Aus der

Medizinischen Universitätsklinik und Poliklinik Tübingen Abteilung VII, Tropenmedizin (Schwerpunkt: Institut für Tropenmedizin, Reisemedizin, Humanparasitologie)

Optimierung einer multiplex, quantitativen real-time PCR zur Detektion von hrp2- und hrp3-Gendeletionen bei *Plasmodium falciparum*

Inaugural-Dissertation zur Erlangung des Doktorgrades der Medizin

der Medizinischen Fakultät der Eberhard Karls Universität zu Tübingen

vorgelegt von

Wyndorps, Lea

Dekan:

Professor Dr. B. Pichler

1. Berichterstatter:Professor Dr. P. G. Kremsner2. Berichterstatter:Privatdozentin Dr. K. Grundmann-HauserTag der Disputation:23.09.2021

II

Inhaltsverzeichnis

	Inhaltsverzei	chnis	III
	Abkürzungsv	verzeichnis	V
	Abbildungsve	erzeichnis	VII
	Formelverze	ichnis	VII
	Tabellenverz	eichnis	VII
1	Einleitung		1
	1.1 Diagno	ostik	3
	1.1.1 Mi	kroskopie	3
	1.1.2 Sc	hnelltests	5
	1.1.2.1	HRP2 und HRP3	7
	1.1.2.2	Falsch-negative Schnelltests	8
	1.1.3 Mo	olekulare Techniken	8
	1.1.3.1	PCR	9
	1.1.3.2	Real-time PCR	9
	1.2 Detekt	ion von hrp2- und hrp3-Deletionen	11
	1.3 Ziel de	er Arbeit	14
2			15
2	Material u	na wethoaen	
2	2.1 Material	al	
2	2.1 Material u 2.1.1 Materia 2.1.1 Pa	na metnoaen al arasitenkultur	
2	2.1 Material u 2.1.1 Materia 2.1.1 Pa 2.1.2 DN	nd Methoden al arasitenkultur NA-Extraktion	
2	Material u 2.1 Material u 2.1.1 Pa 2.1.2 DN 2.1.3 PC	nd Methoden al arasitenkultur NA-Extraktion CR	
2	Material u 2.1 Material u 2.1.1 Pa 2.1.2 DN 2.1.3 PC 2.1.4 qF	nd Methoden al arasitenkultur NA-Extraktion CR CR	
2	Material u 2.1 Material u 2.1.1 Pa 2.1.2 DN 2.1.3 PC 2.1.4 qF 2.1.5 State	nd Methoden al arasitenkultur NA-Extraktion CR CR PCR andardkurve und Detektionslimit	
2	Material u 2.1 Material u 2.1.1 Pa 2.1.2 DN 2.1.3 PC 2.1.4 qF 2.1.5 Sta 2.2 Method	al arasitenkultur NA-Extraktion CR CR andardkurve und Detektionslimit den	
2	Material u 2.1 Material u 2.1.1 Pa 2.1.2 DN 2.1.3 PC 2.1.4 qF 2.1.5 Sta 2.2 Method 2.2.1 Ze	al arasitenkultur NA-Extraktion CR CR andardkurve und Detektionslimit den	
2	Material u 2.1 Materia 2.1.1 Pa 2.1.2 DN 2.1.2 DN 2.1.3 PC 2.1.4 qF 2.1.5 Sta 2.2 Method 2.2.1 Ze 2.2.1.1	alarasitenkultur NA-Extraktion CR PCR andardkurve und Detektionslimit den ellkultur Auftauen der Laborstämme	
2	Material u 2.1 Materia 2.1.1 Pa 2.1.2 DN 2.1.2 DN 2.1.3 PC 2.1.4 qF 2.1.5 Sta 2.2 Method 2.2.1 Ze 2.2.1.1 2.2.1.2	alarasitenkultur NA-Extraktion CR PCR andardkurve und Detektionslimit den ellkultur Auftauen der Laborstämme Synchronisation der Parasitenstadien	
2	Material u 2.1 Materia 2.1.1 Pa 2.1.2 DN 2.1.3 PC 2.1.4 qF 2.1.5 Sta 2.2 Method 2.2.1 Ze 2.2.1.1 2.2.1.2 2.2.1.3	alarasitenkultur NA-Extraktion CR PCR andardkurve und Detektionslimit den ellkultur Auftauen der Laborstämme Synchronisation der Parasitenstadien Einfrieren der Parasiten	
2	Material u 2.1 Materia 2.1.1 Pa 2.1.2 DN 2.1.2 DN 2.1.3 PC 2.1.4 qF 2.1.5 Sta 2.2 Method 2.2.1 Ze 2.2.1.1 2.2.1.2 2.2.1.3 2.2.2 DN	alarasitenkultur NA-Extraktion NA-Extraktion CR PCR andardkurve und Detektionslimit den den ellkultur Auftauen der Laborstämme Synchronisation der Parasitenstadien Einfrieren der Parasiten NA-Extraktion	
2	Material u 2.1 Materia 2.1.1 Pa 2.1.2 DN 2.1.2 DN 2.1.3 PC 2.1.4 qF 2.1.5 Sta 2.2 Method 2.2.1 Ze 2.2.1.1 2.2.1.2 2.2.1.3 2.2.2 DN 2.2.2.1	alarasitenkultur NA-Extraktion CR PCR andardkurve und Detektionslimit den ellkultur Auftauen der Laborstämme Synchronisation der Parasitenstadien Einfrieren der Parasiten NA-Extraktion DNA-Extraktion der Positiv- und Negativkontrollen	
2	Material u 2.1 Materia 2.1.1 Pa 2.1.2 DN 2.1.2 DN 2.1.3 PC 2.1.4 qF 2.1.5 Sta 2.2 Method 2.2.1 Ze 2.2.1.1 2.2.1.2 2.2.1.3 2.2.2 DN 2.2.2.1 2.2.2.1	alarasitenkultur NA-Extraktion NA-Extraktion CR PCR andardkurve und Detektionslimit den den ellkultur Auftauen der Laborstämme Synchronisation der Parasitenstadien Synchronisation der Parasitenstadien Einfrieren der Parasiten NA-Extraktion DNA-Extraktion der Positiv- und Negativkontrollen DNA-Extraktion von Filterpapier-Feldproben	13 15 15 15 16 16 17 18 19 20 20 20 20 20 20 20 20 21 22 22 22 22 22 22 22 22 22 24
~	Material u 2.1 Materia 2.1.1 Pa 2.1.2 DN 2.1.2 DN 2.1.3 PC 2.1.4 qF 2.1.5 Sta 2.2 Method 2.2.1 Ze 2.2.1.2 2.2.1.3 2.2.2 DN 2.2.2.1 2.2.2.1 2.2.2.2 2.2.3 Qu	alarasitenkultur NA-Extraktion	13 15 15 15 16 16 17 18 19 20 20 20 20 20 20 20 21 22 22 22 22 22 22 22 22 22 24 25

	2.2.3.2	Optimierung einer 4plex- <i>qPCR</i>	
	2.2.3.3	Farbkompensation	
	2.2.3.4	Messung von klinischen Proben	
2.2	2.4 Sta	ndardverdünnung	
	2.2.4.1	Standardkurve und Detektionslimit der qPCR	
	2.2.4.2	Detektionslimit der k. PCR	
2.2	2.5 Aus	wertung der LightCyler-Daten	50
3 Er	gebnisse)	52
3.1	Etablier	ung der 4plex-qPCR_v2	52
3.1	1.1 Sin	gleplex-qPCR	
	3.1.1.1	Kreuzreaktivität der neuen hrp-Assays	55
	3.1.1.2	Kreuzreaktivität der einzelnen Komponenten	
3.1	I.2 Opt	imierung der 4plex-qPCR_v2	60
	3.1.2.1	Optimierung der Fluoreszenzintensitäten	61
	3.1.2.2	Optimierung der Fluoreszenzkurve	73
	3.1.2.3	Anpassung an Unterschiede zwischen den Sonden-	
	Bestellun	gen	77
3.1	1.3 Par	ameter der 4plex-qPCR_v2	78
3.2	Analyse	e klinischer Isolate	
3.3	Vergleid	ch der Sensitivität der 4plex-qPCR mit k. PCR	84
4 Dis	skussion	1	
4.1	Optimie	rungsschritte	
4.2	Klinisch	e Isolate	
4.3	Standar	dkurve	
4.4	⊦azıt	6	
5 Zu	sammen	Tassung	
6 LI	eraturve	rzeicnnis	
	röffontlig	zum Eigenämen	107
o ve		วานแมชะแ	100
υa 10 Δη	unsayun hana	.A	
10 AI	NanoDr	on Messung der einzelnen Isolate	111
10.1	Genseo	luenzen	112
10.3	Darstell	ung der Fehlpaarungen der Primer und Sonden	

Abkürzungsverzeichnis

μl	Mikroliter
μm	Mikrometer
Abb.	Abbildung
AG	Arbeitsgruppe
bp	Basenpaare
bzw.	beziehungsweise
с	Konzentration
ca.	zirka
CERMEL	Centre de Recherche Médicales de Lambaréné, Gabun
Cq	quantification cycle
cytb	Cytochrom b
d.h.	das heißt
DNA	Desoxyribonukleinsäure
dNTPs	Desoxyribonukleosidtriphosphate
FACS	Fluorescence Activated Cell Sorting/ Durchflusszytometrie
Fwd.	Forward
g	Schwerebeschleunigung
ggf.	gegebenenfalls
Grundkonz.	Grundkonzentration
HPF	High-power field/ Hauptgesichtsfeld
HRP1	Histidin reiches Protein 1
HRP2	Histidin reiches Protein 2
HRP3	Histidin reiches Protein 3
k. PCR	Konventionelle PCR
Konz.	Konzentration
LDH	Laktatdehydrogenase
LNA	locked-nucleic acids
mA	Milliampère
max.	maximal
MGB	minor groove binder
MgCl ₂	Magnesiumchlorid
min.	Minuten

mind.	mindestens
ml	Milliliter
mM	Millimolar
MTA	Medizinisch-technische Assistentin
NAD+	oxidierte Form des Nikotinamid-Adenin-Dinukleotid
ng	Nanogramm
nm	Nanometer
Nr.	Nummer
Ρ.	Plasmodium
PCR	Polymerase Kettenreaktion
pLDH	plasmodiale Laktatdehydrogenase
qPCR	quantitative real-time Polymerasekettenreaktion
R ²	Bestimmtheitsmaß
RBC	red blood cells/ Erythrozyten
RDT	rapid diagnostic test/ Schnelltest
Rev.	Reverse
RFU	relative Fluoreszenz-Units
RNA	Ribonukleinsäure
Sek.	Sekunden
SOP	Standard Operating Procedure
Tab.	Tabelle
TBS	Thick blood smear/ dicker Tropfen
Tm	Schmelztemperatur
uninf.	uninfiziert
usw.	und so weiter
UV	Ultraviolettstrahlung
V	Volumen
v2	2. Generation
v.a.	vor allem
vgl.	vergleiche
WHO	World Health Organization
ZW.	zwischen
β-tub	β-tubulin

Abbildungsverzeichnis

Abb. 1-1:	Fotos der unterschiedlichen asexuellen Entwicklungsstadien von P. falciparum	5
Abb. 1-2:	Beispiel-Diagramm einer absoluten Quantifikationsanalyse	11
Abb. 1-3:	Malaria-Threat Map: Studien zu hrp2-Deletionen in P. falciparum Stämmen	12
Abb. 1-4:	Malaria-Threat Map: Studien zu hrp2- und hrp3-Codeletionen in P. falciparum Stämm	en.12
Abb. 2-1:	singleplex-qPCR zur Testung der Kreuzreaktivität einzelner Komponenten	31
Abb. 2-2:	Optimierungsschritte zur Erstellung eines 4plex-qPCR_v2-Protokolls	35
Abb. 3-1:	Zusammenfassung der Ergebnisse der Feldproben	81
Abb. 3-2:	Zusammenfassung der Ergebnisse der Greendot-Studien-Proben	82
Abb. 3-3:	Vergleich der Ergebnisse der Feldproben aus FTA Elute Cards und Vollblutproben	83
Abb. 11-1:	Gensequenz des hrp2 Gens in 5'3' Richtung	112
Abb. 11-2:	Gensequenz des hrp3 Gens in 5'3' Richtung	113
Abb. 11-3:	Gensequenz des β-tubulin Gens in 5′3′ Richtung	114
Abb. 11-4:	Gensequenz des cytochtom b Gens in 5'3' Richtung	115
Abb. 11-5:	Fehlpaarungen der neuen qPCR-Forward-Primer für hrp2 und hrp3	116
Abb. 11-6:	Fehlpaarungen der alten qPCR-Forward-Primer für hrp2 und hrp3	116
Abb. 11-7:	Fehlpaarungen der neuen qPCR-Reverse-Primer für hrp2 und hrp3	116
Abb. 11-8:	Fehlpaarungen der alten qPCR-Reverse-Primer für hrp2 und hrp3	116
Abb. 11-9:	Fehlpaarungen der neuen Sonden für hrp2 und hrp3	116
Abb. 11-10:	Fehlpaarungen der alten Sonden für hrp2 und hrp3	117
Abb. 11-11:	Fehlpaarungen der Forward-Primer für hrp2 und hrp3 der normalen PCR	117
Abb. 11-12:	Fehlpaarungen der Reverse-Primer für hrp2 und hrp3 der normalen PCR	117

Formelverzeichnis

Formel 1-1:	WHO-Formel zur Errechnung der Parasitenanzahl pro Mikroliter	4
Formel 1-2:	Lambaréné-Formel zur Errechnung der Parasitenanzahl pro Mikoliter	4
Formel 2-1:	Berechnung der Effizienz anhand der Steigung der Standardkurve	;0

Tabellenverzeichnis

Herkunft der Plasmodien-Laborstämme	15
Hersteller der Reagenzien für die Zellkultur	15
Hersteller des Laborequipments für die Zellkultur	16
Hersteller des Laborequipments für die DNA-Extraktion	16
Hersteller der Reagenzien für die konventionelle PCR	16
Software zur Analyse der konventionellen PCR	17
Hersteller des Laborequipments für die konventionelle PCR	17
Hersteller der Reagenzien für die qPCR	17
Hersteller des Laborequipments für die qPCR	18
Software zur Vorbereitung und Durchführung der qPCR	18
Hersteller der Reagenzien für die Erstellung der Standardkurve	18
Hersteller des Laborequipments für die Erstellung der Standardkurve	18
Genstatus von P. falciparum-Laborstämmen	19
Zusammensetzung des Medium Complete	19
Parasitämien der für die DNA-Extraktion eingefrorenen Laborstämme	22
Ergebnisse der NanoDrop-Messungen der gepoolten DNA-Extrakte	23
Sequenzen und Eigenschaften der hrp2_v2- und hrp3_v2-Primer	26
Sequenzen und Eigenschaften der hrp2- und hrp3-Primer	27
	Herkunft der Plasmodien-Laborstämme.Hersteller der Reagenzien für die Zellkultur.Hersteller des Laborequipments für die Zellkultur.Hersteller des Laborequipments für die DNA-Extraktion.Hersteller der Reagenzien für die konventionelle PCR.Software zur Analyse der konventionellen PCR.Hersteller des Laborequipments für die konventionelle PCR.Hersteller der Reagenzien für die qPCR.Hersteller der Reagenzien für die qPCR.Hersteller der Reagenzien für die qPCR.Hersteller des Laborequipments für die qPCR.Hersteller der Reagenzien für die Erstellung der qPCR.Gentware zur Vorbereitung und Durchführung der qPCR.Hersteller der Reagenzien für die Erstellung der Standardkurve.Hersteller des Laborequipments für die Erstellung der Standardkurve.Hersteller der Reagenzien für die Erstellung der Standardkurve.Genstatus von P. falciparum-LaborstämmenZusammensetzung des Medium Complete.Parasitämien der für die DNA-Extraktion eingefrorenen Laborstämme.Ergebnisse der NanoDrop-Messungen der gepoolten DNA-ExtrakteSequenzen und Eigenschaften der hrp2_v2- und hrp3_v2-Primer.Sequenzen und Eigenschaften der hrp2- und hrp3-Primer

Tab. 2-19:	Sequenzen und Eigenschaften der hrp2_v2- und hrp3_v2-Sonden	.27
Tab. 2-20:	Sequenzen und Eigenschaften der hrp2- und hrp3-Sonden	.27
Tab. 2-21:	Reaktionsansätze für Vergleich des neuen und alten Assays in singleplex-qPCR	.28
Tab. 2-22:	PCR-Bedingungen für die singleplex-qPCR	.29
Tab. 2-23:	Reaktionsansätze für Kreuzreaktivitäts-Test des neuen hrp-Assays in singleplex-qPCR	.29
Tab. 2-24:	Erstellung der singleplex-Kreuzreaktions-Assays zur Beurteilung einzelner Komponenten.	.30
Tab. 2-25:	Sequenzen und Eigenschaften der Primer für cytb und 6-tub	. 32
Tab. 2-26:	Sequenzen und Eigenschaften der Sonden für cytb und 6-tub.	. 32
Tab. 2-27:	Zuordnung der Fluoreszenzfarbstoffe und Wellenlängen der Erregung	.33
Tab. 2-28:	Reaktionsansätze für die 4plex-qPCR_v1	.34
Tab. 2-29:	PCR-Bedingungen bei der 4plex-qPCR_v1	.34
Tab. 2-30:	PCR-Bedingungen im ersten Optmierungsschritt zur Erstellung des Prot. A	.36
Tab. 2-31:	Reaktionsansätze im ersten Optimierungsschritts zur Erstellung des Prot. A	.36
Tab. 2-32:	PCR-Bedingungen im zweiten Optimierungsschritts zur Erstellung des Prot. B	.37
Tab. 2-33:	Reaktionsansätze im zweiten Optimierungsschritts zur Erstellung des Prot. B	.38
Tab. 2-34:	Kombination unterschiedlicher hrp2- und hrp3-Sondenkonz	.38
Tab. 2-35:	Erstellung der Reaktionsansätze für die Farbkompensation.	.40
Tab. 2-36:	PCR-Bedingungen für die Farbkompensation.	.40
Tab. 2-37:	Pf3D7 ^{Rodi} -Verdünnungsreihe	.41
Tab. 2-38:	Parasitämien der Zellkulturen vor Erstellung der neuen Verdünnungsreihen	.43
Tab. 2-39:	Verdünnungsreihe mit Zugabe von Medium Complete für die neu erstellten Standards	.43
Tab. 2-40:	Verdünnungsreihe mit Zugabe von Vollblut für die neu erstellten Standards	.44
Tab. 2-41:	PCR-Bedingungen der 4plex-qPCR v2.	.46
Tab. 2-42:	Reaktionsansätze der 4plex-qPCR_v2 Protokoll A und B.	.47
Tab. 2-43:	Reaktionsansatz für die konventionelle hrp2- und hrp3-PCR	.48
Tab. 2-44:	PCR-Bedingungen für die konventionelle hrp2- und hrp3-PCR.	.48
Tab. 2-45:	Sequenzen und Eigenschaften der hrp2- und hrp3-Primer für die konventionelle PCR	.49
Tab. 2-46:	Zusammensetzung der Mischung zur Befüllung der Taschen des Agarosegels	.49
Tab. 3-1:	qPCR-Primer- und Sondensequenzen des hrp2-Gen	. 53
Tab. 3-2:	qPCR-Primer- und Sondensequenzen des hrp3-Gen	. 53
Tab. 3-3:	Anzahl der Mismatches zwischen den qPCR-Primern und Sonden für hrp2 und hrp3	.54
Tab. 3-4:	Vergleich des neuen und alten Assays in singleplex-qPCR	. 55
Tab. 3-5:	Kreuzreaktivität der neuen hrp-Assays in singleplex-qPCR	.56
Tab. 3-6:	hrp2-Primer-Spezifität: singleplex-qPCR	.57
Tab. 3-7:	hrp3-Primer-Spezifität: singleplex-qPCR	. 58
Tab. 3-8:	hrp2-Sonden-Spezifität: singleplex-qPCR	. 59
Tab. 3-9:	hrp3-Sonden-Spezifität: singleplex-qPCR	.60
Tab. 3-10:	Variation der Hybridisierungstemp.: 4plex-qPCR_v2	.61
Tab. 3-11:	Variation der hrp3-Sondenkonz.: 4plex-qPCR_v2	. 63
Tab. 3-12:	Variation der hrp2-Primerkonz.: 4plex-qPCR_v2	. 64
Tab. 3-13:	Variation der cytb-Primerkonz.: 4plex-qPCR_v2	. 66
Tab. 3-14:	Variation der cytb-Sondenkonz.: 4plex-qPCR_v2	.67
Tab. 3-15:	Variation der 6-tub-Primerkonz. bei cytb-Sondenkonz. 150 nM: 4plex-qPCR_v2	. 69
Tab. 3-16:	Variation der β-tub-Primerkonz. Bei cytb-Sondenkonz. 50nM: 4plex-qPCR_v2	. 70
Tab. 3-17:	Variation der β-tub-Sondenkonz. auf max 200 nM: 4plex-qPCR_v2	. 71
Tab. 3-18:	Variation der β-tub-Sondenkonz. auf max. 300 nM: 4plex-qPCR_v2	. 72
Tab. 3-19:	Variation der Elongationszeit: 4plex-qPCR_v2	. 74
Tab. 3-20:	Variation der hrp2- und hrp3-Sondenkonz.: 4plex-qPCR_v2	. 76
Tab. 3-21:	Vergleich der Fluoreszenzkurve/-Intensitäten zw. Bestellung 1-3 der Sonden bei 50 nM	. 78
Tab. 3-22:	PCR-Bedingungen der 4plex-qPCR_v2.	. 79
Tab. 3-23:	Reaktionsansatz der 4plex-qPCR_v2 Protokoll A	. 79

Tab. 3-24:	Reaktionsansatz der 4plex-qPCR_v2 Protokoll B	80
Tab. 3-25:	Vergleich der Ergebnisse der Feldproben der 4plex-qPCR_v1 und _v2	82
Tab. 3-26:	4plex-qPCR_v2 Prot. A Messung der Verdünnungsreihe des Pf3D7 ^{Rodi} -Standards	85
Tab. 3-27:	4plex-qPCR_v2 Prot. A Messung der Verdünnungsreihe des Pf3D7 ² -Standards	86
Tab. 3-28:	4plex-qPCR_v2 Prot. A Messung der Verdünnungsreihe des PfHB3-Standards	87
Tab. 3-29:	4plex-qPCR_v2 Prot. A Messung der Verdünnungsreihe des PfDd2-Standards	88
Tab. 3-30:	4plex-qPCR_v2 Prot. B Messung der Verdünnungsreihe des Pf3D7 ² -Standards	89
Tab. 3-31:	4plex-qPCR_v2 Prot. B Messung der Verdünnungsreihe des PfHB3-Standards	90
Tab. 3-32:	4plex-qPCR_v2 Prot. B Messung der Verdünnungsreihe des PfDd2-Standards	91
Tab. 3-33:	Detektionslimits der Standards nach Analyse- und Amplifikationsmethode	92
Tab. 11-1:	Gesamte NanoDrop-Messung	111

1 Einleitung

Malaria ist eine der global bedeutendsten Infektionskrankheiten. Für das Jahr 2019 wurde geschätzt, dass es weltweit 229 Millionen Malaria-Fälle und 406.000 Todesfälle gab. Das höchste Risiko tragen dabei Kinder und Schwangere, vorwiegend in den ländlichen Regionen von Subsahara-Afrika und Indien. Über 50 % der Malariadiagnosen konzentrieren sich auf fünf afrikanische Länder: Nigeria, Demokratische Republik Kongo, Uganda, Mozambik und Niger (World Health Organization, 2020b).

Die Malaria-Erkrankung wird durch Parasiten der Gattung *Plasmodium* verursacht, die durch den Stich einer weiblichen Anophelesmücke übertragen werden. Insgesamt sind fünf unterschiedliche, humanpathogene Spezies bekannt: *Plasmodium falciparum, P. vivax, P. ovale, P. malariae und P. knowlesi*.

Der Entwicklungszyklus der Plasmodien durchläuft einen obligaten Wirtswechsel. Durch den Stich einer infizierten Anophelesmücke gelangen die asexuellen Stadien, die Sporozoiten, in die menschliche Blutbahn und über diese zur Leber. Dort dringen sie in die Hepatozyten ein und entwickeln sich zu relativ großen (30 - 70 µm) sexuellen Schizonten, aus denen je nach Plasmodienart nach grob 14 Tagen zwischen 2.000 und 30.000 Merozoiten in die Blutbahn freigesetzt werden. Ebenfalls abhängig von der Spezies können Gewebeschizonten in den Hepatozyten verbleiben, sog. Hypnozoiten, und zu einem Rückfall der Erkrankung führen. Dies ist vor allem für *P. vivax* und *P. ovale* beschrieben, nicht aber für *P. falciparum*. Die aus den Schizonten freigesetzten Merozoiten infizieren die Erythrozyten im Blut und reifen im Inneren der Zellen über das Ringstadium zum Trophozoiten und dann zum Schizonten. Durch mitotische Teilung gehen aus den Schizonten sechs bis 36 Tochterzellen hervor, die durch "Platzen" der roten Blutkörperchen als Merozoiten freigesetzt werden und erneut in Erythrozyten eindringen, wodurch sich der erythrozytäre Kreislauf schließt.

Die Reifung vom Merozoit zum Schizont dauert, abhängig von der Art, zwischen 24 und 72 Stunden – für *P. falciparum* sind 48 Stunden beschrieben. (Butcher and Mitchell, 2018; Oakley et al., 2011). Ein typisch periodischer Fieberverlauf ist

dabei häufig zu beobachten. Vor allem bei Kindern und Infektionen mit dem *P. falciparum* sind allerdings häufig auch unregelmäßige Verläufe charakteristisch (Basu and Sahi, 2017). Ein geringer Anteil der Merozoiten folgt nicht der asexuellen Teilung, sondern ist für die sexuelle Entwicklung – in männliche Mikrogametozyten bzw. weibliche Makrogametozyten – bestimmt. Werden die Gametozyten durch einen erneuten Stich wieder von einer Anophelesmücke aufgenommen, entwickeln sie sich zu den eigentlichen Geschlechtszellen und verschmelzen zur Zygote. Aus der Zygote geht durch Reduktionsteilung die Oozyste und der bewegliche Ookinet hervor, aus dem tausende Sporozoiten entstehen, die über die Speicheldrüsen der Mücke beim Stich wieder auf den Menschen übertragen werden können (Kayser et al., 2014, pp.584–596).

Während der Leberphase (ca. 10 - 14 Tage, artabhängig) sind keine Symptome bemerkbar und die Infektion ist durch diagnostische Tests nicht nachweisbar. Symptome und das Krankheitsbild einer Malaria entstehen erst während des Blutstadiums der Parasiten. Das klinische Erscheinungsbild ist unspezifisch, grippeähnlich und durch Kopfscherzen, Fieber, Schüttelfrost und Übelkeit charakterisiert. Die Schwere der Erkrankung ist primär abhängig von der Spezies der Plasmodien, Höhe der Parasitenlast und vorheriger Infektionen (erworbene Teilimmunität). Die schwersten Verläufe treten bei einer Infektion mit *P. falciparum* auf, das in Afrika südlich der Sahara für 99,7 Prozent der Malaria-Fälle verantwortlich ist (World Health Organization, 2019c). Kennzeichnend sind häufig unklare Fieberintervalle, hohe Parasitämien und die Möglichkeit schwerer Komplikationen durch zerebrale Malaria, Anämie oder Organversagen (Kayser et al., 2014, pp. 584–596).

1.1 Diagnostik

Eine schnelle Diagnose und ein entsprechend rascher und korrekter Behandlungsbeginn gelten als die effektivste Methode zur Prävention einer schweren Malaria. Gleichzeitig empfiehlt die WHO vor jeder beabsichtigten Malariatherapie eine vorausgehende Diagnosesicherung, um einen übermäßigen Verbrauch an Malariamedikamenten zu verhindern und die Entwicklung von Resistenzen nicht zu beschleunigen. Durch die Differenz von verabreichten Malariamedikamenten nach durchgeführter Diagnose und der Gesamtanzahl verwendeter Malriamedikamenten geht die WHO davon aus, dass weiterhin ein großer Anteil der Therapeutika ohne vorherige Diagnosesicherung bei Patient*innen angewandt wird (World Health Organization, 2020b).

1.1.1 Mikroskopie

Grundlage der mikroskopischen Diagnose der Malaria ist in der Regel der "dicke Tropfen" (thick blood smear/TBS). Dabei wird ein Bluttropfen von etwa 10 Mikrolitern auf einen Objektträger gegeben, trocknen gelassen und ohne vorherige Fixierung in einer Giemsa-Lösung gefärbt. Die wässrige Lösung des Giemsas führt zur Lyse der Erythrozyten, sodass ggf. vorhandene Parasiten angereichert werden und doch gut mikroskopisch erkannt werden können. Pro Blickfeld können über mehrere Schichten relativ große Mengen Blut auf Parasiten geprüft werden (quantitativ). Für *P. falciparum* sind die durch die Färbung violett angefärbten Ringstadien charakteristisch. Trophozoiten und Schizonten sind nicht im Blutausstrich von Malariapatient*innen zu finden, da diese an Endothelzellen binden, somit nicht im peripheren Blut zirkulieren und nicht im dicken Tropfen zu finden sind (Sherman et al., 2003).

Zur Bestimmung der Parasitämie, d.h. der Anzahl der Parasiten pro Volumen (µl oder ml) Blut, sind zwei etablierte Methoden bekannt. Im Rahmen der WHO-Methode wird der Dicke Tropfen nach Giemsafärbung bei 100-facher Vergrößerung mit Immersionsöl angeschaut und in jedem Blickfeld die Anzahl an Parasiten sowie die Anzahl der Leukozyten gezählt, bis eine Gesamtanzahl von 1.000 Leu-

kozyten gezählt wurden. Die gemessene oder angenommene Menge an Leukozyten im Blut (in diesem Fall 8.000 /μl) wird dabei als Referenz herangezogen (vgl. Formel 1-1).

 $\frac{Anzahl \ gezählter \ Parasiten \ \cdot \ 8.000}{Anzahl \ gezählter \ Leukozyten} = Parasiten/\mu l$

Formel 1-1: WHO-Formel zur Errechnung der Parasitenanzahl pro Mikroliter (Weltgesundheitsorganisation, 2010)

Bei der "Lambaréné-Methode" werden sowohl die Anzahl der Parasiten als auch die Anzahl an gelesenen Hauptgesichtsfeldern (high-power field/HPF) gezählt (mindestens 100). Für die abschließende Berechnung muss nun noch der Mikroskopfaktor, also die Gesamtvergrößerung des Mikroskops, bekannt sein. Entsprechend der Formel 1-2 kann dann auf die Anzahl der Parasiten/µl Blut hochgerechnet werden (Joanny et al., 2014).

 $\frac{Anzahl\ gezählter\ Parasiten}{Anzahl\ gezählter\ HPFs}\cdot Mikroskopfaktor = Parasiten/\mu l$

Formel 1-2: Lambaréné-Formel zur Errechnung der Parasitenanzahl pro Mikoliter (Joanny et al., 2014).

Die Erkennung der einzelnen Ringe sowie die Unterscheidung zu Artefakten erfordern viel Übung. Die Expertise der jeweiligen Mikroskopist*innen hat daher starken Einfluss auf die Sensitivität und Spezifität dieser Methode (Kahama-Maro et al., 2011).

Neben dem dicken Blutausstrich kann ggf. zur besseren Differenzierung der einzelnen Plasmodienarten, bzw. bei Mischinfektionen ein dünner Blutausstrich gemacht werden (vgl. Abb. 1-1). Dieser wird mit Methanol vor der Färbung in der Giemsa-Lösung fixiert, sodass die Erythrozyten erhalten bleiben (Weltgesundheitsorganisation, 2010).

Abb. 1-1: Fotos der unterschiedlichen asexuellen Entwicklungsstadien von P. falciparum im Blutausstrich bei 100-facher Vergrößerung unter Immersionsöl (eigene Fotographien).

Bis jetzt gilt die Mikroskopie bzw. der "Dicke Tropfen" noch immer als der Goldstandard der Malariadiagnostik. Die Technik weist ein Detektionslimit von ca. 100 Parasiten/µl auf (World Health Organization, 1988), ist kostengünstig sowie äußerst spezifisch – vorausgesetzt die Mikroskopist*innen sind sehr erfahren.

1.1.2 Schnelltests

Malaria-Schnelltests, sogenannte *RDTs* (*rapid diagnostic tests*), beruhen auf dem Prinzip der Immunchromatographie. Zur Durchführung des Tests werden ein Bluttropfen aus der Fingerbeere und ein Lysepuffer an einem Ende einer Test-Kassette aufgetragen. Die zu detektierenden Antigene, die bei einer vorliegenden Infektion im Blut zirkulieren, binden dort an einen mit einem Farbstoff markierten, rekombinanten Antikörper. Als Komplex laufen sie an einem Nitrocellulose-Streifen, durch Kapillarkräfte bewegt, entlang, bis sie auf den ersten Test-streifen treffen. An diesem befinden sich immobilisierte, rekombinante Antikörper gegen das entsprechende Antigen. Der Antigen-Antikörper-Komplex wird dort gebunden und es erscheint eine farbige, sichtbare Bande. Weiter aufwärts des Nitrocellulose-Streifens befindet sich eine Positiv-Kontrollbande, an der sich gebundene Antikörper gegen die mit Farbstoff markierten Antikörper befinden und diese binden. Sie dient der Kontrolle, ob ausreichend Antikörper vorhanden sind und ob die Proteine die gesamte Länge des Nitrocellulose-Streifens entlanggelaufen sind. Bei einem auswertbaren Testergebnis sollte daher die Kontrollbande grundsätzlich positiv erscheinen und lediglich die Testbande Aufschluss über das Vorhandensein des Antigens geben (World Health Organization, 2006).

Für diese indirekte Detektion von Plasmodien-Infektionen im Blut eignen sich mehrere plasmodiale Proteine als Biomarker: plasmodiale Laktatdehydrogenase (pLDH), Histidin-reiches Protein 2 (HRP2) und die plasmodiale Aldolase (Krampa et al., 2017).

Die Laktatdehydrogenase (LDH) ist ein Enzym des anaeroben Stoffwechsels. Es katalysiert die Umwandlung des durch Glucoseabbau anfallenden Pyruvats in Laktat und dient gleichzeitig der Regeneration des NAD⁺. Die stärkste Expression des Enzyms bei Plasmodien wird im frühen Ringstadium erreicht, in welchem die höchste Stoffwechselaktivität stattfindet (Bozdech et al., 2003). pLDH weist Spezies-spezifische Sequenzunterschiede auf, die durch die Entwicklung entsprechend spezifischer monoklonaler Antikörper eine Unterscheidung der Plasmodien sich pLDH-basierte *RDTs* als nicht sehr stabil erwiesen und pLDH kommt im Vergleich zu HRP2 in geringerer Konzentration im Blut vor. Diese Tests sind weniger sensitiv als HRP2-basierte *RDTs* (Chiodini et al., 2007).

RDTs spielen vor allem in den ländlichen Regionen Afrikas, den Hauptendemiegebieten der Malaria, eine große Rolle. Gute Mikroskope und entsprechende Expertise sind dort nicht überall und immer gegeben. Durch die Einführung der *RDTs* wurde der Zugang zu einer Diagnose entscheidend verbessert. Wenngleich HRP2-basierte *RDTs* durch die lange Halbwertszeit von HRP2 im Blut keine Aussage über den Erfolg einer therapeutischen Intervention erbringen können (Mayxay et al., 2001), bieten sie im Vergleich zur Mikroskopie jedoch den erheblichen Vorteil, keine Elektrizität und aufwendig ausgebildetes Personal zu benötigen. In Subsahara-Afrika werden mittlerweile 75 % der Malariadiagnosen mittels *RDTs* bestimmt (World Health Organization, 2018b). Parasitenlasten von über 200 Parasiten/µl sollten dabei zuverlässig durch die *RDT*s erkannt werden (World Health Organization, 2019b).

1.1.2.1 HRP2 und HRP3

Das Genom von P. falciparum weist drei Histidin-reiche Proteine auf: HRP1 induziert die Bildung von Ausstülpungen der Membran infizierter Erythrozyten, wodurch die Zytoadhärenz an das Endothelium vermittelt wird. Es ist spezifisch für P. falciparum, wird allerdings nur in knob-positiven Stämmen exprimiert (Leech et al., 1984). HRP2 und HRP3 sind lösliche Proteine, die von den Parasiten in und aus den Erythrozyten heraus transportiert werden. Zusätzlich gelangen sie durch "Platzen" der Erythrozyten im Schizontenstadium in großen Mengen ins Blut (Howard et al., 1986) und können ebenfalls im Speichel und im Urin detektiert werden (Castro-Sesquen et al., 2016; Fung et al., 2012; Rodriguez-del Valle et al., 1991; Samal et al., 2017). HRP2 und HRP3 sind sehr stabil und sind selbst nach Eradikation der Plasmodien im Blut noch bis zu vier Wochen im Blut nachweisbar (Shiff et al., 1993; Uguen et al., 1995). HRP3 kommt dabei jedoch in wesentlich geringerer Konzentration vor als HRP2 (Sharma, 1988). HRP2 und HRP3 werden in allen erythrozytären Stadien von *P. falciparum* synthetisiert, v.a. aber im Ringstadium (Baker et al., 2011). Dadurch, dass sich die Proteine in ihrer Aminosäuresequenz sehr ähnlich sind, kann es zu Kreuzreaktionen von entsprechenden monoklonen Antikörpern kommen, die jedoch nur schwer zu quantifizieren sind.

Auf DNA Ebene gibt es, abgesehen von der grundsätzlich vorhandenen Histidinreichen Region in Exon 2, zwischen *hrp1* und *hrp2* keine großen Übereinstimmungen. Hingegen zeigen die Sequenzen von *hrp2* und *hrp3* große Ähnlichkeiten, inklusive in der namensgebenden Histidin-reichen Region von Exon 2, die durch Alanin- und Histidin-Wiederholungen charakterisiert ist. *Hrp2* und *hrp3* kommen nur bei *P. falciparum* vor und nicht bei den anderen humanpathogenen Plasmodienarten. Beide Gene liegen jeweils als einfache Kopie im Genom vor und zeigen eine Exon1–Intron–Exon2-Struktur. *Hrp2* ist 1064 bp lang und liegt in der Subtelomer-Region von Chromosom 8, *hrp3*, mit einer Länge von 977 bp, ist in der Subtelomer-Region von Chromosom 13 lokalisiert (Harris et al., 2002; Seeger et al., 2002; Wellems and Howard, 1986). Die genaue Funktion der beiden Proteine ist nicht bekannt. Mehrere Studien weisen jedoch auf eine Interaktion mit Häm hin, mit welchem sie Komplexe zu bilden scheinen und womöglich

an der Entgiftung des Häms durch die Bildung des Hämozoins beteiligt sind (Choi et al., 1999; Ziegler et al., 1999). Das Häm fällt nach Spaltung des Hämoglobins und Abbau des Globins für den Stoffwechsel des Parasiten an. Es wird anschließend im Inneren der Plasmodien in Vakuolen gespeichert (Kolakovich et al., 1997). Abgesehen davon besteht eine Korrelation zwischen der Konzentration an HRP2 im Blut und dem Auftreten von zerebraler Malaria (Aikawa et al., 1990). Man vermutet, dass HRP2 zu einer erhöhten Zytokinausschüttung führt, wodurch die Permeabilität des Endotheliums auf zerebraler Ebene erhöht wird und die schwerwiegenden zerebralen Symptome hervorgerufen werden (Pal et al., 2016).

1.1.2.2 Falsch-negative Schnelltests

In einigen Studien werden falsch-negative Schnelltest-Ergebnisse beschrieben. Die Gründe hierfür sind vielfältig. Die WHO weist auf Ursachen wie Schnelltests geringer Qualität, schlechte Vergleichsdiagnostik und unangemessenen Lagerungs- oder Transportbedingungen hin. Seit 2008 werden die Produkte der verschiedenen Hersteller daher einer Warentestung unterzogen und die Ergebnisse anschließend in einem Dokument auf der Seite der WHO veröffentlicht (Kahama-Maro et al., 2011; World Health Organization, 2018a). Anhand dieser Daten können, entsprechend der Rahmenbedingungen in den bestimmten Regionen, die Schnelltests mit den besten Ergebnissen bei den jeweils vorherrschenden relevanten Faktoren ermittelt werden (World Health Organization, 2018a).

Neben diesen Gründen für das Vorliegen falsch-negativer Schnelltest-Ergebnisse, kann das Scheitern der Schnelltests außerdem durch eine Deletion des *hrp2*-Gens und/oder *hrp3*-Gens und damit dem Fehlen des nachzuweisenden HRP2-Proteins bzw. HRP3-Proteins zustande kommen.

1.1.3 Molekulare Techniken

Die bisher sensitivsten Methoden zur Erkennung von Infektionen werden durch molekulare Nachweistechniken erreicht, die das Vorhandensein *P. falciparum*spezifischer Gene in Blut-, Urin- oder Stuhlproben von Patient*innen nachweisen. Grundlage ist dabei immer die spezifische Vervielfältigung bestimmter Gene.

1.1.3.1 PCR

In den meisten Veröffentlichungen wird der Nachweis einer Plasmodien-Infektion mittels *PCR* beschrieben. Als Targets eignen sich Gene, welche in einer erhöhten Kopienzahl im Genom der Plasmodien vorliegen. Am häufigsten wird in der Literatur die Detektion der 18S-ribosomalen rDNA beschrieben (Adams et al., 2015; Singh et al., 1999; Snounou et al., 1993; Swan et al., 2005). Dieses Gen liegt in 5 - 8 Kopien vor (Amaral et al., 2019). Neuere Versuche nutzten als Target die nicht ribosomalen *Pvr47*- und *Pfr364*-Gene, welche in 14 - 41 Kopien im *P. falciparum*-Genom vorliegen (Amaral et al., 2019) oder zwei Gene der Subtelomer-und Telomer-Region "*TARE-2*" mit zirka 250 Kopien pro Genom und "*varATS*" mit 59 Kopien pro Genom. Herbei wurden Detektionslimits von bis zu unter 0,1 Parasiten/µl beschrieben (Hofmann et al., 2015).

Neben den Genen für die Ribosomen werden zur Detektion auch mitochondriale Gene verwendet - zum Beispiel das Gen *cytochrom b.* Bei *P. falciparum* geht man hierbei von 20 Kopien pro Plasmodium aus. Auch hier wurden Detektionslimits von unter 0,1 Parasiten/µl beschrieben (Farrugia et al., 2011; World Health Organization, 2019a).

1.1.3.2 Real-time PCR

Bei der Quantifizierung von Nukleinsäuren zeigt die *real-time PCR* (*qPCR*) gegenüber der konventionellen *PCR* (k. *PCR*) eine klare Überlegenheit. Hierbei wird die Vervielfältigung der DNA mittels sequenzspezifischer Sonden (z.B. *hydrolysis probes*) während der Amplifikation – also in *real-time* – über die Messung des Fluoreszenzsignals detektiert. Der Vergleich mit einem Standard kann nicht zuletzt auch Rückschluss auf die Konzentration der ursprünglich eingesetzten DNA geben.

Dafür sind die Sonden zusätzlicher Bestandteil für die Durchführung der *qPCR*. Sie bestehen aus einer Oligonukleotid-Sequenz komplementär zu einem Abschnitt des zu amplifizierenden Gens. *Hydrolysis probes* (früher *Taqman probes* genannt) haben zwei Fluoreszenzfarbstoffe: *quencher* am 5'-Ende des Oligonukleotids und *reporter* am 3'-Ende. Die Sonde bindet, ähnlich wie die Primer, im Hybridisierungs-Schritt der *PCR* an die DNA und erzeugt dadurch einen Abschnitt doppelsträngig vorliegender DNA. Gegebenenfalls kann das 3'-Ende der Sonde mit einer *Minor-groove-binder (MGB)*-Sequenz modifiziert werden, um die Bindungsspezifität zu erhöhen. Es lagert sich in die kleine Furche der Doppelhelix an und verbessert die Bindung der Sonde an die DNA. Daraus resultiert eine erhöhte Schmelztemperatur und Spezifität der Bindung (Kutyavin et al., 2000). Während die Sonde gebunden an der DNA vorliegt, befinden sich *quencher* und *reporter* in räumlicher Nähe und das Signal des *reporters* wird durch den angeregten *quencher* unterdrückt. Sobald die Polymerase den DNA-Strang entlangläuft, bricht es die Oligonukleotid-Sequenz der Sonde auf, wodurch *quencher* und *reporter* voneinander abdiffundieren und mit speziellen Filtern das Signal des *reporters* detektiert werden kann.

Je mehr DNA vorhanden ist, desto mehr Bindungen werden zwischen *quencher* und *reporter* aufgebrochen und die Intensität des Fluoreszenzsignals nimmt zu. Wird dieses Fluoreszenzsignal nach jedem Zyklus während des Ablaufs einer *qPCR* in einem Diagramm wie in Abb. 1-2 aufgezeichnet, sollte sich eine sigmoidale Kurve ergeben. Der Wendepunkt dieser Kurve, bzw. der Hochpunkt der ersten Ableitung der Kurve, kennzeichnet dabei den Punkt (C_q = quantification cycle), ab welchem Zyklus das Fluoreszenzsignal der Sonde intensiver ist als die Hintergrund-Fluoreszenz und somit die Probe als positiv gewertet werden kann. Das wird bei einer Anzahl von ca. $10^{11} - 10^{12}$ DNA-Molekülen erreicht (Roche Diagnostics GmbH, 2008, p. 167). Bei einer hohen Ausgangskonzentration eines Gens ergibt sich somit ein C_q-Wert von nur wenigen Zyklen.

Abb. 1-2: Beispiel-Diagramm einer absoluten Quantifikationsanalyse mit Wendepunkt der sigmoidalen Kurve, bzw. Hochpunkt der ersten Ableitung (eigene Grafik in Anlehnung an Roche Diagnostics GmbH, 2008, p. 167).

1.2 Detektion von hrp2- und hrp3-Deletionen

In der Amazonasregion Perus wurde 2010 erstmals das Auftreten falsch-negativer Schnelltest-Ergebnisse für Malaria aufgrund einer Deletion des *hrp2*-Gens und auch des *hrp3*-Gens von *P. falciparum* beschrieben. Durch das Fehlen von HRP2 im Blut fällt das *RDT*-Ergebnis trotz einer *P. falciparum*-Infektion negativ aus (Gamboa et al., 2010). Berichte aus anderen Ländern, unter anderem aus der Demokratischen Republik Kongo, Eritrea, Ghana, Kenya, Rwanda und Indien folgten. Die berichteten Prävalenzen weichen dabei zum Teil weit voneinander ab (Amoah et al., 2016; Berhane et al., 2018; Beshir et al., 2017; Kozycki et al., 2017; Kumar et al., 2013; Parr et al., 2017; Pati et al., 2018).

Eine von der WHO veröffentlichte, interaktive Karte zeigt eine Zusammenfassung aller Studien, die zur Erfassung von *hrp2*- und *hrp3*-Gendeletionen bislang durchgeführt wurden und ermöglicht die Anzeige von *hrp2*-Deletion (vgl. Abb. 1-3) und Doppeldeletion von *hrp2* und *hrp3* (vgl. Abb. 1-4).

Abb. 1-3: Malaria-Threat Map: Studien zu hrp2-Deletionen in P. falciparum Stämmen (World Health Organization, Stand: 02.08.2020).

Abb. 1-4: Malaria-Threat Map: Studien zu hrp2- und hrp3-Codeletionen in P. falciparum Stämmen (World Health Organization, Stand: 02.08.2020).

Weitere Forschungsergebnisse zeigten, dass nicht nur Deletionen eine relevante Rolle für falsch-negative Schnelltests spielen, sondern auch die große Variabilität in der Alanin-Histidin-Region die Detektion beeinflusst (Kumar et al., 2012; Li et al., 2015; Willie et al., 2018). Hierbei unterliegt *hrp2* einer höheren Variabilität als *hrp3* (Kumar et al., 2012).

Neben falsch-negativen Testergebnissen wurden aber auch positive Testergebnisse HRP2-basierter Schnelltests beschrieben, die trotz einer *hrp2*-Deletion zustande kamen, vermutlich aufgrund einer Kreuzreaktivität der Schnelltest-Antikörper mit HRP3 (Amoah et al., 2016; Beshir et al., 2017). Eine kompensatorische Erhöhung des HRP3-Levels im Blut bei Abwesenheit von HRP2 konnte allerdings nicht festgestellt werden (Baker et al., 2011).

Für die globale Malaria-Eliminierung ist es von großer Bedeutung, die Prävalenzen der *hrp2-/hrp3*-deletierten Plasmodium-Stämme zu kennen. Die HRP2-basierten *RDTs* sind weit verbreitet und es fehlt ein adäquater Ersatz. Durch Infektionen *hrp2-/hrp3*-deletierter Plasmodien, die durch die Schnelltests nicht entdeckt werden, entfällt oder verspätet sich die Kontrolle der Infektion und die Verhinderung der Verbreitung mittels Chemotherapie – es kann zum Selektionsvorteil dieser Stämme kommen und die Parasiten könnten nicht zuletzt auch in Malaria-freie Gebiete wieder eingeschleppt werden. Die WHO wertet daher die Deletionen als eine Bedrohung für die Malaria-Eliminierungsziele und ruft zur Bestimmung der Prävalenzen durch epidemiologische Studien auf. Sie empfiehlt dabei nicht nur das Vorhandensein von *hrp2*, sondern ebenfalls das Vorhandensein von *hrp3* zu untersuchen (World Health Organization, 2020a).

Die Prävalenzen *hrp2-/hrp3*-Gen-deletierter Plasmodien-Infektionen festzustellen und von anderen Ursachen wie zu niedrigen Parasitenlasten zu unterscheiden, erfordert eine Diagnostikmethode, die auch bei niedrigen Parasitämien noch sensitive und spezifische Ergebnisse verspricht. Dabei ist der Nachweis des Nicht-Vorhandenseins grundsätzlich ein schwieriges Konzept. Die *PCR* zur Amplifikation des *hrp2-/hrp3*-Locus bietet die verlässlichste Methode. Zwar sind auch hier falsch-negative Ergebnisse durch Parasitenlasten, die unterhalb der Nachweisgrenze liegen, möglich – dieser Anteil ist jedoch wesentlich geringer als durch die *RDTs*.

Für die epidemiologische Prävalenzbestimmung sollte der Nachweis bei diesen Studien daher mit der hochsensitiven *qPCR*-Technologie erfolgen, wie es in den meisten Studien der letzten Jahre auch erfolgte (Berhane et al., 2018; Beshir et al., 2017; Kozycki et al., 2017; Owusu et al., 2018; Pati et al., 2018).

1.3 Ziel der Arbeit

Ziel dieser Arbeit war die Optimierung einer *multiplex*, quantitativen *real-time PCR* zur Detektion von *P. falciparum* mit *hrp2-* und *hrp3-*Deletionen. Die *qPCR* kontrolliert parallel das Vorhandsein einer *P. falciparum*-Infektion und beinhaltet zudem eine Qualitätskontrolle. Ein erstes Protokoll wurde bereits in der Arbeitsgruppe erstellt (Rodi, 2018, nicht veröffentlicht; Trauner, 2019) und die *qPCR-Assays* zur Detektion von *hrp2* und *hrp3* sollen nun in ihrer Spezifität verbessert werden. Das optimierte Protokoll soll dann an klinischen Proben aus Lambaréné, Gabun (CERMEL), zur Anwendung kommen und erste Informationen bezüglich vorhandener Deletionen in der dortigen Parasitenpopulation liefern. Letztlich soll ein Vergleich der Sensitivität vorhandener Protokolle zu diesem verbesserten Protokoll durchgeführt werden.

2 Material und Methoden

Die im Rahmen dieser Arbeit angewandten Methoden erforderten neben der Durchführung der quantitativen *real-time PCR* (*qPCR*) zuvor das Kultivieren der als Kontrollen dienenden Parasiten-Zelllinien, die DNA-Extraktion dieser Parasiten sowie der klinischen Proben und das Durchführen der konventionellen *PCR* als Vergleichsmethode.

2.1 Material

Es werden nur die Materialien erwähnt, die zur Wiederholbarkeit der Versuche von Bedeutung sind.

2.1.1 Parasitenkultur

Tab. 2-1:	Herkunft der Plasmodien-Laborstämme
1 a.o. E 1.	

P. falciparum-Stamm	Hersteller
Pf3D7	Malaria Research and Reference Reagent Ressource
PfDd2	Center (ATCC; USA)
PfHB3	

Tab. 2-2: Hersteller der Reagenzien für die Zellkultur.

Produktbezeichnung	Produkt-Nr.	Hersteller
Medium (RPMI 1640)	R0883	Merck KgaA, Darmstadt (Germany)
Albumax II	11021-037	ThermoFisher Scientific, Waltham (USA)
HEPES solution (1 M, 100 ml)	H0887	Sigma-Aldrich, St. Louis (USA)
L-Glutamin (200 mM)	25030-024	ThermoFisher Scientific, Waltham (USA)
Gentamycin (50 mg/ml)	15750-045	ThermoFisher Scientific, Waltham (USA)
Erythrozyten Konzentrat (Blutgruppe 0, positiv)		Blutspendezentrale Tübingen
Giemsa	109204	Merck, Darmstadt (Deutschland)

Bezeichnung	Produkt-Nr.	Hersteller
LD Säulen	130-342-901	Miltenyi Biotec, Bergisch Glad- bach (Deutschland)
QuadroMACS® Separator	130-090-976	Miltenyi Biotec, Bergisch Glad- bach (Deutschland)

Tab. 2-3:Hersteller des Laborequipments für die Zellkultur.

2.1.2 DNA-Extraktion

Tab. 2-4: Hersteller des Laborequipments für die DNA-Extraktion.

Produktbezeichnung	Produkt-Nr.	Hersteller
NanoDrop	ND-1000	NanoDrop Technologies, Montchanin (USA)
QIAamp® DNA Mini and Blood Mini Kit	51106	Qiagen, Hilden (Deutschland)

2.1.3 PCR

Produktbezeichnung	Produkt-Nr.	Hersteller
Primer <i>hrp2</i> ; <i>hrp3</i>		Eurofins Genomics, Ebersberg (Deutschland)
Taq DNA Polymerase, 5 units/µl	1005476	QIAGEN, Hilden (Deutschland)
dNTPs	M30154100	Genaxxon bioscience GmbH, Ulm (Deutschland)
Q-Solution	160019701	QIAGEN, Hilden (Deutschland)
10x Buffer	154054741	QIAGEN, Hilden (Deutschland)
Nuclease-Free Water	129114	QIAGEN, Hilden (Deutschland)
SeaKem® LE Agarose	50004	Lonza, Basel (Schweiz)

Tab. 2-5: Hersteller der Reagenzien für die konventionelle PCR.

Tab. 2-6: Software zur Analyse der konventionellen PCR.

Produktbezeichnung	Hersteller
QIAxcel Screen Gel [®] software	QIAGEN, Hilden

Tab. 2-7: Hersteller des Laborequipments für die konventionelle PCR.

Produktbezeichnung	Produkt-Nr.	Hersteller
96-Well <i>PCR</i> Platte	710884	Biozym, Hessisch Oldendorf (Deutschland)
SealMat für 96 Well Platte	710889	Biozym, Hessisch Oldendorf (Deutschland)
Thermal Cycler	PTC-200	MJ Research, Watertown (USA)
Sub-Cell® GT Cell	1704401	Bio-Rad, Hercules (USA)
QIAxcel	9002123	QIAGEN, Hilden (Deutschland)

2.1.4 qPCR

Tab. 2-8:	Hersteller der Reagenzien für die qPCR.
-----------	---

Produktbezeichnung	Produkt-Nr.	Hersteller
Primer $hrp2/hrp2_v2$, $hrp3/hrp3_v2$, $cytb$, β -tub		Eurofins Genomics, Ebersberg
Sonden <i>hrp2/hrp2_v2</i> , <i>hrp3</i> /hrp3_v2, <i>β-tub</i>		
Sonde cytb		Sigma-Aldrich Chemie GmbH, Taufkirchen
SensiFAST™ Probe No-ROX Kit	BIO-86005	Bioline, London (Großbri- tannien)
TaqMan™ Multiplex Master Mix	4484264	Thermo Fisher Scientific Baltics UAB (Litauen)

 Tab. 2-9:
 Hersteller des Laborequipments f
 ür die qPCR.

Produktbezeichnung	Produkt-Nr.	Hersteller
DNA/RNA UV-cleaner box UVT-S-AR		Biosan, Riga (Latvia)
QIAgilityTM		Qiagen, Hilden (Ger- many)
LightCycler® 480 II		Roche, Pleasanton (USA)
480 Multiwell Palette	04729749001	Roche Diagnsotic
LightCycler® 480 Sealing Foil	04729757001	Roche, Pleasanton (USA)

Tab. 2-10: Software zur Vorbereitung und Durchführung der qPCR.

Produktbezeichnung	Hersteller
LightCycler® 480 Software 1.5.1	Roche, Pleasanton (USA)
QIAgility Pure Precision 4.17.1	QIAgen, Hilden

2.1.5 Standardkurve und Detektionslimit

Tab. 2-11: Hersteller der Reagenzien für die Erstellung der Standardkurve.

Produktbezeichnung	Produkt-Nr.	Hersteller
Hoechst 33342	H1399	Thermo Fisher Scientific

Tab. 2-12: Hersteller des Laborequipments für die Erstellung der Standardkurve.

Produktbezeichnung	Produkt-Nr.	Hersteller
QIAsymphony		QIAGEN, Hilden
QIAsymphony DSP DNA Midi Kit	93725596	QIAGEN, Hilden
BD FACSCanto [™] II Flow Cytometer		BD Biosciences

2.2 Methoden

Die Beschreibung der Methoden beschränkt sich auf eine auf Verständlichkeit konzentrierte Zusammenfassung. Für die exakte Durchführung sind jeweils einzelne Protokolle und *SOPs* vorhanden, auf die sich innerhalb dieser Arbeit in einigen Fällen bezogen wird.

2.2.1 Zellkultur

Drei unterschiedliche Laborstämme von *P. falciparum* mit bekanntem Genstatus der *hrp2*- und *hrp3*-Gene wurden in *In-vitro*-Kultur gehalten (vgl. Tab. 2-13).

	hrp2	hrp3	β-tubulin	cytochrom b
PfDd2	X	\checkmark	\checkmark	\checkmark
PfHB3	\checkmark	Х	\checkmark	\checkmark
Pf3D7	✓	✓	✓	✓

Tab. 2-13: Genstatus von P. falciparum-Laborstämmen bezüglich der Gene hrp2, hrp3, β-tubulin und cy tochrom b.

Die optimalen Bedingungen für die Plasmodien wurden durch Kultivieren der Parasiten in *Medium Complete* (vgl. Tab. 2-14) und unter Zugabe von Erythrozytenkonzentrat (Blutgruppe 0+) bis zu einem Hämatokritwert von 2,5 % geschaffen. Die Kulturflaschen wurden bei 37 °C in einem Inkubator bei 5 % Sauerstoff und 5 % Kohlenstoffdioxid inkubiert.

Tab. 2-14: Zusammensetzung des Medium Complete.

Inhaltsstoffe und deren Grundkonz.	Volumen in ml
Medium (RPMI 1640)	500
Albumax II Lösung	50
HEPES solution (1 M)	12
L-Glutamin (200 mM)	6
Gentamycin (50 mg/ml)	0,5

Täglich, mit Ausnahme an den Wochenenden, wurden dünne Blutausstriche der Kultur gemacht und das Medium ausgetauscht. Der auf einem Objektträger ausgestrichene Bluttropfen wurde 10 Sekunden in 100 % Methanol fixiert und nach anschließender Trocknung ca. 20 Minuten in einer 5 %-igen Giemsa-Lösung gefärbt (in Phosphatpuffer). Die anschließend durch Auszählung am Mikroskop bestimmte Parasitämie sollte für optimales Wachstum der Parasiten 1 % nicht wesentlich übersteigen. Je nach bestimmter Parasitämie wurde die Kultur anschließend verdünnt.

2.2.1.1 Auftauen der Laborstämme

Die drei unterschiedlichen Laborstämme wurden aus einem Kryoröhrchen (- 150 °C) aufgetaut und dann in Kultur gegeben. Dazu wurde zunächst 12%-iges Natriumchlorid (steril) und nach 5-minütiger Inkubation 1,6 %-iges Natriumchlorid (steril) der Kultur tröpfchenweise schwenkend hinzugegeben und anschließend durch Abnahme des Überstandes nach Zentrifugation wieder entfernt. Nach Waschung mit *Medium Complete* und Verwurf des abzentrifugierten Überstandes wurde das Pellet in eine Kulturfalsche übertragen, das Blutvolumen durch Erythrozytenkonzentrat ggf. auf 500 µl aufgefüllt und 19,5 ml *Medium Complete* hinzugefügt.

2.2.1.2 Synchronisation der Parasitenstadien

Für die DNA-Extraktion wurden die Plasmodien bei einer relativ hohen Parasitämie vor allem im Ringstadium benötigt, da das Hämozoin, das der Schizont speichert, die DNA-Gewinnung inhibieren kann.

Zur Synchronisierung einer Kultur wurden zwei Strategien angewandt.

Die erste Variante bietet den Vorteil, die Kultur in zwei Fraktionen aufzuteilen. Hämozoin ist ein paramagnetisches Polymer, welches sich nach Verstoffwechslung des Hämoglobins in den Trophozoiten und Schizonten anreichert. In Ringstadien und Merozoiten ist es noch nicht zu finden. Aufgrund des magnetischen Effekts des Hämozoin bleibt die Fraktion der Schizonten und Trophozoiten an einem Magneten hängen, währenddessen die Fraktion der nicht-infizierten Erythrozyten und der mit Ringstadien infizierten Erythrozyten aufgrund des lediglich vorhandenen diamagnetischen Hämoglobins an dem Magneten vorbei läuft (Paul et al., 1981).

Die Parasitenkultur wurde auf eine an einem Magneten befestigte Säule mit Filter pipettiert (vgl. LD columns, Tab. 2-3). Vor und nach Durchlauf der Kultur wurde die Säule mit *Medium Complete* gespült. Die mit Schizonten infizierten Erythrozyten bleiben innerhalb des Filters hängen, während die Fraktion der Merozoitenund Ringstadien als Durchlauf unter der Säule aufgefangen werden konnten. Nach Entfernen der Säule von dem Magneten wurde eine zweite Spülung mit *Medium Complete* durchgeführt. Mit dem Durchlauf dieser Spülung wurde die Fraktion der Schizonten gewonnen. Beide Kulturen wurden in einem Falcon bei 1800 *xg* für fünf Minuten zentrifugiert und das Pellet unter Zugabe von *Medium Complete* und ggf. Erythrozytenkonzentrat in separate Kulturflaschen gegeben, in denen sich dann die jeweils gegensätzlich synchronen Kulturen befanden.

Die zweite Variante zur Synchronisation einer Kultur basiert auf Sorbitol. Während der unterschiedlichen Blutstadien der Parasiten variiert die Permeabilität der Zellmembran für Anionen und Zucker. Die Zugabe des Sorbitols führt zu einer hypotonischen Lyse der mit Schizonten infizierten Erythrozyten (Lambros and Vanderberg, 1979).

Das Pellet der Kultur wurde dazu tröpfchenweise mit 5 %-iger, steril filtrierter Sorbitollösung versetzt und fünf Minuten bei Raumtemperatur inkubiert. Nach Zentrifugation und Verwurf des Überstands wurde zweimal mit 10 ml *Medium Complete* gewaschen und anschließend das Pellet wieder in eine Kulturflasche unter Zugabe von 19,5 ml *Medium Complete* übertragen. Durch diese Methode werden ältere Stadien wie Trophozoiten und Schizonten zum Lysieren gebracht und vor allem Ringstadien verbleiben in der Kultur.

Nachdem ein größtenteils synchroner Lebenszyklus bei einer Parasitämie von ca. 2 - 5 % mit Ringstadien erreicht wurde, wurde das Pellet bei einem Volumen von ca. 1 ml eingefroren.

Die Parasitämien zum Zeitpunkt des Einfrierens wurden bestimmt und sind Tab. 2-15 zu entnehmen. Für den Pf3D7-Stamm wurde der Vorgang zweimal durchgeführt.

Laborstamm	Volumen [ml]	Parasitämie [%]
Pf3D7①	1	4,5
Pf3D7@	1	2,8
PfHB3	1	2,95
PfDd2	1	2,86

Tab. 2-15:Parasitämien der für die DNA-Extraktion eingefrorenen Laborstämme Pf3D7, PfHB3 und
PfDd2.

2.2.1.3 Einfrieren der Parasiten

Eine kleine Menge Parasitenkultur wurde vor der DNA-Extraktion als Reserve abgezweigt. Das Pellet der Kultur wurde unter Zugabe von Glycerolyte in Verhältnis 5:3 in einem Kryoröhrchen bei - 150 °C eingefroren.

2.2.2 DNA-Extraktion

Die DNA-Extraktionen der Kontrollen sowie der klinischen Proben wurden jeweils entsprechend der Protokolle des "*QIAamp® DNA Mini and Blood Mini Handbook*" (QIAGEN, 2016) durchgeführt.

2.2.2.1 DNA-Extraktion der Positiv- und Negativkontrollen

Die eingefrorenen Parasitenkulturen der Stämme Pf3D7^①, PfHB3 und PfDd2 (vgl. Tab. 2-15) wurden aufgetaut und durch Zugabe von 2 ml Vollblut auf ein Gesamtvolumen von knapp über 3 ml gebracht. Anschließend wurden 16 Aliquots von je 200 µl erstellt. Die Zugabe von Vollblut sollte die Bedingungen im menschlichen Blut simulieren. Die eingefrorene Parasitenkultur Pf3D7^② (vgl. Tab. 2-15) wurde ohne Zugabe von Vollblut genutzt und entsprechend auf lediglich fünf Eppendorf-Tubes je 200 µl verteilt.

Anschließend wurde die DNA-Extraktion entsprechend des Protokolls aus dem "QIAamp® DNA Mini and Blood Mini Handbook" (QIAGEN, 2016, pp. 26–28) "DNA Purification from Blood or Body Fluids" durchgeführt.

Jedes Aliquot wurde mit 20 µl Protease versehen, um die Zellen zu lysieren und Proteine sowie DNA zu denaturieren. Unter Zugabe von 200 µl des *AL buffer* wurden die Zellen während einer 10-minütigen Inkubation bei 56 °C lysiert und anschließend mit 200 µl 100%-igem Ethanol versehen, welches die Bindung der DNA an die Silikonmembran verbessert. Das gesamte Volumen wurde auf die Säulen mit den Silikonmembranen übertragen. Nach Zentrifugation bei 6000 xgfür eine Minute wurde das Auffang-Gefäß verworfen und die Säule in ein frisches Gefäß platziert. Zwei Waschungen mit *washing buffer* 1 und 2 folgten. Anschließend wurde die DNA durch Zugabe von 100 µl *AE buffer* eluiert, fünf Minuten inkubiert und nach Zentrifugation das Filtrat mit der eluierten DNA gewonnen wurde.

Zur Überprüfung des Erfolgs der DNA-Extraktion wurde die Konzentration der DNA sowie deren Reinheit mittels des Nano Drop ND-1000 (vgl. Tab. 2-4) bestimmt. DNA absorbiert bei einer Wellenlänge von 260 nm, Proteine und Phenole dagegen bei ca. 280 nm. Der Quotient aus 260/280 ist daher ein Faktor für die Reinheit der DNA. Ein Wert von ≥ 1,8 wird dabei als rein angesehen (Thermo Fischer Scientific, 2015). In der Tab. 10-1 des Anhangs sind die Konzentrationen sowie der Quotient der Wellenlängen jeder einzelnen DNA-Extraktion aufgetragen. Die niedrigen Werte bei der Messreihe der DNA-Extraktion aus Erythrozytenkonzentrat (uninf. RBC) gehen darauf zurück, dass reife Erythrozyten keinen Zellkern und dadurch keine DNA mehr besitzen. Die gemessene DNA sollte sich daher auf den Anteil der Retikulozyten im Blut beschränken. Nach der Messung wurden die mit Vollblut versetzten Isolate gepoolt, ein zweites Mal gemessen, auf vier Eppendorf-Tubes aliquotiert und bei - 20 °C aufbewahrt (vgl. Tab. 2-16).

Stamm		Pool
PfDd2	Konz. [ng/µl]	35,1
	260/280	1,99
PfHB3	Konz. [ng/µl]	26,0
	260/280	1,83
Pf3D7①	Konz. [ng/µl]	33,0
	260/280	1,98

Tab. 2-16: Ergebnisse der NanoDrop-Messungen der gepoolten DNA-Extrakte von Pf3D7 *O*, PfHB3 und PfDd2.

2.2.2.2 DNA-Extraktion von Filterpapier-Feldproben

Für die vorliegende Arbeit wurden klinische Proben verwendet, die im Rahmen von zwei verschiedenen Studien (NanoFRET und NoHRP2) zuvor gesammelt wurden und für die Arbeit zur Verfügung standen. Hierfür wurden Blutproben freiwilliger Personen aus Gabun von April 2017 bis Juni 2018 am CERMEL in Lambaréné, Gabun, gesammelt. NanoFRET war eine abgeschlossene, retrospektive Beobachtungsstudie, NoHRP2 ist eine noch nicht abgeschlossene, prospektive Beobachtungstudie. Eingeschlossen werden Personen aus Lambaréné und der ländlichen Umgebung, die mindestens zwei Jahre alt sind und die persönlich oder deren Erziehungsberechtigte*r die Zustimmung zur Teilnahme unterschreiben. Blut aus der Fingerbeere oder durch eine Venenpunktion gewonnen, wurde mittels eines dicken Bluttropfens und Mikroskopie (vgl. 1.1.1) und/oder einem Schnelltest auf Malaria getestet. Für eine spätere DNA-Extraktion wurden Blutproben außerdem als Vollblut eingefroren und auf Filterpapier gesammelt (Whatman FTA Elute Card, Protein Saver Card). Beide Studien wurden unter den Nummern CEI-005/2016 für die NanoFRET- und CEI-005/2017 für die NoHRP2-Studie vom Institutional Ethics Committee at the Centre de Recherches Médicales de Lambaréné genehmigt. Bei den Proben der NanoFRET-Studie konnte zum Teil auf schon extrahierte DNA aus Whatman FTA Elute Cards zurückgegriffen werden. Weitere Vollblutproben wurden, wie in Kapitel 2.2.2.1 beschrieben, entsprechend des "QIAamp® DNA Mini and Blood Mini Handbook" (Thermo Fischer Scientific, 2015, pp. 26–28) "DNA Purification from Blood or Body Fluids" extrahiert.

Die getrockneten Proben auf der *Whatman FTA Elute Card* wurden mit einer in Ethanol gereinigten Schere in kleinste Stückchen geschnitten und nach Zugabe von 500 µl Wasser gründlich gevortext. Die Flüssigkeit wurde entfernt und die Probe mit 30 µl frischem Wasser 30 Minuten lang bei 98 °C inkubiert. Nach abermaligem Vortexen wurde das Eluat abgenommen und bei - 20 °C aufbewahrt.

In einigen Fällen wurde DNA auch von *Protein Saver Cards* extrahiert, da sonstige Proben nicht mehr vorhanden waren. Hierzu wurde das Blut auf der *Protein Saver Card* entsprechend des *"DNA purification from dried blood spots"* des "*QIAamp*® *DNA Mini and Blood Mini Handbook*" (Thermo Fischer Scientific, 2015, pp. 42–43) extrahiert.

Dazu wurde das Papier mit den getrockneten Blutstropfen ebenfalls in kleine Stückchen geschnitten. Drei aufeinanderfolgende Inkubationsschritte unter Zugabe von 180 μ I *ATL buffer* bei 85 °C für 10 Minuten, 20 μ I Proteinase K bei 56 °C für eine Stunde und 200 μ I *AL buffer* bei 70 °C für 10 Minuten folgten. Zusammen mit 200 μ I Ethanol wurde anschließend die Flüssigkeit um die Stückchen auf die Silikon-Säulen übertragen. Die weiteren Waschungen sowie die Eluierung entsprachen dem Vorgehen, wie in Kapitel 2.2.2.1 beschrieben.

2.2.3 Quantitative Polymerase-Kettenreaktion (qPCR)

Die quantitative *PCR* (*qPCR*) mit der grafischen Erfassung und Darstellung der Amplifikation durch die Fluoreszenzsignale der Sonden, wie in Kapitel 1.1.3.2 beschrieben, wurde mit dem *LightCycler*® *480 II* der Firma Roche durchgeführt. Der *LightCycler*® arbeitet mit den Reaktionsgemischen aus einer *480-Multiwell-Palette* (vgl. Tab. 2-9).

Die Beladung der *Multiwell*-Palette erfolgte durch den *QlAgility*[™] der Firma Ql-AGEN. Nach Programmierung werden die einzelnen Bänke mit den Proben und den finalen Mastermischungen besetzt. Je 7 µl der angefertigten finalen Mastermischung und jeweils 3 µl der jeweiligen Probe wurden durch den Roboter in die einzelnen Vertiefungen der *Multiwell*-Palette pipettiert.

Bevor die Palette in den *LightCycler*® transferiert wurde, wurden die Öffnungen durch eine Folie (vgl. Tab. 2-9) verschlossen und die Palette bei 1600 xg eine Minute lang zentrifugiert.

2.2.3.1 Singleplex-qPCR

Für die Detektion der Gene *hrp2* und *hrp3* wurden neue Primer und Sonden designt. Diese sollten bezüglich ihrer Sensitivität und Spezifität mit den zuvor verwendeten Primern und Sonden verglichen werden.

Im Verlauf dieser Arbeit werden die Primer und Sonden der neuen Generation, die hierfür neu designt und bestellt wurden, fortan als *hrp2_v2* bzw. *hrp3_v2* und

die Primer und Sonden der alten Generation, die schon in vorherigen Experimenten benutzt wurden, lediglich als *hrp2* und *hrp3* bezeichnet. In den Abb. 10-1 und Abb. 10-2 des Anhangs sind die Sequenzen der Gene sowie die Bindungsstellen der Primer und Sonden dargestellt.

Die erste Testung dieser Primer und Sonden der neuen Generation wurde in einer *singleplex*-Reaktion durchgeführt. Dabei ist nur jeweils eine Sonden- und Primerkombination (= *Assay*) für ein Gen in jedem finalen Reaktionsmix enthalten. Die Primer binden an einer auf dem entsprechenden Gen liegenden Sequenz, wie es der Tab. 2-17 und Tab. 2-18 zu entnehmen ist. Das Amplikon entspricht in diesen Fällen nicht der Länge des ganzen Gens, sondern nur einer <150 bp langen Sequenz, da dies für die Durchführung einer *qPCR* mit *hydrolysis probes* empfohlen wird (Roche Diagnostics GmbH, 2008, p. 68).

Die Sonden sind jeweils an ihrem 5'-Ende mit dem jeweiligen Fluoreszenzfarbstoff (HEX, FAM) und an ihrem 3'-Ende mit einem *Minor-groove-binder (MGB)* und dem *quencher* (EQ) modifiziert. Die Sequenzen und Eigenschaften sind Tab. 2-19 und Tab. 2-20 zu entnehmen.

Die vom Hersteller gelieferten Stammlösungen von 100 μ M wurden in 100 μ I-Aliquots auf 10 μ M verdünnt.

Primer_v2	Sequenz (5' -> 3')	bp	Tm [°C]
hrp2_v2 Fwd	TTCCGCATTTAATAATAACTTGTG	24	54,2
hrp2_v2 Rev	CGGCTACATGATGAGCATG	19	56,7
hrp3_v2 Fwd	CTCCGAATTTAACAATAACTTGTTTA	26	55,3
hrp3_v2 Rev	CAGCTACATGATGTGCATG	19	54,5

 Tab. 2-17:
 Sequenzen und Eigenschaften der hrp2_v2- und hrp3_v2-Primer.

Primer	Sequenz (5' -> 3')	bp	Tm [°C]
hrp2 Fwd	AGGACTTAATTTAAATAAGAGATTA	25	51,5
hrp2 Rev	GCTACATGATGAGCATGA	18	51,4
hrp3 Fwd	AGGACTTAATTCAAATAAGAGATTA	25	53,1
hrp3 Rev	AGCTACATGATGTGCATGA	19	52,4

T-6 0 40.	Converse und Finance offen day hum 2 und hum 2 Drivery
Tab. 2-18:	Sequenzen und Eigenschaften der nrp2- und nrp3-Primer.

Tab. 2-19: Sequenzen und Eigenschaften der hrp2_v2- und hrp3_v2-Sonden.

Sonde v2	Sequenz 5' -> 3'	Modifikation 5 ⁴	Modifikation 3 ⁴	bp	Tm [°C]
hrp2_v2	ACTCAAGCACAT- GTAGATGATGCC	5' - HEX	3' - MGBEQ	24	61,0
hrp3_v2	AGTCAAGCACAT- GCAGGTGATGCC	5' - FAM	3' - MGBEQ	24	64,4

Tab. 2-20: Sequenzen und Eigenschaften der hrp2- und hrp3-Sonden.

Sonde	Sequenz 5' -> 3'	Modifikation 5 ⁴	Modifikation 3 ⁴	bp	Tm [°C]
hrp2	TACACGAAACTCA- AGCACA	5' - HEX	3' - MGBEQ	19	52,4
hrp3	GAAAGTCA- AGCACATGCAG	5' - FAM	3' - MGBEQ	19	54,5

In einem ersten Versuch wurde der neue *Assay* mit dem alten *Assay* verglichen. Als Probe wurden lediglich die extrahierte DNA des Pf3D7²-Stammes als Positivkontrolle, sowie extrahierte DNA aus nicht-infiziertem Erythrozytenkonzentrat und Wasser als Negativkontrollen eingesetzt.

Alle drei Proben wurden jeweils in Triplikaten mit den in Tab. 2-21 dargestellten vier verschiedenen Mastermischungen gemessen. Jede Mastermischung wurde daher für neun finale Reaktionsmischungen benötigt (3 *Proben x* 3 *Replikaten*). Die Herstellung der Mastermischung war in der Form in unserer AG schon etabliert.
Mastermi- schung	Reagenzien	finale Konz. [nM]	V [µl] pro 3 µl Probe	V [µl] pro q <i>PCR</i> Lauf
1	SensiFast NoRox Kit	1x	5	45
	Forward Primer hrp2_v2	400	0,4	3,6
	<i>Reverse</i> Primer <i>hrp2_v2</i>	400	0,4	3,6
	Sonde hrp2_v2	100	0,1	0,9
	Nuklease freies Wasser		1,1	9,9
2	SensiFast NoRox Kit	1x	5	45
	Forward Primer hrp2	400	0,4	3,6
	Reverse Primer hrp2	400	0,4	3,6
	Sonde hrp2	100	0,1	0,9
	Nuklease freies Wasser		1,1	9,9
3	SensiFast NoRox Kit	1x	5	45
	Forward Primer hrp3_v2	400	0,4	3,6
	<i>Reverse</i> Primer <i>hrp3_v2</i>	400	0,4	3,6
	Sonde hrp3_v2	100	0,1	0,9
	Nuklease freies Wasser		1,1	9,9
4	SensiFast NoRox Kit	1x	5	45
	Forward Primer hrp3	400	0,4	3,6
	Reverse Primer hrp3	400	0,4	3,6
	Sonde hrp3	100	0,1	0,9
	Nuklease freies Wasser		1,1	9,9

Tab. 2-21: Reaktionsansätze für Vergleich des neuen und alten Assays in singleplex-qPCR mit Pf3D7 und Negativkontrollen als template.

Die Mastermischungen wurden per Hand entsprechend der letzten Spalte in jeweils ein 1,5 ml-Eppendorf-Tubes pipettiert. Die Verteilung von je 7 μ l der Mastermischung und je 3 μ l der jeweiligen Proben auf die einzelnen Vertiefungen der *Multiwell*-Palette erfolgte anschließend durch den zuvor programmierten *QlAgility*TM.

Die PCR-Bedingungen sind Tab. 2-22 zu entnehmen.

PCR-Bedingungen		Temperatur	Dauer	Tempo
Aktivierung		95°C	4 Min.	4,8°C/s
Zyklen (45x)	Denaturation	95°C	10 Sek.	4,8°C/s
	Primer-Hybridisierung	61°C	80 Sek.	2,5°C/s
Kühlung		60°C	10 Min.	4,8°C/s

Tab. 2-22: PCR-Bedingungen für die singleplex-qPCR.

Kreuzreaktivität der neuen hrp-Assays

Um die Spezifität der Primer und Sonden der neuen Generation zu testen, wurden die DNA-Extraktionen aus den Stämmen PfDd2 und PfHB3 hinzugenommen, da sie jeweils eines der beiden *hrp*-Gene nicht exprimieren (vgl. Tab. 2-13). Die Zusammensetzung der beiden Mastermischungen für die Amplifikation von *hrp2* und *hrp3* ist Tab. 2-23 zu entnehmen.

Mastermi- schung	Reagenzien	finale Konz. [nM]	V [µl] pro Probe	V [µl] pro <i>qPCR</i> Lauf
1	SensiFast NoRox Kit	1x	5	75
	Forward Primer hrp2_v2	400	0,4	6
	<i>Reverse</i> Primer <i>hrp2</i> _v2	400	0,4	6
	Sonde hrp2_v2	100	0,1	1,5
	Nuklease freies Wasser		1,1	16,5
2	SensiFast NoRox Kit	1x	5	75
	Forward Primer hrp3_v2	400	0,4	6
	<i>Reverse</i> Primer <i>hrp</i> 3_v2	400	0,4	6
	Sonde <i>hrp</i> 3_v2	100	0,1	1,5
	Nuklease freies Wasser		1,1	16,5

Tab. 2-23:Reaktionsansätze für Kreuzreaktivitäts-Test des neuen hrp-Assays in singleplex-qPCR mit
Pf3D7 Ø, PfHB3, PfDd2 und Negativkontrollen als template.

Insgesamt wurde die *qPCR* mit sechs Proben durchgeführt: Wasser und DNA-Extrakt aus Vollblut als Negativkontrollen, sowie DNA-Extrakt aus den Blutkulturen der PfDd2, PfHB3 und Pf3D7^①-Stämmen. Jede Probe wurde einzeln mit beiden Mastermischungen und zusätzlich in Triplikaten gemessen. Die letzte Spalte der Tab. 2-23 ergibt sich aus der Multiplikation der Volumina pro einzelne Reaktion mit der Anzahl der Proben und der Anzahl der Replikaten (5x3 = 18). Die *PCR*-Bedingungen sind Tab. 2-22 zu entnehmen.

Kreuzreaktivität einzelner Komponenten

Zur getrennten Beurteilung der Kreuzreaktivität der einzelnen Komponenten (Primer und Sonden) wurden in einem weiteren Schritt in jeder *qPCR* vier *Assays* verwendet. Die üblichen *hrp2*- und *hrp3-Assays* als Positivkontrollen (*Assay* A und *Assay* B) sowie die beiden Kreuzreaktions-*Assays* 1 und 2 (*Assay* C und *Assay* D), um zu überprüfen, ob in einer solchen Paarung eine Amplifikation durch Kreuzreaktionen stattfindet (vgl. Tab. 2-24).

		Sonde			
		hrp2	hrp3		
Primer	hrp2	Assay A = hrp2-Assay	Assay C = Kreuzreaktion-Assay1		
	hrp3	Assay D = Kreuzreaktion-Assay2	Assay B = hrp3-Assay		

Tab. 2-24: Erstellung der singleplex-Kreuzreaktions-Assays zur Beurteilung einzelner Komponenten.

Es wurden insgesamt fünf *qPCRs* mit den vier *Assays* durchgeführt, um die neuen Primer separat von den alten Primern und die neuen Sonden separat von den alten Sonden beurteilen zu können. Jeder der vier *Assays* einer *qPCR* wurde jeweils mit den Primern/ mit der Sonde der dem Diagramm zu entnehmenden Generation durchgeführt (vgl. Abb. 2-1).

Abb. 2-1: singleplex-qPCR zur Testung der Kreuzreaktivität einzelner Komponenten.

Jeder *Assay* wurde auf fünf Proben angewendet: Wasser, DNA-Extrakt aus gesundem Vollblut und DNA-Extrakt aus den Blutkulturen der PfDd2, PfHB3 und Pf3D7^①-Stämmen. Jede Probe wurde in Triplikaten gemessen.

Die PCR-Bedingungen sind Tab. 2-22 zu entnehmen.

2.2.3.2 Optimierung einer 4plex-qPCR

Eine *4plex*-Reaktion beschreibt die *qPCR*-Reaktion mit dem Nachweis vier verschiedener Gene innerhalb eines Reaktionsansatzes. Neben den Genen *hrp2* und *hrp3* wurden die Proben auf das Vorhandensein der Gene β -tubulin und cytochrom b untersucht (vgl. Tab. 2-13).

Die Mastermischungen setzten sich somit aus den Primern und Sonden für diese vier Gene zusammen. Es wurden die Primer der neuen Generation ($hrp2_v2$ und $hrp3_v2$) aber die Sonden der alten Generation (hrp2 und hrp3) genutzt (vgl. Tab. 2-17 und Tab. 2-20). Für die Gene *cytochrom b* und β -tubulin wurden keine neuen Primer und Sonden designt. Die Eigenschaften sind Tab. 2-25 und Tab. 2-26 zu entnehmen. In den Abb. 10-3 und Abb. 10-4 des Anhangs sind außerdem die Sequenzen der gesamten Gene mit den Bindungsstellen der Primer und Sonden dargestellt.

Die in Tab. 2-26 fett gedruckten Buchstaben der Nukleinbasen sind sogenannte *LNA*-Basen (*locked nucleic acids*). Sie besitzen ein modifiziertes Nukleinsäure-

Molekül mit einer zusätzlichen Bindung zwischen dem 2'-Sauerstoffatom und dem 4'-Kohlenstoffatom. Es sorgt für eine erhöhte Stabilität des nach Anlagerung der Sonde entstehenden Doppelstrangs (Singh et al., 1998). Die Modifikation des 5'-Endes beinhaltet den Fluoreszenzfarbstoff (ROX bzw. Cy5), die Modifikation des 3'-Endes den zugehörigen *quencher* (BHQ2).

Primer	Sequenz (5' -> 3')	bp	Tm [°C]
cytb Forward	TACTAACTTGTTATCCTCTATTCCAGTAGC	30	62,7
cytb Reverse	CCTTTAACATCAAGACTTAATAGATTTGGA	25,4	59,9
β-tub Forward	TGATGTGCGCAAGTGATCC	19	56,7
β-tub Reverse	TCCTTTGTGGACATTCTTCCTC	22	58,4

Tab. 2-26: Sequenzen und Eigenschaften der Sonden für cytb und β -tub.

Sonde	Sequenz 5' -> 3'	Modifikation 5 ⁴	Modifikation 3 ⁴	bp	Tm [°C]
cytb	GTGCTACCATGTAAATG- TAA	5' – ROX	3' – BHQ2	20	56,0
β-tub	TAGCACATGCCGTTAAA- TATCTTCCATGTCT	5' – CY5	3' – BHQ2	31	64,2

Jeder der Fluoreszenzfarbstoffe (Modifikation des 5'-Endes) exzitiert und emittiert auf einem durch den Hersteller angegebenen Wellenlängenbereich und kann durch die entsprechenden Detektionsformate des *LightCyclers*® erfasst werden (vgl. Tab. 2-27).

Gene	Fluores- zenzfarb- stoff	Wellenlänge der Exzitation/Emission [nm]		
		des Fluoreszenzfarb- stoffs laut Hersteller der Sonden	entsprechend der Detek- tionsformate des <i>LightCycler</i> ®	
hrp2	HEX	535/556	533/580	
hrp3	FAM	495/520	465/510	
β-tubulin	Cy5	647/673	610/660	
cytochrom b	ROX	573/602	533/610	

Tab. 2-27: Zuordnung der Fluoreszenzfarbstoffe und Wellenlängen der Erregung zu den Genen hrp2, hrp3, β -tub und cytb.

Die Optimierung der *4plex*-Reaktion erfolgte ausgehend von einem zuvor etablierten Protokoll von Franziska Leonie Trauner, der *4plex-qPCR_v1* (Kreidenweiss et al., 2019; Trauner, 2019) (vgl. Tab. 2-28 und Tab. 2-29). Durch die Verwendung neuer Primer für die Gene *hrp2* und *hrp3* war eine Anpassung dieses Protokolls notwendig.

			finale Konz.	Volumen [µl] pro Probe
Mastermi-	TaqMan® Multiplex Master Mix		1x	5
schung:	hrp2	<i>Fwd</i> Primer <i>hrp2_v2</i>	400 nM	0,2
		<i>Rev</i> Primer <i>hrp2_v2</i>	400 nM	0,2
		Sonde hrp2	50 nM	0,1
	hrp3	Fwd Primer hrp3_v2	400 nM	0,2
		<i>Rev</i> Primer <i>hrp</i> 3_v2	400 nM	0,2
		Sonde hrp3	50 nM	0,1
	β-tub	Fwd Primer	400 nM	0,2
		Rev Primer	400 nM	0,2
		Sonde	100 nM	0,1
	cytb	Fwd Primer	100 nM	0,2
		<i>Rev</i> Primer	100 nM	0,2
		Sonde	50 nM	0,1
DNA-Probe				3
SUMME				10

 Tab. 2-28:
 Reaktionsansätze für die 4plex-qPCR_v1 entsprechend des Protokolls von Franziska Leonie

 Trauner (Trauner, 2019).

Tab. 2-29:PCR-Bedingungen bei der 4plex-qPCR_v1 entsprechend des Protokolls von Franziska Leonie
Trauner (Trauner, 2019).

PCR-Bedingungen		Temperatur	Dauer	Tempo
Aktivierung		95°C	20 Sek.	4,8 °C/s
Zyklen (45x)	Denaturatierung	95°C	3 Sek.	4,8°C/s
	Primer-Hybridisierung	60°C	150 Sek.	2,5°C/s
Kühlung		40°C	30 Sek.	4,8°C/s

Die Optimierung lief wie in Abb. 2-2 aufgezeigt in insgesamt drei Schritten ab. In jedem übergeordnetem Optimierungsschritt wurden einzelne Komponenten der *qPCR* variiert und für die nachfolgenden Experimente jeweils der beste Wert der

zuvor getesteten Komponente übernommen. Dabei war der erste Durchgang darauf ausgelegt eine zuverlässige und eindeutige Amplifikation in allen Kanälen zu erreichen und die Fluoreszenzintensitäten der einzelnen Kanäle einander anzugleichen. In einem zweiten Durchgang wurde das Hauptaugenmerk auf das Erreichen sigmoidaler Fluoreszenzkurven gelegt.

Im Laufe der Optimierung mussten die Primer und Sonden mehrmals nachbestellt werden. Der erste Optimierungsschritt wurde somit mit der Bestellung 1 begonnen und im Verlauf mit der Bestellung 2 fortgeführt. Bei der Bestellung 1 handelt es sich dabei um die Primer und Sonden, die auch schon bei den *singleplex*-Reaktionen genutzt wurden. Der zweite Optimierunsschritt wurde im Anschluss ausschließlich mit der Bestellung 2 durchgeführt.

Durch die Veränderungen in den Fluoreszenzintensitäten und Fluoreszenzkurven, die sich unter der Bestellung 3 im Vergleich zu den vorher durchgeführten Messungen unter der Bestellung 2 ergaben, wurde der letzte, dritte Optimierungsschritt nötig.

Abb. 2-2: Optimierungsschritte zur Erstellung eines 4plex-qPCR_v2-Protokolls.

In den Tab. 2-30 und Tab. 2-31 sind die für den ersten Optimierungsschritt getesteten Werte in fett gedruckt dargestellt. Jeweils unterstrichen erscheint der Wert, der nach diesem ersten Schritt als beste Einstellung festgesetzt wurde. Daraus ergab sich das Protokoll A.

Tab. 2-30: PCR-Bedingungen im ersten Optmierungsschritt zur Erstellung des Prot. A (vgl. Abb. 2-2)

PCR-Bedingungen (A)		Temperatur	Dauer	Tempo
Aktivierung		95°C	20 Sek.	4,8 °C/s
Zyklen (45x)	Denaturation	95°C	3 Sek.	4,8°C/s
	Primer-Hybridi- sierung	60°C/61°C/ <u>62°C</u> ⁽¹⁾	150 Sek.	2,5°C/s
Kühlung		40°C	30 Sek.	4,8°C/s

Tab. 2-31: Reaktionsansätze im ersten Optimierungsschritts zur Erstellung des Prot. A. (vgl. Abb. 2-2).

Protokoll A			Konz. final [nM]	V [µl] pro Probe
Mastermi- schung:	TaqMa	an® Multiplex Master Mix	1x	5
	hrp2	Fwd Primer hrp2_v2	<u>400</u> /200/100 ⁽³⁾	0,2
		<i>Rev</i> Primer <i>hrp2_v2</i>	<u>400</u> /200/100 ⁽³⁾	0,2
		Sonde hrp2	50	0,1
	hrp3	Fwd Primer hrp3_v2	400	0,2
		<i>Rev</i> Primer <i>hrp3_v2</i>	400	0,2
		Sonde hrp3	<u>50</u> /100 ⁽²⁾	0,1
	β-tub	Fwd Primer	400/500/ <u>600</u> ⁽⁶⁾	0,2
		Rev Primer	400/500/ <u>600</u> ⁽⁶⁾	0,2
		Sonde	100/150/200/250/ <u>300⁽⁷⁾</u>	0,1
	cytb	Fwd Primer	100/200/ <u>400</u> ⁽⁴⁾	0,2
		<i>Rev</i> Primer	100/200/ <u>400</u> ⁽⁴⁾	0,2
		Sonde	50/100/ <u>150</u> ⁽⁵⁾	0,1
DNA-Probe			3	
SUMME				10

Der zweite Optimierungsschritt, aus dem sich das Protokoll B ergab, wurde aufgrund sehr hoher Fluoreszenzintensitäten und zusätzlich aufgrund des sehr flachen Verlaufs der Amplifikationskurven durchgeführt, die sich am eindrücklichsten unter Messung der Feldproben mit dem Protokoll A ergaben.

In den Tab. 2-32 und

Tab. 2-33 sind die Bedingungen sowie die Einstellungen dargestellt, die variiert wurden.

Tab. 2-32: PCR-Bedingungen im zweiten Optimierungsschritts zur Erstellung des Prot. B (vgl. Abb. 2-2)

PCR-Bedingungen (B)		Temperatur	Dauer	Tempo
Aktivierung		95°C	20 Sek.	4,8 °C/s
Zyklen (45x) Primer-Hybridi- sierung	Denaturation	95°C	3 Sek.	4,8°C/s
	Primer-Hybridi- sierung	62°C ⁽¹⁾	120/ <u>150</u> /180 Sek. ⁽⁸⁾	2,5°C/s
Kühlung	·	40°C	30 Sek.	4,8°C/s

Protokoll B			Konz. final [nM]	V [µl] pro Probe
Mastermi- schung:	TaqMa Mix	an® Multiplex Master	1x	5
	hrp2	Fwd Primer hrp2_v2	400	0,2
		<i>Rev</i> Primer <i>hrp2_v2</i>	400	0,2
		Sonde hrp2	50/25/ <u>20</u> ⁽⁹⁾	0,1
	hrp3	Fwd Primer hrp3_v2	400	0,2
		<i>Rev</i> Primer <i>hrp</i> 3_v2	400	0,2
		Sonde hrp3	50/ <u>25</u> /20 ⁽⁹⁾	0,1
	β-tub	Fwd Primer	600	0,2
		<i>Rev</i> Primer	600	0,2
		Sonde	300)	0,1
	cytb	Fwd Primer	400	0,2
		<i>Rev</i> Primer	400	0,2
		Sonde	150	0,1
DNA-Probe				3
SUMME				10

Tab. 2-33: Reaktionsansätze im zweiten Optimierungsschritts zur Erstellung des Prot. B (vgl. Abb. 2-2).

Die Variation der *hrp2*- und *hrp3*-Sondenkonzentrationen wurde dabei in mehreren Kombinationen verglichen. Sie sind in der Tab. 2-34 ersichtlich.

Tab. 2-34:Kombination unterschiedlicher hrp2- und hrp3-Sondenkonz. im Rahmen des 2. Optimierungs-
schritts (9).

Kombinationen		Sonde hrp3			
		50 nM	25 nM	20 nM	
Sonde	50 nM	1. Versuch	1. Versuch	Х	
	25 nM	1. Versuch	1. Versuch	Х	
	20 nM	X	2. Versuch	2. Versuch	

Unter der Annahme, das Protokoll B sei das finale Protokoll der *4plex-qPCR_v2*, wurden die neu angesetzten Standardverdünnungen (vgl. Kapitel 2.2.4) mit diesem Protokoll gemessen.

Nach Eintreffen der dritten Bestellung der Primer und Sonden wurden die neuen Ansätze entsprechend der Konzentrationen des Protokoll B verdünnt und zunächst unter Verwendung der Verdünnungen 1 - 14 des Pf3D7²-Standards sowie der Positivkontrollen der Stämme PfDd2 und PfHB3 getestet. Die oben erwähnten Merkmale der sehr hohen Fluoreszenzintensitäten und flachen Verläufe der Amplifkationskurven konnten dabei allerdings nicht mehr festgestellt werden. Gegenteilig ergaben sich sehr niedrige Fluoreszenzintensitäten. Alle Primer und Sonden der dritten Bestellung wurden in neuen Lösungen mit größeren Volumina ein zweites Mal angesetzt, um einen Fehler bei der Erstellung der Verdünnungen auszuschließen. Nachdem dieser Schritt nichts an dem Verlauf der Kurven änderte, wurde wieder auf das Protokoll A mit den höheren Konzentrationen der *hrp2*- und *hrp3*-Sonden zurückgegriffen.

Für alle Messungen der Optimierungsschritte wurde die extrahierte DNA aus den Stämmen Pf3D7^①, PfDd2 und PfHB3 verwendet sowie Wasser und extrahierte DNA aus gesundem Vollblut als Negativkontrollen.

2.2.3.3 Farbkompensation

Da die einzelnen Filter des *LightCyclers*®, mit denen die Fluoreszenzsignale erfasst werden, einen zum Teil überschneidenden Wellenlängenbereich erfassen, ist eine Farbkompensation erforderlich. Hierbei teilt man der Software mit, welche spezifische Fluoreszenzkurve von welchem Farbstoff resultiert und somit dominierend für ein Detektionsformat sein soll.

Jeweils nach Beendung der ersten beiden Optimierungsdurchläufe wurde mit dem dabei entstandenem, finalen Protokoll (vgl. Tab. 3-22, Tab. 3-23, Tab. 3-24) eine Farbkompensation durchgeführt.

Die Reaktionsmischungen wurden entsprechend der

Tab. 2-35 erstellt, wobei jede Mischung in fünf Replikaten hergestellt und entsprechend des in Tab. 2-36 beschriebenen Programms gemessen wurde.

		HEX	FAM	Cy5	ROX	BLANK
TaqMan® Multiplex Mas- ter Mix		5 µl				
Primer	alle	je 0,2 µl				
Osadan	hrp2	0,1 µl	Х	Х	Х	Х
	hrp3	Х	0,1 µl	Х	Х	Х
Sonden	β-tub	Х	Х	0,1 µl	Х	Х
	cytb	Х	Х	Х	0,1 µl	Х
Nuklease freies Wasser		0,3 µl	0,3 µl	0,3 µl	0,3 µl	3,4 µl
Pf3D7①		3 µl	3 µl	3 µl	3 µl	Х

Tab. 2-35:	Erstellung der Reaktionsansätze für die Farbkompensation.
------------	---

Tab. 2-36: PCR-Bedingungen für die Farbkompensation.

PCR-Bedingungen		Temperatur	Dauer	Tempo
Aktivierung		95 °C	20 Sek.	4,8 °C/s
Zyklen (45x)	Denaturation	95 °C	3 Sek.	4,8 °C/s
	Primer Hybridi- sierung	62 °C	150 Sek.	2,5 °C/s
Farbkompensation		40 °C	30 Sek.	2,5 °C/s
		67 °C	Kontinuierlich	1 Aufnahme/°C
Kühlung		40 °C	30 Sek.	4,8 °C/s

Anschließend konnten die Informationen dieses Experiments gespeichert und auf die weiteren Experimente, die mit den gleichen Primer- und Sondenkonzentrationen durchgeführt wurden, angewandt werden.

2.2.3.4 Messung von klinischen Proben

Entsprechend des nach dem ersten Optimierungsdurchgang entstandenen Protokolls A unter der Bestellung 2 (vgl. Tab. 3-22 und Tab. 3-23) wurden Feldproben der Studien NoHRP2 und NanoFRET gemessen. Zu Teilen handelte es sich dabei um Proben, die schon in vorherigen Messungen unklare Ergebnisse erbrachten und die mit dem neuen Protokoll überprüft werden sollten. Die Proben der Greendot-Studie (einer Untergruppe der NoHRP2-Studie) wurden hingegen zum ersten Mal gemessen.

2.2.4 Standardverdünnung

Um eine Aussage über die Sensitivität der optimierten *qPCR* treffen sowie einen Vergleich zu einer konventionellen *PCR* (k. *PCR*) ziehen zu können, wurden Proben mit absteigender Parasitämie gemessen und die Parasitenlast bestimmt, ab welcher keine eindeutige Aussage mehr über das Vorhandensein der Gene getroffen werden konnte.

Eine Verdünnungsreihe des Pf3D7-Stammes war noch von vorherigen Experimenten vorhanden. Sie wurde von Johanna Griesbaum im Rahmen der Masterarbeit von Miriam Rodi (Rodi, 2018, nicht veröffentlicht) erstellt und wird im weiteren Verlauf der Arbeit als Pf3D7^{Rodi}-Verdünnungsreihe bezeichnet (vgl. Tab. 2-37).

Proben		Parasiten/µl	Parasiten/ml
Verdünnung:	1	600	600000
	2	204	204000
	3	60	60000
	4	20,4	20400
	5	6,0	6000
	6	2,04	2040
	7	0,6	600
	8	0,2	204
	9	0,06	60
	10	0,02	20,4
	11	0,006	6
	12	0,002	2,04
	13	0,003	3
	14	0,001	1,02

Tab. 2-37: Pf3D7^{Rodi}-Verdünnungsreihe (Rodi, 2018, nicht veröffentlicht).

Proben		Parasiten/µl	Parasiten/ml
	15	0,0015	1,5
Kontrollen:	Medium	0	0
	uninf. Blut	0	0

Weitere Verdünnungsreihen für die Stämme Pf3D7, PfHB3 und PfDd2 wurden neu hergestellt. Für den PfHB3-Stamm wurde der Vorgang zweimal durchgeführt, es resultierte ein PfHB3①- und ein PfHB3②-Standard. Die Parasiten der einzelnen Zelllinien wurden kultiviert und durch Synchronisation sowohl mit Magnet als auch mit Sorbitol (vgl. Kapitel 2.2.1.2) auf einen synchronen Lebenszyklus gebracht. Bei Erreichen einer synchronen (> 95 %) Ringkultur wurde die Parasitämie per Auszählung am Mikroskop durch eine erfahrene technische Angestellte und durch Durchflusszytometrie mit dem *BD FACSCanto™ II Flow Cytometer* bestimmt.

Für die Messung am Zytometer wurde jeweils eine Stichprobe der Kultur mit einem Milliliter *Medium Complete* verdünnt, mit einem Mikroliter Hoechst 33342 gefärbt und 30 Minuten bei 37 °C inkubiert. Hoechst ist ein Fluoreszenzfarbstoff, der nach Anlagerung an die DNA und Anregung durch UV-Licht in erhöhter Intensität auf einer Wellenlänge zwischen 460 und 490 nm emittiert.

Die Differenzierung infizierter Zellen von nicht-infizierten Zellen, erfolgte dadurch, dass reife Erythrozyten keinen Zellkern und daher keine DNA mehr besitzen. Die angefärbte DNA beschränkte sich daher auf die DNA der Plasmodien in den infizierten Erythrozyten.

Die gefärbten Kulturproben werden im Zytometer durch eine Mikrokanalküvette geleitet, in denen sie einen Laser und einen Detektor passieren. Durch den schmalen Durchmesser der Küvette, kann der Detektor für jede Zelle einzeln die Wellenlänge des nach Anregung emittierten Lichts und dessen Intensität bestimmen. In dem Wellenlängenbereich zwischen 460 und 490 nm kann nach Passieren eines infizierten Erythrozyten eine erhöhte Fluoreszenzintensität detektiert werden.

Sowohl die Durchflusszytometrie als auch die Auszählung am Mikroskop gibt die Anzahl der Parasiten pro 100 Erythrozyten an. Die Umrechnung auf eine Aussage pro Milliliter erfolgte durch die Überlegung, dass bei einem Hämatokritwert von ca. 50 % im menschlichen Blut sich ca. $5 \times 10^6 Erythrozyten/\mu l Blut$ befinden. In dem genutzten Pellet herrscht ein 100 %-iger Hämatokrit. Entsprechend sind pro Volumen doppelt so viele Erythrozyten, also ca. $1 \times 10^7 Erythrozyten/\mu l Blut$ vorhanden (vgl. Tab. 2-38).

Stamm	Parasiten 100 Erythrozyten im Pellet			Parasiten ml
	Auszählung am Mikroskop	FACS-Messung	gerundeter Mittelwert	
Pf3D7	2,12	1,8	2	2×10^{8}
PfHB3 ①	11	9,2	10	10×10^{8}
PfHB3 @	3,15	2,8	3	3 × 10 ⁸
PfDd2	9,3	8,8	9	9 × 10 ⁸

Tab 2-38.	Parasitämien der	Zellkulturen vor Fi	rstellung der neuen	Verdünnungsreihen
Tab. 2-50.	i arasitarinen uer		scenary acriticaci	verdunnungsreihen.

Die Konzentrationen der letzten Spalte der Tab. 2-38 wurden mit *Medium Complete* auf eine Ausgangskonzentration von $6x10^7 Parasiten/ml$ verdünnt. Ausgehend von dieser Verdünnung wurden für alle Stämme die weiteren Verdünnungen entsprechend der Tab. 2-39 und Tab. 2-40 erstellt.

Proben		Volumen Kultur	Volumen Medium	Ρ/μΙ
Verdünnung:	1	100µl der 6x10 ⁷ P/ml Verdünnung	900 µl	6000
	2	34µl der 6x10 ⁷ P/ml Verdünnung	966 µl	2040
	3	100µl aus Verdünnung 1	900 µl	600
	4	34µl aus Verdünnung 1	966 µl	204
	5	100µl aus Verdünnung 3	900 µl	60

Tab. 2-39: Verdünnungsreihe mit Zugabe von Medium Complete für die neu erstellten Standards.

Proben		Volumen Kultur	Volumen Medium	P/µl
	6	34µl aus Verdünnung 3	966 µl	20,4
	7	100µl aus Verdünnung 5	900 µl	6
	8	34µl aus Verdünnung 5	966 µl	2,04
	9	100µl aus Verdünnung 7	900 µl	0,6
	10	34µl aus Verdünnung 7	966 µl	0,2
	11	100µl aus Verdünnung 9	900 µl	0,06
	12	34µl aus Verdünnung 9	500 µl	0,02
	13	500µl aus Verdünnung 11	500 µl	0,03
	14	500µl aus Verdünnung 12	500 µl	0,01
	15	500µl aus Verdünnung 13	500 µl	0,015
	16	500µl aus Verdünnung 14	500 µl	0,0051
	17	500µl aus Verdünnung 15	500 µl	0,0075
	18	500µl aus Verdünnung 16	500 µl	0,00255
	19	500µl aus Verdünnung 17	500 µl	0,00375
	20	500µl aus Verdünnung 18	500 µl	0,001275
	21	500µl aus Verdünnung 19	500 µl	0,001875
	22	500µl aus Verdünnung 20	500 µl	0,0006375
Kontrollen:	Mediu	im	500 µl	0
	uninf.	Blut	500 µl	0

Tab. 2-40: Verdünnungsreihe mit Zugabe von Vollblut für die neu erstellten Standards.

Proben		Volumen der Medium- verdünnung	Volumen Voll- blut	Ρ/μΙ	P/ml
Verdün-	1	150µl aus Verdünnung 1	1,35ml	600	600000
nung	2	150µl aus Verdünnung 2	1,35ml	204	204000
	3	150µl aus Verdünnung 3	1,35ml	60	60000
	4	150µl aus Verdünnung 4	1,35ml	20,4	20400
	5	150µl aus Verdünnung 5	1,35ml	6,0	6000
	6	150µl aus Verdünnung 6	1,35ml	2,04	2040

Proben		Volumen der Medium- verdünnung	Volumen Voll- blut	P/µl	P/ml
	7	150µl aus Verdünnung 7	1,35ml	0,6	600
	8	150µl aus Verdünnung 8	1,35ml	0,2	204
	9	150µl aus Verdünnung 9	1,35ml	0,06	60
	10	150µl aus Verdünnung 10	1,35ml	0,02	20,4
	11	150µl aus Verdünnung 11	1,35ml	0,006	6
	12	150µl aus Verdünnung 12	1,35ml	0,002	2,04
	13	150µl aus Verdünnung 13	1,35ml	0,003	3
	14	150µl aus Verdünnung 14	1,35ml	0,001	1,02
	15	150µl aus Verdünnung 15	1,35ml	0,0015	1,5
	16	150µl aus Verdünnung 16	1,35ml	0,00051	0,51
	17	150µl aus Verdünnung 17	1,35ml	0,00075	0,75
	18	150µl aus Verdünnung 18	1,35ml	0,000255	0,255
	19	150µl aus Verdünnung 19	1,35ml	0,000375	0,375
	20	150µl aus Verdünnung 20	1,35ml	0,0001275	0,1275
	21	150µl aus Verdünnung 21	1,35ml	0,0001875	0,1875
	22	150µl aus Verdünnung 22	1,35ml	0,00006375	0,06375
Kontrol-	Me	dium	-	0	0
len	unir	nf. Blut	-	0	0

Die DNA der Pf3D7^{Rodi}-Verdünnungsreihe der Tab. 2-37 sowie die DNA der neu erstellten Pf3D7²-, PfHB3①/②- und PfDd2-Verdünnungsreihen entsprechend der Tab. 2-40 wurden automatisiert mit dem *QIAsymphony*[®] und dem dazugehörigen *QIAsymphony DSP DNA Midi Kit* extrahiert. Dafür wurden jeweils 420 µl jeder Probe benötigt und nach automatisierter Extraktion jeweils 100 µl DNA-Eluat pro Probe gewonnen.

2.2.4.1 Standardkurve und Detektionslimit der qPCR

Die DNA der Pf3D7^{Rodi}-Verdünnungsreihe (vgl. Tab. 2-37) wurde mit dem *qPCR*-Protokoll A unter Verwendung der Primer und Sonden der Bestellung 2 gemessen (vgl. Abb. 2-2 und Tab. 2-41, Tab. 2-42 (A)). Die weiteren neu erstellten Verdünnungsreihen Pf3D7², PfHB3⁽²⁾ und PfDd2 wurden in einem ersten Durchgang mit dem Protokoll B unter Verwendung der Primer und Sonden der Bestellung 2 gemessen und ein zweites Mal mit dem Protokoll A unter Verwendung der Primer und Sonden der Bestellung 3 (vgl. Abb. 2-2 und Tab. 2-41, Tab. 2-42 (A) und (B)). Bei der Messung mit dem Protokoll A wurden lediglich die Verdünnungen 1-15 verwendet.

Tab. 2-41:	PCR-Bedingungen der 4plex-qPCR_	v2.
------------	---------------------------------	-----

PCR-Bedingungen		Temperatur	Dauer	Tempo
Aktivierung		95 °C	20 Sek.	4,8 °C/s
Zyklen (45x)	Denaturation	95 °C	3 Sek.	4,8 °C/s
	Primer-Hybridisierung	62 °C	150 Sek.	2,5 °C/s
Kühlung		40 °C	30 Sek.	4,8 °C/s

			c final [mM]	V [µl] pro Probe	V [µl] für finale Mastermischung
Mastermi-	TaqMa	n® Multiplex Master Mix	1x	5	75
schung:	hrp2	Fwd Primer	400	0,2	3
		<i>Rev</i> Primer	400	0,2	3
		Sonde	50 (A) 20 (B)	0,1	1,5
	hrp3	Fwd Primer	400	0,2	3
		<i>Rev</i> Primer	400	0,2	3
		Sonde	50 (A) 25 (B)	0,1	1,5
	β-tub	Fwd Primer	600	0,2	3
		<i>Rev</i> Primer	600	0,2	3
		Sonde	300	0,1	1,5
	cytb	Fwd Primer	400	0,2	3
		<i>Rev</i> Primer	400	0,2	3
		Sonde	150	0,1	1,5
DNA-Probe				3	
SUMME				10	

Tab. 2-42: Reaktionsansätze der 4plex-qPCR_v2 Protokoll A und B.

Jede Probe wurde in Triplikaten gemessen und jeder Lauf zweimal wiederholt. Pro Verdünnung erhielt man somit eine Gesamtanzahl von neun Cq-Werten.

2.2.4.2 Detektionslimit der k. PCR

Neben den Messungen durch den *LightCycler*® wurden die Verdünnungsreihen zusätzlich mit einer konventionellen *PCR* (k. *PCR*) analysiert.

Die Zusammensetzung der Reaktionsmischungen und der Ablauf der *PCR* erfolgte dabei entsprechend der in Tab. 2-43 und Tab. 2-44 beschriebenen Protokolle. Sie wurden von Laura Reinke (Reinke, 2017, nicht veröffentlicht) zur Detektion der Gene *hrp2* und *hrp3* optimiert. Jede *PCR* wurde zweimal durchgeführt und in jeder *PCR* jede Verdünnung zweimal gemessen. Die Reaktion lief dabei

nicht im *LightCycler*® ab, sondern in einem normalen *Thermal Cycler* (vgl. Tab. 2-7).

		finale Konz.	V [µl] pro Pro	be
			hrp2	hrp3
Mastermi-	Nuklease freies Wasser		14,74	12,74
schung	Buffer mit MgCl2 (10x)	1 x	Х	2
	Q Solution (5x)	0,5 x	2	2
	dNTPs	200 µM	0,16	0,16
	hrp2 Primer Fwd	200 nM	0,2	0,2
	hrp2 Primer Rev	200 nM	0,2	0,2
	Таq	5 U/µl	0,2	0,2
DNA-Probe			2,5	2,5
SUMME			20	20

Tab. 2-43: Reaktionsansatz für die konventionelle hrp2- und hrp3-PCR.

 Tab. 2-44:
 PCR-Bedingungen f
 ür die konventionelle hrp2- und hrp3-PCR.

PCR-Bedingungen		hrp2		hrp3	
		Temp.	Dauer	Temp.	Dauer
Aktivierung		95 °C	5 Min.	95 °C	5 Min.
Zyklen (35x)	Denaturation	95 °C	30 Sek.	95 °C	30 Sek.
	Primer-Hybridisierung	57 °C	30 Sek.	60 °C	30 Sek.
	Elongation	72 °C	1 Min.	72 °C	1 Min.
Elongation		72 °C	10 Min.	72 °C	10 Min.
Kühlung		10 °C	×	10 °C	8

Die Primer sind für die konventionelle *PCR* so designt, dass sie das gesamte Gen amplifizieren (vgl. Abb. 10-1 und Abb. 10-2 des Anhangs). Die Sequenzen sind in Tab. 2-45 ersichtlich.

Primer	Sequenz (5' -> 3')	Länge des Primer [bp]	Länge des Amplikon [bp]
hrp2 Fwd	GGTTTCCTTCTCAAAAAATAAAG	23	1062
hrp2 Rev	TTAATGGCGTAGGCAATGTGTGG	23	1002
hrp3 Fwd	GGTTTCCTTCTCAAAAAATAAAA	23	071
hrp3 Rev	TGGTGTAAGTGATGCGTAGT	20	971

Tab 2 15.	Sequenzen und	Eigenschaften	der hrn? un	d hrn? Drimer fü	r die konventionelle	DCD
1 a.D. 2-40.	Sequenzen unu	LIYENSCHAREN	uer mpz- und	лтпрэ-гтппегти		FUR.

Zur Auswertung der Produkte der *PCR* wurden die DNA-Fragmente mit Hilfe einer Gelelektrophorese und mit dem *QIAxcel* analysiert.

Für die Gelelektrophorese wurden die *PCR*-Produkte unter Zugabe von Ladepuffer und *SYBR-Green* entsprechend der Tab. 2-46 in die Taschen eines 1,5 %igen Agarosegels pipettiert. Das *SYBR-Green* ist ein Fluoreszenzfarbstoff, der sich an die DNA anlagert. Nach Befüllung der Taschen wurde eine Spannung von 90 V bei einer Stromstärke von 400 mA für eine Dauer von 80 Minuten angelegt. Durch das negativ geladene Rückgrat der DNA wandern die DNA-Fragmente zur Kathode. Die Auftrennung der DNA-Fragmente erfolgt dabei entsprechend ihrer Größen. Je kleiner die Fragmente sind, desto schneller gelangen sie durch das Gitter des Agarosegels und legen dadurch in der vorgegebenen Zeit eine weitere Strecke zurück als die größeren DNA-Fragmente.

	Volumen [µl] pro Tasche	
	Proben:	Marker:
PCR-Produkt	20	-
Marker	-	7
Ladepuffer	6	2
SYBR-Green	1	1
SUMME	27	10

Tab. 2-46: Zusammensetzung der Mischung zur Befüllung der Taschen des Agarosegels.

Die Messung der *PCR*-Produkte durch den *QIAxcel* erfolgt ebenfalls durch Auftrennung der DNA-Fragmente nach Größe. Die DNA-Fragmente werden dabei in eine mit Gel-Matrix und linearen Ethidiumbromid-Polymeren gefüllte Kapillare durch eine angesetzte Spannung hochgezogen. Ähnlich wie bei der Gelelektrophorese erreichen die kleineren DNA-Fragmente früher die Kathode als die größeren. Durch die Anlagerung des Fluoreszenzfarbstoffs Ethidiumbromid an die DNA erhöht sich die Intensität der Fluoreszenz um ein Vielfaches. Die DNA, die die Kapillare hochläuft, kann daher durch die Markierung mit dem Fluoreszenfarbstoff mit einem speziellen Detektor am oberen Bereich der Kapillare erfasst und mittels eines Photoelektronenvervielfältigers in ein Elektropherogramm oder ein Gel-Bild umgewandelt werden (Lepecq and Paoletti, 1967; QIAGEN, 2017).

2.2.5 Auswertung der LightCyler-Daten

Alle Proben wurden jeweils mindestens in Triplikaten gemessen. Eine Probe wurde dann als positiv bezeichnet, wenn mindestens 50 % eine Amplifikation mit einem C_q -Wert < 40 aufwiesen, graphisch eine Amplifikationskurve sichtbar war und die im gleichen Lauf mitgemessenen Negativkontrollen (Wasser/DNA aus gesundem Vollblut) negativ waren.

Die mittels der Standardkurven ermittelten Detektionslimits sind jeweils die höchsten Verdünnungen, bei denen noch eine Amplifikation nachgewiesen werden kann. Hierfür wurde jede Verdünnung dreimal in Triplikaten gemessen. Es waren somit mind. 5 aus 9 Messungen nötig, in denen eine Amplifikation mit einem C_q-Wert < 40 dargestellt werden konnte und die oben genannten Kriterien zutrafen. Die Darstellung der Standardkurve entspricht einer Regressionsgeraden, die sich nach Auftragen der jeweiligen Mittelwerte der C_q-Werte aus den 9 Messungen gegenüber dem Logarithmus der Parasitämie errechnen ließ. Die jeweilige Geradengleichung und das Bestimmtheitsmaß R², welches aufzeigt wie gut die Gerade die einzelnen Messpunkte repräsentiert, wurden jeweils mitangegeben. Die Effizienz der Amplifikation wurde entsprechend der Formel 2-1 berechnet.

$$E = (10^{-1/Steigung}) - 1$$

Formel 2-1: Berechnung der Effizienz anhand der Steigung der Standardkurve (Bustin et al., 2009).

Eine hundertprozentige Effizienz würde eine Verdopplung der DNA bei jedem Zyklus bedeuten.

3 Ergebnisse

Im Rahmen dieser Arbeit wurde ein in der Arbeitsgruppe entwickeltes Protokoll (Kreidenweiss et al., 2019) einer *4plex* quantitativen *real-time PCR* (*4plex-qPCR*) weiterentwickelt und zur Messung von klinischen Proben, die von Probanden aus Gabun gewonnen wurden, angewandt. In einer einzigen Probe werden zeitgleich Infektionen mit *P. falciparum* detektiert, der Status der *hrp2-* und *hrp3-*Gene bestimmt, und eine Qualitätskontrolle (β -tubulin) mitgemessen. Neue Primer für *hrp2* und *hrp3* (*hrp2_v2, hrp3_v3*) wurden getestet, um eine *4plex-qPCR* der zweiten Generation (*4plex-qPCR_v2*) mit optimierter Detektion der *hrp2-/hrp3-*Gene zu entwickeln. Zudem wurde die Sensitivität des *4plex-qPCR_v2* mit der *PCR*, die konventionelle Methode zur Detektion von *hrp2-/hrp3-*Deletionen, verglichen. Das weiter entwickelte *4plex-qPCR_v2* Protokoll soll das Risiko minimieren, dass fälschlicherweise *hrp2-*Deletionen detektiert werden und somit die Prävalenz der Deletionen zu hoch erfasst wird.

3.1 Etablierung der 4plex-qPCR_v2

Basierend auf dem Ausgangprotokoll der *4plex-qPCR_v1* etabliert von Franziska Trauner (Trauner, 2019) wurden neue Primer-Paare und Sonden für *hrp2* und *hrp3* bestellt und getestet. Hinweis zur Konvention der Bezeichnung in der Arbeit: Reagenzien und Protokolle, die abweichend sind vom *4plex*-Protokoll, Trauner, werden im Weiteren mit dem Zusatz "v2" gekennzeichnet.

In den Tab. 3-1 und Tab. 3-2 sind die jeweiligen Primer- und Sonden-Sequenzen nochmal im direkten Vergleich dargestellt.

		Sequenz
Forward Primer in 5'-3' Richtung	hrp2_v2	TTCCGCATTTAATAATAACTTGTG
	hrp2	AGGACTTAATTTAAATAAGAGATTA
Reverse Primer in 5'-3' Richtung	hrp2_v2	CGGCTACATGATGAGCATG
	hrp2	GCTACATGATGAGCATGA
Sonde in 5'-3'	hrp2_v2	ACTCAAGCACATGTAGATGATGCC
Richtung	hrp2	TACACGAAACTCAAGCACA

 Tab. 3-1:
 qPCR-Primer- und Sondensequenzen des hrp2-Gen.

 Tab. 3-2:
 qPCR-Primer- und Sondensequenzen des hrp3-Gen.

		Sequenz
Forward Primer In 5'-3' Richtung	hrp3_v2	CTCCGAATTTAACAATAACTTGTTTA
	hrp3	AGGACTTAATTCAAATAAGAGATTA
Reverse Primer in 5'-3' Richtung	hrp3_v2	CAGCTACATGATGTGCATG
	hrp3	AGCTACATGATGTGCATGA
Sonde	hrp3_v2	AGTCAAGCACATGCAGGTGATGCC
in 5'-3' Richtung	hrp3	GAAAGTCAAGCACATGCAG

Ziel der neuen Primersequenzen war es die Kreuzreaktivität zwischen *hrp2* und *hrp3* zu verringern. In Tab. 3-3 sind die Fehlpaarungen, die sich durch eine Anlagerung an das jeweils fälschliche Gen ergeben würden und im Falle einer Kreuzreaktivität überwunden werden müssten, sowohl für die Sonden und Primer der ersten als auch der zweiten Generation zusammengefasst (*hrp2*-Primer/Sonde an *hrp3*-Gen, bzw. *hrp3*-Primer/Sonde an *hrp2*-Gen). In den Abb. 10-5, Abb. 10-6, Abb. 10-7, Abb. 10-8, Abb. 10-9 und Abb. 10-10 des Anhangs sind die einzelnen Primer- und Sondensequenzen für *hrp2* und *hrp3* einander gegenüber gestellt und die Mismatches grafisch hervorgehoben.

		Fehlpaarung zw. hrp2 & hrp3
qPCR Fwd Primer	neu	4
	alt	1
qPCR Rev Primer	neu	2
	alt	3
qPCR Sonde	neu	3
	alt	2

 Tab. 3-3:
 Anzahl der Mismatches zwischen den qPCR-Primern und Sonden für hrp2 und hrp3.

In Bezug auf die Primer sind dabei unter der neuen Generation in Summe sechs Fehlpaarungen im Falle einer Kreuzreaktivität zu überwinden, im Gegensatz zu vier bei der alten Generation. Das lässt entsprechend auf eine höhere Spezifität hoffen.

3.1.1 Singleplex-qPCR

Zunächst wurden die Messungen der neuen Primer als *singleplex-qPCR* durchgeführt. Dies ermöglichte eine separate Beurteilung der Qualität der *qPCR* ohne Einflüsse/Störungen durch andere Komponenten, die zu interferierenden Signal-Überlagerungen durch die Fluoreszenzfarbstoffe, usw. führen können.

In der ersten *singleplex*-Reaktion wurde der neue *Assay* mit den neuen Primern und Sonden (*hrp2_v2, hrp3_v2*) mit dem alten *Assay* mit den alten Primern und Sonden (*hrp2, hrp3*) für die Amplifikation von *hrp2* und *hrp3* bei Pf3D7[®] verglichen.

Die Amplifikation hat sowohl mit dem neuen als auch mit dem alten *Assay* funktioniert (vgl. Tab. 3-4). Im Vergleich zu dem alten *Assay* ergaben sich unter Verwendung des *hrp2_v2-Assays* niedrigere Fluoreszenzintensitäten, bzw. unter Verwendung des *hrp3_v2-Assays* höhere Fluoreszenzintensitäten. Die Cq-Werte unterschieden sich zwischen den beiden *Assays* nicht im relevanten Maße. In den abgebildeten Grafiken gibt die Y-Achse stets die RFU (Relative Fluoresznez-Units), die X-Achse die Anzahl der Zyklen an.

Tab. 3-4:Vergleich des neuen und alten Assays in singleplex-qPCR mit Pf3D7 @ und Negativkontrollen
als template.

3.1.1.1 Kreuzreaktivität der neuen hrp-Assays

Es ist wichtig, dass die *hrp2*- bzw. *hrp3-qPCR-Assays* (= Primer und Sonde) spezifisch das jeweilige Zielgen amplifizieren. Zur Untersuchung der Spezifität der Primer wurde *Template*-DNA von PfDd2 (*hrp2* neg/*hrp3* pos) und PfHB3 (*hrp2* pos/*hrp3* neg) zusätzlich zu Pf3D7 (*hrp2* pos/*hrp3* pos) als Kontrolle verwendet. Zwar steigt die Fluoreszenzintensität für den *hrp2_v2-Assay* bei PfDd2 (nur *hrp3*-Gen) und für *hrp3_v2* bei PfHB3 (nur *hrp2*-Gen) gegen Ende des Zyklus minimal an, jedoch ist dies zu vernachlässigen (vgl. Tab. 3-5). Die neuen *hrp2_v2* und *hrp3_v2-Assays* detektieren spezifisch das entsprechende Zielgen.

Tab. 3-5:Kreuzreaktivität der neuen hrp-Assays in singleplex-qPCR mit Pf3D7 (2), PfHB3, PfDd2 und
Negativkontrollen als template.

3.1.1.2 Kreuzreaktivität der einzelnen Komponenten

Um die Kreuzreaktivität der Primer und der Sonden getrennt voneinander zu überprüfen, wurden *singleplex-qPCR* durchgeführt, bei denen die *hrp2*-Primer mit der Sonde für *hrp3* bzw. umgekehrt kombiniert wurden (Kreuzreaktion-*Assays* 1 und 2) und mit *Template*-DNA aus PfDd2 bzw. PfHB3 getestet wurden (vgl. Tab. 2-24 und Abb. 2-1).

In den Tab. 3-6, Tab. 3-7, Tab. 3-8 und Tab. 3-9 sind jeweils die Kombinationen genannt, die zur separaten Beurteilung einer einzelnen Komponente entscheidend sind. Darunter sind alle Graphen der fünf verschiedenen *qPCRs* dieser Kombination abgebildet sowie die dabei verwendete Generation der Komponente

vermerkt. Die Spezifität ist umso schlechter je eindeutiger eine Amplifikationskurve erkennbar ist.

Tab. 3-6: hrp2-Primer-Spezifität: singleplex-qPCR mit PfDd2, PfHB3, Pf3D7 () und Negativkontrollen als template.

Kombination			Bedeutung/Interpretation		
<i>hrp2</i> -Primer- Spezifität	Primer: Sonde: DNA: Kanal:	hrp2 hrp3 PfDd2 FAM	Signal in FAM: Amplifikation durch <i>hrp2</i> -Primerbindung an <i>hrp3</i> Gen. (Max. Y-Achse = 13 RFU)		

Tab. 3-7:	hrp3-Primer-Spezifität: singleplex-qPCR mit PfDd2, PfHB3, Pf3D7 @ und Negativkontrollen als
	template.

	Kombination	Bedeutung/Interpretation		
<i>hrp3-</i> Primer- Spezifität	Primer: <i>hrp3</i> Sonde: <i>hrp2</i> DNA: PfHB3 Kanal : HEX	Signal in HEX: Amplifikation durch <i>hrp3</i> -Primerbindung an <i>hrp2-</i> Gen. (Max. Y-Achse = 58 RFU)		

Insgesamt scheinen hierbei die Primer der neuen Generation (*v2*) sowohl für *hrp2* als auch für *hrp3* spezifischer zu sein als die der alten Generation, da sich keine bzw. spätere und flachere Amplifikationskurven in diesen Fällen ergaben.

Tab. 3-8:	hrp2-Sonden-Spezifität: singleplex-qPCR mit PfDd2, PfHB3, Pf3D7 @ und Negativkontrollen
	als template.

	Kombination	n	Bedeutung/Interpretation			
hrp2-Sonden- Spezifität	Primer: hr Sonde: hr DNA : Pt Kanal : H	rp3 rp2 YfDd2 IEX	Signal in HEX: Amplifikation durch hrp2-Sondenbindung an hrp3-Gen. (Max. Y-Achse = 15 RFU)			

DNA

Kanal:

PfHB3

FAM

lempiale	7.	
	Kombination	Bedeutung/Interpretation
hrp3-Sonden-	Primer: hrp2	Signal in FAM:
Spezifität	Sonde: hrp3	Amplifikation durch hrp3-Sondenbindung an

hrp2-Gen.

(Max. Y-Achse = 9 RFU)

Tab. 3-9: hrp3-Sonden-Spezifität: singleplex-qPCR mit PfDd2, PfHB3, Pf3D7 @ und Negativkontrolle als template.

Bei den Sonden waren die Ergebnisse nicht so eindeutig wie bei den Primern. Ein kleine Überlegenheit ließ sich jedoch bei den Sonden der alten Generation im Gegensatz zu den Sonden der neuen Generation erkennen.

Im weiteren Verlauf wurden entsprechend dieser Ergebnisse für die Optimierung einer *4plex-qPCR* die neuen Primer (v2) und die alten Sonden für *hrp2* und *hrp3* verwendet.

3.1.2 Optimierung der 4plex-qPCR_v2

Basierend auf dem bereits etablierten *4plex-qPCR*-Protokoll wurde dieses mit den *hrp2-/hrp3*-Primern der 2. Generation (*v2*) erweitert und neu optimiert.

3.1.2.1 Optimierung der Fluoreszenzintensitäten

Bei der *4plex-qPCR_v2* wird die Amplifikation von vier verschiedenen Genen (*cytb, hrp2, hrp3, β-tub*) parallel über fluoreszierende Sonden detektiert. Idealerweise sollte das Fluoreszenzsignal bei Positivität ungefähr dieselbe Intensität in den entsprechend verschiedenen Kanälen aufweisen. Hierzu wurden verschiedene Parameter der *qPCR* (Temperatur, Primer- und Sondenkonzentrationen sowie Elongationszeiten) variiert, mit dem gleichzeitigen Ziel, die Kreuzreaktivität für *hrp2* und *hrp3* minimal zu halten. Miteinbezogen in die Analyse und abgebildet in den jeweiligen Tabellen wurden immer die C_q-Werte sowie die RFU.

Hybridisierungstemperatur der Primer

Es wurden Hybridisierungstemperaturen von 60 °C, 61 °C und 62 °C getestet. Eine Temperatur von 62 °C hat sich als optimal erwiesen (vgl. Tab. 3-10). Zwar hat sich die Fluoreszenzintensität für die vier Amplifikate über die drei verschiedenen Temperaturen nicht verändert, jedoch haben die minimalen Kreuzamplifikationen von *hrp2* und *hrp3* bei zunehmender Temperatur weiter abgenommen. Die weiteren *qPCRs* wurden daher bei einer Temperatur der Primer-Hybridisierung von 62°C durchgeführt.

Tab. 3-10: Variation der Hybridisierungstemp.: 4plex-qPCR_v2 mit PfDd2, PfHB3, Pf3D7 @ und Negativkontrollen (Wasser und DNA-Extrakt aus gesundem Vollblut) als template.

	60 °C			61 °C			62 °C		
02	32.300 32.000 32.000 32.000 32.000 12.000 12.000 32.000 2.000			00.02 00.0200000000			33.000 72.000 72.000 9000000000000000000000000000000000	Amplification Europa	
XIhr	5 28	Cq	RFU	5 38	C _q	RFU	5 10	C _q	RFU
뿐	PfDd2	21,8	2,7	PfDd2	-	-	PfDd2	-	-
	PfHB3	21,6	30,1	PfHB3	21,1	29,2	PfHB3	21,0	27,8
	Pf3D7	20,0	31,4	Pf3D7	20,1	30,7	Pf3D7	20,2	29,5

	60 °C			61 °C			62 °C		
p3	100 UNC 5 T)	Anytification Curves	x x x 6	1300 UN6			300 We get resourced 100 5 Ti	Amplification Corres	8 8 6 6
W/h		Cq	RFU		Cq	RFU		Cq	RFU
FΑ	PfDd2	19,4	2,9	PfDd2	19,7	3,1	PfDd2	19,7	3,0
	PfHB3	-	-	PfHB3	-	-	PfHB3	-	-
	Pf3D7	18,5	3,3	Pf3D7	18,6	3,4	Pf3D7	18,6	3,3
tub	The second secon		x x 4 6	For the second s	Amplifications Eurores		Verone ve		3 3 5 6
/5/β-		Cq	RFU		Cq	RFU		Cq	RFU
CY5/β-	PfDd2	C q 20,7	RFU 2,2	PfDd2	C _q 20,9	RFU 2,0	PfDd2	C q 20,9	RFU 2,2
СҮ5/β.	PfDd2 PfHB3	C q 20,7 20,7	RFU 2,2 2,2	PfDd2 PfHB3	C q 20,9 20,6	RFU 2,0 2,0	PfDd2 PfHB3	C _q 20,9 20,4	RFU 2,2 2,1
СҮ5/β.	PfDd2 PfHB3 Pf3D7	C q 20,7 20,7 19,2	RFU 2,2 2,2 2,1	PfDd2 PfHB3 Pf3D7	C q 20,9 20,6 19,4	RFU 2,0 2,0 1,8	PfDd2 PfHB3 Pf3D7	C q 20,9 20,4 19,2	RFU 2,2 2,1 2,0
sytb CY5/β.	PfDd2 PfHB3 Pf3D7	Cq 20,7 20,7 19,2 маже	RFU 2,2 2,2 2,1	PfDd2 PfHB3 Pf3D7	Cq 20,9 20,6 19,4 zeroses corre	RFU 2,0 2,0 1,8	PfDd2 PfHB3 Pf3D7	Cq 20,9 20,4 19,2 20,4	RFU 2,2 2,1 2,0
OX/cytb CY5/β.	PfDd2 PfHB3 Pf3D7	Cq 20,7 20,7 19,2 **** Cq	RFU 2,2 2,2 2,1	PfDd2 PfHB3 Pf3D7	Cq 20,9 20,6 19,4 20,6 19,4 20,6 20,6 20,6 20,6 20,6 20,6 20,6 20,6	RFU 2,0 2,0 1,8 RFU	PfDd2 PfHB3 Pf3D7	Cq 20,9 20,4 19,2 	RFU 2,2 2,1 2,0
ROX/cytb CY5/β.	PfDd2 PfHB3 Pf3D7	Cq 20,7 20,7 19,2 * ° ° ° ° °	RFU 2,2 2,2 2,1 	PfDd2 PfHB3 Pf3D7	Cq 20,9 20,6 19,4 20,6 19,4 20,6 20,6 20,6 20,6 20,6 20,6 20,6 20,6	RFU 2,0 2,0 1,8 RFU 2,8	PfDd2 PfHB3 Pf3D7	Cq 20,9 20,4 19,2 	RFU 2,2 2,1 2,0
ROX/cytb CY5/β.	PfDd2 PfHB3 Pf3D7	Cq 20,7 20,7 19,2 • • • • • • Cq 15,5 15,3	RFU 2,2 2,1 2,1 RFU 2,7 3,2	PfDd2 PfHB3 Pf3D7	Cq 20,9 20,6 19,4 	RFU 2,0 2,0 1,8 RFU 2,8 3,1	PfDd2 PfHB3 Pf3D7	Cq 20,9 20,4 19,2 	RFU 2,2 2,1 2,0

hrp3-Sondenkonzentration

Bislang lag die Fluoreszenzintensität bei positiver Amplifikation von *hrp3* in der Größenordnung von ca. 3 RFU und bei *hrp2* bei ca. 30 RFU (vgl. Tab. 3-10). Durch Variation der *hrp3*-Sondenkonzentration sollte das Fluoreszenzsignal von *hrp3* dem des *hrp2* angeglichen werden. Die bisherige Konzentration betrug 50 nM. Nun wurde auch 100 nM getestet. Interessanterweise führte allein das

Ansetzen neuer Reagenzien und Verdünnungen aus einer neuen Bestellung (Bestellung 2) zu dem gewünschten Effekt, der Erhöhung der Fluoreszenzintensität im FAM-Kanal auf durchschnittlich ca. 20 RFU (vgl. Tab. 3-11).

Für die weiteren Experimente wurde daher die ursprüngliche Konzentration von 50 nM beibehalten, da die Fluoreszenzintensität durch die neue Verdünnung auch in dieser Konzentration ausreichend war.

Tab. 3-11: Variation der hrp3-Sondenkonz.: 4plex-qPCR_v2 mit pfDd2, PfHB3, Pf3D7 @ und Negativkontrollen als template.

hrp2-Primerkonzentration

Um die maximale Fluoreszenzintensitäten der Amplifikationen von *hrp2* und *hrp3* weiter anzugleichen, wurde der Einfluss der *hrp2*-Primerkonzentration auf das Fluoreszenzsignal im HEX-Kanal untersucht. Hierzu wurden verschiedene *hrp2*-Primerkonzentrationen getestet - bislang 400 nM, nun auch 200 nM und 100 nM Konzentrationen (vgl. Tab. 3-12). Allerdings wurde bei niedrigeren Primerkonzentrationen die *hrp2*-Amplifikation schlechter. Die Konzentration wurde daher bei 400 nM belassen.

Tab. 3-12: Variation der hrp2-Primerkonz.: 4plex-qPCR_v2 mit pfDd2, PfHB3, Pf3D7 @ und Negativkon trollen als template.

	400 nM			200 nM			100 nM		
p2	0.300 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Anglification Europa		23.00 24.00 25.000	Aspetitudies Corres		13.00 14	Ampethantine Corres	
IN/N		Cq	RFU		Cq	RFU	-	Cq	RFU
Ë	PfDd2	-	-	PfDd2	-	-	PfDd2	-	-
	PfHB3	21,0	58,9	PfHB3	20,0	50,7	PfHB3	19,9	28,7
	Pf3D7	20,0	62,3	Pf3D7	19,2	50,8	Pf3D7	17,4	33,2

	400 nM			200 nM			100 nM		
rp3	00.54 0000000000	Angittestine Curros		00.00 00.000000	Angelification Curres	2 2 2 6	MC.12 HELL	Angelification Corves	2 2 6
M/h		Cq	RFU		Cq	RFU		Cq	RFU
БA	PfDd2	20,9	17,8	PfDd2	21,1	17,7	PfDd2	21,1	17,4
	PfHB3	-	-	PfHB3	-	-	PfHB3	-	-
	Pf3D7	21,0	22,9	Pf3D7	21,3	23,6	Pf3D7	20,6	23,1
du	Provenue (Veronoute vero de la construcción de la construcció		9 2 6 5	Promotion of the second		» 5 0 6
,5/β-		Cq	RFU		Cq	RFU		Cq	RFU
Cy5/β-	PfDd2	C _q 20,3	RFU 1,9	PfDd2	C _q 20,5	RFU 2,2	PfDd2	C _q 20,5	RFU 2,1
Cy5/β-	PfDd2 PfHB3	C _q 20,3 19,6	RFU 1,9 1,6	PfDd2 PfHB3	C _q 20,5 19,4	RFU 2,2 1,5	PfDd2 PfHB3	C _q 20,5 19,9	RFU 2,1 1,7
Cy5/β-	PfDd2 PfHB3 Pf3D7	C q 20,3 19,6 18,3	RFU 1,9 1,6 1,6	PfDd2 PfHB3 Pf3D7	C q 20,5 19,4 18,4	RFU 2,2 1,5 1,5	PfDd2 PfHB3 Pf3D7	C q 20,5 19,9 18,3	RFU 2,1 1,7 1,6
cy5/β-	PfDd2 PfHB3 Pf3D7	Cq 20,3 19,6 18,3 2000000000000000000000000000000000000	RFU 1,9 1,6 1,6	PfDd2 PfHB3 Pf3D7	Cq 20,5 19,4 18,4 18,4	RFU 2,2 1,5 1,5	PfDd2 PfHB3 Pf3D7	Cq 20,5 19,9 18,3 2000000000000000000000000000000000000	RFU 2,1 1,7 1,6
ΟX/cytb Cy5/β-	PfDd2 PfHB3 Pf3D7	С _q 20,3 19,6 18,3 ининики Сq	RFU 1,9 1,6 1,6	PfDd2 PfHB3 Pf3D7	Cq 20,5 19,4 18,4 18,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RFU 2,2 1,5 1,5	PfDd2 PfHB3 Pf3D7	Cq 20,5 19,9 18,3 18,3 000000000000000000000000000000000000	RFU 2,1 1,7 1,6
ROX/cytb Cy5/β-	PfDd2 PfHB3 Pf3D7	Cq 20,3 19,6 18,3 	RFU 1,9 1,6 1,6 1 ,6 RFU (1,9)	PfDd2 PfHB3 Pf3D7	Cq 20,5 19,4 18,4 18,4 0 0 0 0 0 0 0 0 0 0	RFU 2,2 1,5 1,5 	PfDd2 PfHB3 Pf3D7	Cq 20,5 19,9 18,3 18,3 000000000000000000000000000000000000	RFU 2,1 1,7 1,6 RFU 2,3
ROX/cytb Cy5/β-	PfDd2 PfHB3 Pf3D7	Cq 20,3 19,6 18,3 	RFU 1,9 1,6 1,6 1,6 RFU (1,9) (2,1)	PfDd2 PfHB3 Pf3D7	Cq 20,5 19,4 18,4 18,4 C q 15,7 -	RFU 2,2 1,5 1,5 1,5 RFU 2,2 (2,4)	PfDd2 PfHB3 Pf3D7	Cq 20,5 19,9 18,3 18,3 D C q 15,1 -	RFU 2,1 1,7 1,6 RFU 2,3 (2,3)

Cytochrom b-Primer- und Sondenkonzentration

Auch für die Primer- und Sondenkonzentrationen für *cytochrom b* sollten kontrolliert werden, ob sie für das neue *4plex-qPCR_v2* Protokoll passend sind. Die Primer wurden zusätzlich zur ursprünglichen Konzentration von 100 nM auch bei einer Konzentration von 200 und 400 nM getestet. Die Sonde wurde zusätzlich von 50 nM auch mit 100 und 150 nM getestet. Mit zunehmender Primerkonzentration nahm auch die Signalintensität zu (vgl. Tab. 3-13). Eine erhöhte Sondenkonzentration erhöhte zwar auch das Signal für *cytochrom b*, verschlechterte allerdings auch die Amplifikationen von β -tubulin (vgl. Tab. 3-14). Für die nächsten Versuche wurde daher die *cytochrom b*-Primerkonzentration auf 400 nM festgelegt und die Sondenkonzentration in einem weiteren Schritt unter Variation der β -tubulin-Primerkonzentration sowohl mit 50 als auch 150 nM ein weiteres Mal getestet.

400 nM 100 nM 200 nM HEX/hrp2 a Decises Cq RFU Cq RFU Cq RFU PfDd2 --PfDd2 --PfDd2 --PfHB3 20,3 53,4 PfHB3 20,7 60,1 PfHB3 20,9 57,2 Pf3D7 21,1 65,0 Pf3D7 20,9 69,8 Pf3D7 20,1 63,0 FAM/hrp3 RFU Cq RFU RFU Cq Cq 20,9 PfDd2 17,4 PfDd2 21,0 17,1 PfDd2 21,1 20,0 PfHB3 PfHB3 PfHB3 0,9 ----35,7 Pf3D7 24,6 Pf3D7 26,7 Pf3D7 25,6 22,2 22,1 21,8 Cy5/β-tub RFU RFU Cq Cq RFU Cq PfDd2 20,5 1,2 PfDd2 20,7 1,4 PfDd2 20,9 1,6 PfHB3 19,5 1,1 19,8 0,9 20,2 PfHB3 PfHB3 1,0 Pf3D7 1,1 Pf3D7 19,1 1,4 Pf3D7 19 19,2 1,2

Tab. 3-13: Variation der cytb-Primerkonz.: 4plex-qPCR_v2 mit pfDd2, PfHB3, Pf3D7 @ und Negativkontrollen als template.

	100 nM			200 nM			400 nM		
/tb	Sam and the second seco	Amprilication Curres							
DX/c		Cq	RFU		Cq	RFU		Cq	RFU
Я Х	PfDd2	-	(2,4)	PfDd2	15,4	2,9	PfDd2	16,3	4,6
	PfHB3	-	(2,9)	PfHB3	-	(4,2)	PfHB3	15,7	5,4
	Pf3D7	-	(3,1)	Pf3D7	-	(4,0)	Pf3D7	14,7	5,6

Tab. 3-14: Variation der cytb-Sondenkonz.: 4plex-qPCR_v2 mit pfDd2, PfHB3, Pf3D7 @ und Negativkontrollen als template.

	50 nM			100 nM			150 nM		
rp2	6.6.6 000 9.6.0 4.6.0 4.6.0 4.6.0 4.6.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Reprintations Garress	x - 2 - 6	4.6.6 000 3.6.0 3.6.0 4.6.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0 0.0 0.	Augustiteation Corress	x 2 4 6	64.66 64.00 64.00 70.000	Augustiteation Corves	x x x x
HX∃		Cq	RFU		Cq	RFU		Cq	RFU
Ë	PfDd2	-	-	PfDd2	-	-	PfDd2	-	-
	PfHB3	20,5	57,5	PfHB3	20,5	31,4	PfHB3	20,6	55,9
	Pf3D7	20,6	65,0	Pf3D7	20,9	65,9	Pf3D7	20,9	62,9
		Amplificatios Curves	1		Amplification Gurves			Amplificatios Curves	
p3	2:00 2:00 3:00 3:00 5:00	3 8 10 3	* * * *	2:00 2:00 300 500 500	3 2 12 2	x 3 4 6	2 / 200 1000 1000 1000	3 3 12 3	x x 4 6
M/hr		Cq	RFU		Cq	RFU		Cq	RFU
FA	PfDd2	20,8	17,2	PfDd2	21,0	17,4	PfDd2	21,4	18,5
	PfHB3	-	-	PfHB3	-	-	PfHB3	-	-
	Pf3D7	22,2	23,4	Pf3D7	22,3	25,6	Pf3D7	22,4	26,2

	50 nM			100 nM			150 nM		
tub		Repticular General	8 8 6		Reptication terrors	2 4 6	The second secon	Augstrication Everys	2 2 6 0
/5/β-		Cq	RFU		Cq	RFU		Cq	RFU
Û	PfDd2	20,8	1,2	PfDd2	21,1	0,9	PfDd2	-	-
	PfHB3	20,1	1,1	PfHB3	20,2	1,2	PfHB3	-	-
	Pf3D7	19,3	1,2	Pf3D7	19,8	1,0	Pf3D7	-	-
sytb	0.0 0 0.0 0 0.0 0 0.0 0	Angethication Curves	× 3 6 6	100 100 100 <u>3</u> 0	B 2 (pin 3	x 3 4 6	100 (10) (10) 1 0	Napification Corres	x 3 4 0
Xo		Cq	RFU		Cq	RFU		Cq	RFU
Ř	PfDd2	16,12	4,0	PfDd2	16,4	6,6	PfDd2	16,6	12,6
	PfHB3	15,8	4,7	PfHB3	15,9	8,8	PfHB3	15,7	13,9
	Pf3D7	-	(5,2)	Pf3D7	-	(8,8)	Pf3D7	15,1	14,6

β-tubulin-Primerkonzentration

Zunächst wurde bei einer *cytochrom b*-Sondenkonzentration von 150 nM die β -tubulin-Primerkonzentration verändert und anschließend die unterschiedlichen β -tubulin-Primerkonzentrationen auch unter einer *cytochrom b*-Sondenkonzentration von bei 50 nM getestet (vgl. Tab. 3-15, Tab. 3-16). Die erhöhte β -tubulin-Primerkonzentration von 600 nM bei der höheren *cytochrom b*-Sondenkonzentration von 150 nM verbesserte das Amplifikationssignal von Cy5 deutlich und erbrachte weiterhin das verbesserte Signal in ROX. Für die nächsten Experimente wurde daher eine *cytochrom b*-Sondenkonzentration von 150 nM, sowie eine β -tubulin-Primerkonzentration von 600 nM eingesetzt.

	400 nM			500 nM			600 nM		
rp2	0000 72000 72000 74400 14000 1440 14400 1400000000	хиртина сини 0 2 год ²	x 2 4 6	808 200 200 200 800 800 800 800 800 800	анултанта бото ⁰ 8 (ср. ²	x 3 4 6	8000 2020 2020 2020 2020 2020 2020 2020	хартанан сото 1 3 сов 2 х	2 4 6
EX/hi		Cq	RFU	-	Cq	RFU		Cq	RFU
Ë	PfDd2	18,1	2,7	PfDd2	-	-	PfDd2	-	-
	PfHB3	21,6	75,7	PfHB3	21,9	79,4	PfHB3	22,1	78,1
	Pf3D7	21,7	86,6	Pf3D7	21,8	87,3	Pf3D7	21,5	85,9
p3	2000 1000 500	Augiffication Europe	x x 4 6	2009 000 000 000	Regiffication Corres		9000 1000 1000 5 00	Андиблизован Санчан 2 3 _{Срев} 2 3	7 0 0
M/hr		Cq	RFU		Cq	RFU		с С _{q q}	RFU
Ч	PfDd2	20,9	20,0	PfDd2	21,0	19,3	PfDd2	20,9	20,6
	PfHB3	-	-	PfHB3	-	-	PfHB3	35,8	1,3
	Pf3D7	22,8	28,1	Pf3D7	23,0	28,4	Pf3D7	22,7	27,7
du	The second secon	Angelfication Garres	2 4 6		Angelfication Exerces	3 4 6		Keptitustian Corres	3 4 6
·5/β-1		Cqq	RFU	-	Cq	RFU		Cq	RFU
С О	PfDd2	21,0	1,6	PfDd2	21,1	1,7	PfDd2	21,1	1,7
	PfHB3	20,4	1,2	PfHB3	20,6	1,6	PfHB3	20,6	1,4
	Pf3D7	19,6	1,3	Pf3D7	19,6	1,6	Pf3D7	19,6	1,6
iytb	U2000 Menotoreanou este este este este este este este este	2 2 gan 2	x 3 0 0	12000 0000 0000 0000 0000 0000 0000 000	Empification terres	x 3 0 0	1000 400 5 10	2 2 1000 2 3	3 4 6
OX/c		Cq	RFU		Cq	RFU		Cq	RFU
Ř	PfDd2	16,5	9,3	PfDd2	16,6	8,8	PfDd2	16,6	10,1
	PfHB3	15,9	10,4	PfHB3	16,0	11,0	PfHB3	16,1	11,2
	Pf3D7	15,0	11,4	Pf3D7	15,0	11,3	Pf3D7	15,0	11,7

Tab. 3-15: Variation der β -tub-Primerkonz. bei cytb-Sondenkonz. 150 nM: 4plex-qPCR_v2 mit PfDd2, PfHB3, Pf3D7 \mathcal{O} und Negativkontrollen als template.

	400 nM			500 nM			600 nM		
rp2	5000 0000 100 1000 1	3 2 (ph) 2	x x x x	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2 2 (pp) 2	* * * *	0000 0000 46000 4000 4000 4000 4000 400	8 application Corres	x x x x
IX/h		Cq	RFU	-	Cq	RFU		Cq	RFU
Ë	PfDd2	-	-	PfDd2	17,1	2,7	PfDd2	-	-
	PfHB3	21,2	68,6	PfHB3	22,9	82,3	PfHB3	22,4	81,4
	Pf3D7	21,1	80,7	Pf3D7	21,1	85,4	Pf3D7	21,7	87,8
p3	3000 000 000 5 0	Augstrication Events			Amplification Corres	* * * *	2000 1000 000 5 0	Asynthesis Corres	
M/hr		Cq	RFU	_	Cq	RFU		Cq	RFU
ΕA	PfDd2	21,2	21,0	PfDd2	21,0	19,7	PfDd2	20,9	20,3
	PfHB3	35,4	1,5	PfHB3	34,7	2,0	PfHB3	-	-
	Pf3D7	22,7	28,6	Pf3D7	22,5	29,8	Pf3D7	22,7	28,4
tub	2.00 5.00 5.00	angeling terms	A 4 6	1.20 Provenue	Augentication Corres	2 4 6	2.20 Transformed and the second secon	aquification terror	x = 4 6
/5/β-		Cq	RFU		Cq	RFU		Cq	RFU
Ú.	PfDd2	20,7	2,0	PfDd2	20,7	1,8	PfDd2	20,7	2,1
	PfHB3	20,1	1,6	PfHB3	20,5	2,0	PfHB3	19,7	2,0
	Pf3D7	19,0	1,9	Pf3D7	19,0	2,2	Pf3D7	19,5	1,9
sytb	100	2 X (pake 3	2 2 6 0	1000 5 10	Augustentias Garas	2 2 6 6	5 13	2 3 _(julk) 2	2 2 6 6
)XO		Cq	RFU		Cq	RFU		Cq	RFU
Ŕ	PfDd2	16,3	3,7	PfDd2	16,2	3,6	PfDd2	16,3	3,6
	PfHB3	15,8	4,1	PfHB3	16,3	5,5	PfHB3	16,1	5,1
	Pf3D7	-	(4,7)	Pf3D7	-	(5,0)	Pf3D7	15,0	5,1

Tab. 3-16:Variation der β -tub-Primerkonz. Bei cytb-Sondenkonz. 50nM: 4plex-qPCR_v2 mit pfDd2,
PfHB3, Pf3D7 \mathcal{D} und Negativkontrollen als template.

β-tubulin-Sondenkonzentration

Abschließend wurde untersucht, ob das Amplifikationssignal von β -tubulin weiter verbessert werden kann – ohne mit den anderen Parametern zu interferieren – wenn die β -tubulin-Sondenkonzentration erhöht wird. Es wurden folgende Konzentrationen getestet: 100, 150, 200, 250 und 300 nM (vgl. Tab. 3-17, Tab. 3-18). Die höchste Konzentration ergab die beste Amplifikation. Für die nächsten Experimente wurde daher mit einer β -tubulin-Sondenkonzentration von 300 nM weitergearbeitet.

Tab. 3-17: Variation der β-tub-Sondenkonz. auf max 200 nM: 4plex-qPCR_v2 mit pfDd2, PfHB3, Pf3D7 und Negativkontrollen als template.

	100 nM			150 nM			200 nM		
rp2	2.9.00 2.000 7.000 7.000 9.000 9.000 1.000 1.000 1.000 5.00	Augustration Garres	x = 4 = 6	2.00 7000 7000 7000 7000 7000 7000 7000	Augustication Curves	x x x x	2.00 7000 7000 7000 7000 7000 7000 7000	Augustication Corres	* * 4 6
EX/h		Cq	RFU		Cq	RFU		Cq	RFU
Ë	PfDd2	-	-	PfDd2	-	-	PfDd2	17,0	3,6
	PfHB3	21,3	77,0	PfHB3	22,3	80,1	PfHB3	21,9	82,9
	Pf3D7	21,7	88,4	Pf3D7	21,6	90,7	Pf3D7	22,0	91,3
ırp3	1000 1000 1000 1000 1000	Augustication Gavess	1 2 6 6	2.00 0.000 0.000 0.000 0.000 0.000 0.000	Asystitication Corves	x 2 4 5	2.00 0.000 4.00 5 0.0	Asynthesistes Corres	x 3 4 6
AM/F		Cq	RFU		Cq	RFU		Cq	RFU
F/	PfDd2	20,9	20,8	PfDd2	21,1	20,4	PfDd2	21,0	20,8
	PfHB3	-	-	PfHB3	-	-	PfHB3	37,3	1,7
	Pf3D7	22,7	30,5	Pf3D7	22,8	30,5	Pf3D7	22,9	28,7

	100 nM			150 nM			200 nM		
tub	There are a second seco	auptrolis terrs	2 3 4 6	For the second s	Angemention Corres		Promotion and the second secon	Augustication Correct	A 3 4 6
.5/β-		Cq	RFU		Cq	RFU		Cq	RFU
ۍ ا	PfDd2	20,6	2,7	PfDd2	20,3	2,1	PfDd2	20,9	3,8
	PfHB3	16,4	2,8	PfHB3	19,8	2,0	PfHB3	20,1	3,4
	Pf3D7	19,0	3,4	Pf3D7	18,7	2,1	Pf3D7	19,3	3,4
sytb	1000 4000 5 00	Augustustius Barras	8 3 4 6	1000 Website 5 0	Augmention Curry	x 3 4 0	1000 4,00 5 0	Reptilications Genres	x 2 4 0
XC		Cq	RFU		$\mathbf{C}_{\mathbf{q}} \mathbf{C}_{\mathbf{q}}$	RFU		Cq	RFU
Ř	PfDd2	16,7	10,6	PfDd2	16,7	10,9	PfDd2	16,7	10,6
	PfHB3	16,2	12,0	PfHB3	16,2	12,7	PfHB3	16,0	11,8
	Pf3D7	15,0	12,9	Pf3D7	14,5	12,9	Pf3D7	15,1	12,1

Tab. 3-18:Variation der β -tub-Sondenkonz. auf max. 300 nM: 4plex-qPCR_v2 mit pfDd2, PfHB3,Pf3D7 \mathcal{O} und Negativkontrollen als template.

	200 nM			250 nM			300 nM		
p2	1224 4129 1225 1225 1225 1225 1225 1225 1225 1	Angriffeation Europa		855 2008 455 455 455 455 455 455 455 455 455 105 3.00	Anguliaution Corres		223 223 428 429 429 429 429 429 429 429 429 429 429	Amplification Correct	
:X/hr		Cq	RFU		Cq	RFU		Cq	RFU
坣	PfDd2	-	-	PfDd2	-	-	PfDd2	-	-
	PfHB3	21,7	75,0	PfHB3	21,3	77,9	PfHB3	22,6	79,4
	Pf3D7	20,0	72,2	Pf3D7	16,3	65,7	Pf3D7	19,2	60,4

	200 nM			250 nM			300 nM		
rp3	215790 11799 6799 6799 5 7)	Angelfication Garres	1 2 0 6	1039 1039 1039 1039 1039 1039	Amplification Gurves	x x 0 6	1020 1020 1020 1020 1020 1020 1020 1020	Amplification Corros	x x 0 6
M/M		Cq	RFU		Cq	RFU		Cq	RFU
Ľ.	PfDd2	21,2	21,6	PfDd2	22,1	25,2	PfDd2	21,1	22,5
	PfHB3	35,1	1,5	PfHB3	-	-	PfHB3	-	-
	Pf3D7	22,3	25,6	Pf3D7	21,1	21,4	Pf3D7	21,5	24,5
tub	Lee eventset 0.0 5 N	Angelitation Curros	» ž 0 6	Correction of the second secon	Angulication Garres	x 3 0 6	6.00 6.00 4.00 7.00 6.00 5. N	Anguilitzation Garros	x x 0 6
-9/9-		Cq	RFU		Cq	RFU		Cq	RFU
ර	PfDd2	21,0	3,6	PfDd2	18,9	3,7	PfDd2	18,9	5,1
	PfHB3	20,3	3,4	PfHB3	20,2	4,1	PfHB3	20,0	6,6
	Pf3D7	18,8	3,2	Pf3D7	21,2	4,6	Pf3D7	21,5	6,7
sytb	000 1000 1000 1000 1000 1000 1000 1000	Anglification Gurres	x x 4 6	1020 1020 1020 1020 1020 1020 1020 1020	Angerification Gorres	x > 0 6	1020 1020 1020 1020 1020 1020 1020 1020	Angerificative Corves	x x 0 6
оX/		Cq	RFU		Cq	RFU		Cq	RFU
Ř	PfDd2	16,8	9,9	PfDd2	16,7	10,0	PfDd2	16,8	10,7
	PfHB3	16,1	10,3	PfHB3	15,9	11,3	PfHB3	16,5	11,7
	Pf3D7	14,7	9,9	Pf3D7	14,6	9,6	Pf3D7	14,6	9,3

3.1.2.2 Optimierung der Fluoreszenzkurve

Nachdem zunächst die Angleichung der erzielbaren maximalen Fluoreszenzintensitäten erreicht werden sollte (vgl. Kapitel 3.1.2), sollte nun die Amplifikationszunahme von *hrp2* und *hrp3* hinsichtlich einer sigmoidalen Fluoreszenzzunahme optimiert werden. Dies wurde notwendig, da bei den Messungen von klinischen Isolaten mit niedrigen Parasitämien die Fluoreszenzkurven von *hrp2* und *hrp3* mehrfach keine eindeutig sigmoidale Zunahme zeigte. Für diesen Optimierungsschritt wurden deshalb zusätzlich zu den Laborisolaten ausgewählte Proben klinischer Isolate hinzugenommen. Da aufgrund zu geringer Volumina nicht einund dieselben Feldproben für alle Optimierungsschritte verwendet werden konnten, war ein direkter Vergleich der Amplifikationskurven der Feldproben zwischen den einzelnen Experimenten nicht möglich. In den Darstellungen wurden daher lediglich die Positivkontrollen abgebildet.

Elongationsdauer

Die Elongationsdauer wurde ausgehend von 2:30 min auf 2:00 min erniedrigt sowie auf 3:00 min erhöht. Die Erhöhung der Elongationszeit auf 3:00 min erbrachte gegenüber 2:30 min zwar eine kleine, aber nicht nennenswerte Besserung der Fluoreszenzkurve (vgl. Tab. 3-19). Die Zeit von 2:30 min wurde daher für die weiteren Experimente beibehalten.

	2:00 Min	uten		2:30 Min	uten		3:00 Min	uten	
rp2	63 63 63 64 64 64 64 64 64 64 64 64 64 64 64 64	Anglificatios Carves			Angelification Corres) A 4 6	Ная 7 2018 7 2018 19 20 20 19 20 20 19 20 20 19 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2	Anglificaties Gares	x 2 0 6
EX/h		Cq	RFU		Cq	RFU		Cq	RFU
出	PfDd2	-	-	PfDd2	-	-	PfDd2	-	-
	PfHB3	22,4	86,4	PfHB3	22,8	73,8	PfHB3	22,6	59,9
	Pf3D7	20,1	63,6	Pf3D7	20,9	74,9	Pf3D7	21,1	56,6
	21,539	Amplification Gerves		25209 10,0209 10,0209 10,0209 10,0209	Amplification Corves		2020 2020 1020 1020	Amplification Corves	
p3	9039 1009 5 T)	3 ³ _{Unite} ²	x is 0 6	4009 5 T)	3 0 Cartes 2	x 5 0 6	2000 2000 5 T)	Contes 2	x 3 0 6
M/hrp3	E29 5 70	° ° com ° Cq	RFU	4.30 5 T)	C _q	RFU	500 2,09 5 T)	C _q	RFU
FAM/hrp3	PfDd2	C q 21,3	RFU 23,8	PfDd2	⁵ ³ _{сме} ² С _q 21,3	RFU 21,2	PfDd2	C q 21,5	RFU 23,8
FAM/hrp3	PfDd2 PfHB3	²	RFU 23,8	PfDd2 PfHB3	² ³ _{0m} ² C _q 21,3 -	RFU 21,2	PfDd2 PfHB3	⁵ ³ _{om} ² C _q 21,5 -	RFU 23,8 -
FAM/hrp3	PfDd2 PfHB3 Pf3D7	C q 21,3 - 22,3	RFU 23,8 - 24,1	PfDd2 PfHB3 Pf3D7	C q 21,3 - 22,4	RFU 21,2 - 27,0	PfDd2 PfHB3 Pf3D7	²	RFU 23,8 - 27,0

Tab. 3-19: Variation der Elongationszeit: 4plex-qPCR_v2 mit pfDd2, PfHB3, Pf3D7 () und Negativkontrollen als template.

	2:00 Minuten		2:30 Min	uten		3:00 Minuten			
tub	Provention and the second seco	Amplification Carrows		Provenous and the second secon	Anguilication Gorves	3 5 U B	NUCLEAR THE	Anguiliteation Corves	* * 0 6
,5/β-		Cq	RFU		Cq	RFU		Cq	RFU
Û	PfDd2	21,9	8,3	PfDd2	21,8	5,4	PfDd2	22,0	7,3
	PfHB3	21,3	6,1	PfHB3	21,3	5,1	PfHB3	21,4	5,5
	Pf3D7	19,9	4,9	Pf3D7	19,8	5,9	Pf3D7	19,9	5,1
	14.000	Amplification Curves		14.039	Amplification Curves		14.006	Amplification Curves	
sytb	5 1)	3 0 cein *	x 5 0 6	1000 000000000000000000000000000000000	2 2 Quin 2	3 8 0 6	1239 1429 14 14 14 14 14 14 14 14 14 14	3 ³ Defe	<u>x</u> <u>2</u> <u>0</u> <u>6</u>
XC		Cq	RFU		Cq	RFU		Cq	RFU
Ř	PfDd2	17,1	13,5	PfDd2	16,8	10,3	PfDd2	16,9	13,2
	PfHB3	16,54	14,4	PfHB3	16,4	12,5	PfHB3	16,5	12,8
	Pf3D7	15,1	11,9	Pf3D7	15,0	12,2	Pf3D7	15,0	12,3

hrp2- und hrp3-Sondenkonzentrationen

Während der Durchführung der Arbeiten wurden insgesamt drei verschiedene Stocklösungen der *hrp2-* und *hrp3-*Sonden verwendet (drei verschiedene Synthesen). Es fiel auf, dass mit den Sonden der zweiten Lieferung erhöhte Fluoreszenzintensitäten erzielt wurden (vgl. RFU im FAM-Kanal der Tab. 3-10 im Vergleich zur Tab. 3-11). Gleichzeitig wurde festgestellt, dass die Erhöhung der *hrp3-*Sondenkonzentration zu einer Verschlechterung des sigmoidalen Verlaufs führte (vgl. Tab. 3-11). Deshalb wurde bei diesem zusätzlichen Optimierungsschritt eine Erniedrigung der *hrp2-* und *hrp3-*Sondenkonzentrationen, ausgehend von 50 nM auf 25 und 20 nM, getestet (vgl. Tab. 3-20). Dies führte zu einer Verringerung der absoluten maximalen Fluoreszenzintensität und gleichzeitig verbesserten sich die Amplifikationskurven hinsichtlich eines sigmoidalen Verlaufs. Für die weiteren Experimente wurden die Konzentrationen von 20 nM für die *hrp2-*Sonde und 25 nM für die *hrp3-*Sonde übernommen.

Sondenkonz.	HEX			FAM			
<i>hrp2</i> : 50 nM hrp3: 50 nM	6.00 6.00 6.00 6.00 7.00 7.00 7.00 7.00	Amplification Gurves	-	3.40 1323 1335 1345 1356 1355 1355 1355 1355 1355 1355 135	Amplification Corres		
		Cq	RFU		Cq	RFU	
	PfDd2	-	-	PfDd2	20,7	18,6	
	PfHB3	21,2	53,9	PfHB3	-	-	
	Pf3D7	21,2	60,7	Pf3D7	22,9	26,4	
<i>hrp2</i> : 25 nM <i>hrp3</i> : 50 nM	Augilization Europe		Angeliacia Govern				
		Cq	RFU		Cq	RFU	
	PfDd2	-	-	PfDd2	20,74	18,5	
	PfHB3	20,3	29,9	PfHB3	-	-	
	Pf3D7	19,8	26,8	Pf3D7	22,8	25,6	
<i>hrp2</i> : 50 nM <i>hrp3</i> : 25 nM	643% 543% 543% 543% 543% 543% 543% 643% 5 5 5 9	Amplification Gurves		1125 1026 128 128 129 129 129 129 129 129 129 129 129 129	Amplification Corres		
		Cq	RFU		Cq	RFU	
	PfDd2	-	-	PfDd2	20,1	8,2	
	PfHB3	21,0	52,1	PfHB3	-	-	
	1						

Tab. 3-20: Variation der hrp2- und hrp3-Sondenkonz.: 4plex-qPCR_v2 mit pfDd2, PfHB3, Pf3D7 @ und Negativkontrollen als template.

Sondenkonz.	HEX			FAM		
<i>hrp2</i> : 25 nM <i>hrp3</i> : 25 nM	2046 2046 2046 2046 2046 2046 2046 2046	Amplification Curres	* * * *	11.65 7.35 1.35 1.65 	Amplification Corres	2 4 6 5
		Cq	RFU		Cq	RFU
	PfDd2	-	-	PfDd2	20,3	9,6
	PfHB3	20,2	28,5	PfHB3	-	-
	Pf3D7	19,9	28,3	Pf3D7	20,5	10,4
<i>hrp2</i> : 20 nM <i>hrp3</i> : 25 nM	2.4.00 2.00 1.00 1.1.00 1.1.00 1.1.00 1.000 4.000 2.000 2.000	Application Corres		1234	Angliftedies Currer	
	5 10	15 2 Eyeles	3 8 0 8	6 û	15 21 Cycles 25	2 8 0 15
	5 1)	° cyalar at a	RFU	 5 11	^{6 2} _{сийк} ²	RFU
	PfDd2	^b ^a _{gate} ^a	RFU -	 PfDd2	⁸ ² _{Cybe} ⁸ C _q 20,3	RFU 10,5
	PfDd2 PfHB3	¹⁵ ² _{Cybe} ² C _q - 20,1	RFU - 22,4	 PfDd2 PfHB3	<pre>* * contex* Cq 20,3 -</pre>	x x RFU 10,5 -
	PfDd2 PfHB3 Pf3D7	* * _{cont} * Cq - 20,1 19,8	RFU - 22,4 24,9	PfDd2 PfHB3 Pf3D7	 Cq 20,3 - 21,1 	x x RFU 10,5 - 12,0
<i>hrp2</i> : 20 nM <i>hrp3</i> : 20 nM	PfDd2 PfHB3 Pf3D7	* * con * Cq - 20,1 19,8 xystemeter terrer	RFU - 22,4 24,9	PfDd2 PfHB3 Pf3D7	 ⁸ ² _{Gan}³ ⁹ ² ² ² ² ² ² ² ² ² ²	 x x<
<i>hrp2</i> : 20 nM <i>hrp3</i> : 20 nM	PfDd2 PfHB3 Pf3D7	* * ^x ^{con} * C _q - 20,1 19,8 * * ^x ^{con} * C _q	RFU - 22,4 24,9 RFU	4 0 PfDd2 PfHB3 Pf3D7	 ⁸ срес⁸ ^{20,3} - 21,1 харание сого 	RFU 10,5 - 12,0 RFU
<i>hrp2</i> : 20 nM <i>hrp3</i> : 20 nM	PfDd2 PfHB3 Pf3D7	* * ¹	RFU - 22,4 24,9 RFU -	PfDd2 PfHB3 Pf3D7	⁸ ² _{Gab} ³ C _q 20,3 - 21,1 Augustance Geree ⁸ ² ² _{Gab} ³ C _q 20,3	RFU 10,5 - 12,0 RFU 8,3
<i>hrp2</i> : 20 nM <i>hrp3</i> : 20 nM	PfDd2 PfHB3 Pf3D7	x x con x Cq - 20,1 19,8 x x con x Cq - Cq - 20,3	RFU - 22,4 24,9 RFU - 23,8	PfDd2 PfHB3 Pf3D7	⁸ ² _{Gate} ³ C _q 20,3 - 21,1 Magintume terms ⁸ ² ² _{Gate} ⁸ C _q 20,1 -	RFU 10,5 - 12,0 MRFU 8,3 -

3.1.2.3 Anpassung an Unterschiede zwischen den Sonden-Bestellungen

Nach dem Eintreffen der dritten Bestellung der Sonden für *hrp2* und *hrp3* fielen die Fluoreszenzintensitäten wieder auf Werte, die vergleichbar sind mit denen, die sich unter Verwendung der ersten Bestellung der Sonden ergaben. In der Tab. 3-21 sind die Fluoreszenzkurven, RFU- und Cq-Werte für die Bestellungen 1-3 dargestellt. Unter der Bestellung 2 erfolgte zunächst die Erniedrigung der *hrp2*-Sondenkonzentration von 50 nM auf 20 nM, bzw. der *hrp3*-Sondenkonzent-ration von 50 nM. Es resultierte das Protokoll B. Nachdem die dritte

Bestellung die hohen Fluoreszenzintensitäten nicht halten konnte, wurde wieder auf die Sondenkonzentrationen des Protokoll A von 50 nM zurückgegriffen.

Tab. 3-21:	Vergleich der Fluoreszenzkurve/-Intensitäten zw. Bestellung 1-3 der Sonden bei 50 nM: 4plex-
	qPCR_v2 mit PfDd2, PfHB3, Pf3D7

	Bestellung 1			Bestellur	ng 2		Bestellung 3		
rp2	2000 2000 2000 2000 2000 2000 2000 200	Amplification Corves	n à a 6	2000 2000 2000 2000 2000 2000 2000 200	Amplification Garros	a 2 a 6	2000 2000 2000 2000 2000 2000 2000 200	Amphilication Garves	
LX'h		Cq	RFU		Cq	RFU		Cq	RFU
Ë	PfDd2	-	-	PfDd2	-	-	PfDd2	-	-
	PfHB3	21,0	27,9	PfHB3	22,6	70,9	PfHB3	19,9	14,1
	Pf3D7	20,2	29,5	Pf3D7	21,4	70,0	Pf3D7	18,8	14,5
rp3	00055 00055 00055 0005 0005 0005 0005	Angstituction Garves		1000 2000 2000 1000 1000 1000 1000 1000	Amphilication Garrow		0001 0000 0001 00001 0000 00000 0000 0000 0000 0000 0000 0000 0000 0000	Amplification Carves	
μ/Μ/		Cq	RFU		Cq	RFU		Cq	RFU
ЧЦ	PfDd2	19,7	3,0	PfDd2	21,5	19,5	PfDd2	19,66	4,0
	PfHB3	-	-	PfHB3	-	-	PfHB3	-	-
	Pf3D7	18,6	3,3	Pf3D7	22,5	25,6	Pf3D7	18,55	4,4

3.1.3 Parameter der 4plex-qPCR_v2

Nach den Optimierungsschritten ergaben sich die in Tab. 3-22 ersichtlichen Einstellungen für die Durchführung der *qPCR*.

PCR-Bedingungen		Temperatur	Dauer	Tempo
Aktivierung		95 °C	20 Sek.	4,8 °C/s
Zyklen (45x)	Denaturation	95 °C	3 Sek.	4,8 °C/s
	Primer-Hybridisierung	62 °C	150 Sek.	2,5 °C/s
Kühlung		40 °C	30 Sek.	4,8 °C/s

Tab. 3-22:	PCR-Bedingungen	der 4plex-qPCR_	v2.
Tab. 3-22:	PCR-Bedingungen	der 4plex-qPCR_	<u>v2</u> .

Bezüglich der Konzentrationen ergaben sich im Verlauf dieser Arbeit ein Protokoll A und ein Protokoll B (vgl. Tab. 3-23, Tab. 3-24).

Tab. 3-23:	Reaktionsansatz der 4plex-gPCR v2 Protokoll A.
100.0 20.	

			c final [nM]	V [µl] pro Probe
Mastermi-	TaqMan®	Multiplex Master Mix	1 x	5
schung:	hrp2	Fwd Primer	400	0,2
		<i>Rev</i> Primer	400	0,2
		Sonde	50	0,1
	hrp3	Fwd Primer	400	0,2
		<i>Rev</i> Primer	400	0,2
		Sonde	50	0,1
	β-tub	Fwd Primer	600	0,2
		<i>Rev</i> Primer	600	0,2
		Sonde	300	0,1
	cytb	Fwd Primer	400	0,2
		<i>Rev</i> Primer	400	0,2
		Sonde	150	0,1
DNA-Probe				3
SUMME				10

			c final [nM]	V [µl] pro Probe
Mastermi-	TaqMan	® Multiplex Master Mix	1 x	5
schung:	hrp2	Fwd Primer	400	0,2
		<i>Rev</i> Primer	400	0,2
		Sonde	20	0,1
	hrp3	Fwd Primer	400	0,2
		Rev Primer	400	0,2
		Sonde	25	0,1
	β-tub	Fwd Primer	600	0,2
		Rev Primer	600	0,2
		Sonde	300	0,1
	cytb	Fwd Primer	400	0,2
		<i>Rev</i> Primer	400	0,2
		Sonde	150	0,1
DNA-Probe				3
SUMME				10

Tab. 3-24:	Reaktionsansatz der 4plex-gPCR v2 Protokoll B.

Das Protokoll A entstand nach dem ersten Optimierungsschritt (vgl. Abb. 2-2). Unter der Bestellung 2 der Primer und Sonden wurden die Konzentrationen der *hrp2*- und *hrp3*-Sonden nochmal variiert. Diese Variante ergab dann das Protokoll B. Nachdem die dritte Bestellung/Synthese der Sonden genutzt wurde, wurde jedoch wieder auf das Protokoll A zurückgegriffen.

Insgesamt erfolgten die Messungen der Feldproben, die Messungen des alten Standards sowie die Messungen des neuen Standards mit dem Protokoll A – lediglich der neue Standard wurde zusätzlich auch mit dem Protokoll B gemessen.

3.2 Analyse klinischer Isolate

Die *4plex-qPCR_v2* wurde zur retrospektiven Analyse von einer Auswahl an Proben, die innerhalb von zwei Studien in Gabun gewonnen wurden und für diese

Arbeit zur Verfügung standen, angewandt (vgl. 2.2.2.2). Bei den Proben handelte es sich um Blutproben von sowohl Personen, die mit *P. falciparum* infiziert waren als auch von nicht-infizierten Personen. Die Proben wurden als Vollblutproben oder auf Filterpapier (*FTA Elute Card, Protein Saver Card*) gesammelt und die DNA entsprechend extrahiert.

In Abb. 3-1 sind die Ergebnisse der *4plex-qPCR_v2*-Analyse zu sehen. Unter den 122 Proben sind 20 Proben dabei, die nur 10 Patient*innen zuzuordnen sind, da Proben dieser Patient*innen sowohl als *FTA Elute Card* als auch als Vollblutproben zur Verfügung standen und gemessen wurden.

Abb. 3-1: Zusammenfassung der Ergebnisse der Feldproben.

In Abb. 3-2 sind im Gegensatz dazu nur die Proben aufgeführt, welche der Greendot-Studie (Untergruppe der NoHRP2-Studie) angehören. Diese Proben wurden mit der *4plex-qPCR_v2* das erste Mal gemessen und unterlagen somit keiner Vorauswahl. Unter den gemessenen Proben gab es keine Malariainfektion mit einer *hrp2-/hrp3*-Deletion.

Abb. 3-2: Zusammenfassung der Ergebnisse der Greendot-Studien-Proben.

Von den 122 Proben wurden insgesamt 85 Proben auch mit der $4plex-qPCR_v1$ analysiert. Der Vergleich der Ergebnisse ist in Tab. 3-25 zu sehen. Bei der Messung mit dem Protokoll der ersten Generation wurden für die Gene β -tubulin, hrp2 und hrp3 häufiger positive Ergebnisse gemessen. Inwieweit das erste Protokoll sensitiver war oder aber einige der positiven Ergebnisse durch Kreuzreaktivität zustande kamen, kann nicht abschließend geklärt werden. Unter den Proben, die unterschiedliche Ergebnisse in den Messungen der ersten Generation im Vergleich zur zweiten Generation ergaben, waren lediglich 3 Proben Vollblutproben.

Tab. 3-25: Vergleich der Ergebnisse der Feldproben der 4plex-qPCR_v1 und _v2.

Die Methode der Probengewinnung und der DNA-Extraktion beeinflusst das Ergebnis der *4plex-qPCR*. Das Blutvolumen eines *blood spot* einer *FTA Elute Card* beträgt lediglich 40 µl; für die Extraktion aus Vollblut wurden bis zu 200 µl Probenvolumen genutzt, sofern noch so viel vorhanden war.

In der Abb. 3-3 sind jeweils alle Patientenproben dargestellt, die als *FTA Elute Card* und Vollblutprobe vorhanden waren. Es wurden lediglich die Proben abgebildet, bei denen eines der beiden Ergebnisse positiv war. Negative Ergebnisse sind in den Diagrammen zur besseren Übersicht nicht mit einer Null, sondern mit dem C_q-Wert von 40 dargestellt.

Abb. 3-3: Vergleich der Ergebnisse der Feldproben aus FTA Elute Cards und Vollblutproben. (FTA Elute cards = blau, Vollblutproben = orange)

Für die *FTA Elute Card*-Proben sind alle C_q-Werte höher, d.h. die Amplifikation war geringer als für die Vollblutproben desselben Probanden. Ob allein die geringere DNA-Menge durch die geringere Probenmenge ausschlaggebend war oder ob zusätzlich auch *qPCR*-inhibierende Cofaktoren aus den *FTA Elute Cards* in der eluierten DNA enthalten sind, lässt sich aus diesen Daten nicht sagen. Klar ist aber, dass sich die *FTA Elute Cards* nicht eignen für eine Probensammlung

einer epidemiologischen Studie zur Prävalenzbestimmung von *P. falciparum* mit *hrp2*-Deletionen.

3.3 Vergleich der Sensitivität der 4plex-qPCR mit k. PCR

Hrp2/hrp3-Deletionen werden dadurch detektiert, dass keine Genamplifikation experimentell nachgewiesen werden kann. Dieser Ansatz ist grundsätzlich nicht ganz unproblematisch, da verschiedene Faktoren zu einem negativen Ergebnis führen können, wie zum Beispiel eine zu geringe *Template*-DNA-Menge. Ein solches falsch-negatives Ergebnis würde die fälschliche Detektion und Berichterstattung von deletierten *P. falciparum*-Stämmen zur Folge haben. Mit diesem Teil der Arbeit sollte verglichen werden, ob die *4plex-qPCR_v2* sensitiver ist als die konventionelle *PCR* (k. *PCR*) für die Detektion von *hrp2* und *hrp3* und somit weniger falsch-negative Ergebnisse erzielt, also seltener fälschlicherweise *hrp2/hrp3*-Deletionen anzeigt.

Hierzu wurden aus Ringstadien sorgfältig ein Standard hergestellt mit definierten Parasitämien zwischen 600 und 0,001 Parasiten/µl.

Das Detektionslimit und die Effizienz der *4plex-qPCR_v2* wurde mit zwei Pf3D7-Standards bestimmt. Die Pf3D7^{Rodi}-Verdünnungsreihe wurde zur Verfügung gestellt und der Pf3D7²-Standard wurde selbst hergestellt. Zusätzlich wurden das Detektionslimit und die Effizienz auch unter Verwendung der zwei Stämme mit *hrp2-* bzw. *hrp3*-Deletionen – PfDd2 und PfHB3 – bestimmt.

Die Tab. 3-26, Tab. 3-27, Tab. 3-28 und Tab. 3-29 zeigen das Detektionslimit und die Effizienz der *4plex-qPCR_v2, Protokoll A* für die Detektion der einzelnen Gene.

	Standardkurve des Pf3D7-Stamms	Effizienz	Detektionslimit (P/ml)
hrp2	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,56	204
hrp3	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,30	6000
ß-tub	$\begin{bmatrix} 45,0 \\ 40,0 \\ 35,0 \\ 30,0 \\ \hline \\ 25,0 \\ \hline \\ 25,0 \\ \hline \\ 25,0 \\ \hline \\ 5,0 \\ 0,0 \\ \hline \\ y = -3,0413x + 44,162 \\ R^2 = 0,9975 \\ \hline \\ 1 \\ 2 \\ \hline \\ 1 \\ 2 \\ \hline \\ 1 \\ 2 \\ \hline \\ 1 \\ 0g (Parasiten /ml) \\ \hline \\ 5 \\ 6 \\ \hline \\ \\ 7 \\ \hline \hline \\ 7 \\ \hline \\ 7 \\ \hline \\ 7 \\ \hline \\ 7 \\ \hline \hline \\ 7 \\ \hline \\ 7 \\ \hline \hline \hline \hline$	1,13	2040
cytb	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,08	60

Tab. 3-26: 4plex-qPCR_v2 Prot. A Messung der Verdünnungsreihe des Pf3D7^{Rodi}-Standards für hrp2, hrp3, β -tub und cytb.

Tab. 3-27: 4plex-qPCR_v2 Prot. A Messung der Verdünnungsreihe des Pf3D7²-Standards für hrp2, hrp3, β-tub und cytb.

86

	Standardkurve des PfHB3-Stamms	Effizienz	Detektionslimit (P/ml)
hrp2	$\begin{bmatrix} 40 \\ 35 \\ 30 \\ 25 \\ 20 \\ 15 \\ 10 \\ 5 \\ 10 \\ 1 \\ 1 \\ 2 \\ 12 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	1,71	60
β-tub	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,11	2040
cytb	$\begin{bmatrix} 40 \\ 35 \\ 30 \\ 25 \\ 10 \\ 5 \\ 10 \\ 7 \\ 9 \\ 15 \\ 10 \\ 1 \\ 2 \\ 12 \\ 10 \\ 1 \\ 2 \\ 10 \\ 1 \\ 2 \\ 10 \\ 1 \\ 1 \\ 2 \\ 10 \\ 10$	1,18	20,4

Tab. 3-28: 4plex-qPCR_v2 Prot. A Messung der Verdünnungsreihe des PfHB3-Standards für hrp2, hrp3, β-tub und cytb.

	Standardkurve des PfDd2-Stamms	Effizienz	Detektionslimit (P/ml)
hrp3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,03	600
ß-tub	$\begin{bmatrix} 40 \\ 35 \\ 30 \\ 25 \\ 20 \\ 15 \\ 15 \\ 10 \\ 5 \\ 0 \\ 1 \\ 2 \\ 20 \\ 15 \\ 10 \\ 15 \\ 10 \\ 12 \\ 10 \\ 12 \\ 10 \\ 10 \\ 10 \\ 10$	1,32	600
cytb	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,25	20,4

Tab. 3-29:4plex-qPCR_v2 Prot. A Messung der Verdünnungsreihe des PfDd2-Standards für hrp2, hrp3,
β-tub und cytb.

Die neuen Verdünnungsreihen wurden neben dem Protokoll A der *4plexqPCR_v2* auch mit dem Protokoll B gemessen. Die Ergebnisse sind den Tab. 3-30, Tab. 3-31 und Tab. 3-32 zu entnehmen.

	Standardkurve des Pf3D7 ² -Stamms	Effizienz	Detektionslimit (P/ml)
hrp2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,37	204
hrp3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,05	2040
ß-tub	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,14	2040
cytb	$\begin{bmatrix} 40,0 \\ 35,0 \\ 25,0 \\ 25,0 \\ 15,0 \\ 10,0 \\ 5,0 \\ 0,0 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1$	1,13	20,4

Tab. 3-30:4plex-qPCR_v2 Prot. B Messung der Verdünnungsreihe des Pf3D72-Standards für hrp2, hrp3,
 β -tub und cytb.

	Standardkurve des PfHB3-Stamms	Effizienz	Detektionslimit (P/ml)
hrp2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,26	204
ß-tub	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,08	2040
cytb	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,05	60

Tab. 3-31:4plex-qPCR_v2 Prot. B Messung der Verdünnungsreihe des PfHB3-Standards für hrp2, hrp3,
 β -tub und cytb.

	Standardkurve des PfDd2-Stamms	Effizienz	Detektionslimit (P/ml)
hrp3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,07	204
ß-tub	$\begin{bmatrix} 45 \\ 40 \\ 35 \\ 30 \\ 25 \\ 20 \\ 15 \\ 10 \\ 5 \\ 10 \\ 5 \\ 10 \\ 12 \\ 12 \\ 10 \\ 12 \\ 10 \\ 12 \\ 10 \\ 10$	1,14	2040
cytb	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,04	60

Tab. 3-32:4plex-qPCR_v2 Prot. B Messung der Verdünnungsreihe des PfDd2-Standards für hrp2, hrp3,
β-tub und cytb.

In Tab. 3-33 sind die Detektionslimits aufgetragen und nach Amplifikations- und Analysemethode dargestellt. Sofern bei keiner Verdünnung die Amplifikation dargestellt werden konnte, ist dies mit einem Bindestrich gekennzeichnet. Das kann entweder darauf zurückgeführt werden, dass das Gen gar nicht vorhanden war (*hrp3* in PfHB3 und *hrp2* in PfDd2) oder dass die Amplifikationsleistung nicht ausreichte bzw. die anschließende Analyse zu wenig sensitiv war. Der Pf3D7^{Rodi}-Standard wurde nur mit dem Protokoll A der *4plex-qPCR_v2* gemessen, daher sind die entsprechenden Felder in der Tabelle bei Protokoll B mit einem X gekennzeichnet.

		Detektionslimit (Parasiten/ml)				
Methode Gen		Pf3D7 ^{Rodi}	Pf3D7 ²	PfHB3@	PfDd2	
k. PCR	QIAxcel	hrp2	600.000	600.000	204.000	-
		hrp3	-	-	-	600.000
	Agaro- segel	hrp2	6.000	60.000	-	-
		hrp3	60.000	600.000	-	-
qPCR	R_v2 koll A	hrp2	204	204	60	-
Protor		hrp3	6.000	204	-	600
		β-tub	2040	600	2040	600
		cytb	60	20,4	20,4	20,4
qPCR_v2 Protokoll B		hrp2	Х	204	204	-
		hrp3	Х	2.040	-	204
		β-tub	X	2040	2040	2040
		cytb	X	20,4	60	60

 Tab. 3-33:
 Detektionslimits der Standards nach Analyse- und Amplifikationsmethode.

Das Limit zur Detektion von *P. falciparum*-Infektionen mit *cytochrom b* ist hochsensitiv und liegt je nach verwendetem Standard zwischen 20 und 60 P/ml Blut. Die Detektionslimits der einzelnen Gene der *qPCR* sind außerdem über die einzelnen Standardverdünnungen relativ konstant. Lediglich die Detektionsgrenze von *hrp3* ist bei den neuen Standards etwas niedriger als bei dem Pf3D7^{Rodi}-Standard. Im Vergleich zur konventionellen *PCR* zeigten die Ergebnisse der *qPCR* jeweils die sensitiveren Ergebnisse. Außerdem konnte das identische Produkt der konventionellen *PCR* bei der Betrachtung des Agarosegels bis zu einer höheren Verdünnung visualisiert werden als durch die Analyse des QIAxcel.

4 Diskussion

Menschen in ärmeren und abgelegeneren Gebieten Afrikas mit einer schlechten Anbindung an Gesundheitszentren die Möglichkeit einer schnellen Diagnose bei unklaren Fieberverläufen ermöglichen zu können, ist ein entscheidender Faktor, Malaria therapieren und als Gesundheitsproblem eliminieren zu können. Die breite Verfügbarkeit und Nutzung der Malariaschnelltests im letzten Jahrzehnt haben dazu einen wichtigen Beitrag geleistet. So hat sich die Anzahl an Patient*innen, die auf Malaria untersucht wurden, in den Jahren von 2010 bis 2017 von 55 Millionen auf 223 Millionen mehr als vervierfacht. Die WHO schätzt den Anteil der Malariadiagnosen durch Schnelltests dabei auf 75 % (World Health Organization, 2018b).

Die meisten Schnelltests erkennen das HRP2-Protein, das von *P. falciparum* exprimiert wird und im Blut von infizierten Personen nachweisbar ist. Die zunehmenden Berichte über Gendeletionen des *hrp2*-Gens im *P. falciparum*-Genom haben zu großen Diskussionen geführt.

Die WHO äußerte sich dahingehend mit der Empfehlung einer weiteren Verwendung *hrp2*-basierter Schnelltests, solange die Prävalenz der Plasmodien mit *hrp2*-Deletionen bei einem 90 %-igem Konfidenzintervall nicht größer als fünf Prozent ist. Die Grenze basiert auf der Annahme, dass durch die Nutzung nicht *hrp2*-basierter Schnelltests der Anteil falscher Testergebnisse aufgrund deren schlechteren Beständigkeit gegenüber Hitze und Feuchtigkeit bis zu einer Prävalenz der Deletionen von fünf Prozent ein höheres Risiko darstellt als der Anteil falscher Testergebnisse aufgrund der Gendeletion (World Health Organization, 2016).

Entsprechend können treffende Empfehlungen zur Diagnostik in endemischen Regionen nur getroffen werden, wenn die vorherrschenden Prävalenzen der Gendeletionen bekannt sind.

Die aktuellen Studien nutzten dabei den Nachweis der Gene dieser Proteine mittels konventioneller *PCR* (Amoah et al., 2016; Berhane et al., 2018; Beshir et al., 2017; Kozycki et al., 2017; Kumar et al., 2013; Parr et al., 2017; Pati et al., 2018). Innerhalb der Arbeitsgruppe wurde bereits eine *4plex-qPCR* zur Detektion der Gene *hrp2* und *hrp3* sowie zusätzlich *cytochrom b* und *β-tubulin* entwickelt und evaluiert (*4plex-qPCR_v1*). Die Entwicklung spezifischer Primer und Sonden stellte dabei durch die starke Ähnlichkeit der Sequenzen des *hrp2*- und des *hrp3*- Gens eine große Herausforderung dar. Das Gen *cytochrom b* ermöglicht einen sehr sensiblen Nachweis, ob eine Probe *P. falciparum* enthält, da das Gen im Genom des *P. falciparum* in vielen Kopien vorliegt. *β-tubulin* dient als Qualitäts-kontrolle, ob eine Amplifikation eines *single copy genes* möglich ist.

Bei der Verwendung der *hrp2-/hrp3*-Primer und -Sonden der *4plex-qPCR* der ersten Generation (*4plex-qPCR_v1*) konnten Kreuzamplifikation zwischen *hrp2* und *hrp3* nicht vollständig ausgeschlossen werden. Im Rahmen dieser Arbeit wurden neue *hrp2-/hrp3*-Primer und -Sonden designt, getestet und eine *4plex-qPCR* der zweiten Generation (*4plex-qPCR_v2*) etabliert.

4.1 Optimierungsschritte

Die Spezifität der Primer und Sonden der neuen und alten Generation wurde im Rahmen dieser Arbeit zunächst in *singleplex*-Reaktionsansätzen verglichen. Der Einbau mehrerer Mismatches zwischen den *hrp2*- und *hrp3*-Primern der neuen Generation gegenüber denen der alten Generation spiegelte sich dabei in einer erhöhten Spezifität wieder und hat sich damit rentiert. Für die Sonden konnte dadurch allerdings keine Besserung erzielt werden und es wurden die alten Sonden behalten.

Bei der anschließenden Optimierung der *4plex-qPCR_v2* zeigte sich bei Erhöhung der Primer-Hybridisierungstemperatur ein klarer Zusammenhang mit einer Abnahme der Kreuzreaktivität. Den hohen Temperaturen konnte somit nur eine sehr starke, gut passende/komplementäre Bindung standhalten. Die Bindung nicht hundertprozentig passender Sequenzen an dem entsprechend fälschlichem Gen wurden somit zu einem höheren Maß durch die hohen Temperaturen verhindert.

In wie weit sich die einzelnen Sonden und Primer gegenseitig beeinflussen, zeigte in den *4plex*-Reaktionen kein eindeutiges Muster. Während die Erhöhung

der *cytochrom b*-Sonden- und Primerkonzentration mit einer stetigen Verschlechterung der Kurven im Cy5-Kanal für β -tubulin einhergingen, blieb die Erhöhung der β -tubulin-Primer- und Sondenkonzentration ohne negativen Einfluss auf die *cytochrom b*-, *hrp2*- oder *hrp3*-Kurven. Ebenfalls ergab auch die Verringerung der *hrp2*-Primerkonzentration keine verbesserten Werte für die Kanäle ROX und Cy5 (*cytochrom b* und β -tubulin).

Ein starker Einfluss konnte hingegen unter Verwendung neuer Bestellungen/Synthesen bei den Sonden festgestellt werden. Am eindeutigsten ist dieser Effekt bei dem Vergleich der Fluoreszenzintensitäten des FAM- und HEX-Kanals jeweils bei Verwendung der *hrp3*- und *hrp2*-Sondenkonzentration von 50 nM zu sehen. Im Falle von *hrp3* stieg dabei die Fluoreszenzintensität ohne Veränderung der Konzentration, aber unter Wechsel von Bestellung 1 auf Bestellung 2 von unter vier auf über 25 an. Die daraufhin angestrebte Erniedrigung der Sondenkonzentration auf die Hälfte wurde nach Wechsel auf die Bestellung 3 wieder rückgängig gemacht, da nun selbst bei der Verwendung von den ursprünglichen 50 nM RFU-Werte von lediglich ca. 4 erreicht wurden.

Worin der Grund für die großen Schwankungen lag, konnte leider nicht geklärt werden. Nicht alle Grundlösungen wurden von der gleichen Person angesetzt. Die veranlasste Besprechung ergab jedoch keinen Unterschied in der Durchführung.

Für weitere Sonden, die in Zukunft bestellt werden, sollten, um den Einfluss besser beurteilen zu können, stets das Datum des Anbruchs der Grundverdünnung, das Datum der Erstellung der Arbeitsverdünnungen, die Anzahl der Auftauprozesse pro Grundverdünnung und Arbeitsverdünnung sowie der Name des Verantwortlichen protokolliert werden.

4.2 Klinische Isolate

Bei der Messung der Feldproben zeigten sich große Unterschiede zwischen den einzelnen Studien und der Probenaufbewahrung. Die Feldproben, bei denen die DNA aus getrockneten Blutpunkten der *FTA Elute Cards* oder *Protein Saver Cards* gewonnen wurden, zeigten wesentlich höhere Cq-Werte und/oder oft nur im ROX-Kanal überhaupt eine Amplifikation im Vergleich zu aus Vollblut gewonnener DNA. Die durchschnittlich rund 160 µl mehr Probenvolumen, die bei der Extraktion aus Vollblut im Vergleich zur Extraktion aus den *blood spots* genutzt wurden, spiegeln sich dabei in den Ergebnissen wider. Da die größte Gefahr eine ausbleibende Amplifikation des *hrp2-/hrp3*-Gens irrtümlich als eine Deletion zu deuten, eine zu niedrige Konzentration der Parasiten-DNA in der Probe ist, sollten weitere Proben für epidemiologische Studien, wenn möglich, als Vollblutproben gesammelt werden.

Der tatsächliche Anteil *hrp2-/hrp3*-deletierter *P. falciparum*-Infektionen ist den in dieser Arbeit gemessenen Feldproben nicht zu entnehmen, da es sich hierbei nicht um die zufällige Auswahl von Proben handelte, sondern abgesehen der Proben der Greendot-Studie (Untergruppe der NoHRP2-Studie) um Proben, die in vorherigen Messungen unklare Ergebnisse erbrachten und somit nochmal gemessen werden sollten, um eine Positivität sicher zu bestätigen bzw. ausschließen zu können.

4.3 Standardkurve

Sensitivität Verdünnungsreihen wurden die genutzt, um der neuen 4plex-qPCR v2 zu analysieren. Dabei wurde auf einen schon bestehenden Pf3D7-Standard zurückgegriffen (vgl. 2.2.4 Pf3D7^{Rodi}-Verdünnungsreihe) sowie drei weitere Standardverdünnungen selbst hergestellt. Das Kultivieren und Synchronisieren der Parasitenkulturen sowie der Zeitpunkt der DNA-Extraktion zur Erstellung dieser neuen Standards wurde mit der Hilfe einer erfahrenden MTA durchgeführt und die DNA automatisiert mit dem QIAsymphony extrahiert. Das Problem von Effizienzen über 100 %, welches sich in den Messungen des bestehenden Pf3D7^{Rodi}-Standard mit dem 4plex-qPCR_v1-Protokoll im Rahmen der Masterarbeit von Miriam Rodi ergab, sollte dadurch verhindert werden. Die Effizienz von 100 % beschreibt die exakte Verdopplung der vorliegenden DNA während jedes Zyklus und entspricht eigentlich der maximal möglichen Vervielfältigung. Eine Effizienz höher als 100 % ist somit nicht mehr rein mit dem Modell der Vervielfältigung der DNA zu erklären. Als Gründe für die zu hohen Effizienzen wurden im Rahmen von Miriam Rodis Masterarbeit das Vorliegen von Inhibitoren in den Proben durch Kontaminationen bei der DNA-Isolation durch Ethanol oder Proteinkinase K bzw. durch das Vorhandensein anderer Proteine wie Hämoglobin oder Polysaccharide diskutiert. Leider ergaben sich auch dieses Mal trotz der großen Vorsicht bei der Erstellung der Verdünnungen bei den Messungen mit dem *4plex-qPCR_v2*-Protokoll wieder für alle Verdünnungsreihen und über alle Kanäle hinweg Effizienzen über 100 %. Es scheint also, dass weiterhin Inhibitoren in den Proben der Verdünnungsreihen präsent sind.

Beim Vergleich der Detektionslimits der konventionellen *PCR* gegenüber der *qPCR* erbrachte die *qPCR* eine wesentlich höhere Sensitivität. Zwar wurde für die konventionelle *PCR* lediglich ein Probenvolumen von 2,5 μ l pro 20 μ l Gesamtreaktionsansatz im Gegensatz zu 3 μ l pro 10 μ l Gesamtreaktionsansatz bei der *qPCR* verwendet. Doch auch wenn man das Erstellen der Reaktionsansätze als einen letzten Verdünnungsschritt miteinbezieht, errechnet sich für den Pf3D7²-Standard ein Detektionslimit der *qPCR* von 61,2 Parasiten/ml für *hrp2* und *hrp3* im Gegensatz zu 7.500 Parasiten/ml für *hrp2* und 75.000 Parasiten/ml für *hrp3* bei der konventionellen *PCR*.

4.4 Fazit

In der vorliegenden Arbeit konnte gezeigt werden, dass das Risiko von Kreuzamplifikation durch die *4plex-qPCR_v2* minimiert wurde. Gleichzeitig konnte gezeigt werden, dass die entwickelte *4plex-qPCR_v2* sensitiver ist als die konventionelle *hrp2-/hrp3-PCR* und somit weniger häufig fälschlicherweise *hrp2-/hrp3-*Deletionen in *P. falciparum*-Isolaten detektiert werden. Dies verspricht eine genauere Prävalenzbestimmung der *hrp2-/hrp3*-Deletionen in epidemiologischen Studien, insbesondere in Regionen mit einer niedrigen Endemizität und Populationen mit niedrigen Parasitämien (z.B. Erwachsene in hoch endemischen Regionen). Die *4plex-qPCR_v2* wird nun für die Analyse der weiteren Feldproben aus Lambaréné im Rahmen der NoHRP2-Studie eingesetzt und leistet damit einen Beitrag in der Prävalenzbestimmung der *hrp2-/hrp3*-deletierten *P. falciparum*-Stämme in Gabun.

5 Zusammenfassung

Malaria ist eine der global bedeutendsten Infektionskrankheiten. Als Goldstandard zum Nachweis einer Malariainfektion gilt die Mikroskopie. Diese Methode birgt Probleme durch den nicht flächendeckenden Zugang zu Elektrizität vor allem in den Hauptendemiegebieten der Erkrankung und aufgrund der großen Expertise, die für das richtige Erkennen der Infektionen bei dieser Diagnostikmethode vorausgesetzt wird. Im letzten Jahrzehnt konnte durch die Einführung von Schnelltests die Rate von Personen, die auf Malaria getestet werden, entscheidend erhöht und damit auch die Behandlung dieser Personen ermöglicht werden. Nach Einführung und breiter Nutzung dieser Schnelltests wurden in mehreren Studien falsch-negative Testergebnisse beschrieben. Als Gründe werden zu niedrige Parasitämien und Schnelltests geringer Qualität genannt, bis hin zu Parasitenstämmen, die das nachzuweisende Protein HRP2 nicht mehr exprimieren. Die WHO hat daraufhin empfohlen, die Prävalenzen der hrp2- und hrp3-Gendeletionen zu bestimmen. Im Rahmen dieser Arbeitsgruppe wurde dazu ein *4plexqPCR*-Protokoll entwickelt, welches in einem einzigen Schritt eine Aussage über das Vorhandensein der Gene hrp2 und hrp3 trifft, gleichzeitig durch das Gen cytochrom b hochsensitiv eine Infektion mit dem P. falciparum nachweist und durch das single copy gene β-tubulin eine interne Qualitätskontrolle ermöglicht. Bei dem ersten 4plex-qPCR_v1-Protokoll wurde von einer relativ hohen Rate an Kreuzreaktivität zwischen hrp2 und hrp3 ausgegangen, weshalb für die vorliegende Arbeit neue Primer und Sonden designt wurden und ein 4plex-qPCR-Protokoll der zweiten Generation etabliert und optimiert wurde. Mit diesem Protokoll wurden klinische Feldproben aus Lambaréné, Gabun, gemessen, die in vorherigen Messungen mit dem 4plex-gPCR v1-Protokoll unklare Ergebnisse erbracht haben. Weiter konnte gezeigt werden, dass die Sensitivität des Nachweises einer hrp2- bzw. hrp3-Deletion mit dem 4plex-qPCR_v2-Protokoll entscheidend höher liegt als die Sensitivität, die mit der konventionellen PCR zu erreichen ist. Für weitere epidemiologische Studien zur Prävalenzbestimmung der Deletionen empfiehlt sich daher die Methode der qPCR. Das 4plex-qPCR_v2-Protokoll wird von nun an innerhalb dieser Arbeitsgruppe für die weitere Detektion von hrp2und hrp3-Deletionen in Lambaréné, Gabun, verwendet.

6 Literaturverzeichnis

- Adams, M., Joshi, S. N., Mbambo, G., Mu, A. Z., Roemmich, S. M., Shrestha, B., Strauss, K. A., Johnson, N. E., Oo, K. Z., Hlaing, T. M., Han, Z. Y., Han, K. T., Thura, S., Richards, A. K., Huang, F., Nyunt, M. M. and Plowe, C. V. (2015) 'An ultrasensitive reverse transcription polymerase chain reaction assay to detect asymptomatic low-density Plasmodium falciparum and Plasmodium vivax infections in small volume blood samples', *Malaria journal*, vol. 14, p. 520.
- Aikawa, M., Iseki, M., Barnwell, J. W., Taylor, D., Oo, M. M. and Howard, R. J. (1990) 'The pathology of human cerebral malaria', *The American journal of tropical medicine and hygiene*, vol. 43, 2 Pt 2, pp. 30–37.
- Amaral, L. C., Robortella, D. R., Guimarães, L. F. F., Limongi, J. E., Fontes, C. J. F., Pereira, D. B., Brito, C. F. A. de, Kano, F. S., Sousa, T. N. de and Carvalho, L. H. (2019) 'Ribosomal and non-ribosomal PCR targets for the detection of low-density and mixed malaria infections', *Malaria journal*, vol. 18, no. 1, p. 154.
- Amoah, L. E., Abankwa, J. and Oppong, A. (2016) 'Plasmodium falciparum histidine rich protein-2 diversity and the implications for PfHRP 2: based malaria rapid diagnostic tests in Ghana', *Malaria journal*, vol. 15, p. 101.
- Baker, J., Gatton, M. L., Peters, J., Ho, M.-F., McCarthy, J. S. and Cheng, Q. (2011) 'Transcription and expression of Plasmodium falciparum histidinerich proteins in different stages and strains: implications for rapid diagnostic tests', *PloS one*, vol. 6, no. 7, e22593.
- Basu, S. and Sahi, P. K. (2017) 'Malaria: An Update', *The Indian Journal of Pediatrics*, vol. 84, no. 7, pp. 521–528.
- Berhane, A., Anderson, K., Mihreteab, S., Gresty, K., Rogier, E., Mohamed, S., Hagos, F., Embaye, G., Chinorumba, A., Zehaie, A., Dowd, S., Waters, N. C., Gatton, M. L., Udhayakumar, V., Cheng, Q. and Cunningham, J. (2018) 'Major Threat to Malaria Control Programs by Plasmodium falciparum Lacking Histidine-Rich Protein 2, Eritrea', *Emerging infectious diseases*, vol. 24, no. 3, pp. 462–470.
- Beshir, K. B., Sepúlveda, N., Bharmal, J., Robinson, A., Mwanguzi, J., Busula, A. O., Boer, J. G. de, Sutherland, C., Cunningham, J. and Hopkins, H. (2017) 'Plasmodium falciparum parasites with histidine-rich protein 2 (pfhrp2) and pfhrp3 gene deletions in two endemic regions of Kenya', *Scientific reports*, vol. 7, no. 1, p. 14718.
- Bozdech, Z., Llinás, M., Pulliam, B. L., Wong, E. D., Zhu, J. and DeRisi, J. L. (2003) 'The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum', *PLoS biology*, vol. 1, no. 1, E5.
- Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J.
and Wittwer, C. T. (2009) 'The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments', *Clinical chemistry*, vol. 55, no. 4, pp. 611–622.

- Butcher, G. A. and Mitchell, G. H. (2018) 'The role of Plasmodium knowlesi in the history of malaria research', *Parasitology*, vol. 145, no. 1, pp. 6–17.
- Castro-Sesquen, Y. E., Kim, C., Gilman, R. H., Sullivan, D. J. and Searson, P.
 C. (2016) 'Nanoparticle-Based Histidine-Rich Protein-2 Assay for the Detection of the Malaria Parasite Plasmodium falciparum', *The American journal of tropical medicine and hygiene*, vol. 95, no. 2, pp. 354–357.
- Chiodini, P. L., Bowers, K., Jorgensen, P., Barnwell, J. W., Grady, K. K., Luchavez, J., Moody, A. H., Cenizal, A. and Bell, D. (2007) 'The heat stability of Plasmodium lactate dehydrogenase-based and histidine-rich protein 2-based malaria rapid diagnostic tests', *Transactions of the Royal Society of Tropical Medicine and Hygiene*, vol. 101, no. 4, pp. 331–337.
- Choi, C. Y., Cerda, J. F., Chu, H. A., Babcock, G. T. and Marletta, M. A. (1999) 'Spectroscopic characterization of the heme-binding sites in Plasmodium falciparum histidine-rich protein 2', *Biochemistry*, vol. 38, no. 51, pp. 16916–16924.
- Conway, D. J., Fanello, C., Lloyd, J. M., Al-Joubori, B. M.A.-S., Baloch, A. H., Somanath, S. D., Roper, C., Oduola, A. M.J., Mulder, B., Povoa, M. M., Singh, B. and Thomas, A. W. (2000) 'Origin of Plasmodium falciparum malaria is traced by mitochondrial DNA', *Molecular and Biochemical Parasitology*, vol. 111, no. 1, pp. 163–171.
- Farrugia, C., Cabaret, O., Botterel, F., Bories, C., Foulet, F., Costa, J.-M. and Bretagne, S. (2011) 'Cytochrome b gene quantitative PCR for diagnosing Plasmodium falciparum infection in travelers', *Journal of clinical microbiology*, vol. 49, no. 6, pp. 2191–2195.
- Fung, A. O., Damoiseaux, R., Grundeen, S., Panes, J. L., Horton, D. H., Judy, J. W. and Moore, T. B. (2012) 'Quantitative detection of PfHRP2 in saliva of malaria patients in the Philippines', *Malaria journal*, vol. 11, p. 175.
- Gamboa, D., Ho, M.-F., Bendezu, J., Torres, K., Chiodini, P. L., Barnwell, J. W., Incardona, S., Perkins, M., Bell, D., McCarthy, J. and Cheng, Q. (2010)
 'A large proportion of P. falciparum isolates in the Amazon region of Peru lack pfhrp2 and pfhrp3: implications for malaria rapid diagnostic tests', *PloS one*, vol. 5, no. 1, e8091.
- Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., Carlton, J. M., Pain, A., Nelson, K. E., Bowman, S., Paulsen, I. T., James, K., Eisen, J. A., Rutherford, K., Salzberg, S. L., Craig, A., Kyes, S., Chan, M.-S., Nene, V., Shallom, S. J., Suh, B., Peterson, J., Angiuoli, S., Pertea, M., Allen, J., Selengut, J., Haft, D., Mather, M. W., Vaidya, A. B., Martin, D. M. A., Fairlamb, A. H., Fraunholz, M. J., Roos, D. S., Ralph, S. A., McFadden, G. I., Cummings, L. M., Subramanian, G. M., Mungall, C., Venter, J. C., Carucci, D. J., Hoffman, S. L., Newbold, C., Davis, R. W.,

Fraser, C. M. and Barrell, B. (2002) 'Genome sequence of the human malaria parasite Plasmodium falciparum', *Nature*, vol. 419, no. 6906, pp. 498–511.

- Harris, B., Lennard, N., Clark, L., Line, A., Barron, A., Corton, C., Berriman, M., Pain, A., Hall, N., Atkin, R., Chillingworth, C., Doggett, J., Ormond, D., Sanders, M., Hayes, R., Hall, S., Quail, M. and Barrell, B. (2002) *P.falciparum Genome Sequencing, Plasmodium falciparum 3D7 chro-mosome 13, AL844507.3.* [Online]. Available at https://www.ncbi.nlm.nih.gov/ nuccore/AL844507.3?report=graph&from=1374236&to=1375299# (Accessed 2 August 2020).
- Hofmann, N., Mwingira, F., Shekalaghe, S., Robinson, L. J., Mueller, I. and Felger, I. (2015) 'Ultra-sensitive detection of Plasmodium falciparum by amplification of multi-copy subtelomeric targets', *PLoS medicine*, vol. 12, no. 3, e1001788.
- Howard, R. J., Uni, S., Aikawa, M., Aley, S. B., Leech, J. H., Lew, A. M., Wellems, T. E., Rener, J. and Taylor, D. W. (1986) 'Secretion of a malarial histidine-rich protein (Pf HRP II) from Plasmodium falciparum-infected erythrocytes', *The Journal of cell biology*, vol. 103, no. 4, pp. 1269–1277.
- Joanny, F., Löhr, S. J. Z., Engleitner, T., Lell, B. and Mordmüller, B. (2014) 'Limit of blank and limit of detection of Plasmodium falciparum thick blood smear microscopy in a routine setting in Central Africa', *Malaria journal*, vol. 13, p. 234.
- Kahama-Maro, J., D'Acremont, V., Mtasiwa, D., Genton, B. and Lengeler, C.
 (2011) 'Low quality of routine microscopy for malaria at different levels of the health system in Dar es Salaam', *Malaria journal*, vol. 10, p. 332.
- Kayser, F. H., Böttger, E. C., Deplazes, P., Haller, O. and Roers, A. (2014) Taschenlehrbuch Medizinische Mikrobiologie: Hygiene, Immunologie, Bakteriologie, Virologie, Mykologie, Parasitologie, Infektiologie, 13th edn, Stuttgart, Georg Thieme Verlag.
- Kolakovich, K. A., Gluzman, I. Y., Duffin, K. L. and Goldberg, D. E. (1997) 'Generation of hemoglobin peptides in the acidic digestive vacuole of Plasmodium falciparum implicates peptide transport in amino acid production', *Molecular and Biochemical Parasitology*, vol. 87, no. 2, pp. 123–135.
- Kozycki, C. T., Umulisa, N., Rulisa, S., Mwikarago, E. I., Musabyimana, J. P., Habimana, J. P., Karema, C. and Krogstad, D. J. (2017) 'False-negative malaria rapid diagnostic tests in Rwanda: impact of Plasmodium falciparum isolates lacking hrp2 and declining malaria transmission', *Malaria journal*, vol. 16, no. 1, p. 123.
- Krampa, F. D., Aniweh, Y., Awandare, G. A. and Kanyong, P. (2017) 'Recent Progress in the Development of Diagnostic Tests for Malaria', *Diagnostics (Basel, Switzerland)*, vol. 7, no. 3.

- Kreidenweiss, A., Trauner, F., Rodi, M., Koehne, E., Held, J., Wyndorps, L., Manouana, G. P., McCall, M., Adegnika, A. A., Lalremruata, A., Kremsner, P. G., Fendel, R. and Sandri, T. L. (2019) 'Monitoring the threatened utility of malaria rapid diagnostic tests by novel high-throughput detection of Plasmodium falciparum hrp2 and hrp3 deletions: A cross-sectional, diagnostic accuracy study', *EBioMedicine*, vol. 50, pp. 14–22.
- Kumar, N., Pande, V., Bhatt, R. M., Shah, N. K., Mishra, N., Srivastava, B.,
 Valecha, N. and Anvikar, A. R. (2013) 'Genetic deletion of HRP2 and
 HRP3 in Indian Plasmodium falciparum population and false negative
 malaria rapid diagnostic test', *Acta tropica*, vol. 125, no. 1, pp. 119–121.
- Kumar, N., Singh, J. P., Pande, V., Mishra, N., Srivastava, B., Kapoor, R., Valecha, N. and Anvikar, A. R. (2012) 'Genetic variation in histidine rich proteins among Indian Plasmodium falciparum population: possible cause of variable sensitivity of malaria rapid diagnostic tests', *Malaria journal*, vol. 11, p. 298.
- Kutyavin, I. V., Afonina, I. A., Mills, A., Gorn, V. V., Lukhtanov, E. A., Belousov,
 E. S., Singer, M. J., Walburger, D. K., Lokhov, S. G., Gall, A. A., Dempcy,
 R., Reed, M. W., Meyer, R. B. and Hedgpeth, J. (2000) '3'-minor groove
 binder-DNA probes increase sequence specificity at PCR extension temperatures', *Nucleic acids research*, vol. 28, no. 2, pp. 655–661.
- Lambros, C. and Vanderberg, J. P. (1979) 'Synchronization of Plasmodium falciparum Erythrocytic Stages in Culture', *The Journal of Parasitology*, vol. 65, no. 3, p. 418.
- Leech, J. H., Barnwell, J. W., Aikawa, M., Miller, L. H. and Howard, R. J. (1984) 'Plasmodium falciparum malaria: association of knobs on the surface of infected erythrocytes with a histidine-rich protein and the erythrocyte skeleton', *The Journal of cell biology*, vol. 98, no. 4, pp. 1256–1264.
- Lepecq, J.-B. and Paoletti, C. (1967) 'A fluorescent complex between ethidium bromide and nucleic acids', *Journal of Molecular Biology*, vol. 27, no. 1, pp. 87–106.
- Li, P., Xing, H., Zhao, Z., Yang, Z., Cao, Y., Li, W., Yan, G., Sattabongkot, J., Cui, L. and Fan, Q. (2015) 'Genetic diversity of Plasmodium falciparum histidine-rich protein 2 in the China-Myanmar border area', *Acta tropica*, vol. 152, pp. 26–31.
- Mayxay, M., Pukrittayakamee, S., Chotivanich, K., Looareesuwan, S. and White, N. J. (2001) 'Persistence of Plasmodium falciparum HRP-2 in successfully treated acute falciparum malaria', *Transactions of the Royal Society of Tropical Medicine and Hygiene*, vol. 95, no. 2, pp. 179–182.
- Oakley, M. S., Gerald, N., McCutchan, T. F., Aravind, L. and Kumar, S. (2011) 'Clinical and molecular aspects of malaria fever', *Trends in parasitology*, vol. 27, no. 10, pp. 442–449.
- Owusu, E. D. A., Djonor, S. K., Brown, C. A., Grobusch, M. P. and Mens, P. F. (2018) 'Plasmodium falciparum diagnostic tools in HIV-positive under-5-

year-olds in two ART clinics in Ghana: are there missed infections?', *Malaria journal*, vol. 17, no. 1, p. 92.

- Pal, P., Daniels, B. P., Oskman, A., Diamond, M. S., Klein, R. S. and Goldberg, D. E. (2016) 'Plasmodium falciparum Histidine-Rich Protein II Compromises Brain Endothelial Barriers and May Promote Cerebral Malaria Pathogenesis', *mBio*, vol. 7, no. 3.
- Parr, J. B., Verity, R., Doctor, S. M., Janko, M., Carey-Ewend, K., Turman, B. J., Keeler, C., Slater, H. C., Whitesell, A. N., Mwandagalirwa, K., Ghani, A. C., Likwela, J. L., Tshefu, A. K., Emch, M., Juliano, J. J. and Meshnick, S. R. (2017) 'Pfhrp2-Deleted Plasmodium falciparum Parasites in the Democratic Republic of the Congo: A National Cross-sectional Survey', *The Journal of infectious diseases*, vol. 216, no. 1, pp. 36–44.
- Pati, P., Dhangadamajhi, G., Bal, M. and Ranjit, M. (2018) 'High proportions of pfhrp2 gene deletion and performance of HRP2-based rapid diagnostic test in Plasmodium falciparum field isolates of Odisha', *Malaria journal*, vol. 17, no. 1, p. 394.
- Paul, F., Roath, S., Melville, D., Warhurst, D. C. and Osisanya, J.O.S. (1981)
 'SEPARATION OF MALARIA-INFECTED ERYTHROCYTES FROM WHOLE BLOOD: USE OF A SELECTIVE HIGH-GRADIENT MAGNETIC SEPARATION TECHNIQUE', *The Lancet*, vol. 318, no. 8237, pp. 70–71.
- QIAGEN (2016) *QIAamp® DNA Mini and Blood Mini Handbook* [Online], 5th edn.
- QIAGEN (2017) QIAxcel Advanced User Manual [Online].
- Reinke, L. (2017, nicht veröffentlicht) *Establishment and application of a PCR* for the detection of hrp2 and hrp3 gene deletions in the genome of Plasmodium falciparum. [Online].
- Roche Diagnostics GmbH (2008) *LightCycler*® 480 Instrument Operator's Manual [Online].
- Rodi, M. (2018, nicht veröffentlicht) Validation of a Multiplex Real-Time PCR for Detection of hrp2 and hrp3 Gene Negative Plasmodium falciparum Parasites [Online].
- Rodriguez-del Valle, M., Quakyi, I. A., Amuesi, J., Quaye, J. T., Nkrumah, F. K. and Taylor, D. W. (1991) 'Detection of antigens and antibodies in the urine of humans with Plasmodium falciparum malaria', *Journal of clinical microbiology*, vol. 29, no. 6, pp. 1236–1242.
- Samal, A. G., Behera, P. K., Mohanty, A. K., Satpathi, S., Kumar, A., Panda, R. R., Minz, A. M., Mohanty, S., Samal, A. and van der Pluijm, R. W. (2017) 'The sensitivity and specificity of a urine based Rapid Diagnostic Test for the diagnosis of plasmodium falciparum in a malaria endemic area in Odisha, India', *Pathogens and global health*, vol. 111, no. 7, pp. 383–387.
- Seeger, K., Murphy, L., Harris, D., Berriman, M., Pain, A. and Hall, N. (2002) Plasmodium falciparum 3D7 genome assembly, chromosome: 8 [Online],

Unpublished. Available at https://www.ncbi.nlm.nih.gov/nuccore/ AL844507.3?report=graph&from=1374236&to=1375299 (Accessed 2 August 2020).

- Sharma, Y. D. (1988) 'Genomic organization, structure and possible function of histidine-rich proteins of malaria parasites', *International Journal of Biochemistry*, vol. 20, no. 5, pp. 471–477.
- Sherman, I. W., Eda, S. and Winograd, E. (2003) 'Cytoadherence and sequestration in Plasmodium falciparum: defining the ties that bind', *Microbes and Infection*, vol. 5, no. 10, pp. 897–909.
- Shiff, C. J., Premji, Z. and Minjas, J. N. (1993) 'The rapid manual ParaSight®-F test. A new diagnostic tool for Plasmodium falciparum infection', *Transactions of the Royal Society of Tropical Medicine and Hygiene*, vol. 87, no. 6, pp. 646–648.
- Singh, B., Bobogare, A., Cox-Singh, J., Snounou, G., Abdullah, M. S. and Rahman, H. A. (1999) 'A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies', *The American journal of tropical medicine and hygiene*, vol. 60, no. 4, pp. 687–692.
- Singh, S. K., Koshkin, A. A., Wengel, J. and Nielsen, P. (1998) 'LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition', *Chemical Communications*, no. 4, pp. 455–456.
- Snounou, G., Viriyakosol, S., Jarra, W., Thaithong, S. and Brown, K.N. (1993)
 'Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections', *Molecular and Biochemical Parasitology*, vol. 58, no. 2, pp. 283–292.
- Swan, H., Sloan, L., Muyombwe, A., Chavalitshewinkoon-Petmitr, P., Krudsood, S., Leowattana, W., Wilairatana, P., Looareesuwan, S. and Rosenblatt, J. (2005) 'Evaluation of a real-time polymerase chain reaction assay for the diagnosis of malaria in patients from Thailand', *The American journal of tropical medicine and hygiene*, vol. 73, no. 5, pp. 850–854.
- Thermo Fischer Scientific (2015) Assessment of Nucleic Acid Purity [Online].
- Trauner, F. L. (2019) *Etablierung einer Multiplex-qPCR zur Detektion einer Deletion des pfhrp2-Gens in Plasmodium falciparum* [Online].
- Uguen, C., Rabodonirina, M., Pina, J. J. de, Vigier, J. P., Martet, G., Maret, M. and Peyron, F. (1995) 'ParaSight-F rapid manual diagnostic test of Plasmodium falciparum infection', *Bulletin of the World Health Organization*, vol. 73, no. 5, pp. 643–649.
- Wellems, T. E. and Howard, R. J. (1986) 'Homologous genes encode two distinct histidine-rich proteins in a cloned isolate of Plasmodium falciparum', *Proceedings of the National Academy of Sciences of the United States of America*, vol. 83, no. 16, pp. 6065–6069.

- Weltgesundheitsorganisation (2010) *Basic malaria microscopy*, 2nd edn, Geneva, World Health Organization.
- Willie, N., Zimmerman, P. A. and Mehlotra, R. K. (2018) 'Plasmodium falciparum Histidine-Rich Protein 2 Gene Variation in a Malaria-Endemic Area of Papua New Guinea', *The American journal of tropical medicine and hygiene*, vol. 99, no. 3, pp. 697–703.
- World Health Organization *WHO Malaria Threat Maps: tracking biological challenges to malaria control and elimination* [Online]. Available at https:// apps.who.int/malaria/maps/threats/?theme=diagnosis&mapType=diagnosis%3A0&bounds=%5B%5B-136.8635040000885%2C-34.536652300722984%5D%2C%5B103.60524599997035%2C68.74703 954485526%5D%5D&insecticideClass=PYRETHROIDS&insecticideTypes=&assayTypes=MOLECULAR_ASSAY%2CBIOCHEMI-CAL_ASSAY%2CSYNERGIST-INSECTICIDE_BIOASSAY&synergistTypes=&species=&vectorSpecies=&surveyTypes=&deletionType= HRP2_PROPORTION_DELETION&plasmodiumSpecies=P._FALCIPA-RUM&drug=DRUG_AL&mmType=1&endemicity=false&countryMode= false&storyMode=false&storyModeStep=0&filterOpen=false&filters-Mode=filters&years=1998%2C2020 (Accessed 2 August 2020).
- World Health Organization (1988) 'Malaria diagnosis: memorandum from a WHO meeting', *Bulletin of the World Health Organization*, vol. 66, no. 5, pp. 575–594 [Online]. Available at https://pubmed.ncbi.nlm.nih.gov/3061674.
- World Health Organization (2006) *The use of malaria rapid diagnostic tests. Second edition* [Online].
- World Health Organization (2016) *P. falciparum hrp2/3gene deletions* [Online], Geneva.
- World Health Organization (2018a) *Malaria rapid diagnostic test performance*. *Results of WHO product testing of malaria RDTs: round 8* [Online].
- World Health Organization (2018b) World Malaria Report 2018 [Online].
- World Health Organization (2019a) False-negative RDT results and P. falciparum histidine-rich protein 2/3 gene deletions [Online].
- World Health Organization (2019b) *Guidance on control materials for antigen detecting malaria RDTs: tools for preparation and validation* [Online], WHO reference number: WHO/CDS/GMP/2019.08.
- World Health Organization (2019c) WORLD MALARIA REPORT 2019, [S.I.], World Health Organization.
- World Health Organization (2020a) *Template protocols to support surveillance and research for pfhrp2/pfhrp3 gene deletions* [Online], WHO Reference Number 978-92-4-000203-6.
- World Health Organization (2020b) *World malaria report 2020: 20 years of global progress and challenges*.

Ziegler, J., Chang, R. T. and Wright, D. W. (1999) 'Multiple-Antigenic Peptides of Histidine-Rich Protein II of Plasmodium falciparum:  Dendrimeric Biomineralization Templates', *Journal of the American Chemical Society*, vol. 121, no. 11, pp. 2395–2400.

7 Erklärung zum Eigenanteil

Die Arbeit wurde im Tropeninstitut der Universität Tübingen unter Betreuung von Prof. Dr. Peter G. Kremsner durchgeführt. Die Konzeption der Studie erfolgte in Zusammenarbeit mit Dr. Andrea Kreidenweiss, Arbeitsgruppen-Leiterin und Dr. Thaisa Lucas Sandri, PostDoc. Die Versuche wurden (nach Einarbeitung durch die Labormitglieder Johanna Griesbaum, TA und Gédéon Prince Manouana, PhD Student) von mir eigenständig durchgeführt. Die Methode der Herstellung der Standardverdünnung wurde in Zusammenarbeit mit Johanna Griesbaum und Unterstützung durch Annette Knoblich durchgeführt, die erste Pf3D7-Standardverdünnung konnte von Miriam Rodi und Johanna Griesbaum übernommen werden. Die statistische Auswertung erfolgte eigenständig durch mich. Ich versichere, das Manuskript selbständig verfasst zu haben und keine weiteren als die von mir angegebenen Quellen verwendet zu haben.

Tübingen, den

8 Veröffentlichungen

Teile der vorliegenden Dissertationsschrift wurden bereits in der folgenden Publikation veröffentlicht:

Kreidenweiss, A., Trauner, F., Rodi, M., Koehne, E., Held, J., Wyndorps, L., Ma nouana, G.P., McCall, M., Adegnika, A.A., Lalremruata, A., Kremsner, P.G., Fendel, R., Sandri, T.L., 2019. Monitoring the threatened utility of malaria rapid diagnostic tests by novel high-throughput detection of Plas modium falciparum hrp2 and hrp3 deletions: A cross-sectional, diagnostic accuracy study. EBioMedicine 50, 14–22. https://doi.org/10.1016/j.e biom.2019.10.048

9 Danksagung

Im Folgenden möchte ich gerne einigen Personen danken, ohne die diese Arbeit nicht möglich gewesen wäre bzw. die einen entscheidenden Beitrag während der Zeit meiner Promotion geleistet haben.

An erster Stelle ist hierbei **Prof. Dr. Peter G. Kremsner**, Leiter des Tropeninstituts Tübingen, zu nennen, für die Möglichkeit meine Promotion unter seiner Leitung am Institut durchzuführen.

Dr. Andrea Kreidenweiss danke ich für die herzliche Aufnahme in ihre Arbeitsgruppe, für die Supervision meiner Arbeit und die geduldige Beantwortung meiner Fragen.

Besonderen Dank geht an **Dr. Thaisa Lucas Sandri**, an die ich mich stets mit fachlichen Fragestellungen wenden konnte und deren Unterstützung einen großen Beitrag im Fortschritt meiner Arbeit geleistet hat.

Herzlichst danke ich **Johanna Griesbaum** für die Einarbeitung in die Parasitenkultur, die Einweisung in die Strukturen des Instituts und im Besonderen für ihre moralische und emotionale Unterstützung und ihr offenes Ohr bei jeglicher Angelegenheit.

Für die Einarbeitung zur Durchführung der *qPCR* und der DNA-Extraktion möchte ich mich noch ganz herzlich bei **Gédéon Prince Manouana** sowie bei **Jutta Kun** für die Unterstützung und Einweisung in die technischen Geräte, die ich im Laufe meiner Laborarbeit zu nutzen hatte, bedanken.

Annette Knoblich danke ich speziell für die Unterstützung und dem Teilen ihrer Expertise bei der Herstellung der Standardverdünnungen.

Nicht zuletzt möchte ich mich noch herzlich bei **Miriam Rodi**, meiner Vorgängerin, bedanken für die erste Einweisung in die Thematik und die Bereitschaft für jegliche Rückfragen stets zur Verfügung zu stehen

10 Anhang

33,0 26,0 1,98 35,1 1,99 1,83 Pool 28,3 1,86 23,0 16 1,77 22,7 1,99 Tab. 10-1: Gesamte NanoDrop-Messung mit Konzentrationen und Wellenlängen-Quotient der einzelnen DNA-Extraktionen der Isolate. 31,3 1,79 21,4 1,77 34,1 15 1,90 29,5 24,0 1,71 35,1 1,81 1,99 14 1,84 28,4 1,70 34,8 1,98 13 27,7 28,3 29,6 1,82 33,1 1,89 12 1,91 33,2 1,91 23,1 1,71 35,1 1,82 11 25,9 1,86 28,4 10 1,71 31,7 1,93 37,0 1,84 29,2 1,60 29,7 1,86 б 27,1 34,8 1,86 26,5 31,8 ∞ 1,77 1,92 1,80 22,5 37,4 19,8 1,90 39,4 1,81 1,82 1,83 \sim 33,5 30,1 9 1,84 1,74 34,1 1,85 27,7 1,90 2,00 1,80 25,6 1,78 25,7 34,7 ഹ 38,7 1,82 16,2 1,60 35,0 27,9 34,3 14,3 4 1,90 1,68 34,7 1,72 1,87 1,88 1,90 27,9 31,8 17,8 33,9 35,5 1,99 1,85 1,64 m 1,82 30,4 29,0 2 40,5 19,3 1,82 1,83 1,93 1,93 30,2 1,94 6,6 1,48 Aliquot 38,6 14,8 1,80 1,80 10,8 1,44 1,77 28,2 1,72 40,2 1,79 26,7 -Konz. [ng/µ]] Konz. [ng/µ]] Konz. [ng/µ]] Konz. [ng/µl] Konz. [ng/µ]] Konz. [ng/µ]] 260/280 260/280 260/280 260/280 260/280 260/280 Stamm PfDd2 PfHB3 Pf3D7 Pf3D7 uninf. RBC Vollblut Isolat 4 2 m -

10.1 NanoDrop Messung der einzelnen Isolate

111

10.2 Gensequenzen

ATGGTTTCCTTCTCAAAAAATAAAGTATTATCCGCTGCCGTTTTTGCCTCCGTACT **ATATATAAAATTTTTTCATTTTTAAATGCTTTTTTATTTTATATAG**AATAATTCC **GCATTTAATAATAACTTGTGTAGCAAAAATGCAAAAGGACTTAATTTAAATAAGA** GATTATTACACGAAACTCAAGCACATGTAGATGATGCCCATCATGCTCATCATGT AGCCGATGCCCATCATGCTCATCATGTAGCCGATGCCCATCATGCTCATCATGTA **GCCG**ATGCCCATCATGCTCATGCAGCCGATGCCCATCATGCTCATGCAG CCGATGCCCATCATGCTCATCATGCAGCCGATGCCCATCATGCTCATGCTCAC CATGCAGCCGATGCCCATCACGCTCATCATGCAGCCGATGCCCATCATGCTCACC ATGCAGCTGATGCTCATCACGCTCATCATGCAGCCGATGCCCATCATGCTCACCA TGCAGCTGATGCTCATCACGCTCATCATGCATCCGATGCCCATCATGCTCATCATG CAGCCTATGCCCATCATGCTCATCATGCATCCGATGCTCATCATGCAGCTGATGCT CACCATGCAGCTTATGCCCATCACGCTCATCATGCAGCTGATGCTCATCATGCAG CCGATGCTCACCATGCAACCGATGCTCATCATGCAGCCGATGCTCATCATGCAGC CGATGCTCACCATGCAGCCGATGCTCACCATGCAACCGATGCTCATCACGCTCAC CATGCAGCCGATGCTCACCATGCAACCGATGCTCATCACGCTCACCATGCAGCCG ATGCTCATCATGCAGCCGCACACCATGCAACTGATGCTCACCATGCAGCCGCACA CCATGCAACCGATGCTCACCATGCAGCCGCACACCACGAAGCCG<mark>CCACACATTGC</mark> CTACGCCATTAA

Abb. 10-1:	Gensequenz des hrp2 Gens in 5'3' Richtung und Lokalisation der Bindungsstellen der Primer
	und Sonden. Die Introns des Gens sind durchgestrichen dargestellt.

Forward Primar	grüne Schrift	qPCR neu	TTCCGCATTTAATAATAACTTGTG
in 5'3' Richtung	grün unterstri- chen	qPCR alt	AGGACTTAATTTAAATAAGAGATTA
	grün hinterlegt	k. PCR	GGTTTCCTTCTCAAAAAATAAAG
Reverse Primer in 5' 3'	Rote Schrift	qPCR neu	CGGCTACATGATGAGCATG
Richtung des nicht ab- gebildeten komplemen- tären Strangs.	rot unterstri- chen	qPCR alt	GCTACATGATGAGCATGA
	rot hinterlegt	k. PCR	TTAATGGCGTAGGCAATGTGTGG
Canda	blaue Schrift	qPCR neu	ACTCAAGCACATGTAGATGATGCC
Sonae	blau unterstri- chen	qPCR alt	TACACGAAACTCAAGCACA

(Seeger et al., 2002)

ATGGTTTCCTTCTCAAAAAATAAAATAAAATATATCCGCTGCCGTTTTTGCTTCCGTACT **ATATATATATGTACATTTTTACATTTTTAAAATGATTTTTCATTTTTATAG**AATAACT CCGAATTTAACAATAACTTGTTTAGCAAAAATGCAAA<u>AGGACTTAATTCAAATAA</u> GAGATTATTACACGAAAGTCAAGCACATGCAGGTGATGCCCATCATGCACATCAT GTAGCTGATGCCCATCATGCACATCATGTAGCTGATGCCCATCATGCACATCATG TAGCTGATGCCCATCATGCACATCATGTAGCTGATGCCCATCATGCACATCATGC TCACCATGCAGCTAATGCTCACCATGCAGCTAATGCTCACCATGCAGCTAATGCT CACCATGCAGCTAATGCTCATCATGCAGCTAATGCTCACCATGCAGCTAATGCTC ACCATGCAGCTAATGCTCATCATGCAGCTAATGCTCACCATGCAGCTAATGCTCA CCATGCAGCTAATGCTCACCATGCAGCTAATGCTCACCATGCAGCTGATGCTAAT CACGGATTTCATTTTAACCTTCACGATAACAATTCCCATACTTTACATCATGCAAA AGCTAATGCTTGTTTTGATGATTCTCACCATGACGATGCCCACCATGATGGAGCA CACCACGACGATGCCCACCATGATGGAGCACACCACGACGATGCCCACCATGAT GGAGCACCACGACGATGCCCACCATGATGGAGCACACCACGACGATGCCCAC CATGATGGAGCACCACCACGATGGAGCACCACCACGATGGAGCACCACCATGATGGA **GCACACCATAATGCCACTACGCATCACTTACACCATTAA**

Abb. 10-2: Gensequenz des hrp3 Gens in 5'3' Richtung und Lokalisation der Bindungsstellen der Primer und Sonden. Die Introns des Gens sind durchgestrichen dargestellt.

	grüne Schrift	qPCR neu	CTCCGAATTTAACAATAACTTGTTTA
Forward Primer <i>in 5</i> '3' <i>Richtung</i>	grün unterstri- chen	qPCR alt	AGGACTTAATTCAAATAAGAGATTA
	grün hinterlegt	k. PCR	GGTTTCCTTCTCAAAAAATAAAA
Reverse Primer in 5' 3'	Rote Schrift	qPCR neu	CAGCTACATGATGTGCATG
Richtung des nicht ab- gebildeten komplemen- tären Strangs.	rot unterstri- chen	qPCR alt	AGCTACATGATGTGCATGA
	rot hinterlegt	k. PCR	ACTACGCATCACTTACACCA
Sondo in 5'2' Diabtung	blaue Schrift	qPCR neu	AGTCAAGCACATGCAGGTGATGCC
Sonue in 53 Richtung	blau unterstri- chen	qPCR alt	GAAAGTCAAGCACATGCAG

(Harris et al., 2002)

ATGAGAGAAATTGTTCATATTCAAGCTGGCCAATGTGGAAATCAAATAGGTGCAA AGTTTTGGGAAGTCATTTCTGATGAGCATGGAATAGATCCAGTAAGTTTAAAAAA TATATATATATGGAAGAATAATTTTGTGTGTATAATTTGGGGTCCTTCCCCTTTAT TGTATTCTATAAATGCCTCCTTTATATTGATAATAATTTATATATGTAAACCTTTA TGGTACCTATTGTGGGGACAGTGACTTACAGTTAGAAAGAGTTGACGTTTTTAC AACGAAGCAACAGGAGGTAGATATGTTCCAAGAGCTATATTGATGGACTTGGAA CCTGGTACTATGGATAGTGTTCGTGCTGGCCCCTTTGGTCAATTATTTCGTCCAGA TAATTTTGTGTTTGGTCAAACAGGTGCAGGAAATAATTGGGCTAAAGGACATTAT ACTGAAGGTGCTGAATTGATAGATGCAGTTTTAGATGTCGTTAGAAAAGAAGCAG GGTAGTGGTATGGGTACTTTGTTGATTAGTAAAATAAGAGAGGAGTATCCTGATC GTATTATGGAAACATTTTCTGTATTTCCATCACCAAAAGTTTCTGATACTGTTGTT TTCAAGTTATCGATAATGAAGCTTTATATGACATATGTTTTAGGACTCTTAAATTA ACAACACCAACATATGGAGATTTAAATCACCTTGTATCAGCTGCAATGTCAGGTG TAACCTGTTCGTTAAGATTTCCTGGTCAACTTAACAGTGACTTAAGAAAATTAG CTGTTAATTTGATCCCATTCCCACGTTTACATTTCTTTATGATCGGGTTTGCTCCTT TAACTAGTAGAGGCAGTCAACAATACAGAGCCTTAACTGTGCCGGAGTTAACAC AACAAATGTTCGACGCAAAAAATA<u>TGATGTGCGCAAGTGATCC</u>AAGACATGGAA GATATTTAACGGCATGTGCTATGTTTAGAGGAAGAATGTCCACAAAGGAAGTTGA CGAACAAATGTTAAACGTTCAAAATAAAAACTCATCTTATTTTGTCGAATGGATT CCTCACAACACAAAGTAAGAAGGAACAATTGATACTAGTATGCATGTTTTTTTGT TTTTTCTTTAGATCAAGTGTTTGTGATATTCCACCTAAGGGATTAAAAATGGCTGT TACTTTTGTAGGAAACTCAACCGCCATTCAAGAAATGTTTAAAAGAGTTTCTGAT CAATTTACTGCTATGTTTAGAAGAAAAGCCTTTTTGCACTGGTACACCGGAGAAG AGAATATCAACAATATCAAGATGCTACAGCAGAAGAGGAGGAGAATTTGAAG AAGAAGAAGGAGACGTAGAAGCCTAA

Abb. 10-3: Gensequenz des β-tubulin Gens in 5'3' Richtung und Lokalisation der Bindungsstellen der Primer und Sonden. Die Introns des Gens sind durchgestrichen dargestellt.

Forward Primer <i>in 5</i> '3' <i>Richtung</i>	grün unter- strichen	qPCR alt	TGATGTGCGCAAGTGATCC
Reverse Primer in 5' 3' Richtung des nicht abge- bildeten komplementä- ren Strangs.	Rot unterstri- chen	qPCR alt	TCCTTTGTGGACATTCTTCCTC
Sonde in 5' 3' Richtung des nicht abgebildeten komplementären Strangs.	Blau unter- strichen	qPCR alt	TAGCACATGCCGTTAAATATCTT- CCATGTCT

(Gardner et al., 2002)

ATGAACTTTTACTCTATTAATTTAGTTAAAGCACACTTAATAAATTACCCATGTCC ATTGAACATAAACTTTTTATGGAATTACGGATTCCTTTTAGGAATAATATTTTTTA TTCAAATTATAACAGGTGTATTTTTAGCAAGTCGATATACACCAGATGTTTCATAT GCATATTATAGTATACAACACATTTTAAGAGAATTATGGAGTGGATGGTGTTTTA GATACATGCACGCAACAGGTGCTTCTCTTGTATTTTATTAACATATCTTCATATT TTAAGAGGATTAAATTACTCATATATGTATTTACCATTATCATGGATATCTGGATT GATTTTATTATGATATTTATTGTAACTGCTTTCGTTGGTTATGTCTTACCATGGGG TCAAATGAGTTATTGGGGTGCAACTGTAATTACTAACTTGTTATCCTCTATTCCAG ATTTTTTGTACTACATTTTATCTTACCATTTATTGGATTATGTATTGTATTTATACA TATATTTTCTTACATTTACATGGTAGCACAAATCCTTTAGGGTATGATACAGCAT TAAAAATACCCTTTTATCCAAATCTATTAAGTCTTGATGTTAAAGGATTTAATAAT **GTTATAATTTTATTTCTAATACAAAGTTTATTTGGAATTATACCTTTATCACATCCT** GATAATGCTATCGTAGTAAATACATATGTTACTCCATCTCAAATTGTACCTGAATG GTACTTTCTACCATTTTATGCAATGTTAAAAACTGTTCCAAGTAAACCAGCTGGT TTAGTAATTGTATTATTATCATTACAATTATTATTCTTATTAGCAGAACAAAGAAG TTTAACAACTATAATTCAATTTAAAATGATTTTTGGTGCTAGAGATTATTCTGTTC CTATTATATGGTTTATGTGTGCATTCTATGCTTTATTATGGATTGGATGTCAATTA CCACAAGATATATTCATTTTATATGGTCGATTATTTATTGTATTATTTTTTCTGTAGT GGTTTATTTGTACTTGTTCATTATAGACGAACACATTATGATTACAGCTCCCAAG CAAACATATAA

Abb. 10-4: Gensequenz des cytochtom b Gens in 5'3' Richtung und Lokalisation der Bindungsstellen der Primer und Sonden.

Forward Primer in 5'3' Richtung	grün unter- strichen	qPCR alt	TACTAACTTGTTATCCTCTATTCCAG- TAGC
Reverse Primer in 5' 3' Richtung des nicht abge- bildeten komplementä- ren Strangs.	rot unterstri- chen	qPCR alt	CCTTTAACATCAAGACTTAATAGATT- TGGA
Reverse Primer in 5' 3' Richtung des nicht abge- debilten komplementä- ren Strangs.	blau unterstri- chen	qPCR alt	GTGCTACCATGTAAATGTAA

(Conway et al., 2000)

10.3 Darstellung der Fehlpaarungen der Primer und Sonden

hrp2	Т	Т	С	С	G	С	А	Т	Т	Т	А	А	Т	А	А	Т	А	А	С	Т	Т	G	Т	G	т	А
hrp3	С	Т	С	С	G	Α	Α	Т	Т	Т	А	А	С	Α	А	Т	А	А	С	Т	Т	G	Т	Т	Т	А

Abb. 10-5: Fehlpaarungen der neuen qPCR-Forward-Primer für hrp2 und hrp3. Darstellung der Nukleotidsequenzen in 5'3' Richtung. Die Nukleotide, die bei einer Kreuzamplifikation zu einer Fehlpaarung führen würden, sind rot hinterlegt. Da die Primer nicht identisch lang sind, ist beim hrp2-Primer in tiefgestellten Buchstaben die Nukleotid-Sequenz dargestellt, die nicht mehr Teil des hrp2 Primer ist, aber bei einer Kreuzamplifikation durch den hrp3 Primer noch von Bedeu tung wäre.

Hrp2	Α	G	G	А	С	Т	Т	А	А	Т	Т	Т	А	А	А	Т	А	А	G	А	G	А	Т	Т	А
hrp3	Α	G	G	Α	С	Т	Т	Α	Α	Т	Т	С	Α	А	Α	Т	Α	Α	G	А	G	Α	Т	Т	А

Abb. 10-6: Fehlpaarungen der alten qPCR-Forward-Primer für hrp2 und hrp3. Darstellung der Nukleotidsequenzen in 5'3' Richtung Die Nukleotide, die bei einer Kreuzamplifikation zu einer Fehlpaarung führen würden, sind rot hinterlegt.

Hrp2	С	А	Т	G	С	Т	С	А	Т	С	А	Т	G	Т	А	G	С	С	G
hrp3	С	А	Т	G	С	Α	С	А	Т	С	А	Т	G	Т	А	G	С	Т	G

Abb. 10-7: Fehlpaarungen der neuen qPCR-Reverse-Primer für hrp2 und hrp3. Darstellung der Nukleotidsequenzen in 5'3' Richtung. Die Nukleotide, die bei einer Kreuzamplifikation zu einer Fehlpaarung führen würden, sind rot hinterlegt.

Hrp2	Т	С	А	Т	G	С	Т	С	А	Т	С	А	Т	G	Т	А	G	С	с
hrp3	Т	С	А	Т	G	С	А	С	А	Т	С	А	Т	С	Т	А	G	С	Т

Abb. 10-8: Fehlpaarungen der alten qPCR-Reverse-Primer für hrp2 und hrp3. Darstellung der Nukleotidsequenzen in 5'3' Richtung. Die Nukleotide, die bei einer Kreuzamplifikation zu einer Fehlpaarung führen würden, sind rot hinterlegt. Da der hrp2 Primer eine Nukleotid kürzer ist als der hrp3 Primer, ist der Buchstabe des entsprechenden Nukleotids, welches nicht mehr Teil des Primers ist, aber bei einer Kreuzamplifikation der hrp3 Primers an das hrp2 Gen von Bedeutung wäre, in tiefgestelltem Buchstaben gezeigt.

Hrp2	А	С	Т	С	А	А	G	С	А	С	А	Т	G	Т	А	G	А	Т	G	А	Т	G	С	С
hrp3	А	G	Т	С	А	А	G	С	А	С	А	Т	G	С	А	G	G	Т	G	А	Т	G	С	С

Abb. 10-9: Fehlpaarungen der neuen Sonden für hrp2 und hrp3. Darstellung der Nukleotidsequenzen in 5'3' Richtung. Die Nukleotide, die bei einer Kreuzamplifikation zu einer Fehlpaarung führen würden, sind rot hinterlegt.

hrp2	Т	А	С	А	С	G	А	А	А	С	Т	С	А	А	G	С	А	С	А	т	G	т	А	G
hrp3	т	А	С	А	С	G	Α	Α	Α	G	Т	С	А	Α	G	С	А	С	Α	Т	G	С	А	G

Abb. 10-10: Fehlpaarungen der alten Sonden für hrp2 und hrp3. Darstellung der Nukleotidsequenzen in 5'3' Richtung. Die Nukleotide, die bei einer Kreuzamplifikation zu einer Fehlpaarung führen würden, sind rot hinterlegt. Da die jeweiligen Sonden nicht an die identische Lokation binden, sind die Nukleotid-Sequenzen, die nicht mehr Teil der jeweiligen Sonde sind, aber bei einer Kreuzamplifikation durch die jeweils andere Sonde von Bedeutung wäre, in tiefgestellten Buchstaben dar gestellt.

hrp2	G	G	Т	Т	Т	С	С	Т	Т	С	Т	С	А	А	А	А	А	А	Т	А	А	А	G
hrp3	G	G	Т	Т	Т	С	С	Т	Т	С	Т	С	Α	Α	Α	А	А	Α	Т	Α	А	Α	А

Abb. 10-11: Fehlpaarungen der Forward-Primer für hrp2 und hrp3 der normalen PCR. Darstellung der Nukleotidsequenzen in 5'3' Richtung. Die Nukleotide, die bei einer Kreuzamplifikation zu einer Fehlpaarung führen würden, sind rot hinterlegt.

hrp2	С	G	А	А	А	С	Т	С	А	А	G	С	А	С	А	Т	G	Т	А	G	А
hrp3	С	G	А	А	А	G	т	С	А	А	G	С	А	С	А	т	G	с	А	G	G
hrp2	G	с	с	А	С	А	с	A	т	т	G	с	с	т	A	с	G	с	с	A	
hrp3	А	С	Т	А	G	G	С	А	Т	С	А	С	Т	Т	А	С	А	С	С	А	

Abb. 10-12: Fehlpaarungen der Reverse-Primer für hrp2 und hrp3 der normalen PCR. Darstellung der Nukleotidsequenzen in 5'3' Richtung. Die Nukleotide, die bei einer Kreuzamplifikation zu einer Fehlpaarung führen würden, sind rot hinterlegt. Da die jeweiligen Primer an jeweils komplett unterschiedlichen Lokationen binden, ist in der oberen Zeile der hrp2 Primer sowie die Nukleotid-Folge des hrp3 Gens, die bei einer Kreuzamplifikation entscheidend wäre, dargestellt und in der unteren Zeile der hrp3 Primer mit der entsprechenden Nukleotid-Folge auf dem hrp2 Gen. Nukleotid-Folgen die entsprechend nicht Teil eines Primers sind, kennzeichnen sich in der Abbildung durch tiefgestellte Buchstaben dargestellt.