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Abstract
X-ray and neutron scattering encompass a large variety of complementary and non-
invasive measurement techniques that are used to study a large range of materials.
The continued improvements of X-ray and neutron sources, as well as advancements
in detector technologies have enabled the development of sophisticated measurement
setups with the ability to gather large amounts of information. These modern tech-
niques tend to produce a lot of data, which is typically analyzed using theoretical
models. Increasingly, however, the rate at which data is produced is outpacing the
rate at which it can be analyzed. To fully exploit the potential of these techniques
and avoid bottlenecks in scientific productivity, equally advanced methods of data
analysis must be developed. In recent years, machine learning, specifically deep
neural networks (NNs), have emerged as a promising solution for this, since their
data-driven heuristic models can often process data many times faster than conven-
tional methods.

The research in this work focuses on the first published application of NNs for
the analysis of specular reflectometry data and demonstrates further improvements
of the method. X-ray and neutron reflectometry are commonly used to study various
important systems, such as surfaces, interfaces, liquid and solid thin films, layered
structures and magnetic materials. As shown in this work, NNs can extract sample
properties from reflectometry data within a fraction of a second, which is on par with
the high-end speed of modern measurements. This is demonstrated with, but not
limited to, organic molecular thin films on silicon substrates. Furthermore, this work
discusses the NN performance on different challenging cases and shows methods of
successfully dealing with systematic and statistical artifacts in the data. This thesis
culminated in the development of mlreflect, a Python-based analysis package that
implements the achievements of this work and that is available both online and
on the Maxwell cluster of the Deutsches Elektronen-Synchrotron. Thus, this work
constitutes a significant step towards the goal of fully-automatized reflectivity data
analysis and may even serve as a guide for the analysis of other types of scattering
data.
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Deutsche Zusammenfassung
Röntgen- und Neutronenstreuung umfassen eine Vielzahl von komplementären und
nicht-invasiven Messverfahren zur Untersuchung vieler Materialien. Die kontinuier-
liche Verbesserung von Röntgen- und Neutronenquellen sowie neue Detektortechnolo-
gien haben zur stetigen Entwicklung fortschrittlicher Messmethoden geführt, die in
der Lage sind große Informationsmengen zu erfassen. Diese Daten werden üblicher-
weise mit Hilfe theoretischer Modelle analysiert, jedoch übersteigt zunehmend die
Geschwindigkeit der Datenerzeugung die der Datenverarbeitung. Um das Potenzial
neuer Techniken voll ausschöpfen zu können und Engpässe in der wissenschaftlichen
Produktivität zu vermeiden, müssen ebenso fortschrittliche Methoden der Daten-
analyse entwickelt werden. In den letzten Jahren hat sich das maschinelle Lernen,
insbesondere tiefe neuronale Netze (NNs), als vielversprechende Lösung für diese
Aufgabe erwiesen, da ihre datenbasierten, heuristischen Modelle Messdaten oft um
ein Vielfaches schneller verarbeiten können als konventionelle Methoden.

Diese Dissertation demonstriert die erste veröffentlichte Anwendung von NNs
zur Analyse von spekulären Röntgen- und Neutronenreflektometriemessungen. Diese
werden häufig zur Untersuchung wichtiger Systeme wie Oberflächen, Grenzflächen,
flüssiger und fester Schichtstrukturen und magnetischer Materialien eingesetzt. Mit
Hilfe von NNs können in Sekundenbruchteilen Probeneigenschaften aus Reflektome-
triedaten extrahiert werden, was der Geschwindigkeit moderner Messmethoden gleich-
kommt. Dies wird anhand von Dünnschichten organischer Moleküle auf Siliziumsub-
straten gezeigt, ist aber nicht auf diese beschränkt. Überdies werden besonders
schwierig zu analysierende Daten sowie Methoden zum Umgang mit systematis-
chen und statistischen Fehlern untersucht. Die Ergebnisse dieser Forschung wur-
den schließlich in einem Python-basierten Analysepaket namens mlreflect umgesetzt.
Dieses ist sowohl online als auch auf dem Maxwell-Cluster des Deutschen Elektronen-
Synchrotrons verfügbar. Somit stellt diese Arbeit einen bedeutenden Schritt in Rich-
tung einer vollautomatischen Reflektivitätsdatenanalyse dar und kann sogar als Leit-
faden für die Analyse anderer Streudaten dienen.
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Introduction and Theory
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1. Introduction
1.1. Scientific background and motivation
Scattering with X-rays and neutrons offers a large variety of complementary and
non-invasive measurement techniques for the investigation of different materials and
physical systems [1–3]. The increasing brilliance of both X-ray and neutron sources
and the development of better detector technologies have enabled new types of faster
measurements [4]. These include, among others, the tracking of dynamics and in situ
processes, such as crystal growth, exchange mechanisms, phase transitions and mor-
phological changes [5–11]. Due to the high pixel resolution and fast read-out times of
the required detectors, advanced experimental setups often produce a large amount
of data. This data is usually complex and requires a significant amount of exper-
tise and mathematical modeling to be analyzed, which is usually done manually by
experts. Thus, extracting physical information from data is starting to become the
main bottleneck for scientific productivity (Fig. 1.1). Gaining equity between the
speed of data acquisition and data analysis could enable on-the-fly data analysis.
Aside from enabling faster decision-making by researchers during experiments, this
would allow the development of feedback systems for even more advanced experimen-
tal setups. It is clear that, as the tools for data acquisition become more powerful,
methods of analyzing the data have to become equally as advanced to be able to
fully exploit their benefits.

This abundance of information is not exclusive to science, since the trend of
collecting and storing increasing amounts of data about ourselves and our environ-
ment can be observed in almost all parts of our lives [12]. The term “Big Data”
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1. Introduction

Data Acquisition
Data

Analysis

Scientific Results

Machine   Learning

Figure 1.1.: Data analysis as a potential bottleneck for scientific productivity. ML-based
analysis methods, such as the ones discussed in this work, may help prevent
this problem.

describes the phenomenon of producing and storing more data than can feasibly be
processed by conventional means. In the last two decades, there has been a resur-
gence of machine learning (ML) methods based on neural networks (NNs) which
have shown promising results in handling large amounts of data in an automatized
fashion. Prominent examples of this are the prediction of protein folding from their
amino acid sequence with unprecedented accuracies of up to 90 % [13] as well as
vast improvements in the field of natural language processing [14]. While the idea
of artificial NNs already experienced two previous waves of popularity in the 1950s
and 80s [15–17], major breakthroughs have only been achieved within the last 10–15
years [18–20]. The reasons for this lie mainly within the availability of large datasets
for training [21–25] as well as the necessary computing hardware capable of training
much more complex NN models than before (“deep learning”) [26]. In particular, the
increased usage of graphics processing units (GPUs) [27–29] in combination with the
development of a specialized software infrastructure [30–36] have led to wide-spread
gains in performance for ML methods.
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1.1. Scientific background and motivation

In recent years, ML-based methods, often deep NNs, have also been employed
to tackle various tasks in the material and physical sciences [37–42]. While one of
the first applications of NNs in scattering physics was demonstrated for ellipsom-
etry measurements already decades ago [43], it has only become more wide-spread
within the last 5 years [44]. Many of the published ML solutions are targeted to-
wards crystal structure and space group determination of X-ray diffraction data [45–
53]. To train ML models, these methods make use of large amounts of published
diffraction datasets that have been systematically collected in various databases over
many decades. Another recent application in scattering physics is the use of ML to
determine the shape of particles from small-angle scattering measurements in trans-
mission [54–57] or in grazing-incidence geometry [58–60]. Furthermore, in the case
of grazing-incidence wide-angle scattering, deep NNs have also been employed for
the tracking of diffraction features in real-time measurements [61]. Other related
fields, such as diffuse scattering [62], Raman scattering [63], electron scattering [64]
and research with X-ray free electron lasers (XFELs) [65, 66] have also seen some
development in this direction. In many cases, the ML model is designed to extract
physical information via the same pathway as a manual analysis, i.e. by assuming a
pre-established theoretical model, albeit in a faster and more automized way. Other
approaches are designed to optimize the experiment itself or post-process the data
prior to manual data analysis, such as denoising of the data [56].

In this light, the work presented in this thesis focuses on the analysis of specular
X-ray reflectivity (XRR) and neutron reflectivity (NR) and ways to quickly extract
information from those measurements using ML. Reflectometry is a well-established
and common surface scattering method that allows the investigation of the scatter-
ing length density (SLD) profile (i.e. atom or electron density) perpendicular to the
surface of a sample [67–70]. The shape of the SLD profile gives information about
the thickness, roughness and composition of layered structures and thin films, which
are of importance for many industrial processes and fundamental research. XRR
and NR have been used extensively in the study of a large variety of systems, such
as liquid and solid thin films [71–77], layers of polymers [78, 79], lipids [80, 81],

5
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Figure 1.2.: A simplified example of the MSE surface of a reflectivity fit with two layers on
a silicon substrate: a silicon oxide layer with a thickness of 10 Å and an organic
thin film (DIP) with a thickness of 200 Å. The MSE surface shows many local
minima across the entire parameter space. Because of the phase problem, there
is also a deep “canyon” of similar solutions along the diagonal where the sum
of both thicknesses is 210 Å. These multiple solutions can make conventional
LMS fitting approaches slow. The problem is also further amplified if there are
more fitting parameters, e.g. roughness and SLD, which is usually the case.

self-assembled mono-layers [82, 83] and organic semiconductors (OSCs) [84–86]. Po-
larized NR in particular can also be used to study magnetic materials [87]. Moreover,
in situ measurements, such as real-time XRR at synchrotrons, have become increas-
ingly important, since they enable the investigation of sample dynamics, e.g. during
film growth or annealing [88–90]. Furthermore, advanced experimental setups for
very fast data acquisition have been developed recently that achieve up to 10 XRR
measurements per second [7, 8, 91].

While these methods give new physical insights, the rate at which the data is
acquired has long surpassed the speed at which it can be analyzed. The typical way
to analyze reflectometry data is via least mean squares (LMS) fitting algorithms.
The working principle of these algorithms consists of iteratively simulating reflectiv-
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1.1. Scientific background and motivation

ity curves following well-established theoretical models and minimizing the residuals
between the simulation and the measured data. However, even for relatively simple
systems, i.e. 1–2 layers, the mean squared error (MSE) surface can be non-trivial.
Fig. 1.2 shows the MSE surface when fitting a two-layer system (organic thin film +
silicon oxide on a silicon substrate) with a conventional algorithm. Despite there be-
ing only two open fitting parameters, the surface has many local minima and shows a
deep “canyon” of similar solutions. This can make finding the global minimum with
an LMS algorithm difficult, especially if there are more fitting parameters or ex-
perimental noise, which is typically the case. Furthermore, sometimes even multiple
exact solutions exist due to the so-called “phase problem” [1, 92] and unless very good
starting parameters are provided, a simple gradient descent algorithm will likely not
converge to the correct minimum. The problem of complicated error surfaces is gen-
erally solved by using more sophisticated minimization algorithms which have been
implemented in various software packages [93–101]. The most prominent among
them are based on differential evolution [102], a stochastic minimization algorithm
that has been shown to reliably find the global minimum even on very complicated
error surfaces. However, due to the stochastic nature of this algorithm, the search
of the solution space is usually quite time-consuming. As a possible solution, several
recently published papers have demonstrated how ML methods, in particular NNs,
can aid the analysis of reflectometry data. Most of the approaches demonstrate ways
of directly extracting the sample parameters from the data [103–111], but NNs have
also been applied to decrease the time needed for NR measurements by reducing
noise in the data [112].

The research presented in this thesis mainly focuses on the application of fully-
connected neural networks (FCNNs) for the fast and automated analysis of reflec-
tometry data from one or two layer systems of OSC thin films on silicon substrates
(see schematic in Fig. 1.3). The results were in large part already laid out in previ-
ous publications [103, 107, 111]. OSC thin films are subject to many studies due to
their uses as solar cells and light-emitting diodes [113, 114]. However, the methods
discussed herein are not inherently exclusive to these systems and can be adapted for
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Figure 1.3.: Schematic comparison of conventional LMS fitting approaches and ML-based
approaches for analyzing reflectometry data. Extracting sample parameters
from the data with the conventional approach is very flexible, but generally
slow and requires a large amount of a priori knowledge. In contrast, the ML-
based approach is generally fast and requires less prior knowledge, but the NN
must be properly trained before use.

other materials and substrates. The work presented here culminated in the develop-
ment of the Python-based analysis package mlreflect which was developed as part of
a project funded by the Bundesministerium für Bildung und Forschung (BMBF) and
was made available both online and on the package repository of the Maxwell clus-
ter at Deutsches Elektronen-Synchrotron (DESY). Thus, this research constitutes a
large step towards fully-automated ML solutions for reflectivity data analysis.

8



1.2. Structure of this thesis

1.2. Structure of this thesis
This thesis is divided into three parts: Part I: Introduction and Theory, Part II:
Results and Discussion and Part III: Appendix.

Part I Chap. 2 discusses experimental techniques, in particular the basics of scat-
tering theory as well as a mathematical description of specular reflectivity from a
sample. The chapter also contains a short description of the used materials and the
method of depositing organic molecules in ultra-high vacuum.

Chap. 3 introduces the concept of ML and discusses how ML techniques can be
used to facilitate reflectivity data analysis. Furthermore, various important numerical
methods are discussed, such as NNs and stochastic gradient descent.

Part II Chap. 4 discusses the first published approach of employing a NN for re-
flectivity data analysis [103]. Chap. 5 introduces improvements to this approach in
terms of data preprocessing and discusses particularly challenging cases [107]. Lastly,
Chap. 6 demonstrates a complete analysis pipeline that combines and refines the re-
sults from previous chapters. It also introduces a method of improving the NN
performance by re-sampling the input data. Additionally, the chapter describes the
open-source Python package mlreflect which implements the analysis pipeline [111].
Chap. 7 provides a discussion of the remaining limitations and possible improvements
of the described methods. Chap. 8 summarizes all core results of this work and gives
a brief outlook on future research opportunities.

Part III The Appendix contains additional figures for Chapters 4–6 that show sup-
plementary results which are not critical to support the conclusions but might still be
useful to the reader. Appendix D explains how to access and download the mlreflect
package online. Appendix E provides additional information and calculations for the
discussion about reflectivity measurements with ambiguous solutions. Appendix F
provides a complete table of all of the reflectivity data sets used in this work, in-
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1. Introduction

cluding information about when and where the data was acquired. Also, a list of all
acronyms used in this work can be found at the end of the Appendix.

The Appendix also includes the bibliography as well as a list of all publications
by the author of this thesis.
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2. Experimental methods and
materials

2.1. Basic scattering theory
2.1.1. X-rays and neutrons as propagating waves
Both neutrons and X-rays are commonly used as probes in scattering experiments
to investigate various material properties. X-rays are a form of electromagnetic
radiation usually classified as waves with wavelength between λ = 0.1–100 Å. In
contrast, neutrons are uncharged subatomic particles that, together with protons,
constitute the nuclei of atoms. According to the wave-particle dualism, a particle
beam of neutrons can also be treated as a mass wave with a De Broglie wavelength
λ = h/(mnv) = h/

√
2mnE propagating through space. Here, h is Planck’s constant

and mn, v and E are the mass, velocity and energy of a single neutron, respectively.
In terms of scattering, X-rays mainly interact with electrons [1] while neutrons mainly
interact with the nuclei of atoms via the strong interaction and the magnetic mo-
ments (both nuclear and electronic) [3]. Despite the fact that the elementary process
of scattering from matter is different for neutrons and X-rays, a lot of the scattering
formalism can be treated in a similar way. Thus, for the discussions in this thesis,
we shall treat both probes as monochromatic waves that are elastically scattered.
Furthermore, the discussion will be limited to non-magnetic and non-resonant scat-
tering.

11



2. Experimental methods and materials
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Figure 2.1.: An incoming wave that is scattered by the electron cloud of an atom. The
distribution of electrons in space if given by ρe(r⃗). The total scattered wave
is obtained by integrating over all possible phase differences exp(iq⃗r⃗) weighted
by ρe(r⃗).

2.1.2. Definition of the atomic scattering length
Let us first consider the scattering of X-rays and neutrons from single objects. For
X-rays, the simplest case is the scattering from a single electron, which is described
by Thompson scattering [115]. Here, an incident plane wave E⃗i is scattered as a
spherical wave

E⃗f = E⃗ibe
e−ik0r

r
, (2.1)

where k0 is the absolute wave vector, be the scattering length of the electron, and r

the distance from the electron. Here, be quantifies how strongly the wave is scattered
and for a single electron is given by the classical electron radius1 be = re.

Extending this concept to the scattering from individual atoms, to describe the
total scattering amplitude we have to consider the entire electron cloud, as shown in
Fig. 2.1.

1re = e2/(4πϵ0mec2) ≈ 2.818× 10−15 m = 2.818× 10−5 Å

12



2.1. Basic scattering theory

We can obtain the atomic scattering length b by integrating over the scattering
contribution be of all electrons weighted by their distribution ρe(r⃗) and a phase factor
depending on their relative distance

b(q⃗) =
∫
beρe(r⃗)e−iq⃗r⃗dV (r⃗) (2.2)

= re

∫
ρe(r⃗)e−iq⃗r⃗dV (r⃗) = ref(q⃗), (2.3)

where q⃗ is the moment transfer vector and f(q⃗) the atomic form factor [115]. In
general, q⃗ is defined as the difference between the final and incoming wave vectors

q⃗ = k⃗f − k⃗i, (2.4)

If q = |q⃗| is small, the integral over the electron density simply yields the total
number of electrons Z. Hence, the scattering length of an atom with atom number
Z is approximately given by b = ref(q ≈ 0) ≈ reZ.

For neutrons, the scattering length of a single atom is determined by the neutron-
nucleus interaction, which can be approximated by the Fermi pseudo-potential VN(r)
[3, 115]. Using Fermi’s Golden Rule, the interaction of a neutron wave ψi with the
potential VN(r) can be written as

b = mn

2πℏ2 ⟨ψf|VN|ψi⟩ = mn

2πℏ2

∫
VNe

iq⃗r⃗dr⃗. (2.5)

Since the typical range of the nuclear potential VN is r < 1 × 10−5 Å and for cold
neutrons q ≈ 2πÅ−1, the phase factor becomes

eiq⃗r⃗ ≈ 1, (2.6)

which means that the atomic scattering length b is q-independent. The evaluation
of Eq. 2.5 with the inclusion of the spin term yields

b± = bc + b±
s (2.7)

13



2. Experimental methods and materials

where bc is the coherent (spin-independent) and b±
s the spin-dependent part of the

atomic scattering length. Whether the scattering length takes the value b+ or b−

depends on the corresponding neutron spin state (spin up +/↑ or spin down –/↓)
relative to the nucleus spin. For elastic scattering from non-magnetic materials,
averaging over the spin-dependent scattering of all nuclei in a sample leads to an
incoherent contribution that amounts to a constant background in the detected sig-
nal. How this background can influence reflectivity data analysis is discussed in more
detail in Chap. 5. When scattering from magnetic materials, the spin-dependent part
leads to a coherent contribution depending on the orientation of the nuclear spins
as well as the polarization of the neutron beam. In this thesis, only elastic scatter-
ing from non-magnetic materials is discussed, therefore we shall only consider the
coherent part of the scattering length in the following, i.e. b = bc.

In general, for both X-rays and neutrons, the scattering length is a complex
expression

b = b′ + ib′′. (2.8)

The imaginary part of b accounts for a decay in the scattering amplitude due to
absorption.

Using the same expression of the scattering length b for both neutrons and X-rays
allows us to write a lot of the following scattering formalism in a common form.

2.1.3. Scattering from continuous media
The scattering from continuous media can in principle be treated like the scattering
from a distribution of scatterers similar to the atomic form factor in the previous
section by introducing the quantity of SLD ρ(r⃗). For a medium with only one atom
type, the SLD can be written as

ρ(r⃗) = bρa(r⃗), (2.9)
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2.2. Specular reflectivity measurements of thin films

where ρa(r⃗) is the atom density inside the medium and b the complex atomic scatter-
ing length. Similarly, the SLD for X-rays can be expressed in terms of the electron
density of the medium

ρ(r⃗) = reρe(r⃗). (2.10)

Since the SLD is the product of a scattering length and a density, it has units of
m−2.

If we ignore multiple scattering within the medium, we can write the scattering
amplitude A(q⃗) as a simple Fourier transform (FT) of the SLD similar to Eq. 2.2 [3]

A(q⃗) =
∫
ρ(r⃗)e−iq⃗r⃗dr⃗. (2.11)

Furthermore, it is possible to define a refractive index n for both X-rays and
neutrons to characterize the scattering between different media [67, 115, 116]. If we
define n in terms of the SLD, we can write

n = 1− λ2

2πρ = 1− 2π
k2 ρ = 1− δ + iβ, (2.12)

where ρ is the average SLD of the medium. This definition of the refractive index
will be used throughout this thesis, in particular during the discussion of specular
reflectivity in the next section.

2.2. Specular reflectivity measurements of thin films
2.2.1. Purpose and concept of reflectometry measurements
Reflectometry measurements, both with neutrons and X-rays, are commonly used to
investigate the structure and morphology of a large variety of thin films, surfaces and
layered structures. The main idea is that through the careful choice of the scattering
vector, i.e. the specular scattering geometry, the SLD profile ρ(z) of the sample
along the surface normal can be investigated. Fig. 2.2 shows a common experimental
setup to measure specular reflectivity. The sample is placed on a diffractometer and
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diffuse
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Figure 2.2.: Typical experimental setup for specular reflectivity measurements. An incident
beam (neutrons or X-rays) impinges on the sample at an incident angle θ and
the specular reflection (at the same outgoing angle θ). Both the incoming
and outgoing beam are collimated via a pair of slits and passed through a
monochromator and analyzer, respectively, to ensure the specular condition.
This results in a moment transfer vector q⃗z perpendicular to the sample surface
for the measured signal. Each measurement is typically performed over a range
of qz values.

monochromatic, collimated radiation impinges on the sample at an incident angle θ.
The reflected beam is then measured with a detector at the same outgoing angle θ.
The specular condition ensures that q⃗z is always perpendicular to the sample and
each measurement is conducted over a range of angles and qz values.

The incoming beam is reflected by both individual atoms and molecules, but also
at the interfaces of different materials. This means in addition to Bragg reflections,
one can also observe features that correspond to structures on the nanometer or even
micrometer scale. Fig. 2.3 shows a typical example of an XRR measurement of an
organic thin film on a silicon substrate. The most important features of the data with
regards to this thesis are the Kiessig fringes, which relate to the film thickness and
roughness, as well as the position of the total reflection edge (TRE), which relates to
the SLD. This ultimately allows the investigation of the complete SLD profile along
the surface normal, including film thickness and interface roughness.

The analysis of this type of data, although long established, is not trivial and
requires careful mathematical modeling. In the following chapters these models will
be derived.
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2.2. Specular reflectivity measurements of thin films

Figure 2.3.: Example of a typical reflectivity measurement of an organic thin film on a
silicon substrate. The most important features with respect to this thesis
are the Kiessig fringes and the total reflection edge (TRE). The periodicity
and decay of the Kiessig fringes yield information about the thickness and
roughness of the film, respectively. The position of the TRE is given by the
critical angle and thus related to the SLD. Figure adopted from [117].

2.2.2. Fresnel reflectivity
Before considering more complicated mathematical models for describing the reflec-
tivity from complex samples, it is useful to first derive the reflectivity from a flat
surface of a semi-infinite, homogeneous slab as a function of the scattering vector
qz. For brevity, the mathematical treatment will assume X-rays as a probe, however,
due to the similarities discussed in Sec. 2.1, an analogous treatment for neutrons can
be found. Wherever possible, quantities will be expressed in such a way as to apply
to both neutrons and X-rays.

For X-rays, if we assume that the plane wave E⃗i impinges on a flat surface which
forms the interface between medium 0 and medium 1 as depicted in Fig. 2.4, then
the solutions of Helmholtz’s equation for the propagation of of the electric field in a
medium

∆E⃗ + k2
j E⃗ = 0 (2.13)
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Figure 2.4.: A wave E⃗i with wave vector k⃗i in medium 0 (vacuum) impinges on the interface
to medium 1 with the refractive index n. One part of the wave is reflected back
into medium 0 with the wave vector k⃗r while the other part is transmitted and
refracted into medium 1 with the wave vector k⃗t.

for the incident, the reflected and the transmitted waves are

E⃗i = Aie
i(ωt−k⃗ir⃗)êy, (2.14)

E⃗r = Are
i(ωt−k⃗rr⃗)êy, (2.15)

E⃗t = Ate
i(ωt−k⃗tr⃗)êy, (2.16)

respectively. Here, kj is the wave vector of the electromagnetic wave in medium j.
Using the trigonometric identities, we can determine that the wave vectors in the
different media are hence given by

k⃗i = k0(sin(α0)êx − cos(α0)êz), (2.17)

k⃗r = k0(sin(α0)êx + cos(α0)êz), (2.18)

k⃗t = k0n(sin(α1)êx − cos(α1)êz), (2.19)
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2.2. Specular reflectivity measurements of thin films

where
k0 = |⃗ki| = |⃗kr| =

|⃗kt|
n

= 2π
λ

(2.20)

and n is the refractive index of medium 1.
Since the tangential component of the wave must be continuous at the interface,

the sum of the waves above the interface (incident and reflected) must be equal to
the wave below the interface (transmitted), i.e.

Aie
i(ωt−k0 sin(α0)x) + Are

i(ωt−k0 sin(α0)x) = Ate
i(ωt−k0n sin(α1)x). (2.21)

Using Snell-Descartes’ second law

sin(α0) = n sin(α1), (2.22)

Eq. 2.21 simplifies to
Ai + Ar = At. (2.23)

Using the Maxwell-Faraday equation, it can be shown that the tangential component
of the magnetic component of the wave is given by

B = − 1
iω

∂Ey

∂z
. (2.24)

If we assume that the media are non-magnetic, i.e. B is also conserved, we can
rewrite Eq. 2.21 and Eq. 2.23 as

(Ai − Ar) cos(α0) = Atn cos(α1). (2.25)

In a similar fashion, the continuity of the parallel component can also be shown for
neutrons [70]. By introducing r = Ar/Ai and t = At/Ai, we can now write the
well-known Fresnel equations [118]

19



2. Experimental methods and materials

r = cos(α0)− n cos(α1)
cos(α0) + n cos(α1)

, (2.26)

t = 2 cos(α0)
cos(α0) + n cos(α1)

. (2.27)

We can also replace the angles αj by the grazing incidence angle θj, i.e. the angle
with respect to the surface plane, to write

r = sin(θ0)− n sin(θ1)
sin(θ0) + n sin(θ1)

≈ θ0 − θ1

θ0 + θ1
, (2.28)

t = 2 sin(θ0)
sin(θ0) + n sin(θ1)

≈ 2θ0

θ0 + θ1
. (2.29)

Here we also used that n ≈ 1 for neutrons and X-rays. For the further discussions
in this thesis, it will be useful to express r and t in terms of the momentum transfer
vector

qz = 2k0 sin
(

2θ
2

)
= 2kz. (2.30)

With this we can write

r = qz,0 − nqz,1

qz,0 + nqz,1
≈ qz,0 − qz,1

qz,0 + qz,1
, (2.31)

t = 2qz,0

qz,0 + nqz,1
≈ 2qz,0

qz,0 + qz,1
. (2.32)

In this context, it is useful to consider how the critical angle θc is related to the SLD
of a given medium. Using again a variant of Snell’s law

cos(θ0) = n cos(θ1), (2.33)

we can set θ0 = θc, θ1 = 0 and use the Taylor expansion of cos(θc) to obtain

θc ≈
√

2(1− n). (2.34)
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2.2. Specular reflectivity measurements of thin films

When using the definition of the refractive index from Eq. 2.12, the real part (1− δ)
describes the refraction of the wave vector from medium 0 to medium 1 and the
imaginary part iβ accounts for the attenuation of the amplitude due to absorption,
i.e.

eink0z = ei(1−δ)k0ze−βk0z. (2.35)

The critical angle can then be found by combining Eq. 2.34 and Eq. 2.12 into

θc =
√

2(δ − iβ) =
√

4πρ
k2

0
, (2.36)

where ρ is the complex SLD of medium 1. Likewise, the critical moment transfer
vector is

qc = 2k0 sin(θc) ≈
√

8k2
0(δ − iβ) =

√
16πρ. (2.37)

Using Eq. 2.34 and cos2(x) + sin2(x) = 1, we can approximate Snell’s law for small
angles and express it in terms of the critical angle so that

n sin(θ1) = n
√

1− cos2(θ1)

=
√
n2 − (n cos(θ1))2 (2.38)

=
√
n2 − cos2(θ0)

nθ1 =
√
θ2

0 − θ2
c . (2.39)

Approximating q/2k0 = sin(θ) ≈ θ, we can express Eq. 2.39 in terms of the wave
vector transfer

nq1 =
√
q2

0 − q2
c ≈ q0 (2.40)

and we can write the Fresnel equation as

rF ≈
θ0 −

√
θ2

0 − θ2
c

θ0 +
√
θ2

0 − θ2
c

=
qz,0 −

√
q2

z,0 − q2
c

qz,0 +
√
q2

z,0 − q2
c
. (2.41)
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The experimentally measured quantity, however, is the intensity, which we obtain
by taking the modulus squared of rF:

RF(qz) = rFr
∗
F = |rF|2 =

∣∣∣∣∣∣
qz,0 −

√
q2

z,0 − q2
c

qz,0 +
√
q2

z,0 − q2
c

∣∣∣∣∣∣
2

(2.42)

where RF is commonly called the “Fresnel reflectivity”. Since n ≈ 1, we can assume

qz,1 ≈ qz,0 = qz, (2.43)

that is, we ignore refraction effects and assume qz does not change significantly
between media. The Fresnel reflectivity can then be written as

RF ≈
q4

c

16q4
z

= 16π2ρ2
s

q4
z

(2.44)

where ρs is the average SLD of the slab.

2.2.3. The kinematical approximation
After having introduced the concept of the Fresnel reflectivity, we shall now discuss
ways to describe the reflected intensity from more complicated sample structures,
such as multi-layer samples. While a fully analytical formula for calculating the
reflected amplitude r is in general desirable and more precise, it is still useful to
employ approximations to identify general trends and mathematical relationships
between the measurement and the studied sample structure.

A commonly applied approximation is the so called kinematical approximation,
where multiple scattering is generally not considered. This allows for the important
simplification that the reflected amplitude r of the sample can be described as the
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2.2. Specular reflectivity measurements of thin films

sum of the individual scattering contributions rj,j+1 of each interface within the
sample modified by the corresponding phase factor:

r = r0,1 +
N∑

j=1
rj,j+1 exp

−i j∑
k=1

qz,khk

 , (2.45)

where hk is the thickness of the kth layer in the sample. Fig. 2.5 shows a schematic
example of how an incoming wave is scattered multiple times at different interfaces.
If we assume, as before, that qz does not change significantly between media, i.e.
Eq. 2.43 holds, we can write

r = r0,1 +
N∑

j=1
rj,j+1 exp

−iqz

j∑
k=1

hk

 . (2.46)

Thus, combining Eq. 2.37, Eq. 2.40 and Eq. 2.43 yields

rj,j+1 = qz,j − qz,j+1

qz,j + qz,j+1
=

q2
z,j − q2

z,j+1

(qz,j + qz,j+1)2 =
q2

c,j + q2
c,j+1

4q2
z

= 4π(ρj,j+1 − ρj)
q2

z

. (2.47)

If we substitute the Fresnel coefficient RF from Eq. 2.44 and choose the origin of
the z axis such that the interface between medium 0 and medium 1 is situated at
Z1 = 0 and the interfaces j,j+1 are situated at Zj+1, then we can write the reflected
intensity as

R(qz) = rr∗ =
∣∣∣∣∣∣

N∑
j=0

rj,j+1e
−iqzZj+1

∣∣∣∣∣∣
2

= RF(qz)
ρ2

s

∣∣∣∣∣∣
N∑

j=0
(ρj+1 − ρj)e−iqzZj+1

∣∣∣∣∣∣
2

. (2.48)

In the case of graded interfaces, these can be simply treated as an infinite series of
slabs of infinitesimal thickness. Consequently, the sum converges to an integral over
the sample:

R(qz) = RF(qz)
∣∣∣∣∣ 1
ρs

∫ ∞

−∞

dρ(z)
dz

eiqzzdz

∣∣∣∣∣
2

(2.49)

This form of the kinematical approximation is sometimes called the “Master formula”
[1] and describes R(qz) as the Fresnel reflectivity RF ∝ q−4

z multiplied with the
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Figure 2.5.: Example of reflectivity from a multi-layer system with 5 different media with
refractive indices nj (j = 1, 2, 3, . . . , s), where j = 0 is the ambient medium
and j = s = 4 the substrate. The incident beam is both reflected and refracted
at the interfaces at positions Zj depending on the reflection and transmission
coefficients r and t, respectively. The beam can reflect or refract multiple
times at different interfaces before exiting the sample at the top interface Z1.
The total reflected amplitude r(qz) is a summation of all different pathways
through the sample with their respective phases.

modulus squared FT of the derivative of the SLD profile in z direction. However,
because of the properties of th e FT, R(qz) can also be written as the FT of the SLD
profile itself, i.e.

R(qz) = RF

∣∣∣∣∣qz

ρs

∫ ∞

−∞
ρ(z)eiqzzdz

∣∣∣∣∣
2

=
∣∣∣∣∣4πqz

∣∣∣∣∣
2 ∣∣∣∣∫ ∞

−∞
ρ(z)eiqzzdz

∣∣∣∣2 . (2.50)

These expressions show that the reflected intensity contains information about the
sample in form of the absolute amplitudes of the Fourier components, however, the
phase information is lost. This consequently means that the SLD profile ρ(z) cannot
simply be reconstructed from the measured intensity R(qz) via a simple reverse FT.
This creates the problem of potentially ambiguous solutions for a given reflectivity
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2.2. Specular reflectivity measurements of thin films

measurement. An example of this was illustrated by Sivia et al. [92], a mathematical
treatment of which is shown in Appendix E.

In the special case of ρ(z) being a box function of height ρ0 and width d, this
can be demonstrated more easily. In this case, the FT of the SLD profile is given by

∫ ∞

−∞
ρ(z)eiqzzdz = dρ0sinc

(
qd

2

)
(2.51)

using sinc(x) = sin(x)/x. It is apparent that in this case, the FT is dominated by
the product of the height and width of the box.

These commonly known problems have an impact on how information is ex-
tracted from measurements and thus, are also important for ML-based solutions,
such as those discussed in Chap. 4–6. Importantly, the various approximations that
were applied in the kinematical description lead to certain deviations from the data
obtained from actual experiments. One of the largest deviations happens for smaller
values of qz due to multiple reflections being neglected. For values of qz ≲ 3qc, the
likelihood of a wave being reflected at an interface becomes high enough for multiple
reflections to be significant. Also, total reflection, i.e. R(qz < qc) = 1 (ignoring
absorption), is a behavior not described by the kinematical approximation.

2.2.4. The Parratt and matrix algorithms for multi-layer
reflectivity

The ML techniques shown in this thesis all use supervised learning methods that
mainly make use of simulated data. Since the training data should be as close to
experimentally acquired data as possible, a more precise mathematical description
for the reflected intensity from a sample is necessary. This chapter will introduce
a theoretical calculation of multi-layer reflectivity based on matrix operations. The
general concept of this method originally stems from the field of optics and was de-
veloped by Abelès [119]. The application to reflectometry was later implemented by
Heavens [120]. Fig. 2.6 shows a comparison between the kinematical approximation
derived in the previous chapter and the matrix method.
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Figure 2.6.: (a) Comparison of specular reflectivity simulated with both the kinematical
approximation and the matrix method (dynamical theory). The kinematical
approximation significantly deviates from the exact solution for qz < 0.1 Å−1

and fails to capture the TRE. (b) The underlying SLD profile of the one-layer
system used for the simulation.

Another method for calculating multi-layer reflectivity is the more well-known
Parratt formalism [71], which was developed around the same time. Parratt’s method,
however, is a recursive algorithm, which is arguably easier to understand intuitively,
but generally much slower to compute on conventional hardware. This is especially
relevant in the age of deep learning which heavily utilizes GPUs, since they are
specialized in performing matrix operations. Due to these advantages, the matrix
method is implemented in most analysis packages that rely on the simulation of
reflectivity data, such as the mlreflect package introduced in Chap. 6.

Here, the description of the matrix method will largely follow the treatment
from [121], which originally assumes X-rays as a probe. For non-magnetic samples,
however, the treatment works similarly for neutrons. Let us consider an incoming
wave E⃗− with the wave vector k⃗j that is traveling downwards in the direction of the
sample surface, i.e.

E⃗− = A−ei(ωt−kx,jx−kz,jz)êy, (2.52)
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where

kx,j = kj cos(θj) and (2.53)

kz,j = −kj sin(θj) = −
√
k2

j − k2
x,j. (2.54)

As in previous sections, θ is the incident angle relative to the surface it impinges on
and j denotes the index of the medium the wave is traveling in. At each interface,
the upwards and downwards traveling waves are superimposed to

Ej(x, z) =
(
A+

j e
ikz,jz + A−

j e
−ikz,jz

)
ei(ωt−kx,jx) (2.55)

and the magnitude of the upwards and downwards traveling waves in each stratum
can thus be written as

U(±kz,j, z) = A±
j e

±ikz,jz. (2.56)

As described by Eq. 2.21 and Eq. 2.24 in Subsec. 2.2.2, the tangential components of
the waves as well as their derivatives must be conserved at each interface. Hence,
the sum of the waves above and below each surface must be equal such that

U(kz,j, Zj+1) + U(−kz,j, Zj+1) = U(kz,j+1, Zj+1) + U(−kz,j+1, Zj+1), (2.57)

kz,j (U(kz,j, Zj+1)− U(−kz,j, Zj+1)) = kz,j+1 (U(kz,j+1, Zj+1)− U(−kz,j+1, Zj+1))
(2.58)

The above set of equations can be conveniently expressed in the more compact matrix
form  U(kz,j, Zj+1)

U(−kz,j, Zj+1)

 =

 pj,j+1 mj,j+1

mj,j+1 pj,j+1


︸ ︷︷ ︸

Rj,j+1

 U(kz,j+1, Zj+1)
U(−kz,j+1, Zj+1)

 , (2.59)
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where the matrix that transforms the magnitudes of the wave from medium j to
medium j+1 is called the refraction matrix Rj,j+1 with the matrix elements

pj,j+1 = kz,j + kz,j+1

2kz,j

, (2.60)

mj,j+1 = kz,j − kz,j+1

2kz,j

. (2.61)

The advantage of this formulation is that the transformation of the waves between
media can be performed in a single matrix multiplication, which is a computationally
very cheap operation.

Similarly to the refraction matrix, a translation matrix Tj can be found, which
relates the magnitude of a wave in medium j at height z with the magnitude at
height z + h:

 U(kz,j, z)
U(−kz,j, z)

 =

e−ikz,jhj 0
0 eikz,jhj


︸ ︷︷ ︸

Tj

 U(kz,j+1, z + hj)
U(−kz,j+1, z + hj)

 (2.62)

The total transformation of the wave between all layers of the sample can simply be
obtained by multiplying the Rj,j+1 and Tj for each layer. Assuming a sample with
N layers, this leads to

 U(kz,0, Z1)
U(−kz,0, Z1)

 = R0,1

N∏
j=1

(TjRj,j+1)︸ ︷︷ ︸
M

 U(kz,s, Zs)
U(−kz,s, Zs)

 , (2.63)

where j = 0 is the index of the ambient medium and j = s = N + 1 is the index
of the substrate layer. Since the multiplication of square matrices results in another
square matrix, the whole calculation can be performed as a sequence of fast matrix
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2.2. Specular reflectivity measurements of thin films

multiplications. The product of these matrices is called the transfer matrix M. We
can thus write U(kz,0, Z1)

U(−kz,0, Z1)

 =M

 U(kz,s, Zs)
U(−kz,s, Zs)

 =

M11 M12

M21 M22


 U(kz,s, Zs)
U(−kz,s, Zs)

 . (2.64)

Since the reflection coefficient is given by the ratio of the reflected wave to the incident
wave, we can write it as the ratio of the downwards and upwards traveling waves at
the top most interface Z1.

r = U(kz,0, Z1)
U(−kz,0, Z1)

= M11U(kz,s, Zs) +M12U(−kz,s, Zs)
M21U(kz,s, Zs) +M22U(−kz,s, Zs)

(2.65)

If we now assume that the substrate is sufficiently thick such that it will contain no
upwards traveling wave, i.e.

U(kz,s, Zs) = 0, (2.66)

the reflection coefficient will reduce to

r = M12

M22
. (2.67)

For a simple system containing just one flat interface, we obtain

r = r0,1 = M12

M22
= m0,1

p0,1
= kz,0 − kz,1

kz,0 + kz,1
= qz,0 − qz,1

qz,0 + qz,1
, (2.68)

which is exactly the same as the Fresnel reflectivity from Eq. 2.31 derived in Sub-
sec. 2.2.2.

Another import special case are two layers on a substrate, e.g. an organic thin
film and a silicon oxide layer on top of a silicon substrate, which constitutes the
majority of systems discussed in this work. In this case the reflection coefficient is

r = M12

M22
= r0,1 + r1,2e

−2ikz,1h1 + r2,se
−2i(kz,1h1+kz,2h2) + r0,1r1,2r2,se

−2ikz,2h2

1 + r0,1r1,2e−2ikz,1h1 + r1,2r2,se−2ikz,2h2 + r0,1r2,se−2i(kz,1h1+kz,2h2) (2.69)
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where
rj,j+1 = mj,j+1

pj,j+1
(2.70)

was used for brevity. Using qz = 2kz, we can write

r(qz) = r0,1 + r1,2e
−iqz,1h1 + r2,se

−i(qz,1h1+qz,2h2) + r0,1r1,2r2,se
−iqz,2h2

1 + r0,1r1,2e−iqz,1h1 + r1,2r2,se−iqz,2h2 + r0,1r2,se−i(qz,1h1+qz,2h2) (2.71)

2.2.5. Rough interfaces and the Névot-Croce factor
In reality, most surfaces and interfaces are not perfectly flat, but instead have a
lateral structure. Often, different types of surface and interface morphologies are
combined under the term roughness. In practical terms, roughness describes how
much the height profile z(x, y) of an interface deviates from a perfectly flat plane. Of
course, many types of morphologies for interfaces exist which affect the interference
of reflected waves differently. A common distinction is whether the height deviations
are correlated or uncorrelated on the relevant length scale of our probe. Here, we shall
only consider roughness in the form of uncorrelated height variations with a random
distribution, since they are the most prominent in the types of samples discussed in
Part II of this thesis. Further, we shall assume that the height profile z(x, y) of a
given interface follows the Gaussian distribution

p(z) = 1
σ
√

2π
e− z2

2σ2 (2.72)

where the standard deviation σ of the distribution denotes the roughness of the
interface.

It has been shown by Névot & Croce [122] that this type of interface leads to an
additional factor of

rrough

rflat
= e− 1

2 qz,0qz,1σ2 (2.73)
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Figure 2.7.: (a) Comparison of specular reflectivity with and without roughness of a single-
layer system. In the rough case, the top roughness σ1 = 10 Å while the bottom
roughness (substrate) σ2 = 3 Å. The Kiessig fringes as well as the entire curve
decay much faster compared to the case with flat interfaces. (b) The underlying
SLD profile of the one-layer systems used for the simulation. The smeared-out
step function indicates the roughness of the interfaces.

between the reflection coefficient of a rough interface and a flat interface. This
additional factor is hence usually called the Névot-Croce factor. Another similar
form of this factor is the Debye-Waller factor

rrough

rflat
= e− 1

2 q2
zσ2
, (2.74)

which can be obtained from Eq. 2.73 if refraction does not play a significant role and
Eq. 2.43 holds. The Debye-Waller factor can also be derived in the kinematical ap-
proximation by using the Master formula from Eq. 2.49. Under the assumption that
the height profile z(x, y) of an interface follows the Gaussian distribution p(z), the
average SLD in the x,y plane can be described by the integral over this distribution,
i.e.

ρ(z) = ⟨ρ(x, y, z)⟩x,y =
∫ z

−∞
p(z′)(ρ1− ρ0)dz′ = (ρ1 − ρ0)

2

(
erf
(

z

σ
√

2

)
+ 1

)
, (2.75)
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where erf(z) is the error function

erf(z) = 2√
π

∫ z

0
e−t2

dt. (2.76)

Consequently, the derivative of the of the SLD profile in z direction is given by

dρ(z)
dz

= p(z)∆ρ. (2.77)

Thus, when performing the FT in the kinematical approximation introduced in Sub-
sec. 2.2.3, we also obtain the Debye-Waller factor

rrough

rF
= 1

∆ρ

∫ ∞

−∞

dρ(z)
dz

eiqzzdz =
∫ ∞

−∞
p(z)eiqzzdz ∝ e− 1

2 q2
zσ2
. (2.78)

It is evident that, under the influence of this type of roughness, the reflected
intensity R(qz) from an interface is reduced by an exponentially decaying factor that
depends on both the magnitude of the roughness σ as well as on qz. Thus, for rough
interfaces, R(qz) decays much faster. Fig. 2.7 shows a comparison of the reflectivity
from flat interfaces with that from interfaces with a finite roughness, where not
only the Kiessig oscillations are dampened, but also the overall intensity decays
faster. While the above treatment of roughness was shown for a single interface,
an analogous treatment for multi-layer systems can be applied, where the reflected
amplitudes rj,j+1 at each interface are reduced by the Névot-Croce factor depending
on the respective roughness σj+1. To apply the effects of roughness to the matrix
method described in Subsec. 2.2.4, it is sufficient to enforce the condition

rrough
j,j+1

rflat
j,j+1

= e− 1
2 qz,jqz,j+1σ2

j+1 , (2.79)

which, using Eq. 2.68, ultimately leads to a reduction of the matrix elements mj,j+1

and pj,j+1 by the factors e− 1
2 (kz,j+1+kz,j)2σ2

j+1 and e− 1
2 (kz,j+1−kz,j)2σ2

j+1 , respectively.
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2.2. Specular reflectivity measurements of thin films

2.2.6. Data formats and vector notation of measured reflectivity
So far, we have introduced useful and important ways of modeling the specular
reflectivity from a sample mathematically. However, in order to extract information
from a given reflectometry measurement, the measured signal has to be recorded,
stored and processed. For typical specular reflectometry using a point detector, the
measured signal R(qz) is stored as a set of arrays containing discrete values for R and
qz. For the purpose of this work, these arrays will be referred to as the d-dimensional
vectors R ∈ Rd and q ∈ Rd, respectively, where d is the number of measured data
points, q contains the discrete qz positions where the reflectivity was measured and

Ri = R(qi). (2.80)

This notation is useful, because it conforms to the common tensor notation used for
NNs that will be introduced in Chap. 3.

It is important to note that nowadays line detectors for lab sources and area
detectors for facilities (i.e. synchrotrons and neutron sources) are quite common. In
these cases, the reflected intensity is recorded for a larger range of outgoing angles
beyond the specular condition. Usually, the multi-dimensional signal is converted to
the 1-dimensional form of Eq. 2.80 before storing the data. However, increasingly,
the entire detector image for each qi is saved. This has the advantage of allowing
researchers to reprocess the data at a later point, e.g. by integrating over a dif-
ferent region of interest (ROI) or changing the way the background is subtracted.
So far only monochromatic measurements have been considered, but measurements
can also be performed using polychromatic sources or by scanning through different
wavelengths instead of different angles. While the raw data of these measurements
might look different, they are also usually at some point transformed into the typical
1-dimensional form for easier data analysis.

Thus, despite the variety of raw data formats and measurement setups, for the
purpose of this work all stored reflectivity data will be described in the form of
Eq. 2.80 so that it is compatible with typical data analysis software [93, 95, 96].
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2.3. Materials studied and sample preparation
2.3.1. Organic semiconductor thin films
This work discusses the analysis of reflectivity data stemming mainly from organic
thin films on oxidized silicon substrates. These thin films consist of molecular organic
semiconductors (OSCs), which are materials with conjugated π orbitals that have
been intensively studied for decades due to their applications in solar cells, light-
emitting diodes or transistors [123–125]. In particular, the materials used were

• Diindenoperylene (DIP) [126–128],

• Copper(II)-phthalocyanine (CuPc) [129, 130],

• α-sexithiophene (6T) [131, 132],

• Pentacene (PEN) [133, 134],

• Perylene diimide (PDI) derivatives, [135–137],

• Dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT) [138, 139],

as well as mixtures thereof. Since their specific differences in electronic properties
and film growth behavior are not the primary focus of this work, the reader is referred
to the respective references for a general overview.

2.3.2. Molecular beam deposition in ultra-high vacuum
All of the organic thin films studied in this work were grown on silicon (Si)/silicon
oxide (SiOx) substrates using molecular beam deposition within an ultra-high vac-
uum (UHV) chamber [140]. A large part of the reflectivity measurements were also
conducted in situ during growth, as illustrated in Fig. 2.8. Other measurements were
conducted post-growth, either ex situ or during separate annealing experiments.

It is important to note that this study was mainly concerned with the analysis
of the data and not with the preparation of the samples. As such, the author of this
work was not involved with the sample preparation and only partially involved in
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2.3. Materials studied and sample preparation

Figure 2.8.: Portable UHV chamber used for the in situ measurement of reflectivity during
film growth. The organic molecules are deposited on the substrate at a chosen
rate via a molecular beam by heating the effusion cell. For real-time measure-
ments, the whole chamber is mounted on a diffractometer. Figure adopted
from [89].

data acquisition. Tab. F.1 in Appendix F lists each dataset used in this work as well
as its origin and credit goes to the respective people involved with sample preparation
and data acquisition.
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3. Machine learning fundamentals
3.1. Definition of the task from a machine learning

perspective
The focus of the research presented in this thesis is the use of ML algorithms to
analyze reflectivity data. The term “machine learning” describes a wide range of
data-driven methods of finding mathematical models to solve a large variety of prob-
lems. According to Mitchell [141], a “learning” algorithm consists of three compo-
nents: a task, an experience and a performance measure. A given algorithm is said
to learn if its performance for a given task improves with increased experience. Here,
experience typically refers to the exposure to data. ML algorithms are used to find
a mapping between certain features x (also called “input”) to a given output y.

The possible tasks for ML algorithms encompass a large variety. Prominent
examples are [26]

• Classification
• Machine translation
• Anomaly detection
• Synthesis
• Denoising
• Probability mass function estimation
• Regression

Out of those, regression is the most relevant for the scientific results discussed
in this thesis (Part II). In this context, regression refers to the approximation of a
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heuristic function with a ML model based on empirical data. Furthermore, we can
distinguish between different types of learning strategies, such as supervised, unsu-
pervised and reinforcement learning. In this thesis, we exclusively discuss supervised
learning, where the ML model is designed to predict properties about the data based
on past experiences.

In this work, the task to be solved is the extraction of physical information about
a given sample from its reflected intensity R(qz). In Sec. 2.2 it was shown that R(qz)
is closely related to the SLD profile ρ(z) of the sample. Through the introduction of
the matrix method in Subsec. 2.2.4, we have seen that ρ(z) can be parameterized by
the thickness h, roughness σ and average SLD ρ of each film layer. Thus, the matrix
formalism can be considered to be a function

m(p) = R (3.1)

that transforms a vector of sample parameters

p =



h

σ

ρ
...

 (3.2)

into a vector of reflectivity values R. To fulfill the task of extracting the parameters
p from a given reflectivity curve R, it is necessary to find the inverse function

M(m(p); w) = M(R; w) = p. (3.3)

Here, w represents a tensor of learnable parameters that can be adjusted through
regression, that we shall specify later. Fig. 3.1 shows a simplified and abstracted plot
of the mapping of individual reflectivity curves R to their corresponding parameter
set. The data points represent the experience that is available to the ML algorithm
to learn the underlying function M(m(p); w). In reality, this is a highly non-linear
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R

p

p = M(R; w)
training data

Figure 3.1.: A simplified and abstracted illustration of the mapping of individual reflectiv-
ity curves R to their corresponding sample parameters p. The goal of a ML
algorithm is to approximate the underlying mapping function M(R; w) using
non-linear regression. In reality, the mapping is highly non-linear, multidimen-
sional and not always unique.

and multidimensional problem that requires non-linear regression to be solved. Also,
due to the phase problem and experimental artifacts, R→ p is not unique for all R,
i.e. it is not a single-valued function. However, in the following we shall assume that
at least for a subset of R, the mapping can be approximated by a function M(R; w)
within a finite error bar.

Furthermore, the question arises of how to generally model M(R; w), i.e., which
and how many terms should be used and what form of non-linearity they should take
on. Chapters 4–6 demonstrate the use of NNs to solve this regression problem, since
they are very flexible models. The next chapters will describe the basic components
of a NN and ways to use it to solve a regression task.

3.2. Feedforward neural networks
3.2.1. Basic terms and linear regression
Since NNs share many similarities with linear regression, we can use it as a starting
point to introduce basic terms and concepts of ML. Let us first consider a function
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f(x; w, b) with the input vector x ∈ Rn and the output vector y ∈ Rm. Furthermore,
the function is parameterized by a tensor of weights w ∈ Rn×m and a tensor of biases
b ∈ Rm, so that

f(x; w, b) = wTx + b = y∗ (3.4)

=


w11 . . . wn1

... . . . ...
w1m . . . wnm



x1
...
xn

+


b1
...
bn

 =


y∗

1
...
y∗

m

 , (3.5)

where wT is the transposed weight tensor and y∗ the predicted output vector for
non-optimized weights and biases. As we can see for the special case of m = 1, i.e.

f(x; w, b1) =
[
w11 . . . wn1

] 
x1
...
xn

+ b1 = w11x1 + . . .+ wn1xn + b1 = y∗
1, (3.6)

the weights w determine how the input features x are mapped to the output y∗
j

through the multiplication of each feature xi with the weight wij with an additional
offset by b1. For convenience, we shall omit the explicit mention of the biases b from
here on, since their treatment is analogous to that of the weights w.1

Since the task of an ML algorithm is to solve the regression problem of finding
the parameters w for which

f(x; w) = y∗ = y, (3.7)

it is useful to introduce a performance measure that indicates how close we are
to achieving this condition. This metric is usually called the “objective function”,
“cost function” or “loss function” and will in the following simply be called the
“loss” L. If we assume that X is a dataset of N input vectors xi and Y a dataset
of N corresponding output vectors yi that together constitute the targets of the

1The bias b can simply be treated as another weight wb for an additional constant input xb = 1.
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regression, a simple and common performance measure is the MSE between each
instance of the expected output yi and the output predicted by the model y∗

i . Since
the MSE is also often used as an objective function in curve fitting procedures,
such as the conventional fitting of reflectivity curves, it might seem like an intuitive
choice. Its origin, however, lies in statistics, where minimizing the MSE is equivalent
to maximizing the log-likelihood of the model f(x; w) if each output is assumed to
follow a normal distribution [142].1 Thus, using the MSE we can write the loss for a
given pair of inputs and outputs (x,y) as

L(y∗,y) = (y∗ − y)2 (3.8)

= (f(x; w)− y)2. (3.9)

The total loss for the entire dataset is then given by

L(X,Y ; w) = 1
N

N∑
i=1
L(y∗

i ,yi) = 1
N

N∑
i=1

(f(xi; w)− yi)2 . (3.10)

For this demonstrative example, L can be minimized solving for

∇wL(X,Y ; w) = 0, (3.11)

which we shall omit here. However, for many regression tasks, such as the ML
methods discussed in this work, it is not feasible to find the minimum of the loss
analytically and thus, the task has to be solved numerically. In the field of ML, the
process of numerically finding the minimum of L through the iterative optimization of
w is called “training”. By far the most prominent and successful of these algorithms
is stochastic gradient descent (SGD), which will be described in Subsec. 3.3.1.

1In general, each output can also have a different standard deviation. Then, maximizing the
log-likelihood would be the same as minimizing χ2, where the standard deviation of each output
effectively acts as weighting factor for the terms in the MSE.
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Figure 3.2.: Schematic graph-view representation of a perceptron. A set of n input features
xi (usually represented as the vector x) are each multiplied with a correspond-
ing weight wi (usually represented as the tensor w). Their sum plus the bias
b is then passed through an activation function a(x) to obtain the predicted
output y∗.

3.2.2. The multi-layer perceptron
In the context of ML, the term neural network describes a class of functions that
are nowadays used to solve a large variety of ML problems [142, 143]. While NNs
as a mathematical concept have already been known for decades, only recently they
have become viable and popular tools. The simplest form of a NN is called FCNN or
multi-layer perceptron (MLP), which in turn is composed of building blocks called
“perceptrons” [15]. A perceptron is simply the function used for linear regression
from Eq. 3.6 wrapped by a non-linear activation function a(x), i.e.

y∗ = a

(
b+

N∑
i=1

wixi

)
= a(b+ wTx). (3.12)

A typical graph representation of a perceptron is shown in Fig. 3.2. The purpose of
the activation function is mainly to introduce nonlinearities into the NN, which is ul-
timately required to perform non-linear regression1. Activation functions sometimes

1Without activation functions, a NN is just a large sum of linearly weighted terms and can only
model linear functions.
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take the shape of sigmoid functions, such as the logistic function, the hyperbolic tan-
gent or the error function. These loosely mimic the “on” and “off” states of biological
neurons, since they provide a way to measure the relative degree of activation for
the perceptron between the lower and upper bound of the function. An example of
the logistic function and its derivative are shown in Fig. 3.3. Another popular family
of activation functions are modified linear functions, the most prominent being the
rectified linear unit (ReLU), which is used exclusively in this work. ReLU (shown in
Fig. 3.3) is defined as

a(x) =


x for x > 0

0 for x ≤ 0
(3.13)

if the argument of a is a scalar. If the argument is a tensor, then a is applied to
each scalar tensor element independently. Over the last decade, ReLU has become
the default activation function for many NN models because its similarity to linear
functions makes it is easy to handle numerically [144, 145]. An important example
of this is that its derivative is fast to compute and, in contrast to sigmoid-based
functions, does not approach 0 if x is large, which helps to reduce the problem of
vanishing gradients during the training step. Many variations of ReLU (e.g. “leaky”
ReLU) have been developed over the years to address some nuanced shortcomings of
ReLU for certain applications [146, 147], however, they will not be discussed here.

A model with multiple outputs, that is, with an output vector y∗, can be achieved
by expanding the dimensions analogous to Eq. 3.4 so that

f(x; w) = a(wTx) = y∗. (3.14)

This is equivalent to using several perceptrons in parallel. Again, as described in the
previous section, the bias tensor b was dropped for convenience.

According to ML terminology, x and y∗ are typically called the “input layer”
and “output layer”, respectively. Also, the individual vector elements of each layer
are often called “neurons”. It is apparent that despite the non-linearity, the range
of functions that can be approximated using this function is still very limited. A
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Figure 3.3.: An illustration of two common non-linear activation functions, the logistic
function and the ReLU function, as well as their respective derivatives. Since
the derivative of the logistic function approaches 0 for both high and low inputs,
it can prevent efficient gradient descent. It is important to note that for the
results in Part II of this thesis, ReLU was used exclusively since it generally
performed better.

more flexible model is the so-called MLP, where several perceptrons are connected
in series where the output of one perceptron serves as the input for the next. Thus,
for a two-layer perceptron, we can define each perceptron as

f1/2(x; w1/2) = y∗
1/2, (3.15)

respectively. The MLP is then given by

f(x; w) = f2(y∗
1; w2) = f2(f1(x; w1); w2) = y∗, (3.16)

where y∗
2 = y∗. A graph representation of this MLP is shown in Fig. 3.4. Here, y∗

1 is
typically called “hidden layer” and serves as a purely intermediate output that does
not directly correspond to the actual output y∗. Thus, y∗

1 can in principle take on
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Figure 3.4.: Schematic graph-view representation of a FCNN with one hidden layer. The
FCNN can be seen as two perceptrons with multiple outputs in series, where
the hidden layer is both the output of the first perceptron and the input for
the second. Each numerical value in this network (circles) is called a “neuron”.

any dimensionality, which, in turn, affects the dimensionality of the parameters w1

and w2.
It has been shown that a FCNN with only one hidden layer can in principle

be used to approximate a broad variety of interesting functions if the size of the
hidden layer, and thus, the number of parameters, is sufficiently large [148, 149]. In
practice, however, NNs often have more than one hidden layer, since nesting non-
linear functions in this way makes it often easier to find a suitable minimum during
training.

In terms of solving the task of analyzing reflectivity that was laid out in Sec. 3.1,
the function describing the NN model, f , corresponds to the inverse mapping function
M from Eq. 3.3. Thus, the input of the NN is the vector of reflectivity values R and
the output is the vector of sample parameters p, i.e.

f(x; w) = y∗ = M(R; w) = p. (3.17)
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3.3. Training neural networks
3.3.1. Stochastic gradient descent
After having introduced the idea of regression in the context of ML, we shall now in-
troduce a method to train the ML model f(x; w), i.e., determine the concrete values
for the parameters w such that the loss L(X,Y ; w) is minimized with regard to the
regression targets X and Y . In contrast to the example of linear regression shown
in the previous section, it is not feasible to simply calculate a closed-form solution to
find the minimum of the loss function and thus, it has to be numerically optimized.
Most ML methods use optimization algorithms based on a well-established iterative
method called stochastic gradient descent (SGD) [150]. The variations of SGD that
are most commonly used (also within this work) are described later in Sec. 3.5.

Gradient descent is a method of minimizing a function with respect to a set of
parameters in iterative steps along the negative gradient until a local minimum is
reached and the algorithm converges. During each step, the gradient

g = ∇wL(w) (3.18)

is calculated for the current weights w by calculating the partial derivative for each
parameter in the model given X and Y . All parameters are then updated along the
gradient according to the rule

w ← w − αg, (3.19)

where α is a scalar called the “learning rate” that defines the size of each step. The
question of what value α should take is difficult to answer in general, since it strongly
depends on the shape of the loss surface. Fig. 3.5 shows an example of non-linear
regression with only one parameter and a convex loss for different learning rates.
Even in this simplified example, an α that is too large or too small can significantly
hinder convergence. This is even more so the case with highly multidimensional loss
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surfaces that are not always convex and have multiple local minima, where choosing
an appropriate learning rate can be crucial for the algorithm to converge at all. For
this reason, usually adaptive optimization algorithms are employed (see Sec. 3.5).

In the field of ML, the process of minimizing the loss is called “training”, and
the dataset of regression targets (Xtrain,Y train) is called the “training set”. For many
ML problems, it is advantageous to have a training set that is as large as possible.
However, this can make calculating the gradient for each update computationally
slow. SGD solves this problem by only using a random subset of the training set to
calculate the gradient of the loss for each update. These subsets are usually called
“minibatches”, and thus this method is sometimes referred to as minibatch SGD
[151]. The number of instances within each minibatch are typically called the “batch
size”. By choosing a random minibatch from the training set, we can assume that
the gradient and resulting update are, on average, representative of the entire test
set. Furthermore, a given instance is only reused for training once all other instances
within the training set have been used. The number of steps necessary for each
minibatch to be used once is called an “epoch”. For example, assuming the training
set contains 100,000 instances and the batch size is 100, then after 1000 updates one
epoch has passed, i.e. each instance has been used exactly once.

3.3.2. Gradient calculation through back-propagation
As shown in the previous section, conventional learning algorithms for ML methods
require the calculation of the gradient of the loss function ∇wL(Xmb,Y mb; w) for
each minibatch in order to perform an update of the weights w. Since NNs with
multiple layers are nested functions, an algorithm called “back-propagation” [16]
(sometimes simply called backprop) is used to efficiently calculate the gradient. At
the heart of back-propagation is the chain rule of calculus which states that the
derivative of a nested function

f(x) = f(g(x)) (3.20)
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Figure 3.5.: Example of the gradient descent algorithm for the non-linear regression of a
parabolic function f(x; b) = (x − b)2 with one parameter. (a) Plot of the
regression targets, i.e. training data, and the optimal function for b = 5. (b)
Shows the discrete steps of the gradient descent algorithm on its way to the
minimum for three different learning rates. If the learning rate is too high, the
steps skip over the minimum multiple times or the algorithm might diverge. If
the learning rate is too small, it can take very long for the algorithm to converge
due to a small step size. With an adequate learning rate, the algorithm only
needs a few steps to converge.
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can be written as
df

dx
= df

dg

dg

dx
. (3.21)

We can easily demonstrate the usefulness of the chain rule using the NN with
a single hidden layer given by Eq. 3.15. Here, the loss for a given set of inputs and
outputs can be written as

L(y∗,y) = (y∗ − y)2 (3.22)

= (f2(f1(x; w1); w2)− y)2. (3.23)

The loss for an entire minibatch is then given by

L(Xmb,Y mb; w) = 1
N

N∑
i=1
L(y∗,y), (3.24)

where i is the index in a given minibatch and N is the minibatch size.
It is instructive to first consider the case where the input, output and hidden

layer are all scalars, i.e. x, y, w1, w2 ∈ R and f1, f2 : R → R. The per-input loss is
then given by

L(y∗, y) = (f2(f1(x;w1);w2)− y)2. (3.25)

Using the chain rule, we can write the derivative of that loss as

dL
dw

= ∂L
∂w1

+ ∂L
∂w2

= ∂L
∂f2

∂f2

∂f1

∂f1

∂w1
+ ∂L
∂f2

∂f2

∂w2
. (3.26)

All of the involved partial derivatives are straightforward to calculate since each
function is simply a weighted sum of parameters. For example, the derivative of the
hidden layer with regard to its weights is given by

∂f1

∂w1
= ∂

∂w1
a(w1x+ b) =


x for w1x+ b > 0

0 for w1x+ b ≤ 0
, (3.27)

where a(x) is the ReLU function described earlier.
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The same principle can be applied to the more general, multidimensional case
where x ∈ Rn, y ∈ Rm, w1 ∈ Rn×h, w2 ∈ Rh×m, f1 : Rn → Rh and f2 : Rh → Rm,
with the only difference being a larger number of cross terms. Thus, analogous to
Eq. 3.26, we can write the gradient of the loss with respect to the weights as

∇wL = ∇w1L+∇w2L = ∇f2LJf2
f1 Jf1

w1 +∇f2LJf2
w2 , (3.28)

where

Ja
b =


∇T

b a1
...

∇T
b an

 =


∂a1
∂b1

. . . ∂a1
∂bm... . . . ...

∂an

∂b1
. . . ∂an

∂bm

 (3.29)

denotes the n×m Jacobian matrix of a ∈ Rn with regard to b ∈ Rm.
From this, it is evident that the chain rule can easily be applied recursively for

a NN with an arbitrary number of layers and with an arbitrary number of neurons
in each layer. Importantly, Eq. 3.26 and Eq. 3.28 also show that some terms appear
multiple times when using this technique. Thus, to avoid unnecessarily re-calculating
the same terms multiple times, implementations of the back-propagation algorithm in
software packages, such as TensorFlow [30], include additional computational details
beyond the simple chain rule. Since these details are beyond the scope of this work,
they will not be discussed here.

3.4. Input and output standardization
When SGD or other gradient-based methods are used to solve a regression problem,
it is important to consider the scale of both the input x and the corresponding
output y, since their scale implicitly affects the scale of all parameters w. For
instance, if different inputs or outputs differ by orders of magnitude, the optimal
values for different parameters may also differ correspondingly. Combined with the
fact that the parameters are usually initialized all on the same scale [152], this can
lead to a very distorted loss surface where two optimal parameters wopt

1 and wopt
2 are
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orders of magnitude apart. This also leads to a gradient with a different scale in
some directions compared to others and raises the question of which learning rate to
choose: a small learning rate might be optimal for w1, but would lead to very small
steps relative to w2, effectively increasing the necessary training time. Conversely,
choosing a larger learning rate that is optimal for w2 can lead to steps that are too
large for w1, meaning it will often skip over minima, hindering convergence and also
increasing training time. An illustration of this is given in Fig. 3.6.

This is particularly relevant when dealing with reflectivity data, since data points
measured at different qz values can easily vary by many orders of magnitude. For
these reasons, it is common to normalize all inputs xi to be on a similar scale before
using any training algorithm. The most common form of this is called standardiza-
tion, where the distribution of each input xi in the training data is assumed to follow
a normal distribution. Here, each input is transformed so that

x̂i = xi − µi

σi

, (3.30)

where µi and σi are the mean and standard deviation. In the context of training
NNs with reflectometry data, this method was first introduced in [107] (see Chap. 5).
In the case of input data that is obtained from measurements, such as reflectometry,
it is possible to choose a form of input transformation that makes use of physical
knowledge about the underlying distribution of data points rather than simply as-
suming a normal distribution. Using the kinematical approximation for reflectivity,
for example, one can assume that R(qz) ∝ q−4

z and thus multiply each reflectivity
data by its corresponding value of q4

z to normalize the data points. While this might
seem preferable to standardization, it usually performs similar or worse than stan-
dardization due to the fact that the kinematic approximation does not hold near the
TRE, which leads to divergences near the critical angle.
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Figure 3.6.: (a) Example of a heavily-stretched 2-dimensional loss surface due to inputs on
different orders of magnitude. The axes ∆w1 and ∆w2 represent the distance
of the weights w1 and w2 from their optimal values. Since x1 ∼ 1× 10−6 and
x2 ∼ 1 × 101, ∆w1 and ∆w2 are 6 orders of magnitudes apart. (b) Contour
plot of the loss surface shown in (a). The white arrows indicate a gradient
descent algorithm that skips over the minimum for ∆w2 due to the absolute
value of the gradient ∇w1,w2L being dominated by w1. This leads to many
more necessary steps to converge than the optimal case indicated with green
arrows.
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3.5. Adaptive optimizers
Since finding the minimum of the training loss using SGD can be both difficult and
slow when the number of optimized parameters is large, several other optimization
algorithms have been developed in recent years. One of the most important classes
of optimizers is called “adaptive algorithms”, since they include additional terms
that take past updates into account. Here, we shall discuss three optimizers that are
relevant for the work of this thesis: SGD with momentum, RMSprop and ADAM.

3.5.1. SGD with momentum
SGD with momentum is an adaptation of the SGD algorithm with the addition of
exponentially decaying terms of previously calculated gradients [153]. Each update
of the weights is hereby defined as

w ← w + v, (3.31)

where v represents an accumulating velocity term that is usually initialized as v = 0.
Before each weight update, the velocity term is updated based on the previous ve-
locity and the current gradient, i.e.

v ← β1v − αg. (3.32)

This means that the value v by which the weights w are updated accumulates over
past gradients, where the parameter β1 ∈ [0, 1) represents an exponentially decaying
weighting factor of the past gradients. This has the effect that, if the gradient points
into a similar direction for several updates in a row, the steps in that direction become
larger with each update. On the other hand, if the gradient changes erratically in
one or more dimensions, the velocity terms in those dimensions “average out” over
time.

SGD with momentum can also be described using a physical analogy in the form
of discretized Newtonian dynamics, where the loss L(w) acts as an energy. If we
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assume a particle of unity mass that rests at position wt at time step t, then we can
say the particle experiences a force

F (t) = a(t) = ∂2

∂t2
w(t) = ∂

∂t
v(t) = −γv − g. (3.33)

In a discretized form we can write

at = −γvt − gt (3.34)

and thus
vt+1 = vt + at∆t = vt + (−γvt − gt)∆t = β1vt − αgt, (3.35)

which is analogous to Eq. 3.32 if β1 = (1− γ∆t) and ∆t = α. The two forces acting
on the particle are the gradient g as well as the term γv, which can be seen as
viscous drag on the particle. The former term causes the particle to pick up speed
along steep gradients, which allows it to ignore small deviations in the gradient and
efficiently descend to the minimum. The latter term ensures that the particle will
slow down over time and come to rest once it has found a minimum.

3.5.2. RMSprop
RMSprop is itself an adaptation of the ADAgrad (short for “adaptive gradient”)
algorithm, which is designed to slow down each consecutive update by dividing each
step by the root mean squares of all past gradients. However, in order to avoid an
overly fast decay of the step size, RMSprop additionally introduces an exponential
decay to each squared gradient term. The update rule is then defined as

w ← w − α g√
s + δ

, (3.36)

where s is the weighted sum of squared gradients

s← β2s + (1− β2)g2, (3.37)
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usually initialized as s = 0.1 Here, β2 ∈ [0, 1) is a weighting parameter for past
squared gradients similar to β1, however, without a simple physical analogy. The
additional parameter δ ∼ 10−8 is simply a small number added for numerical stability
to avoid division by 0.

The advantage of RMSprop comes into play when descending along the gradient
of a convex structure on the loss surface. Here, the algorithm helps avoid skipping
over the minimum by slowing down the learning if the recent gradient was very steep,
but avoids unnecessarily slowing down the learning process near the minimum, i.e.
when the past gradients were relatively small. Both of these features allows the
algorithm to safely converge, however, sometimes at the cost of speed, especially if
the position on the loss surface is far from a minimum. Nonetheless, RMSprop has
been a very popular and successful optimizer for many problems in the past.

3.5.3. ADAM
The ADAM algorithm (short for “adaptive moments”) is arguably one of the most
widely-used and successful optimizers [154]. It combines RMSprop with a variation
of SGD with momentum into a single algorithm, which gives it a great amount of
flexibility. The update rule of the ADAM optimizer is given by

w ← w − α v′
√

s + δ
, (3.38)

where
v′ ← β1v

′ + (1− β1)g (3.39)

is a slightly modified version of the momentum term from Eq. 3.32. Since ADAM
combines properties from RMSprop as well as a momentum term, it converges quickly
even if the initialized parameters are far from a minimum.

1Here, all division and multiplication operations are applied element-wise.
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Out of the three described algorithms, ADAM has been found to be the most
successful optimizer for the ML models discussed in Part II of this work. Thus, it
will be considered the default optimizers unless specified otherwise.

3.5.4. Learning rate schedules
Aside from choosing different optimizers, another common way of adjusting the step
size of each update is via learning rate schedules. These change the learning rate
parameter α over the course of the training process. Since the learning rate is such
an important parameter for training, this has been shown to help the training to
converge into better minima even when used in conjunction with good optimizers.
The most common applications of this are exponential or polynomial decay of the
learning rate as a function of the number of steps. They have a similar effect on the
training as the optimizers discussed previously, although independent of the actual
loss surface L(w). Another recently developed approach is using cyclical learning
rate schedules, where α is decreased and then increased periodically. Increasing α

again can act as a shock to the system, allowing the algorithm to dislodge from local
minima and ultimately explore a larger space on the loss surface.

The method that is used in Chap. 5 and Chap. 6 is a conditional learning rate
reduction, where α is reduced whenever a certain condition is met during training.
Here, the learning rate is halved whenever the training loss stagnates for more than
10 epochs in a row, which often leads to a significant drop in the loss.

3.6. Validation and generalization
So far, we have discussed how a ML model can be trained using a finite number of
data points called the training set. Assuming successful training, we obtain a function
that can map each training input to each training output. The question remains
whether the model performs similarly on data points outside of the training set.
In other words, the approximated function might perfectly pass through each data
point without capturing the general trend of the data. This is a common problem in
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Figure 3.7.: Example of non-linear regression from a training set. The blue curve shows an
optimal fit while the yellow and green curves show an over- and underfitted
function. The problem with overfitting becomes especially apparent when
using a second dataset for validation. This shows the need for a validation
dataset to judge the level of overfitting when training ML models.

regression called “overfitting” which is also important when fitting experimental data
to a physical model. The researcher often has to make a decision about the number
of open parameters to include in a model in comparison to the complexity of the
data. In ML, it is also common to introduce regularization mechanisms that penalize
overfitting in the training loss [26, 155]. The ability of the model to approximate
complex non-linear functions is sometimes called the “capacity” of the model. If
the capacity is too low, the model is too simple to describe the data adequately
(“underfitting”). In contrast, if the capacity is too high, the model is flexible enough
to accommodate every data point at the expense of describing the underlying physical
trend. An illustration of this can be seen in Fig. 3.7.

In machine learning, the ability to interpolate output beyond the training set
is usually called “generalization”. A common way to measure the degree of gener-
alization is by periodically validating the model during training with data that was
not used for the training itself, meaning it was not used to generate the gradient for
updating the weights. This data set is usually called “validation set” and the loss
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Figure 3.8.: An example of the training and validation loss during the training of a NN.
The validation loss is generally higher, indicating that there is some degree
of overfitting. However, up to epoch 40, the validation loss still decreases,
which means that the overall performance improves. After that, however, the
validation loss starts to increase, indicating that further training would be
detrimental to the general performance of the model and training should be
stopped.

calculated with it is called the “validation loss” (in contrast to the training set and
the training loss). Typically, the validation loss is calculated after every epoch and
compared to the training loss at that time. Thus, it is crucial to have a validation
set that is representative of the underlying distribution of data points the model is
meant to approximate. By decreasing the capacity of the model, overfitting can be
decreased, however, this usually also increases the training loss. Thus, it is important
to find suitable capacity that avoids both over- and underfitting.

In addition to being a function of the capacity, overfitting can also be a function
of the number of training steps. In many cases, such as the ones discussed in this
work, both the training and validation loss decrease initially, while, at some point, the
validation loss begins to stagnate or even increase again, as shown in Fig. 3.8. This is
because the loss surface L(w) might have several local minima with some being more
general while others are more specific to the training set. Thus, in this work, the
so-called “early stopping” method is employed, where both validation and training
loss are monitored simultaneously and training is stopped if the validation loss starts
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increasing. Early stopping is a commonly used criterion for finding the optimal
number of training epochs that has been shown to function as a regularizer [156,
157].
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4. Analysis of reflectivity data using
neural networks‡

4.1. Introduction
As described in previous chapters, NR and XRR are powerful tools to determine the
physical properties of surfaces, thin films and layered structures. The analysis of
reflectometry data is typically done via iterative LMS fitting algorithms that tend
to be slow and require expert knowledge. Considering the increasing speed at which
reflectometry measurements can be performed, new and fast methods for data anal-
ysis have to be developed. This chapter introduces and discusses the first published
application of a fully-connected neural network (FCNN) to analyze reflectivity data
[103] and demonstrates that NNs can not only be used to reduce the necessary user
input and the time needed to extract thin film properties from XRR data, but also
promise to alleviate the requirement of a priori knowledge about the studied system.
This makes NNs ideal for autonomous applications in real-time measurements. The
discussion in this chapter is based on the performance of a FCNN with six hidden
layers trained with simulated XRR data, and tested on five real-time XRR datasets
of growing organic thin films on silicon (Si) substrates with a silicon oxide (SiOx)
layer.

‡This chapter is largely based on the publication Greco et al. 2019 [103]. The Python code for
the neural network was co-developed by A. Greco with the help of V. Starostin, C. Karapanagiotis,
L. Pithan, S. Liehr and S. Kowarik. The neural network design and data analysis were done by
A. Greco. The samples used for testing were prepared and measured by A. Hinderhofer, C. Lorch,
T. Hosokai and S. Kowarik, as described in Tab. F.1. A. Gerlach provided computational support
and F. Schreiber supervised the project.
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4.2. Neural network architecture and training
For this study, an FCNN using supervised learning with simulated training and
validation data was used1. All of the code was written in Python 3.7 with the help of
the TensorFlow 2.1 framework. As described in Sec. 3.2, the information is processed
by NNs from a set of input neurons to a set of output neurons through multiple hidden
layers of neurons. The term “layer” is used here to describe sets of neurons and should
not be confused with the same term used to describe the layered structure of thin
films. The input layer of the NN represents the measured X-ray intensity values
R ∈ R52 at different momentum transfer values q (for details about the notation
see Subsec. 2.2.6). The output layer y ∈ R4 corresponds to the different thin film
parameters, i.e. film and oxide thickness, roughness, and density. A schematic of
the architecture used in this study is shown in Fig. 4.1. In the case of fully-connected
models, such as the one described herein, the value of each neuron after the input
layer is calculated by a weighted sum of all neurons in the previous layer. This way,
for any given reflectivity curve a corresponding output can be calculated. In all cases,
ReLU was used as an activation function, which is a common default setting that
performs well on many tasks.

The NN model employed in this chapter (Fig. 4.1) consists of six fully-connected
hidden layers with 400, 800, 400, 300, 200 and 100 neurons. For the results discussed
here, the output of three independently trained NNs with the same hyperparameters
and training data, but random initialization, was averaged to compensate for outliers
in the prediction. Both the simulated and the experimental data were normalized to
1 and passed through a log function before being used as input. This was done to
reduce the number of orders of magnitude over which the input data are distributed.
A wide distribution of input values is a common problem that can inhibit training,
as described Sec. 3.4. In Chap. 5, a more sophisticated normalization method is
discussed. Furthermore, each output parameter of the model was normalized to

1The code used in this chapter was published on Zenodo at https://doi.org/10.5281/zenodo.
3478344.

64

https://doi.org/10.5281/zenodo.3478344
https://doi.org/10.5281/zenodo.3478344
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Figure 4.1.: Schematic of the NN architecture used in this work. The input layer consists
of 52 reflectivity values at discrete qz positions. The output layer consists of
4 sample parameters: 3 film parameters (thickness, roughness and SLD) and
one substrate parameter (thickness of the native silicon oxide). All layers are
fully connected with the next by weights that are randomly initialized and
then optimized. Figure adopted from [103].
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the minimum and maximum values of the training data so that the loss function is
unitless MSE for all thin film parameters.

To keep track of the performance of the model during training and to judge its
ability to generalize and yield good results on data that is not included in the training
set, its accuracy was evaluated with independently generated validation data. After
every epoch, the trained model computes the output of the validation data and the
validation error is calculated using the same error function as for the training set.
In general, a validation error that is much higher than the training error signifies
that the network is overfitting on the training data. On the other hand, if the
validation and training errors are very similar, the capacity of the model might be
too low to capture important features in the data. The training and validation errors
shown in Fig. 4.2 are representative of a typical training session of the NN described
above. Even though the training and validation loss could be further reduced by
an order of magnitude through longer training, lower accuracies on experimental
data were observed when the model was trained for more than 60 epochs. The
reason for this is that the performance on simulated data is not a perfect estimator
for the performance on experimental data. With increasing training time, the NN
becomes more optimized for features that are only present in the simulation, to the
detriment of common features shared by both simulation and experiment. This can
to some degree be remedied by adding noise to the training data, which is explored
in more detail in Chap. 6. Here, the model with the lowest validation loss within 60
epochs was used to achieve a trade-off between a low training loss and overfitting.
This method is called early stopping and is a common regularization technique, as
described in Sec. 3.6. While overfitting is a general issue of many ML problems, the
number of epochs after which it occurs can vary strongly for different types of data
and NN architectures. Thus, the optimal number of epochs has to be determined
empirically for a given problem and is likely to depend also on the quantity and
quality of training data and its similarity to the experimental data.

One of the most important factors that influence the performance of a given NN
architecture is the quality and choice of the training data. It is crucial to have a
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Figure 4.2.: Characteristic training and validation error during training of the NN demon-
strated in this study. Since the validation error is very close to the training
error, there is likely no overfitting with respect to the validation data. Figure
adopted from [103].

sufficiently large and varied data set for the network to find a generalized solution
over the entire parameter space. Ideally, a large training dataset of experimental data
with precisely labeled thin film parameters should be available for training, validation
and testing of the NN model. However, since it is unfeasible to measure and fit the
number of reflectivity curves necessary for training, simulated training and valida-
tion data was used. In total, 200,000 XRR curves with a 4:1 training/validation split
were simulated using an adaptation of the optical matrix method [119, 120], which is
a computationally more efficient alternative to the recursive Parratt formalism [71]
(see Subsec. 2.2.4 for more details). For this purpose, parts of the Refl1D source
code (Copyright 2006—2011, University of Maryland) were used [93]. The sample
structure was assumed to consist of three layers: Si, SiOx and the deposited thin
film. The ambient medium was assumed to be vacuum. The interface roughness was
assumed to follow the Névot-Croce model as described in Subsec. 2.2.5. The rough-
ness of Si/SiOx substrates is known to be very low, and thus, a constant roughness
for the SiOx and Si layers of 1 and 2.5 Å, respectively, were assumed. Furthermore,
the SLDs of those layers were assumed to be constant with values of 17.8×10−6 Å−2

and 20.1×10−6 Å−2, respectively. The parameters of thickness, SLD and roughness
were uniformly distributed within the generated training data. For the deposited
film, the ranges of thickness and SLD were 20–300 Å and 1–14×10−6 Å−2, respec-
tively. Training data with a film thickness below 20 Å were excluded since, owing
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to their ambiguity given the used qz range, they were the most difficult for the NN,
and by removing them the accuracy on the rest of the data could be improved. The
range of the film roughness was from 0 Å to half the film thickness, but limited to
60 Å. The thickness of the native oxide layer was assumed to be within the range
of 3–30 Å. The reflectivity curves were simulated in a qz range of 0.01–0.14 Å−1 at
52 equally spaced points, which is comparable to the resolution of our experimental
data. The small qz range was chosen to avoid conflicts with Bragg reflections and
corresponding Laue oscillations, which are not part of the box model.

For the performance evaluation of the NN, experimentally measured XRR curves
of real-time growth of diindenoperylene (DIP), copper(II)-phthalocyanine (CuPc)
and α-sexithiophene (6T) on silicon substrates with a native oxide layer were used.
Appropriate footprint corrections and normalization were applied to the data before
use. The output of the model was judged against a conventional LMS fit that was
performed manually on 20 % of the curves. The rest of the film parameters were
linearly interpolated within one measurement. The fit was performed with six open
parameters: the thickness, roughness and SLD of the deposited film, the thickness
and roughness of the oxide layer, and the roughness of the silicon substrate. For CuPc
and 6T, a thin void layer with a thickness of 3 Å and a roughness of 1 Å between the
substrate and the film was included. This was done because, for some organic thin
films, the electron density (and thus SLD) at the interface with the substrate is lower
than in the bulk, and including a void layer with a finite roughness improves the fit
quality. In these cases, the NN model is intentionally simpler than the manual fit,
but since the void layer is thin compared with the deposited film, it is possible to
directly compare the film thicknesses obtained from both the NN and the LMS fit.
The densities of the silicon and its oxide layer were assumed to be constant across
all experiments as described above. In order to make all XRR curves compatible
with the same fixed size of the input layer, the reflectivity curves for all experiments
were interpolated on a logarithmic scale to the same 52 qz values without significant
change in curve shape.
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4.3. Performance comparison to conventional LMS
fitting

To evaluate the accuracy of the NN model, its performance was tested on two
datasets. The first consisted of 20,000 independently simulated curves with the same
parameter range as the training data. The second consisted of the five experimental
real-time XRR datasets described before. In the case of the simulated data, the mean
average percentage errors of the film thickness, roughness and SLD were 8, 16 and
6 %, respectively. Although already quite good, these metrics reveal that for this NN
model, there is still a significant portion of curves with a large error. Furthermore,
within the given qz range, it seems to be intrinsically more difficult to correctly de-
termine the roughness than the other two parameters. Since the synthetic test data
was generated using the same process as the training data, we cannot expect better
performance on data that was generated using a different process, such as experi-
mental data. Furthermore, since the parameter distribution of the simulated test
data is different from that of the experimental test data, the mean errors of the two
are not directly comparable. In Chap. 5 it will be shown that the simulated data
contains a lot of featureless curves which might inflate the average error somewhat.
While a further reduction of the training and validation loss could be achieved in
principle, e.g. by training for more epochs, it was observed that this generally leads
to a decrease of the performance on experimental data. This means that the training
loss cannot necessarily be used to estimate how the NN will perform on experimental
data, and the training process is ultimately limited by the fact that the simulation
does not perfectly describe the experiment.

For the performance evaluation with the experimental data, the film properties
determined by the model were compared with a manual LMS fit using a genetic
algorithm (GenX [96]). From hereon, this manual fit is considered to be the ground
truth. The studied systems were two DIP films, one CuPc film and one 6T film,
each grown at 303 K, as well a third DIP film, grown at 403 K. Three out of five
of these data sets have already been analyzed and published (DIP 303 K [9], DIP
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4. Analysis of reflectivity data using neural networks

Figure 4.3.: Fitting performance of the NN model on a DIP film grown at 303 K with a de-
position rate of 1 Å min−1. (a–c) Comparison of the film parameters predicted
by the NN with results from least mean square fitting with human supervision
at different times during growth. The shaded area marks films with thicknesses
below 20 Å where the network has not been trained and consistently predicts
thick films with high roughness. (d) Overlay of the experimental XRR data
with data simulated using the parameters predicted by the NN during different
times during growth. Figure adopted from [103].
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Table 4.1.: Mean absolute percentage error and standard deviation of the predictions on
experimental XRR curves with respect to the values obtained via a conventional
LMS fit with manually set bounds and starting points. Predictions of films with
a thickness below the training range of the NN (<20 Å) and high roughness
(>30 Å) were excluded. DIP 303 K (1) is shown in Fig. 4.3, all others are shown
Appendix A. Table adopted from [103].

DIP 403 K DIP 303 K (1) DIP 303 K (2) CuPc 303 K 6T 303 K all

thickness (17±20) % (4±4) % (6±9) % (16±13) % (4±3) % (11±10) %
roughness (20±14) % (12±11) % (15±11) % (26±18) % (16±11) % (18±13) %
SLD (11±9) % (3±2) % (9±8) % (6±5) % (10±6) % (8±6) %

403 K [88] and 6T [86]). For more details on the origins of the data, see Appendix F.
A performance comparison for one DIP film grown at 303 K is shown in Fig. 4.3a–c
(similar plots for the other 4 datasets can be found in Appendix A). It is immedi-
ately apparent that, for most of the series, the determined values are close to the
ones obtained via the manual LMS fit. It is important to note that this is already a
remarkable achievement, since the NN has no information about any temporal cor-
relation between the XRR curves, which is the kind of knowledge a researcher would
use when selecting bounds and starting points for an LMS fit. Furthermore, the
output for each XRR curve was obtained on average within 77 ms when using just
a single curve as input, and within 0.03 ms/curve when using 20,000 curves at once.
Compared with a manual fit, this is orders of magnitude faster and can compete with
the speed at which modern 2D detectors operate. Also, after training, no additional
input was necessary. This makes it in principle possible to determine film properties
during measurements in real time without the need for human supervision.

Fig. 4.3d shows an overlay of experimental reflectivity data with simulated curves
using the determined film parameters at different times during growth. In general,
the curves show a good agreement, which indicates that the determined parameters
are close to the real ones. Among all the tested data, the NN performed worst on films
with low thickness and thick films with high roughness. This is a general problem
that affects all fitting methods, since the corresponding XRR curves do not have
pronounced features, such as Kiessig oscillations, and are thus difficult to distinguish
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4. Analysis of reflectivity data using neural networks

from each other (see Chap. 5). In a conventional LMS fit, this situation can sometimes
be remedied by imposing strict boundaries which limit the fit parameters to what
is experimentally expected. This method, however, is only indirectly available to
the type of FCNNs used here by tuning the range and distribution of the training
data. Though it is ultimately desirable to also reliably fit these curves using our NN
approach, it is clear that any fitting result based on data with a higher amount of
ambiguity will also have a higher level of uncertainty.

Tab. 4.1 shows the mean average percentage error of the NN output when com-
pared with the values determined via the manual fit, excluding films with thicknesses
below 20 Å. Similar to the results for simulated data, the error is highest for the film
roughness and lowest for the SLD. However, on average, the accuracy on experimen-
tal data is 2–3 percentage points lower in all three categories. There are likely several
reasons for this: firstly, there is already an error attached to the ground truth pa-
rameters that were extracted via a manual fit. Therefore, the errors of both the LMS
and NN fit contribute to the total error. This is not the case for the simulated test
data, where the underlying simulation parameters are known. Secondly, and most
importantly, the simulated training data differs from the experimentally measured
data with regard to finite experimental resolution, noise and other experimental ar-
tifacts. Furthermore, it is reasonable to assume that the chosen theoretical model
does not perfectly describe the physical reality. As a result, the training data may
contain features that the NN relies on for its heuristic prediction but are not present
in the experimental data.

Apart from relying on these metrics, the general physical validity of the deter-
mined parameters can be confirmed by considering knowledge about the measured
system and the experiment. Out of the three parameters, the thickness is the easiest
to verify, since in all experiments the films were grown at a constant rate. This
expected linear behavior is obtained for all experiments and coincides perfectly with
the LMS fit. The obtained thickness values can also be verified to a high degree
of certainty by considering the periodicity of the Kiessig fringes. In addition, the
obtained SLD shows the qualitatively expected behavior of a continuous increase
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during the beginning of the thin-film growth with saturation at a value that is some-
what lower than the SLD of the solid-state crystal. This indicates the transition from
a bare substrate to an organic thin film with a constant in-plane-averaged electron
density. Among the three determined properties for each experiment, the roughness
evolution is arguably the most difficult to judge, since it strongly depends on the
specific molecular system and on several important experimental parameters, such
as the growth rate and the substrate temperature [5, 74]. In the studied systems,
however, the roughness is expected to increase overall for higher film thicknesses,
which is a behavior observed for the predictions from all five datasets.

4.4. Conclusions from this chapter
This chapter demonstrated how a straightforward NN model with fully-connected
layers can be used to extract the film thickness, roughness and density parameters
from real-time reflectivity data of thin films. The NN model was trained on simulated
data and tested on simulated and experimental data. Although the accuracy was
lower on the experimental data, it still achieved high accuracies with a mean absolute
percentage error of 8–18 % with respect to the result determined via a manual fit.
Importantly, among the three parameters, the film roughness was the most difficult
to determine for the model in both the synthetic and the experimental data. While
the accuracy on synthetic data could in theory be increased by training the model for
longer, this did not translate to improved accuracy for the experimental predictions.
Thus, Chap. 5 and Chap. 6 focus in part on generating better training data that
more accurately represents the experiment and allows training without overfitting
to features that are only present in the simulation. Nevertheless, it is important
to understand and improve the results on simulated data, since they essentially
represent the upper limit of what can be expected in terms of accuracy.

While the NN model shown in this chapter only represents a first proof of con-
cept, the demonstrated performance would already be sufficient for a preliminary
screening of reflectivity data before further analysis. However, the NN predictions
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sometimes contained significant outliers due to the sensitivity to experimental arti-
facts. Successful strategies to remedy this are discussed in Chap. 6. Furthermore,
the extremely fast computation times of 0.03–77 ms per curve and the fact that,
after training, no further user input is needed mean that this approach is perfectly
suited for in situ applications, such as monitoring film parameters during real-time
measurements, as is demonstrated in Chap. 6. In addition, this approach is easily
transferable to neutron reflectivity data, however, some important differences, such
as the different cross sections of neutrons (coherent as well as incoherent) need to be
taken into account, which is discussed in Chap. 5.

74



5. Neural network performance in
the light of challenging cases‡

5.1. Introduction
The previous chapter introduced the concept of using FCNNs for the fast analysis
of XRR data. The goals of this chapter are to extend the discussed concepts to NR
data by addressing its differences compared to XRR data and to identify pathological
experimental conditions that are detrimental to the application of ML techniques.
These conditions are discussed in the light of three types of challenges with regard
to the measured data that are especially (but not exclusively) relevant in the context
of NR: 1) Reflectivity curves without strong features that have a low information
content, 2) curves without a TRE, and 3) data with significant noise or background.

The results of this chapter show that applying different types of random noise
and background intensities to the training data results in a NN model that is more
robust towards these perturbations when determining thin film properties, but still
struggles with certain particularly difficult edge cases. The previous chapter assumed
a sample with 4 undetermined parameters, i.e. a completely undetermined thin
film on top of a fully-characterized Si substrate with an SiOx layer of undetermined
thickness. Furthermore, all SLDs in the system were confined to positive numbers. As
mentioned in Sec. 2.1, this is a reasonable assumption for X-rays, however, scattering

‡This chapter is largely based on the publication Greco et al. 2021 [107]. The design of the
neural network and the training data were developed by A. Greco. M. Skoda helped develop the
training data modifications from a neutron scattering perspective. All data analysis was performed
by A. Greco. A. Gerlach provided computational support and F. Schreiber supervised the project.
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Table 5.1.: Parameter ranges for simulated training, validation and test data. Table
adopted from [107].

thickness [Å] roughness [Å] SLD [10−6Å−2]
ambient — — 0
layer 20–300 0–60 -8–16
substrate — 0–10 -8–16

with neutrons can also produce negative SLDs. Thus, this chapter will investigate
the performance of the NN assuming an entirely undetermined film and substrate
(in total 5 open sample parameters), including negative SLDs.

5.2. Training data simulation
5.2.1. General simulation parameters
The training and validation data used in this chapter were simulated using a model of
a single-layer on a substrate with a total of 5 open parameters: substrate roughness,
substrate SLD, layer thickness, layer roughness and layer SLD. The ambient SLD was
assumed to be 0 (e.g. air/vaccum). For the training and validation of the NN, 3×106

and 2×104 parameter sets were generated, respectively. The values of each set were
generated within the ranges given in Tab. 5.1 with a “bolstered” sampling density
towards the limits of each parameter range, as shown in Fig. 5.1. This was done to
make the local density of sampled values near the limits more similar to the density
towards the center of the distribution. The number of generated parameter sets was
chosen to cover as much of the parameter space as possible while still maintaining
technical feasibility in terms of training time and occupied memory. The range of
possible SLD values for the substrate and layer was specifically designed to encompass
a large spectrum of negative and positive SLDs of the most common elements [158].
This was done to investigate how different combinations of negative and positive
SLDs affect the prediction performance of the NN.

76



5.2. Training data simulation

min maxParameter value
0

2000

4000

6000

8000

Nu
m

be
r i

n 
tra

in
in

g 
da

ta bolstered
uniform

Figure 5.1.: Comparison of a uniform distribution with a “bolstered” uniform distribution.
In the latter, 15 % of the total number of samples are sampled from Gaussian
distributions at the limits of the parameter range. This was done to reduce
the effect that data points towards the center of a distribution are often better
fitted than the ones at the limits.

From the generated parameter sets, reflectivity curves were simulated using the
same implementation of the Matrix method as in Chap. 4. The simulated qz range
was restricted to a range of 0.01–0.3 Å−1 in order to avoid qz ranges where Bragg
reflections and Laue oscillations might appear in real measurements, since they are
not described by the slab model. Thus, we can be sure that the NN predictions are
only based on Kiessig fringes and other features related to the layer structure which
would be present in an experimentally measured curve. Within this qz range, the
reflected intensity values R ∈ R100 were simulated at 100 equally-spaced discrete
points q ∈ R100. This number was chosen to be comparable with common point
densities of experiments, and was increased from the previous 52 points to avoid the
need to downsample data that was measured with higher point density, as is the case
for the real-time XRR measurements discussed in Chap. 6.

In contrast to the training procedure in the last chapter, different types of noise
and background intensities were added to each curve when a minibatch was drawn
from the training set. This means that every time the NN encounters one of the
training curves, the curve is modified with different noise and background. This step
is crucial to avoid overfitting and to prevent the network from learning heuristics
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that do not work on imperfect data by forcing it to learn how to denoise the input
data. The perturbations added to the data were Poisson noise, statistical noise, curve
scaling and constant background. Each type of curve modification is described in
detail in the following section.

5.2.2. Training data modifications
5.2.2.1. Poisson noise from counting statistics
Statistical noise in scattering data results from the counting statistics of scattered
particles arriving at the detector and it is dependent on the expected counting rate I,
i.e. the recorded intensity. Since this noise generally follows a Poisson distribution,
the noise of a simulated reflectivity curve can be calculated by replacing each intensity
value Ri with a random value picked from the distribution

ps(x) = pp(x; sRi)
s

(5.1)

where s = I0 is the theoretical maximum number of counts at total reflection (for a
monochromatic experiment) and pp is the Poisson distribution

pp(x; I) = NxeI

x! . (5.2)

Since the simulated intensities R only range from 0 to 1, they must be scaled to
values which could occur in an experiment I = sR before calculating the noise. In
this study, for every curve, a scaling factor (corresponding to the flux) was randomly
chosen on a logarithmic scale within s = [106, 108] to represent different experimental
conditions. For the upper limit of s = 108, there is no noticeable noise in the chosen
qz range anymore. An example of a curve with a noise level of s = 106 is shown in
Fig. 5.2a.
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Figure 5.2.: Example of a simulated reflectivity curve with different noise and background
applied to it. a) The ground truth curve and the same curve with Poisson noise
with a level s = 106 as well as a background of b = 10−5. b) The same curve
with curve scaling and uniform noise applied to it, respectively. c) Comparison
of the ground truth with a curve with all 4 modifications applied to it. Figure
adopted from [107].
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5.2.2.2. Uniform noise
Since the statistical noise mainly affects low-intensity regions in a reflectivity curve,
the first half of the curve, i.e. low-qz features and in particular the TRE, remains
mostly unaffected by it. Despite this, experimental data may contain noise or other
small deviations in this region. For example, in time-of-flight (TOF) neutron scat-
tering experiments, the intensity given by the normalized reflectivity curve is not
necessarily proportional to the counts on the detector, since the incoming beam
generally has an energy spectrum with a non-uniform distribution (e.g. Maxwell-
Boltzmann). The final intensity of the curve is then obtained by normalizing the
number of counts in each channel (i.e. qz value) with the corresponding incoming in-
tensity of that energy. This can effectively lead to worse counting statistics in regions
with seemingly higher intensity, such as near the TRE, compared to lower intensity
regions. Furthermore, the beam shape and random errors in the measurement an-
gle typically lead to non-negligible deviations of the intensity. This is particularly
pronounced near the TRE, where slight errors in the angle might translate to large
errors in intensity.

To make the NN robust against these types of errors, a random scaling factor
αi is multiplied to each intensity value Ri of each input curve R, so that the new
intensity is given by

R∗
i = αiRi (5.3)

where each element of α ∈ R100 is uniformly sampled from the range [0.7, 1.3]. An
example of a curve with uniform noise applied to it is shown in Fig. 5.2b.

5.2.2.3. Curve scaling
In order to analyze reflectivity data, the measured intensity is typically normal-
ized to the intensity at total reflection. For monochromatic experiments, this step
is preceded by an angular dependent footprint correction. For polychromatic ex-
periments (e.g. TOF), the normalization must additionally take into account the
above-mentioned energy spectrum, usually obtained via measuring the direct beam.
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Both of these corrections produce an error on the normalization procedure (which
itself has a finite accuracy) and may result in distortions of the data. This effect is
further exacerbated if there is no TRE, since the intensity at total reflection is not
directly available, i.e. the naturally given absolute scale of the TRE is missing.

To make the NN robust against these slight distortions, during training, every
input curve R is multiplied by a random scaling factor β, so that the new curve R∗

is given by
R∗ = βR (5.4)

where β is uniformly sampled from the range [0.9, 1.1]. An example of a curve with
random scaling applied to it is shown in Fig. 5.2b.

5.2.2.4. Residual background
Both X-ray and neutron scattering experiments contain background intensity stem-
ming from various sources, such as background radiation or detector noise. Within
the qz range discussed in this study (max. 0.3 Å−1), for XRR these effects are usually
negligible compared to the measured intensity of the reflected beam.

In addition, neutron reflectivity data usually contains background resulting from
incoherent scattering [3]. In practice, most of this background is already removed
during the data reduction step, e.g. via calibration with a pure transmission measure-
ment. During data analysis, the residual background is then routinely approximated
by a constant value, although more complex models exist [159].

To account for this, the residual background in the data was approximated by a
qz-independent array of values b ∈ R100 with normally distributed fluctuations with
mean b and standard deviation σb = 0.1b. The fluctuations were added to account for
random deviations in the background. Thus, for a given curve R, the background bi

added to each intensity value Ri was randomly picked from the normal distribution

pb(x; b, σb) = 1√
2πσ2

b

exp
(
−(x− b)2

2σ2
b

)
. (5.5)
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Figure 5.3.: Architecture of the fully-connected NN used in this chapter. The addition of
noise and background to the input data during the modification step was only
performed during training. Figure adopted from [107].

In this work, the background level of each curve was randomly chosen on a logarithmic
scale within b = [10−7, 10−4]. An example of an added background with b = 10−5 is
shown in Fig. 5.2a.

5.3. Neural network design and training
The NN used in this chapter is a fully-connected model with 100 input neurons, 3
hidden layers with 1000 neurons each and 5 output neurons as shown in Fig. 5.3.
Compared to Chap. 4, the number of layers is reduced and their width is increased
to simplify the NN architecture. The number of trainable parameters is roughly
twice as large to account for the more complex task. The input corresponds to the
reflectivity values R at 100 discrete points in qz space, as described in the previous
section. The output corresponds to the 5 open thin film parameters y ∈ R5 as
shown in Tab. 5.1. As an activation function, ReLU was chosen for all hidden layers.
During training, whenever a mini batch of 512 curves is drawn from the training
set, curve modifications are applied as described in Sec. 5.2. Then, each input Ri is
independently standardized by subtracting the mean R̄i and dividing by the standard
deviation R̃i across the entire randomly modified training set (determined before the
training). The standardized input is thus given by

R̂i = Ri − R̄i

R̃i

(5.6)
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with the mean
R̄i = 1

N

N∑
n=1

Rn,i (5.7)

and the standard deviation

R̃i =

√√√√ 1
N

N∑
n=1

(Rn,i − R̄i)2 (5.8)

where Rn is a curve from the training set of size N = 3× 106.
The output values yj were normalized by the greater absolute value of either the

minimum or maximum of their respective ranges given in Tab. 5.1. This effectively
confined all output values to a range from -1 to 1.

The ADAM algorithm [154] was used as an optimizer with the recommended
default parameters and a starting learning rate of 10−3. Furthermore, the learning
rate was reduced by half each time the validation loss stagnated for 10 consecutive
epochs in order to avoid skipping over narrow minima in the loss function space. The
MSE of the normalized outputs was used as the loss function. The NN was trained
on a GeForce RTX 2080 Ti GPU and an Intel® Core™ i5-9600K CPU for 175 epochs
with a training time of about 6.5 min per epoch, amounting to a total training time
of about 19 h.

To test whether the exclusion of featureless curves during training could boost
the overall performance of the model, two identical NNs as shown in Fig. 5.3 were
trained and compared. Model 2 was trained with the entire training set as described
in Sec. 5.2, while model 1 was trained with the exclusion of two subsets. The first
excluded subset contained all curves with a thickness of less than 20 Å. As was
shown in Chap. 4, films with low thicknesses tend to perform poorly due to the
chosen qz range, since the minimum resolvable film thickness is essentially limited to
2π/qmax = 20 Å. The second subset contained all curves where the SLD contrasts
between the layer and the substrate or the layer and the ambient SLD was less
than 1×10−6 Å−2. In these cases, the refractive index of the film layer is almost the
same as at least one of its adjacent media, leading to very few features. Fig. 5.4
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Figure 5.4.: Testing accuracy of two models trained with (model 2) and without (model 1)
low-contrast (LC) and low-thickness (LT) cases. Model 1 was used to produce
the results discussed in this chapter. Figure adopted from [107].

shows the prediction accuracy as defined in Subsec. 5.4.1 for both models and for
each parameter. Both models performed better when low-contrast (LC) and low-
thickness (LT) cases were also removed from the test set, however, model 1 showed a
higher accuracy on the entire test set. Fig. 5.5 also shows that the distribution of the
absolute error for model 1 is narrower for all parameters, i.e. closer to 0, especially
considering the two roughness parameters. Thus, model 1 was chosen for all further
analysis in this chapter.

The training and validation loss curves of model 1 are shown in Fig. 5.6. Overall,
the training and validation loss are almost identical to each other, with the validation
loss only being slightly higher after 70 epochs. The reason why this difference is so
small is that the training data is randomly modified with noise and background
during each epoch. This means that the network sees “fresh” curves every time,
enabling it to generalize better. Since epoch 147 showed the lowest validation loss,
the network parameters saved at this point were chosen for all further testing.
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Figure 5.5.: Absolute testing error of two models trained with (model 2) and without
(model 1) low-contrast (LC) and low-thickness (LT) cases. Model 1 was used
to produce the results discussed in this chapter. Figure adopted from [107].
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Figure 5.6.: Training and validation loss during training. The discrete downward steps
of the loss coincide with a reduction of the learning rate by a factor of 0.5.
The training was stopped after 175 epochs because the validation error did
not decrease further. The lowest validation error was observed at epoch 147.
Figure adopted from [107].

5.4. Results and discussion
5.4.1. Definition of the prediction accuracy
The performance of the trained NN was tested using 10,000 simulated reflectivity
curves that were generated within the same ranges as the training data, excluding
cases with low SLD contrast. The prediction error as a function of the ground
truth (GT) for each of the 5 thin film parameters is shown in Fig. 5.7. In order to
better quantify the performance of the NN, all predictions were separated into two
classes: those close to the GT were classified as “correct”, whereas all others were
classified as “incorrect”. The condition for which a prediction is considered “correct”
was defined for each parameter separately. For the thickness and roughnesses, all
errors smaller than 10 % of the GT or smaller than 3 Å were considered “correct”.
The absolute condition was added to avoid divergence for small GT values. For
the SLDs, all errors with an absolute value smaller than 1×10−6 Å−2 are classified
as “correct”. In Fig. 5.7, all “correct” predictions are colored green, whereas all
“incorrect” predictions are colored red. In the following analysis, the percentage
of correctly classified predictions out of all predictions will be used to discuss the

86



5.4. Results and discussion

performance of the NN model under different circumstances. From here on, we will
call this metric the prediction accuracy.

The prediction accuracy for each parameter of the 10,000 simulated curves is
shown in Fig. 5.8. The corresponding distribution of absolute errors can be seen in
Fig. 5.5 (model 1). For the entire test set, i.e. the full parameter space, the accuracy
of the individual parameters lies between 71–92 %, whereas the accuracy of all 5
parameters being correct at the same time is 48 %. The latter is arguably the most
important metric for the NN performance, since it represents the average likelihood
that the NN predicts all 5 parameters of an unknown curve correctly. Thus, in the
following, this metric will be the focus of the discussion and it will be compared for
different subsets of reflectivity curves within the test set.

5.4.2. Comparison of the prediction accuracy with the curve
mean squared error

For conventional curve fitting tools, often the MSE (or an equivalent metric, e.g. χ2)
between the data and the fitted curve is used to judge the goodness of the fit. This is
then used to find a solution to the inverse problem of inferring the correct thin film
parameters. However, in some cases, due to a very flat MSE surface with respect to
the fitted parameters, there exist many, equally well-fitting curves with different (and
potentially wrong) fit parameters. In these cases, reliably extracting the correct thin
film parameters is difficult or even impossible without any prior physical knowledge.

To identify especially difficult cases for MSE fitting heuristically, we can calculate
the logarithmic MSE between the GT curve RGT and the curve simulated from the
NN prediction R∗ as

EMSE = 1
d

d∑
i

(
log

(
RGT

i

)
− log (R∗

i )
)2
, (5.9)

where d is the number of measured reflectivity values. In this case, an MSE of 0.1
or lower can be considered an adequate fit, whereas an MSE of 0.01 or lower can
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Figure 5.7.: Prediction error of 10,000 simulated reflectivity curves as a function of the
GT for each of the 5 thin film parameters. For thicknesses and roughnesses,
errors below 3 Å and 10 % are considered correct. For SLDs, absolute errors
below 1×10−6 Å−2 are considered correct. Correct and incorrect predictions
are colored green and red, respectively. The gap around 0 for the layer SLD
results from the exclusion of low contrasts between the layer and the ambient
medium as described in Sec. 5.3. Figure adopted from [107].
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Figure 5.8.: Prediction accuracy of the NN for the entire test set as well as for 3 smaller
subsets where particularly difficult edge cases have been removed: 1) Removed
curves that are incorrect, but still have a very low MSE, 2) Removed curves
where both layer and substrate have a negative SLD (i.e. no TRE), 3) Removed
both cases of 1) and 2). By removing difficult edge cases, the accuracy of all
parameters being correct is increased from 48 % to 66 %. Figure adopted from
[107].

be considered a near perfect fit. In terms of the test set, 73 % of the predicted
curves have an MSE of 0.1 or lower and 46 % of 0.01 or lower. When comparing
these predictions to the GT, only 60 % of the curves with an MSE < 0.01 were ac-
tually predicted correctly according to our aforementioned criteria. Thus, about a
fourth of the predictions consist of wrong, but extremely well-fitting NN predictions
that look convincing to a visual inspection. Interestingly, most of these curves are
also completely monotonic, which means that these are curves without strong Kies-
sig oscillations. Strong Kiessig oscillations would ensure that the MSE surface is
not flat, therefore reducing the solution space drastically. Prominent reasons for a
lack of strong features are a low SLD contrast, very low film thickness compared
to the qz range or a high roughness compared to the thickness. Other studies have
shown that even in simple systems, certain combinations of SLDs and thicknesses
can mathematically lead to the same reflectivity curve due to the phase problem
[92]. However, there also exist other conditions that are harder to formalize and
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others have attempted to quantify the information content in reflectivity data using
Bayesian methods and information theory [160–162]. Moreover, when taking into ac-
count experimental boundary conditions, such as a limited qz range and experimental
errors, even mathematically different but similar solutions can be ambiguous.

Fig. 5.9a shows a curve from the test set with the corresponding prediction from
the NN with the SLD profiles shown in Fig. 5.9b. Although the MSE between the
two curves has a very low value of 0.004, the SLD profiles deviate significantly from
each other. While the substrate parameters are predicted almost perfectly, the film
thickness is off by 125 Å (42 %). The reason why both SLD profiles are reasonable
solutions is that the product of the film thickness and film SLD is the same for both
the GT and the prediction, i.e. 175 Å × 3 × 10−6 Å−2 = 300 Å × 1.75 × 10−6 Å−2.
This means that both films have effectively the same optical density, leading to
the same phase difference of the wave traveling through the film. This can also be
confirmed by looking at the description of the reflected intensity discussed in Sec. 2.1.
The example of a simplified box model in Eq. 2.51 shows that the reflected intensity
strongly depends on the product of film thickness and film SLD. Since there are no
visible Kiessig oscillations despite the high thickness of the film, it is likely that many
parameter combinations could produce a good fit.

Consequently, all curves that have a low MSE but are classified as incorrect most
likely fall into one of two categories: 1) The fit is actually close to the solution, but
falls just outside our accuracy margin. In these cases, the solution is likely already
near the MSE minimum and can be reached quickly via a simple gradient descent
refinement using the prediction as starting values. This approach will be introduced
in Chap. 6. 2) The MSE surface is very flat with regard to one or more parameters,
leading to multiple solutions with a similar MSE even for large deviations from the
GT. In these cases, the problem of fitting the data stems from the ambiguity of the
data itself, and hence it cannot reasonably be expected that the NN (or another
algorithm) can reliably find the true solution. Therefore, we chose to omit curves
from both categories for all following accuracy calculations because they are either
probably close enough for refinement or not expected to be feasibly solvable without

90



5.4. Results and discussion

0.05 0.10 0.15 0.20 0.25 0.30
q [1/Å]

10−7

10−5

10−3

10−1

Re
f e

ct
iv

ity

Log MSE: 0.004

(a)
ground truth
prediction

0 100 200 300
Height [Å]

−2.5

0.0

2.5

5.0

7.5

SL
D 
[1
0−

6 Å
−2
]

(b)
ground truth
prediction

Figure 5.9.: a) Example of a reflectivity curve and its corresponding NN prediction where
the MSE is very low although it is classified as incorrect. b) SLD profiles of the
GT and the prediction. Although the reflectivity curves fit perfectly, the SLD
profiles differ significantly in terms of the film thickness. The reason for this
is that the product of film SLD and film thickness is the same for the GT and
the prediction, i.e. 175 Å × 3 × 10−6 Å−2 = 300 Å × 1.75 × 10−6 Å−2. Figure
adopted from [107].
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prior knowledge. After removing those curves, the total accuracy on the test set (all
5 parameters correct) rose from 44 % to 58 %.

5.4.3. Influence of different SLD combinations on the prediction
accuracy

An essential part of reflectivity data is the presence of a TRE or a lack thereof. The
TRE is located at the critical angle which is related to the square root of the SLD
contrast ∆ρ as stated by Eq. 2.37. For thicker layers, qc is given by the SLD contrast
between the ambient medium and the layer. For thinner layers, qc is mainly affected
by the contrast between the ambient medium and the substrate. Thus, the TRE
contains direct information about the absolute SLDs in the system. Furthermore, it
gives a clear way of calibrating measured data, since it is expected that below the
TRE almost 100 % of intensity is reflected (not accounting for absorption).

To understand the effect of the TRE on the NN performance, the testing set was
separated into four different categories: 1) Both the substrate and layer SLDs are
positive, 2) only the substrate SLD is negative, 3) only the layer SLD is negative,
and 4) both SLDs are negative. In cases 1) and 3), a TRE is expected to be present
in the data since qc is positive for at least one SLD. Conversely, in the last case there
can be no TRE since qc is always negative. In case 2), the TRE depends on the layer
SLD, but typically a sharp TRE only forms for higher thicknesses.

The prediction accuracy on the test set for each of these four cases is shown
in Fig. 5.10. It is apparent that the accuracy drops drastically when both the layer
and the substrate SLDs are below 0, while for the other three cases it stays in a
similar range. When both SLDs are negative, the percentage of predictions where
all parameters are correct drops as low as 3 %. However, in contrast, for the rest of
the cases the accuracy is between 62 % and 74 %, which is above the average of 58 %
described in the last section. This shows that the NN seems to struggle specifically
with cases where there is guaranteed to be no TRE in the data. This hypothesis
is supported by the fact that in Fig. 5.7, the error of the substrate SLD drastically
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Figure 5.10.: Prediction accuracy for each of the 5 parameters and all 5 parameters to-
gether for each of the 4 investigated SLD combinations. The accuracy of all
parameters drops significantly when both the layer and the substrate SLD
are below 0. Figure adopted from [107].

increases for values smaller than 2×10−6 Å−2, which corresponds exactly to a TRE
at qc = 0.01 Å−1 which in turn is the lowest qz value used in this study. Thus, the
performance seems to be negatively impacted as soon as the position of the TRE
moves below our detectable qz range.

From this, we can conclude that during the training process, the NN model
learned to extract crucial information from the TRE, so the prediction performance
is adversely affected if this information is not available. This is not necessarily un-
expected, since the TRE is also an important feature for conventional data analysis.
Moreover, it is important to note that not only the prediction accuracy of the SLD
itself is adversely affected, but also all other parameters as well.

Of course, it would be desirable to increase the prediction accuracy also for curves
without a TRE. While ML models, such as NNs, can potentially extract information
and make inferences from measured data more efficiently than conventional analysis
methods, it is important to bear in mind that these methods are not able to restore
missing information. Thus, data with less information encoded in it will always
result in lower prediction accuracies. In order to extract the maximum information
possible from difficult measurements, in might be useful to train models that are
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specialized towards specific, difficult edge cases. For the purpose of discussing the
influence of different noise sources on the prediction accuracy in the following section,
the low-performing curves where both SLDs < 0 were removed from the test set.

5.4.4. Influence of noise and background on the prediction
accuracy

Every reflectivity measurement contains a number of imperfections such as statistical
noise, background, the angular and energy resolution, the beam profile, the slit
settings, the beam divergence and the beam footprint. Thus, training ML models on
simulated data without any of these imperfections is likely going to lead to overfitting
to features that might be obfuscated in real data. Out of these imperfections, this
section focuses on the four different sources of noise and background described in
Sec. 5.2 and discusses their effect on the prediction accuracy. The data modifications
contained 5 different background levels b = {0, 10−7, 10−6, 10−5, 10−4}, 5 different
Poisson noise levels (equivalent to incident intensity) s = {off, 106, 5×106, 107,
5×107}, 2 uniform noise levels (on/off) and 2 scaling levels (on/off), resulting in a
total of 100 different combinations. Each type of modification is described in Sec. 5.2.

For each of the combinations, modified variants of the original 10,000 test curves
were created and the subsets of difficult edge cases described in the previous sections
were removed. For the unmodified cases, the percentage of correctly predicted curves
reached 66 %, which represents the maximum accuracy achieved in this chapter. The
dependence of the prediction accuracy on each of the modifications is summarized
in detail in Fig. 5.11 (similar plots for the individual parameters can be found in Ap-
pendix B). In the top plot of the figure, each point refers to the prediction accuracy
of a subset of test curves with a specific noise and background combination. The
four different colors/symbols distinguish between the four combinations of uniform
noise and curve scaling being turned on or off, respectively. The horizontal axis dis-
tinguishes between the 25 combinations of Poisson noise and background levels. The
combination of each noise level and background level can be read from the bottom
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Figure 5.11.: Summary of the prediction accuracy of the test curves for 100 different noise
and background combinations. Each point in the top panel refers to the pre-
diction accuracy of test curves with a specific noise and background combina-
tion. The four different colors/symbols distinguish between the four binary
combinations of uniform noise and curve scaling being turned on or off, re-
spectively. The horizontal axis distinguishes between the 25 combinations of
Poisson noise and background levels. The combination of each noise level
and background level can be read from the bottom two plots. The gray line
(crosses) indicates the added background b for a given point along the hor-
izontal axis, with the background periodically increasing from left to right.
Similarly, the purple line (diamonds) indicates the incident intensity s that
was used to calculate the Poisson noise. Since lower intensities mean higher
relative noise, the noise added to the curves increases from left to right. Fig-
ure adopted from [107].
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two plots. The gray line (crosses) indicates the added background b for a given point
along the horizontal axis, with the background periodically increasing from left to
right. Similarly, the purple line (diamonds) indicates the incident intensity s that
was used to calculate the Poisson noise. Since lower intensities mean higher relative
noise, the noise added to the curves increases from left to right.

It is apparent that uniform noise and added background have the strongest im-
pact on the prediction accuracy, whereas curve scaling and Poisson noise only have a
minor influence. When curve scaling is turned on, the accuracy is decreased by 1–2
percentage points independent of any other modification. In contrast, Poisson noise
seems to only play a role for incident intensities of 107 or lower, with its strongest
effect at 106 where the accuracy is reduced by about 5 percentage points compared
to the case without Poisson noise. When adding background to the curves, the per-
formance remains almost unaffected for background levels up to 10−6. However, for
levels of 10−5, we observe a small decrease in accuracy and for 10−4, the accuracy is
reduced by 30 percentage points compared to the unmodified curves. This strongly
suggests that there is a critical value above which an additive constant background
will obfuscate too much information and therefore make a lot of the curves unsolvable
for the NN.

It is important to note that the accuracy drops by about 20 percentage points
when uniform noise is turned on. The difference between Poisson noise and uniform
noise is that the latter also affects regions of high intensity, such as the TRE. Thus,
the reason why the detrimental effect of uniform noise is relatively strong might be
related to information that is encoded in the TRE as described in the last section. By
modifying the TRE, some of the information might be lost. The same is likely true
for the curve scaling, since it also affects the TRE, but the scaling factor might not
be large enough to produce a strong effect. Interestingly, the decrease in accuracy
caused by curve scaling and uniform noise compounds with the effect of a high
background. This suggests that these effects are independent of each other, since
a high background mainly affects high-qz features while scaling and uniform noise
affect mainly low-qz features (e.g. the TRE).
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5.4.5. Other challenging cases and prospects
In addition to the issues discussed before, further challenges may arise from more
complex situations given by the systems under study. First of all, we have assumed a
box-like SLD. If the SLD exhibits a profile incompatible with the approximation by a
box, e.g. a sloping or graded profile, further and more elaborate training is most likely
needed. Second, samples that consist of multiple layers (i.e. beyond one layer on a
substrate) are not included in this study. The incorporation is in principle straight-
forward, but of course the solution space increases with the number of parameters,
and difficulties are expected when different combinations or orders of layers result
in similar XRR or NR curves. In these cases it might be necessary to constrain the
solution space of the inverse problem by providing any available a priori knowledge
about the studied system to the NN. This is discussed further in Chap. 7.

For some applications, it is common to combine multiple data sets during anal-
ysis. This is certainly possible for ML approaches, but it requires a broader training
strategy. One application may be reflectivity time series during growth, annealing
or oxidation experiments, where it is beneficial to fit all XRR or NR curves of a se-
ries together. By applying boundary conditions, such as demanding a monotonically
increasing thickness, the ambiguities in the analysis can potentially be reduced. An-
other example concerns NR from magnetic structures where several data sets with
different polarization (↑↑, ↑↓, etc., as well as spin flip and non-spin flip) need to be
fitted simultaneously [87], possibly with prior knowledge from XRR measurements
to determine the chemical structure. An example of this approach has also been
demonstrated by others [108]. Thus, there is no fundamental reason why ML could
not be employed for other methods as long as the approach is sufficiently tailored to
the data.

5.5. Conclusions from this chapter
This chapter provides insights into the behavior of NNs when predicting thin film
parameters from reflectivity data in the light of certain challenging cases. These in-
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sights are necessary to understand which types of reflectivity curves can be processed
easily by the NN and which are more difficult. This understanding will help further
improve and adapt the design of machine learning models to the specific needs of
scattering data for which a simple inversion is not possible. The results show that 3
subsets of the reflectivity data seem to be particularly difficult for the NN: 1) Curves
with ambiguous solutions where the MSE surface between the curve and the fit as a
function of the parameters is flat, 2) curves where the SLD of both the layer and the
substrate are negative (i.e. no TRE), and 3) curves with noise on low-qz features or
particularly high background.

When tested on noise-free data, the trained NN was able to correctly predict all
5 thin film parameters 48 % of the time (individual accuracies ranged from 71–92 %).
It was identified that subsets 1) and 2) mainly consist of curves that lack information-
rich features such as oscillations or a TRE. Thus, by removing these cases from the
test set the accuracy increased to 66 % (82–93 % for individual parameters). By
further studying the influence of different noise and background sources, we showed
that, if applied to the training set, most curve modifications do not significantly
impact the prediction accuracy. However, if a critical threshold of 10−4 for the
background was crossed, the accuracy dropped significantly. Fortunately, this value
is rarely exceeded in experimental data, since high backgrounds are usually already
subtracted at the data reduction step, leaving only a smaller residual background.
Thus, background is not likely to play an important role when using the NN on real
data (within the studied qz range). Furthermore, when moderate uniform noise was
applied to the data, the performance of the NN was noticeably affected due to its
effect on the TRE. This further shows the importance of the TRE as a source of
information and, together with the SLD dependence of the performance, indicates
that the NN model has learned to extract critical information from the TRE and is
picking up on real physical features of the data.

To further improve the NN performance in the future, there are two clear strate-
gies, both of which rely on a narrowing of the task. Firstly, one might choose to
narrow the task of the NN to cases with well-defined solutions and remove classes
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of difficult edge cases from the training set. This approach might be favorable when
the experimental data is expected to have clear features where training with data
without clear features would only serve to make the task harder without any benefit.
This is also the approach taken in Chap. 6. A second approach might be to select a
subset of difficult edge cases that are most likely to appear in the experimental data
(such as curves without a TRE) and create a training set that focuses on these cases.
The present work may also give an indication about the information content of dif-
ferent reflectivity curves. Under the premise that NN is able to extract close to the
maximum amount of information from a reflectivity curve, the difficult curves identi-
fied herein may also be curves with a low amount of physical information. Therefore,
simulations and predictions using the shown NN may help with experimental design
through identifying ambiguous and difficult measurement results and then avoiding
these parameter combinations or complementing them with additional information.

Lastly, since the results of this chapter are based on simulated data, future efforts
should also be focused on translating these achievements to experimental data. To
this end, it is necessary to investigate other data imperfections such as a finite angular
and energy resolution and the influence of the beam shape and their effect on the
prediction accuracy. Furthermore, Chap. 6 will also show that experimental data is
necessary to evaluate how much noise should be added to the training data.
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6. The analysis pipeline of the
mlreflect package‡

6.1. Introduction
The principle of applying NNs to the task of reflectivity data analysis has been dis-
cussed in Chap. 4 while Chap. 5 discussed potential challenges as well as different
ways of preprocessing the data. This chapter focuses on the differences between
simulated and experimental data and how this knowledge can be used to further op-
timize the obtained results. Furthermore, the lessons learned from this and previous
chapters are combined in a Python-based reflectivity data analysis package called
mlreflect that can reliably predict the thickness, roughness and SLD of a thin film
layer. The performance of this pipeline was tested on a large experimental dataset of
242 XRR curves from different organic thin films on Si/SiOx substrates by comparing
the result of the pipeline with manually supervised LMS fits that include physical
knowledge and carefully chosen boundary conditions. This is a quantitative and
qualitative difference compared to other studies [103–109, 112], where most or all
of the performance analysis is done with simulated data. In this context, the effect
of experimental deviations from the theory on the training and prediction quality
of the NN will be discussed. Using an example curve, it will be shown how the

‡This chapter is largely based on the publication Greco et al. 2022 [111]. The mlreflect package
was developed by A. Greco. E. Edel helped implement the FFT described in Sec. 6.6. All data
analysis was performed by A. Greco. The samples used for testing were prepared and measured by
A. Hinderhofer, C. Lorch, S. Kowarik, I. Dax, N. Rußegger and A. Greco, as described in Tab. F.1.
F. Bertram and C. Shen helped implement the mlreflect package at P08/DESY. A. Gerlach provided
computational support and F. Schreiber supervised the project.
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extremely fast prediction speed of the NN can also be leveraged to compensate for
small experimental errors.

Moreover, mlreflect was developed as part of a project funded by the BMBF
and was made available on the package repository of the Maxwell cluster at DESY.
It was successfully employed at beamline P08 for the in situ analysis during the
annealing of organic thin films. The package and source code are also fully available
online on GitHub and the Python Package Index (PyPI) as detailed in Appendix D.
Everything described in this chapter refers to version 0.21.0 of mlreflect which is
archived on https://doi.org/10.5281/zenodo.6467048.

6.2. Description of the analysis pipeline
6.2.1. Overview
The NN is implemented using TensorFlow [30] and the reflectivity data is simulated
using the the matrix formalism implemented in the Refl1d package [93], as described
in previous chapters. After the experimental data is read, the workflow of the ml-
reflect package can conceptually be separated into three steps: I. preprocessing, II.
prediction and III. postprocessing, as depicted in Fig. 6.1. Each of these steps is
described in the following.

6.2.2. Preprocessing (step I.)
6.2.2.1. Reading of the raw data
Before any data can be processed, it has to be read from its raw format, i.e. how it
was saved by the measurement software. The current version supports the reading
of raw data in the SPEC and FIO formats through the SpecLoader and FioLoader

classes of the xrrloader subpackage.
SPEC1 is a well-established software package for instrument control and data

acquisition that has been in use at many large-scale facilities and university labo-
1https://certif.com/
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Figure 6.1.: A schematic description of the analysis pipeline. The pipeline consists of three
main steps: I. preprocessing, II. parameter prediction via the NN and III.
postprocessing. Step I. includes geometrical and other experiment-specific cor-
rections. The data is also normalized, transformed into qz space, interpolated
and standardized. In step II., the preprocessed data is fed into a trained, fully-
connected NN that yields an initial guess for the thin film parameters. During
step III., this initial guess is used as starting parameters for a fast Levenberg-
Marquardt fit that finds the nearest LMS minimum. Figure adopted from
[111].

ratories for decades. Although slowly being replaced by newer software, it is still
in common use and many facilities continue to offer legacy support or backwards
compatibility. In terms of reflectivity, the file format of SPEC saves the individual
intensity values R alongside the corresponding scattering angle θ (and many other
parameters) in a simple table. For 2D detectors, the intensities are usually already
integrated over a certain region of interest (ROI), i.e. the part of the image that
contains the reflected beam. The column-based format of SPEC files makes them
easy to read for both humans and machines, but it sometimes lacks the flexibility
to save and reprocess more complex data. In mlreflect, since the ROI is fixed for
SPEC files, the user only has to provide the names of the columns that contain the
intensities and angles (which are usually specific to a given setup) to the SpecFitter
class of the mlreflect.curve_fitter subpackage.

In contrast, FIO is a proprietary DESY format where the 2D detector images for
each data point are saved together with a metadata file that contains the angles, but
also specifies the ROI. This allows adjusting the ROI even after the measurement,
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which can be used to improve the resolution. This also means that for mlreflect, an
explicit ROI has to be provided in addition to the names of the angles so that the
expected intensity values R are obtained.

In principle, the package could be extended with more classes that accommo-
date different data formats without loss of any functionality as long as the data can
be eventually converted into two vectors R and q that contain the reflected inten-
sity and its corresponding qz values, respectively. A prominent candidate would be
polychromatic measurements which are more common for NR, where the different
wavelengths in the spectrum would have to be converted into the correct qz values.

6.2.2.2. Data rescaling
Often, experimentally acquired data has to be rescaled to account for technical dif-
ferences in the incoming intensity. A common reason is, for instance, that different
levels of attenuation are applied to the beam for different qz positions. This is done
to avoid damage to the detector since the reflected intensity can change by several
orders of magnitude between different qz positions. As a result, the intensity of the
measured reflected beam has to be normalized by the attenuation factor.

Another typical correction would be the rescaling of the reflected intensities in
polychromatic experiment. As already mentioned in Chap. 5, the intensities in the
spectrum of a polychromatic beam are usually not uniformly distributed and thus,
the reflected intensity at a given qz has to be normalized by the relative incoming
intensity of its corresponding wavelength.

Many other reasons for data rescaling exist and could be implemented in future
versions this package. In the current version of mlreflect, only attenuation correction
is applied by default, which is implemented in the ReflectivityLoader class of the
subpackage mlreflect.xrrloader.dataloader.

6.2.2.3. Footprint correction
The mlreflect package provides footprint correction to account for the changing beam
footprint on the sample at different angles, which amounts to a multiplication of
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the data with a geometric factor [163]. These are implemented in the subpackage
mlreflect.xrrloader.footprint. Here we assume a flat sample and a beam with
a Gaussian profile but, in principle, corrections for other sample or beam shapes can
be implemented at this stage. The data is then normalized by dividing by the highest
intensity value and is transformed from angular space into qz space.

6.2.2.4. Data interpolation
Since the NN model is trained on a fixed number of fixed qz points and in general, the
experimental qz values may differ from that, the corresponding measured intensities
have to be re-interpolated. Thus, all reflectivity curves are automatically interpolated
on a logarithmic scale to the 109 equally-spaced qz expected by the NN (see Sub-
sec. 6.2.3). The interpolation is implemented in the mlreflect.data_generation

subpackage.
While in principle any experimental qz values are possible, it is recommended to

use a similar qz range and a similar point density to what is expected by the NN
to avoid strong interpolation artefacts that may negatively impact the performance.
If a significantly different range or point density are required, the model should be
re-trained.

6.2.2.5. Input standardization
To ensure that all intensity values of a given input curve are on a similar scale, the
data is standardized in the same way as was described in [107]. The effect on the
general shape of the curves is comparable to multiplying the data with the inverse
of the Fresnel reflectivity RF(qz) ∝ q−4

z , but, importantly, avoids the divergence for
small values of qz, i.e. close to and below the total reflection edge, where the kine-
matical approximation does not hold [1]. The input standardization is implemented
in the InputPreprocessor class of the mlreflect.training subpackage.
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6.2.3. Neural network predictions (step II.)

The initial parameter prediction (step II. in Fig. 6.1) is obtained by feeding the pre-
processed input vector into the trained NN model. As described in previous chapters,
the NN employed here is a fully-connected model that takes an input of discrete in-
tensity points at equally-spaced qz values ranging from 0.02 to 0.15 Å−1. To better
match the point density of the annealing experiments described in Sec. 6.7 the in-
put size was increased slightly to 109 points. The output of the NN consists of 3
thin film parameters: the film thickness, the Névot-Croce film roughness [122] and
the real part of the scattering length density of the film. Compared to Chap. 5, the
size of the NN was reduced to three hidden layers with 512 neurons each due to
the smaller number of predicted sample parameters. The training loss was calcu-
lated as the MSE between the normalized predicted and ground truth parameters.
The model was trained on 250,000 simulated reflectivity curves with a batch size of
512. For every batch, uniform noise and curve scaling were applied to each curve
and the inputs were standardized as described in Chap. 5. The optimal noise level
during training was identified to be 0.3, which will be discussed in more detail in
Sec. 6.4. The noise and curve scaling are implemented in the noise module of the
mlreflect.data_generation subpackage. The training data was generated assum-
ing a sample structure of an organic thin film on top of an oxide-capped silicon
substrate with air as an ambient medium and with X-rays as the probe. The thin
film parameters in the training data spanned a large range of 20–1000 Å for the thick-
ness, 0–100 Å for the roughness and 1–14×10−6 Å−2 for the SLD, which is significantly
larger than what was described in Chap. 4. Each parameter was sampled from a bol-
stered uniform distribution as described in Fig. 5.1. Also, as described in Chap. 4,
the maximum roughness was restricted to no more than half the thickness of the film.
The sampling of the parameters is implemented in the ReflectivityGenerator class
of the mlreflect.data_generation subpackage.

Moreover, a similar approach could easily be employed for neutrons or other
sample structures by retraining the neural network with different training data. This
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approach is also expected to work for a larger number of layers as long as the trained
parameter space does not create too many ambiguous solutions, i.e., the number
and range of fitting parameters should remain similar. For a larger parameter space,
an extended qz range might be necessary to reduce ambiguity in the data. For the
purposes of this work, the qz range was limited to avoid conflicts with the Bragg peaks
of organic molecules around 0.3 Å−1 which are not described by the slab model.

6.2.4. Postprocessing (step III.)
6.2.4.1. Optimization of the q shift
After the initial parameter predictions have been obtained, mlreflect provides the
option to perform an optimization for a possible qz shift in the data. Using this
method, the parameter prediction as described above is repeated a certain number
of times (by default 1000) while shifting the qz values of the measurement by a
small, randomly chosen value before the data is interpolated. Then, from all pre-
dictions, the best one is chosen. This is meant to correct small misalignments that
can occur during sampling the measurement. Furthermore, it introduces small per-
turbations into the prediction, allowing for sampling from many similar solutions,
thereby improving the results. This step is implemented in the CurveFitter class of
the mlreflect.data_generation subpackage and a detailed explanation and justi-
fication of the qz shifting method is given in Sec. 6.5.

6.2.4.2. LMS refinement of the results
The results from the previous step are further optimized by a conventional LMS
minimizer that searches for the parameters that produce the best fitting reflectivity
curve for the measured data. Since the initial predictions can be used as starting pa-
rameters and are already very close to the ground truth, a simple and fast minimizer,
like the Levenberg-Marquardt algorithm [164], is used over more powerful, but slower
methods, such as stochastic algorithms [96, 97, 102]. The LMS fit is implemented
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Figure 6.2.: Ground truth distribution of the three sample parameters thickness (a), rough-
ness (b) and SLD (c) within the experimental test set of 242 XRR curves. The
parameters were obtained by a conventional LMS fit. Figure adopted from
[111].

in the minimizer module of the mlreflect.curve_fitter subpackage and uses the
scipy.optimize.curve_fit method.

6.3. Performance test on thin films
The performance of the analysis pipeline was tested on 242 experimental XRR curves
from in situ and ex situ experiments of 9 organic thin films on Si/SiOx (1–79 curves
per sample at different thicknesses). A more detailed description of the datasets can
be found in Appendix F. The distributions of thickness, roughness and SLD of the
film within this test set is shown in Fig. 6.2. The measurements were conducted using
three different synchrotron radiation sources: the European Synchrotron Radiation
Facility (ESRF) [165], DESY [166] and the Swiss Light Source (SLS) [167], as well
as using our own laboratory source. Similar to Chap. 4, to obtain a benchmark, each
reflectivity curve was first fitted on a logarithmic scale with an LMS fit based on the
commonly used differential evolution algorithm [102] using manually chosen initial
values and bounds for each parameter. The thin film model used for the fit was the
same as what was used for training the NN.

In the following analysis, these manually fitted parameters represent the ground
truth, and thus the performance of the pipeline is measured as the absolute error with
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respect to this ground truth. The ground truth was compared with the prediction
results of the NN (step II.) as well as the results of an automized subsequent LMS fit
using the predicted parameters (step III.). Across all 242 curves, the NN predictions
have a median absolute error (median percentage error) of 6.0 Å (7.1 %) for the
film thickness, 2.0 Å (12.4 %) for the interface roughness and 0.72×10−6 Å−2 (6.8 %)
for the SLD. Both on an absolute scale as well as on a relative scale, this is a
significant improvement to the first published model [103] demonstrated in Chap. 4,
since the possible ranges for the thickness and roughness parameter have been greatly
expanded and the network is generalized over a larger parameter space. Importantly,
since all of the data stems from organic thin films, the SLDs in the test set are
mainly clustered around 10–13×10−6 Å−2. Since the NN was trained equally with
SLDs ranging from 1–14×10−6 Å−2, the results are not assumed to be specific to the
test data as long as absorption does not play a major role. Moreover, it is important
to highlight that the dataset also contains curves with a high roughness-to-thickness
ratio where the Kiessig oscillations are strongly damped. In Chap. 5 it was shown that
these “flat” curves are usually more challenging to predict and among the emerging
solutions offered in this field, discussions about the performance on curves with little
to no features are mostly absent. This is of course due to the challenge of extracting
information from data that inherently contains less information. Yet, the network
presented here also performs well on experimental data with high relative roughness.

The next step in the pipeline is to further refine these results via an LMS fit using
the predictions from the NN as starting parameters. Since the predictions are robust
and already quite close to the ground truth there is no need for powerful but slow
minimization algorithms such as genetic or differential evolution algorithms, which
are normally employed to find the global minimum. Thus, finding the minimum
takes only a fraction of a second per curve and can be fully automized. After this
refinement procedure, the median absolute error (median percentage error) was even
closer to the ground truth with 2.3 Å (2.3 %) for the thickness, 1.0 Å (5.8 %) for
the roughness and 0.47×10−6 Å−2 (4.3 %) for the SLD. A comparison of the error
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Figure 6.3.: a) Box plot of the absolute errors for 242 measured reflectivity curves for each
of the three predicted parameters. The upper and lower edge of the boxes
represent the 1st and 3rd quartile with the horizontal line inside the boxes
denoting the median. The red boxes represent the error compared to the pure
NN predictions. The blue boxes represent the error after applying a simple
LMS minimization using the NN predictions as starting parameters. The green
boxes show the error when a qz shift optimization was performed before the
LMS fit. b) The same box plots of the median error but as a percentage of the
ground truth. All results were obtained for a training noise level of n = 0.3.
Figure adopted from [111].
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distributions before and after refinement is shown in Fig. 6.3. A detailed breakdown
of the prediction error with respect to each parameter can be found in Appendix C.

The residual error can be easily attributed to the fact that every fit has a finite
accuracy and hence the ground truth itself contains a certain error which is likely
comparable to the reported error. In conclusion, these results show that the anal-
ysis pipeline as described above performs similarly to a human researcher in most
circumstances. Furthermore, it is important to note that the results were obtained
much faster than via a human-guided fit. Excluding the time it took to train the
NN (about 20 min for a given sample structure), the initial parameter predictions
of the 242 curves were obtained after only 1 s with about 2 additional minutes for
the further refinement steps, resulting in a total fitting time of about 0.4 s per curve.
In contrast, producing the ground truth fits took about 6 h because of the need to
carefully select fitting boundaries to prevent the fit from running into non-physical
minima.

6.4. Differences between simulated and experimental
data

A well-known property of artificial NNs is that they require large amounts of repre-
sentative training data to learn a generalized model and not overfit the training set.
In the context of the work presented here, i.e. supervised learning using scattering
data, this would arguably mean acquiring thousands of scattering patterns from a
large variety of different samples and analyzing them manually to create the training
set. Since this is a quite time-consuming and challenging task, NN models in the
field of scattering physics are typically trained with simulated data based on well-
established theoretical models. In most cases, the simulation is additionally modified
with certain artifacts, such as noise, to better mimic experimental conditions. How-
ever, to what degree this is necessary is difficult to estimate since the only available
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Figure 6.4.: Comparison of the testing loss calculated from a simulated test set (100000
curves) and an experimental test set (242 curves) for different levels of uni-
form noise n that were applied to the training data. For each noise level a
separate model was trained. With increasing noise level, the loss from the
simulated data increases linearly while the loss from the experimental data
shows a clear minimum at noise levels 0.3–0.35. The error bars represent the
standard deviation from 5 independent training repetitions. Figure adopted
from [111].

metric is typically the performance on other simulated data (validation loss), which
is expected to become worse with increasing perturbations.

In this section, we investigate how applying uniform noise to the training data
affects the NN performance on the previously mentioned experimental dataset of 242
curves. For this purpose, 11 copies of the same NN were trained as described above
using data with different levels of uniform noise, i.e., for a given noise level n, each
data point R∗

i in the noisy curve was sampled uniformly between the values Ri(1−n)
and Ri(1 + n).1 Thus, n denotes the maximum relative change of a given data point
Ri of a given simulated curve. The n for each trained model ranged from 0 to 0.5 in
0.05 increments. It is important to note that the applied uniform noise is not meant
to model a specific physical noise type, such as Poisson noise for counting statistics.
Rather, uniform noise was chosen as a qz-independent catch-all noise that affects the

1The type of uniform noise described here is the same as in Subsec. 5.2.2.2 if n = 0.3.
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whole curve equally and thus, makes the NN robust against errors across the entire qz

range. Fig. 6.4 shows a comparison of the losses calculated with a simulated test set
as well as with the experimental test set for each model. Since the loss is calculated as
the mean squared error of all three (normalized) sample parameters, it is a unitless
measure for the overall accuracy of the model. For n = 0, the simulated test set
shows a loss close to zero (∼ 10−7), whereas the loss based on the experimental data
is about 5 orders of magnitude higher. This shows that without any noise, the NN
significantly overfits the simulation and thus performs suboptimally on real data.
As expected, the loss of the simulated data increases monotonically with increasing
noise, since the information content of the data is reduced. In contrast, on the
experimental dataset, performance improves significantly with increasing noise up to
a noise level of 0.3–0.35. Beyond this, even higher noise levels seem to again worsen
the performance. This very clearly demonstrates that there exists an optimal noise
level for which the added noise acts as an effective regularization technique that
prevents overfitting. If the noise level is too high, however, the consequent lack of
information in the training data is likely detrimental to the training process. Thus,
n = 0.3 was chosen as the ideal noise level for data similar to the experimental test
set, which notably contains data from different X-ray sources.

An interesting question arises about how this value is related to the amount
of noise in the experimental data. To investigate this, the test data was separated
into four groups with varying amounts of noise. While the noise in the data is
not uniformly distributed, an equivalent noise level (ENL) can be calculated by
subtracting the ground truth fit from the data and taking the absolute mean of all
data points. Fig. 6.5a shows the distribution of the ENL across the entire dataset and
how the distribution was split into the four subsets with a different ENL. Fig. 6.5b
shows the optimal training noise (for which the loss had a minimum) for each of the
four categories, as well as the entire dataset. The error bars represent the standard
deviation of five independent training repetitions. Evidently, the ENL of the data
does not seem to have a strong influence on the optimal noise level except for the
0.4–0.5 category, where it is slightly lower. This is due to the main error in the data
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not being statistical (e.g. Poisson noise), but rather systematic in nature. Since
the role of the uniform noise on the training data is not to mimic the noise in the
data, but to account for these systematic deviations, the entire dataset benefits from
a similar training noise level. Hence, this noise level has been implemented as the
default value in the mlreflect analysis pipeline. Data that differs significantly from the
test set in terms of experimental artifacts might of course produce slightly different
results, although the general trend is expected to be the same. This highlights the
importance of having a large experimental test set with representative experimental
artifacts, since metrics based only on simulated data are clearly not sufficient to
evaluate the training.

6.5. Influence of systematic measurement errors
All reflectometry measurements are performed with a finite accuracy due to a num-
ber of different error sources. Since these errors are detrimental to the experiment
they can potentially impede the extraction of information from the data and there-
fore should be avoided or minimized as much as possible. However, a finite error
inevitably remains for every measurement and the precise nature of experimental
errors strongly depends on the chosen scattering geometry. Among the typical sta-
tistical errors are the signal-to-noise ratio, the angular resolution of the diffractometer
and the spectral resolution of the source [168]. Among the systematic errors are, for
example, the convolution of the data with the slit functions [169], the accuracy of
the sample alignment and the accuracy of the footprint correction, i.e. how accurate
the beam and sample shape can practically be determined. Having imperfect data
obviously impacts the analysis, since the data deviates from the ideal physical model
it is compared with. Since the NN model presented here is trained to solve a very
particular task that assumes well-defined data, these errors can negatively impact the
prediction quality. In general, it is easier to make the NN robust against statistical
errors by introducing them during training, as described before. However, sometimes
systematic errors, such as a small misalignment can also seriously misguide the ML
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Figure 6.5.: (a) Distribution of the equivalent noise level (ENL) in the experimental testing
dataset of 242 XRR curves. The dataset was split into four categories with
varying ENLs to test each separately. (b) Optimal training noise for different
ENLs in the training data. The optimal level for the entire dataset corresponds
to the minimum shown in Fig. 6.4 of the main manuscript. The error bars rep-
resent the standard deviation of five independent training repetitions. Figure
adopted from [111].
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prediction, as shown in Fig. 6.6. Therefore, it would be useful to correct or compen-
sate some of these errors during inference time after the data has been acquired. A
possible solution could be an automated method for sampling through slight varia-
tions of the data, exploiting both the sensitivity and speed of the trained NN model.
Since the NN assumes data that conforms to an idealized physical model, it might
fail if the data contains anomalies with respect to that model. Since predictions with
the NN are very fast, it is possible to scan through thousands of modified reflectivity
curves within less than a second. For each of these variants, the log MSE between
the data and the predicted curve as defined by Eq. 5.9 can be calculated and only
the one with the lowest error is subsequently selected. An implementation of this
method that identifies small systematic alignment errors and automatically applies
an appropriate shift to the data is demonstrated in the following.

Fig. 6.6a shows an XRR measurement of a 690 Å thick N,N’-Dioctyl-3,4,9,10-
perylenedicarboximide (PDI-C8) film on Si/SiOx which was measured and tested
in addition to the 242 test curves. Here, the normal pipeline as described above
did not converge to the correct minimum since the initial guess of the NN was not
close enough. The reason for this is the much higher thickness of the film, which
leads to denser Kiessig oscillations in the data. This, in turn, creates many narrow
minima on the MSE surface for the LMS algorithm to get trapped in. As a result,
the NN prediction needs to be even closer to the ground truth for the subsequent fit
to converge. Tab. 6.1 shows the predicted thin film parameters in comparison to the
ground truth. A possible reason for the suboptimal NN prediction might be small
imperfections in the data due to finite measurement errors, such as a small variation
in sample alignment. In regions of high derivatives, even a small shift of the data
along the qz axis can lead to strong differences in the observed intensities at a given
qz value, even on a logarithmic scale. Of course, if the data has dense oscillations,
this effect becomes more pronounced. For models trained on simulated data, this can
be critical, since normally a substantial change of certain input neurons, especially
near the TRE, corresponds to important information and will be interpreted by the
network accordingly. To check whether this can be remedied, the qz values were

116



6.5. Influence of systematic measurement errors

Table 6.1.: Predicted and fitted thin film parameters based on the reflectivity data of a PDI-
C8 film on Si/SiOx (shown in Fig. 6.6). The ground truth labels were obtained
via a manually supervised LMS fit. After applying the described qz variation,
the prediction results improved significantly. A subsequent LMS refinement
only led to comparatively small improvements. Table adopted from [111].

Thickness [Å] Roughness [Å] SLD [10−6Å−2]
ground truth 688.3 27.1 10.5
prediction 536.7 30.3 11.2
shift + prediction 690.8 31.0 11.0
shift + prediction + fit 690.5 27.5 10.8

shifted by a small value ∆qz during the interpolation step before passing the data
to the NN. This procedure was repeated 1000 times with randomly sampled ∆qz

ranging from −1×10−3 to 1×10−3 Å−1. Then, for each prediction, the quality of
the prediction was evaluated by calculating the log MSE between the corresponding
simulation and the measured curve.

When plotting the log MSE between the prediction and the input against ∆qz

(Fig. 6.6), we can observe a value ∆qmin = 5.2×10−4 Å−1 for which the log MSE shows
a clear minimum. From Fig. 6.6a it is apparent that the predicted curve based on the
shifted data shows much better agreement with the data than the normal prediction.
The corresponding predicted parameters for ∆qmin are shown in Tab. 6.1 and are
much closer to the ground truth values (comparable to values shown in the previous
section). This indicates that there exists a certain shift ∆qmin that can (at least
partially) compensate for the experimental error. This is especially valuable since it
allows the pipeline to continue with the LMS refinement step, which ultimately leads
to a near-perfect fit. It is interesting to note that ∆qmin is very small, corresponding
to a change of the angle of incidence of only about 4×10−3 degrees for a wavelength
of 1.54 Å. It seems intuitive that such a small shift in the data could be caused by a
variety of the above-mentioned error sources. However, although ∆qmin is seemingly
small, due to the high derivatives close to the TRE and the Kiessig fringes, shifting
the data by ∆qmin still has a noticeable effect on each data point. For conventional
LMS fitting, this might not seem critical at first, since the MSE surface likely has
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Figure 6.6.: a) Comparison of the NN predictions from reflectivity data from a 690 Å thick
PDI-C8 film on Si/SiOx. The blue curve shows the native prediction, whereas
the red curve shows the prediction after the data was shifted by ∆qmin =
5.2 × 10−4 Å−1 before the interpolation step. It is apparent that the latter is
in much better agreement with the data. b) Shows the log MSE between the
predicted curve and the data for different ∆qz. The minimum MSE at ∆qmin
is indicated by the dashed line. Figure adopted from [111].
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a minimum close to the real one in terms of the film thickness. However, for the
roughness and density parameters this might not be the case and thus, most fitting
programs allow the user to manually shift the data if necessary.

While in principle any type of modification like this could be conceivably applied
to the data to scan for the lowest MSE, this method has shown significantly better re-
sults than varying the data randomly, such as adding Gaussian noise. This is because
a translation of the curve preserves most of the information in the data while still
varying every data point, in contrast to Gaussian sampling which is qz-independent
and inevitably destroys information. To test the stability of this method, the ∆qz

sampling procedure was applied to all 242 curves discussed in the previous section
(where the pipeline already succeed) and compared the results with the original mean
absolute error. When looking at Fig. 6.3, it becomes clear that scanning for ∆qmin

did not harm the mean absolute error, but instead on average even improved the
results slightly for all three parameters. While the log MSE of the predictions is al-
ready very close to the minimum, most of the data likely still has a finite alignment
error which, however, was apparently not sufficient to affect the prediction. This can
still be compensated by applying a small shift, ultimately leading to an even better
fit. Because this screening for ∆qz yielded significant improvements on some data
and was relatively fast (still less than a second per curve), this method is by default
enabled in the analysis pipeline of the mlreflect package.

6.6. Fourier transforms as a method for feature
engineering

As mentioned in Sec. 2.2, the specular reflectivity R(qz) of a single layer on a substrate
well above the critical angle can approximately be described as the product of the
Fresnel reflectivity RF(qz) from a flat surface and the squared FT of the SLD contrast
of the sample along the surface normal (see Eq. 2.49). Although the phase of the FT
is lost by taking its absolute square, the inverse FT of R(qz)/RF(qz) still carries some
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important information, such as the frequency of the Kiessig oscillations (and thus the
film thickness). As a result, performing an inverse FT on the reflectivity data presents
itself as an obvious way to create additional input features that may facilitate the
NN training. To test this hypothesis, a NN model was trained with an additional
preprocessing step before the first layer that performs a fast Fourier transform (FFT)
on the standardized input and adds the real and imaginary Fourier components to it,
leading to a input layer size of 219 neurons. All other model parameters and training
ranges were kept the same as described above. When testing the trained model on
the 242 experimental curves, it performed similarly to the model without the added
FT. The median absolute error (median percentage error) was 6.2 Å (8.9 %) for the
film thickness, 2.3 Å (13.3 %) for the interface roughness and 0.76×10−6 Å−2 (7.2 %)
for the SLD, which is 4 %, 19 % and 6 % higher, respectively, compared to the base
model. From this, we can conclude that the base model (i.e. without the added FT)
had likely already learned to implicitly extract all available frequency information
from the data, and adding the Fourier components explicitly does not lead to a
better training result. Furthermore, the fact that the results are slightly worse when
the FT is added can be attributed to the increased number of trainable parameters
due to the larger number of neurons in the model. This means more parameters
need to be optimized to achieve the best training result, which is generally a more
difficult task. For these reasons and the added computational requirements during
both training and inference time, the FT preprocessing was not included the default
NN the analysis pipeline of the mlreflect package. Nevertheless, this does not rule
out that for certain scattering geometries, a suitable implementation of the FT could
still be beneficial.

6.7. Implementation ofmlreflect at P08/DESY
The work presented in this thesis was part of a project funded by the BMBF in
close collaboration with DESY. One of the main goals of this project was the de-
velopment of a publicly available software package and its eventual implementation
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at DESY and specifically at the high-resolution diffraction beamline P08 at PETRA
III [166]. To this end, the analysis package mlreflect described in this chapter has
been installed on the DESY’s Maxwell cluster with the help of André Rothkirch and
Frank Schlünzen. The Maxwell cluster is a computational resource offered by DESY
for photon science data analysis, GPU-accelerated computations (e.g. for artificial
intelligence applications), high performance computing and scientific computing in
general that can be used by any DESY user both on-site and off-site.

The mlreflect package is available as part of the the module repository of the
Maxwell cluster and can be used easily with Jupyter notebooks as a graphical in-
terface. Jupyter notebooks serve as an interactive, web-based interface for Python
programs and are in wide-spread use within many fields of science. Since the Maxwell
cluster has access to all data measured at DESY, mlreflect can be used to analyze
data during the experiment directly at the beamline.

6.8. Conclusions from this chapter
This chapter discussed the optimized analysis pipeline mlreflect, which was developed
for the automated analysis of reflectivity data using ML. The pipeline was tested on
a large dataset of 242 XRR curves, containing in situ and ex situ measurements of
organic thin films on Si/SiOx substrates, where it showed a performance comparable
to a manually supervised LMS fit for most of the data. Therefore, mlreflect is a
useful tool for the automated pre-screening or even on-the-fly analysis of reflectivity
data.

It was discussed that for the effective evaluation of trained ML models an exper-
imental dataset of significant size is necessary. Most studies so far mainly focus on
the performance of the model with regard to simulated data and include only few,
if any, experimental test data. However, this may be misleading, since the results
presented here clearly show that the performance on simulated data cannot easily be
generalized to experimental conditions. This indicates the need for openly available
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data repositories that provide large and varied training and testing data for the entire
research community.

Furthermore, this chapter showed the influence of possible systematic errors (such
as misalignment) that can be present in the data on the performance of the NN. The
prediction speed of the NN model can be exploited to improve the overall performance
by transforming the data slightly. These results highlight the necessity to account
for these differences between simulated theoretical models and real data in order to
obtain stable results. Again, the larger the variety of experimental data available for
testing, the easier it is to train a NN that is robust towards these systematic errors.

Although the results shown here are demonstrated with systems of one layer on a
Si/SiOx substrate, the demonstrated NN model could easily be retrained to determine
any single layer of any sample structure. While determining multiple layers at once
is in principle possible and has been demonstrated before [104, 105], this type of NN
architecture might not be ideal to tackle this type of inverse problem with multiple
solutions since they map exactly one solution to a given input. Therefore, as discussed
in Chap. 7, architectures that yield probabilities as an output might be more suitable
for multi-layer problems.
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and future research

The idea of applying NNs to reflectivity data analysis has only been introduced three
years ago. Yet, despite the remarkable achievements in this area, there remains room
for improvement. As a guideline for future research, this chapter outlines current
limitations of the method used in this work and offers possible paths forward.

7.1. Fully-connected vs. convolutional architectures
All NN models described in this work are fully-connected, meaning that each neuron
in a given layer is connected to each neuron in the previous layer where the value
of each connected neuron enters into a weighted sum, as described in Sec. 3.2. This
sum treats the value of each neuron independently, i.e. the sequence of neurons in
the previous layer is not explicitly considered. The input layer consists of a vector
of reflectivity values R that are typically ordered by increasing qz. This means
that two neighboring values in R have an implicit physical relationship that is not
considered in the NN architectures used in this work. While this relationship can be
learned through training, other architectures might be more efficient. An alternative
architecture could be convolutional neural networks (CNNs), which function similarly
to convolutional filters in image processing and are specifically designed to extract
spatial features from data [26]. Typically, CNNs deal with images, i.e. 2D data and
they have been successfully used in the analysis of 2D scattering data [58, 60, 61].
However, there is no reason why this could not be applied to 1D reflectometry data as
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well. In the case of reflectometry, a single curve can be treated as a 1D image and the
convolutional kernels could be trained to extract certain features maps (gradients,
edges, etc.) from the data, which can then be used to predict thin film parameters
potentially more efficiently. Thus, it might be useful to explore this type NN in the
future and compare its performance to current approaches.

7.2. Fixed input size and q dependence
As already mentioned in Chap. 4, an important limitation of the NN architectures
used in this work is the fixed length of the input vector R. This is coupled with the
fact that the respective qz values for each input are chosen at training time and must
remain the same at inference time. In many experiments, however, the qz range and
the measured number of data points can vary strongly depending on experimental
requirements. Furthermore, even if the number of data points fits the input size of
the NN, since the qz value for each input is implicitly determined during training,
the NN cannot accept reflectivity values measured at different qz. Thus, the input
reflectivity has to be interpolated to the specific qz values chosen during training.
This method works if the data points are measured close to the trained qz values
compared to the length scale of the features in the data, such as the periodicity
of the Kiessig fringes or the TRE drop-off. This, however, creates an experimental
limitation on how many data points can be measured. A researcher may want to
adjust the number of measured data points for various reasons, for instance, if a
higher qz resolution is necessary to resolve specific features (more data points) or if
a higher time resolution is necessary to resolve in situ dynamics (less data points).
Apart from the number of data points, the maximum qz range is also fixed after
training, which again limits flexibility during experiments.

A potentially straightforward way of solving this problem could be to include a
second input vector q for the NN that contains the respective qz for each reflectivity
value. The network could then be trained with a larger variation of qz values in the
data, potentially leading to a more flexible model. Another solution was demon-
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strated, in which a CNN was used to interpret images of reflectivity plots that were
produced in a standardized fashion [104]. Each pixel of the image corresponds to an
input for the NN, which means the input size is only determined by the chosen image
size and not the number of measured data points per se. While it has been employed
successfully in some cases, this method, seems subobtimal, since the majority of in-
put values do not contain any information and are just filler points to create the
2D image. However, the idea behind this method could be adapted by reducing the
dimensionality of the data, so that the input vector essentially represents a 1D image
with one axis being qz and the other axis being the reflected intensity, similar to the
method proposed in this work.

7.3. Non-unique solutions
A very prominent and fundamental problem in reflectivity data analysis is that,
due to the phase problem, the back-transformation from the scattering pattern to
the sample structure does not always have a unique solution. In this work, it was
assumed that the mapping of the reflectivity R to the parameters p can be approx-
imated by the regression of a function M(p; w), as described in Sec. 3.1. In reality,
however, this is not the case for the entire parameter space, and it is difficult to
formally define the number of possible solutions of an arbitrary reflectivity curve.
Appendix E shows an example of two simple box models that are very different, but
produce mathematically identical scattering patterns (within kinematical approxima-
tion) due to the phase problem. However, even in cases where there are theoretically
distinct solutions, they can be practically impossible to distinguish if there are a) no
defining features, such as Kiessig fringes or the TRE or b) if the qz range is too small.
The latter case occurs if the curves only become significantly different for larger qz,
e.g. if the film thickness is small (wide oscillations) or the roughness is high (weak
oscillations). An illustration of the ambiguity in the mapping R → p is shown in
Fig. 7.1b. Although p → R is always unique and can be described as a function
m(p) = R, the mapping R → p is only unique for certain parts of the parame-
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p

R
(a)

R = m(p)
training data

R

p

(b)

p = M(R)
training data

Figure 7.1.: Schematic demonstration of the non-reversibility of reflectivity data. (a) The
transformation from the sample parameters p to the respective reflectivity
curve R follows a function m(p) = R, i.e. each parameter set leads to only
one reflectivity curve. The gray dots represent data points that are used during
training to approximate the underlying function. (b) The inverse transforma-
tion from R to p is not unique. The green-shaded area represents segments
that can be described as a function, where the NN is expected to work well.
The red-shaded area represents a segment with multiple solutions, where the
behavior of the NN is not well defined.

ter space. Thus, the implicit assumption within this work was that, by restricting
the solution space (fixed substrate parameters and only 3 thin film parameters), the
back-transformation becomes unique. Restricting the possible solutions is a way of
adding a priori knowledge about the studied systems during training. This knowl-
edge can be external information, such as what substrate was used or the number of
deposited layers, but it can also come in the form of complementary measurements
(see next section). Keeping too many parameters fixed during training, however,
may lead to a NN model that is specialized for certain types of samples and it might
be preferable to rather add prior information at inference time.

Moreover, if only little prior knowledge is available during training, it might not
be possible to restrict the solution space to avoid multiple solutions. This can be
problematic for a model that expects exactly one solution for a given input, since at
inference time the model must pick one of the solutions and ignore the others. How-
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ever, already during training, multiple solutions may lead to unstable gradients, since
similar inputs can lead to drastically different outputs. This ultimately slows down
training and may even prevent the NN from converging at all. As a result, the model
might completely fail in cases of ambiguity, i.e. choose neither of the possible solu-
tions. This might also explain the poor performance of the NN on certain challenging
cases in Chap. 5. Thus, to tackle a larger variety of sample structures with potentially
more ambiguity, e.g. multi-layers, different NN architectures should be considered.
A potential solution for this could be NN architectures that do not predict a single
parameter set p∗, but instead a probability distribution of potential solutions. A
well-known example of this are mixture density networks (MDNs), which predict a
probability distribution constructed from superimposed m-dimensional normal dis-
tributions, where p ∈ Rm [170, 171]. A similar implementation has already been
demonstrated by others [109, 172] and may be a possible path forward.

7.4. Including a priori knowledge at inference time
Using the approach described in this work, the sample architecture and the possible
solution space for each parameter is chosen during training and cannot be changed
afterwards unless the model is retrained. This means training is, so far, the only
opportunity at which a priori knowledge can be added to the system. However,
additional information may be available at inference time, either through previous
predictions of the NN or through information from complementary measurements.
For example, when considering a NN trained to predict the thickness of two layers
simultaneously, if the thickness of one of the layers becomes known at inference time,
i.e. after training, it would be inefficient to predict both of them naively and risk a
higher error. A possible solution would be to use the MDN architecture described in
the previous section. If an MDN could be successfully trained to predict a probability
distribution of solutions for a given input curve, additional a priori knowledge could
be used to filter out improbable solutions in a post-processing step.
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Another example of using complementary information at inference time are NR
measurements of the same sample but at different levels of deuteration [161]. This can
be used to obtain multiple datasets with different SLD contrasts, which increases the
overall available information content. Other works have shown that multiple datasets
can already be included during training, e.g. in the case for polarized NR [108]. A
more flexible solution could be to construct a NN that takes two types of inputs: the
reflectivity data of a single curve (as before) and additionally a prior probability of the
sample parameters. Reflectivity data from complementary measurements could then
be fed to the NN consecutively, each time using the previously estimated parameters
as prior probabilities for the next prediction. This would allow the combination of an
arbitrary number of complementary reflectivity curves, as well as allow the injection
of other external information.

7.5. Experimental test and training sets
So far, virtually all of the ML applications in scattering physics have heavily relied
on simulations to train the NN models. Using simulations has several advantages:
1) It makes use of the mathematical descriptions which have been derived through
many decades of rigorous research, 2) an almost infinite amount of training data
can be generated and 3) the ground truth is already known with infinite accuracy
and no manual “labeling” of the data is necessary. However, a major drawback of
simulations is that they are based on idealized models that do not perfectly capture
every detail of experimental data. The added noise and other methods presented in
this work try to remedy this to some degree, however, it is quite challenging, if not
impossible, to account for all deviations of the data from the theory in a formalized
way.

One of the major reasons for the success of deep learning in recent decades was
the large amount of available data for training. This refers to large datasets of “real”
data, such as images of objects that were carefully labeled manually. Importantly,
this real data also contains real noise and artifacts, which allow the network to
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converge to a more generalized model than through idealized simulations. Thus, in
the long-term it might be beneficial for the scattering community to build a large
pool of labeled, i.e. manually analyzed, experimental data that can be used not only
for testing, but also for training. This is clearly a challenging task, since, in contrast
to labeling images, the analysis requires specialized labor from decentralized research
groups, which need to share their results in a standardization fashion.

Even if the use of experimental data for training might be infeasible in the short-
term, its use for testing the NN performance is still crucial. Thus, a database of reflec-
tivity data open to researchers would be advantageous for standardized testing and
comparisons between different published models. Fortunately, there has been a re-
cent increase of national and international efforts aimed at improving the data infras-
tructure from which future ML endeavors may profit, such as the DAPHNE4NFDI
consortium in Germany1. In this context, databases to store analyzed scattering data
for training and testing (including reflectivity data) are being developed [173]. For
example, the test data used in Chap. 6 was uploaded to an openly-accesible online
repository at https://doi.org/10.5281/zenodo.6497438.

7.6. Training optimization
In general, solving the regression task of finding the correct minimum of the loss
function as described in Chap. 3 is difficult and the optimal training parameters are
usually determined heuristically. These are called hyperparameters, since they are
themselves not adjusted during training and include the size and number of hidden
layers, the learning rate, the optimizer, the loss function, the training set size, the
minibatch size, the applied noise level and the application of other regularization
techniques. Since it is difficult to estimate a priori how to adjust these parameters,
it is common in the field of ML to perform a rigorous and systematic hyperparameter
optimization. For the research in this work, this approach was not deemed efficient,
since the general architecture still had to be determined and performing a hyperpa-

1https://www.daphne4nfdi.de
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rameter grid search for each possible architecture was beyond the scope of this thesis.
Thus, the number and size of the hidden layers, the learning rate and the effective-
ness of regularization techniques were determined mainly through manual trial and
error. However, with the foundation of a working model now established, further ef-
fort could be spent in systematically tuning certain hyperparameters to achieve the
best possible performance. One such attempt was already shown in Chap. 6, where
different models were trained with varying degrees of training noise to find the opti-
mal noise level. A similar approach could be taken for other hyperparameters, ideally
with the use of large-scale computational clusters. It is important to note, however,
that any optimization should always be performed with regards to the performance
on experimental data, since the optimal hyperparameters for simulated data may
differ considerably.
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8. Conclusion and outlook
8.1. Summary and conclusion
The research in this work shows how FCNNs can reliably be employed to analyze
specular reflectivity data of OSC thin films on Si/SiOx substrates. However, the
method is not limited to these materials or sample structures, as has been demon-
strated before [99, 174]. It was shown in Chap. 4 that, even on moderate CPUs, the
analysis speed of the NN itself for a single reflectivity curve can be as fast as 0.03 ms.
When embedded into the mlreflect package shown in Chap. 6, the time per curve for
the entire analysis pipeline, i.e. including post-processing steps, was 100 ms. This is
much faster than conventional LMS fits using differential evolution, which often take
several minutes and up to hours in addition to requiring focused human attention.
This means that the mlreflect pipeline is on par with current high-end measurement
speeds, which can also be as fast as 100 ms per curve [7, 8]. Importantly, the post-
processing steps of the pipeline, such as sampling different qz shifts, have not yet
been optimized in terms of computation time and are generally much slower than
the NN itself. Thus, it is likely that by optimizing operations in these steps, the over-
all analysis time of the pipeline could be further reduced to the range of milliseconds
per curve.

Reducing the analysis time is important, since as more advanced and data-rich
measurement techniques become available, analysis methods have to become equally
as fast to avoid bottlenecks and a build-up of data that remains not analyzed. Ob-
taining results from their measurements more quickly, even preliminary ones, helps
researchers save time and resources. This is especially important for experiments
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at large-scale facilities, such as synchrotron or neutron sources, as the measurement
time there is very valuable and usually limited. NNs can be trained in advance based
on the sample architecture of planned measurements and can then be used to inform
the researchers’ decision-making on-site, thereby leaving more time for experiments.
Additionally, the NN prediction pipeline could be integrated into the measurement
software to enable on-line feedback mechanisms based on parameters derived from
the data, such as adjusting the heating of the effusion cell during in situ film growth
to control the growth rate.

Chap. 5 showed that, within the trained parameter space, there are several chal-
lenging cases where the demonstrated NN performed poorly and these can even
occur in reflectivity data of simple sample architectures, e.g. 1–2 layers on a sub-
strate. This is especially the case for “smooth” curves without pronounced features,
such as Kiessig fringes or the TRE. The information content in the data also depends
on the measured qz range, which may be limited for various reasons. One reason can
be Bragg reflections and Laue oscillations which for the molecular thin films used in
this work occur at relatively low qz (≈ 0.3 Å−1). However, the maximum qz may
also be limited by the available dynamic range of the measurement. Ambiguity in
the data during training can lead to unstable gradients that hinder convergence to
a better minimum. In Chap. 5, removing ambiguous cases from the training set has
shown to help the performance of the NN also on “easier” reflectivity curves with a
higher information content.

Chap. 6 discussed the necessity of adding noise to the simulated training data
to avoid overfitting and improve performance on experimental data. While it is not
surprising that noise on the training data can act as a regularizer, it is difficult
to quantify how much noise should be added. This work demonstrated a method
of systematically testing different noise levels during training to find the optimum.
The exact type and level of noise may depend on specifics of the data one wants to
analyze. For example, in NR measurements of surfactant molecules, the dominant
type of noise can be the Poisson noise of the counting statistics [81]. While the
general methodology of finding the optimal amount of training noise is expected to
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work also for other noise types, one needs a sufficiently large set of experimental test
data as a reference.

In addition to statistical errors, Chap. 6 introduced a post-processing method to
deal with certain systematic errors, specifically small qz shifts. The solution offered
in this work utilizes the fast prediction times of the NN to re-sample the input
data with small systematic perturbations and then picks the best result among the
whole ensemble of predictions. This method works because the MSE between the
measured curve and the predicted curve can be used to estimate the loss, i.e. the
distance of the predicted parameters from the ground truth parameters. Thus, this
method acts very similarly to a conventional LMS fitting except that the sampling
of the parameter space is not done via an iterative algorithm but through the NN
predictions, which is much more efficient.

Importantly, all of the above-mentioned advances in applying ML to reflectivity
data analysis have been implemented in the open source Python package mlreflect.
The succesful development and delivery of mlreflect was also part of a project funded
by the BMBF in collaboration with DESY. The package is available both online (see
Appendix D) as well as on the Maxwell cluster of DESY1, which is accessible to most
DESY users. In addition to the source code, there are also a full API documentation
and brief online tutorials on how to use mlreflect to determine sample parameters
or train new NN models for other sample architectures. As a result, mlreflect is not
only a tool that can be used for the fast analysis of specular reflectometry data, but
it might also serve as an example for others in the X-ray and neutron scattering
communities that wish to develop other ML-based tools for scattering data analysis.

In conclusion, the ML methods described in this work, including the mlreflect
package, constitute a significant step towards the ultimate goal of fully-automatized
reflectivity data analysis.

1https://confluence.desy.de/display/MXW/
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8.2. Outlook
The following gives a brief overview of possible further ML applications for reflectom-
etry data analysis and other scattering methods. Within the field of reflectometry,
applications beyond the research presented in this work might entail, among others:

• Estimating posterior distributions of individual sample parameters or entire
SLD profiles [106], e.g. through MDNs [109] or neural posterior estimation
[175] (especially relevant for more complex samples, such as multi-layers)

• Reducing ambiguity in data by co-refining multiple reflectivity curves, e.g. ob-
tained from tunable reference layers [83], polarized NR [108] or time-correlated
real-time data sets with specific growth models [176]

• Removing the requirement of providing reflectivity data measured at fixed qz

values, e.g. by providing the qz values for each reflectivity input explicitly
during training

• Employing CNN architectures that may be able to extract information from
the data more efficiently, if optimized correctly

• Denoising of reflectometry data to decrease exposure time, e.g. through varia-
tional autoencoders [112]

• Integrating ML solutions like mlreflect into existing analysis software for reflec-
tometry, such as GenX [96]

For other scattering methods, ML can in principle also be used to extract sample
parameters that are otherwise obtained via conventional analysis methods. However,
there are also other potential applications that can help process large data volumes
or improve the quality of measurements, such as:

• Predicting other material properties based on structural information, e.g. charge
transfer in organic thin films [39]
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• Real-time tracking of diffraction features, e.g. Bragg peak position and width
in grazing-incidence wide-angle measurements [61]

• Classification/pre-screening of the data, e.g. by particle shape in the case of
small-angle scattering [54, 60]

• Detecting anomalies in the data, e.g. unknown phases in crystallographic data

• Data reduction/compression of large datasets, e.g. using autoencoders

• Enhanced stabilization of source properties, e.g. at synchrotrons [177] or
XFELs [65], where an increased beam coherence is beneficial for methods such
as X-ray photon correlation spectroscopy [178] or ptychography [179]

The above-mentioned methods may help alleviate current and future bottlenecks in
scattering data analysis or may enable entirely new types of experiments. However, it
is important to note that most ML-related research for scattering physics has mainly
been conducted within the last 8 years and, given the complexity of the task, the
field is arguably still in its infancy. Thus, as the field matures within the coming
years and decades, even more sophisticated and varied ML solutions are likely to
emerge.
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A. Additional figures for Chapter 4
This chapter contains additional figures of datasets that were used to calculate the
predictions accuracy values in Chap. 4, but were not explicitly shown there. Fig. A.1–
A.4 demonstrate the prediction performance of the NN on four in situ datasets: two
DIP films, a CuPc film and a 6T film. In general, the NN performs worse on XRR
curves that have less pronounced features, such as low thickness or high roughnesses.
These curves are marked with shaded areas and were not included in the accuracy
statistics.
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Figure A.1.: Fitting performance of the NN model on a DIP film grown at 303 K with
a deposition rate of 1.3 Å min−1. (a-c) Comparison of the film parameters
predicted by the NN with results from least mean square fitting with human
supervision at different times during growth. The shaded area marks films
with low thickness (below 20 Å) or high roughness (above 30 Å) where data
is difficult to fit for the NN. (d) Overlay of the experimental data with data
simulated using the parameters predicted by the NN during different times
during growth. Figure adopted from [103].
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Figure A.2.: Fitting performance of the NN model on a DIP film grown at 403 K with a de-
position rate of 1 Å min−1. (a-c) Comparison of the film parameters predicted
by the NN with results from least mean square fitting with human supervision
at different times during growth. The shaded area marks films with low thick-
ness (below 20 Å) where the data is difficult to fit for the NN. (d) Overlay of
the experimental data with data simulated using the parameters predicted by
the NN during different times during growth. Figure adopted from [103].
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Figure A.3.: Fitting performance of the NN model on a CuPc film grown at 303 K with
a deposition rate of 0.4 Å min−1. (a-c) Comparison of the film parameters
predicted by the NN with results from least mean square fitting with human
supervision at different times during growth. The shaded area marks films
with low thickness (below 20 Å) where the data is difficult to fit for the NN. (d)
Overlay of the experimental data with data simulated using the parameters
predicted by the NN during different times during growth. Figure adopted
from [103].
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Figure A.4.: Fitting performance of the NN model on a 6T film grown at 303 K with a depo-
sition rate of 1.3 Å min−1. (a-c) Comparison of the film parameters predicted
by the NN with results from least mean square fitting with human supervision
at different times during growth. The shaded area marks films with low thick-
ness (below 20 Å) where the data is difficult to fit for the NN. (d) Overlay of
the experimental data with data simulated using the parameters predicted by
the NN during different times during growth. Figure adopted from [103].
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B. Additional figures for Chapter 5
This chapter contains additional figures regarding the performance evaluation dis-
cussed in Chap. 5. Fig. B.1–B.5 show the accuracy of each thin film parameter with
regard to each of the four discussed curve modifications: curve scaling, uniform noise,
Poisson noise and background.
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Figure B.1.: Prediction accuracy of the layer thickness for 100 different noise and back-
ground combinations. Each point in the top panel refers to the prediction
accuracy of test curves with a specific noise and background combination.
The four different colors/symbols distinguish between the four binary combi-
nations of uniform noise and curve scaling being turned on or off, respectively.
The horizontal axis distinguishes between the 25 combinations of Poisson noise
and background levels. The combination of each noise level and background
level can be read from the bottom two plots. The gray line (crosses) indicates
the added background b for a given point along the horizontal axis, with the
background periodically increasing from left to right. Similarly, the purple
line (diamonds) indicates the incident intensity s that was used to calculate
the Poisson noise. Since lower intensities mean higher relative noise, the noise
added to the curves increases from left to right. Figure adopted from [107].
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Figure B.2.: Prediction accuracy of the layer roughness for 100 different noise and back-
ground combinations. For further description of the plot see Fig. B.1. Figure
adopted from [107].
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Figure B.3.: Prediction accuracy of the layer SLD for 100 different noise and background
combinations. For further description of the plot see Fig. B.1. Figure adopted
from [107].
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Figure B.4.: Prediction accuracy of the substrate roughness for 100 different noise and
background combinations. For further description of the plot see Fig. B.1.
Figure adopted from [107].
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Figure B.5.: Prediction accuracy of the substrate SLD for 100 different noise and back-
ground combinations. For further description of the plot see Fig. B.1. Figure
adopted from [107].
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C. Additional figures for Chapter 6
This chapter contains detailed histograms of the absolute error distribution from the
mlreflect analysis pipeline described in Chap. 6 for each parameter. The histograms
expand on the condensed form shown in Fig. 6.3 and show the errors for the full
pipeline (neural network prediction + qz shift + LMS fit) with respect to each GT
parameter. Fig. C.1–C.3 show the errors with respect to the GT thickness, Fig. C.4–
C.6 with respect to the GT roughness and Fig. C.7–C.9 with respect to the GT SLD.

The majority of outliers are due to ambiguous fits (e.g. from “featureless” curves)
where multiple parameter combinations lead to a good fit. A common case are very
thin films where there are no oscillations visible in the chosen qz range.
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C. Additional figures for Chapter 6
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Figure C.1.: Distribution of the absolute thickness error from the full pipeline fit with
respect to the ground truth (GT) thickness. Each dot represents a single
curve in the testing dataset. Figure adopted from [111].
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Figure C.2.: Distribution of the absolute roughness error from the full pipeline fit with
respect to the ground truth (GT) thickness. Each dot represents a single
curve in the testing dataset. Figure adopted from [111].
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C. Additional figures for Chapter 6
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Figure C.3.: Distribution of the absolute SLD error from the full pipeline fit with respect
to the ground truth (GT) thickness. Each dot represents a single curve in the
testing dataset. Figure adopted from [111].
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Figure C.4.: Distribution of the absolute thickness error from the full pipeline fit with
respect to the ground truth (GT) roughness. Each dot represents a single
curve in the testing dataset. Figure adopted from [111].
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C. Additional figures for Chapter 6
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Figure C.5.: Distribution of the absolute roughness error from the full pipeline fit with
respect to the ground truth (GT) roughness. Each dot represents a single
curve in the testing dataset. Figure adopted from [111].
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Figure C.6.: Distribution of the absolute SLD error from the full pipeline fit with respect
to the ground truth (GT) roughness. Each dot represents a single curve in
the testing dataset. Figure adopted from [111].
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C. Additional figures for Chapter 6
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Figure C.7.: Distribution of the absolute thickness error from the full pipeline fit with
respect to the ground truth (GT) SLD. Each dot represents a single curve in
the testing dataset. Figure adopted from [111].
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Figure C.8.: Distribution of the absolute roughness error from the full pipeline fit with
respect to the ground truth (GT) SLD. Each dot represents a single curve in
the testing dataset. Figure adopted from [111].
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C. Additional figures for Chapter 6
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Figure C.9.: Distribution of the absolute SLD error from the full pipeline fit with respect to
the ground truth (GT) SLD. Each dot represents a single curve in the testing
dataset. Figure adopted from [111].
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D. Availability of themlreflect

package
D.1. Download from PyPI
The mlreflect package can be found on the PyPI under https://pypi.org/project/
mlreflect. PyPI is the most used repository of Python packages and allows the
download and installation of packages from any machine with access to the internet
free of charge. mlreflect can be downloaded from PyPI from any command line
interface (e.g. Linux bash or Windows Powershell) with the command:

1 python -m pip install mlreflect

This is the recommended way to install mlreflect for users who just want to use the
package for their data analysis and are not primarily interested in the source code.

D.2. Web documentation on Read the Docs
A complete web documentation of mlreflect is hosted publicly on the Read the Docs
website under https://mlreflect.readthedocs.io/en/latest/index.html. This
includes examples on how to use the default NN model described in Chap. 6 as well
as an example on how to train a new model, e.g. for different substrates. It also
includes a full application programming interface (API) documentation based on the
Python docstrings.
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D. Availability of the mlreflect package

D.3. Open source on GitHub
The full source code of the mlreflect package can be reviewed and downloaded
on GitHub under https://github.com/schreiber-lab/mlreflect. GitHub is a
widely-used platform that allows the public sharing of code. As per the require-
ments of the underlying BMBF project, mlreflect is open source and licensed with
the commonly used MIT license. As such, anybody is allowed to read the source code
and make modified copies of it. This is meant to provide the scattering community
with the tools and knowledge to not only use the software, but also build and expand
on the concepts that were developed in this work.
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E. Example of ambiguous box models

This chapter shows an example based on [92], where two different SLD profiles ρA(z)
and ρB(z), i.e. two different sample structures, lead to mathematically identical
reflectivity curves due to the phase loss. This example is provided as an illustration
of possible ambiguity in reflectometry and is not meant to be a complete description
of all possible solutions.

This calculation uses the kinematical description of reflectivity given by Eq. 2.49,
where modulus squared of the FT can be written as

F (qz) =
∣∣∣∣∣
∫ ∞

−∞

dρ(z)
dz

eiqzzdz

∣∣∣∣∣
2

. (E.1)

If the SLD profile ρ(z) follows a box model, i.e. it is comprised solely of N step
functions at positions zk, its derivative becomes a sum of delta functions

dρ(z)
dz

=
N∑

k=1
(ρk − ρk−1)δ(z − zk). (E.2)

This means the FT reduces to a sum of exponentials with an amplitude based on
the SLD contrast, i.e.

F (qz) =
∣∣∣∣∣

N∑
k=1

(ρk+1 − ρk)eiqzzk

∣∣∣∣∣
2

. (E.3)
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E. Example of ambiguous box models

Assuming a box model A with the 4 discrete SLDs ρA
1 , ρA

2 , ρA
3 and ρA

4 with steps at
z1, z2 and z3, then

FA(qz) =
∣∣∣(ρA

2 − ρA
1 )eiqzz1 + (ρA

3 − ρA
2 )eiqzz2 + (ρA

4 − ρA
3 )eiqzz3

∣∣∣2 (E.4)

If z1 = 0 and z3 is a multiple of z2, e.g. z3 = 2z2, the absolute square of the FT can
be written as

FA(qz) =
∣∣∣(ρA

2 − ρA
1 ) + (ρA

3 − ρA
2 )eiα + (ρA

4 − ρA
3 )e2iα

∣∣∣2 , (E.5)

where α = qzz2. It is interesting to now compare this with another box model B
with 3 discrete SLDs ρB

1 , ρB
2 and ρB

1 with steps at z1 and z3, i.e.

FB(qz) =
∣∣∣(ρB

2 − ρB
1 )eiqzz1 + (ρB

3 − ρB
2 )eiqzz3

∣∣∣2 =
∣∣∣(ρB

2 − ρB
1 ) + (ρB

3 − ρB
2 )e2iα

∣∣∣2 . (E.6)

To find all cases for which the two models produce the same scattering pattern, one
must solve for

FA(qz) = FB(qz). (E.7)

For simplicity, only the specific example shown in Fig. E.1 [92] is considered, where
ρA

1 = ρB
1 = 0 and ρA

2 = ρA
4 = ρB

3 and thus,

FA(qz) =
∣∣∣ρA

2 + (ρA
3 − ρA

2 )eiα + (ρA
2 − ρA

3 )e2iα
∣∣∣2 (E.8)

=
∣∣∣ρA

2 + (ρA
3 − ρA

2 )(eiα − e2iα)
∣∣∣2 (E.9)

=
∣∣∣ρA

2 + (ρA
3 − ρA

2 )(cos(α)− cos(2α)) + i(ρA
3 − ρA

2 )(sin(α)− sin(2α))
∣∣∣2 .

(E.10)

Using the rule for the modulus squared of complex numbers |a + ib|2 = a2 + b2,
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Figure E.1.: Left: Two SLD profiles ρA(z) and ρB(z) that produce the same reflectivity
curve R(qz) within the kinematical approximation of Eq. 2.49. Right: Cor-
responding reflectivity profiles simulated using the matrix method from Sub-
sec. 2.2.4. The small difference between the reflectivity curves is due to multi-
ple scattering, which is not included in the kinematical approximation.

FA(qz) can be written as

FA(qz) = (ρA
2 + (ρA

3 − ρA
2 )(cos(α)− cos(2α)))2 + (ρA

3 − ρA
2 )2(sin(α)− sin(2α))2

(E.11)

= (ρA
2 )2 + 2ρA

2 (ρA
3 − ρA

2 )(cos(α)− cos(2α))

+ (ρA
3 − ρA

2 )2(cos(α)− cos(2α))2

+ (ρA
3 − ρA

2 )2(sin(α)− sin(2α))2 (E.12)

= (ρA
2 )2 + 2ρA

2 (ρA
3 − ρA

2 )(cos(α)− cos(2α))

+ (ρA
3 − ρA

2 )2(cos2(α)− 2 cos(α) cos(2α) + cos2(2α)

+ sin2(α)− 2 sin(α) sin(2α) + sin2(2α)) (E.13)

= (ρA
2 )2 + 2ρA

2 (ρA
3 − ρA

2 )(cos(α)− cos(2α))

+ (ρA
3 − ρA

2 )2(2− 2 cos(α) cos(2α)− 2 sin(α) sin(2α)) (E.14)

= (ρA
2 )2 + 2ρA

2 (ρA
3 − ρA

2 )(cos(α)− cos(2α)) + 2(ρA
3 − ρA

2 )2(1− cos(α))
(E.15)

= (ρA
2 )2 + 2ρA

2 (ρA
3 − ρA

2 ) cos(α)− 2ρA
2 (ρA

3 − ρA
2 ) cos(2α)

+ 2(ρA
3 − ρA

2 )2 − 2(ρA
3 − ρA

2 )2 cos(α). (E.16)
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E. Example of ambiguous box models

Furthermore, in the special case of ρA
3 − ρA

2 = ρA
2 , Eq. E.16 simplifies into

FA(qz) = 3(ρA
2 )2 − 2(ρA

2 )2 cos(2α) = (ρA
2 )2(3− 2 cos(2α)). (E.17)

A similar result can be derived for FB(qz), where

FB(qz) =
∣∣∣ρB

2 + (ρB
3 − ρB

2 )e2iα
∣∣∣2 (E.18)

= (ρB
2 )2 + 2ρB

2 (ρB
3 − ρB

2 ) cos(2α) + (ρB
3 − ρB

2 )2(sin2(2α) + cos2(2α)) (E.19)

= (ρB
2 )2 + 2ρB

2 (ρB
3 − ρB

2 ) cos(2α) + (ρB
3 − ρB

2 )2 (E.20)

= (ρB
2 )2 + 2ρB

2 (ρA
2 − ρB

2 ) cos(2α) + (ρA
2 − ρB

2 )2. (E.21)

Despite the numerous conditions, Eq. E.7 is still underdetermined and by assuming
ρA

2 = 2, the equation can be written as

12− 8 cos(2α) = (ρB
2 )2 + 2ρB

2 (2− ρB
2 ) cos(2α) + (2− ρB

2 )2 (E.22)

= 2ρB
2 (2− ρB

2 ) cos(2α) + 4− 4ρB
2 + 2(ρB

2 )2 (E.23)

= 4 + (4ρB
2 − 2(ρB

2 )2)− (4ρB
2 − 2(ρB

2 )2) cos(2α) (E.24)

and it becomes apparent that this equation has a solution for

4ρB
2 − 2(ρB

2 )2 = 8 (E.25)

or
4ρB

2 − 2(ρB
2 )2 − 8 = 0. (E.26)

The two roots of this quadratic equation can be found via

(ρB
2 )1/2 = 4±

√
16 + 64
4 = 4±

√
80

4 = 1±
√

5 ≈


+3.24

−1.24
. (E.27)
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This shows that, within the kinematical approximation, box models A and B as
shown in Fig. E.1 produce exactly the same reflectivity curve. The reflectivity curves
shown in Fig. E.1 were simulated using the more precise matrix method shown in
Subsec. 2.2.4. Despite this, the curves are almost identical and it is reasonable to
assume that moderate experimental noise might obfuscate this difference.
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F. Datasets used in this work
Tab. F.1 shows all datasets used in this work for NN testing as well as additional
information, such as who authored them and in which chapter they were used. More
information can be found in the caption of the table.
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