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Zusammenfassung

In dieser Dissertation entwickeln und untersuchen wir mathematische Werkzeu-
ge, welche es zum Ziel haben, eine rigorose Beschreibung der nicht–perturbativen
Dynamik in Quantenfeldtheorien (QFT) zu ermöglichen. Der Begriff QFT ist hier
zu verstehen als ein Quantensystem, welches Teilchenerzeugung und –vernichtung
involviert, sowie mit der speziellen Relativitätstheorie verträglich sein kann, aber
nicht muss. Die Werkzeuge zielen auf Fälle ab, in denen ein formaler Hamiltonian
existiert, aber nicht mathematisch definiert ist.

Das erste untersuchte Werkzeug ist ein vor Kurzem von Lienert und Tumulka
eingeführtes axiomatisches System namens Hyperflächenentwicklung (hypersur-
face evolution). Dieses kann als eine Alternative zu den etablierten Wightman–
und Haag–Kastler–Axiomensystemen betrachten werden, da es Rahmenbedingun-
gen für relativistische, nicht–perturbative QFT–Systeme vorgibt. Im Gegensatz zu
letzteren beiden Axiomensystemen arbeitet das Hyperflächenentwicklungs–System
jedoch nicht im Heisenbergbild, sondern im Schrödingerbild. Der physikalische
Zustand wird hierbei durch eine Familie von Vektoren ΨΣ beschrieben; zu jeder
Cauchy–Fläche Σ gehört ein Vektor ΨΣ. Diese Situation ähnelt derjenigen in einer
von Tomonaga und Schwinger vorgeschlagenen QFT–Beschreibung über Cauchy–
Flächen–abhängige Vektoren ΨΣ im Wechselwirkungsbild.
Das Hyperflächenentwicklungs–System befindet sich in einem vergleichsweise frühen
Forschungsstadium. Wir entwickeln es in dieser Arbeit weiter und diskutieren
Möglichkeiten zur Modifikation, sowie zu einem Vergleich mit bestehenden Axio-
mensystemen der nicht–perturbativen QFT.
Eine Besonderheit des Hyperflächenentwicklungs–Systems ist, dass die Bornsche
Regel nicht einfach für alle ΨΣ postuliert werden kann, sondern vielmehr als Theo-
rem bewiesen werden muss: Unter der Voraussetzung, dass die Bornsche Regel
nur auf einer gewissen Teilmenge aller Cauchy–Flächen Σ gilt (z.B. nur auf ebe-
nen Cauchy–Flächen), lassen sich bereits Detektionswahrscheinlichkeiten für sämt-
liche Cauchy–Flächen rekonstruieren. Diese rekonstruierten Wahrscheinlichkeiten
müssen nicht zwangsläufig mit den von der Bornschen Regel vorhergesagten Wahr-
scheinlichkeiten übereinstimmen, allerdings erscheint eine derartige Übereinstim-
mung sehr natürlich. In dieser Dissertation beweisen wir nun, dass für bestimmte
Rekonstruktionswege tatsächlich eine Übereinstimmung vorliegt.
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Zusammenfassung

Ein wesentlicher Zweck dieser Dissertation besteht in der Einführung zahlrei-
cher neuer mathematischer Werkzeuge im Rahmen sogenannter

”
erweiterter Zu-

standsräume“ (extended state spaces, ESSs). Bei diesen Werkzeugen handelt es
sich um Vektorräume, die eine rigorose Behandlung gewisser unendlicher Größen
ermöglichen, welche in formalen Berechnungen zur Cutoff–freien Renormierung
von QFT–Modellen auftreten. Wir präsentieren ein allgemeines Schema, welches
die Konstruktion dieser Vektorräume erlaubt. Unter den generierten Räumen fin-
den sich insbesondere zwei Erweiterungen F ,F ex eines dichten Unterraums des
Fockraums, die eine mathematische Beschreibung

”
virtueller Teilchenzustände“

ermöglichen. Das Schema ist inspiriert von einer kürzlich entwickelten Cutoff–
freien nicht–perturbativen Renormierungstechnik, genannt

”
Innere–Rand Bedin-

gungen“ (interior–boundary conditions, IBC), sowie der Cutoff–freien perturbati-
ven Epstein–Glaser–Renormierung.
Anschließend stellen wir zwei konkrete Konstruktionen vor, welche diesem Schema
folgen. Die erste ist für eine nicht–perturbative Renormierung in Polaronmodellen
konzeptioniert, die zweite ist zur Behandlung von Bogoliubov–Transformationen
vorgesehen.
Für die erste Konstruktion beweisen wir, dass eine Cutoff–freie nicht–perturbative
Renormierung für M ruhende Fermionen, die linear an ein Bosonenfeld gekoppelt
sind, tatsächlich möglich ist. Dieser Fall entspricht mehreren gekoppelten Van Ho-
ve Modellen.
Die zweite Konstruktion wird verwendet, um gewisse Bogoliubov–Transformationen
in einem erweiterten Sinne zu implementieren, obwohl diese die Shale–Stinespring–
Bedingung verletzen und somit nicht im klassischen Sinne (sprich: auf dem Fock-
raum) implementiert werden können.
Für Bogoliubov–Transformationen untersuchen wir zusätzlich von Neumanns un-

endliche Tensorprodukträume (infinite tensor product spaces, ITP spaces) xH ,
welche eine weitere Fockraumerweiterung darstellen. Hier beweisen wir, dass be-
stimmte Bogoliubov–Transformationen, welche die Shale–Stinespring–Bedingung

verletzen, unter Benutzung von xH dennoch implementiert werden können. An-
schließend geben wir Beispiele an, in denen eine erfolgreiche Diagonalisierung qua-
dratischer Hamiltonians durch eine Bogoliubov–Transformation möglich ist, wobei
die Shale–Stinespring–Bedingung verletzt, aber eine Implementierung mittels F

oder xH erfolgen kann.
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Summary

In this doctoral thesis, we develop and investigate new mathematical tools that
are intended to allow for a rigorous description of non–perturbative quantum field
theory (QFT) dynamics. Here, the term QFT is to be understood as describing
a quantum system with particle creation and annihilation that can, but does not
need to, comply with special relativity. The tools aim at cases where a formal
Hamiltonian exists but is ill–defined.

The first investigated tool is an axiomatic setting called hypersurface evolution,
which has recently been introduced by Lienert and Tumulka. One may view it as
an alternative to the well–established Wightman and the Haag–Kastler axiom sys-
tems, as it sets up a framework for relativistic non–perturbative QFT dynamics.
In contrast to these two systems, the hypersurface evolution setting works in the
Schrödinger picture, instead of the Heisenberg picture. The state of the system is
described by a family of vectors ΨΣ, one for each Cauchy surface Σ. This situati-
on is similar to a QFT description suggested by Tomonaga and Schwinger, which
works via Cauchy surface–dependent vectors ΨΣ in the interaction picture.
The hypersurface evolution setting is at a comparably early stage of development.
We further refine it in this thesis and briefly discuss, how it might be modified and
related to existing axiomatic frameworks in non–perturbative QFT.
It is a peculiarity of this setting, that the Born rule for all ΨΣ cannot simply be
postulated, but must be proven as a theorem: Provided that the Born rule holds on
a certain subset of all Cauchy surfaces Σ (e.g., only on flat Σ), one may reconstruct
detection probabilities on the set of all Cauchy surfaces. These reconstructed pro-
babilities may or may not coincide with those predicted by the Born rule. In this
dissertation, we prove that for certain reconstructions, both expressions indeed
agree.

The main set of new tools, which is introduced in this thesis, is given within
the “extended state space” (ESS) framework. We provide a construction scheme
for vector spaces that allow for a rigorous treatment of certain infinite quantities,
which appear in formal calculations concerning the cutoff–free renormalization of
QFT models. Among these spaces, there are two extensions F ,F ex of a dense
subspace of Fock space, which allow for a rigorous description of “virtual par-
ticle states”. The scheme has been inspired by a recently developed cutoff–free
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Summary

non–perturbative renormalization technique called “interior–boundary conditions”
(IBC), as well as the cutoff–free perturbative Epstein–Glaser renormalization.
We present two concrete constructions following this scheme: One of them is desi-
gned to allow for a non–perturbative renormalization in polaron models, and the
second is adapted to a treatment of Bogoliubov transformations.
For the first construction, we prove that a cutoff–free non–perturbative renorma-
lization is indeed possible for M resting fermions linearly coupled to a boson field
(i.e., several coupled Van Hove models).
The second construction is used to implement certain Bogoliubov transformations
in an extended sense, although they violate the Shale–Stinespring condition and
thus cannot be implemented on Fock space.
For Bogoliubov transformations, we also investigate a Fock space extension fra-

mework given by von Neumann’s infinite tensor product (ITP) space xH . Here,
we prove that certain Bogoliubov transformations violating the Shale–Stinespring

condition can nevertheless be implemented using xH . We then provide examp-
les, where a successful diagonalization of quadratic Hamiltonians is possible by a

Bogoliubov transformation, implemented using F or xH , that violates the Shale–
Stinespring condition.
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Organization, Manuscripts and
Personal Contribution

Chapter 1 is intended to give a detailed, but by no means exhaustive overview
about QFT dynamics. We start with a short introduction, which provides more
information about the motivation and content of this dissertation. After that, we
explain the mathematical notation and provide examples for previous successful
renormalizations.

Chapter 2 is derived from the article [1], which stems from a joint project with
Roderich Tumulka. Both authors of [1] agreed on estimating the contribution per
author in both scientific ideas and paper writing to 50%. The project can be seen
as a sequel to a work by Lienert and Tumulka written in 2017 and published in
2020 [4].
While Sections 2.1 and 2.7 provide additional material elucidating the content of
[1], Sections 2.2 and 2.3 contain parts of [1] that have been re–formulated and
supplemented to fit the dissertation. Sections 2.4–2.6 can identically be found in
[1] up to minor adaptions of the notation.

Chapter 3 introduces two Fock space extension frameworks, which play a central
role in the thenceforth presented results: Von Neumann’s infinite tensor product
(ITP) space– (Section 3.1) and the novel extended state space (ESS) framework
(Section 3.2). This chapter has the role of explaining both frameworks and sugges-
ting explicit choices for ITP spaces or ESSs. It is supplementary to the unpublished
manuscripts [2] and [3], and only Section 3.1.1 is based on parts of those manus-
cripts, namely on Section 2.3 of [3].

Chapter 4 is based on the unpublished manuscript [2]. The introductory Secti-
ons 4.1 and 4.2 are adapted versions of Sections 1 and 2 of [2]. All further sections
and appendices of [2] have been directly included into this dissertation as Sections
4.3–4.13 up to minor modifications.
The idea of introducing the rather unusual ESS construction was conceived in
2020, after several investigations on cutoff–free non–perturbative renormalization,
as well as a comparison to perturbative renormalization techniques. Both involve
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Organization, Manuscripts and Personal Contribution

formal manipulations with infinite quantities, which led the author to the con-
struction of mathematical tools that allow to directly make sense of such formal
manipulations. When elaborating the construction, the author received numerous
useful hints from Roderich Tumulka. Both agreed on estimating the contributions
of the author in scientific ideas and paper writing to 100%.

Chapter 5 stems from the unpublished manuscript [3]. Sections 5.1 and 5.2 are
modified versions of Sections 1 and 2 of [3]. In particular, Section 5.2 was greatly
shortened. Here, various definitions have been abbreviated, as they are already
explained in Chapter 3. All other sections and appendices of [3] have been inserted
into Chapter 5 as Sections 5.8–5.12, up to minor modifications.
Micha l Wrochna suggested the idea of investigating Bogoliubov transformations
and gave some useful references to the author. Both agreed on estimating the con-
tributions of the author in scientific ideas and paper writing to 100%.

As customary in mathematical physics, the authors of the above–mentioned ar-
ticles are ordered alphabetically.
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1 Introduction

1.1 Setting, Scope and Structure

Since the first half of the 20th century, quantum models with particle creation and
annihilation have found a plethora of applications in physics, ranging from quan-
tum optics to condensed–matter and high–energy physics. Formally, the dynamics
in the respective models are governed by a Schrödinger equation with some ex-
pression H for a Hamiltonian. Creation and annihilation of particles are described
by including creation and annihilation operators a: and a into H. Mathematically,
the formal expression H generates well–defined dynamics via Stone’s theorem, if
and only if it can be defined as a self–adjoint operator H : H � dompHq Ñ H ,
where H is a Hilbert space and the domain dompHq is a dense subspace of H .
For systems with a variable number of particles, H is a Fock space (denoted F )
or a subspace of F .
For systems with particle creation and annihilation, it is often comparably easy
to establish a self–adjoint Hamiltonian operator H, if the number of degrees of
freedom is finite (e.g., in finite volume on a lattice). This paves the way for ma-
king analytical predictions, numerical simulations with rigorous error estimates, as
well as the justification of formulas describing effective dynamics. However, if one
goes over to more fundamental models describing infinite volumes, a continuum,
or including relativistic dispersion relations, then the formal expression for H may
become ill–defined. The main reason is that certain quantities, such as integrals,
grow infinite as the integration domain becomes infinitely large or reaches a pole.
A careful manipulation procedure called non–perturbative renormalization is
then needed to make sense of H as a self–adjoint operator on H . Finding a re-
normalization procedure can be a challenging task and there are several physically
interesting models, where until now, no such procedure is known. In these models,
a formal H exists, and there may even be procedures that allow for recovering
verifiable physical predictions, e.g., by cutoffs or by perturbation theory. But it is
not known how to establish a self–adjoint operator that corresponds to H.
In fact, due to the lack of a self–adjoint H, most physical predictions in relativistic
QFT are made by perturbative methods. These methods also include a manipula-
tion procedure for establishing formally infinite quantities in a well–defined way,
called perturbative renormalization, see also Section 1.5. When talking about

1



1 Introduction

QFT or renormalization, physicists often refer to perturbative QFT methods or
renormalization, such as in standard textbooks [5, 6, 7, 8]. It is important to care-
fully distinguish between perturbative and non–perturbative renormalization. For
various physically interesting QFT models, a perturbative renormalization pro-
cedure is well–known, while finding a non–pertrubative one can be an enormous
mathematical challenge. We will mainly focus on non–perturbative renormalizati-
on in this dissertation.

Further, the term QFT is not only used for denoting the perturbative or non–
perturbative manipulation and proof methods, but also for the models, where these
methods are employed. There exist, in turn, several senses, in which a “QFT” can
be understood as a model:
In a narrower sense, a QFT is a relativistic quantum model that satisfies a certain
set of axioms, such as the Haag–Kastler or the Wightman axioms presented in
Section 1.2.3. Within this sense, to our best knowledge, no QFT model in 3 space
dimensions has been renormalized non–perturbatively so far. This includes the
standard model of particle physics, as well as its constituents: quantum electrody-
namics (QED), quantum chromodynamics (QCD) and Yang–Mills theory (which
is itself part of QCD).
In a wider sense, a QFT can be any quantum model with particle creation and an-
nihilation, including non–relativistic ones. Also in the non–relativistic case, there
are several physically interesting situations, where a non–perturbative renormaliza-
tion procedure is, to our best knowledge, unknown. An example is the Pauli–Fierz
model (see Section 1.3.7), which serves as a starting point for deriving various
effective models in quantum optics.

The title of this dissertation refers to the second, wider sense. It is our aim to
develop new tools that allow for describing dynamics in quantum systems with
particle creation and annihilation, which are not necessarily relativistic. However,
these tools are also designed to overcome divergence issues that arise in relativistic
environments.
One tool is an axiomatic setting called hypersurface evolution, that can be seen
as a Schrödinger picture–based alternative to the Wightman or the Haag–Kastler
setting. The hypersurface evolution setting was recently introduced by Lienert
and Tumulka [4] and is further investigated in this dissertation. We hope that this
alternative approach may lead to new ideas concerning the non–perturbative re-
normalization of QFT models.
Further tools are provided within the construction of Fock space extensions. We
both investigate the employment of von Neumann’s infinite tensor product

(ITP) space xH and present a new construction scheme for two so–called exten-
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1.1 Setting, Scope and Structure

ded state spaces (ESS) F ,F ex. Throughout the latter construction, we define
several vector spaces that accommodate formally infinite quantities in a rigorous
way.

Let us quickly sketch, how a direct renormalization using the ITP or ESS setting
works on Fock space H � F .
A common way to perform a non–perturbative renormalization starts from a formal
and ill–defined Hamiltonian H, to which position or momentum cutoffs are applied.
For simplicity, we index those cutoffs by a single Λ P r0,8q, here. The cutoff Λ
renders divergent quantities finite, such that the cut–off Hamiltonians HΛ are
well–defined and generate dynamics on F . In the limit Λ Ñ 8, where the cutoff
is removed, HΛ formally goes over into H. However, after adding an operator cΛ,
called “counterterm”, and applying a “dressing transformation” WΛ : F Ñ F ,
the limit rHcutoff � lim

ΛÑ8
W�1

Λ pHΛ � cΛqWΛ (1.1)

may exist as a self–adjoint operator on domp rHq � F .
Our direct renormalization via ITPs or ESSs, by contrast, does not involve any
cutoffs. We directly define the expression

rH � W�1pH � cqW, (1.2)

where W maps from a suitable dense domain DF � F into the Fock space ex-

tension F or xH , and pH � cq is rigorously interpreted as an operator, mapping
W rDF s into itself. See also Figure 1.1. In Chapter 4, we will also define a smaller

domain rDF � DF , such that rH : rDF Ñ DF .

DF

Fock space F

W rDF s
DF

W�1

W

pH � cq

F

W rDF s
DF

W�1

W

pH � cq

xH
Abbildung 1.1: Direct renormalization of H using Fock space extensions. Color

online.

The main challenge is to define the Fock space extension F or xH in such a
way that pH � cq makes sense as a well–defined operator on at least a subspace of
the extension. This involves handling infinite quantities, for which additional tools
may be necessary, such as the second ESS F ex. See Section 3.1 for a definition

of the ITP space xH and Section 3.2 for a presentation of the tools constructed
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within the ESS framework, including F and F ex.

Note that there is no need that xH ,F or F ex extend all of Fock space for the di-
rect renormalization to work. Indeed, F and F ex generally only extend the dense

subspace DF � F , while xH extends all of F .

The idea of a direct renormalization is not entirely new. Similar results have been
recently achieved by a renormalization technique called “interior–boundary con-
ditions” (IBC) or “abstract boundary conditions”. However, IBC renormalization
works without Fock space extensions. In particular, there exists a famous theorem
due to Haag [9], [10, Sect. II.1], which implies that a direct renormalization on
Fock space is not possible for a relativistic QFT satisfying certain axioms. This
is the main reason, why we investigate Fock space extensions in this dissertation.
See also Section 1.4.3 for a discussion.
Put in an algebraic language (see also Section 1.2.3), the Fock space extensions
help us find the correct counterterms c and the correct (GNS) representation on
which the algebraic expression pH�cq can be interpreted as a self–adjoint operator
on some Hilbert space H .

Structure of this Dissertation

In order to compare the employment of our tools with already existing non–
perturbative renormalization techniques, we start by introducing some mathe-
matical notation in Section 1.2. This includes the Fock space formalism in the
Schrödinger picture, creation and annihilation operator products, but also the al-
gebraic formulation of quantum mechanics in the Heisenberg picture. We then
briefly discuss the Haag–Kastler and the Wightman axioms, which are both for-
mulated in the algebraic framework.
In Section 1.3, we discuss some techniques and results concerning non–perturbative
renormalization via cutoffs. The literature on this topic is vast and we are only able
to present a fraction of all results and techniques that have ever been established
on this kind of renormalization. In particular, many results have been achieved
in the setting of Euclidean QFT, including those obtained by a renormalization
technique called stochastic quantization, which has recently gained some conside-
rable attention. A discussion of results in this domain is beyond the scope of this
dissertation, and we can only provide references containing further information in
the end of Section 1.2.3.
Section 1.4 is devoted to the cutoff–free IBC renormalization. Results using this
method have strongly inspired our ESS construction. We therefore give an extensi-
ve discussion of results concerning the IBC methods and its limits, which the ESS
construction is intended to overcome.
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1.1 Setting, Scope and Structure

Another inspiration for the ESS construction came from a cutoff–free perturbative
renormalization method called Epstein–Glaser construction. For this reason, and
since perturbative method are commonly used for extracting predictions in QFT,
we provide a brief discussion on perturbative renormalization in Section 1.5.

Chapter 2 is concerned with the presentation of results in an axiomatic setting
called hypersurface evolution, that can be seen as a Schrödinger picture alterna-
tive to the Haag–Kastler and the Wightman setting. We give a short derivation
of this setting from the Schrödinger picture formulation of relativistic quantum
mechanics via multi–time wave functions (MTWFs) in Sections 2.1 and 2.2. The
hypersurface evolution axioms can be found in Section 2.2.2.
Our main result of this chapter is Theorem 2.3.7, presented in Section 2.3. It
concerns the derivation of Born’s rule on arbitrary Cauchy surfaces if Born’s rule
is only assumed to hold on flat Cauchy surfaces. We prove it in Sections 2.4–2.6.
The last Section 2.7 is devoted to a discussion of how the Wightman axioms might
be derived from a hypersurface setting in future works.

In Chapter 3, we then present the general construction schemes for ITP spaces
(Section 3.1) and ESSs (Section 3.2).
Von Neumann’s ITP space definition is briefly explained in Section 3.1.1, followed
by a discussion, what concrete realizations of an ITP space for applications in
quantum dynamics could look like.
Since the ESS construction is novel, we motivate it in Section 3.2.1, before ex-
plaining the construction scheme in Section 3.2.2. Again, a discussion on concrete
realizations for applications in quantum dynamics follows.

Chapter 4 concerns the application of Fock space extensions to a class of polaron
models that can be “undressed” by a certain simple Gross transformation W . This
W is very similar to a Weyl transformation, where the rigorous implementation on
an ITP space is known to work (see Sections 3.1.2 and 3.1.3). We therefore only
apply the ESS construction to this kind of polaron models. After some introduc-
tory remarks in Sections 4.1 and 4.2, we carry out the ESS construction in Section
4.3. The following Sections 4.4 and 4.5 concern the extension of operators using
F and F ex.
Our main result of this chapter is Theorem 4.6.1 in Section 4.6, which asserts
that rH, as in (1.2), is indeed well–defined. Section 4.7 is then devoted to the esta-

blishment of self–adjoint extensions for rH, and Sections 4.8–4.13 provide further
material and proofs.

Finally, in Chapter 5, we apply both Fock space extension frameworks to Bogo-

5



1 Introduction

liubov transformations V , implemented by W � UV . After a short introduction in
Sections 5.1 and 5.2, we recap the well–known implementation process for Bogoli-
ubov transformations on F in Section 5.3. An implementer UV : F Ñ F exists,
if and only if the so–called Shale–Stinespring condition holds, see Sections 5.1 and

5.3.2. The recapped material is vital for a definition of concrete ITP spaces xH
and ESSs F ,F ex in Section 5.4.
Our main results of this chapter are Theorems 5.5.5–5.5.8 in Section 5.5, which

assert that a suitable implementer UV : DF Ñ xH or UV : DF Ñ F exists, even
in certain cases where the Shale–Stinespring condition fails to hold. In Section 5.6,
we use these results to derive conditions for a successful diagonalization of qua-
dratic Hamiltonians H, using the ITP and the ESS framework. These conditions
are given in Propositions 5.6.2 and 5.6.3, and they assure that rH, as in (1.2), is
well–defined. Section 5.7 contains three applications for Bogoliubov transformati-
ons on Fock space extensions and Sections 5.8–5.12 provide additional material.

UV exists ITP ESS

bosonic Thm. 5.5.5 Thm. 5.5.6
fermionic Thm. 5.5.7 Thm. 5.5.8

rH exists ITP and ESS

bosonic Prop. 5.6.2
fermionic Prop. 5.6.3

1.2 Mathematical Notions

1.2.1 Fock Space Notions

One way to describe the dynamics of a quantum system is by a family of vectors
in a Hilbert space pΨtqtPR � H , where Ψt represents the state of the system at
time t. Throughout the entire dissertation, we will use H as a placeholder for the
Hilbert space representing a quantum system, which depends on the exact model.
If H bears a certain structure, we will call it a Fock space and denoted it by
H � F . We explain this structure in the following.

First, we consider a system with an indefinite number N P N0 of particles
belonging to one species, which are at positions xj � px1

j , . . . , x
d
j q P X � Rd.

For X, we assume the existence of a measure µX , for instance the Lebesgue or a
spectral measure, such that Lp–spaces can be defined. The configuration vector for
these N particles is given by

q � px1, . . . ,xNq P XN . (1.3)
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1.2 Mathematical Notions

All possible configurations for N P N0 make up the ordered configuration space

QpXq :�
§
NPN0

QpNqpXq :�
§
NPN0

XN , (1.4)

whereQpNqpXq is called the pNq–sector ofQ and where the p0q–sector only consists
of a single so–called vacuum configuration X0 � tHu. The measure µX on X
implies a measure µQ on QpXq, with respect to which we can define the Fock
space (for one particle species)

F pXq :� L2pQpXq,C, µQq. (1.5)

This is a Hilbert space with scalar product xΦ,Ψy � ³
QpXq ΦpqqΨpqq dq, where Φp�q

and Ψp�q are representative functions QÑ C for the Fock space vectors Φ,Ψ P F .
In the following, we will drop the pXq whenever it is not explicitly needed.

For physical systems, the vector Ψ P F pXq now has to satisfy certain symmetry
conditions. These can be expressed using the symmetrization operators S�, S� :
F pXq Ñ F pXq given by

pS�Ψqpx1, . . . ,xNq :� 1

N !

¸
σPSN

p�1qp1�sgnpσqq{2Ψpxσp1q, . . . ,xσpNqq, (1.6)

where SN denotes the permutation group and p1�sgnpσqq{2 is 0 if the permutation
is even, and 1 if the permutation is odd. The symmetry condition is now the
requirement that vectors be elements of the symmetrized Fock spaces

F�pXq :� S�rF pXqs, (1.7)

which are sub–Hilbert spaces of F . In case of Ψ P F�pXq, the particle of the
species is called a boson and in case Ψ P F�pXq, it is called a fermion.

An alternative description of symmetry is given by using the unordered con-
figuration space ΓpXq, whose elements qΓ are not a tuple of N coordinates, but
rather a finite set qΓ � tx1, . . . ,xNu:

ΓpXq :� tqΓ � X | |qΓ|   8u, (1.8)

with sectors

ΓpNqpXq :� tqΓ � X | |qΓ| � Nu, ΓpXq �
§
NPN0

ΓpNqpXq. (1.9)
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The measure µX implies a measure µΓ on ΓpXq. One may embed the corresponding
space L2pΓpXq,C, µΓq into F� as follows: For each qΓ � tx1, . . . ,xNu we fix an
arbitrary ordering of the coordinates x1, . . . ,xN , such that it becomes unique what
is meant by the configuration pxσp1q, . . . ,xσpNqq. Then for each Ψ P F� we may
choose a representative function Ψp�q and identify with Ψ the vector ΨΓ P ΓpXq
whose representative function is1

ΨΓptx1, . . . ,xNuq :� 1?
N !

¸
σPSN

p�1qp1�sgnpσqq{2Ψpxσp1q, . . . ,xσpNqq. (1.10)

This identification is a surjective, but generally not injective linear map: Consider
the set of collision configurations Qcol and of non–collision configurations Q̊

QcolpXq :� q P QpXq �� xi � xj for some i, j P t1, . . . , Nu(,
Q̊pXq :�QpXqzQcolpXq.

(1.11)

Each q P Q̊ is associated with a unique qΓpqq P ΓpXq and, by symmetry of Ψ P F�,
fixing Ψpqq specifies the value of Ψp�q at exactly all q1 P Q̊ with qΓpq1q � qΓpqq (see
Figure 1.2), namely

Ψpxσp1q, . . . ,xσpNqq � p�1qp1�sgnpσqq{2
?
N !

ΨΓptx1, . . . ,xNuq. (1.12)

So for a given ΨΓ, the required values for a Ψ to be identified with ΨΓ are given
at all q P Q̊. It is easy to find a preimage of ΨΓ by fixing Ψpqq according to (1.12)
at q P Q̊ and choosing arbitrary values at Qcol. So the identification Ψ ÞÑ ΨΓ is
surjective. Its kernel is given by!

Ψ P F�
��� Ψpqq � 0 @q P Q̊

)
. (1.13)

If µX is absolutely continuous with respect to the Lebesgue measure, then Qcol is
a null set, since on each pNq–sector, it is a finite union of codimension–d hyper-
planes (which have Lebesgue measure 0). In that case, the kernel (1.13) is t0u and
the identification is bijective, so L2pΓpXqq � F�. For more general measures µX ,
the identification Ψ ÞÑ ΨΓ is not necessarily bijective. Only for fermions, we can
guarantee bijectivity, since symmetry enforces Ψpqq � 0 at q P Qcol, so the kernel
(1.13) is t0u.

1The identification is independent of the choice of the L2–representative function, since a mo-
dification of Ψp�q on a null set results in a modification of ΨΓp�q on a null set, which leaves
the represented vector ΨΓ P L

2pΓpXqq invariant.
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x2

x1

x3

11

1

2
2

2

3

3

3

4

4

4
Qcol

Abbildung 1.2: On the p3q–sector, the set of collision configurations Qcol divides
the configuration space Qp3q into 3! � 6 sectors. Specifying Ψpqq on
one sector determines Ψpqq for Ψ P F� on all other sectors. Color
online.

A system with n species, each being a boson or a fermion, is described by a
tensor product Hilbert space

H � F� b . . .bF� bF� b . . .bF�looooooooooooooooooooomooooooooooooooooooooon
n factors

. (1.14)

In that case, the configuration space of the system is given by

QpXq :�
§

N1,...,NnPN0

QpN1,...,NnqpXq �
§

N1,...,NnPN0

XN1 � . . .�XNn , (1.15)

which is a generalization of QpXq in (1.4) to many particle species. A measure µQ
can then again be naturally defined on QpXq and the corresponding Fock space
(for n particle species) F is again given by (1.5). Just as Q, also F can be
decomposed into sectors as

F pXq :� à
N1,...,NnPN0

F pN1,...,NnqpXq. (1.16)

Since physical operations preserve symmetry, it is also customary to drop the sym-
metrization by setting H � F , having in mind that it could be imposed at any
time by an application of S� to Ψ P H .

Particles with spin s (and correspondingly 2s � 1 spin degrees of freedom) can

9
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be treated as 2s�1 spinless particle species, so the Fock space with spin is then

H � F� b . . .bF�loooooooomoooooooon
2s�1 times

. (1.17)

A second way to treat particle species with spin is to define Ψ P H as a vector–
valued function, where on each sector QpNq, the vector has p2s � 1qN entries cor-
responding to any tuple r � pr1, . . . , rNq of N spin indices rj P t1, . . . , 2s� 1u. We
set

F � à
NPN0

L2pQpNq,Cp2s�1qN q � à
NPN0

L2pQp1q,Cp2s�1qqbN , (1.18)

and obtain H after imposing suitable symmetry conditions. A third equivalent
way of treating spins is to introduce a spin–configuration space

QspXq :�
§
NPN0

QpNq
s pXq :�

§
NPN0

2s�1§
r1,...,rN�1

XN . (1.19)

So QpNq
s pXq consists of p2s� 1qN identical copies of XN . Configurations with spin

can then be written as qs � pq, rq P QspXq, with r indicating in which copy of XN

the configuration qs lies. The Fock space with spin is then given by F � L2pQs,Cq
with sectors F pNq � L2pQpNq

s ,Cq. The corresponding unordered spin–configuration
space is defined as

ΓspXq :�  tpx1, r1q, . . . , pxN , rNqu
�� xj P X, rj P t1, . . . , 2s� 1u, N P N0

(
. (1.20)

Of course, it is also possible to consider several particle species with spin, in which
case the generalization of Qs,Γs and F via (1.15) is straightforward.

We will also consider systems that are restricted to a subset of sectors, for in-
stance if particle numbers are fixed or have a maximal value. In that case, H
is a subspace of F . Other cases will require H being an abstract Hilbert space
without an a priori identification of vectors with elements of F .
The Hilbert space H will be called a Fock space2 and denoted F , whenever it
comes with at least one decomposition into sectors F �À

NPN0
F pNq.

Creation and annihilation operators a:�pfq, a�pfq for one species of bosons p�q
or fermions p�q and with form factor f P L2pXq can be defined on a dense subspace

2We use the term “Fock space” in a comparably wide sense, here. Other authors only call
H � F a Fock space, if F �

À
NPN0

hbN with h being a “one–particle Hilbert space”. Or,
even more exclusively, only one specific space F of this form is called “the Fock space”.
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of F by stating its actions on configuration space functions

pa:�pfqΨqpqq �
Ņ

j�1

p�1qj?
N

fpxjqΨpqzxjq,

pa�pfqΨqpqq �
?
N � 1

»
X

fpxqΨpq,xq dx.
(1.21)

Here pqzxjq P QpN�1q is the configuration q � px1, . . . ,xNq with entry xj removed.
By a similar null–set argument as above, the definition in (1.21) is independent of
the choice of a representative function Ψp�q for the respective Ψ P F .
The extension of a:�pfq, a�pfq to many particle species with spins (which can in
turn be treated as several particle species without spin) works as follows: If an
operator A (for instance a:�pfq or a�pfq) is defined on dompAq � H1, then its
extension to H1 bH2 is given by3 A b 1 : dompAq ba H2 Ñ H1 bH2 and will,
for simplicity, also be denoted by A.
We remark that the bosonic operators a:�, a� cannot be defined on all of F , but

only a dense subspace, while the fermionic operators a:�, a� are bounded and hence

defined on all of F . Moreover, a:�, a� preserve symmetry, i.e., they map the re-

spective space F� into itself, where the restriction of a:�, a� to F� is still a densely
defined operator.

Definition (1.21) directly implies the canonical commutation/anticommutation
relations (CCR/CAR) as strong operator identities on a dense domain in F :

ra�pfq, a:�pgqs� � xf, gy, ra�pfq, a�pgqs� � ra:�pfq, a:�pgqs� � 0, (1.22)

with commutator rA,Bs� � AB � BA and anticommutator rA,Bs� � tA,Bu �
AB � BA. We remark that for fermions, the anticommutation relations (1.22)
imply a:pfqa:pfqΨ � 0, so there are no Fock space vectors containing more than
one particle with the same one–particle wavefunction f P L2pXq (which is also
called the Pauli exclusion principle).
The set of creation and annihilation operators generate a �–algebra

A :� A� generated by
 
a:�pfq, a�pfq

�� f P L2pXq(, (1.23)

with involution � defined by a�pfq� � a:�pfq and pa:�pfqq� � a�pfq. That means,

3Here, the algebraic tensor product ba denotes all finite linear combinations of tensor products.
So H1 ba H2 contains all Ψ �

°jmax

j�1 ψj,1 b ψj,2 with ψj,1 P H1, ψj,2 P H2. By contrast, the
above–used Hilbert space tensor product H1 bH2 may also contain infinite linear combina-
tions and again renders a Hilbert space.
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A� contains all sums of products of expressions a:�pfq, a�pfq. In the fermionic case
all operators in A� are bounded4, so A� is even a C�–algebra.

It is also customary to write

a:�pfq �
»
a:�,xfpxq dx, a�pfq �

»
a�,xfpxq dx, (1.24)

where the expressions a:�,x, a�,x are operator–valued functionals. That means,

they each correspond to a linear map L2pXq Ñ A�, which maps f ÞÑ a:�pfq
or f ÞÑ a�pfq.
For fermions, boundedness of a:�pfq, a�pfq implies that these functionals are con-
tinuous from the usual Hilbert space topology on L2pXq induced by x�, �y to A�
equipped with the operator norm topology.
However, for open X � Rd, it is nevertheless customary to restrict f to the space
EpXq � C8pXq of smooth functions, to the space DpXq � C8

c pXq of smooth
functions with compact support, or to the Schwartz space (for X � Rd)

SpRdq �
!
f P E

��� sup
xPRd

|xβpDαfqpxq|   8
)
, (1.25)

where α, β run through all multi–indices of the form α � pα1, . . . , αdq P Nd
0 and cha-

racterize the monomial xβ � px1qβ1 . . . pxdqβN and the derivative Dα � Bα1

x1 . . . Bαdxd .
Note that D � S � E and for X � Rd one has D � E . The topologies on D,S and
E are induced by the seminorms

}f}m,K � sup
xPK,|α|¤m

|Dαfpxq|, (1.26)

with K � X running through all compact subsets and m P N0, and where
|α| � °d

j�1 αj. With these seminorms, D,S and E are locally convex spaces, which
allow for a convenient mathematical treatment [11, Part III], [12, 13].
Elements of either of the topological dual spaces D1 � S 1 � E 1 are called distri-
butions, while those in S 1 bear the name tempered distribution.
The map SpRdq Ñ A�, f ÞÑ a�pfq is now an operator–valued distributi-
on, which means that there is a dense domain DF � F pRdq, such that for all
Ψ1,Ψ2 P DF , the map

SpRdq Ñ C, f ÞÑ xΨ1, a�pfqΨ2y (1.27)

4This can be seen from }a:�pfqΨ}
2 � xΨ, a�pfqa

:
�pfqΨy � }f}2 � xΨ, a:�pfqa�pfqΨy ¤ }f}2. A

similar estimate holds for apfq and implies bounds for arbitrary operator products.
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is a tempered distribution, i.e., an element of S 1. It is easy to see that also the
maps f ÞÑ a:�pfq and f ÞÑ pa:�pfq � a�pfqq are operator–valued distributions.

For bosons, the operator–valued functionals are not continuous, since a:�pfq, a�pfq
are unbounded (for f � 0). However, one may easily see that they are operator–
valued distributions: Consider the vacuum vector Ω P F defined by Ωp0q � 1 and
ΩpNq � 0 for N ¥ 1 and consider the domain5

DF � span
 
Ψ P F pXq �� Ψ � a:pf1q . . . a:pfNqΩ, fj P D � C8

c pXq
(

(1.28)

(this is a special choice for the domain DF , mentioned in the introductory Section
1.1, although we will go over to more general definitions of DF , later). So each
Ψ P DF can be written as a finite linear combination Ψ � °M

m�1 Ψm with

pΨmqpNmqpx1, . . . ,xNmq �
a
Nm!S�f1px1q . . . fNmpxNmq (1.29)

for some Nm P N0 and pΨmqpNq � 0 on all other sectors. Now an explicit calculation
shows that for Ψ1,Ψ2 P DF , the scalar product xΨ1, a�pfqΨ2y is a finite linear
combination of expressions of the form xf, fjy, fj P D. Since each map f ÞÑ xf, fjy
is a tempered distribution on f P S, so is f ÞÑ xΨ1, a�pfqΨ2y. So a�pfq is an
operator–valued distribution and it is easy to establish a similar statement for
f ÞÑ a:�pfq and f ÞÑ pa:�pfq � a�pfqq.
It is also possible to construct bounded operator–valued functionals by introducing
the (unbounded) field operators φpfq and the (bounded) Weyl operators W pfq:

φpfq � a:�pfq � a�pfq, W pfq � e�iφpifq � ea
:
�pfq�a�pfq. (1.30)

In that case, all W pfq are bounded, so the Weyl algebra

AW generated by
 
W pfq �� f P L2pXq( (1.31)

is even a C�–algebra instead of just a �–algebra, and the corresponding operator–
valued function L2pXq Ñ AW , f ÞÑ W pfq is bounded.
In the following, we will drop the indices “�” if no explicit distinction is needed.

1.2.2 Operator Products and Hamiltonian Formalism

The algebra A contains operator products of the form a7pf1q . . . a7pfNq with 7 P
t�,: u. This is, however, not sufficient to describe certain physically desirable obser-
vables, such as the particle number, which is represented by the number operator

5By span, we mean the set of all finite linear combinations.
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N : F � dompNq Ñ F defined by

pNΨqpx1, . . . ,xN 1q � N 1Ψpx1, . . . ,xN 1q. (1.32)

It is formally expressed as

N �
»
X

a:xax dx �
»
X�X

a:x1
ax2δpx1 � x2q dx1dx2. (1.33)

The tensor product of operator–valued distributions a:x1
ax2 � a:x1

b ax2 can
again be considered as a functional on elements of6 DpXq b DpXq � DpX2q or
SpRdq b SpRdq � SpR2dq (in case X � Rd). However, a:x1

ax2 is not defined on the
distribution δpx1 � x2q R SpR2dq. Similar issues arise for operator products of the
form

A �
»
X�...�X

a7x1
. . . a7xNfpx1, . . . ,xNq dx1 . . . dxN . (1.34)

If f is a distribution with f R DpXq (or with f R SpRNdq in case X � Rd), then
the expression A is a priori not a densely defined operator on F . However, the
case f P S 1pRNdq still allows for taking the Fourier transform of f , where we use
the notation and convention

f̂pp1, . . . ,pNq � p2πq�Nd
2

»
RNd

fpx1, . . . ,xNqe�i
°N
j�1 xjpj dx1 . . . dxN . (1.35)

The inverse Fourier transform of a function will be denoted using a check, i.e.,
v̌pxq is the Fourier inverse of vppq. For operators a7�pfq, we will call both f̌ and f
a “form factors”. In the same way, also Ψ P F pRdq can be Fourier–transformed to
Ψ̂ P F pRdq. Another notation we use is f̂ � Fpfq for the Fourier transform and
v̌ � F�1pvq for the Fourier inverse. Further, we will reserve the variables x and
y for position coordinates, whereas p and k are used to denote the corresponding
momentum coordinates. The expression (1.34) can then formally be written as

A �
»
RNd

a7p1
. . . a7pN f̂pp1, . . . ,pNq dp1 . . . dpN , (1.36)

where a7p is defined such that for f P L2pRdq,»
a7pf̂ppq dp Ψ̂ � F

�»
a7xfpxq dx Ψ



. (1.37)

6While for Hilbert spaces, b is used to denote the Hilbert space tensor product, the same symbol
in conjunction with D, E or S denotes the topological tensor product. The spaces D, E and S
allow for an easy identification of topological tensor products as DpXq bDpY q � DpX � Y q,
EpXq b EpY q � EpX � Y q and SpRd1q b SpRd2q � SpRd1�d2q, see [11, Chap. 50].
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We will also consider expressions like (1.36) with momentum coordinates p,k P
X � Rd where the set X possibly does not allow for taking a Fourier inverse.
An easy special case where operator products with f being a distribution can
nevertheless be defined on Fock space is the second quantization of a multipli-
cation operator: Let ω : X Ñ C be a sufficiently regular function, such that the
equally denoted operator ω, which maps ψpkq ÞÑ ωpkqψpkq, is defined on a dense
domain in L2pXq. Then, the second quantization of ω is given by the operator
product

dΓpωq �
»
X

a:kakωpkq dk, (1.38)

so within (1.36), f̂pk1,k2q � ωpk1qδpk1�k2q. Physically, adding an operator dΓpωq
to the Hamiltonian assigns a dispersion relation ω to each particle. In this notation,
also the number operator can be written as a second quantization N � dΓp1q, and
can be densely defined on a suitable domain in F . More generally, if an operator
ω is defined on dompωq, then dΓpωq can at least be defined on the (dense) domainà

NPN0

dompωqbaN � F . (1.39)

On configuration space functions, dΓpωq acts as

pdΓpωqΨqpx1, . . . ,xNq �
Ņ

j�1

ωpxjqΨpx1, . . . ,xNq. (1.40)

If there are two particle species, e.g., x– and y–particles described by H � Fx b
Fy, with different dispersion relations ωx, ωy, then the operator dΓpωxq defined by
(1.40) on a domain in Fx is naturally extended to H by

dΓxpωxq :� dΓpωxq b 1. (1.41)

Likewise, dΓypωyq � 1 b dΓpωyq can be defined on H and the extension to more
than two particle species works analogously.

However, more complicated expressions of the form (1.34) often appear in the
formal description of dynamics within QFT or many–body models. For instance, if
dynamics are to be described by a family of state vectors pΨtqtPR � H satisfying
the Schrödinger equation

iBtΨt � HΨt, (1.42)

then the formal Hamiltonian H might be a sum of operator products as in (1.34)
that is not defined on H . However, it is crucial to have a self–adjoint operator
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H : H � dompHq Ñ H in order to obtain a solution via Stone’s theorem for any
initial state vector Ψ0 P H by

Ψt � UptqΨ0. (1.43)

Here, pUptqqtPR, Uptq � e�itH is a family of unitary operators defined by spectral
calculus. This way of describing dynamics of a quantum system is also called the
“Schrödinger picture of quantum mechanics”.

Other approaches for describing time dynamics of quantum models start from
the Heisenberg or the interaction picture, which we briefly explain in the follo-
wing. In order to make physical predictions, one associates to each observable an
appropriate self–adjoint operator A : H � dompAq Ñ H . The expectation value
for a measurement at time t is then given by

xAy � xΨt, AΨty. (1.44)

In the Heisenberg picture, one now shifts the time dynamics from Ψ to A by
defining At � Uptq�AUptq and using that

xAy � xΨ0, Uptq�AUptqΨ0y � xΨ0, AtΨ0y. (1.45)

That means, the time dependence is carried by the family of operators pAtqtPR
which satisfy the Heisenberg equations of motion

BtAt � irH,Ats, (1.46)

whereas the state of the system is described by a single time–independent vector
Ψ0 P H .
It is also common to consider the interaction picture for describing quantum dyna-
mics: The Hamiltonian H is split into a free and an interaction part H � H0�HI

and only the free evolution U0ptq � e�itH0 is shifted into the operators A. That
means, one defines ΨI,t :� U0ptq�Ψt and AI,t :� U0ptq�AU0ptq and obtains

xAy � xΨt, AΨty � xΨI,t, AI,tΨI,ty. (1.47)

So both the vectors ΨI,t and the operators AI,t carry the time dependence of the
system.
By means of (1.45) and (1.47), all three pictures yield the same physical predicti-
ons.

The task of non–perturbative renormalization is now to derive a self–
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adjoint Hamiltonian rH from a formal expression H containing operator products.
There exist several techniques for accomplishing this goal, both in the Schrödinger
and the Heisenberg picture. We present some of them in Section 1.3. The tools
developed in Chapter 3 also aim at simplifying non–perturbative renormalization.
Another popular approach to QFT dynamics is to circumvent the problem of con-
structing rH by assuming that Heisenberg dynamics already exist and satisfy a cer-
tain set of reasonable axioms. Conclusions may then be drawn from these axioms.
This approach is called axiomatic or algebraic QFT, or for short AQFT. We
outline some of the main notions of this approach in Section 1.2.3, which also turn
out useful for non–perturbative renormalization in the Heisenberg picture.
Another common way to extract physical predictions from a problematic expres-
sion H is given by perturbative QFT or for short pQFT. Here, the formal
time evolution operator in the interaction picture UIptq � e�itHI is expanded in a
so–called Dyson series (1.155) which is then truncated. From these approximate dy-
namics, one may derive physical predictions after a series of formal manipulations,
which may involve subtracting infinite quantities, and are called perturbative
renormalization. These techniques are briefly discussed in Section 1.5.

1.2.3 Algebraic and Axiomatic Notions

Sometimes, expressions for operator products (1.34) cannot be given meaning as a
Fock space operator. However, they still allow for employing formal manipulations,
such as addition, multiplication, complex linear combination or taking adjoints.
Mathematically, these manipulations can be made meaningful by interpreting the
expressions as elements of a �–algebra A, which does not a priori contain operators
on a Hilbert space. One may even formulate quantum dynamics without making
reference to a fixed Hilbert space H . This formulation is called algebraic quantum
mechanics, for a thorough introduction see [14, 15]. Algebraic QFT (AQFT) is a
framework within algebraic quantum mechanics, that additionally assumes a set
of axioms which a physically reasonable relativistic QFT should satisfy. For an
introduction, see [15, 10, 16].

The algebraic approach to quantum dynamics starts from a �–algebra of ob-
servables Aobs, which is related to physical predictions either at a fixed time t P R
or at all times. It is assumed that Aobs is a unital �–algebra, meaning there is a
unit element 1 P Aobs with 1A � A for all A P Aobs. In a narrower sense, Aobs

only allows for self–adjoint elements as observables. We adopt the more general
convention of [15] and also allow for non–self–adjoint elements in Aobs, which sim-
plifies the description. It is often required that Aobs is a C�–algebra, so on its
elements, there is a norm } � } respecting the algebraic relations, which allows for
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more conclusions to be drawn [10, 17, 16]. The transition from a �–algebra with
unbounded operators to a C�–algebra with bounded operators might, for instance,
be done by taking resolvents RA :� pA � zq�1, z P C or by exponentiation as in
(1.30).
In an algebraic description, the dynamics are encoded within states, which are
linear functionals ω : Aobs Ñ C that are positive and normalized:

ωpA�Aq ¥ 0 @A P Aobs, ωp1q � 1. (1.48)

The value
xAy � ωpAq (1.49)

is interpreted as the expectation value for a measurement of the observable A. It
corresponds to the value xΨ0, AΨ0y in (1.45), so there is no explicit need to refer
to Hilbert space vectors Ψ P H in this description. If Aobs refers to all times
t P R, then the state ω describes all measurement expectations at any time and
hence encodes the dynamics of the system. If Aobs is related to a fixed time t, then
dynamics are given by a state ω together with an automorphism αt : Aobs Ñ Aobs

describing the Heisenberg evolution7. However, also in the case of Aobs referring
to all times, an automorphism αt : Aobs Ñ Aobs is useful in order to identify ob-
servables of the same physical meaning but appearing at different times.
It is important to distinguish states ω yielding measurement predictions via (1.44)
from state vectors Ψ P H yielding predictions via (1.49). States ω are in the
same spirit, but more general than state vectors Ψ: While Ψ provides objective
(i.e., observer–independent) information about the system, the state ω may also
include information describing the state of knowledge of an observer, e.g., by choo-
sing ω according to a probability distribution P on state vectors Ψ P H . That is,
ωpAq � ³

H
xΨ, AΨy dPpΨq.

The bridge between the algebraic and the Fock space–based description of dyna-
mics is spanned by representations π, i.e., by maps that associate to each A P Aobs

an operator H � D Ñ H with D being a dense subspace of H , such that
πp1q � 1|D and algebraic relations are respected. Given a state ω on a C�–algebra,
it is always possible to find at least one representation, for instance the GNS re-
presentation πω. This representation associates to ω a Hilbert space Hω together

7It would also be possible to describe dynamics by a time–dependent family of states pωtqtPR,
i.e., in an “algebraic Schrödinger picture”. However, when applying the GNS construction
presented below, this would result in a distinct Hilbert space Ht at each time t P R, which
makes the approach rather inconvenient. Nevertheless, time–dependent Hilbert spaces Ht

can indeed serve for a reasonable description of quantum dynamics in an abstract setting, as
demonstrated in Section 2.2.
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with a distinguished “vacuum” state vector Ω P D � Hω such that

ωpAq � xΩ, πpAqΩy @A P Aobs. (1.50)

All further state vectors Ψ P D correspond to states ωΨ with ωΨpAq � xΨ, πpAqΨy.
One may construct even more states by considering all density matrices ρ : H Ñ
H , trpρq � 1, ρ ¥ 0 and setting ωρpAq � trpρπpAqq. However, there may still
exist even more states on Aobs that cannot be described by a density matrix ρ.
An example are state vectors Ψ1 in a representation π1 inequivalent to π (where
inequivalence of states is discussed below). Those states ω1 which can indeed be
described by a density matrix ρ are given the name normal state (with respect
to ω or πω) and the set of all normal states is called the folium of ω.

The advantage of the algebraic formulation is that a given Aobs admits several
representations that may not be unitarily inequivalent. Unitary equivalence
of two representations π1 and π2 on Hilbert spaces H1,H2 with domains D1, D2

means that there exists a unitary operator U : H1 Ñ H2 with UD1 � D2 and
π1pAq � U�π2pAqU for all A P Aobs. So unitarily inequivalent representations do
not work on a common Hilbert space and the disattachment from a fixed Hilbert
space permits a more general description. Further, the algebraic framework is
convenient for describing finite–temperature thermal states ω that cannot simply
be modeled by a single state vector Ψ P H . Nevertheless, in order to interpret
the theory in terms of particles appearing in detectors, the algebra Aobs needs
to contain a set of projection observables P pBq. That is, P pBq � P pBq� and
P pBq2 � P pBq, for each (Borel–) measurable subset B of the configuration space
QpXq or ΓpXq (or at least a union of several sectors from it) and P is required to
be an “observable–valued measure”. Only then, one may interpret ωpP pBqq as the
probability to find the system in a particle–configuration q P B. By contrast, on a
Hilbert space with Fock space structure H � F , such a particle interpretation is
readily implied by the projection–valued measure (PVM):

B ÞÑ P pBq, pP pBqΨqpqq �
#

Ψpqq if q P B
0 else

, (1.51)

for B being any measurable subset of Q. The probability to find the system in any
configuration q P B is then given by }P pBqΨ}2 � xΨ, P pBqΨy, which is also called
Born’s rule (for position measurements).

In relativistic QFT, an algebraic formulation is especially convenient for two
reasons: First, Haag’s theorem [9], [10, Sect. II.1] forbids an establishment of dy-
namics for a relativistic, interacting QFT in that particular representation on a
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Fock space, where creation and annihilation operators indeed act as in (1.21). Se-
cond, Haag and Kastler [17] observed that under certain natural requirements on
a QFT, all faithful representations of Aobs are physically equivalent. Here, faithful
means that π is injective and physical equivalence of π1 and π2 means that if Ω1,Ω2

are the sets of states representable by density matrices with respect to π1, π2 (i.e.,
their folia), then each ω1 P Ω1 can be written as a weak limit of a sequence of states
in Ω2. The “natural requirements” above are also called “Haag–Kastler axioms”.
Before presenting them, we need to introduce some notation concerning special
relativity.

As the set of allowed spacetime points x � pt,xq � pt, x1, . . . , xdq, we consider
Minkowski space M � Rd�1, which is equipped with the metric

η � dt2 � pdx1q2 � . . .� pdxdq2. (1.52)

Sometimes, we will also write t � x0. η then induces the metric distance

dpx, yq �
#a|x0 � y0|2 � }x� y}2 if |x0 � y0| ¥ }x� y}
�a�|x0 � y0|2 � }x� y}2 if |x0 � y0|   }x� y} . (1.53)

Two points x, y PM are called

spacelike if dpx, yq   0 ô |x0 � y0|   }x� y},
lightlike if dpx, yq � 0 ô |x0 � y0| � }x� y},
timelike if dpx, yq ¡ 0 ô |x0 � y0| ¡ }x� y}.

(1.54)

t

x

A

J�pAq � futurepAq

t

x

A

J�pAq � pastpAq

t

x

pA
JpAq

Abbildung 1.3: Depiction of the causal future J�pAq, past J�pAq and completionpA, as well as the domain of dependence JpAq. Color online.

Two sets A,B � M are called spacelike (separated), if all pairs x, y with
x P A, y P B are spacelike, in which case d � � supxPA,yPB dpx, yq is called the
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spacelike distance of A and B. For some A �M, we define the

causal future J�pAq :�  
y PM

�� Dx P A : dpx, yq ¡ 0^ y0 ¥ x0
(
,

causal past J�pAq :�  
y PM

�� Dx P A : dpx, yq ¡ 0^ y0 ¤ x0
(
,

causal completion pA :� J�pAq X J�pAq,
domain of dependence JpAq :� J�pAq Y J�pAq,

(1.55)
see Figure 1.3. We will also write J�pAq � futurepAq and J�pAq � pastpAq.
The set of all isometries on M is called the Poincaré group P and PÒ� is its
identity–connected component, which is a subgroup of P .

The Haag–Kastler axioms, within their original definition [17], now read as
follows:

(1) To each bounded open region O in Minkowski spacetime, we associate a unital
�–algebra8 ApOq.

(2) Isotony: For O1 � O2, we have ApO1q � ApO2q9.

(3) Local commutativity: If O1 and O2 are spacelike separated (as in Figure
1.4), then rA1, A2s � 0 for all A1 P ApO1q and A2 P ApO2q.

(4) There is a unital �–algebra Aqloc, called the algebra of quasilocal observa-
bles, that contains all ApOq as subalgebras10.

(5) Poincaré covariance: For each element of the Poincaré group g P P , there
exists an automorphism αg : Aqloc Ñ Aqloc with αgApOq � ApgOq. Some-
times, the group P is also called “inhomogeneous Lorentz group” and the
corresponding property is called “Lorentz covariance”. It is also customary to
only consider elements of the identity–connected component g P PÒ� [16] or,
in d � 3, to take elements from the inhomogeneous SLp2,Cq–group, which
provides a double covering of PÒ�.

(6) Primitivity: There exists a faithful, irreducible11 representation of Aqloc.

8In its original formulation [17], ApOq is assumed to be a C�–algebra and not necessarily unital.
However, the formulation via �–algebras as in [15] is more general.

9In the original formulation without unitality, it is further required that ApO1q,ApO2q either
have a common unit element or both no unit element at all.

10If ApOq are C�–algebras then Aqloc is chosen as the completion of Aloc :�
�

OApOq in the
norm topology. Usually, Aqloc is denoted A. The notation Aqloc here is just in order to avoid
confusion with (1.23).

11Irreducibility of π means that a subspace of H which is invariant under all πpAq must be
either t0u or dense in H .
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(7) Causality: If O2 is in the causal completion12 of O1, then ApO2q � ApO1q.
(8) Locality: As the spacelike distance of O1 and O2 (see Figure 1.4) is incre-

ased to 8 by translations, the partial states on ApO1q and ApO2q become
decoupled. Here, a partial state ωj is a positive linear functional on ApOjq
and decoupling means that for any pair of partial states ω1, ω2 there is a state
ω on Aqloc with ωpAjq � ωjpAjq @Aj P ApOjq. However, there is no precise
mathematical formulation in [17] how decoupling is to be interpreted in the
limit, so this axiom is rather heuristic13.

There exist modified formulations of the Haag–Kastler axioms in the more recent
literature. For instance, [16, 15] only postulate axioms (1), (2), (3) and (5), while
considering (4) as emergent. Both additionally postulate the

(9) Time slice axiom: IfO1 � O2 contains a Cauchy surface ofO2, thenApO1q �
ApO2q.

t

x

O1 O2

d

t

x

O2
Σ

O1

Abbildung 1.4: Left: Two open regions O1,O2 with spacelike distance d ¡ 0.
Right: The time slice O1 � O2 contains a Cauchy surface Σ of O2.
Hence, all observables in ApO2q can be reconstructed from ApO1q.
Color online.

Here, a Cauchy surface is a set Σ � M, which is intersected exactly once by
every inextendible causal (i.e., timelike–or–lightlike) curve. This definition is the

12The original formulation is “causal shadow” without a precise definition of this expression.
We interpret it as the “causal completion”, here, since isotony would then make axiom (7)

equivalent to ApOq � Ap pOq, which is the axiom formulated in [10, III 1.10].
13A precise mathematical formulation of a similar requirement called split property

can be found in [10, Sect. V.5.2], which requires a full decoupling via ωpA1A2q �
ω1pA1qω2pA2q @A1 P ApO1q, A2 P ApO2q.
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same as used by Wald [18]. See also Figure 1.4.
The time slice axiom ensures that, given initial data about a quantum system on
an arbitrarily thin slice O1 around some Cauchy surface of a region O2, predictions
can be made for all of O2. So local quantum dynamics exist.

The algebrasApOqmay for instance be generated by formal expressions φpfq, f P
SpRd�1q or W pfq � e�iφpifq, called fields, such that supp f � O. It is also possible
to use fields with f P SpRdq at a fixed time, similar to the field operators (1.30).
However, φpfq,W pfq are no operators and only become field operators when
represented by π on a Hilbert space H . In that case, there is no need that H
bears a Fock space structure or that πpφpfqq, πpW pfqq are of the form (1.30). We
remark that the term “field” is also used in the literature to denote the operators
πpφpfqq, πpW pfqq, or the maps φpxq, φpxq which send f P SpRd�1q or f P SpRdq
to φpfq.

There are also similar sets of axioms for different QFT settings, e.g., on curved
spacetime [19, 20], [16, Chap. 4] or for conformal field theory (CFT) [16, Chap. 8].
The name for specific axioms may vary depending on the literature resource. For
instance, in the above–mentioned references, sometimes (3) instead of (8) is called
“locality” or (3) is given the name “(Einstein) causality”.

Further, in the original work by Haag and Kastler, the axiom set (1)–(8) is not
considered fixed, but rather in an “experimental stage” [17, p. 849], where, for
instance, the necessity of axiom (8) is subject to discussion [17, p. 852]. The set of
“structural assumptions” stated later by Haag [10, p. 110] consists of axioms (1),
(3) and (5) together with a version of the time slice axiom14. Haag himself writes
about axiomatic frameworks of QFT [10, p. 58]:

r. . .s the word “axiom” suggests something fixed, unchangeable. This is
certainly not intended here. Indeed, some of the assumptions are rather
technical and should be replaced by more natural ones as deeper insight
is gained.

However, this quote is not given in the context of the Haag–Kaster axioms, but
a different set of axioms, which have been proposed by Streater and Wightman
[21, 22]. These Wightman axioms are directly related to a fixed representation on
a Hilbert space and are commonly accepted as a criterion for a proposed non–
perturbative QFT model to be physically reasonable [23].

14In this version, ApO1q � ApO2q is required whenever O2 is the causal completion of O1.
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These axioms contain a condition that refers to fiber decompositions: Assume
that the Poincaré group is represented by a continuous family of unitary opera-
tors Upgq on a Hilbert space H , where the time translation subgroup pUptqqtPR
is generated by a Hamiltonian rH and the space translation subgroup by momen-
tum operators P 1

op, . . . , P
d
op. As a physically reasonable interaction is momentum–

conserving, the operators rH and P j
op are expected to commute and one may use

the spectral theorem in the form [24, Thm. 10.9] to write H and rH as a direct
integral over the spectral values P � pP 1, . . . , P dq with P j P σpP j

opq:

H �
» `

Rd
HP dP, rH �

» `

Rd
rHP dP. (1.56)

Each Ψ P H is here translated into a cross–section P ÞÑ ΨP P HP up to modi-
fications on a null set in P P Rd. The joint spectrum of the tuple of operators
P µ � p rH,P 1

op, . . . , P
d
opq is now given by all points pE,P q P M, such that E P R is

within the spectrum σp rHP q.

The Wightman axioms now read as follows [21, Chap. 3-1]:

(0) Assumptions on the Hilbert space:

• There exists a Hilbert space H of state vectors, where a quantum state
corresponds to a ray tcΨ | c P Cu with Ψ P H .

• For the group PÒ�, there exists a continuous representation on H by uni-

tary operators Upgq, g P PÒ�. The original formulation in 3�1 dimensions
uses the inhomogeneous SLp2,Cq–group, which is a double covering of
PÒ�.

• Spectral positivity: The joint spectrum of P µ lies in the forward light-
cone V � � J�pt0uq, see Figure 1.5.

• Unique vacuum state: There exists a vector Ω P H that is invariant
under all Upgq and unique up to a phase.

(1) Assumptions on the fields:

• For each Schwartz function f P SpRd�1q, there exists a set of field opera-
tors φrpfq, r P t1, . . . , 2s� 1u together with its adjoints φrpfq�.
• All operators φrpfq, φrpfq� are defined on a common dense domain D �

H with Ω P D and D is invariant under all φrpfq, φrpfq� and Upgq.
Further, for Ψ1,Ψ2 P D, the map f ÞÑ xΨ1, φrpfqΨ2y is a distribution.

(2) Covariance of the fields: For all g P PÒ� (or g P SLp2,Cq) there is a spinor
transformation matrix Sjkpgq with UpgqφrpfqUpgq�1 � °

r Srr1pgqφr1pf � g�1q.
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(3) Causality: If supp f, supp g are spacelike, then rφrpfq, φr1pgq�s� � 0.

(4) Completeness: span
 
φrpfqΩ, φrpfq�Ω

�� f P S, r P t1, . . . , 2s � 1u( is dense
in H , i.e., Ω is cyclic.

x1

x2

t

0

V �

x

t

0

σpP µq

Abbildung 1.5: Left: The forward light cone V � with 2 of 3 spatial dimensions
drawn.
Right: A typical joint spectrum σpP µq. It has to lie in V �, be
Lorentz–invariant and contain 0 P M, as Ω is a corresponding ei-
genvector. Color online.

In the following, we will often drop the spin indices r, r1, if a generalization to
many spins is obvious.
It is customary to call a physical model a field theory if and only if it satisfies
the above axioms. Additionally, Wightman and Streater state a criterion for a
physically reasonable QFT, which however does not enter the definition of a field
theory: If within a scattering theoretic setting, ingoing and outgoing state vectors
can be defined that make up the corresponding Hilbert spaces H in and H out,
then one additionally requires

(5) Asymptotic completeness: H � H in � H out.

Haag and Ruelle have shown that the construction of H in and H out together with
one–particle creation– and annihilation operators a7in{outpfq is indeed possible, if

one assumes a Wightman field theory featuring a mass gap [25, 26]. In this con-
text, having a mass gap means that the joint spectrum of P µ, after removing the
origin 0 P M (corresponding to the vacuum Ω as an eigenvector of rH and P op

j ),
lies within one of the sets tpE,P q PM | E2 ¥ |P |2 �M2u for some M ¡ 0. This

is equivalent to rHP having an isolated eigenvalue 0.
More generally, the aim of scattering theory is to construct a unitary opera-
tor S : H in Ñ H out, called S–matrix, which describes the time evolution
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from t Ñ �8 to t Ñ 8. The S–matrix allows to easily derive predictions for
scattering experiments (such as scattering cross–sections), which can be used to
empirical verify a QFT model. One definition involves the Møller operators
Ωin{out : H in{out Ñ H (or also called wave operators) and reads S � pΩoutq�1Ωin.
For instance, if the Hamiltonian H takes the form H � H0 � HI , as in Section
1.3.1, then a possible definition for the Møller operators is [27, Chap. 12]:

Ωin � lim
tÑ�8

eitHe�itH0 , Ωout � lim
tÑ8

eitHe�itH0 . (1.57)

There are cases in which a definition different from (1.57) is used, e.g., if Dollard
modifiers are employed, see (3.18) in Section 3.1.2.

Instead of asymptotic completeness, Haag [10] considers a version of the time–
slice axiom as a necessary addition to the Wightman axioms, namely that all
fields can be expressed by fields with f supported on an arbitrarily thin horizontal
slice Ot,ε � tx PM | |x0 � t|   εu.
It seems natural to identify ApOq with the algebra generated by all field opera-
tors φpfq or all Weyl operators e�iφpifq with supp f P O, in order to relate the
Wightman– to the Haag–Kastler axioms. However, even with this identification,
both axiomatic settings are not equivalent. For a comparison, see [10].

There are further axiomatic settings, which allow for recovering a Wightman
field theory. One of these settings is given in the context of the Wightman re-
construction theorem [21, Thm. 3–7] (originally in d � 3 space dimensions):
For any given Wightman field theory, one may define the family of Wightman
distributions pWNqNPN0 ,WN P S 1pRNpd�1qq via

WN : f1 b . . .b fN ÞÑ xΩ, φpf1q . . . φpfNqΩy. (1.58)

The Wightman reconstruction theorem now asserts that if only a family of Wight-
man distributions pWNqNPN0 satisfying a set of axioms is given, then a Wightman
field theory (comprising pφpfqqfPS ,H , pUpgqq

gPPÒ
�
, D � H and Ω P H ) can be

reconstructed such that the WN are given by (1.58). The reconstructed field theory
is then unique, up to unitary equivalence.

A slightly stronger setting is given by the Osterwalder–Schrader axioms. Given
the Wightman axioms, the Wightman distributions WN : R4N Ñ C in 3�1 dimen-
sions can be written as boundary values of complex functions C4N � V

p4Nq
T Ñ C
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with V
p4Nq
T being the future tube [28]:

V
p4Nq
T :�  px1, . . . , xNq P C4N

�� � Impxj � xj�1q P V � �M @j P t1, . . . , n� 1u(.
(1.59)

The functions on V
p4Nq
T which have WN as its boundary value are called Wight-

man functions15 and are also denoted WN . Their domains V
p4Nq
T contain all

coordinates of the kind

zj � pix0
j , x

1
j , x

2
j , x

3
jq P iR` R3, (1.60)

such that x0
j   x0

j�1. Hence, WN can be restricted to these coordinates, which
results in the so–called Schwinger functions pSNqNPN0 . Applying the Minkowski
metric to a pair of z, z1 PM as in (1.60) then gives the same result as if one would
apply the Euclidean metric to the respective vectors x, x1:

ηpz, z1q � x0x10 � x1x11 � x2x12 � x3x13 � x � x1. (1.61)

So the transition WN ÞÑ SN corresponds to a change from Minkowski to Euclide-
an space.

The Osterwalder–Schrader axioms [29] (in 3 � 1 dimensions) are now a
set of conditions on a family of Schwinger functions pSNqNPN0 which allow for
recovering a corresponding family of Wightman functions pWNqNPN0 that fulfill
the conditions within the Wightman reconstruction theorem. So establishing the
Osterwalder–Schrader axioms results in the existence of non–perturbative dyna-
mics in a Wightman field theory. Conversely, each family pWNqNPN0 satisfying
the assumptions in the Wightman reconstruction theorem gives rise to a family
pSNqNPN0 fulfilling the Osterwalder–Schrader axioms [29].
The area of research concerning the construction of a set of Schwinger functions
is called Euclidean field theory. Sometimes, also non–relativistic models are
investigated, and sometimes, Euclidean field theory concerns the construction of a
probability measure on a space of functions (e.g., on all f P SpRd�1q), which can in
turn be used to generate all Schwinger functions. There have been many successful
constructions using this method, and naming them all would go beyond the scope
of this dissertation. We refer the reader to [30] for an overview about earlier works
on Euclidean field theory (including the first investigations by Symmanzik that
appeared well before Osterwalder and Schrader’s reconstruction theorem) and to
[31, Sect. 1.1] for an overview about more recent results.

More generally, the area of research concerning the construction of a field theory

15Sometimes, also a Wightman distribution WN is called a Wightman function.
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satisfying one of the three axiomatic frameworks above, e.g., from a given formal
Hamiltonian H, is called constructive quantum field theory (CQFT). Besides
Euclidean field theory, there are several other approaches to CQFT, see [32].
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1.3 Cutoff Renormalization and Techniques

1.3.1 Hamiltonians with Interactions

The aim of cutoff renormalization is to construct a self–adjoint Hamiltonian rH out
of a formal expression H, which is of the form

H � H0 �HI . (1.62)

The kinetic or free Hamiltonian H0 is described in Fourier space with X � Rd

as

H0 �
¸
j

dΓjpωjq �
¸
j

»
Rd
a:j,kaj,kωjpkq dk, (1.63)

with j indexing the particle species, dΓj being the second quantization (compare
(1.38)) with respect to particle species j and with ωj being the respective dispersi-
on relation. Typically, the function ωj is continuous and gives rise to a self–adjoint
operator ωj on some domain dompωjq dense in L2pRdq. The operator dΓjpωjq is
then essentially self–adjoint on the dense domain

À
NPN0

dompωjqbaN � Fj [22,
Sect. X.7] and naturally extends to the Hilbert space of the model H �Â

j Fj.

The interaction Hamiltonian16 HI is typically a sum of operator products as
in (1.34) with f being a distribution. In order to describe local interactions, it is
convenient to take

fpx1, . . . ,xNq � v̌px1qδpx1 � x2q . . . δpxN�1 � xNq. (1.64)

Here, v̌ P S 1 is defined by stating its Fourier transform v : Rd Ñ C called form
factor. So the Fourier transform of f is

f̂pk1, . . . ,kNq � p2πq� pN�1qd
2 vpk1 � . . .� kNq. (1.65)

In some cases, an operator product can be defined on a dense domain in F , even
if f R L2, as it is the case for certain dΓjpωjq. However, in most cases, HI contains
ill–defined operator products. An easy example is a:pvq with v R L2pXq such that
the L2–integral diverges at |k| Ñ 0 (IR–regime) or |k| Ñ 8 (UV–regime). In that
case, pa:pvqΨqpNq � ?

Nv̌bΨpN�1q, and since v̌ R L2, the operator a:pvq is defined
only on Ψ � 0. Cutoff renormalization circumvents this problem by replacing v by

16In some relativistic QFT models, instead of the Hamiltoanian H � H0 � HI , a Lagrangian
L � L0 � LI or a Lagrangian density Lpxq � L0pxq � LIpxq with x � pt,xq is given. In
that case, HI � �LI � �

³
Rd Lp0,xq dx, if the Schrödinger picture is used, and H0 can be

extracted from L0, see any standard physics QFT book, e.g., [5, Sect. 2.2] or [6, 7, 8].

29



1 Introduction

the cut–off form factors

vσpkq :� χσ |k|pkqvpkq, vΛpkq :� χ|k| Λpkqvpkq,
vσ,Λpkq :� χσ |k| Λpkqvpkq.

(1.66)

The indicator function χ is sometimes replaced by a smooth cutoff function in
order to sustain regularity of v. The parameter σ P r0,8q at small momenta (long
wavelengths) is called infrared– or IR–cutoff and the parameter Λ P r0,8q,Λ ¡ σ
at large momenta (short wavelengths) is called ultraviolet– or UV–cutoff.
Corresponding operators or formal operator products are also given a subscript σ
or Λ, such as Hσ, HΛ or Hσ,Λ, which can be well–defined even if H is not.

The process of removing one or both cutoffs by taking the limits σ Ñ 0 or
Λ Ñ 8 in order to construct a well–defined limit Hamiltonian rH is called cutoff
renormalization. It is customary to manipulate Hσ,Λ before taking the limit or

to construct rH indirectly, see Section 1.3.6.

In the following Sections 1.3.2–1.3.6, we present, without claiming to be exhaus-
tive, some techniques for establishing a well–defined rH within cutoff renormali-
zation. Examples from the literature, where they have been applied to concrete
models, are discussed in Sections 1.3.7–1.3.8. Sometimes, also a set of fiber Hamil-
tonians rHP as in (1.56) is constructed using the mentioned techniques.

1.3.2 Interpreting H as a Bilinear Form

This technique is useful in less singular cases. If Hσ,Λ is defined on the dense domain
dompHσ,Λq, one may consider the bilinear form pΨ1,Ψ2q ÞÑ xΨ1, Hσ,ΛΨ2y, which is
at least defined for Ψ1,Ψ2 P dompHσ,Λq. In certain models, the limit

lim
σÑ0
ΛÑ8

xΨ1, Hσ,ΛΨ2y �: bpΨ1,Ψ2q P C (1.67)

may now exist for Ψ1,Ψ2 within a dense form domain containing dompHσ,Λq, so
(1.67) defines a bilinear form b. If this form is bounded from below, then the
Friedrichs extension theorem [27, Sect. 2.3] allows for finding a unique self–adjoint

operator rH with bpΨ1,Ψ2q � xΨ1, rHΨ2y for Ψ1,Ψ2 P domp rHq. This rH is the re-
normalized Hamiltonian.
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1.3.3 Counterterms

In some cases, Hσ,Λ can be split into a particularly simple divergent part cσ,Λ
and a part that converges to an operator as σ Ñ 0,Λ Ñ 8. The term cσ,Λ is
then subtracted from Hσ,Λ within an ad hoc modification, which corresponds to
adding a so–called counterterm �cσ,Λ. A self–adjoint Hamiltonian may then be
constructed by taking the limit:

rH � lim
σÑ0
ΛÑ8

pHσ,Λ � cσ,Λq. (1.68)

A particularly simple kind of counterterm occurs if cσ,Λ � Eσ,Λ is just a constant
with Eσ,Λ Ñ 8 as σ Ñ 0 or Λ Ñ 8. In that case, �Eσ,Λ is called an energy
conterterm or a self–energy. From a physical point of view, a success of the
construction (1.68) means that the formal expression H was chosen “too large by
an infinite constant”. Formal algebraic calculations with H may then nevertheless
produce sensible results, as a constant commutes with all operators, so formally
rH,As � r rH,As. Thus, H and rH generate the same formal Heisenberg dynamics.
In the related and equally denoted case of cσ,Λ � Eσ,Λ being a multiple of a number
operator Nj � dΓjp1q, the term Eσ,Λ is also called an energy counterterm and has
the same heuristic interpretation.

It may also appear that the divergent part contains a kinetic term

δmσ,Λ � dΓpωσ,Λq, (1.69)

with ωσ,Λ being an operator multiplying by a function ωσ,Λ : Rd Ñ R in momentum
space. That means, it alters the dispersion relation, which is typically accompanied
by a change of the particle mass. These terms are called mass counterterms.
As energy counterterms proportional to N also take the form Eσ,Λ � dΓpzσ,Λq,
with zσ,Λ P R, they are sometimes also called “mass counterterms”. Sometimes,
also quadratic operator products that contain a:a:– and aa–terms are called “mass
counterterms”.

There exist further types of counterterms that may be subtracted from Hσ,Λ,
such as charge counterterms, which are proportional to summands within the
interaction part of the Hamiltonian HI,σ,Λ.
Sometimes, counterterms are also called (energy, mass or charge) “renormaliza-
tions”, in which case they share one name with the process of removing certain
divergences from H.

Which counterterms are needed might heuristically be inferred from a careful
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investigation of the divergence of Hσ,Λ. The heuristic interpretation of these ad
hoc–added terms is that the initial and simple guess H for a Hamiltonian descri-
bing the physical system a Hamiltonian was actually wrong and additional terms
must be included in order to make sense of it. It is however desirable to justify why
physical predictions derived from a formal H can still be achieved from rH under
the choice of a certain set of counterterms. For instance, it might happen that in
perturbative QFT (see Section 1.5), correct physical predictions are obtained from
H under addition of perturbative counterterms, whose effects can be analogous to
the non–perturbative cσ,Λ added above.

1.3.4 Dressing Transformations

Another ad hoc modification for constructing an operator rH out of a formal H
is the conjugation with a dressing transformation W,Wσ,WΛ or Wσ,Λ. In the
following, we present the general dressing procedure while using both cutoffs σ
and Λ, although in many examples, Hσ,Λ,Wσ,Λ are independent of σ or Λ. Certain
cases allow to directly make sense of the limit

rH � lim
σÑ0
ΛÑ8

W�1
σ,ΛHσ,ΛWσ,Λ. (1.70)

In other cases, it turns out necessary to add counterterms before the conjugation:

rH � lim
σÑ0
ΛÑ8

W�1
σ,ΛpHσ,Λ � cσ,ΛqWσ,Λ. (1.71)

It is common to choose Wσ,Λ as a unitary operator of the form

Wσ,Λ � eBσ,Λ , (1.72)

where iBσ,Λ is self–adjoint. Examples are

• Weyl transformations: For a form factor sσ,Λ P L2pXq, with X � Rd

denoting momentum space, we have

Bσ,Λ �
»
X

�
sσ,Λpkqa:pkq � sσ,Λpkqapkq

	
dk � a:psσ,Λq � apsσ,Λq. (1.73)

In general, conjugation of a:pfq, apfq, f P L2pXq with a Weyl transformation
W � ea

:psq�apsq, s P L2pXq leads to a formal addition of a constant

W �a:pfqW � a:pfq � xs, fy, W �apfqW � apfq � xf, sy. (1.74)

32



1.3 Cutoff Renormalization and Techniques

The above replacement apfq ÞÑ apfq � xf, sy may even be well–defined if
s R L2pXq, provided that f is sufficiently regular (e.g., if f P DpXq and
s P D1pXq). Sometimes, also the replacement procedure is called a “Weyl
transformation”. In any case it preserves the CCR/CAR (1.22).

• Bogoliubov transformations: These are named after Bogoliubov’s seminal
paper [33] and exist in a bosonic and a fermionic version. For bosons, one
has

Bσ,Λ � 1

2

»
X

�
ξσ,Λpkqa:�pkqa:�p�kq � ξσ,Λpkqa�pkqa�p�kq

	
dk, (1.75)

with form factor ξσ,Λ : X Ñ C. The fermionic case is more delicate since
pairs of fermions (so–called Cooper pairs) typically appear. For further de-
tails, see also Section 5.3.
We denote the unitary operator corresponding to a Bogoliubov transformati-
on by U :� eBσ,Λ . In both the bosonic and fermionic case, a conjugation with
U maps creation and annihilation operators a:pfq, apfq into new operators

b:pfq :� U�a:pfqU � a:pufq�apvfq, bpfq :� U�apfqU � apufq�a:pvfq,
(1.76)

such that b:pfq, bpfq still satisfy the CCR/CAR (1.22), where f is the com-
plex conjugate function of f , and with certain operators u, v densely defined
on L2pXq.
The term “Bogoliubov transformation” often denotes the above algebraic
replacement a7 ÞÑ b7, whereas the operator U is called implementer of the
transformation. Sometimes the term “Bogoliubov transformation” is also
used in a wider sense, denoting any operator replacement that preserves the
CCR/CAR. In that sense, Weyl transformations can be seen as a particular
kind of Bogoliubov transformations [34]. For an introduction into Bogoliubov
transformations (both bosonic and fermionic), we refer the reader to [34] and
[35].

• Gross transformations: Originally introduced by E.P. Gross in 1962 [36],
these transformations are derived from a cubic interaction between fermions
p�q and bosons p�q:

Bσ,Λ �
»
X

�
sσ,Λpp,kqa:�pkqa:�ppqa�pp� kq � h.c.

	
dpdk, (1.77)

with “h.c.” denoting the “Hermitean conjugate”. Gross transformations are

33



1 Introduction

especially useful if the interaction HI in the physical model is also a cubic
term of the above form. This is the case for polaron models described in
Section 1.3.7.
The Weyl transformation can also be seen as a special kind of Gross trans-
formation: If one restricts the Hilbert space F� b F� to the one–fermion
space H1 � L2pXq b F� and splits it into fibers H1,P as in (1.56), then
Wσ,Λ|H1,P

just amounts to a Weyl transformation.

But also more sophisticated unitary and non–unitary dressing transformations
may be used. An example are non–unitary dressings transformations in construc-
tive QFT (often denoted T ) as described in Section 1.3.8. A useful diagrammatic
formalism for evatuating these dressing transformations has been proposed by
Friedrichs [37] and applied in many QFT models. These Friedrichs diagrams look
similar to Feynman diagrams as mentioned in Section 1.5. However, Friedrichs
diagrams encode operator products, whereas Feynman diagrams encode integrals
occurring in perturbation theory.

The formal limit W � lim σÑ0
ΛÑ8

Wσ,Λ is often ill–defined. Sometimes Wσ,Λ con-

tains a constant factor of the form ezσ,Λ with |zσ,Λ| Ñ 8 as the cutoffs are removed,
which is called an (infinite) wave function renormalization. Factors eizσ,Λ with
the same divergence behavior are interpreted as infinite phases.
A further heuristic interpretation of formal dressing transformations W , that are
ill–defined on H , is that rH determines the dynamics for a state vector Ψ P H
describing “true” or “physical” particles, which are mapped by W to states of vir-
tual particles. The formal H then describes dynamics on these virtual particles.
So these operations “dress” the vacuum vector (for Weyl– and Bogoliubov trans-
formations) or a one–fermion vector (for Gross transformations) with a “cloud of
particles”. Mathematically, by this “cloud”, we mean

• a coherent state for Weyl transformations

• a squeezed or quasi–free state for Bogoliubov transformations

• a sum of coherent states (one per fermion) for Gross transformations.

1.3.5 Converging States and GNS Construction

Finding a suitable dressing transformation such that the limit (1.71) makes sense
can be a challenging task. It may be circumvented by an algebraic construction:
Consider a sequence of cutoffs (for instance σ Ñ 0) where for each σ a represen-
tation πσ of the C�–algebra A corresponding to the system is known, such that
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Hσ is self–adjoint on Hσ. One now picks a state ωσ for each σ, for instance by
taking a ground state Ψσ of Hσ (if it exists) and setting ωσpAq � xΨσ, AΨσy for
all A P A. By means of the Banach–Alaoglu theorem, ωσ has a weakly convergent
subsequence with ωσ á ω. This ω allows for a GNS construction, resulting in a
representation π on a Hilbert space H with “vacuum state” Ω P H .
It remains to construct the dynamics generated by some renormalized rH on H ,
for instance by defining πωpeit rHq as the limit of πσpeitHσq or xπpAqΩ, rHπpBqΩy as
the limit of xπσpAqΨσ, HπσpBqΨσy for suitable A,B P A.

1.3.6 Segal’s Theorem: Restriction to Local Algebras

There is another algebraic trick to circumvent the tedious adjustment of Wσ,Λ and
cσ,Λ, if the model has only an IR–divergence and is in d � 1 space dimensions

[38]. Instead of defining rH directly, one may define the action of rH on all local
time–zero algebras Apt0u � Cq with open and bounded space region C � R. For
each pair t P R, C � R, the form factor v̌pxq is multiplied by a spatial cutoff
function h : Rd Ñ r0, 1s with hpxq � 1 near |x| � 0 and hpxq Ñ 0 as |x| Ñ 8.

Assume that a UV–renormalized Hamiltonian rHh can be found with hpxq � 1 in a
region larger than the region C enlarged by |t|. The latter enlarged region is called
C|t|, see Figure 1.6. Observables localized in C will be localized in C|t| after the
Heisenberg time evolution, so the cutoff should not affect the dynamics. Choosing
a suitable cutoff for all C and t, one should then be able to recover the dynamics
within the local time–zero algebra

Aloc,0 �
¤
C�R

C: bounded, open

Apt0u � Cq. (1.78)

And indeed, Segal’s theorem now asserts that if for each pair t, C as above a sui-
table spatial cutoff function h can be found, such that rHh is a unique self–adjoint
operator, then there exists an automorphism group αt : Aloc,0 Ñ Aloc,0 describing
the cutoff–free dynamics.
Of course, it remains to recover a renormalized Hamiltonian rH from the auto-
morphism group αt, which may require some considerable work. This can, for
instance be done, by constructing a suitable state ω on Aloc,0 (e.g., as a weak limit
ωh á ω). If in the GNS representation πω, the automorphisms αt can be imple-
mented as αtpAq � Uptq�AUptq with pUptqqtPR being a strongly continuous group

of unitary operators, then Stone’s theorem renders the desired generator rH.
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Abbildung 1.6: Within Segal’s theorem, the spatial cutoff hpxq is chosen such that
h � 1 on a region lager than C|t|. Color online.

1.3.7 Non–Relativistic Models

There is a variety of relativistic and non–relativistic models with particle creation
and annihilation where non–pertrubative dynamics have been successfully defined
or where a definition of dynamics would be highly desirable. We present some
of them here and outline the employed techniques. The establishment of non–
perturbative quantum dynamics in models with particle creation and annihilation
is of course a vast field of research and our list is by no means meant to be ex-
haustive.

The first type of models we present are polaron–like models. By that we mean
models with fermions which interact by an exchange of bosons. We denote posi-
tion and momentum of fermions by x and p, as well as the boson position and
momentum by y and k and index the fermionic and bosonic particle species (e.g.,
for particles with spin) by j P N. The free Hamiltonian then takes the form

H0 � dΓx,jpθjq � dΓy,jpωjq, (1.79)

with θj : Rd Ñ R being the dispersion relation of fermion species j with ωj : Rd Ñ
R the dispersion relation of boson species j.
The interaction Hamiltonian describes the emission and absorption of bosons trig-
gered by fermions:

HI �
¸
j,k

»
Rd

�
a:j,�ppqaj,�pp� kqa:k,�pkqvj,kpp,kq dpdk � h.c.

	
. (1.80)

Interaction terms of this or a similar form appear in formal Hamiltonians of QFTs
that are considered to be comparably fundamental, such as QED, QCD or the
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Standard Model of Particle Physics. Such terms also emerge from many–body
models in condensed matter physics. In both situations, they may (at least heu-
ristically) describe how attractive and repulsive forces appear between fermions
that interact by exchanging bosons.
The following models fall under this category.

Fröhlich Polaron

θppq � |p|2, ωpkq � 1, vpkq � |k|�1. This model has been proposed by Fröhlich,
Pelzer and Zienau to describe the interaction of electrons by exchange of optical
phonons in solid–state materials [39]. Self–adjointness of H can be established wi-
thout counterterms or dressing transformations by interpreting H as a bilinear
form [40]. However, a Gross transformation is useful to characterize the domain of
H.

Nelson Model

θppq � |p|2
2M

, ωpkq �a|k|2 �m2, vpkq � gωpkq�1{2 with m ¥ 0, g P R. This model
was originally introduced by Nelson in order to describe the interaction of nucleons
by meson exchange [41]. The renormalization for massive bosons m ¡ 0 requires
an energy counterterm EΛ that depends on the UV–cutoff Λ and is proportional
to the fermion number N .
What makes this model particularly interesting is that in the massless case m �
0, there are several ways to perform a renormalization which result in different
dynamics. The Hamiltonian renormalized without a dressing transformation

rHp1q :� lim
σÑ0
ΛÑ8

pHσ,Λ � EΛq (1.81)

is self–adjoint [41], but does not have a ground state for m � 0 and M � 1
[42]. It is possible to generate an inequivalent Hamiltonian by fibering Hσ,Λ �³
P
Hσ,Λ,P dP , see (1.56), and conjugating each fiber Hamiltonian with a bosonic

Weyl transformation Wσ,P

rHp2q
P :� lim

σÑ0
ΛÑ8

W �
σ,P pHσ,Λ,P � EΛqWσ,P . (1.82)

In that case rHp2q
P has a ground state [43]. Another Hamiltonian is constructed in

[43] algebraically by considering the states ωσ,P associated with the ground state
vector Ψσ,P of the UV–renormalized Hamiltonian Hσ,P . A limit state ωσ,P á ωP
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exists in the weak sense and, using the GNS representation πωP , one may constructrHp3q
P via

eit
rHp3q
P :� lim

σÑ0
πωσ,P peitHσ,P q. (1.83)

The sequence of Weyl transformations is given by Wσ,P � ea
:psσ,P q�apsσ,P q, where

the form factors sσ,P P L2 formally converge to some sσ,P R L2. So in the IR–limit,
the corresponding dressing transformation W formally “leads out of Fock space”.
An interpretation of the “dressed vacuum” WΩ (with Ω being the ground state

of H0) as a vector in a Fock space extension xH � H was given by Fröhlich [43],

with xH being von Neumann’s ITP space [44] (see also Section 3.1). Now, when

restricted to the one–fermion sector, all fiber Hamiltonians rHp3q
P have a ground

state with energy EpP q. In case such a set of ground states exists, the function
P ÞÑ EpP q is also called a (proper) one–fermion shell or mass shell correspon-

ding to rHp3q. By contrast, if the Hamiltonian rHp1q is restricted to the one–fermion
sector and fibered, then none of the rHp1q

P has a ground state, which is also called
an infraparticle situation or even infrared catastrophe, see also [45].
As the conjugation with a Weyl transformation formally adds a constant to bo-
sonic operators (1.74), one may also replace a�pfq by ra�pfq � a�pfq � xf, sy.
Restricting to a dense subspace f P S � L2 allows for a well–defined transforma-
tion whenever s P S 1, even if s R L2. The replacement results in a change of the
formal Hamiltonians

Hσ,Λ Ñ rHp4q
σ,Λ, HΛ Ñ rHp4q

Λ . (1.84)

One may then show that rHp4q
Λ indeed generates the same Heisenberg dynamics onra7� as HΛ does on a7�, and that rHp4q

Λ has a ground state [46, 47]. Note that the

UV–cutoff Λ has not explicitly been removed, here. The so–constructed rHp4q
Λ may

also be used for the construction of scattering states [48].

Another way to construct a renormalized Hamiltonian rHpeucq is given by Euclidean
field theory methods [42, 49, 50].

In case d ¤ 2, a renormalized rHp1q can also be constructed as in (1.81), without
a dressing transformation W , but with an energy renormalization EΛ [51, 52]. A

construction of rHpeucq in d ¡ 3 is provided in [42].
It is also well–known that within the dressing process, a Yukawa potential (for
m ¡ 0) or a Coulomb potential (for m � 0) emerges, accompanied by radiative
corrections that are higher–order in the coupling constant. See e.g., [41, (15)] in

the case with cutoffs and m ¡ 0. The emergence of a Coulomb potential for rHp2q

without any cutoffs in case m � 0 has been established in [53] for weak couplings
(small g) and two fermions out of which one is infinitely heavy and hence fixed.

For the cut–off Hamiltonian rHp2q
Λ � W �

ΛHΛWΛ and m � 0, the emergence of a
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1.3 Cutoff Renormalization and Techniques

Coulomb potential and radiative corrections complying with the Larmor formula
have been established in [54, 55].

For a comparison of the domains of rHp1q and rHp2q, see also [52]. Further refe-
rences concerning the Nelson model in mathematical physics can be found in the
introductions of [56] and [50].

Pseudo–Relativistic Nelson Model

θppq �a|p|2 �M2, ωpkq �a|k|2 �m2. For the (physically slightly undesirable,
but mathematically more regular) form factor vpkq ¤ gp1 � |k|q�1{2ωpkq�1{2, the
existence of a UV–renormalized Hamiltonian

Hσ � lim
ΛÑ8

pHσ,Λ � EΛq (1.85)

and for m ¡ 0 the existence of a renormalized Hamiltonian

H � lim
ΛÑ8

pHΛ � EΛq (1.86)

have been established in [57]. There, it was also proved that a ground state exists
for each fiber Hamiltonian HP,σ, HP , which implies the existence of a mass shell.

For m � 0, the IR–renormalized fiber Hamiltonian rHp3q
P as in (1.83) has been

constructed in [43] and a mass shell has been proved to exist. Note that in both
references, the form factor is not denoted vpkq but rather vpkqωpkq�1{2.
However, for the more physical vpkq � gωpkq�1{2 with small coupling g and for
m ¡ 1, it was proved that the mass shell of Hσ,Λ exists but becomes flat in the
limit Λ Ñ 8 (without the need for constructing a limit Hamiltonian Hσ) [58].

Eckmann’s Polaron

Eckmann [59] proposed a type of pseudo–relativistic Nelson model with vpp,kq �
c|θpp� kqωpkqθppq|�1{2, c ¡ 0. It can be renormalized as

rHp1q � lim
ΛÑ8

pHΛ � δmΛq, (1.87)

with a counterterm δmΛ � ³
mΛpkqa:�pkqa�pkq dk that acts as a simultaneous

energy and mass renormalization. There are several choices of mΛpkq possible
which can be used to adjust the renormalized mass shell EpP q [60]. A non–unitary

dressing transformation was used in [60] to describe the domain domp rHp1qq � H ,
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but is not needed for obtaining a renormalized Hamiltonian or a mass shell.

Gross’ Relativistic Polaron

θppq � a|p|2 �m2
x, ωpkq �

b
|k|2 �m2

y, vpkq � gωpkq�1{2. Here, a renormalized

Hamiltonian has been constructed algebraically by L. Gross [61]. The renorma-

lization process is similar to that of rHp3q
P in (1.83): A sequence of ground states

ωΛ is constructed for pHΛ � δmΛq such that ωΛ á ω. The weak convergence is
understood with respect to the local C�–algebra Aloc of Weyl operators (1.30). So
there exists a GNS representation πω with respect to ω on H0 with vacuum Ω.
A mass renormalization δmΛ is chosen such that it only modifies the bare mass
mx in a way that the infimum of the spectrum of pHΛ � δmΛq restricted to the

one–fermion Hilbert space is kept at a fixed value. The self–adjoint rHp3q is now
constructed by defining the quadratic form x�, �yH0 via

xπωpAqΩ, πωpBqΩyH0 � lim
ΛÑ8

xπΛpAqΨΛ, pHΛ � δmΛqπΛpBqΨΛy, (1.88)

with A,B P Aloc and πΛ being the standard representation of A,B by Weyl ope-
rators on F and ΨΛ the ground state of HΛ. This form is positive and hence
corresponds to a self–adjoint operator rHp3q by Friedrichs’ extension theorem.
In particular, the ground state vectors ΨΛ P F associated with ωΛ converge weakly
to 0 in F , so H0 can heuristically be considered as being “outside the Fock space”.

Van Hove Model

In this model, fixed fermions are considered θppq � 0, which allows for fibering
H in the fermion momenta pp1, . . . ,pNq and thereby reducing considerations to
bosonic fields. This reduced form is the one in which Van Hove originally intro-
ducted the model [62] with ωpkq � a|k|2 �m2, vpkq � gω�1{2. In this paper, he
also interpreted the ground state of the formal Hamiltonian (which is outside F )
as an ITP vector.
Depending on the choice of ω and v, the cutoff renormalization may require energy
counterterms with Eσ,Λ Ñ 8 or dressing transformations Wσ,Λ that do not conver-
ge to a unitary operator on F as σ Ñ 0 or Λ Ñ 8 [63, 15]. In particular, both a

UV–divergent self–energy E8 � � ³ vpkqvpkq
ωpkq dk and a formal Weyl transformation

W psq, s � � v
ω

, which heuristically leads out of Fock space, are required for the

QED–typical scalings ωpkq � |k|, v � g|k|�1{2.
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There are also physically interesting models, with HI of a form similar but not
equal to (1.80):

Pauli–Fierz Model

This more fundamental model is sometimes also called the standard model of
non–relativistic QED. It describes the interaction between atoms and light, and
many models in quantum optics can formally be derived from it by simplification

[64]. Electrons are modeled by one fermion species with θppq � |p|2
2m

. Photons are
considered in the Coulomb gauge which entails two boson species (“transversal
photons”) with ωpkq � |k|, vpp,kq9|k|�1{2. Physically, one would also expect a
third species (scalar photons), which are not included in the Pauli–Fierz model.
Instead, a Coulomb interaction between the fermions, VC � g

°
k�k1

1
|xk�xk1 | , is

added. This is heuristically justified by the observation that interaction terms in
H describing boson exchange produce pair potentials in the leading order of the
coupling constant g, when conjugated with dressing transformations (see the Nel-
son model above).
The Pauli–Fierz model may or may not involve an external potential Vextpxq. If
no external potential is involved and only M � 1 electron is considered, then the
Pauli–Fierz model can be seen as a Polaron model in the sense of (1.62).
Self–adjointness of HΛ with UV –cutoff, M P N electrons and arbitrary coupling
strengths was established in [65]. Spectral dynamics of the Pauli–Fierz model have
been thoroughly investigated, see for instance [66, 67, 68, 69] and the references
therein.
As for the Nelson model, an infraparticle problem occurs: For M � 1, the fiber
Hamiltonians HΛ,P have no ground state for P � 0. Arai [70] showed that this

problem can be resolved by constructing an alternative Hamiltonian rHp5q
Λ,P which

has a ground state for all P : After applying an IR–cutoff σ ¡ 0, the electron mass
mx within Hσ,Λ,P is replaced by mx � δmσ, which yields a cut–off Hamiltonian

with mass renormalization, called H
p5q
σ,Λ,P . The Wightman functions of H

p5q
σ,Λ,P are

explicitly evaluated and the limit Wightman functions for σ Ñ 0 are constructed.
It is then shown that these correspond to a new IR–renormalized HamiltonianrHp5q

Λ,P that has a ground state. Further, Arai showed that the mass renormalization
is necessary in order to obtain the correct Thomson scattering formula.
Similar to Fröhlich within the Nelson model above, Blanchard [71] also used the

ITP space xH in order to describe the limit of a sequence of dressing transforma-
tions Wσ,P Ñ WP where WP is a formal expression ill–defined on HP , but can

be given rigorous meaning as a unitary operator on the Fock space extension xH .
However, this well–defined WP was used to describe asymptotic Hilbert spaces
appearing in scattering theory and not for the construction of an IR–renormalized
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Hamiltonian.
To our best knowledge, no renormalized rH without UV–cutoff has been construc-
ted in the Pauli–Fierz model so far.

Pseudo–Relativistic Pauli–Fierz Models

Here, the Pauli–Fierz model is modified such that the electron dispersion relati-
on becomes pseudo–relativistic. That is, θppq9|p| as |p| Ñ 8. Examples are the
semi–relativistic Pauli–Fierz model with θppq �a|p|2 �M2 for spinless bo-
sons and the no–pair model where spin–1{2–electrons are described by restricting
a Dirac operator α � p �mβ (Dirac–type operators are explained above (1.150))
to the positive–energy subspace [72]. Electrons may also be modeled as full Dirac
particles involving positive– and negative–energy solutions of the Dirac operator
[73].
Properties of the former two models have been investigated, for instance in [74,
75, 76, 77, 78] or the references therein. In all cited resources, M � 1 electron
is considered and an external potential Vextpxq may or may not be involved. For
Vextpxq � �gext

|x| , smallness of the coupling constant gext must be assumed, since
above a certain coupling threshold, several self–adjoint versions of the formal Ha-
miltonian HΛ exist. This effect already occurrs for a Dirac particle in a Coulomb
potential, see also [79] and the last point in Section 1.4.4.
Just as the Nelson model, also the semi–relativistic Pauli–Fierz model allows for
constructing an IR–regularized Hamiltonian on each fiber (see (1.56)) by a Weyl
transformation Wσ,P as in (1.82)

rHp2q
Λ,P :� lim

σÑ0
W �
σ,PHσ,Λ,PWσ,P , (1.89)

which generates dynamics inequivalent to those of HΛ,P [80]. Inequivalence mani-
fests itself in the fact that HΛ,P has only a (2–fold degenerate) ground state for

P � 0, while rHp2q
Λ,P has a (2–fold degenerate) ground state for all P in a sufficiently

small open ball around 0. So the dressing transformation removes the infraparticle
problem of HΛ at small total momentum. As for the Nelson model, the IR–limit
WP � limσÑ0Wσ,P does not define a unitary operator on HP , but Könenberg and
Matte [80] could establish WP as a map from HP into von Neumann’s ITP spacexH .
However, to our best knowledge, for all above modifications of the Pauli–Fierz
model, no removal of the UV–cutoff Λ has been achieved so far.
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Spin–Boson Model

This model describes a single spin coupled to a boson field, meaning that the
fermion has only two allowed configurations x P t0, 1u. For bosons, a physically
reasonable choice would be ωpkq �a|k|2 �m2 with m ¥ 0 and vpkq � |ωpkq|�1{2

where a UV–cutoff is always used. But also other dispersion relations and form
factors have been investigated [81]. The spin–boson mode can formally be derived
from a one–electron Pauli–Fierz model in an external field by reducing the Hil-
bert space for the electron to a two–dimensional subspace. For instance the space
spanned by the ground state and an excited state of an electron within an atomic
potential can be used for this. The cut–off Hamiltonian HΛ can be realized as a
self–adjoint operator and even has a ground state for m ¥ 0, so there is no need to
avoid infrared problems by constructing a non–Fock representation of a suitable
operator algebra [82, 83, 81].
It is also possible to consider generalized spin–boson models where the fermio-
nic two–level system is replaced by a d–level system (x P t1, . . . , du), a harmonic
oscillator (x P N) or even a finite collection of harmonic oscillators (x P Nd)
[84, 85]. For m � 0 and under certain assumptions, it has been proved that the
Hamiltonian HΛ has no ground state [86].

Lee Model and Galilean Invariant Lee Model

The Lee model, introduced in [87], is another less polaron–like, but still non–
relativistic QFT model, which treats two fermion species V and N , as well as one
boson species Θ. The interaction is of the kind V Ø N � Θ, meaning that a V –
fermion transforms into an N–fermion under the emission of a Θ–boson. For this
model, formal expressions for generalized eigenfunctions have been derived already
in the 1950s [88], which allowed for first comparisons between perturbative and
non–perturbative renormalization in QFT [89].

A modified version of it, called the Galilean invariant Lee model, was non–
perturbatively renormalized on a rigorous level by Schrader [90]. Here, the disper-

sion relations are θV ppq � U � |p|2
2mV

, θNppq � |p|2
2mN

and ωΘpkq � |k|2
2mΘ

with U P R
and masses mV � mN �mΘ. The cubic interaction Hamiltonian takes the form

HI � g

» �
a:V ppqaN

�
mN

mV

p� q


aΘ

�
mΘ

mV

p� q


� h.c.



dpdq. (1.90)

In order to remove the UV–cutoff, Schrader added a self–energy counterterm EΛ

proportional to the number of V –particles (so EΛ can also be called a “mass
renormalization”) as well as a charge counterterm δVΛ. For a reasonable choice of
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EΛ and δVΛ, non–perturbative scattering theory renders17 a physical mass mV,phys,Λ

and charge gphys,Λ. Correspondingly, EΛ and δVΛ can be adjusted such that the
fixed values mV,phys,Λ � mV,phys and gphys,Λ � gphys are maintained as Λ Ñ 8. It is
then shown that the limit

rH � lim
ΛÑ8

pHΛ � EΛ � δVΛq (1.91)

exists as a self–adjoint operator in the norm resolvent sense and that the resolventrrpzq � pz � rHq�1 can explicitly be expressed by a convergent Born series.

1.3.8 Relativistic Models

By relativistic, we mean that the models are considered as potential candidates
for a Wightman field theory. Such models have been extensively studied in the
context of CQFT.
In all models considered below, the interaction Hamiltonian HI is constructed out
of field operator–valued distributions, e.g., for bosons

φpxq �
»

1a
4πωpkqpa

:pkq � ap�kqqe�ixk dk, (1.92)

with ωpkq being the boson dispersion relation. The expressions for fermionic fields
are related, but different, see below. The formal HI is now a (possibly divergent)
sum over Wick products of the kind»

: φpxqN : dx �
»

: φpx1q . . . φpxNq : δpx1 � x2q . . . δpxN�1 � xNq dx1 . . . dxN ,

(1.93)
where the two double dots : : denote Wick ordering, which is the operation of
moving all a: to the left and all a to the right inside the double dots. This makes
(1.93) a sum over operator products of the form (1.34). Locality manifests itself
in the fact that for all φpxjq, the same position x � xj is used, so the interaction
happens at a single point x.
For each particle species, the dispersion relation in H0 is now chosen in such a way

17For recovering mV,phys,Λ and gphys,Λ from scattering theory, Schrader first constructs the Møller

operators Ω
in{out
Λ . The operator rHΛ � pHΛ�EΛ�δVΛq is then restricted to the P � 0–fiber of

the one–fermion sector, with the restriction called rHS
Λ . For the resolvent rrSΛpzq � pz� rHS

Λq
�1 he

then establishes rrSΛpzqΩin{out
Λ � Ω

in{out
Λ rrSpzq where rSpzq is the resolvent of some HamiltonianrHS . This rHS is of a form, which allows for directly recovering the “physical” mass mV,phys,Λ

and charge gphys,Λ.

44



1.3 Cutoff Renormalization and Techniques

that the free propagator G2pt, t1qp�, �q P S 1pRd � Rdq defined by

G2pt, t1q : ft, gt1 ÞÑ xΩ, rφpftq, e�ipt�t1qH0φpgt1qsΩy, ft, gt1 P SpRd � Rdq, (1.94)

with vacuum vector Ω P F , apftqΩ � 0 is supported in the time– and lightlike
separated coordinates

supp G2pt, t1q �
 px,x1q P R2d

�� }x� x1} ¤ |t� t1|(, @t, t1 P R. (1.95)

We remark that it is customary to conclude the family of distributions pG2pt, t1qqt,t1PR
into one single spacetime distribution G2 P S 1pRd�1 � Rd�1q also called the “free
propagator”. Condition (1.95) then becomes

supp G2 �
 px, t,x1, t1q P R2pd�1q �� }x� x1} ¤ |t� t1|(. (1.96)

This condition assures that the free field operators smeared in space– and time–
direction

φpfq �
»
fpt,xqe�itH0φpxqeitH0 dtdx, f P SpRd�1q, (1.97)

satisfy Wightman locality (see Section 1.2.3), i.e., rφpfq, φpgqs� � 0 if supp f and
supp g are spacelike separated.
An example for a suitable dispersion relation is ωpkq �a|k|2 �m2. Although for
this ωpkq, the support of a wave packet ft � e�iωpkqf0, f0 P C8

c pRdq spreads faster
than light, the propagator G2 still has causal support.
This causal support of G2 allows for constructing a causal perturbation theory by
the Epstein–Glaser method. For further references, see Section 1.5.

φ4–Theory

This model describes a self–interacting boson field with dispersion relation ωpkq �a|k|2 �m2,m ¡ 0. The formal Hamiltonians with or without spatial cutoff h :
RÑ r0, 1s read

Hh �H0 �HI,h, H �H0 �HI

HI,h �g
»
hpxq : φpxq4 : dx, HI �g

»
: φpxq4 : dx,

(1.98)

with φpxq given by (1.92). The Wick ordering of φpxq4 renders one operator pro-
duct of the kind a:a:a:a:, 4 terms of the kind a:a:a:a, 6 terms a:a:aa, 4 terms
a:aaa and one term aaaa. Note that sometimes, the product g � hpxq �: gpxq is
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treated as a space–dependent coupling constant.
In 1�1 dimensions, φ4–theory has been renomalized by Glimm an Jaffe [91, 92, 93].
Existence of a self–adjoint realization ofHh without UV–cutoff can be inferred from
[38, 94]. Essential self–adjointness of Hh on a suitable domain is established in [91],
such that the uniqueness requirement of dynamics in Segal’s theorem is satisfied
and an automorphism group pαtqtPR can be constructed (see Section 1.3.6). Sever-

al Haag–Kastler axioms are verified in [92] and a renormalized Hamiltonian rH is
recovered from pαtqtPR in [93].

The renormalization of φ4–theory in 2 � 1 dimensions has been achieved by
Glimm and Jaffe [95, 96]. Glimm first constructed a densely defined symmetric
renormalized Hamiltonian of the kind

rHh � lim
ΛÑ8

T�1
Λ,hpHΛ,h � cΛ,hqTΛ,h. (1.99)

Here, TΛ,h is a non–unitary dressing transformation [95, Sect. 3], and the coun-
terterm cΛ,h contains a self–energy EΛ,h, as well as a mass counterterm δmΛ,h

consisting of quadratic operator products of the type a:a:, aa and a:a [95, Sect. 4].

Later, Glimm an Jaffe [96] showed that rHh is bounded from below, which allows

for finding a self–adjoint Friedrichs extension of rHh for any spatial cutoff h.

P pφq–Theories

This class of models, also called λφ2n–theories, is given by a self–interacting boson
field with ωpkq �a|k|2 �m2,m ¡ 0 and a polynomial interaction

HI �g
»

: P pφpxqq : dx, HI,h � g

»
hpxq : P pφpxqq : dx,

P pφq �φ2n � b2n�1φ
2n�1 � . . .� b0,

(1.100)

with n P N and arbitrary coefficients bj P R, j P t0, . . . , 2n� 1u. Hence, it includes
the φ4–theory.
A renormalized Hamiltonian in 1 � 1 dimensions with spatial cutoff rHh has been
constructed by Rosen [97] as

rHh � lim
σÑ0
ΛÑ8

Hσ,Λ,h, (1.101)

in the norm resolvent sense, where σ is an IR–cutoff imposed by forcing the sys-
tem into a box of finite volume V and where Λ (called K in the original paper)
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is a UV–cutoff. As for φ4–theory in 1� 1 dimensions, no counterterms or dressing
transformations are involved. Further, Rosen discusses how to use Segal’s theorem
to recover the dynamics automorphism group pαtqtPR and a renormalized Hamil-

tonian rH generating dynamics on a physical Hilbert space.
An alternative construction of a self–adjoint rHh has been given by Glimm and
Jaffe in [98].
A set of self–adjoint field operators φpfq, f P SpR2q has been established by Glimm
and Jaffe in [99] via constructing all Wightman functions and using the Wightman
reconstruction theorem.

eαφ–Model

Also this model describes a single boson species with dispersion relation ωpkq �a|k|2 �m2,m ¡ 0 and self–interaction

HI �g
»

: V pφpxqq : dx, HI,h � g

»
hpxq : V pφpxqq : dx,

V pφq :�
»
eφs dνpsq,

(1.102)

with ν being a measure on R, supported in
� � ?

2π � ε,
?

2π � ε
�

for ε ¡ 0 and
φpxq as in (1.92).
Høegh–Krohn constructed a renormalized Hamiltonian with spatial cutoff in 1� 1
dimensions [100] via

e�t
rHh � lim

ΛÑ0
e�tHΛ,h , (1.103)

in the strong sense, which entails HΛ,h Ñ rHh in the strong resolvent sense. No
counterterms or dressings are involved.
The spatial cutoff is removed in [100] just as for the φ4–theory: By Segal’s theorem,
an automorphism group pαtqtPR is constructed. Then, the existence of a physical
vacuum ω � limhÑ1 ωh is established, whose GNS representation πω allows for wri-
ting πωpαtpAqq � Uptq�πωpAqUptq where the unitary group pUptqqtPR is generated

by a self–adjoint renormalized Hamiltonian rH.

Yukawa Model

Usually considered in 1�1 dimensions, this model describes the interaction of two
fermion species, whose creation/annihilation operators are denoted b:, b (partic-
les) and b1:, b1 (antiparticles), with one boson species with creation/annihilation
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operators a:, a. The dispersion relations are θppq � a|p|2 �M2 (fermions) and

ωpkq � a|k|2 �m2 (bosons). The boson field operator–valued distribution φpxq
is given by the usual expression (1.92), while the fermion field operator–valued
distributions are defined as

ψ1pxq �
» �

vp�pqb1:ppq � vppqbp�pq�e�ipx dpa
4πθppq

ψ2pxq �
» �

vppqb1:ppq � vp�pqbp�pq�e�ipx dpa
4πθppq ,

(1.104)

with form factor vppq �a
θppq � p. The formal Hamiltonian is then

H � H0 �HI

HI � g

»
: ψ2pxq�ψ1pxq � ψ1pxq�ψ2pxq : φpxq dx. (1.105)

As in (1.98), a spatial cutoff h : R Ñ r0, 1s can be employed by putting a factor
hpxq inside the integral in HI , which yields a formal Hamiltonian with spatial
cutoff Hh.
Glimm constructed a corresponding renormalized Hamiltonian rHh (called Hren in
his work) as a limit of quadratic forms [101]:

xΨ, T �
σ,h

rHhTσ,hΨy � lim
ΛÑ8

xΨ, T �
σ,Λ,hpHΛ,h � cΛ,hqTσ,Λ,hΨy, (1.106)

with Tσ,h, Tσ,Λ,h being non–unitary dressing transformations and where Ψ is chosen
from a form domain that is dense in H . The counterterm cΛ,h consists of a self–
energy EΛ,h and a mass renormalization term δmΛ,h containing operator products

of the type a:a:, aa and a:a. Self–adjointness of rHh was established by Glimm using
a Friedrichs extension in [102]. Another proof of self–adjointness by norm resolvent
convergence of pHΛ,h � cΛ,hq together with independence from the cutoff functi-
on h was given in [103] and an automorphism group pαtqtPR was constructed by

Segal’s theorem in [104]. The existence of a renormalized rH generating dynamics
corresponding to pαtqtPR on a Hilbert space has been established by Schrader [105].

Massless Thirring Model

Introduced by Thirring as early as 1958 [106], this 1 � 1–dimensional model is
a prominent example of an integrable QFT model, meaning that the Heisenberg
equations of motion can be solved explicitly. It concerns two fermion species: a
particle with operators b:, b and its antiparticle with operators b1:, b1. The corre-
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sponding field operator–valued distributions are [34, Chap. IV]

ψ1pxq �
» �

χr0,8qppqbppq � χr0,8qp�pqb1:p�pq
�
eipx

dp?
2π

ψ2pxq �
» �

χr0,8qp�pqbppq � χr0,8qppqb1:p�pq
�
eipx

dp?
2π
.

(1.107)

The kinetic term is then

H0 � �i
» �

ψ1pxq�Bxψ1pxq � ψ2pxq�Bxψ2pxq
�
dx, (1.108)

which corresponds to a dispersion relation of θ1ppq � p for ψ1 and θ2ppq � �p for
ψ2. The interaction in its most general form is given by

HI � g

»
ψ1px1q�ψ1px1qfpx1 � x2qψ2px2q�ψ2px2q dx1dx2, (1.109)

where for a local interaction, the form factor has to be chosen as fpx1 � x2q �
δpx1 � x2q. The operator–valued distributions ψ1 and ψ2 can be interpreted as
annihilating two new species of particles (ψ1–fermions and ψ2–fermions), for which
the Heisenberg equations for H � H0 � HI can be solved explicitly [34, (9.7)].
The transition from ψ1, ψ2 to b, b1 via (1.107) is a Bogoliubov transformation like
a ÞÑ b in (1.76), but there does not exist a unitary implementer UV

18. However,
performing a Bogoliubov transformation by operator replacement, i.e., plugging
(1.107) into (1.108) and (1.109) renders a formal expression of the kind

H � rH � E8, (1.110)

where E8 is a formally infinite constant (self–energy) and rH is indeed a self–

adjoint Hamiltonian of the form rH � rH0 � rHI , where the dispersion relation is
θbppq � θb1ppq � |p| and rHI is a quartic interaction term [34, (9.21)].
One may construct even more formal Heisenberg fields by a bosonization approach,
out of which some are nonlocal and others do not solve the Heisenberg equations
on rigorous grounds, compare [107, Chap. 5].

18Heuristically speaking, the Bogoliubov transformation is “too large” or leads “outside Fock
space”. Mathematically, it violates the Shale–Stinespring condition. This is the case addressed
in Chapter 5.
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Massive Thirring Model

It is also possible to assign a positive mass to the free dispersion relation of fermions
in the 1 � 1 dimensional Thirring model. The corresponding QFT has been con-
structed by Benfatto, Falco and Mastropietro by a functional integral approach in
Euclidean field theory [108]. More precisely, they constructed the Schwinger functi-
ons pSσ,Λ,nqnPN for suitable cutoffs σ,Λ, proved that the limit Schwinger functions
pSnqnPN exist as σ Ñ 0,Λ Ñ 8 and verified the Osterwalder–Schrader axioms.

Federbush Model

While being closely related to the Thirring model, the Federbush model in 1 � 1
dimensions [109] is a further exactly integrable model with two pairs of fermion
species ψ1,�, ψ2,� and ψ1,�, ψ2,� described each as in (1.107). It is convenient to
conclude each pair into a vector with two entries

ψ� �
�
ψ1,�
ψ2,�



, ψ� � γ0ψ��, (1.111)

with 1� 1–dimensional Dirac matrix γ0 � p 0 1
1 0 q. The formal free Hamiltonian can

then conveniently be expressed as

H0 �
¸

sPt�,�u

»
ψspxqp�iγ5Bx � γ0msqψspxq dx, (1.112)

with γ5 � p 1 0
0 �1 q and fermion masses m�,m� ¡ 0, so the particles have dispersion

relation θ�ppq � γ5p� γ0m�. The quartic interaction term reads

HI � g

» �
ψ�pxqγ1ψ�pxq ψ�pxqγ0ψ�pxq � ψ�pxqγ0ψ�pxq ψ�pxqγ1ψ�pxq

	
dx.

(1.113)
Ruijsenaars applied a process called bosonization to this model. That is, the
fermionic Ψ� are used to construct formal (bosonic) Heisenberg operator–valued
distributions φpxq [107, Chap. 4]. As for the Thirring model, some of them do not
solve the Heisenberg equations on rigorous grounds or are nonlocal. However, for
one specific choice of φpxq involving formal Bogoliubov implementers, Ruijsenaars
could establish all Wightman axioms in the low–coupling regime [110]. So in a
physical sense, the bosons described by φpxq are the “true” particles and the fer-
mions described by Ψ� are just a mathematical tool leading to a particularly nice
and intuitive form of the Hamiltonian.
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Sine–Gordon Model

This model has also been considered in 1 � 1 dimensions and describes a self–
interacting boson field with dispersion relation ωpkq � a|k|2 �m2. Using the
operator–valued distribution φpxq in (1.92), the interaction can be written as

HI � g

»
: cospαφpxqq : dx, (1.114)

with α P R. For m � 0 and α small enough, the Sine–Gordon model can be reduced
to the massive Thirring model. This works by adding a divergent energy constant
Eσ,Λ to the Thirring Hamiltonian and identifying bosonic operator expressions
constructed out of φpxq from the Sine–Gordon Hamiltonian with bosonic operator
expressions constructed out of the fermionic Ψ1,Ψ2 from the Thirring Hamilto-
nian [111, (1.4)]. So the transition from the Sine–Gordon to the Thirring model
can be seen as a kind of fermionization, while the converse transition is again a
bosonization.
An equivalence of the resulting perturbation series has first been established by
Coleman in the low–coupling regime [112]. A proof of non–perturbative equiva-
lence has been given by Benfatto, Falco and Mastropietro in [111] via functional
integral methods in Euclidean field theory.

1.4 Direct renormalization and Interior–Boundary
Conditions (IBC)

In the recent years, a renormalization technique, that works entirely without cu-
toffs or limiting procedures, has gained attention. The technique starts from a
formal Hamiltonian H � H0�A:�A, with A: containing ill–defined particle crea-
tion expressions. A modification of the formal H without using cutoffs then results
in a renormalized Hamiltonian HIBC, which is free from the ill–defined terms in
A:, and which describes particle creation by a specific constraint equation inclu-
ded in the definition of its domain dompHIBCq. In earlier considered models, this
constraint equation relates interior points of the configuration space (for instance
the non–collision configurations Q̊ :� QzQcol from (1.11)) to boundary points (for
instance the collision configurations BQ̊ � Qcol, at which a particle is created).
Therefore, both the constraint equations and the renormalization technique have
been dubbed interior–boundary conditions (IBCs).
Later works, presented in Section 1.4.3, establish a self–adjoint HIBC using ab-
stract generalizations of IBCs, which are sometimes also denoted as “IBCs” and
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sometimes called abstract boundary conditions. For a thorough introduction
into the IBC technique, we refer the reader to [113, 114, 115, 116].
The works about IBCs have considerably inspired the Fock space extension ap-
proach described in Chapter 3. Both share the spirit of removing divergences wi-
thout using cutoffs. The following Sections 1.4.1–1.4.3 provide a short outline of the
construction principle for self–adjoint Hamiltonians via IBCs or abstract boundary
conditions and point out difficulties, which the Fock space extension framework is
designed to overcome.

1.4.1 Boundary Conditions and Self–Adjointness

The description of particle creation and annihilation by boundary condition relies
on the well–known fact that for an open set Ω � Rd with boundary BΩ, the
Schrödinger equation on L2pΩq has no unique solution. Some of these solutions do
not conserve the L2–norm, but instead describe wave packets leaving or entering
the boundary.
A simple example illustrating this effect is given by [22, X.1 Example 1] (and in a
similar form in [27, (2.29)]): Consider Ω � p0, 1q � R and the Schrödinger equation

iBtΨtpxq � iBxΨtpxq. (1.115)

If (1.115) was posed on L2pRq, then H � iBx � �p would be a self–adjoint
Hamiltonian whose domain is the first Sobolev space dompHq � H1pRq. The evo-
lution would be given by Uptq � eipt, so for any initial data Ψ0 P L2pRq we have
Ψt � UptqΨ0 with19 Ψtpxq � Ψ0px� tq. Therefore (1.115) describes the motion of
a wavepacket to the left with velocity 1, while sustaining its shape. This situation
is illustrated in Figure 1.7.
Now as (1.115) is restricted to x P p0, 1q, a wave packet Ψ P L2pp0, 1qq will also run
to the left within the interval p0, 1q. Therefore, it eventually leaves the interval at
x � 0, which may lead to a decrease of }Ψt} in time. Heuristically, “probability will
flow out of the left boundary of p0, 1q”. On the other hand, an arbitrarily shaped
wavepacket may enter the interval at x � 1 at any time, which might lead to an
increase of }Ψt}. So “probability may flow into the right boundary of p0, 1q”. The
time evolution operator Uptq can now only be unitary, if it conserves the norm }Ψ},
so “the probabilities flowing in and out of the boundaries balance each other out”.
In our example, probability balance formally amounts to the leaving probability
density |Ψp0q|2 and the entering probability density |Ψp1q|2 being equally large,

19This can easily be checked by a Fourier decomposition: Ψ0pxq � p2πq�1{2
³

Ψ̂0ppqe
ipx dp, so

Ψtpxq � eiptΨ0pxq � p2πq�1{2
³

Ψ̂0ppqe
ippx�tq dp � Ψ0px� tq.
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which is realized by imposing the boundary condition

Ψp0q � αΨp1q, α P C, |α| � 1, (1.116)

see also Figure 1.7. It can indeed be proved that the PDE (1.115) together with
boundary condition (1.116) then has a unique probability–conserving solution
pΨtqtPR, whereas the PDE (1.115) alone allows for many solutions which do not
necessarily conserve probability.

x

|Ψpxq|

0 1

x

|Ψpxq|

0 1

x

|Ψpxq|

0 1

|Ψp0q| � |Ψp1q|

Abbildung 1.7: Left: A wave packet at t � 0.
Middle: The solution of (1.115) may leave the boundary.
Right: Boundary condition (1.116) ensures probability conservati-
on. Color online.

From a functional analytic point of view, the situation in the above example is
the following: Each choice of a boundary condition (1.116) for |α| � 1 together
with the PDE (1.115) corresponds to a distinct self–adjoint Hamiltonian Hα with
a distinct domain20

dompHαq �
 
Ψ P H1pp0, 1qq �� Ψp0q � αΨp1q(. (1.117)

If the boundary condition is a priori unknown, then the action of the Hamiltonian
is only known on functions whose support has a sufficient distance to the boundary
Ψ P D0 � C8

c pp0, 1qq, i.e., we a priori have an operator H̊ � �p : D0 Ñ L2pp0, 1qq.
This H̊ is symmetric, but not self–adjoint. It allows for several self–adjoint extensi-
ons Hα and is hence compatible with many different unitary dynamics pUαptqqtPR,
Uαptq � e�itHα on L2pp0, 1qq. Also note that although dompHαq in (1.117) is not

20The expressions Ψp0q,Ψp1q P C are strictly speaking not function evaluations, but rather
applications of the linear functionals δp�q, δp� � 1q to Ψ. Both are generally ill–defined on Ψ P
L2pp0, 1qq. However, they are well–defined on H1pp0, 1qq by the Sobolev embedding theorem
[117, Thm. 5.4, (8)], which implies that Ψ P H1pp0, 1qq is continuous. So Ψp0q � limεÑ0 Ψpεq
and Ψp1q � limεÑ0 Ψp1� εq exist as complex numbers.
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the entire Hilbert space H , the operator Hα nevertheless defines dynamics on all
of H .
There are even non–symmetric extensions Hnon possible, e.g., by only imposing
the boundary condition Ψp1q � 0, which allows “probability to leave but not to
enter p0, 1q”. A family of evolution operators pW ptqqtPr0,8q can then be defined via

Ψtpxq �
#

Ψ0pt� xq if t� x   1

0 else
. (1.118)

pW ptqqtPr0,8q is not a unitary group, but only a contraction semigroup, as }Ψ} may
decrease in time and dynamics cannot be defined for t   0. That is because, heuri-
stically speaking, for backward running time, arbitrary wavepackets may enter at
x � 0. This “violation of probability conservation” under pW ptqqtPr0,8q corresponds
to the generator Hnon of the semigroup not being symmetric on its domain

dompHnonq �
 
Ψ P H1pp0, 1qq �� Ψp1q � 0

(
, (1.119)

although it might look symmetric at first glance. In general, only writing down a
symmetrically–looking expression H̊ (like H̊ � �p) on a set with boundary Ω � Rd

does not yet specify a self–adjoint Hamiltonian, but leaves an option for several
extensions H, out of which some may even be non–symmetric. Only H̊ together
with a boundary condition determines a self–adjoint Hamiltonian H, where the
boundary condition heuristically prescribes how probabilities “flowing in and out”
at BΩ are balanced.

1.4.2 A Simple Example for an IBC

In order to model particle creation and annihilation by means of boundary con-
ditions, one may choose Ω as a subset of configuration space Q, such that the
configurations in BΩ � Q are associated with a particle just having been created.
For instance, if a particle of one species may emit or absorb further particles of the
same species at its current position, then one reasonable choice is given by taking
the collision configurations BΩ � Qcol (compare (1.11)) and Ω � Q̊ � QzQcol. A
creation process may then relate an interior configuration q � px1, . . . ,xNq P Q̊
to the boundary configuration q1 � pq,xjq P Qcol, j P t1, . . . , Nu, where a particle
has been created at the position xj.
Another example is given by a single point source at t0u, which emits and absorbs
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particles. In that case,

Ω � QzBΩ, BΩ �  
q � px1, . . . ,xNq

�� xj � 0 for some j P t1, . . . , Nu(.
(1.120)

So a particle creation at x � 0 relates interior configurations q P Ω to boundary
configurations q1 � pq, 0q P BΩ. In that context, it is also possible to restrict Q to
a subset of sectors, for instance, to

�Nmax

N�0 QpNq.

An IBC is now a constraint equation on Ψ P L2pΩq, which establishes probability
balance between interior points q P Ω and corresponding boundary points q1 P BΩ
at a higher sector in configuration space.
As a simple example, consider the restriction of the configuration space to the
vacuum– and the one–particle sector Ω � tHu \ R3zt0u, so BΩ � t0u and H �
L2pΩq � C ` L2pR3q. The boson dispersion relation is chosen as ωpkq � |k|2 and
the form factor is chosen proportional to a Dirac δ–distribution in position space
v̌pxq � gδpxq with g being the coupling constant. This model has been considered
for IBCs in that or a generalized form in [118, 119, 120, 121, 122, 114, 116] and
can also be seen as a specific case of the spin–boson model presented in Section
1.3.7. The formal Hamiltonian reads:

H � H0 � gpa:pδq � apδqq
H0 � 0`�∆

pa:pδqΨqp0q � 0, pa:pδqΨqp1qpxq � δpxqΨp0q

papδqΨqp0q � Ψp1qp0q, papδqΨqp1qpxq � 0.

(1.121)

Obviously, a:pδq is ill–defined on Ψ P H with Ψp0q � 0, since δ R L2.

For a moment, let’s drop the creation term and consider

H̊ � H0 � gapδq. (1.122)

Although H̊ does not look symmetric, it is indeed a symmetric operator if conside-
red on D0 � C`C8

c pR3zt0uq, since the annihilation term amounts to gapδqΨ � 0
for Ψ P D0. Alternatively, one may write H̊ � H0|D0 , which is known to allow
for many self–adjoint extensions [123, Sect. I.1]. The aim is now to extend H̊ to a
self–adjoint operator, where symmetry is enforced by a constraint equation similar
to (1.116). This is done by finding expressions for the probability rates that “leave”
and “enter” R3zt0u at 0 and setting both equal. The probability current vector
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field associated with �∆ is given by

jipxq � 2Im
�

Ψp1qpxqBxiΨp1qpxq
	
, i P t1, 2, 3u. (1.123)

The rate at which probability leaves R3zt0u can now be expressed by considering
the current flow through a scaled sphere rS2 � BBrp0q, r P r0,8q and shrinking
r Ñ 0. For the integration over the sphere, it is convenient to use spherical coordi-
nates, expressing x P R3zt0u by pr, ωq P r0,8q�S2. The rate of probability leaving
R3zt0u is then

9ρout � 2 lim
rÑ0

»
S2

Im
�

Ψp1qpr, ωqBrΨp1qpr, ωq
	
r2 dω. (1.124)

The ingoing current formally reads

9ρin � �Bt|Ψp0q
t |2 � �2Re

�
Ψp0qBtΨp0q

	
� �2gIm

�
Ψp0qpapδqΨqp0q

	
� �2gIm

�
Ψp0qΨp1qp0q

	
� �2

g

4π
lim
rÑ0

»
S2

Im
�

Ψp0qΨp1qpω, rq
	
dω.

(1.125)

Probability balance 9ρout � 9ρin is now established by a constraint equation relating
Ψp0q to Ψp1q, which is exactly the interior–boundary condition. Following [114,
(27)] and [116, (17), (22)], one may choose as an IBC

Ψp0q � �4π

g
lim
rÑ0

rΨp1qpω, rq. (1.126)

That means, Ψp1q is forced to have a pole of the form �gΨp0q

4π|x| near x � 0, see

Figure 1.8. Since for Ψp0q, the value Ψp1qp0q is formally infinite, the annihilation
operator apδq does no longer make sense on all Ψ satisfying (1.126) and requires
an ad hoc modification [116, (15)]: One replaces apδq by Apδq given by

pApδqΨqp0q � 1

4π
lim
rÑ0

Br
»
S2

rΨp1qpω, rq dω, pApδqΨqp1qpxq � 0. (1.127)

So the annihilation only acts on the regular part of Ψp1q and no longer on the
pole 9|x|�1. This replacement corresponds to the subtraction of a formal infinite
self–energy from the Hamiltonian

E8 � �g2apδqa:
�

1

4π|x|


. (1.128)
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x1

|Ψ(1)(x)|

0

x2

pole strength

|Ψ(0)|

0

IBC

Abbildung 1.8: The IBC (1.126) relates the pole strength of Ψp1q to Ψp0q. Color
online.

The renormalized Hamiltonian then reads

rH � HIBC � H0 � gApδq. (1.129)

Although this expression does not look symmetric, it becomes a symmetric and
self–adjoint operator, if considered on the IBC–domain

dompHIBCq �
"

Ψ P H

���� �1� ga:
�

1

4π|x|




Ψ P dompH0q
*
. (1.130)

So the Hamiltonian (1.129) together with the IBC (1.126) provides a rigorous
implementation of the formal expression

H � H0 � gpa:pδq � apδqq � E8. (1.131)

1.4.3 Abstract Boundary Conditions and Difficulties

The IBC method above can also be cast in a more abstract language as done in
[116]. This allows for applications with more sophisticated H, as those presented
in Section 1.4.5. Consider a formal Hamiltonian

H � H0 � A: � A� E8, (1.132)

where H0 describes freely moving particles, A contains some annihilation terms, its
formal adjoint A: contains creation terms (and is possibly ill–defined) and E8 is
an infinite formal self–energy. We re–arrange the terms as follows (see also Section
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4.8.1):
H � H0 � A: � A� AH�1

0 A: � AH�1
0 A: � E8

� p1�H�1
0 A:q�H0p1�H�1

0 A:q � pAH�1
0 A: � E8q

�: S�S � T,

(1.133)

with S � H
1{2
0 p1�H�1

0 A:q and T � �pAH�1
0 A: � E8q. Under certain conditions

on H0 and A:, the operator S�S is self–adjoint on its domain

dompHIBCq �
 
Ψ P H

�� �1�H�1
0 A:�Ψ P dompH0q

(
. (1.134)

Now if one can prove that T is a Kato–perturbation of S�S, i.e.,

}TΨ} ¤ a}S�SΨ} � b}Ψ} @Ψ P dompHIBCq, (1.135)

with a P r0, 1q, b P r0,8q, then the Kato–Rellich theorem [22, X.12] implies that

HIBC � S�S � T (1.136)

is self–adjoint on dompHIBCq.
Most of the examples in Section 1.4.5 apply to polaron models: For a system
with N interacting fermions, A: and A make each fermion create or annihilate a
boson. So AH�1

0 A: consists of N2 terms describing the interaction of fermion i
with j by boson exchange, where i, j P t1, . . . , Nu. Terms with i � j (also called
off–diagonal terms) amount to a pair potential interaction, where Kato–bounds
with respect to a kinetic term H0 are well–known. Terms with i � j (also called
diagonal terms) describe an infinite self–interaction, which is removed by the
counterterm E8.

One may now also imagine to include infinite mass or charge counterterms
as in Section 1.3.3 into the Hamiltonian and reshuffle terms, in order to arrive at a
self–adjoint HIBC, although we are not aware of such an inclusion in the literature.
It would be useful to have a formalism which puts term reshuffelings as in (1.133)
on rigorous grounds, which was one of the central motivations for designing the
Fock space extension framework presented in Section 3.2.
Further, the above formalism requires that dompHIBCq � H , so within the formal
manipulations, no dressing transformations leading out of Fock space are allowed,
although these are expected in a cutoff–free setting for certain models. See, for
instance [43, 61, 71, 80]. This is also a serious problem if one thinks of IBCs as a
tool being involved in the construction of relativistic QFTs, since Haag’s theorem
holds here [9], [10, Sect. II.1]. Thus, no renormalized Hamiltonian can be defi-
ned in the vacuum representation and a change of the representation is necessary,
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which corresponds to conjugating the formal H with a dressing transformation
leading out of Fock space. One possible way out might be to perform a different ad
hoc re–definition of creation or annihilation operators, e.g., a Weyl transformation
a:pfq ÞÑ a:pfq � xs, fy, which can be well–defined for s R L2 even if the formal
implementer W psq is not defined on Fock space. However, the IBC method would
then only be applicable after an appropriate operator replacement, which may be
difficult to find and can involve handling infinite quantities. Without a suitable
replacement, the IBC equation p1 � H�1

0 A:qΨ P dompH0q will formally produce
vectors Ψ outside of Fock space.

A simple example illustrating this problem is the Van Hove model (see also
Section 1.3.7), where we specifically consider a single point source at x � 0 emitting
and absorbing bosons. The formal Hamiltonian, using the notation of Section 1.3.1,
is

H � dΓpωq � a:pvq � apvq, (1.137)

where we choose ωpkq � |k| and vpkq � g|k|�1{2, which are the expected scalings of
QED. It is well–known [63, 15], that this Hamiltonian can be given a rigorous mea-
ning by performing an algebraic Weyl transformation, introducing the operators
and operator–valued distributions

ra:pfq � a:pfq � xs, fy, rapfq � apfq � xf, sy,ra:pkq � a:pkq � spkq, rapkq � apkq � spkq
with spkq � � vpkq

ωpkq � �g|k|�3{2,

(1.138)

and subtracting the formal counterterm

E8 �
»
vpkqspkq dk � �

»
vpkqvpkq
ωpkq dk. (1.139)

In that case, the formal Hamiltonian amounts to

H � E8 �
» �

ωpkqa:pkqapkq � vpkqa:pkq � vpkqapkq � vpkqvpkq
ωpkq

�
dk

�
»
ωpkq

�
a:pkq � vpkq

ωpkq

��
apkq � vpkq

ωpkq


dk

�
»
ωpkqra:pkqrapkq dk.

(1.140)
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So a Weyl transformation rapkq ÞÑ rapkq � spkq results in the replacement ra ÞÑ a
and hence in a renormalized Hamiltonian

rH � dΓpωq � H0, (1.141)

whose domain is well–known to be the first Sobolev space. However, the Weyl
transformation does not have a unitary implementer W psq, as defined by (1.72)
and (1.73): The formal integral

³ |spkq|2 dk diverges both in the UV– and in the
IR–regime, so s R L2.

However, the formal operator pH �E8q does not have a domain in Fock space.
Formally, its domain would be given by W psqrdompH0qs � W psqrH s, which can

be given a rigorous meaning as a subspace of von Neumann’s ITP space xH , as in
[71, 80]. See also Section 3.1.
Likewise, the formal Hamiltonian (1.137) results in a formal IBC domain (1.134)
that contains vectors outside Fock space: The formal IBC reads

p1�H�1
0 a:pvqqΨ P dompH0q, (1.142)

which would, for instance, be satisfied by the “dressed vacuum” state21

ΩIBC �
¸
NPN0

pa:psqqN
N !

Ω ñ Ω
pNq
IBCpk1, . . . ,kNq � 1?

N !

N¹
`�1

spk`q. (1.143)

Indeed, using s � � v
ω

, we have at each sector N ¥ 1:

pH�1
0 a:pvqΩIBCqpk1, . . .kNq � 1?

N !

1°N
j�1 ωpkjq

Ņ

j1�1

vpkj1q
¹
`�j1

spk`q

� 1?
N !

1°N
j�1 ωpkjq

Ņ

j1�1

p�ωpkj1qq
N¹
`�1

spk`q

� � 1?
N !

N¹
`�1

spk`q

� � ΩIBC,

(1.144)

so p1�H�1
0 a:pvqqΩIBC � Ω P dompH0q. Obviously, ΩIBC R H since the L2–integral

diverges on each sector. The expression (1.143) closely resembles the formal “Weyl–

21This example was pointed out by Julian Schmidt to whom I am grateful for useful explanations
concerning IBCs and its abstract generalizations.
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dressed vacuum”

ΩW � e�
}s}2

2

¸
NPN0

pa:psqqN
N !

Ω ñ Ω
pNq
W pk1, . . . ,kNq � e�

}s}2

2?
N !

N¹
`�1

spk`q,
(1.145)

which is a generalized coherent state with ΩW R H , but ΩW P xH . However,

ΩIBC lacks the infinite wave function renormalization e�
}s}2

2 which is formal-
ly “e�8 � 0”. For this sake, the formal expression ΩW as in (1.145) would also
amount to the configuration space function Ωpqq � 0.

As the examples in Sections 1.3.7 and 1.3.8 suggest, it would be useful for a
direct renormalization procedure as the IBC method to allow for dealing with
dressing transformations leading out of Fock space. In case of a relativistic QFT
with s only diverging in the IR–region, it may also be possible to circumvent the
non–Fock dressing by defining an HIBC,h with a spatial cutoff h, and to remove
the cutoff via Segal’s theorem as explained in Section 1.3.6 and 1.3.7. We will ho-
wever not pursuit this approach, but provide tools that allow for treating dressing
transformations leading out of Fock space. Those also work in a non–relativistic
environment and are therefore more general. Before doing so, we quickly review
some results about IBCs in the context of QFT.

1.4.4 Literature on Interior–Boundary Conditions

Interior–boundary conditions have already been described well before the onset of
the investigations initiated by [114, 115, 116] and considering IBCs as a tool for
non–perturbative renormalization:

• Already in the early 50s (and hence before the emergence of CQFT), Mos-
hinsky considered IBCs for a description of nuclear reactions on a non–
rigorous level [118, 119]. In [118], he provides IBC equations for 3 models:

– A model with a compound particle dissociating into two particles [118,
(17)], which is described in relative coordinates, so the Hilbert space is
given by H � C ` L2pR3q. This is a generalization of the example we
presented in (1.121), allowing for a positive mass µ and rest energies
m1,m0. The formal free Hamiltonian then reads

H0 �
�
m0 0
0 � ∆

2µ
�m1



. (1.146)
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– An analogous model with N types of compound particles that can all
dissociate into the same pair of particles, so H � C` . . .`C`L2pR3q.
This model can also be interpreted as describing a single compound
particle with an internal structure that is modeled by a state vector in
CN .

– A model with one compound particle that can dissociate into either of
two types of particle pairs, so H � L2pR3q ` C` L2pR3q.

A fourth model describing beta decay is also briefly and heuristically discus-
sed.
In [119], Moshinsky provides the spectral resolution22 (“generalized Hankel
transformation”) in terms of generalized eigenfunctions for the first model
above (H � C` L2pR3q)

• Pavlov [120] later considered a similar model on a mathematically rigorous
level. Here, two particles recombine to a compound particle with internal
structure, so H � H0 ` L2pR3q, where H0 is either CN or `2 and de-
scribes the internal structure. The dispersion relation on L2pR3q is again
given by H0 � �∆. It is then proved that all self–adjoint extensions of H0

on D0 � tΨ P H2pR3q | Ψp0q � 0u make up a one–parameter family
pHIBC,αqαPC, where for each α, the corresponding IBC and the spectral reso-
lution of HIBC,α in terms of generalized eigenfunctions is given.

• Thomas [121] independently considered a similar model with two particles
recombining to one compound particle, with H � C`L2pR3q and the formal
H0 from (1.146). He provided an IBC together with HIBC and an eigenfunc-
tion expansion.
Additionally the IBC was given for a model of three particles recombi-
ning into two, with H � L2pΣ12q ` L2pΣ13q ` L2pΣ23q ` L2pR6q where
Σ12 � Σ13 � Σ23 � R3 are the codimension–3 collision hyperplanes23 in
R6.

22By a spectral resolution, we mean that H is explicitly diagonalized in the sense of the spectral
theorem [24, Thm. 10.10]. That means, some spectral set X and unitary U : H � L2pQq Ñ
L2pXq is found, such that H � U�λU , where λ is the operator multiplying with the spectral
value λ. For instance, a spectral resolution can be provided by stating the kernel Upq, xq of
U , where ξx : q ÞÑ Upq, xq is called a generalized eigenfunction.

23Σ12 is obtained by taking the 6–dimensional hypersurface tpx1,x2,x3q | x1 � x2u � R9 and
projecting it to R6 by a suitable choice of center–of–mass coordinates.
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• Yafaev [122] also investigated the situation of two particles recombining to a
compound particle with internal structure, both in 1 and 3 space dimensions.
That means, H � CN `L2pRq and H � CN `L2pR3q were considered. All
self–adjoint extensions of H0 � �∆ on D0 � tΨ P H2pRdq | Ψp0q � 0u were
characterized, their resolvents determined and for d � 1, their spectra were
analyzed.

Independently of the works above, a series of papers investigating IBCs for
non–perturbative renormalization have been motivated by a work by Tumulka
and Georgii, aiming at a description of quantum particle trajectories as stocha-
stic processes. Here, an IBC was suggested in [124, (23)] as a condition ensuring
probability balance. Works which make use of IBCs that actually relate interior
points of configuration space with boundary points include the following:

• Teufel and Tumulka [114] established the self–adjointness of an IBC Hamil-
tonian HIBC for one resting fermion interacting with a quantized boson field,

where H � F pR3q, H0 � dΓpωq, ωpkq � |k|2
2m

� E0. This can be seen as a
generalization of Moshinsky’s first model to an arbitrary particle number,
while dropping the vacuum energy.
Teufel and Tumulka could prove that HIBC coincides with the Hamiltonian
obtained by cutoff–renormalization, up to a constant:

pHIBC � cq � rH � lim
ΛÑ8

pHΛ � EΛq, c P C. (1.147)

Further, they suggested IBCs for a model with M P N resting fermions, a

model with M moving fermions of dispersion relation θppq � |p|2
2mx

, and a
model with a general configuration space whose boundary is of codimension
1.
In a related work [115], the same authors suggested IBCs, which couple
the real line R to the boundary of the upper half–plane in R2, so H �
L2pRq ` L2pR� r0,8qq. An IBC for the model in [114] on F pR3q restricted
to the p0q– and the p1q–sector were proposed and an expression for HIBC was
given in all considered models.

• Lampart, Schmidt, Teufel and Tumulka [116] considered the above–mentioned
case of M P N resting fermions and boson dispersion relation ωpkq �
|k|2 �E0. They could establish a 4–parameter family of IBCs corresponding
to this model, indexed by v, which results in a family of distinct IBC Hamil-
tonians pHIBC,vq. Further, all HIBC satisfying a certain additional condition
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are physically equivalent to a free Hamiltonian, as they can be “undressed”
by a Gross transformation

W �
vHIBC,vWv � dΓphq � cv, cv P C, (1.148)

where Wv and cv depend on the choice of the IBC parameters v.

• Schmidt and Tumulka [125] showed that the above–mentioned extensions
HIBC are time–symmetric if and only if the coupling constant is real and
that a Yukawa pair potential emerges from the ground state energy of M
resting fermions.

• Keppeler and Sieber [126] established a self–adjoint HIBC together with a
spectral resolution in terms of generalized eigenfunctions for a variety of
models in 1 space dimension:

– The first model describes one point source emitting and absorbing bo-
sons with ωpkq � |k|2 on Fock space H � F pRq.

– The second model describes two point sources with distance R, interac-
ting with the boson field, which leads to an emergent one–dimensional
Coulomb potential for small R.

– The third model then generalizes to M P N point sources interacting
with the boson field.

– And the fourth model concerns one point source inside a box, so H �
F ppx, yqq, x   y, where the boson dispersion relation is still ωpkq � |k|2.

Further, they suggested IBCs and HIBC for a “quantum graph” model, which
is obtained by “gluing together” various boxes (i.e., lines as in the fourth mo-
del) at their endpoints. This way, one obtains a graph whose edges are the
boxes, and where there is an IBC at each vertex balancing the probability
flows between the adjacent edges.

• Lienert and Nickel [127] gave an example for the employment of IBCs in
the so–called multi–time framework of QFT. This framework emerges
when considering relativistic quantum models in the Schrödinger picture, as
explained in Section 2.1. It describes quantum states of N particles by a
wave function Φpt1,x1, . . . , tN ,xNq with N time coordinates, which satisfies
a system of N Schrödinger–like PDEs (one per time derivative Btj). For an
introduction into multi–time wave functions, see Section 2.1 or [128, 129].
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Lienert and Nickel now posed an initial value problem (IVP) consisting of
a PDE system, an IBC for Φ and initial values that satisfy an initial–value
IBC. Two models with massless Dirac particles in 1 � 1 dimensions were
treated, so the dispersion relation is given by the 2� 2–matrix

θppq �
�
p 0
0 �p



. (1.149)

The first model is restricted to the one– and the two–particle sector in
Fock space, so the corresponding single–time version would be formulated
on H � L2pR,C2q ` L2pR2,C4q.
The second model restricts to particle numbers between 1 and N , so H �
L2pR,C2q ` . . .` L2pRN ,C2N q.
For both models, existence and uniqueness of the IVP including IBCs could
be established.

• Tumulka [130] considered a general configuration space Q � �
NPN0

QpNq,
where each QpNq is a manifold with codimension–1 boundary. He provided
a 3–parameter family of IBCs that preserve probability for a free Hamilto-
nian of the kind H0 � �∆ � V , where V is a multiplication operator by
V pqq, q P Q, i.e., an external potential.
The results were applied to a model with a spherical source or radius r ¡ 0,
emitting and absorbing bosons. So H � F pR3zBrp0qq and H0 � dΓpωq with

ωpkq � |k|2
2m

� E0.

• Schmidt, Teufel and Tumulka [131] provided an IBC and established self–
adjointness of the corresponding HIBC for a Dirac particle in d � 3 dimensi-
ons24 θppq � α �p�mβ, which is confined to a bounded region Ω � R3 with
codimension–1 boundary. So H � C` L2pΩ,C4q.
A generalized case similar to [130] was also considered, with configuration
space Q � �

NPN0
QpNq where BQpNq is of codimension 1, and H0 is of “Dirac

type”:

H0 �
dŅ

a�1

Aapqqp�iBqaq �Bpqq, (1.150)

24Here α � pα1, α2, α3q, where αj , β P C4�4 are Dirac matrices. Sometimes, one also writes
γ0 :� β and γj � γ0αj . There are several representations for the Dirac matrices, for instance

β �

�
1 0
0 1



and αj �

�
0 σj
σj 0



with σ1 �

�
0 1
1 0



, σ2 �

�
0 �i
i 0



, σ3 �

�
1 0
0 �1



being

the Pauli matrices, see also [132].
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with dN being the dimension ofQpNq at q � pq1, . . . , qNq P QpNq andAapqq, Bpqq
being matrices of suitable size. A family of IBCs together with the correspon-
ding HIBC was suggested for this generalized case.

• The case of an IBC which does not conserve probability was considered by
Teufel and Tumulka [133] under the name absorbing boundary condi-
tion. Absorption can be achieved by suppressing the probability flow out
of the boundary of configuration space, which allows for }Ψt} to decrease
in time. The corresponding dynamics are given by a contraction semigroup
pWtqtPr0,8q. For a region Ω � R3 with sufficiently regular boundary25 BΩ, the
existence of a contraction semigroup pWtqtPr0,8q has been established using
the Hille–Yosida theorem (which is a generalization of Stone’s theorem to
non–unitary dynamics, see [134, Sect. II.3]) in the following models:

– One particle, so H � L2pΩq, H0 � �∆ � V , where the multiplication
operator V is Kato–bounded with respect to �∆.

– N particles, so H � L2pΩNq, H � °N
j�1p�∆jq�V where the multipli-

cation operator V is Kato–bounded with respect to
°N
j�1p�∆jq.

– One Dirac particle, so H � L2pΩ,C4q, H � α � p�mβ � V , where V
is Kato–bounded with respect to the Dirac operator α � p�mβ.

The boundary BΩ is interpreted as a detector, absorbing particles with detec-
tion outcomes pt,xq P r0,8q�BΩ. A corresponding positive operator–valued
measure (POVM) has then been constructed, which maps patches B �
r0,8q�BΩ to positive operators EpBq : H Ñ H , such that xΨ0, EpBqΨ0y is
the probability for a particle detection in B, given an initial state Ψ0 at t � 0.

• A no–go result on IBCs was established by Henheik and Tumulka [135] for
¤ Nmax Dirac particles at a point source. That means, H � C ` . . . `
L2pR3,C4qbNmax and θppq � α�p�mβ. The result states that for any extension
of the Dirac operator dΓpθq from

D � t0u ` . . .` t0u ` C8
c

�
pR3zt0uqNmax ,C4Nmax

	
(1.151)

to some domain in H , the pNmaxq–sector decouples from all lower sectors.
That means, xΦ, HIBCΨy � 0 whenever Φ P F pNmaxq,Ψ K F pNmaxq. So partic-
le creation into the pNmaxq–sector via IBCs is ruled out. This is a consequence
of the well–known fact, that the Dirac operator θppq is already self–adjoint

25Here, “sufficiently regular” means locally Lipschitz and piecewise C1.
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on C8
c pR3zt0uq (which is not the case for �∆ on C8

c pR3zt0uq). So there is
“no option for probability to enter or escape through the origin”.
However, it is also well–know that after introducing a Coulomb potential,
the Hamiltonian

H � α � p� β � g

|x| (1.152)

is no longer essentially self–adjoint, if the coupling is chosen larger than the
critical value of g �

?
3

2
[79]. Heuristically speaking, a sufficiently strong

potential “opens the origin”, for “probability to escape or to enter”. This
allows for probability flows between different sectors being balanced, e.g., by
an IBC.
And indeed, for

?
3

2
  |g|   1, Henheik and Tumulka could establish a

self–adjoint HIBC describing dynamics with particle creation on H � C `
L2pR3,C4q, which extends H|D on D � t0u ` C8

c pR3zt0u,C4q.

1.4.5 Literature on Abstract Boundary Conditions

As explained in Section 1.4.3, it is also possible to directly define a renormalized
Hamiltonian HIBC by using IBC–like constraint equations that do not relate interi-
or to boundary points. These “abstract boundary conditions” have been primarily
applied to polaron–like models (compare Section 1.3.7) with fermion dispersion
relation θppq, boson dispersion relation ωpkq and form factor vpkq. We will still
use the name “IBC method” for the corresponding renormalization process and
denote resulting self–adjoint Hamiltonians by HIBC.

• Lampart and Schmidt [136] established self–adjointness of HIBC for a gene-
ral class of polaron models in 1, 2 or 3 space dimensions, with θppq � |p|2,
ωpkq ¥ p1 � |k|2qβ{2 and |vpkq|   |k|�α, where α, β ¥ 0 are scaling para-
meters. The constraints on α and β are dimension–dependent and allow for
treating (compare Section 1.3.7):

– The Fröhlich polaron (α � 1, β � 0) in d ¤ 3.

– The massive (but not the massless) Nelson model (α � 1
2
, β � 2) in

d ¤ 3.

– Moving point sources interacting by an exchange of non–relativistic
bosons (α � 0, β � 2), but only in26 d ¤ 2. This corresponds to the

26Although only the case d � 2 is explicitly discussed in the paper, the proof also applies to
d � 1.
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model established in [116], but with a nonzero dispersion relation for
the fermions.

Further, Lampart and Schmidt could prove that HIBC coincides with the Ha-
miltonian obtained by cutoff renormalization rHp1q � limΛÑ8pHΛ � EΛq for
a suitable choice of the self–energy EΛ.

• Lampart [137] extended the above proof of self–adjointness for HIBC within

the moving point source model to d � 3 (explicitly, θppq � |p|2
2m

, ωpkq �
|k|2 � 1, vpkq � p2πq�3{2).

• Schmidt [138] established self–adjointness of HIBC for a different choice of
scaling parameters α, β and γ, which also allows for pseudo–relativistic fer-
mions θppq ¥ |p|γ, ωpkq ¥ p1 � |k|2qβ{2. Further the form factor is allowed
to depend on the fermion momentum: vpp,kq ¤ |k|�α. The constraints on
α, β and γ admit the treatment of

– Eckmanns polaron model from [59] (compare Section 1.3.7).

– L. Gross’ relativistic polaron from [61], but only in d � 2 dimensions27.

Additionally, Schmidt could prove that under certain conditions, HIBC �rHp1q � limΛÑ8pHΛ � EΛq with a suitable self–energy counterterm EΛ.

• Schmidt [139] also established self–adjointness for a class of polaron models
including the d � 3 massless Nelson model with one single fermion. More pre-
cisely, θppq � |p|2, |k|β ¤ ωpkq ¤ |k|β�m and cp1�|k|αq�1 ¤ |vpkq| ¤ |k|�α
for some constant c P R and where the scaling parameters α and β are sub-
ject to certain constraints.

• Lampart [140] could establish self–adjointness of HIBC for a model with a
single fermion, closely related to the Fröhlich polaron and appearing in Bo-
goliubov theory. See also the referenecs given in [140]. The dispersion re-

lations are θppq � |p|
2m
, ωpkq � c|k|a1� p|k|ξq2{2 and the form factor is

vpkq � p2πq�2{3
�

p|k|ξq2
2�p|k|ξq2

	
. Here, the speed of sound c ¡ 0 and the he-

aling length ξ ¡ 0 are arbitrary constants. The IBC renormalization involves

27Recall from Section 1.3.7 that the renormalized Hamiltonian for Gross’ relativistic polaron
in d � 3 is constructed within a non–Fock representation. Since IBC renormalization is
constrained to the Fock representation, one may expect to obtain a formal IBC domain
outside Fock space in this case.
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a two–step transformation of H, such that formally, two self–energy terms
E
p1q
8 and E

p2q
8 are subtracted.

Lampart could also prove that HIBC � rHp1q with

rHp1q � lim
ΛÑ8

pHΛ � E
p1q
Λ � E

p2q
Λ q (1.153)

being the Hamiltonian obtained by cutoff renormalization.

• Posilicano [141] considered an abstract setting with a formal Hamiltonian
H � H0 � A: � A, where he extended H|KerpAq to a family of self–adjoint

operators HIBC,T (called pHT ), parametrized by a self–adjoint operator T defi-
ned on a subspace of F . For these HIBC,T , resolvent formulas were provided.
Further, for one of the self–adjoint extensions HIBC,0, agreement with the

cutoff–renormalized Hamiltonian rHp1q � limΛÑ8pHΛ�EΛq were established.

1.5 Perturbative QFT as a Source of Heuristics

As mentioned in the introduction, a renormalized Hamiltonian rH is often not
available for relativistic QFTs, so one commonly resorts to perturbative methods
for making physical predictions. We present some of them in this section, as they
may also provide useful heuristics for non–perturbative renormalization. As an
example, the use of distributions and the cutoff–free Epstein–Glaser method (de-
scribed below) have inspired our ESS framework presented in Section 3.2, which
is also designed to work with distributions outside L2 and without cutoffs. Fur-
ther, it would be interesting to justify successful pQFT methods starting from
non–perturbatively established models, which provides an additional motivation
for the study of non–perturbative renormalization in QFT.

In a nutshell, perturbative renormalization can be motivated as follows (see also
[142, Sect. 3.1], [6, Chap. 7], [143, Anhang]):
Suppose, we have a time–dependent family of self–adjoint Hamiltonian operators
on H :

Hptq � H0 �HIptq, HIptq �
»
HIpt,xq dx, (1.154)

where HIpt,xq dx is to be understood as a t–dependent operator–valued measure
on Rd, called Hamiltonian density. The unitary operator evolving from time t0
to t in the interaction picture would then formally be given by a Dyson series [5,
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Chap. 4], [6, Sect. 7.2]:

UIpt, t0q �
8̧

n�0

p�iqn
» t

t0

» t1

t0

. . .

» tn�1

t0

HIpt1qHIpt2q . . . HIptnq dtn . . . dt2dt1
8̧

n�0

p�iqn
n!

» t

t0

» t

t0

. . .

» t

t0

T pHIpt1qHIpt2q . . . HIptnqq dt1dt2 . . . dtn,
(1.155)

where T denotes the time ordering of operators, i.e., the operators at times tj
are sorted from earliest (right) to latest (left). In (1.155) we have replaced the
integration over the time–ordered simplex tpt1, . . . , tNq | t0 ¤ tn ¤ . . . ¤ t1 ¤ tu
by an integration over the n!–times larger cube tpt1, . . . , tNq | t0 ¤ tj ¤ tu, see
Figure 1.9. Formally, we may even write (1.155) by integrals over xj � ptj,xjq,
so the integral measure does not make reference to a particular Lorentz frame. In
particular, an integral over all xj P Rd�1 would be Poincaré–invariant:

UIpt, t0q �
8̧

n�0

p�iqn
n!

»
tjPrt0,ts

T pHIpx1qHIpx2q . . . HIpxnqq dx1 . . . dxn,

S �
8̧

n�0

p�iqn
n!

»
Rnpd�1q

T pHIpx1qHIpx2q . . . HIpxnqq dx1 . . . dxn,

(1.156)

UIpt, t0q �
8̧

n�0

UI,npt, t0q, S �
8̧

n�0

Sn. (1.157)

Here, S is the (unitary) S–matrix S : H Ñ H similar28 to the one introduced
above (1.57). The operators Sn are called (perturbative) S–matrix orders.

We are now interested in the integral kernel of the operators UIpt, t0q and
S, that is, the distribution which maps Ψf b Ψi P S b S to xΨf , UIpt, t0qΨiy
or xΨf , SΨiy. Here, the initial and final state vectors Ψi,Ψf decay into sectors

Ψ
pNiq
i P SpRNipd�1qq,ΨpNfq

f P SpRNfpd�1qq, so the required integral kernel consists of
a countable family of distributions

pUIpt, t0qpNi,NfqqNi,NfPN0 , pSpNi,NfqqNi,NfPN0 � S 1pRpNi�Nfqpd�1qq. (1.158)

Using the perturbation expansion (1.157), we can write UIpt, t0qpNi,Nfq, SpNi,Nfq as

28Above (1.57), we assumed H to be constant and defined the S–matrix, using limits of
e�itpH0�HIqeitH0 , which can be evaluated by the Baker–Campbell–Hausdorff (BCH) formula
and is generally not identical to e�itHI .
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Abbildung 1.9: Left: The time–ordered simplex (red) takes up 1{n! of the volume
of the respective cube.
Right: A diagram representing one contribution to UI,npt, t0qpNi,Nfq

in (1.161) with n � 2, Ni � 2, Nf � 2. The integral runs over all
x1, x2 with t0 ¤ t1, t2 ¤ t (shaded area). Color online.

a sum in n P N0 over distributions

UI,npt, t0qpNi,Nfq, SpNi,Nfq
n P S 1pRpNi�Nfqpd�1qq, (1.159)

which are parts of the integral kernels of UI,npt, t0q and Sn. The goal of pQFT is to
make sense of these integral kernels, even if Hptq does not exist as a self–adjoint

operator. Once UI,npt, t0qpNi,Nfq or S
pNi,Nfq
n are found, they serve for an approximate

description of the dynamics generated by HIptq. This is particularly interesting, if
no self–adjoint Hptq exists, but an approximation can nevertheless be defined. The
failure of existence of a self–adjoint HIptq commonly occurs in relativistic models,
which describe processes involving high particle energies and are often empirically
verified in high–energy scattering experiments. Therefore, many pQFT methods
focus on finding Sn, rather than UI,npt, t0q. The distribution values

SpNi,Nfq
n pqi, qfq at pqi, qfq � pxi,1, . . . ,xi,Ni

,xf,1, . . . ,xf,Nf
q, (1.160)

provided that S
pNi,Nfq
n can be written as a function at pqi, qfq, are then called S–

matrix elements.

To heuristically derive expressions for UI,npt, t0q and Sn, let us assume again,
for a moment, that HIptq was well–defined, such that (1.156) would hold. The
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operator HIptq is further assumed to be a local product of field operators29 like³
Rd : φpt,xqp : dx, p P N. Making use of the CCR/CAR and Wick’s theorem [144],

[6, Sect. 7.A.2], one arrives at a formal expression for the distribution UI,npt, t0q,
which is a sum over expressions proportional to (compare [143, p.228], [145, (1.2)]
[146, (1.1), (2.7)]):

Jnpqi, qfq �
»
q:tjPrt0,ts

Inpqi, q, qfq dq,

Inpqi, q, qfq �
L¹
`�1

∆F
` px`,a � x`,bq.

(1.161)

This expression needs some explanation: We have L P N0, and ∆F
` P S 1pR2pd�1qq

is a time–ordered propagator [145, (1.3)], [142, Sect. 2.3], also called Feynman
propagator. The fixed configurations qi, qf can be derived from qi, qf by including
time coordinates:

qi � ppt0,xi,1q, . . . , pt0,xi,Ni
qq, qf � ppt0,xf,1q, . . . , pt0,xf,Nf

qq. (1.162)

The integral runs over q � px1, . . . , xnq, and x`,a, x`,b are either of the kind xi,j �
pt0,xi,jq, xf,j � pt,xf,jq or xj P q. Expression (1.161) can be represented by a dia-
gram as in Figure 1.9, where all coordinates in qi, qf and q are represented by
vertices at xi,j, xf,j or xj, and each ` P t1, . . . Lu corresponds to a line connecting
the vertices at x`,a and x`,b. The sum for obtaining UI,npt, t0q then ranges over all
diagrams with n “movable” vertices in q.
The expression for Sn is a similar sum over integrals corresponding to diagrams,
as presented in Figure 1.10. As the integrals run over xj, while only keeping the
structure of the connections fixed, it is customary to drop the t– and the x–axis,
and to only draw a graph representing the connection structure of the vertices.
Such graphs for encoding integrals are also called Feynman diagrams.
Following some heuristic considerations [5, Sect. 4.6], only contributions correspon-
ding to a special class of diagrams (so–called “amputated diagrams”, defined above
[5, (4.103)] or in [6, Sect. 18.3.2]) are used for a calculation of Sn, and the external
lines ending at the (formal) “infinite–time coordinates” xi,j or xf,j are translated
into a distribution different from ∆F

` . The precise translation prescriptions from a
diagram to an integral are called Feynman rules and can be found for various
QFT models in the standard physics literature [6, Chap. 7], [7, Chap. 6], [5, 8].

29By this, we mean operator products as in (1.34) with
³

: φpxqp : dx �
³

: φpx1q . . . φpxpq :
δpx1 �x2q . . . δpxp�1 �xpq dx1 . . . dxp. Derivatives of xj may also be included, as they can be
evaluated locally.
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Abbildung 1.10: When computing the S–matrix orders Sn, integrals running over
all xj P Rd�1 appear. Each integral is tracked by a Feynman
diagram representing the connections of the vertices. Color online.

Now, the formal expressions for UI,npt, t0q and Sn are ill–defined, as they include

divergent expressions. To obtain finite results, called rUI,npt, t0q and rSn, one implies
several ad hoc modifications to the formal expressions. Apart from the heuristically
motivated ad hoc–restriction to amputated diagrams, these modifications include
the following:

• A formal Gell–Mann and Low formula is used, which amounts to omit-
ting all disconnected diagrams30 in the sums that represent UI,npt, t0q
and Sn. This can heuristically be seen as a kind of “dressing transformation”.

• The expressions In as in (1.161) should be distributions in S 1, but are of-
ten ill–defined, as they contain ill–defined products31 of distributions ∆F

` .
Therefore, one has to renormalize the distributions In, which is done
by a formal subtraction of infinite expressions and leads to a well–defined
expression rIn P S 1.
• Even after a successful establishment of In, it may happen that the inte-

gral over In, as in (1.161), still diverges. An example are IR–problems,
for instance appearing in QED [5, Chap. 6]. Those are removed by a re–
arrangement of sums, leading to so–called inclusive cross–sections, which

30A diagram is called “connected”, if one can reach any vertex from any other vertex by a path
of consecutive lines. It is called “disconnected” if it is not connected. See Figure 1.11.

31A simple example of products of distributions being ill–defined is the following: Consider
fpxq � gpxq � δpxq with x P Rd. Then, there is no way to define pf �gqpxq in a reasonable way,

since the expression for its Fourier transform Fpf � gqppq � pf̂ � ĝqppq �
³
f̂pp� kqgpkq dk �³

p2πq�1 dk contains a divergent integral. The divergences in pQFT are of the same spirit,
but significantly more involved.
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is formally equivalent to applying a second dressing transformation.

Depending on the QFT model, a combination of these three methods can be
used to obtain well–defined expressions for the kernels of UI,npt, t0q and Sn. Often,
the second modification (renormalization of distributions) is considered the most
important step in eliminating divergences and simply called “renormalization” in
QFT books [5, 6, 7].

Abbildung 1.11: Left: Two disconnected Feynman diagrams for computing Sn, n �
4. Expressions corresponding to such diagrams are removed when
assuming the Gell–Mann and Low formula to hold.
Right: Two connected Feynman diagrams for Sn, n � 4.

In the following, we shortly explain, how these three ad hoc modifications are
heuristically motivated and rigorously performed.
Before we do so, let us shortly mention that for the first two modification methods,
there exists a clean mathematical formulation in the framework of perturbative
algebraic quantum field theory (pAQFT). This approach encodes the above–
mentioned distributions in functionals by identifying a distribution f P S 1pRnpd�1qq
with the functional

F : SpRd�1q Ñ C, F rφs �
»
fpx1, . . . , xnqφpx1q . . . φpxnq dx1 . . . dxn. (1.163)

The description of functionals is more general than the one by distributions and al-
lows for taking functional derivatives. This way, one may also put various heuristic
calculations from physics on rigorous grounds, which are deriving pQFT results by
the so–called path integral approach, see [7, 8], [5, Chap. 9]. For an understandable
introduction into pAQFT, we refer the reader to [147, 148].
We also remark, that there exist further perturbative techniques for extracting
physical predictions, which we do not discuss here. An example are Wilson renor-
malization group (RG) techniques [6, Chap. 23], [5, Chap. 12].
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1.5 Perturbative QFT as a Source of Heuristics

Gell–Mann and Low Formula

The test functions Ψ P S for obtaining the kernels of UI,npt, t0q, Sn can formally
been written as

Ψ �
� ¸
NPN0

»
ΨpNqpx1, . . . ,xNqa:x1

. . . a:xN dx1 . . . dxN

�
Ω0, (1.164)

with Ω0 being the “non–interacting vacuum”, i.e., the ground state of H0. One
would now like to perform a dressing operation, replacing Ω0 by the “physical
vacuum” or “dressed vacuum” Ω, which is formally the ground state of Hptq. It
is known that for a given HI that is Kato–bounded against H0, a transition from
Ω0 to Ω can be achieved by evolving the system in time while slowly switching
on the interaction [149]. That means, one sets Hptq � H0 � gpεtqHI with a suffi-
ciently regular adiabatic switching function gptq : p�8, 0s Ñ r0, 1s, such that
limtÑ�8 gptq � 0, gp0q � 1. Then, one takes εÑ 0.
In pQFT, this relation is heuristically assumed to hold, although mathematically,
HI is not even defined as an operator. A formal computation leads to the Gell–
Mann and Low formula [150, (10)], [5, (4.29)], [6, (7.53)], as well as its equivalence
to omitting all disconnected diagrams from the expansion [5, (4.27)–(4.57)], see
Figure 1.11. This heuristically derived omission is rigorously realized by simply
removing those diagrams from the sum over diagrams contributing to Sn.

However, also for non–perturbative renormalization, knowledge about this per-
turbative renormalization technique might become useful. For instance, one may
imagine to use formal calculations in order to find a suitable physical vacuum state
ω : AÑ C corresponding to Ω, that serves for a GNS construction. Or one might
find an expression for Ω, that can be interpreted as an element of a Fock space
extension. This could serve for defining a dressing transformation W beyond Fock
space, mapping Ω0 ÞÑ Ω, and allowing for a renormalization as described in (1.2)
and performed later in Chapters 4 and 5.

Renormalization of Distributions

To make sense of the formal and ill–defined product of distributions In appearing
in (1.161), Schwinger, Dyson, Feynman and Salam have proposed a subtraction
mechanism [151, 152, 153, 154, 155] which consists of a systematic subtraction of
infinite expressions.

One way to make mathematical sense of this subtraction formalism has been
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established by Bogoliubov, Parasiuk, Hepp and Zimmerman [143, 145, 146] and is
correspondingly called BPHZ renormalization. It relies on the fact that the dis-
tribution product Inpqi, q, qfq is only ill–defined at configurations where x`,a � x`,b.
That means, the formal expression In provides a well–defined linear functional
Sm Ñ C, where Sm is the space of Schwartz functions, which vanish together with
all derivatives of order ¤ m at configurations where x`,a � x`,b [143, Satz 2]32.
Establishing In P S 1m can be done by a process similar to non–perturbative cu-
toff renormalization: One replaces the Feynman propagator ∆F

` by a regularized
expression ∆F

`,M,ε, such that the distribution multiplication gets well–defined at
x`,a � x`,b, resulting in a well–defined functional In,M,ε P S 1 � S 1m. The replace-
ment of ∆F

` by ∆F
`,M,ε is also called Pauli–Villars regularization [156] and the

original ∆F
` is recovered as the Limit M Ñ 8, ε Ñ 0. On test functions f P Sm,

one can then directly define

Inpfq :� lim
MÑ8
εÑ0

In,M,εpfq, (1.165)

i.e., we have a weak–� convergence [143, Satz 2].

In order to extend the distribution In to all test functions f P S, one may use
a subtraction map R. This R is defined on certain expressions corresponding to a
diagram, such as In in (1.161) (for instance, In,M,ε is such an expression), and maps
them to a distribution in S 1 by subtracting certain “perturbative counterterms”
based on a Taylor expansion in momentum space [143, §3], [145, Sect. 2], [146,
Sect. 2]. By a sophisticated choice of R, the following limit exists in the weak–�

topology [143, Satz 5], [145]:

rIn :� lim
MÑ8
εÑ0

RpIn,M,εq. (1.166)

rIn is then the renormalized distribution corresponding to a certain diagram, which
may further be used to establish renormalized kernels rUI,npt, t0q or rSn. The state-

ment of existence of rIn as in (1.166) is also called BPHZ theorem.

An alternative to BPHZ renormalization, which achieves the subtraction without
cutoffs, has been established for ∆F

` corresponding to massive particles by Epstein
and Glaser [157], and developed by Blanchard and Seneor [158] to treat also ∆F

`

corresponding to massless particles. For a pedagogical introduction to this so–

32In the original formulation, In is even defined on the space of such test functions f with
xαBβfpxq being bounded only for multi–indices |α| ¤ r, |β| ¤ q with sufficiently large r, q P N.
This test function space, called Dr,q, is larger than S, as S � �r,qPNDr,q.
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1.5 Perturbative QFT as a Source of Heuristics

called Epstein–Glaser renormalization, see [142, Chap. 3].
Here, one directly constructs the time–ordered operator–valued distributions

Tnpx1, . . . , xnq � T pHIpx1q . . . HIpxnqq, (1.167)

appearing in (1.156), by an induction over n. Just as the BPHZ renormalization,
the Epstein–Glaser construction also involves a removal of terms in a Taylor ex-
pansion in momentum space.

We remark that the renormalization of distributions is mathematically well–
investigated [148, Sect. 7]. There even exists a “main theorem of renormalization”
[147, Thm. 6], which classifies all renormalized distributions that can appear, when
requiring a reasonable set of axioms.

The subtraction mechanism is sometimes also heuristically expressed by inclu-
ding infinite counterterms in the formal Lagrangian (which corresponds to the
formal Hamiltonian H) [5, Chap. 10], [8, Chap. 9], [152, (83)–(85)]. There exist
charge, mass, and self–energy renormalization terms, as well as infinite wave
function renormalization factors. These terms are similar to the counterterms
in non–perturbative renormalization and may hence provide useful heuristics for
finding suitable non–perturbative counterterms.

IR Problem Remedy

Even when the formal In can be established as a well–defined distribution rIn,
there is no guarantee that an integral over rIn, as in (1.161), converges. Formally, a
contribution to a renormalized version of UI,npt, t0q (or Sn, if the qi, qf are neglected)
would be proportional to

rJnpqi, qfq �
»
q:tjPrt0,ts

rInpqi, q, qfq dq �
»
χtq | tjPrt0,tsurInpqi, q, qfq dq. (1.168)

The indicator function χtq | tjPrt0,tsu is not in S, but only in E � C8, so (1.168)
does not necessarily render a well–defined distribution pairing. The integral may
diverge at large |xj|, i.e., one might encounter an IR–divergence. This problem
occurs, for instance, in QED. See [159] for a thorough mathematical discussion.

A common heuristic modification made to remedy this divergence problem is
the use of inclusive cross–sections as introduced in [160], see also [5, Chap. 6].
Here, one introduces a suitable regularization indexed by µ ¡ 0 (e.g., by adding
a mass to particles as photons, that are physically expected to be massless), such
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that the integrals in rJn,µ are finite and lead to a well–defined distribution rSn,µ.

Then, a new distribution rS 1n,µpqi, qfq is defined as a linear combination of integrals

over different orders n1 ¡ n of the original distribution, rSn1,µpqi, qf ,x1, . . . ,xn1�nq.
The integral is taken in momentum space over configurations with low momenta
|p1|, . . . , |pn1�n|, which reminds strongly about a dressing transformation leading
outside Fock space [159]. This dressing transformation was introduced by Chung,
Kibble, Faddeev and Kulish and can be implemented on the ITP space. We fur-
ther discuss it in 3.1.2, as it can also become interesting for a non–perturbative
renormalization of QFT models.

In perturbative renormalization, it is known for small n, that the inclusive cross–
section method produces well–defined results for rS 1n,µ. However, as of 2021, there is
no mathematical proof that finite results can be achieved for all n P N [159, Sect. 2].
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2 Hypersurface Evolution

This chapter contains the results concerning Born’s rule on arbitrary Cauchy sur-
faces, which is obtained in an axiomatic framework called hypersurface evolution.
Recent interest in this framework emerged from a series of investigations about
multi–time wave functions (MTWFs), which describe pure quantum states within
relativistic quantum dynamics in the Schrödinger picture. We shortly outline the
concept of MTWFs in Section 2.1.
The extraction of physical predictions from a MTWF naturally leads to the fra-
mework of hypersurface evolution, presented and discussed in Section 2.2.
In the following Section 2.3, we explain why a proof of Born’s rule on Cauchy
surfaces is necessary in this setting and present our main Theorem 2.3.7, which
directly implies our main result, Corollary 2.3.8. This result roughly states that
assuming Born’s rule on all flat Cauchy surfaces E implies Born’s rule on any
curved Cauchy surface Σ.
The proof is split in two steps: In Section 2.4, we prove that the flat Born rule on
E implies the Born rule on triangular Cauchy surfaces Υ (see Definition 2.3.1).
Then we show in Section 2.5 that any Cauchy surface Σ can be approximated by
a sequence of triangular Cauchy surfaces pΥnqnPN, which allows for recovering the
Born rule on Σ from the Born rules on pΥnqnPN in Section 2.6.
It is an interesting open question, in which cases a hypersurface evolution allows
for recovering a Wightman field theory. In Section 2.7, we provide some ideas of
how this question might be answered in the future.

2.1 Multi–Time Wave Functions

Multi–time wave functions naturally arise when formulating relativistic quantum
dynamics in the Schrödinger picture. One of the first descriptions of MTWFs was
made as early as 1932 by Dirac [161], and by Dirac, Fock and Podolsky [162]. Re-
cent mathematical results about MTWFs can be found in [163, 164, 165, 166,
167, 168]. More resources and a thorough discussion of MTWFs are given in
[128, 169, 170]. For a pedagogical introduction to MTWFs, we refer the reader
to [128].
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2 Hypersurface Evolution

Consider a time–dependent family of Fock space vectors pΨtqtPR � F . Each Ψt

corresponds to an L2–equivalence class of functions1 on configurations q P Q, q �
px1, . . . ,xNq. At time t, with respect to one frame of reference, this q corresponds
to the spacetime configuration

rq � px1, . . . , xNq � pt,x1, . . . , t,xNq. (2.1)

A change of the reference frame by a Poincaré transformation g P PÒ� now relates
q̃ to the spacetime configuration

rq1 � pgx1, . . . , gxNq � pt11,x11, . . . , t1N ,x1Nq. (2.2)

If a family of wave functions pΨ1
tqtPR was given in the new coordinate frame, then

the function Ψt � Upg�1qΨ1
t would intuitively be given by evaluating Ψ1 at the

Poincaré–transformed coordinates:

Ψtpx1, . . . ,xNq � Ψ1pt11,x11, . . . , t1N ,x1Nq. (2.3)

The mathematical problems with this expression can easily be seen by the miss-
ing time index of Ψ1, replaced by several time coordinates t11, . . . , t

1
N . In order to

make sense of such formal transformation laws, it is necessary to introduce a wa-
ve function that depends on several time coordinates, i.e., a multi–time wave
function

Φpx1, . . . , xNq � Φpt1,x1, . . . , tN ,xNq � Φprqq. (2.4)

That means, Φ is a complex–valued function on configuration spacetimeQpMq �
QpR4q (compare (1.4)). Since after a Poincaré transformation (2.2), the spacetime
coordinates are still spacelike, it suffices to define Φ only on the set of spacelike
spacetime configurations (see also Figure 2.1):

S :�  rq P QpMq �� |tj � tk|   }xj � xk} @j, k P t1, . . . , Nu, N P N0

(
, (2.5)

in order to make sense of (2.3). Sometimes, in the definition (2.5), the “ ” is
replaced by a “¤”, depending on the literature resource. A given Φ : S Ñ C
allows for recovering the Fock space vector Ψt at any t P R via

Ψtpx1, . . . ,xNq � Φpt,x1, . . . , t,xNq. (2.6)

So the MTWF Φ provides a richer description of quantum dynamics than the fa-
mily pΨtqtPR. However, this richness makes Φ also more difficult to establish.

1As in Section 1.2.1, we denote both the Hilbert space vectors and the functions by Ψt. It will
become clear from the context, which of both objects is meant.
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2.2 Hypersurface Evolution

Generally, for given initial data Ψ0 P F , a MTWF is obtained as a solution
to a set of Schrödinger–type PDEs: Since there are now N time coordinates on
each pNq–sector, it is possible to take N distinct time derivatives Bt1 , . . . , BtN , each
corresponding to a distinct Schrödinger equation

iBtjΦprqq � � rHjΦ
	
prqq. (2.7)

Here, rHj is called the partial Hamiltonian belonging to particle j, and has to
be defined on a space of sufficiently regular functions Φ : S Ñ C, see for instance
[168, Sect. 2.3.2] for the definition of such a regular MTWF space. In order to
recover the single–time Schrödinger equation iBtΨt � HΨt, it is necessary that�

Ņ

j�1

rHjΦ

�
pt,x1, . . . , t,xNq � pHΨtqpx1, . . . ,xNq, (2.8)

for all Φ entailing a sufficiently regular Ψt. In general, establishing sufficient regu-
larity of Φ is a considerable challenge when defining MTWFs, but indispensable
for the recovery of Ψt, since an L2–function can only be unambiguously evaluated
at a point if sufficient regularity requirements hold. E.g., if Φ P C0.
The equations (2.7) now define a PDE system, which is posed at all rq P S . The
number N of PDEs varies with rq. Together with the initial condition

Φp0,x1, . . . , 0,xNq � Ψ0px1, . . . ,xNq, (2.9)

this PDE system forms an Initial Value Problem (IVP), whose solution Φ :
S Ñ C (if it exists) is the MTWF describing the complete dynamics of the quan-
tum system.

2.2 Hypersurface Evolution

2.2.1 From MTWFs to Hypersurface Wave Functions

For a given MTWF Φ : S Ñ C solving the above–explained IVP, the question
now arises how to extract physical predictions. Generally, Φ R L2pS q, so Φ does
not directly serve for a probability interpretation via Born’s rule. However, (2.6)
allows for recovering Ψt P F for any t P R, where |Ψtpx1, . . . ,xNq|2 can be in-
terpreted as the probability density for a detection of the system in configuration
q � px1, . . . ,xNq at time t.
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2 Hypersurface Evolution

In fact, given any Cauchy surface Σ � M � R4, and a sufficiently regular Φ, it is
possible to recover a Fock space vector [169, (8)]

ΨΣpx1, . . . , xNq � Φpx1, . . . , xNq xj P Σ. (2.10)

Here, qΣ :� px1, . . . , xNq can be considered an element of the configuration space
QpΣq and ΨΣ maps QpΣq Ñ C. Since Σ is a Cauchy surface, the points x1, . . . , xN
are pairwise spacelike, meaning that QpΣq � S . So ΦpqΣq P C is indeed well–
defined.

t

x

0

x1
x2

x3

t

x

0

Σ

Σ1

detector worldlines

Abbildung 2.1: Left: Configurations px1, . . . , xNq in a MTWF Φ must be spacelike.
Right: Position measurement along hypersurfaces. Color online.

Physically, ΨΣ is related to position measurements along the Cauchy sur-
face Σ. Such a measurement could be realized by taking a set of detectors moving
on (timelike) world lines and initiating a detection on each of it, whenever its world
line crosses Σ. This situation is depicted for a curved (Σ) and a flat (Σ1) Cauchy
surface in Figure 2.1. The requirement that Σ be a Cauchy surface makes sure
that this crossing occurs exactly once.
In order to give the ΨΣ, derived from a MTWF, a probability interpretation in the
sense of a Born rule, it is necessary to define a measure µΣ on QpΣq for each Σ,
such that

PpBq :�
»
B

|ΨΣpx1, . . . , xNq|2 dµΣ, B � QpΣq : measurable (2.11)

can be seen as the probability of finding the system in a configuration qΣ P B.
In particular,

³
Σ
|ΨΣ|2 dµΣ � 1 must hold for any Σ and any given Φ. The defi-

nition of such a µΣ is a non–trivial task. A possible definition for Dirac particles
can easily be derived from [169, (10)] or [170, (1.60)], using a probability density
ρpx1, . . . , xNq with respect to the 3–metric on Σ, obtained as a pullback of the
Minkowski metric η on M. The measure µΣ defines a scalar product on functions
ΨΣ, allowing to interpret them as vectors in a Hilbert space HΣ. So a MTWF may
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2.2 Hypersurface Evolution

allow for recovering not just a family pΨtqtPR corresponding to dynamics, but an
even larger family pΨΣq with Σ being any Cauchy surface.

The idea of expressing quantum dynamics by a hypersurface–dependent fami-
ly of vectors pΨΣq was already put forward in the 1940s by Tomonaga [171] and
Schwinger [151], both using the interaction picture. See also [172, Chap. 13]. In
contrast to the usual description of dynamics by a family pΨtqtPR in the Schrödinger
or the interaction picture, the hypersurface description by a family pΨΣq does not
depend on a fixed frame of reference. Here, the evolution between two hypersur-
faces, say from Σ to Σ1, is described by a unitary operator UΣ1

Σ via ΨΣ1 � UΣ1

Σ ΨΣ.
So the family pUΣ1

Σ q with Σ,Σ1 running through all Cauchy surfaces replaces the
family of evolution operators pUptqqtPR. It is also possible to construct the family
pUΣ1

Σ q without having a MTWF, but a given MTWF allows for a convenient recon-
struction of this family, see for instance [169, Assertion 4], [170, (1.80)], [129, (13)].

2.2.2 Axiomatic Setting

Our hypersurface evolution framework now uses a further level of abstraction,
which is the same as in [4]: HΣ is no longer required to be a Fock space, but can
be a general Hilbert space. Due to the missing Fock space structure, position mea-
surement probabilities PpBq can no longer be defined by a measure µΣ as in (2.11).
Instead, it is necessary to define a PVM PΣp�q sending each Borel–measurable set
B to the projection operator PΣpBq : HΣ Ñ HΣ. By permutation symmetry, PΣ

may also be defined on measurable subsets of the unordered configuration space
ΓpΣq � B (defined in (1.8)). Its elements will simply be denoted q � tx1, . . . , xNu
in this chapter.

In order to define the Borel σ–algebra BpXq on some set X (such as ΓpΣq), it
is necessary to have a topology on X. On Σ, such a topology is induced by the
Euclidean R4–norm on M. Restricting the projection π : R4 Ñ R3 as in (2.32) to
Σ, we obtain a homeomorphism πΣ � π|Σ : Σ Ñ R3, which can be used to identify
BpΣq with BpR3q: For R � Σ, we have that R P BpΣq ô πpRq P BpR3q.
By Rademacher’s theorem, Σ possesses a tangent plane almost everywhere [4,
Sect. 3]. If a tangent plane exists at x P Σ, the pullback of η under the embedding
Σ ãÑ M is either degenerate or a Riemann 3–metric. This metric can be used to
define a volume measure µΣ on pΣ,BpΣqq, as well as a volume measure µΓpΣq on
pΓpΣq,BpΓpΣqqq. Note that for disjoint sets AXB � H, we have

ΓpAYBq � ΓpAq � ΓpBq, (2.12)
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2 Hypersurface Evolution

with bijective identification map q ÞÑ pq X A, q X Bq. The following notation for
sets on ΓpΣq will be convenient: for any subset A � Σ, let

HpAq :� tq P ΓpΣq | q X A � Hu
DpAq :� tq P ΓpΣq | q X A � Hu
@pAq :� tq P ΓpΣq | q � Au

(2.13)

be the sets of configurations with no, at least one, or all particles in A (see Figure
2.2). Note that DpAqc � HpAq � @pAcq, where Ac means the complement of A
with respect to Σ. We also briefly write @A for @pAq, and similarly DA and HA.

x1

x2

DpAq
HpAq

A

A

@pBq

B

B

Abbildung 2.2: The setsHp�q, Dp�q and @p�q on the p2q–sector of configuration space,
visualized. Color online.

A probability for position measurements can then be extracted by the Born
rule:

PpBq � xΨΣ, PΣpBqΨΣy. (2.14)

(2.14) is called a curved Born rule, if it holds on all (possibly curved) Cauchy
surfaces Σ. So in this more abstract setting, the entire quantum dynamics are
described by the three families

• H� :� pHΣq of Hilbert spaces,

• U�
� :� pUΣ1

Σ q of evolution operators,
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2.2 Hypersurface Evolution

• P� :� pPΣq of PVMs,

with Σ,Σ1 running through all Cauchy surfaces. Following [4], we call the triple E �
pH�, U�

� , P�q a hypersurface evolution, if it satisfies a set of desirable properties.
Just as the Haag–Kastler or Wightman axioms, this “wishlist of properties” is not
considered unchangeable, but may be subject to refinements as research on the
subject progresses. Our list comprises the following properties:

(1) Absolute continuity of the PVMs: PΣpBq � 0 for all null sets2 B � ΓpΣq.
(2) Naturality: UΣ2

Σ1 UΣ1

Σ � UΣ2

Σ and UΣ
Σ � IΣ with IΣ being the identity on HΣ.

(3) Unique vacuum: RanpPΣptHuqq � spantΩΣu for some 0 � ΩΣ P HΣ.

(4) Factorization: For each measurable A � Σ, there exists a unitary isomor-
phism TΣ,A : HΣ Ñ HΣ,A bHΣ,ΣzA (“translation”), such that for any A,A1 �
Σ: measurable, we have3

PΣp@pA1qq � T�1
Σ,A

�
PΣp@pAX A1qq b PΣp@pAc X A1qq�TΣ,A. (2.15)

Here, HΣ,A :� RanPΣp@pAqq.
(5) Permutation invariance: TΣ,ΣzA � ΠTΣ,A.

Here, Π : HΣ,A b HΣ,ΣzA Ñ HΣ,ΣzA b HΣ,A with ΠpΨ1 b Ψ2q � Ψ2 b Ψ1 is the
permutation operator for two tensor factors.

In the original formulation of the hypersurface evolution setting [4], the fac-
torization property is formulated without referring to a unitary isomorphism T .
Correspondingly, the permutation invariance property does not appear. Our for-
mulation above can hence be seen as a refinement of that one in [4].
The family of factorization maps pTΣ,Aq could also be included into E , as it is a
further mathematical object necessary to define a hypersurface evolution. Howe-
ver, we rather interpret the factorization as an intrinsic property of the Hilbert
spaces HΣ and do not include it explicitly in E .

Further, we will often follow [4] and not make the isomorphism T explicit; that is,
instead of saying “the given unitary isomorphism TΣ,A maps HΣ to HΣ,AbHΣ,ΣzA,”
we simply say “HΣ � HΣ,AbHΣ,ΣzA.” Likewise, instead of (2.15), we simply write

PΣp@pBqq � PAp@pAXBqq b PAcp@pAc XBqq, (2.16)

2The term “null set” is to be understood with respect to the volume measure µΓpΣq defined
above.

3Note that PΣ, restricted to subsets of @pAq, maps HΣ,A to itself and in fact defines a PVM on
HΣ,A.
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2 Hypersurface Evolution

where PA means the restriction of PΣ to subsets of @pAq as in Footnote 3.

In order to express locality, we will add two separate properties on our wishlist,
as in [4, Sect. 1.2.2]. To do so, we need to introduce some further notation:

Definition 2.2.1. Let Σ,Σ1 be Cauchy surfaces and A � Σ. We then define the
grown set of A in Σ1 as (see Figure 2.3)

GrpA,Σ1q � rfuturepAq Y pastpAqs X Σ1. (2.17)

Similarly, we define the shrunk set of A in Σ1 as:

SrpA,Σ1q � tx1 P Σ1 | Grptx1u,Σq � Au. (2.18)

t

x

Σ
A

Σ1

GrpA,Σ1q
SrpA,Σ1q

Abbildung 2.3: Grown and shrunk sets of A � Σ. Color online.

Our first locality assumption on E is the following:

(6) Propagation locality (PL) asserts that

UΣ1

Σ PΣp@AqUΣ
Σ1 ¤ PΣ1p@GrpA,Σ1qq (2.19)

for all Cauchy surfaces Σ,Σ1 and all A � Σ.

Heuristically, the projection PΣp@Aq “does not spread faster than light”. Here,
R ¤ S means that S � R is a positive operator; if R and S are projections, then
R ¤ S is equivalent to RanR � RanS. In words, (PL) means that if ΨΣ is concen-
trated in A � Σ, i.e., ΨΣ P HΣ,A, then ΨΣ1 � UΣ1

Σ ΨΣ is concentrated in GrpA,Σ1q.
This definition is equivalent to the “finite propagation speed” (FS) assumption
given in [4].

Also, the definition of our second assumption, called “interaction locality”, was
already given in [4], but will be formulated here in a more detailed way. We begin
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2.2 Hypersurface Evolution

with a summary of the condition: First, in a region A where Σ and Σ1 overlap (see
Figure 2.4), HΣ,A and HΣ1,A can be identified with each other. The identification
fits together with P and T . Second, the time evolution from ΣzA to Σ1zA (see

Figure 2.4) is given by a unitary isomorphism V
Σ1zA

ΣzA : HΣzA Ñ HΣ1zA, the “local

evolution” replacing UΣ1

Σ . The fact that one can evolve from ΣzA to Σ1zA means
in particular that this evolution does not depend on the state in A, that is, there
is no interaction term in the evolution that would couple ΣzA to A. Finally, we

require that V
Σ1zA

ΣzA does not change when we deform A while keeping it spacelike

from ΣzA.

(7) Interaction locality (IL) asserts that E is equipped in addition with, for all
Cauchy surfaces Σ,Σ1 and A � ΣX Σ1, a unitary isomorphism JΣ1

A,Σ : HΣ,A Ñ
HΣ1,A (“identification”) such that

JΣ2

A,Σ1 JΣ1

A,Σ � JΣ2

A,Σ whenever A � ΣX Σ1 X Σ2 ,

JΣ1

A1,Σ � JΣ1

A,Σ

���
HΣ,A1

for A1 � A � ΣX Σ1 ,

pJΣ1

A,Σq�1 PΣ1p@pA1qq JΣ1

A,Σ � PΣp@pA1qq for A1 � A ,

TΣ1,A U
Σ1

Σ T�1
Σ,A � JΣ1

A,Σ b V Σ1

ΣzA,Σ,

(2.20)

with some unitary isomorphism V Σ1

ΣzA,Σ : HΣ,ΣzA Ñ HΣ1,Σ1zA such that for all

Σ̃ � pΣzAq, setting Ã :� Σ̃zpΣzAq and Σ̃1 :� ÃY pΣ1zAq,

V Σ̃1

ΣzA,Σ̃ � J Σ̃1

Σ1zA,Σ1 V Σ1

ΣzA,Σ J
Σ
ΣzA,Σ̃. (2.21)

Henceforth, we will not mention the J–operators explicitly anymore and follo-
wing [4], we simply write

HΣ,A � HΣ1,A �: HA. (2.22)

Further, we write V
Σ1zA

ΣzA in place of V Σ1

ΣzA,Σ, which is compatible with the Hilbert
space identification.

Properties (1)–(7) set up the axiomatic framework for a relativistic description
of quantum dynamics using a hypersurface evolution E . For physical reasons, it
is desirable to require a further Property (8) of Poincaré covariance described in
Section 2.7.1. However, Poincaré covariance is not necessary for proving the results
in this chapter (or those in [4]).

Remarks.
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ΣzA

Σ1zA

A

Ψ remains invariant

Abbildung 2.4: Depiction of interaction locality (IL). Color online.

1. Uniqueness of the vacuum state. Actually, the propositions and the theorem
presented in this chapter do not make use of Property (3), the uniqueness of
the vacuum state. The reason why we include this property into our wishlist
is that it is part of the concept of a hypersurface evolution, as introduced
in [4]. Further, this property may turn out useful in a future recovery of the
Wightman axioms, as discussed in Section 2.7.

2. PΣ factorizes. From (2.15) or (2.16) it follows that PΣ factorizes not just for
all–sets (i.e., sets of the form @pBq) but for all product sets in configuration
space: for all A � Σ, BA � @A, and BAc � @pΣzAq, we have

PΣpBA �BAcq � PApBAq b PAcpBAcq, (2.23)

with BA�BAc understood as a subset of ΓpΣq. That is because, first, @pA1q �
@pA X A1q � @pAc X A1q, second, the all–sets @C form a X–stable generator
of BpΓpΣqq, and third, it is a standard theorem in probability theory that
measures (and hence also PVMs) agreeing on a X–stable generator of a σ–
algebra agree on the whole σ–algebra; so, roughly speaking, relations true
for all all–sets are true for all sets. Relation (2.23) is exactly the definition
of the tensor product of two POVMs, so it can equivalently be expressed as

PΣ � PA b PAc . (2.24)

3. Splitting into more than two regions. The restriction TΣ,A1,A of TΣ,A to HΣ,A1

maps HΣ,A1 unitarily to HΣ,AXA1 b HΣ,AcXA1 . Moreover, (2.15) for A � A1

yields that P factorizes also in A1, i.e., for every A � A1 � Σ, BA � @A, and
BA1zA � @pA1zAq,

PΣpBA �BA1zAq � T�1
Σ,A1,A

�
PΣpBAq b PΣpBA1zAq

�
TΣ,A1,A, (2.25)
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2.2 Hypersurface Evolution

with BA � BA1zA understood as a subset of @pA1q. Furthermore, it follows
that TΣ,A1,A1zA � ΠTΣ,A1,A, and that an associative law holds for the TΣ,A1,A:
For any partition A1, A2, A3 of A1 � Σ,�

IΣ,A1 b TΣ,A2YA3,A2

�
TΣ,A1,A1 �

�
TΣ,A1YA2,A1 b IΣ,A3

�
TΣ,A1,A1YA2 . (2.26)

Hence, the Hilbert spaces and PVMs factorize also for finite partitions. The
upshot is that it is OK to identify

HΣ �
â
i

HΣ,Ai and

PΣ �
â
i

PAi ,
(2.27)

for any finite partition Σ � �
iAi.

4. Examples for hypersurface evolutions E . Some examples for hypersurface
evolutions can be found in [4]. As described there in Remark 15 and Secti-
on 4.1, the simplest example is provided by the non–interacting Dirac field
without a Dirac sea, which also satisfies (IL) and (PL) as defined below.
Further examples are provided by Tomonaga–Schwinger equations and MT-
WFs, where a recovery procedure as in Section 2.2.1 is used. Explicit models
include the emission–absorption model of [169] and the rigorous model with
contact interaction in [165, 166].

5. Other notions of locality. There are several inequivalent (though not unre-
lated) concepts of locality; they often play important roles in selecting time
evolution laws (e.g., [10, 142]).

In the Haag–Kastler and Wightman axioms (see Section 1.2.3), a locality
condition appears that is different from both (IL) and (PL), viz., (anti–)
commutation of field operators at spacelike separation. It seems clear that
Wightman’s locality is closely related to (IL) and (PL). We discuss this
relationship further in Section 2.7.3.

Another different locality condition is typically called Einstein locality or
Bell locality or just locality. It implies (IL) and (PL) but is not implied by
(IL) and (PL) together; it asserts that there are no influences between events
in spacelike separated regions; that may sound similar to (IL), but it is not.
In fact, Bell’s theorem [173, 174] shows that Bell locality is violated, whereas
(IL) seems to be valid in our universe.

6. Consistency condition. It is known that multi–time equations require a con-
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2 Hypersurface Evolution

sistency condition (e.g., [128, Chap. 2]). We note here that neither (IL) nor
(PL) follow from the consistency condition alone. Indeed, examples of (ar-
tificial) multi–time equations with an instantaneous interaction (violating
(IL)) that leaves the multi–time equations consistent were given in Lemma
2.5 of [164], while the non–interacting multi–time equations with Schrödin-
ger Hamiltonians �∆j for each particle j provide an example of consistent
multi–time equations violating (PL).

2.3 Deriving a Curved Born Rule

Note that none of the Properties (1)–(8) comprises a Born rule (2.14). In order to
make physical predictions from E by a probability interpretation, we may indeed
postulate (2.14) on all Cauchy surfaces Σ, i.e., a curved Born rule. However, it is
also possible to postulate (2.14) only on all flat Cauchy surfaces (also called Cauchy
hyperplanes), i.e., a flat Born rule. In the rest of this chapter, we will reserve the
letter E for Cauchy hyperplanes, with the special case of Et � tx P M | x0 � tu
being a horizontal Cauchy surface. So the Born rule is assumed on all Poincaré
transformed versions E of the time–zero surface E0.
Our first objective is now to derive an expression for PpBq on any Cauchy sur-
face Σ from the flat Born rule. In that case, the flat Born rule together with the
instruction how to derive PpBq can be postulated as an alternative to the curved
Born rule.
Our second objective is to prove that the “alternatively obtained” probabilities
coincide with those predicted by the curved Born rule. We indeed establish a re-
sult of this kind in Corollary 2.3.8 as a direct consequence of Theorem 2.3.7.

2.3.1 Previous Result

A theorem similar to ours has been proved by Lienert and Tumulka [4]; our result
differs in what exactly is assumed, and how the detection process is modeled.
The fact that the curved Born rule can be obtained through different models of
the detection process and from different sets of assumptions suggests that it is a
robust consequence of the flat Born rule.

In fact, our result was already conjectured by Lienert and Tumulka, who also
suggested the essentials of the model of the detection process we use here, although
their theorem concerned a different model. The biggest difference between their
theorem and ours is that we assume the Born rule and collapse rule to hold on
tilted hyperplanes, whereas Lienert and Tumulka assumed them only on horizontal
hyperplanes in a fixed Lorentz frame.
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x
t

paq Σ  ε

  ε

pbq
Σ

ε

Abbildung 2.5: (a) Our detection process is based on approximating a curved sur-
face Σ by a piecewise flat surface. (b) The detection process used
by Lienert and Tumulka is based on approximating a curved sur-
face Σ by disconnected pieces of horizontal surfaces. We have set
the speed of light to c � 1. Color online.

Our model of the detection process is perhaps more natural than the one at
the basis of Lienert and Tumulka’s theorem, as it approximates detectors on tilted
surfaces through detectors on tilted hyperplanes, rather than on numerous small
pieces of horizontal hyperplanes. On the other hand, the result of Lienert and
Tumulka is stronger than ours in that it assumes the Born rule only on horizontal
hyperplanes (“horizontal Born rule”) and not on all tilted spacelike hyperplanes
(“flat Born rule”). Then again, our model allows for a somewhat simpler proof
compared to that of Lienert and Tumulka, and the assumption of the Born and
collapse rules on tilted hyperplanes seems natural if the workings of detectors are
Lorentz invariant. Yet, our proof does not require the Lorentz invariance of the
hypersurface evolution of the observed system (which follows from Property (8) in
Section 2.7.1); in particular, the hypersurface evolution may involve external fields
that break the Lorentz symmetry.

Other works in recent years dealing with a physical analysis of the quantum
measurement process include [175, 176, 177, 178].

2.3.2 Detection Process

Our definition of the detection process is based on approximating any given Cauchy
surface Σ by spacelike surfaces Υ that are piecewise flat, and whose (countably
many) flat pieces are 3d (non–regular) tetrahedra. See also Figure 2.6 for an illus-
tration. This type of surface is defined as follows:

Definition 2.3.1. A triangular surface is a Cauchy surface Υ �M such that

Υ �
¤
kPK

∆k, (2.28)

where K is a countably infinite index set, each ∆k is a 3–open, non–degenerate,
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x2

∆k

Υ
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Σ

Υ3

Υ2

Υ1

Abbildung 2.6: Left: Part of a triangular surface Υ in 1� 2 dim.
Right: A sequence of triangular surfaces Υn coverging increasingly
and uniformly to Σ in 1� 1 dim. Color online.

spacelike tetrahedron (i.e., the non–empty 3–interior of the convex hull of 3 � 1
points that are mutually spacelike), the ∆k are mutually disjoint (∆k1 X∆k2 � H
for k1 � k2), and every bounded region B � Υ intersects only finitely many ∆k.

In Section 2.5, we will prove the following basic fact about triangular surfaces:

Proposition 2.3.2. For every Cauchy surface Σ in Minkowski spacetime, there is
a sequence pΥnqnPN of triangular Cauchy surfaces that converges increasingly and
uniformly to Σ.

Here, “increasingly” means that Υn�1 � futurepΥnq for all n; see Figure 2.6.
Uniform convergence in a given Lorentz frame means that for every ε ¡ 0, all but
finitely many Υn lie in tx � ps, 0, 0, 0q | x P Σ, |s|   εu; equivalently, since Σ is
the graph of a function f : R3 Ñ R and Υn the graph of a function fn : R3 Ñ R,
uniform convergence Υn Ñ Σ means that fn converges uniformly to f . It turns
out that this notion is Lorentz invariant:

Proposition 2.3.3. If a sequence pΣnqnPN of Cauchy surfaces converges uniformly
to a Cauchy surface Σ in one Lorentz frame, then also in every other.

Again, the proof is given in Section 2.5.

We define the detection distribution on Σ as the limit of the detection distribu-
tions on the Υn, and we show in Theorem 2.3.7 that this limit exists and agrees
with |ΨΣ|2. But to this end, we first need to talk about detection probabilities on
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triangular surfaces Υ.

So let ∆k be the open and disjoint tetrahedra such that

Υ �
¤
kPK

∆k. (2.29)

We want to consider a detector in a bounded region B � Υ that yields outcome 1
if there is at least one particle in B and outcome 0 if there is no particle in B. To
this end, we imagine several smaller detectors, one in each region Bk :� B X ∆k,
and set the B–outcome equal to 1 whenever any of the small detectors clicked.
Now each region Bk, being a subset of ∆k, lies in some hyperplane Ek, and on
hyperplanes we assume the Born rule and collapse rule:

Flat Born rule. If on the hyperplane E the state vector is ΨE P HE with }ΨE} �
1, and a detection is attempted in the region B � E, then the probability of outcome
1 is }PEpDpBqqΨE}2 and that of outcome 0 is }PEpDpBqcqΨE}2.

Flat collapse rule. If the outcome is 1, then the collapsed wave function is

Ψ1
E �

PEpDpBqqΨE

}PEpDpBqqΨE} , (2.30)

otherwise

Ψ1
E �

PEpDpBqcqΨE

}PEpDpBqcqΨE} . (2.31)

There are two natural possibilities for defining the detection probabilities on Υ
in terms of those on Ek: the sequential detection process and the parallel detection
process. According to the sequential detection process, we choose an arbitrary
ordering of the set K indexing the tetrahedra or hyperplanes and carry out, in this
order, a quantum measurement in each Ek representing the detection attempt in Bk

including appropriate collapse and then use the unitary evolution U
Ek�1

Ek
to evolve

to the next hyperplane in the chosen order, here written as Ek�1. For the parallel
detection process, consider the projection operators PEkpDpBkqq associated with
attempted detection in Bk; we show that they, after being transferred to HΥ by
means of UΥ

Ek
, commute with each other if interaction locality holds, so they can

be “measured simultaneously.” The simultaneous quantum measurement of these
projections in HΥ provides the parallel detection process for B � Υ with outcome
1 whenever any of the quantum measurements yielded 1. It turns out that the
sequential and the parallel process agree with each other and with the Born rule
on Υ:
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Proposition 2.3.4. Fix a hypersurface evolution satisfying interaction locality
(IL) (Property (7) in Section 2.2.2), a triangular Cauchy surface Υ, a bounded
subset B � Υ, and a normalized quantum state Ψ, and assume the flat Born
rule and the flat collapse rule. The sequential detection process in any order of
the tetrahedra of Υ yields the same detection probability, called PΨ

B; it agrees with
the one given by the curved Born distribution on Υ, which is }PΥpDpBqqΨΥ}2.
Moreover, the parallel detection process also yields the same detection probability.

Proposition 2.3.4 will follow as a direct consequence of Proposition 2.4.3 in Sec-
tion 2.4.

Actually, for either a triangular surface Υ or a general Cauchy surface Σ, we
want more than just to detect for a subset B whether there is a particle in B. We
want to allow the use of several detectors, each covering a region P1, . . . , Pr � Σ;
the outcome of the experiment is L � pL1, . . . , Lrq with L` � 1 if a particle gets
detected in P` and L` � 0 otherwise. It seems physically reasonable that the region
covered by a detector is bounded and has boundary of measure zero.

Definition 2.3.5. An admissible partition P � pP1, . . . , Prq of Σ is defined by
choosing finitely many subsets P` of Σ that are mutually disjoint, P` X Pm � H
for ` � m, and such that each P` is bounded and has boundary in Σ of (invariant)
3–volume 0. Here, the term bounded refers to the Euclidean norm on R4. We set
Pr�1 � ΣzpP1 Y . . .Y Prq to make pP1, . . . , Pr�1q a partition of Σ.

The idea is that there is no detector in Pr�1. Let MPpLq denote the set of
configurations in ΓpΣq such that, for each ` � 1, . . . , r, there is no point in P`
if L` � 0 and at least one point in P` if L` � 1; that is, MPpLq is the set of
configurations compatible with outcome L.

Now the definition of detection probabilities on a triangular surface Υ can
straightforwardly be generalized from a bounded set B � Υ to an admissible
partition P � pP1, . . . , Prq of Υ in both the sequential and the parallel sense, and
we find:

Proposition 2.3.6. Fix a hypersurface evolution satisfying interaction locality, a
triangular Cauchy surface Υ, an admissible partition P � pP1, . . . , Prq of Υ, and
a normalized quantum state Ψ, and assume the flat Born rule and the flat collapse
rule. The joint distribution PΨ

PpLq of L � pL1, . . . , Lrq according to the sequential
detection process in any order of the tetrahedra of Υ and according to the parallel
detection process agree with each other and with the one given by the curved Born
distribution on Υ, which is }PΥpMPpLqqΨΥ}2.

Proposition 2.3.6 can be regarded as a statement of the Born rule on triangular
surfaces. It follows from Proposition 2.4.3, which is proven in Section 2.4.
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2.3.3 Main Result

The following aspect of our result requires some explanation: Once we have a
triangular surface Υ approximating a given Cauchy surface Σ, and once we are
given an admissible partition P � pP1, . . . , Prq on Σ, we want to approximate
the sets P` � Σ by sets B` in Υ. One may think of two natural possibilities of
defining B`: (i) project P` downwards along the direction of the x0 axis of a chosen
Lorentz frame; or (ii) take B` � SrpP`,Υq, the smallest set on Υ that in some sense
corresponds to P`. Our result holds in both variants; we formulate it in variant (i)
(see Remark 14 in Section 2.6 about (ii)). That is, choose a Lorentz frame and let

π : R4 Ñ R3, πpx0, x1, x2, x3q :� px1, x2, x3q, (2.32)

be the projection to the space coordinates. It is known [179, p. 417] that the
restriction πΣ of the projection π to Σ is a homeomorphism Σ Ñ R3; thus, πΥ

Σ :�
π�1

Υ � πΣ is a homeomorphism Σ Ñ Υ. We set

B` :� πΥ
Σ pP`q. (2.33)

Of course, since we prove that the limiting probability distribution on ΓpΣq is given
by the curved Born distribution, the limiting probability distribution is indepen-
dent of the choice of Lorentz frame used for defining πΥ

Σ .

We can now state our main result.

Theorem 2.3.7. Let Σ be a Cauchy surface in Minkowski spacetime M and
pΥnqnPN a sequence of triangular Cauchy surfaces that converges increasingly and
uniformly to Σ. Let E � pH�, P�, U�

� q be a hypersurface evolution satisfying propa-
gation locality and Ψ0 P HΣ0 with }Ψ0} � 1 for some Σ0 in the past of Σ. Then for
any admissible partition P of Σ, Bn :� �

πΥn
Σ pP1q, . . . , πΥn

Σ pPrq
�

is an admissible
partition of Υn, and

lim
nÑ8

���PΥnpMBnpLqqUΥn
Σ0

Ψ0

���2

�
���PΣpMPpLqqUΣ

Σ0
Ψ0

���2

, (2.34)

for all L P t0, 1ur.

Together with Proposition 2.3.6, we obtain:

Corollary 2.3.8. Assume the hypotheses of Theorem 2.3.7 together with the flat
Born rule, the flat collapse rule, and interaction locality. Define the detection pro-
babilities for P on Σ as the limit of the detection probabilities for Bn on Υn and the
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2 Hypersurface Evolution

latter through either the sequential or the parallel detection process. Then the detec-

tion probabilities for P on Σ are given by the curved Born rule,
��PΣpMPpLqqΨΣ

��2

for all L P t0, 1ur.

The proof of Theorem 2.3.7 (see Section 2.6) makes no special use of dimension
3 � 1 and applies equally in dimension d � 1 for any d P N; tetrahedra then need
to be replaced by d–dimensional simplices.

Remarks.

7. Grown set GrpA,Σ1q and shrunk set SrpA,Σ1q. Definition (2.17) is equivalent
to saying that the grown set is the intersection GrpA,Σ1q � Σ1 X JpAq with
the domain of dependence JpAq defined in (1.55). Conversely, the shrunk set
is defined such that A � ΣX JpSrpA,Σ1qq.

8. Uniqueness of the measure on ΓpΣq. It was shown in [4, Sect. 6 Prop. 3] that
if two probability measures µ, µ1 on ΓpΣq agree on all detection outcomes,
µpMPpLqq � µ1pMPpLqq for every L P t0, 1ur and every admissible partition
P of Σ, then µ � µ1. Thus, the whole |ΨΣ|2–distribution is uniquely deter-
mined by the detection probabilities.

In fact, a probability measure µ on ΓpΣq is already uniquely determined by
the values µpHpAqq, where A runs through those subsets of Σ whose projec-
tion πpAq to R3 is a union of finitely many open balls (see the proof of [4,
Prop. 3]). This fact might suggest that, in order to prove the curved Born
rule, it would have been sufficient to prove the statement of Theorem 2.3.7
only for a single detector (i.e., for partitions with r � 1 consisting of P1 � A
and P2 � ΣzA) in a region A of the type described. However, we prove the
stronger statement for arbitrary r because it is not obvious that the detec-
tion probabilities for arbitrary r fit together to form a measure on ΓpΣq (in
other words, that detection probabilities for r ¡ 1 will agree with the Born
distribution, given that detection probabilities for r � 1 do).

9. Curved collapse rule. One can also consider a curved collapse rule: Suppose
that r detectors are placed along Σ, that each detector (say the `–th) only
measures whether there is a particle in the region P`, where P � pP1, . . . , Prq
is an admissible partition, and that each detector acts immediately (i.e., is
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2.3 Deriving a Curved Born Rule

infinitely fast). If the outcome was L � pL1, . . . , Lrq P t0, 1ur, then the wave
function immediately after detection is the collapsed wave function

Ψ1
Σ �

PΣpMPpLqqΨΣ

}PΣpMPpLqqΨΣ} . (2.35)

There is a sense in which the curved collapse rule also follows from our result
and a sense in which it does not. To begin with the latter, our justification
of the Born rule on triangular surfaces was based on the idea that on each
tetrahedron ∆k, we apply a detector to Bk` � ∆k XB` and deduce from the
outcomes whether a particle has been detected anywhere in B`. This detec-
tion process measures more than whether there is a particle in B`, as it also
measures which of the Bk` contain particles; as a consequence, this detection
process would collapse Ψ more narrowly than (2.35).

However, if we assume that on triangular surfaces Υ we can have detectors
that only measure whether there is a particle in B` for an admissible partition
B � pB1, . . . , Brq, so that the collapse rule (2.35) holds upon replacing
Σ Ñ Υ and P Ñ B, then sufficient approximation of an arbitrary Cauchy
surface Σ by triangular surfaces leads to a collapsed wave function arbitrarily
close to (2.35). Indeed, we have that (see Section 2.6 for the proof)

Corollary 2.3.9. Under the hypotheses of Theorem 2.3.7,

UΣ
Υn PΥnpMBnpLqqUΥn

Σ
nÑ8ÝÝÝÑ PΣpMPpLqq strongly. (2.36)

10. Other observables. As the curved Born rule shows, the PVM PΣ can be
regarded as the totality of position observables on Σ. What about other
observables? In a sense, all other observables are indirectly determined by
the position observable. As Bell [180, p. 166] wrote:

[I]n physics, the only observations we must consider are position
observation, if only the positions of instrument pointers. [. . . ] If
you make axioms, rather than definitions and theorems, about the
‘measurements’ of anything else, then you commit redundancy and
risk inconsistency.

A detailed description of how self–adjoint obervables arise from the Hamil-
tonian of an experiment, the quantum state of the measuring apparatus, and
the position observable (of its pointer), can be found in [175, Sect. 2.7]. A
conclusion we draw is that specifying a quantum theory’s hypersurface evo-
lution is an informationally complete description.
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2 Hypersurface Evolution

As another conclusion, the PVM PΣ serves not only for representing detec-
tors. When we want to argue that certain experiments are quantum mea-
surements of certain observables, we may use it to link the quantum state
with macro–configurations (say, of pointer positions), and in fact to obtain
probabilities for pointer positions.

Coming back to the Bell quote, one may also note that for the same rea-
son, making the curved Born rule an axiom in addition to the flat Born rule
means to commit redundancy and to risk inconsistency. That is why we have
made the curved Born rule a theorem.

Of course, we have still committed a little bit of the redundancy that Bell
talked about by assuming the Born and collapse rules on all spacelike hyper-
surfaces while it suffices to assume them on horizontal hypersurfaces [4].

11. Objections. Some authors [181] have criticized the very idea of evolving states
from one Cauchy surface to another on the grounds that such an evolution
cannot be unitarily implemented for the free second–quantized scalar Klein–
Gordon field. It seems to us that these difficulties do not invalidate the
approach but stem from analogous difficulties with 1–particle Klein–Gordon
wave functions, which are known to lack a covariantly–defined timelike pro-
bability current 4–vector field that could be used for defining a Lorentz–
invariant inner product that makes the time evolution unitary (e.g., [172]).
In contrast, a hypersurface evolution according to our definition can indeed
be defined for the free second–quantized Dirac equation allowing negative
energies [182, 183, 184, 4]. Other results ([132, Sect. 1.8], [185, 186]) may
raise doubts about propagation locality; on the other hand, these results
presuppose positive energy, which we do not require here; moreover, violati-
ons of propagation locality would seem to allow for superluminal signaling.
Be that as it may, we simply assume here a propagation–local hypersurface
evolution as given; further developments of this notion can be of interest for
future works. See also Section 2.7.3 for a further discussion.

12. Evolution Between Hyperplanes. Following [4, Sect. 8], we conjecture that
a hypersurface evolution E satisfying interaction locality and propagation
locality is uniquely determined up to unitary equivalence, see Remark 14 in
[4, Sect. 3.2], by its restriction to hyperplanes. We conjecture further that a
hypersurface evolution that is in addition Poincaré covariant (see Property
(8) in Section 2.7.1) is uniquely determined by its restriction to horizontal
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2.4 Detection Process on Triangular Surfaces

hyperplanes Et. While we do not have a proof of these statements, a related
statement follows from our results:

Suppose two hypersurface evolutions E � pH�, P�, U�
� q and Ẽ � pH�, P�, Ũ�

� q
use the same Hilbert spaces and PVMs but potentially different evolution
operators; suppose further that the evolution operators agree on hyperplanes,
UE1

E � ŨE1

E for all spacelike hyperplanes E,E 1; finally, suppose that both E
and Ẽ satisfy interaction locality and propagation locality. Then they yield the
same Born distribution on every Cauchy surface Σ, i.e., for every Ψ0 P HE0

and every B � ΓpΣq,

}PΣpBqUΣ
E0

Ψ0}2 � }PΣpBq ŨΣ
E0

Ψ0}2. (2.37)

Indeed, by Remark 8, (2.37) holds for all B � Σ if it holds for all MPpLq
for all admissible partitions P of Σ. By Theorem 2.3.7, both sides can be
expressed as the limits of detection probabilities on triangular surfaces. Those
in turn can be expressed, using the sequential detection process, in terms of
UE1

E respectively ŨE1

E only for hyperplanes E,E 1, so they are equal.

2.4 Detection Process on Triangular Surfaces

We now give the detailed definitions of the sequential and parallel detection pro-
cesses and prove Propositions 2.3.4 and 2.3.6.

To begin with, consider an admissible partition P � pP1, . . . , Prq of a Cauchy
surface Σ and a vector L � pL1, . . . , Lrq P t0, 1ur. Actually, in this section we will
not make use of the assumption in Definition 2.3.5 that the boundaries BP` are
null sets, an assumption we need for Theorem 2.3.7.

The set of configurations in ΓpΣq compatible with the single outcome L` at an
attempted detection in P` is

M`ΣpL`q :�
#
DpP`q if L` � 1

HpP`q if L` � 0
. (2.38)

The set of configurations compatible with the measurement outcome vector L when
detection is attempted in P1, . . . , Pr is

MPpLq :�
r£
`�1

M`ΣpL`q. (2.39)

Now consider a triangular surface Υ � �
kPK ∆k and an admissible partition

B � pB1, . . . , Brq of Υ. For either the sequential or the parallel detection process
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2 Hypersurface Evolution

on Υ, we imagine a small detector checking for particles in each

Bk` :� ∆k XB`, (2.40)

with outcome sk` � 1 if a particle was found and sk` � 0 otherwise.4

We say that the outcome matrix s is compatible with L (denoted s : L) whenever

@` P t1, . . . , ru :

#
Dk P K : sk` � 1 if L` � 1

@k P K : sk` � 0 if L` � 0
. (2.41)

Let Ek be the hyperplane containing ∆k. The configurations in Ek compatible with
outcomes sk` or sk :� psk1, . . . , skrq are then given by

Mk`Ekpsk`q :�
#
DpBk`q � ΓpEkq if sk` � 1

HpBk`q � ΓpEkq if sk` � 0
, MkEkpskq :�

r£
`�1

Mk`Ekpsk`q.
(2.42)

Likewise,

Mk`Υpsk`q :�
#
DpBk`q � ΓpΥq if sk` � 1

HpBk`q � ΓpΥq if sk` � 0
, MkΥpskq :�

r£
`�1

Mk`Υpsk`q. (2.43)

It follows that, based on the definition (2.39),

MBpLq �
¤
s:L

£
kPK

MkΥpskq up to a set of measure 0, (2.44)

meaning that the symmetric difference between the two sets is a set of measure 0
in ΓpΥq. This is the case because, as described in Footnote 4, the configurations
in the symmetric difference have at least one particle in the 2d set B∆k for some
k.

2.4.1 Sequential Detection Process

We now formulate the definition of the sequential detection process and prove
agreement with the Born rule. Fix an ordering of K , i.e., a bijection K Ñ N. For

4We could also have defined Bk` by ∆k X B` instead of (2.40), but that would have caused
a bit of trouble because these sets would not have been disjoint. Our choice (2.40), on the
other hand, has the consequence, which may at first seem like a drawback, that YkBk` � B`
because we have removed the points on the 2d triangles where two tetrahedra meet. However,
the set removed, being a subset of a countable union of 2d triangles, has measure 0 on Υ, and
for any set A � Σ of measure 0, DpAq has measure 0 in ΓpΣq and, by the absolute continuity
property (1), also PΣpDpAqq � 0.
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2.4 Detection Process on Triangular Surfaces

ease of notation, we will simply replace K by N using this particular ordering.
The detection process is:

• Set E0 � tx0 � 0u and Ψ0 � ΨE0 .

• For each k in the specified order, do:

– Evolve Ψk�1 to Ek.

– Carry out detections of Bk` for all ` � 1, . . . , r, i.e., quantum measu-
rements of PEkpDpBk`qq, and collapse accordingly, resulting in the (nor-
malized) state vector Ψk P HEk .

– Repeat.

Note that by Definition 2.3.1, each B` intersects only finitely many ∆k. Thus,
from some K�1 onwards, all Bk` are empty, sk` � 0, and no quantum measurement
needs to be carried out in ∆k. Hence, it suffices to consider finitely many repetitions
in the above loop, namely those for k up to K.

From the flat Born rule and the flat collapse rule, we can now express the
detection probabilities and the collapsed state vectors. Fix some k and `; suppose
that in the previous tetrahedra k1   k (i.e., none if k � 1), the measurements have
already been carried out with outcomes sk1`1 ; suppose further that in the previous
detector regions Bk`1 with `1   ` (i.e., none if ` � 1) in the same tetrahedron
∆k, the measurements have already been carried out with outcomes sk`1 ; suppose
further that Ψk,`�1 is the collapsed wave function after the previous measurements,
which for ` ¡ 1 is given by the previous step, for ` � 1 and k ¡ 1 is given by

Ψk,0 � UEk
Ek�1

Ψk�1,r, (2.45)

(with Ψk�1,r � Ψk�1 in the notation of the process description above), and for
` � 1, k � 1 is given by

Ψ1,0 � UE1
E0

Ψ0. (2.46)

Conditional on the previous detection outcomes, the probability distribution of
the next detection outcome sk` is, by the flat Born rule,

Ppsk` � 1q � ��PEkpDpBk`qqΨk,`�1

��2
, (2.47)

and the state vector collapses, by the flat collapse rule, to

Ψk` � PEkpMk`EkpsklqqΨk,`�1

}PEkpMk`EkpsklqqΨk,`�1} . (2.48)

This completes the definition of the sequential detection process.
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2 Hypersurface Evolution

Lemma 2.4.1. Assume the flat Born rule and the flat collapse rule. Conditional
on the measurements in the tetrahedra k1   k, the joint distribution of all outcomes
psk`q`�1..r � sk in ∆k is

Ppsk1, . . . , skrq �
��PEkpMkEkpskqqΨk0

��2
, (2.49)

and the collapsed wave function after the kr–measurement, given sk with nonzero
probability, is

Ψkr � PEkpMkEkpskqqΨk0

}PEkpMkEkpskqqΨk0} . (2.50)

Proof. It is well known general facts about PVMs P that

P pS1qP pS2q � P pS2qP pS1q � P pS1 X S2q, (2.51)

and that a quantum measurement of P pS1q with outcome s1 on Ψ, followed by one
of P pS2q with outcome s2, have joint Born distribution

Pps1 � 1, s2 � 1q � Pps2 � 1|s1 � 1qPps1 � 1q
�
���P pS2q P pS1qΨ

}P pS1qΨ}
���2

}P pS1qΨ}2 �
���P pS1 X S2qΨ

���2

,
(2.52)

and collapsed state vector, given s1 � 1, s2 � 1,

Ψ1 � P pS2q P pS1qΨ
}P pS1qΨ}{

���P pS2q P pS1qΨ
}P pS1qΨ}

��� � P pS1 X S2qΨ
}P pS1 X S2qΨ} . (2.53)

Iteration with r sets rather than 2 and the definition of MkEkpskq yield Lem-
ma 2.4.1.

Lemma 2.4.2. (IL) implies that

UΥ
Ek
PEkpMkEkpskqqUEk

Υ � PΥpMkΥpskqq. (2.54)

Proof. Decompose HEk � H∆k
bHEkz∆k

and HΥ � H∆k
bHΥz∆k

. By (IL), we
have that

UEk
Υ � I∆k

b V
Ekz∆k

Υz∆k
. (2.55)
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2.4 Detection Process on Triangular Surfaces

We know that ΓpEkq � Γp∆kq � ΓpEkz∆kq. The set MkEkpskq � ΓpEkq factorizes
in the same way:

MkEkpskq � Nk∆k
pskq � ΓpEkz∆kq. (2.56)

That is because whether a configuration q is compatible with the outcome sk, i.e.,
q P MEkpskq, does not depend on the points in q outside of ∆k. Here, the set
Nk∆k

pskq � Γp∆kq is defined in the analogous way to MkEkpskq, i.e.,

Nk∆k
pskq :�

r£
`�1

Nk`∆k
psk`q, Nk`∆k

psk`q :�
#
D∆k

pBk`q if sk` � 1

H∆k
pBk`q if sk` � 0,

(2.57)

where DApBq means the set of all configurations in ΓpAq with at least one particle
in B. Hence, the projection PEkpMkEkpskqq decomposes into a tensor product

PEkpMkEkpskqq � P∆k
pNk∆k

pskqq b IEkz∆k
, (2.58)

and by (2.55),

UΥ
Ek
PEkpMkEkpskqqUEk

Υ � rI∆k
b V

Υz∆k

Ekz∆k
srP∆k

pNk∆k
pskqq b IEkz∆k

srI∆k
b V

Ekz∆k

Υz∆k
s

� rI∆k
� P∆k

pNk∆k
pskqq � I∆k

s b rV Υz∆k

Ekz∆k
� IEkz∆k

� V Ekz∆k

Υz∆k
s

� P∆k
pNk∆k

pskqq b IΥz∆k

� PΥpMkΥpskqq,
(2.59)

for the same reasons as (2.58).

Proposition 2.4.3. Assume the flat Born rule, the flat collapse rule, and (IL).
The unconditional joint distribution of all outcomes, i.e., of the matrix s compri-
sing all sk`, agrees with the Born distribution on Υ,

Ppsq �
���PΥ

�£
kPN

MkΥpskq
	

ΨΥ

���2

, (2.60)

with ΨΥ � UΥ
E0

Ψ0 (actually regardless of whether BB` are null sets). In particular,
the distribution of L � pL1, . . . , Lrq is the Born distribution }PΥpMBΥpLqqΨΥ}2.

Proof. As noted before, all sk` vanish from some K � 1 onwards (and formulas
below will take for granted they do), and we need consider only k ¤ K. The fact,
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used before in (2.52), that for subsequent measurements the projections multiply,
yields from Lemma 2.4.1 that

Ppsq �
���UΥ

EK
PEK pMKEK psKqqUEK

Υ � � �UΥ
E1
PE1pM1E1ps1qqUE1

Υ ΨΥ

���2

. (2.61)

Inserting (2.54) in (2.61) yields

Ppsq �
���PΥpMKΥpsKqq � � �PΥpM1Υps1qqΨΥ

���2

�
���PΥ

� K£
k�1

MkΥpskq
	

ΨΥ

���2

�
���PΥ

�£
kPN

MkΥpskq
	

ΨΥ

���2

,

(2.62)

as claimed.

Proposition 2.3.6, insofar as it concerns the sequential detection process, follows
from Proposition 2.4.3 (actually regardless of whether BB` are null sets), and Pro-
position 2.3.4 follows further as the special case in which r � 1, B1 � B, and
Br�1 � Bc.

2.4.2 Parallel Detection Process

We now formulate the definition of the parallel detection process and prove the
Born rule for it. Throughout the whole subsection, pILq is assumed.

The proof of Lemma 2.4.2 also shows that, analogously to (2.54),

UΥ
Ek
PEkpMk`Ekpsk`qqUEk

Υ � PΥpMk`Υpsk`qq. (2.63)

As outlined in Section 2.3.2, the idea is to think of the detection attempt in Bk`

as a quantum measurement of the observable

UΥ
Ek
PEkpDpBk`qqUEk

Υ � PΥpDpBk`qq, (2.64)

which is (2.63) for sk` � 1. Since Bk` is non–empty only for finitely many k (for
k � 1, . . . , K), we are considering only finitely many observables. They commute
because projections belonging to the same PVM always commute. Their simulta-
neous measurement is the definition of the parallel detection process.

We now prove the Born rule for the parallel detection process. When conside-
ring the simultaneous measurement of the operators (2.64), we need their joint
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diagonalization; the joint eigenspace with eigenvalues psk`qk` is the range of

PΥ

� K£
k�1

r£
`�1

Mk`Υpsk`q
	
� PΥ

� K£
k�1

MkΥpskq
	
, (2.65)

so the probability of the outcomes psk`qk` is

���PΥ

� K£
k�1

MkΥpskq
	

ΨΥ

���2

, (2.66)

and the probability of outcome L is

¸
s:L

���PΥ

� K£
k�1

MkΥpskq
	

ΨΥ

���2

�
���¸
s:L

PΥ

� K£
k�1

MkΥpskq
	

ΨΥ

���2

�
���PΥ

�¤
s:L

K£
k�1

MkΥpskq
	

ΨΥ

���2

�
���PΥ

�
MBpLq

	
ΨΥ

���2

,

(2.67)

because the sets
�K
k�1MkΥpskq are mutually disjoint and thus their projections are

mutually orthogonal, and because of (2.44) and the absolute continuity property
(1). That is, the probability of outcome L agrees with the Born rule. This proves
the statement about the parallel detection process in Proposition 2.3.6 and thus
also in Proposition 2.3.4.

Another way of looking at the parallel detection process is based on tensor
products: Since Υ � �K

k�1 ∆k Y R with remainder set R � Υz�K
k�1 ∆k, we have

from Remark 3 in Section 2.2.2 that

HΥ �
Kâ
k�1

H∆k
bHR. (2.68)

By (IL), each H∆k
can be regarded as a factor in HEk � H∆k

bHEkz∆k
. With the

flat Born rule in mind, or with the idea that PEk is the configuration observable on
Ek, the attempted detection in Bk` can be regarded as a quantum measurement
in HEk of the observable PEkpDpBk`qq, which is of the form

PEkpDEkpBk`qq � P∆k
pD∆k

pBk`qq b IEkz∆k
. (2.69)

Thus, the attempted detection in Bk` can also be regarded as a quantum mea-
surement in H∆k

of the observable P∆k
pD∆k

pBk`qq. These observables commute
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for different ` and equal k because they belong to the same PVM P∆k
, and they

commute for different k in HΥ because of the tensor product structure (2.68). It
follows that

PΥpMBpLqq �
¸
s:L

Kâ
k�1

P∆k
pNk∆k

pskqq b IR, (2.70)

with Nk∆k
as in (2.57), which agrees again with the Born rule on Υ, as claimed in

Proposition 2.3.6.

2.5 Approximation by Triangular Surfaces

In this section, we prove Propositions 2.3.2 and 2.3.3.

Proof of Proposition 2.3.2. Fix an n P N and set ε � 3�n. We construct a 3ε–
approximation Υn to Σ. First, consider the function ft : M Ñ M, px0,xq ÞÑ
px0 � t,xq, which “lowers a point by an amount t in time.” We use f to define the
sets (see Figure 2.7):

Σ2ε :� f2εrΣs, Σε..3ε :�
¤

ε ε1 3ε

fε1rΣs. (2.71)

So Σ2ε is a version of Σ, lowered by 2ε and Σε..3ε is a slice below Σ of thickness 2ε,
centered at Σ2ε.

We now choose a decomposition of R3 into (non–regular) tetrahedra R3 ��
kPN ∆̃n

k with open ∆̃n
k such that each pair of vertices xnk,i,x

n
k,j, i, j P t1, 2, 3, 4u

t

x

Σ

Σ2ε

Υn

Υn+1

Σε..3ε

Σ 1
3 ε..ε

xnk,i
t

x1

x2

∆n
k � Υn

Σ2ε

∆̃n
k

y

y
πpxnk,iq

hpyq

Abbildung 2.7: Left: Construction of the approximating sequence Υn Õ Σ.
Right: |hpyq|   ε illustrated in 2+1 dim. Color online.
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2.5 Approximation by Triangular Surfaces

has a distance }xnk,i�xnk,j} ¤ ε and such that every bounded region intersects only
finitely many tetrahedra. For example, we may subdivide R3 into axiparallel cubes
with vertices on ε?

3
Z3 and subdivide each cube into 3! tetrahedra with vertices on

ε?
3
Z3.

The four spacetime points xnk,i :� π|�1
Σ2ε
xnk,i P M (obtained by lifting xnk,i up to

the 2ε–surface, with i � 1, 2, 3, 4) span a spacelike open tetrahedron ∆n
k in M. Now

set Υn :� �
kPN ∆n

k .

Claim: Υn is a uniform ε–approximation of Σ2ε, i.e., Υn � Σε..3ε (see Figure 2.7).

Proof: Regard the surfaces Υn and Σ2ε as the graphs of functions R3 Ñ R, hence-
forth denoted simply by Υnp�q and Σ2εp�q; that is, pΥnpxq,xq P Υn for all x P R3

and x � pΥnpπpxqq, πpxqq for all x P Υn. Both functions are Lipschitz–continuous
with Lipschitz constant 1. Further, there is always a vertex of ∆̃n

k (possibly several

ones) that maximizes Υnp�q on ∆̃n
k (a “highest” vertex), and one (or several) that

minimizes Υnp�q (a “lowest” vertex). Now consider the “height difference function”
hpxq � Υnpxq�Σ2εpxq. (It is Lipschitz continuous with Lipschitz constant 2.) For
any vertex xnk,i, we have that hpπpxnk,iqq � 0. And for any other point y P ∆n

k , we
have that |πpxnk,iq � πpyq|R3   ε, so by Lipschitz continuity,

Σ2εpπpxnk,iqq � Σ2εpπpyqq   ε. (2.72)

If xnk,i is a highest vertex, then

Υnpπpxnk,iqq �Υnpπpyqq ¡ 0

ñ hpπpxnk,iqq � hpπpyqq ¡ �ε ô hpπpyqq   ε,
(2.73)

(see Figure 2.7). The same reasoning with a lowest vertex yields hpπpyqq ¡ �ε, so
in total |hpπpyqq|   ε, which proves the claim. l

Claim: Υn is a Cauchy surface.

Proof: We need to show that Υn is intersected exactly once by every causal in-
extendible curve γ : p�8,8q Ñ M. We regard Υn again as the graph of an
equally denoted function Υn : R3 Ñ R. Now, consider the height difference functi-
on hptq � γ0ptq �Υnpπpγptqqq, which tells us “by how much γ is above Υn.” Since
Υn consists of spacelike tetrahedra, Υn is Lipschitz–continuous with Lipschitz con-
stant ¤ 1. As γ is timelike–or–lightlike and w.l.o.g. directed towards the future,
we have that h is strictly increasing, so there can be at most one t with hptq � 0.
That is, there is at most one intersection of γ with Υn.

On the other hand, an intermediate value argument yields that there must be at
least one intersection point: Otherwise, either hptq ¡ 0 for all t or hptq   0 for all t;
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2 Hypersurface Evolution

t

x1

Σ

Σ� aε

aε

t

x1

grΣs

grΣs � Λ0aε

xa

xcxb

max. slope

βγ ε

γ ε

βγ ε

ε̃
Λ0aε

Abbildung 2.8: Left: Σ is being translated in the Proof of Proposition 2.5.1.
Right: The same structure after a boost. Color online.

w.l.o.g., assume the former case. Since Υn is an ε–approximation to Σ2ε, we know
that γ0ptq ¡ Υnpπpγptqqq ¡ Σ2εpπpγptqqq � ε � Σ3εpπpγptqqq, which implies that γ
does not intersect Σ3ε, but that is impossible because Σ3ε is a Cauchy surface. l

We can now complete the proof of Proposition 2.3.2. Since Υn approximates Σ2ε

up to ε, it approximates Σ up to 3ε. Furthermore, Υn � Σε..3ε and Υn�1 � Σ 1
3
ε..ε,

and since Σ 1
3
ε..ε lies in the future of Σε..3ε while being disjoint from it, Υn�1 lies in

the future of Υn (see Figure 2.7). This completes the proof of Proposition 2.3.2.

Proposition 2.3.3 follows from the following statement:

Proposition 2.5.1. Let ε ¡ 0, Σ be a Cauchy surface, aε :� pε, 0, 0, 0q the vertical
4–vector of length ε, and g : M Ñ M, g P PÒ� a proper Poincaré transformation.
Then

grΣ� aεs � tx� ps, 0, 0, 0q | x P gΣ, 0   s   ε̃u , (2.74)

where
ε̃ � pβγ � γqε, (2.75)

with β P r0, 1q the boost velocity of g and γ :� p1� β2q�1{2 (the “Lorentz factor”).

Proof of Proposition 2.5.1. A Poincaré transformation g consists of a translation
and a Lorentz transformation Λ, which in turn consists of a rotation and a sub-
sequent boost Λ0. The rotation leaves aε invariant. Thus, grΣ� aεs � gΣ� Λ0aε.
Without loss of generality, Λ0 is a boost in the x1 direction (see Figure 2.8),

Λ0 �

����
γ βγ
βγ γ

1
1

��� , so Λ0aε �

����
γε
βγε

0
0

���. (2.76)

108



2.6 Proof of Theorem 2.3.7

Consider any point xa � px0
a,xaq P gΣ. Denote by xb � px0

b ,xbq the point
on grΣ � aεs right above xa, xb � xa. We want to show that x0

b ¤ x0
a � ε̃. Set

xc :� xa �Λ0aε Since grΣ� aεs is a Cauchy surface, any two points on it (such as
xb and xc) must be spacelike separated, so

|x0
b � x0

c | ¤ |xb � xc| � |xa � xc| � βγε. (2.77)

Now the triangle inequality implies the desired bound

|x0
b � x0

a| ¤ |x0
b � x0

c | � |x0
c � x0

a| ¤ βγε� γε � ε̃. (2.78)

2.6 Proof of Theorem 2.3.7

Here is a quick outline of the proof. We want to show that

PBnpLq :� ��PΥnpMBnpLqqΨΥn

��2
, (2.79)

converges, as nÑ 8, to

PPpLq :� ��PΣpMPpLqqΨΣ

��2
. (2.80)

The proof is done by a squeeze–theorem argument: We will define two distributionspPn and qPn on t0, 1ur such that

pPnpLq ¤ PBnpLq ¤ qPnpLq, pPnpLq ¤ PPpLq ¤ qPnpLq, (2.81)

and prove that pPnpLq, qPnpLq both converge to PPpLq as nÑ 8.

We go through some preparations for the proof. To begin with, it is easy to see
that Bn � pBn1, . . . , Bnrq with

Bn` � πΥn
Σ pP`q, (2.82)

is an admissible partition of Υn: First, Bn`XBnm � H for ` � m because πΥn
Σ is a

bijection. Second, Bn` is bounded because πΥn
Σ maps bounded sets to bounded sets.

Third, the boundary BBn` of Bn` in Υn is πΥn
Σ pBP`q because πΥn

Σ is a homeomor-
phism. Finally, in order to obtain that µΥnpBBn`q � 0 we note that µΣpBP`q � 0,
that Σ (and Υn) possesses a spacelike tangent plane almost everywhere (relative
to Lebesgue measure λ on R3), and that, at points with a spacelike tangent plane,
µΣ possesses a nonzero density relative to λ � πΣ, so µΣ and λ � πΣ have the same
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2 Hypersurface Evolution

null sets.
For the definition of pPn, qPn we introduce more notation:
We define pCn` :� SrpBn`,Σq, qCn` :� GrpBn`,Σq. (2.83)

t

x

ΥnBn`

Σ

qCn` pCn`
Bc
n`

Abbildung 2.9: Definition of pCn` and qCn`. Color online.

The corresponding sets of compatibility in configuration space ΓpΣq are

xMn`pL`q :�
#
Dp pCn`q if L` � 1

Hp qCn`q if L` � 0,
|Mn`pL`q :�

#
Dp qCn`q if L` � 1

Hp pCn`q if L` � 0,
(2.84)

xMnΣpLq :�
r£
`�1

xMn`pL`q, |MnΣpLq :�
r£
`�1

|Mn`pL`q. (2.85)

The probability distributions that serve for the squeeze–theorem bounds are defi-
ned by

pPnpLq :� xΨΣ|PΣpxMnΣpLqq|ΨΣy qPnpLq :� xΨΣ|PΣp|MnΣpLqq|ΨΣy. (2.86)

Lemma 2.6.1 (Squeeze–theorem bound for PP). For all L P t0, 1ur,
xMnΣpLq �MPpLq � |MnΣpLq,

hence PΣpxMnΣpLqq ¤ PΣpMPpLqq ¤ PΣp|MnΣpLqq,
and pPnpLq ¤ PPpLq ¤ qPnpLq.

(2.87)

Proof. The statement is actually true for any triangular surface Υ, regardless of
whether it belongs to a sequence converging to Σ. Since we need it for Υn, we use
here the notation that refers to Υn.
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2.6 Proof of Theorem 2.3.7

The inclusion pCn` � P` � qCn`, (2.88)

is obvious, since πr pCn`s is a shrunk version of πrP`s (i.e., smaller) and πr qCn`s is a
grown version of it (i.e., larger).

We “lift” those sets to configuration space, keeping in mind that

if A � B, then DpAq � DpBq and HpAq � HpBq. (2.89)

By definition (2.84) we then have:

xMn`pL`q �M`ΣpL`q � |Mn`pL`q. (2.90)

Inclusions persist under intersections, i.e.,

if A` � B` for all `, then
£
`

A` �
£
`

B`. (2.91)

This yields the first line of (2.87). The transition from sets M to projections P pMq
as in the second line of (2.87) is straightforward, and sandwiching between ΨΣ’s
yields the third line of (2.87).

Lemma 2.6.2 (Squeeze–theorem bound for PBn). Assume (PL). Then, for all
L P t0, 1ur,

PΣpxMnΣpLqq ¤ UΣ
ΥnPΥnpMBnpLqqUΥn

Σ ¤ PΣp|MnΣpLqq,
hence pPnpLq ¤ PBnpLq ¤ qPnpLq. (2.92)

Proof. Also this statement is actually true for any triangular surface Υ, regardless
of whether it belongs to a sequence converging to Σ.

By (PL) (2.19),
UΣ1

Σ PΣp@AqUΣ
Σ1 ¤ PΣ1p@GrpA,Σ1qq. (2.93)

Since pDAqc � HA � @pAcq, we have that

UΣ1

Σ PΣpDAqUΣ
Σ1 � UΣ1

Σ pI � PΣppDAqcqqUΣ
Σ1

� UΣ1

Σ pI � PΣp@pAcqqqUΣ
Σ1

¥ I � PΣ1p@GrpAc,Σ1qq
� I � PΣ1p@pSrpA,Σ1qcqq
� I � PΣ1ppDSrpA,Σ1qqcq
� PΣ1pDSrpA,Σ1qq,

(2.94)
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2 Hypersurface Evolution

and
UΣ1

Σ PΣpHAqUΣ
Σ1 � UΣ1

Σ PΣp@pAcqqUΣ
Σ1

¤ PΣ1p@GrpAc,Σ1qq
� PΣ1p@pSrpA,Σ1qcqq
� PΣ1pHSrpA,Σ1qq.

(2.95)

Thus, inserting AÑ Bn`, Σ Ñ Υn, and Σ1 Ñ Σ,

UΣ
Υn PΥnpDBn`qUΥn

Σ ¥ PΣpD pCn`q
UΣ

Υn PΥnpHBn`qUΥn
Σ ¤ PΣpH pCn`q. (2.96)

On the other hand, inserting AÑ qCn`, Σ1 Ñ Υn, and Σ Ñ Σ,

UΥn
Σ PΣpD qCn`qUΣ

Υn ¥ PΥnpDSrp qCn`,Υnqq
UΥn

Σ PΣpH qCn`qUΣ
Υn ¤ PΥnpHSrp qCn`,Υnqq.

(2.97)

Since for A � Σ always
A � SrpGrpA,Σ1q,Σq, (2.98)

and since A � B implies DpAq � DpBq and HpAq � HpBq, we have that

PΥnpDSrp qCn`,Υnqq ¥ PΥnpDBn`q
PΥnpHSrp qCn`,Υnqq ¤ PΥnpHBn`q.

(2.99)

Putting together (2.96), (2.97), (2.99),

PΣpH qCn`q ¤ UΣ
Υn PΥnpHBn`qUΥn

Σ ¤ PΣpH pCn`q
PΣpD pCn`q ¤ UΣ

Υn PΥnpDBn`qUΥn
Σ ¤ PΣpD qCn`q, (2.100)

that is, in another notation,

PΣpxMn`pL`qq ¤ UΣ
Υn PΥnpM`ΥnpL`qqUΥn

Σ ¤ PΣp|Mn`pL`qq. (2.101)

Now we want to conclude an analogous statement about L instead of L`. Note
that UΣ

Υn
PΥnp�qUΥn

Σ and PΣp�q are two different PVMs that will in general not even
commute with each other. The argument that we need has the following general
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2.6 Proof of Theorem 2.3.7

form: For two different PVMs P1, P2, the ranges satisfy the relations

P1pA1q ¤ P2pA2q ^ P1pB1q ¤ P2pB2q
ô RanpP1pA1qq � RanpP2pA2qq ^ RanpP1pB1qq � RanpP2pB2qq
ñ RanpP1pA1qq X RanpP1pB1qqlooooooooooooooooomooooooooooooooooon

�RanpP1pA1qP1pB1qq

� RanpP2pA2qq X RanpP2pB2qqlooooooooooooooooomooooooooooooooooon
�RanpP2pA2qP2pB2qq

ô P1pA1qP1pB1q ¤ P2pA2qP2pB2q
ô P1pA1 XB1q ¤ P2pA2 XB2q.

(2.102)

Applying this argument to (2.101) and the finite intersection
�
` yields the first

line of (2.92).

Lemma 2.6.3. Fix ` P t1, . . . , ru; qCn` is a decreasing sequence of sets, qCn` �qCn�1,`, with £
nPN

qCn` � P`. (2.103)

pCn` is an increasing sequence of sets, pCn` � pCn�1,`, with¤
nPN

pCn` � interiorΣpP`q. (2.104)

In particular, £
nPN

qCn`z pCn` � BP`. (2.105)

Moreover, equality holds in (2.103), (2.104), and (2.105) whenever Υn X Σ � H.

t

x

πpP`q

Σ

P`

Υ1

Υ2

Υ3

qCn`

Abbildung 2.10: Convergence of the sets qCn` as n Ñ 8 for fixed ` as in Lem-
ma 2.6.3. Color online.
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2 Hypersurface Evolution

Proof. The decreasing/increasing behavior of the sequence is a direct consequence
of Υn�1 � futurepΥnq and the definition of grown and shrunk set. For demons-
trating (2.103), since πΣ is a homeomorphism Σ Ñ R3, it suffices to show that�
n πp qCn`q � πpP`q in R3. If y R πpP`q, then it has positive distance to πpP`q and

πrrΣ�pε, 0, 0, 0qsXpastpπ�1
Σ pyqqs is disjoint from πpP`q for sufficiently small ε ¡ 0,

so y R πp qCn`q for sufficiently large n. Similar arguments yield (2.104). Concerning
the statement about equality, in that case for every x P Bn`, futurepxq X pastpΣq
has nonempty interior in M, so πp qCn`q contains an open neighborhood of πpP`q
and thus πpP`q. A similar statement holds for the interior.

Lemma 2.6.4. For every L P t0, 1ur,
£
nPN

|MnΣpLqzxMnΣpLq is a null set w.r.t.

µΓpΣq.

Proof. We make use here of the requirement µΣpBP`q � 0 in Definition 2.3.5.

Consider first |Mn`pL`q and xMn`pL`q. In case L` � 1, we have that

|Mn`p1q � D qCn`, xMn`p1q � D pCn`
ñ |Mn`p1qzxMn`p1q � pD qCn`q X pH pCn`q. (2.106)

In case L` � 0, we have that

|Mn`p0qzxMn`p0q � pH pCn`q X pD qCn`q. (2.107)

So either way,

|Mn`pL`qzxMn`pL`q � pH pCn`q X pD qCn`q � Dp qCn`z pCn`q. (2.108)

Now we want to consider L instead of L`. It is a general fact about sets that if
A` � B` for all `, then �£

`

B`

	
z
�£

`

A`

	
�
¤
`

pB`zA`q. (2.109)

Thus, for A` � xMn`pL`q and B` � |Mn`pL`q,

|MnΣpLqzxMnΣpLq �
r¤
`�1

|Mn`pL`qzxMn`pL`q �
r¤
`�1

Dp qCn`z pCn`q � D
� r¤
`�1

p qCn`z pCn`q	.
(2.110)
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2.6 Proof of Theorem 2.3.7

Now we want to take the intersection over all n P N. In this regard, we first note
the following extension of (2.89): if pAnqnPN is a decreasing sequence of sets, then£

n

DAn � D
�£

n

An

	
. (2.111)

After all, if q is a finite set that intersects every An, then it must contain a point
from

�
nAn; conversely, a finite set q intersecting

�
nAn trivially intersects every

An.
Applying this to An �

�
`p qCn`z pCn`q, which is decreasing because qCn`z pCn` is, we

obtain that £
nPN

|MnΣpLqzxMnΣpLq � D
�£
nPN

r¤
`�1

qCn`z pCn`	. (2.112)

It is another general fact about sets (not unrelated to (2.111)) that if for every
` P t1, . . . , ru, pAn`qnPN is a decreasing sequence of sets, then

£
nPN

r¤
`�1

An` �
r¤
`�1

£
nPN

An`. (2.113)

Thus, for An` � qCn`z pCn`,£
nPN

|MnΣpLqzxMnΣpLq � D
� r¤
`�1

£
nPN

qCn`z pCn`	 � D
� r¤
`�1

BP`
	
, (2.114)

by Lemma 2.6.3 and (2.89). For any set A with µΣpAq � 0 it follows that DA is, in
every sector of configuration space ΓpΣq, a finite union of null sets, so µΓpΣqpDAq �
0. For A � �

` BP` we obtain the statement of Lemma 2.6.4.

Proof of Theorem 2.3.7. By Lemma 2.6.1 and Lemma 2.6.2, it suffices to show
that for every L P t0, 1ur,

qPnpLq � pPnpLq Ñ 0 as nÑ 8. (2.115)

From Lemma 2.6.4 and Property (1), according to which PΣ must be absolutely
continuous with respect to µΓpΣq, we have that

PΣ

�£
nPN

|MnΣpLqzxMnΣpLq
�
� 0. (2.116)
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2 Hypersurface Evolution

The continuity property of measures µ says that, for every decreasing sequence An
of sets with

�
nAn �: A8, µpAnq Ñ µpA8q as nÑ 8. For every ΨΣ P HΣ, µp�q :�

xΨΣ|PΣp�q|ΨΣy is a measure. We know from Lemma 2.6.1 that xMnΣpLq � |MnΣpLq.
We show that for every L P t0, 1ur, the sequence An :� |MnΣpLqzxMnΣpLq is

decreasing: It suffices to show that |MnΣpLq is decreasing and xMnΣpLq is increasing.

We know from Lemma 2.6.3 that qCn` is decreasing and pCn` is increasing, so by
(2.89), both D qCn` and H pCn` are decreasing, so |Mn`pL`q (which is either D qCn` or

H pCn`, depending on L`) is decreasing, and so is

|MnΣpLq �
r£
`�1

|Mn`pL`q. (2.117)

Likewise, xMn`pL`q (which is either D pCn` or H qCn`, depending on L`) is increasing,

and so is xMnΣpLq. Therefore, An is decreasing, as claimed.
We can conclude that

qPnpLq � pPnpLq � xΨΣ|PΣ

�|MnΣpLqzxMnΣpLq
�|ΨΣy Ñ 0 as nÑ 8. (2.118)

This establishes the desired squeeze theorem argument and finishes the proof of
Theorem 2.3.7.

Proof of Corollary 2.3.9. It is well known that for a sequence Pn of projecti-
ons, weak convergence to the projection P (i.e., xΨ|Pn|Ψy Ñ xΨ|P |Ψy for eve-
ry Ψ) implies strong convergence (i.e., PnΨ Ñ PΨ for every Ψ).5 Set Pn �
UΣ

Υn
PΥnpMBnpLqqUΥn

Σ and P � PΣpMPpLqq. Then Theorem 2.3.7 provides the
weak convergence, and the strong convergence was what we claimed.

Remarks.

13. Type of convergence of pΥnqnPN. The proof of Theorem 2.3.7 still goes through
unchanged if the convergence of the sequence pΥnqnPN is not uniform but
uniform on every bounded set.

14. Alternative definition of Bn`. In order to avoid the choice of a particular
Lorentz frame in the definition of Bn` and thus of the detection probabilites,

5For the sake of completeness, here is a proof: First, P 2
n � Pn and P 2 � P imply that }PnΨ}2 �

xΨ|P 2
n |Ψy � xΨ|Pn|Ψy Ñ xΨ|P |Ψy � }PΨ}2. Second, since xΨ|S|Φy can be expressed through

xΨ�Φ|S|Ψ�Φy and xΨ� iΦ|S|Ψ� iΦy (polarization identity [187, p. 63]), weak convergence
implies xΨ|Pn|Φy Ñ xΨ|P |Φy for every Ψ and Φ. Now }PnΨ � PΨ}2 � xΨ|pPn � P q2|Ψy �
xΨ|P 2

n � PnP � PPn � P 2|Ψy � }PnΨ}2 � xΨ|Pn|PΨy � xPΨ|Pn|Ψy � }PΨ}2 Ñ }PΨ}2 �
xΨ|P |PΨy � xPΨ|P |Ψy � }PΨ}2 � 0.
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2.7 Ideas Towards the Reconstruction of a Wightman QFT

we could replace Bn` by qBn` :� SrpP`,Υnq. (2.119)

(The use of Gr instead of Sr would lead to overlap among the Bn`, so they
would no longer form a partition.) With this change, Theorem 2.3.7 remains

valid. In the proof, we then need to modify the definition of pCn` to

pCn` :� Srp qBn`,Σq, (2.120)

while the definition of qCn` is kept as it is. We would still use a preferred
Lorentz frame for the definition of qCn`, but that is a matter of the method
of proof, not of the statement of the theorem. The proof goes through as
before, except that (2.104) needs to be checked anew: it is still true because
for every x in the 3–interior of P`, GrpGrpx,Υnq,Σq � P` for sufficiently large
n.

2.7 Ideas Towards the Reconstruction of a
Wightman QFT

Recall that the three fundamental mathematical constituents for the Wightman
setting were

• H : A single Hilbert space,

• Up�q :� pUpgqq
gPPÒ

�
: A family of Poincaré transformation implementers,

• φp�q :� pφpfqqfPSpRd�1q: A family of field operators.

In our case, d � 3. Further, Wightman axioms (0)–(4) in Section 1.2.3 require the
existence of a distinct domain D � H and a vacuum vector Ω P D.

2.7.1 Recovering the Hilbert Space

For a reconstruction of a Wightman QFT from E , the first step is to define a
Hilbert space H , for instance by setting H :� HE0 . The vacuum vector is then
evidently recovered as Ω � ΩE0 .

Recovering the family Up�q from E and Properties (1)–(7) does not work without
further assumptions. It may be tempting to choose a definition of the kind Upgq �
U gΣ

Σ modulo identification of Hilbert spaces. Here, U gΣ
Σ maps HΣ Ñ HgΣ, whereas

Upgq has to map H � HE0 onto itself. Given a hypersurface evolution E , the only
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available identification of H with HΣ is UΣ
E0

, so the only possible operator that

is equivalent to U gΣ
Σ and acting on H is

UE0
gΣU

gΣ
Σ UΣ

E0
� UE0

E0
� IE0 . (2.121)

So a recovery of the family Up�q necessarily requires additional assumptions on E .
A natural additional assumption allowing for such a recovery is given by Poincaré
covariance: In order to gain additional structure on E , we postulate the existence
of a family of unitary operators pSg,Σq with Sg,Σ : HΣ Ñ HgΣ, such that

U gΣ1

gΣ � Sg,Σ1UΣ1

Σ S�1
g,Σ, (2.122)

where g runs through PÒ� and Σ runs through all Cauchy surfaces. This allows for
the recovery of a unique family Up�q via

Upgq :� UE0
gE0
Sg,E0 . (2.123)

The naturality assumptions

S0,Σ � IΣ, Sh,gΣSg,Σ � Shg,Σ (2.124)

ensure that pUpgqq
gPPÒ

�
is a group implementing PÒ�. In analogy to the field co-

variance (Wightman axiom (2)), we further postulate that the PVMs transform
covariantly and comply with the factorization T :

PgΣp@pgAqq �Sg,ΣPΣp@pAqqS�1
g,Σ

TgΣ,gA Sg,Σ T
�1
Σ,A �Sg,Σ|HΣ,A

b Sg,Σ|HΣ,ΣzA

(2.125)

for all measurable A � Σ. In total, we require the following additional property
for hypersurface evolutions:

(8) Poincaré covariance: There exists a family pSg,Σq, Sg,Σ : HΣ Ñ HgΣ of
unitary identification operators, satisfying (2.122), (2.124) and (2.125).

This property entails that the structure of H�, P� and U�
� is the same in all frames

of reference. Generally, frame–independence of this kind is a central principle in
many physical theories. But it would also be possible to obtain physical predictions
in a relativistic setting without Property (8).
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2.7.2 Recovering the Field Operators

Perhaps, the most difficult part in the reconstruction of a Wightman field theo-
ry from E is the definition of suitable field operators φrpfq with spin index r P
t1, . . . , 2s � 1u. There are two major difficulties, which have to be overcome for
this:

• The PVMs PΣ have to be used for a construction of field operators φΣ,rpfΣq
acting on a dense domain in HΣ with sufficiently regular fΣ : Σ Ñ C

• Since fΣ only establishes a smearing in space direction, we also have to smear
in time direction in order to obtain φrpfq, f P SpMq.

The first step cannot be done without further assumptions, since the PVM does
not reveal any information about the spin degrees of freedom hidden in the Hilbert
space structure. In order to define creation– and annihilation operators, it would
be necessary to have a Fock space structure on HΣ, which is compatible with PΣ.
That means, ΨΣ should be expressed as a vector in Fock space F � F pΓspΣqq,
with spin–configuration space ΓspΣq, see (1.20), where a configuration contains
pairs pxj, rjq with xj P Σ and spin index rj P t1, . . . , 2s � 1u. In that case, F
allows for a natural PVM PF ,Σ: For any measurable B � ΓpΣq, the operator
PF ,ΣpBq projects to all spin–configurations in

Bs :�  tpx1, r1q, . . . , pxN , rNqu
�� tx1, . . . , xNu P B

( � ΓspΣq, (2.126)

i.e., Bs contains all ΓspΣq–spin–configurations compatible with B.
The additional requirement now is a

• Fock space structure assumption: For certain6 Cauchy surfaces Σ, there
exists an isomorphism I : HΣ Ñ F pΓspΣqq, such that I PΣpBqI �1 �
PF ,ΣpBq for all measurable B � ΓpΣq.

The definition of a:F ,Σ,rpfΣq, aF ,Σ,rpfΣq then follows in analogy to (1.24), but for
unordered configurations:

paF ,Σ,rpfΣqΨqpqq �
Ņ

j�1

p�1qj?
N

δrrjfΣpxjqΨpqzpxj, rjqq,

pa:F ,Σ,rpfΣqΨqpqq �
?
N � 1

»
Σ

fΣpxqΨpq Y px, rqq dx,
(2.127)

6This assumption is required to hold on all Cauchy surfaces Σ, on which the operators a7rpfΣq
have to be defined in order to recover the field operators φrpfq below. For instance, this could
be the foliation of M by horizontal Cauchy planes pEtqtPR or any other foliation.
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where q � tpx1, r1q, . . . , pxN , rNqu. Here, fΣ P L2pΣq, and a suitable dense domain
is given by the space of wave functions with finite particle number

DΣ :�  
Ψ P L2pΓspΣqq

�� DNmax P N0 : ΨpNq � 0 @N ¡ Nmax

(
. (2.128)

Definition (2.127) then entails the Heisenberg operators

a7rpfΣq � UE0
Σ I �1a7F ,Σ,rpfΣqIUΣ

E0
, (2.129)

defined on
DΣ :� UE0

Σ I �1rDΣs � HE0 , (2.130)

which immediately allow for defining φrpfΣq � a:rpfΣq � arpfΣq.

The second step, namely smearing φrpfΣq in time direction, also poses some
difficulties. An intuitive way of smearing would be to consider a foliation of M,
given by the family of horizontal Cauchy surfaces pEtqtPR, and to formally define:

φrpfq :�
»
R
φrpfEtq dt, (2.131)

where a given f P SpMq allows for defining the single–time smearing functions
fEtpxq :� fpt,xq. Boundedness and rapid decay of f imply fEt P L2pΣq. We may
then simply set φrpfq� :� φrpfq. For fermions, φrpfEtq is an operator bounded by
a constant times }fEt}2. So (2.131) also defines a bounded operator. However, for
bosons, φrpfEtq is unbounded, and it is hence far from obvious that the operator
φrpfq is well–defined. In any case, the domains DΣ considered above do not coin-
cide for different Σ, in general. So it is necessary to explicitly construct a domain
D � H , which is invariant under all φrpfq. The requirement by the Wightman
axioms, that f ÞÑ xΨ1, φrpfqΨ2y be a distribution, must then be checked separa-
tely.
Further, (2.131) makes use of a specific choice for a foliation of M, which is of
course frame dependent. It would be desirable to give a definition of φrpfq in any
foliation, and to prove that all definitions indeed lead to the same operator. We
expect this to be true, as a consequence of the Poincaré covariance assumption (8).

After a successful construction of φrpfq, it would still be necessary to verify
Wightman’s covariance axiom, the causality axiom and the completeness axiom.
We assert that, after a suitable definition of φrpfq, Wightman covariance follows
naturally from the Poincaré covariance assumption (8). Wightman causality is as-
serted to follow from (IL) and (PL) and completeness from the choice of φrpfq.
However, since we do not have a general definition for φrpfq following from a hy-
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persurface evolution E , we are not in the position to give any general theorems or
more precise assertions, yet.

2.7.3 On Spectral Positivity

The last Wightman axiom missing is spectral positivity. As indicated in Remark
11, this axiom may stand in conflict with (PL), which would make some further
steps necessary until a Wightman QFT can be recovered from a hypersurface
evolution. In the following, we first present some existing incompatibility results
outlining this conflict and then discuss possible ways out.

An early result concerning the conflict between propagation locality and spectral
positivity is given by the celebrated Reeh–Schlieder theorem [188]: Consider
an open bounded region O � M, as well as the algebra ApOq comprising all field
operator products A smeared by a function supported7 in O. Then, under rea-
sonable assumptions of relativistic QFT, the algebra ApOq is cyclic with respect
to Ω. These assumptions include the existence of a continuous representation of
the group PÒ� by unitary operators Upgq on a Hilbert space H , a unique vacuum
Ω P H and spectral positivity8. So the set of vectors obtained by applying field
operator products A to Ω must be dense in H � HE0 . However, if field operator
products were indeed defined as suggested above, and (PL) would hold, we expect
AΩ to be localized in the region R0 :� JpOq X E0, i.e., AΩ P RanpPE0p@pR0qqq.
This would even lead to a contradiction: The range of a projection is a closed
subspace of H and would have to be dense, meaning that RanpPE0p@pR0qqq � H .
Therefore, all projections to B � @pR0qc would have to be 0. Now any set @pAcq
for an open ball A � BRpxq can be found in some @pR0qc for a suitable R0 �
JpOq X E0 � A small enough. These sets @pAcq generate the Borel σ–algebra on
ΓpΣq9, so we indeed get PE0pBq � 0 for any Borel B � ΓpΣq, which is a contra-
diction to RanpPE0p@pR0qqq � H .
In fact, if the assumptions for the Reeh–Schlieder theorem are valid, then for any
position representation at time t, there must be a vector Ψ � AΩ, A P ApOq,
which is “leaking out” of JpOq. That means, if It : H Ñ L2pR3q is an isometric
isomorphism, then Ψt :� ItΨ has a support exceeding JpOq X Et, as depicted in
Figure 2.11.

7By this, we mean ApOq comprises all A �
³
fpx1, . . . , xN qφr1px1q . . . φrN pxN q dx1 . . . dxN , such

that supp f � ON .
8In this and the upcoming no–go results, spectral positivity is characterized by the Hamilto-

nian H being bounded from below. For a Poincaré covariant theory, this is equivalent to
Wightman’s condition of the joint spectrum of Pµ lying in the closed forward lightcone.

9This fact is proved below [4, (100)].
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Abbildung 2.11: Heuristic depiction of the Reeh–Schlieder theorem: There are A P
ApOq, such that Ψ � AΩ “leaks out of JpOq”. Color online.

Similar results outlining the conflict between propagation locality and spectral
positivity have been provided by Hegerfeldt in a series of papers [189, 190, 185, 191].
These results (some of them are called Hegerfeldt’s theorem) concern a con-
crete spin–boson–like model, where two two–level atoms at positions 0,x P Rd

are coupled to a common boson field (see Figure 2.12). Intuitively, if initially the
boson field is in the vacuum and only one atom is excited, then one may expect
the other atom to become excited only after a time delay of |t| ¥ |x|. However,
Hegerfeldt showed that, assuming spectral positivity, there is a nonzero probability
for the excitation to “jump” to the other atom at almost all times t P R, including
|t|   |x|. As indicated by Buchholz and Yngvason [192], this does not contradict
causality in an algebraic setting, as the projection to the excited level of an atom is
not required to be an element of any local algebra ApOq. By contrast, in a hyper-
surface evolution setting, a simultaneous validity of (PL) and (IL) would certainly
exclude such immediate jumps, if a projection to the excited level is assumed to
act locally10.

A closely related no–go result on unifying locally propagating wavepackets with
spectral positivity is Malament’s theorem [193]. Further no–go results of this
type have been established and carefully compared to the above–mentioned ones
by Halvorson and Clifton [186]. They suggest that a Poincaré–covariant hypersur-
face evolution may indeed be forced to violate spectral positivity.

10By a local action, we mean the following: Consider a projection Py,e to the excited level of
an atom at y P t0,xu. Then, there has to exist a neighborhood Ry of y, small against |x|,
such that under the factorization H � HE0,Ry b HE0,E0zRy

, the projection factorizes as
Py,e � Py,e,Ry b 1E0zRy

.
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Abbildung 2.12: Depiction of Hegerfeldt’s theorem: If spectral positivity holds,
then the atom at x gets excited at arbitrarily small times. Color
online.

The no–go results above suggest, that for reconciling a hypersurface evolution
with the Wightman setting, it will certainly be necessary to modify the proper-
ties required for a hypersurface evolution. As an obvious example, (PL) may be
dropped to allow for spectral positivity. This may come along with a modified way
of defining field operator products A, i.e., one that is schematically different from
the one sketched above. The price, one would have to pay for this is that results
above (or in [4]), which assume dropped properties, would no longer apply.
There is also a novel approach for reconciling (PL) and spectral positivity, if par-
ticle creation from the vacuum is not forbidden [194]. Mathematically, the violated
property is [4]:

• No particle creation from vacuum (NCFV): For any pair of Cauchy
surfaces Σ,Σ1, we have UΣ1

Σ PΣptHuqUΣ
Σ1 � PΣ1ptHuq.

This property is closely related to the Wightman vacuum Ω being an eigenvector
of the Hamiltonian for eigenvalue 0, which follows from the Wightman axiom that
assumes Ω to be invariant under all Upgq. Indeed, if uniqueness of the hypersurface
evolution vacua ΩΣ is assumed, this entails UΣ1

Σ ΩΣ � ΩΣ1 up to a phase, so the
vacuum vector effectively stays invariant under time evolution. Although (NCFV)
seems like a natural assumption, it is not required within any of the Properties
(1)–(8) for a hypersurface evolution and the results above and in [4] would still
hold if (NCFV) was violated. This way, as [194] suggests, it might be possible
to construct a hypersurface evolution simultaneously satisfying (PL) and spectral
positivity.
Another option would be to investigate mathematical models that do not satisfy
spectral positivity, but may comply with the required Properties (1)–(7) for a hy-
persurface evolution. An example is the free Dirac field given by the Hamiltonian
H � dΓpα � p � mβq, which allows for constructing a hypersurface evolution [4,
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Sect. 4]. The interacting 1 � 1–dimensional Dirac fields in [165, 166] also violate
spectral positivity, since there exists a mode with dispersion relation unbounded
from below. And even the Thirring model (1.108), (1.109) and the Federbush model
(1.112), (1.113) feature such dispersion relations unbounded from below. Spectral
positivity is then only obtained after “re–defining the particles” by a bosonization.
Therefore, we indeed deem the study of spectrally non–positive relativistic systems
to be a useful intermediate step towards the final description of physical systems.

Let us also clarify a possible misconception at this point: Unboundedness from
below of a Hamiltonian is often associated with “instability of the system”. A
common heuristic picture is that such a system will “continually drop down to
arbitrarily negative energies”. This in turn would release an arbitrary amount of
energy, which is a process that has never been observed in nature and fiercely
contradicts the physical principle of inexhaustible energy sources being forbidden.
As Malament writes about the implications of the occurrence of a negative–energy
particle [193, pp.4–5]:

r. . .s the particle could serve as an infinite energy source r. . .s We could
first tap the particle to run all the lights in Canada for a week. To be
sure, in the process of doing so, we would lower its energy state. Then
we could run all the lights for a second week, and lower the energy
state of the particle still further. And so on. If the particle had no finite
ground state, this process could continue forever.

However, this energy extraction requires the system to be coupled to an external
system, just like an atomic or molecular system may transition from an excited
to a lower level when being coupled to a radiation field or a heat bath. As long
as a quantum system is left on its own, it just follows the evolution Uptq � e�itH ,
which commutes with all spectral projections, so there is no transition to lower
levels. This includes systems with Hamiltonians unbounded from below, as for the
Dirac particles described above.
Nevertheless, the absence of spectral positivity within a QFT model can become
a considerable drawback from the mathematical side, as it is essential for the
analytic continuation from Wightman distributions to Schwinger functions and
vice versa. Thus, it impedes the use of powerful Euclidean QFT methods. Haag–
Ruelle scattering theory also relies on spectral positivity and will hence become
inapplicable. Further, a thermal equilibrium state (formally given by ρ � 1

Z
e�βH

with β being the inverse temperature) will be difficult to define if H is unbounded
from below. So there are plenty of incentives to restore spectral positivity after a
successful definition of some non–spectrally positive hypersurface dynamics E .
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In this Section, we present the general construction schemes for the two Fock space
extension frameworks: the infinite tensor product– (ITP) and the extended state
space (ESS) construction.

The ITP construction yields a non–separable Hilbert space xH , called ITP space,
which allows for finding uncountably many orthogonal copies of the original Fock
space F in it. ITP spaces have been introduced by von Neumann as early as 1939
[44] and thenceforth been applied to Weyl transformations in several cases. We
outline the ITP construction and its application to Weyl transformations in Sec-
tion 3.1. Since this application is already well–investigated, we do not discuss the
ITP construction for the Weyl–like Gross transformations in Chapter 4, but only
for Bogoliubov transformations in Chapter 5.
By contrast, the novel ESS construction, presented in Section 3.2, is used in both
Chapters 4 and 5. As already mentioned in Section 1.1, it provides two vector
spaces F � F ex, which extend a dense subspace of F . The generalized scheme
presented in Section 3.2 includes the examples in Chapters 4 and 5 as special ca-
ses. As a byproduct of the ESS construction, we obtain vector spaces Ren1,Ren
and a field eRen, that permit a rigorous description of formally infinite quantities.
These spaces might even become useful in a purely algebraic treatment of QFT
dynamics that does not refer to a fixed representation or vectors within a Fock
space extension. Further, we discuss concrete realizations of the ESS construction,
that may turn out advantageous in applications to quantum dynamics.
This chapter can also be seen as supplementary to the upcoming Chapters 4 and 5.

3.1 Infinite Tensor Products (ITPs)

In the following, we recap the construction of von Neumann’s ITP space xH . Fur-

ther details on how xH can be decomposed in orthogonal subspaces and how to
find a convenient basis, are provided in Sections 5.2.3 and 5.8. For a thorough
discussion, we refer the reader to von Neumann’s original work [44].
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3.1.1 Definition

The main goal of the ITP construction is to make sense of the tensor product

xH �
b¹
kPI

Hk, (3.1)

where Hk are separable Hilbert spaces indexed by a (not necessarily finite or
countable) set I. Each Hk has a scalar product x�, �yk and induced norm } � }k.
Choosing one vector per Hilbert space, Ψk P Hk, it is easy to define a formal ITP
as the family pΨq � pΨkqkPI , Ψk P Hk. If I is countable (so one may equivalently
set I � N), then pΨq � pΨ1,Ψ2, . . .q defines a sequence.
On the space spanned by these families, one may write down formal expressions
for a bilinear form that would serve as a candidate for a scalar product inducing
a norm. Formally, for two families pΦq, pΨq,

xpΦq, pΨqy �
¹
kPI
xΦk,Ψkyk, }pΨq} �

¹
kPI

}Ψk}k. (3.2)

In order to answer the question, whether the expressions in (3.2) indeed define
complex numbers, one introduces the notion of convergence within a (possibly
uncountable) sum or product:

• For zk P C, k P I, we call
°
kPI zk or

±
kPI zk convergent to a P C, if for all

δ ¡ 0, there exists some finite set Iδ � I, such that for all finite sets J � I
with Iδ � J , we have�����a�¸

kPJ
zk

����� ¤ δ or

�����a�¹
kPJ

zk

����� ¤ δ, respectively. (3.3)

A simple consequence of this definition is that
°
kPI zk can only converge if zk � 0

occurs for only countably many k P I. So the question of convergence reduces to
that of sequence convergence. Further, it is shown in [44] that

±
kPI zk   8 if and

only if we have zk � 0 for at least one k P I or if
°
kPI |zk � 1|   8. The heuristic

reason is that
±

kPI zk � exp p°kPI ln zkq and ln zk can be linearly approximated
near 1 as ln zk � 1� zk �Opp1� zkq2q.

If
±

kPI |zk| converges to a nonzero number, then
±

kPI zk converges if and only
if no infinite phase variation occurs. That is, if argpzkq P p�π, πs is the phase of
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the complex number zk, then it is required that¸
kPI
|argpzkq|   8. (3.4)

In order to establish a notion of convergence, even when (3.4) is violated, one
defines that

• ±
kPI zk is quasi–convergent, if and only if

±
kPI |zk| converges.

The expression (3.2) may now contain divergent products, which formally corre-
spond to “infinite scalar products” or “infinite norms”. In order to exclude them,
one restricts the allowed families to the set Cseq of so–called “C–sequences”. More
precisely, one calls a family pΨq � pΨkqkPI a

• C–sequence (pΨq P Cseq) iff
±

kPI }Ψk}k   8,

• C0–sequence iff
°
kPI |}Ψk}k � 1|   8 ô °

kPI |}Ψk}2k � 1|   8.

Each C0–sequence is also a C–sequence. For all C–sequences, we have a well–
defined value }pΨq} P C by (3.2) and each C–sequence, that is not a C0–sequence,
must automatically satisfy }pΨq} � 0.

Now, the bilinear form on spanpCseqq in (3.2) renders finite values, but is gene-
rally not positive definite and hence no scalar product: For infinite cardinality of
I, there exist pΨq � 0 with1 xpΨq, pΨqy � 0. So one has to mod out an equivalence
relation �C , which identifies all pΨq with 0 that satisfy xpΨq, pΨqy � 0.
Von Neumann implicitly constructs this equivalence relation by identifying C–

sequences with functionals. For this identification, let
±b

kPI Hk be the space of all
conjugate–linear functionals Cseq Ñ C. Following [44], we can embed ι : Cseq Ñ±b

kPI Hk by identifying pΦq P Cseq with the functional

Φ � ιppΦqq : pΨq ÞÑ
¹
kPI
xΦk,Ψkyk. (3.5)

This identification essentially sets up an equivalence relation �C on Cseq, where
pΦq �C pΦ1q, whenever ιppΦqq � ιppΦ1qq. In Proposition 5.8.1, we show that equiva-
lence is given if and only if pΦq and pΦ1q just differ by a family of complex factors
pckqkPI with

±
kPI ck � 1. The functionals in ιrCseqs are then the equivalence classes

1As an example, consider any family pΨq scaled such that }Ψk}k � 1{2. In fact, any pΨq with
}Ψk}k � c, c P p0, 1q being constant, serves as an example. However, for finite cardinality of
I, xpΨq, pΨqy � 0 implies that Ψk � 0 for one tensor factor, so pΨq � 0.
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and the span of these functionals is denoted by [44]:

1b¹
kPI

Hk :� spanpιrCseqsq. (3.6)

In the following, we will also drop the embedding map ι and simply identify pΦq
with Φ. An inner product x�, �y can uniquely be defined on

±1b
kPI Hk via

xΦ,Ψy �
¹
kPI
xΦk,Ψkyk, (3.7)

which makes
±1b

kPI Hk a pre–Hilbert space and induces a norm }Φ}. Both the inner
product and the norm agree with the second expression in (3.2) under identification
}Φ} � }pΦq}. The completion of (3.6) with respect to the norm is exactly von
Neumann’s ITP space

xH �
b¹
kPI

Hk :�
1b¹
kPI

Hk

}�}

. (3.8)

Later in Section 5.8, we will use that xH �±b
kPI Hk is the space of all Φ P±b

kPI Hk,
such that there exists a Cauchy sequence pΦprqqrPN �

±1b
kPI Hk which converges to

Φ in the weak–� topology on
±b

kPI Hk. That means,

lim
r,sÑ8

}Φprq � Φpsq} � 0 and lim
rÑ8

ΦprqppΨqq � ΦppΨqq (3.9)

for all pΨq P Cseq.

Checking that x�, �y is indeed an inner product on
±1b

kPI Hk, and extends toxH � ±b
kPI Hk, such that one obtains a Hilbert space, is a technical task ac-

complished in [44]. Note that replacing “C–sequence” by “C0–sequence” in the

construction results in the same space xH after completion, since all C–sequences
that are not C0–sequences get identified by ι with the same functional 0.
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3.1.2 Infinite Tensor Products via Basis Choice

Consider now the formal expression (1.145) of a coherent state vector ΩW outside
Fock space. Formally,

ΩW � W psqΩ � e�
}s}2

2

¸
NPN0

pa:psqqN
N !

Ω � ea
:psq�apsqΩ. (3.10)

One way to make sense of such non–Fock coherent states has been proposed by
Chung [195], Kibble [196, 197, 198, 199], as well as Faddeev and Kulish [200]: We
choose an orthonormal basis pekqkPN of the one–particle Hilbert space h � L2pRdq,
such that the functions ek (also called modes) are sufficiently regular. A suitable
regularity could, for instance, be ek P DpRdq � C8

c pRdq or ek P SpRdq. The latter
two choices would allow any displacement function s P D1pRdq or s P S 1pRdq to be
written in basis coefficients sk :� xek, sy.
In particular, this includes the function spkq � �g|k|�3{2 in d � 3 from the Van
Hove model (1.137). As an ITP space we choose

xH :�
b¹
kPN

F ptekuq, (3.11)

where H ptekuq is the Fock space over a single mode ek, with creation and anni-
hilation operators a:k, ak and vacuum Ωk satisfying akΩk � 0. This allows us to
expand the formal expression (3.10):

ΩW � exp

�¸
kPN
pska:k � skakq

�
Ω �

¹
kPN

exp
�
ska

:
k � skak

	
Ω, (3.12)

and make sense of it as in ITP in xH :

ΩW :�
¹
kPN

ΩW,k, ΩW,k � exp
�
ska

:
k � skak

	
Ωk P F ptekuq. (3.13)

One may even give a rigorous meaning to the displacement operator W psq as

W psq : xH Ñ xH , W psq �
b¹
kPN

Wkpskq, Wkpskq � exp
�
ska

:
k � skak

	
.

(3.14)
Note that by the same arguments as in the proof of Lemma 5.4.5, W psq does

not depend on the choice of C–sequences used for representing Ψ P xH . Here,
all Wkpskq are unitary on F ptekuq, so W psq maps ITPs to ITPs while preserving
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their scalar product. And since the span of all ITPs is dense in xH , the operator

W psq can be continued to all of xH and is unitary on it. See also [71], where the
construction is kept more general.

The operators W psq with s P S 1pRdq or s P D1pRdq (depending on the definition)
now generate an extended Weyl algebra, which is given by

W� � spantW ps1q . . .W psNq | sj P �u, (3.15)

where � is a placeholder for either S 1pRdq or D1pRdq. Also, other linear spaces could
be used in place of �, as long as sk � xek, sy can be sensibly defined for all basis
vectors ek and all s P �. The Weyl relations formally read

W psq�1 � W p�sq, W ps1qW ps2q � e�
i
2
σps1,s2qW ps1 � s2q, (3.16)

which serves at the same time as a definition of the unitary operator

e�
i
2
σps1,s2q :� W ps1qW ps2qW ps1 � s2q�1 : xH Ñ xH . (3.17)

The formal expression for the symplectic form σps1, s2q � xs1, s2y � xs2, s1y is ill–
defined and may, in certain cases, correspond to a divergent integral. Therefore the
(well–defined) operator e�

i
2
σps1,s2q can heuristically be interpreted as a rotation

by an infinite phase.

We remark that [195, 196, 197, 198, 199, 200] all concern both perturbative and
non–perturbative scattering theory for QED in d � 3 space dimensions. So far,
there is no self–adjoint Hamiltonian known for a cutoff–free relativistic QED model
in d � 3 and neither of the above references provides a self–adjoint QED Hamilto-
nian. Although the definitions of coherent ITP states are rigorous in these articles,
and the authors provide explicit expressions for dressing operators W [195, (32)],
[200, Sect. 4], the discussion of how the dressing acts is discussed either pertur-
batively or kept on a heuristic level. Nevertheless, these discussions may provide
useful hints for a construction of non–perturbative renormalized Hamiltonians.
In case one intends to use dressing transformations employed in scattering theory
to derive dressing transformations for non–perturbative renormalization, one needs
to be aware of Dollard modifiers [201, 202, 159]. These are additional terms that
enter the definition of the S–matrix in a way similar to a dressing transformation,
but which are not needed for the definition of a renormalized Hamiltonian rH. A
prominent example where Dollard modifiers appear is given by the Coulomb Ha-
miltonian H � H0 �HI with H0 � �∆

2m
and HI � g|x|�1 in d � 3 dimensions. The

Møller operators Ωin{out � limtÑ	8 eitHe�itH0 as in (1.57) do not exist. But one
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can rigorously define the modified Møller operators [201, (29)–(33)]

Ωin{out
c � lim

tÑ	8
eitHe�iH0,cptq, H0,cptq � tH0 � gmsgnptq

|k| log

�
2|t|
m
|k|2



, (3.18)

with |k|2 � �∆ being a multiplication operator in momentum space. The modifi-
cation term in H0,cptq diverges logarithmically as |t| Ñ 8, and can hence be seen
as an infinite phase. However, this phase is not needed for the construction of a
self–adjoint operator H, but only for the definition of the Møller operators Ω

in{out
c

and the S–matrix Sc � pΩout
c q�1Ωin

c . Correspondingly, Faddeev and Kulish split
their formal S–matrix modification into a dressing transformation (called eRptq),
leading out of Fock space, and a Dollard phase (called eiΦptq) [200, (10), (11)]. In
what follows, only an expression eRf of a form similar to eRptq is used as a dressing
transformation that leads out of Fock space and is implemented on the ITP spacexH . This transformation eRf is of a form similar to the bosonic Weyl operators
W psq above, but it acts on a system containing both bosons and fermions (similar
to the polaron models in Section 1.3.7). Further, the form factor spp,kq also de-
pends on the fermion momentum p, as for the Pauli–Fierz model in Section 1.3.7.
So eRf is a Gross and not a Weyl transformation according to the classification
from Section 1.3.4.

3.1.3 Infinite Tensor Products via Patches

Another way to make sense of (3.10) has been proposed by Fröhlich [43], as well as
Könenberg and Matte [80]: Rd is decomposed into a sequence of patches

�
kPNCk �

Rd, such that Ck X Ck1 is a null set for all k, k1 P N. This allows for decomposing
the one–particle space as L2pRdq �À

kPN L
2pCkq. The corresponding ITP space is

xH :�
b¹
kPN

F pCkq. (3.19)

For a given displacement function s R L2pRdq, the patches Ck are now chosen such
that sCk :� s|Ck P L2pCkq for all k P N. For instance, spkq � �g|k|�3{2 is radially
symmetric and has an L2–integral that diverges at |k| Ñ 0 and |k| Ñ 8, which
suggests the use of

Ck :�  
k P Rd

�� Rk ¤ |k| ¤ Rk�1 _ rk ¥ |k| ¥ rk�1

(
, (3.20)

where a suitable choice of radii is given by Rk � 2k�1 and rk � 2�k�1. So
each Ck, k ¥ 2 is a union of two concentric rings and all Ck are compact. Similar
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Abbildung 3.1: Left: Depiction of the compact patches Ck in (3.20).
Right: The choice of C 1

k as in [43]. Color online.

choices for Ck are used in [43, 80]. However, both references use displacement
functions s, that are only IR–divergent. So one may choose concentric rings C 1

k :�
tk | rk�1 ¥ |k| ¥ rku, k ¥ 2 and set an infinite outer radius for the outer ring
C 1

1 :� tk | |k| ¥ 1u [43]. Or one may even exclude the outer ring from the

definition of xH , if spkq � 0 for large |k| [80]. Blanchard [71] suggests a general
choice of compact Ck covering Rd (for d � 3), while also considering the approach
via a regular basis pekqkPN in (3.11) as an alternative ITP construction.
Since sCk P L2pCkq, the dressing transformation WkpsCkq : F pCkq Ñ F pCkq is a
well–defined unitary operator, so

W psq : xH Ñ xH , Wkpsq �
b¹
kPN

WkpsCkq (3.21)

is unitary, as well. The set of all families s � psCkqkPN, sCk P L2pCkq forms a vector
space (analogous to S 1pRdq or D1pRdq in the previous section) and allows for defi-
ning an extended Weyl algebra in analogy to (3.15).

The ITP space construction (3.19) via patches pCkqkPN may seem more natural
than the construction (3.11) via pekqkPN, since it allows for respecting radial sym-
metry. However, the single–particle spaces L2pCkq are infinite–dimensional, which
makes the approach more difficult to handle.
For Bogoliubov transformations, there is yet another complication with the patch–
based ITP space construction (3.19), which forces us to pursue the basis approach
(3.11) in Chapter 5. To demonstrate this issue, we turn a Weyl transformation
into a Bogoliubov transformation by replacing the linear term

°
kPNpska:k � skakq
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in the exponential (3.12) by the quadratic term

Q �
¸
kPN
pska:ka:k � skakakq �

¸
k,k1PN

δkk1pska:ka:k1 � skakak1q. (3.22)

The coefficient matrix SQ � pδkk1skqk,k1PN is diagonal, but will generally no longer
be diagonal after a coordinate transformation. That means, for U � pUkk1qk,k1PN :
unitary, the matrix U�SQU may contain off–diagonal terms. These correspond to

cross–terms a:ka
:
k1 and akak1 with k � k1, which induce correlations between the

modes and hence spoil the mode–wise split as in (3.14). Therefore, the choice of a
basis pekqkPN or patches pCkqkPN has to be done in a sophisticated way for Bogoliu-
bov transformations, namely such that no correlations between different modes or
patches occur. The cases discussed in Chapter 5 are chosen exactly such that they
allow for a “sophisticated split” into a basis pekqkPN, as we explain in Sections 5.3.2
and 5.4. But there might not exist a suitable split into patches pCkqkPN without
(3.22) containing cross–terms between different patches2. Therefore, we choose an
ITP space construction in Chapter 5, which relies on a basis pekqkPN as in (3.11).

3.2 Extended State Space (ESS)

Both Chapters 4 and 5 concern two different pairs of extensions F � F ex of a
dense subspace of Fock space F , which are constructed following the same scheme.
In principle, it is possible to generate an even larger number of “extended state
spaces” F � F ex, using this construction scheme. There are two choices that can
be made, which lead to different spaces F and F ex:

• The choice of the one–particle space RpXq
• The choice of the N–particle space RpNqpXq complying with RpXq

The two choices are constrained by some Conditions (A), (B), (C) and (D) and
have to be adapted to the respective model.

2An example for the impossibility of a split is the following: Consider an orthonormal basis
pejqjPN with supp ej � Rd for all j. Further, define the matrix S by Sej � jej , so its
spectrum is σpSq � N, with all eigenvalues being of multiplicity 1. Now assume, there exists
a decomposition L2pRdq �

À
kPN L

2pCkq, such that S has no off–diagonal terms with respect
to the split, i.e., S maps each L2pCkq into itself. Then, the (orthogonal) projection P �
P pCkq to L2pCkq commutes with S, so SpPejq � PSej � jpPejq. Hence, either Pej � 0,
so ej K L2pCkq, or Pej is an eigenvector of eigenvalue j. Since some L2pCkq must contain
a nonzero vector, ej K L2pCkq cannot hold for all j, k P N. So for some j and k, the vector
Pej � P pCkqej is indeed an eigenvector of j, and by the multiplicity assumption and P 2 � P ,
we have P pCkqej � ej ñ ej P L

2pCkq, which contradicts the assumption supp ej � Rd.
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In Section 3.2.2 we explain the general construction scheme for F � F ex. Rea-
sonable choices for RpXq and RpNqpXq are discussed in Sections 3.2.3 (Van Hove
example), 3.2.4 (polaron models as in Chapter 4) and 3.2.5 (Bogoliubov transfor-
mations as in Chapter 5).

3.2.1 Motivation

The ESS construction is inspired by formal coherent state vectors outside Fock
space, such as ΩW in (1.145), but also the “IBC–vacuum” ΩIBC in (1.143). Recall
that

Ω
pNq
W pk1, . . . ,kNq � e�

}s}2

2 Ω
pNq
IBCpk1, . . . ,kNq � e�

}s}2

2
1?
N !

N¹
`�1

spk`q, (3.23)

where the Van Hove example discussed in (1.137) requires spkq � �g|k|�3{2 with

s R L2pR3q. The ITP space xH constructed in Section 3.1.2 allows to define

ΩW P xH , but not ΩIBC, since the formal renormalization factor e�
}s}2

2 cannot
be treated separately. One goal of the ESS approach is to remedy this shortcoming.

R

R2

RpNq RF

Ren1

Ren RenQ

eRen
(field extension of C)

F
(1st ESS)

F ex
(2nd ESS)

Abbildung 3.2: Construction scheme for the ESS approach. Color online.

The construction process is sketched in Figure 3.2. To make sense of ΩW , we
start from a space RpXq of generalized one–particle functions, that shall contain
s. Via an N–particle space RpNqpXq, we arrive at RF pXq, which contains confi-
guration space functions QpXq Ñ C, such as ΩIBC. This RF pXq can be seen as a
generalization of Fock space F pXq � L2pQpXqq, although RF pXq only extends a
dense subspace of F pXq.
The divergent integral }s}2 over the function product |s|2 is interpreted as an
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element of a vector space Ren1, and the “wave function renormalization”

er :� exp

�
�}s}

2

2



(3.24)

is accommodated in a field eRen extending C. We then interpret the coherent
state ΩW � erΩIBC as an element of the first extended state space F , which is an
eRen–vector space containing elements like erΨj with er P eRen and Ψj P RF pXq.
For a suitable choice of RpXq, the infinite counterterm E8 in (1.139) can be in-
terpreted as an element r1 � E8 P Ren1. In order to define E8 as a multiplication
operator on F , we need to multiply vectors from F with an arbitrary number of
factors r1j P Ren1. These arbitrary products R :� r11 � . . . � r1n, are captured within
an algebra Ren. We then allow for R � Rpqq to depend on the configuration q P Q
by introducing a space RenQ and capture R � erΨj within a second extended state
space F ex.

3.2.2 General Construction Scheme

As mentioned above, our first aim is to construct a space RF pXq of configura-
tion space functions, that may go beyond Fock space F � L2pQq. In order to
reconstruct any Fock space vector from elements of RF pXq, we require RF pXq to
contain at least a dense subspace of F . This is ensured by Conditions (A), (B),
(C) and (D), below. We proceed as follows:

• The construction begins with a generalized one–particle space3 RpXq.
We require that

(A) RpXq shall contain complex–valued, measurable functions over a mea-
sure space pX,µq, defined almost everywhere.

(B) RpXq shall extend a dense subspace of L2pX,µq.
The space RpXq corresponds to the space 9S81 in Chapter 4, and is called
EpNq in Chapter 5. As usual, we will drop the parentheses pXq, if they are
not explicitly needed.

• Starting from R, one may construct the generalized N–particle space
RpNqpXq, of which we require that

3The names “generalized one–particle space” and “space of generalized one–particle wave func-
tions” as in Chapter 5 are considered to be synonymous.
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(C) RpNqpXq consists of complex–valued, measurable functions, defined al-
most everywhere on XN .

(D) RpNqpXq contains the algebraic tensor product RbaNpXq.
In other words,RpNqpXq has to contain all finite linear combinations of tensor
products φ1 b . . . b φN with φj P R. The measure on XN , called µN , is the
product measure induced by µ on X. This way, we assure that the following
statement holds.

Proposition 3.2.1. RpNqpXq extends a dense subspace of the N–particle
Hilbert space L2pX,µqbN .

Proof. Every ΨpNq P L2pX,µqbN � L2pXNq can be written as

ΨpNq �
¸
kPN

ckψk,1 b . . .b ψk,N , }ψk,j}L2pXq � 1, (3.25)

with pckqkPN � C being an absolutely convergent series. Truncating the series

at K P N, we obtain an approximating vector Ψ
pNq
K , with the sum in (3.25)

running over k ¤ K. For a given ε ¡ 0, we can achieve }ΨpNq �Ψ
pNq
K }   ε{2

by choosing K sufficiently large. Since RpXq extends a dense subspace of
L2pXq, we may approximate all ψk,j for k ¤ K by vectors φk,j P R to
arbitrary precision, obtaining

Φ
pNq
K �

Ķ

k�1

ckφk,1 b . . .b φk,N , Φ
pNq
K P RpNqpXq. (3.26)

Choosing a sufficient approximation precision of φk,j P R, we finally arrive
at

}ΨpNq
K � Φ

pNq
K }   ε{2 ñ }ΨpNq � Φ

pNq
K }   ε. (3.27)

Depending on the purpose, it may also be useful for RpNq to contain certain
infinite linear combinations of tensor products. The space RpNq can be found
under the name E pNqpNq in Chapter 5.

Within Chapter 4, two particle species are considered, which would, in this
scheme, require the construction of spaces RpM,Nq with M particles of the
first kind and N particles of the second kind. More generally, a construction
of RpN1,...,Nnq for n P N particle species can be performed in analogy to RpNq.
The Conditions (C) and (D), as well as Proposition 3.2.1 extend analogously
to this case:
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(C) RpN1,...,Nnq consists of measurable functions, defined almost everywhere
on XN1�...�Nn .

(D) RpN1,...,Nnq contains the algebraic tensor product RbaN1ba . . .baRbaNn .

Proposition 3.2.2. RpN1,...,NnqpXq extends a dense subspace of the sector
Hilbert space L2pX,µqbpN1�...�Nnq.

Proof. Apply Proposition 3.2.1 with N � °n
j�1Nj.

The construction in Chapter 4 slightly deviates from the above scheme: The
space 9S8F , defined there, decays into sectors, which we call RpM,Nq

xy , here. As

we explain in Section 3.2.4, RpM,Nq
xy can be constructed starting from two

different spaces Rx and Ry. However, Rx � Ry, and the space RpM,Nq
xy can

be seen as a subspace of some RpM,Nq constructed from a single one–particle
space R � Ry in the above–mentioned manner. So the general construction

scheme described here also captures the space 9S8F constructed in Chapter 4.

• Taking the orthogonal sum over all sectors, we obtain the space of genera-
lized Fock space functions

RF pXq :� à
NPN0

RpNqpXq. (3.28)

This RF contains functions defined everywhere but on a null set on Q and
extends a dense subspace of Fock space F pXq. The generalization to n par-
ticle species is given by RF :� À

N1,...,NnPN0
RpN1,...,Nnq, which also extends

a dense subspace of the respective Fock space F . In Chapter 4, the space
9S8F corresponds to RF for two particle species and in Chapter 5, the space
EF pNq corresponds to RF for one particle species.

The extended state spaces F and F ex shall now contain elements of the form

erΨj P F or err11 � . . . � r1pΨj P F ex, (3.29)

with p P N,Ψj P RF and r, r1k being well–defined versions of formal expressions
like

r � xφ1, φ2y �
»
X

φ1pxqφ2pxq dµpxq, φ1, φ2 P R. (3.30)

We now make sense of possibly divergent “renormalization integrals” as in (3.30):
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• The product function rpxq :� φ1pxqφ2pxq, defined almost everywhere on X,
is interpreted as an element of the function product space

R2 :� spantφ1φ2 | φ1, φ2 P Ru. (3.31)

In Chapters 4 and 5, R is chosen to be stable under function multiplication,
so R2 � R and no separate definition of a space R2 is necessary. In any case,
all functions in R2 are measurable by means of (A).

• A formal integral r � ³
X
rpxq dµpxq can now be expressed by the function

r P R2. However, we would like to think of r not as a function, but as
the numerical value of the integral, so we may interpret r as a C–number
whenever r P L1pXq. In particular, r1, r2 P R2 should correspond to the same
r, if their difference is an L1–function with integral 0. This identification is
established by introducing the equivalence relation

r1 �Ren1 r2 :ô pr1 � r2q P L1pXq ^
»
X

pr1pxq � r2pxqq dµpxq � 0.

(3.32)
The space of renormalization factors is then defined as

Ren1 :� R2{�Ren1
. (3.33)

We call it Ren1 in Chapter 4 and Ren1pNq in Chapter 5. Heuristically,
r P Ren1 can be seen as a space containing “controlled infinitely large num-
bers”.
Whenever pr1 � r2q P L1 for some functions r1, r1 P R2 representing r1, r2 P
Ren1, we can identify pr1 � r2q with a unique complex number. This identi-
fication allows decomposing Ren1 into coarser equivalence classes

Clas1 :� Ren1{�1 , r1 �1 r2 :ô pr1 � r2q P L1. (3.34)

As discussed around (4.59), we can then decompose Ren1 � V ` W with
V � r0s�1 and W containing one vector per class rrs�1 P Clas1. Within each
class, differences of r–factors can be translated into complex numbers, where
the translation is one–to–one:

Proposition 3.2.3. r0s�1 � C.

Proof. r0s�1 contains all r P Ren1 that can be represented by r P L1. These
r are identified with the unique integral r � ³

X
rpxq dµpxq, so we can write
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r P C.

Conversely, each c P C corresponds to some c � r P r0s�1 : Since R contains
a dense subspace of L2pXq, there must be some φ P R with a finite L2–norm
0 � }φ}2 P C. Correspondingly, for φφ P R2 we have

r1 :�
»
X

φpxqφpxq dµpxq � }φ}22 � 0, r1 P C ñ r1 P r0s�1 . (3.35)

Now, since r1 � 0, any c P C can be written as c � c̃r with c̃ P C and must
hence be contained in the C–vector space Ren1. And since c̃φφ P L1, we have
that c P r0s�1 .

• The exponential er with r P Ren1 is interpreted as an element of a further
space eRen. Below in (3.57), we define an extended Weyl algebra W , similar
toW� from (3.15), that allows for multiplication by eRen–elements. Therefo-
re, it is useful to define eRen as a field extension of C, soW can conveniently
be made an algebra over the field eRen instead of C.
So eRen shall contain all exponentials er and allow for multiplication, linear
combination and inversion. The first two operations can be performed within
the group algebra CrRen1s containing all linear combinations c1e

r1�. . .�cnern
with cj P C, rj P Ren1. The multiplication law of the algebra is given by
er1er2 � er1�r2 . Further, we would like to identify ecer with ec�r, which is
done by modding out the ideal

I generated by tecer � ec�r | c P C, r P Ren1u. (3.36)

The resulting algebra CrRen1s{I does not yet allow for taking inverses. To
make this operation possible, we take the quotient field of CrRen1s{I, which
is the final field of wave function renormalizations

eRen :�
"
c :� a1

a2

���� a1, a2 P CrRen1s{I
*
. (3.37)

Definition (3.37) does only make sense, if CrRen1s{I has no proper zero
divisors, i.e., it is an entire ring:

Proposition 3.2.4. CrRen1s{I has no proper zero divisors.

Proof. For a specific choice of R, this fact is established in Propositions 4.3.7
and 4.3.8. The proof only makes use of Ren1 decaying into classes (3.34),
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which are all isomorphic to C. This is true for any choice of R complying
with (A) and (B), so Propositions 4.3.7 and 4.3.8 carry over to all Ren1pXq
considered in this section.

Now, any element c P eRen can be written (non–uniquely) as

c � a1

a2

� c1e
r1 � . . .� cne

rn

c11er
1
1 � . . .� c1n1e

r1
n1
, (3.38)

and if all rj, rj1 P C, then we can also identify c with a C–number. In general,
c P eRen may heuristically be thought of as a “controlled, possibly infinitely
large number” or, in some cases, as an “infinite phase”.

Having defined er P eRen and Ψj P RF , we are now in the position to define our
first ESS, which contains elements of the form Ψ � erΨj P F as in (3.29):

• Consider the free eRen–vector space

F 0 :�  
c1Ψ1 � . . .� cnΨn

�� cj P eRen, Ψj P RF

(
, (3.39)

with all sums being commutative. This space already contains expressions of
the kind erΨj, but it does not allow for shifting complex factors from cj to
Ψt. We allow for this shift by modding out the equivalence relation

�F generated by pccqΨj �F cpcΨjq @c P C, c P eRen,Ψj P RF . (3.40)

The first extended state space is then defined as

F :� F 0{�F
. (3.41)

In order to make sense of expressions Ψ � err11 � . . . � r1pΨj as in (3.29), we proceed
as follows:

• First, we define a space RenP containing products r11 � . . . � r1p of power p ¤ P
with r1k P Ren1. To do so, we consider the free C–vector space

PolP :� span
 
r11 � . . . � r1p

�� r1k P Ren1, p ¤ P
(
, (3.42)

with the products being commutative. We allow for shifting complex numbers
between the r1–factors and converting r1 P C into the respective complex
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number, by defining the equivalence relation �RenP generated by

pc1c2qr11 � . . . � r1p �RenP c1pc2r
1
1q � . . . � r1p

r11r
1
2 � . . . � r1p �RenP c1r

1
2 � . . . � r1p if r11 � c1 P C,

(3.43)

for cj P C, r1k P Ren1, p ¤ P . The space of renormalization polynomials
of degree P is then defined by

RenP :� PolP {�RenP
. (3.44)

• The spaces RenP are contained in each other as RenP � RenP 1 for P ¤ P 1.
Taking the union over all P , we arrive at the space of renormalization
polynomials

Ren :�
¤
PPN

RenP . (3.45)

In fact, Ren is even an algebra, as it allows for arbitrary multiplication of
elements (which is not true for RenP ).

• The second ESS F ex is now defined such that it allows for expressions like
R�erΨj, where R P Ren could, for instance, represent a product of self–energy
terms R � r11 � . . . � r1p. Recall that Ψj P RF is a function on configuration
space QpXq. Since we expect the self–energy to depend on the configuration
q P QpXq, we would like to allow for renormalization polynomials Rpqq that
depend on the configuration. This is realized by introducing the function
space

RenQ :� tΨj : QpXqzN Ñ Ren | µQpN q � 0u , (3.46)

where the factor R has been included into the Ψj and µQ is the measure

on QpXq induced by µ on X. In Chapter 4, a similar space Ren
9Q is defi-

ned, which consists of functions 9Q Ñ Ren with a fixed 9Q � Q, such that

Qz 9Q �: N is a null set. So Ren
9Q can be seen as a subspace of RenQ.

Using RenQ, the expression in (3.29), to be defined as an element of F ex,
now becomes erΨj with Ψj P RenQ. We can interpret it as an element of the
free eRen–vector space

F ex,0 :�
#¸
jPN

cjΨj

����� cj P eRen, Ψj P RenQ

+
. (3.47)

Note that the countable union of all null setsN , where some Ψj P RenQ is not
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defined, is again a null set. Again, all sums are considered to be commutative.
In the slightly modified construction in Chapter 4, we choose the sum over
j to be finite. As for F , we allow for shifting complex factors by modding
out the equivalence relation

�Fex generated by pccqΨj �Fex cpcΨjq @c P C, c P eRen,Ψj P RenQ.
(3.48)

We may then define the second extended state space

F ex :� F ex,0{�Fex
. (3.49)

This space is also called F ex in Chapters 4 and 5 and its definition concludes
the ESS construction.

3.2.3 Choices Within the Van Hove Model

To make sense of the coherent states outside Fock space (3.23) appearing in the
Van Hove example, it is necessary to choose RpXq such that it contains spkq �
�g|k|�3{2. Here, X � Rd. More generally, if a dispersion relation ωpkq and a
form factor vpkq are fixed in the Van Hove model (1.137), then RpRdq has to

contain spkq � � vpkq
ωpkq . The case ωpkq9|k| and vpkq9|k|�1{2 in d � 3 is particularly

interesting from a physical point of view, since these are the expected scalings for
a relativistic light–matter interaction. After choosing R, the space RpNq must be
adapted correspondingly.
In the following, we discuss some candidates for R and RpNq, such that R contains
spkq � �g|k|�3{2 or other functions spkq beyond L2:

• R � EpRdq � C8pRdq: Smooth functions allow for arbitrary scaling of spkq
as |k| Ñ 8, including s9|k|�3{2. This makes the space E ideal for absorbing
UV–divergences. Further, E is preserved under pointwise multiplication, so
R � E entails R2 � R. However, EpRdq does not allow for poles in the
IR–regime |k| Ñ 0, which rules out s9|k|�3{2 and strongly restricts the per-
mitted choices for ωpkq, vpkq. Nevertheless, it is easy to verify requirements
(A) and (B), as EpRdq contains the dense subspace DpRdq � C8

c pRdq.
A natural choice for the N–particle space is RpNq � EpRNdq. By [203,
Thm. 51.6], we can then identify the topological tensor product EpRdqbN with
EpRNdq. Conditions (C) and (D) are satisfied for this choice, since EpRNdq
consists of measurable functions and the topological tensor products contain
more elements than algebraic tensor products.
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• R � E 1pRdqXL1
locpRdq: For compactly supported distributions, also E 1pRNdq �

E 1pRdqbN [203, Thm. 51.6], which allows for the convenient choice RpNq �
E 1pRNdq X L1

locpRNdq. We need to take the intersection with L1
loc, in order to

obtain functions defined almost everywhere on Rd, so Conditions (A) and (C)
are satisfied. In fact, all distributions representable by a function Rd Ñ C
must be in L1

loc, since they could otherwise not be applied to all test functions
in D � C8

c . Condition (B) is easily verified, since both E 1 and L1
loc contain

D. Condition (D) follows from the fact that E 1pRNdq � E 1pRdqbN , and that
L1

locpRNdq contains the N–fold algebraic tensor product of L1
locpRdq.

However, compactness of supp s is a serious restriction, excluding spkq �
�g|k|�3{2. Further, note that4 R2 � R.

Note that strictly speaking, R � E 1pRdq X L1
locpRdq does not consist of func-

tions, but rather equivalence classes of functions up to modifications on a
null set. The same will be true for some of the spaces below. So the ESS
construction has to be adapted in this case, such that R,RpNq,R2 and RenQ

are defined as equivalence classes of functions up to modifications on a null
set. It is easy to see that the construction can be carried through analo-
gously in that case: Sums, scalar products, tensor products and direct sums
respect the equivalence up to modifications on a null set. The same holds for
finite multiplication of functions, as in the definition of R2. Finally, the inte-
gral over a measurable function is not affected by a modification on a null set.

• R � S 1pRdqXL1
locpRdq: Tempered distributions S 1 � E 1 allow for a polynomi-

al growth of spkq as |k| Ñ 8 and are therefore a good choice for absorbing
UV–divergences. Again, S 1pRNdq � S 1pRdqbN [203, Thm. 51.6] allows for the
convenient choice RpNq � S 1pRNdq X L1

locpRNdq, where Conditions (A), (B),
(C) and (D) are fulfilled by the same arguments as in the case with E 1 above.
Another advantage is that S 1 allows for taking the inverse Fourier transform
špyq, and hence for an easy change between momentum and position space.
However, poles in R are still restricted to order   d by the L1

loc–condition.
This puts restrictions on the IR–behavior of s, but still allows for s9|k|�3{2

in d � 3. Nevertheless, as in the previous case, R2 � R and the function
|spkq|29|k|�3, over which the integral in (3.23) is taken, is no element of R.

• R � D1pRdq X L1
locpRdq: Also the distribution space D1 � S 1 allows for the

identification D1pRNdq � D1pRdqbN [203, Thm. 51.6], and hence for the con-

4As a counterexample, consider some s P R with spkq9|k|�d�ε as |k| Ñ 0. So |spkq|29|k|�2d�2ε,
which is not in L1

loc for ε small enough.
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venient choice RpNq � D1pRNdq X L1
locpRNdq. In comparison to S 1 X L1

loc,
this space does not allow for taking Fourier transforms, but instead accom-
modates functions that diverge faster than polynomially in the UV–regime.
Pole strengths are still limited to   d, allowing for the accommodation of
spkq � �g|k|�3{2 in d � 3, but ruling out |spkq|29|k|�3. Again, R2 � R, and
Conditions (A), (B), (C) and (D) are fulfilled by the same arguments as for E 1.

• Hilbert space riggings: It is possible to construct a triple of Hilbert spaces
H� � H0 � H� with H0 � L2pRdq and a pairing H� �H� Ñ C [204]. In
that case, we may choose R � H� and conveniently define RpNq � H bN

� as
the Hilbert space tensor product. However, H� may contain elements, that
are no functions Rd Ñ C, so it might be necessary to intersect H� with a
function space, such as L1

loc, to define an R satisfying Condition (A). In the
following, we explain choices R � H�, that do not necessarily satisfy (A).
So an intersection might be necessary before the ESS construction.

A typical example for such a rigging are Sobolev chains Hm � L2 � H�m

[204, Example 1.2]. With increasing derivative index m ¡ 0, the allowed or-
der of poles in HmpRdq decreases to   maxpd{2�m, 0q, which increases the
allowed pole order in R � H�mpRdq � S 1pRdq to   minpd{2�m, dq. Hence,
all m ¡ 0 allow for accommodating the IR–divergence of spkq � �g|k|�3{2,
but not that of |spkq|2 � g2|k|�3 in d � 3.
However, in contrast to S 1, the allowed UV–scalings for s P H�mpRdq are the
same as for L2pRdq. That means, s has to decay faster than |k|�3{2, irrespec-
tively of m, which rules out spkq � �g|k|�3{2 in the Van Hove example.

Another rigged Hilbert space [204, Example 1.3] is constructed by introdu-
cing the formal scalar product

xφ, ψyH� :� xφ,Kψy, (3.50)

where K is an integral operator with bounded kernel K : Rd �Rd Ñ C. H�
is then given by the set of all measurable functions

φ : Rd Ñ C with }φ}2H�
�
»
φpkqKpk,k1qφpk1q dkdk1   8. (3.51)

To obtain an actual scalar product,K must be positive definite, i.e., xφ, φyH� ¡
0 for all 0 � φ P L2pRdq. There are many possible choices for K, such as the
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Gaussian kernel5 in [205]

Kpk,k1q � exp

�
�|k � k

1|2
2σ2



, σ ¡ 0, (3.52)

see also Figure 3.3. The corresponding operator K is then a convolution with
a Gaussian function, which provides a good IR–regularization: If s P S 1, then
K acts as a multiplication by a Gaussian on the Fourier inverse š � F�1psq:

F�1pKsqpyq � σd exp

�
�|y|

2σ2

2



špyq. (3.53)

So in H� there are tempered distributions, whose Fourier inverses are func-
tions with an arbitrary polynomial increase as |y| Ñ 8. However, (3.53) also
shows that there is no UV–regularization, since the Gaussian scales like a
constant as |y| Ñ 0. In particular, spkq � �g|k|�3{2 in d � 3 cannot be
accommodated into H�, since

xs,Ksy � xF�1psq,F�1pKsqy � g2

»
R3

exp

�
�|y|

2σ2

2



|y|�3 dx (3.54)

diverges logarithmically as |y| Ñ 0.

x

x′

K(x, x′)

0

x

x′

KT (x, x
′)

0

Abbildung 3.3: Left: The Gaussian kernel from (3.52).
Right: The multiplication operator T has a distribution KT as its
kernel, that is supported on the diagonal. Color online.

A further way to provide Hilbert spaces for a rigging [204, Example 1.1] is
to introduce an operator T : L2pRdq Ñ L2pRdq multiplying by a bounded,
measurable function T : Rd Ñ R with T pkq ¡ 0 almost everywhere, and to

5For normalization reasons, a factor of 8σ instead of 2σ is used in [205, (2)].
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define R � H� via the scalar product

xφ, ψyH� :� xφ, Tψy. (3.55)

The functions T 1{2pkq and T�1{2pkq are then defined almost everywhere, and
we can write

H� �
 
φ : measurable

�� T 1{2φ P L2pRdq(
H� �

 
φ : measurable

�� T�1{2φ P L2pRdq(, (3.56)

up to modifications on a null set6. The choice (3.55) can also be seen as a
kernel–based scalar product, as in (3.50) with kernel KT pk,k1q � T pkqδpk�
k1q being a distribution, and hence unbounded. See also Figure 3.3.
The choice of the function T pkq now determines how well IR– and UV–
divergences of s can be absorbed. For instance, one may choose a smooth
function T pkq, scaling as |k|α for |k| Ñ 0 and as |k|�β for |k| Ñ 8 with
α, β ¡ 0. This allows for s P RpRdq, which may have a pole at 0 of order
  pd�αq{2 and are only required to decay faster than |k|pβ�dq{2 at |k| Ñ 8.
Hence, R � H� accommodates spkq � �g|k|�3{2 in d � 3 for all α, β ¡ 0.
One may even require T pkq to scale exponentially7 at |k| Ñ 0 and |k| Ñ 8,
which admits to have all spkq within R, which increase polynomially at
|k| Ñ 8 and have a pole of any order at k � 0.
As a further generalization, one may consider a function T pkq that vanishes
along the unit of finitely many submanifolds of co–dimension ¥ 1 in Rd and
scales exponentially, as it approaches a submanifold, or as |k| Ñ 8. This
would even allow for s, which blow up polynomially as they approach a sub-
manifold.

• It is even possible to define a rigging by a limit of Hilbert spaces. The
final rigging is then Φ � L2pRdq � Φ1 [204, Sect. 1.2], where Φ � �

τPT Hτ ,
with T being any index set and the family pHτ qτPT being directed. That
means, for any Hτ ,Hτ 1 , one can still find some τ 2 with Hτ2 � Hτ ,Hτ2 �
Hτ 1 . If Φ is dense in each Hτ , then Φ1 � �

τPT H�τ [204, Lemma 1.2]. The
space Φ1 is equipped with the inductive limit topology, so it does not have to

6That means, just as in the standard construction of Lp–spaces, H� and H� as in (3.56) actually
consist of equivalence classes of measurable functions, where two functions are considered
equivalent if they agree everywhere except for a null set. So there is a slight abuse of notation
in (3.56).

7By an exponential scaling at |k| Ñ 0, we mean that |spkq|   c1e
�

c2
|k| for some constants

c1, c2 ¡ 0 at small |k|. For |k| Ñ 8, an exponential scaling means that |spkq|   c1e
�c2|k| for

some c1, c2 ¡ 0 at high |k|.
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be a Hilbert space. This allows for even more general spaces R � Φ1 than the
above Hilbert space riggings. For instance, the rigging SpRdq � L2pRdq �
S 1pRdq can be obtained as a limit of Hilbert spaces [204, Example 1.8]. A
definition of RpNq for R � Φ1 can then be achieved as an algebraic or topo-
logical tensor product.

It is easy to verify that all above choices for R and RpNq satisfy Conditions
(B) and (C): Rd is equipped with the Lebesgue measure, all R contain the dense
space C8

c pRdq � L2pRdq and RpNq always contains the algebraic tensor product.
As explained above, Condition (A) is generally not satisfied, and requires the in-
tersection with a function space. Whenever s P R for the Van Hove example, we

have ΩW ,ΩIBC P F (compare (3.23)), since sbN P RpNq and e�
}s}2

2 P eRen.

As for the ITP space, it is also possible to construct an extended Weyl algebra

W :� spaneRentW ps1q . . .W psNq | sj P Ru, (3.57)

with W psq, s P R being formal algebraic expressions. This is a generalization of
the Weyl algebra defined in Section 4.5.3 to a general ESS construction based on
R. Within the Weyl relations (3.16)

W psq�1 � W p�sq, W ps1qW ps2q � e�
i
2
σps1,s2qW ps1 � s2q,

we can now interpret σps1, s2q � xs1, s2y�xs2, s1y P Ren1 and e�
i
2
σps1,s2q P eRen. So

in contrast to the ITP extended Weyl algebraW� (with � being a placeholder for a

function space), we do not have to define the factor e�
i
2
σps1,s2q via W psq–operators,

but can directly consider them as elements of the field eRen. Further, W is an
eRen– instead of just a C–algebra, which allows for more freedom of computation,
and for � � R, we obviously have W� �W .
However, the W psq are not a priori defined as operators on a subspace of F or
F ex, and a suitable definition may require some work, as in Section 4.5. Further,
W psq defined on (a subspace of) F or F ex are never unitary, since F and F ex

do not have a scalar product.

3.2.4 Choices within Polaron Models

In the class of polaron models with “Yukawa–type interaction” in Chapter 4, the
construction process of 9S8F treats fermions x and bosons y asymmetrically, and
therefore slightly deviates from the one of RF , described in Section 3.2.2. This

147



3 Fock Space Extensions

asymmetric treatment can be seen as a refinement of the construction process in
Section 3.2.2, with R being based on Hilbert space riggings. In the following, we
demonstrate how 9S8F , which is defined in Section 4.3, can be embedded into a
space RF constructed exactly as in Section 3.2.2.

We start from two different one–particle spaces Rx and Ry. For bosons, we use

Ry � 9S81 , defined in (4.27), which contains smooth functions scaling “at most
polynomially” at |k| Ñ 0 and |k| Ñ 8. This space can also be obtained as a limit
of Hilbert space riggings

Hα,β,� � L2pRdq � Hα,β,�, Ry �
¤
α,β¡0

Hα,β,�, (3.58)

with Hα,β,� defined as in (3.55) where Tα,β multiplies by a suitable function Tα,βpkq
scaling like |k|α as |k| Ñ 0 and |k|�β as |k| Ñ 8. It is natural to choose RpNq

y as
the space of all functions on RNd that are polynomially bounded as |kj| Ñ 8 and
blow up at most polynomially, when approaching the set

Dpk � 0qy :�  
q � pk1, . . . ,kNq

�� kj � 0 for some j ¤ N
(
. (3.59)

That means, pΨpqq � distpq, Dpk � 0qyqαq Ñ 0 for some α ¡ 0. For fermions, we
choose as Rx the space of smooth functions scaling at most polynomially at |p| Ñ
8. It is then natural to set RpMq

x to be the space of all functions polynomially
bounded as |pj| Ñ 8. For these choices, Rx � Ry and RpMq

x � RpNq
y . Note that

Rx can also be obtained as a limit of Hilbert space riggings

Hβ,� � L2pRdq � Hβ,�, Rx �
¤
β¡0

Hβ,�, (3.60)

with Hβ,� defined via (3.55) by a suitable family of multiplication functions Tβppq
scaling as |p|�β for |p| Ñ 8.

We now define RpM,Nq
xy as a spaces of smooth functions on RMd�NdzDpk � 0q,

where

Dpk � 0q :� tq � pp1, . . . ,pM ,k1, . . . ,kNq | kj � 0 for some j ¤ Nu (3.61)

is the set of configurations where the momentum of one y–particle collides with 0.
We assume these functions to be polynomially bounded as |kj| Ñ 8 or |pj| Ñ 8
and to blow up at most polynomially, as q approaches the set Dpk � 0q. With this
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definition, each sector contains the algebraic tensor products

RpM,Nq
xy � �

RpMq
x ba RpNq

y

� � �
RbaM
x ba RbaN

y

�
. (3.62)

The corresponding space of generalized Fock space functionsRF �À
M,NPN0

RpM,Nq
xy

is exactly the space 9S8F from (4.41) in Chapter 4.

It is now easy to see how to embed 9S8F into some space RF constructed as in
Section 3.2.2, i.e., starting from only a single one–particle spaceR � Ry. Evidently,
R satisfies Condition (A), and Condition (B) holds since C8

c pRdzt0uq is dense in
L2pRdq. As a sector RpM,Nq, we choose the space of all functions that are smooth
on RdpM�NqzDpp,k � 0q with

Dpp,k � 0q :�  
q
�� pj � 0 for some j ¤M or kj � 0 for some j ¤ N

(
, (3.63)

that are polynomially bounded as |kj|, |pj| Ñ 8 and blow up at most polynomially
as q approaches Dpp,k � 0q. Clearly, Condition (C) is satisfied and we have

RpM,Nq � RpM,Nq
xy and RpM,Nq � RbapM�Nq. (3.64)

So RpM,Nq also satisfies Condition (D) and the corresponding space RF contains
9S8F .

In general, we do not consider the construction scheme presented in Section 3.2.2
as fixed. Modifications can be made, whenever needed. For instance, one may ima-
gine further constructions based on two different one–particle spaces Rx,Ry. This
may be particularly useful, if the Hilbert space of the model is H � Hx b Hy

with Hx � Hy, e.g., within the spin–boson model.

For further considerations, it may also be useful to allow for poles of s P Ry

not only at k � 0, but anywhere. A possible realization of such poles could be by
choosing Ry as S 1,D1, or within a suitable rigging, as in Section 3.2.3.

3.2.5 Choices for Bogoliubov Transformations

In Chapter 5, X is not given by Rd, but rather by N, with the measure µ assigning
to A � N its cardinality µpAq � |A|. This X corresponds to the discrete spectral
set of some self–adjoint operator |C| � ?

C�C. Therefore, no IR– but only UV–
divergences can appear.
Since X � N, it is natural to choose R as the space of all sequences N Ñ C, as
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we do in Chapter 5. Our notation R � EpNq in that chapter is motivated by the
fact that functions φ : j ÞÑ φj in this space may have arbitrary scaling behavior
at j Ñ 8, just as the space of smooth functions EpRdq. Every other space of func-
tions N Ñ C is included in EpNq, so R corresponds to the most general possible
choice. It is easy to verify Conditions (A) and (B), since all functions N Ñ C are
measurable and the sequence space `2 � L2pNq is contained in R.
It is also natural to choose RpNq � E pNqpNq, by which we mean the space of all
functions NN Ñ C that obviously satisfies Condition (C). Again, this is the most
general choice possible and Condition (D) is satisfied since RpNq contains the al-
gebraic tensor product Rba .

The case of Bogoliubov transformations with |C| � ?
C�C having non–discrete

spectrum is not treated in Chapter 5. It is an interesting question for future in-
vestigations, how an ESS description can be realized in that case. For bosons, the
main challenge is to accommodate functions of the kind

fpx, x1q � f1pxqδpx� x1q (3.65)

in Rp2qpXq, which corresponds to a bosonic pair generated by the transformation
(1.75). As explained later in Section 5.4, we can write X � R�Y with Y � Z and
x � pλ, yq, where λ P R is a spectral value and y P Y accounts for its multiplicity.
The function of interest is

f1pxq � f1pλ, yq � λ

1�?
1� 4λ2

, (3.66)

which scales as λ as λ Ñ 0 and converges to 1{2 as λ Ñ 8. In the notation of
Section 5.3.2, we may also write f1pλq � ν

2µ
� λ

2µ2 , which is the factor in (5.87) and

(5.97). The fermionic case is more technical but leads to challenges of a similar
kind, i.e., defining an Rp2q that contains some fpx, x1q involving a δ–distribution.
We suggest two possible approaches here, which may be pursued in future works
concerning the implementation of Bogoliubov transformations using the ESS fra-
mework.
However, both approaches presented below generally violate condition (A), as they
deal with distributions that cannot be represented by a function X Ñ C. So it
might become necessary to modify the ESS construction scheme by definingR2 not
as a space of functions X Ñ C, but of pairs of distributions, similar to the space
Ren01 introduced in Section 4.3.1. This space Ren01 is not explicitly necessary for
the ESS construction in Chapter 4, but may turn out useful in future constructions.
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Distribution Spaces

A space like R � S 1pXq or R � D1pXq could be used to accommodate the dis-
tribution fpx, x1q in a space like Rp2q � S 1pX2q or Rp2q � D1pX2q. A choice like
E 1pX2q for Rp2q is not suitable, since f has no compact support and a choice like
EpX2q for Rp2q is also bound to fail, since f is not smooth.
We used the term “like” here, since there is a mathematical problem with defi-
ning S 1,D1, E 1 or E on (powers of) X: It is not clear how to interpret the term
“smooth”. For open X, this issue does not exist. D1pXq,DpXq, E 1pXq and EpXq
are then well–defined, and by [203, Thm. 51.6, 51.7] we have D1pXqbN � D1pXNq
(where the topological tensor product is used) and the same for D, E 1, E , which
could serve for a definition of RpNqpXq. A similar statement holds true for S 1pRdq
and SpRdq. But X, as a spectral set, is always closed and can be quite “rugged”.
So the question arises how to reasonably define DpXq, SpXq or EpXq and the
respective dual spaces in that case.

Conditions for compact support of functions in DpXq or rapid decay as λÑ 8
or y Ñ 8 for SpXq can easily be generalized from the case X � Rd. The main
challenge when defining D,S or E is to give a notion of smoothness. In particular,
if we can define EpXq, then we obtain a definition of DpXq and SpXq straight
away by adding a compact support or rapid decay condition.

One option is to define differentiability at each x0 P X by Taylor approximations,
as illustrated Figure 3.4: We say that φ : X Ñ C is m–times differentiable at
x0 P X, if there exists a function ppxq, p : X Ñ C, which is a polynomial of degree
¤ m in px� x0q, such that

|φpxq � ppxq| � op}x� x0}mq as xÑ x0. (3.67)

A possible definition would now be to consider φ P EpXq, whenever it is m times
differentiable at all x0 P X and for all m P N. The definition naturally extends to
E pNq :� EpXNq. This notion of smoothness can be used to define DpXq and SpXq,
as well as DpXNq and SpXNq. In order to topologize D,S by seminorms (1.26),
it is necessary to define partial derivatives, which can be extracted from the total
m–th derivative defined via ppxq. Definition (1.26) can then be used to obtain a
family of seminorms p} � }m,Kq with m P N and K � X running through all com-
pact subsets. These seminorms induce a topology that allows for constructing dual
spaces D1pXq,S 1pXq and D1pXNq,S 1pXNq, which serve as RpXq and RpNqpXq, re-
spectively.
However, it is not obvious whether D1pXNq � D1pXqbN or a similar statement for
S 1 holds true. A proof may become technical, involving the replication of proof
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steps leading to D1pXNq � D1pXqbN in [203, Thm. 51.6] for open X, and similar
steps for S 1. In addition, verifying f1px, x1q P D1 or S 1 may also become technical,
as continuity of a functional with respect to an abstractly defined topology has
to be checked. We postpone the investigation of whether these statements hold to
future research.

Another option is to define smoothness by an equivalence relation

EpXq :� EpRdq{�E , φ1 �E φ2 :ô pφ1 � φ2qpxq � 0 @x P X, (3.68)

see Figure 3.4. It is then natural to set

EpXqpNq :� EpRdNq{�E,N , Ψ1 �E,N Ψ2 :ô pΨ1 �Ψ2q pqq � 0 @q P XN , (3.69)

with q � px1, . . . , xNq.
Adding a compact support or rapid decay condition, one may define DpXq,SpXq,
as well as DpXNq and SpXNq. However, there is no unique notion of a partial
derivative at x P X for φ P EpXq as in (3.68), since there may be several functions
φj P EpRdq in one equivalence class, that have different partial derivatives at x. So
one would first have to find a sensible way to topologize DpXq and SpXq, in order
to define the dual spaces D1pXq,S 1pXq, that are used as R.

x

φpxq

0
X

p
p1

x
x

φpxq

0

φ1pxq
φ2pxq

X

Abbildung 3.4: Left: Definition of EpXq by Taylor approximation.
Right: Definition of EpXq as an equivalence class of smooth func-
tions. Color online.
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Generalized Eigenfunctions

An interpretation of f P Rp2q by means of generalized eigenfunctions is also pos-
sible. Consider a self–adjoint operator (such as |C| in Chapter 5) with a spec-
tral set X, spectral measure µ on a σ–algebra A pXq and a spectral PVM P :
A pXq Ñ BpH q, where BpH q is the C�–algebra of bounded operators on H . If
Φ � H � Φ1 is a nuclear rigging, i.e., Φ is a nuclear space, then we may write
[204, Thm. 2.5]:

P pAq �
»
A

Px dµpXq. (3.70)

Here, the operator Px : Φ Ñ Φ1 is defined for almost all x P X and P pAq is also
interpreted as an operator Φ Ñ Φ1. Heuristically, Px � |exyxex| is a “projection”
to the generalized eigenvectors |exy. Mathematically, by means of the Schwartz
kernel theorem, we may associate to Px an integral kernel in the topological tensor
product: KP,x P Φ1 b Φ1.
So choosingR � Φ1 andRpNq � pΦ1qbN , we can already accommodate KP,x P Rp2q.
And it is obvious, that Conditions (B), (C) and (D) are satisfied. (Note that ele-
ments of Φ1 are not necessarily functions, so Condition (A) is generally not satis-
fied.)

The accommodation of f in Rp2q now works as follows: If we interpret f as the
integral kernel of an operator F acting in spectral representation as

pFφqpxq �
»
fpx, x1qφpx1q dx1 �

»
f1pxqδpx� x1qφpx1q dx1, (3.71)

then F is just a spectral multiplication by the bounded function f1pxq. So F maps
H into itself, and hence Φ into Φ1. So by the Schwartz kernel theorem, it has an
integral kernel in Rp2q � Φ1 b Φ1, which we identify with the function f .

There is large freedom in the choice of nuclear riggings. For instance, riggings
with EpXq,SpRdq or DpXq as space Φ, where X � Rd is open, are all nuclear
[203, Thm. 51.5]. Further information of when an eigenfunction expansion within
a rigging is possible can be found in [206, 207].

Nevertheless, it remains to check all steps within the ESS construction and its
application to bosonic Bogoliubov transformations, in order to arrive at an imple-
mentability result similar to Theorem 5.5.6 for generic |C|. For fermions, further
peculiarities appear, such as the restriction to a finite number of particle–hole
transformations in Theorem 5.5.8. A further and major complication is that wi-
thin a Cooper pair both fermions have orthogonal state vectors. So the function
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fpx, x1q describing a Cooper pair is no longer supported on the diagonal x � x1.

We leave the implementability of a Bogoliubov transformation with general |C|
on a Fock space extension as an interesting open question for future research.
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4 Extended State Space for
Describing Renormalized Fock
Spaces in QFT

4.1 Overview and Main Results

In this chapter, we present a specific version of the ESS construction that is tailor–
made for polaron–like models. More precisely, we consider a class of models with
resting fermions that have the following formal Hamiltonian:

H � H0,y � A:pvq � Apvq � E8. (4.1)

That means the following: We consider a species of M P N0 fermions (associated
with an index x) and a species of N P N0 bosons (associated with an index y).
The operators A:pvq, Apvq make each fermion create/annihilate a boson with some
form factor v (in momentum space), H0,y describes the free evolution of the bosons
and E8 is an infinite self–energy counterterm.
In Section 4.8, we will also encounter formal Hamiltonians of the kind

H0 � A:pvq � Apvq � E8, (4.2)

with H0 � H0,x �H0,y including both a fermionic and a bosonic dispersion relati-
on. As in Chapter 1, the fermionic dispersion relation is called θ and the bosonic
one ω. Up to E8 and the missing fermionic dispersion relation H0,x, (4.1) coincides
with the formal “polaron–like Hamiltonian” introduced in the beginning of Section
1.3.7.
The additional term E8 is motivated by the finite counterterms within cutoff re-
normalization in Sections 1.3.7 and 1.3.8. We define E8 as a linear operator in
Proposition 4.4.2 using the ESS framework.

Recall from Section 3.2 that the ESS construction provides us with the following
main tools:

• A vector space of divergent integrals r P Ren1.
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• A field of (possibly infinite) wave function renormalizations eRen, con-
taining exponentials er and fractions of linear combinations thereof.

• An extended state space F , which is an eRen-vector space over complex–
valued functions on configuration space Q, which are not necessarily L2-
integrable. F extends a dense subspace of the Fock space, F .

• A second extended state space F ex, which allows for multiplying wave
functions in F by elements r P Ren1 (and not only by elements of eRen).

In this framework, the Hamiltonian H in (4.1) will be defined as a linear ope-
rator on a subspace of F ex. Physical meaning is assigned to H by a dressing
transformation W psq, which is a linear operator W psq : F ex � DW Ñ F ex in
form of a Gross transformation (compare Section 1.3.4). Its form factor spkq
does not depend on the fermion momentum p. So one can fiber–decompose it into
several Weyl transformations, one for each fermion configuration X P RMd. The
“renormalized” or “undressed” Hamiltonian rH is defined without cutoffs by

rH � W psq�1HW psq, (4.3)

i.e., we require that the following diagram commutes:

F � DF � rDF

F ex � W psqrDF s � W psqr rDF s
W psq rH DF � F

W psqrDF s � F ex

W psq�1

H

The large domain DF , with the fermionic wave function being a Schwartz func-
tion, is defined in (4.133). It contains the small domain rDF defined in (4.150) via
(4.149), with fermionic wave function in C8

c , and its support avoiding the collision

configurations. It is necessary to introduce two domains, since rH does neither map
DF nor rDF to itself. Nevertheless, rH : rDF Ñ DF can be defined. By means of
Lemmas 4.5.10 and 4.7.2, both DF and rDF are dense in F .

Our main result is Theorem 4.6.1, which establishes that rH, satisfyingW psq rH �
HW psq, is indeed defined as a linear operator rH : F � DWS Ñ F ex (with defini-
tion of the domain DWS in (4.106)). By means of Lemma 4.7.2, under certain con-

ditions, this rH can indeed be interpreted as a Fock space operator rH : rDF Ñ DF ,
which allows for self–adjoint extensions by Corollary 4.7.3. More precisely, we have

rH � H0,y � V, (4.4)
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with V being a pair potential interaction between fermions. By Lemma 4.5.11, we
may invert W psq�1 on DF , so under the assumptions of Lemma 4.7.2, rH indeed
satisfies (4.3).

The result (4.4) after an “undressing” is not too surprising: Our formal Hamil-
tonian (4.1) actually just corresponds to a direct integral of uncoupled Van Hove
Hamiltonians, one for each fermion position configuration X P RMd. We have dis-
cussed these Hamiltonians in Section 1.4.3. There, it became clear that formally,
a Weyl transformation together with subtraction of an infinite self–energy renor-
malization constant results in an operator H0,y. This result is well–known and can
easily be achieved by an algebraic computation without using Fock space extensi-
ons, see [15].
The main novelty in this chapter is that we are able to define certain products
consisting of dressing operators W psq, s R L2, creation operators A:pvq, v R L2 and
even divergent integrals r P Ren1, as linear operators on suitable domains. The
rigorous treatment of divergent integrals may also become useful in a purely alge-
braic approach, which does not refer to any Fock space extensions, but nevertheless
produces divergent integrals when evaluating commutation relations.

Let us add some remarks about the dressing operator W psq: Gross transfor-
mations as described in Section 1.3.4 are usually of the form W psq � eA

:psq�Apsq,
where A:psq � °M

j�1A
:
jpsq describes a boson creation induced by all fermions

j P t1, . . . ,Mu. We will choose a slightly different dressing operator, which formal-
ly reads

W psq � WMpsq . . .W1psq, Wjpsq � eA
:
jpsq�Ajpsq. (4.5)

The reason is that, when applying the Baker–Campbell–Hausdorff formula (as in
(4.116)), formal calculations with eA

:psq�Apsq would produce exponential operators
of the kind eVjj1 , with Vjj1 being a potential interaction between fermions j and
j1. Those expressions eVjj1 cannot be defined as operators on the ESS F ex, so we
need to avoid their occurrence.
In general, we will define the extended dressing operators Wjpsq such that their
action for s P h slightly differs from that of the usual Fock space dressing operators
WF ,jpsq : F Ñ F . That is, we drop any terms of the kind eVjj1 in our definition.
This ad–hoc modification is justified by the fact that, in a sufficiently regular case,
the Vjj1–operators commute with W psq (Lemma 4.5.8). So even if we could define
them as operators, they would just act as an independent factor that can be pulled
to the left. So dropping all eVjj1–terms can essentially be seen as a simplification
of the bookkeeping.

Nevertheless, it would be interesting for future works to define eVjj1 as an ope-

157



4 Extended State Space for Describing Renormalized Fock Spaces in QFT

rator, mapping to some ESS F
1
ex, which is constructed differently than F ex. The

current ESS F ex also does not allow for defining general products of annihilation
operators Aj1pv1q . . . Ajnpvnq with n ¥ 2. It is a further interesting question, how
such products can be defined in the future by an alternative construction of some
F

1
ex.

The ESS construction is currently at an early stage of development. One may view
the results of this chapter rather as a “proof of concept”, showing that the ESS
construction generates reasonable outcomes in well–investigated environments. We
do not yet attempt to produce renormalized Hamiltonians in models where non–
perturbative renormalization has not succeeded before, although this is a clearly
desirable objective for the future.

Although the spaces F ,F ex do not have a topological structure, we may define
a renormalized scalar product on W psqrDF s via:

xW psqΨ,W psqΦyren :� xΨ,Φy @Ψ,Φ P DF . (4.6)

The completion of W psqrDF s with respect to x�, �yren defines a Hilbert space Fren,
our renormalized Fock space. The map W psq then uniquely extends to an iso-
metric isomorphism between F and Fren.

We remark that our result (4.4) is actually just the lowest–order approximation
in a perturbation expansion within the weak–coupling regime, and completely
decouples the fermions from the bosonic radiation field. The reason is that we both
set θ � 0 and restrict to form factors vpkq, that only depend on the momentum k
of the emitted boson, and not on the momentum p of the fermion emitting it. It is
physically expected and confirmed for the Nelson model with UV–cutoff [54, 55],
that W �

ΛHΛWΛ contains interactions between fermions and the radiation field, see
also Section 1.3.7. And indeed, when changing to vpp,kq, one may formally use a
so–called “Lie–Schwinger series” (5.211), [208]:

H̃ � eABa�A �
8̧

n�0

adnpAqB
n!

,

where A :� �A:psq � Apsq, B :� H and with the n–fold commutator

adnpAqB :� rA, rA, . . . rA,Bs . . .ss.

However, establishing well–definedness of adnpAqB for θ � 0 and v depending on
p is a rather involved task, so we postpone it to future investigations.
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Another interesting objective for future works would be to introduce a mass
renormalization term δm, as used for various polaron models in Section 1.3.7. In
constructive QFT (CQFT, see Section 1.3.8), where the Hamiltonian is of a form
different from (4.1), mass renormalization terms can also be found in some works
[95, 103, 104, 105, 209], while other CQFT renormalization procedures work wi-
thout a mass renormalization [91, 92, 93, 98, 99, 100, 106, 110].

The rest of this chapter is structured as follows: After specifying some mathe-
matical notation in Section 4.2, we conduct the ESS construction in Section 4.3,
which slightly differs from the general scheme in Section 3.2, as announced.
After the successful definition of the ESSs F , F ex, we establish H0, A

:, A and E8
as linear operators on F or F ex, which is done in Section 4.4.
In the following Section 4.5, we construct the dressing transformation W psq. Fur-
ther, we define an extended Weyl algebra W , which is a concrete realization of
the ESS Weyl algebra W (3.57) in Section 3.2 with operators instead of algebraic
expressions. In analogy to the W from Section 3.2, the concrete W in this section

includes linear combinations of the operators Wjpsq � eA
:
jpsq�Ajpsq. A multiplica-

tion with infinite wave function renormalization factors c P eRen is also allowed
within W , and as in Section 3.2, the usual Weyl relations hold:

Wjpsq�1 � Wjp�sq
Wjps1qWjps2q � eImxs1,s2yWjps1 � s2q.

(4.7)

However, note that W is generated by Wjpsq for a fixed j, instead of W psq and
the dressing operator W psq is not contained in W .

In Section 4.6 we compute rH such that W psq rH � HW psq. This section contains
the main result, Theorem 4.6.1.
The proof that under certain conditions rH is a Fock space operator and allows
for self–adjoint extensions follows in Section 4.7. Thus, rH generates well–defined
quantum dynamics, although they are not necessarily unique.
Finally, Section 4.8 concerns dressing transformations different from W psq, which
are inspired by examples from the literature and can successfully be defined on
the ESSs F ,F ex. This includes dressings p1 � H�1

0 A:q�1 within the IBC works

presented in Section 1.4, as well as the dressing T � e�H
�1
0 A: , which is a simplified

version of dressings used in the CQFT works like [209, 95].
Sections 4.9–4.13 can be seen as appendices which contain proofs.
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4.2 The Mathematical Model

4.2.1 Formal Hamiltonian

In this chapter, we use the notation from Section 1.2, adapted to models with two
particle species:

• There is one species of spinless fermionic particles (x).

• These fermions interact by exchange of spinless bosons (y).

By M and N , we denote the number of x– and y–particles, respectively. In the
particle–position representation, a single particle is described by a Hilbert space
vector

ϕ P h � L2pRd,Cq, (4.8)

with some coordinates denoted by a boldface symbol x P Rd. So the system has d
space dimensions and d� 1 spacetime dimensions. The configuration of the entire
system is given by an element pX,Y q of the configuration space Q,

pX,Y q � px1, . . . ,xM ,y1, . . . ,yNq P Qx �Qy �: Q, (4.9)

where the x–, and y–configuration spaces Qx,Qy and its sectors QpMq
x ,QpNq

y are
defined as

8§
M�0

RMd �:
8§

M�0

QpMq
x �: Qx

8§
N�0

RNd �:
8§
N�0

QpNq
y �: Qy. (4.10)

The state of the system at time t is described by a Fock space vector

Ψ P L2pQ,Cq. (4.11)

For physical state vectors, we assume the function Ψ P L2pQ,Cq to be anti–
symmetric under coordinate exchange for fermions x and symmetric under coor-
dinate exchange for bosons y. The corresponding symmetrization and antisymme-
trization operators S�, S� are defined on L2pQx,Cq and L2pQy,Cq as

pS�Ψqpx1, . . . ,xMq � 1

M !

¸
σ

sgnpσqΨpxσp1q, . . . ,xσpMqq

pS�Ψqpy1, . . . ,yNq �
1

N !

¸
σ

Ψpxσp1q, . . . ,xσpNqq,
(4.12)
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which is equivalent to (1.6). The fermionic/bosonic/total Fock space is then

Fx � S�rL2pQx,Cqs, Fy � S�rL2pQy,Cqs, F � Fx bFy. (4.13)

It is convenient to describe the action of the formal Hamiltonian H in the
particle–momentum representation: For any Ψ P F with particle–position repre-
sentation ΨpX,Y q, we define the Fourier transform, denoted ΨpP ,Kq in this
chapter, with momentum configuration

pP ,Kq � pp1, . . . ,pM ,k1, . . . ,kNq P RMd�Nd, (4.14)

via

ΨpP ,Kq :� p2πq�Md�Nd
2

»
RN

»
RM

ΨpX,Y q e�iP �X�iK�Y dMdXdNdY . (4.15)

In this chapter, the set of variables plugged into Ψp�, �q, i.e., pX,Y q or pP ,Kq will
specify, which representation is meant.

As a formal Hamiltonian, we consider the following expression with zero fermion
dispersion relation:

H � H0,y � A:pvq � Apvq � E8. (4.16)

In Section 4.8, we will also consider similar Hamiltonians of this kind that feature a
nonzero fermion dispersion relation, i.e., where H0,y is replaced by H0 � H0,x�H0,y.
The formal definitions of the relevant expressions read as follows:

• The kinetic term H0 is characterized by two dispersion relations, i.e., by
real–valued functions θppq, ωpkq P C8pRdzt0uq for fermions and bosons, re-
spectively. We can decompose

H0 �H0,x �H0,y,

pH0,xΨqpP ,Kq �
M̧

j�1

θppjqΨpP ,Kq,

pH0,yΨqpP ,Kq �
Ņ

`�1

ωpk`qΨpP ,Kq.

(4.17)

As in Section 1.2.2, we use the symbols dΓxp�q and dΓyp�q for second quanti-
zation

H0,x � dΓxpθq, H0,y � dΓypωq, (4.18)
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with multiplication operators

θ : h � dompθq Ñ h ω : h � dompωq Ñ h

φppq ÞÑ θppqφppq φpkq ÞÑ ωpkqφpkq. (4.19)

• The creation part A:pvq makes each fermion create a boson. It is specified
by a form factor v. In this article, we will restrict to v P C8pRdzt0uq and
put some further assumptions on the scalings of v for |k| Ñ 0 (IR–regime)
and |k| Ñ 8 (UV–regime). These assumptions are described in Section 4.2.2.

We may write A:pvq as a sum over operators A:
jpvq, j P t1, . . . ,Mu, which on-

ly make fermion j create a boson. The formal definition in particle–momentum
representation reads

pA:pvqΨqpP ,Kq �
�

M̧

j�1

A:
jΨ

�
pP ,Kq

�
M̧

j�1

1?
N

Ņ

`�1

vpk`qΨpP � ejk`,Kzk`q,
(4.20)

where

 Kzk` � pk1, . . . ,k`�1,k`�1, . . . ,kNq denotes K without k`

 P � ejk` � pp1, . . . ,pj�1,pj � k`,pj�1, . . . ,pMq is the shifted fermion
momentum.

Here, ej is meant to denote the j–th unit vector and, by slight abuse of no-
tation, ejk` � p0, . . . ,k`, . . . , 0q P RMd is used to denote the assignment of
an additional momentum k` to fermion j, before boson ` is emitted.

The corresponding definition in particle–position representation uses the
Fourier inverse v̌ of the form factor v and reads

pA:pvqΨqpX,Y q �
�

M̧

j�1

A:
jpvqΨ

�
pX,Y q �

M̧

j�1

1?
N

Ņ

`�1

v̌py`�xjqΨpX,Y zy`q.

(4.21)
Without the cutoff, the form factor is v R L2 in many physically relevant
models. Its Fourier inverse v̌ is therefore R L2, as well, if it is even defined.

Note that there is a more general class of physically interesting models, which
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we do not treat here: The form factor may depend on the fermion momentum
p, i.e., it may read vpp,kq with v : R2d Ñ C, such as in [59, 66, 210].

• The annihilation part Apvq in particle–momentum representation reads

pApvqΨqpP ,Kq �
�

M̧

j�1

AjpvqΨ
�
pP ,Kq

�
M̧

j�1

?
N � 1

»
vpk̃q�ΨpP � ejk̃,K, k̃q dk̃.

(4.22)

In particle–position representation,

pApvqΨqpX,Y q �
�

M̧

j�1

AjpvqΨ
�
pX,Y q

�
M̧

j�1

?
N � 1

»
v̌pỹ � xjq�ΨpX,Y , ỹq dỹ.

(4.23)

Note that for v P h, both A:pvq and Apvq can be defined as operators on a
dense domain in F , where A:pvq is the adjoint of Apvq.

• The self–energy E8 is a formal multiplication operator of the form E8 �
dΓxpE1q with E1 : Rd Ñ R. In particle–momentum representation,

pE8ΨqpP ,Kq �
M̧

j�1

E1ppjqΨpP ,Kq. (4.24)

We will consider the expression

E1ppq �
»
�vpkq

�vpkq
ωpkq dk. (4.25)

With cutoffs σ,Λ applied to v, this integral would be finite in many physi-
cally interesting situations. However, without cutoffs it is typically divergent
and hence the operator E8 becomes a formal expression. We will define it
as a map F Ñ F ex in Proposition 4.4.2.
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4.2.2 Scaling Degrees

The convergence of integrals appearing in formal calculations depends on how
θppq, ωpkq and vpkq scale at |p|, |k| going to 8 or 0. We assume a polynomial
scaling, of which we keep track using scaling degrees m (UV) and β (IR). The
scaling degree m in the UV regime is commonly used for symbols s P Sm. As we
choose θ, ω, v P C8pRdzt0uq, an additional pole might appear at |k| Ñ 0, which we
assume to be of order β. Both scalings are assumed to be exact, i.e., polynomial
bounds exist from above and below:

Definition 4.2.1 (scaling). Consider s P C8pRdzt0uq. We say that s has a po-
lynomial scaling if there are some scaling degrees ms ¤ βs P R and constants
C1, C2 P R such that

|spkq| ¤ C1|k|βs � C2|k|ms @k P Rdzt0u. (4.26)

The space of all symbols with polynomial scaling is denoted

9S81 :�  
s P C8pRdzt0uq | (4.26) holds

(
. (4.27)

Definition 4.2.2 (exact scaling). Consider a symbol s P C8pRdzt0uq. We say that
the symbol has an exact polynomial scaling (see Figure 4.1) if there are some
0   ε   ε P R such that

• There are a UV scaling degree ms P R and c1, C1 ¡ 0 with

c1|k|ms ¤ |spkq| ¤ C1|k|ms @|k| ¡ ε. (4.28)

• There are an IR scaling degree βs P R and c2, C2 ¡ 0 with

c2|k|βs ¤ |spkq| ¤ C2|k|βs @0   |k|   ε. (4.29)

• There is a constant c3 ¡ 0 with

c3 ¤ |spkq| @ε ¤ |k| ¤ ε. (4.30)

The space of all symbols with exact polynomial scaling is denoted

9S81,¡ :�  
s P C8pRdzt0uq | (4.28), (4.29) and (4.30) hold

( � 9S81 . (4.31)
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The “¡” refers to the fact that |spkq| ¡ 0, so 1
s

is defined everywhere except from
k � 0 and also scales polynomially.

|k|

|vpkq|

0

9|k|β

ε
c3

ε

9|k|m

Abbildung 4.1: Scaling degrees in the special case of a radially symmetric, positive
function v with |vpkq| ¡ 0. Color online.

Obviously, C8
c pRdq � 9S81 , so 9S81 X h is dense in h.

For obtaining a well–defined renormalized Hamiltonian rH in Lemma 4.7.2, we
will assume

θ, ω, v P 9S81,¡ (4.32)

(see Figure 4.2) and denote their scaling degrees with mθ,mω,mv and βθ, βω, βv,
respectively. Further, we will assume in Lemma 4.7.2:

mθ,mω, βθ, βω ¥ 0. (4.33)

k

|vpkq|

0
k

|vpkq|

0
k

|ωpkq|

0

Abbildung 4.2: Examples for absolute values of functions v, ω P 9S81,¡. The functions
v, ω are complex–valued. Note that βω,mω ¥ 0. Color online.

This implies, that for θ and ω, there is no pole at the origin. QFT models often
use dispersion relations based on symbols with mθ,mω, βθ, βω P t0, 1, 2u, which all
satisfy this condition.

In order to obtain symmetric operators, we will also need to impose a symmetry
condition in Lemma 4.7.2:
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θppq � θp�pq, ωpkq � ωp�kq, vpkq � vp�kq. (4.34)

4.3 Construction of the Extended State Space

4.3.1 Wave Function Renormalization Factors

As mentioned in Section 3.2, the motivation behind the introduction of the ESS
setting is to rigorously define formal dressing transformations. Whereas the ESS
construction in Section 3.2 was explained using a Weyl transformation in (3.23)
as an example, we will explicitly conduct a similar ESS construction for defining
the formal Gross transformation

W psq � WMpsq . . .W1psq, with Wjpsq � eA
:
jpsq�Ajpsq, s � � v

ω
, (4.35)

in the case where s P 9S81 � C8pRdzt0uq, but s R h � L2pRd,Cq. Here, the number
M corresponds to the fermion sector, so the second term in (4.35) is a rather
symbolic expression requiring us to adapt M in dependence of the fermion sector
(similar to (4.17)). Formally, if we apply W psq to a state vector Ψ1 where the

boson field is in the vacuum Ωy and Ψx P F p1q
x is a one–fermion state,

Ψ1 � Ψx b Ωy, (4.36)

then we obtain the following expression in momentum space:

pW psqΨ1qpp,Kq � e�
}s}2

2
1?
N !

�
N¹
`�1

spk`q
�

Ψx

�
p�

Ņ

`�1

k`

�
�: e�

}s}2

2 Ψ0pp,Kq.
(4.37)

For s P h, the expression W psqΨ1 is a Fock space vector with norm }W psqΨ1} �
}Ψ1}. However, if we set s R h, two problems arise:

• }s}2 � xs, sy is formally a divergent integral. So the wave function renorma-

lization factor e�
}s}2

2 is not well–defined.

•
�±N

`�1 spk`q
	

(on every sector N ¥ 1) is a non–square integrable function,

so even without the infinite renormalization factor e�
}s}2

2 , (4.37) does not
describe an element of F .

The second problem is tackled by defining a space 9S8F containing non–square

integrable functions, including the above product. As s P 9S81 , the product above
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is a smooth function apart from the zero boson momentum configuration set

Dpk � 0q :�  
q � pP ,Kq P Q �� D` P t1, . . . , Nu : k` � 0

(
. (4.38)

k1

k2

p1

0

Dpk � 0q

9Q

Abbildung 4.3: The set Dpk � 0q on the pM,Nq � p1, 2q–sector in configuration
space Q for d � 1. Color online.

The restriction of Dpk � 0q to any sector is a union of hyperplanes (see Figure
4.3), which have Lebesgue measure 0 and hence, also Dpk � 0q � Q is null.
Excluding this set from configuration space, we obtain

9Q :� QzDpk � 0q, (4.39)

and on q P 9Q, the function Ψ0 in (4.37) is smooth. For |k| Ñ 0 or |p|, |k| Ñ 8 we
require the following scaling conditions to hold:

lim
|k`|Ñ0

Ψ0pP ,Kq
|k`|β � lim

|k`|Ñ8
Ψ0pP ,Kq
|k`|m � lim

|pj |Ñ8
Ψ0pP ,Kq
|pj|m

� 0, (4.40)

for all fixed q � pP ,Kq P 9Q and some β,m P R. We hence interpret Ψ0 as an
element of the following space:

9S8F :�
!

Ψ P C8p 9Qq
��� (4.40) holds

)
. (4.41)

Note that 9S8F XF contains C8
c pQq, which is a dense set in F . So 9S8F XF is dense

in F . The Fourier transform of some Ψ0 P 9S8F can be taken, if it is an element of
the space

9S8F ,loc :� 9S8F X L1
locpQq. (4.42)

In order to address the first problem, it is necessary to assign mathematical
meaning to the expression xs, sy (called renormalization factor). It may be
convenient to take a Fourier transform of s P 9S81 , for instance, in order to define
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a particle–position representation. This can be done whenever s P L1
locpRdq, since

then s P S 1pRdq, i.e., it is a tempered distribution. We may hence distinguish two
interesting function spaces for s:

• The generic case is given by s P 9S81
• The special case is given by s P 9S81 X L1

locpRdq �: 9S81,loc , which allows for
taking the Fourier transform.

In the following, we will present a construction based on the generic case, since
the special one can be treated by the same means. Clearly, hX 9S81 � 9S81,loc, so even
9S81,loc contains a dense subspace of h. If s P h, then

xs, sy �
»
|spkq|2 dk P C. (4.43)

Otherwise, the renormalization factor xs, sy is a symbolic expression, corresponding
to a divergent integral. In contrast to Section 3.2.2, we do not directly interpret it
as an element of Ren1, but intermediately construct a space of function pairings:

Definition 4.3.1. Consider the free C–vector space F p 9S81 � 9S81 q. By a free vector
space, we mean the set of all finite C–linear combinations of pairings that are
antilinear in the first component, denoted r � °M

m�1 cmpsm, tmq, with sm, tm P
9S81 , c P C and the sum

°M
m�1 being commutative. The space of renormalization

integrals is defined as the quotient space

Ren01 :� F
�

9S81 � 9S81
	
{�Ren01

, (4.44)

where the equivalence relation �Ren01 of formal equality is given by

M̧

m�1

cmpsm, tmq �Ren01

M̧̃

m�1

c̃mps̃m, t̃mq

:ô
M̧

m�1

cmsmpkqtmpkq �
M̧̃

m�1

c̃ms̃mpkqt̃mpkq @k P Rdzt0u.
(4.45)

The deviation of constructing Ren1 via Ren01 generates a higher effort in our
case, but it sets the foundation for a treatment of r, s, that are not necessarily
functions (but, for instance, distributions), and may not be multiplied.
There is a natural one–to–one identification of renormalization integrals with func-
tions Ren01 � 9S81 : It is easy to see that the following map is an embedding (by

168



4.3 Construction of the Extended State Space

definition of �Ren01):

ι1 : Ren01 Ñ 9S81
M̧

m�1

cmpsm, tmq � r ÞÑ rpkq �
M̧

m�1

cmsmpkqtmpkq.
(4.46)

Conversely, for a given r P 9S81 , the element pr, χRdzt0uq P Ren1 (with χ being the
indicator function) is identified with r, so ι1 is indeed an isomorphism.

In case r P Ren01 with r � ι1prq P L1pRdq, we can identify r with the C–number

r �
»
Rd

M̧

m�1

cmsmpkqtmpkq dk �
»
Rd
rpkq dk P C. (4.47)

Now, several r P Ren01 get identified with the same C–number, e.g., all r corre-
sponding to a function r with

³
rpkq dk � 0 are identified with 0. We remove this

ambiguity by modding out another equivalence relation:

Definition 4.3.2. The renormalization factor space Ren1 is defined as

Ren1 :� Ren01{�Ren1
, (4.48)

where for r1, r2 P Ren01 we define

r1 �Ren1 r2 :ô ι1pr1q � ι1pr2q P L1 and

»
pι1pr1q � ι1pr2qqpkq dk � 0. (4.49)

Elements of Ren1 will be denoted equally to a representative r. Note that we
can identify Ren1 with the quotient space

Ren1 � pC` Ren01q{D with D :�  p� ∫ ι1prqpkq dk, rq �� ι1prq P L1pRdq(,
(4.50)

where the isomorphism is given by identification of pc, rq with that class rr1s P Ren1

where ∫pι1pr1qpkq � ι1prqpkqq dk � c.

We will encounter the special case where rpkq only takes values in r0,8q:

Definition 4.3.3. The positive renormalization factor cone Ren1� is the set
of all rrs P Ren1, where at least one representative r P Ren01 is identified with a
positive–valued function ι1prq : Rdzt0u Ñ r0,8q.
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Scalar multiplication by c P r0,8q is well–defined, making this indeed a cone.

It is also convenient to make sense of products and polynomials of factors r P
Ren1. We hence define the following vector spaces, as in Section 3.2.2:

Definition 4.3.4. Consider the free C–vector space of all finite linear combinations
of products of up to P P N0 renormalization factors (i.e., formal polynomials of
degree P )

PolP :�
#
R �

M̧

m�1

cmrm,1 � . . . � rm,pm
����� 0 ¤ pm ¤ P, cm P C, rm,p P Ren1

+
,

(4.51)
with the sum

°M
m�1 and products being commutative. Then, the space of renor-

malization factor polynomials of order ¤ P is the quotient space

RenP � PolP {�RenP
, (4.52)

with the equivalence relation �RenP of formal equality generated by

r1r2 . . . rp1 �R �RenP cr2 . . . rp1 �R if r1 � c P C
pc1c2qr1 . . . rp1 �R �RenP c1pc2r1q . . . rp1 �R,

(4.53)

with P1 ¤ P , R P PolP , c1, c2 P C and rm P Ren1.

As in Section 3.2.2, the bound P on the polynomial order is removed by taking
the union over all orders.

Definition 4.3.5. The space of renormalization factor polynomials is given
by

Ren �
8¤
P�1

RenP . (4.54)

The spaces defined in this Section follow the hierarchy

Ren1� � Ren1 � Ren2 � . . . � RenP � . . . � Ren. (4.55)

4.3.2 Exponentials of Renormalization Factors and the Field
eRen

The state vector W psqΨ1 in (4.37) contains an exponential of a renormalization
factor, i.e., an expression c � er with r P Ren1. More generally, we would like to give
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a meaning to sums of exponentials with different (perhaps infinite) renormalization
factors r1, r2 P Ren1. Formally, we would like to identify

er1 � er2 � er1p1� er2�r1q. (4.56)

The bracket is a C–number, whenever r1 � r2 P C, which defines an equivalence
relation

r1 �1 r2 :ô r1 � r2 P C. (4.57)

Definition 4.3.6. The space of renormalization factor classes is then given
by the quotient space

Clas1 � Ren1{�1 . (4.58)

Whenever two elements r1, r2 are of two different classes, we have c � er1�r2 R C
and may think of c as an “infinite constant”.

We may also interpret Clas1 as a subspace of Ren1: The elements in the class
of zero, b P Ren1 : b �1 0, form a subspace V � Ren1, V � C. Now we can find a
basis B (containing one element) of V and, by the axiom of choice [211], extend it
to a basis BYB1 of Ren1. By defining W :� spanpB1q, we obtain a decomposition

Ren1 � V `W ñ W � Ren1{V. (4.59)

Now, the following map is a bijection from W to Clas1:

W Q w ÞÑ rws�Ren1
P Clas1. (4.60)

Note that this bijection is not unique, since it depends on the choice of B1, i.e., of
representatives within each class.

We now consider elements of the group algebra CrRen1s Q c1e
r1 � . . . � cMe

rM

with respect to the group with addition given by the vector space Ren1. The
formal exponentials make an addition in the group er1�r2 � er1er2 appear as a
multiplication. Here, we would like to consider two summands as equal, if “parts
of the complex number can be pulled into the exponent”, i.e., cec

1�r � pcec1qer.
This is done by defining an ideal I � CrRen1s generated by all elements of the
form

ec�r � ecer with c P C, r P Ren1. (4.61)

Note that this ideal gives rise to an equivalence relation

u �I v :ô pu� vq P I. (4.62)
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Proposition 4.3.7.
CrRen1s{I � CrW s. (4.63)

Proof. We define a map π : Ren1 Ñ W , which assigns to r P Ren1 the vector w
within the decomposition Ren1 � V ` W above. So r � πprq P C. Now within,
c1e

r1 � . . .� cMe
rM P CrRen1s, we can re–write each summand as

cme
rm �I pcmerm�πprmqqeπprmq. (4.64)

This gives rise to a re–writing map

Π : CrRen1s Ñ CrRen1s
c1e

r1 � . . .� cMe
rM ÞÑ pc1e

r1�πpr1qqeπpr1q � . . .� pcMerM�πprM qqeπprM q.
(4.65)

Note that by the computation rules for group algebras, whenever eπprmq � eπprm1 q

for two summands, they can be combined into one.

The map Π is an algebra homomorphism: it is linear and respects the multipli-
cation:

Πpc1e
r1�. . .�cMerM qΠpc11er

1
1�. . .�c1Mer

1
M q � Πpc1e

r1�. . .�cMerM�c11er
1
1�. . .�c1Mer

1
M q.

(4.66)
The latter is a consequence of πpr1 � r2q � πpr1q � πpr2q which does only hold
true because we have chosen W as a vector space. Further, Π does not change the
equivalence class with respect to �I . So ΠpIq � 0 implies I P I. Conversely, if
I P I then I � I1 � . . . � IM with each Ii � AiBiCi with Ai, Ci P CrRen1s and
Bi � eci�ri � ecieri , so ΠpBiq � 0 and ΠpIiq � 0 and hence ΠpIq � 0. So the kernel
of Π is exactly KerpΠq � I.
Moreover, the image is ΠrCrRen1ss � CrW s, since only elements of CrW s appear
in it and any element of CrW s � CrRen1s is mapped to itself.
By the isomorphism theorems, we now have that

CrRen1s{KerpΠq � ΠrCrRen1ss :ô CrRen1s{I � CrW s, (4.67)

as claimed.

Proposition 4.3.8. CrRen1s{I has no proper zero divisors.

(a, b P CrRen1s{I, a, b � 0 are called proper zero divisors if and only if ab � 0.)

Proof. By Proposition 4.3.7, it suffices to show that CrW s has no proper zero di-
visors.
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Now, the additive group W is an Abelian group that is torsion–free, i.e., for
g P W and n P N:

g � g � . . .� gloooooooomoooooooon
n times

� 0 ñ g � 0. (4.68)

Now, by Lemma 26.6 [212], the group G � W is ordered, so by Lemma 26.4 it
is “t.u.p.”, so by Lemma 26.2 it is “u.p.” and KrGs � CrW s has no proper zero
divisors, i.e., it is an entire ring.

Following [213, II. §3], it is a theorem that for every ring without proper zero
divisors, the quotients form a field. So by Proposition 4.3.8 the following field
extension of C is well–defined:

Definition 4.3.9 (and Corollary). The field of (exponential) wave function
renormalizations is given by all fractions of linear combinations

eRen :�
"
c � a1

a2

���� a1, a2 P CrRen1s{I
*
. (4.69)

By using representatives of CrRen1s{I, we can write any c P eRen as

c �
°M
m�1 cme

rm°M 1

m1�1 cm1erm1
with cm, cm1 P C, rm, rm1 P Ren1. (4.70)

In particular, we can view a wave function renormalization c P eRen as an “ex-
tended complex number”.

4.3.3 First Extended State Space

With the above definitions, we are able to give meaning to expressions like

Ψ � e�rΨ0 or even Ψ � cΨ0, (4.71)

with r P Ren1, c P eRen and Ψ0 P 9S8F , as they appear in (4.37). We would like
to take linear combinations of them and even handle expressions like cRΨ0 with
R P Ren. This is done by defining eRen–vector spaces including such expression,
either without R (this will be the first ESS, called F ) or with R (this will be the
second ESS, called F ex). The definitions are similar to those in Section 3.2.2.
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Definition 4.3.10. Consider the free eRen–vector space of all finite (commutati-
ve) sums of the form

F 0 :�
#

Ψ �
M̧

m�1

cmΨm

����� Ψm P 9S8F , cm P eRen

+
. (4.72)

Then, the first extended state space (ESS) is the eRen–quotient space

F � F 0{�F
, (4.73)

with equivalence relation �F generated by

pccqΨa �Ψ �F cpcΨaq �Ψ if c P C, (4.74)

for any c P eRen, Ψ P F 0 and Ψa P 9S8F .

The dense subspace 9S8F XF of the Fock space can be naturally embedded into

F : Every ΨF P 9S8F XF , can be identified with

ΨF � e0ΨF P F . (4.75)

However, elements of F do not necessarily satisfy any symmetry conditions.

The coherent state in (4.37) can now be seen as an ESS element:

pW psqΨ1qpp,Kq � e�
}s}2

2loomoon
�er

1?
N !

�
N¹
`�1

spk`q
�

Ψx

�
p�

¸
`

k`

�
loooooooooooooooooooooomoooooooooooooooooooooon

P 9S8F

.

For s P 9S81,loc and Ψx P C8
c , the second factor is even in 9S8F ,loc.

4.3.4 Second Extended State Space

Later in this work, we will encounter expressions like

Ψpqq � e�rRpqqΨ0pqq, (4.76)

with q P 9Q, Rpqq P Ren,Ψ0pqq P C, or linear combinations of them. We interpret
ΨR :� RΨ0 as a function in the function space

ΨR P Ren
9Q :�  

ΨR : 9QÑ Ren
(
. (4.77)
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The second ESS then covers expressions (4.76) and linear combinations of them:

Definition 4.3.11. Consider the free eRen–vector space of all finite (commutati-
ve) sums of the form

F ex,0 :�
#

Ψ �
M̧

m�1

cmΨm

����� cm P eRen,Ψm P Ren
9Q

+
. (4.78)

Then, the second extended state space (ESS) is the eRen–quotient space

F ex � F ex,0{�Fex
, (4.79)

with equivalence relation �Fex generated by

pccqΨa �Ψ �Fex cpcΨaq �Ψ if c P C, (4.80)

where c P eRen, Ψ P F ex,0 and Ψa P Ren
9Q.

The first ESS can be embedded into the second ESS F ãÑ F ex by interpreting

all Ψm P 9S8F as elements Ψm P Ren
9Q.
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4.4 Operators on the Extended State Space

We first prove that creation and annihilation terms A:pvq, Apvq as in (4.20) and
(4.22) can be defined as operators using extended state spaces. Here, we even
permit form factors vpp,kq, that are allowed to depend on the fermion momentum
p. The momentum space definition reads

pA:
jpvqΨqpP ,Kq � 1?

N

Ņ

`�1

vppj,k`qΨpP � ejk`,Kzk`q,

pAjpvqΨqpP ,Kq �
?
N � 1

»
vppj � k̃, k̃q�ΨpP � ejk̃,K, k̃q dk̃,

A:pvq �
M̧

j�1

A:
jpvq, Apvq �

M̧

j�1

Ajpvq,

(4.81)

which can be seen as a generalization of (4.20) and (4.22).

Lemma 4.4.1 (A:, A are well–defined for vpp,kq). Let v : Rd � pRdzt0uq Ñ C
be smooth and satisfying the scaling condition (4.40). Then, (4.81) entails well–
defined operators

A:
jpvq : F Ñ F , Ajpvq : F Ñ F ex, (4.82)

which may be restricted1 to

A:
jpvq : 9S8F Ñ 9S8F , Ajpvq : 9S8F Ñ Ren

9Q. (4.83)

We may even extend A:
jpvq : F ex Ñ F ex.

Proof. Suppose, Ψ P 9S8F and consider the expression A:
jpvqΨ in (4.81). This is a

finite sum over products consisting of two factors. By definition of 9S81 , the first
factor vppj,k`q in each product is smooth everywhere except where k` � 0. By

definition of 9S8F , the second factor ΨpP � ejk`,Kzk`q is smooth at all configura-
tions, at which Kzk` contains no coordinate k`1 � 0. So the product is smooth on
9Q. In addition, the factors v and Ψ scale polynomially as in (4.40), so A:pvqΨ P 9S8F .

The expression for ApvqΨ in (4.22) is a (possibly divergent) integral for each fixed
pP ,Kq P 9Q. Since both the functions k̃ ÞÑ vppj� k̃, k̃q and k̃ ÞÑ ΨpP �ejk̃,K, k̃q
are in 9S81 , the integral defines an element R P Ren1 � Ren for each fixed pP ,Kq.

1We use the same notation for all extended or restricted versions of operators, here.
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Thus, ApvqΨ P Ren
9Q.

Both operators can be extended to F by taking eRen–linear combinations.

For Ψ P Ren
9Q, the expression A:

jpvqΨ in (4.81) is again a sum of products, that

are all in Ren
9Q. By eRen–linearity, we can then extend A:

jpvq to F ex.

We may also define the constituent operators of H � H0,y �A:pvq�Apvq�E8,
as well as H0,x on F :

Proposition 4.4.2 (Constituents of H are well–defined). Consider the momentum
space definitions of H0 (4.17), A:pvq (4.20), Apvq (4.22) and E8 (4.24), where we
only assume θ, ω, v P 9S81 and an arbitrary self–energy function E1 : Rd Ñ Ren.
Then, the above four momentum space definitions entail well–defined operators

H0 :F Ñ F , A:pvq :F Ñ F ,

Apvq :F Ñ F ex, E8 :F Ñ F ex.
(4.84)

It is also possible to restrict

H0 : 9S8F Ñ 9S8F , A:pvq : 9S8F Ñ 9S8F ,
Apvq : 9S8F Ñ Ren

9Q, E8 : 9S8F Ñ Ren
9Q

(4.85)

or to extend
H0 : F ex Ñ F ex, A:pvq : F ex Ñ F ex. (4.86)

Further, the statements for H0 equally hold true for H0,x and H0,y.

Proof. Well–definedness and the mapping properties of A:pvq and Apvq are a con-
sequence of Lemma 4.4.1: The function vpkq in (4.20) and (4.22) can be seen as a
special case of vpp,kq in (4.81). Taking the finite linear sum over j P t1, . . . ,Mu
sustains the mapping properties.

The operator H0 as in (4.17) just multiplies with a function in 9S8F in momentum

space, so for Ψ P 9S8F , we also have H0Ψ P 9S8F . The same holds true for H0,x and

H0,y. By an analogous argument, H0 can be extended to H0 : Ren
9Q Ñ Ren

9Q.

Finally, we consider E8Ψ for Ψ P 9S8F . By (4.24), at each fixed pP ,Kq P 9Q the
expression E8Ψ is defined as a finite sum over terms E1ppqΨpP ,Kq P Ren. So

indeed, E8Ψ P Ren
9Q.
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Extensions to F or F ex can again be done by eRen–linear combination.

Thus, also the linear operator H : F Ñ F ex is well–defined.

Finally, we prove that the momentum space definition (4.81) indeed entails cer-
tain canonical commutation relations on the extended state space:

Lemma 4.4.3 (Extended CCR). For φ, ϕ P 9S81 , the definitions (4.20) and (4.22)
imply the commutation relations

rA:
jpϕq, A:

j1pφqs � 0, rAjpϕq, A:
j1pφqs �

#
xϕ, φy for j � j1

Vjj1pϕ�φq for j � j1
, (4.87)

as a strong operator identity. That is, we have operators

rA:
jpϕq, A:

j1pφqs : F Ñ F , rAjpϕq, A:
j1pφqs : F Ñ F ex. (4.88)

Here, the interaction potential Vjj1 : F Ñ F ex for momentum transfer from fer-
mion j1 to j is given by

Vjj1pϕ�φqpP ,Kq :�
»
ϕ�pk̃qφpk̃qΨpP � pej1 � ejqk̃,Kq dk̃. (4.89)

Proof. By Lemma 4.4.1, the products AjpϕqA:
j1pφq and A:

j1pφqAjpϕq are well–

defined as operators F Ñ F ex. A momentum space evaluation renders�rAjpϕq, A:
j1pφqsΨ

�pP ,Kq
�
»
ϕ�pk̃qφpk̃qΨpP � pej1 � ejqk̃,Kq dk̃

�
#
xϕ, φyΨpP ,Kq for j � j1³
ϕ�pk̃qφpk̃qΨpP � pej1 � ejqk̃,Kq dk̃ for j � j1

.

(4.90)

Similarly, Lemma 4.4.1 establishes that A:
jpϕqA:

j1pφq and A:
j1pφqA:

jpϕq are well–

defined operators F Ñ F and by a short momentum space calculation, one can
verify that they are equal.

The operator Vjj1 defined above can be seen as an interaction potential operator.
Under an inverse Fourier transform F�1, it amounts to a multiplication operator
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4.4 Operators on the Extended State Space

in position space via

pVjj1pϕ�φqΨqpX,Y q � F�1pϕ�sqpxj � xj1qΨpX,Y q, (4.91)

provided that F�1pϕ�φq exists (e.g., for exact scaling degrees βϕ � βs ¡ �d ñ
ϕ�s P S 1pRdq).
The following property about Vjj1 will become useful in later proofs:

Lemma 4.4.4. If either of the functions φ, ϕ P 9S81 is an element of C8
c pRdzt0uq,

then we even have
Vjj1pϕ�φq : F Ñ F . (4.92)

Proof. First, let us consider Ψ P 9S8F . Without loss of generality, assume that
ϕ P C8

c pRdzt0uq, so ϕ is compactly supported, and the function

k̃ ÞÑ φpk̃qΨpP � pej1 � ejqk̃,Kq,

is smooth everywhere on that support. So the function

k̃ ÞÑ ϕ�pk̃qφpk̃qΨpP � pej1 � ejqk̃,Kq is in C8
c ,

and the integral over it converges to a C–number.
We now show that this number depends smoothly on pP ,Kq P 9Q: Consider any
multi–index α corresponding to a derivative Bα composed of arbitrarily many parti-
al derivatives Bpj , Bk` with j, ` P N. Then also BαΨ P 9S8F and by the same arguments
as above,

k̃ ÞÑ ϕ�pk̃qφpk̃qBαΨpP � pej1 � ejqk̃,Kq is in C8
c . (4.93)

So the integral converges absolutely, derivative and integral commute, and we ob-
tain BαpVjj1pϕ�φqΨqpP ,Kq P C for any multi–index α. Hence, pVjj1pϕ�φqΨqpP ,Kq
is smooth at pP ,Kq P 9Q.

Polynomial scaling of Vjj1pϕ�φqΨ can be seen as follows: Under the coordina-
te rotation p� :� pj � pj1 and p� :� pj � pj1 , the expression Vjj1Ψ becomes a
convolution in p� of a polynomially scaling function with the function ϕ�φ P C8

c .
Polynomial scaling bounds are neither affected by the coordinate rotation nor by
the convolution with a C8

c –function. So indeed, Vjj1pϕ�φqΨ P 9S8F , and we have

that Vjj1pϕ�φq : 9S8F Ñ 9S8F .

This mapping property extends to Vj1jpϕ�φq : F Ñ F by eRen–linearity.
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4 Extended State Space for Describing Renormalized Fock Spaces in QFT

Remarks.

15. In (4.87), we have not included the commutation relation for annihilation
operators rAjpϕq, Aj1pφqs � 0. The reason is that products of two or more
annihilation operators are not necessarily defined, since we only have Ajpϕq :

F Ñ F ex. An arbitrary product AjpϕqAj1pφqΨ with Ψ P 9S8F contains a
double integral�

AjpϕqAj1pφqΨ
�pP ,Kq

�
a
pN � 1qpN � 2q

» »
ϕpk̃q�φpk̃1q�ΨpP � ejk̃ � ej1k̃

1
,K, k̃, k̃

1q dk̃dk̃1,
(4.94)

where the first integral produces a configuration space function 9Q Ñ Ren.
And a second integral over such a function can generally not be interpreted
as an element in Ren.
A definition of such operator products would require a modification of F ex

such that it also accommodates general divergent integrals over multiple
coordinates of a 9S8F –function as in (4.94). We postpone the investigation of
such choices for F ex to future investigations.

4.5 Dressing on the Extended State Space

Our next step is to define a dressing operator W psq with s P 9S81 . To do so, a naive

approach would be to start from the expression W psq � eA
:
M psq�AM psq . . . eA

:
1psq�A1psq

(with M depending on the fermion sector) and expand the exponentials into series

eA
:
jpsq�Ajpsq �

¸
nPN0

pA:
jpsq � Ajpsqqn

n!
,

which can be multiplied out. There are two difficulties with this approach:

• Some terms in the resulting sum contain two or more annihilation operators
Apsq (see Remark 15).

• There is an infinite number of such terms.

So with the current definition of F ex we cannot simply define W psq as an operator
F Ñ F ex. Instead, we pursue a different approach and define W psq : DW Ñ Fex.
Here, we choose DW � F ex in (4.132), such that DF (which is a symmetrized
version of DW X L2) is dense in F .
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4.5 Dressing on the Extended State Space

If we consider WF pϕq : F Ñ F , ϕ P h as a unitary operator on Fock space,
together with some suitable Ψ P F , then there is a well–defined expression (similar
to (4.37)) for WF pϕqΨ as an L2–function on momentum–configuration space. For
ϕ replaced by s P 9S81 , we may then define W psqΨ P F based on the momentum
space expression of WF pϕqΨ.

The domain DW in (4.132) is generated by vectors ΨC of the form

ΨC � W1pϕqA:
jpvqΨm or ΨC � XW1pϕqΨm,

where:

• Ψm � Ψmx b Ωy P F with Ψmx P SpQxq (i.e., we have a Schwartz function)
and Ωy describing the boson field in the vacuum.

• W1pϕq � eA
:
1pϕq�A1pϕq, ϕ P h X 9S81 describes a dressing induced by only the

first fermion.

• A:
jpvq, v P 9S81 describes creation by only the fermion with number j P

t1, . . . ,Mu.

• X is a linear combination of Ren1–constants and operators Vjj1pv�sq that
formally commute with W psq.

When setting X � 1 (which formally commutes with W psq), we see that DW con-
tains vectors of the kind W1pϕqΨm. We show in Lemma 4.5.6, that these are equal
to WF ,1pϕqΨm and, after symmetrization, span a dense subspace of F (Lemma

4.5.2). This will later allow for a dense definition of rH.

The definition of W psqΨC now exactly works as explained above: We establish
a momentum space expression in case s, v P hX 9S81 using Lemma 4.5.3. Then, we
generalize to s, v P 9S81 by a suitable definition. As discussed in the introduction of
his chapter, we remove certain exponential factors of the form eVjj1 in an ad–hoc
modification. Thus, Wjpϕjq differs from WF ,jpϕjq for ϕj P h X 9S81 . However, we
show in Lemma 4.5.8 that any Vj1j2 commutes with WF ,jpϕjq, so the omitted fac-
tor eVjj1 can heuristically be “pulled into any position”. Heuristically, this factor
disappears when performing an undressing, which justifies the omission within the
computation of rH.
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4.5.1 Bosonic Dressing Wypϕq

The upcoming proofs are based on some well–known facts about coherent states,
where only bosons are present, i.e., Ψy P Fy. The momentum space representation
of the bosonic creation and annihilation operators a:pvq, apvq with form factor v P h
given by

pa:pvqΨyqpKq :� 1?
N

Ņ

`�1

vpk`qΨypKzk`q

papvqΨyqpKq :�
?
N � 1

»
vpk̃q�ΨypK, k̃q dk̃.

(4.95)

This definition implies that the commutation relations rapv1q, a:pv2qs � xv1, v2y
hold as a strong operator identity on a dense domain in Fy. These operators
a:pvq, apvq substantially differ from A:pvq, Apvq defined in (4.20), (4.22), which
create or annihilate one boson at the position of each fermion, whereas in Fy,
there are no fermions.

Using a:pvq, apvq, we may define a set of displacement operators

Wypϕq � ea
:pϕq�apϕq, (4.96)

and coherent states Ψypϕq :� WypϕqΩy. Indeed, Wypϕq is well–defined, since for
ϕ P h, we have the bounds��a:pϕqΨy

�� ¤ ��pN � 1q1{2Ψy

�� }ϕ}, ��apϕqΨy

�� ¤ ��N1{2Ψy

�� }ϕ}, (4.97)

so the exponential series (4.96) converges in norm:

Ψypϕq � WypϕqΩy :�
8̧

k�0

1

k!
pa:pϕq � apϕqqkΩy

where

���� 1

k!
pa:pϕq � apϕqqkΩy

���� ¤ 1

k!

��2kpk!q1{2Ωy

�� }ϕ}k � pk!q�1{2}2ϕ}k.
(4.98)

Here, we used in the second line that pa:pϕq � apϕqqkΩy occupies only sectors in
Fock space with ¤ k particles, so we can set N ¤ pk � 1q in (4.97). Subsequent
application of (4.97) leads to the factor pk!q1{2.
In momentum space representation and in terms of tensor products,

ΨypϕqpKq � e�
}ϕ}2

2
1?
N !

�
N¹
`�1

ϕpk`q
�

ô Ψypϕq �
8̧

N�0

e�
}ϕ}2

2?
N !

ϕbS . . .bS ϕlooooooomooooooon
N times

.

(4.99)
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A calculation similar to (4.98) verifies that Wypϕq can be defined on all Ψy with
finite particle number, i.e., Ψy P Ffin,y with

Ffin,y :�  
Ψy P Fy

�� DNmax P N : ΨpNq
y � 0 @N ¡ Nmax

(
. (4.100)

And by continuity, we can thus define Wypϕq on all of Fy.

Moreover, the Wypϕq are unitary, so
��Ψypϕq

�� � 1, and they satisfy the Weyl
relations. Further, it is a well–known fact that the span of the set of coherent
states tΨypϕq | ϕ P hu is dense in Fy [116, Prop. 12]. In addition,

xΨypϕ1q,Ψypϕ2qyFy � e�
}ϕ1}

2�}ϕ2}
2

2 exϕ1,ϕ2y, (4.101)

so��Ψypϕ1q�Ψypϕ2q
��2 � ��Ψypϕ1q

��2� ��Ψypϕ2q
��2� 2e�

}ϕ1}
2�}ϕ2}

2

2 Re
�
exϕ1,ϕ2y�. (4.102)

As h is separable, we can find a countable dense set pϕnqnPN in h, such that
pΨypϕnqqnPN is also dense in the coherent states. So

span
 
Ψypϕnq

�� n P N
(

is dense in Fy. (4.103)

Since h X 9S81 � C8
c is dense in h the above statements hold true, if we replace

ϕn P h by ϕn P hX 9S81 .

4.5.2 Dressing Induced by Fermions W1pϕq

Density

Now, let us turn to the case with two particle species, i.e., F � FxbFy and A:, A
instead of a:, a. In order to make an analogous statement to (4.103) work, we re-
strict from A:pϕq � °M

j�1A
:
jpϕq to A:

1pϕq, i.e., creation by only the first fermion.

Just as Wypϕq, the Fock space operator WF ,1pϕq � eA
:
1pϕq�A:1pϕq can be defined in

analogy to Wypϕq. The operators A:
1pϕq and WF ,1pϕq break the fermionic sym-

metry, so they map F Ñ L2pQxq b Fy (instead of F Ñ F ). We will therefore
proceed by considering vectors Ψ P L2pQxq bFy, i.e., with only bosonic exchange
symmetry.

As a “cyclic set” of vectors Ψm, used for generating further domains, we choose

CWS :� SpQxq b tΩyu � L2pQxq bFy. (4.104)
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Since the boson field is in the vacuum, CWS is obviously not dense in L2pQxqbFy.
However, it generates a dense subspace by applying operators WF ,1pϕq to it. The
momentum representation after such an application is given by

pWF ,1pϕqΨmqpP ,Kq � e�
}ϕ}2

2?
N !

�
N¹
`�1

ϕpk`q
�

Ψmx

�
p1 �

Ņ

`�1

k`,p2, . . . ,pM

�
.

(4.105)

Definition 4.5.1. The span of coherent states created by the first fermion
is given by

DWS :� span
 
WF ,1pϕqΨm

�� ϕ P hX 9S81 , Ψm P CWS

(
. (4.106)

With (4.106), it is true that

Lemma 4.5.2. pS� b 1qrDWSs is dense in F � Fx bFy

The proof is based on denseness of coherent states in Fy and can be found in
Section 4.9.

Dressed One–Boson States

Just asWF ,1pϕq, we may defineWF ,jpϕq, j P N andWF pϕq � WF ,Mpϕq . . .WF ,1pϕq
with ϕ P h X 9S81 on each M–fermion sector. These operators are all unitary on
L2pQxq bFy and well–defined on F .
We will now establish some useful commutation relations on the dense subspace

Ffin :� Fx bFfin,y � F , (4.107)

with Ffin,y defined in (4.100).

Lemma 4.5.3 (Commutation relations for WF ). For ϕ, φ P hX 9S81 , we have the
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4.5 Dressing on the Extended State Space

following strong operator identities2 on Ffin:

WF ,jpϕqA:
j1pφq �

#�
A:
j1pφq � xϕ, φy�WF ,jpϕq if j � j1�

A:
j1pφq � Vjj1pϕ�φq

�
WF ,jpϕq if j � j1

,

WF pϕqA:
j1pφq �

�
A:
j1pφq � xϕ, φy � Vj1pϕ�φq

�
WF pϕq,

WF ,jpϕqA:pφq � �
A:pφq � xϕ, φy � Vjpϕ�φq

�
WF ,jpϕq,

WF pϕqA:pφq � �
A:pφq �Mxϕ, φy � V pϕ�φq�WF pϕq,

(4.108)

as well as

WF ,j1pϕqAjpφq �
#�
Ajpφq � xφ, ϕy�WF ,j1pϕq if j � j1�
Ajpφq � Vjj1pφ�ϕq

�
WF ,j1pϕq if j � j1

,

WF pϕqAjpφq �
�
Ajpφq � xφ, ϕy � Vjpφ�ϕq

�
WF pϕq,

WF ,j1pϕqApφq �
�
Apφq � xφ, ϕy � Vj1pφ�ϕq

�
WF ,j1pϕq,

WF pϕqApφq �
�
Apφq �Mxφ, ϕy � V pφ�ϕq�WF pϕq,

(4.109)

with Vjj1 defined in (4.89) and3

Vj1pϕ�φq :�
¸
j:j�j1

Vjj1pϕ�φq, Vjpϕ�φq :�
¸

j1:j�j1
Vjj1pϕ�φq,

V pϕ�φq :�
¸
j�j1

Vjj1pϕ�φq.
(4.110)

The proof of Lemma 4.5.3 is straightforward by applying the CCR. We present
it in Section 4.10.

4.5.3 Extended Dressing W psq

We would now like the relations in (4.108) to also hold true if we replace ϕ, φ P
hX 9S81 by s, v P 9S81 . In that case, the Fock space operators WF ,j turn into extended
operators Wj. More precisely, it would be desirable to have

WjpsqA:
j1pvqΨm �

#�
A:
j1pvq � xs, vy�WjpsqΨm if j � j1�

A:
j1pvq � Vjj1ps�vq

�
WjpsqΨm if j � j1

(4.111)

2By a strong operator identity A � B for A,B : F Ñ L2pQxq b Fy, we mean that AΨ �
BΨ @Ψ P F , even if possibly AΨ, BΨ R F .

3Here,
°
j:j�j1 is to be understood as a sum over only j, while

°
j�j1 is a sum over both j and

j1. The second kind of sum will appear more often, so we give it a shorter notation.
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for Ψm P CWS. By Lemma 4.4.3, and since xs, vy P Ren1, we may obviously interpret

Vjj1ps�vq : F Ñ F ex, xs, vy : F Ñ F ex. (4.112)

So if we can define WjpsqΨm P F , then the right–hand side of (4.111) serves as

a definition for WjpsqA:
j1pvqΨm P F ex. And if we can further define products like

W psqW1pϕqΨm � WMpsq . . .W1psqW1pϕqΨm P F , then a generalization of (4.108)
may even be used to define W psqW1pϕqA:

j1pvqΨm P F ex.
However, before doing so, it is first necessary to specify what W1psqW1pϕq is, which
we will do by introducing some “extended Weyl relations”.

Extended Weyl Relations

In order to treat products of factors Wjpsq, s P 9S81 , we introduce an extended
Weyl algebra W that is generated by all Wjpsq and taken over the field eRen (as
in Definition 4.3.9). Recall that c P eRen is a fraction of linear combinations of
exponentials er, with r P Ren1 being a possibly divergent integral (see Definition
4.3.2). Multiplication on W is defined by the Weyl relations

Wjpsq�1 � Wjp�sq
Wjps1qWjps2q � e�

i
2
σps1,s2qWjps1 � s2q,

(4.113)

with symplectic form
σ � 9S81 � 9S81 Ñ Ren1

ps1, s2q ÞÑ xs1, s2y � xs2, s1y.
(4.114)

Note that e�
i
2
σps1,s2q � eImxs1,s2y P eRen is not necessarily a complex number.

This W can be seen as an “almost–extension” of W (strictly speaking, it only
extends some Weyl algebra W0 generated by tWjpsq | s P hX 9S81 u).

The definition of the extended Weyl algebra now allows us to write

W psqW1pϕq �WMpsq . . .W2psqW1psqW1pϕq
�eImxs,ϕyWMpsq . . .W2psqW1ps� ϕq. (4.115)

So W psqW1pϕq can be brought into the form WMpsMq . . .W1ps1q times an eRen–
factor, which is the same on each M–fermion sector.
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Extended Dressing on Coherent States

In order to define vectors of the kind WMpsMq . . .W1ps1qΨm P F , we make use
of the momentum space definition of WF ,MpϕMq . . .WF ,1pϕ1qΨm for ϕ` P hX 9S81 .
For two dressing operators with j � j1, the Baker–Campbell–Hausdorff formula
implies

WF ,jpϕjqWF ,j1pϕj1qΨm � eA
:
jpϕjq�AjpϕjqeA

:

j1
pϕj1 q�Aj1 pϕj1 qΨm

� e�
}ϕj}

2

2
� }ϕ

j1
}2

2 eA
:
jpϕjqe�AjpϕjqeA

:

j1
pϕj1 q e�Aj1 pϕj1 qΨmloooooomoooooon

�Ψm

� e
� }ϕj}

2

2
� }ϕ

j1
}2

2
�rAjpϕjq,A:j1 pϕj1 qseA

:
jpϕjqeA

:

j1
pϕj1 qe�AjpϕjqΨm

� e�
}ϕj}

2

2
� }ϕ

j1
}2

2
�Vjj1 pϕ�j ϕj1 qeA

:
jpϕjq�A:j1 pϕj1 qΨm.

(4.116)
Here, we used that Vjj1 commutes with all A:

j2 and Aj2 , which follows by the same
arguments as in the proof of Lemma 4.5.8 below. Thus, all double commutators
between A– and A:–operators vanish. The generalization to arbitrarily many fac-
tors, WF ,MpϕMq . . .WF ,1pϕ1qΨm is straightforward, and we obtain an exponential

of constants and Vjj1–terms, followed by eA
:
M pϕM q�...�A:1pϕ1qΨm.

We now define WMpϕMq . . .W1pϕ1q by dropping the Vjj1–terms in (4.116), which
yields the following momentum space expression for Ψm � Ψmx b Ωy P CWS

pWMpϕMq . . .W1pϕ1qΨmqpP ,Kq :� 1?
N !
e�

°M
j�1

}ϕj}
2

2

¸
σ

�
N¹
`�1

ϕσp`qpk`q
�

Ψmx pP 1q ,
(4.117)

where the sum over σ over all MN maps

σ : t1, . . . , Nu Ñ t1, . . . ,Mu, (4.118)

assigning each boson ` to a fermion j � σp`q. The shifted momentum, illustrated
in Figure 4.4, is then

P 1 :� P �
¸
`

eσp`qk`. (4.119)

Lemma 4.5.4 (Products of W are well–defined). Consider a sequence psjqjPN �
9S81 and Ψm P CWS. Then, the momentum space definition (4.117) renders a well-

defined vector
WMpsMq . . .W1ps1qΨm P F , (4.120)

where (4.120) is to be interpreted as a sector–wise definition in M P N.
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p1 � k2 p1

p2 � k1 � k3 p2

k3 σp3q � 2
k2 σp2q � 1
k1 σp1q � 2

K

PP 1

Abbildung 4.4: An example for momentum shift within the dressing.

Proof. Copying the momentum space definition (4.117), we obtain

pWMpsMq . . .W1ps1qΨmqpP ,Kq :� 1?
N !
e�

°M
j�1

}sj}
2

2

¸
σ

�
N¹
`�1

sσp`qpk`q
�

Ψmx pP 1q .
(4.121)

Obviously,
�±N

`�1 sσp`qpk`q
	

Ψmx pP 1q defines a function in 9S8F , which is still true

after taking the finite sum over σ.

Further, we have }sj}2 � xsj, sjy P Ren1, so e�
°M
j�1

}sj}
2

2 P eRen.

Therefore, the expression (4.117) defines an element of F .

This already allows us to define WMpsMq . . .W1ps1q on vectors Ψm P CWS with
the boson field in the vacuum. In order to define WMpsMq . . .W1ps1q also on a
dense domain in F , we extend the definition to vectors WF ,1pϕqΨm P DWS, who-
se symmetrized span, by Lemma 4.5.2, is dense in F . This extension is done by
assuming that WF ,1pϕq can be merged into W1ps1q, just as W1pϕq in (4.115).
We will also allow for a treatment of state vectors by using the operator pS�b1q,
which can obviously be extended to pS�b 1q : F Ñ F or pS�b 1q : F ex Ñ F ex,
using the momentum space definition (4.12).

Definition 4.5.5. Let psjqjPN � 9S81 . Then, by Lemma 4.5.4, copying the mo-
mentum space definition (4.117) results in a well–defined product of dressing
operators

WMpsMq . . .W1ps1q : DWS Ñ F ,

WMpsMq . . .W1ps1qWF ,1pϕqΨm :� eImxs1,ϕyWMpsMq . . .W1ps1 � ϕqΨm,
(4.122)
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where M is the respective fermion number on each sector. Further, we define the
extension to symmetrized vectors

WMpsMq . . .W1ps1q : pS� b 1qrDWSs YDWS Ñ F , (4.123)

by imposing that WMpsMq . . .W1ps1q shall commute with the symmetrization ope-
rator pS� b 1q.

With this definition, it is true that

Lemma 4.5.6. For all ϕ P hX 9S81 and Ψm P CWS, it holds that

WF ,1pϕqΨm � W1pϕqΨm, (4.124)

in terms of momentum space functions.

Proof. Consider (4.116) with j � 1 and ϕj1 � 0. Then, the Vjj1–term vanishes,
so no Vjj1–terms are dropped when copying momentum space expressions in the
transition WF ,1 Ñ W1 and indeed WF ,1pϕqΨm � W1pϕqΨm.

Remarks.

16. It may seem natural to extend Definition 4.5.5 to a general Ψ P F . By Lem-
ma 4.5.2, we can write Ψ as a symmetrized version of Ψ1 � °

nn1 W1pϕnqΨn1

with ϕn P hX 9S81 and Ψn1 P CWS. In that case,W psqΨ � °
nn1 W psqW1pϕnqΨn1

contains a possibly infinite sum over functions 9Q Ñ C, which may not con-
verge.
However, our aim is to give a dense definition of rH : F � domp rHq Ñ F , so
it suffices to consider the action of W psq, and HW psq on a dense subset of
F , such as pS� b 1qrDWSs.

17. Concerning the renormalization classes: Two ESS vectors W psqW1pϕqΨm

and W psqW1pϕ̃qΨm1 with Ψm and Ψm1 concentrated on the same M–fermion

sector can be added if the wave function renormalizations c � er, r � � }s}2
2
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belong to the same renormalization factor class, i.e.,

r� r̃ P C ô �� }s� ϕ}2 � }s� ϕ̃}2 � 2Imxs, ϕ� ϕ̃y ��   8

ô
������2Rexs, ϕ� ϕ̃y � 2Imxs, ϕ� ϕ̃y � }ϕ}2loomoon

 8

� }ϕ̃}2loomoon
 8

������   8

ð |xs, ϕ� ϕ̃y|   8.
(4.125)

That means, convergence of the integral
³
spkq�pϕpkq � ϕ̃pkqq dk ensures

that the renormalization classes coincide. Note that both Re and Im above
may be infinite, but cancel each other out.

Extended Dressing on One–Boson States

Now, as announced, when replacing ϕ, φ P h X 9S81 by v, s P 9S81 in (4.108), we
obtain a well–defined right–hand side. This allows for the following extension of
dressing operator products

Definition 4.5.7. Let v P 9S81 , psjqjPN � 9S81 and Ψm P CWS. We extend the
product of dressing operators to one–boson states via

WMpsMq . . .W1ps1qA:
j1pvqΨm P F ex, (4.126)

where M is the respective fermion number on each sector, via

WMpsMq . . .W1ps1qA:
j1pvqΨm :�

�
A:
j1pvq �

M̧

j�1

Xj

�
WMpsMq . . .W1ps1qΨm,

with Xj �
#
xs, vy if j � j1

Vjj1ps�vq if j � j1
.

(4.127)
This operator can further be extended to symmetrized vectors by imposing that
WMpsMq . . .W1ps1q shall commute with the symmetrization operator pS� b 1q.

It is easy to see that the right–hand side of (4.127) makes sense: By Lemma 4.5.4,
we have WMpsMq . . .W1ps1qΨm P F . Lemma 4.4.1 implies that A:

j1pvq : F Ñ F

and by Lemma 4.4.3 and xs, vy P Ren1, we have that Xj : F Ñ F ex.

Heuristically, the factors Xj now commute with Wj1psq, since we have the follo-
wing commutation relations.

190



4.5 Dressing on the Extended State Space

Lemma 4.5.8. For ϕ, ϕ1, φ P h it is true that

rWF ,jpϕ1q, Vj1j2pϕ�φqs � 0, and rWF ,jpϕ1q, xϕ, φys � 0, (4.128)

as a strong operator identity on F .

Proof. Since ϕ, φ P L2, we have ϕ�φ P L1, so after a Fourier transform, the operator
Vj1j2pϕ�φq amounts to a multiplication by an L8–function, and is hence bounded.
Further, WF ,jpϕ1q is unitary on L2pQxq bFy (and hence bounded). So the com-
mutator is defined on all of L2pQxq bFy and hence F .

Now, in position space, both A:
jpϕ1q and Ajpϕ1q can be decomposed into a fiber

integral by fiber–decomposing L2pQxq bFy �
³
Qx Fy dX (see (4.21) and (4.23)).

So we can also decompose WF ,jpϕ1q � eA
:
jpϕ1q�Ajpϕ1q into a fiber integral. And by

(4.91), the operator Vj1j2pϕ�φq just amounts to a multiplication by a complex con-
stant on each fiber Hilbert space. So the fiber operators commute on all fibers and
hence the original operators commute on L2pQxq bFy and F .

The expression xϕ, φy is just a constant, so it trivially commutes with WF ,jpϕ1q.

Mathematically, if we replace ϕ, ϕ1, φ P h by s, s1, v P 9S81 , then the commutation
relations (4.128) are not a priori valid, since Wjpsq is not necessarily defined on
vectors of the kind Vj1j2pϕ�φqΨm or xϕ, φyΨm. We enforce their validity by taking
(4.128) as a definition for an extension of Wjpsq:

Definition 4.5.9. Let psjqjPN � 9S81 , ϕ P hX 9S81 and Ψm P CWS, and let X be an
element of the set of operators

X :� spaneRen

 xs, vy, Vjj1ps�vq �� s, v P 9S81
(
, (4.129)

so X formally commutes with all Wjpsjq. Then we extend the product of dres-
sing operators via

WMpsMq . . .W1ps1qXΨm :�XWMpsMq . . .W1ps1qΨm,

WMpsMq . . .W1ps1qXWF ,1pϕqΨm :�XWMpsMq . . .W1ps1qWF ,1pϕqΨm

�XWMpsMq . . .W1ps1qW1pϕqΨm,

(4.130)

with M being the respective fermion number on each sector and where the last
equality in (4.130) holds by Lemma 4.5.8. Again, we may extend the definition to
symmetrized vectors by imposing that WMpsMq . . .W1ps1q shall commute with
the symmetrization operator pS� b 1q.
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Again, it is easy to see that this definition makes sense: By Lemma 4.5.4, we
have WMpsMq . . .W1ps1qΨm P F . And since X P X maps F Ñ F ex, indeed

XWMpsMq . . .W1ps1qΨm P F ex, (4.131)

so the right–hand sides of (4.130) are well–defined.

Remarks.

18. It seems natural to define (4.130) for all operators X which commute with
A:
jps1q in a sufficiently regular case and Ajps1q. However, since we have only

defined Ajps1q : F Ñ F ex and Vj1j2ps�vq : F Ñ F ex, it is not clear how to
interpret the commutator rAjps1q, Vj1j2ps�vqs. So Vj1j2ps�vq would then not

be a valid X–operator, although it commutes with A:
jps1q and Ajps1q for

s, s1, v P h.
If one succeeded to modify the definition of F ,F ex such that commuta-
tors as rAjps1q, Vjj1ps�vqs are well–defined operators, then it seems reaso-
nable to change the set of allowed X in Definition 4.5.9 to all X with
rA:

jps1q, Xs � rAjps1q, Xs � 0.

Final definition of W psq
With Definitions 4.5.7 and 4.5.9, we may now provide the final domains for the
product WMpsMq . . .W1ps1q: The extended dressing domain DW is defined as

DW :�
spaneRen

 
W1pϕqA:

jpvqΨm, XW1pϕqΨm

�� ϕ P hX 9S81 , v P 9S81 , X P X , Ψm P CWS

(
,

(4.132)
with 9S81 defined in (4.27), X defined in (4.129) and CWS defined in (4.104). Well–
definedness of W psq on DW can be seen by combining (4.115) with Definitions 4.5.7
and 4.5.9. By imposing that WMpsMq . . .W1ps1q shall commute with pS� b 1q, we
extend WMpsMq . . .W1ps1q to pS� b 1qrDW s YDW .
The maximal domain of W psq in Fock space is now given by the large domain

DF :� pS� b 1q�DW X pL2pQxq bFyq
�
. (4.133)

The symmetrization operator pS� b 1q ensures that indeed DF � F . With this
definition, it holds true that
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Lemma 4.5.10. We have the inclusion

DWS � DW X pL2pQxq bFyq, (4.134)

and in particular, DF is dense in F .

Proof. SettingX � 1 and using Lemma 4.5.6, we see thatWF ,1pϕqΨm � W1pϕqΨm P
DWS with ϕ P h X 9S81 and Ψm P CWS is also an element of DW . Further,
WF ,1pϕqΨm P L2pQxq bFy, which yields the inclusion relation (4.134).

Hence, the symmetrized version pS� b 1qrDWSs is included in DF . And since
the former is dense in F (Lemma 4.5.2), also the latter is.

In order to define the renormalized Hamiltonian rH � W psq�1HW psq, we also
need to have a well–defined inverse W psq�1. The following Lemma will allow for
such an inversion in certain cases.

Lemma 4.5.11. W psq with s P 9S81 is invertible on DF .

The proof of this Lemma can be found in Section 4.11 and uses another lemma
about linear independence of coherent (and certain related) states.

Lemma 4.5.12. For k P t1, . . . , Ku, K P N, consider Ψ1
m,k P L2pQxq b tΩyu and

ϕk P h X 9S81 . Further, choose any partition t1, . . . , Ku � KWA Y KW , as well as
vk P hX 9S81 and jk P N for k P KWA, and define

Ψk :�
#
WF ,1pϕkqA:

jk
pvkqΨ1

m,k if k P KWA

WF ,1pϕkqΨ1
m,k if k P KW

, (4.135)

such that Ψk � 0. Further, assume that ϕk � ϕk1 whenever k � k1 both belong to
either KWA or KW . Then the set 

Ψk | k P t1, . . . , Ku( � L2pQxq bFy (4.136)

is linearly independent.

Heuristically speaking, the proof relies on the argument, that there is a “largest
ϕk”, for which the term ϕbNk , occurring in a coherent state, eventually grows “too
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large to be canceled by the K � 1 other terms” as N Ñ 8. The proof itself is
rather technical and can also be found in Section 4.11.

Remarks.

19. In essence, we just transferred the commutation relations (4.108) for creati-
on operators A:

j from Lemma 4.5.3 in a certain sense to extended dressing
operators Wjpsq. This was done by imposing definitions such that these com-
mutation relations still hold true. What about the commutation relations
(4.109) for annihilation operators Aj?
In fact, these relations cannot be imposed by definition, but one may show
that they are an immediate consequence of Definition 4.5.5. This is proved
in the following lemma:

Lemma 4.5.13. Let s, v P 9S81 and Ψm P CWS. Then, we have the commutation
relations

Wj1psqAjpvqΨm �
#�
Ajpvq � xv, sy�Wj1psqΨm if j � j1�
Ajpvq � Vjj1pv�sq

�
Wj1psqΨm if j � j1

W psqAjpvqΨm � �
Ajpvq � xv, sy � Vjpv�sq

�
W psqΨm

Wj1psqApvqΨm � �
Apvq � xv, sy � Vj1pv�sq

�
Wj1psqΨm

W psqApvqΨm � �
Apvq �Mxv, sy � V pv�sq�W psqΨm.

(4.137)

Proof. First, note that AjpvqΨm � 0. The first line in (4.137) then follows by
momentum space definitions (4.22) and (4.121):�

AjpvqWj1psqΨm

�pP ,Kq

�e
� }s}2

2?
N !

»
vpk̃q�spk̃q

�
N¹
`�1

spk`q
�

ΨmxpP 1 � pej1 � ejqk̃q dk̃

�
#
xv, syΨmpP ,Kq if j � j1�
Vjj1pv�sqΨm

�pP ,Kq if j � j1
,

(4.138)

with P 1 � P � ej1
°N
`�1 k`.

The second line in (4.137) is established similarly. We use again (4.22) and
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(4.121), yielding:�
AjpvqW psqΨm

�pP ,Kq

�e
� }s}2

2?
N !

¸
σ̃

»
vpk̃q�spk̃q

�
N¹
`�1

spk`q
�

ΨmxpP 1 � peσ̃pN�1q � ejqk̃q dk̃,
(4.139)

where the sum runs over all σ̃ : t1, . . . , N �1u Ñ t1, . . . ,Mu and we have set P 1 �
P �°N

`�1 eσ̃p`qk`, as well as kN�1 � k̃. We can split this sum into a sum over pσ, jq
with σ : t1, . . . , Nu Ñ t1, . . . ,Mu, σp`q � σ̃p`q and j1 P t1, . . . ,Mu, j1 � σ̃pN � 1q:�

AjpvqW psqΨm

�pP ,Kq

�e
� }s}2

2?
N !

¸
j1

¸
σ

»
vpk̃q�spk̃q

�
N¹
`�1

spk`q
�

ΨmxpP 1 � pej1 � ejqk̃q dk̃.
(4.140)

Now, the term with j1 � j renders the contribution xs, vyΨm and all other M � 1
terms add up to

°
j1:j�j1 Vjj1pv�sqΨm � Vjpv�sqΨm, which is exactly the desired

contribution.

Lines three and four of (4.137) just follow by summing over j P t1, . . . ,Mu in
the first two lines.

4.6 Pulling Back the Hamiltonian

This section is concerned with taking a formal Hamiltonian

H � H0,y � A:pvq � Apvq � E8,

and pulling it back under the dressing transformation W psq, i.e., we compute

rH : Fex � DWS Ñ F ex with W psq rH � HW psq.

The computation is split into two steps. In Section 4.6.1, we compute the pull-
back of pApvq � E8q. Pulling back only Apvq will result in divergences which are
canceled by E8.
The pullback of pH0,y �A:pvqq is then computed in Section 4.6.2. Combining H0,y

and A:pvq yields a particularly easy result.

Our main theorem is the following:
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Theorem 4.6.1. Let s � � v
ω

with s, v, ω P 9S81 . Then the pullback of the self–
energy renormalized Hamiltonian

rH :� H0,y � V pv�sq satisfies W psq rH � �
H0,y � A:pvq � Apvq � E8

�
W psq,

(4.141)
which holds as a strong operator identity on DWS (defined in (4.106)), as well as
on pS� b 1qrDWSs.

Note that the potential interaction V defined in (4.110) via (4.89) acts as

pVΨqpP ,Kq �
¸
j�j1

»
vpk̃q�spk̃qΨpP � pej � ej1qk̃,Kq dk̃.

Remarks.

20. So far, we have not shown that W psq is invertible on Ranp rHq. In Lemma
4.7.2, we will prove that under further assumptions, one can reasonably definerH : rDF Ñ DF . In that case, Lemma 4.5.11 renders invertibility of W psq,
and we have

W psq rH � HW psq ô rH � W psq�1HW psq (4.142)

as a strong operator identity. However, even without the invertibility ofW psq,
Theorem 4.6.1 renders a physically reasonable renormalized HamiltonianrH. It only remains an open question, whether the operator rH satisfying
W psq rH � HW psq is unique.

4.6.1 Pulling Back A� E8

We recall that by Proposition 4.4.2, one can define E8 : F Ñ F ex with

pE8ΨqpP ,Kq �Mxv, sy ΨpP ,Kq �
M̧

j�1

»
�vpkq

�vpkq
ωpkq dk ΨpP ,Kq, (4.143)

even if xv, sy R C, but xv, sy P Ren1.

Lemma 4.6.2. Let Ψm P CWS and s � � v
ω

with s, v, ω P 9S81 . Then for ϕ P 9S81 Xh,�
Apvq � E8

�
W psqWF ,1pϕqΨm � W psq�res1pϕq � V pv�sq�WF ,1pϕqΨm P F ex,

(4.144)
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where the residual operator

res1pϕq � xv, ϕyloomoon
PRen1

�V1pv�ϕq, (4.145)

is by Lemma 4.4.3 a well–defined mapping F Ñ F ex.

The proof of Lemma 4.6.2 is given in Section 4.12.

4.6.2 Pulling Back H0,y � A:

Lemma 4.6.3. Let Ψm P CWS and s � � v
ω

with s, v, ω P 9S81 . Then for ϕ P 9S81 Xh,�
H0,y � A:pvq�W psqWF ,1pϕqΨm � W psq�H0,y � res1pϕq

�
WF ,1pϕqΨm P F ex,

(4.146)
with the same residual operator res1 � xv, ϕy � V1pv�ϕq as in Lemma 4.6.2.

As for Lemma 4.6.2, the proof of Lemma 4.6.3 is rather technical. It can be
found in Section 4.13. With both lemmas at hand, Theorem 4.6.1 can directly be
proved.

Proof of Theorem 4.6.1. This is a simple consequence of Lemmas 4.6.2 and 4.6.3.
We put together (4.144) and (4.146) which yields

W psq rH � �
H0,y � A:pvq � Apvq � E8

�
W psq �W psq�H0,y � V pv�sq � res1pϕq � res1pϕq

�
�W psq�H0,y � V pv�sq�,

(4.147)
as a strong operator identity on all Ψ � WF ,1pϕqΨm, ϕ P 9S81 X h. And these Ψ
span DWS.

Since we imposed in Definitions 4.5.5, 4.5.7 and 4.5.9 that symmetrization pS�b
1q shall commute with W psq, the strong operator identity is also valid on pS� b
1qrDWSs.

4.7 Self–Adjointness

In this section, we prove that in certain cases, rH can indeed be defined as a self–
adjoint operator rH : F � domp rHq Ñ F . So far we have by Theorem 4.6.1 that
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rH : pS� b 1qrDWSs Ñ F ex is well–defined.

In order for the image of rH to be in DF , we need to restrict the domain of rH even
further to some subspace rDF � DF , defined in (4.150), and prove well–definedness

of rH : rDF Ñ DF (Lemma 4.7.2). The existence of a self–adjoint extension on some

domp rHq � rDF is then a simple consequence (Corollary 4.7.3).

4.7.1 Existence of Self–adjoint Extensions

First, we verify that rH � H0,y � V is well–defined and symmetric on a dense
domain in F .

Definition 4.7.1. Let Qcol,x be the set of collision configurations, i.e., all
fermion position space configurations

Qcol,x :�  
X P Qx

�� Dj � j1 : xj � xj1
(
. (4.148)

Denote by

rCWS :�  
Ψm � Ψmx b Ωy

�� F�1pΨmxq P C8
c pQxzQcol,xq

(
(4.149)

the “cyclic set” of functions whose support avoids the collision configurations (whe-
re F�1 is the inverse Fourier transform). We define the small domain, on whichrH is initially defined as a Fock space operator as

rDF :� pS� b 1q�span
 
WF ,1pϕqΨm

�� ϕ P C8
c pRdq, Ψm P rCWS

(�
, (4.150)

see Figure 4.5. It is easy to see that rDF � DF and rDF � pS� b 1qrDWSs.

In the following Lemma, we will use that if ω, v P 9S81 satisfy (4.32) and (4.33)
(so they scale polynomially), then the potential function

V̂ :� v�s � �v�v
ω
, (4.151)

also scales polynomially with

mV � 2mv �mω βV � 2βv � βω. (4.152)

Further, if βV ¡ �d, then the inverse Fourier transform V � F�1pV̂ q P S 1pRdq
also exists, so we can make statements about the singular support of V .

Lemma 4.7.2 ( rH is densely defined and symmetric). The set rDF is dense in F .
Assume, that s, v, ω P 9S81 with ω, v satisfying (4.32) and (4.33), as well as βV ¡
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suppF�1pΨmxq

x1

x2

0

F�1pΨmxq appearing in CWS

suppF�1pΨmxq

x1

x2 Qcol,x

0

F�1pΨmxq appearing in rCWS

Abbildung 4.5: Within CWS, the fermionic wave functions must be in S, allowi-
ng for any support (including compact ones). Within rCWS, only
C8
c –functions are allowed with support avoiding the collision con-

figurations Qcol,x. Color online.

�d. If now
singsupppV q � t0u, (4.153)

then rH maps rDF Ñ DF and is thus densely defined. If in addition the symmetry
condition (4.34) holds, then rH is symmetric.

Proof. Density of rDF in F is established as density of pS� b 1qDWS in Lemma
4.5.2 (proof in Section 4.9). We recall that by the last line of (4.177),

D1WF ,1pϕqΨm � Ψmx bWypϕqΩy.

In the proof of Lemma 4.5.2, we argue that pS� b 1qDWS is dense in F , since
ΨmxbWypϕqΩy approximates any Ψ P L2pQxqbFy arbitrarily well. The transition

from pS�b1qDWS to rDF is achieved by a restriction to Ψmx P FrC8
c pQxzQcol,xqs.

The set Qcol,x is a union of hyperplanes on each sector in the fermionic configura-
tion space, so C8

c pQxzQcol,xq is dense in L2pQxq. The Fourier transform F is an
isometry, so the allowed set for Ψmx is dense in L2pQxq. Thus, we can still appro-
ximate any Ψ P L2pQxq bFy arbitrarily well by ΨmxbWypϕqΩy and by the same

arguments as in the proof of Lemma 4.5.2, rDF is dense in F .

Now we verify that H0,y maps rDF Ñ DF . By linearity, it suffices to show well–

definedness on all vectors of the form WF ,1pϕqΨm, ϕ P C8
c pRdq. Denote by P

pNq
y the

projection of Fy to the N–boson sector F pNq
y , so

°
NPN0

P
pNq
y � 1. The L2–norm

squares of WF ,1pϕqΨm are Poisson–distributed over N , i.e.,

��P pNq
y WF ,1pϕqΨm

��2 � e�}ϕ}
2 }ϕ}2N
N !

, (4.154)
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so for any 0   q   1 they decay faster than qN in N–direction. Now, define

λ :� max
kPsupppϕq

|ωpkq|. (4.155)

Then, ��P pNq
y H0,yWF ,1pϕqΨm

��2 ¤ N2λ2
��P pNq

y WF ,1pϕqΨm

��2
, (4.156)

which still decays faster than qN in N–direction. Thus,
��H0,yWF ,1pϕqΨm

��   8
and we have that H0,yWF ,1pϕqΨm P L2pQxq bFy.

It remains to be shown that V � V pv�sq is well–defined, which amounts to
proving that

pVΨqpP ,Kq �
¸
j�j1

»
V̂ pk̃qΨpP � pej � ej1qk̃,Kq dk̃,

defines an L2–function on Q. Since βV ¡ �d, we have that V̂ P L1
loc ñ V̂ P S 1, so

we can take the Fourier transform as in (4.91):

pVΨqpX,Y q �
¸
j�j1

V pxj � xj1qΨpX,Y q,

with V pxq � F�1pV̂ qpxq.
Now, for Ψ � WF ,1pϕqΨm we obtain the position space representation by

Fourier–transforming (4.105):

ΨpX,Y q � e�
}ϕ}2

2?
N !

�
N¹
`�1

ϕ̌py` � x1q
�

ΨmxpXq, (4.157)

where ϕ̌ � F�1pϕq is a Schwartz function, as ϕ P C8
c is Schwartz. So as ΨmxpXq

is a smooth function with compact support apart from collision configurations
in Qx, also Ψ is smooth, and it is zero at fermion collision configurations in Q.
Since the singular support of V pxq is at most t0u, the multiplication function°
j�j1 V pxj�xj1q is smooth on supppΨmxq (which excludes collision configurations).

And as supppΨmxq is compact, there is some CΨ P R with

max
XPsupppΨmxq

�����¸
j�j1

V pxj � xj1q
����� ¤ CΨ. (4.158)

Further, by compactness of support, a maximum occupied fermion sector M exists.
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4.8 Further Dressing Types

So
}VΨ}2 ¤M

4
C2

Ψ}Ψ}2   8
for Ψ P rDF . Thus, VΨ P L2pQxq bFy.

Symmetrization for fermions by pS� b 1q is preserved by H0,y and V . Hence,

indeed rHΨ P F . And by Theorem 4.6.1, we have that rHΨ P pS�b1qrDW s (other-
wise, we could not apply W psq to it).

Symmetry of rH is an obvious consequence of the symmetry condition (4.34). And

since rH preserves symmetry, it maps rDF Ñ DF � pS�b1qrDW XpL2pQxqbFyqs
(compare (4.133)).

Note that by Lemma 4.7.2, we may extend rH to any domain in F , as long as
its action on all vectors is well–defined.

Corollary 4.7.3 (Existence of a self–adjoint extension). rH : rDF Ñ DF as in
Lemma 4.7.2 allows for a self–adjoint extension.

Proof. This is a direct consequence of [22, Thm. X.3] (von Neumann’s theorem):

For a symmetric operator rH (called A within [22]), this theorem asserts that there

is a self–adjoint extension, provided that a conjugation operator C : rDF Ñ rDF

can be found, such that
C rH � rHC. (4.159)

As a conjugation, we choose pCΨqpKq � Ψp�Kq�, which amounts to complex
conjugation in particle–position representation. By symmetry (4.34) and since ω
is real–valued, V̂ pkq � V̂ p�kq�, so V C � CV . And analogously, CH0,y � H0,yC.
Thus, (4.159) holds, and we have at least one self–adjoint extension.

4.8 Further Dressing Types

There exist also other types of (non–unitary) dressing operators replacing W psq.
An example is given by the IBC construction mentioned, presented in Section 1.4,
where a dressing operator W � W�1

IBC � p1 �H�1
0 A:q�1 defined on a subspace of

F is used. In this section, we extend this operator to F Ñ F .
Another example is the dressing operator T � e�H

�1
0 A: , which is a strongly sim-

plified version of certain operators used in CQFT.
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4.8.1 IBC on the Extended State Space

In certain cases, the IBC renormalization renders a self–adjoint operator H with
dense domain in F , by using a formal undressing operator of the kind WIBC �
p1 � H�1

0 A:q. Within the construction, several divergent integrals appear, which
get combined to convergent ones. Using the ESS construction, one can directly
make sense of the divergent expressions and, in certain cases, perform the IBC
renormalization in a particularly convenient way. Suppose, θppq ¡ 0 and ωpkq ¡ 0.
By Proposition 4.4.2, AH�1

0 A: : F Ñ F ex is a well–defined operator. Using
a self–energy operator E : F Ñ F ex, we can define HIBC : F Ñ F ex with
HIBC � H0 � A: � A� E via (1.133):

HIBC �H0 � A: � A � E

�H0 � A: � A� AH�1
0 A: � AH�1

0 A: � E

�p1� AH�1
0 qH1{2

0looooooooomooooooooon
�:S�

H
1{2
0 p1�H�1

0 A:qlooooooooomooooooooon
�:S

�AH�1
0 A: � Eloooooooomoooooooon
T

�S�S � T.

(4.160)

Clearly, S�S is formally a symmetric and positive operator. If it can be densely
defined on F as a closed operator, then by [22, X.25] we have self–adjointness
of S�S. Using this argument, it is shown in [136, 137, 138, 139] that for certain
dispersion relations and form factors, S�S is self–adjoint on the domain

dompS�Sq �  
Ψ P F

�� p1�H�1
0 A:qΨ P dompH0q

(
. (4.161)

The condition p1 �H�1
0 A:qΨ P dompH0q is called interior– or abstract boundary

condition.

Now, suppose there is a suitable E such that T : F � DpT q Ñ F is a densely
defined Kato–perturbation of S�S, that is,

}TΨ} ¤ a}S�SΨ} � b}Ψ} @Ψ P dompS�Sq, (4.162)

with a   1. Then by the Kato–Rellich Theorem [22, X.12] we immediately obtain
a self–adjoint HIBC on the same domain dompS�Sq.

Using the ESS construction, we may now rigorously define WIBC and W�1
IBC, even

if they formally map out of Fock space:

Proposition 4.8.1. The operator WIBC : F Ñ F is well–defined and bijective.

Proof. We show that WIBC : 9S8F Ñ 9S8F is bijective. The extension to a bijective
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4.8 Further Dressing Types

operator on F is then done by linearity with respect to the field eRen.

The operator H�1
0 A: maps 9S8F to itself: A: maps 9S8F Ñ 9S8F by Proposition 4.4.2

and H�1
0 is just a multiplication by a function that is smooth on 9Q and polyno-

mially scaling. So WIBC is well–defined on all of 9S8F .

Bijectivity is shown by directly constructing W�1
IBC. Formally, the inverse is given

by a Neumann series:

W�1
IBC � p1�H�1

0 A:q�1 :�
8̧

k�0

p�H�1
0 A:qk. (4.163)

Claim: The Neumann series (4.163) defines an operator 9S8F Ñ 9S8F .

Proof of the Claim: Each�H�1
0 A: increases the boson number by 1. So p�H�1

0 A:qkΨ
is only supported on configuration space sectors with N ¥ k. Hence, on each
pP ,Kq P 9Q with K P RNd, we have that�

p�H�1
0 A:qkΨ

	
pP ,Kq � 0 for k ¡ N

ñ
� 8̧

k�0

p�H�1
0 A:qkΨ

�
pP ,Kq �

�
Ņ

k�0

p�H�1
0 A:qkΨ

�
pP ,Kq.

(4.164)

Since H�1
0 A: maps 9S8F to itself, also all sums

°n
k�0p�H�1

0 A:qk with n P N map
9S8F Ñ 9S8F . So the Neumann series is defined on each N–boson sector and hence

on all of 9S8F . ♦

Claim: The Neumann series (4.163) is the inverse of p1�H�1
0 A:q.

Proof of the Claim: We use the first line of (4.164) and perform a sector–wise
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4 Extended State Space for Describing Renormalized Fock Spaces in QFT

verification:

p1�H�1
0 A:q

� 8̧

k�0

p�H�1
0 A:qkΨ

�
pP ,Kq

�
� 8̧

k�0

p�H�1
0 A:qkΨ�

8̧

k�1

p�H�1
0 A:qkΨ

�
pP ,Kq

(4.164)�
�

Ņ

k�0

p�H�1
0 A:qkΨ�

Ņ

k�1

p�H�1
0 A:qkΨ

�
pP ,Kq

�ΨpP ,Kq.

(4.165)

So indeed p1�H�1
0 A:q �°8

k�0p�H�1
0 A:qk� � 1. ♦

As there is a well–defined inverse of WIBC � p1 � H�1
0 A:q on all of 9S8F , the

operator WIBC : 9S8F Ñ 9S8F must be bijective.

With Proposition 4.8.1, we have a well–defined linear space W�1
IBCr 9S8F XF s that

can be equipped with a scalar product

xW�1
IBCΨ,W�1

IBCΦyrenI :� xΨ,Φy for Ψ,Φ P 9S8F XF . (4.166)

The completion of W�1
IBCr 9S8F X F s with respect x�, �yrenI is a Hilbert space FrenI,

which we call the IBC–renormalized Fock space. HIBC is then defined on FrenI.
The pullback to F reads

rHIBC � WIBCHIBCW
�1
IBC (4.167)

Whenever the expression (4.167) extends to a self–adjoint operator, HIBC extends
to a self–adjoint operator on FrenI.

4.8.2 The e�H
�1
0 A:

–Transformation Inspired by CQFT

An operator T9e�H�1
0 A: appears in a similar form in the CQFT literature [209, 95].

Within the latter reference, a renormalized scalar product is constructed by a
procedure of the kind

xTΨ, TΦyren :� lim
ΛÑ8

xTΛΨ, TΛΦye�ΛΛ @TΨ, TΦ P T rDs, D � F , (4.168)
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4.8 Further Dressing Types

where the operators T, TΛ in [95] are, however, much more involved. Here,

ΛΛ � 4!}ωvΛ}22, (4.169)

and Λ is a UV–cutoff. The renormalized Hamiltonian is then constructed by a
limiting procedure [95, Thm. 4.1.1]:

xTΨ, HrenTΦyren � lim
ΛÑ8

xTΛΨ, HrenpΛqTΛΦye�ΛΛ , (4.170)

with HrenpΛq containing counterterms. The limit Λ Ñ 8 formally leads to an
infinite wave function renormalization with

Λ � 4!}ωv}22. (4.171)

The ESS construction now allows to directly define Λ P Ren1. In the simplified
case T9e�H�1

0 A: , we can even define the dressing transformation directly on F :

Proposition 4.8.2. For Ψ P 9S8F , we have

TΨ :� e�Λ{2e�H
�1
0 A:Ψ P F , (4.172)

with e�Λ{2 P eRen. In particular, e�H
�1
0 A: and T are well–defined linear operators

e�H
�1
0 A: : 9S8F Ñ 9S8F , T : 9S8F Ñ F .

Proof. As argued in the proof of Proposition 4.8.1, H�1
0 A: is well–defined on 9S8F

and maps Fock space vectors supported on the N–particle sector to those suppor-
ted on the N � 1–particle sector.

We can write the exponential series as

e�H
�1
0 A: �

8̧

k�0

p�H�1
0 A:qk
k!

� 1�H�1
0 A: � 1

2
H�1

0 A:H�1
0 A: � . . . . (4.173)

Now, each �H�1
0 A: maps 9S8F to itself and strictly increases the sector number. So

the N–sector of e�H
�1
0 A:Ψ may only depend on at most N � 1 terms of the series

(4.173). All terms are elements of 9S8F � F . Hence, e�H
�1
0 A: maps 9S8F into itself,

as claimed. Clearly, the factor e�Λ{2 is an element of eRen, so TΨ P F .
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4.9 Proof of Lemma 4.5.2

Proof. We show that DWS is dense in L2pQxqbFy. Since pS�b1q : L2pQxqbFy Ñ
F is surjective and bounded with norm 1, we then immediately get density of
pS� b 1qrDWSs within F .

If A:
1pϕq created a boson without giving a recoil to a fermion, we would be done:

In this case, WF ,1pϕqΨm would be of the form

Ψmx bWypϕqΩy. (4.174)

Now, Ψmx P SpQxq, which is dense in L2pQxq. Further, we have that spantWypϕqΩy |
ϕ P hX 9S81 u is dense in Fy, so

span
 
Ψmx bWypϕqΩy

�� ϕ P hX 9S81 , Ψmx P SpQxq
(

(4.175)

is dense in L2pQxq bFy.
However, WF ,1pϕqΨm is not of the form (4.174), since WF ,1pϕq shifts the momen-

tum p1 by
°N
`�1 k`, as in (4.37) (the first fermion gets a recoil). The same recoil

occurs when applying A:
1pvq. In other words, creation and dressing “entangle” the

fermion with the created boson by giving the fermion a recoil. In order to sol-
ve this problem, we introduce a disentangling operator D1 : L2pQxq b Fy Ñ
L2pQxq bFy, which removes all recoils:

pD1ΨqpP ,Kq :� Ψ

�
P �

Ņ

`�1

e1k`,K

�
. (4.176)

Clearly, D1 is unitary. Now,

pWF ,1pϕqΨmqpP ,Kq � e�
}ϕ}2

2?
N !

�
N¹
`�1

ϕpk`q
�

Ψmx

�
P �

Ņ

`�1

e1k`

�

ñ pD1WF ,1pϕqΨmqpP ,Kq � e�
}ϕ}2

2?
N !

�
N¹
`�1

ϕpk`q
�

ΨmxpP q

ô D1WF ,1pϕqΨm � Ψmx b
8̧

N�0

e�
}ϕ}2

2?
N !

ϕb . . .b ϕlooooomooooon
N times

� Ψmx bWypϕqΩy.

(4.177)
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So by density of (4.175), we have that

span
 
D1WF ,1pϕqΨm

�� ϕ P hX 9S81 , Ψm P CWS

(
is dense in L2pQxq bFy. And since D1 is unitary, its preimage

DWS � span
 
WF ,1pϕqΨm

�� ϕ P hX 9S81 , Ψm P CWS

(
is dense in L2pQxq bFy, as well. So pS� b 1qrDWSs is dense in F .

4.10 Proof of Lemma 4.5.3

Proof. For evaluating rA:,W s, we first consider the simple case where Ψ is replaced
by a boson–only vector Ψy P Fy. A vector with one boson can be written as:

φ � a:pφqΩy, (4.178)

with φ P h � F p1q
y . A coherent displacement can then be described using

Wypϕqa:pφq � a:pφqWypϕq � ra:pφq,Wypϕqs, (4.179)

where ϕ P hX 9S81 . The first expression is easily computed in momentum space:

pa:pφqΨyqpKq � 1?
N

Ņ

`�1

φpk`qΨypKzk`q

ñ pa:pφqWypϕqΩyqpKq � e�
}ϕ}2

2?
N !

Ņ

`�1

φpk`q
�¹
`1�`

ϕpk`1q
�
.

(4.180)

The commutator ra:pφq,Wypϕqs is computed using

p�q ra:pϕq, a:pφqs � 0

p��q rapϕq, a:pφqs � xϕ, φy. (4.181)

207



4 Extended State Space for Describing Renormalized Fock Spaces in QFT

We have

ra:pφq,Wypϕqs � ra:pφq, ea:pϕq�apϕqs �
8̧

k�0

1

k!
ra:pφq, pa:pϕq � apϕqqks

p�q�
8̧

k�0

p�1qk
k!

�ra:pφq, apϕqspa:pϕq � apϕqqk�1

� pa:pϕq � apϕqqra:pφq, apϕqspa:pϕq � apϕqqk�2

� . . .� pa:pϕq � apϕqqk�1ra:pφq, apϕqs�
p��q� �

8̧

k�1

p�1qk
k!

kxϕ, φypa:pϕq � apϕqqk�1 �
8̧

k�0

p�1qk
k!

xϕ, φypa:pϕq � apϕqqk

�xϕ, φyWypϕq.
(4.182)

It is easy to check that all above formulas hold as strong operator identities on
the space of finite–boson states Ffin,y (defined in (4.100)). By (4.97), an application
of k operators of the kind4 a7pϕq P tapϕq, a:pϕqu to Ψy P Ffin,y is bounded by

����apϕq7�kΨy

��� ¤
d
pNmax � kq!
Nmax!

}Ψy} }ϕ}n. (4.183)

This allows to estimate

��a7pφqWypϕqΨ
�� ¤ ¸

kPN0

1

k!

d
pNmax � k � 1q!

Nmax!
}Ψy} }2ϕ}n }φ}   8, (4.184)

and an analogous estimate shows that Wypϕqa7pφq is well–defined.

Putting together (4.179) and (4.182), we obtain the action of Wypϕq on single–
boson states:

Wypϕqa:pφqΩy � pa:pφq � xϕ, φyqWypϕqΩy. (4.185)

Now, we turn to state vectors with many fermions and one boson, A:
1pφqΨm P

L2pQxq bFy. Further, we go over from dressings by Wypϕq to WF ,jpϕq, which is

done replacing apφq, a:pφq by Ajpφq, A:
jpφq. Note that Ajpφq, A:

jpφq are no longer
merely creating and annihilating bosons, but they also shift a fermion’s momen-
tum. Computations in (4.182) run through in almost the same manner. We have
to replace p��q by the CCR (4.87). If j � j1, we further use that Vjj1pϕ�φq (which

4Here, we allow 7 to be a different superscript in each factor. E.g., pa7q4 would also represent
aa:aa:.
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replaces xϕ, φy in (4.182)) commutes with5 Aj2pϕq and A:
j2pϕq, so we can still pull

it to the left.

The final result is

WF ,jpϕqA:
j1pφq �

#
pA:

j1pφq � xϕ, φyqWF ,jpϕq if j � j1

pA:
j1pφq � Vjj1pϕ�φqqWF ,jpϕq if j � j1

. (4.186)

This is one of the four identities claimed in (4.108). The other three identities
follow by summation over j or j1.

The four identities in (4.109) are obtained analogously. In place of p��q, we use
the CCR (4.87) together with rAjpϕq, Aj1pφqs � 0 and keep in mind that the factor
p�1qk drops out in (4.182), which yields the desired result.

It is easy to check that all identities above hold as strong operator identi-
ties on the domain Ffin defined in (4.107). The momentum space definitions of
A:
jpϕq, Ajpϕq in (4.20) and (4.22) directly yield the well–known estimates��A:

jpϕqΨ
�� ¤ ��pN � 1q1{2Ψ

�� }ϕ}, ��AjpϕqΨ�� ¤ ��N1{2Ψ
�� }ϕ}, (4.187)

which are analogous to (4.97) and allow for employing the same arguments as
below (4.100). Thus, all expressions in (4.108) and (4.109) are well–defined on
Ffin.

Remarks.

21. If we replace the form factors ϕpkq and φpkq in A:pφq by ϕpp,kq and φpp,kq
(as they appear in more realistic QFT models), then rA:

jpϕq, A:
j1pφqs � 0

will no longer hold true. The operators A:
jpφq change the momentum of the

fermion which is emitting a boson. So when one fermion creates two bosons
with different form factors, which depend on the fermion momentum, then
it can make a difference, which boson is created first. In addition, Vj1j2 will

no longer commute with Aj and A:
j. In this case, several multi–commutators

of the form rA7
j1
, rA7

j2
, . . . , rA7

jn
, A7

j1sss with A7
j P tAj, A:

ju appear.

5This is shown by a similar fiber decomposition argument, as used in the proof of Lemma 4.5.8.
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4.11 Proof of Lemmas 4.5.11 and 4.5.12

Proof of Lemma 4.5.11. We need to show that W psq is injective on DF . That is,
there is no Ψ P DF ,Ψ � 0 with W psqΨ � 0.

First of all, note that by definition of DW (4.132) and DF (4.133), any Ψ P DF

can be written as a finite sum Ψ � °K
k�1 Ψk with

Ψk � W1pϕkqA:
jk
pvkqΨm,k or Ψk � XkW1pϕkqΨm,k, (4.188)

where 0 � Ψm,k � Ψmx,kbΩy. Since Ψk P L2, we have ϕk, vk P hX 9S81 and without
loss of generality we may assume that vk � 0. And since Xk just multiplies by a
function depending on the fermion momenta, Xk commutes with W1pϕkq so it can
be absorbed into Ψm,k. That is, we may re–define XkΨm,k to be the new Ψm,k and
obtain that, without loss of generality, we could have chosen

Ψk � W1pϕkqA:
jk
pvkqΨm,k or Ψk � W1pϕkqΨm,k, (4.189)

with Ψm,k P L2. So we may define a disjoint union t1, . . . , Ku � KWA YKW , such
that

Ψ �
¸

kPKWA

W1pϕkqA:
jk
pvkqΨm,k �

¸
kPKW

W1pϕkqΨm,k. (4.190)

Now assume there was some Ψ � 0 with W psqΨ � 0. We define a “compression
operator” B which “compresses” W psqΨ into L2. For this purpose, let ms and
βs be the UV/IR–scaling degrees of s, respectively, and pick some real numbers
mb   �ms�d{2 and βb ¡ �βs�d{2. Choose a function b P 9S81,¡ (so b : Rdzt0u Ñ C
is invertible) which has exact UV/IR–scaling degrees mb and βb. With that choice,
the “compressed” product function k ÞÑ spkqbpkq is in hX 9S81 , as is k ÞÑ ϕkpkqbpkq.
Now, we define the compression operator B : F ex Ñ F ex as

pBΨqpP ,Kq �
�

N¹
`�1

bpk`q
�

ΨpP ,Kq. (4.191)

It is easy to see that B maps F Ñ F , 9S8F Ñ 9S8F and B�1 : F ex Ñ F ex exists
with

pB�1ΨqpP ,Kq �
�

N¹
`�1

1

bpk`q

�
ΨpP ,Kq. (4.192)

So W psqΨ � 0, if and only if BW psqΨ � 0.

Further, for Ψk � W1pϕkqΨm,k, a momentum space calculation renders the fol-
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lowing identity:

pBW psqW1pϕkqΨm,kqpP ,Kq
(4.115)� pBeImxs,ϕkyWMpsq . . .W2psqW1ps� ϕkqΨm,kqpP ,Kq
(4.117)� 1?

N !
eImxs,ϕky� pM�1q}s}2�}s�ϕk}

2

2

¸
σ

�
N¹
`�1

bpk`qsk,σp`qpk`q
�

Ψmx,k pP 1q

�
�
eImxs,ϕky� pM�1q}s}2�}s�ϕk}

2

2 eA
:pbsq�A:1pbϕkqΨm,k



pP ,Kq,

(4.193)

with sk,1 :� s�ϕk, as well as sk,2 � . . . � sk,M :� s. As above, the sum is running

over all maps σ : t1, . . . , Nu Ñ t1, . . . ,Mu and P 1 � P � °N
`�1 eσp`qk`. On the

other hand, for unitary Fock space operators WF ,WF ,j, the Weyl relations yield

WF pbsqWF ,1pbϕkqΨm,k

�eImxbs,bϕkyWF ,Mpbsq . . .WF ,2pbsqWF ,1pbps� ϕkqqΨm,k

(4.116)� eImxbs,bϕky� pM�1q}bs}2�}bps�ϕkq}
2

2 e�
°
j¡j1 Vjj1 ps�k,jb�bsk,j1 qeA

:pbsq�A:1pbϕkqΨm,k.

(4.194)

Since bsk,j P L2, the operators Vjj1ps�k,jb�bsk,j1q amount to a convolution with an L1–
function, which, after a Fourier transformation, is equivalent to a multiplication
by a bounded function. So the Vjj1–operators are all bounded and likewise, the

exponential e�
°
j¡j1 Vjj1 ps�k,jb�bsk,j1 q is bounded. Further, this bounded exponential

commutes with eA
:pbsq�A:1pbϕkq by a similar fiber decomposition argument as in the

proof of Lemma 4.5.8. So comparing (4.193) with (4.194), we obtain

BW psqW1pϕkqΨm,k � ck �WF pbsqWF ,1pbϕkqe�
°
j¡j1 Vjj1 ps�k,jb�bsk,j1 qΨm,k (4.195)

for some ck P eRen, ck � 0. An analogous momentum space calculation yields

BW psqW1pϕkqA:
jk
pvkqΨm,k � ck�WF pbsqWF ,1pbϕkqA:

jk
pbvkqe�

°
j¡j1 Vjj1 ps�k,jb�bsk,j1 qΨm,k.

(4.196)
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Thus, we have the following chain of implications:

0 �W psqΨ
ô 0 �BW psqΨ

(4.190)ô 0 �
¸

kPKWA

BW psqW1pϕkqA:
jk
pvkqΨm,k �

¸
kPKW

BW psqW1pϕkqΨm,k

ñ 0 �
¸

kPKWA

ckWF pbsqWF ,1pbϕkqA:
jk
pbvkqe�

°
j¡j1 Vjj1 ps�k,jb�bsk,j1 qΨm,k

�
¸
kPKW

ckWF pbsqWF ,1pbϕkqe�
°
j¡j1 Vjj1 ps�k,jb�bsk,j1 qΨm,k

ô 0 �
¸

kPKWA

ckWF ,1pbϕkqA:
jk
pbvkqe�

°
j¡j1 Vjj1 ps�k,jb�bsk,j1 qΨm,k

�
¸
kPKW

ckWF ,1pbϕkqe�
°
j¡j1 Vjj1 ps�k,jb�bsk,j1 qΨm,k,

(4.197)
where we exploited the unitarity of WF pbsq in the last step.

We may now partition the index set t1, . . . , Ku into several equivalence classes
according to the relation

k � k1 :ô ck � cck1 for some c P C (4.198)

The last equation of (4.197) now implies that for each equivalence class rk1s, the
following sum with ck :� ck

c1k
must vanish:

0 �
¸

kPrk1sXKWA

ckWF ,1pbϕkqA:
jk
pbvkqe�

°
j¡j1 Vjj1 ps�k,jb�bsk,j1 qΨm,k

�
¸

kPrk1sXKW

ckWF ,1pbϕkqe�
°
j¡j1 Vjj1 ps�k,jb�bsk,j1 qΨm,k.

(4.199)

This is exactly a linear combinations of vectors of the form (4.135) as in Lem-
ma 4.5.12 with bϕk, bvk P h X 9S81 , where all bϕk are distinct, and with Ψ1

m,k :�
e�

°
j¡j1 Vjj1 ps�k,jb�bsk,j1 qΨm,k. Since ck � 0, we also have ck � 0. Only the premise

Ψ1
m,k � 0 is missing in order for Lemma 4.5.12 to apply. However, if this premise

was true, then Lemma 4.5.12 would imply that ck � 0 for all k, which we ruled
out above. Thus, we conclude that Ψ1

m,k � 0 for at least one k, and by repeatedly
applying the argument, we conclude that

Ψ1
m,k � e�

°
j¡j1 Vjj1 ps�k,jb�bsk,j1 qΨm,k � 0 @k P t1, . . . , Ku. (4.200)
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By boundedness of the operator Vjj1ps�k,jb�bsk,j1q, the exponential is semibounded
from below, that is,���e�°j¡j1 Vjj1 ps�k,jb�bsk,j1 qΨ1

��� ¥ c1}Ψ1} @Ψ1 P L2pQxq bFy for some c1 ¡ 0.

(4.201)

So e�
°
j¡j1 Vjj1 ps�k,jb�bsk,j1 qΨm,k � 0 implies Ψm,k � 0 for all k, which contradicts

Ψ � 0 and concludes the proof.

Proof of Lemma 4.5.12. First, note that Ψ1
m,k � 0 and vk � 0, since otherwise at

least one vector Ψk would be 0.

We now establish linear independence of the vectors Ψk by an induction over K.
For K � 1, linear independence is an obvious fact. Also for |KWA| � |KW | � 1,
linear independence is easy to see: The pNq–sectors have the norms

��pWF ,1pϕ1qΨ1
m,1qpNq

��2 �e
�}ϕ1}2

N !
}ϕ1}2N}Ψ1

m,1}2,���pWF ,1pϕ2qA:
j2
pv2qΨ1

m,2qpNq
���2

� e�}ϕ2}2

pN � 1q!}ϕ2}2pN�1q}v2}2}Ψ1
m,2}2.

(4.202)

These cannot agree for all N P N0 simultaneously, as N !
pN�1q!

}ϕ1}2N
}ϕ2}2pN�1q is never con-

stant in N .

Now assume (induction assumption), we have shown linear independence for any
set containing ¤ K � 1 vectors Ψk of the kind (4.135) and consider any other set
of K vectors of the kind (4.135), where |KWA| ¥ 2 or |KW | ¥ 2, so we have at
least two distinct form factors ϕk. Suppose, there was a linear combination

Ψ :�
Ķ

k�1

ckΨk �
¸

kPKWA

ckWF ,1pϕkqA:
jk
pvkqΨ1

m,k �
¸
kPKW

ckWF ,1pϕkqΨ1
m,k � 0

(4.203)
with ck P C not being all zero. Without loss of generality, we may assume ck � 0
for all k.

Now, by premise of the lemma, each ϕk can appear at most twice in (4.203). We
group equal form factors together by introducing the partition

t1, . . . , Ku �
Z¤
z�1

Kz, Kz XKz1 � H for z � z1, (4.204)
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such that ϕk � ϕk1 if and only if k and k1 belong to the same index set Kz. In
particular, K{2 ¤ Z ¤ K and |Kz| ¤ 2. Since there are at least two distinct ϕk,
we also have

max
k
}ϕk} ¡ 0. (4.205)

We pick an index z, such that }ϕk} attains this maximum for k P Kz. Regarding
Kz, there are now two cases which can occur:

Case 1: Kz X KWA � H. For z1 P t1, . . . , Zu with the unique associated form
factor ϕk1 , k

1 P Kz1 , consider the “pNq–sector trial state”

Φ
pNq
z1 pKq �

N¹
`�1

ϕk1pk`q, Φ
pNq
z1 P L2pRNdq. (4.206)

We choose a fixed representative function for L2–elements, and use the following
abbreviations

Ψ2
k :� e�

}ϕk}
2

2 ckΨ
1
m,k, wk,P pkq :� vkpkqΨ2

kpP � pejk � e1qkq, ξz1z :� xϕk1 , ϕky,
(4.207)

where wk,P is only defined for k P KWA. Integrating Φ
pNq
z1 against the pNq–boson

sector of
°
kPKz Ψk (which contains at most two terms), we now obtain for almost

all6 P P Qx: »
Φ
pNq
z1 pKq�

� ¸
kPKz

ckΨk

�
P � e1

Ņ

`�1

k`,K

��
dK

�
¸

kPKzXKWA

pN !q�1{2Nxϕk1 , ϕkyN�1xϕk1 , wk,P y

�
¸

kPKzXKW

pN !q�1{2xϕk1 , ϕkyNΨ2
kpP q

�NpN !q�1{2ξN�1
z1z

rΨz1z,1pP q � pN !q�1{2ξN�1
z1z

rΨz1z,2pP q,

(4.208)

where rΨz1z,1, rΨz1z,2 do not depend on N and are given by

rΨz1z,1pP q :�
¸

kPKzXKWA

xϕk1 , wk,P y, rΨz1z,2pP q :�
¸

kPKzXKW

ξz1zΨ
2
kpP q. (4.209)

Note that each of the sums over Kz XKWA or Kz XKW contain at most one term,

6There is no guarantee that wk,P P L2, so integrals involving wk,P might be ill–defined. However,
since Ψ, v P L2, we have wk,P R L2 only for P within some null set in Qx, so (4.208) holds
almost everywhere.
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4.11 Proof of Lemmas 4.5.11 and 4.5.12

so the k associated with z in (4.209) is unique. Now, consider the ratio

R :� ess sup
P PQxzNx

���rΨzz,2pP q
���°

z�z

���rΨzz,1pP q
����°

z�z

���rΨzz,2pP q
��� ¥ 0, (4.210)

where Nx denotes the set of all P , where the above fraction amounts to 0
0
. Since

Kz � H, the set Kz X KW contains exactly one element k, with Ψ2
k
pP q � 0 on a

set of positive measure in P P Qx. And as ϕk � 0, we have rΨzz,2pP q � 0 for those
P , so R ¡ 0. Hence, the set

U �
#
P P Qx

����� ���rΨzz,2pP q
��� ¡ R

2

�¸
z�z

���rΨzz,1pP q
���� ¸

z�z

���rΨzz,2pP q
����^ (4.208) holds

+
(4.211)

has positive measure. Further, as }ϕk} is maximal and ϕk � ϕk for k � k, we
conclude that

xϕk, ϕky ¡ |xϕk, ϕky| ô |ξzz| ¡ |ξzz| for z � z. (4.212)

Hence, there is an N P N with

|ξN�1
zz | ¡ 4

R
|NξN�1

zz | for z � z. (4.213)

Now, for this N and P P U , the term rΨzz,2 is dominant in the following sense:�����
»

Φ
pNq
k
pKq�

�
Ķ

k�1

ckΨk

�
P � e1

Ņ

`�1

k`,K

��
dK

�����
(4.208)� pN !q�1{2

����� Z̧
z�1

NξN�1
zz

rΨzz,1pP q �
Z̧

z�1

ξN�1
zz

rΨzz,2pP q
�����

¥pN !q�1{2
����ξN�1

zz
rΨzz,2pP q

���� ¸
z�z

���NξN�1
zz

rΨzz,1pP q
���� ¸

z�z

���ξN�1
zz

rΨzz,2pP q
����

(4.213)¥ pN !q�1{2|ξzz|N�1

����rΨzz,2pP q
���� R

4

�¸
z�z

���rΨzz,1pP q
���� ¸

z�z

���rΨzz,2pP q
�����

(4.211)¥ pN !q�1{2|ξzz|N�1

����rΨzz,2pP q
���� 1

2

���rΨzz,2pP q
���


¡0.
(4.214)
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So the L2–function K ÞÑ Ψ
�
P � e1

°N
`�1 k`,K

	
cannot be zero for P P U . Since

U has positive measure, we conclude Ψ � 0, which contradicts (4.203).

Case 2: Kz XKWA � H. Since Kz XKWA contains at most one element, we can
set Kz XKWA �: tku. We copy the notations (4.207) and (4.209) from case 1 and
choose as a trial state for N ¥ 1, k1 P Kz1 XKWA and P P Qx:

Ξ
pNq
z1,P pKq � wk1,P pk1q

�
N¹
`�2

ϕk1pk`q
�
. (4.215)

For almost all P P Qx, we then obtain»
Ξ
pNq
z1,P pKq�

� ¸
kPKz

ckΨk

�
P � e1

Ņ

`�1

k`,K

��
dK

�
¸

kPKzXKWA

pN !q�1{2xϕk1 , ϕkyN�1xwk1,P , wk,P y

�
¸

kPKzXKWA

pN !q�1{2pN � 1qxϕk1 , ϕkyN�2xwk1,P , ϕkyxϕk1 , wk,P y

�
¸

kPKzXKW

pN !q�1{2xϕk1 , ϕkyN�1xwk1,P , ϕkyΨ2
kpP q

�pN !q�1{2
�
pN � 1qξN�2

z1z
rΨ1
z1z,1pP q � ξN�2

z1z
rΨ1
z1z,2pP q

	
,

(4.216)

withrΨ1
z1z,1pP q :�

¸
kPKzXKWA

xwk1,P , ϕkyxϕk1 , wk,P y,

rΨ1
z1z,2pP q :�

¸
kPKzXKWA

ξz1zxwk1,P , wk,P y �
¸

kPKzXKW

ξz1zxwk1,P , ϕkyΨ2
kpP q.

(4.217)

First, consider the sub–case where xwk,P , ϕky � 0 holds for all P inside some

subset of Qx with positive measure. So rΨ1
zz,1pP q � 0 for those P . In this case, the

term with rΨ1
zz,1 will be dominant. Here, the ratio

R1 :� ess sup
P PQxzN 1

x

���rΨ1
zz,1pP q

���°
z�z

���rΨ1
zz,1pP q

����°Z
z�1

���rΨ1
zz,2pP q

��� (4.218)

is strictly positive. Here, N 1
x denotes the set of all P with the above fraction
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amounting to 0
0
. Therefore, the set

U 1 �
#
P P Qx

����� ���rΨ1
zz,1pP q

��� ¡ R1

2

�¸
z�z

���rΨ1
zz,1pP q

���� Z̧

z�1

���rΨ1
zz,2pP q

����^ (4.216) holds

+
(4.219)

has positive measure. In this case, we can find some N P N, such that

pN � 1q ¡ 4

R1 and |ξN�2
zz | ¡ 4

R1 |ξN�2
zz | for z � z. (4.220)

Hence, for this N and P P U , we obtain:�����
»

Ξ
pNq
z,P pKq�

�
Ķ

k�1

ckΨk

�
P � e1

Ņ

`�1

k`,K

��
dK

�����
(4.216)� pN !q�1{2

����� Z̧
z�1

pN � 1qξN�2
zz

rΨ1
zz,1pP q �

Z̧

z�1

ξN�2
zz

rΨ1
zz,2pP q

�����
¥pN !q�1{2

����pN � 1qξN�2
zz

rΨ1
zz,1pP q

���� ¸
z�z

���pN � 1qξN�2
zz

rΨ1
zz,1pP q

���
�

Z̧

z�1

���ξN�2
zz

rΨ1
zz,2pP q

����
(4.220)¥ pN � 1qpN !q�1{2|ξzz|N�2

����rΨ1
zz,1pP q

���� R1

4

�¸
z�z

���rΨ1
zz,1pP q

���� Z̧

z�1

���rΨ1
zz,2pP q

�����
(4.219)¥ pN � 1qpN !q�1{2|ξzz|N�2

����rΨ1
zz,1pP q

���� 1

2

���rΨ1
zz,1pP q

���

¡0.

(4.221)
By the same argument as that below (4.214), we conclude Ψ � 0 which contradicts
(4.203).

It remains to establish a contradiction in the sub–case where xwk,P , ϕky � 0 for

almost all P P Qx. In that case, the dominant term is no longer rΨ1
zz,1pP q (which

is zero almost everywhere), but instead

rΨ1
zz,2pP q � ξzzxwk,P , wk,P y. (4.222)

Since Ψ1
m,k

� 0, we have wk,P � 0 for all P inside some subset of Qx with positive

measure, which implies rΨ1
zz,2pP q � 0 for these P . So we are in a similar situation
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4 Extended State Space for Describing Renormalized Fock Spaces in QFT

as in case 1 meaning that rΨ1
zz,1 is zero almost everywhere while rΨ1

zz,2 is not. We
may thus copy the definitions of R and U and employ the same arguments as in
(4.212)–(4.214), replacing N by N � 1 in the required positions. This yields the
desired contradiction.

4.12 Proof of Lemma 4.6.2

Proof. We evaluate the pullbacks of Apvq and E8, keeping in mind that by Lemma
4.5.6, Ψ � W psqWF ,1pϕqΨm � W psqW1pϕqΨm.

• Apvq: The commutator rW psqW1pϕq, Apvqs is evaluated using the extended
commutation relations established in Lemma 4.5.13:

ApvqΨ � ApvqW psqW1pϕqΨm

� rApvq,W psqW1pϕqsΨm �W psqW1pϕqApvqΨmlooomooon
�0

� �
Mxv, sy � xv, ϕy � V1pv�ϕq � V pv�sq�Ψ.

(4.223)

• E8: The self–energy operator (4.143) now exactly removes the term Mxv, sy,
so we have

pApvq � E8qΨ � �xv, ϕy � V1pv�ϕq � V pv�sq�Ψ. (4.224)

Now, by Definition 4.5.9, we may commute xv, ϕy, V and V1 with W psq yielding

W�1psq�Apvq � E8
�
W psqW1pϕqΨm � �xv, ϕy � V1pv�ϕq � V pv�sq�W1pϕqΨm,

� pres1pϕq � V qW1pϕqΨm P F ex.
(4.225)

Now, Lemma 4.5.6 allows replacing W1 by WF ,1, which renders the desired result.

Remarks.

22. If the form factor v depended on the fermion momentum p, then s �
� v
ω

would also depend on p. In that case, W�1psqVW psq � V will no
longer hold true in general, as the function spk,pq in the dressing opera-
tor W psq then depends on p and fermion momenta are changed by V . If
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pApvq �E8qW psqWF ,1pϕqΨm is then expressed in terms of dressed coherent
states, multiple commutators appear.

4.13 Proof of Lemma 4.6.3

Proof. Again, we may use Lemmas 4.5.4 and 4.5.6, to write

Ψ � W psqWF ,1pϕqΨm � W psqW1pϕqΨm P F .

Following Proposition 4.4.2 we further have H0,yΨ, A
:pvqΨ P F . We first evaluate

pH0,y�A:pvqqW psqW1pϕqΨm in momentum space and then use Definition 4.5.7 to
pull W psq to the left.

• H0,y: The important point is that the expression pH0,y � A:pvqqW psq can-
cels terms in W psqH0,y. We therefore investigate the commutator expression
rH0,y,W psqsW1pϕqΨm and compare it to A:pvqW psqW1pϕqΨm.

First, we note that the application of H0,y to a dressed state just changes
one single photon dispersion relation. Therefore, it is equivalent to applying
a creation operator to the dressed state:

pH0,yW1pϕqΨmqpP ,Kq

�e
� }ϕ}2

2?
N !

�
Ņ

`1�1

ωpk`1q
��

N¹
`�1

ϕpk`q
�

Ψmx pP 1q

�e
� }ϕ}2

2?
N !

Ņ

`�1

ωpk`qϕpk`q
�

N¹
`1�`

ϕpk`1q
�

Ψmx pP 1q

�pA:
1pωϕqW1pϕqΨmqpP ,Kq,

(4.226)

with P 1 � �
p1 �

°N
`1�1 k`1 ,p2, . . . ,pM

�
. Replacing the dressing W1pϕq by

W psqW1pϕq and applying the commutation relations from Definitions 4.5.7
and 4.5.9, we obtain

H0,yW psqW1pϕqΨm

�pA:pωsq � A:
1pωϕqqW psqW1pϕqΨm

�� A:pvqW psqW1pϕqΨm

�W psqW1pϕq
�
A:

1pωϕq � xv, ϕy � V1pv�ϕq � xϕ, ωϕy�Ψm.

(4.227)
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Here, we used s�ω � ωs � �v and Definition 4.5.9, which allows us to pull
the formal scalar products and the V1–term past the dressing operators.
By means of (4.226) and the commutation relations from Definitions 4.5.7
and 4.5.9, we also have

W psqH0,yW1pϕqΨm

�W psqW1pϕqA:
1pωϕqΨm �W psqW1pϕqxϕ, ωϕyΨm.

(4.228)

Combining (4.227) and (4.228), we finally obtain

rH0,y,W psqsW1pϕqΨm

�� A:pvqW psqW1pϕqΨm �W psqW1pϕq
�xv, ϕy � V1pv�ϕq

�
Ψm.

(4.229)

• A:pvq: Here, we do not need to perform any calculations. The appearing term
simply cancels the �A:pvqW psqW1pϕqΨm from (4.229).

Now, adding both terms and using Definition 4.5.9, (4.229) amounts to�rH0,y,W psqs � A:pvqW psq�W1pϕqΨm

�W psqW1pϕq
�� xv, ϕy � V1pv�ϕq

�
Ψm

�W psq�� res1pϕq
�
W1pϕqΨm.

(4.230)

This is equivalent to�
H0,y � A:pvq�W psqW1pϕqΨm � W psq�H0,y � res1pϕq

�
W1pϕqΨm. (4.231)

Lemma 4.5.6 allows again to replace W1 by WF ,1, which yields the final result.
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5 Implementing Bogoliubov
Transformations Beyond the
Shale–Stinespring Condition

5.1 Overview and Main Results

Bogoliubov transformations are a powerful tool in many–body quantum mechanics,
as they allow simplifying Hamiltonians H and hence analyzing the dynamics of a
system. Roughly speaking, a Bogoliubov transformation V � p u v

v u q is realized by
replacing all creation and annihilation operators a:pfq, apfq inside a product H of
such operators by

b:pfq � a:pufq � apvfq, bpfq � a:pvfq � apufq,

with f being an element of the one–particle Hilbert space h, where u, v are linear
operators on h and where f is the complex conjugate of f . This replacement can be
used to eliminate pair creation and annihilation terms from quadratic Hamiltonians
H, i.e., to “diagonalize H” [214, 215, 216, 217]. Related transformations even allow
for eliminating inconvenient terms of higher order from non–quadratic operator
products H [218, 219].
In particular, it is desirable to find a unitary operator UV on Fock space F , such
that UV establishes the replacement a7 ÞÑ b7 via

UVa
:pfqU�

V � b:pfq, UVapfqU�
V � bpfq. (5.1)

In that case we say that UV implements the transformation V and we call V “im-
plementable” (in the regular sense). It is well–known [220, 221] that V is imple-
mentable, if and only if the Shale–Stinespring condition holds, which asserts
that trpv�vq   8.
However, there are situations in which it is desirable to modify a Hamiltonian H
or to describe its dynamics by a Bogoliubov transformation V that is not imple-
mentable. Such situations occur, for instance, in relativistic models [181, 222], and
within many–body systems of infinite size [223, 224, 225].
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In this chapter, we therefore investigate, in which situations a Bogoliubov trans-
formation V can be implemented on either of the two Fock space extensions pre-
sented in Chapter 3. Recall that:

• The extended state space (ESS) framework (Section 3.2) builds around
vector spaces F � F ex. Here, F contains elements of the form Ψ � erΨm,
where r is a (rigorously defined) and possibly infinite renormalization con-
stant and Ψm is a function on the configuration space Q that may be outside
L2pQq. The space F ex extends F and additionally contains elements of the
form err11 � . . . � r1pΨm.

• The infinite tensor product (ITP) framework (Section 3.1) builds on von

Neumann’s ITP space [44]. Here, a Hilbert space xH �±b
kPN Hk is defined,

which extends the Fock space F .

Both extensions are in the same spirit as Hilbert space riggings, which we discussed
in Section 3.2.3, see also [204]. The construction of F may also remind about non–
standard analysis, where a field extension �R of the real line R is constructed [226].
However, our construction is not related to it, as we discuss in end of Section 5.2.2.
Our implementation procedure differs from that on Fock space, so let us quickly
explain it: We take a formal expression H that consists of a product of a:– and
a–operators. The aim is to define an operator

rH � U�1
V pH � cqUV (5.2)

on a dense set DF � F , where rH is the version of H with a7 replaced by b7 and
normal ordering applied. The “renormalization constant” c stems from normal
ordering and may be formally infinite. We define a linear (“dressing”) operator

UV : DF Ñ F or UV : DF Ñ xH in such a way that pH � cq maps the space

UVrDF s � F or UVrDF s � xH into itself. So rH is the well–defined “renormalized
version” of H and the following diagram commutes:

F � DF

xH or F � UVrDF s
UV rH DF � F

UVrDF s � F or xH
U�1

V

pH � cq

In particular, F and F ex are vector spaces without a scalar product or even
a topology. Their only purpose is to allow for formal calculations involving infi-
nities, which in the end produce an operator rH. This rH generates dynamics on
a Hilbert space F , which provides a suitable physical interpretation. Vectors in

222



5.1 Overview and Main Results

F ,F ex can rather be seen as “virtual particle states” that contain no immediate
physical meaning.

Our main result is now that in the extended sense, specified in Definition 5.5.1,
V can indeed be implemented:

• on F in the bosonic (Theorem 5.5.6) and the fermionic case (Theorem 5.5.8),

• on xH in the bosonic (Theorem 5.5.5) and the fermionic case (Theorem 5.5.7),

if the spectrum of the operator v�v is countable. In Theorem 5.5.8, we need the
additional assumption of V inducing a full particle–hole transformation on at most
finitely many modes. The reason is that F can only describe a finite number of
particles.
It would be highly desirable to establish a similar result in the case of a generic
v�v. As indicated in Section 3.2.5, the main difficulty is the establishment of a
suitable one–particle space R (replacing EpNq). We conjecture that a statement
similar to Theorems 5.5.6 and 5.5.8 can be established for generic v�v. By contrast,

the definition of ITP spaces xH directly carries over to the case of generic v�v and

we obtain xH � ±b
xPX Hx with X being a possibly uncountable set related to

σpv�vq. As a well–defined a:pfq, apfq, we would then only be able to treat sums
a7 � °

x fpxqa7x over countably many x P X. So f is equal to 0 apart from finitely
many points and the set of such f is not dense in h. Thus, the generalizations of
Theorems 5.5.5 and 5.5.7 would be limited to a very restrictive set of form factors
f P h, possibly only containing f � 0.

One may object that the construction of UV creates an unnecessary effort for
obtaining rH, since rH can directly be computed from H under a replacement
a7 ÞÑ b7. While for Bogoliubov transformations, the latter way is indeed more
efficient, such a replacement may not exist for other operator transformations.
These operator transformations appear in QFT and many–body systems, where
a formal Hamiltonian H may not be well–defined in the infinite–volume limit
[41, 63, 95].
In fact, the Fock space extension framework is intended to allow for a definition
of more general operator transformations W , such that for a given formal H, the
“renormalized Hamiltonian”

rH � W�1pH � cqW (5.3)

is well–defined on DF � F and allows for a self–adjoint extension, which genera-
tes quantum dynamics on F . Here, c is a general counterterm and not necessarily
just a constant. Our consideration of W � UV can rather be seen as a proof of
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concept for this type of renormalization. In contrast to non–perturbative cutoff re-
normalization (see Section 1.3), this framework does not require arbitrary cutoffs

that break Lorentz invariance. Another advantage is that the Hamiltonian rH can
directly be written down without involving limit processes. Further, the amount
“by how much H fails to map W rDF s into itself” may provide useful heuristics
for the choice of counterterms in c. In general, the ESS framework offers a variety
of mathematical tools that appear on the way of constructing F and allow for a
rigorous treatment of infinite quantities that appear in formal intermediate cal-
culations. These tools do not appear in the ITP framework. We hope that in the
future, further formal transformations W , which do not exist on Fock space, can
be defined in either of both frameworks.

The rest of this chapter is structured as follows: In Section 5.2, we recap some
basic definitions of the second quantization language, the ESS framework, and the
ITP framework.
Section 5.3 is a recap of known material about implementing Bogoliubov transfor-
mations on Fock space which, however, is necessary to establish the notation for
an implementation is the extended sense and to understand which formulas are
generalized therein.
The extension beyond the Shale–Stinespring condition starts in Section 5.4. Here

we define the V–dependent Fock space extensions xH , F and F ex, and prove that
creation and annihilation operators are well–defined on them (Lemmas 5.4.7 and
5.4.8).
Section 5.5 then concerns the implementability of V in the extended sense, where
a precise definition is given what this implementability means. We prove that the
implementer UV is well–defined (Lemma 5.5.3), set up conditions for UV to imple-
ment V (Lemma 5.5.4) and establish these conditions within Theorems 5.5.5–5.5.8
for different cases.
These implementers UV can then be used to diagonalize quadratic Hamiltonians,
i.e., to remove the a:a:– and aa–terms. In Section 5.6, we give a precise definiti-
on of what a diagonalization in the extended sense is, and provide conditions for
when it can be performed, which is in Propositions 5.6.2 (bosonic case) and 5.6.3
(fermionic case).
Section 5.7 then offers three examples for a diagonalization in the extended sense.
Proposition 5.7.1 concerns a bosonic field coupled to an external classical field by
a Wick square, Proposition 5.7.2 considers the fermionic BCS model and Propo-
sition 5.7.3 treats a toy model for fermions in a strong electromagnetic field that
involves pair creation and annihilation.
We provide some additional material and proofs in Sections 5.8–5.12.
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5.2 Basic Definitions

5.2.1 Fock Space Notions

In this chapter, we use the general formalism of second quantization from Section
1.2.1 based on a single–particle space

h � L2pX,µq, (5.4)

with pX,µq being a measure space. We assume X � Rd, but µ does not need to
be the Lebesgue measure. Configurations are given by tuples q � px1, . . . ,xNq, so
we work with an ordered configuration space (1.4):

QpXq :�
§
NPN0

QpXqpNq :�
§
NPN0

XN .

The measure µ induces measures µN on each sector QpXqpNq and a measure µQ
on QpXq, allowing for a definition of the ordered Fock space (1.5):

F pXq :� L2pQpXq,C, µQq.

Bosonic/fermionic exchange symmetries will play a key role in Bogoliubov trans-
formations. We impose them by using the symmetrization operators S�, S� :
F pXq Ñ F pXq (1.6). Recall:

pS�Ψqpx1, . . . ,xNq :� 1

N !

¸
σPSN

p�1qp1�sgnpσqq{2Ψpxσp1q, . . . ,xσpNqq,

which directly leads us to the definition of the bosonic p�q and fermionic p�q Fock
space (1.7):

F�pXq :� S�rF pXqs.
All three Fock spaces decay into sectors

F �
à
NPN0

FpXqpNq,

with  P t � ,�,�u.

Also recall from Section 1.2.1 the definition of creation and annihilation ope-
rators a:�, a� (1.21), which implies the canonical commutation/anticommutation
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relations (CCR/CAR) (1.22):

ra�pfq, a:�pgqs� � xf, gyh, ra�pfq, a�pgqs� � 0 � ra:�pfq, a:�pgqs�,

with f, g P h, commutator rA,Bs� � rA,Bs � AB � BA and anticommutator
rA,Bs� � tA,Bu � AB�BA. The fermionic operators a�, a

:
� are bounded, while

the bosonic ones a�, a
:
� are typically not. As in Section 1.2.1 we will drop the

indices � if there is no risk of confusion.

It may turn out advantageous to consider apfq, a:pfq not as operators, but as
formal expressions within a �– algebra (1.23):

A � A� generated by ta�pfq, a:�pfq | f P hu.

The involution is given by apfq� � a:pfq and the multiplication in A is such that
the CCR/CAR hold. In particular, A� is a C�–algebra by boundedness of opera-
tors.

To simplify calculations, we will make use of a basis choice in this chapter, which
identifies the separable one–particle space h with the sequence space `2 � L2pNq.
We denote the sequence identified with f P h by a bold symbol f � pfjqjPN P `2.
The same basis choice leads to an identification of the Fock space F pXq with
F pNq. Just as in the previous chapters, we will drop the pXq or pNq, if not expli-
citly needed.

5.2.2 Extended State Space

The ESS construction follows the general scheme in Section 3.2.2. As announced
in Section 3.2.5, we choose X � N and define

• the generalized one–particle space R � EpNq � tφ : NÑ Cu.

• the generalized N–particle space RpNq � E pNqpNq � tΨpNq : NN Ñ Cu.

Note that the product of two functions from R is again in R, that is, R2 � R.
The ESS construction now provides us with:

• a space RF � EF pNq :� tΨ : QpNq Ñ Cu of generalized Fock space
functions.
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• a space of renormalization factors Ren1pNq :� E{�Ren1
with r1 �Ren1 r2

iff pr1 � r2q P `1 � L1pNq and
°
jPNpr1,j � r2,jq � 0.

• a space of renormalization polynomials RenpNq � �
PPN RenP pNq, whe-

re RenP pNq :� PolP pNq{�RenP
. Here, PolP pNq is the vector space generated

by all commutative products R � r1 � . . . � rp, p ¤ P, rj P Ren1pNq, and
�RenP is generated by r1r2 . . . rp �RenP c1r2 . . . rp and pc1c2qr1 . . . rp �RenP

c1pc2r1q . . . rp.

• a field of wave function renormalizations eRenpNq :� tc � a1{a2 |
a1, a2 P CrRen1pNqs{Iu, with group algebra CrRen1pNqs and an ideal I ge-
nerated by ecer � ec�r with c P C, r P Ren1.

• the first ESS F pNq :� F 0pNq{�F
, where F 0pNq is the free1 eRen–vector

space over EF and �F is generated by pccqΨm �F cpcΨmq.

• the second ESS F expNq :� F ex,0pNq{�Fex
, where F ex,0pNq is the set of all

countable eRen–linear combinations Ψ � °
mPN cmΨm with Ψm : QpNq Ñ R

and �Fex is generated by pccqΨm �Fex cpcΨmq.

Remarks.

23. This particular ESS construction via EpNq may remind about the non–
standard analysis construction of the extended real line �R [226]. The exten-
sion �R of R is also defined as a space of equivalence classes of real–valued
sequences, just as the extension Ren1pNq of C. However, at a closer look,
both constructions are quite different:

• Two sequences are equivalent with respect to �R, if they agree on a
sufficiently large set, and not if their difference is a null series.

• R is embedded into �R by identifying r P R with the constant sequence
prjqjPN, rj � r, while C is embedded into Ren1pNq by identifying r P C
with any sequence prjqjPN such that

°
j rj � r.

• Moreover, �R is a field, while Ren1pNq is not. By contrast, eRenpNq is
a field, but it is not defined as a set of equivalence classes of real– or
complex–valued sequences.

1As in Chapter 4, we mean by “free vector space”, that F 0pNq contains all finite linear combi-
nations Ψ �

°
m cmΨm with cm P eRen and Ψm P EF .
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5.2.3 Infinite Tensor Products

The ITP space construction in this chapter follows the same general scheme for

constructing xH � ±b
kPI Hk as in Section 3.1.1. We use the basis approach from

Section 3.1.2. The final spaces xH will be defined later in Section 5.4.2 after having
found suitable bases.

Recall that ITPs were given by equivalence classes of families pΨq � pΨkqkPI , Ψk P
Hk, where I is a (possibly uncountable) index set and Hk are Hilbert spaces. For-
mally, the scalar product between two ITPs and the norm of an ITP read (3.2)

xpΦq, pΨqy �
¹
kPI
xΦk,Ψkyk, }pΨq} �

¹
kPI

}Ψk}k.

To exclude infinite norms, we restrict the allowed pΨq to the set of so–called C–
sequences pΨq P Cseq :ô ±

kPI }Ψk}k   8. Now, there are still pΨq � 0 with
xpΨq, pΨqy � 0. We enforce positive definiteness by modding out an equivalence
relation: With each pΦq P Cseq, we associate the conjugate–linear functional

Φ � ιppΦqq : pΨq ÞÑ
¹
kPI
xΦk,Ψkyk. (5.5)

Modding out the relation pΦq �C pΦ1q :ô ιppΦqq � ιppΦ1qq, we obtain a space of
equivalence classes with a scalar product given by

1b¹
kPI

Hk :� spanpιrCseqsq, xΦ,Ψy �
¹
kPI
xΦk,Ψkyk, (5.6)

where Ψ,Φ are the equivalence classes of some pΨq, pΦq P Cseq. The scalar product
induces a norm } � }.

The ITP space was then defined in Section 3.1.1, (3.8), as the completion

xH �
b¹
kPI

Hk :�
1b¹
kPI

Hk

}�}

. (5.7)

In this chapter, we will additionally use that xH can be divided into orthogonal
subspaces. We therefore introduce some more notation from [44], which was not
given in Section 3.1.1:
On the set of C0–sequences, we define the following equivalence relations:

• equivalence: pΦq � pΨq :ô °
kPI |xΦk,Ψky � 1|   8
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• weak equivalence: pΦq �w pΨq :ô °
kPI ||xΦk,Ψky| � 1|   8

The proof that � and �w indeed divide the C0–sequences into equivalence classes,
called C and Cw, is given in [44]. The corresponding linear spaces of an equivalence
class are defined by

• ±bC
kPI Hk :� spantΨ | DpΨq P C : ιppΨqq � Ψu}�} for equivalence

• ±bCw
kPI Hk :� spantΨ | DpΨq P Cw : ιppΨqq � Ψu}�} for weak equivalence

Now, each C0–sequence pΨq in an equivalence class rpΩqs � C (with Ω being
interpreted as the vacuum vector) can be written in coordinates as follows [44,
Thm. V]: Choose an orthonormal basis pek,nqnPN0 for each Hk, such that Ωk � ek,0
(we think of ek,0 as mode k being in the vacuum). Then, pΨq � pΨkqkPI is uniquely
specified by stating the coordinates ck,n :� xek,n,Ψkyk P C. In this coordinate
representation, it is true that

• ±bC
kPI Hk is the closure of the space spanned by all normalized C0–sequences,

where ck,0 � 1 for all but finitely many k P I.

Or heuristically speaking, “almost all Ψk are in the vacuum”.

By [44, Thm. V], also a generic Ψ P±bC
kPI Hk can be written as

Ψ �
¸

np�qPF
apnp�qq

b¹
kPI

ek,npkq, (5.8)

with F being the countable set of all functions n : I Ñ N0 with npkq � 0 for almost
all k P I, and apnp�qq P C being the coordinates of Ψ with

°
np�qPF |apnp�qq|2   8.

5.3 Bogoliubov Transformations

In this section, we introduce our notation for Bogoliubov transformations and re-
cap some important properties. In the literature, there exist several representations
of Bogoliubov transformations (which are elements of a symplectic group) as linear
operators on subspaces W1,j, that are isomorphic to the one–operator subspace W1

of the algebra A. We present three such choices for W1,j in Section 5.9.1, state the
rules how to change between representations, and then finally fix the representa-
tion from Section 5.9.4, which is used in Section 5.3.1 and thereafter. In Section
5.3.2, we recap the well–known implementation process in case when the Shale–
Stinespring condition is valid. Standard references on the subject are [35] and [227].
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5.3.1 Transformation on Operators

Consider the one–operator subspace W1 of A, which is spanned by all a:�pfq, a�pgq.
By an algebraic Bogoliubov transformation, we mean any bijective map VA : W1 Ñ
W1, which sends a:�pfq, a�pgq to a new set of creation and annihilation operators

b:�pfq, b�pgq, such that b:�pfq is the adjoint of b�pfq and the CAR/CCR are con-
served under V . Further, the adjoint V�, defined in Section 5.9, is also required to
conserve the CAR/CCR.

The representation we use is the following: fix a basis pejqjPN � h. Then, every
f P h can then be expressed by its coordinates fj :� xej, fy. This way, we may
identify f P h with an equally denoted vector f � pfjqjPN P `2. Further, we can
identify a:pfq�apgq P W1 with a vector pf , gq P `2``2, so on algebraic Bogoliubov
transformations VA amounts to a linear operator V � V3 on `2 ` `2, which we just
call “Bogoliubov transformation”.

We now encode sums of creation and annihilation operators by vector pairs
pf , gq P `2 ` `2. This encoding is realized by the generalized creation/annihilation
operators

A:
� : `2 ` `2 Ñ A�, pf 1,f 2q ÞÑ a:�pf 1q � a�pf 2q �

¸
j

pf1,ja
:
�pejq � f2,ja�pejqq

A� : `2 ` `2 Ñ A�, pg1, g2q ÞÑ a�pg1q � a:�pg2q �
¸
j

pg1,ja�pejq � g2,ja
:
�pejqq.

(5.9)
A Bogoliubov transformation can then be encoded by a 2� 2 block matrix

V �
�
u v
v u



, (5.10)

with operators u, v : `2 Ñ `2. The case of unbounded u, v is treated later in Section
5.4.

The Bogoliubov transformed operators are then given by

b:�pfq � A:
�pVpf , 0qq � a:�pufq � a�pvfq

b�pgq � A�pVpg, 0qq � a:�pvgq � a�pugq.
(5.11)

In order for V to be a Bogoliubov transformation, we require that both V and
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V� conserve the CAR/CCR, so

rb�pfq, b:�pgqs� � xf , gy, rb�pfq, b�pgqs� � 0 � rb:�pfq, b:�pgqs�, (5.12)

and the same, if in (5.11) V is replaced by V�. An explicit calculation (see Section
5.9) shows that this conservation is equivalent to 4 conditions on u and v. To
express them, we define the transpose, complex conjugate and adjoint as puT qij �
uji, puqij � uij, pu�qij � uji and the same for vij. The 4 Bogoliubov relations then
read as

u�u	 vTv � 1 u�v 	 vTu � 0

uu� 	 vv� � 1 uvT 	 vuT � 0.
(5.13)

The generalized creation and annihilation operators also allow for particularly easy
“generalized CAR/CCR”: Using the standard scalar product on F ,G P `2 ` `2:

xF ,Gy �
A�

f 1

f 2



,

�
g1

g2


E
�
¸
j

pf1,jg1,j � f2,jg2,jq, (5.14)

we obtain the generalized CAR/CCR:

rA�pF q, A:
�pGqs� � xF ,S�Gy,

rA�pF q, A�pGqs� � rA:
�pF q, A:

�pGqs� � 0,
(5.15)

where S� � id and S� � p 1 0
0 �1 q.

5.3.2 Implementation on Fock Space

In the following, we will drop the index � for bosonic/fermionic, as both cases are
separately considered. A Bogoliubov transformation is called implementable (in
the regular sense), if there exists a unitary operator UV : F Ñ F , such that

UVA
:pF qU�

V � A:pVF q. (5.16)

It is well–known that a Bogoliubov transformation is implementable, if and only
if the Shale–Stinespring condition holds. That is, trpvTvq � trpv�vq   8, so v
is Hilbert–Schmidt [220]. We recap some of the basic steps of the implementation
process presented in [35], as some of those steps will have to be carried out in a
slightly modified way for an implementation in the extended sense.

The main task within the implementation is to find the “Bogoliubov transformed
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vacuum” ΩV P F , which is the vector annihilated by all operators bpfq:

bpfqΩV � pa:pufq � apvfqqΩV � 0 @f P `2. (5.17)

If we can find such an ΩV , then it is an easy task to transform any product state
vector a:pf 1q . . . a:pfnqΩ P F via:

UVa
:pf 1q . . . a:pfnqΩ � UVa

:pf 1qU�
Vloooooomoooooon

b:pf1q

UV . . .U�
V UVa

:pfnqU�
Vloooooomoooooon

b:pfnq

UVΩloomoon
ΩV

� b:pf 1q . . . b:pfnqΩV .

(5.18)

The span of these state vectors (also called algebraic tensor product) is dense wi-
thin F , so we can transform any Ψ P F by means of (5.18).

It remains to find the Bogoliubov transformed vacuum ΩV , or called Bogoli-
ubov vacuum. For only one mode, i.e., with `2 replaced by C, this would be an
easier task, as u and v are just constants in that case. So we aim for “decompo-
sing the transformation V into modes”. More precisely, we seek vectors f j, such

the Bogoliubov–transformed form factors uf j, vf j are proportional to the same
normalized vector gj P `2, i.e.

V
�
f j
0



�
�
uf j
vf j



�
�
µjgj
νjgj



ô UV a

:pf jq U�
V � µja

:pgjq � νjapgjq.
(5.19)

The constants µj, νj P C intuitively describe, how much of a: “stays” a: (this is
µj) or “leaves” a: to become a (this is νj). If (5.19) holds, we only have to solve
pνja:pgjq � µjapgjqqΩV for each mode gj, separately.

Bosonic Case

Here, (5.19) can indeed be fulfilled. Following [35], we define a suitable operator
C, such that Cf j � λjf j, λj P C. We set Vpf j, 0q � puf j, vf jq �: pg̃j,J h̃jq for

any f j P `2 with J h̃j � J �h̃j � h̃j denoting complex conjugation. Then, we can

translate (5.19) into g̃j and h̃j being parallel. Now,

xg̃j, h̃j1y � xuf j, vf j1y � xf j, u�vJ f j1y. (5.20)

So the choice
C � u�vJ (5.21)
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would lead to
xg̃j, h̃j1y � λj1xf j,f j1y � λjδjj1 , (5.22)

if pf jqjPN was an eigenbasis of C. Now, by means of (5.13), C is Hermitian
(C � u�vJ � vTuJ � J v�u � C�). Since by the Shale–Stinespring condition, v
is Hilbert–Schmidt and u is bounded, the operator C is also Hilbert–Schmidt, so
we can indeed find an orthonormal basis of eigenvectors pf jqjPN with Cf j � λjf j.

In order to obtain from (5.22) that g̃j and h̃j are parallel, we still need to show
that the g̃j provide an orthogonal basis of `2

One easily verifies ru�u,Cs � 0, so pf jqjPN can, without restrictions, be chosen
to be a simultaneous eigenbasis of C and u�u. So if µ2

j are the corresponding
eigenvalues of u�u, then

xg̃j, g̃j1y � xf j, u�uf j1y � µ2
j1xf j,f j1y � µ2

jδjj1 , (5.23)

meaning that the g̃j are orthogonal and by invertibility of u (which follows from
trpv�vq   8), pg̃jqjPN is a basis. Hence, (5.19) is valid. By an appropriate choice
of the complex phase of gj, we can further make µj real and positive.

We even have that
pgjqjPN :�

�
1
µj
g̃j

	
jPN

(5.24)

is an orthonormal basis and (5.22) then implies that h̃j is indeed proportional to
gj. So h̃j � νjgj for some νj ¥ 0 and with that choice of gj, µj, νj, indeed (5.19)
holds true. Hence, for pf jqjPN being an eigenbasis of C, we have the following
important formulas:

uf j � µjgj vf j � vJ f f � νjgj. (5.25)

By phase rotation, we can again enforce that µj � |µj|. Further,

λjxf i,f jy � xf i, Cf jy � xf i, u�vJ f jy � νjµjxgi, gjy ñ λj � µjνj, (5.26)

so νj is real and by (5.13), we have

u�u� vTv � 1 ñ µ2
j � ν2

j � 1. (5.27)

The Bogoliubov vacuum is determined by the condition pµjapgjq�νja:pgjqqΩV �
0 for all modes gj, j P N. This condition leads to one recursion relation per mode,
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which is formally solved by

ΩV �
�¹

j

�
1� ν2

j

µ2
j

	1{4
�

exp

�
�
¸
j

νj
2µj

pa:pgjqq2
�

Ω, (5.28)

with the prefactor coming from normalization. The Shale–Stinespring condition
now indicates when ΩV lies in Fock space. Investigating the two–particle sector,
we obtain

Ω
p2q
V � �

�¹
j

�
1� ν2

j

µ2
j

	1{4
�¸

j

νj
2µj

gj b gj. (5.29)

The prefactor in form of an infinite product is nonequal 0, if and only if
°
j

ν2
j

µ2
j
  8.

And by orthogonality of pgjqjPN, the sum converges in L2–norm under the very sa-
me condition. This condition is equivalent to

°
j ν

2
j   8:

Since µ2
j � ν2

j � 1, we have µj ¥ 1, so
°
j ν

2
j   8 implies

°
j

ν2
j

µ2
j
  8.

Conversely,
°
j

ν2
j

µ2
j
  8 means that

ν2
j

µ2
j

is a null sequence, so it eventually drops

below any ε ¡ 0. Now, since µ2
j Ñ 1, as

ν2
j

µ2
j
Ñ 0, we have µj   2 for almost all

j P N and hence
°
j ν

2
j   4

°
j

ν2
j

µ2
j
� const., which is also convergent.

So the Shale–Stinespring condition indeed tells us, when exactly the formal ex-
pression (5.28) makes sense as a Fock space vector. Note that we exploited v being
Hilbert Schmidt to arrive at (5.28) in the first place, namely when finding an
orthonormal basis pf jqjPN for C � u�vJ . So a proof of necessity of the Shale–
Stinespring condition for implementability requires some further thoughts, see [35,
Section F]

In case of implementability, the transformation is implemented by [218, (3.1)]:

UV � exp

�
�
¸
j

ξj
2
ppa:pgjqq2 � papgjqq2q

�
Ugf �:

¹
jPN

Uj,V , (5.30)

with sinh ξj :� νj ñ cosh ξj :� µj, (5.31)

and where Ugf : F Ñ F is the unitary transformation which changes the basis
pf jqjPN to pgjqjPN via

Ugf : f j1 b . . .b f jn ÞÑ gj1 b . . .b gjn , @ j1, . . . , jn P N. (5.32)
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5.3 Bogoliubov Transformations

Note that the presign of �ξj in the literature depends on whether the Bogoliubov
transformation is defined as UVa

7U�
V (as in our case) or U�

Va
7UV with 7 P p�,� q. For

a more general discussion about the implementer UV , we refer the reader to [228,
Thm. 16.47].

Fermionic Case

In the fermionic case, (5.19) cannot be fulfilled: C � u�vJ is no longer Hermitian,
so we cannot expect C to have an orthonormal eigenbasis. However, C�C is Hermi-
tian. By (5.13), C�C � vTv�pvTvq2, so C�C is trace class and ru�u,Cs � 0 implies
ru�u,C�Cs � 0. Thus, there exists a common orthonormal eigenbasis pf jqjPJ of
C�C (eigenvalues λ2

j) and u�u (eigenvalues µ2
j). As u�u� vTv � 1, the f j are also

eigenvectors of vTv (eigenvalues ν2
j � 1 � µ2

j). The index set J is assumed to be
countable and specified below.

In particular, we can arrange the eigenvectors f j with λj � 0 in pairs

Cf 2i � λ2if 2i�1, Cf 2i�1 � �λ2if 2i, (5.33)

where i is an element of a countable index set I 1 � N and the eigenvector in-
dices are in J 1 :� tj | j � 2i _ j � 2i � 1, i P I 1u. The eigenvectors with
λj � 0 will be denoted by f j with index set j P J2 � N, J 1 X J2 � H. The set
of all used indices is then J � J 1XJ2 � N and pf jqjPJ is an orthonormal basis of `2.

Because of the pairing, the splitting into modes (5.19) with an orthonormal
basis pgjqjPN can no longer be achieved. Instead, we can obtain a splitting into
modes j P J2 and pairs i P I 1 using an orthonormal basis pηjqjPJ . Again, we define

pg̃j, h̃jq :� puf j, vf jq.

The case j P J2 still allows for a split into single modes. It consists of 2 subcases:
Since by (5.13), C�C � u�up1� u�uq, we have that λ2

j � µ2
jp1� µ2

jq, so µj � 1 or
µj � 0. In case µj � 0, we have by u�u � vTv � 1, that νj � 1. We denote that
case by j P J21 and get

V
�
f j
0



�
�

0
ηj



, j P J21 (5.34)

for a suitable choice of the phase ηj � eiϕh̃j � eiϕvf j. The case µj � 1 will be
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5 Implementing Bogoliubov Transformations Beyond the Shale–Stinespring Condition

denoted by j P J20 � J2zJ21 . Here, νj � 0, so

V
�
f j
0



�
�
ηj
0



, j P J20 (5.35)

for a suitable phase choice of ηj � eiϕg̃j � eiϕuf j.

In case i P I 1 ñ λ2i � 0, µ2i � 0, we define the normalized vectors

η2i :� α�1
i g̃2i, η2i�1 :� α�1

i g̃2i�1, (5.36)

where αi � µ2i � µ2i�1 can be shown within a Bogoliubov pair i. Now, h̃j is not
proportional to ηj, but one can show that

V
�
f 2i

0



�
�
αi η2i

βi η2i�1



, V

�
f 2i�1

0



�
�
αi η2i�1

�βi η2i



, i P I 1, (5.37)

where βi P R, βi ¡ 0 is such that α2
i � β2

i � 1. That means, h̃2i is proportional to
g̃2i�1, which follows by an orthogonality argument, as in (5.23). The argument is
based on the fact that pηjqjPJ is an orthonormal basis. For proof details, see [35,
(68)–(69)].

Relations (5.34), (5.35) and (5.37) now replace (5.19). Their implementation is
a bit easier than in the bosonic case, since by the Pauli exclusion principle, all
modes can be occupied by at most one fermion, i.e., the Fock space per mode is
� C2.

In the case of (5.34) and (5.35), the condition Apf j, 0qΩV � 0 is easily fulfilled.
If j P J20 , then apηjqΩV � 0, so the ηj–mode is empty. If j P J21 , then a:pηjqΩV � 0,
so the ηj–mode is fully occupied.
For (5.37), the condition Apf i, 0qΩV � 0 determines ΩV on each two–mode sub-
space of F . On the 4–dimensional subspace belonging to η2i,η2i�1 for some i P I 1,
we have a superposition of both modes being empty with amplitude αi and a
“Cooper pair”, where both modes are filled with amplitude �βi:

ΩV �
��¹
jPJ21

a:pηjq
��¹

iPI 1
pαi � βia

:pη2iqa:pη2i�1qq
�

Ω. (5.38)
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The corresponding implementer UV is given by

UV �
��¹
jPJ21

pa:pηjq � apηjqq
�exp

�
�
¸
iPI 1

ξipa:pη2iqa:pη2i�1q � apη2i�1qapη2iqq
�
Uηf

�:

��¹
jPJ20

1

���¹
jPJ21

Uj,V

��¹
iPI 1

U2i,2i�1,V

�
Uηf

�:

�¹
jPJ2

Uj,V

��¹
iPI 1

U2i,2i�1,V

�
Uηf ,

(5.39)
with sin ξi :� βi ñ cos ξi :� αi, (5.40)

and where Uηf is the unitary transformation changing the basis pf jqjPJ to pηjqjPJ
via

Uηf : f j1 b . . .b f jn ÞÑ ηj1 b . . .b ηjn , @ j1, . . . , jn P J. (5.41)

A proof for (5.39) implementing V can be found in Section 5.10. For a general
discussion of the implementer UV , we refer the reader to [228, Thm. 16.47].

5.4 Bogoliubov Transformations: Extended

Now, consider the case where v is no longer Hilbert–Schmidt and (in the bosonic
case) possibly not even bounded. So it is only defined on some domain dompvq � `2.
Our aim in Section 5.4.1 is to show that the Bogoliubov relations (5.13) also hold
in this case. So it makes sense to encode a Bogoliubov transformation in a block
matrix V .
In Section 5.4.2, we define an extended �–algebra Ae of creation and annihilation

operator products, and give the precise definitions of xH , F and F ex with respect
to a given Bogoliubov transformation V . Lemmas 5.4.7 and 5.4.8 then establish

that certain elements of Ae naturally define operators on suitable subspaces of xH
and F .

5.4.1 Extension of the Bogoliubov Relations

Throughout the following construction, we will assume that v�v is densely defined
and self–adjoint. In that case, the spectral theorem applies, and we can define the
self–adjoint operators C�C :� vTvp1�vTvq and |C| � ?

C�C by spectral calculus.
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5 Implementing Bogoliubov Transformations Beyond the Shale–Stinespring Condition

It will turn out convenient to work with spectral resolutions with respect to |C|.
By the spectral theorem in the form of [24, Thm. 10.9], we may then decompose
the Hilbert space `2 as a direct integral

`2 �
» `

σp|C|q
Cn dµ1pλq, (5.42)

where σp|C|q � σ is the spectrum of |C|, µ1 a suitable measure on it and n : σ Ñ
N Y t8u [24, Def. 7.18] is a measurable dimension function (with C8 � `2). Put
differently, as visualized in Figure 5.1, we can find a spectral set

X �
¤
λPσ
tλu � Yλ � R2, (5.43)

with Yλ � Z, |Yλ| � npλq accounting for multiplicity and unitary maps2

UXf : `2 Ñ L2pXq, UfX � U�1
Xf , (5.44)

such that
|C| � UfXλUXf , (5.45)

with λ being the operator on L2pXq that multiplies by λpxq. In addition, we
denote Y � �

λPσ Yλ � Z with |Y | being an upper bound for the multiplicity of
any eigenvalue. Note that the λ here correspond to the λj in Section 5.3.2.
We also make use of the formulation [24, Thm. 10.4] of the spectral theorem, which
provides us with a projection–valued measure P|C|, such that

|C| �
»
X

λpxq dP|C|pxq �
»
σ�Y

λ dP|C|pλ, yq. (5.46)

For countable spectrum σ, the entire set X is countable, so we can index it by
j P N and have a corresponding eigenbasis pf jqjPN � `2. This allows for resolving
any φ P `2 as φ � °

j φjf j, φj P C. For the moment, we assume that the spectrum
of |C| is arbitrary, but starting from Section 5.4.2, only countable spectra of |C|
will be considered.
In the generic spectrum case, we can still choose Y � Z, so X � R2 consists of
“lines” with distance 1.

The subsets of X with λ � 0 will turn out to be critical, as the operators u or
v amount to a multiplication by 0, there. We hence define the critical and regular

2See also the formulation [24, Thm. 10.10] of the spectral theorem.
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Abbildung 5.1: The spectral set X for a generic spectrum of |C|. Color online.

spectral sets as

Xcrit :� tx � pλ, yq P X | λ � 0u, Xreg :� XzXcrit. (5.47)

Our (dense) space of test functions on the spectral set is then given by:

DX :� C8
c pXcritq b C8

c pXregq. (5.48)

The corresponding test function space in `2 is

D|C| :� UfXDX . (5.49)

For non–open X, we interpret definition (5.48) in the same way as the definition
of EpXq:

C8
c pXq :� C8

c pR2q{tφ | φpxq � 0 @x P Xu.

Lemma 5.4.1 (Bogoliubov relations (5.13) survive the extension).
Suppose u and v are defined on a common dense domain D � `2, such that v�v is
densely defined and self–adjoint, and such that the linear operator

V �
�
u v
v u



, V : D `D Ñ `2 ` `2 (5.50)

defines a Bogoliubov transformation. That means, both V and V� � �
u� vT

v� uT

�
pre-

serve the CAR/CCR, see (5.9), (5.12) or also Section 5.9.4.
Then u, v, u, v, u�, v�, uT and vT are well–defined on all of D|C|, which was con-
structed above (5.49). Further, the Bogoliubov relations

pu�u	 vTvq � 1 pu�v 	 vTuq � 0

puu� 	 vv�q � 1 puvT 	 vuT q � 0
(5.51)
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bosonic
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fermionic

0 ¤ |C| ¤ 1
2

λ

y

-1
0
1
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Xcrit

Abbildung 5.2: Left: Discrete spectrum of |C| in the bosonic case.
Right: In the fermionic case, |C| ¤ 1

2
holds. Color online.

hold as a weak operator identity on D|C|. Conversely, (5.51) implies conservation
of the CAR/CCR under both V and V�.

Proof. Well–definedness of u, v on D|C| follows from the polar decompositions

v � Uv|v|, u � Uu|u|, (5.52)

with unitary operators Uv, Uu : L2pXq Ñ `2. The operators |v| � ?
v�v � ?

J vTvJ
and |u| � ?

u�u � ?
1� vTv on L2pXq are bounded in the fermionic case (�), so

u and v are defined on all of `2. In the bosonic case (�), they contain spectral
multiplications by

νpλq �
d
�1

2
�
c

1

4
� λ2 and µpλq �

d
1

2
�
c

1

4
� λ2, (5.53)

which are bounded on each bounded interval in λ. Therefore, |v| and |u| map DX
onto itself, and by definition (5.49) of D|C|, the operators v and u map D|C| Ñ `2.
Well–definedness of u and v on D|C| follows by the same polar decomposition ar-
gument. And the domains of the adjoints u�, v�, uT and vT contain the domain of
the respective original operators, so they all contain D|C|.

The CAR/CCR conservation under V ,V� can be equivalently translated into
the two conditions V�S�V � S� and VS�V� � S� and a direct computation as in
Section 5.9.4 shows that they are formally equivalent to (5.51) in case of bounded
u, v.
For general u and v defined on D|C|, the first two formulas are indeed weak operator
identities on D|C|. The last two are also weak operator identities, since dompv�q �
dompvq and dompu�q � dompuq.
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5.4 Bogoliubov Transformations: Extended

Next, we establish that v�v having a countable spectrum implies a countable
spectrum of |C|, as illustrated in Figures 5.2.

Lemma 5.4.2. Let v�v be self–adjoint. Then C � u�vJ and C�C are well–defined
operators on D|C|. Here, J denotes complex conjugation (see Section 5.9.1). The
spectrum of C is contained in the real axis for bosons and the imaginary axis for
fermions.
Further, if v�v has countable spectrum, then also C,C�C and |C| have countable
spectrum.

Proof. By the Bogoliubov relations, C�C � vTv � pvTvq2 holds, wherever it is
defined. Now, λ ÞÑ λ� λ2 is smooth apart from the critical points 0 (bosons) or 0
and 1 (fermions). The condition φ P D|C| means that the corresponding spectral
function φX has compact support and is smooth apart from the critical points.
This property is preserved by an application of C�C, so C�C : D|C| Ñ D|C| is

well–defined. Hence, also |C| � ?
C�C is well–defined, and by a polar decomposi-

tion also C � UC |C| with UC : `2 Ñ `2 being a unitary operator.

In the bosonic case, C is symmetric by the Bogoliubov relations, so C�C � C2

and further, σpCq is a subset of the preimage of σpC2q � r0,8q under the complex
map z ÞÑ z2. This preimage is contained within the real axis.

In the fermionic case, the Bogoliubov relations imply C� � �C, so C�C � �C2.
That means, σpCq lies within the preimage of σpC2q � r0,8q under the map
z ÞÑ �z2, which is contained within the imaginary axis.

Now, suppose σpv�vq � σpvTvq is countable3. Then, σp|C|q is the image of
σpv�vq under the map z ÞÑ a

zp1� zq, which sends at most 2 arguments to the
same value, so σp|C|q is also countable.

Remarks.

24. For fermions, u�u� vTv � 1 implies that vTv is bounded, so if vTv and also
u�u can be defined on all of `2. Hence, also v and u are defined on all of `2,
so (5.51) holds as a strong operator identity on `2.

3If φk P `2 is an eigenvector of v�v with eigenvalue λk P R, then Jφk is an eigenvector of
vT v � J v�vJ with eigenvalue λk � λk P R.
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25. For bosons, it is not obvious that (5.51) holds as a strong operator identity
on a dense domain of `2. In fact, it does not always hold as a strong operator
identity on D|C|, as the following counter–example shows:

For the canonical basis pejqjPN of `2, let v be the multiplication by j, i.e.,
vej � jej. So vTv and C�C are the multiplications by j2 and j2p1 � j2q,
respectively, and D|C| comprises all vectors φ P `2, where there exists some
N P N, such that fj � 0 @j ¥ N , i.e., there is a “maximum occupied basis
vector” eN�1. By u�u � vTv � 1, we also know that u�u is a multiplication
by p1� j2q, and by polar decomposition, we may write

u � Uu|u|, (5.54)

with |u| being the multiplication by
a

1� j2 and Uu a unitary operator.
Similarly, u� � |u|U�

u . Now choose Uu such that

U�
u e1 � c

¸
j

j�1{2�εej, (5.55)

where ε ¡ 0 guarantees that the right–hand side is in `2. Here, c ¡ 0 is a
normalization constant depending on ε, chosen such that }U�

u e1} � 1. Then,
for e1 P D|C|, consider the formal expression

u�ve1 � |u|U�
u e1 �

¸
j

a
1� j2j�1{2�εej. (5.56)

For ε ¤ 1, this is obviously not in `2, so u�v is ill–defined on e1 P D|C| and
the second formula in (5.51) does not hold as a strong operator identity on
D|C|.

5.4.2 Extension of the Operator Algebra

In Sections 1.2.1 and 5.2.1, we defined a �–algebra (bosonic) or C�–algebra (fer-
mionic) A generated by a:�pfq, a�pfq, f P h, so A contains operator products that
are densely defined on Fock space. On our two Fock space extensions, we will en-
counter formal expressions in creation and annihilation operators that belong to
a larger algebra Ae, which is defined with respect to a basis e � pejqjPN � `2. We

introduce the shorthand notations aj :� apejq, a:j :� a:pejq, and consider the set
of finite operator products

Πe :�  
Pe � a71j1 . . . a

7m
jm

�� j` P N, 7` P t�, :u
(
. (5.57)
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Then Ae is defined as the set of all infinite sums

Ae :�
#
H �

¸
PePΠe

Hj1,71,...,jm,7mPe

����� Hj1,71,...,jm,7m P C

+
. (5.58)

Ae is made a �–algebra by the involution

� : caj ÞÑ ca:j, ca:j ÞÑ caj @c P C. (5.59)

It is easy to see that Ae extends A, as each element of A is a finite sum of operator
products a7pf1q . . . a7pfmq. Resolving each a7pfjq with respect to the basis e, we

obtain a countable sum of the form in (5.58), that contains each term a7j1 . . . a
7
jm

at most once.
Of particular interest will be elements of Ae corresponding to finite sums. For
a7pφq � °

jPN φja
7
j,φ P `2, this sum is finite if the form factor φ is an element of

De :� tφ P `2 | φj � 0 for all but finitely many j P Nu. (5.60)

If pejqjPN is an orthonormal eigenbasis of |C|, then De � D|C|, since both domains
are spanned by finite linear combinations of eigenvectors of C�C.

Next, we will make the Fock space extensions precise, that will be used to imple-
ment a Bogoliubov transformation V and we define products of a:pφq, apφq with
φ P De on suitable subspaces of them. Within these definitions, it is assumed
that v�v has countable spectrum, so the assumptions of Lemma 5.4.2 are valid
and |C| also has countable spectrum.
We start with the ITP case. As argued around (5.46), the index set for the eigen-
vectors of |C| (i.e., modes) X � σ�Y is countable and there exists an orthonormal
eigenbasis pf jqjPN. We may use it to construct the bases g � pgjqjPN (bosonic) and

η � pηjqjPJ (fermionic), which will take the role of e in De and Ae. Note that the
index set J � N in the fermionic case is countable, so it can as well be re–indexed
by N.

For bosons, we follow the construction in Section 5.3.2, replacing the argument
“C is Hilbert–Schmidt” below (5.22) by “|C| has countable spectrum”. This provi-
des us with an orthonormal basis g � pgjqjPN. Further, it is used, that by Lemma
5.4.1, the Bogoliubov relations still hold as a weak operator identity.
Now, we consider the one–mode Fock space Hk for mode k � j P N and take the
ITP over all these modes:
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Definition 5.4.3. The bosonic infinite tensor product space is given by

xH �
b¹
kPN

Hk �
b¹
kPN

F ptgkuq. (5.61)

Note that the sequence pek,nqnPN0 of n–particle basis vectors is a canonical basis

of each Hk, and can be used to describe elements of xH .
For fermions, we obtain a similar orthonormal basis pηjqjPJ with countable index
set J � N: Copying the construction in Section 5.3.2, while replacing ”C�C is
trace class” by “|C| has countable spectrum” (which is true by Lemma 5.4.2), we
have that pηjqjPJ is orthonormal. The construction of the ITP space is, however,
a bit more delicate in this case. The easy part are modes with a full particle–hole
transformation, or no transformation at all (j P J2). Here we may just consider each
Fock space F ptηjuq � C2 over the respective mode ηj as a factor within the ITP.
However, for Cooper pairs indexed by i P I 1 (so j P J 1), it will become necessary
(see Remark 29) to introduce a separate Fock space F ptη2i�1uq bF ptη2iuq � C4

for each pair of modes. We index all j P J2 and i P I 1 by a corresponding kpiq or
kpjq, such that all k P N are used and take the tensor product over those k:

Definition 5.4.4. The fermionic infinite tensor product space is given by

xH �
b¹
kPN

Hk �
� b¹
jPJ2

F ptηjuq
�
b
� b¹
iPI 1

F ptη2i�1uq bF ptη2iuq
�
. (5.62)

For a one–mode Fock space, Hk :� F ptgkuq or Hkpjq :� F ptηjuq, the sequence
pek,nqnPN0 of n–particle state vectors (bosonic case) or the pair pek,0, ek,1q (fermio-
nic case) forms a basis of each Hk. For fermionic two–mode Fock spaces Hkpiq :�
F ptη2i�1uqbF ptη2iuq, such a basis is given by the quadruple pek,0,0, ek,1,0, ek,0,1, ek,1,1q,
where 0, 1 are the occupation numbers of the respective mode.

Our next challenge is to lift the one–mode creation and annihilation operators

a:j, aj defined on the one– or two–mode Fock space Hk to xH �±b
kPN Hk.

Lemma 5.4.5. Consider a (possibly unbounded) operator Aj,j : Hj � dompAj,jq Ñ
Hj. Then, for Ψ

pmq
j P dompAj,jq,

AjΨ
pmq :� Ψ

pmq
1 b . . .bΨ

pmq
j�1 b Aj,jΨ

pmq
j bΨ

pmq
j�1 b . . . (5.63)
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is independent of the choice of a C–sequence pΨpmqq � pΨpmq
k qkPN representing Ψpmq,

and defines an operator Aj by linearity on

Ψ P dompAjq :�
#

Ψ �
¸
mPM

dmΨpmq P xH �����
����� ¸
mPM

dmAjΨ
pmq

�����   8
+
, (5.64)

where M � N, dm P C and Ψpmq being such that AjΨ
pmq is well–defined by (5.63).

Proof. For a fixed choice of pΨpmqq representing Ψpmq such that Ψ
pmq
j P dompAj,jq,

well–definedness of AjΨ
pmq is easy to see. By Lemma 5.8.2, we can now represent

Ψ � °
mPM dmΨpmq. And if

°
mPM dmAjΨ

pmq converges, then it is independent of
the representation, since Aj is linear. So dompAjq and AjΨ are well–defined.

It remains to be proven that AkΨ
pmq (and hence AkΨ) is independent of the

choice of pΨpmqq representing Ψpmq. So, for m PM, consider a second representative

C–sequence pΨ̃pmqq with Ψ̃pmq � Ψpmq. By Proposition 5.8.1, Ψ̃
pmq
k � ckΨ

pmq
k for

some ck P C with
±

kPN ck � 1. By linearity, Aj,jΨ̃
pmq
k � ckAj,jΨ

pmq
k , so also AjΨ

pmq

and AjΨ̃
pmq defined by (5.63) just differ by the sequence of complex factors pckqkPN

with
±

kPN ck � 1. Hence, according to Proposition 5.8.1, they correspond to the
same functional AjΨ̃

pmq � AjΨ
pmq.

Bosonic creation and annihilation operators aj, a
:
j are usually not bounded. We

need to carefully choose a non–dense domain in Hk in order to make them bounded.
Such a choice is made possible by restricting the allowed Ψ to the following space:

Definition 5.4.6. In the bosonic case, the space Sb with sufficient decay in
the particle number is defined as

Sb :�

$'&'%Ψ P
£
nPN
kPN0

dompNn
k q � xH

������� }Nn
k Ψ} ¤ ck,n}Ψ} @k P N, n P N0

,/./- , (5.65)

where j � k (as we are in the bosonic case), ck,n ¡ 0 are suitable constants for each

n and k, and Nk is the number operator on Hk, lifted to xH . The lift is possible
by Lemma 5.4.5, which also yields a definition of dompNn

k q.

In the fermionic case, we simply set

Sb :� xH , (5.66)
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as the maximum particle number per mode is 1, so we always have a sufficient
decay.

Within Hk there may now exist one or two creation and annihilation operators
aj and a:j, depending on whether Hk describes one or two modes. We lift them toxH and formally define

a:pφq �
¸
j

φja
:
j, apφq �

¸
j

φjaj. (5.67)

Now, a:pφq does only make sense for φ P De � `2, as will become clear in the
proof of the following lemma:

Lemma 5.4.7 (Products of a:, a are well–defined on the ITP space).

Consider the ITP space xH � Sb corresponding to the basis pejqjPN, which is
pgjqjPN (bosonic) or pηjqjPN (fermionic). If φ P Dg or Dη (defined in (5.60)), then

a:pφq : Sb Ñ Sb, apφq : Sb Ñ Sb, (5.68)

as in (5.67), are well–defined linear operators.

Note that for pηjqjPN, we have re–indexed j P J to j P N.

Proof. First, note that we can write

a:pφqΨ �
¸
jPN

φja
:
jΨ �

¸
j:φj�0

φja
:
jΨ, apφqΨ �

¸
j:φj�0

φjajΨ, (5.69)

where the sum is finite by definition of Dg and Dη.

In the fermionic case, aj, a
:
j are bounded, so by [44, Lemma 5.1.1], they can be

lifted to bounded operators on Sb � xH . Therefore, also the finite linear combi-
nation (5.69) is a bounded operator on Sb.

Within the bosonic case, where j � k, the first statement a:pφqΨ P Sb can be
seen as follows: We start by verifying that a:pφqΨ is well–defined. First, note that

}a:kΨ} � }
a
Nk � 1Ψ} ¤ }pNk � 1qΨ} ¤ pck,1 � 1q}Ψ}, (5.70)
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where we used that the operator a:k shifts all sectors up by one (keeping them
orthogonal) and multiplies by

?
Nk � 1. So

}a:pφqΨ} ¤
� ¸
k:φk�0

|φk|pck,1 � 1q
�
}Ψ} �: c1}Ψ}, (5.71)

where, by definition of Dg and Dη, the sum over k contains only finitely many

nonzero terms, so we may call it c1 ¡ 0. Hence, a:pφqΨ P xH .
It remains to establish sufficient decay in the particle number. We observe that

}Nn
k a

:
kΨ} � }Nn

k

a
Nk � 1Ψ} ¤ }Nn�1

k Ψ} � }Nn
k Ψ} ¤ pck,n�1 � ck,nq}Ψ}

¤ pck,n�1 � ck,nq}a:kΨ},
(5.72)

so by summing over k, the particle number decay condition is again satisfied and
a:pφqΨ P Sb.

For the second statement apφqΨ P Sb, the same finite–sum argument can be
used. By repeating all proof steps with

?
Nk instead of

?
Nk � 1, it can be seen

that apφqΨ P xH . However, verifying the particle number decay condition needs a
bit more attention, since the inequality }a:kΨ} ¤ }Ψ} in (5.72) does not generalize
to ak, see also Remark 26. However, for all k with akΨ � 0 and φk � 0, there is
a fixed ratio }Ψ}

}akΨ} �: dk ¡ 0. Denote by d :� maxk dk the maximum over these
finitely many ratios for a fixed Ψ. Then,

}Nn
k akΨ} ¤ pck,n�1 � ck,nq}Ψ} ¤ d � pck,n�1 � ck,nq}akΨ}. (5.73)

For akΨ � 0, the inequality is trivially satisfied. A finite sum over k establishes
apφqΨ P Sb and thus finishes the proof.

The ESS for countable spectrum of v�v is built using the complex sequence space

E � Eg :� D1
g � EpNq (bosonic)

E � Eη :� D1
η � EpNq (fermionic).

(5.74)

This definition allows for a distribution pairing xφ,ψy � °
j φjψj for φ P D,ψ P E .

In particular, both D and `2 can be embedded into E .
The spaces E pNq, EF , Ren1, Ren, eRen, F and F ex are then defined as in Sections
3.2 and 5.2.2.

Creation and annihilation operators a:pφq, apφq are defined on configuration
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space functions Ψm : QpNq Ñ C in similarity to (1.21). The only difference is that
a configuration is no longer q P QpRdq, but rather q P QpNq, so q � tj1, . . . , jNu.
Again, we have to distinguish the bosonic (�) and the fermionic (�) case. Formally,

pa:�pφqΨmqpqq �
Ņ

k�1

p�1qk?
N

φjkΨmpqzjkq

pa�pφqΨmqpqq �
?
N � 1

¸
j

φjΨmpq, jq.
(5.75)

The definition extends by linearity from Ψm P EF to any Ψ � °
m cmΨm P F with

cm P eRen,Ψm P EF and with the sum over m being finite. Note that the sym-
metrization operators S� from (1.6) also naturally extend to ESS vectors, as they
just permute entries within a configuration q. In the following, we will again drop
the index �, meaning that statements about a:pφq, apφq are both about fermionic
and the bosonic operators, if not stated otherwise.
The CAR/CCR are a direct consequence of definition (5.75) and hence still valid
for the operator extensions.

Lemma 5.4.8 (Products of a:, a are well–defined on the ESS).
Consider the ESS F built over E. Then, (5.75) uniquely defines operators a:pφq, apφq
as follows: for φ P D, we have

a:pφq : F Ñ F , apφq : F Ñ F , (5.76)

and more generally, for φ P E, we have

a:pφq : F Ñ F , apφq : F Ñ F ex. (5.77)

Proof. For φ P D, it suffices to show that for Ψm P EF , we have a:pφqΨm, apφqΨm P
EF . Considering (5.75), it is easy to see that a:pφqΨm : QpNq Ñ C defines a func-
tion on configuration space, as it is just the tensor product of two functions. For
papφqΨmqpqq, since φ P D, each sum over j in (5.75) has a finite number of nonzero
terms and is hence finite. Therefore, papφqΨmqpqq is finite and apφqΨm : QpNq Ñ C
is a well–defined function.

For φ P E , it is again easy to see that a:pφqΨm defines a function QpNq Ñ C as
a tensor product of two functions. In apφqΨm, the sum over j may now be infinite
or even divergent. However, it can be defined as a Ren1 renormalization constant:
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For each q P QpNq, the function fpjq :� φjΨmpq, jq is f P EpNq, so¸
j

φjΨmpq, jq P Ren1pNq ñ papφqΨmq P RenQpNq.

Hence, for Ψ � °
m cmΨm P F , we have

apφqΨ �
¸
m

cm apφqΨm P F ex.

Remarks.

26. The condition φ P Df is indeed necessary, meaning we may not just allow
any φ P `2 inside a7pφq, as the following counter–example shows: For the
bosonic case (j � k), consider φk � 1

k
, so φ P `2zDf . For each mode k,

consider the coherent state Ψk defined sector–wise by

Ψ
pNkq
k � e�

αk
2
α
Nk
2
k?
Nk!

, (5.78)

where all αk P R are set equal to the same αk � α ¡ 0 and where }Ψk}k �
1. Then, define the ITP Ψ � ±b

kPN Ψk. It is easy to see that Ψ satisfies

the particle number decay condition (5.65), as for each Ψk, }ΨpNkq
k }k decays

exponentially in Nk. But still, pαkqkPN R `2, so we may think of Ψ as a
“coherent state with a large displacement”, living outside the Fock space. It
follows from a well–known fact about coherent states that akΨ � αΨ, so

}apφqΨ} �
�����¸
k

φkαΨ

����� � α
¸
k

1

k
}Ψ} � 8. (5.79)

Hence, apφq is ill–defined on Ψ.
The same happens with any coherent state product (5.78) and any φ, where°
k φkαk � 8. In particular, the space of allowed pφkqkPN is dual to the one

of allowed pαkqkPN.

27. The above–mentioned duality actually extends to the definition of D and Sb:
We may alter those definitions to allow for more form factors φ P `2 in a7pφq.
The result is that fewer vectors Ψ P Sb are allowed, if a7pφ1q . . . a7pφNqΨ

249



5 Implementing Bogoliubov Transformations Beyond the Shale–Stinespring Condition

shall still be well–defined. These alternative definitions are discussed in Sec-
tion 5.11.

28. It is possible to view the subspace
±bC

kPN Hk of the equivalence class C
(see below (3.9)) as the original Fock space with respect to the vacuum
Ω �±b

kPN ek,0:

Recall that each Ψ P±bC
kPN Hk can be written in coordinates as (5.8):

Ψ �
¸

np�qPF
apnp�qq

b¹
kPN

ek,npkq, (5.80)

with F containing all sequences pnpkqqkPN, such that npkq � 0 for almost all
k. Hence, each

±b
kPN ek,npkq is a tensor product state of finitely many partic-

les. Since the Fock norm and the xH –norm coincide, the vector
±b

kPN ek,npkq
can be seen as a Fock space vector normalized to 1. The linear combination
(5.80) with

°
np�q |apnp�qq|2 can hence also be interpreted a Fock space vector.

Conversely, each Fock space vector can be written as a countable sequence
(5.80), since the span of the above–mentioned tensor product states is dense
in F .

5.5 Implementation: Extended

Roughly speaking, implementability of V on Fock space F means that there exists
a linear map UV : F Ñ F that transforms a7– into b7–operators (see Section 5.3.2).
In Section 5.5.1, we give a precise definition of how implementability of V is to be

interpreted on Fock space extensions xH and F . Lemma 5.5.3 will then establish,
that UV is indeed well–defined and 5.5.4 will give suitable conditions for when it
is an implementer in the extended sense.
Within Section 5.5.2, Theorems 5.5.5 and 5.5.6 then establish these suitable condi-
tions for countable spectrum of v�v in the bosonic case. In Section 5.5.3, Theorems
5.5.7 and 5.5.8 do the same for the fermionic case. Note that for implementability
on F in Theorem 5.5.8, there is an additional requirement that only finitely many
modes with full particle–hole transformations are allowed.
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5.5.1 Definition of Extended Implementation

The implementer UV is defined on a dense subspace of Fock space DF � F , that
contains a finite number of particles from the space Df (defined by (5.60) with
e � f):

DF :� spanta:pφ1q . . . a:pφNqΩ, N P N0, φ` P Dfu. (5.81)

Note that this is an adapted version of definition (1.28) with C8
c replaced by Df .

The operator UV now maps from DF into either an ITP space xH or an ESS F .
All statements provided in this subsection hold regardless of the choice of this
image space.

Definition 5.5.1. We say that a linear operator UV : DF Ñ xH or UV : DF Ñ F
implements a Bogoliubov transformation V in the extended sense, if for all
φ P Df , Ψ P UVrDF s, we have that

UVa
:pφqU�1

V Ψ � b:pφqΨ, UVapφqU�1
V Ψ � bpφqΨ. (5.82)

This requires, of course, that U�1
V is well–defined. So before establishing (5.82),

we have to show that UV is invertible, in order to prove that UV implements V
in the extended sense. This will be one main difficulty within the upcoming proofs.

The implementer UV is defined as follows: First we define some new vacuum
vector ΩV � UVΩ within the respective Fock space extension, such that

bpφqΩV � 0. (5.83)

Then we make UV change a7– into b7–operators:

Definition 5.5.2. Given a Bogoliubov transformed vacuum state ΩV P Sb or
ΩV P F , the Bogoliubov implementer UV is formally defined on DF by

UVa
:pφ1q . . . a:pφnqΩ :� b:pφ1q . . . b:pφnqΩV , (5.84)

with φ` P Df and b:pf jq � pa:puf jq � apvf jqq for all basis vectors f j in f .

Lemma 5.5.3 (UV is well–defined).

In the ITP case, if ΩV P Sb � xH (see (5.65)), then the formal implementer UV
(5.84) is a well–defined operator UV : DF Ñ Sb.
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For the ESS, if ΩV P F , then the formal implementer UV (5.84) is a well–defined
operator UV : DF Ñ F .

Proof. In the ITP case, by (5.25), uf j and vf j are both proportional to the sa-
me basis vector ej (bosonic: gj, fermionic: ηj). So the right–hand side of (5.84)
is a finite linear combination of vectors a7pej1q . . . a7pejnqΩV . Now, ΩV P Sb and
by Lemma 5.4.7, each application of a7pejq leaves the vector in Sb. So the whole

vector (5.84) is in Sb � xH .

For the ESS, the right–hand side of (5.84) is a finite linear combination of
vectors of the kind a7pej1q . . . a7pejnqΩV , where ej P tuf j, vf ju is proportional to

gj or ηj and hence in E . We have ΩV P F , and by Lemma 5.4.8, as f j P Df , each

application of an a7pf jq maps again into F . So (5.84) is well–defined.

We now provide conditions, for which UV is indeed an implementer of V .

Lemma 5.5.4 (Conditions for an implementer UV). Suppose that for a Bogoliubov
transformation (i.e., V satisfying (5.51)) an ΩV satisfying bpφqΩV � 0 for all
φ P Df � `2 has been found, such that UV in (5.84) on DF is well–defined and
has an inverse U�1

V defined on UVrDF s.
Then, UV implements V in the sense of (5.82) on all Ψ P UVrDF s.

Proof. We write Ψ � UVΦ with Φ P DF . By linearity, it suffices to prove the state-
ment for Φ � a:pφ1q . . . a:pφnqΩ, which implies by (5.84) that Ψ � b:pφ1q . . . b:pφnqΩV .
In that case, we have (with n ¥ 0)

UVa
:pφqU�1

V Ψ � UVa
:pφqU�1

V b:pφ1q . . . b:pφnqΩV

� UVa
:pφqa:pφ1q . . . a:pφnqΩV

� b:pφqb:pφ1q . . . b:pφnqΩV � b:pφqΨ,
(5.85)

which is the first statement of (5.82). The second statement requires somewhat
more attention, as our operator product also includes one annihilation operator.
We make use of the CAR/CCR of a– and b–operators, using the combinatorical
factor ε � p�1q for fermions and ε � 1 for bosons. Here, the CAR/CCR are valid
for a–operators by definition (5.75) and for b–operators, since by means of Lemma
5.4.1, the Bogoliubov relations survive the extension.
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UVapφqU�1
V Ψ � UVapφqU�1

V b:pφ1q . . . b:pφnqΩV

� UVapφqa:pφ1q . . . a:pφnqΩ

�
ņ

`�1

UVa
:pφ1q . . . a:pφ`�1qε`�1xφ,φ`ya:pφ`�1q . . . a:pφnqΩ

�
ņ

`�1

b:pφ1q . . . b:pφ`�1qε`�1xφ,φ`yb:pφ`�1q . . . b:pφnqΩV

� bpφqb:pφ1q . . . b:pφnqΩV � εn�1b:pφ1q . . . b:pφnqbpφqΩV

(5.83)� bpφqb:pφ1q . . . b:pφnqΩV � bpφqΨ,

(5.86)

which is the second statement of (5.82), where we used the convention that the
above sums are set to zero for N � 0.

5.5.2 Bosonic Case

We will now show that for a suitable choice of ΩV , the operator UV defined in (5.84)
indeed implements the Bogoliubov transformation V . The ITP case is treated in
Theorem 5.5.5 and the ESS in Theorem 5.5.6.

Theorem 5.5.5 (Implementation works, bosonic, ITPs). Consider a bosonic Bo-

goliubov transformation V � p u v
v u q with v�v having countable spectrum. Let xH �±b

kPN Hk be the ITP space (Definition 5.4.3) with respect to the basis pgkqkPN � `2.

Then, V is implemented in the sense of (5.82) by UV : DF Ñ xH (5.84) with the
new vacuum vector

ΩV �
b¹
kPN

Ωk,V :�
b¹
kPN

���
1� ν2

k

µ2
k

	1{4

exp

�
� νk

2µk
pa:pgkqq2

	
Ωk



. (5.87)

In simple words, Theorem 5.5.5 says that for φ P Df � `2 (5.60), the operators
apφq, a:pφq defined on DF � F (5.81) are mapped to bpφq, b:pφq, which still sa-
tisfy the CAR/CCR.

Proof. By Lemma 5.5.4, UV implements V (5.82), if we can show the following:

1. The new vacuum ΩV is well–defined
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2. UV is well–defined on DF (Lemma 5.5.3 will be used, here)

3. bpφqΩV � 0

4. U�1
V exists on UVrDF s

1.) Well–definedness of ΩV : Expression (5.87) is an ITP of one normalized factor

per space Hk. Hence, it is a C–sequence, which can be identified with ΩV P xH .

2.) Well–definedness of UV : This follows from Lemma 5.5.3, if we can establish

ΩV P Sb. By definition of Sb, we need to verify the particle number decay con-
dition }Nn

k ΩV} ¤ ck,n}ΩV}. If it would hold, then }Nn
k ΩV}   8 and we would

automatically obtain ΩV P dompNn
k q. Now, since all Ωk,V are normalized, verifying

particle number decay boils down to proving

}Nn
k Ωk,V}2k ¤ c2

k,n. (5.88)

We may explicitly compute this expression:

}Nn
k Ωk,V}2k � p1� 4t2q1{2

8̧

N�0

t2Np2Nq!
pN !q2 p2Nq2n, (5.89)

with t �
��� νk2µk

��� P r0, 1{2q. Now, the function

N ÞÑ t2Np2Nq!
pN !q2 p2Nq2n ¤ p2tq2Np2Nq2n (5.90)

is positive, bounded and decays exponentially at N Ñ 8 since 0 ¤ 2t   1. So,

8̧

N�0

t2Np2Nq!
pN !q2 p2Nq2n ¤ cons.�

8̧

N�0

p2tq2Np2Nq2n �: c2
k,n   8, (5.91)

which establishes ΩV P Sb and hence the claim.

3.) bpφq annihilates ΩV : This is straightforward to check. Since φ P Df , the follo-
wing sum over k is finite:

bpφqΩV �
¸
k

φkbpfkqΩV . (5.92)

As in the case where the Shale–Stinespring condition holds, each bpfkq annihilates
the corresponding vacuum vector Ωk,V , so the finite sum above is 0.
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4.) Well–definedness of U�1
V : The following set is a basis for DF :

ta:pfk1
q . . . a:pfkN qΩ | N P N0, k` P Nu, (5.93)

where fk` are chosen out of the basis pf jqjPN (with j � k). This can easily be seen,
since every a:pφq, φ P Df can be decomposed by definition of Df into a finite sum
over operators proportional to a:pfkq. If we can show that the set

tb:pfk1
q . . . b:pfkN qΩV | N P N0, k` P Nu � xH , (5.94)

with b:pfkq � µka
:pgkq � νkapgkq, is linearly independent, we are done, since then

kerpUVq � t0u, so UV is injective and hence invertible on its image.
Now, as the application of the operators b:k :� b:pfkq and UV preserve the ITP
structure, it suffices to show that on each mode k, the set

tpb:kqNΩk,V | N P N0u � Hk (5.95)

is linearly independent. Now, (5.95) is just the image of the set

tpa:pfkqqNΩk | N P N0u � F ptfkuq (5.96)

under a one–mode Bogoliubov transformation Uk,V : F ptfkuq Ñ Hk (defined as
Uj,V in (5.30)), where F ptfkuq is the one–mode Fock space over fk. For a finite
number m of modes, Bogoliubov transformations can always be implemented by
unitary operators, as then the operator v : Cm Ñ Cm is always Hilbert–Schmidt.
Now, (5.96) is an orthogonal set with no vector being 0, so its image (5.95) under
the unitary Uk,V is also orthogonal with no vector being 0, and hence it is linearly
independent. This finishes the proof.

Theorem 5.5.6 (Implementation works, bosonic, ESS). Consider a bosonic Bo-
goliubov transformation V � p u v

v u q with v�v having countable spectrum. Let F be
the ESS over Eg (see (5.74)) with respect to the basis pgkqkPN � `2. Define the new
vacuum vector

ΩV � exp

�
1

4

¸
k

log
�

1� ν2
k

µ2
k

	�
looooooooooooooomooooooooooooooon

�:er

exp

�
�
¸
k

νk
2µk

pa:pgkqq2
�

Ωloooooooooooooooomoooooooooooooooon
�:ΨV

� erΨV . (5.97)

Then, V is implemented in the sense of (5.82) by UV : DF Ñ F (5.84).

Proof. By Lemma 5.5.4, it suffices to establish the four points in the proof of Theo-
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rem 5.5.5.

1.) Well–definedness of ΩV : The factor r � 1
4

°
k log

�
1� ν2

k

µ2
k

	
can be interpreted

as an element of Ren1, as it is the sum over elements of a complex sequence. So
the wave function renormalization is indeed er P eRen. The second factor ΨV is an
infinite product of exponentials

exp

�
� νk

2µk
pa:pgkqq2



Ω �

8̧

`�0

1

`!

p�νkq`
2`µ`k

pa:pgkqq2`Ω. (5.98)

So the N–sector of ΨV is 0 for odd N . For even N , the sector contains a sum over
all choices of boson pair numbers p`kqkPN, `k P N0 such that

°
k `k � N{2. Each

boson pair is described by a two–particle function supported on the diagonal, as
shown in Figure 5.3.
Now, each point in the mode–configuration space q P QpNq gets assigned at most
one summand corresponding to one choice of a sequence p`kqkPN. This value ΨVpqq
can now be written as a convergent infinite product: On each mode gk, we fix the
basis pek,nqnPN0 � F ptgkuq, as mentioned below (5.62), and write

Ψk,Vpnkq :� xek,nk ,Ψk,Vy �
8̧

`�0

1

`!

p�νkq`
2`µ`k

xek,nk , pa:pgkqq2`Ωky, (5.99)

where Ψk,V is the sequence associated with the Bogoliubov vacuum of mode gk,

meaning Ψk,V � exp
�
� νk

2µk
pa:pgkqq2

	
Ωk P F ptgkuq. Then, we have

ΨVpqq �
¹
kPN

Ψk,Vpnkq, (5.100)

where nk counts, how often mode k is contained in configuration q, see also Figure
5.3. As there are finitely many particles in q, we have nk � 0 for all but finitely
many k. And as the vacuum is normalized to 1, i.e., Ψk,Vp0q � 1, and all other
Ψk,Vpnkq are finite, the infinite product (5.100) is finite, as well.

2.) Well–definedness of UV : This is an immediate consequence of Lemma 5.5.3.

3.) bpφq annihilates ΩV : This is again checked mode–by–mode, as in proof step 3.)
of Theorem 5.5.5.

4.) Well–definedness of U�1
V : As in proof step 4.) of Theorem 5.5.5, we have to

check that UV is injective. And as within that proof step, it suffices to prove that
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Abbildung 5.3: Left: The two–particle sector of ΨV , visualized.
Right: Particle numbers nk for a typical configuration q with
ΨVpqq � 0. Color online.

the set
tb:pfk1

q . . . b:pfkN qΨV | N P N0, k` P Nu � F (5.101)

is linearly independent. Here, the factor er can be removed, as it is nonzero for ΩV .
Now, assume there was a (finite) nonzero linear combination

B �
M̧

m�1

b:pfkm,1q . . . b:pfkm,Nm q, with BΨV � 0. (5.102)

Then, there exists a maximum mode number K P N, such that km,` ¤ K for any
creation operator b:pfkm,`q in B. We define the Fock space of all modes k ¤ K by

F¤K :� F pt1, . . . , Kuq, (5.103)

where the Bogoliubov implementer restricted to this space,

U¤K,V �
K¹
k�1

Uk,V , (5.104)

is a unitary operator, as Bogoliubov transformations on finitely many modes are
always implementable. Therefore, with Ω¤K �±b

k¤K Ωk and Ψ¤K,V �
±

k¤K Ψk,V ,
we have

UVa
:pfk1

q . . . a:pfkN qΩ¤K � b:pfk1
q . . . b:pfkN qΨ¤K,V P F¤K . (5.105)
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We can also restrict the operator B to

B̃ : F¤K Ñ F¤K B̃ �
M̧

m�1

b:pfkm,1q . . . b:pfkm,Nm q. (5.106)

Now, as the vectors a:pfk1
q . . . a:pfkN qΩ¤K with k` ¤ K and N P N0 are orthogo-

nal without a zero vector and UV is unitary, also the set of b:pfk1
q . . . b:pfkN qΨ¤K,V

is orthogonal without a zero vector, and hence linearly independent. So ΨB̃ �
B̃Ψ¤K,V � 0. For the associated function, that means,

ΨB̃pq¤Kq � 0 for some q¤K P Qpt1, . . . , Kuq. (5.107)

Now, as B leaves all modes km,` ¡ K invariant, we can write

ΨBpqq �
�¹
k¡K

Ψk,Vpnkq
�

ΨB̃pq¤Kq, (5.108)

with pq¤Kq containing all modes of q with k ¤ K and nk being the number of
times, mode k appears in configuration q. The left bracket is 1 for nk � 0 and
for the right term, there exists some q¤K with ΨB̃pq¤Kq � 0 (5.107). Hence, with
q � q¤K , we have ΨBpqq � 0, which contradicts BΩV � 0 from (5.102). So we
have linear independence of (5.101), leading to injectiveness of UV and finishing
the proof.

5.5.3 Fermionic Case

Theorem 5.5.7 (Implementation works, fermionic, ITPs). Consider a fermionic
Bogoliubov transformation V � p u v

v u q with v�v having countable spectrum. LetxH �±b
kPN Hk be the ITP space (Definition 5.4.4). Define the new vacuum vector

ΩV �
b¹

jPJ2
Ωj,V b

b¹
iPI 1

Ω2i,2i�1,V

:�
�� b¹
jPJ21

a:pηjqΩj

�b
�� b¹
jPJ20

Ωj

�b� b¹
iPI 1
pαi � βia

:pη2iqa:pη2i�1qqqΩ2i,2i�1

�
,

(5.109)
with Ω2i,2i�1,Ω2i,2i�1,V P Hkpiq. Then, V is implemented in the sense of (5.82) by

UV : DF Ñ xH (5.84).
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Proof. Again, by Lemma 5.5.4, it suffices to establish the four points in the proof
of Theorem 5.5.5.

1.) Well–definedness of ΩV : As in Theorem 5.5.5, we have a tensor product of in-
finitely many normalized vectors.

2.) Well–definedness of UV : follows from Lemma 5.5.3, as for fermions, Sb � xH .

3.) bpφq annihilates ΩV : Follows by a similar argument, as in proof step 3.) of
Theorem 5.5.5. We only have to check for i P I 1, that both bpf 2iq and bpf 2i�1q an-
nihilate Ω2i,2i�1,V , which is done exactly as in the case where the Shale–Stinespring
condition holds.

4.) Well–definedness of U�1
V : We proceed as in proof step 4.) in Theorem 5.5.5.

That means, we have kerpUVq � t0u and hence existence of an inverse, if we can
prove that the set

tb:pf j1q . . . b:pf jN qΩV | N P N0, j` P Ju � xH , (5.110)

with b:pf jq � a:puf jq � apvf jq is linearly independent. This again boils down to
proving a linear independence statement on each Hk. The crucial difference now
is, that each tensor product factor Hk may be a Fock space over either one or
two modes. We abbreviate b7j :� b7pf jq and a7j :� a7pηjq. For two–mode factors
indexed by i P I 1, we need to prove linear independence of the set

tpb:2iqN1pb:2i�1qN2Ωkpiq,V | N1, N2 P t0, 1uu � Hkpiq. (5.111)

As in proof step 4.) of Theorem 5.5.5, this follows by the fact that the finite–mode
implementer U2i,2i�1,V (see (5.39)) is unitary and maps the orthogonal, zero–free
set

tpa:2iqN1pa:2i�1qN2Ωkpiq | N1, N2 P t0, 1uu � F ptf 2iuq bF ptf 2i�1uq (5.112)

onto (5.111).
For one–mode factors indexed by j P J2 we need linear independence of

tpb:jqNΩkpjq,V | N P t0, 1uu � Hkpjq. (5.113)

This follows again by unitarity of Uj,V , as well as orthogonality and zero–freeness
of the set

tpa:jqNΩkpjq | N P t0, 1uu � F ptf juq, (5.114)
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5 Implementing Bogoliubov Transformations Beyond the Shale–Stinespring Condition

which is mapped to (5.113). By linear independence of (5.111) and (5.113), we
obtain linear independence of (5.110), which implies injectivity of UV and finishes
the proof.

For the ESS, the situation is a bit more delicate: As in Theorem 5.5.6, we would
again like to normalize the vacuum sector of each mode to Ψj,Vp0q � 1 (compare
(5.99)). However, for full particle–hole transformations j P J21 , we have Ψj,Vp0q � 0,
so we cannot normalize the vacuum. As the ESS can only cover a finite number
of particles within a configuration q P QpNq, we also need to restrict to a finite
number of particle–hole transformations |J21 |   8.

Theorem 5.5.8 (Implementation works, fermionic, ESS). Consider a fermionic
Bogoliubov transformation V � p u v

v u q with v�v having countable spectrum. Let F
be the ESS over Eη (see (5.74)) with respect to pηjqjPJ , and let |J21 |   8, so the
number of modes with a full particle–hole transformation is finite.
Define the new vacuum vector

ΩV � exp

�¸
iPI 1

logαi

�
looooooooomooooooooon

�:er

�� b¹
jPJ21

a:pηjq
�� b¹

iPI 1

�
1� βi

αi
a:pη2iqa:pη2i�1qq


�
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

�:ΨV

Ω � erΨV .

(5.115)
Then, V is implemented in the sense of (5.82) by UV : DF Ñ F (5.84).

Proof. Also in this case, by Lemma 5.5.4, it suffices to establish the four points
from the proof of Theorem 5.5.5.

1.) Well–definedness of ΩV : Since αi P p0, 1q, we have logαi P R. By setting r to
be the equivalence class of the function r : J Ñ C,

rpjq �
#

1
2

logαj if j P J 1
0 if j P J2 , (5.116)

we obtain r � °
iPI 1 logαi P Ren1, so er P eRen.

The well–definedness argument for ΨV P EF is similar to that in proof step 1.) of
Theorem 5.5.6. We can write

ΨVpqq �
¹
kPN

Ψk,Vpnkq, (5.117)

260



5.5 Implementation: Extended

where the occupation number nk denotes, how often mode k appears in configurati-
on q. We may allow for nk ¥ 2, but since we are in the fermionic case, Ψk,Vpnkq � 0
for nk R t0, 1u. Further, for all i P I 1, the associated vector Ψkpiq,V describes two
modes, so we have a pair of two occupation numbers pn2i, n2i�1q � nkpiq and

 for j P J20 : Ψkpjq,Vpnkpjqq � 1 if nkpjq � 0 and else Ψkpjq,Vpnkpjqq � 0

 for j P J21 : Ψkpjq,Vpnkpjqq � 1 if nkpjq � 1 and else Ψkpjq,Vpnkpjqq � 0

 for i P I 1 : Ψkpiq,Vpnkpiqq � 1 if nkpiq � p0, 0q
Ψkpiq,Vpnkpiqq � �βi

αi
if nkpiq � p1, 1q and else Ψkpiq,Vpnkpiqq � 0.

(5.118)
So ΨVpqq can only be nonzero if q contains none of the modes j P J20 , all of the
(finitely many) modes j P J21 and a finite subset of the modes 2i, 2i� 1 for i P I 1.
In that case, ΨVpqq is a product of infinitely many times a factor 1 and finitely
many times a finite factor, so all ΨVpqq are well–defined and finite.

2.) Well–definedness of UV : This is an immediate consequence of Lemma 5.5.3.

3.) bpφq annihilates ΩV : This is proven mode–by–mode in the same way, as within
proof step 3.) of Theorem 5.5.7.

4.) Well–definedness of U�1
V : The argument is also analogous to that of proof step

4.) of Theorem 5.5.6. We reduce invertibility (which means injectivity) of UV to
linear independence of the set

tb:pf j1q . . . b:pf jN qΨV | N P N0, j` P Ju � F . (5.119)

Again, we assume there was a (finite) nonzero linear combination

B �
M̧

m�1

b:pf jm,1q . . . b:pf jm,Nm q, with ΨB � BΨV � 0. (5.120)

Then, B would possess a maximum occupied mode K, i.e., in B, there is no f jm,N
with kpjm,Nq ¡ K. We denote the (finite–dimensional) fermionic Fock space and
the associated Bogoliubov transformation by

F¤K �
b¹

k¤K
Hk, U¤K,V �

�� b¹
kpjq¤K

Uj,V

�b
�� b¹
kpiq¤K

U2i,2i�1,V

�. (5.121)
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We restrict B to B̃ : F¤K Ñ F¤K , as in (5.106), define ΨB̃ � B̃Ψ¤K,V and obtain

ΨBpqq �
�¹
k¡K

Ψk,Vpnkq
�

ΨB̃pq¤Kq. (5.122)

The first factor is nonzero for at least one choice of occupation numbers nk per k ¡
K, as ΨV � 0. The factor ΨB̃ is the image of a nonzero vector under the operator
U¤K,V , which is unitary, as it acts on finitely many modes. So ΨB̃pq¤Kq � 0 for
some q¤K , which yields ΨB � 0 and hence the desired contradiction.

29. It is crucial that the fermionic ITP space has been chosen as xH �±b
kPN Hk,

with two–mode spaces Hk � F ptη2iuq bF ptη2i�1uq for Cooper pairs i P I 1.
If we had just chosen a product of one–mode spaces

±b
jPJ F ptηjuq, then ΩV

might not be in this space, depending on V .
As a counter–example, consider a Bogoliubov transformation V with counta-
bly infinitely many Cooper pairs i P I 1, such that αi � βi � 1?

2
. Then, each

Cooper pair is in the state

Ψi :� 1?
2
p|0y b |0y � |1y b |1yq P C4, (5.123)

i.e., we have a “half particle–hole transformation”. The state (5.123) cannot
be written as a tensor product of two vectors in C2. So when evaluating the
formal ITP

ΩV �
b¹
iPI 1

Ψi, (5.124)

we obtain a sum of C–sequences: For each pair i, one has to choose either
|0y b |0y or |1y b |1y as a contribution to ΩV and sum over all choices. But
now, there are uncountably many such choices, as each corresponds to a bi-
nary number of infinitely many digits. And each one gives a contribution of
norm

±
iPI 1

1?
2
� 0. So ΩV � 0, making UV non–invertible.

5.6 Diagonalization: Extended

By Theorems 5.5.5–5.5.8, we know that V is implementable by UV in the extended
sense under fairly mild assumptions (namely v�v having countable spectrum). Now
it would be interesting to know if this UV can be used to diagonalize quadratic
Hamiltonians H.
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This requires precise definitions of “quadratic Hamiltonian” and “diagonalized”,
first, which we give in Section 5.6.1. The following Sections 5.6.2 and 5.6.3 pro-
vide diagonalizability criteria in Propositions 5.6.2 and 5.6.3, which are a simple
consequence of combining results from [216] about when a diagonalizing V exists
with results from Theorems 5.5.5–5.5.8 about when UV is implementable in the
extended sense.

5.6.1 Definition of Extended Diagonalization

Recall that the extended operator algebra Ae, defined in (5.58) with respect to a
basis e � pejqjPN, consists of all sums H that assign to each finite operator product

Pe � a71j1 . . . a
7m
jm

a complex coefficient Hj1,71,...,jm,7m P C. So the entire sum reads:

H �
¸

PePΠe

Hj1,71,...,jm,7mPe. (5.125)

Here, Πe is the set of all finite operator products.
A formal quadratic Hamiltonian is an element H P Ae, where Hj1,71,...,jm,7m � 0
only appears for m � 2 and where H� � H. We will impose a normal ordering on
quadratic Hamiltonians (see Remark 30), so they can be written as:

H � 1

2

¸
j,kPN

p2hjka:jak 	 kjka
:
ja

:
k � kjkajakq, (5.126)

where for 	, we have to take � in the bosonic and � in the fermionic case. The
term “formal” stresses that H is not necessarily an operator on Fock space.

Now, to each such H we can associate a block matrix (see Section 5.12.1)

AH �
�
h 	k
k 	h



, (5.127)

with h � phjkqj,kPN, k � pkjkqj,kPN being matrices of infinite size.

Consider a Bogoliubov transformation V � p u v
v u q. The corresponding algebraic

Bogoliubov transformation VA on Ae is defined similar to VA on A (see Section
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5.9.1):
VA : Ae � dompVAq Ñ Ae,

a:j ÞÑ b:j �
¸
k

pujka:k � vjkakq,

aj ÞÑ bj �
¸
k

pvjka:k � ujkakq,
(5.128)

and a normal ordering is performed after the transformation. Note that this
expression might not be well–defined, as the sums over k might diverge. So we
needed to restrict to a subspace dompVAq � Ae. The transformed operator and its
associated block matrices are

rH � VApHq, A rH � V�AHV , (5.129)

where the latter can easily be seen by (5.242). A diagonalization is now given by
an implementable Bogoliubov transformation V , which eliminates all a:a:– and
aa–terms from H:

Definition 5.6.1. A formal quadratic Hamiltonian H P Ae is called diagonaliz-
able in the extended sense if there exists a Bogoliubov transformation V , such
that

V�AHV �
�
E 0
0 	E



, (5.130)

with E ¥ 0 being Hermitian, 	 being � in the bosonic and � in the fermionic
case, and where V is implementable in the extended sense (see Definition 5.5.1).

That means, the Hamiltonian associated with A rH is:

rH �
¸
j,kPN

Ejka
:
jak � dΓpEq. (5.131)

The matrix E provides a well–defined positive semidefinite quadratic form on De.
So by Friedrichs’ theorem, it has at least one self–adjoint extension on dompEq,
which we also denote by E. Following [187, Sect. VIII.10], the operator dΓpEq is
essentially self–adjoint on

8à
n�0

dompEqbn � F , (5.132)

so rH defines quantum dynamics on F .

30. Normal ordering constant. Our process of “diagonalizing” a Hamiltonian H
actually consists of conjugating it with UV , so a7 is replaced by b7, plus a
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subsequent normal ordering process. This process is equivalent to adding a
constant to the Hamiltonian, namely

c � 1

2
ptrpEq � trphqq � 1

2

¸
j

pEjj � hjjq. (5.133)

The sum might be divergent and hence not a complex number, but we may
interpret it as an infinite renormalization constant c P Ren1pNq (see Sections
3.2 and 5.2.2), namely the one associated with the equally denoted function
c P EpNq, cpjq � 1

2
pEjj � hjjq.

So the relation between the original Hamiltonian H and the diagonalized
Hamiltonian rH actually is

rH � U�1
V pH � cqUV ,

which is in accordance with (5.2).

5.6.2 Bosonic Case

Conditions for the existence of a V , such that V�AHV is block–diagonal, can be
found in [216, Thms. 1 and 4]. We can use them to derive conditions for when a
formal quadratic Hamiltonian H is diagonalizable in the extended sense:

Proposition 5.6.2 (Extended diagonalizability, bosonic case). Let a formal qua-
dratic bosonic Hamiltonian H (5.126) be given such that for the associated block
matrix AH (5.127) we have h ¡ 0, and that G � h�1{2kh�1{2 is a bounded ope-
rator with }G}   1. Following [216, Thm. 1], there exists a bosonic Bogoliubov
transformation V � p u v

v u q such that

V�AHV �
�
E 0
0 E



. (5.134)

Suppose further that v�v has countable spectrum.

Then, H is diagonalizable in the extended sense, both on the ITP space xH and on
the ESS F .

Proof. Consider Definition 5.6.1 for diagonalizability. The existence of V as a block
matrix associated with a bounded operator on `2 is a direct consequence of [216,
Thm. 1], where the representation of V and AH on h ` h� (see Section 5.9.3)
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instead of our representation on `2 ` `2 (see Section 5.9.4) has been used. The
same theorem also yields E ¡ 0 ñ E ¥ 0. Note that the matrix entries kjk in our
representation on `2 ` `2 agree with the matrix elements in the representation on
h ` h�, which are xJ ej, keky � xej,J �keky. So J �k in [216] corresponds to k in
our case.
If the spectrum of v�v is countable, then implementability of V in the extended

sense follows from Theorems 5.5.5 (for xH ) and 5.5.6 (for F ).

5.6.3 Fermionic Case

Proposition 5.6.3 (Extended diagonalizability, fermionic case). Let a formal qua-
dratic fermionic Hamiltonian H (5.126) be given such that for the associated block
matrix AH (5.127), dimKerpAHq is even or 8. Following [216, Thm. 4], there
exists some fermionic Bogoliubov transformation V � p u v

v u q such that

V�AHV �
�
E 0
0 �E



. (5.135)

Suppose further that v�v has countable spectrum.

Then, H is diagonalizable in the extended sense on the ITP space xH .
If 1 is not an eigenvalue of v�v, or is an eigenvalue of finite multiplicity, then H
is also diagonalizable in the extended sense on the ESS F .

Proof. Existence of a unitary V and of E ¥ 0 follows from [216, Thm. 4]. By
unitarity, V�V � 1 � VV�, so V is a fermionic Bogoliubov transformation.

If σpv�vq is countable, then implementability on xH follows from Theorem 5.5.7.
If further, 1 is not an eigenvalue of v�v with infinite multiplicity, then implemen-
tability on F follows from Theorem 5.5.8.

5.7 Applications

5.7.1 Quadratic Bosonic Interaction

Our first example for a quadratic Hamiltonian whose diagonalization requires Bo-
goliubov transformations “beyond the Shale–Stinespring condition” is inspired by
[225]. We consider a free massive bosonic scalar field, which is interacting by a Wick
square : φpxq2 :, φpxq � a:pxq�apxq. We discretize the momentum by putting the
system in a box x P r�π, πs3 with periodic boundary conditions. Further, the Wick
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square is weighted by a real–valued external field κ P C8
c pr�π, πs3q, κpxq P C. The

Hamiltonian then reads as

H �dΓpεpq � 1

2

»
κpxq : φpxq2 : dx

�1

2

¸
p1,p2PZ3

p2εp1
δpp1 � p2qa:p1

ap2
� 2κ̂p�p1 � p2qa:p1

ap2
�

� κ̂p�p1 � p2qa:p1
a:p2

� κ̂pp1 � p2qap1
ap2

q,

(5.136)

with κ̂ppq � κ̂p�pq denoting the Fourier transform of κpxq. For simplicity, we
assume that κpxq � const., so we can write κ̂ppq � κδppq, κ P R.

Proposition 5.7.1. For interactions κ ¡ �m
2

but κ � 0, the Hamiltonian H is

diagonalizable in the extended sense both on xH and F . However, the transforma-
tion V violates the Shale–Stinespring condition, so H is not diagonalizable on F .

Proof. We may directly compute V and then apply Proposition 5.6.2. As demons-
trated in Section 5.12.1, H can be identified with the block matrix

AH �
�
h k

k h



, (5.137)

with entries

hp1,p2
� pεp1

� κqδpp1 � p2q, kp1,p2
� κδpp1 � p2q. (5.138)

The diagonalization of H now translates into diagonalizing AH by some bosonic
Bogoliubov transformation V , such that

V�AHV �
�
E 0
0 E



, Ep1,p2

� Ep1
δpp1 � p2q. (5.139)

AH �
k

k

h

h

p2 p2

p1

p1

0 0

0

0

p �p

p

�p AH,p :�
�
hp kp
kp hp



:�

�
hp,p kp,�p
k�p,p h�p,�p




Abbildung 5.4: Decomposing the matrix AH into modes. Color online.
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This can be done by decomposing the matrices AH into modes p as

AH � à
pPZ3

AH,p, AH,p �
�
hp kp
kp hp



(5.140)

(see Figure 5.4) with entries

hp � pεp � κq, kp � κ, (5.141)

and diagonalizing all AH,p P C2�2 separately via

V � à
pPZ3

Vp, V�pAH,pVp �
�
Ep 0
0 Ep



. (5.142)

Following [216, Sect. 1.3], this is done for |kp|   hp by

Vp �
�
up vp
vp up



, up � cp, vp � cp

�Gp
1�a

1�G2
p

, (5.143)

Gp � kph
�1
p , cp �

d
1

2
� 1

2
a

1�G2
p

, (5.144)

with eigenvalues Ep �
?
h2 � k2. The condition |kp|   hp amounts to

|kp|   hp ô |κ|  
a
|p|2 �m2 � κ, (5.145)

which is satisfied for all p P Z3, if and only if κ ¡ �m
2

. hp ¡ 0 also holds in that
case and (5.142) defines a Bogoliubov transformation V diagonalizing AH .

Out of the conditions in Proposition 5.6.2, h ¡ 0 and }h�1{2kh�1{2}   1 follow
from hp and |kp|   hp after taking a direct sum. Concerning the condition on
the spectrum of v�v, since v �À

pPZ3 vp can be decomposed into modes, the same
holds for v�v, which has therefore countable spectrum. So Proposition 5.6.2 applies

and H is diagonalizable in the extended sense on both xH and F .

For the second claim, we have to show that

trpv�vq �
¸
pPZ3

|vp|2 � 8. (5.146)
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If |p| is large enough (say, |p| ¡ pmax ¡ 0), we have the bounds

Gp � κ

κ�a|p|2 �m2
¤ κ

|p| , Gp ¥ κd

|p| , (5.147)

with d   1 arbitrary, so

|vp|2 �
1�a

1�G2
p

2
a

1�G2
p

G2
p

p1�a
1�G2

pq2
¥ κ2d2

4|p|2 . (5.148)

Now, we can write the sum in (5.146) as an integral over a weighted sum of indicator
functions χQppqp�q with Qppq being half–open cubes with side length 1 centered at
p � pp1, p2, p3q:

Qppq � �
p1 � 1

2
, p1 � 1

2

�� �
p2 � 1

2
, p2 � 1

2

�� �
p3 � 1

2
, p3 � 1

2

�
, (5.149)

fpp1q �
¸
pPZ3

|vp|2χQppqpp1q,
¸
pPZ3

|vp|2 �
»
R3

fpp1q dp1. (5.150)

For |p1| ¡ pmax, we have

fpp1q ¥ κ2d2

4p|p1| �
?

3
2
q2
, (5.151)

ñ
¸
pPZ3

|vp|2 ¥
»
|p|¡pmax

fpp1q dp1 ¥
» 8

pmax

κ2d2

4p|p1| �
?

3
2
q2

4π|p1|2 d|p1| � 8,

(5.152)
where the integral is linearly divergent, which establishes the claim that the Shale–
Stinespring condition is violated.

31. Infinite volume and continuous p. The original Hamiltonian H in [225] is
not restricted to a finite volume. That means, p P R3 instead of p P Z3 is
considered. In that case, a decomposition into modes is also possible and
even renders a V diagonalizing AH . However, the spectrum of v�v is then no
longer countable, so Proposition 5.7.1 no longer applies. This can be seen as
kp is the same for all p, but hp attains all values in rκ�m,8q, i.e., uncoun-
tably many of them. So vp also attains uncountably many values.
In order to treat this case, it would be necessary to extend Theorems 5.5.5
and 5.5.6 to generic v�v. If this can be done, a proof of implementability for
V will be straightforward.

32. Position–dependent κpxq. In contrast to [225], we also assumed an interacti-
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on strength κpxq that is constant in the cube r�π, πs3. Physically, it would
be desirable to treat any κ P C8

c . However, in that case, we would no longer
have a simple decomposition into modes AH �À

pPZAH,p, so the diagonali-
zation can no longer be done explicitly. Further, it might occur that v�v has
uncountable spectrum, so Proposition 5.7.1 may no longer apply.
However, if there was a version of Theorems 5.5.5 and 5.5.6 for generic v�v,
then we expect to obtain a diagonalizability result for small enough interac-
tions (i.e., k is a bounded operator with k   �m{2).

33. Wick square is not diagonalizable. It may be tempting to set εp � 0 and
to try a diagonalization of only the interaction Hamiltonian 1

2

³
κpxq : φpxq :

dx. However, bosonic Wick squares are in general not diagonalizable by a
Bogoliubov transformation, as “the interaction is too large”. For example,
on one mode (h � C), the matrix associated with a Wick square HW �
2a:a� a:a: � aa is

AHW �
�
h k

k h



�
�

1 1
1 1



, (5.153)

so }h�1{2kh�1{2} � 1 and Proposition 5.6.2 does not apply. The same problem
occurs when treating a direct sum of several independent modes. However,
in the case of bosonic Wick products, an interpretation as a self–adjoint ope-
rator is possible by a suitable GNS construction [229].

5.7.2 BCS Model

Another example, where Bogoliubov transformations appear, which are not im-
plementable on F , is the Bardeen–Cooper–Schrieffer (BCS) model for explaining
superconductivity [223, 224]. The “Hartree–like approximation” state [223, (2.16)]
corresponds to a formal fermionic Bogoliubov vacuum state ΩV as in (5.109). An
argumentation by Haag [224] suggests that in the infinite volume limit, the BCS
Hamiltonian can indeed be diagonalized by a corresponding Bogoliubov transfor-
mation, which is not implementable on Fock space.

We consider a similar model of a fermionic gas inside a box with periodic boun-
dary conditions x P r�π, πs3. Hence, we have discretized, arbitrarily large mo-
menta p P Z3, as well as two spins s P tÒ, Óu, leading to a one–particle Hilbert
space h � L2pZ3 � tÒ, Óuq. The corresponding Fock space is F � F pZ3 � tÒ, Óuq.
We consider the following quadratic Hamiltonian (see [224]), which provides an
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approximate description for the fermionic gas:

H 1 � H0�H 1
I �

¸
pPZ3

�
εpa

:
p,Òap,Ò � εpa

:
p,Óap,Ó � ∆̃pa

:
p,Òa

:
p,Ó � ∆̃pap,Òap,Ó

	
, (5.154)

with kinetic energy εp � p2

2m
�µ P R and interaction strength ∆̃p P C, of which we

assume ∆̃p � 0. As a basis pejqjPJ for identifying h with `2, we choose here

pep,sq pPZ3

sPtÒ,Óu
� L2pZ3 � tÒ, Óuq, ep,spp1, s1q � δpp1δss1 , (5.155)

with δ being the Kronecker delta. The corresponding canonical basis of `2 is deno-
ted pep,sq pPZ3

sPtÒ,Óu
with a countable index set. In order to obtain momentum conserva-

tion, we have to interpret a:p,Ó, ap,Ó as creating/annihilating a fermion of momentum
�p. The mode index p is only used for an easier decomposition into modes.

Proposition 5.7.2. The Hamiltonian H 1 (5.154) is diagonalizable in the extended

sense both on xH and F .

Proof. We compute V directly and apply Proposition 5.6.3. Following the identi-
fication in Section 5.12.1, we can translate this Hamiltonian into a block matrix

AH 1 �
�
ε �∆̃

∆̃ �ε

�
, (5.156)

with ε � ε and ∆̃ � �∆̃T being infinite–dimensional matrices. AH 1 can be dia-
gonalized by a Bogoliubov transformation V � p u v

v u q mode–by–mode: We use the
decompositions AH 1 �À

pAH 1,p and V �À
p Vp with

AH 1,p �

�����
εp 0 0 �∆̃p

0 εp ∆̃p 0

0 ∆̃p �εp 0

�∆̃p 0 0 �εp

����, Vp �

����
up 0 0 vp
0 up �vp 0
0 vp up 0
�vp 0 0 up

���, (5.157)

with AH 1,p,Vp,s P C4 b C4. The diagonalized matrix then reads

V�pAH 1,pVp �

����
Ep 0 0 0
0 Ep 0 0
0 0 �Ep 0
0 0 0 �Ep

���, Ep �
b
ε2
p � |∆̃p|2, (5.158)
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and the diagonalization is established by

up � ∆̃pb
pEp � εpq2 � |∆̃p|2

, vp � Ep � εpb
pEp � εpq2 � |∆̃p|2

. (5.159)

From this form, it also follows that dimKerpAHq is either even or 8. So in or-
der to apply Proposition 5.6.3, we only need to show that the spectrum of v�v
is countable. This is the case, since v � À

pPZ3 vp decays into modes, so also
v�v � À

pPZ3pv�vqp decays into modes, where each pv�vqp is a finite–dimensional
matrix with finite spectrum. As the sum over p is countable, also the spectrum of

v�v is countable, and by Proposition 5.6.3, H is diagonalizable on xH .

Now, since ∆̃p � 0, we have only Cooper pairs labeled by p, so in particular,
there are no full particle–hole transformations. That means, 1 is not an eigenvalue
of v�v and by Proposition 5.6.3, H is also diagonalizable on F .

Note that, for convenience, we can replace the pair index i P I 1 by p P Z3. In
particular, ∆̃p ¡ Ep � εp implies that up ¡ 1?

2
, vp   1?

2
, so we have “at most a

half particle–hole transformation”.

Remarks.

34. Interaction–free case. It is easy to see that, when relaxing the condition
∆̃p � 0, then in each mode with ∆̃p � 0, the matrix AH 1,p is already dia-
gonal. So it is diagonalized by up � 1, vp � 0, which does not generate
further full particle–hole transformations. So the Bogoliubov transformation
V diagonalizing AH 1 remains implementable on

±b
p,s Hp,s and F in this case.

35. Infinite volume case. The Hamiltonian H 1 is an approximation to H �
H0�HI , where HI is an attractive quartic interaction between fermion pairs.
As mentioned above, the argumentation by Haag is only valid in the infinite
volume limit. For infinite volumes, i.e., p P R3, a decomposition into modes
is also possible, so (5.157)–(5.159) still yield a Bogoliubov transformation V ,
diagonalizing AH 1 . However, as in the previous application, the spectrum of
v�v is generally uncountable in that case, so V cannot be implemented by
means of Theorems 5.5.7 and 5.5.8.
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5.7.3 External Field QED

Similar cases, where a Bogoliubov transformation is not implementable, appear
in the context of Dirac fields in external electromagnetic backgrounds. Again, we
restrict to p P Z3. In Section 5.12.2, we argue how to arrive at the simplified and
time–dependent Hamiltonian:

Hptq �
¸
pPZ3

�
εp,�ptqa:pap � εp,�ptqb:pbp � fpptqa:pb:p � fpptqapbp

�
. (5.160)

Here, b:p, bp are operators related to positrons (not to be confused with b7 �
UVa

7U�1
V ) and a:p, ap are related to electrons. Further, εp,�ptq � εp,�ptq is a ki-

netic term and fpptq � fpptq is a time–dependent interaction. We assume both
interactions to be continuous, bounded functions of time for each p. As in the
previous example, b:p, bp have to be interpreted as creating/annihilating a positron
with momentum �p for momentum conservation reasons. The index p is again
only chosen to simplify the decomposition into modes.

Proposition 5.7.3. The Hamiltonian Hptq (5.160) is diagonalizable in the exten-

ded sense both on xH and F by a Bogoliubov transformation Vptq.
Further, the Schrödinger dynamics Ups, tq :� exp

�
�i ³t

s
Vpτq dτ

	
exist4 for all

s, t P R as a Bogoliubov transformation, which is implementable in the extended

sense on xH .

Proof. The matrix associated with Hptq is

AH � à
pPZ3

AH,p, AH,pptq �

����
εp,�ptq 0 0 �fpptq

0 εp,�ptq fpptq 0
0 fpptq �εp,�ptq 0

�fpptq 0 0 �εp,�ptq

���, (5.161)

which has the same structure as AH 1 in Section 5.7.2, except for the existence of
different kinetic terms. The diagonalization again boils down to diagonalizing the
2� 2 matrices

ÃH,p,�ptq �
�
εp,�ptq 	fpptq
	fpptq �εp,�ptq



, (5.162)

with eigenvalues Ep,�ptq �
a
εp,�ptq2 � fpptq2.

4The exponential is here to be understood in the sense of spectral calculus.
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AH,pptq is diagonalized by a Bogoliubov transformation

Vptq � à
pPZ3

Vpptq, Vpptq �

����
up,�ptq 0 0 vp,�ptq

0 up,�ptq �vp,�ptq 0
0 vp,�ptq up,�ptq 0

�vp,�ptq 0 0 up,�ptq

���, (5.163)

with time–dependent coefficients

up,�ptq � fpptqapEp,�ptq � εp,�ptqq2 � fpptq
, vp,�ptq � Ep,�ptq � εp,�ptqapEp,�ptq � εp,�ptqq2 � fpptq

.

(5.164)

It becomes again apparent from the form of V�AHV , that dimKerpAHq is even
or 8, and by the same arguments as in the proof of Proposition 5.7.2, the operator
v�v has countable spectrum, which does not include 1. So by Proposition 5.6.3,

Hptq is diagonalizable on both xH and F .

Concerning the second claim, it is well–known [227, 230] and has also be-
en argued in [222, II 2.4] that the Schrödinger dynamics generated by finite–
dimensional matrices of the form AH,p are given by a Bogoliubov transformation

Upps, tq �
�
Upps, tq Vpps, tq
Vpps, tq Upps, tq



:� exp

�
�i

» t

s

AH,ppτq dτ


. (5.165)

The integral exists5 for finite times by the continuity and boundedness assumption
on εp,�ptq and fpptq. Now, the dynamics generated by AH can easily be reconstruc-
ted from Upps, tq via:

Ups, tq :� à
pPZ3

Upps, tq, Ups, tq �
�
Ups, tq V ps, tq
V ps, tq Ups, tq



. (5.166)

The transformation Upps, tq acts on a finite number of modes (namely two) and
are hence always implementable on the two–mode Fock space. As V � V ps, tq
decays into countably many modes, so does V �V . Therefore, V �V has a countable

spectrum and by Theorems 5.5.7 and 5.5.8, Ups, tq is implementable on xH .

Note that for a proof of implementability on F , we would need that there are
at most finitely many particle–hole transformations, which cannot be guaranteed

5The exponential of the integral is just the exponential of a finite–dimensional matrix, which
always exists.
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for all time intervals ps, tq.

Remarks.

36. Comparison with [222]. The toy model for external field QED in [222, II
2.4] is a similar one, where the matrix AH (5.162) plays the role of the full
Hamiltonian, i.e., the system is considered before second quantization. The-
re, p P Z3 is replaced by a mode index n P N3 and fpptq decays like fptq

n
, εp,�

is chosen independent of time.

37. Implementability on Fock space. To check the Shale–Stinespring condition,
note that since we can decompose AH,p � ÃH,p,�` ÃH,p,�, it is also possible
to decompose Upps, tq :� Ũp,�ps, tq`Ũp,�ps, tq. So Upps, tq takes the following
form:

Upps, tq �

����
Up,1ps, tq Vp,1ps, tq

Up,2ps, tq Vp,2ps, tq
V p,1ps, tq Up,1ps, tq

V p,2ps, tq Up,2ps, tq

���. (5.167)

Hence, the Shale–Stinespring condition for Ups, tq amounts to¸
p

p|Vp,1|2 � |Vp,2|2q   8, (5.168)

which does not necessarily hold: We may split the diagonalizing Bogoliubov
transformation Vp � Vp,� ` Vp,� as in (5.163) and get

V�p,�Ũp,�ps, tqVp,� � exp

�
�i

» t

s

V�p,�ÃH,p,�pτqVp,� dτ



�
�
e�ipt�sqEp,� 0

0 eipt�sqEp,�



.

(5.169)

Note that neither of the matrices Ũp,�ps, tq,Vp,� describes a Bogoliubov
transformation. Reading off Vp,� from (5.163), we conclude that

Vp,�ps, tq � up,�vp,�p	2i sinppt� sqEp,�qq. (5.170)

Although there is a rapid oscillation in p for small times pt� sq, convergence
of the sum (5.168) depends on the values of Ep,� and cannot be guaranteed
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in general.

5.8 Results on the Infinite Tensor Product Space

Our first proposition characterizes, when exactly two C–sequences correspond to

the same functional Ψ P xH �±b
kPI Hk. This allows us to define operators on xH

in Section 5.4.2. Recall that any C–sequence pΨq � pΨkqkPI gives rise to a unique

functional Ψ P xH by the embedding Ψ � ιppΨqq.
Proposition 5.8.1. Whenever pΨq, pΨ1q P Cseq represent the same functional
Ψ � Ψ1, then there exists a family of complex numbers pckqkPI such that

Ψk � ckΨ
1
k @k P I, and

¹
kPI

ck � 1, (5.171)

using the notion of convergence for an infinite product from Section 3.1.1.

Conversely, if pΨq, pΨ1q P Cseq just differ by a family pckqkPI as in (5.171), then
they represent the same functional Ψ � Ψ1.

Proof. For the first statement, we must prove that Ψk and Ψ1
k are parallel for any

k P I. So let’s fix a k and decompose Ψk � Ψ
‖
k � ΨK

k with Ψ
‖
k ‖ Ψ1

k and ΨK
k K Ψ1

k,
and suppose that ΨK

k � 0. Now, choose some C–sequences pΦq, pΦ1q, that agree on
all k1 � k and with Φk ‖ Ψk and Φ1

k ‖ Ψ1
k, as well as }Φk}k � }Φ1

k}k � 1. Then,

xΨ,Φ1y �xΨk,Φ
1
kyk

¹
k�k1

xΨk1 ,Φ
1
k1yk1 � }Ψ‖

k}k
¹
k�k1

xΨk1 ,Φk1yk1

 }Ψk}k
¹
k�k1

xΨk1 ,Φk1yk1 � xΨk,Φkyk
¹
k�k1

xΨk1 ,Φk1yk1 . � xΨ,Φy.
(5.172)

By the same arguments, xΨ1,Φy   xΨ1,Φ1y. But since pΨq, pΨ1q correspond to the
same functional Ψ � Ψ1, we can freely exchange both expressions within the scalar
product:

xΨ,Φ1y � xΨ1,Φ1y ¡ xΨ1,Φy � xΨ,Φy. (5.173)

This contradicts (5.172) and thus establishes Ψk � ckΨ
1
k.

Convergence of
±

kPI ck can be seen as follows: We have

}Ψ}2 � xΨ1,Ψy �
¹
kPI
xΨ1

k, ckΨ
1
kyk �

¹
kPI

ck}Ψ1
k}2k. (5.174)
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So if
±

kPI ck was not convergent, i.e.,
°
k |ck�1| � 8, then for the product on the

right–hand side, we would have¸
k

��ck}Ψ1
k}2k � 1

�� �¸
k

��ck}Ψ1
k}2k � }Ψ1

k}2k � }Ψ1
k}2k � 1

��
¥
¸
k

���ck}Ψ1
k}2k � }Ψ1

k}2k
��� ��}Ψ1

k}2k � 1
���

�
¸
k

}Ψ1
k}2k |ck � 1|looooooooomooooooooon
p�q

�
¸
k

��}Ψ1
k}2k � 1

��looooooomooooooon
 8

.

(5.175)

Now, }Ψ1
k}2k ¡ 1{2 for all but finitely many k, so p�q and thus the first expression

in (5.175) diverges. This is a contradiction to (5.174) being convergent. So
±

kPI ck
indeed yields a complex number.
But since }Ψ}2 � }Ψ1}2 � ±

kPI }Ψ1
k}2k, we immediately obtain

±
kPI ck � 1 from

(5.174).

The converse statement can readily be seen by computing the action of the
functionals Ψ,Ψ1 on some Φ P Cseq:

xΨ,Φy �
¹
kPI
xΨk,Φkyk �

¹
kPI
xckΨ1

k,Φkyk �
�¹
kPI

ck

�¹
kPI
xΨ1

k,Φkyk � xΨ1,Φy.
(5.176)

By [44, Lemma 4.1.1], all subspaces
±bC

kPI Hk of xH � ±b
kPI Hk are mutually

orthogonal. This allows for a particularly simple decomposition:

Lemma 5.8.2. For any Ψ P xH , we can write

Ψ �
¸
mPM

dmΨpmq �
¸
mPM

dm

b¹
kPI

Ψ
pmq
k , (5.177)

withM being a subset of N, Ψpmq defined by the mutually orthogonal C0–sequences
pΨpmqq with }Ψpmq} � 1 and where

°
m |dm|2   8 is a complex sequence.

Moreover, one can choose a fixed set Z � tΨpaquaPA defined by mutually orthogonal,

normalized C0–sequences pΨpaqq, such that for all Ψ P xH , the form (5.177) can be
achieved by taking only Ψpmq P Z. The decomposition (5.177) is then unique up to

the choice of the Ψ
pmq
k representing Ψpmq.
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So Z is an orthonormal basis of xH that might be uncountable, but the elements

Ψ P xH are all countable linear combinations with coefficient sequences in `2.

Proof. By definition, any Ψ P xH can be approximated by a Cauchy sequence
pΨprqqrPN �

±1b
kPI Hk,Ψ

prq Ñ Ψ. So each Ψprq can be written a finite linear com-
bination of C–sequences. All C–sequences, that are no C0–sequences, must have
norm 0, so we may drop them and simply write

Ψprq �
Lŗ

`�1

Ψ
prq
` , (5.178)

with pΨprq
` q being C0–sequences. Now, the C0–sequences decay into mutually or-

thogonal equivalence classes C, out of which countably many are occupied by any
Ψprq. So we have

Ψprq �
¸
C

¸
`:pΨprq

` qPC
Ψ
prq
` �:

¸
C

Ψ
prq
C . (5.179)

By orthogonality of the subspaces Ψ P±bC
kPI Hk, we have

}Ψprq �Ψpsq}2 �
¸
C

}Ψprq
C �Ψ

psq
C }2. (5.180)

pΨprqqrPN is a Cauchy sequence, so pΨprq
C qrPN is also a Cauchy sequence for all C.

That means, the limit ΨC � limrÑ8 Ψ
prq
C exists and by orthogonality of the Ψ

prq
C

for each r,
lim
rÑ8

¸
C

Ψ
prq
C �

¸
C

lim
rÑ8

Ψ
prq
C ô Ψ �

¸
C

ΨC . (5.181)

We may now write both ΨC and Ψ in coordinates:

ΨC � lim
rÑ8

Ψ
prq
C � lim

rÑ8

¸
`:pΨprq

` qPC
Ψ
prq
` �

¸
np�qPF

aCpnp�qq
b¹
kPI

ek,npkq

ñ Ψ �
¸
C

lim
rÑ8

Ψ
prq
C �

¸
C

¸
np�qPF

aCpnp�qq
b¹
kPI

ek,npkq.

(5.182)

So Ψ can be written as a countable sum over mutually orthogonal, normalized
C0–sequences with coordinates aCpnp�qq. We index the sequences and coordinates
by pΨpmqq and dm, which yields the desired form (5.177).
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Square summability of the dm can be seen by¸
m

|dm|2 �
¸
C

¸
np�qPF

|aCpnp�qq|2. (5.183)

Now, the set Z � tΨpaquaPA is exactly the union of all vectors
±b

kPI ek,npkq over
all classes C, which is indeed a set of mutually orthogonal, normalized vectors.
Uniqueness of the decomposition follows by orthogonality of the Ψpaq.

Remarks.

38. Although the coefficient sequence aCpnp�qq is an element of `2, the spacexH � ±b
kPI Hk is generally not isomorphic to `2, and hence not separable.

The reason is that the set Z of eligible Ψpmq–vectors can be uncountable. For
instance, already with a countable I and at least two basis vectors ek,0, ek,1
for each k, the space xH contains the orthonormal set of vectors

±b
kPI ek,n

with n P t0, 1u. This set corresponds to all families of binary digits, which is
uncountable for I of infinite cardinality. For the same reason, Z is uncoun-
table, as well as the number of equivalence classes C.

39. We may sum up all components with sequences pΨpmqq in the same equiva-
lence class C as

ΨC :�
¸

m:pΨpmqqPC
dmΨpmq ñ Ψ �

¸
C

ΨC , (5.184)

where the sum runs only over countably many equivalence classes.

Further, by [44, Def. 6.1.1], two C0–sequences pΨq, pΦq are weakly equivalent,
if and only if there exists a family pzkqkPI � C with pzkΨkqkPI being (strongly)
equivalent to pΦkqkPI . From that, we may conclude:

Lemma 5.8.3. Let Cw be the weak equivalence class of a C0–sequence pΦq �
pΦkqkPI , choose an orthonormal basis pek,nqnPN0 for each Hk, such that Φk � ck,0
and define for any C0–sequence pΨq � pΨkqkPI the coordinates ck,n :� xek,n,Ψkyk.

Then,
±bCw

kPI Hk is exactly the closure of the span of all normalized C0–sequences,
where |ck,0| � 1 for all but finitely many k P I.

Note that the last statement means ck,n � 0 for n ¥ 1 and for those k. In simple
words, Lemma 5.8.3 asserts that replacing C by Cw in the equivalence class is done
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5 Implementing Bogoliubov Transformations Beyond the Shale–Stinespring Condition

via replacing ck,0 � 1 by |ck,0| � 1.

Proof. First, we prove that any normalized C0–sequence pΨq with |ck,0| � 1 almost
everywhere is weakly equivalent to pΦq: We can define a family of phase rotations
|zk| � 1, such that zkck,0 � 1 for all k with |ck,0| � 1. So pzkΨkqkPI has zkck,0 � 1
almost everywhere and is hence a C0–sequence strongly equivalent to pΦq. There-
fore, pΨq is weakly equivalent to pΦq. So Ψ P±bCw

kPI Hk and the same holds for the
span of these C0–sequences, and their closure with respect to the Hilbert space

topology on xH .

Conversely, any Ψ P ±bCw
kPI Hk is within the closure of the span of normalized

C0–sequences with |ck,0| � 1 almost everywhere: By Lemma 5.8.2, we may write

Ψ �
¸
mPM

dm

b¹
kPI

Ψ
pmq
k ,

where
°
m |dm|2   8 and the pΨpmqq � pΨpmq

k qkPI with }Ψpmq} � 1 are orthogonal.
Further, we may choose pΨpmqq �w pΦq, since all pΨpmqq were constructed to come
from a (strong) equivalence class C contained within Cw. So there exist families

pzpmqk qkPI , |zpmqk | � 1, such that pzpmqk Ψ
pmq
k qkPI � pΦq for all m P M. By strong

equivalence, we may approximate each pzpmqk Ψ
pmq
k q up to arbitrary precision ε ¡ 0

by a linear combination of (normalized) families Ψpm,εq, such that, when writing

these families in coordinates, we have c
pm,εq
k,0 � 1 almost everywhere in k P I.

Hence, the families ppzpmqk q�1Ψ
pm,εq
k qkPI approximate Ψpmq up to precision ε. They

satisfy |pzpmqk q�1c
pm,εq
k,0 | � 1 almost everywhere, so Ψpmq can be approximated up

to arbitrary precision by a linear combination of C0–sequences with the above–
mentioned property. And by (5.177) and convergence of |dm|2, also an arbitrary
approximation of Ψ is possible by linear combinations of normalized C0–sequences
with |ck,0| � 1 almost everywhere.

5.9 Representations of Bogoliubov Transformations

Here, we compare four different ways of representing a Bogoliubov transforma-
tion: One transformation VA directly acts on the �–algebra A of creation and
annihilation operators. The three others V1,V2 and V3, are equivalent to VA and
act on different spaces W1,1,W1,2,W1,3 isomorphic to the one–operator subspace
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W1 of A. More precisely, we consider as W1 either h`h, h`h�, or `2` `2. Since A
is the algebra generated by the one–operator subspace W1, it suffices to define Vj
on W1,j, in order to obtain its action on operator products. The one used in this
chapter is V � V3. We explicitly derive the Bogoliubov relations in all representa-
tions.

5.9.1 Bogoliubov Transformations on Operators

By a (bounded) algebraic Bogoliubov transformation VA, we understand any trans-
formation mapping creation and annihilation operators a:�pfq, a�pgq with f, g P h

into operators b:�pfq, b�pgq via:

VA : AÑ A, a7�pfq ÞÑ b7�pfq
b:�pfq � a:�pûfq � a�pv̂fq
b�pgq � a:�pv̂gq � a�pûgq,

(5.185)

with a linear operator û and an antilinear operator v̂, both of which are defined on
h (i.e., bounded), such that both VA and its adjoint V�A conserve the CAR/CCR
(5.12).

In order to express VA and the conservation conditions, we define for the linear
û:

• the transpose ûT by xf, ûTgy � xg, ûfy

• the complex conjugate û by xf, ûgy � xf, ûgy

• the adjoint by û� � ûT � û
T

The antilinear v̂ can be written as v̂ � v̂`J with a linear operator v̂` and complex
conjugation pJ fqpxq :� fpxq, see [231, 232]. We define the corresponding transpose
by v̂T :� v̂T` J , the complex conjugate by v̂ :� v̂`J and the adjoint by v̂� :� v̂�`J .
So in particular,

xf, v̂Tgy � xf, v̂T` J gy � xv̂`f,J gy � xv̂`JJ f,J gy � xv̂f , gy � xv̂f, gy, (5.186)

ñ xv̂f, gy � xf, v̂Tgy � xv̂Tg, fy, (5.187)

which is the “correct law for shifting antilinear operators from one side of the
scalar product to the other” and replaces the familiar xf, v̂`gy � xv̂�` f, gy from the
linear case.
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5 Implementing Bogoliubov Transformations Beyond the Shale–Stinespring Condition

The adjoint transformation V�A is given by replacing û Ñ û� and v̂` Ñ v̂�` , so
v̂ Ñ v̂T in VA (5.185).

Now, we investigate conservation of the CAR/CCR. From rapfq, a:pgqs� � xf, gy
being preserved, we get

xf, gy � rbpfq, b:pgqs�
� rapûfq, a:pûgqs� � ra:pv̂fq, apv̂gqs�
� rapûfq, a:pûgqs� 	 rapv̂gq, a:pv̂fqs�
� xûf, ûgy 	 xv̂g, v̂fy (5.187)� xû�ûf, gy 	 xv̂T v̂f, gy

ñ 1 � û�û	 v̂T v̂.

(5.188)

From the conservation of rapfq, apgqs� � 0 we obtain

0 � rbpfq, bpgqs�
� rapûfq, a:pv̂gqs� � ra:pv̂fq, apûgqs�
� rapûfq, a:pv̂gqs� 	 rapûgq, a:pv̂fqs�
� xûf, v̂gy 	 xûg, v̂fy (5.187)� xf, û�v̂gy 	 xf, v̂T ûgy

ñ 0 � û�v̂ 	 v̂T û.

(5.189)

The two conditions (5.188) and (5.189) are required also for V�A, where we replace
ûÑ û� and v̂ Ñ v̂T . This leads to 4 conditions in total:

û�û	 v̂T v̂ � 1 û�v̂ 	 v̂T û � 0

ûû� 	 v̂v̂T � 1 v̂û� 	 ûv̂T � 0.
(5.190)

5.9.2 Representation by W1,1 � h` h

It is most natural to encode a:�pf1q � a�pf2q by a direct sum F � pf1, f2q. We do
this by introducing generalized creation and annihilation operators

A:
1� : h` hÑ A�, pf1, f2q ÞÑ a:�pf1q � a�pf2q

A1� : h` hÑ A�, pg1, g2q ÞÑ a�pg1q � a:�pg2q.
(5.191)

In a more abstract language, the representation is fixed by a bijective identification
ι1 : h ` h Ñ W1 such that ι1pF q � A:

1�pF q. The operator A1�pF q is then defined
as the adjoint of ι1pF q.
In this representation, a Bogoliubov transformation acts by V1 : h` hÑ h` h,
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V1 � ι�1
1 � VA � ι1, where

V1

�
f
0



�
�
ûf

v̂f



and V1

�
0
g



�
�
v̂g

ûg



. (5.192)

This transformation is obviously not linear on h ` h. Hence, we cannot encode
subsequent Bogoliubov transformations by a matrix multiplication, which makes
the representation inconvenient. The nonlinearity issues can be resolved within a
different representation, by complex conjugation of the second one–particle Hilbert
space.

5.9.3 Representation by W1,2 � h` h�

We define the complex conjugation operator J : hÑ h� with adjoint J � : h� Ñ h
and denote F � pf1 ` J f2q. The generalized creation and annihilation operators
are then given by

A:
2� : h` h� Ñ A�, pf1 ` J f2q ÞÑ a:�pf1q � a�pf2q

A2� : h` h� Ñ A�, pg1 ` J g2q ÞÑ a�pg1q � a:�pg2q.
(5.193)

The corresponding identification is ι2 : h` h� Ñ W1 with ι2pF q � A:
2�pF q. In this

representation, a Bogoliubov transformation is represented by V2 : h`h� Ñ h`h�,
V2 � ι�1

2 � VA � ι2, where

V2

�
f
0



�
�
ûf
J v̂f



and V2

�
0
J g



�
�
v̂g
J ûg



. (5.194)

The operator V2 is linear and can be written in block matrix form

V2 �
�
U J �V J �

V JUJ �



, (5.195)

with linear operators U : hÑ h, U � û and V : hÑ h�, V � J v̂. So we can write
successive transformations as a matrix product. This representation is used, for
instance in [216, 35].

Conservation of the CAR/CCR now translates into

V�2S�V2 � V2S�V�2 � S�, (5.196)

with S� � id and S� � p 1 0
0 �1 q being operators on h` h�.

283



5 Implementing Bogoliubov Transformations Beyond the Shale–Stinespring Condition

In the fermionic case p�q, the first conservation condition reads:

V�2V2 �
�

U�U � V �V U�J �V J � � V �JUJ �

J V �JU � JU�J �V J V �V J � � JU�UJ �



�
�

1 0
0 1



. (5.197)

From the first line, we recover

U�U � V �V � 1 U�J �V � V �JU � 0, (5.198)

and the second line yields exactly the same conditions.

The CAR/CCR conservation for the adjoint transformation reads

V2V�2 �
�
UU� � J �V V �J UV � � J �V U�J �

V U� � JUV �J V V � � JUU�J �



�
�

1 0
0 1



. (5.199)

Again, we recover from the first line

UU� � J �V V �J � 1 UV � � J �V U�J � � 0, (5.200)

and the second line yields the same conditions.
The calculations for bosons p�q are the same, except for additional minus signs.
From (5.198) and (5.200), we arrive at 4 conditions in total, which are:

U�U 	 V �V � 1 V �JU 	 U�J �V � 0

UU� 	 J �V V �J � 1 UV � 	 J �V U�J � � 0.
(5.201)

5.9.4 Representation by W1,3 � `2 ` `2

It is also possible to write the four blocks in Vj as infinite matrices with countably
many complex–valued entries. This is the representation introduced in Section 5.3.
Recall that we fixed a basis pejqjPN of h and wrote fj :� xej, fy for f P h, so f
could be identified with the sequence f � pfjqjPN,f P `2. The generalized creation
and annihilation operators are as in (5.9):

A:
3� : `2 ` `2 Ñ A�, pf 1,f 2q ÞÑ a:�pf 1q � a�pf 2q �

¸
j

pf1,ja
:
�pejq � f2,ja�pejqq

A3� : `2 ` `2 Ñ A�, pg1, g2q ÞÑ a�pg1q � a:�pg2q �
¸
j

pg1,ja�pejq � g2,ja
:
�pejqq.
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The identification is ι3 : `2 ` `2 Ñ W1 with ι3pF q � A:
3�pF q. A Bogoliubov

transformation can now indeed be expressed by a matrix V3 :� ι�1
3 � VA � ι3 with

V3 : `2 ` `2 Ñ `2 ` `2, which is explicitly given by

V3 �
�
u v
v u



,

as in (5.10). Here, v and u are defined by its matrix elements vij � xei, v̂ejy and
uij � xei, ûejy. In addition, transpose, complex conjugate and adjoint are given by
puT qij � uji, puqij � uij, pu�qij � uji and the same for vij

As in the previous representation, the CAR/CCR conservation amounts to

V�3S�V3 � V3S�V�3 � S�, (5.202)

but this time, S� � id and S� � p 1 0
0 �1 q are operators on `2 ` `2.

For fermions p�q,

V�3V3 �
�
u�u� vTv u�v � vTu
v�u� uTv v�v � uTu



�
�

1 0
0 1



. (5.203)

As for the previous representation, the second line is equivalent to the first one,
which in turn yields two conditions:

u�u� vTv � 1 u�v � vTu � 0. (5.204)

The CAR/CCR conservation for the adjoint transformation is

V3V�3 �
�
uu� � vv� uvT � vuT

vu� � uv� vvT � uuT



�
�

1 0
0 1



. (5.205)

From which we recover the two conditions

uu� � vv� � 1 uvT � vuT � 0. (5.206)

So in total, with (5.204) and (5.206), we have 4 conditions.
For bosons, we get the same conditions with an additional minus signs. So in total,
we have

u�u	 vTv � 1 u�v 	 vTu � 0

uu� 	 vv� � 1 uvT 	 vuT � 0.
(5.207)

Again, the transformation can be written by a matrix multiplication, which ma-
kes this representation very convenient to handle. It is hence widespreadly used,
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5 Implementing Bogoliubov Transformations Beyond the Shale–Stinespring Condition

e.g., in [215, 225, 227, 230]. Note that depending on the resource, the definitions
of v and v might be interchanged.

5.10 Proof that Fermionic UV Implements V
In this section, we prove that the fermionic Bogoliubov implementer UV in (5.39)
indeed implements the Bogoliubov transformation V . The proof for the bosonic
case (5.30) works similar. For shortness, we write a7pηjq � a7j.

Proposition 5.10.1. Let V � �
u v
v u

�
be a fermionic Bogoliubov transformation. If

trpv�vq   8, then the operator

UV �
��¹
jPJ21

pa:j � ajq
�exp

�
�
¸
iPI 1

ξipa:2ia:2i�1 � a2i�1a2iq
�
Uηf ,

with J21 , I
1 defined in Section 5.3.2, implements V, i.e.,

UVapφqU�
V � apuφq � a:pvφq, UVa

:pφqU�
V � a:puφq � apvφq @φ P `2.

(5.208)

Proof. Recall that for a fermionic Bogoliubov transformation, u and v are boun-
ded, so the above expressions are well–defined.

We first decompose φ according to the orthonormal basis pf jqjPJ defined in
Section 5.3.2 as an eigenbasis of the matrix C�C. This basis is mapped under both
u and v to an orthonormal basis pηjqjPJ , also defined in Section 5.3.2. Since Uηf
just performs a unitary transformation, which replaces the f j– by ηj–vectors, we
may also remove the Uηf from UV , and replace the f j– with ηj–vectors for all
j P J .
Recall that one may decompose J � J 1 Y J20 Y J21 , where J 1 contains “Cooper
pairs” of indices p2i, 2i � 1q with i P I 1, J20 contains all “invariant modes” and J21
all modes with a full “particle–hole transformation”. Then, it holds that

vηj � 0, uηj � ηj for j P J20
vηj � ηj, uηj � 0 for j P J21
vη2i � βiη2i�1, uη2i � αiη2i for i P I 1

vη2i�1 � �βiη2i, uη2i�1 � αiη2i�1 for i P I 1,

(5.209)
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with sin ξi :� βi and cos ξi :� αi.

(5.208) can now be checked to hold mode–by–mode.

For j P J20 , it is easy to see that UV implements V , as it acts as the identity.

For j P J21 , the implementation is also quickly verified using ajaj � a:ja
:
j � 0:

pa:j � ajqajpa:j � ajq � a:jaja
:
j

(CAR)� a:j � a:ja
:
jaj � a:j. (5.210)

The statement pa:j�ajqa:jpa:j�ajq � aj follows by swapping the roles of aj and a:j.

For i P I 1, we make use of the Lie–Schwinger formula [233] (for a proof, see
[208]):

eABa�A �
8̧

n�0

adnpAqB
n!

, (5.211)

with adnpAqB :� rA, rA, . . . rA,Bs . . .ss being the n–fold commutator. In our case,

A � �ξipa:2ia:2i�1 � a2i�1a2iq, B � a72i or B � a72i�1. (5.212)

The following formula will turn out useful for the calculations

rXY,Zs � XY Z �XZY �XZY � ZXY � XtY, Zu � tX,ZuY, (5.213)

with t., .u � r., .s� denoting the anticommutator. We start with B � a2i and
compute

ad0pAqB � B � a2i

ad1pAqB � rA,Bs � �ξira:2ia:2i�1, a2is � ξira2i�1a2i, a2is
� ξita:2i, a2iua:2i�1 � ξia

:
2i�1

ad2pAqB � rA, rA,Bss � �ξ2
i ra:2ia:2i�1, a

:
2i�1s � ξ2

i ra2i�1a2i, a
:
2i�1s

� �ξ2
i ta2i�1, a

:
2i�1ua2i � �ξ2

i a2i.

(5.214)

Now, adnpAqB–terms of higher order repeatedly change between a2i and a:2i�1.
More precisely,

adnpAqB �
#
p�1qmξ2m

i a2i for n � 2m

p�1qmξ2m�1
i a:2i�1 for n � 2m� 1

. (5.215)
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So we can split the series (5.211) into an even and an odd part:

UVa2iU�
V �

8̧

m�0

�p�1qmξ2m
i

2m!
a2i � p�1qmξ2m�1

i

p2m� 1q! a:2i�1



� cospξiqa2i � sinpξiqa:2i�1,

(5.216)
which is the desired result.
For UVa2i�1U�

V , we have to interchange a72i and a72i�1, which in (5.212) leads to a
change of ξi to �ξi, so we obtain

UVa2i�1U�
V � cospξiqa2i�1 � sinpξiqa:2i. (5.217)

The computations for a:2i and a:2i�1 go through analogously. The series in (5.214)

now start with a:2i�1 instead of a2i and a:2i instead of a2i�1, which leads to

UVa
:
2i�1U�

V � cospξiqa:2i�1 � sinpξiqa2i, UVa
:
2iU�

V � cospξiqa:2i � sinpξiqa2i�1,
(5.218)

as desired.

We remark that the implementation of a bosonic V by UV (5.30) can be checked
similarly.

5.11 Alternative Definition a:pφq, apφq on Infinite
Tensor Products

In Section 5.4.2, we defined some spaces De � `2 (5.60) and Sb � xH (5.65), such
that for φ1, . . . ,φN P De and Ψ P Sb, arbitrary operator products

a7pφ1q . . . a7pφNqΨ P Sb � xH ,

were well–defined (Lemma 5.4.7). However, the definition of De resembling test
functions is quite restrictive. It is possible to consider larger domains for the form
factor φ P De. The price one has to pay is a stricter particle number decay conditi-
on in Sb. We propose two alternatives: one with a uniform particle number decay
in the particle number (Sbuni, Lemma 5.11.1) and a class of even smaller ones, based
on Hölder sequence spaces (Sbq , Lemma 5.11.2).
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5.11.1 Uniform Particle Number Decay

As ITP vectors with uniform particle number decay, we define

Sbuni :�
!

Ψ P xH ��� }Nn
k Ψ} ¤ cn}Ψ} @k

)
. (5.219)

In particular, Sbuni � Sb, as the sequence of decay constants ck,n � cn in the
definition of Sb (5.65) is additionally be required to be in `8. Correspondingly,
the form factors φ P `2 have to be additionally in the dual space `1, i.e.,¸

kPN
|φk| � }φ}`1   8. (5.220)

Lemma 5.11.1 (Creation and annihilation operator products for Sbuni).

For φ1, . . . ,φn P `1 and Ψ P Sbuni, any operator product application

a7pφ1q . . . a7pφnqΨ P xH , (5.221)

is well–defined.

Proof. By the modified particle number decay condition (5.219),

}a:kΨ} � }
a
Nk � 1Ψ} ¤ }pNk � 1qΨ} ¤ pc1 � 1q}Ψ}, (5.222)

where we used that on the one–mode Fock space Hk, the operator a:k shifts all
sectors up by one (keeping them orthogonal) and multiplies by

?
Nk � 1. So

}a:pφqΨ} ¤
¸
k

|φk|pc1 � 1q}Ψ} � }φ}`1pc1 � 1q}Ψ}. (5.223)

For an n–fold application of a:pφq, we obtain in similarity to (5.69):

a:pφ1q . . . a:pφnqΨ �
¸

k1,...,kn

φ1,k1 . . . φn,kna
:
k1
. . . a:knΨ. (5.224)

So creations are applied to at most n modes, with at most n applications, each. In
the maximal application number case,

}pa:kqnΨ} �
����� n¹
`�1

a
Nk � `Ψ

����� ¤ }pNk � nqnΨ}. (5.225)

The operator pNk � nqn is a polynomial of degree n in Nk. So by the modified
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particle number decay condition (5.219) we can estimate

}pNk � nqnΨ} ¤ c̃n}Ψ}, (5.226)

with a constant c̃n depending on c1, . . . , cn and n. A similar estimate holds true
for all application numbers l ¤ n with a respective constant c̃`. Denoting the
maximum of those constants by c̃n,max, and keeping in mind that at most n modes
can receive a creation operator, we finally obtain

}a:k1
. . . a:knΨ} ¤ }c̃nn,maxΨ}. (5.227)

Hence, when summing over all k,

}a:pφ1q . . . a:pφnqΨ} ¤
����� ¸
k1,...,kn

|φ1,k1 | . . . |φn,kn |c̃nn,maxΨ

����� � c̃nn,max

n¹
`�1

�¸
k`

|φk` |
�
}Ψ}.

(5.228)
Replacing any number of creation by annihilation operators will lower the number±n

`�1

?
Nk � ` in (5.225), so the right–hand side stays an upper bound and all

estimates remain valid. Hence, also a7pφ1q . . . a7pφnqΨ P xH , which establishes the
claim.

Remarks.

40. As in Lemma 5.4.7, Ψ P Sbuni also result in a:pφqΨ P Sbuni, but we may have
apφqΨ R Sbuni.

The first statement can be seen by

}Nn
k a

:
kΨ} � }pNk � 1qn

a
Nk � 1Ψ} ¤ }pNk � 1qn�1Ψ} ¤ const.}Ψ}

¤ const.}a:kΨ},
(5.229)

with the const. depending on c1, . . . , cn�1. So the uniform particle number
decay condition is satisfied.

This argument does not work for ak, since }Ψ} ¤ }a:kΨ} does not generalize
to annihilation operators. A simple counter–example, where apφqΨ R Sbuni is
the following: Define Ψ �±b

kPN Ψk such that

Ψ
pk�1q
k � e�k, Ψ

p0q
k �

a
1� e�2k, (5.230)
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and all other sectors are unoccupied (Ψ
pNkq
k � 0). Here, Ψ

pnq
k � xek,n,Ψkyk �

ck,n with respect to the basis pek,nqnPN0 of n–particle states in mode k. So
}Ψk}k � 1 and }Ψ} � 1. Then, on Hk we have

}Nn
k Ψk}k � pk � 1qn}Ψpk�1q

k }k � pk � 1qne�k � pk � 1qne�k}Ψk}k. (5.231)

Since the function x ÞÑ px� 1qne�x is bounded on r0,8q, we have a uniform
particle number decay, e.g., with cn � supx¥0px� 1qne�x. However, in akΨk,

only the k–sector is occupied with }akΨk}k �
?
ke�k, so

}Nn
k akΨk}k �

?
kkne�k � kn}akΨk}k, (5.232)

and kn cannot be uniformly bounded in all k P N. Hence, apφqΨ does not
meet the rapid decay condition if we choose φ P `1 such that φk � 0 holds
for infinitely many k, for instance by φk � 1

k2 .

41. Theorem 5.5.5 does not hold in a similar form for Sbuni instead of Sb. The
Bogoliubov vacuum ΩV (5.87) is in Sbuni, if and only if C � u�vJ is
bounded. This can be seen by checking the particle number decay condition.
We recall (5.89):

}Nn
k Ωk,V}2k � p1� 4t2q1{2

8̧

N�0

t2Np2Nq!
pN !q2 p2Nq2n �: fnptq,

with t � | νk
2µk
| P r0, 1{2q depending continuously and monotonically on the

eigenvalues λk of C and with tÑ 1{2 as λk Ñ 8.
If C is bounded, then there is a largest λk, meaning a largest t exists, called
tmax. The continuous functions fn attain a maximum on t P r0, tmaxs, called
cn. So }Nn

k Ωk,V}2k ¤ cn, which establishes the uniform particle number decay
and hence ΩV P Sbuni.
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However, for unbounded C, the sequence }NkΩk,V}k diverges as λk Ñ 8:

p1� 4t2q�1{2}NkΩk,V}2k �
8̧

N�0

t2Np2Nq!
pN !q2 p2Nq2 ¥

8̧

N�0

t2Np2Nq!
pN !q2 p2Nq

� t
d

dt

� 8̧

N�1

t2Np2Nq!
pN !q2

�
� 1

� t
d

dt
p1� 4t2q�1{2 � 1 � 4t2p1� 4t2q�3{2 � 1

ô }NkΩk,V}2k ¥ 4t2p1� 4t2q�1looooooomooooooon
Ñ8

�p1� 4t2q1{2looooomooooon
Ñ0

Ñ 8 as tÑ 1{2.

(5.233)
So there is no way to set up a uniform bound for }NkΩk,V}2k or }NkΩk,V}k,
meaning that the uniform particle number decay condition cannot be fulfil-
led and ΩV R Sbuni.

5.11.2 Hölder Condition in Decay Coefficients

We may also consider other conditions on φ P De, for instance

φ P `p ô
¸
k

|φk|p   8, (5.234)

and define
Dp :� `p, 1 ¤ p ¤ 2. (5.235)

The largest space on which an estimate of the kind (5.228) still goes through is
the following:

Sbq :�
#

Ψ P xH ����� }pNk � 1qn{2Ψ} ¤ cnk}Ψ} with
¸
k

cqk   8 @n P N

+
, (5.236)

where 2 ¤ q ¤ 8 is the Hölder dual of p, i.e., 1{q � 1{p � 1. With that definition,
it is easy to see that Sb2 � . . . � Sbq � . . . � Sb8.

Lemma 5.11.2 (Creation and annihilation operator products for Sbq ).

For φ1, . . . ,φn P Dp and Ψ P Sbq , any operator product application

a7pφ1q . . . a7pφnqΨ P xH (5.237)
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is well–defined.

Proof. The arguments are almost the same as for Lemma 5.11.1, where in definition
(5.236), the estimation step

?
Nk � 1 ¤ Nk for Nk ¥ 1 is dropped. An additional

simplification comes from the fact that within an n–fold application of a:k, each
application gets out a maximum factor of ck. So we don’t have to find a c̃n,max

anymore, but can directly estimate each application of a:k by ck. Thus, we get

}a:pφ1q . . . a:pφnqΨ} ¤
¸

k1,...,kn

|φ1,k1 | . . . |φn,kn |ck1 . . . ckn}Ψ} �
n¹
`�1

�¸
k`

|φ`,k` |ck`
�
}Ψ}.

(5.238)
The bracket can now be guaranteed to be finite, since pφ`,k`qk`PN P `p and pck`qk`PN P
`q. So expression (5.238) is finite. The same holds true after replacing any number
of a: by a–operators, which establishes the claim.

5.12 Concerning Applications

5.12.1 Translation of Hamiltonians into Block Matrices

Consider the following formal quadratic bosonic Hamiltonian, that is only an ele-
ment of Ae, (5.58) but not necessarily an operator generating dynamics on Fock
space F � F pNq:

H � 1

2

¸
j,kPN

p2hjka:jak � kjka
:
ja

:
k � kjkajakq, (5.239)

where hjk, kjk P C, so h � phjkqj,kPN, k � pkjkqj,kPN are matrices of infinite size. By
symmetry of H, we have h� � h ô hjk � hkj and we can arrange for kT � k ô
kjk � kkj. Now recall from Section 5.9.4, that each F � pf 1,f 2q P `2 ` `2 can be
identified with a bosonic algebraic expression

A:pF q � A:
3�pF q � a:pf 1q � apf 2q �

¸
j

pf1,ja
:
�pejq � f2,ja�pejqq, (5.240)

or with ApF q � pA:pF qq�. We may now identify H with the following block
matrices [215, 216, 225, 227]:

AH �
�
h k

k h



, BH �

�
h �k
k �h



� AHS, (5.241)
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where S � p 1 0
0 �1 q. With this identification,

H � 1

2

¸
j,kPN

xF j, AHF kyA:pF jqApF kq, (5.242)

where F j �
�
ej
ej



for a canonical basis vector ej and where by a direct calculation

rApF q, rH,A:pGqss � xF , pSBHqGy`2``2 (5.243)

holds for all finite linear combinations

F ,G P DF , DF :� span

"�
e`
0



,

�
0
e`



,

���� ` P N
*
, DF � `2 ` `2. (5.244)

Infinite linear combinations may or may not be well–defined.

Often H is called “second quantization of AH” and AH is called “first quantiza-
tion of H”, where the first one is unique up to a normal ordering constant c, which
we set to 0.

Further, the (weak) Schrödinger dynamics generated by �BH on F ,G P DF via

xG, iBtF y � �xG, BHF y (5.245)

correspond to the respective Heisenberg dynamics generated by H on expressions
A:pF q in the following sense: If we extend the map A: : `2 ` `2 Ñ Ae to A: :
EpNq`EpNq Ñ Ae (which just means that we drop the assumption inA:pGq ofG �
pg1, g2q containing only square–summable g1, g2), then the following statement is
true:

Lemma 5.12.1. In the bosonic case, for all F P DF we have:

A:piBHF q � irH,A:pF qs. (5.246)

This lemma can also be found in a similar form in [225, (2.27)]. For completeness,
we give a proof here:
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Proof. Consider any canonical basis vector e` P `2. Then, for F �
�
e`
0



,

BHF �
�°

j hj`ej°
j kj`ej



ñ A: piBHF q � i

¸
j

phj`a:j � kj`ajq. (5.247)

Note that the sum over j is finite due to F P DF . On the other hand since kj` � k`j,

irH,A:pF qs � i

2

¸
j

p2hj`a:j � kj`aj � k`jajq � i
¸
j

phj`a:j � kj`ajq. (5.248)

This verifies (5.246) for F �
�
e`
0



.

A similar calculation can be carried out for F 1 �
�

0
e`



, using hj` � h`j:

BHF
1 �

��°
j kj`ej

�°
j hj`ej



ñ A: piBHF

1q � �i
¸
j

pkj`a:j � h`jajq, (5.249)

irH,A:pF 1qs � i

2

¸
j

p�2h`jaj � k`ja
:
j � k`ja

:
jq � �i

¸
j

ph`ja:j � kj`ajq. (5.250)

So by taking finite linear combinations of

�
e`
0



and

�
0
e`



, (5.246) holds for all

F P DF .

A similar statement is valid for fermions. Here, the formal quadratic Hamiltonian
is of the form

H � 1

2

¸
j,kPN

p2hjka:jak � kjka
:
ja

:
k � kjkajakq, (5.251)

with h� � h and where we can arrange for kT � �k. This time, we only associate
one block matrix to H:

AH �
�
h �k
k �h



. (5.252)

It serves for both translation conditions

H � 1

2

¸
j,kPN

xF j, AHF kyA:pF jqApF kq, (5.253)
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and [227, (2b.38)]:

tpA:pF qq�, rH,A:pGqsu � xF , AHGy`2``2 , F ,G P DF . (5.254)

Note that the CAR imply kjj � 0. For F � pf 1,f 2q, the expression A:
3�pF q is

again defined as

A:
3�pF q � a:pf 1q � apf 2q �

¸
j

pf1,ja
:
�pejq � f2,ja�pejqq. (5.255)

The Schrödinger dynamics of p�AHq can now be translated into the Heisenberg
dynamics of H:

Lemma 5.12.2. In the fermionic case, for all F P DF , we have:

A:piAHF q � irH,A:pF qs. (5.256)

Proof. The proof is similar to that of Lemma 5.12.1. We consider again a canonical

basis vector e` P `2 and F �
�
e`
0



,F 1 �

�
0
e`



. Formulas (5.247) and (5.249) can

be copied from the proof of Lemma 5.12.1:

A: piAHF q � i
¸
j

phj`a:j � kj`ajq, A: piAHF 1q � �i
¸
j

pkj`a:j � h`jajq, (5.257)

with the sums in j being finite and hence convergent. For computing the commu-
tators, we make use of the CAR and kj` � �k`j:

irH,A:pF qs � i

2

¸
jk

r2hjka:jak � kjka
:
ja

:
k � kjkajak, a

:
`s

� i
2

¸
jk

p2hjkpa:jaka:` � a:ja
:
`akloooooooomoooooooon

�a:jδk`

�a:ja:`ak � a:`a
:
jaklooooooooomooooooooon

�0

q

� kjkpajaka:` � aja
:
`akloooooooomoooooooon

�ajδk`

�aja:`ak � a:`ajaklooooooooomooooooooon
��akδj`

qq

� i
2

¸
j

2hj`a
:
j �

i

2

¸
j

kj`aj � i

2

¸
k

k`kak

�i
¸
j

phj`a:j � kj`ajq,

(5.258)
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irH,A:pF 1qs � i

2

¸
jk

r2hjka:jak � kjka
:
ja

:
k � kjkajak, a`s

� i
2

¸
jk

p2hjkpa:jaka` � a:ja`akloooooooomoooooooon
�0

�a:ja`ak � a`a
:
jaklooooooooomooooooooon

��a:kδj`

q

� kjkpa:ja:ka` � a:ja`a
:
kloooooooomoooooooon

�a:jδk`

�a:ja`a:k � a`a
:
ja

:
klooooooooomooooooooon

��a:kδj`

qq

� � i

2

¸
k

2h`kak � i

2

¸
j

kj`a
:
j �

i

2

¸
k

k`ka
:
k

�� i
¸
j

ph`jaj � kj`a
:
jq.

(5.259)

Both results agree with (5.257). Taking finite linear combinations of F ,F 1 esta-
blishes the proof.

Of course, Lemmas 5.12.1 and 5.12.2 remain valid, if the number of modes is
finite, i.e., F P CN ` CN .

Both lemmas may also remain valid for further F P `2 ` `2, provided the ex-
pression AHF P `2 ` `2 exists. In that case, also an infinite linear combination of
modes is well–defined.

5.12.2 Deriving Pair Creation in External Field QED

In Section 5.7.3, we considered a quadratic Hamiltonian which is intended to descri-
be a simplified model for external field QED. Starting from the formal Hamiltonian
of a Dirac field coupled to a time–dependent homogeneous classical electromagne-
tic field Aµptq � p0, 0, 0, A3ptqq P C4, we may justify the quadratic Hamiltonian as
follows:
Consider a Dirac field with discrete momentum p P Z3 and spin index s P
t1, 2, 3, 4u, where s P t1, 2u denotes an electron and s P t3, 4u a positron. The
formal Hamiltonian now reads:

Hptq � H0 �HIptq, H0 � dΓpEp,0q, Ep,0 �
a
|p|2 �m2

HIptq � e

»
ΨpxqγµΨpxqAµptq dx,

(5.260)
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where γµ are the gamma matrices in Dirac representation with Einstein summa-
tion convention in the index µ assumed and e is the coupling constant. The field
operator–valued distributions Ψpxq and Ψpxq � Ψpxq�γ0 are given by

Ψpxq �
¸
pPZ3

¸
sPt1,2u

pap,sup,se�ipx � b�p,svp,se
ipxq, (5.261)

with positron operators b7p,1 � a7p,3, b
7
p,2 � a7p,4. For the normalized Dirac spinors,

there exist may conventions, out of which we adopt the following:

up,s � c

�
φs

σ�p
E�mφs



, vp,s � c

�
σ�p
E�mχs
χs



, φ1 � χ2 �

�
1
0



, φ2 � χ1 �

�
0
1



,

(5.262)
with normalization constant c P C, such that }up,s} � }vp,s} � 1 and with σ �
pσ1, σ2, σ3q being the Pauli matrix vector.
Evaluating Hptq now leads to a quadratic operator that can be translated into a
block matrix (see Section 5.12.1):

ÃHptq �
à
pPZ3

ÃH,pptq, ÃH,pptq �
�
hptq �kptq
kptq �hptq



P C8�8. (5.263)

By a direct calculation, one may verify that

eA3ptq u�p,sγ0γ3up,s1 �eA3ptq u�p,s
�

σ3

σ3



up,s1 � p∆Epptqqδss1 ,

∆Epptq �2c2eA3ptq
E �m

p3,

(5.264)

so the a:a– and b:b–terms within HIptq render an additional kinetic term in

hptq �

����
Ep,0 �∆Epptq

Ep,0 �∆Epptq
Ep,0 �∆Epptq

Ep,0 �∆Epptq

���.
(5.265)

By charge conservation, no a:a:, aa, b:b:– or bb–terms will appear. Moreover, by
symmetry upsγ0γ3v�ps1 � v�ps1γ0γ3ups, and by a:p,sb

:
�p,s1 � �b:�p,s1a:p,s, we have

k �

����
0 0 fp,11 fp,12

0 0 fp,21 fp,22

�fp,11 �fp,21 0 0
�fp,12 �fp,22 0 0

���, (5.266)
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with fp,ss1 � fp,ss1 . We perform a physical simplification by setting fp,11 � fp,22 �
0, i.e., eliminating creation and annihilation of equal spins. As a result, ÃH,p decays
into a direct sum of two C4�4–matrices, one for s P t1, 4u and one for s P t2, 3u, of
the form

AH,pptq �

����
Ep,0 �∆Epptq 0 0 �fpptq

0 Ep,0 �∆Epptq fpptq 0
0 fpptq �Ep,0 �∆Epptq 0

�fpptq 0 0 �Ep,0 �∆Epptq

���,
(5.267)

with fp P tfp,12, fp,21u. Setting εp,�ptq � Ep,0�∆Epptq and εp,�ptq � Ep,0�∆Epptq,
we arrive at the form (5.161).
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147–209 (1975)

312

https://inspirehep.net/files/04914af450305d32e284413ef1a83007
https://inspirehep.net/files/04914af450305d32e284413ef1a83007
https://arxiv.org/abs/1208.1428


Literaturverzeichnis

[159] P. Duch: Infrared problem in perturbative quantum field theory Rev. Math.
Phys. 33(10): 2150032 (2021) https://arxiv.org/abs/1906.00940

[160] D.R. Yennie, S.C. Frautschi, H. Suura: The Infrared Divergence Phenomena
and High-Energy Processes Ann. Phys. 13(3): 379–452 (1961)

[161] P.A.M. Dirac: Relativistic Quantum Mechanics Proc. R. Soc. Lond. A 136:
453-–464 (1932)

[162] P.A.M. Dirac, V.A. Fock, B. Podolsky: On Quantum Electrodynamics Phys.
Z. Sowjetunion 2(6): 468–479 (1932), Reprinted in J. Schwinger (editor),
Selected Papers on Quantum Electrodynamics, New York: Dover (1958)

[163] S. Petrat, R. Tumulka: Multi–Time Schrödinger Equations Cannot Contain
Interaction Potentials J. Math. Phys. 55: 032302 (2014) https://arxiv.org/
abs/1308.1065

[164] D.A. Deckert, L. Nickel: Consistency of multi–time Dirac equations with
general interaction potentials J. Math. Phys. 57: 072301 (2016) https://

arxiv.org/abs/1603.02538

[165] M. Lienert: A relativistically interacting exactly solvable multi–time model
for two mass–less Dirac particles in 1�1 dimensions J. Math. Phys. 56: 042301
(2015) https://arxiv.org/abs/1411.2833

[166] M. Lienert, L. Nickel: A simple explicitly solvable interacting relativistic N–
particle model J. Phys. A: Math. Theor. 48: 325301 (2015) https://arxiv.
org/abs/1502.00917

[167] D.A. Deckert, L. Nickel: Multi–Time Dynamics of the Dirac–Fock–Podolsky
Model of QED J. Math. Phys. 60: 072301 (2019) https://arxiv.org/abs/

1903.10362

[168] S. Lill, L. Nickel, R. Tumulka: Consistency Proof for Multi–Time Schrödin-
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