte die vasoregulierende Funktion des NO/cGMP-Signalwegs in vivo und in vitro beobachtet werden. Hierbei wurde durch den Einsatz von NO-Donatoren (Ignarro et al., 1981) oder des NO-GC Stimulators Riociguat (Mittendorf et al., 2009) eine deutliche Blutdrucksenkung erreicht, während PDE5-Inhibitoren nur zu einer milden Senkung des Vasotonus führten (Jackson et al., 1999). Umgekehrt konnte mittels NO-Synthase-Inhibitoren eine Hypertension induziert werden (Gardiner et al., 1992). Des Weiteren wurde die cGKI als wichtigster nachgeschalteter Effektor von cGMP bei der Vermittlung der Relaxation von Gefäßen identifiziert (Münzel et al., 2003; Pfeifer et al., 1998; Schlossmann & Desch, 2011; Surks et al., 1999). Hierbei antagonisiert die cGKI die gefäßverengende Signalübertragung in VSMCs funktional, indem die Kinase die basale und die Agonist-induzierte intrazelluläre Ca²⁺-Akkumulation, sowie die Reaktionsfähigkeit (Ca²⁺-Sensitivität) der Myofilamente unterdrückt (Butler et al., 2013; Schlossmann & Desch, 2011). Interessanterweise zeigen die im Rahmen dieser Dissertation erhobenen Daten, dass auch CRP4 an der Regulation der Expressions- und Phosphorylierungslevel von Proteinen, die bei der Steuerung der transmembranären Ca2+-Ströme, der Ca2+-Freisetzung aus intrazellulären Speichern und der Ca2+-Sensitivität eine Rolle spielen, beteiligt ist. Über diese Mechanismen erhöht CRP4 möglicherweise die Kontraktilität und wirkt der cGMP-vermittelten Relaxation der VSMCs entgegen. Entsprechend resultierte die Ablation von CRP4 bereits basal in einer milden Hypotonie, während die blutdrucksenkende Wirkung cGMP-erhöhender Substanzen in CRP4 KO Mäusen signifikant stärker ausfiel (Abb. 4.13). Diese in vivo Effekte konnten durch eine stärkere relaxierende Wirkung von cGMP-erhöhenden Substanzen auf Aortenringe in Abwesenheit von CRP4 (Abb. 4.11) und einer damit assoziierten gesteigerten Ca2+-Desensitivierung in VSMCs erklärt werden (Abb. 4.12) (siehe 5.1.1, 5.2.1 und 5.2.2) (Längst et al., 2021).

132

5.2.1 Regulation von Gefäßtonus und Ca²⁺-Desensitivierung via CRP4

Die bereits in den vorherigen Abschnitten diskutierte Hypothese einer enthemmten (oder überaktivierten) cGKI-Aktivität in CRP4-defizienten VSMCs bestätigte sich auch bei der Betrachtung des geringeren maximalen Kontraktionsvermögens der CRP4 KO Aortenringe (Abb. 4.11A). Interessanterweise führte die Ablation von CRP4 zu einem Anstieg der MYPT1-Proteinlevel (Abb. 4.12A, B). MYPT1 gilt als Untereinheit von MLCP und reguliert die Aktivität der Phosphatase und damit den Phosphorylierungsstatus von MLC2. Zudem war in CRP4defizienten VSMCs eine Reduktion der die MYPT1-Aktivität inhibierenden Phosphorylierung an Thr696 zu beobachten, aus der folglich auch geringere pMLC2^{Ser19}-Level resultierten (Abb. 4.12A, C). Interessanterweise werden diese, die Ca²⁺-Desensitivierung in VSMCs bestimmenden Mechanismen, auch durch den NO/cGMP/cGKI-Signalweg moduliert. So führt eine Aktivierung der MLCP, vermutlich indirekt über eine Ser695-Phosphorylierung der MYPT1 (Wooldridge et al., 2004) zur Vasodilatation (Nakamura et al., 2007). Es ist bereits in der Literatur beschrieben, dass Thr696 bei einer bestehenden pMYPT1^{Ser695} für weitere Phosphorylierungen weniger zugänglich ist (Wooldridge et al., 2004). Somit könnten reduzierte pMYPT1^{Thr696}-Level in CRP4-defizienten VSMCs ein Hinweis darauf sein, dass hierdurch auch der pMYPT1^{Ser695}-Status reguliert wird. Dies ist allerdings nur eine Annahme, welche es in zukünftigen Experimenten weiter zu analysieren gilt. Die Thr696-Phosphorylierung von MYPT1 wird über ROCK vermittelt (Kato et al., 2012; Kimura et al., 1996), was letztlich in einer pMLC2^{Ser19} resultiert (Kiss et al., 2019; SOMLYO & SOMLYO, 2003), die eine Interaktion von Myosin mit den Aktinfilamenten ermöglicht und somit zur Kontraktion führt (Chacko et al., 1977; K E Kamm et al., 1985). Die beobachteten reduzierten pMLC2^{Ser19}-Level in CRP4 KO VSMCs in vitro sind demnach kongruent mit dem niedrigeren pMYPT1^{Thr696}-Status, sowie dem verminderten Kontraktionsvermögens der Aorten und den reduzierten basalen Blutdruckwerten der CRP4-defizienten Mäuse (Qiao et al., 2014). Zudem erklärt die erhöhte Ca²⁺-Desensitivierung auch die gesteigerten vasodilatatorischen (Abb. 4.11B-D) und blutdrucksenkenden Effekte der cGMP-erhöhenden Substanzen im CRP4 KO (Abb. 4.13B-D). Zusammengenommen bestärken diese Befunde die Annahme, dass es sich bei CRP4 um einen endogenen Feedback-Inhibitor des NO/cGMP/cGKI-Signalwegs handeln könnte (Längst et al., 2021).

5.2.2 Regulation der VSMC-Relaxation über Ca²⁺-abhängige Mechanismen

Die Relaxation wird neben der erhöhten Ca²⁺-Desensitivierung auch über eine Modulation der Agonist-induzierten [Ca²⁺]_i-Transienten via cGMP beeinflusst (Sausbier et al., 2005; Schlossmann et al., 2000). Erwartungsgemäß führte die Stimulation der primären VSMCs mit 8-Br-cGMP (Abb. 4.7), sowie dem NO-Donator DEA/NO (Abb. 4.8) in CRP4 WT VSMCs zu

einer signifikanten Reduktion der [Ca2+]i-Transienten. Diese Effekte waren im CRP4 KO weniger ausgeprägt. Dies impliziert, dass CRP4 für die cGMP-abhängige Modulation der NEinduzierten [Ca²⁺]_i-Transienten essentiell ist. Diese Befunde stehen klar im Widerspruch zu der gesteigerten Relaxation (Abb. 4.11), sowie der intensiveren Blutdrucksenkung der CRP4 KO Aorten bzw. Mäuse nach cGMP-Stimulation (Abb. 4.13). Offensichtlich spielen die glattmuskulären [Ca2+];-Transienten im CRP4 KO eine untergeordnete Rolle für den Gefäßtonus und den Blutdruck (Abb. 4.11, 4.13). Hier scheint die bei CRP4-Ablation beobachtete Ca²⁺-Desensitivierung zu dominieren (Längst et al., 2021). Interessanterweise bildet die glattmuskuläre cGKI mit IRAG und dem IP₃R einen ternären Komplex, der die Freisetzung von Ca²⁺ aus dem SR verhindert (Schlossmann et al., 2000). Eventuell beeinflusst CRP4 die Funktion und/oder Stabilität dieses Komplexes und nimmt damit Einfluss auf das Ausmaß der NA-induzierten Ca²⁺-Freisetzung. Zusammengenommen implizieren diese Befunde, dass CRP4 für die effiziente Unterdrückung der [Ca²⁺],-Transienten über den NO/cGMP/cGKI-Signalweg notwendig ist, wohingegen der CRP4-Funktionsverlust Ca2+unabhängige Desensitivierungsmechanismen stimuliert (Butler et al., 2013; SOMLYO & SOMLYO, 2003). Da CRP4 neben der cGKI-spezifischen Phosphorylierungsstelle an Ser104 (Zhang et al., 2007) über LIM-Adaptermodule multiple Proteininteraktionen eingehen und koordinieren kann, erscheint es plausibel, dass CRP4 räumlich und zeitlich begrenzte NO/cGMP/cGKI-vermittelte Signale auf unterschiedliche Weise beeinflussen kann.

In Bezug auf die NA-induzierten [Ca²⁺]-Transienten zeigte lediglich Cinaciguat, das die oxidierte, Häm-freie NO-GC aktiviert, keine genotypspezifischen Unterschiede (Abb. 4.9) (Schmidt et al., 2009). Dies könnte zum einen mit der reduzierten NO-GCβ₁-Expression in CRP4-defizienten P0 VSMCs und zum anderen mit einer erhöhten cGMP-Generierung durch die Stimulation mit Cinaciguat in CRP4 KO VSMCs (Abb. 4.10B) zusammenhängen. Interessanterweise waren die basalen cGMP-Konzentrationen trotz der niedrigeren NO-GCβ₁-Expression in CRP4-defizienten VSMCs in beiden Genotypen fast identisch (Abb. 4.10A). Die vermehrte cGMP-Generierung war in CRP4 KO Zellen infolge der Stimulation mit dem NO-GC-Stimulator Riociguat, der NO-unabhängig und synergistisch zu NO die reduzierte NO-GC stimuliert, noch stärker ausgeprägt (Abb. 4.10C) (Stasch et al., 2009). Dies lässt vermuten, dass der cGMP-Generator NO-GC in Abwesenheit von CRP4 vermehrt im reduzierten Status vorliegt, was auf ein niedrigeres Level an oxidativem Stress hindeuten könnte. Es ist bekannt, dass ein erhöhtes oxidatives Stresslevel und damit eine erhöhte ROS-Bildung zu Fehlfunktionen im NO/cGMP-Signalweg führen. Dies schließt Veränderungen der Aktivität und Expression der NO-GC, cGKI und cGMP-spezifischer PDEs mit ein (Chester et al., 2011; Farrow et al., 2008; Hanson et al., 1998; Mülsch et al., 2001). Darüber hinaus kann die Aktivität mehrerer PDEs auch durch den cGMP-Spiegel stimuliert oder gehemmt werden. So führt z.B. die Phosphorylierung von PDE5 durch die cGKI zu seiner Aktivierung (Rybalkin et al., 2002; Rybalkin et al., 2003). Interessanterweise war der Unterschied in den cGMP-Leveln zwischen den Genotypen sensitiv für eine unspezifische/vollständige PDE-Hemmung (Abb. 4.10B, C). Zusammen mit einem geringeren cGMP-induzierten PDE5-Expressionsanstieg in CRP4-defizienten Zellen (Abb. 4.10D, F) lassen diese Befunde die Schlussfolgerung zu, dass durch CRP4 ein verstärkter Abbau von cGMP stattfindet, möglicherweise aufgrund erhöhter oxidativer Stresslevel. Alternativ liegt in CPR4 KO VSMCs auch eine aktivere, vaskuläre NO-GC vor, deren basale Expression zum Ausgleich der erhöhten Aktivität herunterreguliert ist. Diese Überlegungen sind jedoch rein hypothetisch und bedürfen der experimentellen Überprüfung.

5.2.3 Beeinflussung der Aktin-Polymerisierung

Neben den bereits benannten Mechanismen ist auch die Regulation des Aktin-Zytoskeletts an der Ca²⁺-Desensitivierung beteiligt. Es wird davon ausgegangen, dass die Aktin-Polymerisierung zur Gefäßverengung und zum Umbau der Widerstandsarterien bei Bluthochdruck beiträgt (Nakamura et al., 2000; Staiculescu et al., 2013). In diesem Zusammenhang identifiziert die vorliegende Arbeit genotypabhängige Änderungen im Phosphorylierungsstatus der Aktin-assoziierten Proteine VASP (Abb. 4.6A, B) und Cofilin (Abb. 4.14C, E). Es ist bekannt, dass die cGKI-vermittelte pVASP^{Ser239} Einfluss auf die Interaktion von VASP mit G- und F-Aktin hat und dadurch die VASP-gesteuerte Aktin-Polymerisierung (Benz et al., 2009), sowie das Wachstum von VSMCs beeinträchtigt wird (Chen L et al., 2004). Die erhöhten pVASP^{Ser239}-Level in 8-Br-cGMP-stimulierten CRP4 KO VSMCs könnten deshalb mit einer mutmaßlich verminderten Aktin-Polymerisierung zusammenhängen und somit ein weiterer Grund für die verstärkte Relaxation der CRP4 KO Aorten darstellen.

Des Weiteren ist auch ROCK, ein nachgeschalteter Mediator der kleinen GTPase RhoA, an der Regulierung der Aktindynamik beteiligt, indem es die LIMK-Aktivität steuert (Foote et al., 2016). Interessanterweise konnte Cofilin, ein Substrat der LIMK, nach der Stimulation kultivierter VSMCs mit 8-Br-cGMP ebenfalls als ein CRP4-interagierendes Protein identifiziert werden (Abb. 4.14A). Die Funktion des Aktin-bindenden Proteins Cofilin liegt in der Regulierung der Aktindynamik durch die Depolymerisierung von F-Aktin-Stressfasern des Zytoskeletts (Gerthoffer, 2007; Ostrowska et al., 2017; Xu et al., 2017). Die Aktivität von Cofilin kann von der LIMK über eine Phosphorylierung an Ser3 negativ beeinflusst werden (Arber et al., 1998; Toshima et al., 2001; Yang et al., 1998). Darüber hinaus wird die Phosphorylierung und Aktivität von Cofilin auch durch Slingshot-Phosphatasen (SSH) reguliert, die mit Cofilin und LIMK interagieren und zu einer Dephosphorylierung führen können (Kanellos et al., 2016; Ma et al., 2019; Soosairajah et al., 2005). In der hier vorliegenden Arbeit konnte gezeigt

werden, dass CRP4 cGMP-abhängig sowohl an der Cofilin-Expression, als auch an der Dephosphorylierung von Cofilin beteiligt ist. Konkret zeigten sich in 8-Br-cGMP-behandelten CRP4 KO VSMCs niedrigere Cofilin-Level und erhöhte pCofilin^{Ser3}-Level (Abb. 4.14C-E). Hieraus lässt sich eine Bedeutung von CRP4 für die Interaktion von LIMK mit Cofilin ableiten. Alternativ könnte CRP4 auch die Dephosphorylierung von Cofilin über eine Regulation der SSHs fördern und somit zu einer erhöhten Polymerisierung der Aktin-Stressfasern führen. Darüber hinaus ist bekannt, dass Cofilin bei oxidativem Stress an Cys139 und Cys147 oxidiert werden kann, was die Interaktion mit Aktin verhindert (Xu et al., 2017). Zudem wird derzeit diskutiert, ob eine Oxidation auch die Dephosphorylierung von Cofilin an Ser3 fördert (Klamt et al., 2009; Luo et al., 2014; Xu et al., 2017). Diese Vorstellung wäre kongruent mit der Annahme, dass die Ablation von CRP4 zu einem geringeren oxidativen Stresslevel führt. Von weiterem Interesse ist, dass Cofilin eine Kernlokalisierungsseguenz (NLS) enthält, die ein Shuttling zwischen Kern und Zytoplasma ermöglicht (Kanellos & Frame, 2016; Munsie et al., 2012). Es ist bereits bekannt, dass sich Cofilin unter Stressbedingungen im Zellkern anreichert, wo es in hohem Maße an Aktinfilamente bindet (Munsie et al., 2012). Da mittels IF-Färbungen beobachtet werden konnte, dass Cofilin nach einer 8-Br-cGMP-Stimulation in CRP4 WT VSMCs aus dem Zellkern ins Zytoplasma transloziert wird, könnte die Dephosphorylierung von Cofilin möglicherweise auch mit dessen Translokation zusammenhängen (Nebl et al., 1996). Interessanterweise konnte in CRP4-defizienten VSMCs keine Kerntranslokation von Cofilin beobachtet werden (Abb. 4.14B).

Insgesamt könnte die cGMP- und CRP4-abhängige Regulierung der VASP- und Cofilin-Phosphorylierungsmuster ebenfalls an der in Kapitel 5.2.1 erläuterten blutdruckmodulierenden Wirkung von CRP4 beteiligt sein. Hierbei würde die mutmaßlich verminderte Aktin-Polymerisierung in den CRP4-defizienten VSMCs zu der verstärkten vaskulären Relaxation und Blutdruckabnahme im CRP4 KO beitragen.

5.3 Pathophysiologische Funktionen von CRP4

Die phänotypische Modulation der VSMCs gilt als wichtiges Ereignis in der Pathogenese der Atherosklerose (Allahverdian et al., 2018; Bennett et al., 2016; Tabas et al., 2015). Eine Schädigung der Gefäße induziert die sogenannte Phänotypmodulation der VSMCs von kontraktilen zu synthetischen Zellen und ist durch eine niedrigere Expression kontraktiler Proteine, eine erhöhte Migration, sowie Proliferation und eine gesteigerte Expression verschiedener pro-inflammatorischer Zytokine und MMPs charakterisiert (Alexander & Owens, 2012; Owens et al., 2004; Rzucidlo et al., 2007). Neben der phänotypischen Modulation sind VSMCs auch in der Lage durch Transdifferenzierung Eigenschaften von alternativen Zelltypen, wie z.B. Schaumzellen, Makrophagen, mesenchymalen Stammzellen, Osteochondrozyten

oder ECM-produzierenden Zellen anzunehmen (Basatemur et al., 2019). Die vielfältigen Eigenschaften und Funktionen der VSMCs tragen zum einen zur Progression, dem Entzündungsgeschehen und den erhöhten oxidativen Stressleveln, sowie dem Zelltod in atherosklerotischen Plaques bei (Durham et al., 2018). Zum anderen können VSMCs aber auch eine stabilisierende Funktion auf atherosklerotische Plaques ausüben, indem sie ECM-Proteine synthetisieren und so zur Stabilisierung der fibrösen Kappe beitragen. Da VSMCs folglich sowohl pro- als auch anti-atherogene Eigenschaften besitzen, ist die Erforschung der verschiedenen Signalwege und möglicher Targets in VSMCs von großer Bedeutung für zukünftige Therapieoptionen in der Prävention und Behandlung der Atherosklerose (Basatemur et al., 2019). Für die CRP4-homologen Proteine CRP1 und CRP2 wurde bereits ein Zusammenhang zwischen der glattmuskulären Proteinexpression, Proliferation (Lilly et al., 2010; Wei et al., 2005), sowie der Differenzierung von VSMCs (Chang et al., 2003) festgestellt. Neben ihrer stabilisierenden Funktion für die Zytoarchitektur der VSMCs, sind CRP-Proteine auch in der Lage mit den Transkriptionsfaktoren SRF und GATA Komplexe einzugehen und darüber die Expression VSMC-spezifischer Gene zu regulieren (Chang et al., 2003; Wei et al., 2005) (Huber et al., 2000; Zhang et al., 2007).

5.3.1 Atherogene Effekte von CRP4 durch die Beeinflussung der VSMC Migration

Nach der Atherosklerose-induzierenden WD-Fütterung zeigte sich durch eine CRP4-Ablation im ApoE-defizienten Mausmodell eine geringere atherosklerotische Plaquebildung. Neben der bereits bestätigten medialen Expression von CRP4 in gesunden Gefäßen war CRP4 auch in atherosklerotischen Plaques, insbesondere in der Region der fibrösen Kappe der CRP4 WT/ApoE KO Mäuse detektierbar (Abb. 4.16C). Dies deutet darauf hin, dass CRP4 als atherogener Faktor zur Formation der fibrösen Kappe und zur vermehrten Plaquebildung beiträgt (Abb. 4.17, Abb. 4.18C) (Längst et al., 2022). In vergleichbaren Arbeiten konnte bereits nachgewiesen werden, dass die fibröse Kappe durch sequentielle Migration und Proliferation einzelner medialer VSMCs gebildet wird (Hui et al., 2005; Oppi et al., 2019). Ausgelöst wird der Migrationsprozess u.a. durch die Freisetzung inflammatorischer Mediatoren und Zytokine. Zudem bestätigen Studien zum Ursprung der Zellen, dass mindestens 30% der läsionalen Zellen von VSMCs abstammen (Allahverdian et al., 2014; Feil et al., 2014). Die starke CRP4-Lokalisation am Zytoskelett (Abb. 4.5), sowie die verstärkte Ausbildung von F-Aktinfasern in CRP4-positiven P0 VSMCs, weisen darauf hin, dass CRP4 an F-Aktin-gesteuerten zellulären Prozessen, wie der Migration, beteiligt sein könnte. Interessanterweise zeigten primäre WT VSMCs ein höheres Migrationsverhalten als entsprechende CRP4-defiziente Zellen (Abb. 4.3A, B), was zur erhöhten Plaquebildung in vivo beitragen könnte (Abb. 4.17, Abb. 4.18A, C). Ebenfalls könnte dies eine Erklärung für die gesteigerte α -SMA-Abundanz in den

atherosklerotischen Läsionen von CRP4 WT/ApoE KO Mäusen (Abb. 4.20A, B) sein. Die erhöhte Migration könnte unter anderem mit den höheren ITGB3-Proteinleveln der CRP4 WT Aortenlysate zusammenhängen (Abb. 4.3C, D). ITGB3 ist an der Ausbildung von FA wesentlich beteiligt und kann darüber das Migrationsvermögen der VSMCs beeinflussen (Kappert et al., 2001; Panda et al., 1997). Neben den *in vitro* Befunden wurde die Interaktion von Integrin β_3 und Osteopontin mit einer gesteigerten VSMC Migration bei der Entstehung atherosklerotischer Plaques, sowie nach vaskulären Verletzungen in Verbindung gebracht (O'Brien et al., 1994; Panda et al., 1997). Allerdings wurden im Rahmen dieser Arbeit keine weiteren Analysen zur CRP4-ITGB3-Beziehung vorgenommen, welche diese Hypothese abschließend bestätigen würden. Eine aktuelle Studie konnte interessanterweise zeigen, dass ITGB3 an der Prävention der VSMC Transdifferenzierung zu Makrophagen-ähnlichen Zellen beteiligt ist (Misra et al., 2018). Jedoch wurden weder in atherosklerotischen Plaques, noch in ApoE KO Aortenlysaten nach WD-Fütterung CRP4-abhängige Veränderungen in der Mac2-Expression festgestellt (Abb. 4.27), was darauf hindeutet, dass CRP4 keine Bedeutung für die Transdifferenzierung von VSMCs in Makrophagen-ähnliche Zellen hat.

Ein weiterer Hinweis darauf, dass CRP4 primär über vaskuläre Migrationsprozesse die Plaqueentstehung beeinflusst, lässt sich aus der kombinierten Bestimmung metabolischer und hämodynamischer Parameter ableiten. Entsprechend ergaben der Körpergewichtsverlauf während der WD-Fütterung (Abb. 4.15A), als auch die Analyse der Blutlipide (Abb. 4.15b-D, Tab. 7.2) keine genotypspezifischen Unterschiede zwischen dem ApoE-defizienten CRP4 WT und KO. Auch die Analyse der Blutdruckparameter nach 16 Wochen WD im ApoE KO Modell implizierte eine Normalisierung der im globalen CRP4 KO detektierten Hypotension. Mit CRP4 im Zusammenhang stehende Blutdruckänderungen *in vivo* erscheinen damit als Einflussfaktor bei der Entwicklung der Atherogenese unwahrscheinlich (Abb. 4.19) (Längst et al., 2022).

5.3.2 CRP4-abhängige Regulation der Proliferation im synthetischen VSMC Phänotyp

Während CRP4 die Migration von unpassagierten VSMCs *in vitro* stimuliert und so die atherosklerotische Plaquebildung und -größe *in vivo* fördert, dominieren in passagierten, synthetischen VSMCs *in vitro* anti-proliferative Eigenschaften von CRP4 (Abb. 4.21). Dies deutet darauf hin, dass CRP4 abhängig vom Differenzierungsstatus der VSMCs eine duale Rolle einnimmt. CRP4 könnte hierbei stimulierend auf die initialen Schritte der Plaqueentstehung Einfluss nehmen, während es in synthetischen Zellen einer weiteren Plaqueprogression durch anti-proliferative Funktionen entgegenwirkt. Kongruent mit diesen Befunden war die Anzahl Ki-67-exprimierender und somit proliferierender Zellen innerhalb der atherosklerotischen CRP4 WT/ApoE KO Plaques vermindert, wohingegen die Anzahl an Zellen in den Plaques insgesamt erhöht war (Abb. 4.20D) (Längst et al., 2022). Dieser

Diskussion

scheinbare Widerspruch lässt sich über die globale Deletion von CRP4 im ApoE KO-Modell erklären. So dürfte die Ausschaltung von CRP4 auch weitere Plaquezelltypen, wie bspw. Endothelzellen, Pericyten und Immunzellen (Makrophagen, T-Lymphozyten) betreffen, die wahrscheinlich nicht von VSMCs abstammen. Des Weiteren wird bei fortgeschrittenen atherosklerotischen Läsionen eine verstärkte VSMC-Proliferation beobachtet, die für die Plaquestabilität und somit die Progression der Erkrankung von Vorteil sein kann (Bennett et al., 2016). Da die Proliferation von VSMCs im Krankheitsbild der Atherosklerose also hauptsächlich "reparierende" Funktionen zu haben scheint und nicht als primärer Treiber der Plaquebildung angesehen wird, könnte dieser Aspekt zudem darauf hindeuten, dass die Ablation von CRP4 zu einer stabileren Plaquestruktur beiträgt (Bennett et al., 2016; Lutgens et al., 1999).

Die anti-proliferative Funktion von CRP4 im synthetischen vaskulären Phänotyp konnte auch in einem weiteren vaskulären Krankheitsbild, der Restenosierung von Gefäßen nach deren Verletzung, bestätigt werden (Abb. 7.7). Vergleichbar mit der Pathogenese der Atherosklerose sind hier die phänotypische Modulation der VSMCs und eine damit einhergehende übermäßige Proliferation von VSMCs ein wichtiger Aspekt der neointimalen Hyperplasie, die nach einer Gefäßverletzung im experimentellen Restenosemodell entsteht (Ferns & Avades, 2000). Auch in diesem Krankheitsmodell konnten CRP4-abhängige anti-proliferative Eigenschaften festgestellt werden, die *in vivo* zu einer Unterdrückung der Bildung neointimaler Zellen führte, die mehrheitlich wahrscheinlich von VSMCs der Media abstammen (Herring et al., 2014; Nemenoff et al., 2011).

5.3.3 Einfluss oxidativer Stressfaktoren auf die CRP4-abhängige Atherogenese

Entzündungsgeschehen, Ischämie und Reperfusionsschäden, Adipositas und Insulinresistenz sind pathophysiologische Zustände, die mit vermehrtem oxidativen Stress assoziiert werden (D'Archivio et al., 2012; Lukowski et al.). Auch die Entstehung und das Fortschreiten der Atherosklerose werden mit oxidativem Stress in Zusammenhang gebracht. So kann die Entstehung von ROS die Pathogenese der Atherosklerose auf unterschiedliche Weise verstärken (Barry-Lane et al., 2001; Vendrov et al., 2006). Hierbei ist die Oxidation von LDL ein entscheidender und wichtiger Auslöser atherosklerotischer Ereignisse (Harrison et al., 2003; Iuliano, 2001; Kattoor et al., 2017). Die Oxidation von LDL ist für alle an der Atherogenese beteiligten Zellen zytotoxisch. Wie bereits unter 5.2.2 beschrieben, weisen verschiedene Ergebnisse dieser Arbeit darauf hin, dass CRP4 über eine Modulation oxidativer Stressfaktoren zu vulnerableren Plaques führen könnte. Diese Hypothese wird durch die signifikante Anreicherung CRP4-regulierter Proteine (PRDX4, Mical2, Acadl, Pir) in

Oxidations-/Reduktionsprozessen (GO: 0055114) (Tab. 4.1), sowie einer signifikant höheren Abundanz von oxLDL (Abb. 4.25A, B) und Mikroverkalkungen in ApoE KO CRP4-positiven Plaques unterstützt (Abb. 4.25C, D) (Längst et al., 2022). Die oxLDL-induzierte osteogene Transdifferenzierung von VSMCs (Byon et al., 2008; Farrokhi et al., 2015; Mody et al., 2001) könnte in diesem Zusammenhang zu der Kalzifizierung der Plaques beitragen. Die Kalzifizierung der Gefäße wird bei zahlreichen Gefäßerkrankungen (z.B. Atherosklerose, chronische Nierenerkrankung, Bluthochdruck und Diabetes) beobachtet und wird neben oxLDL durch eine Vielzahl an Faktoren reguliert, beispielsweise Zytokine und Zytokinabhängige Signalwege (Barrett et al., 2019; McRobb et al., 2017; Raggi et al., 2018; Shanahan, 2007). Letztlich kann der Prozess der Kalzifizierung von VSMCs bzw. Plagues einerseits durch den Verlust VSMC-spezifischer Marker und zum anderen durch den Erwerb osteogener Marker (z. B. Runx1/Cbfa1/Osteopontin, Osterocalcin, AP) charakterisiert werden (Massy et al., 2008; Speer et al., 2009; Steitz et al., 2001). Das Auftreten von Mikroverkalkungen in atherosklerotischen Plaques verändert massiv die Gewebestruktur und das mechanische Verhalten der Plaques (Barrett et al., 2019). Verschiedene Studien haben gezeigt, dass eher oberflächliche "punktuelle" Verkalkungen die Wahrscheinlichkeit einer Plaqueruptur erhöhen (Nerlekar et al., 2018; Sakaguchi et al., 2016) und mit einem signifikanten Anstieg der Gesamtmortalität assoziiert sind (Durham et al., 2018). Obwohl die Analyse zusätzlicher Marker für die Plaque-In-/Stabilität keine Unterschiede zwischen den Genotypen aufwiesen (Abb. 4.26), deuten die Befunde dieser Arbeit darauf hin, dass CRP4 zumindest einen wichtigen Aspekt der Plaquestabilität negativ beeinflusst.

5.3.4 Vergleich der Proteinexpression synthetischer CRP4 WT und KO VSMCs

Durch Proteomanalysen synthetischer VSMCs konnten CRP4-regulierte Proteine identifiziert werden (Abb. 4.23, Tab. 4.1). CRP4-abhängige Effekte auf die Genexpression wurden bereits in glattmuskulären Zelllinien nachgewiesen (Zhang et al., 2007). Interessanterweise konnten einige CRP4-regulierte Proteine bereits mit der VSMC-Differenzierung, der Organisation der Aktindynamik, Oxidations-/Reduktionsprozessen (GO: 0055114), oxidativem Stress und/oder der Pathogenese der Atherosklerose assoziiert werden (Tab. 4.1) (Längst et al., 2022). In Bezug auf die Migration von VSMCs und deren Plastizität, ließen sich nach Ablation von CRP4 herunterregulierte Proteine finden, die an der Organisation des Zytoskeletts, sowie der Ausbildung von Stressfasern beteiligt sind (Tab. 4.1). Eines dieser Proteine stellt die Ggps1 dar (Tab. 4.1, Abb. 4.23). Ggps1 spielt eine wichtige Rolle bei der posttranslationalen Modifikation von Proteinen durch die Umwandlung von Farnesylpyrophosphat (FFP) in Geranylgeranylpyrophosphat (GGPP) (Kainou et al., 1999). Interessanterweise ist die Prenylierung einiger kleiner GTPasen (z.B. Rho/Rac-Familie), die unter anderem an der

Aktindynamik des Zytoskeletts beteiligt sind, ausschließlich von der Geranylgeranylierung durch GGPP abhängig (Foley et al., 2020). Darüber hinaus konnte gezeigt werden, dass ein globaler Ggps1 KO in Mäusen letal ist und eine SM-spezifische Ablation von Ggps1 in Mäusen zu einem signifikanten Anstieg mehrfach ungesättigter Fettsäuren (PUFAs) und einer damit verbundenen beeinträchtigten Eicosanoid-Produktion führt. Des Weiteren wurden im SMspezifischen Gqps1 KO reduzierte systolische Blutdruckwerte bei 7 Wochen alten Mäusen, sowie ein fortschreitender Verlust an VSMCs in der Aorta festgestellt (Wei et al., 2020). Neben Ggps1 war auch die Expression des zytoskelettalen Proteins Adducin (α - und γ -Add), das an der Organisation des Zytoskeletts, sowie an Zell-Zell-Kontakten beteiligt ist, in synthetischen CRP4-defizienten VSMCs herunterreguliert (Tab. 4.1, Abb. 4.23). Adducin spielt bei der Zellmigration und Signaltransduktion in Zellen eine Rolle (Matsuoka et al., 2000). Zudem verstärkt die Phosphorylierung von α -Adducin dessen Affinität für F-Aktin, woraus ein erhöhtes Kontraktionsvermögen der VSMCs und eine erhöhte Zellmotilität resultieren (Kimura et al., 1998). Diese Phosphorylierung wird über den Rho-ROCK-MYPT1-Signalweg reguliert (Kimura et al., 1998; Matsuoka et al., 1996). Da Expressionsstudien an CRP4 KO vs. WT VSMCs eine Reduktion der MYPT1-Expressionslevel (Abb. 4.12) im KO zeigten, ist dies ein weiterer Hinweis darauf, dass CRP4 an der Regulation dieser Signalkaskade beteiligt sein könnte. Insgesamt deutet die geringere Ggps1-, α - und γ -Adducin-Proteinexpression darauf hin, dass die erhöhte Migration im synthetischen Phänotyp der CRP4 KO VSMCs (Abb. 7.8) zumindest teilweise mit der CRP4-abhängigen Abundanz dieser Faktoren zusammenhängen könnte. Darüber hinaus führte die Ablation von CRP4 in VSMCs auch zu einer Herabsetzung der Proteinexpression von Thoc2, das Teil des TREX (Transkription/Export)-Komplex ist (Tab. 4.1). Thoc2 ist am Export von gespleißter VSMC-Marker-mRNA aus dem Zellkern beteiligt. Des Weiteren scheint eine Thoc2-Deaktivierung zur Dedifferenzierung von VSMCs mit einer verringerten Expression von VSMC-Markergenen, sowie einer erhöhten Migration und Proliferation zu führen (Yuan et al., 2018). Dies könnte eventuell eine Rolle für die höhere Proliferation und Migration im synthetischen Phänotyp CRP4-defizienter VSMCs spielen. Thoc2 wurde auch in atherosklerotischen Plaques identifiziert, was darauf hindeutet, dass Thoc2 ebenfalls an der Pathogenese der Atherosklerose in vivo beteiligt sein könnte (Yuan et al., 2018). Ein weiteres bei CRP4-Defizienz herunterreguliertes Protein ist Rai14, das auch als neuartiges retinales Pigmentepithelzellgen (NORPEG) bezeichnet wird (Tab. 4.1, Abb. 4.23). Es gibt zum einen Hinweise darauf, dass Rai14 eine Rolle bei den NAD(P)H-Oxidasevermittelten phänotypischen und funktionellen Veränderungen von VSMCs spielt (Vendrov et al., 2006). Zum anderen wird vermutet, dass Rai14 mit den Strukturen des kortikalen Aktin-Zytoskeletts und den Stressfasern assoziieren kann (Peng et al., 2000; Qian et al., 2013).

Neben den im vorherigen Abschnitt aufgeführten herunterregulierten Proteinen, waren in synthetischen CRP4 KO VSMCs auch einige hochregulierte Proteine detektierbar. Eine

entsprechende Hochregulation konnte für Uba1 nachgewiesen werden. Uba1 ist das erste und wichtigste E1-aktivierende Enzym bei der Ubiquitin-Aktivierung und damit Teil des Ubiquitin-Proteasom-Systems (UPS) (Tab. 4.1, Abb. 4.23). Das UPS ist von großer Bedeutung für den intrazellulären Proteinabbau (Schulman et al., 2009; Yang et al., 2012) und eine abnormale Funktion des UPS kann in den verschiedenen Stadien (Initiierung, Fortschreiten, Komplikation) der atherosklerotischen Pathogenese ambivalente Auswirkungen haben (Herrmann et al., 2002; Versari et al., 2006; Wang et al., 2015). Vor Kurzem wurde berichtet, dass eine Hemmung von Uba1 durch den Ubiquitin-E1-Inhibitor PYR-41 die Entwicklung einer diätetischinduzierten Atherosklerose in ApoE KO Mäusen abschwächt und den oxidativen Stress in atherosklerotischen Läsionen über eine Hemmung der NADPH-Oxidase verringern kann (Liao et al., 2020). Diese Befunde scheinen zunächst im Widerspruch zu den Ergebnissen in den CRP4-defizienten VSMCs zu stehen, in denen ein hoher Uba1-Gehalt und gleichzeitig niedrigere oxLDL-Level in atherosklerotischen Plagues detektiert wurden. Allerdings wurden die anti-atherogenen Effekte von PYR-41 primär auf eine Hemmung der Makrophagenbedingten Proinflammation zurückgeführt (Liao et al., 2020), was keine Rückschlüsse auf die endogene Funktion von Uba1 in den VSMCs der ApoE KO CRP4 KO Mäuse zulässt. Zwei weitere Proteine, die mit der Regulation von oxidativem Stress assoziiert werden und in CRP4 KO VSMCs hochreguliert waren, sind Acadl und Mical2 (Tab. 4.1, Abb. 4.23). Während Acadl Energiegewinnung durch Verkürzung der Fettsäuren, katalysiert (Chegary et al., 2009; Hirschey et al., 2010; Kurtz et al., 1998), ist die Proteinfamilie der Micals über eine Regulierung der Exozytose an der Redox-Regulierung des Zytoskeletts und am intrazellulären trafficking beteiligt (Zhou et al., 2011). Die große, Flavin-abhängige Monooxygenase Mical2 enthält die Calponin-Homologie-Domäne (CH-Domäne) vom Typ 2, die als Protein-Protein-Interaktionsmodul für Proteine fungieren kann und vermutlich die Bindung von F-Aktin an die Monooxygenase-Domäne (MO-Domäne) erleichtert (Zhou et al., 2011). Durch die Bindung an Mical2 kann die posttranslationale Oxidation von F-Aktin an Methionin 44/47 ausgelöst und somit die Depolymerisierung von Aktin stimuliert werden (Grintsevich et al., 2017; Hung et al., 2011; Lundquist et al., 2014; Zhou et al., 2011). Eventuell könnte auch diese oxidationsabhängige Regulierung der Aktindynamik einen Einfluss auf das Migrationsverhalten der CRP4-defizienten VSMCs in den unterschiedlichen Phänotypen haben. Die erhöhte Expression von Mical2 könnte zu einer gesteigerten Depolymerisierung von Aktin führen und die beobachtete, geringere Ausbildung an F-Aktin-Stressfasern, sowie die verminderte Migration in CRP4 KO VSMCs begünstigen.

Als vielversprechendster Kandidat unter den im CRP4 KO hochregulierten Proteine ist PRDX4 zu nennen (Tab. 4.1, Abb. 4.23, Abb. 4.24). Zusammen mit Acadl, Mical2 und Pir konnte PRDX4 im Rahmen von *Pathway-Enrichment*-Analysen mit dem biologischen Prozess

"oxidation reduction" (GO: 0055114) als signifikant angereichert identifiziert werden (Boldt et al., 2016) (Tab. 4.1). Dies impliziert, dass CRP4 an der Regulation von Proteinen beteiligt ist, die bei Oxidations-/Reduktionsprozessen eine Rolle spielen (Längst et al., 2022). Es ist bereits bekannt, dass PRDX4 ROS sowohl in intrazellulären Kompartimenten (endoplasmatisches Retikulum), als auch im extrazellulären Lumen abfängt und dadurch als Schutzbarriere vor oxidativen Schädigungen der Zelle dient (Jin et al., 1997; Moore et al., 2005; Tavender & Bulleid, 2010; Xin Guo et al., 2012; Yamada & Guo, 2018). Dabei fungiert es als Elektronenakzeptor und überträgt Elektronen von der reduzierten Proteindisulfid-Isomerase (PDI) auf Wasserstoffperoxid (Konno et al., 2015; Tavender & Bulleid, 2010; Zito et al., 2010). Des Weiteren wurde bereits gezeigt, dass PRDX4 die NF-kB-Signalübertragung negativ reguliert (Weichart et al., 2006; Yu et al., 2010) und in extrazellulären Vesikeln Inflammasomaktivierter Makrophagen hochreguliert ist, sowie bei Entzündungsreaktionen sezerniert wird (Lipinski et al., 2019; Wong et al., 2000). Interessanterweise wurde berichtet, dass die Überexpression von humanem PRDX4 (hPRDX4) in ApoE KO Mäusen das Fortschreiten einer diätetisch-induzierten Atherosklerose unterdrückt (Xin Guo et al., 2012). Zudem wurde in dieser Studie eine anti-atherogene Wirkung von PRDX4 ohne die Beeinflussung metabolischer Parameter, wie Glukose- und Lipidspiegel, nachgewiesen. Diese Befunde decken sich mit den Ergebnissen unserer Untersuchungen, die auf eine pro-atherogene Wirkung von CRP4 hindeuten, wobei auch in dem hier untersuchten ApoE KO-Modell der CRP4-Status keinen Einfluss auf metabolische Parameter hatte. Entsprechend der Publikation von Guo et al. konnte eine PRDX4-Expression in VSMCs und in Makrophagen atherosklerotischer Plaques bestätigt werden (Abb. 4.24A) (Xin Guo et al., 2012). Des Weiteren waren durch die hPRDX4-Überexpression, in Übereinstimmung mit unseren Ergebnissen aus den dKO Mäusen, die oxLDL-Spiegel und die Proliferation von VSMCs in den atherosklerotischen Plaques signifikant erhöht (Xin Guo et al., 2012). Darüber hinaus ist bekannt, dass auch weitere Mitglieder der PRDX-Familie (z.B. PRDX1, 2 und 6) an der anti-oxidativen Signalübertragung beteiligt sind und in der Lage sind vor mechanisch induzierten und atherosklerotischen Gefäßerkrankungen zu schützen (Kisucka et al., 2008; Park et al., 2011; Wang X et al., 2004). Zusammenfassend deuten die Ergebnisse dieser Arbeit darauf hin, dass in Abwesenheit von CRP4 ein Teil der anti-atherogenen Effekte, sowie die Unterdrückung der oxidativen Stresslevel über eine verstärkte Expression von PRDX4 erklärt werden kann. Derzeit ist allerdings unklar, ob die SRF- und GATA6-abhängige Regulierung der SM-spezifischen Gentranskription durch CRP4 (Zhang et al., 2007) eine Bedeutung für die PRDX4-Expression hat (Längst et al., 2022).

5.3.5 Interaktionspartner von CRP4 in synthetischen VSMCs

CRP4 kann über seine LIM-Domänen Protein-Protein-Interaktionen mit verschiedenen Signalmolekülen, Transkriptionsfaktoren oder Strukturproteinen eingehen und ist an der Ausbildung multimerer Proteinkomplexe beteiligt (Weiskirchen & Günther, 2003; Weiskirchen et al., 1995). Welche Proteine in VSMCs mit CRP4 interagieren können und welche Rolle diese Interaktionen im Bezug auf die vaskuläre Funktion von CRP4 spielen, war bislang unklar. Interessanterweise erbrachte die Analyse synthetischer VSMCs CRP4-Interaktionspartner, die im Zusammenhang mit der Entstehung einer Atherosklerose und/oder mit oxidativem Stress stehen (Anhang Abb. 7.9A, Tab. 7.5). Mit Hilfe der Co-IP konnte z.B. die kleine GTPase Cdc42 als CRP4-interagierendes Protein identifiziert werden (Anhang Abb. 7.9A, Tab. 7.5). Dabei handelt es sich um ein Protein mit vielseitigen zellulären Funktionen, das unter anderem an der Organisation des Aktin-Zytoskeletts beteiligt ist, die Polarität der Zellen und die Kontraktilität in VSMCs reguliert (Jaffe & Hall, 2005; Puetz et al., 2009). Dabei kann Cdc42 z.B. die p21-activated protein kinase (PAK2) aktivieren, die an der Aktin-Polymerisierung beteiligt ist und zu dessen targets sowohl die LIMK, als auch die MLCK gehören (Cotteret et al., 2002; Puetz et al., 2009). Des Weiteren zeigte sich in isolierten VSMCs aus der Ratte, dass eine Überexpression von Cdc42 zu einer vermehrten Kalzifizierung der VSMCs in vitro führte (Li et al., 2019). Cdc42 könnte somit sowohl eine Rolle bei der CRP4-vermittelten Regulation der VSMC Migration und Kontraktion spielen, als auch im Zusammenhang mit den erhöhten Ca²⁺-Ablagerungen in atherosklerotischen Plagues der CRP4 WT/ApoE KO Mäuse stehen. Die genaueren Zusammenhänge und Funktionen dieser Interaktion müssen allerdings in weiteren Experimenten noch untersucht werden. Außerdem konnte eine Interaktion von CRP4 mit Tpm1 und Tpm2 in den Co-IP-Experimenten mit synthetischen VSMCs detektiert werden (Anhang Abb. 7.9A, Tab. 7.5). Die beiden Isoformen des Tpms sind an der Regulation der Aktin-Polymerisierung beteiligt und regulieren als eine Art "gatekeeper" die Zugänglichkeit anderer Aktin-bindender Proteine zu den Aktinfilamenten (Gallant et al., 2011; Lehman & Morgan, 2012; Wang et al., 2010). Zudem wird die kooperative Aktivierung von Aktomyosin der VSMCs durch Tpm verstärkt, wodurch Tpm auch einen Einfluss auf die Kontraktilität von VSMCs hat (Marston et al., 2008). Interessanterweise konnte neben den benannten Funktionen der Tropomyosine Tpm2 vor Kurzem als potentieller diagnostischer und therapeutischer Biomarker für die Entwicklung einer Atherosklerose identifiziert werden (Meng et al., 2019). Im Rahmen einer Studie von Meng et al. konnte gezeigt werden, dass die relative Expression von Tpm2 in atherosklerotischem Gewebe, im Vergleich zur Kontrollgruppe, deutlich niedriger war (Meng et al., 2019). Dies weist auf eine Korrelation zwischen den Tpm2-Expressionsleveln und der Entwicklung einer Atherosklerose hin. Aufgrund der vielseitigen Funktionen am Zytoskelett der VSMCs und im Rahmen der Atherosklerose ist es durchaus vorstellbar, dass die Interaktion von CRP4 mit Tpm1 und/oder Tpm2 zu den beobachteten proatherogenen Effekten von CRP4 beitragen könnte. Als ein weiteres interessantes mit CRP4interagierendes Protein konnte Fbln2 identifiziert werden (Anhang Abb. 7.9A, B, Tab. 7.5). Vaskuläres Fbln2 ist an der Bindung verschiedener extrazellulärer Liganden, wie z.B. Versican, beteiligt (Olin et al., 2001) und wurde während der phänotypischen Modulation von VSMCs aus Rattenaorten hochreguliert. Neben dem Zusammenhang mit der Dedifferenzierung von VSMCs wurde die Interaktion von Fbln2 und Versican auch mit der Migration von VSMCs assoziiert (Ström et al., 2006). Aufgrund einer starken Fbln2-Expression in atherosklerotischen Läsionen von Mäusen, vor allem in der Region der fibrösen Kappe (Ström et al., 2006), kann angenommen werden, dass Fbln2 hier möglicherweise mit CRP4 interagiert und an den pro-atherogenen Effekten von CRP4 beteiligt sein könnte. HSP47 stellt ein weiteres CRP4-Interaktionsprotein dar, das in Bezug auf die Atherosklerose von Bedeutung sein könnte (Anhang Abb. 7.9A, B, Tab. 7.5). Es wurde bereits gezeigt, dass HSP47 in VSMC-ähnlichen Zellen und besonders in der fibrösen Kappe von atherosklerotischen Läsionen exprimiert wird (Rocnik et al., 2000; Rocnik et al., 2001; Zhou et al., 2004). HSP47 ist als Kollagen-spezifisches Chaperon bekannt, das an Prokollagen binden kann. Zudem ist bekannt, dass die Expression von HSP47 durch oxLDL hochreguliert wird (Rocnik et al., 2000). Inwieweit CRP4 seine pro-atherogenen Eigenschaften über eine Interaktion mit Fbln2 und/oder HSP47 vermittelt, muss allerdings durch weitergehende Versuche im Atherosklerose-Modell erst noch analysiert werden.

5.3.6 Regulation der CRIP1-Expression im pathophysiologischen Modell

CRIP1 gehört zur CRIP-Genfamilie (*Crip*) und weist eine hohe Übereinstimmung in der AS-Sequenz mit CRP4 auf. Im Gegensatz zu CRP4 besitzt CRIP1 allerdings nur eine LIM-Domäne, bestehend aus zwei Zinkfingern. Aufgrund der fehlenden Linkerregion ist auch kein RKTS-Motiv vorhanden, über das die cGKI-abhängige Phosphorylierung von CRP4 vermittelt wird (Straubinger et al., 2017). Vermutlich ist CRIP1 daher kein Substrat der cGKI und spielt dementsprechend auch keine bedeutende Rolle im NO/cGMP/cGKI-Signalweg. Im Herzen konnte bereits gezeigt werden, dass die Expression von CRIP1 vom CRP4-Expressionsstatus abhängig ist. Es wird angenommen, dass CRIP1 im CRP4 KO kompensatorisch hochreguliert wird, um eine normale kardiale Entwicklung und eine physiologische Anpassung des Herzmuskels an Belastung gewährleisten zu können (Straubinger et al., 2017). Interessanterweise konnte auch auf vaskulärer Ebene eine CRP4-abhängige CRIP1-Expression unter pathophysiologischen Bedingungen in synthetischen VSMCs (Abb. 4.28A-D) und ApoE KO Aorten (Abb. 4.28E, F) nachgewiesen werden. Währenddessen war die CRIP1-Expression unter basalen Bedingungen in gesunden Gefäßen unverändert (Abb. 4.28A). Zudem wurde neben der starken zytoplasmatischen Lokalisation des Proteins auch nukleäres CRIP1 detektiert (Abb. 4.28B). Inwiefern die CRIP1-Hochregulation in synthetischen VSMCs der CRP4 KO Mäuse und unter atherosklerotischen Bedingungen auch kompensatorische (oder andere) Funktionen im Hinblick auf die Regulation von Transkriptionsprozessen nimmt, bleibt aktuell unklar. In der Tat werden über CRIP1 Protein-Protein-Interaktionen die Transkription bestimmter Gene in Tumoren reguliert (Baumhoer et al., 2011; Ludyga et al., 2013). Ob diese Befunde auch auf VSMCs übertragbar sind, muss wie bereits ausgeführt zukünftig analysiert werden. Neben der möglichen Beteiligung an Transkriptionsregulationsprozessen implizieren diverse Studien, dass CRIP1 als Biomarker und Onkogen bei Tumorerkrankungen eine Rolle spielt (Hao et al., 2008; Pan et al., 2021). Hierbei scheint CRIP1 Einfluss auf die Proliferation und Migration verschiedener Zelltypen zu nehmen (Lanningham-Foster et al., 2002; Li et al., 2017; Zhang et al., 2018). Es wäre somit von großem Interesse den Einfluss von CRIP1 auf die Migration und Proliferation in VSMCs zu untersuchen. Dadurch könnte ein eventuell vorhandener Zusammenhang zwischen der erhöhten Proliferation und Migration in synthetischen CRP4-defizienten VSMCs und der erhöhten Expression von CRIP1 hergestellt werden. Darüber hinaus konnte CRIP1 in ApoE KO Aorten nach 16 Wochen WD sowohl in α-SMA-positiven Zellen in der Media und innerhalb der Plaques, als auch in Mac2-positiven Zellen identifiziert werden (Abb. 4.28G). Interessanterweise wird CRIP1 neben der bereits bekannten Expression in Monozyten (Schweigert et al., 2021; Zeller et al., 2017) auch nach der vaskulären Infiltration der Monozyten und der Differenzierung zu Makrophagen in hohem Maße in diesem Zelltyp exprimiert. Erhöhte zirkulierende CRIP1-Level in Monozyten wurden mit Bluthochdruck und einem erhöhten Risiko für kardiovaskuläre Ereignisse, wie z.B. Schlaganfall in Verbindung gebracht (Zeller et al., 2017). In einer vor Kurzem publizierten Studie konnten wir die Korrelation der CRIP1-Expression in Monozyten und dem Blutdruck im murinen Modell, sowie anhand humaner Studien bestätigen. Durch die Stimulation mit Ang II wurde CRIP1 in Monozyten hochreguliert, was auf eine Assoziation zwischen CRIP1 und der Blutdruckregulation durch das Immunsystem schließen lässt (Schweigert et al., 2021). Aufgrund seiner Funktion im Rahmen der Blutdruckregulation und der Expression in Makrophagen und VSMCs atherosklerotischer Plagues ist anzunehmen, dass CRIP1 auch eine Rolle bei der Pathogenese einer Atherosklerose spielen könnte. Dies sollte zukünftig in Monozyten-spezifischen oder SM-spezifischen CRIP1 KO Mäusen in einem Atherosklerose-Modell in vivo analysiert werden.

5.4 Limitationen der Arbeit und Ausblick

Die Interpretation der im Rahmen dieser Arbeit erhobenen Daten unterliegt trotz der interessanten Befunde noch einigen Limitationen. Zum einen wurden die präsentierten

Ergebnisse mit einem konstitutiven KO Mausmodell erhoben, bei dem CRP4 bereits während der Entwicklung in allen somatischen Zellen, sowie in den Zellen der Keimbahn fehlt. Daher kann nicht ausgeschlossen werden, dass die globale CRP4-Deletion zu genetischen Veränderungen geführt haben könnte, die nicht vollständig erfasst wurden (Längst et al., 2021). In unseren Experimenten konnten wir CRP4 als Substrat der cGKI in VSMCs identifizieren, allerdings würde der Einsatz eines spezifischen pCRP4^{Ser104}-AKs zur weiteren Aufklärung dieser Interaktion und ihrer in vivo Relevanz beitragen. Außerdem wäre es mit einem entsprechenden Tool möglich, die Aktivierung des NO/cGMP/cGKI-Signalwegs, eine Zunahme der Ca²⁺-Desensitivierung der Myofilamente und des Gefäßtonus direkt mit den Phosphorylierungsleveln von CRP4 an Ser104 zu korrelieren (Längst et al., 2021). Ein weiterer Erkenntnisgewinn wäre außerdem durch den Einsatz von CRP4-aktivierenden oder inhibierenden Substanzen zu erwarten, die aktuell aber leider noch nicht verfügbar sind. Hierdurch könnte CRP4 auch pharmakologisch adressiert werden. Das ist bedeutsam, da diese akute Regulation andere Effekte auf den Blutdruck oder Gefäßtonus haben könnte als der konstitutive KO von CRP4. Eine weitere Limitation der hier vorliegenden Arbeit ist das Fehlen eines rein kontraktilen VSMC in vitro Modells. Da bereits durch die Isolierung und Kultivierung der primären, murinen VSMCs ein gewisser Anteil an Zellen zum synthetischen Phänotyp moduliert, ist die Vergleichbarkeit mit "gesunden" VSMCs in Aorten nur begrenzt möglich.

Im Rahmen der Experimente zur Untersuchung der Atherosklerose wurden bis dato keine lineage-tracing studies durchgeführt, die es ermöglichen würden die Abstammung der untersuchten Zellen sicher zu verifizieren (Längst et al., 2022). Da VSMCs innerhalb atherosklerotischer Plaques eine Vielzahl an Transdifferenzierungsprozessen durchlaufen können (Harman & Jørgensen, 2019), war es somit nicht möglich eine eindeutige Zuordnung der Zelltypen innerhalb der Läsionen vorzunehmen. Des Weiteren sollte in zukünftigen Experimenten die Untersuchung von CRP4 im Rahmen von apoptotischen Prozessen mit Hilfe TUNEL-Färbung oder Färbungen der Caspase-3 in einer den Kryoschnitten atherosklerotischer Gefäße durchgeführt werden, da es durchaus denkbar ist, dass CRP4 für die Apoptose eine Rolle spielen könnte. Zudem wurde auch der Einfluss weiterer wichtiger Mediatoren der atherosklerotischen Pathogenese, wie z.B. inflammatorischer Proteine und Zytokine noch nicht adressiert (Längst et al., 2022). In Bezug auf die Untersuchungen des CRP4-abhängigen Proteoms wurde im Rahmen dieser Arbeit der Fokus vor allem auf das vielversprechende Redoxprotein PRDX4 gelegt. Da im Verlauf der Experimente aber auch weitere Redox-assoziierte (Acadl, Mical2 und Pir), das Aktin-Zytoskelett (z.B. Adducine, Mical2) und das Proteasom betreffende (z.B. Uba1) CRP4-abhängig regulierte Proteine identifiziert werden konnten, wäre eine intensivierte Untersuchung dieser Kandidaten von großem Interesse (Längst et al., 2022). Des Weiteren konnten einige mit CRP4-interagierende

Proteine in synthetischen VSMCs identifiziert werden (z.B. Cdc42, Tpm und HSP47), deren Bedeutung für die CRP4-abhängige Pathogenese der Atherosklerose noch nicht abschließend geklärt werden konnte.

Ein weiterer Aspekt, der zukünftig noch einige Aufmerksamkeit benötigt, sind Untersuchungen zur Rolle des NO/cGMP/cGKI-Signalwegs bei der CRP4-abhängigen atherosklerotischen Plaqueentstehung. Hierbei wäre zu klären, inwiefern die pro-atherogenen Effekte von CRP4 auf die Plastizität von VSMCs und die Entwicklung einer Atherosklerose von NO-GC/cGKI moduliert werden. Interessanterweise wurde kürzlich gezeigt, dass die α_1 -Untereinheit der NO-GC die phänotypische Modulation von VSMCs und die Entstehung einer Atherosklerose begünstigt (Segura-Puimedon et al., 2016). Studien an einem ApoE-defizienten VSMC-spezifischen cGKI KO Modell implizieren für cGKI ebenfalls eine pro-atherogene Rolle (Wolfsgruber et al., 2003). Trotz bestehender Kontroversen (Lehners et al., 2018) übereinstimmen diese Befunde zu den endogenen Komponenten des NO/cGMP/cGKI-Signalwegs mit den hier beobachteten pathophysiologischen Funktionen von CRP4.

6. Zusammenfassung

CRP4 vermittelt über LIM-Domänen Protein-Protein-Interaktionen und fungiert als Adapterprotein. Diese Eigenschaften befähigen CRP-Proteine und mutmaßlich auch CRP4 dazu verschiedene zelluläre Funktionen im vaskulären System auszuüben. Hierzu zählen die Organisation des Zytoskeletts, die Regulation der Zellmotilität und Genexpression, oder die Differenzierung von VSMCs (Kadrmas & Beckerle, 2004; Lilly et al., 2010; Wei et al., 2005; Weiskirchen & Günther, 2003). In der hier vorliegenden Arbeit wurden sowohl putative physiologische, als auch pathophysiologische Funktionen von glattmuskulärem bzw. vaskulärem CRP4 untersucht. Ein Fokus der Arbeit war dabei die mögliche Bedeutung von CRP4 für den NO/cGMP/cGKI-Signalweg bzw. cGMP-modulierte Zell- und Gefäßfunktionen. Bei der Analyse der physiologischen Funktionen konnte zunächst festgestellt werden, dass CRP4 in VSMCs, wahrscheinlich über die LIM-Domänen des Proteins vermittelt, vor allem zytosolisch und zytoskelettal lokalisiert ist und Einfluss auf die Motilität und Migrationsfähigkeit der VSMCs nimmt. Möglicherweise werden diese regulatorischen Einflüsse über eine Interaktion mit Proteinen, welche die Aktindynamik beeinflussen (z.B. Integrin β_3 , Cofilin oder VASP (Abb. 6.1)), vermittelt (Kappert et al., 2001; Kim et al., 2010; Yang et al., 1998). Im Zytosol der VSMCs konnte vor allem eine perinukleäre Anreicherung von CRP4, sowie eine geringe nukleäre Abundanz des Proteins beobachtet werden. Diese Befunde zur intrazellulären Lokalisation von CRP4 passen gut zu den Erkenntnissen, dass CRP4 in vaskulären Zelllinien als Substrat der cGKI identifiziert wurde und als Adapterprotein an der cGMP-abhängigen Regulation der glattmuskulären Genexpression beteiligt sein soll (Zhang et al., 2007). Zudem konnten im Rahmen dieser Arbeit mit NO-GC β_1 und cGKI bedeutsame Faktoren des NO/cGMP/cGKI-Signalwegs als CRP4-regulierte Proteine identifiziert werden (Längst et al., 2021). Neben diesen Effekten auf die Proteinexpression scheint CRP4 auch die Phosphorylierungslevel cGKI-spezifischer Substratproteine zu beeinflussen. Konkret implizieren die erhoben Daten, dass CRP4 über einen negativen Feedback-Mechanismus den vaskulären NO/cGMP/cGKI-Signalweg moduliert. Dies zeigte sich unter anderem in einer reduzierten Ca²⁺-Sensitivität der Myofilamente nach CRP4-Ablation. Dabei resultierte der CRP4-Funktionsverlust in höheren MYPT1-Proteinleveln mit einer reduzierten, inhibitorischen Phosphorylierung an Thr696, sowie folglich niedrigeren pMLC2^{Ser19}-Leveln (Abb. 6.1). Diese WB-Analysen mit phosphospezifischen AKs wurden (in Kollaboration mit Dr. Olga Schweigert am Universitätsklinikum Hamburg-Eppendorf, AG Prof. Tanja Zeller) in myographischen Experimenten mit Aortenringen bestätigt. Hier war eine reduzierte maximale Kontraktilität CRP4-defizienter Aortenringe zu beobachten, vermutlich weil die disinhibierte cGMPvermittelte Ca²⁺-Desensitivierung zur Relaxation der VSMCs beiträgt (SOMLYO & SOMLYO, 2003). In vivo präsentierten sich Mäuse mit einer globalen CRP4-Defizienz in Folge der geringeren Kontraktilität der Aorten mit niedrigeren basalen Blutdruckwerten. Des Weiteren

bewirkte die Deletion von CRP4 ein gesteigertes Relaxationsvermögen der Aorten als Antwort auf blutdrucksenkende Modulatoren des NO/cGMP/cGKI-Signalwegs, wodurch letztlich eine stärkere Blutdrucksenkung im CRP4 KO *in vivo* erzielt werden konnte (Abb. 6.1). Diese Befunde lassen darauf schließen, dass in CRP4 KO Mäusen eine Disinhibition des endogenen NO/cGMP/cGKI-Signalwegs stattfindet.

Überraschenderweise und im Gegensatz zu den vorbezeichneten Befunden scheinen 8-BrcGMP und DEA/NO CRP4 für ihre hemmenden Effekte auf die Agonist-induzierten [Ca²⁺]_i-Transienten in kultivierten VSMCs zu benötigen (Abb. 6.1) (Münzel et al., 2003; Schlossmann & Desch, 2011). Dabei könnte CRP4 möglicherweise als Adapterprotein fungieren, indem es die relevanten Signalmoleküle für die effiziente Übermittlung der NO/cGMP/cGKI-Signale zu den [Ca²⁺]_i-regulierenden Proteinen in VSMCs räumlich koordiniert. Zusammenfassend zeigen die physiologischen Ergebnisse der vorliegenden Arbeit, dass CRP4 an der Feinjustierung der vaskulären Reaktion auf cGMP-modulierende pharmakologische Substanzen beteiligt ist. Zudem übt CRP4 weitere Funktionen im Rahmen der Regulation des vaskulären Aktin-Zytoskeletts aus und beeinflusst auch das Migrationsvermögen der VSMCs.

Blutdruckabnahme in CRP4 KO Mäusen ↑

Abbildung 6.1: Die CRP4-vermittelte cGMP-abhängige Blutdruckregulation

Die schematische Darstellung gängiger Mechanismen zur Regulation der VSMC Relaxation und des Blutdrucks in Abhängigkeit von cGMP zeigt, wie CRP4 an der Feinjustierung dieser Prozesse bzw. der vaskulären Reaktion auf cGMP-modulierende Substrate beteiligt sein könnte. Ein CRP4-Funktionsverlust führte über höhere MYPT1-Proteinlevel bei gleichzeitig geringeren, inhibierenden pMYPT1^{Thr696}-Leveln und folglich verminderten pMLC2^{Ser19} zu einer stärkeren Ca²⁺-Desensitivierung der VSMCs. Zudem konnte eine höhere cGKI-Aktivität (bei reduzierten cGKI-Proteinleveln) in Form von erhöhten pVASP^{Ser239} und pCofilin^{Ser3}-Leveln, was potenziell zu einer niedrigeren Aktin-Polymerisierung beiträgt, in CRP4 KO VSMCs festgestellt werden. Trotz der verminderten cGKI-vermittelten Hemmung der [Ca²⁺]-Transienten resultierte die CRP4-Defizienz in einem erhöhten Relaxationsvermögen der Aorten und einer stärkeren Blutdruckabnahme der Mäuse als Antwort auf cGMP-erhöhende Substanzen. Zusammengenommen deuten die Ergebnisse darauf hin, dass die Ablation von CRP4 zur Disinhibition des endogenen, vaskulären NO/cGMP/cGKI-Signalwegs führt. Das Schema wurde modifiziert nach (Längst et al., 2021).

Neben den physiologischen vaskulären Eigenschaften von CRP4, wurde im Rahmen dieser Dissertation auch der Einfluss von CRP4 auf pathophysiologische vaskuläre Erkrankungen, wie z.B. die Entwicklung einer Atherosklerose untersucht. Bei der Atherosklerose handelt es sich um eine multifaktorielle, chronisch entzündliche Gefäßerkrankung, für deren Pathogenese VSMCs eine große Rolle spielen (Bennett et al., 2016). Eine Ruptur der atherosklerotischen Plaques kann zur Thrombenbildung mit einem nachfolgenden Herzinfarkt oder Schlaganfall führen (Allahverdian et al., 2018). Damit stellt die Atherosklerose eine der wichtigsten zugrundeliegenden pathologischen Prozesse für die Entwicklung von CVDs dar, die weltweit die Haupttodesursache sind (Virani et al., 2020). Eine weitere Entwicklung und Verbesserung aktuellen verbesserte Prävention der Therapie, sowie eine atherosklerotischer Gefäßerkrankungen erscheint daher unerlässlich und bedarf weiterer Forschung. Die im Rahmen dieser Dissertation erhobenen in vivo Befunde im atherogenen ApoE KO Mausmodell zeigten einen pro-atherogenen Effekt für (vaskuläres) CRP4 (Abb. 6.2). Die pro-atherogene Wirkung geht mit einer erhöhten Anzahl und Größe CRP4-profizienter atherosklerotischer Plaques einher. Des Weiteren ergab sich ein Zusammenhang zwischen der Hyperzellularität der Plaques und dem CRP4 WT-Status. Diese in vivo Befunde konnten durch in vitro Experimente in primären VSMCs unterlegt werden. Dabei konnte bei der Analyse des Migrationsvermögens festgestellt werden, dass CRP4 die Migration in primären VSMCs fördert und somit durch eine Stimulation der phänotypischen Modulation, die durch eine vermehrte Migration charakterisiert ist, zur erhöhten Plaquebildung beitragen könnte (Abb. 6.1) (Deng et al., 2017). Diese These wird durch eine erhöhte α -SMA-Abundanz innerhalb der atherosklerotischen CRP4 WT Plaques, die auf eine erhöhte Anzahl migrierter VSMCs hindeutet, unterstützt. Obwohl CRP4 die Initiierung und Entwicklung atherosklerotischer Läsionen stimuliert, übernimmt es möglicherweise einige gegenläufige Funktionen im synthetischen VSMC-Phänotyp. So konnte gezeigt werden, dass CRP4 in synthetischen, hochpassagierten VSMCs die proliferative Kapazität in vitro vermindert und innerhalb atherosklerotischer Plaques in vivo ebenfalls zu einer niedrigeren Proliferationsrate der Zellen führt (Abb. 6.2). Bei der näheren Betrachtung der komplexen Plaquezusammensetzung zeigte sich außerdem in ApoE KO CRP4-positiven Mäusen eine höhere Oxidation von LDL, sowie damit einhergehend auch eine erhöhte Anfälligkeit für Kalzifizierungen der VSMCs innerhalb der Plaques (Abb. 6.2). Ein möglicher Signalweg für die Vermittlung der erhöhten LDL-Oxidation in CRP4 WT/ApoE KO Läsionen ist die Suppression der Expression des antioxidativen Enzyms PRDX4, das zusammen mit Pir, Mical2 und Acadl mit Oxidations-/Reduktionsprozessen (GO: 0055114) in synthetischen VSMCs in Verbindung steht (Tab. 4.1, Abb. 6.2). PRDX4 wurde bereits in einer früheren Publikation als anti-atherogenes Target identifiziert (Xin Guo et al., 2012). Die erhöhte Oxidation von LDL und vermehrte Kalzifizierung der VSMCs, sowie die verminderte Zellproliferation durch CRP4 tragen hierbei zu einer

gesteigerten Vulnerabilität der atherosklerotischen Plaques bei und könnten einen Einfluss auf das Risiko einer Plaqueruptur (die allerdings im ApoE-defizienten Atherosklerose-Modell eher unwahrscheinlich ist) nehmen (Abb. 6.2).

Zusammenfassend führen die Ergebnisse zu der Annahme, dass CRP4 eine sehr differenzierte Rolle in den verschiedenen Stadien der VSMC Plastizität und während der Entwicklung einer Atherosklerose spielt. Dabei dominieren die pro-atherogenen Effekte von CRP4 über den anti-proliferativen Eigenschaften in synthetischen VSMCs und führen zu einem milderen atherosklerotischen Phänotyp in dKO Mäusen. Durch eine zielgerichtete Modulation der CRP4-Aktivität oder Interaktionsfähigkeit wäre es daher denkbar, das Migrationspotenzial von VSMCs zu vermindern und die Expression von PRDX4 zu induzieren, was eine frühe Läsionsbildung verhindern und/oder zur Plaquestabilität in späteren Stadien beitragen könnte.

Fortgeschrittene Plaqueprogression

Initiierung und Plaqueentstehung

Abbildung 6.2: Zusammenfassung der CRP4-regulierten Pathogenese der Atherosklerose

Die schematische Darstellung der CRP4-vermittelten pro-atherogenen Wirkungen zeigen, dass CRP4 die Plaquebildung fördert, indem es die phänotypische Modulation und das Migrationsvermögen der VSMCs stimuliert. Dies führte zu einer höheren α-SMA-Abundanz innerhalb der atherosklerotischen Plaques und einer insgesamt stärker ausgeprägten Plaquebildung. In fortgeschrittenen Plaques beeinflusst CRP4 hingegen die Stabilität der Plaques. CRP4 vermittelt diese Funktion zum einen durch die Hemmung des anti-oxidativen Proteins PRDX4, was zu einer vermehrten Oxidation von LDL innerhalb der Läsionen führte. Dies geht ebenfalls mit einer erhöhten Kalzifizierung der VSMCs innerhalb der Plaques einher. Zum anderen begünstigt CRP4 die Vulnerabilität der Läsionen durch seine anti-proliferative Wirkung auf synthetische VSMCs und Zellen innerhalb der atherosklerotischen Plaques. Das Schema wurde nach (Längst et al., 2022) modifiziert.

7. Anhang

7.1 cGMP-abhängige Migration von P0 VSMCs

Abbildung 7.1: cGMP-abhängige Migration von P0 VSMCs

(A) Die Migrationsanalyse von CRP4 WT und KO P0 VSMCs in Abhängigkeit von cGMP wurde mittels eines modifizierten Wundheilungs-Assay durchgeführt. Die Zellen wurden hierbei mit oder ohne 8-BrcGMP [1 mM] in den Migrationsschalen kultiviert und 24 h, 48 h und 72 h nach Entfernen des Inserts auf den Fortschritt der Migration untersucht. Dabei konnte in CRP4-defizienten VSMCs eine signifikant gesteigerte Migration durch die Stimulation mit 8-Br-cGMP detektiert werden, während in CRP4 WT VSMCs kein Effekt zu sehen war (n=3/Genotyp, *p<0,05, **p<0,01, zweiseitiger Student t-test). (B) Die Migrationseffekte korrelierten unter anderem mit einer gehemmten Caldesmon-Expression in CRP4 KO VSMCs nach 8-Br-cGMP-Stimulation. Die mRNA-Expression von Caldesmon wurde mit Hilfe einer qRT-PCR unter basalen Bedingungen und nach 24 h 8-Br-cGMP [1 mM]-Stimulation in CRP4 WT und KO P0 VSMCs quantifiziert (n=5-6/Genotyp, *p<0,05, zweiseitiger Student t-test). Alle dargestellten Ergebnisse sind als Mittelwerte ±SEM berechnet.

7.2 Etablierung der telemetrischen Blutdruckmessungen bei i.p. Injektion

Abbildung 7.2: Telemetrische Blutdruckmessungen nach Aqua ad inject. i.p. Applikation

Um den Effekt der intraperitonealen Injektion auf den systolischen Blutdruck (SBD) zu messen, wurden Kontrollmessungen mit Aqua ad injectabilia i.p. Injektionen durchgeführt. Die Injektionen fanden 30 min nach Beginn der Messungen statt (im Diagramm Zeitpunkt 0 min). Hierbei konnte gezeigt werden, dass die Injektion keine genotypspezifischen Unterschiede in den SBD der CRP4 WT und KO Mäuse hervorrufen (n=8/Genotyp). Der MAP und die diastolischen Blutdruckwerte zeigten hierbei ebenfalls keine Unterschiede zwischen CRP4 WT vs. KO Mäusen (Daten nicht gezeigt). Alle Daten sind als Mittelwerte ±SEM dargestellt (Längst et al., 2021).

7.3 Etablierung der Co-IP in synthetischen VSMCs

Abbildung 7.3: Etablierung der Co-IP mit CRP4 in synthetischen VSMCs

Zur Etablierung der Co-IP wurde das Probenmaterial zu unterschiedlichen Zeitpunkten via WB bzgl. einer CRP4-Proteinexpression untersucht. In den ursprünglichen Proteinlysaten (Lysat) konnte CRP4 nur im CRP4 WT detektiert werden. In den entsprechenden CRP4 KO Proben war erwartungsgemäß kein CRP4 detektierbar. Die Waschbeads und der Überstand mit den ungebundenen Proteinen (IP-SN) zeigten ebenfalls keine CRP4-Banden. Um zu bestätigen, dass die Nebenbanden in dem Co-IP WB von der leichten und schweren Kette des CRP4-AK stammen, wurden zusätzlich die eluierten TrueBlot® Beads (TBBs) und die mit CRP4-AK inkubierten TBBs geblottet. Hier konnten jeweils nur die Nebenbanden und keine Bande auf der Höhe von CRP4 detektiert werden.

7.4 cGMP-regulierte CRP4-Interaktionspartner

Genname	<u>8-Br-cGMP</u> : Ratio WT-KO	Ttest: p-Wert WT vs. KO	Signifikanz- level	Signifikanz A: WT vs. KO	Signifikanz
Crip2	30,5319	4,02E-11	***	6,05E-45	х
Eef1b	23,8183	0,0338	*	4,72E-28	х
Ptbp1	23,1665	0,1804	n.s.	1,24E-26	х
Ppia	25,2299	0,0626	n.s.	2,93E-31	х
Vcam1	23,5001	0,1942	n.s.	2,35E-27	х
Rpl18	25,4878	0,1749	n.s.	7,26E-32	х
Fbln2	25,4511	0,0684	n.s.	8,85E-32	х
Timp3	23,9035	0,2026	n.s.	3,06E-28	х
Sipa1	23,0267	0,1776	n.s.	2,47E-26	х
Rpl9	24,2940	0,1715	n.s.	4,11E-29	х
Rpl10a	24,3811	0,1720	n.s.	2,61E-29	х
Psmc4	23,1376	0,0620	n.s.	1,43E-26	х
Eef1d	24,6363	0,0055	**	6,88E-30	х
Eef2	25,3140	0,1801	n.s.	1,86E-31	х
Tnks1bp1	24,6780	0,1764	n.s.	5,52E-30	х
Cdc42	25,9180	0,0614	n.s.	6,86E-33	х
Lrch1	23,6297	0,0619	n.s.	1,23E-27	х
Gnas	24,1611	0,1821	n.s.	8,16E-29	х
Rpl22	25,1764	0,0054	**	3,90E-31	х
Ywhaq	25,9312	0,0603	n.s.	6,38E-33	х
Cct4	24,0642	0,1783	n.s.	1,34E-28	х
Agbl1	29,5996	0,0632	n.s.	2,38E-42	х
Plekhg3	24,2664	0,1715	n.s.	4,74E-29	х
Cttn	26,5220	0,1782	n.s.	2,34E-34	х
Serpinb6	25,1312	0,1713	n.s.	4,97E-31	х
Prpf4b	24,6777	0,0046	*	5,53E-30	х
Prdx2	24,0038	0,1712	n.s.	1,83E-28	х
Cstb	25,1979	0,1777	n.s.	3,48E-31	х
Zyx	24,7727	0,0616	n.s.	3,35E-30	х
Cgnl1	24,2502	0,0594	n.s.	5,15E-29	х
Rps9	23,2812	0,1769	n.s.	7,02E-27	х
Rpl10	24,9058	0,1887	n.s.	1,66E-30	х
Cemip	25,3346	0,0783	n.s.	1,66E-31	х
Lrch3	23,9941	0,0597	n.s.	1,92E-28	х
Phldb2	24,3884	0,1785	n.s.	2,52E-29	х
FInc	26,8427	0,0655	n.s.	3,78E-35	x
Rnh1	24,1796	0,1787	n.s.	7,42E-29	х
Rtcb	25,0057	0,0627	n.s.	9,73E-31	х
Rrbp1	24,2591	0,0828	n.s.	4,92E-29	х

22E-29 × 04E-30 × 02E-28 ×	Signinkanz
)2E-29 ×)4E-30 ×)2E-28 ×	((
94E-30 × 92E-28 ×	(
)2E-28 ×	
	<
67E-29 ×	<
9E-29 ×	<
,3239	
,3069	
,4312	
,4016	
,2745	
,4444	
,1432	
,3614	
,2094	
,1120	
,3022	
,4022	
,2814	
2716	
	ige-29 iges/iges/iges/iges/iges/iges/iges/iges/

Tabelle 7.1: CRP4-Interaktionspartner nach 8-Br-cGMP-Stimulation

Auflistung der Mittelwerte der CRP4 WT/KO Ratios aller mittels LC-MS/MS detektierten Proteine nach 8-Br-cGMP-Stimulation in Co-IP-Lysaten von P10 – 15 VSMCs. Zudem sind die Signifikanzniveaus des zweiseitigen Student t-tests mit permutationsbasierter FDR (*false discovery rate*)-Bestimmung (*p<0,05, **p<0,01, ***p<0,001) und die mittels Signifikanz A-Test (mit einer Benjamini-Hochberg-basierten FDR-Bestimmung) signifikanten Proteine, die mit einem (x) gekennzeichnet sind, dargestellt (n=5/Genotyp (jeweils aus 4 Aorten isoliert)).

Parameter	CRP4 WT/ ApoE KO CD	dKO CD	CRP4 WT/ ApoE KO WD	dKO WD
Gewicht Leber [mg/mm Tibia]	73,78 ± 4,31	74,61 ± 5,54	126,71 ± 17,36**	109,37 ± 9,46*
Gewicht Milz [mg/mm Tibia]	5,62 ± 0,55	5,73 ± 0,96	7,53 ± 0,89	6,25 ± 2,03
Gewicht Lunge [mg/mm Tibia]	19,07 ± 0,86	17,47 ± 1,43	16,70 ± 1,34	17,10 ± 1,53
Gewicht Herz [mg/mm Tibia]	8,31 ± 0,14	7,79 ± 0,22	8,24 ± 0,26	8,22 ± 0,42
HDL [mg/dl]	29,99 ± 2,03	30,27 ± 2,57	26,09 ± 1,78	25,22 ± 1,79
LDL [mg/dl]	25,98 ± 3.03	28,47 ± 2,26	277,6 ± 27,98***	277,43 ± 20,41***
VLDL [mg/dl]	358,27 ± 27,12	399,98 ± 26,93	1248,44 ± 103,42***	1324,08 ± 99,38***
Protein [g/dl]	4,77 ± 0,18	4,75 ± 0,10	3,99 ± 0,23	3,87 ± 0,16
CK [U/I]	1356,89 ± 613,63	1913,00 ± 369,90	1789,87 ± 466,76	1562,55 ± 483,45
Harnstoff [mg/dl]	38,98 ± 2,21	43,24 ± 2,70	37,97 ± 2,83	34,65 ± 2,67
NEFA [µmol/l]	483,61 ± 53,94	524,17 ± 70,33	569,82 ± 50,40	645,06 ± 52,19
GPT [U/I]	14,67 ± 1,78	16,00 ± 2,45	4,57 ± 0,37	6,18 ± 1,40
GOT [U/I]	159,00 ± 18,08	294,50 ± 31,88	180,00 ± 18,15	161,82 ± 26,88
AP [U/I]	90,51 ± 13,36	79,84 ± 5,16	78,18 ± 3,58	75,31 ± 2,72
Triglyzeride [mg/100mg Leber]	1,80 ± 0,16	1,90 ± 0,50	5,42 ± 1,06	6,61 ± 0,52
Cholesterol [mg/100mg Leber]	0,24 ± 0,04	0,19 ± 0,02	0,65 ± 0,10	0,82 ± 0,05

7.5 Untersuchung der metabolischen Parameter im *in vivo* Atherosklerose-Modell

Tabelle 7.2: Metabolische Parameter im in vivo Atheroklerose-Modell

Auflistung verschiedener metabolischer Parameter von CRP4 WT/ApoE KO und dKO Mäusen nach 16 Wochen WD- vs. CD-Fütterung (n=7-15/Genotyp, *p<0,05, **p<0,01, ***p<0,001, zweiseitiger Student t-test). Alle Werte sind als Mittelwerte ±SEM dargestellt. Die Tabelle wurde modifiziert nach (Längst et al., 2022).

7.6 Auswertungsmethode der H&E-Färbungen

Abbildung 7.4: Exemplarische Bilder zur Veranschaulichung der Auswertung der H&E-Färbung (A) Zur Auswertung der Mediadicke unterhalb des Plaquebereichs wurde die Media in H&E-gefärbten Kryoschnitten aus CRP4 WT/ApoE KO und dKO Mäusen nach 16 Wochen WD an 6 unterschiedlichen Stellen/Kryoschnitt vermessen. Der Mittelwert der Messungen wurde für die weitere Berechnung herangezogen und auf die jeweilige Plaquefläche bezogen. (B) Die Berechnung der Intima/Media-Ratio erfolgte durch das Ausmessen des Gefäßlumens (A (Gefäßlumen)), der äußeren elastischen Lamina (A (EEL)), sowie der inneren elastischen Lamina (A (IEL)) und wurde wie folgt berechnet:

$$Ratio = \frac{A(IEL) - A(Gefäßlumen)}{A(EEL) - A(IEL)}$$

(**C**) Die zellfreien (=ungefärbten) Flächen innerhalb der Plaques wurden als nekrotischer Kern definiert. Hierzu wurde mittels der Software ImageJ eine *Colour Deconvolution* für H&E-Färbungen durchgeführt und durch Anwendung eines definierten *Threshold* jeweils die zellfreien Bereiche bezogen auf die Plaquefläche berechnet.

7.7 Telemetrische Blutdruckmessungen nach 12 Wochen WD

Abbildung 7.5: Telemetrische Blutdruckmessungen nach 12 Wochen WD im *in vivo* Atherosklerose-Modell

Die telemetrischen Blutdruckmessungen wurden in ApoE KO CRP4 doppelmutanten Mäusen nach 12 Wochen WD-Fütterung an drei aufeinanderfolgenden Tagen (72 h) durchgeführt. Hierbei wurden die systolischen (**A**), diastolischen (**B**) Blutdruckwerte, sowie der MAP (**C**) ermittelt. Des Weiteren wurde auch die Pulsamplitude (**D**), Herzrate (**E**) und die Aktivität der Mäuse (**F**) aufgezeichnet und quantifiziert. Für die Auswertung wurden die Mittelwerte der drei Tage in Abhängigkeit vom Tag-/Nachtzyklus (12 h/12 h) und als 24 h-Wert berechnet. Dabei konnten in Abwesenheit von CRP4 signifikant niedrigere diastolische Blutdruckwerte detektiert werden (n=6-7/Genotyp, *p<0,05, zweiseitiger Student t-test). Alle Ergebnisse sind als Mittelwerte ±SEM dargestellt.

7.8 Ki-67 Messungen in atherosklerotischen Plaques nach 8 Wochen WD

Abbildung 7.6: Proliferation in atherosklerotischen Plaques nach 8 Wochen WD

Anhand von Kryoschnitten aus CRP4 WT/ApoE KO und dKO Mäusen nach 8 Wochen WD-Fütterung wurde die Anzahl proliferierender Zellen im Inneren der Plaques (**B**), sowie in der *Tunica media* unterhalb der Plaques (**C**) quantifiziert. (**A**) Hierzu wurden die Gewebeschnitte mit dem Proliferationsmarker Ki-67 (gelb), sowie dem Zellkernmarker Hoechst (blau) gefärbt. (**B**, **C**) Die Proliferationsrate wurde prozentual auf die Gesamtzellzahl in den definierten Gewebebereichen berechnet und zeigte keine genotypspezifischen Unterschiede auf (n=6/Genotyp). (**D**) In P0 VSMCs aus CRP4 WT und KO Mäusen wurde zudem eine Impedanz-basierte Proliferationsmessung mit Hilfe des xCELLigence Systems (Roche) in Echtzeit durchgeführt. Auch hier konnten keine signifikanten Unterschiede zwischen CRP4 WT und KO VSMCs detektiert werden (n=3/Genotyp (jeweils aus 4 Aorten isolierte VSMCs)). Alle Ergebnisse wurden als Mittelwerte ±SEM präsentiert. Modifiziert nach (Längst et al., 2022).

7.9 *In vivo* Restenose-Modell (Neointima-Ligatur)

Abbildung 7.7: Neointima-Formation im Rahmen des in vivo Ligatur-Modells

(A) Zur Durchführung des Ligatur-Modells wurden bei CRP4 WT und KO Mäusen die linke Carotis für 28 Tage permanent ligiert. Anschließend wurde die ligierte Carotis präpariert und Kryoschnitte (8 μm) angefertigt. Mit Hilfe von H&E-Färbungen wurde die (B) Mediafläche, (C) Intimafläche, sowie die (D) Intima/Media-Ratio in Abhängigkeit von der Entfernung zur Ligatur ausgemessen und berechnet. (C, D) CRP4-defiziente Mäuse wiesen eine verdickte Intima und eine höhere Intima/Media-Ratio auf (n=4-5/Genotyp, *p<0,05, zweiseitiger Student t-test). Alle Daten sind als Mittelwerte ±SEM dargestellt.

7.10 Migrationsverhalten von hochpassagierten P10 - 15 VSMCs

Abbildung 7.8: Migration in synthetischen P10 - 15 VSMCs von CRP4 WT vs. KO Mäusen

(A) Mit Hilfe von speziellen Silikoneinsätzen wurde ein modifizierter Wundheilungs-Assay mit P10 - 15 VSMCs aus CRP4 WT und KO Mäusen durchgeführt. Die Zellen wurden 8 h, 24 h und 32 h nach Entfernen des Silikoneinsatzes lichtmikroskopisch beobachtet und (B) das Schließen der Lücke wurde mittels der Software AxioVision Rel.4.8 quantifiziert. CRP4-defiziente hochpassagierte VSMCs zeigten ein signifikant höheres Migrationsvermögen als die entsprechenden CRP4 WT VSMCs (n=3/Genotyp, *p<0,05, **p<0,01, zweiseitiger Student t-test). Die Ergebnisse wurden als Mittelwerte ±SEM dargestellt.

7.11 Basale Proteom-Analyse in P10 - P15 VSMCs aus CRP4 WT und KO Mäusen

Genname	<u>basal</u> : Ratio WT-KO	Ttest: p-Wert WT vs. KO	Signifikanz- level	Signifikanz B: WT vs. KO	Signifikanz
Crip2	24,5991	1,37E-10	***	0	х
Trmt1l	19,7148	0,3515	n.s.	2,01E-65	х
Thoc2	19,1011	0,0076	**	1,58E-61	х
Dock5	19,9326	0,3660	n.s.	7,77E-67	х
Myo1e	1,2102	0,3981	n.s.	0,0026	х
Endog	19,3844	0,0678	n.s.	2,61E-63	х
Prdx4	-0,8339	0,0156	*	0,0009	х
Degs1	-0,9449	0,0717	n.s.	0,0041	х
Man2b1	0,8167	0,3475	n.s.	0,0017	х
Amacr	18,8551	0,3433	n.s.	5,34E-60	х
Hax1	18,6606	0,3617	n.s.	8,36E-59	х
Prkag1	-21,5821	0,3261	n.s.	0	х
Acot1	-20,9285	0,3785	n.s.	0	х
Sgce	22,9173	0,3129	n.s.	9,55E-88	х
Gnpda1	-21,9703	0,3418	n.s.	0	х
Cpd	1,6561	0,0923	n.s.	1,51E-08	х
Rbm3	-0,7809	0,2808	n.s.	0,0020	х
B2m	-21,6631	0,0634	n.s.	0	х
Mtnd4	1,0413	0,1020	n.s.	0,0003	х
Ctsl	0,8001	0,3171	n.s.	0,0011	х
Me1	0,6410	0,1539	n.s.	0,0015	х
Txn	0,6285	0,2052	n.s.	0,0029	х
Atp1b1	0,6730	0,1462	n.s.	0,0009	х
Bsg	1,5179	0,2523	n.s.	2,17E-13	х
Vim	0,8128	0,8900	n.s.	0,0002	х
Mfge8	-0,8083	0,3151	n.s.	0,0036	х
Tgm2	-0,8016	0,7516	n.s.	0,0015	х
Pnp	-0,7826	0,2685	n.s.	0,0019	х
Aldh1a1	1,3841	0,6109	n.s.	4,39E-10	х
Dcn	1,6621	0,2146	n.s.	1,63E-11	х
Fmr1	-0,8238	0,0525	n.s.	0,0029	х
Pbx1	-19,4772	0,0892	n.s.	4,84E-307	х
Aldh3a1	-0,7595	0,6159	n.s.	0,0027	х
Gsr	0,8765	0,1125	n.s.	1,82E-05	х
Ctsh	1,1244	0,2426	n.s.	4,83E-06	х
Acadl	-0,7405	0,0267	*	0,0035	х
Jak1	0,7023	0,3114	n.s.	0,0041	х
Usp10	20,7193	0,3490	n.s.	4,57E-72	х
Mmp14	-19,3692	0,8026	n.s.	1,14E-303	х

				••	
Genname	<u>basal</u> : Ratio WT-KO	Ttest: p-Wert WT vs. KO	Signifikanz- level	Signifikanz B. WT vs. KO	Signifikanz
Slc16a1	2,1482	0,1949	n.s.	9,70E-16	х
Lsm3	1,5340	0,7584	n.s	1,55E-07	х
Prrx1	1,0552	0,2504	n.s	0,0003	х
Dynll1	-0,8379	0,0802	n.s	0,0025	х
Actg1	-2,6456	0,3083	n.s	1,47E-22	х
ltpr3	-20,7446	0,3568	n.s	0	х
Slc9a3r1	0,8227	0,5717	n.s	0,0001	х
Renbp	-1,8804	0,8862	n.s	1,24E-07	х
Phf5a	-20,8001	0,1325	n.s	0	х
Fhl1	1,0493	0,5958	n.s	1,62E-06	
Dtymk	-21,1083	0,3563	n.s	0	x
Dab2	0,8200	0,0556	n.s	0,0017	х
Rplp2	0,7202	0,4878	n.s	0,0007	х
Apoa1	-23,6887	0,3094	n.s	0	х
Uba1	-1,0088	0,0103	*	4,57E-05	х
Eml1	-0,8315	0,3769	n.s	0,0027	х
Cobll1	0,6256	0,2435	n.s	0,0020	х
Nt5c2	-20,9014	0,3465	n.s	0	х
Psme4	18,8746	0,3459	n.s	4,05E-60	х
Thoc6	19,2626	0,3595	n.s	1,54E-62	х
Grb10	20,7887	0,1262	n.s	0	х
Arhgef2	-0,9726	0,0706	n.s	0,0032	х
Papola	20,5156	0,3559	n.s	1,08E-70	x
Pafah1b3	-0,7977	0,0215	*	0,0040	х
Lamb2	0,8386	0,3169	n.s	0,0006	х
MsIn	20,3305	0,3989	n.s	0	х
Fscn1	-0,8617	0,6488	n.s	0,0006	х
Fbn1	0,8842	0,1853	n.s	0,0007	х
Snrpc	-22,3222	0,3488	n.s	0	х
Sprr1a	1,9181	0,7642	n.s	8,08E-15	х
Cdk6	-20,9960	0,3779	n.s	0	х
Cd34	22,4438	0,0676	n.s	0	х
Муоб	20,2013	0,0676	n.s	1,34E-68	х
Wapal	19,4209	0,3534	n.s	1,53E-63	х
Samd9l	19,1285	0,3556	n.s	1,07E-61	х
Hectd1	-1,1752	0,2990	n.s	0,0010	х
Ecm29	0,6909	0,1811	n.s	0,0007	х
Nup188	-24,7570	0,8011	n.s	0	x
Ugt1a7c	2,0314	0,2196	n.s	2,93E-14	х
Akap9	-22,1710	0,0616	n.s	0	х

				22	
Genname	<u>basal</u> : Ratio WT-KO	Ttest: p-Wert WT vs. KO	Signifikanz- level	Signifikanz B WT vs. KO	Signifikanz
Fblim1	-1.2266	0.3353	n.s.	7.01E-06	х
xFam63a	-20.4622	0.0725	n.s.	0	х
Gypc	21,0647	0,3534	n.s.	2,00E-74	х
Brd2	19,3044	0,3585	n.s.	8,37E-63	х
Col14a1	-1,3803	0,6303	n.s.	4,29E-07	х
Upk3b	20,2206	0,1696	n.s.	0	х
Zc3hc1	20,1904	0,3545	n.s.	1,58E-68	х
Commd7	20,3929	0,3675	n.s.	7,15E-70	х
Chmp2b	-20,6631	0,0666	n.s.	0	х
Mical2	-1,0363	0,0251	*	0,0016	х
Efemp1	-19,9929	0,4242	n.s.	1,98E-323	х
Rps6kb1	1,1656	0,4036	n.s.	0,0037	х
Bri3bp	1,1800	0,8041	n.s.	0,0033	х
Taok3	20,5303	0,0676	n.s.	8,60E-71	х
Anapc2	21,3834	0,1251	n.s.	0	х
Mina	-20,4001	0,3631	n.s.	0	х
Slc38a2	-21,0407	0,3608	n.s.	0	х
H6pd	-0,9755	0,4919	n.s.	0,0004	х
Trim32	-19,5606	0,8258	n.s.	0,00E+00	х
Gnl3	20,0391	0,0676	n.s.	1,56E-67	х
Rhot2	19,6421	0,3457	n.s.	5,90E-65	х
Cc2d1a	19,3538	0,3507	n.s.	4,08E-63	х
Alkbh3	19,6125	0,1266	n.s.	9,14E-65	х
Mrpl38	19,6211	0,1263	n.s.	8,05E-65	х
Ncapd2	-19,0186	0,4299	n.s.	7,51E-293	х
Mcfd2	0,9556	0,4076	n.s.	0,0010	х
Suox	0,7703	0,0573	n.s.	0,0017	х
Sh3kbp1	1,6531	0,3957	n.s.	3,88E-05	х
Rnpep	-1,5268	0,2119	n.s.	1,85E-08	х
Chchd4	-19,8440	0,7994	n.s.	1,24E-318	х
Mgst1	0,6268	0,6634	n.s.	0,0019	х
Ces2c	1,2267	0,2477	n.s.	3,46E-06	х
Dnajc9	-21,5467	0,0776	n.s.	0	х
Tmem205	21,4852	0,3478	n.s.	0	х
Basp1	3,1219	0,3075	n.s.	3,58E-31	х
Snx18	0,8726	0,1903	n.s.	0,0008	х
Msi2	1,4544	0,3922	n.s.	0,0003	х
Rheb	-21,7890	0,0594	n.s.	0	х
Tcaf2	-0,9607	0,4758	n.s.	0,0005	х
Tubb6	-0,7857	0,0611	n.s.	0,0018	х
Хро5	0,7843	0,4832	n.s.	0,0014	х
Genname	<u>basal:</u> Ratio WT-KO	Ttest: p-Wert WT vs. KO	Signifikanz- level	Signifikanz B: WT vs. KO	Signifikanz
---------	------------------------------	----------------------------	-----------------------	-----------------------------	-------------
Mta3	19,4481	0,3451	n.s.	1,03E-63	х
Cmas	0,9357	0,0990	n.s.	0,0013	х
Hars2	-20,2002	0,3680	n.s.	0	х
Atp5l	0,5822	0,1975	n.s.	0,0039	х
lfitm3	-0,8470	0,0381	*	0,0022	х
Ddx47	19,2388	0,0676	n.s.	2,17E-62	х
Moxd1	-21,3257	0,1242	n.s.	0	х
Mxra7	1,3394	0,7602	n.s.	0,0009	х
Mpc2	1,3239	0,3937	n.s.	0,0010	х
Mms19	1,4157	0,3935	n.s.	0,0004	х
Mrpl21	-20,8547	0,3588	n.s.	0	х
Cul2	1,4201	0,3891	n.s.	1,16E-06	х
Ca13	-1,0502	0,4576	n.s.	0,0014	х
Prss23	1,1974	0,3657	n.s.	0,0029	х
Pir	23,4008	0,0119	*	0	х
Mrps9	-19,5457	0,4207	n.s.	0,00E+00	х
Prkar1a	0,7692	0,0761	n.s.	0,0002	х
Rai14	0,9363	0,0292	*	0,0004	х
Tor3a	-20,4129	0,3877	n.s.	0	х
Elp4	19,4887	0,3622	n.s.	5,66E-64	х
Brd4	21,5304	0,3502	n.s.	0	х
Agk	20,8562	0,1270	n.s.	5,36E-73	х
Tmod3	0,5723	0,8359	n.s.	0,0045	х
Ddx21	-19,7018	0,3841	n.s.	4,11E-314	х
Pdzk1	-21,8049	0,3795 n.s.		0	х
Slc29a1	-1,3285	0,1841	n.s.	1,07E-06	х
Plscr1	0,7179	0,5171	n.s.	0,0033	х
Smpd3	1,0566	0,8075	n.s.	0,0003	х
Nkain4	21,3185	0,0679	n.s.	3,47E-76	х
Glrx	-1,0985	0,1200	n.s.	6,20E-05	х
Add3	1,1798	0,0242 *		1,01E-08	х
Add1	1,0033	0,0452 *		1,01E-06	х
Ndrg2	20,4924	0,3764 n.s.		1,55E-70	х
Zranb2	20,9951	0,0676 n.s.		6,00E-74	х
Bcam	-19,7828	0,0117 *		1,11E-316	х
Cetn2	19,5646	0,3681 n.s.		1,85E-64	х
Plp2	-23,8345	0,3641 n.s.		0	x
Ggps1	20,8906	3,93E-12 ***		3,12E-73	x
Cdh13	20,8233	0,0678	n.s.	8,98E-73	x
Rnf7	19,2248	0,3482	n.s.	2,66E-62	x
Rfc2	-20,6399	0,7745	n.s.	0	х

Genname	basal: Ratio WT-KO	Ttest: p-Wert WT vs. KO	Signifikanz- level	Signifikanz B: WT vs. KO	Signifikanz
Ehd1	0,7190	0,3405	n.s.	0,0007	х
Slc12a7	-1,4572	0,0545	n.s.	8,94E-06	х
Vnn1	-1,3945	0,9584	n.s.	3,24E-07	х
Fads2	1,1342	0,3056	n.s.	9,80E-05	х
Aifm1	0,6006	0,4526	n.s.	0,0029	х
Dctn3	-1,6003	0,1607	n.s.	0,0021	х
Mettl1	-19,2353	0,8348	n.s.	1,64E-299	х
Tcof1	0,7344	0,0081	**	0,0668	
Capn1	-0,6808	0,0259	*	0,0144	
llk	-0,5787	0,0255	*	0,0387	
Prim1	-20,4661	0,0112	*	0,2835	
Pik3r1;Pik3r3;Pik3r2	-19,3322	0,0112	*	0,3110	
Map2k4	-0,1761	0,0248	*	0,6131	
Inpp1	-0,4543	0,0459	*	0,2154	
Actn4	-0,4856	0,0066	**	0,0684	
Psmc1	-0,0958	0,0487	*	0,7894	
Ctps2	-0,6360	0,0229	*	0,0550	
Usp9x	-0,2620	0,0391	*	0,3753	
Thumpd3	0,3115	0,0159	*	0,7872	
Psmd1	-0,3050	0,0125	*	0,2961	
Trmt10c	-21,3730	0,0112	*	0,2627	
Cttn	-0,4171	0,0031	**	0,1266	
Dvl2	-0,4816	0,0005	***	0,1881	
Cd47	0,4891	0,0370	*	0,0538	
Plcg1	-0,1695	0,0422	*	0,6275	
lfit3	-19,3400	0,0125	*	0,3108	
Ppp2r1a	-0,2251	0,0019	**	0,4836	
Nap1l4	-0,2868	0,0298	*	0,3427	
Erbb2ip	-0,6104	0,0444	*	0,0926	
Tecpr1	-19,8767	0,0105	*	0,2976	
Wipi2	-0,3375	0,0159	*	0,3644	
Tm9sf4	0,2472	0,0448	*	0,2977	
Slc25a12	0.2022	0.0166	*	0.2815	
Eif1ax	-0.5502	0.0130	*	0.0499	
Rcn2	-0,4295	0,0056	**	0,1308	
lars	0,4214	0,0442	*	0,0369	
Qdpr	-0.3782	0.0474	*	0.2600	
Aldh5a1	-19.8834	0.0097	**	0.2974	
Usp47	-0.7822	0.0118	*	0.0179	
Cog5	-19,2500	0.0112	*	0.3130	
Crbn	-19.7256	0.0112	*	0.3012	

Genname	<u>basal:</u> Ratio WT-KO	Ttest: p-Wert WT vs. KO	Signifikanz- level	Signifikanz B: WT vs. KO	Signifikanz	
Cdc123	-19,7651	0,0100	*	0,3003		
Prpsap2	-0,4256	0,0174	*	0,2472		
Cops8	-0,1950	0,0283	*	0,5468		
Arl8a	-0,3804	0,0153	*	0,1930		
Pdk3	-0,2215	0,0299	*	0,6754		
Lims1	-0,3575	0,0395	*	0,2139		
Gps1	-0,1180	0,0366	*	0,7549		
Dhx30	-20,3956	0,0112	*	0,2851		
Lamtor1	-0,5856	0,0147	*	0,0778		
Spg21	-20,1442	0,0112	*	0,2911		
Btf3l4	0,5309	0,0076	**	0,0290		
Cotl1	-20,7210	0,0112	*	0,2775		
Txndc17	0,5906	0,0132	*	0,0213		
Glrx3	-0,2320	0,0476	*	0,4654		
Chchd3	0,4077	0,0269	*	0,1033		
Hddc3	-19,8590	0,0123	*	0,2980		
Itpa	0,2981	0,0364	*	0,2202		
Napa	-0,3441	0,0084	**	0,2440		
Alg2	0,4019	0,0200	*	0,1558		
Cmpk1	0,5636	0,0486	*	0,0052		
Dtd1	-20,6608	0,0112	*	0,2789		
Мvр	-0,6083	0,0103	*	0,0187		
Cog8	-19,4009	0,0112	*	0,3093		
Nudt5	0,2557	0,0331	*	0,2822		
Dclk1	-0,7199	0,0322	*	0,0098		
Arpc3	-0,3155	0,0499	*	0,2775		
Edf1	-0,2959	0,0136	*	0,3255		
Vapb	0,3456	0,0460	*	0,0785		
Maged1	-20,6477	2,11E-14	***	0,2792		
Tbl2	0,1783	0,0467	*	0,5069		
Psmd10	-0,5991	0,0299	*	0,0990		

Tabelle 7.3: Signifikante Proteine aus der basalen Proteom-Analyse in P10 - 15 VSMCs

Auflistung der Mittelwerte der CRP4 WT/KO Ratios aller mittels LC-MS/MS detektierten Proteine in P10 – 15 VSMCs von CRP4 WT und KO Aorten. Zudem sind die Signifikanzniveaus des zweiseitigen Student t-tests mit permutationsbasierter FDR (false discovery rate)-Bestimmung (*p<0,05, **p<0,01, ***p<0,001) und die mittels Signifikanz B-Test (mit einer Benjamini-Hochberg-basierten FDR-Bestimmung) signifikanten Proteine, die mit einem (x) gekennzeichnet sind, dargestellt (n=5/Genotyp (jeweils aus 4 Aorten isoliert)). Dabei zeigen die in CRP4 WT (positive Ratios) oder KO (negative Ratios) VSMCs signifikant angereicherten Proteine eine CRP4-abhängige Proteinexpression.

7.12 Identifikation von CRP4-Interaktionspartnern mittels Co-IP

Abbildung 7.9: Co-IP synthetischer VSMCs und WB-Analyse einiger CRP4-Interaktionspartner

LC-MS/MS-Analyse der Co-IP (Abb. 3.9) aus synthetischen P10 - 15 CRP4 WT und KO VSMCs. (A) Der Scatterblot zeigt alle signifikant mit CRP4-interagierenden (Signifikanz A-test (grün) oder Signifikanz A- und Student t-test (blau) signifikant) Proteine (n=5/Genotyp (jeweils aus 4 Aorten isoliert)). (B) WB-Analysen zur Verifizierung der CRP4-Interaktionspartner Fibulin 2, Serpin B6 und Serpin H1 nach erfolgter Co-IP in CRP4 WT und KO P10 - 15 VSMCs.

Genname	<u>basal:</u> Ratio WT-KO	Ttest: p-Wert WT vs. KO	Signifikanz- level	Signifikanz A: WT vs. KO	Signifikanz
Crip2	30,5817	2,23E-11	***	0	х
Cad	23,3957	0,0338	*	1,55E-193	х
Flot1	24,3338	0,1973	n.s.	3,58E-209	х
Col3a1	25,9513	0,0657	n.s.	1,43E-237	х
Sptan1	2,2762	0,3642	n.s.	0,0020	х
Serpinh1	24,5815	0,1778	n.s.	2,11E-213	х
Rpl12	23,0069	0,0338	*	3,10E-187	х
Fbln2	25,8861	0,1842	n.s.	2,16E-236	х
Tpm1;Tpm2	23,8965	0,1809	n.s.	8,30E-202	х
Tnks1bp1	24,8419	0,0338	*	6,76E-218	х
Cdc42	24,6616	0,1801	n.s.	8,85E-215	х
Rps18	26,0288	0,0652	n.s.	5,58E-239	х
Gnb2	1,4668	0,4066	n.s.	0,0315	х
Rpl19	23,0660	0,1801	n.s.	3,47E-188	х
P4ha1	1,7735	0,1990	n.s.	0,0123	х
Serpinb6	25,1856	0,1750	n.s.	6,70E-224	х
Sptbn1	3,1791	0,6931	n.s.	2,80E-05	х
Sdpr	25,4139	0,1733	n.s.	6,20E-228	х
Муо6	1,4949	0,2143	n.s.	0,0291	х
Luzp1	23,6625	0,0048	**	6,39E-198	х
Flnc	26,2388	0,1638	n.s.	8,23E-243	х
Triobp	24,4434	0,0338	*	4,87E-211	х
Rtcb	24,8639	0,1800	n.s.	2,80E-218	х
Rpl11	25,8387	0,1757	n.s.	1,55E-235	х
Pdhb	1,4809	0,3944	n.s.	0,0302	х
Serpinb1a	25,0283	0,0339	*	3,84E-221	х
Plec	1,7618	0,1851	n.s.	0,0128	х
Carm1	24.9691	0.0338	*	4.14E-220	х

Anhang

Tabelle 7.4: Auflistung aller signifikanter CRP4-Interaktionspartner

Auflistung der Mittelwerte der CRP4 WT/KO Ratios aller mittels LC-MS/MS detektierten Proteine in Co-IP-Lysaten von synthetischen P10 – 15 CRP4 WT und KO VSMCs. Zudem sind die Signifikanzniveaus des zweiseitigen Student t-tests mit permutationsbasierter FDR (*false discovery rate*)-Bestimmung (*p<0,05, **p<0,01, ***p<0,001) und die mittels Signifikanz A-Test (mit einer Benjamini-Hochbergbasierten FDR-Bestimmung) signifikanten Proteine, die mit einem (x) gekennzeichnet sind, dargestellt (n=5/Genotyp (jeweils aus 4 Aorten isoliert)).

Proteinname	Genname	Relevanz*	Ratio (WT/KO)	Biologische Funktion	Subzelluläre Lokalisation	Referenzen
Filamin-C	FInc		26,24	Reorganisation des Aktin Zytoskeletts und Muskelentwicklung	Zytoplasma, Plasma- membran	Dalkilic I. et al., 2006; Zhou X. et al., 2007; Tanabe K. et al., 2017
Collagen alpha-1(III) chain	Col3a1		25,95	Kollagen I-Fibrillogenese	Endoplasma- tisches Retikulum	Liu X. et al., 1997; Schwarze U. et al., 2001
Fibulin-2	Fbln2	x	25,88	Bindung verschiedener extrazellulärer Liganden (z.B. Elastin, Fibrillin-1, Versican, Hyaluronan)	Plasma- membran	Pan C.T. et al., 1993; Ström A. et al., 2006 ; Argraves W.S. et al., 2003
Serpin B6	Serpinb6		25,18	Inhibition von Trypsin- und Chymotrypsinähnlichen Proteasen	Zytoplasma, Zellkern	Scarff K. et al., 2004; Burgener S. et al., 2019; Mangan M. et al., 2008
Histone-arginine methyltransferase CARM1	Carm1		24,97	Modifikation anderer Transkriptionsfaktoren (z.B. NF- ĸB, p53) und Histonen (z.B. Histone H3)	Zellkern, Zytoplasma	An W. et al., 2004; Cheng D. et al., 2007; Yadav N. et al., 2008
182 kDa tankyrase-1- binding protein	Tnks1bp1		24,84	Regulation des Aktin Zytoskeletts, Telomer-Erhaltung, Reparatur von DNA-Schäden	Zytoplasma, Zellkern	Ohishi T. et al., 2017; Tan W. et al., 2017
Cell division control protein 42	Cdc42	#	24,66	Aktin Zytoskelettorganisation und -polymerisation; Förderung der vaskulären Kalzifizierung	Plasma- membran	Jaffe A.B. et al., 2005; Puetz S. et al., 2009
Serpin H1	Serpinh1	x	24,58	Kollagen-spezifisches Chaperon	Endoplasma- tisches Retikulum	Rocnik E. et al., 2000; Zhou J. et al., 2004
TRIO- and F-actin binding protein	Triobp		24,44	Stabilisierung der F-Aktin Strukturen und Stressfaserbildung	Zytoskelett, Zellkern	Xu S. et al., 2019; Park S. et al., 2018
Tropomyosin alpha-1 & beta chain	Tpm1, Tpm2	x	23,90	Regulation der zytoskelettalen Aktinfilamente	Zytoskelett, Zytoplasma	Wang C.L. et al., 2010; Marston S. et al., 2008; Meng L. et al., 2019
60S ribosomal protein L12, L19, L11	RpI12, RpI19, RpI11		23,01; 23,01; 25,84	Zusammensetzung der Ribosomen und Proteintranslation	Zytoplasma	Zhou X. et al., 2015; Bhat K. et al., 2004; Grey J.P. et al., 2005
Plectin	Plec		1,76	Verbindung verschiedener Elemente des Zytoskeletts	Zytoplasma, intermediäre Filamente	Wiche G. et al., 2011; Osmanagic-Myers S. et al., 2015
Spectrin alpha and beta chain, non- erythocytic 1	Sptan1, Sptbn1		2,27; 3,18	Stabilisierung der Plasmamembran und Organisation intrazellulärer	Zytoskelett	Machnicka B. et al., 2012; Bennett V. et al., 1990

Organellen

Tabelle 7.5: Analyse von CRP4-Interaktionspartnern mit Relevanz für die VSMC Plastizität und/oder Atherosklerose bzw. das *Remodeling* des Aktin-Zytoskeletts

* Assoziation mit der VSMC Plastizität und/oder Atherosklerose (x); Assoziation mit dem *Remodeling* des Aktin-Zytoskeletts in VSMCs (#)

8. Literaturverzeichnis

Ackers-Johnson, M., Talasila, A., Sage, A. P., Long, X., Bot, I., Morrell, N. W., . . . Sinha, S. (2015). Myocardin Regulates Vascular Smooth Muscle Cell Inflammatory Activation and Disease. *Arteriosclerosis, thrombosis, and vascular biology, 35*(4), 817-828. doi:doi:10.1161/ATVBAHA.114.305218

Albiges-Rizo, C., Destaing, O., Fourcade, B., Planus, E., & Block, M. R. (2009). Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions. *Journal of Cell Science*, *122*(17), 3037-3049.

Alessi, D., MacDougall, L. K., Sola, M. M., Ikebe, M., & Cohen, P. (1992). The control of protein phosphatase-1 by targetting subunits: The major myosin phosphatase in avian smooth muscle is a novel form of protein phosphatase-1. *European Journal of Biochemistry*, *210*(3), 1023-1035.

Alexander, M. R., & Owens, G. K. (2012). Epigenetic Control of Smooth Muscle Cell Differentiation and Phenotypic Switching in Vascular Development and Disease. *Annual Review of Physiology, 74*(1), 13-40. doi:10.1146/annurev-physiol-012110-142315

Alioua, A., Tanaka, Y., Wallner, M., Hofmann, F., Ruth, P., Meera, P., & Toro, L. (1998). The large conductance, voltage-dependent, and calcium-sensitive K+ channel, Hslo, is a target of cGMP-dependent protein kinase phosphorylation in vivo. *Journal of Biological Chemistry*, 273(49), 32950-32956.

Allahverdian, S., Chaabane, C., Boukais, K., Francis, G. A., & Bochaton-Piallat, M.-L. (2018). Smooth muscle cell fate and plasticity in atherosclerosis. *Cardiovascular Research*, *114*(4), 540-550. doi:10.1093/cvr/cvy022

Allahverdian, S., Chehroudi, A. C., McManus, B. M., Abraham, T., & Francis, G. A. (2014). Contribution of Intimal Smooth Muscle Cells to Cholesterol Accumulation and Macrophage-Like Cells in Human Atherosclerosis. *Circulation, 129*(15), 1551-1559. doi:doi:10.1161/CIRCULATIONAHA.113.005015

Andresen, H., Pérez-Ternero, C., Robinson, J., Dickey, D. M., Hobbs, A. J., Potter, L. R., ... Moltzau, L. R. (2022). Novel enhancers of guanylyl cyclase-A activity via allosteric modulation. *bioRxiv*, 2021.2012. 2031.474340.

Andrianantoandro, E., & Pollard, T. D. (2006). Mechanism of Actin Filament Turnover by Severing and Nucleation at Different Concentrations of ADF/Cofilin. *Molecular cell, 24*(1), 13-23. doi:https://doi.org/10.1016/j.molcel.2006.08.006

Arber, S., Barbayannis, F. A., Hanser, H., Schneider, C., Stanyon, C. A., Bernard, O., & Caroni, P. (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. *Nature, 393*(6687), 805-809. doi:10.1038/31729

Arber, S., Halder, G., & Caroni, P. (1994). Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. *Cell, 79*(2), 221-231. doi:https://doi.org/10.1016/0092-8674(94)90192-9

Armstrong, P. W., Pieske, B., Anstrom, K. J., Ezekowitz, J., Hernandez, A. F., Butler, J., ... Jia, G. (2020). Vericiguat in patients with heart failure and reduced ejection fraction. *New England Journal of Medicine*, 382(20), 1883-1893.

Austin, G. E., Ratliff, N. B., Hollman, J., Tabei, S., & Phillips, D. F. (1985). Intimal proliferation of smooth muscle cells as an explanation for recurrent coronary artery stenosis after percutaneous transluminal coronary angioplasty. *Journal of the American College of Cardiology*, *6*(2), 369-375. doi:doi:10.1016/S0735-1097(85)80174-1

Bach, I. (2000). The LIM domain: regulation by association. Mechanisms of Development, 91(1-2), 5-17.

Bárány, M., Barron, J. T., Gu, L., & Bárány, K. (2001). Exchange of the actin-bound nucleotide in intact arterial smooth muscle. *Journal of Biological Chemistry*, 276(51), 48398-48403.

Barrett, H. E., Van der Heiden, K., Farrell, E., Gijsen, F. J. H., & Akyildiz, A. C. (2019). Calcifications in atherosclerotic plaques and impact on plaque biomechanics. *Journal of Biomechanics, 87*, 1-12. doi:https://doi.org/10.1016/j.jbiomech.2019.03.005

Barry-Lane, P. A., Patterson, C., van der Merwe, M., Hu, Z., Holland, S. M., Yeh, E. T. H., & Runge, M. S. (2001). p47phox is required for atherosclerotic lesion progression in ApoE–/– mice. *The Journal of clinical investigation*, *108*(10), 1513-1522. doi:10.1172/JCI11927

Basatemur, G. L., Jørgensen, H. F., Clarke, M. C., Bennett, M. R., & Mallat, Z. (2019). Vascular smooth muscle cells in atherosclerosis. *Nature reviews cardiology*, 1-18.

Bassiouny, H. S., White, S., Glagov, S., Choi, E., Giddens, D. P., & Zarins, C. K. (1992). Anastomotic intimal hyperplasia: mechanical injury or flow induced. *Journal of Vascular Surgery*, *15*(4), 708-717.

Baumhoer, D., Elsner, M., Smida, J., Zillmer, S., Rauser, S., Schoene, C., . . . Walch, A. (2011). CRIP1 expression is correlated with a favorable outcome and less metastases in osteosarcoma patients. *Oncotarget*, *2*(12), 970.

Beamish, J. A., He, P., Kottke-Marchant, K., & Marchant, R. E. (2010). Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. *Tissue Engineering Part B: Reviews, 16*(5), 467-491.

Beckerle, M. C. (1997). Zyxin: zinc fingers at sites of cell adhesion. BioEssays, 19(11), 949-957.

Belz, G. G. (1995). Elastic properties and Windkessel function of the human aorta. *Cardiovasc Drugs Ther, 9*(1), 73-83. doi:10.1007/bf00877747

Bennett, M. R., Sinha, S., & Owens, G. K. (2016). Vascular Smooth Muscle Cells in Atherosclerosis. *Circulation Research*, *118*(4), 692-702. doi:doi:10.1161/CIRCRESAHA.115.306361

Benz, P. M., Blume, C., Seifert, S., Wilhelm, S., Waschke, J., Schuh, K., . . . Renné, T. (2009). Differential VASP phosphorylation controls remodeling of the actin cytoskeleton. *Journal of Cell Science*, *1*22(21), 3954-3965. doi:10.1242/jcs.044537

Berner, P. F., Somlyo, A. V., & Somlyo, A. P. (1981). Hypertrophy-induced increase of intermediate filaments in vascular smooth muscle. *Journal of Cell Biology, 88*(1), 96-100. doi:10.1083/jcb.88.1.96

Bice, J. S., Keim, Y., Stasch, J.-P., & Baxter, G. F. (2014). NO-independent stimulation or activation of soluble guanylyl cyclase during early reperfusion limits infarct size. *Cardiovascular Research*, *101*(2), 220-228.

Biel, M., Sautter, A., Ludwig, A., Hofmann, F., & Zong, X. (1998). Cyclic nucleotide-gated channels-mediators of NO: cGMP-regulated processes. *Naunyn-Schmiedeberg's archives of pharmacology, 358*(1), 140-144.

Böckler, D., Burger, U., Klemm, K., & Hyhlik-Dürr, A. (2007). Geschlechtsverteilung aortaler Gefäßerkrankungen. *Gefässchirurgie, 12*(6), 421-428. doi:10.1007/s00772-007-0561-9

Boldt, K., Mans, D. A., Won, J., van Reeuwijk, J., Vogt, A., Kinkl, N., . . . Ueffing, M. (2011). Disruption of intraflagellar protein transport in photoreceptor cilia causes Leber congenital amaurosis in humans and mice. *The Journal of clinical investigation*, *121*(6), 2169-2180. doi:10.1172/JCI45627

Boldt, K., van Reeuwijk, J., Lu, Q., Koutroumpas, K., Nguyen, T. M., Texier, Y., . . . Roepman, R. (2016). An organelle-specific protein landscape identifies novel diseases and molecular mechanisms. *Nat Commun, 7*, 11491. doi:10.1038/ncomms11491

Bolotina, V. M., Najibi, S., Palacino, J. J., Pagano, P. J., & Cohen, R. A. (1994). Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. *Nature*, *368*(6474), 850-853.

Boolell, M., Gepi-Attee, S., Gingell, J., & Allen, M. (1996). Sildenafil, a novel effective oral therapy for male erectile dysfunction. *British journal of urology*, 78(2), 257-261.

Borysenko, M., & Beringer, T. (1989). Functional histology.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analytical Biochemistry*, 72(1), 248-254. doi:https://doi.org/10.1016/0003-2697(76)90527-3

Braun, M., Pietsch, P., Schrör, K., Baumann, G., & Felix, S. B. (1999). Cellular adhesion molecules on vascular smooth muscle cells. *Cardiovascular Research*, *41*(2), 395-401. doi:10.1016/s0008-6363(98)00302-2

Brini, M., & Carafoli, E. (2011). The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. *Cold Spring Harbor perspectives in biology*, *3*(2), a004168.

Butler, T., Paul, J., Europe-Finner, N., Smith, R., & Chan, E.-C. (2013). Role of serine-threonine phosphoprotein phosphatases in smooth muscle contractility. *American Journal of Physiology-Cell Physiology, 304*(6), C485-C504. doi:10.1152/ajpcell.00161.2012

Byon, C. H., Javed, A., Dai, Q., Kappes, J. C., Clemens, T. L., Darley-Usmar, V. M., . . . Chen, Y. (2008). Oxidative Stress Induces Vascular Calcification through Modulation of the Osteogenic Transcription Factor Runx2 by AKT Signaling*. *Journal of Biological Chemistry*, *283*(22), 15319-15327. doi:https://doi.org/10.1074/jbc.M800021200

Carmeliet, P., Moons, L., Stassen, J.-M., De Mol, M., Bouché, A., Van den Oord, J., . . . Collen, D. (1997). Vascular wound healing and neointima formation induced by perivascular electric injury in mice. *The American journal of pathology*, *150*(2), 761.

Castorena-Gonzalez, J. A., Staiculescu, M. C., Foote, C., & Martinez-Lemus, L. A. (2014). Mechanisms of the Inward Remodeling Process in Resistance Vessels: Is the Actin Cytoskeleton Involved? *Microcirculation*, *21*(3), 219-229. doi:https://doi.org/10.1111/micc.12105

Chacko, S., Conti, M. A., & Adelstein, R. S. (1977). Effect of phosphorylation of smooth muscle myosin on actin activation and Ca2+ regulation. *Proceedings of the National Academy of Sciences*, 74(1), 129-133. doi:10.1073/pnas.74.1.129

Chamley, J. H., Campbell, G. R., & Burnstock, G. (1974). Dedifferentiation, redifferentiation and bundle formation of smooth muscle cells in tissue culture: the influence of cell number and nerve fibres. *Development, 32*(2), 297-323. doi:10.1242/dev.32.2.297

Chang, D. F., Belaguli, N. S., Iyer, D., Roberts, W. B., Wu, S.-P., Dong, X.-R., ... Schwartz, R. J. (2003). Cysteine-Rich LIM-Only Proteins CRP1 and CRP2 Are Potent Smooth Muscle Differentiation Cofactors. *Developmental Cell*, *4*(1), 107-118. doi:https://doi.org/10.1016/S1534-5807(02)00396-9 Chappell, J., Harman, J. L., Narasimhan, V. M., Yu, H., Foote, K., Simons, B. D., . . . Jørgensen, H. F. (2016). Extensive Proliferation of a Subset of Differentiated, yet Plastic, Medial Vascular Smooth Muscle Cells Contributes to Neointimal Formation in Mouse Injury and Atherosclerosis Models. *Circulation Research*, *119*(12), 1313-1323. doi:10.1161/CIRCRESAHA.116.309799

Chegary, M., te Brinke, H., Ruiter, J. P., Wijburg, F. A., Stoll, M. S., Minkler, P. E., . . . Wanders, R. J. (2009). Mitochondrial long chain fatty acid β -oxidation in man and mouse. *Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids*, *1791*(8), 806-815.

Chen, L., Daum, G., Chitaley, K., Coats, S. A., Bowen-Pope, D. F., Eigenthaler, M., . . . Clowes, A. W. (2004). Vasodilator-Stimulated Phosphoprotein Regulates Proliferation and Growth Inhibition by Nitric Oxide in Vascular Smooth Muscle Cells. *Arteriosclerosis, thrombosis, and vascular biology, 24*(8), 1403-1408. doi:t0i:10.1161/01.ATV.0000134705.39654.53

Chen, S., & Lechleider, R. J. (2004). Transforming Growth Factor-β-Induced Differentiation of Smooth Muscle From a Neural Crest Stem Cell Line. *Circulation Research, 94*(9), 1195-1202. doi:10.1161/01.RES.0000126897.41658.81

Chester, M., Seedorf, G., Tourneux, P., Gien, J., Tseng, N., Grover, T., . . . Abman, S. H. (2011). Cinaciguat, a soluble guanylate cyclase activator, augments cGMP after oxidative stress and causes pulmonary vasodilation in neonatal pulmonary hypertension. *American Journal of Physiology-Lung Cellular and Molecular Physiology, 301*(5), L755-L764. doi:10.1152/ajplung.00138.2010

Chester, M., Tourneux, P., Seedorf, G., Grover, T. R., Gien, J., & Abman, S. H. (2009). Cinaciguat, a soluble guanylate cyclase activator, causes potent and sustained pulmonary vasodilation in the ovine fetus. *American Journal of Physiology-Lung Cellular and Molecular Physiology, 297*(2), L318-L325. doi:10.1152/ajplung.00062.2009

Chistiakov, D. A., Orekhov, A. N., & Bobryshev, Y. V. (2015). Vascular smooth muscle cell in atherosclerosis. *Acta Physiologica*, 214(1), 33-50. doi:https://doi.org/10.1111/apha.12466

Cleary, R. A., Wang, R., Waqar, O., Singer, H. A., & Tang, D. D. (2014). Role of c-Abl tyrosine kinase in smooth muscle cell migration. *American Journal of Physiology-Cell Physiology*, *306*(8), C753-C761.

Colucci, W. S., Elkayam, U., Horton, D. P., Abraham, W. T., Bourge, R. C., Johnson, A. D., . . . Neibaur, M. (2000). Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. *New England Journal of Medicine*, 343(4), 246-253.

Consortium, G. (2015). The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. *Science*, *348*(6235), 648-660.

Cotteret, S., & Chernoff, J. (2002). The evolutionary history of effectors downstream of Cdc42 and Rac. *Genome biology*, *3*(2), reviews0002. 0001.

D'Archivio, M., Annuzzi, G., Varì, R., Filesi, C., Giacco, R., Scazzocchio, B., . . . Masella, R. (2012). Predominant role of obesity/insulin resistance in oxidative stress development. *European Journal of Clinical Investigation, 42*(1), 70-78. doi:https://doi.org/10.1111/j.1365-2362.2011.02558.x

Daugherty, A. (2002). Mouse Models of Atherosclerosis. *The American Journal of the Medical Sciences, 323*(1), 3-10. doi:https://doi.org/10.1097/00000441-200201000-00002

Davis-Dusenbery, B. N., Wu, C., Hata, A., & Sessa, W. C. (2011). Micromanaging Vascular Smooth Muscle Cell Differentiation and Phenotypic Modulation. *Arteriosclerosis, thrombosis, and vascular biology, 31*(11), 2370-2377. doi:10.1161/ATVBAHA.111.226670

Dawid, I. B., Breen, J. J., & Toyama, R. (1998). LIM domains: multiple roles as adapters and functional modifiers in protein interactions. *Trends in Genetics, 14*(4), 156-162.

Defawe, O. D., Kim, S., Chen, L., Huang, D., Kenagy, R. D., Renné, T., . . . Clowes, A. W. (2010). VASP phosphorylation at serine239 regulates the effects of NO on smooth muscle cell invasion and contraction of collagen. *Journal of cellular physiology*, 222(1), 230-237.

Deng, Y., Lin, C., Zhou, H. J., & Min, W. (2017). Smooth muscle cell differentiation: Mechanisms and models for vascular diseases. *Frontiers in biology*, *12*(6), 392-405.

Devine, C. E., & Somlyo, A. P. (1971). Thick filaments in vascular smooth muscle. *The Journal of cell biology, 49*(3), 636-649.

Doeskeland, S. O., Oegreid, D., Ekanger, R., Sturm, P. A., Miller, J. P., & Suva, R. H. (1983). Mapping of the two intrachain cyclic nucleotide binding sites of adenosine cyclic 3', 5'-phosphate dependent protein kinase I. *Biochemistry*, *22*(5), 1094-1101.

Draeger, A., Amos, W., Ikebe, M., & Small, J. (1990). The cytoskeletal and contractile apparatus of smooth muscle: contraction bands and segmentation of the contractile elements. *The Journal of cell biology, 111*(6), 2463-2473.

Draeger, A., Stelzer, E., Herzog, M., & Small, J. (1989). Unique geometry of actin-membrane anchorage sites in avian gizzard smooth muscle cells. *Journal of Cell Science*, *94*(4), 703-711.

Durham, A. L., Speer, M. Y., Scatena, M., Giachelli, C. M., & Shanahan, C. M. (2018). Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. *Cardiovascular Research, 114*(4), 590-600. doi:10.1093/cvr/cvy010

Erdmann, J., Stark, K., Esslinger, U. B., Rumpf, P. M., Koesling, D., de Wit, C., . . . CardioGram. (2013). Dysfunctional nitric oxide signalling increases risk of myocardial infarction. *Nature*, *504*(7480), 432-436. doi:10.1038/nature12722

Evgenov, O. V., Pacher, P., Schmidt, P. M., Haskó, G., Schmidt, H. H., & Stasch, J.-P. (2006). NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. *Nature reviews Drug discovery*, *5*(9), 755-768.

Fala, L. (2015). Entresto (Sacubitril/Valsartan): first-in-class angiotensin receptor neprilysin inhibitor FDA approved for patients with heart failure. *American health & drug benefits*, *8*(6), 330.

Farrokhi, E., Chaleshtori, M. H., & Samani, K. G. (2015). Oxidized Low-Density Lipoprotein Increases Bone Sialoprotein Expression in Vascular Smooth Muscle Cells Via Runt-Related Transcription Factor 2. *The American Journal of the Medical Sciences*, *349*(3), 240-243. doi:https://doi.org/10.1097/MAJ.00000000000381

Farrow, K. N., Groh, B. S., Schumacker, P. T., Lakshminrusimha, S., Czech, L., Gugino, S. F., ... Steinhorn, R. H. (2008). Hyperoxia Increases Phosphodiesterase 5 Expression and Activity in Ovine Fetal Pulmonary Artery Smooth Muscle Cells. *Circulation Research*, *102*(2), 226-233. doi:doi:10.1161/CIRCRESAHA.107.161463

Fatigati, V., & Murphy, R. (1984). Actin and tropomyosin variants in smooth muscles. Dependence on tissue type. *Journal of Biological Chemistry*, 259(23), 14383-14388.

Feil, R., Feil, S., & Hofmann, F. (2005). A heretical view on the role of NO and cGMP in vascular proliferative diseases. *Trends in Molecular Medicine*, *11*(2), 71-75.

Feil, R., Gappa, N., Rutz, M., Schlossmann, J., Rose, C. R., Konnerth, A., . . . Hofmann, F. (2002). Functional Reconstitution of Vascular Smooth Muscle Cells With cGMP-Dependent Protein Kinase I Isoforms. *Circulation Research*, *90*(10), 1080-1086. doi:doi:10.1161/01.RES.0000019586.95768.40

Feil, S., Fehrenbacher, B., Lukowski, R., Essmann, F., Schulze-Osthoff, K., Schaller, M., & Feil, R. (2014). Transdifferentiation of Vascular Smooth Muscle Cells to Macrophage-Like Cells During Atherogenesis. *Circulation Research*, *115*(7), 662-667. doi:10.1161/CIRCRESAHA.115.304634

Ferdinandy, P., Schulz, R., & Baxter, G. F. (2007). Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. *Pharmacological reviews*, *59*(4), 418-458.

Ferns, G., Reidy, M., & Ross, R. (1991). Balloon catheter de-endothelialization of the nude rat carotid. Response to injury in the absence of functional T lymphocytes. *The American journal of pathology, 138*(4), 1045.

Ferns, G. A. A., & Avades, T. Y. (2000). The mechanisms of coronary restenosis: insights from experimental models. *International Journal of Experimental Pathology*, *81*(2), 63-88. doi:https://doi.org/10.1046/j.1365-2613.2000.00143.x

Fischer, A. H., Jacobson, K. A., Rose, J., & Zeller, R. (2008). Hematoxylin and eosin staining of tissue and cell sections. *Cold spring harbor protocols, 2008*(5), pdb. prot4986.

Fischer, C., Schneider, M., & Carmeliet, P. (2006). Principles and therapeutic implications of angiogenesis, vasculogenesis and arteriogenesis. *The Vascular Endothelium II*, 157-212.

Foley, A. R., Zou, Y., Dunford, J. E., Rooney, J., Chandra, G., Xiong, H., . . . Bönnemann, C. G. (2020). GGPS1 Mutations Cause Muscular Dystrophy/Hearing Loss/Ovarian Insufficiency Syndrome. *Annals of Neurology, 88*(2), 332-347. doi:10.1002/ana.25772

Foote, C. A., Castorena-Gonzalez, J. A., Staiculescu, M. C., Clifford, P. S., Hill, M. A., Meininger, G. A., & Martinez-Lemus, L. A. (2016). Brief serotonin exposure initiates arteriolar inward remodeling processes in vivo that involve transglutaminase activation and actin cytoskeleton reorganization. *American Journal of Physiology-Heart and Circulatory Physiology*, *310*(2), H188-H198. doi:10.1152/ajpheart.00666.2015

Fujiwara, I., Takahashi, S., Tadakuma, H., Funatsu, T., & Ishiwata, S. i. (2002). Microscopic analysis of polymerization dynamics with individual actin filaments. *Nature Cell Biology*, *4*(9), 666-673. doi:10.1038/ncb841

Fukao, M., Mason, H. S., Britton, F. C., Kenyon, J. L., Horowitz, B., & Keef, K. D. (1999). Cyclic GMP-dependent protein kinase activates cloned BKCa channels expressed in mammalian cells by direct phosphorylation at serine 1072. *Journal of Biological Chemistry*, 274(16), 10927-10935.

Furchgott, R. F., & Zawadzki, J. V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. *Nature*, 288(5789), 373-376.

Galiè, N., Müller, K., Scalise, A.-V., & Grünig, E. (2015). PATENT PLUS: a blinded, randomised and extension study of riociguat plus sildenafil in pulmonary arterial hypertension. *European Respiratory Journal, 45*(5), 1314-1322.

Gallant, C., Appel, S., Graceffa, P., Leavis, P., Lin, J. J.-C., Gunning, P. W., . . . Lehman, W. (2011). Tropomyosin variants describe distinct functional subcellular domains in differentiated vascular smooth muscle cells. *American Journal of Physiology-Cell Physiology*, 300(6), C1356-C1365.

Gao, B., & Jiang, Q. (2016). The Influence of Caldesmon Suppression on Proliferation and Motilities of Vascular Smooth Muscle Cells. *Journal of Biomedical Science and Engineering*, *9*(9), 430-436.

Garbers, D. L., Koesling, D., & Schultz, G. (1994). Guanylyl cyclase receptors. *Molecular Biology of the Cell, 5*(1), 1-5.

Gardiner, S. M., Kemp, P. A., Bennett, T., Palmer, R. M., & Moncada, S. (1992). Nitric oxide synthase inhibitors cause sustained, but reversible, hypertension and hindquarters vasoconstriction in Brattleboro rats. *European Journal of Pharmacology*, *213*(3), 449-451.

Garg, U. C., & Hassid, A. (1989). Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. *The Journal of clinical investigation*, *83*(5), 1774-1777.

Gargiulo, S., Gramanzini, M., & Mancini, M. (2016). Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models. *International Journal of Molecular Sciences*, *17*(9), 1511. Retrieved from https://www.mdpi.com/1422-0067/17/9/1511

Geier, C., Perrot, A., Özcelik, C., Binner, P., Counsell, D., Hoffmann, K., . . . van der Ven, P. F. (2003). Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. *Circulation, 107*(10), 1390-1395.

Gerthoffer, W. T. (2007). Mechanisms of Vascular Smooth Muscle Cell Migration. *Circulation Research, 100*(5), 607-621. doi:doi:10.1161/01.RES.0000258492.96097.47

Gerthoffer, W. T. (2008). Migration of airway smooth muscle cells. *Proceedings of the American Thoracic Society,* 5(1), 97-105.

Gerthoffer, W. T., & Gunst, S. J. (2001). Invited Review: Focal adhesion and small heat shock proteins in the regulation of actin remodeling and contractility in smooth muscle. *Journal of Applied Physiology*, *91*(2), 963-972. doi:10.1152/jappl.2001.91.2.963

Ghofrani, H.-A., D'Armini, A. M., Grimminger, F., Hoeper, M. M., Jansa, P., Kim, N. H., . . . Fritsch, A. (2013). Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. *New England Journal of Medicine*, *369*(4), 319-329.

Ghofrani, H.-A., Galiè, N., Grimminger, F., Grünig, E., Humbert, M., Jing, Z.-C., . . . Fritsch, A. (2013). Riociguat for the treatment of pulmonary arterial hypertension. *N Engl J Med, 369*, 330-340.

Ghosh, S., Kollar, B., Nahar, T., Suresh Babu, S., Wojtowicz, A., Sticht, C., . . . Hecker, M. (2015). Loss of the mechanotransducer zyxin promotes a synthetic phenotype of vascular smooth muscle cells. *Journal of the American Heart Association*, *4*(6), e001712.

Glowinska, B., Urban, M., Koput, A., & Galar, M. (2003). New atherosclerosis risk factors in obese, hypertensive and diabetic children and adolescents. *Atherosclerosis*, *167*(2), 275-286. doi:https://doi.org/10.1016/S0021-9150(03)00003-0

Gomez, D., Shankman, L. S., Nguyen, A. T., & Owens, G. K. (2013). Detection of histone modifications at specific gene loci in single cells in histological sections. *Nature Methods*, *10*(2), 171-177. doi:10.1038/nmeth.2332

Gomez, D., Swiatlowska, P., & Owens, G. K. (2015). Epigenetic Control of Smooth Muscle Cell Identity and Lineage Memory. *Arteriosclerosis, thrombosis, and vascular biology, 35*(12), 2508-2516. doi:10.1161/ATVBAHA.115.305044

Grintsevich, E. E., Ge, P., Sawaya, M. R., Yesilyurt, H. G., Terman, J. R., Zhou, Z. H., & Reisler, E. (2017). Catastrophic disassembly of actin filaments via Mical-mediated oxidation. *Nature Communications, 8*(1), 2183. doi:10.1038/s41467-017-02357-8

Groneberg, D., König, P., Wirth, A., Offermanns, S., Koesling, D., & Friebe, A. (2010). Smooth Muscle–Specific Deletion of Nitric Oxide–Sensitive Guanylyl Cyclase Is Sufficient to Induce Hypertension in Mice. *Circulation, 121*(3), 401-409.

Grundy, S. M. (2002). Obesity, Metabolic Syndrome, and Coronary Atherosclerosis. *Circulation, 105*(23), 2696-2698. doi:doi:10.1161/01.CIR.0000020650.86137.84

Guillemot, L., Guerrera, D., Spadaro, D., Tapia, R., Jond, L., & Citi, S. (2014). MgcRacGAP interacts with cingulin and paracingulin to regulate Rac1 activation and development of the tight junction barrier during epithelial junction assembly. *Molecular Biology of the Cell, 25*(13), 1995-2005.

Gunst, S. J., & Zhang, W. (2008). Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction. *American Journal of Physiology-Cell Physiology*, 295(3), C576-C587. doi:10.1152/ajpcell.00253.2008

Guo, X., & Chen, S.-Y. (2012). Transforming growth factor- β and smooth muscle differentiation. *World journal of biological chemistry*, 3(3), 41.

Ha, J. M., Yun, S. J., Jin, S. Y., Lee, H. S., Kim, S. J., Shin, H. K., & Bae, S. S. (2017). Regulation of vascular smooth muscle phenotype by cross-regulation of krüppel-like factors. *The Korean journal of physiology & pharmacology: official journal of the Korean Physiological Society and the Korean Society of Pharmacology, 21*(1), 37.

Ha, J. M., Yun, S. J., Kim, Y. W., Jin, S. Y., Lee, H. S., Song, S. H., . . . Bae, S. S. (2015). Platelet-derived growth factor regulates vascular smooth muscle phenotype via mammalian target of rapamycin complex 1. *Biochemical and Biophysical Research Communications*, *464*(1), 57-62. doi:https://doi.org/10.1016/j.bbrc.2015.05.097

Hanafy, K. A., Krumenacker, J. S., & Murad, F. (2001). NO, nitrotyrosine, and cyclic GMP in signal transduction. *Med Sci Monit, 7*(4), 801-819.

Hanson, K. A., Ziegler, J. W., Rybalkin, S. D., Miller, J. W., Abman, S. H., & Clarke, W. R. (1998). Chronic pulmonary hypertension increases fetal lung cGMP phosphodiesterase activity. *American Journal of Physiology-Lung Cellular and Molecular Physiology*, 275(5), L931-L941. doi:10.1152/ajplung.1998.275.5.L931

Hao, J., Serohijos, A. W., Newton, G., Tassone, G., Wang, Z., Sgroi, D. C., . . . Basilion, J. P. (2008). Identification and rational redesign of peptide ligands to CRIP1, a novel biomarker for cancers. *PLoS computational biology, 4*(8), e1000138.

Harman, J. L., & Jørgensen, H. F. (2019). The role of smooth muscle cells in plaque stability: Therapeutic targeting potential. *British Journal of Pharmacology, 176*(19), 3741-3753. doi:10.1111/bph.14779

Harrison, D., Griendling, K. K., Landmesser, U., Hornig, B., & Drexler, H. (2003). Role of oxidative stress in atherosclerosis. *The American Journal of Cardiology*, *91*(3, Supplement), 7-11. doi:https://doi.org/10.1016/S0002-9149(02)03144-2

Heerkens, E. H., Izzard, A. S., & Heagerty, A. M. (2007). Integrins, vascular remodeling, and hypertension. *Hypertension*, 49(1), 1-4.

Hellstrom, M., Kal n, M., Lindahl, P., Abramsson, A., & Betsholtz, C. (1999). Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. *Development*, *126*(14), 3047-3055.

Hepler, J. R. (1999). Emerging roles for RGS proteins in cell signalling. *Trends in Pharmacological Sciences*, 20(9), 376-382.

Herring, B. P., Hoggatt, A. M., Burlak, C., & Offermanns, S. (2014). Previously differentiated medial vascular smooth muscle cells contribute to neointima formation following vascular injury. *Vascular Cell, 6*(1), 21. doi:10.1186/2045-824X-6-21

Herrmann, J., Edwards, W. D., Holmes, D. R., Shogren, K. L., Lerman, L. O., Ciechanover, A., & Lerman, A. (2002). Increased ubiquitin immunoreactivity in unstable atherosclerotic plaques associated with acute coronary syndromes. *Journal of the American College of Cardiology, 40*(11), 1919-1927. doi:10.1016/s0735-1097(02)02564-0

Higuchi, R., Dollinger, G., Walsh, P. S., & Griffith, R. (1992). Simultaneous Amplification and Detection of Specific DNA Sequences. *Bio/Technology*, *10*(4), 413-417. doi:10.1038/nbt0492-413

Higuchi, R., Fockler, C., Dollinger, G., & Watson, R. (1993). Kinetic PCR Analysis: Real-time Monitoring of DNA Amplification Reactions. *Bio/Technology*, *11*(9), 1026-1030. doi:10.1038/nbt0993-1026

Hinrichs, A. (2007). Gender differences in vascular medicine. VASA. Zeitschrift fur Gefasskrankheiten, 36(1), 5-16.

Hirschey, M. D., Shimazu, T., Goetzman, E., Jing, E., Schwer, B., Lombard, D. B., . . . Verdin, E. (2010). SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. *Nature*, *464*(7285), 121-125. doi:10.1038/nature08778

Hofmann, F., Ammendola, A., & Schlossmann, J. (2000). Rising behind NO: cGMP-dependent protein kinases. *Journal of Cell Science*, *113*(10), 1671-1676.

Hofmann, F., Dostmann, W., Keilbach, A., Landgraf, W., & Ruth, P. (1992). Structure and physiological role of cGMP-dependent protein kinase. *Biochimica et Biophysica Acta (BBA)-Molecular Cell Research*, *1135*(1), 51-60.

Hofmann, F., Feil, R., Kleppisch, T., & Schlossmann, J. (2006). Function of cGMP-dependent protein kinases as revealed by gene deletion. *Physiological Reviews*, *86*(1), 1-23.

Hong, Y. M. (2010). Atherosclerotic cardiovascular disease beginning in childhood. *Korean circulation journal,* 40(1), 1.

Huber, A., Neuhuber, W. L., Klugbauer, N., Ruth, P., & Allescher, H.-D. (2000). Cysteine-rich Protein 2, a Novel Substrate for cGMP Kinase I in Enteric Neurons and Intestinal Smooth Muscle*. *Journal of Biological Chemistry*, 275(8), 5504-5511. doi:https://doi.org/10.1074/jbc.275.8.5504

HUGGINS, J. P., LANDGRAF, W., HOFMANN, F., & PELTON, J. T. (1991). Secondary structure and conformational changes associated with substrate-binding and the N-terminus in cyclic GMP-dependent protein kinase. In: Portland Press Ltd.

Hui, D. Y., & Basford, J. E. (2005). Distinct signaling mechanisms for apoE inhibition of cell migration and proliferation. *Neurobiology of Aging*, *26*(3), 317-323. doi:https://doi.org/10.1016/j.neurobiolaging.2004.02.030

Hung, R.-J., Pak, C. W., & Terman, J. R. (2011). Direct Redox Regulation of F-Actin Assembly and Disassembly by Mical. *Science*, *334*(6063), 1710-1713. doi:10.1126/science.1211956

Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E., & Chaudhuri, G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. *Proceedings of the National Academy of Sciences*, *84*(24), 9265-9269.

Ignarro, L. J., Lippton, H., Edwards, J. C., Baricos, W. H., Hyman, A. L., Kadowitz, P. J., & Gruetter, C. A. (1981). Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. *Journal of Pharmacology and Experimental Therapeutics*, *218*(3), 739-749.

Ikura, M., Hiraoki, T., Hikichi, K., Minowa, O., Yamaguchi, H., Yazawa, M., & Yagi, K. (1984). Nuclear magnetic resonance studies on calmodulin: Calcium-dependent spectral change of proteolytic fragments. *Biochemistry*, 23(14), 3124-3128.

luchi, Y., Okada, F., Tsunoda, S., Kibe, N., Shirasawa, N., Ikawa, M., . . . Fujii, J. (2009). Peroxiredoxin 4 knockout results in elevated spermatogenic cell death via oxidative stress. *Biochemical Journal, 419*(1), 149-158. doi:10.1042/bj20081526

Iuliano, L. (2001). The oxidant stress hypothesis of atherogenesis. *Lipids, 36*(1), S41-S44. doi:10.1007/s11745-001-0680-1

Jack, P. D. o. A. i. Y. R. G. M. H. C. J. h. i. s. o. M. C. A. H. E. E. M. G. T. T. R. E. S. (2000). Origin of atherosclerosis in childhood and adolescence. *The American journal of clinical nutrition*, *7*2(5), 1307s-1315s.

Jackson, G., Benjamin, N., Jackson, N., & Allen, M. J. (1999). Effects of sildenafil citrate on human hemodynamics. *The American Journal of Cardiology, 83*(5, Supplement 1), 13-20. doi:https://doi.org/10.1016/S0002-9149(99)00043-0

Jacobsen, K., Lund, M. B., Shim, J., Gunnersen, S., Füchtbauer, E.-M., Kjolby, M., . . . Bentzon, J. F. (2017). Diverse cellular architecture of atherosclerotic plaque derives from clonal expansion of a few medial SMCs. *JCI insight, 2*(19), e95890. doi:10.1172/jci.insight.95890

Jaffe, A. B., & Hall, A. (2005). Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol., 21, 247-269.

James, K., Weitzel, L.-R. B., Engelman, C. D., Zerbe, G., & Norris, J. M. (2003). *Genome scan linkage results for longitudinal systolic blood pressure phenotypes in subjects from the Framingham Heart Study.* Paper presented at the BMC genetics.

Jawień, J., Nastałek, P., & Korbut, R. (2004). Mouse models of experimental atherosclerosis. *J Physiol Pharmacol,* 55(3), 503-517.

Jin, D.-Y., Chae, H. Z., Rhee, S. G., & Jeang, K.-T. (1997). Regulatory Role for a Novel Human Thioredoxin Peroxidase in NF-κB Activation*. *Journal of Biological Chemistry*, 272(49), 30952-30961. doi:https://doi.org/10.1074/jbc.272.49.30952

Joyce, N., DeCamilli, P., Lohmann, S., & Walter, U. (1986). cGMP-dependent protein kinase is present in high concentrations in contractile cells of the kidney vasculature. *Journal of cyclic nucleotide and protein phosphorylation research*, *11*(3), 191-198.

K E Kamm, a., & Stull, J. T. (1985). The Function of Myosin and Myosin Light Chain Kinase Phosphorylation in Smooth Muscle. *Annual Review of Pharmacology and Toxicology,* 25(1), 593-620. doi:10.1146/annurev.pa.25.040185.003113

Kadrmas, J. L., & Beckerle, M. C. (2004). The LIM domain: from the cytoskeleton to the nucleus. *Nature Reviews Molecular Cell Biology*, *5*(11), 920-931. doi:10.1038/nrm1499

Kai, H., Kanaide, H., Matsumoto, T., & Nakamura, M. (1987). 8-Bromoguanosine 3':5'-cyclic monophosphate decreases intracellular free calcium concentrations in cultured vascular smooth muscle cells from rat aorta. *FEBS Letters*, *221*(2), 284-288. doi:https://doi.org/10.1016/0014-5793(87)80941-9

Kainou, T., Kawamura, K., Tanaka, K., Matsuda, H., & Kawamukai, M. (1999). Identification of the GGPS1 genes encoding geranylgeranyl diphosphate synthases from mouse and human. *Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1437*(3), 333-340. doi:https://doi.org/10.1016/S1388-1981(99)00028-1

Kanellos, G., & Frame, M. C. (2016). Cellular functions of the ADF/cofilin family at a glance. *Journal of Cell Science*, *129*(17), 3211-3218. doi:10.1242/jcs.187849

Kapourchali, F. R., Surendiran, G., Chen, L., Uitz, E., Bahadori, B., & Moghadasian, M. H. (2014). Animal models of atherosclerosis. *World journal of clinical cases*, *2*(5), 126-132. doi:10.12998/wjcc.v2.i5.126

Kappert, K., Blaschke, F., Meehan, W. P., Kawano, H., Grill, M., Fleck, E., . . . Graf, K. (2001). Integrins $\alpha \lor \beta 3$ and $\alpha \lor \beta 5$ mediate VSMC migration and are elevated during neointima formation in the rat aorta. *Basic research in cardiology*, *96*(1), 42-49.

Karim, M. A., Ohta, K., Egashira, M., Jinno, Y., Niikawa, N., Matsuda, I., & Indo, Y. (1996). Human ESP1/CRP2, a member of the LIM domain protein family: characterization of the cDNA and assignment of the gene locus to chromosome 14q32. 3. *Genomics*, *31*(2), 167-176.

Kass, D. A., Takimoto, E., Nagayama, T., & Champion, H. C. (2007). Phosphodiesterase regulation of nitric oxide signaling. *Cardiovascular Research*, *75*(2), 303-314.

Kato, M., Blanton, R., Wang, G.-R., Judson, T. J., Abe, Y., Myoishi, M., . . . Mendelsohn, M. E. (2012). Direct binding and regulation of RhoA protein by cyclic GMP-dependent protein kinase Iα. *Journal of Biological Chemistry*, *287*(49), 41342-41351.

Katsuki, S., Arnold, W., Mittal, C., & Murad, F. (1977). Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. *Journal of cyclic nucleotide research*, *3*(1), 23-35.

Kattoor, A. J., Pothineni, N. V. K., Palagiri, D., & Mehta, J. L. (2017). Oxidative Stress in Atherosclerosis. *Current Atherosclerosis Reports, 19*(11), 42. doi:10.1007/s11883-017-0678-6

Kaupp, U. B., & Seifert, R. (2002). Cyclic Nucleotide-Gated Ion Channels. *Physiological Reviews*, *8*2(3), 769-824. doi:10.1152/physrev.00008.2002

Kelly-Arnold, A., Maldonado, N., Laudier, D., Aikawa, E., Cardoso, L., & Weinbaum, S. (2013). Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. *Proceedings of the National Academy of Sciences*, *110*(26), 10741-10746. doi:10.1073/pnas.1308814110

Kessler, T., Wobst, J., Wolf, B., Eckhold, J., Vilne, B., Hollstein, R., . . . Moritz Rumpf, P. (2017). Functional characterization of the GUCY1A3 coronary artery disease risk locus. *Circulation*, *136*(5), 476-489.

Keyzer, D. D., Karabina, S.-A., Wei, W., Geeraert, B., Stengel, D., Marsillach, J., . . . Ninio, E. (2009). Increased PAFAH and Oxidized Lipids Are Associated With Inflammation and Atherosclerosis in Hypercholesterolemic Pigs. *Arteriosclerosis, thrombosis, and vascular biology, 29*(12), 2041-2046. doi:doi:10.1161/ATVBAHA.109.196592

Khatri, J. J., Joyce, K. M., Brozovich, F. V., & Fisher, S. A. (2001). Role of Myosin Phosphatase Isoforms in cGMPmediated Smooth Muscle Relaxation*. *Journal of Biological Chemistry*, 276(40), 37250-37257. doi:https://doi.org/10.1074/jbc.M105275200

Kim, H. R., Graceffa, P., Ferron, F., Gallant, C., Boczkowska, M., Dominguez, R., & Morgan, K. G. (2010). Actin polymerization in differentiated vascular smooth muscle cells requires vasodilator-stimulated phosphoprotein. *American Journal of Physiology-Cell Physiology*, 298(3), C559-C571.

Kim, J., Yang, C., Kim, E. J., Jang, J., Kim, S.-J., Kang, S. M., . . . Kim, C. (2016). Vimentin filaments regulate integrin–ligand interactions by binding to the cytoplasmic tail of integrin β 3. *Journal of Cell Science*, *129*(10), 2030-2042.

Kimura, K., Fukata, Y., Matsuoka, Y., Bennett, V., Matsuura, Y., Okawa, K., . . . Kaibuchi, K. (1998). Regulation of the Association of Adducin with Actin Filaments by Rho-associated Kinase (Rho-kinase) and Myosin Phosphatase. *Journal of Biological Chemistry*, 273(10), 5542-5548. doi:10.1074/jbc.273.10.5542

Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., . . . Kaibuchi, K. (1996). Regulation of Myosin Phosphatase by Rho and Rho-Associated Kinase (Rho-Kinase). *Science*, *273*(5272), 245-248. doi:10.1126/science.273.5272.245

Kiss, A., Erdődi, F., & Lontay, B. (2019). Myosin phosphatase: Unexpected functions of a long-known enzyme. *Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1866*(1), 2-15. doi:https://doi.org/10.1016/j.bbamcr.2018.07.023

Kisucka, J., Chauhan, A. K., Patten, I. S., Yesilaltay, A., Neumann, C., Etten, R. A. V., . . . Wagner, D. D. (2008). Peroxiredoxin1 Prevents Excessive Endothelial Activation and Early Atherosclerosis. *Circulation Research, 103*(6), 598-605. doi:doi:10.1161/CIRCRESAHA.108.174870

Kitazawa, T., Eto, M., Woodsome, T. P., & Brautigan, D. L. (2000). Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. *Journal of Biological Chemistry*, 275(14), 9897-9900.

Kitazawa, T., Eto, M., Woodsome, T. P., & Khalequzzaman, M. (2003). Phosphorylation of the myosin phosphatase targeting subunit and CPI-17 during Ca2+ sensitization in rabbit smooth muscle. *The Journal of physiology, 546*(3), 879-889.

Klamt, F., Zdanov, S., Levine, R. L., Pariser, A., Zhang, Y., Zhang, B., . . . Shacter, E. (2009). Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin. *Nature Cell Biology*, *11*(10), 1241-1246. doi:10.1038/ncb1968

Kleusberg, F. (2019). Rolle des Cystein-reichen LIM-Proteins 4 (CRP4) für NO/cGMP- und neurohormonell kontrollierte Ca2+-Signale in vaskulären Glattmuskelzellen *unveröffentlicht*.

Knowles, J. W., Reddick, R. L., Jennette, J. C., Shesely, E. G., Smithies, O., & Maeda, N. (2000). Enhanced atherosclerosis and kidney dysfunction in eNOS–/–Apoe–/–mice are ameliorated by enalapril treatment. *The Journal of clinical investigation*, *105*(4), 451-458.

Koesling, D., Russwurm, M., Mergia, E., Mullershausen, F., & Friebe, A. (2004). Nitric oxide-sensitive guanylyl cyclase: structure and regulation. *Neurochemistry international, 45*(6), 813-819.

Kohler, T. R., Kirkman, T. R., Kraiss, L. W., Zierler, B. K., & Clowes, A. W. (1991). Increased blood flow inhibits neointimal hyperplasia in endothelialized vascular grafts. *Circulation Research*, 69(6), 1557-1565.

Konno, T., Pinho Melo, E., Lopes, C., Mehmeti, I., Lenzen, S., Ron, D., & Avezov, E. (2015). ERO1-independent production of H2O2 within the endoplasmic reticulum fuels Prdx4-mediated oxidative protein folding. *Journal of Cell Biology*, *211*(2), 253-259. doi:10.1083/jcb.201506123

Kretsinger, R. H., & Nockolds, C. E. (1973). Carp muscle calcium-binding protein: II. Structure determination and general description. *Journal of Biological Chemistry*, 248(9), 3313-3326.

Krumenacker, J. S., Hanafy, K. A., & Murad, F. (2004). Regulation of nitric oxide and soluble guanylyl cyclase. *Brain research bulletin, 62*(6), 505-515.

Kuhlencordt, P. J., Gyurko, R., Han, F., Scherrer-Crosbie, M., Aretz, T. H., Hajjar, R., . . . Huang, P. L. (2001). Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. *Circulation, 104*(4), 448-454.

Kuhn, M. (2009). Function and dysfunction of mammalian membrane guanylyl cyclase receptors: lessons from genetic mouse models and implications for human diseases. *cGMP: generators, effectors and therapeutic implications*, 47-69.

Kumar, A., & Lindner, V. (1997). Remodeling With Neointima Formation in the Mouse Carotid Artery After Cessation of Blood Flow. *Arteriosclerosis, thrombosis, and vascular biology, 17*(10), 2238-2244. doi:10.1161/01.ATV.17.10.2238

Kumar, R., Gardner, A., Homan, C. C., Douglas, E., Mefford, H., Wieczorek, D., . . . Gecz, J. (2018). Severe neurocognitive and growth disorders due to variation in THOC2, an essential component of nuclear mRNA export machinery. *Human Mutation*, *39*(8), 1126-1138. doi:10.1002/humu.23557

Kurtz, D. M., Rinaldo, P., Rhead, W. J., Tian, L., Millington, D. S., Vockley, J., . . . Wood, P. A. (1998). Targeted disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial roles for fatty acid oxidation. *Proceedings of the National Academy of Sciences*, *95*(26), 15592-15597. doi:10.1073/pnas.95.26.15592

Kutty, R. K., Chen, S., Samuel, W., Vijayasarathy, C., Duncan, T., Tsai, J. Y., . . . Wiggert, B. (2006). Cell densitydependent nuclear/cytoplasmic localization of NORPEG (RAI14) protein. *Biochem Biophys Res Commun, 345*(4), 1333-1341. doi:10.1016/j.bbrc.2006.04.184

Laemmli, U. K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. *Nature, 227*(5259), 680-685. doi:10.1038/227680a0

Lane Brown, R., Strassmaier, T., Brady, J. D., & Karpen, J. W. (2006). The pharmacology of cyclic nucleotide-gated channels: emerging from the darkness. *Current pharmaceutical design, 12*(28), 3597-3613.

Längst, N., Adler, J., Kuret, A., Peter, A., Ruth, P., Boldt, K., & Lukowski, R. (2022). Cysteine-Rich LIM-Only Protein 4 (CRP4) Promotes Atherogenesis in the ApoE−/− Mouse Model. *Cells, 11*(8), 1364. Retrieved from https://www.mdpi.com/2073-4409/11/8/1364

Längst, N., Adler, J., Schweigert, O., Kleusberg, F., Cruz Santos, M., Knauer, A., . . . Lukowski, R. (2021). Cyclic GMP-Dependent Regulation of Vascular Tone and Blood Pressure Involves Cysteine-Rich LIM-Only Protein 4 (CRP4). *International Journal of Molecular Sciences*, 22(18), 9925. Retrieved from https://www.mdpi.com/1422-0067/22/18/9925

Lanningham-Foster, L., Green, C. L., Langkamp-Henken, B., Davis, B. A., Nguyen, K. T., Bender, B. S., & Cousins, R. J. (2002). Overexpression of CRIP in transgenic mice alters cytokine patterns and the immune response. *American Journal of Physiology-Endocrinology and Metabolism, 282*(6), E1197-E1203.

Leduc, C., & Etienne-Manneville, S. (2015). Intermediate filaments in cell migration and invasion: the unusual suspects. *Current opinion in cell biology, 32*, 102-112.

Lee, C.-H., Poburko, D., Kuo, K.-H., Seow, C. Y., & Breemen, C. v. (2002). Ca2+ oscillations, gradients, and homeostasis in vascular smooth muscle. *American Journal of Physiology-Heart and Circulatory Physiology, 282*(5), H1571-H1583. doi:10.1152/ajpheart.01035.2001

Lee, C. Y. W., Lieu, H., & Burnett, J. C., Jr. (2009). Designer natriuretic peptides. *Journal of investigative medicine* : the official publication of the American Federation for Clinical Research, 57(1), 18-21. doi:10.2310/JIM.0b013e3181946fb2

Lehman, W., & Morgan, K. G. (2012). Structure and dynamics of the actin-based smooth muscle contractile and cytoskeletal apparatus. *Journal of muscle research and cell motility*, 33(6), 461-469.

Lehners, M., Dobrowinski, H., Feil, S., & Feil, R. (2018). cGMP Signaling and Vascular Smooth Muscle Cell Plasticity. *Journal of Cardiovascular Development and Disease*, *5*(2), 20. Retrieved from https://www.mdpi.com/2308-3425/5/2/20

Leroux-Berger, M., Queguiner, I., Maciel, T. T., Ho, A., Relaix, F., & Kempf, H. (2011). Pathologic calcification of adult vascular smooth muscle cells differs on their crest or mesodermal embryonic origin. *Journal of Bone and Mineral Research*, *26*(7), 1543-1553. doi:https://doi.org/10.1002/jbmr.382

Leung, T., Manser, E., Tan, L., & Lim, L. (1995). A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. *Journal of Biological Chemistry*, *270*(49), 29051-29054.

Levy, D., DeStefano, A. L., Larson, M. G., O'Donnell, C. J., Lifton, R. P., Gavras, H., . . . Myers, R. H. (2000). Evidence for a gene influencing blood pressure on chromosome 17: genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham Heart Study. *Hypertension*, *36*(4), 477-483.

Li, H., Zhao, L., Zhang, Z., Liu, J., Ren, K., Li, S., & Su, Z. (2017). The Impact of Cysteine-Rich Intestinal Protein 1 (CRIP1) on Thyroid Carcinoma. *Cellular Physiology and Biochemistry*, *43*(5), 2037-2046. doi:10.1159/000484184

Li, M., Qian, M., Kyler, K., & Xu, J. (2018). Endothelial–Vascular Smooth Muscle Cells Interactions in Atherosclerosis. *Frontiers in Cardiovascular Medicine*, *5*(151). doi:10.3389/fcvm.2018.00151

Li, S., Wang, D.-Z., Wang, Z., Richardson, J. A., & Olson, E. N. (2003). The serum response factor coactivator myocardin is required for vascular smooth muscle development. *Proceedings of the National Academy of Sciences*, *100*(16), 9366-9370.

Li, Z., Wu, J., Zhang, X., Ou, C., Zhong, X., Chen, Y., . . . Chen, M. (2019). CDC42 promotes vascular calcification in chronic kidney disease. *The Journal of Pathology*, *249*(4), 461-471. doi:https://doi.org/10.1002/path.5334

Liao, J., Yang, X., Lin, Q., Liu, S., Xie, Y., Xia, Y., & Li, H.-H. (2020). Inhibition of the Ubiquitin-Activating Enzyme UBA1 Suppresses Diet-Induced Atherosclerosis in Apolipoprotein E-Knockout Mice. *Journal of Immunology Research*, *2020*, 7812709. doi:10.1155/2020/7812709

Liebhaber, S. A., Emery, J. G., Urbanek, M., Wang, X., & Cooke, N. E. (1990). Characterization of a human cDNA encoding a widely expressed and highly conserved cysteine-rich protein with an unusual zinc-finger motif. *Nucleic Acids Research*, *18*(13), 3871-3879. doi:10.1093/nar/18.13.3871

Lilly, B., Clark, K. A., Yoshigi, M., Pronovost, S., Wu, M.-L., Periasamy, M., . . . Beckerle, M. C. (2010). Loss of the Serum Response Factor Cofactor, Cysteine-Rich Protein 1, Attenuates Neointima Formation in the Mouse. *Arteriosclerosis, thrombosis, and vascular biology, 30*(4), 694-701. doi:doi:10.1161/ATVBAHA.109.200741

Lincoln, T. M., Dey, N., & Sellak, H. (2001). Invited Review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. *Journal of Applied Physiology*, *91*(3), 1421-1430. doi:10.1152/jappl.2001.91.3.1421

Lincoln, T. M., Wu, X., Sellak, H., Dey, N., & Choi, C.-S. (2006). Regulation of vascular smooth muscle cell phenotype by cyclic GMP and cyclic GMP-dependent protein kinase. *Frontiers in bioscience : a journal and virtual library, 11*(35667.4).

Lindner, V., Fingerle, J., & Reidy, M. A. (1993). Mouse model of arterial injury. *Circulation Research*, 73(5), 792-796.

Lipinski, S., Pfeuffer, S., Arnold, P., Treitz, C., Aden, K., Ebsen, H., . . . Rosenstiel, P. (2019). Prdx4 limits caspase-1 activation and restricts inflammasome-mediated signaling by extracellular vesicles. *The EMBO Journal, 38*(20), e101266. doi:10.15252/embj.2018101266

Liu, F., Rehmani, I., Esaki, S., Fu, R., Chen, L., de Serrano, V., & Liu, A. (2013). Pirin is an iron-dependent redox regulator of NF-KB. *Proceedings of the National Academy of Sciences, 110*(24), 9722-9727. doi:10.1073/pnas.1221743110

Liu, R., Leslie, K. L., & Martin, K. A. (2015). Epigenetic regulation of smooth muscle cell plasticity. *Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1849*(4), 448-453. doi:https://doi.org/10.1016/j.bbagrm.2014.06.004

Lloyd-Jones, M., Donald M, & Bloch, M., Kenneth D. (1996). The vascular biology of nitric oxide and its role in atherogenesis. *Annual review of medicine, 47*(1), 365-375.

Lohmann, S. M., Vaandrager, A. B., Smolenski, A., Walter, U., & De Jonge, H. R. (1997). Distinct and specific functions of cGMP-dependent protein kinases. *Trends in biochemical sciences*, *22*(8), 307-312.

Lopez, M. J., Wong, S. K.-F., Kishimoto, I., Dubois, S., Mach, V., Friesen, J., . . . Beuve, A. (1995). Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. *Nature, 378*(6552), 65-68.

Louis, H. A., Pino, J. D., Schmeichel, K. L., Pomies, P., & Beckerle, M. C. (1997). Comparison of three members of the cysteine-rich protein family reveals functional conservation and divergent patterns of gene expression. *Journal of Biological Chemistry*, 272(43), 27484-27491.

Ludyga, N., Englert, S., Pflieger, K., Rauser, S., Braselmann, H., Walch, A., . . . Aubele, M. (2013). The impact of cysteine-rich intestinal protein 1 (CRIP1) in human breast cancer. *Molecular cancer*, *12*(1), 1-10.

Lukowski, R., Cruz Santos, M., Kuret, A., & Ruth, P. cGMP and mitochondrial K+ channels - Compartmentalized but closely connected in cardioprotection. *British Journal of Pharmacology, n/a*(n/a). doi:https://doi.org/10.1111/bph.15536

Lukowski, R., Rybalkin, S. D., Loga, F., Leiss, V., Beavo, J. A., & Hofmann, F. (2010). Cardiac hypertrophy is not amplified by deletion of cGMP-dependent protein kinase I in cardiomyocytes. *Proceedings of the National Academy of Sciences*, *107*(12), 5646-5651. doi:10.1073/pnas.1001360107

Lukowski, R., Weinmeister, P., Bernhard, D., Feil, S., Gotthardt, M., Herz, J., . . . Hofmann, F. (2008). Role of smooth muscle cGMP/cGKI signaling in murine vascular restenosis. *Arteriosclerosis, thrombosis, and vascular biology, 28*(7), 1244-1250.

Lundquist, Mark R., Storaska, Andrew J., Liu, T.-C., Larsen, Scott D., Evans, T., Neubig, Richard R., & Jaffrey, Samie R. (2014). Redox Modification of Nuclear Actin by MICAL-2 Regulates SRF Signaling. *Cell*, *156*(3), 563-576. doi:https://doi.org/10.1016/j.cell.2013.12.035

Luo, S., Uehara, H., & Shacter, E. (2014). Taurine chloramine-induced inactivation of cofilin protein through methionine oxidation. *Free Radical Biology and Medicine,* 75, 84-94. doi:https://doi.org/10.1016/j.freeradbiomed.2014.07.018

Lutgens, E., de Muinck, E. D., Kitslaar, P. J. E. H. M., Tordoir, J. H. M., Wellens, H. J. J., & Daemen, M. J. A. P. (1999). Biphasic pattern of cell turnover characterizes the progression from fatty streaks to ruptured human atherosclerotic plaques. *Cardiovascular Research*, *41*(2), 473-479. doi:10.1016/s0008-6363(98)00311-3

Ma, X., Dang, Y., Shao, X., Chen, X., Wu, F., & Li, Y. (2019). Ubiquitination and Long Non-coding RNAs Regulate Actin Cytoskeleton Regulators in Cancer Progression. *International Journal of Molecular Sciences, 20*(12), 2997. Retrieved from https://www.mdpi.com/1422-0067/20/12/2997

Majesky, M. W. (2007). Developmental Basis of Vascular Smooth Muscle Diversity. Arteriosclerosis, thrombosis, and vascular biology, 27(6), 1248-1258. doi:doi:10.1161/ATVBAHA.107.141069

Makuch, R., Birukov, K., Shirinsky, V., & Dabrowska, R. (1991). Functional interrelationship between calponin and caldesmon. *Biochemical Journal*, 280(1), 33-38.

Manderfield, L. J., High, F. A., Engleka, K. A., Liu, F., Li, L., Rentschler, S., & Epstein, J. A. (2012). Notch activation of Jagged1 contributes to the assembly of the arterial wall. *Circulation*, *125*(2), 314-323.

Markham, A., & Duggan, S. (2021). Vericiguat: First Approval. Drugs, 1-6.

Marletta, M. A. (1994). Nitric oxide synthase: aspects concerning structure and catalysis.

Marston, S., & El-Mezgueldi, M. (2008). Role of Tropomyosin in the Regulation of Contraction in Smooth Muscle. In P. Gunning (Ed.), *Tropomyosin* (pp. 110-123). New York, NY: Springer New York.

Marston, S. B., & Redwood, C. S. (1992). Inhibition of actin-tropomyosin activation of myosin MgATPase activity by the smooth muscle regulatory protein caldesmon. *Journal of Biological Chemistry*, 267(24), 16796-16800.

Martín, A. S., Lee, M. Y., Williams, H. C., Mizuno, K., Lassègue, B., & Griendling, K. K. (2008). Dual Regulation of Cofilin Activity by LIM Kinase and Slingshot-1L Phosphatase Controls Platelet-Derived Growth Factor–Induced Migration of Human Aortic Smooth Muscle Cells. *Circulation Research*, *102*(4), 432-438. doi:10.1161/CIRCRESAHA.107.158923

Martin, E., Berka, V., Tsai, A. L., & Murad, F. (2005). Soluble guanylyl cyclase: the nitric oxide receptor. *Methods in enzymology, 396*, 478-492.

Martino, F., Perestrelo, A. R., Vinarský, V., Pagliari, S., & Forte, G. (2018). Cellular Mechanotransduction: From Tension to Function. *Frontiers in physiology*, *9*(824). doi:10.3389/fphys.2018.00824

Massy, Z. A., Mentaverri, R., Mozar, A., Brazier, M., & Kamel, S. (2008). The pathophysiology of vascular calcification: are osteoclast-like cells the missing link? *Diabetes & Metabolism, 34*, 16-20. doi:https://doi.org/10.1016/S1262-3636(08)70098-3

Matsuoka, Y., Hughes, C. A., & Bennett, V. (1996). Adducin Regulation: DEFINITION OF THE CALMODULIN-BINDING DOMAIN AND SITES OF PHOSPHORYLATION BY PROTEIN KINASES A AND C. *Journal of Biological Chemistry*, 271(41), 25157-25166. doi:10.1074/jbc.271.41.25157 Matsuoka, Y., Li, X., & Bennett, V. (2000). Adducin: structure, function and regulation. *Cellular and Molecular Life Sciences CMLS*, 57(6), 884-895.

McConnell, B. B., & Yang, V. W. (2010). Mammalian Krüppel-like factors in health and diseases. *Physiological Reviews*, *90*(4), 1337-1381.

McDonald, O. G., & Owens, G. K. (2007). Programming Smooth Muscle Plasticity With Chromatin Dynamics. *Circulation Research, 100*(10), 1428-1441. doi:doi:10.1161/01.RES.0000266448.30370.a0

McRobb, L. S., McGrath, K. C. Y., Tsatralis, T., Liong, E. C., Tan, J. T. M., Hughes, G., . . . Heather, A. K. (2017). Estrogen Receptor Control of Atherosclerotic Calcification and Smooth Muscle Cell Osteogenic Differentiation. *Arteriosclerosis, thrombosis, and vascular biology*, *37*(6), 1127-1137. doi:doi:10.1161/ATVBAHA.117.309054

Meems, L. M. G., & Burnett, J. C. (2016). Innovative Therapeutics. *JACC: Basic to Translational Science, 1*(7), 557-567. doi:10.1016/j.jacbts.2016.10.001

Meng, L.-B., Shan, M.-J., Qiu, Y., Qi, R., Yu, Z.-M., Guo, P., . . . Gong, T. (2019). TPM2 as a potential predictive biomarker for atherosclerosis. *Aging*, *11*(17), 6960-6982. doi:10.18632/aging.102231

Methner, C., Lukowski, R., Grube, K., Loga, F., Smith, R. A., Murphy, M. P., . . . Krieg, T. (2013). Protection through postconditioning or a mitochondria-targeted S-nitrosothiol is unaffected by cardiomyocyte-selective ablation of protein kinase G. *Basic research in cardiology*, *108*(2), 337.

Miano, J. M. (2015). Myocardin in biology and disease. Journal of biomedical research, 29(1), 3.

Mikawa, T., & Gourdie, R. G. (1996). Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. *Developmental Biology*, *174*(2), 221-232.

Misra, A., Feng, Z., Chandran, R. R., Kabir, I., Rotllan, N., Aryal, B., . . . Greif, D. M. (2018). Integrin beta3 regulates clonality and fate of smooth muscle-derived atherosclerotic plaque cells. *Nature Communications*, *9*(1), 2073. doi:10.1038/s41467-018-04447-7

Mittendorf, J., Weigand, S., Alonso-Alija, C., Bischoff, E., Feurer, A., Gerisch, M., . . . Stasch, J.-P. (2009). Discovery of Riociguat (BAY 63-2521): A Potent, Oral Stimulator of Soluble Guanylate Cyclase for the Treatment of Pulmonary Hypertension. *ChemMedChem*, *4*(5), 853-865. doi:https://doi.org/10.1002/cmdc.200900014

Mody, N., Parhami, F., Sarafian, T. A., & Demer, L. L. (2001). Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. *Free Radical Biology and Medicine, 31*(4), 509-519. doi:https://doi.org/10.1016/S0891-5849(01)00610-4

Mohanta, S., Yin, C., Weber, C., Hu, D., & Habenicht, A., Jr. (2016). Aorta Atherosclerosis Lesion Analysis in Hyperlipidemic Mice. *Bio-protocol, 6*(11), e1833. doi:10.21769/bioprotoc.1833

Moore, E. D. W., Becker, P. L., Fogarty, K. E., Williams, D. A., & Fay, F. S. (1990). Ca2+ imaging in single living cells: Theoretical and practical issues. *Cell Calcium*, *11*(2), 157-179. doi:https://doi.org/10.1016/0143-4160(90)90068-6

Moore, K. J., Kunjathoor, V. V., Koehn, S. L., Manning, J. J., Tseng, A. A., Silver, J. M., ... Freeman, M. W. (2005). Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. *The Journal of clinical investigation*, *115*(8), 2192-2201. doi:10.1172/JCI24061

Morgan, K. G., & Gangopadhyay, S. S. (2001). Invited Review: Cross-bridge regulation by thin filament-associated proteins. *Journal of Applied Physiology*, *91*(2), 953-962. doi:10.1152/jappl.2001.91.2.953

Moroi, M., Zhang, L., Yasuda, T., Virmani, R., Gold, H. K., Fishman, M. C., & Huang, P. L. (1998). Interaction of genetic deficiency of endothelial nitric oxide, gender, and pregnancy in vascular response to injury in mice. *The Journal of clinical investigation*, *101*(6), 1225-1232.

Mullis, K. B., & Faloona, F. A. (1987). [21] Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. In *Methods in enzymology* (Vol. 155, pp. 335-350): Academic Press.

Mülsch, A., Oelze, M., Klöss, S., Mollnau, H., Töpfer, A., Smolenski, A., . . . Hink, U. (2001). Effects of in vivo nitroglycerin treatment on activity and expression of the guanylyl cyclase and cGMP-dependent protein kinase and their downstream target vasodilator-stimulated phosphoprotein in aorta. *Circulation*, *103*(17), 2188-2194.

Munsie, L. N., Desmond, C. R., & Truant, R. (2012). Cofilin nuclear-cytoplasmic shuttling affects cofilin-actin rod formation during stress. *Journal of Cell Science*, 125(17), 3977-3988. doi:10.1242/jcs.097667

Münzel, T., Feil, R., Mülsch, A., Lohmann, S. M., Hofmann, F., & Walter, U. (2003). Physiology and Pathophysiology Signaling Vascular Controlled Guanosine 3′,5′-Cyclic of by Cyclic Monophosphate–Dependent Circulation, Protein Kinase. 108(18), 2172-2183. doi:doi:10.1161/01.CIR.0000094403.78467.C3

Murali, A., & Rajalingam, K. (2014). Small Rho GTPases in the control of cell shape and mobility. *Cellular and Molecular Life Sciences*, 71(9), 1703-1721.

Murphy, R., Herlihy, J. T., & Megerman, J. (1974). Force-generating capacity and contractile protein content of arterial smooth muscle. *The Journal of general physiology, 64*(6), 691-705.

Muto, A., Fitzgerald, T. N., Pimiento, J. M., Maloney, S. P., Teso, D., Paszkowiak, J. J., . . . Dardik, A. (2007). Smooth muscle cell signal transduction: implications of vascular biology for vascular surgeons. *Journal of Vascular Surgery, 45*(6), A15-A24.

Nakamura, K., Koga, Y., Sakai, H., Homma, K., & Ikebe, M. (2007). cGMP-Dependent Relaxation of Smooth Muscle Is Coupled With the Change in the Phosphorylation of Myosin Phosphatase. *Circulation Research*, *101*(7), 712-722. doi:10.1161/CIRCRESAHA.107.153981

Nakamura, M., Sunagawa, M., Kosugi, T., & Sperelakis, N. (2000). Actin filament disruption inhibits L-type Ca2+ channel current in cultured vascular smooth muscle cells. *American Journal of Physiology-Cell Physiology*, 279(2), C480-C487. doi:10.1152/ajpcell.2000.279.2.C480

Nathan, C., & Xie, Q.-w. (1994). Nitric oxide synthases: roles, tolls, and controls. Cell, 78(6), 915-918.

Nebl, G., Meuer, S. C., & Samstag, Y. (1996). Dephosphorylation of Serine 3 Regulates Nuclear Translocation of Cofilin*. *Journal of Biological Chemistry*, 271(42), 26276-26280. doi:https://doi.org/10.1074/jbc.271.42.26276

Nemenoff, R. A., Horita, H., Ostriker, A. C., Furgeson, S. B., Simpson, P. A., VanPutten, V., . . . Weiser-Evans, M. C. M. (2011). SDF-1α Induction in Mature Smooth Muscle Cells by Inactivation of PTEN Is a Critical Mediator of Exacerbated Injury-Induced Neointima Formation. *Arteriosclerosis, thrombosis, and vascular biology, 31*(6), 1300-1308. doi:doi:10.1161/ATVBAHA.111.223701

Nerlekar, N., Ha, F. J., Cheshire, C., Rashid, H., Cameron, J. D., Wong, D. T., ... Brown, A. J. (2018). Computed Tomographic Coronary Angiography–Derived Plaque Characteristics Predict Major Adverse Cardiovascular Events. *Circulation: Cardiovascular Imaging, 11*(1), e006973. doi:10.1161/CIRCIMAGING.117.006973

Nishida, W., Nakamura, M., Mori, S., Takahashi, M., Ohkawa, Y., Tadokoro, S., . . . Sobue, K. (2002). A triad of serum response factor and the GATA and NK families governs the transcription of smooth and cardiac muscle genes. *Journal of Biological Chemistry*, 277(9), 7308-7317.

O'Brien, E. R., Garvin, M. R., Stewart, D. K., Hinohara, T., Simpson, J. B., Schwartz, S. M., & Giachelli, C. M. (1994). Osteopontin is synthesized by macrophage, smooth muscle, and endothelial cells in primary and restenotic human coronary atherosclerotic plaques. *Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 14*(10), 1648-1656. doi:doi:10.1161/01.ATV.14.10.1648

Ogut, O., & Brozovich, F. V. (2003). Regulation of force in vascular smooth muscle. *Journal of Molecular and Cellular Cardiology*, *35*(4), 347-355. doi:https://doi.org/10.1016/S0022-2828(03)00045-2

Okano, I., Yamamoto, T., Kaji, A., Kimura, T., Mizuno, K., & Nakamura, T. (1993). Cloning of CRP2, a novel member of the cysteine-rich protein family with two repeats of an unusual LIM/double zinc-finger motif. *FEBS Letters*, 333(1), 51-55. doi:https://doi.org/10.1016/0014-5793(93)80373-3

Olin, A. I., Mörgelin, M., Sasaki, T., Timpl, R., Heinegård, D., & Aspberg, A. (2001). The proteoglycans aggrecan and Versican form networks with fibulin-2 through their lectin domain binding. *Journal of Biological Chemistry*, 276(2), 1253-1261.

Oppi, S., Lüscher, T. F., & Stein, S. (2019). Mouse Models for Atherosclerosis Research—Which Is My Line? *Frontiers in Cardiovascular Medicine, 6*(46). doi:10.3389/fcvm.2019.00046

Ostrowska, Z., & Moraczewska, J. (2017). Cofilin - a protein controlling dynamics of actin filaments. *Postepy higieny i medycyny doswiadczalnej (Online)*, 71(0), 339-351. doi:10.5604/01.3001.0010.3818. (Accession No. 28513458)

Owens, G. K. (1995). Regulation of differentiation of vascular smooth muscle cells. *Physiological Reviews*, 75(3), 487-517. doi:10.1152/physrev.1995.75.3.487

Owens, G. K., Kumar, M. S., & Wamhoff, B. R. (2004). Molecular Regulation of Vascular Smooth Muscle Cell Differentiation in Development and Disease. *Physiological Reviews*, *84*(3), 767-801. doi:10.1152/physrev.00041.2003

Pan, X., & Liu, J.-H. (2021). Identification of four key biomarkers and small molecule drugs in nasopharyngeal carcinoma by weighted gene co-expression network analysis. *Bioengineered*, *12*(1), 3647-3661. doi:10.1080/21655979.2021.1949844

Panda, D., Kundu, G. C., Lee, B. I., Peri, A., Fohl, D., Chackalaparampil, I., . . . Mukherjee, A. B. (1997). Potential roles of osteopontin and α _V β ₃integrin in the development of coronary artery restenosis after angioplasty. *Proceedings of the National Academy of Sciences, 94*(17), 9308-9313. doi:10.1073/pnas.94.17.9308

Pang, H., Bartlam, M., Zeng, Q., Miyatake, H., Hisano, T., Miki, K., . . . Rao, Z. (2004). Crystal Structure of Human Pirin: AN IRON-BINDING NUCLEAR PROTEIN AND TRANSCRIPTION COFACTOR. *Journal of Biological Chemistry*, *279*(2), 1491-1498. doi:10.1074/jbc.M310022200

Park, J.-G., Yoo, J.-Y., Jeong, S.-J., Choi, J.-H., Lee, M.-R., Lee, M.-N., . . . Oh, G. T. (2011). Peroxiredoxin 2 Deficiency Exacerbates Atherosclerosis in Apolipoprotein E–Deficient Mice. *Circulation Research*, *109*(7), 739-749. doi:doi:10.1161/CIRCRESAHA.111.245530

Peng, Y.-F., Mandai, K., Sakisaka, T., Okabe, N., Yamamoto, Y., Yokoyama, S., . . . Takai, Y. (2000). Ankycorbin: a novel actin cytoskeleton-associated protein. *Genes to Cells, 5*(12), 1001-1008. doi:10.1046/j.1365-2443.2000.00381.x

Periasamy, M., & Kalyanasundaram, A. (2007). SERCA pump isoforms: Their role in calcium transport and disease. *Muscle & Nerve, 35*(4), 430-442. doi:https://doi.org/10.1002/mus.20745

Pfeifer, A., Klatt, P., Massberg, S., Ny, L., Sausbier, M., Hirneiß, C., . . . Hofmann, F. (1998). Defective smooth muscle regulation in cGMP kinase I-deficient mice. *The EMBO Journal, 17*(11), 3045-3051. doi:https://doi.org/10.1093/emboj/17.11.3045

Pollard, T. D., & Cooper, J. A. (2009). Actin, a central player in cell shape and movement. *Science*, 326(5957), 1208-1212.

Pomiès, P., Louis, H. A., & Beckerle, M. C. (1997). CRP1, a LIM domain protein implicated in muscle differentiation, interacts with α-actinin. *The Journal of cell biology, 139*(1), 157-168.

Pritchard, K., & Marston, S. B. (1989). Ca2+-calmodulin binding to caldesmon and the caldesmon-actin-tropomyosin complex. Its role in Ca2+ regulation of the activity of synthetic smooth-muscle thin filaments. *Biochemical Journal*, 257(3), 839-843.

Puetz, S., Lubomirov, L. T., & Pfitzer, G. (2009). Regulation of Smooth Muscle Contraction by Small GTPases. *Physiology*, *24*(6), 342-356. doi:10.1152/physiol.00023.2009

Pugsley, M. K., & Tabrizchi, R. (2000). The vascular system: An overview of structure and function. *Journal of Pharmacological and Toxicological Methods*, 44(2), 333-340. doi:https://doi.org/10.1016/S1056-8719(00)00125-8

Qian, X., Mruk, D. D., & Cheng, C. Y. (2013). Rai14 (retinoic acid induced protein 14) is involved in regulating Factin dynamics at the ectoplasmic specialization in the rat testis. *PloS one, 8*(4), e60656.

Qiao, Y.-N., He, W.-Q., Chen, C.-P., Zhang, C.-H., Zhao, W., Wang, P., ... Zhu, M.-S. (2014). Myosin Phosphatase Target Subunit 1 (MYPT1) Regulates the Contraction and Relaxation of Vascular Smooth Muscle and Maintains Blood Pressure*. *Journal of Biological Chemistry, 289*(32), 22512-22523. doi:https://doi.org/10.1074/jbc.M113.525444

Qin, Z., Cui, B., Jin, J., Song, M., Zhou, B., Guo, H., . . . Huang, L. (2016). The ubiquitin-activating enzyme E1 as a novel therapeutic target for the treatment of restenosis. *Atherosclerosis*, 247, 142-153. doi:https://doi.org/10.1016/j.atherosclerosis.2016.02.016

Radomski, M., Palmer, R., & Moncada, S. (1990). Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. *Proceedings of the National Academy of Sciences*, *87*(24), 10043-10047.

Raggi, P., Genest, J., Giles, J. T., Rayner, K. J., Dwivedi, G., Beanlands, R. S., & Gupta, M. (2018). Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. *Atherosclerosis*, *276*, 98-108. doi:https://doi.org/10.1016/j.atherosclerosis.2018.07.014

Rensen, S. S. M., Doevendans, P. A. F. M., & van Eys, G. J. J. M. (2007). Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. *Netherlands Heart Journal*, *15*(3), 100-108. doi:10.1007/BF03085963

Rocha, V. Z., & Libby, P. (2009). Obesity, inflammation, and atherosclerosis. Nature reviews cardiology, 6(6), 399.

Rocnik, E., Chow, L. H., & Pickering, J. G. (2000). Heat shock protein 47 is expressed in fibrous regions of human atheroma and is regulated by growth factors and oxidized low-density lipoprotein. *Circulation*, 101(11), 1229-1233.

Rocnik, E., Saward, L., & Pickering, J. G. (2001). HSP47 expression by smooth muscle cells is increased during arterial development and lesion formation and is inhibited by fibrillar collagen. *Arteriosclerosis, thrombosis, and vascular biology, 21*(1), 40-46.

Roostalu, U., & Wong, J. K. F. (2018). Arterial smooth muscle dynamics in development and repair. *Developmental Biology*, 435(2), 109-121. doi:https://doi.org/10.1016/j.ydbio.2018.01.018

Russwurm, M., & Koesling, D. (2004). NO activation of guanylyl cyclase. The EMBO Journal, 23(22), 4443-4450.

Ruth, P., Landgraf, W., Keilbach, A., May, B., Egleme, C., & Hofmann, F. (1991). The activation of expressed cGMP-dependent protein kinase isozymes I α and I β is determined by the different amino-termini. *European Journal of Biochemistry*, 202(3), 1339-1344.

Rutherford, C., Martin, W., Salame, M., Carrier, M., Änggård, E., & Ferns, G. (1997). Substantial inhibition of neointimal response to balloon injury in the rat carotid artery using a combination of antibodies to platelet-derived growth factor-BB and basic fibroblast growth factor. *Atherosclerosis*, *130*(1-2), 45-51. Rybalkin, S. D., Rybalkina, I. G., Feil, R., Hofmann, F., & Beavo, J. A. (2002). Regulation of cGMP-specific phosphodiesterase (PDE5) phosphorylation in smooth muscle cells. *Journal of Biological Chemistry*, 277(5), 3310-3317.

Rybalkin, S. D., Yan, C., Bornfeldt, K. E., & Beavo, J. A. (2003). Cyclic GMP phosphodiesterases and regulation of smooth muscle function. *Circulation Research*, *93*(4), 280-291.

Rzucidlo, E. M., Martin, K. A., & Powell, R. J. (2007). Regulation of vascular smooth muscle cell differentiation. *Journal of Vascular Surgery*, *45*(6, Supplement), A25-A32. doi:https://doi.org/10.1016/j.jvs.2007.03.001

Sabatine, M. S. (2019). PCSK9 inhibitors: clinical evidence and implementation. *Nature reviews cardiology, 16*(3), 155-165. doi:10.1038/s41569-018-0107-8

Sackner-Bernstein, J. D., Kowalski, M., Fox, M., & Aaronson, K. (2005). Short-term risk of death after treatment with nesiritide for decompensated heart failure: a pooled analysis of randomized controlled trials. *Jama, 293*(15), 1900-1905.

Sackner-Bernstein, J. D., Skopicki, H. A., & Aaronson, K. D. (2005). Risk of worsening renal function with nesiritide in patients with acutely decompensated heart failure. *Circulation*, 111(12), 1487-1491.

Sakaguchi, M., Hasegawa, T., Ehara, S., Matsumoto, K., Mizutani, K., Iguchi, T., . . . Yoshiyama, M. (2016). New insights into spotty calcification and plaque rupture in acute coronary syndrome: an optical coherence tomography study. *Heart and Vessels*, *31*(12), 1915-1922. doi:10.1007/s00380-016-0820-3

Sakakura, K., Nakano, M., Otsuka, F., Ladich, E., Kolodgie, F. D., & Virmani, R. (2013). Pathophysiology of Atherosclerosis Plaque Progression. *Heart, Lung and Circulation, 22*(6), 399-411. doi:https://doi.org/10.1016/j.hlc.2013.03.001

Sampson, L. J., Plane, F., & Garland, C. J. (2001). Involvement of cyclic GMP and potassium channels in relaxation evoked by the nitric oxide donor, diethylamine NONOate, in the rat small isolated mesenteric artery. *Naunyn-Schmiedeberg's archives of pharmacology, 364*(3), 220-225.

Sánchez-García, I., & Rabbits, T. H. (1994). The LIM domain: a new structural motif found in zinc-finger-like proteins. *Trends in Genetics*, *10*(9), 315-320. doi:https://doi.org/10.1016/0168-9525(94)90034-5

Sander, M., Hansen, P. G., & Victor, R. G. (1995). Sympathetically Mediated Hypertension Caused by Chronic Inhibition of Nitric Oxide. *Hypertension*, *26*(4), 691-695. doi:doi:10.1161/01.HYP.26.4.691

Sangaralingham, S. J., Whig, K., Peddibhotla, S., Kirby, R. J., Sessions, H. E., Maloney, P. R., . . . Burnett, J. C. (2021). Discovery of small molecule guanylyl cyclase A receptor positive allosteric modulators. *Proceedings of the National Academy of Sciences*, *118*(52), e2109386118. doi:10.1073/pnas.2109386118

Sausbier, M., Arntz, C., Bucurenciu, I., Zhao, H., Zhou, X.-B., Sausbier, U., . . . Ruth, P. (2005). Elevated Blood Pressure Linked to Primary Hyperaldosteronism and Impaired Vasodilation in BK Channel–Deficient Mice. *Circulation*, *112*(1), 60-68. doi:doi:10.1161/01.CIR.0000156448.74296.FE

Sausbier, M., Schubert, R., Voigt, V., Hirneiss, C., Pfeifer, A., Korth, M., . . . Hofmann, F. (2000). Mechanisms of NO/cGMP-Dependent Vasorelaxation. *Circulation Research*, *87*(9), 825-830. doi:doi:10.1161/01.RES.87.9.825

Schaum, N., Karkanias, J., Neff, N. F., May, A. P., Quake, S. R., Wyss-Coray, T., . . . Principal, i. (2018). Singlecell transcriptomics of 20 mouse organs creates a Tabula Muris. *Nature*, *56*2(7727), 367-372. doi:10.1038/s41586-018-0590-4

Schlossmann, J., Ammendola, A., Ashman, K., Zong, X., Huber, A., Neubauer, G., . . . Wilm, M. (2000). Regulation of intracellular calcium by a signalling complex of IRAG, IP 3 receptor and cGMP kinase Iβ. *Nature, 404*(6774), 197-201.

Schlossmann, J., & Desch, M. (2011). IRAG and novel PKG targeting in the cardiovascular system. *American Journal of Physiology-Heart and Circulatory Physiology, 301*(3), H672-H682. doi:10.1152/ajpheart.00198.2011

Schlossmann, J., & Hofmann, F. (2005). cGMP-dependent protein kinases in drug discovery. *Drug discovery today, 10*(9), 627-634.

Schmeichel, K. L., & Beckerle, M. C. (1997). Molecular dissection of a LIM domain. *Molecular Biology of the Cell,* 8(2), 219-230.

Schmidt, A., & Hall, A. (2002). Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. *Genes* & *development*, *16*(13), 1587-1609.

Schmidt, H. H., Schmidt, P. M., & Stasch, J.-P. (2009). NO-and haem-independent soluble guanylate cyclase activators. *cGMP: generators, effectors and therapeutic implications*, 309-339.

Schmidt, R. F., Lang, F., & Heckmann, M. (2011). *Physiologie des menschen: mit pathophysiologie*: Springer-Verlag.

Schmidtko, A., Gao, W., Sausbier, M., Rauhmeier, I., Sausbier, U., Niederberger, E., . . . Geisslinger, G. (2008). Cysteine-Rich Protein 2, a Novel Downstream Effector of cGMP/cGMP-Dependent Protein Kinase I-Mediated Persistent Inflammatory Pain. *The Journal of Neuroscience*, *28*(6), 1320-1330. doi:10.1523/jneurosci.5037-07.2008

Schneider, A. G., Sultan, K. R., & Pette, D. (1999). Muscle LIM protein: expressed in slow muscle and induced in fast muscle by enhanced contractile activity. *American Journal of Physiology-Cell Physiology*, 276(4), C900-C906.

Schoenwaelder, S. M., & Burridge, K. (1999). Bidirectional signaling between the cytoskeleton and integrins. *Current opinion in cell biology, 11*(2), 274-286.

Schulman, B. A., & Wade Harper, J. (2009). Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. *Nature Reviews Molecular Cell Biology*, *10*(5), 319-331. doi:10.1038/nrm2673

Schulz, S. (2005). C-type natriuretic peptide and guanylyl cyclase B receptor. Peptides, 26(6), 1024-1034.

Schweigert, O., Adler, J., Längst, N., Aïssi, D., Duque Escobar, J., Tong, T., . . . Zeller, T. (2021). CRIP1 expression in monocytes related to hypertension. *Clinical Science*, *135*(7), 911-924.

Scott, J. D. (1991). Cyclic nucleotide-dependent protein kinases. Pharmacology & therapeutics, 50(1), 123-145.

Seamon, K. B. (1980). Calcium-and magnesium-dependent conformational states of calmodulin as determined by nuclear magnetic resonance. *Biochemistry*, *19*(1), 207-215.

Seferian, A., & Simonneau, G. (2013). Therapies for pulmonary arterial hypertension: where are we today, where do we go tomorrow? *European Respiratory Review*, 22(129), 217-226.

Segura-Puimedon, M., Mergia, E., Al-Hasani, J., Aherrahrou, R., Stoelting, S., Kremer, F., ... Aherrahrou, Z. (2016). Proatherosclerotic Effect of the α1-Subunit of Soluble Guanylyl Cyclase by Promoting Smooth Muscle Phenotypic Switching. *The American journal of pathology*, *186*(8), 2220-2231. doi:https://doi.org/10.1016/j.ajpath.2016.04.010

Shanahan, C. M. (2007). Inflammation Ushers in Calcification. *Circulation*, *116*(24), 2782-2785. doi:doi:10.1161/CIRCULATIONAHA.107.749655

Shankman, L. S., Gomez, D., Cherepanova, O. A., Salmon, M., Alencar, G. F., Haskins, R. M., . . . Owens, G. K. (2015). KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. *Nature Medicine*, *21*(6), 628-637. doi:10.1038/nm.3866

Shirazi, A., Iizuka, K., Fadden, P., Mosse, C., Somlyo, A. P., Somlyo, A. V., & Haystead, T. (1994). Purification and characterization of the mammalian myosin light chain phosphatase holoenzyme. The differential effects of the holoenzyme and its subunits on smooth muscle. *Journal of Biological Chemistry*, *269*(50), 31598-31606.

Sinha, S., Hoofnagle, M. H., Kingston, P. A., McCanna, M. E., & Owens, G. K. (2004). Transforming growth factorβ1 signaling contributes to development of smooth muscle cells from embryonic stem cells. *American Journal of Physiology-Cell Physiology*, 287(6), C1560-C1568. doi:10.1152/ajpcell.00221.2004

Sit, B., Feng, Z., Xanthis, I., Marhuenda, E., Zingaro, S., Shanahan, C., . . . Iskratsch, T. (2020). Matrix stiffness and blood pressure together regulate vascular smooth muscle cell phenotype switching and cofilin dependent podosome formation. *bioRxiv*, 2020.2012.2027.424498. doi:10.1101/2020.12.27.424498

Sitia, S., Tomasoni, L., Atzeni, F., Ambrosio, G., Cordiano, C., Catapano, A., . . . Turiel, M. (2010). From endothelial dysfunction to atherosclerosis. *Autoimmunity Reviews, 9*(12), 830-834. doi:https://doi.org/10.1016/j.autrev.2010.07.016

Smolenski, A., Bachmann, C., Reinhard, K., Hönig-Liedl, P., Jarchau, T., Hoschuetzky, H., & Walter, U. (1998). Analysis and Regulation of Vasodilator-stimulated Phosphoprotein Serine 239 Phosphorylation in Vitro and in Intact Cells Using a Phosphospecific Monoclonal Antibody*. *Journal of Biological Chemistry*, 273(32), 20029-20035. doi:https://doi.org/10.1074/jbc.273.32.20029

Smolenski, A., Lohmann, S. M., Bertoglio, J., Chardin, P., Sauzeau, V., Le Jeune, H. I. n., . . . Loirand, G. (2000). Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. *Journal of Biological Chemistry*, 275(28), 21722-21729.

Soderling, S. H., Bayuga, S. J., & Beavo, J. A. (1998). Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases. *Journal of Biological Chemistry*, 273(25), 15553-15558.

Soltysinska, E., Bentzen, B. H., Barthmes, M., Hattel, H., Thrush, A. B., Harper, M.-E., . . . Losa-Reyna, J. (2014). KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury. *PloS one, 9*(7), e103402.

SOMLYO, A. P., & SOMLYO, A. V. (2003). Ca2+ Sensitivity of Smooth Muscle and Nonmuscle Myosin II: Modulated by G Proteins, Kinases, and Myosin Phosphatase. *Physiological Reviews*, *83*(4), 1325-1358. doi:10.1152/physrev.00023.2003

Somlyo, A. V., & Somlyo, A. P. (1968). Electromechanical and pharmacomechanical coupling in vascular smooth muscle. *Journal of Pharmacology and Experimental Therapeutics, 159*(1), 129-145.

Song, P., Fang, Z., Wang, H., Cai, Y., Rahimi, K., Zhu, Y., ... Rudan, I. (2020). Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study. *The Lancet Global Health*, *8*(5), e721-e729. doi:https://doi.org/10.1016/S2214-109X(20)30117-0

Sonnenburg, W. K., & Beavo, J. A. (1994). Cyclic GMP and regulation of cyclic nucleotide hydrolysis. Advances in pharmacology, 26, 87-114.

Soosairajah, J., Maiti, S., Wiggan, O. N., Sarmiere, P., Moussi, N., Sarcevic, B., . . . Bernard, O. (2005). Interplay between components of a novel LIM kinase–slingshot phosphatase complex regulates cofilin. *The EMBO Journal,* 24(3), 473-486. doi:https://doi.org/10.1038/sj.emboj.7600543

Speer, M. Y., Yang, H.-Y., Brabb, T., Leaf, E., Look, A., Lin, W.-L., . . . Giachelli, C. M. (2009). Smooth Muscle Cells Give Rise to Osteochondrogenic Precursors and Chondrocytes in Calcifying Arteries. *Circulation Research*, *104*(6), 733-741. doi:doi:10.1161/CIRCRESAHA.108.183053

Staiculescu, M. C., Galiñanes, E. L., Zhao, G., Ulloa, U., Jin, M., Beig, M. I., . . . Martinez-Lemus, L. A. (2013). Prolonged vasoconstriction of resistance arteries involves vascular smooth muscle actin polymerization leading to inward remodelling. *Cardiovascular Research*, *98*(3), 428-436. doi:10.1093/cvr/cvt034

Stasch, J.-P., & Hobbs, A. J. (2009). NO-independent, haem-dependent soluble guanylate cyclase stimulators. *cGMP: generators, effectors and therapeutic implications*, 277-308.

Stasch, J. P., Schmidt, P., Alonso-Alija, C., Apeler, H., Dembowsky, K., Haerter, M., . . . Pleiss, U. (2002). NO-and haem-independent activation of soluble guanylyl cyclase: molecular basis and cardiovascular implications of a new pharmacological principle. *British Journal of Pharmacology*, *136*(5), 773-783.

Steitz, S. A., Speer, M. Y., Curinga, G., Yang, H.-Y., Haynes, P., Aebersold, R., . . . Giachelli, C. M. (2001). Smooth Muscle Cell Phenotypic Transition Associated With Calcification. *Circulation Research, 89*(12), 1147-1154. doi:10.1161/hh2401.101070

Straubinger, J., Boldt, K., Kuret, A., Deng, L., Krattenmacher, D., Bork, N., . . . Lukowski, R. (2017). Amplified pathogenic actions of angiotensin II in cysteine-rich LIM-only protein 4–negative mouse hearts. *The FASEB Journal, 31*(4), 1620-1638. doi:https://doi.org/10.1096/fj.201601186

Ström, Å., Olin, A. I., Aspberg, A., & Hultgärdh-Nilsson, A. (2006). Fibulin-2 is present in murine vascular lesions and is important for smooth muscle cell migration. *Cardiovascular Research, 69*(3), 755-763. doi:10.1016/j.cardiores.2005.12.001

Sun, J., Steenbergen, C., & Murphy, E. (2006). S-nitrosylation: NO-related redox signaling to protect against oxidative stress. *Antioxidants & Redox Signaling, 8*(9-10), 1693-1705.

Sun, Z., Martinez-Lemus, L. A., Trache, A., Trzeciakowski, J. P., Davis, G. E., Pohl, U., & Meininger, G. A. (2005). Mechanical properties of the interaction between fibronectin and α5β1-integrin on vascular smooth muscle cells studied using atomic force microscopy. *American Journal of Physiology-Heart and Circulatory Physiology*, 289(6), H2526-H2535.

Surks, H. K., Mochizuki, N., Kasai, Y., Georgescu, S. P., Tang, K. M., Ito, M., . . . Mendelsohn, M. E. (1999). Regulation of Myosin Phosphatase by a Specific Interaction with cGMP- Dependent Protein Kinase Iα. *Science*, *286*(5444), 1583-1587. doi:10.1126/science.286.5444.1583

Tabas, I., García-Cardeña, G., & Owens, G. K. (2015). Recent insights into the cellular biology of atherosclerosis. *Journal of Cell Biology*, 209(1), 13-22. doi:10.1083/jcb.201412052

Tang, D. D. (2015). Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling. *Respiratory Research, 16*(1), 1-14.

Tang, D. D., & Gerlach, B. D. (2017). The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. *Respiratory Research, 18*(1), 54. doi:10.1186/s12931-017-0544-7

Tang, M., Wang, G., Lu, P., Karas, R. H., Aronovitz, M., Heximer, S. P., . . . Zhu, Y. (2003). Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. *Nature Medicine*, *9*(12), 1506-1512.

Tavender, T. J., & Bulleid, N. J. (2010). Peroxiredoxin IV protects cells from oxidative stress by removing H2O2 produced during disulphide formation. *Journal of Cell Science*, *123*(15), 2672-2679. doi:10.1242/jcs.067843

Tejani, A. D., Walsh, M. P., & Rembold, C. M. (2011). Tissue length modulates "stimulated actin polymerization," force augmentation, and the rate of swine carotid arterial contraction. *American Journal of Physiology-Cell Physiology*, 301(6), C1470-C1478.

Texier, Y., Toedt, G., Gorza, M., Mans, D. A., van Reeuwijk, J., Horn, N., . . . Boldt, K. (2014). Elution Profile Analysis of SDS-induced Subcomplexes by Quantitative Mass Spectrometry*. *Molecular & Cellular Proteomics, 13*(5), 1382-1391. doi:https://doi.org/10.1074/mcp.O113.033233

Theilmeier, G., De Geest, B., Van Veldhoven, P. P., Stengel, D., Michiels, C., Lox, M., . . . Holvoet, P. (2000). HDLassociated PAF-AH reduces endothelial adhesiveness in apoE-/- mice. *The FASEB Journal, 14*(13), 2032-2039. doi:https://doi.org/10.1096/fj.99-1029com

Torres, R. A., Drake, D. A., Solodushko, V., Jadhav, R., Smith, E., Rocic, P., & Weber, D. S. (2011). Slingshot Isoform-Specific Regulation of Cofilin-Mediated Vascular Smooth Muscle Cell Migration and Neointima Formation. *Arteriosclerosis, thrombosis, and vascular biology, 31*(11), 2424-2431. doi:doi:10.1161/ATVBAHA.111.232769

Toshima, J., Toshima, J. Y., Amano, T., Yang, N., Narumiya, S., & Mizuno, K. (2001). Cofilin Phosphorylation by Protein Kinase Testicular Protein Kinase 1 and Its Role in Integrin-mediated Actin Reorganization and Focal Adhesion Formation. *Molecular Biology of the Cell, 12*(4), 1131-1145. doi:10.1091/mbc.12.4.1131

Tyanova, S., Temu, T., & Cox, J. (2016). The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. *Nature protocols, 11*(12), 2301-2319.

Uchida, S., & Dimmeler, S. (2015). Long noncoding RNAs in cardiovascular diseases. *Circulation Research, 116*(4), 737-750.

Uflacker, R. (2010). Atlas of vascular anatomy: an angiographic approach. JOP J. Pancreas, 11.

Vaandrager, A. B., & de Jonge, H. R. (1996). Signalling by cGMP-dependent protein kinases. *Molecular and cellular biochemistry*, 157(1), 23-30.

van Rooy, M.-J., & Pretorius, E. (2014). Obesity, hypertension and hypercholesterolemia as risk factors for atherosclerosis leading to ischemic events. *Current Medicinal Chemistry*, *21*(19), 2121-2129.

Vendrov, A. E., Madamanchi, N. R., Hakim, Z. S., Rojas, M., & Runge, M. S. (2006). Thrombin and NAD(P)H Oxidase–Mediated Regulation of CD44 and BMP4-Id Pathway in VSMC, Restenosis, and Atherosclerosis. *Circulation Research*, *98*(10), 1254-1263. doi:doi:10.1161/01.RES.0000221214.37803.79

Versari, D., Herrmann, J., Gössl, M., Mannheim, D., Sattler, K., Meyer, F. B., . . . Lerman, A. (2006). Dysregulation of the Ubiquitin-Proteasome System in Human Carotid Atherosclerosis. *Arteriosclerosis, thrombosis, and vascular biology, 26*(9), 2132-2139. doi:doi:10.1161/01.ATV.0000232501.08576.73

Virani, S. S., Alonso, A., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W., Carson, A. P., . . . Delling, F. N. (2020). Heart disease and stroke statistics—2020 update: a report from the American Heart Association. *Circulation, 141*(9), e139-e596.

Wang, C. L. A., & Coluccio, L. M. (2010). Chapter 3 - New Insights into the Regulation of the Actin Cytoskeleton by Tropomyosin. In K. W. Jeon (Ed.), *International Review of Cell and Molecular Biology* (Vol. 281, pp. 91-128): Academic Press.

Wang, D.-Z., & Olson, E. N. (2004). Control of smooth muscle development by the myocardin family of transcriptional coactivators. *Current Opinion in Genetics & Development, 14*(5), 558-566. doi:https://doi.org/10.1016/j.gde.2004.08.003

Wang, F., Lerman, A., & Herrmann, J. (2015). Dysfunction of the ubiquitin-proteasome system in atherosclerotic cardiovascular disease. *American journal of cardiovascular disease*, *5*(1), 83-100. Retrieved from https://pubmed.ncbi.nlm.nih.gov/26064796

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447079/

Wang, X., Phelan, S. A., Petros, C., Taylor, E. F., Ledinski, G., Jürgens, G., ... Paigen, B. (2004). Peroxiredoxin 6 deficiency and atherosclerosis susceptibility in mice: significance of genetic background for assessing atherosclerosis. *Atherosclerosis*, *177*(1), 61-70. doi:10.1016/j.atherosclerosis.2004.06.007

Wang, Y., Dubland, J. A., Allahverdian, S., Asonye, E., Sahin, B., Jaw, J. E., . . . Francis, G. A. (2019). Smooth Muscle Cells Contribute the Majority of Foam Cells in ApoE (Apolipoprotein E)-Deficient Mouse Atherosclerosis. *Arteriosclerosis, thrombosis, and vascular biology, 39*(5), 876-887. doi:doi:10.1161/ATVBAHA.119.312434

Wanstall, J. C., Jeffery, T. K., Gambino, A., Lovren, F., & Triggle, C. R. (2001). Vascular smooth muscle relaxation mediated by nitric oxide donors: a comparison with acetylcholine, nitric oxide andnitroxyl ion. *British Journal of Pharmacology*, *134*(3), 463-472.

Webb, R. C. (2003). Smooth muscle contraction and relaxation. Advances in physiology education, 27(4), 201-206.

Wei, J., Gorman, T. E., Liu, X., Ith, B., Tseng, A., Chen, Z., ... Yet, S.-F. (2005). Increased Neointima Formation in Cysteine-Rich Protein 2–Deficient Mice in Response to Vascular Injury. *Circulation Research*, *97*(12), 1323-1331. doi:doi:10.1161/01.RES.0000194331.76925.5c

Wei, L., Zheng, Y.-Y., Sun, J., Wang, P., Tao, T., Li, Y., . . . Zhang, X. (2020). GGPP depletion initiates metaflammation through disequilibrating CYB5R3-dependent eicosanoid metabolism. *Journal of Biological Chemistry*. doi:10.1074/jbc.RA120.015020

Weichart, D., Gobom, J., Klopfleisch, S., Häsler, R., Gustavsson, N., Billmann, S., . . . Rosenstiel, P. (2006). Analysis of NOD2-mediated Proteome Response to Muramyl Dipeptide in HEK293 Cells*. *Journal of Biological Chemistry*, 281(4), 2380-2389. doi:https://doi.org/10.1074/jbc.M505986200

Weingärtner, O., Landmesser, U., Laufs, U., & März, W. (2020). 2019 Leitlinie Dyslipidämie kompakt. Der Klinikarzt, 49(07/08), 320-325.

Weinmeister, P., Lukowski, R., Claudia Traidl-Hoffmann, C., Linder, S., Hofmann, F., & Feil, R. (2007). Activation of the cGMP/cGKI signalling pathway in primary murine VSMCs accelerates growth. *BMC Pharmacology*, *7*(1), P64. doi:10.1186/1471-2210-7-S1-P64

Weinmeister, P., Lukowski, R., Linder, S., Traidl-Hoffmann, C., Hengst, L., Hofmann, F., & Feil, R. (2008). Cyclic guanosine monophosphate-dependent protein kinase I promotes adhesion of primary vascular smooth muscle cells. *Molecular Biology of the Cell, 19*(10), 4434-4441.

Weiskirchen, R., & Bister, K. (1993). Suppression in transformed avian fibroblasts of a gene (crp) encoding a cysteine-rich protein containing LIM domains. *Oncogene*, *8*(9), 2317-2324.

Weiskirchen, R., & Günther, K. (2003). The CRP/MLP/TLP family of LIM domain proteins: Acting by connecting. *BioEssays*, 25(2), 152-162. doi:https://doi.org/10.1002/bies.10226

Weiskirchen, R., Pino, J. D., Macalma, T., Bister, K., & Beckerle, M. C. (1995). The Cysteine-rich Protein Family of Highly Related LIM Domain Proteins *. *Journal of Biological Chemistry*, 270(48), 28946-28954. doi:https://doi.org/10.1074/jbc.270.48.28946

Wilson, F. H., Disse-Nicodeme, S., Choate, K. A., Ishikawa, K., Nelson-Williams, C., Desitter, I., . . . Achard, J.-M. (2001). Human hypertension caused by mutations in WNK kinases. *Science*, 293(5532), 1107-1112.

Wimalawansa, S. J. (2008). Nitric oxide: new evidence for novel therapeutic indications. *Expert opinion on pharmacotherapy*, 9(11), 1935-1954.

Winder, S., & Walsh, M. (1990). Smooth muscle calponin. Inhibition of actomyosin MgATPase and regulation by phosphorylation. *Journal of Biological Chemistry*, 265(17), 10148-10155.

Wink, D., Miranda, K., Espey, M., Mitchell, J., Grisham, M., Fukuto, J., & Feelisch, M. (2000). The chemical biology of nitric oxide. Balancing nitric oxide with oxidative and nitrosative stress. In *Nitric Oxide* (pp. 7-29): Springer.

Wittwer, C. T., Herrmann, M. G., Moss, A. A., & Rasmussen, R. P. (1997). Continuous Fluorescence Monitoring of Rapid Cycle DNA Amplification. *BioTechniques*, 22(1), 130-138. doi:10.2144/97221bi01

Wolfsgruber, W., Feil, S., Brummer, S., Kuppinger, O., Hofmann, F., & Feil, R. (2003). A proatherogenic role for cGMP-dependent protein kinase in vascular smooth muscle cells. *Proceedings of the National Academy of Sciences*, *100*(23), 13519-13524. doi:10.1073/pnas.1936024100

Wong, C.-M., Chun, A. C., Kok, K., Zhou, Y., Fung, P. C., Kung, H.-F., . . . Jin, D.-Y. (2000). Characterization of human and mouse peroxiredoxin IV: evidence for inhibition by Prx-IV of epidermal growth factor-and p53-induced reactive oxygen species. *Antioxidants and Redox Signaling*, 2(3), 507-518.

Wooldridge, A. A., MacDonald, J. A., Erdodi, F., Ma, C., Borman, M. A., Hartshorne, D. J., & Haystead, T. A. J. (2004). Smooth Muscle Phosphatase Is Regulated in Vivo by Exclusion of Phosphorylation of Threonine 696 of MYPT1 by Phosphorylation of Serine 695 in Response to Cyclic Nucleotides*. *Journal of Biological Chemistry*, 279(33), 34496-34504. doi:https://doi.org/10.1074/jbc.M405957200

Xin Guo, Sohsuke Yamada, Akihide Tanimoto, Yan Ding, Ke-Yong Wang, Shohei Shimajiri, . . . Sasaguri1, Y. (2012). Overexpression of Peroxiredoxin 4 Attenuates Atherosclerosis in Apolipoprotein E Knockout Mice. *Antioxidants & Redox Signaling, 17*(10), 1362-1375. doi:10.1089/ars.2012.4549

Xu, Q., Huff, L. P., Fujii, M., & Griendling, K. K. (2017). Redox regulation of the actin cytoskeleton and its role in the vascular system. *Free Radical Biology and Medicine, 109,* 84-107. doi:https://doi.org/10.1016/j.freeradbiomed.2017.03.004

Yamada, S., & Guo, X. (2018). Peroxiredoxin 4 (PRDX4): Its critical in vivo roles in animal models of metabolic syndrome ranging from atherosclerosis to nonalcoholic fatty liver disease. *Pathology International, 68*(2), 91-101. doi:10.1111/pin.12634

Yamin, R., & Morgan, K. G. (2012). Deciphering actin cytoskeletal function in the contractile vascular smooth muscle cell. *The Journal of physiology*, *590*(17), 4145-4154. doi:10.1113/jphysiol.2012.232306

Yan, C., Kim, D., Aizawa, T., & Berk, B. C. (2003). Functional Interplay Between Angiotensin II and Nitric Oxide. *Arteriosclerosis, thrombosis, and vascular biology, 23*(1), 26-36. doi:doi:10.1161/01.ATV.0000046231.17365.9D

Yang, N., Higuchi, O., Ohashi, K., Nagata, K., Wada, A., Kangawa, K., . . . Mizuno, K. (1998). Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. *Nature*, 393(6687), 809-812. doi:10.1038/31735

Yang, U., Yang, H.-Y., Kim, J.-S., & Lee, T.-H. (2012). The functional role of UBA1 cysteine-278 in ubiquitination. *Biochemical and Biophysical Research Communications, 427*(3), 587-592. doi:https://doi.org/10.1016/j.bbrc.2012.09.102

Yokouchi, K., Numaguchi, Y., Kubota, R., Ishii, M., Imai, H., Murakami, R., . . . Murohara, T. (2006). <i>l</i>- Caldesmon Regulates Proliferation and Migration of Vascular Smooth Muscle Cells and Inhibits Neointimal Formation After Angioplasty. *Arteriosclerosis, thrombosis, and vascular biology, 26*(10), 2231-2237. doi:10.1161/01.ATV.0000239441.29687.97

Yoshida, T., Yamashita, M., Horimai, C., & Hayashi, M. (2013). Smooth Muscle–Selective Inhibition of Nuclear Factor‐κB Attenuates Smooth Muscle Phenotypic Switching and Neointima Formation Following Vascular Injury. *Journal of the American Heart Association*, 2(3), e000230. doi:10.1161/JAHA.113.000230

Yu, S., Mu, Y., Ao, J., & Chen, X. (2010). Peroxiredoxin IV Regulates Pro-Inflammatory Responses in Large Yellow Croaker (Pseudosciaena crocea) and Protects against Bacterial Challenge. *Journal of Proteome Research, 9*(3), 1424-1436. doi:10.1021/pr900961x

Yu, T.-S., Moctezuma-Anaya, M., Kubo, A., Keller, G., & Robertson, S. (2002). The heart LIM protein gene (Hlp), expressed in the developing and adult heart, defines a new tissue-specific LIM-only protein family. *Mechanisms of Development*, *116*(1), 187-192. doi:https://doi.org/10.1016/S0925-4773(02)00139-9

Yu, X., & Li, Z. (2014). MicroRNAs regulate vascular smooth muscle cell functions in atherosclerosis. *International journal of molecular medicine*, 34(4), 923-933.

Yuan, X., Zhang, T., Yao, F., Liao, Y., Liu, F., Ren, Z., . . . Wang, L. (2018). THO Complex-Dependent Posttranscriptional Control Contributes to Vascular Smooth Muscle Cell Fate Decision. *Circulation Research*, *123*(5), 538-549. doi:doi:10.1161/CIRCRESAHA.118.313527

Zeller, T., Schurmann, C., Schramm, K., Müller, C., Kwon, S., Wild, P. S., . . . lacoviello, L. (2017). Transcriptomewide analysis identifies novel associations with blood pressure. *Hypertension*, *70*(4), 743-750.

Zhang, L.-Z., Huang, L.-Y., Huang, A.-L., Liu, J.-X., & Yang, F. (2018). CRIP1 promotes cell migration, invasion and epithelial-mesenchymal transition of cervical cancer by activating the Wnt/β-catenin signaling pathway. *Life Sciences, 207*, 420-427. doi:https://doi.org/10.1016/j.lfs.2018.05.054

Zhang, L., Bouadjel, K., Manoury, B., Vandecasteele, G., Fischmeister, R., & Leblais, V. (2019). Cyclic nucleotide signalling compartmentation by PDEs in cultured vascular smooth muscle cells. *British Journal of Pharmacology, 176*(11), 1780-1792. doi:https://doi.org/10.1111/bph.14651

Zhang, T., Zhuang, S., Casteel, D. E., Looney, D. J., Boss, G. R., & Pilz, R. B. (2007). A Cysteine-rich LIM-only Protein Mediates Regulation of Smooth Muscle-specific Gene Expression by cGMP-dependent Protein Kinase*. *Journal of Biological Chemistry*, *282*(46), 33367-33380. doi:https://doi.org/10.1074/jbc.M707186200

Zhang, W., & Gunst, S. J. (2008). Interactions of airway smooth muscle cells with their tissue matrix: implications for contraction. *Proceedings of the American Thoracic Society*, *5*(1), 32-39.

Zhang, Y., Bharathi, S. S., Beck, M. E., & Goetzman, E. S. (2019). The fatty acid oxidation enzyme long-chain acyl-CoA dehydrogenase can be a source of mitochondrial hydrogen peroxide. *Redox Biology, 26*, 101253. doi:https://doi.org/10.1016/j.redox.2019.101253

Zhou, J., Werstuck, G. H., Lhoták, S. a. r., de Koning, A. L., Sood, S. K., Hossain, G. S., . . . Dayal, S. (2004). Association of multiple cellular stress pathways with accelerated atherosclerosis in hyperhomocysteinemic apolipoprotein E-deficient mice. *Circulation*, *110*(2), 207-213.

Zhou, Y., Gunput, R.-A. F., Adolfs, Y., & Pasterkamp, R. J. (2011). MICALs in control of the cytoskeleton, exocytosis, and cell death. *Cellular and Molecular Life Sciences, 68*(24), 4033-4044. doi:10.1007/s00018-011-0787-2

Zito, E., Melo, E. P., Yang, Y., Wahlander, Å., Neubert, T. A., & Ron, D. (2010). Oxidative Protein Folding by an Endoplasmic Reticulum-Localized Peroxiredoxin. *Molecular cell, 40*(5), 787-797. doi:https://doi.org/10.1016/j.molcel.2010.11.01

9. Publikationen und Kongressbeiträge

9.1 Publikationen

Natalie Längst, Julia Adler, Anna Kuret, Andreas Peter, Peter Ruth, Karsten Boldt, and Robert Lukowski (2022). "Cysteine-rich LIM-only protein 4 (CRP4) promotes atherogenesis in the ApoE^{-/-} mouse model" Cells, 11 (8).

Natalie Längst, Julia Adler, Olga Schweigert, Felicia Kleusberg, Melanie Cruz Santos, Amelie Knauer, Matthias Sausbier, Tanja Zeller, Peter Ruth, Robert Lukowski (2021). "Cyclic GMP-dependent regulation of vascular tone and blood pressure involves cysteine-rich LIM-only protein 4 (CRP4)" International Journal of Molecular Sciences, 22 (18).

Olga Schweigert, Julia Adler, **Natalie Längst**, Dylan Aïssi, Jorge Duque Escobar, Teng Tong, Christian Müller, David-Alexandre Trégouët, Robert Lukowski, Tanja Zeller (2021). "CRIP1 expression in monocytes related to hypertension" Clinical Science 135 (7).

Julia Adler, Anna Kuret, **Natalie Längst**, Robert Lukowski (2020). "Targets of cGMP/cGKI in Cardiac Myocytes" Journal of Cardiovascular Pharmacology 75 (6).

Pascal Lambertz, Laura Theisen, **Natalie Längst**, Colin W. Garvie, Bryan T. MacDonald, John Yub, Nadine H. Elowe, Dmitry Zubov, Virendar K. Kaushik, Frank Wunder (2019). "Development of a novel, sensitive cell-based corin assay" Biochemical Pharmacology 160 (62-70).

9.2 Kongressbeiträge

Natalie Längst, Julia Adler, Andreas Peter, Karsten Boldt, Robert Lukowski. "Cysteine-rich LIM-only protein 4 (CRP4) regulates vascular smooth muscle cell plasticity and plays a role in atherosclerosis". Doktorandentagung der Deutschen Pharmazeutische Gesellschaft (DPhG) (03/2021), online (Poster).

Natalie Längst, Julia Adler, Andreas Peter, Karsten Boldt, Robert Lukowski. "Cysteine-rich LIM-only protein 4 (CRP4) regulates vascular smooth muscle cell (VSMC) plasticity and the pathogenesis of atherosclerosis." 87. Jahrestagung der Deutschen Gesellschaft für Experimentelle und klinische Pharmakologie und Toxikologie (DGPT) (03/2021), online (Poster, Posterpreis).

Natalie Längst, Julia Adler, Andreas Peter, Karsten Boldt, Robert Lukowski. "Cysteine-rich LIM-only protein 4 (CRP4) and its role in vascular smooth muscle cell function and vascular disease". 9th International Conference on cGMP: Generators, Effectors and Therapeutic Implications (06/2019), Mainz (Poster).

Natalie Längst, Julia Adler, Mathias Sausbier, Robert Lukowski. "Vascular smooth muscle cell function and plasticity are controlled by Cysteine-rich LIM-only protein 4 (CRP4)". 85. Jahrestagung der DGPT (02/2019), Stuttgart (Poster).

Natalie Längst, Julia Straubinger, Mathias Sausbier, Friederike Steudel, Robert Lukowski "Cysteine-rich LIM-only protein 4 (CRP4) and its role in vascular smooth muscle cell plasticity". DFG FOR 2060 Meeting on Hot Topics in Signal Transduction & cGMP Research (10/2018), Tübingen (Poster).

Natalie Längst, Julia Straubinger, Peter Ruth, Robert Lukowski."Role of Cysteine-rich LIMonly protein 4 (CRP4) for molecular and cellular mechanisms of vascular remodelling". Jahrestagung der DPhG (10/2018), Hamburg (Poster).

Natalie Längst, Julia Straubinger, Peter Ruth, Robert Lukowski."Role of Cysteine-rich LIMonly protein 4 (CRP4) for molecular and cellular mechanisms of vascular remodelling" 17th International Summer School Inflammation, Immunomodulation, Inspiration (07/2018), Bönigen (Poster).

Natalie Zinn, Julia Straubinger, Robert Lukowski. "Cysteine-rich LIM-only protein (CRP4) and the phenotype modulation of vascular smooth muscle cells". E:Med Summer School "COME" (09/2017), Hamburg (Poster).