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Preface

The proceedings of the informal logic colloquium held in March 1990 at the Seminar für

natürlich-sprachliche Systeme (SNS) of the University of Tübingen have been available

initially as a printed report and later as an internet resource that could be downloaded

from my website. As many of their results remain interesting, and as there have been

occasional references to these papers, they are republished here with a regular DOI to

facilitate access and citation.

Tübingen, June 2022

Peter Schroeder-Heister
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Preface 

In March 1990 an informal logic colloquium was held at the Seminar fur 
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not devoted to a specific topic but covered various logical issues, presented 

by researchers from Tiibingen and elsewhere. The style of these proceedings 

is informal, as was the colloquium - some authors submitted extended 
abstracts whereas others submitted drafts of papers or full papers. 

The order of papers in this volume corresponds to the order of presentation 

at the colloquium. 

This is a prepublication, so authors retain full copyrights. 

Tiibingen, June 1990 
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BOUND~ FOR CUT ELIMINATION IN INTUITIONISTIC PROPOSITIONAL LOGIC 

Jorg Hudelmaier 

Synopsis 

The central theorem of Gentzen's theory of proofs states that every deduction d (in classical 
or intuitionistic, propositional or quantifier logic) can be tranformed into a deduction G(d) 
which does not make use of the cut rule. Avoiding the use of a particular proof rule will, 
obviously, have the effect that G(d) becomes longer than d, and Gentzen's algorithm for cut 
elimination establishes an upper bound for the length l(G(d)) of G(d) (GENTZEN [35).) In 
this article, I shall construct a (different} cut free deduction J(d} for the case of 
intuitionistic propositional logic and derive considerably sharper upper bounds for l(J(d}). 
Also, I shall use the methods developed for this purpose in order to set up an effective 
decision method. 

Author's address: 

Jorg Iludelmaier 
Seminar fur natlirlich-sprachliche Systeme 
Universitat Tlibingen 
Biesinger Str. 10 
D 7401 Tiibingen 
West Germany 
Phone: (049) 7071-294279 
Email: NFHUJAl © DTUZDVl BITNET/EARN 
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Gentzen's upper bound for l(G(d)) depends on both the length l(d) and the cut degree g(d) 
of d, viz. the maximum of the degrees, increased by I, of cut formulas used in d; it has the form 

2· 
l(G(d)) ~ 2 (g( d) 2's) 

The reason for the appearance of these h)'perexponentials lies in the nature of Gentzen 'a a)gorithm 
which proceeds by a double induction on both n = l(d) and g = g(d) with respect to the lexi­
cographical order of pairs (n,g). It follows from results of WILKIE-PARIS [87] that in the case of 
quantifier logic the enormity of these bounds cannot be avoided: there is no constant c such that 
2c" would be an upper bound independent of the cut degree of the particular d. 

On the other hand, it is known that in the case of classical propositional logic a deduction d 
can be transformed into a cut free deduction K( d) such that already 

g(d) 
l(K(d)) ~ 22 · l(d), l(d) 

will hold (cf. GORDEEV [87]). This leads to the question whether a similar improvement over 
Gentzen's non elementary bound is also possible in the case of the intuitionistic propositional 
calculus LJ. I shall answer this question affirmatively by defining an operator J acting on 
LJ-deductions d with cut and producing cut free LJ-deductions J(d) such that 

2
2, g(d) 

l(J(d)) ~ 22 ·l(d)./(d) 

Having completed this task, I shall apply the methods used for these constructions to attack 
the problem of giving an efficient, easily implementable decision procedure for intuitionistic 
propositional logic. This procedure will be based on a special calculus for which, by its internal 
structure, every sequence of backward applications of its rules must terminate after a number of 
steps which is in a simple way bounded by the complexity .of the starting sequent. This gives a 
tableau like procedure which may be implemented by a straightforward depth first search program. 

The method to be used will obviously be different from Gentzen's lexicographic induction, 
namely I shall apply the technique of inversion rules. Inversion· rules for sequent calculi (especially 
the classical sequent calculus) are well known, and a strategy to use them in order to eliminate cuts 
from a classical deduction d is described e.g. GOR.DEEV [87]. 

Now for the classical calculus we have a complete and well known list of inversion operators 
for all connectives on both sides of a sequent: 

!AL M ==} uAv,N M ==} u,N 
Iill M ==} uAv,N M ==} v,N 
Iv M ==} uvv,N M==>u,v,N 
I• M ==} u->v,N M,u ==> v,N 
EA M,uAv ==} N M,u,v ==} N 
EvL M,uvv ==} N M,u ==} N 
EvR M,uvv ==} N M,v ==} N 
E-+L M,u->v ==} N M ==} u,N 
E->R M,u->v ==} N M,v ==} N 



(Here the left column denotes the name of an operator, the middle column shows the sequent it is 
applied to and the right column gives the resulting sequent.) For intuitionistic logic, however, a 
calculus is used which has sequents with only one formula on the right hand side. So the Iv- and 
E-+L-rules are not available because they would produce non valid sequents. As for Iv, used on the 
left premiss of a cut with a disjunction, its missing is not serious, and the removal of the cut 
formula from the subdeduction leading to that premiss can be managed by the familiar methods. 
The case of E..,L is a different matter, and .for this operator I shall substitute three new ones which 
perform the transformations made in HUDELMAIE!l [87) : 

if M,(uAv)..,w ~ r is derivable then so is M,u..,(v..,w) ~ r 
if M,(uvv)..,w ~ r is derivable then so is M,u- ,v..,w ~ r 
if M,(u..,v)..,w ~ r is derivable then so is M,u,v..,w ~ r . 

Clearly, these transformations act precisely on the sequents which E-+L would be applied to, 
and appropriate applications of the cut rule will show them to be correct. In order to turn them into 
real inversion rules, I have to construct operators E--tA, E-tv and E-+-t which transform cut free 
deductions of the left sequents into cut free deductions of the respective right sequents. This I do in 
three lemmas, and it turns out, that these operators may be defined in such a way that E....., does 
not increase the length of the given deduction, while E-+A and E-+v at most double this length. 

These transformations having been constructed, it is easily seen that E--M and E-tv may be 
used for reducing cuts in the same way as.the well known classical inversion rules. As for E-H, its 
application is only useful in certain situations. But in this case there is a special transformation 
which reduces all other cases to this particular one. The only remaining case, therefore, is when the 
left immediate subformula of our implication is an atomic formula.For this type of formula we do 
not have any inversion rule at all, but in this case also all the various forms of deductions which 
may arise, may be reduced to a single possibility, which can be handled in a straightforward way. 

Carrying out all these transformations will, obviously, increase the lengths of deductions, 
and so I will need recursion parameters in order to measure them. I begin by defining a new degree 
function deg for formulas: 

deg{v) 
deg{uAv) 
deg(uvv) 
deg{u..,v) 

=2 if v is atomic, 
=deg{u) · (l+deg(v)) 
=l+deg(u)+deg{v) 
=l+deg(u) • deg{v). 

If d is a deduction and V is a (full) branch of d then I set 

j(V) := Sum of the degrees of cut formulas on V 
and 

j(d) := Maximum of j(V) for all branches of d . 

The reason behind these particular choices is simply the fact that the function j defined in this man­
ner depends only linearly on the length of the deduction and will decrease under application of the 
operator RED to be defined now. 

THEOREM 1 There is an operator RED converting every deduction d of a sequent s with 

0 < j(d) 

into a deduction RED(d) of s such that 

j (RED(d)) < j(d) 

which at most doubles the length of d : I (RED( d)} ~ 2 • I ( d). 

From this result immediately follows 
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THEOREM 2 There is an operator J converting every deduction d of a. sequent s into a deduction 
J(d) of this same sequent such that 

J(d) is cut free and l(J{d))5 2j(d) • l(d). 

2g 
and since for the traditional cut degree g of a formula v we have deg(v)5 22 and since the 
maximal number of cut formulas on a branch of a deduction d is bounded by l(d), this gives the 
result mentioned above. 

Turning now to the problem of giving a decision procedure for the calculus LJ, I introduce 
the calculus LH which works with the same sequents as LJ and has the same axioms as LJ, namely 
all sequents of the form M,v =} v and whose rules are 

{IIIA) 

{IIIvL) 

{III->) 

N =} u 

M =} uAv 

M=} u (IIIvR) N=} V 

M =} uvv M =} uvv 

M,u => v 

M ==> U-IV 

{!IE-la) 

{IIE-1v) 

M,a, v => r 

M,a,a-tv =} r 

[a atomic) 

M,u--tw,v-tw ===> r 

M,{uvv)->w=} r 

{HE->A) 

{IIE-1-1) 

(IIEA) 

(IIEv) 

M,u,v => r 

M,uAv===> r 

M,u==} r M,v => r 

M,uvv => r 

M,u-1(v-1w) =} r 

M, (uAv)->w =} r 

M,u,v-tw => v M,w==>r 

M,(u-1v)-1w =} r 

This calculus has the property that for every one of its rules with premisses s' and s" and 
conclusions we have deg(s')<deg(s) and deg(s")<deg{s), where deg(s) is the sum of all deg(v) for the 
formulas v of s. Thus every sequence of backwards applications of rules of LH starting with a 
particular sequent s breaks off after at most deg(s) steps. Therefore the calculus LH has the 
properties promised above. All that remains is to prove that it is equivalent with LJ. 

While it is easily seen that every LH -deduction may be transformed into an LJ -deduction, 
the con verse part needs two further lemmas dealing with properties of LJ: · 

LEMMA There is an operator EP acting on cut free LJ-deductions d such that all the 
impure instances of (E-1) have the same principal formula u->v. EP(d) has the same 
endsequent as d, is cut free, contains only pure instances of (E-1) and satisfies 
l(EP(d)) ~ 2• l(d). 



(Here an instance of (E-> ) with principal formula u• v is called pure if 

u is atomic and the left premiss is an axiom, or 

u is not atomic and the left premiss is the conclusion of an I-mle with 

principal formula u.) 

LEMMA There is an operator Q acting on cut free and pure LJ-<ieductions. Q(d) is an 
LH-deduction with the same endsequent s as d satisfying 

l(Q(d)) ~· 2deg(s), /(d). 

Together with lemma 4, theorem 2 and the above remark on transforming Lil-deductions 
into LJ-deductions this shows 

THEOREM 3 The calculi LJ and LH are equivalent: every LR-deduction is, essentially, an 
LJ-deduction, and if Pis the iteration of EP then the operator D = P•Q transforms 
every cut free LJ-deduction d into an LH-dednction Q(P(d)). 
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Makanin's Algorithm -
A Survey and a Reformulation 

Klaus U. Schulz 
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Biesingerstr. 10, D-7400 Tiibingen, W.-Germany 

E-mail: nfsejal@dtuzdvl.bitnet 

Abstract: Makanin'• algorithm [Mak) shows that it is decidable whether a word equa­

tion haa a solution or not. Makanin'• decision procedure ia extremely complex and waa 

not d-igned for a direct implementation. But, • ince word equations oft"er a faacinat.­

lng tool for the general treatment of strings efl'orta were made to improve the situation 

(Pecuchet (PecJ, Jaffar (Jaf'), Ko4ciel• ki-Pachol• kl (KoP]) and an implementation io avail­

able now (Abdulrab (Abd]). We give a short introduction to the algorithm and preHnt 

then a pre-algorithm which allowa a very simple partial analysis of word equation• • In 

some case• this analysis is even complete, in the remaining cases it infl uencea and aim­

pliflea the remaining search which follows then Makanin'• strategy. In combination with 

another result (to be described in a forthcoming paper [Sch ]) we find a solution S of 

a solvable equation E of length d now after at moat J transformation steps following d 
steps of the pre-algorithm, where J is the sum of the lengths of the components Xi of S. 

Introduction and Background 

A word equation is an expression of the form o-1 .•. Uk == O"k+J ••• uk+l (k, I ? 1) 
with letters u; from a two-sorted alphabet X UC where X = { x1 , ... , Xn} is a finite set of 
variables and C = { c1 , •.. , Cm} ( m ? 1) is a finite set of coefficients. A solution (unifier) 
is an assignment of words X; in the coefficient alphabet (the combined alphabet) to the 
variables x; such that both sides of the equation become identical when all occurrences of 
variables are replaced by these words. Thus, (X, Y) = (ab, b) is a solution of the equation 
ayy == xb with variables x and y, for example. A forerunner of Makanin's algorithm is 
Plotkin's semi-decision procedure for a-unification ([Pio], see also Siekmann [Sie]). Since 
some ideas of this procedure are relevant for Makanin's algorithm and in particular for our 
pre-algorithm we want to sketch the main idea. Suppose we want to find the solutions of 
ayy == xb. This is an equation with head ( a, x ). For any solution (X, Y) with nonempty 
words X and Y, either X = a or X = aX1 • Accordingly we may try to solve the two 
successor equations ayy == ab and ayy == ax1 b. But now it amounts to the same to 
solve yy == b or yy = xb. (We use x instead of x 1 as variable. Thus the replacements 
are x-+ a and x-+ ax.) Equations of the latter type with two variables at the head have 
three successors corresponding to the possibilities X = Y ( replacement x -+ y ), X = Y X 1 
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(x --+ yx), Y = XYi (y --+ xy). In our case we get the equations y == b, y == xb and 
yxy == b. Thus, new variable names are always avoided and all replacement steps are 
followed by a second step where the resulting two identical symbols at the head are erased. 
It should be clear on intuitive grounds that the procedure establishes the solvability of any 
solvable equation. If variables have several occurrences, however, it might happen that 
the transformation steps lead to equations which are larger and larger and the algorithm 
may not terminate in the unsolvable case. The equation xyaxby == yxbyax, for example, 
has the successor xyayxby == yxbyayx corresponding to the case X = YX1 , and if we 
continue to apply the same replacement x--+ yx, then the number of symbols will grow and 
eventually exceed any given bound. A similar combinatorial explosion will occur in every 
straightforward semi-decision procedure and for this reason it was an open problem for 
years whether the solvability of word equations is decidable or not. Returning to Plotkin's 
procedure we may observe, however, that there is an important subcase where the length 
of any successor equation cannot exceed the length of the original equation: if no variable 
occurs more than twice, then at most two new symbols may result from a replacement step. 
Then, at the second step, two symbols at the head are erased. Thus the length cannot 
grow, only a finite number of equations may occur in the search tree. We may now stop 
every branch as soon as we find an equation which is isomorphic to a predecessor. (The 
argument is, roughly, the following: whenever we would find a solution, following such a 
path, then there exists a similar solution in a different path starting at the predecessor.) 
Following this strategy solvability can be established by means of a finite search tree. 

1 Makanin's Algorithm - A Survey 

How is it possible to restrict the combinatorical explosion? Makanin's decidability 
result is strongly based on the following theorem of Bulitko [Bul]: 

Theorem 1: If a solvable equation has length d, then the equation has a minimal 

solution where exponent of periodicity satisfies s ::s; (6d)2••. 

A solution S = ( X 1 , ... , X n) is minimal if the length of the word X 1 ... X n is minimal 
with respect to the class of all solutions. The exponent of periodicity of S is the maximal 
number of periodical (consecutive) repetitions of a non-empty subword in a component X; 
of the solution. It was Makanin's central idea to use instead of word equations a new type 
of structures, the so-called position equations, which allow 

- to encode constraints which lead to a lower bound for the exponent of periodicity of 
arbitrary solutions and 

- to put the combinatorial explosion ( which may be the result of the analysis via iterated 
transformation steps) into these constraints. 

For any number k the number of all (relevant) position equations with associated lower 
bound b < k is finite. Bulitko's theorem allows to exclude all position equations where b 
is to large - the search space becomes finite. For the rest of this section we want 
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(1.1) to illustrate the concept of a position equation and the type of constraints Makanin 
uses in order to get a lower bound for the exponent of periodicity of a solution, and 

(1.2) to give a short description of the algorithm•. 
The second section will then be used to partially describe our own reformulation. 

1.1 Domino-Towers, Position Equations and Boundary Connections 

Definition 2: The sequence (X1 , ... , Xn) of non-empty words ("stone types") may 
be arranged to a domino-tower< XJo.., B,, C,, S, >i<i<k of height k > 0 if the X, may be 

' - -ordered to a sequence 

(XJo.,,XJo.2 , •••••••••••••••••••••••••••••••• ,XJo..) 

(possibly with many occurrences of the X;) with decompositions XJo.; = B,C, (for non­
empty words B;, C,) (l $ i $ k) such that B,+1 = S,B, (1 $ i $ k- l) for possibly empty 
words S1 , ... ,Sk-l and C,R; = C,+ 1T; for possibly empty words R, and T, (1 $ i $ k-l). 
The name" domino tower" is motivated by the following figure. Here all parts of consecutive 
words which have direct contact must be equal. Parts which do not have direct contact 
are not restricted like that. 

Shift I 
no Shift I 

"',K/#ff';.J/1$ 
Bk-2 ,di% 

B,_ 1 ,.,,;,.;;,~i,F,e!ffi',-±"5!/'i!i'\c!,i9SE:1-.',;,";,.'';;:''E+L,,+""1I""'J"'q"' C•-2 
B, c._, 

c. 

R, 

c, 
c, x,, 

x,, 
x,, 

x,. 
x,, 

(R. = T, = empty) 

* For a complete description it would be necessary to consider an enormous amount of technical detail,. 

This is impossible here. Thus we must necessarily stay at a rather informal level. We refer to [Mak) and to our 

forthcoming paper [Sch]. 
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Let IX I denote the length of the word X. 

Theorem 3 ([Mak], Lemma 1.4): Suppo&e the word& X1, ... ,Xn may be arranged to 
a domino tower< X,..,B;,C;,S; >i<i<k of height k > 0. If the word& S1, ... ,Sk-1 &ati&fy . --
the "&hift condition" 

j - i 2: K => IS;S;+I ... S;-1S;I > 0, 

then &ome word X, ha& the form X, = P•Q, where P i& non-empty and ha& s 2: 1tiT - 1 
con&ecutive repetition&. 

Let us now illustrate the concept of a position equation: 

Example 4: Here is the graphical description of one of several position equations 
which are assigned to the equation axbzx == zczyyy: 

a X} b ~ x, 

iii 
C z2 1lL Y2 ih 

In a position equation, all variables have exactly two occurrences ( this may be seen as an ar­
tificial imitation of the particular situation where Plotkins algorithm defines a decision pro­
cedure ). The relative lengths of all occurrences of variables and coefficients are marked by 
means of boundaries. A solution of such a position equation is an assignment of non-empty 
words to the indecomposable columns which respects occurrences of coefficients and assigns 
(via composition) the same word to both occurrences of the same variable. In our example 
we have eight indecomposable columns. The words a, c, a, baca, b, a, ca, baca represent a 
solution, the values of the variables of type x,y and z are (X,Y,Z) = (cabaca,baca,a). 
The exponent of periodicity of a solution of a position equation is, by deinition, the expo­
nent of periodicity of the words which are assigned to the variables (which is trivial in our 
example). As a result of transformation steps (which are applied to construct successor 
equations which are "nearer to solutions" in some sense) more complex successor position 
equations may occur which include some boundary connection&. The definition of a solu­
tion then has to be enriched: a new condition demands that the words which are assigned 
to the variables may be arranged to a domino tower of a certain length. If the position 
equation satisfies certain normalization criteria ( which will not be discussed here), then 
these domino towers satisfy the shift condition of theorem 3 and we get in fact a lower 
bound for the exponent of periodicity of an arbitrary solution, as described above. Let us 
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give an example, to get an impression. The position equation 

4 8 
X 

_b_ 
y 
z 
r 
x 

a (4,x,x,x,z,B). 

z 
f 

ii 

A 1 A2 Aa A4 As As A1 A s 

has a boundary connection ( 4, x, x, x, z, 8) imposing the following restriction on solutions 
S: suppose S assigns the nonempty words A1 , •.. , As to the indecomposable columns. 
Then boundary 4 defines the prefix Bf = A 1 A 2 A 3 of the word X assigned to x. Now S 
assigns the same word X to x. Thus Bf is also a prefix of the word A 2 ... As. The position 
of x and x defines a second prefix BI = A1 Bf of X. Again, BI is also a prefix of A2 ... As 
and the relative position of x and x shows that B3 = A 1BI is a prefix of X. B3 is a prefix 
of A 2 ... As which now determines the prefix Bj = B3 of the word Z which is assigned to 
z (the left boundaries of x and of z coincide). Now Bj is a prefix of A3 ••• As. S Mtisfies 
the boundary connection ( 4, x, x, x, z, 8) if Bj = A 3 A 4 A 5 A6A1 (8 is the right boundary of 
column 7). To be a solution, S has to satisfy all boundary connections. In our example 
this implies that the components X and Z of S may be arranged to the following domino 
tower: 

B 
4 

I A1 A2 A3 

I A2 ... 
I A1 ... 
I A2 ... 

A1 ... 
A2 ... 
A2 ... 
A3 ... . .. A7 

s 

C 

A4 AS AS A7 

. .. AS 
. .. A7 I 
. .. AS I 

... A? I X 

... ASl x 
. .. A6I z 
AS I z 

I 

I 

X 

x 

X 

x 

Thus theorem 3 gives a (still trivial) lower bound for the exponent of periodicity of such a 
solution. 

We may now describe the search tree of an equation E in the usual formulation of 
Makanin's algorithm. 
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1.2 The Search Tree 

In the usual formulation of Makanin's algorithm, the word equation Eis i=ediately 
translated into a corresponding finite set SPE(E) of position equations. E has a solution 
if and only if at least one element PE of SPE(E) has a solution. Then a transformation 
procedure (followed by a normalization step) is used in order to construct for any such 
position equation PE a finite set of successors SPE(PE) such that PE has a solution if 
and only if at least one position equation PE' E SPE(PE) has a solution. Moreover, if 
E ( or PE) has a solution with exponent of periodicity s, then the corresponding solution 
of the successor PE ( or PE') has exponent of periodicity s' ~ s. Transformation has the 
ultimate goal to erase a left part of the position equation, propagating constraints to the 
remaining part. For this purpose, sometimes boundary connections have to be introduced. 
Normalization is necessary in order to guarantee that all boundary connections satisfy the 
shift condition ( compare theorem 3). The second crucial property of the transformation 
and normalization steps is that they never enlarge the number of occurrences of variables 
and coefficients. Only the length and the number of boundary connections may grow. The 
complete definition of a position equation (which is technically sophisticated and will not 
be given here) shows that also a bound for the number of boundary connections may be 
given and that for given number of occurrences of variables and coefficients and upper 
bound for the length of connections the number of possible position equations is finite•. 
Thus, if we follow an arbitrary path of the resulting tree, three possibilities exist: in the 
first case we find a position equation which is solvable or unsolvable in some trivial sense. 
Second, we might find a position equation which is isomorphic to a predecessor equation 
which has occurred earlier in the same path. Then we may stop (the argument is the 
same as in the special subcase of Plotkin's procedure mentioned in the introduction). In 
the remaining case, we will eventually find a position equation where the associated lower 
bound for the exponent of periodicity of an arbitrary solution exceeds the upper bound for 
the exponent of periodicity which we find for a minimal solution of E, applying theorem 
1. Thus, concentrating the search on minimal solutions, we may stop at this point, too. 
We end up with a finite search tree. 

The transformation steps which are given in current formulations of Makanin's algo­
rithm depend from the type of a position equation. A left part is erased only in certain 
situations. We mention a result of [Sch]: 

Lemma 5: There exi,ts a transformation procedure which applies to arbitrary position 
equations and has the property that at each transformation step a non-trivial left part of 
the position equation is erased. 

• More exactly this is true only for the set of all normalized adminible poaition equation,. But we do not 

wa.nt to go too far into technical details. 
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2 SME-Systems 

HE is translated into SPE(E), then the position of the variables in such a position 
equation reflects exactly the position of the corresponding variables of the word equation 
(compare example 4). This method has two disadvantages: (1) We have to deal with rather 
complicated structures quite from the beginning. (2) H the word equation is long, then 
the corresponding position equations are horizontally very long. Since the analysis via 
transformation steps proceeds horizontally from left to right a solution is typically found 
only after a considerable number steps. 

We suggest a reformulation of the algorithm. Let us briefly sketch the new picture of 
the search tree, definitions and details are given immediately. We start translating the word 
equation E into an equivalent special multi-equation system ( sme-system) SM E( E). Such 
an sme--system may be regarded as an equivalence class describing a whole set of position 
equations. Nevertheless, both the internal representation and the transformation of an sme­
system is much simpler than for the corresponding position equations. As long as such a 
system contains at least one ordinary two-sided equation we continue with transformation 
steps similar to those of Plotkin's procedure which are followed by simplification steps in 
some cases. This first part of the search tree, where we use sme-systems only, is called 
the flat part of the search tree and denoted by T11at(E). H the word equation E does 
not have a variable which occurs more than twice, then the whole search tree TMak(E) is 
flat. In the other case, we might eventually reach an sme--system which has only multi­
equations with at least three sides (we say that we have reached an open leaf of the flat 
tree). These structures are now translated into position equations which are analyzed 
as usual, using the uniform transformation given in [Sch]. The position equations which 
we get via translation of sme--systems are horizontally very short and preferable to the 
structures of the traditional approach. 

Definition 6: An I-sided multi-equation ME over C, X has the form 

0'1,1 • • · 0'1,k 1 == 0'2,1 • · · 0'2,k2 == · • • == 0'/,1 ·,, CT/,k1, (1) 

where I ~ 2, k; ~ 1 (1 S i S I) and u;,; E CU X ( 1 S j S k;, 1 S i S 1). A solution of 
ME is a sequence 

of non-empty words over C such that all sides of (1) become graphically identical when we 
replace every occurrence of x; by X; (1 Si Sn). Fork S k;, the word S(u;,1 ..• u;,t) is 
defined in the obvious way, regarding Sas a morphism fixing the coefficients (1 S j SI). 
A special multi-equation system (sme-system) is a system of multi-equations where no 
variable occurs more than twice. A sequence (2) is a solution of the system SME = 
{ M E1 , .•. , ME,} if S is a simultaneous solution of all multi-equations ME; (1 S i S r ). 
An sme-system SM E may be empty, in this case every sequence of the form (2) is a 
solution. 
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Definition 7: Let E be a word equation. The sme--system SME(E) canonically 
associated with E is defined as follows: for every variable x;, then; occurrences of x; in E 
are replaced by distinct new variables x;,1 , •.• ,x;,n,· To the resulting equation we add a 
multi-equation x;,1 == ... == x;,,., in case n; > 1. 

Example 8: The equation axbzx == zczyyy with variables x, y and z is translated 
into 

with principal column ( ax1 bz1x2 , z2cz3 y1y2 y3)' and the columns associated with x, y and 
z. 

Lemma 9: If E has a solution S = (X1 , ... ,Xn), then SM E(E) has a corresponding 
solution S' which auigns X; to every variable x;,;, If SME(E) has a solution S', then the 
words S'(x;,;) coincide (1 :5 j :5 n;). The assignment S(x;) = S'(x;,1 ) (1 :5 i :5 n) defines 
a solution of E. 

We are now ready to start the description of T11at(E).* 

Definition 10: For every word equation E, the fiat search tree T11at(E) is defined as 
follows: 

- The top node of T11at(E) is labelled with SME(E). 
Suppose '7 is any node of T11at(E), labelled with the sme--system SME. In the following 
cases, '7 is a leaf of T11at( E): 

- If SM E is empty, then '7 is a succe•sful leaf. 
- If SME is non-empty and all two-sided equations been completely resolved, i.e. if all 

multi-equations of SME are at least three-sided, then T/ is an open leaf of T11ai(E) 
(the term "open" indicates that '7 is not a leaf of TMak(E)). 

- If SM E is isomorphic to the label of a predecessor node, then '7 is a blind leaf. 
- If SME contains an equation ME with head (a;,a;) with two distinct coefficients a; 

and a;, then '7 is a blind leaf. 
In the other case, if SME ,f 0 has a two-sided equation and is not an isomorphic copy 
of a predecessor, then the successors of '7 are defined by means of a transformation and a 
simplification procedure. For every sme-system SME; E Simpl(Trans(SME)) the node 
T/ has one successor 'Ii labelled with SME;. The transformation steps follow exactly the 
corresponding transformation steps of Plotkin's procedure as described above. 

• Transformation ( of the sme-system SM E with two-sided equation ME): 

• To simplify discussion we will not mention the various possibilities to recognize sm~systems which &re 

unsolvable in a more or less trivial sense. Thus, a more complete description would include va.riou1 methods of 

pruning blind branches. 
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(T1 ) Suppose that ME has head (o-,o-) with two identical entries. Then delete the head 
symbols of ME and leave the other multi-equations unmodified. The resulting system 
is the label of the unique successor of T/ • 

(T2) Suppose that ME has head (x;,,;.,x;,,;,) with two distinct variables. Trans(SME) 
has three elements SM E; (1 :S i :S 3): 
(1) To get SME1 , replace all occurrences of x;,,;, in SME by x;.,;.- Then delete the 

head symbols of the distinguished equation and leave the other multi-equations 
unmodified. 

(2) To get SME2 , replace all occurrences of x;,,;, in SME by x;,,;.x,,,i,· Then 
delete the head symbols of the distinguished equation and leave the other multi­
equations unmodified. 

(3) To get SME3 , replace all occurrences of x,,,;. in SME by x;,,;,x,,,;.. Then 
delete the head symbols of the distinguished equation and leave the other multi­
equations unmodified. 

(T3) Suppose that ME has head (x,,;,ah) or (ah,x,,;), where ah is a coefficient symbol. 
Trans(SME) has two elements SME1 ,SME2 : 

(1) To get SME1 , replace all occurrences of x,,; in SME by ah. Then delete the 
head symbols of the distinguished equation and leave the other multi-equations 
unmodified. 

(2) To get SME2 , replace all occurrences of x,,; in SME by ahx,,;. Then delete the 
head symbols of the distinguished equation and leave the other multi-equations 
unmodified. 

After the transformation it might happen that one side of the distinguished two-sided 
equation of a structure SM E; is empty while the other is not. Then SM E; is not an sme­
system in the sense of definition 1. We erase it. If both sides of the two-sided equation are 
empty after the transformation, then this equation is erased (resolved). If there is another 
two-sided equation left, then we continue. Otherwise, if the system is non-empty we have 
reached an open leaf. 

• Simplification (of the sme-system SME): 

The following simplification rules are applied until the system is erased or a system 
SM E' is reached which cannot be further simplified by the rules. 

(S1 ) If the multi-equation ME in SM E has two identical sides of the form x,,; (where x,,; 
is a variable), then erase both sides. If now ME has only one side, then erase ME. 

(S2 ) If SM E contains a multi-equation ME which has a side of the form a, (where a; is a 
coefficient symbol) and if all other sides of ME have length 1 and are variables, then 
replace all occurrences of these variables in SM E by a,. Erase ME. 

Theorem 11: (a) The maximal length of a path in T11at(E) does not exceed the 
number (d!)3, where d = 2nl(E). 
(b) E has a solution if and only if T11at(E) has a succesJjul leaf or T11at(E) has an open 
leaf which is labelled with a solvable sme-system. 
(c) If no variable occurs more than twice in E, then T11at(E) does not have an open leaf. 
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E is solvable if and only if T11at( E) has a successful leaf. 

Remark 12: It is simple to keep track of the solutions. We augment SM E(E) by 
the additional substitution list 

( Xt,1, X2,1,.,,, Xn,t), 

All replacements which occur during transformation or simplification are also applied to 
this sequence. If the rule (S1 ) is applied with the variable x;,1 and ME is not empty, 
then we replace x,,1 in the substitution list by one of the remaining sides, etc. If we reach 
a leaf labelled with an empty sme-system, then the substitution list defines a unifier of 
the equation E. The technique may even be optimized since the structure of the columns 
associated with the variables reflects the actual substitution list. 

Example 13: Consider the equation axbzx == zczyyy. SME(axbzx == zczyyy) 
has the following representation: 

Replacing z 2 by a and using (S2 ) we get 

(-,-,a). 

Here a is the z-entry of the substitution list. It is not necessary to store x- and y-entries 
since we might use any line of the corresponding columns as substitution value. Combining 
now two steps, we replace x 1 by cax1 • After this step we may replace y1 by x1: 

(-,-,a) -+ (-,-,a). 

Combining several steps, we may replace y2 by bay2 , x2 by y2 x 2 and y3 by x2 : 

(-,-,a). 

Now the principal column is completely resolved. We continue with the column associated 
with x and add the value cax1 to the substitution list (as x-entry). Combining two steps, 
we may replace y2 by ca, then x2 by x1: 

Xt 

baca 
X2 

( cax1, -, a) -+ 

X1 

baca (cax1 ,-, a). 
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By (S1 ), the matched occurrences of x 1 may be erased, substituting baca for x1 in the 
substitution list. The resulting column has only one line baca which is used as substitution 
entry for y and erased. The final sme-system is empty and the substitution list shows that 
(X,Y,Z) = (cabaca,baca,a) is a solution of axbzx == zczyyy. 

Remark 14: When we reach an open lea£ of 'TJ1at, then the naive transformation 
strategy leads again to an explosion of the number of symbols: if, for example, a multi­
equation has the three-valued head (x,y,z) for variables x,y and z with two occurrences 
and we consider the case where X is assumed to be a proper prefix of Y and of Z, then 
four new occurrences of x are introduced, by the replacement. Then, when we take the 
tail, only three occurrences of x are erased and the number of symbols grows. Thus we 
have reached the point where we have to return to the concept of a position equation. The 
translation of an sme-system into a set of position equations is obvious. We only have 
to consider all possibilities how the entries of distinct lines of the same multi-equation 
may be positioned with respect to each other. Then, after introducing the corresponding 
boundaries, variables which have only one occurrence are erased. 

Remark 15: Since the structure of the variable columns of SME(E) reflects the 
structure of the components of a solution S = (X1 , ... ,Xn) of E lemma 5 shows that any 
solution S of an equation E of length dis found after at most I= IX1 ... Xnl transformation 
steps following the first d transformation steps of the flat tree. 
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Two Theories of Propositional Quantification1 

Nicholas Asher 

The University of Texas at Austin & IMSV Stuttgart 

! .Introduction 

Natural language is replete with reference to abstract entities like propositions, 

facts and their companion (and less abstract) events. Sentential nominalizations like 

those underlined in (1) apparently refer to such abstract entities. We also appear to 

quantify over such entities in (2): 

( La) That Maty is wise is true. 

(Lb) Maty's having won the Mathematics prize swprised the professors. 

(l .c) The fact that Stan was Director made the Institute a lively place. 

(Ld) The idea of Stan's flying to Austin was intriguing. 

(2.a) Everything Mary believes is true. 

(2.b) Every fact you discover may be relevant. 

(2.c) Nothing you have said convinces me. 

The question I would like to pose in this essay is a familiar one from analytic 

philosophy since the turn of the century:2 what is the logical form underlying this 

apparent reference and quantification over abstract entities? Two general theories 

emerge, one a first order theory, the other a higher order theory of quantification.3 The 

difficult task for such theories is to develop a coherent theory of quantification over 

abstract objects that are suitably descriminated to be objects of attitudes. The task is 

11 would like to thank Dan Bonevac, Anil Gupta, Herbert Hochberg, Rob Koons, Geoffrey Laforte, 
and Per Lindstrom for helpful discussions on these matters. I would also like to thank Rich Thomason 
for comments on an earlier draft of this paper read at the Second Conference on Logic and Linguistics in 
Tuscon CA (1989). A drastically shortened version of some of the ideas in this paper appeared in the 
proceedings of TARK III. Unfortunately also some errors occur therein that I have tried to correct here. 
More spec1fically, I did not in the T ARK paper make clear in my construction that I was claiming a 
completeness proof for the axiomatization presented here below as R1 relative to the class of all fixed 
points that could be defined by consistent additions to base partial models. I hope to have corrected this 
here. 
2See for instance Ru=ll's (1901) arguments in The Principles of Mathematics. The concern with 
abstract entities and their logic remamed a concern throughout Russell's life. 
3Many people have been suggesting a first order theory of abstract entities in the past few years-- for 
instance Bealer (1983), Turner (1987), (1989), Aczel (1989). Higher order theones have found 
advocates like Russell (1901) (1911), Ramsey (1926), Prior (1960) e.g., and others like Fine, 
Cocchiarella, and Thomason (1980), and Menzel (1986). I will use Turner and Thomason as my main 
sources here, but that is not because I have made a detruled survey of all the proposals. 

- 23 -



difficult because many attempts to do so have led to paradoxes concerning abstract 

entities. These paradoxes have bedeviled philosophers and logicians since ancient 

times. 

There are two generally recognized families of paradoxes. One contains 

paradoxes having to do with sentences and direct quotation contexts like the Liar. Then 

there are paradoxes of application like the property version of Russell's paradox and the 

family of associated set theoretic paradoxes (Burali-Forti, Russell, etc). Arthur Prior 

(1961) and more recently Rich Thomason (1982) have argued that there is a third family 

of paradoxes, the so called "paradoxes of indirect discourse," which have to do with the 

nature of propositions. Here is an example of such a paradox originally due to Jean 

Buridan, embellished by Prior and Thomason: Suppose Prior is thinking to himself 

only the following thought: 

(3) Either everything that I am thinking at the present moment or everything that 

Tarski will think in the next instant, but not both, is false. 

Suppose that at the next moment Tarski thinks that snow is white. By reasoning that is 

valid in the simple theory of types, we conclude that Tarski was not able to think only 

that snow is white, a bizarre and unwanted consequence of a logic for belief. Note that 

this is a paradox about "entertaining," "thinking about" or "explicit" belief, not about 

implicit belief. Nevertheless, since explicit belief is a seemingly plausible and useful 

notion, the paradox has a bite to it. 

In this paper I examine the intentional paradoxes from two points of view: (i) a 

first order perspective in which the intentional paradoxes are merely a special case of 

paradoxes direct discourse, and (ii) a higher order perspective like the one Prior and 

Thomason advocate. Beginning with a representationalist's view of attitudes and 

abstract entities, one can arrive at a natural formulation in a first order language of what 

Prior is thinking to himself. This is the most congenial perspective perhaps to a 

semanticist committed to a representational theory of attitudes and to a conceptualist 

understanding of abstract entities in general. But the Prior-Thomason reconstruction of 

the intentional paradoxes in higher order logic-- most notably in the simple theory of 

types-- has merits of its own with regard to natural language semantics. I will give an 

inductive definition for the propositional quantifiers, which appear to solve the 

intentional paradox discussed by Thomason and Prior and one other difficulty for the 

simple theory of types which Russell noticed. I end by drawing some comparisons 

between the two theories. 

The category of paradoxes of indirect discourse is potentially very varied. The 

defining characteristic of a paradox of indirect discourse is that it does not directly 

involve a quotational context. Clearly these paradoxes are not restricted simply to 

attitude contexts. But many of these paradoxes of indirect discourse also have ties to 
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the paradoxes of direct discourse, as the following example about facts makes out. 

Those who believe in facts and take sentences to be bearers of truth would espouse 

something like the doctrine that a sentence cp denotes (expresses, corresponds to or 

whatever relation you like) a fact iff • q>' is true. But then the statement 

( 4.a) This sentence does not denote a fact 

exhibits the same pathological behavior as the Liar sentence for obvious reasons. ( 4.a) 

might be taken to be yet another example of the paradox of direct discourse, except that 

it leads to a paradox of indirect quotation 

(4.b) It is a fact that (4.a) does not denote a fact. 

The paradox of indirect discourse appears when we take the sort of logic that ought to 

govern contexts like it is a fact that Surely, one might think (naively), if it is a fact that 

p, then p, and if p, then it is a fact that p. In higher order logic we can easily express 

this thought as a sentence; in first order logic it could be taken as an axiom schema. 

Other ways of constructing paradoxes of indirect discourse do not depend on 

direct discourse at all. There are paradoxes of intention (similar to Newcomb's 

Problem and explored recently by Gaifman) that resemble at least semantic paradoxes. 

Gaifman's puzzle gives a prima facie plausible example of a very odd, but desirable 

goal. By having the intention to reach the goal, you in effect have the intention of not 

getting it, because you know that if you have the intention to reach the goal you won't 

reach it. Conversely, by having the intention not to reach the goal, you have the 

intention of reaching it. This supposition results in a diagonal intention of achieving q> 

iff you don't intend to achieve cp. This diagonalized intention appears to yield similar 

difficulties for the logic of intention. Yet it has nothing to do with direct quotation at 

least on the face of it; they appear to be proper! y classified as paradoxes of indirect 

discourse. 4 

2. Representationalism, Conceptualism, Indirect Discourse and 
First Order Logic 

One thesis about abstract entities is the conceptualist's. The analysis of 

propositional attitudes as attitudes towards representations (sentences in the language of 

thought) with a certain determinate content5 suggests that abstract entities like 

propositions are constructs from representations. If one adopts a representationalist 

view of attitudes, then the role of propositions and representations coincide. The 

conceptualist makes propositions and other abstract entities equivalence classes of 

4Koons (1987) contains a detailed exposition of some game-theoretic paradoxes and argues for their 
similarity to the semantic paradoxes. 
5For details on the particular representational theory I espouse, see Asher (1986), (1987), (in press). But 
many other philosophers and worlcers in CS espouse sucb theories. 
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representations. For instance, propositions, the objects that are referred to by the that 

clause in (l.a) and quantified over in (2.a) and (2.c), are equivalence classes of 

representations under some suitable equivalence relation like sameness of functional 

role. An equivalence relation like this one is needed to give propositions enough 

structure to handle problems about the semantics of propositional attitudes. 

The conceptualist should also say something about the structure of these 

representations and their relations to natural language. Typically he does so by giving a 

construction procedure from natural language discourse. For my brand of 

conceptualist, the class of propositions is a countable, recursive set (assuming at most a 

countable number of possible human languages). A similar story goes for facts, the 

type of abstract object denoted in (l.b) and quantified over in (2.b), but I won't go into 

details here. For my purposes here I can simplify the conceptualist's connection 

between representations and sentences. I will model the conceptualist's propositions 

with sentences (or equivalence classes of alphabetic variant sentences) of a language 

with enough expressive power to express the content and structure of our beliefs as in 

Asher and Kamp (l 986) (l 989). Such an approach construes quantification over 

propositions as quantification over sentences, and from this philosophical perspective, 

indirect discourse is much like direct discourse. 

A cautionary note is in order, however. The use of sentences to model 

representations allows us to make use of well-established techniques of recursion 

theory. But we should not necessarily identify a system of representations with a 

particular language, in particular a particular formal langauge. A system of 

representation yields instead of sentences well-formed information structures.6 These 

are not linguistic objects, though like sentences they are complexes constructed by 

means of recursive rules from meaningful constituents. A more accurate way of 

thinking of an information structure is to consider it a partial model. This analogy also 

cautions one from making too close a connection between a language (like that of first 

order logic) and a system of representations. 

These observations yield a first order framework for quantifying over 

propositions that exploits the sort of quantification found in the arithmetization of 

syntax. On such an approach, we take various predicates like 'true', 'believe', etc ... to 

take sentences as their objects. In writing down a translation of a sentential nominal like 

(l.a), however, we must not put the sentence itself but a name of the sentence. 

Consider a first order language L with identity, a denumerable infinity of individual 

constants, and one distinguished predicate S (to be read as is a sentence). L(B, T) is the 

language L expanded with a 2-place predicate B (to be read as believes that) and a 1-

6 We should think of a system of representations at least as an interpreted language-- not merely a 
syntactic engine. 
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place truth predicate T. We include within the domain the set S of all sentences ofL(B, 

T), and we now relativize our quantifiers over propositions to quantifiers restricted to S. 

Thus, (2.a) becomes on this framework: 

(5) 'fix (S(x) - (B(m, x) - T(x))) 

We would like to extend L to express beliefs about arithmetic. Thus, we should 

countenance the possibility that some suitable extension of L be able to talk about the 

syntax of its sentences. This makes it possible to prove instances of Goedel's 

diagonalization lemma 'I'- ~('If'}, where the instance of the I-place predicate 

variable~ are Band T. As Tarski (1931), Montague (1963) and Thomason (1980) 

showed, these instances of the diagonalization lemma are incompatible with very weak 

assumptions about the logic of belief or truth. Let's call any theory containing instances 

of the diagonalization lemma a self-referential theory. Techniques ofKripke (1975) 

and Herzberger (1982) and Gupta (1982) permit the construction of models for self­

referential theories of truth and belief. A semantics for L can exploit these techniques in 

several ways.7 A model for Lis a quintuple M = <W, A, R, D, ID> such that: 

(i) Wis a set (of possible worlds); 

(ii) A is a subset of D ( a set of agents) 

(iii) R is a function from agents in A to binary relations on W (wR3w' means 

that w' is a doxastic alternative for Kin w for agent a; [ wRal is the set 

of alternatives tow for a E A); 

(iv) Dis a non-empty set (the domain of individuals);(iv) [] is a function which 

assigns to each non-logical constant of Lat each world a suitable 

extension: if c is an individual constant of L, [c]w E D; and if Q is an n­

ary predicate ofL, IQDw f DD; 

(v) for each w E W, [S]w is the set of sentences ofL; 

(vi) each individual constant c is a rigid designator, i.e., for all w, w' E W, [dw 

= [cDw•. 

(vii) for each d E D and w E W, there is a constant c of L such that lcDw,M = 
d. 

A model for L(B, T) is a triple <M, [BD, (TD> where Mis a model for L, [BD is an 
intension for B relative to M (i.e., a function from WM into f.:>(DM)) and [T] an 

intension for T such that 'r/w E WM lBDw f lSDw. I will call models for L(B, T) simply 

models and models for L model-structures. A model structure M is extensional just in 

case WM is a singleton and <w,w> E RM. 

71 here rehearse the work of Asher & Kamp (1986) and (1989). 

- 27 -



An important notion for this conception of a model is the idea of model coherence. 

A model% is (doxastically and alethically) coherentiffthe following statement is 

satisfied for each sentence 'V and each world w e W 9,c 
(i) <a, 'V> E [BIM,w iff l'VIM,w' = 1 for all w' E [wRa] 

(ii)"ljlE ITIM,wiff["ljllM,w=l 

A model structure Mis essentially incoherent iff every model that expands M is 

incoherent The notion of coherence brings together two, independent features of the 

models that are essential to the semantics of the attitudes, the alternativeness relation and 

the extension of the B predicate. The alternativeness relation in the model structure 

encodes plausible doxastic principles of reasoning and the basic doxastic facts that the 

agent may uncover through reflection; the predicate B's initial extension represents what 

an agent might in fact consciously believe. 8 Coherent models are those models in which 

the agent believes (or could come to believe through reasoning) all that is doxastically 

possible for him to come to believe. Coherent models are those in which the agent can 

use all the principles of reasoning encoded in the alternativeness relation to their full 

effect. A similar story goes for truth: coherence connects the sentences in the extension 

of the truth predicate with their extensions (truth values) in the model. 

Models that are incoherent may become coherent through the process of model 

revision. To define this notion, however, I need some auxiliary notions. Define an 

interpolation function on a set A to be any function f from f.J(A)2 into p(A) such that 

whenever A1, A2 S:: A and A1 () A2 =¢then f(A 1, A2) ;;i A 1 and f(A1, Ai)() A2 = ¢. 

A revision scheme is a function 1{. defined on the class of all limit ordinals such that for 

each A 1{.(A) is an interpolation function on the set SL of sentences of L. Given a model 

% and a revision scheme 'l(, the revision sequence starting from 9,{ according to 1{. is 

the sequence {9,f0.,1(.Jae On, such that: 9,,[0.,1(.= <WM, DM, RM, [Ja., 1(.>, where 

[e]a., 1(. = [8]M for all nonlogical constants 0 other than Band T, and [B]a., 1(. and 

[B]a., 1(. are defined as follows: 

i) [B]o, ¾, = [B]w; [T]O, ¾,=A¾, 

ii) (B]a.+l, ¾, = { <a, q>>: ('<tw'e Ra, 9,{) [q>JMa, w' = 1} 

iii) [TJa.+l, ¾, = { q>: [q>JMa, w = 1) 

iv) (BJA,1(.M,w = 1{.(A)(B+ w• B-w), where B+ w = { <a, q>>: 

(3y<A)('<IJ3)(y<J3<A - (j) e [BJ~.1(. 'M wl} and B-w = { <a, q>>: 

(3y<A)('<IJ3)(y<J3<l - q> E [BJ~.1(. <M.wl}. 

8The fact that in some models the extension of the belief predicate at a world w may be inconsistent with 
Th([wR]) (see below) might be taken to be a drawback. But this feature serves a purpose; it models 
those situatmns in which agents hold conscious beliefs that upon reflection they would discard as being 
false. 
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v) (T]IA,llM ,w = 9t(1)(T+ w, T· w), where T+ w = ( <p: (3y<A.)(v'l3)(y<l3<l -

<p e ITilfl,ll M,w)) and B· w = { q,: (3y<A.)(v'l3)(y<l3<l - <p E (Tilfl,ll 

M,w)}. 

There are many different choices for revision schemes 9t obeying the local stability 

principle, on which those sentences that become members of B+ (T +) at some world w 

ought to be counted in the extension of B (T) at w at a limit ordinal stage A. and those 

sentences that become members of B-w (T +w) ought not to be counted in the extension 

of B (T) at w at a limit ordinal stage. 9t could be defined to be one of the Kripke 

proposals for an inductive definition of the intensions of B and T or it could be one of a 

wide variety of "semi-inductive" definitional schemes. In this section I shall most often 

use an intensional version of Herzberger's semi-inductive definitions of the problematic 

concepts.9 By preserving classical logic, this approach appears to be slightly more 

conservative in spirit than Kripke's inductive method (though often more difficult to 

use). The Henberger revision scheme F, decrees that Ahw =¢and h(A)(B+ w• B· w) = 

B+ w· I will call Herzberger revision sequences those revision sequences that employ 

the Herzberger revision scheme Fi. 

There are certain conditions under which coherence cannot be achieved no 

matter how many revisions are undertaken; in general, models in which paradoxical 

forms of self-reference are present will not be coherent. The presence of incoherent 

models leads to the following distinctions. <p is doxastically positively (negatively) 

stable in a model 9vl with respect to a revision scheme 9t at a world w iff <p e [Bilfl, 

llM w for all l3 (cp E (Bilfl, llM w for all l3). (j) doxastically stabilizes at an ordinal a in . . 
a model 9vl with respect to a revision scheme 9t (at a world w) iff a is the first ordinal 

13 such that cp is doxastically positively or negatively stable (at w) in 9vll3 with respect to 

9{.. Similarly, cpis a/ethically positively (negatively) stable in a model 9vl with 

respect to a revision scheme 9t at a world w iff <p e ITilfl, llM, w for all 13 (cp E [Tilfl, 

llM, w for all l3), and cp a/ethically stabilizes at an ordinal a in a model 9vl with respect 

to a revision scheme 9t (at a world w) iff a is the first ordinal 13 such that (j) is 

alethically positively or negatively stable (at w) in 9vll3 with respect to 9{.. a is a 

doxastic (a/ethic) stabilization ordinal for 9vl (at w) with respect to 9t iff every (j) that 

doxastically (alethically) stabilizes in 9vl (at w) with respect to 9t stabilizes at some 

ordinal .:5 a in 9vl (at w) with respect to 9{.. There is also the more general notion of a 

stabilzation ordinal: or 9vl (at w) with respect to 9{,: a is a stabilization ordinal for 9vl 

(at w) with respect to 9t iff a is a doxastic and alethic stabilization ordinal for 9vl at w 

with respect to 9{.. If 13 is any ordinal greater or equal to the first ( doxastic, alethic) 

stabilization ordinal for 9vl with respect to 9t, the model 9vlfl, ll is called a ( doxastically , 

a/ethically) metastable model. Cally a doxastic (a/ethic) perfect stabilization ordinal for 

9nie Herzberger revisions scheme is the easiest of the semi-inductive schemes to manipulate. 
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!M with respect to ~just in case yis a doxastic (alethic) stabilization ordinal for !M with 

respect to ~ and <p e [BllYM, w iff <p doxastically stabilizes at some ordinal~ yin !M at 

w with respect to~ (<p e [TJlYM, w iff <p alethically stabilizes at some ordinal~ yin !M 

at w with respect to fj. Finally call ya perfect stabilization ordinal for !M with respect 

to ~just in case y is a doxastic & alethic perfect stabilization ordinal for !M with respect 

to ~ and call !MY a semi-stable model. 

Just as when one predicate is defined semi-inductively, one can show that a 

model revision sequence with the two predicates B and T defined as above eventually 

yields a semi-stable model. 

Proposition 1: Any Herzberger model revision sequence for L(B, T) yields a 

semi-stable model AfA and a periodic sequence of metastable models thereafter. 

The proof of proposition 1 follows a well-known path. A standard cardinality 

argument immediately implies that any Herzberger model revision sequence must yield 

a model !M'Y with ya stabilization ordinal. The observation that the revision sequence 

must yield a stabilization ordinal implies that every sentence that does not stabilize must 

after a certain number ~ of revisions begin to show a cyclic pattern of evaluations after ~ 

with period say o. Suppose that the longest such period is 8. We may assume without 

loss of generality that 8 < y. Now consider the limit ordinal A of the sequence y + 8, y + 
28, . . . A is a perfect stabilization ordinal, and so AfA is semi-stable. Thereafter, 

perfect stabilization ordinals must occur with a regular pattern, with all models !Ma 

being semistable, for ex ~ A. 
lf we confine our attention to the class of coherent models and chose the 

appropriate alternativeness relation, we get a well-behaved theory of belief and truth--

for instance a sentential version of S4 + the Tarski biconditional for every sentence of 

L.10 But in the general case, matters are much less satisfying. Essentially incoherent 

model structures yield counterexamples to the axiom schema B(B' <p' -<p ') and to the 

Tarski biconditional schema at arbitarily large successor, limit and perfect stabilization 

ordinal stages in the revision process. Moreover, given essentially incoherent model 

structures such that the revision procedure yields only incoherent models, the other 

axiom schemata and axioms for the truth predicate like those in Turner ( 1987) are not 

closed under the rule: if <p is an L-instance of one of the axioms then B' <p' is a theorem. 

Nevertheless, the quantificational theory of first order logic is left intact. In particular 

the axioms Vx <p - <p(t/x), Vx( <p - 'lf) - (Vx<p - Vx\jl) and 'l' - Vx 'l' where x does 

not occur free in 'l' are valid in every !Ma for ex~ 1. That the variables of quantification 

may range over sentences does not alter this fact. 

lOpor details see Gupta (1982), Asher & Kamp (1989) Ihm 14. Care must be taken to state this theory 
given the limited resources of L needed to insure that models for L be coherent. But I won't bother to 
give the details here. They are discussed at some length in Asher & Kamp (1989). 
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The first order framework here entails that variables of quantification only occur 

in argument positions to relational symbols; there are no variables occuring in predicate 

positions. In particular variables do not occur in 0-place predicate positions-- i.e., in the 

positions of sentences or formulas. So propositions are quantified over only insofar as 

they are arguments to properties. This has to some extent a natural language 

analogue.11 There is no quantification over the denotations of sentences in natural 

language, it would seem, only over the denotation of sentential nominalizations. So, for 

instance, there is no way to express in natural language the higher order formula v'p (p 

v -, p) except by quantifying over nominalizations and using a predicate like 'true' as 

follows. 

(6) Every proposition is such that either it or its negation is true. 

If we attempt to quantify in a natural language over sentences rather than sentential 

nominalizations, we lose the verbs and predicates necessary to make grammatical 

sentences in natural language. The first order approach to propositional quantification 

appears to reflect the logical form of natural language, at least at first glance. 

The first order quantification over propositions in this framework makes it 

possible to translate Prior's problematic belief, which I expressed as (3). Before doing 

so, however, we must include within our notion of an L(B, T) model a set of times I as 

well as worlds and objects. Our predicates for belief and truth will also now contain 

argument places for terms referring to times. The revision procedures for predicates 

will also be relativized to times, and there are a variety of ways the new revision 

procedure might go. The most obvious is to require the following revisions to the 

recursion clauses: 

i) [B]I<>, ~. t = [B]w, t; [T]I<>, ~. t = A~, t 

ii) (B]<X+l, ~. t = { <a, cp, t'>: ('t>'w'E Ra, 9,{) [cp]M", w', t' = 1)} 

iii) [T]<X+l,~.t= {<cp, t'>: [cp]M", w,t'= 1)) 

iv) (B]A.1(.M,w, t = 1{,(11.)(B+ w• B-w), where 

B+ w, t = { <a, cp, t'>: (3y<A)(v'~)(y<~<A - <a, cp, t'> E [B]~.1(. 'M,w, 1 

)} 
and 

B-w, t = { <a, cp, t'>: (3y<A)(v'~)(y<~A - <a, cp, t' > E iB]~.1(. 'M,w, 1 

)}. 

v) (T]A.1(.M,w, 1 = 1{,(A)(T+ w• T-w), where 

T+ w = { <cp, t'>: (3y<A)(v'~)(y<~<A - <cp, t'> E [T]~,1(_ 'M,w,t)} 

and 

T-w = { <cp, t'>: (3y<A)(v'~)(y<~<A - <cp, t'> E [TD~,!/(_ 'M,w, 1 ) }. 

11Noted for instance by Bealer (1982) Turner .(1987) As will be evident I do not think of this evidence 
as that conclusive. 
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Let's suppose that we also introduce designated constants to, t 1 , etc. to designate 

elements of I and that predicates like T and B acquire an additional argument place for 

the temporal parameter. Call this language L 1 • The reformulation of the revision 

procedure for L, is quite obvious. Finally, now we can formalize and evaluate Prior's 

thought within L 1• 

(7) [v'x (S(x) - (B(a, x, lo) - ,true(x, lo))) v v'x (S(x) - (think(b, x, 11) -

,true(x, 11)))] & [3x (S(x) & (B(b, x, 11) & true(x, t 1)) v 3x (S(x) & 

think(a, x, lo) & (true(x, lo))] 

This somewhat longwinded formula can be treated without paradox in the semi­

inductive theories of truth and belief with the Herzberger revision scheme. 12 Consider 

those models in which the model structures verify the snow is white for all times t. The 

Herzberger revision scheme predicts that in the situation in which Tarski only believes 

at 11 that snow is white and Prior only believes (7) at to, (7) will be unstable, 

alternatively true at one model revision and false at the next model revision. Kripke's 

theory predicts that in such a circumstance (7) will get the value gap. In general the first 

order theories of belief and truth using either inductive or semi-inductive schemes of 

model revision treat (7) as pathological in a way similar to the Liar. 

This theory of propositional quantification also does not lack for expressive 

power. One can talk about common or mutual belief, 13 and one can make headway on 

the semantics of attitude reports. Nevertheless, one can object to this treatment of 

indirect discourse for two reasons. The first is that the rules for simple modalities (like 

necessity) have to be rather drastically altered. Montague ( 1963) and Montague and 

Kaplan (1960) showed that the axioms of T formulated for any I-place predicate of 

sentences was together with Robinson arithmetic inconsistent. 14 The 

representationalist theory of attitudes and propositions-- in particular the parallel that I 

have been stressing between representations and sentences-- make these conclusions of 

Montague inescapable. But on the other hand, models for syntactic treatments of 

modalities are now known, and a unified treatment of truth along with other 

complementizers appears to be an advance for semantics. The standard modal logics 

might be seen as approximations ( or idealizations of) the logic of modal and attitudinal 

complementizers. The axioms for these logics hold for the unproblematic parts of our 

language-- those sentences that don't employ any self-reference. One is tempted to say 

that the axioms are "usually true," and in this they resemble rules of default reasoning. 

121 should note that Kripke's inductive definition of 1ruth may also be used with (6) to solve the Prior­
Thomason paradoxes of indirect discourse. or a number of other semi-inductive shcmes . 
13See my 'Common Knowledge and Model Revision', talk delivered at the American Philosophical 
Associauon, Central Division Meetings in St. Louis, MO, 1986. The manuscript is available from the 
author. 
14 Later Thomason (1980.a) showed that weak S4 (S4 - the axiom schema B( cp' )- <p) formulated for 
any I-place _predicate was, together with Robinson arithmetic and the assumption that one believed 
sometfiing, mconsistent. For Montague the predicate might represent necessity or 'it is known that'. In 
Thomason's result, we might suppose that the one place predicate stands for 'it is believed that' 
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It is only when we come across unusual propositions in which paradoxical self­

reference occurs that the standard axioms for truth and belief fail. we assume stability 

and reason as if all statements are stable. Sometimes we have to revise our 

assumptions. 

A second objection to the syntactic approach to modalities relies on an old 

argument of Church's. Church argued that sentences were an inappropriate object of 

attitudes because that entailed that two monolingual speakers of different languages 

could not share beliefs. But this objection obviously doesn't hold of representational 

theories of attitudes. Representationalism is compatible and even encourages the idea 

that there is a common representational system across humans who speak different 

languages. Stalnaker (1984) argues that humans and animals may share beliefs too, and 

indeed here the postulation of a common representational system across species is less 

plausible. But I think the representationlist has many replies to this challenge too. The 

most attractive, I think, is to think of a relation between the representation and the 

mental state it is supposed to characterize as somewhat flexible-- certainly more flexible 

when reporting beliefs of other types of agents than adult humans. This proposal does 

not entail a common representational system across species. 

If one is persuaded by anti-representationalist arguments, however, one can 

abstract away from the syntactic approach to modalities and still remain within a first 

order theory of propositional quantification. I don't applaud this move, since it is the 

conceptualist's thesis about propositions as sentence-like entities that yields useful 

formal tools for dealing with propositional quantification and theories of truth and 

belief. A more general approach would introduce a set of propositions P instead of 

sentences ofL as a subset of the domain of an LBT model. With each sentence ofL, 

we would associate an extension and an intension; the intensions of sentences on this 

view would naturally in such a theory be an element of P, the extension a truth value. 15 

One would then add as in Turner (1989) an operator v of the language that makes the 

embedded sentence denote its intension rather than its extension. By supposing that 

every sentence yields a unique element of P -- i.e., by taking as a valid principle 3!p p = 
v<p for all <p-- we may use the self-referential properties of L sentences to get at the 

properties of self-referential propositions. On the other hand, we may exploit v, the 

truth predicate of propositions and identity to define the liar directly as a sentence of our 

language. Let 'p' be a propositional constant of Land let L contain identity, a truth 

predicate of propositions and the operator v. Then the Liar is expressed by the 

following sentence of L: 

p = V-,true(p) 

l5 This use of extension/intension is due to Turner (1987) (1989). 
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Though perhaps more abstract, it does not appear as though the generalization of the 

sentential approach to a theory of first order propositions yields substantially different 

results. Extensions to this fragment would include propositional functions and 

propositions as one way of modelling properties and relations as well as propositions 

(Aczel (1989), Turner (1989)).16 

2. Propositional Quantification and Higher Order Logic 

2.1 Motivations 

The first order theory of propositional quantification I have just sketched is 

essentially limited in that it quantifies only over "argument place" positions. We could 

quantify also over relations and properties, considering propositions to be 0-place 

properties. Quantification over predicate positions is the syntactic criterion for a higher 

order logic. The expressive power of higher order logic is quite attractive when 

thinking about mathematical theories. When we think of a theory like standard set 

theory or arithmetic we think of a certain canonical structure. We find the Lowenheim 

Skolem Tarski theorems surprising, even paradoxical when applied to theories of these 

structures (as we think of them naively) Higher order logic can describe these 

structures up to isomorphism, and the Lowenheim Skolem Tarski theorems don't hold 

for higher order theories.17 This is one sign that our mathematical views might be 

couched in higher order, not first order terms. 

There is also evidence in natural language of at least an indirect sort that we do 

directly quantify over higher order objects, and not just their first order correlates that 

some have assumed to be the denotions of sentential and verbal nominals. The evidence 

has to do both with anaphoric reference to abstract entities and quantification. Consider 

the following counterpart for verb phrases to the argument given by Bealer (1982) for 

that clauses or sentential nominals. 

John does everything that Mary does. 

Mary solves math problems. 

Therefore, John solves math problems. 

I take this to be a valid inference, of the same general form as, 

Everything that Mary believes is true. 

16 Aczel (1989) proves completeness and soundness of a generalized predicate logic with quantification 
over propositions-- something which we cannot do. But this is because Aczel's language IS quite 
restricted in expressive power; there are operators on propositions like • and the truth functional 
operators, but the language contains no predicates of propositions and no machinery with which to 
construct instances of the diagonalization lemma that are the mark of self-referential theories. 
17Per Lindstrom suggested in conversation that one might explain our categorial mathematical thinking 
by resorting to some direct grasp of certain structures. But if we think of ttie set of all subsets of a given 
set as being a well-defined notion, then for all intents and purposes we have espoused extensional higher 
order logic. For a very good defense of the view that second order logic underlies mathematical practice 
see Shapiro (1985). 
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Mary believes that the collection of (TllM for all metastable :M is non-recursive. 

Therefore it is true that the collection of lT]M for all metastable :M is non-

recursive. 

But while in the second argument it indeed looks like we are quantifying over the values 

of that clauses or sentential nominalizations -- and one can make a good case that that is 

first order quantification-- the first argument suggests a logical form in which 

quantification is directly over a verb phrase (VP) denotation-- a function from 

individuals to sentence extensions (or intensions). It is much less plausible 

linguistically to suggest that all finite VPs are in fact singular terms of a first order 

theory. For we must give some account of how the singular term denoting a property 

and a noun phrase combine to give a sentence denotation, and at the same time we must 

give a uniform account of the semanics of finite and infinite VPs.18 The much simpler 

and more plausible hypothesis is that this inference appears to involve a quantification 

over higher type objects-- second order quantification or higher. 

Another bit of evidence for direct quantification over propositions occurs with 

anaphoric reference to what a sentence expresses. Consider for instance. 

Fred was an alcoholic. But none of us believed it until he announced he was 

taking a leave of absence to go to a clinic for treatment. 

The boldfaced pronoun is of interest, because it is linked anaphorically with the 

previous sentence in the discourse above. The semantics of anaphora involves some 

relation between the denotation of the pronoun (some sort of variable) and the 

denotation or semantic value of the antecedent. In abstract entity anaphora it appears, 

however, that here we are asked to identify the variable introduced by it with the 

proposition expressed by the sentence (its intension). One could construct a theory of 

abstract entity anaphora in which the variable is bound to a sentential nominalization-­

the anaphoric process transforms the sentence into its nominal correlate. But a simpler 

hypothesis is possible if one quantifies over sentence denotations or intensions; one 

could give the logical form of the discourse above as 3p (p = Fred is an alcoholic & 

none of us believed p ... ). Sentential quantification like this is not in general first order 

definable, as Fine (l 977) showed. So facts about anaphoric reference to propositions 

in natural language indicates that quantification over sentential argument places leads to 

a theory of higher order quantification. 

A similar argument arises from VP ellipsis, an example of which is Fred likes a 

drink after work and Sue does ¢ too. One plausible semantic analysis of VP ellipsis is 

that the null VP (indicated by ¢ in the example) introduces a variable bound to value of 

18chlerchia's (1985) argues for distinguishing finite VPs as denoting unsaturated properties and infinite 
VPs are nominalizations of finite VPs. The latter denote hypostizations of unsaturateil properties, 
"nominal correlates" Chierchia calls them. A crucial feature of his account is that these nominal correlates 
are of the wrong type to combine with NP denotations. 
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the antecedent VP. For analogous reasons to those I have just sketched, VP ellipsis 

also seems to offer prima facie evidence of higher order quantification in natural 

language. One could make do with a first order theory of quantification, but the higher 

order approach is more natural and in keeping with general assumptions about anaphora 

and the semantics of VPs. 

2.2 Standard Theory of Types 
This train of thought leads to a different theory of propositional quantification, 

the one that Thomason and Prior had in mind.19 Syntactically, propositional variables 

and constants are 0-place property variables and constants. The language of 

propositional quantification, L 2 , is thus a second order language. However, I shall 

consider a natural extension, Lro, the language of the theory of simple types. 20 

Formulas are constructed in the usual manner from the truth functional connectives and 

quantifiers. Lro is a language containing individual and temporal constants and variables 

for all finite types formed from the basic primitive types-- P (the set of propositions), E 

(the set of individuals) and T (the set of truth values (0, 1} ). Formulas are defined for 

each type using A-abstraction and functional application. So for instance, if~ is a 

formula of type 't and xis a variable of type 't', then h~ is a formula of type 't - 't', and 

if 'I' is of type 't - 't' and f3 is of type 't, then \j/([3) is of type 't'. 

Leo has extensional and intentional versions of the connectives and quantifiers. 

V, 3, c&, v, - , -, will be the truth functional operators and quantifiers, while IT, :E, n, 
U, =+ and~ will be the intensional correlates. Extensional identity, =, also has an 

intentional correlate, =. I shall also assume that in the language there is also a function 

constant v from propositions to their truth values as in Thomason (1980) (manuscript). 

Note that vp is not considered to be a proposition! 

We insure a homomorphism between extensional and intensional correlates if 

we take the following as axiorns:21 

(HOM) 

for all p, q: V[p {) q] = Vp & vq V[p U q] = Vp V vq V[p- q] = Vp - vq 

for all ~: v[ I1x't ~] = Vx'tv~ v[:Ex't ~] = 3x'tv~ 

for all p: v[ ~p] = -,vp 

for all t, t': V[t = t1 = V [t = t'] 
19There are arguments for getting rid of types in doing natural language semantics. But I want to sidestep 
those here, as they usually revolve around a treatment of properties ( with one or more argument places!) 
and this would lead us too far afield here. 
20rt is interesting to note that some difficulties such as those in the last section of the paper arise in full 
type theory but not sim11le 9uantification over propositions and properties in intentiorial logic. 1bis seems 
to cast doubt on the eqwvalence in intentional logic between second order and full type theory. 1bis 
~uivalence is a fact of extensional, higher order 1ogic. 
2 A weaker theory of propositions without (ABS) call it P-ABS would need to require of HOM in 
addition that 

v M' A(~) = v A(~ix'') if p is oftype t 
P-ABS is already alluded to in fooblote 2f above. 
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To get complete freedom in choosing one's intentional logic for the attitudes, it is better 

to give for each usual extensional quantifier and connective an intentional operator and 

quantifier. But for the statement of various truth definitions, it is very tiresome to read 

recursive clauses for each quantifier and connective; so in what follows I shall illustrate 

the various definitions by just exploiting the connectives, quantifiers and operators in 

the first column of the above table. The rest of the cases are always entirely obvious, 

and the interested reader may easily fill them in. 

Once variables range over sentence denotations, it no longer make sense to take 

these to be truth values a la Frege, Carnap and Montague, if we wish to justice to 

propositional attitudes and other intensional contexts. Rather, we must take the 

denotations of sentences to be propositions. A sentence will be true iff the proposition 

it denotes is true. Thus, (2.a) expresses the proposition, 

(8) Ilp (believe(mary, p) - p). 

(8) is a formula of Loi; in Lro 'believe' is a second order predicate of individuals and 

propositions. By the correspondence rules in (HOM) (7) and hence (2.a) are true just 

in case, 

v'p (Vbelieve(mary, p) - vp), 

where p ranges over the domain of propositions. 

A standard intentional model with times of Lro consists of a quadruple <E, [D, f, 
r-,. Eis an inductively defined set of domains of various types, with non-empty sets 

Eo, Ep, E1 and ET(ofindividuals, propositions, times and truth values respectively) as 

the basic types of objects. Other types are constructed from basic types as functions 

from types to types. In a standard model, if 'ti, ... 'tn are types, then the set of all 

objects of type < 't1, ... , 'tn>, E( < 't1, ... , 't0 >), = p(E('t1) X E('t2 ) X ... X E('t.) ). 

The interpretation of expressions of the other types are the functions constructible from 

these basic types. I shall also assume that types are closed under functional 

application. 22 So 

(FA) if v is of type 't - 't' and ~ of type 't, then v(~) e Ee· 
[] assigns an (intentional) interpretation to each expression of type 't; the interpretation is 

some element ofE('t). The interpretation function of an intentional model respects A. 

abstraction and application in its assignments. That is, we have for any term a of type 't 

and any term Ax ~ of type 't - 't', 

(ABS) 

[).x~]((a]) = ll~(x/a]. 

Our theory is intentional so the objects assigned to predicates of a language by 

I] are properties and relations, not sets. Since sets are useful in the truth definition, 

22f ABS) is an optional constraint One might require simply that AX'A(~) and A(x '/~)) coincide in truth 
value in every model, which could be imposed by HOM below 
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however, intentional models have a function f that assigns to each object in a type a 

certain extension. Let [] be the extension of ID and f to include the assignment of 

denotations to complex terms of the form vcp. Then _ris a function from PX I into T = 

{ 0, 1 ) such that: 

i '.ft (G(a1, .. a.))= 1 iff <la1B, .. , la.B> e f(IGJ) 

ii. '.ft (p n q) = 1 iff .r1 (p) = 1i (q) = 1 
iii. '.ft (~q) = 1 - .?'"1 (q) 

iv. '.ft (Ilxt ~) = 1 iff _r1 ( ~(a)) = 1 for all objects a of type,: 

v. '.ft (a=~)= 1 iff [a]1 = [~lt 

(similarly for the other operators) 

If [cpD is a proposition, vcp is a singular term denoting in M the truth value of [cpD in M. 

It requires a special interpretation. Further, these singular terms may combine with truth 

functional operators and quantifiers, which will have the usual recursive, semantic 

clauses. Let us write [Alt, M = 1 if A denotes in M truth at t; [Alt, M = 0 otherwise. 

a. If A is of the form vcp where lcpDM is a proposition, then [Alt, M = 1(cp) 

b. If A is of the form B & C, then [Alt, M = 1 iff [Alt, M = 1 and [Alt, M = 1. 

c. If A is of the form -,B, then [Alt, M = 1 iff [Alt, M = 0. 

d. If A is of the form Vxt ~. [Alt, M = 1 iff [~(a/x)]1, M = 1 for all a of type t. 

e. If A is of the form v[a =~],[Alt, M = '.ft (a=~). 

f. If A is of the form at(vcp, t), [Alt, M = .?'"1 (cp). 

(Similarly for the other operators) 

Let To be the theory given by the axioms below and closed under the rule modus 

ponens. 

(i) vcp, where cp is a tautologous proposition. 

(ii) Vxt (vcp - V\jf) - (Vxtvcp - VxtV\jf), where xt is a variable of any type i:. 

(iii) Vxt vcp - v<p(t/x) where tis substitutable in <p for xt, a variable of any type 

't. 

(iv) v<p - Vxt v<p, where xt does not occur free in <p and is a variable of any 

type 't. 

(v) The usual axiom and rule for identity: 1(a = a), and if 1(~ = W) = 1, 

then 1(\jf(~)) = 1(\jf(W)) 

(vi) A.Xt <p[a] = <p(a/xt), where a is a term of type ,:_23 

To contains desirable axioms for identity, quantification and the truth functional 

connectives. Given this definition of intentional models, every intentional model for Lro 

M, verifies (HOM) as well as the usual rules of predicate logic and !3-conversion. 

23-:nte appropriate axiom for P-ABS instead of the identity for functional application is the schema, 
AX t cp[ al - q,( o/x 't) 
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Proposition 2: Let Af be any intentional model. Then Af is a model for for 

(HOM) and for To. 

The models for Lro impose a structure on P. 24 P is closed under the operations n, ~; 

II must be a function from PF - P, where PF is the set of propositional functions { f I f: 

E UP - Pl. I will take P to be an algebra whose atoms are given by the atomic 

sentences of Lro-
Let's now formulate the intentional paradoxes or paradoxes of indirect discourse 

within this theory. I'll assume some standard addition of constants for times and set of 

times in the models for Loo. The proposition denoted by (3) is easily expressed in Lro, 

and it is true just in case (9) holds. 

(9) (\fp (VB(prior, p, to) - -,at(vp to) v \fp (VB(tarski, p, t1) - -,at(vp, to))) & 

(3p (VB(tarski, p, to) & at(vp, to))v 3p ( vB(prior, p, t1 ) & at(vp, to))) 

We can easily show: 

Proposition 3: There is no intentional model for Lro Af such that Prior thinks 

(9) at t0 in Af, Tarski thinks that snow is white at t1in Af and 'snow is 

white' is true at t 1 in Af. 

One should note that from the perspective of the simple theory of types, Prior's 

"paradox" differs from the semantic paradoxes like the Liar and paradoxes of 

application and comprehension like Russell's predicative paradox. There is no question 

of inconsistency in the theory To or in HOM, and the simple intentional theory of types 

is after all a highly restricted framework (in comparison, for instance, to ZF). 

Nevertheless, Prior's thought experiment yields entirely unsatisfactory results. 

2.3 The Partial Theory of Types 

The reason why this theory of propositional quantification gets into difficulties 

is not hard to discover, if we contrast the higher order theory of propositions with the 

first order theory of the previous section. As the translations for (2.a) and (3) in higher 

order logic make evident, the truth predicate has disappeared into the theory of 

propositional quantification. The higher order theory of quantification (as Ramsey and 

Prior might naturally have suggested) yields a "pro-sentential theory of truth," on which 

the truth predicate in English is just an anaphor, or perhaps even more simply a dummy 

or redundant predicate needed because of the limitations of natural language syntax. 

The theory of quantification has in effect swallowed up the truth predicate. To fix the 

sort of difficulties that Priorean thought experiments like (3) give rise to, then, the 

24 A couple of facts about v are immediate once we realize it is a function constant in fact denoting 1'. 
Fust of all, v does not iterate; so v v cp isn't well-defined. Thus any identity statement like p = v [-pl is 
false in every model! Further, we might S}'IIlbolize the Liar as v p - ~v p. But this sentence too is false 
in every model; it is a simple contradiction. Thus, the stipulative version of the Liar does not J:KlSC any 
problems in this hi.<!:her miler logic. Higher order logic says that the liar is false in every model. Note 
also that the strong liar, whichsays that ihe Liar is false is logically uue! 
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natural suggestion is to do for quantification what Kripke and Gupta-Herzberger have 

done for predicates like truth. Just as truth is defined inductively or semi-inductively 

mirroring the restrictions of the Tarskian hierarchy, so too is quantification to be 

similarly bounded by types until the construction is finished. My proposal complicates 

the connection between propositions and their truth values in intentional models by 

using either semi-inductive or inductive definitions for the domains of quantification. 

2.3.1 A Semi-Inductive Theory of Propositional Quantification 
Let me make the suggestion a bit more precise by looking at the semi-inductive 

case first. Let 9tl o be a standard intentional model for type-theory. I distinguish a 

subset of Ep, Po, which contains just those propositions not containing propositional 

variables or constants. We now define a revision sequence of models 9tl Qifl as 

follows. Let MQifl = ~, U f, ~>. We now define a recursion for J°' on the 

ordinals. JfJ = J!Po U (P-Po X {0)). All the definitions for .?"and the assignment of 

truth values to terms of the form vq, largely the same as before with the exception of the 

quantified clauses: 

i 1"t a(G(a1, .. a.))= 1 iff <la1D, .. , la.D> e f(IGD) 

ii. 1"t a(p () q) = 1 iff .?"t a(p) = .?"t a( q) = 1 

iii. 1i a (~q) = 1 - .?"t a(q) 

iv. 1"t a+l(Ilxt ~) = 1 iff 1"t a( ~(a))= 1 for all a of type 't '# P. 

V. J"t a(ll ~ P) = 1 iff [lllM" = [PlM" 

vi. If A is of the form vq, where [<pDM is a proposition, then [AlM" = .1"1 

a(<p) 

vii. If A is of the form B & C, then [Alt, M" = 1 iff [Bl1, M" = 1 and [ Cit, 
M"= 1. 

viii. If A is of the form -,B, then [Alt, M" = 1 iff [Blt, M" = 0. 

ix. If A is of the form Vxt ~, [Alt, M" = 1 iff [~(at/x)l1, M" = 1 for all at 't 

* P. 
x. If A is of the form v[a = ~l. [Alt, M" = .1"1 a(ll ~ ~). 

(Similarly for the other operators and non-propositional quantifiers) 

The clauses for the propositional quantifiers must be defined relative to previous models 

in the sequence. We need a pair of clauses for successor and limit ordinal cases. 

xi.a J"t a+l(IlxP ~) = 1 iff .?"ta( ~(IP))= 1 for all tP. 

xii.a. If A is of the form VxP ~. [Alt, Mex+! = 1 iff [~(tP/x)lt, M" = 1 for all 
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xi.b. Ji A(TixP C) = 1 iff 313 \fa <13~ a < ;\, - .?'t Cl(TixP q>) = 1 ). 

xii.b. If A is of the form \fxP C, [Alt, M'A. = 1 iff 313 \fa (13~ a< A. - [Alt, 

'},{a = 1. 

(Similarly for :ExP) 

The first stage of our model revision procedure now may have a quantificational 

incoherence in there. For instance, a quantificational proposition of the form mcPq, will 

be false in Af0 even though all it's instances may be true. But this incoherence is erased 

once the revision procedure gets started. We can still show that every model Af"'QH in 

the revision sequence defined verifies (HOM). 

Proposition 4: Let Af"'QH be a revision model for a> 1. Then Af"'QH is a 

model for HOM. 

The proof of proposition 4 proceeds by induction as before. The only interesting case 

comes with the propositional quantifiers, and that case is easily proved from clauses vi., 

xi., and xii. But notice that this gives us a different correlation between a 

quantificational statement and its instances: 

Af Q~+l ~ \fp vq, iff J<l(q>(t/p)) = l for any t e P. 

AfQHJ.. ~ 'v'p vq, iff3l3 \fa (l3~ a< A - J<l(Tip q>) = 1) 

Our model revision procedure now yields eventually a higher order semistable 

model, as all sentences with a string of propositional quantifiers of a given depth that 

will stabilize eventually do so. Afli is a higher orrJer semistable model just in case o is a 

perfect stabilization ordinal for M with respect to the revision sequence above and 'J. 

Let Af'Y be such a model. Prior's belief, (9), is false at MY, if Tarski's belief is true. 

Moreover, the truth of Tarski 's belief, if it is a simple proposition, does not depend 

upon Prior's thinking (9) or not thinking (9). So far so good. But a rather surprising 

result is in store for us: 

Proposition 5: There is no semi-inductive model such that such that (i) Prior 

thinks (9) at to in M and nothing else, (ii) Tarski thinks that snow is white at 

t1in Mand nothing else, (iii) 'snow is white' is true at t1 in M, and (iv) Af is a 

model of To. 

The proof proceeds by an examination of cases. We observe that on such a theory (9) 

also has a 2 cycle interpretation. Any 9,,(0 cannot be a model of T 0, because the To 

theorem q>(cP) - 3xPq>(xP) is false at Af0, where cP is a propositional term. Successor 

states AfY+l either fail to verify 'v'xP ljf(xP) - ljf(cP/ xP), where 'I' is either the 

subformula 

vB(prior, p, to) - -.at(Vp to) 

or 
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of (9); or they share the following difficulty with limit stages 9,(>._ 9,(>. • (9) iff ?,(>. 1-

v'xP (VB(a, xP, to) - -,v xP) iff313 v'y(l3~ y< ')... - Af'YI- v'xP (VB(a, xP, to) - -,v xP). 

So AfA • -,(9). But then by ordinary quantificational logic, Af">. I- -,(9) iff AfA • 3xP 

(vB(a, xP, to) & v xP). But by the constraint (i) of the proposition, AfA • -,(9) iff AfA F 

(9). 

Proposition 5 uses the Herzberger approach. But the same result holds for all of 

the semi-inductive schemes that have been proposed in the literature: Herzberger's 

Gupta's and Belnap's. Further, it appears that no supervaluation over successor stages 

will give us To, as long as the successor stage revision models are defined in the way 

above. Actually, the result isn't all that surprising. The semi-inductive approach 

"preserves" classical logic in the first order case, because there is a truth predicate to 

revise. Classical logic is preserved there at the cost of falsifying the Tarski truth 

scheme. In the higher order case, the semi-inductive scheme falsifies the 

quantificational axioms for propositional quantification. But these should, I think, be 

considered part of the backbone of higher order logic. Any approach which does not 

preserve these rules in some format is not a satisfactory approach to the version of the 

intentional paradoxes cast in higher order logic. 

2.3.2 An Inductive Definition of Propositional Quantification 

A more satisfactory construction is available with an inductive definition like the 

one used by Kripke (1975). I will first consider a simple case in which Af is a partial 

standard intentional model for Lm satisfying (FA) and (ABS). There are many reasaons 

for looking at partial models besides those involving the paradoxes. 25 A partial 

intentional model is just like a standard intentional model, except that the assignment 

function f is partial and assigns extensions and anti-extensions to the basic properties. I 

will refer to such functions with the symbol f*. Recall that the distinguished subset of 

PM, Po, contains just those propositions not containing propositional variables. An 

inductive revision sequence is defined by setting JO= JIPo and the base partial model 

Af QKO = ~. [], f*, JO>, Af QKa =~,ID, f*, JO->, and then requiring the following 

constraint on J"(which I call the partial model constraint PMC): 

(PMC) 
1. :TU and []M• are closed under the usual semantical rules for a strong Kleene 

interpretation of the truth functional connectives and non-propositional 

quantifiers. 

25see for instance discussions in Langholm (1988), Muskens (1989). The types I have given are still 
total (though not on the set of truth values due to the partiality of v). Muskens notes that it would 
perhaps be oetter to have partial types in an extensional theory, and I might agree with his reasoning. If 
so one could then modify the theory in the way he sketches. 
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2. All Af QK" verify identity statements of the fonn 13 = 13, where 13 is any term. 

Otherwise, 

Af QK" ~ 13 = 13' iff [13] = [13'] and both [13] and [13'] are defined in Af QK" 

Af QK" 13 = 13' iff [13] ~ [131 and both [13] and [13'] are defined in Af QK" 

3. For propositional quantifiers (again I illustrate only for Il; the case for :Eis 

completely analogous), 

A. With regard to the successor case: 

i.a. ~+l(IlxP ~) = 1 if 1"'( ~(tP)) = 1 for all tP. 

i.b. ~+l(IlxP ~) = O if J"'( ~(tP)) = O for some tP. 

i.e. ~+ l(IlxP ~) undefined otherwise. 

ii. If A is of the fonn 'v'xP ~. 

a[A]Ma+l = 1 if [~(tP/x)]M• = 1 for all tP. 

b. [A]Ma+l = 0 if [~(tP/x)]M" = 1 for some tP. 

c. [A)Ma+l = undefined otherwise. 

(Similarly as in i. and ii. for the existential quantifier) 

B. The limit case may defined quite simply. 

a. J1', = U13 < ,._ Jf3 
b. []M,.= UJ3 < ,._ []M~ 

The QK sequence of models builds up inductively the values of the partial function !Ta 

and the extensional definition [] for each ex. In Af QKO no propositionally quantified 

statements are given truth values. ,'./IP0 , however, does assign every atom in the 

propositional algebra a truth value. After the first application of the inductive definition 

Af QK l now verifies many propositions that quantify over propositions-- e.g. v:Epp. 

But notice that (9) will not get a value in Af QK1, In fact (9) will not get a value 

throughout the QK sequence. I will call the models in the QK sequence standard 

partial models for Leo, The class Ao of fixed points of the QK sequence as defined by 

PST gives us the minimal fixed point models definable on the class of all base partial 

models for Leo, 

Standard partial models are not models of (HOM). But they are models for a 

closely related theory. We must make two changes to (HOM). First, we must define 

correspondences for each pair of intensional and extensional connectives. Second we 

must replace the identities in (HOM) with rule equivalences. Call the resulting theory 

(HOM'): 

(HOM') 

V fp(')gj V [pUqj 

vp&vq vpvvq 

- 43 -



V[t=t'] 

Notice that as with the QH revision models, the correspondence between ~ and 
D is not complete: 

(i) !M"QJC°+l • 'v'p vq, iff 1'(q,(t/p)) = 1 for any t e P. 

!M QKcx+l 'v'p vq, iff 1'(q,(t/p)) = O for some t e P. 

(ii) !M"QKcx+l • 3p vq, iff 1'(q,(t/p)) = 1 for some t e P. 

!M"QKcx+l 3p vq, iff 1'(q,(t/p)) = 0 for every t e P. 

Nevertheless, just as for standard intentional models for type theory, we may show that 

the axioms in (HOM) are verified in the following sense. 

Proposition 6: Any partial intentional model !M" is a model for (HOM') 

The proof of proposition 6 follows immediately from the constraints on partial models. 

The rule equivalences in (HOM') form a weaker theory than (HOM) to be sure. 

We only have a partial homomorphism from propositions to truth values respecting the 

propositional and truth functional connectives and quantifiers. But we can still prove 

the following with it. Define a Lro formula q,' in v normal form such that v occurs only 

in front of atomic formulas. The rules in (HOM') allow us to prove 

Proposition 7: Let q, be a formula of Leo- Then given (HOM'), there is a 

formula q,' in v normal form such that q> r q,'. 

Proposition 7 allows us to ignore the carrots once again. 

Because the QK sequence of models is inductively defined and there is a fixed 

set of propositions, one can show by the standard argument that the sequence reaches a 

fixed point. I'll call any !M QK "Y model that is a fixed point of the definition a standard 

fixed point model for L00• Let R1 be the following set of rules (corresponding to the 

strong Kleene interpretation of the connectives and quantifiers): 
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R, 
1. The usual introduction and elimination rules for 3 'v' & and v generalized to 

all types 

2. The equivalences 
-,-,A -,(A&B) -,(AV B) 

A -,A v-,B -,A &-,B 

3. The rule 'I' & -,'I' r q, 

4. Suppose q>(\jf) is a positive context ('If is a constituent that is not under the 

scope of any negations or relation symbols in prenex disjunctive form). Then if 

"'1 r "'2. <P<'I',) r <P<'I' 2 ). 
5. The axioms 

a.13=13 

b. >..xtA(l3) = A(l3/x) 



6. If a and a' are of type t - t' and p, P' of type t', then a = a' & P = P' ~ 
a(P) = a'(P') 

7. v'u A.x <p(u) = A.X <p'(u) ~ A.X <p = A.x <p'. 

8. The rules in (HOM') 

Say that <p is a logical consequence of 'I' relative to the class of models .1.o just in 

case if 'M E .1.o and 'M F 'If, then 'M F <p. 

Proposition 8: If <p ~ 'I' is a rule of R 1, then <p F,1.0 '1'· 
To illustrate, let us take one of the quantifier rules, the universal exploitation rule v'x <p ~ 

<p (t/x). Suppose for some 'M e .1.o, 'M F v'x <p. If x is of other than propositional 

type, then by the constraints on 'f given by the strong Kleene interpretation of the truth 

functional connectives and non-propositional quantifiers, 'M F <p(t/x) for any suitable 

term t. Now suppose that x is of propositional type. By the construction of the 

sequence QK v'x<p will be true only if all its instances are verified at some previous 

stage, if a is a successor or limit ordinal. In either case, since the construction is 

inductive, this assures that 'M F <p(t/x). The only other rule that may not be obvious is 

the rule 4. Assume that \jl1 r,1.0 \jl2 and that for some 'M e .1.o, 'MF <p('lf1) where <p('lf1) 

is positive. We must now show 'MF <p('lf2). We do this by induction on the 

complexity of <p. If <p is empty then the result is obvious, so now assume for all 

positive ~ of complexity less <p, the result holds. Since <p is positive, there are several 

cases to consider. First, <p = ~1 v ~2 • Suppose that \jl1 occurs in ~2 • Then 'MF ~1 v 

~ 2 ('If 1) iff 'M F ~ 1 or 'M F ~2 ('If 1) iff, by the inductive hypothesis, 'M F ~1 or 'M F 

~ 2 ('1f2 ) iff 'MF <p('lf2 ). The other truth functional cases are similar. Now suppose that 

<p = 3x ~- Since 'M is a fixed point model, it must contain the relevant instances to the 

quantifier. So by the inductive hypothesis again, we see easily that the desired result 

follows. 

Let~ be the derivation relation defined by the rules in R1• A standard 

argument will now prove the soundness of R 1 relative to .1.0 • In fact we may consider a 

wider class .1. of models, the class of all fixed points of partial base models that employ 

the inductive revision procedure defined in (PMC) for successor and limit ordinals. To 

define these models, we begin with a base partial model 'M = <!l, [I, f*, :f» and then 

consider a partial base model expansion, 'M * = <!l, [I, f*, 'f*O> where 'f*O is some 

extension of 'fl consistent with the strong Kleene valuation rules. We now exploit the 

inductive revision procedure relative to all such 'M *. Let F ,._ be the consequence relation 

defined over .1.. Then, 

Proposition 9: For a set of sentences r, if r ~ <p, then r i,,._ <p. 

It appears that if we loosen the notion of a standard partial model for Lro to get 

general partial models Lro , we may also be able to prove a completness result for R 1-
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A general model for Leo from Henkin (1950) is a model in which the domains of 

propositions, truth values, and individuals are as before and where if t 1, ••• tn are 

types, then the interpretation of a type< t1, ... , tn> is a subset of p((t1] X lt2 ) X .. 
Xlt.l ); in a standard model I< ti, ... , t.>D = p(lt1] X lt2 l X .. Xlt.D ). Just as 

there are standard partial models, there are also general partial models for Leo- Let FG be 

the consequence relation defined over all general fixed point models-- all those fixed 

point models definable relative to partial base general model expansions . 

Proposition 10: For a set of sentences r, if r FG <p, then r ~ <p. 

The outline of the proof relies on an adaptation of the Henkin method to partial models 

proposed by Kamp (1984). What I shall do is show that if not r ~ <p then there is a 

partial model that verifies r but does not verify <p. So suppose not r r <p. Define <p to 

be a positive formula just in case all negation signs in <p occur only on atomic formulae. 

We may show that for every <p there is a positive <p' that is R-equivalent to it (i.e. <p r 
<p')., 

Using an enumeration of all positive formulae of Leo, we build up two maximal 

sets n and I: from r and { <p} respectively as follows. I assume that infinitely many 

constants of each type do not occur in the enumeration of the positive formulae. 

l. no = r; :Eo = { <p} 

2.a. if not (Q. U { 'Vn+ tl r I:.) and 'l'n+ 1 is not existential, then On+ 1 = n. U 

{'l'n+tl; I:n+t = I:. 

b. if not (O. U I 'Vn+ i} r I:.) and 'l'n+ 1 = 3v~, then On+ 1 = n. U I 'Vn+ 1, 

~(c/v)} where c; is the first individual constant not appearing inn. U I:. U 

l'Vn+tl ; I:n+l = I:. 
C. if n. U { 'l'!J+ i} r I:. and 'l'n+ 1 is not universal, then On+ 1 = n.; l:n+ 1 = I:. 

u l'Vn+tl 

d. ifO. u l'Vn+tl r I:. and 'l'n+l = 'v'v~, then On+l = n.; l:n+t = I:. u 
l'Vn+l, ~(cjv)} where c; is the first individual constant not appearing inn. U 

I:. u l'Vn+tl 

3. 0 = Un e ro n.; I:= Un e ro I:. 

The next step is to show 

Lemma 11: not Q r I: 
This is proved by an induction on n. and I: •. 

I now construct a base partial intentional model Af = <E, ID, f*, :fa> from these 

sets. First I inductively define the type structure g. Let Eo!M = ( [cO]o: c is an 

individual constant occurring in n U I:}, where[ c Jo = ( d : n r d = c}, and let Ep Af = 
{['ljf]o: 'I' is a sentence occuring in n U I:}. I define ET as the set of truth values using 

the sentences and their negates in n. T = { 'ljf: 'I' e n}; .l = { 'ljf: ,'ljf e n}. Now 
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assume that Er and Er· are already defined as equivalence classes [ a.]n and [13]n 

respectively. We define Er -'t' to be { [~]n: ~ is of the form h't y and y occurs in Q U 

I:). We further define for each [!Jo in Er -'t' to be a function such that [!Jo([ a.]o) = 

[y(x't/a.)]n for any element [a.]o ofEi;. We can easily check this definition by 

exploiting (6) and (7) of R, and noting that for any a.., Ct.2 e [a.]n and hy., A.X"f2 in 

[~]n, A.X"f1(a.1) = A.X"f2(Ct.2). Further, if [~tln = [~2]0, it follows that~. and ~2 agree 

on all arguments. So 'v'u A.X"f1(x)(u) = hy2(x)(u). By (7) we may conclude ~1 = ~2-

The set of all types ~ for Af are those constructed from the basic types by this 

procedure, and it obeys (FA). 

The second step in defining the model is to specify the interpretation function. 

Define(] as follows. If cp is a term of type t, then [cpJ = [q>]o e Bi;. Because of my 

definition of the type structure and because of (5.b), ID obeys (ABS). 

The third step is to specify extensions for intentional objects. Define f* such 

that for [13]n e E.:'t, •... , 'tn> f*(l3) = <I<[ a.Jo, ... , c a..]n>: 13( a.., ... a..) e o I, 
{<[a.do, ... , [a..]o>: l3(a.., ... a..) e I:). The first member of this set is the 

extension of 13, the second its antiextension. 

The fmal step is to assign truth values to propositions. Defme iJM to be a 

function from Ep, to ET such that: if cp is of the form R(l31, ... l3.), then J°M(R(l3,, ... 

l3.)) = 1 iff R(l3,, ... l3.) e Q and J°M(R(l3,, ... l3.)) = 0 iff R(l3,, ... l3.) e I: .. 

Given my definition off*, i) is correctly defmed. 

Now we must extend iJM to a function that verifies all of Q. We do this by 

considering iJM U (Op X ( 1)) = J*OM, where Op is the part of Q that contains 

propositional variables or constants. J*O M is obviously a fuction, and we can extend 

J*OM to a partial function 1" from Ep to ET using the inductive revision procedure 

defined in (PMC) for successor and limit ordinals. Let Ma.= <E, P, (D, f, 'P> be the 

fixed point of that revision process. 1" is easily shown to be consistent, since if not 

then J*OM must assign a formula and its negation both 1 or the same formula belongs 

both to Q and to I:, which is impossible by the construction. So Ma. is a fixed point 

model. Now we can show the following: 

Lemma 12:Afa. is a partial model that verifies all of Q and fails to verify I:. 

Hence Af a. verifies r and fails to verify cp. 
We prove this by induction on the complexity oft} e QUI:. Suppose that t} is atomic 

of the form R(f:11, , .. 13.) The construction of iJ insures that Af ~ t} if t} e Q and not 

Af ~ t} if 1' e I:. Suppose,'}= -,'I' and that,'} e Q. By the construction of Q, 'I' i!! Q 

and 'I' must be atomic. But then 'I' e I: and so again by the defmition of iJ, Af 'I' and 

so Af ~ ,'}_ An entirely parallel argument holds if,'} e I:. The truth functional cases and 

ordinary quantificational cases are straightforward. Suppose t} = A.Xa.(13) e Q. By 

(5.b) in R1, a.'= a.(l3/x) e Q, and by the inductive hypothesis Af ~ a.' if a.' e Q. Af ~ 
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. . . . ·• j)'.l,ff:1r1ij1~~i*r-{:1r1f",".'""" ... " ... ,, .. ::?f~t/' 
!.' ~ ~ fl Q. Smee Af obeys (FA) and (ABS) as seen above,~.~ t. ·· ,ai!mltf .; .\ ,7;;;i;)iti1'.!t.i~f\\;.Z~*'ffi.i;:r · 
argument holds for the case 1' e t. The only non-straightforwlld .step W,vol~J . · · '. ;_ ~fj}v'.z;;,,:~Jft;?jff;;~ 
quantified statements of the form 3p'ljf and v'p 'I' where pis a propositi~ quan~· "'[:'{ik;f'> · 

•. ,;ijj!fJ,;c_J..et_~.-~ 3pljl' and su~se 1' e n. By t4e construction_of '21 if.3-U,fJi~:;.-~( 
·.· · · e n. By the inductive hypothesis 9,1a • 'ljf(cP/p) and so 9,1a • 3p'ljf, since Ma is a ·· · , 

fixed point. Now suppose that 1' e t. 1' e :E only if it implies q, or is itself q,. So by. :' ; ·•·· 

the conS11'11Ction procedure of :E and n, every instance 'ljf(cP/p) of'!' ~ti~~ m li,.~.,2.;;~.8;.;)} 
'ljf(cP/p) +-•3p'ljf, But M" • 3p'ljf iff for some proposition cPi, 9,1a•~-~).~~!1!'.'1h~~'W;; 

is a fixed point. Then by the inductive hypothesis it is not the case that-M11 • 'ljf(d;J},:,,,)>i,/.q. 

for any instance 'ljf(cP/p) of 'If, and so not Afa • 3p'ljf. The arguments wi.e 1' •~Jl,V,., ·• 
. are analogous to those for the existential case. Suppose 1' e n. We must show ~ t,r · · 

'<';:tiJ,Vi:t'lf,:By.the construction procedure and the fact that v'p'ljf I- 'lf(cP/p), every in~:.: ; \ :,;r:'/5 
• !::• . . . . . ~~~1-,i,(dl~: . . . .. ·. • · .. · .. •> ./\:~::·· 

assume that q, e t. By the construction of :E, an instance 'ljf(cP/p) e :E. By the 
inductive hypothesis then, not 9,1a • 'ljf(cP/p). But this suffices to show that tis not the 
case that Af a • 1'. 

With this lemma the end of the proof of proposition 9, the completeness proof, 

is at hand This completeness proof establishes a logic for partial fixed point models of. . ... 
. . ,. ' ·-.;,. ,· :-.•.•-· .. _'~::,_·:. ,.-.~~:.. ..,,,,, 

·: '° ...,., •... ,. ~~~o~al quantification, a logic which 111 call partial, sinl_ple:-t/J~~f_~ .. · . .. .. · I . · . ~m 

'.'';:::~• :''T ~(Pm.~reufii doefso by usi.nggerieral models:. Jf 'He'.defiri~rfi:ri~l,jt[i;J~~JJUlUR '\~ 
means of the model theoretic properties of their standard models rather than by their 
syntax, the use of general models for PST essentially assigns a higher order logic 

syntax a first order logic semantics. But in this PST is no different from the standard 

~::j::: ==~~~ ==te::;:~~~s~7~:=u~~l~~s~ is ....• J:~·Jf~tNH;i,~,:"' 
completeness proof, we are also able to show that logical consequC11cefor: PS'f ~~y~fi;J?i~ 
to the class of general partial models is E 1 detinable,justas (Sl') is J:j ~-,"'i~~~~t( 
relative to general models; with respect to stan~lld m~; ~~l!~~r}!t~~~:l ·· ···. . . · · ··. · 
conjecture, in PST, is only 1:11 definable.27 The major accomplishmentofcoum:ir'L;,o,;f;i'.,;<~ 

that in PST, the intentional paradoxes are rendered hannless. 

Of course PST isn't consezvative in one respect. Classical logic is not valid in 

-·'"~•·· . -models We can do ~at thepriceof~eh,gance. Letusdi~our, . . .. , \.).x:·· 
~: 'if,)' •;'t'., ,1,' hmgui(gebito those sentences in whjch propositioqai consJUtS c,-.viJi.l:ilGoceur. '·. ijJ~JJ:,i .· ;, LH-. , 

-'· . . ', . ,- ... ,..,- -.:••',('·'-.':'":-·_,,- ,..,,.,_.k~~~::•-'_:.,~h','.";~:t._'if~F'.~\!,; ;;; 
those sentences in which they do not. Call the fonner Lp and the latter L -~ Lp. · ll, be · · _ · · ·• ~ ! };?: i, 
the following set of rules and axioms. 

26of course there is a weaker logic than PST the one corresponding to the theo,y of propositions P•(FA), 
Such a dleory would~ die axiom ol PST Mi Gllal • ll(a/X"rl wilh Mi .CaJ "i,(a/X"'), Tbll 
meem is hlihly lnll!lltlonal and 11011-standanl. nJ call ft PST • FA 
27nio poof of this claim would follow the lines of that given by Van Bentham and Doets (1984). 



1. All instances of To restricted to L - Lp 

2. All instances of the rules of R 1 in L. 

Now consider a restricted class of partial base models, those models 9,{ = <:g, ID, f, 
J<l>in which the assignment functions f are total. The base models then are classical 

then and classical logic is valid in them when restricted to L-Lp. 111 call such base 

models classical base mcxfels. PST relative to the class of classical base models yields a 

class of minimal fixed point models «l>0• Classical base models also may have model 

expansions. Call ct> 1 the class of all fixed point general models definable relative to 

classical base model expansions using the inductive revision procedure given in PST 

for successor and limit ordinals. «l>0 c «l>1• Just as before, we have 

Proposition 13: r ~R 2 cp - r F<1>, cp 
By constructing first an L-Lp maximal saturated set in the ordinary way and then doing 

the partial construction for Lp like the one given for proposition 9, one can then get the 

desired converse to proposition 13: 

Proposition 14: r F<1>, cp - r ~ 2 cp 
The logic for the class of models ct>, I'll call PST+. 

This still doesn't yield classical logic for propositional quantification. This is not 

as bad as it seems, however; for all of mathematics might be done in L00 at the level of 

individuals (we would have sets as individuals and axioms for them). For many 

purposes outside natural language semantics and modelling cognitive attitudes, it would 

seem as though we could dispense with the propositional part of this logic. If one really 

wanted to have classical logic for propositional logic too, however, I conjecture that one 

could resort to supervaluations as defining the interpretation of the connectives and 

quantifiers rather than the strong Kleene rules and use the same construction procedure 

as here. 

2.4 Russell's Problem witb the Theory of Types 

Thomason's paper discusses another problem for the simple theory of types, 

mentioned in an appendix to Russell's Principles of Mathematics. It motivates 

Thomason's proposal for dealing with the intentional paradoxes, which uses a free logic 

for the propositional quantifiers. My proposal solves this difficulty too though in a 

manner different from what Thomason suggests. 

The difficulty, due originally to Russell (1903), is that the simple theory of 

types is too liberal in what it countenances as propositions and propositional functions. 

For example in Loo the term 

(10) AxP 3f<p,p> (vFf = x & -,vfx) 
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denotes a property of propositions,28 for any given F. Let's call the property of 

propositions in (10) w. Then assuming vw(Fw) v-, vw(Fw), we get the following 

disturbing result. 29 

(11) 3f<P,P>3g<P,P> (V[Ff = Fg] & -,VxJJ (vfx - vgx)) 

Since (11) holds for arbitrary F (underlying it is a simple cardinality argument), it holds 

for the particular definition ofF in (12) 

(12) F = )..g<p,p> VxP (vgx -+ vx) 

By the principles of identity (11) and (12) have worrisome consequences for the theory 

of attitudes formulated within the simple theory of types. One such consequence is 

(13): 

(13) 3f<P,P>3g<P,P> (OVxo • ( vBel(x, Ff) - vBel(x, Fg)) & -,VxJJ (vfx -

vgx)) 

Such consequences may have led Russell to develop the Ramified Theory of 

Types. Thomason points out correctly that by limiting what expressions denote higher 

order objects in the models and by employing a free logic, one can avoid this 

consequence. So one doesn't need the Ramified Theory to solve this difficulty. 

Thomason's proposal won't work in the partial logic for propositional 

quantifiers as I have defined it. It is a valid principle of the partial logic PST that 

(14) 3p V[p = <j>] 

This partial logic for the theory of types is no different from the classical theory of types 

in this respect. But Thomason's proposal leads as he points out to unintuitive 

consequences when dealing with the Intentional Paradoxes: it implies among other 

things that the existence of propositions is a context dependent, speaker relative matter. 

This collides with our intuitions about propositions. (14) also appears to be a needed 

principle in the analysis of propositional anaphora in natural language. Even though 

28Toe superscripts in the formulas (10)-(13) are there to make clear the types of variables involved. 
29Tue proof is as follows: 
Droppmg carrots we have 

I) w(Fw) v ~ w(Fw) 
Now suppose that 

2) w(Fw) 
and that 

Then by 2 ana the delinition of w, 
3~ '<tg'<th (F(l!) = F(h) - '<ty(g(y) - h(y))) 

4 3f(F(t) = F(w) & ~(F(w))) 
So for some f, 
4) F(fo) = F(w) & ~f,(F(w)) 

By (3) and (5), 
6) '<t_y(f,(y)- w(y)) 

By (2) and (6), 
7) fo(F(w)) 

which is a contradiction. So now suppose 
8)~ w(Fw) 

By the definition of w again, and 8) 
9) '<tf(F(f) = F(w)- f(F(w))) 

So by the laws of identity, 

A · thi!O) w(F(w))di . N that this f. a1·d . T gam s IS a contra cbon. Ole proo IS V I IIl •. 
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propositions are paradoxical or non-sensical, we may refer to them anaphorically. 

Imagine the following dialogue: 

(15) Cretan: Everything I say is false; 

Socrates: I don't believe that; 

According to the free logic proposal, the Cretan did not manage to express a 

proposition in the circumstance in which the first sentence of (15) is the only sentence 

he manages to utter. But then it appears that Socrates doesn't manage to have a belief-­

or express a belief-- about the Cretan. The analysis of anaphora in (15) is a semantic 

mystery, unless we assume there is some proposition the Cretan expresses. This seems 

to cast doubt on the free logic approach, at least if we are interested in applying our 

theory of propositional quantification to natural language semantics. 

Russell's argument culminating with (11) is not valid in PST for the simple 

reason that it relies on the excluded middle. So that motivation for introducing type-free 

logic for higher order quantification dissolves. It's also not clear, however, that (13) is 

such a bizarre consequence for a theory of simple types to countenance. The real impon 

of the difficulty hinges on what one takes to be the criterion of identity for types. Our 

models say little about what identity of types should amount to. If one thinks of how 

propositional functions might operate compositionally with propositions in a standard 

model, cardinality arguments would dictate that the function from a tuple consisting of a 

propositional function and its arguments to propositions could not be 1-1; (11) then is 

simply a special case of a much more general argument. But this need not be 

troublesome; one could have criteria of type identity such that 1jf([3) = 1jf([3') but [3 !;,!, [3'. 

This actually makes much more sense than (SIT) if one thinks that predicate terms 

denote propositional functions. 30 What this goes against, however, is a cenain natural 

criterion of identity for intentional objects that one might call a structural criterion of 

identity for types (SIT): 

(SIT) Let [3 and [3' be of type t and let 'I', 1jf' be of type t - t'. Then 1j1([3) = 
1j1([3') implies 1jf = 1jf' & [3 = [3'. 

(SIT) together with the principle of in discernibility of identicals contradicts (I I). Thus 

(SIT) + the principle of indiscernibility of identicals is inconsistent with the simple 

theory of types (ST). There are at least trivial models of (PST), in which (SIT) + the 

principle of indiscernibility of identicals are never refuted and are verified in the trivial 

cases of where a([3) = a([3) (which must be true according to the constraints on '.Fin 

models for PST). This may be small consolation to the lover of (SIT), but it seems that 

one could fill out such models with more interesting examples of the application of 

(SIT). 

30 Aczel (1989) warns that the application relation should not be taken to be structure creating for such 
reasons. That is, he wants to deny that a(f3) = a'(f3') - a= a' & f3 = f3', our principle (SIT). 
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My solution to Russell's problem actually gives us an interesting comparison 

with Russell's own solution-- the Ramified Theory of Types (RT). We have in effect 

constructed models for cenain versions of RT. But the orders of our theory are entirely 

semantic and in the models not in the syntax or the proof theory-- as they should be. In 

all versions of (RT), there is a function, Ord, from propositions to ro that recursively 

assigns orders. In some versions,31 it is defined as follows. Let Dom(Q) in \j/ be the 

set of objects satisfying ~. where the structure of <p is Qli (~, 8). 

Ord: Ep - ro such that: 

If <p e Po, then Ord(<p) = 1. 

If <p =a= 13 then Ord(<p) = Max{Ord(a), Ord(l3)} + 1. 

If <p = ,\j/, then Ord(<p)~ Ord(\j/). 

If* is a boolean two place connective and <p = a*l3, then Ord(<p)~ 

Max { Ord( a), Ord(l3)}. 

If Q is a quantifier and <p = Qli\j/, then Ord(<p) = Max{ Ord(li) for lie 

Dom(Q) in \j/} + 1 

Within PST Ord must be a partial function, because there are many propositions in our 

setup that cannot be assigned an order-- Prior's proposition for instance. This definition 

of order suggests a correlation between order and stages of revision in our model 

theoretic framework. All intentional identities are verified at every stage of our revision 

procedure, whereas in an RT model this is not the case. So let us define a translation 

function *, such that: 

If <pis atomic of the form R(a1, ••• , a.), then <p* = <p 

If <pis atomic of the form a= a', then <p* = 3p3q (p = a & q = a' & a= a' & 

vp=vq). 

If <pis of the form~ & 'I', ~ v 'I', ~ - 'I', 3v~, etc. then <p* = <p. 

Recall the class of models <I> used in proposition 14 and the subclass of minimal fixed 

points <l>o. 

Proposition 15: Suppose <p is a proposition for which Ord is defined. Then 

for AfO a classical base model, Af• ~ <p* iff Ord(<p)~ n, where <p* is defined 

above. va = v13, if <p is a = 13 and <p* = <p otherwise. 

The proof of proposition 14 is by induction on n. The upshot of this proposition is that 

if Af e <1>0 also yields a model of RT. If Af e <1>0 , then its RT reduct°is just like Af 

except that the domain of propositions in the reduct is just those set of propositions <p 

such that <p* gets a truth value in Af. The domain of propositions of the RT reduct also 

has an order imposed on it by ORD. 

To sum up then, there appear to be two solutions to the paradoxes of indirect 

discourse. One familiar route uses a first order theory of quantification and a truth 

31 I folow Thomason (1989) and Church (1976) here. 
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predicate. The other uses higher order logic, in particular the intentional version 

presupposed by Russellians and spelled out in Thomason (1980.b). By giving an 

inductive definition of propositional quantification, we avoid the difficulties associated 

with other solutions to the paradoxes concerning truth in higher order logic. The 

partiality of PST and its cousins is located within what truth values propositions take 

on, not, as in Thomason's proposal, the existence of propositions. 

Let us now return briefly to the picture with the first order theory. The set of 

valid sentences in all metastable models or semi-stable models, for instance, is clearly 

not r.e., regardless of ones approach to propositions. If we consider a conceptualist 

approach to intentional objects coupled with partial logic, we still do not get very far for 

reasons adumbrated in Visser and Burgess-- at least if we want to talk of truth of 

propositions in models defined over standard models of arithmetic. 32 The analogue in 

partial logic to the proposal by Turner for classical, first order theories, however, 

appears to have a straightforward axiomatization if we follow the techniques given here. 

The drawback is that one cannot have first order logic. The pro-sentential theory of 

truth incorporated into propositional quantification appears to mitigate Liar-like 

paradoxes, in that one can get a natural logic that includes first order logic. Somewhat 

surprisingly, the system with the higher order syntax-- partial type theory-- ( or at least 

with the typing of variables) turns out to have a more tractable notion of validity than 

that of the classical, first order theory of propositions with a truth predicate for 

propositions. 

3. Models for Belief 
This last section concludes with an extension of the theory of propositional 

quantification to attitude contexts. One must be wary in concluding that higher order 

logic is "safe" from other paradoxes related to the Liar. Once we have a belief or 

knowledge predicate, we could, for a given propositional constant c, stipulate lcD = -, 
B(a, c ). Alternatively, it seems as though we could stipulate: 

(16) p = ~B(a, p) 

By our constraints on '.fit follows that in every model in which (16) is true, 

(17) vp I- -,vB(a, p) 

Now suppose our semantics for attitude predicates is such that for every agent we 

assign a belief stare, a collection of propositions which is subject to certain closure 

conditions. Then we may encode by means of these closure conditions the usual 

doxastic reasoning principles and validate rules which correspond, say, to the logic 

presented in Thomason (1980)_33 We can still have such identities between 

32see Burgess (1986). 
33Here would be the relevant closure principles for the S4 logic of Thomason (1980): 

p-q,pE S-qE S 
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propositions as in ( 16). But p will never get assigned a truth value, and so it will be 

undetennined whether a believes p. We must be careful not introduce any "essentially 

ungrounded" propositions with such predicates as knowledge and belief into our 

domain; if we do so completeness will vanish (we can no longer construct the models) 

and the higher order theory of propositions becomes an uninteresting variant of the first 

order theory.34 But PST can admit "contingent self-reference" without harmful effects. 

PST gives us more than just a logic with a moderate amount of self-reference. It 

also permits a variety of logics for the attitudes which go far beyond what a possible 

worlds framework yields. The reason for this is simple. If our semantics for attitudes 

ascribes to an agent a set of propositions, then we may choose from a variety of closure 

conditions. In particular we may assume very weak closure conditions-- such as those 

detailed in Asher ( 1986). Nothing forces us in PST to require a closure condition on 

S that exploits logical equivalence. In PST it is consistent to assume that two 

propositions may be necessarily even logically equivalent without being identical. So 

PST does not validate B(p) and~ p - q - B(q), a rule which is provable in most 

possible worlds semantics of attitudes. This rule leads to well-known, unintuitive 

results in the semantics of attitudes. Thus, PST offers a semantics for attitudes beyond 

that provided by possible worlds semantics in at least two ways. The PST semantics 

for attitudes allows at least as much self-reference as any possible worlds semantics but 

also does not succumb to problems of logical equivalence. 

Let us get more concrete and define a variety of explicit logics of belief as well 

as a logic for implicit belief within PST. 35 I will take a belief model in PST to be a pair 

<Af, $>, consisting PST model 9,,{ and a collection of states$. For each agent a in the 

domain of individuals of 9,,{, one assigns a subset Sa of$. One element of Sa, so, 

designates the beliefs of a, while the other elements designate beliefs of other agents. 

Vs e Sas S Ep. We may now constrain the elements of Sa to various closure 

conditions. Postulates of "minimal rationality" might be the following, with 

quantification over all s in all Sa e $. 

q> & 'JI E S - q>, 'JI E S 

q>(b) e s - 3xq>(x) e s 

One could add many other closure conditions. Of particular interest might be the 

fragment of relevance logic, advocated as an appropriate logic for belief by Levesque 

(1984), the Kleene logic encoded in R 1, and the rules of positive and negative 

pe s-Bpe S 
~ e S and p ~ q - q e S. 

One cout:l\~~";J in: sort of constraints on S and get a vareity of logics for belief and other attitudes 
in this way. One could do better than the ordinary possible worlds semantics here because the logic of 

,.P.ropositions is not constrainted by possible worlds. ••• 
-"'Thus1 we cannot inlroduce an expression relation between sentences and propositions. See Asher & 
Kamp \1986), Parsons (1974) for a discussion. 
350ne could choose the slightly stronger logic PST+ if one wanted to also. 
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introspection. A formulation of the latter is slightly problematic, so I give one possible 

way here. Suppose s represents the state of agent a. Then: 

q> e s - B(a, q>) e s (positive introspection) 

q> e: s - .B(a, q>) e s (negative introspection) 

These logics, with the exception of the minimally rational closure conditions (I 

would argue),36 all idealize the cognitive capacities of agents to some degree. So one 

might wonder what sort of logic of implicit belief PST models furnish. To get such 

models we may replace each collection of propositions in $ with a partial world, a world 

with a Kleene valuation defined on it. At each world, w there will be designated one a­

belief world wa, a partial world depicting what a believes from the perspective of w. 

We can think of this as a selection function taking worlds and agents as arguments; I 

shall write the agent a world from the perspective ofw as f(w, a). I evaluate formulas 

as before with the following exception for belief formulas. I will write ~w to designate 

that a formula is satisfied at a given world relative to a model structure. 

<Af, $> ~w B(a, cp) iff <Af, $> ~f(w,a) q>. 

<Af, $> 1'w B(a, q>) iff <Af, $> 1'r(w,a) q>. 

These are natural definitions for a semantics for belief within a partial setting. One 

other natural assumption concerns what are agent worlds at a given world. Suppose 

one assumes that iff(w', a)= w, then f(w, a)= w. Of interest is the axiomatization that 

follows from them. In particular, the axiom corresponding to the closure principle of 

positive introspection, B(a, cp) ~ B(a, B(a, cp)), as well as its converse B(a, B(a, q>)) ~ 

B(a, cp) is valid. The corresponding axioms for negative introspection is not valid. 

Also valid are the rules of R I and the following rule of belief closure: 

Cjl1, ••. , q,. ~ 'If, then B(a, q>), ..• , B(a, cp.) ~ B(a, 'If) 
Let us call this system R3 and the set of all general fix point models based on the 

semantics for belief systems 8. I then close with a theorem, which falls out from the 

same technique used for proposition 9 generalized to the usual sort of construction for 

completeness proofs in modal logic. 

Proposition 16: cp f-R, 'I' iff cp ~8 'I'-
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EXTENDING THE CURRY-HOWARD-TAIT INTERPRETATION TO 
LINEAR, RELEVANT AND OTHER RESOURCE LOGICS1 

by Dov M. GABBAY2 and Ruy J. G. B. DE QuEIRoz3 

(Working Draft May 2, 1990.) 

1. Motivation 

The so-called Curry-Howard-Tait interpretation (Curry 1934, Curry & Feys 1958, Howard 
1980, Tait 1965, 1967) is known to provide a rather neat term-functional account of intuition­
istic implication. Could one refine the interpretation for other neighbouring logics to obtain 
an almost as good account of the so-called 'resource' implications ( e.g. linear, relevant) ? 

We answer this question positively by demonstrating that just by working with side condi­
tions on the rule of assertability conditions for the connective representing implication('-->') 
one can capture those 'resource' logics. In the Curry-Howard-Tait interpretation such a rule 
involves a >.-abstraction, which usually has a number of hidden assumptions (e.g., when ab­
stracting 'x' from 'T' to make '>.x.T', 'T' could have one, many, or even no free occurrences 
of 'x'). Type-theoretic presentation systems are particularly useful in handling a not-quite­
declarative feature of resource logics such as linear logic and relevant logic, namely the special 
requirement saying that in order to allow 'A--> B' to be derived as a theorem the assumption 
'A' must be used in order to obtain 'B'. This is because they are based on the identifica­
tion of propositions with types and of proofs/constructions with elements, thus allowing the 
manipulation of proofs/constructions in the object language. 

Based on such an extension of the propositions-are-types identification (Curry-Howard) 
combined with the convertibility-based intensional interpretation (Tait), we attempt at a 
classification of different systems of propositional implication (W, Ticket Entailment, linear, 
relevant, entailment, strict, minimal\ intuitionistic, classical, linear classical, relevant classi­
cal, deductive relevant5) based on which axioms of the implicational calculus are allowed to be 
derived from the presentation of'-.' subject to side conditions on the rule of --introduction. 
As each axiom corresponds to the type-scheme6 of a stratified pure term of combinatory logic 
(Curry & Feys 1958, Hindley & Seldin 1986), we can classify combinators through systems 
of implication and vice-versa.7 E.g., I, B, B' and C are linear, whilst S is not linear but is 

1 A preliminary version of this pa.per was presented a.t the Informal Logic Colloquium, held at the Seminar 
fur natiirlich~spra.chliche Systeme (SNS), Universiti.t TU.bingen, on March 21-22, 1990, and the current \'ersion 
shall appear in one volume of the series SNS-Berichte edited by P. Schroeder-Heister. (We a.re grateful to Prof 
Schroeder-Heister for his kind invitation to participate in the event.) While this is still a working draft, a 
more developed version shall be presented a.t the Logic Colloquium 190, Europea.n Summer Meeting of the 
Association for Symbolic Logic, Helsinki, Finla.nd, July 15-22, 1990. 

2 E-mail: (janet) dgtdoc. ic. ac. uli:. 
'Supported by MEDLAR, ESPRIT Basic Research Action 3125, CEC. E-mail: (janet) rjqtdoc. ic. ac. uk. 
4 1n the sense of Joha.nsson 1936. 
5 Developed in Gabbay 1989 where it is also called 'H-releva.nt'. 
6 For a.n elegant presentation of the notion of type-schemes (and 'principal type-schemes'), induding its 

releva.nce to the formulae-as-types interpretation, see chapter 14 of Hindley & Seldin 1986. 
7We tha.nk Dr Kost& DoAen for pointing out that similar work on classifying subsystems of implicat 10n was 

done by Y. Komori (1983, 1989) and H. Ono (1988, and 1985 with Komori), although their framework was 
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relevant (indeed, the derivation of the axiom corresponding to the type-scheme of S involves a 
multiple and branching assumption discharge); K is not relevant but is (minimal) intuitionis­
tic (the derivation of the axiom for K involves a non-relevant/vacuous assumption discharge); 
etc. By treating the proposition 'A -+ B' as an -+-type of A-terms, we shall demonstrate 
how to formalise resource logics with Type Theory by working on side conditions on the A­
calculus abstraction rule (-+-introduction). We shall give type-theoretic derivations of desired 
axioms identifying the combinators (from combinatory logic) to which they correspond, as 
well as conditions to invalidate derivations of undesired axioms for each particular system of 
implication.8 

Additionally, we develop a type-theoretic counterpart to Peirce's rule, which allows us 
to add as an extra condition to the presentation of the type/proposition 'A-+ B' giving us 
classical implication. The idea is to introduce an extra condition to the A-abstraction rule 
which discharges an assumption in the form of 'y E A-+ B' introducing a A-abstraction term 
as a member of an atomic type 'A', given that the latter is obtained from the former. This 
extra condition gives us a combinator we here call 'P".9 

The use of the term 'resource' has its origins in Gab bay's investigations of systems of im­
plication through a technique which combines features of the object language and the meta­
language: the Metabox technique. In order to illustrate the use of the Metabox technique, 
an algorithmic proof system methodology based on 'Labelled Deductive Systems (LDS)' de-

not the Curry-Howard-Tait interpreta.tion with na.tura.l deduction, but Gentzen's sequent calculi. We thank 
Drs Komori and Ono for having sent us the still unpublished typescript. Dr Do.sen has also told us about 
the 'Lambek calculus' (Lambek 1958), and van Benthem's interpreta.tions (e.g., van Benthem 1989), as well as 
a.bout his own recent work Doien 1988, 1989. 

8 ln his treatise on A-calculus. (B&Iend.legt 1981), Ba.rendregt refers to a dissertation by G. Helman as an 
application of restricted A-abstraction to relevant logic: 

"The formulae-as-types idea gave rise to several investigations connecting typed A-calculus, proof theory 
and some category theory,( ... ). Another direction is the connection between subsystems oflogic and restricted 
versions of the typed A-calculus (e.g. relevance logic and the typed ,\/-calculus), see Helman [1977]." 

(Barendregt 1981, p. 572.) 

At the present moment we have not got hold of Helman's work (Helman 1977), but it looks a.s though there 
might be strong connections with pa.rt of what we a.re doing here. 

9 This is an attempt at further extending the Curry-Howard-Tait interpretation to a sound semantical 
instrument which can be capable of handling logics as rule-based calculi (as opposed to truth-value-based 
calculi). In other words, we claim that the interpretation should not be restricted to the intuitionistic case, 
therefote we want the so-called Peirce', axiom to be provable. But, of course, we want to do it on the conditions 
that an assumption can be discharged where it would not be possible to discharge it just by using the rules of 
the calculus fot the intuitionistic case. We a.re obviously moving away from the strictly intuitionistic principles 
underlying the framework of, e.g., Howatd 1980: 

"Results following from cut elimination in P(:>) (e.g.) the nonderivability of Peirce's Law (a:::) /3.:::) o):) o) 
seem to be obtainable at leut as easily from the normalizability of constructions." 

(Howard 1980. p 483.) 

We are trying to follow the trend initiated by Curry which is to devise systems of implication including 
classical (NB.: cla.ssica.l implication, not cla.ssical logic, and we shall end up with something like an impl1cational 
logic (to use & term of va.n Benthem 1989)i e.g., we do not want 'AV -,A' to be provable regardless of A. but 
we want '-,-,A - A' to be a theorem under the condition of negation being defined as '-,A= A - :F' \ F'or a 
consistency proof of our modified framework, it is sufficient to show that one cannot prove a proposition which 
does not have implication as its major connective. The notion of provable here is similar to Martin•L0f's: 

"A formula is provable if there is a deduction of it all of whose assumptions have been discharged.~ 
(Martin-LO[ 19i !. p. 96.) 

Moreover, u we shall see below, such a consistency proof would find a parallel in Martin-L0f's con4Hlency 
theorem. "No atomic formula ia provable." (Ibid., p. 102.) 
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scribed in Gabbay 1989, a class of logics called resource logics is defined as a generalisation 
of linear logic ( Girard 1987). In a proof system with resource characteristic asp( m, n ), where 
m < n, it is required that each assumption be used at least m times but not more than n times. 
Linear logic would require a proof system with resource characteristic p( 1, 1 ), and for relevant 
logic a proof system with resource characteristic p(l,oo) would be required. Here, instead of 
using the Metabox technique, which deals with proofs via a 'labelling' discipline where each 
assumption/step is given a new atomic label ('label: formula'), we deal with those resource 
logics via a type-theoretic presentation system based on the so-called 'Curry-Howard-Tait' 
interpretation where the form of judgement 'proof E proposition' finds an immediate parallel 
with the one used in LDS.10 

In Gabbay 1989 the different logical implications are presented in a Hilbert system as: 

Linear 
A -+ A (reflexivity) 
(A-+ B)-+ ((C-+ A)-+ (C-+ B)) (left tronsitivity) 
(A-+ B)-+ ((B-+ C)-+ (A-+ C)) (right tronsitivity) 
(A-+ (B-+ C))-+ (B-+ (A-+ C)) (permutation) 

Modal T-strict 
Add the schema below to linear implication: 
(A-+ (A-+ B))-+ (A-+ B) (controction) 

Relevant 
Add the schema below to linear implication: 
(A-+ (B-+ C))-+ ((A-+ B)-+ (A-+ C)) (distribution) 

(Minimal) Intuitionistic 
Add the schema below to relevant implication: 
A-+ (B-+ A) (truth) 

(Full) Intuitionistic 
Add the schema below to minimal implication: 
F -+ A (absurdity) 

Classical 
Add the schema below to intuitionistic implication: 
((A-+ B)-+ A)-+ A (Peirce's rule) 

10 With respect to the rOle of labels in deductive systems, we have found an interesting rema.rk by Lambek 
& Scott in their book on An Introduction to Higher Order Categorical Logic: 

"Logicians should note that a deductive system is concerned not just with unlabelled entailments or sequents 
A - B ( as in Gentzen 's proof theory), but with deductions or proofs of such entailments. In writing f : A - B 
we think of/ as the 'reason' why A entails B." 

(Lambek & Scott 1986, p. 47.) 

In the framework we discuBS here, the 'reason' is represented by the witnessing of a closed ..\-term (such as, 
e.g., 'Ax.x E A - A'), whereas in Gabbay 1989, where the main data consist of a.xi.oms in a. Hilbert-style 
presentation, it is a.n auxiliary tool which plays a crucial rOle in the description of the proof methodology. 
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Now, according to the Curry-Howard-Tait interpretation one can treat a proposition of the 
form 'A-+ B' as a -+-type of A-terms, and to say that the proposition is true is the same as to 
say that one can find a pure closed A-term which is contained in it. That is the main principle 
underlying the so-called constructive notion of validity, which supports the 'propositions are 
types' identification, and whose seminal ideas stem from Curry's theory of functionality, 
Howard's formulae-as-types notion of construction, and Tait's notion of convertibility which 
establish the connections between cut-elimination and normalisation.11 

Notational remark. In what follows, the sign '•' denotes the end of a definition, and '•' 
indicates the end of a proof. 

2. Preamble 

The idea of reading a formula as a type originates with Curry (1934) and is used to give a 
.A-calculus interpretation of an intuitionistic theorem. A formula of intuitionistic implicational 
logic is a theorem if and only if, when read as a type, it can be shown to be non-empty using 
the rules of term-construction, namely abstraction and application. By varying the natural 
abstraction principles available in the .A-calculus, we are able to extend the point of view 
of formulae-as-types to some weak systems of implication (relevance, linear, etc.) as well as 
to a system which is stronger than intuitionistic, namely classical implicational logic. The 
weaker logics are called resource logics in the framework of Labelled Deductive Systems {LDS) 
of Gabbay 1989. The research reported here can also be understood in the spirit of LDS, 
where the labels are not words of a certain grammar (as in Gabbay 1989) but A-terms. As 
pointed out in Gabbay 1989, the framework of LDS generalises the usual consequence relation 
'A1 , ••• ,An 1-A'betweenformulastothemoregeneralnotion 't1 : A1 , ••• ,tn: An 1-t: A' where 
't;' are labels. The logical 'unit' in LDS is not a well-formed formula A but a labelled well­
formed formula t : A, t being a label which conveys some 'meta-level' information about 
A. In modal logic t can be a possible world index and in the resource logics ( which include 
intuitionistic, linear and relevance logics), the label t indicates what assumptions and rules 
we used to prove A. The Curry-Howard-Tait interpretation can be viewed as a labelling 
scheme for intuitionistic well-formed formulae and this paper generalises this scheme for other 
resource logics. We take Church's .A-calculus and Curry's combinatory logic as the building 
blocks supporting our framework. 

Let us then take a standard definition of the terms and operators needed to obtain a 
.A-calculus, and let us examine the abstraction rule more closely. In his treatise The Lambda 
Calculus Barendregt defines: 

2.1.J. DEFINITION. (i) Lambda term, are worda over the following alphabet: 

Vo, Vt,··· 

A 

( ' ) 

va.ri&bles, 
a.betractor, 
parentheses. 

11 "H. Curry (1958) has observed that there is a close correspondence between axiom, of positive implicational 
propositional logic, on the one hand, and baaic combinator• on the other hand. ( ... ) The following notion 
of construction, for positive implicational propositional logic, was motivated by Curry's observation. More 
precisely, Curry's observation provided half the motivation. The other half was provided by W. Tait's discovery 
of the close correspondence between cut elimination and reduction of A-terms (W. W. Tait, 1965)." 

(Howard 1980, p. 480.) 
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(ii) The set of ,\-terms is defined inductively a.s follows: 
(J)xEA; 
(2) ME A =a> (Ax.M) EA; 
(3) M, NE A =a> (MN) EA; 

where x in (1) or (2) is an arbitra.ry variable. 

(Barendregt 1981, p. 22.) 

Note that there are many hidden assumptions in the case (2) of the definition of ,\-terms, 
e.g.: 

(a) M may have no free occurrence of x: 
(a.l) Mis an open term, but contains no free occurrence of x; 
(a.2) Mis a closed term, thus contains no free variable at all; 

(b) M may have one free occurrence of x: 
(b.l) M may be of the form '(Tx)' (or 'APPLY(T,x)'); 
(b.2) M may be of the form '(xT)' (or 'APPLY(x,T)'); 

(c) M may have more than one free occurrence of x: 
( c.l) the ,\-abstraction may cancel exactly one of the free occurrences of x; 
( c.2) the ,\-abstraction may cancel all free occurrences of x; 

Moreover, in (3), where application is being defined (which can be done by juxtaposition 
as in '(MN)', or by an explicit non-canonical operator 'APPLY(M, N)' in the terminology used 
here in this paper), 'M' is assumed to be of 'higher' level than 'N': 'M' is supposed to be 
the 'course-of-value' of a function, while 'N' is assumed to be the argument. 

Now, by working with some of these hidden assumptions one can use the simple typed,\­
calculus together with the Curry-Howard-Tait interpretation to formalise a number of systems 
of implication, as we shall demonstrate below .12 

3. Types and propositions 

As pointed out above, the identification of propositions with types of their proofs/ constructions 
( the latter indicates the distinction from proof-trees), usually referred to as the 'formulae­
as-types' notion of construction, goes back at least to Curry's results on the isomorphism 
between the principal type-schemes of combinators and the axioms of the positive implica­
tional fragment of intuitionistic implication (Curry 1934). It has been given a more precise 
presentation in Howard's investigations on the isomorphism between natural deduction proofs 

12 The classification of a. number of systems of implication has been ma.de by various people in the context of 
the 'Lambek ca.1.culus' (La.mbek 1958), giving rise to what is sometimes referred to as the 'Categorial Hierarchy', 
and has been used by many of those interested in the connections between the language of category theory, 
..\-calculus and proof theory, such a.s, e.g.: 

"The general linguistic framework which a.rises here is that of a. Categorial Hierarchy of different logical 
calculi ('categoria.l engines'). At the lower end lies the sta.ndard calculus of Ajdukiewicz (Ajduk:iewicz 1937], 
at the upper end lies the full constructive, or intuitionistic conditional logic, whose derivations correspond 
to arbitrary lambda/application terms. In between lies a whole spectrum, not necessarily linearly ordered, 
of calculi with stronger or weaker intermediate rules of inference. For instance, one important principle of 
classification concerns the number of occurrences of premises which may be withdrawn in one application 
of conditionalization. Only one occurrence a.t a time was withdrawn in Examples 1 and 3. This particular 
restriction gives a very natural intermediate logic, which was already studied by La.mbek as early as 1958, and 
is often called after him." 

(va.n Benthem 1990, p. 10.) 
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and terms of the A-calculus (Howard 1980) within the framework of Heyting arithmetic. Such 
an identification, which also finds support in Godel functional interpretation of intuitionistic 
logic via a system T of finite types (1958), has played an important role in most developments 
of some key notions of modern logic such as 'constructive validity' (see, e.g., Liiuchli 1965,13 

1970, Scott 1970) and 'theory of constructions' (see, e.g., Goodman 1970), as well as in some 
attempts at reconciling category theory with constructive logics (such as, e.g., Lambek & 
Scott 1986). 

In order to make logical sense of the identification between propositions and types, we can 
recall that it was in Frege's Begriffschrift that the symbol 'f-' ( then meaning 'is true') first 
appeared. It was motivated by the need for characterising a proposition (Frege's horizontal 
bar, i.e. '-A': 'A is a proposition') and distinguishing it from a judgement (Frege's vertical 
bar, i.e. 'f- A': 'A is a true proposition'). In other words: 

,~is true I 
'A' is a proposition, whereas 'A is true' is a judgement. A judgement of the form 'A is true' 
can only be made on the basis of the existence of a proof of the proposition A. Contrary 
to the classical view, a proposition is not the same as a truth value. And in contrast to 
the traditional proof-theoretic account of propositions and inference rules, a logical inference 
is to be made from judgement(s) to judgement, and not from proposition{s) to proposition. 
Both premisses and conclusions of inference rules are not propositions as in the usual case 
even in traditional natural deduction presentations of logics, but judgements. This seems 
to be a highly relevant refinement of the usual formalisation of mathematical procedures 
into rules of inference, such as e.g., natural deduction style a la Gentzen. The difference 
between usual natural deduction presentation rules which have propositions as premises and 
conclusions, and lntuitionistic Type Theory where judgements are the objects on which the 
rules of inference operate, is explained briefly in Martin-Liif's illuminating account of the 
often neglected distinction between the two logical concepts of proposition and judgement, 
namely the written account of a series of lectures entitled 'On the Meanings of the Logical 
Constants and the Justifications of the Logical Laws' given in Siena, Italy, in April 1983.14 

Now, the identification of propositions with types gives us instruments to deal with judge­
ments which include its justification: in 'a E A' we are basically saying that 'A is true because 

13
" Theorem: A is a tautology of intuitionistic propositional calculus if and only if t( A} is definably non­

empty." 
uThere he says: 

"We must remember that, even if a. logical inference, for instance, a. conjunction introduction, is written 

A B 
A&B 

which is the way in which we could normally write it, it does not take us from the propositions A and B to the 
proposition A & B. Rather, it takes us from the affirmation of A and the affirmation of B to the affirmation 
of A & B, which we may ma.ke explicit, using Frege's notation, by writing it 

f-A f-B 
f- A & B 

instead. It is always ma.de explicit in this wa.y by Frege in his writings, a.nd in Principia., for instance. Thus 
we have two kinds of entities here: we ha.ve the entities that the logical operations operate on, which we 
call propositions, and we have those that we prove and that appear as premises a.nd conclusion of a logical 
inference, which we call assertions."' 

(Martin-Lo£ 1985, pp. 204-5.) 
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of a'. (E.g. in '>.x.x E A-+ A' we say that 'A-+ A' is true because we have a closed term 
'>.x.x' which inhabits it) 

We shall be using here what has been named 'Meaning-As-USE' Type Theory ( de Queiroz 
& Maibaum 1990), a recent reformulation of Intuitioni~tic Type Theory (Martin-Lof 1975, 
1984), where instead of Martin-Leif's rules for the definition of types/propositions: 

formation 
introduction 
elimination 
equality 

we have the following rules, with corresponding purpose: 

formation: to show how to form the type-expression as well as when two type-expressions 
are equal. 

introduction: to show how to form the canonical value-expressions via the constructor(s), 
as well as when two canonical value-expressions are equal. 

reduction: to show how to normalise non-canonical value-expressions, by demonstrating 
the effect of DESTRUCTOR(S) on the terms built up by constructor(s). 

induction: minimality rule. 

The -+-type of >.-terms is presented as:15 

-+-formation 

-+-introduction 

-+- reduction 

-+-induction 

A type B type B=D 
A-+ B type 

[x EA] 
b(x) EB 

>.x.b(x) EA-+ B 

[x EA] 
b(x) = d(x) EB 

>.x.b(x) = >.x.d(x) EA-+ B 

[x EA] 
a EA b(x) EB 

APPLY(>.x.b(x),a) = b(a/x) EB 

>.x.APPLY(c,x) = c EA-+ B 
D 

We shall be concerned here mainly with the first -+-introduction and -+-reduction. In the 
actual proof-trees, we shall be making use of -+-elimination: 

15 An a.ttempt a.t finding useful connections between the presentation of an -type as a. theory of A-terms, 
and the axiomatic presentation of a .\-theory (such as in Ba.rendregt 1981) is given in de Queiroz ~ Maiba.um 
1991. 
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a EA cEA->B 
APPLY(c, a) EB 

which follows from the presentation of the ->-type above (as shown in de Queiroz & Maibaum 
1990). 

Observe that unlike Barendregt's set of Lambda terms, which included variables and appli­
cation-terms, our ->-type only contains A-abstraction terms (the rule of ->-induction, which 
is the counterpart to A-calculus 7J-rule, is a kind of formal counterpart to that). Here those 
Barendregt's terms which are not A-abstractions can only be subterms. Thus, in order to 
work with the hidden assumptions of the abstraction rule discussed in the previous section, 
we need to look at the 'b(x)' of our first ->-introduction, which can have the form of any of 
Barendregt's Lambda terms: a variable, an abstraction-term, or an application-term. 

Now, we have to show that one can construct derivations of the Hilbert style axioms 
given for linear, relevant and intuitionistic implication in Gabbay 1989, and how one can 
draw the appropriate distinctions for each implication. At least since Curry's theory of func­
tionality (1934) it is well known that there is a correspondence between the type-schemes 
of combinators and the axioms of intuitionistic implication. Within the propositions-are­
types paradigm there is a correspondence between axioms of implication and -;-types which 
contain A-terms as elements or proofs/constructions of the corresponding axioms. So, com­
binators are mathematical objects which correspond to A-terms, which in their turn are 
elements/proofs/constructions which belong to an ->-type.16 

Moreover, just to make clear our own proof methodology, we should say that we read the 
first rule of ->-introduction, namely: 

[x EA] 
b(x) EB 

Ax.b(x) EA_, B 

as follows: having made the assumption 'x EA', and arriving at the conclusion 'b(x) EB' by 
means of one (or none) of the rules available, then we can discharge the assumption by making 
a A-abstraction of the assumption-term ('x') over the conclusion-term ('b(x)'). In other words, 
when constructing a proof-tree one can discharge an assumption if there is at least one proof 
step between the assumption and the conclusion where the assumption is discharged. So, 
in the construction of a proof of 'AX .x E A -> A', as we shall see below, we need at least 
reflexivity in order to arrive at a conclusion of the form 'x EA' from the assumption '(x EA]'. 

16 When approaching a presentation of the Curry-Howard-Ta.it interpretation one has to be warned to specific 
terminological diversions from conventional logical frameworks. In the framework of the interpretation 'proof.s1 

refer to constructions, a.nd not to the actual proof-trees. Without such a. terminological warning misconceptions 
may arise. E.g., in Lambek's: 

"The association of entities with proofs becomes even more striking when we compare the free typed 
SchOnfinkel algebra (generated by a. set of letters) with pure intuitionistic implica.tiona.l logic. Then 

combinators = proofs." 
(Lambek 1980, p. 385.) 

'proofs' should be understood a.s constructions (terms). 
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Such a methodological requirement makes our framework slightly different from the one used 
in chapter 15 of Hindley & Seldin 1986, where a proof of the latter is constructed as follows: 

"EXAMPLE 15.4. In any system containing (-e) and (-i), 

I- I ea - a. 

Proof. 

1 

[x<er] (-i-1). 
Ax.x f: a- a 

•" 
(Hindley & Seldin 1986, p. 208.) 

(Here'(-+ i-1)' indicates that at that particular step the assumption numbered 'l' was being 
discharged by the introduction of the '-+'.)17 

There is another relevant remark to be pointed out with respect to our proof methodology 
and notation, and that is the following: our abstractor '.X' is used to abstract an element­
variable from a term, and not a type-variable. In this respect we agree with Hindley & Seldin, 
who assign a type to .X-terms as '(.Xxer.Mll)"-/J, (seep. 205), but we diverge from Howard's 
(1980) type-abstraction as in '(.XXer.FiJ)"::>/J,_is 

17 l t must be noted, however, that Hindley&:: Seldin seem to adopt the same rea.ding, in spite of the divergence 
in the example just mentioned. Cf.: 

"It [the rule of --introduction] is usually written thus: 

(-i) 

( ... ) 

[x< er] 
M < ,8 

>.x.M e a - /3 · 

In such a system, rule (-i) is read as "If x ,t FV(L1 .. ,Ln), a.nd M E fJ is the conclusion of a. deduction whose 
not-yet-discharged assumptions Me x e a, L1 e 61, ... , Ln e 6n, then you may deduce 

(.h.M) < (er - ,8), 

and whenever the assumption x e a occurs undischarged at a. branch-top a.hove Me /J, you must enclose it in 
brackets to show that it has now been discharged." " 

(Hindley & Seldin 1986, p. 206.) 

(Our emphuil. Note that in the 'I' example, as well as in the 'K' example below, there is no conclusion of the 
form 'M ~ /J'. The introduction of the '-', a.nd corresponding assumption-discharge, is made straight from 
the assumption.) 

18 "!. Type aymbol,, term, and constructfon8 
Byt a type symbol is mea.nt a formula of P(:>). We will consider a A-formalism in which ea.ch term has a 

type symbol a as a superscript (which we may not always write); the term is said to be of type a. The rules 
of term formation are as follows. 

(2.1) Variables X0
, Y~, ... a.re terms 

(2.2) -\-abstraction: from FP get (,\X0 .FP)""P. 
{2.3) Application: from G•:>P and H" get (G•:>Pa•(• 

(Howard 1980, pp. 480-1.) 

Note that Howa.rd's construction, belonging to the formula/type of the form 'a ::> /J' are built with a 
A-abstra.ction which operates on type-variables rather than element--va.ria.bles. That is not the case for the 

framework we present here. 
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Proofs and corresponding conditions for invalidation: 

1. A ....., A (reflexivity) 

[x EA] 
X =XE A 

x EA 
AX.XE A....., A 

and we have the 'identity' construction, which corresponds to combinator 'I' = Ax.x (Curry 
& Feys 1958, p. 152; Hindley & Seldin 1986, p. 191).19 • 

2. (A-, B)-> ((C-> A)-> (C-> B)) (left transitivity) 

[z E C] [y E C -> A] 
APPLY(y, z) EA [x EA-> B] 

APPLY(x,APPLY(y,z)) EB 
Az.APPLY(x, APPLY(y, z)) EC-> B 

Ay.Az.APPLY(x,APPLY(y,z)) E (C-> A)-> (C-> B) 
AX.Ay.Az.APPLY(x,APPLY(y,z)) E (A-+ B)-+ ((C-+ A)-+ (C-+ Bl) 

which corresponds to combinator 'B' = AX.Ay,Az.APPLY(x, APPLY(y, z)) (Curry & Feys 1958, 
p. 152; Hindley & Seldin 1986, p. 191). In terms of a calculus of functions, 'B' would 
correspond to the functor for the (left) composition of two functions.20 • 

3. (A-+ B)-+ ((B-+ C)-+ (A-+ C)) (right transitivity) 

[z E A] [x E A-+ B] 
APPLY(x, z) EB [y EB-> C] 

APPLY(y,APPLY(x,z)) EC 
Az.APPLY(y, APPLY(x, z)) EA-+ C 

Ay.Az.APPLY(y,APPLY(x,z)) E (B-> C)-> (A-+ C) 
AX.Ay.Az.APPLY(y, APPLY(x, z)) E (A-> B)-+ ((B-+ C)-> (A-+ C)) 

19 Here we ha.ve used one of the general rules of equality a.vaila.ble in our type-theoretic fra.mework, na.mely 
the reflexivity rule: 

XE A 
x=zEA 

followed by either one of the equality left or right: 

a= b EA 
a EA 

a =b EA 
bEA 

20 It also gua.ra.ntees, together with the previous combina.tor 'I', that there is a. left identity function such 
that, for all /: A - B, '/lA. = f'i as in the definition of a category as a. deductive system in Lambek & Scott 
1986, p. 52. 
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which corresponds to a combinator which results from applying combinator 'C' to combinator 
'B', or what Curry has called combinator 'B" in Curry & Feys 1958, p. 379, and in Curry 
1963, p. 118: 'B'' = Ax.Ay.Az.APPLY(y,APPLY(x,z)) ('CB' in Hindley & Seldin 1986, p. 191). 
In terms of a calculus of functions, 'B" would correspond to the (right) composition of two 
functions. 21 

In order to invalidate the derivation above one would have to impose the restriction on 
the A-abstraction rule such that the abstractions have to occur in the order 'from higher to 
lower subterms'. • 

4. (A-+ (B-+ C))-+ (B-+ (A-+ C)) (permutation) 

[z E A] [x E A-+ (B -+ C)] 
[y E BJ APPLY(x, z) EB-+ C 

APPLY APPLY x,z ,y EC 
AZ.APPLY APPLY x,z ,y EA-+ C 

Ay . .Xz.APPLY(APPLY(x, z), y) EB-+ (A-+ C) 
Ax.Ay.Az.APPLY(APPLY(x,z),y) E (A-+ (B-+ C))-+ (B-+ (A-+ C)) 

which corresponds to combinator 'C' = Ax . .Xy.Az.APPLY(APPLY(x, z), y) (Curry & Feys 1958, 
p. 152; Hindley & Seldin 1986, p. 191 ). It is the counterpart to the rule of exchange of 
Gentzen's sequent calculi. In a calculus of functions it would correspond to the associativity 
of composition. 

In order to invalidate the derivation above one would have to impose the restriction on 
the A-abstraction rule such that the abstractions have to occur in the order 'from higher to 
lower subterms' within the order 'from inner to outer subterms'. • 

5. (A-+ (A-+ B))-+ (A-+ B) (contraction) 

I [y E A] I [x EA-+ (A-+ B)] 

l[Y E A]J APPLY(x,y) EA-+ B 
APPLY(APPLY(x, y), y) EB 

f¼}PPLY(APPLY(x, y), y) EA-+ B 

Ax.Ay.APPLY(APPLY(x, y), y) E (A-+ (A-+ B))-+ (A-+ B) 

which corresponds to combinator 'W' = Ax.Ay.APPLY(APPLY(x, y), y) (Curry & Feys 1%8, p. 
152; Hindley & Seldin 1986, p. 191). It is also the counterpart to the rule of contraction of 
Gentzen's sequent calculi. 

The assumption 'I [yb E, A] ~ is used twice and in a nested way. So, the restriction one has to 
impose here is rather o v10us: a A-abstraction will cancel one free occurrence of the variable 
~ati~. • 

6. (A-+ (B-+ C))-+ ((A-+ B)-+ (A-+ C)) (distribution) 

21 Similarly to the previous case, this also guarantees the identity to the right 'ls/=/', Ibid. 
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I [z E A] I [x E A-> (B -> C)] I [z E A] I [y E A-> B] 

APPLY(x, z) EB-> C APPLY(y, z) EB 
APPLY(APPLY(x,z),APPLY(y,z) EC 

.Xz. PPLY(APPLY(x,z),APPLY(y,z)) EA-> C 
.Xy . .Xz.APPLY(APPLY(x, z), APPLY(y, z)) E (A-> B)-> (A-> C) 

.Xx . .Xy . .Xz.APPLY(APPLY(x,z),APPLY(y,z)) E (A-> (B-> C))-> ((A-> B)-> (A-> C)) 

which corresponds to combinator '5' = .Xx . .Xy . .Xz.APPLY(APPLY(x,z),APPLY(y,z)) (Curry & 
Feys 1958, p. 153; Hindley & Seldin 1986, p. 191). • 

Note that the assumption 'I z E A I' is used twice, and both occurrences are ilischarged in 
one single abstraction 'I .Xz. I'. To obtain a linear implication one has to restrict the discharging 
abstraction to one occurrence of the assumption only. In other words, each discharge affects 
only one (linear) path in the proof-tree, instead of affecting all branchlng occurrences like in 
the proof above. 

6a. (A-> B)-> (((A-> (B-> C))-> (A-> C)) (variant of distribution) 

I [z E A] I [x E A-> B] I [z E A] J [y E A-> (B -> C)] 

APPLY(x,z) EB APPLY(y,z) EB-> C 
APPLY(APPLY(y,z),APPLY(x,z)) EC 

1-Xz. ~PPLY(APPLY(y,z),APPLY(x, z)) EA-> C 
.Xy . .Xz.APPLY(APPLY(y, z), APPLY(x, z)) E (A-> (B-> C))-> (A-> C) 

.Xx . .Xy . .Xz.APPLY(APPLY(y,z),APPLY(x,z)) E (A-> B)-> (((A-> (B-> C)) _, (A - C)) 

which corresponds to a variation of the 'S ', precisely: 
'SC'= .Xx . .Xy . .Xz.APPLY(APPLY(y, z), APPLY(x, z)). • 

Observe that the same remarks as to the 'non-linearity' of the ilischarge/abstraction made 
for the previous case also applies for the case here. 

7. A-> (B -> A) ( truth22 ) 

22 This axiom essentially represents that 'a. true proposition is implied by anything', so we have accordingly 
called it truth. As we shall see, a derivation of this a.xiom from the presentation of the --type involves a 
non-relevant abstraction under the condition (a.1) of section 2 above, which is when abstraction is made over 
an open term which contains no free occurrence of the variable. Additionally, by allowing a non-r~Jeva.nt 
a.bstra.ction over closed terms (condition (a..2) above), such as, e.g., in 'Ax.Ay.y EB - (A - A)'. one can 
see how to relate this a.xiom to the following a.xi.om of a. deductive system defined in La.mbek & Scott l 986, p. 

48, 'R2. A~ T', which comes from the ca.tegorical. notion of terminal object a.nd its existence link<'d to the 
existence of a. unique a.rrow 0A : A - T for all objects A. If one has permutation (recal.l the type-scheme of 
combinator 1C' a.hove), it is easy to see that: 

(B - (A - A)) - (A - (B - A)) 
and vice-versa. 
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Now we want to build a derivation of the above axiom and show where it can be invalidated 
by the appropriate side condition. By imposing the condition that the abstraction can only 
be made when there is indeed at least one free occurrence of the variable being abstracted 
from the expression ('b(x)' in the case below), one can obtain a 'relevant' abstraction: 

-+-introduction 

The proof-tree is: 

[x EA] 
b(x) EB 

>.x.b(x) EA - B 

I [y E BJ I 
[x EA] 

>.x.>.y.x EA - (B - A) 

which corresponds to combinator 'K' = >.x.>.y.x (Curry & Feys 1958, p. 153; Hindley & Seldin 
1986, p. 191). It is also the counterpart to the structural rule of thining of Gentzen's sequent 
calculi. • 

Note that the discharge/abstraction of the assumption 'I [y E B] I' is made over the expres­

sion 'x' in 'I >.y.x r, which prevents it from being considered 'relevant', given that the expression 
'x' does not contain any free occurrence of 'y'. (Such a 'non-relevant' discharge/abstraction 
is called 'vacuous discharge' in Hindley & Seldin 1986.23) So, the restricted .>.-abstraction to 
be adopted in order to invalidate the derivation above is exactly the relevant abstraction, i.e., 
there must be at least one free occurrence of the variable in the term on which the abstraction 
is operating. 

23 "EXAMPLE 15.3. In any system containing ( -•) and (-i). 

1-K ea-/J-a. 

Proof. Here is a deduction of the required formula.. In it, the first application of (--i) discharges all 
assumptions y ~ /3 that occur. But none in fa.ct occur, so nothing is discharged. This is perfectly legitimate; 
it is called 'vacuous discharge', and is shown by i(-i-v)'. 
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As pointed out in Lambek 1989 (p. 234), in his The Calculi of Lambda-Conversion Church 
already distinguished the relevant from the non-relevant >.-abstraction.24 Most current text­
books, however, still omit such a restriction in the abstraction rule (see, e.g. Barendregt 1981, 
and Hindley & Seldin 1986). 

8. F -, A (absurdity) 

We assume that there is a distinguished proposition 'F' which is taken to be empty (i.e. 
no term, whether open or closed, is a member of it), and a distinguished closed term '>..L.' 
such that 

>..L. E F _, A 

for any 'A'. We say that 'F-, A', for any 'A', is the type-scheme for a combinator we call 
'IF'· 

With this axiom, and taking ',A = A -> F', we can prove Heyting's axioms involving 
(intuitionistic) negation,25 namely: 

(i) ,A-, (A-, B) and 
(ii) ((A-, B) II (A-, ,B))-, ,A. 

(i) (A-, F)-, (A-, B): 

[y E A] [x E A-, F] 
APPLY(x, y) E F >..L. E F-, B 

APPLY(>..L.,APPLY(x,y)) EB 
>.y.APPLY(>..L.,APPLY(x,y)) EA-, B 

>.x.>.y.APPLY(>..L., APPLY(x, y)) E (A_, F)-, (A-, B) 

(ii) ((A-+ B) II (A-+ (B-+ F)))-+ (A-+ F): 

[x E (A-+ B) /I (A-+ (B-, F))] [x E (A--+ B) II (A--+ (B-+ F))] 
[y EA] FST(x) EA-+ B [y EA] SND(x) EA-+ (B-+ F) 

APPLY(FST(x),y) EB APPLY(SND(x),y) EB--+ F 
APPLY(APPLY(SND(x),y),APPLY(FST(x),y)) E F 

>.y.APPLY(APPLY(SND(x),y),APPLY(FST(x),y)) EA-+ F 
>.x.>.y.APPLY(APPLY(SND(x),y),APPLY(FST(x),y)) E ((A-+ B) /I (A--+ (B--+ F)))-+ (A-+ F) 

2' "If M does not conta.in the va.ria.ble x (as a. free variable), then (>.xM) might be used to denote a. function 
whose value is consta.nt and equal to (the thing denoted by) M, and whose ra.nge of a.rguments consists of all 
things. This usage is contemplated below in connection with the calculi of >.-K-conversion, but is excluded 
from the calculi of >.-conversion a.nd A-6-conversion - for technical reasons which will a.ppea.r." 

(Church 1941, pp. 6-7.) 
25 See the two axioms below: 

X. f- ~p - (p - q). 
XL f- ((p - q) A (p - ~q)) - ~p. 

(Heyting 1956, p. JOI.) 
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Moreover, to prove two of Ackermann's axioms for negation (quoted in Gabbay 1988, p. 
106), namely 

(A---, -,B)---, (B---, -,A) 
(A---, -,A)---, -,A, 

we put '-,A ees A ---, F' and they become, respectively: 
( A ---, (B ---, F)) ---, (B -+ ( A ---, F)) 
(A---, (A-+ .F))-+ (A---, F) 

which are instances of the type-schemes of combinators 'C' (permutation), and 'W' ( contmc­
tion ), respectively. 

We can also prove intuitioni, ,cal]y that '-,-,(AV -,A)': 

[y EA] 
inl(y) EA V (A---, F) [x E (AV (A---, F))-+ F] 

APPLY(x, inl(y)) E .F 
.Xy.APPLY(x, inl(y)) EA---, F 

inr(.Xy.APPLY(x, inl(y))) EA V (AV .F) [x E (AV (A---, F))---, F] 
APPLY(x, inr(.Xy.APPLY(x, inl(y)))) E .F 

.Xx.APPLY(x, inr(.Xy.APPLY(x, inl(y)))) E ((AV (A---, .F))---, F)---, F 

Note that we started with 'y EA', literally 'y is a proof of A', as an assumption. One can 
also prove the same theorem by starting with 'y E A ---, F', literally 'y is a proof of A ---, F 
(i.e. -,A)', but in thls case one would need classical implication as we shall see below. 

Similarly to the proof of'( (AV( A ---, .F)) ---, F) ---, F' above, we can prove intuitionistically 
that '(-,AV B)---, (A---, B)': 

((A-+ F) VB)---, (A---, )3): 

[z E A] [y E A---, .FJ 
APPLY(y, z) E .F .Xl.. E F-+ B 

[x E (A---, F) V BJ APPLY(.Xl.., APPLY(y, z)) EB 
WHEN(x,,y.APPLY(.Xl..,APPLY(y,z)),,t.t) EB 

.Xz.WHEN(x,,y.APPLY(.Xl..,APPLY(y,z)),,t.t) EA-+ B 

[t E BJ 
t = t EB 

t EB 

.Xx . .Xz.WHEN(x, ,y.APPLY(.Xl.., APPLY(y, z)), it.t) E ((A---, .F) VB)---, (A---, B) · 

It is proper to remark here that in such an interpretation of absurdity we have just given, 
it is not the case that there are open terms of type 'F'. What we are saying here is that there 

- 72 -



DOV M. GABBAY AND RUY J. G. B. DE QUEIROZ 

are closed terms of the form ',\..L.' of type ':F-, A' for any 'A'. 26 

9. ((A_, B) _,A)-, A (Peirce's rule)21 

In his Foundations of Mathematical Logic (1963) Curry presents an 'inferential' counter­
part to the axiomatic form of the Peirce's rule as: 

[A_, B] 
A 
A 

in p. 182 of Curry 1963. 

(in type-theoretic presentation: 

[x EA-, B] 
b(x) EA 

,\x .b( x) E A ) 

One of the usual presentations of the rule for reductio ad absurdum such as: 

26 Howard's observation that by introducing a.n absurdity type such as ':F' one introduces open terms, does 
not seem to be applicable to our case: 

"(i) For-.: add a new prime formula f to P(::i). Then, for ea.ch formula a, introduce a term Af:>a. ( ... ) There 
are open terms of type f; for example, the va.riable X1-which is a construction of f-f." 

(Howard 1980, p. 483.) 

In the present framework, a construction of ( :F - :F' is also of the form 'Al..', therefore a closed term. After 
all, in our interpretation absurdity implies anything, including absurdity itself. But that does not imply that 

our framework is inconsistent in the sense that it produces an open term (such as Howard's 'X1 ') as a member 
of a closed type (such as Howards 'f-f'}, as we shall see from our consistency result. (Briefly: similarly to 
Howard's case, any judgement of the form 'a E :F' will not be a closed judgement, i.e., it will contain at least 
one free variable. But, unlike Howard's 'Xr', 'a' could not be a construction of ':F - :F'.) This leaves us to 
justify the equivalence of a. term like 'Ax.x' to the term 'Al...', given that both are terms of type ':F - F', but 
we need not worry too much about it. 

27 As it is well known, this axiom does not find a straight counterpart in the type-schemes of Curry's 
combinators. Nonetheless, it seems unlikely that Curry intended his theory of functionality to be applicable 
only to intuitionistic implication. Rather, he appeared to be more interested in defining families of calculi of 
implication, which would also include a calculus of classical implication, such as his LC- (HC-, TC-) systems 
as classical counterparts to intnitionistic LA- (HA-, TA-) systems, 'A' standing for 'absolute': 

"4. The classical positive propositional algebra. In Sec. 405 we sa.w that the scheme 

(A :i B) :i A~ A (15) 

was not an elementary theorem scheme of a.n absolute implicative lattice, and in Sec. 4D1 a. classical implicative 
lattice was defined, in effect, as an implicative lattice for which (15) holds. This classical implicative lattice is 
here called the 1yatem EC. 

Acting by analogy with the absolute system, we can define classical positive propositional systems II C and 
TC by adjoining to HA a.nd TA, respectively, postulates in agreement with {15). The postulate !or HC is the 
scheme 

Pc I- A :i B. :i A ::i Ai 

which is commonly known as "Peirce's la.w"; tba.t for TC is the rule 

(A :i BJ 
-~A~-• 

A 
Pk 

(Curry 196J, p. 182.) 

So, pursuing what we believe to have been Curry's 'methodology', which was to direct the chief concern 
a.t the establishment of calculi (intuitionistic, classical, etc.) rather than at the interpretations, we want to 
obtain a. calculus of clasaical implication within the 'propositions-a.re-types' interpretation by extending the 
conditions for closing a term (therefore binding a free va.ria.ble and discharging an assumption), so th,'lt one 
can obtain a closed pure term for '((A - B) - A) - A'. 
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[-,A] 
___A_ 

A 

can be seen as a particular case of Peirce's law in its deductive (non-axiomatic) presentation, 
when negation is introduced (taking -,A= A--+ F): 

where 'B' is instantiated with 'F'. 28 

[A--+ F] 
A 
A 

Now, if we use the formulation given by Curry to construct the proof-tree for the axiom 
scheme '((A--+ B)--+ A)--+ A' similarly to the one given above, we get: 

[x E (A--+ B)--+ A] 

APPLY(x, y) EA ------a=.-~~-----(•) 
~PPLY(x,y) EA 

>.x.,\y.APPLY(x, y) E ((A--+ B)--+ A)--+ A 

where the step'(•)' is justified by Curry's inferential presentation of Peirce's law above. It 
allows the rewriting of '(A--+ B)--+ A' to 'A', in this direction.29 In the opposite direction 
the rewriting can be made with a weaker implication such as strict implication, as shown by 
the following proof-tree: 

28 Note that the axiom corresponding to Peirce'a rule has nothing to do with the axiom which introduces 
negation (or better, absurdity). It only requires tha.t the rules for assumption discharge with >.-abstraction 
be changed to cover the full power of classical implication. There a.re some slightly different views on this 
particula.:r point, such as, e.g. Lambek's: 

"The nega.tionless formula A<= (A<= (B<=A)) is a theorem classically but not in the system without negation." 
(Lambek 1980, p. 384.) 

The system without negation referred to by Lambek corresponds to the system we ha.cl before introducing 
the absurdity judgement. Peirce's axiom cannot be expected to be a theorem of that system, given that the 
extra. conditions of assumption•discharge were not present in that system. But those extra. conditions are not 
introduced specifically to allow the hand.ling of negation. 

In the presentation of propositional calculus as a deductive system, Lambek & Scott also insist on the fact 
that it is by introducing (double) negation that one obtains classical implication: 

"If we want claasical propositional logic, we must also require 
R7. .l <= (.l <= A) - A." 

(Lambek & Scott 1986, p. 50.) 

The point here is that the double negation above (R7) follows from the more general characteristic of 
classical implication which is captured by Peirce's law and which is not intrinsically bound to the introduction 
of (double) negation. In other words, one can have a. negationless classical implication by dropping the absurdity 
axiom (or .\1..-abstraction) from full intuitionistic implication and a.dding Peirce's law. 

29 It should come as no surprise that the .\-term inhabiting the type '((A -+ B) -+ A) -+ A' is the same as 
'((A - B) - A) - ((A - B) - A)' as well as '(A - B) - (A - B)', which is the term corresponding to 
Curry's 'I;= >.x.>.y.APPLY(x, y) (Curry & Feys 1958, p. 379): 
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i[y EA-+ B] I 
[z EA] 

~ E (A-+ B)-+ A 

>.x.>.y.x EA-+ ((A-+ B)-+ A) 

(Note that the abstraction 'I >.y. I' is not a relevant abstraction, but it is an intuitionistic one.) 

• 
To prove the classical double negation '((A-+ F)-+ F)-+ A' we can use the inferential 

presentation of the Peirce's law: 

[y EA-+ F] [z E (A-+ F)-+ F] 
APPLY(z, y) E F >..L. E F-+ A 

APPLY(>..L.,APPLY(z,y)) EA 
>.y.APPLY(>..L.,APPLY(z,y)) EA 

>.:z:.>.y.APPLY(>..L.,APPLY(z,y)) E ((A-+ F)-+ F)-+ A 

As we have mentioned above, we can prove classically ',,(AV ,A)' starting from the 
assumption that 'y E ,A' (i.e., 'y E A-+ F'). 

[A-+ B] 

Indeed, using Curry's --"!.._-, we have: 

[y EA-+ F] 
inr(y) EA V (A-+ F) [z E (AV (A-+ F))-+ F] 

APPLY(z, inr(y)) E F >..L. E F-+ A 
APPLY(>..L., APPLY(z, inr(y))) EA 

>.y.APPLY(>..L.,APPLY(z, inr(y))) EA 
inl(>.y.APPLY(>..L.,APPLY(z,inr(y))) E AV (A-+ F) [x E (AV (A-+ F))-. F] 

APPLY(z, inl(>.y.APPLY(>..L.,APPLY(x, inr(y))) E F 
>.x.APPLY(x, inl(>.y.APPLY(>..L., APPLY(x, inr(y))) E ((AV (A-+ Fl)-+ F) -+ F 

Despite working well in most cases, Curry's inferential counterpart to Peirce's law does 
not seem to be sufficient to prove the following theorem of classical implication ( taking ,A = 
A-+ F): 

((A-+ ,A)-+ B)-+ ((A-+ B)-+ B) 

[x E (A - B) - A] 
,\y.APPLY(x,y) E (A- B) - A(•) 

.h.,\y.APPLY(z,y) E ((A - B) - A) - ((A- B) - A) 
where the step'(•)' is justified by the rule of --induction, the counterpart to ,\-calculus 17-rule. Of course, 
the additional condition in Curry's rule is that the consequent '(A - B) - A' is identified with 'A'. 
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whose proof is left as an exercise by Curry in p. 279 of his Foundations of Mathematical 
Logic (Curry 1963). We have been able to prove it using a reformulation of the inferential 
couuterpart to Peirce's axiom which is framed as follows: 

[A-B] 
B 
A 

(provided 'A-+ B' is used as both minor and ticket) 

In the framework of the propositions-aie-types interpretation it would be framed as: 

[x EA-+ B] 
b(x, ... ,x) EB 

Ax.b(x, ... , x) E A 

meaning that if from the assumption that a term 'x' belongs to a type of the form 'A-+ B' 
one obtains a term 'b(x)' belonging to the consequent 'B' where 'x' appears both as a 'higher' 
and a 'lower' sub term of 'b(x )', then we can apply a >-x.-abstraction over the 'b(x, ... , x )' term 
and obtain a term of the form '.>-x.b(x, ... , x)' belonging to the antecedent 'A', discharging the 
assumption 'x EA-+ B'. 

Such an alternative presentation of the inferential counterpart to Peirce's axiom finds a 
special case in another one of the standard presentations of the proof-theoretic reductio ad 
absurdum, namely: 

which can also be presented as 

[A-+ F] 
F 
A 

By using such an alternative to Curry's formulation we can also prove the classical double 
negation: 

[y EA-+ F] [x E (A-> F)-+ F] 
APPLY(x, y) E F A.LE F-+ A 

APPLY(A.L., APPLY(x, y)) EA [y EA-+ F] 
APPLY(y,APPLY(.>-.L,APPLY(x,y))) E F 

.>-y.APPLY(y, APPLY(.>-.L., APPLY(x, y))) E A 
.>-x . .>-y.APPLY(y,APPLY(.>-.L.,APPLY(x,y))) E ((A-+ F)-+ F)-+ A 

For the present framework, however, we shall restrict ourselves to Curry's inferential 
counterpart to Peirce's law.30 

6. Consistency Proof 
30 In fa.ct, we a.re also investigating the possibility of having the axiom for Lukasiewicz' many-valued logics 

(implication), namely: 

((A - B) - B) - {(B - A) - A) 
as a more general schema which would entail Peirce'4 law. We are looking for a. proof discipline for Lukasiewicz' 
logics which would perhaps gives us an insight as to which discipline to adopt for classical implication. 
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Following a technique presented in Martin-Liif 1972, we shall prove that our systems of im­
plication are consistent by arguing that no judgement of the form 'm E M' can be obtained 
from the presentation of the ->-type such that 'm' is not a closed term (i.e., contains a free 
variable). Furthermore, because all final judgements (at the bottom of proof-trees) must 
involve closed terms only, one cannot prove 'A---> B' for any A, B. 

First of all, we recall that the only assumptions allowed in any step of a proof is of the 
form 'x E A' where 'x' is simply a (new) variable. If 'y E A' already appears in the proof, 
then 'y' has to be used instead of 'x', which means that once a proposition/formula is given 
a label, it cannot be given a new name. 

Exceptions to the general rule that assumptions are placed in the top of the proof-tree 
are introduced by: 

(i) the rule of truth, where an assumption is allowed to be placed anywhere in the proof­
tree (except in the bottom, of course) to play the role of the 'b(x)' in the --->-introduction: 

[y EB] 

/[x E AJI 
>.y.x EB-> A 

>.x.>.y.x EA___, (B-+ A) 

(Note that the assumption 'I [x E A] I' is introduced in the middle, not at the beginning, of 
a path in the proof-tree, to play the role of the 'b( x )' for the >.y.-abstraction made in the 
following step.) 

(ii) the rule of absurdity, where a distinguished >.-abstraction term, namely 'A.L.', is taken 
for granted and does not involve an assumption discharge: 

A.L. E F-+ A 

Now, looking at the general form of the rules of proof that we have available: 

-+ -introduction 

[x EA] 
b(x) EB 

>.x.b(x) EA___, B 
---> -elimination 

a EA cEA--->B 

APPLY(c, a) EB 

Note that with respect to the discharging of assumptions, only the -+-introduction can 
discharge. 

If we want to extend the framework with conjunction and disjunction: 

/\-i 
a EA bEB 

pair(a,b) EA/\ B 

V-i 
a EA b EB 

inl(a) EA VB inr(b) E AVB 

I\ -e 
cE A/\B 
FST(c) EA 

cE A/\B 
SND(c) EB 

[x EA] (y EB] 

V -e 
c EA VB d(x) EC e(y) EC 

WHEN(c,ix.d(x),iy.e(y)) EC 
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we note that with respect to the capacity of discharging assumptions is: 

/\-i: none A-e: none 

V-i: none V-e: some 

Back to the ->-case, which is the only case where all assumptions are discharged, the only 
'odd' case is that of the counterpart of Peirce's law, where a >.-abstraction term is said to 
belong to a 'lower' type and the assumption on the higher type is discharged: 

[y EA--> B] 
b(y) EA 

>.y.b(y) EA 

Here the higher type 'A ..... B' is discharged and the lower type 'A' is said to contain a 
>.-abstraction term '>.y.b(y)'. 

7. Systems of implication and combinators 

In Gabbay 1989 a classification of different systems of implication is given in terms of the 
axioms chosen from a certain stock of basic axioms (pp. 31-2): 

1. identity 
A ..... A, which corresponds to the type-scheme of combinator 'I'. 

2. right transitivity 
(A ..... B) ..... ((B ..... C) ..... (A --> C)), which corresponds to the type-scheme of combinator 

'B''. 

3. left transitivity 
(A--> B)--> ((C--> A)--> (C ..... B)), which corresponds to the type-scheme of combinator 

'8'. 

4. distribution 
(A--> B)--+ (((A--> (B--> C))--> (A--> C)), which is a variation of the type-scheme of 

combinator 'S'. 

5m, n ( m, n) contraction 
(Am --> B) ..... (A" --> B), which is a generalisation of the type-scheme of combinator ·W', 

namely (A--> (A--> B))--> (A--> B). 

6a. a-deduction 
a --> (B --> a), which comprises variations of the type-scheme of combinator ·K'. For 

example, by saying that a has to be in implicational form we get a K_ for strict implication. 

7-y. -y-permutation 
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( A --> ('y --> C)) --> ( 1 --> ( A ---+ Cl), which corresponds to variations of the type-scheme 
of combinator 'C'. For entailment implication, one has to impose the condition that I must be 
in implicational form (e.g., 'P--> Q'), and we here call the corresponding combinator 'C-'. 
If we impose that 'A¥ 1' in the particular system, we have the variation 'CJ"'· 

8. restart (Peirce's rule) 
((A--> B)--> A)--+ A, which corresponds to the type-scheme of our combinator 'P". 

Based on the correspondence between the axioms and the type-schemes of combinators, we 
can do the same classification done in Gabbay 1989, p. 33, but now in terms of the combinators 
which would be obtained according to the side conditions on the rule of assertability conditions 
for the logical connective of implication, namely -->-introduction. 

Systems of implication: 

system name : combinators : 

w I, B, B' 

Linear I, B, B', C 

Modal T-Strict I, BB', C, W 

Relevant I, B, B', C, S 

Entailment I, B, B', S, C_ 

Ticket Entailment I, B, B', S, SC 

Strict I, B, B', C, K-

Minimal I, B, B', C, S, K 

fu tui tionistic I, B, B', C, S, K, Ir 

Classical I, B, B', C, S, K, P' 

Linear Classical I, B, B', C, P' 

Relevant Classical I, B, B', C, S, P' 

Deductive Relevant I, B, B', C", S 

LE-Linear Entailment I, B, B', C_ 

Linear Intui tionistic I, B, B', C, K, Ir 
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WC I, B, B', P' 

The systems are roughly ordered by proof-theoretic strength, and the system W is con­
sidered to be the weakest implicational system for which a reasonable deduction theorem 
exists.31 Note that the most primitive combinators are I, B, B'(= CB), C and W, instead 
of I, K and S. These were, in fact the primitive combinators in Curry's earliest results on 
combinatory logic, unlike Schiinfinkel's independent pioneering results using B, C, I, K, and 
5_32 

7. Finale 

With the help of the distinction between a proposition ('A') and a judgement ('a E A'), 
together with the identification of propositions with types, one can have proof-objects 'coded' 
into the object language, so to speak. Such an 'improvement' on the syntactical tools of a 
proof calculus seems to be particularly helpful in dealing with the so-called resource logics. 
By making the type-theoretic equivalent of the A-calculus' abstraction rule into a 'resource' 
abstraction where an extra condition is included requiring the existence of at least a free 
occurrence of the variable being abstracted, one can provide a workable framework to present 
resource logics via the so-called 'Curry-Howard-Ta.it'-interpretation in a reasonably simple 
way. We are currently working on the extension of the classification presented here for the case 
of implication to first-order quantification, given that in the Curry-Howard-Ta.it interpretation 
the universal quantifier is dealt with in a similar manner to implication.33 And indeed, by 
presenting the universal quantifier in a similar way to implication as: 

31 Here we should mention a. recent attempt by Y. Komori (in a. ha.ndwritten memo - Komori 1990{?) -
which was kindly sent to us) to a.nswer the question 'Wha.t is the weakest meaningful logic?' by saying that: 
"The weakest meaningful logic is B Logic.", where Bis a. logic with only one a.xi.om (the one corresponding 
to the type-scheme of combinator B) a.nd a. rule of modus ponens. 

32 "The earliest work of Curry ( till the fall of I 927), which was done without knowledge of the work of 
SchOnfinkel [SchOnfinkel 1924], used B, C, W, and I as primitive combinators.", p. 184 of Curry &; Feys 1958. 

33 1n Howard's account of the formulae-as-types notion of construction he defines constructions as terms built 
up from prime terms by means of term formation as indicated by Prime term,, A-abltraction and Application: 

"(i) Type ,ymbola The prime type symbols are: 0 and every equation of H(::> 1 A, 'v). From these we generate 
all type symbols by the following two rules. 
(a) From er a.nd /J get er::, /J a.nd er II /J. 
(bf From a and a number variable x get 'vxa. 

(ii) Prime terma These are: 
(a) number variables x, y, ... ; constants O a.nd l; function symbols for plus and times, 
(b) variables X0

, Y", ... , 
(c) ce1ta.in special terms, mentioned in §8, below, corresponding to axioms and rules of inference of H(::,, /\, 
1/). 
(iii) A-ab,traction: 
(a) From F~ get (>.X•.F~)"'" as in §2. 

(b) If x doea not occur free in the type symbol of any free variable of F, form (AxF~t•~. 

(iv) Application: 
(a) From F• and a•:>~ form (GFt as in §2. 
(b) From G""•(•) and t of type O form G(t)°<1l.• 

(Howard 1980, p. 485.) 

Observe that for both implication ('(i.a.)', '(iii.a.)' and '(iv.a.)') a.nd universal quantification ('(i.b)', '(iii.b)', 
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'<I-formation 

'(iv.b)') a ,\-system is used (with abstraction and application). Later he gives the following axioms for the 
reducibility of terms: 

"11. Normalisation of terms 
For the theory of reducibility of terms we postulate the following contraction schemes 

(i) (AX.F(X))°~~G contr F(Gt 
(Ax.F(x))"' 0 (•)t contr F(t)a(I) 

( ... )" 
(Ibid., p. 487.) 

The equivalent of .8-norma.lisa.tion is postulated to the contraction of terms characterising implication, as 
well as terms characterising universal quantification. 

In the description of his type system F Gira.rd also makes use of the notions of abstraction and application 
in the definition of both implication and universal qua.ntifica.tion, although in a. wa.y which is different from 
Howard's: 

"Types are defined starting from type variables X, Y, Z, ... by mea.ns of two operations: 
1. if U a.nd V a.re types, then U - V is a type. 
2. if Vis a type, and X a type variable, then TIX.Vis a type. 

There a.re five schemes for forming term,: 
1. variable,: xT, 'JJT, zT, ... of type T, 
2. application: tu of type V, where t is of type U - V a.nd u is of type U, 
3. A-abatraction: Azu.v of type U - V, where xu is a variable of type U and vis of type V, 
4. univeraal abatraction: if v is a term of type V, then we can form AX.v of type IIX.V, so long as the 

variable X is not free in the type of a free variable of v. 
5. univeraal application (sometimes called extraction): if tis a. term of type IIX.V and U is a type, then tU 

is a term of type V[U / X]. 

As well as the usual conversion, for application/ A-abstraction, there is one for the other pair of schemes: 
(AX.v)U ~ v[U/X]" 

(Girard 1989, pp. 81-2.) 

Note that Howard's way is to abstract on type-variables ('(AX0 .F-"t:::,-",) for implication and on element­

variables ('(AxF.B)'n,B,) for universal quantification, whereas Girard's way is to abstract on element-variables 
('Axu .v') for implication (clause 3 above) a.nd on type-variables ('AX.v') for universal quantification (clause 
4 above). Similarly to Ma.rtin-LC>f (1984) we abstract on element-variables in both cases, the difference being 
that for implication we can say that 'Az.b(x) EA - B' provided 'b(x) e B' on the assumption that 'x EA', 
whereas for universal quantification 'Ax.b(x) E Vx E A.B(x)' provided 'b(x) E B(x)' (where 'B(x)' is a 
type indexed by 'x') on the assumption that 'x E A'. But unlike Ma.rtin-LOf's unified treatment with a II­
type (and associated definitional equalities distinguishing,_, from'\/', namely, 'A - B = (IIx E A)B' and 
'(Vx E A)B(x) = (!Ix E A)B(x)', Martin-Lo! 1984, p. 32.), we follow Howard's and Girard's approach of 
dealing with implication and universal quantification by using separate type definitions. 

Curry's original insight concerning the treatment of universal quantification in a similar way to implication 
is clea.r from his early 'The Universal Quantifier in Combinatory Logic' (Curry 1931): 

"The combinator here defined I have called the formalizing combinator, because by means of it it is possible to 
define the relation of formal implication for functions of one or more variables in terms of ordinary implication. 
Thus if P is ordinary implication, it follows from Theorem 1 (below) that (</>nP) is that function of two 
functions of n variables, whose value for the given functions /(z1, x2, ... , xn) and g(x1, z2, ... , Xn) is the function 
f(x1, ... ,xn) - g(z1, ... ,zn). Thus formal implication for functions of n variables is (BIIn(4'nP))." 

and later comes the axioms: 

"(II B). 
(IIC). 
(IIW). 

(/) 
(/) 
(/) 

[(x)fx - (g, x)f(gx)]. 
[(x,y)f(x,y)- (x,y)f(y,x)]. 
[(x,y)f(x,y) - (x)f(x,x)]. 

(Curry 1931, pp. 165-6.) 
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[x EA] 
A type B(x) type 
'Ix E A.B(x) type 

[x EA] 
b(x) E B(x) 

Ax.b(x) E 'Ix E A.B(x) 

[x EA] 
A=C B(x)=D(x) 

'Ix E A.B(x) = 'Ix E C.D(x) 

[x EA] 
b(x) = d(x) E B(x) 

Ax.b(x) = Ax.d(x) E 'Ix E A.B(x) 

[x EA] 
a EA b(x)EB(x) 

EXTR(Ax.b(x),a) = b(a/x) E B(a) 

c E 'Ix E A.B(x) 
Ax.EXTR(c,x) = c E 'Ix E A.B(x) 

• 

one can see the correspondence of type-schemes of combinators, axioms of implication, and 
axioms of universal quantification:34 

(II K). 
(II P). 

(p) 
(!, g) 

[p- (x)Kpx]. 
[(x)(fx - gx) - ((x)fx - (x)gx)]." 

(Ibid., p. 170.) 

The combined treatment is also made in the second volume of Combinatory Logic (with R. Hindley and J. 
Seldin). In both cases the fundamental rule is a sort of modus ponens (universal instantiation): 

"RULE II. IIX, EU I- XU, 
RULE P. P XY, XI- Y." 

(Curry, Hindley & Seldin 1972, p. 427.) 
34 In Curry, Hindley & Seldin 1972 one already finds some of the parallels listed here, such as, e.g.: 

"(PK) 
(PS) 
(Ilo) 
(II,) 
(IIP) 

f- a::> ./j :> a, 
I-<> ::, ./3 ::, 1 :::>: <> ::> /3. ::> ·"' ::> 1, 
I- (Vx)ax.::, aU, 
I- a::, (Vx)o, 
I- (Vx)(o,x::, /3x).::, .(Vx)ax::, (Vx)/3x," 

(Ibid., p. 433.) 

Note the parallel between PK a.nd Ih, as well as between PS and TIP. Furthermore, following the same line 
of reasoning another II-rule is soon defined mirroring PC - type-scheme for combinator 'C', namely '1' ::>a.::> 
/3 :::>: <> ::> 1· ::> /3' -, which is ca.lied II,: 

"(Iii) I- (Vx)(a::, /3x).::, .a::, (Vx)/3x" (Ibid., p. 439.) 

(In fact, II,, II, and IIP, though not the para.Ile! with the propositional PC, PK and PS, were already presented 
in Curry's own earlier work Curry 1963, p. 344.) 

That would seem to justify why the structural simila.rity between implication and universal quantification, 
which goes back at least as far as Heyting's intuitionistic predicate calculus (Heyting 1946), is so naturally 
reflected in the Curry-Howard-Tait interpretation. (And indeed, a form of both ITP and Il 1 without the 
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I: 
A-+A 
'<Ix E A.A(x) 

B: 
(A-+ B)-+ ((C-+ A)-+ (C-+ B)) 
'<Ix E A.B(x)-+ ('<Ix E C.A(x)-+ '<Ix E C.B(x)) 

B': 
(A-+ B)-+ ((B-+ C)-+ (A-+ C)) 
'<Ix E A.B(x)-+ ('<Ix E B.C(x)-+ '<Ix E A.C(x)) 

C: 
(A-+ (B-+ Cl)-+ (B-+ (A-+ C)) 
'<Ix E A.(B-+ C(x))-+ (B-+ '<Ix E A.C(x)) 

W: 
(A-+ (A-+ Bl)-+ (A-+ B) 
( A -+ '<Ix E A.B( x)) -+ '<Ix E A.B( x) 

S: 
(A-+ (B-+ C))-+ ((A-+ B)-+ (A-+ C)) 
'<Ix E A.(B(x)-+ C(x))-+ ('<Ix E A.B(x)-+ '<Ix E A.C(x)) 

K: 
A-+ (B-+ A) 
A -+ '<Ix E B.A 

For the counterpart of Peirce's axiom 
((A-+ B)-+ A)-+ A, 

one would have 
('<Ix E A.B(x)-+ A)-+ A. 

As an example, we can see that the following axiom would be valid only if the uni versa! 
quantifier is not linear: 

'<Ix E A.(B(x)-+ C(x))-+ ('<Ix E A.B(x)-+ '<Ix E A.C(x)) (distribution over indit'iduals) 
(parallel to '5') 

I [t EA] I [z E '<Ix E A.B(x)] I [t EA] I [y E '<Ix E A.(B(x)-+ C(x))] 

EXTR(z, t) E B(t) EXTR(y, t) E B(t)-+ C(t) 
APPLY(EXTR(y, t),EXTR(z, t)) E C(t) 

I At. ~PPLY(EXTR(y, t),EXTR(z, t)) E '<Ix E A.C(x) 
>.z.At.APPLY(EXTR(y,t),EXTR(z,t)) E '<Ix E A.B(x)-+ '<Ix E A.C(x) 

>.y.>.z.At.APPLY(EXTR(y,t),EXTR(z,t)) E '<Ix E A.(B(x)-+ C(x))-+ ('<Ix E A.B(x) - 'Ir E A.C(x)) 

leftmost univenal quantification already a.ppea.r in Heyting 1946 as 'Rule ('yl)' and 'formula (7)', respf'cti\"ely, 
where it is said they both come from Hilbert & Ackerma.nn's Gn.mdZUge der theoreti6chen Logik, 2nd f•dition, 
Berlin, 1938.) 
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(Note that the Cii}abstraction is discharging assumptions non-linearly and cancelling more 
than one free occurrence of the variable 't' in the expression 'APPLY(EXTR(y, t),EXTR(z, t))') 
and similarly the following variant would not be valid if the quantifier is linear, given that 
the universal abstraction is cancelling more than one free occurrence of the variable and in a 
branching way: 

Vx E A.B(x)-+ (Vx E A.(B(x)-+ C(x))-+ 'Ix E A.C(x)) (variant of distribution over 
individuals) (parallel to 'SC') 

I [t EA] I (y E 'Ix E A.B(x)] I [t EA] I [z E 'v'x E A.(B(x)-+ C(x))] 

EXTR(y, t) E B(t) EXTR(z, t) E B(t)-+ C(t) 
APPLY(EXTR(z, t), EXTR(y, t)) E C(t) 

w}PPLY(EXTR(z,t),EXTR(y,t)) E 'v'x E A.C(x) 
,\z.At.APPLY(EXTR(z,t),EXTR(y,t)) E 'Ix E A.(B(x)--> C(x)) ..... 'Ix E A.C(x) 

,\y.,\z.At.APPLY(EXTR(z, t),EXTR(y, t)) E 'v'x E A.B(x)-+ ('v'x E A.(B(x)--, C(x)) ..... 'Ix E A.C(x)) 

There is room for further extending the Curry-Howard-Tait interpretation to deal with 
modal logics, if one makes a special (and useful) reading of the modal connective 'D'. Looking 
at implication and universal quantification as being fundamentally characterised by modus 
ponens (or universal extraction), which in the Curry-Howard-Tait interpretation it is captured 
by ,8-normalisation, one can see that each implication/universal quantifier changes only its 
assertability conditions rule according to the logic, the rules corresponding to the explanation 
of the consequences - the 'ultimate' semantical rules, according to a particular semantical 
standpoint explored in de Queiroz 1989 - remaining fixed. Now, looking at the modal 'D' as 
a sort of second-order universal quantification, in a way such that: 

DA ::VX E W.(X--+ A) 

(where 'W' would be a collection of types, or a type of types - 'worlds'-) we can see that 
the same reasoning made for implication and first-order quantification can be carried through 
for the case of modal logics. For example the axiom for the modal logic K finds a parallel in 
the axioms for implication and first-order universal quantification which correspond to the S 
(distribution) combinator: 

Modal Logic K: 
D(A--, B) ..... (DA ..... DB) 

whlch could be rewritten as: 

'v'X E W.(X-+ (A ..... B))--+ (VX E W.(X ..... A)--+ 'v'X E W.(X ..... B)) 

and the parallel with the S combinator is quite clear: X is being distributed over the impli­
cation. Similarly to the case of implication and first-order universal quantification one can 
find a parallel between axioms characterising different modal logics and the type schemes of 
combinators. For example, the weakest rule characterising the so-called 'standard normative 
logics according to Chellas (1980), namely: 
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A_, B 
DA--> DB 

RM 

mirrors the type-scheme of the weakest combinator, namely B (i.e. left transitivity, in terms 
of implication), if one thinks of 'D' as a combination of second-order universal quantification 
and implication. 

Concerning the 'jump' to second-order quantification observe that unlike the previous 
cases (implication and first-order universal quantification) where we had only element vari­
ables ( x, y, ... , etc.), now we have type variables ( e.g. 'X'). And indeed, in modal logics one 
is dealing with higher-order objects, and therefore some kind of 'higher-order modus ponens 
(and universal abstraction)' is needed. 

Now, in order to characterise the 'second-order' normalisation one can make use of the 
seminal results independently obtained by Girard (1971) and Reynolds (1974) on second-order 
typed >.-calculus and polymorphism. In fact, an attempt at a formulation of the second-order 
normalisation in a type-theoretic framework has been made with the development of a 'type 
of types'-Fix operator described in de Queiroz & Maibaum 1990. 
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Abstract 

Problems in parsing conjoined phrases with conjuncts of different syntactic type can appar­
ently be overcome with techniques developed for type synthesis in ,\-calculus and programming 
languages. We briefly review the notions of parameter-, subtype- and let-polymorphism devel­
oped in functional programming, a.nd then exhibit an ualogy to parsing of conjoined phrases 
in natural languages. 

In particular, we show that a. full exploitation of let-polymorphism allows to treat the 
parsing of conjoined phrases by means of subsumption constraints, while sticking to unification 
based parsing techniques. This refines S.Shieber's [12) proposal to use sub&umption constraints 
in describing 'polymorphic conjunction'. However, our refinement shows that there is a way 
of parsing polymorphic conjunctions that avoids to raise instances of the semi-unification 
problem, which has recently been proved undecidable. 

Thus, while type synthesis for 'polymorphic recursive definitions' in programming is re­
ducible to semi-unification and hence undecidable, parsing of polymorphic conjunctions is less 
complex (at least for the forms studied here). In contrast to suggestions of B.Rounds and 
J .DOrre[l], polymorphic conjunctions do not lead to semi-unification problems, and I am not 
aware of other linguistic phenomena that do. 

1 Introduction 

Simple examples - mostly taken from S.Sbieber's Thesis[l2] and due to I.Sag - suggest that con­
junction in natural language can be Wied to conjoin phrases of the same syntactic category, to yield 
another phrase of this category: 

Pat is ((stupid)AP and (healthy)AP)AP. : S (1) 
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Pat hired ((a Republican)NP and (a banker)NP)NP. : S 

If the conjuncts a.re of different syntactic types, the conjunction is ungrammatical: 

Pat hired ( a Republican )NP and (proud of it )AP. : • 

Pat hired ( a Republican )NP and ( at the office tP. : * 
This may lead us to assume that aad is of type 

and: a x a-+ a, a= NP,AP, ... 

(2) 

(3) 

(4) 

(5) 

That is, and is parameter polymorphic in the sense that its type is a scheme with a free type 
parameter a - ranging over all or some specified set of types. But with some verbs, the conjuncts 
may be of different types: 

Pat has become (a banker)NP and (very conservative)AP. : S 

Pat is (a Republican)NP and (proud of it)AP. : S 

Pat is (healthy)AP and (of sound mindtP. : S 

That was (a rude rema.rk)NP and (in very bad tastetP. : S 

These examples pose two problems: 

Problem 1 When i• a conjoined phra,e with conjunct• of different type grammatical¥ 

(6) 

(7) 

(8) 

(9) 

Problem 2 What i• the type of the conjoined phrase, when the conjunct. are of different types? 

Some of the examples indicate that ((x)NP and (y)AP) or ((x)NP and (y)PP) are grammatical, 
while others indicate that they are not. The same applies to similar constructs like or. 

S.Shieber proposed a solution to these questions that essentially assigns a more general type to 
conjunction, namely 

and : 01 >< 02 -+ a, OI = NP, AP, ... (10) 

where the side condition a; i;;; a poses a constraint on the types that may be substituted for the 
variables: r I:;; CT means that type r is subsumed by type CT. The subsumption relation between types 
should be effectively testable; hence we assume that it is given by some partial order between type 
expressions, inductively defined along the syntax of type expressions. Shieber alludes to one such 
relation r i;;; CT - which be writes as CT $ r -, where r is a substitution instance of CT. 

A more accurate description of Shieber's solution is given in Section 2. We will point out some 
drawbacks of Shieber's solution, and in particular will discuss whether - in parsing conjoined 
phrases - it is necessary that we have to solve sets of inequations r i;;; CT between type expressions. 

- 89 -



The problem of deciding whether, given a set S ofinequations, there is a solution or not, is called 
the semi-unification problem. 

Motivated by Shieber's proposal, W .Rounds and J .Dorre(l] have studied this problem for feature 
terms and shown that it is undecidable. The same problem for first order terms ( or simple types) 
arose in type synthesis for functional programming languages (3, 7, 5], in proof theory (10] and 
in term rewriting (4]. A proof of undecidability for this case has been given by Kfoury e.a.(6]. 
Therefore, it seems worthwhile to have a careful study on whether Shieber's proposal can be 
modified so as to avoid raising instances of the undecidable semi-unification problem. 

In Section 3, we will look at the corresponding work in type synthesis for programs, and intro­
duce various notions of polymorphism studied in this context: parameter polymorphism, LET­
polymorphism, and subtype polymorphism. 

Using the basic idea behind LET-polymorphism, in Section 4 we introduce an improvement of 
Shieber's proposed analogy between AND- and LET-polymorphism. Section 5 demonstrates that 
by using the same ideas as in Milner's(S] typing rule for LET, a parsing strategy is possible that is 
based on a principal type property. This strategy avoids to raise instances of the semi-unification 
problem, and gives decidability of typability for a new typing rule for polymorphic conjunction. 

We only deal with polymorphic conjunctions in object position, and have to leave the case of subject 
position to further studies. Thus the main point of the paper is the refined correspondence between 
LET- and AND-polymorphism, and the demonstration that it is possible to add subsumption 
constraints in specifying (some aspects of) a grammar, while sticking to unification-based parsing. 

Acknowledgement: I wish to thank Bill Rounds for making me aware of a possible connec­
tion between semi-unification and Shieber's subsumption constraints. Many thanks also to Fritz 
Henglein for discussions and &-mails that kept my interest in semi-unification alive. 

2 Shieber's Solution 

In his Thesis, S.Shieber(l2] proposed to exploit subsumption constraints in specifying natural 
language grammars. The particular phenomenon mentioned in this connection was the polymorphic 
AND as presented by the examples in the Introduction. (Shieber's proposal was based on the 
LET-construct in the functional programming language ML, which will be explained in Section 
3.) To describe Shieber's proposal, I will replace the notation of unification grammar by the more 
perspicious notation of type synthesis in programming. For simplicity, I also will replace feature 
terms by simple type expressions. Let p, ", r, etc. range over type expressions, where 

• Each type variable and each type constant is a type expression, and 

• If G is a n-ary type constructor and u1, ... , O"n are type expressions, so is G(u1, ... , O'n)· 

We use er, /3 etc. as type variables. A typing statement is an expression e: u, where e is an 
expression of our formal ( or natural) language L as specified by some grammar. A type environment 
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(or lexicon) is a set I: of typing statements for variables or constants of L. 

We assume that a calculus is given by means of which one can derive judgements I: I- e : cr, asserting 
that under the assumptions I:, expression e is of type cr. For natural language grammars, the 
relation I: I- e : cr (or rather the calculus for deriving such judgements) specifies when phrase e is 
of (syntactic) type cr relative to lexicon I:. Algorithms that synthesize types to given programs 
then correspond to parsing algorithms in natural language processing. Hence the slogan 'parsing 
as type inference'. 

The three ingredients to Shieber's propoeal for analysing 'polymorphic conjunctions' are the fol­
lowing (S 1), (S 2) and (S 3). Points (S 1) and (S 2) address Problem 2, while (S 3) is concerned 
with Problem 1. 

(S 1) Use subsumption constraints cr i;;; r, and the subtype axiom 

(sub) I:U{e:cr}I- e:r, ifcr i;;; r. 

(S 2) Use the following typing rule for polymorphic conjunction: 

(and) I: f- 'J : <TJ I I: f- e2 : <T2 
I: 1- (,1 and , 2):" • 

(S 3) Grammaticality of phrases /(a and b) depends on whether the argument type of the 
(unary) verb (-phrase) / is the aame as the type of the conjunction, i.e. use 

(app) I: I-/: cr-+ r, I: I- (e1 and e2): cr 
I:1-/ (e1 ande2) :r 

(S 1) and (S 2) have to be made more precise by specifying a notion of 'subtype', which may 
depend on the set I: of typing assumptions. Two syntactical notions of subtyping are relevant: 
subtyping by instantiation of type variables (that are generic with respect to I:), and subtyping of 
records by adding additional fields. (See Section 3) 

(S 2) simply says that the types of the conjuncts have to be subsumed by the type of the conjunction. 
Thus the types of the conjuncts may be inconsistent with each other, but have to be consistent 
with the type of the conjunction. 

(S 3), which is just the traditional application rule from typed l-calculus, is less explicit in 
Shieber(12). It tries to account for the context in explaining when conjunctions are grammati­
cal, by noting that different verbs are more or less selective with respect to their arguments' types. 
This is somewhat of a restriction to conjunctions in object position, which we will follow below. 

Example 1 (Shieber) Let the following types (motivated by Chomsky's 'X-bar theory') be 
given: 

NP= (n = +, v = -, bar= 2), 
VP= (n = -,v = +,bar= 2), 

cr = (bar= 2], 

AP= (n = +, v = +,bar= 2], 
PP= (n=-,v= -,6ar=2), 

T = (n = +,bar= 2). 
(11) 
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Then by record-subtyping we have: NP and AP are subtypes of r, and VP, PP, T a.re subtypes of 
<T, but VP and PP are not subtypes of T. Given an appropriate lexicon E, by (sub} and (and) we 
can derive 

EI- (healthy)AP and (of sound mindjPP: u, (12) 

as AP J;;; <T and PP J;;; a. However, since PP J;;; Tis not the case, (and} does not allow to derive 

EI- {healthy)AP and (of sound mind}pp : r. (13) 

Suppose that in addition to the above, we can derive EI- Pat is: <T-+ S, EI- Pat became: T-+ S, 
and E I- Pat hired : NP -+ S. Then by ( app) we can also derive 

but not 

EI- (Pat is)<T-+ S {healthy and of sound mind)<T : S, 

EI- (Pat became)T-+ S (a banker and very conservative)T : S, 

EI- (Pat hired)NP-+ S (a banker and a secretary)NP : S, 

EI- {Pat became)T-+ S (healthy and of sound mind)<T: •, or 

EI- (Pat hired)NP-+ S (a banker and very conservative)T : *. 

{14) 

(15) 

{16) 

(17) 

(18) 

The main objections to Shieber's solution are that his rule ( and) leads to unnecessary and seman­
tically dubious syntactic types - like 'NP and AP'-, and that it apparently does not even solve the 
parsing problem it was designed for. 

Problem 3 How can we parse polymorphic conjunctions, i.e. detennine their types¥ 

Obviously, we first have to derive types for the constituents e, and e2 of {e1 and e2), with results 
e; : <T; say, and then find some type <T such that the applicability conditions <T; J;;; <T hold. But it is 
unclear 

• whether we can decide if there is such ", 

• whether we can decide if there is a unique one, or 

• how we can choose one in case there are many. 

Of course there may be different answers for different subsumption relations J;;;. It does not seem 
obvious to me that the types that occur in linguistics form a nice lattice structure which would 
guarantee positive answers to such questions. In fact, for one such relation, Dorre and Rounds[l] 
have shown that solvability of sets of inequations T J;;; <T over feature algebras is undecidable. 

Also, it may well be the case that the subsumption relation depends on the set E of typing 
assumptions, and thus be not a global relation; it would have to be adjusted to changes of E in 
connection with the treatment of bound variables ( as in the typing rule for A-abstraction, which" 
of course occurs only implicitly in natural language). 
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3 Notions of Polymorphism in Programming 

In this Section we sketch three notions of polymorphism in programming languages, to provide the 
background for a new look at polymorphic conjunction in Sections 4 and 5. 

a) Parametric polymorphism 
The programmer can define functions / which have schematic types E f- /: u(a)-+ r(a), 
a not in E, and the parameters a can be instantiated to different types in different uses of 
/. In fact, the programmer does not declare / to have a parametric polymorphic type, but 
rather, a most general type scheme is automatically inferred (synthesized) from the defining 
term for/, if the term is typable at all. This kind of typing discipline allows to take advantage 
of polymorphic functions / in subject (predicate) position, i.e. (/[O, 1, 2, 3].Jr ab", "cde"]) is 
a typable pair-expression, for /=reverse : a-list-+ a-list, say. 

b) LET-polymorphism 
As the familiar typing rule for ,\-abstraction demands that all occurrences of the abstracted 
variable in the defining term have the same type, a functional like 

F := .\f.(/[O, 1, 2, 3], Jr ab", "cde"]) 

that takes polymorphic functions as arguments, cannot be defined in languages like ML[2]. 
Hence, useful expressions like (F • reverse) cannot be typed either, due to the 

Subterm Propertl/: Any subterm of a typable term is typable, 

which holds for the usual notions of typing for .\-terms. To take advantage of polymorphic 
functions in object po•ition, ass in (F • s), ML introduced a new syntactic construct, LET, 
together with a new reduction rule 

(let J =•int) .... ,., t[s//] (19) 

and a new typing rule 

(let) Ef-/:u, EU{/:u,, ... ,/:un}f-t:r 
E f- (let / = • int) : r 

In this rule, E must not contain a typing statement for /, and O' :5i: u; means that O'; is 
obtained from u by instantiating type variables not occurring in E, i.e. those that sometimes 
are called generic with rupect to E. 

Although t[s//], (.\/.t) • s, and (let/=• int) all have the same meaning, note that 

• (let/=• int) improves on (.\J.t) ••as it avoids the untypable subterm ,\/.t, and 

• (let/=• int) improves on t[s//] as it is syntactically more abstract, i.e. abstracts the 
various occurrences of• in t[•//l into one occurrence of• in (let/=• int), replacing 
the others by a bound variable /. 
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In particular, the only occurrence of, in (let/=, int) is in o6jecl position, and although 
(let f = • int) is of the same type as t[•/ /], syntax analysis - including type inference - is 
easier (i.e. more efficient) with (let/=, ia t) than with t[s//). 

c) Subtype polymorphism 
This is relevant only when entering details of feature terms, which can be represented as 
recunive records (as opp,-.! to simple types = trees). We do not go into details in this 
Preliminary Version, but only mention that we obtain a ,drecord by adding additional 
components to a record. (This has already been used in Example 1.) 

4 An Improved Analogy Between LET and AND 

We now summarize the main features of a modified treatment of polymorphic conjunctions. Exam­
ples and motivation of the typing rule will be given in Section 5, as well as proofs of the technical 
claims concerning parsability. 

By treating the polymorphic AND as a syntactic abstraction, in much the same way as LET is 
used as a syntactic abstraction, we can exploit the lessons from LET-polymorphism. 

• The AND in object position can be understood as an abbreviating syntactic construct, whose 
meaning is captured by the implicit reduction rule 

/(a and b) - ... ((/a) and (lb)). (20) 

• The type of /(a and b) should be the type of ((la) and (/6)), and Shieber's typing rule for 
conjunction should be replaced by 

(And) I; f- / ; t7 -+ TI I; f- e1 ; Ut • I; f- e2 ; '72 
I: I- / ( •1 and e,) : p 

if 0"1--+ p b tT--+ T, 

and u2--+ p bu--+ T. 

The rule (And) has the following advantages over Shieber's rule (and): 
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• We avoid to type the 'subexpression' (e 1 and e2). In particular, there is no need to establish 
a semantics for (NP and PP)-phrases (etc., cf. the examples in the Introduction), which 
would lead to dubious semantic entities. 

• The fact that the verb / strongly restricts the p088ible grammaticality of /(a and b), is 
built into the typing rule. We can thus allow for fine-grained context-dependency, whereas 
Shieber's rule allows to type ( a and 6) independent of its context. 

• In typing (le 1 and /e2) we implicitly use parumetric polymorphic conjunction only, which is 
more restrictive (hence less 'overgenerating') than Shieber's aa6type polymorphic conjunction. 



• The parsing problem of Shieber's rule vanishes, as - exactly as for LET - we first derive the 
type scheme t1 .... r of /, and then can find the appropriate instances t1; .... p for typing 
the conjuncts /e;, simply by unifying into different copies of the scheme " .... T with 'fresh' 
generic variables.1 

These advantages, and the typing rule, follow from the underlying analogy 

/(a and b) "' (let:,:= f in ((za) and (zb))), (21) 

viewing the left hand side as the 'natural language' (variable free) version of the right hand side, 
together with the restriction to parametric polymorphic conjunction. 

Contrary to what seems to be suggested by Dorre/Rounds[l], by the rule given above we are not 
forced to solve instances of the (in general undecidable) semi-unification problem, when looking 
whether the applicability condition of the rule is satisfiable. As indicated, this can be done by 
unification, just as in the LET-rule. 

However, parsing with 'reflexive' variants of polymorphic conjunction, which would be defined by 
a rule like 

(and-refl) 

might indeed lead to the semi-unification problem, as does the typing rule for 'polymorphic recur­
sion' of [7] and, similarly, [9, 3, 5]: 

(rec) E U {/ : t11, ••• , / : t1n} I- • : " 
EF reef.• :t1 if t1 :5E 0'1,. · ., <T :$:c (In, 

I do not know of linguistic phenomena that would need the 'reflexive polymorphic conjunction' 
kind of rule. 

5 Type Inference for Polymorphic Conjunction 

Having set up our typing rule (And) for polymorphic conjunction, two questions should be settled 
for a type inference calculus involving this rule: 

• Is typability of expressions decidable? In other words, is there an algorithm that, given a set 
E of typing assumptions and a term e, tells us whether there is a type " such that EI- e : " 
is provable? 

• Does the principal type property hold? That is, does every typable term have a most general 
( or principal) type, such that all other types are instances thereof? 

1Thia is true at least if we restrict. oUJ'Belves to parametric polymorphism (cf. Section 5), i.e. use <1 :51: CTi as 
subsumption relation a i !;; a. It UI not qui~ clear whether it holds when parametric and subtype polymorphism are 
combined, which seems neceuary if we take feature tenne as type expressions. 
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To answer these questions, we will assume that a calcul118 is given that satisfies 

(D 1) If E 1- e : u is provable, and R is a substitution of types for type variables, then R(E) l­
e : R( t7) is provable, too. 

(D 2) For the calculus without rule (And), decidability of typability and the principal type prop­
erty hold. More precisely, we assume that there is an algorithm W such that: 

1. W(E, e) terminates for every finite set E of typing assumptions and every term e, with 
one of the following two results. 

2. If W(E, e) = (S, u), then S(E) I- e: u is provable and any other typing of e under some 
instance of E is less general. 

3. If W(E,e) = fail, then e is not typable under any specialisation S(E) of E. 

In particular, we want to see whether (And) can be added to Milner's[S] type inference algorithm 
W for (core-) ML, without loosing these properties.2 In this Section, we also restrict our no­
tion of polymorphism to parametric polymorphism. For a discussion on various combinations of 
parametric with sub(record)type polymorphism, see [11]. 

5.1 The Semi-Unification Problem Raised by the Naive Typing Proce-
dure for Polymorphic AND 

Suppose Wis an algorithm with the above properties, which we want to extend to our rule (And). 
Let a set of typing assumptions E and an expression e := /(•1 and e2) be given. To see whether 
e can be typed, and find its most general typing in case it can, we would like to proceed as follows: 

1. Use W(E, I) to type the verb phrase (or function)/. If this does not fail and (So, u - r) is 
the result, then So(E) I- / : u - r is provable, and is the most general typing for /. 

2. Use W(So(E),ei) to type e1, and assume that this succeeds with result (S1,u1), so that 
S1So(E) I- e1 : u1 is the most general typing for e1 we are looking for. 

3. Proceed similarly with e2, and let S2S1S0 (E) I- e2 : u2 be the resulting most general typing 
for •2. 

4. To obtain the same set of typing assumptions in all three derivations, applying substitution 
S2S1 and S2 to the first and second proof, respectively. We now have derived most general 
typings S2S1So(E) I- /: S2S1(u - r), S2S1So(E) I- e, : S2(u1), and S2S1So(E) I- •2: u2 
fitting to the top line of rule (And). For simplicity of notation, we assume from now on that 
E 1- / : u - r, E 1- •1 : u1, and E I- •2 : u2 are most general typings. 

2Expreuiom like nver.e ([0,1,2,3] aad rab"t''cd","ef"]) might be useful in programming (similar to 'map'­
constructs), perhaps with type int-list X ,trin,-.liat, which would need a modification of (And). 

- 96 -



5. Choooe a good candidate for the result type p, for example r. (We will see later how to find 
a most general pas the common type of fe1 and fe2.) 

6. If the side conditions "' -> p !;;; <T -> r of (And) are satisfied, we can apply this rule and 
obtain a derivation of Et- f(e1 and e2) : p, which is most general (for optimal choice of p). 

7. However, if the side conditions are not satisfied we cannot yet conclude that there is no typing 
for f(e1 and e2), but have to determine whether there is a apecialization of the given proof 
whose type• do aatiafll the side condition. A most general such specialization would provide 
the principal typing for f(e, and e2) we were looking for. 

Now, assume the subsumption relation r, !;;; r1 is defined via instantiation of variables generic with 
respect to E, i.e. as r1 :'.,E r,. In order to find a specialization satisfying the side conditions, we 
have to solve the following problem. We use a fresh type variable o instead of p, in order not to 
put an unnecessary constraint on the solution: 

Problem 4 Given E, <T-> r, <71-> o and <72-> o, ia there a substitution R such that 

R(<T-> r) :'.,R(E) R(<T;-+ o) 

for i = l, 2? And if so, what is the most general one, if that ezists? 

It is not hard to see that this problem is equivalent to the following one: 

Problem 5 Given E, er ___,. T, o-1 and u2, and a fresh type variable o, are there substitutions R, 
S 1 and S2 such that, for i = 1, 2, we have S,R(<T-> r) = R(<T;-> o), and S,R(P) = R(P) for each 
type variable P free in E ? 

This, however, is a special case of the following semi-unification problem, which has recently been 
shown to be undecidable[6]: 

Problem 6 Given a some inequations Pi ~i <Ti, i = l, ... , n, and some equations T; = µ;, j = 
1, ... , k, between first-order terms, do there ezist substitutions R, S1, ... Sn such that S, R(p,) = 
R(<T;) and R(r;) = R(µ;) for all i '.'., n and j :'., le? 

The same problem occurred in trying to develop a type inference algorithm for the 'polymorphic 
recursion' rule (rec) [3, 7, 5], and showed that typability is undecidable in the presence of (rec) [6] 
- although the principal type property still holds [9]. 

Thus, in order to get a notion of polymorphic conjunction that admits decidability of typability 
(and principal type property), we have to avoid raising instances of the semi-unification problem. 
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·, 
5.2 

We recall that th 
the presence of (le 
undecidability. 

So how can one derive most general typillgll for (Id:,:=/ ira e) without raising instances of the 
semi-unification problem to satisfy the aide conditions of (let)? We can 888Ume that E does not 
contain a typing statement for :,: and proceed as follows: 

1. Suppose W(E, /) = (S, o-), 80 S(E) I- / : o- is the most general typing for /. 

2. For the i-th occurrence of z in e, let tTi he a copy of", where the generic variables are replaced 
by fresh ones. If W(S(E) U {z: o-1 , ... ,:,:: D'n}, e) = (R, r), then the moat general typing of 
e is RS(E) U {z: R(o-,), ... , z: R(o-n)} I- e: r. 

3. Adjust the set of assumptions in the first proof, obtaining RS(E) I-/: R(o-) as most general 
typing for /. 

4. It can be shown that R(o-) :SRS(ll) R(o-,) holds for each i, 80 we can apply (let) to obtain a 
proof of RS(E) I- (let z = / in e): r. 

It is not hard to see that W(E, (let z = f in e)) = (RS, r) indeed gives the most general typing. 

The essential difference between (let) and (rec) is that in typing ( let z = / in e), we can first derive 
the most general typing o- for /, then use copies of o- with fresh generic variables as ( constraints 
on the) assumed types for :,: in typing e. No such trick is possible in deciding typability of a 
polymorphic recursive definition according to (rec), as we cannot generate a "pattern" that would 
constrain the assumed types for / in typing the defining term • of rec f.•. Similar problems arise 
with the rules (and) or (and-refl). 

5.3 Deciding Typability with Polymorphic AND 

We now show that typability with respect to our rule (And) for polymorphic conjunction is decid­
able, and principal types exist. We adopt the method used for LET, and avoid the semi-unification 
problems of the naive approach of Section 5.1. 

The following tentative derivation is the motivation behind our rule (And), where we assume that 
E does not contain a typing statement for z, and of course z does not occur in e, and •2• 
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To turn this into a correct derivation, using the familiar rules for 888umptions and function appli• 
cation, we 

• need and : p x p-+ pin (*), which follows if we use parameter polymorphic conjunction, i.e. 
888ume that for all 0<, 'and' has type and : "' x "'-+ "'• 

• need tr-+ T :5E tr; -+pin (**), in order to satisfy the applicability condition of (let), and 

• use our motivating analogy /(a and 6) "'(let z = / in (za and z6)), as a definition of poly-
morphic conjunction, to justify (***). 

Thus, if we 888Ume the first and last of these, we can turn (And) into a derived rule. 

Theorem 1 With r,spect to rule (And), t11Pability i• decidable and the Principal 'lype Properly 
holds. 

Proof: (Sketch) By the ideas sketched in discussing rule (let), we may 888ume that we already 
have most general typings 

E 1-- / : tr -+ T and E U {,: : tr; -+ T;} 1-- ze; : T;, 

such that tr-+ T :5E tr;-+ T; for i = 1, 2. However, we want the conjuncts /e; (but not necessarily 
the e; !) be of the same type. So, if they are not, we have to find a specialization of the derivations 
where they are. If T1 and T2 are not unifiable, this is impossible. So suppose R is the most general 
unifier of T1 and T2. Refine the derivations by applying R, to obtain derivations of 

R(E) 1-- /: R(,,.-+ T) and R(E) U {z: R(tr;)-+ p} 1-- ze;: p, 

where pis R(T1) = R(T2). The only subtle point now is to see that the applicability conditions 
R(,,.-+ T) :5R(E) R(,,.,)-+ p of (And) are satisfied. This follows from the fact that, as we can 
assume that none of the generic variables of tr - T occurs in T,, R does not operate on these 
variables, nor do they occur in a type substituted in by R. Hence from ,,. -+ T :5E tr; -+ T; we 
obtain R(tr-+ T) :5R(E) R(tr;)-+ p and can apply (And) to get a derivation of 

R(E) 1-- (let z = / in (ze, and ze2)) : p, 

or R(E) 1-- /(e1 and e2): p, respectively. By the construction, it also seems clear that this is the 
most general typing. D 

We now have described how W has can be extended to decide typability and derive most general 
typings for polymorphic conjunctions with respect to (And). Condition (D 1) remains true, if 
stated with some technical restriction concerning the generic variables ( cf. a similar Lemma in 
[7]), and so W can be used for 'and's that are not at the 'top-level', too, as would be expected. 

Here is a very simple example of an application of (And) in natural language. (There is no 
specializing of the result type T to p.) 
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Example 2 Let NP(num = o) be a type expression for noun phrases, with number feature a 
ranging over {singular, plural}, and S be the category of sentences. In derivations we can use 

E I- Pat hired : NP(num = o) --+ S, 
EI- a banker : NP(num = singular), 

E I- two secretaries : NP(num - plural) 
!: F Pat hired ( a banker and two secretaries) : S ' 

since the side conditions 

NP(num = o] --+ S $1: NP(num = singular) --+ S, 
NP(num = o) --+ S $1: NP(num = plural) --+ S, 

of (And) are satisfied, assuming o does not occur in E. 

(22) 

(23) 

In contrast, taking this subsumption relation $I:, Shieber's rule would force upon us the typing 

EI- (a banker and two secretaries) : NP(num = o] 

with variable (generic) number feature, which is technically all right, but unacceptable: the con­
junction muat be of type NP(num = plural], for use in subject positions, for example. But then 
(and)'• subsumption condition for the first conjunct, NP(num =singular]!;;; NP(num = plural), 
does not hold. 

However, there is an alternative based on the notion of subrecord, which Shieber might think of: if 
NP, without a number-feature, is a type of its own, with subtypes NP(num = singular) !;;; NP and 
NP[num =plural)!;;; NP, by (and) we can derive 

E I- ( a banker and two secretaries) : NP. 

Thus, if we also have EI- Pat hired : NP--+ S, by rule (app) we get the same typing for the whole 
sentence, as with (And) above. Note that in this case, the unique least common supertype of 
NP(num = singular] and NP(num = plural] is easily found by dropping the number fields. In 
general, to compute the least common supertype (= feature structure) seems to be impossible, 
according to the undecidability results of (1). 

Finally, let us look at Shieber's examples in the Introduction. 

Example 3 Using our rule (And), together with subtyping by instantiation of generic variables, 
we get 

EI- Pat is: t1--+ S1 EI- healthy : AP 1 EI- of sound mind : PP 
EI- (Pat is)t1--+ S((healthy)AP and (of sound mind)PP) : S 

(24) 

provided the side conditions t1 --+ S $1: AP --+ S and t1--+ S $I: PP --+ S hold. In order to 
satisfy these, we need only modify t1 and r in Shieber's types of (11), using 

t1 = (n = a,v = /3, bar= 2) and r = (n = +, v = -y, bar= 2] (25) 
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instead, with variables or, {J, and -y not in E.3 The reader may check that then we get the same 
partial order as in Example (1), and the same statements about grammaticality for all the example 
sentences. 

From the semantic view, there seems to be an advantage in not having a 'type' u and T as in 
(11), and not aeeign a type to ((healthy)AP and (of sound mindjPP) etc. I would even tend to 
assume that there is no 'type' NP, but only a parameterized family of types NP(num = singular], 
NP[num = plural], etc. for other features. Clearly, in the process of parsing we have to deal with 
partial knowledge about the syntactic types of phrases. But this does not mean that to each such 
piece of knowledge there is a reasonable 'syntactic type' of phrases (far lees: a corresponding class 
of semantic entities for these). 

In particular, the partial order on types given by subrecords might lead to untractable compu­
tational problems - in determining sups of feature structures, for example, - that could perhaps 
be avoided by stressing parameter and LET-polymorphism, and thereby using another algebra of 
types. I hope the examples demonstrate that there is at least some room in this direction. 
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Unification Grammar is a version of extended phrase structure grammar which was invented by 

Stuart Shieber. It continues the structuralist tradition of IC-Analysis, as done by R. Wells, Z. 

Harris and others. The Context Free Grammars of N. Chomsky can be viewed as a formalization 

of aspects of this tradition in the context of Post production systems. It proved equivalent to the 

Backus-Naur-Form of programming language description. Whereas Chomsky tried to modify 

phrase structure grammar by the introduction of transformations, there has been a tradition, begun 

by G. Harman, to replace transformations by the use of complex categories and rule schemata. The 

tradition of complex categories is even older than structuralism, as it goes back to the ancient 

distinction, made by Dionysios Thrax (2nd cent. b.d.) at the beginnings of traditional grammar, 

between fJ-€PT"! »6,,ov(Word Classes like Noun and Verb) and 1ro.p€1r6µ.oo. (supplementary 

features of a word, like cases and numbers). This use of secondary categories has been made 

popular by G. Gazdar in his Generalized Phrase Structure Grammar. Shieber's Unification 

grammar is a continuation of this trend. He explicitly considers the formal structure of complex 

categories. His choice is the representation as graphs. But there is another possibility, i.e. to 

represent complex categories by first order terms. Unification of terms as known from the literature 

on automatic deduction can then be used instead of the conceptually more complicated graph 

unification. 

(1) Unification algorithm for terms (Loveland p. 78) 

(1) If El l1 and E2 l1 are identical, then the expressions are unifiable and [] is a most general 

unifier. 

(2) Otherwise, let n be the leftmost point of disagreement, let ti be the simple expression at 

position n in E2 l1 if ti is then a variable, otherwise let ti be the simple exprassion at position n in 

El lI, and let t2 be the simple expression at position n in the alternate E; l1 (j e (1,2)); 

(a) if ti is a variable and does not occur in t2 then rr = rr v (ti I t2); go to (1). 

(b) otherwise, El and E2 are not unifiable. 
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Fast linear algorithms of first order term unification (with execution time bounded by a linear 

function of the length of terms to be unified) are available (Paterson and Wegman). 

A simplified version of the so called most famous syntax rule which goes back to Plato's Sophistes 

can be rendered in the following form 

(2) Sentence -> NP( case(nom), number(x)) VP(number(x) tense(y)}. 

In this rule schema important linguistic facts like agreement in number between verb and subject 

and nominative case assignment to the subject can be expressed quite naturally. A general concept 

of term rewriting grammars arises quite naturally. These grammars are much like context free 

grammars and differ only in that they use rule schemata formulated with terms containing free 

variables instead of the atomar categories (nonterminal symbols) of context free grammars. The 

definition of a derivation is quite straightforward. Every substitution instance of a rule sche_ma is 

one of an infinity of rewriting rules. We may control instantiation by the concept of unification, 

which singles out useful substitution instances. We may define the language generated by such a 

grammar as in the case of context free grammars. 

One of the advantages of this conceptualization is that it makes possible a comparison with old 

language theory schemes such as the language theory of Auto(mated) math(ematics) as developed 

and described by de Bruijn and his coworkers since 1968, which is one of several versions of a 

T(ype) A(ssignment system). TAs are connected with the theory of typed Lambda-Calculus. There 

exist other versions like the system TAP of Reynolds-Girard second order polymorphic types and 

the system of intuitionistic type theory by Martin-Llif, with which Automath may be compared. 

The relevant Automath rules of type assignment are the following (in Reynolds' notation): 

(3) Rules for automath (Hindley & Seldin p. 232) 

(te} 

(ti) 

Melxea~ Nea 
MN e (Axe a.f3)N 

(XE Cl) 

Me f3 

A.XE Cl.Me A.XE ll.(3 

Now we can compare a third tradition besides PSG and TA, vs. the C(ategorial) G(rammars). A 

wedding of Categorial grammar and Unification Grammar has already taken place in schemes like 

C(ategorial) U(nification) G(rammar) and U(nification C(ategorial) G(grammar), which explicate 

Montague's dictum of the existence of a categorial translation of every syntactic category. The 

semantical functional category is the kernel of every syntactic category in these schemes. Besides 

this there exist modem versions of CG which are continuations of the Lambek calculus in the form 

of contemporary extended categorial grammars. An early attempt to integrate A-calculus are 
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Cresswell' s ~ategorial languages. The more formal problems of this tradition can best be studied 

by drawing on all these three traditions. 

(4) the three traditions: 

a) (extended) P(hrase) S(tructure) G(rammar) 

b) (extended) C(ategorial) G(rarnmar) 

c) (extended) T(ype) A(ssignment Systems). 

This is all the more interesting, as the arrow of functionality can be defined in the language theory 

of Automath in the following way: 

(5) A.XE a.fl = a->fl, if x doesn't occur free in fl. 

( te) then becomes 

Me(a->fl) Nea 

MNefl 

I shall call the theory of the functionality arrow and first order terms the theory of variable 

polymorphic types + functionality or terms + functionality, as instead of admitting only constant 

basic types we allow every first order term as a basic category. The rule (3) can be expressed as a 

rule schema in the following way: 

( 6) rewriting rule schema 

fl=> a->fl a (=>is the arrow of replacement,-> is the arrow of functionality) . 

The systems must contain a lexicon as with ordinary categorial grammar in order to be linguistically 

applicable besides the ->-elimination rule. By admitting the empty word and assigning categories 

to them we can represent every term rewriting grammar as a term + functionality grammar. 

(7) The rule t=>t1t2 ... tn of a term rewriting grammar corresponds to the assignment of (11-> ... 

(tn->t) ... ) to the empty word in a term+ functionality grammar. 

The other way round, a representation of term + functionality grammars as term rewriting 

grammars is also possible via rule schema ( 6). Term + functionality grammars are even special 

cases of term rewriting grammars, i.e. a binary term rewriting system. 

(8) Binary term rewriting grammars with rule schemata of the type 

t -> t1 12, where the ti and t are first order terms, which possibly share variables, and lexical rule 

schemata t-> w, where tis a first order term and w a non-empty word. 
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Whereas unrestricted term rewriting systems generate the recursively enumerable languages, binary 

term rewriting systems generate decidable languages. They are rather complex, as is shown by the 

fact, that a single grammar in the class generates the class of satisfiable formulae of the 

propositional calculus. 

(9) A term rewriting grammar for boolean satisfiability 

Satz-> S(w,x); S(w,x)-> N S(f,x); S(f,x)-> N S(w,x); S(w,x)-> K S(w,x) S(w,x); S(f,x)-> K 

S(w,x) S(f,x) / K S(f,x) S(w,x) / K S(f,x) S(f,x); S(x,y)-> Atomsatz(x,y); Atomsatz(x,y)-> p 

Indices(x,y); Indices(x,f(y,z)) -> 'lndices(x,z); lndices(x,f(x,z))-> '. 

The grammar follows the syntax of propositional forms rather closely, but adds the information 

contained in the truth table associated with the connectives to the syntax of formation rules. Toe 

second argument of S(x,y) is a list of truth values of the variables in the order of the index of the 

variable, which is expressed by a series of primes. Toe list is decomposed by the two rules 

introducing the indices of the variables. The last rule imposes the truth value of the nth variable on 

the nth variable, when generating the nth prime. 

We can form a binary term rewriting grammar by applying standard techniques like preunification 

of the nonbranching rule with the branching rules and breaking rules with triple branching into two 

rules with an intermediate polymorphic category. Thus, the element problem for binary term 

rewriting grammars is NP-hard. There is, however, possibly a problem connected with this 

grammar, as there seems to be a fast algorithm for the membership problem of binary term 

rewriting grammars, suggested by the algorithm of Cocke, Younger, and Kasarni. 

Let us now address the question of whether the extra power of lambda types in Automath (which 

correspond to the product types of Martin-Ulf, i.e. types of the form flXe a.[3) is useful in doing 

natural langage syntax. I will fist present an example of a grammar which uses generalized lexical 

rules and the term elimination rule (te) of Automath. I have to sketch the linguistic motivation of the 

lexikal rules for plural noun phrases. First, plural noun phrases like "Studenten" have the same 

form in every one of the four cases. This is the reason why we have to abstract from the case in the 

lexical rule. Second, the syntax presupposed contains a rule like 

(10a) VP(X) -> NP(a) VP(Xa) 

which generalizes the sentence expansion rule and the VP expansion rule of old-fashioned 

Syntactic Structute-like Grammars. a is the variable for the case of the noun phrase, which 

corresponds to the last entry in the list of cases (Xa) demanded by the verb. Third, we may accept 

the following slogan: 

(10b) NPs are predicate functors (VP-> VP) 
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We are now in a position to understand the example. 

(11) deduction of the grammaticality of "Studenten lesen" 

(1)+ A.XE ValenzJ . .aE Kasus.A.yE Kopf.Studenten E 

A.XE V alenz.A.aE Kasus.A.yE Kopf.(VP(f(x,ford(a,pl,3ps) ),y )-> VP(x,y)) 

(2)+ oiJe YaJmz 
(3) ( A.XE Valenz.ME Kasus.AyE Kopf.Studenten) nil E 

( A.XE Valenz.ME Kasus.A.yE Kopf.(VP(f(x,ford(a,pl,3ps)),y) 

->VP(x,y))) nil 

( 4) ME Kasus.A.yE Kopf.Studenten E 

.ME Kasus.A.yE Kopf.(VP(f(nil,ford(a,pl,3ps}),y)-> VP(x,y)) 

(5)+ nom e Kasus 

( 6)+ kopffpl,3ps} E _Kopf 
(7) Studenten E (VP(f(nil,ford(nom,pl,3ps)),lcopf(pl,3ps)) 

-> VP(nil,lcopf(pl,3ps))) 

(8)+ Iesen e CYP<f<nil.ford<nom.pL3ps}),kopffpJ.3ps}) 
(9) Studenten lesen E VP(nil,lcopf(pl,3ps))) 

In this example, the lines which are marked with + are lexical rules. Underlining shows application 

of the rule (te). Besides, there are steps of lambda conversion. The features include head features 

of the verb (Kopf), case lists (Valenz), and cases(Kasus). The last line says that "Studenten lesen" 

is a zero place verb (with case list nil), i.e. a sentence. 

The example shows that we can do syntax in the language theory of Automath. The use of 

extended TA for the analysis of natural language is thus quite natural. The assignment of rule 

schemata in term+ functionality grammar corresponds to the assignment of Product- or Lambda­

Types in Automath-like Type assignment. Syntax can thus be viewed as controlled deduction by 

the TI-elimination or the (te) rule. We have a choice between terms+ functionality and product 

categories. This choice is somehow analogous to the difference between doing classical logic via 

free variable logic and doing it via quantification theory. 

(12) Free variable logic : quantification theory = 
Terms + Functionality : TI-Types 

Both approaches should be pursued. An open question concerns the problem of deciding whether 

Automath-like grammar can always be replaced by free variable + functionality grammar. In every 

event, unification grammar should be studied in the context of extended type assignment systems, 
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and vice versa extended type assignment systems should be studied in the context of mathematical 

linguistics. 

Aristotle's 1r-rwcns as well as the Stoic concept of lf-y <>-ccrcs contain the germ of a theory of 

product categories. Aristotle knew that a linguistic category like the type of Verbs corresponds to a 

family of types. Each type of the family is a case of the verb ( 1r-rwcrcs pl']µa.-ros cp. Aristotle de 

interpret. 17a10 ed. Mignucci varia lectio), an instantiation of the product category. Product 

categories are pervasive in natural language. Pethaps, such a representation of the main categories 

will also contribute to the problem of giving a semantics of the 1ra.pE1r6µoa. in the classical 

sense. In ordinary Montague semantics and related schemes they are hardly treated semantically in 

a principled fashion. 

Literature 

N. G. DE BRUUN. A Survey of the Project AUTOMA TH. In: J. P. SELDIN & J. R. HINDLEY 

eds. To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. London, 

Academic Press, 1980. 

M.A. HARRISON. Introduction to Formal Language Theory. Reading, Mass., Addison-Wesley, 

1978. 

R. lllNDLEY & J. SELDIN. Introduction to combinators and lambda-calculus. Cambridge, 

Cambridge University Press, 1986. 

J. E. HOPCROFI' & J. D. ULLMAN. Introduction to Automata Theory, Languages, and 

Computation. Reading/Mass., Addison-Wesley, 1979. (Addison-Wesley Series in Computer 

Science) 

M. JOHNSON. Attribute-value logic and the theory of grammar. Stanford, CSU, 1988. (CSLI 

Lecture Notes) 

D. LOVELAND. Automated Theorem Proving: A Logical Basis. Amsterdam, North-Holland, 

1978. (Fundamental Studies in Computer Science 6) 

PER MARTIN-LOP. Intuitionistic Type Theory. Naples, Bibliopolis, 1984. 

R. T. OEHRLE & E. BACH & D. WHEELER eds. Categorial Grammars and Language 

Structures. Dordrecht, Reidel,1988. ( Studies in Linguistics and Philosophy 32) 

- 108 -



M. S. PATERSON & M. N. WEGMAN. Linear Unification. Journal of Computer and Systems 

Sciences 16, 1978, 158-167. 

S. SHIEBER. An Introduction to Unification-based Approaches to Grammar. Stanford, CSU, 

1986. (CSU lecture notes) 

- 109 -



RUDIMENTARY KRIPKE MODELS 
FOR THE HEYTING PROPOSITIONAL CALCULUS 

Kosta Dosen 

M atematicki Institut 
Belgrade, Yugoslavia 

The Heyting propositional calculus H is sound and complete with respect to 
Kripke models based on quasi-ordered frames. Besides this class of Kripke models 
there are many smaller classes of Kripke models with respect to which H is sound 
and complete. For example, we can require from the frames of Kripke models that in 
addition to being quasi-ordered they satisfy one or more of the following: 

- the frame is partially ordered, i.e. we have added antisymmetry, 
- the frame is generated, i.e. there is a point which is lesser than or equal to 

every point, 
the frame is a tree, 

- the frame is a Ja.skowski tree, 
- the frame is finite. 

The propositional calculus H is also sound and complete with respect to classes of 
Kripke models which are all based on a single frame (for example, this frame may be 
the disjoint union of all finite quasi-ordered frames), or with respect to classes which 
contain a single Kripke model (like the class whose only member is the canonical model 
for H, familiar from the Henkin-style completeness proof for H). 

For all these classes of Kripke models the class of all quasi-ordered Kripke models 
is the largest class, in which all are included. Here we will consider classes of models 
with respect to which H can be shown sound and complete in which the class of all 
ordinary quasi-ordered Kripke models is properly included. In producing models in 
these wider classes we will feel free to tamper as much as we can with the conditions on 
the underlying frames, while the conditions concerning valuations on these frames and 
the definition of holding in a model will be practically identical as in ordinary Kripke 
models for H. These new models are not meant to replace ordinary Kripke models for 
the investigation of H. Neither are they meant to be philosophically significant. We 
want to have them only as an instrument for the analysis of the inner mechanism of 
Kripke models. But they might also raise some interesting technical questions. 

The mood of this paper will be close to the mood of correspondence theory ( which 
started in modal logic [l], and was more recently extended to intuitionistic logic [91). 
A number of our results will be of the form that a frame satisfies certain conditions 
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concerning its relation iff it satisfies certain conditions concerning valuations on it, or 
something similar. However, this is not a paper at the level of correspondence theory, 
because it does not go far enough. It only introduces notions, and proves for them 
rather straightforward matters which perhaps could lead to a more advanced theory. 

We will concentrate here only on propositional logic and leave aside a possible 
extension of our approach to predicate logic. The paper will be divided into three 
sections. In the first section we introduce our main generalization of Kripke models 
for H, called rudimentary Kripke models. The frames of these models must be only 
serial, but in the absence of reflexivity we assume for valuations on these frames a 
condition converse to the usual heredity condition of ordinary Kripke models for H. 
We prove that H is sound and complete with respect to rudimentary Kripke models, 
and consider questions related to completeness. We show that in a certain sense 
rudimentary Kripke models make the largest class of Kripke-type models with respect 
to which H is strongly sound and complete. 

In the second section we present a canonical Kripke model for H which, though 
serial and transitive, is not reflexive, and is hence not an ordinary Kripke model, but 
rudimentary. We also consider briefly at the end of this section a representation for 
Heyting algebras which is in the background of our canonical model. 

In the third section we consider rudimentary Kripke models where valuations are 
defined inductively. We find necessary and sufficient conditions on frames for the 
inductive character of rudimentary Kripke models of this type, which make a proper 
subclass of the class of all rudimentary Kripke models. We also consider at the end of 
this section some questions related to modal logic. 

In a sequel to this paper [4] we shall consider three related topics. First, we shall 
introduce a very general notion of Beth models for H, such that rudimentary Kripke 
models may be conceived as a particular type of these models. These Beth models are 
interesting because for them we make another assumption analogous to the converse 
heredity of rudimentary Kripke models. We shall also consider such Beth models 
where valuations are defined inductively. 

Next we shall present in [4] the correspondence between on the one hand condi­
tions on frames of various types of rudimentary Kripke models and on the other hand 
the characteristic schemata of Dummett 's logic, the logic of weak excluded middle and 
classical propositional logic. 

Finally, we shall consider in [4] a generalization of rudimentary Kripke models 
which consists in restricting the conditions for rudimentary Kripke models only to 
those points of our frames which are accessible from some point. In a rather natural 
sense this makes the largest class of Kripke-type models with respect to which H is 
sound and complete, though even larger classes may be envisaged. 

1. Rudimentary Kripke models 

Our propositional language has infinitely many propositional variables, the propo­
sitional constant ..L, and the binary connectives --+, II and V. For propositional vari­
ables we use the schematic letters p, q, r, ... , p1 , ••• , for formulae the schematic letters 
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A, B, C, ... , A1, ... , and for sets of formulae the schematic letters r, 6., 0, ... , fi, .... 
As usual, A <-+ B is defined as (A -+ B) I\ (B -+ A) and ~A as A -+ 1-. We denote 
the set of all formulae by L, the set of all formulae in which J_ does not occur by L +, 
and the set of all formulae in which only propositional variables and -+ occur by L - . 
In the metalanguage we use =>, <=:>, & , or, not, V, 3 and set-theoretical symbols, 
with the usual meaning they have in classical logic. 

The Heyting propositional calculus H in L is axiomatized by the following usual 
axiom-schemata: 

A-+ (B-+ A), (A-+ (B-+ C))-+ ((A-+ B)-+ (A-+ C)), 

(C-+ A)-+ ((C-+ B)-+ (C-+ (A II B))), (A II B)-+ A, (A II B)-+ B, 

A-+ (AV B), B-+ (AV B), (AV B)-+ ((A-+ C)-+ ((B-+ C) -+ C)), 

1--+ A, 

and the rule modus ponens. It is well-known that this axiomatization is separative, in 
the sense that an axiomatization of a fragment of H involving some connectives, among 
which we must have -+, is obtained by assuming modus ponens and all those axiom­
schemata from the list above in which the connectives of the fragment in question 
occur. So the positive Heyting propositional calculus H+ in L + is axiomatized by 
rejecting J_ -+ A, and the implicational fragment of H, i.e. the system H- in L - , is 
axiomatized by the first two axiom-schemata and modus ponens. 

A frame is (W, R) where W is a nonempty set and R is a binary relation on 
W. Members of W, which in modal logic are called worlds, will here be called more 
neutrally points. We use x, y, z, ... , x1, ... for members of W, and X, Y, Z, ... ,X1, ... 
for subsets of W. For a frame (W, R) a subset X of W will be called hereditary iff for 
every x 

xEX => Vy(xRy => yEX), 

and it will be called conversely hereditary iff for every x 

Vy(x Ry => y EX) => x EX. 

For a frame (W, R) and X, Y c;; W we have the binary operation -+ R defined by: 

X --t R y = { X : Vy ( X R y => (y E X => y E Y))}. 

A pseudo-valuation v on a frame (W, R) is a function from L into PW, i.e. the 
power set of W, which satisfies the following conditions for every A, BEL: 

(vl_) v(1-) = 0, 

(v -+) v(A-+ B) = v(A) -+R v(B), 

(vii) v(AIIB)=v(A)nv(B), 

(v V) v(A VB)= v(A) U v(B). 

A valuation v on a frame (W, R) is a pseudo-valuation which satisfies: 

(A-Heredity) for every formula A the set v(A) is hereditary, 
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( Converse A-Heredity) for every formula A the set v(A) is conversely heredi­
tary. 

A rudimentary K ripke model is (W, R, v) where (W, R) is a frame and v a valu­
ation on this frame. A formula A holds in (W, R, v ) iff v( A) = W. 

With our usual experience with Kripke models, instead of A-Heredity and Con­
verse A-Heredity we would expect only the following conditions: 

(p-H eredity) for every propositional variable p the set v(p) is heredi­
tary, 

( Converse p-Heredity) for every propositional variable p the set v(p) is con­
versely hereditary. 

Valuations would be defined by specifying v for propositional variables and using 
(v _1_), (v -+ ), (v A) and (v V) as clauses in an inductive definition. That A-Heredity 
and Converse A-Heredity obtain would be derived by induction on the complexity 
of A. Rudimentary Kripke models whose frames have properties which guarantee 
that every v defined on them in such an inductive way satisfies A-Heredity and Con­
verse A-Heredity make an important proper subclass of the class of all rudimentary 
Kripke models (we will study this subclass in the third section). Here, however, we 
deal first with models where there is no guarantee that a pseudo-valuation which sat­
isfies p-Heredity and Converse p-Heredity will satisfy also A-Heredity and Converse 
A-Heredity. In arbitrary rudimentary Kripke models A-Heredity and Converse A­
Heredity are not derived but stipulated; namely, we restrict ourselves to those pseudo­
valuations where these two heredity conditions have somehow been secured. 

The following proposition shows that frames of rudimentary Kripke models cannot 
be completely arbitrary: 

Proposition 1. For every rudimentary K ripke model (W, R, v), the relation R is 
serial, i.e. Vx :ly(x Ry). 

Proof. Since for every x we have x ,f. v(_1_), by Converse A-Heredity there is a y such 
that x Ry and y ,f. v(_1_). q.e.d. 

The next proposition shows that we need not assume anything besides seriality 
for frames of rudimentary Kripke models: 

Proposition 2. If in the frame (W, R) the relation R is serial, then there is a 
valuation v on (W, R). 

Proof. On (W,R) where R is serial let v(p) be either W or 0 and let v(_1_) = 0. 
Then using the conditions (v -+), (vi\) and (vV) we define v(A) for every formula A. 
It is easy to check by induction on the complexity of A that v(A) is either W or 0. 
(The only interesting case in this induction is when A is of the form A1 -t A2, and 
we have v(A1) =Wand v(A2) = 0; then v(A1-+ A2) = {x: not:ly(x Ry)}= 0, 
by using the seriality of R.) It is clear that A-Heredity and Converse A-Heredity 
obtain if v(A) = W. If v(A) = 0, then A-Heredity is vacuously satisfied and Converse 
A-Heredity follows from the seriality of R. q.e.d. 
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This proof shows that for every serial frame (W,R) the set {W,0} is closed 
under the operations ---> R, n and U. (We call a frame (W, R) urial iff R is serial, and 
similarly with models and other properties.) 

A positive valuation v+ on a frame (W, R) is a function from L + into PW which 
satisfies all the conditions for valuations except (v ..L), which does not apply anymore. 
A positive rudimentary Kripke model is (W, R, v+). In a positive rudimentary Kripke 
model R can be completely arbitrary, even empty, as the following proposition shows: 

Proposition 3. For every frame (W, R) there is a positive valuation v+ on (W, R ). 

Proof. For every A E L + let v+(A) = W, and check that v+ is a positive valuation. 
q.e.d. 

This proof is based on the simple fact that for an arbitrary frame (W, R} the 
set {W} is closed under ---> R, n and U. We can similarly show that in implicative 
rudimentary Kripke models (W, R, v- ), where v- maps L- into PW and satisfies 
(v---> ), A-Heredity and Converse A-Heredity, R can also be completely arbitrary. 

The valuations defined in the proof of Proposition 2 and the positive valuation 
defined in the proof of Proposition 3 are trivial, since in every rudimentary Kripke 
model of the first proof every two-valued tautology holds, and in the positive rudi­
mentary Kripke model of the second proof every formula of L + holds. Of course, not 
all rudimentary, or positive rudimentary, Kripke models are trivial in this way. 

In a quasi-ordered frame (W, R) the relation R is reflexive and transitive, and 
because of reflexivity these frames are serial. Rudimentary Kripke models based on 
such frames, which we will call quasi-ordered Kripke models, are the ordinary Kripke 
models for H. The conditions for valuations which we have given above are necessary 
and sufficient for valuations in these ordinary Kripke models, though with ordinary 
Kripke models they are usually introduced in a different way. Namely, instead of 
A-Heredity we assume only p-Heredity, whereas Converse A-Heredity is not assumed 
in any form. The conditions (v ..L), (v ---> ), (v /\) and (v V) are assumed exactly as 
above. By induction on the complexity of A we can then demonstrate A-Heredity, 
whereas Converse A-Heredity is an immediate consequence of the reflexivity of R. So 
every quasi-ordered Kripke model is a rudimentary Kripke model, but not vice versa, 
as Proposition 2 shows. As we have remarked, the rudimentary Kripke models of 
the proof of Proposition 2 are trivial, but we will see below in Proposition 7 and in 
the next section that there are nontrivial rudimentary Kripke models which are not 
quasi-ordered. 

We will now demonstrate that H is sound and complete with respect to rudimen­
tary Kripke models. For soundness we have the following proposition: 

Proposition 4. If B is provable in H, then B holds in every rudimentary K ripke 
model. 

Proof. We proceed by induction on the length of proof of B in H. If B is an axiom, 
the only case where we must invoke Converse A-Heredity is when B is of the form 
(B1 ---, (B2 ---> B3)) ---, ((B1 ---, B2)---, (B1 ---, B3)), and this is why in the basis of the 
induction we will consider only this case as an example. 
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Suppose for B of the form above that for some x we have x r/: v(B). We easily 
infer that we must have y, z and t such that: 

x Ry and y E v(B1 -> (B2 -> Ba)), 

y R z and z E v(B1 ---+ B2), 

z Rt, t E v(B1) and tr/: v(Ba)-

So t E v(B2) and by A-Heredity t E v(B2 -> Ba). Then from tr/: v(Ba), by Converse 
A-Heredity, it follows that there must be a u such that t R u and u r/: v(Ba). By 
A-Heredity u E v(B2), but since t E v(B2 -> Ba) we obtain a contradiction. 

For the induction step suppose that v(Bi) = W and v(B1 ---+ B2) = W. Next 
suppose x R y. Since x E v(B1 -> B 2) and y E v(B1) we obtain y E v(B2)- So 
Vy (x R y =} y E v(B2)), from which x E v(B2) follows by Converse A-Heredity. 
q.e.d. 

For completeness it is enough to appeal to the completeness of H with respect 
to quasi-ordered Kripke models. Indeed, if B holds in all rudimentary Kripke models, 
then B holds in all quasi-ordered Kripke models, and hence B is provable in H. So 
we have: 

Proposition 5. A formula B is provable in H iff B holds in every rudimentary 
Kripke model. 

We can similarly demonstrate the soundness and completeness of tt+ with re­
spect to positive rudimentary Kripke models, and of H- with respect to implicative 
rudimentary Kripke models. 

In the background of the soundness of H with respect to rudimentary Kripke 
models is the following algebraic fact. For every rudimentary Kripke model (W, R, v), 
the set {v(A): A EL} contains 0 and is closed under the operations ->n, n and U; 
the algebra ( { v( A) : A E L}, -> R, n, U, 0) is a Heyting algebra. In terms of frames, 
for every frame (W, R ), every set A of hereditary and conversely hereditary subsets 
of W which contains 0 and is closed under the operations -> R, n and U is a Heyting 
algebra. (For 0 to be conversely hereditary our frame must be serial.) When we verify 
for X,Y,Z EA that 

XnY~Z = X~Y->nZ 

we use the hereditariness of X from left to right, whereas the hereditariness of Y and 
converse hereditariness of Z are used from right to left. Our frame may be such that 
A never coincides with the set of all hereditary and conversely hereditary subsets of 
W (this will become clear in the third section; see Proposition 19 and the comments 
following this proposition). 

For a frame (W, R), let us define Rk, where k 2: 0, by the following recursive 
clauses: 

xR0
y = x = y, 

xRk+ly = 3z(xRkz & zRy). 
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It is clear that x R 1 y ~ x R y. Note that A-Heredity is equivalent with the 
conditions that for every A and every x: 

xEv(A) • Vy((3k2m)xRky • yEv(A)), 

where m = 0 or m = 1. On the other hand, Converse A-Heredity is not equivalent with 
the converse conditions, namely that for every A and every x the converse implication 
obtains, with either m = 0 or m = 1, though it implies these converse conditions, 
for both m = 0 and m = 1 (the converse condition where m = 0 is vacuously true). 
However, in the presence of A-Heredity, Converse A-Heredity is equivalent with the 
converse condition where m = 1. 

The soundness of H with respect to rudimentary Kripke models can be inferred 
from the following proposition too: 

Proposition 6. For every rudimentary K ripke model (W, R, v) there is a quasi­
ordered K ripke model (W, R', v' ) with the same W such that for every A we have 
v(A) = v'(A). 

Proof. For a rudimentary Kripke model (W, R, v) we define (W, R', v'} by stipulating 
that x R' y iff (3k 2 0)x Rk y, and v'(A) = v(A). In other words, R' is the reflexive 
and transitive closure of R, and v and v' coincide. Then we verify that (W, R', v'} is 
indeed a quasi-ordered Kripke model. 

The only part of this verification which is not quite straightforward is when in the 
verification that v' is a valuation on (W, R') we have to check that v 1 satisfies ( v ---> ), 

i.e. when we show that: 

Vy((3k20)xRky • (yEv(B) • yEv(C))) iff 

Vy(x Ry • (y E v(B) • y E v(C))). 

From left to right we just appeal to the fact that x R y '* (3k 2 0)x Rk y. For 
the other direction suppose that for some y we have (3k 2 0) x Rk y, y E v(B) and 
y ff: v(C). If k = 0, then x E v(B) and x ff: v(C). Hence, by the Converse A-Heredity 
of v in (W, R, v) we have a y such that x R y and y ff: v( C), and by the A-Heredity 
of v in (W, R, v) we also have y E v(B). If k > 0, then for some z we have x Rk-l z 
and z R y. It follows that z ff: v( B ---> C). Either x = z, in which case x ff: v( B ---> C), 
or x f z, in which case by the A-Heredity of v in (W, R, v} it again follows that 
x ff: v(B---> C). Hence there is a y such that x Ry, y E v(B) and y ff: v(C). q.e.d. 

As a kind of converse of Proposition 6 we can demonstrate the following: 

Proposition 7. For every quasi-ordered Kripke model (W, R, v} there is a rudimen­
tary K ripke model (W*, R*, v* ) which is not quasi-ordered such that for every A we 
have v(A) = W iff v*(A) = W*. 

Proof. If W' = {x': x E W} and W' n W = 0, let w• =WU W'. On W' we define 
R' by: 

x' R' y' ~ (x Ry & x f y), 
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and we let R* = RU R' U { (x', x) : x E W}. So the frame (W*, R*) consists of (W, R) 
plus an irreflexive copy (W', R' ) of (W, R) such that for every x' E W' and x E W we 
have x' R* x. The frame (W*, R*) is not reflexive since (W', R') is irreflexive, and if 
there is a y E W distinct from x E W such that x Ry, then (W*, R*) is not transitive, 
since though we have x' R* x and x R* y, we don't have x' R* y. 

If v'(A) = {x' E W' : x E v(A)}, let v*(A) = v(A) U v'(A). It is straightforward 
to check that v• is a valuation on (W*, R* ) and that (W*, R*, v• ) is a rudimentary 
Kripke model such that our proposition is satisfied. q. e. d. 

For Wand w• as in the proof of Proposition 7, let f be a function from w• onto 
W defined by f(x) = x and f(x') = x. Then f is a pseudo-epimorphism, or zigzag 
morphism, from (W*,R*) onto (W,R) (see [7], pp. 70-75; [1], pp. 174, 187; or [9], 
2.4.2) since we have: 

(Vz, t E W*)(z R* t • f(z) Rf(t)), 

(Vz E W*)(Vy E W)(f(z) Ry • (3t E W*)(f(t) = y & z R* t)). 

We also have for every z E w• and every formula A that: 

z E v*(A) ~ f(z) E v(A). 

More generally, we can prove Proposition 7 by letting w• be the disjoint union 
of two or more sets W;, each in one-one correspondence with W. On W; for every 
x, y E W such that x f y we have x; R; y; iff x Ry, but for some x; E W; we may lack 
x; R; x;, which makes (W;, R;) nonreflexive. In the relation R* on W* is included the 
union of all the relations R; and moreover for every x; E W; we have an xi E Wj 
such that x;R*xi. If one of the frames (W;,R;) is nonreflexive, then (W*,R*) is 
nonreflexive, whereas transitivity will fail if x; R* Xj and Xj R* Xk but not x; R* Xk 
(in the proof of Proposition 7 above, transitivity fails for a different reason). The set 
v*(A) is the union of all the sets v;(A) = { x; E W;: x E v(A) }. The frame (W, R) is a 
pseudo-epimorphic image of (W*, R*) under f: w• -+ W defined by f(x;) = x, and 
we have x; E v*(A) iff f(x;) E v(A). 

Proposition 6 says that for every rudimentary Kripke model there is a quasi­
ordered Kripke model in which the same formulae hold, and since the converse is 
trivially satisfied, it might seem that rudimentary Kripke models do not bring any­
thing new. However, they may bring something new if instead of holding in a model 
we consider holding in a frame. We say that A hold3 in a frame (W, R) iff for every 
valuation v on (W, R) we have that A holds in (W, R, v ). Our soundness and com­
pleteness result of Proposition 5 can equivalently be expressed in terms of holding in 
frames; namely B is provable in H iff B holds in every serial frame. 

It is also true that B is provable in H iff B holds in every frame, for if a frame 
(W, R) is not serial, then, since there are no valuations on (W, R), it is vacuously 
satisfied that for every valuation v on (W, R) every formula A holds in (W, R, v). 
This is like accepting among our rudimentary Kripke models also models where W is 
empty, since if W is empty, every formula A holds vacuously in (W, R, v). The problem 
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with these vacuous holdings is that every formula, even 1-, will have a model, or a frame 
in which it holds. So, we should exclude vacuous holdings from our considerations. 

In (10] Sehtman gave an example of an intermediate propositional logic S incom­
plete with respect to any class of partially ordered frames, i.e. there is no class C of 
partially ordered frames such that B is provable in S iff B holds in every frame in C. It 
follows easily that there is no class C of quasi-ordered frames such that B is provable in 
S iff B holds in every frame in C, since for every quasi-ordered frame there is a partially 
ordered frame in which the same formulae hold (for the quasi-ordered frame (W, R) we 
take the partially ordered frame (W', R') where with (x] = {y : x R y & y Rx} we 
have W' = {[x]: x E W} and (x] R' (y] iff x Ry). However, for all we know, it seems 
possible that a logic like S be incomplete with respect to any class of quasi-ordered 
frames but nevertheless complete with respect to a class of serial frames, where the 
holding of formulae in serial frames is defined in terms of rudimentary Kripke mod­
els. In the proof of Proposition 6 we produced out of a rudimentary Kripke model 
(W, R, v ) a quasi-ordered Kripke model (W, R', v') in which the same formulae hold, 
but this does not mean that in (W, R) and (W, R' ) the same formulae will hold. Ev­
ery valuation v on (W, R) will induce an equivalent valuation v' on (W, R'), as in the 
proof of Proposition 6, but on (W, R' ) we might have valuations to which no valuation 
corresponds on (W, R). For example, let in (W, R) not x R x; then for av' on (W, R' ) 
we can have 

x ft v'(A) and Vy ((3k ~ 1) x Rk y => y E v'(A)), 

but for no v on (W, R) we can have 

x ft v(A) and Vy ((3k ~ 1) x Rk y => y E v(A)). 

So we ask the following question: 

(1) Is there an intermediate propositional logic incomplete with respect to any 
class of quasi-ordered frames but complete with respect to a class of serial 
frames? 

When we show that a logic like Sehtman's S is incomplete with respect to any 
class of quasi-ordered frames we find a formula B which is not a theorem of S but 
which holds in every quasi-ordered frame in which all the theorems of S hold. In 
order to show that B is not a theorem of S, or of a similar logic, we can use a more 
general type of frames (like the general, or fir~t order, frames in modal logic; see (7], 
pp. 62-67). Can serial frames be used for the same purpose, namely: 

(2) Is there a set of formulae rand a formula B such that in every quasi-ordered 
frame in which all the members of r hold B holds too, whereas there is a 
serial frame in which all the members of r hold and B does not hold? 

A positive answer to (1) entails a positive answer to (2), but (2) seems to be a weaker 
question. 

A question related to (1) is: 
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(3) Is there an intermediate propositional logic incomplete with respect to any 
class of serial frames? 

Let r f- B mean as usual that there is a proof of B in H from hypotheses in r. A 
positive answer to (3) would show that it is impossible to prove for H the completeness 
direction of the following strong soundness and completeness for every r and B: 

r f- B iff for every serial frame (W, R), if all the members of r hold in (W, R), 
then B holds in (W, R ). 

Sehtman's result mentioned above shows that such a strong completeness fails when 
we replace serial by quasi-ordered or partially ordered frames. However, we can easily 
establish the following strong soundness and completeness for H: 

Proposition 8. For every r and B: 

r f- B iff for every rudimentary K ripke model (W, R, v), if all the members 
of r hold in (W, R, v ) , then B holds in (W, R, v). 

Before proving this proposition let us note that its right-hand side: 

( *) for every (W, R, V)' ncH v( C) = w • v( B) = w 
is equivalent for rudimentary Kripke models with the seemingly stronger assertion: 

(**) for every (W,R,v), ncErv(C) c:;; v(B). 

That ( *) implies ( **) follows from the fact that for every rudimentary Kripke model 
(W, R, v) and x E W, the submode! generated by x, i.e. (W,, Rx, v,) where: 

Wx = {y E W: (3k ~ O)xRky}, 

(Vy,zEW,)(yR,z ~ yRz), 

v,(A) = v(A) n W,, 

is a rudimentary Kripke model. Suppose that in (W, R, V) we have X E ncEr v( C). 
Then by the A-Heredity of V in (W, R, V)' in (W., R., v, ) we have ncEr v, ( C) = w,, 
and by(*) we obtain v,(B) = W,. Sox E v(B). That(**) implies(*) follows 
immediately from the definitions and does not rely on either A-Heredity or Converse 
A-Heredity. 

Proof of Proposition 8. The soundness direction is a simple corollary of Proposition 
4. For if r f- B, then by the deduction theorem either B is provable in H or for some 
n ~land some C1 , ••. ,Cn Er we have that C1 -t (C2 -t ... -t (Cn -t B) ... ) 
is provable in H. In either case ( **) obtains (in the latter case we apply A-Heredity 
and Converse A-Heredity). The completeness direction follows immediately from the 
fact that this implication obtains when we replace rudimentary Kripke models by 
quasi-ordered Kripke models. q.e.d. 

An analogous strong soundness and completeness can also be proved for H+ with 
respect to positive rudimentary Kripke models, and for H~ with respect to implicative 
rudimentary Kripke models. 
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Let us say that (W, R, v) is a pseudo-Kripke model iff (W, R) is a frame and 
v a pseudo-valuation; A holds in (W,R,v) iff v(A) = W. (The logic in L sound 
and complete with respect to all pseudo-Kripke models is axiomatized in [2].) We 
can interpret Proposition 8 as saying that A-Heredity and Converse A-Heredity are 
sufficient conditions on pseudo-Kripke models for obtaining the strong soundness and 
completeness of H. That these two heredity conditions are also in a certain sense 
necessary will be inferred from the following two propositions, which are an immediate 
consequence of definitions: 

Proposition 9. A pseudo-valuation v on a frame (W, R) satisfies A-Heredity iff for 
every B and C we have v(B) <; v((C-> C)-> B). 

Proposition 10. A pseudo-valuation v on a frame (W, R) satisfies Converse A­
Heredity iff for every B and C we have v((C-> C)-> B) <; v(B). 

Now we can prove the following: 

Proposition 11. The class of all rudimentary K ripke models is the largest class of 
pseudo-K ripke models with respect to which H is strongly sound and complete in the 
sense that for every r and B, r f- B iff ( ** ). 

Proof. The sufficiency of A-Heredity and Converse A-Heredity follows from Propo­
sition 8. Next we show their necessity. Since for H, for every B and C we have 
{B} f- (C -> C) -> B and {(C -> C) -> B} f- B, for each of our pseudo-Kripke 
models (W, R, v ), for every B and C we must have v(B) = v((C -> C) -> B). Then 
we apply Propositions 9 and 10. q. e. d. 

(Note that {B} f- (C -, C) -> B is related to the deduction theorem, whereas 
{(C-> C)-> B} f- Bis related to modus ponens.) 

Though ( *) and ( **) are equivalent for rudimentary Kripke models, ( *) does not 
imply(**) for every pseudo-Kripke model. For example, that v(B) = W implies 
v((C -, C) -> B) = W is satisfied for every pseudo-Kripke model, but v(B) <; 
v(( C -> C) -> B) may fail in the absence of A-Heredity. So we cannot replace ( **) by 
( *) in Proposition 11. We will see in the last section of [4] that the class of rudimentary 
Kripke models is properly included in the largest class of pseudo-Kripke models with 
respect to which H is strongly sound and complete in the sense that for every r 
and B, r f- B iff ( * ); and the latter class is properly included in the largest class of 
pseudo-Kripke models with respect to which we can prove the ordinary soundness and 
completeness of H. 

The Kolmogorov-Johansson, or minimal, propositional calculus Jin Lis obtained 
by rejecting J. -> A from our axiomatization of H. This system does not differ essen­
tially from H+, and it is not difficult to obtain a soundness and completeness result 
for J with respect to "rudimentary" Kripke models which differ from rudimentary 
Kripke models for H only in not requiring v( J.) = 0; the set v( J.) can be an arbitrary 
hereditary and conversely hereditary set. "Rudimentary" Kripke models for J need 
not be serial, and their frames may be completely arbitrary. (So Johansson may after 
all have been right in calling J minimal.) 
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2. A canonical rudimentary Kripke model 

We shall now consider a nontrivial rudimentary Kripke model which is not quasi­
ordered, but is analogous to the canonical partially ordered Kripke model familiar 
from the Henkin-style completeness proof for H. 

A set of formulae r is consistent iff for some A not r f- A; the set r is deductively 
closed iff for every A we have that r f- A implies A E r; and r has the disjunction 
property iff for every A and B we have that A V B E r implies A E r or B E r. A set 
of formulae which is consistent, deductively closed and has the disjunction property 
will be called a prime theory. 

A set of formulae r will be called A-maximal iff A <I. rand for every B, either 
B E r or B -+ A E r. It is easy to check that a prime theory r is maximal (in the 
sense that for every prime theory t,, if r ~ 6., then r = 6.) iff r is ..L-maximal (the 
same holds when we replace prime theories by consistent deductively closed sets). 

Let We= {r: r is a prime theory}, and let us define on We the relation Re by: 

r Re t,, ~ (f = t,, &(3A) r is A-maximal ) or r Ct,, 

where r Ct,, means that r is a proper subset of 6.. Next let ve(A) = {r E We : A E f}. 
We shall call (We, Re, Ve) the canonical rudimentary Kripke model for H. This model 
differs from the usual canonical Kripke model for H only in the definition of Re; in 
the usual canonical Kripke model r Re 6. is defined as r ~ 6.. Let us first prove the 
following proposition: 

Proposition 12. The canonical rudimentary Kripke model for H is a rudimentary 
K ripke model. 

Proof. It is clear that We is nonempty and that (We, Re) is a frame. That the 
conditions (v ..L), (vi\) and (v V) are satisfied for Ve follows immediately from the 
definition of prime theories. To verify ( v -+) for Ve we show that for every prime 
theory r and every A and B: 

(I) A-+ B Er ~ Vt. (r Re t,, • (A E 6. • BE 6.)). 

From left to right this follows immediately from the fact that r Re 6. implies 
r ~ 6.. For the other direction suppose A -+ B <I. f; hence B <I. r. If A E r and for 
some C the set r is C-maximal, we haver Re r, A Er and B <I. r. If A Er and there 
is no C such that r is C-maximal, then for some D we have D <I. r and D-+ B <I. r, 
and we extend r U { D} to a prime theory 6. such that A E 6. and B <I. 6.. If A <I. r, 
we extend r U {A} to a prime theory 6. such that A E 6. and B (/; 6.. 

If in (I) we let A be C-+ C, then since in H we have B <-+ ((C-+ C)-+ B) we 
immediately obtain A-Heredity and Converse A-Heredity for Ve. q.e.d. 

To prove the strong completeness of H with respect to rudimentary Kripke models 
we could use the canonical rudimentary Kripke model instead of the usual canonical 
Kripke model for H. As for the usual canonical model, if not r f- B, then there is a 
prime theory t,, such that r ~ t,, and B <I. 6.. 
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Th,, r,anonir,al rudimentary Kripke model for His serial. as it follows from Propo­
sition 1 / and as can directly be proved by copying the argument in the proof of Propo­
sition 12J. This model is also transitive, but it is not reflexive. Let fe be the set of 
theorems of H. The set fe is a prime theory for which there is no A such that re is 
A-maximal. Otherwise there would be an A which is not a theorem of H such that for 
a propositional variable p foreign to A we would have that p V (p -> A.) is a theorem 
of H. So we don't have re Re re. 

The set re is not the only prime theory r for which there is no A such that r 
is A-maximal. Such are also all the prime theories r8 = {C: {B} I- C} where Bis 
a Harrop formula nonequivalent to J_ in H; that r B is a prime theory follows from 
the fact for Harrop formulae B we have that if {B} 1- C1 V C2 , then either {B} 1- C1 

or { B} I- C2 ( see [6] or [8], p. 55 ). That there is no A such that r 8 is A-maximal is 
shown as follows. Suppose A ff. rB, i.e. not {B} 1- A; then for a p foreign to both B 
and A we have that not {B} I- p (otherwise we would have {B} 1- _l_, and hence also 
{B} I- A) and not {B} I- p---, A (otherwise we would have {B} 1- (C--, C)--, A, and 
hence {B} 1- AJ. The prime theory re is a particular case of a fB where Bis the 
Harrop formula q ---, q. 

When we build the canonical Kripke model for H, if we assume the definition of 
the canonical valuation Ve, then A-Heredity implies for every r and b.: 

Converse A-Heredity implies for every r and every B: 

(III) B ff. f • :lb. (f Re b. & B ff. b.), 

and one direction of the condition ( v ---->) implies for every r and every A and B: 

(I ¢= J A __, B ff. r • :lb. (f Re b. & A E b. & B ff. b. ). 

The other direction of (v--,) and the conditions (v l.), (v /1) and (v V), together with 
(II), (III) and the requirement that re be included in every r, imply the definition of 
prime theories. For prime theories r and b. we have that (I¢=) implies (III), and (II) 
is equivalent with the converse of (I¢=). So (II) and (I¢=) are equivalent with (I) of 
the proof of Proposition 12, and as this proof shows, (I) is necessary and sufficient for 
verifying that (We, Re, Ve) is a rudimentary Kripke model. 

In the usual canonical Kripke model for H we take for Re the largest relation 
possible, and we identify Re with the subset relation <;::. But, as our canonical rudi­
mentary Kripke model shows, we need not do that. We can take a relation on prime 
theories properly included in <;:: which will also satisfy (I). Our new relation Re is serial, 
but it is not reflexive. It is also transitive, though this is not needed for rudimentary 
Kripke models.We leave open the following question: 

( 4) Can we define on We a relation Re which satisfies (I) and is not transitive, 
or neither transitive nor reflexive? 

Let now We be the set of all prime theories which for some A are A-maximal, 
and define on this We the relation Re and Ve as for our canonical rudimentary Kripke 
model for H. Then Re coincides with<;::, and (We, Re, Ve) is a partially ordered Kripke 
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model for H. To verify this we establish that if not r f- A, then there is a prime theory 
6. such that r ~ 6. and 6. is A-maximal. So our canonical rudimentary Kripke model 
for H has a partially ordered canonical Kripke model for H as a proper submode!. 

In the background of our canonical rudimentary Kripke model for H lies a rep­
resentation theorem for Heyting algebras. For a Heyting algebra (A,--+, A, V, J_ ), let 
W .A = { x : x ia a prime filter of A}. For a E A, a prime filter x will be called a­
maximal iff a </: x and (Vb E A)(b Ex orb ---ta Ex). Then we define on W.4 the 
following relation analogous to our Re: 

x R.A y {=> (x = y & (3a EA) x i, a-maximal) or x Cy. 

If f(a) = {x E W.4: a Ex}, then ({J(a): a E A},--+R,.,n,u,0) is a Heyting algebra 
isomorphic to our initial Heyting algebra A by the mapping f. As before, the relation 
R.4, though it must be transitive, need not be reflexive. If A is the Lindenbaum algebra 
of Hand xis the principal filter generated by the equivalence class of a Harrop formula 
nonequivalent to 1-, then x is a prime filter for which there is no a E A such that x is 
a-maximal (which is shown by an argument analogous to what we had above for the 
prime theories r B ). 

3. Inductive Kripke models 

In this section we study frames for which it is enough to assume that pseudo­
valuations on them satisfy p--Heredity and Converse p--Heredity in order to infer by 
induction on the complexity of A that A-Heredity and Converse A-Heredity are satis­
fied. These frames and the corresponding rudimentary Kripke models, which we will 
call inductive, will be more like ordinary frames and Kripke models for H, but we 
shall see that they need not be quasi-ordered. 

In ordinary Kripke models for H besides the conditions for pseudo-valuations we 
assume only p--Heredity. That A-Heredity is satisfied in full generality is then proved 
by induction on the complexity of A. The transitivity of R is a sufficient condition for 
this induction to go through. ( Actually, in the induction step we use the transitivity 
of R only for the case when A is of the form Ai --+ A2 , and then we don't need the 
induction hypothesis; see Proposition 23 below. The instance of A-Heredity where A 
is J_ is satisfied vacuously.) Before showing that the necessary and sufficient condition 
on frames for this induction to go through is weaker than transitivity we introduce 
the following notions. 

For a frame (W, R) and an arbitrary X ~ W let: 

ConeX = {y: (3x E X)(3k 2: O)xRky}, 

Cone- X = {y : not (3x E X)(3k 2: O)y Rk x }. 

The operations Cone and Cone- are connected with hereditary sets by the following 
two propositions, whose straightforward proofs will be omitted: 
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Proposition 13, For every frame (W, R) and every X ~ W, the set Cone X is the 
least hereditary superset of X. 

As a corollary of this proposition we obtain that X is hereditary iff Cone X = X. 

Proposition 14. For every frame (W, R) and every X s;; W, the set Cone- X is 
the greatest hereditary set disjoint from X. 

So, in particular, the sets: 

Cone{x}={y: (3k:2'.0)xRky}, 

Cone-{x} = {y: not (3k 2 O)yRk x} 

are hereditary. It is clear that y E Cone{x} iff x <I. Cone-{y}. It is also clear that 
for every X s;; W in a frame (W, R) the sets: 

ConemX = {y: (3x E X)(3k 2 m)xRky}, 

Cone;;; X = {y: not (3x E X)(3k 2 m) y Rk x }, 

where m 2 0, are hereditary. 

We shall say that a relation R in a frame (W, R) is weakly transitive iff 

Vx,z(xR2 z => 3t(xRt & tECone{z} & zECone{t})). 

Then we can prove: 

Proposition 15. In a frame (W, R) the relation R is weakly transitive iff for every 
pseudo-valuation v on (W, R), if v satisfies p-Heredity, then v satisfies A-Heredity. 

Proof. From left to right we proceed by induction on the complexity of A in order 
to show that v satisfies A-Heredity. The crucial case in the induction step is when 
A is of the form A1 -> A2. Suppose for some x and y that x E v(A1 -> A2), x Ry 
and y ¢ v(A1 -> A2). Then for some z we have y R z, z E v(A1) and z ¢ v(A2). So 
there is at such that x Rt, (3k 2 0) z Rk t and (3m 2 0)t Rm z. By the induction 
hypothesis we get t E v(A1), but since x Rt we also have t E v(A2). Then again by 
the induction hypothesis z E v( A2 ), which is a contradiction. 

For the other direction suppose that for some x, y and z we have x Ry, y R z 
and 

Vt ( ( x Rt & t E Cone{ z}) => z <I. Cone{ t} ). 

Then by Propositions 13 and 14 it is clear that there is a pseudo-valuation v which 
satisfies p-Heredity such that v(pi) = Cone{z} and v(P2) = Cone-{z}. We know 
that z <I. Cone{t} iff t E Cone-{z}. It follows that x E v(p1 -+ P2), but since 
z E v(p1) and z ¢ v(P2) we have y ¢ v(p1 -+ p2). So v does not satisfy A-Heredity. 
q.e.d. 

This proposition shows that in every weakly transitive frame (W, R) the set A of 
all hereditary subsets of W contains 0 and is closed under the operations -+ R, n and 
U. Moreover, the weak transitivity of R is not only sufficient but also necessary for 
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that to be the case. The algebra (A,-+ R, n, U, 0) is a distributive lattice with zero 
which for every X, Y, ZEA satisfies: 

XnY~Z => X~Y-+RZ. 

The converse implication may fail. For example, let X = W -+R 0, Y = W and 
Z = 0; then a dead end x, i.e. a point x such that there is no y for which x Ry, will 
belong to (W -+ R 0) n W but cannot belong to 0. So our algebra A is not necessarily 
a Heyting algebra. 

Weak transitivity is satisfied by transitive frames, but it is clear that this is a 
weaker condition than transitivity. This condition is exclusively tied to the connective 
-+ and it is not invoked in any other part of the proof of Proposition 15, not involv­
mg -+. 

However, in connexion with rudimentary Kripke models we are not interested in 
inferring A-Heredity from p-Heredity, as we did in the proof of Proposition 15, but 
we want to infer A-Heredity and Converse A-Heredity from p-Heredity and Converse 
p-Heredity. In other words, we want to infer that a pseudo-valuation which satisfies 
p-Heredity and Converse p-Heredity is a valuation. In order to show what are the 
necessary and sufficient conditions on frames for this, we shall introduce the following 
notions. 

For a frame (W, R) a nonempty subset X of W will be called an w-chain 
from x iff there is a mapping f from the ordinal w onto X such that f(O) = x and 
(Vn E w)f(n) R f(n + 1). Let w(x) = {X ~ W: Xis an w-chainfrom x}. An 
w-chain from x makes an infinite sequence x0 x1 x2 ... such that x0 = x and for every 
n 2'. 0 we have Xn R Xn+I· Since fin the definition of w-chains need not be one-one, 
there may be repetitions in the sequence x0 x 1x2 ... , and an w-chain need not be infi­
nite; it may actually be the singleton { x} if x Rx. In arbitrary frames there may be 
points x such that w(x) is empty; for example, x may be a dead end. For every x the 
set w( x) is nonempty iff our frame is serial. 

For a frame (W, R) and X ~ W let 

Cl._X={y: (WEw(y))YnX/,0}. 

The set Cl._ X contains all the points y such that every w-chain from y intersects 
X. Every y such that w(y) is empty will also belong to Cl._ X, since for such a y 
it is vacuously satisfied that every w-chain from y interesects X. The operation Cl._ 
satisfies for every X, Y ~ W: 

X ~ Cl._X, 
Cl.., CI.. X = Cl.., X, 

Cl._ Xu Cl.., Y ~ Cl..,(X UY), 

and in serial frames we also have Cl.., 0 = 0, but we need not have: 

Cl..,(X u Y) ~ Cl.., XU Cl.., Y. 
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So C).., is not quite a topological closure operation. If X and Y are hereditary subsets 
of W, we also have: 

Cl..,(X n Y) = Cl.., X n Cl.., Y. 

The operation Cl.., is analogous to an operation which naturally arises in connexion 
with Beth models (see [5], 3.2, and the section on rudimentary Beth modekin [4]). 

It is clear that if X is a conversely hereditary subset of W in a frame (W, R) and 
y </. X, then (3Y E w(y)) YnX = 0. The operation Cl.., in connected with conversely 
hereditary sets by the following proposition: 

Proposition 16. For every frame (W, R) and every X ~ W, the set Cl.., X is the 
least conversely hereditary superset of X. 

Proof. To show that Cl.., X is conversely hereditary suppose y </. Cl.., X. Then there 
is a YE w(y) such that YnX = 0 and a z E Y such that y R z. The set YnCone{z} 
is an w-chain from z disjoint from X, i.e. z </. Cl.., X. 

To show that Cl.., X is the least conversely hereditary superset of X suppose Y 
is conversely hereditary and X ~ Y, and let there be an x such that x E CI.., X, i.e. 
(VZ E w(x)) Zn X =/ 0, and x </. Y. Since Y is conversely hereditary there is a 
Z' E w(x) such that Z' n X = 0, which is a contradiction. So Cl..,X ~ Y. q.e.d. 

As a corollary of this proposition we obtain that X is conversely hereditary iff 
Cl..,X =X. 

Propositions 16 and 13 show that Cl.., is analogous to Cone. Is there an operation 
analogous to Cone-, which applied to X would give the greatest conversely hereditary 
set disjoint from X? The following example shows that such an operation need not 
exist. Lef W = {0, 1, 2} and R = { (0, 1 }, (0, 2 }, (1, 1 }, (2, 2} }. Then the greatest 
conversely hereditary set disjoint from {0} does not exist ( {1} and {2} are conversely 
hereditary, but {1, 2} is not). 

The following proposition connects the operation Cl..,, and conversely hereditary 
sets, with reflexivity: 

Proposition 17. In a frame (W, R) the relation R is reflexive if! for every X ~ W 
we have Cl.., X = X. 

Proof. ( • ) Suppose R is reflexive and x E Cl.., X. Then { x} E w( x ), and hence 
XE X. 

( {=) Suppose for some x not x Rx. Then for every Y E w(x) we have Y n {y : 
x Ry} f 0, i.e. x E Cl..,{y: x Ry}, but x </. {y: x Ry}. q.e.d. 

The following proposition connects the operation Cl.., with hereditary sets: 
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Proposition 18. For every frame (W, R) and every hereditary X ~ W, the Jet 
Clw X iJ hereditary. 

Proof. Suppose x E ClwX, x Ry and YE w(y). Then {x} UY E w(x), and hence 
( {x}UY)nX =/ 0, i.e. for some z E {x}UY we have z EX. If z E Y, then YnX =f, 0. 
If z rt Y, then z = x, and y E Y n X since Xis hereditary. Soy E Clw X. q.e.d. 

Hence, ConeClwConeX = ClwConeX. However, we don't always have 
Clw Cone Clw X ~ Cone Clw X, i.e. we can have a conversely hereditary set X 
such that Cone X is not conversely hereditary. For example, let our frame have 
W = { a, b }U{O, 1, 2, ... } and let R = { (a, 0 ), (b, 0 )}U{ (n, n+ 1) : n E w }. Then {a} is 
conversely hereditary, but Cone{a} is not, since b ¢ Cone{a} and b E Clw Cone{a}. 

We are now ready to show what are the necessary and sufficient conditions on 
frames for inferring that every pseudo-valuation which satisfies p-Heredity and Con­
verse p-Heredity is a valuation. We shall say that in a frame (W, R) the relation R is 
prototranJitive iff 

\/x,z(xR2 z • (VZEw(z))3t(xRt & tEClwCone{z} & t¢ClwCone-z)). 

This condition says that if x R2 z, then for every w-chain Z from z there is a t such 
that x Rt, every w-chain from t intersects Cone{z }, and there is an w-chain from t 
which is disjoint from Cone- Z. If for X, Y ~ W we have that for every x EX there 
is a y E Y such that (3k 2:: 0) x Rk y (i.e. for every x E X we have Y n Cone{ x} =f, 0) 
we shall say that X is a Jhadow of Y. The last conjunct above, which claims that 
there is an w-chain from t which is disjoint from Cone- Z, says that this w-chain 
from t is a shadow of the w-chain Z. Note that the consequent of the condition of 
prototransitivity is satisfied vacuously if w( z) is empty. -

Every transitive relation is prototransitive. For suppose R is transitive, x R2 z 

and Z is an w-chain from z. Then we have x R z, z E Clw Cone{ z} and there is an 
w-chain from z, namely Z itself, which is a shadow of thew-chain Z. We also have 
that every weakly transitive relation is prototransitive, but of course prototransitivity 
entails neither weak transivity nor transivity. 

We shall say that in a frame (W, R) the relation R is protorefiexive iff 

This condition says that if X 1 and X2 are w-chains from x, not necessarily distinct, 
then there is a y such that x R y and from y we have an w-chain which is a shadow of 
X 1 and an w-chain which is a shadow of X2 . Every reflexive relation is protoreflexive. 
For if R is reflexive, then for w-chains X 1 and X2 from x we have x Rx, and X 1 is 
a shadow of X 1 and X2 a shadow of X2 . Of course, protoreflexivity does not entail 
reflexivity. 

We can now prove the proposition for which we have been preparing all along: 

- 127 -



Proposition 19. In a frame (W, R) the relation R is serial, prototransitive and 
protorefiexive iff for every pseudo-valuation v on (W, R ), if v satisfies p-Heredity and 
Converse p-Heredity, then v satisfies A-Heredity and Converse A-Heredity. 

Proof. ( =} ) We proceed by induction on the complexity of A in order to show that 
v satisfies A-Heredity and Converse A-Heredity. In the basis of this induction we use 
the seriality of R in order to demonstrate that v( l.) is conversely hereditary. That 
v( l.) is hereditary is satisfied vacuously. 

In the induction step we first prove that v(A1 -+ A2 ) is hereditary. So suppose 
for some x and y that x E v(A1 -+ A2), x R y and y ¢ v(A1 -+ A 2). Then for 
~ome z we have y R z, z E v(A1 ) and z ¢ v(A2 ). By the Converse A-Heredity of 
the induction hypothesis there is a Z E w(z) such that Zn v(A2 ) = 0. So by the 
prototransitivity of R there is for this Z a t such that x R t, t E Cl.., Cone{ z} and 
t ¢ Cl.., Cone- Z. If t ¢ v(A1), then there is a U E w(t) such that Un v(A1) = 0, 
which contradicts t E Cl.., Cone{ z} and Cone{ z} <;; v( A1 ); we used the Converse 
A-Heredity and A-Heredity of the induction hypothesis. So t E v(A1 ), and since 
x R t, we obtain t E v(A2). But there is a U E w(t) which is a shadow of Z, and 
U <;; v(A2 ) by the A-Heredity of the induction hypothesis. This is in contradiction 
with Zn v(A2 ) = 0 and the A-Heredity of the induction hypothesis. 

For the converse hereditariness of v(A1-+ A2) suppose x ¢ v(A1 -+ A2), i.e. there 
is a y such that x Ry, y E v(A1) and y ft v(A2). By the converse A-Heredity of the 
induction hypothesis there is a z such that y R z and z ¢ v(A2 ). By the A-Heredity 
of the induction hypothesis z E v(A1 ), and soy ft v(A1 -+ A2)- Note that we did not 
appeal to any particular property of R in this paragraph. 

For the hereditariness and converse hereditariness of v(A1 I\ A2), and for the 
hereditariness of v(A1 V A2), we do not appeal to any particular properties of R, and 
we will omit these easy cases. It remains to consider the converse hereditariness of 
v( A 1 V A2 ). So suppose x ff. v( A1 V A2 ), i.e. x ff. v( A1) and x ¢ v( A2 ). By the Converse 
A-Heredity of the induction hypothesis there is an X1 E w( x) such that X1 nv(A1) = 0 
and an X2 E w(x) such that X 2 n v(A2) = 0. So by the protorefiexivity of R there 
is a y such that x Ry, y ¢ Cl.., Cone- X 1 and y ¢ Cl.., Cone- X2. If y E v(A1), 
then for the Y E w(y) which is a shadow of X 1 we would have Y <;; v(A1 ), which 
is in contradiction with X 1 n v(A 1 ) = 0; we used the A-Heredity of the induction 
hypothesis. Soy ff. v(Ai), and we obtain analogously y ff. v(A2), which means y ¢ 
v(A1 V A2)-

(-¢=) If R is not serial, then v( l.) is not conversely hereditary. Suppose R is not 
prototransitive, i.e. for some x, y and z we have x Ry, y Fi, z and there is a Z E w(z) 
such that 

\/t((xRt & tECl..,Cone{z}) • tECl..,Cone-z). 

Then by Propositions 13, 14, 16 and 18 it is clear that there is a pseudo-valuation v 
which satisfies p-Heredity and Converse p-Heredity sucli that v(p1) = Cl.., Cone{z} 
and v(p2) = Cl.., Cone- Z. It follows that x E v(p1 -+ p2). We also have z E v(pi) 
and z ff. v(p2), because Zn Cone- Z = 0 (otherwise for some t E Z we would have 
t E Cone- Z, butt R0 t). Soy¢ v(p1 -+ p2), and A-Heredity fails. 
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Suppose R is not protoreflexive, i.e. for some x there are X1, X2 E w(z) such that 

Vy (x Ry • (y E Cl.., Cone- X 1 or y E Cl.., Cone- X2)). 

Then by Propositions 14, 16 and 18 it is clear that there is pseudo-valuation v which 
satisfies p-Heredity and Converse p-Heredity such that v(p1 ) = Cl..,Cone- X 1 and 
v(p2 ) = Cl..,Cone- X 2 • It follows that Vy(z Ry =;, y E v(p1 V P2)). However, 
x r/:. v(p1), because X1 nCone- X1 = 0, and analogously x r/:. v(P2)- Sox r/:. v(p1 VP2), 
and Converse A-Heredity fails. q.e.d. 

Proposition 19 shows that in every frame (W, R) which is serial, prototransitive 
and protoreflexive, the set A of all hereditary and conversely hereditary subsets of W 
contains 0 and is closed under the operations --+ R, n and U. Moreover, the seriality, 
prototransitivity and protoreflexivity of R are not only sufficient but also necessary 
for that to be the case. As we know, (A,--+ R, n, U, 0) is a Heyting algebra. 

The seriality of R is exclusively tied to .l, so that ifwe restrict ourselves to pseudo­
valuations v from L +, we can omit the requirement of seriality from the left-hand side 
of Proposition 19. Similarly, prototransitivity is exclusively tied to --+ and protore­
flexivity to V. So, if we restrict ourselves to pseudo-valuations v from L - , we need to 
keep only the requirement of prototransitivity on the left-hand side of Proposition 19. 
The same holds if pseudo-valuations are from the(--+,/\) fragment of L, and if they are 
from the (--+, .l) or(--+,/\, .l) fragment, we need seriality and prototransitivity. Seri­
ality is equivalent with the condition that 0 is conversely hereditary, prototransitivity 
with the condition that for every X, Y ~ W the set Cl.., Cone X --+ R Cl.., Cone Y is 
hereditary, and protoreflexivity with the condition that for every X, Y ~ W the set 
Cl.., Cone X U Cl.., Cone Y is conversely hereditary. This is shown as in the proof of 
Proposition 19. 

We shall call frames (W, R) where R is serial, prototransitive and protoreflexive 
inductive frames. An inductive K ripke model is then defined as a (W, R, v) such that 
(W, R) is an inductive frame and v, called an inductive valuation, is a pseudo-valuation 
which satisfies p-Heredity and Converse p-Heredity. Proposition 19 guarantees that 
inductive valuations on inductive frames are valuations, i.e. that inductive Kripke 
models are rudimentary Kripke models. In every inductive Kripke model (W, R, v ), 
for every propositional variable p, the set v(p) may be any hereditary and conversely 
hereditary subset of W we choose. In an arbitrary rudimentary Kripke model this is 
not the case, since the set of all hereditary and conversely hereditary subsets of W 
need not be closed under the operations --+ R, n and U. A fortiori, it will not be a 
Heyting algebra with these operations. 

If holding in frames is defined in terms of inductive-valuations, instead of valua­
tions of rudimentary Kripke models, then H is not sound with respect to serial frames 
but it is sound and complete with respect to inductive frames. Inductive frames do 
not make the largest class of frames which would give this soundness and complete­
ness, because pseudo-valuations need not satisfy exactly A-Heredity and Converse 
A-Heredity in order to secure the soundnes of H. As we will show in the last section 
of [4], somewhat weaker forms of these conditions will also do. However, we know 
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that A-Heredity and Converse A-Heredity are necessary for the strong soundness and 
completeness of Proposition 11. 

We may also envisage frames of the type (W, R, A' ) , called general inductive 
frames, where (W, R) is an inductive frame and A' is a subalgebra of the Heyting 
algebra (A,-+ R, n, U, 0) of all hereditary and conversely hereditary subsets of W. 
These frames are analogous to the general, or first-order, frames in modal logic (see 
[7], pp. 62-67). If we restrict inductive valuations on (W, R, A' ) to those which take 
values in A', we obtain that H is sound and complete with respect to all general 
inductive frames. Ordinary inductive frames may be conceived as a particular type 
of general inductive frames where A' is the Heyting algebra of all hereditary and 
conversely hereditary subsets of W. At an even more general level we would have 
general rudimentary frames of the type (W, R, A) where (W, R) is a serial frame and 
A a particular set of hereditary and conversely hereditary subsets of W which contains 
0 and is closed under the operations -+ R, n and U. Valuations on these frames would 
be restricted to those which take values in A. 

If holding in frames is defined in terms of pseudo-valuations which satisfy only 
p-Heredity, as for ordinary Kripke models for H, then His not sound with respect to 
inductive frames. We know that in this sense H is sound and complete with respect to 
quasi-ordered frames, but there is an interesting class of frames properly in between 
the class of inductive frames and the class of quasi-ordered frames with respect to 
which H is also sound and complete in this sense. This is the largest class of frames 
such that every pseudo-valuation on a frame in this class which satisfies p-Heredity will 
also satisfy A-Heredity and Converse A-Heredity. Frames in this class, called weakly 
quasi-ordered frames, satisfy weak reflexivity: 

and weak transitivity from Proposition 15: 

\/x,z(xR2 z • 3t(xRt & tECone{z} & zECone{t})). 

Reflexivity of course entails weak reflexivity but not vice versa. Also every quasi­
ordered frame is weakly quasi-ordered but not vice versa. 

The following proposition about weak reflexivity is analogous to Proposition 17: 

Proposition 20. In a frame (W, R) the relation R is weakly reflexive iff for every 
hereditary X ~ W we have Cl.., X = X. 

Proof. ( =} ) Suppose R is weakly reflexive, X ~ W is hereditary and x E Cl.., X. 
From weak reflexivity it follows that there is an w-chain Z from x in which x 1s 
cyclically repeated. Since Zn X cf 0 and X is hereditary we get x EX. 

( ~) Suppose for some x not (3k :2: 1) x Rk x. Then the set Cone1 { x} -
{y: (3k ~ l)xRky} is hereditary and x E Cl..,Conei{x}, but x ff. Conei{x}. 
q.e.d. 

As a corollary we obtain: 
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Proposition 21. In a frame (W, R) the relation R is weakly reflexive iff for every 
pseudo-valuation v on (W,R), if v aatisfies p-Heredity, then v satisfies Converse p­
Heredity. 

Propositions 15 and 21 from right to left show that weak reflexivity and weak 
transitivity are necessary if we want to infer A-Heredity and Converse A-Heredity 
from p--Heredity. That these conditions are also sufficient follows from Propositions 
15 and 20 from left to right. 

We can easily verify that weakly quasi-ordered frames could alternatively be de­
fined by assuming weak reflexivity and prototransitivity. So weak reflexivity, which 
entails seriality and protoreflexivity, is really the new assumption we make when we 
pass from the class of inductive frames to its proper subclass made of all weakly 
quasi-ordered frames. 

We have already shown in Proposition 15 that the weak transitivity of Rina frame 
(W, R) is necessary and sufficient for the set A of all hereditary subsets of W to contain 
0 and be closed under the operations -> R, n and U. However, (A, -> R, n, U, 0) need 
not have been a Heyting algebra. Proposition 20 shows that the weak reflexivity of R 
is necessary and sufficient to make every member of A conversely hereditary. So for 
every weakly quasi-ordered frame, (A,-> R, n, U, 0) is a Heyting algebra. 

We also prove the following opposite of Proposition 21: 

Proposition 22. In a frame (W, R) we have 

1/x,y(xRy • ('v'YEw(y))xEY) 

iff for every pseudo-valuation v on (W,R), if v satisfies Converse p-Heredity, then v 
satisfies p-Heredity. 

Proof. ( • ) Suppose x E v(p), x Ry and y (/. v(p). Then by Converse p--Heredity 
there is a Y E w(y) such that Y n v(p) = 0. But since x Ry we have that x E Y, 
which is a contradiction. 

( <=) Suppose for some x and y that x R y and there is a Y E w(y) such that 
x (/. Y. Then by Proposition 16 it is clear that there is a pseudo-valuation which 
satisfies Converse p--Heredity such that v(p) = Cl..,{x}. We infer that x E v(p) and 
y ff. v(p), i.e. p--Heredity fails. q.e.d. 

This proposition shows what happens if we define holding in frames in terms of 
pseudo-valuations which satisfy only Converse p--Heredity and expect these pseudo­
valuations to give rise to rudimentary Kripke models. We know that frames for rudi­
mentary Kripke models must be serial, and with seriality the condition of Proposition 
22 entails that if x Ry, then x E Cone{y}, which with A-Heredity would give that for 
every A we have x E v(A) iffy E v(A). But with that, every theorem of the classical 
propositional calculus would hold. Of course, the condition of Proposition 22 need not 
be satisfied by quasi-ordered frames. 

We have characterized inductive frames and weakly quasi-ordered frames by con­
ditions on pseudo-valuations which indicate that we can define inductively valuations 
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on these frames. Is there a similar characterization of quasi-ordered frames in terms 
of conditions necessary and sufficient to make valuations inductively definable in some 
way? The condition on pseudo-valuations which corresponds to reflexivity is contained 
in Proposition 17, which says that in reflexive frames (W, R ), and only in reflexive 
frames, every subset of W is conversely hereditary. So reflexivity implies Converse 
A-Heredity. On the other hand, transitivity secures the hereditariness of v(A1 ---+ A2), 
as the following proposition shows: 

Proposition 23. In a frame (W, R) the relation R i3 tran3itive iff for every p3eudo­
valuation v on (W,R) and every A1 and A2 the 3et v(A1 ---+ A2) i3 hereditary. 

Proof. ( • ) Suppose x E v(A1 ---+ A2), x Ry, y R z and z E v(Ai). Then by the 
transitivity of R we have x R z, and hence z E v(A2 ). 

(¢,) Suppose x Ry, y R z and not x R z. Let v(pi) = {z} and v(p2) = 0 (we 
may also take v(p2) = W - { z} ). It follows that x E v(p1 ---+ P2) and y r/. v(p1 ---+ P2 ). 
q.e.d. 

This proposition from left to right shows that when for transitive frames we 
prove by induction on the complexity of A that pseudo-valuations on them which 
satisfy p-Heredity satisfy A-Heredity, in the induction step we don't need the induction 
hypothesis for the case when A is of the form A1 ---+ A2 • 

Though the conditions corresponding to reflexivity and transitivity are sufficient 
for the inductive character of valuations, it is not clear what conception of this in­
ductive character would make reflexivity and transitivity also necessary. No doubt, 
quasi-ordered Kripke models stand out by their simplicity and naturalness, and they 
are not very far from weakly quasi-ordered rudimentary Kripke models. But it is not 
clear how the exclusive concern with quasi-ordered Kipke models could be justified by 
saying that only these models would work. 

The previous results show that the assumptions of reflexivity and transitivity for 
ordinary quasi-ordered Kripke models for H are not exactly in the same position. 
Transitivity secures prototransitivity and weak transitivity, which are tied to implica­
tion. Reflexivity secures protoreflexivity, which is tied to disjunction, but it secures 
also seriality and weak reflexivity, which are not tied to disjunction. Reflexivity also 
secures at one stroke Converse A-Heredity. With reflexivity we have reduced an as­
sumption about valuations to an assumption purely about frames, which does not 
mention valuations. 

If reflexivity is written as R 0 i:;:: R, the converse condition R i:;:: R 0 would be 
sufficient for A-Heredity as reflexivity is sufficient for Converse A-Heredity. How­
ever, though we can replace Converse A-Heredity by reflexivity, we cannot replace 
A-Heredity by R i:;:: R 0 • By assuming R i:;:: R 0 we would immediately bring in classical 
propositional logic. 

Among inductive frames we find frames in which R is serial, transitive and satisfies 
branching den3ity: 
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which is a stronger version of protoreflexivity. These inductive frames need not be 
weakly quasi-ordered. That His sound and complete with respect to these frames, 
with inductive valuations, was shown in (3]. These frames are interesting because 
they are the frames with respect to which the normal modal propositional logic K4N 
can be shown sound and complete ( of course, with usual modal valuations on these 
frames). The system K4N is axiomatized by adding to the weakest normal modal 
propositional logic K the following axiom-schemata: 

(s) -,• -,(A-+A), 

(t) • A-+ •• A, 

(bd) •(• AV DB) -+ (DAV DB). 

This system is the weakest normal modal propositional logic in which H can be em­
bedded by the modal translation which prefixes D to every proper subformula which is 
a propositional variable or an implication. (This is shown in (3]; the language in (3] has 
-, as primitive instead of 1-, but the modal translation just mentioned does not differ 
essentially from the translation considered there in connexion with the minimality of 
K4N since here Dis not prefixed to 1-.) The schema (bd) defines branching density 
on frames, in the sense that a frame satisfies branching density iff every instance of 
(bd) holds in this frame (with respect to usual modal valuations). That in the same 
sense ( s) defines seriality, and ( t) transitivity, are among the oldest examples in the 
correspondence theory of modal logic (see (1]). 

It is not clear whether the other conditions we have met in connexion with induc­
tive frames: weak reflexivity, weak transitivity, protoreflexivity and prototransitivity, 
may be defined by modal schemata. The sentences by which we have introduced these 
conditions are not first-order. The following first-order condition related to weak re­
flexivity: 

Vx(xRkx), 

where k ::::: 0, is defined by the modal schema Dk A -+ A, where • 0 A is A and Dk+l A 
is • Dk A. Similarly, the following first-order condition related to weak transitivity: 

where k, m ::::: 0, is defined by: 

The schema ( t ), i.e. • A -+ 0 2 A, is equivalent to this schema when k - m - 0. 
However, this does not yet solve the question: 

(5) Are weak reflexivity, weak transitivity, protoreflexivity and prototransitivity 
definable by modal schemata? 

A similar, but different, question is: 

(6) Can we axiomatize sets of modal formulae which hold in inductive frames, 
or weakly quasi-ordered frames? 
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If a modal system M is sound and complete with respect to a class of frames 
C (via modal valuations) and His also sound and complete with respect to C (via 
rudimentary Kripke model valuations), we cannot immediately conclude that H must 
be embeddable in M by a modal translation. For example, the modal system sound 
and complete with respect to serial frames is D, i.e. K+(s), but H cannot be embedded 
in D by the modal translation which embeds H in K 4N; we obtain the same thing with 
several other natural modal translations ( as will be shown in a paper devoted to modal 
translations in normal modal logics), and it is unlikely that any modal translation 
would work. To put it roughly, it is as if p-Heredity and Converse p-Heredity require 
an infinity of operators D to be prefixed to every p, and in the absence of modality 
reduction principles like • A<--+ •• A, which is probavle in K4N, no finite amount of 
operators D would do. 

The canonical rudimentary Kripke model for H of the previous section, though 
serial and transitive, is not reflexive. It is clear that it is also not weakly reflexive. 
However, we leave open the following question: 

(7) Does the frame of the canonical rudimentary Kripke model for H satisfy 
branching density, or at least protoreflexivity? 

With this question we conclude our preliminary investigation of rudimentary 
Kripke models. As announced in the introduction, we shall consider some further 
topics related to rudimentary Kripke models in [4]. 
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Valuation Semantics for Modal Logics 

(Abstract) 

Cesar A. Mortari 

In this paper we make a presentation of valuation semantics for some systems of modal logic, and 

of its main byproduct, the generalized truth-tables (GITs for short). 

Valuation semantics were first introduced by Andrea Loparic, in a 1977 paper, for the modal 

propositional logic K (see [Lo]). In order to give a brief description of what valuation semantics is, let us 

take as a starting point a semantics for the classical propositional logic PL: there we see that a model is 

nothing more than an assignment of truth-values to the propositional variables, since the value of complex 

formulas can be calculated if the value their subformulas have is known. We could also say, in other 

words, that a model for PL is a function/ from wffs into truth-values obeying certain conditions (like 

ft.-,A) "i' ft.A), for instance). 

lf we now consider a possible-world semantics for some intensional logic, we notice that the 

structure of a model undergoes a deep change: one doesn't talk anymore about only one assignment 

(which, in a sense, describes a possible worl,I), but about a whole set (a "universe") of them. The value of 

a formula whose main operator is an intensional one thus depends also on the value its subformulas get on 

various other worlds which are accessible. Here is where the famous accessibility relations come into the 

picture: formally, a model is now a triple <W, R, V>, where W denotes a set of worlds, R is a binary 

(acessibility) relation over W, and Vis a function which takes arguments in formulas and worlds and goes 

into truth-values. The beauty of this construction is that one can get models for different modal logics by 

laying different conditions upon the relation R. (For instance, requiring of it to be reflexive singles out a 

class of models which characterizes the logic T.) On the other hand, in spite of models changing in this 

way, truth definitions for intensional operators like •o' (for "it is possible that ... ") are still given as usual, 

namely by means of necessary and sufficient conditions (qf-conditions: "o A is true iff this-or-that holds''). 

Valuation semantics proceed the other way round: a model, which is called a valuation, is just one 

"world" (a function from wffs into [0,1} having some special properties); that is, one doesn't have to 

introduce a set of worlds and an accessibility relation. The change comes with respect to truth definitions 

for intensional operators, which now appear in the form "if o A is true then such-and-such conditions hold; 

and if o A is false then such-and-such other conditions hold". 

One could argue, of course, about the propriety of the statement "a model is just one world", since 

to evaluate a formula one also has to take other valuations (i.e.: other models) in consideration. More than 

that, when all is said and done a valuation ends up being proved to be the characteristic function of a 

maximal consistent seL In a sense, then, the whole could be like saying, in the setting of a possible-world 

semantics, that the only universe (model) you have to consider is the class of all MCSs and, besides, you 

don't have to bother about introducing accessibility relations. This can be a question of seeing things this or 

that way. In the paper we'll also prove a kind of equivalence between valuation and possible-world 
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semantics - which is not surprising at all, since the same formulas have to come out as valid. To sum 

things up, the main difference lies on the fact that valuations are not declared a priori to be characteristic 

functions of MCSs; unlike possible-world models, they are defined inductively for certain sequences of 

formulas; it is only afterwards that they are generalized and proved to be characteristic functions of MCSs. 

And it is exactly because they are so defined that they generate in an easy way decision procedures, namely 

the GTTs, which allow us to examine all relevant models to some formula. 

Back to historical matters, Loparic and I gave, some years after her original paper, a valuation 

semantics for the minimal tense logic Kt ([LM]; it was presented in 1980 as a short communication on the 

4th Brazilian Conference ou Mathematical Logic). In my master dissertation, under her supervision, I 

extended this semantics to several other tense logics as well, including here some naive logics combining 

time and modality. ([Mol, Mo2]) In my dissertation there were also some problems left open, like to 

adequately define a valuation semantics for S4, still a tough and open case. 

Now to GTTs. One can, of course, argue about the propriety of the name "truth-table". They 

certainly neither are, nor pretend to be, connective-defining truth-tables - as we have, for instance, the one 

defining the truth-function "conjunction": 

" I 0 

I I 0 

0 0 0 

We already know that intensional operators like "it is necessary that ... " are not truth-functional 

(where the value a formula gets depends exclusively on the values of its subformulas). Thus, if one takes 

the expression "truth-table" in this narrow sense, as meaning something that defines a truth-function, then 

GTTs are not truth-tables, but something else (''truth-tableaux", maybe). On the other hand, we also talk 

(perhaps by abuse of the language) about the truth-table for some formula A, like the following one for 

a• (b-M): 

a b b• a a• (b• a) 

I I I I 

0 I 0 I 
-I 0 I I 

0 0 I I 

If we thus understand "truth-table" as denoting this kind of construction, then certainly GTTs 

deserve the name. With GTTs the procedure is pretty much the same as in the classical, truth-functional 

case: we also build, for some wff A, a sequence AJ, ... .An of its subformulas, where A= An is the last 

element; next we assign values to the propositional variables, and after having done this we compute values 

for the remaining formulas of the sequence. The difference is that the value of a modalized A; in a certain 

linej of the GTT now depends not only on the value inj of its subformulas, but also on the values which 

some other wffs can take in other lines. It should now not be surprising at all that through this construction 
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one can also detennine whether A is valid (meaning it is true on all lines) or not. In this way, we could 

obtain things like the following: 

I 2 8 4 5 6 
p -p ......,,, DP ~ ... °'"'l'"'+ OP 

l) 1 0 I 1 1 1 
2) 0 l 0 l l 1 
3) I 0 I 0 0 l 
4) 0 I 0 0 0 I 

1bis is a truth-table (in K) for i-r-p • ip. Which, as one can see, is a valid fonnula. 

In the paper we present, in a first part, valuation semantics for normal modal logics. This extends, 

with new results, Loparic's and my own work on the subject. A second part considers valuations for 

classical modal logics; and, in a third one, we define GTis for some logics taken as examples. As a last 

part, we discuss, for some of the logics, how to implement (in C) the construction of GTis. 
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A Dynamic Modal Semantics for Default Reasoning and Generics 

Nicholas Asher & Michael Morreau 
Version I, April 1990 

1. Points of Departure 

1. 1. Patterns of Generic Reasoning 

For many years linguists and philosophers have been interested in the meaning of generic 
sentences like birds fly and dispositional sentences like copper conducts electricity. For about 
ten years computer scientists have been interested too, but the meaning of such expressions and 
the reasoning appropriate to them remain elusive. A degree of consensus has however emerged 
about some simple patterns of generic reasoning to which any acceptable account of the 
semantics of generics must do justice. Here, by way of introduction, are some of these patterns. 
They appear in order of increasing complexity. 

DEFEASIBLE MODUS PONENS 
From birds fly and Tweety is a bird, it follows that Tweety flies. But from birds fly, Tweety 
is a bird, and Tweety does not fly it does not follow that Tweety flies. 

Closely related to the defeasible modus ponens is what we call 

DEFEASIBLE TRANSITIVITY 
From birds fly and sparrows are birds it follows that sparrows fly. But from those who eat 
slowly enjoy their food and those who are disgusted by their food eat slowly together with 
the analytic fact that those who are disgusted by their food do not enjoy their food it does not 
follow that those who are disgusted by their food enjoy their food. 

One pattern of generic reasoning which is now very familiar from the Artificial Intelligence 
literature is the 

NIXON DIAMOND 
From Republicans are non-pacifists, Dick is a republican, Quakers are pacifists, and Dick is 
a Quaker it intuitively neither follows that Dick is a non-pacifist, nor that he is a pacifist .. 

This scepticism dissappears if we substitute in the above quakers who are republicans for 
quakers, since we then want to draw the conclusion that Dick is a pacifist This idea that 
defeasible information about subkinds should take precedence over defeasible information 
about the kinds which subsume them gives rise to a fourth pattern which we call the 

PENGUIN PRINCIPLE 
From birds fly, Tweety is a bird, penguins do not fly, Tweety is a penguin, and penguins are 
birds it follows that Tweety does not fly. 

That penguins do not fly is a defeasible fact about penguins, a rule which admits exceptions. 
That penguins are birds, on the other hand, is a matter of taxonomical fact to which there are no 
exceptions. It is interesting that swapping this taxanomical fact for the weaker defeasible fact 
does not change our intuitions about the penguin principle: 

WEAK PENGUIN PRINCIPLE 
From adults are employed, Sam is an adult, students are not employed, students are adults 
and Sam is a student it follows that Sam is not employed. 

Here is one last intuitively valid pattern of generic reasoning which does not fit into the above 
list of increasingly complex argument forms, the 
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DUDLEY DOoRITE 
From republicans are politically motivated, quakers are politically motivated and Dudley 
Doorite is either a republican or a quaker, it follows that Dudley Doorite is politically 
motivated. 

We don't claim that these are the only argument forms; merely that any honest and sane person 
must agree to them. The consensus disappears however with more complicated examples. As 
soon as they involve more than three sorts and more complicated relations between these, 
intuitions about the validity of argument forms tend to degrade quite rapidly. We think that a 
theory of generic meaning which does descriptive justice to these relatively simple argument 
forms has pretty good credentials as a normative theory in more complicated cases where 
intuitions waver. 

1.2. The Ghost in the Machine 

If argument forms just cited are the semantic facts which any acceptable theory of generics must 
save, then none of the better known theories of nonmonotonic reasoning is an acceptable theory 
of generics. While circumscription, autoepistemic logic and - with some qualifications - Reiter's 
default logic all provide representations for generic sentences which save the simpler patterns of 
defeasible modus ponens and the nixon diamond, none of these formalisms throws much light 
on the penguin principle, where specific information takes precedence. The problem is by now 
familiar in the field of non-monotonic reasoning as the problem of multiple extensions. Coding 
the premises of the penguin principle up in the manner of circumscription by means of a 
multitude of "abnormality predicates," for example, we find that minimisation of abnormality 
results in two kinds of minimal models. There are models where Tweety is an abnormal bird 
but a normal penguin, and consequently does not fly. But in addition there are others where he 
is a normal bird but an abnormal penguin, and does fly. Because of these latter and if you will 
undesirable models it then does not follow that Tweety does not fly, and we see that 
circumscription does not handle the penguin principle adequately. Similar problems confront 
default logic and autoepistemic logic. The solution which proponents of these theories have 
suggested is as familiar as the problem: the order in which default rules fire needs to be 
constrained; the predicates to be minimized in the case of circumscription need to be prioritized. 
They thus commit themselves to the 

HYPOTHESIS OF THE GHOST IN THE MACHINE 

That speciflc infonnation takes precedence over general infonnation is not to be accounted 
for by the semantics of generic statements itself Rather, it is due to the intervention of a 
power which is extraneous to the semantic machinery, but which guides this machinery to 
have this effect (by ordering the defaults, deciding the priorities of predicates to be 
minimized, or whatever). 

This brings us to our second motivational point. It remains unclear exactly what kind of 
reasoning it is that we do with generics, whether it belongs to logic or to pragmatics. But 
whatever kind of reasoning it is, that more specific information takes precedence is intrinsic to 
it, and the penguin principle should emerge naturally from the semantics of generic sentences 
without the intervention of a user. We want the ghost exorcised from the machine. The issue 
here is not just a methodological nicety, a question of whether logic should be set up this way 
or that. The problem with pushing some of the meaning of expressions up out of the formalism 
by delegating work to ghosts is that it makes it very unclear how such expressions could ever 
be nested. Generic expressions of various kinds, including habitual expressions like smokes, 
are however very often nested. Here are some examples: If politicians are dishonest, their party 
is normally in decline, people who normally don't drive don't nonnally fly either, kinds of 
animals that normally have feathers are nonnally kinds of animals that fly. And an interstellar 
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traveler might be able to establish the truth or otherwise of our conjecture that nonnally, if birds 
fly, the gravitational constant g is not higher than 10.5. Here is final really complex example, 
in which genericity and counterfactuality combine with knowledge and belief: Nicholas believes 
that if he were Michael, then maybe fast cars would interest him, while Michael knows that if 
he were Nicholas, then aeroplanes would most certainly intrigue him. 

1.3. The Intensionality of Generic Information 

A necessary feature of any non-monotonic logic that seeks to give a semantics to natural 
language sentences expressing defaults-- like generic sentences, or sentences using adverbs like 
typically and nonnally, is that it be intensional. It is by now very familiar that, say, birds fly is 
not to be understood as a universal quantification over all individual birds, stating that they all 
fly. But it is a surprisingly common misconception that generics and statements about typical or 
normal cases are to be analysed by means of other extensional quantifiers, for example most 
In fact it is easy to find examples showing that there is no simple relationship at all between 
most-sentences and the corresponding generics. 

EXAMPLE 
Take any natural number other than zero, say 10,000. Now there are infinitely many natural 
numbers larger than this, but just a finite number of smaller ones, so it is true that most natural 
numbers are larger than 10,()()(). But it is senseless or at best false to make the corresponding 
generic statement that natural numbers are larger than 10,()()(). And it sounds equally silly to say 
that natural numbers are typically larger than 10,()()(), or that they are normally so. 

EXAMPLE 
Suppose you have an urn in which there are 20 balls and 19 of them are white, while 1 is black. 
So it is true that most of the balls in the um are white. It is senseless or false to say that balls in 
the um are white. 

These two examples make the same point. The extensional most-statement is true while the 
corresponding generic one is not. In the next example it is just the other way around, the generic 
statement being true while the corresponding most-statement is false: 

EXAMPLE Here is an exerpt from our forthcoming book on turtles: 
Giant marine turtles normally live to reach a grand old age ... One hundred years or more 
is not exceptional. Most of them however, in fact the vast majority, have no such luck. 
They fall prey to preditors within the first hours of their lives, while scurrying ~oss the 
beach from their hatching grounds to the sea. 

If as we believe the semantics of generics is closely tied up with defaults, then these examples 
suggest that the semantics of default logic, and perhaps of other forms of nonmonotonic 
reasoning too, are best thought of in a non-extensional way. Modal semantics is the best 
understood kind of intensional theory, so it seems worth while to see to what extent techniques 
from modal logic can be adapted to the semantics of generics. 

1.3. Generic Information and Belief Revision 

Traditionally semantics is concerned with the truth conditions of expressions, and it is their 
truth conditions which are taken to determine their logic. The search for truth conditions has 
been conspicuously unsuccessful in the case of generics, but there is a newer semantic 
paradigm which throws more light on them. According to this paradigm it is not the truth 
conditions of expressions which matter in explicating their meaning and logic, but the changes 
which they bring about when they are added to bodies of information or belief. On this 
epistemic approach, to believe that birds fly is, roughly speaking, to revise your beliefs in such 
a way that on learning that something is a bird, you assume that it can fly (unless you already 
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believed that it cannot, of course, and until you learn that it cannot). This is the semantic 
intuition underlying the epistemic account of generic meaning given below. 

2. Dynamic, Modal Semantics for Generics and Default Reasoning 

2.1 The Language of Modal Default Logic 

Consider a first-order language L augmented with a binary generalized quantifier >x, Formulas 
of the language L> are the usual first'order formulas together with the following: if cp(x) and 
'lf(x) are first-order formulas with just x free, then cp(x) >x 'lf(x) is a sentence. Boolean 
combinations of such sentences with each other and with first-order formulas are allowed, but 
>x may not be nested. A treatment of the nested >x language is promised in the next version of 
this paper. 
We will presently develop a non-monotonic entailment notion I= but we begin with its 
monotonic core, •, the part of I= which is not defeasible. 

2.2. The Monotonic Core 

The monotonic entailment notion • is to be defined by means of belief revision structures 
<13,+>, of which 13 is a set of belief states and+ a revision function mapping pairs comprising 
belief states and L> sentences onto other belief states. Thus for any state s and sentence cp e 
L>, s+<p stands for the the result of updating s with <p. We now turn to each of these two 
components in turn. 

2.2.1. BELIEF STA1ES 
Let W be the set of all the possible worlds for L, although for the sake of simplicity we assume 
a (non-empty) domain D of individuals which is constant accross them. The interpretation of L 
in these possible worlds is completely standard. Furthermore, it is assumed that for any such 
individual de D the language contains a constant g such that for any possible world w e W, 
[!l]w = d. Now we have: 

DEFINITION A belief state s, 12, ... is a pair (P, *) where 
i) PfW,and 
ii)*:PX pW - pW,whereforeverype pWandwe P,*(w,p) fp. 

Here p W stands for the power set of W. Intuitively, P represents the beliefs of a state (P, *) 
about what is actually the case, a sentence being supported by this state just in case it is true at 
each of the worlds in P. The normality function *, on the other hand, represents the beliefs 
which (P, *) has about what is nonnally the case. Thus, for example, a state which believes that 
birds fly (represented Bx >x Fx) will be one where for each individual de D and each world w 
e P, *(w, [B!l)) f [F!l). (Here [<p] is the set {we W: w • <p) of possible worlds where <pis 
true). This sort of function is familiar from conditional logic. 1 It provides every possible world 
w with "windows", by means of which are visable all those worlds in which p holds along 
with everything else which is normally associated with p. And this for any proposition p. To 
return to the example, in a state which believes that birds fly, every possible world w has, for 
any individual d, a Bg window through which (only) worlds are visible where both B!l and Fg 
hold. Also borrowed from conditional logic is the following interpretation of L> sentences 
relative to possible worlds and selection functions: 

DEFINITION For any possible world wand worlds selection function*: 

1 For a simple language with unembedded conditionals, we may simplify matters and consider a normality function that 
is constant across worlds. 
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for >x-free <p: 
w, * • <p iff w • <p in the normal sense of •. 

for >x -free <px and 'VX: 
w, * • <px >x 'VX iff for all 6 e D, *(w, q>Q) S [ljFQ) 

The usual clauses for disjunction, negation, conjunction and so on. 

Fixing the above informal discussion into a definition, we can now define the following support 
relation • between belief states and sentences of L>: 

DEFINITION For any belief state (P, *) and sentence <p e L>: 
(P,*) • <p just in case for all we P, w, * • <p. 

Among all belief states, there is one which has special significance. This state stands for the 
happy condition of an uncorrupted believer who is innocent of everything except logic. It is 
denoted: (o,';\ 

© 
This state is defined to be (W, =),where= is the function that maps, for every world w, every 
set of possible worlds onto itself. In this blissful state of ignorance any possible world at all 
might yet tum out to be the actual world, and any possible world where some sentence is true is 
a normal possible world where that sentence is true. 2 

2.2.2. UPDATES 
We now go on to define the function by means of which beliefstates are updated with L> 
sentences. For the meantime the update function will be only partial, being defined for all belief 
states but only for sentences which are >x-, free, or of the form <p x >x 'VX· Note that all of the 
patterns of generic reasoning described earlier are entirely within this fragment of L>. 

DEFINITION: For each belief state (P,*), define (P, *)+<p accordingly as <pis >x-free or of the 
form <px >x 'VX: 
i. where <pis >x-free 

(P,*)+<p =defn (P n [<p],*), and 
ii. where <p is of the form <px >x 'l/X, 

(P,*)+<p =defn (P, 63), 
in which (B is the normality function defined by: 

for each deD and for each we P: EB(w, [q>Q]) =defn *(w, [q>Q]) n [\j/Q], 
and otherwise (B coincides with *. 

The first clause says that on learning that Sam is a dodo, the set of ones epistemic possibilities 
is reduced to those possible worlds where Sam is a dodo. The second clause says that on 
learning that Birds fly, the sets of worlds where Sam, Tommy, Ully etc. are normal birds are to 
be reduced to those worlds where Sam, Tommy, Ully etc. are birds which fly. The following 
facts about updates are worthy of note: 

FACTS: 
s+<p • <p 
s • <p iff s+<p = s 

2 This is one way of thinking about what it is to have no infonnaltion about what is nonnally the case, but not the 
only way. Another is to think of ignorance, about say whether or not birds fly, as having among ones epistemic 
possibilities some possible worlds where it holds that birds fly, and others where it is not so that birds fly. We are 
coming to think that this second explication of ignorance is the better one, and will adopt it in the next version of 
this paper. 
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(s+q>)+'lf ;;; (S+'lf)+q> that is, updates are order-insensitive. 

Now letting a belief revision model be any pair <13, + > of which 13 is a set of belief states and + 
defined as above, we define the monotonic core entailment notion F as follows: 
DEFINmON: For r f L>, <p E L> 

r ~ <p iff for all belief revision models <13, + > and all s e 13, if s ~ r then s ~ <p. 

FACTS: 
~ <p, where <p is a theorem of first-order logic. 
~ <p >x <p 
F<p>xT 
~<p>x'lf&<p>xC-<i>>x'lf&C 
F <p & 'I' >x <p 

There are other desirable axiom schemes which are not validated by the semantics as it stands. 
The following one corresponds to the Dudley Doorite argument scheme: 

(DD) <p >x 'I' & C >x 'I' - <p v C >x 'I' 

The question immediately arises of whether there are extra static requirements which could be 
placed on belief states, and extra dynamic requirements which could be placed on the update 
function, which would validate the above scheme (DD). The answer is in both cases yes: 

DEFINITION: A worlds selection function * respects unions just incase for all possible worlds 
wand all sets p andq of possible worlds; *(w, p Uq) f *(w,p) U *(w, q). 

It is now not difficult to verify that the scheme (DD) expresses the requirement that selection 
functions respect unions, in the sense that this scheme is valid just incase all selection functions 
respect unions. Now we need a new definition before showing how a dynamic restriction can 
be placed on the revision function which guarantees that (the selection functions of) belief states 
resulting from revisions respect unions. We define the relation« on belief states. Intuitively, 
(P,*) « (Q,#) means that (P,*) is stronger than (Q,#) as far as information about normality is 
concerned, while agreeing with (P, *) about what is in fact the case. Formally, this relation is 
defined to be the following partial order: 

DEFINITION: (P,*) « (P,#) just in case for all we P, pe pW, *(w,p) f #(w, p). 

Now starting from the update function + defined earlier, which is not guaranteed to deliever 
belief states which respect unions, we show how to define a new update function EB which is 
guaranteed to do so. To this end consider, for any belief state (P, *) and sentence <p, the set ( s:s « 
(P,*)+<p ands respects unions} of all belief states stronger than (P,*)+<p which verify the 
scheme (DD). We know that this set is non-empty. It contains a state using the selection 
function * such that for arbitrary q, *(w, q) = ¢ . It is not difficult to very that any « chain of 
belief states within this set has ~lement, maximal on «, which is in this set. Zorn's lemma then 
informs us that it has a unique «-maximal element. This partially justifies the following 
definition: 

DEFINITION: For each belief state (P,*) and sentence <p for which+ is defined, let (P,*)EB<p be 
the «-maximal element of {s: s « (P,*)+<p ands respects unions}. 

What this definition gives us, intuitively, is the weakest state stronger than s + <p that validates 
(DD). From now on we shall take+ to be defined as EB is in the definition just given. 
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2.3. The Non-Monotonic Periphery 

So far one might notice something odd about this system that purports to be non-monotonic. It 
is monotonic. To get non-monotonicity, we need to refine and make precise two intuitive 
notions. To conclude from the fact that birds fly and that Tweety is a bird that Tweety flies, we 
need to make two assumptions: 

1) that we know no other facts than what we are given (in particular, we don't know that 
Tweety does not fly) and 

2) that everyone and everything is as normal as these facts allow. 
The first notion can be made precise using the notion of updating. "Knowing no more than 
{ y1, •.• , y.}" comes to being in the belief state 

( ... ( «:2) +Y1) +Y2) + ... ) +y. 

Finding a technical way of making the second assumption of maximal normality requires a bit 
more work. First we expand our belief revision models to oiples <(3, + ,~>,adding a relation 
~ which is defined on all belief states (that is, not just on those in (3). Intuitively, s~ 't just in 
case 't strengthens s by assuming some individual to be more normal in some respect than s 
assumes him to be. This relation we define in terms of the following one, which is intended to 
say what it is for an individual 6 to be considered no less normal a q> in a belief state (Q, #) than 
in a weaker belief state (P, *): 

DEFINITION: 
(P, *)~ 6. ox (Q, #) iff 

I. 

ii. 

Q = p \ ([ q>fil\ lJw e p *( W, [ q,6_}}), 

Q=P 

while for each w e P and for each p e p (W): 

iii. 

IV. 

#(w, p) = *(w, p) \ ([q,6_]\ *(w, [q,6_}}), 

#(w, p) = *(w, p) 

If p n (Uw e p *(w, [q>Q] )) '!,c ¢, and 

Otherwise. 

If *(w, p) n *(w, [q>Q] ) '!,c ¢ 

Otherwise. 

This definition is in need of some elaboration. What is it now for an individual 6 to be 
considered no less normal a q> in a belief state (Q, #) than in a weaker belief state (P, *)? 
Clauses i. and ii. say what this means as far as epistemic possibilities are concerned. If, as we 
intend, *(w, [ q>Q]) stands for the set of possible worlds in which, as far as an isolated w and * 
are concerned, an individual 6 is a normal q>, then Uw e p *(w, [q,6_}}) is the set of possible 
worlds in which a whole belief state (P,*) considers 6 to be a normal q>. Clause i., then, requires 
Q to "strengthen" P by removing from P those possible worlds in which 6, though a q>, is not 
considered by (P, *) to be a normal q>. The resoiction on clause i. and clause ii. together express 
that if (P, *) already believes 6 to be an abnormal q>, then the assumption that 6 is a normal q> can 
no longer be made while keeping all the information in (P, *). Clauses iii. and iv. do for a belief 
state's beliefs about what normally holds exactly what i and ii. did for its beliefs about what 
actually holds (as encoded in the set of epistemic possibilities) and will not be given a separate 
gloss here. 

FACT: If for all We p, *(w, [q>Q]) =[q>Q], then(P,*)~ 6._. (Q,#)onlyif(P,*)=(Q,#). 
What this intuitively means is that if a state (P,*) canies no contingent information about what 
normally holds when 6 is a q>, then assuming 6 to be a nonnal q> does not change (P, *) in any 
way. It is worth verifying this fact by simplifying i. and iii. of the above definition on the 
assumption that for all we p, *(w, [q>Q]) = [q>Q]. 
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Now we define s:5 t just in case there are o, q>x such that s, H. ~• t, Because ~ is everywhere 
defined, we can (and do) require belief revision models to be closed under it. That is, we 
require that for any belief revision model <13, + ,S > and belief states s, t with sS t and s e 13, 
we have t e 13. This relation is reflexive and (apart from these 1 element cycles) well-founded. 
Such relations may be called capped It is easy to check that the reflexivity of~ is established 
by any o together with an empty predicate, say xa<x. Establishing that there are no ~ cycles 
involving more than one belief state is left to the reader as a useful exercise. Likewise worth 
verifying is the following: Defining positive sent:ences to be those in whose prenex normal 
form only >x-free sentences appear in the scope of the negation sign, we have: 

FACT: Positive sentences are stable under the assumption of normality. That is, for all positive 
sentences q> and belief states s, t with sS t, ifs I- q> then t I- q>. 

In fact all of the premises of the argument forms we set out to capture fall within the positive 
fragment of the language. So this fact justifies using the relation to say what it is to assume that 
everyone and everything is as normal as is consistent with the hard (positive) beliefs which one 
has in some particular belief state. It is simply to move to a maximal element of a :5 chain 
leading from that belief state. 
Reasoning about generics intuitively inolves, we said, two things: assuming that the premises 
of an argument are all one knows, and assuming that everyone and everything is as normal as is 
consistent with these premises. Now that we have fixed the former notion into our semantics as 
updating ~ with the premises, and the latter notion as following ~ chains of the resulting 
belief state to their maximal elements, the following dynamic definition of the non-monotonic 
consequence notion I= will not come as a surprise. Letting s+r stand for the result of updating 
s with all the elements in r, we have: 

DEFINITION 
r I= q> iff for all s such that @+ rs max s, s I- q>. 

Note that sinceS is capped, anyS chain leading from a belief state (which verifies any set of 
sentences n has a maximal element. As a result if r is monotonically consistent, then r is non­
monotonically consistent. Also note that r I- q> - r I= cp, and that since the monotonic notion of 
consequence contains all the classical validities, our non-monotonic consequence relation is 
supraclassical. Now defining q>x, 'J'x, and ~x to be independent formulas just in case for each 
de D, each formula of the form (,)q>x&(-,)'J'x&(-,)~x is true in some we W, we have for 
independent q>x, 'J'x, and ~x the following facts: 

FACTS 
q> >x 'V, q>@ I= 'J'@, but not 
q> >x 'V, q>@, -, 'V@ I= 'J'@. 
q> >x 'V, 'V >x ~ I= q> >x ~. but not 
q> >x 'V, 'V >x ~. q> >x .~ I= q> >x ~-
not{ q> >x 'V, ~ >x ,'J', q>@, ~@ I= 'J'@ (or-, 'J'@)}. 
q> >x ~. 'V >x ~ I- (q> v 'J') >x ~-

(Defeasible Modus Ponens) 

(Defeasible Transitivity) 
(Nixon•) 
(Dudley Dorite) 

The Penguin Principle is for us, from a motivational point of view, a very important one: it is 
the pattern of generic reasoning in which specific takes precedence over general information 
which has been haunting most formalisms for non-monotonic reasoning. The restricted 
language in which we have been working does not allow us to state it in its strong form,, since 
we do not have strict implication at our disposal with which to state that penguins, strictly, are 
birds. We can however state it its weak form, which only makes use of default implications: 

q> >x 'V, 'V >x ~. q> >x .~. q>@ I= .~(g) (Weak Penguin Principle) 
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The penguin principle is not validated by the semantics as it stands. So just as with the Dudley 
Doorite principle (DD), the question arises as to whether there are static and dynamic 
constraints which, when placed on belief states and the update function respectively, would 
validate it. And once again the answer is in both cases yes: 

DEFINITION: A worlds selection function * respects specificity just in case for all possible 
worlds w and all sets p, q and r of possible worlds: 
If*(w,p)fq\r and*(w,q)f r,then*(w,q)f r\p 

As with (DD), we appeal to« in showing how a dynamic restriction can be placed on the 
revision function which guarantees that (the selection functions of) belief states resulting from 
revisions respect specificity. The argument is completely analogous to that used in validating 
(DD). Starting from the update function+ which is not guaranteed to deliever belief states 
which respect specificity, we define a new update function EB which is guaranteed to do so. To 
this end consider, for any belief state (P, *) and sentence <p, the set ( s:s « (P, *)+<p and s respects 
specificity}. We know that this set is non-empty. It contains a state using the selection function 
* such that for arbitrary q, *(w, q) = f6. It is not difficult to very that any «-chain of belief states 
within this set has a element, maximal on«, which is in this set. Z.Orn's lemma then informs us 
that it has a unique «-maximal element. This partially justifies the following definition: 

DEFINITION: For each belief state (P,*) and sentence <p for which+ is defined, let (P,*)EB<p be 
the «-maximal element of ( s:s « (P, *)+<p and s respects specificity}. 

Taking + to be defined as EB is in the definition just given we have, for independent <px, 'lfx, and 
~x, the following fact: 

FACT: <p >x 'l', 'l' >x ~. <p >x .~, <p@ I~.~@ 

This and a selection of the other facts above are illustrated in the next section. 

3. Some Worked Examples 

We now illustrate the above facts by going through some of the patterns of generic reasoning 
which were our original motivation .. We will do a modus ponens, and then defeat it. We will 
look at transitivity, and see it defeated too. Finally, we will go through the weak penguin 
principle. To make things more perspicuous we introduce the following double simplification: 
Firstly, we restrict ourselves to a language containing just three (monadic) predicates. And 
secondly, we restrict ourselves to domains containing just a single element. The first restriction 
is insignificant in that no surprises are in store when the language is expanded to include other 
predicates. The second restriction is more significant since, while the illustrations given below 
do just as well for domains with more than one individual, some interesting new questions 
relating to the lottery paradox show up there. We turn to this matter in the second version of this 
paper. 
A few words on how the diagrams below are to be read. What we see in each case is the 
evolution of a belief state as it is updated by means of the + function. Then, once all of the 
premises of the argument form in question have been read in, we follow :,: chains to their 
maxima and check whether the conclusion of the argument is believed. Dots represent possible 
worlds, and circles the epistemic possibilities which are the first components of belief states. 
Worlds selection functions, the second components, are represented by means of arrows 
leading from possible worlds to (other) possible worlds, which arrows are marked p, q, r etc. 
A p-arrow leading from a possible world v to a possible world w means that we *(v, p). 
Where many p-arrows lead from a world to an equivalence class of possible worlds, we replace 
them for clarity's sake by a p-balloon. Thus for example 
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To distinguish these balloons which represent selection functions from the circles which 
represent sets of epistemic possibilities, the latter have been drawn with bold lines. 
We adopt furthermore the convention that where p-arrows lead from every epistemic possibility 
of a state to every possible world in p (recall that this holds for every p in the naive state, and 
just means that the selection function in question carries no contingent generic information 
about p) none of the p-arrows have been drawn in. In order to justify this convention ( and in 
order to follow the diagrams below) it is well worth noticing that where no [<pfil -arrows have 
been drawn into a belief state (P,*), (P,*)S:&,cpx (Q, #) only if (P,*)=(Q, #). This simple 
consequence of the fact given directly after the definition ofS:11,cpxjustifies the above convention, 
since it means that in finding our way along~ chains we can forget all about invisable arrows. 
To make things clearer we also leave out any arrows we are no longer interested in (say 
because we have already reached the maximum of a chain and they do not bear on whether or 
not the conclusion of the argument we are interested in is believed or not). 

3.1. Modus Ponens ... 

We verify that B >x F, B§ I= F§. In the language with non.logical symbols {S,B,F, §) we 
have in total eight possible worlds, so that @ is the following state: 

B.§~S.Q B.§ F.§~S.§ 

• • 

• • -,B_§ F.Q S.§ 

• • -,B_§ F.§ ~s.§ 

• • 
-,B§~§S§ -,B§ ~F§ ~s§ 

Updating this state with the premise B >x F, the selection function is modified such that [Bfil­
arrows run only to (all) worlds in [Ffil. The resulting state is as follows, in which all arrows are 
[Bfil-arrows. 

-,B§ F§-.S.§ 

Next we update with the second premise, B§, which has the effect of shrinking the set of 
epistemic possibilities to those worlds where B§ is true. This results in the following belief 
state: 
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-.Bj!FJ!SJ! 

We now have to follow to their maximal elements all s chains leading from this belief state, and 
there check to see whether the conclusion of the modus ponens is believed. In fact, as the reader 
can verify with pencil and paper, there is a unique such maximal element, and it is this: 

Bj!-,FJ! SJ! 

Clearly this is a belief state which supports FQ. So we have just verified that B >x F, BQ I= FQ. 

3.2. . .. and the defeat of Modus Ponens 

We want now to see how adding .FQ to the premises of the previous argument defeats the 
conclusion that FQ. That is, we want to verify that not B >x F, BQ, .FQ I= FQ. To this end, 
after updating with BQ above we update with .FQ, thereby arriving at the following belief state: 

B§fl!Sl! Bj!Fj!-,SJ! 

Ill! -,Fj! SJ! -.BJ! Fj! SJ! 

Bj!-,FJ!--,SJ! -.BJ! F§~SJ! 

-.Bj!-,FJ! SJ! -.BJ! ~FJ!--,SJ! 

It is not difficult to check, now, that this belief state is itself a maximal element of s (since the 
only way for this state to bear the relation s to any other state is in virtue of the failure clauses 
iii. and iv. of the definition of s, which leave everything as it is). 
Clearly this state supports .FQ, and does not support FQ. So B >x F, BQ, .FQ I= .FQ, and not 
B >x F, BQ, .FQ I= FQ. 

3.3. Transitivity ... 
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We now want to show that S >x B, B >x F ,.., S >x F. To this end we update @successively 
with S >x B and B >x F, obtaining as a result the following belief state (here [S.Q]-arrows are 
continuous, while the [S.Q]-arrows are broken). Below this state have been drawn the only two 
nontrivial :-=:; chains, at the end of each of which the conclusion of the argument, S >x F, is 
believed. This validates the argument 

l\\s~ 
BJ!FJ! SJ! 

Note that as required to show that S >x B, B >x F 1~ S >x F, each of these:-=:; maximal states 
believes that S >x F. 
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3.4. ...and Transitivity Defeated 

We now want to see what happens ifinfonnation is added to the effect that sparrows do not fly 
(this is of course not true, but that does not matter. Pretend for the moment that sparrow is our 
word for penguin). Then the conclusion that sparrows fly should no longer follow, so we now 
want to show that it is not so that S >x B, B >x F, S >x --,FI= S >x F. Updating the naive 
belief state @ with the premises S >x B, B >x F, S >x --,F, we arrive at the belief state 
represented below. Leading down from it are again (the only two non-trivial).$ chains, 
terminating at their maximal elements. At none of these maximal elements is S >x F believed, 
which is as we wanted it to be. 

B§Fli-.Sli 

--.BJi ~FJi SJi --.BJi~Ji~SJi 

'1\s~ "'~J 
BjiFJi~SJi 

--.BJi Fji Sji B§~JiS • 
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3.5. The Weak Penguin Principle 

As a last worked example we now go on to verify an instance of the weak penguin principle. 
Again pretending that sparrows are penguins (so as to make good use of the work already done 
above), we show that S >x B, B >x F, S >x -.F, S§ I= -.F§. To this end, as in the example 
above is updated with successively S >x B, B >x F, S >x -.F, but this time S§ is added 
too. This results in the following belief state, under which the (only two non-trivial)~ chains 
have once again been drawn. Clearly their two maximal elements believe -.F§, the conclusion of 
the weak penguin principle. Which is what was needed. 

Bj!FJ!SJ! Bl! Fj!-.SJ! 

A\ (JcJ-

Bl!Fl!Sl! Bl! Fl! SJ! 
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4. Comparisons with other Approaches to Nonmonotonic Reasoning 

In a sense, the theory of nonmonotonic reasoning with which this one compares best is the 
theory of nonmonotonic semantic networks due to Touretzky, Horty and Thomason (1987). 
Their theory, like this one, takes defeasible modus ponens, defeasible transitivity and the 
penguin principle to be the argument forms which a theory of nonmonotonic reasoning must 
validate, and like this one their theory validates the penguin principle without recourse to a 
ghost. One important way in which this this approach differs from theirs, however, is its 
greater expressive power. With our modal semantics, boolean combinations of concepts are 
immediately at hand. This results in the validity in our theory, but not in theirs, of argument 
schemes in which composite concepts inherit properties from the parts of which they are 
composed-- e.g. Dudley Doorite. Another point where the greater expressive power of this 
theory shows up is in what might be called cyclic default theories, of which a simple example 
would be birds fly together with flying things are birds (presumably true before the advent of 
aeroplanes). Such theories cannot be represented in semantic networks for technical reasons 
having to do with the inheritance algorithm, but present no special difficulty for us. 

Another theory of generics and defaults to which this one bears some resemblence at the 
level of technical realisation is that of Delgrande (1987). His, like ours, belongs to the tradition 
of possible worlds semantics, rebuilding the Stalnaker-Lewis semantics of conditionals as a 
semantics for generics. And his, like ours, takes a generic like Birds fly to mean more or less 
that any individual bird can under normal circumstances fly. In spite of corning from the same 
philosophical nest, the two theories diverge in important ways. First ours is dynamic; his is 
not. More significantly, Delgrande's theory, like practically everybody elses, makes use of 
various mechanisms built on top of the basic semantics in order to get things working properly. 

A final point of comparison is Veltman's (1989) theory, by which we were originally 
inspired. Although also a modal semantics for defaults and also dynamic, Veltman's theory 
differs from ours in at least the following ways: a) he restricts himself to a propositional 
language, whereas we give a semantics for a default quantifier with exceptions; b) in Veltman, 
default rules are not defeasible. Once they follow from some premises, they continue to follow 
no matter how the premises are added to. Clearly such a semantics cannot account for the 
pattern of defeasible transitivity. 
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