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Preface

This online publication makes available some abstracts and extended summaries, which

contain unpublished ideas that have occasionally been referenced. This gives them a

regular DOI to facilitate access and citation. Not included are abstracts of conferences

of the Association for Symbolic Logic, which are published in the Journal/Bulletin of

Symbolic Logic.

In addition, this collection contains four abstracts from the years 1986–1989 repre-

senting joint psychological work by Walter H. Ehrenstein, Gabriele Heister and myself.

Tübingen, August 2022 Peter Schroeder-Heister
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Abstracts of the ?Lh International Congress of Logic , 
i·iethodologr a nd Pliilosophy of Science , Salz burg , July 
11 th -16th , 1983 , Vol . 2 , pp. 150- 153. 

Section 5 : Philosophical Logic 
Pete r Schroeder-Heister, Universi tat Konstanz , 
Fachgruppe Philo sophie , Postfach 5560 , 7750 Konstanz , F . R. G. 
INVERSION PRINCIPLES AND THE COMPLETENESS OF INTUITIONISTIC 
NATURAL DEDUCTION SYSTEMS 

Some influential semantical conceptions for intuitionistic l ogic , in particular 
those of M. Durmnett and D. Prawitz, consider the introduction rules (I-rules) 
fo r logical operators to be 'canonical' rules which give a meaning to these 
operators; the elimination rules (E-rules) are then justified with respec t to a 
semantics depending on I-rules . The often stated harmony be tween I- and E-rules 
suggests that one might reverse t his procedure , i.e. choose the E-rules to be 
canonical and justify the I-rules with respect to a semantics depending on E
rules. In the fo llowing , which represents an attempt in this direction, we sha ll 
define a concept of validity based on E-rules . It can then be shown that all I
rules are valid, and conver sely that all valid rules are derivable in intuitio
nistic logic . In this s ense intuitionistic logic is complete. This approach is 
dual to that proposed in [7] where the inversion princ iple, as fo rmulated by 
Prawitz [ 3 , 4], is generalized to a notion of validity based on I-rules, with 
respect to which the completeness of intuitionistic logic could be established. 
So the present approach formulates an ' inverted ' inversion principle . 

The Inversion Principle In Lorenzen [2], the inversion principle is treated as 
a principle to establish the admissibility of rules . A rule R is called admiss ible 
in a calculus K, if its addition to the inference rules of K, yielding an ex
tended calculus K+R, does not enlarge the set of formulas derivable in K, i . e . 
for each formula D, iflK+RD, then 7 D. Here the 'i f ... then' is unde rstood con
structively, i.e. there must be an effective procedure eliminating each applica
tion of Rina derivation of D. The inversion principle is applied in s uch cases 
where the premises of R can be derived in K only by application of certai n in
ference rules R1, • •·,Rn of K: then we know that a derivation of the premises of 
R in K contains a derivation of at least some of the premises of R1,•• · ,Rn; if 
we know furthermore that for each i ( I :;: i ~ n) the step from the premises of Ri 
to the conclusion of R is admissible , we can infer the admissibility of R. (For 
a precise description see [I]). The main application of the inversion principle 
within formal logic is the justification of the A- , v-, and 3-E-rules as ad
missible rules in every calculus K having the A -, v-, 3-I-rules as the only in
ference rules making it possible to infer conjunctions, disjunctions and existen
tia l quantifications. As can easily be seen , the admissibility concept and thus 
the inversion principle in Lorenzen's version does not work for derivations from 
assumptions. If we defined R to be admissible in Kif for all finite sets of 
assumptions r and all formulas D: if r~o then rl-KD, then each admissible rule 
R would be derivable: Taking r to be the set of premises of Rand D to be its 
conclusion, r1K+RD would be trivially fulfilled, thus r~o would hold. 

Following some remarks of Gentzen, Prawitz used in [3,4] a somewhat different 
inversion principle to describe the relation between I- and E-rules of natural 
deduction systems : if the major premise of an E-rule is derived using an I-rule 
in the last step, this derivation already 'contains', together with derivations 
of the minor premises of the E-rule, a derivation of the conclusion of the E-rule . 
This relation is made explicit in the reduction steps and normalization proce
dures stated by Prawitz . Such an inversion principle obviously does not allow the 
elimination of an E-rule R from all derivations in c+R, where C is the (canoni
cal) part of an intuitionistic natural deduction system having only I-rules as 
inference rules . But we can formulate it in a way that makes it closely related 
to Lorenzen's inversion principle: Define for an E-rule Ra derivation in C+R 
t o be a derivation which applies R only if its major premise is the conclusion 
of an application of an I-rule. Then it holds in fact for all E-rules R that fo r 
all sets of assumptions rand all formulas D: if r1-z:,:rno, then rt-co , The ~iffer
ence to Lor enzen's inversion principle is that in calculi without assumptions 
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the maj or premise of an E-rule can be de rived only by using an I -rul e i n t he las t 
step wher e t h i s fact mus t be r equired in the cas e of calculi with assumptions . 
On the one hand this weakens t he inversion princi ple , but on the othe r hand it 
makes i t possible to trea t • in this framework (which was no t possible in Lor en
zen [ 2)) . 

Prawi t z ' i nversion principle is defined for the standard E-rules with one major 
premise . In Schroeder-He ister [7] it is generalized to a principle that may be 
used for the justification of arbitrary rules R (the E-rules being special cases 
thereof). The general schema for an arbitrary rule in a natural deduction system 
can be stat ed as 

r1 ~n 
(I) -~.l :~ 

A1 An 

A 

where the r ' s are (possibly empty) sets of formulas, indicating the assumptions 
which may be discharged by application of that rule, and the x's are sets of 
eigenvariables to be respected. In order to formulate an inversion principle, we 
assume a (possibly empty) set of non-atomic assumption- and eigenvariable- free 
premis es to be distinguished by a star, thus arriving at the schema 

r1 rm 

(2) : .!.I :-¾i . . .. . 
*A1 *An B1 Bm 

A 

Here the starred A' s function like major premises in · the usual E-rules which mus t 

now be written as A B A[x/y] 
.y (y not fr t?e 

* A/\ B * AA B * Av B C C * A• B A * l. * VxA * 3xA B 
l. n 3xA or B) 

A B C B A A[x/t] B 

For C as the canonical part of the natural deduction calculus having only I-rules 
as inference r ules, a derivation in c+R for a rule of t he form (2) is defined 
as applying R only if the starred premises are derived using an I-rule iry the 
last step , i.e. the starred premises are counted as major premises in a genera
lized sense. We say that the inversion principle holds for R, or that R is valid, 
if for all r, D: if r~D, then r~D. It can be shown not only that for all 
rules of intuitioni stic logic I the inversion princ i ple holds (i . e . that they are 
valid), but also that a l l rules for which the inversion principle holds are de
rivable in I; so I is in a certain sense comple t e . 

Assumption Rules We allow not only formulas but also ' assumption rules ' of the 
form {A 1, ••• ,¾l-x A to be assumptions on which derivations in natural deduction 
calculi may depena, (Here the sets {A1, .. . ,An} and/or .!, may be empty; in the for
mer case the assumption rule is identified with the assumption A) . Assumption 
rules are applied in a derivation according to the schema 

A [.!_I _t] 

An assumption rule {A1, .•. ,An~ A represents on the object level the metalogical 
assumption that a derivat i on orA from {A1, ... ,Art} is given whereby eventual 
further assumptions do not contain any variable of.!_ free . The concept of assump
tion rules allows us to define the derivability of a rule of form (I) as 
{r1.,.x A1 ,•• .,rn ,.x ¾}~A, analogo·.1sly to the usual definition of the derivability 

-1 ~ of a rule 
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A1 •.. An 

A 
rule of form (I) , t:,.' 1s 
of the form as { A1 , .• . ,A,1} f-A . If t:,. denotes a set of premises of a 

def i ned to be t he se t {r1 .. A1 , •• • ,r,. A } . So a rule 
2S! n.2S-in + is derivable if 

of highe r levels see 
t:,. '!-A. (For a systematic treatment of assumption rules also 
[ 6] ) . 

An Inversion Principle Based on Elimina tion Rules The 'harmony' between I- and 
E-rules has often been emphasized but usually I-rules are chosen to be canonical 
rules (with t he exception of the approach sketched in [4, Appendix A. 2] which is 
somewhat different from the one given here). I shall take the E-rules to be ca
nonical and justify the I-rules by an inversion principle which treats I-rules 
as inverses of E-rules , dual to the path taken in [7]. This means that we have to 
fonnulate counterpar ts to the concepts defined the re . (E. g ., counterparts of the 
major premises of E-rules are now the conclusions of I-rules). Thus we define the 
canonical part C of the intuitionistic natural deduction calculus I to be the sub
system containing only the E-rules for A, v, •, ~. V, 3 (as stated above, but 
without a star). r~D is defined as usual where r may include assumption rules . 
The general fo rm of an arbitrary rule R is 

r1 rn 
•2S.l :2S.n 

or shortly 

(*)A (*)A 

where a non-atomic conclusion A can be starred (premisses must not be starred). 
A derivation in c+R is a derivation in the calculus resulting from C by addition 
of Ras an inference rule, where , if A is starred,the conclusion of each applica
tion of R in the de rivation is major premise of an application of an E-rule. We 
shall s ay that R fulfils the inversion principle or is valid if for al l r, D: i f 
r~D, then r~D. Since all E-rules of I belong to C , they are trivially valid. 
The I-rules of~ . now to be written as 

A B 
* A A B 

A 
* A v B 

B 
* AV B 

A 
:y (y not free 

B A[x/y] in VxA) A[x/t] 
* VxA * 3xA 

(~has no I-rul e) 

can be shown to be valid by application of the standard reduction steps. So all 
inference rules of I are valid. Conversely, we can prove that all valid rules 
are derivable in r: First we state that all valid rules R without starred con
clusions are derivable in C and hence in I. (Taker to bet:..'; then t:,. • ~RA holds 
trivially and thus t:,.' ~). Secondly, if a rule R of one of the forms c+ 

t,. t,. t,. t,. t,. t,. 

* A /\ B * A v B * A • B ....--Y- * VxA * 3xA 

is valid, then also 
A B A[x/y] 

:y 
t,. t,. 

A and B , 
t,. C 

C 
C for all C, 

t:,. A t,. t,. t,. B 
B , C for all C, A[x/t] for all t, ---~--

(y not free in 3xA or B) for all B, respectively, are valid and hence derivable 
1n I. (E.g. 1n the third case, by replacing each application of 

t.. A by 
B 

t.. 
A • B° A , we obtain a derivation 1n C+R, from which R can be 

B 
eliminated) . By application of I-rules in I the derivability of R in I then follows. 
(E .g. in the second case, we have a derivation of AvB fromt:.. 'U{A.,.AvB, B.,.AvB} 
in I; replac ing all applications of the assumption rules A•A v B and B,.A v B by 
applications of thev-I-rules we obtain a derivation of AvB from t:..'). If we 
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de not e by r H---D ~ha t Dis de rivable from r only by use of valid rules , we have 
established : 
Theor em rll----D i ff rso . 

Remar ks I. This theorem does not include that each rule derivable in I is valid. 
For example the rule R 

A B C 
*(A/\ B) /\ C 

which can be derived in I by twofold application of A-I is not valid in our 
s ense . Its application is not eliminable e.g. from the derivation 

A B C 
(A/\ B) /\ C 

A/\ B A • 
u need not be valid. Combination of valid rules doe s not i11 C+R. Thus if t:.' l~ D, -U-

always yield a valid rule. So the proposed inversion principle is weaker than the 
definitions of validity Prawitz proposed in (4,5), which are transitive in the 
sense that combination of valid rules always yield valid rules. A completeness 
proof for intuitionistic logic with respect to Prawitz' concept of validity (or 
a related concept) would be more informative than the one given here, but is 
still a desideratum. 
2 . We would obtain an analogous res ult for classical logic if we took C to incl ude 

A • .l 

.l 
A 

instead of 
.l 

T 
If we wanted to give reasons f or preferring intuitionistic logic to classical 
logic in our framework, we would have to a r gue for a certain choice of canonical 
E-rules (e.g. that major premises of E-rules must not depend on assumptions). The 
completeness result ifself does not provide reasons for such a preference. 

References [I] H. Hermes, Zurn Inversionsprinzip der operativen Logik, in : A. 
Heyting (ed .), Constructivity in Mathematics , Amsterdam 1959, 62---68. (2) P . Lo
r enzen, EinfUhrung in die operative Logik und Mathematik, Berlin 1955 , 2nd ed. 
1969 . [3] D. Prawitz, Natural Deduction. A Proof-Theoretical Study, Stockholm 
1965. (4) D. Prawitz, Ideas and Results in Proof Theory, in: J.E. Fenstad (ed .), 
Proceedings of the Second Scandinavian Logic Symposium, Amsterdam 1971, 235- 307 . 
(5 ) D. Prawitz, Towards a Foundation of a General Proof Theory, in: P. Suppes et 
al. (eds.), Logic, Methodology and Philosophy of Science IV, Amsterdam 1973, 
225-250. (6) P. Schroeder-Heister, Untersuchungen zur regellogischen Deutung von 
Aussagenverkniipfungen, Dissertation, Bonn 1981. [7] P. Schroeder-Heister, The 
Completeness of Intuitionistic Logic with Respect to a Validity Concept Based on 
an Inversion Principle, J . . Philos . Log. , in press. 
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An asymmetry between introduction and elimination inferences

Peter Schroeder-Heister, Universität Tübingen/SNS, Germany
e-mail: schroeder-heister@mailserv.zdv.uni-tuebingen.de

The symmetry between introduction (I) and elimination (E) inferences in natural deduc-
tion or between right-introduction (`∗) and left-introduction (∗`) inferences in sequent
calculi is normally considered a central feature of Gentzen systems. Both philosophical
and mathematical investigations have tried to point out a uniform relationship or duality
between I or `∗ and E or ∗` inferences, always in connection with normalization and cut
elimination. This is not being questioned here. However, a certain characteristic asym-
metry will be pointed out that has to do with the notion of discharging assumptions. Let
X[A] express that the formula A occurs at a certain place in a list X of formulae, and
let X[Y ] denote the result of replacing this occurrence of A in X by the list Y . Then,
for example, the schema of implication introduction in sequent-style natural deduction
should be formulated as

X,A`B
X`A→B

and not as
X[A]`B
X`A→B

,

whereas the schema of disjunction elimination should be formulated as

X`A∨B Y [A]`C Y [B]`C
Y [X]`C

and not as
X`A∨B Y,A`C Y,B`C

Y,X`C .

Similarly, in the multiple-conclusion sequent calculus the schema of implication introduc-
tion on the right should be formulated as

X,A`B, Y

X`A→B, Y

and not with A or B bracketed, whereas the schema of disjunction introduction on the
left should be formulated as

Y [A]`C Y [B]`C
Y [A∨B]`C

rather than
Y,A`C Y,B`C

Y,A∨B`C ,

and analogously for other connectives.
These claims are based on the following principles:

1. Rules for logical constants should be uniform and independent of the structural
principles assumed.

2. Normalization (for natural deduction systems) and cut elimination (for sequent
calculi) should hold.

3. In the multiple-conclusion case symmetry should not be forced by providing a mech-
anism that permits to move formulae between the two sides of a sequent.

Abstracts of the 9th International Congress of Logic, Methodology and 
Philosophy of Science, Uppsala, Sweden, 7-14 August 1991 
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Rules of definitional reflection in logic 
programming 

Peter Schroeder-Heister 
Universitiit Tiibingen, Wilhelm- Schickard-Institut 

Sand 13, 7400 Tiibingen, Germany 
e-mail: schroeder-heister@mailserv.zdv.uni-tuebingen.de 

Given a set D of clauses of the form 
F * A, 

where F is a formula of some logic and A is an atom, it is natural to  extend the sequent 
calculus for that logic by a rule like 

F I - F  
r I- a (I- D), 

yielding a logic over D .  This idea has been used in proof-theoretic interpretations and ex- 
tensions of definite Horn clause programming, notably A-Prolog, by giving a computational 
reading to (I- D), which corresponds to resolution if the clauses in D are of a particular 
form. 

In systems like GCLA, a principle dual to (t- D) is considered in addition, yielding 
a fully symmetric sequent calculus. It is called "definitional reflection" since it is based 
on reading the database D as a definition. There are two main options for formulating 
definitional reflection. The rule on which GCLA is based is the following: 

An alternative rule which has been considered by Eriksson and which seems also to be the 
one Girard is favoring, has the following form: 

{Fa, Fa I- Go : F =+ 3 E D and a = mgu(A, B)) 
I',A I- G 

(D t)*. 

As they stand, (D  I-)* is stronger than (D I-) (in the non-propositional case) - a standard 
example being the derivations of the axioms of ordinary first-order equality theory. Compu- 
tationally, however, they rest on different intuitions. The first rule considers free variables 
as ezistentially quantified from outside, for which an appropriate substitution has to be 
computed. The second rule considers them as erniversally quantified from outside rather 
than something for which an substitution has still to be found. By means of unification it 
takes into account all possible substitution instances of the atom A, which can be inferred 
according to the given definition D ,  thus corresponding to some kind of w-rule. 

Proceedings of the Workshop on Linear Logic and Logic Programming, Washington, DC, 
14 November1992 (following the 1992 Joint International Conference and Symposium on 
Logic Programming). Ed. by Dale Miller (University of Pennsylvania Department of 
Computer and Information Science Technical Report No. MS-CIS-92-80), 
https://repository.upenn.edu/cis_reports/301
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Therefore, the extension of logic programming systems by computational variants of 
(D I-) and ( D  I-)* leads to conceptually different approaches. A combination of (D I-) and 
( D  I-)* with both existential and universal variables, as proposed by Eriksson, would be a 
most desirable feature of a logic programming system with definitional reflection. There are 
certain algorithmic problems involved in such a combination that have still to be solved. 

In any case, whether one considers (D I-) or (D I-)* or a combination of both, cut- 
elimination fails for the full system but holds if the definition D does not contain implications 
in clause bodies or if the underlying logic is contraction-free (e.g., linear). We argue that 
the failure of cut-elimination is a matter of the definition D considered rather than a defect 
of the underlying logic. 
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(I)U
a`a a ∈ U

and the rule (D`) with

(D`)U
{Γ, C`A : C ∈ D(a)}

Γ, a`A a 6∈ U

(of course with the usual proviso that guarantees closure under substitution). Further-
more, due to the presence of contraction, we just consider a single conjunction ∧. We call
this system DRU(D). We show that cut is admissible in this system.

∗Draft (Februar 1994) — Comments welcome )

1

Prepared for the Post-Conference Workshop on "Proof-Theoretical Extensions of Logic 
Programming" at the Eleventh International Conference on Logic Programming (ICLP'94, Santa 
Margherita Ligure, Italy, 13-17 June 1994). The topic was taken up in "Restricting initial sequents: 
the trade-offs between identity, contraction and cut". In: Advances in Proof Theory. Ed. by 
Reinhard Kahle, Thomas Strahm and Thomas Studer. Basel: Birkhäuser 2016, pp. 339–351. 
https://doi.org/10.1007/978-3-319-29198-7_10.

Cut Elimination for Logics with

Definitional Reflection and Restricted

Initial Sequents

Peter Schroeder-Heister

Wilhelm-Schickard-Institut, Universität Tübingen

Sand 13, 72076 Tübingen, Germany

e-mail: psh@logik.informatik.uni-tuebingen.de ∗

The failure of cut elimination in general has sometimes be considered a deficiency of 
systems with definitional reflection. If the system is contraction-free or if the definition 
considered does not contain implication, then the system admits cut elimination (see [5]). 
Based on considerations unrelated to cut elimination, Kreuger [4] has proposed to restrict 
initial sequents

a`a

in the logic of definitional reflection to the case where a is an atomic formula which is not 
properly defined by the given definition D in the sense that a⇐a is the only clause for a 
in D. It will be shown that in such systems, which contain contraction, cut is eliminable.

Slightly differently, without using clauses like a⇐a, we can describe the situation as 
follows: Let D be a definition and U a distinguished set of atoms which are not defined 
by D, i.e., which are not head of any clause in D. Elements of U are called ‘uratoms’. 
Then we consider the system of definitional reflection described in [6] with both thinning 
and contraction, but replace the rule (I) with

- 13 -



First we transform DRU(D) into a system DR∗U(D), in which contraction and thinning
are no longer explicit rules but built into the other rules. For simplicity, we here only
consider the propositional part:

(I)
Γ, a`a a ∈ U

(>)
Γ`> (⊥)

Γ,⊥`A

(`∧)
Γ`A Γ`B

Γ`A∧B (∧`)
Γ, A,B`C
Γ, A∧B`C

(`∨)
Γ`A

Γ`A∨B
Γ`B

Γ`A∨B (∨`)
Γ, A`C Γ, B`C

Γ, A∨B`C

(`→)
Γ, A`B

Γ`A→B
(→`)

Γ, A→B`A Γ, B`C
Γ, A→B`C

(`D)
Γ`C
Γ`a C ∈ D(a) (D`)U

{Γ, C`A : C ∈ D(a)}
Γ, a`A a 6∈ U

It is obvious that thinning is admissible in DR∗U(D). For contraction we argue as follows:
We can show that (D`)U is invertible in the sense that, if Γ, a`A is derivable with n
applications of (D`)U , then Γ, C`A is derivable for any C ∈ D(a) with < n applications
of (D`)U . Here it is crucial that Γ, a`A cannot result from (I)U , since a is no uratom.
The admissibility of contraction then follows by induction on the number of applications
of (D`)U and the length of derivations.

Remark If we had to formulate a system with implicit contraction, but with the rule
(I) unrestricted, we would have to take

{Γ, a, C`A : C ∈ D(a)}
Γ, a`A

with the a repeated above the inference line as a primitive rule. Otherwise, for example,
from the definition p⇐p→⊥ the sequent p`⊥ would not be derivable, which is derivable
with explicit contraction.

Now in the system DR∗U(D) we can easily eliminate cuts: we use induction on the triple
〈d, c, l〉, where the D-rank d is the maximum number of applications of D-rules in all
branches leading to the conclusion of the cut, the cut-degree c is the complexity of the cut
formula, and the cut-length l is the number of rule applications above the conclusion of
the cut. In the main reductions with → the D-rank is not increased since in its definition
we have taken the maximum and not the sum of applications of D-rules. In the main
reduction of D the D-rank is decreased since we have counted both (D`)U - and (`D)-
inferences.

2
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Remarks

1. In the system with unrestricted (I) and implicit contraction within (D`) we cannot
perform main reductions of D, since the D-rank is not necessarily decreased. If we have
no contraction at all, then it is possible to work with sums in the computation of the
D-rank and just count (D`)-applications (as in [5]).1

2. If we use the ω-version of definitional reflection with (D`)ω instead of (D`), no
additional problems arise in principle. The rule (D`)ω is invertible, if we do not require
contraction.2

3. Jäger and Stärk [3], who work with a multiple succedent calculus with negation as
primitive, have proved a result similar to the one given here. The differences between their
sequent system and ours are not very important as far as cut elimination is concerned.
They translate proofs in the original system into a system with ramified D-rules, for which
the cut elimination proof is completely standard, and then retranslate cut-free proofs.
Such a translation and retranslation is possible if identity (I) is lacking. This method
— which also works if contraction is missing, but full identity is present — can easily
be carried over to the situation considered here. Jäger and Stärk arrive at their system
without identity from a different point of view, considering the three-valued semantics
of logic programs with negation as failure. Kreuger motivated the restrictions on (I)
by considerations concerning the operational interpretation of definitional reflection as
implemented in GCLA.

4. We do not think that the issue of cut elimination is of any relevance as to whether
to restrict (I) (or analogously, whether to reject contraction). The rules of the system
have to be justified independently. Unlike Girard [1] we have always taken the view that
eliminability of cuts is a feature of the particular definition D under consideration, and
not something that has to be made sure from the beginning. According to Hallnäs [2]
a partial inductive definition D is called total, if the consequence relation generated by
D is transitive (i.e., if we can eliminate cuts). Whether a partial inductive definition is
properly partial or whether it is total is something that may (or may not) be proved
after stating the definition. This is quite analogous to the definition of a partial recursive
function which later on may (or may not) turn out to be total. It seems impossible to
single out the definitions which are total by a simple syntactic criterion.

1So in that case we either use the maximum und count both (`D)- and (D`)-applications, or we use
sums and count (D`). In DR∗U (D)we have to use the maximum.

2This is proved in [6, Lemma 4]. Actually, there the invertibility of (D`)ω was mistakenly claimed
also for the system with contraction. The validity of the theorems of that paper is not affected by this
fault.

3
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As has been recently observed ([4],[5]), there is a striking resemblance between

certain features of Frege’s formal systems and Gentzen-style formulations of

logical calculi, although they are historically unrelated. This is especially sig-

nificant as Frege-style and Gentzen-style systems are normally considered to be

fundamentally different, the former being prototypes of Hilbert-type calculi.

Kutschera [4] showed that the first-order fragment of the system proposed

by Frege in his Grundgesetze der Arithmetik [2] can be understood as a sequent-

style natural deduction system. For the implicational part this result may be

put as follows. Consider the Gentzen-style system with the following rules of

inference, where in our linear notation the slash ‘/’ denotes an inference line:

/ A,B ⇒ A with / A ⇒ A as a limiting case

Γ ⇒ A / Γ′ ⇒ A (Γ′ permutation of Γ)

Γ[A . . . A] ⇒ B / Γ[A] ⇒ B (Contraction of two or more occurrences of A)

Γ, A ⇒ B / Γ ⇒ A → B (→ introduction)

Γ ⇒ A ∆ ⇒ A → B / ∆,Γ ⇒ B (→ elimination)

Let the Frege counterpart of a sequent A1, . . . , An ⇒ A be the implicational

formula A1 → (. . . → (An → A) . . .) (with A being the Frege counterpart of

⇒ A) — of course to be written two-dimensionally in Frege’s original notation.

Then any derivation in the Gentzen-style calculus yields a derivation in Frege’s

system. We just have to replace every sequent with its Frege counterpart und

to delete all applications of (→ introduction) (whose premiss and conclusion is

translated into the same implicational formula).

Conversely, by writing implicational formulas A1 → (. . . → (An → A) . . .)

as sequents A1, . . . , Ai ⇒ Ai+1 → (. . . → (An → A) . . .) (with ⇒ A1 →
(. . . → (An → A) . . .) being a limiting case), a derivation in the above Gentzen-

style system is obtained from any derivation in Frege’s system. To cope with

the ambiguity of splitting up an implicational formula at a particular place

Ai, it may be necessary to insert applications of (→ introduction), as well as

Abstracts of the 11th International Congress of Logic, Methodology  and 
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applications of (→ elimination) with the left (minor) premiss being of the form

A ⇒ A.

This paper discusses whether this resemblance is just a technical coincidence

with no deeper bearing on the notion of a logical system, or whether it shows

that Frege anticipated certain ideas later developed by Gentzen [3].

In spite of the fact that in Frege there is no syntactical distinction between

implications and sequents, and that Frege repeatedly and explicitly rejects the

idea of a conceptual difference between assumptions in proofs and hypotheses

of implications, it can be argued that to some extent he is aware of the Gentzen-

style features mentioned. Actually, his metalinguistic distinction between the

‘Oberglied’ (= succedens) and the ‘Unterglieder’ (= antecedentia) of an impli-

cational formula crucially enters his formulation of the inference rules in [2].

Thus Frege’s formalism may appropriately be called a ‘metalinguistically spec-

ified sequent system’. To give an analogy, we may refer to certain formalisms

considered by Schütte [6] which are not sequent calculi in the syntactic sense,

but are specified as sequent systems by means of a metalinguistic classification

of formula parts as ‘positive’ or ‘negative’ .

This view is further supported by the fact that Frege’s distinction between

‘Oberglied’ and ‘Unterglieder’ is drawn only at the uppermost level of formula

construction, but never at the level of embedded implications. All this adds to

the strong prima facie plausibility our interpretation gains from Frege’s explicit

choice of structural rules (‘Vertauschung’, ‘Zusammenziehung’) as primitive

rules of inference in the Grundgesetze, which renders this system fundamentally

different from the Begriffsschrift [1] system.
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This paper attempts to shed some new light on Popper’s little-known articles of 1947-49 on the 
foundations of (deductive) logic.1 These articles suffer from the fact that they were written 
without awareness of the state of the art in mathematical logic and, in particular, of Gentzen 
type inference systems. They nevertheless contain ideas which are particularly interesting from 
a more modern perspective, and which deserve to be better known. 

Popper’s framework is based on an inference relation which essentially has the structural 
features of Gentzen’s sequent arrow (identity, weakening and cut). Logical operations are 
defined metalinguistically by the inferential role they play, independently of whether they are 
syntactically represented by means of a connective. For example, an (arbitrarily formed) 
sentence A is called a disjunction of B and C, if for any D: D can be inferred from A if and only 
if D can be inferred from B as well as from C.  

These definitions are not to be understood as a new sort of semantics. A semantics would 
start with a formal language, define a central semantical notion for its sentences such as truth, 
and justify an inference relation on the basis of such a definition. Rather, given an already 
established inference relation, an inferential definition singles out certain operations by calling 
them conjunctions, disjunctions, negations etc. of sentences.  

We shall argue that this idea is highly original, in spite of the flaws in Popper’s presen-
tation. It is closely related to modern attempts to specify logical constants or logical systems in 
terms of consequence or implication relations2 3, and in particular to Koslow’s structuralist 
theory of logic4. We shall also compare Popper’s characterization of the underlying inference 
relation with ideas developed by Hertz and Gentzen in the 1920s and 1930s. 5  

Although inferential definitions in Popper’s sense can be a powerful descriptive tool, in 
particular when different logical systems are investigated, they seem to us not suited to provide 
a foundation for logic (if there is such a thing at all). We shall discuss in detail the 
interrelationship between inferential definitions, semantical considerations and questions 
concerning the logicality of operations.  
                                                 
1  K.R. Popper, New foundations for logic, Mind 56 (1947), 193-235, and five other papers.  See the 

bibliography in: P. Schroeder-Heister, Popper’s theory of deductive inference and the concept of a 
logical constant, History and Philosophy of Logic, 5 (1984), 79-110.  

2   P. Schroeder-Heister, Structural frameworks, substructural logics, and the role of elimination 
inferences. In: G. Huet & G. Plotkin (eds.), Logical Frameworks, Cambridge 1991, 385-403. 

3  D. Gabbay (ed.), What is a Logical System? Oxford 1994. 
4   A. Koslow, A Structuralist Theory of Logic, Cambridge 1992.  
5   P. Schroeder-Heister, Resolution and the origins of structural reasoning: Early proof-theoretic ideas of 

Hertz and Gentzen, Bulletin of Symbolic Logic (to appear).  
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The theory of definitional reflection provides a novel framework for studying logical features of
circular, and especially paradoxical reasoning. Definitional reflection originated from reading
clauses for atoms as definitions, thereby extending ideas concerning elimination rules in natural
deduction [2, 3]. In the simplest (propositional) case, given a definition for an atom a of the

form D :





a ⇐ ∆1
...

a ⇐ ∆n

, the rule of definitional reflection (D`){Γ,∆i `C}i
Γ, a`C

is associated

with a as a left introduction rule. If individual variables are present, and for computational
purposes, the rule becomes more complicated [3, 5]. (D`) is considered as introducing an
atomic assumption a according to its definitional meaning given by D. This is the specific way
of introducing a as an assumption, which is distinguished from the unspecific way by means
of an initial sequent (a` a). As in logic programming, D may contain arbitrary atoms, even
a itself, without any well-foundedness requirement. Unlike definite Horn clause programming,
the definientia ∆i of a are not restricted to lists of atoms but may include, e.g., implications.
This enables us to study, besides circular reasoning based on clauses like a⇐a, also paradoxical
reasoning using clauses like a⇐¬a (i.e., a⇐(a→⊥)). Considering the definition D := {a⇐¬a},
which may be regarded as an “abridged” form of a logical or set-theoretical paradox, we can
distinguish three possible strategies, each of which blocks the derivation of absurdity (`⊥).

(1) We expect a derivation of absurdity to be direct (i.e., normal or without cuts). There
is no such derivation, as all derivations of absurdity we can produce from D are indirect. This
was discovered by Hallnäs [2] and is related to Ekman’s paradox [1].

(2) We allow for assumptions to be introduced in an unspecific way only if no specific way
of introducing them is available, i.e., if there is no appropriate definitional clause in D. This
corresponds to the requirement often made in the sequent calculus that initial sequents must be
atomic. (Note that “atomic” in the logical sense corresponds here, where we are only dealing
with atoms, to the fact that no definitional clause is available.) This idea is due to Kreuger
[4, 6].

(3) We prohibit the identification of assumptions of the same shape but of a different kind
(i.e., of assumptions introduced in an unspecific way vs. assumptions introduced by definitional
reflection). This can be done by globally forbidding contraction, corresponding to the dealing
with paradoxes in the tradition of BCK logic (Fitch, Curry, Ackermann, Grishin), or, preferably,
by a more sophisticated procedure which keeps track of the origin of assumptions.
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Logical calculi, in particular natural deduction systems, exhibit a certain 
asymmetry between assumptions and assertions. There is a variety of rules for asserting 
a formula depending on which form this formula has (introduction rules) or from which 
this formula is inferred (elimination rules), but there is just a single trivial rule for 
making assumptions, namely by asserting a formula A as depending on itself.  

This asymmetry can be removed by carrying ideas from the sequent calculus over 
to natural deduction. The left introduction rules of  the sequent calculus might then be 
read as rules which introduce assumptions in a specific way depending on their form. 
For example, the rule of ∧-introduction on the left side of the sequent sign can be 
interpreted in natural deduction as a rule for introducing A∧B as an assumption 
(assuming that derivations with either A or B as assumptions are available). The result 
is a natural-deduction-style sequent calculus, in which the role of assumptions is 
symmetric to that of assertions. In this calculus, major premisses of elimination rules 
only occur in top position (i.e., as assumptions). 

Our next step is to investigate what happens when different sorts of assumptions, 
those introduced in an unspecific way (by just stating A as an assumption) and those 
introduced by a specific assumption introduction rule (which depends on the form of A) 
are kept apart, as they rely on a different sense of “assumption”. There are various 
strategies at hand to achieve this goal. One is to prohibit the contraction of several 
occurrences of the same formula into a single one, if these occurrences result from 
different (specific vs. unspecific) ways of making an assumption. 

Finally, these strategies are applied to circular reasoning as it takes place in 
connection with antinomies. It turns out that the different treatment of specific and 
unspecific assumptions blocks the derivation of contradictions from circular con-
structions (within minimal logic). This sheds new light on logical aspects of handling 
contradictions which add to the proof-theoretic peculiarities which arise in the 
derivation of an outright contradiction A∧¬A (or ⊥) from the proposition A↔¬A 
which just expresses circularity.  

Abstract for GAP5, Fifth International Congress of the Society for
Analytical Philosophy (Bielefeld, 22 to 26 September 2003)
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1. The asymmetry between assumptions and assertions
When we assume a formula A in a logical derivation, we mean that A as well as 

subsequent formulae inferred using A depend on A. In certain types of logical calculi, 
especially natural deduction systems, assumptions can also be discharged, i.e., the 
dependence on certain assumptions can be removed. This happens, for example, when 
an implication A→B is inferred given a derivation of B which depends on A. The 
introduction of an assumption A is normally unspecific in the sense that there are no 
restrictions as to the form of A or the context in which A occurs. In principle, just any 
formula A can serve as an assumption.  

This is different with assertions made in a derivation. There is, of course, an 
unspecific way of asserting A, viz., when A is asserted as depending on itself as an 
assumption. But there are normally also many specific ways of asserting a formula, 
depending on its form or its context. Any introduction inference in natural deduction 
gives an example for that: We can assert A∧B given derivations of both A and B, we 
can assert ∃xA(x) given a derivation of A(t) for some t, and so on. Even the elimination 
inferences constitute a specific way of making assertions, where “specific” now applies 
to the premisses and therefore to the context in which the assertion is made: We can 
assert A(t) given a derivation of ∀xA(x), we can assert C given derivations of A∨B, of 
C depending on A, and of C depending on B, and so on. There is a variety of specific 
inference rules for making assertions, but just a single unspecific rule for making 
assumptions.  

2. Removing the asymmetry: Natural-deduction-style sequent calculus
I  claim that this asymmetry should be removed. There is no reason why assertions 

should be better off in logic than assumptions. In any case it is interesting to see what 
conceptual insights we gain from considering a more symmetric system. Fortunately, 
such a system is at hand in the form of the sequent calculus. By “sequent calculus”, I 
mean the symmetric sequent calculus with introductions both on the right and on the left 
side of the sequent sign (“⇒” in our notation), not sequent-style natural deduction with 
introductions and eliminations only on its right side. If we transform this calculus into 
natural deduction format,  we can read the left introduction rules as specific assumption 
introduction rules. For example, the (∧ ⇒)- rule 

    Γ,A ⇒ C  
Γ,A∧B⇒ C 
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allows one to introduce A∧B as an assumption from which C can be inferred (in a 
context  Γ), given that C can be inferred from the assumption A (in the context Γ), and 
the (∃ ⇒)-rule  

    Γ,A(y) ⇒ C  
Γ,∃xA(x) ⇒ C 

allows one to introduce ∃xA(x) as an assumption, from which C can be inferred (in a 
context  Γ), given that C can be inferred from the assumption A(y) (in the context Γ, 
modulo certain eigenvariable conditions), etc. 

In the resulting natural deduction system, which might be called a natural-
deduction-style sequent calculus, major premisses of elimination rules are only allowed 
to occur in top position, i.e., as assumptions introduced in a specific way. Besides that 
we still have the unspecific way of introducing assumptions (and assertions) by means 
of just assuming (and at the same time asserting) a formula A, which corresponds to 
initial sequents A⇒A in the sequent calculus. Obviously, now the situation is 
completely symmetric with respect to assumptions and assertions: both of them can be 
introduced either in a specific way (by applying an inference rule governing the main 
operator of the assumption) or in an unspecific or trivial way (by just stating them). 
Correspondingly, we shall speak of specific and unspecific (or trivial) assumptions. 

There have been some proof-theoretic investigations of such systems (e.g., by von 
Plato 2001), and there have also been strong extensions of similar systems beyond pure 
logic in theories of definitional reflection (e.g., by Hallnäs 1990 and Schroeder-Heister 
1993), but their philosophical significance has not been fully appreciated so far.  

3. Keeping apart specific and unspecific assumptions
I do not only want to propagate the view that assumptions deserve equal rights as 

compared to assertions. I should also like to draw certain philosophical consequences 
from the distinction between specific and unspecific assumptions, when they are treated 
in a different way. Specific assumptions are introduced according to their meanings 
whereas unspecific assumptions are just stated without special regard. Therefore one 
might argue that they have to be kept apart. For this to achieve I see three possible 
strategies: 

(1) We require that any assumption which can in principle be introduced in a
specific way, i.e., for which a specific assumption introduction rule is available, must 
not be introduced in an unspecific way, i.e. as a trivial assumption. In standard logical 
systems this just means that only atomic formulae can function as trivial assumptions, 
which in the sequent calculus corresponds to the restriction often imposed that in initial 
sequents A ⇒ A the formula A has to be atomic. In general, this is a kind of well-
foundedness condition on assumptions. If there is a specific assumption introduction 
rule for A, then A can only be assumed via that rule, which presupposes that certain 
other propositions occurring in the premisses of that rule have already been assumed, 
and so on. Trivial assumptions represent, so to speak, the base case of this chain. (This 
approach corresponds to a principle proposed for an extension of logic programming by 
P. Kreuger, see Schroeder-Heister 1994.)

(2) We disallow contracting different occurrences of the same formula A to a
single A, if the two occurrences originate from different sorts of assumptions (i.e. one 
from a specific assumption and the other one from a trivial one). Here, in natural 
deduction format, contraction means discharging more than one occurrence of the same 
formula at the same time. However, it is technically difficult to make precise what 
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“originate” should mean. A clearcut case is only given if one occurrence of A is specific 
whereas the other one is not. The case of a logically complex A, with subexpressions 
originating from different sorts of assumptions, needs special consideration.  

(3) We prohibit contraction at all, i.e. we use contraction-free logic. Although this
is a very crude way of keeping different sorts of assumptions distinct, which is defini-
tely not fully satisfying, our reasoning concerning the notion of assumption gives at 
least some partial philosophical justification for contraction-free systems, which for 
different purposes have been considered in various areas.  

4. Application to antinomies
As an application I consider circular reasoning as it arises in connection with 

antinomies. Normally, the main step in antinomies is to derive, for a certain formula A, 
(i) ¬A from A, and (ii) A from ¬A  (for example by taking A to be R∈R for the Russell
set R in naïve set theory). Then, in pure logic, we proceed as follows to derive a
contradiction: (i) yields ¬A, and with (ii) we also obtain A. However, if we apply our
programme of keeping specific and unspecific assumptions apart, the following
happens, depending on which strategy we choose.

Ad (1): We cannot derive (i), as there are rules for specifically assuming A (in the 
case of Russell’s antinomy: rules for introducing ∈), which cannot be applied because 
their premisses cannot be assumed. 

Ad (2): Given (i), we cannot derive ¬A, as in the derivation of ¬A from (i), we 
have to use A as an unspecific assumption to be contracted with the specific assumption 
A in the derivation of (i). 

Ad (3): Given (i), we cannot derive ¬A, as contraction is blocked anyway. This is 
an a fortiori consequence of the previous case. 

Whereas strategy (1) presents a fresh look at antinomies based on the well-
foundedness of assumption rules, strategies (2) and (3) challenge the logical step from 
the circular formula A↔¬A to the outright contradiction A∧¬A  or to absurdity ⊥ (in 
intuitionistic or minimal logic, of course). It should be remarked that, even without any 
restriction concerning assumptions and contraction, the natural deduction derivation 
from A↔¬A to ⊥ (i.e., the derivation of ¬(A↔¬A) in propositional logic) has peculiar 
features and is by no means trivial (see Ekman 1998).  

This is no solution to the antinomy problem (if there is a problem at all), but it 
illuminates certain logical, and especially proof-theoretic, aspects of circular reasoning 
which have not been studied very deeply so far. I conjecture that the phenomena 
mentioned are not restricted to particular antinomies such as Russell’s but that some-
thing similar happens with most, if not all, mathematical and semantical antinomies.  
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By “generalized rules” in logic (more specifically: in natural deduction) I mean uniform
elimination rules for logical constants, given certain introduction rules. E.g., if

∆1(p1, . . . , pn)

c(p1, . . . , pn)
. . .

∆m(p1, . . . , pn)

c(p1, . . . , pn)

are the introduction rules for an n-ary propositional connective c, the elimination rule
may be presented uniformly as

c(p1, . . . , pn)
∆1(p1, . . . , pn)

C
. . .

∆m(p1, . . . , pn)
C

C
.

Obviously, this schema is modelled after the elimination rules for disjunction. Making
this idea more precise requires specifying the exact form of the premisses ∆i(p1, . . . , pn)
of the introduction rules. In [7] I proposed including some sort of structural implication
which may be contained in the ∆’s, leading to a theory of rules of higher levels.

The principle of definitional reflection ([3, 4, 8]) generalizes this approach. Here arbi-
trary clauses (with variables as in logic programming, and possibly also with embedded
implication and quantification) are treated like introduction rules which can be inverted
by means of this principle. Due to the presence of variables and function symbols, inver-
sion is more complicated, the logical elimination rules just being a limiting case. At the
same time it is more powerful, leading to a significant extension of logic programming, and
allowing to deal with non-wellfounded phenomena such as semantical and mathematical
paradoxes.

In this talk I consider the situation which arises when direct negation in the sense
of Nelson’s logic of constructible falsity [6] is added (the term “direct logic” is due to
v. Kutschera [5]). Besides positive introduction rules we also have negative introduction
rules for the rejection of logically compound formulas. In the more general case we would
consider clauses with negated heads as in extended logic programs ([1, 2]). The logical
case is relatively easy to deal with, as it is clear from the very beginning how the rejection
rules for logically compound formulas should look like ([5, 9]). One would just have to
add elimination rules for negated formulas. For example, in the case of implication, the
rejection rule corresponding to implication introduction has the form

p ∼q

∼(p⊃q)
,
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so that we would just add

∼(p⊃q)
[p ∼q]

C

C

as an elimination inference.
However, with generalized clauses, we would like to consider arbitrary positive and

negative clauses in our database which are not related with each other in such a specific
way. As in the theory of extended logic programming, this may even lead to inconsis-
tent databases. In extended logic programming, no inversion principle like definitional
reflection has been considered so far. If we want to add definitional reflection to a system
containing both positive and negative clauses we have to address questions such as the
following:

1. Due to the rejection operator we can dualize clauses, generating positive from neg-
ative clauses and vice versa. Should we distinguish between primary and secondary

definitional clauses, the secondary ones being generated by dualization from the
primary ones?

2. Are secondary clauses to be treated on par with primary ones, when it comes to
definitional reflection?

3. How is dualization and inversion (definitional reflection) to be defined, if function
constants are present, i.e. if not necessarily finitely many clauses are generated?

4. Which role do the “paradoxes of implication”, in particular the absurdity principle,
play in the context of dualizing definitional rules?
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Proof-theoretic semantics is an attempt to define logical consequence and, more 
generally, analytic reasoning in terms of proof rather than truth. By its very nature – in 
emphasizing proof rather than refutation – it is assertion-driven. It defines what counts 
as a valid proof of an assertion, and even when it deals with assumptions, it considers 
them to be placeholders for valid proofs. Alternative versions of proof-theoretic 
semantics give the notion of an assumption a stronger stance, considering assumption 
inferences to be on the same level as assertion inferences. However, even then there 
remains an asymmetry between proofs and refutations or between assertions and 
denials. This is reflected by the fact that in such frameworks negation is defined 
indirectly by reduction to absurdity rather than by a notion in its own right. 

Corresponding to ideas developed in extended logic programming, we propose a 
clausal logic of assertions and denials, in which clauses have the form 

(∼)A  ⇐  (∼)B1,…, (∼)Bn

Here ‘∼’ is a rejection operator which indicates the denial of a proposition and which 
may only occur in outermost position, i.e. cannot be iterated. The parentheses indicate 
that the rejection operator may be either present or missing.  

Dealing with generalized reasoning systems of this kind leads to novel symmetry 
or harmony principles which go beyond the well-known harmony principles for natural 
deduction or sequent systems. This is due to the fact that by means of dualization, given 
(‘primary’) assertion rules lead to associated (‘secondary’) denial rules and vice versa. 
We may now ask how secondary rules relate to primary ones laid down by definition, 
whether the primary rules comprise the secondary ones, etc. We investigate 
corresponding harmony principles and relate them to questions of nonmonotonicity and 
general questions of the foundations of proof-theoretic semantics. We also indicate how 
the idea of incorporating formal proofs and formal refutations in a uniform system can 
illuminate general questions of rationality, in particular concerning the role of 
foundational reasoning in constructivist epistemologies in comparison with Popper’s 
refutation-based approach.  

Abstract submitted for GAP6, Sixth International Congress of the Society for Analytical 
Philosophy (Berlin, 11 - 14 September 2006) [Participation cancelled for personal reasons]
Identical Abstract submitted for GAP7, Seventh International Congress of the Society for 
Analytical Philosophy (Bremen, 14 - 17 September 2009)

Sektion 1: Logik und Wissenschaftstheorie 
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1. The asymmetry between proofs and refutations
Proof-theoretic semantics is an attempt to define logical consequence and, more 

generally, analytic reasoning in terms of proof rather than truth (Schroeder-Heister 
2006). By its very nature – in emphasizing proof rather than refutation – it is assertion-
driven. It defines what counts as a valid proof of an assertion, and even when it deals 
with assumptions, it considers them to be placeholders for valid proofs. Alternative 
versions of proof-theoretic semantics give the notion of an assumption a stronger stance, 
considering assumption inferences to be on the same level as assertion inferences 
(Schroeder-Heister 2004). However, even then there remains an  asymmetry between 
proofs and refutations or between assertions and denials. This is reflected by the fact 
that in such frameworks negation is defined indirectly by reduction to absurdity rather 
than by a notion in its own right. 

2. Constructive duality
We argue that this asymmetry should be removed. Actually, duality arguments 

show that there is no proper advantage of assertion over denial. In classical truth-
condition semantics such duality arguments are well known: There truth with respect to 
the standard connectives under a valuation v is the same as falsity with respect to the 
dual connectives under the complementary valuation v’ (which interchanges truth and 
falsity), and vice versa. This fact can be used as an argument that it is not possible to fix 
both the meaning of truth and falsity and the meaning of the logical connectives at the 
same time by means of truth conditions. What is not so well known is the fact that even 
for proof-theoretic semantics, which is a constructive approach leading to intuitionistic 
logic, some related indeterminacy of meaning can be demonstrated. If one changes the 
basic concepts of proof-theoretic semantics such as “canonical proof”, “proof depending 
on open (not yet proved) assumptions” etc. into refutation concepts such as “canonical 
refutation”, “refutation leading to open (not yet refuted) conclusions”, the meaning of 
the standard connectives is turned in that of connectives dual to them. In this sense 
duality is not lost when passing from truth-condition semantics to proof-theoretic 
semantics. This means that in proof-theoretic semantics, as in truth-condition semantics, 
there is no fundamental semantic principle available which favours assertion. In any 
case it is interesting to see which conceptual insight we gain from considering a more 
symmetric system.  

Extended Summary submitted for the GAP6 conference (Berlin, 11 - 14 September 2006) 
Identical to Abstract submitted for  the congress of UNILOG'07 Xi'an (20-22 August 2007)
Apart from additional references identical to Extended Summary for GAP7 (Bremen, 
14 - 17 September 2009)

Sektion 1: Logik und Wissenschaftstheorie 
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3. Clausal logic of assertions and denials
Therefore it is only natural to consider the possibility of incorporating proofs and 

refutations, or assertions and denials in a single framework. If one bases such a 
framework on systems of clauses (‘programs’, ‘definitions’), one should consider 
assertion and denial clauses depending on assertions and denials. One approach is to 
consider a special negation ‘∼’ as a denial operator  which can only occur in outermost 
position, and allow for both unnegated and negated atoms in the heads and bodies of 
clauses. This means that clauses have the form 

(∼)A  ⇐  (∼)B1,…, (∼)Bn

where the parentheses indicate that the rejection operator may be either present or 
missing. Certain aspects of dealing with such clauses can be handled according to the 
model of extended logic programming, where heads and bodies of clauses may contain 
negations (see Damásio & Pereira 1998).  

4. Balanced sets of clauses
Dealing with such generalized reasoning systems leads to novel symmetry or 

harmony principles which go beyond the harmony between assertions and assumptions 
in sequent systems or between introduction and elimination rules in natural deduction. 
By means of dualization, assertion rules lead to associated denial rules, whereas 
rejection rules lead to associated assertion rules. This means that we can  distinguish 
between assertion and denial principles just laid down by definition (primary assertion 
and denial), and those obtained from these principles by dualization (secondary 
assertion and denial). Now we may ask whether the primary principles are such that 
they cover the secondary principles, i.e. contain their own dual. Reasoning systems 
based on sets of clauses with this property are called balanced. Balanced sets of clauses 
exhibit a maximum degree of explicitness in the sense that reasoning with the primary 
clauses suffice to obtain everything that can be extracted from these clauses. When 
investigating balanced reasoning systems, we discuss the following questions:  

(1) Are balanced systems monotone with respect to balanced extensions?
(2) Does the property of being balanced imply that the system is total, which

technically means that cut elimination holds?
(3) Does the converse hold, or are there total systems which are not balanced?

Question (1) receives a negative answer, at least when implication is admitted as a 
connective in the bodies of clauses; hence we remain in the realm of nonmonotonic 
reasoning. The relationship between totality and being balanced ((2) and (3)) turns out 
to be more intricate. A positive answer would show that being balanced is a strong 
indicator for a reasoning system to be ‘well-behaved’. In particular, non-wellfounded 
phenomena such as paradoxes would be excluded. We also relate the systems proposed 
to reasoning systems with strong negation (see Schroeder-Heister 2005a).  

The problems discussed are naturally relevant to the relationship between 
foundational reasoning in constructivist epistemologies and Popper’s refutation-based 
approach (Schroeder-Heister 2005b). On the basis of the logical and semantic 
arguments given, there is no reason to prioritise one of the two approaches. On the 
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contrary, the results support the idea of a uniform framework of proofs and refutations, 
at least when viewed from a semantic perspective. 
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Sand 13, 72076 Tübingen, Germany
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The standard approach to negation in proof-theoretic semantics is via its
intuitionistic interpretation using falsum as a logical constant. The infer-
ence rule ex falso quodlibet is then obtained from the fact that no canonical
way of proving falsum is available, so that it is vacuously true that every
canonical proof of falsum can be transformed into a proof of any proposition
whatsoever. While this point is itself related to the interpretation of the
square of opposition (see Wagner de Campos Sanz’ contribution to this con-
ference), I would like to relate the square to the treatment of direct or explicit
negation in proof-theoretic semantics. By direct negation I mean negation
given through explicit denial rules governing the refutation of propositions,
in contradistinction to the indirect treatment via a falsum constant.

Suppose a rule-based definition is given, consisting of clauses with positive
heads (‘assertion clauses’) and clauses with negative heads (‘denial clauses’).
They are called clauses for primary assertion and denial. Then by a pro-
cedure very close to inversion or definitional reflection, corresponding infer-
ences for secondary assertion and denial can be generated, the secondary
denial of A saying that all canonical conditions for the primary assertion of
A can be refuted, whereas the secondary assertion of A says that all of the
canonical conditions for the primary denial of A are refutable. The system
as a whole is called balanced, when secondary assertion and denial can be
inferred from primary assertion and denial, respectively.

In my very tentative talk, I would like reach a result of the following
kind: Primary assertion and denial are contraries, secondary assertion and
denial are subcontraries, secondary assertion and denial are subalterns to
the corresponding primary judgements, and (primary assertion)/(secondary
denial) and (primary denial)/(secondary assertion) are contradictories.

Abstract for the 1st World Congress on the Square of Opposition,
Montreux, Switzerland, 1-3 June 2007.
Full paper under the title "Definitional reasoning in proof-theoretic semantics 
and the square of opposition" in: The Square of Opposition: A General 
Framework for Cognition. Ed. by Jean-Yves Béziau and Gillman Payette. Bern: 
Peter Lang 2012, pp. 323-349. https://doi.org/10.15496/publikation-72333
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Summary

Proof-Theoretic Semantics (PTS) is an alternative to model-theoretic (or truth-condition)
semantics. It is based on the idea that the central notion in terms of which meanings are
assigned to expressions is “proof” rather than “truth”. In this sense PTS is inferential rather
than denotational in spirit. Although the claim that meaning is use has been quite prominent
in philosophy for more than half a century, the model-theoretic approach has always domi-
nated formal semantics. This is, as I see it, due to the fact that for denotational semantics
very sophisticated formal theories are available, going back to Tarski’s definition of truth,
whereas “meaning is use” has often been just a slogan without much formal underpinning.
However, within general proof theory several formal approaches to PTS have been developed
which promise to provide a “real” alternative to the model-theoretic approach. They are all
based on ideas of Gentzen-style proof-theory, which are then turned into logico-philosophical
principles.

After recalling certain basics from the theory of natural deduction, this course presents
in its first part the idea of generalized introduction and elimination rules for logical or non-
logical (atomic) constants, discusses adequacy criteria for such rules and investigates, as a
case study, the example of negative circularity as it occurs with the paradoxes.

In its second part it develops and discusses the Dummett–Prawitz approach to PTS and
their definition of proof-theoretic validity. It discusses various options of how to define the
validity of proofs and relates them to corresponding notions of logical consequence. It puts
particular emphasis on the “universal” aspects of these ideas, dealing with general proof
structures and arbitrary proof reduction systems as models with respect to which validity is
defined.

The third part is devoted to definitional and clausal approaches to PTS as developed by
the instructor himself jointly with Lars Hallnäs (Gothenburg) using the principle of “def-
initional reflection”. This approach puts the validity of rules and inference steps (rather
than that of whole proofs) first. As compared to the Dummett–Prawitz approach, it is local
rather than global and does not require that global properties of proofs such as normalization
or cut elimination hold in every possible case. This approach is is not restricted to logical
constants but uses clausal definitions as the basis of reasoning, which means that it goes far
beyond logic in the narrower sense. Interesting applications are theories of equality, circular
reasoning, universal theories of denial and negation, and extensions of logic programming.

The fourth part deals with the treatment of denial and negation in the general framework
developed. After making precise in which sense duality principles, which are well-known
from classical logic, also hold in the constructive realm, it pleads for a “direct” treatment
of negation in terms of rules for the denial of sentences, where the denial operator only
occurs in outermost position (and thus cannot be iterated). This leads to a framework of
clausal definitions for assertion and denial, formally related to extended logic programming.
Principles of definitional reflection and definitional closure with respect to such definitions
are discussed. Overall, this approach is intended as an alternative to the “indirect” approach
to negation prevailing in the intuitionistic tradition.

The approach favoured is “bidirectional” in that assertions and assumptions are treated
on par. Technically, this implies a shift from natural deduction to the sequent calculus as
the basic model of reasoning, or at least to some bidirectional variant of natural deduction.
Therefore, in the final fifth part, the idea of definitional reflection is used to deal with the
symmetry features of the sequent calculus, in which the duality between assertions and as-
sumptions is much more explicit than in natural deduction. Various approaches are discussed
and related to existing theories. Particular emphasis is given to substructural issues.

A tutorial comprising (essentially) parts I-III of the present course was given at the School
on Universal Logic, Xi’an (China) in August 2007. Parts IV and V are new.
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What is the proper logic of consequence? 
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According to the standard view, consequence means transmission of truth: 
A consequence statement is valid if its conclusion is true given its 
premisses are true. In this sense truth is the fundamental concept on which 
consequence is based. From the point of view of proof-theoretic semantics 
I argue for reversing this order: Consequence should be taken as a 
‘primordial’ hypothetical concept which does not rely on a categorical 
concept such as truth. The proper logic of consequence then becomes the 
logic of consequences, i.e., the logic of consequence statements. I will 
discuss the implications of this view for standard laws of consequence as 
well as for notions of inference and (semantic) completeness. 
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Spatial S-R compatibility with two-finger choice reactions  

G Heister, W H Ehrenstein ¶, P Schroeder-Heister # (Psychologisches lnstitut, Universität 
Tübingen, D-7400 Tübingen, FRG; ¶ lnstitut für Arbeitsphysiologie, Universität Dortmund, 
Ardeystrasse 67, D-4600 Dortmund 1, FRG; # Fachgruppe Philosophie, Universität Konstanz, 
Konstanz, FRG)  

Spatial stimulus-response (S-R) compatibility usually refers to the fact that choice reactions 
are shorter when the spatial position (left, right) is the same for the visual stimulus and the 
responding hand. We studied whether spatial S-R compatibility also obtains when choice 
reactions are made with two fingers of the same hand. Eight right-handed subjects reacted 
as quickly as possible to a 100 ms flash of light that was presented 5 deg to the left or right 
of a fixation point. Using the index and middle fingers of their left or right hand, subjects 
pressed either the spatially-same (compatible) key or the spatially-different (incompatible) 
key. In condition A the subjects’ palms faced down; in condition B the palms faced up so that 
the spatial order of the fingers was reversed. Strong S-R compatibility was found in both 
conditions: responses were always faster when finger and light were on the same side. 
Compatible reaction times were shorter than incompatible by 52 ms in condition A and by 61 
ms in condition B. The results suggest a coding hypothesis of spatial S-R compatibility 
(Wallace, 1971 Journal of Experimental Psychology 88 354; Umiltà and Nicoletti, 1985 
Attention and Performance XI Lawrence Erlbaum, Hillsdale, NJ). 
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Spatial stimulus-response (S-R) compatibility under head tilt: evidence for a factorial 
model 

G Heister, P Schroeder-Heister ¶, W H Ehrenstein # (Abteilung Neurologie, Universitätsspital 
Zürich, CH-8091 Zürich, Switzerland; ¶ Fachgruppe Philosophie, Universität Konstanz, D-7750 
Konstanz, FRG; # Institut für Arbeitsphysiologie, Ardeystrasse 67, D-4600 Dortmund 1, FRG)  

Choice reaction times are shorter when the spatial positions (left, right) of the stimulus (S) 
and the response (R) are the same than when they are different. We investigated how this 
S-R compatibility is affected by head tilt, that is, when egocentric and environmental frames 
of reference are dissociated. Subjects responded with their right or left index finger to a light 
presented 10 deg to the right or left of a fixation point. In alternating blocks of trials 
responses were made on the same side as the stimulus or on the opposite side. In 
experiment 1 hands were held normally; in experiment 2 they were crossed. Three 
conditions were tested: (i) upright head position; (ii) head tilted 90° to the right; and
(iii) head tilted 90° to the left. A spatial compatibility effect was obtained for all conditions in 
experiment 1 and for the head-upright condition of experiment 2. In the head-tilted 
conditions of experiment 2 the spatial compatibility effect significantly decreased but did not 
reverse. The data indicate that, under head tilt, stimuli are coded within the environmental 
frame of reference. For crossed hands, head tilt may weaken the factor of spatial coding and 
strengthen that of anatomical hand mapping. These findings, together with recent results for 
orthogonal S-R arrangements, favour a factorial model that modifies the coding hypothesis 
of spatial S - R compatibility.
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Spatial visuo-motor compatibility with an orthogonal stimulus-response arrangement  

W H Ehrenstein, P Schroeder-Heister ¶, G Heister # (Institut für Arbeitsphysiologie an der 
Universität Dortmund, Ardeystrasse 67, D-4600 Dortmund 1, FRG; ¶ Fachgruppe 
Philosophie, Universität Konstanz, D-7750 Konstanz, FRG; # Abteilung Neurologie, 
Universitätsspital Zürich, CH-8091 Zürich, Switzerland)  

Eight subjects responded as quickly as possible with either the index or the middle finger of 
one hand to a bicolour light emitting diode according to whether it was red or green. The 
stimuli appeared randomly 5 deg to the left or right of fixation; their position was irrelevant 
for the subject's task but essential for data analysis. The response keys were oriented  
(i) right and left, parallel to the stimuli; or orthogonal to the stimuli in either (ii) the 
horizontal or (iii) the vertical midsaggital plane. Spatial compatibility effects of similar 
magnitude were found in each condition. In (i), responses were 54 ms faster when the 
stimulus and the responding finger were on the same side. Rotating the hands had virtually 
no effect: the finger that had previously responded more rapidly continued to have an 
advantage. This supports a spatioanatomical mapping hypothesis (eg the index finger of the 
right hand is mapped as spatially left irrespective of hand orientation). However, in a fourth 
condition, with response keys as in (ii) but inverted (subjects responding with the palm 
upward), the spatioanatomical stimuius/finger relationship was reversed, as if inverting the 
hand had caused its 'sidedness' to reverse, suggesting a modified mapping hypothesis.  
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Spatial visuomotor compatibility as a function of retinal eccentricity 

W H Ehrenstein, G Heister ¶, P Schroeder-Heister # (Institut für Arbeitsphysiologie, 
Universität Dortmund, Ardeystrasse 67, D-4600 Dortmund 1, FRG; ¶ Abteilung 
Neurophysiologie, Universitätsspital Zürich, CH-8091 Zürich, Switzerland; # Fachgruppe 
Philosophie, Universität Konstanz, D-7750 Konstanz, FRG)  

Reaction times of choice responses depend on the spatial relationship between stimulus (S) 
and response (R), eg left-left (compatible) S-R pairing tends to be faster than left-right 
(incompatible) ones. It has been proposed that the stage at which these spatial S - R 
compatibility effects are generated is that of response selection rather than that of stimulus 
encoding. To test this proposal we varied the location of a stimulus light. Twelve subjects 
responded with their left or right index finger to a small light, presented left or right of a 
fixation point, at one of six eccentricities: 0.5, 2.5, 5, 10, 20, or 40 deg. There was a clear 
dependence of response time on strength of S-R compatibility. The compatibility effect 
(incompatible reaction time minus compatible reaction time) was 29.5 ms at 0.5 deg, 
increased linearly to 43 ms at 10 deg, and decreased again at higher eccentricities to 33 ms 
at 40 deg, resulting in an inverted U-shaped (quadratic) function for eccentricities between 
2.5 and 40 deg. The results provide evidence that the perceptual stage of stimulus encoding 
may determine spatial S-R compatibility to a large extent, and may thus interact with that of 
response selection.  
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