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Preface

This is an article on Karl Popper’s theory of logic, which emerged from a contribu-

tion to the Centenary Congress ”Karl Popper 2002” (Vienna, 3–7 July 2002). It is

here republished together with the abstract of my talk at the congress. In this paper

I put forward a structuralist interpretation of Popper’s approach, which differed in

some respects from my earlier account of Popper’s theory of logic (“Popper’s theory

of deductive inference and the concept of a logical constant”. History and Philos-

ophy of Logic 5 (1984), pp. 79–110, doi:10.1080/01445348408837064). My present

view, which is again somewhat different from the previous one, is contained in our

introduction to the collection ”The Logical Writings of Karl Popper”, edited by David

Binder, Thomas Piecha and myself, that is currently being published (Springer 2022,

doi:10.1007/978-3-030-94926-6, Chapter 1: “Popper’s theory of deductive logic”, pp.

1–79, doi:10.1007/978-3-030-94926-6 1).
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This paper attempts to shed some new light on Popper’s little-known articles of 1947-49 on the 
foundations of (deductive) logic.1 These articles suffer from the fact that they were written 
without awareness of the state of the art in mathematical logic and, in particular, of Gentzen 
type inference systems. They nevertheless contain ideas which are particularly interesting from 
a more modern perspective, and which deserve to be better known. 

Popper’s framework is based on an inference relation which essentially has the structural 
features of Gentzen’s sequent arrow (identity, weakening and cut). Logical operations are 
defined metalinguistically by the inferential role they play, independently of whether they are 
syntactically represented by means of a connective. For example, an (arbitrarily formed) 
sentence A is called a disjunction of B and C, if for any D: D can be inferred from A if and only 
if D can be inferred from B as well as from C.  

These definitions are not to be understood as a new sort of semantics. A semantics would 
start with a formal language, define a central semantical notion for its sentences such as truth, 
and justify an inference relation on the basis of such a definition. Rather, given an already 
established inference relation, an inferential definition singles out certain operations by calling 
them conjunctions, disjunctions, negations etc. of sentences.  

We shall argue that this idea is highly original, in spite of the flaws in Popper’s presen-
tation. It is closely related to modern attempts to specify logical constants or logical systems in 
terms of consequence or implication relations2 3, and in particular to Koslow’s structuralist 
theory of logic4. We shall also compare Popper’s characterization of the underlying inference 
relation with ideas developed by Hertz and Gentzen in the 1920s and 1930s. 5  

Although inferential definitions in Popper’s sense can be a powerful descriptive tool, in 
particular when different logical systems are investigated, they seem to us not suited to provide 
a foundation for logic (if there is such a thing at all). We shall discuss in detail the 
interrelationship between inferential definitions, semantical considerations and questions 
concerning the logicality of operations.  
                                                 
1  K.R. Popper, New foundations for logic, Mind 56 (1947), 193-235, and five other papers.  See the 

bibliography in: P. Schroeder-Heister, Popper’s theory of deductive inference and the concept of a 
logical constant, History and Philosophy of Logic, 5 (1984), 79-110.  

2   P. Schroeder-Heister, Structural frameworks, substructural logics, and the role of elimination 
inferences. In: G. Huet & G. Plotkin (eds.), Logical Frameworks, Cambridge 1991, 385-403. 

3  D. Gabbay (ed.), What is a Logical System? Oxford 1994. 
4   A. Koslow, A Structuralist Theory of Logic, Cambridge 1992.  
5   P. Schroeder-Heister, Resolution and the origins of structural reasoning: Early proof-theoretic ideas of 

Hertz and Gentzen, Bulletin of Symbolic Logic (to appear).  
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Popper’s
Structuralist Theory of Logic ∗

Peter Schroeder-Heister

In what follows I take a fresh look at Popper’s papers on the foundations of
(deductive) logic published between 1947 and 1949 (referred to as P1–P6).
In my study of 1984 (Schroeder-Heister 1984b) I gave a detailed analysis
of these papers including the objections raised and points made within the
logic community. These objections and, in particular, the fact that Tarski
refused to take a look at them1 eventually led Popper to abandon his project
of ‘new foundations for logic’ (title of P2) which he had started ‘with much
enthusiasm’ (Popper 1974, p. 1095).

In Schroeder-Heister (1984b) I argued that Popper’s theory can be given
a coherent sense when it is read as an attempt to delineate logical from
extra-logical signs, a point whose significance Popper had stressed himself,
in particular in his reply to Lejewski in the Schilpp volume (Lejewski 1974;
Popper 1974). I now think that the logicality aspect, though important, is
not the whole story and definitely not the central point of Popper’s theory.2

Rather I shall argue that Popper puts forward a structuralist approach ac-
cording to which logic is a metalinguistic theory of consequence, in terms of
which logical operations are characterized. I borrow the term ‘structuralist’
from Koslow’s monograph (1992), where such an approach is developed in
much detail. Popper’s view will be reconstructed against the background of
Koslow’s work, which represents a mature account allowing me to evaluate
the merits of Popper’s ideas.

By a ‘structuralist theory of logic’ Koslow denotes an approach that char-
acterizes logical systems axiomatically in terms of ‘implication relations’. An
implication relation corresponds to a finite consequence operation in Tarski’s
sense, which can also be described by Gentzen-style structural rules.3 Logical

∗I should like to thank the two anonymous referees of this paper for their careful reading
of the manuscript and for many helpful comments and suggestions.

1Letter to the author of 9 July 1982.
2In letters to the author of 10 July and 19 August 1982, after taking notice of the logic-

ality interpretation, Popper actually claimed that somehow laying the foundations of logic
might be possible after all, in addition to the task of delineating logical signs.

3However, the designation ‘structuralist’ has nothing to do with ‘structural rules’, but
rather with the fact that ‘structures’ in the model-theoretic sense are defined.

17

Ian Jarvie, Karl Milford, David Miller (eds.), Karl Popper: A Centenary 
Assessment. Volume III - Science. Ashgate: Aldershot 2006.
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compounds are then characterized as objects satisfying certain constraints
stated in terms of implication relations. For example, a conjunction C of A
and B satisfies the conditions that

(i) C implies both A and B, and

(ii) C is the weakest object (weakest with respect to the given implication
relation) such that (i) is fulfilled; that is, for any C ′, if C ′ implies both A and
B, then C ′ implies C.

Koslow develops a structuralist theory in the precise metamathematical sense,
which does not specify the domain of objects in any sense beyond the axioms
given. Even if the domain is supposed to be a language, the structural axioms
do not tell what a conjunction of A and B looks like (if there is one at
all). Rather, if a language or any other domain of objects equipped with
an implication relation is given, the structuralist approach may be used to
single out logical compounds by checking their implicational properties. It
does not postulate axioms and inference rules for a formal object language.
Whether and how implication structures are realized as object languages, is
left entirely open. In particular, nothing is being said about the particular
inferential format used in such a realization (for example, whether it takes
the form of a Hilbert-style or a Gentzen-style system).

I claim that Popper’s approach, though often formulated by him in a
misleading way and (by far) lacking the precision of Koslow’s, is exactly of
this kind. I shall try to present it as a coherent theory without going into all
details of his line of argument. I also confine myself to propositional logic,
as this eases my presentation and entirely suffices to give an idea of Popper’s
basic aims. The details of the first-order case are even less consistent and more
problematic than those of the propositional one. For further issues, I refer
to my 1984 paper (Schroeder-Heister 1984b). Often the details of Popper’s
presentation are a stumbling block to an overall understanding of his view. It is
the global picture that makes his theory interesting, not so much the individual
steps of his exposition. If one wanted to build further on his ideas, one would
anyway take a better developed theory such as Koslow’s as a starting point.

My paper is divided as follows. In the first section I give a brief sketch of
Koslow’s theory. Section 2 deals with Popper’s inferential definitions, delin-
eating them from Koslow’s characterizations. In section 3, I argue that and
why Popper’s approach cannot be turned into a semantics and therefore is not
a justification of a logical system. The concluding remarks (section 4) point to
the fact that the structuralist reading of Popper’s theory is well in line with
his general philosophical views. The appendices illuminate other interesting
aspects of Popper’s work, for instance his axiomatization of structural rules
and his usage of multiple succedent consequence.
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1 Koslow’s structuralist theory of logic

I give a brief outline of Koslow’s theory as far as it is relevant for the recon-
struction of Popper’s approach, restating it in my terminology and notation,
which in some cases is more explicit than Koslow’s, and in many respects
more ‘formalistic’. As indicated, Koslow (1992) characterizes logical systems
as structures in the metamathematical (model-theoretic) sense rather than as
syntactically specified systems with axioms and inference rules. The domains
of his structures are sets of objects for which a (finite) consequence relation is
available. Koslow himself speaks of ‘implication relations’. I shall speak of ‘de-
ducibility relations’, keeping ‘implication’ from now on for the propositional
connective (which may occur both in the metalanguage and in the object lang-
uages considered). The reader should bear in mind that ‘deducibility’ is here
considered an abstract term that is not bound to the concept of deduction in
formal languages.

A deducibility structure 〈D, ` 〉 consists of a non-empty domain D and a
relation ‘` ’ between finite subsets and elements of D, called a deducibility
relation, which satisfies the following conditions:

Γ ∪ {A} `A
Γ`A & ∆ ∪ {A} `B ⇒ Γ ∪∆`B,

where capital Greek letters stand for subsets of D and capital Latin letters
for elements of D, and where & and ⇒ are metalinguistic conjunction and
implication, with & binding stronger than ⇒ . I use the common abbrevia-
tions, leaving out the set brackets to the left of ` , and writing Γ, A`B for
Γ ∪ {A} `B and Γ,∆`A for Γ ∪∆`A.

Given a deducibility structure 〈D, ` 〉, an n-place logical operation H over
〈D, ` 〉 is a function that associates with any n-tuple of objects a (possibly
empty) set of objects, which are all interdeducible, more formally,

H : Dn −→ P(D)

such that Aa`B holds for all A,B ∈ H(A1, . . . , An). Furthermore, it is
assumed that H is invariant with respect to interdeducibility, that is to
say that H(A1, . . . , Ai, . . . , An) = H(A1, . . . , A

′
i, . . . , An), if Ai a`A′

i, and
H(A1, . . . , An) is closed under interdeducibility, that is, A ∈ H(A1, . . . , An)
is implied by Aa`B and B ∈ H(A1, . . . , An). Since a logical operation is
unique up to interdeducibility, the set H(A1, . . . , An) may be identified with
any of its elements, if it is non-empty.

Let 〈s1, . . . , sm〉 be a signature, that is, an m-tuple of non-negative inte-
gers (corresponding to the arities of logical operations considered). A logic
structure of signature 〈s1, . . . , sm〉 is then given as 〈D, ` ,H1, . . . ,Hm〉 such
that

(i) 〈D, ` 〉 is a deducibility structure

(ii) Each Hi (1 ≤ i ≤ m) is an si-place logical operation over 〈D, ` 〉.
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An inferential characterization of an n-place logical operation H is a (met-
alinguistic) formula A(A,A1, . . . , An) with at most n+ 1 variables such that

A ∈ H(A1, . . . , An) ⇔ A(A,A1, . . . , An).(1.3)

This means in particular that the first argument of A is uniquely determined
up to interdeducibility, that is, for any A ∈ H(A1, . . . , An), the uniqueness
condition

(∀B)(B a`A ⇔ A(B,A1, . . . , An))(1.4)

is satisfied, which is equivalent to

A(B,A1, . . . , An) & A(B′, A1, . . . , An) ⇒ B a`B′

plus

A(B,A1, . . . , An) & B a`B′ ⇒ A(B′, A1, . . . , An).

If there is an inferential characterization A of H, H is said to be inferentially
characterized. Conversely, if an A is given such that (1.2) holds, then (1.1)
defines a logical operation H such that A is an inferential characterization of
H. A logic structure 〈D, ` ,H1, . . . ,Hm〉 is called inferentially characterized, if
with each logical operation Hi an inferential characterization Ai is associated.
In what follows, I shall always assume that logic structures are inferentially
characterized.

So far, the syntactic form of A has been left unspecified. If nothing else is
said, I assume that A is built up from deducibility ‘` ’ as the only predicate
by using first-order logical constants.

It is characteristic of the structuralist approach that, even if the domain D
consists of syntactically specified expressions of some object language rather
than arbitrary objects, the results of logical operations need not have a stand-
ard form. If D contains for every A1 and A2 a conjunction A of A1 and A2,
then A need not have a form like A1 ∧A2. However, if H∧ is the logical oper-
ation of conjunction, and if conjunctions of two expressions always exist, then
D can easily be extended by introducing A1 ∧A2 as a standard expression for
a conjunction of A1 and A2 by just adding A1 ∧ A2 to H∧(A1, A2). It is ob-
vious that this extension is conservative. In this way, any logical operation H
available in a language can be represented explicitly by a logical constant in a
conservative extension, provided the following existence condition is satisfied
for H:

(∀A1, . . . , An)(∃A)A(A,A1, . . . , An).(1.5)

This condition is not necessarily fulfilled. It is easy to construct deducibility
structures where, for example, disjunctions do not always exist (see Koslow
1992, p. 118).
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In Koslow’s theory inferential characterizations A(A,A1, . . . , An) have a
specific syntactic form. They provide inferential conditions corresponding to
elimination rules in natural deduction and then require A to be the weakest
object satisfying these conditions. Formally, the inferential characterizations
for the four standard operations of intuitionistic logic (conjunction, disjunc-
tion, implication, and negation) can be stated as follows.

A∧(A,A1, A2) :⇔ A`A1 & A`A2 elimination
& (∀B)(B `A1 & B `A2 ⇒ B `A) minimality

(‘A is a conjunction of A1 and A2’)

A∨(A,A1, A2) :⇔ (∀C)(A1 `C & A2 `C ⇒ A`C) elimination
& (∀B)((∀C)(A1 `C & A2 `C ⇒ B `C)

⇒ B `A) minimality
(‘A is a disjunction of A1 and A2’)

A→(A,A1, A2) :⇔ A,A1 `A2 elimination
& (∀B)(B,A1 `A2 ⇒ B `A) minimality

(‘A is an implication between A1 and A2’)

A¬(A,A1) :⇔ (∀C)(A,A1 `C) elimination
& (∀B)((∀C)(B,A1 `C) ⇒ B `A) minimality

(‘A is a negation of A1’)

As I am only illustrating the method of inferential characterizations, I do
not consider here parametric versions, which also take into account additional
assumptions (‘contexts’), which may be present in deducibility statements.
For example, with such parameters, the elimination condition in A∨ should
be

(∀Γ)(∀C)(Γ, A1 `C & Γ, A2 `C ⇒ Γ, A`C).

It can easily be seen that A∧,A∨,A→,A¬ are in fact inferential characteriza-
tions of corresponding operations H∧,H∨,H→ and H¬, respectively, as the
uniqueness condition (1.2) is fulfilled. This is due to the minimality require-
ments (see Koslow 1992, pp. 81ff.)

Inferentially characterized logical operations in Koslow’s sense have the
following two remarkable properties: They are (i) stable and (ii) distinct (see
Koslow 1992, p. 10).

Ad (i): Suppose H is inferentially characterized by A with respect to some
deducibility structure 〈D, ` 〉. Let 〈D′, ` ′〉 be a deducibility structure extend-
ing 〈D, ` 〉, that is, D ⊆ D′ and ` ⊆ ` ′. Let A′ result from A by replacing
` with ` ′ throughout. Then H is called stable with respect to 〈D′, ` ′〉 if

(∀A,A1, . . . , An ∈ D)(A(A,A1, . . . , An) ⇔ A′(A,A1, . . . , An)),
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that is, objects that are conjunctions, disjunctions, implications, and nega-
tions in 〈D, ` 〉 remain conjunctions, disjunctions, implications, and negations,
when 〈D, ` 〉 is extended to 〈D′, ` ′〉. The following can easily be shown:
suppose that 〈D′, ` ′〉 is a conservative extension 〈D, ` 〉, that is, D ⊆ D′,
` ⊆ ` ′, and

(∀∆ ⊆ D)(∀A ∈ D)(∆` ′A ⇒ ∆`A).

Then H is stable with respect to 〈D′, ` ′〉. In short, inferentially character-
ized logical operations are stable with respect to conservative extensions (see
Koslow 1992, pp. 10, 31). This holds for inferential characterizations of logical
operations in general. It does not depend on their specific syntactic form, in
particular not on the minimality conditions.

Ad (ii): Distinctness of inferentially characterized logical operations H1 and
H2 of arities n and n+m, respectively, over 〈D, ` 〉 simply means that they
are different, that is, that there are A1, . . . , An+m ∈ D such that

H1(A1, . . . , An) 6= H2(A1, . . . , An+m).

Whether H1 and H2 are distinct, depends on their inferential characteriza-
tions. Koslow shows that the standard logical operations H∧,H∨,H→ and
H¬ are pairwise distinct if the underlying deducibility structure 〈D, ` 〉 is
non-trivial, that is, if not every B is deducible from every ∆ (Koslow 1992,
pp. 10, 151-153).

An approach developed by the author (Schroeder-Heister 1984a) is similar
to Koslow’s in certain respects. It characterizes logical constants as expressing
the common content of systems of conditions. This essentially means that
from logical compounds exactly those sentences should be derivable that can
be derived from the premises of their introduction rules. This again means
that elimination rules are taken as a basis, and the compounds are weakest
sentences having the power of major premises of elimination rules.4 This idea
was developed in the syntactic setting of a calculus of rules of higher levels, not
in a metalinguistic structuralist theory like Koslow’s. However, it could easily
be used to extend Koslow’s structuralist approach by generalized elimination
principles for arbitrary logical operations.

2 Popper’s theory

Popper develops a structuralist theory of logic based on deducibility structures
(§ 2.1) and inferential characterizations of logical constants (§ 2.2), whose in-
ternal form is less restricted than Koslow’s (§ 2.3).

4The major premise of an elimination rule is the formula from which a logical operator
is eliminated. If, for instance, a step of →-elimination (modus ponens) leads from A→B
and A to B, then A→B is its major premise and A its minor premise. See Prawitz (1965)
for this terminology.
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2.1 Popper’s deducibility structures

Popper bases the structures he investigates on the principles

Γ, A`A
(Γ`B1 & · · ·& Γ`Bn) ⇒ (B1, . . . , Bn `C ⇒ Γ`C)

called ‘reflexivity’ and ‘generalized transitivity’, respectively (see P1, p. 278;
P2, pp. 198-200). He uses the symbols ‘/’ and ‘//’ for what are here denoted
by ‘` ’ and ‘a` ’. Normally he does not regard antecedents (= left-hand sides)
of deducibility statements as sets, but has explicit rules for permutation and
contraction, a point that can be disregarded here. Principles like reflexivity
and generalized transitivity are called ‘absolutely valid’, because they do not
refer to logical connectives in some object language. They are independent
of the distinction between logical and extra-logical signs (P1, p. 279). These
principles are the same as those given by Hertz (1923) as the basis of his
system. Hertz was the first to formulate what Gentzen (1935) later called
‘structural rules’. Gentzen immediately built on Hertz when developing his
sequent calculus (see Schroeder-Heister 2002). It is not clear how well ac-
quainted Popper was with Gentzen’s work, when he wrote his papers.5 At
that time (the late 1940s), Gentzen systems did not yet belong to the basic
inventory of logic. In any case it is remarkable that Popper realized the sign-
ificance of structural principles as the basis of logical reasoning. Even twelve
years after Gentzen’s thesis this was not a commonplace.

It is obvious that reflexivity and generalized transitivity are equivalent to
the principles governing deducibility structures in the sense of § 1. So it may
be said that, like Koslow, Popper starts with deducibility structures 〈D, ` 〉, in
terms of which logical operations are explained. Popper even tries to axiom-
atize ‘` ’ in such a way that reflexivity and generalized transitivity become
derivable, as discussed in Appendix 1. Popper also occasionally considers de-
ducibility statements whose succedent (= right-hand side) may contain more
than one formula, or even none at all — see Appendix 2.

At this point a remark about the principles governing deducibility relations
as compared with structural rules in Gentzen’s sense is appropriate. Formally,
the principle

Γ`A & ∆ ∪ {A} `B ⇒ Γ ∪∆`B

is to be distinguished from the rule of Cut

Γ`A ∆, A`B

Γ,∆`B

5Both Hertz and Gentzen are only very briefly mentioned at a few places in Popper’s
papers. One might even suspect that it was Bernays who drew his attention to Hertz and
Gentzen, when his papers had been essentially completed. That his ‘main intention was to
simplify logic by developing what has been called by others “natural deduction” ’ (Popper
1974, p. 1096) appears to be a later re-interpretation, which is only partially true, because,
as will be seen, it is not the development of a particular object-linguistic deduction system
or form of deduction that Popper is aiming at.
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in sequent-style systems. The latter one uses ‘` ’ as an object-linguistic opera-
tor, whereas both Koslow’s and Popper’s theories are entirely metalinguistic,
without any preference for a particular object-linguistic style of reasoning.
Nevertheless the close relationship between structural rules and principles for
deducibility or consequence is obvious, and one might use sequent-style rules
as representations of deducibility principles, and vice versa, keeping their
fundamental distinctness in mind.6

2.2 Inferential definitions

Popper now proceeds by presenting what he calls ‘inferential definitions’ of
logical constants. The inferential definitions for conjunction ∧, disjunction ∨,
implication → and classical negation ∼ run as follows:7

Aa`A1 ∧A2 ⇔ (∀C)(A`C ⇔ A1, A2 `C)(2.1)

Aa`A1 ∨A2 ⇔ (∀C)(A`C ⇔ A1 `C & A2 `C)(2.2)

Aa`A1→A2 ⇔ (∀C)(C `A ⇔ C,A1 `A2)(2.3)

Aa`∼A1 ⇔ (∀C,D)(A,C `A1 ⇒ A,C `D & C `A1).(2.4)

So the general form of an inferential definition for an n-place connective
J(A1, . . . , An) is

Aa` J(A1, . . . , An) ⇔ AJ(A,A1, . . . , An),(2.5)

where AJ is an expression in the metalanguage with no more than n+1 open
places. It is obvious that (2.5) brings Popper’s inferential definitions already
close to the way inferential characterizations were introduced in § 1.

Although Popper’s terminology is quite unfortunate, calling (2.1)–(2.4) ex-
plicit definitions of logical constants (P2, p. 218), he makes it clear at many
places that he does not want to define particular expressions of some object
language. Instead he insists that he wants a purely metalinguistic character-
ization of the logical operations independently of whether they exist syntac-
tically. The following quotations, in which the emphasis is Popper’s own, are
from P2, p. 208, ibidem, P3, p. 564, P2, p. 207, and P3, p. 562.

. . . we say that a ∧ b is a conjunction of a and b, rather than that
it is the conjunction of a and b.

. . . what we have defined is not so much the conjunction of a and
b but the precise logical force (or the logical import) of any state-
ment c that is equal in force to a conjunction of a and b.

6Actually, at many places, Popper calls principles such as generalized transitivity ‘rules’
(see P3, p. 565, and P2, passim). In a footnote on Gentzen (P4, p. 52), he emphasizes that
the metalinguistic character of his own theory distinguishes it from Gentzen’s.

7Again I use my terminology and omit, as Popper himself does, parametric context
formulas. The examples are from P2, p. 218.
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. . . we do not define, e.g., conjunction, but rather the logical force
of conjunction.

We do not even assume that the language we are discussing — the
language to which our statements a, b, c, . . . belong — possesses a
special sign for linking statements into conjunctions.

Our theory is completely metalinguistic.

This suggests that rather than read the logical constants ∧, ∨, →, ∼ in (2.1)–
(2.4) as particular term-forming operators, one should interpret Aa`A1∧A2,
Aa`A1 ∨ A2, Aa`A1→A2, Aa`∼A1 in Koslow’s sense as expressing the
availability of a set of terms A of equal logical force. One would then write

A ∈ H∧(A1, A2) for Aa`A1 ∧A2,
A ∈ H∨(A1, A2) for Aa`A1 ∨A2,
A ∈ H→(A1, A2) for Aa`A1→A2,
A ∈ H∼(A1) for Aa`∼A1,

and in general

A ∈ HJ(A1, . . . , An) for Aa` J(A1, . . . , An).

Thus one arrives at inferential definitions whose general (outer) form

A ∈ HJ(A1, . . . , An) ⇔ AJ(A,A1, . . . , An)(2.6)

corresponds exactly to (1.1) of § 1. Only the internal form of the inferential
characterizations AJ is different (see below § 2.3).8

That Popper intended something of this kind is clear from passages such
as the following (P2, p. 214, Popper’s emphasis), where he describes an im-
plication-like expression (written by Popper as a > b) as

a variable name of any statement which stands in a certain logical
relationship to the two statements a and b.

He even reads (2.1) as ‘A is a conjunction of A1 and A2 iff . . . ’, and so on
(see P2, p. 206). This makes it clear that using compounds such as A1 ∧ A2,
A1→A2, and so on, as syntactically specified terms is prone to misunder-
standings. Unfortunately, Popper often uses them in that way, for example
by substituting A1 ∧ A2 for A in (2.1) to obtain certain inference rules (see
P3, p. 565).

The reaction from the reviewers of Popper’s papers was only natural: as a
fundamental objection, they saw hidden existence assumptions in inferential

8For the sake of terminological precision it should be pointed out that for Popper an
inferential definition is an expression of the form (2.5), whereas an inferential characteri-
zation in my (or Koslow’s) sense is just its right hand side (that is, an A). Therefore I say
that Popper’s inferential definitions make use of or provide inferential characterizations.
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definitions,9 which is, of course, true, if conjunctions and other combinations
are considered terms of a particular form. There are far too many misleading
formulations by Popper which support this reading.10

Koslow’s set notation (2.6) avoids all these problems. However, when
rephrasing (2.5) as (2.6), it must be explicitly demanded, as it is demanded in
the presentation of Koslow’s theory (see (1.2)), that A(A,A1, . . . , An) char-
acterize A up to interdeducibility. This uniqueness condition is built into the
left hand side of Popper’s inferential definitions.

Thus my proposal is to read Popper’s inferential definitions (2.5) as pro-
viding inferential characterizations of logical operations in the sense of § 1, for
which both (1.1) and (1.2) hold. In other words, Popper defines logic struc-
tures 〈D, ` ,H1, . . . ,Hm〉, where H1, . . . ,Hm are logical operations inferen-
tially characterized by certain A1, . . . ,Am. This is a neat view of Popper’s
aim with a maximum of support in his papers.

2.3 The internal form of Popper’s inferential characterizations and the logic-
ality problem

The basic contrast to Koslow is that Popper imposes no specific restriction on
the form of an A(A,A1, . . . , An) except that it guarantees the uniqueness of A.
As the different patterns of the right hand sides of (2.1)–(2.4) indicate, A may
take various distinct forms. For example, (2.1) and (2.2) can be read as saying
that conjunction and disjunction are strongest elements of the domain (with
respect to ` ) such that the standard introduction rules for them are valid,
(2.3) says that an implication is a weakest element such that the elimination
rule (modus ponens) holds, and (2.4) says that the rule of self-affirmation

[∼A1]
A1

A1

(a variant of the classical reductio rule) as well as the contradiction rule

A1 ∼A1

C

are valid without maximality or minimality requirement. Only (2.3) corre-
sponds to Koslow’s idea (elimination principle plus minimality condition). An

9Most clearly Kleene (1947/1948) and Hasenjaeger (1949). Other reviews were by Curry
(1948/1949) and McKinsey (1948) (all not very favourable). For more details see Schroeder-
Heister (1984b).

10There is a single place, in P3, p. 569, where Popper claims that existence postulates
have to be ‘added’ when applying the results to some specific object language, which means
that existence of operators is not presupposed. However, this is not enough to prevent
readers from seeing implicit existence assumptions in his using terms such as A∧B, A∨B,
and so on.
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alternative definition for classical negation is given by

Aa`∼A1 ⇔ (∀C)(A,A1 `C & (A,C `A1 ⇒ C `A1))(2.7)

(P1, p. 282; P2, p. 220, note), which is a variant of (2.4). A further definition of
classical negation uses deducibility statements with multiple succedents, which
essentially is a characterization by using the excluded middle (see Appendix 2).

As an inferential definition for intuitionistic negation, Popper proposes

Aa`¬A1 ⇔ (∀C)(A,A1 `C & (A1, C `A ⇒ C `A)),(2.8)

which is obtained from (2.7) by interchanging A and A1 in the right conjunct
(see P1, p. 282, note, and P2, p. 220, note). This corresponds to the fact that
instead of classical self-affirmation only its intuitionistic counterpart

[A1]
¬A1

¬A1

(‘self-denial’ — a variant of the intuitionistic reductio rule) is expected to
hold. The right hand side of (2.8) is equivalent to A¬(A,A1) as defined by
Koslow (see § 1).11

This all indicates that the form of A is not restricted in any particular
way.12 This is confirmed also by the fact that Popper deals with classi-
cal negation extensively, which is not possible in frameworks with A having
Koslow’s restricted form, which naturally leads to intuitionistic logic. There-
fore, in Popper, A is just a metalinguistic logical formula with ‘` ’ as the only
extra-logical constant.

It is important to see that the uniqueness restriction is not as innocent
as it perhaps seems to be at first glance. It excludes certain characterizations
of well-known operations, which one would normally consider logical. Take
the negation ¬w (in the following called weak negation), which in natural
deduction is characterized by the self-denial rule

[A1]
¬wA1

¬wA1

11In fact, Popper himself (P5, p. 111) considers a version corresponding to Koslow’s.
12Perhaps except that it starts with a universal quantifier; see P3, p. 564. There Popper

states the general form of inferential definitions as

aa` the definiendum ⇔ (for every . . . : (. . .))

But even here this universal quantifier is not considered a matter of principle, but just
a description of the particular forms of inferential definitions given in the sequel to this
remark. — In P6, he explicitly discusses the possibility of characterizing logical compounds
as strongest or weakest statements for which certain introduction or elimination rules,
respectively, hold. Apart from the fact that he considers these options as two alternatives
and not opting, as Koslow does, for one of them, it is clear from the context that he does
not insist on such a form.
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alone (without the contradiction rule), and whose inferential characterization
is

Aw(A,A1) :⇔ (∀C)(A1, C `A ⇒ C `A).

That the uniqueness requirement is not fulfilled for Aw(A,A1) can be seen
as follows: suppose A¬(A,A1) is now the inferential characterization of in-
tuitionistic negation in Popper’s sense (the right side of (2.8)), that is,

A¬(A,A1) :⇔ (∀C)(A,A1 `C & (A1, C `A ⇒ C `A)).

Suppose At(A,A1) is defined as

At(A,A1) :⇔ (∀C)(C `A),

which is the inferential characterization of a unary trivial truth operation.
Obviously, both A¬ and At satisfy uniqueness. Furthermore, it is clear that

A¬(A,A1) ⇒ Aw(A,A1)

as well as
At(A,A1) ⇒ Aw(A,A1).

Therefore, if for some A1 in the given deducibility structure there are both
an intuitionistic negation ¬A1 and a truth operator tA1 available, then both
Aw(¬A1, A1) and Aw(tA1, A1) hold. This means that, if Aw is in fact an
inferential characterization, for which uniqueness holds,

¬A1 a` tA1

is valid, which trivializes the deducibility structure. Since deducibility struc-
tures, which, for some A1, contain both ¬A1 and tA1, can easily be con-
structed, Aw is not an inferential characterization. In fact, there is no in-
ferential characterization for ¬w, if the language considered is non-trivial. If
everything is deducible in the language, then, of course, every A is an infer-
ential characterization.13

Observations such as these motivated me, in Schroeder-Heister (1984b),
to interpret Popper’s theory as a theory of logicality. According to this idea,
an n-ary operation J is counted as logical if an inferential characterization

13This is an adaptation of an argument given by Popper for Johansson’s minimal negation
¬j (see P5, p. 117, and Schroeder-Heister 1984b, pp. 101ff.). I chose ¬w rather than the
slightly stronger (and more common) ¬j , as for ¬w a formula Aw(A,A1) can be given that
at least looks like an inferential characterization, whereas for minimal negation, which in
natural deduction is characterized by the intuitionistic reductio rule

[A1]
C

[A1]
¬jC

¬jA1
,

not even that is possible.
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AJ(A,A1, . . . , An) in Popper’s sense is available for it. Weak negation would
then not be logical, whereas classical negation would be so, and so on. This
interpretation has strong support from some remarks in Popper’s papers (for
example, P1, p. 286) and in particular from later remarks in the Schilpp vol-
ume (Popper 1974, p. 1096). I even argued that one might consider those infer-
ential characterizations A as fundamental that contain only the metalinguistic
operators of implication ( ⇒ ), conjunction (&), and universal quantification
(∀), as they suffice to formulate virtually all inferential characterizations. On
that view, positive logic with implication, conjunction, and universal quantifi-
cation would lie at the heart of deductive reasoning, representing some sort
of basic logic, in terms of which other operations can be characterized. I still
think this view can be upheld. However, it runs short of what Popper re-
ally intended. According to my reading now, Popper’s message is that logical
operations can be structurally characterized up to interdeducibility in terms
of deducibility, using first-order metalinguistic means only. That this might
at the same time indicate how to tackle the logicality problem, should be
regarded only as an (important) side aspect.

3 Structuralist theory versus semantics

The title of his main philosophical paper on deduction: ‘New Foundations for
Logic’ (P2), may suggest that Popper is aiming at a justification of the logical
laws. Nothing is further from the truth. His structuralist theory, as I have
reconstructed it, is a tool for metalinguistically describing logical theories,
but never for justifying them. A justification would have to develop some sort
of semantics of the logical operations and then determine which inferences or
consequences are valid, and which are not valid, with respect to this semantics.
The aim of the structuralist approach is to deal with a domain D, for which a
deducibility relation ‘` ’ is given, and to characterize the operations available
in 〈D, ` 〉. There is no normative task involved, which sometimes there is in
semantics, as a semantics can distinguish between good and bad inferences and
therefore between the right and wrong logic. The structuralist approach can
distinguish only between candidates and non-candidates for logical operations.
So Popper’s talking of ‘foundations’ cannot be understood as justificationist.

Why is Popper’s theory not suitable as a semantics? One might argue that
an inferential characterization AJ(A,A1, . . . , An) of some constant J could be
used to introduce it explicitly into the language considered, provided there
is some A such that AJ(A,A1, . . . , An) holds, which might then be called
J(A1, . . . , An). However, this is not what Popper aims at.

A strong indication for this is the fact that Popper does not consider
conservativeness a criterion for selecting certain inferential characterizations,
and for preferring them to others. Normally, in a semantic theory, when
introducing a new constant J , the new laws should not affect what can be
formulated with the ‘old’ vocabulary, that is the vocabulary without J . For
example, if I have a theory containing J1 and I introduce J2, then the new
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laws involving J2 should not enable me to derive new laws for J1 alone. In this
sense, the theory for J2 and J1 together should be a conservative extension
of the theory for J1 alone.

Now in his inferential definitions, Popper explicitly deals with the situation
where conservativeness does not hold. He does not consider this to be problem-
atic but rather an interesting case to be discussed, in particular with respect to
the relationship between different sorts of negations, such as intuitionistic and
classical ones. The general phenomenon is the following. Given two inferential
definitions A1(A,A1, . . . , An) and A2(A,A1, . . . , An), suppose that

A1(A,A1, . . . , An) ⇒ A2(A,A1, . . . , An).(3.1)

Then, owing to the uniqueness requirement, the operations characterized
by A1 and A2 cannot be distinguished. For if both A1(A,A1, . . . , An) and
A2(B,A1, . . . , An) hold, then, by (3.1), A2(A,A1, . . . , An) must hold too,
which, by uniqueness, gives Aa`B, which again yields A1(B,A1, . . . , An).

This means that, if an inferentially characterized operation is (seemingly)
stronger than another one, in the sense that it satisfies the laws of the weaker
one, then these operations cannot be distinguished; that is, the laws of the
‘stronger’ one hold also for the ‘weaker’ one, which violates conservativeness.
The prominent example, which is considered by Popper, is classical in com-
parison with intuitionistic negation. For classical negation ∼, the right side of
(2.4) (or alternatively (2.7)) is an inferential characterization A∼, for which
uniqueness holds. As classical negation is stronger than intuitionistic nega-
tion,

A∼(A,A1) ⇒ A¬(A,A1)(3.2)

is valid, which, according to the argument given above, yields

∼A1 a`¬A1,

if both classical and intuitionistic negations are available in the language con-
sidered.14 If intuitionistic negation is introduced first, then the introduction
of classical negation destroys conservativeness, as it enforces classical laws
such as excluded middle to hold for intuitionistic negation.15 The fact that,
in the presence of classical negation, no distinct intuitionistic negation can
be characterized, is not seen by Popper as a violation of any fundamental
principle, but rather a significant discovery, showing that different negations
cannot arbitrarily coexist. This makes good sense if Popper’s basic aim is not

14See P5, pp. 113f. More precisely, (3.2) holds if there is a B available such that A∼(B,A).
If double negation is not available, intuitionistic negation does not necessarily collapse into
classical negation.

15The proof in § 2.3 above, that weak negation ¬w cannot be inferentially characterized,
was already an application of this sort of reasoning. There weak negation collapsed into two
stronger operations t and ¬, which were mutually contradictory.
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semantic foundation, but structural description.16 Koslow’s theory (and also
my own in Schroeder-Heister 1984a) differs from Popper’s in that it can in
principle be turned into a semantic theory. Due to the special form of Koslow’s
inferential characterizations, conservativeness is bound to hold. The fact that
he can prove distinctness of operators is a consequence of that. Of course,
conservativeness and distinctness do not make a semantic theory yet. But the
idea that inferential characterizations start with elimination rules and char-
acterize logical compounds as the weakest sentences for which the elimination
rules are valid, suggests a semantics, according to which meaning is based on
elimination rules and other valid rules are justified with respect to them by
minimality conditions. This would be dual to verificationist semantics in the
Dummett–Prawitz tradition, which extracts meaning from introduction rules
and therefore from assertibility conditions, and justifies other valid inferences
by principles which come close to maximality conditions.17

I am not claiming that Koslow is proposing a semantics in this sense. In
fact, he makes it clear throughout that his structuralist theory does not give
certain logics or certain logical operations preference over others. I just want
to remark that Koslow’s theory with its specific form of inferential character-
izations might be given a semantic reading under certain circumstances,18 in
contradistinction to Popper, where their form remains unspecified. Popper’s
theory is a radical structuralist theory in that just the inferential role of logical
compounds is uniquely described without any further constraints. This pre-
vents a semantic reading as there are no special features like introduction
or elimination rules, in virtue of which certain laws are valid, as might be
required by a proof-theoretic semantics. On the other hand, by dealing with
syntactically specified object-linguistic operations and using a bad termino-
logy, Popper has failed to make his intentions sufficiently clear.

This is not intended as a defence of Popper’s view. Conservativeness is a
principle with strong grounding, as is the distinctness of operations character-
ized. There are good reasons to argue that, if operations are to be inferentially
characterized at all, this should be done separately and independently for each
of them, that is an inferential characterization of one operation (for example,
classical negation) should not substantially alter that of another one given
before (for example, intuitionistic negation). Therefore Koslow’s structural-
ist approach might be preferable at the end. In any case, Popper’s radical
structuralist view is a coherent approach when properly reconstructed.

16Actually, in investigating various negations, some of which can be inferentially char-
acterized whereas others cannot, and some of which can distinctly coexist, whereas others
cannot (see P5, and P1, pp. 282f., note), Popper already considers the idea of combining
logics, which only recently has gained significant attention (see, for example, Gabbay 1999).

17See Dummett (1991), Chapter 11, and Prawitz (1974), Schroeder-Heister (2006). In
this tradition the dual approach based on elimination rules is occasionally mentioned as
a possibility (see, for example, Prawitz 1971, Appendix A.2, and Dummett 1991, Chapter
13).

18Namely in cases where a syntactically specified object language is dealt with, and where
the logical operations are represented in this language by syntactical operators.
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4 Conclusion: A new view of logic?

Popper does not give new foundations for logic in the sense that he semanti-
cally justifies a logical system. Rather, the structuralist view is a descriptive
approach, providing a framework in which various different logics (and even
non-logics, as Koslow emphasized) can be defined as deducibility structures
〈D, ` 〉 with operations HJ that are inferentially characterized by conditions
AJ . If providing such a framework is considered the basic task of logic, this is
a new view of logic as a philosophical or mathematical discipline. Logic would
then take a neutral stance towards competing logical systems, and just aim
at comparing them with respect to their structural properties. This view not
only is advocated by an outspoken structuralist such as Koslow, but has been
present in certain areas of logic for two decades, especially in dealing with
alternative logics. Examples are ‘logical frameworks’ in computer science de-
scribing various logics from a general (often type-theoretic) position,19 and
also the treatment of non-classical logics in terms of principles governing the
consequence relation.20 In this sense Popper’s talking of ‘new foundations’ for
logic would just be a misleading way of proposing a new orientation of logic
as a descriptive rather than normative discipline.

This interpretation of Popper’s logical papers is much in line with his
other writings, in which he adopts a strong anti-foundationalist and anti-
justificationist point of view (see Popper 1960). It would be extremely sur-
prising if with respect to deductive logic Popper claimed just the opposite by
justifying it and laying new foundations for it. Even though the logical writ-
ings were written much earlier than his papers against foundationalism, his
main views have been there since Logik der Forschung (1935). Popper’s later
claim that classical logic is best suited for scientific reasoning, as it makes
refutations easiest (Popper 1968, § 6 (3′), and 1970, § 4), thus fitting best with
the idea of logic as the ‘Organon of rational criticism’ (Popper 1963, Chapter
1, appendix, paragraph (13)), also supports this view. Structural description
of logical systems is one issue, the question of which logic to choose for a
certain purpose is a different one, not belonging to philosophical logic any
more. The latter question has to be answered by extra-logical reasons, yet
on the basis of the structural evaluation of what the various possible systems
can achieve.

Hence the structuralist reading, for which Koslow’s theory is the best elab-
orated model, is not only perfectly compatible with Popper’s general philo-
sophical approach, but gives deductive logic a clear-cut role in his philosoph-
ical framework.

19See Huet & Plotkin (1991) and the references therein.
20See Gabbay (1994). An example is the treatment of consequence relations in non-

monotonic logics, as in the classic paper of Kraus, Lehmann, & Magidor (1990).
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Appendix 1: The axiomatization of absolutely valid rules

In P4, Popper tries to axiomatize the deducibility predicate ‘` ’ in such a
way that the structural (= ‘absolutely valid’) rules for ‘` ’ become derivable.
For deducibility Γ`A, where Γ is now an ordered list (rather than a set) of
sentences, he gives the following axioms, called Basis I :

B `A ⇔ B,B `A(A.1)

Γ`A & A,Γ`C ⇒ ∆, Γ̆`C(A.2)

(∀C)(Γ, A`C ⇒ Γ̆`C) ⇒ Γ`A.(A.3)

Here Γ̆ results from Γ by putting its elements in reverse order, that is, if Γ
is 〈A1, . . . , An〉, then Γ̆ is 〈An, . . . , A1〉. The axioms are stated in my nota-
tion, using capital Greek letters for lists of sentences and understanding that
the schematic letters A,B,C,Γ,∆ are universally quantified from outside.
Popper’s notation is less perspicuous. He combines (A.2) and (A.3) into a sin-
gle axiom which is difficult to read. Under a formalist reading of deducibility
statements, Axiom (A.3) can also be formulated as:

Γ`A holds, if for every C, the rule
Γ, A`C

Γ̆`C
is admissible.

Using (A.1), (A.2), and (A.3), Popper’s reasoning in P4, Part I, can then be
reconstructed as a derivation of all relevant structural rules.

It is difficult to see why elementary structural rules such as permutation,
thinning, or cut should and could be reduced to something even more fund-
amental. It is very questionable whether the principles considered by Popper
as a ‘basis’, are philosophically basic indeed. The standard structural rules
appear more plausible and clearcut than principles (A.1)–(A.3). (A.1) is a
special case of contraction and expansion (the dual of contraction), (A.2)
combines cut with thinning and a special form of permutation, and (A.3) is a
principle, which cannot even be formulated in the form of an inference rule,
stating some sort of inverse to cut.

This is even more a problem for Popper’s second axiomatization in P4,
Part II, which combines purely structural aspects of ‘` ’ with properties of
(object-linguistic) conjunction ∧, thus violating the idea that the structural
base should be independent of the logical operations available.

Appendix 2: Deducibility with multiple succedents

At some places, Popper uses deducibility statements whose succedent is a fin-
ite set of formulas (P4, pp. 51-53). However, in contradistinction to Gentzen’s
approach, this is not considered a primitive notion. It is defined as follows:

Γ`∆ :⇔ (∀C)((∀A ∈ ∆)(A`C) ⇒ Γ`C).
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Actually, the definition with context formulas

Γ`∆ :⇔ (∀Γ1)(∀C)((∀A ∈ ∆)(A,Γ1 `C) ⇒ Γ,Γ1 `C)

would be more general. The definition of deducibility with multiple succedents
gives Popper the possibility to define the refutability of a list of formulas Γ as
the limiting case where the succedent ∆ is empty.

Using his definition of multiple succedent deducibility, in P5 Popper gives
an inferential definition of classical negation as follows (p. 112):

Aa`∼A1 ⇔ (A,A1 ` & `A,A1)

which would have to be spelled out as

Aa`∼A1 ⇔ ((∀C)(A,A1 `C) & (∀D)(A`D & A1 `D ⇒ `D)).

This means that classical negation is characterized by the contradiction rule
and by the classical dilemma (which corresponds to the law of excluded mid-
dle), or, as Popper puts it, ‘the classical negation of b can be defined (as
Aristotle might have defined it) as that statement which is at once contradic-
tory and complementary to b’ (ibidem).

Unfortunately, Popper only briefly mentions Gentzen’s idea of multiple
succedent sequents in a footnote (P4, p. 52).
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