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Abstract

This thesis presents algorithms and software which allow the extraction of biologi-

cally meaningful patterns from high-throughput multi-omics data and biomolecular

networks. It describes the concept and implementation of an algorithm which allows

the extraction of deregulated subnetworks from large directed molecular interaction

networks based on node scores derived from omics data. Statistical underpinnings

of the algorithms are derived and the algorithm is benchmarked against its closest

methodological relative. Relying on fractional integer programming, the algorithm

and its implementation, DeRegNet, allow many flexible modes of application. I demon-

strate the application of the algorithm in the context of the public The Cancer Genome

Atlas (TCGA) liver cancer dataset, a study investigating the role of folate one-carbon

metabolism in liver cancer and a study about the phosphoproteomic regulation of the

Saccharomyces cerevisiae (budding yeast) cell cycle. Finally, the general architecture

and some implementation details of a web-based API for DeRegNet are presented.
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Zusammenfassung

In der vorliegenden Arbeit werden Methoden und Software vorgestellt, die es erlau-

ben, aus Hochdurchsatz Omics-Daten und biomolekularen Interaktionsnetzwerken

biologisch relevante Muster zu extrahieren. Es wird ein Algorithmus entwickelt, der es

ermöglicht, aus großen gerichteten molekularen Interaktionsnetzwerken sog. deregu-

lierte Teilnetzwerke zu extrahieren. Deregulierung wird hierbei über auf die Knoten

des Netzwerkes abgebildete Omics-Daten definiert. Es wird eine statistische Grundlage

für den vorgestellten Algorithmus diskutiert und eine Evaluierung hinsichtlich metho-

disch verwandter Verfahren vorgenommen. Der Algorithmus und seine Implementie-

rung, DeRegNet, beruhen auf fraktionaler ganzzahliger Optimierung und erlauben

zahlreiche Anwendungsszenarien. Exemplarisch wird die Anwendung auf öffentlich

zugängliche Daten des TCGA-Projekts vorgestellt (TCGA: The Cancer Genome Atlas),

hier genauer an Hand der Daten zum hepatozellulären Karzinom (Leberkrebs). Wei-

terhin werden Anwendungen auf eine Studie des Folate One-Carbon Metabolismus im

Leberkrebs, als auch auf die phosphoproteomische Regulierung des Saccharomyces

cerevisiae (Backhefe) Zellzyklus beschrieben. Abschließend wird auf die allgemeine

Architektur und einige Implementationsdetails einer web-basierten API (Application

Programming Interface) zur Bereitstellung von DeRegNet eingegangen.
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Chapter 1

Introduction

This thesis is about de-novo pathway identification within biomolecular networks

based on omics data. I therefore begin by shortly introducing the most common omics

technologies in section 1.1 and then proceed to introduce biomolecular networks in the

context of de-novo pathway identification in section 1.2. I also conceptually outline

the methodological precursors to de-novo pathway identification, namely (topological)

pathway enrichment methods. While this chapter will remain fairly conceptual in

nature, chapter 2 will then provide a more formal review of functional enrichment in

general and de-novo subnetwork enrichment in particular.

1.1 Multi-omics data

Cancer research, as one of the major biomedical challenges of the 21st century, is in-

creasingly being conducted in a genome-wide and personalized fashion by utilizing

modern molecular high-throughput technologies, such as DNA sequencing, RNA-Seq

[WGS09] and mass spectrometry [AMH13] for proteomic and metabolomic analyses.

These technologies enable the experimental probing of multiple molecular organiza-

tional levels of biology.

The respectively targeted layers of biological organization are referred to as omes

(e.g. genome, transcriptome, proteome, metabolome), while the general fields of

1



1. Introduction

study addressing these omes are known as omics (e.g. genomics, transcriptomics,

proteomics, metabolomics). Experimental technology used to assess genome-wide

characteristics of the associated ome is called an omics technology and an omics layer

is an experimental read-out produced with the corresponding omics technology.

Many of of these omics technologies are increasingly applied in clinical settings and

publicly available large-scale data resources such as The Cancer Genome Atlas (TCGA)

[TCW15] provide ample opportunity to leverage the vast amounts of available data

for methodological and ultimately biomedical progress. These resources can provide

valuable reference datasets in the analysis of molecular profiles of individual patients

and patient groups. However, one of the biggest challenges in the analysis of omics data

remains functional annotation/interpretation: The interpretation of the experimental

read-outs with the goal of understanding the underlying known or unknown biological

processes and functions, is a vital step in providing personalized, precise and focused

molecular therapies.

1.2 From pathway enrichment to de-novo pathway dis-

covery in biomolecular networks

1.2.1 Functional annotation via pathway enrichment methods

One of the most widely used approaches for functional annotation is Gene Set Enrich-

ment (GSE) [Mac14]. In its most basic form, GSE entails hypergeometric and Fisher

test-based approaches to detect the overrepresentation of differentially expressed

genes. Input information for GSE are a set of predefined gene sets (e.g. representing

the gene contents of various pathways from pathway databases [D’E13] such as KEGG

[KFT+17], WikiPathways [KRN+16] or Reactome [FJM+18]) and a measure of "deregu-

lation" (e.g. binary indication of differential gene expression, expression fold changes,

etc.). The goal of the GSE analysis is to identify those gene sets from the collection

which show "high" deregulation. Here, the term "high" is defined by the method’s spe-

2



From pathway enrichment to de-novo pathway discovery in biomolecular networks

cific underlying statistical model. In the simplest case, the method examines if a gene

set contains a higher number of differentially expressed genes than would be expected

by chance, under the assumption that genes are differentially expressed independently

of each other with a uniform probability. Many adaptations and variations of GSE exist

[Mac14], among them Gene set enrichment analysis (GSEA) [STM+05]. See figure 1.1

for a conceptual depiction of basic GSE.

Figure 1.1: Conceptual view of classical pathway/gene set analysis. Gene set-
s/pathways are considered merely as sets of genes ignoring any explicit biomolec-
ular interactions between the elements of a gene set/pathway. Here red nodes
represent differentially regulated genes and a basic GSE analysis employing hyper-
geometric Over-representation analysis (ORA) would test for more red nodes than
expected, given a method-specific statistical model, in any given gene set. Rhombic
elements represent receptors while triangle elements represent targets/terminals
which could correspond to membrane receptors and transcription factors in a bio-
chemical signal transduction pathway. Elements encircled by the green and blue
boxes respectively denote predefined gene sets.

3



1. Introduction

1.2.2 Functional annotation via topology-aware pathway enrich-

ment

Classical GSE methods treat pathways as an unstructured collection of genes1 and do

not explicitly take into account the biomolecular connections between the genes/pro-

teins. Explicit network representations of the interactions between genes/proteins play

an important role in systems biology [BBI07, KHT09, KP12, BGL11, QZ14, WHFL13,

BSG16, Fur13, CRH+15] and exist in various forms. Genes/proteins can be connected

in a network to represent signaling pathways, metabolic networks [CDK13], gene reg-

ulatory networks [Big11] or protein-protein interaction networks [LWH+17, SMC+17]

which can convey more fine-grained views into biological systems functions than just

unstructured functionally grouped sets of genes (gene sets, pathways). Another aspect

in this context is pathway crosstalk, i.e. the interconnections of pathways by virtue

of shared biological agents between two gene sets or a known connection between

two biological agents each being in different gene sets. Both situations, i.e. that a

gene/protein is part of multiple pathways or that genes/proteins in different pathways

are known to interact, are common in practice.

There has been extensive research into the possibility of designing enrichment

methods which take into account the topology of pathways [JE16, MTB+13, IPB18].

An example of such an approach is the calculation of topology-dependent perturbation

scores for each gene [TDK+09]. See figure 1.2 for a conceptual representation of topo-

logical GSE. For a conceptual depiction of topological GSE which allows for pathway

crosstalk, see figure 1.3.

1.2.3 De-novo pathway enrichment

While historically defined pathways have a solid base in biological findings and can pro-

vide useful guidance for functional interpretation of omics experiments, molecular and

cellular events are often more complicated and involve the direct interaction of molec-

1See figure 1.1.
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From pathway enrichment to de-novo pathway discovery in biomolecular networks

Figure 1.2: Conceptual view of topological pathway/analysis. Biomolecular
interactions are taken into account when calculating enrichment for any given path-
way. Gene sets/pathways are still predefined though and interactions between
pathways are usually not taken into account, compare figure 1.3. Again, elements
colored in red correspond to deregulated nodes. Rhombic elements represent recep-
tors while triangle elements represent targets/terminals which could correspond
to membrane receptors and transcription factors in a biochemical signal transduc-
tion pathway. Elements encircled by the green and blue boxes respectively denote
predefined gene sets.

ular entities across predefined pathway boundaries. Correspondingly, a wide range of

methods were proposed which aim to extract "deregulated" patterns from larger regu-

latory networks without relying on predefined pathways [MCRI13, BAG+17]. These

methods are often referred to as de-novo pathway enrichment methods, emphasizing

that the pathways are defined/extracted from the data itself and are not given as

fixed gene sets a priori. In this thesis I often use the term deregulated subnetwork,

dysregulated subnetwork or de-novo subnetwork synonymously with de-novo pathway.

Some de-novo methods are tailored to the characteristics of a particular data type.

An example are methods attempting to find significantly mutated pathways/networks

[VRU16, VUR12a, ZZ18, CDS+10, HSC+13, VUR12b], trying to factor in the pecu-

larities of mutation data in a network context. Another way to categorize these

methods is based on how they handle undirected or directed interaction networks.

5



1. Introduction

Figure 1.3: Conceptual view of topological pathway/analysis with pathway
crosstalks. Pathway crosstalks happen when genes are part of multiple pathways
or genes in different pathways are known to interact. Even with pathway crosstalks
accounted for, the gene sets/pathways as such are still predetermined. Again, ele-
ments colored in red correspond to deregulated nodes. Rhombic elements represent
receptors while triangle elements represent targets/terminals which could corre-
spond to membrane receptors and transcription factors in a biochemical signal
transduction pathway. Elements encircled by the green and blue boxes respectively
denote predefined gene sets.

A lot of biomolecular interactions are directed in nature, e.g. protein A phospho-

rylates protein B, enzyme A precedes enzyme B in a metabolic pathway in contrast

to symmetric interactions such as physical interactions of proteins in protein com-

plexes. Some methods designed for undirected networks are described for example

in the following studies: [IOSS02, PN05, US07, DKR+08, ZWCA08, US09, UKKS10,

DWC+11, BBBB+11, AFK+12, APB+14, ALDH+16]. More detailed description of these

methods and further extensions is available in [MCRI13, BAG+17] and in chapter 2

of this thesis. While methods which work natively with directed networks are rarer

[DKR+08, KBG+09, BRK+12, AS13, GSH+13, MSI+15, LTG+19], it is instrumental to

be able to capture the effects of directed biomolecular interactions in the process of

discovering dysregulated networks. One particular approach is the one described in

[BRK+12] which utilized an integer programming approach in order to find deregu-

6



Outlook

Figure 1.4: Conceptual view of de-novo pathway analysis. De-novo path-
way identification / deregulated subnetwork discovery drops the predetermined
pathways and defines enriched subnetworks/pathways from the omics data it-
self. Again, elements colored in red correspond to deregulated nodes. Rhombic
elements represent receptors while triangle elements represent targets/terminals
which could correspond to membrane receptors and transcription factors in a
biochemical signal transduction pathway.

lated subnetworks. These subnetworks show deregulated subnetworks downstream or

upstream of a so called root node where the latter can be fixed a priori or determined

by the algorithm itself. Further approaches include the prize-collecting Steiner tree

methods proposed in [HF09, HCG+13, TBP+13, TGK+16]which allow for flexible iden-

tification of subnetworks which connect certain types of nodes (so called sources with

terminals). Chapter 2 provides a more detailed view of de-novo pathway enrichment

in general and (exact) methods in particular. See figure 1.4 for a conceptual depiction

of de-novo pathway enrichment.

1.3 Outlook

After a technical overview on existing functional enrichment methods with a focus on

exact methods in chapter 2, the remainder of this thesis will introduce the de-novo

pathway enrichment algorithm DeRegNet in chapter 3, outline several applications

7
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of DeRegNet to omics datasets in chapter 4 and concludes with a description of a

web-based Application Programming Interface (API) for DeRegNet in chapter 5.

8



Chapter 2

Functional enrichment: a

methodological overview

This chapter provides an overview of the main methodological principles involved in

the progression from gene set enrichment to de-novo pathway/subnetwork detection

algorithms. I start by outlining some terminology and notation to be used in the follow-

ing. The terminology and notation is explicitly referring to graph concepts throughout,

even for methods which could be formulated without any reference to such concepts.

The following sections then outline gene set enrichment, topological extensions to gene

set enrichment and finally de-novo subnetwork/pathway enrichment methods, focus-

ing on exact directed methods since the algorithms proposed in subsequent chapters

of this thesis fall into this category.

2.1 Terminology and notation

Formally, it is given a directed graph G = (V, E), i.e. E ⊂ V×V , representing knowledge

about biomolecular interactions in some way. To avoid certain pathologies in the

models defined below, it is assumed that G has no self-loops, i.e. (v, v) /∈ E ∀v ∈ V .

For a subset S ⊂ V , one defines δ+(S) = {u ∈ V\S : ∃v ∈ S : (v, u) ∈ E} and δ−(S) =

{u ∈ V\S : ∃v ∈ S : (u, v) ∈ E}, i.e. the sets of outgoing nodes into and incoming nodes

9



2. Functional enrichment: a methodological overview

from a set of nodes S. For a node v ∈ V one writes δ±(v) := δ±({v}). Furthermore, it

is given a score function s : V → R, describing some summary of experimental data

available for the biomolecular entities represented by the nodes. For a given graph

G = (V, E) any node labeling function f : V → R is implicitly implied to be a vector

f ∈ R|V |, subject to an arbitrary but fixed ordering of the nodes (shared across all

node labeling functions). In particular, with fv := f (v) for v ∈ V , given f , g : V → R,

one can write f T g =
∑

v∈V

fv gv. For S ⊂ V and f : V → R one defines fS : V → R via

fS(v) := 0 for all v ∈ V \ S and fS(v) := f (v) for all v ∈ S. Defining e : V → R with

e(v) := 1 for all v ∈ V , one further can write eT
S f =

∑

v∈S

fv for S ⊂ V and f : V → R.

Comparison of node labeling functions f , g are meant to be understood element-wise,

e.g. f ≤ g means fv ≤ gv for all v ∈ V . An edge weight (function) is a function

w : E→ R.

2.2 Gene set enrichment

Under gene set enrichment I subsume all methods which try to identify pre-defined

pathway/gene sets which are enriched with members (genes, proteins, ...) which are

deregulated according so some measure of deregulation without taking topological

interactions between members and/or pathways/gene sets into account. See figure

1.1 for a conceptual depiction of that general setting. The measure of deregulation

often is an indicator of differential expression, but this is flexible due to the nature of

most enrichment methods and can also correspond to more complex measures such

as continuous measurements of some omics modality and also is not restricted to

gene expression. In the following I outline the basic application of standard statisti-

cal tests based on the hypergeometric distribution characteristics of the enrichment

problem. While many extensions and modifications of basic gene set enrichment ex-

ist [Mac14, SLM08], discussion of the most basic setting will suffice as a proxy for

the purposes of this thesis as it captures the essential characteristics of the classical

gene set enrichment problem. Further methods for gene set enrichment are GSEA

10



Gene set enrichment

[MLE+03, STM+05], LRpath based on logistic regression [SLM08, KKM+12], the ran-

dom set approach [NQdB+07] or gene set analysis (GSA) [ET06]. For a comparison

and classification of these and further methods it is referred to [Mac14].

Hypergeometric enrichment tests

A pathway/gene set database is represented by a set P ⊂ 2V , i.e. a set P =

{P1, ..., Pn} with Pi ⊂ V for all i = 1, ..., n some n ∈ N. A deregulation set is a sub-

set D ⊂ V of nodes which is indicated to be deregulated according to some measure.

One common deregulation set is the set obtained by all genes which are differentially

expressed between two given conditions. Hypergeometric tests of gene set enrich-

ment (also sometimes referred to as overrepresentation analysis (ORA)) test whether

a given pathway Pi contains significantly more (or less) nodes from the deregulation

set as would be expected by chance. These tests correspond to one-sided versions

of the Fisher exact test (χ2 test for contingency tables). See figure 2.1 for a canoni-

cal depiction of the setting. Under the null hypothesis that each node/gene has the

same probability of being deregulated regardless of it being in Pi or not the counts of

deregulated nodes/genes in a given pathway follow a hypergeometric distribution, i.e.

P(|Pi ∩ D|= k) =





|D|

k









|V | − |D|

|Pi| − k









|V |

|Pi|





=





eT
De

eT
DePi









eT (e− eD)

eT (ePi
− eD)









eT e

eT ePi





and enrichment (of nodes from D in a given pathway Pi) can then be calculated by

calculating a one-sided p-value under that null hypothesis by summing all probabil-

ities P(|Pi ∩ D| = k′) for all k′ which are at least as extreme as the observed k. For

11



2. Functional enrichment: a methodological overview

Pi D

V

Figure 2.1: Conceptual depiction of a pathway/gene set Pi overlapping with a
deregulation set D. Both sets are subsets of the set of all nodes/genes V which
are the nodes of an underlying regulatory network G = (V, E). The topological
interaction encoded by E are ignored in standard gene set enrichment methods.

enrichment/overrepresentation1 this means calculating

p := P(|Pi ∩ D| ≥ k) =
∑

k′≥k

P(|Pi ∩ D|= k′).

Note, that after each Pi is associated with its enrichment p value, multiple testing

correction should be carried out due to testing multiple pathways simultaneously for

enrichment. It may seem trivial, but I stress here that the just outlined enrichment

method (and related methods [Mac14]) do not make any explicit use of E, i.e. the

interactions between genes, given an underlying regulatory network G = (V, E). Also

the identified enriched gene sets are given a priori via the pathway database.

2.3 Topological pathway enrichment

As conceptually motivated in subsection 1.2.2, topological gene set enrichment refers

to pathway enrichment methods which make use of the connections between genes

in the pathways. Formally, a topological pathway database is a set {G1, ..., Gn} of

subgraphs Gi = (Vi, Ei) of G such that Gi is the subgraph of G induced by Vi ⊂ V , i.e.

1Note, that one can also test for depletion/underrepresentation of deregulated nodes/genes by
calculating P(|Pi ∩ D| ≤ k) =

∑

k′≤k

P(|Pi ∩ D|= k′).

12



Topological pathway enrichment

Ei = {(u, v) ∈ E|u, v ∈ Vi}. In the context of topological pathway analysis, each Gi is

referred to as a pathway. See figure 1.2 for conceptual depiction corresponding to

that definition. The result of a topological pathway enrichment analysis is a p-value

for every pathway indicating whether that pathway is enriched with respect to some

measure of deregulation (like gene expression fold changes) under the constraints

imposed by the topology of each pathway. How the connections between the genes in

each pathway, i.e. its topology, are taken into account when determining a pathway’s

significance for enrichment is characteristic for a given topological pathway enrichment

method. For a review on topological pathway enrichment in general and existing

methods in particular I refer to [JE16, MTB+13, IPB18]. In the following I provide an

overview of Signaling Pathway Impact Analysis (SPIA) [TDK+09] as a representative

example for a topological path way enrichment algorithm.

Signaling Pathway Impact Analysis (SPIA): [TDK+09]

Signaling Pathway Impact Analysis [TDK+09] was one of the first topological pathway

enrichment methods. Given a node score s : V → R representing the difference of

some omics measure, such as a gene expression fold change between two conditions,

SPIA is based on a pathway-specific derived perturbation score p(i) : Vi → R which

captures the interplay of pathway topology and the mapped deregulation score s as

p(i)v = sv+β
(v)
i p̃(i)

δ−i (v)
2. Here, δ±i (v) := δ±(v)∩Vi. Furthermore, β (v)i denotes the row cor-

responding to node v ∈ Vi of a pathway-specific parameter matrix βi = (β (i)uv ) ∈ R
Vi×Vi

and p̃(i)v =
p(i)v
|δ+i (v)|

is the perturbation score of v normalized by the number of down-

stream genes δ+i (v) of v (in pathway Gi). Intuitively, the perturbation score of gene

v ∈ Vi in pathway Gi is determined by its general deregulation sv and the com-

bined contributions of its upstream regulators. The latter in turn is quantified as

the weighted sum of the upstream regulators’ perturbation scores normalized with

each regulator’s number of targeted genes. The normalization serves to down-weigh

2p(i)v = sv +
∑

u∈δ−(v)

β (i)vu

p(i)u

|δ+i (u)|

13



2. Functional enrichment: a methodological overview

contributions from nodes which regulate many other nodes relative to nodes which

may only regulate very few nodes what can then be seen as a potentially more sig-

nificant influence. [TDK+09] define a node’s perturbation accumulation (for pathway

Gi) as a(i)v := p(i)v − sv and show that given above model, a(i) can be determined as

a(i) = B(i)(I − B(i))−1sVi
where B(i) = ( βuv

|δ+i (v)|
) ∈ RVi×Vi . To arrive at a p value indicating

enrichment, SPIA also assumes the classical null hypothesis H0 that deregulated genes

are completely random [TDK+09]3. The topological perturbation p-value is given by

pPERT = P(eT A(i) ≥ eT a(i)|H0) and can be evaluated by simulating perturbation accumu-

lation scores A(i) by bootstrapping as described in [TDK+09]. pPERT is then combined

with a standard ORA p-value (see section 2.2) by classical p-value aggregation via

Fisher’s method [Fis92] to arrive at final p-value for the significance of pathway en-

richment.

2.4 De-novo subnetwork enrichment

In this section I outline existing de-novo subnetwork enrichment approaches whose

rationale was introduced in the introduction and is conceptually depicted in figure

1.4. For dedicated reviews, it is referred to [MCRI13] and [BAG+17]. De-novo sub-

network enrichment acquired many names during the last two decades, such as active

subnetwork/module detection or deregulated subnetwork/module detection. I try

to restrict myself to de-novo subnetwork/pathway enrichment/detection/discovery and

deregulated subnetwork/subgraph enrichment/detection/discovery throughout this the-

sis. The discussion here is stratified according to whether the algorithms are heuristic

or exact in nature. The next subsection outlines heuristic approaches while the follow-

ing subsection gives some details on exact methods. The overview on exact methods

is my primary focus due to the fact, that this thesis develops such an exact approach

to de-novo enrichment starting in the next chapter.

3See previous section 2.2
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De-novo subnetwork enrichment

2.4.1 Heuristic methods for de-novo subnetwork detection

One of the first papers describing a de-novo method for detecting deregulated subnet-

work was presented by [IOSS02]4. I sketch the methods of [IOSS02] which is based

on simulated annealing in the next subsection.

Starting with the Simulated Annealing approach of [IOSS02]many further heuristic

methods were proposed [IOSS02, PN05, US07, US09, UKKS10, DWC+11, BBBB+11,

AFK+12, APB+14, ALDH+16]. These methods, while achieving similar end results on

an abstract level, vary vastly in terms of suitable underlying networks, interpretation

of outcomes and algorithmic strategies employed. Algorithmic approaches employed

range from ant colony optimization [ALDH+16], dynamic programming [DWC+11],

Markov random fields [VBS+10] to message passing approaches [BBBB+11]. See

[MCRI13, BAG+17] for further references.

Ideker et al. 2002 [IOSS02]: de-novo enrichment via simulated annealing

One of the first studies examining the possibilities of de-novo pathway/subnetwork

enrichment was the work of Ideker et al. from 2002 [IOSS02] who referred to the

deregulated subnetworks inferred by their algorithms as active modules. The algorithm

itself and its most commonly used implementation [IOSS02] is known as jActiveMod-

ules. jActiveModules applies the metaheuristic principle of simulated annealing to find

deregulated subnetworks within a larger regulatory network. The algorithm is out-

lined as algorithm 1 in more detail to give a somewhat representative example on how

heuristic optimization approaches can be applied to find de-novo pathways.

2.4.2 Exact methods for de-novo subnetwork detection

This subsection gives an overview on exact methods for de-novo enrichment. Here,

the term exact is understood in terms of how the underlying optimization problem for

finding deregulated subgraphs is solved, namely provably exact. This is in contrast to

4Who called the resulting subnetworks active modules
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2. Functional enrichment: a methodological overview

Data: A undirected graph G = (V, E), node score s : V → R, start and end
temperature T0, Tend > 0, maximal number of iterations N ∈ N

Result: V ′ ⊂ V and the deregulated subnetwork G′ = (V ′, E′) induced by V ′

Set xv = 1 (otherwise xv = 0) with probability 1
2 for each v ∈ V

s0 := sT x

(Annealing phase)
for i = 1, ..., N do

Pick v ∈ V at random and set xv = |1− xv| (Toggle)
si = sT x (Toggled score)
if si ≤ si−1 then

xv = |1− xv| (toggle back) with probability 1− e
si−si−1

Ti

end

Ti =
N
Ç

Tend
T0
· Ti−1 (Update temperature)

end

(Quenching phase)
B(x) := { x̃ ∈ {0, 1}V |∃v ∈ V : |xv|= | x̃v − 1|, sT x < sT x̃}
whileB(x) 6=∅ do

Set x = x̃ for some x̃ ∈B(x)
end
Let G′ = (V ′, E′) be the subgraph of G induced by V ′ = {v ∈ V |xv = 1}
return (Connected component C ⊂ V ′ of G′ with highest score sT eC )

Algorithm 1: Simulated annealing for de-novo enrichment [IOSS02]. The al-
gorithm applies simulated annealing to find subnetworks by iteratively toggling a
node’s membership in the current subnetwork and evaluating the resulting total
score of the subnetwork. According to the defining principle of simulated annealing,
new solutions are accepted with a certain probability even if they worsen the score
of the resulting subnetwork. Once the annealing stopped, local search is used to
find a locally optimal solution. This is called quenching in the context of simulated
annealing. Finally the best scoring connected component of the subgraph induced
by the selected nodes is returned as the deregulated subgraph.
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the heuristic methods introduced in the previous subsection which find solutions by

means of heuristic approximations to a solution. Often one also cannot provide any

guarantees on how close an approximate heuristic solution may be to an optimal one.

This drawback gave rise to so called exact methods for de-novo pathway enrichment

which are are based on mixed-integer programming. Before reviewing existing exact

methods, I give an overview of the so called (directed) maximum weight connected

subgraph problem on which many exact methods are based on. In particular, the

algorithms introduced in this thesis solve certain extended and generalized versions

of that problem as outlined in chapter 3.

(Directed) Maximum Weight Connected Subgraph Problem (MWCSP)

In terms of mathematical optimization and subject to minor modifications5, most exact

(and some heuristic) de-novo subnetwork detection methods solve instances of the so

called (directed) Maximum Weight Connected Subgraph Problem6. In the following I

provide formal definitions of that problem.

In the setting of an undirected graph one defines [DKR+08]:

Definition 1 (Maximum Weight Connected Subgraph Problem (MWCSP))

Given an undirected graph G = (V, E) and node scores s : V → R, find a set of nodes

V ′ ⊂ V whose induced subgraph (V ′, E′) maximizes eT
V ′s such that (V ′, E′) is connected.

For directed graphs, the definition largely stays the same except for the notion of

connectivity:

Definition 2 (Directed Maximum Weight Connected Subgraph Problem (DMWCSP))

Given a directed graph G = (V, E) and node scores s : V → R, find a set of nodes V ′ ⊂ V

whose induced subgraph (V ′, E′) maximizes eT
V ′s such that there is a node r ∈ V ′ such

that there is a directed path from r to every other node v ∈ V ′.

5For example the requirement of the subgraphs to be of a certain predefined size k ∈ N.
6Or its rooted variant.
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2. Functional enrichment: a methodological overview

In the directed setting, by fixing the root node in the DMWCSP to a particular node in

the underlying graph one arrives at the so called Rooted Maximum Weight Connected

Subgraph Problem (RMWCSP):

Definition 3 (Rooted Maximum Weight Connected Subgraph Problem (RMWCSP))

Given a directed graph G = (V, E), node scores s : V → R, and a node r ∈ V called the

root node, find a set of nodes V ′ ⊂ V with r ∈ V ′ such that the induced subgraph (V ′, E′)

maximizes eT
V ′s such that there is a directed path from r to every other node v ∈ V ′.

As indicated, the (R)MWCSP has found explicit applications in network biology [DKR+08],

[BRK+12] in the context of de-novo subnetwork detection which will be outlined in

more detail in the following subsections. The problem also attracted general com-

putational and theoretical research in recent years [BWB17], [LAS16], from differ-

ent integer programming formulations and problem-specific branch-and-cut strategies

[EKK14], [ÁMLM13a], [ÁMLM13b], [AB11], to more recent research on computa-

tional strategies for addressing large-scale instances [AMS17] and problem reduction

techniques and heuristics [RKM19], [RK19].

Dittrich et al. 2008 [DKR+08]: Prize-collecting Steiner tree problem

[DKR+08] presented a solution to the (undirected) de-novo subnetwork detection

problem by formulating it as an undirected MWCSP (see 2.4.2) and showing that

the problem can be transformed to a so called Prize-collecting Steiner tree (PCST)

problem.

Definition 4 (Prize-collecting Steiner tree (PCST) problem)

Given an undirected graph G = (V, E), node scores p : V → [0,∞) and edge scores

c : E → [0,∞), find a set of nodes V ′ ⊂ V and edges E′ ⊂ E such that the subgraph

(V ′, E′) is connected7 and maximizes eT
V ′p− eT

E′c.

7Note that the requirement of connectedness could also be replaced by the requirement of (V ′, E′) being
a tree since from any connected subgraph one can remove edges such that the result is a tree while only
improving the objective in the process due to c(e)≥ 0 for all e ∈ E.
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In above definition of the PCST problem, the node score p can still be interpreted

as a measure of deregulation while the edge score c can be interpreted as the cost

of including an edge into the solution and hence a solution of the PCST problem

tries to maximize deregulation while minimizing the cost of edge inclusion. Given an

undirected MWCSP instance (see definition 1), [DKR+08] achieve an equivalent PCST

formulation by defining pv := sv −maxu∈V su for every v ∈ V and ce := −maxu∈V su for

every e ∈ E. I refer to [DKR+08] for the proof of equivalence. In order to solve the

resulting PCST problem [DKR+08] employ the published solution strategy by [LWP+06]

which solves the problem via integer programming with lazy constraints.

[DKR+08] also contains a methodology with which their exact algorithm can pro-

duce suboptimal additional solutions (next to the optimal one) by re-solving under

additional constraints which force the subnetwork to only share a certain percent-

age with the already found subnetworks. See subsection 3.1.6 in chapter 3 for an

adaptation to the algorithms developed in this thesis. [DKR+08] furthermore provide

a detailed statistical framework which explicitly spells out the underlying statistical

assumptions of their model and its application. I refer to [DKR+08] for further details.

Zhao et al. 2008 [ZWCA08]: From receptor to target

Another early and interesting exact de-novo enrichment approach was formulated

by [ZWCA08]. Given an undirected regulatory network G = (V, E) the authors do

not formulate a model in terms of node scores but instead work with edge scores

w : E → R which have to be engineered to reflect node-level changes. The primary

example provided in [ZWCA08] is an edge score based on gene expression correlation

between any two given genes. The other essential idea of [ZWCA08] in the context of

exact de-novo enrichment is the idea of receptors and targets in biological pathways,

i.e. the notion that many biological pathways implement a directed signal transmission

capability from some kind of receptor to some kind of target. The most prominent

example would be a signaling cascade, relaying signals from membrane receptors

to transcription factors and their targets via its constituting molecular interactions.
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Receptors and targets are called starting and ending nodes/genes in [ZWCA08] and

given via sets R ⊂ V and T ⊂ V . Note however, that the model of [ZWCA08] was

formulated for undirected networks and thus cannot make optimal use of the implied

directionality of the receptor/start and target/ending nodes in a network context.

Additionally, the method of [ZWCA08] allows to specify a set K ⊂ V of genes known

to be contained in the to be identified de-novo subnetwork. [ZWCA08]’s model then

introduces indicator variables for both nodes and edges, i.e. x = (xv)v∈V and Y =

Y T = (yuv){u,v}∈V×V . xv = 1 means v is included in the de-novo subnetwork and

yuv = 1 means that (u, v) ∈ E is included in the subnetwork. With edge score matrix

W =W T = (wuv)(u,v)∈V×V ⊂ R|V |×|V | the model can be formulated as follows:

min
x ∈ {0,1}V , y ∈ {0,1}V×V

−W � Y +λ||Y ||2F (2.1a)

s.t. y T
v e ≤ xv ∀v ∈ V (2.1b)

y (v)e ≤ xv ∀v ∈ V (2.1c)

y (v)e ≥ 1 ∀v ∈ R∪ T (2.1d)

y (v)e ≥ 2xv ∀v ∈ V \ (R∪ T ) (2.1e)

xv = 1 ∀v ∈ R∪ T ∪ K (2.1f)

Here, y (v) denotes the row of Y which corresponds to v ∈ V (as a row vector)

and yv denotes the column of Y corresponding to v ∈ V (as a column vector) and

||Y ||F :=

�

∑

v∈V

||yv||22

�
1
2

denotes the Frobenius norm of Y . λ > 0 denotes a penalty

factor which penalizes edge inclusion. Furthermore, W � Y :=
∑

v∈V

∑

u∈V

wuv yuv denotes

the Hadamard product of of W and Y . The special role of receptors and targets

in the subnetwork is now achieved by constraints (2.1d) and (2.1e) which simply

enforce receptors and targets to be connected while requiring of all other included

nodes to have at least two connections within the subnetwork. Note however that
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the approach cannot really distinguish between receptors on one side and targets on

the other. Additionally it requires receptors and targets to be predetermined and does

not allow to select receptors and targets from a given set of potential receptors and

targets. Regardless, the approach [ZWCA08] was the first to put forward the idea of

semantically relevant special nodes (receptors/targets) in the context of exact de-novo

enrichment methods.

From Steiner trees to forests [HF09, HCG+13, TBP+13, TGK+16]

[HF09, HCG+13] introduce de-novo subnetwork enrichment methods which are based

on the Prize-collecting Steiner tree (PCST) problem as in [DKR+08]. While technically

also based on the PCST the modeling angle is slightly different compared to [DKR+08].

Formally, [HF09, HCG+13] use the so called Goemans-Williamson formulation of the

PCST problem [HCG+13] with an additional penalty factor β > 08. This formulation

is technically equivalent to the PCST problem from [DKR+08] up to the additional

penalty factor β .

Definition 5 (PCST problem: extended Goemans-Williamson formulation [HCG+13])

Given an undirected graph G = (V, E), node scores s : V → [0,∞) and edge scores

c : E → (0,∞), find a set of nodes V ′ ⊂ V and edges E′ ⊂ E such that the subgraph

(V ′, E′) is connected and minimizes eT
E′c + βeT

V\V ′s.

While the PCST problem which is solved in [DKR+08] stems from the formal re-

formulation of the MWCSP the PCST formulation is used by [HF09, HCG+13] as an

explicit modelling approach. Note, that while c still represents costs associated with

edge inclusion, the node score s corresponds to a penalty of not including a node into

the solution and hence is semantically equivalent with the usual deregulation score.

The difference here is that in contrast to maximizing the deregulation within subnet-

work, [HF09, HCG+13] try to minimize the deregulation score of nodes which do not

end up in the subgraph. The edge score c is modelled as a interaction confidence, i.e.

8[HF09] use the formulation without additional penalty factor β which is introduced by [HCG+13].
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ce > ce′ means the confidence of edge e′ ∈ E is higher than that of e ∈ E and hence inclu-

sion of e in the solution is more costly. In terms of solution technology [HF09, HCG+13]

also utilize the [LWP+06]. Akin to the strategy of [DKR+08] to find suboptimal subnet-

works which could still carry biological significance, [TBP+13] extend the methods of

[HF09, HCG+13] to the Prize-collecting Steiner forest (PCSF) approach which is able

to find multiple deregulated de-novo subnetworks simultaneously.

Backes et al. 2012 [BRK+12]: Directed networks

[BRK+12] were one of the first to explicitly tackle the de-novo subnetwork problem

for directed networks by solving extended versions of the (rooted) Directed Maximum

Weight Connected Subgraph Problem (DMWCSP) and their work constitutes the most

direct predecessor of the work presented in this thesis. Another important feature

of the [BRK+12] formulation is the restriction to node-level decision variables in the

integer programming model while most other approaches rely on both node and edge

variables9 like for example all exact methods summarized in the previous subsections

[DKR+08, HF09, HCG+13, TBP+13, ZWCA08]. Introducing binary decision variables

x and y the [BRK+12] model can then be formulated as follows:

max
x , y ∈ {0,1}V

sT x (2.2a)

s.t. y ≤ x (2.2b)

eT y = 1 (2.2c)

eT x = k (2.2d)

xv − yv − eT
δ−(v)x ≤ 0 ∀v ∈ V (2.2e)

eT
C (x − y)− eT

δ−(C)x ≤ |C | − 1 ∀C ⊂ V ic, |C |> 1 (2.2f)

9For most biomolecular networks the number of nodes is significantly less than the number of edges
and hence integer programming formulations avoiding decision variables corresponding to edges can
potentially lead to significantly smaller models.
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Here, for subset of nodes C ⊂ V I write C ic if the subgraph induced by C contains

a cycle with all nodes from C . While x corresponds to inclusion of a node in the

subgraph, y decides on a particular root node. See the definition of Rooted Maximum

Weight Connected Subgraph Problem (RMWCSP), definition 3. Constraints (2.2e)

and (2.2f) together achieve the connectedness of the resulting subgraph. Since the

constraints (2.2f) are exponentially many in terms of the size of the underlying graph

[BRK+12] take these constraints into account as lazy constraints during the branch-

and-cut procedure which solves the integer program. In order to alleviate the rather

strict constraint of a fixed subgraph size k ∈ N, [BRK+12] employ the strategy to find

deregulated subgraphs for a range of subgraph sizes and take the union graph10 as the

resulting de-novo subnetwork.

Further exact methods

While the exact methods presented so far constitute the set of methods most relevant to

the methods developed in this thesis, this short section collects some minimal review on

further exact methods found in the literature. Gosline et al. 2012 [GSUF12] proposed

SAMNet, while Atias and Sharan, 2013 [AS13] introduced iPoint, both exact methods

based on network flow interpretations and formulations of the de-novo subnetwork

detection problem.

An interesting aspect of the method of Gaire et al. 2013 [GSH+13], called CASNet,

is its emphasis on the consistency of the deregulation measures mapped to the nodes

of the network and the semantic meaning of the edges connecting deregulated nodes.

Building on the work of Melas et al. 2015 [MSI+15], Liu et al. 2019 [LTG+19]

presented CARNIVAL, an ambitious model which not only tries to infer de-novo sub-

networks but tries to do so by simultaneously inferring activation state of reactions

(edges), whether a given interaction is inhibitory or activating given mapped deregula-

tion scores, and more, while also being able to take into consideration experimentally

10Given a list of n ∈ N subgraphs G1 = (V1, E1), ..., Gn = (Vn, En) of some graph G = (V, E) (i.e. Vi ⊂ V
and Ei ⊂ E for all i = 1, ..., n) the union graph ∪n

i=1Gi of (Gi)i is defined as (∪n
i=1Vi ,∪n

i=1Ei).
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applied perturbations. Note also, that CARNIVAL is based on a hypergraph model for

the underlying regulatory network.

2.5 Summary and Discussion

This chapter reviewed the progression of methods for functional enrichment from gene

set enrichment and topological pathway enrichment to de-novo subnetwork enrich-

ment with a focus on exact approaches based on integer programming for the latter

methodological paradigm. Table 2.1 summarizes some characteristics of the exact

algorithms reviewed in this chapter. The next chapter introduces DeRegNet, an ex-

act method for de-novo subnetwork enrichment and the main algorithmic framework

developed in this thesis.

Ref. Node var. Edge var. # variables Stat. model Lazy constr. Directed
[DKR+08] Yes Yes |V |+ |E| Yes Yes No
[HF09] Yes Yes |V |+ |E| No Yes No
[HCG+13] Yes Yes |V |+ |E| No Yes No
[TBP+13] Yes Yes |V |+ |E| No Yes No
[ZWCA08] Yes Yes |V |+ |E| No No No
[GSUF12] No Yes O(|E|+ 2|V |) No No Yes
[AS13] Yes Yes |V |+ 2|E| No No Yes
[GSH+13] Yes Yes |V |+ 2|E| No No Yes
[MSI+15] Yes Yes 8|V |+ 3|E| No No Yes
[LTG+19] Yes Yes 8|V |+ 3|E| No No Yes
[BRK+12] Yes No |V | or 2|V | Yes (*) Yes Yes
DeRegNet Yes No |V | or 2|V | Yes Yes Yes

Table 2.1: Exact de-novo subnetwork enrichment methods. The table shows
some characteristics of the methods introduced in this chapter, as well as of DeReg-
Net, the method developed in this thesis starting with the next chapter. The
columns Node var. and Edge var. denote whether a method employs decision vari-
ables corresponding to nodes and edges respectively. # variables gives the number
of variables of the respective model formulations, while Stat. model logs whether
the model has an accompanying statistical model or interpretation. Lazy constr.
documents whether lazy constraints are necessary for the solution of the model
and Directed finally summarizes whether the model makes/can make explicit use
of the directionality of the interactions in given underlying regulatory network.
(*): Introduced and specialized to [BRK+12] in chapter 3 of this thesis.
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Chapter 3

A de-novo pathway discovery

algorithm for omics data

This chapter develops an algorithm for de-novo pathway/subnetwork identification

and describes its technical basis and general implementation. The algorithm and/or

the implemented software are referred to as DeRegNet. For a very high-level overview,

see figure 3.1. Methodologically, DeRegNet builds mainly upon the work of [BRK+12]

and the prize-collecting Steiner tree methods proposed in [HF09, HCG+13, TBP+13,

TGK+16] and also in [ZWCA08]. DeRegNet handles directed interaction networks

and adapts from [BRK+12] the general integer programming approach in such a way

that it can encapsulate the general idea of sources and targets as put forward in the

prize-collecting Steiner tree/forest (PCST/PCSF) approaches [HF09, HCG+13, TBP+13,

TGK+16]. The idea of receptors and terminals captures the idea of deregulated net-

works starting or ending at certain types of nodes, for example membrane receptors and

transcription factors. More specifically, I extend the integer programming approach of

[BRK+12] to fractional integer programming to allow for the necessary flexibility to

incorporate sources and targets by means of variable subgraph size. I also show that

DeRegNet can be seen as general maximum likelihood estimation with respect to a sta-

tistical model introduced below. The chapter now proceeds to describe a mathematical
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optimization model which is at the heart of DeRegNet together with a motivating statis-

tical model. Various extensions and application modes of the algorithm are explained.

Naturally, the chapter continues detailing the solution methods for the DeRegNet model

and finally closes with a description of a benchmark of DeRegNet comparing it to its

closest methodological relative [BRK+12]. Applications of DeRegNet to actual omics

data are presented in chapter 4.

3.1 Fractional integer-programming for finding dereg-

ulated subnetworks

3.1.1 The Maximum Average Weight Connected Subgraph Prob-

lem (MAWCSP)

Analogously to the directed (R)MWCSP (see definitions 2, 3 in chapter 2) one can

define versions which strive to optimize the average score in the subgraph.

Definition 6 (Maximum Average Weight Connected Subgraph Problem (MAWCSP))

Given a directed graph G = (V, E) and node scores s : V → R, find a set of nodes V ′ ⊂ V

whose induced subgraph (V ′, E′) maximizes
eT

V ′ s

eT eV ′
such that there is a node r ∈ V ′ such

that there is a directed path from r to every other node v ∈ V ′.

Definition 7 (Rooted Maximum Average Weight Connected Subgraph Problem (RMAWCSP))

Given a directed graph G = (V, E), node scores s : V → R, and a node r ∈ V called the

root node, find a set of nodes V ′ ⊂ V with r ∈ V ′ such that the induced subgraph (V ′, E′)

maximizes
eT

V ′ s

eT eV ′
such that there is a directed path from r to every other node v ∈ V ′.

The next subsection introduces the DeRegNet model for finding deregulated subnet-

works in biomolecular networks. Mathematically speaking, the proposed model is an

extended version of the just defined (R)MAWCS problem.
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Fractional integer-programming for finding deregulated subnetworks

Figure 3.1: DeRegNet’s inputs are a biomolecular network (A), such as a signaling
or gene regulatory network, and omics measurements (B), such as gene expression
data. The latter are mapped onto the nodes of the network acting as node-level
measures of deregulation. This mapping is reflected here in (A) and (C) as the color
of the nodes. (C) DeRegNet then extracts the most deregulated subnetwork from
the larger regulatory network according to some definition of most deregulated

.
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3.1.2 The DeRegNet fractional integer programming model

Given the generic setting and notation introduced in the previous chapter, I now formu-

late the main model of DeRegNet. Apart from the directed graph G and node scores s,

there are given possibly empty subsets of nodes S ⊂ V and T ⊂ V . It is referred to S as

sources and to T as terminals, independent of the biological semantics underlying the

definition of these sets (see below). The model is an extended version of the MAWCSP

introduced above. Note, that in the following I formulate all problems as maximization

problems while there are situations where minimization may, depending on the seman-

tics of the node score1, be the proper choice. As in [BRK+12], the problem of finding

deregulated subnetworks is modelled in terms of indicator variables xv = I(v ∈ V ′)2

and yv = I(v is the root node) where V ′ ⊂ V is a set of nodes inducing a subgraph

such that one can reach every node in that subgraph by means of a directed path from

the root node. In addition, the root is supposed to be a source node and all nodes in

the subgraph with no outgoing edges are supposed to be terminal nodes. Furthermore,

a subset of nodes V ′ ⊂ V induces a strongly connected subgraph (V ′ iscs, for short) if

1Minimization may for example be prudent in case the node scores represent p values originating
from some statistical significance test. Compare section 4.3.

2I(P) = 1 if P, I(P) = 0 if not P for some predicate P.
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the subgraph induced by V ′ is strongly connected. The proposed model then reads as

follows:

max
x , y ∈ {0,1}V

sT x
eT x

(3.1a)

s.t. y ≤ x (3.1b)

eT y = 1 (3.1c)

kmin ≤ eT x ≤ kmax (3.1d)

xv − yv − eT
δ−(v)x ≤ 0 ∀v ∈ V (3.1e)

eT
S (x − y)− eT

δ−(S)x ≤ |S| − 1 ∀S ⊂ V iscs, |S|> 1 (3.1f)

yv = 0 ∀v ∈ V \ R if R 6=∅ (3.1g)

xv − eT
δ+(v)x ≤ 0 ∀v ∈ V \ T if T 6=∅ (3.1h)

eT
Inc x = |Inc| (3.1i)

eT
Ex x = 0 (3.1j)

The model derives from the corresponding integer linear programming model in

[BRK+12] and adapts it for the fractional case, most notably here are the constraints

involving the the receptors R (3.1g) and the terminals T (3.1h). (3.1g) ensures that

the root node is a receptor3, while (3.1h) ensures that any node in the subgraph with

no outgoing edges is a terminal node. (3.1b) means that a node can only be the root

if it is included in the subgraph. (3.1c) means that there is exactly one root. (3.1d)

means that the size of subgraph has to be within the bound given by kmin, kmax ∈ N.

(3.1e) says that a node v ∈ V in the subgraph is either the root node or there is another

node u ∈ V in the subgraph such that there is an edge (u, v) ∈ E. Moreover, the the

constraints (3.1i) and (3.1j) trivially allow to include and exclude specific nodes from

3Of course, for practical implementation one can also just introduce variables yv ∈ {0,1} only for
nodes v ∈ T in the first place. In terms of formulation one would need to make a difference for
constraints (3.1e,f) as well and formulate them differently (with or without y) for nodes in R on the
one hand and for nodes not in R on the other.
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given sets Inc,Ex ⊂ V respectively 4. The constraint (1f) is the most involved one and

describes (potentially) exponentially many constraints5 which ensure that there are no

disconnected directed circles by requiring that any strongly connected component in

the subgraph either contains the root node or has an incoming edge from another node

which is part of the subgraph but not part the given strongly connected component.

Note, that one could merge (3.1e) and (3.1f) in terms of formulation by requiring

eT
S (x − y)− eT

δ−(S)x ≤ |S| − 1 for all S ⊂ V iscs, |S| ≥ 1. Finally, the objective (3.1a) de-

scribes the notion of maximizing the average score of the subgraph. This is crucial for

allowing the model the flexibility to connect source nodes to target nodes. I also give

a probabilistic motivation of the the just described model, in particular its objective

function, in the next subsection.

For the rest of this thesis I will use the following terminology in the context of the

mathematical programming problem (3.1):

Definition 8 (DeRegNet instances, data, and subgraphs)

A tuple (G, R, T,Ex, Inc, s) is called an instance of DeRegNet (a DeRegNet instance, an

instance of the DeRegNet model). Here, G = (V, E) is the underlying graph, R ⊂ V

is the receptor set, T ⊂ V is the terminal set, Ex ⊂ V is the exclude set, Inc ⊂ V is

the include set and s : V → R is the node score (the score). Further, xv : V → {0,1}

is called a subgraph with the understanding that it is referred to the subgraph of G

induced by V ∗ = {v ∈ V : xv = 1}. Equivalently to xv : V → {0,1}, it is also referred

to the corresponding V ∗ = {v ∈ V : xv = 1} as a subgraph. A subgraph is feasible for

DeRegNet (for the DeRegNet instance), if it satisfies DeRegNet’s constraints (3.1b-j). A

subgraph satisfying these constraints is called a feasible subgraph. A feasible subgraph

which optimizes problem (3.1) is called an optimal subgraph.

4In many situations, specific nodes, i.e. genes in the case of gene regulatory networks, may be of
interest in other topological positions than in a receptor or terminal role. In that case just requiring a
certain gene to be part of the subgraph without any special constraints on its inclusion in topological
terms can be of value.

5In terms of the size of the underlying graph G.
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In terms of the notation and exact formulation provided above, I will now proceed

to formally specify certain topological characteristics of solutions of the above model

which were casually asserted before. For similar proofs and also alternative formula-

tions for the MWCSP it is referred to [BRK+12], [ÁMLM13b], [ÁMLM13a], [EKK14],

[AB11]. I first formally recapture the defining topological feature of problems of

(R)M(A)WCS flavour for DeRegNet.

Proposition 1

A feasible subgraph V ∗ of a DeRegNet instance has the property that any node in the

subgraph can be reached from the root of the subgraph.

Proof. Any given node v ∈ V ∗ of the subgraph is contained in a strongly connected

component. By constraints (3.1e) and (3.1f) this strongly connected component either

contains the root node or is reachable from some node u ∈ V ∗ in the subgraph which

is not in that strongly connected component: Let S ⊂ V be the vertex set inducing the

strongly connected component. If the root is not in S we have eT
S (x− y) = |S| and hence

one has eT
δ−(S)x ≥ 1, otherwise one would have eT

S (x − y)− eT
δ−(S)x ≥ |S| in violation of

constraints (3.1e) and (3.1f). If the root node is in S, it holds that eT
S (x − y) = |S| − 1

and hence constraints (3.1e) and (3.1f) always hold due to eT
δ−(S)x ≥ 0. In the case, that

the root node is in v’s component, v is reachable from the root node. In the case the

component does not contain the root, repeat the argument with u instead of v. Again,

the root is in the strongly connected component of u or the component is reachable

from some u′ ∈ V ∗, and so on. Since the subgraph has a finite number of strongly

connected components, one ultimately will encounter the component containing the

root in the above argument which establishes the existence of a path to any arbitrary

v ∈ V ∗ from the root node. �

The terminals from the terminal set T represent terminals of a subgraph in the following

sense.

Proposition 2

A feasible subgraph V ∗ of a DeRegNet instance has the property that a node v ∈ V ∗ in the
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(a) (b)

Figure 3.2: Conceptual view of subgraphs extracted by DeRegNet. (a) From a
receptor node/root node (green cube) one can reach any node in the subnetwork.
Nodes without any edges leading to other nodes (red triangles) of the subnetwork
need to be elements of the so called terminal nodes. Generally, all nodes in the
subgraph can be reached from the root node. (b) By reversing the the orientation
of the underlying network before applying DeRegNet, one can find subgraphs with
only one terminal "root" node and multiple receptor nodes such that the terminal
node can be reached from any other node in the subgraph. See subsection 3.1.4.

subgraph with v /∈ T has to have an outgoing edge into the subgraph, i.e. only terminal

nodes are allowed to have no outgoing edges within the subgraph.

Proof. Given a non-terminal node v /∈ T one has constraint (3.1h): xv − eT
δ+(v)x ≤ 0,

i.e. if xv = 1 it has to hold that eT
δ+(v)x ≥ 1. The latter inequality means that there

exists another node u ∈ V ∗ such that (v, u) ∈ E, E being the edge set of the underlying

graph. �

For a high-level conceptual depiction of the topology of subgraphs encapsulated in

DeRegNet’s constraints, see figure 3.2 (a).
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3.1.3 Statistical interpretation for binary node scores

This subsection formalizes the notion that a deregulated subgraph satisfying given

topological constraints should have higher/maximal probability of deregulation with

respect to all possible subgraphs of that particular topological class. I present a basic

probabilistic model yielding one possible formal probabilistic rationale for optimizing

a model of the above form 3.1.2. Furthermore I provide a suitable interpretation of the

model proposed in [BRK+12] in terms of that model, showing that DeRegNet solves a

more general problem in the statistical sense necessitated by the probabilistic model

introduced.

The model assumes binary node scores s : V → {0, 1} which are realizations of ran-

dom variables S= (Sv)v∈V . Further it is assumed the existence of a subset of vertices

V ′ ⊂ V such that Sv|v ∈ V ′ ∼ Ber(p′) and Sv|v ∈ V\V ′ ∼ Ber(p) with p, p′ ∈ (0,1)

denoting probabilities of deregulation outside and inside of the deregulated subgraph

respectively. It is assumed that p′ > p to reflect the idea of higher deregulation (prob-

ability) in the deregulated subgraph. The network context (dependency) is introduced

via the restriction that V ′ ∈ C (V ) ⊂ P (V ). Here, C (V ) denotes the set of feasible sub-

structures and should (can) reflect topologies inspired by known biomolecular pathway

topologies like the one described in [BRK+12] and the last subsection. Furthermore it

is assumed, that the (Sv), given a network context and deregulation probabilities p, p′,

are independent. Introducing the notation α(Ṽ ) := |{v ∈ Ṽ : Sv = 1}| and consider-

ing V ′, p, p′ to be parameters, and a subgraph determined by indicator variables x as

outlined in the previous subsection, we can state:

Proposition 3

The log-likelihood Ls(Ṽ , p, p′) = logP(S = s|V ′ = Ṽ , p, p′) under above model is given

by:

sT x log
p′(1− p)
p(1− p′)

− eT x log
1− p
1− p′

+ sT e log p+ (e− s)T e log(1− p).
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Proof.

P(S= s|V ′ = Ṽ , p, p′) =
∏

v∈Ṽ

P(Sv = sv|V ′ = Ṽ , p′) ·
∏

v∈V\Ṽ

P(Sv = sv|V ′ = Ṽ , p)

= p′α(Ṽ )(1− p′)|Ṽ |−α(Ṽ )pα(V\Ṽ )(1− p)|V\Ṽ |−α(V\Ṽ )

Employing decision variables xv = I(v ∈ Ṽ ), we can write α(Ṽ ) = sT x , |Ṽ | =

eT x ,α(V\Ṽ ) = sT (e − x) and |V\Ṽ | = eT (e − x). It follows that the log-likelihood

Ls(x , p, p′) =Ls(Ṽ , p, p′) = logP(S= s|V ′ = Ṽ , p, p′) can be written as:

Ls(Ṽ , p, p′) = sT x log p′ + (e− s)T x log(1− p′)

+ sT (e− x) log p+ (e− s)T (e− x) log(1− p)

= sT x log
p′(1− p)
(1− p′)p

− eT x log
1− p
1− p′

+ sT e log p+ (e− s)T e log(1− p)

�

I call an optimization model maximizing the objective sT x subject to any constraints

on x (the subgraph topology) a model of Backes-type [BRK+12]. Note that the DeRegNet

model reduces to a Backes-type model in case of kmin = kmax
6.

Proposition 4

Any subgraph model of Backes-type enforcing a fixed subgraph size can be interpreted as

maximum likelihood estimation with respect to subgraph structure given the above model.

Proof. Given the log-likelihood as determined by proposition 3, ignoring the constant

term with respect to x , a maximum likelihood estimator V ∗ with respect to subgraph

structure can be determined as follows:
6See DeRegNet model formulation 3.1.2
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V ∗ ∈ argmax
Ṽ⊂C (V )

Ls(Ṽ , p, p′) (3.2)

= argmax
Ṽ⊂C (V )

§

sT x log
p′(1− p)
p(1− p′)

− eT x log
1− p
1− p′

ª

(3.3)

= argmax
Ṽ⊂C (V )

§

sT x log
p′(1− p)
p(1− p′)

ª

(3.4)

= argmax
Ṽ⊂C (V )

sT x (3.5)

Here, equality (3 .4) follows from the assumption that the topological constraints

of the optimization model enforce a constant subgraphs size (i.e. eT x = k for some

fixed k ∈ N). The last equality follows (by assumption p′ > p) because log p′(1−p)
p(1−p′) > 0.

Overall, a maximum likelihood estimator is given by a solution to a given Backes-type

optimization model max sT x with subgraph topology restricted to subgraphs from

C (V ).

�

In particular, the specific model proposed by [BRK+12] lends itself to the just

justified interpretation:

Corollary 1

The optimization model suggested by [BRK+12] can be interpreted as maximum likelihood

estimation with respect to a subgraph structure of fixed size given the above probabilistic

model.

I now proceed to provide a maximum likelihood interpretation for the DeRegNet

model. Since the DeRegNet model does not assume a fixed subgraph size, above

conclusions do not apply. Under the assumption that the parameter p is estimated

external to the model and represents some general base level of deregulation one can

by (conceptual) reduction from the full log-likelihood Ls(Ṽ , p, p′) to Ls(Ṽ , p′) state

the following proposition.
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Proposition 5

Solving a DeRegNet instance (see 3.1.2) amounts to maximum likelihood estimation under

above model with respect to subgraph structure and deregulation probability p′ (assuming

p′ > 0).

Proof. Given the log-likelihood as in proposition 3, one can differentiate with respect

to p′:

∂

∂ p′
Ls(Ṽ , p, p′) =

∂

∂ p′
Ls(Ṽ , p′) (3.6)

=
∂

∂ p′
sT x log

p′(1− p)
(1− p′)p

−
∂

∂ p′
eT x log

1− p
1− p′

(3.7)

By computing

∂

∂ p′
log

p′(1− p)
(1− p′)p

=
∂

∂ p′
log

p′

p
−
∂

∂ p′
log

1− p′

1− p
(3.8)

=
p
p′
·

1
p
−

1− p
1− p′

·
−1

1− p
(3.9)

=
1
p′
+

1
1− p′

(3.10)

and

∂

∂ p′
log

1− p′

1− p
= −

1
1− p′

(3.11)

one obtains

∂

∂ p′
Ls(Ṽ , p′) = sT x

1
p′
+ sT x

1
1− p′

− eT x
1

1− p′
(3.12)

Requiring ∂
∂ p′ Ls(Ṽ , p′∗) = 0 and with
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∂

∂ p′
Ls(Ṽ , p′∗) = 0⇔

1− p′∗

p′∗
+ 1=

eT x
sT x

(3.13)

⇔ p′∗ =
sT x
eT x

(3.14)

and7

∂ 2

∂ p′2
Ls(Ṽ , p′) = sT x

−1
p′2
+ sT x

1
(1− p′)2

− eT x
1

(1− p′)2
≤ −

sT x
p′2

< 0 (3.15)

one arrives at

V ∗M LE ∈ argmax
Ṽ⊂C (V )

p′∗ = argmax
Ṽ⊂C (V )

sT x
eT x

(3.16)

since no terms involving x were dropped in the derivation for p′∗.

�

The propositions of this subsection show, that, given the introduced statistical

model, solving a DeRegNet instance instead of an instance of the optimization model

proposed in [BRK+12] allows to carry out maximum likelihood estimation without

the need to fix the subgraph size in advance. Given the assumptions of the model,

these results hold regardless of further topological constraints and only relate to the

respective objective functions.

3.1.4 Fixing the root node

Instead of the root being determined by the algorithm as outlined in the previous

paragraph, one can also specify a given node r ∈ V as root [BRK+12]. In this case, one

7Since sT x ≤ eT x and eT x > 0 under the assumption that the subgraphs are constrained to have at
least one node and p′ > 0.
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does not need the y variables anymore and, since the constraint logic can be carried

over analogously, we can write the corresponding fractional integer problem as:

max
x ∈ {0, 1}V

sT x
eT x

(3.17a)

s.t. x r = 0 (3.17b)

kmin ≤ eT x ≤ kmax (3.17c)

xv − eT
δ−(v)x ≤ 0 ∀v ∈ V \ {r} (3.17d)

eT
S x − eT

δ−(S)x ≤ |S| − 1 ∀S ⊂ V iscs, |S|> 1 (3.17e)

xv − eT
δ+(v)x ≤ 0 ∀v ∈ V \ T if T 6=∅ (3.17f)

eT
Inc x = |Inc| (3.17g)

eT
Ex x = 0 (3.17h)

Note, that the above formulation is a special case of the more general formulation of

the previous section, namely R= {r}. It is nonetheless convenient to sometimes refer

to the tuple (G, r, T,Ex, Inc, s) as a rooted DeRegNet instance. All other terminology

from the previous section carries over without modification.

3.1.5 Reversing the orientation

The default version of the just outlined algorithm will find subnetworks which possess

a root node from which one can reach any other node in the subnetwork. This can be

interpreted as the subnetwork being deregulated downstream of that root. As outlined

in the previous sections, this root can either be determined by the algorithm or pre-

determined by biological curiosity or insight. By reversing the orientation of the graph

one can easily obtain subnetworks where the root can be reached from any node in the

subnetwork [BRK+12]. Such a subgraph can be interpreted as deregulated upstream

of the either algorithmically determined or user-defined root node. In that case a
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more intuitive name for the "root" is "terminal" or "destination". See Figure 3.2 for a

visual comparison of the two scenarios. Formally, this difference in the structure of

the output can be achieved by substituting the original graph G with the transposed

graph G̃ = (V, Ẽ), Ẽ = {(u, v) ∈ V × V : (v, u) ∈ E}, and defining the models as before

with the roles of receptors and terminals exchanged.

Definition 9

A reverse solution of a DeRegNet instance I = (G, R, T,Ex, Inc, s) with underlying graph

G = (V, E) is the (graph) transpose of an optimal subgraph of the DeRegNet instance

Ĩ= (G̃, T, R,Ex, Inc, s). The latter is called the reverse instance of I. Here, G̃ denotes the

transposed graph of G, i.e. G̃ = (V, Ẽ), Ẽ = {(u, v) ∈ V × V : (v, u) ∈ E}.

After the algorithm found subnetworks with respect to the reversed graph the resulting

subnetworks have to be re-reversed to reflect physical reality. Also note, that the

reversed instance exchanges the roles of receptors and terminal nodes to keep the

intuitive and semantic notions associated with these terms in line with the topology

of the just defined reverse solutions.

3.1.6 Extracting suboptimal subnetworks

Although the strategy to optimize seems like a sensible heuristic, it is nonetheless

just an heuristic. There is no intrinsic need for a biological system at hand to behave

consistently with this optimization objective in the sense that it is not granted that the

patterns found by the algorithm actually correspond to what is biologically important in

the given situation, even despite the outlined statistical model. Vice versa, something

(nodes; a particular pattern of nodes) not showing up in any subgraph does not mean

that they may not be important in the given context. While this cannot be mediated

completely, it is sensible to find at least possible suboptimal patterns along with the

optimal one. This can be seen as a step to capture mathematically speaking slightly

less optimal but biologically potentially similarly or even more important patterns. I

implement this notion by following the approach found in [DKR+08] and adapt it to
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DeRegNet. Given a specified maximal overlap α ∈ [0,1) and a (induced) subgraph

V ∗ ⊂ V one adds to the models (3.1) or (3.2) the suboptimality constraint eT
V ∗ x ≤ α·e

T x

and reoptimizes, forcing any corresponding subgraph to be found to maximally have

100 ·α % node overlap with the the nodes of the previously found subgraph. One can

iterate this theme. For example, given a set of subgraphs V (1), ..., V (k) for some k ∈ N

one can add the constraints eT
V ( j)

x ≤ α · eT x for all j = 1, ..., k to the DeRegNet instance

to obtain a optimal subgraph of that modified DeRegNet instance which is guaranteed

to have node overlap ≤ α with any of the V ( j). With V (1) = V ∗ being the original

optimal subgraph of a DeRegNet instance one thus obtains a series of suboptimal

subgraphs V (2), ..., V (k). The question which k to choose can be for example decided

such that one chooses the k for which
eT

V (k+1) s

|V (k+1)| < β ·
eT

V∗ s
|V ∗| for the first time for some

β ∈ [0, 1]. Here, β quantifies the degree of suboptimality one is willing to accept.

3.2 Solving the DeRegNet model

The model outlined in the preceding section are fractional integer programming prob-

lems. Generally, a Fractional mixed-integer linear program (FMILP) is an optimiza-

tion problem of the following form:

max
cT x + d
pT x + q

(3.18a)

s.t. x ∈ Rnc ×Zni (3.18b)

Ax ≤ b (3.18c)

Here, c, p ∈ Rn, d, q ∈ R define the objective, A ∈ Rm×n, b ∈ Rm define m ∈ N linear

constraints and nc ∈ N, ni ∈ N denote the number of continuous and discrete (integer)

variables respectively. I assume w.l.o.g. pT x + q > 0 for all feasible x8.

8This condition (or that pT x + q < 0 for all feasible x has to be decided for every instance. For
DeRegNet instances the objective denominator is eT x > 0 for a reasonable setting of kmin > 0, see 3.1.2.
In general, the issue can also be decided by solving one of the MILPs 2.22 and 2.23 for determining
lower and upper bounds on the objective denominator.
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DeRegNet solves its integer fractional linear programming problems introduced in the

previous sections by one out of two implemented methods. Firstly, a generalization of

the Charnes-Cooper transformation [CC62] for fractional linear programs described

by [YGGY13] and secondly an iterative scheme as introduced generally by Dinkel-

bach [Din62, Din67] and subsequently applied in the context of integer fractional

programming by [Anz74, YCG09]. While the Dinkelbach-type algorithm solves the

problem by iteratively solving certain non-fractional versions of the original problem

until some convergence criterion is met, the generalization of the Charnes-Cooper

method requires linearization of artificially introduced quadratic constraints through

model reformulation. The linearization of quadratic constraints is implemented in

terms of the methods described by [Glo75, AF05, AFG04].

As in [BRK+12] the exponentially many constraints forbidding any strongly connected

components not containing the root and with no incoming edges from the subgraph

are handled by lazy constraints. Every time a feasible integer solution which beats the

current best lower bound of the optimal value is found, the Kosaraju–Sharir algorithm

[Sha81] is employed (as implemented by the Lemon graph library [Lem]) to check

for violating components and, in the case of violating components, the corresponding

constraints are added to the model. Both solution approaches, the generalized Charnes-

Cooper method and the Dinkelbach-type algorithm, allow for the lazy constraints to

be handled in terms of the original model formulation since both retain the relevant

variables of the model within the transformed model(s). In the following subsections I

provide details on the relevant bits and pieces of the solution technology just outlined.

3.2.1 Dinkelbach-type algorithm

Originating in the 1960’s [Din62, Din67] and studied more specifically in the context

of FMILP problems [Anz74, YCG09] later on, the Dinkelbach algorithm relies on the

iterative solution of linear problems only containing the original variables and an
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auxiliary iteration parameter. Algorithm 11 details the procedure. In the following, as

well as in the entire thesis, Dinkelbach algorithm and Dinkelbach-type algorithm are

used synonymously to refer to Algorithm 2.

Data: FMILP with feasible set S
Result: solution x∗ of FMILP
Initialization:
π= π0 (parameter, has to be a lower bound of the optimal objective value)
ε > 0 (termination tolerance)
F =∞
while F > ε do

x∗ = ar g max {cT x + d −π (pT x + q) : x ∈ S }
F = cT x∗ + d −π (pT x∗ + q)

π=
cT x∗ + d
pT x∗ + q

end
return x∗

Algorithm 2: Dinkelbach-type algorithm

The mixed-integer linear program appearing in the while-loop of algorithm 2 is called

a Dinkelbach iteration problem. Dinkelbach’s algorithm iteratively solves a sequence

Dinkelbach iteration problems until some convergence criterion is met. See Appendix

A for more details on the general theory of Dinkelbach’s scheme.

I now proceed proving that the fractional integer programming model for finding

deregulated subgraphs proposed in the main (3.1.2) text can be solved via Dinkelbach’s

algorithm. The only points to clarify are the suitability of Dinkelbach’s algorithm for

models with lazy constraints, the suitability of an initial value for π of 0 and the

positivity of the objective denominator (see Appendix A for an exposition of these

technical requirements in general form).

Proposition 6 (Dinkelbach-type algorithm for DeRegNet)

The Dinkelbach algorithm is correct for the fractional integer programming problem of

DeRegNet.

Proof. The first point to observe is that the objective of DeRegNet is always ≥ 0 hence

the initialization condition of the iteration parameter π = 0 satisfies π ≤ π∗. Fur-
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thermore, for subgraphs which are constrained to contain at least one node, the de-

nominator of the objective is strictly positive. These two properties are enough to

guarantee convergence of Dinkelbach’s algorithm as detailed in Appendix A. Also since

the original decision variables are also part of the parameterized Dinkelbach iteration

problems introducing lazy constraints is technically feasible. Since lazy constraints

can only decrease the maximum objective, after every iteration π≤ π∗ where π∗ is the

optimal objective determined by the current constraints and hence lazy constraints do

not interfere with the correctness of Dinkelbach’s algorithm since it requires a starting

value of π which is a lower bound of the optimal objective value (see appendix A). �

Note that lazy constraints effectively amount to restarting Dinkelbach’s algorithm (in

a valid initialization state) every time a lazy constraint is added. Hence, convergence

can also only be considered superlinear (see appendix A) with respect to the current

optimal objective determined by the lazy constraints.

For more details on the theoretical underpinnings of Dinkelbach’s method the

reader is referred to appendix A.

3.2.2 Generalized Charnes-Cooper transformation

The so called Generalized Charnes-Cooper transformation [YGGY13] described in this

subsection derives its name and general idea from the classical Charnes-Cooper trans-

formation [CC62] used to solve continuous fractional linear problems (FLPs). Consider

the above general form of a FMILP in the following slightly more detailed format:

max
cT

c xc + cT
i x i + d

pT
c xc + pT

i x i + q
(3.19a)

s.t. x =





xc

x i



 ∈ Rnc ×Zni (3.19b)

Ac xc + Ai x i ≤ b (3.19c)
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where we explicitly decomposed the variable x into its continuous and integer parts

xc ∈ Rnc and x i ∈ Zni . Analogously we have c =





cc

ci



 with cc ∈ Rnc , ci ∈ Rni , and

p =





pc

pi



 with pc ∈ Rnc , pi ∈ Rni , and A=
�

Ac Ai

�

with Ac ∈ Rm×nc , Ai ∈ Rm×ni . As

detailed in [YGGY13] one can now define additional variables u :=
1

pT
c xc + pT

i x i + q

and z :=
xc

pT
c xc + pT

i x i + q
= ux . Note, that u > 0 by assumption. After incorporating

the definition of u as a further constraint and multiplying all original constraints with

u one arrives at the following quadratic mixed-integer problem:

max cT
c z + cT

i (u · x i) + d (3.20a)

s.t. x i ∈ Zni , z ∈ Rnc , u ∈ R+ (3.20b)

pT
c z + pT

i (u · x i) + qu= 1 (3.20c)

Acz + Ai(u · x i)− bu≤ 0 (3.20d)

Note that the above problem is not a mixed-integer linear program (MILP) but a

quadratic mixed-integer problem due to the terms ux i in the transformed constraints.

This is addressed in the next subsection. With the notation of this subsection one can

formulate the following propositions formalizing the equivalence of the two model

formulations [YGGY13]9:

Proposition 7 (Feasible points of the generalized Charnes-Cooper transform)

A point (xc, x i) is a feasible solution of problem (A.30) if and only if (z, x i, u) is a feasible

solution of problem (A.31).

Proposition 8 (Equivalence of solutions of the generalized Charnes-Cooper transform)

An feasible point (x∗c , x∗i ) of (A.30) is optimal if and only if (z∗, x∗i , u∗) is optimal for (A.31).

It holds that z∗ = u∗x∗c and u∗ = 1
pT

c x∗c+pT
i x∗i +q .

9Their proofs follow directly from the definition of the transformation.
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With respect to lazy constraints involving the integer variables x i there do not arise

any complications since they are part of both problem formulations. Lazy constraints

for the continuous variables xc require more care due to the necessity to transform the

constraints correspondingly. The DeRegNet model does only contain integer (in fact,

binary) variables and hence it is straight-forward to incorporate lazy constraints in the

solution process in terms of the original model formulation.

Linearization of binary-continuous quadratic constraints

In contrast to the iterative Dinkelbach scheme, the reformulation-linearization method

described in the last section relies on the linearization of products of integer and contin-

uous variables. Since we only deal with binary variables in this paper, we assume from

now on that all integer variables are in fact binary.10 While there exist variations on

the theme of linearization [AFG04], [AF05], I here present the implemented version

going back to [Glo75].

Given a continuous variable v ∈ R and a binary variable x ∈ {0,1} one introduces

a third (continuous) variable z ∈ R corresponding to z = vx and substitutes any

appearance of the product vx with z. Along with z one introduces the following

constraints to ensure equivalence:

z ≤ U x

z ≥ Lx

v − U(1− x)≤ z

v − L(1− x)≥ z

(3.21)

10In case of a proper integer variable x ∈ D ⊂ Z, one can introduce auxiliary binary variables
x ′d ∈ {0, 1}, d ∈ D with x =

∑

d∈D

d · x ′d and
∑

d∈D

x ′d = 1 in order to transform its product with continuous

variables into a sum of products between binary and continuous variables.
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Here, U ∈ R is an upper and L ∈ R is a lower bound of v which are either given by the

problem formulation itself, can be inferred from manual insight into the problem or

by solving a certain MILP in some cases.

Proposition 9 (Linearization binary-continuous products)

Let v ∈ S ⊂ R with bounded S and let x ∈ {0,1} and z ∈ R. Furthermore U ≥ supS

and L ≤ infS . Then, the constraints 3.21 are satisfied if and only if z = vx.

Proof. Let z = vx , then z = vx ≤ U x since U is an upper bound of v and z = vx ≥ Lx

since L is a lower bound of v. Also for the case x = 1 one has v−U(1− x) = v = vx = z

and v−L(1−x) = v = vx = z and for the case x = 0 the two constraints v−U(1−x)≤ z

and v−L(1−x)≥ z reduce to v ≤ U and v ≥ L respectively which is true by assumption.

Conversely, let the constraints in (A.15) be satisfied. Then in the case x = 1, the

constraints v − U(1 − x) ≤ z and v − L(1 − x) ≥ z imply v ≤ z ≤ v and hence

z = v = vx . In the case x = 0 the first two constraints of (A.15) imply z = 0= vx . �

The lower bound L and the upper bound U can generally be obtained by solving

suitable MILPs [YGGY13] involving the denominator of the original objective. To

obtain the (tightest possible) lower bound one can solve the following problem:

max pT
c xc + pT

i x i + q (3.22a)

s.t. x =





xc

x i



 ∈ Rnc ×Zni (3.22b)

Ac x x + Ai x i ≤ b (3.22c)
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Analogously, to obtain the (tightest possible) upper bound one can solve the fol-

lowing minimization problem:

min pT
c xc + pT

i x i + q (3.23a)

s.t. x =





xc

x i



 ∈ Rnc ×Zni (3.23b)

Ac x x + Ai x i ≤ b (3.23c)

Note however, that any lower and upper bound would work. The trade-off be-

tween less tight bounds on the denominator variable and the necessity of solving up

to two MILPs up front has to be decided for every FMILP model to be solved with the

generalized Charnes-Cooper transformation.

In case of DeRegNet, lower and upper bound on the objective denominator are

explicitly set in the problem formulation in the form of minimal and maximal subgraph

size. Hence one does not have to solve any MILPs up front and has (optimal) lower

and upper bounds for the inverse denominator readily available due to the problem

formulation.

Caching transformed model formulations

For DeRegNet’s use cases it is quite common to optimize DeRegNet instances which

just differ in terms of their node scores, i.e. share the same underlying graph. For

example, finding deregulated subgraphs for individual cases in a TCGA cohort with

a fixed regulatory network derived from KEGG will require to solve a model with the

same structural properties but with differing score data11. In particular, in such a

situation the reformulation and linearization procedure of the generalized Charnes-

Cooper transform only has to be carried out once and can be reused across cases

11For example a omics-readout for every case in the cohort. See chapter 4.
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since it does not depend structurally on the objective data vector s. While solution

time of a DeRegNet instance with the generalized Charnes-Cooper transform tends

to be dominated by the time to solve the resulting integer linear program, reuse of

the transformed model structure can nonetheless result in significant computational

savings.

3.2.3 Lazy constraints in branch-and-cut MILP solvers

For reference, this section contains an high-level outline of how lazy constraints fit

into branch-and-cut algorithms for solving mixed-integer programs. For a general

introduction to branch-and-cut for MILPs it is referred to [CCZ14] and [CBD10].

Let a MILP with nc ∈ N continuous and ni ∈ N integer variables of the following form

be given:

max cT x + dT y (3.24a)

s.t. x ∈ Rnc (3.24b)

y ∈ Zni (3.24c)

Ax + B y ≤ b (3.24d)

x , y ≥ 0 (3.24e)
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Here c ∈ Rnc , d ∈ Rni , A∈ Rm×nc and B ∈ Rm×ni for some m ∈ N. The (natural) linear

programming relaxation of a MILP of the above form is the following:

max cT x + dT y (3.25a)

s.t. x ∈ Rnc (3.25b)

y ∈ Rni (3.25c)

Ax + B y ≤ b (3.25d)

x , y ≥ 0 (3.25e)

Lazy constraints are constraints which are not initially explicitly part of the model for-

mulation, the reason usually being that it would require an computationally infeasible

exponential number of constraints (with respect to the number of variables). On a

relatively high level of abstraction, the classical branch-and-cut strategy for solving

MILPs with lazy constraints can be formulated as detailed in algorithm 3.

In order for branch-and-cut with lazy constraints to be computationally at least po-

tentially feasible, the determination of the violated lazy constraints for any feasible

solution should be a efficient/polynomial time subroutine. The details for the separa-

tion routine for the DeRegNet model are provided in the next section.

3.2.4 Lazy constraints for the DeRegNet model

For DeRegNet the lazy constraint separation subroutine centers around finding the

strongly connected components of the given solution. This is generally considered an

efficiently solvable problem.

Interlude: Strongly connected components

Given a directed graph G = (V, E) one says that G is strongly connected if and only

if there is a directed path from every node v ∈ V to every other node u ∈ V . A
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Data: MILP and lazy constraints
Result: Solution of MILP satisfying any lazy constraint
Initialization:
L = {MILP} (Set of MILP problems in search tree)
z = −∞ (Current best lower bound for optimal objective)
(x∗, y∗) = (null, null) (Current best feasible solution)
while L 6=∅ do

Choose P from L and remove P from L
(*) Solve linear programming relaxation of P
Let z be the solution value and (x , y) be the solution of the relaxation
if z > z then

if (x , y) feasible for P then
Find the set V of violated lazy constraints by seperation subroutine
(∆)

if V=∅ then
(x∗, y∗) := (x , y)
z := z
Remove all subproblems fromL with optimal solution value < z

end
else

Insert P back into L
Add lazy constraints from V to models in L

end
end
else

if you want to add cuts then
Add cuts and GOTO (*)

end
else

Branch and add created subproblems to L
end

end
end

end
return (x∗, y∗), z

Algorithm 3: Branch-and-cut for MILPs with lazy constraints [CCZ14, BRK+12]

50



Solving the DeRegNet model

strongly connected component of a directed graph is any maximal subgraph which is

strongly connected12. Sometimes one refers to V ′ ⊂ V as inducing a strongly connected

component if the subgraph induced by V ′ is a strongly connected component. One

denotes the set of node sets inducing all strongly connected components of a graph G =

(V, E) by SCC(G) ⊂ P (V ). The three classical algorithms which can be used to solve

the problem of finding a directed graph’s strongly connected components in O(|V |+|E|)

time are the Kosarju-Sharir algorithm [Sha81], Tarjan’s algorithm [Tar72] and variants

of the path-based strong component algorithm [Dij72]. A strongly connected subgraph

(in contrast to component) is a subgraph of a graph which is strongly connected.

Lazy constraint separation subroutine of DeRegNet

This subsection and algorithm 4 provide the details on the lazy constraint separation

subroutine employed for the solution of the DeRegNet model. The formal details are

given as algorithm 4. In short, given a (potential) incumbent solution to a DeRegNet

instance not containing all strong-component constraints 3.1f, the subroutine finds the

strongly connected components of the corresponding subgraph and checks whether

any such component either contains the root node itself or has at least one incoming

edge from within the subgraph but from outside the component. If so, the (potential)

incumbent is feasible, hence an actual incumbent solution. Otherwise the violated con-

straint is added to the model in while the (potential) incumbent is declared infeasible.

3.2.5 Primal heuristics for the DeRegNet model

Every feasible solution of a mixed-integer program provides a lower bound on the

optimal solution value (for maximization problems). The feasible solution which

currently gives the best lower bound on the optimal value during a branch-and-bound

procedure is called the incumbent (solution). Branch-and-bound (and hence branch-

and-cut) for mixed-integer programs relies on pruning parts of the search tree of LP

12I.e. adding any node not in the subgraph would render the resulting subgraph to be not strongly
connected anymore.
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Data: DeRegNet instance and x , y : V → {0,1}
Result: True if x and y do not violate any lazy constraints, false otherwise
V ∗ = {v ∈ V : xv = 1} (nodes implied by x)
G∗ = (V ∗, E∗) the subgraph induced by V ∗

C = SCC(G∗), C ∈ P (V ∗) (Find strongly connected components)
for C in C with |C |> 1 do

if eT
C (x − y)− eT

δ−(C)x > |C | − 1 then
return false

end
end
return true

Algorithm 4: Lazy constraint subroutine for DeRegNet. In case a potential in-
cumbent is found all strongly connected components are checked to assess feasi-
bility. In case any strongly connected component does not contain the root node
and has no incoming edges from another component, a (lazy) constraint enforc-
ing the requirement is added. SCC(G) denotes the set of all strongly connected
components of a given graph G.

relaxation subproblems by assessing whether the optimal solution value of a given LP

relaxation is less than the best lower bound provided by the incumbent. See algorithm

3 as a reference. Primal heuristics [Ber06] aim at finding and/or improving feasible

solutions during a branch-and-bound procedure. While some generic methods for

primal heuristics exist [GM97a], [GM97b], [FGA05], [BSW04], [BM80], they tend to

be highly problem-specific [Ber06]. Of special interest in the context of DeRegNet are

primal heuristics for the MWCSP [RK19], [ÁMLM13a], [ÁMLM13b]. In the following

I describe start and improvement heuristics useful during the solution of DeRegNet

instances.

Start heuristics

A priori there is no feasible solution known at the beginning of a branch-and-bound

procedure for solving a mixed-integer program. Heuristics which try to find initial

feasible solutions are called start heuristics. I outline two start heuristics which can

be employed at the beginning of the branch-and-bound search for the solution of the
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DeRegNet model.

Greedy start heuristic. The first start heuristic is called greedy start heuristic and

basically starts with the highest scoring node and greedily adds neighbors of already

added nodes until the average score of the thus defined subgraph starts decreasing. If

the currently selected subgraph is feasible upon termination, one has found a feasible

solution. The formal procedure is outlined in algorithm 5. There are a number sub-

tleties attached to this start heuristic. First and foremost the procedure only assures

the reachability constraints regarding the root node. Most other constraints may or

may not be satisfied at any given time during the procedure, mostly: subgraph size

constraints and constraints ensuring the necessity of leaf nodes to be from the subset of

terminal nodes. While the subgraph size constraint is relatively easily manageable by

stopping the procedure when the maximal subgraph size is reached and by restarting

in case the minimal subgraph size can not be achieved in the first place. In the latter

case, one can restart the procedure from the best scoring node not already selected

during earlier attempts of the greedy start heuristic. The issue of the terminal node

constraints is not easily handled and hence the greedy start heuristic is in effect only

usable in case T =∅. Also instances with Inc 6=∅ cannot be handled by this heuristic.

Receptor-terminal shortest path heuristic. The second start heuristic is more suit-

able in situations where there is a non-empty terminal set T . In short, it finds the

shortest path between a pair of receptor and terminal nodes with high node scores.

The SHORTEST_PATH subroutine referenced in algorithm 6 can be an implementation

of any of the canonical algorithms to find single-source shortest paths with unit edge

weights in directed graphs in polynomial time [Dij59], [Joh77], [AMOT90]. Subject

to Ex = Inc = ∅ all connectivity constraints will be satisfied by construction. If the

subgraph size constraints are met is up to chance however. Again, running multiple

times with the, say K , highest scoring pairs of receptors and terminals, can help in

this situation. Note, that the restriction of Ex = Inc = ∅ could be lifted by formulat-
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Data: DeRegNet instance with T = Inc=∅
Result: Feasible solution of DeRegNet instance or null
if R 6=∅ then

VI = R
end
else

VI = V \ Ex
end
v∗ = argmaxv∈VI

sv (Select feasible root with highest score)
V ∗ = {v∗} (Selected DeRegNet solution)
N = δ+(v∗) \ Ex (Candidate nodes to be potentially added next)
A∗ = sv∗ (Current average score of selected subgraph)
CONTINUE= true
while CONTINUE and |V ∗|< kmax do

v∗ = argmaxv∈N sv (Highest scoring node in candidate set)
if sv∗ ≥ A∗ then

A∗ = |V ∗|A∗+sv∗

|V ∗|+1 (Update average score of selected subgraph)
V ∗ = V ∗ ∪ {v∗} (Update current subgraphs)
N ∗ = (δ+(v∗) \ V ∗) \ Ex (New candidate nodes)
N = (N \ {v∗})∪ N ∗ (Update candidate nodes)

end
else

CONTINUE= false
end

end
if V ∗ feasible then

return V ∗ (Return feasible solution of DeRegNet instance)
end
else

return null (Return nothing to indicate failure to find feasible solution)
end

Algorithm 5: Greedy start heuristic for the DeRegNet model
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ing the corresponding shortest path problem by canonical means in terms of integer

programming problems [Tac16]. This possibility is not explored further however since

solving integer programs to get initial feasible solutions to integer program may be a

slippery slope. Especially in the case of DeRegNet where the main problem to solve is

formulated in terms of decision variables corresponding to nodes while shortest path

integer programming formulations usually introduce decision variables corresponding

to the edges of the graph.

Data: DeRegNet instance with Ex= Inc=∅
Result: Feasible solution of DeRegNet instance or null
if R 6=∅ then

VR = R
end
else

VR = V
end
r∗ = argmaxv∈VR

sv (Receptor with highest score)
if T 6=∅ then

VT = T
end
else

VT = V
end
t∗ = argmaxv∈VT

sv (Terminal with highest score)
V ∗ = {r∗, t∗} (Selected DeRegNet solution)
P = SHORTEST_PATH(G, r∗, t∗) (Find shortest path between receptor and
terminal)

V ∗ = V ∗ ∪ P (Add nodes from shortest path)
if kmin ≤ |V ∗| ≤ kmax then

return V ∗ (Return solution if it satisfies the subgraph size constraints)
end
else

return null (Return nothing if size constraints are not met)
end

Algorithm 6: Receptor-terminal shortest path start heuristic for the DeRegNet
model
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Improvement heuristics

In case a feasible solution is found at a particular branch-and-bound node (which may

be a new incumbent or not), heuristics which try to improve that given feasible solu-

tion are called improvement heuristics. Here I describe a simple greedy improvement

heuristic which can be applied to any feasible solution, either found during the branch-

and-cut procedure or otherwise. It works analogously to the greedy start heuristic

(algorithm 5), the only difference being that one is already starting with a feasible

solution. In particular, the heuristic can be applied to solutions constructed by the

receptor-terminal shortest path start heuristic (algorithm 6) described in the previous

section. Trying to improve the greedy start heuristic (algorithm 5) with the improve-

ment strategy outlined below is futile however since by construction the former already

added all potential subgraph nodes in a greedy fashion. During a branch-and-cut run

any new feasible solution can potentially be improved by the heuristic. In case of an

incumbent one can hope for an even better incumbent, in case of a feasible solution

one can hope to improve it up to a point where it actually becomes a new incumbent.

The description of the heuristic is provided as algorithm 7.

3.2.6 Approximate solutions via branch-and-bound gap cut

One can use a mixed-integer programming solver generically to obtain suboptimal

solutions to a given (maximization) MILP with optimal objective value z∗. During

the branch-and-cut search one obtains lower bounds on the optimal value by feasible

solutions to the problem and an upper bound by the solution value of the initial LP

relaxation of the problem. Let z ≤ z∗ be the best available lower bound and let z̄ ≥ z∗

be the upper bound obtained by the relaxed problem. The relative gap λrel during a

branch-and-cut search is defined as λrel := z∗

z̄ .13 With the upper bound λ̂rel := z̄
z ≥

z∗

z̄

on the gap it follows that z∗ ≤ λ̂relz and hence αz∗ ≤ z with α := λ̂−1
rel . Stopping

the branch-and-cut procedure at the given gap upper bound value hence provides an

13While the (absolute) gap λabs is defined as λabs := z̄ − z∗.
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Data: Feasible solution of a DeRegNet instance
Result: Another feasible solution of (the same) DeRegNet instance
V ∗ = {v ∈ V : xv = 1} (Selected DeRegNet solution)
N = (

⋃

v∈V ∗
δ+(v)) \ (V ∗ ∪ Ex) (Candidate nodes to be added next)

A∗ = sT x
eT x (Current average score of selected subgraph)

CONTINUE= true
while CONTINUE and |V ∗|< kmax do

v∗ = argmaxv∈N sv (Highest scoring node in candidate set)
if sv∗ ≥ A∗ then

A∗ = |V ∗|A∗+sv∗

|V ∗|+1 (Update average score of selected subgraph)
V ∗ = V ∗ ∪ {v∗} (Update current subgraphs)
N ∗ = (δ+(v∗) \ V ∗) \ Ex (New candidate nodes)
N = (N \ {v∗})∪ N ∗ (Update candidate nodes)

end
else

CONTINUE= false
end

end
return V ∗

Algorithm 7: Greedy improvement heuristic for the DeRegNet model

approximate solution of a posteriori approximation guarantee of λ̂−1
rel ≤ 1. I refer to

the strategy of stopping the branch-and-cut search once the gap upper bound is below

a certain threshold as gap cut or gap (cut) thresholding. Employing the gap cut strategy

can be useful in situations where the MILP solver can find reasonably good solutions

in reasonable time but would take significantly more time to find the optimal solution.

The option of to carry out gap cut thresholding is incorporated in the implementation

of DeRegNet for this very reason.

3.2.7 Software for solving fractional integer programs: libgrbfrc

In order to solve the fractional integer programs formulated above, a C++ library based

on the commercial Gurobi solver [Gurb] was implemented. libgrbfrc [Lib] implements

the two solution methods from above: Dinkelbach’s algorithm and the generalized

Charnes-Cooper transform. Due to the requirements of the developed optimization
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models the implementations support lazy constraints. Academic licenses for Gurobi

are readily obtained [Gura].

3.2.8 Implementation and availability of DeRegNet

DeRegNet’s implementation is written in C++ and Python and utilizes the Gurobi

optimization library [Gurb] and the Lemon graph library [Lem]. The software is open

source under BSD-3-Clause OSI-approved license [BSD] and is available at [DeRc]

where you can also find installation instructions and usage examples. The algorithm

can be run either by using a Python package or a command line tool. Furthermore,

I implemented an easy-to-use Docker image (sebwink/deregnet available at Docker

Hub [Docc]) which bundles all necessary dependencies. Currently, in order to run

DeRegNet, a license for the Gurobi optimization library is needed. For academic

purposes these licences are readily obtained at [Gura].

3.3 Benchmarking DeRegNet

The evaluation and benchmarking of de-novo pathway enrichment or deregulated sub-

network detection algorithms and implementations remains a big challenge. While

many of the methods cited in the introduction can be applied to reveal useful biological

insight, there are limited studies concerning the comparison of formal and statistical

properties of the proposed methods. The two main obstacles are a lack of well-defined

gold standard datasets as well as the differences concerning the exact input and/or out-

put of the methods. For example, it is not immediately clear how to compare algorithms

which produce undirected subnetworks to those which elicit directed networks of a cer-

tain structure. An important first step toward atoning the issue in general is described

in [BAG+17] which focuses on benchmarking approaches for undirected networks. For

the purposes of this thesis, I designed and performed benchmarks of DeRegNet relative

to its closest methodological relative, namely the algorithm described in [BRK+12].
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Note however, while I am comparing the integer programming based algorithm of

[BRK+12] to the fractional integer programming algorithm of DeRegNet, I am using

the former as implemented in the DeRegNet software package [DeRc]. This renders

the benchmark less dependent on implementation technology since both algorithms

have been implemented with the same general stack of languages and libraries. For

the benchmark I always utilize the human KEGG network as the underlying regulatory

network (see subsection 4.1.1 in chapter 4). I then repeatedly simulate subgraphs

which match the structure of both models (DeRegNet and [BRK+12]). The formal

simulation procedure is described in algorithm 8. Initially, the simulated subgraph

consists of one randomly selected root node, to which we iteratively add a random

"outgoing" neighbor of a randomly selected current node in the subgraph until the size

of the subgraph matches a randomly chosen value. The latter is uniformly chosen to be

an integer between a given lower and an upper bound. "Outgoing" neighbors of v ∈ V

are any node from the set δ+(v) = {u ∈ V\{v} : (v, u) ∈ E}. All nodes in the simulated

"real" subgraph are assigned a node score of 1, while all nodes which are not contained

in the subgraph are assigned a node score of 0. These node scores are then flipped

with a certain probability p f to emulate noise in the measurements of deregulation.

In summary, we obtain random "real" subgraphs and simulated scores. In terms of the

probabilistic interpretation of DeRegNet presented in section 3.1.3 the above scheme

corresponds to a deregulation probability of 1− p f for nodes in the "real" subgraph

and of p f for nodes not part of the "real" subgraph. Hence, under the assumptions

outlined in section 3.1.3 the simulations are restricted to values p f ∈ [0, 1
2).

Given a sequence of N ∈ N of these simulated instances, both subnetwork identification

algorithms are run in order to find subgraphs which can then be compared to the

known simulated real subgraph. Here, a hit (true positive, tp) is defined as a node

appearing in a subgraph calculated by some algorithm which is also an element of the

real subgraph. A false positive (fp) is a node which appears in a subgraph calculated

by an algorithm but is not part of the real subgraph. A false negative is defined as a

node which is part of the true subgraph but not part of the subgraph detected by an

59



3. A de-novo pathway discovery algorithm for omics data

Data: A directed graph G = (V, E), receptor set R ⊂ V , p f ∈ [0, 1
2)

Result: A DeRegNet instance, a simulated true optimal subgraph V ′ ⊂ V and
the simulated root node r ∈ V ′ ∩ R

Choose r ∈ R with probability 1
|R| (Choose root node)

V ′ := {r} (Initialize subgraph with root)
Choose k ∈ [kmin, kmax] with probability 1

kmax−kmin+1 (Choose subgraph size)
while |V ′| 6= k do

if (
⋃

v′∈V ′
δ+(v)) \ V ′ =∅ then

RESTART Algorithm 8
end
Choose v ∈ (

⋃

v′∈V ′
δ+(v)) \ V ′ with probability |(

⋃

v′∈V ′
δ+(v)) \ V ′)|−1

V ′ = V ′ ∪ {v}
end
for v ∈ V ′ do

Sample s(v)∼ Ber(1− p f )
end
for v ∈ V \ V ′ do

Sample s(v)∼ Ber(p f )
end
return (G, R,∅,∅,∅, s), V ′, r

Algorithm 8: Simulating DeRegNet instances with known "optimal" subgraph.
Here, Ber(p f ) denotes a Bernoulli random variable with parameter p f .
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(a) (b) (c)

Figure 3.3: Simulating DeRegNet instances. See algorithm 8
for a formal outline of the simulation procedure. On a high level it proceeds like this:

(a) Choose root node randomly. (b) Simulate a feasible subgraph by randomly
choosing nodes maintaining the topological constraints of the model. Set the

deregulation score of nodes in the subgraph to one. (c) Introduce noise by flipping
node deregulation scores randomly.

algorithm. Furthermore, we can compare the sizes of the calculated subgraphs with

the size of the real subgraph. In more formal terms, given an algorithmA , which on

a given instance with true subgraph size |V ′| finds a subgraph VA , one defines:

• true positive rate TPR := |V ′∩VA |
|V ′| , i.e. the number of actual hits divided by the

number of possible hits, i.e. true subgraph size

• false positive rate FPR := |VA \V ′|
|V ′| , i.e. the proportion of nodes in the subgraph

found by the algorithms which are not part of the true subgraph relative to true

subgraph size

• size efficiency SE := |VA |
|V ′| , i.e. the proportion of algorithm subgraph size to true

subgraph size

Another comparison metric is the running time of the algorithms. Further, the bench-

mark is based on the realistic assumption that we do not know the exact size of the real

subgraph and that one can only assume lower and upper bounds on the subgraph size

instead. Since the [BRK+12] algorithm does need an a fixed priori specified subgraph
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3. A de-novo pathway discovery algorithm for omics data

size we employ a strategy suggested by [BRK+12] to circumvent that fact. Namely,

to iterate from the lower to the upper bound, find a subgraph for each size and then

regard the union graph of all found subgraphs as the one subgraph emitted by the

algorithm. The strategy is summarized as algorithm 9. DeRegNet natively requires

only a lower and an upper bound on subgraph size as parameters.

Data: A DeRegNet instance with underlying graph G = (V, E)
Result: A set V ′ ⊂ V (inducing a subgraph)
V ′ :=∅ (Initialize the final subgraph)
for k = kmin; k ≤ kmax ; k++ do

V ′ = V ′ ∪APPLY_BACKES(k)
end
return V ′

Algorithm 9: Applying [BRK+12] for benchmarking DeRegNet. Here,
APPLY_BACKES(k) refers to applying the algorithm of [BRK+12] with fixed sub-
graph size k, understood to return a set of nodes corresponding to the induced
subgraph found by the run.

Figure 3.4 shows results of simulation runs carried out according to the described

procedure.

As can be seen in Figure 3.4, outperforms [BRK+12] in terms of false positive rate

(FPR), runtime and size efficiency, while the true positive rate of [BRK+12] is hard to

beat. Nonetheless DeRegNet achieves solid performance also in terms of TPR.

Less quantitatively, note that DeRegNet allows for subgraphs which originate from so

called source (root, receptor) nodes and end at so called terminal nodes. This is not

readily possible with the [BRK+12] algorithm due to the necessity to specify a fixed

subgraph size a priori and the resulting lack of flexibility to connect receptors to targets.

Lastly, note that DeRegNet actually provides an open-source implementation of the

[BRK+12] algorithm14. All benchmarks have been carried out with the following setup:

software: Ubuntu 18.04, Gurobi 8.1.1, hardware: 12x Intel i7-8750H @ 4.100 GHz,

32 GB RAM, Samsung SSD 970 EVO Plus.

14Currently the implementation only supports the commercial Gurobi MILP solver as a solver backend.
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Figure 3.4: Benchmark patterns for DeRegNet and [BRK+12]. (A) Running
time (in seconds) of DeRegNet (Dinkelbach algorithm) and kmax − kmin + 1 runs
of the [BRK+12] algorithm: DeRegNet at least matches beats the performance
of [BRK+12] on our test instances (B) Size efficiency (SE): the size DeRegNet
subgraphs is closer to the true size of the subgraph (C) TPR: [BRK+12] finds more
of the true subgraph nodes than DeRegNet with a mean of 100 % possible hits,
while DeRegNet still achieves always more than 90 % of possible hits with a mean
well above 95 % (D) FPR: DeRegNet is less noisy than [BRK+12] in that it finds
less false positive nodes. Moreover, DeRegNet is more consistent with respect to
that metric while the variance of [BRK+12]’s FPR is considerable.

63



3. A de-novo pathway discovery algorithm for omics data

3.4 Summary and Discussion

This chapter presented the technical details of the de-novo pathway identification

framework DeRegNet, i.e. the mathematical optimization problem which serves as

its basis and the various methods employed to allow or improve the solution of that

problem. Furthermore, a statistical model for DeRegNet was provided, also explicitly

outlining DeRegNet’s formal relationship to related work. DeRegNet’s concrete imple-

mentation was described, providing links to the open source software implemented

by the author. Finally, a simulation-based benchmark was carried out and DeRegNet

manages to compare favourably to it closed methodological relative [BRK+12].

While the methodological development and concrete implementation of DeRegNet

as outlined in this chapter is complete to a large degree, there always exists room for

improvements. In particular, although the commercial Gurobi solver [Gurb] allows

for a relatively flexible academic licensing scheme [Gura], it would benefit DeRegNet

to be able to work with further commercial but especially open source MILP solvers.

This becomes especially apparent with respect to potential cloud or HPC deployments

(compare chapter 5). On a methodological level, more complex statistical models for

models like DeRegNet and similar methods would benefit the field of de-novo pathway

enrichment as a whole. This would likely also pave the way to more rigorous/well-

defined benchmarking approaches/principles. The application of DeRegNet to actual

omics data is outlined in chapter 4, demonstrating its suitability as a freely available

[DeRc] heuristic hypothesis generation tool.
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Chapter 4

Applications of de-novo pathway

discovery

This chapter highlights three application of the DeRegNet framework introduced on a

technical level in chapter 3 to several omics datasets. Section 4.1 describes various ap-

plications to the public TCGA liver cancer dataset. Section 4.2 show the how DeRegNet

subgraphs can shed light onto the folate one-carbon metabolism (1C metabolism) in

the context of another liver cancer study. Finally, section 4.3 explains the application

of DeRegNet to phosphoproteomic regulation of the S. cerevisiae cell cycle.

4.1 Application to TCGA liver cancer data

While subsection 4.1.1 introduces the underlying biomolecular network used to find

subgraphs and the node scores derived from the TCGA dataset, the following subsec-

tions detail mainly two application modes of DeRegNet to TCGA liver cancer omics

data. First, subsection 4.1.2 contains results concerning the global application of DeReg-

Net, i.e. use of DeRegNet to find subgraphs based on node scores which describe the

dataset as a whole. Secondly, subsection 4.1.3 describes a personalized approach for

finding subgraphs based on node scores for every case/patient/participant of the TCGA

study at hand. Finally, based on this personalized application of DeRegNet, subsection
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4. Applications of de-novo pathway discovery

4.1.4 outlines an approach for survival prediction based on features derived from the

determined subgraphs.

4.1.1 Network and omics data

KEGG network

While many sources for directed biomolecular networks are available, e.g. [CGD+11],

in this paper I exclusively utilize a directed gene-level network constructed from the

KEGG database with the KEGGgraph R-package [ZW09]. The script used to generate

the network as well as the network itself can be found in the DeRegNet GitHub repos-

itory [DeRc]. The constructed directed KEGG network has 5522 nodes and 58295

edges.

TCGA-LIHC data and RNA-Seq derived node scores

Gene expression data was downloaded for hepatocellular carcinoma TCGA project from

the Genomic Data Commons Portal [tcg]. Raw quantified RNA-Seq counts were nor-

malized with DESeq2 [LHA14] which was also used for calculating log2 fold changes

for every gene between cancer and control tissue. Personalized log2 fold changes were

calculated by dividing a patients tumor sample expression by the mean of all available

control samples (adding a pseudo count of 1) before taking the log. The following

node scores are defined.

• Global RNA-Seq score s: sv = RNASeq log2-fold change for a gene v ∈ V as

calculated by DESeq2 for the TCGA-LIHC cohort

• Trinary personalized RNA-Seq score sc for case c:

sc
v =























+1 if personalized log2 fold> 2

−1 if personalized log2 fold< −2

0 else

(4.1)
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We refer to subgraphs found with the global RNA-Seq score s as global subgraphs.

A global subgraph can further be subdivided as being upregulated or downregulated

depending on whether the subgraphs were found by employing a maximization or

minimization objective respectively. For (any) node score s : V → R we define |s| :

V → R by |s|(v) := |s(v)| for all v ∈ V . Dysregulated global subgraphs are those which

were found by using the score |s| under a maximization objective. Similarly subgraphs

found with any of the scores sc with a maximization objective are called upregulated

while those found with minimization objective are called downregulated (personalized

subgraphs for case/patient c). Subgraphs found with a |sc| score under maximization

are called dysregulated (personalized subgraphs for case/patient c). Any of the above

subgraph types is called a deregulated subgraph.

4.1.2 Global deregulated subgraphs for TCGA-LIHC

Using the DeRegNet algorithm I determined the deregulated global subgraphs obtained

from running the algorithm with the global score defined in the previous section. The

optimal and four next best suboptimal subgraphs were calculated for every modality.

The subgraphs were then summarized as a subgraph of the union graph of optimal

and suboptimal subgraphs in order to allow streamlined interpretation1.

Reconstruction of transcriptional activation of WNT signaling

The summarized global upregulated subgraph is shown in Figure 4.1.

The subgraphs shows the activation of the WNT signaling pathway by means of over-

expressed Glypican-3 (GPC3), which represents a membrane-bound heparin sulphate

proteoglycan [ARF13]. GPC3 has been extensively researched as an early biomarker

and potential therapy target in HCC [ZSYT18, WLD16, FH14, FC13, HK11, BAM+12]

(See figure 4.2).

1For the specific subgraphs determined by DeRegNet, see figures A.1, A.2, A.3, A.4, A.5 for the
upregulated subgraphs and A.6, A.7, A.8 , A.9, A.10 for the downregulated subgraphs.
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4. Applications of de-novo pathway discovery

Figure 4.1: Global upregulated subgraph for TCGA-LIHC reconstructs tran-
scriptional activation of WNT signaling. The Color of nodes indicates the av-
erage log2 fold change of tumor samples compared to controls as represented in
the color bar. The color of rims around nodes indicates genes contained in the
integrin pathway (blue), the WNT pathway (yellow) and diverse other pathways
(no rim). The color of edges indicates following interactions: activation (red),
inhibition (dark blue), compound (brown), binding/association (yellow), indirect
effect (dashed grey), phosphorylation (pink), dephosphorylation (light green),
expression (green) and ubiquitination (light purple).
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Figure 4.2: GPC3-mediated activation of WNT signaling is a well-documented
process in liver cancer. The figure shows the relevant KEGG map (Proteoglycans
in cancer: hsa05205) with TCGA-LIHC min-max-scaled log2 fold changes mapped
onto the genes. This process was automatically recaptured by the upregulated
subgraphs for TCGA-LIHC. See Figure 4.1.

Genomic analysis conducted over the past decade have identified mutations affect-

ing Telomere Reverse Transcriptase (TERT), β-catenin (CTNNB1) and cellular tumor

antigen p53 (TP53) [LZRP+16] as common driver mutations in HCC. Mutations in the

TERT promoter are a well-studied factor in liver cancer development [NZR16, QOT+14]

and lead to TERT overexpression while mutations in CTNNB1, activate CTNNB1 and

result in activation of WNT signaling. Previous studies have determined that TERT pro-

moter mutations significantly co-occur with CTNNB1 alternation and both mutations

represent events in early HCC malignant transformation [TTC+14]. In agreement, the

DeRegNet algorithm recaptures the importance of a CTNNB1:TERT connection on a

transcriptional level.

The subgraphs further show a possible alternative mechanism of CTNNB1 activation

through upregulated GPC3, an early marker of HCC, as well as Wnt Family member

3a (WNT3A) and Frizzled 10 (FZD10). WNT3A promotes the stabilization of CTNNB1

and consequently expression of genes that are important for growth, proliferation and

survival [AM13] through activity of transcription factor Lymphoid Enhancer-Binding

Factor 1 (LEF1). As shown in the subgraph figure 4.1, LEF1’s known targets SRY-box 2

(SOX2)2 and Baculoviral IAP Repeat Containing 5 (BIRC5) are likely important contrib-

2Sex-Determining Region Y (SRY)
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utors to WNT pathway driven WNT proliferation. SOX2 is a pluripotency-associated

transcription factor with known role in HCC development [SSL+13, WHC+13, LLZ+16]

and BIRC5 (survinin) is an anti-apoptotic factor often implicated in chronic liver disease

and liver cancer [MJB+12, MMF+07, Su16].

In summary, the algorithm reconstructed important components of the canonical

WNT signaling pathway activation in liver cancer [TB08, LXC+16, VTMG16, CN12,

NC17] from TCGA-LIHC RNA-Seq data and pairwise gene-gene interaction informa-

tion from KEGG.

Crosstalk between integrin and WNT signaling

Another interesting pattern emerging in the upregulated subgraphs is the crosstalk

between the WNT signaling cascade and integrin signaling. Over-expression of Se-

creted Phosphoprotein 1 (SPP1) has been shown to be a common feature for most

known human malignancies and it is commonly associated with poor overall sur-

vival [BCO+08]. The binding of SPP1 to integrins (e.g. integrin αVβ3) leads to

further activation of kinases associated with proliferation, epithelial-mesenchymal-

transition, migration and invasion in HCC, such as Mitogen Activated Kinase-like

Protein (MAPK), Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), Protein Ty-

rosine Kinase (PTK2), and SRC proto-oncogene/Non-receptor tyrosine kinase (SRC)

[WJXK16]. Further captured by the subgraphs is that elevated expression of PTK2 and

MAPK12 are accompanied with elevated expression of cell cycle related genes (Cell

Division Cycle 25 Homolog C / M-phase inducer phosphatase 1 (CDC25C), Cyclin-

dependent Kinase 1 (CDK1) and Polo-like Kinase 1 (PLK1)), thus connecting over-

expression of kinases with cell proliferation.

Although KEGG lists the interaction between SRC and CTNNB1 as inhibitory in

nature, other studies have concluded that activated Src enhances the accumulation of

nuclear beta-catenin and therefore through their interaction contributes to an onco-

genic phenotype [KGD+05].
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In conclusion, the upregulated subgraphs capture the interaction of SPP1 with in-

tegrin and consequent activation of PTK2 and SRC together with their connection to

the WNT signaling pathway (via CTNNB1) and cell cycle genes.

Downregulated oncogenes FOS and JUN and drug metabolism

The global downregulated subgraphs are centered around down-regulation of tran-

scription factors FOS and JUN. The subgraph summary is depicted in figure 4.3. FOS

and JUN, which form AP-1 the transcription factor complex, are considered to be onco-

genic factors and necessary for development of liver tumors [EW03]. Considering their

prominent role in liver tumorigenesis, further experimental study of the significance

of Jun and Fos downregulation on HCC development could be of great interest. Inter-

estingly, RNA-seq data show that all FOS (FOS, FOSB, FOSL1, FOSL2) and JUN (JUN,

JUNB, JUND) isoforms are downregulated in a majority of liver tumors of the TCGA

cohort (See figure 4.4).

Furthermore, the subgraphs show a number of downregulated Cytochrome P450

(CYP) enzymes as part of the most downregulated network of genes. CYP3A4 is mainly

expressed in the liver and has an important role in the conversion of carcinogens,

such as aflatoxin B1 toward their ultimate DNA-reactive metabolites [Luc05], as well

as, in detoxification of anticancer drugs [UGAR05]. Although the downregulation of

CYP enzymes could potentially render HCC tumors sensitive to chemotherapy, liver

tumors are notoriously unresponsive to chemotherapy [LZRP+16]. Therefore, it is

unclear how the gene pattern of CYP enzymes captured by the presented subgraphs

could influence the HCC response to therapy and which compensatory mechanism is

employed to counteract CYP downregulation.
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4. Applications of de-novo pathway discovery

Figure 4.3: Global downregulated subgraph for TCGA-LIHC are centered on
FOS and JUN transcription factors and drug metabolism. Color of nodes in-
dicates the average log2 fold change of tumor samples compared to controls as
represented by the color bar. The color of edges indicates the following interac-
tions: activation (red), compound (brown), binding/association (yellow), indirect
effect (dashed grey) and expression (green). Also noteworthy it the general con-
nection of transcriptional activators and inhibitors to signaling as well as metabolic
networks. Transcription regulators have been highlighted with an orange rim.
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Figure 4.4: Expression of FOS and JUN isoforms in tumor of TCGA-LIHC co-
hort. (A) Log2-fold changes of FOS isoforms in individual tumors compared to
the mean control value in the TCGA-LIHC dataset. (B) Log2 fold changes of JUN
isoforms in individual tumors compared to the mean control expression value in
the TCGA-LIHC dataset. The color of the bars in the waterfall plot indicate mRNA
downregulation ≥ 1.5-fold (blue), mRNA upregulation ≥ 1.5-fold (red). Related
to Figure 4.3.
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4.1.3 Personalized deregulated subgraphs for TCGA-LIHC

Finding deregulated subgraphs in a patient-resolved manner enables steps toward

personalized medicine. In this section I describe a case study where DeRegNet was

employed to find an upregulated subgraph for every TCGA-LIHC patient. By stratifying

patients according to whether their subgraph contains a gene or not, one can identify

genes whose inclusion into a patient’s inferred subgraph provides a survival handicap

or advantage. I first detail the subnetwork-defined cancer gene approach and thereafter

highlight one particular such gene, namely Spleen Tyrosine Kinase (SYK), in the context

of its defining subgraphs.

Subnetwork-defined cancer genes

Genes, gene products or biomolecular agents are likely to bring about their various

phenotypic effects only in conjunction with other agents via their shared biomolecular

network context. By that token, one can search for genes which convey phenotypic

differences by means of some defined network context. Here, I propose DeRegNet

subgraphs as network context for a given case/patient in order to find genes whose in-

clusion into a case’s subgraph associates with a significant difference in overall survival.

Algorithm 10 describes the procedure more formally. Genes implicated by the outlined

procedure are termed network-defined cancer genes. The next section provides details

on a specific network-defined cancer gene obtained by application of the procedure

to personalized upregulated subgraphs in the TCGA-LIHC cohort. Figure 4.6 shows

the survival effect for some other subnetwork-defined cancer genes determined based

on the personalized subgraphs.

Spleen tyrosine kinase (SYK) as a network-defined cancer gene

Patients whose subgraph contain the spleen tyrosine kinase (SYK) showed compara-

tively bad survival outlook (see Figures 4.5, 4.7).
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Data: A set of cases C , DeRegNet instances Ic = (G = (V, E), R, T,Ex, Inc, sc)
for every c ∈ C , a subset of nodes of interest VI ⊂ V and a survival
mapping p :C → [0,∞).

Result: A mapping pval : VI → [0, 1] associating each v ∈ VI with a p-value.
for c ∈ C do

Solve the DeRegNet instance Ic to obtain the nodes Vc contained in c’s
subgraph

end
for v ∈ VI do
Cv := {c ∈ C : v ∈ Vc}
Obtain the Kaplan-Meier estimate [KM58] for p w.r.t groups Cv and C \Cv.
pval(v) := p-value of log rank test [ABG08] between groups Cv and C \Cv

end
Carry out multiple testing correction of pval
return pval

Algorithm 10: Finding subnetwork-defined cancer genes. After finding sub-
graphs for individual cases/patients the procedure partitions a set of cases/patients
according to whether they contain a given gene in their determined subnetwork
and tests whether the thus defined partition conveys a significant survival differ-
ence. Note, that in the described setting, the DeRegNet instances only differ in
terms of their case-dependent node score sc.

Figure 4.5: SYK signaling indicates poor survival. TCGA-LIHC cases TCGA-
5C-AAPD, TCGA-CC-A3MA, TCGA-ED-A5KG, TCGA-DD-AACH, TCGA-YA-A8S7,
TCGA-CC-5261, TCGA-CC-A3M9 show activated SYK signaling and poor survival.
Survival difference is significant with p = 0.2 ·10−3 (Kaplan-Meier curve estimates
[KM58, ABG08] and log-rank test [ABG08]).
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Figure 4.6: Subset of genes whose inclusion into a patient’s inferred sub-
graph indicates poor survival. Survival difference is calculated using Kaplan-
Meier estimates [KM58, ABG08] and log-rank test [ABG08]. Related to Figure
4.5.
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Figure 4.7: Consistent upregulation of SYK signaling components and down-
stream targets in subgraph of patients with poor survival. Inner color repre-
sents the average log2 fold change across the "SYK-positive" patients and rim color
represent average log2 fold change across the rest of the TCGA-LIHC cohort. Color
of edges indicates following interactions: activation (red), inhibition (dark blue),
compound (brown), indirect effect (dark grey) and expression (blue green).
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SYK is most commonly expressed in immune cells and its deregulation has been

originally associated with hematopoietic cancers [Low11, KG15, MRT10]. However, it

has been shown that SYK plays a role in various other cancer types and its respective

roles seem to vary significantly depending on the molecular (i.e. ultimately network)

context [KG15]. SYK comes in the form of two splice variants, SYK(L) and SYK(S)

[HYW+14]. In the context of liver cancer, SYK promoter hypermethylation and cor-

responding SYK downregulation has been associated with poor survival [SLK+14].

Furthermore, Checkpoint Kinase 1 (CHK1) mediated phosphorylation of SYK(L) and

associated SYK degradation has been considered an oncogenic process [HHY+12], as-

sociating low levels of SYK as a factor of poor survival. On the other hand, [HYW+14]

SYK(S) expression promotes metastasis development in HCC and thus leads to poor

survival outcome. Furthermore, high SYK expression has been shown to promote liver

fibrosis [QZL+18]. The development of HCC is closely related to formation and pro-

gression of fibrosis. Fibrosis represents excessive accumulation of extracellular matrix

(ECM) and scarring tissue in an organ. A fibrotic environment promotes development

of dysplastic nodules which can gradually progress to liver tumors [BB05]. In short, a

somewhat inconsistent role of SYK as a tumor suppressor or oncogene can be observed

in many cancers [KG15], including liver cancer.

By employing DeRegNet, I identified by means of the approach defined as algorithm

10 a subgroup of HCC patients from the TCGA-LIHC cohort which show poor survival

and a distinguished SYK-signaling pattern shown in Figure 4.7. The depicted net-

work is manually extracted from the union graph of all the patient’s subgraphs which

contained SYK. The network shows SRC-SYK-mediated/enabled activation of PI3K-

Akt signaling via B-lymphocyte antigen CD19 (CD19) and Phosphatidylinositol 4,5-

bisphosphate 3-kinase catalytic subunit delta (PI3KCD)3 [TYZ15]. Furthermore, SYK

also feeds into mitogen-activated protein kinase 11-13 (p38) signaling (only MAPK13

shown) through GTPase Hras (HRAS) and aspase recruitment domain-containing pro-

tein 9 (CASP9). p38 signaling promotes cytokine expression via Growth-regulated

3p110δ
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alphaprotein (CXCL1). Increased cytokine expression and activation is another canon-

ical effect of SYK signaling [MRT10]. This in turn, activates JAK signaling through

Januskinase 3 (JAK3) activity, thereby reinforcing PI3K activation. Interestingly, SYK

signaling is consistently linked to the upregulation of the guanine nucleotide exchange

factors VAV1 and VAV3 [MRT10, Low11]4. The proto-oncogene VAV3 is associated to

adverse outcomes in colorectal [UFH+15] and breast cancer [CMMGE+12, CCL+15].

Furthermore VAV3 mutations have been profiled to be potential drivers for liver cancer

[LXK+18]. VAV signaling is mediated by forming a complex with Lymphocyte cytosolic

protein 2 (LCP2)5 upon activation of SYK signaling. VAV-meditated Ras-related C3

botulinum toxin substrate 2 (RAC2) activation may play a role in intravastation and

motility [RCP11]. Additionally, the subgraph shows upregulation of the B-cell lym-

phoma 2 (BCL2) gene, a known regulator of apoptosis [HS13], and vascular endothelial

growth factor-C (VEGGC) which can promote metastasis [MJJ+01] and angiogenesis

[TZW+08, TAZ+10].

4.1.4 Subgraph features for predicting survival

Predicting phenotypes based on clinical and molecular data is one of the big chal-

lenge on the road to personalized medicine. A frequently readily available measure

of phenotype for cancer patients is survival (i.e. the time from disease onset/diag-

nosis to (possibly disease induced) death). Improving upon clinical predictors with

molecular data often still poses significant challenges [YVAO+14]. Here, I provide an

example of the suitability of deregulated subgraph-derived features for predicting sur-

vival in the TCGA-LIHC dataset. In particular, we demonstrate that predictions based

on subgraphs is at least as good GSEA-based predictions obtained in a comparable

manner. Furthermore, subgraph derived features can improve upon predictions based

on clinical features alone.
4Guanine nucleotide exchange factor (VAV)
5SLP-76
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Data preparation and feature engineering

Survival times were binarized by labeling all patients with survival less than three

years (1095 days) as bad outlook patients (y = 0) and all patients with last follow-up

time larger than three years as good outlook patients (y = 1). The resulting dataset

consisted of 198 patients from the TCGA-LIHC cohort6. For every case the following

features are derived:

• clinical: Features from clinical data comprising age, gender, body mass index

(BMI), tumor stage (!) and tumor morphology. Age (in years) and BMI were

scaled via z-scores. Tumor stage and morphology where one-hot encoded.

• gsea: Features derived from (single sample) Gene Set Enrichment Analysis

(GSEA) [STM+05]. Two lists of significantly enriched pathways w.r.t good out-

comes vs. bad outcomes and vice versa were computed by (standard) GSEA.

From every list I retained pathways with adjusted p-value less than 0.1, which

resulted in a total of 14 KEGG pathways. After performing ssGSEA, every sample

received the corresponding personalized ssGSEA enrichment scores for these

pathways as a 14-dimensional feature vector. The above steps were carried out

with gseapy [gse]. For more information on single-sample GSEA, see [FBL+18].

The obtained features were scaled via z-scores.

• subgraph_overlap: Features based on up- and downregulated subgraphs for

the good and bad outcome subgroups. Subgraphs were computed based on

the global deregulation score for the good outcome and bad outcome patients

respectively (on the respective training sets only, see below). Every sample is then

associated with the regulation-aware node overlap7 between its personalized de-,

up- and downregulated subgraphs and up- and downregulated global subgraphs

6Some cases dropped out due to incomplete or missing survival data.
7Given two (induced) subgraphs V ′, V ′′ ⊂ V and node scores s′, s′′ : V → {−1, 0, 1} the deregulation-

aware node overlap is defined as
∑

v∈V

(I(v ∈ V ′) s′v) · (I(v ∈ V ′′) s′′v ).

80



Application to TCGA liver cancer data

for the good and bad outcome subgroups respectively. This amounts to a 12-

dimensional feature vector. Again, z-scores were applied.

• ndcg: Subgraph features derived from network-defined cancer genes. After

identifying network-defined cancer genes (see previous subsection) for de-, up-

and downregulated subgraphs one obtains a binary indicator for every case

representing whether it contains any given such gene or not, leading to 15-

dimensional feature vectors corresponding to 15 network-defined cancer genes.

• subgraph: subgraph_overlap and ndcg combined (concatenated).

Under a feature combination it is understood the combination of two or more of the

just defined features. In the following, I use a plus sign to indicate feature combinations,

e.g. subgraph= subgraph_overlap+ndcg. As another example, subgraph+clinical then

denotes subgraph features combined with clinical features.

Survival prediction with clinical, pathway and subgraph features

The experiments described in the following were carried out with scikit-learn [sci].

Every feature/feature combination was tested by training a Support Vector Machine,

a simple artificial neural network, a random forest and a logistic regression. For every

algorithm we performed an algorithm-specific grid search for model selection. The grid

search was equivalent for different feature combinations in order to be able to assess

the comparative suitability of the features. The grid search was conducted with 6-fold

cross validation estimating mean Receiver Operating Characteristic (ROC) curves and

Area under the curve (AUC) scores.

Features gsea and subgraph_overlap are roughly equivalent with respect to the

underlying logic, with subgraphs or pathways as contextual data inputs respectively.

Hence, comparing these two features may give an indication of the suitability of sub-

graph vs. pathway methods for feature engineering for survival prediction. Figure 4.8

shows that the subgraph_overlap features hold promise w.r.t gsea features.
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Figure 4.8: Subgraph features vs. GSEA features across models. (A) Sup-
port Vector Classifier (SVC) with linear kernel (B) Support Vector Classifier (SVC)
with radial basis function (RBF) kernel (C) Artificial Neural Network (ANN) (D)
Random forest (E) Logistic Regression.
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Furthermore, it has been shown that improving upon clinical features with molec-

ular features for survival prediction is not an easy task [YVAO+14]. The experiments

conducted here show that for the given setting, prediction models combining clinical

and subgraph features (based on molecular interactions and data) provide performance

gains compared to a purely clinical model. Also, the subgraph features achieve parity

with classifiers based on clinical data alone. Figure 4.9 represents these findings.
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Figure 4.9: Subgraph features vs. clinical features across models. Clinical
+ subgraph features together outperform either in isolation. Subgraph features
perform comparably to clinical features. (A) Support Vector Classifier (SVC) with
linear kernel (B) Support Vector Classifier (SVC) with radial basis function (RBF)
kernel (C) Artificial Neural Network (ANN) (D) Random forest (E) Logistic Re-
gression.
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4.2 Application to 1C metabolism in liver cancer

Folate one-carbon metabolism (1C metabolism) produces many metabolites which

serve as intermediate compounds that are channeled in production of key metabolites

such as nucleotides and amino acids. Additionally, this pathway plays an important

role in methylation as well as free radicals control [Loc13]. In a study examining the

dysregulation of metabolic pathways in liver cancer [WTD+] a deregulated subgraph

based on liver cancer RNA-Seq data8 showed decisive network effects for altered 1C

metabolism and associated pathways, helping to guide research into further dissection

of the importance of this pathway in liver cancer development [WTD+]. The subgraph

is shown in figure 4.10. Subsequent metabolic flux analysis performed on cell lines

derived from the tumors has further supported the insight into importance of 1C

pathway in liver carcinogenesis.

Figure 4.10: Folate one-carbon metabolism and its deregulated network con-
text. See main text, section 4.2 and [WTD+].

8Log2 node scores similar to section 4.1 and the KEGG network from subsection 4.1.1.
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4.3 Application to S. cerevisiae Cell cycle regulation

DeRegNet was applied in the context of a study of the regulation of the S. cerevisiae

cell cycle by metabolic processes [ZWS+19a, ZWS+19b]. The application of DeRegNet

is based on phosphoproteomic time series spanning the cell cycle. Based on these

measurements, time-course patterns were defined representing meaningful changes

of phosphorylation [ZWS+19b, ZWS+19b]. These abstract patterns were then used to

statistically test for their occurrence for any given phosphorylation site in any given

protein covered by the dataset [ZWS+19b, ZWS+19a]. The minimum of the p-values

of all sites for a given protein was then taken as a node score for DeRegNet where a

node represents a protein in a regulatory network derived from KEGG9 [ZWS+19a].

As shown in figure 4.11, the obtained deregulated subgraphs (minimizing the average

p-value score) could capture essential parts of the yeast cell cycle [ZWS+19a]. The

subgraph is shown in figure 4.11.

4.4 Summary and Discussion

This chapter described various applications of the DeRegNet algorithm as introduced

in chapter 3. In the context of the TCGA-LIHC dataset, it was outlined in section 4.1

how the application of DeRegNet in a global fashion could identify driving factors of

liver cancer such as a transcriptionally activated WNT-pathway. Another example of

the insights DeRegNet can provide is interaction of integrin and WNT signaling, as

well as drug metabolism in liver cancer. In fact, profiling of such interactions between

pathways is one of the main strengths of the algorithm over classical gene enrichment

methods. Additionally, the application of DeRegNet in a patient-specific manner could

identify a consistent subgroup of patients showing poor prognosis potentially due to

aberrant SYK signaling and therefore can generate meaningful hypotheses suitable for

further experimental follow-up. Given that the SYK example is just one example case

9Analogously as described in subsection 4.1.1 but with the S. cerevisiae version of KEGG instead.
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Figure 4.11: Cell cycle regulation in yeast on a time-resolved phosphopro-
teomic level. The DeRegNet subgraph captures important parts of the yeast cell
cycle [ZWS+19a]. See main text, section 4.3. One conceptually important as-
pect of DeRegNet becomes especially apparent in the depicted subgraph: The
subgraphs uncovered can gracefully deal with non-activated proteins not show-
ing any significant phosphorylation pattern and even proteins not detected in the
phosphoproteomic data by means of their network context.

of a network-defined cancer gene, this indicates that DeRegNet is a useful hypothesis

generation tool for network-guided personalized cancer research. In summary, DeReg-

Net can provide sensible insight into a given omics experiment and may lead to novel

and so far uncharacterized discoveries of gene/pathways involved in carcinogenesis. 10

Furthermore, I demonstrated the usefulness of subgraph-derived features for Machine

Learning approaches to Personalized Medicine. Two further independent applications

of DeRegNet, one in the context of the folate one-carbon metabolism in liver cancer cell

lines in section 4.2 and another on the phosphoproteomic regulation of the yeast cell

10Note, for example, that we only presented and discussed network-defined cancer genes (e.g. SYK)
for upregulated subgraphs, while I did not present the results of an analysis based on downregulated
or generically deregulated (either up- or downregulated) subgraphs which would lead to similar oppor-
tunities [dere].
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cycle in section 4.3, show further realized possibilities of DeRegNet. Together with the

documented open-source software [DeRc] implementing the presented algorithm in a

readily accessible manner, I hope that DeRegNet is a viable option for any researcher

interested in network interactions in a high-throughput omics context.
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Chapter 5

A REST-style API for de-novo pathway

discovery

5.1 Introduction and Context

I claim that science1 generally benefits from principled ways of enabling access to the

generic components of scientific methodology, e.g. conceptual description or specifica-

tion of methods, experimental protocols, research software, etc.. The most prominent

way of distributing certain aspects of scientific research is certainly via adequate pub-

lication of that work [BF14]. In the field of Bioinformatics it is quite common that a

body of scientific work is supported by, enabled by or even to some large extent con-

sists itself of software components which are reusable to a certain degree. Common

mechanisms of software distribution, research software or otherwise, are the distri-

bution of the corresponding source code and/or precompiled binaries/packages. In

principle, this enables anybody to install and run the software on a suitable system

of their own. A common additional/alternative step is to provide access to the soft-

ware’s functionality remotely via computer networking mechanisms, one wide-spread

system in use being the public internet and the world-wide-web [RFC]. The field of

1The societal/economic process, as well as the generated body of work/knowledge itself
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5. A REST-style API for de-novo pathway discovery

Bioinformatics has a long history making methods and algorithms available via web

services and webpages, see for example the annual special edition of the journal Nucleic

Acids Research [nar20]. Embedded in the general theme of the increasing adoption

of cloud computing in industry and research [BZdlP+10, LMS+14, LN18, BFK+19],

recent2 technological trends in implementing web-based services include containeriza-

tion3, container orchestration4 and microservices [Ric18]5,6. This chapter describes

the logic and implementation of a web-based API for the DeRegNet algorithm and asso-

ciated functionality. All components of the API are containerized by means of Docker

[Doca] images and orchestrated via docker-compose [Docb]. Finally, the API is meant

to be embedded as one microservice out of many within a larger system of cooperating

services. Nonetheless it provides all functionality necessary to find de-novo pathways

by means of DeRegNet (see next section). The design of the API itself (in contrast to its

implementation) is loosely guided by the principles of Representational State Transfer

(REST) introduced by Fielding [Fie00].

5.2 The DeRegNet API

The DeRegNet API exposes the de-novo subgraph inference functionality of DeRegNet

via a set of so called resource types. A concrete instance of a certain resource type

is called a resource (instance) and is uniquely identifiable by an identifier (ID) gener-

ated and provided by the API on creation of the resource. Resources or collections of

resources of a given resource type are addressable through a dedicated HTTP [Htt]7

2The time-scale here is roughly 5 years with a reference of 2020; it is quite common to come across
different time scales when witnessing discussions on the latest cloud technology, ranging from days to
minutes.

3Containerization: The packaging of software by means of (Linux) container technology
4Container orchestration: The process to run and enable interactions between multiple software

components which interact and are packaged as containers, e.g. Docker images
5Microservices: A set of smaller (network-based) software components with defined functionality

which can interact to achieve higher order functionality
6There is certainly no shortage of other discussion threads, tools and attached keywords. For a

plethora of relatively concrete entrypoints one can consult the CNCF’s (Cloud Native Computing Foun-
dation) cloud-native landscape [CNCa]

7HTTP: the Hyper-Text Transfer Protocol
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endpoint which defines the possible queries for resources of a particular type. Fur-

thermore resources can be referenced (by their respective ID) in queries and actions

involving the HTTP endpoint of other resource types which provides the means to carry

out actions involving resources of multiple different types. For the exact specification

we refer the reader to [DeRd]8. An interactive documentation of the API can be found

here: [DeRa]9.

5.2.1 Resource types, resources and endpoints

As outlined, resources represent the data associated with the DeRegNet API and any

resource is of a particular resource type. The DeRegNet API defines six resource types:

graphs, node sets, parameter sets, node scores, runs and subgraphs. In the following I

provide details on the resource types of the DeRegNet API and sketch the respective

queries enabled by their respective endpoints. Every HTTP endpoint associated with

a particular resource type allows for certain queries supported by canonical usage of

HTTP verbs, request data and status codes [Htt]. For the complete and formal docu-

mentation of the endpoints provided by the DeRegNet API it is referred to [DeRa] and

[DeRd]. For graphical overview on defined resource types and their basic relationships

see figure 5.1.

Graphs. Resources of resource type graph represent a biomolecular network with

respect to which DeRegNet can find subgraphs. This can for example correspond to

a network derived from KEGG (see previous chapter) for a particular organism. A

KEGG network restricted to just interactions of a certain type (for example phospho-

rylation/dephosphorylation) could correspond to another graph resource. A graph

resource is meant to be reused across multiple runs (see below) of DeRegNet. The

graph endpoint allows to define and upload new graphs which can then later be used

as a base graph for finding subgraphs. This can canonically be achieved via POST

8https://sebwink.github.io/deregnet-rest/server/swagger/swagger.yaml
9https://sebwink.github.io/deregnet-rest/docs/index.html
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Figure 5.1: Conceptual dependencies between resource types in the DeReg-
Net API. The API defines six resource types as described in more detail in the main
text: graphs, node sets, (node) scores, parameter sets, runs and subgraphs. The
four resource types on the left of the figure can be considered representing the
data needed to run DeRegNet, namely an underlying graph, node scores (derived
for example from gene expression data), different node sets and parameters to
configure the algorithm. The run resource type then represents an actual run of
the DeRegNet algorithm in order to generate subgraphs using the relevant data.

requests. GET requests allow to retrieve information on already registered graphs

(number of nodes/edges etc.). Finally, graphs can be deleted. The data necessary

for initial graph definition (besides the actual GraphML data representing the graph)

is displayed in listing 5.1 while its representation once uploaded is shown in listing 5.2.

1 {
2 " node_ id_a t t r " : <Node a t t r i b u t e with d e f a u l t IDs>,
3 "name" : <Name of graph>,
4 " d e s c r i p t i o n " : <Desc r i p t i on of graph>
5 }

Listing 5.1: Initial graph info. The data necessary to define a graph initially
(besides the GraphML representation of the network). node_id_attr represents the
default node attribute used for mapping node score IDs to nodes in a given graph.
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1 {
2 " t ime_of_upload " : <Timestamp of graph upload>,
3 "name" : <Name of graph>,
4 " d e s c r i p t i o n " : <Desc r i p t i on of graph>,
5 " id " : <ID of graph>,
6 " num_nodes " : <Number of nodes in the graph>,
7 " num_edges " : <Number of edges in the graph>
8 }

Listing 5.2: General graph info. Once uploaded the API creates an ID, logs the
timestamp of the update and registers some basic statistics on the graph.

Node sets. Resources of resource type node set represent sets of nodes which appear in

some graph-type resources and are meant to be sets of biologically meaningful nodes

which can be used as receptor and/or terminal nodes when running DeRegNet. One

example would be to register a list of known oncogenes as a node set. The latter

can then be referenced and used as receptor or terminal set in a given DeRegNet run.

Nodes from a given node set can also be forced to be included or excluded during

DeRegNet’s search for optimal and suboptimal subgraphs. Just like a graph resource,

a node set resource is meant to be used across many DeRegNet runs. The node set

endpoint allows node set resources to be created, queried for information or deleted.

The data necessary to define a node set is schematically shown in listing 5.3.

1 {
2 " nodes " : [
3 <node 1> ,
4 <node 2> ,
5 . . . ,
6 <node N>
7 ] ,
8 "name" : <name of node set>,
9 " d e s c r i p t i o n " : <d e s c r i p t i o n of node set>

10 }
Listing 5.3: Node set data. A node set consists of a list of node labels.

Node scores. Node score resources represent the scores for the nodes/vertices of a

given graph with respect to which DeRegNet should find subgraphs. For instance, the

RNA-Seq profile of a TCGA case could represent a node score while the binary mutation

indicator of a patient could be another node score resource. Note, that each TCGA case
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would give rise to separate node score resources. Nodes in a node score resources have

to be matched with node identifiers in the graph resource they are meant to be used

with. Note, that the definition of the nodes scores as such is external of the DeRegNet

API. Given a node score, the API allows the creation, retrieval and deletion of node

scores as API resources, as well as their use in DeRegNet subgraph finding runs. The

data necessary to define a node score is schematically shown in listing 5.4.

1 {
2 " s co re_va lues " : [
3 <score of node 1> ,
4 <score of node 2> ,
5 . . . ,
6 <score of node N>
7 ] ,
8 " node_ids " : [
9 <node 1> ,

10 <node 2> ,
11 . . . ,
12 <node N>
13 ] ,
14 "name" : <name of node score>
15 " d e s c r i p t i o n " : <d e s c r i p t i o n of node score>
16 }

Listing 5.4: Node score data. A node score consists of a list of node labels
and a list of scalars with matching dimension containing the scores for the nodes
referenced by the labels.

Parameter sets. DeRegNet allows for configuration parameters besides the biologi-

cally relevant data captured in the preceding resource types (graph, node set and node

score). These parameters are represented by resources of type parameter set. Param-

eters which can be defined in a parameter set are for example the lower and upper

bounds on subgraph size, the algorithm to be used (i.e. Dinkelbach’s algorithm or

the generalized Charnes-Cooper transform) or whether one wants to find maximal

or minimal subgraphs with respect to the node score. The parameter set endpoint

allows to organize parameter settings for DeRegNet runs, i.e. the type of algorithm

used, minimal/maximal number of nodes in subgraphs, etc. The endpoint supports the

canonical actions of creation, querying and deletion. Parameter sets are referenced by
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IDs created and returned during creation of a parameter set. Additionally the endpoint

allows to query for the default parameter setting used for DeRegNet runs. An example

parameter set is shown in listing 5.5

1 {
2 " model_sense " : "max" ,
3 " d e f a u l t _ s c o r e " : 0 . 0 ,
4 " num_suboptimal " : 1 ,
5 " f l i p _ o r i e n t a t i o n " : f a l s e ,
6 " max_overlap " : 10 . 0 ,
7 " gap_cut " : 0 . 05 ,
8 " min_size " : 15 ,
9 " abs_va lues " : t rue ,

10 " max_size " : 50 ,
11 " a lgor i thm " : " gcc "
12 }

Listing 5.5: An example parameter set. A parameter set allows to configure run
resources. E.g. that optimization should stop once the relative gap is less than
0.05 ("gap_cut": 0.05) or to use Generalized Charnes-Cooper method ("algorithm":
"gcc").

Runs. Given a graph, optionally one or more node sets as receptors, terminals, included

or excluded nodes, a node score and a parameter set a run resource represents an actual

run of DeRegNet in order to find subgraphs. The run endpoint allows to define runs

of DeRegNet in order to find subgraphs relative to data defined and registered via the

previous endpoints. With a POST request to the run endpoint one can instruct the API

to find subgraphs within a given graph using a given node score. Optionally one can

specify node sets as receptor or terminal nodes for the subgraphs. Another use of node

sets is to instruct the run to find subgraphs which include (or exclude) nodes from a

node set by force in any subgraph. Existing runs can be queried for their status by GET

requests. Information returned are for example whether the run finished, whether

it successfully found subgraphs and if so the IDs of these subgraphs. Each run also

keeps track of its input resources, i.e. underlying graph resource, node score resource,

potential node set resources and parameter set resources. The data necessary to define

a subgraph run is schematically shown in listing 5.6 while the information structure

concerning a run which is retrievable via a GET request to the run endpoint is shown
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schematically in listing 5.7.

1 {
2 "name" : <Name of run resource>,
3 " d e s c r i p t i o n " : <Desc r i p t i on of run resource>,
4 " i nc lude_ id " : <ID of inc lude node s e t resource>,
5 " t e rm ina l s _ id " : <ID of t e rmina l s node s e t resource>,
6 " parameter_se t_ id " : <ID of parameter s e t resource>,
7 " s co re_ id " : <ID of node score resource>,
8 " root " : <Node ID of root node>,
9 " r e c e p t o r s _ i d " : <ID of r e cep to r s node s e t resource>,

10 " exc lude_ id " : <ID of exclude node s e t resource>,
11 " graph_id " : <ID of graph resource>
12 }

Listing 5.6: Data to define a run. In order to define a run, one needs to
(optionally) reference node set resources for exclude, include, receptor and
terminal set, optionally a fixed root node, a parameter set resource, graph resource
and node score resource.

1 {
2 " subgraph_ids " : [
3 <ID of subgraph resource 1> ,
4 <ID of subgraph resource 2>
5 ] ,
6 " d e s c r i p t i o n " : " De s c r i p t i on of run resource " ,
7 " s t a r t e d " : t rue ,
8 " id " : <ID of run resource>,
9 " done " : t rue ,

10 " post_t ime " : <timestamp>,
11 " run_input " : <See l i s t i n g 5 . 6>
12 }

Listing 5.7: Basic run information. With a GET request to the run endpoint one
can retrieve information on created runs. Among other things, it details its status
in terms of completion ("done") and references the subgraphs found by means of
subgraph resource IDs ("subgraph_ids"). Also, it logs all the input data used to
define the run ("run_input"). This is highly useful for tracking data dependencies
of generated subgraphs.

Subgraphs. Finally, subgraphs are the outcome of a DeRegNet run and are represented

by resources of subgraph type. Besides some general information (Is the subgraph op-

timal or suboptimal? How many nodes and edges does it have? etc.) it also references

the run resource which produced it. This allows to keep track of the context of the

subgraph (What is the underlying graph? With which parameters was the DeRegNet

run performed?). The subgraph endpoint also enables to download different represen-

tations of available subgraphs, namely in Simple Interaction Format (SIF) [Sim] and
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GraphML format [Gra].

1 {
2 " s core " : <Node score of subgraph>,
3 " run_id " : <ID of run resource which found the subgraph>,
4 " opt imal " : <Opt imal i ty s t a t u s of subgraph>,
5 " root " : <Node ID of determined root node>,
6 " id " : <ID of subgraph resource>,
7 " num_nodes " : <Number of nodes in subgraph>,
8 " num_edges " : <Number of edges in subgraph ,
9 " op t ima l i t y_ t ype " : <Opt imal i ty type of subgraph>

10 }

Listing 5.8: Basic subgraph information. The score of the subgraph is listed,
which run generated it, whether the model representing the subgraph was
solved to optimality and also if it is the optimal subgraph or a suboptimal one
("optimality_type").

Example workflow

Figure 5.2 shows a typical example workflow of an API user interacting with the API10.

It details the upload of a custom graph to find subnetworks in, the registration of a node

score and a node set. Finally the user makes a request to find subgraphs referencing

data uploaded in the previous steps. Upon success of the subgraph finding run, the

user can retrieve the found subnetworks by means of the respective endpoint.

5.2.2 Architecture and implementation

General architecture

The architecture of the DeRegNet API is based mostly on a straightforward variation

on standard multi-tier architecture [Sch09] for client-server systems as ubiquitously

applied in industry and academia. It is based on three layers/tiers, namely a server

layer, a data layer and a worker layer11. The architecture is presented graphically in

figure 5.3. The server layer provides the entry point for users of the API who are not

meant to interact directly with either the data or the worker layer. It provides the

10Interaction can of course also mean automated programmatic access in this context.
11One can consider any HTTP client a presentation layer of the API.
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interface for all API functionality and implements it by addressing the data and worker

layers. The Data layer consists of three components: 1) a database, keeping track

of the API’s resources, 2) a cache, keeping track of frequently accessed information

and making it accessible without the need to address the database directly and finally

3) a job queue which registers requested subgraph runs. The latter are carried out

by the worker layer which listens to new tasks in the job queue and then extracts all

necessary information for the subgraph request from the database upon the decision

to carry out a particular run in the queue. The main reason of this three layer ar-

chitecture is the possibility to independently scale the the different API components.

For example, the worker layers solve the fractional integer linear programs associated

with DeRegNet and hence have different hardware requirements than either database

or application servers which merely handle a certain amount of CRUD12 operations.

The server as well as the worker layers are stateless in the sense that all data is stored

exclusively in the data layer. This makes these components readily scalable within

container orchestration platforms like Docker Swarm [Docd] or Kubernetes [Kub]. By

choice, the DeRegNet API does not provide/implement standard API features such as

authentication/authorization, (user dependent) rate limiting or traffic monitoring by

itself. Instead, for these and other features, the API is meant to rely on a so called API

gateway [Ric18]13,14. An API gateway proxies all requests to a set of microservices

which in turn are usually only accessible through the gateway. The API gateway then

can be used to implement generic and common functionality for the microservices like,

as mentioned, authentication, authorization, rate limits, traffic monitoring, aggrega-

tion of service endpoints, etc. [Ric18]. See figure 5.4 for the role of an API gateway

for the DeRegNet API in general and for authorization/authentication in particular.

12CRUD: Create-Read-Update-Delete
13Examples of API gateways are Kong [Kon], Gloo [Glo] or krakend [Kra]. See also [CNCb]. For more

information on the API gateway pattern in general and its intended use and enabled possibilities, see
[Ric18, ric]

14Of course, instead of and off-the-shelf API gateway one can also imagine a custom proxy for the
DeRegNet API.
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Authentication and Authorization

The currently realized mode of authentication/authorization for the DeRegNet API is

as follows. Firstly, the DeRegNet API does not handle authentication at all. Secondly,

to enable authorization, every resource is associated to a user of the API. In terms of a

API resource, a user is nothing more than a user field in the actual data representation

of the resource. This then allows filtering of resources with respect to a given user

name/identifier. The API server itself is agnostic about how these user names relate

to any surrounding context of authentication and where they originally come from.

User management is meant to be carried out by the API gateway and any associated

user management services15. Upon handling of any HTTP request, the API server layer

tries to extract a user name/identifier provided via a JSON Web Token (JWT)16 [Jwt]

and then returns only those resources matching the given user or associates a newly

generated resource to that user. The DeRegNet server layer as such also does not

concern itself with whether the provided JWT is validated or the initial creation of the

JWT. It only extracts the user information from a provided JWT. The creation/vali-

dation of the JWT is also meant to be carried out by the API gateway and associated

services. Under the assumption that the DeRegNet server layer is only reachable from

the API gateway (servers) the contents of the JWT can be trusted and the business

logic can be carried out based on the provided user name/identifier17. See figure 5.4

for a schematic workflow encapsulating the just outlined authentication/authorization

logic.

The advantage of the outlined mode of handling authentication and authorization is

that the DeRegNet API does not need to make any assumptions about any authenti-

cation mechanisms and only needs to extract information relevant for authorization

15Often user management and authorization and authentication services can be provided by the API
gateway itself. Alternatively one can use external commercial services or rely on open source solutions.
One open source solution for authorization and authentication is the ORY stack [Ory]

16JWT: cryptographically signed JSON data which allows somebody to verify that the JSON data
encoded in the token was issued by a certain party.

17If no user name/identifier is provided in the request, resources are filtered/associated to a generic
anonymous user.
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from an externally cryptographically validated JWT. Hence, in conjunction with an

API gateway the DeRegNet API is amenable to any authentication mechanism provided

by the former. This can be as simple as HTTP Basic Authentication and as complex

as fully fledged OAuth2 [oau] and OpenId Connect [Ope] workflows. The factor de-

termined by the implementation of the DeRegNet API itself is of course the mapping

of JWT-encoded (user) information provided from the gateway to the authorization

logic within the DeRegNet API. As detailed above, this logic is based on a one-to-one

mapping of users to resources.

Example workflow with internal events

The sequence diagram 5.5 details events in a typical workflow of a series of requests by

an API user. In contrast to figure 5.2 it shows the internal events the implementation

of the API carries out in order to be able to serve the requests. This entails the server

layer interacting with the data layer to create and retrieve resources and to queue

subgraph jobs into the job queue, as well as the worker layer communicating with

the job queue and the data layer in order to be able to start subgraph finding runs.

The interaction logic from the users perspective represents the upload of a regulatory

network, the upload of a node score and the subsequent definition of a subgraph finding

run with respect to the previously defined resources. In the end, subgraph found by

the run are retrieved and downloaded in GraphML format. While the interactions

displayed between user and server layer are analogous to the sequence diagram 5.2,

the interactions between server and data layer, as well as those between data and

worker layer are internal to the API’s implementation.

Implementation technology

At the time of writing, the server layer is implemented via OpenAPI/Swagger server

stub generation [Swa] for the Python Flask [Fla] web framework from the API speci-

fication and corresponding implementation of DeRegNet-specific CRUD logic for the
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generated endpoints. The data layer consists of MongoDB [Mon] as the database and

Redis [Red] serving as a cache and a job queue via Celery [Cela]. The worker layer con-

sists of Celery workers [Celb] implemented in Python utilizing the DeRegNet Python

package. The server layer and the worker layer are encapsulated in Docker images

which can be run independently given instances of MongoDB and Redis18.

5.3 Summary and Discussion

The implemented API provides all necessary base functionality needed to find sub-

graphs by means of the DeRegNet algorithm (see chapter 3). At the same time it is

designed and implemented with the embedding into a larger context in mind by not

relying on too many assumptions about common interaction factors in a microservice

setting (authorization and user identity, authentication, rate limiting, etc.) but also

providing a corresponding integration surface for factors which are determined by

the API itself (such as resource access authorization logic as such). The API relies on

the open source implementation of DeRegNet [DeRc] and is itself open source [DeRb]

under the BSD 3-Clause license [BSD]. The associated software components are pack-

aged as Docker images.

Primary extension points for the API would be additional microservices to implement

more specialized functionality in general and for upstream and downstream subgraph

analysis in particular. In general, the API would benefit from integration with an

identifier mapping service for biomolecular identities. Currently, the mapping of iden-

tifiers of node scores to identifiers in underlying networks is only supported manually

through careful encoding in the definition of resources and manual linking when defin-

ing runs. Concerning upstream services this mainly relates to services encapsulating

specific means of defining and working with underlying regulatory networks, node

18Note that MongoDB and Redis can be deployed as high-availability clusters. This is outside the
scope of this thesis but reiterates the point that all layers of the DeRegNet API, server, worker, and the
components of the data layer can be scaled independently.
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scores and node sets. As an example, one can imagine a service which facilitates the

direct import of NDEx [PCW+15, PCP+17, Ndeb, Ndea] networks as base networks

for use with the DeRegNet API, as well as other means to define suitable networks for

use with DeRegNet like sbml4j [sbm]. Similarly, services to define node scores would

be highly useful, for example to define canonical global as well as personalized node

scores based on the omics data in the TCGA datasets [TCW15]. Other possibilities are

services to seamlessly link the output of mutational variant annotation pipelines such

as ClinVAP [SSD+20] with suitable node scores. Streamlined node set definition based

on canonical sources of gene sets are another obvious extension point. Organizing the

process of finding personalized subgraphs for many patients for multiple omics node

scores with possibly various modes of DeRegNet application modes (known tumor sup-

pressor/oncogenes genes as receptors/terminals, etc.) can become a organizational

challenge. Hence, services supporting these and other complex application scenar-

ios can come in handy and would touch upstream as well as downstream services

functionality. The most useful candidate for a downstream service is visualization and

BioGraphVisArt [bio] already provides an implementation. Additional tools relate to

the comparison of inferred subgraphs, for example in a personalized setting comparing

subgraphs of different patients. See also BioGraphVisArt [bio]. The finding of network-

defined cancer genes (see algorithm 10 in chapter 3) also lends itself to implementation

in terms of a downstream service with semi-automated input from potential upstream

services for TCGA node scores. While there are certainly more possibilities one can

think of right off the bat, I leave it at this.

In purely technical terms, the transfer of the implementation to the Kubernetes [Kub]

container orchestration platform is desirable.
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Figure 5.2: Example flow for a user interacting with the DeRegNet API. 1-3)
By POSTing a graph a user can register a graph which can then be referenced
by an ID. Next (4) and (5) represent the upload of a node score resource and
the return of and ID identifying the created node score by the API. Similarly (6)
and (7) represent the creation of a node set. The actual command to initiate the
finding of subgraphs happens in (8) with a POST request to the run endpoint
referencing underlying network, node scores and any other associated resources
by their respective IDs. In (9) the user received the ID of the created run which
can subsequently be used to query for the status of the run (10). Once the run
finished the SubgraphInfo response will contain references to IDs of subgraphs
found by the run. The subgraphs can be queried for some initial information (11),
(12) and finally be downloaded (12) in GraphML format.
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5. A REST-style API for de-novo pathway discovery

Figure 5.3: Conceptual architecture of the DeRegNet API. The architecture can
be roughly divided into three different layers: 1) the server layer which provides
all user-facing endpoints and implements the CRUD logic of the API 2) the data
layer which consists of a database, a cache and a job queue and 3) the worker
layer which is a pool of servers which actually run DeRegNet in order to find
subgraphs. Note, that the server and worker layer are stateless in the sense that
they do not themselves store any data and merely carry out functions with data
provided externally (to these layers) via the data layer. For clarity the stateless
layers of the API are colored in pale green while the layer(s) holding persistent
data are colored pale yellow.
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Figure 5.4: The role of the API gateway in general and for authentication/au-
thorization in particular. An API gateway proxies all (end) user requests to a
target services/API. By means of Auth services it can be used to implement autho-
rization and authentication generically for several services in a compatible way.
Auth services can be provided by the API gateway itself, a dedicated stack like
[Ory] or even third-party identity providers. In addition to the prominent autho-
rization/authentication functionality, an API gateway can also implement various
other generic features. One example would be rate limits: Based on the user’s
identity known to the gateway, the gateway can enforce personalized rate limits
for the services exposed through the API gateway.
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Figure 5.5: Example flow for a user interacting with the DeRegNet API. See
main text.
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Chapter 6

Conclusion

The preceding chapters introduced an algorithm for de-novo pathway identification /

deregulated subnetwork detection. The mathematical underpinnings, technical solu-

tion procedures and implementation aspects the algorithm were discussed in chapter 3,

as well as a statistical model for proposed method and a simulation-based benchmark

with respect to its closest methodological relative [BRK+12]. Special attention was

given to the methods employed to solve the fractional integer programming model

which constitutes the heart of the algorithm, including a description of the general

solution technology as well as problem-specific heuristics. Chapter 4 then detailed

concrete applications of the proposed algorithm to omics datasets. Application to the

hepatocellular carcinoma dataset of the The Cancer Genome Atlas (TCGA) showed

the ability of the algorithm to extract regulatory patterns. In particular, it could re-

construct the transcriptional activation of the WNT pathway in the context of liver

cancer. Furthermore, it proves its value as an heuristic hypothesis generation tool by

uncovering various interesting pathway crosstalks in term of omics deregulation. In

the context of the application to the liver cancer TCGA dataset, this thesis outlined

approaches to uncover personalized molecular patterns based on a patient-specific

application of the algorithm. It was shown how these personalized patterns can then

in turn be used to create hypotheses concerning genes which provide phenotypic effect

by means of their network context in conjunction with its deregulation. I detailed one
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such gene and the associated pattern, namely Spleen Tyrosine Kinase (SYK). Also it

was shown that predictive features derived from patient-specific subgraphs can help

construct Machine Learning models. In particular, the proposed features improve

upon just clinical features, which is known to remain challenging problem [YVAO+14].

Two further applications of the proposed algorithm were highlighted, underlining its

various application scenarios. One application could provide useful network insights

concerning folate one-carbon metabolism in hepatocellular carcinoma [WTD+], while

another case study could identify regulatory patterns of the S. cerevisiae cell cycle based

on phosphoproteomic time series data [ZWS+19a]. The final chapter 5 described the

design and implementation of a web-based Application Programming Interface (API)

for the outlined algorithm, making a web-based deployment of the methods described

in the preceding chapters readily achievable for any interested party.
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Appendix A

Fractional mixed-integer linear

programming (FMILP)

For locality of exposition we restate:

Definition 10 (Fractional mixed-integer linear program; FMILP)

A Fractional mixed-integer linear program (FMILP) is an optimization problem of

the following structure:

max
cT x + d
pT x + q

(A.1a)

s.t. x ∈ Rnc ×Zni (A.1b)

Ax ≤ b (A.1c)

Here, c, p ∈ Rn, d, q ∈ R define the objective, A ∈ Rm×n, b ∈ Rm define m ∈ N linear

constraints and nc ∈ N, ni ∈ N denote the number of continuous and discrete (integer)

variables.

We assume ∀x ∈ F : pT x + q > 0, F := {x ∈ Rn : Ax ≤ b}. Fractional mixed-

integer linear problems are hence mixed-integer problems except for the objective

which is a rational function with linear enumerator and denominator instead. While a
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A. Fractional mixed-integer linear programming (FMILP)

FMILP is non-convex, it turns out that a FMILP is pseudolinear and hence quasilinear,

rendering local optima to be globally optimal [YCG09].

Proposition 10 (You et al. [YCG09])

A FMILP is pseudoconvex and pseudoconcave.

Proposition 11 (You et al. [YCG09])

A FMILP is strictly quasiconvex and strictly quasiconcave.

Proposition 12 (You et al. [YCG09])

A local optimum of a FMILP is also a global optimum.

The latter facts render FMILP solvable by any generic mixed-integer nonlinear pro-

gramming (MINLP) solver which can handle pseudolinear objective functions [YCG09].

Empirically, it was shown that iterative schemes [YCG09] or linearization-reformulation

approaches [YGGY13] outperform generic MINLP solvers with respect to computing

time and memory footprint. These approaches rely on a mixed-integer linear program-

ming (MILP) solver as their optimization kernel, hence unlocking the power of modern

MILP software, and rely on transforming the original problem into a (sequence of)

MILP problem(s). The DeRegNet software package discussed in the main text imple-

ments a Dinkelbach-type algorithm [YCG09] and a reformulation-linearization method

[YGGY13] resembling the Charnes-Cooper method [CC62] for solving fractional linear

programs (FLP). The remainder of this appendix details the proof for the correctness

and superlinear convergence of Dinkelbach’s iterative algorithm.

A.1 Dinkelbach-type algorithm (Dinkelbach algorithm)

This section details why Dinkelbach’s algorithm works for solving fractional integer

programming models. Again for locality of exposition we restate:
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Dinkelbach-type algorithm (Dinkelbach algorithm)

Data: FMILP with feasible set S
Result: solution x∗ of FMILP
Initialization:
π= 0
ε > 0 (termination tolerance)
F =∞
while F > ε do

x∗ = ar g max {cT x + d −π (pT x + q) : x ∈ S }
F = cT x∗ + d − r (pT x∗ + q)

π=
cT x∗ + d
pT x∗ + q

end
return x∗

Algorithm 11: Dinkelbach-type algorithm

A.1.1 Correctness of Dinkelbach’s Algorithm (11) - based on You

et al. [YCG09]

In order to facilitate the following exposition the functions N :F → R, N(x) := cT x+d

for the nominator and D :F → R, D(x) := pT x+q for the denominator of the objective

function are introduced. Without loss of generality one can set d = q = 0 since one can

introduce dummy variables xd and xq with linear constraints xd = xq = 1 and corre-

sponding coefficients cd = pq = 1 leading to N(x) = cT x+cd xd and D(x) = pT x+pq xq.

Furthermore, define Lπ(x) := N(x) − πD(x) and F : R → R, F(π) := max {Lπ(x) :

x ∈ F} be the optimal objective value of a Dinkelbach iteration problem as a function

of the auxiliary parameter π. Without loss of generality we assume D(x) > 0 for all

x ∈ F .

The two main results concerning Dinkelbach’s algorithm are the following:

Proposition 13 (Optimality criterion, Yue et al. [YGGY13] Proposition 1)

F(π∗) = max {N(x) − πD(x) : x ∈ F} = 0 ⇐⇒ π∗ = N(x∗)
D(x∗) = max {N(x)

D(x) : x ∈ F}

where x∗ = argmax{N(x)
D(x) : x ∈ F}
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A. Fractional mixed-integer linear programming (FMILP)

Proposition 14 (Convergence (rate), Yue et al. [YGGY13] Proposition 2)

Dinkelbach’s algorithm converges superlinearly to π∗ in where x∗ ∈ argmax{N(x)
D(x) : x ∈

F} and π∗ = N(x∗)
D(x∗) .

We follow Yue et al. [YGGY13] in proving the above propositions via a series of lemmas.

Lemma 1 (Yue et al. [YGGY13] Appendix, Lemma 4)

F is convex.

Proof. For λ ∈ [0,1], let xλ ∈ F be xλ ∈ argmax{Lλπ′+(1−λ)π′′(x) : x ∈ F} with

π′,π′′ ∈ R. Then:

F(λπ′ + (1−λ)π′′) =max {Lπ(x) : x ∈ F} (A.2)

= N(xλ)− [λπ′ + (1−λ)π′′]D(x) (A.3)

= λ[N(xλ)−π′D(xλ)] + (1−λ)[N(xλ)−π′′D(xλ)] (A.4)

= λF(π′) + (1−λ)F(π′′) (A.5)

�

Lemma 2 (Yue et al. [YGGY13] Appendix, Lemma 5)

F is strictly monotonically increasing, i.e. π′ < π′′ =⇒ F(π′)< F(π′′).

Proof. Given π′ < π′′ one obtains with x ′ = argmax{Lπ′(x) : x ∈ F} and x ′′ =

argmax{Lπ′′(x) : x ∈ F}:

F(π′′) = N(x ′′)−π′′D(x ′′) (A.6)

< N(x ′′)−π′D(x ′′) (A.7)

≤ N(x ′)−π′D(x ′) (A.8)

= F(π′) (A.9)

�
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Dinkelbach-type algorithm (Dinkelbach algorithm)

Lemma 3 (Yue et al. [YGGY13] Appendix, Lemma 6)

F(π) = 0 has a unique solution.

Proof. Follows from lim
π→∞

F(π) = −∞ and lim
π→−∞

F(π) =∞ and F being strictly mono-

tonically increasing (Lemma 2). �

Lemma 4 (Yue et al. [YGGY13] Appendix, Lemma 7)

∀x ′ ∈ F : F(N(x ′)
D(x ′) )≥ 0

Proof. For any x ′ ∈ F one has:

F(
N(x ′)
D(x ′)

) =max{N(x)−
N(x ′)
D(x ′)

D(x) : x ∈ F} (A.10)

≥ N(x ′)−
N(x ′)
D(x ′)

D(x ′) (A.11)

= 0 (A.12)

�

One can now prove proposition 1:

Proof of proposition 1. We have to show: F(π∗) ⇐⇒ π∗ = N(x∗)
D(x∗) = max x∈F

N(x)
D(x) .

=⇒ : Given F(π∗) = max x∈FN(x)−π∗D(x) it follows with x∗ := argmax{N(x)−

π∗D(x) : x ∈ F} for all x ∈ F 0 = N(x∗) − π∗D(x∗) ≥ N(x) − π∗D(x). Hence
N(x)
D(x) ≤ π

∗ = N(x∗)
D(x∗) , i.e. x∗ = argmax{N(x)

D(x) : x ∈ F}.

⇐= : With x∗ = argmax{N(x)
D(x) : x ∈ F} one has π∗ = N(x∗)

D(x∗) ≥
D(x)
N(x) . Under

our general assumption D(x) > 0 for all x ∈ F it follows N(x) − π∗D(x) ≤ 0 =

N(x∗)−π∗D(x∗) for all x ∈ F which shows x∗ = argmax{N(x)−π∗D(x) : x ∈ F}.

�

From now onward, let π∗ be the unique solution of F(π) = 0 and let x∗ ∈ argmax{N(x)
D(x) :

x ∈ F} with π∗ = N(x∗)
D(x∗) .

Lemma 5 (Yue et al. [YGGY13] Appendix, Lemma 8)

Let x ′ ∈ argmax{N(x) − π′D(x)} and x ′′ ∈ argmax{N(x) − π′′D(x) : x ∈ F} with

π′ < π′′, then D(x ′)≥ D(x ′′).

139
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Proof. Adding the inequalities N(x ′)−π′D(x ′)≥ N(x ′′)−π′D(x ′) and N(x ′′)−π′′D(x ′′)≥

N(x ′)−π′′D(x ′) leads to (π′′ −π′)D(x ′) ≥ (π′′ −π′)D(x ′′), i.e. D(x ′) ≥ D(x ′′) since

π′′ ≥ π′ by assumption. �

Lemma 6 (Yue et al. [YGGY13] Appendix, Lemma 9)

Let x ′ ∈ argmax{N(x) − π′D(x)} and x ′′ ∈ argmax{N(x) − π′′D(x) : x ∈ F}, then

f (x ′′)− f (x ′)≥ F(π′′)
D(x ′′) −

F(π′)
D(x ′)

Proof. From F(π′′) = N(x ′′)−π′′D(x ′′)≥ N(x ′)−π′′D(x ′′) it follows N(x ′′)
D(x ′) −π

′′ D(x ′′)
D(x ′) ≥

N(x ′)
D(x ′) −π

′′. This implies:

N(x ′′)
D(x ′′)

−
N(x ′)
D(x ′)

≥
N(x ′′)
D(x ′′)

+ (−π′′ +
D(x ′′)
D(x ′)

π′′ −
N(x ′′)
D(x ′)

) (A.13)

=
N(x ′′)
D(x ′′)

−
N(x ′′)
D(x ′)

+π′′(
D(x ′′)
D(x ′)

−
D(x ′′)
D(x ′′)

) (A.14)

= N(x ′′)(
1

D(x ′′)
−

1
D(x ′)

) +π′′D(x ′′)(
1

D(x ′′)
−

1
D(x ′′)

) (A.15)

= −F(π′′)(
1

D(x ′)
−

1
D(x ′′)

) (A.16)

=
F(π′′)
D(x ′′)

−
F(π′′)
D(x ′)

(A.17)

�

Lemma 7 (Yue et al. [YGGY13] Appendix, Lemma 10)

Let x ′ ∈ argmax{N(x) − π′D(x)} and x ′′ ∈ argmax{N(x) − π′′D(x) : x ∈ F} and

F(π∗) = 0, then if follows for π′ ≤ π′′ ≤ π∗, that N(x ′)
D(x ′) ≤

N(x ′′)
D(x ′′) .

Proof.

N(x ′′)
D(x ′′)

−
N(x ′)
D(x ′)

≥
F(π′′)
D(x ′′)

−
F(π′)
D(x ′)

(A.18)

≥
F(π′′)
D(x ′)

−
F(π′′)
D(x ′)

(A.19)

= 0 (A.20)

The first inequality follows from lemma 9, the second from lemma 7 and 8. �
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Lemma 8 (Yue et al. [YGGY13] Appendix, Lemma 11)

Let x ′ ∈ argmax{N(x) − π′D(x)} and x ′′ ∈ argmax{N(x) − π′′D(x) : x ∈ F}, then

f (x ′′)− f (x ′)≤ (−F(π′′) + (π′ −π′′)D(x ′′))( 1
D(x ′) −

1
D(x ′′)).

Proof. From N(x ′)−π′D(x ′)≥ N(x ′′)−π′′D(x ′′) it follows N(x ′)
D(x ′) −π

′ ≥ N(x ′′)
D(x ′) −π

′ N(x ′′)
D(x ′)

by dividing by D(x ′)> 0. It then follows:

f (x ′′)− f (x ′) =
N(x ′′)
D(x ′′)

−
N(x ′)
D(x ′)

(A.21)

≤
N(x ′′)
D(x ′′)

−π′ −
N(x ′′)
D(x ′)

+π′
D(x ′′)
D(x ′)

(A.22)

=
N(x ′′)
D(x ′′)

−
N(x ′′)
D(x ′)

−π′(
D(x ′′)
D(x ′′)

−
D(x ′′)
D(x ′)

) (A.23)

= (−N(x ′′) +π′D(x ′′))(
1

D(x ′)
−

1
D(x ′′)

) (A.24)

= (−F(π′′) + (π′ −π′′)D(x ′′))(
1

D(x ′)
−

1
D(x ′′)

) (A.25)

�

Lemma 9 (Yue et al. [YGGY13] Appendix, Lemma 12)

Let x ′ ∈ argmax{N(x) − π′D(x)} and x ′′ ∈ argmax{N(x) − π′′D(x) : x ∈ F} with

F(π∗) = N(x∗)−π∗D(x∗) = 0, then π∗ − f (x ′)≤ (π∗ −π′)(1− D(x∗)
D(x ′) ).

Proof.

π∗ − f (x ′) = f (x∗)− f (x ′) (A.26)

≤ (−F(π∗) + (π′ −π∗)D(x∗))(
1

D(x ′)
−

1
D(x∗)

) (A.27)

= (π′ −π∗)(
D(x∗)
D(x ′)

− 1) (A.28)

= (π∗ −π′)(1−
D(x∗)
D(x ′)

) (A.29)

where the inequality follows from Lemma 11. �

Proposition 2 can now be demonstrated as follows:

141



A. Fractional mixed-integer linear programming (FMILP)

Proof of proposition 2. Let F(π∗) = 0, i.e. π∗ = max{N(x)
D(x) : x ∈ F}. For i ∈ N, let

πi+1 =
N(x i)
D(x i)

= f (x i) where x i ∈ argmax{N(x) − πi D(x) : x ∈ F} it follows with

Lemma 9:

π∗ −πi+1

π∗ −πi
=
π∗ − f (x i)
π∗ −πi

≤ 1−
D(x∗)
D(x i)

Since πi ≤ π∗ = max{N(x)
D(x) : x ∈ F} it follows with Lemma 5 D(x∗)

D(x i)
≤ 1 and since

D(x∗)
D(x i)

> 0 one obtains

0≤
π∗ −πi+1

π∗ −πi
< 1

for all i ∈ N. The latter inequality demonstrates superlinear convergence. �
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Supporting Figures

Global upregulated RNA-Seq subgraphs (TCGA-LIHC)

Figure A.1: Optimal upregulated global subgraph for TCGA-LIHC
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Supporting Figures

Figure A.2: 1st suboptimal upregulated global subgraph for TCGA-LIHC

Figure A.3: 2nd suboptimal upregulated global subgraph for TCGA-LIHC
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Supporting Figures

Figure A.4: 3rd suboptimal upregulated global subgraph for TCGA-LIHC

Figure A.5: 4th suboptimal upregulated global subgraph for TCGA-LIHC

151



Supporting Figures

Global downregulated RNA-Seq subgraphs (TCGA-LIHC)

Figure A.6: Optimal downregulated global subgraph for TCGA-LIHC
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Supporting Figures

Figure A.7: 1st suboptimal downregulated global subgraph for TCGA-LIHC

Figure A.8: 2nd suboptimal downregulated global subgraph for TCGA-LIHC
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Supporting Figures

Figure A.9: 3rd suboptimal downregulated global subgraph for TCGA-LIHC

Figure A.10: 4th suboptimal upregulated global subgraph for TCGA-LIHC
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