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Zusammenfassung

In dieser Dissertation entwickeln und untersuchen wir mathematische Werkzeu-
ge, welche es zum Ziel haben, eine rigorose Beschreibung der nicht—perturbativen
Dynamik in Quantenfeldtheorien (QFT) zu ermoglichen. Der Begriff QFT ist hier
zu verstehen als ein Quantensystem, welches Teilchenerzeugung und —vernichtung
involviert, sowie mit der speziellen Relativitatstheorie vertraglich sein kann, aber
nicht muss. Die Werkzeuge zielen auf Fille ab, in denen ein formaler Hamiltonian
existiert, aber nicht mathematisch definiert ist.

Das erste untersuchte Werkzeug ist ein vor Kurzem von Lienert und Tumulka
eingefiihrtes axiomatisches System namens Hyperflichenentwicklung (hypersur-
face evolution). Dieses kann als eine Alternative zu den etablierten Wightman—
und Haag—Kastler—-Axiomensystemen betrachten werden, da es Rahmenbedingun-
gen fiir relativistische, nicht—perturbative QFT—Systeme vorgibt. Im Gegensatz zu
letzteren beiden Axiomensystemen arbeitet das Hyperflichenentwicklungs—System
jedoch nicht im Heisenbergbild, sondern im Schrodingerbild. Der physikalische
Zustand wird hierbei durch eine Familie von Vektoren Wy beschrieben; zu jeder
Cauchy—Flache ¥ gehort ein Vektor Uy. Diese Situation dhnelt derjenigen in einer
von Tomonaga und Schwinger vorgeschlagenen QFT-Beschreibung iiber Cauchy—
Flachen—-abhéngige Vektoren Uy, im Wechselwirkungsbild.

Das Hyperflichenentwicklungs—System befindet sich in einem vergleichsweise frithen
Forschungsstadium. Wir entwickeln es in dieser Arbeit weiter und diskutieren
Moglichkeiten zur Modifikation, sowie zu einem Vergleich mit bestehenden Axio-
mensystemen der nicht—perturbativen QFT.

Eine Besonderheit des Hyperflichenentwicklungs—Systems ist, dass die Bornsche
Regel nicht einfach fiir alle ¥y, postuliert werden kann, sondern vielmehr als Theo-
rem bewiesen werden muss: Unter der Voraussetzung, dass die Bornsche Regel
nur auf einer gewissen Teilmenge aller Cauchy—Fldachen ¥ gilt (z.B. nur auf ebe-
nen Cauchy—Fléchen), lassen sich bereits Detektionswahrscheinlichkeiten fiir simt-
liche Cauchy—Flichen rekonstruieren. Diese rekonstruierten Wahrscheinlichkeiten
miissen nicht zwangslaufig mit den von der Bornschen Regel vorhergesagten Wahr-
scheinlichkeiten iibereinstimmen, allerdings erscheint eine derartige Ubereinstim-
mung sehr natiirlich. In dieser Dissertation beweisen wir nun, dass fiir bestimmte
Rekonstruktionswege tatsichlich eine Ubereinstimmung vorliegt.
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Zusammenfassung

Ein wesentlicher Zweck dieser Dissertation besteht in der Einfiihrung zahlrei-
cher neuer mathematischer Werkzeuge im Rahmen sogenannter , erweiterter Zu-
standsraume* (extended state spaces, ESSs). Bei diesen Werkzeugen handelt es
sich um Vektorrdume, die eine rigorose Behandlung gewisser unendlicher Grofien
ermoglichen, welche in formalen Berechnungen zur Cutoff-freien Renormierung
von QFT—Modellen auftreten. Wir présentieren ein allgemeines Schema, welches
die Konstruktion dieser Vektorrdume erlaubt. Unter den generierten Rdumen fin-
den sich insbesondere zwei Erweiterungen .#,.Z o eines dichten Unterraums des
Fockraums, die eine mathematische Beschreibung ., virtueller Teilchenzustdnde®
ermoglichen. Das Schema ist inspiriert von einer kiirzlich entwickelten Cutoff-
freien nicht—perturbativen Renormierungstechnik, genannt ,,Innere-Rand Bedin-
gungen® (interior-boundary conditions, IBC), sowie der Cutofffreien perturbati-
ven Epstein—Glaser-Renormierung.

Anschlieflend stellen wir zwei konkrete Konstruktionen vor, welche diesem Schema
folgen. Die erste ist fiir eine nicht—perturbative Renormierung in Polaronmodellen
konzeptioniert, die zweite ist zur Behandlung von Bogoliubov—Transformationen
vorgesehen.

Fiir die erste Konstruktion beweisen wir, dass eine Cutoff—freie nicht—perturbative
Renormierung fiir M ruhende Fermionen, die linear an ein Bosonenfeld gekoppelt
sind, tatsdchlich moglich ist. Dieser Fall entspricht mehreren gekoppelten Van Ho-
ve Modellen.

Die zweite Konstruktion wird verwendet, um gewisse Bogoliubov—Transformationen
in einem erweiterten Sinne zu implementieren, obwohl diese die Shale-Stinespring—
Bedingung verletzen und somit nicht im klassischen Sinne (sprich: auf dem Fock-
raum) implementiert werden konnen.

Fiir Bogoliubov—Transformationen untersuchen wir zusétzlich von Neumanns un-
endliche Tensorproduktriume (infinite tensor product spaces, ITP spaces) .7,
welche eine weitere Fockraumerweiterung darstellen. Hier beweisen wir, dass be-
stimmte Bogoliubovaransformatiﬁ)llen, welche die Shale-Stinespring—Bedingung
verletzen, unter Benutzung von ¢ dennoch implementiert werden kénnen. An-
schlieend geben wir Beispiele an, in denen eine erfolgreiche Diagonalisierung qua-
dratischer Hamiltonians durch eine Bogoliubov—Transformation moglich ist, wobei
die ShglefStinesprinngedingung verletzt, aber eine Implementierung mittels .#
oder 77 erfolgen kann.
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Summary

In this doctoral thesis, we develop and investigate new mathematical tools that
are intended to allow for a rigorous description of non—perturbative quantum field
theory (QFT) dynamics. Here, the term QFT is to be understood as describing
a quantum system with particle creation and annihilation that can, but does not
need to, comply with special relativity. The tools aim at cases where a formal
Hamiltonian exists but is ill-defined.

The first investigated tool is an axiomatic setting called hypersurface evolution,
which has recently been introduced by Lienert and Tumulka. One may view it as
an alternative to the well-established Wightman and the Haag—Kastler axiom sys-
tems, as it sets up a framework for relativistic non—perturbative QFT dynamics.
In contrast to these two systems, the hypersurface evolution setting works in the
Schrodinger picture, instead of the Heisenberg picture. The state of the system is
described by a family of vectors Wy, one for each Cauchy surface Y. This situati-
on is similar to a QFT description suggested by Tomonaga and Schwinger, which
works via Cauchy surface—dependent vectors Uy, in the interaction picture.

The hypersurface evolution setting is at a comparably early stage of development.
We further refine it in this thesis and briefly discuss, how it might be modified and
related to existing axiomatic frameworks in non—perturbative QFT.

It is a peculiarity of this setting, that the Born rule for all ¥y cannot simply be
postulated, but must be proven as a theorem: Provided that the Born rule holds on
a certain subset of all Cauchy surfaces ¥ (e.g., only on flat ), one may reconstruct
detection probabilities on the set of all Cauchy surfaces. These reconstructed pro-
babilities may or may not coincide with those predicted by the Born rule. In this
dissertation, we prove that for certain reconstructions, both expressions indeed
agree.

The main set of new tools, which is introduced in this thesis, is given within
the “extended state space” (ESS) framework. We provide a construction scheme
for vector spaces that allow for a rigorous treatment of certain infinite quantities,
which appear in formal calculations concerning the cutoff-free renormalization of
QFT models. Among these spaces, there are two extensions .%,.% ., of a dense
subspace of Fock space, which allow for a rigorous description of “virtual par-
ticle states”. The scheme has been inspired by a recently developed cutoff—free
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Summary

non—perturbative renormalization technique called “interior—boundary conditions”
(IBC), as well as the cutoff-free perturbative Epstein-Glaser renormalization.
We present two concrete constructions following this scheme: One of them is desi-
gned to allow for a non—perturbative renormalization in polaron models, and the
second is adapted to a treatment of Bogoliubov transformations.

For the first construction, we prove that a cutoff-free non—perturbative renorma-
lization is indeed possible for M resting fermions linearly coupled to a boson field
(i.e., several coupled Van Hove models).

The second construction is used to implement certain Bogoliubov transformations
in an extended sense, although they violate the Shale-Stinespring condition and
thus cannot be implemented on Fock space.

For Bogoliubov transformations, we also investigate a Fock space extension fra-
mework given by von Neumann’s infinite tensor product (ITP) space Y Here,
we prove that certain Bogoliubov transformations vigl\ating the Shale-Stinespring
condition can nevertheless be implemented using 5. We then provide examp-
les, where a successful diagonalization of quadratic Ha/niiltonians is possible by a
Bogoliubov transformation, implemented using .Z or ¢, that violates the Shale—
Stinespring condition.
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Organization, Manuscripts and
Personal Contribution

Chapter (1] is intended to give a detailed, but by no means exhaustive overview
about QFT dynamics. We start with a short introduction, which provides more
information about the motivation and content of this dissertation. After that, we
explain the mathematical notation and provide examples for previous successful
renormalizations.

Chapter [2|is derived from the article [I], which stems from a joint project with

Roderich Tumulka. Both authors of [I] agreed on estimating the contribution per
author in both scientific ideas and paper writing to 50%. The project can be seen
as a sequel to a work by Lienert and Tumulka written in 2017 and published in
2020 [4].
While Sections and provide additional material elucidating the content of
[1], Sections and contain parts of [I] that have been re—formulated and
supplemented to fit the dissertation. Sections [2.4H2.6| can identically be found in
[1] up to minor adaptions of the notation.

Chapter [3|introduces two Fock space extension frameworks, which play a central
role in the thenceforth presented results: Von Neumann’s infinite tensor product
(ITP) space— (Section and the novel extended state space (ESS) framework
(Section . This chapter has the role of explaining both frameworks and sugges-
ting explicit choices for ITP spaces or ESSs. It is supplementary to the unpublished
manuscripts [2] and [3], and only Section is based on parts of those manus-
cripts, namely on Section 2.3 of [3].

Chapter (4| is based on the unpublished manuscript [2]. The introductory Secti-
ons [4.1] and 4.2 are adapted versions of Sections 1 and 2 of [2]. All further sections
and appendices of [2] have been directly included into this dissertation as Sections
up to minor modifications.

The idea of introducing the rather unusual ESS construction was conceived in
2020, after several investigations on cutoff-free non—perturbative renormalization,
as well as a comparison to perturbative renormalization techniques. Both involve
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Organization, Manuscripts and Personal Contribution

formal manipulations with infinite quantities, which led the author to the con-
struction of mathematical tools that allow to directly make sense of such formal
manipulations. When elaborating the construction, the author received numerous
useful hints from Roderich Tumulka. Both agreed on estimating the contributions
of the author in scientific ideas and paper writing to 100%.

Chapter [5| stems from the unpublished manuscript [3]. Sections and are
modified versions of Sections 1 and 2 of [3]. In particular, Section was greatly
shortened. Here, various definitions have been abbreviated, as they are already
explained in Chapter . All other sections and appendices of [3] have been inserted
into Chapter [5| as Sections [5.8H5.12) up to minor modifications.

Michal Wrochna suggested the idea of investigating Bogoliubov transformations
and gave some useful references to the author. Both agreed on estimating the con-
tributions of the author in scientific ideas and paper writing to 100%.

As customary in mathematical physics, the authors of the above-mentioned ar-
ticles are ordered alphabetically.
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1 Introduction

1.1 Setting, Scope and Structure

Since the first half of the 20th century, quantum models with particle creation and
annihilation have found a plethora of applications in physics, ranging from quan-
tum optics to condensed—-matter and high—energy physics. Formally, the dynamics
in the respective models are governed by a Schrodinger equation with some ex-
pression H for a Hamiltonian. Creation and annihilation of particles are described
by including creation and annihilation operators a' and a into H. Mathematically,
the formal expression H generates well-defined dynamics via Stone’s theorem, if
and only if it can be defined as a self-adjoint operator H : 7 2 dom(H) — .,
where S is a Hilbert space and the domain dom(H) is a dense subspace of 2.
For systems with a variable number of particles, # is a Fock space (denoted %)
or a subspace of .Z#.

For systems with particle creation and annihilation, it is often comparably easy
to establish a self-adjoint Hamiltonian operator H, if the number of degrees of
freedom is finite (e.g., in finite volume on a lattice). This paves the way for ma-
king analytical predictions, numerical simulations with rigorous error estimates, as
well as the justification of formulas describing effective dynamics. However, if one
goes over to more fundamental models describing infinite volumes, a continuum,
or including relativistic dispersion relations, then the formal expression for H may
become ill-defined. The main reason is that certain quantities, such as integrals,
grow infinite as the integration domain becomes infinitely large or reaches a pole.
A careful manipulation procedure called non—perturbative renormalization is
then needed to make sense of H as a self-adjoint operator on 5. Finding a re-
normalization procedure can be a challenging task and there are several physically
interesting models, where until now, no such procedure is known. In these models,
a formal H exists, and there may even be procedures that allow for recovering
verifiable physical predictions, e.g., by cutoffs or by perturbation theory. But it is
not known how to establish a self-adjoint operator that corresponds to H.

In fact, due to the lack of a self-adjoint H, most physical predictions in relativistic
QFT are made by perturbative methods. These methods also include a manipula-
tion procedure for establishing formally infinite quantities in a well-defined way,
called perturbative renormalization, see also Section [I.5] When talking about



1 Introduction

QFT or renormalization, physicists often refer to perturbative QFT methods or
renormalization, such as in standard textbooks [5l 6l 7], [§]. It is important to care-
fully distinguish between perturbative and non—perturbative renormalization. For
various physically interesting QFT models, a perturbative renormalization pro-
cedure is well-known, while finding a non—pertrubative one can be an enormous
mathematical challenge. We will mainly focus on non-perturbative renormalizati-
on in this dissertation.

Further, the term QFT is not only used for denoting the perturbative or non—
perturbative manipulation and proof methods, but also for the models, where these
methods are employed. There exist, in turn, several senses, in which a “QFT” can
be understood as a model:

In a narrower sense, a QFT is a relativistic quantum model that satisfies a certain
set of axioms, such as the Haag—Kastler or the Wightman axioms presented in
Section [1.2.3] Within this sense, to our best knowledge, no QFT model in 3 space
dimensions has been renormalized non—perturbatively so far. This includes the
standard model of particle physics, as well as its constituents: quantum electrody-
namics (QED), quantum chromodynamics (QCD) and Yang—Mills theory (which
is itself part of QCD).

In a wider sense, a QFT can be any quantum model with particle creation and an-
nihilation, including non-relativistic ones. Also in the non-relativistic case, there
are several physically interesting situations, where a non—perturbative renormaliza-
tion procedure is, to our best knowledge, unknown. An example is the Pauli-Fierz
model (see Section , which serves as a starting point for deriving various
effective models in quantum optics.

The title of this dissertation refers to the second, wider sense. It is our aim to
develop new tools that allow for describing dynamics in quantum systems with
particle creation and annihilation, which are not necessarily relativistic. However,
these tools are also designed to overcome divergence issues that arise in relativistic
environments.

One tool is an axiomatic setting called hypersurface evolution, that can be seen
as a Schrodinger picture-based alternative to the Wightman or the HaagKastler
setting. The hypersurface evolution setting was recently introduced by Lienert
and Tumulka [4] and is further investigated in this dissertation. We hope that this
alternative approach may lead to new ideas concerning the non—perturbative re-
normalization of QFT models.

Further tools are provided within the construction of Fock space extensions. We
both investigate the employment of von Neumann’s infinite tensor product
(ITP) space H and present a new construction scheme for two so—called exten-



1.1 Setting, Scope and Structure

ded state spaces (ESS) .#,.%.,. Throughout the latter construction, we define
several vector spaces that accommodate formally infinite quantities in a rigorous
way.

Let us quickly sketch, how a direct renormalization using the I'TP or ESS setting
works on Fock space 7 = .%.
A common way to perform a non—perturbative renormalization starts from a formal
and ill-defined Hamiltonian H, to which position or momentum cutoffs are applied.
For simplicity, we index those cutoffs by a single A € [0, 00), here. The cutoff A
renders divergent quantities finite, such that the cut—off Hamiltonians H, are
well-defined and generate dynamics on .%. In the limit A — oo, where the cutoff
is removed, H, formally goes over into H. However, after adding an operator cy,
called “counterterm”, and applying a “dressing transformation” Wy : . % — 7,
the limit

~

chtoff = /P—I}go WXI(HA + CA)WA (11)

~

may exist as a self-adjoint operator on dom(H) < .%.
Our direct renormalization via ITPs or ESSs, by contrast, does not involve any
cutoffs. We directly define the expression

H =W '(H+ W, (1.2)

where W maps from a suitable dense domain Dy < % into the Fock space ex-
tension .# or C%/”\, and (H + c¢) is rigorously interpreted as an operator, mapping
W|Dz| into itself. See also Figure In Chapter [4 we will also define a smaller
domain ZN),@ C D, such that H: ﬁ,oz — Dz.

Fock space .7

WL .----3(H +¢) WLl .----(H+c)
qW\W[Dﬂ‘, S qW\W[Dy, 5

B e D s
. P

Abbildung 1.1: Direct renormalization of H using Fock space extensions. Color
online.

The main challenge is to define the Fock space extension .% or A in such a
way that (H + ¢) makes sense as a well-defined operator on at least a subspace of
the extension. This involves handling infinite quantities, for which additional tools
may be necessary, such as the second ESS .Z .. See Section for a definition
of the ITP space # and Section for a presentation of the tools constructed
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within the ESS framework, including .# and .Z .

Note that there is no need that J?,? or Z ., extend all of Fock space for the di-
rect renormalization to work. Indeed, .Z and %, generally only extend the dense
subspace Dy < %, while A extends all of .Z.

The idea of a direct renormalization is not entirely new. Similar results have been

recently achieved by a renormalization technique called “interior-boundary con-
ditions” (IBC) or “abstract boundary conditions”. However, IBC renormalization
works without Fock space extensions. In particular, there exists a famous theorem
due to Haag [9], [10, Sect. II1.1], which implies that a direct renormalization on
Fock space is not possible for a relativistic QFT satisfying certain axioms. This
is the main reason, why we investigate Fock space extensions in this dissertation.
See also Section [LL4.3] for a discussion.
Put in an algebraic language (see also Section , the Fock space extensions
help us find the correct counterterms ¢ and the correct (GNS) representation on
which the algebraic expression (H +c¢) can be interpreted as a self-adjoint operator
on some Hilbert space .77.

Structure of this Dissertation

In order to compare the employment of our tools with already existing non—
perturbative renormalization techniques, we start by introducing some mathe-
matical notation in Section [1.2} This includes the Fock space formalism in the
Schrédinger picture, creation and annihilation operator products, but also the al-
gebraic formulation of quantum mechanics in the Heisenberg picture. We then
briefly discuss the Haag—Kastler and the Wightman axioms, which are both for-
mulated in the algebraic framework.

In Section [I.3] we discuss some techniques and results concerning non—perturbative
renormalization via cutoffs. The literature on this topic is vast and we are only able
to present a fraction of all results and techniques that have ever been established
on this kind of renormalization. In particular, many results have been achieved
in the setting of Euclidean QFT, including those obtained by a renormalization
technique called stochastic quantization, which has recently gained some conside-
rable attention. A discussion of results in this domain is beyond the scope of this
dissertation, and we can only provide references containing further information in
the end of Section 2.3l

Section is devoted to the cutoff-free IBC renormalization. Results using this
method have strongly inspired our ESS construction. We therefore give an extensi-
ve discussion of results concerning the IBC methods and its limits, which the ESS
construction is intended to overcome.



1.1 Setting, Scope and Structure

Another inspiration for the ESS construction came from a cutoff—ree perturbative
renormalization method called Epstein—Glaser construction. For this reason, and
since perturbative method are commonly used for extracting predictions in QFT,
we provide a brief discussion on perturbative renormalization in Section [1.5]

Chapter [2|is concerned with the presentation of results in an axiomatic setting

called hypersurface evolution, that can be seen as a Schrodinger picture alterna-
tive to the Haag—Kastler and the Wightman setting. We give a short derivation
of this setting from the Schrédinger picture formulation of relativistic quantum
mechanics via multi-time wave functions (MTWFs) in Sections and 2.2] The
hypersurface evolution axioms can be found in Section [2.2.2]
Our main result of this chapter is Theorem [2.3.7] presented in Section [2.3] It
concerns the derivation of Born’s rule on arbitrary Cauchy surfaces if Born’s rule
is only assumed to hold on flat Cauchy surfaces. We prove it in Sections [2.4H2.6]
The last Section is devoted to a discussion of how the Wightman axioms might
be derived from a hypersurface setting in future works.

In Chapter 3, we then present the general construction schemes for I'TP spaces
(Section [3.1)) and ESSs (Section [3.2)).
Von Neumann’s ITP space definition is briefly explained in Section followed
by a discussion, what concrete realizations of an ITP space for applications in
quantum dynamics could look like.
Since the ESS construction is novel, we motivate it in Section before ex-
plaining the construction scheme in Section [3.2.2] Again, a discussion on concrete
realizations for applications in quantum dynamics follows.

Chapter [4 concerns the application of Fock space extensions to a class of polaron

models that can be “undressed” by a certain simple Gross transformation W. This
W is very similar to a Weyl transformation, where the rigorous implementation on
an ITP space is known to work (see Sections [3.1.2] and |3.1.3)). We therefore only
apply the ESS construction to this kind of polaron models. After some introduc-
tory remarks in Sections [£.1 and [4.2] we carry out the ESS construction in Section
4.3l The following Sections [£.4] and concern the extension of operators using
Z and Z .
Our main result of this chapter is Theorem in Section [4.6| which asserts
that H, as in , is indeed well-defined. Secti is then devoted to the esta-
blishment of self-adjoint extensions for H , and Sections 4.8H4.13| provide further
material and proofs.

Finally, in Chapter |5, we apply both Fock space extension frameworks to Bogo-
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liubov transformations V, implemented by W = U,y,. After a short introduction in
Sections and [5.2] we recap the well-known implementation process for Bogoli-
ubov transformations on .% in Section [5.3] An implementer Uy : .# — .F exists,
if and only if the so—called Shale-Stinespring condition holds, see Sections [5.]] ani
. The recapped material is vital for a definition of concrete ITP spaces 7
and ESSs .Z, . Z ., in Section [5.4|

Our main results of this chapter are Theorems[5.5.55.5.8]in Section 5.5} which
assert that a suitable implementer Uy : Dy — S or Uy, : Dy — .Z exists, even
in certain cases where the Shale-Stinespring condition fails to hold. In Section [5.6),
we use these results to derive conditions for a successful diagonalization of qua-
dratic Hamiltonians H, using the I'TP and the ESS framework. These conditions
are given in Propositions |5.6.2| and |5.6.3|7 and they assure that H, as in (L2, is
well-defined. Section contains three applications for Bogoliubov transformati-
ons on Fock space extensions and Sections [5.8H5.12| provide additional material.

Uy, exists ITP ESS H exists | ITP and ESS
bosonic | Thm. [5.5.5( | Thm. |5.5.6 bosonic Prop. [5.6.2
fermionic | Thm. [5.5.7] | Thm. [5.5.8 fermionic | Prop.[5.6.3

1.2 Mathematical Notions

1.2.1 Fock Space Notions

One way to describe the dynamics of a quantum system is by a family of vectors
in a Hilbert space (¥;),er S S, where ¥, represents the state of the system at
time ¢. Throughout the entire dissertation, we will use J# as a placeholder for the
Hilbert space representing a quantum system, which depends on the exact model.
If 27 bears a certain structure, we will call it a Fock space and denoted it by
A = F. We explain this structure in the following.

First, we consider a system with an indefinite number N € Ny of particles
belonging to one species, which are at positions x; = (mjl, e ,:L‘;l) e X ¢ R4
For X, we assume the existence of a measure ux, for instance the Lebesgue or a
spectral measure, such that LP—spaces can be defined. The configuration vector for

these N particles is given by

q=(x1,...,zy) € XV, (1.3)
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All possible configurations for NV € Ny make up the ordered configuration space

QX):= | | o™M(x) = | | XV, (1.4)

NeNg NeNp

where Q") (X) is called the (N)-sector of Q and where the (0)-sector only consists
of a single so—called vacuum configuration X° = {@}. The measure ux on X
implies a measure pg on Q(X), with respect to which we can define the Fock
space (for one particle species)

F(X) = LZ(Q(X)v(Can)' (1.5)

This is a Hilbert space with scalar product (&, ¥) = SQ(X) ®(q)¥(q) dg, where O(-)
and W(-) are representative functions Q@ — C for the Fock space vectors &, U € .%.
In the following, we will drop the (X)) whenever it is not explicitly needed.

For physical systems, the vector ¥ € .% (X) now has to satisfy certain symmetry

conditions. These can be expressed using the symmetrization operators S, ,S_ :
F(X) - Z(X) given by

1
(S:P) (@1, 2n) = 5 D (EDTEORU (@, ), mey), (1.6)

' O'ESN

where Sy denotes the permutation group and (1—sgn(o))/2 is 0 if the permutation
is even, and 1 if the permutation is odd. The symmetry condition is now the
requirement that vectors be elements of the symmetrized Fock spaces

F+(X) = S+ [F(X)], (1.7)

which are sub—Hilbert spaces of .%#. In case of ¥ € %, (X), the particle of the
species is called a boson and in case ¥ € .Z_(X), it is called a fermion.

An alternative description of symmetry is given by using the unordered con-
figuration space I'(X), whose elements gr are not a tuple of N coordinates, but
rather a finite set gr = {x1,..., Ty}

[(X) = {gr = X | |gr| < o0}, (1.8)
with sectors

IVX)i={grc X | ool = N}, T(X)= || I™(X). (1.9)

NeNg
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The measure j1y implies a measure pr on I'(X'). One may embed the corresponding
space L*(T'(X),C, ur) into F4 as follows: For each gr = {zy,...,zy} we fix an
arbitrary ordering of the coordinates @1, ..., ay, such that it becomes unique what
is meant by the configuration (Z,(1),...,Zs(n)). Then for each ¥ € .#, we may
choose a representative function ¥(-) and identify with ¥ the vector Wr € I'(X)
whose representative function isE]

Ur({z,...,zN]}) Z A2 (@, 0y, Tey). (1.10)

UESN

This identification is a surjective, but generally not injective linear map: Consider
the set of collision configurations Q.. and of non—collision configurations Q

Qeol(X) :={q € Q(X) | @; = x; for some i,j € {1,...,N}},

: (1.11)
Q(X) :=Q(X)\Qear (X).

Each q € Q is associated with a unique gr (¢) € I'(X) and, by symmetry of ¥ € F.,
fixing W(q) specifies the value of W(-) at exactly all ¢ € Q with qr(¢") = qr(q) (see

Figure , namely

(£1)(1-sen(e))/2
\Il(wo-(l),...,ilfo-(]v)> = m \I/p({:cl,...,:cN}). (112)

So for a given ¥r, the required values for a ¥ to be identified with U are given
at all g € Q. It is easy to find a preimage of Wr by fixing ¥(q) according to
at g € Q and choosing arbitrary values at Q.. So the identification ¥ — Wr is
surjective. Its kernel is given by

{\pegg ‘ V() =0 Vqe Q} (1.13)

If ux is absolutely continuous with respect to the Lebesgue measure, then Q. is
a null set, since on each (N)-sector, it is a finite union of codimension—d hyper-
planes (which have Lebesgue measure 0). In that case, the kernel is {0} and
the identification is bijective, so L*(T'(X)) =~ .%.. For more general measures iy,
the identification ¥ — Wr is not necessarily bijective. Only for fermions, we can
guarantee bijectivity, since symmetry enforces U(q) = 0 at ¢ € Qco1, S0 the kernel

[T13) is {0},

IThe identification is independent of the choice of the L?-representative function, since a mo-
dification of ¥(-) on a null set results in a modification of ¥r(-) on a null set, which leaves
the represented vector ¥ € L?(I'(X)) invariant.
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Qcol

|

Abbildung 1.2: On the (3)-sector, the set of collision configurations Q. divides
the configuration space Q® into 3! = 6 sectors. Specifying ¥(q) on
one sector determines ¥(q) for ¥ € %, on all other sectors. Color
online.

A system with n species, each being a boson or a fermion, is described by a
tensor product Hilbert space

H=-F. Q. . 0F. QF ®..0F. . (1.14)
nfa?crtors

In that case, the configuration space of the system is given by

oX):= || oMMx)y= || XM x.xxM (1.15)

Ny,..., NnENO Nl,...,NnEN()

which is a generalization of Q(X) in to many particle species. A measure pg
can then again be naturally defined on Q(X) and the corresponding Fock space
(for n particle species) .Z is again given by (L.F). Just as Q, also . can be
decomposed into sectors as

F(X)= H FW--M(x). (1.16)

Ni,...,NnpeNg

Since physical operations preserve symmetry, it is also customary to drop the sym-
metrization by setting ¢ = %, having in mind that it could be imposed at any
time by an application of S; to ¥ e 7.

Particles with spin s (and correspondingly 2s + 1 spin degrees of freedom) can
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be treated as 2s+ 1 spinless particle species, so the Fock space with spin is then

~-
2s+1 times

A second way to treat particle species with spin is to define ¥ € 77 as a vector—
valued function, where on each sector Q™) the vector has (2s + 1)V entries cor-
responding to any tuple 7 = (r1,...,7ry) of N spin indices r; € {1,...,2s5+1}. We
set

F = @ LZ(Q(N), C(st)N) _ 6_) L2(Q(1), C(25+1))®N’ (1.18)

NeNy NeNp

and obtain 77 after imposing suitable symmetry conditions. A third equivalent
way of treating spins is to introduce a spin—configuration space

2541

Q(X):= | | ™M)= || [] xV (1.19)

NeNy NeNg r1,...,ry=1

So O™ (X) consists of (25 + 1)V identical copies of X~. Configurations with spin
can then be written as ¢, = (¢, 7) € Q,(X), with r indicating in which copy of X
the configuration g, lies. The Fock space with spin is then given by .# = L?*(Q,, C)
with sectors V) = L2( gN), C). The corresponding unordered spin—configuration
space is defined as

LX) = {{(z1,71), ..., (@n,7n)} | ®j € X,rje{1,...,25+ 1}, N € No}. (1.20)

Of course, it is also possible to consider several particle species with spin, in which
case the generalization of Qg, I'y and .# via (1.15) is straightforward.

We will also consider systems that are restricted to a subset of sectors, for in-
stance if particle numbers are fixed or have a maximal value. In that case, 7
is a subspace of .%. Other cases will require .77 being an abstract Hilbert space
without an a priori identification of vectors with elements of .%#.

The Hilbert space .7 will be called a Fock spaceE] and denoted ,93 Whenever it
comes with at least one decomposition into sectors . = P yey,

Creation and annihilation operators a+(

), a+(f) for one species of bosons (+)
or fermions (—) and with form factor f € L*(X) c

an be defined on a dense subspace

2We use the term “Fock space” in a comparably wide sense, here. Other authors only call
H = F a Fock space, if F = (—BNeNO h®N with b being a “one-particle Hilbert space”. Or,
even more exclusively, only one specific space .% of this form is called “the Fock space”.

10
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of .Z by stating its actions on configuration space functions

(al( = )¥(q\x;),
= (1.21)

(a2 (f)¥)(q) = vN n 1L F@)0(q, x) de.

Here (¢\z;) € QWY is the configuration ¢ = (1, ..., xy) with entry z; removed.
By a similar null-set argument as above, the definition in is independent of
the choice of a representative function W(-) for the respective ¥ € .%

The extension of al (f),a<(f) to many particle species with spins (which can in
turn be treated as several particle species without spin) works as follows: If an
operator A (for instance al_(f) or a+(f)) is defined on dom(A) ¢ 4, then its
extension to J4 ® 5 is given byﬂ A®1 :dom(A) ®, 5 — 4 ® H5 and will,
for simplicity, also be denoted by A.

We remark that the bosonic operators al, a, cannot be defined on all of .%, but

only a dense subspace, while the fermionic operators al

,a_ are bounded and hence
defined on all of .%. Moreover, al, a4 preserve symmetry, i.e., they map the re-
spective space %4 into itself, where the restriction of al, a; to Z, is still a densely

defined operator.

Definition (1.21)) directly implies the canonical commutation/anticommutation
relations (CCR/CAR) as strong operator identities on a dense domain in .%:

lax(f),ak(9)]= = {f, 9. las (f),a1(9)]s = [ak(f),ak(g)] =0, (1.22)

with commutator [A, B]; = AB — BA and anticommutator [A, B] . = {A, B} =
AB + BA. We remark that for fermions, the anticommutation relations
imply a'(f)a’(f)¥ = 0, so there are no Fock space vectors containing more than
one particle with the same one-particle wavefunction f € L?*(X) (which is also
called the Pauli exclusion principle).

The set of creation and annihilation operators generate a *—algebra

A:=A; generated by {al(f),ai(f) | fe LX(X)}, (1.23)

with involution * defined by a+(f)* = al.(f) and (a}.(f))* = a+(f). That means,

3Here, the algebraic tensor product ®, denotes all finite linear combinations of tensor products.
So JA ®, % contains all ¥ = Z]m“‘ Vi1 @0 with ¢ 1 € 6,12 € 5. By contrast, the
above—used Hilbert space tensor product 6 ® % may also contain infinite linear combina-
tions and again renders a Hilbert space.

11
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A4 contains all sums of products of expressions al( 1), a=(f). In the fermionic case

all operators in A_ are boundedﬁ, so A_ is even a C*-algebra.

It is also customary to write

L) = [abaf@ de,  a(f) = [araf(@) da. (1.24)

where the expressions a;m,aim are operator—valued functionals. That means,

they each correspond to a linear map L2(X) — A, which maps f — al(f)

or > ax(f).

For fermions, boundedness of aT_( f),a—(f) implies that these functionals are con-
tinuous from the usual Hilbert space topology on L*(X) induced by ¢, to A_
equipped with the operator norm topology.

However, for open X < R?, it is nevertheless customary to restrict f to the space
E(X) = C*®(X) of smooth functions, to the space D(X) = CP(X) of smooth
functions with compact support, or to the Schwartz space (for X = R?)

S(RY) = {f e & sup |2°(Df) ()| < oo}, (1.25)
zeRd
where o, 3 run through all multi-indices of the form o = (a, . . ., ) € N¢ and cha-

racterize the monomial «” = (z')? ... (z?)°¥ and the derivative D* = 9% ... 0%.
Note that D € S < £ and for X = R? one has D < £. The topologies on D, S and
& are induced by the seminorms

[fllmx = sup  [D*f(=)], (1.26)

zeK,|al<m

with K < X running through all compact subsets and m € Ny, and where
la| = Zj‘l=1 a;. With these seminorms, D, S and £ are locally convex spaces, which
allow for a convenient mathematical treatment [11], Part II1], [12, [13].

Elements of either of the topological dual spaces D' =2 &’ 2 £’ are called distri-
butions, while those in &’ bear the name tempered distribution.

The map S(RY) — A_, f — a_(f) is now an operator—valued distributi-
on, which means that there is a dense domain Dy < .Z(R?), such that for all

\1’1, \112 € Dg:, the map

S(RY) - C, [ (U a_(f)Wy) (1.27)

4This can be seen from |al (F)W|? = (¥, a_(f)al (f)®) = |f]? = ¥, a’ (fa_(HT) < | f]2 A
similar estimate holds for a(f) and implies bounds for arbitrary operator products.

12



1.2 Mathematical Notions

is a tempered distribution, i.e., an element of S’. It is easy to see that also the
maps f — a' (f) and f— (af (f) + a_(f)) are operator-valued distributions.
For bosons, the operator-valued functionals are not continuous, since a'. (f), a. (f)
are unbounded (for f # 0). However, one may easily see that they are operator—
valued distributions: Consider the vacuum vector 2 € .% defined by Q® = 1 and
QW) =0 for N > 1 and consider the domai

Dy =span{V e F(X) | ¥ =a'(fi)...a'(fy)% feD=CP(X)}  (1.28)

(this is a special choice for the domain D4, mentioned in the introductory Section
[1.1] although we will go over to more general definitions of D, later). So each
U € D4 can be written as a finite linear combination ¥ = Z%zl v, with

(\Ifm)(Nm)(azl, oo xn,) =N NplSyfi(xr) ... fn, (N,,) (1.29)

for some N,, € Ny and (\Ifm)(N ) = 0 on all other sectors. Now an explicit calculation
shows that for WUy, ¥y € Dg, the scalar product (¥, a,(f)¥s) is a finite linear
combination of expressions of the form {f, f;), f; € D. Since each map f — {f, f;)
is a tempered distribution on f € S, so is f — (¥y,a (f)¥3). So a.(f) is an
operator—valued distribution and it is easy to establish a similar statement for

fd (f) and £ (al (f) + ay (f)).

It is also possible to construct bounded operator—valued functionals by introducing
the (unbounded) field operators ¢(f) and the (bounded) Weyl operators W (f):

O(f) = al(f) +ar(f),  W(F) = e = et (130)
In that case, all W (f) are bounded, so the Weyl algebra
A generated by {W(f)| fe L*(X)} (1.31)

is even a ("*-algebra instead of just a *—algebra, and the corresponding operator—
valued function L*(X) — Aw, f — W(f) is bounded.
In the following, we will drop the indices “+” if no explicit distinction is needed.

1.2.2 Operator Products and Hamiltonian Formalism

The algebra A contains operator products of the form a*(f;)...a*(fy) with £ €
{-,7}. This is, however, not sufficient to describe certain physically desirable obser-
vables, such as the particle number, which is represented by the number operator

5By span, we mean the set of all finite linear combinations.

13
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N :.7 > dom(N) — .Z defined by
(N\If)(azl,...,a:N/) = N’\Il(azl,...,a:N/). (132)

It is formally expressed as
N = J a;fcaw de = J aLlan(S(azl — xy) dxydx,. (1.33)
b's XxX

The tensor product of operator—valued distributions af, ., = af, ® as, can
again be considered as a functional on elements off| D(X) ® D(X) = D(X?) or
S(RY) @ S(R?) = S(R*) (in case X = R?). However, af, as, is not defined on the
distribution 6(x; — x4) ¢ S(R??). Similar issues arise for operator products of the
form

A:J ag:l...agmf(:cl,...,w]v) dz;...dzy. (1.34)
Xx.xX

If f is a distribution with f ¢ D(X) (or with f ¢ S(R™?) in case X = R?), then
the expression A is a priori not a densely defined operator on .%. However, the
case f € 8'(RNY) still allows for taking the Fourier transform of f, where we use
the notation and convention

~

[y, py) = (271)_¥ f(ml,...,:cN)e_iZyﬂwfpj dx;...dey. (1.35)

RNd

The inverse Fourier transform of a function will be denoted using a check, i.e.,
(x) is the Fourier inverse of v(p). For operators a’.(f), we will call both f and f
a “form factors”. In the same way, also ¥ € .% (R%) can be Fourier—transformed to
¥ e .7 (R%). Another notation we use is f = F(f) for the Fourier transform and
v = F~(v) for the Fourier inverse. Further, we will reserve the variables & and
y for position coordinates, whereas p and k are used to denote the corresponding

momentum coordinates. The expression (1.34) can then formally be written as

A= JRM agl . aﬁ,Nf(pl, .., Py) dp; .. .dpy, (1.36)

where af, is defined such that for f € L*(R%),

Jag,f(p) dp ¥ =F <Ja33f(w) dx \I/> : (1.37)

6While for Hilbert spaces, ® is used to denote the Hilbert space tensor product, the same symbol
in conjunction with D, £ or S denotes the topological tensor product. The spaces D, £ and S
allow for an easy identification of topological tensor products as D(X)®@D(Y) = D(X xY),
EX)®EY) = EX xY) and S(RL) ® S(R%) =~ S(R¥41+42), see [T, Chap. 50].

14
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We will also consider expressions like ((1.36) with momentum coordinates p, k €
X < R? where the set X possibly does not allow for taking a Fourier inverse.

An easy special case where operator products with f being a distribution can
nevertheless be defined on Fock space is the second quantization of a multipli-
cation operator: Let w : X — C be a sufficiently regular function, such that the
equally denoted operator w, which maps ¥ (k) — w(k)y(k), is defined on a dense
domain in L?(X). Then, the second quantization of w is given by the operator
product

(W) = L ol (k) dk, (1.38)

so within (T.36), f(k1, ks) = w(k1)d (k1 —k,). Physically, adding an operator dT'(w)
to the Hamiltonian assigns a dispersion relation w to each particle. In this notation,
also the number operator can be written as a second quantization N = dI'(1), and
can be densely defined on a suitable domain in .%. More generally, if an operator
w is defined on dom(w), then dI'(w) can at least be defined on the (dense) domain

P dom(w)®N c 7. (1.39)

NeNp

On configuration space functions, dI'(w) acts as
N
(AT (@) ) (@1, ..., xn) = Y w(@) (..., Ty). (1.40)
j=1

If there are two particle species, e.g., z— and y—particles described by 7 = %, ®
F,, with different dispersion relations w,,w,, then the operator dI'(w,) defined by
(1.40) on a domain in .%, is naturally extended to .# by

AT, (w,) == dT(w,) @ 1. (1.41)

Likewise, dI'y(w,) = 1 ® dI'(w,) can be defined on .7 and the extension to more
than two particle species works analogously.

However, more complicated expressions of the form (|1.34]) often appear in the
formal description of dynamics within QFT or many—body models. For instance, if
dynamics are to be described by a family of state vectors (V,;),er S H satisfying

the Schrédinger equation
iat\I/t - H\Dt, (142)

then the formal Hamiltonian H might be a sum of operator products as in ([1.34])
that is not defined on 7. However, it is crucial to have a self-adjoint operator

15
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H : 2 2 dom(H) — # in order to obtain a solution via Stone’s theorem for any
initial state vector Wy € 7 by

U, = U(t)W,. (1.43)

Here, (U(t))swer, U(t) = e is a family of unitary operators defined by spectral
calculus. This way of describing dynamics of a quantum system is also called the
“Schrodinger picture of quantum mechanics”.

Other approaches for describing time dynamics of quantum models start from
the Heisenberg or the interaction picture, which we briefly explain in the follo-
wing. In order to make physical predictions, one associates to each observable an
appropriate self-adjoint operator A : 5 2 dom(A) — . The expectation value
for a measurement at time t is then given by

(A = (T, AT,). (1.44)

In the Heisenberg picture, one now shifts the time dynamics from ¥ to A by
defining A; = U(t)*AU(t) and using that

(A) = (U, U)* AU (1) Vo) = (Yo, Ay Wy). (1.45)

That means, the time dependence is carried by the family of operators (A;)wr
which satisfy the Heisenberg equations of motion

5tAt == Z[H, At]7 (146)

whereas the state of the system is described by a single time—independent vector
v, e .

It is also common to consider the interaction picture for describing quantum dyna-
mics: The Hamiltonian H is split into a free and an interaction part H = Hy+ H;
and only the free evolution Uy(t) = e~ o is shifted into the operators A. That
means, one defines Uy, := Up(t)*V; and A, := Up(t)*AUy(t) and obtains

(A) = Uy, AV ) = (W, A Wpe). (1.47)

So both the vectors U, and the operators A;; carry the time dependence of the
system.

By means of ([1.45) and ([1.47]), all three pictures yield the same physical predicti-

ons.

The task of non—perturbative renormalization is now to derive a self-
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adjoint Hamiltonian H from a formal expression H containing operator products.
There exist several techniques for accomplishing this goal, both in the Schrodinger
and the Heisenberg picture. We present some of them in Section [I.3] The tools
developed in Chapter (3| also aim at simplifying non—perturbative renormalization.
Another popular approach to QFT dynamics is to circumvent the problem of con-
structing H by assuming that Heisenberg dynamics already exist and satisfy a cer-
tain set of reasonable axioms. Conclusions may then be drawn from these axioms.
This approach is called axiomatic or algebraic QFT, or for short AQFT. We
outline some of the main notions of this approach in Section [I.2.3] which also turn
out useful for non—perturbative renormalization in the Heisenberg picture.
Another common way to extract physical predictions from a problematic expres-
sion H is given by perturbative QFT or for short pQFT. Here, the formal
time evolution operator in the interaction picture Ur(t) = e *H1 is expanded in a
so—called Dyson series (|1.155]) which is then truncated. From these approximate dy-
namics, one may derive physical predictions after a series of formal manipulations,
which may involve subtracting infinite quantities, and are called perturbative
renormalization. These techniques are briefly discussed in Section [1.5]

1.2.3 Algebraic and Axiomatic Notions

Sometimes, expressions for operator products cannot be given meaning as a
Fock space operator. However, they still allow for employing formal manipulations,
such as addition, multiplication, complex linear combination or taking adjoints.
Mathematically, these manipulations can be made meaningful by interpreting the
expressions as elements of a *~algebra A, which does not a priori contain operators
on a Hilbert space. One may even formulate quantum dynamics without making
reference to a fixed Hilbert space .7#°. This formulation is called algebraic quantum
mechanics, for a thorough introduction see [I4] [15]. Algebraic QFT (AQFT) is a
framework within algebraic quantum mechanics, that additionally assumes a set
of axioms which a physically reasonable relativistic QFT should satisfy. For an
introduction, see [15], 10, [16].

The algebraic approach to quantum dynamics starts from a *—algebra of ob-
servables A, which is related to physical predictions either at a fixed time ¢ € R
or at all times. It is assumed that A, is a unital *—algebra, meaning there is a
unit element 1 € Ag,s with 1A = A for all A € Ags. In a narrower sense, Agps
only allows for self-adjoint elements as observables. We adopt the more general
convention of [15] and also allow for non-self-adjoint elements in Aops, which sim-
plifies the description. It is often required that A, is a C*—algebra, so on its
elements, there is a norm || - | respecting the algebraic relations, which allows for
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more conclusions to be drawn [10, 17, [16]. The transition from a *-algebra with

unbounded operators to a C*—algebra with bounded operators might, for instance,
be done by taking resolvents R4 := (A — 2)7!,z € C or by exponentiation as in
(11.30)).

In an algebraic description, the dynamics are encoded within states, which are
linear functionals w : A,,s — C that are positive and normalized:

w(A*A) 20 VAe Ags, w(l) =1. (1.48)

The value

(A) = w(A) (1.49)

is interpreted as the expectation value for a measurement of the observable A. It
corresponds to the value (Uy, AUg) in (1.45), so there is no explicit need to refer
to Hilbert space vectors ¥ € 7 in this description. If Ags refers to all times
t € R, then the state w describes all measurement expectations at any time and
hence encodes the dynamics of the system. If A is related to a fixed time ¢, then
dynamics are given by a state w together with an automorphism oy : Agps — Aobs
describing the Heisenberg evolutionﬂ However, also in the case of Agys referring
to all times, an automorphism oy : Ags — Aobs 1s useful in order to identify ob-
servables of the same physical meaning but appearing at different times.

It is important to distinguish states w yielding measurement predictions via (|1.44])
from state vectors ¥ € . yielding predictions via . States w are in the
same spirit, but more general than state vectors W: While W provides objective
(i.e., observer—independent) information about the system, the state w may also
include information describing the state of knowledge of an observer, e.g., by choo-

sing w according to a probability distribution P on state vectors W e #. That is,
w(A) = 1§ (¥, AV) dP(T).

The bridge between the algebraic and the Fock space—based description of dyna-
mics is spanned by representations m, i.e., by maps that associate to each A € A
an operator s 2 D — 7 with D being a dense subspace of 7, such that
7(1) = 1|p and algebraic relations are respected. Given a state w on a C*—algebra,
it is always possible to find at least one representation, for instance the GNS re-
presentation 7. This representation associates to w a Hilbert space 2, together

It would also be possible to describe dynamics by a time-dependent family of states (w;)scr,
i.e., in an “algebraic Schrodinger picture”. However, when applying the GNS construction
presented below, this would result in a distinct Hilbert space 74 at each time t € R, which
makes the approach rather inconvenient. Nevertheless, time-dependent Hilbert spaces 7;
can indeed serve for a reasonable description of quantum dynamics in an abstract setting, as
demonstrated in Section
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with a distinguished “vacuum” state vector 2 € D < 7, such that
w(A) =(Q,7(A)Q) VA e Agps. (1.50)

All further state vectors ¥ € D correspond to states wy with wyg(A) = (U, 7(A)W).
One may construct even more states by considering all density matrices p : 77 —
JC,tr(p) = 1,p = 0 and setting w,(A) = tr(pm(A)). However, there may still
exist even more states on A, that cannot be described by a density matrix p.
An example are state vectors U in a representation 7’ inequivalent to 7 (where
inequivalence of states is discussed below). Those states w’ which can indeed be
described by a density matrix p are given the name normal state (with respect
to w or m,) and the set of all normal states is called the folium of w.

The advantage of the algebraic formulation is that a given A admits several
representations that may not be unitarily inequivalent. Unitary equivalence
of two representations m; and 7 on Hilbert spaces 741, 7% with domains Dy, D,
means that there exists a unitary operator U : 54 — 5% with UD; = D, and
m(A) = U*m(A)U for all A € Agps. So unitarily inequivalent representations do
not work on a common Hilbert space and the disattachment from a fixed Hilbert
space permits a more general description. Further, the algebraic framework is
convenient for describing finite-temperature thermal states w that cannot simply
be modeled by a single state vector W € . Nevertheless, in order to interpret
the theory in terms of particles appearing in detectors, the algebra A, needs
to contain a set of projection observables P(B). That is, P(B) = P(B)* and
P(B)* = P(B), for each (Borel-) measurable subset B of the configuration space
Q(X) or I'(X) (or at least a union of several sectors from it) and P is required to
be an “observable-valued measure”. Only then, one may interpret w(P(B)) as the
probability to find the system in a particle-configuration ¢ € B. By contrast, on a
Hilbert space with Fock space structure .7 < .%, such a particle interpretation is
readily implied by the projection—valued measure (PVM):

U(q) ifqgeB

, 1.51
0 else ( )

B— P(B),  (P(B)¥)(q) = {

for B being any measurable subset of Q. The probability to find the system in any
configuration ¢ € B is then given by |P(B)¥|? = (¥, P(B)¥), which is also called
Born’s rule (for position measurements).

In relativistic QFT, an algebraic formulation is especially convenient for two
reasons: First, Haag’s theorem [9], [10, Sect. II.1] forbids an establishment of dy-
namics for a relativistic, interacting QFT in that particular representation on a
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Fock space, where creation and annihilation operators indeed act as in . Se-
cond, Haag and Kastler [17] observed that under certain natural requirements on
a QFT, all faithful representations of A, are physically equivalent. Here, faithful
means that 7 is injective and physical equivalence of 7, and w5 means that if €21, €2,
are the sets of states representable by density matrices with respect to 71, m (i.e.,
their folia), then each w; € £ can be written as a weak limit of a sequence of states
in €25. The “natural requirements” above are also called “Haag—Kastler axioms”.
Before presenting them, we need to introduce some notation concerning special
relativity.

As the set of allowed spacetime points x = (¢, ) = (¢,2',...,2%), we consider
Minkowski space M =~ R%*!, which is equipped with the metric

n=dt* — (dz')? — ... — (dz?)*. (1.52)

Sometimes, we will also write t = 2°. 1 then induces the metric distance

0 _ 0|2 _ _ 2 if o_,0 > _
dog) — |V P 4] e L B,
V=R e -y i =) < |-yl

Two points x,y € M are called

spacelike if d(z,y) <0 < |[2°—3°| < |z -y,
lightlike if d(z,y)=0 < [|2°—¢°=|z—y], (1.54)
timelike if d(z,y) >0 < |2°—¢°| > |z —y].

t t t

JT(A) = future(A) J(A)

Abbildung 1.3: Depiction of the causal future J*(A), past J~(A) and completion
A, as well as the domain of dependence J(A). Color online.

Two sets A, B < M are called spacelike (separated), if all pairs z,y with
v € A,y € B are spacelike, in which case d = —sup,ca ,epd(7,y) is called the
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spacelike distance of A and B. For some A ¢ M, we define the

causal future  J*(A):={yeM|Ize A: d(z,y) >0y’ =1},

causal past J7(A):={yeM|IzeA: d(z,y) >0y’ <z},
causal completion A= JT(A) A J(A),
domain of dependence J(A) = JT(A) v J(A),

(1.55)
see Figure [1.3] We will also write J¥(A) = future(A) and J~(A) = past(A).
The set of all isometries on M is called the Poincaré group P and P! is its
identity—connected component, which is a subgroup of P.

The Haag—Kastler axioms, within their original definition [I7], now read as
follows:

(1) To each bounded open region O in Minkowski spacetime, we associate a unital

*~algebraf]| A(O).
(2) Isotony: For O; € O, we have A(O;) < A(O, )]

(3) Local commutativity: If O; and O, are spacelike separated (as in Figure

[L.4), then [A;, A5] = 0 for all A; € A(O;) and Ay € A(Os).

(4) There is a unital *-algebra A, called the algebra of quasilocal observa-
bles, that contains all A(O) as subalgebragd|

(5) Poincaré covariance: For each element of the Poincaré group g € P, there
exists an automorphism o, : Agoc — Aqioe With o, A(O) = A(gO). Some-
times, the group P is also called “inhomogeneous Lorentz group” and the
corresponding property is called “Lorentz covariance”. It is also customary to
only consider elements of the identity—connected component g € 731 [16] or,
in d = 3, to take elements from the inhomogeneous SL(2,C)-group, which
provides a double covering of 731.

(6) Primitivity: There exists a faithful, irreducibleE] representation of Agoc.

8In its original formulation [I7], A(Q) is assumed to be a C*-algebra and not necessarily unital.
However, the formulation via *—algebras as in [I5] is more general.

9In the original formulation without unitality, it is further required that A(O;), A(Oz) either
have a common unit element or both no unit element at all.

101f A(O) are C*-algebras then Ao is chosen as the completion of Aje := |Jp A(O) in the
norm topology. Usually, Agiec is denoted A. The notation Aqioc here is just in order to avoid
confusion with .

UTrreducibility of m means that a subspace of # which is invariant under all 7(A) must be
either {0} or dense in J#.
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(7) Causality: If O, is in the causal completion] of Oy, then A(Os) < A(Oy).

(8) Locality: As the spacelike distance of O; and O, (see Figure is incre-
ased to oo by translations, the partial states on A(O;) and A(O3) become
decoupled. Here, a partial state w; is a positive linear functional on A(O;)
and decoupling means that for any pair of partial states wy,wy there is a state
w on Agoc with w(A4;) = w;(4;) VYA; € A(O,). However, there is no precise
mathematical formulation in [I7] how decoupling is to be interpreted in the
limit, so this axiom is rather heuristid™

There exist modified formulations of the Haag—Kastler axioms in the more recent
literature. For instance, [16, [I5] only postulate axioms (1), (2), (3) and (5), while
considering (4) as emergent. Both additionally postulate the

(9) Time slice axiom: If O; < O, contains a Cauchy surface of Oy, then A(O;) =

A(O,).

~
v

Abbildung 1.4: Left: Two open regions O1, Oy with spacelike distance d > 0.
Right: The time slice O; < Oy contains a Cauchy surface X of O,.
Hence, all observables in .A(Oy) can be reconstructed from A(Oy).
Color online.

Here, a Cauchy surface is a set ¥ < M, which is intersected exactly once by
every inextendible causal (i.e., timelike-or-lightlike) curve. This definition is the

12The original formulation is “causal shadow” without a precise definition of this expression.
We interpret it as the “causal completion”, here, since isotony would then make axiom (7)
equivalent to A(O) = A(O), which is the axiom formulated in [I0, ITT 1.10].

IBA precise mathematical formulation of a similar requirement called split property
can be found in [I0, Sect. V.5.2], which requires a full decoupling via w(A;43) =

wi(Ar)wa(A2) VA € A(Oq), Az € A(O2).
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same as used by Wald [I8]. See also Figure [1.4]

The time slice axiom ensures that, given initial data about a quantum system on
an arbitrarily thin slice O; around some Cauchy surface of a region O, predictions
can be made for all of O,. So local quantum dynamics exist.

The algebras A(Q) may for instance be generated by formal expressions ¢(f), f €
SR 1Y) or W(f) = e0/) called fields, such that supp f < O. It is also possible
to use fields with f € S(R?) at a fixed time, similar to the field operators (1.30)).
However, ¢(f), W(f) are no operators and only become field operators when
represented by m on a Hilbert space 7. In that case, there is no need that 7
bears a Fock space structure or that m(¢(f)), 7(W(f)) are of the form ((1.30). We
remark that the term “field” is also used in the literature to denote the operators
m(o(f)), (W (f)), or the maps ¢(x), p(x) which send f € S(R¥1) or f e S(R?)
to ¢(f).

There are also similar sets of axioms for different QFT settings, e.g., on curved
spacetime [19, 20], [16, Chap. 4] or for conformal field theory (CFT) [16, Chap. §].
The name for specific axioms may vary depending on the literature resource. For
instance, in the above-mentioned references, sometimes (3) instead of (8) is called
“locality” or (3) is given the name “(Einstein) causality”.

Further, in the original work by Haag and Kastler, the axiom set (1)—(8) is not
considered fixed, but rather in an “experimental stage” [17, p. 849], where, for
instance, the necessity of axiom (8) is subject to discussion [17, p. 852]. The set of
“structural assumptions” stated later by Haag [10, p. 110] consists of axioms (1),
(3) and (5) together with a version of the time slice axionf”’] Haag himself writes
about axiomatic frameworks of QFT [I0] p. 58]:

[...] the word “axiom” suggests something fixed, unchangeable. This is
certainly not intended here. Indeed, some of the assumptions are rather
technical and should be replaced by more natural ones as deeper insight
is gained.

However, this quote is not given in the context of the Haag—Kaster axioms, but
a different set of axioms, which have been proposed by Streater and Wightman
[21], 22]. These Wightman axioms are directly related to a fixed representation on
a Hilbert space and are commonly accepted as a criterion for a proposed non—
perturbative QFT model to be physically reasonable [23].

141n this version, A(O;) = A(O,) is required whenever O, is the causal completion of O;.
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These axioms contain a condition that refers to fiber decompositions: Assume
that the Poincaré group is represented by a continuous family of unitary opera-
tors U(g) on a Hilbert space ¢, where the time translation subgroup (U(%))wer
is generated by a Hamiltonian H and the space translation subgroup by momen-
tum operators Polp, e P(flp. As a physically reasonable interaction is momentum—
conserving, the operators H and ng are expected to commute and one may use
the spectral theorem in the form [24 Thm. 10.9] to write % and H as a direct
integral over the spectral values P = (P',..., P?) with P’ € o(PJ,):

@ -~ D
T = Fp dP, H= Hp dP. (1.56)
Rd Rd
Each ¥ € 77 is here translated into a cross-section P +— V¥p € #p up to modi-

fications on a null set in P € R?. The joint spectrum of the tuple of operators
Pt = (H,P! P2) is now given by all points (E, P) € M, such that E € R is

o P
within the spectrum o(Hp).

The Wightman axioms now read as follows |21, Chap. 3-1]:
(0) Assumptions on the Hilbert space:

e There exists a Hilbert space 7 of state vectors, where a quantum state
corresponds to a ray {¢¥ | ce C} with ¥ € 7.

e For the group 731, there exists a continuous representation on .7 by uni-
tary operators U(g), g € P1. The original formulation in 3+ 1 dimensions
uses the inhomogeneous SL(2, C)—group, which is a double covering of
PL.

e Spectral positivity: The joint spectrum of P* lies in the forward light-
cone V1T = J*({0}), see Figure [L.5]

e Unique vacuum state: There exists a vector ) € 7 that is invariant
under all U(g) and unique up to a phase.

(1) Assumptions on the fields:

e For each Schwartz function f € S(R?™!), there exists a set of field opera-
tors ¢,.(f),r € {1,...,2s + 1} together with its adjoints ¢, (f)*.

e All operators ¢,(f), .(f)* are defined on a common dense domain D <
A with Q € D and D is invariant under all ¢.(f), ¢.(f)* and U(g).
Further, for WUy, ¥y € D, the map f +— (Uy, ¢, (f)¥s) is a distribution.

(2) Covariance of the fields: For all g € P! (or g € SL(2,C)) there is a spinor
transformation matrix S;x(g) with U(g)é,(f)U(g)™ =3, Sr(9)dw(f o g™h).
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(3) Causality: If supp f,supp g are spacelike, then [¢,.(f), ¢ (9)*]+ = 0.

(4) Completeness: span{@(f)Q,gbr(f)*Q ‘ feSref{l,...;2s+ 1}} is dense
in 7, i.e., Q is cyclic.

Abbildung 1.5: Left: The forward light cone V' with 2 of 3 spatial dimensions
drawn.
Right: A typical joint spectrum o(P*). It has to lie in VT, be
Lorentz—invariant and contain 0 € M, as €2 is a corresponding ei-
genvector. Color online.

In the following, we will often drop the spin indices r, 7', if a generalization to
many spins is obvious.
It is customary to call a physical model a field theory if and only if it satisfies
the above axioms. Additionally, Wightman and Streater state a criterion for a
physically reasonable QFT, which however does not enter the definition of a field
theory: If within a scattering theoretic setting, ingoing and outgoing state vectors
can be defined that make up the corresponding Hilbert spaces J#™ and J#°U,
then one additionally requires

(5) Asymptotic completeness: J# = " = .

Haag and Ruelle have shown that the construction of ™™ and J#°" together with
i

one-particle creation— and annihilation operators a; /Out( f) is indeed possible, if
one assumes a Wightman field theory featuring a mass gap [25] 26]. In this con-
text, having a mass gap means that the joint spectrum of P*, after removing the
origin 0 € M (corresponding to the vacuum € as an eigenvector of H and P;”),
lies within one of the sets {(E, P) e M | E? > |PJ|* + M?} for some M > 0. This
is equivalent to H p having an isolated eigenvalue 0.

More generally, the aim of scattering theory is to construct a unitary opera-

tor S : S — % called S—matrix, which describes the time evolution
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from ¢t — —oo to t — o0. The S-matrix allows to easily derive predictions for
scattering experiments (such as scattering cross—sections), which can be used to
empirical verify a QFT model. One definition involves the Mgller operators
Qin/out . gin/out . 2 (or also called wave operators) and reads S = (Q°U)~1Q»,
For instance, if the Hamiltonian H takes the form H = Hy + H;, as in Section
[1.3.1] then a possible definition for the Mgller operators is [27, Chap. 12]:

O = lim ethe—tho7 0" — 1im e’tHe_thO. (157>
t——00 t—0o0

There are cases in which a definition different from ((1.57)) is used, e.g., if Dollard
modifiers are employed, see (3.18) in Section [3.1.2]

Instead of asymptotic completeness, Haag [10] considers a version of the time—

slice axiom as a necessary addition to the Wightman axioms, namely that all
fields can be expressed by fields with f supported on an arbitrarily thin horizontal
slice Oy = {reM | |2°—t] <&}
It seems natural to identify A(O) with the algebra generated by all field opera-
tors ¢(f) or all Weyl operators e~*/) with supp f € O, in order to relate the
Wightman— to the Haag-Kastler axioms. However, even with this identification,
both axiomatic settings are not equivalent. For a comparison, see [10].

There are further axiomatic settings, which allow for recovering a Wightman
field theory. One of these settings is given in the context of the Wightman re-
construction theorem [21, Thm. 3-7] (originally in d = 3 space dimensions):
For any given Wightman field theory, one may define the family of Wightman
distributions (Wy)nen,, Wy € S'(RVEHD) via

The Wightman reconstruction theorem now asserts that if only a family of Wight-

man distributions (W y)nen, satisfying a set of axioms is given, then a Wightman

field theory (comprising (&(f))ses, 7, (U(9))ept. D S H and Q € H’) can be
+

reconstructed such that the 20y are given by ([1.58)). The reconstructed field theory
is then unique, up to unitary equivalence.

A slightly stronger setting is given by the Osterwalder—Schrader axioms. Given
the Wightman axioms, the Wightman distributions 20 : R* — C in 3+ 1 dimen-
sions can be written as boundary values of complex functions C* > VT(4N) - C
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with V#N) being the future tube [28]:

VAN = (@, an) e CV | —Im(z; —a5) e Ve M Yiefl,...,n—1}}.
(1.59)

which have 20y as its boundary value are called Wight-
4N)

The functions on VT(4N)

man function and are also denoted 2Uy. Their domains VT( contain all

coordinates of the kind

z; = (i), 2},27,27) € IR® R, (1.60)
such that a:? < x? +1- Hence, QW can be restricted to these coordinates, which
results in the so—called Schwinger functions (S y)nen,. Applying the Minkowski

metric to a pair of z, 2’ € M as in ([1.60]) then gives the same result as if one would
apply the Euclidean metric to the respective vectors z, z':

n(z,2) = 2% + "2’ + 2% + P = a2 (1.61)

So the transition 0y — Gy corresponds to a change from Minkowski to Euclide-
an space.

The Osterwalder—Schrader axioms [29] (in 3 4+ 1 dimensions) are now a

set of conditions on a family of Schwinger functions (&y)yen, Which allow for
recovering a corresponding family of Wightman functions (20y)nen, that fulfill
the conditions within the Wightman reconstruction theorem. So establishing the
Osterwalder—Schrader axioms results in the existence of non-—perturbative dyna-
mics in a Wightman field theory. Conversely, each family (2n)nen, satisfying
the assumptions in the Wightman reconstruction theorem gives rise to a family
(6N ) Nen, fulfilling the Osterwalder—Schrader axioms [29].
The area of research concerning the construction of a set of Schwinger functions
is called Euclidean field theory. Sometimes, also non-relativistic models are
investigated, and sometimes, Euclidean field theory concerns the construction of a
probability measure on a space of functions (e.g., on all f € S(R4*1)), which can in
turn be used to generate all Schwinger functions. There have been many successful
constructions using this method, and naming them all would go beyond the scope
of this dissertation. We refer the reader to [30] for an overview about earlier works
on Euclidean field theory (including the first investigations by Symmanzik that
appeared well before Osterwalder and Schrader’s reconstruction theorem) and to
[31, Sect. 1.1] for an overview about more recent results.

More generally, the area of research concerning the construction of a field theory

15Sometimes, also a Wightman distribution 20 is called a Wightman function.
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satisfying one of the three axiomatic frameworks above, e.g., from a given formal
Hamiltonian H, is called constructive quantum field theory (CQFT). Besides
Euclidean field theory, there are several other approaches to CQFT, see [32].
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1.3 Cutoff Renormalization and Techniques

1.3.1 Hamiltonians with Interactions

The aim of cutoff renormalization is to construct a self-adjoint Hamiltonian H out
of a formal expression H, which is of the form

H = Hy+ Hj. (1.62)

The kinetic or free Hamiltonian Hj is described in Fourier space with X = R?
as

Hy = Z dl;(w;) = Z JRd a;’ka]‘7k0‘.}j(k) dk, (1.63)
J J

with j indexing the particle species, dI'; being the second quantization (compare
(1.38))) with respect to particle species j and with w; being the respective dispersi-
on relation. Typically, the function w; is continuous and gives rise to a self-adjoint
operator w; on some domain dom(w;) dense in L*(R?). The operator dI';(w;) is
then essentially self-adjoint on the dense domain @y, dom(w;)®N < .7, [22,
Sect. X.7] and naturally extends to the Hilbert space of the model 57 < ®j F.

The interaction Hamiltonian[l;gl Hj is typically a sum of operator products as
in (|1.34]) with f being a distribution. In order to describe local interactions, it is
convenient to take

f(ml, e ,wN) = 13(331)5(131 - 332) c. 5(33N_1 - JZN). (164)

Here, v € &' is defined by stating its Fourier transform v : R — C called form
factor. So the Fourier transform of f is

~ (N=1)d

Fkry o dey) = 20) ST 0lky + ... + k). (1.65)

In some cases, an operator product can be defined on a dense domain in .%, even
if f¢ L? as it is the case for certain dI';(w;). However, in most cases, H; contains
ill-defined operator products. An easy example is a'(v) with v ¢ L?(X) such that
the L?-integral diverges at |k| — 0 (IR-regime) or |k| — oo (UV-regime). In that
case, (a'(v)¥)N) = /No@ WV~ and since v ¢ L?, the operator a'(v) is defined
only on ¥ = (. Cutoff renormalization circumvents this problem by replacing v by

16In some relativistic QFT models, instead of the Hamiltoanian H = Hy + H;, a Lagrangian
L = Lo + Lj or a Lagrangian density £(z) = Lo(x) + L7(z) with = (¢, ) is given. In
that case, Hy = —L; = — SRd L(0,x) dz, if the Schrodinger picture is used, and Hy can be
extracted from Lo, see any standard physics QFT book, e.g., [B, Sect. 2.2] or [6, [7, [§].
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the cut—off form factors

Vo (k) 1= Xo<ik|(K)v(E), vp(k) == Xik|<a(k)v(E),

VoA (k) 1= Xo<ik)<a(K)v(K). (1.66)

The indicator function y is sometimes replaced by a smooth cutoff function in
order to sustain regularity of v. The parameter ¢ € [0, 00) at small momenta (long
wavelengths) is called infrared— or IR—cutoff and the parameter A € [0,0), A > o
at large momenta (short wavelengths) is called ultraviolet— or UV—cutoff.
Corresponding operators or formal operator products are also given a subscript o
or A, such as H,, Hy or H, a, which can be well-defined even if H is not.

The process of removing one or both cutoffs by taking the limits o — 0 or
A — o0 in order to construct a well-defined limit Hamiltonian H is called cutoff
renormalization. It is customary to manipulate H, 5 before taking the limit or

to construct H indirectly, see Section .

In the following Sections|1.3.2H1.3.6, we present, without claiming to be exhaus-
tive, some techniques for establishing a well-defined H within cutoff renormali-
zation. Examples from the literature, where they have been applied to concrete
models, are discussed in Sections[I.3.7HL.3.8 Sometimes, also a set of fiber Hamil-
tonians Hp as in is constructed using the mentioned techniques.

1.3.2 Interpreting H as a Bilinear Form

This technique is useful in less singular cases. If H, 5 is defined on the dense domain
dom(H, »), one may consider the bilinear form (¥, Uy) +— (U, H, \Ws), which is
at least defined for Wy, Uy € dom(H, »). In certain models, the limit

hH(l) <\Ill, HO',A‘IJ2> = b(\Ijl, \Dg) eC (167)

A—oo

may now exist for ¥, ¥y within a dense form domain containing dom(H, ), so
(1.67) defines a bilinear form b. If this form is bounded from below, then the

Friedrichs extension theorem [27), Sect. 2.3] allows for finding a unique self-adjoint
operator H with b(W¥y, Uy) = (¥, HVy) for Uy, Uy € dom(H). This H is the re-
normalized Hamiltonian.
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1.3 Cutoff Renormalization and Techniques

1.3.3 Counterterms

In some cases, H, can be split into a particularly simple divergent part c,
and a part that converges to an operator as ¢ — 0,A — oo. The term c,, is
then subtracted from H,, within an ad hoc modification, which corresponds to
adding a so—called counterterm —c, 5. A self-adjoint Hamiltonian may then be
constructed by taking the limit:

H = lim (Hon = Con)- (1.68)
A—w0

A particularly simple kind of counterterm occurs if ¢,y = E, A is just a constant
with E,p — o0 as 0 — 0 or A — oo. In that case, —E,, is called an energy
conterterm or a self-energy. From a physical point of view, a success of the
construction means that the formal expression H was chosen “too large by
an infinite constant”. Formal algebraic calculations with H may then nevertheless
produce sensible results, as a constant commutes with all operators, so formally
|H,A] = [H, A]. Thus, H and H generate the same formal Heisenberg dynamics.
In the related and equally denoted case of ¢, 5 = E, s being a multiple of a number
operator N; = dI';(1), the term E, » is also called an energy counterterm and has
the same heuristic interpretation.

It may also appear that the divergent part contains a kinetic term
(5m07A = dF(wa7A), (169)

with w, o being an operator multiplying by a function w, 4 : R? — R in momentum
space. That means, it alters the dispersion relation, which is typically accompanied
by a change of the particle mass. These terms are called mass counterterms.
As energy counterterms proportional to N also take the form F,, = dI'(z,4),
with z, € R, they are sometimes also called “mass counterterms”. Sometimes,
also quadratic operator products that contain a'a’- and aa—terms are called “mass
counterterms”.

There exist further types of counterterms that may be subtracted from H, a,
such as charge counterterms, which are proportional to summands within the
interaction part of the Hamiltonian Hy, .

Sometimes, counterterms are also called (energy, mass or charge) “renormaliza-
tions”, in which case they share one name with the process of removing certain
divergences from H.

Which counterterms are needed might heuristically be inferred from a careful
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investigation of the divergence of H,,. The heuristic interpretation of these ad
hoc-added terms is that the initial and simple guess H for a Hamiltonian descri-
bing the physical system a Hamiltonian was actually wrong and additional terms
must be included in order to make sense of it. It is however desirable to justify why
physical predictions derived from a formal H can still be achieved from H under
the choice of a certain set of counterterms. For instance, it might happen that in
perturbative QFT (see Section , correct physical predictions are obtained from
H under addition of perturbative counterterms, whose effects can be analogous to
the non—perturbative ¢, added above.

1.3.4 Dressing Transformations

Another ad hoc modification for constructing an operator H out of a formal H
is the conjugation with a dressing transformation W, W,, W, or W, . In the
following, we present the general dressing procedure while using both cutoffs o
and A, although in many examples, H, o, W, o are independent of o or A. Certain
cases allow to directly make sense of the limit

~

H = lim W, H, \W;. (1.70)

o—0
A—

In other cases, it turns out necessary to add counterterms before the conjugation:

H = lim W, (Hyp — con)Won. (1.71)

o—0
A—o0

It is common to choose W, o as a unitary operator of the form
Wyp = ePor (1.72)

where iB, 5 is self-adjoint. Examples are

e Weyl transformations: For a form factor s,n € L*(X), with X < R?
denoting momentum space, we have

Boa JX (soa(k)al (B) — 5o (RJa(k)) dk = a'(s0,) — as,0). (L73)

In general, conjugation of a'(f), a(f), f € L*(X) with a Weyl transformation
W = ea'®)=als) g e [2(X) leads to a formal addition of a constant

W*a ()W =d'(f) + (s, ). WraHW =a(f) +<{f.s).  (1L.74)
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1.3 Cutoff Renormalization and Techniques

The above replacement a(f) — a(f) + {f,s) may even be well-defined if
s ¢ L?(X), provided that f is sufficiently regular (e.g., if f € D(X) and
s € D'(X)). Sometimes, also the replacement procedure is called a “Weyl
transformation”. In any case it preserves the CCR/CAR ([1.22).

Bogoliubov transformations: These are named after Bogoliubov’s seminal
paper [33] and exist in a bosonic and a fermionic version. For bosons, one
has

1
)

Bos = 5 | (Son(R)al ()l (=) + Exx B (R)a. (k) k. (175)
with form factor {, o : X — C. The fermionic case is more delicate since
pairs of fermions (so—called Cooper pairs) typically appear. For further de-
tails, see also Section [5.3]

We denote the unitary operator corresponding to a Bogoliubov transformati-
on by U := e~ In both the bosonic and fermionic case, a conjugation with
U maps creation and annihilation operators a'(f), a(f) into new operators

bi(f) .= U*a"()U = a' (uf) +a(vf), b(f) := U*a(f)U = a(uf)+a' (vf),
(1.76)
such that b'(f),b(f) still satisfy the CCR/CAR (1.22), where f is the com-
plex conjugate function of f, and with certain operators u, v densely defined
on L*(X).
The term “Bogoliubov transformation” often denotes the above algebraic
replacement a* — b*, whereas the operator U is called implementer of the
transformation. Sometimes the term “Bogoliubov transformation” is also
used in a wider sense, denoting any operator replacement that preserves the
CCR/CAR. In that sense, Weyl transformations can be seen as a particular
kind of Bogoliubov transformations [34]. For an introduction into Bogoliubov
transformations (both bosonic and fermionic), we refer the reader to [34] and
[35].

Gross transformations: Originally introduced by E.P. Gross in 1962 [30],
these transformations are derived from a cubic interaction between fermions
(=) and bosons (+):

Byp = L (sa,A(p, k)a' (k)a' (p)a_(p + k) + h.c.) dpdk, (1.77)

with “h.c.” denoting the “Hermitean conjugate”. Gross transformations are
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especially useful if the interaction H; in the physical model is also a cubic
term of the above form. This is the case for polaron models described in
Section [L.3.7

The Weyl transformation can also be seen as a special kind of Gross trans-
formation: If one restricts the Hilbert space . ® .%, to the one—fermion
space S = L*(X)® Z, and splits it into fibers & p as in (1.50), then

Wo | p just amounts to a Weyl transformation.

But also more sophisticated unitary and non—unitary dressing transformations
may be used. An example are non—unitary dressings transformations in construc-
tive QFT (often denoted T') as described in Section [I.3.8] A useful diagrammatic
formalism for evatuating these dressing transformations has been proposed by
Friedrichs [37] and applied in many QFT models. These Friedrichs diagrams look
similar to Feynman diagrams as mentioned in Section [I.5] However, Friedrichs
diagrams encode operator products, whereas Feynman diagrams encode integrals
occurring in perturbation theory.

The formal limit W = lims—0 W, A is often ill-defined. Sometimes W, » con-

tains a constant factor of the f/(\)?rori e*oA with |z, 5| — o0 as the cutoffs are removed,
which is called an (infinite) wave function renormalization. Factors €A with
the same divergence behavior are interpreted as infinite phases.

A further heuristic interpretation of formal dressing transformations W, that are
ill-defined on 77, is that H determines the dynamics for a state vector ¥ € 7
describing “true” or “physical” particles, which are mapped by W to states of vir-
tual particles. The formal H then describes dynamics on these virtual particles.
So these operations “dress” the vacuum vector (for Weyl- and Bogoliubov trans-
formations) or a one—fermion vector (for Gross transformations) with a “cloud of
particles”. Mathematically, by this “cloud”, we mean

e a coherent state for Weyl transformations
e a squeezed or quasi—free state for Bogoliubov transformations

e a sum of coherent states (one per fermion) for Gross transformations.

1.3.5 Converging States and GNS Construction

Finding a suitable dressing transformation such that the limit makes sense
can be a challenging task. It may be circumvented by an algebraic construction:
Consider a sequence of cutoffs (for instance o — 0) where for each o a represen-
tation m, of the C*—algebra A corresponding to the system is known, such that
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1.3 Cutoff Renormalization and Techniques

H, is self-adjoint on 7Z,. One now picks a state w, for each o, for instance by
taking a ground state U, of H, (if it exists) and setting w,(A) = (¥,, AV, ) for
all A€ A. By means of the Banach—Alaoglu theorem, w, has a weakly convergent
subsequence with w, — w. This w allows for a GNS construction, resulting in a
representation 7 on a Hilbert space ¢ with “vacuum state” Qe 2.

It remains to construct the dynamics generated by some renormalized H on J¢,
for instance by defining 7, (¢®**!) as the limit of 7, (e®*~) or (7 (A)Q, Hr(B)Q) as
the limit of (7,(A)¥Y,, Hm,(B)¥,) for suitable A, B € A.

1.3.6 Segal’s Theorem: Restriction to Local Algebras

There is another algebraic trick to circumvent the tedious adjustment of W, , and
Co.A, if the model has only an IR-divergence and is in d = 1 space dimensions
[38]. Instead of defining H directly, one may define the action of H on all local
time—zero algebras A({0} x C') with open and bounded space region C' = R. For
each pair t € R,C < R, the form factor v(x) is multiplied by a spatial cutoff
function h : R? — [0,1] with h(z) = 1 near |x| = 0 and h(z) — 0 as |x| — oo.
Assume that a UV-renormalized Hamiltonian H;, can be found with h(z) =1ina
region larger than the region C' enlarged by |t|. The latter enlarged region is called
Cly, see Figure . Observables localized in C' will be localized in Cj after the
Heisenberg time evolution, so the cutoff should not affect the dynamics. Choosing
a suitable cutoff for all C' and ¢, one should then be able to recover the dynamics
within the local time-zero algebra

Aloco = lJ  A{o} <o) (1.78)

CcR
C': bounded, open

And indeed, Segal’s theorem now asserts that if for each pair ¢, C' as above a sui-
table spatial cutoff function A can be found, such that Hj is a unique self-adjoint
operator, then there exists an automorphism group oy : Ajpco0 — Aloc,o describing
the cutoff-free dynamics. R

Of course, it remains to recover a renormalized Hamiltonian H from the auto-
morphism group «a;, which may require some considerable work. This can, for
instance be done, by constructing a suitable state w on A (e.g., as a weak limit
wp — w). If in the GNS representation 7, the automorphisms «; can be imple-
mented as oy (A) = U(t)*AU(t) with (U(t))er being a strongly continuous group
of unitary operators, then Stone’s theorem renders the desired generator H.
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Abbildung 1.6: Within Segal’s theorem, the spatial cutoff h(x) is chosen such that
h =1 on a region lager than C},. Color online.

1.3.7 Non—Relativistic Models

There is a variety of relativistic and non-relativistic models with particle creation
and annihilation where non—pertrubative dynamics have been successfully defined
or where a definition of dynamics would be highly desirable. We present some
of them here and outline the employed techniques. The establishment of non—
perturbative quantum dynamics in models with particle creation and annihilation
is of course a vast field of research and our list is by no means meant to be ex-
haustive.

The first type of models we present are polaron-like models. By that we mean
models with fermions which interact by an exchange of bosons. We denote posi-
tion and momentum of fermions by x and p, as well as the boson position and
momentum by y and k and index the fermionic and bosonic particle species (e.g.,
for particles with spin) by j € N. The free Hamiltonian then takes the form

HO = drx,j(gj) + dl—‘yd‘(w]'), (179)
with 6; : R? — R being the dispersion relation of fermion species j with w; : R? —
R the dispersion relation of boson species j.

The interaction Hamiltonian describes the emission and absorption of bosons trig-
gered by fermions:

H; = z}; fRd (a}‘-,f(p)aj,—(p + k)ay , (k)v;x(p, k) dpdk + h.c.) . (1.80)

Interaction terms of this or a similar form appear in formal Hamiltonians of QFTs
that are considered to be comparably fundamental, such as QED, QCD or the
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Standard Model of Particle Physics. Such terms also emerge from many-body
models in condensed matter physics. In both situations, they may (at least heu-
ristically) describe how attractive and repulsive forces appear between fermions
that interact by exchanging bosons.

The following models fall under this category.

Frohlich Polaron

0(p) = |p|?, w(k) = 1, v(k) = |k|~*. This model has been proposed by Frohlich,
Pelzer and Zienau to describe the interaction of electrons by exchange of optical
phonons in solid—state materials [39]. Self-adjointness of H can be established wi-
thout counterterms or dressing transformations by interpreting H as a bilinear

form [40]. However, a Gross transformation is useful to characterize the domain of
H.

Nelson Model

0(p) = 2= w(k) = \/[k? + m2, v(k) = gw(k)~2 with m > 0, g € R. This model
was originally introduced by Nelson in order to describe the interaction of nucleons
by meson exchange [41]. The renormalization for massive bosons m > 0 requires
an energy counterterm E, that depends on the UV—cutoff A and is proportional
to the fermion number N.

What makes this model particularly interesting is that in the massless case m =
0, there are several ways to perform a renormalization which result in different
dynamics. The Hamiltonian renormalized without a dressing transformation

HY .= lim (H, 5 — Ey) (1.81)

o—0
A—o0

is self-adjoint [41], but does not have a ground state for m = 0 and M = 1
[42]. It is possible to generate an inequivalent Hamiltonian by fibering H, =
SP H,ap dP, see (1.56), and conjugating each fiber Hamiltonian with a bosonic
Weyl transformation W, p

ﬁg) = lim W*’P(HO'7A7P - EA)WU,P~ (182)

In that case fNII(f) has a ground state [43]. Another Hamiltonian is constructed in
[43] algebraically by considering the states w, p associated with the ground state
vector U, p of the UV-renormalized Hamiltonian H, p. A limit state w, p — wp
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exists in the weak sense and, using the GNS representation m,,,, one may construct

HS’) via
. 77(3) .
ety = hr%ww L (etHor), (1.83)
The sequence of Weyl transformations is given by W, p = ea' (s0.p)~alsa,p ), where
the form factors s, p € L? formally converge to some s, p ¢ L*. So in the IR-limit,
the corresponding dressing transformation W formally “leads out of Fock space”.

An interpretation of the “dressed vacuum” WQ (with Q being the ground state
of HO) as a vector in a Fock space extension H > A was given by Frohlich [43],
with % being von Neumann’s ITP space [44] (see also Section . Now, when
restricted to the one-fermion sector, all fiber Hamiltonians Hp, T have a ground
state with energy E(P). In case such a set of ground states exists, the function
P — E(P) is also called a (proper) one—fermion shell or mass shell correspon-
ding to H®, By contrast, if the Hamiltonian H® is restricted to the one—fermion
sector and fibered, then none of the Hg) has a ground state, which is also called
an infraparticle situation or even infrared catastrophe, see also [45].

As the conjugation with a Weyl transformation formally adds a constant to bo-
sonic operators (1.74), one may also replace a_(f) by a_(f) = a_(f) + {f,s).
Restricting to a dense subspace f € S € L? allows for a well-defined transforma-
tion whenever s € &', even if s ¢ L2 The replacement results in a change of the

formal Hamiltonians N N
Hop— HY, Hy— HY. (1.84)

One may then show that ﬁ] “ indeed generates the same Heisenberg dynamics on

&' as Hy does on a* , and that Hy HY has a ground state [46, 47]. Note that the

UV-—cutoff A has not explicitly been removed, here. The so—constructed H/(\) may

also be used for the construction of scattering states [48].

Another way to construct a renormalized Hamiltonian H(ew) g given by Euclidean
field theory methods [42, 49, [50].

In case d < 2, a renormalized H® can also be constructed as in (1.81)), without
a dressing transformation W, but with an energy renormalization E, [51] 52]. A
construction of H©) in d > 3 is provided in [42].

It is also well-known that within the dressing process, a Yukawa potential (for
m > 0) or a Coulomb potential (for m = 0) emerges, accompanied by radiative
corrections that are higher-order in the coupling constant. See e.g., [41, (15)] in
the case with cutoffs and m > 0. The emergence of a Coulomb potential for H®
without any cutoffs in case m = 0 has been established in [53] for weak couplings
(small g) and two fermions out of which one is infinitely heavy and hence fixed.
For the cut-off Hamiltonian ]TII(XQ) = WXH\Wx and m = 0, the emergence of a

38
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Coulomb potential and radiative corrections complying with the Larmor formula
have been established in [54] [55].

For a comparison of the domains of H® and H®, see also [52]. Further refe-
rences concerning the Nelson model in mathematical physics can be found in the
introductions of [56] and [50].

Pseudo—Relativistic Nelson Model

0(p) = +/|p|> + M2, w(k) = +/|k|?> + m2. For the (physically slightly undesirable,
but mathematically more regular) form factor v(k) < g(1 + |k|)~"2w(k)~"/2, the
existence of a UV-renormalized Hamiltonian

H, = lim (H, r» — E\) (1.85)
A—o
and for m > 0 the existence of a renormalized Hamiltonian

H = lim (Hy — Ey) (1.86)
A—o0

have been established in [57]. There, it was also proved that a ground state exists
for each fiber Hamiltonian Hp,, Hp, which implies the existence of a mass shell.
For m = 0, the IR-renormalized fiber Hamiltonian FNII@ as in has been
constructed in [43] and a mass shell has been proved to exist. Note that in both
references, the form factor is not denoted v(k) but rather v(k)w(k) /2.

However, for the more physical v(k) = gw(k)~/? with small coupling g and for
m > 1, it was proved that the mass shell of H, s exists but becomes flat in the
limit A — oo (without the need for constructing a limit Hamiltonian H,) [5§].

Eckmann’s Polaron

Eckmann [59] proposed a type of pseudo-relativistic Nelson model with v(p, k) =
cl0(p — k)w(k)0(p)| /2, ¢ > 0. It can be renormalized as

HD = lim (Hy — 6my), (1.87)

A—c0

with a counterterm dmy = {my(k)a (k)ay (k) dk that acts as a simultaneous

energy and mass renormalization. There are several choices of my (k) possible
which can be used to adjust the renormalized mass shell E(P) [60]. A non—unitary
dressing transformation was used in [60] to describe the domain dom(H®) = 7,
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but is not needed for obtaining a renormalized Hamiltonian or a mass shell.

Gross’ Relativistic Polaron

0(p) = A/IpI> + m2, w(k) = 1/|k]> +m2, v(k) = gw(k)" /2. Here, a renormalized

Hamiltonian has been constructed algebraically by L. Gross [61]. The renorma-

lization process is similar to that of ITI](D?’) in : A sequence of ground states
wp is constructed for (Hy — dmy) such that wy — w. The weak convergence is
understood with respect to the local C*-algebra A, of Weyl operators . So
there exists a GNS representation m, with respect to w on 7 with vacuum €.
A mass renormalization dm, is chosen such that it only modifies the bare mass
m, in a way that the infimum of the spectrum of (Hy — dmy) restricted to the
one—fermion Hilbert space is kept at a fixed value. The self-adjoint H® is now
constructed by defining the quadratic form (-, -),4 via

<7TM(A)Q, WW(B)Q>C%GO = /y—I»Ic}o<7TA(A)\IjA’ (HA — (5mA)7rA(B)\IJA>, (188)

with A, B € Aj,. and 7 being the standard representation of A, B by Weyl ope-
rators on % and W, the ground state of Hy. This form is positive and hence
corresponds to a self-adjoint operator H® by Friedrichs’ extension theorem.

In particular, the ground state vectors ¥, € .# associated with w, converge weakly
to 0 in .Z#, so %) can heuristically be considered as being “outside the Fock space”.

Van Hove Model

In this model, fixed fermions are considered 6(p) = 0, which allows for fibering
H in the fermion momenta (p;,...,py) and thereby reducing considerations to
bosonic fields. This reduced form is the one in which Van Hove originally intro-
ducted the model [62] with w(k) = +/|k[? + m2,v(k) = gw™'/2. In this paper, he
also interpreted the ground state of the formal Hamiltonian (which is outside %)
as an [TP vector.

Depending on the choice of w and v, the cutoff renormalization may require energy
counterterms with £, , — o0 or dressing transformations W, s that do not conver-
ge to a unitary operator on .# as ¢ — 0 or A — oo [63], [15]. In particular, both a

UV—divergent self-energy E,, = —{ % dk and a formal Weyl transformation
W(s),s = —2, which heuristically leads out of Fock space, are required for the

QED-typical scalings w(k) = |k|,v = g|k|7/2.
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There are also physically interesting models, with H; of a form similar but not
equal to (|1.80)):

Pauli—Fierz Model

This more fundamental model is sometimes also called the standard model of
non-relativistic QED. It describes the interaction between atoms and light, and
many models in quantum optics can formally be derived from it by simplification
[64]. Electrons are modeled by one fermion species with 6(p) = %. Photons are
considered in the Coulomb gauge which entails two boson species (“transversal
photons”) with w(k) = |k|, v(p, k)oc|k|~/2. Physically, one would also expect a
third species (scalar photons), which are not included in the Pauli-Fierz model.
Instead, a Coulomb interaction between the fermions, Vo = g3, .. @lel’ is
added. This is heuristically justified by the observation that interaction terms in
H describing boson exchange produce pair potentials in the leading order of the
coupling constant g, when conjugated with dressing transformations (see the Nel-
son model above).

The Pauli-Fierz model may or may not involve an external potential Vi (). If
no external potential is involved and only M = 1 electron is considered, then the
Pauli-Fierz model can be seen as a Polaron model in the sense of .
Self-adjointness of Hy with UV —cutoff, M € N electrons and arbitrary coupling
strengths was established in [65]. Spectral dynamics of the Pauli-Fierz model have
been thoroughly investigated, see for instance [60, 67, 68, [69] and the references
therein.

As for the Nelson model, an infraparticle problem occurs: For M = 1, the fiber
Hamiltonians Hj p have no ground state for P # 0. Arai [70] showed that this

problem can be resolved by constructing an alternative Hamiltonian ﬁ/(\s%} which
has a ground state for all P: After applying an IR—cutoff ¢ > 0, the electron mass
m, within H, A p is replaced by m, — dm,, which yields a cut-off Hamiltonian
with mass renormalization, called H C(f,)\ p- The Wightman functions of H, 551{ p are
explicitly evaluated and the limit Wightman functions for ¢ — 0 are constructed.
It is then shown that these correspond to a new IR-renormalized Hamiltonian
[;T/(\S}, that has a ground state. Further, Arai showed that the mass renormalization
is necessary in order to obtain the correct Thomson scattering formula.

Similar to Frohlich within the Nelson model above, Blanchard [71] also used the
ITP space A in order to describe the limit of a sequence of dressing transforma-
tions W, p — Wp where Wp is a formal expression ill-defined on %, but can

be given rigorous meaning as a unitary operator on the Fock space extension .77.
However, this well-defined Wp was used to describe asymptotic Hilbert spaces
appearing in scattering theory and not for the construction of an IR-renormalized

41



1 Introduction

Hamiltonian. N
To our best knowledge, no renormalized H without UV—cutoff has been construc-
ted in the Pauli-Fierz model so far.

Pseudo—Relativistic Pauli—-Fierz Models

Here, the Pauli-Fierz model is modified such that the electron dispersion relati-
on becomes pseudo-relativistic. That is, 8(p)oxc|p| as |p| — . Examples are the
semi-relativistic Pauli-Fierz model with 0(p) = 4/|p|? + M? for spinless bo-
sons and the no—pair model where spin—1/2—electrons are described by restricting
a Dirac operator a - p + mf (Dirac—type operators are explained above ((1.150)))
to the positive—energy subspace [72]. Electrons may also be modeled as full Dirac
particles involving positive— and negative—energy solutions of the Dirac operator
[73].

Properties of the former two models have been investigated, for instance in [74]
79, [76l, [77, [78] or the references therein. In all cited resources, M = 1 electron
is considered and an external potential Vi (x) may or may not be involved. For
Vext () = —9|‘;‘|°, smallness of the coupling constant g.. must be assumed, since
above a certain coupling threshold, several self-adjoint versions of the formal Ha-
miltonian H, exist. This effect already occurrs for a Dirac particle in a Coulomb
potential, see also [79] and the last point in Section [1.4.4]

Just as the Nelson model, also the semi-relativistic Pauli-Fierz model allows for
constructing an IR-regularized Hamiltonian on each fiber (see ) by a Weyl

transformation W, p as in ((1.82))

]T]/(\an = lir% We pHon,pPWo p, (1.89)

which generates dynamics inequivalent to those of Hy p [80]. Inequivalence mani-
fests itself in the fact that Hj p has only a (2-fold degenerate) ground state for

P =0, while }NI/(\?) has a (2—fold degenerate) ground state for all P in a sufficiently
small open ball around 0. So the dressing transformation removes the infraparticle
problem of Hj, at small total momentum. As for the Nelson model, the IR-limit
Wp = lim,_,o W, p does not define a unitary operator on p, but Kénenberg and
Matte [80] could establish Wp as a map from % into von Neumann’s ITP space
H.

However, to our best knowledge, for all above modifications of the Pauli-Fierz
model, no removal of the UV—cutoff A has been achieved so far.
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Spin—Boson Model

This model describes a single spin coupled to a boson field, meaning that the
fermion has only two allowed configurations & € {0, 1}. For bosons, a physically
reasonable choice would be w(k) = 1/|k[? + m?2 with m > 0 and v(k) = |w(k)|~'/2
where a UV-—cutoff is always used. But also other dispersion relations and form
factors have been investigated [81]. The spin—boson mode can formally be derived
from a one—electron Pauli-Fierz model in an external field by reducing the Hil-
bert space for the electron to a two—dimensional subspace. For instance the space
spanned by the ground state and an excited state of an electron within an atomic
potential can be used for this. The cut—off Hamiltonian H, can be realized as a
self-adjoint operator and even has a ground state for m = 0, so there is no need to
avoid infrared problems by constructing a non—Fock representation of a suitable
operator algebra [82], 83 [81].

It is also possible to consider generalized spin—boson models where the fermio-
nic two-level system is replaced by a d-level system (x € {1,...,d}), a harmonic
oscillator (z € N) or even a finite collection of harmonic oscillators (x € N%)
[84, B5]. For m = 0 and under certain assumptions, it has been proved that the
Hamiltonian H, has no ground state [86].

Lee Model and Galilean Invariant Lee Model

The Lee model, introduced in [87], is another less polaron-like, but still non—
relativistic QF'T model, which treats two fermion species V' and NV, as well as one
boson species ©. The interaction is of the kind V' < N + ©, meaning that a V-
fermion transforms into an N—fermion under the emission of a ©-boson. For this
model, formal expressions for generalized eigenfunctions have been derived already
in the 1950s [88], which allowed for first comparisons between perturbative and
non—perturbative renormalization in QFT [89].

A modified version of it, called the Galilean invariant Lee model, was non—

perturbatively renormalized on a rigorous level by Schrader [90]. Here, the disper-
2 2 2

sion relations are 6y (p) = U + %,HN(p) = % and we (k) = % with U € R

and masses my = my + mg. The cubic interaction Hamiltonian takes the form

m m
Hy = QJ (aif(p)aN (—Np + q) ae (—@p - q) + h.c.) dpdq. (1.90)
my my

In order to remove the UV—cutoff, Schrader added a self-energy counterterm FE
proportional to the number of V-particles (so Ej can also be called a “mass
renormalization”) as well as a charge counterterm 6V,. For a reasonable choice of
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E\ and 6V}, non—perturbative scattering theory renderﬂ a physical mass my phys.a
and charge gpnys,a. Correspondingly, £y and 6Vi can be adjusted such that the
fixed values my phys A = My phys a0d Gphys, A = Gphys are maintained as A — oo. It is
then shown that the limit

~

H = Ahm (HA — FE\ + (SVA) (1.91)
—00
exists as a self-adjoint operator in the norm resolvent sense and that the resolvent
7(z) = (z — H)™! can explicitly be expressed by a convergent Born series.

1.3.8 Relativistic Models

By relativistic, we mean that the models are considered as potential candidates
for a Wightman field theory. Such models have been extensively studied in the
context of CQFT.

In all models considered below, the interaction Hamiltonian H; is constructed out
of field operator—valued distributions, e.g., for bosons

k))e =k dk, (1.92)

1
P(x) = JW(GT(’C) +a(—

with w(k) being the boson dispersion relation. The expressions for fermionic fields
are related, but different, see below. The formal H; is now a (possibly divergent)
sum over Wick products of the kind

f co(x)N : dx = J co(xr) .. o(en) i 0(xy —x2) ... 0y 1 — @N) dxy ... dX)y,

(1.93)
where the two double dots : : denote Wick ordering, which is the operation of
moving all a’ to the left and all a to the right inside the double dots. This makes
(1.93) a sum over operator products of the form (1.34)). Locality manifests itself
in the fact that for all ¢(z;), the same position & = x; is used, so the interaction
happens at a single point .

For each particle species, the dispersion relation in Hy is now chosen in such a way

1"For recovering my phys o and gphys A from scattering theory, Schrader first constructs the Moller
operators Qi:/out. The operator ﬁA = (Hp—EA +06V}y) is then restricted to the P = 0-fiber of
the one—fermion sector, with the restriction called H % For the resolvent 7% (z) = (z—H )L he
then establishes Fﬁ(z)QXl/ out — QXl/ OUES () where 75 (2) is the resolvent of some Hamiltonian

HS. This HS is of a form, which allows for directly recovering the “physical” mass my,pnys A
and charge gphys,a-
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1.3 Cutoff Renormalization and Techniques

that the free propagator Gy(t,t')(-,-) € &'(R? x R?) defined by

Go(t, )t fr, 9o = (Q [B(fr), e 0 (g)]Q),  frogv € SR x RY), (1.94)

with vacuum vector Q € Z,a(f;)Q = 0 is supported in the time— and lightlike
separated coordinates

supp Ga(t, ') € {(z, &) e R* | | — &| < |t — ¢'|}, Vi, t' e R. (1.95)

We remark that it is customary to conclude the family of distributions (Ga(t,t')): ver
into one single spacetime distribution Gy € &'(R4! x R4+1) also called the “free
propagator”. Condition (1.95)) then becomes

supp Go € {(z,t,2',t) e R**D | |z — /| < |t — ¥/|}. (1.96)

This condition assures that the free field operators smeared in space— and time—
direction

o) = [ Sta)e Moo@)e dide,  fe SN, (197)

satisfy Wightman locality (see Section [1.2.3)), i.e., [¢(f), #(g)]+ = 0 if supp f and
supp g are spacelike separated.

An example for a suitable dispersion relation is w(k) = 1/|k|?> + m2. Although for
this w(k), the support of a wave packet f, = e=®) £y fy e C*(R?) spreads faster
than light, the propagator G4 still has causal support.

This causal support of G5 allows for constructing a causal perturbation theory by
the Epstein—Glaser method. For further references, see Section [I.5

¢»*~Theory

This model describes a self-interacting boson field with dispersion relation w(k) =
v/ |k|? +m2,m > 0. The formal Hamiltonians with or without spatial cutoff h :
R — [0, 1] read

Hh :H0+H]7h, H=H0+H[

Hip Zth(gg) L p(z)t: de, o, :gf o) da, (1.98)

with ¢(x) given by (1.92)). The Wick ordering of ¢(x)* renders one operator pro-
duct of the kind a'a‘a’a’, 4 terms of the kind afa’a’a, 6 terms a'a’aa, 4 terms
a'aaa and one term aaaa. Note that sometimes, the product g - h(z) =: g(z) is
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treated as a space—dependent coupling constant.

In 1+1 dimensions, ¢?~theory has been renomalized by Glimm an Jaffe [91] 92 03].
Existence of a self-adjoint realization of Hj, without UV—cutoff can be inferred from
[38,194]. Essential self-adjointness of Hj, on a suitable domain is established in [91],
such that the uniqueness requirement of dynamics in Segal’s theorem is satisfied
and an automorphism group (a4 )ser can be constructed (see Section [1.3.6). Sever-
al Haag—Kastler axioms are verified in [92] and a renormalized Hamiltonian H is
recovered from (oy)ser in [93].

The renormalization of ¢?-theory in 2 + 1 dimensions has been achieved by
Glimm and Jaffe [95, 06]. Glimm first constructed a densely defined symmetric
renormalized Hamiltonian of the kind

Hy, = lim Ty} (Han — ean) Do (1.99)

Here, Ty j, is a non-unitary dressing transformation [95 Sect. 3], and the coun-
terterm ¢y, contains a self-energy Ejp, as well as a mass counterterm dmy 4
consisting of quadratic operator products of the type a'al, aa and a'a [95, Sect. 4].
Later, Glimm an Jaffe [96] showed that H), is bounded from below, which allows
for finding a self-adjoint Friedrichs extension of H,, for any spatial cutoff h.

P(¢)-Theories

This class of models, also called A@**~theories, is given by a self-interacting boson

field with w(k) = +/|k|> + m?,m > 0 and a polynomial interaction

Hy ZQJ : P(o(x)) @ dx, Hp = gfh(a:) : P(¢(x)) : dex,
P(¢) =¢*" + bap1™ 1+ ... + by,

(1.100)

with n € N and arbitrary coefficients b; € R, j € {0,...,2n — 1}. Hence, it includes
the ¢*-theory. N

A renormalized Hamiltonian in 1 4+ 1 dimensions with spatial cutoff H;, has been
constructed by Rosen [97] as

Hy, = lim H,xp, (1.101)
e

in the norm resolvent sense, where ¢ is an IR—cutoff imposed by forcing the sys-
tem into a box of finite volume V' and where A (called K in the original paper)
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1.3 Cutoff Renormalization and Techniques

is a UV-cutoff. As for ¢*-theory in 1 + 1 dimensions, no counterterms or dressing
transformations are involved. Further, Rosen discusses how to use Segal’s theorem
to recover the dynamics automorphism group (ay)wr and a renormalized Hamil-
tonian H generating dynamics on a physical Hilbert space.

An alternative construction of a self-adjoint Hj; has been given by Glimm and
Jaffe in [98].

A set of self-adjoint field operators ¢(f), f € S(R?) has been established by Glimm
and Jaffe in [99] via constructing all Wightman functions and using the Wightman
reconstruction theorem.

e**—Model

Also this model describes a single boson species with dispersion relation w(k) =

v/ |k|? + m2,m > 0 and self-interaction
H, :gf V(@) : de,  Hip= gfh(m) V(o)) : da,

(1.102)

V() := J e du(s),
with v being a measure on R, supported in [ — 27+ £,4/21 — 5] for e > 0 and
o(x) as in ((1.92)).
Hgegh—Krohn constructed a renormalized Hamiltonian with spatial cutoff in 1+ 1
dimensions [100] via

e~ = lim e~tHan (1.103)
A—0

in the strong sense, which entails Hy ) — PNIh in the strong resolvent sense. No
counterterms or dressings are involved.
The spatial cutoff is removed in [TI00] just as for the ¢*—theory: By Segal’s theorem,
an automorphism group (o )er is constructed. Then, the existence of a physical
vacuum w = limy_,; wy, is established, whose GNS representation 7, allows for wri-
ting m,(cw(A)) = U(t)*m,(A)U(t) where the unitary group (U(%))er is generated
by a self-adjoint renormalized Hamiltonian H.

Yukawa Model

Usually considered in 1+ 1 dimensions, this model describes the interaction of two
fermion species, whose creation/annihilation operators are denoted b', b (partic-
les) and vy (antiparticles), with one boson species with creation/annihilation
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operators a',a. The dispersion relations are #(p) = +/|p|? + M? (fermions) and
w(k) = 4/|k|?> + m? (bosons). The boson field operator—valued distribution ¢(x)
is given by the usual expression (1.92), while the fermion field operator—valued
distributions are defined as

() = | (v(—p)¥'! v(p)b(— e_ipm—dp
) = [ (P 0+ epp)e o

_ 1t (= _p))e iPT dp
%@»—j@@w<m (PP

with form factor v(p) = 4/6(p) + p. The formal Hamiltonian is then
H = Hy+ Hj

(1.105)
Hi=g f (@) () + 1 () () © B() dax.
As in , a spatial cutoff h : R — [0, 1] can be employed by putting a factor
h(x) inside the integral in H;, which yields a formal Hamiltonian with spatial
cutoff Hj,. N
Glimm constructed a corresponding renormalized Hamiltonian Hy, (called H,ep in
his work) as a limit of quadratic forms [L01]:

(U, T2, HyT, , ) = lim (U, T3 g (Hag — exn) Toan ), (1.106)

with T}, j,, T, a5, being non—unitary dressing transformations and where W is chosen
from a form domain that is dense in J#. The counterterm c, ; consists of a self-
energy Fy ;, and a mass renormalization term dmy j, containing operator products
of the type a'a’, aa and a'a. Self-adjointness of H), was established by Glimm using
a Friedrichs extension in [102]. Another proof of self-adjointness by norm resolvent
convergence of (Hyj — cpp) together with independence from the cutoff functi-
on h was given in [I03] and an automorphism group (ay)er was constructed by
Segal’s theorem in [104]. The existence of a renormalized H generating dynamics
corresponding to (oy)wer on a Hilbert space has been established by Schrader [105].

Massless Thirring Model

Introduced by Thirring as early as 1958 [106], this 1 + 1-dimensional model is
a prominent example of an integrable QFT model, meaning that the Heisenberg
equations of motion can be solved explicitly. It concerns two fermion species: a
particle with operators b',b and its antiparticle with operators o/ T, b'. The corre-
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sponding field operator—valued distributions are [34, Chap. IV]

dp
wl(w) = (X 0,00 (P)b(p) + X[0,00 (—p)b'T(_p))elpm_
J - v var (1.107)

Ua(x) = J (X10.00)(—=P)b(P) + X[0,0) (p)b'T(—p))eipm\;i—zp?.

The kinetic term is then
Ho = —i f (1 (@)* st (@) — vn(@)* Onn()) da, (1.108)

which corresponds to a dispersion relation of 6, (p) = p for ¢; and 6,(p) = —p for
1. The interaction in its most general form is given by

fﬁ‘=:9J~¢1CEO*¢M($1)fCE1—-w2)¢2Cuﬁ*¢@(w2)dmlde, (1.109)

where for a local interaction, the form factor has to be chosen as f(x; — x5) =
d(x1 — x2). The operator-valued distributions ; and ¥, can be interpreted as
annihilating two new species of particles (1;—fermions and s—fermions), for which
the Heisenberg equations for H = Hy + H; can be solved explicitly [34, (9.7)].
The transition from 1y, 1 to b, b’ via is a Bogoliubov transformation like
a — bin , but there does not exist a unitary implementer UVIT_gI. However,
performing a Bogoliubov transformation by operator replacement, i.e., plugging
into (1.108)) and (1.109) renders a formal expression of the kind

H=H— E, (1.110)

where E is a formally infinite constant (self energy) and H is indeed a self-
adjoint Hamiltonian of the form H = Ig'o +H 1, where the dispersion relation is
0y(p) = Oy (p) = |p| and H; is a quartic interaction term [34, (9.21)].

One may construct even more formal Heisenberg fields by a bosonization approach,
out of which some are nonlocal and others do not solve the Heisenberg equations
on rigorous grounds, compare [107, Chap. 5].

8Heuristically speaking, the Bogoliubov transformation is “too large” or leads “outside Fock
space”. Mathematically, it violates the Shale—Stinespring condition. This is the case addressed
in Chapter
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Massive Thirring Model

It is also possible to assign a positive mass to the free dispersion relation of fermions
in the 1 + 1 dimensional Thirring model. The corresponding QFT has been con-
structed by Benfatto, Falco and Mastropietro by a functional integral approach in
Euclidean field theory [I08]. More precisely, they constructed the Schwinger functi-
ons (64 n)nen for suitable cutoffs o, A, proved that the limit Schwinger functions
(&, )nen exist as 0 — 0, A — oo and verified the Osterwalder—Schrader axioms.

Federbush Model

While being closely related to the Thirring model, the Federbush model in 1 + 1
dimensions [109] is a further exactly integrable model with two pairs of fermion

species 1y 4,9+ and ¥y _, 19— described each as in ([1.107)). It is convenient to
conclude each pair into a vector with two entries

by = (;ﬁl’i) LT =%, (1.111)
2,+

with 1 + 1-dimensional Dirac matrix 7° = (9 }). The formal free Hamiltonian can
then conveniently be expressed as

M= % 0@+ 'm)b.(@) o (1.112)

se{+,—}

with v° = (§ %) and fermion masses m,,m_ > 0, so the particles have dispersion
relation 4 (p) = v°p + 7®m4. The quartic interaction term reads

Hr =g | (@10 (@) T-@n"0- (@) — 5@ ) T (@' (2) da

(1.113)
Ruijsenaars applied a process called bosonization to this model. That is, the
fermionic W, are used to construct formal (bosonic) Heisenberg operator—valued
distributions ¢(x) [107, Chap. 4]. As for the Thirring model, some of them do not
solve the Heisenberg equations on rigorous grounds or are nonlocal. However, for
one specific choice of ¢(x) involving formal Bogoliubov implementers, Ruijsenaars
could establish all Wightman axioms in the low—coupling regime [110]. So in a
physical sense, the bosons described by ¢(x) are the “true” particles and the fer-
mions described by W4 are just a mathematical tool leading to a particularly nice
and intuitive form of the Hamiltonian.
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Sine—Gordon Model

This model has also been considered in 1 + 1 dimensions and describes a self-
interacting boson field with dispersion relation w(k) = 4/|k|?> + m?. Using the
operator-valued distribution ¢(x) in ((1.92)), the interaction can be written as

H; = gj :cos(ap(x)) @ dx, (1.114)

with a € R. For m = 0 and « small enough, the Sine-Gordon model can be reduced
to the massive Thirring model. This works by adding a divergent energy constant
E, n to the Thirring Hamiltonian and identifying bosonic operator expressions
constructed out of ¢(x) from the Sine-Gordon Hamiltonian with bosonic operator
expressions constructed out of the fermionic ¥y, ¥y from the Thirring Hamilto-
nian [I11, (1.4)]. So the transition from the Sine-Gordon to the Thirring model
can be seen as a kind of fermionization, while the converse transition is again a
bosonization.

An equivalence of the resulting perturbation series has first been established by
Coleman in the low—coupling regime [112]. A proof of non—perturbative equiva-
lence has been given by Benfatto, Falco and Mastropietro in [I11] via functional
integral methods in Euclidean field theory.

1.4 Direct renormalization and Interior—Boundary
Conditions (IBC)

In the recent years, a renormalization technique, that works entirely without cu-
toffs or limiting procedures, has gained attention. The technique starts from a
formal Hamiltonian H = Hy+ A" + A, with A" containing ill-defined particle crea-
tion expressions. A modification of the formal H without using cutoffs then results
in a renormalized Hamiltonian Higg, which is free from the ill-defined terms in
AT, and which describes particle creation by a specific constraint equation inclu-
ded in the definition of its domain dom(Hipc). In earlier considered models, this
constraint equation relates interior points of the configuration space (for instance
the non—collision configurations 0= O\ Q.o from ) to boundary points (for
instance the collision configurations 5QO = Q.ol, at which a particle is created).
Therefore, both the constraint equations and the renormalization technique have
been dubbed interior—-boundary conditions (IBCs).

Later works, presented in Section [1.4.3] establish a self-adjoint Hige using ab-
stract generalizations of IBCs, which are sometimes also denoted as “IBCs” and
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sometimes called abstract boundary conditions. For a thorough introduction
into the IBC technique, we refer the reader to [113] 114 115, 116].

The works about IBCs have considerably inspired the Fock space extension ap-
proach described in Chapter [3| Both share the spirit of removing divergences wi-
thout using cutoffs. The following Sections|1.4.1H1.4.3| provide a short outline of the
construction principle for self-adjoint Hamiltonians via IBCs or abstract boundary
conditions and point out difficulties, which the Fock space extension framework is
designed to overcome.

1.4.1 Boundary Conditions and Self-Adjointness

The description of particle creation and annihilation by boundary condition relies
on the well-known fact that for an open set Q < R? with boundary oS, the
Schrédinger equation on L?(£2) has no unique solution. Some of these solutions do
not conserve the L?>-norm, but instead describe wave packets leaving or entering
the boundary.

A simple example illustrating this effect is given by [22, X.1 Example 1] (and in a
similar form in [27, (2.29)]): Consider ©2 = (0,1) < R and the Schrédinger equation

i0,V,(x) = i0, U, (x). (1.115)

If was posed on L*(R), then H = id, = —p would be a self-adjoint
Hamiltonian whose domain is the first Sobolev space dom(H) = H'(R). The evo-
lution would be given by U(t) = e'P!, so for any initial data ¥y € L?(R) we have
U, = U(t) 0o with™| U, (x) = Uo(x + t). Therefore describes the motion of
a wavepacket to the left with velocity 1, while sustaining its shape. This situation
is illustrated in Figure

Now as is restricted to @ € (0, 1), a wave packet ¥ € L2((0, 1)) will also run
to the left within the interval (0, 1). Therefore, it eventually leaves the interval at
x = 0, which may lead to a decrease of | U, in time. Heuristically, “probability will
flow out of the left boundary of (0,1)”. On the other hand, an arbitrarily shaped
wavepacket may enter the interval at @ = 1 at any time, which might lead to an
increase of ||W,||. So “probability may flow into the right boundary of (0,1)”. The
time evolution operator U(t) can now only be unitary, if it conserves the norm |/,
so “the probabilities flowing in and out of the boundaries balance each other out”.
In our example, probability balance formally amounts to the leaving probability
density |¥(0)[> and the entering probability density |¥(1)|* being equally large,

19This can easily be checked by a Fourier decomposition: Wo(x) = (27)~/2 S\ilo(p)ei’”” dp, so
Uy (x) = P Wg(z) = (2r) 12 [ Uy (p)eP @+ dp = Uy (z +t).
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which is realized by imposing the boundary condition
U(0) = aW(1), aeC, |of =1, (1.116)

see also Figure . It can indeed be proved that the PDE together with
boundary condition then has a unique probability—conserving solution
(V4)ter, whereas the PDE alone allows for many solutions which do not
necessarily conserve probability.
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Abbildung 1.7: Left: A wave packet at ¢ = 0.
Middle: The solution of may leave the boundary.
Right: Boundary condition ensures probability conservati-
on. Color online.

From a functional analytic point of view, the situation in the above example is
the following: Each choice of a boundary condition for |a] = 1 together
with the PDE ([1.115]) corresponds to a distinct self-adjoint Hamiltonian H, with
a distinct domain?’}

dom(H,) = {¥ e H'((0,1)) | ¥(0) = a¥(1)}. (1.117)

If the boundary condition is a priori unknown, then the action of the Hamiltonian
is only known on functions whose support has a sufficient distance to the boundary
U e Dy = C2((0,1)), i.e., we a priori have an operator H = —p : Dy — L2((0,1)).
This H is symmetric, but not self-adjoint. It allows for several self-adjoint extensi-
ons H, and is hence compatible with many different unitary dynamics (Uy(t))er,
Un(t) = e7™= on L2((0,1)). Also note that although dom(H,) in is not

20The expressions W(0),¥(1) € C are strictly speaking not function evaluations, but rather
applications of the linear functionals d(:),d(- — 1) to ¥. Both are generally ill-defined on ¥ €
L2((0,1)). However, they are well-defined on H'((0,1)) by the Sobolev embedding theorem
[117, Thm. 5.4, (8)], which implies that ¥ € H((0,1)) is continuous. So ¥(0) = lim._,o ¥(¢)
and ¥(1) = lim._,o U(1 — &) exist as complex numbers.
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the entire Hilbert space .7, the operator H, nevertheless defines dynamics on all
of J7.

There are even non-symmetric extensions H,,, possible, e.g., by only imposing
the boundary condition W(1) = 0, which allows “probability to leave but not to
enter (0,1)”. A family of evolution operators (W (t))se[o,.0) can then be defined via

1.118
0 else ( )

() = {\IIO(t—i—a:) ift+x<1
(W(t))te[o,50) is not a unitary group, but only a contraction semigroup, as || V| may
decrease in time and dynamics cannot be defined for ¢ < 0. That is because, heuri-
stically speaking, for backward running time, arbitrary wavepackets may enter at
a = 0. This “violation of probability conservation” under (W (t)):efo,00) corresponds
to the generator H,,, of the semigroup not being symmetric on its domain

dom(Hpon) = {¥ € H'((0,1)) | ¥(1) = 0}, (1.119)

although it might look symmetric at first glance. In general, only writing down a
symmetrically-looking expression H (like H = —p) on a set with boundary ) < R?
does not yet specify a self-adjoint Hamiltonian, but leaves an option for several
extensions H, out of which some may even be non-symmetric. Only H together
with a boundary condition determines a self-adjoint Hamiltonian H, where the
boundary condition heuristically prescribes how probabilities “flowing in and out”
at 0€) are balanced.

1.4.2 A Simple Example for an IBC

In order to model particle creation and annihilation by means of boundary con-
ditions, one may choose {2 as a subset of configuration space Q, such that the
configurations in 02 < Q are associated with a particle just having been created.
For instance, if a particle of one species may emit or absorb further particles of the
same species at its current position, then one reasonable choice is given by taking
the collision configurations dQ = Q. (compare (1.11])) and Q = 0 = A\Qeol- A
creation process may then relate an interior configuration ¢ = (x1,...,xy) € Q
to the boundary configuration ¢ = (¢, x;) € Qcol,J € {1,..., N}, where a particle
has been created at the position x;.

Another example is given by a single point source at {0}, which emits and absorbs
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particles. In that case,

Q= 0\0Q, o) = {q = (x1,...,xN) ‘ x; = 0 for some j € {1,...,N}}.
(1.120)
So a particle creation at & = 0 relates interior configurations ¢ € € to boundary
configurations ¢’ = (¢,0) € d9. In that context, it is also possible to restrict Q to
a subset of sectors, for instance, to U%ﬁ%" o),

An IBC is now a constraint equation on W € L?(Q), which establishes probability

balance between interior points ¢ € 2 and corresponding boundary points ¢’ € 02
at a higher sector in configuration space.
As a simple example, consider the restriction of the configuration space to the
vacuum— and the one-particle sector Q = {f} L R3\{0}, so dQ = {0} and # =
L*(Q) = C® L*(R3). The boson dispersion relation is chosen as w(k) = |k|* and
the form factor is chosen proportional to a Dirac é—distribution in position space
U(x) = gé(x) with g being the coupling constant. This model has been considered
for IBCs in that or a generalized form in [I18] 119, 120, 121], 122] 114, 116] and
can also be seen as a specific case of the spin-boson model presented in Section
[L3.7 The formal Hamiltonian reads:

H = Hy+ g(a¥(6) + a(0))

Hy=08-A
F5)0)© (5y0) (D) ©) (1.121)
(a'(6)¥)™ =0, (a'(6)¥)(x) = o(x) ¥
(a(@)¥)® = vM(0), (a(®) ) (z) = 0.
Obviously, af(9) is ill-defined on ¥ € 7 with ¥ 2 0, since 6 ¢ L2.
For a moment, let’s drop the creation term and consider
H = Hy + ga(5). (1.122)

Although H does not look symmetric, it is indeed a symmetric operator if conside-
red on Dy = C® CP(R3\{0}), since the annihilation term amounts to ga(§)¥ = 0
for ¥ e Dy. Alternatively, one may write H = Hy|p,, which is known to allow
for many self-adjoint extensions [123], Sect. I.1]. The aim is now to extend H to a
self-adjoint operator, where symmetry is enforced by a constraint equation similar
to (L.116). This is done by finding expressions for the probability rates that “leave”
and “enter” R*\{0} at 0 and setting both equal. The probability current vector
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field associated with —A is given by
ji(@) = 2Im (\I!(l)(w)ﬁmi\ll(l)(a:)) e {1,2,3). (1.123)

The rate at which probability leaves R*\{0} can now be expressed by considering
the current flow through a scaled sphere rS* = 0B, (0),r € [0,0) and shrinking
r — 0. For the integration over the sphere, it is convenient to use spherical coordi-
nates, expressing & € R3\{0} by (r,w) € [0, 0) x S2. The rate of probability leaving
R*\{0} is then

fou = 21im | Tm (\pm (r, )2, 0D (r, w)) 2 duw. (1.124)

r—0 52

The ingoing current formally reads
i = 2T = ~2Re (V05,00 = ~2g1m (TO(a(5)w))
— —24Im (W\P(U(O)) (1.125)

= 2% lim [ Im (E’(O)W(l)(w,r)) dw.
47'(' r—0 SQ
Probability balance pou = pin is now established by a constraint equation relating

WO to UM which is exactly the interior—boundary condition. Following [114,
(27)] and [116, (17), (22)], one may choose as an IBC

4
O p—— lim & (w, ). (1.126)
g
That means, ¥ is forced to have a pole of the form —% near x = 0, see

Figure Since for U the value WM (0) is formally infinite, the annihilation
operator a(d) does no longer make sense on all ¥ satisfying (1.126)) and requires
an ad hoc modification [116, (15)]: One replaces a(0) by A(d) given by

AGDO = Liima, [ r 0w r)do,  (AG)T) (@) =0.  (1.127)

47T r—0 g2

So the annihilation only acts on the regular part of (Y and no longer on the
pole oc|x| L. This replacement corresponds to the subtraction of a formal infinite
self-energy from the Hamiltonian

Eooz—gQa(d)aT( ! > (1.128)

47 ||
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Abbildung 1.8: The IBC (T.126]) relates the pole strength of ¥ to W Color

online.

The renormalized Hamiltonian then reads
ﬁ = Higc = Hy + gA((S) (1129)

Although this expression does not look symmetric, it becomes a symmetric and
self-adjoint operator, if considered on the IBC-domain

dom(Hipc) = {\If e AN ‘ (1 + ga' (#m')) e dom(Ho)} : (1.130)

So the Hamiltonian (|1.129)) together with the IBC (|1.126)) provides a rigorous

implementation of the formal expression

H = Hy + g(a'(8) + a(0)) — Eu. (1.131)

1.4.3 Abstract Boundary Conditions and Difficulties

The IBC method above can also be cast in a more abstract language as done in
[T16]. This allows for applications with more sophisticated H, as those presented
in Section [L4.5l Consider a formal Hamiltonian

H=Hy+ A"+ A—E,, (1.132)

where Hj describes freely moving particles, A contains some annihilation terms, its
formal adjoint A" contains creation terms (and is possibly ill-defined) and E, is
an infinite formal self-energy. We re—arrange the terms as follows (see also Section
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4.8.1)):
H=Hy+ A"+ A+ AH'A" — AH'AT — B,
= (1+ Hy'ANYV*Hy(1 + H7' A" — (AH'AT + Ey) (1.133)
= S*S+T,

with § = Hé/z(l + Hy'AY) and T = —(AH, ' AT + E,). Under certain conditions
on Hy and AT, the operator S*S is self-adjoint on its domain

dom(Hpc) = {¥ e 2 | (1+ Hy'A") ¥ e dom(Hy)}. (1.134)
Now if one can prove that 1" is a Kato—perturbation of S*S, i.e.,
TV < a||S*SY| + b||¥|| YU e dom(Hipe), (1.135)
with a € [0,1),b € [0,00), then the Kato-Rellich theorem [22], X.12] implies that
Hipe = S*S+ T (1.136)

is self-adjoint on dom(Hipc).

Most of the examples in Section [1.4.5] apply to polaron models: For a system
with NV interacting fermions, A" and A make each fermion create or annihilate a
boson. So AH, ' AT consists of N? terms describing the interaction of fermion i
with j by boson exchange, where i,j € {1,..., N}. Terms with i # j (also called
off-diagonal terms) amount to a pair potential interaction, where Kato-bounds
with respect to a kinetic term Hy are well-known. Terms with i = j (also called
diagonal terms) describe an infinite self-interaction, which is removed by the
counterterm F,.

One may now also imagine to include infinite mass or charge counterterms
as in Section into the Hamiltonian and reshuffle terms, in order to arrive at a
self-adjoint Higc, although we are not aware of such an inclusion in the literature.
It would be useful to have a formalism which puts term reshuffelings as in (|1.133])
on rigorous grounds, which was one of the central motivations for designing the
Fock space extension framework presented in Section [3.2]

Further, the above formalism requires that dom(Hipc) € 47, so within the formal
manipulations, no dressing transformations leading out of Fock space are allowed,
although these are expected in a cutoff-free setting for certain models. See, for
instance [43, [61), 71, 80]. This is also a serious problem if one thinks of IBCs as a
tool being involved in the construction of relativistic QFTs, since Haag’s theorem
holds here [9], [I0, Sect. II.1]. Thus, no renormalized Hamiltonian can be defi-
ned in the vacuum representation and a change of the representation is necessary,

o8
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which corresponds to conjugating the formal H with a dressing transformation
leading out of Fock space. One possible way out might be to perform a different ad
hoc re—definition of creation or annihilation operators, e.g., a Weyl transformation
a'(f) — a'(f) + (s, f), which can be well-defined for s ¢ L? even if the formal
implementer W (s) is not defined on Fock space. However, the IBC method would
then only be applicable after an appropriate operator replacement, which may be
difficult to find and can involve handling infinite quantities. Without a suitable
replacement, the IBC equation (1 + H, 'A")¥ € dom(H,) will formally produce
vectors W outside of Fock space.

A simple example illustrating this problem is the Van Hove model (see also
Section|1.3.7)), where we specifically consider a single point source at & = 0 emitting
and absorbing bosons. The formal Hamiltonian, using the notation of Section [I.3.1}
is

H = dl'(w) + a'(v) + a(v), (1.137)

where we choose w(k) = |k| and v(k) = g|k|~'/?, which are the expected scalings of
QED. Tt is well-known [63], [15], that this Hamiltonian can be given a rigorous mea-
ning by performing an algebraic Weyl transformation, introducing the operators
and operator—valued distributions

a'(f) =GT(f)—<8_,f>, a(f) = a(f) =<f,s),
a'(k) = da' (k) — s(k), a(k) = a(k) — s(k) (1.138)
. _u(k) —3/2
with  s(k) = k) —q|k| 732,
and subtracting the formal counterterm
B, — Jv(k)s(k) dk — —J% k. (1.139)
In that case, the formal Hamiltonian amounts to
H—-E, = JP (w(k)aT(k:)a(k) +v(k)a' (k) + v(k)a(k) + %) dk
I T IR WA C) (1.140)
] (k:)( (k)+w(k)> ( (k)+w(k)> dk
_ { w(e)i (ki(k) di
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So a Weyl transformation a(k) — a(k) + s(k) results in the replacement @ — a
and hence in a renormalized Hamiltonian

H = dI'(w) = H,, (1.141)

whose domain is well-known to be the first Sobolev space. However, the Weyl
transformation does not have a unitary implementer W (s), as defined by -
and : The formal integral {|s(k)|* dk diverges both in the UV— and in the
IR- reglme so s ¢ L2

However, the formal operator (H — Ey) does not have a domain in Fock space.
Formally, its domain would be given by W (s)[dom(Hy)| < W (s)[#], which can

be given a rigorous meaning as a subspace of von Neumann’s I'TP space ¢, as in
[71], 1B0]. See also Section [3.1]

Likewise, the formal Hamiltonian results in a formal IBC domain (|1.134))
that contains vectors outside Fock space: The formal IBC reads

(1+ Hy'a'(v))¥ e dom(H,), (1.142)
which would, for instance, be satisfied by the “dressed vacuum” state{zr]

Qupc = ZMQ = ok, kN)ziﬁs(k:g) (1.143)

Indeed, using s = —2, we have at each sector NV > 1:

(Hy 'al(0)upe) (ky, . . ky) = \/LZ o Zv ]‘[ske

J’=1

1 N N
fz,lw Z (k) | [ s(ko) (1.144)

],:1 /=1

1
= — \/—j\ﬁﬁs(k@

= - QIBC7

so (14 Hy'a(v)) e = Q € dom(Hy). Obviously, Qe ¢ 2 since the L?-integral
diverges on each sector. The expression (|1.143|) closely resembles the formal “Weyl-

21This example was pointed out by Julian Schmidt to whom I am grateful for useful explanations
concerning IBCs and its abstract generalizations.
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dressed vacuum”

) @ 0 o Mk k) S s(ke)
w = 2 T w 1.y N) = T £/
NeNg N' N‘ l=1

(1.145)
which is a generalized coherent state with Qy ¢ 2, but Qu € . However,

Qipc lacks the infinite wave function renormalization e~ 2~ which is formal-

ly “e=* = 07. For this sake, the formal expression 2y, as in (|1.145]) would also
amount to the configuration space function Q(q) = 0.

As the examples in Sections [1.3.7] and [1.3.8] suggest, it would be useful for a
direct renormalization procedure as the IBC method to allow for dealing with
dressing transformations leading out of Fock space. In case of a relativistic QFT
with s only diverging in the IR-region, it may also be possible to circumvent the
non-Fock dressing by defining an Higcy with a spatial cutoff i, and to remove
the cutoff via Segal’s theorem as explained in Section [1.3.6| and [1.3.7] We will ho-
wever not pursuit this approach, but provide tools that allow for treating dressing
transformations leading out of Fock space. Those also work in a non-relativistic
environment and are therefore more general. Before doing so, we quickly review
some results about IBCs in the context of QFT.

1.4.4 Literature on Interior—Boundary Conditions

Interior-boundary conditions have already been described well before the onset of
the investigations initiated by [114] [I15], [I16] and considering IBCs as a tool for
non—perturbative renormalization:

e Already in the early 50s (and hence before the emergence of CQFT), Mos-
hinsky considered IBCs for a description of nuclear reactions on a non—
rigorous level [I18| [119]. In [118§], he provides IBC equations for 3 models:

— A model with a compound particle dissociating into two particles [118|
(17)], which is described in relative coordinates, so the Hilbert space is
given by s = C® L*(R?). This is a generalization of the example we
presented in , allowing for a positive mass p and rest energies
m1, mg. The formal free Hamiltonian then reads

Hy = (”80 A > (1.146)
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— An analogous model with N types of compound particles that can all
dissociate into the same pair of particles, so # = C@...®C® L*(R?).
This model can also be interpreted as describing a single compound
particle with an internal structure that is modeled by a state vector in

CV.

— A model with one compound particle that can dissociate into either of
two types of particle pairs, so # = L*(R?) @ C @ L*(R?).

A fourth model describing beta decay is also briefly and heuristically discus-
sed.

In [IT9], Moshinsky provides the spectral resolution’? (“generalized Hankel
transformation”) in terms of generalized eigenfunctions for the first model

above (# = C® L*(R?))

e Pavlov [120] later considered a similar model on a mathematically rigorous
level. Here, two particles recombine to a compound particle with internal
structure, so # = 4 @ L*(R?), where J% is either CV or (* and de-
scribes the internal structure. The dispersion relation on L?(R?) is again
given by Hy = —A. It is then proved that all self-adjoint extensions of H,
on Dy = {V e H*(R?®) | ¥(0) = 0} make up a one-parameter family
(H1BC.a)aec, Where for each «, the corresponding IBC and the spectral reso-
lution of Hipc,, in terms of generalized eigenfunctions is given.

e Thomas [121] independently considered a similar model with two particles

recombining to one compound particle, with 7 = C@®L?*(R?) and the formal
Hj from ([1.14€]). He provided an IBC together with Hipc and an eigenfunc-
tion expansion.
Additionally the IBC was given for a model of three particles recombi-
ning into two, with J# = L*(X13) @ L*(X13) @ L?(X93) @ L*(R®) where
Yo = Y3 = Y93 = R? are the codimension—3 collision hyperplanes{g_gl in
RS.

22By a spectral resolution, we mean that H is explicitly diagonalized in the sense of the spectral
theorem [24, Thm. 10.10]. That means, some spectral set X and unitary U : 5 = L*(Q) —
L?(X) is found, such that H = U*\U, where ) is the operator multiplying with the spectral
value \. For instance, a spectral resolution can be provided by stating the kernel U(q, ) of
U, where &, : ¢ = U(q, z) is called a generalized eigenfunction.

23%315 is obtained by taking the 6-dimensional hypersurface {(x1,z2,z3) | 1 = z2} < RY and
projecting it to R® by a suitable choice of center—of-mass coordinates.
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e Yafaev [122] also investigated the situation of two particles recombining to a
compound particle with internal structure, both in 1 and 3 space dimensions.
That means, 7 = CY @ L*(R) and 5 = CN @ L*(R?) were considered. All
self-adjoint extensions of Hy = —A on Dy = {¥ € H2(R%) | ¥(0) = 0} were
characterized, their resolvents determined and for d = 1, their spectra were
analyzed.

Independently of the works above, a series of papers investigating IBCs for
non—perturbative renormalization have been motivated by a work by Tumulka
and Georgii, aiming at a description of quantum particle trajectories as stocha-
stic processes. Here, an IBC was suggested in [124], (23)] as a condition ensuring
probability balance. Works which make use of IBCs that actually relate interior
points of configuration space with boundary points include the following:

e Teufel and Tumulka [I14] established the self-adjointness of an IBC Hamil-
tonian Higc for one resting fermion interacting with a quantized boson field,
where # = Z(R3), Hy = dl'(w), w(k) = % + Ej. This can be seen as a
generalization of Moshinsky’s first model to an arbitrary particle number,
while dropping the vacuum energy.

Teufel and Tumulka could prove that Higc coincides with the Hamiltonian

obtained by cutoff-renormalization, up to a constant:

~

(HIBC + C) =H = Alm (HA - EA), ce C. (1147)
—00

Further, they suggested IBCs for a model with M € N resting fermions, a
model with M moving fermions of dispersion relation 6(p) = %, and a
model with a general configuration space whose boundary is of codimension
1.

In a related work [115], the same authors suggested IBCs, which couple
the real line R to the boundary of the upper half-plane in R? so % =
L*(R)@® L*(R x [0,00)). An IBC for the model in [114] on .#(R?) restricted
to the (0)— and the (1)-sector were proposed and an expression for Hipc was

given in all considered models.

e Lampart, Schmidt, Teufel and Tumulka [TT6] considered the above—mentioned
case of M € N resting fermions and boson dispersion relation w(k) =
|k|? + Ey. They could establish a 4-parameter family of IBCs corresponding
to this model, indexed by v, which results in a family of distinct IBC Hamil-
tonians (Hipc,). Further, all Hipe satisfying a certain additional condition
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64

are physically equivalent to a free Hamiltonian, as they can be “undressed”
by a Gross transformation

WU*HIBC,UWU = dF(h) + ¢y, Cy € (C, (1148)

where W, and ¢, depend on the choice of the IBC parameters v.

Schmidt and Tumulka [125] showed that the above-mentioned extensions
Hipce are time—symmetric if and only if the coupling constant is real and
that a Yukawa pair potential emerges from the ground state energy of M
resting fermions.

Keppeler and Sieber [126] established a self-adjoint Higc together with a
spectral resolution in terms of generalized eigenfunctions for a variety of
models in 1 space dimension:

— The first model describes one point source emitting and absorbing bo-
sons with w(k) = |k|* on Fock space # = .7 (R).

— The second model describes two point sources with distance R, interac-
ting with the boson field, which leads to an emergent one-dimensional
Coulomb potential for small R.

— The third model then generalizes to M € N point sources interacting
with the boson field.

— And the fourth model concerns one point source inside a box, so 7 =
Z((z,y)),r <y, where the boson dispersion relation is still w(k) = |k|?.

Further, they suggested IBCs and Higc for a “quantum graph” model, which
is obtained by “gluing together” various boxes (i.e., lines as in the fourth mo-
del) at their endpoints. This way, one obtains a graph whose edges are the
boxes, and where there is an IBC at each vertex balancing the probability
flows between the adjacent edges.

Lienert and Nickel [127] gave an example for the employment of IBCs in
the so—called multi—-time framework of QFT. This framework emerges
when considering relativistic quantum models in the Schrédinger picture, as
explained in Section 2.1} It describes quantum states of N particles by a
wave function ®(t;, x1,...,ty, zy) with N time coordinates, which satisfies
a system of N Schrédinger-like PDEs (one per time derivative ¢;;). For an
introduction into multi-time wave functions, see Section or [128] [129].
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Lienert and Nickel now posed an initial value problem (IVP) consisting of
a PDE system, an IBC for ® and initial values that satisfy an initial-value
IBC. Two models with massless Dirac particles in 1 + 1 dimensions were
treated, so the dispersion relation is given by the 2 x 2-matrix

8(p) — (g 0 ) (1.149)

—-p

The first model is restricted to the one— and the two—particle sector in
Fock space, so the corresponding single-time version would be formulated
on # = L*(R,C?) @ L*(R?,C*).

The second model restricts to particle numbers between 1 and N, so 7 =
L*(R,C)@...® L*RYN,C¥).

For both models, existence and uniqueness of the IVP including IBCs could

be established.

e Tumulka [130] considered a general configuration space @ = |Jyey, QW)
where each Q) is a manifold with codimension-1 boundary. He provided
a 3—parameter family of IBCs that preserve probability for a free Hamilto-
nian of the kind Hy = —A + V, where V' is a multiplication operator by
V(q),q € Q, i.e., an external potential.
The results were applied to a model with a spherical source or radius r > 0,
emitting and absorbing bosons. So # = % (R*\B,(0)) and Hy = dI'(w) with
wk) =L 1 B,

2m

e Schmidt, Teufel and Tumulka [I31] provided an IBC and established self-
adjointness of the corresponding Higc for a Dirac particle in d = 3 dimensi-
onﬂ 0(p) = a- p+ mf3, which is confined to a bounded region 2 = R? with
codimension—1 boundary. So # = C@® L?(Q2, C*).

A generalized case similar to [I30] was also considered, with configuration
space Q = | Jyen, QW) where 0Q™) is of codimension 1, and Hy is of “Dirac
type”:

Ho = S A%(q)(~id,) + B(g). (1.150)

2Here av = (o, 2, 3), where a;, 8 € C*** are Dirac matrices. Sometimes, one also writes
7 := B and y; = yoa;. There are several representations for the Dirac matrices, for instance

(1 0 (0 o) . (0 1 (0 —i (1 0 .
ﬁ—(o ]l) andaj—<aj O)W]th01—<1 O>,02—<i 0),03—<0 _1) being

the Pauli matrices, see also [132].
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with dy being the dimension of Q™) at ¢ = (q1, ..., qn) € QW) and A%(q), B(q)
being matrices of suitable size. A family of IBCs together with the correspon-
ding Higc was suggested for this generalized case.

The case of an IBC which does not conserve probability was considered by
Teufel and Tumulka [I33] under the name absorbing boundary condi-
tion. Absorption can be achieved by suppressing the probability flow out
of the boundary of configuration space, which allows for |U,| to decrease
in time. The corresponding dynamics are given by a contraction semigroup
(W2)te[0,00)- For a region Q  R* with sufficiently regular boundarylﬂ 092, the
existence of a contraction semigroup (Wt)te[o,oo) has been established using
the Hille-Yosida theorem (which is a generalization of Stone’s theorem to
non—unitary dynamics, see [I134, Sect. I1.3]) in the following models:

— One particle, so 7 = L*(Q), Hy = —A + V, where the multiplication
operator V' is Kato—bounded with respect to —A.

— N particles, so 57 = L*(QV), H = Z;yzl(—Aj) + V where the multipli-

cation operator V' is Kato—bounded with respect to Zj.v:l(—Aj).

— One Dirac particle, so ## = L*(Q,C"), H = a-p +mf + V, where V
is Kato—bounded with respect to the Dirac operator a - p + mp.

The boundary 0f) is interpreted as a detector, absorbing particles with detec-
tion outcomes (¢, x) € [0, 00) x 0. A corresponding positive operator—valued
measure (POVM) has then been constructed, which maps patches B <
[0, 00) x 02 to positive operators E(B) : # — J, such that (U, E(B)Wy) is
the probability for a particle detection in B, given an initial state Uy at ¢ = 0.

A no—go result on IBCs was established by Henheik and Tumulka [135] for
< Npax Dirac particles at a point source. That means, 77 = CP ... D
L2(R¥C)®Nmax and §(p) = a-p+mf. The result states that for any extension
of the Dirac operator dI'(f) from

D={0}®...®{0}@C" ((RS\{O})NW, C4N“““) (1.151)

to some domain in S, the (Npax)—sector decouples from all lower sectors.
That means, (®, Hipc V) = 0 whenever ® € .FNmax) @ | F(NVmax) So partic-
le creation into the (Npax)—sector via IBCs is ruled out. This is a consequence
of the well-known fact, that the Dirac operator §(p) is already self-adjoint

25Here, “sufficiently regular” means locally Lipschitz and piecewise C*.
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on C*®(R*\{0}) (which is not the case for —A on CP(R*\{0})). So there is
“no option for probability to enter or escape through the origin”.

However, it is also well-know that after introducing a Coulomb potential,
the Hamiltonian

H=a-p+s- L (1.152)

||

is no longer essentially self-adjoint, if the coupling is chosen larger than the
critical value of g = ‘/75 [79]. Heuristically speaking, a sufficiently strong
potential “opens the origin”, for “probability to escape or to enter”. This
allows for probability flows between different sectors being balanced, e.g., by
an IBC.

And indeed, for */75 < |g| < 1, Henheik and Tumulka could establish a
self-adjoint Higc describing dynamics with particle creation on . = C @

L*(R3,C*), which extends H|p on D = {0} @ CX(R3\{0}, C*).

1.4.5 Literature on Abstract Boundary Conditions

As explained in Section [I.4.3] it is also possible to directly define a renormalized
Hamiltonian Higc by using IBC-like constraint equations that do not relate interi-
or to boundary points. These “abstract boundary conditions” have been primarily
applied to polaron-like models (compare Section with fermion dispersion
relation 6(p), boson dispersion relation w(k) and form factor v(k). We will still
use the name “IBC method” for the corresponding renormalization process and
denote resulting self-adjoint Hamiltonians by Higc.

e Lampart and Schmidt [136] established self-adjointness of Hipc for a gene-
ral class of polaron models in 1, 2 or 3 space dimensions, with 6(p) = |p|?,
w(k) = (1 + |k[>)P? and |v(k)| < |k|=®, where a, 8 > 0 are scaling para-
meters. The constraints on a and [ are dimension—-dependent and allow for
treating (compare Section [1.3.7):

— The Frohlich polaron (« = 1,8 =0) in d < 3.

— The massive (but not the massless) Nelson model (o = 1,8 = 2) in
d < 3.

— Moving point sources interacting by an exchange of non-relativistic
bosons (o = 0, = 2), but only inE] d < 2. This corresponds to the

26 Although only the case d = 2 is explicitly discussed in the paper, the proof also applies to
d=1.
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model established in [I16], but with a nonzero dispersion relation for
the fermions.

Further, Lampart and Schmidt could prove thatN Hipc coincides with the Ha-
miltonian obtained by cutoff renormalization H™ = limp_,.,(Hy — Ey) for
a suitable choice of the self-energy Fjy.

e Lampart [I37] extended the above proof of self-adjointness for Hige within
_ b2

the moving point source model to d = 3 (explicitly, 6(p) = 5, w(k) =
[k[* +1,0(k) = (2m) %),

e Schmidt [138] established self-adjointness of Higc for a different choice of
scaling parameters «, 8 and v, which also allows for pseudo-relativistic fer-
mions (p) = |p|”, w(k) = (1 + |k|?)?/2. Further the form factor is allowed
to depend on the fermion momentum: v(p, k) < |k|=®. The constraints on
a, f and v admit the treatment of

— Eckmanns polaron model from [59] (compare Section |1.3.7)).
— L. Gross’ relativistic polaron from [61], but only in d = 2 dimensionﬂ.

Additionally, Schmidt could prove that under certain conditions, Hipc =
H® = limp_,(Hy — E,) with a suitable self-energy counterterm F,.

e Schmidt [139] also established self-adjointness for a class of polaron models
including the d = 3 massless Nelson model with one single fermion. More pre-
cisely, (p) = |p|, |k|® < w(k) < |k|®+m and c(1+|k|*)7! < |u(k)| < |k
for some constant ¢ € R and where the scaling parameters o and 8 are sub-
ject to certain constraints.

e Lampart [140] could establish self-adjointness of Higc for a model with a
single fermion, closely related to the Frohlich polaron and appearing in Bo-
goliubov theory. See also the referenecs given in [140]. The dispersion re-

lations are 0(p) = %,w(k:) = clk|4/1+ (|k|£)?/2 and the form factor is

v(k) = (2m)7%3 (2ﬂﬁf|);)2>. Here, the speed of sound ¢ > 0 and the he-

aling length £ > 0 are arbitrary constants. The IBC renormalization involves

2TRecall from Section that the renormalized Hamiltonian for Gross’ relativistic polaron
in d = 3 is constructed within a non-Fock representation. Since IBC renormalization is
constrained to the Fock representation, one may expect to obtain a formal IBC domain
outside Fock space in this case.
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1.5 Perturbative QFT as a Source of Heuristics

a two—step transformation of H, such that formally, two self-energy terms
Eéol) and Eég) are subtracted. N
Lampart could also prove that Higc = H M with

HY = 1im (Hy — E\"V — E?) (1.153)

A—co

being the Hamiltonian obtained by cutoff renormalization.

e Posilicano [141] considered an abstract setting with a formal Hamiltonian
H = Hy + A" + A, where he extended H |Ker( Ay to a family of self-adjoint

operators Hipc r (called fAIT), parametrized by a self-adjoint operator T defi-
ned on a subspace of .%. For these Hipc r, resolvent formulas were provided.
Further, for one of the self-adjoint extensions Hipc,, agreement with the

cutoff-renormalized Hamiltonian H® = limp o (Hp — Ep) were established.

1.5 Perturbative QFT as a Source of Heuristics

As mentioned in the introduction, a renormalized Hamiltonian H is often not
available for relativistic QFT's, so one commonly resorts to perturbative methods
for making physical predictions. We present some of them in this section, as they
may also provide useful heuristics for non—perturbative renormalization. As an
example, the use of distributions and the cutoff-free Epstein—-Glaser method (de-
scribed below) have inspired our ESS framework presented in Section , which
is also designed to work with distributions outside L? and without cutoffs. Fur-
ther, it would be interesting to justify successful pQFT methods starting from
non—perturbatively established models, which provides an additional motivation
for the study of non—perturbative renormalization in QFT.

In a nutshell, perturbative renormalization can be motivated as follows (see also
[142] Sect. 3.1], [6, Chap. 7], [143, Anhang]):
Suppose, we have a time-dependent family of self-adjoint Hamiltonian operators

on J:
H(t) = Hy+ Hy(t),  Hy(t) = JHI(t,m) i, (1.154)

where H(t,x) dz is to be understood as a t-dependent operator-valued measure

on RY, called Hamiltonian density. The unitary operator evolving from time t
to t in the interaction picture would then formally be given by a Dyson series [5]
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Chap. 4], [6, Sect. 7.2]:
0 tne1
1(t,to) Z —i) J J J Hi(t)Hi(ts) ... Hi(t,) dt, . . . dtydty
to to

i ) ff _fT(Hz(tl)HI(tQ)...Hl(tn))dtldtzmdtm
n=0 0 Jto 0 (1155>

where 7 denotes the time ordering of operators, i.e., the operators at times ¢,
are sorted from earliest (right) to latest (left). In (1.155) we have replaced the
integration over the time-ordered simplex {(t1,...,tn) | to <t, < ... <t <t}
by an integration over the n!-times larger cube {(¢1,...,tn) | to < t; < t}, see
Figure [1.9] Formally, we may even write by integrals over z; = (t;,x;),
so the integral measure does not make reference to a particular Lorentz frame. In
particular, an integral over all z; € R4"! would be Poincaré-invariant:

Utot) = Y (=) L " T(Hy(z1)H(x5) ... Hy(x,)) day ... dxy,

P (1.156)
S :?;] (—nz') JRR(M) T(Hi(x1)Hi(z2) ... Hi(xy)) dzy . .. dx,
1(tto) = Z Ura(t:to), 8= S (1.157)
n=0

Here, S is the (unitary) S—matrix S : 7 — 7 similaIF_gI to the one introduced
above (1.57)). The operators S, are called (perturbative) S—matrix orders.

We are now interested in the integral kernel of the operators U;(t, tg) and
S, that is, the distribution which maps ¥y @ U; € S ® S to (U, Us(t, o) ¥;)
or (¥, SU;). Here, the initial and final state vectors W;, ¥; decay into sectors
oM ¢ SRMEHD) GIN) ¢ S(RNM(@HD) 50 the required integral kernel consists of
a countable family of distributions

(Ur(t, t0) ™M) ny Ny, (SN, ey © ST(RTFNDEHD), (1.158)

Using the perturbation expansion (I.157)), we can write Uy (t, to)NNe) GNuNG) a9

ZAbove (1.57), we assumed H to be constant and defined the S-matrix, using limits of
e HotHr)gitHo - which can be evaluated by the Baker-Campbell-Hausdorff (BCH) formula

and is generally not identical to e~ *1
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1.5 Perturbative QFT as a Source of Heuristics

T T Tf2

,,,,,,,,,,,,,,,,,,,,,,,

to

; |
n

Abbildung 1.9: Left: The time-ordered simplex (red) takes up 1/n! of the volume
of the respective cube.
Right: A diagram representing one contribution to Uj , (¢, )™
in (1.161) with n = 2, N; = 2, Ny = 2. The integral runs over all
x1, Ty with tg < tq1,t5 <t (shaded area). Color online.

a sum in n € Ny over distributions
Urn(t, to) N0 NN g &N (RINHND(dHL)) (1.159)

which are parts of the integral kernels of Uy, (¢, t) and S,,. The goal of pQFT is to
make sense of these integral kernels, even if H(t) does not exist as a self-adjoint
operator. Once Uy, (t, 1) NN) or SN are found, they serve for an approximate
description of the dynamics generated by H;(t). This is particularly interesting, if
no self-adjoint H (t) exists, but an approximation can nevertheless be defined. The
failure of existence of a self-adjoint H;(t) commonly occurs in relativistic models,
which describe processes involving high particle energies and are often empirically
verified in high—energy scattering experiments. Therefore, many pQFT methods
focus on finding S, rather than U; (¢, ). The distribution values

ST(LNi’Nf) (qi, qf) at (qi; qf) = (wi,h sy LN LE Ly - 7wf,Nf)7 (]‘]‘60)

provided that SO can be written as a function at (g;, q¢), are then called S—
matrix elements.

To heuristically derive expressions for Uy, (t,tp) and S, let us assume again,
for a moment, that H;(t) was well-defined, such that (1.156) would hold. The
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operator H;(t) is further assumed to be a local product of field operatorﬂ like
§ga @ O(t,x)? : da,p e N. Making use of the CCR/CAR and Wick’s theorem [144],
[6, Sect. 7.A.2], one arrives at a formal expression for the distribution Uy, (¢, %),
which is a sum over expressions proportional to (compare [143, p.228], [145, (1.2)]
[146], (1.1), (2.7)]):

Jn(Qian) :f In(QiuQaqf) dQ7
q:tje[to,t]

s (1.161)
(g, 0:00) = | [ AL (w00 — 20p)-
/=1

This expression needs some explanation: We have L € Ny, and Al e &'(R*+D)
is a time-ordered propagator [145, (1.3)], [142] Sect. 2.3], also called Feynman
propagator. The fixed configurations ¢;, ¢ can be derived from g;, g; by including
time coordinates:

¢ = ((to, ®i1), ..., (to, Tin)), g = ((to,®s1), ..., (to, e Ny ) (1.162)

The integral runs over ¢ = (x1,...,%,), and x4, Ty are either of the kind z; ; =
(to, xi;), xs; = (t,s;) or z; € q. Expression can be represented by a dia-
gram as in Figure [1.9] where all coordinates in ¢, ¢s and ¢ are represented by
vertices at z;;,z¢; or x;, and each ¢ € {1,... L} corresponds to a line connecting
the vertices at x4, and ;. The sum for obtaining Uy, (¢, ) then ranges over all
diagrams with n “movable” vertices in q.

The expression for S, is a similar sum over integrals corresponding to diagrams,
as presented in Figure . As the integrals run over z;, while only keeping the
structure of the connections fixed, it is customary to drop the ¢— and the z—axis,
and to only draw a graph representing the connection structure of the vertices.
Such graphs for encoding integrals are also called Feynman diagrams.
Following some heuristic considerations [5, Sect. 4.6], only contributions correspon-
ding to a special class of diagrams (so—called “amputated diagrams”, defined above
[5, (4.103)] or in [0, Sect. 18.3.2]) are used for a calculation of S,,, and the external
lines ending at the (formal) “infinite-time coordinates” z;; or zy; are translated
into a distribution different from Af". The precise translation prescriptions from a
diagram to an integral are called Feynman rules and can be found for various
QFT models in the standard physics literature [6, Chap. 7|, [T, Chap. 6], [5], §].

29By this, we mean operator products as in (1.34) with { : ¢(z)? : dx = §: ¢(z1)...¢(xp) :
d(x1 —x2)...6(xp—1 —xp) dx1 ... dxy,. Derivatives of 2; may also be included, as they can be
evaluated locally.
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Tt T2 R N
; ) initial final
w 7t Q Q C C
N \ ; Tin Tf 9
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/ \ T x
—o0 — o) o)
i1 Ti9 t— —o0 —— t—>w

)

Abbildung 1.10: When computing the S—matrix orders S, integrals running over
all x; € R¥! appear. Each integral is tracked by a Feynman
diagram representing the connections of the vertices. Color online.

Now, the formal expressions for Uy ,,(t, to) and S,, are ill-defined, as they include
divergent expressions. To obtain finite results, called U ra(t,to) and Sn, one implies
several ad hoc modifications to the formal expressions. Apart from the heuristically
motivated ad hoc-restriction to amputated diagrams, these modifications include
the following:

e A formal Gell-Mann and Low formula is used, which amounts to omit-
ting all disconnected diagrams™|in the sums that represent Uy, (¢, to)
and S,,. This can heuristically be seen as a kind of “dressing transformation”.

e The expressions [, as in should be distributions in &', but are of-
ten ill-defined, as they contain ill-defined product of distributions AF.
Therefore, one has to renormalize the distributions [,,, which is done
by a formal subtraction of infinite expressions and leads to a well-defined
expression I, € §'.

e Even after a successful establishment of I,,, it may happen that the inte-
gral over I, as in (1.161), still diverges. An example are IR—problems,
for instance appearing in QED [5 Chap. 6]. Those are removed by a re-
arrangement of sums, leading to so—called inclusive cross—sections, which

30A diagram is called “connected”, if one can reach any vertex from any other vertex by a path
of consecutive lines. It is called “disconnected” if it is not connected. See Figure

31A simple example of products of distributions being ill-defined is the following: Consider
f(x) = g(x) = d(x) with = € R%. Then, there is no way to define (f g)( ) in a reasonable way,
since the expression for its Fourier transform F(f - g)(p) = (f * § Sf (p—k)g(k) dk =
S(?w)*l dk contains a divergent integral. The divergences in pQFT are of the same spirit,
but significantly more involved.
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is formally equivalent to applying a second dressing transformation.

Depending on the QFT model, a combination of these three methods can be
used to obtain well-defined expressions for the kernels of Uy, (¢, ty) and S,,. Often,
the second modification (renormalization of distributions) is considered the most
important step in eliminating divergences and simply called “renormalization” in
QFT books [, 6] [7].

Abbildung 1.11: Left: Two disconnected Feynman diagrams for computing S,,,n =
4. Expressions corresponding to such diagrams are removed when

assuming the Gell-Mann and Low formula to hold.
Right: Two connected Feynman diagrams for S,,,n = 4.

In the following, we shortly explain, how these three ad hoc modifications are
heuristically motivated and rigorously performed.
Before we do so, let us shortly mention that for the first two modification methods,
there exists a clean mathematical formulation in the framework of perturbative
algebraic quantum field theory (pAQFT). This approach encodes the above—
mentioned distributions in functionals by identifying a distribution f € S'(R™?*+1)
with the functional

F: SR - C, Flo] = ff(a:l, o) P(x1) L () day .. dxy,. (1.163)

The description of functionals is more general than the one by distributions and al-
lows for taking functional derivatives. This way, one may also put various heuristic
calculations from physics on rigorous grounds, which are deriving pQFT results by
the so—called path integral approach, see [7, 8], [5, Chap. 9]. For an understandable
introduction into pAQFT, we refer the reader to [147, [148].

We also remark, that there exist further perturbative techniques for extracting
physical predictions, which we do not discuss here. An example are Wilson renor-
malization group (RG) techniques [6l Chap. 23], [5, Chap. 12].

74



1.5 Perturbative QFT as a Source of Heuristics

Gell-Mann and Low Formula

The test functions ¥ € S for obtaining the kernels of Uy, (t,%), S, can formally
been written as

U= < > f\IJ(N)(a:I, coxy)al al da .da:N> Qo, (1.164)
NeNg

with Qy being the “non-interacting vacuum”, i.e., the ground state of Hy. One
would now like to perform a dressing operation, replacing )y by the “physical
vacuum” or “dressed vacuum” €2, which is formally the ground state of H(t). It
is known that for a given H; that is Kato—bounded against Hy, a transition from
Qo to €2 can be achieved by evolving the system in time while slowly switching
on the interaction [149]. That means, one sets H(t) = Hy + g(et)H; with a suffi-
ciently regular adiabatic switching function g(¢) : (—o0,0] — [0, 1], such that
lim; , o g(t) =0, ¢g(0) = 1. Then, one takes ¢ — 0.

In pQFT, this relation is heuristically assumed to hold, although mathematically,
H; is not even defined as an operator. A formal computation leads to the Gell-
Mann and Low formula [150, (10)], [5, (4.29)], [6, (7.53)], as well as its equivalence
to omitting all disconnected diagrams from the expansion [5l, (4.27)—(4.57)], see
Figure [I.11] This heuristically derived omission is rigorously realized by simply
removing those diagrams from the sum over diagrams contributing to .S,,.

However, also for non—perturbative renormalization, knowledge about this per-
turbative renormalization technique might become useful. For instance, one may
imagine to use formal calculations in order to find a suitable physical vacuum state
w : A — C corresponding to €, that serves for a GNS construction. Or one might
find an expression for {2, that can be interpreted as an element of a Fock space
extension. This could serve for defining a dressing transformation W beyond Fock
space, mapping €y — 2, and allowing for a renormalization as described in ([1.2))
and performed later in Chapters [4] and [5

Renormalization of Distributions

To make sense of the formal and ill-defined product of distributions I,, appearing
in (L.161), Schwinger, Dyson, Feynman and Salam have proposed a subtraction
mechanism [I51], 152, 153], 154, [155] which consists of a systematic subtraction of
infinite expressions.

One way to make mathematical sense of this subtraction formalism has been
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established by Bogoliubov, Parasiuk, Hepp and Zimmerman [143] (145, [146] and is
correspondingly called BPHZ renormalization. It relies on the fact that the dis-
tribution product I,,(gi, ¢, ¢¢) is only ill-defined at configurations where x,, = 2.
That means, the formal expression I, provides a well-defined linear functional
S, — C, where S, is the space of Schwartz functions, which vanish together with
all derivatives of order < m at configurations where xy, = x4, [143, Satz 2]@
Establishing I,, € S;, can be done by a process similar to non-perturbative cu-
toff renormalization: One replaces the Feynman propagator AL by a regularized
expression Ag Me> such that the distribution multiplication gets well-defined at
Tpq = Typ, resulting in a well-defined functional I, p. € S" = §),. The replace-
ment of AJ" by AJ,_ is also called Pauli-Villars regularization [I56] and the
original Al" is recovered as the Limit M — o0,e — 0. On test functions f € S,,,
one can then directly define

L(f) = lim Ly o(f), (1.165)

e—0

i.e., we have a weak—* convergence [143, Satz 2].

In order to extend the distribution I,, to all test functions f € S, one may use
a subtraction map R. This R is defined on certain expressions corresponding to a
diagram, such as I,, in (1.161]) (for instance, I,, 5s . is such an expression), and maps
them to a distribution in &’ by subtracting certain “perturbative counterterms”
based on a Taylor expansion in momentum space [143, §3], [145], Sect. 2], [146,
Sect. 2]. By a sophisticated choice of R, the following limit exists in the weak—*
topology [143] Satz 5], [145]:

I, := lim R(Iaze). (1.166)
iy

I, is then the renormalized distribution corresponding to a certain diagram, which
may further be used to establish renormalized kernels U ra(t,to) or S The state-

ment of existence of In as in (|1.166|) is also called BPHZ theorem.

An alternative to BPHZ renormalization, which achieves the subtraction without
cutoffs, has been established for A" corresponding to massive particles by Epstein
and Glaser [157], and developed by Blanchard and Seneor [I58] to treat also Al
corresponding to massless particles. For a pedagogical introduction to this so—

32In the original formulation, I,, is even defined on the space of such test functions f with
2208 f(z) being bounded only for multi-indices |a| < r, |3] < ¢ with sufﬁciently large r,q € N.

This test function space, called D, g, is larger than S, as S = |, jen D
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1.5 Perturbative QFT as a Source of Heuristics

called Epstein—Glaser renormalization, see [142, Chap. 3].
Here, one directly constructs the time—ordered operator-valued distributions

Tn(ﬂfl,...,l‘n) = T(H[((L’l)H[(In)), (]_]_67)

appearing in (|1.156]), by an induction over n. Just as the BPHZ renormalization,
the Epstein—Glaser construction also involves a removal of terms in a Taylor ex-
pansion in momentum space.

We remark that the renormalization of distributions is mathematically well-
investigated [I48] Sect. 7]. There even exists a “main theorem of renormalization”
[147, Thm. 6], which classifies all renormalized distributions that can appear, when
requiring a reasonable set of axioms.

The subtraction mechanism is sometimes also heuristically expressed by inclu-
ding infinite counterterms in the formal Lagrangian (which corresponds to the
formal Hamiltonian H) [5, Chap. 10], [8, Chap. 9], [152, (83)-(85)]. There exist
charge, mass, and self-energy renormalization terms, as well as infinite wave
function renormalization factors. These terms are similar to the counterterms
in non—perturbative renormalization and may hence provide useful heuristics for
finding suitable non—perturbative counterterms.

IR Problem Remedy

Even when the formal I, can be established as a well-defined distribution INn,
there is no guarantee that an integral over [,,, as in , converges. Formally, a
contribution to a renormalized version of Uy ,,(t, to) (or Sy, if the g, ¢r are neglected)
would be proportional to

Ju(@i, q¢) = J In(a, ¢, ) dg = JX{q yeltou Lo (5. 4. ) da. (1.168)
q:tje[to,t]

The indicator function Xiq|¢eft,¢y 18 not in S, but only in & = C%, so (1.168)
does not necessarily render a well-defined distribution pairing. The integral may
diverge at large |x,|, i.e., one might encounter an IR-divergence. This problem
occurs, for instance, in QED. See [I59] for a thorough mathematical discussion.

A common heuristic modification made to remedy this divergence problem is
the use of inclusive cross—sections as introduced in [160], see also [, Chap. 6.
Here, one introduces a suitable regularization indexed by pu > 0 (e.g., by adding
a mass to particles as photons, that are physically expected to be massless), such
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that the integrals in JNML are finite and lead to a well-defined distribution gn,u-
Then, a new distribution S, ,(g;, g;) is defined as a linear combination of integrals

over different orders n’ > n of the original distribution, gn/,u(qi, Qi 1y Ty y)-
The integral is taken in momentum space over configurations with low momenta
IP1|,- -+, [Py —nl, Which reminds strongly about a dressing transformation leading
outside Fock space [I59]. This dressing transformation was introduced by Chung,
Kibble, Faddeev and Kulish and can be implemented on the I'TP space. We fur-
ther discuss it in [3.1.2] as it can also become interesting for a non—perturbative
renormalization of QFT models.

In perturbative renormalization, it is known for small n, that the inclusive cross—

section method produces well-defined results for S’L .- However, as of 2021, there is
no mathematical proof that finite results can be achieved for all n € N [159, Sect. 2].
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2 Hypersurface Evolution

This chapter contains the results concerning Born’s rule on arbitrary Cauchy sur-
faces, which is obtained in an axiomatic framework called hypersurface evolution.
Recent interest in this framework emerged from a series of investigations about
multi-time wave functions (MTWFs), which describe pure quantum states within
relativistic quantum dynamics in the Schrodinger picture. We shortly outline the
concept of MTWFs in Section

The extraction of physical predictions from a MTWF naturally leads to the fra-
mework of hypersurface evolution, presented and discussed in Section [2.2]

In the following Section [2.3] we explain why a proof of Born’s rule on Cauchy
surfaces is necessary in this setting and present our main Theorem which
directly implies our main result, Corollary [2.3.8/ This result roughly states that
assuming Born’s rule on all flat Cauchy surfaces F implies Born’s rule on any
curved Cauchy surface X.

The proof is split in two steps: In Section [2.4) we prove that the flat Born rule on
E implies the Born rule on triangular Cauchy surfaces T (see Definition .
Then we show in Section that any Cauchy surface ¥ can be approximated by
a sequence of triangular Cauchy surfaces (Y, )nen, which allows for recovering the
Born rule on ¥ from the Born rules on (1,,),en in Section

It is an interesting open question, in which cases a hypersurface evolution allows
for recovering a Wightman field theory. In Section [2.7, we provide some ideas of
how this question might be answered in the future.

2.1 Multi-Time Wave Functions

Multi—time wave functions naturally arise when formulating relativistic quantum
dynamics in the Schrédinger picture. One of the first descriptions of MTWF's was
made as early as 1932 by Dirac [161], and by Dirac, Fock and Podolsky [162]. Re-
cent mathematical results about MTWFs can be found in [163] 164, 165, 166,
167, [168]. More resources and a thorough discussion of MTWFs are given in
[128, [169, [170]. For a pedagogical introduction to MTWFs, we refer the reader
to [12§].
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2 Hypersurface Evolution

Consider a time-dependent family of Fock space vectors (V,),r < % . Each ¥,
corresponds to an L?-equivalence class of functiond'] on configurations ¢ € Q, ¢ =
(x1,...,xN). At time ¢, with respect to one frame of reference, this ¢ corresponds
to the spacetime configuration

5/:(ZL’l,...,lCN)Z(t,wl,...,t,.’.BN). (21)

A change of the reference frame by a Poincaré transformation g € 771 now relates
¢ to the spacetime configuration

7 = (gr1,...,92n) = (1}, @), ..., ty, ). (2.2)

If a family of wave functions (V});eg was given in the new coordinate frame, then
the function U; = U(g 1)¥} would intuitively be given by evaluating ¥’ at the
Poincaré—transformed coordinates:

\I[t(wlw--amN) = \p/(t/hm,la?t/]Vam;V) (23)

The mathematical problems with this expression can easily be seen by the miss-
ing time index of W, replaced by several time coordinates t/,...,ty. In order to
make sense of such formal transformation laws, it is necessary to introduce a wa-
ve function that depends on several time coordinates, i.e., a multi—time wave
function

(I)(Ilj...,fL'N):(D(tl,wl,...,tN,CBN):CI)(@. (24)

That means, ¢ is a complex—valued function on configuration spacetime Q(M) =
Q(R*) (compare ([L.4)). Since after a Poincaré transformation (2.2), the spacetime
coordinates are still spacelike, it suffices to define ® only on the set of spacelike
spacetime configurations (see also Figure :

S ={7e QM) | |t; -t < |m; — x| Vi ke{l,...,N},NeNy}, (2.5)

in order to make sense of (2.3). Sometimes, in the definition (2.5, the “<” is
replaced by a “<”, depending on the literature resource. A given ¢ : .¥ — C
allows for recovering the Fock space vector ¥, at any t € R via

\Dt(ml,...,mN)qu(t,ml,...,t,wN). (26)

So the MTWEF & provides a richer description of quantum dynamics than the fa-
mily (V;),er. However, this richness makes ® also more difficult to establish.

! As in Section we denote both the Hilbert space vectors and the functions by ¥,. It will
become clear from the context, which of both objects is meant.
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2.2 Hypersurface Evolution

Generally, for given initial data ¥y € .%, a MTWF is obtained as a solution
to a set of Schrodinger—type PDEs: Since there are now N time coordinates on
each (IV)-sector, it is possible to take N distinct time derivatives o, ..., 0, each
corresponding to a distinct Schrodinger equation

i, D(3) = (ﬁfjcp) @. (2.7)

Here, ]:Tj is called the partial Hamiltonian belonging to particle j, and has to
be defined on a space of sufficiently regular functions ® : . — C, see for instance
[168, Sect. 2.3.2] for the definition of such a regular MTWF space. In order to
recover the single-time Schrodinger equation ¢,V = HW,, it is necessary that

(Z ﬁ[jcp) (t,@y,... taxy) = (HU,) (2, ... ¢y), (2.8)

for all ® entailing a sufficiently regular W,. In general, establishing sufficient regu-
larity of ® is a considerable challenge when defining MTWF's, but indispensable
for the recovery of WU,, since an L?>-function can only be unambiguously evaluated
at a point if sufficient regularity requirements hold. E.g., if ® € C°.

The equations now define a PDE system, which is posed at all ¢ € .. The
number N of PDEs varies with ¢. Together with the initial condition

@(O,wl,...,O,wN) Z\Ifo(.’.lll,...,.’BN), (29)

this PDE system forms an Initial Value Problem (IVP), whose solution & :
& — C (if it exists) is the MTWF describing the complete dynamics of the quan-
tum system.

2.2 Hypersurface Evolution

2.2.1 From MTWEFs to Hypersurface Wave Functions

For a given MTWF & : . — C solving the above—explained IVP, the question
now arises how to extract physical predictions. Generally, ® ¢ L?(.%), so ® does
not directly serve for a probability interpretation via Born’s rule. However,
allows for recovering ¥, € % for any t € R, where |U,(x1,...,xx)|* can be in-
terpreted as the probability density for a detection of the system in configuration
q=(xy,...,xyN) at time ¢.
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2 Hypersurface Evolution

In fact, given any Cauchy surface ¥ < M =~ R*, and a sufficiently regular ®, it is
possible to recover a Fock space vector [169, (8)]

\I/E(Il,...,,IN) :CD<I1,...,IN) xjeZ. (210)

Here, ¢s := (x1,...,2y) can be considered an element of the configuration space
Q(X) and ¥y maps Q(X) — C. Since ¥ is a Cauchy surface, the points z1, ..., zy
are pairwise spacelike, meaning that Q(3) < .. So ®(¢x) € C is indeed well-
defined.

t _ 4 t SV

N S , AN

A >< 7

TijeS ] >

T ON ols3

g WY N detector worldlines
\\/)\\ \\ xXr €T

\ \ \

7/ N\ N \\ 4 4

0f 7 0 . of |

Abbildung 2.1: Left: Configurations (x1,...,zx) in a MTWEF ® must be spacelike.
Right: Position measurement along hypersurfaces. Color online.

Physically, Uy, is related to position measurements along the Cauchy sur-
face Y. Such a measurement could be realized by taking a set of detectors moving
on (timelike) world lines and initiating a detection on each of it, whenever its world
line crosses X. This situation is depicted for a curved (3) and a flat (X) Cauchy
surface in Figure The requirement that X be a Cauchy surface makes sure
that this crossing occurs exactly once.

In order to give the Uy, derived from a MTWF, a probability interpretation in the
sense of a Born rule, it is necessary to define a measure puy on Q(X) for each X,
such that

P(B) := fB (U (21,...,28)|? dus, B < Q(X) : measurable (2.11)

can be seen as the probability of finding the system in a configuration ¢y, € B.
In particular, { [¥s|* dus = 1 must hold for any ¥ and any given ®. The defi-
nition of such a uy is a non—trivial task. A possible definition for Dirac particles
can easily be derived from [169, (10)] or [I70, (1.60)], using a probability density
p(xy,...,xyN) with respect to the 3—metric on X, obtained as a pullback of the
Minkowski metric 7 on M. The measure uy defines a scalar product on functions
Uy, allowing to interpret them as vectors in a Hilbert space 4. So a MTWF may
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2.2 Hypersurface Evolution

allow for recovering not just a family (¥;),cg corresponding to dynamics, but an
even larger family (Uy) with 3 being any Cauchy surface.

The idea of expressing quantum dynamics by a hypersurface-dependent fami-
ly of vectors (Uy) was already put forward in the 1940s by Tomonaga [I71] and
Schwinger [I51], both using the interaction picture. See also [I72, Chap. 13]. In
contrast to the usual description of dynamics by a family (V;),eg in the Schrédinger
or the interaction picture, the hypersurface description by a family (¥y) does not
depend on a fixed frame of reference. Here, the evolution between two hypersur-
faces, say from ¥ to ¥, is described by a unitary operator Ug via Wy = Uy Vs,
So the family (UF') with ¥, %’ running through all Cauchy surfaces replaces the
family of evolution operators (U(t))er. It is also possible to construct the family
(US") without having a MTWF, but a given MTWF allows for a convenient recon-
struction of this family, see for instance [169, Assertion 4], [I70] (1.80)], [129, (13)].

2.2.2 Axiomatic Setting

Our hypersurface evolution framework now uses a further level of abstraction,
which is the same as in [4]: J&; is no longer required to be a Fock space, but can
be a general Hilbert space. Due to the missing Fock space structure, position mea-
surement probabilities P(B) can no longer be defined by a measure uys, as in (2.11]).
Instead, it is necessary to define a PVM Py (-) sending each Borel-measurable set
B to the projection operator Px(B) : & — 5. By permutation symmetry, P
may also be defined on measurable subsets of the unordered configuration space
['(X) o B (defined in (1.8))). Its elements will simply be denoted ¢ = {x1,...,xx}
in this chapter.

In order to define the Borel o—algebra %(X) on some set X (such as I'(X)), it
is necessary to have a topology on X. On X, such a topology is induced by the
Euclidean R* norm on M. Restricting the projection 7 : R* — R? as in to
¥, we obtain a homeomorphism 7y, = 7|y : ¥ — R3, which can be used to identify
A(X) with B(R?): For R < %, we have that R € #(X) <« w(R) € Z(R?).
By Rademacher’s theorem, ¥ possesses a tangent plane almost everywhere [4]
Sect. 3]. If a tangent plane exists at x € X, the pullback of  under the embedding
Y «—> M is either degenerate or a Riemann 3-metric. This metric can be used to

define a volume measure js on (X, %(X)), as well as a volume measure fipsy on
(I'(2), B(I'(¥))). Note that for disjoint sets A n B = J, we have

I'(Au B) =T'(A) x I'(B), (2.12)

83



2 Hypersurface Evolution

with bijective identification map ¢ — (¢ n A, ¢ n B). The following notation for
sets on T'(X) will be convenient: for any subset A € X3, let

BA):={qel'(X) | qn A=}
A(A) :={qel(X) | ¢n A# &} (2.13)
V(A):i={qel'(X) | ¢<= A}
be the sets of configurations with no, at least one, or all particles in A (see Figure

2.2). Note that 3(4)° = @J(A) = V(A°), where A° means the complement of A
with respect to ¥. We also briefly write VA for V(A), and similarly 34 and JA.

L2

Abbildung 2.2: The sets ¢F(+), 3(+) and V(-) on the (2)-sector of configuration space,
visualized. Color online.

A probability for position measurements can then be extracted by the Born
rule:

P(B) = (Uy, Py(B)Us). (2.14)

(2.14]) is called a curved Born rule, if it holds on all (possibly curved) Cauchy
surfaces ». So in this more abstract setting, the entire quantum dynamics are
described by the three families

o I, = () of Hilbert spaces,

o U?:= (Ug') of evolution operators,
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2.2 Hypersurface Evolution

e P,:=(Ps) of PVMs,

with ¥, ¥’ running through all Cauchy surfaces. Following [4], we call the triple & =
(7,02, P,) a hypersurface evolution, if it satisfies a set of desirable properties.
Just as the Haag—Kastler or Wightman axioms, this “wishlist of properties” is not
considered unchangeable, but may be subject to refinements as research on the
subject progresses. Our list comprises the following properties:

(1) Absolute continuity of the PVMs: Px(B) = 0 for all null set]] B = I'(%).

2) Naturality: US Us = U and US = Iy, with Iy, being the identity on ;.

(2)
(3) Unique vacuum: Ran(Px({J})) = span{Q2s} for some 0 # Qy € J4:.
(4)

4) Factorization: For each measurable A € ¥, there exists a unitary isomor-
phism Tx, 4 : I — 565 4 @ K5 54 (“translation”), such that for any A, A’ <

¥: measurable, we have|
Po(V(A")) = To 4| Ps(V(An A)) @ Po(V(A° 0 A")) | T a- (2.15)
Here, 7% 4 := RanPx(V(A)).

(5) Permutation invariance: 7% 54 = lITx 4.

Here, IT : %7,4 ®%,E\A - %72\14 ®%,A with H(\Ifl ® \112) = ‘1’2 ® \Ifl is the
permutation operator for two tensor factors.

In the original formulation of the hypersurface evolution setting [4], the fac-

torization property is formulated without referring to a unitary isomorphism 7.
Correspondingly, the permutation invariance property does not appear. Our for-
mulation above can hence be seen as a refinement of that one in [4].
The family of factorization maps (7% 4) could also be included into &, as it is a
further mathematical object necessary to define a hypersurface evolution. Howe-
ver, we rather interpret the factorization as an intrinsic property of the Hilbert
spaces 7%, and do not include it explicitly in &.

Further, we will often follow [4] and not make the isomorphism 7" explicit; that is,
instead of saying “the given unitary isomorphism Ts, 4 maps J: to 76 AQ5 s\ 4,"
we simply say “J6; = A5 AQ@ IG5 s 4.” Likewise, instead of (2.15)), we simply write

Po(¥(B)) = Ps(¥(A ~ B)) ® Pac(¥V(A° A B)), (2.16)

2The term “null set” is to be understood with respect to the volume measure pr(sy defined
above.

3Note that Py, restricted to subsets of V(A), maps 5 4 to itself and in fact defines a PVM on
%E,A-
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where P, means the restriction of Py to subsets of V(A) as in Footnote

In order to express locality, we will add two separate properties on our wishlist,
as in [4], Sect. 1.2.2]. To do so, we need to introduce some further notation:

Definition 2.2.1. Let X, Y’ be Cauchy surfaces and A < ¥. We then define the
grown set of A in ¥ as (see Figure

Gr(A,Y') = [future(A) U past(A)] n X' (2.17)
Similarly, we define the shrunk set of A in ¥/ as:

Sr(A,Y) = {a' e ¥ | Gr({z'}, %) < A} (2.18)

Abbildung 2.3: Grown and shrunk sets of A < X. Color online.

Our first locality assumption on & is the following:
(6) Propagation locality (PL) asserts that
UL Py (VA) US < Po(VGr(A, X)) (2.19)
for all Cauchy surfaces ¥,Y and all A € X.

Heuristically, the projection Ps(VA) “does not spread faster than light”. Here,
R < S means that S — R is a positive operator; if R and S are projections, then
R < S is equivalent to RanR € RansS. In words, (PL) means that if Uy, is concen-
trated in A € ¥, i.e., Uy € J&; 4, then Uy = US Uy is concentrated in Gr(A, ¥').
This definition is equivalent to the “finite propagation speed” (FS) assumption
given in [4].

Also, the definition of our second assumption, called “interaction locality”, was
already given in [4], but will be formulated here in a more detailed way. We begin
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with a summary of the condition: First, in a region A where 3 and >’ overlap (see

Figure , 5,4 and Sy 4 can be identified with each other. The identification
fits together with P and T'. Second, the time evolution from ¥\ A to ¥\ A (see
Figure [2.4)) is given by a unitary isomorphism VEE@A : A4 — Hsna, the “local
evolution” replacing Uy . The fact that one can evolve from Y\ A to ¥\ A means
in particular that this evolution does not depend on the state in A, that is, there
is no interaction term in the evolution that would couple ¥\ A to A. Finally, we
require that sz\;\‘A does not change when we deform A while keeping it spacelike

from Y\ A.

(7) Interaction locality (IL) asserts that & is equipped in addition with, for all
Cauchy surfaces 3, and A € ¥ n ¥/, a unitary isomorphism JE:E Y W
6y 4 (“identification”) such that

1 / 1
Jiw Jis = Jiy whenever AC S NY Ny,

JE'IZZJEIE forAcAcYnY,
, . e (2.20)
(J¥5) ' Po(V(A) JTy = Po(V(A)) for A' € A,

S 5%
TyyaUs Ty, 4 = J4s @ Viias

with some unitary isomorphism sz\,A,z : A5 a4 — Gy sy a such that for all
¥ 2 (X\A), setting A := X\(X\A) and ¥ := A U (X\A),

b3l >3 )3 )

VE\A,E = Jyna sy VZ\A,E JE\A,S' (2.21)

Henceforth, we will not mention the J—operators explicitly anymore and follo-
wing [4], we simply write

%714 = %/7,4 = %4 (2.22)

Further, we write VEZ\;\XA in place of VEE\' A x> which is compatible with the Hilbert
space identification.

Properties (1)—(7) set up the axiomatic framework for a relativistic description
of quantum dynamics using a hypersurface evolution &. For physical reasons, it
is desirable to require a further Property (8) of Poincaré covariance described in
Section [2.7.1] However, Poincaré covariance is not necessary for proving the results
in this chapter (or those in [4]).

Remarks.
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Abbildung 2.4: Depiction of interaction locality (IL). Color online.

1. Uniqueness of the vacuum state. Actually, the propositions and the theorem

presented in this chapter do not make use of Property (3), the uniqueness of
the vacuum state. The reason why we include this property into our wishlist
is that it is part of the concept of a hypersurface evolution, as introduced
in [4]. Further, this property may turn out useful in a future recovery of the
Wightman axioms, as discussed in Section [2.7]

. Ps factorizes. From (2.15)) or (2.16) it follows that Py factorizes not just for

all-sets (i.e., sets of the form V(B)) but for all product sets in configuration
space: for all A € ¥, By € VA, and By € V(X\A), we have

PZ(BA X BAc) = PA(BA) ®PAC(BAC)7 (223)

with By x B4 understood as a subset of I'(3J). That is because, first, V(A’) =
V(AN A") x V(A n A'), second, the all-sets VC' form a n—stable generator
of B(I'(Y)), and third, it is a standard theorem in probability theory that
measures (and hence also PVMs) agreeing on a n-stable generator of a o—
algebra agree on the whole o-algebra; so, roughly speaking, relations true
for all all-sets are true for all sets. Relation is exactly the definition
of the tensor product of two POVMs, so it can equivalently be expressed as

Py = Py ® Pye. (2.24)

. Splitting into more than two regions. The restriction Tx;, a7 4 of Ty, 4 to J&; ar

maps J6; 4 unitarily to S ana @ H55 acqnar. Moreover, (2.15) for A < A’
yields that P factorizes also in A’, i.e., for every A< A’ € ¥, By € VA, and
Bana € V(ANA),

Pg(Ba x Bana) = Ty 4| Po(Ba) ® Po(Bana)|Ts,ar,4, (2.25)
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with By x Bana understood as a subset of V(A’). Furthermore, it follows
that T ar ana = IITx 4 4, and that an associative law holds for the Tx as 4:
For any partition Ay, Ay, A3 of A’ € X,

(Is,a, @ Ts ayong,ns) Tona, = (T5,a,000,4, ® I on,) Ts aa,00,- (2.26)

Hence, the Hilbert spaces and PVMs factorize also for finite partitions. The
upshot is that it is OK to identify

Sy = ®ffz,4 and

(2.27)
PE = ®PAZ‘7

for any finite partition ¥ = [ J, A;.

4. Ezamples for hypersurface evolutions &. Some examples for hypersurface
evolutions can be found in [4]. As described there in Remark 15 and Secti-
on 4.1, the simplest example is provided by the non—interacting Dirac field
without a Dirac sea, which also satisfies (IL) and (PL) as defined below.
Further examples are provided by Tomonaga—Schwinger equations and MT-
WPEFs, where a recovery procedure as in Section is used. Explicit models
include the emission—absorption model of [169] and the rigorous model with
contact interaction in [165] [166].

5. Other notions of locality. There are several inequivalent (though not unre-
lated) concepts of locality; they often play important roles in selecting time
evolution laws (e.g., [10, 142]).

In the Haag—Kastler and Wightman axioms (see Section , a locality
condition appears that is different from both (IL) and (PL), viz., (anti-)
commutation of field operators at spacelike separation. It seems clear that
Wightman’s locality is closely related to (IL) and (PL). We discuss this
relationship further in Section [2.7.3]

Another different locality condition is typically called Einstein locality or
Bell locality or just locality. It implies (IL) and (PL) but is not implied by
(IL) and (PL) together; it asserts that there are no influences between events
in spacelike separated regions; that may sound similar to (IL), but it is not.
In fact, Bell’s theorem [I73], [174] shows that Bell locality is violated, whereas
(IL) seems to be valid in our universe.

6. Consistency condition. It is known that multi-time equations require a con-
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sistency condition (e.g., [I28, Chap. 2]). We note here that neither (IL) nor
(PL) follow from the consistency condition alone. Indeed, examples of (ar-
tificial) multi-time equations with an instantaneous interaction (violating
(IL)) that leaves the multi-time equations consistent were given in Lemma
2.5 of [164], while the non-interacting multi-time equations with Schrodin-
ger Hamiltonians —A; for each particle j provide an example of consistent
multi-time equations violating (PL).

2.3 Deriving a Curved Born Rule

Note that none of the Properties (1)—(8) comprises a Born rule (2.14). In order to
make physical predictions from & by a probability interpretation, we may indeed
postulate on all Cauchy surfaces ¥, i.e., a curved Born rule. However, it is
also possible to postulate only on all flat Cauchy surfaces (also called Cauchy
hyperplanes), i.e., a flat Born rule. In the rest of this chapter, we will reserve the
letter E for Cauchy hyperplanes, with the special case of E; = {xr e M | 2° =t}
being a horizontal Cauchy surface. So the Born rule is assumed on all Poincaré
transformed versions E of the time—zero surface Ej.

Our first objective is now to derive an expression for P(B) on any Cauchy sur-
face X from the flat Born rule. In that case, the flat Born rule together with the
instruction how to derive P(B) can be postulated as an alternative to the curved
Born rule.

Our second objective is to prove that the “alternatively obtained” probabilities
coincide with those predicted by the curved Born rule. We indeed establish a re-

sult of this kind in Corollary as a direct consequence of Theorem [2.3.7]

2.3.1 Previous Result

A theorem similar to ours has been proved by Lienert and Tumulka [4]; our result
differs in what exactly is assumed, and how the detection process is modeled.
The fact that the curved Born rule can be obtained through different models of
the detection process and from different sets of assumptions suggests that it is a
robust consequence of the flat Born rule.

In fact, our result was already conjectured by Lienert and Tumulka, who also
suggested the essentials of the model of the detection process we use here, although
their theorem concerned a different model. The biggest difference between their
theorem and ours is that we assume the Born rule and collapse rule to hold on
tilted hyperplanes, whereas Lienert and Tumulka assumed them only on horizontal
hyperplanes in a fixed Lorentz frame.
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2.3 Deriving a Curved Born Rule

Abbildung 2.5: (a) Our detection process is based on approximating a curved sur-
face 3 by a piecewise flat surface. (b) The detection process used
by Lienert and Tumulka is based on approximating a curved sur-
face X by disconnected pieces of horizontal surfaces. We have set
the speed of light to ¢ = 1. Color online.

Our model of the detection process is perhaps more natural than the one at
the basis of Lienert and Tumulka’s theorem, as it approximates detectors on tilted
surfaces through detectors on tilted hyperplanes, rather than on numerous small
pieces of horizontal hyperplanes. On the other hand, the result of Lienert and
Tumulka is stronger than ours in that it assumes the Born rule only on horizontal
hyperplanes (“horizontal Born rule”) and not on all tilted spacelike hyperplanes
(“flat Born rule”). Then again, our model allows for a somewhat simpler proof
compared to that of Lienert and Tumulka, and the assumption of the Born and
collapse rules on tilted hyperplanes seems natural if the workings of detectors are
Lorentz invariant. Yet, our proof does not require the Lorentz invariance of the
hypersurface evolution of the observed system (which follows from Property (8) in
Section ; in particular, the hypersurface evolution may involve external fields
that break the Lorentz symmetry.

Other works in recent years dealing with a physical analysis of the quantum
measurement process include [175] [176] 177, [178].

2.3.2 Detection Process

Our definition of the detection process is based on approximating any given Cauchy
surface ¥ by spacelike surfaces T that are piecewise flat, and whose (countably
many) flat pieces are 3d (non-regular) tetrahedra. See also Figure for an illus-
tration. This type of surface is defined as follows:

Definition 2.3.1. A triangular surface is a Cauchy surface T < M such that

T = U A (2.28)
ke

where J# is a countably infinite index set, each Ay is a 3—open, non—degenerate,
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Abbildung 2.6: Left: Part of a triangular surface T in 1 + 2 dim.
Right: A sequence of triangular surfaces T,, coverging increasingly
and uniformly to ¥ in 1+ 1 dim. Color online.

spacelike tetrahedron (i.e., the non—empty 3-interior of the convex hull of 3 + 1
points that are mutually spacelike), the Ay are mutually disjoint (Ag, N Ag, = &
for ky # ko), and every bounded region B < T intersects only finitely many Ay.

In Section [2.5] we will prove the following basic fact about triangular surfaces:

Proposition 2.3.2. For every Cauchy surface ¥ in Minkowski spacetime, there is
a sequence (Y, nen of triangular Cauchy surfaces that converges increasingly and
uniformly to 3.

Here, “increasingly” means that 1,1 < future(Y,,) for all n; see Figure .
Uniform convergence in a given Lorentz frame means that for every ¢ > 0, all but
finitely many Y, lie in {x + (s5,0,0,0) | z € X,|s| < &}; equivalently, since ¥ is
the graph of a function f : R* — R and Y, the graph of a function f, : R® — R,
uniform convergence YT,, — ¥ means that f, converges uniformly to f. It turns
out that this notion is Lorentz invariant:

Proposition 2.3.3. If a sequence (3,)nen of Cauchy surfaces converges uniformly
to a Cauchy surface X2 in one Lorentz frame, then also in every other.

Again, the proof is given in Section [2.5]
We define the detection distribution on ¥ as the limit of the detection distribu-

tions on the T, and we show in Theorem that this limit exists and agrees
with [¥x|?. But to this end, we first need to talk about detection probabilities on
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triangular surfaces Y.

So let Ay be the open and disjoint tetrahedra such that

T=[]JA (2.29)
ket

We want to consider a detector in a bounded region B < T that yields outcome 1
if there is at least one particle in B and outcome 0 if there is no particle in B. To
this end, we imagine several smaller detectors, one in each region B := B n Ay,
and set the B—outcome equal to 1 whenever any of the small detectors clicked.
Now each region By, being a subset of Ay, lies in some hyperplane Ej, and on
hyperplanes we assume the Born rule and collapse rule:

Flat Born rule. If on the hyperplane E the state vector is Vg € A% with |[Vg| =
1, and a detection is attempted in the region B S E, then the probability of outcome

114s |Pe(3(B)) Yg||* and that of outcome 0 is | Pe(3(B)°) Ui |>.

Flat collapse rule. If the outcome is 1, then the collapsed wave function is

. _ Ps((B) s
Ve TPGB) Wel (20

otherwise Pr((B)) U
Y = TP(B)) Vel 230

There are two natural possibilities for defining the detection probabilities on T
in terms of those on Ej: the sequential detection process and the parallel detection
process. According to the sequential detection process, we choose an arbitrary
ordering of the set " indexing the tetrahedra or hyperplanes and carry out, in this
order, a quantum measurement in each E} representing the detection attempt in By
including appropriate collapse and then use the unitary evolution Ug:“ to evolve
to the next hyperplane in the chosen order, here written as Ey, ;. For the parallel
detection process, consider the projection operators Pg, (3(By)) associated with
attempted detection in By; we show that they, after being transferred to 7% by
means of ng, commute with each other if interaction locality holds, so they can
be “measured simultaneously.” The simultaneous quantum measurement of these
projections in 773 provides the parallel detection process for B < T with outcome
1 whenever any of the quantum measurements yielded 1. It turns out that the

sequential and the parallel process agree with each other and with the Born rule
on T:

93



2 Hypersurface Evolution

Proposition 2.3.4. Fiz a hypersurface evolution satisfying interaction locality
(IL) (Property (7) in Section [2.2.9), a triangular Cauchy surface Y, a bounded
subset B < Y, and a normalized quantum state ¥, and assume the flat Born
rule and the flat collapse rule. The sequential detection process in any order of
the tetrahedra of Y yields the same detection probability, called P}; it agrees with
the one given by the curved Born distribution on Y, which is |Py(3(B))¥~|?.
Moreover, the parallel detection process also yields the same detection probability.

Proposition will follow as a direct consequence of Proposition in Sec-
tion 2.4

Actually, for either a triangular surface T or a general Cauchy surface X, we
want more than just to detect for a subset B whether there is a particle in B. We
want to allow the use of several detectors, each covering a region Pi,..., P. < ¥;
the outcome of the experiment is L = (Ly,...,L,) with L, = 1 if a particle gets
detected in P, and L, = 0 otherwise. It seems physically reasonable that the region
covered by a detector is bounded and has boundary of measure zero.

Definition 2.3.5. An admissible partition & = (P, ..., P,) of 3 is defined by
choosing finitely many subsets P, of ¥ that are mutually disjoint, P, n P,, = J
for ¢ # m, and such that each P, is bounded and has boundary in ¥ of (invariant)
3-volume 0. Here, the term bounded refers to the Euclidean norm on R*. We set

Py =X\(PLu...u P.) tomake (Py,...,P.1) a partition of X.

The idea is that there is no detector in P,,;. Let M (L) denote the set of
configurations in I'(X) such that, for each ¢ = 1,...,r, there is no point in P,
if L, = 0 and at least one point in P, if L, = 1; that is, M%(L) is the set of
configurations compatible with outcome L.

Now the definition of detection probabilities on a triangular surface T can
straightforwardly be generalized from a bounded set B < T to an admissible
partition & = (Py,..., P,) of T in both the sequential and the parallel sense, and
we find:

Proposition 2.3.6. Fiz a hypersurface evolution satisfying interaction locality, a
triangular Cauchy surface Y, an admissible partition &2 = (Py,...,P.) of T, and
a normalized quantum state ¥, and assume the flat Born rule and the flat collapse
rule. The joint distribution P%,(L) of L = (L, ..., L,) according to the sequential
detection process in any order of the tetrahedra of T and according to the parallel
detection process agree with each other and with the one given by the curved Born
distribution on Y, which is |Py(M s (L))¥r|?.

Proposition [2.3.6] can be regarded as a statement of the Born rule on triangular
surfaces. It follows from Proposition [2.4.3] which is proven in Section [2.4]
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2.3.3 Main Result

The following aspect of our result requires some explanation: Once we have a
triangular surface T approximating a given Cauchy surface ¥, and once we are
given an admissible partition & = (Py,...,P.) on ¥, we want to approximate
the sets P, € ¥ by sets B, in T. One may think of two natural possibilities of
defining By: (i) project P, downwards along the direction of the z° axis of a chosen
Lorentz frame; or (ii) take B, = Sr(P;, ), the smallest set on T that in some sense
corresponds to Py. Our result holds in both variants; we formulate it in variant (i)

(see Remark [14]in Section 2.6/ about (ii)). That is, choose a Lorentz frame and let
7:RY* > R3, (2, 2t 2%, 2%) = (2!, 2%, 2P), (2.32)

be the projection to the space coordinates. It is known [I79, p. 417] that the
restriction 7y of the projection 7 to ¥ is a homeomorphism ¥ — R?; thus, 7 :=

Ty o7y is a homeomorphism ¥ — T. We set
By =7 (Py). (2.33)

Of course, since we prove that the limiting probability distribution on I'(X) is given
by the curved Born distribution, the limiting probability distribution is indepen-
dent of the choice of Lorentz frame used for defining 7.

We can now state our main result.

Theorem 2.3.7. Let ¥ be a Cauchy surface in Minkowski spacetime M and
(Y))nen a sequence of triangular Cauchy surfaces that converges increasingly and
uniformly to ¥.. Let & = (46, P,,U?) be a hypersurface evolution satisfying propa-
gation locality and Uy € 5, with |Vo| = 1 for some Xq in the past of 3. Then for
any admissible partition & of ¥, B, = (Wg" (P),... ,W%”(PT)) is an admissible
partition of Y,,, and

2

2
lim HPTn(M@n(L)) AL \IJOH - HPg(Mg:(L)) US 0| (2.34)

n—o0

for all L e {0,1}".
Together with Proposition [2.3.6] we obtain:
Corollary 2.3.8. Assume the hypotheses of Theorem [2.3.7 together with the flat

Born rule, the flat collapse rule, and interaction locality. Define the detection pro-
babilities for & on ¥ as the limit of the detection probabilities for %, on Y, and the
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2 Hypersurface Evolution

latter through either the sequential or the parallel detection process. Then the detec-

tion probabilities for & on S are given by the curved Born rule, |Ps(Mx (L)) \IIZH2
for all L e {0,1}".

The proof of Theorem m (see Section makes no special use of dimension

3 + 1 and applies equally in dimension d + 1 for any d € N; tetrahedra then need
to be replaced by d—dimensional simplices.

Remarks.
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7. Grown set Gr(A,Y') and shrunk set Sr(A, ). Definition (2.17)) is equivalent

to saying that the grown set is the intersection Gr(A,Y') = ¥’ n J(A) with
the domain of dependence J(A) defined in (1.55)). Conversely, the shrunk set
is defined such that A = ¥ n J(Sr(A4,%)).

. Uniqueness of the measure on I'(X). It was shown in [4], Sect. 6 Prop. 3] that

if two probability measures p, ' on T'(X) agree on all detection outcomes,
u(Mz(L)) = p'(Mx(L)) for every L € {0,1}" and every admissible partition
P of 33, then u = u'. Thus, the whole |Ug|?>~distribution is uniquely deter-
mined by the detection probabilities.

In fact, a probability measure p on I'(X) is already uniquely determined by
the values u((A)), where A runs through those subsets of > whose projec-
tion m(A) to R? is a union of finitely many open balls (see the proof of [4,
Prop. 3]). This fact might suggest that, in order to prove the curved Born
rule, it would have been sufficient to prove the statement of Theorem [2.3.7]
only for a single detector (i.e., for partitions with » = 1 consisting of P, = A
and P, = ¥\A) in a region A of the type described. However, we prove the
stronger statement for arbitrary r because it is not obvious that the detec-
tion probabilities for arbitrary r fit together to form a measure on I'(3) (in
other words, that detection probabilities for r > 1 will agree with the Born
distribution, given that detection probabilities for r = 1 do).

. Curved collapse rule. One can also consider a curved collapse rule: Suppose

that r detectors are placed along X, that each detector (say the (—th) only
measures whether there is a particle in the region Py, where & = (P, ..., P,)
is an admissible partition, and that each detector acts immediately (i.e., is
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infinitely fast). If the outcome was L = (Ly,...,L,.) € {0,1}", then the wave

function immediately after detection is the collapsed wave function
g PeOLo(D) ¥s

¥ Ps(Mp (L)) U

(2.35)

There is a sense in which the curved collapse rule also follows from our result
and a sense in which it does not. To begin with the latter, our justification
of the Born rule on triangular surfaces was based on the idea that on each
tetrahedron Ay, we apply a detector to By, = Ap N B, and deduce from the
outcomes whether a particle has been detected anywhere in B,. This detec-
tion process measures more than whether there is a particle in By, as it also
measures which of the By, contain particles; as a consequence, this detection
process would collapse ¥ more narrowly than (2.35)).

However, if we assume that on triangular surfaces T we can have detectors
that only measure whether there is a particle in B, for an admissible partition
A = (By,...,B,), so that the collapse rule holds upon replacing
¥ — T and & — 4, then sufficient approximation of an arbitrary Cauchy
surface ¥ by triangular surfaces leads to a collapsed wave function arbitrarily
close to (2.35). Indeed, we have that (see Section [2.6) for the proof)

Corollary 2.3.9. Under the hypotheses of Theorem |2.5.

Ut Pr, (Mg, (L)) Ug™ "= Po(M»(L)) strongly. (2.36)

Other observables. As the curved Born rule shows, the PVM Ps can be
regarded as the totality of position observables on . What about other
observables? In a sense, all other observables are indirectly determined by
the position observable. As Bell [I80] p. 166] wrote:

[I]n physics, the only observations we must consider are position
observation, if only the positions of instrument pointers. [...] If
you make axioms, rather than definitions and theorems, about the
‘measurements’ of anything else, then you commit redundancy and
risk inconsistency.

A detailed description of how self-adjoint obervables arise from the Hamil-
tonian of an experiment, the quantum state of the measuring apparatus, and
the position observable (of its pointer), can be found in [I75, Sect. 2.7]. A
conclusion we draw is that specifying a quantum theory’s hypersurface evo-
lution is an informationally complete description.
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2 Hypersurface Evolution

11.

12.
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As another conclusion, the PVM Py, serves not only for representing detec-
tors. When we want to argue that certain experiments are quantum mea-
surements of certain observables, we may use it to link the quantum state
with macro—configurations (say, of pointer positions), and in fact to obtain
probabilities for pointer positions.

Coming back to the Bell quote, one may also note that for the same rea-
son, making the curved Born rule an axiom in addition to the flat Born rule
means to commit redundancy and to risk inconsistency. That is why we have
made the curved Born rule a theorem.

Of course, we have still committed a little bit of the redundancy that Bell
talked about by assuming the Born and collapse rules on all spacelike hyper-
surfaces while it suffices to assume them on horizontal hypersurfaces [4].

Objections. Some authors [I8T] have criticized the very idea of evolving states
from one Cauchy surface to another on the grounds that such an evolution
cannot be unitarily implemented for the free second—quantized scalar Klein—
Gordon field. It seems to us that these difficulties do not invalidate the
approach but stem from analogous difficulties with 1-particle Klein—-Gordon
wave functions, which are known to lack a covariantly—defined timelike pro-
bability current 4—vector field that could be used for defining a Lorentz—
invariant inner product that makes the time evolution unitary (e.g., [I72]).
In contrast, a hypersurface evolution according to our definition can indeed
be defined for the free second—quantized Dirac equation allowing negative
energies [182] (183 [184], 4]. Other results ([132, Sect. 1.8], [I85, [186]) may
raise doubts about propagation locality; on the other hand, these results
presuppose positive energy, which we do not require here; moreover, violati-
ons of propagation locality would seem to allow for superluminal signaling.
Be that as it may, we simply assume here a propagation—local hypersurface
evolution as given; further developments of this notion can be of interest for
future works. See also Section 2.7.3] for a further discussion.

FEvolution Between Hyperplanes. Following [4, Sect. 8], we conjecture that
a hypersurface evolution & satisfying interaction locality and propagation
locality is uniquely determined up to unitary equivalence, see Remark 14 in
[4, Sect. 3.2], by its restriction to hyperplanes. We conjecture further that a
hypersurface evolution that is in addition Poincaré covariant (see Property
(8) in Section is uniquely determined by its restriction to horizontal
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hyperplanes F;. While we do not have a proof of these statements, a related
statement follows from our results:

Suppose two hypersurface evolutions & = (A, P,,U2) and & = (A, P, U°)
use the same Hilbert spaces and PVDMs but potentially different evolution
operators; suppose further that the evolution operators agree on hyperplanes,
UE = UEE/ for all spacelike hyperplanes E, E’'; finally, suppose that both &
and & satisfy interaction locality and propagation locality. Then they yield the
same Born distribution on every Cauchy surface X, i.e., for every ¥V, € Iz,
and every B < I'(X),

|Po(B) UE, Wo|* = || Pe(B) Ug, ol (2.37)

Indeed, by Remark [§] holds for all B € ¥ if it holds for all M4 (L)
for all admissible partitions & of X. By Theorem [2.3.7 both sides can be
expressed as the limits of detection probabilities on triangular surfaces. Those
in turn can be expressed, using the sequential detection process, in terms of
U g' respectively U g' only for hyperplanes E, E’, so they are equal.

2.4 Detection Process on Triangular Surfaces

We now give the detailed definitions of the sequential and parallel detection pro-
cesses and prove Propositions and

To begin with, consider an admissible partition & = (Py,..., P,) of a Cauchy
surface ¥ and a vector L = (Lq, ..., L,) € {0,1}". Actually, in this section we will
not make use of the assumption in Definition that the boundaries 0F; are
null sets, an assumption we need for Theorem [2.3.7]

The set of configurations in I'(X) compatible with the single outcome L, at an
attempted detection in P is

(P)  ifL=1

gP)  ifL,=0" (2.38)

Mgz([;g) = {

The set of configurations compatible with the measurement outcome vector L when
detection is attempted in Py,..., P, is

Mop(E) = () Mes(Le). (2:39)

(=1

Now consider a triangular surface T = Uke[A_k and an admissible partition
B = (By,...,B,) of Y. For either the sequential or the parallel detection process
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2 Hypersurface Evolution

on T, we imagine a small detector checking for particles in each
Bkg = Ak M Bg, (240)

with outcome si, = 1 if a particle was found and s, = 0 otherwiseE]
We say that the outcome matrix s is compatible with L (denoted s : L) whenever

3]{76%18“:1 lngzl

_ . (2.41)
\V/]{?EQ%/ISM=O lng=O

er{l,...,T}:{

Let Ej. be the hyperplane containing A,. The configurations in E) compatible with
outcomes Sgg Or S := (Sk1, - - -, Skr) are then given by

H(Bkg) e F(Ek) if Sk = 1

, M M,
O (Bre) < T(Ey) if 510 =0 kEy, (sk) ﬂ keEy, (Ske)-

=1

MkéEk (Skz) = {

(2.42)
Likewise,

3(By,) < T(Y if spp=1
( kf) ( ) ke MkT Sk ﬂMkéT Skf) (243>

Miey (sie) := { B(Br) cD(T)  if sy =0 (=1

It follows that, based on the definition ([2.39)),

Mgy(L) = U ﬂ My (sr) up to a set of measure 0, (2.44)

s:L ket

meaning that the symmetric difference between the two sets is a set of measure 0
in D(Y). This is the case because, as described in Footnote [4] the configurations
in the symmetric difference have at least one particle in the 2d set 04, for some

k.

2.4.1 Sequential Detection Process

We now formulate the definition of the sequential detection process and prove
agreement with the Born rule. Fix an ordering of | i.e., a bijection . # — N. For

4We could also have defined By, by Ay n B, instead of , but that would have caused
a bit of trouble because these sets would not have been disjoint. Our choice , on the
other hand, has the consequence, which may at first seem like a drawback, that Uy Bys # By
because we have removed the points on the 2d triangles where two tetrahedra meet. However,
the set removed, being a subset of a countable union of 2d triangles, has measure 0 on Y, and
for any set A € 3 of measure 0, 3(A) has measure 0 in I'(X) and, by the absolute continuity
property (1), also Ps(3(A)) = 0.
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2.4 Detection Process on Triangular Surfaces

ease of notation, we will simply replace # by N using this particular ordering.
The detection process is:

e Set E() = {IO = O} and \I/() = \IJEO-

e For each k in the specified order, do:
— Evolve ¥, to Ej.

— Carry out detections of By, for all £ = 1,...,r, i.e., quantum measu-
rements of Pg, (3(By)), and collapse accordingly, resulting in the (nor-
malized) state vector ¥y € %, .

— Repeat.

Note that by Definition [2.3.1] each B, intersects only finitely many Aj. Thus,
from some K +1 onwards, all By, are empty, si, = 0, and no quantum measurement
needs to be carried out in A. Hence, it suffices to consider finitely many repetitions
in the above loop, namely those for £ up to K.

From the flat Born rule and the flat collapse rule, we can now express the
detection probabilities and the collapsed state vectors. Fix some k and ¢; suppose
that in the previous tetrahedra k' < k (i.e., none if k£ = 1), the measurements have
already been carried out with outcomes s./4; suppose further that in the previous
detector regions Byy with ¢/ < ¢ (i.e., none if ¢ = 1) in the same tetrahedron
Ay, the measurements have already been carried out with outcomes s.p; suppose
further that Wy ,_; is the collapsed wave function after the previous measurements,
which for ¢ > 1 is given by the previous step, for / = 1 and k > 1 is given by

Wio = Uﬁ:_l Vi1, (2.45)

(with Uy_;, = Wj_; in the notation of the process description above), and for
¢ =1k =11is given by
Uy =Up U, (2.46)

Conditional on the previous detection outcomes, the probability distribution of
the next detection outcome sy, is, by the flat Born rule,

2

P(ske = 1) = || Pg, (3(Bre)) Yre—1| (2.47)
and the state vector collapses, by the flat collapse rule, to
Pg, (M, Uy
U, = B (Mier, (Sk1)) k,t—1 (2.48)

 1Pe (Mg, (i) W |

This completes the definition of the sequential detection process.
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Lemma 2.4.1. Assume the flat Born rule and the flat collapse rule. Conditional
on the measurements in the tetrahedra k' < k, the joint distribution of all outcomes
(Ske)e=1.r = si; in Ay is

P(sp1, - -, Sk) = | P (Mig, (s5)) Wio| (2.49)

and the collapsed wave function after the kr—measurement, given sy with nonzero
probability, is
Pp, (M, (51)) Yio

Uy, = ) 2.50
= [P, (M, (50)) ol (2:30)

Proof. 1t is well known general facts about PVMs P that
P(51) P(S2) = P(S2) P(51) = P(51 1 5,), (2.51)

and that a quantum measurement of P(S;) with outcome s; on U, followed by one
of P(S2) with outcome s9, have joint Born distribution

P(s; =1,80=1) =P(sy = 1|57 = 1)P(s; = 1)

2.52)
5 (
\P&73;@\P&W)P&m&),
and collapsed state vector, given s; = 1,59 = 1,
( Sl M Sg)
S9)—————/||P(S2) = 2.53
P(S:) /‘2P&W‘P&0&NH (2.53)

HP(51 v

Iteration with r sets rather than 2 and the definition of Mg, (sx) yield Lem-
ma 2471 O

Lemma 2.4.2. (IL) implies that

Ug, Pr,(Myp, (s0))Us* = Pr(Mpx(si)). (2.54)

Proof. Decompose 5, = H, @ Hp\a, and Hy = Hp, @ s, By (IL), we
have that
Ugt = In, ® Vi, (2.55)
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We know that I'(Ey) = T'(Ax) x T'(ER\Ag). The set Mg, (sr) € I'(E}y) factorizes
in the same way:

My, (s1) = Nia,, (s1) x T(E\AR). (2.56)

That is because whether a configuration ¢ is compatible with the outcome sy, i.e.,
q € Mg, (sk), does not depend on the points in g outside of Aj. Here, the set
Nia, (sk) € T'(Ag) is defined in the analogous way to Myg, (sk), i.e.,

ElAk (Bkg) lf Sk = 1

2.57
D, (Bre) if sp =0, (2:57)

(=1

NkAk(Sk) = ﬂNkZAk(Sld), Nkfﬁk (Skg) = {

where 3 4(B) means the set of all configurations in I'(A) with at least one particle
in B. Hence, the projection Pg, (Myg, (sx)) decomposes into a tensor product

Pp, (Mg, (s1)) = Pay(Nea, (51) ® Igaay (2.58)
and by (2.55),
UR, P, (My, (50))Ur* = [In, ® Vg \x* 1[Pa, (Nea, (56) @ Ipaa, 1[1a, ® Vitas*]

= [Ia, © Pa,(Nia, (51)) 0 In,] @ [Voat 0 Ipoa, © Vaa™]
= Pr,(Nika,(sk) ® Ima,

= Pr(My (si)), 250
2.59
for the same reasons as (2.58]). O

Proposition 2.4.3. Assume the flat Born rule, the flat collapse rule, and (IL).
The unconditional joint distribution of all outcomes, i.e., of the matriz s compri-
sing all sge, agrees with the Born distribution on T,

2

P(s) = HPT (ﬂ Mw(sk)) Uyl (2.60)

with Yy = Ugo\llo (actually regardless of whether 0B, are null sets). In particular,
the distribution of L = (L1, ..., L,) is the Born distribution | Py(Mgy(L))Uy|?.

Proof. As noted before, all sy, vanish from some K + 1 onwards (and formulas
below will take for granted they do), and we need consider only k& < K. The fact,
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used before in (2.52)), that for subsequent measurements the projections multiply,
yields from Lemma that

2
P(s) = |UZ, Pri Mic, (sx)) U - UE, Po, (Mg, (s))UF x| . (2.61)
Inserting ([2.54)) in (2.61)) yields

P(s) = | Pr(Mkr(sk)) - 'PT(MM(SI))\I/T‘Q

_|py (ﬁ Mm(sk)) %\2 (2.62)

k=1
2

)

= | Py (ﬂ MkT(Sk)) Wy

keN

as claimed. O

Proposition [2.3.6] insofar as it concerns the sequential detection process, follows
from Proposition m (actually regardless of whether 0B, are null sets), and Pro-
position follows further as the special case in which r = 1, B; = B, and
Br+1 = B

2.4.2 Parallel Detection Process

We now formulate the definition of the parallel detection process and prove the
Born rule for it. Throughout the whole subsection, (IL) is assumed.

The proof of Lemma also shows that, analogously to ([2.54]),
Ug, Pr,(Myes, (s1))Us* = Pr(Myer (sie)). (2.63)

As outlined in Section [2.3.2] the idea is to think of the detection attempt in By,
as a quantum measurement of the observable

Ug, P, (3(Bre))U* = Pr(3(B)), (2.64)

which is for sy, = 1. Since By is non—empty only for finitely many & (for
k=1,...,K), we are considering only finitely many observables. They commute
because projections belonging to the same PVM always commute. Their simulta-
neous measurement is the definition of the parallel detection process.

We now prove the Born rule for the parallel detection process. When conside-
ring the simultaneous measurement of the operators , we need their joint
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diagonalization; the joint eigenspace with eigenvalues (Sg¢)xe is the range of
K r K
Py (ﬂ ﬂ MkeT(Ske)) = Py (ﬂ MkT(Sk))7 (2.65)
k=1/=1 k=1
so the probability of the outcomes (Sg¢)xs is

2

HPT (ﬁ Mix(s1)) W (2.66)
k=1

and the probability of outcome L is

e () o) e

;Ll Py <1[]1 Msz(Sk)) \I’T‘Q

— | Py (U ﬁ MkT(Sk)) \I,T‘Q (2.67)

s:L k=1

— |Pr(Ma(1)) wr ’

Y

because the sets ﬂfle My (si) are mutually disjoint and thus their projections are
mutually orthogonal, and because of and the absolute continuity property
(1). That is, the probability of outcome L agrees with the Born rule. This proves
the statement about the parallel detection process in Proposition [2.3.6] and thus

also in Proposition [2.3.4]

Another way of looking at the parallel detection process is based on tensor
products: Since T = Uiil Ag U R with remainder set R = T\ Uiil Ay, we have
from Remark B in Section 2.2.2] that

K
A = (X) Ha, ® Hr. (2.68)
k=1

By (IL), each J#A, can be regarded as a factor in S5, = Ha, @ Hp,\a,- With the
flat Born rule in mind, or with the idea that Ppg, is the configuration observable on

E}, the attempted detection in By, can be regarded as a quantum measurement
in %, of the observable Pg, (3(Bye)), which is of the form

PEk (ElEk (BM)) = PAk (Elﬁk (BM)) 2 IEk\Ak' (269)

Thus, the attempted detection in By, can also be regarded as a quantum mea-
surement in J#A, of the observable Pa, (3, (Bke)). These observables commute
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for different ¢ and equal k£ because they belong to the same PVM P, , and they
commute for different k in J% because of the tensor product structure (2.68]). It
follows that

Py(My(L)) = > R) Pa, (Nka, (s1) ® In, (2.70)

s:L k=1

with Nia, as in (2.57), which agrees again with the Born rule on T, as claimed in
Proposition 2.3.6]

2.5 Approximation by Triangular Surfaces

In this section, we prove Propositions [2.3.2] and [2.3.3]

Proof of Proposition[2.3.9 Fix an n € N and set ¢ = 37". We construct a 3e—
approximation T, to 3. First, consider the function f; : M — M, (2%, x) —
(2° —t, x), which “lowers a point by an amount ¢ in time.” We use f to define the

sets (see Figure [2.7):
Soe = fo[B],  Sese = U 1-[%]. (2.71)

e<e’<3e

So Yo, is a version of X, lowered by 2¢ and X, 3. is a slice below ¥ of thickness 2¢,
centered at Xo..

We now choose a decomposition of R* into (non-regular) tetrahedra R?® =

UkeNA_Z with open AZ such that each pair of vertices @ ;, @ ;,i,j € {1,2,3,4}

Abbildung 2.7: Left: Construction of the approximating sequence T,, / X..
Right: |h(y)| < € illustrated in 2+1 dim. Color online.
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has a distance |z}, —x} ;| < ¢ and such that every bounded region intersects only
finitely many tetrahedra. For example, we may subdivide R? into axiparallel cubes
with vertices on %23 and subdivide each cube into 3! tetrahedra with vertices on

52°
L.

The four spacetime points zy; := 7r|§215mz7i € M (obtained by lifting @}, up to
the 2e—surface, with ¢ = 1,2, 3, 4) span a spacelike open tetrahedron A} in M. Now

set T, = UkeNA_Z.
Claim: T, is a uniform e-approximation of ¥, i.e., T,, € X, 5. (see Figure [2.7)).

Proof: Regard the surfaces T,, and . as the graphs of functions R?* — R, hence-
forth denoted simply by T, (-) and Xo.(+); that is, (T, (x),z) € T, for all x € R3
and z = (Y, (7(x)), 7(x)) for all z € T,,. Both functions are Lipschitz—continuous
with Lipschitz constant 1. Further, there is always a vertex of AZ (possibly several

ones) that maximizes Y,,(-) on A? (a “highest” vertex), and one (or several) that
minimizes T, (+) (a “lowest” vertex). Now consider the “height difference function”
h(zx) = T, (x) — Lo (). (It is Lipschitz continuous with Lipschitz constant 2.) For
any vertex xy,;, we have that h(m(2};)) = 0. And for any other point y € A}, we
have that |m(z};) — 7(y)|rs < €, so by Lipschitz continuity,

Yoe(m (1)) — Xa:(m(y)) <e. (2.72)

If 7, is a highest vertex, then

T (r(af, ) = Talr(y) > 0 -
= h(r(egy) —h(n(y) > —e < hx(y)) <e,

(see Figure [2.7). The same reasoning with a lowest vertex yields h(m(y)) > —¢, so

in total |h(7m(y))| < e, which proves the claim. O

Claim: T,, is a Cauchy surface.

Proof: We need to show that T, is intersected exactly once by every causal in-
extendible curve v : (—o0,00) — M. We regard Y, again as the graph of an
equally denoted function T,, : R® — R. Now, consider the height difference functi-
on h(t) =~°(t) — T,(m(y(t))), which tells us “by how much v is above T,.” Since
T,, consists of spacelike tetrahedra, Y, is Lipschitz—continuous with Lipschitz con-
stant < 1. As « is timelike—or-lightlike and w.l.o.g. directed towards the future,
we have that h is strictly increasing, so there can be at most one ¢ with h(t) = 0.
That is, there is at most one intersection of v with T,,.

On the other hand, an intermediate value argument yields that there must be at
least one intersection point: Otherwise, either h(t) > 0 for all ¢ or h(t) < 0 for all ¢;
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Abbildung 2.8: Left: ¥ is being translated in the Proof of Proposition [2.5.1]
Right: The same structure after a boost. Color online.

w.l.o.g., assume the former case. Since T,, is an e-approximation to ., we know
that 7°(¢) > Y, (m((t))) > Zac(m(v(2))) — & = L3.(w(y(t))), which implies that v
does not intersect 3., but that is impossible because >3, is a Cauchy surface. []

We can now complete the proof of Proposition [2.3.2] Since T,, approximates Y.
up to ¢, it approximates ¥ up to 3¢. Furthermore, T, < ¥, 5. and Y, ;; < 215 o
and since 21 . lies in the future of X, 3. while being disjoint from it, 1,1, hes in

the future of T (see Flgure. This completes the proof of Proposition [2.3.2) “

Proposition follows from the following statement:

Proposition 2.5.1. Lete > 0, ¥ be a Cauchy surface, a. := (£,0,0,0) the vertical
4-vector of length €, and g : Ml — M, g € 731 a proper Poincaré transformation.
Then

g|X +a:] < {z+ (5,0,0,0) | z € ¢2,0 < s <&}, (2.74)

where
£=(Br+e, (2.75)
with 3 € [0,1) the boost velocity of g and v := (1 — B*)~Y2 (the “Lorentz factor”).

Proof of Proposition[2.5.1. A Poincaré transformation g consists of a translation
and a Lorentz transformation A, which in turn consists of a rotation and a sub-
sequent boost Ag. The rotation leaves a. invariant. Thus, g[2 + a.] = g% + Aga..
Without loss of generality, Ag is a boost in the z! direction (see Figure ,

v By e
Ay = br v 1 , 80 Aga. = ﬁge . (2.76)
1 0
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2.6 Proof of Theorem m

Consider any point z, = (20, x,) € ¢g3. Denote by z, = (z),x;) the point
on g[X + a.] right above x,, ¢, = x,. We want to show that z) < 20 + £. Set
Te i= T4 + Npa. Since g[¥ + a.] is a Cauchy surface, any two points on it (such as
xp and x.) must be spacelike separated, so

|2 — @] < |wy — @] = [®0 — @] = Bre. (2.77)
Now the triangle inequality implies the desired bound
|z) — 20| < |of — 20 + |20 — 20| < Bre+ye = £ (2.78)

]

2.6 Proof of Theorem 2.3.7

Here is a quick outline of the proof. We want to show that

Py, (L) := | Pr,(Ms, (L) ¥, [, (2.79)
converges, as n — o0, to
Py(L) = | Po(Map(L) x| (2.80)

The proof is done by a squeeze-theorem argument: We will define two distributions
P,, and P,, on {0, 1}" such that

~ ~

P.(L) < Py, (L) <P (L),  Bu(L) <Ps(L) <Py (L), (2.81)
and prove that I@n(L), Iﬁ’n(L) both converge to P4 (L) as n — o0.

We go through some preparations for the proof. To begin with, it is easy to see
that %4, = (Bni, ..., Byr) with

B = o (Py), (2.82)

is an admissible partition of Y,,: First, B, N B,,,, = & for £ # m because ﬂg” isa
bijection. Second, B, is bounded because Wg " maps bounded sets to bounded sets.
Third, the boundary 0B, of B,, in T, is wgn(an) because Wg" is a homeomor-
phism. Finally, in order to obtain that uy, (0B,,) = 0 we note that us(0F;) = 0,
that ¥ (and Y,) possesses a spacelike tangent plane almost everywhere (relative
to Lebesgue measure A on R?), and that, at points with a spacelike tangent plane,
[t possesses a nonzero density relative to A o 1y, so ux and A o 7y have the same
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2 Hypersurface Evolution

null sets. L
For the definition of PP, P, we introduce more notation:
We define

~ ~

Cng = Sl"(Bng, Z), Cng = Gr(Bng, 2) (283)

Abbildung 2.9: Definition of CA'M and éng. Color online.

The corresponding sets of compatibility in configuration space I'(X) are

—~ [3Cw)  ifLi=1 — f3C)  ifLe=1
M,o(Ly) = {@@w) 10 Myo(Ly) = {@ G i Ly, (2.84)
Mys(L) = (Y Mae(Le),  Mus(L) := () Mue(Le). (2.85)
/=1 l=1

The probability distributions that serve for the squeeze—theorem bounds are defi-
ned by

P, (L) := (Us|Ps(Mun(L)|Us)  By(L) = (Us|Ps(M,s(L)|[¥s).  (2.86)

Lemma 2.6.1 (Squeeze-theorem bound for Pg). For all L € {0,1}",

— ~

M,s(L) € My(L) € M,x(L),
hence Px(Mus(L)) < Ps(M (L)) < Ps(M,s(L)), (2.87)
and B, (L) <Py(L) < P,(L).

Proof. The statement is actually true for any triangular surface T, regardless of
whether it belongs to a sequence converging to Y. Since we need it for T,,, we use
here the notation that refers to 1,,.
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2.6 Proof of Theorem

The inclusion R 5
Cuwc P c Cng, (288)

A~

is obvious, since w|Cy] is a shrunk version of 7P| (i.e., smaller) and W[éng] is a
grown version of it (i.e., larger).
We “lift” those sets to configuration space, keeping in mind that

if A< B, then 3(A) < 3(B) and F(A) =2 F(B). (2.89)
By definition (2.84)) we then have:
Moe(Le) € Mes(Le) € My(Ly). (2.90)
Inclusions persist under intersections, i.e.,

if A, < B, for all £, then [ A, < () Be. (2.91)
l 0

This yields the first line of (2.87)). The transition from sets M to projections P(M)
as in the second line of (2.87) is straightforward, and sandwiching between Vy’s
yields the third line of (2.87)). O

Lemma 2.6.2 (Squeeze-theorem bound for Py ). Assume (PL). Then, for all
Le{0,1}",

~

Pz(]\/jnz(L)) < Uy, Pr,(Mg,(L)) Ugm < Po(M,x(L)),

. g (2.92)
hence P.(L) < Pg, (L) < P,(L).

Proof. Also this statement is actually true for any triangular surface T, regardless
of whether it belongs to a sequence converging to X.
By (PL) (2.19),
U Po(VA)US < Po(VGr(A, X)) (2.93)

Since (FJA)° = JA = Y(A°), we have that

UL Ps(AA) UL = US (I — Ps((3A)) US
= Uy (I - P5(¥(A%) U

> [ — Po(YGr(A5, X)) (2.94)
=T — Po(V(Sr(4, 5 )))

= I — Pyo((3Sr(4,¥))°)

= P (3S1(A, %)),
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2 Hypersurface Evolution

and

UL Po(BA)US = Us Po(V(A%) US
< le (VGI"(AC, E,))

2.95
— Ry (Y(St(4,2))) (2:%)
= Py (OSr(A, ).
Thus, inserting A — B, ¥ — T, and ¥/ — X,
UY Py, (3Bn) UL = Pg(3C,0) (2.96)
U¥. Pr,(@Bu) U™ < Ps(@Chi) '
On the other hand, inserting A — Vng, ¥ -7, and ¥ — X,
U Po(3C,0) UE, = Py, (3St(Crp, ) (297
Us Po(@Chi) Uy, < Pr, (@St(Crp, ). '
Since for A € X always
A < Sr(Gr(A, %), %), (2.98)
and since A € B implies 3(A) < 3(B) and J(A) = (B), we have that
Py, (3St(Coe, 1)) = Py, (3B, (299
Py, (@St(Coe, 1)) < Pr, (@ Bue)-
Putting together (12.96)), (2.97)), (2.99),
Po(@Coi) < U, Pr, (@ Bu) Us™ < Po(@Chi) (2.100)
Ps(3C,0) < U¥. Pr,(3Be) Ug™ < Ps(3Cn0), '
that is, in another notation,
Pe(Me(Le) < U, Pr,(Mer, (L) U™ < Po(My(Le)). (2.101)

Now we want to conclude an analogous statement about L instead of L,. Note
that U¥ P, (-) Us™ and Ps(-) are two different PVMs that will in general not even
commute with each other. The argument that we need has the following general

112



2.6 Proof of Theorem m

form: For two different PVMs Py, P, the ranges satisfy the relations

0

U

<=

<=

Pi(Ay) < Py(Ay) A Pi(B1) < Py(By)

Ran(P;(A;)) € Ran(P2(As)) A Ran(Pi(B;)) € Ran(Py(Bs))
Ban(Pl (A1) N Ran(Pl(Bl)z - Ban(Pg(Ag)) N Ran(Pg(Bg)E
:Ran(Pl(Xl)Pl(Bl)) :Ran(Pg(Xg)Pg(Bg))

Py(A1)Pi(By) < Py(As) P (Bs)

Pl(Al M Bl) < PQ(AQ M Bz)

(2.102)

Applying this argument to (2.101)) and the finite intersection (), yields the first

line of (2.92)). O

Lemma 2.6.3. Fiz ¢ € {1,...,r}; Chp is a decreasing sequence of sets, Che 2
On+1,€7 with
(Cu P (2.103)
neN

~

Che 1s an increasing sequence of sets, Cpy S Cpy14, with

In particular,

U éng D interiors (F). (2.104)
neN
() Cae\Crt < 0P (2.105)
neN

Moreover, equality holds in (2.103), (2.104)), and (2.105) whenever T, n ¥ = .

t P, ~
A /-> £ Cne
f\

I (P )T

Abbildung 2.10: Convergence of the sets éng as n — oo for fixed ¢/ as in Lem-

ma . Color online.
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Proof. The decreasing/increasing behavior of the sequence is a direct consequence
of T,11 € future(Y,) and the definition of grown and shrunk set. For demons-
trating (2.103)), since my, is a homeomorphism ¥ — R?, it suffices to show that
N, 7(Cre) S 7(P,) in R3. If y ¢ w(P,), then it has positive distance to w(P;) and
7[[Z—(&,0,0,0)] npast(rs'(y))] is disjoint from 7(F;) for sufficiently small & > 0,
so y ¢ m(Chy) for sufficiently large n. Similar arguments yield (2.104). Concerning
the statement about equality, in that case for every x € By, future(x) n past(2)
has nonempty interior in M, so W(éng) contains an open neighborhood of 7 (/)
and thus 7(F). A similar statement holds for the interior. O

Lemma 2.6.4. For every L € {0,1}", ﬂ M,s(L \Mng( ) is a null set w.r.t.

neN

Hr(z)-

Proof. We make use here of the requirement ps(0F;) = 0 in Definition [2.3.5
Consider first M,¢(Ly) and M,¢(L,). In case L, = 1, we have that

]\\{nf(l) iﬂcnz, ]vwne(l) = HACM (2.106)
= Mng(l)\Mng(l) = (chg) M (@Cng)

In case L, = 0, we have that

Mo (0\Mye(0) = (DChu) 0 (3Cr). (2.107)
So either way,
Moo(Le)\Muo(Le) = (BCrs) A (3C0) < A(C\Chro).- (2.108)

Now we want to consider L instead of L,. It is a general fact about sets that if
Ay € By for all £, then

(ﬂ Bg)\(ﬂ Ag) < | JB\A). (2.109)

Thus, for Ag = J/\an(Lg) and B@ = ]\\/[/ng(Lg),

M (D\M (L gU (LN(L) € U Cat\Coe) —H(U( Coi\Cur)).
- ) (2.110)
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2.6 Proof of Theorem

Now we want to take the intersection over all n € N. In this regard, we first note
the following extension of (2.89)): if (A, )nen 8 a decreasing sequence of sets, then

M324. = a(ﬂAn). (2.111)

After all, if ¢ is a finite set that intersects every A,,, then it must contain a point
from (), A,; conversely, a finite set ¢ intersecting (), A, trivially intersects every
A,.

Applying this to A, = |J,(Cne\Cye), which is decreasing because Cp¢\Cyy is, we
obtain that

() Max(D\Mos(L) = 3<ﬂ U Cne\Cne) (2.112)

neN neN /=1
It is another general fact about sets (not unrelated to (2.111))) that if for every
Ce{l,....r}, (An)nen 18 a decreasing sequence of sets, then
N U Ap = U () Ane. (2.113)
neN /(=1 =1neN

Thus, for A,, = énz\énb

(" s (D\Mos (L) < H(U N Cng\ong) c H(U é‘PZ) (2.114)

neN =1neN

by Lemma and (2.89)). For any set A with us(A) = 0 it follows that 3A is, in
every sector of configuration space I'(X), a finite union of null sets, so jip(s)(JA) =
0. For A = |, 0P, we obtain the statement of Lemma O

Proof of Theorem |2.5.7]. By Lemma and Lemma [2.6.2] it suffices to show
that for every L€ {0,1}",

~ ~

P, (L) —Py(L) >0 asn— . (2.115)

From Lemma and Property (1), according to which Ps; must be absolutely
continuous with respect to pp(x), we have that

(ﬂ Mys(L\M,,s(L )) — 0. (2.116)

neN
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2 Hypersurface Evolution

The continuity property of measures u says that, for every decreasing sequence A,
of sets with (), A, =: Ag, u(A;) = pu(Ax) as n — oo. For every Uy, € &, pu(-) =
(V| Ps(-)|¥y) is a measure. We know from Lemma 1| that ]\/an(L) - ]\\/[/nE(L).

We show that for every L € {0 1}, the sequence A (L)\M\ng(l}) is
decreasing: It suffices to show that Mng(L) is decreasing and Mng(L) is increasing.

We know from Lemma 3 that C ne 18 decreasing and C ne 1s increasing, so by
- both EIC’ng and @Cng are decreasing, so an(Lg) (which is either EICM or
HChe, depending on Ly) is decreasing, and so is

M5 (L) = ﬂ Myo(Ly). (2.117)
/=1

Likewise, ]/W\ng(Lg) (which is either EI(A;’M or @éng, depending on L) is increasing,
and so is M, s(L). Therefore, A,, is decreasing, as claimed.
We can conclude that

P, (L) — P, (L) = (Wy| Ps (M (L)\M,5,(L))[Us) > 0 as n — 0. (2.118)

This establishes the desired squeeze theorem argument and finishes the proof of
Theorem 2.3.7 O

Proof of Corollary[2.5.9. 1t is well known that for a sequence P, of projecti-
ons, weak convergence to the projection P (i.e., (V|P,|V) — (V|P|¥) for eve-
ry U) implies strong convergence (i.e., P,¥ — PV for every V)f| Set P, =
Ug Pr, (Mg, (L))Us" and P = Ps(My»(L)). Then Theorem provides the
weak convergence, and the strong convergence was what we claimed. O

Remarks.

13. Type of convergence of (Y,,)nen. The proof of Theorem[2.3.7]still goes through
unchanged if the convergence of the sequence (1,)nen is not uniform but
uniform on every bounded set.

14. Alternative definition of B,,. In order to avoid the choice of a particular
Lorentz frame in the definition of B,,, and thus of the detection probabilites,

SFor the sake of completeness, here is a proof: First, P2 = P,, and P? = P imply that | P, V|? =
(V| P20 = (U|P,|V) — (U|P|¥) = | PY|2. Second, since (¥|S|®) can be expressed through
U+ ®|S|¥ £ &) and (¥ +iP|S|P +iP) (polarization identity [I87, p. 63]), weak convergence
implies (¥|P,|®) — (¥|P|®) for every ¥ and ®. Now |P,¥ — PV |? = (¥|(P, — P)?|¥) =
CU[P2 — PuP — PP, + P20y = |PUJP — (U|PL|PU) — (PUIPT) + | PUJE — PO -
(V|P|P¥) — (PY|P|¥) + | PY|? = 0.
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2.7 Ideas Towards the Reconstruction of a Wightman QFT

we could replace B, by -
Bng = Sr(Pg, Tn) (2119)

(The use of Gr instead of Sr would lead to overlap among the B,;, so they
would no longer form a partition.) With this change, Theorem remains
valid. In the proof, we then need to modify the definition of C); to

Crt = Sr(Bn, %), (2.120)

while the definition of CVZ'M is kept as it is. We would still use a preferred
Lorentz frame for the definition of C,,,, but that is a matter of the method
of proof, not of the statement of the theorem. The proof goes through as
before, except that needs to be checked anew: it is still true because
for every z in the 3—-interior of Py, Gr(Gr(z, T,,), ) < P, for sufficiently large
n.

2.7 ldeas Towards the Reconstruction of a
Wightman QFT

Recall that the three fundamental mathematical constituents for the Wightman
setting were

e J7: A single Hilbert space,

e U(o) :=(U (9))96731 : A family of Poincaré transformation implementers,

o ¢(0) := (¢(f)) fesma+1y: A family of field operators.

In our case, d = 3. Further, Wightman axioms (0)—(4) in Section require the
existence of a distinct domain D < .7 and a vacuum vector {2 € D.

2.7.1 Recovering the Hilbert Space

For a reconstruction of a Wightman QFT from &, the first step is to define a
Hilbert space ¢, for instance by setting ¢ := %,. The vacuum vector is then
evidently recovered as 2 = (g, .

Recovering the family U(o) from & and Properties (1)—(7) does not work without
further assumptions. It may be tempting to choose a definition of the kind U(g) =
ng modulo identification of Hilbert spaces. Here, ng maps &, — 5, whereas
U(g) has to map ¢ = 7, onto itself. Given a hypersurface evolution &, the only
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available identification of 7 with J%%; is UEO, so the only possible operator that
is equivalent to ng and acting on 7 is

URUEUE = U = In,. (2.121)

So a recovery of the family U(o) necessarily requires additional assumptions on &
A natural additional assumption allowing for such a recovery is given by Poincaré
covariance: In order to gain additional structure on &, we postulate the existence
of a family of unitary operators (S, ) with S, 5, : 5 — 5, such that

U% = SeoUs S, 51 (2.122)

where g runs through 731 and Y runs through all Cauchy surfaces. This allows for
the recovery of a unique family U(o) via

Ulg) := U2 Sg.50- (2.123)
The naturality assumptions
Sos = Is,  ShgsnSes = Shgx (2.124)

ensure that (U (g))gePT is a group implementing P! . In analogy to the field co-
+

variance (Wightman axiom (2)), we further postulate that the PVMs transform
covariantly and comply with the factorization 7"

Pys(¥(94)) =S, Pu(V(A)) S, 5

1 (2.125)
TQXQA 5972 TE,A = 972|WE,A ® S, 7E|%2,2\A

for all measurable A < Y. In total, we require the following additional property
for hypersurface evolutions:

(8) Poincaré covariance: There exists a family (S;%), Syx @ J& — s of

unitary identification operators, satisfying (2.122]), (2.124]) and (2.125|).

This property entails that the structure of 77, P, and U? is the same in all frames
of reference. Generally, frame-independence of this kind is a central principle in
many physical theories. But it would also be possible to obtain physical predictions
in a relativistic setting without Property (8).
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2.7 Ideas Towards the Reconstruction of a Wightman QFT

2.7.2 Recovering the Field Operators

Perhaps, the most difficult part in the reconstruction of a Wightman field theo-
ry from & is the definition of suitable field operators ¢,(f) with spin index r €
{1,...,2s 4+ 1}. There are two major difficulties, which have to be overcome for
this:

e The PVMs Py, have to be used for a construction of field operators ¢ ,.(fx)
acting on a dense domain in 475, with sufficiently regular fy : 3 — C

e Since fy, only establishes a smearing in space direction, we also have to smear
in time direction in order to obtain ¢,(f), f € S(M).

The first step cannot be done without further assumptions, since the PVM does
not reveal any information about the spin degrees of freedom hidden in the Hilbert
space structure. In order to define creation— and annihilation operators, it would
be necessary to have a Fock space structure on .75, which is compatible with Ps..
That means, Wy, should be expressed as a vector in Fock space # = Z(['4(2)),
with spin-configuration space I'y(X), see (1.20), where a configuration contains
pairs (z;,7;) with z; € ¥ and spin index r; € {1,...,2s + 1}. In that case, .#
allows for a natural PVM Pz y: For any measurable B < I'(X), the operator
Pz 5,(B) projects to all spin—configurations in

By = {{(z1,m1), ..., (@n,7n)} | {z1,...,2n} € B} S TL(D), (2.126)

i.e., B, contains all I's(X)-spin—configurations compatible with B.
The additional requirement now is a

e Fock space structure assumption: For certainﬁ Cauchy surfaces X2, there
exists an isomorphism % : J& — Z(I'4(X)), such that #Py(B).Y 1 =
Pz x(B) for all measurable B < I'(X).

The definition of a}’zm( %), azx.(fs) then follows in analogy to (1.24]), but for

unordered configurations:

(@550 (0@ = 3 T 1ol W06\,

(2.127)

(a5, (f2)0)(g) = VN +1 f Fo@W(q U (z,r)) d.

6This assumption is required to hold on all Cauchy surfaces ¥, on which the operators af (fs)
have to be defined in order to recover the field operators ¢,.(f) below. For instance, this could
be the foliation of M by horizontal Cauchy planes (E};) g or any other foliation.
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where ¢ = {(x1,71),...,(zN,rn)}. Here, fg € L*(X), and a suitable dense domain
is given by the space of wave functions with finite particle number

Dy = {U e L*(Ty(Y)) | INmax € No : T =0VN > Ny} (2.128)
Definition (2.127)) then entails the Heisenberg operators
ai(fs) = Ug* I Vs 5, (f2) S U, (2.129)

defined on
DE = Ugofil[pz] = ‘%ﬂEm (2130)

which immediately allow for defining ¢,.(fs) = al(fs) + a.(fs).

The second step, namely smearing ¢,(fs) in time direction, also poses some
difficulties. An intuitive way of smearing would be to consider a foliation of M,
given by the family of horizontal Cauchy surfaces (E})er, and to formally define:

0.7) = [ s at. (2.131)

where a given f € S(M) allows for defining the single-time smearing functions
[E,(x) := f(t,z). Boundedness and rapid decay of f imply fg, € L?(2). We may
then simply set ¢,.(f)* := ¢.(f). For fermions, ¢,(fg,) is an operator bounded by
a constant times | fg,[2. So also defines a bounded operator. However, for
bosons, ¢,.(fg,) is unbounded, and it is hence far from obvious that the operator
or(f) is well-defined. In any case, the domains Dy considered above do not coin-
cide for different ¥, in general. So it is necessary to explicitly construct a domain
D < 7, which is invariant under all ¢,(f). The requirement by the Wightman
axioms, that f +— (U, ¢,.(f)¥s) be a distribution, must then be checked separa-
tely.

Further, makes use of a specific choice for a foliation of M, which is of
course frame dependent. It would be desirable to give a definition of ¢,(f) in any
foliation, and to prove that all definitions indeed lead to the same operator. We
expect this to be true, as a consequence of the Poincaré covariance assumption (8).

After a successful construction of ¢,.(f), it would still be necessary to verify
Wightman’s covariance axiom, the causality axiom and the completeness axiom.
We assert that, after a suitable definition of ¢,.(f), Wightman covariance follows
naturally from the Poincaré covariance assumption (8). Wightman causality is as-
serted to follow from (IL) and (PL) and completeness from the choice of ¢,.(f).
However, since we do not have a general definition for ¢,(f) following from a hy-
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persurface evolution &, we are not in the position to give any general theorems or
more precise assertions, yet.

2.7.3 On Spectral Positivity

The last Wightman axiom missing is spectral positivity. As indicated in Remark
[11] this axiom may stand in conflict with (PL), which would make some further
steps necessary until a Wightman QFT can be recovered from a hypersurface
evolution. In the following, we first present some existing incompatibility results
outlining this conflict and then discuss possible ways out.

An early result concerning the conflict between propagation locality and spectral

positivity is given by the celebrated Reeh—Schlieder theorem [I88]: Consider
an open bounded region O < M, as well as the algebra A(OQ) comprising all field
operator products A smeared by a function supported| in ©. Then, under rea-
sonable assumptions of relativistic QFT, the algebra A(O) is cyclic with respect
to €. These assumptions include the existence of a continuous representation of
the group 731 by unitary operators U(g) on a Hilbert space J#, a unique vacuum
) € 2 and spectral positivityﬂ So the set of vectors obtained by applying field
operator products A to {2 must be dense in S = J¢,. However, if field operator
products were indeed defined as suggested above, and (PL) would hold, we expect
AQ to be localized in the region Ry := J(O) n Ey, i.e., AQ € Ran(Pg,(V(Ry))).
This would even lead to a contradiction: The range of a projection is a closed
subspace of 7 and would have to be dense, meaning that Ran(Pg,(V(Ry))) = .
Therefore, all projections to B < V(Ry)¢ would have to be 0. Now any set V(A°)
for an open ball A = Bgr(x) can be found in some V(R)¢ for a suitable Ry =
J(O) n Ey < A small enough. These sets V(A°) generate the Borel o—algebra on
(X} so we indeed get Pg,(B) = 0 for any Borel B < I'(X), which is a contra-
diction to Ran(Pg,(V(Ry))) = .
In fact, if the assumptions for the Reeh—Schlieder theorem are valid, then for any
position representation at time ¢, there must be a vector ¥ = AQ A € A(O),
which is “leaking out” of J(O). That means, if [, : # — L*(R®) is an isometric
isomorphism, then W, := [, has a support exceeding J(O) n E;, as depicted in
Figure [2.11

"By this, we mean A(O) comprises all A = § f(z1,...,2n)dp, (21) ... ¢ry (TN) dz1 ... d2 N, SUch
that supp f < OV.

8In this and the upcoming no-go results, spectral positivity is characterized by the Hamilto-
nian H being bounded from below. For a Poincaré covariant theory, this is equivalent to
Wightman’s condition of the joint spectrum of P* lying in the closed forward lightcone.

9This fact is proved below [4, (100)].
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Abbildung 2.11: Heuristic depiction of the Reeh—Schlieder theorem: There are A €
A(O), such that ¥ = AQ “leaks out of J(O)”. Color online.

Similar results outlining the conflict between propagation locality and spectral
positivity have been provided by Hegerfeldt in a series of papers [189, 190, 185} T91].
These results (some of them are called Hegerfeldt’s theorem) concern a con-
crete spin-boson-like model, where two two-level atoms at positions 0,z € R?
are coupled to a common boson field (see Figure . Intuitively, if initially the
boson field is in the vacuum and only one atom is excited, then one may expect
the other atom to become excited only after a time delay of |t| > |x|. However,
Hegerfeldt showed that, assuming spectral positivity, there is a nonzero probability
for the excitation to “jump” to the other atom at almost all times ¢ € R, including
|t| < |x|. As indicated by Buchholz and Yngvason [192], this does not contradict
causality in an algebraic setting, as the projection to the excited level of an atom is
not required to be an element of any local algebra A(O). By contrast, in a hyper-
surface evolution setting, a simultaneous validity of (PL) and (IL) would certainly

exclude such immediate jumps, if a projection to the excited level is assumed to
act locallyf]

A closely related no—go result on unifying locally propagating wavepackets with
spectral positivity is Malament’s theorem [193]. Further no—go results of this
type have been established and carefully compared to the above—mentioned ones
by Halvorson and Clifton [186]. They suggest that a Poincaré—covariant hypersur-
face evolution may indeed be forced to violate spectral positivity.

0By a local action, we mean the following: Consider a projection Py . to the excited level of
an atom at y € {0, z}. Then, there has to exist a neighborhood R, of y, small against |x|,
such that under the factorization 9 =~ H#g, r, ® H#E, E,\r,, the projection factorizes as
Py,e = Py,e,Ry ® ﬂEo\Ry-
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Abbildung 2.12: Depiction of Hegerfeldt’s theorem: If spectral positivity holds,
then the atom at x gets excited at arbitrarily small times. Color
online.

The no—go results above suggest, that for reconciling a hypersurface evolution
with the Wightman setting, it will certainly be necessary to modify the proper-
ties required for a hypersurface evolution. As an obvious example, (PL) may be
dropped to allow for spectral positivity. This may come along with a modified way
of defining field operator products A, i.e., one that is schematically different from
the one sketched above. The price, one would have to pay for this is that results
above (or in [4]), which assume dropped properties, would no longer apply.
There is also a novel approach for reconciling (PL) and spectral positivity, if par-
ticle creation from the vacuum is not forbidden [194]. Mathematically, the violated
property is [4]:

e No particle creation from vacuum (NCFV): For any pair of Cauchy
surfaces ¥, %, we have Uy Ps({@)UE = Po({}).

This property is closely related to the Wightman vacuum €2 being an eigenvector
of the Hamiltonian for eigenvalue 0, which follows from the Wightman axiom that
assumes 2 to be invariant under all U(g). Indeed, if uniqueness of the hypersurface
evolution vacua Qy is assumed, this entails US Qy = Qs up to a phase, so the
vacuum vector effectively stays invariant under time evolution. Although (NCFV)
seems like a natural assumption, it is not required within any of the Properties
(1)—(8) for a hypersurface evolution and the results above and in [4] would still
hold if (NCFV) was violated. This way, as [194] suggests, it might be possible
to construct a hypersurface evolution simultaneously satisfying (PL) and spectral
positivity.

Another option would be to investigate mathematical models that do not satisfy
spectral positivity, but may comply with the required Properties (1)—(7) for a hy-
persurface evolution. An example is the free Dirac field given by the Hamiltonian
H = dl'(a - p + mf3), which allows for constructing a hypersurface evolution [4]
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2 Hypersurface Evolution

Sect. 4]. The interacting 1 + 1-dimensional Dirac fields in [165] [166] also violate
spectral positivity, since there exists a mode with dispersion relation unbounded
from below. And even the Thirring model , and the Federbush model
, feature such dispersion relations unbounded from below. Spectral
positivity is then only obtained after “re-defining the particles” by a bosonization.
Therefore, we indeed deem the study of spectrally non—positive relativistic systems
to be a useful intermediate step towards the final description of physical systems.

Let us also clarify a possible misconception at this point: Unboundedness from
below of a Hamiltonian is often associated with “instability of the system”. A
common heuristic picture is that such a system will “continually drop down to
arbitrarily negative energies”. This in turn would release an arbitrary amount of
energy, which is a process that has never been observed in nature and fiercely
contradicts the physical principle of inexhaustible energy sources being forbidden.
As Malament writes about the implications of the occurrence of a negative-energy
particle [193, pp.4-5]:

[...] the particle could serve as an infinite energy source [...| We could
first tap the particle to run all the lights in Canada for a week. To be
sure, in the process of doing so, we would lower its energy state. Then
we could run all the lights for a second week, and lower the energy
state of the particle still further. And so on. If the particle had no finite
ground state, this process could continue forever.

However, this energy extraction requires the system to be coupled to an external

system, just like an atomic or molecular system may transition from an excited
to a lower level when being coupled to a radiation field or a heat bath. As long
as a quantum system is left on its own, it just follows the evolution U(t) = e
which commutes with all spectral projections, so there is no transition to lower
levels. This includes systems with Hamiltonians unbounded from below, as for the
Dirac particles described above.
Nevertheless, the absence of spectral positivity within a QFT model can become
a considerable drawback from the mathematical side, as it is essential for the
analytic continuation from Wightman distributions to Schwinger functions and
vice versa. Thus, it impedes the use of powerful Euclidean QFT methods. Haag—
Ruelle scattering theory also relies on spectral positivity and will hence become
inapplicable. Further, a thermal equilibrium state (formally given by p = %e‘ﬁH
with 8 being the inverse temperature) will be difficult to define if H is unbounded
from below. So there are plenty of incentives to restore spectral positivity after a
successful definition of some non-spectrally positive hypersurface dynamics &
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3 Fock Space Extensions

In this Section, we present the general construction schemes for the two Fock space
extension frameworks: the infinite tensor product— (ITP) and the extended state
space (ESS) construction.

The I'TP construction yields a non—separable Hilbert space c}?, called ITP space,
which allows for finding uncountably many orthogonal copies of the original Fock
space .7 in it. ITP spaces have been introduced by von Neumann as early as 1939
[44] and thenceforth been applied to Weyl transformations in several cases. We
outline the ITP construction and its application to Weyl transformations in Sec-
tion Since this application is already well-investigated, we do not discuss the
ITP construction for the Weyl-like Gross transformations in Chapter ] but only
for Bogoliubov transformations in Chapter [}

By contrast, the novel ESS construction, presented in Section [3.2] is used in both
Chapters [4] and [5] As already mentioned in Section [I.1], it provides two vector
spaces .F C Z o, which extend a dense subspace of .Z. The generalized scheme
presented in Section includes the examples in Chapters [4] and [5] as special ca-
ses. As a byproduct of the ESS construction, we obtain vector spaces Reny, Ren
and a field eRen, that permit a rigorous description of formally infinite quantities.
These spaces might even become useful in a purely algebraic treatment of QFT
dynamics that does not refer to a fixed representation or vectors within a Fock
space extension. Further, we discuss concrete realizations of the ESS construction,
that may turn out advantageous in applications to quantum dynamics.

This chapter can also be seen as supplementary to the upcoming Chapters {4 and

3.1 Infinite Tensor Products (ITPs)

In the following, we recap the construction of von Neumann’s I'TP space . Fur-
ther details on how # can be decomposed in orthogonal subspaces and how to

find a convenient basis, are provided in Sections and For a thorough
discussion, we refer the reader to von Neumann'’s original work [44].
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3 Fock Space Extensions

3.1.1 Definition

The main goal of the ITP construction is to make sense of the tensor product
Y ®
A = || . (3.1)

where 7, are separable Hilbert spaces indexed by a (not necessarily finite or
countable) set I. Each J#, has a scalar product {-,-); and induced norm || - [|.
Choosing one vector per Hilbert space, ¥, € 74, it is easy to define a formal ITP
as the family (V) = (Ug)ker, VUi € . If I is countable (so one may equivalently
set I = N), then (V) = (U, Uy, ...) defines a sequence.

On the space spanned by these families, one may write down formal expressions
for a bilinear form that would serve as a candidate for a scalar product inducing
a norm. Formally, for two families (@), (V),

(@), (W) = | [€Prs Waes MO =] [0k (3.2)

kel kel

In order to answer the question, whether the expressions in (3.2)) indeed define
complex numbers, one introduces the notion of convergence within a (possibly
uncountable) sum or product:

o For 2z, € C, keI, wecall Y, ;2 or [ [, 2 convergent to a € C, if for all
0 > 0, there exists some finite set Is < I, such that for all finite sets J < [
with Is € J, we have

oY

keJ

<9 or a—sz

keJ

<9, respectively. (3.3)

A simple consequence of this definition is that )}, ; z, can only converge if z;, # 0
occurs for only countably many k € I. So the question of convergence reduces to
that of sequence convergence. Further, it is shown in [44] that [ [,; 2z, < 0 if and
only if we have 2z, = 0 for at least one ke I or if >, ;|2 — 1| < c0. The heuristic
reason is that [[..; zx = exp (D, In2x) and In z, can be linearly approximated
near 1 as Inzy = 1 — 2z + O((1 — 2)?).

If [ [e; |#&| converges to a nonzero number, then | [,.; 2, converges if and only
if no infinite phase variation occurs. That is, if arg(zy) € (—m, x| is the phase of
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3.1 Infinite Tensor Products (ITPs)

the complex number zj, then it is required that

D Jarg(z)| < oo (3.4)

kel

In order to establish a notion of convergence, even when (3.4]) is violated, one
defines that

o | [.c; 2k is quasi-convergent, if and only if [],.; |2x| converges.

The expression (]3.2)) may now contain divergent products, which formally corre-
spond to “infinite scalar products” or “infinite norms”. In order to exclude them,
one restricts the allowed families to the set Cseq of so—called “C-sequences”. More
precisely, one calls a family (¥) = (Ug)res a

e (C—sequence ((V) € Cseq) iff [ [,c; Wil < o0,
o Co—sequence iff Y, |Vl — 1 <o < >, U7 - 1| < 0.

Each Cy—sequence is also a C-sequence. For all C—sequences, we have a well-
defined value ||(¥)| € C by (3.2)) and each C—sequence, that is not a Cy—sequence,
must automatically satisfy |(¥)] = 0.

Now, the bilinear form on span(Cseq) in ({3.2)) renders finite values, but is gene-
rally not positive definite and hence no scalar product: For infinite cardinality of
I, there exist (¥) # 0 with[] {(¥), (¥)) = 0. So one has to mod out an equivalence
relation ~¢, which identifies all (¥) with 0 that satisfy {(¥), (V)) = 0.

Von Neumann implicitly constructs this equivalence relation by identifying C—

sequences with functionals. For this identification, let ]_[ 70 be the space of all
conjugate-linear functionals Cseq — C. Following [44], we can embed ¢ : Cseq —

1_[ ;. by identifying (®) € Cseq with the functional

O = 1((®)): (U) > | [Dr, Tips. (3.5)

kel

This identification essentially sets up an equivalence relation ~c on Cseq, where
(@) ~c (), whenever ¢((®)) = ¢((®')). In Proposition [5.8.1] we show that equiva-
lence is given if and only if (®) and (®’) just differ by a family of complex factors
(ck)wer with [ [,¢; ¢ = 1. The functionals in ¢[Cseq] are then the equivalence classes

1As an example, consider any family (¥) scaled such that |¥y|s = 1/2. In fact, any (V) with
[¥k|x = ¢, c € (0,1) being constant, serves as an example. However, for finite cardinality of
I, {(¥),(¥)) = 0 implies that ¥ = 0 for one tensor factor, so (¥) = 0.
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3 Fock Space Extensions

and the span of these functionals is denoted by [44]:

Q0
n% := span(¢[Cseq]). (3.6)

kel

In the following, we will also drop the embedding map ¢ and simply identify (D)
with ®. An inner product (-,-) can uniquely be defined on [, 7 via

(@,9) = | [{Bk, Ui, (3.7)

kel

which makes [ [}, 74 a pre-Hilbert space and induces a norm |®|. Both the inner
product and the norm agree with the second expression in under identification
|®|| = [(®)|]. The completion of with respect to the norm is exactly von
Neumann’s ITP space

. ® 1®
H=]4=]]4 . (3.8)
kel kel

Later in Section , we will use that /7 = H?e ; 7 is the space of all ® € H I,
such that there exists a Cauchy sequence (®(),cy < [2, /4. which converges to

® in the weak—* topology on H .. That means,

lim || —®®)| =0  and lim &) (V) = &((V)) (3.9)
r,8—>00

7—00

for all (V) € Cseq.

Checking that (-,-) is indeed an inner product on [[2, 74, and extends to

H = H?e ; 74, such that one obtains a Hilbert space, is a technical task ac-
complished in [44]. Note that replacing “C—sequence” by “Cp—sequence” in the

construction results in the same space ¢ after completion, since all C—sequences
that are not Cy—sequences get identified by ¢ with the same functional 0.
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3.1 Infinite Tensor Products (ITPs)

3.1.2 Infinite Tensor Products via Basis Choice

Consider now the formal expression ({1.145)) of a coherent state vector Qy outside
Fock space. Formally,

s 2 T N
Q= W(s)Q2 = e > > @) _ pate-atog, (3.10)
NeNp N'

One way to make sense of such non—Fock coherent states has been proposed by
Chung [195], Kibble [196, 197, 198, 199], as well as Faddeev and Kulish [200]: We
choose an orthonormal basis (e;)gen of the one—particle Hilbert space h = L?(RY),
such that the functions e, (also called modes) are sufficiently regular. A suitable
regularity could, for instance, be e;, € D(R?) = C®(R?) or e; € S(R?). The latter
two choices would allow any displacement function s € D'(R?) or s € S'(R?) to be
written in basis coefficients sy, := (ey, ).

In particular, this includes the function s(k) = —g|k|=*? in d = 3 from the Van
Hove model (1.137). As an ITP space we choose

- ®
H = F{er}), (3.11)

keN

where S ({ey}) is the Fock space over a single mode ey, with creation and anni-
hilation operators a,,a; and vacuum €2, satisfying a;€2; = 0. This allows us to
expand the formal expression (3.10)):

Qu = exp (Z (skaL — s_kak)> Q= Hexp (skaz — s_kak) Q, (3.12)

keN keN

and make sense of it as in ITP in jg;

Qu = 1_[ ka, QI/VJg = exp <5ka}; - S_kak) Q€ y({ek}) (313)
keN

One may even give a rigorous meaning to the displacement operator W (s) as

®
W(s): H — A, W(s) = H Wie(sk), Wi(sk) = exp (ska,z — s_kak) )
= (3.14)

Note that by the same arguments as in the proof of Lemma [5.4.5, W(s) does

not depend on the choice of C-sequences used for representing W € . Here,
all Wi(sy) are unitary on % ({ex}), so W(s) maps I'TPs to ITPs while preserving
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3 Fock Space Extensions

their scalar product. And since the span of all ITPs is dense in t%/”\, the operator
W (s) can be continued to all of .7 and is unitary on it. See also [71], where the
construction is kept more general.

The operators W (s) with s € S'(R?) or s € D'(R?) (depending on the definition)
now generate an extended Weyl algebra, which is given by

W, =span{W(s1)...W(sn) | s;j € =}, (3.15)

where # is a placeholder for either S'(R?) or D'(IR%). Also, other linear spaces could
be used in place of #, as long as s, = (e, sy can be sensibly defined for all basis
vectors e and all s € . The Weyl relations formally read

W(s)™t = W(=s),  W(s))W(sq) = e 2712 (51 + s55), (3.16)

which serves at the same time as a definition of the unitary operator

o~ e~

e 370152 W (5 )W (s2)W (81 + 83) " : S — . (3.17)

The formal expression for the symplectic form o(sy, s2) = (s1, s2) — {S2, 51 is ill-
defined and may, in certain cases, correspond to a divergent integral. Therefore the
(well-defined) operator e~27(1*2) can heuristically be interpreted as a rotation
by an infinite phase.

We remark that [195], 196], 197, 198, [199] 200] all concern both perturbative and
non—perturbative scattering theory for QED in d = 3 space dimensions. So far,
there is no self-adjoint Hamiltonian known for a cutoff—free relativistic QED model
in d = 3 and neither of the above references provides a self-adjoint QED Hamilto-
nian. Although the definitions of coherent I'TP states are rigorous in these articles,
and the authors provide explicit expressions for dressing operators W [195, (32)],
[200, Sect. 4], the discussion of how the dressing acts is discussed either pertur-
batively or kept on a heuristic level. Nevertheless, these discussions may provide
useful hints for a construction of non—perturbative renormalized Hamiltonians.
In case one intends to use dressing transformations employed in scattering theory
to derive dressing transformations for non—perturbative renormalization, one needs
to be aware of Dollard modifiers [201] 202} [159]. These are additional terms that
enter the definition of the S-matrix in a way similar to a dressing transformation,
but which are not needed for the definition of a renormalized Hamiltonian H. A
prominent example where Dollard modifiers appear is given by the Coulomb Ha-
miltonian H = Hy + H; with Hy = % and H; = g|z|™ in d = 3 dimensions. The
Mgller operators Q™°U = lim, -, e e~"M0 a5 in do not exist. But one
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3.1 Infinite Tensor Products (ITPs)
can rigorously define the modified Mgller operators [201] (29)—(33)]

. _ t 2t
Qo = lim e o Hy (1) = tHy + gm 520 1o (MW), (3.18)
m

t—FoC |l{j|

with |k|? = —A being a multiplication operator in momentum space. The modifi-
cation term in Hy.(t) diverges logarithmically as [t| — oo, and can hence be seen
as an infinite phase. However, this phase is not needed for the construction of a
self-adjoint operator H, but only for the definition of the Mgller operators Qlcn/ out
and the S-matrix S. = (Q¢")~1Q". Correspondingly, Faddeev and Kulish split
their formal S-matrix modification into a dressing transformation (called efi*)),
leading out of Fock space, and a Dollard phase (called ¢*®) [200, (10), (11)]. In
what follows, only an expression e’ of a form similar to ef*) is used as a dressing
tr/a\nsformation that leads out of Fock space and is implemented on the I'TP space
. This transformation e/ is of a form similar to the bosonic Weyl operators
W (s) above, but it acts on a system containing both bosons and fermions (similar
to the polaron models in Section [I.3.7). Further, the form factor s(p, k) also de-
pends on the fermion momentum p, as for the Pauli-Fierz model in Section [I.3.7]

So eftr is a Gross and not a Weyl transformation according to the classification
from Section [.3.4]

3.1.3 Infinite Tensor Products via Patches

Another way to make sense of has been proposed by Frohlich [43], as well as
Konenberg and Matte [80]: R? is decomposed into a sequence of patches | J, . Cr =
R?, such that Cy n Cj is a null set for all k, k' € N. This allows for decomposing
the one—particle space as L*(R?) = @,y L*(Ck). The corresponding ITP space is

H = ﬁﬂ(ck). (3.19)
keN

For a given displacement function s ¢ L?(RY), the patches C} are now chosen such
that s¢, := s|o, € L*(Cy) for all k € N. For instance, s(k) = —g|k|™/? is radially
symmetric and has an L?-integral that diverges at |k| — 0 and |k| — oo, which
suggests the use of

Ck = {kﬁ € Rd ‘ Rk; < |k| < Rk+1 V Tk = |k$| = Tk+1}, (320)

where a suitable choice of radii is given by R, = 2¥! and r, = 27%*%. So
each Ci, k = 2 is a union of two concentric rings and all C} are compact. Similar
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3 Fock Space Extensions

Cl C'2

Abbildung 3.1: Left: Depiction of the compact patches Cj in (3.20)).
Right: The choice of C}, as in [43]. Color online.

choices for Cj are used in [43| [80]. However, both references use displacement
functions s, that are only IR-divergent. So one may choose concentric rings C}, :=
{k | rr_1 = |k| = ri},k = 2 and set an infinite outer radius for the outer ring
Ci :=1{k | |k| = 1} [43]. Or one may even exclude the outer ring from the
definition of 77, if s(k) = 0 for large |k| [80]. Blanchard [71] suggests a general
choice of compact Cj, covering R (for d = 3), while also considering the approach
via a regular basis (ej)gen in as an alternative ITP construction.

Since s¢, € L*(Cy), the dressing transformation Wy(sc,) : F(Cr) — F(Cy) is a
well-defined unitary operator, so

&®
W(s): H — A,  Wils) =] [ Wilsc,) (3.21)

is unitary, as well. The set of all families s = (s¢, )ken, S¢, € L?(Cy) forms a vector
space (analogous to S'(R?%) or D'(R?) in the previous section) and allows for defi-
ning an extended Weyl algebra in analogy to (3.15)).

The ITP space construction via patches (Cy)key may seem more natural
than the construction (3.11]) via (e )xen, since it allows for respecting radial sym-
metry. However, the single—particle spaces L?(C},) are infinite-dimensional, which
makes the approach more difficult to handle.

For Bogoliubov transformations, there is yet another complication with the patch—
based I'TP space construction (3.19), which forces us to pursue the basis approach
in Chapter . To demonstrate this issue, we turn a Weyl transformation
into a Bogoliubov transformation by replacing the linear term 3, . (sxal — 5rax)
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in the exponential (3.12)) by the quadratic term

Q = Z(Skazal — ﬁakak) = Z (Skk/(SkCLLCLL — s_kakak/). (3.22)
keN k,k’eN

The coefficient matrix Sg = (dgw Sk )k wen is diagonal, but will generally no longer
be diagonal after a coordinate transformation. That means, for U = (U ) wen :
unitary, the matrix U*SoU may contain off-diagonal terms. These correspond to
cross—terms a]:az, and apap with & # k', which induce correlations between the
modes and hence spoil the mode—wise split as in . Therefore, the choice of a
basis (ex)ren or patches (Ck)ren has to be done in a sophisticated way for Bogoliu-
bov transformations, namely such that no correlations between different modes or
patches occur. The cases discussed in Chapter 5[ are chosen exactly such that they
allow for a “sophisticated split” into a basis (ex)ren, as we explain in Sections m
and . But there might not exist a suitable split into patches (C)ren Without
containing cross—terms between different patchesE|. Therefore, we choose an
ITP space construction in Chapter , which relies on a basis (ej)ren as in .

3.2 Extended State Space (ESS)

Both Chapters 4| and |5| concern two different pairs of extensions .#Z < Z o of a
dense subspace of Fock space .#, which are constructed following the same scheme.
In principle, it is possible to generate an even larger number of “extended state
spaces” .F C Z o, using this construction scheme. There are two choices that can
be made, which lead to different spaces .# and .Z .:

e The choice of the one—particle space R(X)
e The choice of the N-particle space R™)(X) complying with R(X)

The two choices are constrained by some Conditions (A), (B), (C) and (D) and
have to be adapted to the respective model.

2An example for the impossibility of a split is the following: Consider an orthonormal basis
(e;)jen with supp e; = R? for all j. Further, define the matrix S by Se; = je;, so its
spectrum is o(S) = N, with all eigenvalues being of multiplicity 1. Now assume, there exists
a decomposition L?(R?) = @), L*(Ck), such that S has no off-diagonal terms with respect
to the split, i.e., S maps each L?(C}) into itself. Then, the (orthogonal) projection P =
P(Cy) to L*(Cy) commutes with S, so S(Pe;j) = PSe; = j(Pe;). Hence, either Pe; = 0,
so e; L L?(Cy), or Pe; is an eigenvector of eigenvalue j. Since some L?*(Cy) must contain
a nonzero vector, e; L L?(Cy) cannot hold for all j,k € N. So for some j and k, the vector
Pe; = P(Cy)e;j is indeed an eigenvector of j, and by the multiplicity assumption and P2=P,
we have P(Cj)e; = e; = e; € L?(Cy), which contradicts the assumption supp e; = R%.
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3 Fock Space Extensions

In Section we explain the general construction scheme for .# < % .. Rea-
sonable choices for R(X) and R™")(X) are discussed in Sections (Van Hove
example), [3.2.4] (polaron models as in Chapter [4)) and (Bogoliubov transfor-
mations as in Chapter [3)).

3.2.1 Motivation

The ESS construction is inspired by formal coherent state vectors outside Fock

space, such as Qy in ((1.145)), but also the “IBC—vacuum” Q¢ in ((1.143]). Recall
that

N
_lsl? 2 1
O (ky, . ky) =e 2 QW (Ky, .. ky) = ¢ 2 mgs(k@, (3.23)

where the Van Hove example discussed in (T.137)) requires s(k) = —g|k|~>/? with
s ¢ L?(R3). The ITP space # constructed in Section allows to define

= . . T
Qw € A, but not Qpc, since the formal renormalization factor e~ 2~ cannot

be treated separately. One goal of the ESS approach is to remedy this shortcoming.

R ¥ ORIV S R \
il 7
(1st ESS)
R /
eRen

i / (field extension of C)
Ren, I Fea

/ (2nd ESS)

¥—) Ren ¥ Ren®

Abbildung 3.2: Construction scheme for the ESS approach. Color online.

The construction process is sketched in Figure [3.2] To make sense of Qy, we
start from a space R(X) of generalized one—particle functions, that shall contain
s. Via an N-particle space RN (X), we arrive at R#(X), which contains confi-
guration space functions Q(X) — C, such as Qipc. This R#(X) can be seen as a
generalization of Fock space . (X) = L*(Q(X)), although R#(X) only extends a
dense subspace of .7 (X).

The divergent integral ||s|? over the function product |s|* is interpreted as an
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element of a vector space Reny, and the “wave function renormalization”

€' 1= exp (—572) (3.24)

is accommodated in a field eRen extending C. We then interpret the coherent
state Q= Qe as an element of the first extended state space %, which is an
eRen—vector space containing elements like e*W; with e € eRen and ¥; € Rz (X).
For a suitable choice of R(X), the infinite counterterm E., in can be in-
terpreted as an element v/ = E, € Reny. In order to define F., as a multiplication
operator on .#, we need to multiply vectors from .# with an arbitrary number of
factors v, € Ren;. These arbitrary products R := v} -... v, are captured within
an algebra Ren. We then allow for R = 2R(q) to depend on the configuration ¢ € Q
by introducing a space Ren© and capture R - e'V¥; within a second extended state
space Z o.

3.2.2 General Construction Scheme

As mentioned above, our first aim is to construct a space R#(X) of configura-
tion space functions, that may go beyond Fock space .# = L?(Q). In order to
reconstruct any Fock space vector from elements of R #(X), we require R #(X) to
contain at least a dense subspace of .%. This is ensured by Conditions (A), (B),
(C) and (D), below. We proceed as follows:

e The construction begins with a generalized one—particle spaceﬂ R(X).
We require that

(A) R(X) shall contain complex-valued, measurable functions over a mea-
sure space (X, i), defined almost everywhere.

(B) R(X) shall extend a dense subspace of L*(X, p).

The space R(X) corresponds to the space S{’o in Chapter |4, and is called
E(N) in Chapter [5| As usual, we will drop the parentheses (X), if they are
not explicitly needed.

e Starting from R, one may construct the generalized N—particle space
RW)(X), of which we require that

3The names “generalized one—particle space” and “space of generalized one—particle wave func-
tions” as in Chapter [5| are considered to be synonymous.
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(C) RM(X) consists of complex—valued, measurable functions, defined al-
most everywhere on X%,

(D) RM)(X) contains the algebraic tensor product R®N(X).

In other words, R™¥)(X) has to contain all finite linear combinations of tensor
products ¢; ® ... ® ¢n with ¢; € R. The measure on XN called py, is the
product measure induced by p on X. This way, we assure that the following
statement holds.

Proposition 3.2.1. R™)(X) extends a dense subspace of the N —particle
Hilbert space L?(X, j1)® .

Proof. Every U™ e L2(X, 1)®N =~ L?(X") can be written as

LQ(X) == 1, (325)

TN =N o1 @ @Yy, [y

keN

with (cx)gen < C being an absolutely convergent series. Truncating the series

at K € N, we obtain an approximating vector \If([év), with the sum in ((3.25]

running over k < K. For a given € > 0, we can achieve |V — \D%V)H <g/2
by choosing K sufficiently large. Since R(X) extends a dense subspace of
L*(X), we may approximate all ¢y ; for k¥ < K by vectors ¢; € R to
arbitrary precision, obtaining

K
O = i ®... @by, P e RM(X). (3.26)

k=1

Choosing a sufficient approximation precision of ¢ ; € R, we finally arrive

at
o oM <2 = u™ o) <. (3.27)

]

Depending on the purpose, it may also be useful for R™") to contain certain
infinite linear combinations of tensor products. The space R(™ can be found
under the name £™)(N) in Chapter .

Within Chapter [d] two particle species are considered, which would, in this
scheme, require the construction of spaces RMN) with M particles of the
first kind and N particles of the second kind. More generally, a construction
of RN1-Nn) for n e N particle species can be performed in analogy to R4,
The Conditions (C) and (D), as well as Proposition extend analogously
to this case:
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(C) RW--Nn) consists of measurable functions, defined almost everywhere

(D) RWNisNa) contains the algebraic tensor product R®M @, .. .®, R®N,

Proposition 3.2.2. RWiNe)(X) extends a dense subspace of the sector
Hilbert space L*(X, p)®WNi+FNn),

Proof. Apply Proposition with N =37 | N.
[

The construction in Chapter [4] slightly deviates from the above scheme: The

space Sf;o, defined there, decays into sectors, which we call ny M) , here. As
(M,N)

we explain in Section L Ry can be constructed starting from two

different spaces R, and Ry. However, R < Ry, and the space R%’N) can

be seen as a subspace of some RN constructed from a single one-particle

space R = R, in the above-mentioned manner. So the general construction

scheme described here also captures the space S;? constructed in Chapter

e Taking the orthogonal sum over all sectors, we obtain the space of genera-
lized Fock space functions

X) = P RM(X). (3.28)

NeNg

This R# contains functions defined everywhere but on a null set on Q and
extends a dense subspace of Fock space .7 (X). The generalization to n par-
ticle species is given by R4 := @leNneNo RWNiuNn) - wwhich also extends
a dense subspace of the respective Fock space 7. In Chapter {4 the space

% corresponds to Rz for two particle species and in Chapter [5 the space
E#(N) corresponds to R # for one particle species.

The extended state spaces . and .Z ., shall now contain elements of the form
Ve or etV e T, (3.29)

with p € N,¥; € Rz and v, v, being well-defined versions of formal expressions
like

¢ = (br, o) = L 51 (D)a(x) du(z),  dr.meR. (3.30)

We now make sense of possibly divergent “renormalization integrals” as in ([3.30)):
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e The product function r(x) := ¢1(z)pa(x), defined almost everywhere on X,

is interpreted as an element of the function product space

Roy = span{¢1¢2 | ¢1, qbg € R} (331)

In Chapters [l and [5, R is chosen to be stable under function multiplication,
so R, = R and no separate definition of a space R is necessary. In any case,
all functions in Ry are measurable by means of (A).

A formal integral v = {, r(x) du(x) can now be expressed by the function
r € Rsy. However, we would like to think of v not as a function, but as
the numerical value of the integral, so we may interpret v as a C—number
whenever r € L'(X). In particular, ry, 7y € Ry should correspond to the same
t, if their difference is an L!'-function with integral 0. This identification is
established by introducing the equivalence relation

L ~Ren T2 (ri—re) € LY(X) A JX(Tl(x) —ro(x)) du(x) = 0.

(3.32)
The space of renormalization factors is then defined as

Ren1 = RQ/NRenl . (333)

We call it Ren; in Chapter [ and Ren;(N) in Chapter [5] Heuristically,
t € Ren; can be seen as a space containing “controlled infinitely large num-
bers”.

Whenever (r; — ) € L' for some functions 71,7, € Ry representing vy, to €
Ren;, we can identify (t; — t9) with a unique complex number. This identi-
fication allows decomposing Ren; into coarser equivalence classes

Cl&Sl = Renl/Nl, T1 ~1 ¥ = (7”1 — 7"2) S Ll. (334)

As discussed around , we can then decompose Ren; = V @ W with
V =~ [0]., and W containing one vector per class [t]., € Clas;. Within each
class, differences of t—factors can be translated into complex numbers, where
the translation is one—to—one:

Proposition 3.2.3. [0]., = C.

Proof. [0]., contains all t € Ren; that can be represented by r € L'. These
¢ are identified with the unique integral v = {, r(z) du(x), so we can write
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re C.

Conversely, each ¢ € C corresponds to some ¢ = t € [0].,: Since R contains
a dense subspace of L*(X), there must be some ¢ € R with a finite L*>-norm
0 # ||¢||2 € C. Correspondingly, for ¢¢ € Ry we have

¢ fxwas(x)du(x):ncbnz#o, veC = Yel0l.,. (335

Now, since v/ # 0, any ¢ € C can be written as ¢ = ¢t with ¢ € C and must
hence be contained in the C-vector space Ren;. And since ég¢ € L', we have
that c € [0]~,.

O

The exponential e* with v € Ren; is interpreted as an element of a further
space eRen. Below in (3.57)), we define an extended Weyl algebra W, similar
to W, from (3.15)), that allows for multiplication by eRen—elements. Therefo-
re, it is useful to define eRen as a field extension of C, so W can conveniently
be made an algebra over the field eRen instead of C.

So eRen shall contain all exponentials e* and allow for multiplication, linear
combination and inversion. The first two operations can be performed within
the group algebra C[Ren; | containing all linear combinations c;e™ +. . .+c,e™
with ¢; € C,t; € Ren;. The multiplication law of the algebra is given by

ee? = et Further, we would like to identify e with e“**, which is
done by modding out the ideal
T generated by {e‘e" — e | ce C, vt € Reny}. (3.36)

The resulting algebra C[Ren;]|/Z does not yet allow for taking inverses. To
make this operation possible, we take the quotient field of C[Ren;]/Z, which
is the final field of wave function renormalizations

ai
eRen := {c = —

as

ai,as € C[Renl]/I} : (3.37)

Definition (3.37) does only make sense, if C[Ren;]/Z has no proper zero

divisors, i.e., it is an entire ring:

Proposition 3.2.4. C[Ren;|/Z has no proper zero divisors.

Proof. For a specific choice of R, this fact is established in Propositions [4.3.7
and The proof only makes use of Ren; decaying into classes ((3.34),
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which are all isomorphic to C. This is true for any choice of R complying
with (A) and (B), so Propositions [4.3.7| and [4.3.8| carry over to all Ren; (X)
considered in this section.

]

Now, any element ¢ € eRen can be written (non—uniquely) as

a et + ... +ce™
c=— =" n (3.38)

/ 7
az et + ... +c e

and if all t;,v; € C, then we can also identify ¢ with a C-number. In general,
¢ € eRen may heuristically be thought of as a “controlled, possibly infinitely
large number” or, in some cases, as an “infinite phase”.

Having defined e® € eRen and W; € R #, we are now in the position to define our
first ESS, which contains elements of the form ¥ = e"¥, € .% as in (3.29):

e Consider the free eRen—vector space

Fo={ali+...+ ¢, ¥, |cjeeRen, U;e Rz}, (3.39)

with all sums being commutative. This space already contains expressions of
the kind e"W;, but it does not allow for shifting complex factors from c¢; to
U,. We allow for this shift by modding out the equivalence relation

~p generated by (cc)U; ~p ¢(c¥;) VceC,ceeRen, ¥V e Rez. (3.40)
The first extended state space is then defined as

T = F o) (3.41)

3 RN SV / :
In order to make sense of expressions ¥ = et} -...-v,U; as in (3.29)), we proceed
as follows:
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e First, we define a space Renp containing products t - ... v, of power p < P

with v}, € Ren;. To do so, we consider the free C—vector space
Polp := span{t} - ...-t) | t; € Ren;, p < P}, (3.42)

with the products being commutative. We allow for shifting complex numbers
between the t/—factors and converting ¢/ € C into the respective complex
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number, by defining the equivalence relation ~ge,, generated by

(@1e2)eh ) ~heny ca{eat]) o, (3.43)
p

/ ! . /
~Renp C1¥g " -+ * T, if v} =, €C,

vith
for ¢; € C, v}, € Reny,p < P. The space of renormalization polynomials
of degree P is then defined by

Renp 1= Polp/.,, .- (3.44)

The spaces Renp are contained in each other as Renp € Renp: for P < P,
Taking the union over all P, we arrive at the space of renormalization
polynomials
Ren := U Renp. (3.45)
PeN
In fact, Ren is even an algebra, as it allows for arbitrary multiplication of
elements (which is not true for Renp).

The second ESS .Z, is now defined such that it allows for expressions like
R-e"¥;, where R € Ren could, for instance, represent a product of self-energy
terms R =t} - ... - v,. Recall that ¥; € Rz is a function on configuration
space Q(X). Since we expect the self-energy to depend on the configuration
q € Q(X), we would like to allow for renormalization polynomials 3(q) that
depend on the configuration. This is realized by introducing the function
space

Ren® := {V¥; : Q(X)\NV — Ren | uo(N) = 0}, (3.46)

where the factor SR has been included into the ¥, and pg is the measure

on Q(X) induced by p on X. In Chapter , a similar space Ren? is defi-
ned, which consists of functions. Q — Ren with a fixed @ < @, such that
O\Q =: N is a null set. So Ren€ can be seen as a subspace of Ren®.

Using Ren®, the expression in (3.29), to be defined as an element of %,
now becomes e"V¥; with ¥; € Ren™®. We can interpret it as an element of the
free eRen—vector space

?eX,O = {Z Cj‘yj

jeN

¢jeeRen, ¥; e Reng} : (3.47)

Note that the countable union of all null sets A/, where some ¥; € Ren® is not
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defined, is again a null set. Again, all sums are considered to be commutative.
In the slightly modified construction in Chapter |4, we choose the sum over
j to be finite. As for .%, we allow for shifting complex factors by modding
out the equivalence relation

~pex  generated by (co)¥; ~pex ¢(c¥;) VeceC,ceeRen, ¥, e Ren<.
(3.48)
We may then define the second extended state space

Fox = F 020/ ~pun- (3.49)

This space is also called %, in Chapters 4| and [5|and its definition concludes
the ESS construction.

3.2.3 Choices Within the Van Hove Model

To make sense of the coherent states outside Fock space appearing in the
Van Hove example, it is necessary to choose R(X) such that it contains s(k) =
—g|k|™%/2. Here, X = R?. More generally, if a dispersion relation w(k) and a
form factor v(k) are fixed in the Van Hove model (1.137)), then R(R?) has to
contain s(k) = —Z((’Z). The case w(k)oc|k| and v(k)oc|k|~"/? in d = 3 is particularly
interesting from a physical point of view, since these are the expected scalings for
a relativistic light-matter interaction. After choosing R, the space R?Y) must be
adapted correspondingly.

In the following, we discuss some candidates for R and RN, such that R contains

s(k) = —g|k|=*? or other functions s(k) beyond L?:

o R = E(RY) = C°(RY): Smooth functions allow for arbitrary scaling of s(k)

as |k| — oo, including soc|k|~%/2. This makes the space & ideal for absorbing
UV-—divergences. Further, £ is preserved under pointwise multiplication, so
R = & entails Ry = R. However, £(R?) does not allow for poles in the
IR-regime |k| — 0, which rules out soc|k|=%? and strongly restricts the per-
mitted choices for w(k), v(k). Nevertheless, it is easy to verify requirements
(A) and (B), as £(R?) contains the dense subspace D(R?) = C*(R4).
A natural choice for the N-particle space is RY) = £RN?). By [203,
Thm. 51.6], we can then identify the topological tensor product £(R%)®N with
E(RN4). Conditions (C) and (D) are satisfied for this choice, since &(RN9)
consists of measurable functions and the topological tensor products contain
more elements than algebraic tensor products.
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o R =& RYNLL (RY): For compactly supported distributions, also &'(RV?) =
E'(RH®N 203, Thm. 51.6], which allows for the convenient choice R™Y) =
E'(RN?) A~ L (RV9). We need to take the intersection with Ll , in order to
obtain functions defined almost everywhere on R?, so Conditions (A) and (C)
are satisfied. In fact, all distributions representable by a function R? — C
must be in L}, since they could otherwise not be applied to all test functions
in D = C®. Condition (B) is easily verified, since both & and LJ, . contain
D. Condition (D) follows from the fact that & (RNY) =~ &' (RY)®N | and that
Ll (RN?) contains the N—fold algebraic tensor product of L (RY).

However, compactness of supp s is a serious restriction, excluding s(k) =

—g|k|~%2. Further, note thaf] R, # R.

Note that strictly speaking, R = £'(R?) n LL _(R?) does not consist of func-
tions, but rather equivalence classes of functions up to modifications on a
null set. The same will be true for some of the spaces below. So the ESS
construction has to be adapted in this case, such that R, R™), Ry and Ren®
are defined as equivalence classes of functions up to modifications on a null
set. It is easy to see that the construction can be carried through analo-
gously in that case: Sums, scalar products, tensor products and direct sums
respect the equivalence up to modifications on a null set. The same holds for
finite multiplication of functions, as in the definition of R,. Finally, the inte-

gral over a measurable function is not affected by a modification on a null set.

e R =S8R nLL.(RY): Tempered distributions S’ 2 & allow for a polynomi-
al growth of s(k) as |k| — oo and are therefore a good choice for absorbing
UV-—divergences. Again, &'(RV?) = §'(RY)®N [203, Thm. 51.6] allows for the
convenient choice R™Y) = §'(RV?) ~ L (RN?), where Conditions (A), (B),
(C) and (D) are fulfilled by the same arguments as in the case with £ above.
Another advantage is that S’ allows for taking the inverse Fourier transform
5(y), and hence for an easy change between momentum and position space.
However, poles in R are still restricted to order < d by the L —condition.
This puts restrictions on the IR-behavior of s, but still allows for soc|k|%/2
in d = 3. Nevertheless, as in the previous case, R, # R and the function

|s(k)|?oc|k| ™3, over which the integral in (3.23)) is taken, is no element of R.

e R = D'(RY) n L .(RY): Also the distribution space D' 2 S’ allows for the

identification D'(RV?) =~ D'(R")®V [203, Thm. 51.6], and hence for the con-

% As a counterexample, consider some s € R with s(k)oc|k| =2+ as |k| — 0. So |s(k)|>oc|k|29+2¢,
which is not in LllOC for € small enough.
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venient choice R = D'(RN?) ~ LL (RM?). In comparison to &' n LL ,
this space does not allow for taking Fourier transforms, but instead accom-
modates functions that diverge faster than polynomially in the UV-regime.
Pole strengths are still limited to < d, allowing for the accommodation of
s(k) = —g|k|™*? in d = 3, but ruling out |s(k)|?oc|k|™>. Again, Ry # R, and
Conditions (A), (B), (C) and (D) are fulfilled by the same arguments as for £’.

e Hilbert space riggings: It is possible to construct a triple of Hilbert spaces
H. S Hy < A with ) = L*(RY) and a pairing 5, x . — C [204]. In
that case, we may choose R = 4. and conveniently define RN = 5%V as
the Hilbert space tensor product. However, 7 may contain elements, that
are no functions RY — C, so it might be necessary to intersect . with a

function space, such as L], to define an R satisfying Condition (A). In the

following, we explain choices R = 7, that do not necessarily satisfy (A).
So an intersection might be necessary before the ESS construction.

A typical example for such a rigging are Sobolev chains H™ <« L? c H ™
[204, Example 1.2]. With increasing derivative index m > 0, the allowed or-
der of poles in H™(R?) decreases to < max(d/2 — m,0), which increases the
allowed pole order in R = H~™(R%) = §'(R?) to < min(d/2 + m, d). Hence,
all m > 0 allow for accommodating the IR—divergence of s(k) = —g|k|=%?,
but not that of |s(k)|* = ¢?|k|™® in d = 3.

However, in contrast to &', the allowed UV-scalings for s € H ™ (R?) are the
same as for L?(R?). That means, s has to decay faster than |k|~%2, irrespec-
tively of m, which rules out s(k) = —g|k|=%? in the Van Hove example.

Another rigged Hilbert space [204, Example 1.3] is constructed by introdu-
cing the formal scalar product

(@, Vs =), K¢), (3.50)

where K is an integral operator with bounded kernel K : R? x R? — C. J#-
is then given by the set of all measurable functions

¢:RY-C  with  [¢|% = JWK(IC, K)o(k') dkdk' < 0. (3.51)

To obtain an actual scalar product, K must be positive definite, i.e., (¢, ®)» >
0 for all 0 # ¢ € L?(R?). There are many possible choices for K, such as the
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Gaussian kernel| in [207]

_ K2
K(k,k') = exp <—u> , o >0, (3.52)

202

see also Figure(3.3] The corresponding operator K is then a convolution with
a Gaussian function, which provides a good IR-regularization: If s € ', then
K acts as a multiplication by a Gaussian on the Fourier inverse § = F~!(s):

e e L) (3.59

So in . there are tempered distributions, whose Fourier inverses are func-
tions with an arbitrary polynomial increase as |y| — co. However, also
shows that there is no UV-regularization, since the Gaussian scales like a
constant as |y| — 0. In particular, s(k) = —g|k|[™? in d = 3 cannot be
accommodated into ., since

(s, Ks) = (F~\(s), FL(Ks)) = ¢ j

2 2
exp (—M) ly| 3 de (3.54)
R

2

diverges logarithmically as |y| — 0.

Abbildung 3.3: Left: The Gaussian kernel from (3.52)).

Right: The multiplication operator 7" has a distribution K as its
kernel, that is supported on the diagonal. Color online.

A further way to provide Hilbert spaces for a rigging [204, Example 1.1] is
to introduce an operator T : L?(RY) — L?(R%) multiplying by a bounded,
measurable function T : R — R with T'(k) > 0 almost everywhere, and to

®For normalization reasons, a factor of 8¢ instead of 20 is used in 205, (2)].

145



3 Fock Space Extensions

define R = 5. via the scalar product

(@, 0y =<, T). (3.55)

The functions T'/2(k) and T~'/2(k) are then defined almost everywhere, and
we can write

W = {gb : measurable ‘ ¢ e LQ(Rd)}

;. = {¢ : measurable ‘ T-'2¢ e LQ(]Rd)}, (3.36)
up to modifications on a null setﬂ The choice (3.55) can also be seen as a
kernel-based scalar product, as in (3.50]) with kernel Kr(k, k") = T'(k)d(k —
k') being a distribution, and hence unbounded. See also Figure .
The choice of the function T'(k) now determines how well IR— and UV-
divergences of s can be absorbed. For instance, one may choose a smooth
function T'(k), scaling as |k|* for |k| — 0 and as |k|” for |k| — oo with
a, 8 > 0. This allows for s € R(R?), which may have a pole at 0 of order
< (d+ a)/2 and are only required to decay faster than |k|®*~%/2 at |k| — oo.
Hence, R = 5. accommodates s(k) = —g|k|™? in d = 3 for all a, 3 > 0.
One may even require T'(k) to scale exponentially{’| at |k| — 0 and |k| — o,
which admits to have all s(k) within R, which increase polynomially at
|k| — oo and have a pole of any order at k = 0.
As a further generalization, one may consider a function 7'(k) that vanishes
along the unit of finitely many submanifolds of co-dimension > 1 in R? and
scales exponentially, as it approaches a submanifold, or as |k| — co. This
would even allow for s, which blow up polynomially as they approach a sub-
manifold.

e [t is even possible to define a rigging by a limit of Hilbert spaces. The
final rigging is then ® ¢ L*(R%) < @ [204} Sect. 1.2], where ® = (1) .- 7,
with 7 being any index set and the family (7% ),er being directed. That
means, for any 7., 7., one can still find some 7" with 4., c ., Hn <
. 1f @ is dense in each 7, then ® = ] 77, [204] Lemma 1.2]. The
space @' is equipped with the inductive limit topology, so it does not have to

5That means, just as in the standard construction of LP-spaces, 7 and %, as in actually
consist of equivalence classes of measurable functions, where two functions are considered
equivalent if they agree everywhere except for a null set. So there is a slight abuse of notation
in .

"By an exponential scaling at |k| — 0, we mean that |s(k)| < cie” ™ for some constants
c1,¢o > 0 at small |k|. For |k| — oo, an exponential scaling means that |s(k)| < c;e~2*l for
some cy,ce > 0 at high |k|.

146



3.2 Extended State Space (ESS)

be a Hilbert space. This allows for even more general spaces R = ®’ than the
above Hilbert space riggings. For instance, the rigging S(RY) < L?(R?) <
S'(R?) can be obtained as a limit of Hilbert spaces [204, Example 1.8]. A
definition of R™Y) for R = @' can then be achieved as an algebraic or topo-
logical tensor product.

It is easy to verify that all above choices for R and R®Y) satisfy Conditions
(B) and (C): R? is equipped with the Lebesgue measure, all R contain the dense
space C*(R%) < L*(R?%) and R™Y) always contains the algebraic tensor product.
As explained above, Condition (A) is generally not satisfied, and requires the in-

tersection with a function space. Whenever s € R for the Van Hove example, we
1s)?

have Qu, Qpc € Z (compare (3.23)), since s®Y € R™Y) and e~ "2~ € eRen.

As for the I'TP space, it is also possible to construct an extended Weyl algebra
W = span g, {W(s1) ... W(sy) | sj€ R}, (3.57)

with W(s),s € R being formal algebraic expressions. This is a generalization of
the Weyl algebra defined in Section to a general ESS construction based on
R. Within the Weyl relations ((3.16])

W(S)il = W(_8)7 W(Sl)W(SZ) = 67%0(81782)W(81 + 52),

we can now interpret o(sy, s2) = {51, S2)— {82, 51 € Ren; and e~27(152) € eRen. So
in contrast to the ITP extended Weyl algebra W, (with = being a placeholder for a
function space), we do not have to define the factor e~27(*1:52) via W (s)-operators,
but can directly consider them as elements of the field eRen. Further, W is an
eRen— instead of just a C—algebra, which allows for more freedom of computation,
and for + = R, we obviously have W, < W.

However, the W(s) are not a priori defined as operators on a subspace of F or
F ex, and a suitable definition may require some work, as in Section . Further,
W (s) defined on (a subspace of) .Z or ., are never unitary, since .# and .%o
do not have a scalar product.

3.2.4 Choices within Polaron Models

In the class of polaron models with “Yukawa-type interaction” in Chapter @], the
construction process of S% treats fermions = and bosons y asymmetrically, and
therefore slightly deviates from the one of Rz, described in Section [3.2.2] This
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asymmetric treatment can be seen as a refinement of the construction process in
Section with R being based on Hilbert space riggings. In the following, we
demonstrate how S%, which is defined in Section , can be embedded into a
space Rz constructed exactly as in Section [3.2.2]

We start from two different one-particle spaces R, and R,. For bosons, we use
R, = S, defined in (4.27), which contains smooth functions scaling “at most

polynomially” at |k| — 0 and |k| — co. This space can also be obtained as a limit
of Hilbert space riggings

Hopr © PR < Ay, Ry= ) Hap, (3.58)

a,B3>0

with J#, 3 defined as in where T, 3 multiplies by a suitable function T, g(k)
scaling like |k|* as |k| — 0 and |k| = as |k| — oo. It is natural to choose RZ(,,N) as
the space of all functions on RV? that are polynomially bounded as |k;| — < and
blow up at most polynomially, when approaching the set

I(k =0)y, :={q=(k1,...,kn) | k;j = 0 for some j < N}. (3.59)

That means, (U(q) - dist(q,3(k = 0),)*) — 0 for some o > 0. For fermions, we
choose as R, the space of smooth functions scaling at most polynomially at |p| —

co. It is then natural to set R;M) to be the space of all functions polynomially
bounded as |p,| — oo. For these choices, R, = R, and RM < RéN). Note that
R, can also be obtained as a limit of Hilbert space riggings

Ay c PR ey, Ro=|] A, (3.60)

£>0

with 775 _ defined via (3.55) by a suitable family of multiplication functions T (p)
scaling as |p|~* for |p| — oo.

We now define R;]Z‘,J’N) as a spaces of smooth functions on RM¥NA\J(k = (),

where
Ik =0):={¢=(p1,--- P k1,..., kn) | k; =0 for some j < N} (3.61)

is the set of configurations where the momentum of one y—particle collides with 0.
We assume these functions to be polynomially bounded as |k;| — oo or |p;| — o0
and to blow up at most polynomially, as ¢ approaches the set 3(k = 0). With this
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definition, each sector contains the algebraic tensor products

RO (RO ©,RY) > (RS @, RE). (3.62)

Yy

. . . M,N
The corresponding space of generalized Fock space functions Rz = @ M.NeNo R;(Ey )

is exactly the space S}O from (4.41]) in Chapter

It is now easy to see how to embed S? into some space Rz constructed as in
Section[3.2.2] i.e., starting from only a single one-particle space R = R,,. Evidently,
R satisfies Condition (A), and Condition (B) holds since C®(R%\{0}) is dense in
L*(RY). As a sector RMN) | we choose the space of all functions that are smooth
on RAM+N\J(p k = 0) with

Ap,k=0) := {q ‘ p; = 0 for some j < M or k; = 0 for some j < N}, (3.63)

that are polynomially bounded as |k;|, [p;| — o0 and blow up at most polynomially
as q approaches 3(p, k = 0). Clearly, Condition (C) is satisfied and we have

ROLN) 5 RIIN)  apd  RUIN) o RE(MN), (3.64)

So RMN) also satisfies Condition (D) and the corresponding space Rz contains
S7.

In general, we do not consider the construction scheme presented in Section [3.2.2]
as fixed. Modifications can be made, whenever needed. For instance, one may ima-
gine further constructions based on two different one-particle spaces R, R,. This
may be particularly useful, if the Hilbert space of the model is ¢ = J7, ® J,
with 2, # 7, e.g., within the spin-boson model.

For further considerations, it may also be useful to allow for poles of s € R,
not only at k = 0, but anywhere. A possible realization of such poles could be by
choosing R, as &', D', or within a suitable rigging, as in Section

3.2.5 Choices for Bogoliubov Transformations

In Chapter , X is not given by R?, but rather by N, with the measure ; assigning
to A < N its cardinality pu(A) = |A|. This X corresponds to the discrete spectral
set of some self-adjoint operator |C| = v/C*C. Therefore, no IR- but only UV-
divergences can appear.

Since X = N, it is natural to choose R as the space of all sequences N — C, as
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we do in Chapter [5 Our notation R = £(N) in that chapter is motivated by the
fact that functions ¢ : j — ¢; in this space may have arbitrary scaling behavior
at j — o0, just as the space of smooth functions £(R?). Every other space of func-
tions N — C is included in £(N), so R corresponds to the most general possible
choice. It is easy to verify Conditions (A) and (B), since all functions N — C are
measurable and the sequence space ¢ = L*(N) is contained in R.

It is also natural to choose R®™Y) = £W)(N), by which we mean the space of all
functions NV — C that obviously satisfies Condition (C). Again, this is the most
general choice possible and Condition (D) is satisfied since R™Y) contains the al-
gebraic tensor product R®.

The case of Bogoliubov transformations with |C'| = v/C*C having non—discrete
spectrum is not treated in Chapter [5| It is an interesting question for future in-
vestigations, how an ESS description can be realized in that case. For bosons, the
main challenge is to accommodate functions of the kind

fz,2") = fi(z)o(z — ) (3.65)

in R (X), which corresponds to a bosonic pair generated by the transformation
. As explained later in Section , we can write X € RxY with Y < Z and
x = (\,y), where A € R is a spectral value and y € Y accounts for its multiplicity.
The function of interest is

A
114N

which scales as A as A — 0 and converges to 1/2 as A — co. In the notation of
Section |5.3.2, we may also write fi(\) = 3 = ﬁ, which is the factor in and
(5.97). The fermionic case is more technical but leads to challenges of a similar
kind, i.e., defining an R(? that contains some f(z,2') involving a §-distribution.
We suggest two possible approaches here, which may be pursued in future works
concerning the implementation of Bogoliubov transformations using the ESS fra-
mework.

However, both approaches presented below generally violate condition (A), as they
deal with distributions that cannot be represented by a function X — C. So it
might become necessary to modify the ESS construction scheme by defining R, not
as a space of functions X — C, but of pairs of distributions, similar to the space
Reng; introduced in Section This space Reng; is not explicitly necessary for
the ESS construction in Chapter [d, but may turn out useful in future constructions.

filz) = fi(Ay) (3.66)
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Distribution Spaces

A space like R = §'(X) or R = D'(X) could be used to accommodate the dis-
tribution f(x,z') in a space like R®® = S'(X?) or R®® = D'(X?). A choice like
E'(X?) for R® is not suitable, since f has no compact support and a choice like
£(X?) for R is also bound to fail, since f is not smooth.

We used the term “like” here, since there is a mathematical problem with defi-
ning &', D', E or £ on (powers of) X: It is not clear how to interpret the term
“smooth”. For open X, this issue does not exist. D'(X),D(X),E(X) and E(X)
are then well-defined, and by [203, Thm. 51.6, 51.7] we have D'(X)®N =~ D'(XN)
(where the topological tensor product is used) and the same for D, &’ €, which
could serve for a definition of R™")(X). A similar statement holds true for S’(R%)
and S(R?). But X, as a spectral set, is always closed and can be quite “rugged”.
So the question arises how to reasonably define D(X), S(X) or £(X) and the
respective dual spaces in that case.

Conditions for compact support of functions in D(X) or rapid decay as A — oo
or y — o for S(X) can easily be generalized from the case X = R? The main
challenge when defining D, S or £ is to give a notion of smoothness. In particular,
if we can define £(X), then we obtain a definition of D(X) and S(X) straight
away by adding a compact support or rapid decay condition.

One option is to define differentiability at each xy € X by Taylor approximations,
as illustrated Figure [3.4 We say that ¢ : X — C is m-times differentiable at
xo € X, if there exists a function p(z),p : X — C, which is a polynomial of degree
< m in (x — xo), such that

lp(z) — p(x)| = o(||z — xo||™) as x — . (3.67)

A possible definition would now be to consider ¢ € £(X), whenever it is m times
differentiable at all x5 € X and for all m € N. The definition naturally extends to
EWN) := £(XN). This notion of smoothness can be used to define D(X) and S(X),
as well as D(X?) and S(X). In order to topologize D,S by seminorms (1.26)),
it is necessary to define partial derivatives, which can be extracted from the total
m~th derivative defined via p(z). Definition can then be used to obtain a
family of seminorms (| - |/.x) with m € N and K € X running through all com-
pact subsets. These seminorms induce a topology that allows for constructing dual
spaces D'(X),S'(X) and D'(XN), 8'(XY), which serve as R(X) and RN (X), re-
spectively.

However, it is not obvious whether D’(X™) =~ D'(X)®" or a similar statement for
S’ holds true. A proof may become technical, involving the replication of proof
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steps leading to D'(XY) = D/(X)®" in [203, Thm. 51.6] for open X, and similar
steps for §'. In addition, verifying fi(x,2') € D' or S’ may also become technical,
as continuity of a functional with respect to an abstractly defined topology has
to be checked. We postpone the investigation of whether these statements hold to
future research.

Another option is to define smoothness by an equivalence relation
E(X) :=ERY/-., b1 ~¢ ¢ = (1 — ¢2)(x) =0 Vr € X, (3.68)
see Figure [3.4] It is then natural to set
EX)M = ER™)/ oy Ui ~en Vo (T — Wy) (¢) =0 Vg e XV, (3.69)

with ¢ = (z1,...,2N).

Adding a compact support or rapid decay condition, one may define D(X), S(X),
as well as D(XV) and S(X?). However, there is no unique notion of a partial
derivative at x € X for ¢ € £(X) as in (3.68)), since there may be several functions
¢; € E(R?) in one equivalence class, that have different partial derivatives at z. So
one would first have to find a sensible way to topologize D(X) and S(X), in order
to define the dual spaces D'(X), S'(X), that are used as R.

) ek

~

0 X/z/ 0 Y

Abbildung 3.4: Left: Definition of £(X) by Taylor approximation.
Right: Definition of £(X) as an equivalence class of smooth func-
tions. Color online.
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Generalized Eigenfunctions

An interpretation of f € R® by means of generalized eigenfunctions is also pos-
sible. Consider a self-adjoint operator (such as |C| in Chapter |5) with a spec-
tral set X, spectral measure p on a o-algebra o/(X) and a spectral PVM P :
o (X) — B(A), where B(s) is the C*~algebra of bounded operators on 7. If
® < # < ' is a nuclear rigging, i.e., ¢ is a nuclear space, then we may write
[204, Thm. 2.5]:

P(A) = J P, du(X). (3.70)
A

Here, the operator P, : ® — @' is defined for almost all z € X and P(A) is also
interpreted as an operator ® — ®'. Heuristically, P, = |e, {e.| is a “projection”
to the generalized eigenvectors |e, ). Mathematically, by means of the Schwartz
kernel theorem, we may associate to P, an integral kernel in the topological tensor
product: Kp, € ¢’ ® ¢’

So choosing R = @ and R™Y) = (®')®V we can already accommodate Kp, € R?.
And it is obvious, that Conditions (B), (C) and (D) are satisfied. (Note that ele-
ments of &’ are not necessarily functions, so Condition (A) is generally not satis-
fied.)

The accommodation of f in R® now works as follows: If we interpret f as the
integral kernel of an operator F' acting in spectral representation as

(Fo)(x) = Jf(x,x’)qb(x') dr' = Jfl(:v)é(x — 2 o(2') da, (3.71)

then F' is just a spectral multiplication by the bounded function f;(x). So F' maps
A into itself, and hence ® into ®’. So by the Schwartz kernel theorem, it has an
integral kernel in R = & ® &', which we identify with the function f.

There is large freedom in the choice of nuclear riggings. For instance, riggings
with £(X),S(R?) or D(X) as space ®, where X < R? is open, are all nuclear
[203, Thm. 51.5]. Further information of when an eigenfunction expansion within
a rigging is possible can be found in [206, 207].

Nevertheless, it remains to check all steps within the ESS construction and its
application to bosonic Bogoliubov transformations, in order to arrive at an imple-
mentability result similar to Theorem for generic |C|. For fermions, further
peculiarities appear, such as the restriction to a finite number of particle-hole
transformations in Theorem [5.5.8f A further and major complication is that wi-
thin a Cooper pair both fermions have orthogonal state vectors. So the function
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f(z, 2") describing a Cooper pair is no longer supported on the diagonal x = z'.

We leave the implementability of a Bogoliubov transformation with general |C|
on a Fock space extension as an interesting open question for future research.
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4 Extended State Space for
Describing Renormalized Fock

Spaces in QFT

4.1 Overview and Main Results

In this chapter, we present a specific version of the ESS construction that is tailor—
made for polaron—like models. More precisely, we consider a class of models with
resting fermions that have the following formal Hamiltonian:

H = Hy, + A'(v) + A(v) — E. (4.1)

That means the following: We consider a species of M € Ny fermions (associated
with an index z) and a species of N € Ny bosons (associated with an index y).
The operators Af(v), A(v) make each fermion create/annihilate a boson with some
form factor v (in momentum space), Hy, describes the free evolution of the bosons
and Fy is an infinite self-energy counterterm.

In Section 4.8, we will also encounter formal Hamiltonians of the kind

Hy + AT(v) + A(v) — Eo, (4.2)

with Hy = Hy, + Hp, including both a fermionic and a bosonic dispersion relati-
on. As in Chapter [}, the fermionic dispersion relation is called ¢ and the bosonic
one w. Up to Ey and the missing fermionic dispersion relation Hy,, (4.1)) coincides
with the formal “polaron—like Hamiltonian” introduced in the beginning of Section
137

The additional term Ey is motivated by the finite counterterms within cutoff re-
normalization in Sections [1.3.7] and [1.3.8 We define F,, as a linear operator in
Proposition using the ESS framework.

Recall from Section [3.2) that the ESS construction provides us with the following
main tools:

e A vector space of divergent integrals v € Ren;.
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e A field of (possibly infinite) wave function renormalizations eRen, con-
taining exponentials e* and fractions of linear combinations thereof.

e An extended state space .7, which is an eRen-vector space over complex—
valued functions on configuration space Q, which are not necessarily L%
integrable. .# extends a dense subspace of the Fock space, .Z#.

e A second extended state space F ox, which allows for multiplying wave
functions in .% by elements t € Ren; (and not only by elements of eRen).

In this framework, the Hamiltonian H in (4.1) will be defined as a linear ope-
rator on a subspace of Z . Physical meaning is assigned to H by a dressing
transformation W (s), which is a linear operator W(s) : Zo D Dy — F o in
form of a Gross transformation (compare Section [1.3.4). Its form factor s(k)
does not depend on the fermion momentum p. So one can fiber-decompose it into
several Weyl transformations, one for each fermion configuration X € R¢. The
“renormalized” or “undressed” Hamiltonian H is defined without cutoffs by

H=W(s)"HW (s), (4.3)

i.e., we require that the following diagram commutes:
_ H
96XDW( )['Dg]DW 'Dg —>W( )['Dg]c

TW ; lW@l

QDD > chy

The large domain D, with the fermionic wave function being a Schwartz func-
tion, is defined in . It contains the small domain Dz defined in (4.150)) via
(4.149), with fermionic wave function in C, and its support avoiding the collision
configurations. It is necessary to introduce two domains, since H does neither map
D4 nor Dy to itself. Nevertheless, H : Dy — D4 can be defined. By means of
Lemmas |4.5.1()| and |4.7.2L both D and D are dense in .Z.

Our main result is Theorem | which establishes that H, satisfying W (s VH =
HW (s), is indeed defined as a hnear operator H:.Z 5 Dys — Fex (with defini-
tion of the domain Dy g in (4.106])). By means of Lemma , under certain con-

ditions, this H can indeed be interpreted as a Fock space operator H:Ds > Dy r2
which allows for self-adjoint extensions by Corollary [4.7.3] More precisely, we have

H = Hy, +V, (4.4)
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with V' being a pair potential interaction between fermions. By Lemma [4.5.11] we
may invert W(s)™! on Dg, so under the assumptions of Lemma , H indeed

satisfies (4.3)).

The result after an “undressing” is not too surprising: Our formal Hamil-

tonian actually just corresponds to a direct integral of uncoupled Van Hove
Hamiltonians, one for each fermion position configuration X € R™?. We have dis-
cussed these Hamiltonians in Section [1.4.3] There, it became clear that formally,
a Weyl transformation together with subtraction of an infinite self-energy renor-
malization constant results in an operator H,. This result is well-known and can
easily be achieved by an algebraic computation without using Fock space extensi-
ons, see [15].
The main novelty in this chapter is that we are able to define certain products
consisting of dressing operators W (s), s ¢ L?, creation operators A(v),v ¢ L? and
even divergent integrals v € Ren;, as linear operators on suitable domains. The
rigorous treatment of divergent integrals may also become useful in a purely alge-
braic approach, which does not refer to any Fock space extensions, but nevertheless
produces divergent integrals when evaluating commutation relations.

Let us add some remarks about the dressing operator W (s): Gross transfor-
mations as described in Section are usually of the form W (s) = eA'()=Als),
where Af(s) = ij\ilAj»(s) describes a boson creation induced by all fermions
je{l,..., M}. We will choose a slightly different dressing operator, which formal-
ly reads

W(s) = War(s) ... Wi(s),  Wy(s) = e 40, (4.5)

The reason is that, when applying the Baker—-Campbell-Hausdorff formula (as in
(4.116])), formal calculations with eATe)=46) would produce exponential operators
of the kind e"s/', with Vj; being a potential interaction between fermions j and
4'. Those expressions €'’ cannot be defined as operators on the ESS .Z ., so we
need to avoid their occurrence.

In general, we will define the extended dressing operators W;(s) such that their
action for s € b slightly differs from that of the usual Fock space dressing operators
Wzi(s): & — . That is, we drop any terms of the kind €'’ in our definition.
This ad—hoc modification is justified by the fact that, in a sufficiently regular case,
the Vj—operators commute with W(s) (Lemma [4.5.8). So even if we could define
them as operators, they would just act as an independent factor that can be pulled
to the left. So dropping all e'i’’—terms can essentially be seen as a simplification
of the bookkeeping.

Nevertheless, it would be interesting for future works to define '3’ as an ope-

157



4 Extended State Space for Describing Renormalized Fock Spaces in QFT

!/

rator, mapping to some ESS .%__, which is constructed differently than .%.,. The
current ESS .7, also does not allow for defining general products of annihilation
operators Aj (v1)...A;j, (v,) with n = 2. It is a further interesting question, how
su9h products can be defined in the future by an alternative construction of some
F -

The ESS construction is currently at an early stage of development. One may view
the results of this chapter rather as a “proof of concept”, showing that the ESS
construction generates reasonable outcomes in well-investigated environments. We
do not yet attempt to produce renormalized Hamiltonians in models where non—
perturbative renormalization has not succeeded before, although this is a clearly
desirable objective for the future.

Although the spaces .Z, .Z . do not have a topological structure, we may define
a renormalized scalar product on W (s)[D#] via:

(W ()W, W(8)Dyren := (W, D) V¥, & eDy. (4.6)

The completion of W (s)[D#| with respect to (-, - )en defines a Hilbert space Fep,
our renormalized Fock space. The map W (s) then uniquely extends to an iso-
metric isomorphism between . and .%..,.

We remark that our result is actually just the lowest—order approximation
in a perturbation expansion within the weak—coupling regime, and completely
decouples the fermions from the bosonic radiation field. The reason is that we both
set # = 0 and restrict to form factors v(k), that only depend on the momentum k
of the emitted boson, and not on the momentum p of the fermion emitting it. It is
physically expected and confirmed for the Nelson model with UV—cutoff [54] [55],
that W§ H)\W, contains interactions between fermions and the radiation field, see
also Section . And indeed, when changing to v(p, k), one may formally use a
so—called “Lie-Schwinger series” ([5.211)), [208]:
ad"(A)B

' Y

0
H=e*Ba?=) —7—
e Ba n; -

where A := —A¥(s) + A(s), B := H and with the n—fold commutator
ad"(A)B := [A,[A,...[4,B]..]]

However, establishing well-definedness of ad"(A)B for 6 # 0 and v depending on
p is a rather involved task, so we postpone it to future investigations.
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Another interesting objective for future works would be to introduce a mass
renormalization term dm, as used for various polaron models in Section [1.3.7 In
constructive QFT (CQFT, see Section , where the Hamiltonian is of a form
different from , mass renormalization terms can also be found in some works
[95], 103, 104], 105l 209], while other CQFT renormalization procedures work wi-
thout a mass renormalization [91], 92, 93] O8], 99, 100, 106}, T10].

The rest of this chapter is structured as follows: After specifying some mathe-
matical notation in Section [4.2] we conduct the ESS construction in Section 4.3
which slightly differs from the general scheme in Section [3.2] as announced.

After the successful definition of the ESSs .#, .Z o, we establish Hy, AT, A and E,,
as linear operators on .% or %, which is done in Section .

In the following Section we construct the dressing transformation W(s). Fur-
ther, we define an extended Weyl algebra W, which is a concrete realization of
the ESS Weyl algebra W in Section with operators instead of algebraic
expressions. In analogy to the W from Section , the concrete W in this section
includes linear combinations of the operators W;(s) = A4 A multiplica-
tion with infinite wave function renormalization factors ¢ € eRen is also allowed

within W, and as in Section the usual Weyl relations hold:

W) = Wy(=s) o
Wi(s1)Wj(s2) = ™2 Wy (sy + ). '

However, note that W is generated by W;(s) for a fixed j, instead of W(s) and

the dressing operator W (s) is not contained in W.

In Section [4.6| we compute H such that W(s)H = HW (s). This section contains

the main result, Theorem [4.6.1]

The proof that under certain conditions H is a Fock space operator and allows

for self-adjoint extensions follows in Section . Thus, H generates well-defined

quantum dynamics, although they are not necessarily unique.

Finally, Section concerns dressing transformations different from W (s), which

are inspired by examples from the literature and can successfully be defined on

the ESSs .7, % . This includes dressings (1 + H, 'A")~! within the IBC works

presented in Section , as well as the dressing T' = e o 1AT, which is a simplified

version of dressings used in the CQFT works like [209, [95].

Sections 4.9H4.13| can be seen as appendices which contain proofs.
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4.2 The Mathematical Model

4.2.1 Formal Hamiltonian

In this chapter, we use the notation from Section adapted to models with two
particle species:

e There is one species of spinless fermionic particles (z).
e These fermions interact by exchange of spinless bosons (y).

By M and N, we denote the number of x— and y—particles, respectively. In the
particle—position representation, a single particle is described by a Hilbert space
vector

P e h= L2(Rd> C)? (48>

with some coordinates denoted by a boldface symbol € R%. So the system has d
space dimensions and d + 1 spacetime dimensions. The configuration of the entire
system is given by an element (X ,Y") of the configuration space Q,

(XaY):(mla"'7mMayl7"'7yN)eQJTXQy::Qv (49>

where the z—, and y-configuration spaces Q,, Q, and its sectors QgM), QZ(JN) are
defined as

0 es} a0 es}
| | RM? = | | @00 = Q, | | RY = | | @™ =: g, (4.10)
M=0 M=0 N=0 N=0

The state of the system at time ¢ is described by a Fock space vector
Ue L*Q,C). (4.11)

For physical state vectors, we assume the function ¥ € L?(Q,C) to be anti-
symmetric under coordinate exchange for fermions x and symmetric under coor-

dinate exchange for bosons y. The corresponding symmetrization and antisymme-
trization operators S_, S, are defined on L*(Q,,C) and L?*(Q,,C) as

(S U)(xy,...,xp) = L Z sgn(0) V(X o1y, - - -, To(ar))

’ (4.12)
(S+\Ij)(y17 cee 7yN) = MZ\P(J"U(I)J s 7wO'(N))7
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which is equivalent to (1.6)). The fermionic/bosonic/total Fock space is then

F, = S_[[}(Q,,C)], Z,=5.[1%Q,C), F=%0F. (413

It is convenient to describe the action of the formal Hamiltonian H in the
particle-momentum representation: For any ¥ € .% with particle-position repre-
sentation ¥(X,Y'), we define the Fourier transform, denoted ¥(P,K) in this
chapter, with momentum configuration

(P’K):(plﬂ"'apMyklv"'akN)ERMd+Nd7 (414)
via
U(P,K):=(2r) T f f U(X,Y) ¢ PXAKY gMdxgNdy —(415)
RN R]VI

In this chapter, the set of variables plugged into ¥(-,-), i.e., (X,Y) or (P, K) will
specify, which representation is meant.

As a formal Hamiltonian, we consider the following expression with zero fermion
dispersion relation:

H = Hy, + AT(v) + A(v) — Ex. (4.16)

In Section [4.8 we will also consider similar Hamiltonians of this kind that feature a
nonzero fermion dispersion relation, i.e., where Hy , is replaced by Hy = Hy .+ H .
The formal definitions of the relevant expressions read as follows:

e The kinetic term H, is characterized by two dispersion relations, i.e., by
real-valued functions 0(p),w(k) € C*(R4{0}) for fermions and bosons, re-
spectively. We can decompose

Hy=H,, + Hy,y,

(HO,x\II)(PaK) = e(pj)\lj(P’ K):
=1 (4.17)

(HoyU)(P,K) = w(k,)¥(P,K).

As in Section we use the symbols dI';(-) and dT',(-) for second quanti-
zation

Hoo = dU,(0),  Ho, = dT,(w), (4.18)
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with multiplication operators

0:h2dom(f) — b w:bh2dom(w) —h

o(p) > 6(p)6(p) oK) > w(k)(k). (4.19)

e The creation part A(v) makes each fermion create a boson. It is specified
by a form factor v. In this article, we will restrict to v € C*(R¥\{0}) and
put some further assumptions on the scalings of v for |k| — 0 (IR-regime)
and |k| — o0 (UV-regime). These assumptions are described in Section[4.2.2]

We may write A'(v) as a sum over operators A; (v),j€{l,..., M}, which on-
ly make fermion j create a boson. The formal definition in particle-momentum
representation reads

(AT()V) (P, K) = (f Al m)

=N \/LN D o(k)U(P + ejky, K\Ky),

j=1 (=1

[y

(4.20)

where
o K\ky=(k1,...,ki 1,kei1,...,ky) denotes K without k,

o P+ejky = (py,---,Pj 1,P; + ke;Djyy, -, Pyy) is the shifted fermion
momentum.

Here, e; is meant to denote the j—th unit vector and, by slight abuse of no-
tation, ek, = (0,..., ke, ...,0) € RM? is used to denote the assignment of
an additional momentum k;, to fermion j, before boson ¢ is emitted.

The corresponding definition in particle—position representation uses the
Fourier inverse ¥ of the form factor v and reads

(A @W)(X,Y) = (Z A}@)@) (X.Y) Z%Zuye—w»wx,xf\yz).

(4.21)
Without the cutoff, the form factor is v ¢ L? in many physically relevant
models. Its Fourier inverse ¥ is therefore ¢ L?, as well, if it is even defined.

Note that there is a more general class of physically interesting models, which
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4.2 The Mathematical Model

we do not treat here: The form factor may depend on the fermion momentum
p, i.e., it may read v(p, k) with v : R? — C, such as in [59, 66, 210].

The annihilation part A(v) in particle-momentum representation reads

(4.22)
M ~ ~ ~ ~
N YN fv(k)*\p(P ok, K, ) dk.
j=1
In particle—position representation,
M
(A P)X,Y) = <Z Aj(v)‘lf> (X,Y)
7= (4.23)

S RGEa f oy — )" WX, Y, §) dy.

Note that for v € b, both AT(v) and A(v) can be defined as operators on a
dense domain in .#, where A'(v) is the adjoint of A(v).

The self-energy F., is a formal multiplication operator of the form FE.,, =
dl',(E;) with E; : R — R. In particle-momentum representation,

(E¥)(P,K) = 3 Fa(p,)¥(P, K). (4.24)

We will consider the expression

Fi(p) J—W k. (4.25)

With cutoffs o, A applied to v, this integral would be finite in many physi-
cally interesting situations. However, without cutoffs it is typically divergent
and hence the operator F, becomes a formal expression. We will define it

as a map .Z — .Z o in Proposition [4.4.2]
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4.2.2 Scaling Degrees

The convergence of integrals appearing in formal calculations depends on how
0(p),w(k) and v(k) scale at |p|,|k| going to oo or 0. We assume a polynomial
scaling, of which we keep track using scaling degrees m (UV) and S (IR). The
scaling degree m in the UV regime is commonly used for symbols s € ™. As we
choose 0, w, v € C*(RN\{0}), an additional pole might appear at |k| — 0, which we
assume to be of order §. Both scalings are assumed to be exact, i.e., polynomial
bounds exist from above and below:

Definition 4.2.1 (scaling). Consider s € C®(R%\{0}). We say that s has a po-
lynomial scaling if there are some scaling degrees m, < 3, € R and constants
C1,C5 € R such that

s(k)| < C1|k|P + Colk|™  Vk e RN{0}. (4.26)
The space of all symbols with polynomial scaling is denoted

S = {s e C*(RN\{0}) | holds}. (4.27)

Definition 4.2.2 (exact scaling). Consider a symbol s € C°(R%\{0}). We say that
the symbol has an exact polynomial scaling (see Figure if there are some
0 < e < € € R such that

e There are a UV scaling degree ms € R and ¢, Cy > 0 with

Cl|ki

M < s(k)| < Chlk

s V|k| >z (4.28)
e There are an IR scaling degree 5, € R and ¢, Cy > 0 with

colk|” < |s(k)| < Colk|” VO < |k| <& (4.29)

e There is a constant c3 > 0 with

cs < [s(R)] Ve< [k

A

(4.30)

YA\
™|

The space of all symbols with exact polynomial scaling is denoted

SP = {se C*(R\{0}) | (E28), @E29) and (@30) hold} = &7, (4.31)

164
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The “>” refers to the fact that [s(k)| > 0, so 1 is defined everywhere except from
k = 0 and also scales polynomially.

Abbildung 4.1: Scaling degrees in the special case of a radially symmetric, positive
function v with |v(k)| > 0. Color online.

Obviously, C2(R%) ¢ 8, so 8 b is dense in b.

For obtaining a well-defined renormalized Hamiltonian H in Lemma , we

will assume )
0,w,ve Sy (4.32)

(see Figure [4.2)) and denote their scaling degrees with mg, my,, m, and Sy, 8., B,
respectively. Further, we will assume in Lemma [£.7.2}

Mg, My, By, Bu 2 0. (4.33)
[v(k)] [o(k)] w(k)|
0] ’ 0] ’ 0]

Abbildung 4.2: Examples for absolute values of functions v, w € Sfo> The functions
v, w are complex—valued. Note that 3., m, = 0. Color online.

This implies, that for 8 and w, there is no pole at the origin. QFT models often
use dispersion relations based on symbols with mg, my,, 5y, B € {0, 1,2}, which all

satisfy this condition.

In order to obtain symmetric operators, we will also need to impose a symmetry
condition in Lemma .72}
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4 Extended State Space for Describing Renormalized Fock Spaces in QFT

0(p) =0(-p), w(k)=w(-k), v(k)=uv(-k). (4.34)

4.3 Construction of the Extended State Space

4.3.1 Wave Function Renormalization Factors

As mentioned in Section [3.2] the motivation behind the introduction of the ESS
setting is to rigorously define formal dressing transformations. Whereas the ESS
construction in Section was explained using a Weyl transformation in ((3.23))
as an example, we will explicitly conduct a similar ESS construction for defining
the formal Gross transformation

W(s) = Wir(s)...Wi(s),  with W;(s) = B4 5= L (435)

w
in the case where s € S = C®(RN\{0}), but s ¢ h = L2(R?, C). Here, the number
M corresponds to the fermion sector, so the second term in (4.35) is a rather
symbolic expression requiring us to adapt M in dependence of the fermion sector
(similar to (4.17))). Formally, if we apply W (s) to a state vector W; where the

boson field is in the vacuum €, and ¥, € .#. S) is a one—fermion state,

\Ill = g’x ® Qy, (436)

then we obtain the following expression in momentum space:

W6 ) = (ﬂ s(k&) v, <p 3 k) — Uy (p, K),
- - (4.37)

For s € b, the expression W (s)¥; is a Fock space vector with norm |[W(s)¥,| =

|W, . However, if we set s ¢ b, two problems arise:
|2 = (s, s) is formally a divergent integral. So the wave function renorma-

s 2
lization factor e’% is not well-defined.

o s

o (Hévzl S(kg)) (on every sector N > 1) is a non—square integrable function,

, (4.37) does not

. . . .. _ls)?
so even without the infinite renormalization factor e~ =2

describe an element of .%.

The second problem is tackled by defining a space Sj/‘Q containing non-square
integrable functions, including the above product. As s € §{°, the product above
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4.3 Construction of the Extended State Space
is a smooth function apart from the zero boson momentum configuration set

Ik =0):={¢=(P,K)e Q|3le{l,...,N}: k,=0}. (4.38)

VI

ky
N
U

Abbildung 4.3: The set 3(k = 0) on the (M, N) = (1,2)-sector in configuration
space Q for d = 1. Color online.

The restriction of 3(k = 0) to any sector is a union of hyperplanes (see Figure
4.3)), which have Lebesgue measure 0 and hence, also 3(k = 0) < Q is null.
Excluding this set from configuration space, we obtain

Q:= O\I(k = 0), (4.39)

and on ¢ € Q, the function ¥, in (£.37) is smooth. For |k| — 0 or |p|, |k| — o we
require the following scaling conditions to hold:

Uo(P, K Uo(P, K Yo(P, K
lim Yo(P.K) _ lim Yo(P K) _ lim Yo(P. K) _ 0, (4.40)
|k2‘_’0 |k€|/6 |kg|—>OO |k@|m |pj‘—>00 |p]|m

for all fixed ¢ = (P,K) € O and some 3,m € R. We hence interpret ¥, as an
element of the following space:

o {\11 e C*(Q) ‘ holds}. (4.41)

Note that S}O N.Z contains CF(Q), which is a dense set in .%. So S§ N.# is dense
in .#. The Fourier transform of some Wy € 8% can be taken, if it is an element of

the space . '
S;,loc = S;ZO N Llloc(Q)' (442)

In order to address the first problem, it is necessary to assign mathematical
meaning to the expression (s, s) (called renormalization factor). It may be
convenient to take a Fourier transform of s € §1°, for instance, in order to define
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4 Extended State Space for Describing Renormalized Fock Spaces in QFT

a particle-position representation. This can be done whenever s € Ll (R?), since
then s € §'(RY), i.e., it is a tempered distribution. We may hence distinguish two
interesting function spaces for s:

e The generic case is given by s € §7°

e The special case is given by s € S n LL_(R%) =: foloc , which allows for

loc
taking the Fourier transform.

In the following, we will present a construction based on the generic case, since

the special one can be treated by the same means. Clearly, h nS7° © 879, so even
31 Toc cOntains a dense subspace of b. If s € b, then
(s, = J|s(k)|2 dk e C. (4.43)

Otherwise, the renormalization factor (s, s) is a symbolic expression, corresponding
to a divergent integral. In contrast to Section [3.2.2] we do not directly interpret it
as an element of Ren;, but intermediately construct a space of function pairings:

Definition 4.3.1. Consider the free C—vector space F' (S‘fo X Sfo) By a free vector
space, we mean the set of all finite C-linear combinations of pairings that are
antilinear in the first component, denoted t = Z%:l C (Smytm), With Sy, t,, €
S{D, c € C and the sum Z%Zl being commutative. The space of renormalization
integrals is defined as the quotient space

Reng; := F (S;O x S;D) J s (4.44)
where the equivalence relation ~pgey,, of formal equality is given by
M M
Z Cm(sm’ ~Renp1 Z 3m7
m=1 m=1
4.4
. i (4.45)
S D CnSm = > emdm(k)tn(k) Ve RN\{0}.
m=1 m=1

The deviation of constructing Ren; via Reng; generates a higher effort in our
case, but it sets the foundation for a treatment of r,s, that are not necessarily
functions (but, for instance, distributions), and may not be multiplied.

There is a natural one-to—one identification of renormalization integrals with func-
tions Reng; = S°: It is easy to see that the following map is an embedding (by
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4.3 Construction of the Extended State Space
definition of ~geng, ):
t1 : Reng; — Sfo

Cn(Smrtm) = T 7(K) = > G (k)b (K).

1 m=1

(4.46)

=

3
[

Conversely, for a given r € Sfo, the element (7, xpa\(oy) € Ren; (with x being the
indicator function) is identified with r, so ¢1 is indeed an isomorphism.

In case t € Reng; with r = 11(t) € L'(R?), we can identify v with the C-number

t= fRd Z oS (Bt () dk = fRdr(kz) dk e C. (4.47)

Now, several v € Reng; get identified with the same C—number, e.g., all t corre-
sponding to a function r with {r(k) dk = 0 are identified with 0. We remove this
ambiguity by modding out another equivalence relation:

Definition 4.3.2. The renormalization factor space Ren; is defined as
Ren; := Rengi/~,, (4.48)

where for v, vty € Reng; we define

t] ~Ren, t2 = 11(t1) —01(tz) € L' and J(Ll(tl) —11(r9)) (k) dk = 0. (4.49)

Elements of Ren; will be denoted equally to a representative t. Note that we
can identify Ren; with the quotient space

Ren; = (C®Reng)/D  with D := {(—f (v)(k) dk,t ‘ 1(r) e LNR )},
(4.50)

where the isomorphism is given by identification of (c,t) with that class [v/] € Ren;

where [(¢1(v')(k) — t1(v)(k)) dk = c.
We will encounter the special case where r(k) only takes values in [0, o0):
Definition 4.3.3. The positive renormalization factor cone Reny, is the set

of all [v] € Reny, where at least one representative v € Reng; is identified with a
positive-valued function ¢;(t) : R1\{0} — [0, c0).
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Scalar multiplication by ¢ € [0, 00) is well-defined, making this indeed a cone.

It is also convenient to make sense of products and polynomials of factors t €
Ren;. We hence define the following vector spaces, as in Section [3.2.2;

Definition 4.3.4. Consider the free C—vector space of all finite linear combinations

of products of up to P € Ny renormalization factors (i.e., formal polynomials of
degree P)

M
Polp := {9% = Z Cm®m1 - Cmpn | 0 <P < P, ¢, €C, v, € Reny
m=1

(4.51)
with the sum Zn]\le and products being commutative. Then, the space of renor-
malization factor polynomials of order < P is the quotient space

Renp = Polp/p,, ., (4.52)
with the equivalence relation ~ge,, of formal equality generated by

Tty ..ty + R ~Renp Ct2...T, + R ifvy=ceC (4.53)
(01C2)t1 Ty +R ~Renp C1 (Cgtl) B + %, '

with P, < P, R € Polp, ¢1,c € C and t,, € Ren;.

As in Section [3.2.2, the bound P on the polynomial order is removed by taking
the union over all orders.

Definition 4.3.5. The space of renormalization factor polynomials is given
by

ee}
Ren = U Renp. (4.54)

P=1
The spaces defined in this Section follow the hierarchy
Ren;, € Ren; € Ren, € ... € Renp € ... € Ren. (4.55)

4.3.2 Exponentials of Renormalization Factors and the Field
eRen

The state vector W (s)W¥; in (4.37) contains an exponential of a renormalization
factor, i.e., an expression ¢ = €' with v € Ren;. More generally, we would like to give
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a meaning to sums of exponentials with different (perhaps infinite) renormalization
factors tq, to € Ren;. Formally, we would like to identify

et +e? =et(14e27). (4.56)

The bracket is a C—number, whenever v; — t5 € C, which defines an equivalence
relation
T1 ~1 ¥y = T — T € C. (457)

Definition 4.3.6. The space of renormalization factor classes is then given
by the quotient space
Clas; = Reny/,. (4.58)

Whenever two elements vy, vty are of two different classes, we have ¢ = e 72 ¢ C
and may think of ¢ as an “infinite constant”.

We may also interpret Clas; as a subspace of Ren;: The elements in the class
of zero, b € Ren; : b ~; 0, form a subspace V < Reny, V = C. Now we can find a
basis B (containing one element) of V' and, by the axiom of choice [211], extend it
to a basis B u B’ of Ren;. By defining W := span(B’), we obtain a decomposition

Reny =VaWw = W = Reny /V. (4.59)
Now, the following map is a bijection from W to Clas;:

Wsw— |w] € Clas;. (4.60)

~Renj

Note that this bijection is not unique, since it depends on the choice of B’ i.e., of
representatives within each class.

We now consider elements of the group algebra C[Reni]| 3 cie™ + ... + cye™
with respect to the group with addition given by the vector space Ren;. The
formal exponentials make an addition in the group e = e"e™ appear as a
multiplication. Here, we would like to consider two summands as equal, if “parts
of the complex number can be pulled into the exponent”, i.e., ce*" = (ce)e’.
This is done by defining an ideal Z < C[Ren;] generated by all elements of the
form

e —e%"  with  ceC, veRen. (4.61)

Note that this ideal gives rise to an equivalence relation

U~z e (u—v)el. (4.62)
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Proposition 4.3.7.
C[Ren |/Z = C[W]. (4.63)

Proof. We define a map w : Ren; — W, which assigns to t € Ren; the vector w
within the decomposition Reny = V @ W above. So v — 7(r) € C. Now within,
cie™ + ...+ cyre™ € C[Ren; ], we can re-write each summand as

Cm€™ ~1 (Cpem ™ m))emem), (4.64)
This gives rise to a re-writing map

IT: C[Ren;] — C[Ren,]

Clerl + .o + CMetI\/I —> (Cletliﬂ—(rl))eﬂ'(tl) + . + (CMet]\{fﬂ'(t]\/j))eﬂ'(tM)' (465)
Note that by the computation rules for group algebras, whenever e™(tm) = em(tm)
for two summands, they can be combined into one.

The map II is an algebra homomorphism: it is linear and respects the multipli-
cation:

(e +. . +epe™II(C e +. . 4chem) = (e +. . +epe™ +ch et 4. . 4y enm).
(4.66)
The latter is a consequence of m(v; + ta) = 7(t1) + 7(r2) which does only hold
true because we have chosen W as a vector space. Further, Il does not change the
equivalence class with respect to ~z. So II(I) = 0 implies I € Z. Conversely, if
I'eZthen I =1, + ...+ I with each I; = A;B;C; with A;,C; € C[Ren;] and
B; = e“itti —¢fieti so II(B;) = 0 and II(;) = 0 and hence II(I) = 0. So the kernel
of IT is exactly Ker(IT) = Z.
Moreover, the image is II[C[Ren;]] = C[IW], since only elements of C[W] appear
in it and any element of C[W] < C[Ren;]| is mapped to itself.
By the isomorphism theorems, we now have that

C[Ren; |/Ker(IT) = II[C[Ren]] < C|Rem |/Z = C[W], (4.67)

as claimed. O
Proposition 4.3.8. C[Ren;]/Z has no proper zero divisors.
(a,be C|Ren;|/Z,a,b # 0 are called proper zero divisors if and only if ab = 0.)

Proof. By Proposition m, it suffices to show that C[W] has no proper zero di-
visors.
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Now, the additive group W is an Abelian group that is torsion—free, i.e., for
geW andneN:
g+g+...+g=0 = g¢g=0. (4.68)
n times
Now, by Lemma 26.6 [212], the group G = W is ordered, so by Lemma 26.4 it
is “t.u.p.”, so by Lemma 26.2 it is “u.p.” and K[G] = C[W] has no proper zero
divisors, i.e., it is an entire ring.

]

Following [213], II. §3], it is a theorem that for every ring without proper zero
divisors, the quotients form a field. So by Proposition the following field
extension of C is well-defined:

Definition 4.3.9 (and Corollary). The field of (exponential) wave function
renormalizations is given by all fractions of linear combinations

a1
eRen = {c = —

a2

ai,as € (C[Renl]/f} . (4.69)

By using representatives of C[Ren;]/Z, we can write any ¢ € eRen as

M t
_1Cpe™ .
Z;‘\:I”,_# with ¢, ¢ € C, 1, tr € Reny. (4.70)
Zm’zl leetMI

' W view a wav: i izati X-
In particular, we can view a wave function renormalization ¢ € eRen as an “e
tended complex number”.

¢ =

4.3.3 First Extended State Space

With the above definitions, we are able to give meaning to expressions like
U =e "V, or even U = ¢y, (4.71)

with t € Reny, ¢ € eRen and Uy € SL, as they appear in ([£.37). We would like
to take linear combinations of them and even handle expressions like ¢RW¥, with
R € Ren. This is done by defining eRen—vector spaces including such expression,
either without % (this will be the first ESS, called .#) or with 9 (this will be the
second ESS, called ?ex). The definitions are similar to those in Section m

173



4 Extended State Space for Describing Renormalized Fock Spaces in QFT

Definition 4.3.10. Consider the free eRen-vector space of all finite (commutati-
ve) sums of the form

o M
Ty = {\1/ = > el
m=1
Then, the first extended state space (ESS) is the eRen—quotient space

= F 0/, (4.73)

U,, €8%, ¢ € eRen} . (4.72)

with equivalence relation ~g generated by
(cc)U, + ¥ ~p c(cV,) + W if ce C, (4.74)
for any ¢ € eRen, Ve . %, and U, € 83,2
The dense subspace S Z of the Fock space can be naturally embedded into
F: Every U4 € S® % N ., can be identified with
Uy =e"VyeZ. (4.75)
However, elements of .# do not necessarily satisfy any symmetry conditions.

The coherent state in (4.37]) can now be seen as an ESS element:

(W) 1) (. K) = ¢+ (ﬂs )qf <p+2k:e>.

T

o
eS%

i

>00 00 : i Qo
For s € 879, and ¥, € CF, the second factor is even in SZ .

4.3.4 Second Extended State Space

Later in this work, we will encounter expressions like
U(q) = e "R(q)Polq), (4.76)

with ¢ € Q, M(q) € Ren, ¥y(q) € C, or linear combinations of them. We interpret
Uy = RY, as a function in the function space

Uy € Ren? := {Wg; : O — Ren}. (4.77)

174



4.3 Construction of the Extended State Space

The second ESS then covers expressions (4.76|) and linear combinations of them:

Definition 4.3.11. Consider the free eRen—vector space of all finite (commutati-
ve) sums of the form

M
Foexp = {\If = > el
m=1

Then, the second extended state space (ESS) is the eRen—quotient space

¢ € eRen, U, € RenQ} . (4.78)

yex = ?ex,0/~pex7 (479)
with equivalence relation ~pe generated by

(cO)Wy 4+ ¥ ~pex ¢(cV,)+ U if c e C, (4.80)

where ¢ € eRen, ¥ e ﬁex,O and U, € Ren®.

The first ESS can be embedded into the second ESS F < F . by interpreting
all ¥,,, € S as elements ¥,,, € Ren®.
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4.4 Operators on the Extended State Space

We first prove that creation and annihilation terms Af(v), A(v) as in ([4.20)) and
(4.22)) can be defined as operators using extended state spaces. Here, we even
permit form factors v(p, k), that are allowed to depend on the fermion momentum
p. The momentum space definition reads

(AL )W) (P, \/LN (B, k) (P + ek, K\y).
(A, (0)0) (P, K) = VN + 1 f (p; — ke B)"U(P — ek, K ) dk,  (4.81)
AT(’U) = Z A;(v), Z

which can be seen as a generalization of (4.20)) and (4.22)).

Lemma 4.4.1 (A", A are well-defined for v(p, k)). Let v : RY x (RA\{0}) — C
be smooth and satisfying the scaling condition (4.40). Then, (4.81) entails well-
defined operators

Al F > F, Aj0): T > Fe, (4.82)
which may be restricted!] to

Alw) : 82— 82, Aj(v): S2 — Ren® (4.83)

)

We may even extend A; (v) : F oy —

ex-

Proof. Suppose, ¥ € 82 and consider the expression A} (v)¥ in (4.81). This is a
finite sum over products consisting of two factors. By definition of Sfo, the first
factor v(p;, k¢) in each product is smooth everywhere except where k, = 0. By

definition of 8%, the second factor (P + e;ke, K\k;) is smooth at all configura-
tions, at which K \k, contains no coordinate ky = 0. So the product is smooth on
Q. In addition, the factors v and ¥ scale polynomially as in .50 AT(v)U € S°O

The expression for A(v)¥ in (4 is a (possibly divergent) integral for each fixed
(P, K) € Q. Since both the functlons k— v(p;—k k) and k— U(P—c;k, K, k)

are in S, the integral defines an clement % € Ren; < Ren for each fixed (P, K).

'We use the same notation for all extended or restricted versions of operators, here.

176



4.4 Operators on the Extended State Space

Thus, A(v)¥ € Ren®.

Both operators can be extended to Z by taking eRen-linear combinations.
For ¥ € Ren?, the expression A; (v)W in (4.81) is again a sum of products, that

are all in Ren<. By eRen-linearity, we can then extend A} (V) 10 Fox.
[

We may also define the constituent operators of H = Hyy, + A'(v) + A(v) — Eq,
as well as Hy, on .7

Proposition 4.4.2 (Constituents of H are well- deﬁned) Consider the momentum

space definitions of Hy ([(L.17), AT(v) [(£.20), A(v) (4.22) and E, ([4.24), where we

only assume 0,w,v € S°O and an arbitrary self energy function E; : R? — Ren.
Then, the above four momentum space definitions entail well-defined operators

Hy:F — F, Atw) .7 - 7,
_ — (4.84)
A() T > F o, Ey : F — Fo.
It 1s also possible to restrict
Hy:S8% — SZ, Al(v) :§3 — S%,
0 ‘,/ Fr ( ) _,/ 7 (4.85)
A(v) :8%2 — Ren?, Ey :SZ — Ren®
or to extend o o o o
Hy: F oy = F o, AT(U) $ T oy = F oy (4.86)

Further, the statements for Hy equally hold true for Hy, and Hy,.

Proof. Well-definedness and the mapping properties of Af(v) and A(v) are a con-

sequence of Lemma The function v(k) in (4.20)) and (4.22)) can be seen as a
special case of v(p, k) in (4.81)). Taking the finite linear sum over j € {1,..., M}
sustains the mapping properties.

The operator Hy as in (4.17)) just multiplies with a function in SOO in momentum
space, so for U € Sf, we also have HyU € S% 7. The same holds true for Hy » and
Hy,. By an analogous argument, H, can be extended to Hj : Ren? — Ren®

Finally, we consider E,W¥ for W e S&O By (4.24), at each fixed (P, K) € Q the
expression E, W is defined as a finite sum over terms F)(p)¥(P, K) € Ren. So

indeed, F, U € Ren®.
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Extensions to .# or %, can again be done by eRen-linear combination.

Thus, also the linear operator H : .# — Z o, is well-defined.

Finally, we prove that the momentum space definition (4.81)) indeed entails cer-
tain canonical commutation relations on the extended state space:

Lemma 4.4.3 (Extended CCR). For ¢, € 8, the definitions (4.20) and (4.22)
imply the commutation relations

Al(), AL =0, [A;(¢), AL (6)] = (.0 Jori=7" " (s
[A} (), A% (9)] [4;(0), A (9)] {ijfw*cb) for i # 7 (4.87)
as a strong operator identity. That is, we have operators

[A;Y(QOL A;r’ (¢)] : ? - §7 [AJ(QO% A;r’(gb)] : § - ﬁex- (488>

Here, the interaction potential Vj; - F — F o for momentum transfer from fer-
mion j' to j is given by

Vij (¢*0)(P, K) := fso*(k)ﬁb(k)‘lf(l’ +(ej — ek, K) dk. (4.89)

Proof. By Lemma , the products Aj(go)A;,(gb) and A;,(qb)Aj((p) are well—

defined as operators .% — % ... A momentum space evaluation renders

([45(0), AL (9)]9) (P, K)

_ fgo*(l;:)gb(k)\lf(P + (ey — ¢))k, K) dk

= <SO’¢>~\D(P~’ K) ) i for j = 4
§o*(k)p(k)U(P + (¢ — ej)k, K) dk for j # '

(4.90)

Similarly, Lemma [4.4.1| establishes that A;(QO)A}, (¢) and A}, (qb)A;r(go) are well-

defined operators .# — .Z and by a short momentum space calculation, one can
verify that they are equal.

O

The operator V}; defined above can be seen as an interaction potential operator.
Under an inverse Fourier transform F~!, it amounts to a multiplication operator
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in position space via
(Vig (9" )W) (X, Y) = FH(¢"s)(z; — ) ¥(X,Y), (4.91)

provided that F!(p*¢) exists (e.g., for exact scaling degrees 8, + 85 > —d =
©*s e §'(RY)).
The following property about V}; will become useful in later proofs:

Lemma 4.4.4. If either of the functions ¢, p € S is an element of C®(RA\{0}),
then we even have o
Viplg"0): F - F (1.92)

Proof. First, let us consider ¥ e S}O Without loss of generality, assume that
© € CP(RN{0}), so ¢ is compactly supported, and the function

k= ¢(k)U(P + (¢j — e;)k, K),

is smooth everywhere on that support. So the function

k— o*(k)p(k)U(P + (e —e;)k, K) isin C%®,

and the integral over it converges to a C—number. .

We now show that this number depends smoothly on (P, K) € Q: Consider any
multi-index « corresponding to a derivative 0% composed of arbitrarily many parti-
al derivatives dj,, O, with j, £ € N. Then also 0“¥ € S7 and by the same arguments
as above,

k — o*(k)p(k)0“U(P + (e —e;)k, K) isin C®. (4.93)

So the integral converges absolutely, derivative and integral commute, and we ob-
tain 0*(V}; (¢*¢)¥)(P, K) € C for any multi-index . Hence, (V;;(¢*¢)V)(P, K)
is smooth at (P, K) € Q.

Polynomial scaling of Vj;/(¢*¢)¥ can be seen as follows: Under the coordina-
te rotation p, := p; + p; and p_ := p; — p;;, the expression V;;¥ becomes a
convolution in p_ of a polynomially scaling function with the function p*¢ € C.
Polynomial scaling bounds are neither affected by the coordinate rotation nor by
the convolution with a C*—function. So indeed, V;;/(¢p*¢)¥ € 8%, and we have

that Vj; (¢*¢) : S2 — S%.

This mapping property extends to Vj;(¢*¢) : F — Z by eRen-linearity.
O
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Remarks.

15. In ([4.87), we have not included the commutation relation for annihilation
operators [A;(p), Aj(¢)] = 0. The reason is that products of two or more
annihilation operators are not necessarily defined, since we only have A;(yp) :
F — Fex. An arbitrary product A;(p)A;(¢)¥ with ¥ € S2 contains a
double integral

(Aj()A; () ) (P, K)
N+ DN £ 2) ffga(i;)*qs(k’)*\y(za e — ek K R, B dRdR

(4.94)

where the first integral produces a configuration space function Q — Ren.
And a second integral over such a function can generally not be interpreted
as an element in Ren.
A definition of such operator products would require a modification of .Z e
such that it also accommodates general divergent integrals over multiple
coordinates of a SE—function as in ([4.94). We postpone the investigation of
such choices for .7, to future investigations.

4.5 Dressing on the Extended State Space

Our next step is to define a dressing operator W (s) with s € Sfo . To do so, a naive
approach would be to start from the expression W (s) = A ()= An(s) | eAl(s)-A(s)

(with M depending on the fermion sector) and expand the exponentials into series

Y

AL 45(5) _ Z (Al(s) — A;()"

|
neNg n:

which can be multiplied out. There are two difficulties with this approach:

e Some terms in the resulting sum contain two or more annihilation operators

A(s) (see Remark [15]).

e There is an infinite number of such terms.

So with the current definition of .% ., we cannot simply define W (s) as an operator
F — F . Instead, we pursue a different approach and define W(s) : Dy — Zey.
Here, we choose Dy < F in ([#.132), such that Ds (which is a symmetrized
version of Dy n L?) is dense in ..
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4.5 Dressing on the Extended State Space

If we consider Wa(p) : F — Z,p € b as a unitary operator on Fock space,
together with some suitable ¥ € .% | then there is a well-defined expression (similar
to ([4.37)) for Wz (@) as an L*- functlon on momentum-configuration space. For
@ replaced by s € S , we may then define W (s)¥ € . based on the momentum
space expression of Wz (p)W.

The domain Dy, in (4.132)) is generated by vectors Ve of the form
Vo =Wi(p)Al(0)T,, or Vo= XW(p)T,,

where:

U, =V¥,, ®Q, € F with U,,, € S(Q,) (i.e., we have a Schwartz function)
and (2, describing the boson field in the vacuum.

Wi(p) = eAi(ﬂ")*Al(SD), ¢ € h A S® describes a dressing induced by only the
first fermion.

o A;(U),U e S describes creation by only the fermion with number j e

(i,..., M.

e X is a linear combination of Ren;constants and operators V;;(v*s) that
formally commute with W (s).

When setting X = 1 (which formally commutes with W (s)), we see that Dy, con-
tains vectors of the kind W;(¢)W,,. We show in Lemma [£.5.6] that these are equal
to Wa1(p)¥,, and, after symmetrization, span a dense subspace of .# (Lemma
. This will later allow for a dense definition of H.

The definition of W (s)¥¢ now exactly works as explained above: We establish
a momentum space expression in case s,v € h N S°O using Lemma |4.5.3] Then, we
generalize to s,v € S°O by a suitable definition. As discussed in the mtroductlon of
his chapter, we remove certain exponential factors of the form €'’ in an ad-hoc
modification. Thus, W;(y;) differs from W ;(ip;) for ¢; € h N S¥. However, we
show in Lemma [4.5.§ “ 8 that any Vj;» commutes with Wz ;(¢;), so the omitted fac-
tor €¥i' can heuristically be pulled into any position”. Heuristically, this factor
disappears when performing an undressing, which justifies the omission within the

computation of H.
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4.5.1 Bosonic Dressing W, ()

The upcoming proofs are based on some well-known facts about coherent states,
where only bosons are present, i.e., ¥, € .%,. The momentum space representation
of the bosonic creation and annihilation operators a'(v), a(v) with form factor v € b
given by

(@0, (K) = STk, (KR
e (4.95)
(a(0),)(K) = VN & 1Jv(l~c)*\11y(K, ) di.

This definition implies that the commutation relations [a(v1), a’(vs)] = (v1, va)
hold as a strong operator identity on a dense domain in .%#,. These operators

a’(v),a(v) substantially differ from Af(v), A(v) defined in (4.20)), (4.22)), which
create or annihilate one boson at the position of each fermion, whereas in .%#,,
there are no fermions.

Using a'(v), a(v), we may define a set of displacement operators
Wy () = e’ (@=ale), (4.96)

and coherent states W, (¢) := W, ()Q,. Indeed, W, (p) is well-defined, since for
v € b, we have the bounds

la' ()0, < [N+ D720, | ol Jal@)@y| <[N8, o], (4.97)

so the exponential series (4.96|) converges in norm:

0™ (4.98)
<

[}
=
—~
o~
N
—
~
M)
2
=
ASH
e
|
—~
o
=
L
~
_>
DO
ASE
=

(o) —alp)'e

where ‘

Here, we used in the second line that (a'(p) — a(¢))*€, occupies only sectors in
Fock space with < k particles, so we can set N < (k — 1) in (4.97). Subsequent
application of (#.97)) leads to the factor (k!)'/2,

In momentum space representation and in terms of tensor products,

Wy () (K) = %

V%(HW’W) & W)= N e p®s. 8.
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4.5 Dressing on the Extended State Space

A calculation similar to (4.98)) verifies that W,(y) can be defined on all ¥, with

finite particle number, i.e., ¥, € Fg,, with

Finy = {Vy € Fy | INpax e N1 TN = 0 YN > Ny} (4.100)

Y

And by continuity, we can thus define W,(¢) on all of .%,.

Moreover, the W,(p) are unitary, so |¥,(¢)| = 1, and they satisfy the Weyl
relations. Further, it is a well-known fact that the span of the set of coherent
states {¥,(¢) | ¢ € b} is dense in .%, [116], Prop. 12]. In addition,

el +leal?
2

Wy (1), Yy(p2))z, = e elpree), (4.101)

SO

_lerl2+lesl?
2

|2, (01) =, (02) " = W, (00)” + | ¥, (02) | — 26 Re(e¥#2). (4.102)

As b is separable, we can find a countable dense set (¢,)neny in b, such that
(¥, (¥n))nen is also dense in the coherent states. So

span{¥,(¢,) | n € N} is dense in .%,. (4.103)

Since h N Sfo > CF is dense in b the above statements hold true, if we replace
¢n € b by @n € b NS

4.5.2 Dressing Induced by Fermions ()
Density

Now, let us turn to the case with two particle species, i.e., # = .Z,®.%, and AT, A
instead of a',a. In order to make an analogous statement to (4.103)) work, we re-
strict from Af(p) = Zj\il A;(cp) to Al(p), i.e., creation by only the first fermion.
Just as W, (), the Fock space operator Wz 1(p) = eAl@=41® can be defined in
analogy to W,(¢). The operators Al(¢) and Wz, () break the fermionic sym-
metry, so they map % — L*(Q,) ® %, (instead of F — F). We will therefore
proceed by considering vectors ¥ € L*(Q,) ® .%,, i.e., with only bosonic exchange
symmetry.

As a “cyclic set” of vectors ¥,,, used for generating further domains, we choose

Civs 1= 8(Q.) ® {Q,} © LH(Q,) ® F,. (4.104)
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4 Extended State Space for Describing Renormalized Fock Spaces in QFT

Since the boson field is in the vacuum, Cyg is obviously not dense in L*(Q,) ®Fy.
However, it generates a dense subspace by applying operators Wz 1(p) to it. The
momentum representation after such an application is given by

lel?
2

(Wy,l(@)qjm)(PrK) = em (H QD(kg)) \I]mx <p1 + Z kprv s 7pM> .
- - (4.105)

Definition 4.5.1. The span of coherent states created by the first fermion
is given by

Dws :=span{Wz1(0)¥,, | g € h N S, ¥, € Crs ) (4.106)

With (4.106)), it is true that
Lemma 4.5.2. (S_ ® 1)[Dws] is dense in F = .7, ® %,

The proof is based on denseness of coherent states in .%#, and can be found in

Section [4.9]

Dressed One—Boson States

Just as Wz 1(¢), we may define W ;(¢), j € Nand Wz () = Wz u(p) ... Wra(p)
with ¢ € h n §° on each M—fermion sector. These operators are all unitary on
L*(Q,) ® %, and well-defined on .Z.

We will now establish some useful commutation relations on the dense subspace

yﬁn = yz ®gﬁn7y e g, (4107)

with Fg,,, defined in (4.100)).

Lemma 4.5.3 (Commutation relations for Wg). For o, ¢ € h n Sfo, we have the
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following strong operator identitied] on Fgy:

oo J(AL8) = (o, )W (0) ifi=i

Wrale)dylo) = {(AW) Vil ) Wrsle) i+

W ()AL (¢) = (AL (¢) — (. ¢y — Vi (¢ ¢>)Wy~(> (4.108)
Wz (0)AT(¢) = (AT(9) = (v, &) = Viu(¢*0)) W (

W (p)AT(¢) = (AT(¢) — M{p, ¢y — V(¢ aﬁ))Wg( ),

as well as

- _ ) (A0) - <¢,90>)W¢J'(90) ii=i
W (0)4;(9) {( Aj(9) = Vip (0* o) )W i(p)  ifj#5"

Wz ()4, ¢> (A5(0) = (¢, ) = Viu(9® )Wa-( (4.109)
Wz i (9)A(®) = (A() — (o, ) — Vaj (¢*0)) Wz o (

Wz (p)A(o ) (A(¢) — M{p, o) = V(¢ @) )W (e )

with Vi defined in 1 9| anaﬂ

Var(e*d) = > Vip(*¢),  Viul@d) = D, Vig(e*9),

Ju#y J"g#g

V(p*d) = ) Vip(0*9).

J#y’

(4.110)

The proof of Lemma [4.5.3] is straightforward by applying the CCR. We present
it in Section [4.10.

4.5.3 Extended Dressing W(s)

We would now like the relations in ) to also hold true if we replace @, ¢ €
thOO by s,v € S ©. In that case, the Fock space operators Wz ; turn into extended
operators W;. More precisely, it would be desirable to have

(A;" (v) — <3,U>) W; ($)U,, if j =4

(A 0) — V)W) g2y Y

W () A} (0) ¥y = {

2By a strong operator identity A = B for 4,B : # — L?(Q,) ® %,, we mean that AV =
BU VU € #, even if possibly AV, BU ¢ .%.

3Here, Zj:#j, is to be understood as a sum over only j, while Z#j, is a sum over both j and
j'. The second kind of sum will appear more often, so we give it a shorter notation.
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for W, € Cyys. By Lemmald.4.3| and since (s, v) € Reny, we may obviously interpret

Vip(5*0) : F = Fox, (8,001 F = Fox. (4.112)

So if we can define W;(s)V,, € .Z, then the right-hand side of ([#.111) serves as
a definition for VVj(s)A}, (V)V,, € F . And if we can further define products like

W(s)Wi()¥,, = War(s) ... Wi(s)Wi(¢)¥,, € .Z, then a generalization of
may even be used to define W(S)Wl(tp)A;, (V)V,, € F ey

However, before doing so, it is first necessary to specify what Wi (s)W; () is, which
we will do by introducing some “extended Weyl relations”.

Extended Weyl Relations

In order to treat products of factors Wj(s), s € S¥, we introduce an extended
Weyl algebra W that is generated by all W;(s) and taken over the field eRen (as
in Definition . Recall that ¢ € eRen is a fraction of linear combinations of
exponentials e', with v € Ren; being a possibly divergent integral (see Definition
. Multiplication on W is defined by the Weyl relations

W;(s)™ = Wj(—s)

o (4.113)
Wy (s)Wj(s2) = ¢ 37125, + 5),

with symplectic form . .
o=38 xS — Reny

(s1,82) — {81, 82) — (S9, 51)- (4.114)

2 . .
Note that e~ 29(s152) — eIm{s152) ¢ eRen is not necessarily a complex number.

This W can be seen as an “almost—extension” of W (strictly speaking, it only
extends some Weyl algebra W, generated by {W;(s) | se€bhn SP}).

The definition of the extended Weyl algebra now allows us to write

W(s)Wi(p) =War(s) ... Wa(s)Wi(s)Wi(p)

=€Im<s’¢>WM(S) e WQ(S)Wl (S + (,0) (4115)

So W(s)Wi(p) can be brought into the form Wy (sys) ... Wi(s1) times an eRen—
factor, which is the same on each M—fermion sector.
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Extended Dressing on Coherent States

In order to define vectors of the kind Wys(sas) ... Wi(s1)¥,, € .Z, we make use
of the momentum space definition of W pr(onr) ... Wa1(p1) ¥, for ¢ € h n S°.
For two dressing operators with j # j', the Baker—-Campbell-Hausdorff formula
implies

W (05 Wir g () W = 5@ AiloD A=Ay i) g

_ e_uwéu HwH A1) o= (%)6,4;,(@].,)e_Aj,(gpj,)\I,m

| —

:\I/m
lejI?  lerl? n +
— 6—7—7—[ j(p5),A (%')] A’ (‘Pj) /(@j’)e—Ay‘(@j)\I}m
2
_ B v e Al Al e g
(4.116)

Here, we used that V}; commutes with all A},, and Aj», which follows by the same
arguments as in the proof of Lemma below. Thus, all double commutators
between A— and A'-operators vanish. The generalization to arbitrarily many fac-
tors, Wa ar(@nr) ... Wa1(p1)W,, is straightforward and we obtain an exponential

of constants and Vj;—terms, followed by e INCINER +"‘T(‘f’l)llfm.

We now define Wy () ... Wi(e1) by dropping the V;y—terms in (4.116)), which
yields the following momentum space expression for ¥,, = ¥,,. ® Q, € Cwg

(Waia) - Wi U (P, K) = e S0 50 Z(H%@ k) e (P),

(4.117)
where the sum over ¢ over all M maps

o:{1,....,N} > {1,..., M}, (4.118)

assigning each boson ¢ to a fermion j = o(¢). The shifted momentum, illustrated
in Figure [4.4] is then
P =P+ eqpke (4.119)
¢

Lemma 4.5.4 (Products of W are well-defined). Consider a sequence (s;)jen <
S and U, € Cyys. Then, the momentum space definition (4.117) renders a well-

defined vector o
WM(SM) R Wl (Sl)qjm € 9, (4120)

where (4.120)) is to be interpreted as a sector—wise definition in M € N.
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kl 0'(1):2
k?g 0'(2):]_ K
k?g 0'(3):2

f p2+k1+k3 p2 }

Abbildung 4.4: An example for momentum shift within the dressing.

Proof. Copying the momentum space definition (4.117]), we obtain
1 o dsgl? N
N A ’
e J 2 So(r (k?g) \Ifm;r (P ) .
T (1
(4.121)
Obviously, (Hévzl So—(g)(kig)) U, (P') defines a function in 82, which is still true

after taking the finite sum over o.

(WM(SM) e Wl(Sl)\IJm)(P7 K) =

5512
Further, we have [s;]|* = (s;, ;) € Reny, so e~ 5 € eRen.

Therefore, the expression ([#.117) defines an element of .%.
]

This already allows us to define Wy, (syr) ... Wi(s1) on vectors ¥, € Cyg with
the boson field in the vacuum. In order to define Wy(sp) ... Wi(s1) also on a
dense domain in .#, we extend the definition to vectors Wy 1 (¢)¥,, € Dywg, who-
se symmetrized span, by Lemma [4.5.2] is dense in .%. This extension is done by
assuming that Wz 1(¢) can be merged into Wi(sy), just as Wi(yp) in (4.115)).

We will also allow for a treatment of state vectors by using the operator (S_® 1),
which can obviously be extended to (S_ ®1):.% — .F or (S_®1) : Feoy — Fey,
using the momentum space definition (4.12)).

Definition 4.5.5. Let (s;)jen © S{’O Then, by Lemma , copying the mo-
mentum space definition (4.117)) results in a well-defined product of dressing
operators

WM(SM) ce Wl(Sl) . DWS — ?,

o (4.122)
WM(SM) . Wl(Sl)Wg?’l(QO)\Ifm 1= e LY WM(SM) . Wl(Sl + QD)\IIm,
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where M is the respective fermion number on each sector. Further, we define the
extension to symmetrized vectors

WM(SM) Ce Wl(Sl) . (S_ ® ]]-)[DWS] o DWS - ?, (4123)

by imposing that Wy (sa) - .. Wi(s1) shall commute with the symmetrization ope-
rator (S_ ®1).

With this definition, it is true that

Lemma 4.5.6. For all p € h n Sfo and V,, € Cyg, it holds that
Wz 1(0) ¥ = Wi(0) W, (4.124)

in terms of momentum space functions.

Proof. Consider (4.116) with j = 1 and ¢; = 0. Then, the V;—term vanishes,
so no Vjjy~terms are dropped when copying momentum space expressions in the
transition Wz 1 — W and indeed Wz 1 ()W, = Wi(p)U,,.

O

Remarks.

16. It may seem natural to extend Definition to a general ¥ € .%. By Lem-
ma we can write ¥ as a symmetrized version of U/ =Y Wi(p,)VU,,
with ¢, € hnS® and ¥,y € Cyys. In that case, W (s)¥ = Do W(S)Wi ()W,
contains a possibly infinite sum over functions Q — C, which may not con-
verge.

However, our aim is to give a dense definition of H : .F > dom(FN[ ) — F, so
it suffices to consider the action of W(s), and HW (s) on a dense subset of

F, such as (S_ ® 1)[Dws].

17. Concerning the renormalization classes: Two ESS vectors W (s)Wi(¢)¥,,
and W (s)W1(@)V,,y with ¥, and ¥,,, concentrated on the same M—fermion

_Ls?

sector can be added if the wave function renormalizations ¢ = €', vt = —5
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belong to the same renormalization factor class, i.e.,

t—1teC < ‘Hs—i—goH2—Hs—l—g5||2+21m<s,<p—<,5>‘<oo

< [2Re(s, 0 — @)+ 2Imds, 0 — @) + Jo|* — &]* | < oo
—_—— =
<o <00

= [s,p—@)| <o
(4.125)
That means, convergence of the integral {s(k)*(p(k) — ¢(k)) dk ensures
that the renormalization classes coincide. Note that both Re and Im above
may be infinite, but cancel each other out.

Extended Dressing on One—Boson States

Now, as announced, when replacing ¢, ¢ € h N Sfo by v,s € Sfo in (4.108)), we
obtain a well-defined right—hand side. This allows for the following extension of
dressing operator products

Definition 4.5.7. Let v € Sfo,(sj)jeN c Sfo and V¥, € Cyg. We extend the
product of dressing operators to one-boson states via

WM( ) Wl(sl)A ( )\Ij E exa (4126>

where M is the respective fermion number on each sector, via

WM(SM) ce Wl(Sl)A;,(’l])‘Pm = ( Z ) WM SM Wl(Sl)\Dm,
if 1 =
with X, =& o iLi=g
Vip(s*v) it j #j'

(4.127)
This operator can further be extended to symmetrized vectors by imposing that
W (sar) ... Wi(s1) shall commute with the symmetrization operator (S— ® 1).

It is easy to see that the right-hand side of (4.127)) makes sense: By Lemmam
we have Wy (syr) ... Wi(s1)¥,, € Z. Lemma {4.4. 1] 1mphes that AT (v) : F > F

and by Lemma and (s,v) € Ren;, we have that X; — ﬁex

Heuristically, the factors X; now commute with W; (s), since we have the follo-
wing commutation relations.
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Lemma 4.5.8. For ¢, ', ¢ € b it is true that

(Wa (@), Vi (@* @) =0, and  [Wz;(¢).{p,$)] =0, (4.128)
as a strong operator identity on % .

Proof. Since ¢, ¢ € L?, we have p*¢ € L', so after a Fourier transform, the operator
Virjn(@*$) amounts to a multiplication by an L*—function, and is hence bounded.
Further, Wz ;(¢') is unitary on L?(Q,) ® .#, (and hence bounded). So the com-
mutator is defined on all of L?(Q,) ® .#, and hence .Z.

Now, in position space, both A;(go’) and A;(¢") can be decomposed into a fiber
integral by fiber-decomposing L*(Q.) ® #, = §, %, dX (see and (4.23)).
So we can also decompose Wz ;(¢') = A=) into a fiber integral. And by
, the operator Vs j»(¢*¢) just amounts to a multiplication by a complex con-
stant on each fiber Hilbert space. So the fiber operators commute on all fibers and
hence the original operators commute on L*(Q,) ® %, and .Z.

The expression {p, ¢) is just a constant, so it trivially commutes with Wz ;(¢').
[

Mathematically, if we replace ¢, ', ¢ € h by s,s',v € Sfo, then the commutation
relations are not a priori valid, since W;(s) is not necessarily defined on
vectors of the kind Vj/j»(¢* @)W, or (¢, p)¥,,. We enforce their validity by taking
as a definition for an extension of W;(s):

Definition 4.5.9. Let (s;)jen < Sfo, vebhn Sfo and V¥,, € Ciyg, and let X be an
element of the set of operators

X = SpaneRen{<87 U>7 V}j'(s*v) ‘ S,V € Sfo}’ (4129)

so X formally commutes with all W;(s;). Then we extend the product of dres-
sing operators via

WM(SM) N Wl(Sl)X\I/m :XWM(SM) Ce Wl(Sl)\I]m,
WM(SM) e WI(Sl)XWﬂyl(@)‘I}m :XWM(SM) Ce W1 (Sl)Wf,l(SD)\Ilm (4130)
ZXWM(SM) c. W1 (Sl)Wl(QO)\IJm,
with M being the respective fermion number on each sector and where the last
equality in (4.130) holds by Lemma [4.5.8, Again, we may extend the definition to

symmetrized vectors by imposing that Wy (sys) ... Wi(sy) shall commute with
the symmetrization operator (S_ ® 1).
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Again, it is easy to see that this definition makes sense: By Lemma we

have Wi (sar) ... Wi(s1)¥,, € Z. And since X € X maps .# — o, indeed
XWar(sar) ... Wi(s)¥,, € Fey, (4.131)

so the right—-hand sides of (4.130) are well-defined.

Remarks.

18. It seems natural to define for all operators X which commute with

A;(s’ ) in a sufficiently regular case and A;(s"). However, since we have only
defined A;(s") : F — F o and Vjju(s*v) 1 F — Foy, it is not clear how to
interpret the commutator [A;(s"), Vj»(s*v)]. So Vjin(s*v) would then not
be a valid X-operator, although it commutes with A;(s’ ) and A;(s") for
s,s',vebh.
If one succeeded to modify the definition of F ., ZF o such that commuta-
tors as [A;(s'), Vjj(s*v)] are well-defined operators, then it seems reaso-
nable to change the set of allowed X in Definition to all X with
[A!(7), X] = [A;('), X] = 0.

Final definition of 1/ (s)

With Definitions [£.5.7] and [£.5.9, we may now provide the final domains for the
product Wis(sar) ... Wi(s1): The extended dressing domain Dy is defined as

DW =
spaneRen{Wl(cp)A;(v)\Ifm, XWi(e)¥,, ‘ webhN Sfo, vE 8{’0, XeX Vv,¢ Cws},
(4.132)

with Sfo defined in (4.27), X defined in (4.129) and Cy g defined in (4.104]). Well-
definedness of W (s) on Dy, can be seen by combining (4.115]) with Definitions

and [4.5.9} By imposing that Wi (syr) ... Wi(s1) shall commute with (S_® 1), we
extend Wys(sy) ... Wi(s1) to (S- ®1)|Dw| v Dy .
The maximal domain of W (s) in Fock space is now given by the large domain

Dy :=(S-Q1)[Dw n (L*(Q.) ® F,)]. (4.133)

The symmetrization operator (S_ ® 1) ensures that indeed Dy < .%. With this
definition, it holds true that

192



4.5 Dressing on the Extended State Space

Lemma 4.5.10. We have the inclusion
Dws < Dw n (L*(Q,) ® F,), (4.134)

and in particular, Dz is dense in .

Proof. Setting X = 1 and using Lemma.5.6 we see that Wz 1(¢)V,, = Wi(p)¥,, €
Dws with ¢ € b n S and V,, € Cyg is also an element of Dy,. Further,
Wz i1(o)W,, € L*(Q,) ® F#,, which yields the inclusion relation ([4.134).

Hence, the symmetrized version (S_ ® 1)[Dys] is included in Dg. And since
the former is dense in % (Lemma [4.5.2), also the latter is.
[

In order to define the renormalized Hamiltonian H = W (s) *HW (s), we also
need to have a well-defined inverse 1W(s)~!. The following Lemma will allow for
such an inversion in certain cases.

Lemma 4.5.11. W(s) with s € S is invertible on D.

The proof of this Lemma can be found in Section and uses another lemma
about linear independence of coherent (and certain related) states.

Lemma 4.5.12. For ke {1,..., K}, K € N, consider ¥, ; € L*(Q,) ® {Q,} and

oL €Eh N Sfo Further, choose any partition {1,..., K} = Kwa U Kw, as well as
v € h ST and jr, €N for ke Kywa, and define

T .
0, {W@J(%)Ajk ()W, ke Kwa (4135)

Wz 1(or) ¥,k ifke Kw

such that Wy, # 0. Further, assume that o, # o whenever k # k' both belong to
either Ky or ICyw. Then the set

{U, | ke{l,...,K}} c L*(Q.,) ®.F, (4.136)

15 linearly independent.

Heuristically speaking, the proof relies on the argument, that there is a “largest
vy, for which the term QOE?N , occurring in a coherent state, eventually grows “too
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large to be canceled by the K — 1 other terms” as N — oo. The proof itself is
rather technical and can also be found in Section 4.11]

Remarks.

19. In essence, we just transferred the commutation relations ( m ) for creati-
on operators AT from Lemma in a certain sense to extended dressing
operators W;(s ) This was done by imposing definitions such that these com-
mutation relations still hold true. What about the commutation relations
for annihilation operators A;?

In fact, these relations cannot be imposed by definition, but one may show
that they are an immediate consequence of Definition [4.5.5] This is proved
in the following lemma:

Lemma 4.5.13. Let s,v € Sfo and V,, € Cws. Then, we have the commutation
relations

_ ) (A50) = (o)) Wi (5) U ifj=J7
W= {(Aj@) V)W) i # S
W (s)A;j(0) U, = (Aj(v) = (v, s) = V;u (0*5)) W (s) ¥y, (4.137)
Wir(s)AW) W, = (A(v) — (v, 8) — Vayr (v*8)) Wy ()W,
W (s)A(v)¥,,, = (A(v) — M{v, sy — V(v*s))W(s)U,,.

Proof. First, note that A;(v )\IJ = 0. The first line in (4.137)) then follows by
momentum space definitions (4.22)) and (4.121)):

(4;(0)W; (5) ¥, ) (P, K)

_c Jv(fc)*s(fs) <n S(kg)) Upa(P' 4 (e — €;)k) dk

/=1
_ {<v,s>wm(P,K if j = j'

(4.138)

)
(Viy (v*s)U,, ) (P, K)  ifj# 5"
with P’ = P +e; 30, ky.

The second line in (4.137) is established similarly. We use again (4.22) and
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(4.121]), yielding:

(4, ()W ()2, (P, K)

_ (4.139)

_ls H2 N
W ZJ (Hs (ko) ) ma (P’ + (eavy1y — ;)k) dk,

1

where the sum runs over all 5 : {1,..., N+1} — {1,..., M} and we have set P’ =
P+ Zz ke, as well as k.1 = k. We can split this sum into a sum over (o, j)

with o : {1 SN} {L,...,M},0(f) =) and j € {1,..., M}, 7 =6(N + 1):
(AJ-(v)vv(swm)(P K)

HsH2

(4.140)

<]‘[sk4> me(P' + (e; — ¢;)k) dk.

Now, the term with j' = j renders the contribution (s, v)¥,, and all other M — 1
terms add up to >, Vii(v*s)¥,,, = Vju(v*s)W,,, which is exactly the desired
contribution.

j' g7

Lines three and four of (4.137) just follow by summing over j € {1,..., M} in
the first two lines.

[]

4.6 Pulling Back the Hamiltonian
This section is concerned with taking a formal Hamiltonian
H = Hy, + A'(v) + A(v) — B,
and pulling it back under the dressing transformation W(s), i.e., we compute
H: Fo > Dys — Fex  with  W(s)H = HW(s).

The computation is split into two steps. In Section we compute the pull-
back of (A(v) — Ey). Pulling back only A(v) will result in divergences which are
canceled by E.

The pullback of (Hp, + A(v)) is then computed in Section [4.6.2| Combining Hy,,
and Af(v) yields a particularly easy result.

Our main theorem is the following:
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Theorem 4.6.1. Let s = —2 with s,v,w € Sfo Then the pullback of the self-
energy renormalized Hamiltonian

H := Hy, + V(v*s) satisfies W (s)H = (Hoy + A'(v) + A(v) — Ex)W(s),

(4.141)
which holds as a strong operator identity on Dy (defined in (4.106)) ), as well as
on (S_ & ]l)[DWS]

Note that the potential interaction V' defined in (4.110]) via (4.89)) acts as
(VI)(P,K) =) JU(E:)*S(E:)@(P + (¢ — e; )k, K) dk.
J#j'

Remarks.

~

20. So far, we have not shown that W (s) is invertible on Ran(H). In Lemma

4.7.2, we will prove that under further assumptions, one can reasonably define
H : Dy — Dg. In that case, Lemma {4.5.11] renders invertibility of W (s),

and we have
W(s)H = HW(s) <  H=W(s) "HW(s) (4.142)

as a strong operator identity. However, even without the invertibility of W (s),
Theorem renders a physically reasonable renormalized Hamiltonian

H. Tt only remains an open question, whether the operator H satisfying
W(s)H = HW (s) is unique.

4.6.1 Pulling Back A — F,
We recall that by Proposition [4.4.2 one can define Ey, : . F — Z o, with
(ExV)(P,K) = M{v,s) V(P,K) = Z J—— dk U(P,K), (4.143)
j=1

even if (v, s) ¢ C, but (v, s) € Ren;.

Lemma 4.6.2. Let V,, € Cys and s = —2 with s,v,w € Sfo Then for ¢ € Sloomb,

(A(v) — Ex)W(s)Waz1(@)W,, = W(s)(resi(p) + V(0*8)) Wz 1(0)V,, € Fex,
(4.144)
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where the residual operator

resi (p) = v,y + Vo (v*y), (4.145)
NG

€Reny
1s by Lemma m a well-defined mapping F — F .

The proof of Lemma is given in Section [4.12]

4.6.2 Pulling Back H,, + A

Lemma 4.6.3. Let ¥, € Cys and s = —2 with s,v,w € Sfo Then for ¢ € Sfomh,

(Hoy + AT()W ()W 1(0) W = W (s) (Hoy — 1es1(0)) W1 (9)¥m € T,
(4.146)
with the same residual operator res; = (v, p) + Va1 (v*¢) as in Lemmal[{.6.3

As for Lemma [4.6.2], the proof of Lemma [4.6.3| is rather technical. It can be
found in Section [4.13] With both lemmas at hand, Theorem [4.6.1] can directly be
proved.

Proof of Theorem |4.6.1. This is a simple consequence of Lemmas |4.6.2| and |4.6.3]
We put together (4.144)) and (4.146|) which yields

W(s)H = (Hoy + A'(v) + A(v) — Ex)W(s) =W (s)(Hoy + V (0*s) + resi (p) — resi ()
=W(s) (H()’y + V(’U*S)),
_ (4.147)
as a strong operator identity on all ¥ = Wz 1(0)¥,,, p € S° N h. And these ¥
span Dyyg.

Since we imposed in Definitions [4.5.5] 4.5.7|and 4.5.9| that symmetrization (S_®
1) shall commute with W (s), the strong operator identity is also valid on (S_ ®
[l

1)[Dws].

4.7 Self—Adjointness

In this section, we prove that in Certaln cases H can indeed be defined as a self-
adjoint operator H : .F > dom(H) — .Z. So far we have by Theorem 1| that
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H: (S_®1)[Dws] = Fex is well-defined.

In order for the image of H to be in D 7, we need to restrict the domain of H even
further to some subspace Dy cD 7, defined in (4.150)), and prove well-definedness
of H: Dy — Dy (Lemma . The existence of a self-adjoint extension on some
dom(H) > D is then a simple consequence (Corollary 4.7.3)).

4.7.1 Existence of Self-adjoint Extensions

First, we verify that H = Hy, + V is well-defined and symmetric on a dense
domain in Z#.

Definition 4.7.1. Let Q.. be the set of collision configurations, i.e., all
fermion position space configurations

Qcol,m = {X € Qw ‘ 3] F* jl LTy = wj/}- (4148)
Denote by
CNWS = {\Ijm = \I}mx ®Qy ‘ f_l(\ljmz) € CSO(QSE\QCOI,(E)} (4149>

the “cyclic set” of functions whose support avoids the collision configurations (whe-
re ! is the inverse Fourier transform). We define the small domain, on which

H is initially defined as a Fock space operator as
Dy = (5_Q® 1)[span{Wz1(0)V,, | ¢ € CP(RY), ¥, € CNWS}], (4.150)

see Figure . It is easy to see that Ds; €Dy and Dy C (S_ ® 1)[Dws].

In the following Lemma, we will use that if w,v € S satisfy (£.32) and (.33)
(so they scale polynomially), then the potential function

V= vts = —2, (4.151)

w

also scales polynomially with
my = 2m, — my, By =28, — B (4.152)

Further, if 8y > —d, then the inverse Fourier transform V = F (V) € S'(R%)
also exists, so we can make statements about the singular support of V.

Lemma 4.7.2 (Ef is densely defined and symmetric). The set 15;7 is dense in F .
Assume, that s,v,w € S with w,v satisfying (4.32) and (4.33)), as well as By >
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F~1(¥,,,) appearing in Cy g FY(¥,,,) appearing in Ciws

Abbildung 4.5: Within Cy g, the fermionic wave functions must be in § , allowi-
ng for any support (including compact ones). Within Cy g, only
C'P—functions are allowed with support avoiding the collision con-
figurations Qe 5. Color online.

—d. If now
singsupp(V') < {0}, (4.153)

then H maps '59‘ — Dg and is thus densely defined. If in addition the symmetry
condition (4.34) holds, then H is symmetric.

Proof. Density of Dy in .Z is established as density of (S- ® 1)Dyg in Lemma
(proof in Section [4.9)). We recall that by the last line of ([£.177)),

DlW?,l(@)‘ym = \Ijma: ® Wy(@)Qy

In the proof of Lemma we argue that (S_ ® 1)Dyg is dense in %, since
U, @W, (¢)Q, approximates any ¥ € L*(Q,)®.%, arbitrarily well. The transition
from (S_®1)Dws to D is achieved by a restriction to ¥,y € F[CL(Q2\Qeola)]-
The set Q15 1s a union of hyperplanes on each sector in the fermionic configura-
tion space, so C*(Q,\Qco1,) is dense in L*(Q,). The Fourier transform F is an
isometry, so the allowed set for ¥,,, is dense in L?(Q,). Thus, we can still appro-
ximate any ¥ € L?(Q,) ® %, arbitrarily well by ¥,,, ® W, (¢)Q, and by the same
arguments as in the proof of Lemma , D # is dense in 7.

Now we verify that H,, maps Dy — Ds. By linearity, it suffices to show well—
definedness on all vectors of the form Wz 1 (0)V,,, ¢ € C®(R?). Denote by P the

projection of .#, to the N-boson sector ?y(N), SO D iven, P;N) = 1. The L*norm
squares of Wz 1(¢)V,, are Poisson—distributed over N, i.e.,

2N
2 _ e lel™”

|5 ()] il

(4.154)
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so for any 0 < ¢ < 1 they decay faster than ¢V in N-direction. Now, define

A= max |w(k)| (4.155)
kesupp(p)
Then,
| P Ho Wz 1 (¢ mH <N2)\2HP(N)W“( Y, 7, (4.156)

which still decays faster than ¢ .
and we have that Hy,Wz1(p)¥,, € L*(Q,) ® F,.

, Wgc‘,l(@)\l/mH < O

It remains to be shown that V = V(v*s) is well-defined, which amounts to
proving that

(VO)(P, K) ZJ (e; — ep)k, K) dk,

Jj#j’

defines an L?function on Q. Since By > —d, we have that Vel =Ve S, so

we can take the Fourier transform as in (4.91)):

( ZV _wj (XﬂY)7

J#j’

loc

with V(z) = F1(V)(x).

Now, for ¥ = Wgz1(¢)¥,, we obtain the position space representation by
Fourier—transforming (4.105]):

MF N
U(X,Y) = (]_[ ) U, (X), (4.157)

where ¢ = F!(p) is a Schwartz function, as ¢ € C* is Schwartz. So as ¥,,,(X)
is a smooth function with compact support apart from collision configurations
in Q,, also ¥ is smooth, and it is zero at fermion collision configurations in Q.
Since the singular support of V(x) is at most {0}, the multiplication function
2wy V(xj—x ;) is smooth on supp(¥,,,) (which excludes collision configurations).
And as supp(¥,,,) is compact, there is some Cy € R with

max

< Cy. (4.158)
Xesupp(Uima)

J#y’

Further, by compactness of support, a maximum occupied fermion sector M exists.
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So
Ve[ < M'C30|? < oo

for U e Dy. Thus, VU € L%(Q,) ® .Z,.

Symmetrization for fermions by (S_ ® 1) is preserved by Hy, and V. Hence,

indeed HV € .Z. And by Theorem we have that HW € (S_®1)[Dy] (other-
wise, we could not apply W (s) to it).

Symmetry of H is an obvious consequence of the symmetry condition (4.34] - ). And
since H preserves symmetry, it maps Dy —> Dy = (S_QN)|[Dw N (L*(Q.)®Z,)]

(compare (4.133)).
[

Note that by Lemma , we may extend H to any domain in .%, as long as
its action on all vectors is well-defined.

~ ~

Corollary 4.7.3 (Existence of a self-adjoint extension). H : Dy — Dg as in
Lemma[{.7.3 allows for a self-adjoint extension.

Proof. This is a direct consequence of [22, Thm. X.3] (von Neumann’s theorem):
For a symmetric operator H (called A within [22]), this theorem asserts that there
is a self-adjoint extension, provided that a conjugation operator C' : Dy — Dy

can be found, such that L
CH = HC. (4.159)

As a conjugation, we choose (CV)(K) = V¥(—K)*, which amounts to complex
conjugation in partrcle—p081t10n representation. By symmetry (4.34)) and since w
is real— Valued V(k) = V(—k)*, so VC = CV. And analogously, CH(),y = H,,C.
Thus, (4.159)) holds, and we have at least one self-adjoint extension. O

4.8 Further Dressing Types

There exist also other types of (non—unitary) dressing operators replacing W (s).
An example is given by the IBC construction mentioned, presented in Section
where a dressing operator W = Wiz, = (1 + Hy'AT)~! defined on a subspace of
Z is used. In this section, we extend this operator to .# — .

Another example is the dressing operator T' = e o LAt , which is a strongly sim-
plified version of certain operators used in CQFT.
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4.8.1 IBC on the Extended State Space

In certain cases, the IBC renormalization renders a self-adjoint operator H with
dense domain in %, by using a formal undressing operator of the kind Wigc =
(1 + Hy'A"). Within the construction, several divergent integrals appear, which
get combined to convergent ones. Using the ESS construction, one can directly
make sense of the divergent expressions and, in certain cases, perform the IBC
renormalization in a particularly convenient way. Suppose, 8(p) > 0 and w(k) > 0.
By Proposition , AH'AY © F — Z . is a well-defined operator. Using
a self-energy operator E : .# — F., we can define Hipc : F — Fo with

Hipe = Hy+ AT+ A — E via (1.133):

Hipc =Ho+ AT+ A —F
=Hy+ AT+ A+ AH AT — AH;'AT—E
— (14 AHyWHy” Hy”(1 + Hy' A" —AH,'A'— E (4.160)
S _s C T ’
=S*S+T.

Clearly, S*S is formally a symmetric and positive operator. If it can be densely
defined on Z as a closed operator, then by [22) X.25] we have self-adjointness
of S*S. Using this argument, it is shown in [136], 137, 138, 139] that for certain
dispersion relations and form factors, S*S' is self-adjoint on the domain

dom(5*S) = {¥ e .7 | (1 + Hy'A" WU € dom(H,)}. (4.161)

The condition (1 + H,'A")¥ € dom(H,) is called interior— or abstract boundary
condition.

Now, suppose there is a suitable F such that T : % > D(T) — Z is a densely
defined Kato—perturbation of S*S, that is,

|7V < a|S*ST| +b|¥| V¥ e dom(S*S), (4.162)

with a < 1. Then by the Kato-Rellich Theorem [22], X.12] we immediately obtain
a self-adjoint Hipc on the same domain dom(S*S).

Using the ESS construction, we may now rigorously define Wigc and WfBlc, even
if they formally map out of Fock space:

Proposition 4.8.1. The operator Wige : F — F is well-defined and bijective.

Proof. We show that Wige : S2 — S% is bijective. The extension to a bijective
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operator on .Z is then done by linearity with respect to the field eRen.

The operator Hy ' A" maps S% to itself: A" maps SE — SZ by Proposition m

and H; ' is just a multiplication by a function