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ABSTRACT 

Routine clinical microbiology laboratories are at the receiving end of new diagnostic 

technologies. Over the past decades nucleic acid amplification technology, mass 

spectrometry and, more recently, omics technologies including next generation sequencing 

have been successfully introduced for increasingly large-scale diagnostic applications. 

Particularly in the field of microbial infections, diagnostics start with an accurate 

identification of pathogenic microbes. Rapid technological advancements made it efficient 

through variety of methods from classical to the most recent technologies for strain detection 

and characterization. The introduction in routine diagnostic laboratories of such technologies 

in combination with readily available and extensive amounts of clinical patient-related and 

demographic data has led to a surge in analytical tools for the joined interpretation of both 

diagnostic laboratory data and patient-oriented information. We will here summarize the 

diverse methods that are available for interpretation of such large scale diagnostic data and 

we will summarize the quality of additional tools that will allow the combined interpretation 

of “big diagnostic data” and the plethora of patient-oriented, environmental and 

epidemiological clinical data. Moreover we have discovered a set of novel genome typing 

markers using genome wide association studies in order to introduce a robust alternative of 

classical typing method. The ultimate target for such approaches is to streamline and 

accelerate data management in favor of improved patient care.  
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Introduction 

Over many hundreds of millions of years every conceivable ecological niche on the 

planet earth has become inhabited by microbes such as bacteria, viruses and fungi. Indeed, 

microbes are highly adaptable to external selective forces and ubiquitous on Earth. 

Bacteriophages, which are viruses infecting bacteria, represent the most abundant life form in 

the biosphere. Many microbes are essential to human, animal and plant life. In contrast, many 

microbial species have been identified as a pathogen because they cause acute infectious 

diseases or trigger chronic diseases. Hantavirus pulmonary syndrome caused by Sin Nombre 

Hanta virus, viral encephalitis from Nipah virus, tuberculosis by Mycobacterium tuberculosis, 

cholera by Vibrio cholera, Clostridium difficile infection, infection by Pseudomonas 

aeruginosa, and the most recent pandemic called Coronavirus disease 2019 (COVID19) 

caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are just a few 

examples of severe infections that affect human health. Rapid detection and epidemiological 

characterization of pathogenic microbes is highly essential to control any disease outbreak 

situation or to specifically and precisely treat microbial infection. Inaccurate identification of 

microbes frustrates correct taxonomic classification and can misdirect proper treatment of 

infectious diseases caused by microorganisms (Franco-Duarte et al., 2019). However, in 

clinical microbiology, diagnostics needs to start with an accurate identification of pathogenic 

microbes. Continuous technological advancement provided a variety of methods from 

classical to the most recent technologies for strain detection and characterization (Franco-

Duarte et al., 2019, Ferone et al., 2020). In this review we are primarily focused on bacterial 

typing and characterization. 

Bioinformatics is an advanced and relatively recent discipline that exploits 

computational methodologies which integrate applied mathematics and statistics to the study 

of biological phenomena to help solve scientific problems. Specifically, bioinformatics 

applications are becoming an imperative part of research in the fields of microbiology and 

infectious diseases, mostly as a consequence of continuously increasing availability of huge 

amounts of nucleic acid sequencing data gathered via high-throughput sequencing (HTS) 

technologies, more widely known as next-generation sequencing (NGS) (Goodwin et al., 

2016, Mardis, 2013). NGS performed directly on clinical specimens generates information on 

presence and species of (a) pathogen(s), its / their antimicrobial resistance and virulence 

profiles, while at the same time providing detailed evolutionary and typing information that 
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supports epidemiological investigations on the origin of microbial types (Ma et al., 2014, 

Mintzer et al., 2019, Mitchell and Simner, 2019). This integral data package is unprecedented: 

there is not a single in vitro diagnostic (IVD) technology that generates data so complete and 

which provides for optimized management of infections. Next to facilitating these so-called 

metagenomic sequencing tests, NGS also allows for the complete elucidation of genome 

sequences for organisms that were purified by selective cultivation before. The whole 

genome sequencing (WGS) data generated by NGS permits even more comprehensive 

epidemiological study of microbial pathogens in the sense that isolated genome sequencing 

may be more complete (e.g. close to 100% genome coverage) than sequences obtained by 

metagenomics. Moreover, NGS technologies are critically and irreversibly changing the way 

in which microbial genomic material is analyzed. The technologies will replace classical, 

targeted molecular methods for microbial detection and typing, by generating a complete 

genome from of raw reads after assembly into a small number of contigs (Carrico et al., 

2018). However, clinical microbiology laboratory testing is still mostly reliant upon 

demonstrable growth of a viable infectious microorganism. 

Rapid detection and accurate identification of microorganisms in clinical specimens to 

be tested in the diagnostic microbiology laboratory has made constant progress in the various 

areas including bacteriology, mycology, mycobacteriology, parasitology and virology. As 

such classical microbiological technologies have had and still have a remarkably strong 

position in IVD and involve various procedures including conventional culture methods, 

immunological protocols (eg; ELISA), molecular methods and the more recently introduced 

spectroscopic methods (e.g., matrix assisted laser desorption time of flight mass spectrometry 

(MALDI-TOF MS)) (Ferone et al., 2020). Recent molecular methods of strain identification 

include fluorescent in-situ hybridization, nucleic acid amplification methods (polymerase 

chain reaction (PCR), quantitative qPCR, and reverse transcriptase rt-PCR but also 

technologies such as LAMP or Q-beta polymerase-based assays) (Fenollar and Raoult, 2004) 

and DNA microarrays (Ehrenreich, 2006). For instance, a widely accepted microbial 

characterization method called ribotyping is based on PCR amplification and restriction 

analysis of the intergenic spacer region (ISR) between 16S and 23S ribosomal RNA. The 

quality of molecular diagnostics can be strongly affected by specimen collection and 

transportation as well as the available laboratory equipment which is usually high cost and in 

need of hands on precision. In the past two decades clinical microbiology has evolved in 

parallel with increasingly relevant bioinformatic qatools for more detailed data analysis, 

assembly, interpretation and display (Hogeweg, 2011). This has resulted in the accumulation 
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of huge amounts of sequence data and published studies that created a new field called 

genomic epidemiology of pathogenic microbes. For example, a total of 246,189 (complete 

and draft) bacterial and 6,615 viral genomes have been deposited in an online genome 

database called GOLD (Mukherjee et al., 2017). Unlike the classical microbiological typing 

techniques that only cover a limited number of phenotypic or genomic markers, genomic 

epidemiological analysis of NGS data allows one to obtain whole genome-scale insights of 

pathogens using variety of bioinformatics applications and tools (Maiden et al., 2013). The 

continuously increasing volume of NGS data stimulated the development of online databases 

(DB) related to microbial typing. This covered Multi Locus Sequence Typing (MLST) DBs, 

spa-typing DBs, genomic serotyping DBs as well as DBs integrating antimicrobial resistance 

(AMR) genes and virulence genes (Carriço et al., 2013). Furthermore, the application of 

WGS data analysis for infectious microbial agents is promising for optimizing treatment of 

infectious diseases via accurate strain typing in order to manage pathogen outbreaks (Editors, 

2002, Boers et al., 2012).  

Below we will briefly sketch the classical typing technologies still used in routine 

clinical microbiology, the new typing technologies that were recently introduced and the 

associated bioinformatics modules that facilitate the management of increasingly large 

amounts of diagnostic and clinical data, often in combination. 

 

MICROBIAL DETECTION AND CHARACTERIZATION 

 The conventional microbiology technologies 

Conventional methods of bacterial detection are traditionally based on 

cultivation, including sample preparation, enrichment, dilution, plating, enumeration, 

and isolation of single species colonies for more detailed characterization (Nomura M, 

1999, Gracias and McKillip, 2004, Ferone et al., 2020). Basic principles of 

conventional identification are based on both morphological (different colony size 

and color), biochemical, physiological and genetic characteristics of the 

microorganisms involved. Selective culture media can be used for enumeration of 

specific classes of pathogenic bacteria as present in complex mixtures (e.g. feces or 

nasopharyngeal swabs) and classical microbial taxonomic techniques are used to 

determine the identity of the cultured organisms (Lau et al., 2003). Their putative 

pathogenicity is further investigated by biochemical or serological tests (Gugliandolo 

et al., 2011, Váradi et al., 2017). Such phenotype-based methods are not only time 
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consuming, qualitative more than quantitative, cumbersome and less reliable but may 

also require specific reagents that are usually not universally available (Yeung et al., 

2002, Zhao et al., 2014). However, despite these limitations and the availability of 

more advanced techniques for microbial identification, phenotype-based or culture-

dependent conventional methods are still considered as gold standard technologies in 

the detection of major human microbial pathogens (Donelli et al., 2013). Tests based 

on the analytical profile index (API), where standard biochemical methods mentioned 

above are integrated into miniaturized reaction vessels and scored as “positive” or 

“negative”, generate a profile that is characteristic for certain species. The automated 

versions of such a test (e.g. the Vitek solutions (bioMérieux, Craponne, France)) 

facilitate the more rapid and precise reading of test reactions and are a perfect 

example of an improved version of a relatively recent culture-dependent conventional 

method (Funke and Funke-Kissling, 2004, Sutton, 2007). 

 

 Nucleic acid amplification technologies (Molecular techniques): 

During the last four decades a large number of molecular methods have been 

developed to overcome the limitations of conventional microbiological methods and 

to facilitate the rapid, accurate, sensitive and cost effective identification and 

enumeration of microorganisms, especially for non- or poorly-cultivable ones 

(Galluzzi et al., 2007, HÖFLING et al., 1997, Spratt, 2004).  

These methods are culture independent and based on nucleic acid 

hybridization and fragment-based amplification. Classical ribotyping is a classic 

example of such a hybridization method (Grimont and Grimont, 1986). It is based on 

the identification of a number of ribosomal gene loci and their position in the 

chromosome. Although it is highly reproducible and particularly applicable to fast-

growing bacteria, it still has a relatively low discriminatory power (Blanc et al., 1994, 

Pfaller et al., 1996). However, due to its robustness and reproducibility, inter-

laboratory analyses of profiles are possible and this can be used to generate profile 

databases to help automatize ribotyping (Arvik et al., 2005). Among fragment-based 

methods, restriction fragment length polymorphism (RFLP) methods were widely 

used and based on the restriction-enzymatic digestion of chromosomes into several 

hundreds of small fragments, which are then separated by horizontal gel 

electrophoresis into complex banding patterns (Owen, 1989). This method is highly 

reproducible and robust but the complex restriction patterns hinder the inter-
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laboratory sharing of data. However, by coupling this method with other hybridization 

techniques, data can be exchanged between different laboratories and can be 

integrated into central databases as well (Van Embden et al., 1993). Another gel 

electrophoresis technique, Pulsed-Field Gel Electrophoresis (PFGE) is still a popular 

method to separate large genomic fragments (up to hundreds of kilobases in length) in 

agarose gel by periodic alternation of the angle of the electric field's direction. PFGE 

has a remarkable discriminatory power and reproducibility, and has therefore become 

a widely applicable gold standard method for comparative typing of almost all 

bacterial species (Barg and Goering, 1993, Seifert et al., 2005). PFGE generates 

complex restriction patterns which needs dedicated softwares and databases for PFGE 

data interpretation.  

Diagnostic PCR became most popular over the past two decades. PCR 

methods range from relatively simple or classical DNA amplification-based 

approaches targeting conserved regions in pathogen genomes flanked by primers from 

which exponential DNA synthesis originates. Despite the fact that PCR exhibits an 

adjustable level of discrimination, flexibility, technical simplicity and broad 

availability, PCR ‘fingerprinting’ data, in general, are considered to be non-

exchangeable among laboratories. Random Amplification of Polymorphic DNA 

(RAPD), Amplified Fragment Length Polymorphism (AFLP) and Multi Locus 

variable tandem repeats amplification (MLVA) are all PCR-mediated methods for 

bacterial strain typing (Ferone et al., 2020, Franco-Duarte et al., 2019, Yang and 

Rothman, 2004). Despite of being able to do simultaneous and reliable strain 

identification and in some instance quantification, specifically with reverse 

transcriptase quantitative PCR (RT-qPCR) (Bruce et al., 2020, Corman et al., 2020), 

molecular methods show some drawbacks related to the risk of contamination due to 

which false positive results may occur as well they are quite time consuming. Slightly 

different and faster techniques such as RT loop mediated isothermal amplification 

(RT-LAMP) of DNA have been used for high throughput tests for SARS-CoV-2 

diagnosis in the recent pandemic (Gray et al., 2020, Jiang and Shi, 2020, Notomi et al., 

2000, Zhang, 2020). However RT-LAMP rapid testing was observed to be less 

sensitivity, false negative results were relatively frequent, and typing applications 

have been rarely described (Ben-Assa et al., 2020, Butler et al., 2020). Given this 

situation, microbiologists developed a novel, rapid and more sensitive alternative of 

the methods listed above namely the PCR-LAMP technique which is a hybrid method 
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combining PCR-based amplification with isothermal amplification (Varlamov et al., 

2020). The success rate and the feasibility of molecular technologies mentioned above 

depends on several factors including sample type (single or mixed-species), accuracy 

of results generated, resources and cost factors, as well as the turn-around-times 

expected. It is essential to understand the basic principles of these molecular methods, 

their precision and handling, their required instrumentation as well as other limitations. 

The complex PCR fingerprints are generally highly reproducible within institutes 

where protocols are well-respected and have been widely used successfully for high-

throughput molecular typing of large numbers of bacterial isolates. Of note, without 

computer-assisted analyses, strain relatedness cannot be defined with sufficient 

precision (Table 1).  

 

 Mass spectrometry for microbial species identification: 

More recently, mass spectroscopy (MS) came into the diagnostic picture due 

to its practical simplicity and high accuracy, sensitivity and capability to detect even 

single nucleotide difference within a mixed population of strains of the same species 

as compared to amplification based techniques (Manukumar and Umesha, 2017, 

Sauer and Kliem, 2010, Singhal et al., 2015). The basic principle of MS is based on 

the detection of an intrinsic physical property, the mass-to-charge ratio (m/z) of a 

bioanalyte such as nucleic acids, proteins, lipids, carbohydrates and peptides, which 

makes MS a unique method of microbe detection and characterization over 

conventional and molecular techniques (Sandrin and Demirev, 2018, Sauer and Kliem, 

2010). Since many years MS has been using in combination with other ionization and 

separation techniques. Gas chromatography (GC) (Nichols et al., 1986, Senes et al., 

2018), matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) (Jang 

and Kim, 2018, Rahi et al., 2016, Schauer et al., 2005), electromigration 

techniques/capillary electrophoresis (CE) (Desai and Armstrong, 2003, Lantz et al., 

2007) and electrospray ionization (ESI) (Sampath et al., 2007, Smith et al., 1995) are 

actively used for microbe detection.  

Bacterial strain identification using MALDI-TOF-MS is highly popular and 

rapid method among all other methods mentioned above. However, MALDI-TOF-MS 

is not only culture dependent but sometime also incapable of differentiating closely 

related strains such as for example different Streptococcus species  whereas also 
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Shigella spp and Escherichia coli are usually indistinguishable (Ferone et al., 2020). 

Since MALDI-TOF-MS mostly generates unique spectra at the bacterial species level 

which need to be compared with well-characterized microorganisms from databases, 

MALDI-TOF-MS is highly dependent on next generation techniques of 

bioinformatics (Liébana-Martos, 2018, Oros et al., 2020). Mass spectra are calibrated 

to detect relevant peaks and then matched against a MS spectral fingerprints database 

of previous outbreak strains with the help of software packages (Table 1). The output 

is presented as dendograms in which isoproteomic strains are clustered closely 

together. Clustering is based on similarity of mass spectra from different sample sets, 

dates, and instruments. When such similarities are revealed between mass spectra, 

peaks of interest for further investigation can be highlighted (Christner et al., 2014, 

Dinkelacker et al., 2018, Oberle et al., 2016).  

Surface enhanced Raman spectroscopy (SERS) is another rapid and highly 

sensitive method of bacterial identification allowing the monitoring of phenotypic 

changes of bacteria in response to different stress types such as the presence of 

antibiotics, heavy metals, toxic nanoparticles and starvation (Chang et al., 2019, Cui 

et al., 2019, Wang et al., 2016). Although the methodology holds great potential for 

high throughput detection and characterization, it still requires improvement to be 

recognized as a convenient microbial detection and typing technique. It requires 

standardization of technical parameters of spectral acquisition, consolidation of 

scattered in-house databases of spectral profiles, further development of innovative 

SERS substrates (Cui et al., 2019). However, all the spectroscopic fingerprints need 

bioinformatic interpretation to adequately define subtypes on the basis of the mass 

spectra recorded (Table 1). 

Table 1-1: Bioinformatics playing significant role in result assessment of some molecular 

methods of microbiological strain typing . Some examples justifying the role are shown in the 

table. 

Classical microbial 

typing  techniques 

The use of Bioinformatic techniques 

/databases 

Comment References 

PFGE profiles PulseNet 

(http://www.cdc.gov/pulsenet/) OR  

SalmGene databases (http://www.hpa-

bioinformatics.org.uk/bionumerics/sal

m_gene/)  

Computer-assisted cluster 

analysis is inevitable for 

the comparison of large 

numbers of PFGE 

generated patterns 

(Seifert et 

al., 2005, 

Van Belkum 

et al., 1998) 

http://www.cdc.gov/pulsenet/
http://www.hpa-bioinformatics.org.uk/bionumerics/salm_gene/
http://www.hpa-bioinformatics.org.uk/bionumerics/salm_gene/
http://www.hpa-bioinformatics.org.uk/bionumerics/salm_gene/
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(http://www.eurosurveillance.org/em/v

10n10/1010-225.asp) 

PCR generated 

fingerprints 

GelJ tool embedded with PCR banding 

pattern database, GelComparII, and 

Phoretix 1D Pro  

Cluster analysis of PCR 

band based fingerprints 

(Heras et 

al., 2015) 

MALDI-TOF MS / 

SERS 

FlexControl software (Bruker 

Daltonics, Bremen, Germany), 

BioNumerics (Applied maths, 

Belgium) 

Detailed analysis of the 

complex mass spectra 

profiles including 

thousands of peaks. 

 (Oberle et 

al., 2016) 

Strain typing 

methods (MLST/ 

Spa typing/ 

cgMLST/ wgMLST) 

MLST.net 

SeqNet.org spa sequence repository 

(spaserver.ridom.de) 

(http://pubmlst.org/)  

 (SeqSphere+ software v5.1.0, Ridom 

GmbH, Münster, Germany; 

BioNumerics, Applied Maths, 

Belgium) 

MLST (based on seven 

locus) and cgMLST/ 

wgMLST schemes are 

developed using whole 

genome sequences of 

microbes 

(Jolley et 

al., 2004) 

 

 Next generation “omics” technologies 

All current methods for microbial detection and characterization have the 

potential to offer reliable results but also carry limitations. Steady evolution of 

sequencing technologies, from Sanger sequencing to contemporary NGS combined 

with several other omics technologies (e.g. transcriptomics, metabolomics and 

proteomics), will provide a better understanding of the physical composition of 

microbes. The clinical application of combined omics will also create a solid 

foundation to uncover new genomic information associated with health hazards. 

These new insights will generate breakthroughs in the understanding of bacterial 

genomics in terms of survival mechanisms, generation and frequency of mutations, 

virulence characteristics, increasing drug resistance and more generic features of 

microbial pathogenesis (Bostanci et al., 2019, Cocolin et al., 2018, den Besten et al., 

2018, Dylus et al., 2020, Goldberg et al., 2015, Pulido et al., 2016, Van Goethem et 

al., 2019, Schneider and Orchard, 2011, Quainoo et al., 2017). Moreover, traditional 

experimental techniques in combination with omics tools strengthen the 

understanding of complex biological dynamics and microbial risk assessment 

(Karahalil, 2016). For instance, recent work by (Kuijpers et al., 2018) demonstrates 

variability in infectivity for different Salmonella strains obtained from in vitro gastro-

http://www.eurosurveillance.org/em/v10n10/1010-225.asp
http://www.eurosurveillance.org/em/v10n10/1010-225.asp
http://pubmlst.org/
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intestinal tract infection experiments. However, when such experiments were coupled 

with subsequent NGS-omics studies in Salmonella strains this helped establishing a 

true biological dose-response relationship (Haddad et al., 2018).  

 

 NGS technologies and metagenomics 

Application of current culture-dependent and analytical microbiological 

diagnostics is not sufficient for outbreak and transmission investigations. NGS relies 

on high-throughput WGS that produces millions of sequence runs in one go. Given 

the fact that NGS is capable of extracting complete genome sequences, these data 

have multiple biological impacts on microbial strain typing, assessment of relatedness,  

detailed epidemiological characterization, identification of antimicrobial resistance 

(AMR) genes, virulence genes and surveillance of outbreaks of infections in hospitals 

or the community (Abdelbary et al., 2019, Couto and Rossen, 2021, Deurenberg, 

2017, Dunne et al., 2012, Mellmann et al., 2017). In addition, NGS provides a 

revolutionary way to define new markers related to AMR and strain typing (Goldberg 

et al., 2015, Goyal et al., 2020, Tshibangu-Kabamba et al., 2020, Van Goethem et al., 

2019). The application of cutting edge NGS technology to study sequence data 

derived from a complex sample containing several microorganisms is commonly 

known as metagenomics (Couto and Rossen, 2021, Wooley et al., 2010). Unlike the 

single isolate WGS, metagenomics can be separated in two principally different 

applications. First, amplicon-based metagenomes were investigated via the 16S-23S 

rRNA encoding region as target. This approach was and is still being used for 

concurrent identification of several pathogens in samples to allow detection of all 

species present (Couto and Rossen, 2021, Sabat et al., 2017). Second, shotgun 

metagenomics (Couto and Rossen, 2021) allows for the definition of full genomic 

sequences for microbes present in a sample. All nucleic acid molecules present are to 

be sequenced and this will give a complete review of all genomes present. Analysis of 

the complex data thus obtained is done using different bioinformatics tools in order to 

generate phylogenetic relationship maps. Recently, the successful identification and 

typing of Dengue virus was done using an optimized version of shotgun 

metagenomics (Lizarazo et al., 2019). Furthermore, shotgun metagenomics is a highly 

popular method to characterize the gut microbiome or environmental microbiomes 

(Chiu and Miller, 2019, Gigliucci et al., 2018, Wooley et al., 2010, Zhao and Bajic, 

2015). 
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INNOVATIVE NGS-BASED BIOINFORMATIC APPROACHES 

Spectacular advancement of biological and information processing science and its 

amalgamation with computer algorithms has generated a promising perspective on the future 

availability of innovative healthcare systems in several medical fields. Interactive data 

mining in research laboratories and hospital information systems has drawn a broader picture 

of clinical findings which is not only important to monitor clinical history of diseases/ 

infections but also to deal with emerging health risks and effective implementation of 

genomics medicines with an overall target of improving patient care (Saeb, 2018). Although 

molecular methods discussed above are the current gold standard in the field of infection 

diagnostics, interpretation of test results cannot always rely on phenotypic data and thus 

needs integration with bioinformatics approaches to overcome molecular diagnostic 

limitations such as time, cost, lack of reproducibility of the results and reliability. 

Interpretation of experimental diagnostic outcomes produced by molecular methods (Table1-

2), consolidation of databases of different biological signatures, machine learning (ML) and 

NGS data analysis are being increasingly accepted in the field of diagnostics and infection 

control. Recently, ML approaches have been applied to NGS data in order to identify 

unknown pathogens as well as unknown markers associated with different phenotypes such 

as drug resistance, pathogenicity and strain types (Luz et al., 2020, Shamout et al., 2021, Zou 

et al., 2019). 

 

SEQUENCING PLATFORMS AND BASIC WORKFLOW OF NGS DATA 

ANALYSIS  

Parallel processing of clinical samples via NGS methods produces complex genomic 

sequence data. Availability of these massive datasets dramatically shifts the paradigm of 

epidemiology from targeted experimental methods to the processing of sequencing reads in 

order to explore complete genome information of pathogens. In public health microbiology 

and the therapeutic sector, NGS helps clinicians to take accurate decisions directed toward 

epidemiology and the treatment of infectious diseases (Fricke and Rasko, 2014, Maljkovic 

Berry et al., 2020). A recent milestone of NGS technology was the generation of more than 

1.2 million coronavirus genome sequences from 172 countries during the ongoing COVID-19 

pandemic (Maxmen, 2021).  

In 1993, Tuberculosis (TB) was declared a “global health emergency” by the World 

Health Organization (WHO). At that time molecular diagnostic tests simply relied on 
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phenotypic methods for early detection  and identification of Mycobacterium tuberculosis 

and their resistance to first-line drugs (Richeldi, 2006). Classical diagnostic methods were 

then key tools in the containment of multi drug resistant (MDR) TB. Rapid development in 

the field of diagnostic microbiology has opened up for the application of NGS technologies 

to a new dimension molecular epidemiology of tuberculosis, in which the transmission chain 

of infection at  higher resolution could be easily traced (Comas, 2017). 

The NGS approach generally starts with genomic DNA extraction from test samples, 

cDNA library preparation which involves DNA fragmentation, ligation of adaptors, adaptor 

sequencing, and sample enrichment, sequencing using dedicated instruments and 

bioinformatics analysis (Figure 1-1) (Buermans and Den Dunnen, 2014, Grada and 

Weinbrecht, 2013). 

 

Figure 1-1: Next generation sequencing workflow scheme. 

 

 Benchtop NGS platforms with different properties such as output quality, quantity 

and fragment/read length are currently available (Table 1-2) (Heather and Chain, 2016). 

MiSeq, NextSeq/ HiSeq and Ion Torrent are considered as suitable platforms for smaller 

targets (bacteria /virus) whereas for highly repetitive bacterial genomes, with modular 
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plasmid structures, HiSeq and Novaseq platforms are suggested (Faria et al., 2016, Gire et al., 

2014, LaBreck et al., 2018, Salje et al., 2017, Stewart-Ibarra et al., 2018). However, the 

Illumina HiSeq family of NGS platforms is widely preferred for diagnosis and public health 

by large scale companies as well as laboratories (Chen et al., 2021, Liu et al., 2012, Rhodes et 

al., 2014). Recent innovation in nanopore sequencing from Oxford Nanopore Technologies 

(ONT) showed the potential to challenge other sequencing platforms. Due to its low cost, rapid 

turnaround time, and user-friendly bioinformatics pipelines, ONT sequencing becomes an 

attractive platform for clinical laboratories to adopt. However, this method still faces the problem 

of base-calling accuracy compared to other platforms (Petersen et al., 2019). In 2011, Pacific 

Biosciences introduced the first PacBio RS sequencing platform (using first generation chemistry, 

P1-C1) to the market. This machine uses single molecule real-time (SMRT) detection technology 

that achieves real-time sequencing of individual polymerase molecules (Eid et al., 2009, La et 

al., 2021, Teng et al., 2017) (Table 1-2). One of the most common strategies for maximizing 

efficiency of a sequencing technology is the multiplexing of samples; a unique index is appended 

to each sample, and multiple samples are pooled together for sequencing in the same run due to 

which sequencing platforms suffer from the index swapping issue. However, BGI sequencing 

services offers a unique DNA nanoball (DNB) technology Rolling circle replication (RCR) 

amplification that has rare background-level single index mis-assignment during DNB 

preparation and library construction (Cui et al., 2019). In the present times Illumina, PacBio, 

ONT and BGI are among the preferred technologies in the field of metagenomics. However, all 

the sequencing technologies have some pros and cons as well thus the selection should be based 

on the purpose of study.  

 

Table 1-2: Some popular NGS platforms with their underlying technologies, advantages and 

disadvantages. 

Sequencing 

platform 

Underlying 

Chemistry 

Read length 

(base pair: 

bp) 

Run time Advantage Disadvantage 

Illumina  

(MiSeq/HiSeq) 

Sequencing 

by synthesis 

50-250bp 1 to 10 day 

depending upon 

sequencer, read 

length and 

mode 

High 

throughput/ less 

expensive 

Short reads and 

long run time in 

default mode 

ThermoFisher  

scientific (Ion 

Proton/Ion 

Proton 

detection 

200bp 2 hrs Short run time, 

less expensive 

Homopolymer 

errors 
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Torrent) 

Roche 454 Pyrosequenci

ng 

700 bp 24 hrs Long read 

length, Fast 

High 

homopolymer 

error rate high 

cost, low 

throughput 

SOLiD 

sequencing 

Ligation and 

two-base 

coding 

85-100 bp 1 to 2 weeks Low cost per 

base, accuracy 

Short reads  and 

slowest method 

Pacific 

Biosciences 

(PacBio) 

Sequencing 

by synthesis: 

SMRTbell 

replication 

≥500 bp Up to 30 hrs Long read 

length, Fast 

High capital 

cost, variable 

accuracy 

ONT (Oxford 

Nanopore 

Technologies) 

Measures the 

changes in 

current as 

biological 

molecules 

pass through 

the nanopore 

≥500 bp Up to 72 hrs Long reads, low 

capital cost, fast   

Low accuracy 

DNBSEQ from 

BGI 

DNA 

nanoball/ 

Rolling circle 

replication 

(RCR) 

50 to 150 bp 24 to 30 hrs Accurate, Fast, 

Flexible 

Short reads 

 

NGS DATA ANALYSIS 

NGS data analysis starts with checking the quality of sequence reads. The Phred 

quality score (Q score) measures the probability of incorrect base calling which is defined as 

a logarithmic probability of base calling errors (Ewing and Green, 1998). For instance, 

generally Q30 score is considered as an ideal Q score for Illumina sequencing reads. In the 

next step adapters attached to the reads are removed by trimming. Trimmed high quality 

reads are then subjected to assembly (de novo or reference based). In recent years, key 

players in the field of microbial genome assembly are CLCbio workbench, GENEIOUS,  

SPAdes, DNASTAR by Lasergene and EvoCAT (Bankevich et al., 2012, Goyal et al., 2020, 

Segerman, 2020, Goyal et al., 2019, Souvorov et al., 2018).  Illumina like platform generates 

accurate but short reads, which can lead to accurate but fragmented genome assemblies 

whereas PacBio and ONT like platforms generate long reads that can produce complete 



26 
 

genome assemblies, but more expensive and error-prone sequencing. Therefore hybrid 

assemblies provided by Unicycler can be a significant option which combines data from 

complementary sequencing technologies to generate more accurate assembly (Liu et al., 2020, 

Wick et al., 2017). The quality of the assemblies is evaluated by QUAST (Gurevich et al., 

2013) and contigs below 200 bp in length are discarded. Additional genome annotation is 

performed using an annotated reference genome using different pipelines such as CLCbio 

workbench, BioNumerics and Prokka (Goyal et al., 2019, Seemann, 2014). Assembled and 

annotated genomes are further analyzed for epidemiological typing and characterization of 

the genomes.   

Genome typing  

Multi Locus Sequence Typing (MLST) is a commonly used classical approach for 

epidemiological typing of pathogens such as Pseudomonas aeruginosa. It accurately defines 

evolutionary descent and identifies distinct lineages but it lacks the necessary resolution for 

the characterization of outbreaks caused by closely related, contemporaneous bacterial 

isolates (Ashton et al., 2016a, Inns et al., 2015b). Several studies have evaluated the 

discriminatory power and concordance of different typing methods (Gateau et al., 2019a, 

Rumore et al., 2018a). However, high throughput WGS is rapidly becoming the most 

efficient solution for strain typing, both for surveillance and for (retrospective) outbreak 

investigations (Kan et al., 2018a). WGS facilitates whole genome MLST (wgMLST) which 

displays higher discrimination than conventional MLST which is usually based on variation 

in seven housekeeping genes. Most bacterial species have sufficient variation within house-

keeping genes to provide many alleles per locus, allowing billions of distinct allelic profiles 

to be distinguished using only seven house-keeping genes. wgMLST reliably recognizes and 

quantifies the genetic links between epidemiologically related isolates within various 

bacterial species (Joensen et al., 2014a, Kovanen et al., 2014a). Additionally, genetic maps 

can be drawn by performing phylogenetic analysis using WGS of microbe’s population. 

 

Genome Wide Association Studies: SNPs vs k-mers as identity markers 

Whole genome Single Nucleotide Polymorphisms (wgSNPs) based genotyping is one 

of the most advanced methods of exploiting conserved as well as variable regions on whole 

genome level in order to identify transmission dynamics and to provide useful insights into 

the sources and routes of infection during hospital outbreaks which will not necessarily be 



27 
 

concordant with core genome analysis solely (den Bakker et al., 2011, Halachev et al., 2014b, 

Taylor and Unakal, 2021).  

On the contrary, availability of WGS data and antibiotic resistance profiles of clinical 

strains enables genome wide association studies (GWAS) into the discovery of new potential 

target for antibiotics (Jaillard et al., 2018b, Lees et al., 2018). Past studies reported the 

successful demonstration of bacterial GWAS to recover known AMR determinants as well as 

to formulate new hypotheses involving genetic variants not yet described in the antibiotic 

resistance literature (Jaillard et al., 2018b). De Bruijn  graph GWAS (DBGWAS) allows the 

identification of short DNA fragments (signature sequences) associated to a given condition 

(such as MIC profile of all the strains against different antibiotics). De Bruijn graphs are built 

to connect overlapping k-mers, yielding a compact summary of all variations across a set of 

genomes (Jaillard et al., 2018b). Genetic variants (connected overlapping k-mers, called 

unitigs) are selected on the basis of their considerable association in desired phenotype and 

minimum q-value. Q-values are Benjamini-Hochberg transformed p-values for controlling 

the false positive results in the case of multiple testing (Benjamini and Hochberg, 1995, 

Jaillard et al., 2018b). Significant markers are further annotated using the online BLAST tool 

(www.blast.ncbi.nlm.nih.gov) (Goyal et al., 2020). 

Methods other than DBGWAS such as PLINK (SNP based) and SEER (K-mer based) 

implemented in pyseer v 1.2.0 are also available to perform GWAS (Lees et al., 2018, Purcell 

et al., 2007, Saber and Shapiro, 2020). However, Scoary is another freely available python 

script to perform GWAS specifically for pan genomes thus termed as pan-GWAS which is 

based on the presence and absence of genes and their associated phenotypes in the dataset of 

pan genomes (Brynildsrud et al., 2016, Redfern et al., 2021). 

 

Big Data Challenges and Future Applications of Bioinformatics 

 Health care-associated sectors are being flooded with NGS data and clinicians are 

trying to use genomic sequencing data for diagnosis and monitoring of infectious diseases. 

Analysis of big omics data needs advanced bioinformatic technologies and regularly updated 

and integrated databases containing information on molecular profiles, epidemiology and 

metadata of outbreak strains (Carriço et al., 2013, Saeb, 2018). Correctly storing and 

interpreting this huge amount of NGS data is a big concern for biologist among whom there 

is a strong need of cloud computing where data and high-power computing software are 

situated to be accessed virtually by users (Marx, 2013, Seth et al., 2019). In many 

http://www.blast.ncbi.nlm.nih.gov/
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laboratories and companies cloud computing is a primary option and people rarely work on 

classical hardware components anymore. Undoubtedly, cloud computing will emerge to be a 

cost effective technique to process and accumulate the immense quantity of data with parallel 

processing tools and high protection storage through the internet (Wordsworth et al., 2018). 

However, sharing big voluminous genomic data and processing tools with outside 

collaborators using the cloud while maintaining internal confidentiality and the trust values of 

cloud service providers still remain major challenges to deal with (Raza and Luheshi, 2016, 

Seth et al., 2019). Some publically available big data cloud services include Google Cloud 

Platform (https://cloud.google.com/products), Amazon Cloud Services 

(http://aws.amazon.com), IBM Cloud Services www.ibm.com/cloud, which facilitate secure 

data access, migration, storage, retrieval, and computational processing. Big private 

organizations/ companies are also relying on their own cloud computing facilities to prevent 

the risk of data theft.  

 

Global Bioinformatics Market 

The globally exploding biological data resources have created platforms for several 

companies and service providers to manage and analyze complex data with the help of 

updated sophisticated computational techniques, algorithms and statistical methods. Such 

companies provide efficient means of   storing, searching and retrieving the data for future 

infection and disease outbreak management. Data management systems apparently cover the 

entire bioinformatics data lifecycle including managing and monitoring the intake, integrity, 

and use of diverse bioinformatics data types. Development and implementation of policies, 

processes, and templates constituting an overarching data management plan supporting 

multiple platforms for large projects in collaboration with the customers are also taken care 

of by companies/ service providers. World's largest revenue impact advisory firm 

MarketsandMarkets™ stated that the global bioinformatics market is expected to account for 

USD 7,063.7 billion in 2018. It is expected to reach USD 13,901.5 billion by 2023, at a 

CAGR of 14.5% during the forecast period (https://www.marketsandmarkets.com/). The 

COVID-19 pandemic was a real-life example to show the potential of bioinformatic data 

analyses. Since the beginning of the COVID-19 pandemic, the major focus areas for every 

country have been to study and understand stopping progress of the virus. An important fact 

is that molecular biology has generated a vast amount of worldwide genomic data of the 

coronavirus. However, decoding the genome of novel coronavirus using bioinformatics tools 

https://www.marketsandmarkets.com/
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and algorithms was a crucial step in developing vaccines and for better understanding the 

infection mechanism used by the virus and how it functions in the human body (Goyal et al., 

2021, Hufsky et al., 2021, Ishack and Lipner, 2021, Ray et al., 2021). According to the report 

published in July 2021 by MarketsandMarkets™, prominent players in the bioinformatics 

services market include Illumina (US), Thermo Fisher Scientific (US), Eurofins Scientific 

(Luxembourg), BGI Group (China), NeoGenomics (US), PerkinElmer (US), CD Genomics 

(US), Psomagen, Inc. (South Korea), QIAGEN (Germany), GENEWIZ (US), Source 

BioScience (UK), Microsynth (Switzerland), MedGenome (India), Fios Genomics (UK), and 

BaseClear (Netherlands), among others (https://www.marketsandmarkets.com/). 

 

Recent trends and futuristic approach for bioinformatics data analysis 

The accumulation of bioinformatics data and tools is coming to a turning point that 

requires a paradigm shift. Local data storage and analysis is reaching its limits, and the trend 

should be towards integrated and standardized cloud solutions that are fully automated to 

perform analysis using powerful computational algorithms. Data usually comes from multiple 

sources that need to be aggregated. It often arrives in batches and requires punctually large 

resources. Statistical analysis runs routinely on regularly updated data.   

ML is a growing field in microbiology specially in data-intense discipline like genomics, it 

helps in diagnostics, classification, outcome prediction, antimicrobial risk management and to 

predict phenotypes from genotypes in infectious diseases (Peiffer-Smadja et al., 2020, Zou et 

al., 2019).  Cloud solutions like AWS can help build powerful AI-driven pipelines that adapt 

to the flow of data and maximize its value. 

 

Conclusions 

Since the past two decades microbial epidemiology has been based on classical and 

advanced molecular techniques. However, interpretation of end results of high throughput 

molecular techniques are now dependent of bioinformatics applications. Molecular biology 

and bioinformatics techniques are complementary to each other. Everyday vast amounts of 

NGS data are being generated using molecular biology techniques and processed and 

analyzed by bioinformatics techniques or different purposes such as genome characterization, 

identification of antimicrobial drug resistance, phylogenetic analysis and disease outbreak 

surveillance and management etc. In this review we have succinctly described the inevitable 

need of better management of the steadily growing data repository along with molecular 

https://www.marketsandmarkets.com/
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biological advancements. Different microbiological techniques available for microbial 

detection and characterization were summarized in this review. On the other hand various 

roles played by NGS data analysis in the field of epidemiology and infection outbreak 

management was also shown in detail. Our focus was also to define the ways of big data 

management and future resources to analyze the giant repository of high-quality multi omics 

data mainly for the purpose of microbial disease epidemiology.  

 

Description of Thesis Activities 

I have been using bioinformatics approaches to better define the classical 

microbiological and molecular behavior and dynamics of strains of several bacterial species 

that are pathogenic to humans. I studied the genomic variations in resident strains of 

Staphylococcus aureus colonizing, sometimes for years, the nasal cavities of human 

volunteers. In addition we performed several genome wide association studies in which I 

tried to correlate known capacities of strains of Clostridioides difficile with genomic diversity 

among these strains. Finally, I studied collections of Pseudomonas aeruginosa strains and 

SARS-CoV-2 strains using both state of the art bioinformatics tools for epidemiological 

analysis as well as “customer friendly” bioinformatics tools allowing lay persons to rapidly 

interpret WGS results for improvement of infection control. Details of these studies can be 

found in the subsequent chapters, whereafter I will try to synthesize my findings in a closing 

discussion covering all chapters as a whole. 
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Abstract 

Staphylococcus aureus can colonize the human vestibulum nasi for many years. It is 

unknown whether and, how S. aureus adapts to this ecological niche during colonization. We 

determined the short (1 and 3 months) and mid-term (36 months) genomic evolution of S. 

aureus in natural carriers and artificially colonized volunteers. Eighty-five S. aureus strains 

were collected from 6 natural carriers during 3 years and 6 artificially colonized volunteers 

during 1 month. Multi-locus sequence typing (MLST) and single nucleotide polymorphism 

(SNP) analysis based on whole-genome sequencing (WGS) were carried out. Mutation 

frequencies within resident bacterial populations over time were quantified using core 

genome SNP counts (comparing groups of genomes) and pairwise SNP divergence 

assessment (comparing two genomes from strains originating from one host and sharing 

identical MLST). SNP counts (within 1–3 months) in all naturally colonizing strains varied 

from 0 to 757 (median 4). These strains showed random and independent patterns of pairwise 

SNP divergence (0 to 44 SNPs, median 7). When the different core genome SNP counts over 

a period of 3 years were considered, the median SNP count was 4 (range 0–26). Host-specific 

pairwise SNP divergence for the same period ranged from 9 to 57 SNPs (median 20). During 

short term artificial colonization the mutation frequency was even lower (0–7 SNPs, median 

2) and the pairwise SNP distances were 0 to 5 SNPs (median 2). Quantifying mutation 

frequencies is important for the longitudinal follow-up of epidemics of infections and 

outbreak management. Random pattern of pairwise SNP divergence between the strains 

isolated from single carriers suggested that the WGS of multiple colonies is necessary in this 

context. Over periods up to 3 years, maximum median core genome SNP counts and SNP 

divergence for the strains studied were 4 and 20 SNPs or lower. During artificial colonization, 

where median core genome SNP and pairwise SNP distance scores were 2, there is no early 

stage selection of different genotypes. Therefore, we suggest an epidemiological cut off value 

of 20 SNPs as a marker of S. aureus strain identity during studies on nasal colonization and 

also outbreaks of infection. 

 

Introduction 
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Extensive use of antibiotics in the environment and the clinical domain contributes 

toward the emergence of (multi-)drug resistant bacterial pathogens. This has become a global 

threat (Roca et al., 2015)). Staphylococcus aureus (S. aureus) is among the bacterial species 

associated with increasing drug resistance, morbidity, invasive disease, and mortality in 

humans as well as animals (Chambers and Deleo, 2009, Li and Webster, 2018, Schmidt et al., 

2015). S. aureus is a common opportunistic human pathogen identified most often on the 

nasal epithelium, About 30–50% of healthy individuals are persistently colonized (Wertheim 

et al., 2005). S. aureus causes a large variety of community as well as hospital-acquired 

infections. These include deep abscesses, endocarditis, osteomyelitis, pneumonia, and 

bloodstream infections (Foster and Höök, 1998, Rasigade and Vandenesch, 2014, Taylor and 

Unakal, 2018). S. aureus nasal carriage is a risk factor for the development of staphylococcal 

infections. Adherence to the human nasal epithelial cells is a prerequisite for S. aureus 

colonization and initiation of infection (Roche et al., 2003). The prevalence of non-

symptomatic colonization with methicillin resistant S. aureus strains in the open United 

States population escalated from 0.8 to 1.5% over recent years (Gorwitz et al., 2008). 

Colonization begins with the interaction between nasal epithelial ligands and bacterial 

receptors often cataloged as microbial surface components recognizing adhesive matrix 

molecules (MSCRAMMS) (Foster and Höök, 1998, Ghasemian et al., 2015). During 

colonization S. aureus expresses adherence genes (clf B, isdA, fnbA, eap, sceD, oatA, and 

atlA) and several immune-modulating genes (e.g., sak, chp, spa, and scn) (Baur et al., 2014, 

Burian et al., 2010). Host factors and local microbiota can affect the adhesion and 

colonization properties of S. aureus as well (Emonts et al., 2007, Frank et al., 2010, Ruimy et 

al., 2010). 

During colonization, S. aureus secretes a number of immune-modulating proteins. 

Staphylococcal complement inhibitor (SCIN), encoded by the scn gene, can efficiently 

protect S. aureus by inhibiting the innate immune response mediated by human neutrophils. 

SCIN and other immune modulating proteins are encoded on the immune evasion cluster 

(IEC) (Goerke et al., 2006). The scn gene was identified as a conserved one being present in 

all IEC (van Wamel et al., 2006). To test the role and stability of IEC human artificial 

inoculation was performed using isolates with and without IEC. It was concluded that IEC 

may not play a significant role in adherence but it did display an essential role in propagation 

and long term survival (Verkaik et al., 2011). 
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We have here used whole genome sequencing (WGS) to quantify the mutational 

changes occurring in S. aureus strains during natural and artificial nasal colonization during 

periods ranging between 1 and 36 months. The numbers of human volunteers and hence the 

overall number of S. aureus nasal isolates are limited due to the technical and logistic 

complexity of the studies involved (Verkaik et al., 2011). In addition, studies involving 

colonization of human volunteers have to follow extensive ethical procedures and protocols. 

We applied bio-informatics approaches to assign MLST types and to detect genetic variation 

at the single nucleotide polymorphism (SNP) level. Moreover, we analyzed selective 

presence of virulence factors for all strains. 

 

Materials and Methods 

Description of the Strain Collection 

Staphylococcus aureus strain collection was carried out as described earlier (Verkaik 

et al., 2011) at Erasmus Medical Center (Rotterdam, Netherlands). Naturally colonizing 

strains were isolated from nasal swab cultures from healthy persistent carriers who were 

positive for S. aureus at five culture moments over a time interval of 3 months in both 2007 

and 2010. Artificially colonizing strains were collected from the human volunteers inoculated 

with S. aureus strain NCTC 8325-4 with or without IEC and follow-up cultures were 

performed in 2008 (days 1, 2, 3, 4, 7, 14, 21, and 28 after inoculation). The latter strains were 

susceptible to all common antibiotics and were free from staphylococcal toxin genes 

(Wertheim et al., 2008, Williams et al., 1997). A review of all strains sequenced is provided 

in Supplementary Table 1. 

 

S. aureus Genome Sequences 

Isolates were sequenced by WGS (Illumina HiSeq 2000 platform). Raw reads were 

assembled using the A5 MiSeq-20140604 assembler. Datasets for strains cultured in 2007 

and 2010 contained 35 and 22 isolates, respectively, involving natural nasal colonization in 6 

persistent carriers. The dataset from 2008 (28 isolates) was collected for strains from 6 

different volunteers artificially colonized with S. aureus strain NCTC 8325-4. DNA isolation 

was performed for up to three colonies from each culture to define their genotypic stability at 

different point of times during short term as well longer term nasal carriage (see 
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Supplementary Table 1. The sequences obtained from the 1 to 3 independent colonies taken 

for some of the individual strains were analyzed independently by the bioinformatics tools 

applied. Using bioinformatics tools as BioNumerics (Applied Maths, bioMérieux, Belgium), 

kSNP3 (Computations/Global Security, Lawrence Livermore National Laboratory, 

Livermore, CA, United States and Bellingham Research Institute, Bellingham, WA, United 

States), and Abricate (Torsten Seemann, University of Melbourne, Australia), all genomes 

were analyzed extensively. 

 

MLST Typing and SNP Detection 

To understand the genetic diversity of all the isolates multi-locus sequence typing 

(MLST) was performed using BioNumerics1. The MLST method is known to have a higher 

discriminatory power for S. aureus strains than PFGE (Peacock et al., 2002). For classical 

MLST typing seven housekeeping genes and their various alleles were used to define strain 

relatedness (Jolley et al., 2018). A phylogenetic tree was constructed by executing the Linux 

based stand-alone source code of kSNP3 (Gardner et al., 2015), which identified core 

genome SNP counts and provided a consensus parsimony phylogenetic tree. The kmer size 

was set to 19, the optimum size estimated by the kSNP3 utility program Kchooser (Gardner 

et al., 2015). Pairwise SNP distances between later stage isolates as compared to early stage 

isolates from each individual were calculated to define mutation over time. The python script 

kSNPdist was used to calculate the pairwise SNP divergence between all S. aureus isolates. 

kSNP3 and kSNPdist executables for OS X and Linux are freely available at 

https://sourceforge.net/projects/ksnp/. 

 

Resistance and Virulence Gene Identification 

All the genomes were screened for the presence of 40 known and putative virulence 

genes (Shukla et al., 2010) (enterotoxin genes, exotoxin genes, leucocidin genes, hemolysin 

genes, surface protein genes, and putative virulence genes) and the S. aureus antibiotic 

resistance genes available in the ResFinder database4. Those 40 genes are grouped as 

classical staphylococcal. The Linux-based command line tool known as Abricate was 

downloaded5 to perform additional mass screening for antimicrobial resistance or virulence 

genes. All the identified resistance and virulence genes in the dataset were summarized in 
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Supplementary Table 3. Additionally, in silico-based mapping of the scn gene using 

BioNumerics was carried out to determine the presence of IEC (van Wamel et al., 2006). 

 

Results 

Quality Testing of Genome Datasets 

Genome sizes varied from 2,647 to 2,827 Kilo base (kb). The average number of 

contigs generated per genome was 64 contigs (ranging from 40 to 315 contigs). The average 

N50 contig length was 171778 bp (Supplementary Table 2). Isolates (and hence their 

genomes) from a single individual are expected to be part of a single clade as predicted by the 

MLST data and phylogenetic clustering (Figures 2- 1, 2). 

 

Figure 2-1: Phylogenetic tree depicting clustering on the basis of core SNP count ranges 

from 0 to 757 SNPs (median 4 SNPs) in all the Staphylococcus aureus strains colonized 

during 3 months (2007 subgroup) of follow up along with their date of isolation, persistent 

carriers from which they have isolated after maximum three cultural moments, their sequence 
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type and resistance genes. Note that all isolates are clustered together on the basis of the 

original individual they were cultured from. 

 

  

Figure 2-2: Evolutionary relationship on the basis of core genome SNP counts detected 

(range 0 to 11 SNPs) in S. aureus strains colonized and isolated during 1 month (2010 

subgroup) along with the date of their isolation, the host from which they have isolated, 

MLST and resistance genotype. Isolates from the same host are clustered together showing 

their higher strain relatedness. 

 

Short Term Evolution (1–3 Months) in Naturally Colonizing S. aureus Strains 

Staphylococcus aureus isolates from 2007 and 2010 (35 and 22 genomes, respectively) 

from carriers A to F were analyzed for short term genomic changes, over 3 months (in 2007), 

and 1 month (in 2010). ST30 (2007: 47%; 2010: 30%) and ST20 (2007: 17.60%; 2010: 30%) 

were found to be the dominant MLST types followed by ST8 and ST5 (18% each) in 2007 

and ST22 and ST7 (20% each) in the 2010 subgroups (Table 2- 1). Over the period of 3 years 

some of the strains were replaced by different sequence type strains within a same carrier. 

For instance isolates from carrier B and D in 2007 were ST30 and ST8 but in 2010, isolates 

from the same carries were ST7 and ST22, respectively. These strains were not included for 

longer term pairwise SNP divergence analysis (Table 2- 1). 
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Table 2-1: Pairwise SNP distances identified between all the early and later stages isolates 

(according to their isolation date) among the S. aureus strains of subgroup 2007 and 2010 

independently from each persistent nasal carrier. 
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Core genome SNP counts for the genomes of all the strains collected in 2007 and 2010 

ranged from 0 to 757 SNPs (median 4 SNPs) and 0 to 11 SNPs (median 3.5 SNPs), 

respectively (Figures 2- 1, 2). We observed a small pairwise SNP distance between all the 

early and the later stage isolates within a carrier (all carriers pooled, 2007 median number of 

SNP divergence was 10 and in 2010 median SNP distance was 4 (Table 2- 1). The maximum 

number of pairwise SNP differences calculated for the genomes of the isolates of carrier C 

ranged from 15 to 44 SNPs followed by 3 to 27 SNPs in strains from carrier D, 0 to 22 in 

strains from E, 7 to 20 in strains from B, 10 to 13 in strains from A and 0 to 9 SNPs in strains 

from F (Table 2- 1). Paired SNP differences were also calculated for strains from subgroup 

2010 illustrating the highest ranges (10–14) among strains from host B followed by 2 to 9 

SNPs in strains from C, 3 to 7 in strains from A, and 1 to 4 in strains from individual D 

(Table 2- 1). On an individual basis, the pattern of pairwise SNP differences is relatively 

random between the isolates from early and later stages of colonization. 

 

Longer Term Evolution (3 Years) in Naturally Colonizing S. aureus Strains 

Evolutionary analysis over a period of 3 years (2007–2010) could only be done for the 

isolates from two persistent carriers, A, and C. In these carriers the MLST type remained 

unchanged over time, suggesting persistent colonization with the same strains (Table 2- 1). 

All isolates of carrier A and C from both 2007 and 2010 were analyzed for the presence of 

core genome SNPs which ranged from 0 to 26 SNPs (median 4 SNPs) (Figure 2- 3). Host 

specific pairwise SNP differences between the isolates dating 2007 and 2010 for both carriers 

A and C individually were 9–33 SNPs (median 19) and 15-57 SNPs (median 24), 

respectively (Figure 2- 4). All strains from one carrier showed random distribution of SNPs; 

e.g., SNP distances between strains 1410027 and 1410029 versus the later stage strain 

1410066 were 9 and 11 SNPs (Figure 2- 4). This demonstrated that genomic evolution was 

random and none of the SNPs were fixed genetically over time. 
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Figure 2-3: Phylogenetic Tree showing longer term (3 yeras) diversity and relatedness of S. 

aureus strains on the bases of core genome SNP counts ranged from 0 to 26 SNPs in all the 

isolates from two nasal carriage individuals (A and C) for both the years 2007 and 2010. 

 

 

Figure 2-4: Heat maps showing the host specific pairwise SNP (longer term) among all the 

early (2007) and later stage (2010) isolates of carrier A and carrier C individually with the 

color range of dark green (least SNP divergence) to red (higher SNP divergence). In both the 

hosts A and C pairwise SNP distances between the isolates of 2007 and 2010 datasets are 

visibly higher (from yellow to red boxes) than that of within the dataset itself (from dark 

green to light green boxes) with one exceptional isolate 1410042 in carrier C which showed 

higher pairwise SNP divergence within its dataset (orange boxes) as well as with the isolates 

of 2010 dataset (red boxes). 
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Mutational Analyses of Strains From Artificially Colonized Humans 

All strains were of ST8. No considerable identity was observed with resistance genes 

(Supplementary Table 3) from the database which was in agreement with the pan-

susceptibility of the isolates. The overall core genome SNP counts among the isolates ranged 

from 0 to 7 SNPs (average 2) (Figure 2- 5). The maximum range of pairwise SNP distances 

between the isolates within a host was 0 to 5 SNPs (median SNP distance 2) after 28 days of 

colonization in S. aureus nasal carriers (Table 2- 2). 

 

 

Figure 2-5: Core genome SNP counts based phylogenetic tree illustrating the close 

resemblance among the genomes isolated from artificially inoculated S. aureus nasal 

carriers in 2008. Core genome SNP counts here ranged from 0 to 7 core SNPs and each 

cluster is showing random collection of the strains irrespective of their specific host depicted 

very less genomic evolution (in 1 month) in artificially colonizing strains. 
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Table 2-2: Pairwise SNP distances found in artificially colonizing strains isolated during 

short term colonization in different individuals. 

 

Fourteen virulence genes (sea, hla, hlb, hld, hlgB, clfA, clfB, fnbA, fnbB, icaA, sdrC, 

sdrD, sdrE, and tsst-1) were identified in the current sequence dataset (Supplementary Table 

3). The virulence factor fnbA was not found in isolates from host B and was also missing in 

one of the isolates from carrier F (1410060). Two strains (1410054 and 1410055) were 

shown to have acquired the cna gene during colonization of host E (Supplementary Table 3). 

Absence of the scn gene corroborating the complete lack of IEC in artificially colonized 

strains (Supplementary Table 3). 
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Discussion 

In the present work, we have studied the evolutionary patterns in nasal S. aureus 

strains to better understand their local adaptive behavior and mutational frequency. Low core 

genomes SNP values among all the genomes defines the significant strain relatedness 

witnessed in this study. This is experimentally supported by the outcomes of previous 

research (Ankrum and Hall, 2017) where S. aureus strains with <71 SNP differences were 

considered as non-discriminate. Similar findings by (Golubchik et al., 2013) suggested that 

SNP divergence with in a host varied from ∼ 0 to 27 SNPs among host specific isolates. In 

our study, one isolate from host C (1410042) was showing an exceptionally high SNP 

divergence value for which we have no clear explanation (Figure 2- 5 and Table 2- 1). 

Phylogenetic trees (Figures 2- 1, 2, 3, 5) were constructed on the basis of core genome SNPs 

identified within strains from all individual hosts showing different numbers of mutations as 

compared to their pairwise frequency of SNP divergence. The level of diversity (SNP 

divergence) within the hosts was consistently lower than that detected between different hosts 

and of same MLST type (Golubchik et al., 2013). 

Prior studies tried to assess the number of SNPs accumulating over time, but mostly 

under selective conditions. (Rouard et al., 2018) calculated that during selection for linezolid 

resistance an expected 17–93 mutations should accumulate per genome per year. A more 

global calculation using a significantly larger strain collection resulted in average number of 

less than 10 SNPs per genome per year (Harris et al., 2010). (Ankrum and Hall, 2017) came 

up with figures around 70 SNPs per year. Obviously, the discussion on epidemiological SNP 

cut off values defining identity (or not) or close relatedness between clinical isolates have not 

been finalized yet. On the basis of this study, we suggest a median SNP cut off 20 SNPs. 

Although in our study limited numbers of individuals are included, a high number of strains 

per individual were included to thoroughly study mutation frequency over time. Our 

suggested cut off can be used to identify S. aureus strains as identical or not in outbreak 

management. 

Nasal colonization with strains carrying virulence determinants such as fibronectin 

(fnb) and collagen adhesions (cna) may represent risk for subsequent invasive infections in 

carriers (Nashev et al., 2004, Peacock et al., 2002). 

We acknowledge that our study is likely to be underpowered: limited numbers of 

individuals were able to take part in these long-lasting and logistically complicated studies. 
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Still, the artificial inoculation model is a unique feature of this study. So far and except for 

our own work, very few studies have been done using artificial inoculation in humans (Cole 

et al., 2018). On the other hand, epidemiological studies usually take place in similar time 

frames as used here. The mutation frequency we observe here during weeks and months will 

be well aligned with those occurring during active outbreaks since these mostly also span 

weeks rather than months. 

 

Conclusion 

Median core genome SNP counts and pairwise SNP divergence for all the strains 

studied here were always lower than 20 over periods up to 3 years of evolution in individual 

carriers. During artificial colonization, where median core genome SNP, and pairwise SNP 

distance scores were 2, there is no early stage selection of different genotypes. In addition, 

during stable long(er) term colonization (up to 3 years) the number of accumulating SNPs 

was low as well. We here suggest an epidemiological median cut off value of 20 SNPs as a 

marker of S. aureus strain identity during outbreaks of infection. Random pattern of pairwise 

SNP divergence between the strains isolated from single carrier suggested that the WGS of 

multiple colonies is necessary for outbreak infection analysis. 
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Abstract 

Clostridioides difficile is a cause of health care-associated infections. The 

epidemiological study of C. difficile infection (CDI) traditionally involves PCR ribotyping. 

However, ribotyping will be increasingly replaced by whole genome sequencing (WGS). 

This implies that WGS types need correlation with classical C. difficile) in order to perform 

retrospective clinical studies. Here, we selected genomes of hyper-virulent C. difficile strains 

of RT001, RT017, RT027, RT078, and RT106 to try and identify new discriminatory markers 

using in silico ribotyping PCR and De Bruijn graph-based Genome Wide Association Studies 

(DBGWAS). First, in silico ribotyping PCR was performed using reference primer sequences 

and 30 C. difficile genomes of the five different RTs identified above. Second, discriminatory 

genomic markers were sought with DBGWAS using a set of 160 independent C. difficile 

genomes (14 ribotypes). RT-specific genetic polymorphisms were annotated and validated 

for their specificity and sensitivity against a larger dataset of 2425 C. difficile genomes 

covering 132 different RTs. In silico PCR ribotyping was unsuccessful due to non-specific or 

missing theoretical RT PCR fragments. More successfully, DBGWAS discovered a total of 

47 new markers (13 in RT017, 12 in RT078, 9 in RT106, 7 in RT027, and 6 in RT001) with 

minimum q-values of 0 to 7.40 × 10−5, indicating excellent marker selectivity. The 

specificity and sensitivity of individual markers ranged between 0.92 and 1.0 but increased to 

1 by combining two markers, hence providing undisputed RT identification based on a single 

genome sequence. Markers were scattered throughout the C. difficile genome in intra- and 

intergenic regions. We propose here a set of new genomic polymorphisms that efficiently 

identify five hyper-virulent RTs utilizing WGS data only. Further studies need to show 

whether this initial proof-of-principle observation can be extended to all 600 existing RTs. 

 

Introduction 

Clostridioides difficile   (C. difficile), formerly known as Clostridium difficile, is an 

anaerobic, spore-forming Gram-positive bacterial species that can survive in harsh 

environments. It can withstand high temperatures, exposure to ultraviolet light, toxic 

chemicals, and exposure to antibiotics. Colonization by C. difficile is asymptomatic. The 

development of disease is mostly driven by host factors and disruption of the gut microbiome 

by frequent consumption of antibiotics (McFarland, 2009, Walk et al., 2012, Walker et al., 
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2013). Toxigenic strains of C. difficile can be a lethal cause of C. difficile infection (CDI), 

which is commonly associated with post antibiotic diarrhea (Lessa et al., 2012, Wiegand et 

al., 2012). C. difficile is present in the environment and can be transmitted to patients or 

healthcare workers through contact with contaminated surfaces. Inter-human spread mainly 

occurs through the fecal–oral route. C. difficile spores are intrinsically resistant to antibiotics 

and remain viable during antibiotic treatment. Clindamycin, cephalosporins, and 

fluoroquinolones are considered as major antibiotics associated with CDI (Deshpande et al., 

2013). Food or water contamination, gastric acid-suppression, and asymptomatic carriage in 

the community are the potential risk factors of community acquired CDI (Namiki and 

Kobayashi, 2018). One-third of the total CDI burden occurring in the USA in 2011 was 

community-associated (Lessa et al., 2015). CDI caused half a million hospital-acquired 

infections and 29,000 deaths in 2012 in the United States (Lessa et al., 2015) and 

approximately 40,000 cases of CDI in Europe (Davies et al., 2014). Only a limited number of 

studies reported emerging CDI in Asia (Borren et al., 2017). The increasing incidence of CDI 

and rapid evolution of antibiotic resistance in C. difficile has become a global threat to public 

health (Balsells et al., 2019, CDC, 2017, Mills et al., 2018). 

CDI diagnosis allows early pathogen isolation and treatment of infection, thereby 

reducing the potential of CDI transmission. Various diagnostic procedures for CDI are 

available, including toxigenic culture, cell cytotoxic neutralization assay, glutamate 

dehydrogenase assay, the detection of toxins by enzyme immunoassays, nucleic acid 

amplification-based molecular tests, etc. (Burnham and Carroll, 2013, Eckert et al., 2013, 

Krutova et al., 2019, Planche and Wilcox, 2011, She et al., 2009, Shetty et al., 2011 ). Still, 

epidemiological C. difficile strain typing is necessary to identify outbreaks within a hospital 

or the wider community and facilitates understanding of the dissemination of infections. 

Ribotyping is a classical technique for C. difficile typing initially based on hybridization 

patterns of conserved ribosomal RNA probe sequences (Chatterjee and Raval, 2019, Dingle 

and MacCannell, 2015). Ribotype (RT) analysis has also been extremely important in the 

long-term surveillance of CDI (Krutova et al., 2018). While traditional typing methods such 

as restriction endonuclease analysis (REA) and pulsed-field gel electrophoresis (PFGE) were 

widely used in the past, PCR-based ribotyping is the current method of choice for C. difficile 

typing (Bidet et al., 1999, Collins et al., 2015). PCR ribotyping is dependent on the 

amplification of the intergenic spacer region (ISR) between 16S and 23S rRNA genes (Indra 

et al., 2010, Indra et al., 2008, Janezic, 2016, Waslawski et al., 2013). Since most bacterial 

species encode multiple ribosomal alleles in their genomes, multiple fragments of different 
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lengths are amplified when different species but also different strains are considered (Indra et 

al., 2010, Indra et al., 2008). There are still considerable constraints on PCR ribotyping 

including elevated costs, a higher probability of false-positive results, and a lack of 

interlaboratory portability (Borren et al., 2017, Martinez-Melendez et al., 2017, Polage et al., 

2015). 

Bacterial whole genome sequencing (WGS) has the potential to provide more detailed 

epidemiological information than classical PCR ribotyping (Collins et al., 2015, Janezic, 

2016). To further explore a WGS-based approach to C. difficile typing, backward 

compatibility with PCR ribotyping is essential (Fawley et al., 2015). Previous studies 

reported the association of RT001, RT017, and RT027 with lethal CDI and considered those 

isolates as hyper-virulent (Arvand et al., 2009, Bauer et al., 2011). A survey conducted in the 

North East of England concluded that RT001, RT027, and RT106 were among the most 

prevalent and dangerous clones (Vanek et al., 2012). In the United States and Europe, RT001, 

RT014, RT020, RT027, and RT078 have been identified as predominant (Giancola et al., 

2018 , Howell et al., 2010 ). RT017 is a globally emerging toxigenic RT and can be found on 

almost every continent (Imwattana et al., 2019, Kim et al., 2016). Thus, here, we tested both 

in silico PCR ribotyping and the De Bruijn graph-based Genome Wide Association Study 

(DBGWAS) (Jaillard et al., 2018a) for their capacity to perform retrospective PCR ribotyping 

for C. difficile RT001, RT017, RT027, RT078, and RT106. These strains were chosen as a 

test set representing global, long-term circulating and clinically relevant epidemic strains. 

The primary study goal was to develop a proof-of-principle procedure for sequence-based C. 

difficile strain typing with retrospective compatibility to established PCR RTs. 

 

Materials and Methods 

In Silico PCR-Based Ribotyping 

We performed in silico PCR using canonical ribotyping PCR primers. Based on the 

reference sequences 16S-USA and 23S-USA (Table 3- 1), in silico PCR was performed using 

the subsequence search tool in BioNumerics v7.6 software (Applied Maths NV, Sint 

Martens-Latem, Belgium). Besides 7 genomes obtained from Creighton University, 23 C. 

difficile genomes of five selected RTs were downloaded from NCBI to verify in silico 

amplification of the ISR region (Supplementary Table S1). 
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Table 3-1: Primer pair used for in silico PCR-based ribotyping of Clostridioides difficile  . 

Primer 
Gene 

Target 

GenBank 

Accession No. 
Sequence (5’–3’) 

Tm 

(°C) 
Reference 

16S-USA 

(Forward) 

16S rRNA 

gene 
FN545816 (12293)GTGCGGCTGGATCACCTCCT (12312) 71.0 

Xiao et al., 

2012 (46) 23S-USA 

(Reverse) 

23S rRNA 

gene 
FN545816 

(12621)CCCTGCACCCTTAATAACTTGACC 

(12598) 
67.1 

 

DBGWAS-Mediated Discovery New RT-Specific Markers 

A total number of 160 C. difficile genome assemblies (training set) of 14 different 

RTs including hyper-virulent RT001, RT017, RT027, RT078, and RT106 were used for the 

discovery of unique RT genomic markers (Table 3- 2). This small training set allowed for the 

development of discriminatory markers to characterize the five major RTs among the 14 

different RTs. Genomes were collected from the National Center for Biotechnology and 

Information (NCBI; www.ncbi.nlm.nih.gov), Creighton University, and the Enterobase 

databases (https://enterobase.warwick.ac.uk). Metadata of these genomes are summarized in 

Supplementary Table S2. 

 

 

Table 3-2: C. difficile ribotypes included in the training dataset along with the number of 

genomes and their source of availability. 

C. difficile Ribotype Number of Genomes Source 

RT001 24 Enterobase, NCBI, Creighton University 

RT002 2 NCBI, Creighton University 

RT003 19 NCBI, Creighton University 

RT005 19 NCBI, Creighton University 

RT010 3 NCBI, Creighton University 

RT014 11 NCBI, Creighton University 

RT015 2 NCBI, Creighton University 

RT017 15 NCBI, Creighton University 

RT023 3 NCBI, Creighton University 

RT027 15 NCBI, Creighton University 

RT046 4 NCBI, Creighton University 

RT078 15 NCBI, Creighton University 

RT106 22 Enterobase, NCBI, Creighton University 

RT126 6 NCBI, Creighton University 

TOTAL 160 
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To identify associations between variant genetic loci and PCR RT, a hypothesis-free 

DBGWAS method was used. DBGWAS defines genetic variants linked to phenotypic traits 

via single nucleotide polymorphism (SNP), insertions, deletions, and consequences of 

recombination (Chewapreecha et al., 2014, Jaillard et al., 2018a). We used an open source 

tool (https://gitlab.com/leoisl/dbgwas) (Jaillard et al., 2018a) The tool is able to cover 

variants in coding as well as non-coding regions of bacterial genomes. DBGWAS was 

performed keeping the tool parameters in the default setting for different C. difficile ribotypes 

(RT001, RT017, RT027, RT078, and RT106) and their RT-specific genetic variants observed 

in the training set. Each C. difficile RT was considered independently in this study. 

DBGWAS identified short signature sequences called (overlapping) k-mers, yielding a 

compact summary of all variations across a set of genomes (Jaillard et al., 2018a). 

Overlapping k-mers are called unitigs and were selected on the basis of their specific and 

unique presence in a particular RT. Q-values define test sensitivity and specificity and are 

Benjamini–Hochberg-transformed p-values for controlling the false-positive results in case of 

multiple testing (Benjamini et al., 1995, Jaillard et al., 2018a). R scripting was used to deal 

with large matrices defining the presence (1) or absence (0) of extracted unitigs in the 

training set of C. difficile genomes. 

 

Validation of Markers 

Validation of novel unitig markers was performed by means of BLAST searches 

against the test set of genomes (Table 3- 3). A wide range of 2425 genomes covering 132 

different C. difficile RTs was downloaded (Frentrup et al., 2019) and processed using a Linux 

shell script. These sequences represented PCR ribotyped strains from different countries and 

clinical and environmental specimens for which phylogenetic analyses were already 

performed by Frentrup et al. (Frentrup et al., 2019) (Supplementary Table S3). A database of 

this test set was created to perform local command line BLAST searches against the set of 

significant unitigs identified above. The specificity of all the unitigs was tested using strict 

parametric filters of 100% coverage and identity. 

 
 

Table 3-3: C. difficile ribotypes downloaded from the Enterobase database as a test dataset 

and the number of genomes included in each ribotype. 

Ribotype Count Ribotype Count Ribotype Count Ribotype Count 
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Ribotype Count Ribotype Count Ribotype Count Ribotype Count 

RT001 206 RT046 3 RT127 1 RT375 1 

RT002 53 RT049 9 RT129 1 RT404 15 

RT003 11 RT050 4 RT137 1 RT413 13 

RT005 14 RT051 1 RT138 1 RT446 2 

RT006 1 RT053 5 RT149 1 RT449 2 

RT009 2 RT054 2 RT150 1 RT451 1 

RT010 7 RT056 5 RT153 1 RT453 1 

RT011 3 RT058 1 RT156 1 RT454 1 

RT012 45 RT060 1 RT157 1 RT456 1 

RT013 1 RT062 2 RT158 1 RT470 1 

RT014 113 RT063 1 RT176 13 RT500 21 

RT015 36 RT066 3 RT193 1 RT534 1 

RT017 272 RT067 1 RT194 1 RT547 1 

RT018 55 RT069 1 RT212 1 RT559 1 

RT019 1 RT070 4 RT220 4 RT563 1 

RT020 44 RT072 1 RT225 1 RT569 1 

RT022 1 RT073 2 RT226 1 RT581 1 

RT023 16 RT075 1 RT236 3 RT585 1 

RT024 1 RT076 2 RT238 1 RT586 1 

RT026 6 RT077 1 RT239 2 RT591 1 

RT027 652 RT078 492 RT241 5 RT598 8 

RT029 3 RT081 2 RT244 9 RT614 1 

RT031 2 RT083 1 RT251 1 RT620 2 

RT032 1 RT084 2 RT262 1 RT629 1 

RT033 5 RT087 8 RT284 1 RT651 1 

RT035 2 RT090 1 RT289 1 RT666 1 

RT036 1 RT094 1 RT290 1 RT668 1 

RT037 1 RT102 1 RT305 1 RT678 1 

RT039 5 RT103 2 RT316 1 RT708 1 

RT042 2 RT106 55 RT321 1 RT719 1 

RT043 2 RT117 2 RT328 2 RT720 1 

RT044 2 RT125 1 RT336 1 RT721 1 

RT045 2 RT126 79 RT356 8 RT722 1 

 

 

Statistically Reliable Ribotype Prediction 
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To evaluate the potential typing significance of the unitigs as compared to the 

classical ribotyping of C. difficile strains, sensitivity and specificity (selectivity) were 

computed for all the unitigs (Baratloo et al., 2015). The efficiency of GWAS can be 

measured by assessing the false discovery rate (FDR) (Bradbury et al., 2011). To increase the 

potential typing significance of our new method, combination statistics were performed. 

Sensitivity and specificity were also computed for certain combinations of two or more 

selected unitig sequences. The parameters defined were, next to the FDR, TP (true-positives, 

correctly predicting positive values, e.g., number of true RT017 predicted as RT017), FP 

(false-positives, missed negative values, e.g., number of non-RT017 genomes still predicted 

as RT017), FN (false-negatives, missed positive values), and TN (true-negatives, correctly 

rejected values). 

 

Functional Annotation of Unitigs 

Selected unitigs were annotated using BLASTn alignment. Well-characterized C. 

difficile genomes were used as a reference to locate these new markers. Specific annotation 

for each marker was filtered out using minimum E-value, 100% identity, 100% coverage, and 

0 gap score. 

 

Results and Discussion 

In Silico PCR 

The visualization of amplified DNA sequences from the intergenic region between 

16S and 23S ribosomal genes is the current Gold Standard for C. difficile typing (Indra et al., 

2010, Xiao et al., 2012). In our study, in silico PCR for 30 randomly selected, well-

characterized C. difficile genome sequences was essentially unsuccessful (Figure 3- 1 and 

Supplementary Table S1). Genome sequences included generated insufficient numbers of 

differently sized fragments. The fragment sizes that were calculated were verified with the 

online tool available at http://insilico.ehu.es/PCR (Borren et al., 2017). On the other hand, 

more recently sequenced C. difficile genomes were showing only one or even none of the 

expected amplified fragments (Supplementary Table S1). There is a substantial possibility 

that the PCR ribotyping fragments observed upon laboratory experimentation for these strains 

may not derive from ISR variants but rather from random amplification. Thus, in silico PCR 

failed to generate reliable RTs which prompted us to explore the feasibility of DBGWAS-
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based typing. Of note, we presume here that NGS-based methods are very likely to be more 

reliable than any of the many other molecular typing methods. 

 

 

Figure 3-1: In silico ribotyping of different C. difficile genome sequences using the ISR 16S 

and 23S USA primer pair. The five panels represent the results obtained for examples of five 

different ribotypes. Bar graphs show the number of theoretical PCR bands (vertical axis, 

number of bands labeled on each bar) in the ribosomal region of respective genome 

sequences (horizontal axis), whereas the genomes without any fragments depict the complete 

absence of primer binding sites in those genomes. Note that the expected outcome would be 

an identical number of fragments for each of the strains belonging to a single ribotype. We 

indicated this number as the first marker of reproducibility; it has to be stated that besides 

this variation of numbers of fragments, the size of the fragment was also determined as a 

variable as well. 

 

New Genotyping Markers 

A total number of 47 RT-specific unitigs (13 for RT017, 12 for RT078, 9 for RT106, 

7 for RT027, and 6 for RT001) were identified. The unitigs shared an average length of 56 

base pairs (Table 3- 4). DBGWAS generated compacted De Bruijn graphs (cDBG) 

containing the specific unitigs as nodes defining a genotypic association between a particular 

RT and the C. difficile genomes included (Figure 3- 2). Unitigs that were specific for a 

particular RT were color-coded according to their association to the RT (red for positive 

association, blue for negative association) and minimum q-values were provided by 
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subgraphs. Q-values for selected unitigs ranged from 0 to 7.40 × 10−5. Significantly 

associated unitigs were extracted as FASTA formatted sequences (Supplementary Table S4). 

 

 

Figure 3-2: Compacted De Bruijn graphs (cDBG) generated by De Bruijn graph-based 

Genome Wide Association Studies (DBGWAS) for RT001 genome sequences. The figure 

illustrates the significance of the nodes (representing the selective sequences called unitigs), 

which are denoted by their estimated effect ranging from high (28.304; red) to low (4.00; 

blue). Allele frequency is represented by the size of the node. The table explains that from the 

two selected significant nodes in terms of their association with ribotype, the node on the top 

right (n180654) is specific to RT001 (called Pheno 1 in the table) and completely absent in 

the other ribotypes in the training set (Pheno 0). Additionally, the q-value linked to the first 

node is very significantly below 0.05 and hence, the estimated effect is high (represented by 

the red color of the node). 

 

Table 3-4: Number of unique markers identified for each C. difficile ribotype, their average 

length, and annotation. 

Ribotype 
Number of 

Markers 

Average Length 

(Base Pairs) 
Annotation (Number of Unitigs) 

RT001 06 59 

1. Intergenic (4) 

2. tRNA uridine-5-carboxymethylaminomethyl synthesis 

enzyme MnmG (1) 

3. rRNA-23S ribosomal RNA (1 excluded from the list) 

4. Unknown (1) 

RT017 13 69 

1. Intergenic (3) 

2. Membrane spanning protein (1) 

3. Ribosome small subunit-dependent GTPase A (1) 

4. Hypothetical protein (1) 

5. EAL domain-containing protein (2) 

6. Glutamate 2,3-aminomutase (1) 

7. MurR/RpiR family transcriptional regulator (1) 

8. GGDEF domain-containing protein (1) 
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Ribotype 
Number of 

Markers 

Average Length 

(Base Pairs) 
Annotation (Number of Unitigs) 

9. Glyoxalase-like domain protein (1) 

10. Radical SAM protein (1) 

RT027 07 53 

1. Collagen-like exosporium glycoprotein BclA2 (1) 

2. Intergenic (5) 

3. Unknown (1) 

RT078 12 42 

1. IS200/IS605 family element transposase accessory 

protein TnpB (1) 

2. Spore surface glycoprotein BclB (4) 

3. Collagen-like exosporium glycoprotein (BclA2) (3) 

4. Unknown (partial with ABC transporter permease) (1) 

5. Intergenic (1) 

6. Site-specific integrase (1) 

7. S8 family peptidase (1) 

RT106 09 55 

1. Intergenic (3) 

2. ABC transporter permease (2) 

3. Hypothetical Protein (1) 

4. 3-Hydroxybutyryl-CoA dehydrogenase (1) 

5. Potassium transporter (2) 

 

Validation of Markers 

Unitigs showing 100% identity in all genomes belonging to a single RT in the 

validation set demonstrated the efficiency of these unique patterns to carry out in silico 

ribotyping. Although the individual unitig-based characterization of C. difficile strains was 

not absolute, it allowed RT determination with approximate sensitivity and specificity of 

between 0.90 and 1.0 (Figure 3- 3). FDR for all the unitigs for RT017 was the lowest (0.06) 

followed by RT027 (0.08), RT078 (0.23), RT001 (0.30), and RT106 (0.46) (Figure 3- 3). 
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Figure 3-3: Statistical comparison of genome typing efficiency of discovered unique patterns. 

 

Some of the unitigs were shared by closely related RTs. Unitigs for RT001 were able 

to identify the genetically closely related RT087, RT241, and RT012, which altogether form 

a clonal complex (CC) 141 (Frentrup et al., 2019). One of the markers identified for RT017 

showed no false-positives or false negatives. Other markers for RT017 initially generated a 

small number of false-positives, but 100% true-positives in the validation dataset. Markers 

for RT078 identified 78 out of 79 isolates of RT126 and all of the RT413 strains from the test 

dataset, likely due to the close genetic relatedness of these RTs (CC 1) (Alvarez-Perez et al., 

2017, Frentrup et al., 2019, Schneeberg et al., 2013). Unitig sequences for RT106 were also 

able to identify C. difficile RT500 along with RT106 from the test set. Phylogenetic grouping 

of C. difficile genomes (Frentrup et al., 2019) showed that C. difficile core genome multi 

locus sequence typing (cgMLST) of RT106 and RT500 (CC 22) generated completely 

indistinguishable groupings. Considering closely related strains as true-positives based on 

their respective RTs, the FDRs for each unitig subset were found to be smaller, underscoring 

the biological consistency of the results. Adding genomes of RT413, RT126, and RT500 to 

the training set resulted in a decreased FDR rate. The continuously increasing number of 

publicly available C. difficile genome sequences will provide substantial opportunities for 

improvement of our new characterization technique. 

 

Marker Combination Study 
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For the ribotypes RT027, RT078, RT106, and RT001, every possible combination of 

RT-specific unitigs was created and tested for statistical significance. A combination of two 

unitigs was shown to increase sensitivity and specificity up to 1 and to reduce the FDR to 

0.05 (Figure 3- 4A–D). Each combination was defined on the basis of logical operators 

“AND/OR”. The AND operator symbolizes that both the markers in a combination need to be 

present with 100% identity, whereas the OR operator means that any one of the two markers 

in a combination need to be present at one time, again with 100% sequence identity. There is 

no combination required in the case of RT017. Conclusively, as clearly exemplified in Figure 

3- 4A–D, in certain cases, the combination of markers improves RT testing by suppression of 

the false discovery rate. Marker’s SEQ ID numbers and their sequences are given in 

Supplementary Table S4. 

 

 

 
 

Figure 3-4: (A–D) Statistical reliability in terms of sensitivity, specificity, and false discovery 

rate (FDR) for the combination of two selected markers using OR operator for the 

identification of C. difficile RT027 (Panel A) and RT078 (Panel B). Panels C and D display 

similar analyses but then using the AND operator for identification of RT106 and RT001, 

respectively. 

 

Functional Annotation of Markers 

Functional characterization of the regions from which our unitigs originated 

demonstrated that 34% of the unitigs were localized in intergenic regions (five for RT027, 

four for RT001, three for of RT017 and RT106 each, and one for RT078 (Figure 3- 5, Figure 

https://www.mdpi.com/diagnostics/diagnostics-10-01078/article_deploy/html/images/diagnostics-10-01078-g004.png
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3- 6, Figure 3- 7, Figure 3- 8 and Figure 3- 9). Six percent of all markers were left 

unannotated in RT001, RT027, and RT078 (one marker for each) (Table 3- 4). Only RT001 

was identified with a unitig marker residing within the rRNA-23S ribosomal gene showing at 

least some correspondence with ribotyping (Figure 3- 5). This marker did not show sufficient 

diagnostic power and was thus not selected in the final set of markers. All other markers were 

observed to be scattered throughout the C. difficile genome. In RT078, one of these markers 

was identified in a mobile genetic element (Figure 3- 8). Mostly, genes and intergenic regions, 

apart from the conserved ribosomal ISR, were observed to play a potential role in the unitig-

mediated C. difficile typing. 

 

 

Figure 3-5: Functional annotation and location of DBGWAS markers on the reference 

genome of C. difficile RT001. Functional annotation and location of DBGWAS markers on 

the reference genome of C. difficile RT001. Both central rings represent the genome 

annotation (reverse inside, forward outside), while the outer and inner rings represent the 

signature sequences (unitigs) (reverse inside, forward outside). 
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Figure 3-6: Functional annotation and location of DBGWAS markers on the reference 

genome of C. difficile RT017. 

 

 

Figure 3-7: Functional annotation and location of DBGWAS markers on the reference 

genome of C. difficile RT027. 
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Figure 3-8: Functional annotation and location of DBGWAS markers on the reference 

genome of C. difficile RT078. 

 

 

Figure 3-9: Functional annotation and location of DBGWAS markers on the reference 

genome of C. difficile RT106. 



76 
 

 

Conclusions 

Strain typing has a proven value in monitoring the persistence and spread of bacterial 

pathogens in human populations. For C. difficile, PCR ribotyping is the current first choice 

but may be challenged now that genome sequencing is an option. No single-step test or 

algorithm is available so far for correlating C. difficile RTs with WGS data. This implies that 

there may be an issue with the correlation between WGS-based epidemiological analysis and 

PCR ribotyping for C. difficile. Here, we show that DBGWAS identified unique genomic 

markers that would suit that specific purpose. A combination of two unitigs led to 100% 

sensitive and specific discrimination between five important RTs. We believe that this 

approach is highly promising, providing a clear opportunity to define backward compatibility 

between classical RTs and WGS data. 

 

Supplementary Materials 

The following are available online at https://www.mdpi.com/2075-

4418/10/12/1078/s1. Table S1 describes a collection of genome sequences that were used for 

the in silico search of ribotypes based on amplification of tentative ISRs. Table S2 contains a 

training set of C. difficile genomes used for the initial DBGWAS. Table S3 contains the C. 

difficile genomes used for DBGWAS validation. Table S4 shows a review of all unitigs that 

are statistically significantly associated with specific ribotypes. 
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Chapter 4  
Different SARS-CoV-2 haplotypes associate with geographic 

origin and case fatality rates of COVID-19 patients 
 

Manisha Goyal, Katrien De Bruyne, Alex van Belkum, Brian West 

 

Highlights 

• Different allelic variants among 692 SARS-CoV-2 genome sequences display a statistically 

significant association with geographic origin and also COVID-19 case severity. 

• Geographic variation is associated with both case severity and allelic variation especially in 

strains of Indian origin 

• An apparent association between viral genotype and patient case severity is likely due to 

shared geographic heterogeneity, rather than a direct effect 
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Summary 

The current pandemic of COVID-19 is caused by the SARS-CoV-2 virus for which 

many variants at the Single Nucleotide Polymorphism (SNP) level have now been identified. 

We show here that different allelic variants among 692 SARS-CoV-2 genome sequences 

display a statistically significant association with geographic origin (p < 0.000001) and 

COVID-19 case severity (p = 0.016). Geographic variation in itself is associated with both 

case severity and allelic variation especially in strains from Indian origin (p < 0.000001). 

Using an new alternative bioinformatics approach we were able to confirm that the presence 

of the D614G mutation correlates with increased case severity in a sample of 127 sequences 

from a shared geographic origin in the US (p = 0.018). While leaving open the question on 

the pathogenesis mechanism involved, this suggests that in specific geographic locales 

certain genotypes of the virus are more pathogenic than others. We here show that viral 

genome polymorphisms may have an effect on case severity when other factors are controlled 

for, but that this effect is swamped out by these other factors when comparing cases across 

different geographic regions. 

 

Introduction 

The SARS coronavirus-2 (SARS-CoV-2) causes COVID19 (Kadkhoda, 2020). This 

disease is now pandemic and it is killing hundreds of thousands of people on a global scale 

(e.g. (Potere et al., 2020)). Viruses, especially those with an RNA genome, have a tendency 

to evolve relatively rapidly during episodes of intense geographic spread. Using modern 

genomic sequencing technologies the genetic changes associated with global but also more 

local dissemination can be documented rapidly (Sekizuka et al., 2020). Also, within viral 

populations variants can be traced due to the quasi-species nature of the SARS-CoV-2 virus 

(Jary et al., 2020). For SARS-CoV-2 thousands of Single Nucleotide Polymorphisms (SNPs) 

have already been identified, several of which have become fixed in the more recent, 

geographically defined viral populations at large (Saha et al., 2020, Sapoval et al., 2020, 

Kaushal et al., 2020, Yang et al., 2020). Rapid regional spread of SARS-CoV-2 may lead to 

increased allelic variability during periods of extended transmission (Gudbjartsson et al., 

2020). Although not all of these SNPs translate in amino acid variation in coding sequences 

(CDS), a significant portion does change the structure of important viral proteins. It is 



83 
 

currently not clear what the effect of such variations is on viral phenotypes (e.g. its capacity 

to adhere to target host cells, efficiency of invasion of host cells, rapidity of replication, 

disease features in infected hosts etc) also because defining such effects is usually performed 

in artificial in vitro models. Such models are often cumbersome, have an intrinsic infectious 

risk for those working with it and may not adequately represent the real-life in vivo situation 

(Lamers et al., 2020, Leibel et al., 2020). Modern bioinformatics tools may add flexibility to 

such laborious assays and are helpful in defining associations between viral genome variation 

and differential effects that such viral variants have during infection (Gallego et al., 2004, Ji 

et al., 2020). 

Many physiological and clinical parameters have been described that significantly 

contribute to COVID-19 mortality. Among these are advanced age (Papadopoulos et al., 

2021), smoking (Grundy et al., 2020) obesity (Hussain et al., 2020), diabetes (Rajpal et al., 

2020), hypertension (Zaki et al., 2020), cardio-vascular problems (Mishra et al., 2020) and 

quite some others (Thompson et al., 2020, Williamson et al., 2020). Relatively little 

information is available on the contribution to disease severity and mortality by viral 

variability itself (Pachetti et al., 2020). A physiologically important mutation changing the 

amino acid sequence of the RNA-dependent RNA polymerase (RdRp) was noted but the 

effect on disease severity could not be assessed. Furthermore, it was shown that a 328 

basepair deletion in ORF8 clinically associated with a lesser chance for developing hypoxia 

during COVID-19 (Young et al., 2020). Very recently however, (Toyoshima et al., 2020), 

(Nakamichi et al., 2020) and (Hodcroft et al., 2020) reported the first viral mutations that 

associated with fatality rates for COVID-19 and concluded that viral variation, together with 

host susceptibility and the environment co-define the course of COVID-19. 

Using a novel viral typing tool, we here assess SNP-based haplotype variation in a 

large set of SARS-CoV-2 genome sequences, define the SARS-CoV-2 population structure 

and dynamics and associate these with clinical findings, including fatality rates, among 

patients. 

 

Materials and methods 

Collection of viral sequence information and database development 
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SARS-CoV-2 viral genome sequences were collected using the Global Initiative on 

Sharing Avian Influenza Data (GISAID) database which combined more than 90.000 genome 

sequences including phenotypic and disease-related metadata. Over 6400 of these sequences 

included relatively complete dossiers on patient status information. Sequences and metadata 

were stored, processed, and analyzed in a BIONUMERICS (v8.0) database, with a SQLite 

backend. Data quality assessment was performed by filtering the GISAID sequences for 

completeness (>29,000 bp) and by comparing genome sequences to the NC_045512 NCBI 

reference sequence. Genomic sequences were only analyzed when every CDS was the same 

length as the matching CDS in the NC_045512 reference sequence, i.e. without insertions or 

deletions. 

 

Bioinformatic analysis of viral sequences 

The BIONUMERICS SARS-CoV-2 plugin tool (bioMérieux, Applied Maths, Sint-

Martens-Latem, Belgium) facilitates the processing and combined analysis of SARS-CoV-2 

genomic sequences, whether downloaded from a public data repository or generated locally. 

The plugin tool is part of the BIONUMERICS platform and can be only used in the context 

of this software package. Each genomic sequence imported into BIONUMERICS was 

separated by the plugin tool into subsequences matching the annotated CDSs while ignoring 

the small fraction of intergenic regions in the NCBI reference sequence for SARS-CoV-2 

(NC_045512). Next, each of these sequences was analyzed for SNPs relative to the reference 

sequence. SNPs were stored in the database as a character type experiment to be used for 

comparison and strain typing using BIONUMERICS' clustering tools (dendrograms and 

minimum spanning trees). SNPs were also translated, enabling SNP interpretation based on 

actual amino acid changes. The “haplotype”, as defined in the plugin, was determined by 

categorization of a set of common missense SNPs translated into amino acids (Sekizuka et al., 

2020). This haplotype information was also stored in the database and displayed on the trees 

and networks for easy group detection. 

 

Tool modules 

After being downloaded from GISAID, FASTA-formatted genomic sequences were 

imported into the database using a dedicated sequence import routine available in 

BIONUMERICS. The SARS-CoV-2 plugin applied a BLAST approach to extract 26 
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subsequences from each genome. The subsequences of sample Wuhan-Hu-1 (NC_045512), 

installed automatically by the plugin, were used as reference sequences for the BLAST 

searches. The subsequences extracted from the genomic sequences were stored in the 

corresponding destination sequence type experiments. These sequence types were identified 

by ORF and, for ORF1, an additional Nuclear Shuttle Protein (nsp) tag. After the BLAST 

screening, the following detailed results were reported for each destination sequence type 

(Locus column): whether or not a BLAST hit was found, its position on the genome sequence 

(Start and Stop), sequence identity (Identity (%)) and sequence overlap (Length (%)), the 

length of the retrieved subsequence, the number of mismatches with the reference sequence 

(Mismatches) and the number of gaps (Open gaps) and length correction (if applied). 

 

Haplotype determination 

In the second step of the process, the haplotypes were determined for each sample. 

The haplotype, as defined in the SARS-CoV-2 plugin, consists of a set of high-frequency 

amino acid substitutions which are summarized in Table 4- 1. Three pairs of these 

substitutions were observed to be in linkage disequilibrium (DP/GL, YP/CL, and QT/HI). 

The substitutions are ordered on the basis of the date on which they first appeared, as inferred 

by Nextstrain (Hadfield et al., 2018) and with the most frequent ones being: S.DP.YP.QT, 

S.DP.CL.QT, L.DP.YP.QT, L.GL.YP.QT, L.GL.YP.HT, L.GL.YP.HI, L.GP.YP.QT and 

L.GP.YP.HT (see Figure 4- 1 for a review on their relative abundance among isolates of 

SARS-CoV-2). 

 

Table 4-1: SARS-CoV-2 amino acid substitutions giving rise to haplotype variation as 

defined by genomic locus, position, and inferred date. 

Substitution Locus Codon # Date 

L - > S ORF8 84 2020-01-12 

D - > G S 614 2020-01-12 

P - > L ORF1b 314 2020-01-13 

Q - > H ORF3a 57 2020-01-23 

T - > I ORF1a 265 2020-02-23 

Y - > C ORF1b 1464 2020-02-23 

P - > L ORF1b 1427 2020-02-23 
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Figure 4-1: SARS-CoV-2 haplotype counts among samples included in this study providing 

adequate patient status assessment. 

 

SNP calculation 

After extraction, the plugin screened each subsequence for SNPs by automating the 

built-in BIONUMERICS SNP analysis tool. The resulting SNP set was filtered based on the 

relaxed (non-ACGT bases allowed) SNP filtering template and the retained SNPs were stored 

in the SNP character experiment. 

 

Clustering SNP data into dendrograms 

Entries to be clustered were selected based on suitability. In the first step, all selected 

entries were screened for the presence of the subsequences extracted in the prior processing 

step. Entries for which one or more subsequences are missing have an incomplete SNP 

character set and were excluded from the comparison. A similarity matrix was calculated 

based on the SNP experiment, using the categorical (differences) similarity coefficient, and 

displayed in the similarities panel. A dendrogram was then calculated based on the complete 

linkage (furthest neighbor) clustering algorithm (Sneath and Sokal, 1973). A minimum 
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spanning tree (MST) was then calculated in the advanced cluster analysis window of 

BIONUMERICS, using default priority rule settings. The SNPs stored in the SNP experiment 

of the selected entries were translated and the amino acids stored in the SNP_TRANSL 

experiment file. 

 

Case severity 

The patient status information for each genome sequence was imported as a category 

(e.g. “asymptomatic”, “hospitalized”, “deceased”). Each patient's status was evaluated 

sometime between when the sample taken and when it was submitted, and does not 

necessarily reflect the case's outcome. We created a decision network in BIONUMERICS to 

convert each category to an integer value representing increasing case severity, on a scale 

from 1 to 6 (Table 4- 2). 

Table 4-2: Patient status transformation into a numerical score of case severity. 

Patient Status Case Severity 

Asymptomatic 1 

Mild case/Outpatient/Retirement home/Symptomatic 2 

Alive/Released/Recovered 3 

Hospitalized 4 

Severe/ICU 5 

Deceased 6 

 

 

Statistical analysis 

Tables of contingencies between two different categories (e.g. haplotypes and 

countries) were evaluated for unexpected frequencies with the chi-squared test. Distributions 

of case severity rankings across three or more categories (e.g. haplotypes or countries) were 

evaluated with the Kruskal-Wallace H test by ranks. Distributions of case severity rankings 

across two categories were evaluated with the Mann-Whitney test by sum of ranks. 

 

Results 

We extracted 692 SARS-CoV-2 genomic sequences originating from the USA, India, 

Italy, France and Spain from the GISAID database. These regions were chosen for being well 
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represented among sequences with complete patient status metadata. The MST for these 

sequences shows a high degree of genotypic heterogeneity within each country although 

clusters representing local dissemination of closely related genotypes were obviously 

observed as well (Figure 4- 2). Figure 4- 2 also illustrates that strains deriving from the USA 

and India show global representation as well. Of note, certain types are genuinely pandemic 

whereas others are more geographically restricted. 

 

Figure 4-2: Minimum spanning tree for all SARS-CoV-2 genomes included in the present 

study. Genomes are labeled by haplotype and color-coded by country of origin. 

 

Overall, there was a significant association between haplotype and case severity with 

haplotype (H = 2.360; p = 0.016743) (Figure 4- 3). There was also a strong association (H = 

58.285; p = 0.000000) between case severity and country (Figure 4- 4). Furthermore, a 

contingency table shows a highly significant association (Chi square = 597.170, P = 0.000000) 

between haplotype and country (Table 4- 3). It shows that L.GL.YP.QT is widespread but 

predominates in Italy; that L.GL.YP.HT is found primarily in India; that S.DP.YP.QT is 

prominent mostly in Spain; and that L.GL.YP.HI predominates in the United States. An 
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examination of case severity versus haplotype within each country showed mixed results; 

only data from Italy and Spain showed a significant association (Table 4- 4). 

 

 

 

Figure 4-3: COVID-19 case severity by haplotype distribution (H = 2.360; p = 0.016743). 



90 
 

 

Figure 4-4: Overview of COVID-19 case severity by country of origin (H = 58.285; p = 

0.000000). 

 

Table 4-3: Contingency table for haplotype by country, with SARS-CoV-2 sequence counts 

shown; Chi square = 597.170, P = 0.000000. 

 L.DP. 

YP.QT 

L.GL. 

YP.HI 

L.GL. 

YP.HT 

L.GL. 

YP.QT 

L.GP

.YP.

HI 

L.GP.Y

P.HT 

L.GP.Y

P.QT 

S.DP.C

L.QT 

S.DP.YP

.QT 

USA 8 131 14 22 2 2 1 11 8 

India 4 1 62 46 0 1 0 0 1 

Spain 5 2 1 44 0 0 5 0 33 

Italy 6 0 0 81 0 0 0 0 0 

France 6 26 16 22 0 0 0 0 0 

 

 

Table 4-4: ANOVA tests on numerical case severity versus SARS-CoV-2 haplotype. 

Country Statistic P-value 

http://l.gp.yp.ht/
http://l.gp.yp.ht/
http://s.dp.cl/
http://s.dp.cl/
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Country Statistic P-value 

USA H = 11.222 0.129228 

India H = 0.557 0.756956 

France H = 2.383 0.496744 

Italy 

Sum of ranks: 

L.GL.YP.QT: 3429 

L.DP.YP.QT: 399 

0.023739 

Spain H = 14.210 0.006653 

 

To minimize geographic factors while maximizing genetic diversity, we selected the 

sequences from California for further analysis. As shown in Table 4- 5, these 133 sequences 

included all nine haplotypes, 20 of which were “D” types. A single CA sequence was 

submitted by Naval Health Research Center. A Kruskal-Wallis test by ranks did not show a 

statistically significant association between haplotype and case severity (Figure 4- 5). 

However, there was an apparent trend with regard to the D614G mutation (Figure 4- 6). By 

grouping the haplotypes into “D” and “G” types, a Mann-Whitney test revealed a significant 

association between the D614G genotypes and case severity (p = 0.031085). This is once 

more reflected in the MST (Figure 4- 7) where all of the deceased patients are shown to fall 

within the G allele group. 

 

Table 4-5: SARS-CoV-2 haplotype counts for geographic divisions. 

 

 L.DP. 

YP.QT 

L.GL. 

YP.HI 

L.GL. 

YP.HT 

L.GL. 

YP.QT 

L.GP.Y

P.HI 

L.GP.Y

P.HT 

L.GP.Y

P.QT 

S.DP.C

L.QT 

S.DP.YP

.QT 

California 8 76 14 18 2 2 1 6 6 

Gujarat 2 1 62 44 0 1 0 0 0 

Ile de 

France 

6 26 16 22 0 0 0 0 0 

Louisiana 0 40 0 0 0 0 0 0 0 

Abruzzo 0 0 0 23 0 0 0 0 0 

Basque 

Country 

0 0 0 13 0 0 3 0 5 

Lombardy 0 0 0 19 0 0 0 0 0 

Texas 0 9 0 3 0 0 0 1 2 

Friuli 

Venezia 

Giulia 

0 0 0 12 0 0 0 0 0 
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 L.DP. 

YP.QT 

L.GL. 

YP.HI 

L.GL. 

YP.HT 

L.GL. 

YP.QT 

L.GP.Y

P.HI 

L.GP.Y

P.HT 

L.GP.Y

P.QT 

S.DP.C

L.QT 

S.DP.YP

.QT 

Apulia 0 0 0 12 0 0 0 0 0 

Andalusia 2 1 0 0 0 0 1 0 7 

Aragon 1 0 1 7 0 0 0 0 1 

Galicia 0 0 0 5 0 0 0 0 4 

La Rioja 0 0 0 0 0 0 0 0 9 

Castilla 0 0 0 2 0 0 0 0 5 

Campania 0 0 0 7 0 0 0 0 0 

Puerto Rico 0 3 0 1 0 0 0 3 0 

Lazio 6 0 0 1 0 0 0 0 0 

Veneto 0 0 0 6 0 0 0 0 0 

Melilla 0 1 0 4 0 0 0 0 0 

Catalunya 0 0 0 4 0 0 1 0 0 

Madrid 1 0 0 4 0 0 0 0 0 

Telangana 2 0 0 2 0 0 0 0 0 

Navarra 0 0 0 3 0 0 0 0 0 

Comunitat 

Valenciana 

0 0 0 1 0 0 0 0 2 

Canarias 1 0 0 1 0 0 0 0 0 

South 

Carolina 

0 2 0 0 0 0 0 0 0 

Florida 0 1 0 0 0 0 0 0 0 

Marche 0 0 0 1 0 0 0 0 0 

None 0 0 0 0 0 0 0 0 1 

Montana 0 0 0 0 0 0 0 1 0 
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Figure 4-5: COVID case severity versus haplotype in California, USA (H = 12.514; p = 

0.129694). 

 

 

 

Figure 4-6: COVID case severity versus the D614G mutation (Sum of ranks: G 7913.5, D 

997.5; p = 0.031085). 
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Figure 4-7: Minimum spanning tree covering haplotype diversity at the D614G level in 

association with disease severity. Note that deceased patients are entirely in the G cluster, as 

are all but one of the still hospitalized patients. 

 

Discussion 

Several studies have addressed the relevance of human genetic polymorphism in 

severity and mortality of COVID-19 (Bosso et al., 2020, Li et al., 2020, Lu et al., 2020, 

McCoy et al., 2020, Asselta et al., 2020). Host variation is usually associated with pathogen 

adaptation and evolution. The relevance of viral variation in this respect has been studied by 

(Parlikar et al., 2020) who analyzed 167 SARS-CoV-2, 312 SARS-CoV, and 5 Pangolin CoV 

genomes to help understand their origin and evolution. The phylogeny of the subgenus 

Sarbecovirus confirmed the fact that SARS-CoV-2 strains evolved from their common 

ancestors putatively residing in bat or pangolin hosts. These authors predicted a few country-

specific patterns of relatedness but failed to document any relatedness between genotypes and 

disease phenotypes in human patients. Two other recent publications again touch upon a lack 

of viral variation in the development of more or less serious disease. In the review by 

(Callaway et al., 2020) it is concluded that viral mutations do not contribute to mortality and 

that more likely than not environmental conditions have a more significant clinical impact 

than viral variation. (Zhang et al., 2020) conclude similarly, based on the bioinformatic 

analyses of experimentally defined genome sequences. In this study, the number of clinical 

isolates sequenced may have been a limiting factor. 
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We have here set out to correlate viral genotypes with host phenotypes in more detail 

using a large number of SARS-CoV-2 genome sequences from a broader geographic origin. 

We show that genotypic variants across multiple geographic regions are associated with 

variation in case severity. Given the likelihood that both genotype and case severity are 

influenced by other geographic factors, we controlled for geographic variation by focusing on 

one region with a relatively high degree of genotypic variation. Within this region, we 

showed a significant association between the D614G mutation and case severity. We also 

demonstrated that controlling for confounding parameters had a big effect on retrieving 

significant correlations between viral types and pathogenicity within patients. 

 

The D614G mutation has received a great deal of attention with respect to its rapid 

global dissemination (Dearlove et al., 2020) and its significant influence on the spike 

protein's affinity for the ACE2 receptor. Recent studies demonstrated that in situ images of S 

trimer conformational changes were affected by the D614G substitution (Ke et al., 2020). 

This mutation abolishes a salt bridge to K854 and may reduce folding of the 833–854 loop. It 

has been suggested (Korber et al., 2020) that this mutation increases the virus' transmissibility, 

without necessarily increasing its virulence, thereby explaining its rapid spread in multiple 

locations. A counterargument (Grubaugh et al., 2020) has proposed that genetic drift and 

founder effects could also explain this pattern. More recently, the D614G mutation was 

identified as a marker associated with fatality rate at a countrywide level (Toyoshima et al., 

2020). Our current results support these findings independently, using a completely different 

set of sequences and an alternative bioinformatic approach, and here show that this mutation 

could in fact result in increased case severity. However, we cannot rule out the possibility 

that transmissibility and virulence are not independent. Even if 614G is not more virulent 

than its D614 ancestor, ease of transmission could lead to higher viral loads in actual patients, 

thereby increasing the likelihood of severe cases. The polymorphisms we have identified in 

this project may have an effect on case severity when other factors are controlled, but that 

this effect is swamped out by these other factors when comparing cases across different 

geographic regions. Future studies should investigate the relationships among genotype, viral 

load, and patient outcome to sort out the underlying mechanisms. 

Although this study focused on genotypes that were of particular interest at the time 

the data were gathered, our approach could be adapted easily to novel variants such as 

B.1.1.7, first observed in the UK (England, 2020). A recent update to the BIONUMERICS 
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SARS-CoV-2 plugin includes a tool to identify mutations relative to the reference sequence 

that are monomorphic for the samples of interest. For example, a set of known B.1.1.7 

samples can be used to define a set of characteristic mutations, which can then be used to 

identify unknown samples. Once samples are characterized as variants in this way, they can 

be compared to other variants in terms of geography, patient outcome, and other 

epidemiological factors. 
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ABSTRACT 

We have previously studied carbapenem non-susceptible Pseudomonas aeruginosa 

(CNPA) strains from intensive care units (ICUs) in a referral hospital in Jakarta, Indonesia 

(Pelegrin AC, 2019). We documented that CNPA transmissions and acquisitions among 

patients were variable over time and that these were not significantly reduced by a set of 

infection control measures. Four high risk international CNPA clones (sequence type (ST)235, 

ST823, ST357, ST446) dominated and carbapenem resistance was due to carbapenemase-

encoding genes and mutations in the porin OprD. We present a more detailed genomic 

analysis of these four major clones. 

With whole genome-based Multi Locus Sequence Typing (wgMLST) of the 4 CNPA 

clones, three to eleven subgroups with up to 200 allelic variants were observed for each of the 

CNPA clones. Furthermore, we analyzed the three largest CNPA clone clusters for the 

presence of Single Nucleotide Polymorphisms (wgSNP) to redefine CNPA transmission 

events during hospitalization. A maximum number 35350 SNPs (including non-informative 

SNPs) and 398 SNPs (excluding non-informative SNPs) was found in ST235, 34570 SNPs 

(including non-informative SNPs) and 111 SNPs (excluding non-informative SNPs) in ST357 

and 26443 SNPs (including non-informative SNPs) and 61 SNPs (excluding non-informative 

SNPs) in ST823. SNPs that are excluding non-informative SNPs were commonly noticed in 

sensor-response regulator genes, however the majority of non-informative SNPs was found in 

conserved hypothetical proteins or in uncharacterized proteins. Of note, antibiotic resistance 

and virulence genes segregated according to the wgSNP analyses. A total of 11 transmission 

chains for ST235 strains were traceable, followed by 6 and 5 possible transmission chains for 

ST357 and ST823. The present study demonstrates the value of detailed whole genome 

sequence analysis for highly refined epidemiological analysis of P. aeruginosa. 
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INTRODUCTION 

Pseudomonas aeruginosa is a metabolically versatile Gram-negative bacterial species 

often blooming in soil and aquatic environments. It effectively colonizes the exposed surfaces 

of plants, animals and humans (Klockgether and Tummler, 2017, Kerr and Snelling, 2009). 

Being an opportunistic pathogen, P. aeruginosa is responsible for a broad spectrum of acute 

and chronic infections leading to high morbidity and mortality rates (Bedard et al., 2016, Juan 

et al., 2017, Jacobs et al., 2020). P. aeruginosa causes, amongst others, bloodstream 

infections in immunocompromised patients and healthcare-associated infections such as 

ventilator-associated pneumonia and wound infections (Lodise et al., 2007, Kerr and Snelling, 

2009, Doring et al., 2011). In the USA, P. aeruginosa causes a total of about 51,000 deadly 

healthcare infections per year (Fujii et al., 2014, CDC, 2019, Health and Services, 2019). 

Moreover, P. aeruginosa is known for its potential multidrug resistance (MDR) and has 

become one of the most troublesome causes of a wide range of intensive care unit (ICU)-

acquired infections (Moore et al., 2014). The ability to develop antibiotic resistance via both 

mutations and resistance gene acquisitions renders P. aeruginosa an increasingly problematic 

human pathogen (Livermore, 2002, Cabot et al., 2016, De Oliveira et al., 2020). Mutations 

that cause antibiotic impermeability via the loss of OprD transmembrane channels are 

important in antimicrobial resistance (AMR) to carbapenems (STUDEMEISTER and QUINN, 

1988, Livermore, 2002, Suresh et al., 2020, Puja et al., 2020). MDR isolates require careful 

epidemiological tracing, both locally, nationally and globally. 

Microbiological epidemiology defines patterns of distribution for pathogens such as P. 

aeruginosa. It also precisely assesses spreading of infectious diseases in a variety of 

populations (Gad, 2014). In practice, microbiological epidemiological analysis often begins 

with microbial strain characterization. Multi Locus Sequence Typing (MLST) is a commonly 

used classical approach for P. aeruginosa strain characterization, it accurately defines 

evolutionary descent and lineages but it lacks the necessary resolution for the precise 

characterization of outbreaks caused by closely related, contemporaneous bacterial isolates 

(Inns et al., 2015a, Ashton et al., 2016b). Several studies have evaluated the discriminatory 

power and concordance of different typing methods (Rumore et al., 2018b, Gateau et al., 

2019b). However, high throughput whole genome sequencing (WGS) is rapidly becoming the 

most efficient solution for strain typing of P. aeruginosa, both for surveillance as for 

(retrospective) outbreak investigations (Kan et al., 2018b). WGS facilitates whole genome 

MLST (wgMLST) which displays higher discrimination than conventional MLST which is 
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based on the analysis of seven housekeeping genes. wgMLST reliably recognizes and 

quantifies the genetic links between epidemiologically related isolates within various bacterial 

species (Cody et al., 2013, Joensen et al., 2014b, Kovanen et al., 2014b). A recent study (Blanc 

et al., 2020) showed that the P. aeruginosa wgMLST scheme in BioNumericsTM is as 

discriminatory as the core genome Single Nucleotide Polymorphism (cgSNP) calling approach 

and is hence useful for outbreak investigations. Whole genome SNP-analysis (wgSNP) is a 

more advanced method of exploiting variation at the WGS level to help identify bacterial 

transmission dynamics and to generate useful insights into the sources and routes of infection, 

again for essentially all bacterial species (Bakker et al., 2011, Halachev et al., 2014a, Taylor et 

al., 2015).  

In a prior study, relatedness of carbapenem non-susceptible P. aeruginosa (CNPA) 

strains from an Indonesian hospital was analyzed at the cgSNP level (Pelegrin et al., 2019). In 

the present study, epidemiological correlation between the same isolates is studied on the basis 

of wgMLST and wgSNP analyses. Detailed wgSNP analysis was done for the pandemic P. 

aeruginosa sequence types (ST) ST235, ST357 and ST823 to reveal exact transmission 

patterns among patients and between patients, and the environment.  

 

METHODOLOGY 

Strain collection 

We have used preexisting genomic data of CNPA strains collected in two ICU’s of a 

large referral hospital in Jakarta, Indonesia (see the dataset used by (Pelegrin et al., 2019, 

Saharman et al., 2019 ). For each patient involved the dates of admission and discharge from 

the ICU were available, as well as the date of all cultures taken during ICU stay. All patients 

were screened for CNPA on admission, at discharge and weekly if their stay exceeded 7 days. 

Patients were additionally sampled upon clinical indication. Patients were enrolled in two 

separate episodes, before and after an infection prevention and control intervention. In the 

pre-intervention period ICU personnel was screened once and the ICU environment was 

screened twice  

For the present study all CNPA genome sequences were assembled and analyzed using 

BioNumericsTM (Applied Maths, bioMérieux, Belgium). Antibiotic susceptibility testing 
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(AST) of CNPA strains was performed as described by (Pelegrin et al., 2019) using VITEK2 

(bioMérieux).  

 

MLST and wgMLST analysis 

Classical MLST typing is based on polymorphisms in seven housekeeping genes 

stored in the P. aeruginosa pubMLST database (http://pubmlst.org). Although MLST analysis 

for CNPA was already published previously (Pelegrin et al., 2019), here we have repeated the 

analysis with an updated version of the pubMLST database in order to compare up-to-date 

MLST with the current wgMLST analysis. wgMLST typing of 237 CNPA genomes was 

performed using BioNumericsTM. For wgMLST typing, fully functional and well curated 

schemes have been developed and maintained for many important pathogens including P. 

aeruginosa by BioNumericsTM plugins (www.applied-maths.com/applications/wgmlst). A 

total of 15,143 genes and other genetic elements were used to assign wgMLST types to the 

isolates in the CNPA collection. Allelic differences between isolates sharing the same MLST 

group were calculated and sub-groupings within the MLST groups were visualized as 

UPGMA based phylogenetic trees. 

 

wgSNP analysis 

Using the BioNumericsTM wgSNP application (www.applied-

maths.com/applications/whole-genome-snp-analysis) wgSNPs were identified and mapped on 

CNPA genomes using the P. aeruginosa reference genome PAO-1 (Stover et al., 2000) and 

NCBI Reference Sequence: NC_002516.2 (Subedi et al., 2019, Pelegrin et al., 2019). 

Functional annotation was performed for each SNP. The option of SNP filtering was chosen 

during the analysis in order to remove ambiguous bases, unreliable bases and gaps. Because 

of these filters number of SNPs were dropped down from many thousands to upto 3-4 

thousands which is still due to the inclusion of non-informative SNPs. Since the non-

informative SNPs are present in all the isolates, they don’t tell us anything about the genetic 

relationship among the isolates therefore non-informative SNP filtering (also called strict 

filtering) was used to get only informative SNPs which were left under 100 in numbers. 

Phylogenetic trees were built on the basis of wgSNPs and correlation studies were performed 

to identify the links among wgSNPs, wgMLST, patient characteristics, sample type, and the 

http://www.applied-maths.com/applications/wgmlst
http://www.applied-maths.com/applications/whole-genome-snp-analysis
http://www.applied-maths.com/applications/whole-genome-snp-analysis
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resistomes and virulomes of each CNPA isolate. Resistomes and virulomes were defined 

using the command line script of Torsten Seemann called Abricate and which is available at 

Github (https://github.com/tseemann/abricate) (Zankari et al., 2012, Chen et al., 2016). 

Moreover, detailed maps of functional point mutations in the three most prominent classical 

MLST groups (ST823, ST235 and ST357) were made and possible transmission chains and 

routes were traced. To do so, a SNP threshold was calculated on the basis of the similarity 

matrix for all the CNPA strains, calculated via the SNP analysis in BioNumericsTM. The 

epidemiological link provided by the clinical data collected from the hospital between 

patients we were able to set the SNP threshold which allowed us to sort the observed 

distances in the SNP distance matrix into two categories: related and not related. Here 

sensitivity and specificity are diagnostically equally important and desirable. Therefore, the 

Youden’s index in conjunction with receiver operating characteristic (ROC) curve was used 

to indicate the performances of the different SNP cutoff values. The optimal SNP cutoff value 

was computed using different Youden indicators where sensitivity, accuracy, specificity and 

Youden’s Index were found to be at their maximum. 

 

RESULTS AND DISCUSSION 

MLST vs wgMLST 

MLST was designed primarily for the purpose of defining global bacterial phylogeny 

by sequencing internal fragments of seven housekeeping genes (Urwin and Maiden, 2003, 

Jolley et al., 2018, Maiden et al., 1998). Our set of 237 CNPA strains included 4 dominant 

MLST groups: ST235 (74 isolates) followed by ST357 (72 isolates), ST823 (47 isolates) and 

ST446 (18 isolates). The remaining 26 isolates belonged to 16 different STs (Figure 5- 1, 

shown for reasons of comparison with the genomic methods). Our current MLST results were 

in complete agreement with those presented by Pelegrin et al. 2019 Still, WGS has become 

the preferred method for studying the molecular epidemiology of bacterial species, clearly 

providing discriminatory power exceeding that of classical MLST (Kovanen et al., 2014b, 

Pearce et al., 2018). wgMLST analysis allows genome comparisons and recognition of 

evolutionary subgroups of genetically related isolates within the same classical STs, allowing 

more refined tracing of the origin of outbreaks and individual infections (Cody et al., 2013, 

Moura et al., 2016). In the present study we identified subgroups within the four major STs 

(ST235, ST357, ST823, ST446), but also within minor STs (Figure 5- 2). Within ST235 the 

https://github.com/tseemann/abricate
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number of allelic variants between isolates ranged between 0 to 200 (11 subgroups) whereas 

for ST357 it was 0 to 59 (8 subgroups), for ST823 it was 0 to 39 (8 subgroups) and for ST446 

it was 0 to 20 (3 subgroups). Interestingly, ST235 seemed to contain three different lineages 

of strains that separated earlier compared to the subgroups detected in the other STs of CNPA. 

Subgroupings were not specific to patients or clinical sample type, but appeared to be 

independent and at random (Figure 5- 2). More genetic diversity in ST235 can be seen in 

wgMLST tree as compared to the other STs however this might be due to a higher mutation 

rate in this clade as compared to that of other lineages or indeed, by chance due to an earlier 

occurrence of diversity within this clade. The main finding here is that wgMLST shows 

significantly enhanced resolving power as compared to classical MLST. Still there is 

excellent concordance between the two methods since there was never any mixing of classical 

MLST groups at the level of wgMLST groups (Blanc et al., 2020). A study conducted by 

(Stanton et al., 2020) demonstrated how a core genome MLST (cgMLST) scheme provided 

enhanced resolution over traditional MLST, pulsed-field gel electrophoresis (PFGE), and 

single-nucleotide variant (SNV) assessment to analyze individual outbreaks. That study 

included core genes those were common to all strains of P. aeruginosa. In contrast, wgMLST 

also covers highly variable elements such as repetitive genes and pseudogenes, depending 

upon the microbial species studied (Moura et al., 2016). However, clustering of strains based 

on either the cgMLST or wgMLST can provide a detailed perspective of the taxonomy, 

epidemiology and evolution of bacterial populations (McNally et al., 2016). 

 

wgSNP distribution in CNPA isolates 

wgSNP analysis represents an effective method for characterizing pathogenic bacterial 

strains and for detecting outbreak events (Bakker et al., 2011, Taylor et al., 2015, Schurch et al., 

2018). Recent studies successfully demonstrated the capability of wgSNP-based genotyping to 

reveal recombination events in Streptococcus pneumoniae, Staphylococcus aureus and 

Cronobacter sakazakii (Roe et al., 2016, Cowley et al., 2018, Yin and Yau, 2018, Yong et al., 

2018). To ensure the accuracy and consistency of SNP-defined outbreak analysis, essential 

parametric measures such as minimum coverage and distances allowed between SNPs and 

exclusion of non-informative SNPs must be applied (Bakker et al., 2011). In the present study, 

false SNPs generated due to sequencing or assembling errors were filtered. Retained SNPs 

including non-informative SNPs were found scattered all across the CNPA genomes. However, 
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after strict filtering of non-informative SNPs, SNP counts fall down into the hundreds only 

(Supplementary Table 1 to 3). Evolutionary relationships between CNPA strains based on 

wgSNP analyses can be shown in a phylogenetic tree along with their more descriptive 

epidemiological data and their resistomes and virulomes (Figure 5- 3). It is noteworthy that in 

the phylogenetic tree, clade ST235 is apparently more homogenous than other STs in terms of 

their resistome as well as virulome (Figure 5- 3). Detailed wgSNP analysis and annotation was 

performed within only the three most dominant CNPA clones (ST235, ST357 and ST823) 

present in the collection. Previous studies reported ST357 and ST235 clones to be prevalent 

across the globe and to present a high risk for invasive infection (Treepong et al., 2018, Mihara 

et al., 2020). The recent emergence of ST823 and ST446 causing outbreaks in many countries 

highlighted the importance of evaluating epidemiological trends for these clones (Zowawi et al., 

2018, Pelegrin et al., 2019, Tada et al., 2019). In the present study a total of number of SNPs 

(including non-Informative SNPs) were ranging from 35350 in ST235, 34570 in ST357 and 

26443 in ST823. Filtered and informative SNPs ranged from 398 SNPs within ST235 followed 

by 111 in ST357 to 61 in ST823. All point mutations, their positions and their respective 

functional annotations are summarized in Supplementary Tables 4 to 6. Interesting fact was 

that out of 12 possible SNP types (based on the availability of the 4 [A, T G and C] bases) only 

two, C>T and G>A, SNPs were dominant in all the three clones of CNPA (Figures 5- 4A to 

4C). These two SNP types should be further investigated in order to clarify the significance of 

their predilection in, for instance, genetic adaptation to changes in the environment where P. 

aeruginosa is residing. SNPs were regularly found in transcription regulators and sensor-

response regulator hybrids in all the three clones of CNPA strains. Non-informative SNPs were 

those which were present throughout the particular MLST group and very high in numbers 

however the occurrence of informative SNPs was different, random and limited to selective 

number of CNPA strains in the dataset (Supplementary Tables 4 to 6). Common point 

mutations (excluding non-informative SNPs) that were shared by both ST357 and ST235 

include those in cytochrome C550 (A>G), the oprD porin (C>T), ABC transporters (T>A), 

MFS transporters (C>T) and a two-component sensors (G>A). The results presented here 

underscore that wgSNP typing has a higher resolution than wgMLST and that functional 

information on individual gene variation can be derived from the data. Of note, a large 

diversity of antimicrobial resistance genes and virulence genes segregated according to wgSNP 

analyses (Figure 5- 3). 
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Transmission dynamics of CNPA clones 

By analyzing SNPs in CNPA isolates within the three major ST groups, we have 

determined the likelihood of their transmission from one patient to another in the setting of 

the two ICUs in the Indonesian hospital where the clinical part of our study took place. In this 

study, an optimal SNP cutoff value of <4 SNPs was calculated for the CNPA dataset using 

Youden indicators (Figure 5- 5). The Youden’s indicator was at a maximum for a threshold of 

4 SNP (sensitivity 0.86, specificity 0.96, accuracy 0.96, Youden index 0.82). As reported, 

individual strains of P. aeruginosa can be considered genetically indistinguishable if their 

genome sequences differ less than 3-5 SNPs (Quick et al., 2014, Parcell et al., 2018, Pelegrin 

et al., 2019). Previously, (Pelegrin et al., 2019) reported 50 strain acquisition events in this 

cohort of ICU patients on the basis of genomic proximity (at threshold < 5 SNPs) and clues 

from clinical data. Using the optimal SNP cutoff of 4 SNPs, we have now re-traced those 

acquisition events in more detail and further elucidated the chains of transmission. 

Genetically indistinguishable strains isolated from patients without overlapping 

hospitalization periods were considered as possibly originating from the same source only if 

the time difference between the hospitalizations, i.e. between the departure of one patient and 

the admission of another, was not more than 16 months (Kramer et al., 2006). These events 

were defined as healthcare-associated transmissions and were traced on the basis of strictly 

filtered SNPs (excluding non-informative SNPs) only. In the group of 36 patients harboring a 

ST235 strain, 5 were already carrying “their” strain at the time of admission to the ICU. The 

remaining patients acquired a ST235 strain during their hospitalization period. On the basis of 

genomic identity and the time of admission in the ICU, we found 11 possible chains of 

transmission including five within the ER-ICU and three in the adult-ICU; the remaining 3 

events were probably inter-ICU transmissions (Figure 5- 6). In ST357, 34 patients (of which 

11 were positive on admission) were involved in 7 transmission chains (Figure 5- 7), and five 

potential chains of transmission were detected among 25 patients harboring ST823 clones (of 

whom eight carried the strain at the time of their admission). In this latter group only one 

transmission chain occurred within the ER-ICU,  two within the adult-ICU and two involving 

both ICUs (Figure 5- 8). Thus, where (Pelegrin et al., 2019) only presented qualitative data 

regarding possible transmissions and the overall number of acquisition events, we here reveal 

possible chains of transmission of CNPA strains between patients. Importantly, wgSNP 

analysis also allows for a better characterization of strains already carried by patients at the 

time of their hospitalization. 
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CONCLUSION 

We here show that wgMLST and wgSNP analyses provide enhanced resolution for the 

epidemiological typing of strains of P. aeruginosa. The use of WGS data will provide typing 

schemes of high discrimination capacity and, depending on the density of sampling, allow for 

more precise mapping of the flow of P. aeruginosa going through susceptible patient cohorts. 

This should in the end help improve infection prevention. 
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Figures 

 

 

Figure 5-1: Classical MLST-based phylogenetic tree showing the evolutionary relationship 

between different CNPA sequence types (ST), each indicated by a different a color and 

provided with its ST number. Number of partitions in each cluster showing the number of 

strains in that group. Note that ST446, ST357, ST823 and ST235 represent the largest clonal 

clusters. A similar illustration was presented by Pelegrin et al (2019).  
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Figure 5-2: Phylogenetic tree showing CNPA relatedness based on wgMLST. Subgrouping 

with in each ST (denoted by different colors) is labeled by the original source (patient ID or 

environmental source) from which these strains have been isolated. 
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Figure 5-3: wgSNP based phylogenetic relationship between CNPA isolates. Major MLST 

groups are shown with different colors (yellow: ST823; red: ST235; green: ST446 and blue: 

ST357). Resistance and virulence genes are presented in the form of heat maps with purple and 

blue color ranges. Epidemiological and clinical data includes isolate ID, MLST, date and 

source of isolation (patients, environment and sample type) and intervention period are also 

mentioned along with the tree. 
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Figure 5-4: Number of different SNP types with reference to PAO1 strain of P. aeruginosa is 

illustrated for CNPA clone  ST235 (A), clone ST357 (B) and clone ST823 (C).   

 

 

Figure 5-5: Different Youden indicators calculated using similarity matrix of CNPA strains, 

generated during SNP analysis. In Figure A. an ROC curve showing the relationship between 

clinical sensitivity and specificity for every possible SNP cut-off. Here an optimal point is 

represented with red colored dot. SNP cutoff values (Genomic distances) are shown on 

horizontal axis and different statistical parameters or indicators like Sensitivity, Specificity, 

Youden’s Index and accuracy are shown on vertical axis in Figure B to E respectively. Based 

on all the above mentioned indicators genomic distance of 4 SNPs was chosen as overall 

optimal SNP cutoff value and is highlighted with red colored dot on each graph. 
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Figure 5-6: Potential transmissions of CNPA ST235 isolates among the patients (their ID 

given as ‘P_’) are shown in the figure. Pink colored patients are from adult-ICU and purple 

colored patients are from ER-ICU. Number of wgSNPs are shown in red colored text for each 

transmission event. All these transmissions are arranged in ascending order according to their 

time of admission to the ICU and their sample collection dates from the year 2013 to 2015. The 

grey circle above the first patient in each transmission event denotes that the CNPA strain was 

either imported (Imp) from outside at the time of admission or acquired from an unknown (Ukn) 

source within the ICU. Other patients in each transmission chain acquired (Aqr) these clones. 

The hospitalization time line of the patients is shown below each transmission chain. The gap 

in the time line depicts that there is a time difference between discharge of one patient and 

admission of another to the ICU. 

 

 

 

Figure 5-7: Potential transmissions of CNPA ST357 isolates among the patients are shown. 

Pink colored patients (their ID given below as ‘P_’) are from adult-ICU and purple colored 

patients are from ER-ICU. Numbers of wgSNPs are shown in red for each transmission event. 

All these transmissions are arranged in ascending order according to their time of admission 
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to the ICU and their sample collection date from the year 2013 to 2015. The grey circle above 

first patient in each transmission event denotes that the CNPA strain was either imported (Imp) 

from outside at the time admission or acquired from an unknown (Ukn) source within the ICU. 

Other patients in each transmission chain acquired (Aqr) these clones. Hospitalization time 

line of the patients is shown below each transmission chain. The gap in the time line depicts 

that there is a time difference between discharge of one patient and admission of another to the 

ICU. 6th Transmission chain shows an unusual situation where two patients (203 and 206) 

possibly the part of a transmission event but both of them were already imported with ST235 

strain. Therefore the probability of transmission could be to or from P_203 or P_206 during 

their overlapping days of stay in the ICU. 

 

 

 

Figure 5-8: Potential transmissions of CNPA ST823 isolates among the patients (their ID 

given below as ‘P_’). Pink colored patients are from adult-ICU and purple colored patients 

are from ER-ICU. Number of wgSNPs are shown in red colored text in each transmission event. 

All these transmissions are arranged in ascending order according to their time of admission 

to the ICU and their sample collection date from the year 2013 to 2015. The grey circle above 

first patient in each transmission event denotes that CNPA strain either imported (Imp) from 

outside at the time admission or acquired from unknown (Ukn) source within the ICU. Other 

patients in each transmission chain acquired (Aqr) these clones. Hospitalization time line of 

the patients is shown below each transmission chain. The gap in the time line depicts that there 

is a time difference between discharge of one patient and admission of another to the ICU. 



116 
 

Supplementary Table 1: Number of wgSNPs identified in ST235 along with metadata 

information of strains. 

Strain ID 

Isolation 

ID 

Total 

SNP 

count 

Retained 

SNPs 

(including 

Non 

informativ

e SNPs) 

Retained SNPs 

with strict 

filters (without 

non-

informative) 

Acquired/I

mported  

MLST 

PubMLST 

ST 

Sample 

type Phase 

Sample 

collection 

date 

Virulen

ce genes 

numbr 

BS2169_R1.fastq 6B 439406 35039 87 acquired Cluster 67 sputum Pre-intervention 4/19/2013 216 

BS2173_R1.fastq 34 439440 35038 86 acquired Cluster 67 rectal Pre-intervention 5/8/2013 215 

BS2179_R1.fastq 46C 466917 35040 88 acquired Cluster 22 throat Pre-intervention 5/20/2013 217 

BS2177_R1.fastq 46E 462298 35040 88 acquired Cluster 22 rectal Pre-intervention 6/10/2013 217 

BS2175_R1.fastq 46B 466689 35040 88 acquired Cluster 22 sputum Pre-intervention 5/20/2013 216 

BS2174_R1.fastq 46D 466037 35040 88 acquired Cluster 22 sputum Pre-intervention 6/3/2013 216 

BS2178_R1.fastq 46F 466644 35041 89 acquired Cluster 22 rectal Pre-intervention 6/19/2013 217 

BS2180_R1.fastq 46G 466889 35044 92 acquired Cluster 22 throat Pre-intervention 6/19/2013 215 

BS2181_R1.fastq 48C 465665 35040 88 acquired Cluster 22 throat Pre-intervention 5/30/2013 217 

BS2182_R1.fastq 48A 466050 35041 89 acquired Cluster 22 throat Pre-intervention 5/21/2013 217 

BS2183_R1.fastq 48B 466874 35042 90 acquired Cluster 22 rectal Pre-intervention 5/30/2013 217 

BS3255_R1.fastq 51A 474842 35015 63 acquired Cluster 18 rectal Post-intervention 3/13/2015 220 

BS3268_R1.fastq 51G 470748 35015 63 acquired Cluster 18 blood Post-intervention 3/30/2015 220 

BS3272_R1.fastq 51K 472425 35015 63 acquired Cluster 18 blood Post-intervention 4/4/2015 218 

BS3273_R1.fastq 51L 471755 35015 63 acquired Cluster 18 blood Post-intervention 4/4/2015 219 

BS3281_R1.fastq 68A 449897 35037 85 acquired Cluster 74 rectal Post-intervention 3/31/2015 219 

BS3284_R1.fastq 72 470096 35016 64 acquired Cluster 58 rectal Post-intervention 4/15/2015 219 

BS3285_R1.fastq 80 436652 35006 54 acquired Cluster 62 rectal Post-intervention 4/1/2015 218 

BS2185_R1.fastq 83A 466489 35040 88 acquired Cluster 22 sputum Pre-intervention 6/11/2013 216 

BS2186_R1.fastq 83B 466953 35041 89 acquired Cluster 22 throat Pre-intervention 6/12/2013 217 

BS3315_R1.fastq 85C 465549 35015 63 imported Cluster 53 throat Post-intervention 4/20/2015 218 

BS3313_R1.fastq 85A 438134 35041 89 imported Cluster 71 sputum Post-intervention 4/13/2015 217 

BS2187_R1.fastq 87 466459 35040 88 acquired Cluster 22 rectal Pre-intervention 6/13/2013 216 

BS2194_R1.fastq 95 463870 35040 88 imported Cluster 22 throat Pre-intervention 6/17/2013 217 

BS2206_R1.fastq  101A 472478 35016 64 acquired Cluster 19 rectal Pre-intervention 6/24/2013 219 

BS2207_R1.fastq  101B 471266 35018 66 acquired Cluster 19 throat Pre-intervention 6/24/2013 219 

BS2211_R1.fastq 141C 464806 35040 88 imported Cluster 22 rectal Pre-intervention 7/23/2013 217 

BS2210_R1.fastq  141A 464999 35040 88 imported Cluster 69 throat Pre-intervention 7/16/2013 217 

BS2209_R1.fastq 141B 465472 35040 88 imported Cluster 22 drain Pre-intervention 7/16/2013 217 

BS2215_R1.fastq 166B 466125 35015 63 imported Cluster 21 throat Pre-intervention 7/31/2013 217 

BS2214_R1.fastq 166C 468405 35015 63 imported Cluster 21 urine Pre-intervention 7/31/2013 218 

BS2218_R1.fastq 176A 470567 35011 59 acquired Cluster 57 rectal Pre-intervention 8/21/2013 219 

BS2220_R1.fastq 179 470915 35011 59 acquired Cluster 57 rectal Pre-intervention 8/26/2013 218 

BS3330_R1.fastq 184 430478 35020 68 imported Cluster 64 rectal Post-intervention 6/30/2015 219 

BS3334_R1.fastq 198A 466080 35018 66 imported Cluster 17 sputum Post-intervention 7/27/2015 219 

BS3335_R1.fastq 198B 469827 35018 66 imported Cluster 17 rectal Post-intervention 7/27/2015 217 

BS2221_R1.fastq 201 467564 35010 58 imported Cluster 54 throat Pre-intervention 8/30/2013 219 

BS2222_R1.fastq 205 467255 35043 91 acquired Cluster 65 rectal Pre-intervention 9/5/2013 216 

BS3346_R1.fastq 214 469014 35006 54 imported Cluster 61 rectal Post-intervention 8/7/2015 220 

BS3348_R1.fastq 220B 466513 35005 53 acquired Cluster 61 throat Post-intervention 8/11/2015 219 

BS3347_R1.fastq 220A 435261 35045 93 acquired Cluster 72 rectal Post-intervention 8/11/2015 217 
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BS3349_R1.fastq 222A 438330 35044 92 acquired Cluster 68 sputum Post-intervention 8/25/2015 217 

BS3354_R1.fastq 228A 441314 35045 93 acquired Cluster 23 throat Post-intervention 8/24/2015 215 

BS3355_R1.fastq 228B 438345 35045 93 acquired Cluster 73 wound Post-intervention 9/10/2015 216 

BS3356_R1.fastq 228C 440047 35045 93 acquired Cluster 23 throat Post-intervention 9/10/2015 216 

BS2227_R1.fastq 237B 465311 35040 88 acquired Cluster 22 throat Pre-intervention 9/26/2013 217 

BS2225_R1.fastq 237A 465760 35040 88 acquired Cluster 22 rectal Pre-intervention 9/26/2013 217 

BS2226_R1.fastq 237C 465891 35043 91 acquired Cluster 22 throat Pre-intervention 10/3/2013 217 

BS2234_R1.fastq 256F 467996 35012 60 acquired Cluster 54 throat Pre-intervention 10/24/2013 219 

BS2233_R1.fastq 256C 468165 35012 60 acquired Cluster 54 throat Pre-intervention 10/11/2013 218 

BS2232_R1.fastq 256D 468111 35012 60 acquired Cluster 54 wound Pre-intervention 10/11/2013 219 

BS2231_R1.fastq 256B 467618 35012 60 acquired Cluster 54 rectal Pre-intervention 10/11/2013 219 

BS2230_R1.fastq 256E 467540 35012 60 acquired Cluster 54 sputum Pre-intervention 10/21/2013 219 

BS2229_R1.fastq 256A 469654 35012 60 acquired Cluster 54 sputum Pre-intervention 10/7/2013 217 

BS2235_R1.fastq 258 466193 35042 90 acquired Cluster 22 throat Pre-intervention 10/4/2013 217 

BS2239_R1.fastq 294 468536 35013 61 acquired Cluster 54 throat Pre-intervention 10/31/2013 218 

BS3371_R1.fastq 304A 495160 35011 59 imported Cluster 20 sputum Post-intervention 11/20/2015 219 

BS3372_R1.fastq 304B 494146 35011 59 imported Cluster 20 rectal Post-intervention 11/20/2015 220 

BS3374_R1.fastq 304D 506259 35011 59 imported Cluster 20 wound Post-intervention 11/24/2015 215 

BS3376_R1.fastq 304F 495306 35011 59 imported Cluster 20 throat Post-intervention 11/24/2015 219 

BS3373_R1.fastq 304C 473605 35012 60 imported Cluster 60 throat Post-intervention 11/20/2015 219 

BS3375_R1.fastq 304E 495028 35012 60 imported Cluster 20 tissue Post-intervention 11/24/2015 220 

BS3378_R1.fastq 307 468813 35012 60 acquired Cluster 59 sputum Post-intervention 11/24/2015 220 

BS2240_R1.fastq 312 467752 35013 61 imported Cluster 54 rectal Pre-intervention 4/23/2014 218 

BS2241_R1.fastq 318 469032 35015 63 acquired Cluster 54 

bronchoalve

olar lavage Pre-intervention 4/29/2014 219 

BS3411_R1.fastq 357 457856 35011 59 acquired Cluster 63 bal Post-intervention 1/6/2016 219 

BS2259_R1.fastq 364 461790 35046 94 acquired Cluster 66 rectal Pre-intervention 5/28/2014 217 

BS2346_R1.fastq 393 475324 35015 63 imported Cluster 58 rectal Pre-intervention 6/23/2014 219 

BS2372_R1.fastq 3_ENV 469297 35014 62 *acquired Cluster 53 

environmen

t Pre-intervention 12/1/2014 218 

BS2371_R1.fastq 9_ENV 466402 35014 62 *acquired Cluster 55 

environmen

t Pre-intervention 12/1/2014 216 

BS2370_R1.fastq 8B_ENV 467458 35014 62 *acquired Cluster 56 

environmen

t Pre-intervention 12/1/2014 219 

BS2369_R1.fastq 8A_ENV 467089 35014 62 *acquired Cluster 53 

environmen

t Pre-intervention 12/1/2014 218 

BS3414_R1.fastq 78_ENV 463029 35042 90 *acquired Cluster 70 

environmen

t Post-intervention 1/1/2015 218 

 

 

Supplementary Table 2: Number of wgSNPs identified in ST357 along with metadata 

information of strains. 

Strain ID 

Isolation 

ID 

Total 

SNP 

count 

Retained 

SNPs (With 

noninforativ

e SNPs) 

Retained SNPs 

with Strict 

filtring 

(Without Non-

informative 

SNPs) 

Acquired/I

mported  

MLST 

PubMLST 

ST 

Sample 

type Phase 

Sample 

collection 

date 

Virule

nce 

genes 

numbr 

BS2360_R1.fastq 419 438141 34472 13 acquired Cluster 7 rectal Pre-intervention 7/15/2014 203 

BS2354_R1.fastq 398 437578 34471 12 acquired Cluster 6 rectal Pre-intervention 6/25/2014 203 

BS2352_R1.fastq 395D 437062 34471 12 imported Cluster 6 rectal Pre-intervention 6/25/2014 202 

BS2351_R1.fastq 395C 436466 34471 12 imported Cluster 6 rectal Pre-intervention 6/25/2014 203 

BS2350_R1.fastq 395F 436826 34471 12 imported Cluster 6 throat Pre-intervention 6/25/2014 202 

BS2349_R1.fastq 395E 438322 34470 11 imported Cluster 6 throat Pre-intervention 6/25/2014 202 
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BS2348_R1.fastq 395A 436653 34470 11 imported Cluster 6 rectal Pre-intervention 6/23/2014 203 

BS2347_R1.fastq 395B 439569 34470 11 imported Cluster 6 throat Pre-intervention 6/23/2014 203 

BS2176_R1.fastq 46A 466799 34483 24 imported Cluster 34 throat Pre-intervention 5/10/2013 200 

BS2170_R1.fastq 6A 438169 34468 9 acquired Cluster 6 rectal Pre-intervention 4/10/2013 201 

BS3246_R1.fastq 37A 404253 34484 25 acquired Cluster 39 rectal Post-intervention 2/27/2015 204 

BS3247_R1.fastq 37B 450423 34484 25 acquired Cluster 29 rectal Post-intervention 3/3/2015 202 

BS3248_R1.fastq 38A 433424 34484 25 imported Cluster 1 sputum Post-intervention 2/23/2015 203 

BS3249_R1.fastq 38B 432469 34483 24 imported Cluster 1 rectal Post-intervention 2/23/2015 204 

BS3250_R1.fastq 38C 432478 34483 24 imported Cluster 1 throat Post-intervention 2/23/2015 203 

BS3256_R1.fastq 51B 444890 34473 14 acquired Cluster 3 throat Post-intervention 3/13/2015 203 

BS3257_R1.fastq 51C 441357 34473 14 acquired Cluster 3 sputum Post-intervention 3/16/2015 204 

BS3266_R1.fastq 51E 481394 34473 14 acquired Cluster 3 throat Post-intervention 3/20/2015 192 

BS3267_R1.fastq 51F 438264 34473 14 acquired Cluster 32 sputum Post-intervention 3/31/2015 204 

BS3269_R1.fastq 51H 469271 34473 14 acquired Cluster 3 wound Post-intervention 4/4/2015 197 

BS3270_R1.fastq 51I 437774 34473 14 acquired Cluster 3 sputum Post-intervention 4/4/2015 204 

BS3271_R1.fastq 51J 443738 34473 14 acquired Cluster 3 throat Post-intervention 4/2/2015 204 

BS3274_R1.fastq 52A 443386 34471 12 acquired Cluster 31 rectal Post-intervention 3/13/2015 204 

BS3276_R1.fastq 58 437071 34483 24 acquired Cluster 1 rectal Post-intervention 3/18/2015 203 

BS3279_R1.fastq 66B 444016 34473 14 acquired Cluster 3 throat Post-intervention 4/6/2015 203 

BS3280_R1.fastq 66C 445691 34473 14 acquired Cluster 3 throat Post-intervention 4/13/2015 203 

BS3282_R1.fastq 68B 437871 34483 24 acquired Cluster 1 throat Post-intervention 3/31/2015 205 

BS3283_R1.fastq 68C 439519 34483 24 acquired Cluster 1 rectal Post-intervention 4/7/2015 204 

BS3311_R1.fastq 82A 439837 34473 14 imported Cluster 3 throat Post-intervention 4/10/2015 203 

BS3312_R1.fastq 82B 440606 34473 14 imported Cluster 3 throat Post-intervention 4/16/2015 205 

BS3314_R1.fastq 85B 448556 34480 21 acquired Cluster 4 rectal Post-intervention 4/20/2015 204 

BS3316_R1.fastq 93 438286 34473 14 imported Cluster 3 throat Post-intervention 4/20/2015 203 

BS3317_R1.fastq 94 437098 34473 14 acquired Cluster 33 tissue Post-intervention 5/8/2015 204 

BS3319_R1.fastq 104 439587 34473 14 acquired Cluster 3 rectal Post-intervention 5/15/2015 204 

BS3320_R1.fastq 105 437628 34473 14 imported Cluster 3 throat Post-intervention 4/30/2015 203 

BS3321_R1.fastq 108 432307 34485 26 acquired Cluster 1 rectal Post-intervention 6/11/2015 202 

BS3322_R1.fastq 128A 431781 34483 24 acquired Cluster 1 throat Post-intervention 5/28/2015 204 

BS3323_R1.fastq 128B 434934 34472 13 acquired Cluster 7 rectal Post-intervention 6/3/2015 204 

BS3324_R1.fastq 129A 447524 34480 21 acquired Cluster 4 bal Post-intervention 5/25/2015 203 

BS3325_R1.fastq 129B 446708 34480 21 acquired Cluster 4 throat Post-intervention 5/28/2015 204 

BS3326_R1.fastq 129C 448206 34481 22 acquired Cluster 35 sputum Post-intervention 6/16/2015 204 

BS3327_R1.fastq 132A 435626 34472 13 acquired Cluster 7 rectal Post-intervention 6/11/2015 204 

BS3328_R1.fastq 132B 435845 34472 13 acquired Cluster 7 rectal Post-intervention 6/18/2015 204 

BS3329_R1.fastq 161 447595 34480 21 acquired Cluster 4 rectal Post-intervention 6/19/2015 203 

BS3333_R1.fastq 196 497964 34477 18 acquired Cluster 5 wound Post-intervention 7/22/2015 199 

BS3336_R1.fastq 203A 500058 34478 19 imported Cluster 5 throat Post-intervention 7/29/2015 199 

BS3337_R1.fastq 203B 496036 34477 18 imported Cluster 5 bal Post-intervention 7/29/2015 198 

BS3338_R1.fastq 203C 495262 34477 18 imported Cluster 36 throat Post-intervention 7/31/2015 199 

BS3339_R1.fastq 203D 495409 34477 18 imported Cluster 5 throat Post-intervention 8/12/2015 199 

BS3340_R1.fastq 203E 498769 34477 18 imported Cluster 5 urine Post-intervention 9/28/2015 200 

BS3341_R1.fastq 206 496213 34477 18 imported Cluster 5 throat Post-intervention 7/31/2015 199 

BS3350_R1.fastq 222B 433823 34489 30 acquired Cluster 30 urine Post-intervention 9/18/2015 204 
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BS3358_R1.fastq 236A 442300 34487 28 acquired Cluster 2 rectal Post-intervention 9/1/2015 204 

BS3359_R1.fastq 236B 440333 34487 28 acquired Cluster 2 sputum Post-intervention 9/7/2015 203 

BS3360_R1.fastq 237A 437425 34487 28 imported Cluster 2 throat Post-intervention 9/1/2015 204 

BS3362_R1.fastq 240A 437234 34487 28 acquired Cluster 2 rectal Post-intervention 7/10/2015 203 

BS3363_R1.fastq 240B 435616 34487 28 acquired Cluster 2 throat Post-intervention 7/10/2015 203 

BS3364_R1.fastq 254 439401 34487 28 acquired Cluster 2 throat Post-intervention 9/28/2015 203 

BS3370_R1.fastq 286 433234 34487 28 acquired Cluster 2 rectal Post-intervention 11/3/2015 204 

BS3379_R1.fastq 318 445596 34478 19 imported Cluster 9 throat Post-intervention 11/30/2015 203 

BS3380_R1.fastq 324A 446254 34479 20 imported Cluster 9 sputum Post-intervention 12/4/2015 202 

BS3381_R1.fastq 324B 446533 34479 20 imported Cluster 9 throat Post-intervention 12/4/2015 202 

BS3382_R1.fastq 324C 447376 34479 20 imported Cluster 9 rectal Post-intervention 12/4/2015 203 

BS3383_R1.fastq 324D 447726 34479 20 imported Cluster 9 rectal Post-intervention 12/8/2015 203 

BS3384_R1.fastq 324E 445393 34480 21 imported Cluster 8 throat Post-intervention 12/8/2015 204 

BS3385_R1.fastq 324F 447331 34481 22 imported Cluster 8 throat Post-intervention 12/21/2015 203 

BS3386_R1.fastq 324G 445733 34480 21 imported Cluster 8 blood Post-intervention 12/28/2015 203 

BS3387_R1.fastq 324H 446881 34481 22 imported Cluster 8 sputum Post-intervention 1/6/2016 203 

BS3388_R1.fastq 324I 444833 34480 21 imported Cluster 38 blood Post-intervention 1/6/2016 203 

BS3389_R1.fastq 324J 446603 34480 21 imported Cluster 37 blood Post-intervention 1/6/2016 202 

BS3412_R1.fastq 66_ENV 434325 34469 10 *acquired Cluster 6 

environmen

t Post-intervention 1/1/2015 204 

BS3413_R1.fastq 68_ENV 433868 34469 10 *acquired Cluster 6 

environmen

t Post-intervention 1/1/2015 204 

 

 

Supplementary Table 3: Number of wgSNPs identified in ST823 along with metadata 

information of strains. 

Strain ID 

Isolation 

ID 

Total 

SNPs 

Retained 

SNPs with 

non 

informatv 

SNPs 

Retained SNPs 

with strict 

filtering 

(Without 

noninformativ

e SNPs) 

Acquired/I

mported * 

MLST 

PubMLST 

ST 

Sample 

type Phase 

Sample 

collection 

date 

Virulen

ce 

genes 

numbr 

BS2379_R1.fastq 115_ENV 428343 26389 7 *acquired Cluster 13 

environmen

t Pre-intervention 12/1/2014 216 

BS2368_R1.fastq 440 429344 26391 9 acquired Cluster 12 throat Pre-intervention 8/18/2014 217 

BS2367_R1.fastq 412B 429094 26391 9 acquired Cluster 12 throat Pre-intervention 8/18/2014 215 

BS2366_R1.fastq 

W5C_EN

V 429459 26389 7 *acquired Cluster 12 

environmen

t Pre-intervention 8/13/2014 216 

BS2363_R1.fastq 421B 428439 26390 8 acquired Cluster 47 rectal Pre-intervention 7/21/2014 215 

BS2361_R1.fastq 420 430118 26394 12 acquired Cluster 10 throat Pre-intervention 7/16/2014 216 

BS2359_R1.fastq 412A 429150 26390 8 acquired Cluster 12 throat Pre-intervention 7/15/2014 216 

BS2358_R1.fastq 410 429825 26393 11 acquired Cluster 44 sputum Pre-intervention 7/14/2014 215 

BS2355_R1.fastq 389 427641 26390 8 acquired Cluster 50 sputum Pre-intervention 6/27/2014 216 

BS2345_R1.fastq 385 431586 26390 8 acquired Cluster 12 sputum Pre-intervention 6/17/2014 216 

BS2344_R1.fastq 342 432345 26394 12 acquired Cluster 10 sputum Pre-intervention 6/11/2014 216 

BS2343_R1.fastq 370D 430315 26390 8 imported Cluster 13 rectal Pre-intervention 6/9/2014 216 

BS2342_R1.fastq 370E 428225 26390 8 imported Cluster 12 throat Pre-intervention 6/9/2014 218 

BS2341_R1.fastq 370B 429233 26390 8 imported Cluster 13 rectal Pre-intervention 6/4/2014 216 

BS2340_R1.fastq 370A 429976 26390 8 imported Cluster 12 rectal Pre-intervention 6/4/2014 216 

BS2260_R1.fastq 370C 428926 26390 8 imported Cluster 13 sputum Pre-intervention 6/4/2014 217 

BS2258_R1.fastq 349D 432649 26393 11 acquired Cluster 10 urine Pre-intervention 5/30/2014 217 

BS2257_R1.fastq 349C 431719 26392 10 acquired Cluster 10 sputum Pre-intervention 5/28/2014 216 
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BS2256_R1.fastq 338 426940 26391 9 acquired Cluster 48 rectal Pre-intervention 5/26/2014 218 

BS2255_R1.fastq 349B 429849 26393 11 acquired Cluster 10 throat Pre-intervention 5/23/2014 216 

BS2254_R1.fastq 362D 429643 26391 9 imported Cluster 12 throat Pre-intervention 5/23/2014 216 

BS2253_R1.fastq 362C 429483 26389 7 imported Cluster 12 throat Pre-intervention 5/23/2014 217 

BS2252_R1.fastq 362B 429122 26388 6 imported Cluster 13 rectal Pre-intervention 5/23/2014 216 

BS2251_R1.fastq 362A 427347 26388 6 imported Cluster 13 rectal Pre-intervention 5/23/2014 218 

BS2250_R1.fastq 349A 430496 26393 11 acquired Cluster 10 throat Pre-intervention 5/23/2014 216 

BS2249_R1.fastq 351D 429851 26391 9 imported Cluster 14 throat Pre-intervention 5/18/2014 216 

BS2248_R1.fastq 351B 427602 26392 10 imported Cluster 51 throat Pre-intervention 5/16/2014 217 

BS2247_R1.fastq 351C 429272 26391 9 imported Cluster 14 rectal Pre-intervention 5/18/2014 216 

BS2246_R1.fastq 351A 430959 26391 9 imported Cluster 14 rectal Pre-intervention 5/16/2014 216 

BS2242_R1.fastq 317 429752 26383 1 imported Cluster 46 rectal Pre-intervention 4/29/2014 217 

BS2217_R1.fastq 175 

188335

6 26389 7 acquired Cluster 11 rectal Pre-intervention 8/26/2013 217 

BS2213_R1.fastq 162A 430308 26392 10 imported Cluster 10 rectal Pre-intervention 7/29/2013 217 

BS2196_R1.fastq 98G 430935 26386 4 acquired Cluster 11 tissue Pre-intervention 7/17/2013 216 

BS2193_R1.fastq 93B 434702 26387 5 acquired Cluster 11 throat Pre-intervention 7/1/2013 217 

BS2192_R1.fastq 93C 435463 26388 6 acquired Cluster 11 sputum Pre-intervention 7/2/2013 217 

BS2172_R1.fastq 19 431261 26386 4 acquired Cluster 11 sputum Pre-intervention 4/16/2013 216 

BS3240_R1.fastq 17A 427248 26390 8 acquired Cluster 12 rectal Post-intervention 2/5/2015 217 

BS3241_R1.fastq 17B 428530 26390 8 acquired Cluster 12 throat Post-intervention 2/5/2015 216 

BS3245_R1.fastq 29 427838 26389 7 imported Cluster 45 throat Post-intervention 2/12/2015 217 

BS3344_R1.fastq 211A 427449 26398 16 acquired Cluster 15 throat Post-intervention 9/1/2015 217 

BS3345_R1.fastq 211B 430445 26398 16 acquired Cluster 15 sputum Post-intervention 9/7/2015 217 

BS3365_R1.fastq 273A 430937 26394 12 acquired Cluster 42 rectal Post-intervention 10/22/2015 217 

BS3366_R1.fastq 273B 471155 26394 12 acquired Cluster 40 urine Post-intervention 10/26/2015 211 

BS3367_R1.fastq 273C 426941 26394 12 acquired Cluster 41 rectal Post-intervention 10/29/2015 217 

BS3368_R1.fastq 273D 426377 26396 14 acquired Cluster 43 throat Post-intervention 10/29/2015 216 

BS3409_R1.fastq 352A 424923 26392 10 imported Cluster 49 throat Post-intervention 12/29/2015 217 

BS3410_R1.fastq 352B 426037 26392 10 imported Cluster 49 throat Post-intervention 1/8/2016 217 

 

Supplementary Table 4: All informative wgSNPs within ST235 isolates along with their 

genomic position and annotion.  

# 

SNP 

Position 

ST235-

specific_ 

Informative 

_wgSNPs Annotation 

Non-

informative 

SNPs 

1 46327 G -> A Protein encoding sequence predicted by BioNumerics 77% G (56/73) 

2 76816 C -> T probable two-component sensor 99% C (72/73) 

3 103401 C -> T Protein encoding sequence predicted by BioNumerics 56% C (41/73) 

4 151684 G -> A Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

5 155015 C -> T two-component sensor NarX 99% C (72/73) 

6 155203 C -> T two-component sensor NarX 56% C (41/73) 

7 167014 C -> T Protein encoding sequence predicted by BioNumerics 92% C (67/73) 

8 183428 C -> T Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

9 204162 C -> G Protein encoding sequence predicted by BioNumerics 95% C (69/73) 

10 208909 C -> T hypothetical protein 56% C (41/73) 
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11 223639 G -> T Protein encoding sequence predicted by BioNumerics 53% T (39/73) 

12 223900 G -> T Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

13 267195 G -> A probable transcriptional regulator 53% G (39/73) 

14 275498 C -> T conserved hypothetical protein 99% C (72/73) 

15 276514 G -> A conserved hypothetical protein 99% G (72/73) 

16 293363 G -> C hypothetical protein 99% G (72/73) 

17 308939 A -> C threonine synthase 92% A (67/73) 

18 323856 C -> T single-stranded-DNA-specific exonuclease RecJ 97% C (71/73) 

19 324179 C -> T Protein encoding sequence predicted by BioNumerics 53% C (39/73) 

20 325800 G -> A Protein encoding sequence predicted by BioNumerics 56% G (41/73) 

21 331708 C -> T hypothetical protein 99% C (72/73) 

22 344783 A -> T probable chemotaxis transducer 99% A (72/73) 

23 373711 G -> A Protein encoding sequence predicted by BioNumerics 97% G (71/73) 

24 379005 G -> T Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

25 395505 A -> G Protein encoding sequence predicted by BioNumerics 97% A (71/73) 

26 446869 G -> A Protein encoding sequence predicted by BioNumerics 90% G (66/73) 

27 463946 C -> G Protein encoding sequence predicted by BioNumerics 95% C (69/73) 

28 468056 G -> T probable acyl-CoA dehydrogenase 99% G (72/73) 

29 485977 C -> T Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

30 496269 C -> T Protein encoding sequence predicted by BioNumerics 53% C (39/73) 

31 506774 C -> T Protein encoding sequence predicted by BioNumerics 53% C (39/73) 

32 516315 C -> A   53% C (39/73) 

33 525296 A -> G alginate-c5-mannuronan-epimerase AlgG 97% A (71/73) 

34 539621 T -> G Protein encoding sequence predicted by BioNumerics 99% T (72/73) 

35 540749 T -> A Protein encoding sequence predicted by BioNumerics 71% T (52/73) 

36 557106 G -> T probable outer membrane protein precursor 56% G (41/73) 

37 559060 G -> T hypothetical protein 97% G (71/73) 

38 560548 C -> T Protein encoding sequence predicted by BioNumerics 90% C (66/73) 

39 569020 C -> G probable ferredoxin 97% C (71/73) 

40 601655 G -> T conserved hypothetical protein 53% G (39/73) 

41 618563 G -> A probable ATP-binding component of ABC transporter 99% G (72/73) 

42 633377 C -> T Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

43 648137 C -> A Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

44 667824 G -> A Protein encoding sequence predicted by BioNumerics 56% G (41/73) 

45 685253 G -> T probable transcriptional regulator 99% G (72/73) 

46 687334 T -> C Protein encoding sequence predicted by BioNumerics 56% T (41/73) 

47 692268 C -> T Protein encoding sequence predicted by BioNumerics 90% C (66/73) 

48 698702 G -> C Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

49 713669 C -> T Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

50 713932 C -> A Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

51 777251 C -> T Protein encoding sequence predicted by BioNumerics 58% C (42/73) 

52 778357 C -> T Protein encoding sequence predicted by BioNumerics 92% C (67/73) 

53 778503 T -> C Protein encoding sequence predicted by BioNumerics 99% T (72/73) 

54 799164 G -> T Protein encoding sequence predicted by BioNumerics 53% T (39/73) 

55 829815 C -> T periplasmic tail-specific protease 92% C (67/73) 

56 830839 A -> G periplasmic tail-specific protease 99% A (72/73) 
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57 833848 T -> A probable permease of ABC transporter 97% T (71/73) 

58 835501 A -> G Protein encoding sequence predicted by BioNumerics 97% A (71/73) 

59 842774 T -> G Protein encoding sequence predicted by BioNumerics 99% T (72/73) 

60 847481 C -> G hypothetical protein 53% C (39/73) 

61 878859 G -> A probable two-component response regulator 99% G (72/73) 

62 910605 C -> T hypothetical protein 71% C (52/73) 

63 923280 C -> T conserved hypothetical protein 58% C (42/73) 

64 935706 T -> G Protein encoding sequence predicted by BioNumerics 99% T (72/73) 

65 935887 C -> T Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

66 936081 T -> G Protein encoding sequence predicted by BioNumerics 99% T (72/73) 

67 946326 C -> T Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

68 951728 C -> T Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

69 973293 C -> A Protein encoding sequence predicted by BioNumerics 58% C (42/73) 

70 974394 C -> T Protein encoding sequence predicted by BioNumerics 92% C (67/73) 

71 1013689 C -> T probable two-component response regulator 97% C (71/73) 

72 1028064 G -> T 

amino acid (lysine/arginine/ornithine/histidine/octopine) ABC 

transporter periplasmic binding protein 99% G (72/73) 

73 1070215 A -> G Protein encoding sequence predicted by BioNumerics 97% A (71/73) 

74 1077843 G -> C Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

75 1080824 G -> A hypothetical protein 97% G (71/73) 

76 1115963 A -> C Protein encoding sequence predicted by BioNumerics 97% A (71/73) 

77 1148970 T -> C Protein encoding sequence predicted by BioNumerics 53% T (39/73) 

78 1161904 T -> C Protein encoding sequence predicted by BioNumerics 99% T (72/73) 

79 1168509 C -> G Protein encoding sequence predicted by BioNumerics 97% C (71/73) 

80 1229894 A -> C Protein encoding sequence predicted by BioNumerics 99% A (72/73) 

81 1245071 G -> A Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

82 1252490 C -> T Arginine:Pyruvate Transaminase, AruH 99% C (72/73) 

83 1262375 G -> C topoisomerase IV subunit B 92% G (67/73) 

84 1262939 C -> G topoisomerase IV subunit B 90% C (66/73) 

85 1265258 T -> G topoisomerase IV subunit A 99% T (72/73) 

86 1265259 C -> T topoisomerase IV subunit A 92% T (67/73) 

87 1279577 C -> T chemotaxis protein MotA 99% C (72/73) 

88 1290403 A -> G Protein encoding sequence predicted by BioNumerics 99% A (72/73) 

89 1300480 C -> T Protein encoding sequence predicted by BioNumerics 53% C (39/73) 

90 1341097 C -> T Protein encoding sequence predicted by BioNumerics 53% T (39/73) 

91 1370444 G -> A hypothetical protein 99% G (72/73) 

92 1414741 G -> A Protein encoding sequence predicted by BioNumerics 56% G (41/73) 

93 1435026 C -> T 2,4-dienoyl-CoA reductase FadH2 99% C (72/73) 

94 1456284 C -> T Protein encoding sequence predicted by BioNumerics 77% C (56/73) 

95 1467535 G -> T Protein encoding sequence predicted by BioNumerics 58% G (42/73) 

96 1498865 T -> C Protein encoding sequence predicted by BioNumerics 99% T (72/73) 

97 1551102 C -> T probable permease of ABC transporter 99% C (72/73) 

98 1557603 C -> T penicillin-binding protein 1B 97% C (71/73) 

99 1604564 G -> T cytochrome C-type biogenesis protein CcmH 58% G (42/73) 

100 1614174 T -> A probable short-chain dehydrogenase 90% T (66/73) 

101 1623502 G -> A probable two-component sensor 99% G (72/73) 

102 1639361 C -> T Protein encoding sequence predicted by BioNumerics 59% C (43/73) 
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103 1651562 C -> T conserved hypothetical protein 59% C (43/73) 

104 1652774 G -> C Protein encoding sequence predicted by BioNumerics 56% G (41/73) 

105 1653751 C -> T Protein encoding sequence predicted by BioNumerics 97% C (71/73) 

106 1654242 C -> T Protein encoding sequence predicted by BioNumerics 78% C (57/73) 

107 1655112 G -> T Protein encoding sequence predicted by BioNumerics 90% G (66/73) 

108 1673272 T -> C hypothetical protein 97% T (71/73) 

109 1743628 G -> A Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

110 1792998 T -> G Protein encoding sequence predicted by BioNumerics 56% T (41/73) 

111 1811777 G -> A Protein encoding sequence predicted by BioNumerics 56% G (41/73) 

112 1813154 G -> A Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

113 1828904 C -> T probable tonB-dependent receptor 53% C (39/73) 

114 1836004 T -> G Protein encoding sequence predicted by BioNumerics 97% T (71/73) 

115 1839161 A -> C probable transcriptional regulator 99% A (72/73) 

116 1844060 G -> A Protein encoding sequence predicted by BioNumerics 90% G (66/73) 

117 1848826 G -> A probable semialdehyde dehydrogenase 53% G (39/73) 

118 1899957 A -> C hypothetical protein 99% A (72/73) 

119 1907489 G -> A conserved hypothetical protein 97% G (71/73) 

120 1907885 C -> T Protein encoding sequence predicted by BioNumerics 56% C (41/73) 

121 1938408 C -> T Protein encoding sequence predicted by BioNumerics 56% C (41/73) 

122 1967265 A -> T pyocin protein 95% A (69/73) 

123 1978237 G -> A probable transcriptional regulator 53% A (39/73) 

124 1990599 A -> T Protein encoding sequence predicted by BioNumerics 99% A (72/73) 

125 1992225 C -> G Protein encoding sequence predicted by BioNumerics 53% C (39/73) 

126 2002899 G -> A hypothetical protein 56% G (41/73) 

127 2023174 T -> A Protein encoding sequence predicted by BioNumerics 99% T (72/73) 

128 2053969 A -> G hypothetical protein 53% A (39/73) 

129 2078725 A -> G Protein encoding sequence predicted by BioNumerics 99% A (72/73) 

130 2091388 A -> G Protein encoding sequence predicted by BioNumerics 53% G (39/73) 

131 2095377 C -> T Protein encoding sequence predicted by BioNumerics 95% C (69/73) 

132 2102797 C -> A probable acyl-CoA dehydrogenase 97% C (71/73) 

133 2103253 C -> T probable acyl-CoA dehydrogenase 97% C (71/73) 

134 2105682 G -> C Protein encoding sequence predicted by BioNumerics 90% G (66/73) 

135 2111131 T -> C hypothetical protein 99% T (72/73) 

136 2112192 C -> G probable transcriptional regulator 99% C (72/73) 

137 2124402 G -> A Transcriptional regulator MvfR 59% G (43/73) 

138 2126026 G -> A Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

139 2160091 C -> T DNA gyrase subunit A 95% C (69/73) 

140 2163765 C -> T Protein encoding sequence predicted by BioNumerics 53% T (39/73) 

141 2205350 G -> A heat-shock protein IbpA 97% G (71/73) 

142 2225943 T -> C Protein encoding sequence predicted by BioNumerics 56% T (41/73) 

143 2273653 T -> C Protein encoding sequence predicted by BioNumerics 99% T (72/73) 

144 2290165 C -> T Protein encoding sequence predicted by BioNumerics 56% C (41/73) 

145 2291459 G -> T PelG 56% G (41/73) 

146 2291990 C -> T Protein encoding sequence predicted by BioNumerics 53% C (39/73) 

147 2301823 G -> A conserved hypothetical protein 97% G (71/73) 

148 2308069 C -> A conserved hypothetical protein 56% C (41/73) 
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149 2322937 C -> T Protein encoding sequence predicted by BioNumerics 90% C (66/73) 

150 2338847 G -> A fatty-acid oxidation complex alpha-subunit 90% G (66/73) 

151 2357814 G -> C Protein encoding sequence predicted by BioNumerics 53% C (39/73) 

152 2373212 C -> G Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

153 2376811 C -> T Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

154 2396080 G -> C Protein encoding sequence predicted by BioNumerics 53% G (39/73) 

155 2411799 A -> T Protein encoding sequence predicted by BioNumerics 99% A (72/73) 

156 2421034 C -> T Protein encoding sequence predicted by BioNumerics 95% C (69/73) 

157 2434497 C -> A Protein encoding sequence predicted by BioNumerics 56% C (41/73) 

158 2482676 G -> A Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

159 2500083 T -> C Protein encoding sequence predicted by BioNumerics 99% T (72/73) 

160 2510925 C -> G Protein encoding sequence predicted by BioNumerics 97% C (71/73) 

161 2538238 C -> T Protein encoding sequence predicted by BioNumerics 56% C (41/73) 

162 2550013 G -> A two-component sensor, CopS 58% G (42/73) 

163 2572540 C -> T Protein encoding sequence predicted by BioNumerics 90% C (66/73) 

164 2593094 T -> G Protein encoding sequence predicted by BioNumerics 99% T (72/73) 

165 2613869 G -> A Protein encoding sequence predicted by BioNumerics 66% G (48/73) 

166 2670634 C -> T probable major facilitator superfamily (MFS) transporter 99% C (72/73) 

167 2685477 C -> T two-component sensor PfeS 92% C (67/73) 

168 2692624 G -> T Protein encoding sequence predicted by BioNumerics 95% G (69/73) 

169 2705122 G -> T Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

170 2706809 G -> A Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

171 2804212 T -> C Protein encoding sequence predicted by BioNumerics 99% T (72/73) 

172 2807887 G -> A two-component sensor, ParS 53% G (39/73) 

173 2808187 G -> A Protein encoding sequence predicted by BioNumerics 56% G (41/73) 

174 2876595 G -> A Protein encoding sequence predicted by BioNumerics 97% G (71/73) 

175 2890376 C -> T Protein encoding sequence predicted by BioNumerics 53% C (39/73) 

176 2915053 T -> C Protein encoding sequence predicted by BioNumerics 53% C (39/73) 

177 2916203 C -> T Protein encoding sequence predicted by BioNumerics 97% C (71/73) 

178 2922278 A -> C Protein encoding sequence predicted by BioNumerics 92% A (67/73) 

179 2923651 C -> T probable oxidoreductase 73% C (53/73) 

180 2940586 C -> T periplasmic beta-glucosidase 90% C (66/73) 

181 2950642 G -> A transcriptional regulator ExsA 53% A (39/73) 

182 3004896 C -> T   99% C (72/73) 

183 3007332 T -> G probable aminotransferase 53% T (39/73) 

184 3029635 G -> A Protein encoding sequence predicted by BioNumerics 56% G (41/73) 

185 3031846 T -> C Protein encoding sequence predicted by BioNumerics 53% T (39/73) 

186 3034174 A -> G Protein encoding sequence predicted by BioNumerics 56% A (41/73) 

187 3043483 G -> T Protein encoding sequence predicted by BioNumerics 97% G (71/73) 

188 3049217 C -> A hypothetical protein 53% A (39/73) 

189 3049234 T -> C hypothetical protein 99% T (72/73) 

190 3123907 C -> T Protein encoding sequence predicted by BioNumerics 90% C (66/73) 

191 3131558 C -> G probable short-chain dehydrogenase 53% C (39/73) 

192 3164771 G -> A tyrosyl-tRNA synthetase 2 53% G (39/73) 

193 3183769 G -> A conserved hypothetical protein 53% G (39/73) 

194 3184906 C -> T Protein encoding sequence predicted by BioNumerics 97% C (71/73) 
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195 3187653 T -> C hypothetical protein 97% T (71/73) 

196 3193124 C -> A probable bacteriophage protein 99% C (72/73) 

197 3195700 A -> T Protein encoding sequence predicted by BioNumerics 99% A (72/73) 

198 3209744 G -> T probable two-component sensor 90% G (66/73) 

199 3223330 T -> C Protein encoding sequence predicted by BioNumerics 56% T (41/73) 

200 3259829 C -> G Protein encoding sequence predicted by BioNumerics 97% C (71/73) 

201 3261020 C -> A Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

202 3261527 T -> A conserved hypothetical protein 90% T (66/73) 

203 3294475 A -> C probable transcriptional regulator 99% A (72/73) 

204 3300761 G -> A Protein encoding sequence predicted by BioNumerics 97% G (71/73) 

205 3308254 C -> T Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

206 3314701 G -> A probable acyl-CoA dehydrogenase 97% G (71/73) 

207 3332951 G -> A conserved hypothetical protein 53% G (39/73) 

208 3333072 G -> A conserved hypothetical protein 53% A (39/73) 

209 3395242 G -> A S-adenosyl-L-homocysteine hydrolase 99% G (72/73) 

210 3395632 C -> T S-adenosyl-L-homocysteine hydrolase 53% C (39/73) 

211 3399577 T -> C probable ATP-dependent RNA helicase 97% T (71/73) 

212 3407206 G -> A Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

213 3410054 C -> G Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

214 3429210 G -> T twitching motility protein PilG 73% G (53/73) 

215 3451150 G -> A Protein encoding sequence predicted by BioNumerics 53% G (39/73) 

216 3464541 C -> T Protein encoding sequence predicted by BioNumerics 97% C (71/73) 

217 3468240 T -> C probable aldehyde dehydrogenase 99% T (72/73) 

218 3489298 C -> A Protein encoding sequence predicted by BioNumerics 53% C (39/73) 

219 3514341 C -> T probable binding protein component of ABC transporter 97% C (71/73) 

220 3535259 G -> A Protein encoding sequence predicted by BioNumerics 90% G (66/73) 

221 3544654 C -> T Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

222 3545579 C -> T probable DNA polymerase alpha chain 99% C (72/73) 

223 3592837 C -> T Protein encoding sequence predicted by BioNumerics 66% C (48/73) 

224 3598284 A -> G Protein encoding sequence predicted by BioNumerics 99% A (72/73) 

225 3602521 C -> T Protein encoding sequence predicted by BioNumerics 97% C (71/73) 

226 3608075 C -> T Protein encoding sequence predicted by BioNumerics 53% C (39/73) 

227 3636732 A -> T Protein encoding sequence predicted by BioNumerics 99% A (72/73) 

228 3643349 G -> A signal peptidase I 99% G (72/73) 

229 3646600 T -> G pyridoxal phosphate biosynthetic protein PdxJ 53% G (39/73) 

230 3651202 C -> A probable ATP-dependent protease 53% C (39/73) 

231 3656920 C -> T proline dehydrogenase PutA 95% C (69/73) 

232 3725378 C -> T acetate kinase 99% C (72/73) 

233 3751276 C -> T probable ATP-binding/permease fusion ABC transporter 53% C (39/73) 

234 3754677 G -> T Protein encoding sequence predicted by BioNumerics 53% T (39/73) 

235 3760883 T -> C aromatic amino acid transport protein AroP2 90% T (66/73) 

236 3768478 C -> A transcriptional regulator PhhR 99% C (72/73) 

237 3785349 G -> A Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

238 3788289 C -> G Protein encoding sequence predicted by BioNumerics 59% C (43/73) 

239 3794786 G -> A Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

240 3811401 T -> G Protein encoding sequence predicted by BioNumerics 58% T (42/73) 
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241 3817401 C -> T Protein encoding sequence predicted by BioNumerics 56% C (41/73) 

242 3819961 G -> A Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

243 3823875 C -> A Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

244 3831639 T -> G Protein encoding sequence predicted by BioNumerics 77% T (56/73) 

245 3857594 C -> T 

Basic amino acid, basic peptide and imipenem outer membrane porin 

OprD precursor 97% C (71/73) 

246 3857602 G -> A 

Basic amino acid, basic peptide and imipenem outer membrane porin 

OprD precursor 99% G (72/73) 

247 3895688 C -> T Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

248 3904563 C -> T Protein encoding sequence predicted by BioNumerics 53% C (39/73) 

249 3908020 G -> T Peptidoglycan associated lipoprotein OprL precursor 99% G (72/73) 

250 3911054 C -> T   78% C (57/73) 

251 3962220 G -> A Protein encoding sequence predicted by BioNumerics 95% G (69/73) 

252 3974859 T -> A Protein encoding sequence predicted by BioNumerics 99% T (72/73) 

253 3977880 C -> A Protein encoding sequence predicted by BioNumerics 97% C (71/73) 

254 3985941 T -> A probable Resistance-Nodulation-Cell Division (RND) efflux transporter 99% T (72/73) 

255 3991093 T -> C Protein encoding sequence predicted by BioNumerics 92% T (67/73) 

256 4019491 C -> G UDP-3-O-acyl-N-acetylglucosamine deacetylase 99% C (72/73) 

257 4033310 G -> A Protein encoding sequence predicted by BioNumerics 97% G (71/73) 

258 4036795 A -> G Protein encoding sequence predicted by BioNumerics 99% A (72/73) 

259 4066240 G -> A Protein encoding sequence predicted by BioNumerics 97% G (71/73) 

260 4072225 G -> A conserved hypothetical protein 99% G (72/73) 

261 4076796 C -> T Protein encoding sequence predicted by BioNumerics 56% C (41/73) 

262 4079413 T -> A Protein encoding sequence predicted by BioNumerics 99% T (72/73) 

263 4083085 G -> A Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

264 4104772 G -> A Protein encoding sequence predicted by BioNumerics 97% G (71/73) 

265 4111124 C -> T Protein encoding sequence predicted by BioNumerics 97% C (71/73) 

266 4130059 G -> A Protein encoding sequence predicted by BioNumerics 97% G (71/73) 

267 4145726 A -> G Protein encoding sequence predicted by BioNumerics 53% A (39/73) 

268 4174707 G -> A Protein encoding sequence predicted by BioNumerics 97% G (71/73) 

269 4237167 G -> A Protein encoding sequence predicted by BioNumerics 77% G (56/73) 

270 4241518 G -> A Protein encoding sequence predicted by BioNumerics 53% G (39/73) 

271 4244478 G -> A Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

272 4259817 G -> A Protein encoding sequence predicted by BioNumerics 53% A (39/73) 

273 4286856 G -> T Protein encoding sequence predicted by BioNumerics 95% G (69/73) 

274 4289222 G -> T hypothetical protein 97% G (71/73) 

275 4290080 T -> C probable cytochrome c 99% T (72/73) 

276 4295423 T -> G Protein encoding sequence predicted by BioNumerics 58% T (42/73) 

277 4295779 G -> A probable oxidoreductase 99% G (72/73) 

278 4316048 G -> C Protein encoding sequence predicted by BioNumerics 92% G (67/73) 

279 4349436 T -> A Protein encoding sequence predicted by BioNumerics 58% T (42/73) 

280 4370358 G -> A Protein encoding sequence predicted by BioNumerics 53% G (39/73) 

281 4374013 T -> C Protein encoding sequence predicted by BioNumerics 93% T (68/73) 

282 4457577 C -> T Protein encoding sequence predicted by BioNumerics 95% C (69/73) 

283 4471510 C -> T Protein encoding sequence predicted by BioNumerics 53% C (39/73) 

284 4489384 G -> A Protein encoding sequence predicted by BioNumerics 53% G (39/73) 

285 4502475 G -> A ATP-binding protease component ClpA 99% G (72/73) 

286 4514474 T -> A Protein encoding sequence predicted by BioNumerics 99% T (72/73) 
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287 4549284 T -> C hypothetical protein 90% T (66/73) 

288 4573223 G -> C Protein encoding sequence predicted by BioNumerics 97% G (71/73) 

289 4583547 C -> T Protein encoding sequence predicted by BioNumerics 53% C (39/73) 

290 4602220 C -> A Protein encoding sequence predicted by BioNumerics 53% C (39/73) 

291 4606648 G -> A Protein encoding sequence predicted by BioNumerics 90% G (66/73) 

292 4623188 C -> T probable aldehyde dehydrogenase 90% C (66/73) 

293 4649090 G -> A Protein encoding sequence predicted by BioNumerics 97% G (71/73) 

294 4689026 C -> T probable iron-sulfur protein 58% C (42/73) 

295 4705878 G -> A probable toxin transporter 97% G (71/73) 

296 4708578 G -> A Protein encoding sequence predicted by BioNumerics 53% G (39/73) 

297 4716634 G -> A probable hydrolase 53% A (39/73) 

298 4721652 G -> A Protein encoding sequence predicted by BioNumerics 90% G (66/73) 

299 4735142 A -> T Protein encoding sequence predicted by BioNumerics 99% A (72/73) 

300 4745746 C -> T Protein encoding sequence predicted by BioNumerics 97% C (71/73) 

301 4758000 G -> A probable transcriptional regulator 53% A (39/73) 

302 4785106 C -> G probable outer membrane protein precursor 90% C (66/73) 

303 4785442 G -> A probable outer membrane protein precursor 90% G (66/73) 

304 4793086 G -> A tryptophan synthase alpha chain 92% G (67/73) 

305 4840699 G -> T Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

306 4842923 C -> A Protein encoding sequence predicted by BioNumerics 53% A (39/73) 

307 4859377 G -> A hypothetical protein 97% G (71/73) 

308 4904449 C -> A Protein encoding sequence predicted by BioNumerics 92% C (67/73) 

309 4919357 C -> T Protein encoding sequence predicted by BioNumerics 97% C (71/73) 

310 4920523 C -> T Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

311 4922252 G -> T Protein encoding sequence predicted by BioNumerics 53% G (39/73) 

312 4952190 C -> T Protein encoding sequence predicted by BioNumerics 71% C (52/73) 

313 4959430 T -> C glycosyltransferase WbpZ 99% T (72/73) 

314 4965290 C -> T Protein encoding sequence predicted by BioNumerics 56% C (41/73) 

315 4975071 C -> A probable transcriptional regulator 53% A (39/73) 

316 4987350 G -> A probable transcriptional regulator 97% G (71/73) 

317 5035045 C -> T Protein encoding sequence predicted by BioNumerics 53% C (39/73) 

318 5072781 G -> T hypothetical protein 53% G (39/73) 

319 5079548 G -> A Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

320 5096709 T -> C probable aldehyde dehydrogenase 97% T (71/73) 

321 5103216 C -> T fimbrial subunit CupA4 99% C (72/73) 

322 5122689 C -> T Protein encoding sequence predicted by BioNumerics 97% C (71/73) 

323 5127186 G -> A Protein encoding sequence predicted by BioNumerics 58% G (42/73) 

324 5128210 C -> T Protein encoding sequence predicted by BioNumerics 56% C (41/73) 

325 5135250 T -> C probable alcohol dehydrogenase (Zn-dependent) 95% T (69/73) 

326 5140170 G -> A Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

327 5144577 C -> T Protein encoding sequence predicted by BioNumerics 56% C (41/73) 

328 5150318 C -> T hypothetical protein 99% C (72/73) 

329 5156260 G -> A probable sensor/response regulator hybrid 97% G (71/73) 

330 5180828 C -> T Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

331 5183096 C -> T Protein encoding sequence predicted by BioNumerics 56% C (41/73) 

332 5219670 C -> T   97% C (71/73) 
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333 5237789 C -> T hypothetical protein 99% C (72/73) 

334 5244778 C -> T Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

335 5260534 G -> T Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

336 5261063 C -> T histidine porin OpdC 58% C (42/73) 

337 5265936 G -> A Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

338 5278930 G -> A Protein encoding sequence predicted by BioNumerics 58% G (42/73) 

339 5281273 G -> A Protein encoding sequence predicted by BioNumerics 97% G (71/73) 

340 5292436 C -> T Protein encoding sequence predicted by BioNumerics 66% C (48/73) 

341 5295004 C -> T Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

342 5306205 C -> T Protein encoding sequence predicted by BioNumerics 53% T (39/73) 

343 5309436 C -> T Protein encoding sequence predicted by BioNumerics 97% C (71/73) 

344 5316193 G -> C Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

345 5326737 T -> C Protein encoding sequence predicted by BioNumerics 90% C (66/73) 

346 5336235 G -> A probable transcriptional regulator 99% G (72/73) 

347 5338926 C -> T Protein encoding sequence predicted by BioNumerics 53% C (39/73) 

348 5393479 C -> T Protein encoding sequence predicted by BioNumerics 95% C (69/73) 

349 5397505 G -> A   99% G (72/73) 

350 5439723 C -> A Protein encoding sequence predicted by BioNumerics 99% C (72/73) 

351 5480375 G -> A Protein encoding sequence predicted by BioNumerics 58% G (42/73) 

352 5490072 C -> A Protein encoding sequence predicted by BioNumerics 56% C (41/73) 

353 5603909 G -> A Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

354 5607912 G -> A Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

355 5616071 G -> A ferric-mycobactin receptor, FemA 53% A (39/73) 

356 5620315 C -> T Protein encoding sequence predicted by BioNumerics 97% C (71/73) 

357 5633388 G -> A hypothetical protein 99% G (72/73) 

358 5633678 G -> A hypothetical protein 97% G (71/73) 

359 5662767 C -> G ribose transport protein RbsA 99% C (72/73) 

360 5697631 C -> T hypothetical protein 53% C (39/73) 

361 5700030 A -> G cytochrome c550 99% A (72/73) 

362 5700253 G -> A Protein encoding sequence predicted by BioNumerics 97% G (71/73) 

363 5706567 C -> T Protein encoding sequence predicted by BioNumerics 97% C (71/73) 

364 5709617 C -> T hypothetical protein 77% C (56/73) 

365 5721230 G -> A Protein encoding sequence predicted by BioNumerics 66% G (48/73) 

366 5736541 G -> A paerucumarin biosynthesis protein PvcC 58% G (42/73) 

367 5801854 A -> T Protein encoding sequence predicted by BioNumerics 95% A (69/73) 

368 5807584 T -> A, G   53% A (39/73) 

369 5874173 C -> T probable TonB-dependent receptor 53% C (39/73) 

370 5889363 C -> T Protein encoding sequence predicted by BioNumerics 56% C (41/73) 

371 5928898 T -> C hypothetical protein 53% T (39/73) 

372 5933535 C -> T hypothetical protein 56% C (41/73) 

373 5940449 A -> C Protein encoding sequence predicted by BioNumerics 56% A (41/73) 

374 5981666 C -> T Protein encoding sequence predicted by BioNumerics 53% T (39/73) 

375 5997016 C -> A Protein encoding sequence predicted by BioNumerics 56% C (41/73) 

376 5997592 C -> T Protein encoding sequence predicted by BioNumerics 95% C (69/73) 

377 6007368 A -> G Protein encoding sequence predicted by BioNumerics 99% A (72/73) 

378 6017170 C -> T elongation factor G 99% C (72/73) 
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379 6057123 T -> A Protein encoding sequence predicted by BioNumerics 99% T (72/73) 

380 6068184 G -> A Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

381 6075633 G -> A Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

382 6076399 A -> G probable transcriptional regulator 56% A (41/73) 

383 6079620 C -> G conserved hypothetical protein 56% C (41/73) 

384 6091816 C -> T Protein encoding sequence predicted by BioNumerics 53% T (39/73) 

385 6093040 G -> A putative isovaleryl-CoA dehydrogenase 99% G (72/73) 

386 6102951 G -> A Protein encoding sequence predicted by BioNumerics 97% G (71/73) 

387 6111857 C -> T DhcB, dehydrocarnitine CoA transferase, subunit B 68% C (50/73) 

388 6122137 C -> T Protein encoding sequence predicted by BioNumerics 92% C (67/73) 

389 6161082 T -> G Protein encoding sequence predicted by BioNumerics 99% T (72/73) 

390 6177766 G -> A exonuclease SbcD 53% A (39/73) 

391 6200140 T -> C two-component sensor PprA 97% T (71/73) 

392 6239120 C -> T probable major facilitator superfamily (MFS) transporter 99% C (72/73) 

393 6247301 G -> C Protein encoding sequence predicted by BioNumerics 97% G (71/73) 

394 6250826 G -> T Protein encoding sequence predicted by BioNumerics 53% T (39/73) 

395 6256972 G -> A hypothetical protein 95% G (69/73) 

396 6272087 T -> C Protein encoding sequence predicted by BioNumerics 97% T (71/73) 

397 6272134 G -> T Protein encoding sequence predicted by BioNumerics 99% G (72/73) 

398 6272885 G -> A L-2,4-diaminobutyrate:2-ketoglutarate 4-aminotransferase, PvdH 90% G (66/73) 

 

Supplementary Table 5: All informative wgSNPs within ST357 isolates along with their 

genomic position and annotion.  

# 

SNP 

Position 

ST357-specific_ 

informative_wgSNPs Annotaion 

Non-informative 

SNPs 

1 8881 C -> T Protein encoding sequence predicted by BioNumerics 93% C (67/72) 

2 54864 G -> C Protein encoding sequence predicted by BioNumerics 81% G (58/72) 

3 86136 C -> T probable permease of ABC taurine transporter 99% C (71/72) 

4 86158 G -> T probable permease of ABC taurine transporter 81% G (58/72) 

5 88557 C -> T Protein encoding sequence predicted by BioNumerics 92% C (66/72) 

6 274331 C -> G probable aromatic amino acid transporter (aroP2) 99% C (71/72) 

7 277484 G -> A phosphoribosylformylglycinamidine synthase (purl) 65% A (47/72) 

8 285092 C -> T 

N-Acetyl-D-Glucosamine phosphotransferase system transporter 

(PA3760) 90% C (65/72) 

9 324358 C -> T Protein encoding sequence predicted by BioNumerics 99% C (71/72) 

10 347621 G -> T probable chemotaxis sensor/effector fusion protein 75% G (54/72) 

11 422118 T -> A Protein encoding sequence predicted by BioNumerics 90% T (65/72) 

12 442552 G -> A hypothetical protein 81% G (58/72) 

13 533317 A -> G 

 

88% A (63/72) 

14 537314 C -> A Protein encoding sequence predicted by BioNumerics 99% C (71/72) 

15 581522 G -> A Protein encoding sequence predicted by BioNumerics 75% G (54/72) 

16 587150 C -> G probable malic enzyme (mdh) 65% G (47/72) 

17 638412 G -> T Protein encoding sequence predicted by BioNumerics 65% T (47/72) 

18 942202 T -> A probable ATP-binding/permease fusion ABC transporter 75% T (54/72) 

19 962972 T -> G probable secretion pathway ATPase 97% T (70/72) 

20 994923 G -> A probable oxidoreductase 81% G (58/72) 
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21 1109585 C -> T conserved hypothetical protein 99% C (71/72) 

22 1157825 T -> G Protein encoding sequence predicted by BioNumerics 69% T (50/72) 

23 1159859 A -> C Protein encoding sequence predicted by BioNumerics 99% A (71/72) 

24 1160329 G -> T type 4 fimbrial biogenesis protein PilO 75% G (54/72) 

25 1177023 G -> A Protein encoding sequence predicted by BioNumerics 79% G (57/72) 

26 1197662 T -> G conserved hypothetical protein 90% T (65/72) 

27 1203653 C -> A glutamate-ammonia-ligase adenylyltransferase 93% C (67/72) 

28 1273875 G -> T Protein encoding sequence predicted by BioNumerics 75% G (54/72) 

29 1408777 C -> T Protein encoding sequence predicted by BioNumerics 85% C (61/72) 

30 1486776 G -> A DNA repair protein RecN 79% G (57/72) 

31 1624337 A -> C Protein encoding sequence predicted by BioNumerics 90% A (65/72) 

32 1644287 G -> A probable two-component sensor 99% A (71/72) 

33 1680012 C -> T Protein encoding sequence predicted by BioNumerics 81% C (58/72) 

34 1691207 G -> C probable pyruvate carboxylase 81% G (58/72) 

35 1747575 C -> A Protein encoding sequence predicted by BioNumerics 85% C (61/72) 

36 1784380 G -> A Protein encoding sequence predicted by BioNumerics 97% G (70/72) 

37 1878577 C -> A hypothetical protein 75% C (54/72) 

38 1912394 G -> A Protein encoding sequence predicted by BioNumerics 90% G (65/72) 

39 1951557 C -> T Protein encoding sequence predicted by BioNumerics 75% C (54/72) 

40 1953742 A -> C rRNA methyltransferase 92% A (66/72) 

41 1990381 A -> G Protein encoding sequence predicted by BioNumerics 89% A (64/72) 

42 2007565 C -> A conserved hypothetical protein 93% C (67/72) 

43 2046754 G -> A Protein encoding sequence predicted by BioNumerics 99% G (71/72) 

44 2100548 C -> T 2-Nitropropane Dioxygenase 75% C (54/72) 

45 2498002 C -> T lipase modulator protein 65% T (47/72) 

46 2807068 G -> A trigger factor 94% G (68/72) 

47 2807859 C -> G two-component sensor, ParS 92% C (66/72) 

48 2866716 G -> A hypothetical protein 85% G (61/72) 

49 2871796 C -> G aconitate hydratase 2 75% C (54/72) 

50 2903551 T -> C Protein encoding sequence predicted by BioNumerics 65% C (47/72) 

51 2950278 G -> T transcriptional regulator ExsA 99% G (71/72) 

52 2958965 C -> A Protein encoding sequence predicted by BioNumerics 99% C (71/72) 

53 3025078 T -> A Protein encoding sequence predicted by BioNumerics 99% T (71/72) 

54 3077679 T -> A Protein encoding sequence predicted by BioNumerics 85% T (61/72) 

55 3105952 A -> G Protein encoding sequence predicted by BioNumerics 81% A (58/72) 

56 3120476 G -> A Protein encoding sequence predicted by BioNumerics 94% G (68/72) 

57 3221380 A -> T Protein encoding sequence predicted by BioNumerics 90% A (65/72) 

58 3239702 A -> T Protein encoding sequence predicted by BioNumerics 75% A (54/72) 

59 3321398 G -> A Protein encoding sequence predicted by BioNumerics 99% G (71/72) 

60 3481273 C -> T dihydroxy-acid dehydratase 93% C (67/72) 

61 3507162 C -> A Protein encoding sequence predicted by BioNumerics 90% C (65/72) 

62 3531945 G -> A probable transcriptional regulator 79% G (57/72) 

63 3550584 G -> T Protein encoding sequence predicted by BioNumerics 99% G (71/72) 

64 3593783 C -> T probable major facilitator superfamily (MFS) transporter 85% C (61/72) 

65 3639711 G -> A Protein encoding sequence predicted by BioNumerics 99% G (71/72) 

66 3705544 C -> A Protein encoding sequence predicted by BioNumerics 85% C (61/72) 
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67 3744759 A -> G Protein encoding sequence predicted by BioNumerics 65% G (47/72) 

68 3752954 C -> A Protein encoding sequence predicted by BioNumerics 81% C (58/72) 

69 3754984 G -> A Protein encoding sequence predicted by BioNumerics 85% G (61/72) 

70 3838501 A -> G GTP pyrophosphokinase (relA) 85% A (61/72) 

71 3857898 C -> T 

Basic amino acid, basic peptide and imipenem outer membrane 

porin OprD precursor 99% C (71/72) 

72 3953805 G -> T probable hydrolase 93% G (67/72) 

73 4033310 G -> A Protein encoding sequence predicted by BioNumerics 94% G (68/72) 

74 4061815 G -> C Protein encoding sequence predicted by BioNumerics 85% G (61/72) 

75 4072416 C -> T probable ATP-binding component of ABC transporter 90% C (65/72) 

76 4120385 A -> C Protein encoding sequence predicted by BioNumerics 93% A (67/72) 

77 4145692 G -> A Protein encoding sequence predicted by BioNumerics 65% A (47/72) 

78 4319886 C -> A Protein encoding sequence predicted by BioNumerics 96% C (69/72) 

79 4332627 G -> T 

 

85% G (61/72) 

80 4391947 T -> G hypothetical protein 86% T (62/72) 

81 4392547 C -> A Protein encoding sequence predicted by BioNumerics 85% C (61/72) 

82 4479451 C -> T hypothetical protein 92% C (66/72) 

83 4556323 G -> A Protein encoding sequence predicted by BioNumerics 99% G (71/72) 

84 4600943 G -> A conserved hypothetical protein 99% G (71/72) 

85 4624783 C -> T probable transcriptional regulator 99% C (71/72) 

86 4709257 C -> T probable outer membrane protein precursor 90% C (65/72) 

87 4817906 G -> A Protein encoding sequence predicted by BioNumerics 75% G (54/72) 

88 4849885 T -> G Protein encoding sequence predicted by BioNumerics 93% T (67/72) 

89 4912287 C -> T 

 

85% C (61/72) 

90 4915615 G -> A hypothetical protein 99% G (71/72) 

91 4966735 C -> T Protein encoding sequence predicted by BioNumerics 94% C (68/72) 

92 4975543 T -> G Protein encoding sequence predicted by BioNumerics 99% T (71/72) 

93 4979139 G -> T probable transcarboxylase subunit 99% G (71/72) 

94 5052925 A -> C Protein encoding sequence predicted by BioNumerics 99% A (71/72) 

95 5176542 G -> T Protein encoding sequence predicted by BioNumerics 85% G (61/72) 

96 5223387 A -> C Protein encoding sequence predicted by BioNumerics 82% A (59/72) 

97 5250949 G -> C Protein encoding sequence predicted by BioNumerics 75% G (54/72) 

98 5396238 A -> G Protein encoding sequence predicted by BioNumerics 85% A (61/72) 

99 5422044 C -> T Protein encoding sequence predicted by BioNumerics 75% C (54/72) 

100 5427561 G -> T Protein encoding sequence predicted by BioNumerics 99% G (71/72) 

101 5444428 G -> T Protein encoding sequence predicted by BioNumerics 65% T (47/72) 

102 5466897 C -> T gluconate permease (gnuT) 75% C (54/72) 

103 5587591 G -> A Protein encoding sequence predicted by BioNumerics 90% G (65/72) 

104 5699927 A -> G cytochrome c550 (exaB) 94% A (68/72) 

105 5839714 C -> T hypothetical protein 85% C (61/72) 

106 5950632 A -> G Protein encoding sequence predicted by BioNumerics 99% A (71/72) 

107 5976296 C -> T Protein encoding sequence predicted by BioNumerics 93% C (67/72) 

108 6024859 C -> T 30S ribosomal protein S17 (rpsQ) 88% C (63/72) 

109 6061009 C -> T Fe(III)-pyochelin outer membrane receptor precursor (fptA) 65% T (47/72) 

110 6066230 C -> A Protein encoding sequence predicted by BioNumerics 85% C (61/72) 

111 6119026 C -> G ErcS 93% C (67/72) 
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Supplementary Table 6: All informative wgSNPs within ST823 isolates along with their 

genomic position and annotion.  

# 

SNP 

Position 

ST823-specific_ 

informative_wgSNPs Annotation 

Non-informative 

SNPs 

1 3262 C -> T 

UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl- 

meso-diaminopimelate ligase (mpl gene) 91% C (43/47) 

2 140503 C -> T conserved hypothetical protein 98% C (46/47) 

3 179295 C -> T Protein encoding sequence predicted by BioNumerics 98% C (46/47) 

4 238311 C -> T conserved hypothetical protein 98% C (46/47) 

5 260110 C -> T Protein encoding sequence predicted by BioNumerics 91% C (43/47) 

6 293935 C -> T Protein encoding sequence predicted by BioNumerics 98% C (46/47) 

7 329965 A -> G Protein encoding sequence predicted by BioNumerics 68% A (32/47) 

8 352043 C -> T Protein encoding sequence predicted by BioNumerics 98% C (46/47) 

9 474090 G -> T Protein encoding sequence predicted by BioNumerics 91% G (43/47) 

10 492449 G -> A Protein encoding sequence predicted by BioNumerics 91% G (43/47) 

11 640270 G -> A conserved hypothetical protein 96% G (45/47) 

12 812458 C -> T Protein encoding sequence predicted by BioNumerics 83% C (39/47) 

13 1595002 T -> A Protein encoding sequence predicted by BioNumerics 83% T (39/47) 

14 1653618 G -> T Protein encoding sequence predicted by BioNumerics 62% T (29/47) 

15 1653760 G -> A Protein encoding sequence predicted by BioNumerics 83% G (39/47) 

16 1797565 G -> T Protein encoding sequence predicted by BioNumerics 96% G (45/47) 

17 1816213 T -> G Protein encoding sequence predicted by BioNumerics 91% T (43/47) 

18 1867219 T -> A hypothetical protein 89% T (42/47) 

19 1874535 C -> T Protein encoding sequence predicted by BioNumerics 98% C (46/47) 

20 1903856 G -> A Protein encoding sequence predicted by BioNumerics 91% G (43/47) 

21 1920917 G -> T Protein encoding sequence predicted by BioNumerics 81% G (38/47) 

22 1950618 G -> T Protein encoding sequence predicted by BioNumerics 89% G (42/47) 

23 1990561 C -> A, T Protein encoding sequence predicted by BioNumerics 96% A (45/47) 

24 2023500 G -> A Protein encoding sequence predicted by BioNumerics 98% G (46/47) 

25 2076496 G -> T Protein encoding sequence predicted by BioNumerics 96% G (45/47) 

26 2087747 G -> A Protein encoding sequence predicted by BioNumerics 64% G (30/47) 

27 2170248 C -> T Protein encoding sequence predicted by BioNumerics 91% C (43/47) 

28 2188316 T -> C Protein encoding sequence predicted by BioNumerics 91% T (43/47) 

29 2207630 G -> C Protein encoding sequence predicted by BioNumerics 98% G (46/47) 

30 2311875 C -> T Protein encoding sequence predicted by BioNumerics 83% C (39/47) 

31 2341769 A -> G DNA topoisomerase I 94% A (44/47) 

32 2912817 C -> G Protein encoding sequence predicted by BioNumerics 64% C (30/47) 

33 3362063 T -> A probable ClpA/B protease ATP binding subunit 83% T (39/47) 

34 3509275 C -> T hypothetical protein 64% C (30/47) 

35 3594828 G -> A Protein encoding sequence predicted by BioNumerics 64% G (30/47) 

36 3808176 C -> G Protein encoding sequence predicted by BioNumerics 96% C (45/47) 

37 3828139 C -> A sensor/response regulator hybrid 87% C (41/47) 

38 3904922 G -> T Protein encoding sequence predicted by BioNumerics 94% G (44/47) 

39 3919236 G -> A Protein encoding sequence predicted by BioNumerics 98% G (46/47) 

40 4627927 A -> C Protein encoding sequence predicted by BioNumerics 62% C (29/47) 

41 4704175 G -> C Protein encoding sequence predicted by BioNumerics 98% G (46/47) 

42 4810751 G -> A conserved hypothetical protein 98% G (46/47) 
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43 4862083 C -> G dihydroorotase (DHODH) 96% C (45/47) 

44 4887501 C -> A Protein encoding sequence predicted by BioNumerics 96% C (45/47) 

45 5049615 C -> T Protein encoding sequence predicted by BioNumerics 96% C (45/47) 

46 5065005 G -> A hypothetical protein 98% G (46/47) 

47 5180230 C -> T hypothetical protein 81% C (38/47) 

48 5200128 G -> C probable carbonic anhydrase 96% G (45/47) 

49 5354684 A -> T Protein encoding sequence predicted by BioNumerics 98% A (46/47) 

50 5438644 G -> T Protein encoding sequence predicted by BioNumerics 96% G (45/47) 

51 5518279 T -> C hypothetical protein 62% C (29/47) 

52 5529241 C -> T ATP-dependent DNA helicase RecG 98% C (46/47) 

53 5625095 T -> A Protein encoding sequence predicted by BioNumerics 91% T (43/47) 

54 5646282 C -> T Protein encoding sequence predicted by BioNumerics 68% C (32/47) 

55 5888963 C -> T Protein encoding sequence predicted by BioNumerics 91% C (43/47) 

56 5962111 C -> T PvdL 51% T (24/47) 

57 6026688 C -> T Protein encoding sequence predicted by BioNumerics 91% C (43/47) 

58 6026753 C -> A Protein encoding sequence predicted by BioNumerics 96% C (45/47) 

59 6124007 G -> A Protein encoding sequence predicted by BioNumerics 98% G (46/47) 

60 6224114 A -> G Protein encoding sequence predicted by BioNumerics 96% A (45/47) 

61 6283222 C -> T probable transcriptional regulator 98% C (46/47) 
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Abstract 

Next Generation Sequencing (NGS) is rapidly becoming the Gold Standard method 

for the epidemiological tracing of bacterial pathogens. Whole Genome Sequences (WGS) 

provide a wealth of information on genomic identity of bacterial strains that were isolated 

from the same clinical environment. This information can be used to define whether or not 

strains share a common origin. This can have a major impact on nosocomial infection control 

but in order to do so, the WGS data interpretation should be simplified and made accessible 

to non-bio-informaticians in an easy and straightforward manner. We here present 

EPISEQ® CS as a tool for rapid translation of primary WGS data into actionable advice for 

hospital-based microbiologists and infection control professionals.  

Using WGS for Pseudomonas aeruginosa as an example, here we carried out 

preassembly quality assessment of reads, de novo genome assembly, comparative strain 

characterization at the WGS level, AMR gene profiling and phylogenetic analysis at a push-

button level using EPISEQ® CS. Also compared that with other pipelines like bioNumerics. 

Similar results with a few advantages as well as disadvantages of the two different pipelines 

were observed. Unlike other available WGS data analysis pipelines EPISEQ® CS works as 

an automated system for epidemiological genome analysis, does not require bio-informatic 

expertise and provides a full consolidated output report. However some parametric access 

would be a plus in order to improve the quality and efficiency of EPISEQ® CS. 
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Introduction 

Health care-associated bacterial infections are one of the leading causes of 

nosocomial morbidity and mortality worldwide (Genovese et al., 2020). Each year between 

400,000 and 720,000 cases of healthcare-associated infections (HAI) are estimated to occur 

in the US only (Magill et al., 2014, Zimlichman et al., 2013). Pseudomonas aeruginosa, as 

one of the major pathogens of HAI, is associated with substantially higher mortality and 

morbidity rates than those defined for other pathogens (Dellinger, 2016). Through mutation 

and acquisition of resistance elements, P. aeruginosa has developed populations that are well 

adapted to the local use of antiseptics and antibiotics. According to the antimicrobial 

resistance (AMR) threat report published in 2019, multidrug-resistant (MDR) P. aeruginosa 

caused an estimated 32,600 infections among hospitalized patients and 2,700 estimated 

deaths in the US in the year 2017 (Health and Services, 2019) 

Microbiological detection methods, more precise strain characterization strategies and 

epidemiological analyses have evolved significantly beyond the classical and mostly 

phenotypic methodologies (Zeeshan and Razzak, 2020). The first step in the epidemiological 

analysis of microbial isolates comprises experimental typing of microorganisms, which was 

historically done using a broad variety of conventional methods. The most widely used 

classical strain characterization techniques were PCR-based using among others the 

amplification and sizing of variable numbers of tandem repeats (VNTRs), restriction 

fragment length polymorphisms (RFLP) and amplified fragment length polymorphisms 

(AFLP) techniques (Manukumar and Umesha, 2017). More recently, electrophoretic and 

PCR-based typing became the global methods of choice (Shokoohizadeh, 2016, Sánchez, 

2015). Later, mass spectroscopy (MS) was developed for bacterial identification mostly, but 

applications in the field of typing were reported as well. These technologies are different 

from each other in terms of discriminatory power, reproducibility, timelines, portability and 

cost effectiveness (Babalola, 2003, Lasker, 2002, Van Belkum et al., 2007). Initially and 

despite its high resolution, the value of whole genome sequencing (WGS) was 

underestimated due to cumbersome methodology and high costs (Margulies et al., 2005, 

Valouev et al., 2008, Quainoo et al., 2017, Rothberg et al., 2011). Still, next generation 

sequencing (NGS) that facilitates WGS is now considered the new Gold Standard typing 

methodology.  
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Recent technological advancements in NGS technology further pushed the use of 

WGS in the field of infectious disease research and especially for the analyses of infectious 

outbreaks and pathogen surveillance (Van Goethem et al., 2019, Quainoo et al., 2017, 

Goldberg et al., 2015, Dylus et al., 2020). Several bio-informatic tools and algorithms can 

now be utilized for NGS data analysis with as main foci overall genomic strain 

characterization, detection of existing and new antimicrobial resistance (AMR) genes and 

virulence factors, and definition of strain transmission dynamics in health care settings (Van 

Goethem et al., 2019, Tshibangu-Kabamba et al., 2020, Goyal et al., 2020, Goldberg et al., 

2015, Dylus et al., 2020) In this highly competitive scientific field many different data 

analysis software packages (e.g. sraX (https://github.com/lgpdevtools/srax; (Panunzi, 2020)), 

BacPipe (Xavier et al., 2020), CLC Genomics Workbench by QIAGEN 

(https://digitalinsights.qiagen.com), BIONUMERICS (Applied Maths, bioMérieux)) are 

commercially or freely available. The software service called EPISEQ® CS (bioMérieux, 

Marcy L’Etoile, France) is one of the recently developed NGS data analysis tools. The 

system is based on interactive graphical user interfaces (GUI) and aims at non-specialist users. 

It generates an integral report providing a complete epidemiological analysis along with a 

graphical phylogenetic tree, a minimum spanning tree and a quality check for the raw data 

and the resulting genomic assembly. Most importantly, it generates a full epidemiological 

analysis report with automatic color coding for various themes and metadata. Individual 

sample reports can also be accessed, indicating the complete resistome and virulome for an 

individual strain. 

The present study focuses on the epidemiological analysis of a panel of 214 P. 

aeruginosa strains collected from a single Indonesian hospital during an infection control 

intervention (Pelegrin AC, 2019). Here, we have specifically exploited raw sequence reads 

and our main focus was to define the efficiency and reliability of EPISEQ® CS in 

comparison with alternative data interpretation pipelines.  

 

Material and Methods 

Raw sequence reads for the set of 214 P. aeruginosa strains from a major Indonesian 

hospital in Jakarta were used for epidemiological analysis before (Pelegrin AC, 2019). The 

Illumina FASTQ reads were now uploaded to a personal account in the bioMérieux 

EPISEQ® CS software application available at https://data-analytics.biomerieux.com. After 

https://github.com/lgpdevtools/srax
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trimming of raw reads, de novo assembly was performed using SPAdes v3.10.0. During post 

processing, a consensus assembly was generated and quality metrics on raw and trimmed 

data reads and the assemblies were calculated. These quality metrics were compared with the 

pre-defined thresholds in EPISEQ® CS. Unlike done in the present study, assembled FASTA 

files instead of raw reads with a minimal recommended coverage of 45x and a minimal 

paired end read length of 150 base pairs can also be directly uploaded in EPISEQ® CS. 

Quality parameters such as the number of core loci present, custom k-mer classification of 

assembled genomes and assembled genome lengths were checked in order to verify the 

authenticity of the uploaded genome sequence data. Dedicated modules in EPISEQ® CS 

determined the contamination score based on the presence of non-ATGC bases aided by the 

k-mer classification of assembled genomes. Thereafter, epidemiological analysis was done 

using a whole genome multi-locus sequence typing (wgMLST) approach. CARD (version 

1.2.1; 2017-10-10; (Jia et al., 2016)), ResFinder (2019-09-16; (Zankari et al., 2012)), 

PointFinder (2019-09-16; https://bitbucket.org/genomicepidemiology/pointfinder_db/) and 

NCBI antimicrobial resistance databases (version: 2020-06-11; 

https://www.ncbi.nlm.nih.gov/pathogens/isolates#/refgene/) were aggregated and reformatted 

to fit the EPISEQ® CS resistance ontology pathway. EPISEQ® CS generates a set of allele 

differences that describe the degree of dissimilarity between individual strains that can be 

represented as a minimum spanning tree (MST) which ultimately defines the most likely 

chain of pathogen transmission. The MST developed in EPISEQ® CS is build using the Prim 

algorithm (https://gowalker.org/github.com/soniakeys/graph#LabeledUndirected_Prim). The 

phylogenetic dendrogram is based upon the unweighted pair group method of arithmetic 

mean (UPGMA) method of cluster analysis.  

 

Results and Discussion 

Being an automated system for epidemiological genome analysis, EPISEQ® CS does 

not require bio-informatic expertise. Still, it needs a molecularly trained infection control 

professional to execute and interpret the full workflow. Unlike otherwise available WGS data 

analysis pipelines, EPISEQ® CS provides a full report including preassembly quality 

assessment of reads, de novo genome assembly, comparative strain characterization at the 

WGS level, AMR gene profiling and phylogenetic analysis at a push-button level. Apart from 

the overall epidemiologically oriented report, EPISEQ® CS generates individual reports for 
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all strains. Consequently, the report describes the strain-specific resistome and hints at 

antimicrobial drugs to which strains are expected to be susceptible or resistant. 

 

Population-based Relationship Analysis  

One of the factors that sets EPISEQ® CS apart from other pipelines is the complete 

population-based analysis it performs using data from all uploaded strains. Relationships 

based on wgMLST similarities within any new dataset as well as between the new dataset 

and the WGS data already available in the overall database of EPISEQ® CS are 

automatically calculated (Figure 6-1). Within the input dataset of the 214 Indonesian P. 

aeruginosa genome sequences studied in this communication, 22 strains with <= 94.91% 

similarity (10.3%) were identified as unrelated and unique, 52 strains sharing similarities 

between 95% to 98.99% (24.3%) were considered as possibly related and 140 strains with >= 

99.89% similarity (65.4.7%) were contemplated as probably related. However, when the 

Indonesian P. aeruginosa WGS where compared to the entire EPISEQ® CS database only 43 

genome sequences were found to be probably related with entries in the global database. This 

points to the circulation of a relatively unique set of strains in the ICU setting of the 

Indonesian hospital. Consequently, only a small number of entries in the database display 

elevated levels of homology with the genomes of the Indonesian strains.  

 

 

Figure 6-1: Relationship analysis of the genomes of indicidual Indonesian P. aeruginosa 

strains with all the other strains in the Indonesian input panel (within panel, box on the left) 

as well as with those avaiable in EPISEQ® CS database (within population, box on the right). 

The green colored bar represents the number of strains found unrelated, the white bar in the 

middle of both of the graphs shows the number of possibly related samples and red colored 

bar determines the number of probably related strains. Similarity figures are shown on 

horizontal axis. 
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Quality Control 

 Initially, identity and read quality were checked for each sample. Then at execution 

of each step of the pipeline, additional quality analysis was performed. Paired end raw as well 

as trimmed reads were examined on the basis of prefixed parameters which defines the 

probability of incorrect base calls at the termini of raw reads. This section of the report 

explains the overall quality of the data by giving color indications of major and minor 

warnings (see Figure 6-2 for an example). The QC report generated during the present 

analysis demonstrates that the quality of pre-intervention P. aeruginosa strains was slightly 

better than that of post-intervention P. aeruginosa strains (Supplementary file).    

 

Figure 6-2: Quality control measures (sample BS2370) carried out at each step of the 

analysis strating from raw data reads to markers calling. Status of good quality data is color 

coded as green where as yellow and red status are the sign of minor and major warnings 

respectively appears during any step of the analysis. 

 

wgMLST-based Strain Typing and Phylogenetic Analyses  
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De novo assembled genomes were characterized using thousands of loci scattered 

around the P. aeruginosa genomes. Out of 214 genomes, 198 MLST sequence types were 

accurately identified by seven locus MLST, in comparison with a similar analysis done by 

(Pelegrin AC, 2019), using a prior version of the MLST database, adequate MLST 

concordance was observed (Supplementary file). Next to MLST, phylogenetic analysis based 

on the wgMLST profiles provides more detailed insight into the level of strain relatedness. 

For each species there are pre-determined similarity thresholds for calling probable or 

possible relatedness. A historical database for each species has been built over time and can 

be used to compare bacterial strains from new or current outbreaks with those from previous 

events. A commonly used tool for short term molecular epidemiology of bacterial strains 

involves the use of MSTs.  Between the strains of the Indonesian input panel, allele 

differences ranged from 0 to 3400 and using a distance matrix, an MST was constructed. 

Developing the MST requires mathematically sophisticated algorithms such as phylogenetic 

analysis for inferring genetically diverse population structures. Here we generated MSTs 

using the wgMLST data of the same set of strains of two major groups ST235 and ST357 

with BIONUMERICS as well as with EPISEQ® CS. The output (Figure 6-3) illustrates that 

allelic variations (SLVs, DLVs and TLVs) among the strains were more clearly defined in the 

EPISEQ® CS generated tree. In contrast, only wgMLST-based groupings were formed in the 

BIONUMERICS generated tree.  
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Figure 6-3: Minimum spanning tree calculated from an input panel of P. aeruginosa strains 

from Indonesia. Image A represents MST based on allelic variations in ST235 and ST357 

generated by EPISEQ® CS (in black background) and Image B represents the same 

generated by BIONUMERICS (In white background). Allelic variations are not shown in 

image A. 

 

The epidemiological analysis window of EPISEQ® CS provides a dendrogram along 

with metadata and quality control parameters of the input panel. Color-coded clustering on 

the basis of wgMLST can also be seen in Figure 6-4. In the present analysis, EPISEQ® CS 

generated a phylogenetic tree that demonstrated the clustering of input panel strains including 

the outside population database developed by EPISEQ® CS from previously uploaded strains 

(Figure 6-4). Using predefined UPGMA, thirty two clusters at 99.89 % similarity (by default) 

were identified in this study. At any time, one can identify the number of clusters based on 

custom defined similarity thresholds, providing a highly interactive manner for the user to 

characterize the relationship between strains according to study requirements.  
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Figure 6-4: Epidemiological analysis window of EPISEQ® CS showing the dendrogram, 

QC, metadata and the similarity matrix generated for P. aeruginosa strains from Indonesia 

using the EPISEQ® CS database. 

 

EPISEQ® CS does not allow to change the parameters to generate dendrograms in the 

way BIONUMERICS does. Considering this limitation we have here generated a wgMLST 

based dendrogram using both BIONUMERICS and EPISEQ® CS (Figure 6-5). Clustering 

was almost identical, supporting the efficiency of the EPISEQ® CS output. Other strains 

from the EPISEQ® CS database sharing more than 99.89% similarity with the Indonesian 

input panel were also analysed. In the present analysis our input panel formed 50 clusters 

with strains from the EPISEQ® CS knowledge base. Individual dendrograms were 

constructed for each strain to explain its relationship with database strains. This could 

potentially map the historical origin of a strain or to find its descendants in previous 

outbreaks. 
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Figure 6-5: Image A: dendrogram generated by EPISEQ® CS. Image B: dendrogram 

generated with BIONUMERICS along with strain ID and wgMLST.   

 

Detailed Resistome Analysis 

Unlike most epidemiology pipelines, resistome analysis in EPISEQ® CS is not 

limited to mere detection of resistance genes; It also provides a detailed exploration of 

resistance alleles including the identity, coverage, position of the allele in the genome, 

information of drugs to which a resistance gene may confer resistance, drug families and the 

resistance mechanism provided by the resistance marker (see Figure 6-6 for an example). We 

found SNPs within the resistome of each WGS, both known ones and ones newly discovered. 

This further supported the information on therapeutic usefulness of antimicrobial drugs with 
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which the respected AMR marker associates (Figure 6- 6). Other resistance finder tools or 

pipelines provide similar information on resistance genes in the genome along with the 

identity percentages, ARG associated mutations or SNPs. Still, the recently developed tool 

sraX for instance is not a one-step application such as EPISEQ® CS, but rather a complex 

command line tool (Panunzi, 2020). For comparative purposes, we performed the resistome 

analysis using the same dataset and another command line-based software called Abricate 

(https://github.com/tseemann/ABRicate; (Sydenham et al., 2019)) generating a list with 

ARGs and their identity coverage, homology percentage, comprehensive list of mutations and 

resistance to certain drugs and the mechanism of resistance action. EPISEQ® CS (Version 

2.0), which provides tabular information on resistome content and mutations, was simple to 

perform and its outcome was easy to interpret and understand (Supplementary file). However, 

no virulome information was obtained for the input panel. Other dedicated tools for 

epidemiology i.e. bacPipe and sarX are highly flexible in terms of user defined parameters 

but none of those provides such elaborate information on antimicrobial resistance based on 

specific mutations as EPISEQ® CS does. 

 

Figure 6-6: Resistome analysis for strain BS2370 in EPISEQ® CS with all mutations 

identified in its resistome along with their mechanism of action.  

 

Conclusion 

https://github.com/tseemann/ABRicate
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 EPISEQ® CS is an advanced bio-informatic pipeline primarily focused on 

epidemiological strain characterization but also including the identification of resistome 

markers. It is a push-button solution as compared to other available NGS data analysis tools. 

It does not require extensive expertise in bio-informatics, command line platforms and 

technical knowledge of background algorithms to define the epidemiological and resistome-

associated parameters. Although it takes time and high bandwidth internet connection to 

upload the hundreds of sequence datasets, it does not take much time to complete the full 

analysis using the largely predefined parameters. Moreover, results are well organized in the 

form of color coded figures and tables. Identification of new mutations in a resistome filters 

for novel markers. EPISEQ® CS is an interesting tool in a field that is currently dominated 

by academic researchers and diagnostic laboratories in first tier hospitals. Simple and push-

button tools such as EPISEQ® CS will provide wider access to this technology. 

 

Supplementary file 

MLST of the dataset of Pseudomonas aeruginosa strains calculated by EPISEQ® CS. 
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Quality check summary report calculated using EPISEQ® CS for the dataset of Pseudomonas 

aeruginosa strains . 
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Chapter 7  
Summary  

 

Routine clinical microbiology laboratories are at the receiving end of new diagnostic 

technologies. Over the past decades nucleic acid amplification technologies, mass 

spectrometry and, more recently, omics technologies including next generation sequencing 

have been successfully introduced for increasingly large-scale diagnostic applications. 

Particularly in the field of microbial infections, diagnostic procedures have to start with an 

accurate identification of pathogenic microbes. Rapid technological advancements made this 

increasingly efficient through the successful application of a variety of methodologies, from 

more classical ones to the most recent technologies for strain detection and further 

characterization. The introduction in routine diagnostic laboratories of such technologies in 

combination with the readily available and extensive amounts of clinical patient-related and 

demographic data has led to a surge in the implementation of new analytical tools for the 

combined interpretation of both diagnostic laboratory data and patient-oriented information. I 

will here summarize the diverse methods that are available for interpretation of such large 

scale diagnostic data and we will summarize the quality of additional tools that will allow the 

combined interpretation of “big diagnostic data” and the plethora of patient-oriented, 

environmental and epidemiological clinical data. The ultimate target for such approaches is to 

streamline and accelerate data management in favor of improved patient care. 

Below I will describe the species specific work described in this thesis. This will be 

done in the context of the use of new technology to help improve diagnostic tests which for 

the most part are based on classical technology. I intend to extrapolate my findings to more 

general applicability in the field of routine diagnostic microbiology. 

 

How Staphylococcus aureus evolved during nasal colonization 

Staphylococcus aureus can colonize the human vestibulum nasi longitudinally for 

many years. It is unknown whether and how S. aureus adapts to this ecological niche during 

colonization. We determined the short (1 and 3 months) and mid-term (36 months) genomic 

evolution of S. aureus in natural carriers and artificially colonized volunteers. Multi-locus  
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sequence typing (MLST) and single nucleotide polymorphism (SNP) analysis based 

on whole-genome sequencing (WGS) were carried out. Mutation frequencies within resident 

bacterial populations over time were quantified using core genome SNP counts and pairwise 

SNP divergence assessment. SNP counts in all naturally colonizing strains varied from 0 to 

757 (median 4) within a period of 1-3 months. These strains showed random and independent 

patterns of pairwise SNP divergence (0 to 44 SNPs, median 7). When the different core 

genome SNP counts over a period of 3 years were considered, the median SNP count was 4 

(range 0–26). Host-specific pairwise SNP divergence for the same period ranged from 9 to 57 

SNPs (median 20). During short term artificial colonization the mutation frequency was even 

lower (0–7 SNPs, median 2) and the pairwise SNP distances were 0 to 5 SNPs (median 2). 

Quantifying mutation frequencies is important for the longitudinal follow-up of  persistent 

colonization, epidemics of infections and more local outbreak management. Random patterns 

of pairwise SNP divergence between the strains isolated from single carriers suggested that 

the WGS of multiple colonies is necessary in this context. Over periods up to 3 years, 

maximum median core genome SNP counts and SNP divergence for the strains studied were 

4 and 20 SNPs or lower. During artificial colonization, where median core genome SNP and 

pairwise SNP distance scores were 2, there is no early stage selection of different genotypes. 

Therefore, we suggest an epidemiological cut off value of 20 SNPs as a marker of S. aureus 

strain identity during studies on nasal colonization and also outbreaks of infection.  

The SNP Cutoff or thresholds illustrates the genetic relatedness among the strains 

thereby could play a potential role in management of S. aureus outbreaks by excluding the 

patients harbouring S. aureus strains that are unlikely to be part of the same outbreak and to 

stay focused only on those who will need further epidemiological follow-up. Present study 

established SNP cutoff values which could also be implemented for the purpose of genomic 

surveillance to combat future S. aureus infection outbreaks and similar studies could also be 

performed for other bacterial pathogens. 

 

Novel Typing technique for Clostridioides difficile   

Clostridioides difficile   is a significant cause of sometimes severe health care-

associated infections. The epidemiological study of C. difficile infection (CDI) traditionally 

involves PCR ribotyping. However, ribotyping will be increasingly replaced by WGS. This 

implies that WGS types need correlation with classical ribotypes (RTs) in order to perform 
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retrospective clinical studies if needed. We selected genomes of hyper-virulent C. difficile 

strains of RT001, RT017, RT027, RT078, and RT106 to try and identify new discriminatory 

markers using in silico ribotyping PCR and De Bruijn graph-based Genome Wide 

Association Studies (DBGWAS). First, in silico ribotyping PCR was performed using 

reference primer sequences and 30 C. difficile genomes of the five different RTs identified 

above. Second, discriminatory genomic markers were sought with DBGWAS using a set of 

160 independent C. difficile genomes (14 ribotypes). RT-specific genomic polymorphisms 

were annotated and validated for their specificity and sensitivity against a larger dataset of 

2425 C. difficile genomes covering 132 different RTs. In silico PCR ribotyping was 

unsuccessful due to non-specific or missing theoretical RT PCR fragments. More 

successfully, DBGWAS discovered a total of 47 new markers (13 in RT017, 12 in RT078, 9 

in RT106, 7 in RT027, and 6 in RT001) with minimum q-values of 0 to 7.40 × 10−5, 

indicating excellent marker selectivity. The specificity and sensitivity of individual markers 

ranged between 0.92 and 1.0 but increased to 1 by combining two of the new markers, hence 

providing undisputed RT identification based on a single genome sequence. Markers were 

scattered throughout the C. difficile genome in intra- and intergenic regions. We propose here 

a set of new genomic polymorphisms that efficiently identify five hyper-virulent RTs 

utilizing WGS data only. Further studies need to show whether this initial proof-of-principle 

observation can be extended to all 600 existing RTs.  

WGS based markers for the identification and characterization of C. difficile showed 

an perfect example of one of the most important application of WGS approaches. Going 

beyond classical ribotyping based typing method is itself a benchmark move in the field of 

diagnostics which is a first step of any outbreak management study. Our proposed WGS 

based strain characterization methodology has a potential of further extension and validation 

using other C. difficile strains as well as other bacterial pathogens. 

 

Correlation of genomic variations and mortality caused by SARS-CoV-2 

The current COVID-19 pandemic is caused by the SARS-CoV-2 virus for which 

many variants at the SNP level have now been identified. I show here that different allelic 

variants among 692 SARS-CoV-2 genome sequences display a statistically significant 

association with geographic origin (p < 0.000001) and COVID-19 case severity (p = 0.016). 

Geographic variation in itself is associated with both case severity and allelic variation 
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especially in strains from Indian origin (p < 0.000001). Using an new alternative 

bioinformatics approach I was able to confirm that the presence of the D614G mutation 

correlates with increased case severity in a sample of 127 sequences from a shared 

geographic origin in the US (p = 0.018). While leaving open the question on the pathogenesis 

mechanism involved, this suggests that in specific geographic locales certain genotypes of the 

virus are more pathogenic than others. I here show that viral genome polymorphisms may 

have an effect on case severity when other factors are controlled for, but that this effect is 

swamped out by these other factors when comparing cases across different geographic 

regions. Also a novel BIONUMERICS SARS-CoV-2 plugin tool implemented the SNP-

based haplotype variations in a large set of SARS-CoV-2 genome sequences observed in the 

present study and defines the SARS-CoV-2 population structure and dynamics associated 

with clinical findings, including fatality rates among patients. Although this study focused on 

certain genotypes of interest, our approach could be adapted easily to novel variants of 

SARS-CoV-2 in order to identify unkown samples. This study presents a potential future 

scope by investigating relationships of different genotypes, viral load and patient outcome to 

reach out to the actual mechanism playing role in increased pathogenesis. 

 

First whole genome based analysis of Pseudomonas aeruginosa 

Carbapenem non-susceptible Pseudomonas aeruginosa (CNPA) strains from 

intensive care units (ICUs) in a referral hospital in Jakarta, Indonesia were recently 

submitted to detailed epidemiological investigations. It was documented that CNPA 

transmissions and acquisitions among patients were variable over time and that these were 

not significantly reduced by a set of infection control measures. Four high risk international 

CNPA clones (sequence type (ST)235, ST823, ST357, ST446) dominated and carbapenem 

resistance was due to carbapenemase-encoding genes and mutations in the porin OprD. I 

here present a more detailed genomic analysis of these four major clones. 

With whole genome-based Multi Locus Sequence Typing (wgMLST) of the 4 

CNPA clones, three to eleven subgroups with up to 200 allelic variants were observed for 

each of the CNPA clones. Furthermore, I analyzed the three largest CNPA clone clusters for 

the presence of wgSNPs to redefine CNPA transmission events during hospitalization. A 

maximum number 35350 SNPs (including non-informative SNPs) and 398 SNPs (excluding 

non-informative SNPs) was found in ST235, 34570 SNPs (including non-informative SNPs) 
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and 111 SNPs (excluding non-informative SNPs) in ST357 and 26443 SNPs (including 

non-informative SNPs) and 61 SNPs (excluding non-informative SNPs) in ST823. SNPs 

that are excluding non-informative SNPs were commonly noticed in sensor-response 

regulator genes. However the majority of non-informative SNPs was found in conserved 

hypothetical proteins or in uncharacterized proteins. Of note, antibiotic resistance and 

virulence genes segregated according to the wgSNP analyses. A total of 11 transmission 

chains for ST235 strains were traceable, followed by 6 and 5 possible transmission chains 

for ST357 and ST823. The present study demonstrates the value of detailed whole genome 

sequence analysis for highly refined epidemiological analysis of P. aeruginosa. Potentially, 

similar schemes and approaches can be applied to the epidemiological tracing (both locally 

but certainly also globally) of any other medically relevant pathogen species, with both 

microbes and viruses amenable to the same technological approach.   

 

Evaluation of EPISEQ® CS in comparison with other NGS data analysis pipelines 

NGS is rapidly becoming the new Gold Standard method for the epidemiological 

tracing of bacterial pathogens. WGS provides a wealth of information on genomic identity 

of bacterial strains that were isolated from the same clinical environment. This information 

can be used to define whether or not strains share a common origin. This can have a major 

impact on nosocomial infection control but in order to do so, the WGS data interpretation 

should be simplified and made accessible to non-bio-informaticians in an easy and 

straightforward manner. I here present EPISEQ® CS as a tool for rapid translation of 

primary WGS data into actionable advice for hospital-based microbiologists and infection 

control professionals.  

Using WGS for Pseudomonas aeruginosa as an example, here we carried out 

preassembly quality assessment of reads, de novo genome assembly, comparative strain 

characterization at the WGS level, Anti-Microbial Resistance (AMR) gene profiling and 

phylogenetic analysis at a push-button level using EPISEQ® CS. I also compared that with 

results from bioNumerics. Similar results with a few advantages as well as disadvantages of 

the two different pipelines were observed. Unlike other available WGS data analysis 

pipelines EPISEQ® CS works as an automated system for full-blown epidemiological 

genome analysis, does not require bio-informatic expertise and provides a fully consolidated 
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output report. However, some additional parametric accesses would be a plus in order to 

improve the quality and efficiency of EPISEQ® CS. 

 

Overall message in the THESIS 

Different aspects of whole genome based applications in the field of diagnostics have 

shown in my thesis. Technological shift from laboratory oriented cumbersome methods to in-

silico based approaches can be seen in the present work. However the combination of  

molecular and in-silico approaches has its own potential and reliability. Whole genome based 

strain characterization and wgSNP based identification of probable transmission events 

illustrate the fact that the WGS not only saves time but also help healthcare sectors during 

severe outbreak management and surviellence. I also included the contribution of promising 

automated technologies like EPISEQ® CS which has made an easy access to various 

epidemiological tools at one place that to whithout possessing any expertise to run the tool. 

However one has to have a deep knowledge of genomics to interpret the results and pick out 

the desired piece of outcome as per the intital focus of the study.  

To a large extent, my thesis has a full focus on the addition of WGS approaches to 

routine clinical microbiological diagnostics. I have discussed the examples I worked on 

above and I hope it is clear that all chapters in the current thesis point towards successful 

application of WGS analysis for answering a diversity of diagnostic questions. The methods, 

although still too expensive, too laborious and too often requiring expertise that is readily 

available in high-throughput microbiological testing laboratories, are ready for successful 

importation into such laboratories. All that is needed is a little more time to make the 

technology more affordable, a little more rapid and easy to handle. Such developments have 

been at the heart of WGS for the past decades and this will continue for years to come. I am 

sure this will increase the quality of microbiological testing and with that the level of care for 

patients with invasive infections. 

My thesis has also reviewed the inevitable need of better management of the steadily 

growing data repository along with molecular biological advancements. Different 

microbiological techniques available for microbial detection and characterization were 

summarized along with the advantage of various roles played by NGS data analysis in the 

field of epidemiology and infection outbreak management is also presented thourougly in the 
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thesis. Importance of curated databases for various studies and to promote potential role of 

data management is the back bone of my work. Also, to provide correct directives to manage 

sudden outbreaks such as COVID-19, genomic variation based findings in the thesis showed 

remarkable achievements in the field of diagnostics. However alarming growth of 

bioinformatics data highlighted the real problem which needs a shift from just cloud storage 

to an integrated and standardized cloud computing solutions to perform analysis using 

powerful computational algorithms onto the cloud itself. 
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