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1
Z U S A M M E N FA S S U N G

In dieser Arbeit stelle ich mein Dissertationsprojekt über die neu-
ronale Implementierung der durch Eigenbewegung induzierten
Verarbeitung des optischen Flusses im Pretectum des larvalen
Zebrafisches. Ich erläutere dies mit David Marrs "Drei-Ebenen"-
Framework zum Verständnis des visuellen Systems. Ich gehe
die Wichtigkeit dieses Frameworks mit einem Gedankenex-
periment an und wende diese anschließend auf das Problem
der Verarbeitung des optischen Flusses an. Ich erläutere das
rechnerische Ziel, der durch Eigenbewegung induzierten Ver-
arbeitung des optischen Flusses, welches die Extraktion der
Eigenbewegungsinformationen aus dem optischen Fluss ist.
Um dies zu erreichen, muss der verwendete Algorithmus zwei
Berechnungsprinzipien umsetzen: die "Zerlegbarkeit" und die
"Identität". Ich stelle hierfür drei mögliche Algorithmen zur Ver-
arbeitung des optischen Flusses kurz vor und erläutere, wie die
beiden Berechnungsprinzipien in diesen Algorithmen umgesetzt
werden. Darüber hinaus bespreche ich die relevanten experi-
mentellen Studien und erkläre im Detail, warum die systema-
tische Charakterisierung der rezeptiven Felder der Fliege die
neuronale Implementierung des "matched-filter" Algorithmus
für die durch Eigenbewegung induzierte Verarbeitung des op-
tischen Flusses aufzeigen kann. Ich erwähne die Vorteile und
Grenzen der umgekehrten Korrelation (reverse correlation) für
die Abschätzung der rezeptiven Felder und stelle eine Methode
für die effiziente Schätzung höherer Merkmale der rezeptiven
Felder mittels "Merkmalsrauschen" (feature noise) vor.

Diese Dissertation beinhaltet drei wissenschaftliche Publika-
tionen. Die wichtigsten Ergebnisse sind in der ersten und dritten
Publikation enthalten, während ich in der zweiten Publikation
hauptsächlich auf ein spezifisches technisches Problem eingehe.
In dem Diskussionsteil diskutiere ich die Vorteile und Probleme
im Zusammenhang mit der räumlich-zeitlichen Korrelation des
"zusammenhängenden Bewegungsrauschens"(contiguous motion
noise (CMN)), die in der ersten Publikation entwickelt wurde. Ich
erläutere potenzielle Probleme bei der umgekehrten Korrelation
und dem zweistufigen nonparametric cluster-based bootstrap-
ping-Test im Hinblick auf die Auswirkungen bei der Interpreta-
tion der Ergebnisse der RF-Schätzung. Diese Methoden wurden
in der ersten und dritten Publikation verwendet. Außerdem
erörtere ich die Einschränkungen der umgekehrten Korrela-
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16 zusammenfassung

tionstechnik bei der Charakterisierung der funktionalen Eigen-
schaften, deren Linearität noch zu bestätigen ist.Da die rezep-
tiven Felder im larvalen Zebrafisch nicht das gesamte Gesichts-
feld abdecken, was eine Abweichung vom ursprünglichen "Matched-
Filter-Modell" darstellt, erörtere ich, wie sich diese Abweichung
auf die Kodierungsqualität auswirken kann und welche Berech-
nungsprinzipien dabei eine Rolle spielen. Auch die "Mode-
Sensing"-Hypothese und das Pretectum-Hinterhirn-Problem im
nachgeschalteten Pfad bei der sensomotorischen Transformation
des Sehflusses wird kurz erwähnt. Zum Schluss werden zwei
spezifische Lücken auf der Implementierungs-, Algorithmus-
und Berechnungsebene diskutiert, die meine Arbeit nicht schließen
konnte. Die vorliegende Dissertation gibt nicht nur einen Ein-
blick in die Verarbeitung des optischen Flusses und die Ab-
schätzung der Eigenbewegung bei Zebrafischen, sondern zeigt
auch, wie Marrs "Drei-Ebenen"-Framework dazu beitragen kann,
unser Verständnis des visuellen Systems auf systematischere
und rigorosere Weise voranzubringen.
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2
S U M M A RY

In this thesis I present my PhD project about the neural imple-
mentation of self-motion induced optic flow processing in larval
zebrafish pretectum, and dissect it with Marr’s three-level frame-
work for understanding visual system. I address the importance
of this framework with a thought experiment and applied this
framework to the optic flow processing problem. I state one of
the computational goal(s) of self-motion induced optic flow pro-
cessing is to extract the self-motion information from optic flow.
The algorithms that can accomplish this goal, must implement
two computational principles: the decomposability and identity.
Then I briefly review three putative algorithms proposed for
optic flow processing and discussed how the two computational
principles are implemented in these algorithms. I also briefly
review the relevant experimental studies and explained in detail
that why the systematic receptive field (RF) characterization in
flies may reveal the neural implementation of the matched filter
algorithm for self-motion induced optic flow processing. Then I
review the advantages and limitations of the reverse correlation
method for RF estimation and I introduce the feature noise for
efficiently estimating the RFs of advanced features.

I include three papers in the summary sections. The major re-
sults in my PhD project are in the first and the third paper while
I mainly contribute to a specific technical problem in the second
paper. In the discussion, I discuss the advantages and problems
related to the spatiotemporal correlation of the CMN developed
in the first paper. I discuss potential problems in the reverse
correlation and the two-step nonparametric cluster-based boot-
strapping test used in the first and the third papers in terms
of the effects in the interpretation of the RF estimation results.
And I also discuss the limitation of reverse correlation technique
in characterizing the functional properties whose linearity re-
mains to be confirmed. Since the RFs in larval zebrafish do not
cover the entire visual field which is deviated from the original
“matched filter model”, I discuss how this deviation may affect
the encoding quality and which computational principles are
involved in. I also briefly mention the "mode-sensing" hypoth-
esis and the pretectum-hindbrain problem in the downstream
pathway in the sensorimotor transformation of optic flow. In
the end, I discuss two specific gaps across the implementational,
algorithmic and computational levels that my work failed to

17
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18 summary

enclose. I hope this thesis may provide some insight into the
optic flow processing and self-motion estimation in zebrafish,
but also demonstrate how Marr’s three-level framework may
help to advance our understanding of visual system in a more
systematic and rigorous manner.
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3
I N T R O D U C T I O N

We live in a world of images we have of the world, and some-
times it is not the world who is fast changing, but our view
of the world. Every active or passive movement of one’s body
may result in changes of the retinal images of the world. This
phenomenon is known as self-motion induced optic flow. Theo-
retically, this type of optic flow contains sufficient information
for determining self-motion status. The neural correlate for self-
motion induced optic flow processing have also been discovered
in a wide range of animal species. It is very natural to speculate
that these neural correlates are involved in the extraction of
self-motion information from optic flow. Now we just need to
find a way to prove how this is done.

This seemingly easy task involves several difficult questions.
First, how can we confirm if an animal uses the self-motion
information for any of its behavior at all? And does the neural
correlate identified for optic flow processing extract self-motion
information instead of other information available in the optic
flow? And if and how exactly is the self-motion information
represented by the activities of the neural correlates in an un-
ambiguous, decodable way? I consider these questions difficult
not because they require advanced experiment setups or fancy
data analysis methods, but because they are addressing different
aspects of a complex system at the same time and thus required
to be "decomposed" before answering.

Similar questions have been discussed in the well-known ar-
ticle "could a neuroscientist understand a microprocessor" by
Jonas and Kording38, in which they applied some common ex-
perimental and data analysis methods in neuroscience to study
the function of a microchip. The results they obtained are all
somewhat related with some computational properties of the
components in the microprocessor, but none of them can reveal
the goal of the computational process executing in the micro-
processor. They believed it is mainly due to the inappropriate
analysis methods. However this is not entirely the case, at least
not for the problems I met in my PhD study. These problems are
mostly due to the mismatch between the level of the complex
system the questions are addressing, and the level addressed by
the observation I made. The "level" I am referring to here is a
concept introduced by the meta-scientific framework first pro-

21
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22 introduction

posed by Werner Reichardt and Tomaso Poggio, and finalized
by David Marr60,61,73. This framework suggests visual system,
as a complex system consists of three loosely related levels, and
one can only fully understand a visual process by linking the
observation acquired at different levels together. And the prob-
lems I met were untangled and became answerable by applying
this three-level framework.

In view of these, I would like to present my PhD project as
a demonstration of Marr’s three-level framework in this thesis.
Before discussing why a systematic characterization of motion
sensitive neuron receptive field may help to address the optic
flow problems mentioned above with Marr’s three-level frame-
work, I will start the introduction with a thought experiment
demonstrating what is the "difficult question" I mentioned above
in a more explicit way.

3.1 a paralyzed alien and three levels of under-
standing

"A wing would be a most mystifying structure if one
did not know that birds flew. "

- Horace Barlow, 1961
2

A group of world-class neuroscientists were led into a room
where they found a cage covered with black cloth. The man
in black standing next to the cage said to the crowd: "You are
invited to here because we found this extra-terrestrial animal
in the UFO we shot down yesterday." He uncovered the cagethe "paralyzed

alien" thought
experiment

and there is an unknown creature lying in the cage. "It survived
from the spaceship crash, but it is completely paralyzed. We
cannot determine what caused the paralysis and treat it because
we cannot take off its exoskeleton suit which also blocks all
electromagnetic waves for any medical imaging. So in short, it
is permanently paralyzed and there is nothing we can do about
it."

"The good news is its brain is not covered by the suit, which
gave us a chance to study it with these two powerful setups..."
The man in black pointed at a fancy setup on his left, "This setup
can provide all kind of physical stimuli. You can use it to present
any sensory stimuli or directly stimulate the brain in any way
at any resolution and scales. And this-" He pointed at the setup
on the right "-allows you to record any physiological signal and
anatomical structure from its brain, again, at any resolution and
scales. You can forget about all technical limitations from now
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3.1 a paralyzed alien and three levels of understanding 23

on." "And what I want you to determine is considerably simple"
He walked back to the cage, "can this paralyzed alien see at
all?" Let’s assume these neuroscientists can solve any problems
instantly and never make a mistake. Can they answer this ques-
tion when the alien stays paralyzed?

When I discussed this thought experiment with my colleagues,
they immediately pointed out the lack of definition of "seeing"
in this thought experiment. What does "seeing" mean to us? An empirical

definition of
"seeing" in
neuroscience

If some parts of the alien are responding to visual stimuli, is
it sufficient to conclude the alien can see? To extend this fur-
ther, can we know anything about the alien’s perception without
behavioral evidences? These questions matter not only in a meta-
physical way, but also in a very practical sense: before every
experiment, I need to screen out the fish with no vision problems
for functional characterization of visual systems. Examine the
structural integrity of visual system provides a way for screen-
ing, however it cannot determine the functional status of the
visual system. A blind fish may have an structurally intact but
malfunctioning visual system. To solve this problem, most if not
all functional visual neuroscience studies adopt a behaviorism
solution, which screens animal by their behavioral responses
to visual stimulus, such as the optokinetic response (OKR) and
optomotor response (OMR)7,65. The animals repeatedly respond-
ing to visual stimuli with the expected behaviors are believed to
be able to see.

In my opinion, without behavioral evidence support, any
assertion about animal perception may be controversial. For
example, in the "paralyzed alien" thought experiment, if we
conclude the alien is able to see based on some neuron-visual
feature correlations, we should also conclude that the computer
detecting the same features can see as well1. This does not mean
all reductionism investigations are pointless. Quite the opposite,
they may deepen our understanding of the computational mech-
anism of the sensory systems, and allow us to predict some
computational features once the computational goal is known.

Similarly, revealing the computational goal of a visual process
may not help to determine the function of individual compo-
nents either. These imply some necessary "compartmentaliza-
tion" in understanding visual systems: the observation in one
"compartment" cannot directly lead to conclusions in other com-
partments. This has already been well stated in the quote from

1 As Poggio and Marr concluded: "The underlying philosophical issue here is that
reductionism does not imply constructionism"60.
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24 introduction

Computational The goal and the strategy of computation

Algorithmic
The algorithm/representation employed by
the system

Implementational
The hardware implementation of the algo-
rithm/representation

Table 3.1: Marr’s three-level framework

Horace Barlow above. Werner Reichardt and Tomaso PoggioPoggio and
Reichardt’s three

levels of
understanding

framework

addressed this compartmentalization as different levels for un-
derstanding complex systems73. Despite “... the knowledge at
one level might be of little help at any other one. However, an
understanding of the functional property at higher levels might
help to develop approaches at lower levels.”73. It seems this com-
partmentalization is more of a feature of our cognition instead
of a property of the sensory system. I would not further expand
this topic in this neuroscience thesis as it is more appropriate to
discuss under philosophical, psychological or semiotics frame-
works, instead, I will focus on how this compartmentalization
may help for rigorous investigation of visual system.

Visual system or any other complex systems, in Weiner and
Poggio’s opinions, should be understood at three levels which
concern the function of the entire visual system, the subsystems
and the neural circuits or individual neurons respectively. These
three levels are divided based on the investigation scale which
may not well reflect the compartmentalization in our cognition
process of visual system. Therefore it has very limited power in
explaining the problem in the "paralyzed alien" example, while
Marr’s framework may be more suitable to unravel the con-
fusions in the thought experiment. The definition of the three
levels of understanding visual systems in Marr’s framework is
summarized in Table 3.1.

In plain language, the computational level is asking "what does
the system do?" The algorithmic level asks "How does the system
work?" And the implementational level concerns "Why the system
can work with its current hardware configuration?" Marr’s three-Marr’s three-level

framework level framework corresponds better to our cognitive process if
we recall the first time we saw chopsticks: the descriptions "they
are wooden sticks" or "they can be held and move with your
fingers" will not help to understand their function or their compu-
tational goal. Once the function is known, the next question will
usually concern the algorithm (how to use them to deliver food).
And after these are known, its hardware implementation may
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3.2 optic flow processing in three levels 25

start to make sense (e.g. the shape and the material of the sticks).

Marr stated, as we see in the example above, that the com-
putational, algorithmic and implementational level are loosely
related. Although the conclusion at one level may not directly
determine property at another level, it may still leave us some
hints. This loose relationship sometimes tangles the three level
up. To avoid this in my thesis, I will introduce the optic flow
processing by first defining its computational goal and princi-
ples before I introduce the putative algorithms and their neural
implementations.

3.2 optic flow processing in three levels

Optic flow is generally defined as the movement of luminance
patterns in a two-dimensional (2D) image5,22,42,43 projected on a
three-dimensional (3D) surface. It is an objective phenomenon
which should not be confused with visual motion, the perception
yield from optic flow processing. It can be represented by as a the definition of

optic flowvector field where each vector represents the movement velocity
of local image patterns (Figure 3.1). Optic flow can be catego-
rized by its source, scale and the visual perception triggered. For
example, they are resulted from the real object movement, or
apparent motion. The former type of optic flow can be further
divided into the optic flow induced by the movement of the
external objects and the ones induced by the movement of the
observer. The terms of different categories of optic flow grouped
by the scale or visual perception triggered are often interchange-
ably used which may result some confusion. For example, the
wide-field optic flow is sometimes considered to be equivalent
to the optic flow triggering global motion perception. This is
not necessarily the case as there are evidences suggesting the
perception of global motion may also be triggered by the optic
flow presented in local regions41. And the incoherent wide-field
optic flow may not lead to global motion perception1,14

To understand optic flow processing with Marr’s three-level
framework, we need to answer the following questions:

1. What information in what type of optic flow is used by
animals, and in which behaviors? (computational goal)

2. What structure/form/properties must the information
be extracted from optic flow for the computational goal?
(computational principles)

3. How can this extraction and structuring be done with
finite number of steps and computational components?
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26 introduction

Figure 3.1: The optic flow estimated as the displacement field of two
images indicated by the velocity vectors. The d and θ indi-
cate the norm and the phase angle of the selected vector

How efficient and robust is the corresponding algorithm
in extracting and preserving the information from optic
flow? (algorithm)

4. How is the algorithm for optic flow processing imple-
mented in what functional structure (i.e. receptive fields)
of which neurons? How may the limitations in the signal
quality, computational efficiency of the neural implementa-
tion affect the robustness and efficiency of the algorithm?
(neural implementation)

In this thesis I will discuss these questions in relation with the
optic flow induced by self-motion, which is largely overlapped
with the optic flow triggers the perception of self-motion. Gibson
was the first to point out it is sufficient to determine self-position,
heading direction and speed of the observer from this type of
optic flow221,22. This is confirmed by the later studies which
have demonstrated multiple ways to extract this information
from global optic flow fields10,11,42,43,56,71. It is natural to spec-The computational

goal of self-motion
induced optic flow

ulate that at least one of the computational goal of self-motion
induced optic flow is to infer the 3D self-motion status from the
2D optic flow field.

This speculation has been proved in human39,93,94,106. How-
ever the investigation strategy in most of these studies cannot
be directly transferred to the other species which we cannot
easily communicate with. For the other animals, we have to
assess this hypothesis by finding the behavioral task that cannot
be accomplished without knowing self-motion status. In most
species, it is evaluated with the visual stabilization behavior
such as gaze, head orientation, body posture and body posi-
tion stabilization3,35,49,76. These behaviors all share a common

2 The optic flow induced by self-motion is not equivalent to the self-motion
triggered optic flow as the latter can also be apparent motion.
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3.2 optic flow processing in three levels 27

Figure 3.2: Three types of self-motions (left column) and the retinal
projection of the optic flow they induced (right column).
T(x, y, z) and R(x, y, z) indicate the velocity vectors for self-
translation and self-rotation respectively.

goal which is to restore the previous self-motion status from
the perturbation. And they can be robustly triggered in most
animals studied without visual problems. Ideally the specu-
lated computational goal may be confirmed in the animals able
to perform these stabilization behaviors when the optic flow
is the only available sensory cue. However it is hard to block
the other sensory inputs, especially when the animal is mov-
ing. Therefore most of these studies "fake" the perturbation by
presenting wide-field apparent motion whose vector field is
identical to the optic flow field resulted by a perturbation. If an-
imals’ behavioral responses to the apparent motion may restore
their previous self-motion state from the corresponding illusion-
ary perturbation, then we can prove self-motion information
has been inferred from optic flow by the animals tested. This
apparent motion induced self-stabilization behavior has been
observed in flying insects, fish, birds and monkeys3,23,35,49,54,
which suggest the inference of self-motion status is a common
computational goal of optic flow processing across these species.

A rigid object can only be moved in one translation direction
and rotate around one axis at one time and the information of
self-translation and self-rotation cannot be mixed. If an object The computational

principles of
self-motion induced
optic flow
processing

is translating and rotating at the same time, the optic flow field
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resulted will be the resultant vector fields of the optic flow fields
induced by the translation and rotation separately (Figure 3.2).
Based on these facts, I assert two computational principles for
self-motion induced optic flow processing:

1. Decomposability: The translational and rotational compo-
nents in self-motion induced optic flow must be processed
or represented separately.

2. Identity: Every velocity vector in an instantaneous self-
motion induced optic flow field may correspond to one and
only one translational and rotational self-motion vector.

If the decomposability principle is not satisfied, the information
of self-translation and self-rotation extracted from optic flow
will be confused, and animals may fail to call the correct motor
program for stabilizing their self-motion status by compensating
the rotation and translation components in perturbations. If the
identity principle is not satisfied, animal may fail to determine
the velocity of translation and rotation to be compensated for
self-stabilization. However, satisfying these two principles does
not always mean the system can recover its translation and ro-
tation status. In Figure 3.3, all self-motion induced optic flow
fields are mapped to a 2D configuration space by the weight
of the translation and rotation components in these flow fields.
The optic flow processing systems are simplified into a process
which converts optic flow to representations of translational
and rotational self-motion. The four systems in A satisfy the
decomposability principle while the ones in B do not. Except the
bottom right system, the other systems in A will fail to represent
the self-translation and rotation simultaneously. The problem
here is not at the computational level, but the algorithmic and
implementation level.

Before I start to discuss the optic flow processing at the al-
gorithmic level, I shall quickly introduce the analytical model
developed by Koenderink and van Doorn42 for describing the
translation- and rotation-induced optic flow. Let t⃗ and r⃗ be thethe analytical model

of self-motion
induced optic flow

processing

velocity vectors for self-translation and rotation motion. For a
set of visual cues (or fiducial points) at the position p1, p2, ...pn,
the corresponding optic flow vector T⃗ and R⃗ at position pi is
calculated as:

R⃗ = −⃗r × p̂i (3.1)

T⃗ = − t⃗ − (⃗t · p̂i) p̂i

|pi|
(3.2)

where the × and · indicate the cross and the dot products of
vectors. The p̂ is the normalized unit vector of p by dividing
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Figure 3.3: The example systems who satisfy (A) or fail to satistify
(B) the principle of decomposability are presented in a
configuration space composed of translation and rotation
weights. The weights represent the significance of the corre-
sponding component in the optic flow field. The optic flow
processing systems is simplified as a response function to
the translation- and/or the rotation-induced component.
The blue and red color indicates the responsiveness to
the translational and rotational components respectively.
The rectangles in the middles are the representations of
self-translation and self-rotation status formed by the corre-
sponding systems. For example, the system represented by
the top-left plot in A only respond to the rotation-induced
component when the translational component is absent.
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with its norm |p|. As mentioned before, when the observer is
moving and rotating at the same time, the self-motion induced
optic flow M⃗ is simply the sum of the optic flow field induced
by the translation movement T⃗ and the rotation movement R⃗:

M⃗ = R⃗ + T⃗ (3.3)

= −(⃗r × p̂i)− (
t⃗ − (⃗t · p̂i) p̂i

|pi|
) (3.4)

Putative algorithm
for optic flow

processing
It is clear in equation 3.4 that under the constraints set by

the two computational principles, the self-motion induced optic
flow processing problem in principle is a polynomial regression
problem which should be quite easy to solve. Several algorithms
have already been proposed in the last century. For example, the
analytical solution Longuet-Higgins and Prazdny56 proposed
can determine self-translation and rotation status from the ve-
locity difference of two visual cues in the same area of the
visual field but at different depths. The algorithms developed by
Koenderink and van Doorn42 determines self-motion status in
an iterative way. In each iteration, the algorithm computes the
difference between the observed optic flow field and the flow
field yield from the estimated self-translation and rotation vec-
tor. And based on this difference, this recursive algorithm may
find the least squared estimation of self-motion status. Dahmen,
Franz and Krapp10,11,18 proposed the "matched filter" algorithm
which transforms the optic flow field into the scores of a set
of linear filter that are highly similar to certain translation- or
rotation-induced optic flow fields (F⃗T and F⃗R respectively). For
the optic flow field M⃗ with n elements, the transformed score s
is calculated as:

s = M⃗ · F⃗ (3.5)

=
n

∑
i

m⃗i · f⃗i (3.6)

=
n

∑
i
−(⃗r × p̂i +

t⃗ − (⃗t · p̂i) p̂i

|pi|
) · f⃗i (3.7)

The implementation
of decomposability
and identity in the

matched filter
algorithm

If the filter F⃗ matches the optic flow induced by rotation r⃗∗

that f⃗i = r⃗∗× p̂i, and all visual cue are spherically symmetrically
distributed with the same depth, let r⃗, r⃗∗ and p̂i be unit vectors3:

s =
n

∑
i
−(⃗r × p̂i +

t⃗ − (⃗t · p̂i) p̂i

|pi|
) · (r⃗∗ × p̂i) (3.8)

=
2n(r · r∗)

3
(3.9)

3 This constraint is only for the simplicity but not necessary, if they are not
unit vector, the function will still be linear that s = a(r · r∗) + k
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Similarly for the filter matching the optic flow field induced
by the unit translation vector t⃗∗, we can write a similar equation:

s =
n

∑
i
−(⃗r × p̂i +

t⃗ − (⃗t · p̂i) p̂i

|pi|
) · ( t⃗∗ − (t⃗∗ · p̂i) p̂i

|pi|
) (3.10)

=
2n(t · t∗)

3
(3.11)

Equation 3.9 and 3.11 show the matched filter transforms
self-translation/-rotation induced optic flow components into
the inner products of the self-motion vectors inducing the optic
flow and the self-motion the matched filter represents. Theoreti-
cally the self-motion status may be fully restored with at least 3

translational and 3 rotational linear filters. These equations also
demonstrated that the decomposability and identity principles
are satisfied in the matched filter algorithm. Again this does
not mean they can always recover the full self-motion status
from global optic flow. The example systems shown in Figure
3.3 might seem poorly designed as they fail to persevere all
self-motion information, however similar problems may also be
found in these three delicate algorithms, especially when one
start to consider the possible neural implementation for these
three algorithms.

The detection
problems in the
neural
implementation of
optic flow
processing
algorithms

First, the motion vectors in the optic flow fields need to be
inferred from the continuous visual input. The motion inference
precision is critical for the estimation accuracy of the algorithm
proposed by Longuet-Higgins and Prazdny56. A slight error in
the speed or direction estimation of the local velocity vectors
may result in a significant error in the estimation of self-motion
status. The second algorithm has a different problem: it is rela-
tively easy to implement in a recursive neural circuit, however
the iterative computation is very time-consuming, especially
when the signal-to-noise ratio (SNR) of neural signal is poor. In
the extreme cases, it is questionable whether this algorithm will
ever converge.

The matched filter algorithm is more robust to the errors in
the visual motion detection as it integrates motion from the
entire visual field for self-motion estimation. It is also relatively
efficient because of the low computational complexity. However
it has very little power in estimating the translation or rotation
speed. It requires an additional nonlinear speed tuning algo-
rithm to estimate this information. This is also indicated in the
equation 3.9 and 3.11 that without the nonlinear speed tuning
algorithm, the self-motion estimated with the matched filter al-
gorithm will be ambiguous in terms of the speed and direction
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Figure 3.4: The lower plots show the optic flow induced by the same
forward-translation (illustrated by the top plots) projected
on the simplified one-dimensional left and right retina.
Note the difference induced by the eye convergence in the
right column.

information. Also the conditions I set for equation 3.9 and 3.11

may be an oversimplification for the optic flow processing in
naturalistic scenes. Most times the visual cues are rarely sym-
metrically distributed and equidistant from the observer, which
might also increase the ambiguity of the self-motion information
estimated.

In addition, all these three algorithms may not solve the prob-
lem caused by the vergence eye movements illustrated in Figure
3.4. Most animals investigated in optic flow research, except
some flying insects whose eyes are fixed, are able to perform
vergence eye movements53. The composition of optic flow field
changes during this eye movements. For example, the focus of
contraction (FoC) in the forward-translation-induced optic flow
in Figure 3.4 become an expansion point. These problems only
start to appear at the implementation level, and many of them
may greatly reshape our understanding of the algorithms.

These are all minor issues in comparison with the last prob-
lem that all these algorithms are completely hypothetical, which
will not help us to understand optic flow processing at all until
the corresponding neural implementation is found. Only when
this correspondence has been revealed, the understanding at the
algorithmic level will be a tremendous help to develop a viable
understanding of the neural implementation. In the next section
I will briefly review the important findings of the neural imple-
mentation related with optic flow processing in previous studies.
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3.3 visual processing of global optic flow

The neural correlates of self-motion induced optic flow have
been found in the visual system of most animals with visually
guided self-stabilization behaviors, for example, the lobula plate
tangential cells (LPTC) neurons in flies35,46,88, the neurons in the
lobula and medulla in the optic lobe of the shore crabs32, the
pretectal neurons in zebrafish44,49, the neurons in the pretectal
nucleus lentiformis mesencephali of pigeon99–101, and the the
dorsal part of the medial superior temporal area (MSTd) area of
the visual cortex in primates and human63,85,87,93,94. In fly, shore
crab and primates, it is found the responses of these neural cor-
relate is mainly modulated by the self-motion related properties
in the optic flow, but weakly influenced by the static features
such as the visual cue texture32,87. Most of these neurons can be
classified by their preference to the type of self-motion induced
optic flow (translation induced vs. rotation induced)40,46,49,85,99.
However there are some exceptions: in pigeon, rabbit and pri-
mate, the rotation sensitive neurons were found also sensitive to
the shearing motion82,87,97. And in primate the preferred trans-
lation direction of some translation sensitive neurons are also
modulated by the rotation-induced optic flow85.

The ratio of translation or rotation selective neurons varies
a lot across species: The optic flow sensitive neurons found in
zebrafish larvae and shore crabs are predominantly translation
sensitive neurons32,49. In flies it is the opposite: there are much
more the rotation sensitive neurons than the translation sensi-
tive neurons35,46. In pigeon, primate and human the number
of translation and rotation sensitive neurons are similar63,85,99.
The ratio of translation/rotation selective neurons and their
tuning profiles may relate to the computational-level questions
mentioned in the previous section. And the variation of these
properties among different species could imply differences in
the neural implementation or the algorithm selected for optic
flow processing. However they might also be explained by the
differences in visual statistic or the differences of the motor
programs involved in self-stabilization behaviors. Thus these
characterizations and variation may not be used as determina-
tive evidences for revealing the optic flow processing algorithm.

But what should be considered as useful evidence? If we take
the reductionism view of the brain that each individual neu-
ron serves as a computational component of one or multiple
algorithms, we will get a reductionism answer for this question:
systematic characterization of the responses function of indi-
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vidual neurons in the neural correlate of optic flow processing.
This may not be the best answer for experimental neuroscientist
as this type of experiments is often very hard to perform in
many cases. In some vertebrate species it is not even possible to
record the entire neural correlate at single neuron resolution. It
is slightly easier to perform these experiments in flying insects
because of their relatively small neural population size for optic
flow processing. This makes fly the first well studied animal
model of optic flow processing at the algorithmic and imple-
mentational level.

As I mentioned in the previous section, the robustness and effi-
ciency of many optic flow algorithms are more or less depending
on the inference precision of local visual motion. In flies, theOptic flow

processing pathways
in flies

motion information is gradually extracted by the neurons in lam-
ina, medulla and lobula from the raw image sequence15,37,74,86.
These neurons are believed to serve as the Reichardt motion de-
tector and in literatures they are often addressed as elementary
motion detector (EMD)4,17,27,72,73,105. The Reichardt detector is an
algorithm for robust motion detection from the spatiotemporal
correlation of image sequences25. But its power is limited to the
detection of first-order motion, and it is tuned to the temporal
frequency instead of the absolute speed of visual motion25,103.
Therefore the signal emitted from these EMDs cannot directly
represent local velocity but requires to be further integrated
in the downstream neurons. A few decades ago, the LPTCs
were found tuned to self-motion induced optic flow instead of
local visual motion24,29. The LPTCs project to neck motor neu-
ron (NMN) via descending neurons of the ocellar and vertical
system (DNOVS)26,35,95 which is involved in the gaze stabilization
behavior35, suggesting the LPTCs play a role in the computa-
tional process whose goal involves self-motion extraction. This
behavioral relevance is further supported by the disruption
of self-stabilization behaviors after the removal of LPTCs20,28,30.
These evidences indicate LPTCs may be the pivot for self-motion
induced optic flow processing.

In 1996, Holger Krapp and Roland Hengstenberg character-
ized the RF of these LPTCs in blowfly as a first step for compre-
hensive characterization of LPTC’s stimulus-response function46.optic flow

processing
algorithm revealed

by systematic
receptive field

characterization in
flies

I will expand to talk about the concept "receptive field" in the
next section. Here it can be roughly considered as the linear part
of the stimulus-response function whose structure may reveal
the spatiotemporal integration of local motion information. In
this paper, the RF is measured by the single electrode recording
of membrane potential responses to local motion stimulus in
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each individual neuron46,47. The RF structure is visualized as
a quiver plot, in which the preferred direction in each local
region mapped is represented by the phase angle of vector in
the corresponding region. It was found the RF structures of
these optic flow sensitive neurons are very similar to certain
translation- and rotation-induced optic flow, as the matched
filter algorithm predicts10,18,45,46. Furthermore, these RFs mea-
sured by their responses to local visual motion stimuli47 can
predict the neural responses to the self-motion induced optic
flow stimuli at the global scale to a high extent40. Similar RF
structure is also found in the downstream premotor and mo-
tor neurons involved in gaze stabilization neurons, which are
presumably inherited from the LPTCs35,95. Together these evi-
dences suggest that the algorithm fly employed for self-motion
induced optic flow processing is very similar to the matched
filter algorithm.

This investigation strategy however cannot be directly trans-
ferred to the vertebrate species with much more neurons in-
volved, as it is almost impossible to record the membrane poten-
tial for every single neuron in these species. For these animals,
we can only study the neural implementation of the optic flow
processing algorithm with large-scale neurophysiology record-
ing method such as calcium imaging. In comparison with the
electrophysiology recordings, calcium imaging data has lower
SNR and slower kinetic. And it cannot record the subthreshold
activities which is required in the RF estimation method in fly
because local stimulus might often be insufficient to trigger
suprathreshold activities, especially in the optic flow sensitive
neurons with large RFs. If we want to continue the investigation
of the optic flow processing algorithm with the RF estimation
approach, it is necessary to improve the RF estimation method to
be compatible with in vivo calcium imaging. In the next section
I will discuss how reverse correlation, one of the most common
RF estimation techniques can be extended for efficient motion
RF estimation.

3.4 reverse correlation and advanced noise stimu-
lus

The concept receptive field is originally defined as a physical re-
gion (e.g. a skin area or a region in the visual field) involving in
the sensory stimulus modulation of certain neuron activities33,81.
It has been generalized to describe correlations between certain
neural activity events and sensory stimulus. Given the high di-
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mensionality of the possible features to be included in a sensory
stimulus, it is almost impossible to have a comprehensive RF
characterization of the neuron of interest without knowing its
precise function. We must narrow down the scope of features toThe problems in

"comprehensive RF
estimation"

be estimated with our prior knowledge of neurons’ functions.
And the RF estimated based on these prior knowledge should
be only considered as the approximation of the "ground-truth"
RF4. Therefore the goal of receptive field estimation should not
be to recover the complete stimulus-response function but to
evaluate the response function in a defined computational task.

Even under this constrain, it may still take too much time
to estimate RFs in a brutal way: if a neuron is responding to
stimuli contains n features or parameters, and each parameter
can take m values or states, then there are mn possible stimuli
to be presented to the neuron for RF estimation. Each of these
possible stimuli can be represented by a high-dimensional vector
in a configuration space of stimulus parameters. The partition
at each dimension of this stimulus vector is defined by the value
of the stimulus parameter the dimension corresponds to. If a
neuron responds to similar stimuli in a similar way, then its
RF may be well estimated by a subset of visual stimuli that are
uniformly distributed and cover the entire response-triggering
field in the stimulus parameter space of the neuron. Since the
relationship between stimulus parameters which is represented
by the phase angle of stimulus vectors, instead of their abso-
lute value is more important for interpreting RF estimations,
the constraint of uniformity can be further relaxed to the uni-
form phase angle distribution of the stimulus vectors with same
length (examples shown in Figure 3.5).

This strategy is similar to what is employed by the reverse cor-
relation method. The reverse correlation technique, sometimes
known as spike-triggered average (STA) has been widely applied
to estimate the RF of neurons believed to encode simple sensory
features such as edge orientation in visual stimuli and temporal
frequency in auditory stimuli90,104. The reverse correlation re-
quires the stimulus parameter space is an Euclidean space, that
the stimulus features are independent, measurable parameters9.
The receptive field f of a neuron can be estimated from a set ofReverse correlation

as a linear method
for RF estimation

independent stimulus evoked responses by:

4 We cannot know if our prior knowledge about the function of a neuron
is complete without a comprehensive functional characterization which is
impossible to perform. If it isn’t complete, then the RF estimated will be
biased by the prior.
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Figure 3.5: Scatter plots of samples from three spherically symmetric
probability distribution: a: a 2D Gaussian distribution; b: a
circular uniform distribution with uniform radial distribu-
tion; c: a circular uniform with Rayleigh radial distribution.
Each dot represents a 2-element stimulus vectors.

f̂ = − 1
n

n

∑
i=1

risi (3.12)

n = ∑(ri) (3.13)

ri is the neural responses (e.g. number of spikes) during the
displaying period of the ith stimulus (si) that should be a non-
negative real number. The estimation f̂ is the average pattern of
all stimulus patterns that triggered neuron responses.

Two assumptions for
unbiased RF
estimation with
reverse correlation

Besides the general independency assumption of stimulus
parameters and neural responses, there are another important
assumptions that need to be satisfied for unbiased reverser
correlation estimation:

1. The stimulus set is spherically symmetric.

2. The nonlinear transformed neuronal response (NL(r · f ))
is positively proportional to the dot product values (r · f )
that are greater than 0 as shown below.

NL(x) =
ax, x > 0

0, else
(3.14)

The first assumption is similar to the uniformity constrain of
the stimulus phase angle distribution mentioned above. Chichilnisky9

explained the spherical symmetry assumption as follows: if the
stimulus set is spherically symmetric, for any stimulus vector
si, it is always possible to find a vector s∗i with the same length
and symmetric in related to the RF vector f . The sum of s∗i
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and si will thus be multiples of f (k f ). The reverse correlation
estimation of the RF can be therefore written as5:

f̂ =
1
n

n
2

∑
i=1

siriP(si) +
1
n

n
2

∑
i=1

s∗i r∗i P(s∗i ) (3.15)

Given that the probability distribution of the stimulus set (P(s))
is spherical symmetric, we have:

f̂ =
1
n

n
2

∑
i=1

siriP(si) +
1
n

n
2

∑
i=1

s∗i r∗i P(s∗i ) (3.16)

=
1
n

n
2

∑
i=1

(si + s∗i )riP(si) (3.17)

=
1
n

n
2

∑
i=1

(si + s∗i )NL(si · f )P(si) (3.18)

= f
1
n

n
2

∑
i=1

kNL(si · f )P(si) (3.19)

When the second assumption is satisfied, NL(si · f ) will be
zero when k < 0. And because the stimulus is spherical sym-
metric, we can always find another pair of stimulus s and s∗

that are symmetric to the hyperplane perpendicular to f . The
sum of this pair of vectors will thus be −k f . Therefore the
1
n ∑

n
2
i=1 kNL(si · f )P(si) will be a positive real number, and thus

the reverse correlation estimation f̂ is positively proportional to
f . If the spherical symmetry assumption is not met, the estima-
tion will be biased as demonstrated in Figure 3.6.

Some advanced visual features may "emerge" from luminance
noise stimulus, for example, "edge" is a feature which requires
the detection of luminance and contrast in local area. And visual
motion requires the detection of the spatiotemporal correlation
in the luminance pattern sequence. A problem is that, even in a
spherical symmetric luminance noise stimulus, the distribution
of these advanced features are often not spherically symmetric
(Figure 3.7). Another problem is the frequency of these advanced
features are much lower than the basic features in the noise stim-
ulus, which result in the under-representation of these advanced
features in the RF estimated.

One can perform whitening transformation to correct these
biases6, however, this transformation usually comes with the

5 The equations 3.14 to 3.19 are adapted from [9]
6 Technically it is not as easy as it sounds. The stimuli of basic feature must be

first converted to the stimuli of advanced feature. This process may involve
more assumption of the data statistics to be satisfied
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Figure 3.6: The ground truth RF vector (red) and the RF vector es-
timated with reverse correlation (blue) in the stimulus
parameter space. The noise stimuli in the top row are
spherical symmetry and the ones in the bottom are not
spherical symmetry.
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Figure 3.7: Top: An instance of a 3-pixel noise stimulus, the pixel
brightness is spherically symmetric. Bottom: Each dot in-
dicates the contrast (brightness difference) of the neighbor
pixels.
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cost of estimation quality. Another more straightforward way is The advantages of
using advanced
feature noise
stimulus in
advanced feature RF
estimation

to directly construct a stimulus that is spherically symmetric in
the parameter space defined by the advanced feature of interest
but not the basic visual features. In other words, this method
shifts the estimation bias from the feature of interest to other
features. The benefit of replacing the basic sensory feature with
the advanced feature of interest is the lift of estimation efficiency
especially when the SNR is poor. If a neuron is responding only
to a certain advanced feature emerged from the basic feature in
the sensory stimulus, it will respond more frequently to the ad-
vanced feature noise than the basic feature noise, which in turn
leads to a higher information acquisition rate of the stimulus-
response correspondence and a better RF estimation quality.

There are two major challenges in making advanced feature
noise (or just feature noise) for reverse correlation: 1. A feature
noise pattern must be presentable as a vector in Euclidean space.
Or we cannot ensure the spherical symmetry of such a noise.
2. It can be converted back to basic visual feature in the same
way as it can be detected from the basic features by the visual
system of interest. Or we cannot ensure the advanced feature in
the noise stimulus will be processed by the animal as expected.
For example, the visual motion must be presented as a velocity
vector whose phase angle and norm are corresponding to the
moving direction and speed of the motion to ensure the spher-
ical symmetry of the stimulus distribution84. Then the vector
noise must be converted back to image pattern sequence by
reversing the motion detection algorithm used by the visual
system of the corresponding animal (e.g. the reversed Reichardt
detector). Inevitably, the image patterns converted may contain
other features besides visual motion, such as edge orientations
and contrasts. And the motion detection is relied on the spa-
tiotemporal structure of an image sequence, which means each
vector noise pattern may require more than one image pattern to
represent. These two issues should be aware in the construction
of feature noise as the first issue may affect on the accuracy
of RF estimation and the second directly affects the estimation
efficiency.

Besides these challenges, it is also challenging to applying
this method to calcium imaging data. In comparison with the
neurophysiological activity recorded with electrophysiology
method, the neural activity recorded with calcium imaging has
three major disadvantages:
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1. Poor SNR due to the relatively low amplitude of single-
spike induced calcium activity and the photon shot noise
in the calcium recording8,83,96

2. Slow decaying dynamics of calcium indicator8,12 and low
image acquisition rate

3. Low signal acquiring rate: although the sampling rate is
largely depending on the imaging setups and configura-
tion, in most cases it is not comparable with the sampling
rate in electrophysiological recordings.

These problems pose challenges for the reverse-correlation
based receptive field estimation which requires temporally pre-
cise and accurate detections of discrete neurophysiological events
(e.g. spikes). Many of these challenges can be partially solved
in the data analysis step by inferring spike activities from cal-
cium signals69,89. However the precision of the spike inference
is depending on the quality of calcium events. It is easier to
detect and infer spikes for the strong calcium events induced by
temporally clustered spikes than the weak events induced by
sparse spikes. The feature noise should therefore have some de-
grees of temporal contiguity in order to trigger these temporally
clustered spikes for robust receptive field estimation with noisy,
slow calcium imaging data.

In conclusion, the reverse correlation technique provides an
unbiased estimation of RF structure from the suprathreshold
neural events under the linearity and the spherical symmetry
assumption. This is critical for the compatibility with in vivo
calcium imaging. And by constructing a spherical symmetric
visual motion noise stimulus, the estimation efficiency problem
in reverser correlation may be solved by using feature noise
stimulus to a large extent, which should make it possible to
transfer the success in the investigation of optic flow processing
algorithm in Drosophila to vertebrate species.

3.5 larval zebrafish as a model for optic flow pro-
cessing

To understand what algorithm is employed by vertebrates for
optic flow processing, the animal model selected must show
clear evidences for extracting the self-motion information from
optic flow and utilizing this information in relevant behaviors
(e.g. visual stabilization). And the identified or putative neu-
ral correlate of optic flow processing should be accessible for
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systematic functional characterization with large-scale neuro-
physiological recordings at single cell resolution.

The optic flow processing in larval zebrafish has been stud-
ied since a few decades ago. The optic-flow related behav-
iors have been found and well characterized in zebrafish: The
OKR and OMR are the innate behavior which contribute to
gaze and body position stabilization in larval zebrafish respec-
tively, and they can be robustly triggered with wide-field visual
motion41,49,62,64,67,70. The OKR is the smooth rotational eye move-
ment in the direction of visual motion perceived developed since
3 days post-fertilization (dpf)16. It is majorly triggered by rota-
tional optic flow but also respond to translational optic flow55.
The OMR in the previous studies are usually triggered by trans-
lational optic flow or wide-field visual motion with consistent
moving direction, fish are swimming in the direction of optic
flow or visual motion67,75. It can also be triggered with rotational
optic flow36 or even moving edge in the adjacent local region41.
In most studies, the OMR and OKR behavior can be explained
with an alternative hypothesis that they are not stabilizing the
self-motion status but the retinal images. Therefore it is impor-
tant to determine from the neural correlate level whether the
neural correlate processed the self-motion induced optic flow
represents self-motion information instead of retinal displace-
ment fields.

The small and translucent brain of larval zebrafish and var-
ious established transgenic line allows systematic functional
and anatomical characterization of the neural correlate for op-
tic flow processing with calcium imaging or electron micro-
scope (EM)31,52,64. The optic tectum and the pretectum are the
two candidates for optic flow processing in larval zebrafish.
The optic tectum receives direct input from retina and plays
an important role in sensorimotor transformation of visual
motion57,67,75. There is a large amount of direction selective
neurons identified in the optic tectum which are mainly monoc-
ular tuned to four directions that are roughly correspond to
the up/down/left/right direction in a 2D plane34,57,92. The abla-
tion of optic tectum does not significant impair OKR or OMR,
suggesting it does not play a major role in the sensorimotor
transformation pathway for self-motion stabilization.

The pretectum, or area pretectalis (APT) also receives the direc-
tional information from retina via the arborization field (AF) 5

44.
The direction selective neurons in pretectum can be both monoc-
ular and binocular. Similar to the direction selective neurons in
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optic tectum, the monocular direction selective pretectal neurons
are also tuned to the four cardinal directions. The systematic
characterization of the binocular optic flow sensitive neurons
reveals a substantial amount of neurons in the pretectal anterior
medial cluster (AMC) that are selective to binocular translational
or rotational optic flow49,92. The characterization of the preferred
direction selectivity of the binocular selective neurons in the left
and right visual field suggests they might possess similar RF
structure to certain self-motion induced optic flow fields92. In
addition, another pretectal cluster has been found sufficient for
inducing global optic flow-triggered OKR98. These evidences
indicate the pretectum might play a critical role in the optic flow
processing.

The clear optic flow-induced behavior, the identified neural
correlate for optic flow processing, and the well-established
functional and behavioral imaging tools make larval zebrafish
a suitable animal model for the investigation of optic flow pro-
cessing. Yet, the exact algorithm for self-motion induced optic
flow processing remains unknown due to the lack of an effi-
cient and accurate method for systematic, fine-scale motion RF
characterization. Therefore my PhD study aims to:

1. Establish an efficient, robust method for fine-grained mo-
tion RF estimation in larvae zebrafish with calcium imag-
ing.

2. Systematically characterize the RFs of motion sensitive
neurons in the pretectal area.

3. Determine if these neurons may extract and encode the self-
motion information from the self-motion induced optic
flow with matched filter algorithm.

4. Predict the algorithmic and computational properties of
optic flow processing based on the observations in the
neural implementation, and verify these predictions with
neurophysiological or behavioral experiments.
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D I S C U S S I O N

4.1 spatiotemporal correlation in cmn

The CMN stimulus is not the first of its type, similar stimuli
have been repeatedly invented and applied to reverse correlation
since the early 90s6,50,51,84. The biggest difference between CMN
and the other motion noise stimuli is the spatiotemporal conti-
guity which becomes its strength and weakness at the same time.

In the introduction I mentioned motion noise stimuli, as a
feature noise stimuli must be converted back to image pattern
sequences from velocity vectors to be perceived by animals.
Therefore in the previous studies, each optic flow field pattern
is usually presented with a short movie with fixed duration that
is separated by static patterns during the inter-stimuli intervals.
This phasic stimulus design limits this type of motion noise
stimuli to only be used in the electrophysiology studies. Because
only in these studies, the neural responses to transient motion
during short stimulus phases can be well separated due to the
fast kinetic of the spike signal6. For the neural signals with slow
kinetic, the stimulus phases need to be extended to allow a reli-
able detection of neural responses to the optic flow pattern. This
may lead to a longer recording time or fewer stimulus patterns
to be displayed in a fix time period. For example, the motion RF
estimation in a previous study took only 1.6 to 6.7 minutes to
display 5000-20000 stimulus phase (20 milliseconds per stimulus
phase)6. Due to the slow kinetic and the low sensitivity of the
calcium signal, the stimulus phase should be at least 150 times
longer (1 second stimulus displaying + 2 seconds interval) to
trigger and separate calcium responses significantly higher than
the baseline. The total recording time will thus be 4-16 hours The necessity of the

spatiotemporal
contiguity for
efficient RF
estimation

which is not acceptable when considering the quality of neural
responses during the long recording and the bleaching of the
fluorophore in the calcium indicator.

The temporal contiguity in the CMN stimulus allows the 1-
to-1 conversion between the motion vector field and the binary
movie frames (see the method section "Reichardt encoder" in
the section 7.1 for details). Under the linearity assumption in
the reverse correlation method, similar stimuli may evoke sim-
ilar neural responses. The temporal contiguous in the CMN

47
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may lead to the gradual change of the optic flow pattern. The
temporal correlation in the stimulus should also be reflected in
the neural responses. Therefore the neural responses to CMN
should be temporally clustered which can be robustly detected
in the calcium signal despite the low SNR and slow kinetic in
comparison with electrophysiology signal.

The spatial contiguity is added for another reason. This RF
estimation method was first developed for estimating the pre-
tectal neurons selective to global instead of local visual motion.
The previous study49 and the paper in Appendix 7.2 show these
neurons prefer spatially coherent wide-field motion. Based on
this prior knowledge, we introduced the spatial contiguity to
force the motion directions in local regions to be more spatially
coherent to efficiently trigger their responses.

The spatiotemporal contiguity we introduced into the CMN
stimulus is essentially strong spatiotemporal correlations which
in principle should be avoided to preserve the spherical sym-
metry in the noise distribution that is essential for unbiased RF
estimations68. However we may avoid misinterpreting the RFThe strong

correlation in the
CMN stimulus may

result in the
underrepresentation

of high frequency
optic flow

component

estimations if the biases are predictable or controllable. Unlike
the correlation in the natural stimuli or pink noise distribu-
tion which affect the whole frequency spectrum, the correla-
tion we introduced by convolving Gaussian white noise with a
Gaussian kernel. The Gaussian noise is spherically symmetric.
And the convolution operation may only dampen the power
of high frequency components in the CMN1. And the distri-
bution of the components with same frequency in the CMN
may remain to be spherical symmetry. Therefore the only bias
caused by the spatiotemporal correlation we introduced is the
under-representation of the high frequency components in the
RF estimation. In other words, the correlation reduced the sen-
sitivity but not the accuracy of high frequency RF structure
estimation. This is supported by the observations that both low
and high frequency components such as the contraction/expan-
sion point in some complex RFs estimated are similar to the
corresponding structure in the self-motion induced optic flow
they are tuned to (section 7.3).

1 The convolution operation is equivalent to the multiplication in the Fourier
space. The Fourier transformation of the Gaussian function 1

2πσ2 exp− x2

2σ2 is
another real-valued Gaussian function exp− k

2 σ2. Therefore the multiplica-
tion will only alter the power but not the phase component of the Fourier
transformed white noise
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Due to this under-representation of high frequency temporal
component, the RF estimation method using CMN is weak in
estimating transient temporal RF structure which is hard to
access anyhow due to the low calcium image acquisition rate
(2Hz) and the slow calcium indicator kinetic (the decaying time
is 1.7 second). Hence we chose not to further characterize the
temporal structures of motion RF or to improve the spatial RF
estimations by performing cross-correlation. In principle the
temporal RF structure could be accessed by using the CMN
with lower temporal contiguous radius and increasing the cal-
cium imaging acquisition rate. The characterization of temporal
RF structure may contribute to determine if and how the optic
flow information is integrated in the temporal domain.

4.2 problems in the reverse correlation of calcium

signal

The reverse correlation method, as mentioned before, estimates
the stimulus-response function with the response-stimulus corre-
spondence. An inaccurate response detection will result in poor
quality and strong biases in the RF estimation. The responses of
spiking neurons can be reliably detected as the voltage spikes
with similar amplitude and certain refractory periods in electro-
physiology recordings. The similar amplitude of these voltage
spikes allows the spike detection by setting an adequate thresh-
old, and the refractory period defined the minimum time bin
for sampling and separating neural activities. In comparison
with voltage spikes, the calcium indicators have much slower
decaying kinetics which results in the convoluted fluorescent
signal that are difficult to separate temporally. The nonlinear cor-
relation between the fluorescent intensity of calcium indicator
and the spike rate and the relatively poor SNR in most calcium
recordings results in inaccurate inference of neural responses.

To solve these problems, we binarize the calcium traces into
a binary train of calcium events, which are the strong neural
responses that lead to abrupt and significant increases of cal-
cium activities. And these calcium events are detected by a
gaussian-mixture model (GMM) based algorithm. This method Sensitivity and

precision problems
in calcium event
detection

is compatible with the low temporal sampling rate and SNR in
our calcium recording. However it has two obvious problems:
1) it only detects the strong and/or temporally clustered neural
responses occurred before the over-saturation of the fluorescent
signal, and 2) the binarization erase the amplitude information
of calcium events which reflects the difference in response inten-
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sity. The loss of stimulus-response correspondence information
resulted by these problems may lead to a lower estimation qual-
ity and under-representation of the RF components with less
weight. Another problem is the event detection precision. The
false positive rate of our event detection algorithm tested with
in silico data is relatively low ( 5%). However, if we calculate the
detection precision as the percentage of the true positive events
in the total number of events detected, the in the neurons gen-
erates few or no calcium events (event rate <5%), the detection
precision will be lower than 50%.

This problem is partially solved by the two-step nonparametric
cluster-based bootstrapping (NCB) test we developed as it can
well control the false positive rate in the final RF estimation to
be under 5%59,66. However the two-step NCB test also has the
precision problem: if none of the neurons in the neural corre-
late are sensitive to motion, the statistic test will still find 5%
neurons with motion RFs. These problems are all due to the
lack of prior knowledge of the existence of stimulus-response
correspondence. A potential solution is to display a strong mo-
tion stimulus before displaying the CMN stimulus, so we may
determine if a neuron is motion sensitive based on its responses
to this stimulus. But the paper in Appendix 7.2 suggests it is
difficult to find an "omnipotent" stimulus to trigger all motion
sensitive neurons’ responses as they may tune to the visual
motion features that are mutually exclusive. For example, some
neurons respond only to local visual motion which are insuf-
ficient to trigger strong responses in the neurons prefer global
motions. Thus we might exclude some potential motion sensi-
tive neurons we are not expecting with this method. Another
less biased way is to record the responses to multiple different
CMN stimulus and evaluate the reproducibility of the RF es-
timations. The real RF structure should be invariant in all RF
estimations of the same neuron if the CMN stimuli used are
all sufficiently long. This method is equivalent to estimate RFs
with a longer CMN stimulus. The long recording time may lead
to other problems in performing calcium experiments, such as
large motion artifact and strong bleaching effect in the calcium
recordings, which should be balanced with the RF estimation
quality.

The statistic power of the two-step NCB test is limited to the
cluster level but not single unit level, which means the signif-
icant spatial cluster it identified from the raw RF estimation
may also contain noise59,66. And conversely, there might also
be significant RF units in the insignificant cluster, especially the
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scattered ones which are not expected by the statistic test which
assumes the spatial contiguity of RF structures. The significance
threshold in the first step of the NCB test governs both the single
unit and cluster-level type I error. A low significance threshold
will make the statistic test be more sensitive to the RF structure
assigned with less weight, but it will also make it harder to
locate the real RF structure in the significant cluster identified
in the second step. While increasing this threshold may make
it easier to locate the real RF structure in the significant cluster,
but it may also result in a higher false negative rate at both
the single unit and cluster level. The sensitivity, localization The information

acquisition rate is
the limiting factor
for RF estimation
precision, sensitivity
and accuracy

power and the false positive rate of this two-step NCB test form
a vicious triangle. In our study, the false negative error is as
important as the false positive error. For example, the omission
may result in the misidentification of unimodal RFs which are
actually bimodal RFs. Thus in the paper in Appendix 7.3, we
traded the localization power with the sensitivity, which make
the method weak in determine the precise RF size and shape.

In the end, I would like to discuss the limitation of reverse
correlation itself. As mentioned in the introduction, there are
two major assumptions for the reverse correlation technique: the
spherical symmetry assumption of the noise stimulus, and the lin-
earity assumption of the RF structure. If the second assumption
may not be satisfied, the reverse correlation2 may not recover
the real RF structures at all in the extreme case. For example, the The limitation of

reverse correlation
in estimating RFs
with subunits or
nonlinear RFs

RF subunits of the complex cells in Macaque V1 may disrupt
the RF estimation by reverse correlation78,91. Another common
case is the identification of the suppression RF component in
the neurons received static inhibitory modulation79. In these
cases, the subunit information may to some extent be deter-
mined with spike-triggered covariance analysis68,78–80. It is less
likely that the complex RFs for self-motion induced optic flow
detection may have multiple overlapping excitatory subunits
(i.e. the RF components with same spatial location but different
direction preferences) if they implement the identity principle
of self-motion induced optic flow processing. However it is pos-
sible that there may be some suppressive RF components to
enhance the precision of self-motion status estimation. Another
reason these suppressive components may be problematic for
reverse correlation estimation is their effects may be mixed with
the speed tuning properties (see Figure 7 in Appendix 7.1 and
Figure 4 in Appendix 7.3). For a neuron tuned to the motion

2 The reverse correlation method here includes only the spike-/event-triggered
average
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speed ṡ that R(ṡ) > R(x) for x ∈ R+, its speed tuning function
R(s) has:

R(aṡ) <= R(ṡ) < aR(ṡ) (violation of homogeneity)
R(ṡ + b) <= R(ṡ) < R(ṡ) + R(b) (violation of additivity)

where a, b and R(b) > 0. The homogeneity and the additivity
are basic properties of any linear system. The violation of these
two properties suggests the speed-related terms in the responses
function may not be estimated with reverse correlation method.

If a motion RF has suppressive components, and it also tuned
to speed, the nonlinearity in speed tuning may ravel with the
suppressive components to make the reverse correlation esti-
mation into a nightmare. Normally a suppressive component
may lead to a reduction in the response intensity to the increase
of stimulus intensity. However the nonlinearity in the speed
tuning will make this relationship hard to measure because of
the lack of good measure of stimulus intensity. In Appendix 7.1,
we proposed a low speed range to circumvent this problem. All
visual motion sensitive neurons by definition should respond
to visual motion with non-zero speed. If we assume the speed
tuning function of all motion sensitive neurons are smooth and
continuous, then there should be a speed range (0, q], in which
the speed function is monotonically increased, for unraveling
the excitatory-suppressive index and the speed tuning proper-
ties. But it still remains to be a problem to determine this speed
range without making any assumption.

To solve this problem, it is necessary to review the spherical
symmetry assumption. It does not pose any constrain in the
distribution of the norm of stimulus vectors which are associ-
ated with the visual motion speeds. The Gaussian white noise
distribution used in our studies for example, may over-represent
of the low-speed visual motion and under-represent the high-
speed ones. This can be fixed by replacing the Gaussian white
noise with the noise stimulus sampled from a uniform spherical
distribution (e.g. Figure 3.5b). The nonlinear speed tuning prop-
erty of the neuron may then be estimated as RF weights with
reverse correlation3.

The speed tuning problem may get more complicated in the
translation sensitive neurons we found in the paper in Appendix

3 Again this method only works for the RFs with linear orthogonal presenta-
tions in the stimulus parameter space. It may fail to estimate those nonlinear
RFs, for instance, a speed-tuning RF with no direction selectivity.
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7.3. They are more likely tuned to the speed of self translation
instead of the local motion speed. But the former can only be
inferred with the spatial integration of the latter which are conju-
gated with the depth information of the visual cue as indicated
in the equation 3.4. Also the animal must determine if the mo-
tion represented by each visual cue is induced by self-motion
or object motion before the integration for speed tuning. Since
these questions are not related only with RF estimation, I will
discuss them more in the next section about matched filter algo-
rithm.

4.3 encoding quality of matched filter algorithm

In the introduction I discussed the advantages and disadvan-
tages of the representative algorithms proposed for optic flow
processing. These discussions would be pointless if none of them
are actually employed by any animal to process self-motion in-
duced optic flow. The third paper in Appendix 7.3 shows that
the pretectal neurons with complex RFs served as linear filters
for self-motion induced optic flow processing in larval zebrafish.
These evidences indicate the matched filter algorithm is im-
plemented in zebrafish larvae for self-motion extraction and
encoding. Now it may be worth to discuss which factors in this
neural implementation may affect the algorithm performance in
terms of the encoding quality of self-motion information.

The evaluation of encoding quality of self motion information
involves at least three factors: code ambiguity, noise robustness
and decodability. These factors are often tangled up at the im-
plementational level. The code ambiguity is related with the
decomposability and the identity of translation and rotation
information. As shown in the equations 3.9 and 3.11, the de-
composability is implemented in the matched filter model by
the distributive law of the inner product. However this requires
the visual cue to be spherically symmetric distributed at the
same depth, which is not common in natural scenes. It also
requires the receptive field to sample the entire visual field,
while the complex RFs of the pretectal neurons only cover some
parts of the visual field. Thus the decomposability in this neu-
ral implementation of the matched filter algorithm need to be
re-evaluated. For a complex RF V⃗ sampling n locations, its re-
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sponse r to the optic flow with a translational component F⃗T
and a rotational component F⃗R is:

r = ∑ V⃗ · (F⃗T + F⃗R)

=
n

∑
i=1

v⃗i · f⃗Ti︸ ︷︷ ︸
trans. scr.

+ v⃗i · f⃗Ri︸ ︷︷ ︸
rot. scr.

There are at least 2 points in any combinations of translation-
and rotation-induced optic flow field where f⃗T is parallel to f⃗R

4.
The translation score (trans. scr.) and rotation score (rot. scr.) atThe variation of

decomposability
across the visual

field is resulted by
the geometry of

rotation- and
translation-induced

optic flow fields

these locations will be similar and thus contribute very little to
the overall code decomposability regardless what value v⃗i has.
On the plane determined by the self-translation and self-rotation
vectors, all f⃗T are perpendicular to f⃗R, including points on this
plane in the RFs may increase the decomposability. For a set
of self-motion induced optic flow field whose self-rotation axes
are distributed in a spherically uniform way, the probability
density of these zero-decomposability points are high near the
FoC and focus of expansion (FoE) in the optic flow fields but
lower near the plane passing the origin (the observer) and per-
pendicular to the corresponding self-translation direction. This
is consistent with the observation in our study (Figure 4E in
the section 7.3) that the mode centers of the bimodal complex
RFs are distributed near the planes perpendicular to the trans-
lation direction. This implies these neurons may maximize the
decomposability of the representation of self-translation and
self-rotation by selectively integration of visual motion informa-
tion from different parts of the visual field. Again, to confirm
this, we must exclude the potential biases in the RF estimation
protocol. And since in this study the visual stimulation setup
does not cover the entire visual field, we didn’t have the com-
plete RFs estimated which may be essential to determine if they
implement the optimal sampling strategy for optic flow process-
ing with matched filter model.

The identity principle is partially implemented in the struc-
ture of matched filter, as the structure of each matched filter
is corresponding to a certain type of self-motion induced optic
flow fields5. Since the matched filter implemented in zebrafishThe

translation-rotation
decomposability is

affected by the parts
of optic flow field

RF covered

4 The analytical solution is too long to include. But it consists of two terms
which are the sum and the cross product of the unitary self translation and
rotation velocity vectors. The weight of these two terms can be described by
a function of the angle between the translation and rotation vectors

5 As the equations 3.9 and 3.11 showed that it requires at least 3 translational
and 3 rotational matched filter whose preferred translation/rotation axes are
not coplanar, to determine the precise translational and rotational self-motion
vectors. Therefore the identity principle is implemented by both the linear
filter structure and the decoding of the matched filter codes
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Figure 4.1: A An unimodal RF with the same structure as the high-
lighted areas in the forward-translation-induced optic flow.
B The two optic flow fields induced by self-translation in
two different directions will trigger identical responses in
the neuron with the unimodal RF in A because of the inner
products of each vector pair in the sampled region are
identical.

does not sample the entire visual field, the spatial locations sam-
pled by the complex RFs may also affect the implementation of
the identity principle, which in turns affect the code ambiguity.
An example is shown in the Figure below:

The implementation of the identity principle can be improved
by increasing the size of the RF as shown in a previous study10.
It may also be improved by splitting the RF into two components
to increase the RF span without changing the total RF areas as
shown in the figure 4.26.

The noise robustness of the matched filter algorithm has been
discussed in the paper in Appendix 7.3, but mostly at the pop-
ulation instead of single neuron level. The noise robustness at
the single RF level is often tangled with the code ambiguity as
they are all related with the implementation of the identity prin-
ciple. There are two types of noise in the self-motion induced
optic flow fields: one is resulted from the inaccurate detection
of visual motion, the other is the independent object motion
that contaminates the self-motion induced optic flow field. The The first noise is in

the implementation
of visual motion
detection and thus
affects all visual
motion processing,
the second is specific
to optic flow
processing

former mostly affects the algorithms requiring high precision
in the visual motion detection, such as the analytical solution
proposed by Longuet-Higgins and Prazdny56. The latter may
affect all algorithms determining the self-motion information

6 Note if I increase the span of the bimodal RF in Figure 3.2 to 180 degree, it
may again respond to the two optic flow fields in the same way because of
the symmetry in the translation-induced optic flow fields. This may explain
that we found fewer bimodal neurons with intermodal distances equal to
180 in the third paper in Appendix 7.3
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Figure 4.2: A An bimodal RF with the same structure as the high-
lighted areas in the forward-translation-induced optic flow.
B The two translation-induced optic flow field now may
trigger different responses due to the structure difference
in the region covered by the RF components in the right
visual field.

solely from instantaneous optic flow. In naturalistic scenes, the
distribution of both types of noise are spatially correlated, es-
pecially the second type of noise5. This means if a part of an
optic flow field is corrupted by the second type of noise, the
neighboring area are more likely to also be affected. Therefore
for the RFs with the same size, the more scattered RFs may be
more robust to the noise induced by object motion. However
this also means the size of each spatially connected component
will be smaller which may reduce the visual motion detection
accuracy and robustness to the first type of noise. It is possible
that the balance between the code robustness to these two types
of noise resulted most complex RFs we found are bimodal but
not unimodal or trimodal.

Besides the code ambiguity and the noise robustness, the de-
codability is also a major factor for judging the encoding quality
of self-motion information. The decodability describes the com-
putational complexity of the decoding process for accessing the
self-motion information from the population code. For example
if the self-translation direction is encoded by n neurons with the
"one-shot" algorithm in the Dahmen et al. paper10 (equivalent to
the one-hot code), the complexity will be O(n). And to decode
the self-motion information encoded by the matched filters, the
computational complexity will be O(nk), k > 2 as the decoding
algorithm must involve matrix multiplication710,18.

7 The complexities calculated here are not very precise as the computation
happened in individual neuron or neural circuit level are highly parallelized.
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I consider the decodability as a major factor for encoding
quality of self-motion information because the computational
complexity may be also reflected in the neural implementation.
Increasing amount of information will be loss during the signal
computation and transmission in the dendritic and neural cir-
cuits implementing a highly complicate decoding algorithm8.
In the optic flow processing case, the self-motion information
can be decoded from the population code of pretectal neurons
with complex RFs, or the population code of the direction se-
lective neurons with unimodal RFs, however the latter is more
ambiguous in terms of the translation-rotation decomposability
which requires extra decoding step to solve. The decodability
of the unimodal RFs are thus lower than the one of complex RFs.

4.4 the downstream circuit in the sensorimotor

transformation of optic flow

The decomposability and the identity principles can only apply
to the encoding part of self-motion induced optic flow process-
ing. Because once the self-motion is retrieved from the optic flow,
the computational goal for the downstream circuits in this senso-
rimotor transformation will be changed. One possible goal of the
downstream circuit is to transform the self-motion information
to motor command for generating behavioral responses to optic
flow. In this case, the code (un)ambiguity, noise robustness and
decodability should be evaluated with a completely different
standard. For example, If the fish in the figure below can only
swim in the four directions indicated with the black arrows,
the decodability of the two self-motion representations in blue
will be higher than the other representation in red, although
they are mathematically equivalent to each other, because the
sensorimotor transformation of self-motion representation does
not involve matrix multiplication which is required by the other
representation.

Figure 4.3 is a simplified illustration for the "mode sensing"
hypothesis which hypothesized the basis for representing self-

They are just used for demonstrating the difference of the decodability of
different encoding algorithms

8 This might also contribute to answer why feature extraction is necessary: If
we ignore this factor, then there is nothing wrong to implement each senso-
rimotor transformation with an independent neural circuit which may not
require to extract any feature. However the overall computational complexity
of such systems will be much higher than the systems extract common fea-
tures in the sensory processing which can be shared by many downstream
process.
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Figure 4.3: The red and blue arrows showed two sets of basis func-
tion which are mathematically identical in representing
the self-translation information extracted from optic flow.
The black arrows indicate the consequential self-translation
direction for each elemental motor commands. The sensory
representation of self-translation matched the best with
the representation of motor commands (blue arrows) pro-
duced the most efficient sensorimotor transformation in
this simplified circuit.

motion status should be the same as the basis for representing
all possible motor states (or "motor mode") to maximize the
sensorimotor transform efficiency or the decodability of sensory
representation48,88. Because then the population code of self-The sensory

representation
should also reflect
the computational

principle and
algorithm employed
by the downstream

pathway of
sensorimotor

transformation in
the motor systems

motion can be directly used as motor commands without any
further transformation48. This is supported by the non-uniform
distribution of the preferred rotation axes of LPTC neurons
which servers as matched filter for optic flow detections in
flies88 and also the distribution of preferred translation direc-
tion of the translation sensitive pretectal neurons in our study
(section 7.3). However this hypothesized algorithm assumes the
optic-flow related sensorimotor transformation is mostly linear,
which might be oversimplified and remained to be confirmed.

In larval zebrafish, the research of sensorimotor transforma-
tion of optic flow are mainly associated with two anatomical
structures: the pretectum and the hindbrain. Their roles in the
optic flow related sensorimotor transformation are somewhat
controversial in previous studies. Some suggested the transfor-The controversies

about the roles of
pretectum and

hindbrain in the
sensorimotor

transformation of
global optic flow

mation of optic flow to self-motion information is conducted
only by the pretectum, which is consistent with the finding in the
paper in Appendix 7.249,92. While some other study claimed not
the pretectum, but also the hindbrain are involved in the extrac-
tion of self-motion information64. As I have already discussed
in the paper in Appendix 7.3, the controversial explanations
may be explained by the distinct optic flow statistic in the two
different regions of the visual field stimulated in these studies.
By taking this difference into account, these controversial ob-
servations can be well explained with the matched filter model.
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Another pair of seemingly controversial findings argues the role
of pretectum in generating motor responses to optic flow: one
study reported strong correlation between pretectum and the
visual stimulation induced turning behavior102, while the other
study suggests the hindbrain but not the pretectum is respon-
sible for making decision of turning behavior1. As suggested
in the second study, it is possible the hindbrain is involved in
the temporal integration of self-motion information extracted
by pretectum from instantaneous optic flow to prevent making
frequent motor responses which are expensive in terms of en-
ergy expenses.

4.5 gaps between rfs , matched filters , and behav-
ior

As I stated at the beginning of this thesis that I consider my PhD
project as a showcase of Marr’s three levels of understanding
framework. In the introduction I have mentioned the two compu-
tational principles of self-motion induced optic flow processing.
I discussed how the matched filter algorithm may recover the
self-motion status by satisfying these two principles, and why
the RF estimation may reflect the neural implementation of
matched filter algorithm. This is confirmed by the results in the
section 7.3, and we found both physiological and behavioral
evidence that confirms one of the computational principles, the
decomposability is implemented in the optic flow processing
system of larval zebrafish. In the discussion I have discussed
how the neural implementation of matched filter algorithm
reflected by their RF structures may affect the algorithm per-
formance in terms of the code ambiguity, noise robustness and
decodability. I very much wish these results and discussion can
make a complete demonstration of the three-level framework,
however I must admit there are at least two major gaps in this
study. In this last section I will discuss how could these gaps be
filled in the future studies.

The first gap is in between the algorithmic and implemen-
tational level. We do not know how these complex RFs are This gap is mainly

due to the lack of
systematic
characterization at
the
implementational
levels

implemented in the neural correlates. Are they implemented by
the dendritic field of the corresponding neurons or inherited
from the upstream neurons. We can neither answer what role
they may play in the downstream circuits, for example, how
may the self-motion information be decoded and use the self-
motion information in behavior. Systematic characterization of
the structural and functional connectome of the neural correlates
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involved in the optic flow processing may be desired for filling
this gap. By revealing the structural connectome of AMC neu-
rons, we may identify the possible upstream and downstream
neural correlates. The characterization of the upstream path-
way and the dendritic anatomy may contribute to explain the
emergence of the matched filter algorithm. Characterization of
downstream neural correlate may update our understanding
of the role of AMC in the whole sensorimotor transformation
pathway. It might also contribute to the understanding of the
algorithm: why it is necessary and how do the properties of
the matched filter algorithm limit the choices of possible algo-
rithms and the computational goal of the downstream neural
correlates. Currently there are two ways to obtain the full struc-
tural connectome: the high-resolution serial-section EM31 and
the whole-brain scale imaging of neurons sparsely expressing
GFP52. The former technique allows to acquire the complete
structural connectome information in the whole brain. However
to my knowledge there is no fully automated methods at the cur-
rent stage for efficiently retrieving the connectome information
from EM datasets. Another challenge is to identify functional
cluster from the EM data, which require accurate alignment
of the brain structure in the EM dataset with the brain struc-
tures obtained from fluorescence microscope imaging. These
problems to some extent can be solved with the sparse labeling
approach which is compatible with calcium imaging and also
relatively easy for automatic tracing52. However the sparse la-
belling also results in the structural information acquired from
one fish are not complete, and it usually requires to merge the
labelled data from multiple fish to draw the conclusion. In such
cases, the individual variance must be taken into account for
data interpretation.

The structural connectivity may only provide a rough outline
of the information flow framework, as it tells very little about
the dynamic functional components. For example, the condi-
tional connectivity as discussed in detail in a recent review19.
Thus the functional connectivity must also be evaluated for
filling the gap between the understanding at the implemen-
tational and algorithmic level. Most methods for evaluating
large-scale functional connectivity are based on the correlation
of neural responses and the stimulus or motor output13,58,102.
The observation made in these studies are valuable in forming
hypotheses about the possible algorithms and computational
goal, or predict the functional and structural connectivity which
can be verified in the optogenetic or EM studies. However these
observations should not be considered as solid evidences for
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revealing functional connectivity especially in those large-scale
neurophysiological recordings where many "significant" neural
correlates may emerge due to the lack of multiple testing correc-
tion.

The other gap in my study is somewhat related to my crit-
icism of the functional correlation as a method for revealing
functional connectivity above. In our study we implied that the
decomposition of translational and rotational optic flow compo-
nent revealed in the behavioral experiments is accomplished by
the matched filter algorithm implemented in the AMC neurons
with complex RFs. This is weakly supported by the invariant
responses of the translation sensitive neurons in the AMC to
the translation-induced optic flow field with or without rota-
tional interferences. Although this evidence is insufficient to
prove these neurons are the neural correlate for the optic flow
decomposition, the identification of the topographical map of
self-translation direction in the AMC and the behavioral re-
sponses to optic flow mixture in our study allows future studies
to further investigate their relationship in a quantitative way.
For instance, one may manipulate the activities of the AMC
neurons preferring a certain translation directions with laser
ablation, to test if and how may this affect the decomposition of
certain combinations of translational and rotational optic flow
in OKR and OMR. It is also possible that zebrafish may have
more than one neural correlates implementing the matched
filter algorithm. Or there may be more than one algorithm em-
ployed by larval zebrafish for optic flow processing. It would
be curious to know if there is any alternative algorithm for
optic flow processing when the matched filter algorithm may
not determine self-motion status from some specific optic flow
such as the "optic flow illusion". This stimulus is constructed by
overlaying two sets of motion cues which are corresponding to
translational and rotational optic flow respectively. In human,
the perceived translation direction is shifted by the rotational
optic flow components77.

In the end, I would like to very briefly talk about an issue in
broadcasting Marr’s framework to the subcomponents of the
visual systems (e.g. neural correlates or individual neurons).
The definition of the three levels may become ambiguous when
applying to the subcomponents of the system. For example,
the computational goal of each individual translation-sensitive
neuron may not be the same as the goal of the entire system
which is to extract self-motion information as it is only available
in the population code instead of the responses of individual
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neurons. And the computational goals may also vary across the
stages of visual processing and neural correlates. However in
these cases, the core of the three-level framework is still valid.
The understanding of the algorithms can be improved by in-
vestigating the computational goal and principles or revealing
the neural implementation. The investigation of computational
goal may clarify the visual feature the components of interest
responding to, and thus narrow down the possible functional
role of these components. And the investigation of the neural
implementational may narrow down their functional role and
suitable putative algorithms. The investigation in these two di-
rections may help to answer where do the functions of this
component emerge from, and why it has such a function. These
answers may eventually be summarized into an algorithm, that
allows us to understand and most importantly, to predict the
behavior of the system or the neural ensemble of interest.
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Tell him be brave
to dig deep,

his world awaits
in the deep down.

— Xiaojun Zhang,
(1925-2018)
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6
L I S T O F M A N U S C R I P T S A N D S TAT E M E N T O F
C O N T R I B U T I O N S

6.1 high-throughput motion receptive field esti-
mation

The article "High throughput, rapid receptive field
estimation for global motion sensitive neurons using
a contiguous motion noise stimulus." by Yue Zhang
and Aristides B. Arrenberg, is published on Journal
of neuroscience methods in October 2019.

Author contributions
Y.Z. and A.A conceived the project and wrote the
manuscript. Y.Z. developed the CMN g stimulus and
the two-step NCB statistic test. Y.Z. performed the in
vivo calcium imaging in the optic tectum and pretec-
tum of larval zebrafish and analyzed the data from
the in silico and the in vivo experiments.

Appendix 7.1: We developed an efficient method for motion
RF estimation which is compatible with high-throughput cal-
cium imaging. The method contains two major components:
the CMN stimulus and the two-step NCB test. The former is an
advance feature noise stimulus which enables efficient motion
RF estimation with reverse correlation. The latter serve as a
quality control as well as a denoising algorithm that determine
if the raw estimation contains any real RF structures and if
so, where are they. The performance of this method has been
evaluated with both in silico experiments and in vivo calcium
imaging. And the results showed the RFs that represents the
stimulus-response function of visual motion but not the other
basic features in the stimulus can be efficiently and accurately
identified by this method. This method makes systematic mo-
tion RF characterization with in vivo calcium imaging possible,
which is critical for the understanding of optic flow processing
at the algorithmic level.
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6.2 parallel channels for motion feature extrac-
tion

The article "Parallel Channels for Motion Feature
Extraction in the Pretectum and Tectum of Larval Ze-
brafish" by Kun Wang, Julian Hinz, Yue Zhang, Tod
R. Thiele and Aristides B. Arrenberg, is published on
Cell Report in January 2020.

Author contributions
K.W. performed the calcium imaging experiments
on pretectal and tectal somatic responses as well as
the behavioral experiment. K.W. and J.H. analyzed
the calcium imaging data. Y.Z. contributed to the tail
tracking algorithm for behavioral data analysis, and
K.W. analyzed the behavioral data. A.B.A., K.W., J.H.,
and T.R.T. conceived the experiments and associated
analysis protocols. K.W., J.H., and A.B.A. wrote the
manuscript, with input from T.R.T.

Appendix 7.2:The brain regions optic tectum and pretectum
are heavily involved in visual motion processing in larval ze-
brafish. In this paper, the RF of the tectal and pretectal neurons
sensitive to horizontal motion in the right visual fields are char-
acterized with the calcium responses to the moving grating
stimulus with various size and presented at different locations.
The RFs of the motion sensitive neurons in the optic tectum
are biased towards the upper visual field. And they only re-
spond to visual motion in a relatively small region but not the
wide-field motion covering the same local region. While the
pretectal motion-sensitive neurons tend to have large RFs cover-
ing lower visual field, which indicates their role in processing
global motion. This is further supported by the behavioral ex-
periment in which the OMR can be more frequently evoked by
the forward translation-induced optic flow visible in the lower
temporal visual field. These results indicate the pretectal and
tectal motion sensitive neurons extract different visual motion
features in parallel and form differential representations of optic
flow.
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6.3 a robust receptive field code for optic flow

decomposition

The article "A robust receptive field code for op-
tic flow detection and decomposition during self-
motion." by Yue Zhang, Ruoyu Huang, Wiebke Nören-
berg and Aristides B. Arrenberg, is published on
bioRxiv in October 2021.

Author contributions
Y.Z. and A.A conceived the project and wrote the
manuscript. Y.Z. R.H. and W.N. performed the in
vivo calcium imaging in the optic tectum and pre-
tectum of larval zebrafish. Y.Z. and R.H. performed
the behavioral experiment that evaluate the OKR
and OMR to self-motion induced optic flow. R.H.
performed the spinal cord injection for retrograde
labelling of the nucleus of the medial longitudinal
fasciculus (nMLF). Y.Z. developed the CMN and self-
motion induced optic flow stimulus for all neuro-
physiological and behavioral experiment as well as
the recording software for behavioral experiments
and analyzed the data from all experiments.

Appendix 7.3:Through the systematic RF characterization of
optic tectum and pretectal area in larval zebrafish, it has been
revealed that the neurons involved in global motion processing
implement the matched filter algorithm for optic flow detection
with the RF structures similar to specific self-motion induced op-
tic flow. The neural response to self-motion induced optic flow
as well as the related tuning properties can be largely explained
by these linear filter RFs. The neurons sensitive to translation-
induced optic flow are topographical arranged in the pretec-
tal AMC according to the translation direction. The population
code of these neurons is sufficient and robust for representing
self-translation direction. We further demonstrated that the algo-
rithm implemented by these neurons satisfied the computational
principle of decomposability with a behavioral experiment in
which larval zebrafish responded to the rotation-induced optic
flow component with OKR and translational component with
OMR when the two components are simultaneously presented
in the optic flow. This decomposition also suggests that the
OKR and OMR, or at least one of them, are not responding to
local motion but the self-motion information extracted from the
global optic flow. These results deepen the understanding of
optic flow processing in vertebrate species at the computational,

[ July 27, 2022 at 14:17 – classicthesis v4.6 ]



84 list of manuscripts and statement of contributions

algorithmic and implementational levels.
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7.1 high throughput, rapid receptive field estima-
tion for global motion sensitive neurons using

a contiguous motion noise stimulus
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A B S T R A C T

Background: The systematic characterization of receptive fields (RF) is essential for understanding visual motion
processing. The performance of RF estimation depends on the employed stimuli, the complexity of the encoded
features, and the quality of the activity readout. Calcium imaging is an attractive readout method for high-
throughput neuronal activity recordings. However, calcium recordings are oftentimes noisy and of low temporal
resolution. The RF estimation of neurons sensitive to global motion is particularly challenging due to their
potentially complex combination of preferred directions across visual field positions.
New method: Here, we present a novel noise stimulus, which is enriched with spatiotemporally contiguous
motion and thus triggers robust calcium responses. We combined this contiguous motion noise (CMN) stimulus
with reverse correlation followed by a two-step nonparametric cluster-based bootstrapping test for efficient and
reliable RF estimation.
Results: The in silico evaluation of our approach showed that RF centre positions and preferred directions are
reliably detected in most of the simulated neurons. Suppressive RF components were detected in 40% of the
simulated neurons. We successfully applied our approach to estimate the RFs of 163 motion-sensitive neurons in
vivo within 40min in the pretectum of zebrafish. Many in vivo neurons were sensitive to elaborate directional
flow fields in their RFs.
Comparison with existing methods: Our approach outperforms white noise methods and others due to the
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optimized motion stimulus statistics and ascertainable fine RF structures.
Conclusions: The CMN method enables efficient, non-biased RF estimation and will benefit systematic high-
throughput investigations of RFs using calcium imaging.

1. Introduction

One primary task of visual information processing is to extract low-
dimensional features from the high-dimensional light patterns present
in the environment. The concept “receptive field” (RF) was proposed to
quantitatively describe the spatiotemporal stimulus structures that
modulate neural activity in a single neuron (Hubel and Wiesel, 1962).
For instance, the RF structures of orientation-selective neurons are si-
milar to the stimulus patterns that evoke firing (Bonin et al., 2011;
Hubel and Wiesel, 1962), and the RF structures of local motion sensitive
neurons are consistent with spatiotemporal structures of the locally
moving patterns these neurons respond to (Adelson and Bergen, 1985).
This quantitative description is critical for understanding mechanisms
of the visual system, since a plethora of different RFs exist within and
across visual brain areas, which together form the basis of feature ex-
traction. The measurement of receptive fields critically depends on the
stimulus statistics, the readout of cellular activity, and the algorithm
used to infer the receptive field based on stimulus and measured ac-
tivity. The stimulus statistics affect the RF estimation in several ways: i)
some stimuli are more effective at driving responses than others given
the limited experimental time, ii) the neural responses to more complex
stimuli can provide more information about the corresponding RF, iii)
the biases in the stimulus statistics may be inherited in the RF estima-
tion result.

From studies in Drosophila, zebrafish, pigeon and human, it is
known that the processing of global motion is critical for the visual
control of locomotion behaviour (Frost et al., 1994; Kubo et al., 2014;
Warren et al., 2001; Wertz et al., 2009a). In previous studies, it has
been found that the pretectal neurons in the larval zebrafish brain are
involved in processing horizontal global motion (Kubo et al., 2014;
Portugues et al., 2014) to mediate optokinetic and optomotor stabili-
zation behaviours. While the RF structures of many neuron types have
been measured, e.g. those of mammalian retinal ganglion cells and V1
simple cells (Hubel and Wiesel, 1962; Rust et al., 2005), the RF struc-
tures of large-field motion-sensitive neurons of the pretectum and ac-
cessory optic system are, however, mostly unknown. The lack of an
efficient method for estimating relatively fine structure of large-size
motion receptive fields has impeded their systematic and comprehen-
sive characterization. An improved motion RF estimation method may
greatly benefit our understanding of motion processing mechanisms in
the brain, including visuomotor transformations underlying locomotor
and stabilization behaviours.

Arguably the most common receptive field estimation technique is
reverse correlation, which has frequently been employed to estimate
spatiotemporal receptive fields of direction-selective visual neurons
(DeAngelis et al., 1993; Eckhorn et al., 1993; Rust et al., 2005; Wang
and Yao, 2011). Provided that neurons respond to spatiotemporal,
random noise stimuli, the linear receptive field structures of most visual
neurons in the early visual system can be estimated by computing the
averaged patterns of the spike-associated stimuli (Boer and Kuyper,
1968; Chichilnisky, 2001; Marmarelis and Naka, 1972). The efficiency
of this method is highly dependent on the frequency of neural activity
events during stimulation and on the information density of the sti-
mulus, which both together determine the acquisition rate of RF-re-
levant information during noise stimulation. Naturally, this information
acquisition rate is affected by the relevance of the noise stimuli to the
features the measured neurons prefer. For example, white noise stimuli
are not efficient for estimating receptive fields of neurons preferring
low spatial frequency features. Much of the recording time would be
“wasted” on irrelevant high frequency stimulus features and the

neurons would mostly be inactive during the recording. Thus, for a
time-efficient receptive field estimation, it is essential to constrain the
noise stimuli to match the preferred features of the neurons in question.

A common constraining approach is to manually decompose the
possible feature-relevant sensory space to a set of simple stimuli defined
by a small number of parameters of interest. Based on the neuronal
responses to these stimuli, the RF properties can be characterized re-
garding these parameters of interest. For example, the preferred di-
rections of direction-selective retinal ganglion cells in rabbit can be
estimated from their responses to light spots moving in 8 different di-
rections (Barlow et al., 1964). In a similar way, motion stimuli can be
presented in defined local regions to estimate direction selectivity
profiles across visual field locations for individual neurons. Using this
approach, receptive field structures of global motion sensitive neurons
in Drosophila have successfully been estimated (Krapp et al., 1998;
Krapp and Hengstenberg, 1996; Wertz et al., 2009b).

Since the static features of motion stimuli are less relevant for es-
timating the direction-selective receptive field components, the ex-
pression of stimuli by two-dimensional motion vectors within the visual
field represents a valid simplification and reduction of parameter space.
Correspondingly, vector noise stimuli randomly sampled from motion
vector space have been created for motion RF estimation previously
(Borghuis et al., 2003; Srinivasan et al., 1993).

However, these methods heavily rely on the high sensitivity and
temporal resolution of electrophysiological neural activity recordings.
Electrophysiological recordings are oftentimes time-consuming or lim-
ited to recording one neuron at a time, which makes the approach la-
borious for the systematic investigation of vertebrate brain areas con-
taining high numbers of neurons. Calcium imaging is a promising
method for functionally characterizing such large numbers of neurons
within a given brain area in parallel (Froudarakis et al., 2014; see
Grienberger and Konnerth, 2012 for review). Recent developments in
imaging techniques (Ahrens et al., 2013; Akerboom et al., 2012; Chen
et al., 2013), including genetically encoded calcium indicators and
improved sample preparation techniques, make two-photon calcium
imaging a sharp tool for studying vision processing in vivo (Ahrens
et al., 2013; Baden et al., 2013; Bonin et al., 2011; Froudarakis et al.,
2014; Hunter et al., 2013). However, the relatively poor sensitivity of
calcium indicators and the low temporal resolution of calcium imaging
limit its power in detecting and/or resolving individual action potential
spikes, which would be needed for the receptive field estimation
methods described above.

Here, we present a novel approach for the efficient estimation of
receptive fields of global motion sensitive neurons using in vivo calcium
imaging. We employed a contiguous motion vector noise stimulus,
which can efficiently trigger strong, robust neuronal calcium responses
in global motion sensitive neurons. With this stimulus and a dedicated
bootstrapping analysis method, we successfully estimated fine-scale
motion receptive field structures using noisy two-photon calcium ima-
ging at low temporal resolution (2 Hz) in the global motion sensitive
pretectum of larval zebrafish.

2. Materials and methods

2.1. Ethical approval

All animal experiments were licensed by the local authorities
(Regierungspräsidium Tübingen) in accordance with German federal
law and Baden-Württemberg state law.

Y. Zhang and A.B. Arrenberg Journal of Neuroscience Methods 326 (2019) 108366
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2.2. Visual stimulation setup

Visual stimuli were displayed on a custom-built cylindrical green
LED arena covering 336°-by-80° of the visual field (-168° to 168° in
azimuth; -40° to 40° in elevation). The arena consisted of 224 square
LED tiles (8 rows × 14 columns × 2 arena halves); each tile had 8× 8
evenly distributed LEDs emitting at 570 nm (Kingbright TA08-
81CGKWA); On average, each LED covered ˜1.5 horizontal visual de-
grees of visual field. The vertical visual angle each LED covered varied
slightly with its latitude. Because the LED was programmed to only
display two luminance levels (on/off), all stimuli displayed in the arena
had 100% contrast. All LEDs were covered with a high-pass filter foil
(LEE no. 779, article 595-1700-7790, castinfo.de, Hagen, Germany) to
reduce the light interference from the LEDs at the fluorescence emission
wavelength. An additional diffusion filter foil (LEE no. 252, article 595-
1780-2520) was also placed in front of the LED tiles to homogenize the
LED light. Custom software developed in previous studies (Joesch et al.,
2008; Reiser and Dickinson, 2008) was used for uploading, displaying
and controlling the visual stimulus. To minimize the interference of LED
light with the calcium imaging, the LEDs were flickering in a duty cycle
such that they were switched on only during the fly-back time of the
scanning mirrors in-between line scans. Before the experiment started,
the spherical fish container (a glass bulb) was fixed to a metal holder
surrounded by the arena. Tilts of the fish head in the pitch, yaw and roll
axis were corrected under the wide field microscope.

2.3. Contiguous motion noise

The motion-rich noise stimulus in this study shared the same prin-
ciple as the vector white noise introduced by Srinivasan and colleagues
(1993), which constrains the stimulus space to contain only first-order
motion. Instead of white noise, we used correlated noise to present
locally coherent motion stimuli, which are common in natural ego-
motion scenes and enable more efficient and robust receptive field es-
timation of global motion sensitive neurons using reverse correlation
and calcium imaging. We named our stimulus “Contiguous Motion

Noise Stimulus” (CMN stimulus, Fig. 1, Supplementary Video 1). To
construct the correlated vector noise, we first randomly sampled a
number of motion vectors whose norm and phase angle defined moving
speed and direction, respectively, from a circular uniform distribution:

= =P where( ) 1
2

, [ , ]

The Θ corresponded to the phase angle of motion vectors. The norm
of all motion vectors was set to the same arbitrary value of 1. Unifying
the motion vector norm at this stage helped to control the distribution
of speeds in the following steps (see further explanations below), and
the value was an arbitrary number since the vector norms will be
normalized in a later step.

These motion vectors were organized into a three-dimensional
motion vector matrix with the configuration: 16 rows × 38 columns ×
12,020 frames (elevation× azimuth× time). The motion vector matrix
was convolved with a modified multivariate Gaussian kernel to enforce
the local coherences of the motion vectors:
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The spatial and temporal standard deviation of the Gaussian kernel,
denoted as σs and σt respectively (σs = σx = σy), were set to π/2 vector
distance (≈18.8 visual degrees) and 5 frames (≈ 0.33 s, details of the
unit conversion are provided in the later sections), respectively. To
minimize the edge effect in the convolution, an 8×28×12,000 ma-
trix was cropped out from the centre of the convolved matrix and used
as the motion vector matrix for later computation. The norm of the
motion vectors in the convolved matrix was normalized to the range [0,
k], with k corresponding to the maximum speed in the stimulus. In our
CMN stimulus, k was set to 67 visual degrees/second.

Fig. 1. Contiguous Motion Noise (CMN) stimulus design. (A) A single frame of the binary Contiguous Motion Noise (CMN) movie displayed on a cylindrical LED
arena (left). The moving direction and speed of motion displayed on the LED arena are illustrated by the phase angle and length of the motion vectors in the right
plot, respectively. (B) Illustration of the procedure for stimulus generation. A random motion vector field is convolved with a multivariate Gaussian function. The
resulting contiguous motion vector field is transformed into a patterned binary motion movie making use of a Reichardt encoder.
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The correlations between positions and frames of the motion matrix
were calculated and shown as auto correlograms (Fig. 2C). To quanti-
tatively describe the local coherence intensity, the radius of the strongly
correlated region where the correlations between the centre vector and
all the vectors in this region were higher than a threshold ct, was re-
ferred to as the contiguity radius (CR) of the spatial and temporal do-
main of the stimulus. Since the coherence in the stimulus was in-
troduced by a single source (the multivariate Gaussian kernel), the
spatial and temporal correlation can be well approximated by the au-
tocorrelation of the Gaussian kernel in the corresponding dimension.
The CR for the dimension can then be calculated as:

=

=

=

f f ct

ct

ct

CR
CR

CR

( )( )

exp(
4

)

2 In( )

2

2

The σ was the spatial or temporal standard deviation of the multi-
variate Gaussian kernel. The comparison between the approximated
and the exact CR is shown in Fig. 2C. In our stimulus, the threshold ct

was set to 0.1. The spatial CR was =2 ln(0.1) 4.77s vector distances
≈ 57 visual degrees; the temporal CR was 2 ln(0.1) 15t
frames=1 s.

Because the convolved motion vector norm can be considered as a
weighted mean of multiple random vectors sampled from the circular
uniform distribution, the frequency distribution of convolved motion
vector norms can be modelled by a Rayleigh distribution s(x):

=s x x e x k( ) , [0, ],
x

2 2

2
2

where σ ≈ 0.1852k, when k= 67 visual degrees/second, σ= 12.35
visual degrees/second. The cumulative distribution function S(x) was:

=S x e( ) 1
x

2

2
2

The s(x) and S(x) provided analytical descriptions of the motion
speed distribution in the CMN stimulus. These descriptions can be used
to quantify the statistics of motion speed presented in the CMN stimulus
as follows: Let S(x) = y, then:

Fig. 2. Stimulus statistics of the Contiguous Motion Noise (CMN) stimulus used in this study. (A) Polar histograms of motion direction distributions for each spatial
location (left) and all locations in in the motion vector matrix (right) for constructing the CMN stimulus movie (12,000 frames ≈ 13min). The relative frequency of
each motion direction is represented by the colour and the bar height. (B) The motion speed distribution for each spatial location (left) and the averaged speed
distribution for all locations (right, red curve) in the CMN movie. The blue curve corresponds to the modelled speed distribution using the Rayleigh distribution
function. (C) The spatial (left) and temporal (right) cross-correlogram of motion vectors. The elevation- and azimuth-averaged cross-correlograms (red curves) for
each spatial dimension are shown above and next to the left plot, respectively. The blue dashed curves correspond to the cross-correlation modelled with the
autocorrelation of the multivariate Gaussian kernel used in the stimulus construction (see Materials and methods for details). The contiguous radii (CRs) for the
spatial and temporal domain calculated based on these models are indicated. The goodness of fit of these models was 0.99 (elevation-averaged), 0.90 (azimuth-
averaged) and 0.99 (azimuth/elevation-averaged).

Y. Zhang and A.B. Arrenberg Journal of Neuroscience Methods 326 (2019) 108366

4

[ July 27, 2022 at 14:17 – classicthesis v4.6 ]



=y e1
x

2

2
2

=x y2 ln (1 )2

When x equalled 0.4534k and 1k, S(x) equalled to 0.95 and
1–4.67× 10−7 ≈ 1 respectively. The optokinetic responses (OKR) of
larval zebrafish can be readily triggered with grating stimuli moving at
speeds around 20–30 visual degrees/second (Qian et al., 2005).
Therefore, we set k to 67 visual degrees/second, so that 95% of the
CMN stimulus motion vector samples will have speeds in the range of
(0-0.4534)k, which equals to 0–30.38 visual degrees/second.

2.4. Reichardt encoder

The contiguous motion vector matrix constructed in the previous
section needs to be converted to a movie in a way that the motion
information neurons decode from the movie should be the same as
motion information in the motion vector matrix. In a wide range of
species, the motion detection is dominated by processing first-order
motion cues (for zebrafish, see Orger et al., 2000). Several linear op-
erators, including the elaborated Reichardt detectors (ERD) model,
were developed to model the first order motion decoding in the visual
system (Adelson and Bergen, 1985; Reichardt and Rosenblith, 1961;
van Santen and Sperling, 1985). The ERD and other operators share a
similar principle, which involves converting the auto-correlated spa-
tiotemporal structure in the visual input to abstract first-order motion
information. It is thus possible to construct an inverse operator of the
ERD which converts the abstract motion information back to spatio-
temporal structures that can be detected by first-order motion sensitive
neurons. We used the term "Reichardt encoder" to refer to this first
order motion encoder.

The Reichardt encoder we constructed was similar to the motion
reverse correlation stimulus used in a previous study (Borghuis et al.,
2003). Both of them present motion vectors with sequences of dis-
placements of noise pattern; the movement each motion vector encoded
was approximated by the displacement distance between the frames
before and after the current frame divided by the time interval for each
moment (Fig. 1B). The luminance of each pixel on the noise pattern
image was assigned to a random binary value (0 or 1). To trigger mo-
tion perception properly in larval zebrafish, the maximum spatial fre-
quency of the binary noise pattern was set to 0.1 cycles per visual de-
gree by resizing patterns with a scale factor of 3 (Rinner et al., 2005).
The resized noise image contained 3000× 3000 pixels.

For each motion vector in the CMN motion vector matrix, the pat-
terns in an 8×8 pixels observation window on a copy of the resized
noise image was displayed on an 8× 8 LED array (covering ∼12 visual
degrees in azimuth). In the first frame of the CMN stimulus, the ob-
servation window of each motion vector was positioned at a random
place on the copy of the noise image. The displacement sequences for
each copy of noise image were independent from each other. To solve
the boundary problem (occurring when the boundary of the copied
noise image ran into the observation window) we used circular
boundary conditions, i.e. the boundaries of each copy of the noise image
were connected with the boundaries at the opposite side forming a
torus. The displacement distances of the resized pattern were rounded
to multiples of 1.2 visual degrees (the resolution of the LED arena).

Each 8× 8 LED array thus corresponded to one motion vector of the
CMN stimulus and the motion vector matrix was converted to a
64×224×12,000 (pixel rows – columns – frames) binary noise movie
displayed on the 64× 224 pixel LED arena (corresponding to 8×28
motion vectors). Since copies of the noise image were displaced in-
dependently of each other in adjacent motion vector positions, it was
unavoidable that the CMN movie contained different and varying lu-
minance structures at the border between two 8×8 LED arrays, re-
sulting (among other effects) in a “checkerboard” appearance of the

time-averaged CMN movie (Figure S1). The stimulus movie was dis-
played at 15 frames per second (15 Hz), resulting in a stimulus duration
of 13.3 min. The motion encoded in the first and the last columns of the
motion vector matrix was displayed at the -168° to -156° region and the
156° to 168° region (in azimuth) on the cylindrical LED arena, respec-
tively. The motion in the top and bottom rows of the motion vector
matrix was displayed at the 32°to 40° region and the -32° to -40° region
(in elevation).

2.5. Linear-nonlinear-Poisson model for the in silico experiment

We used the linear-nonlinear-Poisson (LNP) model to simulate
neuronal responses to the CMN stimulus in the in silico experiments in a
similar way as described in a previous study (Chichilnisky, 2001). The
linear receptive field of a simulated neuron can be expressed as a matrix
w; each row of the matrix is a two-element vector wi. The norm and the
angle of wi indicated its weight and preferred direction for the spatial
location i in the visual field. The norm of wi should be in the range of
[0,1]. Similarly, each frame of the motion vector matrix of the CMN
stimulus can be transformed into a matrix s. Its row vector si describes
the movement at the spatial position i in the CMN stimulus. The norm of
all motion vectors in the CMN stimulus was normalized to [0,1] by min-
max rescaling here. The output of the linear receptive field, f(s) was
calculated as:

=s w sf ( ) i i
T

(1)

For the visual motion neurons with suppressive receptive field
components, the output of the linear-nonlinear part was modified as
follows:

= +s w s w sf max max( ) ( , 0) ( , 0)i ii
T

i
T

The w+ and w− in the equations were the linear excitatory and
suppressive receptive field structures. The positive linear rectifiers in
f s( ) constrain the w+ and w− to only produce excitatory and sup-
pressive output respectively. Since the receptive field structure of the
pretectal neurons had not been revealed in any previous study, here we
simply simulated the excitatory and suppressive receptive field struc-
tures as containing Gaussian shapes, and all units in the same simulated
receptive field component shared the same direction preferences. The
linear filter with two excitatory components was used for simulating the
binocular motion RFs; the preferred directions of two components were
set to two random directions. The size of each of these Gaussian RF
components was equal to =ln0.1 1.52 vector distance ≈ 18.2 σ
visual degrees. We created simulated neurons with σ=1.5, 4.5, 9; the
receptive field of these simulated neurons covered approximately 27,
82 and 164 visual degrees respectively.

In the absence of normalization, the magnitude of output of large
linear receptive fields can be larger than the output of receptive fields
with smaller size, which would have resulted in higher firing rates in
simulated neurons with larger receptive fields. To account for this
problem in our simulation, the linear system output f(s) was divided by
f(w). The normalized outputs fnorm(s) were then rectified by the non-
linear unit =g max f s cs( ) ( ( ), )norm , c is the normalized rectifying
threshold; in our simulated neuron model, c= 0.1, so g(s) ranged be-
tween 0.1 and 1. The spike train was generated from this normalized
output by a Poisson spike generator.

To mimic the slow kinetics of calcium indicator signals and the
noisy environment in the in vivo calcium imaging recordings, the spike
train was first convolved with a calcium decaying kernel which was an
exponential decay function with a mean lifetime of 3 s. Gaussian white
noise was added before and after the convolution to mimic different
source of noises in the calcium recordings. The span of the Gaussian
noise distribution was set to 20% of the span of signal distribution. The
convolved signal was down-sampled from the stimulus displaying rate
of 15 Hz to the calcium image acquisition rate of 2 Hz. This down-
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sampled signal trace represented the final output of the simulated
neurons in the in silico experiment and was used for all following data
analysis.

2.6. Animal preparation and in vivo two-photon calcium imaging

Zebrafish (Danio rerio) were maintained on a 14 h light–dark cycle
at 28.5 °C and experiments were performed at room temperature. The
transgenic zebrafish line Tg(elavl3:nls-GCaMP6s)mpn400 was used in
this study (Dal Maschio et al., 2017). Larval zebrafish which had strong
calcium indicator expression levels and good optokinetic responses
were selected from all hatched fish at 4-day post-fertilization (dpf),
resulting in selection of the 10–20% best fish for experiments.

The in vivo two-photon calcium imaging experiment was performed
on the selected larval zebrafish at 6 dpf. On the experiment day, the
screened fish were immobilized by mounting them in 1.6% low
melting-temperature agarose (wt/vol, E3 medium) at the tip of a
transparent plastic triangle stage (tip angle< 45%). Then the triangle
stage with the mounted fish was transferred into a spherical glass
container filled with E3 medium. The containers were placed to the
centre of the cylindrical LED arena. The body position and orientation
of the mounted fish was adjusted later, so it was located in the centre of
the LED arena with the dorsal side facing up (roll correction) and the
head pointing to 0° elevation (pitch correction) and 0° azimuth (yaw
correction).

The calcium activities of neurons in 3 horizontal planes at different
depths of the pretectal area in a larval zebrafish were recorded with a
movable objective microscope two-photon setup (Sutter Instruments,
Novato, California, USA; Euler et al., 2009) coupled to a Coherent Vi-
sion-S Ti-Sa laser. The emitted fluorescence light of the calcium in-
dicator protein, GCaMP6s, triggered by the excitation laser beam at
920 nm (prepulse compensation: 9756 fs2) was collected with a 20x/1.0
Zeiss objective at the wavelength 500–550 nm. The image time series
were recorded using MScan software (Sutter instruments). The image
acquisition rate was 2 frames per second at 512×512 pixel2 and a
magnification of 2 (0.44×0.44 μm2 per pixel).

2.7. Preprocessing of in vivo and in silico data

The recorded in vivo calcium imaging data was registered via cross-
correlation of the frames to get rid of motion artefacts in the XY plane
(rigid XY translation). All visible neuronal soma bodies in the time-
averaged image of the registered calcium image time series were au-
tomatically selected as regions of interests (ROIs) by a marker-con-
trolled watershed algorithm custom written using MATLAB. In total,
1896 ROIs were selected in the three transverse planes recorded. The
calcium time series was computed for each ROI as the sum of all pixel
values in each frame within the ROI. The calcium time series were each
normalized to the range of [0, 1].

Due to a number of reasons (slow kinetics of the calcium indicator,
low affinity of the calcium indicator, low image acquisition rate of our
two-photon microscope, recording noise), calcium activities corre-
sponding to single action potentials should be hard to detect. We
therefore used the abrupt, high amplitude increases in the calcium
traces (which we call events) as indicator for neural activities. These
events should correspond to sudden, significant increases of the fluor-
escence signal related to the increases of neural firing rate, which were
more robust to noise and more suitable for the low temporal resolution
of the recording system than single action potentials. Note that we
exclusively use the increases of activity and ignored the temporal pro-
file of the calcium signal decay after each event. These calcium events
were automatically identified by a Gaussian-mixture-model (GMM)
based clustering algorithm. We assumed the noise in calcium recordings
was Gaussian distributed according to the central limit theorem. Any
significant increases of neuronal firing rate would drive the calcium
signals away from the original Gaussian noise distribution. With this

assumption, we assigned all data points in each calcium trace into one
of the two Gaussian distributions by performing clustering with a GMM
model. The outliers can be detected as the ones that are less likely to be
drawn from the baseline Gaussian distribution and therefore more
likely to correspond to the other (signal) distribution.

The GMM algorithm did not consider the temporal structure of
signals, thus the detection can be strongly interfered by low frequency
noise that caused baseline changes. To compensate for this, we applied
the GMM clustering algorithm to all signals in a 200-frame moving
window with the moving step size= 1 recording frame; each data point
was thus assigned repeatedly for 200 times. The dominant assignments
in these 200 repeats was used as the final assignment. The final output
of the algorithm was a binary array (1 = calcium event detected; 0 =
no event detected).

This calcium event detection algorithm was applied to both the si-
mulated in silico and the recorded in vivo calcium traces. The accuracy
of this event detection algorithm was tested in 50 in silico calcium
traces. The inferred calcium event trains were up-sampled with the
nearest-neighbour resampling method from the image acquisition rate
(2 Hz) to the stimulus frame rate (15 Hz) to be aligned with the stimulus
frames. On average, each simulated neuron had calcium events in
35.1 ± 4.5% of the stimulus frames (mean ± standard deviation,
same in the other sentences and paragraphs). The detection accuracy
calculated as the number of correctly assigned frames divided by the
total number of assigned frames was 77.80 ± 1.84% for the in silico
data. The false positive rate was 20.77 ± 2.93%. The high false posi-
tive rate was mainly caused by the nearest-neighbour up-sampling of
the inferred calcium event train. If we calculate the false positive rate in
the stimulus frames down-sampled to the image acquisition rate (2 Hz),
the false positive rate will drop to 5.31 ± 1.50%.

The neurons recorded in vivo in the pretectal area of larval zebrafish
had calcium events in 28.5 ± 14.2% of the 12,000 CMN stimulus
frames (mean ± standard deviation). On average each neuron gener-
ated 158 ± 87.5 event bouts during the 800-second CMN stimulation,
i.e. each frame-by-frame calcium event was usually part of a longer-
lasting calcium event bout. The ROIs in the in vivo calcium imaging
recording with low averaged event rate (responding in less than 8% of
the stimulus frames) were excluded from later analysis (242/1964 ≈
12.5% ROIs excluded). The binary calcium event trains (2 Hz) of the
remaining neurons were up-sampled with the nearest-neighbour re-
sampling method and aligned with the stimulus frames displayed at
15 Hz for reverse correlation.

2.8. Direction preference of motion-sensitive pretectal neurons

To find the ROIs responding to large-field motion stimuli and to get
an independent assessment of direction selectivity of these ROIs, the
full-field motion stimulus consisting of binary noise patterns moving in
8 directions (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°) was displayed
before the CMN stimulus to the zebrafish larvae in the in vivo calcium
imaging recordings (Fig. 7a). The stimulus consisted of 3 repeats of 8
phases. Each phase consisted of a 5-second moving period and a 5-
second still period. The 8 moving directions were presented in a
random order in the moving periods of the 8 phases in each repeat. The
spatial frequency of the binary noise pattern in the full-field motion
stimulus and the CMN stimulus was the same (0.1 °/cycle).

The linear correlations between calcium fluorescence trace in each
phase and the motion state of each phase (moving/not moving) were
computed first. The cells that showed strong positive correlation
(> 0.7) in more than one of these phases were classified as motion-
sensitive pretectal neurons (343 out of the remaining 1651 ROIs). To
obtain a detailed direction preference profile of these neurons, the
averaged calcium fluorescence intensity in the phases with linear cor-
relation>0.3 were used as the “direction preference scores”. Since the
ratio but not absolute value of these scores was important for de-
termining the directional preference, we normalized these scores to the
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range of [0, 1] for each of the 3 repeats. The score for each direction can
also be written in a vector form whose phase angle and norm were the
moving direction and the normalized direction preference scores re-
spectively. The vectors for average normalized scores in the 3 repeats
were summed to calculate the most preferred direction which equalled
to the phase angle of the vector sum.

2.9. Reverse correlation

The event-triggered average (ETA) for receptive field estimation
was computed as:

=
=

B VETA
n

e1 ( )i
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The ei indicated the ith state (0 or 1, each state corresponds to a
period of 67ms) in the binary calcium event trains, and the Vi was the
motion vector field at the same moment. The direct summation of
motion vectors can be ambiguous because the length of the summed
vector is dependent on both the circular variance and the length of the
contributing vectors. We therefore used a binned representation, B(Vi),
in which each motion vector v in Vi was binned as follows into direction
bins:

=

=

= = +

B v a a a

where v r

and a r i n

otherwise

( ) ( , , ..., )

( , ), [ , ]
( )

2
0

n

i

0 1 1

This binning process leads to a sparse, one-hot representation. The
phase angles of motion vectors v are evenly divided into n=16
direction bins; the norm r of v

¯
is assigned to the corresponding direction

bin. This results in a transformation of the motion vector matrix of the
stimulus into an 8× 28×12,000× 16 matrix (eleva-
tion× azimuth× frame×direction bins). The ETA computed from
this transformation of the motion vector matrix resulted in an
8× 28×16 binned matrix.

For the computation of the whitened ETA, we proceeded as de-
scribed above except we used the pre-whitened binned stimulus matrix
(Bwhiten(V)) for this computation. The pre-whitening transformation
was performed in a similar manner as described in previous studies
(Theunissen et al., 2001; Aljadeff et al., 2013):

=V C V VB Sp( ) ( ) ( )whiten
1
2

C V( )1
2 was the inversed square root of the covariance matrix of B(V).

2.10. The two-step nonparametric cluster-based bootstrapping test

The two-step nonparametric cluster-based bootstrapping test (2-step
NCB test) in this study was developed based on the nonparametric
cluster-based permutation test used in EEG and fMRI data analysis
(Maris and Oostenveld, 2007; Nichols and Holmes, 2002). This statistic
test aimed to find the ETA components whose statistics depend sig-
nificantly on the calcium event states. These components were con-
sidered RF-related structures by the definition of receptive field (Hubel
and Wiesel, 1962). The goal of this 2-step NCB test was to identify the
significant ETA components by finding the components which would
have been highly unlikely to occur, if visual stimulus and neural activity
were unrelated.

The procedure of the 2-step NCB test was as follows:

1 To preserve the temporal structure of the binary calcium event

trace, instead of random permutation, the bootstrapping distribu-
tion was generated by circular shifting of the event trace with a
random distance, D in time (Fig. 5A). Since the temporal correlation
of the stimulus may violate the exchangeability assumption of the
NCB test, we minimized the correlation effect by setting a minimum
shift distance equal to 2 times of the temporal CR (abs(D)> 30
frames= 2 s) of the CMN stimulus. The bootstrapped event trains
had the same firing rate and noise statistics as the original event
train, but their firing was independent of the stimulus pattern. For
each simulated or recorded pretectal neuron, we computed 1000
bootstrapped event trains. For each original and each bootstrapped
event train the corresponding ETAs were calculated.

2 The distribution of vector norms of the bootstrapped ETAs was
computed for each of the 16 direction bins and each spatial position
(8×28). With these empirical probability distributions, the un-
likelihood that the ETA vector norms were sampled from the em-
pirical probability distribution (or the empirical p-values), can be
estimated as follows for all direction bins and spatial positions in the
original and bootstrapped ETAs (also illustrated in Fig. 5B):

=p P1 (ETA value the bootstrapping distribution).

3 Thresholds (= 0.95) were set at both ends of the distribution of
empirical p-values obtained in the 3rd step. To avoid confusion with
another threshold in a following step, this threshold is referred to as
Bernoulli threshold. The units with supra-threshold p-value were
labelled as units of interest for both the original and the boot-
strapped neurons. Note the Bernoulli threshold here controls only
the sensitivity of the statistic test but not the false positive rate in the
multiple comparison test, which is only controlled in the following
steps (see below). Hence the supra-threshold unit here should not be
considered as a significant unit. The supra-threshold units in the two
ends of the empirical p-value distribution were called high-value
and low-value units (Fig. 5B, shown as the cyan and red circles).
This identification of individual spatial supra-threshold units es-
tablished the first step of the 2-step NCB test.

4 The supra-threshold ETA units that were spatially connected and/or
in adjacent direction bins were grouped into clusters. For each
cluster in the original or bootstrapped ETA, we summed the supra-
threshold p-values (from step 1 above) of all its units as the cluster-
level statistic (Fig. 5C).

5 We selected the maximum cluster-level statistic (“cluster score”) for
each bootstrapped ETA. The distribution of the selected maximum
statistic was called the bootstrapped maximum statistic distribution.
Using this distribution, we calculated the empirical cluster p-values
(Pcluster) for all clusters in the original ETAs as follows:

=P P (ETA cluster statistic
the bootstrapped maximum statistic distribution)

cluster

The clusters whose Pcluster was more extreme than a significance
threshold were labelled as significant ETA patches (Fig. 5C).

We repeated step 3–5 for the low-value direction bins. The high-
value and low-value significant ETA patches can be regarded as visual
field locations and motion directions for which high and low stimulus
speeds are associated with calcium events, respectively. The sig-
nificance threshold in step 5 that controlled the false positive rate of the
test was set to 0.025 (i.e. a two-tailed test at alpha=0.05).

2.11. Excitatory-Suppressive index

There were receptive field structures, which down-modulated the
firing rate when their preferred stimulus was presented. We refer to
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such structures as “suppressive receptive field components” here; vice
versa, the receptive field structures which up-modulated the firing rate
are referred to as “excitatory receptive field components”. The majority
of motion-sensitive pretectal neurons in larval zebrafish prefer motion
speeds> 15 °/second (for a spatial period of 30 °/cycle) (Kubo et al.,
2014). We therefore expect that the modulation strength in most of the
motion-sensitive neurons should increase with movement speed within
the low-speed region of 0–6.7 degree/second (spatial period: 10 °/
cycle) of our CMN stimulus. We therefore interpret the positive and
negative response modulation slopes in this stimulus speed regime as
being related to excitatory and suppressive effects, respectively. For
example, a neuronal RF component that has higher activity at a speed of
1 °/second than at a speed of 5 ° per second is interpreted as having a
suppressive effect, rather than interpreting it to simply be positively

tuned to extremely low speeds.
Since each frame of the CMN stimulus was aligned with the corre-

sponding event state, it was easy to calculate the relationship between
the movement speed presented in each stimulus unit (8× 28 spatial
unit positions, 16 direction bins) and the event rate (Fig. 8A, right side,
Figure S6). This can be done by sorting the event train as follows: For
each spatial and directional unit, the time series of speeds (vector
norms) was sorted from low to high. The event rate for each unit can be
approximated by the moving average of the speed-sorted event train
with a moving window size of 10 stimulus frames (0.67 s). An ex-
citatory-suppressive index (ESI) was calculated as the correlation
coefficient between the sorted speed values and the speed-sorted event
rate. The units with higher ESI in the significant ETA patches were
related to an excitatory receptive field structure, while lower ESI values

Fig. 3. Analysis workflow for the calculation of calcium event-triggered stimulus averages. (A) Preprocessing procedures for the in silico (top left) and in vivo (top
right) experiments, resulting in a time series of calcium events for each neuron; (B, C) the event-triggered average is calculated using reverse correlation, resulting in
a stimulus motion direction histogram (16 direction bins) at each spatial location; s= second; a.u. = arbitrary units.
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corresponded to a suppressive receptive field component.
To visualize directional preference and ESI index, we colour-coded

the polar histograms in Fig. 8 and Figure S4 according to the ESI index,
while histogram bar length and quiver vector length corresponded to
the locally estimated ETA speed as follows: for high-value (red) ETA
units, the bar/vector length is proportional to the estimated ETA speed;
for low-value (blue) ETA units, the length is inversely proportional to
the estimated ETA speed (it corresponds to the difference between two
times the averaged stimulus speed and the estimated ETA speed). Thus
in Fig. 8 and Figure S4 the histogram scaling is linear, while in Figs. 4
and 6 a square function was used to increase visibility (see explanations
in the Figure legends).

3. Results

Efficient characterization of receptive fields (RFs) of visual motion-
sensitive neurons is essential for understanding motion processing
mechanisms of the brain. The estimation efficiency of motion RFs is
mainly limited by the neural activity recording method and the em-
ployed stimulus protocols. To account for the poor sensitivity and
temporal resolution of the – otherwise promising – calcium imaging
method, we developed a novel contiguous motion noise (CMN) stimulus
(Fig. 1, Supplementary Video 1) and a bootstrapping-based statistic
test. In combination with the motion reverse correlation techniques
introduced in previous studies (Borghuis et al., 2003; Srinivasan et al.,
1993), the receptive fields of a high number of large-field motion-sen-
sitive neurons can be efficiently estimated in parallel using in vivo
calcium imaging.

Fig. 4. Estimation of the receptive field structure for simulated (A) and real (B) neuronal calcium responses. (A) The ground truth receptive field structure (left
column) of four simulated example neurons and the corresponding event-triggered averages (ETAs, right column). From top to bottom, each receptive field patch in
the example neurons covered 27°, 82°, 164° and 54°. The bar length in the polar histograms of the ground truth receptive field plot (left column) indicates the local
direction preference (normalized to the range of 0–1 by min-max rescaling, 1 indicating the most preferred direction across spatial locations). The colour and the
length in the ETA polar histograms (right column) corresponds to the event-triggered averaged speed normalized to the range of occurring speeds in the ETA. In order
to increase the visibility of the relevant RF features, the bar lengths were gamma-adjusted using a square function, see non-linear colour legend. Azi. = azimuth; Elv.
= elevation. (B) Examples of ETAs of four pretectal neurons in a larval zebrafish. Again, the colour and length of individual polar plot histogram bars indicates the
squared and normalized ETA speed.

Y. Zhang and A.B. Arrenberg Journal of Neuroscience Methods 326 (2019) 108366

9

[ July 27, 2022 at 14:17 – classicthesis v4.6 ]



The CMN stimulus consists of spatially and temporally coherent
visual field patches (Fig. 1A). In each patch, a binary noise image is
presented that moves in a particular direction over time (Fig. 1B), re-
sulting in multiple, spatially tiled motion patches of a certain size, in
which binary images translate in different directions. The movement
trajectories are generated by first picking random motion directions for
each patch and then smoothing them in space and time using a multi-
variate Gaussian kernel (see Material and methods), which results in
coherent motion patterns with smooth motion transitions in-between
different stimulus arena positions.

3.1. Statistical properties of the contiguous motion noise (CMN) stimulus

The receptive field structure estimated with the reverse correlation
method can be biased if the stimulus contains biases (Chichilnisky,
2001). We therefore first determined whether, and if so, to what extent
the relevant feature statistics in our CMN stimulus were biased. First,
we characterized the motion direction statistics. If there were biases in
the local and global motion direction statistics of the CMN stimulus, the
estimated preferred direction in the RF would be misleading. As shown
in Fig. 2A, both the local and global statistical distributions of motion
direction were mostly circularly uniform over the 12,000 frames of the
particular CMN stimulus used in this study. The local distributions at
different spatial locations were similar to each other and suggest a

spatial uniformity of the direction information in the stimulus.
While the speed information in the stimulus is not critical for in-

terpreting the estimated motion RFs, a heterogeneous stimulus speed
distribution may affect neural responses to stimuli displayed in dif-
ferent regions of the visual field. These effects may cause the estimation
to have a biased location and/or shape. To evaluate this, the local speed
distributions of the CMN stimulus were compared between all spatial
locations (Fig. 2B, left). Again, no noticeable difference between these
distributions were observed. In addition, the density distribution of
speed of all motion vectors contained in the stimulus were fitted well
with a modified Rayleigh distribution. According to the fitted function,
95% of the motion vectors in our CMN stimulus had speeds in the range
of 0–30 visual degrees/second.

We constrained the spatiotemporal motion correlation in our CMN
stimulus to present a sufficient level of contiguous motion, which is
regularly present in natural scenes and should lead to strong activation
of global motion sensitive neurons. We defined the contiguous radius
(CR, see Materials and methods), which corresponded to the radius in
which motion correlation was smaller than 0.1 in the cross-correlo-
grams. As shown in Fig. 2C, the spatiotemporal correlation in our CMN
stimulus was defined by the spatial and temporal CRs (57 visual degrees
and 1 s, respectively). The CRs need to match the RF structures of in-
terest, since choosing very large CRs will prohibit detection of fine-scale
spatiotemporal RF structure and very small CRs will not trigger calcium

Fig. 5. Workflow of the two-step non-parametric cluster bootstrapping test (two-step NCB test) used to identify the significant ETA patches. (A) The bootstrapped
ETAs were computed from the randomly circularly shifted calcium event trains in time for a given neuron in question. (B) Based on the bootstrapping distribution for
each motion direction bin, the empirical probability values (p-values) were computed for each measured and bootstrapped ETA unit (a direction bin of a local ETA
polar histogram). The dashed lines indicate the thresholds set for selecting supra-threshold units in the bootstrapping distribution for the two directions. (C) Supra-
threshold ETA units from the same end of the bootstrapping distribution in B that were spatially connected or in adjacent direction bins, were assigned to the same
cluster. The cluster-level statistic was calculated as the sum of P values of all units in each cluster. The distribution of the maximum cluster-level statistic for each
bootstrapped ETA was computed as the cluster-level null distribution. The ETA clusters with more extreme values than the significance threshold set in the null
distribution (dashed line in the middle plot) were classified as significant ETA patches. A more detailed explanation of the 2-step NCB test is provided in the Methods
section.
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Fig. 6. Performance of our receptive field estimation method in the simulated motion-sensitive neurons. (A) The ground truth receptive field structures (left column)
of the four simulated neurons shown in Fig. 4A and the corresponding significant ETA patches identified as the estimated receptive field structures (outlined with the
contours in dashed red in the right column plots). The bar length in the polar histograms of the ground truth RFs and ETA plots corresponds to the square of the
normalized direction preference and event-triggered averaged speed, respectively (as in Fig. 4). Azi. = azimuth; Elv. = elevation. (B) The angular difference between
the ground truth preferred direction of the simulated neurons and the preferred direction predicted by the significant ETA patches for simulated neurons with
different monocular receptive field sizes (27°, 82°, 164°) or binocular receptive fields containing one receptive field patch (54°) in each the left and right halves of the
visual field (n=50 neurons for each type of receptive field). For the binocular neurons, the histogram for the preferred directions of receptive field components in
the left and right visual fields were labelled in red and blue respectively. (C) The difference between the ground truth receptive field centre locations and the centre
locations of the significant ETA patches. (D) The number of spatially isolated significant ETA patches identified in the simulated monocular and binocular neurons.
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events at sufficient frequency.
The time-averaged luminance for each pixel in the binary movie of

the CMN stimulus was also computed (Figure S1). No strong biases
were observed in the averaged luminance plot.

3.2. The reverse correlation approach for simulated and recorded neurons

We first estimated the motion RF structure using the reverse cor-
relation technique. As a classic receptive field estimation method, the
reverse correlation technique has already been applied to estimate a
wide range of RF structures in the past, including motion RFs (Borghuis
et al., 2003; Srinivasan et al., 1993). In most of these studies, the
neuronal output was recorded as action potential spikes via electro-
physiology setups, and the RF structures were estimated as the spike-
triggered average (STA) pattern. Since calcium activities corresponding
to single action potentials are difficult to detect, we developed our RF
estimation to depend on the calcium activities triggered by significant
increases of neuronal firing rate instead; and the motion RF was thus
estimated as the calcium-event-triggered average (ETA) (Fig. 3).

The calcium events in the calcium response traces in pretectal
neuronal somata were detected by a Gaussian-mixture-model-based
algorithm (Fig. 3, see Materials and methods for details on data pre-
processing and calcium event detection). The calcium event train was
aligned with the CMN stimulus in time to establish the correspondence
between calcium event state (with/without event detected) and current
stimulus frame. The ETA corresponded to the average of those CMN
motion vector stimulus frames that coincided with calcium events. To
maximally preserve the information about stimulus speed and direc-
tion, we used a binning transformation of motion vectors for our ETA,
i.e. at every stimulus location we calculated an ETA histogram of sti-
mulus speeds for each of 16 equally spaced directional bins (Fig. 3C).

We wanted to test the performance of the reverse correlation
method. Naturally, the ground truth motion RF structures of neurons
recorded in vivo are not available. Our estimation method was therefore
tested with simulated neurons with known ground truth receptive fields
in an in silico experiment, where different sources of noise and slow
calcium signal kinetics of the in vivo calcium recordings were mimicked
(Fig. 3A, left). The simulated neurons were constructed as linear-non-
linear-Poisson (LNP) models (see Materials and methods), whose linear
filters were considered as the ground-truth motion RF. These designed
receptive fields were of Gaussian shape (different diameters) and each
simulated neuron contained either one or two Gaussian patches. The
same calcium event detection algorithm (see Materials and methods) as
for the in vivo data was then used to detect the events in the simulated
calcium responses, and thus the event detection error caused by dif-
ferent noise sources and experimental limitations was included in these
simulations.

As shown in Fig. 4 A, the locations and the preferred directions of
the ground-truth RFs of the simulated neurons were well estimated by
the ETAs. Furthermore, for our in vivo neurons (Fig. 4B), ETA structures
could be identified that differed across neurons and showed different
levels of organization within individual neuronal ETAs, suggesting that
the ETAs were related to the receptive fields of direction-selective
pretectal neurons (Wang et al., 2019).

3.3. Identification of significant event-triggered average patches

The genuine RF-related structures within the ETA need to be iden-
tified for any further quantitative characterization of the receptive field
properties. The identification of RF-related ETA structures will be less
biased if no or very few assumptions are made in the identification
method. Here, we only assumed the motion receptive field structures to
be locally contiguous. With this assumption, we employed a two-step
nonparametric cluster-based bootstrapping test (or 2-step NCB test,
Fig. 5, see Materials and methods for details) to identify the ETA units
clustered in space and/or in adjacent directional bins, which were
significantly related with neuronal responses. In the first step, calcium
event trains were circularly shifted in time to obtain bootstrapped
ETAs, in which the shifted calcium events were no longer related to the
CMN stimulus frames. This step identified motion directions across vi-
sual field locations for which the ETA stimulus speeds deviated from
chance speeds (Fig. 5A-B). In the second step, the algorithm identified
spatial-directional clusters of ETA units making up one significant ETA
patch (Fig. 5C). The significant ETA patches were identified by com-
paring the cluster score (a measure of the spatial-directional extent of
the patch, see Materials and methods) of an ETA of an in vivo or si-
mulated neuron to the maximal cluster scores of the bootstrapped ETA
clusters for that neuron. Each identified significant cluster either con-
tained units with unusually high stimulus speeds, or units with unu-
sually low speeds, so that clusters with antagonistic properties were
kept separate (red and blue colours in Fig. 5C).

The performance of our 2-step NCB test was quantified in in silico
experiments, where the estimated significant ETA patches of simulated
neurons were compared to their ground truth receptive field structures.
As shown in Fig. 6 A, the RF- related structures in the ETAs of the
simulated neurons shown in Fig. 4A were correctly identified by the 2-
step NCB test as the significant ETA patches, which are plotted as the
spatially connected direction bins outlined by a red dashed line. To
quantitatively evaluate the estimation accuracy, the estimation error
for the RF centre locations and the preferred directions of the RF
structures were computed for the simulated monocular neurons with
one Gaussian component, whose radius varied from 27 to 164 visual
degrees (n= 50 simulated neurons for each radius size). The estimation
error of the preferred direction was less than 20 degrees for all simu-
lated neurons (Fig. 6B). The RF centre location was reliably detected for
small-size RF neurons, but oftentimes offset by 30° or more for large-
size RF neurons (164° radius) (Fig. 6C). The averaged RF centre location
errors for simulated RF radii of 27°, 82° and 164 visual degrees were
2.25°, 24.3°, and 50.7°, respectively, which correspond to 7.5%, 27%
and 28% of the respective RF radius. This showed that the centre po-
sition for the large simulated RFs were in general relatively difficult to
localize. Since our LED arena only covered part of the visual field, and
this limitation was faithfully included in the in silico experiments, the
receptive field outside of the arena-covered region cannot be estimated.
These non-estimated parts may cause the localization problem, espe-
cially when the receptive field is large, which corresponds to a higher
RF proportion being outside of the covered region. We also computed
the estimation errors for preferred direction and RF centres for simu-
lated binocular neurons that had two Gaussian RF components. The

Fig. 7. Receptive field estimation performance in the pretectal neurons recorded by in vivo calcium imaging. (A) An illustration of the in vivo calcium imaging
stimulus protocol and analysis. The neuronal direction selectivity was measured by the responses to whole-field motion stimuli (three repetitions of binary noise
patterns moving in 8 different directions, see Materials and methods for details) before the CMN stimulus. The CMN stimulus was divided into two interlaced subsets
of equal length, and for each set an ETA was computed independently. The preferred motion direction for each spatial location in the ETAs computed for an example
in vivo pretectal neuron is indicated by the black arrows in the quiver plots. The red arrows represent the local direction preference of the significant ETA patch
computed using the whole CMN stimulus period. (B) Same analysis as in A for four example pretectal neurons. (C) The averaged peak calcium response amplitude for
the whole-field motion stimuli is shown as blue lines in the four example neurons shown in B, in comparison to the peak response amplitude predicted by the
estimated receptive field structures (red). The areas shaded in different colours correspond to the response amplitudes in the three repetitions of the whole-field
motion stimuli. The measured and predicted peak response amplitude was normalized to the range of 0–1 by the maximum response amplitude of the average
direction selectivity measured (see Materials and methods for details). (D) The angular difference between the measured preferred direction and the predicted
preferred direction based on the ETA (grey) or the significant ETA only (red) in 163 motion-sensitive neurons recorded in a larval zebrafish.
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estimation error of the preferred directions for the majority of these
simulated neurons was less than 20 degrees (Fig. 6B) and the normal-
ized average centre location estimation errors were 34% of the re-
ceptive field radius (Fig. 6C).

To evaluate the false negative and false positive detection of the
receptive field components, we counted the number of detected

significant ETA patches per neuron: For all simulated monocular neu-
rons exactly one significant ETA patch was detected, corresponding to
the single Gaussian RF component which these neurons were designed
to have (Fig. 6D). For the simulated binocular neurons, the two Gaus-
sian components were successfully detected in 84% of the simulated
neurons (Fig. 6D). No false positive detection was encountered for any

Fig. 8. Estimation of suppressive receptive fields using the CNM stimulus and the directional motion speed tuning of neurons. (A) Assignment of an excitatory-
suppressive index (ESI) for each ETA unit based on the correlation of speed and calcium event rate (see Materials and methods and Supplementary Figure S6 for
details). To make low-value ETA units visible in the polar plots, they were outlined with bars whose length equalled two times the mean CMN vector norms of the
corresponding positions minus the vector norms of the directional units (which increased the length of the low-value unit bars relative to other bars). Each curve in
the right plot corresponds to a unit in the significant ETA patches (direction bin) in the left plot. For example, the black curve in the right plot corresponded to the
direction bin labelled with thick black border in the left plot. The curve colour corresponds to the ESI value. (B) The comparison between the ground truth receptive
field structure of two simulated neurons (top) and the corresponding significant ETA patches (middle: shown in polar histogram form; bottom: shown in simplified
quiver form). The red and blue arrows in the top subplots represent the excitatory and suppressive receptive field, respectively. The significant ETA patches were
coloured by the corresponding excitatory-suppressive index (ESI). Non-signifcant ETA patches are coloured in grey. (C) Estimated receptive fields of four pretectal
neurons recorded in vivo are shown in quiver form.
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of the simulated neurons.
In addition, we ran simulations to compare our method with three

other representative RF mapping techniques used in previous studies,
including: the filtered back-projection technique (Fiorani et al., 2014;
Johnston et al., 2014), the motion reverse correlation technique using
vector white noise stimulus (Borghuis et al., 2003; Srinivasan et al.,
1993) and the method developed by Krapp and Hengstenberg (1997),
which estimated elaborate motion receptive field structures using the
neural responses to circularly moving dots across different spatial lo-
cations. The signal-to-noise ratio, kinetics and sampling rate of the si-
mulated calcium signals were the same for all tested RF estimation
methods (see Materials and methods section). The stimulus protocol
duration was the same across methods (except for the local motion
method, which needed at least 320min for a complete estimation). Due
to these design adaptations, some details of the implemented methods
(e.g. data preprocessing, the chosen representative parameters) may
differ from the original studies.

As shown in Figure S2, our method (“CMN + 2step NCB method”)
successfully estimated the receptive field structures of all simulated
neurons, while the other methods failed to estimate the large-size or the
binocular RFs. Thus, in our simulation of different calcium imaging RF
estimation techniques, our CMN method outperformed the other im-
plemented methods.

Considering that the signal-to-noise ratio of in-vivo calcium signals
can vary across neurons and experimental conditions, we evaluated the
performance of our approach under 3 different noise levels (Figure S3).
Although the ETA estimation quality dropped at increased noise levels,
the 2-step NCB statistic test still correctly identified major portions of
the ground truth RF. This suggests that the 2-step NCB test contributes
significantly to the noise-robustness of our approach.

3.4. Motion receptive field estimation in vivo

In order to put our CMN approach to test in vivo, we recorded
GCaMP6s calcium signals in the pretectum of larval zebrafish. In 163
out of 343 identified motion-sensitive pretectal neurons, RF-related
significant ETA patches were successfully identified by the two-step
NCB test. It is possible that RF-related structures also exist in the ETAs
of the remaining neurons, however there was not enough evidence for
the statistic test to discriminate these structures from the noise and
biases. To evaluate the performance of the motion RF estimation and
get an independent measure of directional preference for each neuron,
we included whole-field motion stimuli of different directions in the
beginning of the recording (Fig. 7 A). For each in vivo neuron, the di-
rectional preference was predicted by using all ETA units in its sig-
nificant ETA patch. The predicted directional preference was then
compared to the preferred direction measured using the full-field mo-
tion stimuli (Fig. 7A, see Materials and methods for details). For the
majority of neurons, the predicted and measured directional preference
matched well, resulting in angular errors smaller than±30 ° (Fig. 7C &
D), and showing no bias in the prediction.

As an additional test for the reliability of our method, we divided
the CMN stimulus into two interlaced, half-length stimulus sets with
equal number of frames, and compared the two ETAs estimated for the
same neuron using these two stimulus sets. We reasoned that if our
method resulted in valid RF estimations, the two ETAs estimated with
these stimulus sets for a given neuron should strongly resemble each
other. As expected, these invariant ETA structures were found for al-
most all neurons; moreover, for a given neuron, these invariant struc-
tures were largely overlapping with the significant ETA patches iden-
tified using the full-length CMN stimulus (Fig. 7A & B). Note that the
examples in Fig. 7A & B are shown in quiver plot form instead of the
polar-histogram form used in previous figures only for illustrative
purposes (both types of plots are included for eight additional neurons
in Figure S4). Together with the analysis of directional preference, our
observations suggest that reverse correlation with the CMN stimulus in

combination with the two-step NCB test can be used to estimate the
motion RF structure of pretectal neurons efficiently and accurately from
in vivo calcium recordings. In addition, we also computed the ETAs with
a pre-whitened CMN stimulus (Figure S5). The structures in the whi-
tened ETAs were mostly consistent with the un-whitened ETA structure
but noisier.

3.5. Estimation of suppressive receptive fields

The significant ETA patches in the in silico and in vivo estimations
presented in Figs. 6 and 7 corresponded to those ETA clusters for which
the 2-step NCB test had detected unusually high motion speeds, i.e. the
high-value clusters. The motion units related to low-value clusters,
however, had low or no speed. It seemed likely that these low-value
ETA clusters were related to the suppressive components in the re-
ceptive field. To infer the suppressive RF components, we therefore
modified and used the categorical reverse correlation method in-
troduced in a previous study (Ringach et al., 2003), which makes use of
both the high-value and low-value clusters. The principle of this method
was to compute the correlation between event rate (firing rate) and the
stimulus intensity (speed) for each unit within the ETA. A more positive
correlation suggested the ETA units were more related with the ex-
citatory RF structures, and a more negative correlation suggested re-
lation to suppressive RF structures (see Materials and methods for de-
tails, Figure S6). Based on this principle, we computed an excitatory-
suppressive index for all units in the significant ETA patches containing
both the high- and low-value clusters (Fig. 8A). Again, this inference
method was first tested in the in silico simulation. The suppressive RF
components were successfully inferred by this method in 21 out of 50
simulated neurons tested. Examples of these suppressive components
are shown in Fig. 8B. Note that these simulated neurons did not have a
background firing rate, which meant their firing rate would be 0 when
the excitatory RF components were not triggered. Suppressive compo-
nents are thus more difficult to detect than excitatory ones when only
positive activity levels can be measured – as is the case for calcium
imaging.

In Fig. 8C, example in vivo neurons with estimated excitatory and
suppressive RF structures are shown (colour-coded by the excitatory-
inhibitory index, ESI, see Materials and methods). We found the motion
RF structures of many pretectal neurons to be more complicated than
the Gaussian structure we designed for the simulated neurons (more
examples in Figure S4): the shapes of these receptive field structures
were relatively irregular; and the direction preference profile in dif-
ferent local regions in the receptive field showed big variations.

In addition, we also estimated the spatiotemporal RF structure for
luminance features for these pretectal neurons by computing the
averaged pattern of the event-triggered binary noise image frames of
the CMN movie. However, no spatiotemporal structure that could be
related to the motion RF structure or the direction preference was ob-
served in these neurons (Figure S7).

4. Discussion

In the visual systems of a wide range of animals, from flies, fishes to
mammals, local motion features are integrated into global motion fea-
tures at different stages in the visual pathways, and hundreds to
thousands of neurons are involved in this integration process (Chen
et al., 2008; Krapp and Hengstenberg, 1996; Kubo et al., 2014; Kühn
and Gollisch, 2019; Portugues et al., 2014; Xiao and Frost, 2013). Es-
timating receptive fields with high efficiency is essential for the sys-
tematic functional characterization of a large number of neurons,
especially the complex neurons integrating motion over large parts of
the visual field. In this study, we developed a motion receptive field
estimation method suitable for calcium imaging that combines a novel
motion noise stimulus (CMN stimulus) with the reverse correlation
technique, and assesses significant RF structures using a statistical test
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(2-step NCB test). With this method, we can estimate the fine-scale
receptive field structure for dozens of zebrafish pretectal neurons in
parallel in less than 14min.

The efficiency of motion RF estimation methods is mainly limited by
the acquisition rate of RF information and the throughput of the neural
activity recording method. The RF information acquisition rate depends
not only on the stimulus used, but also on the quality of the neural
activity signal recorded. In comparison to electrophysiological record-
ings, calcium imaging has a high throughput but a limited per-neuron
information rate due to the poor sensitivity and temporal resolution of
this method. To compensate for this limitation, the stimulus used for
receptive field estimation must be optimized to efficiently acquire re-
levant receptive field information from neuronal responses.

The ideal stimulus should be able to maximize the mutual in-
formation between the stimulus and the neuronal responses in a certain
period of time (Borst and Theunissen, 1999). This mutual information
rate is low when the stimulus is too simple (not informative) or too
complex (cannot trigger neuronal responses efficiently). A common
strategy for finding the optimal stimulus is to constrain a white noise
stimulus with assumptions based on the prior knowledge about the
functional properties of the neurons of interest. For example, by as-
suming a homogeneous direction preference in each part of the re-
ceptive field, the RF locations can be quickly mapped by back-pro-
jecting moving bar stimuli weighted by neuronal responses to the
corresponding location in the visual field (Fiorani et al., 2014; Johnston
et al., 2014). However, the assumptions made may also limit the type of
receptive field the method can estimate. Our receptive field estimation
method was developed based on the motion reverse correlation method
developed by Srinivasan and colleagues (1993) and elaborated by
Borghuis and colleagues (2003). In our method it is assumed that di-
rection selectivity is locally coherent within the receptive field in space
and time. Furthermore, it uses a simple binary noise luminance texture
and as such puts less weight on the neuronal tuning to luminance fea-
tures such as spatial frequency. These simplifications and parameter
space reductions provide power for discovering more complex motion
RF structures across the visual field. For example, we could demon-
strate elaborate bipartite receptive fields with different directional
preferences in each of the two RF components (Fig. 8C, S4), many of
which sample information from both eyes (i.e. they integrate motion
binocularly). Moreover, the 2-step NCB test we developed can further
exclude the effect of noise sources and stimulus biases on the estimated
receptive field structures (Fig. 6, S3). Our method is therefore compa-
tible with in vivo two-photon calcium imaging, where activity traces are
oftentimes noisy. This enables systematic functional characterizations
of large numbers of motion-sensitive neurons, and may therefore fa-
cilitate investigation into global motion integration processes at the
population level. For example, it could help to determine to what extent
the population statistic of the large-size motion receptive fields is si-
milar to the statistics of optic flow fields in natural scenes, which is an
important step for understanding the visuomotor transformations un-
derlying stabilization behaviours (Naumann et al., 2016; Wang et al.,
2019).

Although the constraint of spatial and temporal frequency in the
noise stimulus may help to improve the estimation efficiency to a high
extent, the spatiotemporal correlation introduced by this constraint
may break the spherical symmetry of the stimulus, which is important
for an unbiased estimation with the reverse correlation technique
(Chichilnisky, 2001; Paninski, 2003). One bias we noticed is that the
high frequency components in the receptive field structures, whose size
is smaller than the contiguity radius, may not be recovered in the es-
timation (e.g. the first example shown in Fig. 6A). This bias is likely to
have only minor effects on the estimation of the spatial structure of
large-size motion RFs, since such high-frequency structures may be less
important for global motion integration. Furthermore, the spatio-
temporal contiguity of the stimulus limits the estimation of the tem-
poral receptive field structure. Even though we observed temporal

structure in the ETAs of many recorded neurons (Figure S8), any pos-
sibly existing high frequency temporal RF components are unlikely to
be estimated correctly by the CMN method.

One solution to this problem is to repeat the estimation with a sti-
mulus with smaller CR so that small spatial receptive field structure
and/or temporal structure can be estimated better. However, such a
stimulus may be inefficient in estimating large receptive fields, which
may result in longer estimation time or poorer estimation quality. In
addition, the spherical symmetry of the correlated stimulus can be re-
stored by a whitening transformation (Schwartz et al., 2006). However,
the ETAs computed from the whitened stimulus do not provide more
information about the high frequency RF structures (Figure S5), which
could be explained by the amplification of noise in the whitening
process.

Furthermore, the spatiotemporal correlation of the motion features,
the spatial frequency, and the moving speed of the binary noise texture
used to display motion could also affect the estimated results. More
complex stimuli that involve a richer set of parameters, e.g. including a
wider range of spatial frequencies and speeds, would be needed for
investigating the effect of these features in motion RF estimation.
However, the relevant features may be “diluted” in a more complex
stimulus, which in turn might reduce the efficiency of triggering strong
neuronal responses. As a result of the limited information rate during
neural activity recordings, a trilemma is formed by the aspired short
estimation time, the aspired high estimation quality, and the im-
plemented estimation of vivid details (spatio-temporal combinations of
flow directions). This trilemma does not only exist in our approach but
also in the classic RF estimation techniques (Figure S2).

Reverse correlation is limited to estimate the linear structure of
receptive fields (Boer and Kuyper, 1968). For the receptive fields with
suppressive and excitatory RF components, the reverse correlation
method has very limited power to estimate their structures. This lim-
itation results from the suppressive component being nonlinear, since it
is rectified to only down-modulate neural activities. These nonlinear
structures can be investigated by spike-triggered covariance analysis,
which can reveal specific non-linear structures in the receptive field
(Schwartz et al., 2002). However, the spike-triggered covariance ana-
lysis requires the stimulus to be spherically symmetric which is not
satisfied by the CMN stimulus due to its spatiotemporal correlation.
Although a previous study proposed a spike-triggered covariance
method for a strongly correlated Gaussian stimulus (Aljadeff et al.,
2013), it is difficult to apply this method to the estimation of motion
receptive fields, which is a vector field but not a scalar matrix.

The method we used to detect the suppressive component from the
calcium event-triggered ensemble is modified from the categorical re-
verse correlation method developed in the previous studies in-
vestigating orientation-selective RF structures (Ringach et al., 2003,
2002). In these studies, the spatial frequency tuning properties of the
orientation-selective receptive fields interfered with the suppressive
component detection. This problem was solved by comparing the firing
rate to the baseline firing rate measured by displaying orientations with
high spatial frequency textures that these neurons cannot resolve
(Ringach et al., 2002). A similar approach is used in our study: the
excitatory/suppressive properties of the direction-selective RF struc-
tures have been separated from speed tuning properties of motion-
sensitive pretectal neurons using low-speed range, which few pretectal
neuron are tuned to (Kubo et al., 2014).

The simulated neurons we used to test the inference method for
suppressive components had baseline firing rates (or spontaneous ac-
tivity rate) of 0 Hz. The information of suppressive RF components can
only be inferred from the stimulus frames in which a suppressive
component is active, while an excitatory component is active as well.
Such stimulus frames are of course much less frequent than the frames
containing the excitatory component alone. Therefore, our method is
less sensitive in inferring suppressive RF components than excitatory
components for neurons which are not spontaneously active. Given the
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difficulty to infer suppressive components, it is interesting that for the
neurons recorded in vivo, suppressive components could oftentimes be
inferred (Figs. 8C and S4). This could suggest that the in vivo neurons
had higher baseline activity or stronger suppressive components than
the simulated neurons we designed for benchmarking purposes with no
baseline activity.

Another issue regarding suppressive component inference is that we
cannot confirm the validity of the suppressive components that spa-
tially overlapped with excitatory components (Fig. 8B). The negative
correlation between event rate and increasing speed in these compo-
nents can be caused by the presence of a suppressive receptive field
structure, or the absence of stimulus patterns preferred by the ex-
citatory component. Since we don’t have any good reason to exclude
the second possibility, we decided to exclude the overlapping compo-
nents from the suppressive component inference.

The spatiotemporal luminance RF structure of many visual neurons
clearly corresponds to the local motion they are tuned to as predicted
by the spatiotemporal energy model (Adelson and Bergen, 1985;
Eckhorn et al., 1993; Wang and Yao, 2011). However, for many global
motion sensitive neurons, the correspondence between the luminance
RF structure and the motion feature these neurons are tuned to is not
clear (Kühn and Gollisch, 2019; Matsumoto and Tachibana, 2017). It
was proposed that motion features and static features would be sepa-
rated to avoid ambiguity in the feature extraction process in the later
visual processing (Kühn and Gollisch, 2019). In the CMN stimulus, the
motion feature is uncoupled from the static feature. In the estimated
motion receptive fields of pretectal neurons, we did not observe any
spatiotemporal luminance structure that can be related to the motion
RF in any of the pretectal neurons recorded. It is possible that motion
features are separated from texture features by the pretectal neurons in
zebrafish or already further upstream in the retina. However, an al-
ternative explanation for the observed texture-invariance is that the
spatiotemporal luminance structure might have been masked by the
noise and low temporal resolution of the recorded signals. Future stu-
dies are needed to investigate this question of feature separation in the
non-cortical visual pathways of zebrafish.

5. Conclusion

In this study, we established a rapid, robust estimation method for
motion receptive fields, which is compatible with high-throughput
calcium imaging at low temporal resolution. Using this method, we
have successfully estimated complex large-size receptive field struc-
tures of motion-sensitive pretectal neurons in larval zebrafish. The es-
timated receptive fields provide detailed profiles of local direction se-
lectivity in the receptive field (flow fields), and using this local
information, we were able to predict the direction preference of these
neurons during whole-field motion stimulation. Our results suggest that
our CMN method is suitable for the systematic functional character-
ization of large-size RFs in vertebrate visual brain areas involved in
motion processing, such as the zebrafish pretectum.
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SUMMARY

Non-cortical visual areas in vertebrate brains extract
relevant stimulus features, such as motion, object
size, and location, to support diverse behavioral
tasks. The optic tectum and pretectum, two primary
visual areas in zebrafish, are involved in motion
processing, and yet their differential neural represen-
tation of behaviorally relevant visual features is un-
clear. Here, we characterize receptive fields (RFs)
of motion-sensitive neurons in the diencephalon
and midbrain. We show that RFs of many pretectal
neurons are large and sample the lower visual field,
whereas RFs of tectal neurons are mostly small-
size selective and sample the upper nasal visual field
more densely. Furthermore, optomotor swimming
can reliably be evoked by presenting forward motion
in the lower temporal visual field alone, matching the
lower visual field bias of the pretectum. Thus, tectum
and pretectum extract different visual features from
distinct regions of visual space, which is likely a
result of their adaptations to hunting and optomotor
behavior, respectively.

INTRODUCTION

Visual receptive fields (RFs) are specific regions in space where

visual stimuli will alter the firing status of neurons (Spillmann,

2014). The ability of the visual system to extract useful informa-

tion from the visual environment is directly related to the form,

organization, and diversity of neuronal RFs within the vertebrate

visual system. Task-relevant visual features are processed in

parallel channels in the brain (Nassi and Callaway, 2009), starting

in the retina (Baden et al., 2016).

The optic tectum and pretectum, two brain regions in themes-

and diencephalon, receive direct input from direction-selective

retinal ganglion cells (Giolli et al., 2006; Hunter et al., 2013; Ro-

bles et al., 2014) and encode visual stimuli moving in different

directions (Wang et al., 2019). These evolutionarily ancient struc-

tures share developmental origins with the superior colliculus

(tectum) and part of the accessory optic system (AOS) (pretec-

tum) in mammals. They support navigation and orienting

behavior in zebrafish—which lack a visual cortex—already

soon after hatching in 5-day-old larvae (Beck et al., 2004; Niell

and Smith, 2005). Zebrafish are an important model organism

for non-cortical vision research, but the division of feature

extraction tasks between tectum and pretectum is still largely

unknown. In particular, their roles in feature extraction in relation

to behavioral tasks are crucial for a mechanistic understanding

of sensorimotor transformations in zebrafish.

In the pretectal area and in the AOS of many vertebrates, neu-

rons having large RFs with broad direction tuning curves are

abundant (Britto et al., 1981; Grasse and Cynader, 1984; Mas-

seck and Hoffmann, 2008; Simpson, 1984; Walley, 1967). Such

large RFs should help the animal to distinguish wide-field optic

flow from local motion and to estimate ego-motion. This compu-

tation is particularly important becausemany vertebrates use the

outcome to stabilize gaze and body position (Portugues and En-

gert, 2009; Rinner et al., 2005). In larval zebrafish, both the opto-

kinetic response (OKR) (Kubo et al., 2014) and the optomotor

response (OMR) (Naumann et al., 2016) have been shown to

rely on visual processing within the pretectum. In invertebrates,

similar computations mediating OMR behavior were identified

in the lobula plate, where horizontal system cells have large

RFs with preferred directions matching the rotational optic flow

around the yaw axis (Krapp et al., 2001). Additionally, it was

shown that optogenetic manipulation of these neurons is suffi-

cient to evoke yaw optomotor behaviors in fixed and tethered

flies (Haikala et al., 2013; Busch et al., 2018). In zebrafish, the

pretectum contains further anatomical sub-divisions (Yáñez

et al., 2018), including structures involved in processing small vi-

sual stimuli during prey capture (Semmelhack et al., 2014; Muto

et al., 2017), regions responsive to large-field motion stimuli

(Kubo et al., 2014; Naumann et al., 2016), and a pretectal dopa-

minergic cluster providing input to the optic tectum (Tay et al.,

2011). However, the RF properties of the pretectum at both the

population and single neuron level are not known. It is also un-

clear how RF tuning within the pretectum may contribute to the

production of visually mediated behaviors.

In contrast to the pretectum, RF sizes and locations for neu-

rons within the zebrafish tectum have been described before

(Niell and Smith, 2005; Sajovic and Levinthal, 1982; Bergmann

et al., 2018; Preuss et al., 2014; Zhang et al., 2011). Tectal neu-

rons have relatively small RFs, conforming to the idea that tectal

442 Cell Reports 30, 442–453, January 14, 2020 ª 2019 The Author(s).
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Figure 1. Different Receptive Field (RF) Types Were Identified Using Horizontally Moving Gratings

(A) Stimuli of naso-temporally moving gratings covering view fields of variable sizes were presented to the animal’s right eye (n = 8 fish for naso-temporal and n = 2

fish for temporal-nasal motion). Motion stimuli consisted of whole-field (13 1, 180� 3 80�, azimuth3 elevation), half-field (23 1/2 and 1/23 2), quarter-field (23

23 1/4), bar (63 1/6 and 1/63 6), and small-field (63 63 1/36, each 30� 3 13�) stimuli. The non-stimulated regions are shown in white for illustration purposes

but contained a stationary grating. A snapshot during the small-field motion phase (depicted in the lower right) is shown on the display in the setup illustration

(top).

(legend continued on next page)
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neurons detect small-size moving objects in the view field and

are needed for hunting behavior (Gahtan et al., 2005).

It is expected that each of the brain areas receiving input

from the retina is adapted to the specific tasks and behaviors

the animal executes in its environment. The behavioral rele-

vance of a visual stimulus is influenced by the visual field loca-

tion of the stimulus and will depend on the particular visually

mediated behavior and the probability of observing such stim-

ulus locations under natural conditions. For example, in the

brain of macaque monkeys, it has been shown that RF proper-

ties in the superior colliculus, the homolog of the optic tectum,

widely differ in the upper and lower visual view field, which

likely represents adaptations to near space in the lower and

far space in the upper visual field (Hafed and Chen, 2016). Dur-

ing hunting behavior, vertebrates typically keep the prey items,

which are oftentimes small stimuli, in their nasal or frontal visual

field, indicating that high visual acuity in this region of space is

advantageous. Accordingly, both the primary visual cortex and

superior colliculus show a magnification of foveal visual field re-

gions (Grujic et al., 2018; Schwartz, 1980), i.e., more neurons

are dedicated to representing these foveal locations than

more peripheral locations. In the zebrafish retina, a region of

heightened photoreceptor density (area centralis) has also

been described (Schmitt and Dowling, 1999), corresponding

to upper nasal visual field positions (Zimmermann et al.,

2018). During prey capture, prey items need to be detected

against the visual background, whereas for visual stabilization

behaviors, animals need to detect their ego-motion by

analyzing the global optic flow patterns resulting from the

displacement of their bodies relative to the visual surround.

To use brain resources efficiently, the reliable detection of optic

flow directions is likely biased toward making use of the most

informative visual field locations that occur in natural habitats

and during behavior. The OMR is driven effectively by whole-

field motion but—to our knowledge—there are no previous re-

ports on particular visual field regions being preferably sampled

by the animal to initiate OMR. Given the different roles of the

optic tectum and the pretectum in hunting and stabilization

behavior, respectively, it seems likely that these brain areas

represent the visual field differently. It is unclear, however,

whether the observed retinal anisotropies are relayed to pri-

mary visual areas in the zebrafish brain and whether magnifica-

tions of certain visual field locations exist in the tectum or

pretectum of zebrafish. The characterization of such brain

area-specific magnifications within the small vertebrate brain

of larval zebrafish would advance our understanding of the effi-

cient encoding of relevant information in the vertebrate brain

and help to reveal the specific computations that brains have

evolved to perform.

Here, we characterize the RF properties of tectal and pretectal

motion-sensitive neurons using in vivo 2-photon calcium imaging

of GCaMP5G transgenic animals and investigate their organiza-

tion in visual and anatomical space. In addition, we investigate

how the identified RFs match to the visual locations, which drive

the OMR behavior. Our results reveal complementary roles of

the optic tectum and pretectum to support behaviorally relevant

motion feature extraction.

RESULTS

To estimate RF properties of pretectal and tectal neurons, we

stimulated the right eye of immobilized larval zebrafish with a se-

ries of horizontally moving grating patterns of different sizes and

locations (Figures 1A and S1; STAR Methods) and measured

GCaMP5G calcium responses of neurons in the diencephalon

and midbrain (Figure 1B). 1,926 motion-sensitive neurons that

responded reliably during the three repetitions of the stimulus

protocol were recorded in 10 animals. Neurons were divided

into four functionally defined groups (Figures 1C, 1D, and S2;

see STAR Methods for classification), based on the size and

shape of their RFs: (1) small-size RFs, (2) medium-size RFs, (3)

large-size RFs, and (4) bar-shaped RFs. RF sizes ranged from

very small RFs (30� 3 13�) to whole field (168� azimuth 3 80�

elevation). In neurons with smaller RFs, we oftentimes observed

suppressive effects for larger motion stimuli (Figure 1Di),

showing that these neurons were small-size selective. Small-

size RF neurons without signs of inhibition were frequently

encountered as well; even though the excitatory RF density

(STARMethods) was localized to a small patch in the visual field,

the neurons were also responsive to whole-field stimuli (Fig-

ure 1Dv). Furthermore, some of the small-size and medium-

size RF neurons each responded to small moving stimuli in a

range of different visual field positions but did not respond to

larger moving stimuli covering the same visual field locations,

i.e., their responses were small-size selective and position

invariant (Figure 1Dvi).

Pretectal RFs Are Larger Than Tectal RFs and They Are
Less Often Size Selective
For each motion-sensitive neuron, we measured the location of

the RF center in the visual field and the anatomical position of

the soma in the brain (see STARMethods). Based onmorpholog-

ical tectal borders visible in our brain volumes and previous

anatomical annotations of the pretectum and tegmentum

(B) The average fluorescence of an example calcium-imaging time series recorded from tectum and pretectum (PT) is shown in gray. Motion-sensitive image

pixels are shown in false color, with warm and cold colors corresponding to positive and negative motion phase correlation, respectively. Manually selected

regions of interest (ROIs) are labeled with magenta circles. Scale bar, 50 mm; A, anterior; P, posterior; L, left; R, right.

(C) Example DF/F calcium responses of neurons with different RF sizes or shapes are shown. For each neuron, the colored trace corresponds to the median

response across three repetitions (gray traces). The gray rectangular shades correspond to the 57 presented motion phases.

(D) RF maps for six example neurons corresponding to (C). Top: the eight squares correspond to the eight stimulus segments shown in (A), and each square

corresponds to the stimulus arena surface (180� 3 80�, azimuth3 elevation). The calcium response is plotted as a Z score for each stimulus phase (for each ROI,

the DF/F, subtracted by the average of the DF/F, divided by the standard deviation of the baseline DF/F). Bottom: by comparison of the activities evoked by

spatially overlapping stimuli of different sizes, excitatory RF densities were calculated to measure the size of the RFs as the number of patches with supra-

threshold activity (red dots). For cells with small-size excitatory RFs with maximal responses during the small-size stimulus phases (see STAR Methods), an

inhibitory RF density was calculated to judge the extent of small-size selectivity (cell i). The anatomical location of each neuron is indicated (tectum or PT).

444 Cell Reports 30, 442–453, January 14, 2020

[ July 27, 2022 at 14:17 – classicthesis v4.6 ]



Figure 2. Pretectal RFs Are Large and Biased toward the Lower Visual Field

(A) Anatomical map of small-size (blue), medium-size (green), and large-size (red) RF neurons in the pretectal region. (n = 10 fish, 5 composite pretectal regions).

Each colored dot represents a single neuron. Coordinates are defined as distances relative to the posterior commissure in the diencephalon (anterior-posterior

axis and dorso-ventral axis) and midline (left-right axis). Many identified neurons were located within the previously annotated main pretectal cluster (AMC,

dashed circle; Kubo et al., 2014) and additional neurons were located further rostrally (in the rostral PT and in the dorsal thalamus; Figures S6A–S6D). Neurons

located R140 mm caudal to the posterior commissure (lighter colors) were located in the tegmentum and excluded from pretectal analysis (dashed gray line),

whereas all rostral diencephalic neurons were included in the analysis.

(legend continued on next page)

Cell Reports 30, 442–453, January 14, 2020 445

[ July 27, 2022 at 14:17 – classicthesis v4.6 ]



(Kubo et al., 2014; Randlett et al., 2015), we identified tectal and

tegmental neurons, as well as those located within the general

pretectal area (Figure 2A). Neurons located in the tegmentum

were excluded from further analysis. Within the general pretectal

area, the caudal region corresponded to the pretectal anterior

medial cluster (AMC) region described before (Kubo et al.,

2014). In the recorded rostral diencephalic region, the dorsal

part corresponded to the rostral pretectum (dorsal periventricu-

lar pretectal nucleus marked with dopaminergic neurons) and

the ventral part to the dorsal thalamus annotated in the Z-Brain

Atlas (Figures S6A–S6D) (Randlett et al., 2015; also see Discus-

sion). However, the adult zebrafish brain contains several pretec-

tal nuclei (Yáñez et al., 2018), and their exact identities and

locations in the larval zebrafish brain still need to be resolved.

We, therefore, included all diencephalic neurons in the analysis

of the general pretectal area in this study. We investigated the

topography of pretectal and tectal neurons as well as their sam-

pling of the visual field. On average, we identified 205 ± 6motion-

sensitive neurons per tectum and 59 ± 13 neurons per pretectal

region (n = 10 fish, corresponding to 5 complete composite

brains sampled in 10-mm steps).

Pretectal neurons have larger excitatory RFs than those of

tectal neurons (Figures 2B and 2C). Within the general pretectal

area, 30% (88/295) of the motion-sensitive neurons had a large-

size RF, compared to less than 2% (19/1,251) of the neurons

within the tectum (Figure 2C). Most motion-sensitive tectal neu-

rons (86%; Figure 2C) had excitatory RFs smaller than 1,200

deg2 in area (3 of our small stimulus patches, each covering

30� 3 13� in azimuth and elevation), which is consistent with pre-

vious reports from other groups (Sajovic and Levinthal, 1982;

Bergmann et al., 2018). Furthermore, similar to the findings in a

previous report (Preuss et al., 2014), we found that 68% (853/

1,251) of motion-sensitive neurons in the tectumwere size selec-

tive, i.e., motion stimuli that were larger than the neuron’s excit-

atory RF evoked lower calcium responses (Figures 1Di and 2C).

In contrast, only 26% (77/295) of the motion-sensitive neurons in

the general pretectal area were size selective (Figure 2C).

Large-Size RFs in the Caudal Pretectum Are Biased to
the Lower Visual Field
The RF centers of 69% of the large-size RF pretectal neurons

were located in the lower visual field, which represents a signif-

icant bias (Figures 2D and S1B; p = 0.0002, z test for one propor-

tion). These pretectal large-size RF neurons were located almost

symmetrically in both hemispheres of the caudal pretectum, with

some neurons in the rostral pretectum on the contralateral side

(laterality index = �0.30; Figure 2A). The high number of ipsilat-

eral neurons can—in part—be explained by reflections of the

stimulus, which was revealed in an additional experiment in

which the left eyes of the fish were blocked by a back foil (later-

ality index =�0.86; n = 6 fish, 6 pretecta; Figure S1C). In addition

to the large-size RF neurons observed in the caudal pretectum,

many neurons responsive to small moving stimuli were also iden-

tified (Figures 1Cvi, 2A, S6E, and S6F). These small-size RF neu-

rons weremost frequent in the rostral diencephalic region, which

corresponds to the rostral pretectum and the dorsal thalamus

(see Discussion; Figures S6A–S6D).

Because functionally identified neurons in the rostral dien-

cephalon segregated from those in the caudal pretectum

through an anatomical gap containing only few motion-sensitive

neurons (Figure 2A, side view), we defined a boundary based on

this gap to separate these two anatomical clusters (dashed line

in Figures 2A, S4A, and S4B, and STAR Methods). The rostral

diencephalic region contained a higher proportion of small-size

RFs (57%, 85/148) than the caudal pretectum (29%, 43/147;

p < 0.001, z-test for two proportions), whereas the caudal pre-

tectum contained a higher proportion of large-size RFs (43%,

63/147) than the rostral diencephalic region (14%, 21/148;

p < 0.001, z-test for two proportions) (Figures 2A and S1C).

Furthermore, the rostral region contained a higher proportion

of small-size selective neurons (Figures 2E and S4B–S4D),

whose activity was suppressed for larger stimuli (rostral region:

34% [51/148], caudal pretectum: 18% [26/147], n = 148 and

147, p < 0.001, z-test for two proportions, see STAR Methods).

Rostral diencephalic neurons responsive to our smallest grating

stimuli were also frequently (63% of the neurons, n = 6 fish)

responsive to small horizontally moving dots of variable diame-

ters (3 to 18 degrees in diameter), as we tested in a separate

experiment (data not shown).

It is well established that soma positions of zebrafish tectal

neurons are topographically arranged within the tectum and

that the RF centers cover almost thewhole visual field at the pop-

ulation level (Attardi and Sperry, 1963; Niell and Smith, 2005;

Romano et al., 2015; Bergmann et al., 2018). However, in the

pretectum, we did not observe a clear topographic distribution

of large-size RF neurons (Figures 2F, 2G, S1D, and S1E).

(B) Analysis of RF size differences across PT/diencephalon and optic tectum (OT). The cumulative distribution of RF sizes is shown for the general pretectal region

within the diencephalon (PT, red), the OT (blue), and neurons of undefined provenance (black). Note that the PT has a larger fraction of large-size RF cells than the

tectum.

(C) For each brain region (PT and OT), the fractions of small-size, medium-size, large-size, and bar-shaped RFs are shown. For small- and medium-size RFs, the

inhibitory surround was investigated, and neurons with such inhibition are plotted in yellow.

(D) Locations and density contour plot of RF centers of large-size RF pretectal neurons in the contralateral and ipsilateral hemispheres (n = 10 fish, 5 composite

brains).

(E) Anatomical map of three types of neurons in the pretectal region: neurons with (yellow) and without (cyan) signs of inhibition and pretectal dopaminergic

neurons (gray). The dopaminergic neurons served as a landmark for the dorsal periventricular pretectal nucleus in the rostral PT and were recorded in a separate

experiment.

(F and G) Topographic maps of large-size RF neurons in the pretectal region. Each colored dot represents a single neuron with its RF center in the indicated

azimuth (F) and elevation (G) range (n = 10 fish, 5 composite pretectal regions).

Abbreviations are as follows: dEMN, dorsal extraocular motor neuron; vEMN, ventral extraocular motor neuron; dEMN and vEMN, the trochlear and oculomotor

nuclei; nMLF, nucleus of the medial longitudinal fasciculus; A, anterior; P, posterior; D, dorsal; V, ventral, L, left; R, right; AF, arborization field. The abbreviations

are applicable to all anatomical maps in this study.
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Tectal RFs Dominate the Upper Nasal View Field
As expected from the topographic retino-tectal projection of

retinal ganglion cells, strong rostro-caudal, dorso-ventral, and

medio-lateral topographical gradients of RF centers were found

for small-size RF neurons in the optic tectum (Figures 3B, 3D, 3E,

and S3A). Responding tectal neurons were mainly located in the

contralateral hemisphere relative to the stimulated eye (laterality

index = �0.88; Figures 3D and 3E; see STAR Methods). More

tectal neurons with small-size RFs corresponding to the upper

nasal visual field were found than corresponding to the lower

temporal visual field (420 versus 55 neurons, upper nasal versus

lower temporal view field, Z score test for proportions: p < 0.001;

Figures 3A and 3C). When comparing the upper nasal view field

(26� elevation, 30� azimuth) to the lateral view field (0� elevation,
90� azimuth), the sampling difference corresponded to a 1.6-fold

magnification factor (Figure S3B). In our experiments, we identi-

fied about 4 tectal small-size RF neurons per 10� 3 10� in the up-

per nasal field in each completely sampled fish (hypothetical

sampling every 5 mm in the dorso-ventral direction, calculated

based on our actually recorded 33.4 tectal motion-sensitive neu-

rons per 60� 3 27� in each of 5 composite brains sampled every

10 mm; see Figures S3B–S3D).

Zebrafish OMR Behavior Is Driven Best by Motion in the
Lower Temporal Visual Field
Although it is known that during hunting behavior, prey stimuli

are mostly located in nasal visual field locations in zebrafish

(Bianco et al., 2011), the visual field regions that drive OMR

and OKR behavior have not been identified. OMR behavior can

be stably induced with whole-field forward motion projected

from below or from the side in larval zebrafish (Severi et al.,

2014; Thiele et al., 2014), and it had been assumed that

large—or even whole-field—stimuli are necessary to drive stabi-

lization behaviors. Given the uneven distribution of large-size

RFs in the upper and lower visual fields in the pretectum (Fig-

ure 2D), we wanted to test whether OMR is mainly driven by

the forward motion located in the lower visual field, which would

implicate the large-size RF neurons in mediating the OMR

behavior. We, therefore, recorded the tail motion of larvae while

forward-moving gratings of different sizes were presented in

different visual field locations. Care was taken to always stimu-

late animals in a binocularly symmetric fashion to drive forward

OMR instead of OMR turning behavior (Figures 4A, 4B, S5A,

and S5B). The angle between the anterior-posterior body axis

and the tail tip was traced to detect single tail beats and swim

bouts (Figures 4A, 4D, and 4E). Bouts, consisting of a series of

tail undulations beating symmetrically to both sides (forward

OMR), were induced in response to whole-field forward-moving

gratings (Video S1, S2, S3, and S4). In contrast, unsymmetrical

unilateral turning swim beats to one side (turning OMR) were

oftentimes evoked bywhole-field rotating visual stimuli, although

symmetrical beats (forward OMR) were also observed (Fig-

ure S5Fi). Whole-field and half-field visual stimuli covering the

temporal or lower view field could evoke forward OMR robustly

(Figure 4C).

To our surprise, forward OMR swim beats could be induced by

stimuli as small as 45� 3 20� (azimuth 3 elevation, the smallest

size in our protocol) in the lower temporal view field of both

eyes (Figure 4C). The OMR-evoking visual field locations were

almost identical across all recorded animals (n = 6; Figure 4F).

To test whether the OMRs evoked by small stimuli are stronger

than what would be expected under the assumption that OMR

drive was established by the sum of equal-sized motion inputs

across the visual field, we normalized the evoked OMR tail-

beat rate to the respective stimulus field size (analogous to the

excitatory RF density estimation; see STAR Methods). The

resulting visual fieldmap of OMRdrive (Figure 4G) shows the dis-

proportionally large influence of moving stimuli in the lower tem-

poral view field. We then compared OMR drive across different

stimulus sizes (1 3 1, 2 3 1, . 4 3 4), always considering the

visual field positions/stimulus phases that drove OMR best.

This analysis revealed that the smallest stimulus area evoked

responses, which were on average �11 times stronger than

expected by an equal integration of optic flow inputs across

the visual field (Figure 4H).

DISCUSSION

Our study reveals the functional segregation of visual motion

processing in parallel channels, each extracting different sets

of motion features across the visual field. The optic tectum,

which processes the motion of small visual stimuli, has a bias

for upper nasal visual field locations. Within the diencephalon,

wide-field optic flow ismainly processed in the caudal pretectum

using large RFs that mainly sample the lower visual field,

whereas small motion stimuli are mainly processed in rostral re-

gions of the diencephalon. Furthermore, we show that animals

observe mainly the lower temporal visual field for optomotor for-

ward swimming.

These findings agree with the need to process small visual

stimuli, e.g., during prey capture (Preuss et al., 2014; Bianco

et al., 2011), and the need to assess wide-field motion to inform

stabilization behaviors (Kubo et al., 2014). The data support a cir-

cuit model in which these two distinct tasks are processed inde-

pendently by multiple channels in different brain areas.

Caudal and Rostral Diencephalic Regions Are Biased
toward the Encoding of Large-Field Optic Flow and
Small Stimuli, Respectively
Within the diencephalon, large-size RF neurons are mainly found

in the caudal pretectal region, whereas small-size RF neurons

are biased toward more rostral anatomical locations. The

large-size RFs of pretectal neurons preferably sample the lower

half of the visual field (Figures 2D and S1B), which fits with pre-

vious reports from pretectal neurons in dogfish (Masseck and

Hoffmann, 2008). Due to our use of a half-cylindrical stimulus

arena to present exclusively horizontally moving stimuli to the

right eye, neurons with more complex, e.g., rotational, binocular,

or vertical optic flow fields could not be described in this study

(Kubo et al., 2014; Wang et al., 2019). These types of RF struc-

tures exist in visual neurons of other species (Krapp et al.,

2001; Karmeier et al., 2003), and future studies are needed to

identify them in zebrafish.

The adult zebrafish pretectum contains several nuclei distrib-

uted from the superficial to the periventricular regions, receives

numerous retinal and tectal afferents, and projects to the optic
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Figure 3. Tectal RFs Are Small and Biased toward the Upper Nasal Visual Field

(A) Visual field locations and density contour plot of RF centers of small-size RF tectal neurons (n = 10 fish, 5 composite tecta).

(B) Anatomical map of the tectal RF center topography. The average anatomical position of neurons with their RF centers in each of the 63 6 visual field bins was

calculated and all 36 locations were connected by a grid to illustrate the mapping of visual space (color legend in the upper right) corresponding to anatomical

space in the tectum (Figure S3A). The yaw angle (10� right) and the pitch angle (20� down) were adjusted to allow optimal view of the anatomical topography.

(C) Median RF size across the visual space. For each patch, we calculated themedian RF sizes of all neurons (in tectum and PT) whose excitatory RFs covered the

patch in question. The animals sample the lower temporal visual field mainly with large-size RF neurons, whereas small-size neurons dominate in the upper nasal

visual field.

(D and E) Topographic maps of tectal small-size RF neurons for azimuth (D) and elevation (E). Each colored dot represents a single neuron with its RF center in the

corresponding azimuth range in (D). For example, all RF centers of the neurons in red are located between 0� azimuth (in front of the fish) and 30� azimuth on the

nasal right side of the fish. In (E), each colored dot represents a single neuron with its RF center in the corresponding elevation range. For example, RF centers of

the neurons in green are located slightly above the equator of the view filed (0� to 13� in elevation). n = 10 fish, 5 composite brains.
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tectum as well (Fernald and Shelton, 1985; Presson et al., 1985;

Kastenhuber et al., 2010; Yáñez et al., 2018). The correspon-

dence of these nuclei to functionally defined larval brain regions

is not fully resolved (Kubo et al., 2014; Muto et al., 2017; Sem-

melhack et al., 2014; Arrenberg and Driever, 2013). In our study,

the pretectal dopaminergic neurons, which are evolutionarily

Figure 4. Zebrafish Optomotor Responses Are Driven by Motion from Below and in the Rear of the Animal

(A) Left: stimuli were presented binocularly to the animal with two half-cylindrical arenas while the behavior of the fish was recorded. A snapshot of the visual

stimulus during the whole-field motion phase is shown in the setup illustration. Right: a schematic of a larval zebrafish performing OMR behavior. The indicated

angle between the anterior-posterior body axis and the tail tip was measured to judge OMR performance.

(B) Motion stimuli of the OMR experiment consisted of whole-field (1x1, 180� azimuth x 80� elevation), half-field (23 1/2, 1/23 2), quarter-field (23 23 1/4), bar

(43 1/4, 1/43 4), medium-field (43 23 1/8 and 23 43 1/8), and small-field (43 43 1/16, each 45� x 20�) stimuli (for each size group, only one motion patch is

illustrated). Each stimulus was mirror-symmetric about the mid-sagittal plane and shown with two half cylindrical arenas from both sides. The control stimulus

phases (not shown in B) consisted of two stationary whole-field phases, counterclockwise and clockwise rotational moving gratings or looming visual stimuli on

either side (Figure S5B). The regions in which no stimulus movement was present are shown as white areas for illustration purposes but contained a stationary

grating.

(C) Average number of tail undulations per second for one larva, induced by forward-moving gratings of 9 different sizes (rectangles represent the stimulus hemi-

fields from B).

(D) The full behavioral session for one animal, showing induced OMR behavior by stimuli of different sizes and locations as indicated in (B). The three stimulus

repetitions are shown in different colors (cyan, blue, and green). Individual stimulus phases are separated by the dashed gray lines, and each row corresponds to

55 concatenated time periods in which motion stimuli were presented. The stimulus pauses in-between motion phases were cropped out and lasted 69 s each.

Measured tail-beat counts (bottom) during each trial were consistent across the three repetitions.

(E) Tail movements induced by whole-field forward-moving gratings (from trial No. 2 indicated by a red rectangle in D). The peaks and troughs of each swim bout

within the 6-s recording are labeled with cyan and magenta asterisks, respectively. OMR swim beats are indicated by gray background shade.

(F) Visual field heatmaps of the forward-OMR tail-beat rate for six individual larval zebrafish (n = 6). The visual field density of OMR behavior was quantified

analogous to the excitatory RF densities in Figure 1. The density was normalized according to the size of the stimulation area in each fish individually (see STAR

Methods).

(G) Average heatmap of the OMR beat density for stimulation across different visual field coordinates (n = 6 fish).

(H) Maximum OMR beats for each of the 9 stimulus fields shown in (B) and (C) after normalization according to stimulus size (see STAR Methods).
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conserved across most amniotes (Yamamoto and Vernier,

2011), were used as a landmark to indicate the location of the

periventricular pretectal nucleus (Filippi et al., 2014). The location

of caudal pretectal neurons in this study corresponds to the

AMC, previously described by Kubo et al. (2014), as well as to

the annotated pretectal brain volume in the Z-Brain Atlas (Fig-

ures S6A–S6C; Randlett et al., 2015). Recorded extra-tectal

neurons located more than 140 mm caudal to the posterior

commissure most likely belonged to the tegmentum and were,

therefore, excluded from the pretectal analysis (see STAR

Methods). The rostral diencephalic neurons described in this

study cover rostral pretectal and dorsal thalamic brain regions

(Videos S5, S6, and S7) (Rupp et al., 1996; Yáñez et al., 2018).

Functional properties of two larval pretectal nuclei have previ-

ously been described in relation to prey capture (parvocellular

and magnocellular superficial nuclei [PSp and PSm]); however,

they are located more laterally than the bulk of our recorded mo-

tion-sensitive neurons in the rostral pretectum (Semmelhack

et al., 2014; Muto et al., 2017). Morphologically, the identity,

extent, and overlap of larval pretectal neuron populations, which

give rise to each of the known adult pretectal nuclei, is not easily

discernible (Arrenberg and Driever, 2013). Further anatomical

studies are needed to link our functionally identified neurons to

specific pretectal and thalamic brain nuclei and connectivity in

the larval brain.

The anatomical and visual field locations, as well as neuron

numbers, were consistent for large-size RF neurons in the pre-

tectum across fish and experiments (Figures 2A, 2D, S1B, and

S1C), whereas the responses of position-invariant RF neurons

(Figure 1Dvi) appeared to be more variable. Notably, the

preferred visual field locations, exact anatomical locations, and

the number of identified position-invariant neurons within the

diencephalon differed in the first and second experiment we per-

formed (Figures S4E and S4F). Further work is needed to eluci-

date the specific anatomical distribution and response proper-

ties of position-invariant RF neurons.

The Tectum—Poised for Prey Capture
Our analysis of a large number of tectal neurons extends previ-

ous reports on tectal physiology (Niell and Smith, 2005; Sajovic

and Levinthal, 1982; Zhang et al., 2011; Preuss et al., 2014).

Our finding that the tectum mostly comprises relatively small

excitatory RFs, which oftentimes are small-size selective, is in

agreement with a role of the tectum in prey capture (Bianco

et al., 2011; Gahtan et al., 2005). It is noteworthy that our stimulus

protocol only allowed the measurement of RF sizes down to 30�

horizontally and 13� vertically (corresponding to our smallest vi-

sual stimulus), which is much larger than the minimal RF size in a

previous report (Preuss et al., 2014). Also, due to the limitation of

2-photon calcium imaging, we are not able to directly assess in-

hibition but assess it only indirectly by comparing the reduction

in responses evoked by larger stimuli.

The topographic arrangement of the zebrafish tectal neurons is

well established both for the anatomical retino-tectal projection

(Baier et al., 1996; Trowe et al., 1996) and the functional RFmap-

ping (Bergmann et al., 2018; Niell and Smith, 2005). However,

precise measurements of dedicated tectal anatomical volumes

had not been performed previously and are needed to build faith-

ful models of zebrafish vision. We find that the upper nasal visual

field (134 mm3/deg2) is magnified in the tectum by a factor of 1.6

relative to lateral (82 mm3/deg2) visual field locations (Figure S3),

which is a relatively mild magnification in comparison to foveal

magnification in the primate superior colliculus and visual cortex

(Schwartz, 1980; Cowey and Rolls, 1974; Grujic et al., 2018).

Given that the larval prey capture behavior depends on the optic

tectum and larvae respond to the paramecia located in front and

extending 60� temporalward of the fish (Bianco et al., 2011;

Romano et al., 2015), a role of these tectal small-size RF neurons

inprey capture seems likely. Because thedensity of small-sizeRF

neurons is elevated in the upper nasal view field (Figures 3A and

S3B), this would suggest that larval prey capture performance is

best when the paramecia are located in front and slightly above

the eyes and possibly the mouth. In this study, we have only

investigated theRFdistributions at a single developmental stage.

It is possible that the reported tectal magnification of the upper

nasal visual field is (in part) a result of the tectal developmental

stage because new, initially non-functional neurons are added

in the dorso-medial and caudo-lateral tectum (Boulanger-Weill

et al., 2017; Recher et al., 2013).

TheOMR Is DrivenMost Strongly by the Lower Temporal
Visual Field
Although it had been known from previous reports that motion

stimuli presented from the bottom or from the side are effective

in triggeringOMRbehavior (Thiele et al., 2014; Severi et al., 2014;

Orger et al., 2008), it was unclear which parts of the visual field

the animal preferentially responds to. We tested motion stimuli

of variable size and position against a stationary background

and show that for forward swimming OMR, the relevant region

lies in the lower temporal view field of the fish (Figures 4F and

4G). We found that evenmotion stimuli as small as 45� 3 20� (az-
imuth3 elevation) can be effective OMR stimuli. This finding is in

contrast to the concept that the OMR is a whole-field-induced

behavior. Rather, it suggests that distinct parts of the visual field

are sampled for body stabilization behaviors. This most likely

reflects the ecological adaptions of zebrafish living in shallow

waters (Engeszer et al., 2007) and the need to sample the most

relevant parts of the visual field for different tasks (Zimmermann

et al., 2018), such as putative high contrast textures within a river

bed. Notably, zebrafish also sample different parts of their

visual field for a related stabilization behavior, the OKR. The

OKR of zebrafish is best driven by stimuli located laterally and

slightly elevated (Dehmelt et al., 2019). Thus, each visually medi-

ated behavior that has been investigated for visual field anisot-

ropies (OMR, OKR, and prey capture behavior) preferentially

samples information from different parts of visual space.

Because RGCs project directly to the optic tectum and pretec-

tum (Robles et al., 2014), it seems likely that the small-size RFs

without inhibition as well as the large-size RFs in the caudal pre-

tectum are established by direct inputs from RGCs (Figure 5).

Small-size-selective responses require inhibitory inputs, which

could be calculated already within the retina or within the ret-

ino-recipient brain areas (Grama and Engert, 2012; Ramdya

and Engert, 2008).

Previous work suggests that visual stabilization behaviors are

driven by the caudal pretectum (Naumann et al., 2016; Wang
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et al., 2019; Kubo et al., 2014), which we show contains neurons

of different RF sizes. Both whole-field and small-size optic flow

stimuli evoke robust OMR tail beats, suggesting that both pre-

tectal large-size and small-size RF neurons might form the basis

for optic flow processing underlying the OMR. In agreement with

this possibility, the RF centers of both pretectal large-size and

small-size RFs match the bias of OMR drive to lower visual field

locations (Figures S5E, S6E, and S6F). Further work is needed to

identify the relative contributions of large-size RF and small-size

RF pretectal neurons to OMR behavior.

In summary, we mapped the RFs of zebrafish tectal and

pretectal neurons and demonstrated that both brain areas

fulfill complementary roles for visual motion feature extraction.

RFs of tectal neurons are predominantly small and size selec-

tive and have a strong bias in representing the upper nasal

visual field (Figure 5). In contrast, caudal pretectal neurons

have predominantly larger RFs with RF centers preferentially

located in the lower visual field of the animal, which corre-

sponds to the location of strongest OMR drive in the lower

temporal visual field. Thus, each tectal and pretectal brain re-

gion extracts different motion stimulus features and samples

distinct visual field regions. We speculate that this anisotropic

visual field sampling in the tectum and pretectum could repre-

sent adaptations of zebrafish to feeding and stabilization

behaviors, resulting in efficient usage of visual brain area vol-

umes for the representation of behaviorally relevant stimulus

features. Our study reveals the sensory layout of motion

processing and, thus, constitutes an important advance for

deriving a biologically faithful model of visuomotor transfor-

mations in zebrafish.
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KEY RESOURCES TABLE

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Aristides

Arrenberg (aristides.arrenberg@uni-tuebingen.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal care and transgenic lines
All animal procedures conformed to the institutional guidelines of the Universities of T€ubingen and Freiburg and the local government

(Regierungspräsidium T€ubingen and Regierungspräsidium Freiburg, respectively). The transgenic zebrafish lines Tg(HuC:

GCaMP5G)a4598Tg and the unpublished double transgenic line Tg(th-E2A-QF2)m1512 x Tg(QUAS: EGFP) (Fernandes et al.,

2012; Reinig et al., 2017) were used in this study. Transgenic lines were kept in either a TL or TLN (nacre) background. Zebrafish

larvae were raised in E3 medium until day 5 or 6 post-fertilization (dpf).

METHOD DETAILS

Animal preparation (tectal and pretectal imaging of neuronal somata)
At the day of experiments (5 or 6 dpf), larvaewere transferred into a Petri dish and embedded in lowmelting agarose (E3medium). The

agarose surrounding the eyes was not removed as to minimize the range of possible eye movements. 6 animals received an injection

of a-bungarotoxin into the caudal vein to paralyze them and prevent eye movements and motion artifacts. 4 animals were recorded

without paralysis. In addition, 6 animals were recorded without paralysis in another independent experiment and exclusively used for

the analyses presented in the Figures S1B, S1C, S4B, and S4F. The animals were then transferred andmounted in agarose on a glass

triangle and the fish head protruded the point of the glass triangle, so that the eyes could see through the (agarose and) water clearly.

The agarose surrounding the fish head was trimmed on the sides and in front of the animal to reduce the amount of surrounding

agarose (Figure S1F). However, the eyes were still covered by agarose to minimize the range of possible eye movements. The glass

triangle was held from the back by a 5 mm thin shaft which was fixed to an 8 cm diameter glass bulb (made by a glass blower) filled

with E3medium. The glass bulb resembled a consumermarket light bulb (threading of the light bulb/glass bulb shaft at the back of the

fish) and a 5 cm diameter hole was cut on the top of the spherical part to allow for approach of the microscope objective onto the fish

(Figure S1F). From stimulus arena to the fish eye, the light traveled through air, glass (light hit glass roughly orthogonally in the spher-

ical part as tominimize refraction of light rays), water, and finally agarose. The glass bulbwas fixedwith its shaft (15.5mmdiameter) to

the metal holder which allowed for pitch and yaw adjustments (the glass shaft allowed for adjustments in roll). In the first batches of

receptive field mapping (n = 6 larvae) experiments, we noticed a problem regarding reflections on the glass bulb on the opposite side

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

a-bungarotoxin Sigma-Aldrich T0195-.5MG

Poly-L-lysine solution Sigma-Aldrich P4832-50ML

Experimental Models: Organisms/Strains

Zebrafish Tg(HuC:GCaMP5G)a4598Tg Ahrens et al., 2013b N/A

Zebrafish Tg(th-E2A-QF2)m1512 x Tg(QUAS: EGFP) Driever lab (Freiburg

University)

N/A

Software and Algorithms

ImageJ/Fiji NIH https://fiji.sc

MATLAB R2010b, R2014b, R2015b MathWorks https://www.mathworks.com/products/matlab.html

LabVIEW 2015 National Instruments http://www.ni.com/en-us/shop/labview.html

Mscan Sutter Instrument https://www.sutter.com/MICROSCOPES/mcs.html

Other

Z-Brain Atlas Randlett et al., 2015 https://engertlab.fas.harvard.edu/Z-Brain/
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of stimulation, resulting in detected neurons on the ipsilateral side of (intended) stimulation in the tectum (which were not plotted in

Figure 3). In the second set of recordings (4 larvae), we wrapped a piece of black, half-cylindrical aluminum foil around the objective.

The black aluminum foil was then lowered beyond the eye contralateral to the stimulus to prevent this eye from seeing the reflections.

In these recordings, only very few ipsilateral tectal neurons were detected (and were not excluded in the anatomical registration fig-

ures). Both sets of recordings were included in data analysis, because only few additional neurons were detected due to the reflec-

tions in the ipsilateral tectum, suggesting that the vast majority of the detected neurons of the contralateral side were detected due to

the stimulus presented to the intended eye.

2-photon microscopy of somatic calcium responses
Calcium imaging was performed with a two-photon microscopy setup based on the MOMmicroscope (Sutter Instruments; Euler et

al., 2009), using a Coherent Vision-S Ti-Sa laser and a 20x/1.0 Zeiss objective to image calcium signals in the transgenic fish line

HuC:GCaMP5G (Tg(elavl3:GCaMP5G)a4598) (Ahrens et al., 2013b). Calcium time series were recorded at 2 frames per second,

with an image size of 512 3 512 pixels and 2 x magnifications, at 920 nm, pre-pulse compensation set to 9756 fs2. The midbrain

and diencephalon were sampled from +60 mm below the landmark (posterior commissure) to �80 mm above the landmark. Optical

slices were taken every 20 mm in the dorso-ventral direction in individual fish and across individual fish, and all dorso-ventral positions

were recorded in 10 mm increments relative to the landmark (i.e., no recording at e.g., 5 or 15 mm below the landmark). Since we only

recorded every 10 mm in dorso-ventral extent, more than twice as many neurons should have been detectable in the respective brain

areas, had we sampled the brain areas at optimal spacing given the neuron soma diameter of ca. 5 mm. Where specified, error bars

correspond to measures per completely imaged brain volume. Care was taken to record the same number of slices in each anatom-

ical region. Two animals were used to image one complete brain volume (at 10 mm spacing). Due to the long recording times and

positioning instability (likely resulting from the fish driftingwithin its agarose embedding), we corrected position drifts along the optical

axis manually during the recording (mostly less than 4 mm per 30 minutes). Using the 20x objective and a magnification of 2x, our

spatial resolution was 0.43 mm/pixel on the x axis (medial-lateral) and the y axis (anterior-posterior).

LED arena for visual stimulation (Figures 1, 2, 3, and 4)
Visual stimulation of zebrafish was conducted with a cylindrical LED arena consisting of 14336 LEDs (Kingbright TA08-81CGKWA): 2

(arena halves) x 8 (rows) x 14 (columns) x 64 (8x8 multiplexed LED matrix) LEDs. The caudal-most column of each arena half was

removed without LEDs (i.e., 14, not 15 columns), since the space was needed for the glass bulb stage metal holder. Therefore,

the caudal-most stimulus patches were slightly cropped (18� azimuth instead of 30� azimuth for the last patch). The arena

covered�168� to + 168� in azimuth and�40� to 40� in elevation. A few degrees in angle of the dorsal field of viewwere likely blocked

by the objective due to its access angle of 38.39� (< 40�), however the eyes were located �200 mm below the objective focus

which should have resulted in a maximal viewing angle exceeding 38.39� (i.e., 39.2�). The LEDs emitted at 570 nm and an additional

high-pass filter foil (LEE no. 779, article 595-1700-7790, castinfo.de, Hagen, Germany) and diffusion filter foil (LEE no. 252, article

595-1780-2520) were placed in front of the arena to optimize GCaMP signal detection and make the stimulus appear more homo-

geneous. This resulted in a yellow appearance of the stimulus. The LED arena was controlled as described previously (Joesch et al.,

2008; Reiser and Dickinson, 2008). LEDs lit during fly-back time of the scanning mirrors.

Identification of regions of interest (imaging of neuronal somata)
For analysis of neuronal activity, a custom MATLAB script (MOM Load) identified regions based on their correlation to the stimulus

and ROIs were manually drawn as described previously (Kubo et al., 2014; Miri et al., 2011). The 3-dimensional mapping of cell loca-

tion was performed using custom written MATLAB scripts (Midbrain_Localizer and Cell_Viewer), which allowed to register the 2

dimensional recordings to a 3D z stack which was acquired after recording sessions (Kubo et al., 2014). See Figure S4 from Kubo

et al. (2014) for an illustration of the 3-dimensional mapping procedure.

Defining the borders of the tectum in our 3D datasets
To distinguish pretectal from tectal neurons, we proceeded as follows: For each fish, the whole z stack – which was imaged from the

top of tectum to deep ventral pretectum and dorsal thalamus – was resliced to generate a transverse view. On selected, regularly

spaced transverse planes (more than �50 planes), the ventral border of the tectum was drawn: on each of these transverse plane

(512 pixels from left to right, x dimension), a curve was drawn through the area devoid of neuronal somata or fluorescence that

was ventrally adjacent to periventricular tectal area with densely packed, fluorescent somata. From each curve, 51 homogeneously

distributed points were selected as key points with which a new boundary curve was generated by linear interpolation or three-term

Gaussian fitting. Using this method, we obtained a boundary curve with 512 data points corresponding to the pixels in x/y dimensions

(left-right and dorsal-ventral) for each transverse plane. In-between the annotated transverse planes, the 2D curveswere interpolated

to receive a surface that separated the tectum from the pretectum in all three dimensions (Wang et al., 2019). However, the bound-

aries between the caudal pretectum and adjacent brain areas in the posterior side (tegmentum) were not clearly visible in the

GCaMP5G fish line. Referring to the AMC structure reported before (Kubo et al., 2014), and to the anatomical annotations of the
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caudally adjacent tegmentum (Ronneberger et al., 2012; Randlett et al., 2015), the neurons below the tectal-pretectal boundary

drawn above, which were located more than 140 mm caudally to the posterior commission, were excluded from the pretectum in

the current study.

Registration of 3D pretectal volume from Z Brain atlas (related to Figure S6)
The pretectal region mask, obtained from datasets MaskDatabase.mat and Ref20131120pt14pl2.nrrd (Z Brain atlas, https://

engertlab.fas.harvard.edu/Z-Brain/download) was used as the standard brain corresponding to the pretectal region mask.

(1) The brain regions corresponding to our recordings (mainly tectum and dorsal diencephalon) were cropped out from the stan-

dard brain (size 2823 282, pixel x pixel; 1 pixel = 0.798 mm). The cropped imagewas resized to 5123 512 (1 pixel = 0.43 mm) to

match our image size and scale.

(2) The standard coordinate system which we use in our zebrafish brain was drawn in the standard brain of the Z Brain atlas (Fig-

ure S4 from Kubo et al., 2014). The relative locations of the pretectal region boundary to the point of origin (0, 0, 0) were calcu-

lated.

(3) The angle of the pretectal neuropil from the standard brain of the Z Brain atlas was measured with ImageJ. Compared to the

standard pretectal neuropil angle of our own recordings (17.4�), the corresponding angle of the standard brain from the Z Brain

atlas is pitched up, with a pretectal neuropil angle of 36.5�. Therefore, the pretectal regionmaskwas rotated to register with our

standard fish brain.

(4) The pretectal volume was plotted with MATLAB with the rotated data.

Movies of 3D brain volumes with neurons shown inside
The cell locations (e.g., the colored balls in Figure 2A) were registered to the 3D matrix which corresponds to a z stack of one larval

brain, with the intersection point of the first two landmark lines as coordinate origin (0, 0, 0). In the 3Dmatrix, 3D spheres representing

the neuronswere plotted and the new 3Dmatrix was saved as an image series. Then the new image series and the standard zebrafish

brain image series were merged with ImageJ. 3D brain volumes with neurons highlighted in different colors were generated with ‘3D

Viewer’ in ImageJ.

Monocular receptive field mapping
In the monocular receptive field mapping experiments, we used horizontally moving gratings, 0.033 cycles/�, moving at 30�/s,
as visual stimuli to induce the neural activities. 8 fish were recorded using naso-temporal motion, and 2 fish were recorded using

temporal-nasal motion. The data was pooled because we didn’t observe obvious difference in RF characteristics (RF size, RF

centers). The additional recordings for Figures S1B, S4B, and S4F were performed using both naso-temporal and temporal-

nasal motion for 6 fish (3 temporal-nasal and 3 naso-temporal, respectively). Three repetitions of the 57 stimulus phases

were shown to the right eye of the fish using one half-cylindrical arena (Figure 1A). All the stimulus patterns were presented

in the order depicted in Figure S1A. In each trial, every 4.8 s stimulus phase was preceded by a 4 s pause and followed by

a 2 s pause with the same stationary visual stimulus pattern. At the beginning and the end of each repetition, we inserted

9 s pauses.

RF maps for individual neurons were calculated by a series of analysis steps. First, we filter the DFF fluorescence traces with a low

pass wavelet decomposition [type Daubechies, MATLAB: wavedec(DFF,1,’db4’)] and a slidingmedian filter (themedian of three data

points). Then deconvolution was performed to the filtered data with the decay time constant (tau) of GCaMP5G, 1.5 s. We calculated

the mean of phase-averaged signal (MPAS, averaged over stimulus phase time) from the deconvolved traces. The baseline was

defined as the MPAS of all the non-stimulus phases (i.e., without moving stimulus). The standard deviation (STD) of all phase-aver-

aged signals was calculated for the non-motion phases. And the z-score was calculated using the equation:

z� score= ðMPAS�meanðbaselineÞÞ=STDðbaselineÞ
We then calculated the median MPAS z-score (i.e., the median across the three repetitions of a stimulus phase of the average of all

data points within one stimulus phase).

To determine the size of receptive fields (RFs) of individual cells, we defined 5 subclasses of responses: small-size receptive

fields, medium-size receptive fields, large-size receptive fields, bar-shaped receptive fields and double-field receptive fields

(containing two discrete excitatory patches in the visual field). Since our stimulation protocol didn’t allow for precise mapping

of receptive fields (also Gaussian fits for larger receptive fields were problematic), we turned to a broad classification of RF

sizes. To this end we used the smallest stimulation field (30� in azimuth, 13� in elevation) as a calculation unit (i.e., 1 ‘‘patch’’).

After manual inspection of the receptive field locations, we arbitrarily set the thresholds for the 3 size categories as 3 or less

active phases (small, SM), 7 or less active phases (medium, ME) and 8 or more active phases (large, L). Bar cells were classified

as having active phases only in the full vertical or full horizontal axis, while ‘‘double fields’’ were classified if they had two peaks

of activation that were at least 60� away from each other. Most double-field receptive fields likely resulted from experimental
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artifacts, in which stimulus reflections can cause such double field RFs. Neurons with double-field RFs were therefore excluded

from further analysis.

To classify cells according to their respective size criteria, we ran a 2-step process:

Step I

1. Calculate mean patch density (MPD)

a. If the cell responded maximally during the small 6x6 stimulus phases, the MPD corresponded to the average normalized

activity of the cell in the phases of the 6x6 stimuli.

b. If the cell responded maximally for one of the larger stimulus phases, the MPD was calculated as the average normalized

activity of the cell in the phases of the 6x6 stimuli that were covered by the field of maximum activation (e.g., the cell in Fig-

ure 1Div had its maximal activity during in the upper horizontal bar stimulus phase, so the mean patch density would corre-

spond to the average activity of the 6 upper patches of the 6x6 stimulation phase).

2. Next, we set the threshold for classifying a part of the visual field as ‘‘active’’ as follows: IF

a. MPD is smaller than 30%:

i. MPD * 3

b. MPD is larger than 30% and smaller than 40%:

i. MPD * 2

c. MPD is larger than 40%:

i. 90%

By relating the activity during the small stimuli to the activity observed during the larger stimuli, these MPD thresholds helped to

obtain a more accurate quantification of active patches of cells preferentially active during the small stimulation phases.

3. In Step I, cells were classified if following criteria were met:

a. The maximum activity in the 6x6 stimulation phase exceeded Mean patch density * factor (see step I.2) or

b. Maximum excitation in the 6x6 stimulation phase larger than 90%

4. To classify the number of active patches, we applied the threshold defined in point I.2

Cells were then either classified as ME or SM based on the number of active patches.

All cells that didn’t meet the criteria from point I.3 were classified according to Step II. First, we calculated a second metric, the

mean excitatory density (MED). We calculated the MED by multiplying the calcium response magnitude for each motion phase

(excluding the 36 smallest motion phases) with an area factor (full size x 1, half size x 2 .), resulting in a motion phase’s calcium

activity weighted by the visual field area in which the stimulus was moving. We call this parameter the ‘‘excitatory density’’ of the

stimulated part of the visual field. A biologically plausible underlying cause for differences in excitatory density is the number of

DS RGC inputs the cell receives from the portion of the visual field in which the stimulus moves. We then summed the excitatory den-

sities from all larger stimulation fields together (1x1, 2x1, 1x2, 2x2, 1x6, 6x1) taking into account their spatial location in the visual field.

This resulted in an excitatory densitymap of the complete visual field covered by the stimulus arena. In order to report a single number

for the RF size, we then defined active phases as those having 75% or more of the normalized summed maximum activation. The

difference between this threshold and the 90% threshold for SM cells is derived from comparingmanual and automated classification

methods.

This method favors smaller receptive fields, because the calcium indicator only shows disproportionally small fluorescence levels

for low levels of calcium activity - i.e., it is non-linear - but it enables easy classification of cells size preferences with the given lim-

itations of the calcium indicator (Chen et al., 2013; Pologruto et al., 2004).

The results from our analysis, which is based on thresholding and classification, fits well with both the results obtained from an

automated approach using PCA and clustering (Figure S2), and results from manual classification of receptive field sizes.

To determine if cells were small-size selective, we compared the responses to small-size and larger-size stimuli from our stimulus

protocol. If (i) a cell was assigned to the small size (SM) or median size (ME) category and was identified during one of the 36 (6x6)

small-size stimulation phases (see above), and (ii) the cell showed its maximum activity during the 6x6 stimulation then this cell was

classified as being size selective (‘Inhibition’).

To determine the relative reduction in activity (relative to the response if only the small excitatory receptive field is stimulated) and to

visualize the spatial structure of the inhibitory receptive field (‘‘inhibitory density’’), we summed the relative reduction of activity (anal-

ogous to the above described excitatory density) for every patch belonging to the RF and removed the patches that were part of the

RF from the inhibitory field.

Please note that some cells were assigned SM or ME status based on the excitatory density map (and not based on the 36 small-

size stimulation phases).We assigned the ‘‘no inhibition’’ status to all of these cells, because themaximal activity was not found in any

of the small-size stimulation phases. However, the RFs of these cells could still show some form of inhibition (e.g., during presentation

of larger half-field stimulus phases), which was not characterized here. The second cell in Figure 1Dii (an ME cell) is an example for

such cells without assigned ‘‘inhibition’’ status.
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Weestimated the RF centers in XY space as the center ofmass of the normalized activity in the active phases (thosewith red dots in

Figure 1D), i.e., both location and level of activity in active phases determined the position.

The median receptive field size across the visual field was derived by calculating (for every visual field position) the median RF size

of receptive fields that covered the respective visual field location to visualize the distribution of RF sizes in the visual space.

LED arena light rays that traveled roughly through the center of the glass bulb (where the fish headwas located as well) hit the glass

bulb wall on the opposite side with an angle of incidence of 90�. This resulted in about 4% of reflected light (according to the Fresnel

equations) and this light was visible to fish eye that was not intended to be stimulated. In the first 6 animals, we noticed an unexpect-

edly high number of detected ROIs in the optic tectum ipsilateral to the stimulation. The vast majority of these tectal ipsilateral ROIs

had a reversed retino-tectal topography indicating that these ROIs were detected because of the reflected light. We decided to

exclude these ROIs in the anatomical reconstruction. For the other 4 animals, we blocked the non-stimulated eye by placing a

half-cylindrical piece of black aluminum foil around the objective and lowering it below the level of the eye. In these animals, a

much smaller number of neurons were detected in the ipsilateral tectum, and their anatomical location corresponded to the expected

retino-tectal topography. In the data analysis, the small-size RF neurons in the ipsilateral hemisphere recorded from the first 6 animals

were excluded. The laterality index for tectal neuronswas�0.88 for the 4 animals with one blocked eye, and�0.46 for the 6 animals in

which the eyes were not blocked.

In Figure 3A (locations of RF centers in the visual field for tectal small-size RF cells), only very few cells (55 out of 1074), which have

RFs centers in the lower temporal of the visual field, were present. While we are convinced that this finding represents an actual un-

der-representation of such cells in the optic tectum, we would like to discuss two experimental caveats, which can explain the effect

partially (but not fully). First, the fish were mounted on a glass triangle and care was taken to allow free view of the stimuli from the

position of the eye lenses by pushing the larva toward the tip of the glass triangle (thereby reducing the positional stability of the

recording). However, for some animals, a small portion of the lower temporal visual field might have been blocked by the sides of

the glass triangle. However, this caveat should only have affected extreme lower-temporal receptive field positions (e.g., > 120�

in azimuth and < �30� in elevation). Second, the anatomical positions of those tectal neurons having lower temporal receptive field

centers lie close to the border with the pretectum. The pretectum-classified small-size RF cells in proximity of the tectum (shade red

dots in Figure 2A) can fill the gap in the ventral-caudal visual field in Figure 3A only partially (just 12 additional cells for the region > 90�

azimuth and < 0� elevation) when such pretectal neurons are plotted together with the tectal neurons.

To characterize the distributions of RF centers across visual space, the density of the RF centers in the visual space was calculated

with ‘ksdensity’ function in MATLAB. Contour lines were plotted based on the density.

One gap between the rostral diencephalic and caudal pretectal neurons is quite obvious (Figure 2A). Moreover, in the rostral dien-

cephalon, many neurons are small-size selective (RFs with signs of inhibition). Therefore, a boundary was manually defined between

the rostral diencephalon and caudal pretectum along this gap containing only few motion-sensitive neurons (Figure 2A). In the

data analysis of the rostral diencephalic neurons, the rostral diencephalon was defined as follows: dorso-ventral axis < 10 mm

and anterior-posterior axis < 60 mm, or dorso-ventral axis <�30 mm and anterior-posterior axis < 110 mm. 140 mm caudal to the pos-

terior commissure along the anterior-posterior axis was conceded as the caudal boundary of the pretectum with other brain areas.

The bilaterally symmetric anatomical distribution of the neurons relative to the midline was measured using a laterality index, which

was calculated as,
�
neuronsright � neuronsleft

���
neuronsleft + neuronsright

�
:

Inclusion criteria for somatic calcium responses
We calculated the Pearson’s linear correlation coefficients between the stimulus phase z-scores (see above) of the three stimulus

protocol repetitions (for all 3 pairwise combinations) to characterize the reproducibility of stimulus-evoked calcium responses. In

our further data analysis, we only kept the neurons for which all three correlation coefficients were higher than a certain threshold.

The threshold was set between 0.65 and 0.75 to exclude around 30% neurons with low reproducibility of stimulus-evoked activity

in themonocular receptive field mapping experiment (2004 out of 2995, 67% neurons were kept). We then performed signal-to-noise

ratio (SNR) analysis to exclude neurons with unstable baseline. In the SNR analysis, a threshold of four was used on the z-score to

detect positive neural responses. SNR was defined as the ratio of the average response of all the responsive phases to the standard

deviation of the baseline. All neurons with SNR lower than a certain threshold were excluded. The thresholdwas set between 8 and 10

to exclude about 5% remaining neurons with low SNR. We kept about 96% (1926 out of 2004 neurons) in the monocular receptive

field mapping experiment for further analysis.

Setup for measuring the receptive field of OMR behavior
The visual stimuli were presented binocularly with a 336� (from �168� to 168� in azimuth) surround LED arena (two half-cylindrical

arenas, Figure 4A) from both sides of the fish, i.e., all stimulus phases (except the rotational and looming control stimuli) were

mirror-symmetric across the midline. The image of the fish was reflected to a lens by a mirror positioned around 5 cm above the

fish (1 cm above the glass bulb). An infrared-sensitive high speed camera (Model IDT iNdustrial Speed I, Integrated Design Tools

Inc.) with an IR bandpass filter (ET 850/40, CHROMA) recorded (250 Hz) the behaviors of the fish through the lens (diameter,
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25.4 mm; focal length, 100mm; THORLABS, LB1676) mentioned above. Since the mirror above the fish is tilted 45 degrees vertically,

the light path from the mirror to the camera was horizontal. The fish was illuminated from below with a high power infrared LED light

(850 nm, Conrad, Item No. 491248-62) positioned 1 cm below the glass bulb. The infrared light was mounted below a piece of milk

glass and provided homogeneous background illumination around the fish (Figure S5A). The infrared LED light and the camera were

triggered by the motion signal of the visual stimulus recorded by a LabVIEW DAQ box. In our experiment, the camera started

recording about 300 ms after the motion phase onset of the visual stimuli. The infrared LED light was only on during the motion visual

stimulus phases to reduce potential harm to the fish.

Receptive field mapping of OMR behavior
For each recording, a larval zebrafish (6 dpf) was transferred into a Petri dish and embedded in lowmelting agarose (E3medium) on a

glass triangle such that the fish body completely protruded the tip of the glass triangle. The agarose surrounding the larval tail was

removed to free the tail. To reduce the amount of agarose surrounding the animal, agarose surrounding the fish was trimmed on the

sides and in front. Only the agarose caudal to the animal attached to the triangular stage. Therefore, a large view field was accessible

for the fish, and - more importantly - the contours of the beating tail could be imaged without optical obstruction from the glass tri-

angle. The fish and the glass triangle were fixed to an 8 cm diameter glass bulb filled with E3 medium in the same way as described

above (see Animal Preparation in the Method Details section). The animal was illuminated from below with a high power infrared LED

light, which was triggered on 150ms after the start of the grating motion and lasted for 10 s. During the first 6 s of each grating motion

phase (300 ms delay), the animal was imaged with a high speed infrared camera at 250 frames per second. The video data were

saved during the pauses and analyzed with custom written MATLAB code offline.

In the OMR behavioral test, forward moving gratings, 0.033 cycles/�, moving at 30�/s, were used as visual stimuli to induce the

optomotor response. Three repetitions of the 55 stimulus phases were shown to both eyes of the fish using two half-cylindrical

arenas. All stimulus patterns were presented in each of the three randomized orders depicted in Figure S5C for the repetitions.

The animals were adapted to the stationary gratings for about half an hour before motion stimulation started. In each trial, every

9.75 s stimulus phase was preceded by an 18 s pause and followed by a 51 s pause with the same stationary visual stimulus pattern.

Before presenting the 2nd and 3rd repetition of the 55 stimulus phases, the animals rested for about 1 hour.

The motion of the larval tail was traced using a custom MATLAB algorithm for image processing and the ‘alpha angle’ (the angle

between the fish anterior-posterior body axis and the tail tip, see Figure 4A) was calculated. The single tail beats were detected by

labeling the peaks and troughs of the alpha angle traces. In our analysis, only swim beats meeting the following two criteria were

considered as forward OMR beats: (1) the tail-beat frequency (during individual swimming bouts) was higher than 25 Hz; (2) for

each beat, the difference of the amplitudes of adjacent peaks and troughs divided by the sum of themwas smaller than 0.3 and larger

than �0.3 (symmetrical tail beats/forward swimming).

Two types of OMR tail beats were distinguished: symmetrical and unsymmetrical tail beats (Figures 4E and S5F). Unsymmetrical

tail beats oftentimes occurred at the beginning and the end of OMR tail beat bouts (Figures 4E and S5F), similar to the case of freely

swimming larval zebrafish (Marques et al., 2018). As expected, the larval zebrafish tried to turn in response to the rotating visual stim-

ulus used as control in our protocol, with tails beating mainly unilaterally to the reverse direction of the rotation (Ahrens et al., 2013a).

However, symmetrical tail beats were observed in the turning swimming bouts as well (Figure S5Fi).

In Figure 4 (and Figure S5), the shown tail-beat frequency does not correspond to the frequency reached during individual swim

bouts, but instead corresponds to the average frequency during the stimulus phase, such that time periods without swim bouts lead

to a reduction of tail-beat frequency.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical information calculated with MATLAB R2014b built-in functions is provided in each of the sections above. For state-

ments of significance an alpha level of 0.05 was used unless stated otherwise.

The analyzed number of zebrafish and brains is indicated in the main text and figure legends. Error bars correspond to SEM unless

stated otherwise.

DATA AND CODE AVAILABILITY

The scripts for data pre-processing and the pre-processed data are freely available from our G-Node repository (https://gin.g-node.

org/Arrenberg_Lab/monocular_receptive_field_mapping). The original raw datasets have not been deposited at G-Node due to the

large data size. All raw and processed data and software used to generate the figures will be made available upon request.
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Yue Zhang,1,2 Ruoyu Huang,1 Wiebke Nörenberg,1,2,3,4 and Aristides B. Arrenberg1,5,6,*
1Werner Reichardt Centre for Integrative Neuroscience, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
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SUMMARY

The perception of optic flow is essential for any visually guided behavior of a moving animal. To mechanis-
tically predict behavior and understand the emergence of self-motion perception in vertebrate brains, it is
essential to systematically characterize the motion receptive fields (RFs) of optic-flow-processing neurons.
Here, we present the fine-scale RFs of thousands of motion-sensitive neurons studied in the diencephalon
and the midbrain of zebrafish. We found neurons that serve as linear filters and robustly encode directional
and speed information of translation-induced optic flow. These neurons are topographically arranged in pre-
tectum according to translation direction. The unambiguous encoding of translation enables the decompo-
sition of translational and rotational self-motion information frommixed optic flow. In behavioral experiments,
we successfully demonstrated the predicted decomposition in the optokinetic and optomotor responses.
Together, our study reveals the algorithm and the neural implementation for self-motion estimation in a verte-
brate visual system.

INTRODUCTION

When you walk across a street, the image of the street is also

shifted across your retina. This global retinal image shift induced

by translational and/or rotational self-motion is known as optic

flow.1–3 Optic flow is used for self-motion estimation,4–8 which

is a critical task for all visually guided navigation, as well as for

gaze and posture stabilization behaviors (Figure 1A).

The anatomical substrates associatedwith this task have been

identified in a range of species. For instance, optic flow is pro-

cessed in the medial superior temporal and parietal cortical

areas in primates,8–13 the nucleus lentiformis mesencephali in pi-

geons,14 and the lobula plate in flies.15 In zebrafish, the pretectal

area processes optic flow and is necessary for body position and

gaze stabilization in optomotor responses (OMRs) and optoki-

netic responses (OKRs), respectively.16–19

Knowing which neurons are involved does not answer how

these neurons process optic flow and mediate stabilization

behavior. For example, we cannot predict how an animal

will respond to the optic flow induced by a banked turn,

which contains both translation and rotation self-motion compo-

nents. To answer this question, it is essential to reveal the under-

lying neural mechanism, or the algorithm, of optic flow process-

ing. Theoretical studies have described several distinct

biologically plausible algorithms.20–22 One of these algorithms,

the ‘‘matched-filter’’ model, suggests that motion receptive

fields (RFs) of optic-flow-sensitive neurons form filters with

similar structure to certain types of optic flow, i.e., each RF

contains a vector field of locally preferred directions (PDs) that

matches a particular self-motion axis. These matched filters

may then form a mathematical basis of self-motion-induced op-

tic flow and thus encode translation- or rotation-induced optic

flow in a discriminable manner.20,23

In compact insect brains, systematic motion RF characteriza-

tion has revealed the existence of such RF filters, which

match certain types of translational or rotational optic flow

(ROF).15,24,25 However, there are many more neurons involved

in optic flow processing in vertebrate brains than in insects.

For example, the population of translation- and rotation-sensi-

tive neurons in the pretectal area of larval zebrafish is at least

10 times larger than the population of horizontal system and ver-

tical system neurons in blowfly.15,16 It is thus unclear whether the

matched-filter algorithm discovered in the compact fly brain is

also employed by vertebrate brains. Also, with greater number

of neurons comes greater difficulty in systematic RF character-

ization. Although calcium imaging enables recording of hun-

dreds of neurons simultaneously, no efficient approaches had

been available to characterize fine-grained motion RFs in verte-

brate brains.

To overcome these limitations, we here made use of contig-

uous motion noise (CMN) stimuli and reverse correlation tech-

niques developed recently for the systematic RF characteriza-

tion of motion-sensitive neurons via calcium imaging.26 We

measured the fine-grained motion RFs of thousands of neurons

in the pretectum and optic tectum (OT) of larval zebrafish. The

identified RF structures reveal a neural mechanism for robust
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optic flow encoding in the pretectum. Furthermore, we show that

larval zebrafish decompose translation and rotation components

in optokinetic and optomotor behavior as suggested by the un-

derlying encoding mechanisms.

RESULTS

Identification of unimodal and bimodal RFs sensitive to
motion stimuli
To estimatemotion RFs, we used a full-surround cylindrical stim-

ulus arena (Figure 1B) and recorded neuronal responses to mo-

tion stimuli in zebrafish larvae expressing the calcium indicator

GCaMP6s. The stimulus consisted of a CMN pattern in which

moving directions were spatiotemporally coherent. We then

took the average of all stimulus frames that evoked calcium

events in a neuron (reverse correlation) and applied bootstrap-

ping statistics to identify which parts of these event-triggered av-

erages (ETAs) can be trusted (Figures 1A and S1 and STAR

Methods for details). The method has been described recently26

and enabled us to identify the fine-scale RF structures of 3,926

motion-sensitive neurons from a total of 46,130 regions of

interest (ROIs) recorded in the OT and the pretectal area of seven

fish. The shape, span, location, and direction preference of these

RFs were highly diverse, as illustrated by the estimated RF struc-

tures of the four example neurons in Figure 1D. This method en-

ables inference of preferredmotion directions in different parts of

the visual field but is less suitable for estimating the precise

diameter of the RF.26

Despite the high structural diversity, we found that most esti-

mated RFs (99%) contained either one or two significant modes

(Figure 1C), i.e., they could be classified into unimodal (or unipar-

tite) and bimodal (bipartite) RFs. The ‘‘mode’’ here is defined as a

patch of spatially connected RF components. Although both

unimodal and bimodal RFs can be found in OT and the area pre-

tectalis (APT), most unimodal RFs are located in the OT, and the

bimodal RFs are predominantly located in the APT (Figures 1C

and 1E).

Themodes of bimodal RFs are located asymmetrically in
the visual field and show patterned direction selectivity
Due to the fundamental structural difference between unimodal

and bimodal RFs, we characterized them in different ways.

Figure 1. Characterization of unimodal receptive fields (RFs)

(A) Illustration of the challenge of extracting self-motion from optic flow for visually guided self-stabilization behavior.

(B) Illustration of the RF estimation method using a contiguous motion noise stimulus; see also STAR Methods and Figure S1.

(C) Histogram of RF mode number for neurons in the optic tectum (OT), area pretectalis (APT), and adjacent brain regions.

(D) Examples of two unimodal (green) and two bimodal motion RFs (blue). The direction and size of the arrows indicate the local preferred direction and themotion

sensitivity within the RF; see also Figure S1.

(E) Anatomical location of neurons with unimodal RFs (n = 3,504, in 7 fish) and bimodal RFs (n = 398). The anterior-posterior (AP), dorsal-ventral (DV), and left-right

(LR) axes are labeled.
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Each unimodal RF had an averaged PD that corresponded to

either up, down, left, or right (Figure S2A), and the spatial RF dis-

tribution matched results of a previous study.19

For the bimodal RFs, the PDs and spatial centers were calcu-

lated separately for each mode. Tomeasure the span of bimodal

RFs, we calculated the distance between the two mode centers

in visual space (intermode distance, illustrated in Figure 2A). The

intermode distances ranged from ca. 60� to 315� in our dataset

(Figure 2B), and intermode distances of 180� were scarce. The

binocular overlap zone was smaller than 30� in our recordings27

(cf. illustration in Figure 2C), as the eyes of the whole-mounted

fish were in their normal resting position. Therefore, bimodal

RFs spanning across two sides of the overlap zone were classi-

fied as binocular RFs. Based on this principle and the intermode

distance, the bimodal RFs were divided into three groups: (1) pu-

tative monocular RFs receiving visual input from the nasal (�45�

to +45� in azimuth) and temporal end (�168� to �90� or 90� to

168�) of a visual hemi-field (shown in red in Figures 2B and

2C), (2) binocular RFs with short intermode distance (average:

�150�, colored in green), and (3) binocular RFs with long inter-

mode distance (average �223�, colored in blue). For most

bimodal RFs, the mode centers were distributed asymmetrically

in relation to the anterior-posterior (AP) body axis as shown in

Figure 2C.

Next, we compared the PDs within the two modes of each

bimodal RF by plotting the distribution of PDs in the left mode

grouped by their right mode PDs (Figure 2D). We found that

the RFs preferring leftward (clockwise [CW] from above) motion

with their right modes are mostly preferring the opposite direc-

tion (rightward motion) in their left mode, and vice versa. Among

the neurons with vertical direction preferences in the right mode

(31% of all bimodal neurons), 43% of them preferred motion in

the opposite direction in the left mode (corresponding to rota-

tion), while the other 57% showed similar direction preference

(corresponding to lift translation; Figure 2D).

Complex bimodal RFs act as linear filters to encode
optic flow directions
The directional preferences of the bimodal RFs (Figure 2D)

implied these RFs may have similar structures to specific optic

flow fields. For example, a bimodal RF that prefers leftward mo-

tion in its left mode and rightward motion in its right mode, is

similar to the translational optic flow field (TOF) resulting from for-

ward self-motion, and the RFs preferring upward and downward

Figure 2. Spatial and directional organization of bimodal RFs across the visual field

(A) Illustration of a bimodal RF projected onto a sphere (left) and the corresponding 2D visual space representation (right). The ‘‘intermode distance’’ was defined

as the distance between the two spatially separated components (modes) in the RF.

(B andC) Bimodal RFs grouped by their intermode distance and locations in visual field. Each pair of linked dots in (C) indicates themode centers of a bimodal RF.

The RFs tilted to the right hemi-field were colored darker for clarity. The approximate RF distributions within the visual field are summarized on the right.

(D) Pairing of preferred directions (PDs) for all bimodal RFs (i.e., mode pairs). The four polar histograms of the left mode PD are grouped by the PD of the rightmode

of each RF (indicated by the arrow and shade inside the polar histogram).
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motion in their left and right modes, respectively, are similar to the

ROFfield resulting from roll. To quantify this similarity to optic flow

fields, we calculated the average cosine similarity of all unimodal

and bimodal RFs to their closest TOF and ROF (Figure 3A; STAR

Methods section fitting optic flow fields to RFs). The similarity can

vary from�1 to 1, where 1means that the vector field structure of

the RF is the same as the corresponding optic flow field, and

0 means that the RF is not similar to any optic flow field.

For most RFs (89%), both highly similar TOFs and ROFs ex-

isted (cf. dots within the bottom left quadrant in Figure 3B). These

RFs were called ‘‘simple RFs’’ because most of them are

unimodal RFs (98%) of relatively simple structure and small

spatial extent, and thus, they can be interpreted as parts of

TOFs and ROFs at the same time. Most of the other RFs were

similar to either TOFs or ROFs only (cf. color-shaded areas in

Figure 3B). These RFs were called ‘‘complex RFs’’ as they are

mostly bimodal RFs (319 out of the total 389 complex RFs) con-

taining heterogeneous vector field structures. In addition, most

bimodal RFs (80%) are complex RFs. In these complex RFs,

the 329 RFs that were more similar to TOFs were called
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Figure 3. Prediction of optic flow responses in complex RF neurons with the matched-filter model

(A) The best-matching rotational (red) and translational (blue) optic flow field for an example motion RF (gray).

(B) Score of the match of each RF to the fitted rotation (rot.) and translation (trans.) optic flow field. Values below 0.2 (dashed lines) indicate good-matched-filter

RFs; trans./rot. sim.: translation or rotation cosine similarity. RFs within blue and red regions were defined as ‘‘complex.’’

(C) Similarities of the complex and simple RFs to the fitted optic flow fields.

(D) Two examples of rotation (top) and translation (bottom) RFs (colored) and the matching optic flow fields (gray).

(E) The recorded maximum calcium responses of an example neuron to combinations of different optic flows (OFs, lower left) compared with the matched-filter

model predictions (lower right). Three example OFs (1–3) are illustrated at the top and the neuron’s corresponding calcium trace is shown in the middle row; n.d.,

not determined.

(F) The correlation of the recorded and predicted responses for complex and simple RFs.

(G) Bee swarm plot of the translation-rotation index (TR index; see also STAR Methods and Figure S2) for neurons with translation, simple, or rotation RFs.

The dashed lines in (C) and (F) and the red horizontal lines in (G) indicate the median values of the corresponding distributions.
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translation RFs, while the 60 RFs similar to ROFs were rotation

RFs. Two flow field examples for translation and rotation RFs

are shown in Figure 3D. Both simple and complex RFs can be

well explained by the fitted ROF and/or TOF (Figure 3C): the me-

dians of the cosine similarities for simple and complex RFs are

0.98 and 0.92, respectively.

This finding is consistent with the observation in flies, where

the RF organization of direction-selective wide-field neurons

were concluded to serve as matched filters indicating the pres-

ence of particular self-motions.23 To test whether or not these

complex RFs in larval zebrafish play a similar role, we performed

recordings in which 36 distinct optic flow stimuli were presented,

followed by the CMN stimulus (Figure S2C). These recordings

lasted 20 min. Each optic flow stimulus consisted of either

pure translation or rotation, or of a unique combination of TOF

and ROF (Figure 3E; also see STAR Methods section prediction

of optic flow preference). Using the measured RFs, we applied

the matched-filter model to predict the calcium responses to

the 36 optic flow stimuli for each neuron. The linear correlation

of measured and predicted responses to these distinct optic

flow stimuli provides a quantitative measure of the prediction ac-

curacy. The average correlation for the neurons with complex

RFs (0.81) was higher than the correlation for the neurons with

simple RFs (0.65), which means that the complex RFs on

average gave better prediction of the neural responses to optic

flow stimuli than the simple RFs (Figures 3F and S2D). We

A B

C D E F

Figure 4. A topographic map of global translation direction in the pretectum

(A) Top: illustration of focus of expansion (FoE) and focus of contraction (FoC) of the fitted TOF field (gray arrows) of one translational RF (black arrows). Bottom:

preferred translation direction distribution for all translation RFs (n = 329). Each dot corresponds to the preferred translation direction (FoC) of a neuron.

(B) Anatomical locations of neurons (n = 329) with translational RFs, colored according to preferred translation direction in the horizontal plane. The AMC pretectal

region is contained within the horizontal dashed lines. The averaged preferred translation directions (trans. dir.) of the neurons binned by the location on the left-

right axis (X position; bin size = 14.4 mm) are plotted at the bottom; the error bars indicate the SDs.

See also Videos S1 and S2.

(C) Illustration of the angular distance between mode centers and preferred translation direction (FoC) analyzed in (D). The red and blue arcs indicate the angular

distance of left and right mode centers, respectively.

(D and E) The angular distance of mode centers in relation to the preferred translation direction (D) and the symmetry (E) of mode pairs relative to translation

direction and body axis.

(F) The discrimination index (DI) for the tuning to translation speed (within the range of 7.5�/s–120�/s) and direction (0�–360�) of the 369 translation-sensitive

neurons in the AMC of two fish.

See also Figure S4 and Video S4.
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quantified the response specificity to translation versus rotation

(TR index; STAR Methods) and found that bimodal translation

neurons had a higher specificity for translation (average TR index

>0.5; Figure 3G) than rotation neurons for rotation (TR index �
�0.3). The index distribution for simple RFs did not show strong

preference to either translation or rotation stimuli as they were

also active during presentations of combined rotation/translation

OFs.

Together, these results suggest that the identified complex

RFs act as matched filters to process optic flow. Most complex

RFs prefer either translation or rotation but not a particular com-

bination of the two. Translation neurons were more abundant

than rotation neurons and their responses to combinations of op-

tic flow were more predictable with the matched-filter model

(Figure S2D), suggesting that additional unknown stimulus fea-

tures modulate the responses of rotation neurons. In the

following, we will mainly focus on the population properties of

the translation RFs.

A topographic map of global translation direction in the
pretectum
The encoding of global translation direction is essential for any

visually guided locomotion. In the sections above, we showed

the encoding algorithm (matched filter) implemented by the

complex RFs of optic-flow-sensitive neurons. This allows us to

directly infer the preferred translation direction of these neurons

as the focus of contraction (FoC) of its best-matching TOF (Fig-

ure 4A). Consistent with Figure 2D, most of these neurons prefer

translation directions close to the horizontal plane, and another,

smaller proportion of neurons prefer vertical TOFs (Figure 4A).

The majority of these neurons were anatomically arranged

in the anterior medial cluster (AMC) region16 of the APT

(Figures 4B and S3). These neurons surprisingly formed a

topographic map running from left to right across the midline ac-

cording to preferred translation direction, with medial neurons

preferring forward translation. This topographic map is struc-

tured according to the ego-motion relative to the surround, i.e.,

a cursotopic arrangement (lat. ‘‘cursus’’ means ‘‘running, direc-

tion’’). Linear regression showed that the preferred translation di-

rection is strongly correlated with anatomical position (R2 = 0.73;

Figure S4F) and that topography is weaker but still present, when

removing the effects of left-right (LR) hemisphere organization

(correlation = 0.29; Figure S4G). To visualize this cursotopy

further, we recorded the neural responses in the AMC to a TOF

stimulus, whose direction changed CW at a constant rate. As ex-

pected, the active region in the AMC gradually shifted from left to

right, when the translation direction was smoothly changing

(Video S1).

There are different ways in which a translation-sensitive

neuron could detect the direction of TOF. For example, its com-

plex RF could sample the vicinity of the FoC and/or focus of

expansion (FoE), or the regions away from FoC and FoE, which

contain stronger and more coherent local motion. To identify

how the complex translation-sensitive RFs solve this task, we

calculated the angular distance between RF mode centers(s)

and the preferred translation directions, including both unimodal

and bimodal RFs in the analysis. We found that themode centers

of most bimodal translation RFswere located 60�–90� away from

the preferred translation direction (Figure 4D), corresponding to

the regionswith highest speed and strongest local motion coher-

ence in the optic flow field. Furthermore, we found themode cen-

ters of most bimodal translation RFs, which distributed asym-

metrically in relation to the body axis (cf. Figure 2C), to

distribute symmetrically in relation to the preferred translation di-

rections (Figure 4E). Unimodal complex neurons, however, were

distributed more widely and located slightly closer to the FoC or

FoE (�51� distance on average).

The responses of translation-sensitive neurons in the AMC

were modulated not only by translation direction but also by

speed. Neurons were jointly tuned to translation direction and

speed (Figure S4) and preferred speeds from approximately

15�/s to 40�/s. To estimate the fidelity of the joint speed and di-

rection representation in the AMC neurons, we computed the

discrimination index (DI) for translation direction and speed

for each neuron. A higher DI means the neural responses are

more discriminable, which in turn, indicates the neuron is

more strongly tuned to the variable. We found that almost all

neurons were tuned to both translation direction and speed,

while the tuning discriminability for translation direction was

slightly higher than that for translation speed in most neurons

(Figure 4F).

Robust encoding of translation direction
As shown above, neuronal responses to optic flow can be faith-

fully predicted by the matched-filter algorithm based on the

measured pretectal RFs (Figure 3). An essential question to

ask is whether the information encoded by neurons with transla-

tion RFs is sufficient to estimate the translation direction when

distractors or noise are present? In other words, can an animal

robustly estimate its ego-motion based on the neural responses

of these translation-sensitive neurons in the AMC region?

To answer this question, we first constructed a population

decoder to quantitatively determine whether the encoding of

translation direction is robust against rotational self-motion inter-

ference (STARMethods section population decoder for self-mo-

tion estimation). TOFs are greatly affected by additional ROF

components. For example, added rotation will cause an

apparent shift of the FoC point and changes of spatial symmetry.

This decoder was a variant of the maximum-a-posteriori

decoder that used the measured RFs (i.e., using data from Fig-

ure 3E) to predict responses to different TOFs. The decoder

then estimated the translation direction of the presented optic

flow combination by minimizing the squared difference between

the recorded responses of the translation-sensitive neurons and

the prediction by their RFs (Figure 5A; see STAR Methods for

details).

To our surprise, the estimation error for the translation direc-

tion was similar with or without ROF interference, which sug-

gests a robust encoding of translation direction (Figure 5A, bot-

tom). Indeed, AMC responses to the pure TOF and the mixed

optic flow looked very similar (Videos S1 and S2). In other words,

the translation information can be extracted from themixed optic

flow field solely with the information encoded by the translation

RFs in the AMC region.

To compare the encoding quality of the speed and direction in-

formation, we constructed a separate population decoder

(Figures S5A and S5B; see STAR Methods for details). In

contrast to the low decoding error for translation direction
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(median error: 6.6�), the decoding error for translation speed was

high (8.56�/s or 32.6% of the stimulus speed) when compared

with the range of encoded speeds.

In the natural environment, optic flow is often corrupted by oc-

clusion, the lack of visual cues or by interfering object motion.

Since it is essential for animals to determine their moving direc-

tion from corrupted optic flow, we determined to what extent this

is possible using translation RFs. For this purpose, we con-

structed an autoencoder whose encoder and decoder employ

the same response functions determined by the corresponding

translation RFs (Figure 5B, top).

We first tested the encoding quality for TOFs with 100 different

translation directions at 4 completeness levels (25%, 50%, 75%,

and 100%), corresponding to the fractional area of the visual field

in which unblocked optic flow is available. For example, 25%

indicated the optic flow in 25% of the visual field is visible. For

each TOF, an autoencoder was constructed with 50 RFs

randomly sampled from the total 329 translation RFs (see

STAR Methods for details). As expected, the estimation error

gradually increased with the decreasing completeness levels;

however, even for the 25% completeness level in which most

of the optic flow field is missing, the median estimation error

was still below 20�. It was only 5.7� higher than the one for the

100% completeness level (8.7�; Figure 5B, bottom), suggesting

that the corresponding RFs arewell prepared to encode self-mo-

tion direction in environments with sparse motion information.

We also tested the encoding robustness against moving objects,

which corrupt optic flow fields with wrong motion information.

For this type of corruption, the decoding was less robust, espe-

cially when half or more than half of the visual field was covered

by moving objects (Figure S5E). This poor performance was not

surprising, since it is hard to distinguish the cues for global mo-

tion and object motion purely from the optic flow fields without

additional information.

The robust encoding of translation direction is critical for many

locomotor behaviors, e.g., for self-stabilizing behavior in water

currents.28 The continuous change of the water current direction

and the relative distance to the surround alter the optic flow

continuously, which requires fish to constantly adjust their swim-

ming direction to maintain their body position. We were curious

to see, whether these translation RFs are capable of such a

complicated task. We therefore constructed 100 randomly

shaped ‘‘ponds.’’ In each of these simulated ponds, the water

flowed at constant speed (1 a.u./iteration) in a random direction.

The simulated fish then swam at the same speed into the direc-

tions estimated by the autoencoder from the instantaneous optic

 s
w

im
 ra

nd
om

ly

0 50 100 150
Iterations

D
rif

te
d 

di
st

an
ce

 (a
.u

)

0

2

4

6

8

10

12

14

Drifted distance

Water flow 
direction

A CB

Direction estimation error (deg)
0 20 40 60 8010 30 50 70 90

0

0.02

0.04

0.06

0.08

0.1

0.12

Fr
eq

ue
nc

y

MixtureTranslation only

Translation RFs

RF 
prediction

Least 
squared

Est.
trans. 

dir.
...(wR) + T T1 T2 T3

N
eu

ro
n

re
sp

on
se

s

Ground 
truth

Percentage of valid flow field
100% 75% 50% 25%

0

30

60

90

Es
tim

at
io

n 
Er

ro
r (

de
g)

Corrupted TOF Translation RFs

Complete TOF

Encode

Decode with LS estimation and reconstruct

Figure 5. Robust encoding of translational optic flow direction by translation RFs

(A) Top: illustration of the constructed population decoder estimating the stimulus parameters from the responses of optic-flow-sensitive neurons (see also STAR

Methods and Figure S5). The ‘‘w’’ and ‘‘R’’ in the top left indicate the rotation weight in relation to translation and rotation parameters, respectively. Est. trans. dir.,

estimated translation direction. Bottom: the decoder estimated the translation direction for translational optic flowwith (‘‘mixture’’) andwithout (‘‘translation only’’)

added rotational components. A histogram of estimation errors is shown as well as the median errors (dashed lines). For each data point, a new decoder was built

that used 50 randomly selected RFs (out of the 138 RFs; STAR Methods).

(B) Top: illustration of the autoencoder constructed with the translation RFs for determining the direction of corrupted translational optic flow fields (TOFs; STAR

Methods). Bottom: bee swarm plots showing the estimation errors for the TOFs with different degrees of visual field corruption. The dashed line and shaded area

indicate the median ± SD.

See also Figure S5.

(C) The drifted distance over time of 100 simulated fish (black lines) using the population decoder in (B) to estimate and swim against the direction of ego motion

(illustrated in the upper drawing). The gray lines correspond to the drifted distance when the simulated fish swam randomly.

See also Video S3.
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flow fields (Figure 5C; also see example fish in Video S3). In most

simulations, the total drifted distances were smaller than 1 a.u.,

which suggested that the translation RFs accurately encoded

sufficient information in this highly dynamic process to determine

appropriate translation directions for self-stabilization behavior.

Distinct optokinetic and OMRs to translational and
rotational components in complex optic flow fields
Earlier, we asserted that without systematic characterization of

neural mechanisms, we cannot even answer how fish will

respond to the optic flow during a bank turn as it consists of

both translation and rotation (Figure 6A). The revealed

matched-filter algorithm provides insight in the self-motion

extraction from optic flow in zebrafish larvae. The robust encod-

ing of translation direction (Figure 5A; Video S2) against the inter-

ference of ROF component strongly suggests translation and

rotation information from the optic flow input are segregated in

the zebrafish brain. It is thus very likely that fish will respond

separately and simultaneously to the translation and rotation

related optic flow components during any movements involving

both translation and rotation.

To test this, we selected the OMRs and OKRs as two behavior

readouts as they are tightly linked to optic flow perception and

represent prominent stabilization behaviors in zebrafish.16,28

We recorded the OKR and OMR of 24 freely swimming fish to

pure forward/backward translational and CW/counterclockwise

(CCW) ROF, as well as to combinations of both (Figures 6B and

6C).

If fish failed to decompose translational and rotational compo-

nents, we would expect inappropriate behavioral responses, for

example, the occurrence of rotational behavior to TOF. In our ex-

periments, fish responded to pure rotation with both OMR and

OKR, as indicated by their circular swimming trajectories and

conjugate eye movements (Figures 6C and S6). For the pure

translation optic flow, fish swam with the optic flow direction,

while clear conjugate or vergence eye movements were absent.

If fish were unable to extract both translational and rotational

self-information from the combinatory optic flow, their re-

sponses should be similar to the responses evoked by pure

translational or ROF. Interestingly, when combinations of trans-

lation and rotation stimuli were presented, fish clearly swam

with the translation direction while performing conjugate eye

movements in the rotation direction, indicating the perception

of both translation and rotation components in the optic flow

stimuli (Figures 6C and S6).

Since OKR during translation stimuli may be disrupted by

changes of head direction in freely swimming fish, we repeated

the experiment in semi-restrained fish, which could not swim

but were able to move their eyes (Figure 6D). In contrast to the

results in freely swimming fish, the semi-restrained fish per-

formed clear vergence eye movements to pure TOFs. For optic

flow combinations, both semi-restrained and freely swimming

moving fish showed conjugate eye movements without signifi-

cant vergence components (Figure 6E). Together, this behavioral

evidence suggest that translation and rotation components are

perceived separately and simultaneously by zebrafish.

There are at least two local features that are different between

the pure translational and the mixed optic flow: the FoC/FoE po-

sition and the average motion speed of the left and right visual

hemi-fields (cf. upper right illustration in Figure 6E). The head di-

rection invariant OKR implied that the distinct processing of

translation optic flow with or without rotational components

does not rely on particular local motion features. To test this,

we constructed two variants of TOF. In the ‘‘slanted translation’’

variant, the translation direction of the pure TOF was shifted, so

that its FoC was at the same position as the one in the mixture of

translation- and rotation-induced optic flow. The average speed

in the left and right halves of the ‘‘asymmetric translation’’ optic

flow fields was altered tomimic the different speed in themixture

optic flow field. The OKRs to these stimuli were slightly different

from the ones to pure translation optic flow; however, none

of them could be classified as conjugate eye movements

(Figure 6E).

We quantified the extent of conjugate versus vergence eye

movements using a vergence index (Figure 6F, 1 = pure ver-

gence movement; 0 = pure conjugate movement; see STAR

Methods for details). The vergence index for the translation optic

flow combined with a rotation component was significantly

shifted toward conjugate eye movements in comparison with

all other translation stimuli, while the vergence indices for the

various translation stimuli were similar to each other (Figure 6F;

Wilcoxon rank-sum tests). Furthermore, each vergence index

(except for the ‘‘asymmetric translation’’ stimulus) was slightly

shifted toward conjugacy in comparison with what would be ex-

pected based on the distribution of local velocity vectors in the

optic flow field (see black crosses in Figure 6F, which show the

bootstrapped null distribution). Together, these results show

that the animal cannot be tricked into processing rotational mo-

tion when only certain local aspects of rotational flow are imple-

mented in overall translational flow patterns.

DISCUSSION

Via the systematic characterization of the fine-grained RF struc-

ture of motion-sensitive neurons in the OT and pretectal area, we

revealed how self-motion information can be extracted from the

complex RFs, and how the encoding properties may be ex-

plained by the matched-filter model. We furthermore demon-

strated the robust encoding of self-translation direction and

speed in the translation-sensitive neurons in the pretectal AMC

region. Finally, our behavioral results show that zebrafish optoki-

netic and OMRs draw on the decomposition of rotational and

translational information.

Complex RFs implement the optic flow detection
algorithm
To our knowledge, this is the first study that systematically esti-

mated the detailed RF structure of optic-flow-processing neu-

rons in a vertebrate animal model. The feasibility to estimate

the 3,926 motion RFs reported here, hinged on the availability

of a fast, multiplexed RF estimation technique developed for cal-

cium imaging.26 The RF structures of the global motion-sensitive

neurons revealed in this study showed remarkable similarity to

translational and ROFs (Figure 3C). This observation is consis-

tent with the ‘‘matched-filter’’ model proposed in flies, which

suggests optic-flow-sensitive neurons extract self-motion infor-

mation by matching their RFs with impinging optic flow

fields.15,23,29 The calcium responses of our complex RF neurons,
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especially the ones with translation RFs, are well described by

this model (Figures 3F and S2D), and the level of remaining unex-

plained responsemodulation is small for most of the complex RF

neurons. Most complex RFs are bimodal RFs (Figure 3B) and it is

possible that the bimodal RFs of these neurons are inherited

from pairs of presynaptic unimodal RF neurons,30 which may

be confirmed by systematic connectivity characterization in the

future.

In contrast, the responses of the simple RF neurons frequently

differed from the predictions of the matched-filter model

A B

C D

E F

Figure 6. Zebrafish decompose mixed rotation and translation optic flow in optokinetic and optomotor responses

(A) Illustration of the mixture optic flow field resulting from the counterclockwise (CCW) turning of a forward moving fish.

(B) Setup for simultaneous OKR (eye movements) and OMR (swimming trajectory) recording for freely swimming fish (see also STARMethods and Figure S6). For

OKR (right), saccades were removed to analyze cumulative slow phase eye movements.

(C) The OKR and OMR upon optic flow stimulation containing translation and/or rotation components in 24 fish (black arrows on top indicate the OF stimulus

composition; solid line, mean; shaded area, SD across all fish). One example swimming trajectory is colored in red for each stimulus. ‘‘F,’’ ‘‘B,’’ ‘‘L,’’ and ‘‘R’’: the

forward, backward, left, and right direction, respectively.

(D) OKR recording setup for agarose-mounted ‘‘semi-restrained’’ fish in a spherical water container. The agarose around the eyes was removed to allow free eye

movement.

(E) The eye position traces (mean ± SD) across 18 trials recorded in five semi-restrained fish. The OF stimuli are illustrated on top. Dark gray corresponds to

binocular overlap region, and the curvy arrows in (D) and (E) indicate the average motion in each hemi visual field. Arrow thickness corresponds to the relative

stimulus speed.① and② label two local features present when adding rotation on top of translation OF: the FoE shifts and speed in the two visual hemi-fields is

unequal.

(F) Ocular vergence index for different OF patterns (based on eye traces in E). For comparison, we also simulated the vergence index (black mean ± SD bars)

expected for independently moving eyes responding to the average stimulus directions and speeds in each hemi-field (using bootstrapping of local stimulus

statistics; STAR Methods). 1 and 0 correspond to pure convergent/divergent and pure conjugate movement, respectively. The asterisk indicates significantly

lower vergence indices compared with the other three groups. The ‘‘x’’ indicates a significantly lower measured ocular vergence index in comparison with the

corresponding local flow statistic. The rank-sum test (a = 0.05) and Bonferroni correction were used to assess significant differences.
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(Figures 3F and S2D), and the precise choice of thresholds in our

analysis did not appear to have a major effect on the matched-

filter properties of neurons (data not shown). One possibility is

that many of these ‘‘simple’’ neurons had non-linear RF structure

(i.e., suppressive components) remaining undetected in our RF

estimation. Indeed, previous studies reported that about 80%

of the local motion-sensitive neurons in zebrafish OT and sala-

mander retinal ganglion cells (RGCs) were suppressed by

wide-fieldmotion.19,31 An alternative (and notmutually exclusive)

explanation for the observed prediction discrepancy is that our

simple RF neurons carry out functions in the visual system, which

are only distantly related to optic flow encoding. Further investi-

gation is needed to characterize inhibitory components and

functions of simple RF neurons in the brain.

A topographic map of preferred translation directions in
the AMC pretectal region
Within the pretectal AMC region, translation-selective neurons

are roughly arranged according to preferred translation direc-

tions in a single topographicmap that spans both pretectal hemi-

spheres (Figures 4B, S4F, and S4G; Videos S1 and S2). Previous

reports already revealed differential directional processing

across pretectal locations and related these direction-selective

neurons to the triggering of OMRs.16–19,32

These results agreewith our findings despitemajor differences

in employed visual stimulus setups. In these studies,17,32 motion

stimuli were projected on a flat screen from below, which can be

interpreted as the bottom part of a TOF. For example, the nasal-

temporal-ward motion covering the bottom visual field can be

interpreted as the bottom part of a TOF resulting from forward

self-motion. Using this interpretation, the topographic map of

translation direction found in this study (Figure 4B) is consistent

with the direction map described in the previous study17 (Ibid.

Figure 3A) in terms of the PD in different regions of the AMC.

Furthermore, our results show that this pretectal structure en-

codes the translation axes of optic flow rather than local motion

directions for each eye. Unfortunately, RF structures in the pe-

ripheral lower visual field (<�40� elevation) could not be esti-

mated due to the hardware limitation in our study. A whole-field

stimulus display setup will be desired for estimating the com-

plete RF structure in the entire visual field.

Besides translation direction, speed is another critical factor

for locomotor behavior. Larval zebrafish can adjust their swim-

ming behavior to match the speed of wide-field visual motion

stimuli.33,34 Here, we show that most translation-sensitive neu-

rons in the AMC region are jointly tuned to both translation direc-

tion and speed (Figure 4F). The speed information in TOF is usu-

ally conjugated with the depth and location of stimuli in the visual

field.21 Whether and how translation-sensitive neurons in the

AMC regions untangle this information for determining self-mo-

tion speed requires further investigation.

Represented optic flow axes
We noticed some invariant properties across RFs in the OT and

pretectum: (1) the PDs for both the unimodal and bimodal RFs

are biased toward either horizontal or vertical motion, with only

a few neurons responding to oblique motion in Figures 2D and

S2A;18,35,36 (2) bimodal vertical neurons together encode trans-

lation and rotation, whereas most bimodal horizontal neurons

encode translation (Figure 2D); (3) the modes of bimodal transla-

tion RFs are mostly distributed symmetrically with respect to

the preferred translation direction instead of the body axis

(Figures 2C and 4E); and (4) most translation RFs sample regions

to the side of the preferred translation direction, where motion

coherence is high (Figure 4D).

It is unclear at this point what the specific advantages of this

layout are. The layout results in a relatively even distribution of

neuronal PDs in the horizontal plane, while translation neurons

preferring oblique translation directions outside the horizontal

plane or the vertical axis are absent. One possibility is that this

representation serves to improve the coding efficiency by

balancing the needed number of active neurons (sparseness)

and the needed total neuron number: the orthogonal representa-

tions could form amathematical basis, so that oblique directions

could be encoded by the activity of (at least) two neurons with

orthogonal PDs. Our decoder simulations show that the relatively

rich representation of horizontal directions can be beneficial for

targeted locomotor responses in the horizontal plane, e.g., dur-

ing OMR (Figure 5C). However, spontaneous swimming as well

as prey capture behavior includes frequent locomotor deviations

from the horizontal plane37,38 as well. The surprising scarcity of

representations of yaw rotation suggests that it is negligible in vi-

sual brain areas of the zebrafish. Possibly, inhibitory outputs of

translation-selective neurons or the activity in the vestibular sys-

tem could be integrated in downstream neurons to signal the

presence of yaw rotation. Furthermore, each eye can, to some

extent, correct for horizontal image slip by itself, potentially mak-

ing a binocular rotation representation dispensable.

Decomposition of translation and rotation self-motion
components
While evidence for separate processing of translation and

rotation information in the corresponding neural correlate

has been presented before,12,16,18,39 our study shows that

translation/rotation-sensitive neurons are not exclusively

responsive to pure TOF/ROF but also respond to the mixed

optic flows in a predictable manner (Figure 3). Furthermore,

the population encoding of translation direction is robust

against rotation interference (Figure 5A; Video S2), which indi-

cates that the zebrafish pretectum separates translational and

rotational self-motion components and is biased toward the

identification of translation components. In contrast to transla-

tion RFs, the responses of rotation-sensitive neurons to mixed

optic flow stimuli are strongly modulated by the non-preferred

(translation) components and poorly explained by their RF

structure (Figure S2D). It remains to be answered whether

these rotation-sensitive neurons in zebrafish are similar to

the neurons jointly representing translation and rotation com-

ponents in primate parietal lobes12 and what role they do play

in optic flow processing.

The decomposition of optic flow requires the translational and

rotational self-motion information not only to be separated but

also to be utilized differentially in behavior. Our behavioral exper-

iments revealed evidence of this decomposition, since fish swam

toward the corresponding translation direction implemented in

the optic flow field (OMR; Figure 6C) while spinning both eyes

in the direction of rotation (OKR; Figures 6C, 6E, and 6F). The

OKR is more sensitive to the rotation component of a combined
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optic flow stimulus (Figure 6F), suggesting that OKR and OMR

might show performance differences for different types of optic

flow. Our experiments on isolated local features (Figures 6E

and 6F) suggest that the integration of local features but not a

specific local feature is essential for the optic flow processing

in zebrafish.

We hypothesize that our identified population of pretectal

neurons form a visual encoding pivot, where complex RFs

directly extract and convey the translation direction to the

premotor areas. It will be interesting to determine the full neu-

ral circuit for this optic flow decomposition in the future,

including the connectivity of translation-sensitive neurons in

AMC. 30

In summary, we have systematically characterized the RF

properties in zebrafish visual brain areas that help us to reveal

a neural mechanism for optic flow processing. Our results sug-

gest that individual neurons formmatched filters to extract trans-

lation and rotation self-motion components from optic flow. We

identified an anatomically ordered arrangement of different func-

tional cell types, which, as a population, decompose rotational

and translational self-motion components of the animal. Future

work is needed to show, how these cellular building blocks are

wired together in a hierarchical circuit to mediate visually driven

reflexes and voluntary behaviors.
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The raw calcium imaging data and animal behavior videos supporting the current study have not been deposited in a public re-

pository because of their large size but are available from the corresponding author on request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Zebrafish (Danio rerio) were maintained on a 14/10h light–dark cycle at 28�C. The transgenic zebrafish line Tg(elavl3:nls-GCaMP6s)

mpn400 was used for the in vivo two-photon calcium imaging.43 The top 10 – 20% of larval zebrafish with high calcium indicator

expression levels and strong optokinetic responses (OKR) to moving gratings were selected from all hatched fish at 4-day post-fertil-

ization (dpf) for in vivo calcium imaging experiments.

5-7 dpf zebrafish larvae carrying mutations in themitfa gene (nacre) were used for OKR and optomotor responses (OMR) record-

ings. Again, the top 10-20% larval zebrafish sensitive to visual motion stimuli indicated by their strong OKR to moving gratings were

selected at 4 dpf for these behavioral experiments.

All behavioral and in vivo calcium imaging experiments were performed on 5-6 dpf larval zebrafish at room temperature.

All animal experiments were licensed by the local authorities (Regierungspr€asidium Tübingen) in accordance with German federal

law and Baden-Württemberg state law.

METHOD DETAILS

Visual stimulation setup
All visual stimuli used in this study were displayed on a custom-built cylindrical green LED arena (160 mm height, inner diameter =

198 mm) covering 336�-by-80� of the visual field (-168� to 168� in azimuth; -40� to 40� in elevation). The 2 halves of LED arena
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Code for generating the figures contained in this
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consisted of 224 square LED tiles (8 rows 3 14 columns 3 2 arena halves); each tile had 838 evenly distributed LEDs emitting at

570nm (Kingbright TA08-81CGKWA). Each LED covered�1.5 visual degrees on average, note the coverage on vertical direction var-

ied slightly with the latitude of LEDs. All stimuli displayed in the arena had 100% contrast as the LEDs in the stimuli were either on or

off. All LED tiles were covered with a diffusion filter foil (LEE no. 252, article 595-1780-2520) and a high-pass filter foil (LEE no. 779,

article 595-1700-7790, castinfo.de, Hagen, Germany) for light homogenization and light interference reduction in calcium imaging

respectively.

The custom software developed in previous studies44,45 was used for stimulus uploading and display control. Tominimize the inter-

ference of LED light with the calcium imaging, the LEDs were flickering in a duty cycle (�1 ms) to be switched on only during the fly-

back time (approx. 160 ms) of the scanning mirrors in-between line scans.

Contiguous motion noise stimulus
The contiguous motion noise (CMN) stimulus for motion RF estimation was constructed as described in our previous study.26 Briefly,

the optic flow in the CMN stimuluswas determined by a three-dimensional (8 rows3 28 columns x 12000 frames)motion vector noise

matrix, in which motion vectors were spatiotemporally correlated. The vector length and direction indicate the motion speed and di-

rection in the corresponding local region. The spatiotemporal correlation in the noisewas achieved by convolving awhite vector noise

matrix with a multidimensional Gaussian kernel (mx,y,t = 0, sx,y = 18.78 visual degrees, st = 0.33 seconds). The spatiotemporal cor-

relation in our stimulus may introduce bias to the RF estimation, i.e. overestimation of the local coherence in the RF. The spatiotem-

poral extent of this bias was quantified as the contiguous radius (CR) of the CMN stimulus for which the pairwise vector correlation

surpassed 0.1. The CR is calculated as:

CR = 2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� lnð0:1Þ

p
z3:03s

The CR in spatial and temporal domain are therefore 57 ð3:03318:78Þ visual degrees and 1 ð3:0330:33Þ second respectively.

The noise vector matrix was then transformed to a 64 (row) 3 224 (column) 3 12000 (frame) binary movie displaying at 15 frame-

per-second (fps) with the Reichardt encoder described previously.26 Eachmotion vector in the noise vectormatrix was approximated

by the displacement of the binary noise pattern displayed on an 838 LED patch at the corresponding position on the arena. The

spatial frequency of the 224 binary noise patterns (one for each LED patch) was set to 0.1 cycles per visual degree which is optimized

for visual motion perception in larval zebrafish.46

The speed distribution of the CMN stimulus follows the Rayleigh distribution:

sðxÞ =
x

s2
e

� x2

2s2 ;

where s = 12.35 visual degrees/second. Therefore, the speed in 95% of the pixels in our CMN stimulus movie was contained in the

range between 0 to 30 visual degree/second.

Optic flow stimuli design
Similar to the CMN stimulus, the optic flow stimuli were designed in vector field formswith the same spatial resolution (8328) as in the

CMN stimulus, and theywere converted to binary noisemovies by the sameReichardt encoder to be displayed on the LED arena. The

rotational ðV!rotÞ and translational optic flow vector fields ðV!transÞ were constructed as following:

V
!

rot = � P
!

3 R
!
;

and V
!

trans = T
! �

�
P
!

, T
!�

P
!

P
!

is a unit vector point from the observer (the origin) to the location P in the visual field. T
!

and R
!

are the unit vectors indicating the

translation direction and the rotation axis of the translational and the rotational optic flow fields respectively. The operations <3 >

and <,> are the cross and dot products of two vectors respectively. And a mixture optic flow containing both translation and rotation

components can be obtained as:

V
!

mix = wtrans V
!

trans +wrot V
!

rot;

where the wtrans and wrot represent the relative strength of the translation and rotation components in the mixed flow field.

The speed of motion cues in a translational optic flow field depends on both their locations in the optic flow field and the distance to

the observer. As this study is not focused on the distance effect, all motion cues in our optic flow fields were set to be equally distant

from the observer. To correct the projection distortion of the optic flow fields on the cylindrical LED arena, the optic flow fields calcu-

lated above ðV!rawÞ were transformed as following:
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V
!

corrected = D
�
V
!

raw �
�
V
!

raw,N
!�

N
!�

;

where N
!

=
ðx; y;0Þ
jðx; y;0Þj;

and D =
r

cosðqÞ =
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � z2
p ;

where the x, y, z are the LED locations in the Cartesian coordinate system where the origin is the location of the observer, and q is the

corresponding elevation angle.

In the translational optic flow fields, the motion speed is maximum at the locations S which are perpendicular to the translation

direction ðS!t T
!Þ. For convenience, the translation speed of a translational optic flow field was defined as the speed in these loca-

tions (color-shaded circles in the illustrations of Figure S4A).

In vivo two-photon calcium imaging
The selected fish were immobilized in 1.7% low melting-temperature agarose (wt/vol, E3 medium) at the tip of a transparent plastic

triangle stage (tip angle < 45%, Figure S2E) on the experiment day. The triangle stage with the mounted fish was later placed in the

centers of a spherical glass container filled with transparent E3medium. Then the water container was fixed on ametal holder placed

in the centers of the LED arena. The body position and orientation of the mounted fish was adjusted so it was centered in the LED

arena with the dorsal side facing up (roll correction) and the nose pointing straight to the front (0� azimuth and elevation) without any

tilting.

The calcium activities in neuron somata were recorded with a movable objective microscope two-photon setup (Sutter Instru-

ments, Novato, California, USA)47 coupled to a Coherent Vision-S Ti-Sa laser. The emitted fluorescence light of the calcium indicator

protein, GCaMP6s, triggered by the excitation laser beam at 920 nm (prepulse compensation: 9756 fs2, laser power = �33 mW at

object plane) was collected with a 20x/1.0 Zeiss objective using an emission dichroic with bandpass 500–550 nm. The image

time series were recorded using MScan software (Sutter instruments). The calcium images acquisition rate was 2 fps at

512 3 512 pixel2 and a magnification of 2 (0.44 3 0.44 mm2 per pixel).

Recording behavior in freely moving animals
The fish at 5–6 dpf with strong behavioral responses to moving gratings were selected on the days of OKR or OMR experiments. To

determine the optomotor responses of freely swimming larvae to optic flow stimuli, we built a cylindrical swimming reservoir (diam-

eter: 20mm, depth: 3mm) on the centers of a 50mm-diameter round transparent plastic plate. To make the stimulus displayed on the

LED arena completely visible, the cylindrical reservoir wall was made from 2% low melting-temperature agarose (i.e. no plastic wall)

to prevent plastic-agarose interfaces, which would introduce additional optical artifacts. This reservoir was placed in the centers of

the LED arena, whose radius was >9 times larger than the radius of the reservoir. Because the optic flow stimuli were all symmetric to

the horizontal plane, we do not expect any strong disturbance from internal reflection to animal behavior as discussed in a previous

paper.48 A selected fish was then placed in the reservoir filled with E3 medium.

An infrared LED lamp (850 nm, Conrad, Item No. 491248-62) was placed above the LED arena to provide relative homogeneous

light for illumination. A CMOS camera (DMK23UV024, The Imaging Source GmbH, Bremen, Germany) with a 6 mm lens (C-Mount

Lens FL-HC0614-2M, Ricoh) was placed at 30 mm below the reservoir. Fish behavior was recorded in 100 frame-per-second

(fps) with a custom written Python application.

The body axis, body position, and raw eye angles were extracted offline by a custom written OpenCV based Python script. Briefly,

the eye pixels and body pixels were extracted using a threshold-based segmentation method. The eye and body centers positions

were computed as the first moment of the corresponding pixel ensembles. To obtain the body axis or the head direction, we first

applied the principal component analysis (PCA) to the body pixel ensemble to obtain the rough body orientation as the first principal

component (PC) vector. The coarse body direction (the sign of the first PC vector) was then determined as the side with higher vari-

ation on the second PC axis. We further refined the body axis by computing the vector that is perpendicular to the line linking the

centers of two eyes and pointing into the coarse body direction determined previously. The orientation of the two eyes was also

computed with PCA in the same manner. The eye position was computed as the angular difference between the eye orientation

and the body axis (Figure 6B). The eye traces were first smoothed with a moving mean filter with the window size of 25 frames

(250 ms) to reduce noise interference. In order to extract the OKR-related slow phase eye movement, the eye angle changes faster

than 90 degrees/second were set to zero. The total eye angle changes over the entire stimulus period were computed for the left and

right eyes (Dleft and Dright).

Eye movement recording in mounted fish
The selected 5-6 dpf fish were immobilized in 1.7% low melting-temperature agarose (wt/vol, E3 medium) at the tip of a transparent

plastic triangle stage (tip angle < 45%) on the experiment day. The agarose surrounding the eyes of the mounted fish were carefully

removed to allow free eye movement. The triangle stage with the mounted fish was later transferred into a spherical glass container

filled with E3 medium. The container was placed in the centers of the cylindrical LED arena. The body position and orientation of the

ll

Current Biology 32, 1–12.e1–e8, June 6, 2022 e3

Please cite this article in press as: Zhang et al., A robust receptive field code for optic flow detection and decomposition during self-motion, Current
Biology (2022), https://doi.org/10.1016/j.cub.2022.04.048

Article

[ July 27, 2022 at 14:17 – classicthesis v4.6 ]



mounted fish was adjusted later, so it was in the centers of the LED arena with the dorsal side facing up (roll correction) and the head

pointing to 0� elevation (pitch correction) and 0� azimuth (yaw correction).

A CMOS camera (DMK23UV024, The Imaging Source GmbH, Bremen, Germany) was placed at �7 centimetres below the

mounted fish (�3 cm below the bottom of the glass bulb) to record the horizontal eye movement. To create homogeneous light

for eye illumination, a 3-cm-width white paper stripe was placed above the opening of the glass bulb to diffuse the light emitted

from a high-power infrared LED light (850 nm, Conrad, Item No. 491248-62) placed behind the glass bulb. The eyes were recorded

at 60 frames per second (fps). The eyemovement recording and stimulus synchronization were achieved via the same customwritten

Python application for freely swimming fish recording. The eye tracking and pre-processing were done offline by a custom written

Matlab script in the same way described in the section above.

Stimulus design for behavior experiments
Eight combinations of translational and rotational optic flow stimuli were used in the global motion decomposition experiments in

freely swimming fish (Figure 6C), which includes the pure forward/backward translation stimuli, the pure CW/CCW rotational stimuli,

and the 4 different mixtures of these pure translation/rotation stimuli. The design detail of these optic flow stimuli was described in a

previous section (‘‘Optic flow stimuli design’’). The relative strength for the translation and rotation components in all mixed optic flow

stimuli, wtrans and wrot, were set to 1 and 0.67 respectively. All optic flow stimuli for OMR experiments were normalized by the

maximum local movement speed to the range of 0-60 visual degrees/second. We also measured the baseline OMR and OKR activ-

ities as the swimming trajectory and eye movement when a static binary noise pattern was displayed.

As shown in Figure 6E, we designed 3 variants of translation stimuli to determine if and which visual features were involved in the

conjugate eye movement observed in the optic flow decomposition experiment. The pure translation and ‘‘T+R’’ mixture optic flow

stimuli in the OKR experiments in mounted fish are constructed in the exact sameway as above, except the local motion speed in the

optic flow stimuli was reduced to the range of 0-30 visual degrees/second to better trigger OKR behavior. The slanted translation was

constructed by rotating the pure translation sin� 1
�

wrot

wtrans

�
= sin� 1ð0:67Þz42:1�, which corresponds to the azimuth of the contraction

point of the ‘‘T+R’’ mixture.When themotion cue in one hemi visual field is closer than the other side, the speed difference is similar to

the difference caused by the rotation interference. To mimic this, the asymmetric translation stimuli was constructed by multiplying

each flow vector in the pure translation stimuli by the inverse of a distance factor (D) which was calculated as:

D =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

�
wrot

wtrans

�2

� 2
wrot

wtrans

cosð:P
!

aziÞ
s

:P
!

azi is the azimuth angle of the unit vector P
!

pointing from the observation point (the origin) to the location P in the visual field.

The transformationmimicked the changes caused by shifting the observation points which are equidistant from all motion cues (D = 1

a.u.) in the pure translation stimuli to the left by wrot

wtrans
a.u.

RETROGRADE LABELLING OF nMLF

The retrograde labelling of the nucleus of the medial longitudinal fasciculus (nMLF) in nls-GCaMP6s zebrafish larvae was performed

as described previously.49 Briefly, a 50%Texas Red dextran (10000MW, Thermo Fisher) in Evans solution was injected into the spinal

cord of 4 dpf. larvae embedded in 1.7% agarose and anesthetized with tricaine. The injected fish was imaged with the two-photon

microscope at 5 dpf.

QUANTIFICATION AND STATISTICAL ANALYSIS

Calcium data pre-processing
Themidbrain and diencephalon of mounted fish were sampled in the calcium imaging recording in dorsoventral direction from 20 mm

to 120 mmbelow the top of tectumwith the step size 10 mm. Themotion artifacts along the recording plane (XY plane) were corrected

by a phase-correlation algorithm, and all visible neuron somata in the time-averaged image of the corrected recording video were

automatically selected as ROIs by a marker-controlled watershed algorithm. Per-ROI calcium time series were extracted as the

sum of all pixel values within the ROI for each frame.

A 3D z-stack that imaged along the dorsal-ventral axis from the top of tectum to deep ventral pretectum and dorsal thalamus (step

size: 0.44 mm) was recorded for each fish. The ROIs in each recording were first registered to the corresponding z-stack. The neurons

recorded in different fish were registered to the z stack of Tg(elavl3:Hsa.H2B-GCaMP6s)mpn400 transgenic line provided by theMax

Planck zebrafish brain atlas (mapzebrain) by registering the ROIs in each recording to the corresponding z-stack aligned with the

atlas z-stack with a custom-written multimodal registration Matlab program.

High throughput motion RF estimation
The high throughput motion RF estimation method used in our study was described in detail in a previous study.26 Briefly, the neural

responses to the CMN stimulus were recorded with in vivo calcium imaging. As the abrupt, high amplitude increases of somatic
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calcium signals are usually correlated with significant increases of neural firing rate, these events were detected in the calcium traces

and extracted for each ROI to obtain a binary event train (0 = no event, 1 = event detected). ROIs with event trains that only showed

sporadic activity (#events/#stimulus frames < 8 %) were excluded for the following steps as we found only few of them could yield

successful RF estimations with this method.

For each event train, an event triggered average (ETA) was computed as the raw RF estimation as follows:

ETA =
1

nevent

XI

i = 1
eiB
�
Vi

.�
nevent =

XI

i
ei

The ei was the event state (0 or 1) for the ith stimulus frame, and I is the total number of frames in the stimulus. To avoid the ambiguity

in the vector summation, the corresponding motion vector field of the ith frame Vi

.
was transformed into a sparse, one-hot represen-

tation BðVi

. Þ where the phase angles of motion vector are evenly divided into 16 direction bins as described in the previous study

(Zhang and Arrenberg26 for details). For instance, for a vector v
.

in Vi

.
whose phase angle is in the range of the kth direction bin,

its one hot transformation Bð v.Þ will be a 16-element array where the kth element is the vector norm j v.j and the other elements

are 0. Therefore, the size of these ETAs was 8 row328 column316 direction bins.

To identify the spatially connected ETA components significantly related with RF structures, a two-step non-parametrical cluster-

based bootstrapping test (2-step NCB test) is applied. Briefly, the event train of each neuronwas circularly permutedwith random tem-

poral offsets for 1000 times. By comparing the original ETA with the null ETAs computed from these permuted event trains, we deter-

mined an empirical probability for each unit in the original ETA. The original ETA units with an empirical probability value greater than

97.5% (their values are higher than 97.5% of the corresponding units in the null ETAs) were selected as potentially significant units

(step I). To solve themultiple comparisonproblem in thedetectionof significantRFstructures,weperformedanadditional cluster-based

bootstrapping test (step II) wherewe grouped the selectedETA units in the original ETA connected in spatial and directional domain into

significant clusters. We defined the cluster-level statistic as the sum of the empirical probability of all units in a significant cluster. By

applying the sameprotocol to the null ETAs,weobtaineda null cluster-level statistic distribution for eachneuron. The clusters in the orig-

inal ETAwhose statistic were higher than 95%of the values in the corresponding null distribution are considered as significant RF com-

ponentsat thesignificance level of 5%(see thecorrespondingpaper26 fordetailedexplanations).For thesakeofclarity andconvenience,

the identified significant ETA components were converted from the one-hot representation form back to the vector field form for the

downstream analyses and visualization. An RF mode is defined as a cluster of the spatially connected ETA components. The centers

andpreferreddirectionsofRFmodeswerecalculatedas theaveraged locationandpreferreddirectionof thecomponents ineachmode.

Fitting optic flow fields to RFs
To determine the similarity of the estimated RF to translational or rotational optic flow fields, we identified the most similar transla-

tional and rotational optic flow field for each RF estimation by fitting the optic flow fields to RF estimations with the least squares

estimation method. The residual sum of squared angular difference ðRSSangleÞ between an RF estimation ðE!Þ and the fitted optic

flow field ðF!Þ were calculated as:

RSSangle =
XI

i = 1
:
�
Ei

!
Fi

!�2
:
�
Ei

!
Fi

!�
= arccos

 
Ei

!
, Fi

!���Ei

!������Fi

!���
!

We solved the fitting problem by searching the translation/rotation axis that minimized the RSSangle with the Matlab function ‘‘fmi-

nunc’’, a gradient descent optimizer. The similarity between the fitted translation/rotation flow fields and the motion RF estimations

were calculated as the averaged cosine similarity between each vector pair of the RF-related ETA components and the optic flow

fields as follows:

Similarity =
1

I

XI

i = 1

Ei

!
, Fi

!���Ei

!������Fi

!���
In addition, the symmetry of bimodal translation RFs in relation to the preferred translation directions in Figure 4E was calculated as:

Symmetry = 1 � abs

0@2:
�
D
!

center ; T
.�

p
� 1

1A;

where D
!

center = mleft � mright
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The mleft and mright are the left and right mode center positions of the bimodal RFs. The bimodal RF is most symmetric when the

vector linking its mode centers is perpendicular to its preferred translation direction

�
:ðD!center ; T

.Þ =
p

2

�
.

Prediction of optic flow preference
To determine howwell the responses of corresponding neurons to optic flow can be explained by their RFs, we recorded the calcium

responses of neurons in optic tectum and the pretectal areas in 3 fish to 36 global optic flow stimuli which include 6 pure translational

and 6 pure rotational optic flow and the 24 combinations of these translational and rotational flow in random order (Figure 3E). Due to

the memory limitation of our stimulus setup, we were unable to test all the combinations of translation and rotation optic flow fields,

the 12 untested combinations were colored in gray in Figure 3E. We chose these 12 combinations for exclusion, because their FoC/

FoE positions are not shifted by the rotation components; we therefore expect that decomposition of rotation and translation is more

easily accomplished for these combinations. The maximum speed for all optic flow stimuli were 30 degree/seconds. The translation

and rotation component in the mixture optic flows were mixed in the ratio of 2:1 (wtrans and wrot ).

Each optic flow stimulus was displayed at 15 fps for 4 seconds followed with a 6-second pause before switching to next stimulus.

The binary noise pattern of the last frame of the previous stimulus phase lasted over the pause period to become the first frame of the

next stimulus phase, so the stimuli were switched seamlessly. After all optic flow stimuli had been displayed, the CMN stimulus was

displayed for RF estimation in the same neurons.

Themeans and standard deviations of calcium fluorescence activities of eachROI in the 16-second period before and after all stim-

uli had been displayed were measured as minit / mend and sinit / send. The ROIs whose jminit �mendj> 4sinit and/or sinit=send > 4 were

excluded as either they might be bleached or drifted out of the imaged region. The calcium activities of the remaining ROIs were con-

verted into z-score calcium traces as follows:

Z-score =
F � minit

sinit

The z-score calcium traces (2 fps) were upsampled to match with the stimulus frame rate (15 fps). The response intensity (R) for

each stimulus phase was calculated as:

R = maxðRmax � Rinit;0Þ
Rmax is themaximumnormalized calcium activity (z-score) in a stimulus phase andRinit corresponds to the normalized activity in the

first frame of the stimulus phase (same as the last frame of the pause). Only the ROIs with estimated RFs26 and strong responses to

optic flow stimuli ðmaxðRÞ > 3Þ were selected (1139 out of the 1484 ROIs with estimated RF in the experiments for Figures 3E–3G).

The RF-predicted responses (Rprediction) to the presented optic flow stimuli ðGF
�!Þ were calculated as follows:

Rprediction = max

 
1

N

XN

n = 1

RFn

��!
, GFn

��!���RFn

��!������GFn

��!���;0
!

N is the number of significant components in the RF estimations,RFn
��!

andGFn
��!

are the vectors of the nth components in the RF and in

the optic flow field respectively. Note in the following section, this function will be addressed as the ‘‘RF-based response function’’.

The translation-rotation index (TR index) was computed as:

TR index =
Rmaxtrans � Rmaxrot
Rmaxtrans +Rmaxrot

Rmaxtrans and Rmaxrot are the maximum response intensity of all pure translation or rotation optic flow stimuli respectively.

Translation direction and speed tuning
To determine the tuning properties of the translation-sensitive neurons found in the pretectal area, we measured their responses to

the translational optic flows moving in 8 horizontal directions (azimuth: 0�,45�,90�,135�,180�,225�,270�,315�; elevation: 0�, Fig-
ure S4A) and 5 speed levels (7.5, 15, 30, 60, 120 degree/seconds). Each stimulus phase lasted for 15 seconds, including a

5-second moving phase and a 10-second pause phase. The stimuli were displayed in random order to avoid any historical effect.

The data pre-processing and the calculation of response intensity were the same as described in the previous section. We em-

ployed the discrimination index (DI) used in a previous study as a quantitative measure for the direction and speed tuning intensity

separately:50

Discrimination Index =
Rmax � Rmin

Rmax � Rmin + 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSE=ðN � MÞp ;

whereRmax andRmin are the responses to themost and least effective stimulus, and the SSE is the sum squared error of the averaged

responses, N and M are the number of trials and the degrees of freedom, respectively. Because the DI for one parameter of interest

may be affected by the other irrelevant parameter, the Rmax and Rmin were calculated as the maximum and the minimum responses

averaged for the irrelevant stimulus parameter. This way we could quantify DIs separately for speed and direction.
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To quantitatively summarize the direction and speed tuning properties for all translation optic flow sensitive neurons, we fitted the

joint distributions of von Mises and log Gaussian distributions to the neuron response data with the nonlinear optimization function

‘‘fminsearch’’ in MATLAB. The fitted distribution was:

von Mises-log Gaussian distribution =
1

vs
ffiffiffiffiffiffi
2p

p exp �
 
lnðv � msÞ2

2s2

!zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Log Gaussian term

ekcosðq�mdÞ

2pI0ðkÞ

zfflfflfflfflfflffl}|fflfflfflfflfflffl{von Mises term

The log Gaussian and the von Mises term aimed to capture the speed and direction tuning properties, respectively. The preferred

speed and direction of each neuron can therefore be quantified as the mode of the log Gaussian model ems � s2 and the von Mises

model ðmdÞ respectively. Themeasure of concentration of the vonMises distribution k provides a quantitativemeasure of the direction

tuning width. Note that the choice of log Gaussian function was mainly due to the non-negative property of speed and the similar

shape to the speed tuning curves observed empirically. There was no biological basis for this model thus it was used only for descrip-

tion purpose.

Population decoder for self-motion estimation
To determine if the information encoded by the translation-sensitive neurons was sufficient for determining the translation direction

and speed, we constructed a population decoder derived from the maximum likelihood decoder with the calcium response data re-

corded. Since the accuracy of any decoding algorithm is limited under the Cram�er Rao bound which is determined by the encoding

information,51 a low or no decoding error may prove the information encoded by these translation sensitive neurons is sufficient, even

if the decoding algorithm implemented in zebrafish brain might be very different from our decoder.

As illustrated in Figure 5A (top), the ground truth stimulus parameter T is estimated as the least squares fit that minimizes the re-

sidual sum of squares between the calcium responses R of the recorded n translation-sensitive neurons, and the responses pre-

dicted by their response functions ðFðTÞÞ:

bT = argmin

 Xn
i

ðFiðTÞ � RiÞ2
!

We computed the RF estimation of the neural responses to 1000 evenly sampled translation directions. The least squares fit, or the

arguments of the minimum (argmin) is approximated by finding the nearest neighbour of the recorded responses in the sets of esti-

mated responses with the Matlab function ‘‘knnsearch’’. The histogram in Figure 5A contains 300 data points for ‘‘translation only,’’

which correspond to the six translation directions for which we had ground truth neuronal responses and 50 different bootstrapped

decoders. Each decoder was constructed by drawing 50 random RFs out of the 138 translation RFs characterized in Figure 3E. The

‘‘mixture’’ histogram is based on 24x50 datapoints (24 global flow combinations from data in Figure 3E).

The responses functions were approximated with either the RF-based response (Rprediction) function (Figure 5A, bottom, see the

STAR Methods section ‘‘prediction of optic flow preference’’ for details) or the joint distribution model fitted to the direction-speed

tuning data (Figures S4B–S4E, S5A, and S5B). Since the decoding accuracy was limited by the encoding quality, the decoding error

provides a quantitative measure for the encoding quality of translational optic flow. The error was calculated as the absolute differ-

ence between the real stimulus parameter and the estimation. In the decoder for translation and rotationmixtures (Figure 5A, bottom),

the RF-based predictions to optic flow (from RF estimation using the CMN stimulus) were compared to the measured response to a

particular optic flow (data from Figure 3E).

One problem in estimating the encoding quality of translation direction and speed using the joint distributionmodel in Figure S4B, is

that the tuning model already contains the response information of the target stimuli to be tested with (which is different from the

situation for the model at the bottom of Figure 5A). We employed a jack-knife test (‘‘leave-ten-out’’) to avoid this circular analysis:

in the decoder for Figures S5A and S5B, the neural response data to translational optic flow with 40 different combinations of direc-

tion and speed parameters were evenly divided into 4 groups, so each group contained the responses to 10 different optic flow stim-

uli. For any target stimulus to be decoded, the decoder was only allowed to access the groups that did not contain the responses to

the target stimulus for tuning model estimation.

To test the robustness of translation direction encoding algorithms implemented with the translation RFs, we constructed a pop-

ulation autoencoder which encodes the partially occluded or tampered translational optic flow field (used in Figures 5B and S5E) with

n translation RFs into a one-dimensional array of neural responses as:

Rj = FjðSÞ+ ε;

where FðSÞ = max

 
1

I

XI

i = 1

RFi

�!
, GFi

��!���RFi

�!������GFi

��!���;0
!
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Rj and FjðSÞ are the simulated recorded response and the RF-based response function of the jth simulated neurons to stimulus S,

and ε is the noise term. The neural responses were decoded to estimate the translation direction with the same population decoder

described above, which makes the decoding process basically a reverse operation of the encoding. Thus, the reconstructed error is

representing mostly the encoding quality which is affected by the number of neurons involved (n), the noise in the encoding process

ðεÞ, and the input translational optic flow field ðGF
�!Þ.

To determine the noise effect on the encoding process, the reconstruction error of the autoencoder using all 329 translation RFs

was tested with different encoding signal-to-noise ratio (SNR = +N (ε = 0), 2.6, 1.3 and 0.65) which was calculated as:

SNR =
m

s
;

The m is the averaged output from the response functions of all 329 simulated neurons, and s is the standard deviation of the noise ε.

For each SNR, the reconstruction error was tested for 100 random translation directions (Figure S5C).

We also evaluated the encoding quality for 100 random translation directions when the number of translation RFs involved n = 10,

20, 50, 100 and 329 (Figure S5D, SNR = 1.3). Based on the results in Figures S5C and S5D, the autoencoder used in Figures 5B and

S5Ewas constructed with 50 translation RFs and the SNR = 1.3. As a reference, on average, more than 100 translation sensitive neu-

rons were found in the pretectal area per fish in the in vivo calcium imaging experiments, and as mentioned previously, the calcium

signal SNR of the optic flow sensitive neurons analysed were all higher than 3.

The optic flow in naturalistic scenes is contiguous, so are the occlusions and object motions that partially block or tamper the optic

flow fields. To mimic this contiguity, we created a 2D Gaussian blurred white noise matrix (s = 12 visual degree) which had the same

size as the optic flow fields for each optic flow field. Only the corresponding vectors in the optic flow field of the top N% elements

(sorted by value) in the noise matrix were preserved in the final flow field (examples in Figure S5F). The rest of the optic flow field were

occluded or replacedwith randomobjectmotion (Figures 5B andS5E). For the latter, each spatially connected region in the rest of the

optic flow field was assignedwith a single random object motion. Similar to the calculation of translational optic flow fields, let the unit

vector O
!

indicates the object motion in the 3D environment, the motion vector V
!

in a region of the visual field indicated by a unit

vector P
!

was calculated as:

V
!

= P
! �

�
P
!

, O
!�

O
!

Assessing vergence of optokinetic responses
A conjugate-vergence index (CV index) was computed for evaluating whether the OKR to each stimulus was more similar to a con-

jugate movement or a vergence movement:

CV index =
1

2p
arctan

�����Dright � Dleft

Dright +Dleft

�����
The CV index equals to 0 and 1 when the fish perform pure conjugate and vergence eye movement respectively. The CV indices of

OKR to different optic flow stimuli were compared with one-sided, Bonferroni-corrected Wilcoxon rank-sum test to determine if any

of them are significantly more similar to conjugate eye movement.

To determine if the conjugate eye movement to the rotation component in the T+R mixture optic flow is caused by local statistics,

we randomly sampled the hemi optic flow fields for 1000 times and computed the averaged motion vectors for the left and right hemi

field separately. The bootstrapped distribution of CV index in Figure 6Fwas computed in the sameway from these pairs of bootstrap-

ped motion vectors as described above.
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Figure S1. A graphical abstract for the receptive field estimation method using 

contiguous motion stimulus and two-step bootstrapping test (adapted from Zhang and 

Arrenberg, 2019, see STAR Methods for details). Related to Figure 1B and STAR 

methods. 
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Figure S2. Unimodal RF characterization and quantitative evaluation of complex RFs, 

related to Figure 1, 3 and STAR methods. The distribution of averaged preferred directions 

(A) and RF centre locations (B) in the visual fields for the neurons with unimodal RFs in optic 

tectum (OT) and area pretectalis (APT). The black arrows in the top row of A indicate the 

preferred motion direction in 2D. Each dot in (B) indicates the centre of an RF on the 2D 

spherical coordinate map. The filled contours in the back of the scatter plot indicate the RF 

centre density estimated with kernel density estimation. The histograms on the right show the 

distribution of RF centre elevation. The RF centres of most unimodal neurons (66.8 %) in the 

APT but not the OT (45.8 %) were in the lower half of the visual field. (C) Examples of z-

score calcium traces recorded in the experiment for Figure 3E-G. Each green shaded area 

indicates an optic flow stimulus phase (4 seconds duration + 6 seconds pause interval). (D) 

The bee-swarm plots of the correlation between the predicted and real neural response 

intensity to pure translational/rotational or mixed optic flows used in Figure 3E. The neurons 

were grouped by their RF types indicated in the x axis. (E) An image of an agarose-mounted 

5 dpf zebrafish larva on the tip of a plastic triangle stage as used in this study.  
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Figure S3. Dorsal view of the pretectal area in 3 different depths (related to Figure 4B). 

The green channel (GCaMP) displays all visible neural somata (two-photon calcium image) 

in the corresponding area, the white dashed curves outline the approximate location of the 

AMC pretectal clusters. The red channel shows the neural structures retrogradely labelled by 

spinal cord injections (see also STAR methods “Retrograde labelling of nMLF”). The white 

arrow in the merged channel indicates the nucleus of the medial longitudinal fasciculus 

(nMLF). The bottom rows contain the superimposed images of the pretectal area in different 

depth (Z-projected); A: anterior direction; R: right direction. 
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Figure S4. Joint encoding of translational optic flow direction and speed in the 

pretectum, related to Figure 4. (A) Left: Animals were presented with stimuli consisting of 

one of eight different TOF directions and five logarithmically spaced maximum velocities. 

Right: Two examples TOF stimuli are shown (① and ②). The region of maximum velocity of 

each stimulus is indicated as grey disk and located to the side of the translation direction 

(black arrow). To avoid the speed/distance ambiguity in TOF, which is not the focus of our 

study, all visual cues in our OF stimuli were equidistant to the animal. Therefore, the maximal 

angular speed in the translational optic flow is proportional to the fictive translation speed of 

the animal.(B) The recorded response (right column) and the fitted tuning model (left column, 

joint model of von-Mises and lognormal distributions)) for 4 example neurons. The response 

intensity is normalized by the averaged response amplitude for visualization purposes. (C) 

The R2 distribution for the tuning model fitted to the neural responses to translational optic 

flow with different speed and/or direction. The black dashed line indicates the median R2 and 

the red shaded area indicates the ROIs (R2>0.6) used in (D-F) and Figure 4F.  (D) The 

preferred translation speeds of the translation-sensitive neurons inferred from the fitted 

tuning map. (E) The distribution of the preferred horizontal translation direction inferred from 

the fitted tuning model (“Data”) and from the RFs of the neurons in the same anatomical 

locations (“RF model”). (F) Linear regression (black dashed line, R2 = 0.728) between the 

preferred translation directions and the locations of AMC neurons on the left-right body axis. 

The dashed line indicates the midline of fish. (G) Intra-cluster linear correlation (Pearson’s r = 

0.29, p < 0.001) between preferred translation directions and the anatomical locations. The 

right AMC dots in (F) were reflected in the origin.   
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Figure S5. Encoding accuracy of self-translation information in the population code of 

translation RF neurons, related to Figure 4, 5 and STAR methods. (A) The translation 

direction estimated with the data presented in Figures 4F and S4A-E plotted in bee swarm 

style. Coloured bars indicate ground truth horizontal translation directions and circles the 

estimations. (B) The translation speed estimated with the data presented in Figures 4F and 

S4A-E in bee swarm style. The dashed line indicates the line of unity. (C-D) The bee-swarm 

plots of the estimation errors in relation to the signal-to-noise ratio (SNR) in the optic flow 

vector field (C) and the number of RFs contributing to the autoencoder (D). (E) Bee swarm 

plots of the estimation errors for the TOFs corrupted by moving objects. The dashed lines 

and shaded area in (C-E) indicate the median ± the standard deviation. (F) Examples of 

incomplete or tampered translational optic flow fields. Each grey block indicates a region in 

the visual field that contains no or wrong motion cue. In the tampered visual field, each set of 

spatially connected grey blocks displayed the 2D projected motion resulting from the 3D 

movement of a single object covering this region. 
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Figure S6. OKR and OMR responses to all optic flow stimuli used (related to Figure 6). 

(A) The superimposed swimming trajectories (left) during all 9 optic flow stimuli phases 

(indicated by the arrows at the sides) and the corresponding eye position traces (mean ± 

standard deviation). (B) The individual swimming trajectories for each optic flow stimulus (rows) 

and fish (column). From top to bottom: BCCW (backward translation + counter-clockwise 

rotation), F (forward translation), BCW (backward translation + clockwise rotation), CCW 

(counter-clockwise rotation), FCW (forward translation and clockwise rotation), B (backward 

translation), FCCW (forward translation + counter-clockwise rotation), CW (clockwise rotation) 

and control (stationary stimulus). 
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