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abstract. The derivation of many paradoxes can be blocked, if the
application of structural rules is locally restricted in certain ways. This
is shown independently for identity, contraction, and cut. Imposing such
local restrictions is seen as an alternative to the global rejection of struc-
tural rules (notably contraction), which is no reasonable option given
that structural rules are needed in mathematical reasoning.

Since the work of Fitch (1936) it is well known that the rule of contraction is
crucial for the derivation of certain paradoxes. On the other hand, contraction
is needed to formalize mathematical (and other) reasoning, so that giving up
contraction altogether is not a viable way of avoiding them (see Read, 1994,
pp. 162f, quoted from the 1995 paperback edition). This suggests to look
for a restriction on contraction which is sufficient to block paradoxes without
affecting ‘normal’ (non-paradoxical) reasoning. In this note we indicate what
such a restriction might look like. As not only contraction, but also identity and
cut are needed in paradoxical derivations, we extend our investigation to them.
For each of these three structural rules, we propose provisos which formally
prevent the derivation of paradoxes, without unduly restraining them as key
principles of reasoning.

As our structural framework we use an intuitionistic sequent calculus whose
sequents have the form Γ`C or the form Γ` , where the antecedent Γ is a
multiset of formulas and the succedent is either a formula C or empty. We
use notations such as Γ, A`C or A1, . . . , An `C in the usual way. The empty
succedent is supposed to represent falsity, and the empty antecedent is supposed
to represent truth. The empty sequent ` thus represents a contradiction. In
our simplified framework we only need negation ¬ as a logical constant. In order
to represent the paradoxes, we suppose that there is a constantR such that from
¬R we can infer R and from R we can infer ¬R. As we are dealing only with
the structural aspect of the logic of paradoxes, we are not interested in which
way R is construed and how these paradoxical inference rules are obtained.
In naive set theory R might be construed as the proposition {x : x 6∈ x} ∈
{x : x 6∈ x}, and the paradoxical rules are obtained from certain set theoretical
principles. In a theory of definitional reflection R might be just a constant
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given by the definitional clause R⇐¬R, and the paradoxical rules are obtained
as rules of definitional closure and definitional reflection with respect to this
definition (Hallnäs, 1991; Hallnäs and Schroeder-Heister, 1990/91; Schroeder-
Heister, 1993; Schroeder-Heister, 2012a). In a theory of arbitrary propositional
operators R might be a nullary logical constant for which these paradoxical
rules are the introduction and elimination rules (Tennant, 1982; Read, 2010).

Thus our system contains the following rules:

Structural rules

Identity: (Id)
A`A Contraction:

Γ, A,A`C
(Contr)

Γ, A`C

Cut:
Γ`A A,∆`C

(Cut)
Γ,∆`C

Weakening:
Γ`C

Γ, A`C
Γ`
Γ`A

Negation rules

Γ` A (¬` )
Γ,¬A`

Γ, A`
(`¬)

Γ`¬A

Paradoxical rules

Γ,¬R`C
(R` )

Γ, R`C
Γ`¬R (`R)
Γ`R

Then the derivation of contradiction looks as follows:

(Id)
R`R (¬` )

R,¬R`
(R` )

R,R`
(Contr)

R` (`¬)`¬R (`R)`R

(Id)
R`R (¬` )

R,¬R`
(R` )

R,R`
(Contr)

R` (Cut)`

(1)

This derivation uses all rules of our system with the exception of weakening.
If a proper paradox is expected to allow the generation of any sequent what-
soever, we could add applications of weakening at the end of this derivation
to obtain Γ`C for any Γ and C. However, as these applications would not
affect the actual derivation of the empty sequent, we do not deal with weaken-
ing here. The legitimacy of weakening is a central matter in investigations of
paraconsistency, which is a different way of dealing with the paradoxes, since
it does not challenge the derivability of contradictions.

1 Identity

Obviously, dropping the rule of identity would block the derivation of the para-
dox. In fact, it would prevent us from starting any derivation whatsoever, as



Paradoxes and Structural Rules 205

identity is the only axiom available. This is why identity is also called the
rule of “initial sequents”. However, there is a reasonable restriction on identity
which can block the paradox without affecting ‘standard’ derivations.

Proviso: Identity A`A may only be used if no right- and left-introduction
rules for A are available.

The rationale behind this restriction is the following. Identity permits the
introduction of a formula A in an unspecific way: No matter what A looks like,
we can start with A as an assertion, which depends on itself as an assumption.
However, there might be specific ways to introduce A, which depend on the
meaning of A. The proviso then says that we must use these specific ways,
if they are available. For example, if A has the form ¬B, then, rather than
starting with ¬B `¬B as an identity axiom, we request that ¬B be introduced
according to its specific meaning, i.e., according to the specific introduction
rules for ¬, yielding

B `B (¬` )
B,¬B `

(`¬)¬B `¬B
In the standard sequent calculus, this restriction corresponds to the common
proviso that identity sequents must be atomic, so that nonatomic sequents
of the form A`A can only be derived using the specific rules governing the
constants occurring in A. From a more philosophical point of view, we might
consider the distinction between atomic and non-atomic sentences to be the
distinction between sentences for which no specific meaning rules are given
in the system, and those for which specific meaning rules are available. The
proviso then says that identity only applies to the unspecific case, whereas the
specific case is always handled by the meaning rules. As in our context specific
rules are available for R, R is not considered atomic in this sense, so identity
cannot be used for R. The sequent R`R should rather be reduced to ¬R`¬R
via the derivation

¬R`¬R (R` )
R` ¬R (`R)
R`R

However, since ¬R is not atomic either, this derivation must be reduced to

R`R (¬` )
R,¬R`

(`¬)¬R`¬R (R` )
R` ¬R (`R)
R`R

leading us to what we started with and showing that we cannot initiate the
paradoxical derivation.

Conclusion: There is a plausible restriction of identity which blocks the para-
doxes without affecting non-paradoxical reasoning. In the presence of restricted
identity, the rules of contraction and cut can be used without any restriction.1

1This way of restricting identity was originally developed in the context of logic program-
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2 Contraction

Disallowing contraction would prevent the derivation of the paradox. However,
in view of the frequent use of contraction in mathematical and other reason-
ing, this cannot be considered a viable strategy. By adopting our distinction
between specific and unspecific ways of using a sentence, we can argue for a
restriction on contraction which blocks the paradox without precluding sensible
uses of contraction.

If we look at the premiss R,R` of the application of contraction in (1), we
observe that the two occurrences of R result from the application of different
rules. The left occurrence of R in R,R` comes from the identity axiom R`R.
It may therefore be called an unspecific occurrence of R, since identity applies
unspecifically to any formula independent of its shape. The right occurrence
of R in R,R` is the result of an introduction rule for R. Since this introduc-
tion rule is specific for R, this occurrence may be called a specific occurrence
of R. By boxing the unspecific occurrences of R and encircling the specific
occurrences of R, this situation may be depicted as follows:

(Id)
R `R

(¬` )
R ,¬R`

(R` )
R , R `

(Contr)
R` (`¬)`¬R (`R)`R

(Id)
R `R

(¬` )
R ,¬R`

(R` )
R , R `

(Contr)
R` (Cut)`

The contraction step identifies the boxed R with the encircled R. If we argue
that it makes a difference of whether we use R unspecifically (in an iden-
tity sequent) or specifically (according to its meaning, as the result of a left-
introduction rule), we are led to the following restriction of contraction.

Proviso: Contraction may only be used if the two occurrences of the sentence
A which are contracted into a single one, are either both specific or both un-
specific. We must never contract a specific with an unspecific occurrence of
A.

The significance of this proposal rests of course on the claim that the ‘standard’
uses of contraction (in mathematics and elsewhere) do not use the form of
contraction prohibited by the proviso. This needs still to be verified — here we

ming with definitional reflection by Kreuger (1994). This is why we call it “Kreuger’s rule” or
“Kreuger’s axiom”. In logic programming with definitional reflection we extend logics by in-
ference rules governing atoms which, as the common logical rules, split into right-introduction
and left-introduction rules. This means that these atoms are atomic with respect to logic, but
not atomic in the sense of being irreducible, because meaning-giving rules are associated with
them. Therefore it is not unnatural to require that the unspecific initial sequents A`A be
allowed only in the case in which A is not further reducible to any other sentence. Formally,
it can be shown that by restricting initial sequents in the way indicated, the resulting system
allows the elimination of cuts and is therefore consistent. For the simplified system consid-
ered above this is easy to show, but this result holds for the general system with definitional
rules for atoms as well. See Schroeder-Heister (1994).
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take it for granted. Secondly, the notion of unspecific vs. specific occurrences
must be made precise in such a way that paradoxes are indeed excluded by
observing the proviso.

When working out this idea in detail, it turns out that the distinction be-
tween specific and unspecific occurrences of assumptions is not clear enough as
it stands. An unspecific assumption can easily be turned into a specific one by
using intermediate derivation steps. For example, if the critical part

(Id)
R `R

(¬` )
R ,¬R`

(R` )
R , R `

(Contr)
R`

of (1) is replaced with

(Id)
R`R (¬` )

R,¬R`
(`¬)¬R`¬R (`R)¬R`R (R` )

R `R
(¬` )

R ,¬R`
(R` )

R , R `
(Contr)

R`

i.e., if a derivation of R`R is added on top, then the boxed occurrences of R
become encircled, as they result from an introduction of R according to the
rule (R` ). This means that both occurrences of R, which are contracted, are
specific occurrences of R and thus appear to satisfy the proviso.

To deal with such cases, we propose to introduce an indexing discipline. With
every formula occurrence in a derivation, a natural number is associated as a
meaning index, which is increased if a meaning rule (left- or right-introduction
rule) is applied. Contraction is then prohibited, if the meaning indices of
the sentences involved differ. In the above example, the right R undergoing
contraction receives a higher meaning index under this discipline than the left
one, as it results from a single application of (`R) plus a single application of
(R` ), whereas the left R results from a single application of (R` ) alone. The
result is a kind of type theory with respect to meaning, according to which the
application of a meaning rules increases the type. Attaching these indices for
R as superscripts yields
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(Id)
R`R (¬` )

R,¬R`
(`¬)¬R`¬R (`R)

¬R`R1
(R` )

R1 `R1
(¬` )

R1,¬R1 `
(R` )

R1, R2 `
(Contr)

R`
demonstrating that contraction equalizes occurrences of R with unequal index.

Conclusion: There is a plausible restriction of contraction which blocks the
paradoxes without affecting non-paradoxical reasoning. In the presence of re-
stricted contraction, the rules of identity and cut can be used without any
restriction.2

3 Cut

Derivation (1) uses cut in its last step. Without cut the empty sequent is not
derivable. It is a characteristic feature of paradoxes that derivations generating
them do not permit the elimination of cut. This corresponds to the fact that
in natural deduction, derivations of paradoxes are not normalisable, as Prawitz
(1965, Appendix B) has first observed. Therefore disallowing cut blocks the
derivation of the paradox. If we insist on using cut-free systems, we can discard
with the paradoxes.

However, insisting on cut-free systems (or, equivalently, on systems in which
cut is admissible) asks for too much. In advanced mathematical theories, in
fact: already in arithmetic, we do need cut to carry out significant proofs.3 It is
therefore worthwhile to look for a restriction of cut, which prevents paradoxes
but still allows for standard mathematical reasoning.

In order to formulate such a restriction, we propose to use a type system
in the style of the Curry-Howard correspondence, but adapted to the sequent
calculus. A sequent A1, . . . , An `A now takes the form x1 :A1, . . . , xn :An ` t :
A for variables x1, . . . , xn and a term t. Terms are generated using certain
constructors and selectors which depend on the constants available, in our case
case just negation and R. Furthermore, certain reduction principles for terms
are available which tell which terms are considered equal. Terms which cannot
be further reduced are considered normal. Intuitively, normal terms codify
‘real’ proofs, whereas non-normal terms denote the proofs codified by their
normal forms (if they exist and are unique). When using term annotations, we
cannot deal with empty succedents, so we use the falsity constant ⊥ instead.

2The idea of restricting contraction in this way was proposed in Schroeder-Heister (2004).
3This frequently happens, for example, when, in order to prove a statement A, we prove

by induction a stronger statement A′ because A′ is needed as the induction hypothesis.
Specialising A′ to A means to apply a cut which is not eliminable.
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In our context it is of particular importance to see that cut becomes a sub-
stitution rule:

Γ` t :A ∆, x :A` s :B

Γ,∆` s[x/t] :B
When performing this substitution, it may happen that the newly created term
s[x/t] is not normal and not normalisable, even though the terms s and t are in
normal form. This is exactly what is taking place in the paradoxical derivation.
In the term-annotated system the last step of (1) takes the form

` t :R x :R` s :⊥
` s[x/t] :⊥

where the term s[x/t] generated for absurdity is not normalisable, while s and
t are normal. (For more details see the appendix.) This leads to the following
restriction on the form of cut:

Proviso: Cut may only be used if it does not create, by means of substitution,
a non-normalisable term.

The idea behind this proviso is that we should only generate terms which
represent “real” proofs. Denoting by t ↓ the fact that t is normalisable, we
would then formulate the restricted cut rule as

Γ` t :A ∆, x :A` s :B

Γ,∆` s[x/t] :B
s[x/t]↓

This way of proceeding presupposes, of course, that we use a type system and
no longer just operate with the sentences (= types) alone. Furthermore, which
is more involved, we must specify how to establish t ↓ for a term t, as this is
not a syntactic property of the given proof figure or of the formal system used.
So the restricted form of cut should more appropriately be formulated as

Γ` t :A ∆, x :A` s :B s[x/t]↓
Γ,∆` s[x/t] :B

with s[x/t]↓ as a premiss of its own. In the end this leads to a sort of free type
theory where one has to add rules by means of which we can prove that a term
denotes.

Conclusion: There is a plausible restriction of cut which blocks the paradoxes
without affecting non-paradoxical reasoning. In the presence of restricted cut,
the rules of identity and contraction can be used without any restriction.4

4 Summary

For each of the structural rules of identity, contraction and cut, we considered
certain restricted forms which suffice for ‘ordinary’ mathematical reasoning,

4This restriction of cut was proposed in Schroeder-Heister (2012b). There the fact that
the sequent calculus makes the use of substitution explicit in the form of the cut rule, is
seen as a conceptual advantage of this format of deductive reasoning as compared to natural
deduction.
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but which are insufficient for the derivation of paradoxes. Even though we
did not decisively argue in favour of a particular one of these restrictions, this
shows that investigating constraints on the application of structural rules is a
promising research programme.

Appendix

In the term-annotated system, where we use the absurdity constant ⊥ to rep-
resent the empty succedent, it is more convenient to consider ¬A to be an
abbreviation for A→⊥. The term-annotated rules for implication and R are
as follows.

Γ, x :A` t :B
Γ`λx.t :A→B

Γ` t :A
Γ, x :A→B `App(x, t) :B

together with the reduction principle

App(λx.t, s)B t[x/s] (2)

which is the same as β-contraction, and

Γ` t :R→⊥
Γ` rt :R

Γ, x :R→⊥` t :C
Γ, y :R` t[x/r′y] :C

together with the reduction principle

r′rtB t . (3)

With term-annotations the derivation (1) takes the form

x :R`x :R
x :R, y :R→⊥`App(y, x) :⊥
x :R, z :R`App(r′z, x) :⊥
x :R`App(r′x, x) :⊥
`λx.App(r′x, x) :R→⊥
` rλx.App(r′x, x) :R

x :R`x :R
x :R, y :R→⊥`App(y, x) :⊥
x :R, z :R`App(r′z, x) :⊥
x :R`App(r′x, x) :⊥

`App(r′rλx.App(r′x, x), rλx.App(r′x, x)) :⊥

(4)

It can easily be checked that the term generated for absurdity in the end sequent
of (4) reduces to itself, i.e. the reduction sequence based on reductions (2) and
(3) (there is only a single such sequence) loops. For further discussion see
Schroeder-Heister (2012b).
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