
Proof-Theoretic Semantics:

Some Basic Ideas

with the manuscript

Proof-Theoretic and Constructive Consequence

Peter Schroeder-Heister
University of Tübingen

Preface

I publish here a previously unpublished manuscript, which was written during a sab-

batical in the winter semester 2002-03 and completed in February 2003. Some pas-

sages of part I and part II have found their way into the article ”Validity Concepts

in Proof-Theoretic Semantics (Synthese 148, 2006, 525-571, doi:10.1007/s11229-004-

6296-1). Attached is a manuscript of April 2003 which discusses the specific features

of proof-theoretic consequence in relation to constructive consequence in general.

Tübingen, August 2022

Peter Schroeder-Heister

Contents

Proof-Theoretic Semantics: Some Basic Ideas . 3

Proof-Theoretic and Constructive Consequence . 81

2

http://dx.doi.org/10.1007/s11229-004-6296-1
http://dx.doi.org/10.1007/s11229-004-6296-1

In this paper I describe and compare two basic approaches to what I call “proof-

theoretic semantics”. The “standard” approach, which is mainly due to Dummett

and Prawitz, attempts to give a semantics of proofs by defining what counts as a

valid proof. The second one, which is based on ideas by Hallnäs and the author,

understands proofs semantically by reading the application of certain proof rules

directly as semantical steps. Whereas the first one is a global approach, dealing

with proofs as a whole and imposing requirements on them, the second one is

local as is interprets individual proof steps without demanding from the very

beginning that a proof composed of such single steps has special features.

Contents:

Introduction

I. The background of proof-theoretic semantics

1. Gentzen’s programme and Prawitz’s inversion principle

2. Lorenzen’s operative semantics

3. The Belnap conditions and other constraints for semantical rules

4. Appendix: Gentzen-style natural deduction

II. Proof-theoretic validity

1. Normalization, computability and validity

2. Validity and computability based on elimination rules

3. Derivation structures, justifications and arguments

4. The relationship between computability, validity and normalizability: counterex-
amples

5. Logical consequence and the validity of inference rules

6. Proof-theoretic semantics, proof terms and Martin-Löf’s approach

III. Semantical rules and definitional reflection

1. Proof-theoretic semantics based on generalized rules

2. The challenge from logic programming

3. Definitional reflection

4. Global features of the consequence relation

5. The circularity example

References

1

Unpublished Manuscript, written during a sabbatical in the winter semester 2002-03
and completed in February 2003. Some passages of part I and part II have found
their way into the article "Validity Concepts in Proof-Theoretic Semantics
(Synthese 148, 2006, 525-571, https://doi.org/10.1007/s11229-004-6296-1).

Proof-Theoretic Semantics: Some Basic Ideas

Peter Schroeder-Heister
Wilhelm-Schickard-Institut, Universität Tübingen

Sand 13, 72076 Tübingen, Germany
psh@informatik.uni-tuebingen.de

Introduction 2

Introduction

Proof-theoretic semantics is an alternative to truth-condition semantics. It is based on

the fundamental assumption that the central notion in terms of which meanings can

be assigned to expressions of our language, in particular to logical constants, is that of

proof rather than of truth. In this sense it is inherently inferential in spirit, as it is the

inferential activity of human beings which manifests itself in proofs.

Proof-theoretic semantics has several roots, the most specific one being Gentzen’s

(1934) remarks that the introduction rules in his calculus of natural deduction define

the meanings of logical constants while the elimination rules can be obtained as a

consequence of this definition. More broadly, it belongs to the tradition according to

which the meaning of a term has to be explained by reference to the way it is used in

our language.

Although the “meaning as use” approach has been quite prominent for half a cen-

tury now and provided one of the cornerstones of the philosophy of language, in par-

ticular of ordinary language philosophy, it has never become dominant in the formal

semantics of artificial and natural languages. In formal semantics, the denotational

approach which starts with interpretations of singular terms and predicates, then fixes

the meaning of sentences in terms of truth conditions, and finally defines logical con-

sequence as truth preservation under all interpretations, has always dominated. The

main reason for this, as I see it, is the fact that, from the very beginning, denotational

semantics received an authoritative rendering in Tarski’s (1933) theory of truth, which

combined philosophical claims with a sophisticated technical exposition and, at the

same time, laid the ground for model theory as a mathematical discipline. Compared

with this development, the “meaning as use” idea was a slogan supported by strong

philosophical arguments, but without much formal backing.

There has been a lot of criticism of classical model-theoretic semantics from the

denotational side itself. Examples are various theories rejecting the idea that total

information about a model is available at every time, such as discourse representa-

tion theory, dynamical logics and partial logics (especially situation theory). Another

example is Etchemendy’s (1990) critique of classical consequence which gained much

attention. However, in mainstream semantics there has never been a fundamental re-

orientation on the basis of the “meaning as use” idea which could have turned this idea

into something like a formalized theory.

Proof-theoretic semantics, as a sidestream development, attempts to do just this.

Naturally, it uses ideas from proof theory as a mathematical discipline, which is similar

to the way truth-condition semantics relies on model theory. However, just this is the

basis of a fundamental misconception of proof-theoretic semantics. A great deal of the

development of mathematical proof theory has been dominated by the formalist reading

PTS01 (=Intro)

Introduction 3

of Hilbert’s program as dealing with formal proofs exclusively, in contradistinction

to model theory as concerned with the (denotational) meaning of expressions. This

dichotomy has entered many textbooks of logic in which “semantics” means model-

theoretic semantics and “proof theory” just denotes the proof theory of formal systems.

The result is that “proof-theoretic semantics” sounds like a contradiction in terms still

today.

When I used this term since the late 1980s1, it was not very common, although

its content was there in the Swedish school of proof theory established by Prawitz

and Martin-Löf. In the meantime it has gained some ground and there have been some

occasional references to it (see the preface to this volume). Perhaps it will become more

popular within general philosophy in the backwater of inferentialist approaches such

as Brandom’s2, which more explicitly than ordinary language philosophy attempt to

derive denotational meaning from inferential meaning, i.e., take the idea that meaning

is rooted in proofs as their starting point.

Strictly speaking, the formalist reading of proof theory is not more foreign to the

understanding of ‘real’ argumentation than model theory is to the interpretation of

natural languages. In order to apply proof-theoretic results one has to consider formal

proofs to be representations of proper arguments, just as, in order to apply model-

theoretic methods, one has to consider formulas to be representations of proper sen-

tences of a natural language like English. English is not per se a formal language, and

arguments are not per se formal derivations. In this sense the term “proof-theoretic

semantics” is as much and as little provocative as Montague’s (1970) conception of

“English as a formal language”. Both proof-theoretic semantics and model-theoretic

semantics are indirect in that they can only applied via a formal reading of natural

language items. The basic difference is what these items are: proof-theoretic semantics

starts from arguments and represents them by derivations, whereas model-theoretic

semantics starts from names and sentences and represents them by individual terms

and formulas.

As indicated above, it was the Swedish school in proof theory, which paved the way

for a non-formalist philosophical understanding of proofs. Although originally dealing

with problems of the proof-theory of formal systems, Prawitz and Martin-Löf realized

soon that many of the concepts and methods developed there had a non-technical coun-

terpart when looking at formal proofs as formal representation of “genuine” proofs. In

taking Gentzen’s remarks on the definitional significance of introduction and elimina-

tion rules seriously they developed cornerstones for proof-theoretic semantics.

1First in print in Schroeder-Heister (1991c).

2See especially Brandom (2000), where the relationship to Dummett’s and Gentzen’s approach is

expressed very clearly.

PTS01 (=Intro)

Introduction 4

An immediate predecessor of proof-theoretic semantics was Tait (1967), who, in his

work on the convertibility of terms, developed concepts which are closely related to

those later employed in proof-theoretic semantics. Another predecessor was Lorenzen

(1955), who, in his operative logics, used arbitrary production rules as definitional rules

from which, by means of an inversion principle, corresponding elimination rules can be

obtained.

In the overview I am giving in this paper, I shall deal with basic technical concepts

developed within proof-theoretic semantics. I shall not deal in much detail with the

wider philosophical frameworks in which proof-theoretic semantics may be embedded.

In particular, I shall not deal here with the “anti-realism” and “verificationism” in

general, but just with technical constructs they end up with. The reason for this

is lack of space, but also the fact indicated above that the desideratum of proof-

theoretic semantics is not so much the general philosophical understanding but the

formal development of the fundamental concepts. One result of this restriction is

that I cannot give Dummett’s work the attention it deserves, as his technical notions

do not differ considerably from Prawitz’s, though he has done enourmously much for

the philosophical understanding of proof-theoretic semantics and for the fact that the

general climate is now more in favour of this enterprise than it used to be.

I concentrate on two basic items: on notions of proof-theoretic validity as they have

been developed mainly by Prawitz, and on rule-based notions proposed by Hallnäs

and the author. Validity is a property of derivations, or more general “derivation

structures”, which are considered to be representations of arguments. The format

of these derivations is Gentzen-style natural deduction. In the definitions of validity,

attempts are made to justify arguments by turning certain proof-theoretic methods and

results into semantical conditions, most prominently the following two: (1) Derivations

can be simplified (or made more “direct”) by certain reduction methods (terminating

in normal derivations). (2) Assumption-free derivations in normal form are canonical

(or “direct”) in the sense that they apply an introduction rule in the last step. Valid

arguments are then defined as derivation structures which exhibit properties like those

found in standard natural deduction proofs such as (1) and (2). However, I shall

strictly distinguish between genuine semantic features and technical properties used in

normalization proofs. My main criticism of Prawitz will be that he does not sufficiently

keep the semantical concepts apart from the technical concepts.

Rule-based notions do not try to justify whole proofs in the first place, but rather

the individual rules whose applications make up a proof. This makes it possible to

distinguish between features of rules and features of proofs generated by rules. These

approaches have their origin (1) in proof-theoretic investigations on the general form

of rules, in particular introduction and elimination rules for arbitrary logical constants,

and (2) in ideas within logic programming concerning the definition of atomic formulas

PTS01 (=Intro)

Introduction 5

by production rules. These ideas are turned into a rule-based theory of consequence

with a theory of definitional reflection as its core which leads to a novel approach

concerning introducing assumptions into formal reasoning: Assumptions cannot only

be introduced in an unspecific way by just stating them, but also in a specific way

depending on their form, or more general, on the way they are defined. This gives

the sequent calculus a special philosophical significance. In the form of introduction

rules on the left side of the sequent sign, i.e. in the antecedent, it embodies this idea

of making assumptions depending on form and deductive context, in contradistinction

to the unspecific way of making assumptions by means of initial sequents (A⊢A).

Definitional reflection may then be viewed as generalizing the idea of left-introduction

rules of the sequent calculus. Among the applications of definitional reflection we only

mention the analysis of circular reasoning as a simple but very instructive example

that cannot be dealt with by validity approaches, which assume the well-foundedness

of definitional rules from the very beginning. In particular, this example demonstrates

how definitional reflection challenges features like cut elimination and normalization,

which in more standard presentations are always postulated as something that should

be provable under all circumstances.

I am aware that, in concentrating on these two bsic points, of which proof-theoretic

validity is even treated in much greater detail, many basic ideas are omitted. The

stimulations that have come to the field of proof-theoretic semantics from type theories,

for example, are not mentioned at all. In particular, Martin-Löf’s type theory, which

is founded on strong semantical principles and may be correctly viewed as developing

a whole programme of proof-theoretic semantics, is not dealt with. It is only briefly

indicated in Part II how very elementary features of Martin-Löf’s approach fit into

the framework presented here. The discussion about classical vs. intuitionistic logic is

completely left out, too. In taking positive implicational logic as our model, we stick

to intuitionistic (or even minimal) logic. Categorical approaches to proof-theoretic

semantics are not considered either. Even a rudimentary account of these items would

make a substantial monograph out of this paper. The positive reasons for concentrating

on notions of proof-theoretic validity and on rule-based notions is that they are based

on very elementary principles and are very near to Gentzen’s original programme of

justifying logics. Another reason for dealing with Prawitz’s notions of validity in some

detail, thereby discussing and improving them in certain respects, is that there has not

been a thorough investigation of his proposal within theories of meaning for logic so

far.

Corresponding to the subjects chosen, this paper is divided into three parts: Part I

deals with the background of proof-theoretic semantics. It starts with Gentzen’s pro-

gramme of justifying logical inferences and the way it is turned into an inversion prin-

ciple by Prawitz. There follows a sketch of Lorenzen’s approach in his “operative

PTS01 (=Intro)

Introduction 6

logics”, which may be considered a variant of proof-theoretic semantics in Gentzen’s

spirit, although it was never understood by Lorenzen as such. Finally, we discuss

Belnap’s constraints on semantical rules in his short paper of 1962, which has always

figured prominently in discussions on how to define meanings in terms of proof rules.

There is also an appendix which contains a brief presentation of Gentzen-style natural

deduction, which is the formal framework for most of what follows.

Part II deals with Prawitz-style validity concepts for derivations. They are con-

trasted with concepts used in proofs of (strong) normalization, which were originally

introduced by Tait and Martin-Löf. Special emphasis is put on the difference between

these concepts and semantical concepts by calling those used for normalization “com-

putability” and only the semantical ones “validity”. Various forms of validity notions

for implicational logic are defined and compared, among them notions of strict and

strong validity which go beyond Prawitz’s definitions but follow basic intuitions. These

notions are then extended to general derivation structures with arbitrary reductions

serving as justifications. The possibility of founding proof-theoretic semantics on elim-

ination rather than introduction inferences is briefly discussed. Martin-Löf’s approach

also mentioned as one which puts the metalogical perspective of validity notions into

the system itself.

Finally, Part III presents some ideas of rule-based approaches. It covers two basic

items: general rules for logical constants based on the idea of the common content

of systems of rules, and definitional reflection as an idea which takes the introduc-

tion of assumptions based on definitional considerations seriously, quite in coincidence

with the above-mentioned basic conceptual features of the sequent calculus, and with

the definitional reading of logic programming. Definitional reflection is considered a

fundamental alternative to the “standard” approach by Prawitz. It is the approach

for which I have most sympathy and which will be elaborated in further joint work

with Hallnäs. A discussion of circular reasoning within the framework of definitional

reflection concludes this paper.

PTS01 (=Intro)

I.1 Gentzen’s programme and Prawitz’s inversion principle 7

Part I. The background of proof-theoretic semantics

I.1 Gentzen’s programme and Prawitz’s inversion principle

Proof-theoretic semantics in the sense discussed in this paper goes back to certain pro-

grammatic remarks in Gentzen’s Investigations into Natural Deduction, where he gives

a semantical interpretation of his inference rules3. By “goes back to” I mean that proof-

theoretic semantics is either intentionally and explicitly related to Gentzen’s remarks

(such as Prawitz’s approaches), or can be related to them for objective reasons, even

if there is no explicit reference and perhaps no awareness of them (such as Lorenzen’s

programme).

Gentzen’s remarks deal with the relationship between introduction and elimination

inferences in natural deduction.

The introductions represent, as it were, the ‘definitions’ of the symbols

concerned, and the eliminations are no more, in the final analysis, than the

consequences of these definitions. This fact may be expressed as follows: In

eliminating a symbol, we may use the formula with whose terminal symbol

we are dealing only ‘in the sense afforded it by the introduction of that

symbol’. (Gentzen 1934, p. 80)

This cannot mean, of course, that the elimination rules are deducible from the intro-

duction rules in the literal sense of the word; in fact, they are not. It can only mean

that they can be justified from them in some way.

By making these ideas more precise it should be possible to display the

E-inferences as unique functions of their corresponding I-inferences, on the

basis of certain requirements. (Gentzen 1934, p. 81)

So the idea underlying Gentzen’s programme is that we have “definitions” in the form

of introduction rules and some sort of semantical reasoning which, by using “certain

requirements”, validates the elimination rules.

As indicated in the introduction, I shall not discuss in detail the philosophical rea-

sons which might support Gentzen’s programme, in particular the asymmetry between

introduction and elimination rules. For that I would in particular have to refer to Dum-

mett’s work and his claim that there are two different aspects of language use: one

connected with ‘directly’ or ‘canonically’ asserting a sentence, and another one with

drawing consequences from an assertion.4 The first is the primary or ‘self-justifying’

3For Gentzen’s system of natural deduction and the terminology and notation used in this paper

see the appendix to this part (I.4).

4See especially Dummett (1991).

PTS02 (=I.1)

I.1 Gentzen’s programme and Prawitz’s inversion principle 8

way corresponding to reasoning with introduction rules, whereas the second one, which

corresponds to reasoning with elimination rules, is in need of justification. This jus-

tification relies on the harmony required to hold between both aspects: The possible

consequences to be drawn from an assertion are determined by the premisses from

which the assertion can possibly be inferred by direct means. Dummett’s approach is

a very general account of language use. It tries to give the ‘meaning as use’- slogan

a constructive rendering without the holistic connotations it often has, according to

which language can only be interpreted as a whole. As Dummett correctly argues,

holism lacks explanatory power and is unsuitable for formal investigations.

Prawitz, in an “inversion principle”5 formulated in his classic monograph on Natural

Deduction of 1965, tried to make Gentzen’s remarks more precise.

Let α be an application of an elimination rule that has B as consequence.

Then, deductions that satisfy the sufficient condition [. . .] for deriving the

major premiss of α, when combined with deductions of the minor premisses

of α (if any), already “contain” a deduction of B; the deduction of B is

thus obtainable directly from the given deductions without the addition of

α. (Prawitz 1965, p. 33)

Here the sufficient conditions are given by the premisses of the corresponding intro-

duction rules. Thus the inversion principle says that a derivation of the conclusion of

an elimination rule can be obtained without an application of the elimination rule if

its major premiss has been derived using an introduction rule in the last step, which

means that a combination

D I inference
A {Di} E inference

B

of steps, where {Di} stands for a (possibly empty) list of deductions of minor premisses,

can be removed.

At first sight this just states the fact that maximum formulas, i.e., formulas being

conclusions of an I inference and at the same time major premiss of an E inference (in

the example: A), can be eliminated by certain reductions, thus leading to the idea of

normal derivations6. However, it also represents a semantical interpretation of elimi-

nation inferences by saying that nothing is gained by an application of an elimination

rule if its major premiss has been derived according to its meaning (i.e., by means of

an introduction rule). So the main reductions given by Prawitz in connection with

normalization are at the same time semantical justifications of E rules with respect to

5Named following Lorenzen. See the next section (I.2).

6See the appendix (I.4).

PTS02 (=I.1)

I.1 Gentzen’s programme and Prawitz’s inversion principle 9

I rules. His inversion principle just elaborates Gentzen’s idea of “special requirements”

needed for this justification, by demanding that E rules invert I rules in a precise sense.

That it corresponds indeed to what Gentzen had in mind can be seen from the only

example Gentzen gives:

We were able to introduce the formula A→B when there existed a derivation

of B from the assumption formula A. If we then wished to use that formula

by eliminating the →-symbol (we could, of course, also use it to form longer

formulae, e.g., (A→B)∨C, ∨-I), we could do this precisely by inferring B

directly, once A has been proved, for what A→B attests is just the existence

of a derivation of B from A. (Gentzen 1934, pp. 80–81)

This may be read as follows: Given the situation

A
D
B

A→B
D′

A

B

where D is “a derivation of B from the assumption formula A”, and D′ is the deriva-

tion showing that “A has been proved”, so that we can use A→B to obtain B “by

eliminating the →-symbol”. Then by means of

D′

A
D
B

we can infer “B directly, once A has been proved [by means of D’]”, as “A→B attests

[. . .] the existence of a derivation [viz. D] of B from A”.

However, although Gentzen’s remarks are correctly read as outlining a semantical

programme, he himself takes a more formalistic stance, which is clear from his writings

in general and from the sentence immediately following the quoted passage:

Note that in saying this we need not go into the “informal sense” [“in-

haltlicher Sinn”]7 of the →-symbol. (Gentzen 1934, p. 81)

Prawitz (1965) deserves the credit to have drawn our attention to the genuine se-

mantical content of Gentzen’s remarks, though this is not spelled out in detail in his

monograph. Only later in Prawitz (1971) and in particular in Prawitz (1973, 1974) it

is turned into a full-fledged semantical theory.

7Quotes by Gentzen

PTS02 (=I.1)

I.2 Lorenzen’s operative semantics 10

In the following, when giving examples, we confine ourselves to implication, just

as Gentzen did, so we are dealing with positive implicational logic as our model. This

simplification is justified for the reason that a proper treatment of implication gives

indeed a strong guideline for the proper treatment of other logical operators. Impli-

cation is the most complicated propositional operator, which shares certain properties

especially with universal quantification, as the distinction between open and closed

derivations, which will turn out as semantically crucial, is to a great extent due to its

presence.

I.2 Lorenzen’s operative semantics

Although Lorenzen’s Introduction to Operative Logics and Mathematics (1955) is for-

malistic in spirit, basing logical and mathematical reasoning on ‘operating’ with sym-

bolic figures (in this sense being related to Curry’s approach), it contains a semantics

for the logical constants even if not intended and designated as such. In dealing with

logical constants, Lorenzen is concerned with the justification of the inference rules gov-

erning them, arriving at a formalism of intuitionistic first-order logic. This justification

is a sort of proof-theoretic semantics in our sense as it establishes the correct use of

those constants by reflecting on proofs and not, as one would expect from a formalist,

by just laying down the set of intended inference rules. To be sure, the proofs Loren-

zen is reflecting upon are formal proofs, i.e. derivations, and the logical rules being

justified are formal rules as well. However, the way through which he arrives at these

logical rules is semantical reasoning in our sense of the word, based on principles for

the validation of rules. In fact, a crucial rule is played by an inversion principle, which

similar to Prawitz’s one justifies elimination inferences from introduction inferences.

It was actually Lorenzen who coined the term inversion principle for a more general

claim not confined to logical constants, which was then later borrowed by Prawitz for

use in the context of natural deduction.

Lorenzen starts with logic-free (atomic) calculi, which correspond to production

systems or grammars in different terminologies. He calls a rule admissible with respect

to such a system if it can be added to it without enlarging the set of its derivable atoms8.

Therefore, if ⊢K denotes derivability in a calculus K, then the rule a1, . . . , an→ a is

admissible, if ⊢K ai for all i (1 ≤ i ≤ n) implies ⊢K a, to be distinguished from the

derivability of a from the assumptions a1, . . . , an, which is denoted by a1, . . . , an ⊢K a.

The implication arrow → is identified with the rule arrow used in stating a

production rule, and the derivability of an implication is interpreted as an ad-

missibility statement. If A,B1, . . . , Bn stand for lists of atoms and a, b1, . . . , bn

8In contradistinction to Lorenzen, and following the terminology of logic programming, by atoms

I denote the formulas of an atomic system, i.e., its words in the terminology of grammars.

PTS03 (=I.2)

I.2 Lorenzen’s operative semantics 11

are atoms, then ⊢K A→ a means that the rule A→ a is admissible in K, and

B1→ b1, . . . , Bn→ bn ⊢K A→ a expresses that the rule A→ a is admissible in the cal-

culus which results from K by adjoining Bi→ bi (1 ≤ i ≤ n) as additional rules. For

iterated implications such as (A→ b)→ a Lorenzen develops a theory of admissibility

statements of higher levels, which cannot be presented here9.

Since certain statements such as ⊢K a→ a or a→ b, b→ c⊢K a→ c hold indepen-

dently of the underlying system K (they are called universally admissible [“allge-

meinzulässig”]), Lorenzen obtains a set of general principles which constitute a system

of positive implicational logic.

This may already be considered to be a proof-theoretic semantics for implication.

Implications express admissibility statements with respect to formal systems, and logi-

cal implications express admissibility statements which hold for any atomic system. In

a related way, laws for universal quantification ∀ are justified using universal admissi-

bility statements for rules of the form A→x1,...,xna with schematic variables x1, . . . , xn

as indices (with premiss-free rules →x1,...,xna as a limiting case).

However, in our context, Lorenzen’s justification of logical constants like ∧, ∨ and ∃
is even more interesting, as it is closely related to all other approaches dealt with here,

which are based on Gentzen’s ideas. Lorenzen proceeds by deducing a list of principles

for establishing admissibility, the crucial one being his inversion principle. In a very

simplified form, without taking variables in rules into account, this inversion principle

says the following. Let A,A1, . . . , An be lists of atoms, and a, b atoms. Suppose

A1 → a
...

An → a

are the only rules by means of which a can be derived in a calculus K. Then the rule

a → c is admissible in the calculus which results from K by adjoining

A1 → c
...

An → c

as primitive rules. Roughly speaking: Everything that is derivable from each condition

of a follows from a itself. This principle is used for the justification of logical inference

rules as follows:

Let disjunction be defined by a pair of rules

a → a∨b
b → a∨b

9and which is not without serious problems

PTS03 (=I.2)

I.2 Lorenzen’s operative semantics 12

Then the inversion principle says that a∨b→ c is admissible if both a→ c and b→ c are

admissible (a→ b, b→ c ⊢ a∨b→ c), which justifies the elimination rule for disjunction.

Similarly, for conjunction, which is defined by

a, b → a∧b
Then, by the inversion principle, we can argue that a∧b→ c is admissible if a, b→ c

is admissible. Since a, b→ a and a, b→ b are trivially admissible, this implies that

both a∧b→ a and a∧b→ b are admissible, which justifies the elimination rules for

conjunction.

Using rules with bound variables, from the rule

a → ∃xa
the elimination rule for existential quantification can be justified in the form of the

principle

a →xc ⊢ ∃xa → c

(for c not containing x free) in an analogous way.

Finally, the intuitionistic absurdity rule is justified by reference to the admissibility

of

⊥ → c

with respect to any calculus in which ⊥ is undefined, i.e., in which ⊥ is not the head of a

primitive rule. This might be considered to be a limiting case of the inversion principle

(with respect to an empty set of defining rules). However, Lorenzen formulates it as

based on a principle of its own, called the underivability principle [“Unableitbarkeits-

prinzip”].

It is obvious that this justification of logical rules is very closely related to Gentzen’s

programme of taking introduction rules as definitions of constants and justifying elim-

ination rules with respect to introduction rules by assuming, in each case, that the

major premiss of the elimination rule has been derived using one of the introduction

rules. It is a similar sort of reasoning, upon which the validity of Lorenzen’s inversion

principle is based: In order to show that a→ c is admissible we have to show that c

can be derived, given that a has been derived. “Given that a has been derived” means

that one of the rules Ai→ a available as defining rules for a has been used in the last

step, which means that Ai must have been derived for some i. This means that c can

be derived, if all rules of the form Ai → c are added as primitive rules.

Of course, this is not exactly what Gentzen had in mind, notably with respect to

implication. When basing his notion of implication on the concept of admissibility

of rules, Lorenzen relies on a system crucially different from Gentzen’s calculus of

natural deduction in that it does not employ the idea of discharging assumptions when

PTS03 (=I.2)

I.3 The Belnap conditions 13

introducing implication. However, the justifications of the rules for all other connectives

do not so much differ from Gentzen’s.

In other respects Lorenzen’s approach is much more general than Gentzen’s in that

he considers logically compound sentences just as special cases of arbitrary atoms. This

means that his inversion principle can be used as a justification of elimination rules

from introduction rules for arbitrary atoms. This makes his approach capable of dealing

with inductive definitions in general rather than just with introduction and elimination

rules for logical constants. He thus anticipates the idea of introduction and elimination

rules for atoms which can be found, e.g., in Martin-Löf’s (1971) theory of iterated

inductive definitions10 and in- general reflection principles for logic programming. In

fact, his inversion principle in its general form is closely related to a certain form of

the principle of definitional reflection (see section III.3.2 below).

I.3 The Belnap conditions and other constraints for semantical rules

The most primitive form of the “meaning as use” paradigm with respect to logical

operators is the claim that an arbitrary set of rules of which form whatsoever implicitly

determines the meaning of logical operators occurring in them. In this sense we would

just have to stipulate certain rules to hold of an operator in order to equip it with

meaning. Its holistic version would be that several constants may be defined by one

and the same set of rules, whereas a constructive variant expects that such a set of

meaning-giving rules must be separable into disjoint subsets which can be well-ordered

in the following way: Every subset defines the meaning of one particular constant,

where the meanings of other constants used in the definition are defined by rule sets

preceding this set in the well-ordering. The latter condition will also be called the

well-foundedness requirement.

However, neither the holistic nor the constructive version of this approach will be

considered a proof-theoretic semantics in the genuine sense. For semantical purposes it

is not sufficient just to lay down rules. As Prior (1960) has shown, admitting arbitrary

rules as meaning rules can easily result in implausible, and in the worst case incon-

sistent, results, even though the constructive well-foundedness requirement is met. As

an example Prior gives the combination of the ∨-introduction with the ∧-elimination

rules in the form of an operator called tonk :

A

A tonk B

B

A tonk B

A tonk B

A

A tonk B

B

10In contradistinction to Martin-Löf, Lorenzen considers the induction principle as a principle of its

own rather than an application of the inversion principle. Martin-Löf subsumes the induction rules

under the generalized notion of an elimination rule.

PTS04 (=I.3)

I.3 The Belnap conditions 14

allowing one to derive any B from any A. Therefore, there have to be restrictions on

rules if they should qualify as meaning-giving rules in a reasonable way.

Belnap (1962) proposed to require conservativeness and uniqueness in the follow-

ing sense. The meaning-giving rules for a constant α should not allow one to prove

something which can be formulated in the vocabulary available prior to the defini-

tion of α (conservativeness). Furthermore, α should be characterized in such a way

that, if we duplicate its rules by adding identical rules for some α∗, any formula A(α)

containing α (but not α∗) should be interdeducible with the formula A(α∗), in which

α is replaced with α∗ (uniqueness). Conservativeness is weaker than eliminability of

definienda by definientia which, besides uniqueness, is normally expected to hold of

explicit definitions. For example, it also covers inductive definitions.

It is tempting to base proof-theoretic semantics on the Belnap criteria of conserva-

tiveness and uniqueness. However, according to my understanding of proof-theoretic

semantics, these criteria are too wide in one respect and to narrow in another, if one

wants to delineate semantical rules. Of course, meaning-giving rules should be con-

servative in any case. However, uniquess is too narrow a criterion. Later on I shall

consider relative notions of uniquess of the sort “The definiendum is uniquely defined

given the definiens is unique, even if the definiens cannot be proven unique”. This

makes it possible to also investigate partial notions of meaning.

On the other hand, conservativeness and uniqueness are also too wide to justify

rules as meaning-giving, as they do not make any restriction concerning the form

of rules. In all variants of proof-theoretic semantics presented in the following, the

constant whose meaning is to be explained, occurs in a special position, normally

as the conclusion of a rule, which may be a production rule in an atomic system, a

definitional (program) rule in theories related to logic programming, or an introduction

rule in natural deduction. In a dual approach based on eliminations, the constant may

occur in premiss position. But again, it occurs at a special place. I call this the special

form requirement. Furthermore, the constant in question occurs as the major operator

of a proposition, i.e. is not embedded within other connectives or quantifiers, not even

with the defined operator itself (i.e., for defining conjunction ∧, we do not allow rules

containing iterated conjunctions of the form A∧(B∧C) etc. This will be called the

explicitness requirement. The special form and explicitness requirements make proof-

theoretic semantics in our sense strongly differ from rule systems which just guarantee

conservativeness and uniqueness.

This does not mean that proof-theoretic semantics has to be constructive in the

sense described above. What has to be required is separativity, i.e., the condition

that semantical rules give meaning to single constants rather than to several constants

at the same time, but not well-foundedness, which is characteristic of a constructive

position. Therefore, the special form and explicitness requirements are specifications

PTS04 (=I.3)

I.4 Appendix: Gentzen-style natural deduction 15

of the separativity constraint, not part of a very restrictive constructivity option. In

any case these requirements are only necessary, not sufficient. They can be used to

exclude certain systems of rules as inappropriate. But the validation of inference rules

with respect to certain semantical principles and ideas is still the major task of systems

of proof-theoretic semantics.

As mentioned above, conservativeness should hold in any case. However, in natural

deduction or sequent systems satisfying the separativity, special form and explicitness

constraints, conservativeness can be expressed by more specific properties which refer to

the exact form of rules considered. For example, the features of eliminability of cut or of

normalization may replace the conservativeness option in such systems. By considering

different notions of cut elimination or normalization, more fine-grained notions can be

considered). One possibility I shall deal with in section III.3.2 is relative cut : Cut holds

for a definiendum given it holds for its definiens, without necessarily being provable

for the definiens11.

So our general picture is the following: For meaning explanations we expect separ-

ativity (different rules for different constants) to hold, and furthermore special form of

rules and explicitness (constants at certain positions in defining rules, and not nested).

Conservativeness has to hold, but will be investigated in close relationship with notions

of cut elimination and normalization. Constructivity (well-foundedness of sets of defi-

nitional rules) is not required, but may of course be studied as a property of particular

systems.

I.4 Appendix: Gentzen-style natural deduction

Gentzen’s calculus of natural deduction and its classical rendering by Prawitz (1965)

is the background to most topics in this paper. As the philosophical reader might not

always be familiar with this particular form of natural deduction, I give a short sketch

of some major features of the system and also fix my terminology. Besides Gentzen’s

(1934) original presentation and Prawitz’s (1965) monograph, Tennant (1978) and

Negri/von Plato (2001b) can be recommended as references.

I always use the term “derivation” for formal proofs in formal systems. When no

further specification is given, I reserve “proof” and “deduction” for the case when

‘genuine’ arguments containing content are concerned. This differs in part from the

terminology used in the sources above.

Formulas of first-order logic are written in the usual form. Concerning substitution,

A(x) denotes a formula in which x may occur free, and, when occurring in the same

11This does not mean that the global meaning of conservativeness, viz. that nothing new is prov-

able in the old vocabulary, is given up. In systems with cut, the eliminability of cut guarantees

conservativeness. In systems without the cut rule, conservativeness holds anyway.

PTS Appendix01 (=I.4)

I.4 Appendix: Gentzen-style natural deduction 16

context, A(t) denotes the result of substituting t for x in A(x), presupposing that this

does not lead to variable confusions.

Natural deduction in general is based on two major ideas:

1. Derivations are always derivations from assumptions. Assumptions can be “dis-

charged” or “eliminated” in the course of a derivation.

2. The rules for logical constants come in pairs. The introduction rule(s) allow(s)

one to infer a proposition with the constant in question as the main operator, the

elimination rule(s) permit(s) to draw consequences from such a proposition.

In Gentzen’s natural deduction system for first order logic derivations are written

in tree form and based on the following rules:

A B

A∧B
A∧B
A

A∧B
B

A

A∨B
B

A∨B
A∨B

[A]

C

[B]

C

C

[A]

B

A→C

A→B A

C

⊥
A

A(y)

∀xA(x)
∀xA(x)
A(t)

A(t)

∃xA(x)
∃xA(x)

[A(z)]

C

C

where the eigenvariable y is not free in any assumption, on which A(y) depends, and

the eigenvariable z is not free in any assumption exept the displayed assumption A(z).

The rules in the left column are the introduction rules (I rules) for the operator

displayed below the inference line, and the rules in the right column are the elimination

rules (E rules) for the operator displayed above the inference line. The leftmost premiss

in an elimination inference is called its major premiss, whereas the other premisses are

called its minor premisses. Assumptions which can be discharged at the application of

the rule in question are indicated by square brackets.

The system considered is one for intuitionistic logic, not classical logic. For classical

logic one would have to add some rule or axiom which does not fit neatly within the

pattern given above, such as the tertium non datur A∨¬A or the double negation rule

PTS Appendix01 (=I.4)

I.4 Appendix: Gentzen-style natural deduction 17

[¬¬A]
⊥
A .

For a proper treatment of classical logic within proof-theoretic semantics, other tools

have to be employed, which go beyond the scope of the present paper (but see Tait’s

contribution to this volume).

Following Prawitz, I shall use the following notation: If a derivation D ends with

A, I also write D
A
, if it depends on an assumption B, I also write B

D or
B
D
A

. This

means that the notations D, D
A
, B
D and

B
D
A

do not denote different derivations, but

just differ in what they make explicit. The open assumptions of a derivation are the

assumptions on which the end-formula depends. The open variables of a derivation are

those free individual variables which are not used as eigenvariables further down in the

derivation tree. A derivation is called closed, if it contains either no open assumptions

or open variables, otherwise it is called open. To indicate that x is open in D, we also

write D(x), and correspondingly D(t) for the result of substituting t for x throughout

D.

In his monograph of 1965, Prawitz’s enterprise was to advance Gentzen’s view that

natural deduction captures logical reasoning in a most fundamental way. He showed

that it has sophisticated matalogical features, notably normalization, which gives it

a proof-theoretic significance corresponding to that of the the sequent calculus which

so far had been considered the main system developed by Gentzen and practically

exclusively studied in proof theory.

A derivation is said to be in normal form, if it does not contain deviation or detours

in the sense that an operator is introduced by an introduction inferences and eliminated

by an elimination inference. So-called maximum formulas, which are conclusions of

introduction inferences and at the same time major premisses of elimination inferences

PTS Appendix01 (=I.4)

I.4 Appendix: Gentzen-style natural deduction 18

are removed by using the following main reductions of derivations:

D1

A1

D2

A2

A1∧A2

Ai

reduces to Di

Ai

(i = 1, 2)

D
Ai

A1∨A2

[A1]

D1

C

[A2]

D2

C

C
reduces to

D
Ai

Di

C

(i = 1, 2)

A
D
B

A→B
D′

A

B

reduces to

D′

A
D
B

D(y)

A(y)

∀xA(x)
A(t)

reduces to D(t)

A(t)

D
A(t)

∃xA(x)

[A(z)]

D′(z)

C

C

reduces to

D
A(t)

D′(t)

C

In addition, there is the possibility of maximum segments, which consist of sequences

of identical formulas in a branch of a derivation, beginning with a conclusion of an I rule,

which is at the same time a minor premiss of an E rule, then consisting of conclusions

of E rules which are at the same time minor premisses of E rules, and ending with a

major premiss of an E rule. This means that maximum segments are sequences of C’s

in ∨or ∃elimination rules, starting with the conclusion of an I rule and ending with

the major premiss of an E rule). They are reduced to maximum formulas using the

so-called permutative reductions. They are important for normalization in the presence

of disjunction and existential quantification. However, we do not consider them in

detail as their semantical interpretation is limited (or at least goes beyond the scope

of this paper).

PTS Appendix01 (=I.4)

I.4 Appendix: Gentzen-style natural deduction 19

Prawitz then shows that by iterated application of reduction steps, every deriva-

tion in intuitionistic logic can be normalized, i.e., can be rewritten to a derivation in

normal form. One fundamental corollary of this result is that every closed derivation

in intuitionistic logic can be reduced to one using an introduction rule in the last step,

as a closed normal derivation is of exactly that form.

The normalization result mentioned is also called weak normalization. The strong

normalization result says that any reduction sequence terminates in a normal deriva-

tion, no matter in which order reduction steps are applied. The methods used to prove

strong normalization are strongly related to concepts used in proof-theoretic semantics

and are mentioned in the text, as far as they are semantically relevant.

Most of the investigations in this paper will be carried out only for positive im-

plicational logic, called L. The language of this system just contains implicational

formulas over propositional variables, and its inference rules are the introduction and

elimination rules for implication.

PTS Appendix01 (=I.4)

II.1 Normalization, computability and validity 20

Part II. Proof-theoretic validity

II.1 Normalization, computability and validity

II.1.1 Normalization and computability

Normalization plays a prominent role in the formal background of proof-theoretic se-

mantics, in particular the result that normal closed proofs of complex formulas are in

introduction form, i.e., use an introduction inference in the last step (see section I.4).

Of equal importance was the development of a technical method within normaliza-

tion theory, which is used especially in proofs of strong normalization. By means of

this method a certain predicate P of proofs is defined, which has the property that

it entails (strong) normalizability. The predicate P has some flavour of a semantical

predicate, and in a kind of correctness proof it can be shown that every derivation

satisfies P , yielding as a corrollary that every derivation is (strongly) normalizable.

Such a predicate was first defined by Tait (1967) under the name “convertibility” and

used to demonstrate (weak) normalizability of terms. Martin-Löf (1971) carried his

idea over from terms to derivations and defined a corresponding predicate which he

called “computability”, proving (weak) normalization for an extension of first-order

logic, called the theory of iterated inductive definitions. At the same time, Girard

(1971) used it to prove (weak) normalization for second-order logic. Again at the same

time, it was Prawitz (1971) who emphasized its particular usefulness for proving strong

normalization, calling it “strong validity”. Since then it has been the basis of proofs

of strong normalization for a variety of systems.12

In the following I shall speak of computability predicates or the computability pred-

icate when dealing with this notion as it is used in normalization proofs, therefore

relying on Martin-Löf’s terminology. The term “valid” will be reserved for genuinely

semantical notions applied in proof-theoretic semantics. I consider Prawitz’s termi-

nology, who speaks of “validity based on the introduction rules” (1971, p. 284) in

contradistinction to “validity used in proofs of normalizability” (1971, p. 290) some-

what unfortunate, as there are strong differences between these notions, which appear

to be more important than what they have in common. That there is a difference in

principle between these terms is actually one of my basic claims.

I restrict Prawitz’s notion of computability (called by him “validity used in proofs

of normalizability”) to positive implicational logic L, i.e., to the system with only in-

troduction and elimination rules for implications as primitive rules of inference. Under

this restriction, Prawitz’s computability notion is basically the same as Martin-Löf’s.

12As a recent paper with many references to the literature see Joachimski & Matthes (2003).

PTS05 (=II.1)

II.1 Normalization, computability and validity 21

A derivation is in I-form if it uses an introduction rule in the last step, i.e., if it is

of the form

[A]

D
B

A→B.

Using a terminology which goes back to Dummett and common in proof-theoretic

semantics, such a derivation is also called canonical. Let D ≻1 D′ mean that the

derivation D reduces to the derivation D′ by applying a single reduction step to a

subderivation of D.

Definition of computability

(i) A derivation of the form

[A]

D
B

A→B

is computable, if for every computable D′

A
,

D′

A
D
B

is computable.

(ii) If a derivation D is not in I-form and is normal, then it is computable.

(iii) If a derivation is not in I-form and is not normal, then D is computable if, for

every D′ such that D ≻1 D′, D′ is computable.

This is a generalized inductive definition. It uses induction over the degree of the

end formula of the derivation (clause (i)), and, within each degree, induction over the

reducibility relation13 (clauses (ii) and (iii)).

The proof of strong normalization then proceeds be establishing the following two

propositions:

Proposition 1 Every computable derivation is strongly normalizable.

Proposition 2 Every derivation is computable.

Proposition 1 is a (nearly) immediate consequence of the definition of computability.

Proposition 2 is based on a kind of correctness proof, verifying step by step that clauses

(i) to (iii) of this definition are carried over from the premisses to the conclusion of

an inference step. Other formulations of “computability” differ slightly from the one

13i.e., induction given by the operator associating with a set of derivations X of a formula the set

of those derivations which reduce in one step to a derivation in X

PTS05 (=II.1)

II.1 Normalization, computability and validity 22

given here. However, the basic features remain the same. The resulting normalization

proofs all proceed via Propositions 1 and 2.

Computable derivations are closed under substitution with computable derivations,

i.e., the following lemma holds:

Substitution lemma for computability

If
A1 . . . An

D
B

is computable, where all open assumptions of D are among A1, . . . , An,

then for any list of computable derivations Di

Ai

(1 ≤ i ≤ n),

D1

A1 . . .

Dn

An

D
B

is computable.

Note that the converse direction of the lemma is trivial, as every assumption Ai is itself

a normal, and therefore computable, derivation of Ai from Ai.

If one denotes closure under substitution with computable derivations as com-

putability under substitution, one might formulate the lemma as saying that computabil-

ity implies computability under substitution.

Weaker versions of computability just entail (weak) normalization. Instead of re-

quiring in clause (iii) that every D′ such that D ≻1 D′, D′ be computable, one might

demand that a certain D′, which is obtained from D in a particular way (i.e., by per-

forming a particular reduction step) be computable. This yields the notion defined by

Martin-Löf (1971). One might even weaken this by not referring to a particular proce-

dure and just postulate in (iii) that D reduces to a computable D′, without specifying

the procedure in the definition (it has then to be specified in the normalization proof,

of course).

II.1.2 From computability to validity

Validity is a core notion of proof-theoretic semantics. Prawitz introduced it as a se-

mantical predicate for derivations, in analogy to truth as a semantical predicate of

propositions in model-theoretic semantics. He developed it in connection with com-

putability predicates, to which it bears a strong resemblance. As his terminology

(“strong validity” for “computability” in our sense) suggests, Prawitz actually consid-

ers computability and validity to be concepts on one scale, computability being the

stronger one. There are several remarks in his 1971, 1973, 1974 papers, where he deals

PTS05 (=II.1)

II.1 Normalization, computability and validity 23

with both notions, which indicate that computability is obtained by augmenting va-

lidity, some of them even saying that these extensions modify validity in a way which

makes it even more plausible or convenient.14 However, Prawitz never states the exact

relationship between both concepts. In particular, he never attempts to formally prove

that computability (strong validity) implies validity — a result one should expect to

hold if the relationship is as simple as the terminology suggests. In his publications

after 1974 Prawitz never comes back to computability and its relation to validity.

In the following I shall argue that, in spite of many similarities, and contrary to

Prawitz’s opinion, semantically useful validity notions have to differ considerably from

computability. Crucial modifications are necessary to turn computability into validity.

I shall make the following points:

(1) The notion of computability is not suitable as a foundational semantic notion

of the validity of derivations, because it stipulates normal derivations as computable

without further justification.

(2) In order to adjust the notion of computability to serve for foundational purposes,

closed derivations have to be given a distinguished role in the justification of irreducible

(= normal) derivations.

(3) This distinguished role of closed derivations includes, as a semantical condition,

their reducibility to canonical form.

Ad (1): Computability is not a semantical notion

According to clause (ii) in the definition of computability, every normal derivation

which is not in I-form, is computable15. This could be counted as a semantical clause

only if in proof-theoretic semantics we are prepared to consider non-canonical normal

derivations as valid by definition. However, as we have seen, it is one of the ideas of

proof-theoretic semantics in the sense of Gentzen’s programme to consider introduction

inferences as basic and to justify all other inferences from them. In other words, only

derivations based on introduction rules should be taken for granted. In any other case

the definition of validity should rely on some justification procedure rather than on

the syntactic form of derivations. This is obviously violated by clause (ii) which just

stipulates irreducible non-canonical derivations as valid. There is no semantical rea-

son whatsoever to consider non-canonical irreducibility as a definition case of validity.

According to such a definition, the derivation

A→B A

B

14See Prawitz (1971), p. 289; Prawitz (1973), p. 238.

15In other renderings of computability, all normal derivations are computable by definition, not only

those which are not in I-form. For the definition of computability chosen here this follows as a lemma.

PTS05 (=II.1)

II.1 Normalization, computability and validity 24

would be valid by definition and not by justification, which is not what is wanted.

Modus ponens, as an elimination rule, definitely needs semantical justification. Of

course, for the purpose of proving normalizability, clause (ii) is absolutely natural,

as normal derivation are trivially (strongly) normalizable. For semantical purposes,

however, we would have to argue that non-canonical irreducible derivations have some

special status, which exempts them from justification. Since for that no argument is at

hand, using normal derivations as a starting point in defining validity is an ill-guided

approach.

In contradistinction to clause (ii), clauses (i) and (iii) make good semantic sense.

In terms of validity, clause (i) says that a canonical derivation of A→B is valid if its

immediate predecessor, a derivation of B from A provides a way of transferring every

valid derivation of A into a valid derivation of B, which corresponds to the meaning

one wants to associate with A→B. Furthermore, clause (iii) says that a non-canonical

derivation may be considered as valid if it reduces to a valid derivation. This reflects

the idea that non-canonical derivations are valid if they reduce to derivations which

are already justified as valid (such as canonical ones).

Therefore the basic flaw in computability, understood as a semantical notion, is the

following implicit assumption:

If D is non-canonical and irreducible (= normal), then D is valid.

Ad (2): Semantically modified computability: open assumptions and

closed derivations

One could try to modify the definition of computability to make it suitable for a def-

inition of semantical validity. This would mean that clause (ii) of the definition is

dropped and replaced with something which justifies non-canonical irreducible deriva-

tions as valid. An obvious possibility would be to consider such a derivation as valid if

replacement of assumption formulas with valid derivations yields a valid derivation of

the end formula. This idea would follow the substitution lemma for computability, ac-

cording to which computability is the same as computability under substitution. More

formally, clause (ii) would then read as follows (where we now use the term “valid”, as

we are dealing with turning the computability notion into a semantical concept):

(ii)* A non-canonical irreducible derivation

A1 . . . An

D
B

where all open assumptions of D are among A1, . . . , An, is valid, if for every list of

PTS05 (=II.1)

II.1 Normalization, computability and validity 25

valid derivations Di

Ai

(1 ≤ i ≤ n),

D1

A1 . . .

Dn

An

D
B

is valid.

For example, the one step non-canonical irreducible derivation

A→B A

B

would be considered as valid, if for each pair of valid derivations
D1

A→B
and

D2

A
, the

derivation
D1

A→B

D2

A

B

is valid. However, a clause like (ii)* would then no longer

proceed by induction on the complexity of the end formula but on the complexity of

the assumption formulas plus that of the end formula, in the example: on the complex-

ities of A→B,A and B. But then the quantification over all valid derivations of the

assumption formulas is no longer feasible, since they themselves may have assumptions

of any complexity. Therefore this is no viable solution.16

The way out used in semantical definitions of validity is to use closed valid proofs

rather than arbitrary valid proofs as a basis. Instead of (ii)* one would then propose

the following clause.

(ii)** A non-canonical non-reducible derivation

A1 . . . An

D
B

where all open assumptions of D are among A1, . . . , An, is valid, if for every list of

closed valid derivations Di

Ai

(1 ≤ i ≤ n),

D1

A1 . . .

Dn

An

D
B

is valid.

16It is bound to fail due to the impredicative character of the substitution lemma, when it is turned

into a definition. “Impredicative” here means that computability is defined by quantifying over all

substitution instances obtained by substituting arbitrary computable derivations.

PTS05 (=II.1)

II.1 Normalization, computability and validity 26

However, even now we are proceeding by induction over the joint complexity of

A1, . . . , An, B rather than only the complexity of B, even if we only quantify over

closed valid derivations. This is not compatible with clause (i) where we proceed by

induction over the end formula only. In order to cope with that, we would also have

to change clause (i) to

(i)** A derivation of the form

[A]

D
B

A→B

is valid, if for every closed valid D′

A
,

D′

A
D
B

is

valid

where this is understood as proceeding by induction over the joint complexity of open

assumptions plus end-formula of a derivation.

The definition based on (i)**, (ii)** and (iii) may be called validity*. What we

have done in passing from computability to validity* is interpreting open assumptions

as placeholders for closed derivations.

Ad (3): The reducibility of closed derivations

Unfortunately, validity* does not yet eliminate the possibility that irreducible (= nor-

mal) derivations are counted as valid without any further justification. In the case of

open derivations this possibility has been removed, but not so in the case of closed

derivations. Suppose D is a closed non-canonical derivation which is irreducible. Then

clause (ii)** applies, and, as there are no open assumptions, D is (vacuously) valid*.

One might argue that there are no closed non-canonical irreducible derivations any-

way. However, this is just an accidental property of first-order logic with the standard

reductions. Since the notion of validity should in principle be applicable to more gen-

eral notions of derivations and reductions, the formal possibility of closed non-canonical

irreducible derivations should be taken into account. They should simply turn out as

invalid by definition (rather than as valid in case of validity*). This is accomplished

by turning a corrollary of normalization of proofs into a semantical condition:

A closed non-canonical derivation is valid, if it is reducible to a valid closed canonical

derivation.

It was Dummett in particular who stressed at many places as a fundamental epis-

temological principle that, if something is known in an indirect (non-canonical) way,

it must be possible to turn this indirect knowledge into direct (canonical) knowledge.

This is part of the reason why this sort of semantics is also called verificationist, and

it is part of the interpretation of Gentzen’s programme of the primacy of introduction

rules: In the closed case an I-rule derivation can always be found. With this motivation

we arrive at Prawitz’s definition of the validity of derivations.

PTS05 (=II.1)

II.1 Normalization, computability and validity 27

II.1.3 Validity of derivations

We follow Prawitz (1971) in defining validity with respect to atomic systems S which

are given by production rules for atomic formulas. Let then L(S) be implicational logic

over S, i.e. the system given by introduction and elimination rules for implication plus

the production rules of S. We may identify L(S) with the set of all derivations in this

system. A system S ′ is an extension of S (S ′ ≥ S) if S ′ is S itself or results from S

by adding further production rules. As a limiting case we consider the empty atomic

system S0 without any inference rule and with propositional variables as formulas,

and correspondingly L(S0) as standard implicational logic over propositional variables.

Obviously, as a formal system, L(S0) is the same as L. It will turn out that validity

with respect to S0 is the same as universal validity when defined in an appropriate way.

We say that D reduces to D′ (D � D′), if D′ can be obtained from D by applying a

(finite) number of reduction steps. As a limiting case, D reduces to itself. In the context

of atomic systems, we also extend the notion of a canonical derivation. A canonical

derivation of an atom of S is a derivation in S, whereas, as before, a canonical derivation

of a complex formula is a derivation in I-form, i.e., a derivation using an introduction

rule in the last step.

Then our first definition of validity corresponding to the one given in Prawitz (1971)

runs as follows:

Definition of S-validity 1

(i) For atomic A, a closed derivation of A is S-valid, if it reduces to a derivation in S.

(ii) A closed derivation D
A→B

is S-valid, if D reduces to a derivation of the form

[A]

D′

B
A→B

such that for every S ′ ≥ S and every closed S ′-valid D′′

A
,

D′′

A

D′

B

is S ′-valid.

(iii) An open derivation
A1 . . . An

D
B

, where all open assumptions of D are among

A1, . . . , An, is S-valid, if for every S ′ ≥ S and every list of closed S ′-valid Di

Ai

(1 ≤ i ≤ n),

D1

A1 . . .

Dn

An

D
B

is S ′-valid.

PTS05 (=II.1)

II.1 Normalization, computability and validity 28

This inductive definition proceeds over the joint complexity of open assumptions

and end formula of the given derivation.

In view of clause (iii), clause (ii) can be changed to

(ii) A closed derivation of A→B is S-valid if it reduces to a canonical derivation of

A→B whose immediate subderivation is S-valid.

By putting reduction into a clause of its own, the whole definition can then be

equivalently stated as follows.

Definition of S-validity 2

(I) Every closed derivation in S is S-valid.

(II) A closed canonical derivation of A→B is S-valid, if its immediate subderivation

is S-valid.

(III) A closed non-canonical derivation is S-valid, if it reduces to an S-valid canonical

derivation.

(IV) An open derivation
A1 . . . An

D
B

, where all open assumptions of D are among

A1, . . . , An, is S-valid, if for every S ′ ≥ S and for every list of closed S ′-valid Di

Ai

(1 ≤ i ≤ n),

D1

A1 . . .

Dn

An

D
B

is S ′-valid.

The equivalence of these two definitions of S-validity is easy to prove. Obviously,

every (not necessarily closed) derivation in S is S-valid, since every closed S-valid

derivation of an atom reduces to a derivation in S.

This definition corresponds to the one proposed in Prawitz (1974) and also in his

contribution to this volume. As explained in the last subsection, the philosophical

motivation behind this definition is that, in the closed case, derivations in S as well

as introduction steps are self-justifying (clauses I and II), whereas all other steps are

justified on the basis that they reduce to something which is already justified (clause

III), or, in the open case, produce justified closed derivations when combined with such

ones (clause IV).

The reason for considering arbitrary extensions S ′ of S is to block arguments for S-

validity based on the underivability of certain formulas in S. Otherwise, for example,

every derivation in L starting with a propositional variable as an open assumption

should be counted as S0-valid, because there is no closed derivation of a propositional

PTS05 (=II.1)

II.1 Normalization, computability and validity 29

variable in S0. In this sense the consideration of extensions S ′ ≥ S is a monotonicity

condition for S-validity. S-valid derivations should remain S-valid if one’s knowledge

incorporated in the atomic system S is increased.17 In fact, it is easy to show that we

have a

Monotonicity theorem for S-validity

A derivation D in L(S) is S-valid iff for every S ′ ≥ S, D is S ′-valid.

Investigating the consequences of permitting non-monotonicity of S-validity is beyond

the scope of this paper.

As compared to computability, this definition relies on two crucial insights:

(1) The distinction between closed and open derivations is primary as compared

to that between canonical and non-canonical derivations. The latter plays its role as

a subdistinction within closed derivations. In the definition of S-validity we proceed

according to the concept tree

canonical

non− canonical
closed

open

whereas the definition of computability rests on

canonical

reducible

irreducible
non− canonical

In S-validity, the closed/open distinction is the fundamental one, since closed canon-

ical derivations carry the burden of semantical justification and are self-justifying. In

computability, irreducible (= normal) derivations form the basis, i.e., non-canonical

irreducible derivations are self-justifying.18

(2) The reduction clause for closed derivations (clause (III)) uses an existence condi-

tion corresponding to weak normalization, which is again due to the self-justifying char-

acter of closed canonical erivations. Whereas in computability, self-justifying deriva-

tions are by definition tied to the reducibility concept, viz. as derivations which are

irreducible, in S-validity self-justifying derivations are defined independently of re-

ducibility and are not trivially available when a derivation is not reducible, which

means that we have to postulate their existence as a result of reduction.

17I suppose that Prawitz had something similar in mind (see Prawitz 1971, p. 276). In later papers

he drops considering extensions S′ ≥ S, and only considers extensions of justifying procedures (see

below section II.3).

18This does not mean that S-validity of closed and of open derivations is defined separately. These

two cases occur intertwined in the same derivation. This is due to the fact that the immediate

subderivation of a closed canonical derivation of A→B is a derivation of B from the assumption A.

PTS05 (=II.1)

II.1 Normalization, computability and validity 30

For our case of implicational logic we can easily show the following:

Soundness theorem for S-validity For any S, every derivation in L(S) is S-valid.

II.1.4 Validity and universal validity

Universal validity will be defined for derivations in L. Intuitively, a derivation in L
should be universally valid if it is S-valid for every S. For that we have to interpret

derivation of L in L(S). Let an S-assignment v be a mapping of propositional variables

to S-formulas. Then for an L-derivation D, Dv is the L(S)-derivation resulting from

D by replacing every propositional variable with the corresponding S-formula assigned

to it via v. We can then say that D is valid in S under v, if Dv is S-valid in the sense

defined in the previous section. D is then called valid in S if it is valid in S under every

v, and it is called universally valid, if it is valid in S for every S. Now the following

holds.

Proposition Let D be a derivation in L. Then D is universally valid iff D is S0-valid.

Proof One has to use that, when L is interpreted in L(S), every extension S ′ ≥ S can

be viewed as an interpretation of an extension of S0 via an assignment.

Therefore, from now on we use the term “valid” terminologically as meaning uni-

versal or S0-validity.

Then as a corrollary of the soundness theorem for S-validity we have the following:

Soundness theorem for validity Every derivation in L is valid.

As we have a corresponding theorem for computability (Proposition 2), and as

we are so far only taking derivations in implicational logic into consideration, com-

putability and validity coincide in the sense that any computable derivation (i.e., any

derivation in implicational logic) is a valid derivation (i.e., a derivation in implica-

tional logic) and vice versa. So extensionally, computability and validity coincide. We

can differentiate between them extensionally when we consider more general notions

of derivation structures. Then we can give actual counterexamples which show that

computability and validity differ not only with respect to their contents but are in fact

extensionally different concepts (see below section II.4). This further substantiates our

claim that, contrary to Prawitz, computability is at best a forerunner to validity but

not a semantical concept itself.

PTS05 (=II.1)

II.1 Normalization, computability and validity 31

II.1.5 Validity concepts which imply normalizability: strict and strong va-

lidity

Our basic semantical argument against computability and for validity was that irre-

ducible derivations should never be counted as valid without further justification, i.e.

the implication

irreducible implies valid

should not hold by definition. One might, however, expect that

valid implies normalizable

holds19. According to the present definition of validity, normalizability is not implied

by validity. If we consider intuitionistic logic with no introduction rule for absurdity

⊥, then according to our definition of validity, ⊥
D is vacuously valid for any D with

⊥ as the only open assumption, even if D is not normalizable. Now one might argue

that a semantical justification of open derivations in terms of substitution with closed

valid derivations should only be applied if the derivation is reduced as far as possible,

and not already in the present case, where D can still be reduced. This means that

the substitution justification in clause (IV) of the definition of S-validity should be put

into action only if all possibilities of obtaining a justification by means of reduction

are exhausted, i.e., when the derivation in question is irreducible. Calling this notion

“strict S-validity” (or “strict validity” [simpliciter] for the universal concept), we reach

the following definition:

Definition of strict S-validity

(I) Every closed derivation in S is strictly S-valid.

(II) A closed canonical derivation of A→B is strictly S-valid, if its immediate sub-

derivation is strictly S-valid.

(III) A closed non-canonical derivation is strictly S-valid, if it reduces to a strictly

S-valid canonical derivation.

(IV) An open reducible derivation is strictly S-valid, if it reduces to a strictly S-valid

derivation.

(V) An open irreducible derivation
A1 . . . An

D
B

, where all open assumptions of D are

among A1, . . . , An, is strictly S-valid, if for every S ′ ≥ S and for every list of closed

19This is not exactly the converse, which would be “valid implies normal”, which is, of course,

wrong.

PTS05 (=II.1)

II.1 Normalization, computability and validity 32

and strictly S ′-valid Di

Ai

(1 ≤ i ≤ n),

D1

A1 . . .

Dn

An

D
B

is strictly S ′-valid.

The difference to the definition of S-validity consists in the fact that clause (IV) is

split up into clauses (IV) and (V), where the new clause (IV) asks for the reduction of

reducible open derivations, while the new clause (V) is the old clause (IV), but applied

only to the irreducible case. So the conceptual tree of this definition is the following

one

canonical

non− canonical
closed

reducible

irreducible
open

which constrasts sharply with computability, where the reducible/irreducible distinc-

tion is a subdistinction of non-canonical derivations.

I speak of “strict” rather than “strong” S-validity to distinguish it from Prawitz’s

notion of strong validity, which corresponds to computability, and from associations

with strong normalization. Furthermore, I want to reserve “strong S-validity” for a

notion defined below for which this association is justified. Strict S-validity as con-

sidered here is indeed a notion on the same scale as S-validity. It is obvious that

strict S-validity implies S-validity, but not necessarily vice versa.20 The correspond-

ing universal notion of strict validity (simpliciter) is defined as in the previous section

(II.1.4).

Let us define (weak) normalizability inductively as follows.

Definition of normalizability

(i) Every canonical derivation is normalizable if its immediate subderivation is nor-

malizable.

(ii) Every non-canonical normal derivation is normalizable.

(iii) Every non-canonical reducible derivation is normalizable, if it reduces to a nor-

malizable derivation.

Then we can formulate as a theorem that strict validity implies (weak) normalizability.

Theorem Every strictly valid derivation is normalizable.

20Again some emphasis has to be put on “necessarily”, as in the case of intuitionistic logic, all

derivations are strictly S-valid, i.e., strict S-validity and S validity coincide in this case.

PTS05 (=II.1)

II.1 Normalization, computability and validity 33

By strong S-validity we denote an even more strenghtened concept, which implies

strong normalization. However, the concept defined is still different from computability,

as we not just require outright that every reduction sequence terminates. Rather, this

is only required in the reducible case, in order not to render any normal derivation

strongly valid.

Definition of strong S-validity

(I) Every closed derivation in S is strongly S-valid.

(II) A closed canonical derivation of A→B is strongly S-valid, if its immediate sub-

derivation is strongly S-valid.

(III) A closed non-canonical derivation D is strongly S-valid, if D is reducible and if

for every D′ such that D ≻1 D′, D′ is strongly S-valid.

(IV) An open reducible derivation D is strongly S-valid, if for every D′ such that

D ≻1 D′, D′ is strongly S-valid.

(V) An open irreducible derivation
A1 . . . An

D
B

, where all open assumptions of D are

among A1, . . . , An, is strongly S-valid, if for every S ′ ≥ S and for every list of closed

and strongly S ′-valid Di

Ai

(1 ≤ i ≤ n),

D1

A1 . . .

Dn

An

D
B

is strongly S ′-valid.

Obviously, strong S-validity implies strict S-validity.

A corresponding universal notion of strong validity (simpliciter) is defined as in the

previous section (II.1.4).

We extend the definition of normalizability to a definition of strong normalizability

by replacing, in clause (iii) of this definition, “if it reduces to” with “if every derivation

it reduces to in a single step is”. In analogy with the case of strict validity we can show

that strong validity implies strong normalizability.

Theorem Every strongly valid derivation is strongly normalizable.

There are also soundness theorems for strict and strong [S-]validity.

Soundness theorems for strict and strong [S-]validity

All [S-]derivations are both strictly and strongly [S-]valid.

With strict and strong validity we have obtained concepts, which are semantically

satisfying and at the same imply weak and strong normalization, respectively. Com-

pared to them, computability is a starting point rather than a relevant concept in the

final semantic setting.

PTS05 (=II.1)

II.2 Validity and computability based on elimination rules 34

II.2 Validity and computability based on elimination rules

It is a central idea of proof-theoretic semantics to consider one set of rules as basic and

justify derivations based on other rules with respect to them as valid. The standard

approach is to take the introduction rules as primitive or “self-justifying” (Dummett).

However, as envisaged by Prawitz21, one might try to take the opposite way and start

with elimination inferences. Prawitz’s presentation is very sketchy. I reconstruct it as

follows.

According to the I-rule conception, if in D
A

the formula A is the conclusion of an

introduction rule whose premiss derivation is S-valid, then D
A

is S-valid by definition.

If D
A

is not derived by an introduction rule, it is S-valid if it can be reduced to an

S-valid derivation. Analogously, one might postulate within an E-rule conception that,

if all applications of elimination rules to D
A

yield S-valid derivations, then D
A

is itself

S-valid by definition. If no elimination rule can be applied to D
A

, then it is S-valid if

it can be reduced to an S-valid derivation. (Obviously, the latter case only arises when

A is atomic.)

This way of reasoning suggests the following definition (again only for implicational

logic).

Definition of S-validity based on E-rules

(I) Every closed derivation in S is S-validE.

(II) A closed derivation D
A→B

of A→B is S-validE, if for every S ′ ≥ S and every

closed S ′-validE
D′

A
, the (closed) derivation

D
A→B

D′

A

B

is S ′-validE.

(III) A closed derivation D
A

of an atomic formula A, which is not a derivation in S,

is S-validE, if it reduces to a derivation in S.

(IV) An open derivation
A1 . . . An

D
B

, where all open assumptions of D are among

21Prawitz (1971), p. 289seq. [= appendix A.2]

PTS07 (=II.2)

II.2 Validity and computability based on elimination rules 35

A1, . . . , An, is S-validE, if for every S
′ ≥ S and every closed S ′-validE

Di

Ai

(1 ≤ i ≤ n),

D1

A1 . . .

Dn

An

D
B

is S ′-validE.

Clause (IV) is identical with clause (IV) in the definitions of S-validity in section II.1.3,

i.e., open assumptions in derivations are interpreted in the same way as before. Clauses

(I) and (III) can be conjoined to the single clause

(I/III) A closed derivation D
A

of an atomic formula A is S-validE, if it reduces to a

derivation in S.

Using the main reductions, it can again be shown that all derivations in L(S) are

S-validE. As Prawitz remarks, this approach only works for logical constants with

“direct” elimination rules such as → ∧ and ∀. There is no way to carry it over to

constants like ∨ and ∃ with “indirect” elimination rules.

Corresponding to the procedure in section II.1.5, notions of strict S-validityE and

strong S-validityE can be defined such that strict S-validityE implies weak normaliz-

ability and strong S-validityE implies strong normalizability.22

There is also a corresponding notion of computability based on elimination rules

for the purpose of strong normalization proofs. Actually, it is more common in today’s

presentations than computability based on introduction rules, as long as one does not

deal with ∃ or ∨. For example, Troelstra & Schwichtenberg (1996) define computability

as follows:

Definition of computability based on E-rules

(1) For atomic A, D
A

is computableE, if
D
A

is strongly normalizable.

22However, in the case of strict S-validityE (not in the case of strong S-validityE) we would have

to distinguish between reducible and irreducible derivations not only in the open case, but also in the

closed case, i.e., clause (II) should only be applicable if D
A→B

has been reduced as far as possible,

which means that it is irreducible. Otherwise we cannot prove that D
A→B

is weakly normalizable

given that
D

A→B
D′

A

B

is weakly normalizable (in the case of strong normalizability this is trivial).

PTS07 (=II.2)

II.3 Derivation structures, justifications and arguments 36

(2) D
A

is computableE, if for every computableE
D′

A
,

D
A→B

D′

A

B

is computableE.

Similar to computability based on I-rules this notion has again the feature that

normal derivations — here even normalizable ones — are counted as computableE

without further justification, which is natural for proving normalization but cannot be

used for a semantical concept.

As a characteristic feature of the defintions of validityE and computabilityE based

on E-rules, it might be noted that the notion of reduction only comes in at the atomic

case (in the definition of computabilityE in the form of a derivation being strongly

normalizable). In the terminology of terms one might say that everything is played

down to the atomic level by means of term application, whereas the I-rule conceptions

were based on what corresponds to term substitution.

The conception sketched here is not the only possible and perhaps not even the most

genuine way of putting elimination rules first. If one really tried to dualize the I-rules

approach and to put “deriving from” rather than “deriving of” in front, one should

develop ideas like the following. A closed derivation from A should be a derivation of

absurdity from A, and a derivation
A
D
B

should be justified, if, for every closed valid

derivation B

D′ from B,

A
D
B

D′

is a closed valid derivation from A, etc. This, however,

produces conflicts with the asymmetry of derivations, which normally have exactly one

end formula, but possibly several assumption formulas. Full dualization would perhaps

lead to a sort of single-premiss or multiple-conclusion logic. Some sort of genuine E-rule

approach might be desirable, if one wanted to logically elaborate ideas like Popper’s

falsificationism by putting refutation at the basis of reasoning.23

II.3 Derivation structures, justifications and arguments

The soundness theorems for derivations in L are interesting metalogical facts. However,

of a semantical notion of validity we expect more than that. Validity should be a

distinguishing feature, telling that some derivations are valid and others are not. This

is quite analogous to the notion of truth which tells that some propositions are true

23Dummett (1991, Ch. 13, p. 283-286) attempts to develop some kind of a “genuine” E-rule

approach (within the standard setting of derivations with multiple premisses and single conclusions).

PTS08 (=II.3/II.4)

II.3 Derivation structures, justifications and arguments 37

whereas others are not true. A result showing that every proposition is true, making

truth a general feature of propositions, would be considered inadequate. Similarly, there

should be some more general notion of derivation among which the notion of validity

determines a subclass. It is easy to construct such derivations: just combine arbitrary

rules, not just the rules which belong to L. For example, a single step derivation in L
of the form

A→B

B

should turn out as not being valid, because for certain S ≥ S0, not every closed S-valid

derivation of A→B becomes a closed S-valid derivation of B when B is appended at the

end of this derivation.24 This means that we have to be able to talk about arbitrary

derivations which are not built according to a previously given set of rules. This is

particularly required if one wants to pose the question of completeness, i.e. the question

of whether every valid derivation can be represented in L. As long as [S-]validity is

only defined for L or L(S), completeness is absolutely trivial. It just says that every

[S-]valid derivation is a derivation, as there are no candidates for derivations which

might not be in L or L(S).
Since by “derivations” one normally understands derivations in a given system,

one should choose a different term. I propose to talk about derivation structures. So

the purpose of this section is to define a notion of a derivation structure and of the

[S-]validity of derivation structures. Derivations in L or L(S) are then just derivation

structures generated by particular rules of inference.

This problem does not arise when we are dealing with computability and nor-

malizability only. Computability, as an auxiliary concept to prove normalization, is

not necessarily a concept which aims at dividing derivations in computable and non-

computable ones, at least not in the first place. In the context of computability, we

just want to show all derivations have the property of being normalizable.

In order to develop a notion of derivation in a generalized sense, we take up concepts

from the theory of natural deduction and carry them over to arbitrary formula trees. A

derivation structure over the language of implicational logic (and possibly over atomic

systems S as well) can be defined as follows. A derivation structure is a formula

tree together with a discharge function. A discharge function for a formula tree is a

function which associates with every top formula25 a formula occurring below (on the

24For example, if A and B are propositional variables, we may choose S as having no axiom and

A ⇒ B as the only inference rule. Then there is an S-valid derivation of A→B, but no S-valid

derivation of B.

25More precisely, we should talk of top formula occurrences. I do not always terminologically

distinguish between formulas and their occurrences. It will always be clear from the context what is

meant.

PTS08 (=II.3/II.4)

II.3 Derivation structures, justifications and arguments 38

same branch in the tree). The intended reading is the following. Suppose A1, . . . , An

and B occur in the tree as follows:

❵❵
❆

❆❆

✁
✁✁

B

❆❆ ✁✁
A1

❆❆ ✁✁
An. . .

where each Ai is the value of the discharge function f for top-formulas Ci1, . . . , Cimi
,

i.e., f(Ci1) = . . . = f(Cimi
) = Ai. Then B is inferred as a conclusion from the

premisses A1, . . . , An, where at this application, for each i (1 ≤ i ≤ n), the assumptions

Ci1, . . . , Cimi
in the derivation of each Ai are discharged. This means that the derivation

represents the step governed by the following inference rule:

[C11, . . . , C1m1]

A1 . . .

[Cn1, . . . , Cnmn]

An

B
(R) .

In this way, inference rules can be extracted from a derivation structure, and it can be

checked if a given set of inference rules allows one to generate this derivation structure.26

It should be noted, however, that the concept of a derivation structure is independent

of the concept of an inference rule. This neatly fits with the notion of validity, which

refers to derivations rather than to rules.

According to this definition,

A→B

B

is a (very simple) derivation structure. Therefore, once we have defined S-validity

and validity for derivation structures, we are in the position to formulate that this

derivation structure is not valid. We may then also pose the question of whether

every valid derivation structure is or can be represented as a derivation in L, which
corresponds to completeness. Actually, completeness can be formulated in our context

in two ways:

(Compl 1) Every valid derivation structure is a derivation in L.

(Compl 2) If there is a valid derivation structure with end formula A and open assump-

tions B1, . . . , Bn, then there is a derivation of A in L, all of whose open assumptions

are among B1, . . . , Bn.

26Such a notion of a derivation structure is spelled out in detail in Schroeder-Heister 1984a,b.

PTS08 (=II.3/II.4)

II.3 Derivation structures, justifications and arguments 39

It is obvious that (Compl 2) follows from (Compl 1), but not necessarily vice versa.

(Compl 1) says that every valid derivation structure is itself a derivation in L, whereas
(Compl 2) only says that for every valid derivation structure a derivation in L (with

the same end formula and no additional assumptions) can be found.

It is easy to prove completeness in the sense of (Compl 1) with respect to the

present notion of validity, where we replace “derivation” with “derivation structure”

and understand reductions as before. Proceeding by induction on the complexity of

valid derivation structures we argue as follows: A derivation structure 〈A, f〉 with

f(A) = A is a derivation in L, which just consists of the assumption formula A.

Suppose a derivation structure D with end formula B has been constructed using a

rule (R). If (R) is a primitive rule of L, we just apply the induction hypothesis. Suppose

(R) is not a primitive rule of L. Suppose furthermore that D is closed. Then D is not

canonical since (R) is not an introduction rule (and not an atomic rule either, as we

can choose the atomic system without any rule). Then D is valid only if it reduces to

a canonical derivation. This is impossible, however, since such a reduction can only

affect the immediate subderivations of D as there is no reduction step involving (R).

Therefore, D cannot be valid if (R) is not a primitive rule of L. Since strong validity

implies validity, this holds for strong validity as well.

Looking more closely at this completeness proof, it turns out to be quite trivial.

The fact that valid derivation structures are derivations in L is due to the fact that

reduction procedures are only associated with elimination rules. This means that if

a closed derivation structure ends with a rule which is neither an introduction rules

(which yields a valid derivation if the immediate subderivation is valid) nor with an

elimination rule (which yields a valid derivation if it reduces to a derivation structure

in I-form), it is not valid at all. Thus we enforce derivations in L to be the only valid

ones, as they exhibit the pattern of I- and E-rules.

However, we would like to call a derivation structure valid if it uses steps that

can be justified, even if they are not primitive steps of L. For example, the one-step

derivation

(⋆)
A→(B→C)

B→(A→C)

should be counted as valid, even if it is not a derivation in L. For such a notion of

validity, (Compl 1) would no longer hold, as (⋆) is not a primitive rule of L. However,
(Compl 2) might hold, and it would be striking if we could establish it as a result.

For such a revised notion of validity we would have to associate further reductions

with derivation structures. E.g., if we added the reduction step

PTS08 (=II.3/II.4)

II.3 Derivation structures, justifications and arguments 40

(⋆⋆)
D

A→(B→C)

B→(A→C)

reduces to

D
A→(B→C)

(1)

[A]

B→C

(2)

[B]

C (1)
A→C (2)

B→(A→C)

to our list of reduction steps, then the derivation (⋆) would indeed turn out as valid

according to our definition of validity.

So what has actually to be changed is not so much the notion of validity itself, but

the notion of reduction the definition of validity refers to. This fits very well with the

general idea of reduction. Reductions serve as justifying procedures for non-canonical

steps, i.e., for steps, which are not self-justifying. When we consider validity for ar-

bitrary derivation structures, we should not just consider the topological structure of

derivations but also generalize their reductions. This means that a more appropri-

ate concept would be that of a derivation structure together with a set of permitted

reduction steps, which need not coincide with the set of standard reductions used in

normalization of derivations in L.
This is exactly the step taken by Prawitz in his (1973) and later publications, in-

cluding his contribution to the present volume. As he wants to consider derivations

as representations of arguments, he calls an argument skeleton what we are calling

a derivation structure. An argument is then a pair 〈D,J 〉 consisting of a derivation

structure together with a justification J , where a justification consists of a set of reduc-

tion rules for derivation structures. A reduction rule is a transformation of derivation

structures whose value has the same end formula and no open assumptions beyond

those in the argument (but possibly less). More precisely, as reductions are only re-

quired when a derivation structure is non-canonical, justifications are only defined for

non-canonical derivation structures of the form

D1 . . . Dn

A
(X)

where (X) is not an introduction inference or an inference in an atomic system S. This

means that the transformations within a justification J are attached to (non-canonical)

rules. It is furthermore required that with each rule not two different reductions are

associated. This is expressed by saying that J is consistent. J ′ is called a consistent

extension of J (J ′ ≥ J) if J ′ is either J itself or results from J by adding reductions

for rules for which there are no reductions in J , and is furthermore consistent.

It is not necessarily required that the reductions be schematic in the sense that

different instances of a rule schema require the same reduction. E.g., it is not excluded

PTS08 (=II.3/II.4)

II.3 Derivation structures, justifications and arguments 41

that for modus ponens

A→B A

B

the reductions defined differ depending on what formulas A and B stand for. However,

in normal circumstances, reductions will be given schematically, as it is the case with the

standard reductions of intuitionistic logic. In any case, reductions within justifications

have to be interchangeable with substitution, which in the propositional case means

the following:

If a reduction j is defined for a derivation
A1 . . . An

D
, such that

j

A1 . . . An

D

 =

A1 . . . An

D′ , then for any D1

A1

, . . . , Dn

An

,

j

D1

A1 . . .

Dn

An

D

=
D1

A1 . . .

Dn

An

D′

.

In the quantified case interchange with substitution for individual variables has to

be added. Therefore, with respect to the substitution of derivations or derivation

structures for open assumptions, reductions are schematic indeed.

Let now L∗(S) be the logic of arguments over S, which may be identified with the

set of arguments 〈D,J 〉, where the derivation structure D is built up from implicational

formulas over formulas of S as atoms, and J is a justification whose reductions are

defined for such derivation structures. As a limiting case we again have L∗(S0), in short

L∗, which uses only propositional variables as atoms. Standard implicational logic L
would then be obtained by considering the set of all 〈D,J 〉 such that D is a derivation

in standard implicational logic, whereas J is fixed for all derivations and comprises

exactly the standard reductions.

Then the S-validity of arguments 〈D,J 〉, which is the same as the S-validity of

derivation structures D with respect to consistent sets of justifications J , is defined as

follows.

Definition of S-validity for arguments

(I) Every closed derivation in S is S-valid with respect to every J .

(II) A closed derivation structure

A
D
B

A→B

is S-valid with respect to J , if its immediate

PTS08 (=II.3/II.4)

II.3 Derivation structures, justifications and arguments 42

substructure
A
D
B

is S-valid with respect to J .

(III) A closed non-canonical derivation structure is S-valid with respect to J , if it

reduces with respect to J to a canonical derivation structure, which is S-valid with

respect to J .

(IV) An open derivation structure
A1 . . . An

D
B

, where all open assumptions of D are

among A1, . . . , An, is S-valid with respect to J , if for every S ′ ≥ S and J ′ ≥ J , and

for every list of closed derivation structures Di

Ai

(1 ≤ i ≤ n), which are S ′-valid with

respect to J ′,

D1

A1 . . .

Dn

An

D
B

is S ′-valid with respect to J ′.27

The reason for considering, in clause (IV), besides extensions S ′ ≥ S of atomic systems,

also consistent extensions J ′ ≥ J of justifications, is again, in my view, a monotonicity

constraint. It is obvious that the following holds.

Monotonicity of S-validity (for arguments)

An argument 〈D,J 〉 in L∗(S) is S-valid iff for every S ′ ≥ S and J ′ ≥ J , 〈D,J ′〉 is

S ′-valid.

It should be noted that the definition of S-validity for arguments covers the case

of S-validity of derivations in the old sense as a limiting case: Since for standard

derivations, every inference rule which is not an introduction rule has already been

assigned a reduction, there is no proper consistent extension of the standard set of

reductions in this case. This means that the consideration of consistent extensions in

the general case does not add anything specific to the standard case.

The corresponding universal concept is then defined as follows: If v is an assign-

ment of S-formulas to propositional variables, then for a J comprising reductions for

arguments in L∗, J v is defined to be the set of reductions which acts on derivations

Dv in the same way as J acts on D (i.e., J v is the homomorphic image of J under

v). Then an argument 〈D,J 〉 in L∗ is defined as universally valid iff for every S and

every v, 〈Dv,J v〉 is S-valid. Again we can prove:

27See Prawitz 1973, p .236; 1974, p. 73, and this volume. Prawitz does not consider extensions of

atomic systems S.

PTS08 (=II.3/II.4)

II.4 Computability, validity and normalizability: counterexamples 43

Proposition Let 〈D,J 〉 be in L∗. Then 〈D,J 〉 is universally valid iff 〈D,J 〉 is S0-

valid.

This means that we can continue to use the term “valid” (now with respect to some

J) interchangeably for both universal and S0-validity.

It is obvious how to define notions of strict and strong S-validity for L∗(S) and of

strict and strong validity for L∗. We can also prove normalization and strong normal-

ization from strict and strong validity, respectively. I cannot enter these issues here in

detail.

The basic difference between derivations and arguments is, of course, that soundness

no longer holds in every case; it simply depends on the justifications provided, as was

intended by introducing the general notion of argument.

Returning to our previous example, we can now make precise what is meant by the

validity of the one-step derivation

(⋆)
A→(B→C)

B→(A→C)
.

This derivation is in fact valid with respect to the standard reductions of implicational

logic extended with the reduction given by (⋆⋆). Now it makes sense to consider

derivation structures D for which there is a justification J , such that D is valid with

respect to J . Such derivation structures cannot be represented as derivations in L,
as the example of (⋆) shows, which is not a rule of L. Therefore (Compl 1) does no

longer hold. However, we may ask whether (Compl 2) holds in the sense that for any

derivation structure, which can be justified as valid (i.e., which is valid with respect

to some justification), a derivation in L of its end formula from its open assumption

formulas can be found. That (Compl 2) in this form holds is claimed by Prawitz as a

conjecture (1973, p. 246), without his being able to indicate how it might be proved.

In addition to validity in the sense sketched here, Prawitz also defines a notion

of computability with respect to arbitrary justifications, which he (unfortunately) calls

strong validity. It is not surprizing that he is able to establish strong normalization with

respect to this general context of arbitrary justifications. We cannot present this here.

From our point of view, his general computability concept suffers semantically from

the same defect as did the less general computability concept dealt with in sections

II.1.1 and II.1.2. Again, Prawitz has to consider irreducible non-canonical arguments

as strongly valid, the only difference being that irreducibility is now taken with respect

to a justification J , which is not confined to the standard reductions (1973, p. 239;

1974, p. 74).

PTS08 (=II.3/II.4)

II.4 Computability, validity and normalizability: counterexamples 44

II.4 The relationship between computability, validity and normalizability:

counterexamples

In section II.1.2 we claimed that computability and validity are crucially different, es-

pecially by arguing that normal derivations have to be justified semantically. However,

at that stage we were not able to give counterexamples establishing this difference, as

extensionally the concepts were identical, comprising all derivation in L. Now with

respect to the generalized concept of an argument we can provide counterexamples.

We understand the computability of an argument 〈D,J 〉, i.e. the computability

of D with respect to a justification J in the following sense, which leads to weak

normalization, and compare it with the validity of D with respect to J .

Definition of (weak) computability of arguments

(i) A derivation structure of the form

[A]

D
B

A→B

is computable with respect to J , if for

every J ′ ≥ J and every D′

A
computable with respect to J ′,

D′

A
D
B

is computable with

respect to J ′.

(ii) If a derivation structure D is not in I-form and is normal (= irreducible) with

respect to J , then it is computable with respect to J .

(iii) If a derivation is not in I-form and is not normal with respect to J , then D is

computable with respect to J , if D reduces with respect to J to a D′ which is com-

putable.

Counterexample 1: Computability of 〈D,J 〉 does not imply validity of

〈D,J 〉

We construct an argument 〈D,J 〉 in such a way that 〈D,J 〉 is closed, non-canonical
and normal, and therefore computable, but not valid.

Choose a closed non-canonical derivation structure D
A

for non-atomic A, e.g.,

(1)

[A]
(→I)(1)

A→A R
A

with A standing for B→C.

Choose J in such a way that with the rule R no reduction is associated. Then 〈D,J 〉
is computable, because it is irreducible. However, 〈D,J 〉 is not valid, because it

PTS08 (=II.3/II.4)

II.4 Computability, validity and normalizability: counterexamples 45

cannot, as required for validity, be reduced to a canonical derivation structure, since

no reduction for D is available in J .

Counterexample 2: Validity of 〈D,J 〉 does not imply computability of

〈D,J 〉

We consider 〈⊥,→〉-logic, i.e., a system with a logical constant ⊥, for which there is

no introduction rule. In such a system the derivation
⊥
A

, and therefore

(1)

[⊥]

A (1)
⊥→A

is valid with respect to any J . Now let, for some B, J be chosen in such a way that

B

⊥
is irreducible. Let J furthermore be chosen such that

B
⊥
A

reduces to itself with

respect to J , i.e., the reduction of
B
⊥
A

is non-terminating. Then

(1)

[⊥]

A (1)
⊥→A

is not

computable with respect to J , because for computable
B

⊥
,

B
⊥
A

is not computable

(with respect to J).28

It can easily be seen that these counterexamples hold for strict validity instead of

validity as well, and also for strong validity in comparison with computability when

the latter is defined in the strong sense (demanding in clause (iii) that all one-step

reductions lead to computable derivations).

It might be added that Counterexample 1 is at the same time a counterexample

showing that normalizability, which is implied by validity, does not itself imply validity.

Similarly, Counterexample 2 shows that normalizability does not imply computability.

28The intuitive reason for this behaviour is the following:
⊥
A

is always valid as there is no closed

valid derivation of ⊥. However, for open normal derivations
B

⊥
can

B
⊥
A

be made non-terminating

for appropriate J . (Note that we do not choose
B

⊥
to be just ⊥, because then the example would

not work for strict validity, as
⊥
A

would not terminate.)

PTS08 (=II.3/II.4)

II.5 Logical consequence and the validity of inference rules 46

The latter is not surprizing as computability is a stronger concept than normalizability,

using infinite branching when quantifying over substitution instances of open derivation

structures.

II.5 Logical consequence and the validity of inference rules

It is natural that the S-validity of an inference rule

A1 ... An

A

with respect to a justification J should mean that the one-step derivation structure

of the same form is S-valid with respect to J . We can even define the S-validity of

an inference rule which allows the discharging of assumptions, such as the generalized

rule

[C11, . . . , C1m1]

A1 . . .

[Cn1, . . . , Cnmn]

An

B
.

This rule is called S-valid with respect to J , if for all S ≥ S0, all J ′ ≥ J , and every

list of derivation structures

[Ci1, . . . , Cimi
]

Di

Ai

(1 ≤ i ≤ n), which are S-valid with respect to J ′, the derivation

structure
D1 . . . Dn

B
is S-valid with respect to J ′.

This gives rise to a corresponding notion of consequence. Instead of saying that the

rule

A1 . . . An

A

is S-valid with respect to J , we may say that A is a consequence of A1, . . . , An with

respect to S and J (A1, . . . , An |=S,J A); if we consider universal validity with respect

to J , we may speak of consequence with respect to J (A1, . . . , An |=J A); and finally,

if there is some J such that universal validity holds for J , then we may speak of

logical consequence (A1, . . . , An |= A). Corresponding to the case of rules discharging

assumptions, we obtain a notion of consequence

Γ1 ⇒ A1, . . . ,Γn ⇒ An |=S,J A

PTS09 (=II.5)

II.5 Logical consequence and the validity of inference rules 47

for sets of formulas Γi. This is to express that the rule

[Γ1]

A1 . . .

[Γn]

An

B

is S-valid with respect to J , i.e., we have some notion of implication in the antecedent

of |=, which is independent of whether the logical constant of implication is available

in our language. The basic conceptual difference of such a notion of consequence

compared to classical consequence is the following. The idea of classical consequence

is based on the transmission of truth: A consequence assertion A1, . . . , An |= A holds

if, for any model, if all antecedents Ai are true in the model, then so is the consequent

A. In proof-theoretic semantics truth is not just replaced by derivability. It is not

argued that A1, . . . , An |= A holds if, for any atomic system S, if all antecedents Ai are

derivable with respect to S, then so is the consequent A. Rather, we are saying that

A1, . . . , An |= A holds if, for any atomic system S, every S-valid derivation of A1, . . . , An

can be extended to an S-valid derivation of A using the given derivation of A1, . . . , An

as immediate subderivations (modulo considering extensions S ′ ≥ S and justifications

J). So we are not defining a notion of constructive truth alias derivability and then

claiming that in consequence constructive truth is being transmitted. Rather, we claim

that there is a way, based on formal procedures J , which justifies the derivation of the

consequent, if this consequent is appended, as a conclusion of an inference rule, to the

derivations of the antecedents. The special feature of proof-theoretic semantics is that

consequences arise as final steps of derivations, i.e. that the justification of inference

rules and of consequences is exactly the same.

Thus in proof-theoretic semantics, consequence does not mean that the consequent

can be derived from the antecedents, as might be a naive prejudice. Derivability

from assumptions may give rise to a justification which comes to that, but this is not

necessarily so. The justification procedure (⋆⋆) of section II.3 for

A→(B→C)

B→(A→C)

consists essentially of describing a derivation of the conclusion from the premiss. But

in the case of the more basic procedures like modus ponens, this is not the case. Even

if it can be shown that every justifiable rule can be derived from the standard rules,

this would be just a completeness result like classical completeness — the definition of

validity does not refer to derivability according to rules29.

What goes crucially beyond classical notions of consequence, however, is the notion

of implication in the antecedents of consequence statements which can be included

29See also Prawitz (1985).

PTS09 (=II.5)

II.6 Proof terms and Martin-Löf ’s approach 48

even without implication as a logical constant (i.e., “ ⇒ ” in my terminology). There

is some structural notion of implication which is due to the fact that rules can discharge

assumptions, comparable to the comma as structural conjunction. This has been used

in generalized concepts of inference rules (see section III.1). It is also important for the

formulation of a basic sequent calculus in theories of definitional reflection (see section

III.3.2).

II.6 Proof-theoretic semantics, proof terms and Martin-Löf’s approach

The method of proof terms is a technical device according to which the fact that a

formula A has a certain proof can be codified as the fact that a certain term t is of

type A, whereby the formula A is identified with the type A. By means of this method,

which was introduced by Curry and Howard30, formulas can be considered as the types

of their proofs. This can again be put into a calculus for type assignment, whose

statements are of the form t : A. A proof of t : A in this system can be read as showing

that t codifies a natural deduction proof of A. If t contains variables, t : A may depend

on declarations of the form x1 : A1, . . . , xn : An, where the A1, . . . , An correspond to

the open assumptions on which the natural deduction derivation of A depends. This

idea is exploited in type-theoretical systems such as Martin-Löf’s31 which especially

use the idea of dependent types, which may contain variables for terms, etc.

Martin-Löf has put this into a philosophical perspective32 by distinguishing a two-

fold sense of proof. First we have proofs of statements of the form

t : A .

These statements are called judgements, their proofs are called demonstrations. Within

such judgements the term t represents a proof of the proposition A. A proof in this

sense is also called a proof object. So when demonstrating a judgement t : A, we

demonstrate that a proposition has a certain proof33. Within this two-layer system the

demonstration layer is the layer of argumentation. Unlike proof objects, demonstrations

have epistemic significance; their judgements carry assertoric force. The proof layer

is the layer at which meanings are explained: The meaning of a proposition A is

explained by telling what counts as a proof (object) for A. The distinction made

between canonical and non-canonical proofs etc. is a distinction at the propositional

and not at the judgemental layer.

30See de Groote (1995) for references.

31See Martin-Löf (1984), Nordström et al. (1990) and Sommaruga (2000).

32See Martin-Löf (1995, 1998).

33I do not discuss here other forms of judgements which occur in type theory.

PTS11 (=II.6)

II.6 Proof terms and Martin-Löf ’s approach 49

On the background of Prawitz’s definition of validity, one could expect that Martin-

Löf gives a formal definition of validity for proof (objects). However, this is not the

case, at least not in the sense of a metalinguistic inductive definition of what is a valid

proof (object). Rather, he gives a justification of demonstration steps which refers

to the meanings of propositions and to the forms of proof (objects) referred to in its

judgements. For example, for the case of implication, the rules for judgements of the

form t : A are the following (the standard typing rules of the typed lambda-calculus):

[x : A]

t(x) : B

λx.t(x) : A→B
(→ I)

t : A→B t′ : A

tt′ : B
(→ E)

where t(x) denotes a term in which x may occur free, and tt′ denotes the term appli-

cation of t to t′.

According to Martin-Löf the justification runs roughly as follows:

(→ I) The proof (object) λx.t(x) is in canonical form, so it is a proof of A→B,

provided for every proof (object) t′ of A, t(t′) is a proof of B. The latter holds, as the

demonstration of t(x) : B from x : A convinces us exactly of this fact, namely that

t(t′) proves B if t′ proves A.

(→ E) Suppose demonstrations of t : A→B and t′ : A are given. Then they convince

us that t is a proof (object) of A→B and t′ one of A. As a proof of A→B, t is already

in canonical form or reduces to a proof in canonical form. In each of the two cases, tt′

reduces to a proof in canonical form, i.e., tt′ is a proof of B.34

By justifying (making evident) demonstration steps, Martin-Löf establishes the

means for validating proofs. If I have demonstrated a : A, I have shown that a is in

fact a proof of A. So in a sense Martin-Löf also defines what it means for a proof to

be valid (i.e., to be a “real” proof). But this definition is given in the form of the

explanation and justification of a system for the demonstration of validity. The crucial

difference to Prawitz’s procedure is that it is not metalinguistic in character, where

metalinguistic means that candidates of proofs are specified first and then, by means

of a definition in the metalanguage, it is fixed which of them are valid and which are

not. Rather, proofs come into play only in the context of demonstrations. I give a

proof of A by presenting an object a, of which I demonstrate that it is a proof of A.

Presenting and validating a proof takes place at the same level. Not the proof

itself has epistemic force, but its validation in form of a demonstration endows it with

epistemic force. Conversely this means that making an assertion, i.e. using epistemic

34To make this fully precise, we would have to take equality judgements into consideration, which

govern the reductions of proof objects. In a sense, the application operation (indicated here by

concatenation) is a kind of justifying operation which, when applied to a canonical proof, yields a

proof, as the equality rules for the evaluation of applications (which correspond to β-reduction) show.

PTS11 (=II.6)

II.6 Proof terms and Martin-Löf ’s approach 50

force, includes presentation of the proof as a proof object. So when asserting something,

I am not just relying on a proof in the sense that I can justify it, if I am asked to do

so, but I am presenting it as something which by my very reasoning turns out to be a

proof (and is as such justified). Proving something and demonstrating the validity of

this proof cannot be separated.

This implies a certain expliciteness requirement. When I prove something, I not

only have to have a justification for my proof at my disposal as in Prawitz, but at the

same time have to be certain that this justification fulfils its purpose, which is much

more. This certainty is guaranteed by a demonstration.

It might be said that Martin-Löf’s theory combines the “semantics of proofs” with

the “semantical proofs” approaches. In the sense that proofs are treated as objects, he

is definitely an adherent of the first one. On the other hand, by rejecting a metalinguis-

tic approach to validity and instead proposing an approach based on the “intuitive”

justification of rules, he also represents the second, where “proof” has to be replaced

with “demonstration”. In Martin-Löf we find both a “semantics of proofs” and “se-

mantical demonstrations”.

PTS11 (=II.6)

III.1 Generalized rules 51

Part III. Semantical rules and definitional reflection

III.1 Proof-theoretic semantics based on generalized rules

The approach to proof-theoretic semantics described was based on the idea that the

candidates for validity are proofs in the sense of derivations, derivation structures or

arguments. A different approach would not start with proofs as a whole (which, in

a sense, means proofs as objects), but with inference rules and their justification. A

proof would then be valid if it proceeds according to justified rules. The idea behind

such an approach is that certain inference steps are semantical steps, and a valid

proof is one which proceeds by such semantical steps. One might characterize the

difference between the two approaches by distinguishing between a semantics of proofs

and semantical proofs.

This goes along with a different perspective: Whereas the first approach looks at

proofs globally, insisting on features like reducibility to certain forms, the second one

considers local steps. The advantage of the second approach is that it can distinguish

between local and global features by keeping the individual inference steps distinct from

the way these steps are composed to a global proof. Apart from the basic conceptual

difference, this makes it very flexible and capable to deal with more sophisticated

phenomena than the global approach, such as, e.g., circular reasoning.

One idea is to justify inference rules as following a general semantical pattern.

This was attempted by Schroeder-Heister (1981, 1984a).35 Within a programme of

developing a general schema for rules for arbitrary logical constants it was proposed that

a proposition of the form α(A1, . . . , An), where α is an n-ary logical connective, should

express what was called the common content of systems of rules. Here a system of rules

is a list of expressions R1, . . . , Rm, where each Ri is called a “rule”. A rule R is either a

formula A or has the form R1, . . . , Rn ⇒ A, where R1, . . . , Rn are themselves rules. In

a sense, systems of rules are expressions of a conjunction-implication-calculus (with the

comma expressing conjunction and the rule arrow ⇒ expressing implication), where

implication is iterated only to the left. Instead of systems of rules, of which a single rule

is a limiting case, I shall also speak of conditions36. They are denoted by capital Greek

letters Γ,∆, with and without indices. The derivability of formulas from conditions is

explained in the following way: A can be derived from itself considered as a condition

(consisting just of A as a premiss-free rule). If A1, . . . , An have been derived from

Γ1, . . . ,Γn, respectively, then B can be derived from Γ1, . . . ,Γn together with the rule

A1, . . . , An ⇒ B. This motivates the “rule”-terminology: B can be derived using the

35Stimulated by earlier ideas of Prawitz (1978). See also Schroeder-Heister (1987).

36This is the terminology proposed by Hallnäs in the context of definitional reflection (see below

section III.3.2).

PTS10 (=III.1)

III.1 Generalized rules 52

rule A1, . . . , An ⇒ B (and perhaps further conditions) as an assumption. This gives rise

to even more complicated rules, permitting to discharge assumptions. For example, the

rule ((A ⇒ B) ⇒ C) ⇒ D allows one to pass over from C to D, provided C has been

derived using A ⇒ B as an assumption. This again means that the assumption A ⇒ B

may be discharged when passing from C to D. This explanation can be extended to

rules with individual variables and quantifiers (see Schroeder-Heister 1984b).37

Now the semantical idea of the common content of conditions is defined as follows.

Definition (Common content)

The formula A expresses the common content of conditions ∆1, . . . ,∆n, iff for every

condition Γ and every formula C, it holds that

Γ, A ⊢ C iff for every i (1 ≤ i ≤ n), Γ,∆i ⊢ C,

i.e., iff from A, together with possible assumptions Γ, everything follows which follows

from each of the conditions ∆i.

Obviously, common content means the same as content, if there is just one condition

∆ available, where “content” is understood as “set of consequences”.

For the standard logical constants this means the following, where conditions, which

are lists of rules, are included in braces:

A∧B expresses the common content of 〈A,B〉
A→Bexpresses the common content of 〈A ⇒ B〉
A∨B expresses the common content of 〈A〉 and 〈B〉
⊥ expresses the common content of the empty list of conditions (case n = 0)

It can then easily be shown that the standard introduction and elimination inferences

just express this semantical condition, i.e., they hold iff this condition is fulfilled.

In general, we assume conditions ∆1(p1, . . . , pn), . . . ,∆m(p1, . . . , pn) to be associated

with an n-ary logical constant α, where every ∆i(p1, . . . , pn) contains no propositional

variables beyond the indicated p1, . . . , pn. Then we suppose that for all A1, . . . , An,

α(A1, . . . , An) expresses the common content of the conditions

∆1(A1, . . . , An), . . . ,∆m(A1, . . . , An).

The corresponding introduction inferences in the general case are

∆1(A1, . . . , An)

α(A1, . . . , An)
. . .

∆n(A1, . . . , An)

α(A1, . . . , An)

37For various systems for the handling of rules see Schroeder-Heister (1987).

PTS10 (=III.1)

III.1 Generalized rules 53

whereas the elimination rule follows the pattern

α(A1, . . . , An)

[∆1(A1, . . . , An)]

C . . .

[∆n(A1, . . . , An)]

C

C
.

As a corrollary we obtain operator completeness in the sense that any α(A1, . . . , An)

which expresses the common content of certain conditions, can be explicitly defined

using the standard connectives ∧, ∨, → and ⊥. For example, if α1(A1, . . . , A4) ex-

presses the common content of 〈A1 ⇒ A2〉 and 〈A3 ⇒ A4〉, which means that it can

be characterized by the following introduction and elimination rules

[A1]

A2

α1(A1, A2, A3, A4)

[A3]

A4

α1(A1, A2, A3, A4)

α1(A1, A2, A3, A4)

[A1 ⇒ A2]

C

[A3 ⇒ A4]

C

C
,

then α1(A1, A2, A3, A4) can be explicitly defined as (A1→A2)∨(A3→A4).

It is, of course, easily possible to define computability and validity notions for

derivations based on operators with generalized introduction and elimination rules.

However, this would be missing the point, which is the semantical justification of both

introduction and elimination rules via the notion of common content of conditions,

rather than just a generalized schema for introduction and elimination rules for which

then validity could be defined.

Originally, this approach was intended as a semantical approach to logical operators

which is well-founded in the following sense. We start with conditions containing no

operators at all, calling them elementary conditions. In the next step we use condi-

tions referring to logical constants defined by elementary conditions, and so on. For

example, we might define a ternary logical constant α2 with reference to the condition

〈p1 ⇒ p2∨p3〉 with the introduction and elimination rules

[A1]

A2∨A3

α2(A1, A2, A3)

α2(A1, A2, A3)

[A1 ⇒ A2∨A3]

C

C
.

Obviously, α2(A1, A2, A3) is explicitly definable as A1→(A2∨A3). Actually, α2 is an

example of an operator which cannot be expressed as the common content of elementary

conditions. Another example would be the negation operator ¬ characterized by the

(non-elementary) condition 〈p ⇒ ⊥〉.
However, this approach can easily be extended by relaxing the restrictions for condi-

tions, even allowing for circular characterizations. If we want a nullary logical operator

PTS10 (=III.1)

III.1 Generalized rules 54

α3 to express the content of itself, i.e., of 〈α3〉, we would obtain introduction and

elimination rules like

α3

α3

α3

[α3]

C

C
,

where the elimination rule is equivalent to

α3

α3

,

i.e., we could as well do without any rule for α3. Although the characterization of α3

is circular, it fits into our general schema of meaning giving rules based on the notion

of common content. It is not suitable for an inductive definition of the validity of

arguments, but this is just the point here. We are no longer defining a global concept

like validity for derivation structures, but just local rules based on certain requirements.

One has then only to be careful how such “non-standard” rules are composed to yield

derivations or arguments.

For example, consider defining α4 be means of its own negation, i.e., by reference

to the content of 〈α4 ⇒ ⊥〉. Then the introduction an elimination rules would be

[α4]

⊥
α4

α4

[α4 ⇒ ⊥]

C

C
,

where the elimination rule is equivalent to

α4

⊥
.

Allowing such a construction would make the system inconsistent as the following

derivation shows:

(1)

[α4]
α4-E⊥ (1) α4-Iα4 α4-E⊥

However, this inconsistency is achieved by means of a derivation which is not normal

in the sense that an application of an introduction rule is followed by that of an

elimination, and there is no way to reduce it to a normal derivation. This can be seen

as follows. The main reduction step for α4 would be that

PTS10 (=III.1)

III.1 Generalized rules 55

(1)

[α4]

D
⊥ (1)
α4

⊥

reduces to

(1)

[α4]

D
⊥ (1)
α4

D
⊥

which in the present case, where D is just
α4

⊥
, means that the original derivation

reduces to itself38, i.e., reduction does not terminate.

These analyses of α3 and α4 exemplify investigations of circular reasoning based on

the analysis of local rules, which cannot be carried out so easily in a global framework

of the validity of derivation structures. I shall resume the subject of circular reasoning

in the last section of this paper.

What can clearly be seen is that the approach based on the common content of

conditions relies on some sort of basic or primitive logic. If a proposition should

express the common content of a system of conditions, there must be ways of expressing

conditions and inference rules dealing with that. In the original development of this

approach this was considered a calculus dealing with rules of higher levels, which can be

read as a system for left-iterated conjunction-implication logic (see Schroeder-Heister

1987). Realizing that there is some basic logic, we might consider a system of full

conjunction-implicaton logic. This would make clear that there is some sort of logic

that comes before semantical justification, which, in terms of first-order logic, is positive

logic without disjunction and existential quantification. So what needs semantical

justification is basically disjunction and existential quantification, which corresponds to

the fact that the notion of common content mimicks the pattern of indirect elimination

rules for these logical constants.

Spelling out this basic logic would make it possible to make its substrutural features

explicit. The result would be a logical framework based on substructural logic including

38The reduction step is obtained from the fact that
α4

⊥
results from

α4 α4

⊥
, with the same deriva-

tion leading to the major and minor premisses of this inference. The reduction for

(1)

[α4]

D
⊥ (1)
α4

D′

α4

⊥

would yield

D′

α4

D
⊥

, which in the case that D’ is just
D
α4

, is the same as

(1)

[α4]

D
⊥ (1)
α4

D
⊥

.

PTS10 (=III.1)

III.2 Logic programming 56

a basic notion of implication which belongs to this framework39.

It might be noted that the idea that there is some sort of logic prior to semantical

justification is not a particular feature of the rule-based approach. Even with the

global proof-based approach one would have to spell out the possible form premisses of

introduction inferences can take in order to function in canonical proofs, particularly

if one goes beyond the standard connectives. This is normally hidden by the fact that

just standard connectives and no substructural issues are taken into consideration.

To explain just disjunction and existential quantification may be a disappointingly

little task for proof-theoretic semantics. However, this impression is wrong as not

only logical constants may be considered within proof-theoretic semantics. It was logic

programming which made this idea plausible.

III.2 The challenge from logic programming

The discussion within proof-theoretic semantics has nearly always focused on logical

constants. The only exceptions are Lorenzen’s operative logics, where the justification

of logical rules is embedded in a theory dealing with arbitrary rules, and Martin-Löf’s

theory of iterated inductive definitions where introduction and elimination rules for

atomic formulas are proposed.

The rise of logic programming changed this perspective. In logic programming we

are dealing with program clauses of the form

A ⇐ B1, . . . , Bn

which define atomic formulas. Such clauses can naturally be interpreted as describing

introduction rules for atoms. This is quite natural for a PROLOG programmer who

reads clauses as rules, although this reading is blurred by the understanding of clauses

as disjunctions of the form ¬A∨B1∨ . . .∨Bn, which is common in treatments of logic

programming within the framework of classical logic.

However, if one takes the “rule”-interpretation of clauses seriously, one is inevitably

led to a proof-theoretic treatment, which reads programs as collections of introduction

rules. Such an approach has been carried out in detail in Hallnäs & Schroeder-Heister

(1990, 1991)40. It has especially led to extensions of definite Horn clause programming

by considering iterations of the rule arrow in bodies of clauses, and, correspondingly,

to a natural treatment of negation.

From the point of view of proof-theoretic semantics the following two issues are

crucial:

39Cf. Schroeder-Heister (1991b). The idea of using some sort of substructural implication goes

beyond Sambin et al.’s (2000) Basic Logic.

40See also Schroeder-Heister (1991a).

PTS12 (=III.2)

III.2 Logic programming 57

(1) Introduction rules are available for atoms as well as for logically compound for-

mulas. Logically compound formulas are not distinguished from atoms with respect to

their semantical characteristics. They are only distinguished at a higher level as part

of a basic logic of conditions, which concerns the way bodies of clauses are built up. In

standard logic programming this contains just conjunction expressed by the comma.

In extended versions of logic programming it might be more powerful, including impli-

cation and even disjunction (in disjunctive logic programming).

(2) The rules one is dealing with are not necessarily well-founded. It is not even

required that all possible instances of an atom are defined. For example, the clauses

p(a, x) ⇐ q(a), r(x), p(a, f(x))

p(x, b) ⇐ s(b), r(x)

are appropriate as program clauses, although there is only a partial definition of p

(namely for instances of the forms p(a, ·) and p(·, b)), and although they include a

non-terminating recursion. According to the approach followed in logic programming

there is absolutely no point in asking whether syntactically correct program clauses are

well-formed with respect to semantic considerations. So logic programming proclaims

a great deal of definitional freedom in generating programs.

From these observations we learn the following:

(Ad 1) Interpreting logic programming proof-theoretically motivates an extension of

proof-theoretic semantics to arbitrary atoms, which yields a semantics with a much

wider realm of applications. Conversely, such a proof-theoretic semantics leads to

interesting extensions of logic programming, as such a semantics generates elimination

rules corresponding to introduction rules given by clauses, which can be successfully

exploited in logic programming. This programme was carried out in the extended logic

programming language GCLA (Aronsson et al. 1990).

(Ad 2) Using arbitrary clauses without further requirements leads to the idea to follow

the same approach in proof-theoretic semantics, admitting just any sort of introduction

rules and not just those of a particular form. This idea, which takes definitional freedom

over to semantics, is spelled out in the theory of definitional reflection.

Some final remarks concerning Lorenzen’s (1955) and Martin-Löf’s (1971) ideas

seem appropriate, as they both deal with introduction rules for atoms.

Ad Lorenzen Lorenzen’s approach is very near to what is done in logic programming as

far as the declarative aspects are concerned, in particular his starting from production

rules for atoms. His inversion principle is closely related to the more general principle

of definitional reflection dealt with in the next section.

Ad Martin-Löf Although Martin-Löf shares with ideas in logic programming and def-

initional reflection the fundamental idea that atomic formulas can be treated similarly

to logical constants, his elimination rules for atoms fundamentally differ from those

PTS12 (=III.2)

III.3 Definitional reflection 58

considered in the following. This is particularly clear from his treatment of mathe-

matical induction which for him is described by the elimination rule corresponding to

introduction rules for a natural number predicate.

The idea of considering introduction rules as meaning-giving rules for atoms is

closely related to the theory of inductive definitions in its general form, where inductive

definitions are nothing but systems of production rules. And as a definition is the classic

way of endowing something with a meaning, it is very natural to include such rules in

proof-theoretic semantics.

III.3 Definitional reflection

Proof-theoretic semantics based on definitional reflection is the approach defended by

the author of this paper. Like the one based on the common content of conditions it is

primarily concerned with the justification of rules or argument steps rather than the

validity of derivations or arguments. However, whereas the common-content approach,

in its original setting, still put much emphasis on proving global features of derivations,

definitional reflection stresses the local character of rules in a very strong sense. Of the

ingredients of definitional reflection, it is fair to say that the idea of generalized elimina-

tion rules was developed by Schroeder-Heister (though restricted to logical constants),

whereas the idea of the strict local reading of rules together with a novel concept of

assumptions in logic goes back to Hallnäs. The idea of using logic programming as a

model to frame reasoning with atoms was developed independently by both authors.

The rest, in particular the technical development, cannot be divided between the two

of us. I shall only give a short sketch. There is a presentation of certain basic ideas in

this volume by Hallnäs, and there is still a joint monograph project of the two of us.

As was already emphasized, definitional reflection deals with meaning-giving rules

for any sort of constants, not just logical ones. It is the non-logical ones which are par-

ticularly interesting, as the logical ones have many “nice” features which, in their case,

make definitional reflection undistinguishable in many respects from more standard ap-

proaches. So it is crucial to stress the general character of this sort of proof-theoretic

semantics, covering others as special cases.

The local or partial character of rules is expressed by the fact that certain features

of rules, which they have as meaning-giving rules, are not eo ipso features of the whole

derivation in which these rules are embedded. Therefore rules cannot be combined ar-

bitrarily in derivations or, expressed otherwise, combining these rules yields derivations

with undesirable properties such as non-normalization.

It turns out that such features can better be expressed using a sequent-style repre-

sentation of derivations rather than natural deduction format. It can even be claimed

PTS13 (=III.3)

III.3 Definitional reflection 59

that this is not a matter of convenience but that, in a sense, sequent-style systems are

more “natural” than natural deduction.

III.3.1 The philosophical significance of the sequent calculus

In treatments of natural deduction the sequent calculus is often just considered a meta-

calculus of natural deduction. According to that reading the sequent A1, . . . , An ⊢ B

expresses that a derivation of B from the assumptions A1, . . . , An is available. However,

this does not give justice to the “full” sequent calculus with left-introduction rules. In

the meta-calculus reading, a rule like

Γ, A ⊢ C

Γ, A∧B ⊢ C
(∧⊢)

should express that a derivation

Γ A
D
C

can be extended to the derivation

Γ
A∧B
A

D
C ,

and a rule like

Γ, A ⊢ C ∆, B ⊢ C

Γ,∆, A∨B ⊢ C
(∨⊢)

should express that derivations

Γ A
D1

C

and
∆ B
D2

C
can be extended to a derivation

(⋆)
A∨B

Γ [A]

D1

C

∆ [B]

D2

C

C
.

However, although the second derivation is always a natural deduction derivation if

the first is one, this is not an operation on natural deduction derivations reflecting the

order of deriving propositions.

If we want to turn left-introduction rules of the sequent calculus into a genuine

conceptual idea, we have to make special sense of this operation. The idea is to read,

PTS13 (=III.3)

III.3 Definitional reflection 60

e.g., (∨⊢) as introducing the assumption A∨B. So (∨⊢) is understood as follows: If I

have derived C from both Γ, A and ∆, B, then, by introducing the assumption A∨B,

I can derive C from Γ,∆, and similarly for other connectives. Thus left-introduction

rules of the sequent calculus are understood as assumption-introduction rules.

This is a novel concept of deduction. According to this concept, we not just start

from arbitrary assumptions and then assert something by means of specific rules, but

it is possible that, in the course of a derivation, we assume something in a specific

way. There is not just the trivial assumption rule expressed by initial sequents of the

form A ⊢ A or Γ, A ⊢ A, but also assumption rules for each connective. The relation

between assuming and asserting is completely symmetric. In both cases we have one

unspecific rule (initial sequents, by which we both assume and assert a formula) and

many specific rules (right-introduction rules for asserting, left-introduction rules for

assuming a formula governed by a certain connective).

This idea is highly original and makes the sequent calculus a conceptual device

of its own rather then something for whose understanding one has to rely on natural

deduction formulations. I do not think that this has been philosophically appreciated

in an appropriate way. Of course it is possible to give it a natural deduction rendering.

But this is not self-explaining at all. Compare again the (∨⊢) rule of the sequent

calculus and the ∨-elimination rule of natural deduction:

(∨⊢)
Γ, A ⊢ C ∆, B ⊢ C

Γ,∆, A∨B ⊢ C
(∨E)

A∨B
[A]

C

[B]

C

C

The usual reading of (∨E) is that from derivations of the premisses we obtain one of

the conclusions, i.e.,

(⋆⋆)

D
A∨B

[A]

D1

C

[B]

D2

C

C
.

What is intended, however, is (⋆), i.e., given derivations
A
D1

C

and
B
D2

C

, we obtain a

derivation of C by assuming A∨B. The difference between (⋆) and (⋆⋆) is that in (⋆),

the D is lacking because, in (⋆), A∨B is just a “free-standing” assumption, not the

end formula of a subderivation. Of course we can read (∨E) as expressing (⋆) rather

than (⋆⋆), but this inevitably leads to a sort of natural deduction different from what

one is used to. If one spells this out one obtains what might be called a “natural-

deduction-style sequent calculus”, quite dual to the common “sequent-style natural

PTS13 (=III.3)

III.3 Definitional reflection 61

deduction calculus” (where one uses introduction and elimination rules which operate

on the right side of sequents).41 This shows that the full sequent calculus carries a basic

conceptual idea, even if Gentzen himself might only have seen its technical advantage.

Now also the cut rule

Γ ⊢ A A,∆ ⊢ B

Γ,∆ ⊢ B

receives a new conceptual content: It says that the assumption A according to the right

premiss may at the same time be conceived of as an inferred consequence according to

the left premiss, and that these roles coincide. Formulated in natural-deduction-style

sequent calculus, it says that from
Γ
D
A

and
A ∆

D′

B

, we may infer

Γ
D
A ∆

D′

B

,

which is not trivial, as the assumption A might have been inferred by an assumption-

introduction rule like (⋆). So what is trivial in standard natural deduction may loose

its being trivial when considering natural-deduction-style sequent calculus, and has to

be stated as an explicit principle. One might call this sort of transitivity principle

“natural-deduction-style cut”.

This makes the sequent calculus very suitable for the present investigations. Since

the information given by certain inference rules is just local, i.e., concerns a single step

or a couple of steps, it is not self-evident and not always the case that some “nice”

global behaviour expressed by cut comes out of composing them. Putting this the

other way round we may say: Framing things in terms of the sequent calculus makes

it possible to keep certain information local in a natural way. We can justify inference

rules for sequents which can be combined in the sense of the sequent calculus (without

cut), but which still leave open whether corresponding natural-deduction derivations

can be combined, which depends on the availability of cut elimination.

In this sense the sequent calculus gives a very fine-grained analysis of deduction,

keeping apart derivation pieces and the joining of such pieces. This opens new perspec-

tives of logical modelling, as we can now distinguish between cut holding globally, cut

holding only locally, cut holding for certain propositions etc. The fact that for stan-

dard systems of logic cut is eliminable is more than a mere technical result from which

41This is to be distinguished from what Negri & v. Plato (2001a) call a “sequent calculus in natural

deduction style”, which is a calculus of sequents which imitates certain features of natural deduc-

tion concerning vacuous and multiple discharging of assumptions. However, some proof-theoretic

investigation of what we call “natural-deduction-style sequent calculus” (which formally is a natural

deduction system) can be found in v. Plato (2001). There one also finds, as a natural deduction rule,

the left-introduction rule for → of the sequent calculus, which we cannot discuss here.

PTS13 (=III.3)

III.3 Definitional reflection 62

consistency etc. can be concluded, but shows that combining local information yields

global information. We are now in a position to consider less well-behaved systems in

which we do not have this feature in full generality.

III.3.2 Rules of definitional reflection

As with the common-content conception presented in section III.1, we need a basic logic

of conditions in terms of which the meanings of certain expressions are explained. In the

propositional case, this will be a conjunction-implication logic in a sequent-style setting.

In the common-content case we used a special notation for conditions as they were

interpreted as systems of rules, with the rule arrow ⇒ expressing an implication which

may be iterated to the left and the comma standing for the association of rules and

corresponding to conjunction. Here we shall use a full conjunction-implication-calculus

in the standard notation using → and ∧ as connectives, which may be arbitrarily nested

(i.e., with implication not just iterated to the left). So one has to bear in mind that

conjunction-implication-formulas denote expressions of the basic logic of conditions

which are to be distinguished from the expressions whose meaning is to be explained

by specific rules. With respect to the basic logic, these expressions are all atomic,

although they may be internally composed in various ways, i.e., contain predicates

or functions and arguments. In particular, they may be logically composed, where

then logical operators have to be notated in a different way, e.g. by using ⊃ for

implication etc. These logical operators are then functions occurring within atoms.

This corresponds to the way taken in logic programming where all expressions to be

defined in a program are considered as atoms, whereas the basic logic describes the

way clauses are written and handled.

Given a set A of atoms, conditions over A (or just conditions (simpliciter), if A is

clear from the context) are defined as formulas built up fromA by means of conjunction

∧ and implication →. The rules of the basic logic of conditions CA over A are then the

following ones.

Γ, A ⊢ A

Γ ⊢ A Γ ⊢ B

Γ ⊢ A∧B
Γ, A ⊢ C

Γ, A∧B ⊢ C

Γ, B ⊢ C

Γ, A∧B ⊢ C

Γ, A ⊢ B

Γ ⊢ A→B

Γ ⊢ A Γ, B ⊢ C

Γ, A→B ⊢ C

This system becomes a system of proof-theoretic semantics by adding rules for handling

definitions. Just as in logic programming, a definition is a set of clauses of the form

a⇐C

PTS13 (=III.3)

III.3 Definitional reflection 63

where a is an atom and C a condition. For the time being we just consider the case

without individual variables occurring in a or C.

If D is a definition, the right-introduction rules for defined atoms are

(⊢ a)
Γ ⊢ C

Γ ⊢ a
if a⇐C occurs in D .

The left-introduction rules run as follows: Suppose

a ⇐ B1

...

a ⇐ Bn

is the set of clauses defining a in D. Then the left-introduction rule for a is

(a⊢)
Γ, B1 ⊢ C . . . Γ, Bn ⊢ C

Γ, a ⊢ C

The intuitive meaning of this rule is the following: Everything that follows from every

possible definiens of a, follows from a itself. It is called the principle of definitional

reflection, as it reflects upon the definition as a whole. If B1, . . . , Bn exhaust all pos-

sible conditions to generate a according to the given definition, and if each of these

conditions entails the very same conclusion, then a itself entails this conclusion. If we

talk generically about these rules (i.e., without mentioning a specific a, we shall write

(⊢D) and (D⊢).
The resulting system is called CA(D) or C(D), asA is clear from the context. If Γ⊢A

is derivable in C(D), we also write Γ⊢D A. It is obvious that C(D) is non-monotonic in

D in the sense that if D is extended with an additional clause

a⇐Bn+1

for a, then previous applications of the (D⊢) rule may fail to remain valid.

The (D⊢)-rule is closely related to the idea of propositions expressing the common

content of conditions presented in the section III.1. In fact, (⊢D) and (D⊢) can be read

as capturing this idea for the case of the sequent calculus if one defines the common

content of a with respect to D as the set of pairs 〈Γ, C〉, such that Γ, Bi ⊢C can

be derived for every condition Bi. However, the crucial difference is that (D⊢) is now
considered to be a rule for assuming a in the sense described above, not as a rule which

tells what can be derived given that a has already been derived. So the important step

is that the idea of the common content is turned into an assumption rule (apart from

the fact that the restriction to logical constants is given up).

This is technically very simple, but becomes much more complicated if the definition

of a is allowed to contain individual variables. In that case unification procedures have

to be employed to find out the conditions of a, if a is not defined literally in D, but

PTS13 (=III.3)

III.3 Definitional reflection 64

a is a substitution instance of something defined in D, or if only certain substitution

instances of a are defined in D.42

Whether the calculus of definitional reflection admits cut elimination depends on

the definition D one is dealing with. If we have cut elimination with respect to a (i.e.,

cut elimination for cuts with cut formula a), then D is called total with respect to a,

otherwise partial.43 Cut elimination is something which is considered to be established

“afterwards”, i.e., it is a “factual” feature of the definition, not a prerequisite for

something suitable as a definition. In this sense a definition defines something locally.

Global properties like cut elimination, which depend on the interaction of rules, need

not necessarily hold.

This does not mean that the definitional rules are just arbitrary. The rules (⊢D)
and (D⊢) display a certain harmony in the sense that a single reduction step for cut

elimination can be performed, which may be called a main reduction step:

Γ ⊢ Bi

Γ ⊢ a

{∆, Bi ⊢ C}1≤i≤n

∆, a ⊢ C

Γ,∆ ⊢ C

reduces to Γ ⊢ Bi ∆, Bi ⊢ C

Γ,∆ ⊢ C

i.e., the cut with a is reduced to a cut with the defining condition Bi of a.

Performing such reductions yields a global cut elimination result only if Bi is itself of

lower complexity than a and that the corresponding chain of definitions is well-founded,

which is, however, not required in every possible case. E.g., for a definition

a⇐ a→b

a cut with a:

Γ ⊢ a→b
Γ ⊢ a

∆, a→b ⊢ C

∆, a ⊢ C

Γ,∆ ⊢ C
is reduced to a cut with the cut formula a→b of higher complexity:

Γ ⊢ a→b ∆, a→b ⊢ C

Γ,∆ ⊢ C
.

Whether a chain of cut reductions starting this way terminates, depends entirely on

how b is defined in D (and in particular whether it is defined at all).

42These problems are discussed at length in Hallnäs & Schroeder-Heister (1991) and Schroeder-

Heister (1993, 1994b). They are closely connected with problems Lorenzen had with the original

formulation of his inversion principle; see Hermes (1959). Hallnäs (1991) prefers using an infinitary

version of conjunction and rules with infinitely many premisses to avoid these problems as long as he

is not considering computational issues as they show up in logic programming.

43This terminology was chosen by Hallnäs, who borrowed it from recursive function theory to stress

the analogy with total and partial recursive functions (see the end of this section).

PTS13 (=III.3)

III.3 Definitional reflection 65

The harmony of (⊢D) and (D⊢) might therefore be described as permitting relative

cut elimination in the sense that if a is defined as

a ⇐ B1

...

a ⇐ Bn

,

then cut holds for a provided it holds for each condition Bi of a, i.e., if cut for a is

eliminable in the system to which cut rules for all Bi (1 ≤ i ≤ n) are added. One

might also call this feature local cut elimination. It guarantees that there is some

conservativeness in the system, i.e., that the definition of a does not create anything

new. Again, this is relative or local conservativeness: The definition of a is conservative

provided for each condition of a conservativeness holds. It does not man that the

definition D as a whole is conservative, i.e. that global conservativeness holds. We may

use cut for a, i.e. take the risk of being non-conservative only if we can take this risk

for the conditions of a.

It also holds that we have relative or local uniqueness in the following sense: If we

duplicate the definition D with A∗ being the duplicate of A, then for any a we can

derive uniqueness in the sense of a ⊣ ⊢a∗, provided we have uniqueness in the sense of

Bi ⊣ ⊢B∗
i for every condition Bi of a. This does not necessarily entail global uniqueness

for a as the definition of a might not be well-founded.

This is the only, but crucial, restriction on the form of meaning-giving rules: There

must be a harmony between (⊢D) and (D⊢) which entails local conservativeness and

uniqueness without postulating such features for the system as a whole.

In this way definitional reflection retains basic definitional features at the local level

without sacrificing the freedom of formulating definitions, which includes formulating

them in a circular way. The analogy between partial and total recursive functions

might be taken as a guiding example: A partial recursive function has certain features

which make it recursive or computable. However, this does not necessarily mean that

for every single argument it yields a definite value. Being total for a partial recursive

function is something that may “turn out later”; it is nothing that has to be guaranteed

in advance by restricting the possible form of recursive function definitions.

It is an easy task to give a natural deduction version of definitional reflection. The

left-introduction rule (a⊢) for an atom a would then be turned into an a-elimination

rule of the form

(aE)
a

[B1]

C . . .

[Bn]

C

C
.

A thorough investigation, which I cannot enter here, would have to discuss the features

of a natural-deduction-style sequent calculus in detail.

PTS13 (=III.3)

III.4 Global features of the consequence relation 66

III.4 Global features of the consequence relation

According to the standard approach to proof-theoretic semantics based on the validity

of derivations, a central result would be to prove the completeness of, say, intuitionistic

first-order logic with respect to the validity concept. This does not make sense with

definitional reflection, since we are no longer considering a global property of derivations

(“validity”) of which we can ask whether derivations in a certain formal system have

this property. Justifying a formal system now means embedding this system into the

framework of definitional reflection, i.e., showing that its rules are rules over some

definition D. The interesting metalogical results concern the global features of the

resulting consequence relation ⊢D depending on the local features of the definition D.
In this section I relate some features of D with those of ⊢D.

(1) Cut

If ⊢D is total, i.e., cut holds for ⊢D, then we can use every assumption as something

that can be “bought out” by an assertion. No assumption, even when introduced by an

assumption rule, i.e. a left-introduction rule, needs to remain an assumption forever.

This means that pieces of derivations can be joined together arbitrarily to yield a

global derivation without paying attention to how assumptions have been generated,

i.e., whether they have been generated without reference to their meaning by using an

initial sequent A⊢A, or with reference to their meaning by using a left-introduction

rule. If cut does not hold, this means that certain assumptions introduced by left-

introduction rules have to be kept as assumptions, even if they can be derived, as the

balance between asserting and assuming is only local and relative.

In the following, I mention some cases where, due to D obeying certain requirements,

⊢D is in fact total.

⊢D is total for definite clauses

Following the terminology in logic programming, a definite clause is a clause which in

its body only contains conjunctions of atoms and no implications. This is, for example,

the case with logical connectives apart from implication. In propositional logic they

can be defined using a truth predicate T as follows:

D

T (p&q) ⇐ T (p)∧T (q)
T (p∨q) ⇐ T (p)

T (p∨q) ⇐ T (q)

no clause for T (⊥)

PTS14 (=III.4)

III.4 Global features of the consequence relation 67

For D it can easily be shown that ⊢D is total. In general, it holds that for definitions D
consisting of definite clauses only (as in standard logic programming), ⊢D is total (see

Hallnäs & Schroeder-Heister 1991).

This does not mean that in all relevant or interesting cases ⊢D is total, as it is

implication which yields particular power. Definite clause programming is a special

restriction which does not employ this power. Implications in the bodies of clauses

such as in the definition of the logical implication connective

T (p⊃q) ⇐ T (p)→T (q)

provide a strong extension of logic programming.

⊢D is total for well-founded definitions

A definition D is well-founded if for any atom a, the chain of definitional predecessors

of a ends after finitely many steps. Here an atom b is a definitional predecessor of a if

b occurs as a subformula of B, where a⇐B is an instance of a clause in D. That ⊢D

is total in this case is obvious in view of relative cut elimination. In the definition of

the standard logical constants (including implication) we have exactly this situation.

It is the influence of logic programming that motivates us to consider a more general

case. Furthermore, it is not in all cases easy to check whether a definition is well-

founded or not. Therefore, if one requires well-foundedness as a necessary feature of

definitions, one not only excludes onself from powerful definitions but also puts a heavy

burden on proving the admissibility of proposed definitions.

⊢D is total for contraction-free logics

Suppose the underlying logic of conditions is contraction-free, i.e. the rule of contrac-

tion

Γ, A, A ⊢ C

Γ, A ⊢ C

is not assumed to hold. Here the antecedent Γ of a sequent Γ⊢A is considered to be a

multiset, which means that the order of elements is irrelevant, but the multiplicity of

identical elements counts. Then it can be shown that for any definition D, the conse-

quence relation ⊢D is total (see Schroeder-Heister 1992). This result is very interesting

as it shows the significance of substructural features in our logic of definitions. A closer

inspection shows that the reason why cut may fail in the case with contraction is that

contraction allows one to identify propositions introduced as assumptions according to

their meaning, i.e., by a left-introduction rule, with propositions introduced as assump-

tions without reference to their meaning, i.e., by initial sequents. If these two issues

are kept apart, as is the case in a contraction-free system, totality holds.

PTS14 (=III.4)

III.4 Global features of the consequence relation 68

⊢D is total for restricted initial sequents

The remark at the end of the preceding paragraph suggests the following restriction of

initial sequents A⊢A 44: An initial sequent A⊢A is only allowed for atomic A, and

here only for those A for which there is no left-introduction rule (a⊢) available. The

motivation behind this restriction is the idea that assumptions should only be intro-

duced according to their meaning, i.e., according to the rule of definitional reflection.

Now the rule of definitional reflection is always defined, even if there is no clause for a

in the definition D. In the latter case definitional reflection yields a⊢C for any C, i.e.,

from the undefined anything can be obtained. Absurdity ⊥ is the characteristic propo-

sition which is undefined. However, we may modify our approach by singling out a set

of certain atoms U for which definitional reflection is not allowed, which are simply

stipulated as being without defined meaning (i.e., even without the vacuous meaning

expressing that there is no right-introduction rule). This corresponds to saying that

for any a ∈ U , the clause a⇐ a is in D as the only clause defining a, for in that case the

left- and right-introduction rules for a are just redundant. Then it can be shown that

⊢D is total, even with full contraction. This is not surprising as this proposal, rather

than restricting contraction, keeps assumptions introduced by initial sequents from the

very beginning apart from those introduced by left-introduction rules. It also shows

that contractions of an a which is introduced by a left-introduction rule several times

at different places in a derivation causes no harm. It establishes that the identification

of two semantically different ways of introducing a as an assumption causes the failure

of totality.45

(2) Standard consequence

When defining the validity of derivations, closed derivations were considered as basic,

and an open derivation was defined as valid if it yielded a closed valid derivation when

its open assumptions were substituted with closed valid derivations. This suggests

considering as a standard global feature of a consequence relation ⊢D that the following

holds:

(⋆) Γ ⊢D A iff (⊢D Γ implies ⊢D A) .

Following Hallnäs (1991)46 we call the consequence relation ⊢D standard, if (⋆) holds.

44Everything I am going to say holds for initial sequents Γ, A⊢A as well, which make Thinning an

implicit feature.

45Kreuger (1994) was the first to consider such a system. The cut elimination result is due to

Schroeder-Heister (1994a). This system is related to Jäger & Stärk’s (1998) proof-theoretic approach

to logic programming and their three-valued semantics.

46Slightly modified

PTS14 (=III.4)

III.5 The circularity example 69

In another terminology, which goes back to Lorenzen, we might say: ⊢D is standard, if

for every rule derivability coincides with admissibility.

It turns out that this condition is even stronger than totality. Call ⊢D complete, if

for every Γ and A,

Γ 6 ⊢D A iff (⊢D Γ and A ⊢D ⊥)

holds, where ⊢D Γ means ⊢D B for every B ∈ Γ, and ⊥ is absurdity. Call ⊢D strongly

complete, if for every Γ and A,

either Γ ⊢D A or (⊢D Γ and A ⊢D ⊥)

holds. Obviously, in classical logic, “strongly complete” means the same as “complete”.

Then the following results can easily be established.

(1) If ⊢D is total and strongly complete, then ⊢D is standard.

(2) If ⊢D is standard, then ⊢D is total and complete.

From (1) and (2) it follows classically that

⊢D is total and strongly complete iff ⊢D is standard.

(see Hallnäs 1991). This shows that the requirement that consequence be standard,

which is built into the notion of validity of derivations, is very strong. It provides

another argument for an approach which is more expressive by putting less demands

on the consequence relation.47

There are many other aspects that we cannot discuss here, as, for example, the

precise formulation of the inversion principle (i.e., of (D⊢)) in the presence of variables,

or the question of global properties of consequence restricted to certain propositions a,

such as cut with the cut-formula a.

III.5 The circularity example

To demonstrate some particular features of ⊢D in the case where D is not standard as

in the case of logical constants, we consider, as an instructive example, the case where

we have just two atoms a and ⊥, where ⊥ is not defined at all, having the ex falso

quodlibet as its left-introduction rule, and a is defined by the single clause

(D) a ⇐ a→⊥ ,

or, using ¬a as an abbreviation for a→⊥,

a ⇐ ¬a .48

47Hallnäs even considers the standard view of implication (“standard” in the above terminological

sense) as expressing the impredicative character of implication, as it quantifies over all derivations

(see above footnote in section II.1.2, Ad (2)).

PTS15 (=III.5)

III.5 The circularity example 70

Defining something by its own opposite might look strange as it stands. However, it

is closely related to a situation which arises in connection with antinomies where one

uses similar constructions in order to derive contradictions.

Obviously, this definition is not well-founded. Furthermore, it is not total, as can

be seen as follows. Consider the following derivation:

(1)
D

a ⊢ a ⊥ ⊢ ⊥
a, a→⊥ ⊢ ⊥

(a⊢)(⋆)
a ⊢ ⊥
⊢ a→⊥

(⊢ a)
⊢ a

a ⊢ a ⊥ ⊢ ⊥
a, a→⊥ ⊢ ⊥

(a⊢)(⋆)
a ⊢ ⊥

Cut
⊢ ⊥

If we had totality, we could eliminate cut and would be able to derive ⊢⊥, which is,

however, not possible, as there is no definitional clause for ⊥. Therefore cut is not

admissible and the definition of a is not total.

If we perform a reduction on (1) as in proofs of cut elimination, we have to take

into account that at the positions marked with an asterisk, an implicit contraction is

taking place. In order to perform a main reduction reducing the given cut to a cut

with the premiss a→⊥ of a as the cut formula, we have first to perform a cut with the

original cut formula a at the place where the contracted formula occurs for the first

time, in this case the initial sequent a⊢ a, and then a cut with a→⊥. This yields the

derivation

D
⊢ a→⊥

D
⊢ a→⊥
⊢ a a ⊢ a Cut

⊢ a ⊥ ⊢ ⊥
a→⊥ ⊢ ⊥

Cut ,
⊢ ⊥

which by a trivial step removing a⊢ a is reduced to

D
⊢ a→⊥

D
⊢ a→⊥
⊢ a ⊥ ⊢ ⊥
a→⊥ ⊢ ⊥

Cut ,
⊢ ⊥

48Hallnäs (1991) introduced this example as a standard example for nonstandard consequence.

PTS15 (=III.5)

III.5 The circularity example 71

where we have just a cut with the cut formula a→⊥ as desired. If we now apply the

main reduction for →, we obtain

D
⊢ a→⊥
⊢ a

a ⊢ a ⊥ ⊢ ⊥
a, a→⊥ ⊢ ⊥

a ⊢ ⊥ Cut ,
⊢ ⊥

which is exactly the derivation (1) we started with. This means that there are local

reductions which turn into a loop when iterated to obtain a global reduction.

This is an example of reasoning where global cut elimination fails. In this sense the

consequence relation obtained is only partial. This is exactly what is wanted in this

case: We can give a sensible account of circular reasoning without the devastating result

of leading to a contradiction. Locally, by considering each single step, everything is

correct with circular reasoning. Only globally it lacks certain features, which otherwise

would render it inconsistent.

However, there are different analyses possible which do not even allow one to gen-

erate derivation (1). If in (1) we check how the cut formula a was introduced as an

assumption on the left of the turnstile, it turns out that, at different places, a is in-

troduced by an initial sequent and by the (a⊢)-rule (the rule of definitional reflection

for a). These occurrences are then identified by means of (implicit) contraction at the

places indicated with an asterisk. Now according to our distinction, made in section

III.3, between the unspecific introduction of assumptions by initial sequents and the

specific introduction of assumptions by (D⊢), we might argue that these different sorts

of assumptions must never be identified. In this case, by disallowing contraction, we

cannot generate the cut leading to absurdity, because the (⋆)-steps are not permitted.

As mentioned in section III.4, without contraction the system would be total. Another

possibility would be to restrict initial sequents in accordance with another point made

in section III.4, viz. to prohibit a in an initial sequent because a left-introduction rule

for a is available. In that case again cut elimination would hold, and we would not be

able to generate the critical cut. I cannot go into further detail here. This just serves

to illustrate that by means of definitional reflection we gain a fresh view of circular

phenomena and also of antinomies.49.

If we deal with our example in natural-deduction-style sequent calculus, we would

define a derivation to be normal if major premisses of elimination rules occur only as

assumptions. A cut would be a major premiss of an elimination rules which is not an

49It might be annotated that this sort of analysis is not unrelated to Fitch’s and Ackermann’s logical

analysis of the paradoxes, in particular of Curry’s paradox. See Fitch (1936, 1952), Ackermann 1950,

Robering (2001)

PTS15 (=III.5)

III.5 The circularity example 72

assumption. This corresponds to the definition of a maximum formula, if only general-

ized (“indirect”) elimination rules are considered, and, after Martin-Löf50, conclusions

of elimination rules, which are at the same time major premisses of elimination rules,

are considered maximal.51 So according to this terminology, being normal means being

cut-free. In the present example the derivation of absurdity is not normalizable, i.e.,

the normalization procedure loops. This is shown as follows, using

a

¬a
as the elimination rule for a which is equivalent to

a
¬a
C

C
.

Then we have the following derivation of ⊥:

D

(1)

[a]
(aE)¬a

(1)

[a]
(→E)

⊥ (→I) (1)¬a
D
¬a

(aI)
a

(→E)
⊥

which, when an →-reduction step is applied to the maximum formula ¬a (the left

premiss of the last inference), reduces to

D
¬a

(aI)
a (aE)¬a

D
¬a

(aI)
a (→E)

⊥
Reducing this derivation by removing the maximum-formula a in the left branch gives

D
¬a

D
¬a

(aI)
a
(→E)

⊥
which is exactly the derivation we started with. Actually, this derivation is nothing

but an expanded version (with explicit negation) of the example concerning α4 given

in section III.1. So as with the sequent calculus presentation, we have an example

50according to Prawitz (1971), p. 253seq.

51So it is only consequent that Martin-Löf (1971), and, following him, Hallnäs (1991) speak of “cuts”

and “main cuts” in natural deduction.

PTS15 (=III.5)

III.5 The circularity example 73

of a derivation of absurdity which loops when reduced.52 It may also be noted that

we have again contraction of different sorts of assumptions playing its part: Consider

the two occurrences of assumptions a in D. The left one is a major premiss of the

a-elimination rule, whereas the right one is just introduced as an assumption in an

unspecific way. In spite of their different functions, they are both discharged at the

same time by introducing ¬a and therefore contracted to the same a occurring in the

negation ¬a.
This example can also be read as a derivation of ⊥ from a ↔ ¬a in ordinary

intuitionistic propositional logic, if applications of a-introduction and a-elimination

are replaced with modus ponens using ¬a→a and a→¬a as assumptions, respectively:

D

a→¬a
(1)

[a]
¬a

(1)

[a]

⊥ (1)¬a
¬a→a

D
¬a

a

⊥
As before, this derivation is not normal, as the left premiss of the last inference (¬a)
is a maximum formula. Applying a →-reduction step yields

a→¬a
¬a→a

D
¬a

a
¬a

¬a→a
D
¬a

a

⊥
This is a normal derivation in the standard sense. On the other hand, it is quite

plausible to consider a piece of derivation of the form

B→A

A→B
D
A

B

A

not to be normal and rather contract it to D
A
. If this is applied to the previous deriva-

tion (with A as ¬a and B as a), then we obtain the original derivation derivation back,

52For demonstration purposes, we have tacitly assumed that, as in standard natural deduction,

every premiss of an inference step can at the sametime be a conclusion of another inference step.

This is not a priori justified if we take the idea of natural-deduction-style sequent calculus seriously,

where major premisses of E-rules have to be kept as assumptions. The first reduction step making

the premiss of (aE) a conclusion of (aI) could not be carried out under such a restriction. This way

of proceeding is analogous to the fact that in the previous sequent calculus example we first assumed

cut and then showed which result is obtained when we try to eliminate it by means of reduction.

PTS15 (=III.5)

III.5 The circularity example 74

which means that we have an example of a non-normalizable derivation in intuition-

istic propositional logic (with “normalizable” understood in a new, but very plausible

sense). This phenomenon was discovered by Ekman (1998). He uses the example to

demonstrate (1) that the concept of a normal derivation is not a clearcut one and (2)

that intuitionistic implication is not as well-behaved as one usually takes it to be.

A philosophical consequence of this observation is the following. If the logical proof

of absurdity ⊥ from a↔¬a is flawed in some way, as Ekman’s derivation shows, then

there is a strong difference between ⊥ and a↔¬a. The proposition a↔¬a just means

some sort of circularity whereas ⊥ destroys the whole system as it entails everything.

This has further consequences for the treatment of antinomies. Normally antinomies

result in a proof of a↔¬a for some a. If this does not imply absurdity at the same

time, antinomical constructions are not as harmful as they are supposed to be, but

represent ‘just’ definitions resulting in circularities. This coincides with the idea of

dealing with circular constructions as phenomena rather than problems to be avoided

at any price.53 It the local approach to proof-theoretic semantics can illuminate such

issues, it shows that proof-theoretic semantics is more than just another semantical

interpretation of first-order logic.

53See, e.g., Barwise & Moss (1996) and references therein.

PTS15 (=III.5)

References 75

References

Ackermann, W. (1950). Widerspruchsfreier Aufbau der Logik.I. Typenfreies System

ohne tertium non datur. Journal of Symbolic Logic 15, 33–57.

Aronsson, M., Eriksson, L.-H., Gäredal, A., Hallnäs, L. & Olin, P. (1990). The pro-

gramming language GCLA: A definitional approach to logic programming. New

Generation Computing 4, 381–404.

Barwise, J. & Moss, L. (1996). Vicious Circles: On the Mathematics of Non-Well-

founded Phenomena. Stanford: CSLI Publications.

Belnap, N.D. (1962). Tonk, plonk and plink. Analysis 22 (1961/62), 130–134.

Brandom, R.B. (2000). Articulating Reasons: An Introduction to Inferentialism, Cam-

bridge Mass.: Harvard University Press.

Dummett, M. (1991). The Logical Basis of Metaphysics, London: Duckworth.

Ekman, J. (1998). Propositions in propositional logic provable only by indirect proofs.

Mathematical Logic Quarterly 44, 69–91.

Etchemendy, J. (1990). The Concept of Logical Consequence, Cambridge Mass.: Har-

vard University Press.

Fitch. F.B. (1936). A system of formal logic without an analogue to the Curry W

operator. Journal of Symbolic Logic 1, 92–100.

Fitch, F.B. (1952). Symbolic Logic: An Introduction, New York: Ronald Press.

Gentzen, G. (1934). Untersuchungen über das logische Schließen. Mathematische

Zeitschrift 39 (1934/35), 176–210, 405–431, English translation (“Investigations

into Logical Deduction”) in: M.E. Szabo (ed.), The Collected Papers of Gerhard

Gentzen, Amsterdam: North Holland 1969, 68–131. Quotations are according to

Szabo’s translation.

Girard, J.-Y. (1971). Une extension de l’interprétation de Gödel à l’analyse, et son

application à l’élimination des coupures dans l’analyse et la théorie des types. In:

J.E. Fenstad (ed.), Proceedings of the 2nd Scandinavian Logic Symposium (Oslo

1970), Amsterdam: North Holland, 63–92.

Groote, P. de (ed.) (1995). The Curry-Howard Isomorphism. Louvain-la-Neuve:

Academia.

Hallnäs, L. (1991). Partial inductive definitions. Theoretical Computer Science 87,

115–142.

Hallnäs, L. & Schroeder-Heister, P. (1990). A proof-theoretic approach to logic pro-

gramming. I. Clauses as rules. Journal of Logic and Computation 1 (1990/91),

261–283.

PTS16 (=Refer.)

References 76

Hallnäs, L. & Schroeder-Heister, P. (1991). A proof-theoretic approach to logic pro-

gramming. II. Programs as definitions. Journal of Logic and Computation 1

(1990/91), 635–660.

Hermes, H. (1959). Zum Inversionsprinzip der operativen Logik. In: A. Heyting (ed.),

Constructivity in Mathematics, Amsterdam: North-Holland, 62–68.

Jäger, G. & Stärk, R.F. (1998). A proof-theoretic framework for logic programming.

In: S.R. Buss (ed.), Handbook of Proof Theory, Amsterdam: Elsevier, 639–682.

Joachimski, F. & Matthes, R. (2003). Short proofs of normalization for the simply-

typed λ-calculus, permutative conversions and Gödels T. Archive for Mathemat-

ical Logic 42, 59–87.

Kreuger, P. (1994). Axioms in definitional calculi. In: R. Dyckhoff (ed.), Extensions

of Logic Programming. Proceedings of the 4th International Workshop, ELP ’93,

St. Andrews, March/April 1993. Berlin: Springer LNCS, Vol. 798, 196–205.

Lorenzen, P. (1955). Lorenzen, P. Einführung in die operative Logik und Mathematik.

Berlin: Springer, 2nd ed. 1969.

Martin-Löf, P. (1971). Hauptsatz for the intuitionistic theory of iterated inductive

definitions. In: J.E. Fenstad (ed.), Proceedings of the 2nd Scandinavian Logic

Symposium (Oslo 1970), Amsterdam: North Holland, 179–216.

Martin-Löf, P. (1984). Intuitionistic Type Theory. Napoli: Bibliopolis.

Martin-Löf, P. (1995). Verificationism then and now. In: W. DePauli-Schimanovich

et al. (eds.), The Foundational Debate: Complexity and Constructivity in Math-

ematics and Physics, Dordrecht: Kluwer, 187–196.

Martin-Löf, P. (1998). Truth and knowability: On the principles C and K of Michael

Dummett. In: H.G. Dales & G. Oliveri (eds.), Truth in Mathematics, Oxford:

Clarendon Press, 105–114.

Montague, R. (1970). English as a formal language. In: B. Visentini et al. (ed.),

Linguaggi nella Società e nella Tecnica, Milano. Repr. in: R.H. Thomason

(ed.), Formal Philosophy: Selected Papers of Richard Montague, New Haven:

Yale University Press 1974, 188–221.

Negri, S. & von Plato, J. (2001a). Sequent calculus in natural deduction style. Journal

of Symbolic Logic 66, 1803–1816.

Negri, S. & von Plato, J. (2001b). Structural Proof Theory. Cambridge University

Press.

Nordström, B., Petersson, K. & Smith, J. (1990). Programming in Martin-Löf ’s Type

Theory: An Introduction. Oxford: Clarendon Press.

PTS16 (=Refer.)

References 77

Plato, J. von (2001). Natural deduction with general elimination rules. Archive for

Mathematical Logic 40, 541–567.

Prawitz, D. (1965). Natural Deduction: A Proof-Theoretical Study. Stockholm:

Almqvist & Wiksell.

Prawitz, D. (1971). Ideas and results in proof theory. In: J.E. Fenstad (ed.), Proceed-

ings of the 2nd Scandinavian Logic Symposium (Oslo 1970), Amsterdam: North

Holland, 235–308.

Prawitz, D. (1973). Towards a foundation of a general proof theory. In: P. Suppes et

al. (eds.), Logic, Methodology, and Philosophy of Science IV, Amsterdam: North

Holland, 225–250.

Prawitz, D. (1974). On the idea of a general proof theory, Synthese 27, 63–77.

Prawitz, D. (1978). Proofs and the meaning and completeness of the logical constants.

In: J. Hintikka et al. (eds.), Essays on Mathematical and Philosophical Logic,

Dordrecht: Reidel, 25–40 (revised German translation in Conceptus 16, 1982).

Prawitz, D. (1985). Remarks on some approaches to the concept of logical consequence,

Synthese 62, 152–171.

Prior, A.N. (1960). The runabout inference ticket. Analysis 21 (1960/61), 38–39.

Robering, K. (2001). Ackermann’s implication for typefree logic. Journal of Logic and

Computation 11, 5–23.

Sambin, G., Battilotti, G. & Faggian, C. (2000). Basic logic: reflection, symmetry,

visibility. Journal of Symbolic Logic 65, 979–1013.

Schroeder-Heister, P. (1981). Untersuchungen zur regellogischen Deutung von Aus-

sagenverknüpfungen. Ph.D. thesis. University of Bonn 1981. Can be downloaded

from the author’s homepage.

Schroeder-Heister, P. (1984a) A natural extension of natural deduction. Journal of

Symbolic Logic 49, 1284–1300.

Schroeder-Heister, P. (1984b). Generalized rules for quantifiers and the completeness of

the intuitionistic operators &, ∨, ⊃, f, ∀, ∃. In: M.M. Richter et al., Computation

and Proof Theory. Proceedings of the Logic Colloquium held in Aachen, July 1983,

Part II. Berlin: Springer LNM, Vol. 1104, 399–426.

Schroeder-Heister, P. (1987). Structural Frameworks with Higher-Level Rules. Ha-

bilitation thesis. Department of Philosophy, University of Constance. Can be

downloaded from the author’s homepage.

Schroeder-Heister, P. (1991a). Hypothetical reasoning and definitional reflection in

logic programming. In: P. Schroeder-Heister (ed.), Extensions of Logic Program-

PTS16 (=Refer.)

References 78

ming. International Workshop, Tübingen, December 1989, Proceedings. Berlin:

Springer LNCS, Vol. 475, 327–340.

Schroeder-Heister, P. (1991b). Structural frameworks, substructural logics, and the role

of elimination inferences. In: G. Huet & G. Plotkin (eds.), Logical Frameworks.

Cambridge University Press, 385–403.

Schroeder-Heister, P. (1991c). Uniform proof-theoretic semantics for logical constants.

Abstract. Journal of Symbolic Logic 56, 1142.

Schroeder-Heister, P. (1992). Cut-elimination in logics with definitional reflection. In:

D. Pearce & H. Wansing (eds.), Nonclassical Logics and Information Processing.

International Workshop, Berlin 1990, Proceedings. Berlin: Springer LNCS, Vol.

619, 146–171.

Schroeder-Heister, P. (1993). Rules of definitional reflection. In: 8th Annual IEEE

Symposium on Logic in Computer Science (Montreal 1993). Los Alamitos: IEEE

Computer Society Press, 222–232.

Schroeder-Heister, P. (1994a). Cut elimination for logics with definitional reflection

and restricted initial sequents. Proceedings of the Post-Conference Workshop of

ICLP 1994 on Proof-Theoretic Extensions of Logic Programming (Washington,

December 1994). Can be downloaded from the author’s homepage.

Schroeder-Heister, P. (1994b). Definitional reflection and the completion. In: R. Dyck-

hoff (ed.), Extensions of Logic Programming. Proceedings of the 4th International

Workshop, ELP ’93, St. Andrews, March/April 1993. Berlin: Springer LNCS,

Vol. 798, 333–347.

Sommaruga, G. (2000). History and Philosophy of Constructive Type Theory. Dor-

drecht: Kluwer.

Tait, W.W. (1967). Intensional interpretations of functionals of finite type I. Journal

of Symbolic Logic 32. 198–212.

Tarski, A. (1933). Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philo-

sophica 1 (1935), 261–405 (translated from the Polish original of 1933, with a

postscript). Reprinted in: K. Berka & L. Kreiser (eds.), Logik-Texte, Berlin 1971.

English translation of the German version in: A. Tarski, Logic, Semantics, Meta-

mathematics, Oxford: Clarendon Press 1956.

Tennant, N.W. (1978). Natural Logic. Edinburgh University Press.

Troelstra, A.S. & Schwichtenberg, H. (1996). Basic Proof Theory. Cambridge Univer-

sity Press, 2nd edition 2000.

PTS16 (=Refer.)

Proof-theoretic and constructive consequence 1

Proof-theoretic and constructive consequence

Justifications and reductions

Terminology: I use “derivation” for what I before called “derivation structure” (“ar-

gument skeleton” in Prawitz), and “proof” instead of “argument”. So D denotes a

derivation, whereas a proof is a pair 〈D,J 〉, also denoted by the Greek letter Π (with

and without subscripts). I choose this terminology, as I will have to speak frequently

of proofs as arguments and values of functions, which is confusing, if I also use “argu-

ment” in a semantical sense. The terminology “derivation” vs. “proof” does not seem

to be too bad anyway.

A proof is then a pair 〈D,J 〉 consisting of a derivation together with a justification

J , where a justification consists of a set of reductions for derivations. An elementary

reduction is a transformation of a derivation whose value has the same end formula and

no open assumptions beyond those in the argument (but possibly less). More precisely,

as reductions are only required when a derivation is non-canonical, justifications are

only defined for non-canonical derivations of the form

D1 . . . Dn

A
(X)

where (X) is not an introduction inference or an inference in an atomic system S. This

means that the transformations within a justification J are attached to non-canonical

rules. It is furthermore required that with each rule not two different reductions are

associated. This is expressed by saying that J is consistent. J ′ is called a consistent

extension of J (J ′ ≥ J) if J ′ is either J itself or results from J by adding reductions

for rules for which there are no reductions in J , and is furthermore consistent.

It is not necessarily required that the reductions be schematic in the sense that

different instances of a rule schema require the same reduction. E.g., it is not excluded

that for modus ponens

A→B A

B

the reductions defined differ depending on what formulas A and B stand for. However,

in normal circumstances, reductions will be given schematically, as it is the case with the

standard reductions of intuitionistic logic. In any case, reductions within justifications

have to be interchangeable with substitution, which in the propositional case means

the following:

ConstructiveConsequence01

Manuscript, April 2003

Proof-theoretic and constructive consequence 2

If a reduction j is defined for a derivation
A1 . . . An

D
, such that

j

A1 . . . An

D

 =

A1 . . . An

D′ , then for any D1

A1

, . . . , Dn

An

,

j

D1

A1 . . .

Dn

An

D

=
D1

A1 . . .

Dn

An

D′

.

In the quantified case interchange with substitution for individual variables has to be

added. Therefore, with respect to the substitution of derivations for open assumptions,

reductions are schematic indeed.

Interchangeability with substitution does not mean that in

D1

A1 . . .

Dn

An

D j1
A

,

where A1, . . . , An, A are fixed formulas (not schematic letters), j1 has to be independent

of the form of the Di. In fact, j1 can vary with varying D1, . . . ,Dn. However, as soon

as one defines some j2

A1 . . . An

D j2
A

independently of D1, . . . ,Dn, then j1 is determined by j2, as the argument of j1 is a

substitution instance of the argument of j2. (In particular, if all reductions in J are

defined for closed derivations only, then no interchangeability requirement is needed.)

An elementary reduction associates with a derivation another derivation, not a

proof, at least not in the first place. E.g., in the case of modus ponens, we have the

reduction

mpA→B :

A
D
B

A→B
D′

A

B

7−→
D′

A
D
B

.

ConstructiveConsequence01

Proof-theoretic and constructive consequence 3

Although D′

A
and

A
D
B

are understood as standing for specific derivations, mpA→B is

independent of the particular forms of D and D′.

Of course, this induces an association between proofs, as the reductions associated

with steps in D and D′ are carried over from the argument to the value of mpA→B.

However, mpA→B does not explicitly refer to reductions for steps in D and D′. One

might say that reductions for steps in D and D′ are parametric with respect to mpA→B.

This is different with non-elementary reductions. Those are reductions which ex-

plicitly associate a proof rather than just a derivation with a derivation. I.e., the value

of a non-elementary reduction may contain new reductions. As an example, consider

the reduction j∗ whose value contains two elementary reductions, namely mpA→(B→C)

and mpB→C :

j∗:
D

A→(B→C)

B→(A→C)

7−→

D
A→(B→C)

(1)

[A]
mpA→(B→C)

B→C

(2)

[B]
mpB→C

C (1) I-rule
A→C (2) I-rule

B→(A→C)
Again, this induces a reduction going from proofs to proofs, taking reductions associ-

ated with steps in D as parameters. We thus obtain a hierarchy of reductions, starting

from the elementary ones. Conversely, given a reduction, it must be possible to reach

elementary ones in a finite chain of definitions, as we want to stay predicative.

Apart from the parametric reductions, at present I see no need to also allow for

reductions taking proofs (rather than derivations) as arguments, i.e., it seems to me

that reductions

j: derivation 7−→ derivation

(elementary case)

j: derivation 7−→ proof

(non-elementary case)

suffice. (This has to be investigated.) In the following, when we speak of reductions as

transformations of proofs, this is understood as being parametrically induced by some

j in the above sense.

The full-specification condition

The example of the reduction j∗ given above motivates a certain requirement for justi-

fications which will turn out important in comparison with constructive validity below.

ConstructiveConsequence01

Proof-theoretic and constructive consequence 4

As j∗ explicitly refers to the elementary reductions mpA→(B→C) and mpB→C , it is not

{j∗} which justifies the step

A→(B→C)

B→(A→C)
,

but {j∗, mpA→(B→C), mpB→C}. In general we should require of a justification J that

it contain all reductions, which any reduction in J refers to. I call this closure con-

dition the full specification requirement. A justification should contain all information

needed to carry out its reductions, i.e., all reductions apart from the parametric ones.1

Formally, this condition can be stated as follows: Given a reduction j ∈ J of the form

j : 〈D1,J 1〉 7−→ 〈D2,J 2〉
Then the full specification requirement demands that (J 2 \ J 1) ⊆ J , i.e., every re-

duction beyond those in J 1, which is used to generate 〈D2,J 2〉, should be in J . In

the cases considered here, J 1 would comprise parametric reductions only. In the case

of j∗, J 2 would contain the reductions mpA→(B→C) and mpB→C , in addition to the

parametric reductions in D.

By imposing this requirement, a justification J of

A1 . . . An

A

contains all reductions ever (hereditarily) referred to in spelling out the reduction to

be associated with this single step. So all reductions needed are stated in J . We do

not allow for reductions to generate further reductions without them being available

in J . I consider this to be crucial for the proof-theoretic approach in contradistinction

to an approach which may be called constructive.

It should be noted that for a derivation D which is valid with respect to J , the

full specification requirement is satisfied for J , at least for the subset of J actually

needed to justify D. This is enforced by the specific formulation of the definition of

validity. Suppose, D is non-canonical and closed. Then for D to be valid with respect

to J , D must reduce with respect to J to some D′ which is valid with respect to the

very same J . This means that when reducing D to D′ using some reduction j ∈ J ,

then j cannot refer to a reduction not in J . Similarly, suppose
A1 . . . An

D
A

is valid with

respect to J . Then for every J ′ ≥ J , and for every list of closed derivations Di

Ai

1If it should turn out that reductions may also refer to non-parametric reductions as arguments,

this is of course covered as well.

ConstructiveConsequence01

Proof-theoretic and constructive consequence 5

(1 ≤ i ≤ n), which are valid with respect to J ′,

D1

A1 . . .

Dn

An

D
A

is valid with respect to

the very same J ′. Again, the reduction j ∈ J ′ which is associated with
A1 . . . An

D
A

(if

D does not end with an introduction step), cannot generate any new reduction, as J ′

is not extended.

In this sense, the full specification requirement is built into the definition of validity.

Therefore, it might also be called the full specification feature of justifications. In any

case it seems to me important to state it explicitly, as it contributes to the motivation

and understanding of the definition of validity given in comparison with other possible

definitions.

Proof-theoretic consequence

Now we may define proof-theoretic consequence as follows (I again disregard atomic

systems):

A is a proof-theoretic consequence of A1, . . . , An with respect to J (A1, . . . , An |=J A),

if the one-step derivation

A1 . . . An

A

is valid with respect to J , i.e., if for every J ′ ≥ J , and for every list of

closed derivations Di

Ai

(1 ≤ i ≤ n), which are valid with respect to J ′,

(*)
D1

A1 . . .

Dn

An

A

is valid with respect to J ′.

A is a proof-theoretic consequence of A1, . . . , An (A1, . . . , An |= A), if there is a J
such that A is a proof-theoretic consequence of A1, . . . , An with respect to J .

Note that, analogously to the remark in the previous section, the derivation of the

conclusion (*) must be validated with respect to the very same extension J ′ of J ,

with respect to which the premiss derivations Di

Ai

are validated. J ′ cannot be further

extended to validate the conclusion. So we are not asking that for every J ′ ≥ J , and

ConstructiveConsequence01

Proof-theoretic and constructive consequence 6

for every list of closed derivations Di

Ai

(1 ≤ i ≤ n), which are valid with respect

to J ′, there is a J ′′ ≥ J ′ such that (*) is valid with respect to J ′′. This would

lead to a different validity concept with an additional existential quantifier (“there is a

J ′′ ≥ J ′”), which is more closely related to what might be called constructive rather

than proof-theoretic validity, where the full-specification requirement needs not be met.

Proof-theoretic vs. constructive consequence

What is the difference between proof-theoretic consequence

A1, . . . , An |=J A

in the sense defined above and constructive consequence in the sense that there is a

constructive function f transforming valid proofs of A1, . . . , An into a valid proof of A,

formally

A1, . . . , An |=f A .

That there might perhaps be no difference at all is suggested by the fact that proof-

theoretic consequence is the same as the validity of the one-step derivation

A1 . . . An

A
j

where j is a reduction transforming valid closed proofs of A1, . . . , An into a valid closed

proof of A. This procedure j is, of course, a constructive function, and there is no

restriction on it in proof-theoretic semantics. So the difference to f can anyway only

lie in the J in which j is embedded.

To answer this question, he have to spell out what “constructive consequence” may

mean in our context. Of course, a justification J as a set of reductions is nothing but

a partial constructive function associating proofs with proofs. So what is the special

character of J , viewed as a partial constructive function from proofs to proofs, as

compared to arbitrary such functions? Let us try to define the validity of proofs of

the form 〈D, f〉 and see what difference it makes when arbitrary partial functions f

rather than partial functions in the sense of J are considered. The crucial case is

the substitution condition in the definition of validity, which also determines logical

consequence given through one-step proofs. We again disregard atomic systems S.

In the proof-theoretic case this definition runs as follows:

(P) An open derivation
A1 . . . An

D
A

, where all open assumptions of D are among

A1, . . . , An, is valid with respect to J , if for every J ′ ≥ J , and for every list of closed

ConstructiveConsequence01

Proof-theoretic and constructive consequence 7

derivations Di

Ai

(1 ≤ i ≤ n), which are valid with respect to J ′,

D1

A1 . . .

Dn

An

D
A

is valid

with respect to J ′.

How would we carry this over to the constructive case with partial functions f rather

than J ? The literal translation for partial functions f with J replaced by f would be

the following:

(C) An open derivation
A1 . . . An

D
A

, where all open assumptions of D are among

A1, . . . , An, is valid with respect to f , if for every f ′ ≥ f , and for every list of closed

derivations Di

Ai

(1 ≤ i ≤ n), which are valid with respect to f ′,

D1

A1 . . .

Dn

An

D
A

is valid

with respect to f ′.

Here f ′ ≥ f means that f ′ extends f , i.e., f ′ coincides with f where f is defined. Now

in the constructive case one would expect that the form of D is simply disregarded,

i.e. that with closed derivations D1

A1

, . . . , Dn

An

we associate a closed derivation D′

A

“out of the blue”, without referring to D. Thus f should be construed as an n-place

function from D1, . . . ,Dn to D′. However, since we should not exclude in principle

that f also depends on D, it would be more general to construe f as an (n+ 1)-place

function from D,D1, . . . ,Dn to D′. But then we can as well stick to f as a one-place

function of

D1

A1 . . .

Dn

An

D
A

, as this derivation term contains all the information given by

D1, . . . ,Dn and D. This is still not the same as (C), as in (C) just a single extension

f ′ of f is being considered, whereas on the constructive approach it would be natural

to consider different extensions fi of f for every Di. However, this is no objection

either. Obviously, rather than considering different extensions f1, . . . , fn, we might as

well consider a single extension f ′ of f , where f ′ is defined as the union f1 ∪ . . .∪ fn of

the fi, i.e., for arbitrary D, f ′(D) = fi(D), if for some i (1 ≤ i ≤ n), fi is defined for

D. This presupposes that the fi are consistent with each other in that never any two

ConstructiveConsequence01

Proof-theoretic and constructive consequence 8

of them have different values for the same argument, which is only natural to require.

This all means that there is no need to deviate from (C) to give (P) a constructive

rendering in terms of partial constructive functions.

Obviously, the difference between proof-theoretic and constructive validity does

not lie in the difference between (P) and (C), which are the same, but in the different

properties of the partial functions J vs. f being involved. (I tacitly identify J with

the partial function given by the reductions in J .) Apart from the condition that J
interchanges with substitution, which for consistency reasons we would also have to

require of f , the only difference seems to be the full specification condition. For an

arbitrary partial constructive functional f we would allow that as a value it produces a

partial function(al) f ′ which is defined for some arguments for which f is not defined.

In our case, for an f we would allow that, if f(〈D1, f1〉) = 〈D2, f2〉, then f2 is defined

for proofs for which neither f nor f1 is defined. For example, let f uniformly transform

the proof 〈D1, f1〉, where D1 is the derivation

D1

A→(B→C), into the proof 〈D2, f2〉,
where D2 is

D1

A→(B→C)

(1)

[A]

B→C

(2)

[B]

C (1)
A→C (2)

B→(A→C)
and f2 contains the modus ponens reductions for derivations

D3

A→(B→C)

D′
3

A

B→C
and

D4

B→C

D′
4

B

C
.

Then f is a constructive justification of the consequence

A→(B→C)

B→(A→C)

which corresponds to to j∗. However, in contradistinction to f , {j∗} is not a proof-

theoretic justification, as it does not satisfy the full specification condition. Only com-

bined with the modus ponens reductions, j∗ can serve as a reduction. In constructive

semantics we allow for justification functions f , which are functionals, to arbitrarily

generate other functions or functionals g with an extended domain, i.e., g may be

defined where f was not defined.

Viewed in that way, proof-theoretic semantics is a special form of constructive

semantics with the particular emphasis that the justifying functions must be maximally

ConstructiveConsequence01

Proof-theoretic and constructive consequence 9

specified, i.e., all information which might later be invoked, must be given initially in

a justification. In other words, the domain of a proof-theoretic justification function

J has to be maximal.

Of course, this can always be achieved given a partial constructive function f on

proofs: We just have to hereditarily extend f by defining it for those arguments for

which some function in the value of f is defined, which is always possible, as the

extensions have to be consistent with the original function. Formally, given a partial

constructive justifying function f , we would define such an extension as follows:

f0 := f

fn+1(Π) := fn(Π), if fn is defined for Π

fn+1(Π) := g(Π), if fn is not defined for Π and g occurs in the range of fn, i.e.,

fn(Π
′) = 〈D, g〉 for some Π′ and D

fn+1 undefined otherwise

f ′ :=
⋃
fn.

Then f ′ contains all the information some justification J may contain.

This makes very good sense. Proof-theoretic semantics is not intended to be differ-

ent from a constructive semantics in that it leads to different results, i.e., by justifying

a more limited range of derivations than does constructive semantics. Rather, it just

insists that the partial functions used contain maximal information. If a single step

A1 . . . An

A

is to be justified by means of J , then J contains all information that is needed in the

course of the justification, and not just a single reduction for

D1

A1 . . .

Dn

An

A

which is done in the initial step. In proof-theoretic semantics all information is con-

tained from the very beginning in J and not hidden in the value of some function f

for certain arguments.

Afterthought: Term rewriting systems vs. constructive functions

After writing down these notes, it seems to me that there is perhaps a much better

way of making the difference between proof-theoretic and constructive consequence ex-

plicit. The whole problem arose because a justification J was from the very beginning

ConstructiveConsequence01

Proof-theoretic and constructive consequence 10

conceived of in the spirit of a partial constructive function, from which the natural ques-

tion emended, what the exact difference to an arbitrary partial constructive function

f might be.

Perhaps another framing of J would be better, namely as a term rewriting system.

We might expect that a proof-theoretic justification J should be given in the form of

such a system. This would have the following advantages:

1. It would correspond naturally to derivations as term-like structures which can be

reduced or rewritten to other derivations.

2. Requirements like interchangeability with substitution are automatically fulfilled

due to the term structure.

3. The value of rewriting a term is always a term. There would be no need to consider

justifications to occur in values of reductions. This again means that full specification

must always be met, as the term rewriting system must provide all possible reduction

steps in its definition.

One would then say that proof-theoretic consequence is based on term-rewriting

systems as justifications, whereas constructive consequence is based on arbitrary partial

functions. Term-rewriting systems can still be read as such functions, but, due to their

sophisticated reduction machinery, they have a much higher degree of explicitness. So

proof-theoretic semantics would be a specific form of constructive semantics, in which

the justifying functions are represented in the form of rewriting systems. The purely

functional view simply takes place on a much more abstract level as compared to the

concrete term-rewriting (= proof-theoretic) view.

This approach, which has to be investigated in detail, seems to me to be extremely

promising.

ConstructiveConsequence01

	Proof-Theoretic Semantics: Some Basic Ideas
	Proof-Theoretic and Constructive Consequence

