Ambiguity Resolution by a
Virtual Agent Through Its
Own World Knowledge

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultéat
der Eberhard Karls Universitat Tiibingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von
Christian Julius Stegemann-Philipps

aus Hildesheim

Tiibingen
2020

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen

Fakultit der Eberhard Karls Universitdat Tiibingen

Tag der miindlichen Qualifikation:
Stellvertretender Dekan:
1. Berichtserstatter:

2. Berichtserstatterin:

18.02.2021

Prof. Dr. Jozsef Fortagh
Prof. Dr. Martin V. Butz
Prof. Dr. Susanne Winkler

I dedicate this work to my wife Annika, because I can’t imagine doing a PhD without her;
and to those undertaking projects while not knowing the way.

Acknowledgements

I'was lucky to work with wonderful people during my PhD, I always profited from
their professional advice, and they have contributed a lot to the positive aspects of this
work. Whatever faults may be found with this work, however, are of my own making.
I am thankful to Martin V. Butz and Susanne Winkler for their supervision and guid-
ance, to Asya Achimova for all her help and advice and the fun we had, to Dilectiss
Liu for stimulating discussions and wonderful guitar play, to my office colleagues
from 048, especially Maren Ebert-Rohleder, Elisabeth Schedel, and Anna Schwetz,
for their companionship, to the GRK 1808 Ambiguitdt and all its members for the
wonderful setting and their help, especially Inken Armbrust for our shared breaks and
Natascha Elxnath and Sarah Metzger for their comments on the linguistic glossary, to
the Neuro-Cognitive Modeling Group for their valuable input and the fun we had,
to Greg Scontras for sharing his experience and providing guidance, and to all the
researchers I have met along the way that listened and gave their advice. I also want
to thank my wife and my family for their support, I can only spend at work what I
gain at home, and I am happy and lucky to have you.

Contents

Introduction

Understanding Natural Language Is Difficult

21 Winograd Schemas,
2.2 Basic Definitions for Modeling
2.3 Deep learning approaches
2.4 Non Deep Learning Approaches
2.5 Transparency, Scalability and Cognitive Plausibility

Processing Language and Ambiguity

3.1 Meaning and Ambiguity of Isolated Sentences
3.2 The Problem of Ambiguity
3.3 Using Contextin Comprehension
3.4 Types of Ambiguity and World Knowledge
3.5 Information Gaps and the Utility of Ambiguity
3.6 Modeling Language Processing

Meaning and World Knowledge

4.1 Inference and Mental Simulation
42 Embodimentand Grounding
4.3 Truth Conditions and Scene Reconstructions

Modeling World Knowledge

5.1 Predictive Processing Accounts
5.2 Pre-Defined Structure and Event-Predictive Cognition
53 Emerging Structure L Lo

The Model and Main Hypotheses
6.1 MainHypotheses,

The Event-Predictive System

7.1 Learning and Applying Encodings
7.2 A Computational Description of the Event Predictive System
7.3 TheStructureof Events L.
74 Related Models of Event-Dynamics

Implementation of the Event-Predictive System

8.1 Sensory Information Available to the System
8.2 Models, Predictionsand Errors
8.3 Model Updates and Surprise
8.4 TransitionModels L

O 0 O = W

13
13
15
16
18
21
23

25
27
30
32

33
33
35
36

39
40

42
42
45
46
47

10

11

12

13

14

85 RelationModels
8.6 Summary of the Implementation
8.7 Implementational Details

Evaluation and Discussion of the Implementation

9.1 Opverall Error Minimization
9.2 LearnedModels,
9.3 Overcoming Limitations
9.4 Extending Spatial Relational Encodings

The Language Processing System

10.1 Constructing Abstract Scene Representations
10.2 The Lexicon Function
10.3 ProcessingaSentence

The Inference and Simulation System

11.1 Reconstructing a ScenelIsCostly
11.2 The Inference Mechanism
11.3 Implementation of Simulation
11.4 Comparing a Simulated Scene to the Requirements
11.5 Adaptation Heuristics
11.6 Summary L.

Evaluation and Discussion of the Implementation

12.1 Limitations,
12.2 Resolving Ambiguity
12.3 Language and Event-Predictive Structures

Experiment: Producing Information Gaps

13.1 Language Production and Predictability
13.2 The Experiment
13.3 Experimental Setup
13.4 Participants
13.5 Annotating Utterances and Analysis
13.6 Results and Discussion
13.7 General Discussion

Conclusion

Appendix A Reference to Implemented BrainControl Code

Appendix B Vocabulary in final evaluation

62
64
66
73
75

78
78
80
81

85
86
89
90
93
95
96

97
116
117
118

120
120
123
124
126
126
127
129

133

148

148

Appendix C Details of Production Experiment 150

Appendix D Models Learned By Final Implemented System 150

1 Introduction

Tt has been a long-standing goal of cognitive science to develop computer programs
that are able to understand natural language, e.g. English, rather than formal program-
ming languages only. There has been considerable advancement over the last decades,
however, computer programs are still not communicating with us in plain English as
of today. While there are examples where it seems that the machine can understand us,
like modern digital assistance software built into smartphones, this comprehension
often comes to a sudden and unexpected halt. One of the main problems seems to
be that a computer program does not understand our world, and thus has limited
understanding of our language.

Levesque et al. (2012) propose the Winograd Schema Challenge to test how well
computers actually comprehend language. The basic idea of the challenge is to provide
the computer with an ambiguous sentence that could be interpreted in two distinct
ways. The program then has to decide which interpretation is correct. If the challenge
items are well designed, the computer will be required to have an understanding
of our world to actually solve the task. Importantly, a human reader will be able to
interpret the challenge items in the correct way without much effort, maybe even
without consciously thinking about the other interpretation. If humans can understand
the challenge items because they have an understanding of how the world works
and computer programs are limited in this regard, then this challenge should test the
deeper capabilities of computer programs to understand language.

The phenomenon, that a human reader does not notice the ambiguity, but the
computer completely misinterprets the utterance, can be linked to a general issue with
ambiguity. In everyday conversation, there is much more ambiguity than usually
noticed. This is often attributed to humans being able to resolve ambiguity by using
context and world knowledge. An important question is thus how ambiguity interacts
with world knowledge. We propose that an ambiguity arises when the utterance is
missing bits of information that are needed to decide on one of the two possible inter-
pretations. We call this phenomenon an information gap. While missing information can
lead to ambiguity, it is also efficient to drop information if it is not necessary, creating
the need to find an acceptable balance. We show that speakers in our experiment
actively manage the amount of information depending on their knowledge of the
world.

The larger part of this work focuses on developing LEARNA, a computational
model that addresses the Winograd Schema Challenge, but which is also able to resolve
ambiguity through world knowledge in general. The big question then is how an
understanding of the world is acquired, and how it can be used to understand natural
language. The computational model proposed and implemented in this work solves

1Chap’cer 13 of this work has been reworked and published in Stegemann-Philipps, Butz et al., 2021,
Chapters 1-12 have been reworked and published in Stegemann-Philipps and Butz, 2021

the Winograd Schema Challenge in a simplified and restricted environment. The model
acquires an understanding of its world by building upon work on cognitive processing
of events. As will be shown, the structures emerging from this approach are efficient at
acquiring world knowledge but also at being used for language comprehension.

This work is structured in a way so that a broad theoretical overview of the different
fields is provided first before describing the LEARNA system. Section 2 will start
with a general introduction of Winograd Schemas and the problem of understanding
natural language. Basic definitions used for modeling throughout this work will be
introduced and a review of current modeling approaches to Winograd Schemas will
be done. Finally, abstract requirements, that LEARNA should satisfy, will be derived.
Section 3 provides an overview of the linguistic theory that motivates this work and is
used throughout. A short but general description of language processing in general
and ambiguity in particular will be provided. After reviewing more specific linguistic
approaches to ambiguity, the notion of information gaps will be introduced, which
will motivate one of the main hypotheses of this work.

Section 4 examines theoretical approaches to world knowledge and their role in
the meaning of utterances. Mental models will be introduced here, and embodiment
and grounding will be discussed briefly. The problem of grounding partly motivates
the modeling attempts of this work. Section 5 develops theoretical notions on how
to model the acquisition and representation of world knowledge. Event-predictive
cognition in particular will be introduced. After this broad theoretical overview, section
6 presents the abstract nature of LEARNA as well as the main hypotheses that this
work provides evidence for.

Section 7 switches to the modeling perspective and describes the event-predictive
system, one of three main parts of LEARNA, from a computational or functional
perspective. Section 8 then describes the implementation of this system. The system
will then be evaluated in 9.

As a counterpart to the event-predictive system, section 10 introduces the lan-
guage processing system, the second of three main parts of LEARNA. A functional
description, as well as a detailed description of the chosen implementation, is provided.
Section 11 then describes the last of the three main parts of LEARNA: the inference
and simulation system. This system will provide a link between event-prediction and
language processing. LEARNA will then finally be evaluated in section 12, specifically
the range of its language comprehension ability.

Section 13 represents an excursion from the modeling and describes an experiment
investigating the influence that world knowledge has on human language production.
Section 14 will provide a general conclusion.

2 Understanding Natural Language Is Difficult

The main goal of this work is to build an artificial system that understands language to
a certain degree. In this work, we define an artificial system as a computer program that
exhibits specific interactive behavior. One of the early systems that approached this
issue was called SHRDLU. Winograd (1972) described the artificial system SHRDLU
in a long article titled Understanding Natural Language. SHRDLU was able to process
natural language expressions to manipulate a simple artificial world. Such simplified
artificial environments in which an artificial system is operating will be called mini
worlds from here on. A mini world is mainly characterized by the space it defines in
which objects are simulated. The mini world is often picking out specific objects and
behaviors of the real world and simulates those in a simplified manner. In the case
of SHRDLU, the mini world consisted of differently shaped objects in a box. The box
functions as the general boundary of the mini world, whereas the objects populate it
and follow the laws of physics. The behavior of SHRDLU seems quite impressive, as
the following short extract from a sample dialogue shows.

“10. can a pyramid be supported by a block?

YES.

The deductive system finds an actual example, so it knows this is possible.
11. can a pyramid support a pyramid?

I DON'T KNOW.

The question makes sense, but there is no example in the scene, so there is
no easy way to tell without being able to examine the robot’s programs.
12. stack up two pyramids.

ICAN'T.

The robot tries and fails.” (Winograd, 1972, p. 10)

While these results are impressive, SHRDLU is unfortunately fully hard coded, i.e.
the behavior it exhibits is fully defined by the original programmer. Adjusting it to
encompass additional capabilities is thus very difficult. Even building the artificial
system itself is already very time consuming. Given that the mini world, in which
SHRDLU operates, is a box populated by pyramids and cubes, the problem of under-
standing natural language is not actually solved. All the behavior is manually created
for this specific mini world, however, it is difficult to scale up to more advanced capa-
bilities. This means that SHRDLU is not actually applicable to the general problem it
approaches. It was never used in actual applications. In this work, we will try to avoid
hard coding as much as possible. SHRDLU does serve as a good starting point however,
as it comes close to LEARNA in its goal of modeling the process of understanding
natural language.

2.1 Winograd Schemas

Winograd acknowledged in his work that there are cases in which natural language
seems clear to human listeners but very difficult to understand for computers due
to the necessity to have a huge amount of knowledge about the world. Winograd
proposed (1) as an example of this that would actually lead to difficulties, for instance,
in machine translation. To give credit where credit is due, Bar-Hillel (1960) already
discussed this problem using example (2).

(1) a. The city councilmen refused the demonstrators a permit because they feared
violence.

b. The city councilmen refused the demonstrators a permit because they ad-
vocated revolution.?

(2) a. Little John was looking for his toy box. Finally he found it. The box was in
the pen. John was very happy.

Winograd (1972) observed that they changes reference in (1), but to be able to assign
the correct reference, an artificial system would need to have broad knowledge of the
world. Bar-Hillel (1960) argued that pen was ambiguous in (2) but to choose small
enclosure for children to play in over pencil, the artificial system would again need to have
broad world knowledge.* In (1) specifically, a system would need to have a concept
of city councils and their members, of demonstrators, of violence, revolution, fear,
advocating things, permits and refusals. In addition the system would need to know
about how these different things usually work together, e.g. causality. Such knowledge
may be called world knowledge, the term will be refined over the span of this work.

Example (1) inspired Levesque et al. (2012) to propose Winograd Schemas (WSs) as
a class of natural language understanding problems that are simple for humans but
difficult for computers. Levesque et al. (2012) propose to use pairs of such sentences to
test how much world knowledge an artificial system has acquired. Their reasoning is
that an artificial system, that is able to assign correct reference to they in (1), will also
exhibit a substantial amount of world knowledge as well as the ability to do common
sense reasoning. In this work, we define common sense reasoning as the application of
world knowledge to actual problems. It is important to keep having world knowledge
and applying it apart, especially in this work.

2pboth (Winograd, 1972, p. 33)

3(Bar-Hillel, 1960, Appendix IIT)

41t is interesting that Bar-Hillel claims that ‘no existing or imaginable program will enable an electronic
computer to determine that the word pen in the given sentence within the given context has the second
of the above meanings, whereas every reader with a sufficient knowledge of English will do this “auto-
matically”.” At the time of the writing of this work, the translation engine deepl.com actually produced
a somewhat correct translation into German by translating pen as Pferch, which is not perfect but very
close to the correct Laufstall. When introducing gender into (1), the translation into German was incorrect
however. This was done with a simple one time test by the author.

4

Levesque et al. (2012) collect pairs of sentences into a collection they call the
Winograd Schema Challenge, see Davis (2019) for an updated collection. Each of those
pairs is constructed similar to the pairing in (1), though they introduce a few more
restrictions, like ‘the sentences should only differ in one or two words’, to make the
data more uniform. Levesque et al. (2012) also try to avoid sentences with simple
shortcuts, so they do not allow sentences where simple co-occurence patterns would
already yield the correct interpretation. An example of this would be (3), where women
and pregnant will co-occur in a corpus much more often than pills and pregnant. Such
a co-occurence pattern is simple to find in a large enough corpus, i.e. a collection of
written texts in this case. But finding co-occurences can be done by a simple program
and does not allow more general common sense reasoning.

(3) a. The women stopped taking the pills because they were pregnant.

b. The women stopped taking the pills because they were carcinogenic.?

To strengthen the case of WSs, let us consider a mini world in which certain
regularities are different from the real world. When a person explores the mini world
and tries to describe it, they will probably start by using basic categories. If there is an
object shaped like a box, they may say: ‘there is a box’. If the object now starts to move
around using bipedal motion, they may say: ‘the box walks around’. Something like a
WS can be produced if the person says:

(4) ‘The box falls to the ground and it breaks.”®

What it refers to in this case remains ambiguous unless one is familiar with this
specific mini world.” Both, the object shaped like a box and what is seen as the ground,
might be programmed to break apart in this case. What is necessary to understand
the sentence is world knowledge, only this time the world is an artificial one. The rules
and regularities of such a mini world may plausibly be turned into WS style sentences,
and the knowledge an artificial system has of these regularities can be tested this way.
The same reasoning plausibly applies for the real world too. A regularity of the real
world that most people are familiar with can be turned into a WS style sentence. Such
a sentence might not actually qualify for the Winograd Schema Challenge, e.g. because
there is a statistical shortcut, but it is similar in spirit. If this is true, WSs provide a
way of probing an artificial system’s knowledge of the world that is very simple for
humans to understand.®

The overall goal of this work is an artificial system that approaches understanding
natural language in a way that allows it to resolve referential ambiguities such as

Sboth (Levesque et al., 2012, p. 555)

®What would be missing here is a partner sentence.

70Of course there is a strong intuition that the box breaks apart here, but programming the mini world
so that the ground breaks apart is just as simple as programming it so that the box breaks. This is why a
mini world really brings out how WSs rely on knowing how the world behaves.

8Coming up with a sentence is often easier than programming a testing routine

WSs. This means the artificial system should acquire and use world knowledge to
understand them. Since this task in its generality is extremely complex, we will work
towards a manageable problem and an achievable modeling approach, similar in spirit
to the system that Winograd (1972) describes while avoiding its shortcomings. Before
reviewing current models however, the basic modeling terminology that will be used
throughout this work will be introduced.

2.2 Basic Definitions for Modeling

Above we already defined artificial system and mini world As a first restriction, an
artificial system in this work is always an information processing artificial system, i.e. it is
seen as a mechanistic or computational function that maps input information to output
information. In this work, we will disregard the philosophical discussion surrounding
these terms and focus on the fact that such an artificial system can be described using
formulas. In describing the computations done by information processing artificial
systems, it is common to distinguish Marr’s three levels of description, see Marr (2010),
Rescorla (2020). They can be seen as a hierarchy of descriptions, with the first or top
level being the computational level of description. This level addresses the questions of
what the computation is supposed to achieve and why it is done, i.e. the abstract
function of the computation and its notable features. The second or middle level
is the algorithmic level of description, sometimes called representational level. On
this level, the algorithmic nature of the computation is described, i.e. the formalism
defining the computation. This specifically includes the representational structures
that the computation operates on. The third or bottom level is the implementation
level of description, on which the actual physical realization is described. In this work,
artificial systems are only described on the first two levels; the physical realization
is not important here. Note that we will describe the implementation of our artificial
system later. But this will actually be on the algorithmic level of description since the
exact nature of input and output as well as the mapping functions will be described.
Since the artificial system in this work will be complex, it will happen that these levels
become blurred. The overall artificial system will be differentiated into parts. This
could already be seen as a description on the algorithmic level, even if the parts are
only described on the computational level.

Now let us assume we have a description of an artificial system on the algorithmic
level. We can say that the input, the output and the internal states of the artificial
system are representations, i.e. informational states that the system operates on and
which ideally stand in for a state of the domain in which the system operates. In the
case of our system, this will be a mini world. A useful artificial system will usually
describe specific dynamics of the domain it operates on. In the case of a mini world
these dynamics may be how objects behave or the physical laws that govern the
mini world. This we call a model. A more complex artificial system can also contain

many different models, describing different dynamics. We further say that a model
encodes information about the dynamics it describes. Since an artificial system can also
encode information without using models, we define an encoding as information that
a system has access to internally. Thus, a model is an encoding, but an encoding is not
necessarily a model. Finally, those parts within an artificial system that are not models
will be called mechanisms here. Mechanisms operate on models and encodings.

To illustrate these terms on a well known example, consider a small scale digital
simulation of our solar system and its internal movement patterns. As a whole, this
is a model, because it describes the movement dynamics of the solar system. As an
artificial system, it may contain different parts. The current configuration, i.e. the
current position of all the objects, is a representation, and there may be distinct models
for each planet, describing their movement. Each of these will thus operate on the
appropriate planet representation. It is also imaginable that there is only one model
describing the movement patterns in general which depends on features of a planet
like size or weight. The artificial system may have encodings of these features, e.g. as
a list. To predict the movement of one planet representation, the artificial system now
needs a mechanism to pick the correct model as well as the necessary encodings.

Recall that SHRDLU, the artificial system described by Winograd (1972), was hard
coded. In the solar system example, the most hard coded way of building such a
simulation would be to simply encode the trajectories as curves and velocities into the
artificial system. It would then be able to simulate the solar system, i.e. it would be a
fully functioning model. If, however, we wanted to add in the moon, we would have to
implement the moon’s trajectory and velocity too, and the same would apply for every
new object we ever inserted into the model. In the most general, i.e. least hard coded,
way to build such a system, we would encode the laws of physics in a model and let
the system compute velocities and trajectories. To add in a new object, we would now
only have to encode the necessary features like weight, size and starting position. Note
that in this latter case, we would not even need to know the full trajectory of an object
because the model would provide it.

An even simpler way of encoding information in an artificial system is to let it learn.
This is usually done through learning mechanisms that are fed data. If the mechanisms
are good, the result will be a model of patterns that the data follows. This process of
learning on data is called training. Because systems that are trained can sometimes
behave in unforeseeable ways, they are usually tested on cases where the ideal behavior
is known in order to see how well they perform on these test cases. If there are many
similar test cases, a useful measure of a system’s performance is accuracy, i.e. how
many test cases the system solved correctly.

With all of these definitions in place, we can review current approaches to the
Winograd Schema Challenge and describe the approach that we will take in this work.

2.3 Deep learning approaches

Except for marked exceptions, recent models are usually tested on the collection of
WSs in (Davis, 2019). Since the data set only contains WSs that a model can either
resolve correctly or fail, models will usually be evaluated by accuracy, i.e. how many
examples the model resolved correctly.

The most successful approaches in terms of accuracy on (Davis, 2019) build on
the recent advances in training very deep neural network models. Artificial neural
networks mimic real world neural networks, meaning that they are networks consisting
of nodes, where a node is inspired by a real world neuron. In the network structure, the
connections between the nodes have weights that restrict signal flow in the network,
and the nodes have functions that determine how the node passes on input signals.
These weights can be trained on data, which, if done correctly, leads to the network as
a whole approximating patterns found within the input data.” If the complexity of
the patterns that are to be learned increases, an artificial neural network will need a
lot of data with correct labels to be able to fine-tune its parameters. One advantage of
neural network models is their generality, see e.g. Russell et al. (2010), but this comes
at the cost of needing a lot of computing power and data to be trained. Given that the
models consist of a large number of interconnected nodes, it is often very difficult to
interpret what they do. The trained models can become a blackbox, thus being helpful
as applied models but uninformative in regards to the patterns they discover.!°

Recent advances in computing power, data availability and algorithms led to
surprisingly strong models in a wide range of fields. Natural language processing
is one of those fields, with new results coming in in quick succession. Kocijan et al.
(2019), for example, make use of recent advances in pre-training to generate models
that reach an accuracy of 71.4% on the collection of WSs by (Davis, 2019). In simple
terms, a model is trained on an incredibly large general purpose corpus of written text
and then fine-tuned on very specific sets of other WSs, i.e. the model is never actually
trained on the WSs in (Davis, 2019). Sakaguchi et al. (2019) further improve this to
90.1% by using a much larger data set for fine-tuning. Given the larger accuracy of
their model, they propose to instead use a larger data set which they simultaneously
introduce as a new reference test-case. They call this data set Wino-Grande. Since this
larger data set is designed to be more difficult than the original collection in (Davis,
2019), accuracy of the models is worse. Sakaguchi et al. (2019) report 79.1% accuracy
on Wino-Grande, Lin et al. (2020) even report 84.6% on Wino-Grande.

Even more recent, Brown et al. (2020) describe a model that is once again much
larger, in terms of parameters (weights that are trained) and in terms of training data,

9Since artificial neural networks are not used further in this work, the description remains limited. See
e.g. Russell et al. (2010) for an in depth introduction.
10Tt is generally assumed that neural network models are difficult to interpret. In how far this is a
problem and how good this can be solved is a controversial issue into which we will not go here.

than preceding models. They report around 80%!, which is worse than the models
above, but their model is not fine tuned at all. This means the model is only trained on
written text found on the internet and then tested on the WS data set. At the time this
dissertation was written, the model by Brown et al. (2020) was among the most recent.

While these very recent results are impressive, interpreting them is not as easy as it
seems. The original idea of WSs was to create a problem that would require common
sense reasoning to solve. It is not at all clear that the models presented above are indeed
able to use common sense reasoning!?. These results are often achieved by using a very
closely related data set to fine-tune the models, raising the question of whether their
might be redundancy in the data to some extent. Lin et al. (2020) are indeed careful
in interpreting the implications of the power of their model. They conclude that the
results could either be explained by biases in the data which the models exploit or by
an actual progress towards something like common sense reasoning. The latter may
also be because the common sense knowledge simply appears in the data. As they put
it:

Perhaps it is the case that in a humongous corpus of natural language text,
someone really has written about trying to stuff a tuba in a backpack? (Lin
et al., 2020, p. 3)

Whether such models get closer to common sense reasoning is a huge topic of its
own. For now, we can conclude that in terms of the WSs, there are now models that
achieve impressive accuracy on the original collection in (Davis, 2019). However, as of
now, we are unable to tell what patterns the models discover and use, making them
good for application but not very useful for understanding underlying questions about
acquiring and processing common sense reasoning.

24 Non Deep Learning Approaches

Other approaches to WSs have proposed to insert more pre-defined structure into the
model. Peng et al. (2015) introduce predicate schemas that capture subject-predicate-
object relationships found in the real world. A basic example they give is a schema
pred,,(m,a) that could be instantiated as have(m = flower,a = pollen). They then
translate the interpretations of WSs into instances of such predicate schemas and score
their probability. Their example would be ‘the bee landed on the flower because it
had pollen’, where their model ideally would score the flower having pollen higher
than the bee having pollen. They use different methods to learn scoring such predicate
schemas, for example they extract instances from a huge corpus, of text or they use a
web search and count the returned results. All in all, this method is based on the same

UThey report slightly more than 80% but then discuss a mistake in training, decreasing their perfor-
mance to slightly less than 80% on a filtered version of the collection in (Davis, 2019).
121t is not clear that they are not able to do so either

resources as the neural network models in section 2.3, i.e. a huge corpus of raw text,
but it applies an intermediary step to make it easier to assign probabilities.

Schiiller (2014) proposes translating WSs into graphs, a representation consisting of
entities and relations between them. The solution is then computed by analyzing these
graph representations. The drawback of their approach is that they have to manually
build the graph structure, translating each WS and the appropriate world knowledge
into their representational format. This is impossible to scale efficiently to larger data
sets.

Sharma et al. (2015) propose a formalization of WSs in terms of two specific struc-
tural types they identify. They then use the formalization to search the web!® for
examples containing the necessary world knowledge. The drawback of this approach
is the need to search a large text corpus after getting the WS as input. The world
knowledge they extract will thus be very redundant in the long run because for each
new example, the relevant knowledge is searched anew within the corpus.

Liu et al. (2017) try to learn embeddings with the help of databases that store
dependencies between words or concepts. An embedding is a function that assigns
vectors to input units, such as words or sentences, so that the vectors capture some
of the structure of the input. Using the data within the data bases, they compute
similarities between the embedding of the pronoun in the WS and its possible referents.
While their model indeed scales to the original small set of WSs in Davis (2019), they
report a rather low accuracy of 52.8% on a similar data set which was provided to
participants of a formally held Winograd Schema Challenge, see Levesque et al. (2012).

What unifies the approaches presented above is that they introduce handcrafted
structures to encode world knowledge and then populate these structures, i.e. learn
world knowledge, from data. The basic sources to learn from are either huge corpora
of written text or hand crafted sources, e.g. existing data bases or sources created
specifically for the task. While hand crafting works well, it is very time consuming,
and scaling is extremely difficult, something that was already discussed for the system
described by Winograd (1972). Ideally, a model should be able to function without
extensive hand crafting, i.e. the need for hand crafting should not increase when
scaling the model to larger domains. In terms of raw accuracy on the collection in
(Davis, 2019), the models were overpowered by sheer corpus size and computational
power as described in 2.3. It is unclear whether this is because of the inability to scale
or the proposed structures being faulty.

2.5 Transparency, Scalability and Cognitive Plausibility

In the following, we will derive what path this work will take in modeling. So far,
we have seen that hand crafting or hard coding are problematic because the need
for introducing structure is difficult to satisfy when scaling. We also saw that deep

13The web can basically be considered a text corpus.

10

learning models, while achieving high accuracy when tested on data sets, are obscure
as to their inner workings, not revealing learned patterns.

At their core, WSs are about understanding the world. The general assumption is
that understanding WSs requires world knowledge, so the models reviewed so far all
extract and apply world knowledge to solve WSs. This can even be assumed for the
obscure neural network models where it is unclear how the model works internally,
see e.g. the discussion on the presence or absence of common sense in there models by
Lin et al. (2020). The efforts to generate these models are part of a broader attempt to
produce models with deeper language understanding that are not confined to a specific
task. Ideally, a model that can solve WSs has an understanding of language and is also
applicable to related tasks. Reversely, models that succeed at those other tasks should
be able to solve WSs. The work on such deeper understanding has a long history and
there are many more contributions than the WS models that are mentioned here. Storks
et al. (2019) provide a very recent review of these modeling attempts. Judging by their
review, it seems that the models above provide appropriate insight into the range of
approaches used in general: neural networks seem to be the most active approach, but
there are also other statistical models as well as handcrafted reasoning models. Storks
et al. (2019) even identify the same data sources as above: written text and established
data bases. Even so, the most accurate models discard established data bases and only
rely on written text before fine-tuning on specialized selections of winograd schemas
or similar sources.

Focusing on test set accuracy, the models described above do not pursue similarity
to human cognition. This also means that those models interact very little with research
on human cognition. To bridge the gap between models and research on cognition,
this work chooses a different approach. We will propose a model that is inspired
by theories of cognition and thus more similar to humans cognition. This has three
main advantages. We may uncover structural features that can be used to improve
models which optimize for accuracy. It also allows to test theoretical models of parts of
cognition. If we are able to implement a model of cognition and the model is successful,
this makes the theoretical model more plausible. It will not prove that the theoretical
model is right, but it proves that the model is feasible. Finally, an implementation will
force every little detail either to be spelled out or to be part of the assumptions, thus
uncovering weak spots of theoretical models and opening ways for refinement. Such a
plausibility check through implementation is all the more useful in cases where details
of cognition are hard to prove through data. This is often the case for underlying
mechanisms of cognition, where only behavior and brain-related data is accessible.

Because cognition is so complex, models are usually implemented in a reduced
fashion, picking out specific cases or relying on certain assumptions. Such partial
implementations strengthen the theoretical models if successful; they may provide
useful structural insights for further models and demonstrate the need for refinement
where problems emerge. For models that implement theoretical models of cognition

11

and their structure, the main advantages hold even the implementation is restricted or
reduced to only implement parts.

As a first summary, we can note requirements that the model in this work should
satisfy, as described below.

1. Hard coding should remain minimal. In the case it does occur, it should not
require more hard coding when scaling the model, i.e. hand crafting parts of the
system should only be done once.

2. The model should be inspired by and mirror plausible theoretical explanations
of human cognition. It suffices if this is restricted to the reduced domain that we
focus on, namely ambiguity resolution through world knowledge as exemplified
by WSs.

3. The structure of the model should be transparent and learned patterns should be
accessible.

To resolve all possible kinds of WSs, a full model would need to encompass a
complete language faculty as well as world knowledge and the ability to process such
knowledge. This is an extremely challenging task, which was the original point made
by Bar-Hillel (1960) and that Winograd (1972) reiterated. Such a full model is far
beyond the scope of this work, but a partial implementation is feasible. As discussed
above, the model should mirror theories of human cognition. So, the next sections will
introduce the theoretical scaffolding that will be needed to build the model, starting
with language processing.

12

3 Processing Language and Ambiguity

This section will develop the basic theoretical background that will inspire our model
for it to be able to resolve the reference in examples like (4). Besides an overview of
how language can be interpreted in general, i.e. the basic structures that the model
should implement, a more general discussion of ambiguity and its resolution will be
included. As before, we will start with basic definitions.

In this work, we restrict the definition of communication to a speaker sending an
utterance to a listener. Although we say speaker and listener, it does necessitate spoken
communication. Our model will process written sentences. Before the listener can
retrieve the meaning of a sentence, it first has to enter the mind, e.g. through reading
or hearing. Thus, the first system that is activated in comprehension is an auditory or
other perceptual faculty. This system will provide an accessible representation (instead
of sound waves). In this work, we will disregard this first step and assume in our
model that the input is already accessible to the underlying systems.

We can say that the speaker produces the utterance and the listener comprehends
it. We will assume that both the speaker and the listener are cooperative, i.e. both use
the resources they have available to be understood and to understand. A traditional
approach to define understanding is to say that a listener understands an utterance if
they know the conditions under which it is true, see e.g. Lobner (2012). Knowing
these truth conditions is equal to knowing which states of the real world are denoted by
the utterance. We will stick with this approach in this work, but the details of how to
model this will be worked out later.

Finally, we restrict ourselves to utterances that describe real world situations, so we
ignore questions or implicit meanings, for example. This also means that the meaning
of an utterance is always a specific situation.

3.1 Meaning and Ambiguity of Isolated Sentences

When a listener is presented with a simple isolated sentence like (4), there are tradition-
ally three basic things they will have to do to ascertain the meaning of the sentence.
They will need to assign a meaning to each of the words that make up the sentence,
i.e. they will have to know lexical semantics. In this case, this means they will have
to know what a box is, what the ground is, what falling is and what ‘to’ means. We
can assume that this meaning is stored in memory and activated when necessary. This
meaning storage is often called the mental lexicon, although this is a rather theoretical
construct, see e.g. Lobner (2012). Without diving too deep into the debate about the
mental lexicon, we will assume that the meaning of non-compositional concepts are
stored in memory. The basic unit of lexical meaning will be regarded as words or
lexemes in this work.

The listener will also need to work out the grammatical structure of the sentence, i.e.
they will have to know syntax and morphology. In this work, we ignore morphology,

13

e.g. the s in breaks, since it is too removed from our modeling focus. Syntactic analysis
of (4) would tell the listener that there are two parts within the sentence, that falls has
the box as its subject and that it is extended by the prepositional phrase to the ground.
Further, Breaks has a pronoun as the subject which could refer to either the box or
the ground. In terms of human language processing, there is evidence that syntactic
processing is somewhat distinguishable from other steps, see e.g. Ferreira (2019) for
production or Vonk et al. (2018) for comprehension. This does not mean that syntax
is necessarily processed in isolation, but there is some evidence that there is a special
mechanism for putting elements together.

After analyzing word meaning and syntactic structure, the listener will have to use
both and assign meaning to groups of words until ending up with the full sentence
with meaning, i.e. they will have to know compositional semantics. This means they
will form the meaning of the box falls and to the ground, then of the box falls to the ground
and finally of the complete sentence. From a processing perspective, this step is less
clear and we will develop details of this process over the following sections.

(4) The box falls to the ground and it breaks.

It has to be noted that these theoretical distinctions are subject to grand controver-
sies, especially in regards to if and how the different types of analysis are intertwined.
Jackendoff (2002) discusses this issue at length and says at one point that ‘it is a major
research problem, debated for the past forty years, to determine how much of meaning
is directly signaled by syntax.”!4

Note that in the case of (4), the listener will have to assign a reference to the pronoun
it. This is exactly the main problem fueling this entire work, that it is impossible
through syntactic and semantic analysis alone to assign a reference to the pronoun.
But first, it should be made clear that this is actually the case. If a reference would be
assigned to it in terms of strictly syntactical analysis that does not depend on word
meanings, this assignment would on average be wrong for about every second WS.
Recall that WSs are designed so that switching one word or a small group of words,
e.g. anoun phrase or a prepositional phrase, changes the reference of the pronoun. In
(4), we can imagine a mini world where the ground shakes when something hits it. In
this case, we would get a WS as in (5), where both sentences have the same syntactic
analysis but the referent of it is different.

(5) a. The box falls to the ground and it breaks.
b. The box falls to the ground and it shakes.

(6) Itook the tomato off the shelf and it was ripe.

It could be the case that Semantic Knowledge can be used to assign reference to it,
as in the case of (6), where the reasoning would be that only tomato can be combined

4Jackendoff (2002), p. 270

14

with ripe. The reference would be determined through semantic composition rules.
This reasoning does not apply to (5), however, because it seems that in general, boxes
and ground can shake or break alike. By knowing the specific mini world, we can come
to know that the box breaks, but it is not part of the rules of compositional semantics.
This issue of differentiating world knowledge and semantic knowledge is also rather
controversial, see e.g. Lobner (2012). Note that in the original example (1), both
demonstrators and councilmen can in general fear violence or advocate revolution, no
combination is semantically wrong. This means that semantic knowledge may solve
the problem of assigning reference to the pronoun in WSs sometimes, but WSs should
resist this solution by design to a certain extent. We thus ignore this aspect of semantic
knowledge in this work.

If the listener can not assign reference to the pronoun, the meaning of the overall
sentence remains obscure if we assume that there is an important difference between
the box or the ground breaking. This leads us to the definition of ambiguity as we will
use it in this work:

Ambiguity We say that a sentence or an utterance is ambiguous if at least two distinct
meanings can be assigned to it.

This definition thus allows us to distinguish ambiguity from underspecification,
which we use when an utterance does not specify a detail, i.e. something is left open
to interpretation. This distinction is important because using these definitions, ‘the
box breaks’ is not ambiguous but may be under-specified. This will resurface in later
discussion, for now it is important that ambiguity denotes several distinct available
meanings.

3.2 The Problem of Ambiguity

Ambiguity has often been seen as a problem that should be avoided because it leads to
misunderstanding. If an utterance is ambiguous, a listener might choose the wrong
meaning and might not understand correctly. Communication would have failed.
Since we assume that the speaker wants to be understood, a more precise utterance
should be preferred over an ambiguous one from this perspective. Trying to build a
perfect logical language, Frege (1879) banned any form of assigning multiple meanings
to a sign. Much later, Chomsky (2002) still found that ambiguity makes communication
more difficult. Grice (1967) prescribes that a speaker should try to avoid ambiguity in
conversation as one of his maxims. This is especially apparent in formal language, Sen-
net (2016) remarks that ‘we use formal languages precisely so that we can disambiguate
otherwise ambiguous sentences’.

While problems of misunderstanding should be obvious, there are also famous
examples of how ambiguity simply makes an utterance difficult to understand. This
happens with garden path sentences like (7).

15

(7) The horse raced past the barn fell.'>

Raced by itself could be analyzed as intransitive or transitive, i.e. as the horse
is racing or the horse is being raced by someone. If raced is read intransitive, fell does
not fit into the sentence, producing the garden path effect. The problem seems to be
that people parse the sentence in an incremental fashion, reading raced intransitive
first, not recognizing the ambiguity. This way they are then surprised by fell. This
is a case of temporary ambiguity, because raced is only ambiguous temporarily if the
sentence is parsed incrementally from left to right. In the full sentence, there is only
one grammatically correct interpretation, i.e. there is no open ambiguity after all.

From this perspective, ambiguity can be seen as undesirable because it makes
communication difficult or fail.

3.3 Using Context in Comprehension

If (4) is not presented in isolation but occurs embedded in discourse, the listener can
make use of the situational context to understand the utterance. Contextual cues can
include, for example, the immediate situational context or the manner of production of
the utterance. If (4) is the final line of an ongoing description of the box as in (8), the
listener will take this as a sign that it was the box that broke, not the ground.

(8) A There is a box that sits on a platform and now a ball rolls in from the right.
B Aha.

A Now the box is pushed to the left and - oh - the box falls to the ground and
it breaks.

Using such contextual cues for interpretation goes beyond syntactic and semantic
analysis and is studied in the field of pragmatics. As an example for the study of
pronoun reference, Grosz et al. (1995) propose centering theory, which contains rules
of using pronouns in discourse according to which objects are in focus. The basic idea
could be summarized as follows: For each utterance within a discourse, there is a
discourse entity in focus that is already established, the backward-looking center, as well
as a number of discourse entities that can come into focus next, the forward-looking
centers. The backward-looking center then connects the utterance back to the last one
and the reference of the pronoun is established through focus. The list of forward-
looking centers is also ordered by how likely they will come into focus. One of the
examples they discuss is shown in (9), where Susan is probably the backward-looking
center in the second and third utterance.

(9) a. Susan gave Betsy a pet hamster.

b. She reminded her that such hamsters were quite shy.

150ften attributed to Bever (1970), p.316

16

c. She asked Betsy whether she liked the gift.'¢

Grosz et al. (1995) note that given only (9a) and (9b), one could assume that the
reference of the pronoun does not favor Susan or Betsy. They argue that this is wrong
and Susan is indeed favored. As evidence, they provide examples that introduce
changes in focus, i.e. necessitate to resolve the initial pronoun to Betsy instead of
Susan. The example they present as most unintuitive is shown in (10), where the
backward-looking center in (10c) is Betsy. It is important to note that Grosz et al. (1995)
state that discourse like that in (10) is not wrong, but seems less coherent. This means
(10) simply requires more inference on the part of the listener than (9).

(10) a. Susan gave Betsy a pet hamster.
b. She reminded her that such hamsters were quite shy.
c. She told Susan that she really liked the gift.'”

Note that in (8), resolving the reference to the box also seems intuitive because the
box is the main object of the story. This standing out of a discourse entity that Grosz
et al. (1995) call being in focus has many names in the literature. Rosa et al. (2017)
for example say that the discourse entity is salient. The listener can use this to form
an opinion on the reference of the pronoun, but it will only be a heuristic shift in
probability. For example, if a word is in subject position, it is usually more salient than
other words unless there is a shift specific to the situation. However, there are more
factors involved, Garvey et al. (1974) for example found that certain verbs can produce
a strong tendency to resolve a following pronoun to the subject, e.g. approach, while
other verbs do the same for the object, e.g. praise, as demonstrated in (11). Hartshorne
et al. (2015) even provide the mirrored example shown in (12), where only the verb
changes but the pronoun reference seems to change as well. Note that (12) is very
similar to WSs too. The overall phenomenon is often called implicit causality, since the
examples rely on sentences using because.

(11) a. Peter approached Paul because he needed water.
b. Mary praised Jane because she was being thoughtful.

(12) a. Archibald angered Bartholomew because he was reckless.

b. Archibald criticized Bartholomew because he was reckless.'8

In summary, the reference of ambiguous pronouns can often be resolved on the
basis of cues like salience in discourse or heuristics like implicit causality. Note that in
cases like (12), while there is a bias induced by the verb, the pronoun is still strictly
ambiguous. If Bartholomew is known for violence, Archibald could be reckless to

16(Grosz et al., 1995, p.211)
17(Grosz et al., 1995, p- 212)
18(Hartshorne et al., 2015, p-1

17

criticize Bartholomew, the same is true for (11). Nonetheless, a listener will use the
available cues to resolve the ambiguity if possible. It is a common finding that that
listeners are really good at resolving ambiguities, not only for pronouns but in general.
H. H. Clark et al. (1977) even propose an ambiguity paradox because there is a lot of
ambiguity in everyday utterances, but it is rarely noticed. In light of the problems
of ambiguity outlined above, Wasow et al. (2005) ask: ‘If ambiguity is undesirable
however, why is there so much ambiguity in everyday language use?’. As we have seen
for pronouns above, the common answer is that ambiguity is resolved in discourse or
even left open, see Winter-Froemel et al. (2015). If listeners are really good at resolving
ambiguities, the previous assessment has to be reconsidered: ambiguity is not really
undesirable but rather harmless, as it does not actually make communication fail.
‘Ambiguity avoidance is overrated’, as Wasow (2015) puts it. This is because listeners
are well equipped to handle utterances that are ambiguous.

3.4 Types of Ambiguity and World Knowledge

Given the discussion above, WSs present a curious case, as the pronoun is ambiguous,
i.e. even after applying syntactic and semantic analysis it can be assigned different
referents. Further, a listener will have no problem understanding a WS even though
there is no further situational context. Discourse salience, as in the centering theory, or
heuristics, e.g. implicit causality, do not help. Instead, WSs rely on world knowledge.
In the following, we want to look at ambiguity from the perspective of how it is caused
and how it is resolved.

As a starting point, we follow the discussion of ambiguity by Winkler (2015) and
Winter-Froemel et al. (2015). They distinguish ambiguity in the language system from
ambiguity in discourse. Note that the term system here refers to the system of language
and is different from artificial systems as used in this work at other times. Ambiguity
in the language system refers to cases of ambiguity, as introduced above, where a
linguistic item, e.g. a sentence or a word, can be assigned different distinct linguistic
interpretations after applying linguistic knowledge. In addition to ambiguous pro-
nouns discussed above, a classic example of this is lexical ambiguity, where a lexical
item has distinct meanings, e.g. the word bank.

Ambiguity in discourse on the other hand refers to cases where an utterance is
embedded in an actual discourse situation and can be plausibly assigned several
distinct meanings arising from the context. The utterance in (13) is a simple example,
but there are more complex cases too. Assume the utterance in (14) is produced in
a situation where it is clear to the interlocutors that one of Thom’s sisters has a very
difficult relationship with Thom. This generates two distinct interpretations, i.e. that
Thom either visited that specific sister, or he visited another sister, which could make a
huge difference to the listener. This would be an ambiguity in discourse.

(13) There is a bank now on the corner of our street.

18

(14) Thom visited his sister.

It is important to note that (13) as an utterance in discourse is an example of
ambiguity in discourse, but as an isolated sentence is also an example of ambiguity in
the language system. The utterance in (14) is also an example of ambiguity in discourse
given the situation described above. But as an isolated sentence it is not an example of
ambiguity in the language system; there is only one linguistic interpretation of (14).
Sennet (2016) even argues that a sentence like (14) may have distinct interpretations in
conversation, but is not a case of ambiguity, restricting the meaning of ambiguity to
ambiguity in the language system. Here, we follow the alternative approach and assume
that (14) is a case of ambiguity, but in discourse only, not in the language system. The
central condition is that the listener can assign distinct interpretations to the utterance.

An important difference between (13) and (14) lies in the fact that the ambiguity is
caused by the language system in (13) but by the situational setup in (14). To categorize
both examples in this work, we can say that (13) is an ambiguity in the language system
but may be ambiguous in discourse, i.e. the ambiguity is open. If the listener just asked
about the closest ATM to withdraw money from, they will resolve the ambiguity in
(13), because bank should mean financial institute in this case. That listeners often
resolve ambiguities during discourse is a common finding and will be discussed in
more detail below. Here we only need to distinguish between an ambiguity being open
and being resolved.

Returning to WSs, the ambiguity there is resolved by world knowledge. Following
the discussion above, we can also say that an ambiguity is caused by world knowledge.
An example of this could be a box that has a 0.5 chance of exploding upon impact on
the ground when falling. If the explosion seriously alters the landscape, this difference
would be relevant. Then the utterance in (15) would then be ambiguous because
the landscape could be altered or stay the same. Note that calling (15) ambiguous
requires an understanding of ambiguity as in ambiguity in discourse. The reason to
differentiate such world knowledge related ambiguities and ambiguity in discourse is
that world knowledge is not situational, i.e. world knowledge related ambiguities are
cases that are ambiguous in isolation but not because of an ambiguity in the language
system.

(15) The explosive box falls and hits the ground.

It may be argued that the world knowledge described above refers to a specific
mini world and is thus situational, in the sense that we can ask: ‘which mini world
are we talking about?” This misses the point, however. We introduced mini worlds
as absolute frames of reference and the agents that inhabit the world cannot leave that
frame of reference. As an utterance in the mini world, (15) is resolved through world
knowledge, and this is what we are focusing on here. In the following we thus assume
that for utterances that refer to object in a mini world, general knowledge about that
mini world is world knowledge and what is happening in the mini world at any point

19

in time is discourse context. This mirrors the distinction between world knowledge
and discourse context in the real world.

There are borderline cases where it is difficult to decide whether some piece of
knowledge is situational or general world knowledge, e.g. who the leader of a specific
country is at a specific time. At other times however, the distinction is clear, as in the
case of WSs, which are not dependent on context. Note that the ambiguity in WSs
is not caused by world knowledge but by the language system, it is only resolved by
world knowledge. A summary of the discussion above is given in examples (16) to
(25). Examples (16), (17), (18) and (19) are caused by the language system. (16) is a
temporary ambiguity that is resolved by the language system, (17) is the classic WS
example and is resolved by world knowledge. (18) is a case of lexical ambiguity that
can be resolved by discourse information and (19) is unresolved even in discourse.

(16) The horse raced past the barn fell.

(17) The city councilmen denied the demonstrators a permit because they feared
violence.

(18) A Tllneed to get some cash before we go.

B There is a bank now on the corner of our street!

(19) A The view from your window is much nicer now!

B Yes, they redid the whole block, planted a lot of trees and renovated some
of the buildings.

B It’s much nicer to look at, and there is a bank now on the corner of our
street!

Examples (20), (21) and (22) are caused by world knowledge. As described above,
the examples assume world knowledge about a mini world where an explosive box
has a 50% chance of exploding, heavily altering the mini world. (20) can be resolved
by world knowledge without further context. (21) is resolved by discourse, while (22)
is unresolved.

(20) The explosive box fell and hit the ground but everything is in order.

(21) A Wow what happened to that part of the game world there.
B The explosive box fell and hit the ground.

(22) A So what is happening right now?
B The explosive box fell and hit the ground.

Finally, examples (23), (24) and (25) are caused by discourse context, showing the
difference to world knowledge which is context independent. The ambiguity in (23)
can be resolved by gender, i.e. the language system, whereas the ambiguity in (24) is

20

resolved through discourse knowledge. Finally, the ambiguity in (25) is unresolved,
even if there may be a bias that Thom rather visited the sibling he gets along with.
Note that the example discourse in these examples may seem slightly unnatural, using
sibling seems unintuitive. Since the examples only serve the purpose of distinguishing
types of ambiguity, this is acceptable in this case.

(23) a. Thom has a brother in Berlin that he gets along with really well but also a
sister that he always fights with when they see each other.

b. Last weekend, Thom visited his sibling and she was in a good mood.

(24) a. Thom has a brother in Berlin that he gets along with really well but also a
sister that he always fights with when they see each other.

b. Last weekend, Thom visited his sibling in Berlin.

o

(25) Thom has a brother in Berlin that he gets along with really well but also a

sister that he always fights with when they see each other.
b. Last weekend, Thom visited his sibling.

3.5 Information Gaps and the Utility of Ambiguity

There is a common feature of the examples above, namely that in cases where an
ambiguity can be resolved, it can be resolved because there are enough pieces of
information about the meaning of the utterance that are available to the listener. In
cases where the ambiguity remains open, there is missing information. Note that the
information is missing in the utterance if there is ambiguity, but is provided either later
in the utterance or through world knowledge or context if the ambiguity is resolved.
In the case of WSs, the information that is needed to resolve the ambiguity is part of
general world knowledge. We call this phenomenon an information gap.

Information Gap A part of the meaning of an utterance that is not given through
compositional structure but is to be inferred by the listener.

Because information gaps are bound to the meaning of the utterance, they avoid
being trivial underspecifications. If information is missing from an utterance which
is not relevant to the utterances meaning, there is not necessarily an information gap.
In the case of (4), repeated below, the ambiguity arises because there are two possible
referents of it. The information gap arises because the information about what breaks is
missing in the utterance. In this case, the ambiguity is supposed to be resolved through
world knowledge. So we can say that the information gap has to be filled by applying
world knowledge.

(4) The box falls to the ground and it breaks.

21

The exact nature of the inference that is necessary here will be the subject of section
4. When talking about resolved and open ambiguity, the question really seems to be
whether there are information gaps that can not be filled, something we call destructive
information gaps. A destructive information gap occurs when there is not enough
information overall to infer the correct meaning.

Recall examples (23), (24) and (25). In discourse, there is information provided that
characterizes each sibling of Thom. Right after sibling in the second utterance of each
example, there is the temporary ambiguity of which sibling Thom visited, which is the
information gap. In (23), there is extra information about the gender of the sibling, thus
allowing for inferring which sibling is meant. It is important to note that the additional
cue does not fill the information gap, but only provides additional information. The
filling of the gap still has to be done through inference. This becomes especially clear
in (24), which exhibits the exact same information gap but provides a different cue,
namely the location of the sibling. This again enables the listener to fill the information
gap. In (25), there is not enough information, the information gap cannot be filled and
is actually destructive.

World knowledge is again a curious case, because it is by definition neither part
of the discourse nor of the utterance. Thus if an information gap is filled by world
knowledge, that means that there are informational cues in the utterance or in discourse,
but the listener still necessarily needs to draw upon world knowledge for additional
cues to be able to do the inference. These additional cues are context independent
and often difficult to discuss because they are never made explicit. WSs are examples
where it becomes very clear that world knowledge is necessary, but what kind of world
knowledge is needed remains elusive.

Since human listeners are often very good at resolving ambiguity and inferring
the meaning of an utterance, it seems that destructive information gaps are relatively
rare in natural discourse. It can even be argued that information gaps have a function,
because using language comes at a cost, i.e. producing and understanding utterances
binds cognitive resources. A speaker should avoid unnecessary detail and produce
utterances that are only as long as they need to be. This was, for example, noted by
Grice as a part of his maxim of quantity (Grice, 1967). Unnecessary information is
confusing to the listener but also inefficient for the speaker. An utterance should be
kept as short as possible. If we assume that listeners can fill information gaps, this can
be used to make utterances shorter.

The argument about efficiency, focusing on lexical ambiguity and the length of
words, has been discussed in the literature to some extent, see e.g. Levinson (2000),
Piantadosi et al. (2012), Zipf (1950). The main point is that shorter words are more
often ambiguous in their meaning to allow reuse, i.e. use the supposedly limited
number of short words in a vocabulary in as many situations as possible. Shorter
words lead to shorter utterances and reuse allows more utterances to be made up of
these shorter words. For example, Piantadosi et al. (2012) argue that overloading short

22

words makes language more efficient overall: as long as the meaning can be inferred,
short words should be overloaded as much as possible. Note that there is criticism to
this, e.g. Wasow (2015) argues that there are still many short potential words that are
not part of the English vocabulary, so why overload some but dismiss others?

In summary, we can say that listeners are able to fill information gaps and thus
resolve ambiguity if there are enough cues. This can be used to produce shorter
utterances. We hypothesize that human speakers will also produce information gaps if
world knowledge provides enough information to fill them. Recall that the inference
needed for filling information gaps is a gradual affair, i.e. the cognitive cost of inference
for the listener can vary, as in examples (9) and (10) that Grosz et al. (1995) discuss. As
opposed to ambiguity in the language system, where an example is often either strictly
ambiguous or not, an information gap can thus have varying cost. Speakers should
ideally manage their production of information gaps accordingly. We will provide
evidence of this in section 13.

3.6 Modeling Language Processing

This concludes the discussion of language related theory. In summary, a model of
language processing should implement functions to analyze the syntax of an utterance
and retrieve the semantic meaning of all lexemes. It should then combine these to
construct the meaning of the utterance and infer additional information in case of
information gaps. In this work, we will ignore discourse context and processing
heuristics such as implicit causality biases or those proposed by centering theory. This
leaves us with three basic requirements to the model.

1. Each lexeme has its meaning stored in memory; the model has to build and
implement such a storage.

2. There is a module that encodes rules as to which role a word can play in a
sentence.

3. The meanings are combined with their roles to form the meaning of the sentence.
If there are information gaps, additional information has to be inferred from
world knowledge. The model has to implement functions to build combined
meanings and to do inference.

This however raises several questions that the model must answer.

1. What is the meaning of a lexeme, i.e. what kind of encoding is stored in the
mental lexicon?

2. What are the roles that are assigned by the grammatical system, i.e. what kind of
representation is produced by the syntactic analysis function?

23

3. How does the model satisfy knowing truth conditions? How does the model do
inference?

In the following, we will discuss inference and develop a model. Since our artificial
system focuses on world knowledge, this will be our main concern. The focus on
world knowledge will also lead to a model of understanding.

24

4 Meaning and World Knowledge

Consider once more the original example proposed by Winograd:

(1) a. The city councilmen refused the demonstrators a permit because they feared
violence.

b. The city councilmen refused the demonstrators a permit because they ad-
vocated revolution.'

In the last section we have discussed how the linguistic structures of (1) would be
analyzed and what role the ambiguity of they plays. The main message was that (1)
contains an information gap that a listener has to fill through inference, in this case by
using world knowledge. In this section, we want to discuss theories concerning this
process.

Let us try to approximate what kind of knowledge is necessary (1 a) and let us,
for now, conceive of knowledge as propositional knowledge?®. In this work, we can
simplify and assume that propositional knowledge is knowledge that can be described
by simple sentences. The simplest kind of knowledge that would allow to assign the
correct reference in (1 a) would be “If city councilmen fear violence, the city councilmen
will refuse demonstrators a permit and if not, it does not really matter whether the
demonstrators fear violence or not.” It seems implausible to say, however, that this
is what people know in some explicit sense, i.e. have memorized. If this was the
case, people would need to store incredible amounts of explicit knowledge in their
memory, especially all kinds of inferences. It seems more plausible to assume that
world knowledge is more general as in the following. Using such knowledge, the
listener could infer the correct reference in (1) using logic.

1. Demonstrators may sometimes turn to violence while demonstrating.
2. Violence during demonstrations is against the law.

3. Breaking the law is undesirable for governing bodies.

4. A city council is a governing body.

5. A demonstration has to have a permit from the local governing body.

6. ...

Propositional knowledge provides an intuitive description of how knowledge is
stored and is operated on. Introspectively, it often seems to be the case that thoughts are
built as natural language sentences and the process of thinking is an inner monologue.

Pboth Winograd (1972, p. 33)
20This explicit propositional representation of knowledge is used for easier analysis here.

25

This is problematic in several ways, however. First, it is generally established that there
are certain skills that the human mind possesses and that we attribute to cognition
where a description in natural language terms seems counter intuitive. Riding a bike
(or other entrained motor skills) is an example of this, and riding a bike clearly makes
use of cognitive processing. This first problem could be dismissed because it is not clear
(yet) that the human mind would need skills on the level of bike riding when doing
inference in language comprehension. We have to be careful though not to restrict a
model of inference to conscious or explicit thought. It seems clear that in resolving (1),
not all details of inference are spelled out consciously during comprehension, so the
lines are blurry in this case. In this work, we will not differentiate different types of
thought but talk about cognitive processing, which is the focus of our model.

The second problem with the thought as natural language intuition is that this
leads directly to the strongest version of what is often called the Sapir-Whorf hypothesis,
see Scholz et al. (2020) for a discussion. If thoughts are natural language sentences then
thought can only ever encompass anything that the mind could describe in natural
language. Humans could only think when they knew the specific words. This has been
severely criticized and remains a very controversial topic. The last and most severe
problem is that if thoughts consisted of natural language, there would be a regress. In
order to interpret a thought, the human mind would need a dedicated language faculty
to do the necessary inference, which would once again happen in natural language
thoughts, necessitating a language faculty again and so on.

More refined but intuitively related theories posit propositional knowledge where
the propositions are not constructed in natural language but in a mental language,
a language of thought, see e.g. Fodor (1979) or Rescorla (2019) for an overview. The
regress is then avoided because the language of thought is supposed to be the mode
of operation of the mind and therefore does not need interpretation. The language of
thought becomes a functional description of what the mind does. Severing the connec-
tion to natural language of course raises the question of how the mental language is
constructed and how it can be used in modeling.

Using natural language sentences to describe thought and inference is very pro-
ductive nonetheless. Describing the hypothesized inferences in section 4 would have
been difficult if not for natural language propositions. Note that the hypothesized
description was given on a functional level, however, i.e. it does not necessitate that the
process is also implemented in the mind this way. Recall that we are so far operating on
the computational level of description, not on the algorithmic level of description. In-
deed, many approaches to describing how world knowledge figures in thought resort
to natural language descriptions and what one would usually call symbolic logic. Sym-
bolic logic is used here in the sense of a set of rules or relations between propositions.
If we treat propositions as simple entities, as it would also be required by a language
of thought approach, an intuitive way of explaining how the mind operates on world
knowledge is to propose explicit representations of such relations. This could mean, for

26

example, that the concept of a tree would have something like a ‘have-relation’ to leafs,
an ‘is-made-of-relation” to wood etc. The concept of falling could have a ‘from-relation’
to a former place, a ‘to-relation’ to a future place, a ‘at-speed-relation” to a velocity
and so on. This way, propositions are enriched with relations to other propositions to
form a network. A popular variant of this approach are frames, see e.g. the discussion
by Lobner (2012). An older variant is that of scripts, see Schank et al. (1977). Scripts
are somewhat more specific and describe how certain events in the world will usually
unfold, a classic example being the restaurant script that spells out the steps of going
to a restaurant. They represent something like ‘happens-after-relations” between more
complex combinations of meaning units.

These approaches assume that the rules captured in frames or scripts are sufficient
to do the necessary inference in comprehension. Recall example (1 a) and the infer-
ence described above. ‘City councilmen’, as an entity in the network, could have an
‘avoid-relation” to ‘breaking the law” and an ‘give-permit-relation” to ‘demonstrators’.
The ‘give-permit-relation” would probably need to be combined from simpler parts.
‘Demonstrators’ could have a ‘possibly-cause-relation” to ‘violence” which in turn has a
‘does-relation” to ‘breaking the law’. Note that this is a translation of the propositions
hypothesized above into a network of relations that roughly approximates the idea
of a network of frames.2! Once the network is established, the inference mechanism
has to compute that the sensible interpretation of (1 a) is that the city councilmen are
afraid of the demonstrators causing violence.

The main problem with building such a network is that it would need to encode
implications not only of simple configurations, but also of complex combinations.
There are however also other reasons that make such a network seem implausible.

4.1 Inference and Mental Simulation

Assuming we can construct a network of relations as described above, it seems that
some WSs can be solved. Consider, however, the following two WSs, both relying on
spatial configurations:

(26) The sack of potatoes had been placed [above/below] the bag of flour, so it had
to be moved first.
(27) There is a gap in the wall. You can see the garden [through/behind] it.??

One could try to describe the inference done here in propositional terms. Consider
above, which would be a relation here. If we combine the sack of potatoes (S,) and the
bag of flour (By) with the above-relation, what relations apply to this combined entity?
Further, is the above relation purely spatial, e.g. if S pis stored in a cabinet above B £, or

2IMuch research has already gone into networks of frames and there are certainly more elegant ways
of constructing this example.
22Both Davis (2019), numbers 19 and 31

27

Figure 1: From Johnson-Laird (2008), p.30. Is the resulting movement A or B?

is the above relation directly relational in the sense that S, exerts some force on By from
above? For now let us assume that the mind decides on the second option, so S p exerts
force on By from above in this case, i.e. Sy is actually lying on By. This force must have
a parameter to encode how much force is exerted. If dust was lying on By, the relation
would be similar but the dust would nof need to be moved first, because it does not
exert enough force. Such parameters are difficult to handle with propositions, so the
force would need a new proposition such as ‘a force great enough to make it difficult
to move the object’. This, however, gets complicated quickly.

One idea to circumvent the parameter proposition problem is that the mind uses
internal mental models which operate not on symbolic representations but on spatial
representations. A particularly convincing example of the mind operating on such
spatial representations can be seen in figure 1. To answer the question whether turning
the handle in 1 results in movement A or B, the mind seems to simulate the movement,
which Johnson-Laird (2008) calls mental animation. Such an operation seems to be much
easier done by a model than a network of propositions. To even describe the system
in figure 1 using propositions seems extremely tedious. It is much simpler to have a
system that can represent spatial relations, e.g. through coordinates, and then operate
on those.

Johnson-Laird (2008) proposes that human reasoning in general works through such
mental simulation, a claim that we need not discuss here. In this work we are only
interested in how mental simulation can provide a sensible component for modeling
language processing. Let us consider (26) again and assume that a model is available

28

' object 2

top
object 1

bottom

Figure 2: A possible representation of an above-encoding.

that can compute the interactions and forces in the scene, i.e. a model of how a sack
of potatoes S, and a bag of flour B; can move if S, is sitting on top of By. The mind
would need to start from a S,-on-By scene and then simulate further developments.
Since the S,-on-By scene is a spatial representation, we will need to explain how it is
constructed from the input sentence, i.e. how the mind converts the relevant part of the
input sentence to a spatial representation. One way to do this would be to use what we
may call spatial encodings, i.e. encodings of recurring spatial patterns. Such encodings
are a common theoretical entity in the literature and are, for example, proposed by
Lakoff (1987) as image schemas. The above-encoding would be a spatial pattern as in
tigure 2.

Once the spatial representation is established, we need to judge whether S, or
By has to be moved first. Recall that S, sits on B . In this case, moving S, first and
By second would work. Moving By first requires a much greater force and S, could
drop. If there is a mechanism that rates these two simulations, that mechanism could
infer that the first is more plausible and thus resolving the it to the sack of potatoes
in (26). We will revisit this whole resolution process later, for now the important
message is: the model that does the simulation on the S,-on-B; scene encodes some
knowledge about movement, position, forces, weights and so on. Even if there was
a strict propositional implementation, it seems much simpler to use a model that
contains parameters. Together, spatial encodings and mental models allow for easy
inference also on spatial relations.

The most intuitive examples of the power of mental simulation stem from spatial
relations, the approach may also scale to other inferences, however. This would
require simulating what the city councilmen do. It could be argued that inference
over propositions and inference through mental models are simply two different
descriptions of the same process, leading to the same result on the same input. We will
see, however, that mental models lend themselves much better to modeling inference
than propositional accounts do in the cases that this work focuses on.

29

It is important to note that knowledge works differently for propositions and mod-
els. Without going into much detail, we can say that the artificial system has world
knowledge if its network of propositions is true, i.e. the propositions are true and the
relations between them are correct. For mental models, we can say that the artificial
system has world knowledge if the models allow for accurate prediction and simulation.
In the end, this describes the same state of affairs, namely that the system’s internal
encoding of the world is faithful to how the world is.

4.2 Embodiment and Grounding

One thing to note about mental simulation is that the term is also used in a different,
more specific way. Here, we introduced mental simulation as the operation of general
models of the world that seem very intuitive for the spatial dynamics but could also be
broadened to work on more abstract entities. A different approach aims at simulations
in the motor-system specifically, see e.g. Glenberg et al. (2012) or Kaup et al. (2010).
The models are basic motor-programs in this case and the simulation activates these
without activating the associated physical movement.

This more specific approach falls under the wider category of embodied cognition
and was also proposed to explain language understanding, as in Glenberg et al. (2012).
Unfortunately, embodied cognition does not present a homogeneous framework and
different approaches may vary quite profoundly, see Wilson (2002) for an overview.
Most approaches will, in one way or another, aim at shifting the load of cognitive
processes to the body, away from the abstract symbolic approaches of early artificial
intelligence research.

In terms of language, this also holds a promise that we already tapped into above.
Trying to come up with a propositional network that explained the logical implications
of something as simple as ‘above” seems very hard. Using a spatial relational encoding
instead, one that the human mind supposedly already has anyway, seems much
easier. Hampe (2005) discusses image schemas, which can be seen as spatial relational
encodings here, and calls them ‘embodied” but also directly meaningful. Hampe takes
them to be “preconceptual structures, which arise from, or are grounded in, human
recurrent bodily movements through space, perceptual interactions, and ways of
manipulating objects’.?3

In the quote above, Hampe (2005) also describes image schemas to be ‘grounded’
in bodily interactions. The problem of grounding originates from symbolic approaches
to cognition and language and the famous Chinese room argument brought forward
by Searle (1980), see e.g. Cole (2020) for an in-depth discussion. The argument can be
summarized as follows: imagine being locked in a room, having a near infinite amount
of time and a huge book. From time to time, a piece of paper will be slid under the
door containing combinations of lines and curves which are indeed symbols of the

Z3Hampe (2005), p. 1

30

Chinese language. The book contains detailed instructions on what to do with such
symbols so that you only need to follow the instructions (you have unlimited pens and
paper at your disposal too) but no explanation ever of what any of the lines or curves
actually do. You follow the instructions and slide the end result under the door. On
the other side of the door, there is a speaker of Chinese. To her it seems as if there is
someone in the room communicating in Chinese with her (at a very slow pace, but
still). Searle (1980) takes this to be analogous to a completely functional computational
model of language processing. If the model was perfect, it would seem as if it actually
communicated in Chinese. Searle however holds that it seems unreasonable to assume
the person in the room (or the model for that matter) actually spoke or understood
Chinese. The model does not understand anything at all, the symbols it operates on
have no meaning to it whatsoever.

One reply to this argument is to say that the symbols within the model need to
be linked to the real world ‘in the right way’, see e.g. Fodor (1987). If the link was
established, the symbols would get their ‘meaning’ from the real world entities that
they are connected to. This led Harnad (1990) to label the question about how symbols
get meanings as the symbol grounding problem. Harnad thinks that the proposal to
simply link symbols to real world referents ‘radically underestimates the difficulty
of picking out the objects, events and states of affairs in the world that symbols refer
to, i.e., it trivializes the symbol grounding problem.’24 For symbol grounding, as for
embodiment, a variety of interpretations of the term has arisen. On the one end of the
spectrum, the original Chinese room argument led to discussion about consciousness
(see Cole (2020)) and the grand question of the relation between mind and body, aiming
at core questions of Philosophy. On the other end of the spectrum, Steels (2008) claims
to have solved the problem with a system that is able to establish stable encodings for
colors that it is presented with. This is supposed to make clear how there are a variety
of research projects that seem to target different goals.

In this work, the discussion of consciousness and the relation between mind and
body is way out of scope. At the same time, discussing whether certain processes
that are traditionally seen as computations within cognition are actually realized in
smart bodily structures is also out of scope. In the above discussion however, both
embodiment and grounding were also taken to refer to the connection of language to
basic cognitive capacities and sensory input. To avoid ambiguous terminology, this
work will refer to this connection as a mapping, so the question becomes how symbols
are mapped to non-symbolic entities within the cognitive system. Mental model and
mental simulation are used in the more general sense introduced above and do not
necessarily involve the motor system.

24Harnad (1990), p. 340

31

4.3 Truth Conditions and Scene Reconstructions

Given the above discussion of inference , mental models and grounding, we can revisit
the requirement that understanding an utterance means knowing its truth conditions.
Recall that knowing truth conditions is equal to knowing which real world situations
the utterance denotes. Even though Harnad (1990) pointed out that grounding is highly
non-trivial, let us assume we have a grounded artificial system, either containing a
network of propositions or mental models. We will focus on mental models in the
following, so let us assume the artificial system has fully functioning models of its
world. If we assume grounding, we can bypass truth conditions and focus on knowing
which real world situations the utterance denotes. To understand an utterance, the
artificial system then has to reconstruct the utterance in terms of its mental models
which, by being grounded, corresponds exactly to the situations that the utterance
denotes.

What makes the symbol grounding problem so difficult, as Harnad (1990) pointed
out, is that even if we are able to link object category names to sets of objects in the real
world, or color names to wavelengths, this link will most likely be lost once we have to
combine symbols into complex compositional structures. The problem is thus building
reconstruction but maintaining the mapping. In this work, we reserve the term scene
reconstruction for this purpose. Note that the idea that comprehension is equivalent
to reconstructing the described scene in models has been proposed by others, see e.g.
Zwaan et al. (1998).

Scene reconstruction Given a grounded artificial system, the scene reconstruction is
the internal reconstruction of what an utterance denotes in terms of the system’s
model of its world.

In terms of city councilmen and demonstrators, assume the artificial system is able
to simulate the two possible interpretations of (1 a). Then only one of the simulations
adheres to model predictions, i.e. the model only predicts that the permit is denied
if the city councilmen fear violence, not (so much) if the demonstrators fear violence.
This resolves the ambiguity, but the simulation also serves as the description of the
real world states that (1 a) denotes by virtue of being grounded. In a very limited
sense, SHRDLU (Winograd, 1972) was grounded, but this grounding was established
by hard coding the link, making it difficult to extend.?” As a next step, we will discuss
how an artificial system can acquire mental models in order to be able to simulate and
reconstruct utterances.

25 As a side note, Searle (1980) explicitly denies that SHRDLU carried natural language meaning.

32

5 Modeling World Knowledge

Our model starts out with no prior knowledge, especially without the ability to compre-
hend language. Information encoded in language is thus not available to our artificial
system. The goal of this work is to create a system that learns world knowledge
from the world directly. To judge whether the model has acquired certain pieces of
world knowledge, we can check whether the system is surprised by a certain given
information or whether it can predict it. The standard measure for this is prediction
error, which a successful system will minimize.

Minimizing prediction error by itself does not suffice in this work however. Our
artificial system should not only learn world knowledge but it needs to be able to
connect the learned models to natural language too. A huge generic neural network,
such as those introduced in 2.3, may be excellent at reducing prediction error but
difficult to link with natural language expressions afterwards. Instead, we will look
into current theories in cognitive science.

5.1 Predictive Processing Accounts

One of the most promising approaches to a unified model of cognition revolves solely
around hierarchical layers of prediction error minimization and has been named the
predictive mind by Hohwy (2013) or Predictive processing (PP) by A. Clark (2016). The
theory is based on a mathematical foundation, see e.g. Friston (2010), and older neural
modeling, see e.g. Rao et al. (1999). It aims at proposing a somewhat general theory
of cognition or “unified brain theory” and has received a lot of attention over the last
years.

In order to describe PP, let us assume that cognition always has a current state. This
state reflects what the person currently thinks about (the world), does, wishes etc. In
terms of the brain, the current state determines how the brain will react to incoming
input. An intuitive idea of how the brain processes incoming sensory data is bottom-up
processing, i.e. sensory data is fed into the system at the ‘bottom” and is then processed
in different stages, making its way up to the top to influence the current state of the
system. Imagine the process of seeing a bear. Let us idealize and say the sensory input
is an image-like representation of colors and light intensities. The visual system may
now make out edges and areas of specific colors, an object recognition system may
identify fur, brown, big and combine these into bear. Further up, a system may now
take this and integrate it into the overall representation of the current environment,
maybe increasing a danger level. This would be a bottom-up process.

The driving idea of PP on the other hand is top-down processing. Wiese et al. (2017)
point out core features of PP, putting top-down processing as number one. Top-down
processing starts at the top with a specific prior expectation and then predicts how lower
levels of processing should behave if the prediction was correct. Consider the bear
situation again, although now we also need to set a prior expectation. Let us say, the

33

person was looking at a forest and in that spot where the bear appears the person
expected a patch of moss in the distance. So the prior would be moss up top, sending
down the expectation of green and ‘no real structure’ to the object recognition system
we assumed above. This system will take this prediction and send expectations of
certain edges (none really) and colors (shades of green) to the visual system further
down. This reversal is why this is called top-down processing. When the bear enters
the scene, the visual system will now generate an error, i.e. neither are there shades
of green in that spot nor are there no real edges. The object identification system will
likewise generate an error now, i.e. that can not be moss. Now the top-level prior has
to be changed.

The errors have to be very specific in order for the system to run. If the errors do
not carry enough information, e.g. only give the feedback ‘wrong’, the system will
have to test every possible prior it can think of, until finding the correct one (‘bear”)
by chance. It seems plausible to assume that such a procedure would take too long,
reducing the systems chance of survival in the face of bears significantly. Note that
this also holds for the bottom-up system. Where the top-down system has to have
smart error-handling, the bottom-up system has to have smart identification systems.
The advantage of a top-down system is that the error provides feedback for learning,
so the system can try to reduce the overall magnitude of errors in the short- and the
long-term to build knowledge about the world.

Wiese et al. (2017) also mention that a PP system forms statistical predictions,
i.e. a distribution over expected states. Instead of predicting ‘moss’ or ‘bear’, the
system incorporates relative certainties, for example ‘moss:98% , bear:0.1% (because
it is a forest after all), other:1.9% ’. Further points were already incorporated in the
description above, i.e. a PP system is structured as a hierarchy of lower level systems
and higher level systems, which predict each other and learn to minimize prediction
€error.

This leaves us with the abstract system in figure 3. Note that it is generally assumed
that PP can be used to describe the process of selecting actions, see Wiese et al. (2017)
but also Friston (2010) for a formalization.

It is important that the updating in figure 3 has two meanings or modes of operation,
short-term and long-term updating (as noted above). A short-term update is a quick
adjustment of current predictions, i.e. when the system predicts moss but gets an
error and quickly adjusts to predict bear (and maybe a flight reaction). This short-
term error correction basically updates the internal states of the layers as they are
predicted from above, i.e. the current representation of the world. Short-term updating
is important for the model to be able to function in a dynamic environment, but it does
not facilitate learning. The ‘bear-prediction” and all its necessary components has to
exist already in order for the short-term updating to work correctly. The system thus
needs long-term updating which is able to change the prediction function of a layer,
i.e. learn encodings. This part is often difficult to model, but absolutely necessary. The

34

| Dupdate

prediction error

| Dupdate

prediction error

’ sensory input ‘

Figure 3: A first depiction of a PP system.

difference between short-term and long-term, between updating the internal state and
updating the generative function, will appear very often from now on.

Given that the model can also produce action choices, a functioning PP system is
supposed to be able to implement an autonomous agent, learning about its world as
far as the hard limits of its layers allow. The model forms predictions about the future
and thus facilitates mental simulation. We can call a model that can produce a full
prediction of its environment a generative model. Unfortunately, the implementation of
such a model is highly non-trivial. There is no simple algorithm yet that we can use
for each layer and just let the system run. To make things easier, we can provide more
structure so that the model does not need to learn everything from scratch.

5.2 Pre-Defined Structure and Event-Predictive Cognition

Concerning pre-defined structure, one approach would be to mirror what is known
about the brain. Le. replicate certain regions, equip those sub-models with processing
capabilities usually ascribed to their related regions and link them up accordingly. This
approach has been taken, see e.g. Eliasmith (2013). In this work, we instead try to
build an artificial system inspired by what is known about psychological principles.
This does not mean that knowledge about the brain is discarded.

In the discussion of world knowledge above, three areas were distinguished: firstly,
the representation of objects and their features (object concepts). Secondly, the spatial
representation of how a scene is set up (spatial relational encodings). And thirdly, the
model that encoded how the scene will develop (mental models). In a similar spirit,
Butz (2017) proposes three different kinds of encodings within a model such as ours.

1. Spatial predictive encodings for the spatial setup. Whether one object fits into
another would be encoded through these.

2. Top-down predictive encodings for objects and features. These may predict specific
spatial encodings too. What color(s) an apple should have is encoded through

35

these.

3. Temporal predictive encodings for the development of a scene over time. These
encodings predict changes in the other two types of encodings over time. What
happens if an apple falls from a tree would be encoded in these.

These three types should interact strongly. For example, in order to predict an
appropriate reaction to a bear, the top-down encoding has to recognize the bear and the
temporal predictive encoding has to analyze spatial predictive encodings to determine
whether, how and when the bear could reach us. I.e. in reacting to the bear, the mind
has to draw on all kinds of encodings.

In this work we want to focus specifically on temporal predictive encodings, i.e.
how a scene develops and how it can be predicted. For this, we will draw on research
on event cognition. The human mind tends to perceive certain periods as events. This
has been well documented in psychological research, i.e. human participants will tend
to not only divide a stream of sensory input into smaller units, they will also do this in
a fairly objective manner, see e.g. Zacks et al. (2001). When participants were shown a
video of every day tasks, the judgments of when to divide the stream would coincide
quite nicely between participants, i.e. participants tended to divide the stream into
events in a rather uniform manner. This even held when the participants where asked
to change the granularity. Asking for a coarse-grained division would lead to a set of
divisions which matched those of other participants. Equally, asking for a fine-grained
division would do so too. This has been taken as evidence that the division of the
temporal dimension into events has different levels of granularity, each of which is
similar across different people. Zacks et al. (2001) thus define an event as a period in
time that is perceived by the human mind to have a somewhat definitive start and end
point.

These psychological findings have lead to the development of event-cognitive
models, e.g. in the form of event segmentation theory by Kurby et al. (2008). They pro-
pose that the mind applies different predictive models for different events, switching
models when one event stops and another starts, i.e. at an event boundary. Because
these models are specialized, they can also be used to detect these boundaries: if the
model starts to produce large prediction errors, the event it originally matched must
have ended and the model should be replaced. Such an unexpectedly large prediction
error that calls for a model switch can be labeled as surprise. We will apply those ideas
to build our artificial system.

5.3 Emerging Structure

The approaches outlined above aim at the emergence of abstractions, i.e. patterns or
structures like those that seem to play a role in human cognition. Top-down predictions
are supposed to build a hierarchy as in figure 3 with raw visual input at the bottom

36

and higher level object concepts towards the top. Each layer is thus supposed to
turn a more abstract encoding into a prediction about a less abstract encoding further
down. The same applies to temporal encoding of events. As event perception seems to
have different layers of abstraction that are consciously accessible, event-encodings
must also form hierarchies with more fine-grained segments further down and more
coarse-grained segments further up.

Even a single layer will form abstractions. Recall how there are two different
kinds of updating in figure 3. A short-term update corrects the current prediction as a
reaction to the dynamic environment. Long-term updates on the other hand change
how the layers behave in principle to minimize prediction error. This distinction carries
over to the encodings described. There will always be currently active encodings, see
also Butz (2017), adapted through short-term updates to represent the current state
of the world. A top-down encoding may be active when seeing a bear, however, a
certain movement-event encoding may be active because the bear is walking. On the
other hand, there are at all times all the latent predictive encodings (simply predictive
encodings in Butz (2017)) which model patterns in the sensory input but are not active.
A bear should already have certain learned encodings associated with it because a
human should not wait for the prediction error to predict that the bear may attack in the
near future. This potential danger is a pattern that has to be learned. The way the bear
walks or how fast it is are patterns that have to be learned. If such patterns were not
encoded, prediction would fail because the connection between bear and danger could
not have been learned. There would simply not be a pattern like ‘danger’ or ‘bear’,
any animal that shows a flight reaction has to have some stimulus-response pattern
set up. When such patterns are learned in encodings, an abstraction has been taken
place from a recurring appearance of the pattern to its generalization. Each appearance
will have had its own specific sensory input, including irrelevant information, and the
generalization will abstract away from specific details. Note that the specific details
may still be represented in the active encodings in each situation but will not be part
of the learned pattern. The main hypothesis of theories of predictive processing is
that the patterns that are learned and the structures that emerge ultimately allow the
system to have the cognitive abilities of humans.

In our artificial system, we will focus on predicting events and how they follow
upon one another. This will necessarily include their context, spatial configurations
and objects within them. Since these models are predictive, the artificial system will
be able to do simulations. This necessitates that an event contains all the information
that enables the agent to predict how the event will proceed and which event will
follow the current (Butz, 2016). This includes but is not limited to predictions about
the spatial development of the scene and changes in attributes of the objects present.
While focusing on a scene, an agent will build such predictive representations and
continuously integrate incoming information into the representation, drawing on prior
knowledge of the world’s and the object’s behavior. Note that Zwaan et al. (1998)

37

propose a similar model of language comprehension although their model remains
theoretical, see also Zwaan (2003).

Further, the question of how inference is done in general is not immediately an-
swered by PP accounts or event-cognitive approaches, even though they explain

simulation. We will have to explore the problem of inference once the underlying
mental models are established and available.

38

6 The Model and Main Hypotheses

At this point the most important parts of the overall artificial system of this work are in
place and it is time to formulate a condensed abstract system that will be filled with life,
worked out in detail, formalized and implemented over the next two chapters. In order
to easily reference to this system, we call our system LEARNA, a loose acronym for
Learning Event Abstractions to Resolve Natural language Ambiguity. As discussed above,
LEARNA will learn about its mini world, build out encodings and have basic world
knowledge. With this world knowledge, LEARNA should be able to do inference on
and understand utterance, i.e. LEARNA will comprise basic language understanding.
Since this represents a range of different functionalities, we can split LEARNA into
three different parts following the description and discussion above.

1. Event-predictive system (EPS): controls the agent in its environment, processes
sensory input (but not language), learns predictive models and provides storage
for learned encodings as well as the representation of situationally active encod-
ings. This part of the system will be able to acquire world knowledge and use
it in interactions. The EPS employs spatial, top-down and temporal encodings,
the latter following the event-cognition theories. All encodings are predictive,
therefore simulations into the future are possible.

2. Language processing system (LPS): processes language interactions, parses
grammar and operates a lexicon of known lexemes and their possible mean-
ings. It is able to build different possible interpretations of incoming sentences if
there is room for interpretation and will also be able to learn new words. This
system thus incorporates syntax and lexical semantics, but only very limited
compositional semantics.

3. Inference simulation system (ISS): translates between possible interpretations
and possible simulations or active encodings. In terms of language, the inference
system is supposed to do what humans do when they infer the meaning of a
sentence. For humans, this quite generally encompasses pragmatics and world
knowledge. This model will focus on world knowledge, i.e. what the EPS can
provide. It is important to note that the inference system also runs the simulations
using the encodings provided by the EPS.

These parts can easily be differentiated because many of their internal operations
are somewhat isolated from the other parts. They can communicate through different
interfaces though. The interface between the LPS and the ISS stands out since it has
its dedicated representational format that we may call an Abstract scene representation
(ASR). An interpretation produced by the language system may be formulated as
an ASR, so the inference system operates on ASRs and can reduce active encodings
from the EPS to an ASR. An ASR contains selected information about entities and their

39

dynamics over one or more abstract timesteps. They are called abstract because the
timesteps are under-determined chunks of time and the information is reduced, i.e.
only a few pieces of information are really included. The chunks of time correlate with
events. Ideally, the selected information is the relevant information.

The ISS communicates with the EPS directly, i.e. it has direct access to all encodings
and models. Note, however, that it has access but cannot change them, i.e. the ISS does
not have the power to update any encodings. Finally, the LPS also has access to the
EPS for linking lexemes with encodings. This communication channel is not used
otherwise however. Figure 4 presents these interconnections.

language processing system
construction,

abstract scene representation

provides encodings

simulation

inference simulation system - —— event predictive system
provides encodings

Figure 4: The three main parts of LEARNA and the role of ASRs.

6.1 Main Hypotheses

After having established a theoretical basis for the modeling and empirical parts in
this work, we can formulate the two main hypotheses.

1. Mapping language to cognition: we hypothesize that within LEARNA, struc-
tures emerge in the EPS that we can directly link to lexemes, so the mental
lexicon in the LPS contains mappings between lexemes and learned encodings in
the EPS. The ISS further allows the mapping of complex utterances to complex
representations, therefore considerably advancing the strength of the mapping.
This allows the system to understand Winograd-Schema sentences that have
been adapted to the mini world in which the system operates and, by extension,
resolve different kinds of ambiguity.

2. Ambiguity and information gaps: we assume that ambiguity is often resolved
by the inference mechanism through world knowledge. In cases where this is
not possible, the inference mechanism misses specific information, i.e. there is

40

a destructive information gap. Information gaps are nonetheless useful if they
can be expected to be filled by the inference mechanism because they lead to
shorter utterances. We hypothesize that human speakers actively manage the
production of information gaps in regards to their world knowledge to make use
of this advantage.

41

7 The Event-Predictive System

In the description of the EPS, the goal was to create a generative model®® that can
predict its environment. This was to be done through a PP system of layers that predict
lower layers and only receive the error as feedback. As additional pre-defined structure,
spatial relational encoding, top-down predictive encodings and temporal predictive
encodings were introduced. Spatial encodings predict spatial relations between and
within (e.g. shape) objects, whereas top-down encodings build a hierarchy of abstrac-
tions over objects, states of the world and their features. Temporal encodings predict
the dynamic development of the other two encodings and were further structured
in terms of event-cognition. The following section deals with the question how the
EPS functions, describing its parts on the computational level of description. Consider
once more (4), repeated below, which will guide through the description as the leading
example:

(4) The box falls to the ground and it breaks

Let us now examine an event that could be described by (4), as seen in the sequence
in figure 5. To use consistent terminology in the following, we say that such a dynamic
sequence is a scene, which consists of discrete timesteps. Each of these timesteps we call
a situation. A situation can be considered as a scene that was frozen at a point in time.

Figure 5: Event sequence described by The box falls to the ground and it breaks, the box
disappears after hitting the ground.

7.1 Learning and Applying Encodings

First of all, it is important to note that encodings are neither necessarily symbolic nor
necessarily what one would usually call a code, i.e. a list of numbers. As discussed
above, a mental model encodes a pattern. An encoding might also just manifest itself
through a stable internal state of a system. Capturing patterns, encodings arise from
a specific similarity of the instances of those patterns. If boxes in the mini world of
(4) always or often break upon hitting the ground, this can be encoded. If there are
specific boxes that do not show that behavior, the similarity is broken and there is need

26Recall that a generative model is one that generates states by itself, as opposed to a model that can
merely evaluate given states.

42

for two encodings. If there are objects that fall if not supported by something, this
pattern can be encoded too. To learn an encoding, the similarity between the different
instances has to be found and the instances have to be clustered. Once the encoding is
established, it can be used to classify new instances as to whether they follow the same
pattern, i.e. belong to the same cluster.

To give a nice example from the animal domain, frogs have (through evolution)
developed the ability to catch flies in their field of vision with their tongue quite
reliably (Lettvin et al., 1959). Interestingly, frogs will also try to catch a small black
dot on a screen, even if it is round. The pattern must thus be that most edible things
(for frogs) are small dark objects. The frog nervous system thus recognizes small dark
objects (cluster) as something edible (encoding) and issues a catch movement, even if
it is a dot on a screen (similarity). Maybe if black dots on screens were prevalent in
frog environments, evolution would have found a more fine-grained encoding to not
lash at screens too often.

The difficulty of computing the similarity of two encodings can vary quite a bit.
On the symbolic end, it seems nearly impossible: the symbol cat is much more similar
to the symbol car than to the symbol dog by the only available measure (letter by
letter similarity). Cats should be more similar to dogs though. If a system used only
symbolic encodings, it would probably have to learn each similarity between different
symbols and remember it. On the other end of the spectrum, encodings live in a simple,
high dimensional vector space of real numbers: IR”. Each encoding is a vector v € R”,
so v = (x1,X2,...,Xx,) where every x; is a real number. To compute the similarity
between some vectors v and w, there a few simple mathematical formulas, the simplest
probably being pairwise distance, i.e. Y, |x; — y;|.?/ Such encodings are called
distributed representations because their content is distributed over the dimension of the
vector space they live in. In between symbolic and distributed representations there
is a near infinite mix of the two. One could, for example, make specific dimensions
binary (yes/no), symbolic (nationality) or discrete (age in years), making similarity
harder to compute but still possible. In the ideal case of distributed representations,
data points corresponding to an encoding will cluster in neat isolated areas. Each of
those areas can then be used as a categorization and boundaries between categories
arise naturally.

A further advantage of vector representations is how easy it is to apply a function
to vectors, as opposed to symbols. A probability distribution or any other function
can be calculated over a vector space given a formula?®, but has to be learned and
memorized like a table over a set of symbols. Even better, if the function is smooth,
changing the vector representation slightly will also only have a slight impact on the

2’This formula would read: sum over the absolute values (i.e. drop a negative sign if there is one) of
X1 — Y1, X2 — yp up until x,, — Y.

ZBFormula sounds like a complex mathematical tool that the mind would never actually implement.
Most formulas in cognitive modeling only use basic arithmetic operations however, i.e. 4+, —, %, /. All
functions used in our system are build this way.

43

calculated output.

The main function of the EPS is to find good encodings, specifically top-down en-
codings, spatial relational encodings and temporal event-predictive encodings. ‘Good’
in this case means that the encoding captures a pattern, allows for classification cor-
rectly and ideally also allows for comparison between patterns.

Top-Down Encodings

The EPS first builds top-down encodings of all new objects it encounters, in figure 5
this would mean encodings of red box and of ground. Whenever a red box appears
after the encoding is built, the EPS can now activate that encoding. LEARNA builds
encodings that include the size of the object and its most typical state in the world.
If the system only every saw the scene in figure 5 but it had a temporal encoding of
falling it would memorize that red boxes are falling most of the time, for example. For
top-down encodings, the EPS has to handle the fact that similarity between objects can
be misleading.

Spatial Relational Encodings

Once top-down encodings are established and all the objects in the scene are classified,
the EPS builds spatial relational encodings. These describe patterns in spatial relations,
for example whether an object is attached to another or whether they are just very close
as well as the direction in which they touch. In figure 5, there would be encodings of
the box being above the ground and the box touching the ground (for one timestep).
Note that for spatial relations, similarity is easy to compute.

Temporal (Event) Encodings

Once top-down encodings and spatial relational encodings are established, each situ-
ation can be classified in terms of spatial relations and entities. This allows building
encodings of the temporal dynamics. The EPS should build encodings that capture
uniform patterns. In figure 5 these would be the uniform downwards acceleration of
the falling box (falling) and the non-movement of the ground (resting). The breaking
of the box is different because it happens instantaneously, but the EPS should build
an encoding of breaking nonetheless. Recall that the theory of event segmentation
(Zacks et al., 2007) proposes a simple and elegant mechanism in the case of temporal
predictions: an encoding is used for as long as the error it produces is within expected
bounds. If we assume that we can estimate the expected error of an encoding from the
average error of that encoding so far, we can use this as a boundary of an acceptable
error, see e.g. Gumbsch et al. (2017). This means an error should not be larger than the
average historical error plus 6 standard deviations ¢ to allow room for variance.

44

averageError + 00

Once the error exceeds these bounds, the pattern is taken to be unfit and the
encoding is switched for another one that fits. In the case of the ground in figure 5, the
encoding of being at rest can become very precise, since the prediction is simple (no
change). If the ground started moving, this would be unexpected and the encoding
would be switched. This is the mechanism that the EPS uses for classification. The
encodings of uniform patterns like falling or resting will be called event dynamics
models in the following, because they encode the dynamics of an event.

Once there are event dynamics models for falling, resting and breaking in figure 5,
the EPS also builds encodings of when to switch between these encodings, see also
Zacks et al. (2007) as well as Gumbsch et al. (2019), Gumbsch et al. (2017). Otherwise
the artificial system would be surprised every time the box starts falling or when it
breaks after hitting the ground. These encodings will be called transition models in the
following, because they describe transitions between event dynamics models. Note
that transition models rely on all types of encodings the EPS builds. To recognize that
a box breaks when it hits the ground, the transition model needs to have encodings for
the box and the ground (top-down), the spatial relation between the two and falling
(before) and breaking (after).

7.2 A Computational Description of the Event Predictive System

Now we can formulate what the EPS does at a timestep t. First it receives sensory
information from the world and identifies the objects (top-down encodings) it needs
to do prediction on as well as the spatial relations between the objects. If there is
a prediction from the last timestep, the prediction error can be computed. Note that
these prediction errors correspond to predictions from t — 1 to t, stemming from event
dynamics models applied at timestep t — 1. If the prediction error causes surprise for
one of these event dynamics models, the EPS switches the model for a better fitting
one and learns a transition model. Once all switches are carried out as necessary, we
can assume that the change from t — 1 to t falls into the categories that the new set of
event dynamics models encodes. These models can thus be updated with this change.
The functions of the EPS can be summarized as in figure 6.

If the EPS builds useful and correct event dynamics models, its overall prediction
error within events will be minimized, i.e. while the box is falling in figure 6, the
box’s behavior should be predictable. If, additionally, EPS builds useful and correct
transition models, this should also hold for between events prediction error. In this
case, figure 6 as a whole should be predictable. It is rarely the case that a scene is
completely predictable however, physical mechanisms can produce chaotic behavior or
agents may choose to behave in unexpected ways. In this case, the prediction error can
never be zero and the EPS should ideally minimize overall prediction error as much

45

world at timestep ¢ world
Y agent
prediction 3; sensory information s; 5
error = 5y — sy classify objects and relations
l update top-down and spatial relational
for each active model m;:
if error acceptable if error not acceptable
update m; switch to model m;
update m;
new prediction 5;;1 update transition model tm;

Figure 6: An abstract description of the event predictive system and the functions it
has to fulfill.

as possible. Even unpredictable behavior follows a specific distribution though. For
example, completely random and unpredictable data would correspond to a uniform
distribution, as every possible outcome has the same probability. The EPS should thus
try to minimize the average error in such probabilistic cases. This means that the EPS
should minimize the following formula, where s; is the sensory information at timestep
t, 5; is the prediction of s; generated by the EPS, d(x, y) is a difference function and T
is the set of experienced timesteps.

1

|T| Z d(St, §t)

teT

Note that this could be extended into the more general formalisms of free energy,
see e.g. Friston (2010), but this is beyond the scope of this work.
7.3 The Structure of Events

The description of the EPS and how it learns to encode events is supposed to provide
structured encodings, which we will later map to language. That structure is very
minimal however, it only encodes which object the dynamic change is applied to and

46

thematic role | description

agent is doing or performing the action

patient the action is done on the patient or the patient’s state changes
experiencer | witnesses the action or experiences an emotion

instrument the instrument used to perform the action

location the location at which the action takes place

goal the goal of the movement or action

path the path of the movement or action

Table 1: Common thematic roles, Lobner (2012), p. 138

what the environment of that object is like at the time of change. There is much more
structure to events however. In language, events are usually described by verbs and
their arguments, see e.g. the introduction of Bohnemeyer et al. (2011) or more generally
Lobner (2012). The verb itself expresses the action that is done or that happens and it
can be extended with arguments to define what is happening in more detail. These
arguments can be grouped by what is called their thematic role and there are a number
of different approaches as to how to do this grouping. There are main groups, however,
that are identified by most approaches and are summarized in table 1. Note that
these thematic roles refer to the meaning that they add to the event that is described.
Identifying such roles does not necessarily say anything about syntactic realization in
a specific language.

In theory, such structures can be used to add pre-defined structure to a represen-
tation of an event. Instead of using a natural language sentence, an event can be
described in such a structured way to avoid the need to translate between a thematic
role and its specific implementation in a language. This leads to a more abstract and
uniform representation of an event, see also table 2. Note that none of these roles are
necessary for all events, even though there always needs to be an object on which the
dynamics can unfold. For example, ‘I hear a sound’ could be grouped as ‘experiencer
action patient’, but ‘I scream’ should be “agent action’. This will resurface later when
the language system is implemented.

In this work, we avoid using such specific roles to pre-structure our system, i.e. the
EPS does not contain any more structure than what was described above. Instead, we
focus on what emerges from a general learning mechanism.

7.4 Related Models of Event-Dynamics

With some background established, we can look at how related models approach the
task of learning event encodings. Franklin et al. (2020) present a model that operates
directly on a distributed representation of a scene. They discuss ways to generate these
representations but their model is agnostic as to where they come from. One of the

47

Agent Action Patient Instrument Location Recipient
Waiter Give Fish Fancy_restaurant John
John Eat fish Fancy_restaurant

Table 2: An example of structured representations of two consecutive scenes Elman
etal., 2019 p. 259

specific representations they apply starts from structured event representations using
thematic roles as discussed above. They pre-define these thematic role representations,
transform them into a vector, and then pass the vector to their system as input. They
then train a neural network model to predict the change from one scene to the next.

A similar approach is taken by Elman et al. (2019). They define a vocabulary of
‘activity components’ and use thematic roles to represent a single scene. In their case,
a scene is thus a combination of six thematic roles, each of which can be filled with
a component. These scenes are then connected to form meaningful sequences, an
example can be seen in table 2. They then train a neural network model on sequences
of common activities, such as going to a fancy restaurant. The network tries (and is
trained) to predict two things. One is the internal structure of scenes, e.g. that with
‘agent(John)” and “action(eat)’, fish is most probably the patient, but not the location
of instrument. The other is the development of sequences of scenes, i.e. that the first
example scene from table 2 is followed by the the second. They report that their model
can fill in sensible components, for example ‘location(fancy_restaurant)” if the input
was ‘agent(John)’, ‘action(cut)” and “patient(steak)’. They also report that their model
can, to some degree at least, develop a meaningful sequence from a starting scene.

Both Elman et al. (2019) and Franklin et al. (2020) focus on the prediction between
strongly pre-structured representations. Gumbsch et al. (2019) present a more low-level
approach with less pre-defined structure, see also Gumbsch et al. (2017). Their ap-
proach is very similar to the approach in this work in regards to event dynamics models
and transition models since this work draws heavily on their modeling architecture.
The model operates on the motor system and movement information of a simulated
robot, trying to predict limb and body movement from the current state. This produces
encodings of motor primitives, e.g. walking or turning. To segment motor primitives,
the system triggers model switches once the error exceeds a threshold in the same way
described above and learns a transition model. Their transition models further include
their own event dynamics model that tries to predict sudden changes in the input that
may not be captured by either the old or the new event dynamics model. They argue
that this is specifically useful for changes in motor commands, e.g. when changing
from ‘walking’ to ‘standing’, since neither the walking model nor the standing model
include the strong change in velocity that the switch induces.

Finally, Schrodt, Kneissler et al. (2017) and Schrodt, Rohm et al. (2017) implemented
an event-predictive model in their original implementation of BrainControl. Brain-

48

Control provides a base for this work, see below. Their implementation focuses on
state-changes of objects that are triggered through collisions. All possible changes
are pre-defined and receive unique tags. Whenever a collision occurs, the system
will link changes in the environment that immediately follow the collision to that
collision’s context, i.e. a situation encoding. The system thus learns transition models
rather than event dynamics model. The system then uses these transition models to
predict collision effects when simulating into the future.

49

8 Implementation of the Event-Predictive System

In this work, we use a 2-dimensional mini world called BrainControl where objects can
move in 2-dimensional space, subject to gravity.?? BrainControl is simulated in discrete
timesteps, i.e. moving objects are moved a specific distance from one timestep to the
next and changes to their internal states are also applied from timestep to timestep.
Objects are simulated as axis-parallel rectangles, i.e. each object has a (x,y) position as
well as a width and a height. Width and height are stable, i.e. objects can not change in
shape.

While the engine that simulates the world of BrainControl is large and has access
to a range of different parameters and functions, the model should ideally be more
general and only have access to what can plausibly be seen as sensory information.
We could get perfect prediction accuracy by using the engine as a model of itself but
such an artificial system would only work for BrainControl. What we really want is a
system that only depends on patterns that also hold for the real world, e.g. the basic
laws of physics. The engine of BrainControl reproduces these laws in a simplified
fashion. It computes forces from three different sources: collisions, gravity and the
object’s own motor actions. The engine then translates these forces into movement
and moves the objects accordingly. It resolves collisions, i.e. it triggers status changes
upon collision and ensures that objects do not move into one another if they should not
according to game logic. For example, two boxes should not move into one another,
but a box may move into and through a bulb. Figure 7 presents an example scene from
BrainControl.

8.1 Sensory Information Available to the System

At any timestep, the EPS has access to the following information for each object. Note
that in this work the sensory information does not contain any noise.

id: a consistent and unique identifier of the object. This identifier allows to track
identity over time.

type: the type of the object, e.g. green virus or red box.

(w;h): the width and height of the object. Recall that objects in BrainControl are
simulated as rectangles with a fixed width and height.

(x,y): absolute position, i.e. relative to the top-left corner of the game world.

(vx, vy): velocity in both x-direction (horizontal) and y-direction (vertical).

2The original implementation of BrainControl was done in student projects and was derived from the
2-dimensional Mario World used by Schrodt, Kneissler et al. (2017). BrainControl is publicly available
under github.com/CognitiveModeling/BrainControl.

50

Figure 7: An example scene from BrainControl.

distances: current distances to other objects in the scene.

touching: other objects that are currently touching the object, including the
direction. This direction can be top, bottom, left, right or overlap.

(h,e): health and energy of the object. These are internal states that influence an
object’s status, e.g. if health drops to zero the object is removed by the engine.

motor commands: the current motor commands of the object. These are zero if
the object cannot move.

While this gives the EPS information that may be considered privileged (internal
states) or even unknown (motor commands) in the real world, inferring these states is
out of scope for this work.

The EPS is specifically provided id and type of an object, so it does not need to
learn object categories and it does not need to track objects through time. This was
also done to simplify the task, as object recognition and identity through time are out
of scope for this work.

Since id, type, width height cannot change, they are not part of the dynamic object
representation. Further, distances and touching objects are not used for event dynamics
models, see also figure 6. The remaining pieces of information, i.e. position, velocity,
internal states and motor commands, are numeric and can be represented by a vector.
We will call these pieces of information features. Note that a feature is the type of
information, e.g. health, and the health of an object can be represented by a value, e.g.
2.5. At any timestep, each object has such a vector containing the current values, we
will call this the feature vector.

51

8.2 Models, Predictions and Errors

The task of an event dynamics model is to predict the state of an object in the next
timestep given the information about the current and earlier timesteps. In this work,
this includes change of position, i.e. velocity, and change of internal states, i.e. health
and energy. We do not predict actions, i.e. motor commands. To simplify the task,
we factorize the event dynamics model, i.e. we train simpler models for each feature
separately. This means that there are models that predict vx and there are different
models that predict health. The simple models receive the feature vector as input and
have to predict the value of one feature for the next timestep. For this task, we employ
linear models.*® This means the models learn functions of the following kind:

predicted value = b + ay * inputy + ap * inputy + - - - + a, * input,

Note that the models do not predict the change of value, but the actual value. This
is helpful in cases where a value changes suddenly, e.g. health is set to zero because
the object was forcefully destroyed. Such a change can be easily predicted if the model
simply predicts the specific value (0). While linear models are very simple, they suffice
in our case. The models are trained by adjusting the parameters ay,a, . .., a, as well as
b to minimize error. At every timestep, the predicted value is compared to the actual
value and the parameters are adjusted according to the error. In our implementation,
we use the recursive least squares algorithm to learn the parameters, see e.g. Hayes
(1996). The advantage of recursive least squares is its very fast approximation of the
ideal parameters. This comes at the cost of a more complex basic algorithm, which is
acceptable in this case since the number of parameters is very small. Summing this up,
we arrive at a simple formulation of how the basic models are trained, shown in figure
8.

The basic models that are learned by the EPS in practice can be found in appendix D.
As an example, the final model describing downwards acceleration through gravitation
has the following formula:

M35 L OY1 = 0.28 + oY * 1

This can be read as ‘the value of vertical velocity vy in t + 1 will be current vy * 1
plus 0.28". This describes a constant acceleration downwards. The model id is 35. The
final model describing change in energy through movement has the following formula:

Mg : e;1 = 0.025 + Mox * —0.03 + Moy * 0.006 + Mact x —0.3 +e* 1,

Muox and Moy are motor commands for x and y movement and Mact is the inter-
action motor command. These are the building blocks of event dynamics models. At

30The dynamics of the mini world follow linear patterns. Learning non-linear patterns is out of scope
of this work.

52

model M
|

timestep ¢, input I; = 1,1y, ..., in
l

predicted value pvy 1 = M(I)
l

next timestep t 4 1, actual value vy

l

€rror € = Uty1 — PUt+1

l

update parameters of M with (I, v;41)

l

repeat

Figure 8: The procedure of prediction and learning for a model.

each timestep, the set of active linear models for an object defines the current event
dynamics model.

8.3 Model Updates and Surprise

Following Gumbsch et al. (2019), we use a moving Gaussian probability density
function to estimate the expected error.3! Whenever an error is computed, we can
check whether the error lies outside of a predefined number of standard deviations, i.e.
we say an error is acceptable if the following holds, as discussed above:

error < 0 % SD

Here, SD is the standard deviation of the error of the current model and 6 is a
predefined parameter.>> We use § = 2 in our implementation. Our mini world is free
of noise and successful models will thus have near perfect performance, as well as
quick convergence (see above). We can thus expect that a small cutoff should suffice.
Note further that we ignore the mean of the Gaussian. In our case, the models either
converge to the actual value or do not converge at all. There are no situations in
BrainControl where an event requires non-zero means in the error function. Models
in BrainControl will usually not converge to exactly zero because of rounding issues,

31 A Gaussian distribution is, intuitively speaking, a distribution where the probability density is shaped

_1(xmmy2
U\}Tﬂe 2550, where p

is the mean and ¢ is the standard deviation, denoting how much the function spreads around the mean.
Gaussian distributions are also known as normal distributions.

32The standard deviation can be defined as the square root of the variance, where the variance is

ﬁ Y (xi— mean(x))z.

like a bell curve around the mean. Its probability density function is f(x) =

53

so we set an artificial minimal value as a lower bound of the error function. Values
smaller than this lower bound are considered equal to zero in most cases.

This way we estimate whether a model’s error should be considered acceptable or
surprising. In case an error is acceptable, the model gets updated as described above.
If the error is considered to be too large, a model switch is initiated. For this, all known
models try predicting the current value from the last timesteps feature vector, i.e. do
exactly what the failed model also tried. The model that shows the lowest error is then
chosen to replace the failed model and updated in its place. The parameter update
with (I,v,41) is done for the new model, not for the old one. This becomes especially
important when trying to predict switches between models.

To update the error estimate, we use the error after updating with (I,v,.1), i.e.
the difference between v, and what the updated model would predict given I.
Ideally, the error should reflect the performance of the current model over all historic
data seen so far, but to ensure this, all historic data would have to be stored. Let us
assume that the current model M was active for k timesteps, being updated at each
timestep. Now after k timesteps, the current model is indeed an updated model M. If
(I1,v2), (I2,v3), . . . (I, k1) was the stream of sensory inputs, we would ideally want
to know the average error of M* on all this data. That is

1 k
Mean(Ideal Error) = P ;Mk(li) — U1
where M¥(;) is the prediction of model M* given sensory information I;. Since this
historic information is not stored, we approximate this as follows, see also Franklin
et al., 2020 for a discussion of this issue.

k .
Mean(Approximated Error) = % Y M(L) — vigq
i=1

In cases where no known model sufficiently satisfies the sensory information, a
new model is created and initialized with zeros. It is then updated with (I,v,11),
which is the first real update for the model and its initial error is then the error after
that update.

8.4 Transition Models

To predict switches of models, we employ transition models, as discussed above. In
the BrainControl world, switches in behavior stem either from the activation of a
motor command, the application of some external force or some internal state reaching
a critical value, like health hitting zero. External forces in the BrainControl world
are always collisions, there is no wind for example. Coincidental transitions are
impossible. A transition model should be given information about collisions and the

54

current internal state of the object the transition applies to. A transition model should
thus encode the following information.

old model, new model: the basic models that where switched, i.e. this transition
model will encode the switching from old model to new model.

main object type: the type of the object the transition applies to, i.e. the type of
the object for which old model was switched to new model.

main object features: an average feature vector for the main object.
touching objects: objects that are touching the main object at time of transition.

touching objects features: a list of features of the touching objects that are
relevant to the transition.

This is how transition models are implemented for this work. Object type and
model ids are set once and do not change afterwards, i.e. we learn one transition
model per combination of object type and models. Feature vectors have numerical
values, so we use Gaussians again to learn a probability distribution. The updating
of the features for the main object is shown in 9. In that example, a transition model
has learned to predict when a green virus will stop moving in order to rest, which
depends on its energy level. The Gaussian for energy will thus converge on that level,
whereas the Gaussian for health will broaden, as the health value is irrelevant for this
transition. Note that the transition is not always updated on the same object but only
of objects of the same type. This is safe to do since we assume that objects of the same
type consistently behave the same way.

Recall from the discussion above and figure 6 that transition models use spatial
relational encodings. This is implemented by learning patterns of touching objects,
we dismiss objects that are more distant because they cannot affect the features of
the main object. We pre-structure spatial relational encodings by defining possible
touch-directions (top, bottom, left, right, overlap) and by only including the motor
commands of those touching objects while ignoring other features. This pre-structuring
is necessary because relations are not numerical, i.e. there is no immediate way of
computing similarity, so we help the EPS with additional structure.

An example of transition that depends on the context would be a ball being pushed
by a green virus or by a spiky red cell. The result will be mutual slower movement. If
the resulting movement is the same, the same transition model will be triggered upon
being pushed by another ball as well as by a box. We assume that if two objects trigger
the same transition through collision, then their states will be centered around one
value for those transitions. This means we can use a single Gaussian for each of the
features of the object that pushes the ball from the defined direction. This is illustrated
in figure 10.

55

(a) First occurrence

(b) m-th occurrence

(c) n-th occurrence

health=9 health=6 health=13
energy=4 energy=4 energy=4
estimates: estimates: estimates:
(both the same) (health dashed) (health dashed)
I I I I I I I I I
/(/ ! \\\\ ’/\ \\\\4 - ’\/ ! \\\
0 5 10 15 0 5 10 15 0 5 10 15

Figure 9: Learning the dependency of a transition on an internal state. The green virus
stops moving when reaching energy level 4 to rest. In all cases, the transition is from
the ‘moves-model” to the ‘at-rest-model’. The Gaussian for health (dashed) has a large
standard deviation after the n-th occurrence, the Gaussian for energy (solid) becomes
very narrow.

Note that object type and collision direction are not numerical in the same sense.
The transition above is triggered by a virus as well as a spiky cell, let us say, coming
from the right, making the ball they collide with move left. Let us call this transition
the being-pushed transition. In this implementation, we capture variance in the types
of other objects by using sets of possible objects that trigger the transition. These sets
are built for each of the different directions. In this case, the direction right would thus
have a set that contains virus and cell. Whenever the transition occurs, the types of
the currently touching objects are added to the sets matching the direction of touch.
Further, there is a special none-type that signals that this direction was empty. Otherwise,
we can not learn whether a direction is necessary or optional. In the example of the
being-pushed transition, the transition is mostly taking place on the ground, so there
usually is another collision registered, namely with the ground. But the ground is not
a necessary component of being pushed, the ball could also be pushed while falling.
Thus, when the transition is seen while falling and there is no ground beneath, the
special none-type is added in direction bottom. All this can be seen in figure 10.

In this work, we learn and update transition models not only when there was an
actual model switch, but also if a model stays. Such transition models thus encode the
context of an event being active.

This concludes the description of the transition models we apply. Their perfor-

56

(a) First occurrence

SUICNe

main speed= 0
right: green virus
right Mvx = -1
bottom: ground
bottom Mvx =0

learned types:
right = [green virus]

(b) m-th occurrence

28,

iceing

main speed= 0
right: red spiky cell
right Mvx =-1.2
bottom: ground
bottom Mvx =0

learned types:
right = [green virus,
red spiky cell]

(c) n-th occurrence

&

main speed= 0
right: green virus
right Mvx =-0.9

learned types:
right = [green virus,
red spiky cell]

bottom = [ground]
estimates right Mvx:

bottom = [ground]
estimates right Mvx:

bottom = [ground,none]
estimates right Mvx:

I T T T T T PN T T

-— -)

o o =

) Q Q

o) o o)

e\ e} S

] o]]

= = =

o | \ \ o,/ ! a, ! !
-2 0 2 -2 0 2 -2 0 2

Mvx Mvx Mvx

Figure 10: Learning the dependency of a transition on the surroundings. The transition
refers to the ball on the left, which changes from being at rest to moving left. This
shows (symbolically) the first occurrence on the left and a later m-th as well as an
even later n-th occurrence. Only a few features and sets are shown. E.g. in the third
occurrence the ball is falling for the first time so the y-speed feature would now also
be updated to include a bigger range. The sets refer to the sets of objects learned, here
only the sets for direction right and bottom are shown. For features, only the estimate
for the speed of the object touching from the right is shown.

mance will be evaluated and discussed in section 9. In summary, they learn Gaussian
estimates for the features of the main object as well as touching objects. Touching
objects are grouped by the direction of touch. For each direction we keep a set of possi-
ble types that could collide from that direction to trigger the transition. If a collision
from a certain direction is not necessary to trigger the transition, a special none-type is
registered for that direction.

57

8.5 Relation Models

We implement relation models that capture an abstract relation between objects, i.e.
how their distance is changing, whether they touch each other and if they do, from
which direction. In the case of touching, these relation models are equivalent to the
touching objects patterns that transition models learn.

Relation transition models are then learned to encode transitions between such
relation models. The models do not play a role in the EPS beyond this, they are not
updated further or used for prediction otherwise. They will, however, be used as
encodings when processing language.

8.6 Summary of the Implementation

This concludes the algorithmic level description of the models applied by the EPS.
Note that this implements the processes described in figure 6, i.e. how basic models
are updated and switched. Note that the EPS does not bundle basic models that
occur together into a combined model directly. A scene encoding, and thus an event
dynamics model, is defined by the basic models that are active together. The behavior
is illustrated in figure 11 for summary.

If we try to map the implemented parts in our system with the theoretical parts
described in section 7, we end up with figure 12. In theory, all the different encod-
ings are highly interdependent, predicting each other. This is something that our
system cautiously approaches. We will see, however, that the patterns this system
learns already lead to sensible structures that can be used to link to natural language
utterances.

8.7 Implementational Details

There are a few peculiarities of the implementation that are worth pointing out. The
first concerns collisions. Because of the discrete nature of movement in BrainControl,
objects usually collide before completing their movement, as shown in figure 13. The
change in actual position is therefore reduced for the timestep where the collision
happens. This collision-dependent shortening would need a sophisticated and spe-
cialized model to compute. So instead of distance traveled, the sensory input contains
actual speed, i.e. the movement as if there was no collision.?® On an intuitive level,
we assume that objects do not reduce their speed before impact but keep going until
actual impact with the same speed. In predicting movement speed and forces, we are
interested in this actual speed.

33Even for the engine, this is a more complex matter. Especially when two objects are moving towards
each other.

58

(a) Abstract Model

(b) Example at ¢

(c) Exampleatt+1

Sensory Info
position
non-collision speed
type and unique ID

internal states

Sensory Info
(136,183.8)
(0,5.04)

ball, 19
health: 9

Sensory Info
(136,188)
(0,5.32)

ball, 19
health: 9

map: dir — otherID

map: dir — otherID

bottom — Obj

(dir € [t,b,1,1,0]) empty for all Obj is ground tile
Predictive Model M3s My
predicted feature vertical speed vertical speed
f:I; — POt+1 f(It) =5.32 f(It—l—l) =0
f~b+ax+... f(I)=0.28+4vy f(I)=0
average error SD 0.0 0.0
Transition Model T Mo7s T Mosgs

switch = M; — M,;

gaussian for each feat

switch = Mss — Ms3s

gaussian for each feat

switch = M35 — My

gaussian for each feat

for each direction: bottom bottom

set of possible types none [ground, platform, ...]
gaussian for each feat %) zero for all feats
Relation Models Relation Models Relation Models

for each related Obj: for Obj (ground) for Obj (ground)
Adist € [—,0,+] Adist = — Adist =0

touch € [yes, no| touch = no touch = yes

direction € [t,b,1,1,0]

direction = @

direction = bottom

Figure 11: A summary of the implemented structures in the EPS. Feature is abbreviated
feat, all other entries should be clear from the text.

59

— prediction

- ---> combination

transition models relation transition models

l \ temporal encoding \,

predictive models relation models

situation encodings
A -

1 ~

object representation
7 top bottom

collision patterns

object type left right overlap

N features = (x1,x2,...,Xp)

distance(other object) ¥

top-down encodings spatial encodings

Figure 12: The parts that are implemented in this work and how they are linked to the
structures proposed in theory.

timestep 1 timestep 2 timestep 3
pos: (0,0) pos: (1,0) pos: (1.5,0)
speed: (1,0) speed: (1,0) speed: (1,0)

Figure 13: A box moving with a constant speed of 1 in the horizontal and 0 in the
vertical. In timestep 3, this movement is stopped by a collision. While the supposed
speed is still (1,0) according to the forces at the beginning of the movement, the actual
movement is (0.5,0).

60

A second point concerns the implementation of transition model updates.3* Con-
sider the system at the end of some timestep t. The active models were just checked
and updated and one of the models was switched, let us say M; was replaced with M.
Now, M, was updated with the sensory input of the last timestep and the actual value
of this current timestep, i.e. with (I;_1,v¢). The transition model TM; : M; — M, is
thus also trained on the features and collisions at timestep t — 1! We train transition
models on the context of the last timestep because we also update the models for the
context of the last timestep. To make this clear, imagine a box falling off a platform. In
t — 1, the box just moved over the edge and is now touching no object but also not yet
falling. This is specific to the BrainControl engine, which computes gravity first and
then moves objects, recomputing gravity at the start of the next timestep. From t — 1 to
t, the engine realizes that the box is not on solid ground anymore and gravity starts
to pull the box down. The engine thus increases the vertical speed of the object. The
learning system thus realizes that from t — 1 to t, M; (not falling) was indeed wrong
but M, (falling) is a better fit. M; was the right model for going fromt —2 to t — 1
and M is the right model to go from t — 1 to t. The transition TM; : M; — M, thus
happened in t — 1 and especially in the context of t — 1.

A final point concerns destruction. In BrainControl, objects can be destroyed under
certain circumstances, but this will always include their health being zero before they
are removed from the game by the engine. We implement a mechanism that keeps
those objects in the domain of the EPS for 30 timesteps after they are removed from
the game. The EPS then learns that their health is zero, but does not predict any other
features anymore. This enables the EPS to learn a transition to the zero-health model,
which allows the prediction of breaking.

34This might seem a small technicality but may be easily missed on re-implementation. In a system like
BrainControl with very exact parameters, missing it will make transition models fail beyond rescue. It
thus seems worth it to quickly explain this slightly confusing detail.

61

.rW!'I'm'Iﬁ'I'm' . ‘
b) gﬁgﬁ%mgﬁﬁ
- NE52 5r2/57 552 SreaceareiSTe Sre 520/

o] €)
CJ_U_ILJJ_HJLJJ_U_H_IJ

bbb bt)
"ﬂ?‘!ﬁ'r"l“r‘?!‘r?'ggs Q
® ﬁf@mo 1

Figure 14: Level 1, used for training

9 Evaluation and Discussion of the Implementation

To evaluate the EPS as it is implemented here, we look at how the EPS minimizes
overall prediction error and whether specific events can be encoded after training.
After that, we will discuss limitations and possible improvements. For reproducible
testing, we employ a training scheme using four different setups of the mini world.
The first setup contains all moving entities but only allows sideways movement. It can
be seen in figure 14 and will be called level 1. Note that all levels contain two robot
entities in the center, these do not move and their features are not predicted. They
represent the player and LEARNA. The levels contain five different objects that move
by themselves, a blue tall cell, a red spiky cell, a green and a red virus (those have
faces) and green flying arrows. All other objects do not move by themselves.

The moving objects are controlled by simple rules. They move left or right ran-
domly, rest if their energy is low, attack hostile objects and flee if their health is low and
there is a hostile object nearby. They consume bulbs and wrenches if there is no hostile
object around. Cells and viruses are hostile towards the other group, but not within, i.e.
a cell attacks a virus but not another cell. Training level 2 includes consumable bulbs
as well as boxes and balls that can be pushed off platforms, this is shown in figure 15.
Note that entities will avoid falling off platforms, i.e. turn around at the edge. Training
level 3 includes consumable wrenches and all combinations of entities being hostile
towards one another are situated on a shared platform, leading to aggression. This can
be seen in figure 16.

Finally, training level 4 is built in a way to allow falling off platforms and moving
objects are controlled in a way that they will drop off, i.e. they will not stop and turn
as in the other levels. This is specific to level 4, which can be seen in figure 17.

Training was done on a pre-defined sequence of these training levels. 60 levels
were run for a total of 41750 timesteps.*® Appendix D contains a list of all basic models
that where learned.

%The exact training sequence was 1,4, 2,3,1,2,2,4,4,2,2,2,4,4,4,2,4,3,3,3,3,3,3,3,1,2,4, 3,
followed by 8 repetitions of the sequence 1, 2, 3, 4

62

Q) l..f‘,"\
.0 m
Y ® .
LB
s 9 B PASONY | BRs]
e

Figure 15: Level 2, used for training

LY

Figure 17: Level 4, used for training

63

200 | g-F 8P 1

i

0 (-

% .o .* E. . ‘. I 0

3 100| 11 T L . 1
§ Gt § amad 2SN T PRE T RN TR Y RN T BN TR ST

K.-r“{n-prv':.. g T 0N X :;F bobe b ok »

Timestep 104

Figure 18: Model use over time. The symbols at the bottom indicate that a training
level was started at that timestep: diamond is level 1, square is level 2, circle is level 3,
triangle is level 4.

9.1 Overall Error Minimization

New models were learned until late in training, as can be seen in figure 18, showing
which models were used over time. This can be mostly attributed to level 3, where
entities attack each other. As can be seen in the full list of models in appendix D—
models with IDs of 74 and larger try to model a change in health—which changes due
to objects attacking each other. Other dynamics are learned much quicker. Note how
at the onset of training level 3, a large range of models is always activated until the
correct stable models are learned around timestep 33000 (see also figure 19 below),
making the unsuccessful models obsolete.

This learning delay of health models can also be seen in figure 19 where the average
standard deviation (SD) of active models is shown. At the onset of training level 3,
average SD rises quickly and remains high for the complete level. This only ceases
at around timestep 33000, indicating that the correct models where found. We can
assume that from this point onward, the basic predictive models were fully learned,
i.e. there is no noticeable within-event error anymore.

The between-events prediction on the other hand is more difficult and produces
decreasing but noticeable error till the end of training. This can be seen in figure 20,
which shows average errors across active models. This includes errors that stem from
failing to predict a transition, i.e. this describes the overall error the EPS produces.

One common cause of such errors are cases where the Gaussian for a feature is
slightly too restrictive. For example, the transition from being stable (vertical velocity
being zero) to falling for red viruses is learned correctly, as seen in table 3, which
shows the respective transition models. The spatial relational encoding for staying
level requires footing for direction bottom, whereas the spatial relational encoding for
the transition to falling requires that direction to be empty. Nonetheless, the errors that

64

o
N
T
|

o]
9]
50
©
3
% 5-1072|]
A
)
= " evoe 7
| | | | | | | | | |
0 0.5 1 15 2 2.5 3 3.5 4 4.5
Timestep 104

Figure 19: Average SD of models in use. This is a good indicator of when new models
are created. The symbols at the bottom indicate that a training level was started at that
timestep: diamond is level 1, square is level 2, circle is level 3, triangle is level 4.

<
)
T

Error averaged
<
"
T

| |
0 0.5 1 15 2 2.5 3 3.5 4 4.5
Timestep 10%

Figure 20: Average error of models in use. The symbols at the bottom indicate that a
training level was started at that timestep: diamond is level 1, square is level 2, circle is
level 3, triangle is level 4.

65

Table 3: The transition models for not moving in the vertical (69) and starting to fall
(244). From and to describe the models that the transition applies to, t: is the number of
times this transition model was applied successfully. The rest describes the situation
encoding, i.e. the features of the main object as well as sets of types and features for
objects of the different possible directions. If a direction only contains the none-type, it
is not shown.

1D Transition Model

69 from: 4, to: 4, t: 112078, main object: red virus,
main features: vx: 0.001~1.83, Mxdir: -0.013~0.822, Mvx: 0.69~0.75, Mact:
0.048~0.121, h: 8.066~3.959, e: 6.843~2.282, LEFT:{types: none, iron blockl,
movable box, virus ball, cell long blue, cell spikes red, features:DX: -0~0,
DTOTAL: 0~0, Mxdir: 0.179~0.403, Mvx: 0.011~0.133, Mact: 0.01~0.023},
RIGHT:{types: none, iron blockl, movable box, virus ball, cell long blue,
cell spikes red, features:DX: 0~0, DTOTAL: 0~0, Mxdir: -0.237~0.445, Mvx:
0.013~0.142, Mact: 0.013~0.026}, BOTTOM:{types: iron blockl, top left wrench
head, top center wrench head, top right wrench head, top dirt border ground},
OVERLAP:{types: none, wrench, bulb flower}

244 from: 4, to: 35, t: 92, main object: red virus,
main features: vx: 0.022~2.342, Mxdir: 0.034~0.998, Mvx: 1.239~0.413, Mact:
0.049~0.029, h: 8.59~2.316, e: 8.219~1.954,

show up towards the end of the training often include these transitions, i.e. they were
not applied correctly. This can be caused by restrictive Gaussians as the one for energy
of transition model 244. With 0 = 2, the maximum acceptable value for the feature
energy would be 8.219 + 2 x 1.954 = 12.127. The actual maximum for energy is around
13 however. This means that there will be cases where this transition model fails to
predict correctly, but these cases require peripheral values for energy or health. Since
such errors (stemming from peripheral feature values) do not hinder simulation later,
we ignore this issue in this work and accept occasional errors in transition models.

9.2 Learned Models

To see which models become stable during training, see the table in appendix D.
Stable models will have been experienced much more often than the unsuccessful ones.
During training these failed attempts are not invoked anymore after the correct model
is learned. These failed attempts may be explained by overfitting as those models
learn dependencies on features that are actually independent, but the model still fits
the formula to their specific values during training. This usually happens if there is
little variance in the specific feature value. Once the model is applied to another object,

66

. I
1
1
1
1
v
ol ol !

Figure 21: Event of a box falling and breaking

for example, and those feature values are now different, the model is wrong. In the
following, we will examine specific stable models and their transition models.

A Box Falling and Breaking

When a box falls, at the start of the event the model for vertical speed changes from
being at rest to falling. During the event, the box falls and at the end, if the box hits the
ground, it breaks, meaning its model for health switches to the zero model. The event
is illustrated in figure 21. The models involved in this are listed in table 4.

A Cell Pushing a Ball

When a cell pushes a ball, the cell’s model for movement changes from normal move-
ment to pushing at the start of the event. During the event, the ball falls and at the end,
if the ball hits the ground, it breaks, meaning its model for health switches to the zero
model. The event is illustrated in figure 22. The models involved in this are listed in
table 5.

A Green Arrow Flying
A flying arrow is difficult to visualize, but figure 23 symbolizes a green arrow flying.
Flying is learned through its movement model, which is shown in table 6.

A Cell Attacking and Fleeing

Figure 24 shows a blue tall cell attacking a virus and fleeing the scene afterwards.
This event has three parts, i.e. first the attacking movement, then the actual fighting
and finally the fleeing, each using different movement models. The cell further looses
health while attacking, which is captured in a different model. The models involved in
this are listed in table 7.

67

Table 4: Transition models for a box falling and breaking. T Mpes encodes the context of
being on stable ground, i.e. not moving in the vertical My. T Mjg; encodes the switch to
falling M35, T Mpg3 the context of falling. Note that the switch occurs when there is no
vertical movement yet. Finally T Mye5 encodes the context of the no-change-in-health
model Ms. TMjgps encodes the switch to the being-broken model M;54, i.e. health
is zero. This switch thus encodes the context of breaking, requiring specific ground
below and larger downwards speed (vy 7). This thus encodes somewhat implicitly
that the object has to be falling in order to break. The context of being broken, T Mgy,
is empty, since there is no context for broken objects, they are removed shortly after
breaking.

ID

Transition Model

264

281

283

265

1806

1807

from: 4, to: 4, t: 20298, main object: movable box,

main features: vx: -0.076~0.59, h: 8.865~2.221, LEFT:{types: none, cell long
blue, red virus, cell spikes red, features:Mxdir: 0.88~0.354, Mvx: 1.09~0.522,
Mact: 0.045~0.031}, RIGHT:{types: none, cell long blue, red virus, cell spikes
red, features:DX: 0~0, DTOTAL: 0~0, Mxdir: -0.925~0.29, Mvx: 1.197~0.506,
Mact: 0.045~0.03}, BOTTOM:{types: top left wrench head, top center wrench
head, top right wrench head}

from: 4, to: 35, t: 141, main object: movable box,

main features: vx: -0.145~1.191, h: 8.583~2.255, ,

LEFT:{types: none, cell long blue, red virus, cell spikes red, features:Mxdir:
0.924~0.364, Mvx: 1.204~0.4, Mact: 0.052~0.029},

RIGHT:{types: none, cell long blue, red virus, cell spikes red, features:Mxdir:
-1.001~0.056, Mvx: 1.297~0.415, Mact: 0.055~0.028}

from: 35, to: 35, t: 3442, main object: movable box,

main features: vx: -0.108~0.687, vy: 3.923~2.472, h: 8.567~2.256, LEFT:{types:
none, cell long blue, red virus, cell spikes red, features:Mxdir: 0.438~0.898,
Mvx: 1.196~0.373, Mact: 0.051~0.029}, RIGHT:{types: none, cell long blue, red
virus, cell spikes red, features:DX: 0~0, DTOTAL: 0~0, Mxdir: -0.384~0.924,
Mvx: 1.253~0.372, Mact: 0.049~0.029}

from: 5, to: 5, t: 17900, main object: movable box,

main features: vx: -0.019~0.247, vy: 0.728~1.885, h: 8.883~2.242, LEFT:{types:
none, cell spikes red, features:Mxdir: -0.018~0.134, Mvx: 0.017~0.126, Mact:
0.001~0.007}, RIGHT:{types: none, cell long blue, red virus, features:Mxdir:
0.017~0.13, Mvx: 0.019~0.146, Mact: 0.001~0.009}, BOTTOM:{types: none, top
left wrench head, top center wrench head, top right wrench head}

from: 5, to: 154, t: 79, main object: movable box,

main features: vx: -0.004~0.385, vy: 7.096~2.232, h: 8.67~2.321, BOT-
TOM:{types: top dirt border ground}

from: 154, to: 154, t: 4819, main object: movable box

68

‘ :[—---)*

SIS JUT LS UL JLTRE J2ES,
E IUI;I:UlUI'IM
I P

Figure 22: Event of a cell pushing a ball

r

Figure 23: Symbolic illustration of a flying arrow

69

Table 5: Transition models for a cell pushing a ball. TM;y5 encodes the context of
normal movement (model Mps), TMs16 the switch to the pushing model Mss and
T M35 the context of pushing. T M3g5 on the other hand encodes the switch from being
at rest to being pushed (Mg) for the ball, note the necessary animate entities on the
left having positive movement force (Mvx 1.3). TM3gg encodes the context of being
pushed.

1D Transition Model

122 from: 25, to: 25, t: 23626, main object: cell spikes red,
main features: vx: 2.25~0.259, Mxdir: 1~0.057, Mvx: 1.001~0.115, Mact:
0.05~0.029, h: 11.267~3.111, e: 7.381~2.003, LEFT:{types: none, green virus,
features:Mxdir: 0.867~0.499, Mvx: 2.072~0.518, Mact: 0.04~0.024}, BOT-
TOM:{types: iron blockl, none, top left wrench head, top center wrench
head, top right wrench head, top dirt border ground}, OVERLAP:{types: none,
wrench, bulb flower}

516 from: 25, to: 55, t: 41, main object: cell spikes red,
main features: vx: 2.257~0.248, Mxdir: 1.008~0.058, Mvx: 0.997~0.116, Mact:
0.048~0.031, h: 9.413~2.15, e: 8.728~2.726, RIGHT:{types: movable box, virus
ball}, BOTTOM:{types: top center wrench head, top right wrench head, top
dirt border ground}

365 from: 55, to: 55, t: 1435, main object: cell spikes red, main features: vx:
1.5~0, Mxdir: 1~0.059, Mvx: 1.278~0.403, Mact: 0.05~0.029, h: 9.251~2.246, e:
8.594~2.728, RIGHT:{types: movable box, virus ball}, BOTTOM:{types: top
center wrench head, top right wrench head, top dirt border ground}

395 from: 2, to: 61, t: 99, main object: virus ball,
main features: h: 9.114~2.21, LEFT:{types: cell long blue, red virus, cell
spikes red, features:Mxdir: 0.996~0.054, Mvx: 1.285~0.393, Mact: 0.05~0.029},
BOTTOM:{types: top center wrench head, top right wrench head, top dirt
border ground}

388 from: 61, to: 61, t: 2487, main object: virus ball,
main features: vx: 1.2~0, h: 8.998~2.059, LEFT:{types: cell long blue, red
virus, cell spikes red, features:Mxdir: 0.998~0.058, Mvx: 1.331~0.416, Mact:
0.049~0.029}, BOTTOM:{types: top center wrench head, top right wrench head,
top dirt border ground}

70

Table 6: Transition model for a green arrow flying. TM;j34 encodes the situations in
which the flying model My, is active. Note that this is one of the only situations where
upwards movement is active (Mvy 1).

1D Transition Model

134 from: 24, to: 24, t: 11260, main object: bullet willy,
main features: vx: 4.496~0.52, Mxdir: 1~0.057, Mvx: 0.999~0.116, Mvy: 1~0, h:
8.916~2.252, e: 9.159~2.28,

o A S D e T ey Ty
cxlilnhlnhénL!ng
e-'Q#

o e L I Uy Iy T ey T I

Figure 24: Event of a cell attacking a virus and fleeing

71

Table 7: Transition models for a cell attacking and fleeing. T M377 describes the context
of the attacking move (Mgp), moving with high force (Mvx 1.8). T Myp5 describes the
change to the not-moving model M>, which in this case is activated because the two
objects push one another into a stalemate. TMgs3 then describes the switch to the
fleeing model Mg at low health (h 1). TMbogps describes the context of the loosing-
health model M198

ID

Transition Model

377

405

653

2808

from: 60, to: 60, t: 4705, main object: cell long blue,

main features: vx: 2.426~0.236, Mxdir: 1~0.058, Mvx: 1.797~0.172, Mact:
0.05~0.029, h: 8.655~2.535, e: 6.936~2.417, RIGHT:{types: none, green virus,
features:Mxdir: 1.008~0.06, Mvx: 0.982~0.117, Mact: 0.048~0.029}, BOT-
TOM:{types: iron block1, top left wrench head, top center wrench head, top
right wrench head, top dirt border ground}, OVERLAP:{types: none, wrench,
bulb flower}

from: 60, to: 2, t: 104, main object: cell long blue,

main features: vx: 2.439~0.219, Mxdir: 1.005~0.057, Mvx: 0.018~0.002, Mact:
0.055~0.029, h: 8.536~2.488, e: 7.313~2.342, RIGHT:{types: iron block1, red
virus, green virus, features:Mxdir: -0.358~0.483, Mvx: 0.006~0.009, Mact:
0.016~0.029}, BOTTOM:{types: iron block1, top center wrench head, top right
wrench head, top dirt border ground}

from: 2, to: 69, t: 37, main object: cell long blue,

main features: Mxdir: -0.996~0.058, Mvx: 2.897~0.525, Mact: 0.047~0.031,
h: 1.024~0.193, e: 8.753~2.83, LEFT:{types: none, iron blockl, green
virus, features:Mxdir: -0.486~0.486, Mvx: 0.495~0.495, Mact: 0.022~0.022},
RIGHT:{types: none, red virus, green virus, features:Mxdir: -0.943~0.351, Mvx:
1.726~0.362, Mact: 0.048~0.031}, BOTTOM:{types: top center wrench head, top
dirt border ground}

from: 198, to: 198, t: 1132, main object: cell long blue,

main features: vx: 0.042~0.572, Mxdir: -0.01~1.002, Mvx: 0.045~0.263, Mact:
0.049~0.028, h: 4.47~3.019, e: 8.61~2.128, LEFT:{types: none, iron block1, green
virus, red virus, features:DX: -0~0, DTOTAL: 0~0, Mxdir: 0.912~0.333, Mvx:
0.018~0.033, Mact: 0.048~0.03}, RIGHT:{types: none, iron block1, green virus,
red virus, features:Mxdir: -0.833~0.445, Mvx: 0.035~0.146, Mact: 0.046~0.031},
BOTTOM:{types: iron block1, top center wrench head, top right wrench head,
top dirt border ground}

72

EIILIU!L;UQLT

Figure 25: Event of a cell consuming a bulb

A Cell Consuming a Bulb

Finally, figure 25 shows a cell consuming a bulb, which is difficult to illustrate. Con-
suming is learned through the onset of the interaction motor command of the cell,
which triggers an energy gain for the cell. This change in energy models then identifies
the event. The relevant transition models are listed in table 8.

9.3 Overcoming Limitations

While the EPS successfully learns to predict a range of events as discussed above,
there are limitations to the implementation. One major limitation becomes apparent
when an object interaction can happen from different directions. For example, if a box
was destroyed by a collision from the left or the right, the situation encoding of the
transition model will fail because it experiences the transition with an empty left some
times and an empty right other times. It will thus learn that both collisions from the
left and from the right are meaningless for that destruction transition. This limitation
stems from the context representation chosen here, which will also be discussed below.

Because these context representations only encode other objects that are in direct
contact, there cannot be action at a distance. The system cannot learn that a switch
opens a door if it is not in direct contact with that door, i.e. physical action at a distance.
The system can also not learn that an animate®® object such as a virus will move towards
another object for example.

Probably the most obvious limitation is the linearity of the predictive models and
an intuitive extension would be to use more complex models that can fit more complex
patterns. These could be polynomial functions of higher order, for example quadratic
or cubic models, but also neural networks models. Since the focus of this work is the
emerging structure rather than low-level model learning however, linear models seem
justified.

Lastly, sudden changes constitute a limitation, e.g. if an object was bouncing off
of another object. This reversal in speed would only produce data at one timestep. In
this case the probability of under-fitting the model and ending up with a somewhat
random model would be very high. Gumbsch et al., 2019 for example train such short

36 Animate in the sense that the object actually exerts movement forces in the game.

73

Table 8: Transition models for the cell consuming a bulb. Note that the order of TM
IDs is not following the event sequence here. T Ms35 encodes the context for switching
from the standard energy model Mg to the model encoding the intake of energy Mys.
The consumption of the bulb is thus encoded only implicitly by requiring a bulb (or a
wrench) to overlap. TMsy9 encodes the context of actually consuming, note that the
EPS wrongly learned that this can also take place in the absence of overlapping objects
(none-type present). T Ms3; finally encodes the switch back to the standard model. As
a nice detail, note that one red spiky cell must have been surprised by a red virus while
consuming at one point. TMs3; contains the type red virus as an object that can touch

from the right.

1D Transition Model

529 from: 73, to: 73, t: 1574, main object: cell spikes red,
main features: vx: 0.005~0.133, Mxdir: 0~0.088, Mvx: 0.008~0.088, Mact:
0.845~0.369, h: 10.353~2.509, e: 9.043~2.155, BOTTOM:{types: top center
wrench head, top dirt border ground}, OVERLAP:{types: wrench, none, bulb
flower}

532 from: 73, to: 8, t: 171, main object: cell spikes red,
main features: vx: -0.025~0.604, Mxdir: -0.17~0.825, Mvx: 0.7~0.466, Mact:
0.331~0.442, h: 10.944~2.952, e: 11.957~2.128, , LEFT:{types: none, iron
block1}, RIGHT:{types: none, red virus, features:Mvx: 0.018~0, Mact: 0.043~0},
BOTTOM:{types: top center wrench head, top dirt border ground}, OVER-
LAP:{types: wrench, none, bulb flower}

535 from: 8, to: 73, t: 147, main object: cell spikes red,

main features: vx: 0.482~2.171, Mact: 1.002~0.11, h: 9.996~2.479, e:
10.205~3.194, BOTTOM:{types: top center wrench head, top dirt border
ground}, OVERLAP:{types: wrench, bulb flower}

74

models as parts of the transitions they are accompanied with. We leave this to future
work.

9.4 Extending Spatial Relational Encodings

The limitations above could be overcome through context representations, so let
us analyze their implementation in more detail. In this work, a transition model
will learn Gaussian distributions for the current features of the main object (whose
models switch) and types and features for objects that are directly touching the main
object. An ideal situation encoding would need to learn which elements actually
impact the switch and how. These dependencies are simplified in our model, but can
become very complex in the real world. If a ball bounces off the ground, it makes
a difference whether the ground is made of concrete, grass, sand or water, but the
difference is more in the specific strength of the bounce and less in the principle of
what happens. In our implementation, a lot of elements are hidden by design. Further,
the exact relation is grouped into left, right, top, bottom and overlap, dismissing more
fine grained patterns. Object types are used in a symbolic way, dismissing possible
similarities between objects or abstract object groupings. A more general model would
need to overcome these specific pre-defined reductions and operate on more flexible
representations. In the end, the situation encoding is a learned encoding of a pattern, it
is clustering different situations into a generalized one. The following will illustrate
this perspective.

Consider once more the example of the green virus that moves until its energy
reaches four, independent of its health, as shown in figure 9. If we consider the vector
of energy and health as a point in a plane, all the situations where energy is higher than
four would be connected to the moving-event and all those where energy is smaller
would be connected to the standing-still-event. We can call this form of representation
a situation space. See also figure 26a, where the situation space is split into the ‘moving-
situations” and the ‘standing-still-situations’. Since the transition from movement to
stopping happens when energy is four, independent of health, the set of all transitions
will be a line, effectively separating the two event-areas. This is a simple example, but
we can expand. It might be the case that the virus also stops moving if health reaches
one. This will introduce another boundary, shown in figure 26b. The implementation
in this work uses Gaussian distributions as boundaries instead of singular lines, which
essentially leads to fuzzy boundaries as seen in figure 26c.

It is important to realize that our implementation is limited to exactly such context
patterns: in the specific situation space that the system uses, events have to have fuzzy
but axis-parallel boundaries. Otherwise the system will not be able to distinguish
them. This is the case if there are no dependencies between different features, i.e. if
there is no co-variance between the Gaussian distributions. If the green virus stopped
moving when the sum of health and energy reached five for example, the boundary

75

would not be axis-parallel anymore but somewhat diagonal, as seen in figure 26d.
Note that this limitation does not only apply to this work but also to the models in
Gumbsch et al., 2019 and Franklin et al., 2020, which also dismiss co-variance because
computing co-variances comes at a huge computational cost. To effectively capture
such co-variances, an implementation of situation encoding has to be specifically
designed to do so. Neural network models can capture co-variances, but this is out of
scope here.

One possible answer might be to use more complex models again to ‘learn” the
boundary. In 26d for example, a model learning linear combinations would already
suffice but would be at an advantage compared to sets of Gaussian distributions in
this case. Ideally, the situation encodings are just complex enough to capture event
boundaries but not more complex than that. This, however, depends on what the
situation space looks like. This is something that may be difficult to foresee. In our
system, the world of BrainControl is adjusted to yield a situation space in which events
are neatly bounded.

Franklin et al., 2020 on the other hand use a neural network architecture to build
situation representations (and thus a situation space) when they test their system on
video data. The structure of the resulting situation space is unknown and it is not
immediately clear whether events form nicely bounded areas at all. They acknowledge
this and hypothesize that this could lead to problems when trying to use their system
on more complex data. To visualize this point, see figure 27 which shows three
possible situation spaces for the stop/move event-space. Ideally, the situation space
should be well formed to allow easy learning of boundaries. Note that the structure
of the situation space corresponds directly to the encoding of a situation, i.e. once the
encoding is fixed, the situation space is fixed. In our system, the situation space is fixed
through the implementation of how the transition models learn situation encodings.

76

(a) Stop at 4 energy (b) Stop at 4 energy or 1 health
health health

4 4 stop 2 move 75 4 stop 2, move 7.5
‘ ‘

2

~

6 2 4
energy energy

(c) With Gaussian boundaries (d) Stop at energy + health =5
health health

’ Ao
z 77

L1110 70707777777 .
77777777 YT I I I 7171717777777 777777777,

1050020000055555057 0000000000000000000005550002200000
1000005505555550507 s
1000020000055555057 100000000005500000000000055500007
10000055555555505%7 0 000000000000000550000000000555550000007.
100000555555550057 100000000000000050000000000%
7 tnnnnigllls 1005550225525225527

1000055555500000007

1522222222222000 MOVe
22 ©00555555000007
. 20 1000000000000
100000000000 000 0055550000007.
1000020000055555057 1000055523505222020000

— N W s 0O

6
5

stop /. move 77777 4 ¢
3
2
1

4 2 4
energy energy

Figure 26: Boundaries between events in situation space. Our system will be able to
learn a, b and ¢, but not d.

Figure 27: Three possible situation spaces. Grey area correlates with move, white area
correlates with stop.

77

10 The Language Processing System

To implement the language system, we follow the theoretical discussion in section 3:
the system should receive an utterance as input and try to build a representation of the
event that the utterance describes. It should identify lexemes in the utterance using a
mental lexicon and determine their roles using grammatical rules. Finally, this is then
combined into a scene reconstruction by the ISS, as described in section 6. We restrict
LEARNA to simple utterances in this work, i.e. plain utterances that describe scenes.
Given the discussion on the EPS, we can now say that an utterance has to describe a
scene within the BrainControl world, denoting scenes that the EPS can understand. We
have seen in the preceding sections that the EPS provides transition models, factorized
event dynamics models as well as relation models as structures that the LPS can build
upon. Entity or top-down encodings are also available, but the EPS focuses on the
other encodings. These encodings are thus available to the LPS to connect to lexemes.

It should be noted that the original BrainControl also implements language pro-
cessing, see e.g. Schrodt, Kneissler et al., 2017. Their system learns effects of collisions,
i.e. changes in states of entities that result from collisions. These collision effects are
mapped onto a pre-defined system of tags. These tags are then used in a context-
free grammar that exhaustively describes a mapping between possible sentences and
sequences of tag-defined object changes. This means that the LPS and the ISS, as
described in this work, are replaced by the set of tags and the context-free grammar.
This work presents a very different approach, so it is difficult to compare their system
to ours.

10.1 Constructing Abstract Scene Representations

In this section we will describe the LPS on the computational level of description and
specifically outline the ASR that should be constructed from an utterance. The ASR
should capture the information contained in the utterance and make it available to the
ISS. Let us start with a simple utterance that describes one object undergoing a change,
i.e. an utterance of the form ‘subject-verb” in English. Sticking to the BrainControl
World, let us start with the simple sentence 28. The structures that the EPS employs
when perceiving a falling box were shown in figure 21. The dynamic development
of falling was encoded by a model that predicted the change in vertical velocity. The
situation as a whole was encoded by a transition model which captured the context of
the model. Note that the transition model is operating on the box as its main object.
This is a basic necessity; the model predicting change has to operate on one entity. We
assume that this entity corresponds to the subject-position of the sentence.

(28) The box falls.

Further, box can simply be linked to the box-type encoded by the EPS. What falls
is mapped to is a question of great debate. The EPS calls on several event dynamics

78

models, transition models and relation models when perceiving the falling box in
tigure 21. In the case of falling, the only necessary part seems to be the model predicting
the downward movement. In all cases of falling, this model will be present. Note that
this is an assessment from the outside, knowing what falling means. While other cases
may be more complex, in the case of falling it would suffice to map falls to the model
of downward movement.

We thus propose that the intersection of the box falls and the encoding as built by
the EPS is the transition model which encodes falling and the encoded type box as the
object the model operates on. The box falls would require applying the transition model
on an object of the type box. This forms the basis of the ASR and by extension of the
LPS. Object categories will be mapped to types as encoded by the EPS and verbs will
be mapped to transition models. How this mapping is learned is beyond the scope of
this work, we simply assume that the mapping is established in the following.

(29) The box falls to the ground.

Progressing to a slightly more complex utterance 29, the system has to also integrate
to into the scene. LEARNA approaches prepositions like to by assuming spatial
meaning, e.g. moving towards and arriving at something in the case of to. We thus
map selected prepositions onto the relation transition models that are learned by the EPS.
Recall that the EPS encodes patterns of relations in relation models and their transitions
in relation transition models. This fits nicely with to in 29. There is a relation model
encoding that two objects have decreasing distance and another one that encodes
two objects being in direct contact. The relation transition model that encodes the
transition from the first to the second then corresponds to the spatial meaning of to.
Prepositions are thus mapped to the relation transition models that emerged in EPS
through learning. How the mapping is learned is again beyond the scope of this work.

(30) The box falls to the ground and the box breaks.

To add more complexity, note that nouns are so far mapped to object types, but
they refer to actual objects. Consider the utterance 30. The question arises whether
there are two boxes in the scene or just one. This requires hidden identifiers. The LPS
thus has to establish object-IDs in addition to types. In the case of 30, the system may
actually construct two interpretations, one with one box that falls and then breaks and
another one with two boxes. Such an identifier is also necessary if pronouns are used.

Using these methods, the LPS uses a mental lexicon that maps nouns to object types,
verbs to transition models and prepositions to relation transition models. Additionally,
the LPS contains a grammar function that analyzes the building blocks and determines
which lexeme or lexemes fulfill which role. In this work, we only use simple roles, i.e.
either subject as an object that a transition model should operate on or object as part of
a relation.

79

Finally, we pre-define certain conjunctions that describe a time-dependence, e.g.
before. The LPS uses these pre-defined conjunctions to analyze utterances like 30, which
actually describes a sequence of changes.

In summary, the ASR that the LPS ends up with has three components. It defines
objects that have to be present, it can define transition models and relation transition
models on those models and it can order the models to be active in a temporal sequence.
This way, the ASR defines necessary requirements on the scene reconstruction. We
assume that this captures the meaning of the simple utterances that LEARNA focuses
on. Building the scene reconstruction from the ASR is the task of the ISS, which thus
does not have to operate on language. At the same time, the LPS does not have to
operate on models.

Given that language is ambiguous, it can happen that the LPS finds several ASRs
that are legal but competing interpretations of an utterance. Arriving at several inter-
pretations can result from several factors, recurring objects were already mentioned. In
other cases, mappings may be ambiguous, e.g. if several models are mapped to falling
or several possible object types are mapped to box. In such a case the LPS produces all
possible interpretations and leaves it to the ISS to decide which are plausible.

10.2 The Lexicon Function

The EPS uses integer identifiers for models and types. The lexicon thus contains
mappings between words and sets of integers, let us call this mapping function
lex(name) — {idy, ...}. Virus will be mapped to the integer types of green and red
virus, i.e. lex(‘virus') = {idgy,idr, }. Our implementation does not include dedicated
adjectives, so the lexicon will include entries such as lex(‘green virus') = {idg,} and
lex(‘red virus') = {id,,}.3” A list of known entity expressions can be found in appendix
B.

The lexicon provides simple look-up, i.e. for some string s, we can retrieve the
models or entities as lex(s). To circumvent the problem of overlapping identifiers, the
lexicon function is actually split into distinct mapping functions, each managing either
noun phrases, verbs, prepositions or conjunctions. This means the LPS uses dedicated
functions lexyoun, leXverp, 16X preposition and leXconjunction- When processing a string, the
LPS thus has to decide beforehand which lexicon function to use. Specifically for
LEARNA, a string should never be ambiguous as to which category it belongs to, see
also below.

Finally, in addition to sets of integers describing models, the mental lexicon also
contains information on the temporal meaning of a preposition. Recall that lexposition
maps strings to relation transition model IDs. A relation transition model predicts a

37Possible names for entities are defined within the code and can not be added while the system is
running. Verbs and prepositions can be added while running the program on the other hand. This uses
a special matching mechanism, though the user still has to decide which word fits a specific transition
model.

80

change in relation models and thus poses the question of when this change is supposed
to happen. Consider the utterance in 31.

(31) The box falls from the platform to the ground.

The transition model for falling refers to a downward movement, which spans
several timesteps. From and to describe a change in relation relative to the timesteps
that falling refers to. Specifically, the box should be on the platform first, then fall
and then hit the ground. The relation model transition that is linked to from happens
when the downward movement starts. The relation model transition linked to to
happens when the downward movement ends. One relation transition happens strictly
before the other. While the inference mechanism could figure this out, there are two
reasons why this time-dependence should be encoded beforehand. The first reason is
simplicity: memorizing that the to transition happens after the ‘action’ is easy. As we
will see, the inference mechanism is computationally very costly. So, having to reorder
timesteps at the time of inference would come at a huge cost. The second reason is
that there are cases where the time-dependence is strictly encoded in the sentence
and no inference mechanism can recover that information. The sentence ‘I went to
Germany before I learned German’ is just as plausible as ‘I learned German before I
went to Germany’. ‘Before” encodes a time-difference between the two actions which
the inference mechanism can not recover. The LPS thus encodes whether a relation
transition model should activate at the start or at the end of the transition model it
depends on.

Conjunctions work differently. Their lexicon function lex onjunction dOes not return
an integer ID but instead tells the grammar function directly what kind of a sequence
the conjunction encodes, i.e. whether it means that the preceding clause is to happen
before, during or after the succeeding clause. Since conjunctions are pre-defined, these
commands are hard coded and only meaningful in the context of the grammar module.

10.3 Processing a Sentence

While the EPS is learned from scratch, the rules to analyze syntax are pre-defined;
learning grammar is beyond the scope of this work. To describe how a sentence is
processed in terms of lexical meaning and grammar in LEARNA, we will follow the
utterance in (32), which exhaustively showcases the implemented functionality. The
exact representation of the ASR will be described in steps and summarized later. It
is important to note that all rules or steps described in the following are necessary: if
any of the steps fail, the grammar function will return an error and abort processing.
LEARNA always operates on input sentences in an isolated fashion, i.e. references to
prior inputs are impossible.

(32) ‘The box sits on the platform and it falls from the platform to the ground after
the green virus falls.”

81

In the following we assume that (32) was provided to the LPS as input, which first
removes all articles.3® As a first step, all conjunctions are identified through string-
matching and the sentence is split at each conjunction into what we call clauses here.
This results in a representation shown in (33). The system can only parse a maximum
of four conjunctions. More conjunctions would lead to what is called combinatorial
explosion, see the discussion at the end of this section. To reduce ambiguity, ‘and’ is
taken to mean ‘and then” and is functionally equivalent to ‘before’. After identifying
the clauses, the LPS parses the conjunctions and generates possible timelines, as seen
in 34. While the ambiguity between the two timelines may not seem intuitive here,
consider the more natural example (35). The timelines are abstract in the sense that a
timestep in the ASR only defines the order of what is happening, not the duration.

(33) C; =box sits on platform, C, =it falls from platform to ground, C3 =green
virus falls

(34) Cpand C; after C3 = {(Cg —Cy — Cz), (C1 —C3 — Cz)}

(35) Tom went to town and did some shopping after he got his money

The LPS then analyzes each of the clauses in isolation. The structure of a clause is
strictly defined; the LPS only parses clauses of the structure described here. It first tries
to find the first word or the first two words of a clause in the noun phrase lexicon, e.g.
‘green virus’ in C3. Pronouns like ‘it” are also identified but return a special none-type.
The LPS assumes pronouns can refer to preceding entities, but not succeeding ones.
This first lexeme is taken to be the subject. The LPS then processes the next word
as the verb of the sentence. After the verb, the system tries to match another noun
phrase as a direct object. This is optional, i.e. the LPS will continue if there is no direct
object. Finally, prepositions with succeeding noun phrases (prepositional phrases)
are matched, e.g. ‘on platform’. The LPS can match more than one prepositional
phrase. All this information is saved for the clause. An example of this is shown in
36. Relations are made up of a set of possible types and a set of possible models, e.g.
Ry : types = {idyiatform1, i@ plat forma, -}, models = {id,, idy, ...}. Prepositional phrases
are always taken to belong to the clause they are in, so they can not take scope beyond
a conjunction.

(36) C; : remaining clause = box sits on platform, s: , v: ,0: 1:

a.

b. C; : remaining clause = sits on platform, s:{idy,} , v:, 0: , 1:

c¢. C; : remaining clause = on platform, s:{idy,, } , v:{idy,idy, ...} ,0:, 1:
d.

C; : remaining clause =, s:{idpy } , v:{idy,idy, ...} , 0:, 1:(Ry)

Direct objects present a curious case, as there is no unique relation implied by their
role. The LPS thus interprets a direct object to mean potentially any relation model,

30ur system allows for articles to make the input more natural but ignores them during processing.

82

ID | type references

1 | redbox the box

2 | platform the platform, it

3 | platform the platform

4 | ground the ground

5 | green — virus | the green virus

timestep/subject ‘ ™ ‘ RTM references
t1/5 TM, falls
tr/1 TM, | RTM, —2 sits on the platform
t3/2 TM, | RTM;, —3, RTM. —4 | falls from the platform
to the ground

Table 9: A possible abstract scene representation derived from the sentence: The
box sits on the platform and it falls from the platform to the ground after the green virus
falls. References are not part of the abstract representation but only included for
understanding. Note that this represents a wrong interpretation of the sentence: the
pronoun should refer to the box and the two mentions of platform should refer to the
same object.

not relation transition model. It will generate ASRs that each contain the direct object
related to the subject with one relation model.

Whenever an entity reference is encountered, the system additionally saves an
entity-mention which encodes a sentence-wide unique identifier, as seen in 37.

(37) ‘Cy =box; sits on platform,, C, =it3 falls from platformy to grounds, C3 =green
virusg falls’

At this point, the LPS has built a set of possible timelines, knows which entities the
sentence involves as a whole and which types or models the words can be mapped to.
It has analyzed the grammatical structure and knows which objects the models operate
on. The system now generates possible combinations of these sets and timelines in the
form of ASRs. One possible ASR that could be derived from 32 through the process
described here is shown in table 9. The set of ASRs is then produced as the output of
the grammar module.

Note that the number of combinations rises quickly; this is known as combinatorial
explosion. Consider (32) once more. Let us assume that each noun and verb can be
mapped to 5 types or models. Let us also assume that each preposition is unambiguous
and maps to exactly one relation transition model. In (38), each word is annotated with
the number of types or models it could map to. The pronoun ‘it’ can refer to the box or
the platform in this case. This leaves us with 5° x 2 x 1> = 390625 possible combinations

83

for this sentence. Additionally, there are 2 different possible timelines and there could
be one or two platforms, so this leads to 1562500 possible combinations. In our system,
this number is much smaller because each word often refers to one or two possible
objects, and models are often unique for a given object type. Recall also that the LPS
aborts if there are more than four conjunctions in a sentence to reduce combinatorial
explosion.

(38) “The box(5) sits(5) on(1) the platform(5) and it(2) falls(5) from(1) the platform(5)
to(1) the ground(5) after the green virus(5) falls(5).”

To reduce the number of ASRs, clauses could be processed and simulated one after
another, which could remove meaningless combinations at an earlier stage. This is out
of scope in this work, however.

84

11 The Inference and Simulation System

In the ISS, the structures learned by the EPS and the ASRs generated by the LPS are
to be merged into a consistent scene reconstruction, if possible. Once the LPS has
constructed possible interpretations of an utterance, the ISS has to select those that are
plausible given the system’s world knowledge, ideally choosing the most plausible
one. The main problem in this case is that an ASR contains only restrictions but the
EPS does not allow evaluation of restrictions. The EPS can only provide prediction
forward from a starting point, the ISS has to derive the scene reconstruction. The first
question that arises is which level of detail is appropriate.

In respect to human communication it is difficult to judge how much detail is
added during comprehension. Consider the utterance in (39a). There is a missing link
between the first and the second that has to be filled. A human listener might even
conclude that the utterance was actually that in (39b), judging the mishearing more
plausible than what would be needed to fill in the information gap in the original
utterance. Not every detail has to be filled in however, because some things seem
irrelevant: whether Marie took the car, how long that took, what game she played
exactly, what she was wearing at the time or what her mood was. On the other hand,
some information may be necessary, maybe Marie would usually walk but at the time
of the utterance the path is blocked and she has to take the car on a 30 km detour. In
such a case, an attentive human listener may ask (39c¢). To ask this question, the listener
would have to try to fill the information gap but then notice that the blocked path is at
odds with Marie going to town.

(39) a. Marie went to town and started gaming
b. Marie went to town and it started raining
c. How did Marie get there?

LEARNA on the other hand is not equipped to judge the relevance of a detail. The
ISS thus simply tries to build a complete simulated scene that satisfies the requirements
and qualifies as a scene reconstruction, specifying all features of all the objects involved.
While this may be inefficient, an incomplete simulation may lead to false positives,
i.e. judging scenes plausible that are not, because the system does not know which
information can be left out without any consequences.

Building a scene reconstruction is much more difficult than one might expect. As
opposed to the LPS, the ISS has no chance of enumerating and evaluating all possible
simulations. Assume the system wants to simulate a moving ball and rounds speed
to the second digit. Assuming the maximum speed encountered in BrainControl is
around 10, this results in the interval [—10.00,10.00] /o as possible values for speed,
exactly 2000 distinct values. In our implementation, running one simulation already
takes more than 100 milliseconds, so only simulating for different speed values would
take at least 3:20 minutes before combinatorial explosion from combining different

85

features or different interpretations is taken into consideration. The inference system
thus cannot construct all possible simulations. The following section will provide
technical background on this.

11.1 Reconstructing a Scene Is Costly

Recall the situation space introduced in section 9.4, where the state of a scene at one
timestep (a situation) could be seen as a vector v in a situation space. The scene
reconstruction that the ISS searches for can then be seen as a sequence of situations,
i.e. a sequence of vectors s = (v1, vy, ..., vy). From this perspective, the LPS produces
requirements that specific vectors have to adhere to, e.g. that there is an object of
a specific type encoded in that vector. A requirement can then be abstracted to an
equation saying that there has to be a vector v; somewhere in s where some dimensions
have specific values. Let us take the situation space in figure 26a as an example. A
specific vector v; = (5.5, 6) in that situation space tells us that the object has 5.5 energy
and 6 health. Now, let us assume that the object looses energy when moving, but
looses health all the time. A sequence of situations can be seen as an ordered list of
situation vectors s = (01, V2, ..., vn) where each vector corresponds to one timestep,
so it can be illustrated as a path through situation space, let us call this the scene-path.
Starting from vy, this would mean that the object travels through this situation space
over time. See figure 28 for an illustration of the following.

Now, we can illustrate what an ASR looks like. The utterance ‘object moves and
then stops” would necessitate that an appropriate scene-path starts in the “‘move’-area
and then reaches the ‘stop’-area. In terms of the situation space, ‘being in the move-
area’ is equal to energy > 4. Requirements include a time-axis too: ‘objects moves
and then stops’ probably does not mean that the object moves one timestep and then
stops immediately. Instead, the ‘moving’ has to be stable at least for a short time. This
effectively introduces an extended list of requirements that have to be satisfied in that
order. In this setup, the ISS has to find a suitable scene-path.

Now the predictive models come back into play. Any two consecutive situations
in a scene have to satisfy the predictive models too. In a completely deterministic
case, there is only one pre-determined scene-path for any starting situation. Once
the starting situation is set, deterministic models will prescribe a path forward. If the
world is not strictly deterministic, predictive models will predict the likelihood of one
situation following another, restricting what scene-paths can look like once the starting
situation is set. In the EPS, these predictions are made up of normal distributions. All
this is shown in figure 28.

Returning to actual understanding and different possible interpretations, the infer-
ence mechanism has to judge whether an interpretation, i.e. a set of requirements, can
be satisfied by a scene-path that does not conflict with the predictive models. With this
abstract description of the task, finding a scene-path through the situation space can be

86

N N N ey
ATAAAAATAA LA TALATAN LT A AT AL AN AN NN AN NN NN NN NN NN NN

A

: the object

/7771717777777 7777777777

Iu

health

Q.
Q
-
(92}

energy

tion of a very simple situation space. Each vector describes a

1Zza

Visual

tuation for the object,
health. The sequence describes the changes of the situation through time

Figure 28

(5,4) for example says that the object has 5 energy and 4

v=

S1

looses health consistently and looses energy while moving, but stops moving once

energy reaches 4. This sequence already satisfies the requirements derived from the

ts moves and then stops. The dashed lines illustrate what an average

10% uncertainty may look like, i.e. how different the predictions may be. Note that

objec

sentence

it is on the left side in the stop-area, can not move anymore under the

a vector, once

87

imple situation space and there is no path to the move area from

(w-nodes)

assumptions of this s

the stop area

seen as an optimization problem. For example, each situation that is possible within
the situation space could be regarded as a node so that predictions define connections
between the nodes, creating something called a graph, see e.g. Korte et al. (2018).
The structure in figure 28 is a graph. Then the problem could be formulated as a
connectivity problem (Korte et al., 2018): are the nodes required by the ASR connected
through predictions? The general algorithm for this problem visits every connection in
the worst case. This is unacceptable because it would mean that the ISS would have to
look at every possible prediction. Take the sentence ‘object stands still and then moves’
for example. It does not have a corresponding scene-path in 28: once an object stopped,
there is no way back because the predictions can only decrease energy and health. The
situations denoted w; and w,, illustrate these requirements. This is obvious to a human
observer that knows how this specific world works: there is no starting point within
the stop-area that will end up in the move-area. But how does the algorithm make sure
there is no connection? Without exploiting further structure, any simple algorithm will
have to try every possible combination and see where the prediction will lead to. Note
that this is already problematic in the simple example in 28. The computation cost
grows exponentially with every additional dimension of the vector space and with
every additional requirement set by the input sentence.

Another common algorithmic approach would view this problem as what is called
a constraint satisfaction problem, see Freuder et al. (2006), the problem of assigning values
to variables so that a set of requirements is satisfied. One popular technique is called
backtracking. Backtracking tries to build assignments incrementally, e.g. by first finding
a partial assignment that satisfies all the requirements, and then extending this partial
assignment until a complete assignment is found. The advantage is that once a partial
assignment does not satisfy one of the requirements, it can be abandoned and all other
assignments that build upon that partial assignment will also not work. Backtracking
thus views partial assignments as being ordered in a tree-like structure: if a partial
assignment does not satisfy the requirements, it’s branch can be cut off or pruned. It
is important to note however that backtracking can still lead to the enumeration of
many partial solutions. A different approach called local search tries to start from a
complete assignment that violates some requirements and improve this assignment
to satisfy more and more requirements. Note that these approaches may still end up
enumerating all possibilities in the worst case.

In terms of situation space, it seems natural to say that the variables are the
timesteps of a scene-path. A scene-path is thus an assignment, but is mostly pre-
determined by the predictive models. A partial assignment is thus not very useful: if
we started with wq and w, in figure 28, there is no bridge wy, ..., w,_1 that makes this
into a scene-path. If we start with a complete scene-path on the other hand, there is
a chance of adapting certain properties of the path to make it fit more requirements.
Given the sequential nature of the requirements in our case, we can start with a default
scene-path and adapt it so that the requirements on the first timestep are satisfied.

88

If this is not possible, then there is no scene-path at all. Once they are satisfied, we
can adapt the scene-path again so that the requirements on the second timestep are
satisfied. If this is not possible, then again, there is no scene-path at all and we can
abort. This way, we can build the scene-path iteratively but still prune some branches.
Because enumeration is intractable, the adaptation will be the most critical part of our
implementation. If the adaptation was random, the system would behave in the same
way as the algorithm trying to find connections mentioned above, enumerating all
possible scene-paths in the worst case.

In summary, it seems crucial to derive plausible heuristics to adapt scene-paths
given certain requirements as the common algorithms are likely intractable. It should
be added that our setup does not formally qualify for these algorithms, because the
situation space is not bounded in the strong sense. The situation spaces discussed
above describe two features of a single object. In our case, we may need to infer extra
objects. “‘Marie went to town” may imply a car that was not mentioned. Our system
could theoretically decide to keep adding objects; there is no initial requirement not
to do so. The system could potentially keep adding objects or simulate further and
further into the future, leading to extensive running times. Adding objects has the
effect of adding another situation-space however, extending the number of variables in
the constraint satisfaction problem and the number of nodes in the graph. Neither of
the algorithms is prepared for this extension. The constraint satisfaction problem is not
even able to handle different scene-path lengths, which would also be an extension of
the number of variables in the formalization chosen above. Nonetheless, they provide
a valuable formal approximation to the task at hand. The problem of enlarging the
search space will have to be dealt with in a more pragmatic way.

11.2 The Inference Mechanism

Given the discussion above, our ISS has to solve several problems: how to build a
scene-path, how to adapt a scene-path and when to give up search. Giving up is
easy: the system gives up when no heuristic is able to improve the current scene-path,
when the scene-path is longer than a pre-defined threshold, or when there is a general
error due to the limitations of the system itself. As the devil is in the details, this will
be explicitly mentioned where necessary. If the ISS could solve these problems, the
general mechanism of inference would be simple: build a default scene-path and adapt
until it satisfies the requirements, abort the adaptation if there is no more chance of
improving.

At this point it should be noted that Wharton et al. (1991) also describe a model
to do the kind of inference the ISS does. Their ‘construction-integration model” also
approaches the problem of how to inject or use world knowledge during comprehen-
sion. Relying on propositional knowledge (see also section 4), their model receives a
sentence and constructs a large set of interconnected propositions. In a second step, the

89

model integrates this large set, i.e. refines the initial set to be a precise and consistent
interpretation of the sentence. While their description is less formal, their strategy may
be translated into situation spaces and scene-paths as follows. First, a large number of
situations are activated and their connections established. Their model explicitly relies
on the assumption that within this large set, a viable scene-path fully exists. In the
integration step, all the situations that do not belong to the scene-path are removed.
Le. the scene-path remains. This approach is very different from the one in this work.
Given the structures provided by the EPS, activating a large set of situations would
need to rely on very smart heuristics to not be swept away by combinatorial explosion.
Instead, as few situations as possible should be activated or rather simulated.

Given a set of ASRs, the ISS tries to find a plausible scene for each interpretation
individually. Given a single ASR, the ISS will first test whether there is an obvious
contradiction, e.g. a mismatch between the object type encoded in a transition model
and the type of the main object of the ASR. In such cases the ASR is discarded imme-
diately. The inference mechanism then starts by assembling an initial default setup,
i.e. a generic initial situation to start simulation and adaptation from. All objects are
added into a bounded two dimensional space, the mental map. The idea of a mental
map follows the mental sketchpad, a part of working memory for spatial representations
introduced by Baddeley et al. (1974). Starting from this setup, the ISS then simulates
forward using the encodings provided by the EPS. If the simulation diverges from the
requirements, a special matcher function tries to generate a meaningful error signal.
That error signal is then used to choose an appropriate adaptation heuristic. The
heuristic will change the initial setup and the ISS repeats the process of simulation,
matching, adapting.

11.3 Implementation of Simulation

At the very start, all necessary objects are inserted at pre-defined default positions,
i.e. non-touching spots aligned on a grid. Furthermore, a default ground is added on
the bottom of the mental map. The main reason to include a ground is the absolute
nature of spatial representation: the mental map functions as a coordinate system with
a unique origin in the top left corner and positions of objects are absolute in reference
to that origin. Since the mental map is bounded, objects will by default fall out of
its bounds after only few timesteps. This ‘out-of-bounds’” phenomenon is avoided
by simply placing a ground at the lower bound of the mental map. Note that the
ground tiles are added extra without regard for the objects that exist in the ASR, i.e.
if the sentence mentioned the ground, the ASR will introduce another ground entity
in addition to the default ground. This default setup is visualized in figure 29 for a
correct ASR of the sentence: ‘the box sits on the platform and it falls from the platform
to the ground’.

With this basic setup as a starting situation, the system can run a simulation using

90

et e e L o Ly o Ly oy oy B

ASR:

objects = (box : 1, platform : 2, ground : 3)
t = {1: TM;, RTM; — 2}

t = {1: TMy, RTM; — 2}

ty = {1: RTM; — 3}

Figure 29: Default setup for a correct interpretation of: the box sits on the platform and
it falls from the platform to the ground. The ASR contains three objects in this correct
case. Box (1), platform (2) and ground (3), where box is the main object of all models in
this specific case. There are three timesteps containing the required models. Note that
there is an additional ground tile because the system adds a default ground additionally.
If the sentence already contains ground objects, those will get identifiers in the LPS,
whereas the default ground tiles have different identifiers. The system does not try to
merge these because this is not central to our implementation and would have required
considerable programming effort. The dashed line represents the development of the
simulation from the starting situation.

91

the encodings from the EPS. While the predictive models provided by the EPS may
contain uncertainties, i.e. ranges of possible predictions, the ISS always uses the mean.
In normal operation, the models would simply predict the next timestep from the
current situation. To simulate further, the system takes the predicted values pv;;, as the
actual next situation. The ISS can then apply transition models to produce simulated
model switches. If the situation described by pv;;1 matches the learned context of a
transition model TM, this transition will be triggered and the appropriate models will
be switched. If there are several transition models that match the situation, the one
that has been experienced the most times will be chosen. Finally, the potentially new
set of models will be used to predict another timestep pv;,>. This could be repeated
indefinitely, so the simulation will be cut off after 150 timesteps. Further, if an object
leaves the mental map, i.e. it shoots off the sides, the simulation is also aborted.

One problem with this approach is that it is not clear which models should be
active at the very start. If the system starts simulation using incorrect initial models,
the simulation will be flawed from the start. We solve this problem by initializing a
simulation with default models. The EPS learns which models are applied to each object
type the most times. These are usually zero models, i.e. no movement, no change.
These learned defaults are used to initialize models for all simulated objects.

In the setup in figure 29, the box would be initialized with models that predict zero
movement. Because the box is not supported by fixed objects, however, a transition
model that predicts that the box should be falling is immediately applied. Platform and
ground objects on the other hand never move in the actual BrainControl world and are
thus predicted to always be at rest. Once the box has been falling enough it will collide
with the ground. Recall that predicted movement was using a special ‘velocity before
collision” to avoid strange and complex non-linear changes upon collision, see also
figure 13. In simulation, the predicted movement will thus not stop at the boundary of
an object but move two objects right into one another, i.e. the box would be simulated
into the ground. This is even more problematic because transitions use the collision
direction, which in the simulation case would be overlap instead of bottom. Overlap
is impossible for objects that actually collide in the real game world and thus cannot
have been experienced. Therefore, the transition that would otherwise predict that the
box collides with the ground will not be triggered. This problem is very complex and
arises specifically because of the discrete nature of time in the game world. The ISS
thus uses the pre-defined mathematical functions that the engine uses to resolve the
collision, adjusting the overlap to bottom in this case. If, however, the objects are meant
to overlap, the ISS will register that changing form overlap to bottom did not change
anything (in regards to transition models) and thus reverse the adjustment. This way,
objects that naturally collide in the game world will do so in simulation, given that the
appropriate transition model is learned.

It seems obvious that the scene-path that results from simulation in figure 29 does
not satisfy the ASR. If the simulation only returns yes/no as feedback, there will be no

92

cue for the adaptation heuristics as to what went wrong and what could be changed.
Therefore the system needs a function that tries to match the ASR to the current
scene-path and then to return a meaningful error message.

11.4 Comparing a Simulated Scene to the Requirements

The two main problems when comparing a simulation with an ASR are how to align
the differing timescales and how to create a meaningful error message.

Before the matching, the ASR has to be adapted, however. If the ASR contains a
transition model that describes the ongoing application of a model, i.e. the transition
of one model to itself, this transition model should usually be active for more than just
one timestep. A falling object should not only fall one timestep. The LPS is unaware
of this issue and simply assigns a model ID to a timestep. Consider the transition
models TM; and TM;, where TM; predicts the reflexive transition M; — M; and
T M, predicts the transition M; — M. Consider also an ASR that contains one object
01, with TM; in the first timestep and TM; in the second. This could, for example,
result from the sentence ‘the box falls and it breaks’ (ignoring the ground in this case).
In simulation, M; should be active for a few timesteps before the transition to M>
happens. Since the ASR timeline is ¢; : TMj, t, : TM; a scene-path where TM; would
only be active one timestep might match. To avoid this, the ASR is adapted to use
M; instead of TM;, resulting in an adapted ASR t; : My, t; : TM,. The system then
only accepts scene-paths where predictive models are active longer than a pre-defined
number of timesteps, which is set to 10 in this work.

Unfortunately, this introduces the problem of alignment between timescales. one
timestep in the ASR can be realized in 10 or more timesteps in the simulated scene.
This further introduces problems for the simultaneity of transitions. The LPS would be
able to parse the sentence: the ball falls to the ground while the box falls to the ground.>
Falling should be active for at least 10 timesteps. To the ground implies a switch of
relation models and will only be active at exactly one timestep. Because the ASR uses
discrete timesteps, however, this will also mean that both objects will have to hit the
ground at the exact same timestep. In the end, this issue is beyond the scope of our
system.

With the adapted ASR, the system will now try to match the timesteps of the ASR
to the current scene-path one by one. Using the ASR introduced above as an example
again, the system will try to match the requirement that M; is O;’s active model for 10
consecutive timesteps. If M is actually active for Op for 10 timesteps, 1 will be marked
as satisfied and the system will now try to match the requirement that M, is O;’s active
model and the transition is described by TMy. If M; continues to be the active model,

1t is a general pattern that our model has difficulties with simultaneity because of the strict require-
ments. In this case, simultaneity only means that there are some timesteps during which both objects are
falling. Our system can only do all timesteps or none.

93

Actual timeline:
fall |hit |

ASR:t; = TMl(ml — ml), thy = TMz(ml — mz)

™ TM
potential match: @ ! @ 2 @

et () 2o

adapted ASR: t; = my,tp = {TMy(m; — myp), my}

Figure 30: Adapting the ASR: because the transition models may describe the transition
from one specific model to the exact same one, their respective predictive models are
added to the ASR. Predictive models have to match at least 10 timesteps in our system.
Transition models that predict a model switch remain in the ASR. Note that in this
case, there is no additional timestep inserted because the two transition models can
follow one another. Indeed, the sentence the box hits the ground could end up with the
same adopted ASR, even though it would initially have looked different.

the system will simply wait. When M finally transitions into M», the system will mark
T M, as satisfied for now because it only happens once. If M, continues for 10 timestep,
the system will mark f, satisfied as a whole. If M; is active for less than 10 timesteps,
the system will reset t, completely, requiring T M, to happen again. The adaptation
process is illustrated in figure 30. Once all timesteps are marked as satisfied, the system
will mark the current scene-path as satisfying, triggering the system to accept the ASR
as a valid interpretation with the current scene-path as its realization.

If the system stops simulation before all timesteps are satisfied, there will now be
information about ‘how far the scene-path got’, i.e. up to which timestep the ASR
was satisfied. This in turn allows to return a specific error. The last timestep of the
simulation that was in line with the ASR is also registered. A special error-finding
function now inspects the difference between this timestep t,,,,, the following non-
matching timestep t,.,; and the ASR-timestep that was supposed to be satisfied by
toreak Ut was not. This error-finding function will look for a missing transition first.
If a transition is missing, the function will try to find out what parts of the transition
model’s situation encoding are missing. The function will then look for missing
predictive models, and finally for missing relation models. If at least one of these
searches is successful, the function will return the error that specifically encodes what

94

is missing. Sometimes, however, the function will not find an error even though the
ASR is not yet satisfied. In such a case, the system will simply give up on the current
ASR. Note that the error does not represent the things that are missing overall but only
at a very local level, i.e. at exactly the point where the current scene-path started to
depart from the requirements of the ASR. It represents a guess at what could be done
to improve the scene-path. This error is then handed over to the adaptation heuristics.

11.5 Adaptation Heuristics

Adaptation of the scene-path follows a simple schema: try to adapt the setup given the
current error, simulate the scene again and repeat. If there are errors or an adaptation
heuristic is impossible to fulfill, the ISS will give up on the current ASR.

In principle, the error provided by the matching function could refer to all parts of
the scene-path. Because the original ASR only contains transition models and relation
transition models, however, these are the only errors that need to be solved by our
system. An error from relation transition models will translate to an error in relation
models which in turn contain the following information: whether the two objects touch
and, if so, the direction of touch or the change in distance if they do not touch. For
transition models, recall that whether a transition is triggered is determined by the
situation through three aspects: the features of the main object, the type (and thus
existence) of touching objects and the features of those touching objects. All available
adaptation heuristics are described in the following, including errors for which they
would be activated.

Move-Away The move-away heuristic is applied when objects touch but should not.
This heuristic would be applied for the utterance the ball falls to the ground if the
distance between ground and ball is not large enough to allow a long enough
falling period. In such a case, this distance would be increased.

Zero-Motor The zero-motor heuristic is applied to stop movement, e.g. when an object
already satisfied the requirement of touching another object but moves away.

Test-TMs The test-TMs heuristic is applied whenever movement is required of an
object. This may be required explicitly by a situation encoding, or it may be
triggered if an object is supposed to move away from an object but does not.

Add-Move-Into-Path The add-move-into-path heuristic is applied when a collision is
required or if an object is required in general. This heuristic would be applied in
the situation in figure 29, where the platform would be moved into the path of
falling of the box.

Add-Motor The add-motor heuristic is applied in cases where a transition model
relies on specific motor commands to be applied. The simulation function has

95

the ability to adjust the motor commands of objects, so this heuristic can require
such an adjustment. For example, if the input utterance is the virus moves to the
box, the transition model from the default at-rest model to the moving-model
encodes that such a transition happens when the virus applies movement force.
The add-motor heuristic tries to fulfill this requirement.

11.6 Summary

In summary, the ISS operates on each ASR provided by the LPS in isolation. It first
establishes a neutral default scene, placing all requested objects as well as a default
ground in the scene. Then the ASR is adapted so that transition models are switched for
their respective predictive models. The mechanism then repeats a testing-adaptation
scheme: it simulates the scene starting from the initial setup. A dedicated function
tries to match the simulation with the ASR and produces a structured error if the
simulation deviates from the ASR. This error refers to the first timestep of the ASR
that is violated, ensuring that the errors are fixed in a chronological fashion. A set of
adaptation mechanism are then available that try to fix the error.

In case an adaptation mechanism can fix an error, the initial setup will be altered.
The inference mechanism then simulates the scene again from this new setup and
repeats the matching and testing. When an error cannot be fixed, the inference is
aborted and the ASR discarded. This produces a tree-like search structure for each
ASR. Once a satisfying scene-path is found, it is returned as a valid scene reconstruction
of the input sentence. In cases where the tree becomes too deep, the inference is also
stopped. This search process can be seen in the discussion of different examples in
section 12.

96

12 Evaluation and Discussion of the Implementation

Given the description of the LPS and the ISS above, these can now be combined with
the EPS to form the complete LEARNA architecture. In the following, we will discuss
sample utterances that LEARNA in its current form can or cannot understand. The
problem with evaluating the system is that it is highly specialized in its current form
in regards to vocabulary, so any standard data set is not applicable for testing. Instead,
we have to analyze the behavior on a case by case basis.

A second problem for evaluation lies in the way the ISS works, i.e. by heuristically
trying a range of manipulations. In more complex cases, this leads to a very large
number of failed attempts of fixing the scene-path. For example, the ISS may try to
apply adaptation heuristics 120 times for the utterance the virus falls from the platform.
Analyzing what went wrong requires examining the exact steps of the program, finding
out where the heuristics should succeed theoretically, tracking down this exact step in
the large tree of failed attempts, and then see why the heuristics fail at that one timestep.
The analysis in the following will have to remain more general.

In regards to the visualization of the scene reconstruction, note that the ISS initial-
izes a simulation with the objects placed in the middle of the screen. If the simulation
works, this placement will not be changed, i.e. objects will usually begin a simulation
in the center, falling to the ground, unless the simulation does not specifically request
something else.

Pushing

Consider the utterance in (40). LEARNA is able to build a scene reconstruction success-
fully, which is illustrated in figure 31, showing a sequence of situations that represents
the scene reconstruction. Note that in this case, the simulation works with the initial
conditions set. This is most likely the case because the ISS manipulates the motor
commands of the red virus right away, which is the only manipulation that is needed
in this scene. Table 10 shows that there were no further adaptation heuristics necessary.
This table shows the ASR how it is manipulated over time (ASR) as well as the situation
at the beginning of the simulation (setup) and its changes due to adaptation heuristics.
This kind of table is also used in more examples below in the same format.

(40) the red virus moves and it pushes the ball
(41) the red virus pushes the ball

On the other hand, LEARNA does not find a matching scene reconstruction for
(41). As mentioned above, it is difficult to say what went wrong exactly, but a common
error is that an ASR would require an additional step to be inserted. This happens
if there is no direct transition from the default model, which in this case would be
the not-moving model, to the required model, in this case the pushing model. This

97

Figure 31: Simulation for the successful interpretation of the message: the red virus
moves and it pushes the ball

is because entities do not push objects immediately from being at rest, but first start
moving. Inserting such timesteps is not supported by the ISS, however.

Table 10: Search tree for the message the red virus moves and it pushes the ball

Error and Heuris- ASR Setup

tic

initial, objects={red virus:0, virus ball:2},

adaptation: none, ty ={0:{PMps}},

intial call t Z{ 0:{PMs5, RMg (2)} } e ®

98

Figure 32: Simulation for the successful interpretation of the message: arrow flies to the
box and it breaks

Breaking/Flying/To

Consider now the utterance in (42). As illustrated in figure 32, LEARNA is able to
find an appropriate scene reconstruction. In this case, the inference process contains
more steps, as seen in table 12. What is especially noteworthy is that this example is
ambiguous, as others that follow. This will be discussed in a separate section. In the
same way, the utterance in (43) is simulated successfully. Note that the ISS inserts an
additional ground tile here, as discussed above. This can be seen in figure 33. The
ground tile is moved into the path of the falling box during inference, as can be seen in
table (13).

(42) arrow flies to the box and it breaks
(43) the box falls to the ground and it breaks

Note that in (42) and (43), the fo is simulated correctly. This is also the case for (44)
and (45), both of which are simulated correctly.

(44) the green virus falls to the ground

(45) the virus moves to the box

Table 11: Search tree for the message the virus moves to the box

Error and Heuris- ASR Setup
tic

99

initial,
adaptation: none,
intial call

need decreasing
distance between
object 0 and object
1 but the distance
actually increases,
adaptation: add-
move-into-path

need touch be-
tween object 0
and object 1 while
touch was not
established before,
adaptation: add-
move-into-path

objects={green virus:0, iron block1:1},
to ={ 0:(PMps, RM>(1)} },
t Z{ OZ{RM6(1)} } 0

objects={green virus:0, iron block1:1},
to ={ 0:{PMas5, RM;(1)} },

tl :{ O{RM6(1)} } &
20 \ I\ .
objects={green virus:0, iron block1:1},
to ={ 0:{PMas5, RM;(1)} },
tl :{ O{RM6(1)} } &
A= 2N\\ ..

Table 12: Search tree for the message arrow flies to the box and it breaks

Error and Heuris-
tic

ASR Setup

initial,
adaptation: none,
intial call

need decreasing
distance between
object 0 and object
1 but the distance
actually increases,
adaptation: add-
move-into-path

objects={bullet willy:0, iron block1:1},
to ={ 0:{PMy7, RM;(1)} },

t; ={ 0:{RM7(1)}}, -
tr ={ 0:{PMy54} }

objects={bullet willy:0, iron block1:1},
to ={ 0:{PMy7, RM>(1)} },

t ={ 0:(RMy(1)}),

tr ={ 0:{PMy54} }

[PS

100

need decreasing
distance between
object 0 and object
1 but they actually
touch,

adaptation: move-
away

need decreasing
distance between
object 0 and object
1 but they actually
touch,

adaptation: move-
away

objects={bullet willy:0, iron block1:1},
to ={ 0:(PMy7, RM>(1)} },

121 Z{ 02{RM7(1)} }, 8 -
tr ={ 0:{PMy54} }

objects={bullet willy:0, iron block1:1},
to ={ 0:(PM;7, RM>(1)} },

t1 ={ 0:{RM7(1)} }, o -
tr ={ 0:{PMys4} }

Table 13: Search tree for the message the box falls to the ground and it breaks

Error and Heuris- ASR Setup

tic

initial, objects={movable box:0, top dirt border

adaptation: none, ground:1},

intial call to ={ 0:{PMs5, RM>(1)} }, m-
b ={ 0:(RM, (1)}),
tr ={ 0:{PMy54} }

need decreasing objects={movable box:0, top dirt border

distance between ground:1},

object 0 and object fy ={ 0:{PM35, RM>(1)}}, .

1 but the distance
actually increases,
adaptation: add-
move-into-path

t1 ={ 0:{RM4(1)}},
ty ={ 0:{PMis4} }

Table 14: Search tree for the message the green virus falls to the ground

101

Error and Heuris-
tic

ASR

Setup

initial,
adaptation: none,
intial call

need decreasing
distance between
object 0 and object
1 but the distance
actually increases,
adaptation: add-
move-into-path

objects={green virus:0, top dirt border

ground:1},

to ={ 0:(PM3s, RM>(1)} },

t ={ 0:{RM4(1)})

objects={green virus:0, top dirt border

ground:1},

to ={ 0:{PM3s, RM>(1)} },

t1 ={ 0:(RM4(1)}}

102

Figure 33: Simulation for the successful interpretation of the message: the box falls to
the ground and it breaks

Figure 34: Simulation for the successful interpretation of the message: the green virus
falls to the ground

103

Figure 35: Simulation for the successful interpretation of the message: the virus moves
to the box

104

Figure 36: Simulation for the successful interpretation of the message: the cell consumes
the bulb and it moves

Consuming

Figure 36 shows the successful simulation of (46), which required extensive manipula-
tion through adaptation heuristics as seen in table 15. Note that this also showcases
that direct objects can be processed correctly if the LPS and ISS work together. In-
terestingly, the utterance (47) cannot be simulated by the ISS. While the simulation
successfully simulates the bulb loosing health, eventually reaching a value below zero,
the transition model for breaking is never triggered. This failure has a very specific
reason: in BrainControl, the cell would adjust its motor commands before the cell is
removed to not consume empty space. This adjustment is registered by the situation
encoding of the breaking transition model, however. In this case, the motor command
adaptation heuristic notices the necessity to adjust the motor commands, but it has
no way of telling the simulation function at which exact timestep the motor commands
should be changed. Le. either they do not change, or they are changed way before the
bulb’s health reaches zero, effectively ending the consumption process prematurely.*’

(46) the cell consumes the bulb and it moves

(47) the cell consumes the bulb and it breaks

Table 15: Search tree for the message the cell consumes the bulb and it moves

#0This problem was analyzed by the author by means of following the code step by step with a
debugger. It is thus difficult to provide evidence for it here other than the description.

105

Error and Heuris-
tic

Setup

initial,
adaptation: none,
intial call

need specific mo-

tor commands for
object0,
adaptation: set-

motor-commands

need new object 0
in direction BOT-
TOM,

adaptation: add-
move-into-path

need new object 0

in direction OVER-
LAP,
adaptation: add-

move-into-path

need specific mo-
tor commands for
object0,
adaptation: set-
motor-commands

ASR

objects={cell spikes red:0, bulb
flower:1},

to ={ 0:{PMz3, RM7(1)} },

t1 ={ 0:{PMps} }

objects={cell spikes red:0, bulb
flower:1},

to :{ 0:{PM73, f4 = 0.0, f5 = 0.0,
RM7(1)}},

t1 ={ 0:{PMps} }

objects={cell spikes red:0, bulb

flower:1, top dirt border ground:-2},

to ={ 0:{PMyz3, fa = 0.0, f5 = 0.0,
RMy;(1)}, -2:{{fs = 0.0, f5s = 0.0, fo =
0.0, f7 =0.0} },

t1 ={ 0:{PMps} }

objects={cell spikes red:0, bulb
flower:1, top dirt border ground:-2},

to :{ 0:{PM73, f4 = 0.0, f5 = 0.0,
RMjy;(1)}, 1:{fs = 0.0, f5 = 0.0, fo = 0.0,

f7 = 0.0}, -2Z{f4 = 0.0, f5 = 0.0,
fe =0.0, f =0.0}},

t1 ={ 0:{PMps} }

objects={cell spikes red:0, bulb

flower:1, top dirt border ground:-2},

to :{ 0:{PM73, f4 = 0.0, f5 = 0.0,
RMjy;(1)}, 1:{fas = 0.0, f5 = 0.0, fo = 0.0,
f7 = 0.0}, -2:{f4 = 0.0, f5 = 0.0,
f6e =0.0, f =0.0} },

t1 ={ 0:{PMps, fs = 0.99934596, f5 =
1.0006675, f; = 0.0484942} }

B

106

oY

Figure 37: Simulation for the successful interpretation of the message: the green virus
moves and it attacks the blue cell

X —% %

Figure 38: Simulation for the successful interpretation of the message: the virus attacks
the cell

Attacking / Fleeing

The utterance in (48) can be simulated successfully by LEARNA, as shown in figure 37,
see table 16 for the adaptation process. What is curious about this example is that (49)
is also simulated successfully. However, the simulation is non-standard in terms of
what happens in BrainControl, as depicted in figure 38. This simulation exploits the
fact that the transition model to trigger falling for a blue cell has never experienced
the cell falling while something was on its right. This way, the cell seems glued to the
platform and while the virus performs an attack, the scene does not play out the way
it would in the world of BrainControl. Note that (50) can not be simulated, suffering
the same problem as (47) above.

(48) the green virus moves and it attacks the blue cell
(49) the virus attacks the cell
(50) the green virus attacks the blue cell and it flees

107

Table 16: Search tree for the message the green virus moves and it attacks the blue cell

Error and Heuris- ASR Setup

tic

initial, objects={green virus:0, cell long

adaptation: none, blue:2},

intial call to ={ 0:{PMys)} }, S8

tl Z{ Oi{PM(,(), RMZ(Z)} }

need specific mo- objects={green virus:0, cell long

tor commands for blue:2},

object0, to ={ 0:{PMbys} }, e
adaptation: set- t; ={ 0:{PMsgo, f5 = 1.8012906,
motor-commands RM;(2)} }

need decreasing objects={green virus:0, cell long

distance between blue:2},

object 0 and object ¢y ={ 0:{PM>s} }, e

2 but the distance t; ={ 0:{PMsg, fs = 1801296, %
actually increases, RM>(2)}}

adaptation: add-

move-into-path

need decreasing objects={green virus:0, cell long

distance between blue:2},

object 0 and object ty ={ 0:{PMps} }, e

2 but they actually t; ={ 0:{PMsg, fs = 18012906, 2\
touch, RM;(2)}}

adaptation: move-

away

need decreasing objects={green virus:0, cell long
distance between blue:2},

object 0 and object ty ={ 0:{PMos} }, e

2 but they actually t; ={ 0:{PMsg, fs = 18012906, 2.
touch, RM;(2)}}

adaptation: move-

away

108

gal]
fsaL)
LM

@l
T

Figure 39: Simulation for the successful interpretation of the message: the green virus
moves from the platform and it moves to the green box

From

The utterance in (51) showcases a more complex inference process which is successful,
see figure 39 and table 17. From can also lead to problems, however, as in (52), where
the ISS is unable to insert transitions, in a similar way as in example (41) above.

(51) the green virus moves from the platform and it moves to the green box

(52) the green virus falls from the platform

Table 17: Search tree for the message the green virus moves from the platform and it moves
to the green box

Error and Heuris- ASR Setup
tic

109

initial,
adaptation: none,
intial call

need touch be-
tween object 0
and object 1 while
touch was not
established before,
adaptation: add-
move-into-path
need specific mo-
tor commands for
object0,
adaptation: set-
motor-commands

need decreasing
distance between
object 0 and object
3 but the distance
actually increases,
adaptation: add-
move-into-path
need decreasing
distance between
object 0 and object
3 but they actually
touch,

adaptation: move-
away

need decreasing
distance between
object 0 and object
3 but they actually
touch,

adaptation: move-
away

objects={green virus:0, top left wrench
head:1, iron block1:3},

fo ={ 0:(RMy (1)},

t1 ={ 0:(PMy1, RM3(1)} },

tr ={ 0:{PMy1, RM;(3)} },

ts ={ 0:{RM7(3)} }

objects={green virus:0, top left wrench
head:1, iron block1:3},

to =1 0:(RMy (1)},

t1 ={ 0:{PMy1, RM3(1)} },

ty ={ 0:(PMy1, RM>(3)} },

ts = 0:(RMy(3)} }

objects={green virus:0, top left wrench
head:1, iron block1:3},

to ={ 0:{RM4(1)} },

t1 ={ 0:{PMy1, fa = —0.9998265, f5 =
0.99474275, RM3(1)} },

tr ={ 0:{PMy1, RM;(3)} },

t5 ={ 0:(RM;(3)} }

objects={green virus:0, top left wrench
head:1, iron block1:3},

to ={ 0:(RMy (1)} },

t1 ={ 0:{PMy1, f4 = —0.9998265, f5 =
0.99474275, RM3(1)} },

ty ={ 0:(PMy1, RM>(3)} },

t5 ={ 0:(RM;(3)} }

objects={green virus:0, top left wrench
head:1, iron block1:3},

to ={ 0:(RMy (1)} },

t1 ={ 0:(PMu1, fs = —0.9998265, f5 =
0.99474275, RM3(1)} },

ty ={ 0:(PMy1, RM>(3)} },

ts ={ 0:(RM;(3)})

objects={green virus:0, top left wrench
head:1, iron block1:3},

to ={ 0:(RMy(1)}),

t1 ={ 0:{PMu1, fs = —0.9998265, f5 =
0.99474275, RM3(1)} },

ty ={ 0:(PMy1, RM>(3)} },

ts ={ 0:(RM;7 (3)} }

110

e S
8¢
&
U
&
e
&
AIPN Ve SNNNRNANL
b
€
AU i SNNENANL
b
&
AN M SNNBNANL

need decreasing
distance between
object 0 and object
3 but they actually
touch,

adaptation: move-
away

objects={green virus:0, top left wrench

head:1, iron block1:3},

to ={ 0:{RM4(1)} }, o
2] :{ OZ{PMH, f4 = —0.9998265, f5 = AR LA L L LT
0.99474275, RM3(1)} },

to ={ 0:{PMy1, RM>(3)} },

tz ={ 0:(RM7(3)} }

111

£
e}
B
—E
.

e .

Figure 40: Simulation for the successful interpretation of the message: the green virus
falls to the ground and it rests on the ground

Falling and On

To also showcase that on is interpreted correctly, consider examples (53) and (54), both
of which are simulated successfully, see figure 40 and table 18 for (53) and figure 41 and
table 19 for (54). Note that for (53), the ASR contains two distinct ground objects, but
the ISS is content with actually using only one of them. This is because in determining
whether a scene-path matches an ASR, relations are only matched based on the relation
type and the type of the object, not its ID. Thus, even if the ASR needs the ISS to
establish the two relations with two different ground objects, the matcher function will
accept a scene-path where the relations exist with one ground object, since it is the
correct type.

Finally, (54) presents a somewhat curious case, but the simulation shown in figure
41 is acceptable. This example will also be discussed again later.

(53) the green virus falls to the ground and it rests on the ground

(54) the green virus rests on the platform and it moves to the box after it falls

Table 18: Search tree for the message the green virus falls to the ground and it rests on the
ground

Error and Heuris- ASR Setup
tic

112

initial,
adaptation: none,
intial call

need decreasing
distance between
object 0 and object
1 but the distance
actually increases,
adaptation: add-
move-into-path

need touch be-
tween object 1
and object 3 while
touch was not
established before,
adaptation: add-
move-into-path

objects={green virus:0, top dirt border
ground:1, top dirt border ground:3},
to ={ 0:{PM3zs, RM>(1)} },

f ={ 0:(RMy (1)} },

t2 ={ 1:{(PMp, RM,(3)} }
objects={green virus:0, top dirt border
ground:1, top dirt border ground:3},
to ={ 0:{PM3s, RM>(1)} },

b ={ 0:(RMy (1)},

tr :{ 1Z{PM2, RM4(3)} }

objects={green virus:0, top dirt border
ground:1, top dirt border ground:3},
to ={ 0:{PM35, RM(1)} },

t ={ 0{RM4(1)} },

ty ={ 1:{PM,, RM4(3)} }

Table 19: Search tree for the message the green virus rests on the platform and it moves to

move-into-path

113

the box after it falls
Error and Heuris- ASR Setup
tic
initial, objects={green virus:0, top center
adaptation: none, wrench head:1, iron block1:3},
intial call to ={ 0:{PM3s} }, ee=
tl Z{ OZ{PMz, RM4(1)} },
ty ={ 0:(PMy1, RM>(3)} },
t5 ={ 0:(RMs(3)} }
need touch be- objects={green virus:0, top center
tween object 0 wrench head:1,iron block1:3},
and object 1 while ty ={ 0:{PM3s} }, e
touch was not # ={0:{PMy, RM4(1)}}, ANNN
established before, f, ={0:{PMj1, RM>(3)}},
adaptation: add- 3 ={0:{RMs5(3)}}

need decreasing
distance between
object 0 and object
3 but the distance
actually increases,
adaptation: add-
move-into-path
need specific mo-
tor commands for
object0,
adaptation: set-
motor-commands

need decreasing
distance between
object 0 and object
3 but the distance
actually increases,
adaptation: add-
move-into-path

objects={green virus:0, top center
wrench head:1, iron block1:3},

to ={ 0:{PM3s} },

t1 ={ 0:(PM>, RMy(1)} },

tr ={ 0:{PMy1, RM>(3)} }

t3 ={ 0:(RM5(3)} }

objects={green virus:0, top center
wrench head:1, iron block1:3},

to ={ 0:{PMszs} },

t1 ={ 0:(PM>, RMy(1)} },

tp ={ 0{PMn, fa = —0.9998265,

RM>(3)}},

ts ={ 0:{RM5(3)} }

objects={green virus:0, top center
wrench head:1, iron block1:3},

to ={ 0:{PMszs} },

t1 ={ 0:(PM,, RM4(1)} },
tr ={ 0:{PMy1, fs =
RM(3)}},

ts ={ 0:{RM5(3)} }

—0.9998265,

Judging by the evidence presented here, we can say that the language system and
the inference mechanism are able to do what they are supposed to do. There are
certain limitations that would require further attention, as discussed in the cases that
LEARNA did not resolve. On the positive side, note that LEARNA shows extreme
flexibility: the rules for interpreting an utterance are compositional and not bound to
predefined phrases. Prepositions are used correctly for different spatial patterns, even
a direct object was understood correctly. Since LEARNA allows for free combination,
the absolute number of utterance rises exponentially with every new lexeme: the above
only showcased interesting examples, LEARNA is of course able to understand all
possible simple sentences, e.g. the virus moves. This compositional flexibility should be
noted.

114

&
® . o/ o s ¢ e ¢
= e i B
& & &
e = -85 [B e .
7) 2
8t
i

Figure 41: Simulation for the successful interpretation of the message: the green virus
rests on the platform and it moves to the box after it falls

115

12.1 Limitations

One major limitation is that one word has to always be mapped to exactly one model,
but the range of available models does not allow for combinations of models. For
example, it is not possible to link ‘stand still” to the combination of the ‘no-horizontal-
movement’ model and the ‘no-vertical-movement’ model. Note, however, that such a
model combination would arise in the EPS, and not in the mental lexicon. If the EPS
provided a model for this combination, both the LPS and the ISS could immediately
use it. A related limitation concerns the fact that the lexicon cannot link to specific
features: there are no models in the EPS that encode fast or slow, and the top-down
predictive encodings are skipped in favor of simple object types, so there are also
no structures that encode green or round. The mental lexicon thus does not contain
adjectives or adverbs. Such a mapping would also necessitate major changes in the
ISS.

As discussed above, a major limitation of the ISS is the inability to infer abstract
gaps: LEARNA can understand ‘robot pushes box and box is destroyed” when the
robot hits the box and the box is immediately destroyed. If the robot pushes the box
off a platform and the box is destroyed as a consequence, however, the ISS will fail.
The input sentence has to present a strict chronological succession without missing
episodes. This leads to a more general limitation because the inference mechanism
does not make use of the hierarchy of events provided by the EPS. Given an ASR,
the inference mechanism does not check whether there is a scene-path in the space of
transition models, something that may help with inferring such missing episodes.

In the current implementation, we assume that the succession in the ASR is exhaus-
tive, so there is no need for filling gaps in the space of transition models. The ASR
already represents a scene-path in the space of transition models: the transitions in the
ASR directly follow one another. It seems plausible that human cognition makes use
of such hierarchies between more detailed and more abstract encodings. Especially if
there are more levels to the hierarchy than just the two. Generalizing the inference sys-
tem to start with higher levels and then descend the hierarchy would be an important
issue for future work.

Another issue arises because the ISS has to build a simulation for an input sentence
in isolation. Neither other sentences nor the current environment can be referenced
in a sentence. The LPS introduces new and unique object identifiers every time a
sentence is processed and thus introduces new and unique objects. A more flexible
assignment of reference would need to be implemented to include objects that are
active in working memory, either through the surroundings or discourse. This is left to
future work.

116

12.2 Resolving Ambiguity

LEARNA, as opposed to theories of language processing, applies very little language-
specific knowledge. The rules encoded by the LPS are very simple and processing
biases are not used at all. Recall the discussion of ambiguity in section 3: human
listeners plausibly use a range of different cues to reduce the need for inference.
LEARNA, on the other hand, employs world knowledge only since this is the focus of
this work.

Interestingly, LEARNA is able to handle different types of ambiguity beyond the
pronoun ambiguity derived from WSs, which it is able to resolve. Recall the utterances
below which LEARNA was able to understand correctly.

(55) arrow flies to the box and it breaks
(56) the box falls to the ground and it breaks

(57) the cell consumes the bulb and it moves

In all cases, the pronoun is strictly speaking ambiguous. In (55), there are no
examples of breaking boxes that an arrow collides with, but an arrow will break once
it collides with a green box. In (56), the same is true of ground and red boxes. (57) is a
further example where only the cell can move, not the bulb. Using the classification
discussed in section 3, these are examples of ambiguity caused by the language system
but resolved by world knowledge. Given the mini world BrainControl and how it
behaves, there is only one possible interpretation of (56) and (57). (55) could also be
interpreted differently. The arrow could fly to a red box, which subsequently drops to
the ground and breaks. While this interpretation is much more complicated to simulate,
it is generally possible. LEARNA prefers the more straightforward interpretation,
however.

Note that (55) and (56) also contain a lexical ambiguity in addition to the pronoun
ambiguity. Box means movable red box on the one hand, an object in the world that
can be pushed and that can break. Box also means green block on the other hand, a
static object that is part of the game world and cannot move or change its state. One
can argue that these two objects, due to being very different at their core, present a
lexical ambiguity. An analogy in the real world could be rock, which could be used
for a small rock that one can pick up, throw around, and move. Rock could also be
used for a massive cliff, on the other hand. The meanings are related, but it could be
argued that they are sufficiently different. This can be contrasted with the referential
ambiguity in (57), where cell could refer to a red or a blue cell. Red and blue cells are
two variants of the same type, behaving nearly identical. Only in specific cases is the
difference even relevant; it could be argued that in (57), this is only underspecification
but not ambiguity.

Even if the two types of boxes are deemed too similar to qualify as a lexical
ambiguity, the ability of LEARNA to resolve a real lexical ambiguity is shown. Finally,

117

reconsider example (58). The timeline of (58) is ambiguous because of the scopal
ambiguity introduced by and and after. If after takes scope over and, the virus falls first,
rests, and finally moves. If and takes scope over after, on the other hand, the virus
first rests, then falls, and finally moves. Unfortunately, world knowledge does not
strictly resolve this ambiguity, both interpretations are still viable. LEARNA decides
on the first interpretation above, i.e. the virus is simulated as falling first, then resting,
and finally moving. Note, though, that in principle, if one of the interpretations
was prescribed by world knowledge, LEARNA would build the scene reconstruction
accordingly.

(58) the green virus rests on the platform and it moves to the box after it falls

Even though the model implemented in this work is only a very coarse approx-
imation of language processing, there is a range of ambiguities it can resolve. Note
that resolving ambiguity is actually a byproduct of the system, i.e. there are no specific
mechanisms in place to specifically resolve ambiguity. An ambiguity in the language
system is simply translated into competing interpretations (ASRs); there is little more
to our implementation in this regard. The main work is done while inferring scene
reconstruction using world knowledge, which is the core contribution of LEARNA.

12.3 Language and Event-Predictive Structures

The evidence above suggests a few conclusions:

1. LEARNA can understand WS-like utterances as long as they adhere to the mini
world of BrainControl, if understanding is taken to mean being able to build a scene
reconstruction.

2. LEARNA is able to process utterances in a very flexible manner, allowing for
compositionality. Even though the syntax of possible utterances is restricted,
improving the capabilities of the LPS should be simple and is independent of both
the ISS and the EPS.

3. LEARNA requires very little pre-defined structure; extending the EPS with more
powerful models would immediately transfer to LEARNA as a whole without
further adjustment.

It seems justified to say that LEARNA satisfies the requirements that we established
in this work, specifically our first main hypothesis.

While LEARNA operates on a simple mini world, it can serve as an example of
how event-predictive structures lend themselves to an implementation of language
processing in principle. Information gaps are filled as necessary if possible. At the same
time, the structures provided by the EPS provide a grounding for language processing,
as is demanded by Harnad (1990), see also section 4.2: instead of building a language

118

processing system top-down, starting with symbols and then adding meaning, the
system should be built bottom-up, starting with meaningful entities and then adding
symbols. This does not imply that the symbol grounding problem is solved, because
Harnad (1990) was mainly concerned with complexity when scaling a system to the
real world. It can be taken as evidence, however, that event-predictive structures
facilitate language grounding.

One of the most interesting lessons of LEARNA is that the process of inference is
really difficult and time consuming. Ideally, the LPS should determine as much of the
meaning as possible. On the other side, the EPS should ideally provide structures that
make inference easy, even in complex cases. Being located on the interface between
cognition and language, however, the inference processes seem to get too little attention
when modeling language processing.

119

13 Experiment: Producing Information Gaps

41 As an excursion from modeling comprehension, we will look at actual human language
production in this section. We build on the discussion of the utility of ambiguity and
information gaps in section 3.5. Recall that an information gap can be useful if it is
easy to fill by the listener and also shortens the utterance, meaning it is less costly
for the speaker. When producing an utterance, the speaker has to judge whether
an information gap is easy to fill by the listener, otherwise they will risk inference
failing and being misunderstood. As should have become clear over the course of
this work, world knowledge is a very broad concept including a lot of very basic
information that can be assumed to be shared across all listeners. In the following, we
will describe an experiment where participants acquire world knowledge and then
produce descriptions of scenes that either conform to what they learned or violate
the formerly learned patterns. We predict that speakers are less likely to produce
information gaps in cases where learned world knowledge is violated.

Information gaps and world knowledge have already been explored in this work.
For world knowledge, we refer to the discussion in section 3.5. We assume event-
cognitive models as they are introduced in section 5 as the form of representation.
In order to have sufficient theoretical background, we will thus only need to discuss
language production and how the three topics are linked.

13.1 Language Production and Predictability

Inspired by WSs, we will focus on reference production. Reconsider one of the guiding
examples in this work, (4), repeated below. (4) is strictly ambiguous, but can be
tweaked to be unambiguous, as in examples (59a) and (59b).

(4) The box falls to the ground and it breaks.

(59) a. The box falls to the ground and breaks
b. The box falls to the ground and the box breaks

From the perspective of ambiguity and efficiency, speakers should always favor
(59a), because there is no ambiguity and it is also the shortest utterance of the three.
If we assume, however, that dropping the subject in the second part as in (59a), a
form of ellipsis, necessitates inference, i.e. produces an information gap, (59a) should
only be favored in cases where the inference is simple. As discussed, this depends on
world knowledge, i.e. how likely it is that the box breaks. The experiment we describe
here provides evidence that the latter is the case, but there is also existing empirical
evidence that supports that prediction.

From the investigation of ambiguity in production, there is evidence that speakers
are not as good at avoiding ambiguous statements as might be expected. Ferreira et al.

#1This chapter has been reworked and published in Stegemann-Philipps, Butz et al., 2021

120

(2005) tested production on a simple naming task where participants had to point out
a marked object in the presence of competitor objects. Theoretically, it is ideal to use a
referring expression that is as short as possible while not being ambiguous, i.e. not
including any competitor objects. Ferreira et al. (2005) indeed found that participants
were likely to add extra detail if a small bat (the flying mammal) was to be pointed
out but another, larger bat was a competitor item. In such a case, participants might
produce small bat instead of simply bat. If there was only one mammal bat, however,
and one of the competitor objects was a baseball bat, the participants were less likely
to include extra detail, i.e. produce bat, even though their utterance is ambiguous in
this case and they risk misunderstanding.

This has been taken as evidence that there are many factors that influence language
production, but speakers are not very sensitive to potential ambiguity, i.e. the effect
that potential ambiguity has on production is rather small, see also Wasow (2015).
Haywood et al. (2005) asked participants to describe spatial setups, producing referring
expressions like ‘Put the penguin in the cup on the star’. If there are two penguins
in the scene, this utterance is ambiguous. To make it unambiguous, one can say ‘Put
the penguin that’s in the cup on the star’.*2. Haywood et al. (2005) found evidence
that speakers are more likely to include an extra ‘that’s” when describing scenes where
this reduced ambiguity, i.e. speakers seem to be sensitive to the potential ambiguity.
Interestingly, the difference was rather small between scenes that allowed for one
interpretation only and scenes where both readings were plausible. A much larger
effect was priming, i.e. the occurrence of a similar structure before the utterance is
produced. In this case, priming may happen because the conversation partner already
used ‘that’s’. This actually made the speaker use this cue much more than the potential
for ambiguity.

If this evidence is correct, we can expect that speakers may reduce the use of the
(ambiguous) pronoun and choose unambiguous utterances from the list in (59). This,
however, should only be a small effect. There also is empirical evidence that speakers
will adjust utterances on how predictable something is. Jaeger (2010) tested this for
utterances like ‘[m]y boss confirmed (that) we were absolutely crazy’*® and found
evidence that speakers include the complementizer that depending on predictability.
If we is highly predictable, speakers will tend to not produce the that. If we is less
predictable, speakers will tend to add a that. Jaeger (2010) takes this as evidence
that speakers actively smooth the information density of an utterance, i.e. the rate of
surprising information, calling this the uniform information density hypothesis. Because
it is difficult to judge how predictable or surprising words in a sentence are, Jaeger
(2010) approximates this with next-word predictions learned statistically from a corpus.
Kurumada et al. (2015) found further evidence that speakers of Japanese will drop
case markings if they are predictable. They use utterances that describe scenes and

42Examples taken from Haywood et al. (2005)
Jaeger (2010), p. 27

121

find that scenes that seem more surprising make speakers use more case markings.
Adjusting the use of case markings is a very common finding (see e.g. Lee (2015) for
a perspective on Korean case marking). The evidence that Kurumada et al. (2015)
present is especially interesting in our case because their setup targets predictability
from world knowledge.

We can take this as evidence that speakers actively manage the amount of informa-
tion depending on world knowledge, which is an otherwise elusive factor. Instead of
world knowledge, experiments usually focus on predictability by itself, which is a very
complex term (see Kuperberg et al. (2016) for a discussion). The problem with using
predictability as a proxy for world knowledge is that there are many other factors
besides world knowledge to shape expectations about upcoming information. There is
a body evidence of production biases in pronoun production which points to a more
divers range of factors. For example Rosa et al. (2017) present evidence to argue that
thematic roles influence the frequency of producing a pronoun, while Fukumura et al.
(2010) found no such evidence. Fukumura et al. (2011) found evidence that similarity
between potential competitors in terms of reference affects pronoun production, i.e.
speakers are less likely to produce a pronoun, the more objects it can potentially refer
to. Rohde et al. (2014) provide evidence that speakers are more likely to produce
pronouns if the referent is the topic. These factors are not directly dependent on world
knowledge, however. We can take this as evidence that corpus-based predictability
measures will represent a mixture of all the factors that influence production rather
than world knowledge. One of few studies that probe world knowledge more directly
is described by Bunger et al. (2013). They indeed found evidence that underlying
event-structures of scenes can influence production. This goes deeper than purely
language-related cues; abstract event structures can be seen as world knowledge in the
sense that they represent abstract knowledge about how events unfold.

A final question in forming a prediction of whether speakers will adjust their
production according to world knowledge in a specific situation is whether they take
into account what world knowledge the listener has. Whether speakers adjust their
utterances based on their audience is the question of audience design. There is mixed
evidence as to whether speakers do this successfully in spontaneous speech. Ferreira
(2019) provides a survey on this question. Interestingly, Lane et al. (2006) provide
evidence that participants are not very good at taking situation-specific knowledge into
account. Even when asked not to reveal a certain piece of information to the listener,
speakers tended to produce utterances that are (indirectly) revealing anyway. On the
other hand, adjusting our language to our audience seems an everyday experience.
Kingsbury (1968) provides evidence that speakers adjust their description when giving
directions based on whether the listener seems to know the local area or not. Finally,
Fukumura et al., 2012 present evidence that in producing pronouns, speakers do not
account for the knowledge of the listener but simply rely on their privileged knowledge.
We will assume that speakers use their own world knowledge as an approximation of

122

the world knowledge of the listener and thus of how easy inference will be for them.
In summary, there is evidence that, while speakers can avoid ambiguity, this
effect is rather small. There is also evidence, however, that speakers drop or insert
information into utterances based on predictability. Since speakers have, depending
on the situation, limited or no access to what the listener judges predictable, there is
evidence that this does not influence production very much. In our experiment, we
want to propose a setup where the dependence on world knowledge is immedjiate.

13.2 The Experiment

To find out whether world knowledge influences production, we need to make sure
that participants have equal and reliable world knowledge which is influenced by
prior knowledge as little as possible. We further need to let the participants produce
utterances that will show this influence if it exists. Traditionally, this is done in a story
continuation setup. For example, Rosa et al. (2017) show participants pictures of real
world events and provide incomplete sentences that the participants have to continue.
This restricts the range of possible utterances but also limits free production. While
this approach is well established, we choose a different approach.

We use the mini world of BrainControl, which was also used for modeling in this
work, to confront participants with an environment they are unfamiliar with. We
reduce the number of entities to three: a long blue cell, a spiky red cell and a round
green virus which has a face (see the description of the experimental setup below for
images). These entities have a simple base behavior in that they can move left, move
right, or rest. If a green virus and one of the cell types get to close, they will pause,
and one of the two will rush towards and bump into the other, bouncing off slightly.
After a very short pause, one of the two will run away at an elevated speed. We will
call this a collision event. After this collision event, the entity that stayed behind will
resume its base behavior. The only pattern to this is that the green virus will run away
from the red spiky cell, but the long blue cell will run away from the green virus. The
two cells do not interact. In a training phase, the participants are shown videos where
this behavior can be observed. Ideally, participants will be familiar with the simple
patterns after the training phase. At this stage, we can assume that they expect events
in the mini world to follow these patterns, i.e. they have acquired world knowledge.
Additionally, we can test whether they are able to make predictions according to these
patterns to be certain that they learned them.

To let the participants produce utterances like those in example (59), we simply ask
them to describe short videos depicting a collision event using spoken production. Due
to the nature of the event, participants will first have to describe that one entity attacks
another and then describe that one of them flees. This two-part structure is supposed
to make the participant produce one of the descriptions in (60) or a variation thereof.

(60) a. The red cell attacks the virus and the red cell flees.

123

Figure 42: Entities populating the videos used in the experiment.

b. The red cell attacks the virus and it flees.

c. The red cell attacks the virus and flees.

While the wording and the involved entities can vary, such a description can then
be annotated. (60a) would be an example of NP (noun phrase), i.e. the speaker decided
to produce a full noun phrase in the second part. (60b) and (60c) would both be
examples of a shortened phrase, where the speaker decided to use an ambiguous
pronoun or an ellipsis to shorten the utterance. If the speaker does not use a two-part
description or deviates otherwise from the expected structure, we cannot annotate
that utterance and dismiss it. Since participants use free spoken production, their
utterances are unbounded and immediate.

13.3 Experimental Setup

The participants start with being shown a short introduction and instructions. They
are told that they will have to describe videos from a video game that they will be
shown by talking into their microphone. They are asked to describe these videos as if
they are talking to friend, i.e. not overly formal.

Each participant then has to do a microphone check. We found in pilot studies that
this significantly reduces the number of unusable recordings.

The participants are then shown pictures of the three entities they will see in the
videos (see figure 42) along with a description of their behavior.

This is followed by the first training block, which starts with videos that each show
a possible interaction. These interactions are following the patterns of the world, there
are four possible interactions.

1. Green virus attacks blue cell, blue cell runs away
2. Green virus attacks red cell, green virus runs away
3. Red cell attacks green virus, green virus runs away

4. Blue cell attacks green virus, blue cell runs away

After being shown the four interactions, they see a larger video with three layers,
where one interaction takes place on each layer.

124

attacking en- standing en- fleeing subject / ob- surprise
tity tity entity ject fleeing

green virus blue cell blue cell object false
green virus blue cell green virus subject true
green virus red cell green virus subject false
green virus red cell red cell object true
blue cell greenvirus greenvirus object true
blue cell green virus blue cell subject false
red cell green virus greenvirus object false
red cell green virus red cell subject true

Table 20: Stimuli used in the experiment. Object / subject refers to whether the fleeing
entity, for which the produced referring expression is relevant, will usually have been
in object or subject position in the first part, i.e. whether it was being attacked or
attacking. Surprise denotes whether the stimulus follows the patterns shown and
learned in the training phase (false) or reverses the pattern (true).

After this training block, they are asked to predict the patterns of the world in a
test block. There they are shown a starting image and two possible outcomes. The
starting image shows two entities before interacting. Only one of the outcomes is
plausible. For example, if the starting image is a red cell and a green virus facing
off, then a picture of green virus only and red cell only show possible outcomes. If
the participants are able to predict the correct outcome on two such test cases, they
continue with the experiment. If they are not, they do another training block followed
by a test block. If they are still not able to predict the outcome correctly, they continue
with the experiment but their results will be removed from the data.

After this training and test phase, they are shown another set of instructions for
the stimulus phase. They are asked to describe what they can see by speaking into their
microphone. Details of what is shown to the participants can be found in appendix C.

In the stimulus phase, each participant is shown a randomized sequence of stimuli
and fillers. Fillers are videos where either one or two entities are present and moving,
but no interactions happen (see appendix C for details). There are eight stimuli, the
four interactions described above that follow the patterns of the world, and their
unexpected version, where the object running away is exchanged. The stimuli can be
seen in table 20.

All videos in the stimulus phase are connected by a short 2 second still image
showing the word break.

125

13.4 Participants

We recruited 300 participants through the online platform Amazon Mechanical Turk. The
complete experiment is conducted online. The validity of data obtained from Amazon
Mechanical Turk has been investigated (see e.g. Schnoebelen et al. (2010)), and it is by
now a very common tool for data collection. The only exclusion option provided by
Amazon Mechanical Turk that was used for selecting the participants was that they are
located in the US as far as Amazon Mechanical Turk is aware. This was done mainly
to restrict the participants to English speakers.

We excluded participants where the audio recording could not be transcribed. We
further excluded participants that did not do the correct predictions in the test phase,
assuming they had not learned the patterns of the mini world.

13.5 Annotating Utterances and Analysis

The audio recordings were cut to the part where the description of the stimuli started.
They were then transcribed by a transcription company in Stuttgart. Within the
transcription, the utterances describing stimuli where extracted and then annotated
by a student assistant and the author of this work. Possible annotations were NP for
noun phrase, pro for pronoun and zero for ellipsis, (see example (60)), as well as X if
the description did not fit one of the categories. Reasons for annotating X were one as
follows; details can be found in appendix C.

1. The utterance had a format that did not allow for choice between pronoun, noun
phrase or ellipsis. Examples of this were utterances where pronouns were used
before or where the first part did not have a clear subject-object-distribution (e.g.
virus and cell attack each other).

2. The utterance generally deviated from the expected schema, e.g. the cell defeats
the virus.

For analysis, the annotation groups pro and zero were combined into the group
shorten. Further, we aggregated the 8 stimuli described above into 4 groups, i.e. object-
surprise, object-predicted, subject-surprise, subject-predicted. For each of these groups, each
participant was shown two stimuli, one where the green virus interacted with a blue
cell and one where the green virus interacted with a red cell (compare table 20). This
was done to prevent within-participant comparison for two stimuli of the same type.
To aggregate the annotations for each group into one value, we used the aggregation
table shown in table 21.

Aggregating the two variants for each stimulus type produces what we call a
shorten-vs-NP preference value. If the value is 1, the participant preferred NP for this
stimulus type, if the value is 0.5, the participant was undecided, if the value is 0, the
participant preferred to produce a shortened utterance. This value is thus ordered, with

126

stimulus 1 stimulus 2 value
NP NP 1

NP X 1

NP shortened 0.5
shortened X 0
shortened shortened 0

X X excluded

Table 21: Aggregation table to compute a shorten-vs-NP preference value for each
stimulus type. This table only shows ordered aggregation; permutations are aggregated
equally.

1 being a preference for NP down to 0 being a preference for shortening; the exact scale,
however, is meaningless. The main predictor is whether the stimulus was surprising
or not. To model the data, we use an ordinal regression model (see e.g. Agresti (2013)),
specifically the implementation of cumulative link mixed models implemented in
the ordinal package in R (see Christensen (2019)). We include participants as random
intercepts.

13.6 Results and Discussion

Out of initially 300 participants, each provided with 8 stimuli, i.e. 2400 items, we had
to exclude 31 participants because of bad audio quality and 25 participants because
they did not pass the learning test block. We further excluded 11 participants because
their descriptions did not conform to our schema at all, mostly because they produced
predictions instead of descriptions. This leaves 233 participants, i.e. 1864 items.
Looking at the overall frequencies of annotations in figure 43, it becomes clear that
participants barely use shortened phrases when referring back to the object. This is
to be expected because an ellipsis is strictly speaking ungrammatical, i.e. it cannot
refer to the preceding object but only the subject. Further, there is a very strong bias
towards referring back to the subject when using a pronoun (see also the discussion of
pronoun biases in section 3.3). Participants thus seem to have a strong preference not
to use pronouns to refer back to the object.

Note further that for subject-type stimuli, participants produce less pronouns than
ellipsis in general, but the raw frequency difference between the expected and the
surprising case is very similar. The switch from shortened phrases to noun phrases
seems to not be fueled by one type of shortening the phrase, but is distributed equally
(compare also figure 44).

It is important to note that we found a strong difference between the first stimulus
and all later stimuli, as seen in figure 44. Note that we excluded object-type stimuli in
this case because participants mainly produced noun phrases for those. Participants

127

300

type
. o False
. o True
. s False

s True

200

Freq

100

N

zero

pro X

factor(prod)

NP

Figure 43: Distribution of different annotations split by surprising(True) vs pre-
dictable(False) and subject(s) vs object(o) position.

seem to be much more likely to produce shortened phrases for the very first stimulus.
The order of the 8 stimuli was randomized for each participant but we did not ensure
a uniform distribution of orderings, as can be seen in figure 45, where object-stimuli
were again excluded. This also shows however that the distribution is not biased in a
specific sense, i.e. we can still assume the stimuli ordering to be random.

Using the aggregation method in table 21, an item was dropped if a participant
did not produce an utterance that could be annotated for a stimulus. This was true
of 104 items, resulting in 828 items in the aggregated data set. Finally we excluded
object stimuli since participants mostly produced noun phrases for object stimuli.
This brings the number of data points in the final data set down to 412, stemming
from 219 participants, i.e. 14 participants did not produce utterances that could be
annotated for subject-type stimuli. For the final data set, the distribution of shorten-
vs-NP preference values for surprising and predictable stimuli can be seen in figure
46. We fitted the model as described above and it showed a significant interaction
(B = 0.5121, std. error = 0.2229, p = 0.0216), and std. error for surprise being true.

128

60

annotation
40 [~e
/N pro
X x

O zero

Freq

20

1 2 3 4 5 6 7 8
order

Figure 44: Distribution of different annotations vs the ordered position of stimuli.
Participants are much more likely to use shortened utterances for the first stimulus
while being balanced for the rest. Note that this data shows only subject-type stimuli.

13.7 General Discussion

The evidence presented above suggests that speakers actively manage whether to leave
an information gap in an event description, depending on whether the development
of the event is surprising or expected, as was our hypothesis. This is in line with our
general prediction that speakers manage information gaps in their utterances. This is
especially interesting because it is plausible that this behavior was triggered by world
knowledge alone.

We can assume that our experiment was free of biases that stem from language
statistics like word-to-word predictability. It is very unlikely that the participants had
heard or produced these utterances before beginning our experiment, since the setup
is artificial. Consider the example utterances (61) taken from the data. However, the
only related sentence that the participants read in the instructions is shown in (62), and
we explicitly avoided priming utterances that we were plausibly expecting given pilot
study results. In everyday language, the beginning of each utterance in (61) may elicit
continuations describing destruction or dissolution, but cells running away should be
uncommon. While we did not test this specifically, we assume that participants were
not biased by the thematic setup they saw and described.

129

70

60
Surprise

O False

|Z| True

Freq

50

order

Figure 45: Distribution of stimuli types vs the ordered position of stimuli. This shows
that there is no specific bias in the distribution; the first stimulus shows no real difference
to the other stimuli. This also shows, however, that the overall distribution has a lot of
variation. Note that this data shows only subject-type stimuli.

(61) The red cell just attacked the virus and it ran away.

a.
b. The virus attacks the blue cell, the blue cell runs away to the left.
c. The person attacks the virus, the virus leaves. Person wins.

d

. Virus eats the red blood cell and then the virus runs.

(62) Let us first look at interactions between a virus and a cell. Notice how it doesn’t
matter who attacks whom.

Further, we can assume that heuristics or biases like implicit causality did not play
a major role either. The big language specific factor in our data was subject vs object
position, which completely dominated production and had to be removed. If there
are other heuristics that impact the participant’s production decisions, these should
further have the same influence across surprising cases and predictable cases. If, for
example, attacking is more likely to be followed by an ellipsis than eating, this effect
should influence the general occurrence of ellipsis, but not depend on whether the
scene is surprising. While these factors are hard to measure, we can assume that their
impact on our data is negligible.

130

shorten—-vs—NP preference value X 0 [X] 0.5 [] 1

90
80
>
<
g 70
>
(o
g
% 60
50 >\<
False True
Surprise

Figure 46: Difference between surprising (surprise=true) and non surprising (sur-
prise=false) stimuli, for each shorten-vs-NP preference value. In the surprising case,
participants use shortened utterances (value = 0 and 0.5) less often and noun phrases
more often (value = 1). Note that there are exactly 206 surprising items and 206 non
surprising items in the final data set.

The only factor that remains to explain the behavior in our specific case is world
knowledge. This means that in the process of production, world knowledge and specifi-
cally event-predictions directly impact information gaps in the produced utterance, an
effect that has not been researched to the best of our knowledge. While our experiment
does not show this directly, it may be the case that speakers are actually more sensitive
to information gaps in general than to ambiguity. The fact that ellipses and pronouns
were less preferred in surprising cases may point to this, since from the perspective of
ambiguity, there is no reason to avoid ellipsis even in the surprising case.

The results are also in line with the assumption that speakers use their own world
knowledge as a proxy of the world knowledge of the listener. This also shows that
further research is necessary that also includes dialogue to further examine how
speakers adapt to the perceived world knowledge of the listener.

Finally, if the assumptions above are correct, our experimental setup may be useful
as a general paradigm to examine the influence of world knowledge on language, a
question at the intersection of psycho-linguistics and cognitive science. Participants
adapted surprisingly well to the scenes they were shown. It is especially interesting
that the majority of utterances produced were in line with our expectations, without

131

priming utterance structure or prescribing parts of the utterances; the production
was completely free. In the pilot studies we found, however, that there was a huge
difference in quality between free spoken production and free written production,
which may be because of the online setting of our experiment. There is much potential
for future work in these directions.

132

14 Conclusion

In summary, this work provided evidence for both main hypotheses. The structure that
emerges in LEARNA from a simple event-predictive model lends itself to language
processing, allowing for an easy lexical mapping between lexemes and learned struc-
tures. This effectively provides a grounding for language. The structures further allow
to build an inference mechanism, which can build reconstructions of the meaning of
utterances. In addition, through building a reconstruction and thus understanding
an utterance, LEARNA is able to resolve ambiguity through world knowledge where
possible.

Recall that this work started out with a description of SHRDLU, the language
understanding system described by Winograd (1972). LEARNA is similar in spirit
but implemented in a completely different manner. Whereas SHRDLU was mostly
hard coded, LEARNA is designed as three systems that can be extended flexibly
and show little dependencies on the exact nature of the others. World knowledge is
learned and inference is done in a general and flexible manner. In principle, LEARNA
presents a step forward. Even though language modeling may be dominated by
deep neural network approaches, a transparent and modular system like LEARNA
has the advantage of illuminating difficulties of theoretical ideas and examining the
effect of visible structure. Especially the apparent absence of models of inference at
the intersection between a predictive model of the world and a language module
raises interesting questions for future research. The main question may be whether
adaptation heuristics can also result from a general learning mechanism as proposed
by PP and event-predictive theories. This will be left for future work.

Another pressing point are situation encodings, i.e. the patterns of context. When
extending LEARNA, situation encodings may be the most profitable path. Better
situation encodings would immediately increase the predictive power of transition
models, allowing to learn an increasing range of events beyond those that this work
focuses on. It seems that situation encodings are also a bottleneck in terms of the
complexity that the overall system can predict. Recall that Harnad (1990) argued
that the problem with grounding symbols is really the complexity of compositional
expressions, i.e. the complexity of scenes where several object are interdependent.
Situation encodings aim at this interdependence.

The original set of WSs of course requires much broader world knowledge than is
necessary in a mini world. Nonetheless, the problem of applying world knowledge to
infer the otherwise ambiguous reference of a pronoun was successfully approached by
LEARNA.

The work also provided empirical evidence that world knowledge in the form
of event predictions influences language production. Speakers were more likely to
shorten a description of a scene if that scene conformed to their expectations. In cases
where world knowledge was violated, speakers tended to prefer more explicit descrip-

133

tions. Given how little the influence of world knowledge on language production is
investigated in the literature, the experiment showed that its general experimental
paradigm could lead to many more fruitful investigations. It seems plausible that
speakers adjust their utterances in a multitude of ways in the face of surprising events.
This raises the broader question of how far this influence reaches. For example, subject
vs object position had a much greater influence than world knowledge. Testing the lim-
its and exploring the influence of world knowledge should provide many interesting
opportunities for future work.

134

Abbreviations

ASR Abstract scene representation.
EPS Event-predictive system.

ISS Inference simulation system.
LPS Language processing system.
PP Predictive processing.

WS Winograd Schema.

General Glossary

Algorithmic Level Of Description This is one of the Marr’s three levels of descrip-
tion, also called representational level. It answers the question of how input
and output are represented and what the specific algorithm is that maps input
to output. On this level, the formalism is described that defines the internal
algorithmic mechanics of the system Marr, 2010; Rescorla, 2020.

Artificial System A behaving entity that can be described as a set of models and
mechanisms. These work together to exhibit a certain desired behavior. This
definition is specific to this work. A chess program operating on a chess board
would be a system because it produces moves (behavior) on a chessboard. A
function that adds two numbers is not a system because it only produces a sum
(not a behavior).

Cognition The overall system of processes that are responsible for processing the
world and generating behavior in humans, i.e. the human mind from a mechanis-
tic perspective. Cognition is here defined as an information processing system.

Common Sense Reasoning The application of world knowledge to solve problems.
The efficient and appropriate application of world knowledge has to be kept
apart from simply having access to world knowledge.

Computational Level Of Description One of Marr’s three levels of description, an-
swers the questions of what a computation is supposed to achieve and why it is
done. Since Marr’s three levels of description are defined in terms of informa-
tion processing, the computational level should describe notable features of the
mapping from input to output Marr, 2010; Rescorla, 2020.

135

Encoding An encoding carries information about the world of an artificial system and
can be accessed internally by the system. An encoding can either be a model,
capturing information about dynamics, or simply information about the world,
e.g. about features of objects. An encoding always captures patterns of the world
while a representation captures information about the current state of the world.

Hard Coded If a part of a system is hard coded, that part is unresponsive to changes
in the environment and cannot be altered. When discussing learning artificial
systems, hard coded behavior means that behavior is not learned.

Implementation Level Of Description One of Marr’s three levels of description, an-
swers the question of how the physical implementation is actually realized Marr,
2010; Rescorla, 2020.

Information In this work, something carrying meaning about the state of the domain
a system operates on.

Information Processing Denotes that an artificial system is perceived as a mechanistic
function of mapping input to output.

LEARNA A loose acronym for Learning Event Abstractions to Resolve Natural language
Ambiguity. Short name for the overall system implemented in this work.

Mapping Language To Cognition The process of identifying encodings within cogni-
tion that a natural language concept or a combination of concepts can be linked
to, i.e. the meaning of a concept or a combination of concepts as encoded in
cognition. This process should then work for all natural language concepts and
cover compositional meaning. The symbol grounding problem proposes that
this is highly non-trivial.

Marr’s Three Levels Of Description A way of dividing the analysis of an artificial
system information processing introduced by Marr (2010). See computational
level of description, algorithmic level of description and implementation level of
description.

Mechanism An operation within an artificial system that is not a model. Mechanisms
operate on models and encodings. A chess computer may have models of legal
moves but needs mechanisms that apply those models in a specific situation.

Mental Model An entity proposed to explain how cognition works. Refers to a model
of an aspect of the real world used within cognition.

136

Mental Simulation A process within cognition where mental models are used on
representations to simulate the dynamic development of the corresponding
scene in the real world. This includes all aspects of the scene, i.e. not only spatial
aspects.

Mini World A computer-simulated environment that shares certain features with the
real world but simplifies it. This allows to test artificial systems in a complete but
simpler world. Once the artificial system works, more complexity can be added.

Model A description of specific world dynamics formulated in a way to be able
to predict those dynamics. A model’s predictions should ideally match the
dynamics it describes. A mathematical formula describing gravitational forces is
a model of real world gravition. Given a falling apple at some point in time, the
formula produces predictions of the acceleration of the apple in the real world.
A function that adds two numbers is not a model per se because it does not
describe real world dynamics. The input, output and internal states of a model
can be representations but also encodings.

Representation An entity within an artificial system that carries information about
the current state of a real world entity and is used internally by the artificial
system. A representation stands in for an entity of the real world. As opposed
to encodings, a representation deals with the current state and not with learned
patterns.

Scene A temporally and spatially bounded chunk of a world. For example, an apple
falling from a tree could be a scene. In this work, a scene is a sequence of
situations.

Situation A single timestep of a scene. A situation can be understood as a scene that
is frozen at a specific point in time.

Spatial Relational Encoding An encoding that captures a recurring pattern of rela-
tions between objects, i.e. encodes patterns in spatial representations.

Spatial Representation A representation that mirrors the spatial setup of the real
world entities that it corresponds to. A map or a picture are spatial representa-
tions in that sense. A list of city names with their respective distances is not a
spatial representation because the spatial setup in the real world is not part of
the representation, e.g. a triangle of three cities is not found in the list.

Symbol Grounding Problem The symbol grounding problem proposes that mapping
encodings of an artificial system to natural language concepts, i.e. mapping
language to cognition, is highly non-trivial Harnad, 1990.

137

Training The process of feeding data to an artificial system that has mechanisms to
form encodings of patterns in the data. The goal of training is the formation of
useful, i.e. accurate, models.

Winograd Schema A sentence pair similar to: The city councilmen refused the demonstra-
tors a permit because they [feared/advocated] violence. The pronoun in the second
part changes reference depending on which verb is inserted.

Winograd Schema Challenge The challenge to build a computer program that is
able to resolve the reference in Winograd Schemas. A successful answer to the
challenge would alledgedly approximate human-like common sense reasonings
abilities.

World Knowledge Knowledge about how the world works, i.e. how the dynamics of
the world will usually unfold. Having a piece of world knowledge corresponds
to being able to predict effects in the world implied by that piece of knowledge.
For example, knowing that water is fluid and knowing what fluid means enables
a person to predict that water will spill on a table if not held by a container.
World knowledge can be distinguished from Semantic Knowledge and Syntactic
Knowledge in this work.

Cognitive Modeling Specific Glossary

Bottom-Up Processing The principle of processing an input encoding by passing its
information onwards and changing the internal states of the artificial system
accordingly. Opposite of top-down processing.

Event In this work, an event is a chunk of space-time where the unfolding dynamics
are uniform in the sense that they follow a single specific pattern. An event
always has a start and an end, i.e. event boundarys.

Event Boundary In this work, the point where one event ends and another begins, i.e.
where the pattern governing the unfolding dynamics changes.

Generative Model A model that is able to actively predict encodings of the domain it
operates on based on its current state.

Prediction Error Given a goal encoding, the prediction error is the difference of the
prediction of that encoding and the actual encoding.

Predictive Processing A view within cognitive science that proposes that cognition
can be modeled as a generative model with functional layers that predict each
other in a top-down fashion, see top-down processing and processing hierarchy.

138

Processing Hierarchy A hierarchy of layers that exhibit a flow of information to sup-
port bottom-up processing or top-down processing.

Situation Encoding A learned pattern of the state of a scene at a specific point in time.
Situation encodings are used by transition models. They include a main object
to which the transition model is applied, i.e. the event dynamics models are
switched. They also include objects directly touching this main object, learned by
object type. Feature values are learned as gaussian distributions for these objects.

Timestep Since a mini world is simulated on a computer, the states can not be updated
infinitely often but only a certain amount of times per second, say n. Each of
these updates is a timestep.

Top-Down Processing The principle of generating the internal state of the artificial
system, predicting what input would match this state and reacting to the dif-
ference of the prediction to the real input, i.e. the prediction error. Opposite of
bottom-up processing.

Language Specific Glossary

Ambiguity The phenomenon of an utterance having multiple distinct available mean-
ings. In this work, utterances are restricted to scene description, so an utterance
is ambiguous if there are at least two distinct scene reconstructions available.

Corpus A collection of language resources. Corpora referred to in this work are always
collections of written text.

Information Gap A part of the meaning of an utterance that is not given through
compositional structure but is to be inferred by the listener.

Lexeme The basic unit of meaning in the mental lexicon. LEARNA uses lexemes like
box, green virus, or blue cell, which are not built from smaller parts but stored in
the lexicon.

Listener The receiver of a natural language expression produced by a speaker. In this
work, listener simply refers to the agent that tries to understand an utterance. It
is further assumed that the listener is cooperative, i.e. tries to infer the meaning
using all available resources.

Prepositional Phrase A phrase of the form PREPOSITION NOUN-PHRASE, e.g. on
the platform or to the red cell.

139

Scene Reconstruction Introduced as a helper concept in this work: when a listener
understood an utterance that described a scene, the internal simulated recon-
struction of that scene is called the scene reconstruction in this work.

Semantic Knowledge The knowledge of the meaning of a word and how to combine
it with other words, specifically including rules of applicability of the word to
real world entities.

Speaker The sender or producer of a natural language expression directed at a listener.
In this work, speaker means producer and simply refers to the source of an
utterance. It is further assumed that the speaker wants to be understood correctly.

Syntactic Knowledge The tacit knowledge of syntactic rules and specifically their
contribution to the compositional meaning of an utterance.

Underspecification Relevant information about the scene an utterance describes that
was not included, see also information gap. Such information is not restricted
and could, for example, be a certain detail of context. Ambiguity is a special case
of underspecification where the options to fill the information gap are clearly
distinct. The options to interpret the specific size of a car in the utterance a car
drove by are taken from a continuum. This would thus be underspecification, but
not ambiguity.

Understand In this work, we say that a listener understands an utterance if they are
able to reproduce the relevant parts of the scene that the utterance describes. This
reproduction is called the scene reconstruction in this work and takes place within
cognition. In this work, only utterances that describe scenes are investigated. We
assume that if the listener is able to reproduce the scene, they will also know the
truth conditions of the utterance and that our definition is thus compatible with
traditional truth-conditional meaning.

Utterance In this work restricted to the meaning: natural language description of a scene.
In general: a natural language expression that a speaker produces and a listener
receives. In this work, the distinction between sentence, i.e. a sentence in isolation,
and utterance, i.e. a sentence that is uttered in a specific context, is not important.

Glossary of Terms Specific to The Implementation

Abstract Scene Representation A set of requirements that a scene reconstruction has
to fulfill to match an utterance. Abstract scene representations are generated by
the LPS from an utterance and passed to the ISS for inference.

Adaptation Heuristics Heuristics applied by the ISS to adapt an incorrect scene re-
construction to make it fit the ASR provided by the LPS.

140

Event Dynamics Model A model that models the unfolding dynamics of an event.
LEARNA implements these in a factorized way, using linear models for the
unfolding dynamics where each model predicts the new value of a feature.

Event-Predictive System The part of the artificial system implemented in this work
that learns and manages all predictive models.

Inference Simulation System The part of LEARNA where simulation and inference
takes place. The inference simulation system receives the abstract requirements
of an input utterance in the form of an ASR from the LPS. It then operates on the
encodings of the EPS to infer a simulation that matches the ASR.

Language Processing System The part of LEARNA where language is processed. The
language system takes utterances as input and provides the information that the
utterance contains as abstract requirements in the form of an ASR.

Transition Model A model of the transition between two event dynamics models,
which are not necessarily different. A transition model is always centered on one
object and is thus specific to the corresponding object type. It builds a situation
encoding to predict whether the transition should take place given the current
situation.

141

References

Agresti, A. (2013). Categorical data analysis (3rd ed). Hoboken, NJ, Wiley.

Baddeley, A. D. & Hitch, G. (1974). Working memory. In Psychology of learning and
motivation (pp. 47-89). Elsevier.

Bar-Hillel, Y. (1960). The present status of automatic translation of languages. In Ad-
vances in computers (pp. 91-163). Elsevier.

Bever, T. G. (1970). The cognitive basis for linguistic structures. In R. Hayes (Ed.),
Cognition and language development (pp. 279-362). Wiley; Sons Inc.

Bohnemeyer, J. & Pederson, E. (Eds.). (2011). Event representation in language and cogni-
tion. Cambridge; New York, Cambridge University Press.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,]J., Dhariwal, P., Neelakantan,
A., Shyam, P, Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger,
G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C,, ...
Amodei, D. (2020). Language models are few-shot learners.

Bunger, A., Papafragou, A. & Trueswell, J. C. (2013). Event structure influences lan-
guage production: Evidence from structural priming in motion event descrip-
tion. Journal of Memory and Language, 69(3), 299-323.

Butz, M. V. (2016). Toward a unified sub-symbolic computational theory of cognition.
Frontiers in Psychology, 7.

Butz, M. V. (2017). Which structures are out there. In T. K. Metzinger & W. Wiese (Eds.),
Philosophy and predictive processing. Frankfurt am Main, MIND Group.

Chomsky, N. (2002). On nature and language (A. Belletti & L. Rizzi, Eds.; 1st ed.).
Cambridge University Press.

Christensen, R. H. B. (2019). Ordinal—regression models for ordinal data.

Clark, A. (2016). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford,
New York, Oxford University Press.

Clark, H. H. & Clark, E. V. (1977). Psychology and language: An introduction to psycholin-
quistics. New York, Harcourt Brace Jovanovich.

Cole, D. (2020). The chinese room argument. In E. N. Zalta (Ed.), The stanford encyclope-
dia of philosophy (Spring 2020). Metaphysics Research Lab, Stanford University.

Davis, E. (2019). Collection of winograd schemas. Retrieved June 14, 2019, from http://
www.cs.nyu.edu/faculty /davise/papers/WinogradSchemas/WSCollection.
html

Eliasmith, C. (2013). How to build a brain: A neural architecture for biological cognition.
Oxford, Oxford University Press.

Elman, J. L. & McRae, K. (2019). A model of event knowledge. Psychological Review,
126(2), 252-291.

Ferreira, V. S. (2019). A mechanistic framework for explaining audience design in
language production. Annual Review of Psychology, 70(1).

142

http://www.cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSCollection.html
http://www.cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSCollection.html
http://www.cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSCollection.html

Ferreira, V. S,, Slevc, L. R. & Rogers, E. S. (2005). How do speakers avoid ambiguous
linguistic expressions? Cognition, 96(3), 263-284.

Fodor, J. A. (1979). The language of thought. Cambridge, Mass, Harvard Univ. Press.

Fodor, J. A. (1987). Psychosemantics: The problem of meaning in the philosophy of mind.
Cambridge, Mass, MIT Press.

Franklin, N. T., Norman, K. A., Ranganath, C., Zacks, J. M. & Gershman, S. J. (2020).
Structured event memory: A neuro-symbolic model of event cognition. Psycho-
logical Review, 127(3), 327-361.

Frege, G. (1879). Begriffsschrift, eine der arithmetischen nachgebildete formelsprache des
reinen denkens. Nebert.

Freuder, E. C. & Mackworth, A. K. (2006). Constraint satisfaction: An emerging
paradigm. In Foundations of artificial intelligence (pp. 13-27). Elsevier.

Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews
Neuroscience, 11(2), 127-138.

Fukumura, K. & Gompel, R. P. G. v. (2012). Producing pronouns and definite noun
phrases: Do speakers use the addressee’s discourse model? Cognitive Science,
36(7), 1289-1311.

Fukumura, K. & van Gompel, R. P. G. (2010). Choosing anaphoric expressions: Do
people take into account likelihood of reference? Journal of Memory and Language,
62(1), 52-66.

Fukumura, K., van Gompel, R. P. G., Harley, T. & Pickering, M. J. (2011). How does
similarity-based interference affect the choice of referring expression? Journal of
Memory and Language, 65(3), 331-344.

Garvey, C. & Caramazza, A. (1974). Implicit causality in verbs. Linguistic Inquiry, 5(3),
459-464.

Glenberg, A. M. & Gallese, V. (2012). Action-based language: A theory of language
acquisition, comprehension, and production. Cortex, 48(7), 905-922.

Grice, H. P. (1967). Logic and conversation. In P. Grice (Ed.), Studies in the way of words
(pp. 41-58). Harvard University Press.

Grosz, B. ., Weinstein, S. & Joshi, A. K. (1995). Centering: A framework for modeling
the local coherence of discourse. Comput. Linguist., 21(2), 203-225.

Gumbsch, C., Butz, M. V. & Martius, G. (2019). Autonomous identification and goal-
directed invocation of event-predictive behavioral primitives. arXiv:1902.09948
[cs]arxiv 1902.09948.

Gumbsch, C., Otte, S. & Butz, M. V. (2017). A computational model for the dynamical
learning of event taxonomies. In A. Papafragou, D. Grodner, D. Mirman &
J. Trueswell (Eds.), Proceedings of the 39th annual conference of the cognitive science
society (pp. 452-457). London, Cognitive Science Society.

Hampe, B. (2005). Image schemas in cognitive linguistics: Introduction. In B. Hampe
& J. E. Grady (Eds.), From perception to meaning (pp. 1-14). Berlin, New York,
Mouton de Gruyter.

143

Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena,
42(1), 335-346.

Hartshorne, J. K., O’'Donnell, T. J. & Tenenbaum, J. B. (2015). The causes and conse-
quences explicit in verbs. Language, cognition and neuroscience, 30(6), 716-734.

Hayes, M. H. (1996). Statistical digital signal processing and modeling. New York, John
Wiley & Sons.

Haywood, S. L., Pickering, M. J. & Branigan, H. P. (2005). Do speakers avoid ambiguities
during dialogue? Psychological Science, 16(5), 362-366.

Hohwy, J. (2013). The predictive mind. Oxford, New York, Oxford University Press.

Jackendoff, R. (2002). Foundations of language. Oxford University Press.

Jaeger, F. T. (2010). Redundancy and reduction: Speakers manage syntactic information
density. Cognitive Psychology, 61(1), 23-62.

Johnson-Laird, P. (2008). How we reason. Oxford University Press.

Kaup, B., Liidtke, J. & Maienborn, C. (2010). “The drawer is still closed’: Simulating
past and future actions when processing sentences that describe a state. Brain
and Language, 112(3), 159-166.

Kingsbury, D. (1968). Manipulating the amount of information obtained from a person giving
directions (Doctoral dissertation). Harvard University.

Kocijan, V., Cretu, A.-M., Camburu, O.-M., Yordanov, Y. & Lukasiewicz, T. (2019). A
surprisingly robust trick for the winograd schema challenge, In Proceedings
of the 57th annual meeting of the association for computational linguistics, acl 2019,
florence, italy, july 28 - august 2, 2019. 57th Annual Meeting of the Association for
Computational Linguistics, ACL, Association for Computational Linguistics.

Korte, B. & Vygen, J. (2018). Kombinatorische optimierung: Theorie und algorithmen. Berlin,
Heidelberg, Springer Berlin Heidelberg.

Kuperberg, G. R. & Jaeger, T. F. (2016). What do we mean by prediction in language
comprehension? Language, Cognition and Neuroscience, 31(1), 32-59.

Kurby, C. A. & Zacks, J. M. (2008). Segmentation in the perception and memory of
events. Trends in cognitive sciences, 12(2), 72-79.

Kurumada, C. & Jaeger, T. F. (2015). Communicative efficiency in language production:
Optional case-marking in japanese. Journal of Memory and Language, 83, 152-178.

Lakoff, G. (1987). Women, fire, and dangerous things: What categories reveal about the mind.
Chicago, University of Chicago Press.

Lane, L. W., Groisman, M. & Ferreira, V. S. (2006). Don’t talk about pink elephants!:
Speakers’ control over leaking private information during language production.
Psychological Science, 17(4), 273-277.

Lee, H. (2015). Information structure, topic predictability and gradients in korean case
ellipsis: A probabilistic account. Linguistic Research, 32(3), 749-771.

Lettvin,]., Maturana, H., McCulloch, W. & Pitts, W. (1959). What the frog’s eye tells the
frog’s brain. Proceedings of the IRE, 47(11), 1940-1951.

144

Levesque, H. J., Davis, E. & Morgenstern, L. (2012). The winograd schema challenge,
In Proceedings of the thirteenth international conference on principles of knowledge
representation and reasoning, Rome, Italy, AAAI Press.

Levinson, S. C. (2000). Presumptive meanings: The theory of generalized conversational
implicature. The MIT Press.

Lin, S.-C., Yang, J.-H., Nogueira, R., Tsai, M.-F., Wang, C.-]. & Lin, J. (2020). TTTTTack-
ling WinoGrande schemas. arXiv:2003.08380 [cs]arxiv 2003.08380.

Liu, Q., Jiang, H., Ling, Z.-H., Zhu, X., Wei, S. & Hu, Y. (2017). Combing context
and commonsense knowledge through neural networks for solving winograd
schema problems, In 2017 aaai spring symposium series.

Lobner, S. (2012). Semantik: Eine einfiihrung. Berlin [u.a., de Gruyter.

Marr, D. (2010). Vision: A computational investigation into the human representation and
processing of visual information. The MIT Press.

Peng, H., Khashabi, D. & Roth, D. (2015). Solving hard coreference problems, In
Proceedings of the 2015 conference of the north american chapter of the association
for computational linguistics: Human language technologies, Denver, Colorado,
Association for Computational Linguistics.

Piantadosi, S. T., Tily, H. & Gibson, E. (2012). The communicative function of ambiguity
in language. Cognition, 122(3), 280-291.

Rao, R. P. N. & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional
interpretation of some extra-classical receptive-field effects. Nature Neuroscience,
2(1), 79-87.

Rescorla, M. (2019). The language of thought hypothesis. In E. N. Zalta (Ed.), The
stanford encyclopedia of philosophy (Summer 2019). Metaphysics Research Lab,
Stanford University.

Rescorla, M. (2020). The computational theory of mind. In E. N. Zalta (Ed.), The stanford
encyclopedia of philosophy (Spring 2020). Metaphysics Research Lab, Stanford
University.

Rohde, H. & Kehler, A. (2014). Grammatical and information-structural influences on
pronoun production. Language, Cognition and Neuroscience, 29(8), 912-927.

Rosa, E. C. & Arnold, J. E. (2017). Predictability affects production: Thematic roles can
affect reference form selection. Journal of Memory and Language, 94, 43—60.

Russell, S. J., Norvig, P. & Davis, E. (2010). Artificial intelligence: A modern approach (3rd
ed). Upper Saddle River, Prentice Hall.

Sakaguchi, K., Bras, R. L., Bhagavatula, C. & Choi, Y. (2019). WinoGrande: An adver-
sarial winograd schema challenge at scale.

Schank, R. C. & Abelson, R. P. (1977). Scripts, plans, goals, and understanding: An inquiry
into human knowledge structures. Hillsdale, N.J., L. Erlbaum Associates.
Schnoebelen, T. & Kuperman, V. (2010). Using amazon mechanical turk for linguistic

research. Psihologija, 43(4), 441-464.

145

Scholz, B. C., Pelletier, E. J. & Pullum, G. K. (2020). Philosophy of linguistics. In E. N.
Zalta (Ed.), The stanford encyclopedia of philosophy (Summer 2020). Metaphysics
Research Lab, Stanford University.

Schrodt, F.,, Kneissler, J., Ehrenfeld, S. & Butz, M. V. (2017). Mario becomes cognitive.
Topics in Cognitive Science, 9(2), 343-373.

Schrodt, F., Rohm, Y. & Butz, M. V. (2017). An event-schematic, cooperative, cognitive
architecture plays super mario. In R. Chrisley, V. C. Miiller, Y. Sandamirskaya
& M. Vincze (Eds.), Proceedings of the EUCognition meeting (european society for
cognitive systems) “cognitive robot architectures” (pp. 10-15).

Schiiller, P. (2014). Tackling winograd schemas by formalizing relevance theory in
knowledge graphs, In Fourteenth international conference on the principles of
knowledge representation and reasoning.

Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(3),
417-424.

Sennet, A. (2016). Ambiguity. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy
(Spring 2016). Metaphysics Research Lab, Stanford University.

Sharma, A., Vo, N. H., Gaur, S. & Baral, C. (2015). An approach to solve winograd
schema challenge using automatically extracted commonsense knowledge, In
2015 AAAI spring symposium series.

Steels, L. (2008). The symbol grounding problem has been solved. so what’s next? In
M. d. Vega, A. M. Glenberg & A. C. Graesser (Eds.), Symbols and embodiment:
Debates on meaning and cognition. Oxford ; New York, Oxford University Press.

Stegemann-Philipps, C. & Butz, M. V. (2021). Learn it first: Grounding language in
compositional event-predictive encodings. In 2021 IEEE International Conference
on Development and Learning (ICDL) (pp. 1-6).

Stegemann-Philipps, C., Butz, M. V., Winkler, S. & Achimova, A. (2021). Speakers
use more informative referring expressions to describe surprising events. In
Proceedings of the 43rd annual meeting of the cognitive science society.

Storks, S., Gao, Q. & Chai, J. Y. (2019). Commonsense reasoning for natural language
understanding: A survey of benchmarks, resources, and approaches. CoRR,
abs/1904.01172arXiv 1904.01172. http:/ /arxiv.org/abs/1904.01172

Vonk, J. M., Higby, E. & Obler, L. K. (2018). Comprehension in older adult populations:
Healthy aging, aphasia, and dementia. In E. M. Fernandez & H. S. Cairns (Eds.),
The handbook of psycholinguistics: Edited by eva m. fernandez and helen smith cairns
(pp. 240-268). Hoboken, NJ Oxford, Wiley Blackwell.

Wasow, T. (2015). Ambiguity avoidance is overrated. In S. Winkler (Ed.), Ambiguity:
Language and communication (p. 29).

Wasow, T., Perfors, A. & Beaver, D. (2005). The puzzle of ambiguity. Morphology and the
web of grammar: Essays in memory of Steven G. Lapointe, 265-282.

146

http://arxiv.org/abs/1904.01172

Wharton, C. & Kintsch, W. (1991). An overview of construction-integration model:
A theory of comprehension as a foundation for a new cognitive architecture.
ACM SIGART Bulletin, 2(4), 169-173.

Wiese, W. & Metzinger, T. K. (2017). Vanilla PP for philosophers: A primer on predictive
processing. In T. K. Metzinger & W. Wiese (Eds.), Philosophy and predictive
processing. Frankfurt am Main, MIND Group.

Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review,
9(4), 625-636.

Winkler, S. (2015). Exploring ambiguity and the ambiguity model from a transdisci-
plinary perspective. In S. Winkler (Ed.), Ambiguity: Language and communication
(pp- 1-26).

Winograd, T. (1972). Understanding natural language. Cognitive Psychology, 3(1), 1-191.

Winter-Froemel, E. & Zirker, A. (2015). Ambiguity in speaker-hearer-interaction: A
parameter-based model of analysis. In S. Winkler (Ed.), Ambiguity. Berlin,
Miinchen, Boston, DE GRUYTER.

Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S. & Reynolds, J. R. (2007). Event
perception: A mind/brain perspective. Psychological bulletin, 133(2), 273-293.

Zacks,]. M. & Tversky, B. (2001). Event structure in perception and conception. Psycho-
logical Bulletin, 127(1), 3-21.

Zipf, G. (1950). Human behavior and the principle of least effort. Social Forces, 28(3),
340-341.

Zwaan, R. A. (2003). The immersed experiencer: Toward an embodied theory of
language comprehension. In Psychology of learning and motivation (pp. 35-62).
Elsevier.

Zwaan, R. A. & Radvansky, G. A. (1998). Situation models in language comprehension
and memory. Psychological Bulletin, 123(2), 162-185.

147

Appendix A Reference to Implemented BrainControl Code

The code used in this work can be found in a private github repository within the
cognitive modeling group’s github area. It can be reached via github.com/ Cog-
nitiveModeling/ BrainControl-Research (without spaces). The repository contains
several branches; the code used in this work is stored in the branch trymerge. While
there were adjustments made to original BrainControl files, LEARNA consists of
two packages, namely braincontrolAl.eventSequencing for the EPS and the ISS and
braincontrolAl.language for the LPS.

To run the program, follow the description in the readme file of the public Brain-
Control repository: github.com/ CognitiveModeling/ BrainControl (without spaces).
In case of technical difficulties, contact christian.stegemann @ uni-tuebingen.de

Appendix B Vocabulary in final evaluation

Table 22: Mappings for nouns known to the system at the time of final evaluation

Nouns Mapped Set

light bulb BULB_FLOWER

arrow BULLET_WILLY

box IRON_BLOCK1, MOVABLE_BOX

cell CELL_LONG_BLUE, CELL_SPIKES_RED

virus GREEN_VIRUS, RED_VIRUS

red box MOVABLE_BOX

platform TOP_CENTER_WRENCH_HEAD, TOP_RIGHT_-
WRENCH_HEAD, TOP_LEFT_WRENCH_HEAD

green arrow BULLET_WILLY

robot CLARK, TALKING_ROBOT, PETER

ball VIRUS_BALL

red square MOVABLE_BOX

peter PETER

block SIMPLE_BLOCK1

virus ball VIRUS_BALL

blue cell CELL_LONG_BLUE

green block IRON_BLOCK1

red cell CELL_SPIKES_RED

red virus RED_VIRUS

green virus GREEN_VIRUS

bulb BULB_FLOWER

148

blue block
it

grey robot
bullet willy
wrench

she

clark

blue robot
green box
ground
blue square
wall

he

SIMPLE_BLOCK1

NONE

CLARK, TALKING_ROBOT
BULLET_WILLY

WRENCH

NONE

CLARK, TALKING_ROBOT
PETER

IRON_BLOCK1
TOP_DIRT_BORDER_GROUND
SIMPLE_BLOCK1
RIGHT_DIRT_BORDER, LEFT_DIRT_BORDER
NONE

Table 23: Mappings for verbs known to the system at the time of final evaluation

Verbs Mapped Set

flies 112, 134

flees 475,476,477, 699, 481, 482

falls 275,245,224, 225,229, 283

breaks 1811, 1799, 2068, 2056, 1807, 1804, 2060

attacks 474,377, 366, 367, 380, 372, 384, 450

moves 88, 89, 122,124, 90, 91, 119, 120

rests 99, 44, 14, 26, 38, 193, 262, 110, 199, 2, 268, 8, 81, 50, 20, 86, 32,
76

pushes 365, 370, 294, 2859, 382, 295, 296

consumes 551, 531, 546, 529

Table 24: Mappings for prepositions known to the system at the time of final evaluation

Prepositions Mapped Set
from 24,14, 16, 8
(direct object) 23,2,4,18,7

to

11,12, 15,19

149

on 4

Table 25: Mappings for conjunctions known to the system at the time of final evaluation

Conjunctions Mapped Set
after, when, if after

while during

and, before before

Appendix C Details of Production Experiment

To save space, all data relevant to the experiment was moved to a private github
repository within the cognitive modeling group’s github area. It can be reached via
github.com/ CognitiveModeling/ 2020_CSt_ProductionExperiment (without spaces).
To request access, please send an email to christian.stegemann @ uni-tuebingen.de.

The repository contains the experiment as it was seen by participants as well as the
raw data (except for audio files) and the script used for analysis.

Appendix D Models Learned By Final Implemented System

Table 26: Known predictive models at the time of final evaluation

S

Predictive Model

P(x)=0
P(vx)=0
P(y)=0
P(vy)=0
P(h)=h*1
P(e)=0
P(vx)=vx*-0.015+Mxdir*-0.151+Mvx*-1.754+Mvy*-1.928+Mact*0.202+h*-0.087+€*0.085
P(e)=0.025+Mvx*-0.03+Mvy*0.006+Mact*-0.3+e*1
P(vx)=vx*-0.233+Mxdir*-0.084+Mvx*1.304+Mact*0.577+h*0.145+e*0.085

0 P(vx)=vx*0.366+vy*-0.022+Mxdir*1.588+Mvx*-0.088+Mvy*-0.689+Mact*-5.897+h*-
0.026+€e*0.091

11 P(vx)=Mvx*-2.25

= 0 0O Ul W -

150

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

P(vx)=vx*-0.009+Mxdir*-0.054+Mvx*2.583+Mvy*2.231+Mact*-0.235+h*0.004+e*-0.005
P(vx)=vx*0.001+vy*0+Mxdir*-0.005+Mvx*1.361+Mact*0.004
P(vx)=0.028+vx*0+vy*-0+Mxdir*-0.001+Mvx*-1.363+Mact*-0.011+h*-0+e*0
P(e)=Mvy*0+Mact*0.001+e*1
P(e)=0.014+vx*-0.001+Mxdir*0.008+Mvx*-0.042+Mvy*0.024+Mact*0.211+h*0+e*1
P(vx)=Mvx*-4.5
P(vx)=vx*-0.018+Mxdir*0.198+Mvx*2.791+Mvy*2.269+Mact*0.176+h*0.01+e*-0.006
P(vx)=vx*0.019+Mxdir*0.177+Mvx*3.103+Mvy*2.176+Mact*-0.787+h*-0.009+¢*0.002
P(vx)=vx*0.04+Mxdir*0.202+Mvx*3.907+Mvy*1.929+Mact*-2.446+h*0.021+e*0.021
P(h)=Mact*0.001
P(vx)=vx*0.016+Mxdir*2.592+Mvx*2.075+Mact*-0.182+h*-0.005+e*-0.03
P(vx)=0.031+vx*0.002+Mxdir*0.005+Mvx*-1.36+Mact*-0.006-+h*-0+e*0
P(vx)=Mvx*4.5

P(vx)=Mvx*2.25
P(vx)=0.022+vx*0.001+Mxdir*-0.006+Mvx*-1.362+Mact*-0+h*-0.001+e*0
P(vx)=vx*0.003+Mxdir*0.003+Mvx*1.359+Mact*-0.011+h*-0+e*0
P(vx)=0.022+vx*0.003+Mxdir*-0.002+Mvx*-1.36+Mact*-0.004+h*0+e*-0
P(vx)=vx*0.004+Mxdir*-0.001+Mvx*1.357+Mact*-0.003

P(vx)=0.046+vx*0.001+vy*-0.202+Mxdir*-0.044+Mvx*-1.351+Mact*0.068+h*-0.003+e*-0.009

P(h)=vx*0.004+Mxdir*-0.154+Mvx*0.067+Mact*0.449+h*1+e*0.015
P(e)=0.684+vx*-0.005+Mxdir*0.146+Mvx*-0.035+Mact*-0.179+h*-0.167+e*1.081
P(vy)=0.276+vx*-0.001+Mxdir*0.001+Mvx*0+Mact*0.002+h*0+e*0
P(vx)=vx*0.514+vy*0.11+Mxdir*-0.038+Mvx*-0.09+Mact*0.55+h*-0.028+e*-0.054
P(vy)=0.28+vy*1

P(vy)=0.015+vy*1+Mxdir*0+Mvx*0+Mact*-0+h*0.043+e*-0
P(vx)=0.005+vx*0.002+vy*-0.001+Mxdir*-0.007+Mvx*-1.36+Mact*-0.011+h*0.001+€*0
P(vx)=vx*0.95

P(vx)=0.757+vx*0.291+vy*-0.222+Mxdir*-0.028+Mvx*0.941+Mact*-0.075+h*-0.05+e*-0.043

P(vy)=0.271+vx*0.001+vy*1+Mvx*-0+e*0.001
P(vy)=0.262+vx*-0.007+vy*1.002+Mxdir*-0.003+Mvx*0.001+Mact*0.001+h*0+e*-0.001
P(vx)=vx*0.003+Mxdir*0.006+Mvx*1.344+Mact*0.002+h*0.011+e*0.024
P(h)=vx*-0.016+vy*-0.057+Mxdir*-0.009+Mvx*0.146+Mact*0.026+h*1.027+e*-0.001
P(vx)=Mxdir*0.096+Mvx*-0.008+Mact*-0.024+e*-0.017
P(vx)=0.447+vx*-0.003+vy*-0.172+h*0.07
P(h)=vx*-0.037+vy*0.017+Mxdir*-0.027+Mvx*0.022+Mact*-0.006+h*1.014+e*-0.004
P(vx)=0
P(vx)=vx*0.005+vy*-0.168+Mxdir*0.005+Mvx*0.012+Mact*0.014+h*0.395+e*0.02
P(h)=vy*0.001+h*1

P(vx)=2.929+vx*0.008+vy*0.142+h*-0.34
P(vx)=1.181+vx*0.001+Mxdir*0.198+Mvx*0.061+Mact*0.068+h*0.002+€*0.003
P(vx)=0.2+vx*0.004+Mxdir*0.131+Mvx*1.203+Mact*-0.722+h*0+e*-0.003
P(e)=0.026+vx*-0.003+Mxdir*0.016+Mvx*-0.067+Mact*0.163+h*0.011+e*0.992
P(h)=vx*0.262+vy*0.036+Mact*0.073+h*0.987+e*-0.007

P(vx)=1.5
P(h)=0.155+vx*0.012+vy*0.008+Mxdir*-0.25+Mvx*0.187+Mact*0.36+h*0.855+e*0.029
P(e)=0.028+vx*0.002+Mxdir*-0.002+Mvx*-0.051 +Mact*0.198+h*0+e*0.999
P(h)=vx*0.126+vy*0.02+Mxdir*0.065+Mvx*0.015+Mact*0.074+h*1.054+e*0.004
P(vx)=Mvx*-1.35

P(vx)=Mvx*1.35

P(vx)=1.2

P(h)=vx*-0.004+Mxdir*0.037+Mvx*0.328+Mact*-0.168+h*1.011+e*0.026

151

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

P(h)=vx*0.002+Mxdir*0.048+Mvx*0.343+Mact*0.057+h*1.022+e*0.003
P(h)=vx*0.001+Mxdir*0.026+Mvx*-0.028+Mact*-0.051+h*1.017+e*-0.003
P(h)=Mxdir*0.02+Mvx*0.402+Mact*-0.08+h*1.007+e*0.015
P(h)=vx*-0.003+Mxdir*0.022+Mvx*0.027+Mact*0.083+h*1.011+e*0.002
P(h)=vx*-0.004+Mxdir*0.021+Mvx*-0.005+Mact*0.056+h*1.009+e*0.004
P(vx)=Mvx*1.8

P(vx)=Mvx*-1.8
P(h)=vx*-0.015+Mxdir*0.024+Mvx*0.008+Mact*0.032+h*1.008+¢e*-0
P(h)=vx*-0.009+Mxdir*-0.003+Mvx*0.051+Mact*0.321+h*0.99+e*0.033
P(h)=vx*-0.001+vy*0.002+Mxdir*0.008+Mvx*0.038+Mact*0.02+h*1.033+e*-0.002
P(e)=0.025+Mxdir*0.002+Mvx*-0.052+Mact*0.2+e*1
P(h)=1.531+vx*-0.005+Mxdir*-0.001+Mvx*0.003+Mact*0.011+h*-0.048+¢e*-0.001
P(h)=vx*-0.015+Mxdir*0.166+Mvx*0.003+Mact*-0.052+h*0.948+e*0.077
P(h)=vx*-0.001+Mxdir*-0.166+Mvx*0.024+Mact*0.447+h*1.001+e*0.011
P(h)=vx*-0+Mxdir*0.003+Mvx*-0.004+Mact*0.207+h*1
P(h)=vy*-0+Mxdir*0.004+Mvx*0.149+Mact*0.416+h*0.997+€*0.019
P(h)=0.207+vx*-0.001+vy*0+Mxdir*0.001+Mvx*-0.001+Mact*0.202+h*0.985+e*0
P(h)=vx*0.01+Mxdir*-0.009+Mvx*0.269+Mact*-0.452+h*0.992+e*0.012
P(h)=Mxdir*0.001+Mvx*0.11+Mact*0.68+h*1.009+e*0.003
P(h)=vx*-0.002+Mvx*0.583+Mact*-0.466+h*1.008+e*0.004
P(h)=vx*0.001+Mxdir*0.006+Mvx*0.928+Mact*0.01+h*1.009+e*0.004
P(h)=vx*-0.007+Mxdir*0.014+Mvx*0.028+Mact*-0.107+h*1.01+e*-0.001
P(h)=vx*0.005+Mxdir*-0.008+Mvx*-0.017+Mact*0.047+h*1.024+e*-0.012
P(h)=vx*0.04+Mxdir*-0+Mvx*0.094+Mact*-0.102+h*1.019+e*0.004
P(h)=vx*0.001+Mxdir*-0.001+Mvx*0.026+Mact*-0.018+h*0.972+e*0
P(h)=vx*-0.045+vy*-0.002+Mxdir*0.076+Mvx*0.211+Mact*0.884+h*0.972+e*0.118
P(h)=0.032+vx*0.011+Mxdir*0.01+Mvx*0.227+Mact*0.155+h*1.01+e*-0.028
P(h)=vx*0.001+Mxdir*0.011+Mvx*0.295+Mact*0.056+h*1.014+e*-0.015
P(h)=Mxdir*-0.002+Mvx*0.308+Mact*-0.064+h*1.015+e*-0.014
P(h)=0.14+Mxdir*-0+Mvx*-0.617+Mact*0.01+h*0.995+e*-0.017
P(h)=0.469+vx*0+Mxdir*-0.109+Mvx*0.103+Mact*-0.078+h*1.003+¢e*-0.066
P(h)=vx*0+Mxdir*0.014+Mvx*0.199+Mact*0.011+h*1.012+e*-0.004
P(h)=vx*-0+Mxdir*-0.002+Mvx*0.036+Mact*0.249+h*1.008+e*-0.001
P(h)=vx*0.019+Mxdir*-0.244+Mvx*0.084+Mact*0.477+h*1+e*0.013
P(h)=0.339+vx*-0.088+Mxdir*0.064+Mvx*0.201+Mact*0.078+h*0.996+e*-0.037
P(h)=vx*0.024+Mxdir*0.025+Mvx*0.09+Mact*-0.267+h*1.01+e*-0
P(h)=vx*0.016+Mxdir*-0.014+Mvx*0.006+Mact*-0.018+h*1.007+e*0.017
P(h)=vx*0.024+Mxdir*0.015+Mvx*0.074+Mact*-0.409+h*1.006+e*0.002
P(h)=vx*-0.005+Mxdir*-0.301+Mvx*0.314+Mact*0.01+h*1.016+e*-0.02
P(h)=vx*-0.007+Mxdir*0.038+Mvx*0.045+Mact*0.331+h*1.012+e*-0.006
P(h)=vx*0.003+Mvx*0.283+Mact*1.248+h*1.021+e*-0.016
P(h)=Mxdir*-0.009+Mvx*0.159+Mact*0.082+h*1.019+¢e*-0.004
P(h)=Mxdir*-0.003+Mvx*0.283+Mact*0.009+h*1.021+e*-0.001
P(h)=Mxdir*-0+Mvx*0.256+Mact*0.032+h*1.017+e*-0.001
P(h)=vx*-0+Mxdir*-0.005+Mvx*-0.025+Mact*-0.032+h*1.012+e*-0.001
P(h)=vx*0.001+Mxdir*-0.001+Mvx*0.032+Mact*-0.009+h*1.008+e*-0.007
P(h)=vx*0.004+Mxdir*-0.021+Mvx*0.02+Mact*0.034+h*1.002
P(h)=vx*-0.018+Mxdir*0.003+Mvx*0.052+Mact*0.283+h*0.998+¢*0.013
P(h)=0+vx*0.025+Mxdir*-0.036+Mvx*0.079+Mact*0.246+h*1.001+e*-0.008
P(h)=vx*-0+Mxdir*-0.062+Mvx*-0.004+Mact*0.219+h*1.002+e*0.016
P(h)=7.668+vx*-0.015+Mxdir*-0.071+Mvx*0.026+Mact*0.535+h*0.477+€*0.075

152

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

P(h)=0.15+vx*0.032+Mxdir*-0.058+Mvx*0.289+Mact*-1.089+h*0.998+¢*-0.031
P(h)=vx*0.041+Mxdir*-0.089+Mvx*0.458+Mact*-0.287+h*1.005+¢*0.033
P(h)=0.005+vx*0.01+Mxdir*0.012+Mvx*0.035+Mact*0.241+h*1.004+e*-0.013
P(h)=vx*-0.023+Mxdir*-0.02+Mvx*0.031+Mact*-0.248+h*1.006+e*-0.007
P(h)=vx*0.004+Mxdir*-0.033+Mvx*0.242+Mact*-0.159+h*1.015+e*0.024
P(h)=Mxdir*-0.012+Mvx*0.075+Mact*0.039+h*1.007+¢*0.013
P(h)=vx*-0.006+Mxdir*-0.015+Mvx*0.005+Mact*-0.034+h*1.006+e*0.013
P(h)=vx*-0+Mxdir*-0.046+Mvx*-0.005+Mact*0.012+h*1.002+e*0.002
P(h)=vx*-0.002+vy*-0.001+Mact*0.454+h*0.995+¢*0.017
P(h)=vx*-0.001+Mxdir*0.005+Mvx*0.058+Mact*0.127+h*1.003+e*0.005
P(h)=vx*0.062+Mxdir*0.018+Mvx*0.213+Mact*0.285+h*1.004+e*-0.008
P(h)=vx*-0.035+Mxdir*-0.005+Mvx*0.43+Mact*1.231+h*1.088+e*0.097
P(h)=0.131+vx*-0.01+Mxdir*0.015+Mvx*0.272+Mact*0.645+h*0.989+e*-0.013
P(h)=Mxdir*0+Mvx*-0.439+Mact*0.043+h*1.005+e*-0.002
P(h)=vx*0.001+Mxdir*-0.037+Mvx*-0.272+Mact*-0.055+h*1.004+e*0.001
P(h)=vx*-0+Mxdir*0.003+Mvx*0.52+Mact*0.035+h*1.002+e*-0.001
P(h)=vx*0.005+Mxdir*-0.029+Mvx*0.025+Mact*0.091+h*1.007+e*0.003
P(h)=9.727+vx*0.004+Mxdir*-0.009+Mvx*0.02+Mact*-0.095+h*0.277+¢*0.006
P(h)=vx*-0.006+Mxdir*0.005+Mvx*0.084+Mact*0.146+h*1.009+€*0.001
P(h)=0.001+vx*-0.046+Mxdir*-0.011+Mvx*0.153+Mact*-0.145+h*1.004+e*-0.014
P(h)=vx*0.004+Mxdir*-0.001+Mvx*0.081+Mact*-0.06+h*1.004+e*-0.001
P(h)=vx*0.01+Mxdir*0.003+Mvx*0.207+Mact*-0.207+h*1.006+¢*0.009
P(h)=vx*0+Mxdir*0.032+Mvx*0.688+Mact*0.182+h*1.003+e*-0.004
P(h)=vx*0.001+Mxdir*0.013+Mvx*0.569+Mact*-0.244+h*1.015+€*0.004
P(h)=vx*-0+Mxdir*0.018+Mvx*-0.674+Mact*0.062+h*1.014+e*-0.001
P(h)=vx*-0.005+Mxdir*0.016+Mvx*0.032+Mact*-0.051+h*1.012+e*-0.001
P(h)=vx*0+Mxdir*0.055+Mvx*-0.005+Mact*-0.01+h*1+e*0
P(h)=0+vx*-0.019+vy*0+Mxdir*-0.026+Mvx*0.127+Mact*0.812+h*0.867+e*0.304
P(h)=2.42+vx*0.017+Mxdir*0.021+Mvx*0.081+Mact*0.368+h*0.682+e*0.165
P(h)=0.107+Mxdir*0+Mvx*-0.001+Mact*0.152+h*0.969+e*0.002
P(h)=vx*0+Mxdir*-0+Mvx*-0.009+Mact*-0.034+h*0.997+e*-0.004
P(vx)=vx*-0.001+h*-0.073+e*-0.019
P(h)=0.156+vx*0.012+Mxdir*-0.035+Mvx*0.461+Mact*0.062+h*0.985+e*0.001
P(h)=Mxdir*0.002+Mvx*-0.347+Mact*0.063+h*1.013+e*0.009
P(h)=vx*0.006+Mxdir*-0.01+Mvx*0.013+Mact*0.011+h*1.011+e*0.012
P(h)=vx*0.011+Mxdir*-0.002+Mvx*0.017+Mact*0.02+h*1.01+€*0.002
P(h)=vx*-0.033+vy*0.002+Mxdir*0.115+Mvx*0.125+Mact*0.104+h*1.019+e*0.034
P(h)=6.784+vx*0.001+Mxdir*-0.045+Mvx*0.031+Mact*-0.14+h*0.355+e*0.2
P(h)=vx*0.006+Mxdir*0.185+Mvx*0.505+Mact*0.453+h*0.977+e*0.024
P(h)=vx*-0.034+Mxdir*0.054+Mvx*0.555+Mact*0.398+h*0.997+€*0.002
P(h)=0
P(h)=0.1+vx*0.033+Mxdir*-0.049+Mvx*0.313+Mact*-0.587+h*0.998+e*-0.015
P(h)=vx*0+Mxdir*-0.055+Mvx*-0.257+Mact*0.062+h*1.016+e*-0.01
P(h)=vx*0+Mxdir*-0.013+Mvx*0.046+Mact*0.135+h*1.013+e*-0.005
P(h)=vx*-0.009+Mxdir*0.019+Mvx*0.02+Mact*0.007+h*1.007+e*0.011
P(h)=vx*-0.029+Mxdir*0.215+Mvx*0.375+Mact*0.204+h*1.001+e*0.001
P(h)=vx*-0.09+Mxdir*-0.114+Mvx*0.265+Mact*0.263+h*0.996+e*0.019
P(h)=8.526+vx*-0.001+Mxdir*-0.028+Mvx*0.019+Mact*-0.468+h*0.296+e*-0.13
P(h)=0.085+vx*0+Mxdir*-0.001+Mvx*-0+Mact*0.006+h*0.992
P(h)=7.215+vx*-0+Mxdir*-0.515+Mvx*0.034+Mact*-0.204+h*0.3+e*0.101
P(h)=vx*-0.011+Mxdir*-0.047+Mvx*0+Mact*0.009+h*0.992+e*0.012

153

165 P(h)=vx*-0.003+Mxdir*-0.001+Mvx*0.341+Mact*-0.185+h*1.009+e*0.014
166 P(h)=vx*-0.001+Mxdir*-0.039+Mvx*-0.003+Mact*-0.012+h*1.011+e*0.016
167 P(h)=vx*-0.001+Mxdir*0.005+Mvx*0.032+Mact*-0+h*1
168 P(h)=8.791+vx*-0.004+Mxdir*0.006+Mvx*0.015+Mact*-0.223+h*0.2+e*0.002
169 P(h)=vx*0.035+vy*-0.002+Mxdir*0.005+Mvx*0.344+Mact*0.479+h*1.006+e*0.012
170 P(h)=9.979+vx*-0.01+Mxdir*-0.065+Mvx*0.008+Mact*-0.081+h*0.351+e*0
171 P(h)=vx*0.011+Mxdir*-0.022+Mvx*0.291+Mact*-0.114+h*1.029+e*0.009
172 P(h)=Mxdir*-0.001+Mvx*-0.265+Mact*-0.162+h*1.022+¢*0.005
173 P(h)=Mxdir*0.018+Mvx*0.052+Mact*0.005+h*1.019+e*0.002
174 P(h)=vx*-0+Mxdir*-0.027+Mvx*0.015+Mact*0.001+h*1
175 P(h)=vx*-0.021+Mxdir*-0.158+Mvx*0.474+Mact*0.263+h*0.999+e*0.051
176 P(h)=8.18+vx*0.013+Mxdir*-0.024+Mvx*0.057+Mact*0.217+h*0.357+e*0.218
177 P(h)=vx*-0+Mxdir*0.038+Mvx*0.014+Mact*0.201+h*1.007+e*-0.001
178 P(h)=5.133+vx*0.026+Mxdir*-0.087+Mvx*0.041+Mact*-0.227+h*0.281+e*0.839
179 P(h)=vx*0.007+Mxdir*0.01+Mvx*0.282+Mact*0.444+h*1.012+e*0
180 P(h)=Mxdir*0+Mvx*0.067+Mact*-0.006+h*1.017+e*-0.015
181 P(h)=Mxdir*0.01+Mvx*1.028+Mact*-0.064+h*1.013+e*-0.002
182 P(h)=0.105+vx*-0.006+Mxdir*0.025+Mvx*0.339+Mact*0.074+h*1.008+e*-0.033
183 P(h)=vx*0.033+Mxdir*-0.232+Mvx*-0.048+Mact*-0.183+h*1.023+e*0.055
184 P(h)=0.761+vx*0.024+Mxdir*0.107+Mvx*0.031+Mact*0.317+h*0.855+¢*0.113
185 P(h)=vx*0.002+Mxdir*-0.013+Mvx*0.063+Mact*0.945+h*1.002+e*0.136
186 P(h)=vx*-0.011+Mxdir*0.004+Mvx*0.246+Mact*-0.293+h*1.004+e*0.01
187 P(h)=0.002+Mvx*0.38+h*1
188 P(h)=0.634+vx*0+Mxdir*-0.001+Mvx*0.001+Mact*0.005+h*0.433+e*-0
189 P(h)=vx*0.001+Mxdir*-0.135+Mvx*0.011+Mact*0.367+h*0.985+e*0.021
190 P(h)=9.113+vx*-0.001+Mxdir*0.002+Mvx*0.013+Mact*0.054+h*0.191+e*0.005
191 P(h)=3.339+vx*-0.017+Mxdir*0.074+Mvx*0.007+Mact*-0.013+h*0.553+e*0.245
192 P(h)=vx*0.042+Mxdir*-0.261+Mvx*0.38+Mact*0.421+h*0.968+¢*0.029
193 P(h)=0.01+vx*-0.005+Mxdir*-0.324+Mvx*0.314+Mact*0.18+h*0.999+e*0.002
194 P(h)=vx*0+Mxdir*0.05+Mact*-0.005+h*1
195 P(h)=6.807+vx*-0.003+Mxdir*0.14+Mvx*0.032+Mact*0.066+h*0.186+e*0.008
196 P(h)=7.706+vx*0.002+Mxdir*-0.005+Mvx*0.012+Mact*-0.146+h*0.199+e*0.002
197 P(h)=0.11+vx*-0.028+Mxdir*-0.12+Mvx*0.178+Mact*0.203+h*0.942+e*0.049
198 P(h)=h*1
199 P(h)=9.104+vx*0.004+Mxdir*-0.008+Mvx*0.016+Mact*0.102+h*0.239+e*0.006
200 P(h)=0+Mvx*0.5+Mact*0+h*1

Table 27: Known relation models at the time of final evaluation
1D Relation Model
1 distdiff: stable, touch: false
2 distdiff: decreasing, touch: false
3 distdiff: increasing, touch: false
4 distdiff: stable, touch: true, dir: BOTTOM
5 distdiff: stable, touch: true, dir: LEFT
6 distdiff: stable, touch: true, dir: RIGHT
7 distdiff: stable, touch: true, dir: OVERLAP

154

Table 28: Known relation transition models at the time of final evaluation

1D Relation Transition Model
1 from: 1, to: 1, t: 11938823
2 from: 2, to: 2, t: 2793329
3 from: 3, to: 3, t: 2942352
4 from: 4, to: 4, t: 1316310
5 from: 2, to: 1, t: 113142
6 from: 3, to: 1, t: 44829

7 from: 5, to: 5, t: 66949

8 from: 4, to: 3, t: 36109

9 from: 2, to: 3, t: 84694
10 from: 1, to: 3, t: 117186
11 from: 2, to: 6, t: 3336

12 from: 2, to: 4, t: 35517
13 from: 3, to: 2, t: 204417
14 from: 5, to: 3, t: 3432

15 from: 2, to: 5, t: 3331

16 from: 6, to: 3, t: 3447

17 from: 1, to: 2, t: 42228
18 from: 6, to: 6, t: 60825
19 from: 2, to: 7, t: 2021

20 from: 3, to: 4, t: 258

21 from: 1, to: 4, t: 422

22 from: 1, to: 6, t: 51

23 from: 7, to: 7, t: 29808
24 from: 7, to: 3, t: 1372

26 from: 1, to: 5, t: 50

28 from: 3, to: 7, t: 14

30 from: 3, to: 5, t: 22

31 from: 3, to: 6, t: 45

32 from: 5,t0: 7,t: 1

34 from: 1,to0: 7, t: 4

155

Zusammenfassung in deutscher Sprache

In dieser Arbeit wird der Zusammenhang zwischen natiirlicher Sprache und Welt-
wissen untersucht. Weltwissen bezieht sich dabei auf Wissen, das beschreibt, wie sich
Dinge in der realen Welt normalerweise verhalten. Die Arbeit startet mit einem breit
angelegten theoretischen Uberblick tiber Sprache, Ambiguitit, Bedeutung, Kognition
und Weltwissen. Dabei wird die Hypothese formuliert, dass bei der Auflosung von
Ambiguitdt und generell dem Verstehen natiirlicher Sprache sogenannte Information
Gaps, also Informationsliicken auftreten, die eine Horerin wahrend der Sprachverarbei-
tung per Inferenz schlieflen muss. Statt Ambiguitét sind Informationsliicken wahrend
der Inferenz das eigentlich Problem und fithren zu Missverstandnissen.

Die Arbeit beschreibt LEARNA, ein Computersystem, das Event-Pradiktive Struk-
turen benutzt um Weltwissen zu sammeln und anzuwenden. LEARNA enthilt au-
flerdem ein einfaches Sprachverarbeitungssystem sowie ein Inferenzsystem. Zusam-
mengenommen konnen mit diesen Systemen einfache Sétze natiirlicher Sprache als
Simulation reproduziert und in diesem Sinne verstanden werden. Insbesondere schafft
es LEARNA Ambiguitidt aufzuldsen, wo dies mithilfe von Weltwissen moglich ist.

Schliefdlich beschreibt diese Arbeit ein Experiment zu menschlicher Sprachpro-
duktion. Die Studienteilnehmer haben dabei Weltwissen tiber eine einfache Spielwelt
gelernt und anschlieflend Szenen aus dieser Spielwelt beschrieben. Die Hypothese war,
dass Beschreibungen verkiirzt werden, falls die beschriebene Szene den Erwartungen
per Weltwissen entspricht. Falls die Szene tiberraschend ist, sollte die Beschreibung
verlangert werden. Dieser Effekt konnte im Experiment nachgewiesen werden.

	Introduction
	Understanding Natural Language Is Difficult
	Winograd Schemas
	Basic Definitions for Modeling
	Deep learning approaches
	Non Deep Learning Approaches
	Transparency, Scalability and Cognitive Plausibility

	Processing Language and Ambiguity
	Meaning and Ambiguity of Isolated Sentences
	The Problem of Ambiguity
	Using Context in Comprehension
	Types of Ambiguity and World Knowledge
	Information Gaps and the Utility of Ambiguity
	Modeling Language Processing

	Meaning and World Knowledge
	Inference and Mental Simulation
	Embodiment and Grounding
	Truth Conditions and Scene Reconstructions

	Modeling World Knowledge
	Predictive Processing Accounts
	Pre-Defined Structure and Event-Predictive Cognition
	Emerging Structure

	The Model and Main Hypotheses
	Main Hypotheses

	The Event-Predictive System
	Learning and Applying Encodings
	A Computational Description of the Event Predictive System
	The Structure of Events
	Related Models of Event-Dynamics

	Implementation of the Event-Predictive System
	Sensory Information Available to the System
	Models, Predictions and Errors
	Model Updates and Surprise
	Transition Models
	Relation Models
	Summary of the Implementation
	Implementational Details

	Evaluation and Discussion of the Implementation
	Overall Error Minimization
	Learned Models
	Overcoming Limitations
	Extending Spatial Relational Encodings

	The Language Processing System
	Constructing Abstract Scene Representations
	The Lexicon Function
	Processing a Sentence

	The Inference and Simulation System
	Reconstructing a Scene Is Costly
	The Inference Mechanism
	Implementation of Simulation
	Comparing a Simulated Scene to the Requirements
	Adaptation Heuristics
	Summary

	Evaluation and Discussion of the Implementation
	Limitations
	Resolving Ambiguity
	Language and Event-Predictive Structures

	Experiment: Producing Information Gaps
	Language Production and Predictability
	The Experiment
	Experimental Setup
	Participants
	Annotating Utterances and Analysis
	Results and Discussion
	General Discussion

	Conclusion
	Appendix Reference to Implemented BrainControl Code
	Appendix Vocabulary in final evaluation
	Appendix Details of Production Experiment
	Appendix Models Learned By Final Implemented System

