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Summary 

The understanding and mastery of fractions provides a critical requirement for 

individuals cognitive and especially numerical development. However, because of 

their bipartite structure reflecting the relative relation of numerator and denominator 

and their different properties compared to natural numbers, fractions can be a 

particularly challenging learning content for children and even adults. Currently, the 

integrated theory of numerical development (ITND) is one of the few theories that 

directly addresses the role of fractions in numerical development. Moreover, the 

ITND highlights magnitude knowledge as the key mechanism that integrates all 

numbers and facilitates their handling and, accordingly, their conceptual 

understanding. Therefore, magnitude knowledge also plays a crucial role for fraction 

understanding.  

However, fraction processing is a complex mechanism that involves many 

different and not fully understood processes. Therefore, focusing only on the role of 

magnitude knowledge for fraction processing might not provide a complete picture of 

all involved processes while dealing with fractions. The present thesis addresses this 

issue in five studies by employing different methodologies, using different 

experimental approaches, and testing different age groups to investigate potential 

predictors of fraction processing. In particular, the core assumption of the ITND was 

evaluated and extended with additional cognitive and non-cognitive predictors that 

are relevant for fraction processing. Study 1 confirmed the assumption of the ITND 

regarding the prominent role of (fraction) magnitude processing for fraction 

understanding and extended this assumption to numerate adults, complex fractions, 

and untrained (novel) fractions. Study 2 substantiated the importance of different 

magnitude-related and unrelated basic numerical skills for fraction processing. Study 

3 highlighted the role of magnitude-related and unrelated strategies for fraction 

processing. Study 4 revealed that motivation might be a relevant predictor of fraction 

processing but that not all children profit from it. Finally, Study 5 underpinned the 

importance of negative emotions and emotion regulation for fraction processing. 

Subsequently, a comprehensive framework of fraction processing is proposed and 

discussed, integrating cognitive and non-cognitive predictors to provide a fuller 

picture of what might be relevant predictors for fraction processing. While this 

framework is only a first approach to comprehensively describe the complex 

processes involved in fraction understanding and learning, it might provide the basis 
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for future research and interventions that foster comprehensive fraction 

understanding and related processes. 

 

Zusammenfassung 

Das Verständnis und die Fähigkeit mit Brüchen umzugehen, ist eine 

essenzielle Voraussetzung für die kognitive und vor allem numerische Entwicklung 

von Individuen. Allerdings stellen Brüche aufgrund ihrer besonderen bipartiten 

Struktur, die das relative Verhältnis von Zähler und Nenner widerspiegelt, und ihren 

im Vergleich zu natürlichen Zahlen unterschiedlichen Eigenschaften, eine große 

Herausforderung für Kinder und Erwachsene dar. Derzeit ist die sogenannte 

integrierte Theorie der numerischen Entwicklung (integrated theory of numerical 

development, ITND) eine der wenigen Theorien, die sich mit der Rolle von Brüchen 

in der numerischen Entwicklung von Kindern befasst. Darüber hinaus postuliert die 

ITND, dass die numerische Größe einer Zahl der gemeinsame Faktor ist, der alle 

Zahlentypen verbindet. Deshalb ist das Verständnis von numerischer Größe der 

Schlüsselmechanismus, der den Umgang mit Zahlen und das konzeptuelle 

Verständnis von Zahlen erleichtert. Demzufolge ist das Verständnis von numerischer 

Größe auch für den Umgang mit Brüchen entscheidend.  

Die Verarbeitung von Brüchen ist jedoch ein komplexer Mechanismus, der viele 

verschiedene und nicht vollständig erforschte Prozesse beinhaltet. Eine 

ausschließliche Fokussierung auf die Rolle der numerischen Größen bei der 

Bruchverarbeitung liefert daher möglicherweise kein vollständiges Bild aller 

beteiligten Prozesse beim Umgang mit Brüchen. Die vorliegende Arbeit widmet sich 

diesem Problem in fünf Studien. Dabei wurde insbesondere die Kernannahme des 

ITND evaluiert und die ITND um zusätzliche kognitive und nicht-kognitive 

Prädiktoren, die für die Bruchverarbeitung relevant sind, erweitert. Studie 1 bestätigte 

die Annahmen des ITND bezüglich der zentralen Rolle der (Bruch-) 

Größenverarbeitung für das Bruchverständnis und konnte diese Annahme auf 

Erwachsene, komplexe Brüche und ungeübte (neue) Brüche erweitern. Studie 2 

untermauerte die Bedeutung verschiedener numerischer Basisfähigkeiten für die 

Bruchverarbeitung. Diese unterschieden sich darin ob für eine Anwendung der 

entsprechenden Basisfähigkeit Größenverarbeitung benötigt wurde oder nicht. Studie 

3 verdeutlichte die Rolle von Strategien für die Bruchverarbeitung, wobei auch hier 

wieder der Fokus auf Strategien lag, die auf Größenverarbeitung zurückgreifen oder 
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diese zum Lösen der Aufgabe nicht benötigen. Studie 4 zeigte, dass Motivation ein 

relevanter Prädiktor für die Bruchverarbeitung sein kann, aber das Motivation allein 

nicht immer ausreicht, um die Bruchverarbeitung zu verbessern. Studie 5 schließlich 

untermauerte die Bedeutung von negativen Emotionen und Emotionsregulation für 

die Bruchverarbeitung. Nachfolgend wird ein umfassender theoretischer Rahmen der 

Bruchverarbeitung vorgeschlagen und diskutiert, der kognitive und nicht-kognitive 

Prädiktoren integriert, um ein vollständigeres Bild darüber zu erhalten, was relevante 

Prädiktoren für die Bruchverarbeitung sein könnten. Dieser theoretische Rahmen ist 

zwar nur ein erster Ansatz, um die komplexen Prozesse, die am Bruchverständnis 

und -lernen beteiligt sind, umfassend zu beschreiben, aber er könnte die Grundlage 

für zukünftige Forschung und Interventionen bilden, die ein umfassendes 

Bruchverständnis und damit verbundene Prozesse fördern. 
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PART I: INTRODUCTION 

 

1. GENERAL INTRODUCTION AND THEORETICAL FRAMEWORK 

General Introduction 

It is widely acknowledged that basic arithmetic and a general understanding of 

numbers are essential foundations of later mathematics achievement and useful for 

everyday life (e.g., Claessens & Engel, 2013; Nunes, Bryant, Barros, & Sylva, 2012). 

Unfortunately, however, many children, adolescents, and adults doubt the relevance 

of proficient mastery of rational numbers and especially fractions (e.g., Padberg & 

Wartha, 2017). This seems quite surprising as fractions and the associated concepts 

of decimals, ratios, and percentages are practically everywhere in our daily lives, for 

instance, in music (e.g., one half, one quarter, or one-eighth notes), in politics (e.g., 

2/3 majority), in the arts (e.g., the Vitruvian Man from Leonardo da Vinci), in science 

(e.g., conditional probabilities or entropy), or in simple ordinary enjoyments like 

preparing the perfect gin and tonic (e.g., mixing ratio 1:4 or 2:5).  

Besides, understanding and using fractions competently is critical for probability 

judgments (e.g., probability that it will rain tomorrow; Reyna & Brainerd, 1994, 2008), 

health judgments (e.g., mortality estimation of a disease; Reyna & Brainerd, 2007), 

and general risk literacy (e.g., consideration of financial investments; Cokely, Galesic, 

Schulz, Ghazal, & Garcia-Retamero, 2012). Currently, the ongoing global COVID-19 

pandemic demonstrates impressively that understanding fractions and proportions is 

vital, as a lack of sufficient understanding of these concepts can lead to aversive and 

life-threatening situations (Lau et al., 2021; Thompson et al., 2020). This is because 

incorrect underlying presumptions about ratios and relative frequencies can lead to 

underestimating the true contagiousness and mortality of COVID-19 and similar 

diseases. 

All the examples mentioned above illustrate that a lack of fraction knowledge 

limits not only academic and professional opportunities but also general life prospects 

on many levels. At an individual level, fractions are essential for grasping higher-

order mathematics such as algebra more effectively and successfully (Booth & 

Newton, 2012; Booth, Newton, & Twiss-Garrity, 2014; Wu, 2001). Additionally, fluent 

processing of fractions promotes a higher degree of abstraction in mathematical 
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thinking (DeWolf, Bassok, & Holyoak, 2016; Empson, 1999; Empson & Levi, 2011; 

Empson, Levi, & Carpenter, 2011). This is, in turn, important for the development of 

key mathematical competencies such as logical reasoning, modeling, and for one of 

the most important competencies for shaping mathematical thinking, pattern 

recognition (Burton, 1984; Vogel, 2005). At a societal level, a lack of fraction fluency 

is associated with poorer numeracy skills (e.g., Bailey, Hoard, Nugent, & Geary, 

2012). In turn, poor numeracy is associated with severe financial, social, but also 

health disadvantages (Parsons & Bynner, 1997, 2005), which places a heavy burden 

on both individuals and entire economies (Gross, Hudson, & Price, 2009).   

Therefore, it did not come as a surprise that in 2008, the National Mathematics 

Advisory Panel (NMAP) in the United States presented their prominent final report, 

which identified fractions, along with whole number and geometry understanding, as 

fundamental gatekeepers for achievement in higher mathematics (e.g., algebra; 

NMAP, 2008). Additionally, a survey conducted with Algebra teachers in this context 

revealed that one of the greatest weaknesses of school children was solving rational 

number problems, including operations with fractions and decimals (Hoffer, 

Venkataraman, Hedberg, & Shagle, 2007).  

This marked the beginning of increasing interest in the cognitive processes 

underlying fraction processing in research areas such as cognitive psychology, 

developmental psychology, and cognitive neuroscience. Although research on 

rational numbers was already conducted in the 1980s and earlier in the field of 

mathematics education (e.g., Kieren, 1976; Novillis, 1976), this research mainly 

focused on effective classroom instruction and didactic approaches but less on the 

underlying cognitive processes. For instance, the Rational Number Project was a 

large-scale project that went on for several decades (1979-2002; Behr, Lesh, Post, & 

Silver, 1983; Bezuk & Cramer, 1989; Cramer & Post, 2002; Cramer & Post, 1995; 

Post, Behr, Lesh, & Wachsmuth, 1985). One goal of this project was to develop a 

curriculum in alignment with the United States National Council of Teachers of 

Mathematics (NCTM) standards to introduce 4th through 8th graders to the world of 

rational numbers (e.g., fractions, decimals, and ratios).    

Given the challenge and the importance of learning fractions, the question needs 

to be raised: Which (cognitive) requirements are essential for mastering fractions? To 

answer this question, previous research, especially but not exclusively in cognitive 

psychology, has extensively examined (1) how fractions are processed, (2) what 
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factors make the processing of fractions difficult, and (3) how processing and 

understanding fractions can be improved. Addressing these questions helped 

establish a common ground for understanding why fractions are seemingly 

processed differently from whole numbers (Obersteiner, Dresler, Bieck, & Moeller, 

2019; Prediger, 2008; Vamvakoussi & Vosniadou, 2004). 

However, understanding how children gain proficiency in mathematics in general 

and in the subject area of fractions, in particular, requires more than knowledge about 

how they cognitively process and learn fractions and which content specific numerical 

factors are important. In fact, emotional and motivational aspects have repeatedly 

been shown to profoundly influence human cognition and action (Dolan, 2002). 

Specifically, emotions have been observed to control our attention (Fredrickson & 

Branigan, 2005), influence memory processes (Kensinger & Schacter, 2008), 

influence our motivation and self-regulation (Mega, Ronconi, & De Beni, 2014), and 

promote or reduce the use of problem-solving strategies (Blanchard-Fields, 2007). 

Thus, it comes as no surprise that emotions, whether positive or negative, play an 

important role in learning and are highly relevant for memory performance.  

As an extreme, math anxiety is a well-known phenomenon that causes affected 

individuals to avoid dealing with and thinking about numbers in general (e.g., 

Ashcraft, 2002) and fractions in particular (Sidney, Thalluri, Buerke, & Thompson, 

2019). Additionally, there is evidence that school children and adults seem to have 

negative attitudes towards fractions without having negative attitudes towards whole 

numbers in principle, regardless of their mathematical proficiency level (Sidney, 

Thompson, Fitzsimmons, & Taber, 2019). This finding is crucial as it gives an insight 

into the differential way individuals deal with numbers and numerical information 

when that information is explicitly presented as a fraction. Considering this, it is 

astonishing that theories on the processes involved in numerical cognition in general 

and fraction processing, in particular, have rarely included affective and motivational 

factors as well as potential relations between motivation and emotion and fraction 

understanding. 

Given the above-described association between cognition and emotions, two 

research areas seem to be particularly relevant for evaluating fraction understanding 

and learning. First, cognitive predictors have shown to be of particular importance for 

individuals’ fraction processing and understanding. Second, motivational and 

affective predictors seem crucial for learning in general and numerical learning in 
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particular. Accordingly, this dissertation aims to evaluate the role of cognitive as well 

as motivational and affective predictors of fraction processing.  

In my opinion, prior research has largely neglected to jointly investigate these two 

areas of research to gain a comprehensive understanding of fraction processing, 

although the two areas appear to be deeply intertwined. In the following sections, I 

will highlight in more detail,  i.) recent key findings on fraction processing and their 

importance for higher-level education (see Section 1.1), ii.) typical errors in fraction 

processing made by school children and adults alike and their potential origins (see 

Section 1.2), and iii.) the integrated theory of numerical development as a novel 

perspective on the role of fractions for numerical development (see Section 1.3), as 

well as iv.) the relevance of cognitive (see Section 2) and v.) motivational and 

affective predictors (see Section 3) for fraction processing. Subsequently, I will 

present the derived research questions I address in this dissertation (see Section 4). 

 

1.1 The educational problem: Why focus on fractions? 

The existing body of literature leaves no doubt about the pivotal role of 

fractions in children's mathematical development and thinking in secondary school 

(Lamon, 2020; Litwiller & Bright, 2002; Siegler et al., 2013). Fractions are the first 

complex, and more abstract content children encounter in the mathematical 

curriculum and mark the transition to higher-order mathematics. Thus, they bridge the 

gap between basic numerical skills like arithmetic (e.g., addition, subtraction, 

multiplication, and division with whole numbers) and more advanced mathematical 

content like algebra (for a summary of the role of basic numerical skills for fraction 

understanding, see section 2.2). Accordingly, it is not surprising that proficiency with 

fractions was found to be fundamental to insight-based learning of algebra (Booth et 

al., 2014; Empson et al., 2011; Hurst & Cordes, 2018; Rodrigues, Dyson, Hansen, & 

Jordan, 2016), but also to higher mathematical content beyond that. For instance, 

many other mathematical topics are dependent on fraction knowledge or a sense of 

proportional reasoning, such as geometry (e.g., describing a hyperbola with the 

equation x2/a2 – y2/b2 = 1; NMAP, 2008) and stochastic (e.g., probability theory and 

distributions which can be expressed as fractions). 

After students have been introduced to fractions, they are expected to handle 

and understand them properly. However, reality shows that this is not the case. 
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Instead, it is well known that children (Aksu, 1997; Bailey et al., 2015; Behr et al., 

1984, 1985; Carpenter et al., 1980; Carraher, 1996; Hasemann, 1981; Lortie-Forgues 

et al., 2015; Siegler & Pyke, 2013; Stafylidou & Vosniadou, 2004), adults (Lee & 

Boyadzhiev, 2020; Stigler, Givvin, & Thompson, 2010), and even mathematics 

teachers (Ma, 1999; Wu, 1999; Zhou, Peverly, & Xin, 2006) struggle in understanding 

and processing fractions adequately (Kloosterman, 2010; Rittle-Johnson et al., 2001; 

Siegler & Lortie-Forgues, 2015).  

Additionally, among all topics in the school mathematical curriculum, fractions 

are arguably one of the most difficult and cognitively challenging to teach (Lamon, 

2007). These problems in understanding fractions are independent of the time point 

at which fractions are introduced in the mathematical curriculum6 (e.g., USA 

introduction in primary school vs. Germany introduction in 6th – 7th grade; Mullis, 

Martin, Foy, & Arora, 2012; Reiss, 2004; Schmidt & Houang, 2012). Additionally, 

problems in understanding fractions seem also independent of culture (Asian vs. 

European or North American culture; Chan et al., 2007; Liu et al., 2014; Stigler et al., 

2010; Yoshida & Sawano, 2002). Thus, this issue with fractions seems universal, 

persistent, and robust across different learning contexts as children’s fraction 

competence has hardly improved over the last 40 years (Siegler & Lortie‐Forgues, 

2014).  

However, this is detrimental as understanding fractions is essential for many 

professions such as engineering, medicine, finance, construction, science, and many 

more (Handel, 2016). Moreover, fraction understanding is a unique predictor of future 

achievement in higher mathematics, above and beyond several other influential 

variables like general mathematical knowledge, intelligence, working memory, race, 

ethnicity, family income, and education (Bailey et al., 2012; Siegler et al., 2012; 

Torbeyns et al., 2015). From an educational perspective, fractions not only connect 

basic mathematics with more advanced mathematics topics, but algebraic equations 

are impossible to solve without knowledge about rational numbers. Additionally, 

fractions are essential for the entire secondary school mathematics (e.g., Common 

Core State Standards Initiative, 2010) and even more fundamentally connect and 

broaden different sets of numbers (from natural numbers to rational numbers) that 

children must handle.  

 
6 For an overview of different mathematics curricula across countries, please see: 
http://timssandpirls.bc.edu/timss2015/encyclopedia/countries/. 
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For instance, with the introduction of fraction division, it is possible to have 

dividends smaller than divisors (e.g., 5 ÷ 6). More generally, with the extension to 

rational numbers, all basic arithmetic operations (e.g., 7 – 9 or 5 ÷ 2, both operations 

do not have a solution within the set of natural numbers) and many algebraic 

equations (e.g.,  the value of  cannot be given with natural numbers) are 

possible without any restrictions (e.g., divide with remainder, arithmetic operations 

with negative numbers or resulting in a negative number, arithmetic operations and 

equations including negative or positive fractions are all possible in the set of rational 

numbers but not in the set of natural numbers).  

Given the outlined importance of fraction learning for children’s mathematical 

and more general cognitive development and the fact that fractions are such a 

challenging content to learn, it is crucial to understand what aspects make fraction 

processing so difficult. To get to the core of this issue, the following subsection will 

provide a definition of fractions and describe typical errors that occur because of their 

usual mode of presentation as a bipartite structure.   

 

1.2 Typical errors and why they arise 

In contrast to systematic or careless errors, typical errors are made by many 

different individuals while solving the same or virtually identical problems (Padberg, 

1996). Typical errors that occur during fraction processing and fraction arithmetic 

have been extensively documented over the past decades (e.g., Eichelmann, 

Narciss, Schnaubert, & Melis, 2012; Kerslake, 1986). For instance, the NAEP 

Mathematics Assessment has been tracking student’s mathematical knowledge and 

problem-solving abilities in the U.S since the mid-70s. On the latest NAEP in 2019, 

only 41% of 4th graders, 34% of 8th graders, and 24% of 12th graders scored above 

average in math. Closer inspection of the answers to some of the questions that 

covered fraction understanding revealed severe gaps in fraction understanding. For 

instance, only 32% of 4th graders correctly identified whether the 6 fractions 

presented (i.e., 1/3, 2/3, 2/6, 4/6, 2/8, 4/8) were less than, equal to, or greater than 

1/2. Of all 8th graders, only 27% could correctly determine the magnitude of two given 

points on a number line and indicate the magnitude of the midpoint between these 

points. Finally, only 39% of all 12th graders could correctly interpret an expression 

with a fractional exponent (i.e., (161/2)3).  
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These knowledge gaps are persistent in time, although many efforts have 

been taken to improve school children’s fraction knowledge (NMAP, 2008; Siegler et 

al., 2010), including increasing research on fraction interventions (for a meta-analysis 

and review on fraction interventions for children with struggles and disabilities see 

Ennis & Losinski, 2019 and Roesslein & Codding, 2019). One famous example is the 

comparison between the study results of Carpenter et al. from 1978 and Lortie-

Forgues et al. from 2014. In both studies, 8th graders in the U.S. were instructed to 

decide whether 12/13 + 7/8 was closest to 1, 2, 19, or 2. In 1978, only 24% of the 

students were able to choose the correct answer (Carpenter et al., 1980). In 2014, 36 

years later, only 27% of the students were able to answer this correctly (Lortie-

Forgues et al., 2015).  

One of the reasons why fractions are so difficult compared to natural numbers 

is their structure of notation. A fraction consists of a fraction bar, dividing the fraction 

in a numerator above and a denominator under the bar. This unique and classical 

bipartite presentation format makes it more difficult to perceive a fraction as one 

integrated number and grasp its magnitude. As a direct consequence of this bipartite 

presentation format, fraction magnitude seems to be a particularly challenging 

concept (Siegler, Thompson, & Schneider, 2011) - resulting in at least two ways of 

processing fractions: holistically or componentially. Holistic processing refers to 

processing overall fraction magnitude as an integrated entity, whereas componential 

processing denotes that the magnitudes of the fraction’s numerator and the 

denominator are processed separately. The latter processing way is more error-

prone and takes longer because it consists of more processing steps.  

The existing literature provides accumulating evidence for both processing 

ways. However, which processing way is chosen by an individual seems to depend 

mainly on stimulus characteristics (e.g., Schneider & Siegler, 2010), the type of 

fraction comparison (e.g., Faulkenberry & Pierce, 2011; Huber, Moeller, & Nuerk, 

2014; Meert, Grégoire, & Noël, 2010a, 2010b; Obersteiner, Van Dooren, Van Hoof, & 

Verschaffel, 2013), and specific processing strategies (e.g., Ischebeck, Weilharter, & 

Körner, 2016; Obersteiner & Tumpek, 2016; for instance cross-multiplication vs. 

visualizing, see also section 2.3). Thus, in magnitude comparison with common 

components (e.g., 5/7 vs. 5/8; comparing two fractions with the same nominator or 

denominator), individuals rely more strongly on componential processing, whereas in 
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comparison problems with distinct components (e.g., 5/7 vs. 3/8), individuals tend to 

process the fractions holistically (Obersteiner et al., 2013).   

However, the problems encountered by children and adults are not limited to 

the way fractions are presented. Instead, they also arise from differences between 

natural and rational number sets (e.g., Obersteiner, Dresler, et al., 2019; Obersteiner, 

Reiss, Van Dooren, & Van Hoof, 2019). These are differences in i.) representation, 

ii.) density, iii.) operations, and iv.) magnitude, which will be explained in more detail 

in the following. First, unlike natural numbers, fractions can have more than one 

representation because an infinite number of fractions (i.e., all multiples of a fraction) 

can refer to the same magnitude (e.g., 1/3, 2/6, 3/9 can be used equivalent; Clarke & 

Roche, 2009). Moreover, many children have problems with the idea of density, e.g., 

an infinite quantity of numbers between any pair of rational numbers might be too 

abstract to understand (Smith, Solomon, & Carey, 2005; Vamvakoussi & Vosniadou, 

2010a). 

Another challenging difference between natural and rational numbers is that 

performing multiplication and division with rational numbers might lead to results 

opposite to those previously known from natural numbers. For instance, multiplying 

1/3 x 1/2 will lead to a product smaller than both factors (i.e., 1/6), while multiplying 

two natural numbers always leads to a product with increased magnitude. Moreover, 

dividing 1/3 ÷ 1/2 will lead to a result larger than dividend and divisor (i.e., 2/3), 

whereas dividing two natural numbers always results in a smaller number.  

Finally, the magnitude of a fraction does not comply with the base-10 place-

value system underlying natural numbers but instead needs an understanding of the 

multiplicative and inverse relation between numerator and denominator (e.g., 

multiplicative relation for understanding fraction magnitude: 4/9 nine is close to two 

times four; inverse relation for understanding fraction magnitude: the bigger the 

denominator, the smaller the magnitude of the overall fraction, e.g., 1/4 is smaller 

than 1/3 although 4 > 3). These problems can stem from applying previously learned 

properties of natural numbers on fractions (e.g., natural number bias; see also 

section 1.3; Ni & Zhou, 2005).  

Additionally, many children struggle to understand the different interpretations 

of fractions (see Table 1.1; Behr et al., 1983; Lamon, 2020; Lortie-Forgues et al., 

2015; Obersteiner, Dresler, et al., 2019). Unfortunately, in these interpretations, the 
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meaning of numerator and denominator can differ. Thus, making it particularly difficult 

to develop a coherent understanding of a fraction as a number. 

 

Table 1.1: The manifold interpretations of a fraction (i.e., 2/5) and their meanings (modified after 
Lamon, 2020 and Obersteiner, Dresler, et al., 2019) 

 

Interpretation 

 

Meaning for the example 2/5 

 
 

Part-whole/ Ratios Parts of a whole: 2 parts out of 5 equal parts; 
several parts of several wholes: 2 out of 5 objects 
 

Measure of quantities 2/5 of any given unit (e.g., meters, liters, miles) 

 

Operator 2/5  (where  can be anything) 

Quotient/ Division 2 divided by 5 

Solutions of algebraic 

equations 

the number  that solves the equation  

 

 

Finally, while many students can perform fraction arithmetic without errors, it 

does not mean that this is based on a proficient conceptual understanding of 

fractions. Instead, they may rely on blunt learned procedures without being able to 

plausibly identify when to apply which operation (i.e., operation errors; Hasemann, 

1986; Lortie-Forgues et al., 2015). For instance, Hasemann (1986) showed that 

school children in 7th grade could not understand that two virtually identical problems 

(i.e., solving 1/4 + 1/6 in a symbolic and non-symbolic context) could be solved by 

applying the same procedure. 
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As a result of all these new aspects that children must encounter for 

understanding rational numbers and in particular fractions, many children are not 

able to order fractions with respect to their magnitude, estimate the position of a 

fraction on a number line with given endpoints or calculate correctly with fractions 

(e.g., Lortie-Forgues et al., 2015).  

In sum, there are many stumbling blocks children must overcome to gain 

proficiency with fractions. These stumbling blocks can be seen as discontinuities 

children encounter during their numerical development. So far, some contemporary 

theories and ideas (e.g., conceptual change; see also section 1.3) focus on these 

discontinuities to explain how children’s understanding of rational numbers develops. 

However, according to Siegler et al. (2011), numerical development is shaped by 

discontinuities and continuities. Thus, to gain a more comprehensive view of the 

development of rational numbers, theories should focus not only on discontinuities 

but also on continuities between natural numbers and rational numbers. One theory 

that aims to focus on both discontinuities and continuities is the integrated theory of 

numerical development which will be discussed in the next section. 

 

1.3 The integrated theory of numerical development: the core role of fractions 

The integrated theory of numerical development (ITND) provides a novel 

perspective on how mathematic proficiency evolves (Siegler et al., 2011; Siegler & 

Lortie‐Forgues, 2014). So far, existing theories on numerical development have 

focused mainly on natural numbers. Moreover, the development of natural and 

rational numbers was considered as two distinct processes, with the latter being 

rarely considered as an important building block for numerical understanding (Geary, 

2004, 2007; Gelman & Williams, 1998). On the other hand, theories that try to 

account for individual difficulties with fractions focused primarily on differences and 

discontinuities between natural numbers and fractions (e.g., Hartnett & Gelman, 

1998; Obersteiner, Dresler, et al., 2019; Vamvakoussi & Vosniadou, 2004).  

For instance, Vamvakoussi and Vosniadou (2004) first introduced the 

conceptual change theory to the field of rational numbers. This approach claims that 

children build their knowledge of new number sets (such as the set of rational 

numbers) by referring to their already existing knowledge of previous number sets (in 

this case, natural numbers). For instance, being introduced to the set of rational 
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numbers and in particular to fractions requires children to extend and reorganize their 

knowledge of natural numbers by including rational numbers as a new concept (e.g., 

McMullen, Laakkonen, Hannula-Sormunen, & Lehtinen, 2015; Vamvakoussi, Van 

Dooren, & Verschaffel, 2012; Vamvakoussi & Vosniadou, 2004; Vosniadou & 

Tsoumakis, 2013). This requires modifying the existing concept by understanding 

that true principles for natural numbers are not necessarily valid for all number sets in 

general (Siegler et al., 2011). Ultimately, this means recognizing that each natural 

number is a rational number, but not vice versa.  

When this modification does not occur, individuals tend to overgeneralize their 

existing knowledge on natural numbers and erroneously transfer it to the case of 

rational numbers. This, in turn, leads to wrong conclusions when solving rational 

number problems. This phenomenon is called the whole number bias or natural 

number bias (Ni & Zhou, 2005). For instance, many children think that 1/3 is larger 

than 1/2 because 3 is larger than 2 or conclude that 1/3 + 1/2 is 2/5 because they 

treat numerator and denominator as distinct natural numbers and add them 

separately instead of reasoning about the relation between the numerator and the 

denominator to grasp its underlying magnitude (Alibali & Sidney, 2015). Thus, the 

conceptual change theory focuses on discontinuities that arise during the transition 

from natural numbers to rational numbers due to conceptual differences between 

these number sets (e.g., differences in density or different outcomes for arithmetic 

operations between both number sets; Lortie-Forgues et al., 2015; McMullen et al., 

2015; see also section 1.2).  

In contrast, the ITND (Siegler et al., 2011; Siegler & Lortie‐Forgues, 2014) 

focuses not only on differences between natural and rational numbers but also claims 

that there is a crucial continuity including both numbers sets and, accordingly, 

focuses mainly on the similarities between them. In particular, the theory highlights 

that all numbers (i.e., natural and rational numbers, but also other number sets) 

reflect magnitudes so that all numbers can be placed on number lines. Moreover, it 

postulates that both natural number and fraction processing are comparably 

important for numerical development. According to the theory, two insights during 

mathematical maturation are fundamental for successful fraction understanding: i) 

comprehending that all numbers (natural numbers as well as rational numbers) 

represent magnitudes that can be depicted on a (mental) number line, and ii) 

comprehending that specific characteristics of natural numbers do not necessarily 
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generalize to other number sets, and therefore are not universal to numbers. Those 

characteristics of natural numbers are, amongst others, having unique successors, a 

finite number of entities between two numbers, a unique representation via symbols, 

an increase of magnitude with addition and multiplication processes, and a decrease 

of magnitude following subtraction and division (see also section 1.2). 

Further differences between natural and rational number sets highlighted by 

the theory are that fraction knowledge is obtained much later in children's numerical 

development and, therefore, less precise than natural number knowledge. Among 

other things, this is supposed to contribute to less automated fraction magnitude 

representations. As a result, strategies should play a greater role in fraction 

(magnitude) processing compared to natural numbers, where magnitudes are 

accessed more or less automatically (Berch et al., 1999; Gebuis et al., 2009; 

Rubinsten & Henik, 2005; Siegler & Braithwaite, 2017; see also section 1.3).  

Finally, as a consequence of magnitude understanding being similarly 

important in natural and rational numbers (i.e., understanding that both number sets 

reflect magnitudes, Siegler, 2016), the integrated theory claims that both number 

types should relate to each other and highly correlate with arithmetic and mathematic 

achievement. In fact, this assumption was substantiated by several studies (Bailey et 

al., 2012; Siegler et al., 2011; Wong, 2020), indicating that natural numbers and 

rational numbers are at least comparably important for children’s numerical 

development and achievement.  

In sum, according to the ITND, the role of fraction magnitude processing for 

proficiency in fraction understanding is undeniable (Hansen, Jordan, & Rodrigues, 

2017; Jordan et al., 2013). In this sense, interventions that focus on mapping rational 

numbers onto number lines could help to improve proficiency with fractions. 

However, although magnitude processing is one of the most important predictors for 

fraction understanding, it is certainly not the only predictor that should be considered.  

In the following section, I will highlight the role of cognitive predictors (including 

magnitude processing) that I focus on in this dissertation: the role of i) magnitude 

processing and number line training, ii) basic numerical skills, and iii) the right 

strategy choice for successful fraction understanding. 
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2. COGNITIVE PREDICTORS OF FRACTION PROCESSING 

 Cognitive abilities cover a wide range of constructs that can describe 

variations of mental capabilities and skills among individuals. In principle, they can be 

classified in domain-general and domain-specific cognitive abilities. Domain-general 

cognitive abilities cover constructs that are superordinate to specific domains and 

therefore play a crucial role across domains regardless of their content. These 

abilities include, but are not limited to, the constructs of working memory and 

executive functions (e.g., Cowan & Alloway, 2009; Miyake & Shah, 1999), 

intelligence (e.g., Spearman, 1904), and attention (e.g., Kruschke, 2003).  

On the other hand, domain-specific abilities are of primary importance in the 

single respective content domain. For instance, in numerical cognition, one 

fundamental ability is to understand and process magnitude information (e.g., 

Dehaene & Cohen, 1995; Siegler, 2016) which is an irrelevant ability for social 

cognition and a less relevant ability for language. Thus, identifying domain-general 

and domain-specific underlying cognitive processes that are important for number 

processing in general and fraction processing, in particular, is of high relevance to 

understanding the complex mechanisms involved. Additionally, the identified domain-

specific cognitive processes could be starting points for guided interventions to 

improve proficiency with fractions (see section 2.1 for the importance of number line 

estimation (NLE) interventions to improve fraction magnitude processing).  

Therefore, in the following section, I will focus on a selection of relevant 

domain-specific cognitive predictors for successful fraction processing. However, this 

list is not exhaustive. Additional possible domain-general and domain-specific but 

also meta-cognitive predictors for fraction processing will be discussed in sections 

13.1 to 13.3 of this dissertation. 

 

2.1 The Importance of Fraction Magnitude Processing and Number Lines 

Understanding and processing numerical magnitude is a universal predictor 

for mathematical achievement and substantial for mathematical learning (Siegler, 

2016; Siegler & Braithwaite, 2017; Torbeyns et al., 2015). Magnitude processing is 

typically assessed using magnitude comparison tasks or number line estimation 

tasks (e.g., De Smedt, Noël, Gilmore, & Ansari, 2013; Rousselle & Noël, 2007; 

Schneider, Thompson, & Rittle-Johnson, 2017). In the magnitude comparison task, 
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individuals are asked to either indicate the larger (or smaller) number out of two or 

compare the magnitude of a number to a fixed standard. In the classical number line 

estimation (NLE) task, individuals are asked to locate a given number on a bounded 

but otherwise empty line (e.g., from 0 to 1, 0 to 100, 0 to 1000). On a neural level, the 

intraparietal sulcus (IPS) has been frequently identified as a key brain area for 

processing numerical magnitudes (Dehaene et al., 2003; Fias et al., 2003; Kadosh et 

al., 2007; for a review see Ansari, 2008). Moreover, Vogel et al. (2013) could show 

that the number line estimation task activated similar areas within the right posterior 

IPS than the magnitude comparison task. 

For both tasks, it is assumed that they reflect the representation of number 

magnitude on a mental number line. The most prominent indicator of magnitude 

processing for the magnitude comparison task is the distance effect (Moyer & 

Landauer, 1967). The distance effect describes the observation that the further apart 

the magnitudes of two numbers on the mental number line, the faster and more 

accurate they are compared. Moreover, the most prominent indicator of magnitude 

processing for the NLE task is the percentage absolute estimation error (PAE; Siegler 

& Booth, 2004; Siegler & Opfer, 2003). The PAE refers to the absolute difference 

between the individuals estimate on the number line and the proper location of the 

number on that same number line ((abs (estimated position – real position)/ scale of 

the number line)*100; cf. Siegler & Booth, 2004). The smaller the PAE, the more 

accurate the given estimates. 

Two meta-analyses indicated that performance in both tasks correlated 

significantly with a wide range of other numerical/mathematical skills (Schneider, 

Beeres, et al., 2017; Schneider et al., 2018). The strength of the association of 

magnitude comparison and mathematical competence was r =. 278 with a higher 

effect size for symbolic (.302) than non-symbolic (.241) magnitude comparison 

(Schneider, Beeres, et al., 2017). For the NLE task, the strength of association of 

NLE and mathematical competence was r =.441. Moreover, this second meta-

analysis found that the correlation between mathematical competence and NLE was 

higher for fraction NLE than for natural number NLE. Finally, correlations of 

mathematical competence with the NLE task were higher than with the magnitude 

comparison task (Schneider et al., 2018). This highlights the importance of the NLE 

task as a measure of (fraction) magnitude processing and as a possible approach for 

successful fraction interventions to improve fraction magnitude processing.   
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In fact, there is a variety of domain-general and domain-specific (including 

basic numerical; see also section 1.2) predictors of fraction processing. However, the 

ability to accurately estimate magnitudes on number lines has emerged as one of the 

most important predictors (see also Gersten, Schumacher, & Jordan, 2017). In 

addition, a wide range of different studies has shown that NLE with natural numbers 

and fractions has predicted arithmetic skills and general mathematical achievement 

(e.g., Bailey et al., 2012; Booth & Siegler, 2006, 2008; Holloway & Ansari, 2009; Liu, 

2018; Sasanguie et al., 2013; Siegler et al., 2012; Siegler & Pyke, 2013). Moreover, 

several studies indicated that NLE is a powerful tool to enhance conceptual fraction 

knowledge by strengthening fraction magnitude understanding in children with or 

without mathematical disabilities (e.g., Barbieri, Rodrigues, Dyson, & Jordan, 2020; 

Dyson, Jordan, Rodrigues, Barbieri, & Rinne, 2020; Fazio, Kennedy, & Siegler, 2016; 

Gunderson, Hamdan, Hildebrand, & Bartek, 2019; Hamdan & Gunderson, 2017; Kiili, 

Moeller, & Ninaus, 2018; Schumacher et al., 2018; Sidney, Thompson, & Rivera, 

2019). 

Taken together, the understanding of fraction magnitude and the ability to train 

this understanding via the NLE task has become one of the centerpieces in research 

dealing with cognitive processes of fractions. However, proficiency in fraction 

magnitude processing is not the only predictor for fraction understanding. In fact, 

there are a variety of domain-general and domain-specific predictors that are also 

crucial for fraction processing.   

 

2.2 Basic numerical skills as essential Foundations for Fraction 
Understanding 

Mastery of basic numerical skills is an essential foundation in children’s 

development of arithmetic skills and crucial for general mathematical achievement 

(e.g., Aunio & Räsänen, 2016; Booth & Siegler, 2008; Cowan & Powell, 2014; 

Dowker, 2005, 2008; Geary, 2000, 2007; Landerl, Bevan, & Butterworth, 2004). 

Thus, recognizing which basic numerical skills have the largest impact on later 

mathematical achievement has important implications. However, in general, there is 

no agreement on what basic numerical skills entail (see Aunio et al., 2004 and 

Kolkman et al., 2013 for different classifications). So far, a variety of different 

numerical tasks have been used to assess basic numerical skills like symbolic and 

non-symbolic numeracy, counting, subitizing, simple arithmetic, a basic 

understanding of mathematical relations as well as the already mentioned magnitude 
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understanding (e.g., Hirsch, Lambert, Coppens, & Moeller, 2018; Jordan, Kaplan, 

Locuniak, & Ramineni, 2007; Kolkman et al., 2013; Link, Nuerk, & Moeller, 2014; 

Martin, Cirino, Sharp, & Barnes, 2014; Moeller, Pixner, Zuber, Kaufmann, & Nuerk, 

2011; Penner-Wilger et al., 2007; Rousselle & Noël, 2007; Schneider, Grabner, & 

Paetsch, 2009).  

An increasing body of literature has shown that basic numerical skills are 

crucial prerequisites for later fraction understanding (Bailey, Siegler, & Geary, 2014; 

Hansen et al., 2015; Hecht & Vagi, 2010; Jordan et al., 2013; Liu & Wong, 2020; Mou 

et al., 2016; Namkung & Fuchs, 2016; Namkung, Fuchs, & Koziol, 2018; Seethaler, 

Fuchs, Star, & Bryant, 2011; Siegler & Pyke, 2013; Stelzer, Andrés, Canet Juric, 

Urquijo, & Richard’s, 2019; Stelzer, Richard’s, Andrés, Vernucci, & Introzzi, 2019; 

Vukovic et al., 2014; Ye et al., 2016; see also Table 2.1 for all studies including more 

than one predictor). These studies identified domain-general and domain-specific 

predictors that are important for proficiency with fractions. However, it is relevant to 

mention that domain-specific predictors did not only cover basic numerical skills but 

also more advanced mathematical skills like different fraction and proportional 

reasoning measures (see Table 2.1). In particular, the Delaware Longitudinal Study 

(for an overview, see Jordan, Resnick, Rodrigues, Hansen, & Dyson, 2017) could 

determine crucial domain-general and domain-specific predictors of fraction learning. 

The study was designed as a longitudinal study to monitor students at 8 time points 

from the end of 3rd/ beginning of 4th to 6th grade. It assessed general cognitive 

predictors like working memory (assessed in 3rd and 5th grade), language (3rd grade), 

attentive behavior (3rd and 5th grade), and nonverbal reasoning ability (3rd grade). 

Moreover, domain-specific predictors like whole number line estimation (3rd and 5th 

grade), non-symbolic proportional reasoning (5th grade), addition (3rd grade) and 

multiplication fluency (5th grade), long division (5th grade) as well as general 

achievement in mathematics (each grade) was assessed over the course of this 

study. Finally, the study examined four different fraction outcomes in 4th and 6th 

grade: fraction number line estimation (i.e., with number lines from 0 to 1 and from 1 

to 2), fraction concepts (i.e., part whole concept and equivalent fractions), word 

problems with fractions, and fraction procedures (i.e., all arithmetic operations).  

This way, the study was able to identify domain-general and -specific 

predictors of these fraction outcomes from 3rd to 4th and 5th to 6th grade. In a first 

study, Jordan et al. (2013) examined the predictive value of students’ 3rd grade 
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performance on domain-specific (approximate number system, number line 

estimation with natural numbers, and calculation fluency) and domain-general 

predictors (e.g., language, nonverbal reasoning, attentive behavior, working memory, 

and reading fluency) on their 4th grade performance on fraction concepts and fraction 

procedures. Results indicated that number line estimation with natural numbers, 

calculation fluency, reading fluency, attention, language, and nonverbal reasoning 

were predictors of fraction concepts. Additionally, number line estimation with natural 

numbers, calculation fluency, attention, and working memory were significant 

predictors of fraction procedures. In both analyses, number line estimation had the 

largest predictive value for fraction concepts and fraction procedures.  

In a second study, Hansen et al. (2015) investigated 5th graders domain-

specific (e.g., number line estimation with natural numbers, non-symbolic proportional 

reasoning, long division, and multiplication fact fluency) and domain-general (e.g., 

working memory, attentive behavior, and reading fluency) predictors of students’ 6th 

grade fraction number line estimation, concepts and procedures achievement. This 

time, the analysis revealed that number line estimation, long division, non-symbolic 

proportional reasoning, working memory, and attentive behavior were significant 

predictors of fraction concepts. Moreover, whole number line estimation, 

multiplication fluency, and attentive behavior were unique predictors of fraction 

procedures. 

Table 2.1 provides an overview of all studies investigating domain-specific as 

well as domain-general predictors for fraction understanding. To conclude this 

subsection, I would like to emphasize three points through this table: i.) Most of the 

studies focused on both domain-general and domain-specific predictors. Only 

focusing on either domain-general or domain-specific predictors would help broaden 

the set of possible predictor variables and give a clearer picture of the respective 

domain. ii.) Moreover, domain-specific predictors focused on basic numerical skills 

and more advanced mathematical skills like different fraction or proportional 

reasoning measures. Therefore, emphasizing only on basic numerical skills 

(including skills dependent and independent of magnitude processing) could help to 

identify skills that are especially important prior to advanced mathematics. 

Additionally, most of the investigated basic numerical skills depended on magnitude 

processing (e.g., different arithmetic skills). However, identifying important skills that 

are independent of magnitude processing could also be of particular interest, 
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especially for children struggling with magnitude processing (e.g., children and 

students diagnosed with dyscalculia; Price, Holloway, Räsänen, Vesterinen, & 

Ansari, 2007). Therefore, identifying basic numerical skills dependent and 

independent of magnitude processing might be a more accessible starting point to 

improve proficiency with fractions. iii.) Finally, in most of the studies, regression 

analysis was used as a statistical method. However, collinearity between variables is 

problematic in regression analysis, as it becomes increasingly difficult to determine 

the independent contribution of each variable to the explained variance in the 

outcome variable. However, multicollinearity between variables is expected when 

these variables measure similar (e.g., natural number magnitude and fraction 

magnitude) or related concepts (e.g., approximate number system and mathematics 

achievement). Additionally, determining the relative importance of each predictor 

variable can lead to new approaches to improve fraction understanding by fostering 

the performance of the most important predictor variables. Therefore, it is necessary 

to use methodological approaches to better address multicollinearity to understand 

the relationship and relative importance of variables and avoid underestimating and 

overestimating predictor variables.  

Despite the above-mentioned importance of natural number and fraction 

magnitude understanding as well as the mastery of basic numerical skills, correct 

strategy use during fraction processing has also been shown to facilitate fraction 

understanding and performance.  
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Table 2.1: Summary of studies investigating domain-specific as well as domain-general predictors for fraction understanding.  
Please note: Only studies with at least two identified predictors were included.     

Study Design N Statistical 

Method 

 

Fraction 

Outcomes 

 

Identified 

Predictors: 

domain-

specific 

 

Identified 

Predictors: 

domain- 

 general 

Hecht & Vagi, 

2010 

Longitudinal 

(from 4th to 5th 

grade) 

 

181 Mediation 

analysis 

Fraction 

computation, 

Fraction 

estimation, 

Fraction word 

problems 

 

Fraction 

conceptual 

knowledge, 

Arithmetic 

fluency 

Attentive 

behavior, 

Working 

memory 

Seethaler, 

Fuchs, Star, & 

Bryant, 2011 

Longitudinal 

(from 3rd grade 

to 5th grade) 

 

688 Multiple 

regression 

Rational 

number 

arithmetic 

skills (fraction, 

decimals, and 

percentages) 

 

Computational 

fluency with 

natural 

numbers  

Language, 

Nonverbal 

reasoning, 

Working 

memory 

(numerical), 

Concept 

formation 

 



20 

 

Jordan et al., 

2013 

Longitudinal 

(from 3rd to the 

end of 4th 

grade) 

357 Multiple 

regression 

Fraction 

concepts, 

Fraction 

procedures  

Calculation 

fluency, 

Number line 

estimation 

with natural 

numbers 

Attentive 

behavior, 

Language, 

Nonverbal 

reasoning, 

Reading 

fluency, 

Working 

memory 

 

Siegler & 

Pyke, 2013 

Cross-

sectional (6th 

grade and 8th 

grade) 

 

120 (60 

students from 

each grade) 

Hierarchical 

regression 

Fraction 

arithmetic 

Division with 

natural 

numbers, 

Fraction 

magnitude 

measures 

(number line 

estimation and 

magnitude 

comparison 

task) 

 

Reading, 

Executive 

functions  
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Bailey, 

Siegler, & 

Geary, 2014 

Longitudinal (3 

time points: 1st 

grade, 7th 

grade, and 8th 

grade) 

 

162 – 172 

(depending on 

the analysis) 

Multiple 

regression 

Fraction 

arithmetic, 

Fraction 

magnitude 

knowledge 

(number line 

estimation and 

magnitude 

comparison 

task) 

 

Number line 

estimation 

with natural 

numbers, 

Arithmetic with 

natural 

numbers 

Working 

memory 

Vukovic et al., 

2014 

Longitudinal (3 

time points: 1st 

grade, 2nd 

grade, and 4th 

grade) 

 

163 Mediation 

analysis 

Fraction 

concepts 

Number 

knowledge 

(direct 

predictor), 

Number line 

estimation 

(mediator), 

Arithmetic 

computations 

(mediator) all 

three with 

natural 

numbers 

 

Attentive 

behavior, 

Language, 

Executive 

control, 

Visual-spatial 

memory 
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Hansen et al., 

2015 

Longitudinal 

(from 5th grade 

to 6th grade) 

 

334 Multiple 

regression 

Fraction 

concepts, 

Fraction 

procedures 

Non-symbolic 

proportional 

reasoning, 

Number line 

estimation 

with natural 

numbers, 

Long division, 

Multiplication 

fact fluency 

 

Working 

memory, 

Attentive 

behavior 

Namkung & 

Fuchs, 2016 

Longitudinal 

(beginning and 

end of 4th 

grade) 

 

139 Structural 

equation 

modeling/ 

Path analysis 

Number line 

estimation, 

fraction 

arithmetic 

(addition and 

subtraction) 

- Language, 

Attentive 

behavior, 

Processing 

speed, 

Nonverbal 

reasoning 
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Mou et al., 

2016 

Longitudinal 

(from 1st grad 

to 9th grade) 

 

122 Multiple 

regression/ 

Bayes factor 

for regression 

models 

Fraction 

magnitude 

knowledge 

Fraction 

procedures, 

Fraction 

conceptual 

knowledge 

(numerator-

denominator 

relation), 

Magnitude 

knowledge of 

natural 

numbers 

 

Working 

memory 

Resnick et al., 

2016 

Longitudinal 

(from 4th to 6th 

grade) 

 

517 (472 

included in 

class 

membership of 

growth 

trajectories) 

 

Latent growth 

curve 

modeling/ 

Ordinal 

logistic 

regression 

Number line 

estimation, 

Fraction 

knowledge 

Multiplication 

fluency, 

Number line 

estimation 

with natural 

numbers 

Classroom 

attention 
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Ye et al., 2016 Longitudinal 

(from 3rd to 6th 

grade) 

 

536 Mediation 

analysis 

Fraction 

concepts, 

Fraction 

procedures 

(together 

fraction 

knowledge) 

 

Calculation 

with natural 

numbers, 

magnitude 

reasoning with 

natural 

numbers 

(mediators 

between 

fraction 

outcomes and 

domain-

general 

predictors) 

 

Attentive 

behavior, 

Working 

memory, 

Verbal ability, 

Nonverbal 

reasoning 

ability 

 

Stelzer, 

Andrés, Canet 

Juric, Urquijo, 

& Richard’s, 

2019 

Cross-

sectional (5th 

grade) 

 

97 Mediation 

analysis 

Fraction 

conceptual 

knowledge 

Division 

(mediator 

between all 

three domain-

general 

predictors and 

fraction 

knowledge) 

 

Selective 

attention, 

Working 

memory, fluid 

intelligence 
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2.3 The Role of Strategies for Fraction Processing 

As already mentioned in section 1.3, automated magnitude processing, as it is 

supposed for natural numbers, is rather unlikely for fractions (e.g., Siegler et al., 

2011). In fact, it can be assumed that automatic processing of fractions only occurs 

for so-called everyday fractions (e.g., 3/4) or some unit fractions (e.g., fractions with 1 

as numerator 1/2, 1/3, 1/4, 1/5) because these fractions are so frequent in our daily 

use that an automatic magnitude representation has been formed (Wortha, 

Obersteiner, Dresler, accepted). As automatic processing does not occur in most 

cases, it is more common for individuals to rely on various strategies to help them 

process fractions or solve any task at hand involving fractions (e.g., a task involving 

fraction arithmetic or comparing the magnitude of two fractions; Sidney, Thompson, & 

Opfer, 2019). 

In general, a strategy can be defined as a “procedure or set of procedures for 

achieving a higher level goal or task” (Lemaire & Reder, 1999, p. 365). There are 

multiple ways/procedures for solving any kind of problem. However, these may differ 

in their correctness and their effectiveness. To account for variability in strategy 

choice, Lemaire and Siegler (1995) defined four dimensions of strategy changes: a) 

strategy repertoire, b) strategy distribution, c) strategy execution, and d) strategy 

selection. The right strategy choice is a developmental process that involves 

experience and practice, which ultimately leads to improvement in strategy use  

(Siegler, 1996, 2006).  

When it comes to fraction processing, there are various strategies that 

individuals are using to process them. Moreover, most of the strategies in the 

literature are magnitude-based (e.g., Clarke & Roche, 2009; Faulkenberry & Pierce, 

2011; Fazio, DeWolf, & Siegler, 2016). This means that processing of magnitudes, 

whether it is componential (e.g., processing the numerator and denominator 

separately) or holistically (e.g., accessing the magnitude of the whole fraction), is 

always involved when applying a magnitude-based strategy to solve a fraction 

problem (for more insights into componential and holistic fraction processing see also 

section 1.2). In fact, Faulkenberry and Pierce (2011) evaluated strategy use on each 

trial and found three types of strategies used during magnitude comparison of 

fractions: i) component-based strategies (e.g., cross multiplication or converting the 

fractions into decimals), ii) holistic strategies (e.g., visualizing fractions or 
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benchmarking), and iii) simply knowing the answer. Moreover, Fazio, DeWolf, and 

Siegler (2016) also investigated strategies used by students with different 

mathematical proficiency levels to solve fraction magnitude comparison tasks on a 

trial-by-trial basis. Overall, they reported 19 different strategies, which either led to 

correct or incorrect answers. Interestingly, students with lower mathematical 

proficiency where more likely to apply strategies that do not lead to a correct solution 

to ‘solve’ a fraction problem. However, despite intuition and guessing all reported 

strategies were again magnitude-based.  

Another way to assess strategies in fraction magnitude processing is eye 

tracking. This method allows to record individuals' eye movements, including eye 

fixations which is a helpful tool to gain insights into mental processing and problem-

solving strategies (Holmqvist et al., 2011; Mock, Huber, Klein, & Moeller, 2016). A 

large body of eye-tracking studies confirmed that participants strongly relied on either 

componential or holistical strategies when processing fractions depending on the 

type of fraction (e.g., Huber, Moeller, & Nuerk, 2014; Hurst & Cordes, 2016; 

Ischebeck, Weilharter, & Körner, 2016; Obersteiner et al., 2014; Obersteiner & 

Tumpek, 2016). While fraction comparison problems with common components (e.g., 

common numerators or denominators) were associated with componential 

processing strategies, fraction comparison problems with four distinct components 

were typically solved by more holistic strategies. Therefore, whenever the processing 

of the overall fraction is not required, simpler componential strategies seem to be 

used. However, componential strategies can lead to specific error patterns when 

reasoning about components is overgeneralized (e.g., natural number bias, Alibali & 

Sidney, 2015; Ni & Zhou, 2005; see also section 1.2). Taken together, the use of 

magnitude-based strategies seems inevitable, at least for positive fraction magnitude 

comparisons. Nevertheless, little is known about strategies used for negative fraction 

magnitude comparison and whether these strategies are also magnitude-based. 

To sum up, in section 2, I presented evidence for relevant cognitive predictors 

of fraction processing based on the literature. Fundamental magnitude processing, 

proficiency with basic numerical skills, and correct strategy use were identified as 

crucial prerequisites for fraction understanding. However, it is well known that non-

cognitive predictors like motivational and affective variables also play an important 

role in learning. Consequently, it is reasonable that these processes are also involved 
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in the development of fraction understanding. Therefore, in the following section, I will 

discuss the role of motivational and affective predictors as potential requirements for 

proficiency with fractions. 

 

3. MOTIVATIONAL AND AFFECTIVE PREDICTORS OF FRACTION 

PROCESSING 
 

Like cognitive abilities, non-cognitive factors cover a variety of different 

constructs. However, in contrast to cognitive abilities, non-cognitive factors cannot be 

measured by achievement tests but are typically assessed using questionnaires 

(e.g., surveys that cover trait and state anxiety) or for the case of emotions also using 

physiological measurements (e.g., pulse rate).  

In fact, two of the most important non-cognitive predictors for learning are 

motivation and (negative) emotions (Anderman & Dawson, 2011; Bower, 1992; 

Kusurkar, Ten Cate, Vos, Westers, & Croiset, 2013; Pekrun, 2014). Many studies 

show that both are important for academic success (Graziano, Reavis, Keane, & 

Calkins, 2007; Linnenbrink & Pintrich, 2002). In this context, both predictors are 

referred to as academic motivation (e.g., Vallerand et al., 1992) and academic 

emotions (e.g., Pekrun, 2016). Additionally, both also play a crucial role in 

mathematical thinking and problem-solving (Hannula, 2006a, 2006b, 2015; 

Schukajlow, Rakoczy, & Pekrun, 2017). Therefore, these two non-cognitive 

predictors could explain not only individual learning progress and achievement in 

mathematics in general but may also be applied to dealing with fractions in particular 

- in addition to and beyond cognitive predictors. 

For this reason, I will focus on motivation and (negative) emotions as non-

cognitive predictors (and obstacles) for successful fraction learning in the following 

section. But, as mentioned before, this overview is not meant to be exhaustive. For 

instance, it is known that personality traits play an important role in academic / 

learning success from both psychological and educational research (e.g., De Feyter 

et al., 2012; Jensen, 2015). Therefore, additional possible non-cognitive predictors 

for fraction learning and performance will be discussed in section 13.2 of this 

dissertation. 
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3.1 The Importance of Motivation for Fraction Learning and Performance 

A key non-cognitive predictor of successful learning is the ability to motivate 

oneself to learn and to remain motivated during the learning process. Unfortunately, 

there is no consensus on what motivation is (e.g., Franken, 1998; Kleinginna & 

Kleinginna, 1981; Morgan, MacTurk, & Hrncir, 1995; but see also Murayama, 2021 

for a discussion on whether motivation is a real mental process). In fact, there are 

various theories on motivation (e.g., content theories, process theories, decision 

making theories, expectancy-value theory, and self-determination theory; Barbuto Jr, 

2006; Maslow, 1943; McClelland, 1987; Ryan & Deci, 2000; Vroom, 1964; Wigfield & 

Eccles, 2000). Simplified, motivation refers to individuals’ reasons for behaving in a 

certain way. These reasons can be intrinsic (e.g., driven by reasons within the 

individual) or extrinsic (e.g., driven by external reasons). Moreover, motivation can 

explain the direction (e.g., avoidance vs. approach behavior; Elliot, 1999), activation 

(e.g., task execution vs. distraction; Kuhl & Beckmann, 1985), persistence (e.g., 

invested time; Vollmeyer & Rheinberg, 2000), and intensity (e. g., magnitude of effort; 

Brehm & Self, 1989) of specific behavior.  

Self-determination theory proposes two types of motivation (e.g., extrinsic vs. 

intrinsic, but see also integrative vs. instrumental for related types of motivation in 

language learning; Gardner & Lambert, 1972; Ryan & Deci, 2000). For the scope of 

this dissertation, I will focus on the distinction between extrinsic and intrinsic 

motivation.  

In the context of education or learning (also referred to as academic 

motivation; Vallerand et al., 1992), extrinsic motivation refers to the intention of the 

individual to learn because of external factors. For example, to obtain a better grade, 

get a university admission, or receive the teacher's praise. On the contrary, intrinsic 

motivation to learn refers to the individual’s drive to learn because of self-determined 

motives, like personal interest, personally relevant learning content, enjoyment of the 

learning content, and curiosity (Hennessey, Moran, Altringer, & Amabile, 2015; Ryan 

& Deci, 2000; Wigfield, Eccles, Schiefele, Roeser, & Davis‐Kean, 2007). Both forms 

of motivation have specific effects on learning outcomes. For instance, intrinsic 

motivation improves conceptual learning and cognitive flexibility, whereas extrinsic 

motivation seems to enable competitiveness and reach fast performance goals like 

better grades (Ryan & Deci, 2000; Streblow & Schiefele, 2006; Wigfield, 1997). 
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However, both forms of motivation are often intertwined and can occur 

simultaneously (Amabile, Hill, Hennessey, & Tighe, 1994; Buff, 2001; Cerasoli, 

Nicklin, & Ford, 2014).  

In general, intrinsic motivation seems to have more lasting effects on learning 

than extrinsic motivation. Research has shown a general positive association 

between intrinsic motivation and task performance (Schiefele & Streblow, 2005). 

Additionally, intrinsic motivation seems to lead to more profound processing of the 

learning content (Walker, Greene, & Mansell, 2006). However, extrinsic motivation is 

also important for learning as it is particularly relevant for goal orientation and 

competitive behavior in the learning context (Schiefele, Streblow, Ermgassen, & 

Moschner, 2003). 

Research on mathematical learning has repeatedly shown that motivation is a 

driving factor in this content area. Motivation is important for engagement with 

mathematics, problem-solving, performance, and achievement in mathematics (e.g., 

Hannula, 2006b; Michaelides, Brown, Eklöf, & Papanastasiou, 2019; Schukajlow et 

al., 2017). In this context, based on the Yerkes-Dodson-Law, the relationship 

between motivation, difficulty of the learning task, and performance can be described 

as following an inverted U-shape. According to this approach, motivation decreases 

when task difficulty is either too high or too low - affecting task performance in turn 

(Yerkes & Dodson, 1908). Moreover, difficult content is often accompanied by low 

motivation and subsequently less engagement with the topic (Siegler & Pyke, 2013). 

Ultimately, this results in knowledge gaps and may lead to a vicious circle because 

with knowledge gaps, the actual learning content becomes insignificant, and this, in 

turn, may result in poorer motivation to learn (Reyna, Chapman, Dougherty, & 

Confrey, 2012; Siegler & Pyke, 2013). Therefore, motivation might play a crucial role 

in understanding fractions as it is one of the most challenging topics children 

encounter in the mathematical curriculum (Lamon, 2020). Given the importance of 

motivation for mathematics and difficult tasks in general, it seems reasonable to 

examine the role of motivation for fraction learning and performance.  

In addition to the role of motivation for learning, it is well known that emotions 

can influence both handling the learning content, the approach, and individual 

performance in problem-solving. Therefore, I will discuss the role of emotions for 

learning in general and fraction learning in particular. 
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3.2 The Role of (Negative) Emotions for learning 

There are many definitions but no clear agreement on what an emotion is (see 

also Kleinginna & Kleinginna, 1981a). In general, however, most definitions share the 

view that emotions can be divided into several categories. Overall, emotions can be 

defined as multidimensional constructs that reflect complex, interrelated categories of 

affect (e.g., happiness or anger), as well as associated physiological responses (e.g., 

increased heart rate and pulse), cognitive processes (e.g., interpretation of the 

situation), expressive responses (e.g., verbal or non-verbal reflected for instance by 

facial expressions), and behavioral/ motivational responses (e.g., fight or flight 

reactions; Scherer, 2009). Moreover, emotions can be classified as positive or 

negative along the dimension of valence (Colombetti, 2005; Ekman & Davidson, 

1994; Lewin, 1936; Solomon & Stone, 2002).  

Research consistently showed that emotions significantly impact learning 

processes and academic achievement (e.g., Pekrun & Linnenbrink-Garcia, 2014). In 

relation to learning, so-called achievement or academic emotions are of particular 

relevance. Academic emotions can be defined as emotions that appear in the context 

of performance-related activities such as an examination situation but also attending 

school classes or doing homework (Pekrun, 2016; Pekrun & Stephens, 2012). Like 

motivation, emotions can be driving forces that can lead to turning towards a task or 

avoiding a task. For instance, several studies have shown that negative emotions 

lead to task avoidance and even impaired task performance (for an overview see 

Pekrun & Linnenbrink-Garcia, 2014). On the other side, positive emotions can lead to 

focusing more on the learning content and thus foster learning and performance 

(Pekrun, Goetz, Titz, & Perry, 2002; Pekrun, Lichtenfeld, Marsh, Murayama, & Goetz, 

2017; Pekrun & Linnenbrink-Garcia, 2012; but see also Baumeister, Alquist, & Vohs, 

2015; D’Mello, Lehman, Pekrun, & Graesser, 2014 for opposite results). Of particular 

importance in this context is also emotion regulation because not only emotions 

themselves play a role in learning, but also their regulation. Emotion regulation can 

be defined as “processes by which individuals influence which emotions they have, 

when they have them, and how they experience and express these emotions” 

(Gross, 1998, p. 275). However, it is debated whether emotions and emotion 

regulation are distinguishable (e.g., Campos, Frankel, & Camras, 2004; Werner & 

Gross, 2010). Emotion regulation plays a crucial role in learning situations and school 
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(Boekaerts & Pekrun, 2015) as well as in examination situations (e.g., test anxiety; 

Bradley et al., 2010).   

In the content domain of mathematics, math anxiety is the prime example where 

negative emotions lead to avoidance of mathematics and impaired mathematical 

achievement (Ashcraft, 2002; Dowker, Sarkar, & Looi, 2016). Especially difficult 

mathematical tasks are associated with math anxiety and negative emotions (also 

known as the anxiety-complexity effect; Ashcraft & Kirk, 2001; Suárez-Pellicioni, 

Núñez-Peña, & Colomé, 2013). As fractions can be considered one of the most 

challenging topics in the mathematical curriculum, it is reasonable to assume that 

dealing with fractions can lead to math anxiety. In fact, Sidney, Thalluri, et al. (2019) 

showed that performance on both fraction magnitude comparison and NLE task was 

impaired in adult participants with higher math anxiety compared to low math-anxious 

participants. Moreover, Rayner, Pitsolantis, and Osana (2009) found that math 

anxiety negatively affected preservice teachers' performance in both conceptual and 

procedural fraction knowledge tests. This shows that even individuals who should be 

used to and able to deal with the learning content are not immune from the influence 

of negative emotions caused by fractions. In turn, math anxiety caused by the 

learning content might affect students’ performance in mathematical problem-solving 

(Beilock, Gunderson, Ramirez, & Levine, 2010). However, more research is needed 

to determine whether the observed association between math anxiety and fraction 

understanding i) only affects highly math-anxious individuals, ii) is generalizable to 

rational numbers or specific to more complex rational numbers like fractions, and iii) 

which role emotion regulation plays during fraction processing. 

4. Research questions – Considering cognitive and non-cognitive 

predictors of fraction processing  
 

The present thesis is based on the assumption that the ability of the human 

cognitive system to efficiently process complex and challenging learning content can 

only be fully understood by considering relevant cognitive and non-cognitive 

processes, such as motivational and affective processes. Accordingly, a model that 

intends to account for fraction processing should take a more holistic approach and 

consider relevant cognitive factors specific for handling fractions or rational numbers 

and more domain-general factors that are crucial to master fractions. Thus, 

comparable to other learning content, mastery of rational numbers and especially of 



32 

 

fractions should be predicted not only by cognitive but also by motivational and 

affective variables. However, while existing theories on fraction processing have 

mainly focused on cognitive variables that facilitate or impede fraction processing 

(Siegler et al., 2011; Siegler & Lortie‐Forgues, 2014; Vamvakoussi & Vosniadou, 

2004, 2010b), none of these current theories have considered motivational and 

affective variables as possible factors contributing to fraction processing yet. 

For this reason, the present work aims to empirically extend the scope of the 

currently most prominent theory of fraction processing (i.e., ITND, Siegler & 

Lortie‐Forgues, 2014) to provide a more comprehensive idea by considering relevant 

predictors of fraction processing. In particular, I aim to evaluate the role and 

associations of cognitive as well as motivational and affective predictors of fraction 

processing.  

In line with Siegler’s integrated theory (Siegler & Lortie‐Forgues, 2014), my 

starting point will be fraction magnitude processing because there is extensive 

evidence showing that magnitude processing seems to be the core competence 

underlying fraction processing and understanding (Jordan, Rodrigues, Hansen, & 

Resnick, 2017; Mou et al., 2016; Siegler, 2016; see also section 1.3 and section 2.1). 

Therefore, in a first intervention study, I investigated changes in neuro-functional 

correlates of fraction magnitude processing following an intensive 5-day NLE training 

in adult participants. More specifically, I was interested in pre-post comparisons of 

brain activation (measured using functional magnetic resonance imaging, fMRI) 

associated with three target tasks (e.g., symbolic fraction magnitude comparison 

task, line proportion comparison task, and fraction-line proportion matching task) and 

additional transfer effects.  

Building on this, in the second study, I examined the role of domain-specific skills 

for fraction processing in a cross-sectional sample of 939 German secondary school 

children from grades 7 to 11. In particular, I assessed a comprehensive battery of 

basic numerical skills (including skills dependent and independent of magnitude 

processing; see also section 2.2) while controlling for influences of general cognitive 

ability, grade level, and sex. To account for multicollinearity and determine each 

predictor variable's relative importance, I used relative weight analysis as a 

methodological approach. Unlike other studies, this allowed me to prevent over- and 

underestimating the relevance of predictors. In addition, this might give a clearer 

picture of the contribution each predictor makes to fraction processing.  



33 

 

The third study then considered the role of strategies for fraction processing not 

necessarily related to magnitude processing (section 2.3). In this study, a fraction 

magnitude comparison task with positive and negative fractions was employed to test 

specific strategies, usually used to compare positive fractions or negative numbers. 

Additionally, participants’ eye-fixation behavior was tracked to evaluate strategy use 

online. Thus, study 2 and study 3 aimed to investigate potential additional relevant 

cognitive predictors over and beyond magnitude processing.  

In a next step, the influence of motivational (section 3.1) and affective (i.e., 

negative emotions; section 3.2) predictors for fraction processing were observed. In 

study 4, different motivation profiles across secondary school students were 

examined to evaluate the role of intrinsic and extrinsic motivation for proficiency and 

performance with fractions. For this, 256 7th graders played a computerized learning 

game over 5 consecutive weeks. Additionally, mathematics and German (as first 

language) school grades, as well as the Situational Motivation Scale (SIMS; Guay, 

Vallerand, & Blanchard, 2000) were assessed. Finally, motivation profiles were 

examined via latent profile analysis to identify possible distinct motivational 

subpopulations within the school students.  

Finally, in study 5, the role of (negative) emotions and emotion regulation for 

difficult tasks (i.e., symbolic fraction and proportion magnitude comparison) 

compared to easier tasks (i.e., decimal and pie charts magnitude comparison) in 

adult participants was explored to get a first idea of the influence of emotion 

regulation on rational number processing. Therefore, I again used fMRI to examine 

brain activation following the presentation of a numerical cue that signalized either a 

difficult or an easy upcoming rational magnitude comparison task.   

Taken together, the present thesis aims to shed light on the role of cognitive (i.e., 

magnitude processing, basic numerical skills, and strategies) as well as motivational 

and affective predictors (i.e., intrinsic and extrinsic motivation, negative emotions, 

and emotion regulation) in fraction processing. Thereby, the current thesis adds 

neurofunctional correlates for magnitude-specific fraction processing to Siegler et 

al.’s ITND and extends it beyond the role of magnitude processing as the core 

cognitive predictor for fraction understanding.  

However, unlike other theories of fraction processing, it must be considered that 

this thesis does not intend to investigate fraction processing from a developmental 

point of view but pursues a more multimodal approach (see Table 4.1) to study 
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fraction processing in different age groups. To this end, I chose not only different 

study designs (e.g., training study, cross-sectional study) and methods (fMRI, eye 

tracking) but also investigated fraction processing from adolescence to adulthood, 

intending to pursue a more general approach to answer the question on what could 

be relevant factors for efficient fraction processing across domains and how some of 

these factors are associated with each other.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 

 

Table 4.1: Summary of the multimodal approaches for this thesis 

 Study Design Participants Fraction Type N Method 

Cognitive Predictors of Fraction Processing 

S
tu

d
y
 I
 

Training study Adults Single- and 

two-digit 

fractions/ line 

proportions 

 

48 fMRI 

S
tu

d
y
 I
I Cross-

sectional 

study 

School 

children      

(7th – 10th 

grade) 

Single-digit 

fractions 

939 Relative 

Weight 

Analysis 

 

S
tu

d
y
 I
II
 

Laboratory 

study 

Adults Single-digit 

fractions 

 

30 Eye Tracking 

Motivational & Affective Predictors of Fraction Processing 

S
tu

d
y
 I
V

 Field Study School 

children      

(7th grade) 

 

Single-digit 

fractions 

256 Latent Profile 

Analysis 

S
tu

d
y
 V

 

Laboratory 

study 

Adults Fractions, 

decimals, and 

proportions 

(always 1/4) 

 

25 fMRI 
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PART II: EMPIRICAL STUDIES  

 

Studies of Section 2: 

Cognitive Predictors of Fraction Processing 

 

Study 1:  Wortha, S. M., Bloechle, J., Ninaus, M., Kiili, K., Lindstedt, A., Bahnmueller,  

    J., Moeller, K., & Klein, E. (2020). Neurofunctional plasticity in fraction  

    learning: An fMRI training study. Trends in Neuroscience and Education, 21,  

    100141. 

 

Study 2:  Wortha, S.M., Klein, E., Lambert, K., Dackermann, T., & Moeller, K. (2021).  

    The relevance of basic numerical skills for fraction understanding: evidence  

    from cross-sectional data (unpublished manuscript). 

 

Study 3:  Wortha, S.M., Moeller, K., Keuler, M., Nuerk, H-C., & Bahnmueller, J.  

    (2021). Strategies for Comparing Negative Fractions (unpublished  

    manuscript). 
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Lindstedt, A., Bahnmueller, J., Moeller, K., & Klein, E.  (2020). 
https://doi.org/10.1016/j.tine.2020.100141; copyright to reuse the content.   
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Abstract 

 

Background: Fractions are known to be difficult for children and adults. Behavioral 

studies suggest that magnitude processing of fractions can be improved via number 

line estimation (NLE) trainings, but little is known about the neural correlates of 

fraction learning.  

Method: To examine the neuro-cognitive foundations of fraction learning, behavioral 

performance and neural correlates were measured before and after a five-day NLE 

training.  

Results: In all evaluation tasks behavioral performance increased after training. We 

observed a fronto-parietal network associated with number magnitude processing to 

be recruited in all tasks as indicated by a numerical distance effect. For symbolic 

fractions, the distance effect on intraparietal activation was only observed after 

training.  

Conclusion: The absence of a distance effect of symbolic fractions before the training 

could indicate an initially less automatic access to their overall magnitude. NLE 

training facilitates processing of overall fraction magnitude as indicated by the 

distance effect in neural activation. 

 

Keywords: fraction processing, number line estimation training, flow experience, 

numerical distance effect, fMRI  
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5.1 Introduction 

Over the last decade, research has shown repeatedly that understanding 

fractions is a crucial predictor of future achievement in higher mathematic [1–3]. 

However, despite intense research efforts in this area, children’s poor performance 

when it comes to handling and understanding fractions hardly changed [4–7]. For 

example, in 2015 Lortie-Forgues and colleagues found that only 27% of 8th graders in 

the United States were able to choose correctly the number closest to the result of a 

fraction addition problem out of four given solution probes [8]. A similar result was 

already reported 1978 by the National Assessment of Educational Progress [9], when 

only 24% of the 8th graders chose the correct answer to the same question. 

Importantly, these difficulties in understanding fractions may be persisting regardless 

of educational efforts because - unlike natural numbers - fraction magnitude 

processing seems to be more difficult due to its bipartite structure reflecting the 

relative relation of numerator and denominator [10]. According to the integrated 

theory of numerical development, magnitude information is the crucial basis for 

understanding numbers. Moreover, the understanding that all real numbers (e.g., 

natural numbers, integers, rational numbers) can be represented on a number line is 

a key assumption for numerical learning. Therefore, promoting fraction magnitude 

understanding seems crucial for fostering fraction understanding more generally [11–

13]. Thus, interventions with the aim to improve fraction understanding and therefore 

conceptual knowledge of fractions should focus on fostering mastery in processing 

and representing fraction magnitude. In the context of (fraction) magnitude 

understanding number lines have been shown to be a beneficial instructional tool 

[14].  

Against this background, we aimed at understanding the neuro-cognitive 

foundations underlying successful fraction learning and their plasticity. For this 

purpose, participants had to complete a number line estimation training and a flow 

questionnaire on five consecutive days. In the following we will highlight the most 

important research results from the research areas which are relevant for our study. 

First, we will give a brief overview about the relevance of number line estimation 

training for fraction magnitude understanding. Second, we will introduce flow as a 

state which is beneficial for learning and especially for fraction learning. Third, we will 

summarize present knowledge about the neural correlates of fraction processing and 
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highlight the importance of our study in this context. Finally, we will introduce the aim 

of the current study including our specific hypothesis. 

Number line estimation as predictor for fraction magnitude learning 

The mental number line is a metaphor for the nature of the number magnitude 

representation whereby numbers are represented spatially with their magnitude 

increasing from left to right (at least in Western cultures [15]). In numerical cognition 

research, number line estimation (henceforth NLE) is used repeatedly to assess 

number magnitude understanding – especially in children ([16–18], but see [19] for 

additional aspects). In the NLE task, participants have to indicate the spatial position 

of a target number on a given number line for which only start- and endpoint are 

specified [18].  

As magnitude is the semantic core for any type of number, the task can not 

only be used to assess, but also to train fraction magnitude understanding [12]. For 

instance, Hamdan & Gunderson [20] conducted a training study with three conditions 

for fraction learning (i.e., number line estimation training, area model training, and a 

non-numerical control). They observed that although children in both the NLE training 

and the area model training improved in the respective tasks, only children 

completing the NLE training showed transfer effects to a not trained magnitude 

comparison task with fractions.  

Moreover, Barbieri and colleagues [21] used a number line-based intervention 

to improve fraction understanding in children with poor conceptual knowledge of 

fractions and compared the number line intervention group to a standard 

mathematics curriculum group. The number line intervention group showed 

significantly larger learning gains than the control group. Finally, computerized and 

game-based versions of the NLE task where used successfully to assess and 

improve children’s fraction understanding [22–24]. Taken together this substantiates 

that number lines are a powerful instructional tool and the NLE task can be applied 

successfully to foster fraction (magnitude) understanding. However, successful 

fraction magnitude learning might not only depend on improving conceptual 

knowledge of fractions, but also on a more fundamental ability to be able to reach a 

beneficial cognitive state for learning which is known as flow experience. 
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Flow experience as an indicator for optimal learning  

Learning is not a pure cognitive process but is affected by motivation and 

emotions [25]. A beneficial factor for learning that is considered specifically in 

computerized approaches on learning is the flow experience of the learner [26]. Flow 

was first coined by Csikszentmihalyi [27] and can be described as a positive 

emotional state [28,29] and as a holistic approach to motivation [30]. In particular, 

flow is characterized by a combination of factors such as increased concentration, 

reduced self-consciousness, sense of control, that are experienced as intrinsically 

rewarding [29]. Flow is usually reached when task demands meet personal skills or 

resources in a balanced way. Thus, when the skills of the learner are too low for the 

demands of a given task – for instance at the beginning of a training – flow 

experience is rather low. The same is true when the skills of the learner are too high 

for a given task which leads to boredom and reduced flow experience. Therefore, 

flow experience seems to be an optimal state for intrinsically motivated learning, 

which helps focus on the given task and can lead to improved performance [31]. This 

is further supported by studies on the neural correlates of flow experience. These 

studies could show that flow experience is associated with increased activation in 

areas of the multiple demand system such as inferior frontal gyrus, putamen and 

anterior insula and decreased activation in areas typically associated with the default 

mode network such as amygdala, medial prefrontal cortex and posterior cingulate 

cortex [32,33]. 

Flow experience was specifically, but not solely considered in different 

computer-based learning settings. For instance, in game-based learning (for a review 

see [34]), collaborative learning of problem-solving in virtual environments [35], 

hypermedia learning [36], e-learning [37], but also in creative processes like music 

learning [38,39]. As such, flow experience should also be beneficial for fostering 

fraction magnitude understanding using a computerized NLE training. However, 

successful fraction magnitude learning might not only depend on improving 

conceptual knowledge of fractions and on the learners’ flow experience, but also on 

the successful interplay of certain neural correlates underlying the neuro-cognitive 

foundations of fraction learning. Therefore, in the following the current state of 

research on neural correlates of fractional learning is briefly outlined. 
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Neural correlates of fraction and proportion magnitude processing 

Despite above described established relevance of fraction knowledge and 

longstanding research in educational sciences and psychology, little is still known 

about the neural mechanisms underlying the processing of proportions and fractions 

in general and the neural correlates of fraction learning in particular. To date, there 

are only few neuroimaging studies investigating the neural correlates of processing 

proportions [40–42] and fractions [43–46] in adults.  

One important aspect across most studies is that the numerical distance effect 

was used as an indicator of automatic processing of overall fraction magnitude. The 

numerical distance effect [47] describes the finding that two numbers are compared 

faster and more accurately the larger the numerical distance between them (i.e., the 

farther apart they are on the mental number line, e.g. 3 and 7 is easier to compare 

than 3 and 4). For instance, for fraction magnitude comparison, Ischebeck et al. [45] 

observed that neural activation within the right IPS was modulated by the overall 

numerical distance between the to-be-compared fractions (e.g., numerical distance 

between   and   ), but not by the numerical distance between numerators or 

denominators (i.e., numerical distance between 2 and 3 for numerators and 

numerical distance between 4 and 7 for denominators when comparing   and ). 

Moreover, Mock and colleagues [41] observed a joint neural correlate of specific 

occipito-parietal activation including the right intraparietal sulcus (IPS) for the 

processing of different notations of proportions including not only fractions, but also 

pie charts, dot patterns and decimals.  

Finally, Klabunde et al. [48] conducted a first fMRI training study on 

proportions in participants with fragile X syndrome and a control group with 

intellectual disabilities. Participants were trained for two days in 10 min sessions until 

they were able to have over 80% accuracy on matching fractions to pie charts and 

pie charts to decimals. Neurofunctional changes from before to after the training 

indicated significantly increased brain activation in the left inferior parietal lobule, left 

postcentral gyrus, and left insula for both groups. However, the mechanism of 

interest in this study was not the distance effect but to investigate neural correlates of 

stimulus equivalence relations. 

In summary, previous studies indicate that the distance effect for overall 

magnitude of the to-be-compared proportions/fractions seems a good measure 
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reflecting automatic processing of overall fraction magnitude. As such, the numerical 

distance effect as a hallmark effect for magnitude processing indicated that the (right) 

IPS seems to play a crucial role in the processing of proportion and fraction 

magnitude independent of the actual task, which is in line with its involvement in the 

processing of natural number magnitude [49]. As such, one might argue that the 

presence of a numerical distance effect seems to indicate automatic processing of 

overall fraction magnitude in proficient fraction processing (see [50] for a similar 

argument on the relation between distance effect and arithmetic performance), while 

absence of a numerical distance effect might indicate that the fractions’ magnitude is 

not automatically accessed. 

 

The present study 

Against this background, we aimed at investigating neuro-functional correlates 

and their plasticity associated with an NLE training of fraction magnitude 

understanding. In particular, we evaluated changes in fraction magnitude processing 

on the neural level as reflected by the numerical distance effect for overall fraction 

magnitude. To the best of our knowledge, this is the first study investigating the 

neural correlates of fraction learning through a NLE training in healthy adult 

participants. We assessed neural activation associated with fraction magnitude 

processing using fMRI before and after a five-day consecutive NLE training on 

fractions. Additionally, we assessed participants’ flow experience in each training 

session.  

Similar to previous studies applying NLE training to children, we expected the 

training to improve participants’ conceptual knowledge of fraction magnitude on a 

behavioral level [20,21]. In particular, we expected significant improvements in NLE 

performance over the five-day training sessions. Additionally, we expected 

participants flow experience to be associated with NLE training improvements over 

the five-day training. Finally, on the neural level, we expected significant changes of 

IPS activation associated with the numerical distance effect from pre- to post fMRI 

session indicating more automatic processing of fractions’ overall magnitude after the 

NLE training. This should become evident by a more pronounced numerical distance 

effect in behavioral measures but also neural activation in IPS after the training.  
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5.2 Methods 

Participants 

48 right-handed adult participants (M = 23.73, SD = 3.65, female = 32) took 

part in this fMRI study. All participants were German native speakers with normal or 

corrected to normal vision and reported no history of psychiatric or neurological 

disorders or drug abuse. The study was approved by the local Ethics Committee of 

the Medical Faculty of the University of Tübingen. Participants gave written informed 

consent and received monetary compensation for their participation.   

Study Design 

The study was designed as a pre-post fMRI training study with five 

consecutive days of training between the fMRI measurements. On the first day before 

the training and on the last day after the training, participants had to complete two 

different magnitude comparison tasks (i.e., comparison of symbolic fractions and 

comparison of line proportions, respectively) and a fraction-line proportion matching 

task (i.e., indicating whether the magnitude reflected by a fraction matched that of a 

line proportion or not) while their brain activation was measured using fMRI (see 

Figure 5.1). In addition to these computerized tasks, participants also completed a 

paper-pencil-based NLE task prior to entering the scanner for pre- and post-test 

measurement (for more details see below). Due to technical problems, behavioral 

data of fMRI measurements could only be obtained from 24 right-handed adult 

participants (M = 22.50, SD = 3.76, female = 16). Imaging results did not differ 

substantially between the participant group with and without behavioral data (i.e., no 

supratheshold clusters at an uncorrected p < .001 and cluster size of 10). Therefore, 

imaging results as well as all behavioral data obtained outside the scanner (i.e., 

training data, flow experience and paper-pencil-based number line estimation task) 

will be reported for all 48 participants, while behavioral fMRI results are reported for 

the respective 24 participants only.  

The training consisted of a fraction number line estimation task. It took place 

outside the scanner and each training session lasted around 15-20 minutes 

depending on participants individual performance. After each training session 

participants completed a brief questionnaire on mental flow to evaluate possible 
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changes in flow experience over the training period (for more details on the flow 

questionnaire see below).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Item sets and stimuli 

In this study, two different item sets (one to be trained and one not to be 

trained) were used. The order of sets was counterbalanced across participants so 

that whichever set a participant did not train on served as the untrained set at the 

pre- and post-test. However, each participant was tested during the fMRI sessions on 

both item sets. Each item set consisted of 48 stimuli with items always presented in 

randomized order. To ensure comparable difficulty of item sets, they were matched 

on overall problem size and numerical distance between fraction pairs used. All 

fractions used in the stimuli sets were proper fractions with nominators and 

denominators ranging from 1 to 30. To evaluate neurofunctional changes in fraction 

magnitude processing, pre-post-test evaluation tasks performed in the fMRI scanner 

included both trained and untrained items. Items of the two item sets can be found in 

the Appendix (Table A5.1). 

 

 

Figure 5.1: Study design. Before and after a five-day number line estimation training fMRI 
measurements were conducted to evaluate neurofunctional changes in brain activation through the 
training. After each training session flow was assessed using the flow was assessed using the flow 

short scale [51]. Prior to entering the scanner for the pre and post measurement a paper-pencil 
number line estimation task was administered. 
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Training Procedure 

For the training, we used two variations of a fraction number line estimation 

(NLE) training with feedback, which differed in appearance and framing, but not in 

numerical content and task. In particular, half of the participants were trained using 

an NLE task set within a gamified environment (see Figure 5.2), while the other half 

were trained in the same NLE task in a non-game environment (see Figure 5.2). For 

the gamified NLE task we used the Semideus research engine, which was already 

applied successfully in previous studies for assessing and training fraction knowledge 

[23,24,52–54]. 

 In both versions of the NLE task, participants had to indicate the correct 

position of a given fraction on a number line ranging from 0 to 1 by maneuvering an 

avatar in the gamified version and moving a white slider along the number line using 

the left and right arrow keys of a computer keyboard in the non-game version. After 

reaching the estimated correct position, participants had to press the space bar to 

select that position. Participants were instructed to indicate the right position as 

quickly and accurately as possible within a time limit of 10 seconds. They received 

positive feedback (i.e., cheering avatar plus coins awarded in the gamified vs. green 

checkmark in the non-game version) when their answer fell within a range ±5% 

around the correct position. In case they failed to answer or did not answer 

accurately enough, negative feedback was given (i.e., avatar struck by lightning plus 

loss of virtual energy in the gamified vs. red cross shown in the non-game version) 

and participants had to repeat the item until it was correctly solved within the ±5% 

range. At each training session, participants worked through 96 items in 12 runs 

containing 8 items each. Each item from the trained stimulus set was encountered 

twice within a training session. Items were presented in randomized order and were 

identical in both versions of the NLE training.  
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Figure 5.2: Examples of different stages of the gamified (I.) and non-game version (II.) of the 
NLE training. 
I. Gamified version: (A) Beginning of a new trial. A fraction is shown in the left upper corner and the 
avatar Semideus has to be moved on a number line between 0 and 1 towards the anticipated position 
on the number line of the shown fraction. (B) The result of a successful trial. If the position of the 
fraction is estimated correctly (tolerated range: ±5 %) Semideus is rewarded with coins. (C) The result 
of a failed trial. In case the position of the fraction is not estimated correctly Semideus is struck by 
lightning and the participant needs to try again. (D) Completed level with feedback. Mountain: For 
completing the level, they earned one star; Coin: for collecting at least 2000 points they earned a 
second star; Heart: for maintaining at least 80% of the life points, they earned a third star. II. Non-
game version: (A) Beginning of a new trial. A fraction is shown in the left upper corner and the 
participant has to move the white slider on a number line between 0 and 1 towards the anticipated 
position on the number line of the shown fraction. (B) The result of a successful trial. In case the 
position of the fraction is estimated correctly (tolerated range: ±5 %) a green check mark appears. (C) 
The result of a failed trial. If the position of the fraction is not estimated correctly a red cross appears 
and the participant must try again. (D) Completed level.  

 

Flow Short Scale 

 Flow was assessed using the German version of the flow short scale [51]. This 

questionnaire consists of 16 items. Thirteen items are associated with the flow scale 

(7-point Likert-scale ranging from 1 = totally disagree to 7 = totally agree), which has 

a three-dimensional structure: The first dimension assessed by the scale is fluency of 

performance (6 items, i.e., “My thoughts or activities run fluently and smoothly”, α = 

.92). The second dimension is absorption by activity (4 items, i.e., “I'm completely 

focused on what I'm doing right now”, α = .80). Finally, the third dimension is 

perceived importance or concern (3 items, i.e., “I'm worried about failure”, α = .90). 

Additionally, the questionnaire includes 3 items of a demand scale (10-point 

Likert-scale ranging from 1 = easy to 10 = difficult), which aims at assessing how 

demanding the current task was for the participant (i.e., “For me personally, the 

current requirements are….”). To monitor flow experience over the course of the 
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training, participants had to complete the flow short scale following each completed 

training session resulting in five completed flow short scales per participant. 

Paper pencil number line estimation task outside the fMRI scanner 

 In addition to the computerized in-scanner tasks (see below) participants had 

to complete a paper pencil version of a number line estimation task prior to both fMRI 

measurements (pre and post training), respectively. The number line ranged from 0 

to 1 with only the endpoints specified and participants had to indicate the spatial 

position on the number line for all items from both item sets (i.e., the trained and the 

untrained set, thus 96 items in total prior to and after the training). This task allowed 

to evaluate potential improvements in spatial localization of fractions on the number 

line through the training.  

Tasks performed inside the fMRI scanner 

For the fMRI paradigm a block design was used, with four separate blocks for 

the three different tasks (i.e., fraction-line proportion matching task, line proportion 

comparison task and symbolic fraction magnitude comparison task). For each item in 

the fraction-line proportion matching task we presented a matching (i.e., magnitude of 

symbolic fraction and line proportion were identical) and a non-matching version (i.e., 

magnitude of symbolic fraction and line proportion were not identical) in the fraction-

line proportion matching task. Therefore, this task took twice as long than both 

comparison tasks and was run in two blocks.  

In the fraction-line proportion matching task, participants were shown a 

fraction and a line proportion (see Figure 5.3a). They had to indicate whether the 

fraction and the line proportion reflected the same magnitude or not (i.e., identical: 

left button, different: right button). In half of the items, magnitudes of fraction and line 

proportion matched. In the line proportion comparison task (see Figure 5.3b), 

participants were shown two line proportions and had to decide which proportion was 

the numerically larger one by pressing a corresponding response button (i.e., the 

right button when the upper and the left button when the lower line proportion was 

larger). Similar, in the symbolic fraction magnitude comparison task (see Figure 

5.3c), participants were shown two fractions and had to decide which fraction was 

numerically larger again.  
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Each block consisted of 4 practice followed by 48 critical trials. In both 

sessions, half of the critical trials consisted of trained stimuli while the other half were 

untrained stimuli. Stimulus order was random for each participant and each session. 

Additionally, 22 trails of a scrambled word task were randomly interspersed in each 

block of each condition to control for eye-movements and to control that participants 

would stay focused. During these trials, two strings of scrambled letters were shown 

on top of each other and participants had to decide which of the strings would form a 

real word (see Figure 5.3d). 

To prevent adaptation of the BOLD signal, 6000 ms pauses (white screen, 

RGB values = 255 255 255) were randomly interspersed between trials. All stimuli 

were projected on a screen outside the scanner and made visible to participants 

through a mirror mounted on the head coil of the scanner. Foam pads were used to 

minimize head movements within the head coil during fMRI acquisition. Stimuli were 

presented in black font against a white background (RGB values = 255 255 255). The 

experiment was programmed using Presentation® v16.1 software 

(www.neurobs.com). 

 

Figure 5.3: Experimental procedure with examples (upper right box) for the different tasks. 
Example for a) the fraction-line proportion matching task, b) the line proportion comparison task, c) the 
symbolic fraction magnitude comparison task, and d) the scrambled letters control task. In this 
example the lower four letters can be unscrambled to form the word “kalt” (German word for “cold”). 
The upper four letters cannot be formed to any word used in German. 
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Each trial started with a fixation cross (500 ms), followed by the respective 

stimulus which appeared for 5000 ms or until participants responded. Subsequently, 

a blank screen appeared for 4000 ms followed by the beginning of a new trial (see 

Figure 5.3). Participants responded by pressing one of two MRI compatible response 

buttons with either their left or their right thumb. Participants were instructed to 

answer as fast and as accurately as possible. 

MRI and fMRI Acquisition 

A high-resolution T1-weighted anatomical scan was acquired by a 3T Siemens 

Magnetom Prisma MRI system (Siemens AG; Erlangen, Germany) equipped with a 

64–channel head-neck matrix coil (TR = 2400 s, matrix = 256 × 256, 176 slices, voxel 

size = 1.0 × 1.0 × 1.0 mm3; FOV = 256 mm, TE = 2.92 ms; flip angle = 8°). The 

anatomical scan was always performed at the end of each experimental session. 

Functional T2*-weighted images were obtained using multiband gradient-echo 

Echo planar imaging (EPI; TR = 792 ms; TE = 30 ms; flip angle = 58°; FOV = 192 

mm, 64 × 64 matrix; 48 slices, voxel size = 3.0 × 3.0 × 3.0 mm3). Total scanning time 

was approximately 80 minutes. A baseline (rest) condition was accomplished by 

including about 20% null events in the paradigm. 

Analysis  

Preliminary Analysis 

Prior to the analysis of the behavioral and imaging data of the present study, 

possible differences between the two variants of NLE training (gamified vs. non 

game-based training) were examined both on the behavioral as well as the neuro-

functional level. However, the behavioral analysis after the training showed no 

significant differences in reaction times or error rates for all three evaluation tasks 

performed in the scanner (i.e., symbolic fraction magnitude comparison, line 

proportion comparison, and fraction-line proportion matching task, all p-values > .05, 

all Fs ≤ 2.85). In line with this, the analysis of imaging data revealed no significant 

difference between the two groups after the training for any of the three evaluation 

tasks at an uncorrected p-value of .001 with a cluster size of k = 10 voxels. Because 

neither behavioral nor neurofunctional differences were observed for the two 

trainings, we decided to merge both training groups in order to investigate fraction 

learning across groups with higher statistical power. 
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Behavioral analysis 

Training and flow data 

 To evaluate learning outcomes over the five training time points and 

associations with participants’ flow experience during learning we used a latent 

growth linear mixed-effects model over the five training time points. Regarding 

dependent variables, we were interested in the mean percentage absolute estimation 

error (PAE; [55]) and the number of attempts participants needed to estimate a given 

fraction correctly. Models were fitted in R using ‘lmer’ from the ‘lme4’ package [56]. 

To provide p-values we used the ‘summary’ function of the “lmerTest” R package 

[57]. Summary statistics were extracted via the ‘analyze’ function of ‘psycho’ [58]. 

Number line estimation task 

Mean PAE (cf. [55]) was calculated to reflect performance in the number line 

estimation task at the two time points. Items without a response were not considered 

for analyses. To evaluate performance changes in PAE between the pre- vs. post-

test, a linear mixed-effects model was fitted using ‘lmer’ from the “lme4” R package 

[56]. Again, to provide p-values we used the ‘summary’ function of the “lmerTest” R 

package [57]. Additionally, summary statistics were also extracted via the ‘analyze’ 

function of “psycho” R package [58]. 

Behavioral fMRI data 

For the analysis of the behavioral fMRI data we evaluated reaction times and 

accuracy as dependent variables. Three separate linear mixed-effects models were 

run to analyze reaction times for the three different evaluation tasks. Items without a 

response and items answered incorrectly were not considered for reaction time 

analyses. To analyze error rates and to include participants’ individual performance 

as random effect, we ran three separate generalized linear mixed-effects models 

(GLMM) fitted by using the R package ‘lme4’ [56]. In the GLMMs we assumed a 

binomial error distribution and used the logit as the link function. For both types of 

analysis, we provided p-values with the ‘summary’ function of the “lmerTest” R 

package [57]. 
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Imaging analysis 

 fMRI data analyses were performed using SPM12 

(http://www.fil.ion.ucl.ac.uk/spm). Images were motion corrected and realigned to 

each participant’s mean image. The mean image was co-registered with the 

anatomical whole-brain volume. Imaging data was then normalized into standard 

stereotaxic MNI space (Montreal Neurological Institute, McGill University, Montreal, 

Canada). Images were resampled every 2.5 mm using 4th degree spline interpolation 

to obtain isovoxels and then smoothed with a 5 mm full-width at half-maximum 

(FWHM) Gaussian kernel to accommodate inter-subject variation in brain anatomy 

and to increase signal-to-noise ratio in the images. Data were high-pass filtered (128 

s) to remove low-frequency noise components and corrected for autocorrelation 

assuming an AR(1) process. Brain activity was convolved over all experimental trials 

with the canonical hemodynamic response function (HRF) and its first time derivative. 

For the first level analysis, pre- and post-fMRI training sessions were 

combined on the subject level in a generalized linear model (GLM). For each 

participant, we considered the two factors item-set (trained vs. untrained) and 

session (pre vs post). This resulted in four experimental conditions: trained pre (T1), 

trained post (T2), untrained pre (UT1) and untrained post (UT2). Additionally, to 

evaluate the influence of fraction problem difficulty we included the covariate 

numerical distance between to-be-compared fractions as a parametric regressor in 

the first level analysis. As a control variable the scrambled word problems (hereafter 

revered to as “words”) were also included in the first level. Finally, the six movement 

parameters from preprocessing were entered into the model to capture signal 

variations due to head motion. 

These images then entered the second level random-effects group analysis 

using a flexible factorial design. The SPM Anatomy Toolbox [59], available for all 

published cytoarchitectonic maps (http://www.fz-

juelich.de/ime/spm_anatomy_toolbox), was used for anatomical localization of effects 

where applicable. For areas not yet implemented, the anatomical automatic labelling 

tool (AAL) in SPM12 (http://www.cyceron.fr/web/aal 

anatomical_automatic_labeling.html) was used. 

All contrasts calculated reflect the parametric modulation of the fMRI signal by 

the numerical distance between two proportions presented (distance effect). Simple 

contrasts (distance effect in each notation) were family-wise error corrected at p < .05 
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at the whole-brain level with a cluster size of k = 10 voxels. Complex contrasts 

comparing two distance effects (e.g., distance effect in fractions after training vs. 

distance effect prior to the training) were thresholded at an uncorrected p-value of < 

.001 at the voxel level with a cluster size of k = 10 voxels and were reported when 

they remained significant following family-wise error correction (FWE) at the cluster-

level with pcluster-corr < .05.  

 

5.3 Results 

5.3.1 Behavioral Results 

Training and Flow Experience 

Percentage absolute estimation error 

Differences in PAE and possible associations with flow experience over time 

were analyzed using a latent growth linear mixed effect model, predicting PAE by 

flow experience and time (i.e., five training time points) as fixed factors while also 

including a random intercept to account for participants’ individual differences in prior 

knowledge. The model explained a significant proportion of variance in PAE (R2 = 

75.22%; fixed effects: R2 = 12.97%) and showed that PAE [β = - 0.34, SE = 0.15, 

t(193) = - 2.29, p < .05] significantly improved over time (see Figure 5.4 A for PAE 

changes over time). Moreover, the fixed effect of flow [β = - 0.02, SE = 0.01, t(198) = 

- 3.13, p < .01] was significant, indicating that flow experience changed over time 

(see Figure 5.4 C for general changes in flow experience over time). The interaction 

between time and flow experience was not significant [t(193) = 0.62, p = .54]. 

 

Number of attempts 

Identical to the first analysis, differences in the number of attempts participants 

needed to estimate the given fraction during the NLE training correctly over time and 

possible associations with flow experience were analyzed using again a latent growth 

linear mixed effect model. Number of attempts needed was predicted by participants’ 

flow experience and time (i.e., five training time points) as fixed factors. Again, we 

included a random intercept to account for participants individual differences in prior 

knowledge. The model explained a significant proportion of variance in the number of 

attempts needed to estimate the given fraction correctly (R2 = 71.24%; fixed effects: 
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R2 = 16.16%) and showed that the number of attempts significantly decreased over 

time [β = - 0.18, SE = 0.07, t(194) = - 2.70, p < .01; see Figure 5.4 B for number of 

attempts changes over time]. Within this model the fixed effect of flow was significant 

[β = - 0.01, SE = 0.06, t(201) = - 3.40, p < .001], indicating that flow experience 

changed over time (see Figure 5.4 C for general changes in flow experience over 

time). Again, the interaction between time and flow experience was not significant 

[t(194) = 0.95, p = .34]. 

 

 

Figure 5.4: Improvement of PAE (A), number of attempts needed (B), and changes in flow experience 
(C) over the training period (i.e., five time points). Error bars indicate standard errors (SEM). 

Number line estimation task 

To investigate whether PAE for the paper pencil-based NLE tasks differed 

between pre- and post-test we ran another linear mixed effect model. We defined the 

two time points (pre vs. post) as fixed effect and included a random intercept for 

subjects to account for individual variability. The overall model predicting differences 

in PAE on the two number line estimation tests (pre vs. post) explained a significant 

proportion of variance (R2 = 63.34%, in which the fixed effects explained R2 = 5.56% 

of the variance). The effect of session was significant [β = - 0.01, SE = 0.00, t(47) = - 

3.80, p < .001] indicating that performance was better on the posttest than the pretest 

(reflected by smaller estimation errors).  
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Behavioral fMRI results 

Fraction-line proportion matching task 

Performance changes in reaction time between pre- and post fMRI sessions 

for the fraction-line proportion matching task were evaluated by a linear mixed effect 

model. We defined session (pre vs. post), itemset used (trained vs. untrained), and 

numerical distance (i.e., only for the non-matching items) as fixed effects. Moreover, 

interactions between session and item set as well as session and numerical distance 

were also included as fixed effects to evaluate whether the possible influence of item 

set or numerical distance on participants reaction time changed from pre- to post-

test. Finally, we included a random intercept to account for participants individual 

differences in prior knowledge.  

The model explained significant proportions of variance on participants 

reaction times (R2 = 26.18%; fixed effects: R2 = 9.74%) and showed that reaction 

times significantly improved from pre- to post-test [β = - 260.85, SE = 89.37, t(1068) 

= -2.92, p < .01]. Additionally, the fixed effect of numerical distance was significant [β 

= -1306.84, SE = 210.59, t(1069) = -6.21, p < .001], indicating that reaction times 

improved more strongly for increasing distances. Neither the fixed effect of itemset 

nor the interactions were significant [all t ≤ 0.48, all ps > .05]. 

For the evaluation of performance changes in accuracy between pre- and 

post-test, we ran a generalized linear mixed-effects model, by using logit as the link 

function and assuming a binomial distribution of the error rates. To avoid overfitting of 

the model we only included session, itemset used and numerical distance as fixed 

effects and a random intercept accounting for individual differences in prior 

knowledge. The model revealed a significant fixed effect of numerical distance [z = - 

6.86, p < .001], indicating that increasing distances between fractions and line 

proportions led to less errors. The fixed effects of session and trained item were not 

significant [all z ≤ -0.18, all ps > .05]. 

Line proportion comparison task 

Identical to the analysis of the fraction-line proportion matching task we ran the 

same linear mixed-effects model (including session, itemset used, numerical 

distance, as well as the interaction session and item set and the interaction session 

and numerical distance as fixed effects and a random intercept to account for 
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individual differences in prior knowledge) to investigate possible performance 

changes in reaction time on the line proportion comparison task between pre- and 

post fMRI session. The model explained a significant proportion of variance on 

participants reaction times (R2 = 42.71%; fixed effects: R2 = 8.57%) and showed that 

reaction times significantly improved from pre to post-test [β = -279.33, SE = 118.19, 

t(507) = -2.36, p < .05]. Additionally, the fixed effect of numerical distance was 

significant [β = -1686.98, SE = 295.05, t(510) = -5.72, p < .001], indicating that 

reaction times got significantly faster with increasing distances. Neither the fixed 

effect of itemset nor the interactions were significant [all t ≤ 0.35, all ps > .05].  

Again, to investigate possible performance changes in accuracy for the line 

proportion comparison task between pre- and post-test, we ran a generalized linear 

mixed-effects model, using logit as the link function and assumed a binomial 

distribution of the error rates. To avoid overfitting of the model we only included 

session, itemset used and numerical distance as fixed effects and a random intercept 

accounting for individual differences in prior knowledge. Analyzing error rates for the 

line proportion comparison task revealed a significant fixed effect of numerical 

distance [z = -7.5, p < .001], indicating that increasing distances between line 

proportions led to less errors. However, there were no significant differences for 

session and item set [all z ≤ -1.10, all ps > .05]. 

Symbolic fraction magnitude comparison task 

Finally, possible performance changes in reaction time for the symbolic 

fraction magnitude comparison task between pre- and post-test were tested identical 

to the prior two evaluation tasks. We again ran a linear mixed-effects model with 

session, itemset used, numerical distance as well as the interaction session and item 

set and the interaction session and numerical distance as fixed effects and a random 

intercept accounting for individual differences in prior knowledge. Interestingly, in this 

model only the fixed effect for numerical distance was significant [β = -1282.76, SE = 

337.30, t(499) = -3.80, p < .001], indicating that reaction times were significantly 

faster for increasing distances. Neither the fixed effects of session and itemset nor 

the interactions were significant [all t ≤ 0.43, all ps > .05].  

Possible performance changes in accuracy for the symbolic fraction 

magnitude comparison task between pre- and post-test, were evaluated again by a 

generalized linear mixed-effects model, using logit as the link function and assuming 
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a binomial distribution of the error rates. To avoid overfitting of the model we only 

included session, itemset used and numerical distance as fixed effects and a random 

intercept accounting for individual differences in prior knowledge. Thus, analyzing 

error rates for the fraction task revealed a significant fixed effect of session [z = -2.38, 

p < .05], indicating that participants performed better in the post-test compared to the 

pre-test. Additionally, the fixed effect of numerical distance was significant [z = -9.17, 

p < .001], indicating that increasing distances between fractions led to less errors 

when comparing two fractions. However, there was no significant difference for item 

set [z = 0.282, p = .079]. 

5.3.2 Imaging results 

Distance effect before the training 

Fraction-line proportion matching task 

Processing of smaller numerical distances between fractions and line 

proportions in the fraction-line proportion matching task was associated with stronger 

magnitude-specific fMRI signal before the training in a bilateral fronto-parietal neural 

network including areas in the intraparietal cortex (hIP3), the superior parietal cortex 

(SPL), the inferior frontal gyrus (Areas 44 and 45), bilateral inferior temporal gyri as 

well as bilateral insula. Further activated clusters were found in the bilateral middle 

frontal gyri as well as right-hemispheric subcortical areas such as thalamus and 

caudate nucleus as well as the cerebellum (see Table 5.1, Figure 5.5 A and C 

depicted in red color). 

Line proportion comparison task 

Processing of smaller numerical distance between to-be-compared line 

proportions modulated the fMRI signal before the training in a right-hemispheric 

fronto-parietal network centered around the right intraparietal sulcus (hIP3). Smaller 

numerical distance between proportions led to stronger activation in the right IPS and 

the right anterior IPS reflecting fraction magnitude processing. Additionally, there was 

a significant cluster of activation in the right inferior frontal gyrus (see Table 5.1, 

Figure 5.5 B and C depicted in golden color). 

Symbolic fraction magnitude comparison task 
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Activation in no cluster of voxels was modulated significantly by numerical 

distance at the given threshold in the symbolic fraction magnitude comparison task 

before the training.  

Importantly, there were no significant differences in brain activation observed 

between the two stimulus sets: when comparing the two sets before the training (set 

to be trained vs. untrained set) in any of the three conditions (i.e., fraction-line 

proportion matching task, line proportion comparison task, symbolic fraction 

magnitude comparison task). 

 

Table 5.1: Distance effect for line proportion comparison and fraction-line proportion matching task at 
a familywise error corrected p < .05, cluster size k = 10 at the whole brain level. 

       

Contrast Brain region 
MNI (x, y, z) 

Cluster 

size 
t 

       

Distance effect 

RH anterior intraparietal sulcus 

(hIP2) 43 -36 47 61 5.63 

Line proportion RH intraparietal sulcus (hIP3) 33 -52 53 12 5.04 

 

RH inferior frontal gyrus (44) 51 8 23 15 5.61 

       
Distance effect RH precentral gyrus 38 -20 55 2195 11.49 

Matching task RH intraparietal sulcus (hIP3) 26 -57 55 

 

7.15 

 

RH superior parietal lobe (SPL) 18 -60 58 

 

5.46 

 

LH intraparietal sulcus (hIP3) -30 -58 42 531 7.29 

 

LH superior parietal lobe (SPL) -25 -57 53 

 

7.01 

 

LH inferior frontal gyrus (IFG 44) -42 5 30 167 7.71 

 

RH inferior frontal gyrus (IFG 44) 53 8 28 179 7.38 

 

LH inferior frontal gyrus (IFG 45) -40 28 23 85 6.77 

 

LH middle frontal gyrus -20 6 55 58 6.25 

 

RH middle frontal gyrus 41 41 18 85 5.91 

 

LH posterior medial frontal gyrus -7 8 58 271 7.24 
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RH inferior temporal gyrus 51 -52 -10 22 5.91 

 

LH inferior temporal gyrus -50 -57 -10 30 5.79 

 

RH thalamus 18 -22 10 68 7.57 

 

RH caudate nucleus 8 16 3 20 6.24 

 

RH insula 33 -20 15 86 6.76 

 

RH insula 31 28 3 54 6.08 

 

RH insula 41 1 10 13 5.75 

 

LH insula -35 18 3 17 5.55 

 

LH cerebellum -17 -52 -23 306 10.56 

       
Abbreviations: LH – left hemisphere; RH – right hemisphere; MNI – montreal neurological institute). 

 

 

Figure 5.5: Effect of overall magnitude processing in the fractions-lines matching task (Panels A and 
C: red) and the lines proportion comparison task (Panels B and C: gold) as reflected by the distance 
effect. 
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Training and transfer effects 

Line proportion comparison / fraction-line proportion matching task  

When comparing the distance effect after the training to the distance effect 

before the training, no suprathreshold clusters of activation were observed for the line 

proportion comparison or in the fraction-line proportion matching task. 

Symbolic fraction magnitude comparison task 

Direct comparison of the distance effect after the training to the distance effect 

before the training in the symbolic fraction magnitude comparison task revealed 

significant increased activation differences in a bilateral fronto-parietal network 

centered around the intraparietal sulcus (hIP3; see Table 5.2, Figure 5.6). Further 

clusters of significant increased activation differences were observed in the right 

superior parietal lobe (SPL) and the left inferior parietal lobe (PFt), the right fusiform 

gyrus, the bilateral frontal cortex and the left thalamus. 

When comparing distance effects observed for the trained item set to those 

observed for untrained item set after the training, no suprathreshold clusters of 

activation were observed, indicating that the training effect was comparably strong for 

trained as well as untrained fraction items. This means that for fraction magnitude 

processing it seemed that the training effect generalized to untrained items after the 

NLE training. 

 

Table 5.2: Effect of training for processing of overall fraction magnitude as reflected by the distance 
effect for the symbolic fraction magnitude comparison task. 

              

Contrast Brain region 
MNI (x, y, z) 

Cluster 

size 
t 

       
 

Fractions post vs. RH superior parietal lobe (SPL) 26 -45 45 59 4.42 

pre training RH intraparietal sulcus (hIP3) 31 -60 48 21 3.70 

 

LH intraparietal sulcus (hIP3) -27 -62 50 15 3.53 

 

LH supramarginal gyrus (PFt) -34 -28 33 55 4.56 
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LH middle frontal gyrus 26 1 40 80 5.36 

 

RH posterior medial frontal gyrus 13 11 53 133 4.08 

 

RH inferior frontal gyrus (IFG) 41 36 15 45 4.05 

 

RH fusiform gyrus 36 -47 -18 15 3.51 

 

LH thalamus -17 -5 3 18 5.61 

 

LH cuneus -25 -57 28 15 4.07 

       
Abbreviations: LH – left hemisphere; RH – right hemisphere; MNI – montreal neurological institute). 

 

Figure 5.6: Effect of training for processing of overall fraction magnitude as reflected by the distance 
effect for the symbolic fraction magnitude comparison task (pcluster-corr < .05, k = 10 voxels). 

 

5.4 Discussion 

The aim of the present study was to investigate potential neuro-functional 

changes of brain activation in adult participants through a five-day consecutive NLE 

training on fraction magnitude. While there already exist a number of studies 

indicating the effectiveness of NLE training on the behavioral level [20–22,60] and 

some few studies investigating the neural correlates of fraction and proportion 

processing [41,42,44,45], little is still known about the neural correlates of fraction 

learning.  
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Evaluation tasks included symbolic fraction and non-symbolic line proportion 

magnitude comparison tasks and a fraction-line proportion matching task. 

Additionally, learning trajectories over the five time points of the NLE training, 

participants’ corresponding flow experience as well as a paper pencil pre- post NLE 

task were evaluated. In the following, behavioral as well as neurofunctional results for 

these measures will be discussed in more detail. 

 

The interplay between training performance and flow experience 

Flow experience has been described as an optimal state for intrinsically 

motivated learning, which helps focus on the given task and can lead to improved 

performance [31]. Another explanation for optimal learning was first described by 

Yerkes and Dodson in 1908 and refers to the relationship between arousal and 

performance (i.e., Yerkes-Dodson-Law; [61]). This law states that learners’ optimal 

performance is achieved on a medium level of arousal reflected by an inverted U-

shape relation between the respective parameters. Transferred to flow experience 

this inverted U-shape suggests that a balance between cognitive demands of the 

task at hand and individual skill level is the basis for best possible flow experience. 

Thus, when skills of a learner are too poor for the demands of a given task – for 

instance at the beginning of a training – flow experience may be rather low. The 

same is true when skills of a learner are too advanced for a given task. Both non-

optimal states can lead to boredom and/or frustration, and reduced flow experience. 

In turn, this might interfere with learning of the given task [62].  

In line with these assumptions, our results for training performance and flow 

experience over the five day NLE training indicated that at the beginning of the 

training participants’ flow experience was significantly lower and PAE as well as 

number of attempts needed to solve a trial successfully were significantly higher as 

compared to later training days. This possibly reflects an imbalance between task 

demands and individual skills. PAE and number of attempts needed on the first 

training day suggest that participants’ ability on the task seemed to be low in the 

beginning. With each training day passing flow experience increased while at the 

same time PAE and number of attempts needed decreased. Thus, participants 

experienced a more and more optimal learning situation in which demands of the 

task and individual skill level were in balance.  
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Interestingly, on the last training day participants’ flow experience dramatically 

decreased again to values lower than on the first training day. This was accompanied 

by slight increases of PAE and number of attempts needed. Thus, we assume that 

participants peak of performance was already achieved at the 4th training day. We 

can only speculate whether this was caused either by boredom or the fact that 

fraction magnitudes could not be estimated more accurately by our participants after 

4 days of training. Importantly, however, this decrease in flow experience was not 

associated with a general decrease in training performance. Moreover, we observed 

that participants significantly improved in the paper pencil NLE task from pre to post 

session. 

 

Transfer effects in fraction and proportion learning 

Behavioral data indicated significant performance improvements for all three 

tasks. Importantly, these improvements did not differ between trained and untrained 

items, indicating transfer effects of the training to untrained items. Additionally, 

neurofunctional data showed similar results: before the training no significant 

differences in brain activation were observed between the two stimulus sets (trained 

and untrained set) for all three evaluation tasks. After the training, again, no 

suprathreshold clusters of activation were observed when comparing trained and 

untrained items for all three evaluation tasks. Thus, indicating that the training effect 

was comparably strong for trained as well as untrained items and seemed to 

generalize to untrained items after the NLE training.  

Moreover, as discussed in more detail below, for the case of the fraction 

magnitude comparison task we think brain activation associated with numerical 

distance after the NLE training indicates that overall symbolic fraction magnitude was 

not automatically processed before training.  

However, one might argue that our results were elicited by the applied drill-like 

training approach. In the literature, this is often used to investigate numerical learning 

in terms of arithmetic fact learning [63,64]. Nevertheless, we are confident that 

participants did not just learn specific fraction magnitudes by heart for at least two 

reasons: First, if fraction magnitudes were learned by drill no transfer effect from 

trained to untrained items should be evident neither on the behavioral nor on the 

neural level. Moreover, fractions that are learned by heart should not show a 
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numerical distance effect especially for untrained items because their overall 

magnitude should not be processed. In our study induced automated magnitude 

activation was also present for untrained items. Thus, it is unlikely that our training 

supported fact learning but rather improved magnitude representation. 

Second, previous literature reported different neural correlates for arithmetic 

fact learning than observed in the current study. In particular, learning arithmetic facts 

is associated with a shift from bilateral fronto-parietal processing around the IPS to a 

primarily left hemispheric network in the medial temporary lobe (MTL) involving the 

hippocampus (cf. [64–66]). However, in the present study, we rather observed a shift 

towards more activation within the fronto-parietal network of magnitude processing 

[67–69] – thus, indicating more explicit processing of overall fraction magnitude and 

not fact retrieval after the training. 

This supports the notion that the training indeed resulted in a general 

conceptual improvement and automatization of fraction magnitude processing, in 

contrast to training fact retrieval of specific fraction magnitudes (cf. [64] for limited 

evidence of transfer effects in multiplication fact training).  

Differential neural activity patterns before training and possible implications 

Surprisingly, and not consistent with the previous literature on neural 

correlates of fraction processing brain activation before the training for the three tasks 

of interest revealed different activation patterns in the IPS associated with the 

numerical distance effect. For the non-symbolic line proportion comparison and the 

fraction-line proportion matching task we found significant neural activation patterns 

in the typical fronto-parietal network observed previously for proportion and fraction 

processing (cf. [40]). In particular, the line proportion comparison task led to 

increased activation in the right intraparietal sulcus, whereas the fraction-line 

matching task led to increased activation in the bilateral intraparietal sulcus. This is in 

line with research on brain activation for symbolic and non-symbolic magnitude 

processing [70].  

Interestingly, for the symbolic fraction magnitude comparison task activation in 

no cluster of voxels was modulated significantly by numerical distance before the 

training. This was surprising as previous studies on the neural correlates of fraction 

magnitude processing consistently reported IPS activity to be modulated by 
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numerical distance for fraction magnitude processing. Importantly, the presented 

magnitudes did not differ between the three evaluation tasks. This means, that 

participants of our study were generally able to process the presented magnitudes. 

However, access to symbolic fraction magnitudes during the respective fraction 

comparison task might be reduced probably because of the bipartite nature of 

fractions [10]. Thus, fractions are more difficult to compare than for instance line 

proportions. 

Moreover, our fraction items used in this study where more complex because 

of two reasons: i) Our fraction pairs did not involve fractions with common 

components. In this case, reasoning about the natural number components alone 

(i.e., processing numerators and denominators separately) might often not help to 

find the right solution when comparing two fractions without common components. 

However, we used fractions without common components as we wanted to 

specifically investigate and promote overall fraction magnitude processing. For 

instance, [71] found that mathematic experts showed a distance effect for overall 

fraction magnitude while comparing fractions without common components but not 

for fraction pairs with common components. Moreover, comparing fraction pairs with 

common components is typically susceptible to what has been called the natural 

number bias [72]. ii) We used fractions with numerators and denominators ranging 

from 1 to 30. This had two major reasons: a) the difficulty to match two item sets of 

fraction pairs on both overall numerical distance and problem size including only 

fractions without common components and b) the fact that we wanted to make sure 

that fractions were rather unfamiliar to participants to be able to investigate fraction 

learning on a neural level. Thus, participants may not have had a specific 

representation of the magnitude of the presented fractions prior to our study.   

Training induced distance effect in the intraparietal sulcus for fraction magnitude 

processing  

In line with previous results of training studies, imaging results after the 

training showed that the processing of overall symbolic fraction magnitude was 

improved. In particular, distance related neural activation for symbolic fraction 

processing became significantly stronger from pre- to post-test in the bilateral 

intraparietal sulcus. This may indicate that our NLE training helped to establish easier 

access to the representation of overall fraction magnitude. These results are 
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inconsistent with a NLE training study on natural numbers with pre-post-test fMRI 

comparing children with and without developmental dyscalculia [73]. After the NLE 

training both groups showed decreased activation of brain areas involved in number 

magnitude processing (for instance bilateral middle and superior frontal gyrus and left 

intraparietal sulcus). The authors interpreted these results as reflection of more 

automized processing of numerical magnitude after their training.  

In this context, however, there is inconsistent evidence in the literature about 

the distance effect as an indicator for better numerical/ mathematical performance 

(see Moeller et al., 2011). On the one hand, there are studies showing that a larger 

distance effect was associated with poorer numerical/ mathematical performance 

[74,75]. On the other hand, there also are studies observing that a more pronounced 

distance effect was associated with better numerical/ mathematical performance 

[50,76]. To accommodate these inconsistent lines of evidence, [50] suggested that 

the relation between the size of the distance effect and mathematical performance  

might not be linear but curvilinear instead. In particular, these authors suggested that 

the size of the distance effect is depended on two factors: i) automated access to 

processed magnitudes decreases the distance effect whereas ii) increasing task 

complexity may increase the distance effect while processing magnitudes.  

In line with this argument, it needs to be noted that we do not necessarily think 

that a larger distance effect indicates better number/ fraction magnitude processing. 

However, in the present study the increase of the distance effect on a neural level in 

symbolic fraction magnitude comparison might nevertheless indicate more automatic 

access to overall fraction magnitude as task complexity was very high. Moreover, due 

to the bipartite nature of fractions [10] overall fraction magnitude may not have been 

as automatically activated prior to the NLE training. Thus, after the NLE training our 

participants may have built a more coherent fraction magnitude representation 

reflected by a larger distance effect. In line with the hypothetical curvilinear model by 

[50] we think that the distance effect might decrease again after having established 

the magnitude representation with further training.  

Moreover, no significant differences between pre- and post-fMRI were found 

for the line proportion comparison and fraction-line proportion matching task. This 

may indicate that improvement towards more automated activation on a neural level 

was not achieved through training as activation related to the numerical distance 
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effect was already there before training. Again, this might reflect that the bipartite 

nature of fractions might have hindered automated magnitude processing of the 

fractions before training. In turn, non-symbolic proportions are further reflected by 

visual-spatial aspects which may have helped process the actual relative magnitude 

expressed as compared to symbolic fractions for which this relation needs to be built 

by participants themselves. Thus, the NLE training might not have changed 

processing of line proportions and fraction-line matching significantly on the neural 

level as the respective relative magnitudes may have already been processed before 

the training due to facilitation by visual-spatial aspects of the presentation format.  

Taken together, these results indicate that even well-educated adults 

benefitted from a NLE based training of fractions aimed at improving conceptual 

knowledge of fraction magnitude. Importantly, the training did not only induce 

significant training effects on the bahavioral level but in particular also led to changes 

in brain activation associated with the processing of symbolic fraction magnitude. 

This indicates processes of neurofunctional plasticity in fraction learning. In the 

following, we will discuss implications of these results for education. 

Implications for education 

The final report of the National Mathematics Advisory Panel states that ‘one 

key mechanism linking conceptual and procedural knowledge is the ability to 

represent fractions on a number line’ (p. 28; [77]). However, fraction learning and 

understanding still is an educational challenge not only in the US but globally. The 

integrated theory of numerical development, postulates that one core basis of all 

(rational) numbers is their magnitudes and that these magnitudes can be represented 

on a mental number line [13]. Students difficulties with fractions often arise from 

missing conceptual understanding, which among other things but not exclusively 

involves an understanding of their magnitudes [78]. Therefore, it is a crucial step for 

students to learn that fractions are numbers with magnitudes that can be represented 

on a number line as well.  

Accordingly, the recommendation to use number lines as an instructional tool 

to foster conceptual understanding of fractions is given in different guidelines for 

educational practice in fraction teaching (e.g., Teaching fractions [78] or Developing 

Effective Fraction Instruction for Kindergarten through 8th grade [79]). This 

recommendation is supported by recent evidence from different intervention studies 
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that used number lines as intervention tools and found significant improvements of 

children’s performance and understanding of fractions [20–23,60].  

With respect to educational practice, our results support the existing body of 

literature that processing of proportion and fraction magnitudes can be improved by 

NLE training. Moreover, to the best of our knowledge this is the first study indicating 

that such a training improves symbolic fraction processing as reflected by the 

numerical distance effect on a neural level. In particular, we argue that relative 

magnitude information of complex fractions may initially not be processed 

automatically within the IPS as indicated by the missing numerical distance related 

activation in the IPS before but significant activation associated with numerical 

distance after the training.  

Limitations 

 When interpreting the results of the current study there are some limiting 

aspects that need to be considered. First of all, we are well aware that the current 

study is only a first step towards a better understanding of the underlying neural 

processes of fraction learning. In particular, this study investigated fraction learning 

on fractions more complex than those fractions first encounter in school. This was the 

case for two major reasons: i) Our fraction pairs did not consist of fractions with 

common components, which limits the number of available fractions when only 

considering those with numerators and denominators ranging from 1 to 9. Therefore, 

we used fractions with numerators and denominators ranging from 1 to 30 allowing 

for proper matching of stimuli sets. ii) We ran our study with adult participants for 

whom we assumed that they should be more or less proficient with fractions with 

numerators and denominators up to 9. Thus, to be able to detect training effects we 

used more complex fractions.   

As such, to investigate fraction learning more fundamentally, less complex 

fractions (i.e., with single-digit numerators and denominators or even unit fractions) 

should be used. Moreover, our study investigated fraction processing in adult 

participants. To focus more on the fundamentals of fraction learning the developing 

brain should be investigated. A first attempt, to investigate developmental differences 

in fraction magnitude processing on a neural level is a study by [80]. In this study, the 

authors applied 2 mA bilateral tDCS and found that adults and children benefitted 

differently during fraction processing by tDCS applied to different areas of stimulation 
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(IPS vs. dorsolateral prefrontal cortex (DLPFC)). However, imaging studies on the 

neural correlates of proportion and fraction magnitude processing in children are still 

missing. 

 

5.5 Conclusion 

It is well known that fractions are difficult to learn and understand not only for 

children and students but even adults and teachers [7,81,82]. Therefore, the ability to 

foster and improve fraction knowledge is of high educational importance. Apart from 

beneficial effects of NLE training on the behavioral level, our study provides first 

insights into the neural correlates of fraction learning. In particular, we did not 

observe numerical magnitude to significantly modulate brain activation before the 

training for the processing of symbolic fractions. This might indicate that overall 

fraction magnitude is not yet processed automatically before training. Thus, through 

the training participants might have built up more automated processing of overall 

fraction magnitude. As such, our results indicate a specific improvement of overall 

fraction magnitude processing through NLE training reflected on the neural level. This 

case of neuronal plasticity in fraction learning indicates neurofunctional changes 

elicited by training of educationally relevant content. Therefore, our study supports 

the importance of NLE trainings for fraction learning on a neurophysiological level. 
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Appendix 

Table A5.1: Stimuli and corresponding parameters (i.e., fraction magnitudes, numerical 
distance, problem size, matched distances, and problem sizes within and between stimulus 
sets) for both item sets. 
 

fraction 

pairs 

magnitude 

fraction 1 

magnitude 

fraction 2 

numerical 

distance 

problem 

size (PS) 
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Abstract 

Recent research indicated that fraction understanding is an important predictor 

of later mathematical development. In the current study we investigated the influence 

of basic numerical skills on students’ fraction understanding. We analyzed data of 

939 German secondary school students and evaluated the determinants of fraction 

understanding considering basic numerical skills as predictors (i.e., number line 

estimation, basic arithmetic operations, non-symbolic magnitude comparison, etc.). 

Additionally, we controlled for influences of general cognitive ability, grade level, and 

sex. We found that multiplication, subtraction, conceptual knowledge, and number 

line estimation, were significant predictors of fraction understanding beyond 

influences of general cognitive ability and sex. This indicates that specific basic 

numerical skills acquired in primary school influence mathematical achievement in 

secondary school in general and fraction understanding in particular. In turn, 

strengthening these skills should provide children with a broader fundament for 

fraction learning. As such, the current data indicates that recapitulating basic 

numerical content in secondary school mathematics education may be beneficial for 

acquiring more complex mathematical concepts such as fractions. 
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6.1 Introduction 

It has been argued that children’s numerical development is driven by the 

acquisition of basic numerical skills (e.g., Dowker, 2005; Geary, 2000). These basic 

numerical skills are seen as building blocks for later numerical and mathematical 

achievement. For successful numerical development different basic numerical skills 

were found to be important: For instance, symbolic and non-symbolic magnitude 

knowledge (e.g., Dehaene, Piazza, Pinel, & Cohen, 2003; Siegler, 2016; Siegler & 

Lortie‐Forgues, 2014), as well as a spatial representation of magnitudes as described 

by the metaphor of a mental number line (e.g., Schneider, Grabner, & Paetsch, 2009; 

see Fischer & Shaki, 2014 for a review), understanding of the place-value structure of 

the Arabic number system (e.g., Moeller, Pixner, Zuber, Kaufmann, & Nuerk, 2011; 

see Nuerk, Moeller, Klein, Willmes, & Fischer, 2011), acquisition of arithmetic fact 

knowledge (i.e., multiplication tables; Dehaene et al., 2003), as well as skills on 

procedural and conceptual numerical knowledge (e.g., carry operations, or 

understanding of the relationship between addition and multiplication, Delazer, 2003; 

Robinson, Dubé, & Beatch, 2017). Therefore, it comes with no surprise that the 

mastery of such basic numerical skills predicts not only future numerical skills and  

mathematical achievement in school (e.g., Moeller et al., 2011; Schneider, Grabner, & 

Paetsch, 2009), but also more general life prospects (i.e., employment rate; e.g., 

Duncan et al., 2007; Parsons & Bynner, 1997; Von Aster & Shalev, 2007). As regards 

educational/ mathematical achievement, several studies showed that mastery of 

certain basic numerical skills were found to be associated with later numerical 

achievement: For instance symbolic and non-symbolic magnitude knowledge (e.g.,  

Booth & Siegler, 2008; Kolkman, Kroesbergen, & Leseman, 2013; Link, Nuerk, & 

Moeller, 2014; Schneider et al., 2017) and understanding the place-value structure of 

the Arabic number system (Moeller et al., 2011). Therefore, basic numerical skills are 

seen as highly relevant for children’s normal development of later numerical and 

arithmetical capabilities. 

In addition, several studies investigated the relevance of domain-general and 

domain-specific skills for fraction magnitude knowledge and fraction arithmetic. For 

instance, Bailey, Siegler, and Geary (2014) observed that knowledge of whole 

number magnitude and arithmetic in first grade predicted knowledge of fraction 

magnitude and arithmetic in middle school (i.e., 7th and 8th grade) even after 
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controlling for general cognitive abilities, parental education, parental income, race, 

and gender. But neither whole number magnitude nor whole number arithmetic 

predicted reading achievement in middle school. Moreover, in another longitudinal 

study Hansen and colleagues (2015) observed that number line estimation, non-

symbolic proportional reasoning, division, working memory, and attentive behavior 

contributed to 6th graders’ knowledge of fraction concepts, whereas number line 

estimation, multiplication fact fluency, division, and attention contributed to 

knowledge of fraction procedures. Moreover, Ye and colleagues (2016) found that 

basic numerical competencies such as magnitude reasoning and calculation fully 

mediated the association between general cognitive abilities (e.g., attention, working 

memory, etc.) in 3rd grade and fraction knowledge in 6th grade. Finally, Jordan et al., 

(2013) evaluated developmental predictors of fraction concepts and fraction 

procedures in school children. The authors observed that attentive behavior, 

language, non-verbal reasoning, number line estimation, calculation fluency and 

reading fluency predicted conceptual understanding of fractions; while attentive 

behavior, number line estimation, calculation fluency and working memory predicted 

procedural understanding of fractions. 

Nevertheless, a more comprehensive and systematic analysis of the relevance of 

basic numerical skills for the mastery of fractions is still missing, which is surprising, 

given that fraction knowledge is highly important for later mathematical development. 

Fractions and their related concepts of decimals, ratios, percentages and proportions 

are omnipresent in algebra, geometry, statistics, and in the sciences (e.g., biology, 

chemistry or physics). As a result, it is almost impossible to gain a deeper 

understanding of these disciplines without an understanding of fractions and rational 

numbers in general. Therefore, mastery of fractions and the ability to successfully 

calculate with fractions are important steps in children’s mathematical development in 

secondary school (Lamon, 2012; Litwiller & Bright, 2002). Accordingly, there is 

evidence that students’ fraction knowledge is a valid predictor of their actual but also 

future math achievement. For instance, Booth and Newton (2012) found that 

children’s early understanding of fractions in 5th or 6th grade predicted their later 

mathematical achievement and knowledge of algebra in high school even when 

controlling for IQ, reading achievement, working memory, family education and 

income, and whole number arithmetic knowledge (see also Siegler et al., 2012; 

Siegler & Pyke, 2013). Therefore, understanding fractions provides a critical 
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foundation for later algebra learning (e.g., NMAP, 2008). At the same time, however, 

understanding the concept of fractions is very difficult for students, but also adults 

(e.g., Stafylidou & Vosniadou, 2004; Stigler, Givvin, & Thompson, 2010). 

Taken together, basic numerical skills are relevant predictors for later numerical 

and arithmetical performance while understanding fractions predicts more advanced 

mathematical and algebraic achievement.  

The current study aimed at investigating in more depth which basic numerical skills 

are associated with fraction understanding as potential building blocks of fraction 

learning in secondary school students using a cross-sectional design. We 

hypothesized that basic numerical skills implying the understanding of number 

magnitudes but also of basic arithmetic operations should be particularly relevant to 

fraction understanding. As regards other basic numerical skills such as conceptual 

knowledge or basic geometry our approach was exploratory. However, it was our 

specific aim to assess a comprehensive set of basic numerical skills to get a more 

profound picture of influences of basic numerical skills on fraction understanding. As 

such, the aim of the current study was to identify and differentiate basic numerical 

skills predicting fraction understanding and to quantify the relative importance of 

predictor variables.   

 

6.2 Methods 

Participants 

 For this study a subsample of N = 1248 students from German schools in the 

federal state Baden-Württemberg was analyzed. We included only children from 7th 

to 11th grade as introduction to fractions only occurs at the end of 6th grade in the 

state’s mathematics curriculum. Moreover, we excluded students older than 18 (likely 

repeaters; N = 272) and students with missing values on at least one of the 

considered variables (N = 37, i.e., the tests on basic numerical competences, grade 

level, sex, or general cognitive ability), resulting in a final sample of 939 students (7th 

grade N = 200, 8th grade N = 215, 9th grade N = 210, 10th grade N = 136, , 11th grade 

N = 178) for the analyses (age M = 15.14 years, SD = 1.49; 47% females).  The 

current work presents parts of a larger project in which a standardized test of basic 

numerical curricular mathematical abilities for secondary school was developed. To 
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test our hypotheses we used a statistical approach similar to Ludewig, Lambert, 

Dackermann, Scheiter, & Moeller (2019). 

 

Measures 

Fraction understanding  

Fraction understanding was evaluated by assessing procedural knowledge 

(eight items, i.e., calculate and shorten as far as possible:  ) and magnitude 

knowledge (four items, i.e., writing the proportion of given areas as a fraction). The 

test was restricted to 3 minutes in total. Correctly answered items were considered in 

a sum score, which served as criterion variable in all analysis.  

Basic Numerical Skills 

A battery of basic numerical competences was administered including eight 

subtests (i.e., non-symbolic magnitude comparison, number line estimation, 

approximate arithmetic, addition, subtraction, multiplication, conceptual knowledge 

about arithmetic, and basic geometry). All subtests were speeded to assess the level 

of automatization and because of test economy. Furthermore, all subtests only 

addressed numerical/mathematical competences of primary school curriculum and 

examples to ensure task understanding. Unless indicated differently, correctly solved 

items were considered as sum scores for analyses. In the following, the respective 

subtests are described separately and in more detail. Additionally, common examples 

for items of the different tests are given in Appendix A6.1.  

Non-symbolic magnitude comparison: 24 pairs of dot clouds (ranging from 30 to 69) 

were shown, and students had to decide which of the two dot clouds was numerically 

larger. Dot clouds were matched for overall surface to prevent children from using 

strategies based on perceptual features: for half of the items the surface with the 

lower quantity of dots was larger and for the other half the surface with the higher 

quantity of dots was larger. In order to avoid counting-based strategies, the time limit 

for this task was 1 minute. The number of correctly solved items served as predictor 

variable. 

Number line estimation: Students had to estimate the correct location of a given 

number on a number line. Only the endpoints of the number line were defined (e.g., 

estimate the location of 64 on a number line ranging from 0 to 100). In total, the task 
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included 24 items with changing endpoints (i.e., 6 items on a number line from 0 to 

10 and 0 to 100, respectively, and 4 items on a number line from 0 to 1.000, 0 to 

10.000 and 0 to 100.000, respectively). In order to avoid counting-based strategies, 

the task was limited to 1.5 minutes. The mean percentage absolute estimation error 

(PAE; cf. Booth & Siegler, 2006) served as predictor variable. Items with no response 

were not considered for analyses.   

Approximate arithmetic: Students were presented a problem with two different 

incorrect solution probes. They had to estimate and choose the solution being closer 

to the correct result (e.g., “Which result is closer to 347 - 120? solution probes: 215 or 

260”). 16 addition and 16 subtraction problems were presented, and difficulty level 

increased with item number. Students had 2 minutes to solve as many problems as 

possible. The sum of correctly solved items served as predictor variable. 

Arithmetic operations: These included i) addition, ii) subtraction and iii) multiplication 

with 36 arithmetic problems each, ordered in increasing difficulty. Addition and 

subtraction problems covered numbers ranging up to 10,000. Multiplication problems 

covered problems with single-digit, two-digit and three-digit operands (with a 

maximum problem size each of 72, 4698, 3400, respectively). For each operation, 

students had to solve as many problems as possible within 2 minutes. In all three 

arithmetic operation tests, the sum of correctly solved items served as predictor 

variable, respectively. 

Conceptual knowledge about arithmetic: Students were shown two problems of which 

the first problem was presented with a solution. They had to decide whether the 

solution of the first problem helped to solve the second problem without having to 

calculate (e.g., “Does 4 + 8 = 12 help you to solve 12 - 4 = __?”). 40 pairs of 

arithmetic problems including addition, subtraction, multiplication, and division were 

presented (i.e., 20 problems in which the first equation was helpful to know for 

solving the second one and 20 in which this was not the case). Students were 

instructed to make a correct decision for as many problems as possible within 2 

minutes. For this test, students had to correctly identify relationships between 

numerical/arithmetic operations without actually solving the arithmetic problems by 

performing the relevant computations. The sum of correctly solved items served as 

predictor variable.  
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Basic geometry: Students had to solve 12 mirror image problems. For this, a flipped 

geometrical form had to be drawn by mirroring it on a presented axis. For each 

correct line in a drawing, students were given one point and scores for each item 

varied between 6 and 12 points. The percentage of correctly solved items served as 

predictor variable. 

General cognitive ability: Students’ general cognitive ability was assessed using two 

subtests of the German version of the Culture Fair Intelligence Scale 20-revision (i.e., 

continuation of sequences and completion of matrices; CFT 20-R; Weiß, Albinus, & 

Arzt, 2006). In the continuation of sequences subtest, students are given a sequence 

of changing shapes and they need to find a logical continuation to this sequence. In 

the completion of matrices subtest, students are given a matrix of changing shapes 

and they need to find a logically matching shape for the blank cell of the given matrix. 

Subtests were administered as stated in the manual and the sum of correctly solved 

items served as predictor variable. 

Procedure 

 All tests were administered during regular school hours in the students’ 

classrooms and testing took a maximum of 90 minutes. In each grade, the same 

basic numerical skills test and fraction understanding test was assessed. For 

students below the age of 18, parents received information about the study and 

provided written informed consent prior to testing, whereas students above the age of 

18 provided written informed consent themselves. The study was approved by 

regional school authorities. Students received instructions by trained student 

assistants. In order to make sure children understood the individual tasks there were 

written instructions which were also read out to them. Each task was introduced by 

examples to make sure students understood the tasks. For all tasks speeded 

versions were used due to test economy and to assess automatization.  

Statistical Analyses 

Multiple regression 

Multiple regression analysis was used to determine the influence of the 

measured basic numerical predictors on fraction understanding. We used False 

Discovery Rate (FDR) controlling the p-value for multiple testing (Benjamini & 

Hochberg, 1995).  
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Relative weight analysis 

Determining the relative contribution of each predictor to the explained 

variance is usually difficult. For instance, Darlington (1968) pointed out that it is 

problematic to use multiple regression for assessing the relative importance of 

correlated predictors as this method is not able to correctly partition variance to the 

different correlated predictors. As predictors are usually correlated with one another, 

relative weight analysis is more appropriate to evaluate the relative importance of 

predictors. Therefore, we used relative weight analysis as suggested by Johnson 

(2000) to quantify the relative importance of correlated predictor variables in the 

multiple regression analysis.  

Relative weight analysis determines which variables contribute the most 

regarding explained variance in terms of R2. For this, the predictor variables are 

transformed into a set of orthogonal variables in a way that they are maximally 

related to the original predictors. The resulting relative weights represent the 

predictors’ additive decomposition of the total model R². There are two measures of 

relative weight: raw relative weight and rescaled relative weight. Raw relative weights 

add up to the R² of the model while rescaled relative weights add up to 100% 

representing the relative importance of a particular variable in the final regression 

model. Relative weights can be understood as the share of declared variance to 

which each predictor variable can be appropriately assigned (Tonidandel & LeBreton, 

2015). We identified significance of relative weights using the procedure described by 

Tonidandel, LeBreton, & Johnson (2009). Importantly, relative weight analysis not 

only helps evaluating how much variance each predictor explains by itself and in 

conjunction with other predictors. Instead, it is also able to uncover ulterior predictors 

that regression analyses may miss to detect due to shared variance of correlated 

predictors (see Stadler, Cooper-Thomas, & Greiff, 2017 for a more detailed 

introduction and discussion). 

Variables 

Overall, 29 predictor variables were incorporated into the multiple regression 

and relative weight analysis. This included the eight basic numerical skills assessed 

(i.e., non-symbolic magnitude comparison, number line estimation, approximate 
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arithmetic, addition, subtraction, multiplication, conceptual knowledge about 

arithmetic, and basic geometry) as well as general cognitive ability, grade level and 

sex. Moreover, interaction terms of grade level and sex with general cognitive ability 

and the eight basic numerical skills were also included as predictor variables. All 

continuous variables were centered and sex was effect coded (i.e., female = -1, male 

= 1) prior to analyses.  

Statistical software 

Statistical analysis was performed with R (R Core Team, 2017). For the 

multiple regression analysis, we used the ‘lm’ function for fitting linear models of the 

standard R package “state” (R Core Team, 2017). Additionally, we used the ‘p.adjust’ 

function with the ‘fdr’ method to adjust p-values. For the relative weights analysis, we 

applied the syntax provided by Tonidandel & LeBreton, (2015).  

6.3 Results 

Descriptive Statistics. Mean fraction understanding score was M = 3.31 (SD = 2.17, 

obtained range = 0-11) of 12 possible points. Descriptive statistics for all predictor 

variables are shown in Table 6.1.  For detailed results of descriptive statistics divided 

by grades9 (i.e., 5th grad to 11th grade) see Appendix A6.2. 

Table 6.1: Descriptive Statistics and obtained range of all basic numerical measures (N = 939). 

 
M SD Range 

Addition  20.06 4.13  2 - 31  

Subtraction 16.38 4.71  0 - 32  

Multiplication 20.92 4.25  4 - 29  

Number line estimation (PAE) 6.52 4.07  1.58 - 47.47 

Approximate arithmetic 19.62 5.12  0 - 32  

Conceptual knowledge 18.12 6.18  2 - 36  

Basic geometry (%) 58.23 21.17    0.00 - 100.00  

Non-symbolic magnitude 

comparison 

18.65 3.19  1 - 24  

General cognitive ability 18.77 4.28  3 - 29  

 

 
9 Please note that results did not change substantially when using age instead of grade level as 
predictor in the analyses. 
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The correlation matrix depicted in Table 6.2 displays that all basic numerical 

skills were significantly correlated with fraction understanding, as well as amongst 

each other. The highest correlation between two basic numerical skills was r = .70 

and was observed between subtraction and addition performance, followed by high 

correlations between multiplication and addition performance as well as multiplication 

and subtraction performance (r = .57, respectively). About 70% of correlations were 

below r = .30. Sex was negatively correlated with fraction understanding indicating 

that females performed better in the fraction understanding test than males. 

Moreover, grade level was positively correlated with fraction understanding indicating 

that students attending higher grade levels performed better than students attending 

lower grade levels (see Table 6.2).  

 

Table 6.2: Correlations between fraction understanding, basic numerical skills, general cognitive 
ability, as well as sex and grade level. 

 Variable   1   2   3   4   5   6   7   8   9   10    11 

1. Fraction 

understanding 

1 
          

2. Addition   .39** 1 
         

3. Subtraction  .42** .70** 1 
        

4. Multiplication  .42** .57** .57** 1 
       

5. Number line 

estimation 

 -.25** -.14** -.25**  -.16**      1 
      

6. Approximate 

arithmetic 

 .24**  .44** .48**  .34**   -.13**    1 
     

7. Conceptual 

knowledge 

 .34** .38** .36**  .33**   -.12** .43** 1 
    

8. Basic geometry  .27** .20** .22**  .18**   -.23** .07*  .20** 1 
   

9. Non-sym. mag. 

comp. 

 .08* .13** .12**  .14**   -.06* .12**  .09*  .08* 1 
  

10. G. cognitive ability  .41** .34** .37**  .31**   -.32** .20**  .28**  .39**  .20**  1 
 

11. SexEffa  -.13** .06 .16**  .01   -.08* .17**  -.09* -.07* -.01  -.06    1 

12. Grade level  .02 .12** .11** -.04   -.14** .13**  .05  .03  .01   .11** .19** 

Note: **p < .01, *p < .05. N = 939. aCode female = -1, male = 1 
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Multiple regression analysis. The final regression model explained 36% of the 

variance [R² =.35, adj. R² = .33, F(29, 909) = 17.08, p <.001]. Six variables 

significantly predicted performance in the fraction understanding test: general 

cognitive ability, number line estimation, subtraction, conceptual knowledge, 

multiplication, and sex (see Table 6.3). Better general cognitive ability, subtraction, 

conceptual knowledge, and multiplication performance was associated with better 

performance on the fraction understanding test, whereas smaller estimation errors in 

the number line estimation task predicted better performance on the fraction 

understanding test.  

Relative weight analysis: We performed relative weight analysis to reveal the 

proportional contribution of each predictor variable to the total variance of R2 while 

accounting for multicollinearity (e.g., Johnson & LeBreton, 2004; Tonidandel & 

LeBreton, 2011).  

Rescaled relative weights indicated that the proportional contribution of the 

predictor multiplication explained 17.41% of the total variance in the fraction 

understanding test. Thus, multiple regression as well as relative weight analysis point 

out multiplication to be the best predictor for fraction understanding. This was 

followed by general cognitive ability (16.52%), subtraction (14.44%), conceptual 

knowledge (10.60%), number line estimation (7.23%) and sex (4.91%).  

Although, addition, basic geometry as well as approximate arithmetic were not 

found to be significant predictors in the multiple regression analysis, relative weight 

analysis revealed rescaled relative weights that were significantly different from a 

random variable (addition: RS-RW = 11.29%; basic geometry: RS-RW = 6.58%; 

approximate arithmetic: RS-RW = 3.84%). Therefore, these three basic numerical 

skills might be also relevant for the prediction of fraction understanding.  
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Table 6.3: Multiple regression results. Please note that for reasons of readability only main effects are 
shown (see Appendix A6.3 for a table including all interaction terms, no interaction was significant10 ). 

  B β [L-CI,U-CI] RW t p RS-RW 

(%) 

Criteria = Fraction understanding [multiple R²= .35, adj. R² = .33, F(29,909) = 17.08, p <.001] 
   

 
    

Intercept 3.34 .00 [-.04, .08] .00 52.91 .000 0 

Multiplication 0.09 .18 [ .11, .25] .06 5.07 .000 17.41* 

G. cognitive ability 0.08 .16 [ .10, .23] .06 4.88 .000 16.52* 

Subtraction 0.07 .15 [ .06, .23] .05 3.52 .002 14.44* 

Addition  0.04 .07 [ -.01, .15] .04 1.72 .249 11.29* 

Conceptual knowledge 0.04 .12 [ .05, .18] .04 3.62 .002 10.60* 

Number line estimation 

(PAE) 

-0.06 -.10 [-.16, -.05] .03 -3.52 .002 7.23* 

 

Basic geometry 

 

0.01 

 

.07 

 

[ .01, .13] 

 

.02 

 

2.33 

 

.076 

 

6.58* 

 

Sexa -0.28 -.13 [-.19, -.08] .02 -4.53 .000 4.91* 

Approximate arithmetic 0.00 .01 [-.06, .07] .01 0.30 .816 3.84* 

Non-sym. mag. comp. -0.02 -.03 [-.08, .03] .00 -0.92 .646 0.30 

Grade level -0.02 -.01 [-.07, .04] .00 -0.45 .771 0.23 

 

Note: B: unstandardized regression weight; β: standardized regression weight; L-CI: lower boundary 

(2.5%); U-CI: upper boundary (97.5%); RW: raw relative weight (within rounding error raw weights 

will sum to R²); t: t-value measures the size of the effect relative to the variation in sample data; p: p-

value; RS-RW: relative weight rescaled as a percentage of predicted variance in the criterion 

variable attributed to each predictor (within rounding error rescaled weights sum to 100 %). a code 

female = -1, male = 1. * significantly different from a random variable. 

 

 
10 Please note that we did not additionally analyze our data separately for grade levels because grade 
level was not a significant predictor in our multiple regression and relative weight analysis. Moreover, 
all interaction predictors reflecting differential influences of the predictor variable for different grade 
levels were also not significant. This indicates that the influence of basic numerical skills on fraction 
understanding did not differ significantly across grade levels. 
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6.4 Discussion 

In the present study, we investigated the influence of secondary school 

students’ basic numerical skills on their fraction understanding. To evaluate our 

hypothesis that those basic numerical skills reflecting the understanding of number 

magnitude and basic arithmetic operations should be particularly relevant to fraction 

understanding (cf. Ye et al., 2016) in secondary school students and to explore the 

relative influence of other basic numerical skills such as conceptual knowledge or 

basic geometry we chose a two-step approach: in a first step, we identified significant 

predictors of fraction understanding using multiple regression. In a second step we 

then evaluated relative importance of individual basic numerical skills using relative 

weight analysis (cf. Johnson, 2000) to determine the relative contribution of each 

identified predictor to the explained variance and to uncover ulterior predictors that 

multiple regression analyses missed to detect. In the first step, our approach 

revealed that multiplication was the most important predictor of fraction 

understanding. Moreover, general cognitive ability, subtraction, conceptual 

knowledge, number line estimation and sex significantly predicted fraction 

understanding in the sense that better performance on these basic numerical abilities 

and female sex was associated with better performance in the fraction understanding 

test. In addition to these significant predictors, relative weight analyses indicated 

considerable influences of addition, basic geometry as well as approximate 

arithmetic. These findings are largely in line with previous findings of longitudinal 

studies: whole number magnitude knowledge (i.e., number line estimation) and whole 

number arithmetic knowledge (i.e., multiplication, subtraction and conceptual 

knowledge of arithmetic) were observed to be important predictors of fraction 

understanding (e.g., Bailey et al., 2014; Hansen et al., 2015; Jordan et al., 2013; Ye 

et al., 2016). In the following, contributions of significant predictors as revealed by the 

multiple regression analysis, but also of potentially relevant predictors as indicated by 

the relative weight analysis will be discussed in more detail. 

In our study, the most important predictor of fraction understanding, as 

identified consistently in regression and relative weight analysis, was multiplication, 

with better multiplication performance predicting better fraction understanding test 

performance. This seems reasonable as a large part of the fraction understanding 

test required fraction arithmetic problems with single-digit numerators and 

denominators, for which multiplication is the key operation. For fraction addition and 
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fraction subtraction, multiplication procedures are required to find the common 

denominator and/or extend the numerators. Moreover, for multiplication or division of 

fractions it is necessary to multiply numerators and denominators with each other. 

Therefore, fluency with multiplication facts should help students to solve fraction 

problems independently of task type (i.e., magnitude comparison or a fraction 

arithmetic; cf. Hecht, Close, & Santisi, 2003; Seethaler, Fuchs, Star, & Bryant, 2011; 

Ye et al., 2016). Apart from that, (single-digit) multiplication is assumed to be solved 

by arithmetic fact retrieval (e.g., De Visscher & Noël, 2014; De Visscher, Noël, & De 

Smedt, 2016) which is fast, efficient and less effortful than any other procedural 

strategies based on magnitude manipulations.  

Another important (and consistently observed) predictor of fraction 

understanding was general cognitive ability: better general cognitive ability predicted 

better fraction understanding. General cognitive ability may be defined as a general 

mental capability in problem solving, abstract thinking, reasoning, planning, and 

comprehension of novel problems, but also learning from experience (e.g., Cattell, 

1963; Gottfredson, 1997; Horn & Cattell, 1966). To assess general cognitive ability, 

we used two subtests of the CFT-20-R (Weiß et al., 2006) reflecting fluid intelligence. 

Fluid intelligence is assumed independent of experience and previously acquired 

knowledge. According to Cattell (1963; 1966) it should also not be influenced by 

educational level and other environmental factors. Both, the subtest continuation of 

sequences as well as the subtest completion of matrices capture the ability to 

recognize rules and relationships. Transferred to fractions it is also important to 

recognize and then apply correct strategies and rules (e.g., Braithwaite, Leib, Siegler, 

& McMullen, 2019; Braithwaite, Pyke, & Siegler, 2017). As such, the ability to 

systematically solve problems on a more abstract level might be useful for operating 

on fractions. Unfortunately, most students tend to apply arithmetic strategies 

incorrectly when it comes to fractions (e.g., Hecht, 1998; Newton, Willard, & Teufel, 

2014) – primarily as a result of wrongly generalizing knowledge on whole number 

arithmetic to fraction arithmetic (e.g., Braithwaite et al., 2019). Additionally, in the 

curriculum of Baden-Württemberg fractions are introduced at the end of 6th grade, but 

hardly used afterwards in math classes and fraction problems are often not a 

common part of the daily math routine in schools resulting in a crucial lack of practice 

for solving fraction problems. Therefore, general cognitive ability may be an important 

predictor of fraction understanding test performance. 
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Moreover, subtraction was identified as a significant and relevant predictor of 

fraction understanding in both regression and relative weight analysis. Better 

subtraction performance was associated with better fraction understanding test 

performance. This may indicate that, in addition to arithmetic fact retrieval, processes 

of magnitude manipulation also play an important role in dealing with fractions, 

because subtraction is considered to be the arithmetic operation relying most on 

magnitude manipulations (Berteletti, Man, & Booth, 2015; Linsen, Verschaffel, 

Reynvoet, & De Smedt, 2014, 2015). As mentioned above, a considerable part of the 

fraction understanding test involved fraction calculations. The two most common 

operations used while calculating with fractions are multiplication (as described 

above) and addition. However, addition was not a significant predictor of fraction 

understanding in the regression analysis. One reason may be that subtraction and 

addition performance were highly correlated and variability was slightly more 

pronounced for subtraction as compared to addition performance (see Tables 6.1 

and 6.2). Moreover, as already mentioned above subtraction is assumed to draw on 

magnitude manipulations more strongly than addition. Therefore, it is unlikely that 

addition may explain unique variance beyond that already captured by subtraction. 

This argument is corroborated by the relative weight analysis, in which addition 

explained a relevant proportion of the variance in fraction understanding 

performance.  

Additionally, students’ conceptual knowledge on numbers was a significant 

predictor of their fraction understanding. Better performance on the conceptual 

knowledge test was associated with better fraction understanding test performance. 

For this test, students had to correctly reason about relationships between 

numerical/arithmetic operations without actually solving the arithmetic problems by 

performing the relevant computations. Therefore, conceptual understanding of the 

reciprocal relationships between different arithmetic operations was necessary to 

correctly solve the task. Such understanding is important as recent research 

indicated that students often tend to rely on their procedural mathematical knowledge 

without really understanding which arithmetic procedure is the correct one and why it 

is the correct one (e.g., Lortie-Forgues, Tian, & Siegler, 2015). For the case of 

fractions, this may easily lead to an erroneous application of arithmetic procedures. 

Interestingly, resulting strategy errors (e.g., wrongly applying procedures for whole 

numbers) are more common than execution errors (e.g., Braithwaite et al., 2017; 
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Siegler & Pyke, 2013). Therefore, better conceptual knowledge may enable students 

to apply arithmetic procedures correctly because they have good understanding of 

their relationships across arithmetic procedures. 

Furthermore, better number line estimation performance predicted better 

performance in the fraction understanding test. Number line estimation is considered 

to assess students’ representation of number magnitude (e.g., Siegler & Opfer, 

2003). For successful numerical development, it is essential to understand the 

concept that all numbers represent numerical magnitudes that are aligned in 

ascending order on a mental number line. According to Siegler (2016; see also 

Siegler & Braithwaite, 2017; Siegler & Lortie‐Forgues, 2014), the mental number line 

is a dynamic structure that is capable of representing all kinds numerical magnitudes 

(i.e., whole numbers, negative numbers and rational numbers). Additionally, 

magnitude understanding reflects a universal characteristic that applies to all kinds of 

real numbers (cf. Siegler & Braithwaite, 2017). In this vein, several studies indicated 

that individual differences in whole number magnitude understanding as assessed by 

the number line estimation task predicted later differences in fraction magnitude 

knowledge (e.g., Bailey et al., 2014; Jordan et al., 2013; Ye et al., 2016). Therefore, 

representing the magnitudes of whole numbers adequately on a mental number line 

seems to be a building block for successful understanding of fraction magnitudes 

later on. This is in line with previous findings showing that whole number magnitude 

knowledge is indeed a building block of later fraction understanding (e.g., Siegler, 

Thompson, & Schneider, 2011). Moreover, Siegler and Braithwaite (2017) also argue 

that fundamental understanding of number magnitude is essential to understand 

arithmetic procedures. This is in line with our results as large parts of our fraction 

understanding test involved fraction arithmetic problems and better whole number 

magnitude understanding predicted better performance in fraction arithmetic 

problems. 

Finally, sex was a significant predictor in our fraction understanding test with 

females performing better than males. This finding was expected because fraction 

understanding and in particular fraction arithmetic requires successful application of 

procedures or strategies and in general, females are known to be more successful in 

applying learned arithmetic procedures than males (Gallagher, 1998; Gallagher et al., 

2000; Kessel & Linn, 1996). 
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However, when a predictor variable in a multiple regression analysis is not 

significant, this does not necessarily mean that it has no influence on the dependent 

variable. Therefore, we conducted relative weight analyses. The latter revealed that 

addition, basic geometry as well as approximate arithmetic additionally contributed 

substantially to R2 and should also be considered as relevant predictors. However, as 

these three predictors were correlated with other predictors and therefore shared 

parts of their variance with other predictors it is likely that they were not able to 

become significant predictors in the multiple regression analysis because they may 

not have provided significant incremental information. As mentioned above, addition 

performance was highly correlated with subtraction performance, which was included 

in the final regression model. Basic geometry correlated significantly with number line 

estimation indicating that poorer performance in the number line estimation task was 

associated with poorer performance in the basic geometry task. Previous research 

showed that spatial skills, which would be needed for successful performance in 

basic geometry, also play a crucial role in magnitude representations as reflected by 

number line estimation. For instance, Gunderson, Ramirez, Beilock, & Levine (2012) 

argued that early spatial skills foster the development of magnitude knowledge in 

supporting the construction of a mental number line. Finally, approximate arithmetic 

was correlated significantly with subtraction and addition. This task requires confident 

and fast manipulation of magnitudes by relying on either addition or subtraction. 

Therefore, it is unlikely that performance on approximate arithmetic would explain 

unique variance over and above of what had already been explained by subtraction 

and/or addition. 

 

6.5 Limitations and Perspectives 

In summary, we observed that students’ fraction understanding was predicted 

significantly by their basic numerical skills. In particular, performance in multiplication, 

subtraction, conceptual knowledge and number line estimation were identified as 

significant predictors of children’s fraction understanding test performance beyond 

influences of sex and general cognitive ability. However, in contrast to previous 

studies (e.g., Bailey et al., 2014; Hansen et al., 2015; Jordan et al., 2013), our study 

is based on cross-sectional data and thus does not provide any information about 

developmental changes in fraction understanding. Nevertheless, grade level was no 
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significant predictor, neither in the multiple regression analysis nor in the relative 

weight analysis. Indicating that performance in our fraction understanding test was 

not predicted significantly by the grade level of participants. This is well in line with 

previous findings that fractions are difficult to understand and handle for students, 

adults and even math teachers (Ma, 1999; Smith, Solomon, & Carey, 2005; 

Vamvakoussi & Vosniadou, 2004, 2010b). Furthermore, our results fit nicely with that 

of prior longitudinal studies showing that whole number arithmetic (i.e., multiplication 

and subtraction) and number line estimation are important predictors for fraction 

understanding (e.g., Bailey et al., 2014).  

Thus, our results indicate that specific basic numerical skills acquired in 

primary school influence and predict performance on more complex mathematical 

concepts in secondary school in general and fraction understanding in particular. In 

turn, strengthening whole number magnitude understanding and whole number 

arithmetic should provide children with a broader fundament for fraction 

understanding.  
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Appendix 

A6.1 Item examples for the different subtests and the given instructions of the basic 
numerical skills test. 
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A6.2 Descriptive Statistics of all variables of interest distinguished by grade levels 
(i.e., 5th grade to 11th grade). 

 

Figure A6.1: Students’ mean performance for addition (A) and subtraction (B) scales 
distinguished by grade levels (7th grade N = 200, 8th grade N = 215, 9th grade N = 210, 
10th grade N = 136, 11th grade N = 178). 
 

 

 

Figure A6.2: Students’ mean performance for multiplication scale (C) and students’ 
mean percentage absolute estimation error for number line estimation scale (D) 
distinguished by grade levels (7th grade N = 200, 8th grade N = 215, 9th grade N = 210, 
10th grade N = 136, 11th grade N = 178). 
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Figure A6.3: Students’ mean performance for approximate arithmetic (E) and conceptual 
knowledge (F) scales distinguished by grade levels (7th grade N = 200, 8th grade N = 215, 
9th grade N = 210, 10th grade N = 136, 11th grade N = 178). 
 

 

 

Figure A6.4: Students’ performance for basic geometry (G) and non-symbolic magnitude 
comparison (H) scales distinguished by grade levels (7th grade N = 200, 8th grade N = 
215, 9th grade N = 210, 10th grade N = 136, 11th grade N = 178). 
 

 

 

 

 

Figure A6.5: Students’ mean performance for fraction understanding test (I) and 
performance for general cognitive ability (J) scales distinguished by grade levels (7th 
grade N = 200, 8th grade N = 215, 9th grade N = 210, 10th grade N = 136, 11th grade N = 
178). 
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A6.3 Results of multiple regression analysis and relative weights analysis of basic 
numerical skills, general cognitive ability, grade level, sex and two-way interactions 
between grade level, sex with basic numerical skills and general cognitive ability. 
 
  B β [L-CI,U-CI] RW t p RS-RW 

(%) 

Criteria = Fraction understanding [multiple R²= .35, adj. R² = .33, F(29,909) = 17.08, p <.001] 
   

 
    

Intercept 3.34 .00 [-.04, .08] .00 52.91 .000 0 

 
 

Multiplication 0.09 .18 [ .11, .25] .06 5.07 .000 17.41* 

 

G. cognitive ability 0.08 .16 [ .10, .23] .06 4.88 .000 16.52* 

 

 

Subtraction 0.07 .15 [ .06, .23] .05 3.52 .002 14.44* 

 

 

Addition  0.04 .07 [ -.01, .15] .04 1.72 .249 11.29* 

 

Conceptual knowledge 0.04 .12 [ .05, .18] .04 3.62 .002 10.60* 

 

Number line estimation (PAE) -0.06 -.10 [-.16, -.05] .03 -3.52 .002 7.23* 

 

 

Basic geometry 0.01 .07 [ .01, .13] .02 2.33 .076 6.58* 

 

Sexa -0.28 -.13 [-.19, -.08] .02 -4.53 .000 4.91* 

 

Approximate arithmetic 0.00 .01 [-.06, .07] .01 0.30 .816 3.84* 

 

 

Non-sym. mag. comp. -0.02 -.03 [-.08, .03] .00 -0.92 .646 0.30 

 
 

 

Grade level × Multiplication 

 

 

-0.10 

 

-.10 

 

[-.08, .05] 

 

.00 

 

-0.42 

 

.771 

 

0.41 

Grade level × G. cognitive ability    

 

-0.01 -.30 [-.01, .04] .00 -0.85 .663 0.43 

Grade level × Subtraction -0.01 -.04 [-.13, .04] .00 -0.98 .646 0.40 
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  B β [L-CI,U-CI] RW t p RS-RW 

(%) 

 

Grade level × Addition 

 

-0.01 -.03 [-.1, .06] .00 -0.60 .771 0.41 

Grade level × Conceptual 

knowledge 

 

0.00 .02 [-.05, .08] .00 0.50 .771 0.24 

Grade level × Number line 

estimation 

 

0.01 .04 [-.02, .1] .00 1.30 .446 0.26 

Grade level × Basic geometry           

 

0.00 .01 [-.05, .08] .00 0.39 .771 0.16 

Grade level × Approximate 

arithmetic 

 

0.01 .04 [-.03, .1] .00 1.09 .594 0.48 

Grade level × Non-sym. mag. 

comp.     

    

0.00 .00 [-.06, .05] .00 -0.04 .966 0.49 

Multiplication × Sexa   

 

-0.03 -.06 [-.13, .01] .00 -1.69 .249 0.29 

G. cognitive ability × Sexa 

 

-0.01 -.01 [-.08, .05] .00 -0.44 .771 0.86 

Subtraction × Sexa   

 

-0.01 -.03 [-.12, .05] .00 -0.75 .708 0.46 

Addition × Sexa   

 

0.04 .08 [ .00, .16] .00 1.98 .159 0.22 

Conceptual knowledge × Sexa   

 

0.00 .00 [-.07, .06] .00 -0.10 .951 0.05 

Number line estimation × Sexa   

 

0.01 .02 [-.04, .07] .00 0.55 .771 0.77 

Basic Geometry × Sexa      

 

0.00 -.02 [-.08, .04] .00 -0.72 .708 0.10 

Approximate arithmetic × Sexa 

 

-0.02 -.05 [-.12, .02] .00 -1.53 .316 0.10 

Non-sym. mag. comp. × Sexa -0.02 -.03 [-.08, .03] .00 -0.90 .646 0.06 
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  B β [L-CI,U-CI] RW t p RS-RW 

(%) 

 

Note: B: unstandardized regression weight; β: standardized regression weight; L-CI: lower boundary 
(2.5%); U-CI: upper boundary (97.5%); RW: raw relative weight (within rounding error raw weights will 
sum to R²); t: t-value measures the size of the effect relative to the variation in sample data; p: p-value; 

RS-RW: relative weight rescaled as a percentage of predicted variance in the criterion variable 
attributed to each predictor (within rounding error rescaled weights sum to 100 %). a code female = -1, 

male = 1. * significantly different from a random variable. 
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Abstract 

 

Aspects of processing fractions and negative numbers were considered 

separately so far. However, the question remains open whether theoretical 

mechanisms postulated in multidigit number processing models for negative numbers 

and fractions (e.g., sign flip, whole number bias) also apply for the processing of 

negative fractions. A fraction magnitude comparison task was used to investigate 

fraction processing with differing polarities (i.e., positive (+ +) vs. negative (- -) vs. 

mixed polarity (+ - / - +)) and containing one common component (numerator vs. 

denominator). Additionally, eye-tracking data was recorded to further substantiate 

behavioral results.  

Results indicated that, heterogeneous pairs (+-) were solved faster and more 

accurately than homogeneous pairs (++ and --) replicating the previously observed 

sign-shortcut strategy for natural numbers. Moreover, positive homogeneous fraction 

pairs were responded to faster than negative homogeneous pairs indicating added 

response costs of the sign flip. 

Additionally, negative fraction pairs with common denominators were 

processed faster than fraction pairs with common numerators indicating added 

response costs of the denominator flip. Finally, processing costs were largest for 

negative homogeneous fraction pairs with common numerators indicating that both 

the denominator flip and the sign flip uniquely contribute to the complexity of negative 

fraction comparison. Interestingly, a small subgroup of participants managed to solve 

this complex comparison faster by applying a different and unexpected strategy. 

Results of eye-tracking data partially supported behavioral findings. Thus, results 

suggest that the denominator and sign flip mechanism postulated for positive 

fractions and negative integer numbers, respectively, generalize to negative fractions.  

 

Keywords: fractions, negative numbers, negative fractions, strategies, eye-tracking 
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7.1 Introduction 

Despite the recent increased interest in negative numbers and fractions, 

research on both topics is still relatively sparse compared to whole numbers. 

Crucially, however, research on both negative numbers and fractions has repeatedly 

shown that children seem to have problems in understanding the concept of the two 

number types compared to whole numbers (Bofferding, 2014; Bright, Behr, Post, & 

Wachsmuth, 1988; Fuson, 2012; Hartnett & Gelman, 1998; Smith, Solomon, & 

Carey, 2005; Vamvakoussi & Vosniadou, 2004, 2010; Young & Booth, 2015). In both 

cases, misconceptions seem to partially result from children’s reliance on strategies 

and procedures learned and successfully applied for whole numbers. Such reliance 

on prior knowledge seems sensible as whole numbers represent critical elements 

based on which concepts of other numbers can be deduced and constructed (e.g., 

framework theory of conceptual change; Vosniadou, 1994, 2007).  

Children first encounter, learn to manipulate, and understand whole numbers 

during their mathematical development and are only later introduced to negative 

numbers and fractions12. Additionally, their knowledge of the latter number sets is 

acquired by continuously expanding previously obtained number sets. Starting from 

natural numbers (ℕ; e.g., positive whole numbers) followed by integers (ℤ; e.g., 

positive and negative whole numbers) and finally rational numbers (ℚ; e.g., integers, 

fractions and decimals). Reflecting children’s efforts to make sense of these new 

number sets, it seems obvious and plausible to apply knowledge of previously 

learned whole numbers to integers (i.e., negative numbers) and rational numbers 

(i.e., fractions; Bofferding, 2014; Vamvakoussi & Vosniadou, 2004, 2010). 

On a conceptual level, negative numbers and fractions seem to have specific 

characteristics that make it especially difficult to apply knowledge about whole 

numbers. Both number types reflect abstract concepts that are difficult to grasp on a 

concrete level, which is not the case for whole numbers (Thompson & Saldanha, 

2003; Varma & Schwartz, 2011). Additionally, both number types are characterized 

by an inverse relationship between their overall magnitude and the magnitude of their 

components. In the case of negative numbers, the overall magnitude of a negative 

number (e.g., -1 vs. -9) decreases as the magnitude of the integer increases (e.g., 1 

 
12 For an overview of the general curricula in mathematics in different countries, please see: 

http://timssandpirls.bc.edu/timss2015/encyclopedia/countries/ 
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and 9). For fractions, the larger the magnitude of the denominator, the smaller the 

fraction's overall magnitude (e.g., 1/2 vs. 1/9). This is in clear contrast to previously 

acquired whole number knowledge, which reflects that larger digits represent larger 

magnitudes (e.g., 1 vs. 9). These inverse relationships cause many problems for 

developing conceptual understanding of negative numbers (e.g., misconceptions 

while solving algebraic equations or solving subtractions with negative numbers; 

Bofferding & Wessman-Enzinger, 2017; Fagnant, Vlassis, & Crahay, 2005) as well as 

fractions (e.g., natural number bias; Alibali & Sidney, 2015; Ni & Zhou, 2005).  

Furthermore, in both cases, the specific form of presentation (i.e., polarity sign 

for negative numbers and a quotient format for fractions) can lead to additional 

challenges. Regarding negative numbers, the polarity sign may lead to 

misconceptions as it carries at least three meanings: i) it can be interpreted as a 

subtraction sign (Vlassis, 2002), ii) as the sign for negativity corresponding to 

negative numbers (Vlassis, 2004), and iii) as a reflection of the opposite meaning for 

any given number x on a number line (Bofferding, 2019; i.e., -3 is the opposite of 3). 

In a similar vein, fractions can be interpreted in many ways. The three most common 

interpretations are quotients (i.e., the quotient interpretation of  is 0.75), part-wholes 

(i.e.,  represents 3 parts out of 4), and operators (i.e., the fraction acts as a function  

). Thus, fractions take on different meanings depending on the context in which 

they are interpreted (e.g., meaning of a division in the quotient interpretation; Behr, 

Lesh, Post, & Silver, 1983; Kieren, 1993).  

Finally, for negative numbers and fractions, the literature provides inconsistent 

evidence regarding their mental representation. For negative numbers, there is an 

ongoing debate on whether they are processed holistically (i.e., one integrated 

representation for polarity sign and integer) or componentially (i.e., separate 

representations for polarity sign and integer). Previous studies suggested that 

negative number processing depends on the way numbers are presented in the task 

at hand (e.g., Fischer, 2003; Ganor-Stern, Pinhas, Kallai, & Tzelgov, 2010; Ganor-

Stern & Tzelgov, 2008; Shaki & Petrusic, 2005; Tzelgov, Ganor-Stern, & Maymon-

Schreiber, 2009). For instance, Ganor-Stern et al. (2010) showed that participants 

processed mixed-polarity pairs (e.g., + 6  and -7) during a magnitude comparison 

task holistically when the numbers were presented sequentially. However, 
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participants relied on a componential representation when numbers were presented 

simultaneously. 

Analog to negative numbers, there is evidence that fractions are either 

processed in a holistic (i.e., as an integrated entity, e.g., 1/2 = 0.5; see Ischebeck et 

al., 2009; Jacob & Nieder, 2009) or componential way (i.e., separate processing of 

numerator and denominator, e.g., Bonato, Fabbri, Umilta, & Zorzi, 2007; Huber, 

Moeller, & Nuerk, 2014; Kallai & Tzelgov, 2009). Again, the way fractions are 

processed seems to depend heavily on stimulus characteristics, type of task as well 

as on specific processing strategies (Faulkenberry & Pierce, 2011; Huber et al., 

2014; Ischebeck, Weilharter, & Körner, 2016; Obersteiner & Tumpek, 2016; 

Obersteiner, Van Dooren, Van Hoof, & Verschaffel, 2013; Siegler, Thompson, & 

Schneider, 2011).  

Critically, for both negative numbers and fractions, knowledge and correct 

application of strategies and procedures is essential for solving problems accurately 

(e.g., Bofferding, 2019; Booth, Newton, & Twiss-Garrity, 2014). For instance, Krajcsi 

& Igács (2010) observed that negative number processing relies on a strategy 

referred to as sign shortcut (see Figure 7.1 A). In their study, participants had to 

compare magnitudes of target numbers from -9 to +9 (except -5, 0, and +5) with 

reference numbers -5 and +5. Krajcsi & Igács (2010) found that pairs of numbers with 

different polarity signs (i.e., heterogeneous pairs + –/– +) were compared significantly 

faster than pairs with identical polarity signs regardless of the polarity sign of the 

reference number and numerical distance of the pairs. Based on this, the authors 

concluded that processing the magnitude of the numbers seems obsolete for pairs 

with different polarity signs because the correct decision can be based exclusively on 

the polarity signs (see also Tzelgov et al., 2009).  

In addition to the sign shortcut strategy, the metaphor of a mirror mechanism 

was introduced for negative numbers (e.g., Krajcsi & Igács, 2010). For negative 

numbers, the mirror mechanism describes a two-step strategy by which the integers 

are first compared without considering the polarity sign. In the second step, the result 

of the comparison is then inverted. The mirror mechanism strategy can also be 

applied to fractions. In case of fractions with common numerators, the denominators 

are compared first, and afterward, the result is inverted. To avoid misunderstandings, 
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we will refer to the mirror mechanism for negative numbers as sign flip and the mirror 

mechanism for fractions as denominator flip (see Figure 7 for an illustration).  

Taken together, understanding negative numbers and fractions represents two 

important milestones during mathematical development of children and adolescent. 

Importantly, the correct application of specific strategies may make dealing with 

negative numbers and fractions more manageable. 

The present study 

So far, cognitive representations, strategies, and difficulties in processing 

negative numbers and fractions were investigated separately (e.g., Ganor-Stern, 

Karasik-Rivkin, & Tzelgov, 2011; Ganor-Stern, Pinhas, Kallai, & Tzelgov, 2010; 

Huber, Moeller, & Nuerk, 2014; Ischebeck, Schocke, & Delazer, 2009; Shaki & 

Petrusic, 2005; Sprute & Temple, 2011; Tzelgov, Ganor-Stern, & Maymon-Schreiber, 

2009). The present study aimed at investigating the combination of these two types 

of numbers (i.e., negative fractions) for the first time.  

We aimed to investigate cognitive processes underlying magnitude 

comparisons of fractions ranging from -1 to +1. To this end, four strategies were of 

particular interest for the current study: i) Sign-shortcut (strategy 1): numbers with 

different polarity signs (e.g., + and - ) are compared by specifically considering 

polarity signs (see also Figure 7.1 A), ii) Sign flip (strategy 2): negative numbers (i.e., 

- and - ) are compared by only considering the absolute values and reversing the 

answer (see also Figure 7.1 B), iii) Denominator flip (strategy 3): positive fractions 

with common numerators (i.e., +  and + ) are compared by specifically considering 

denominators and reversing the answer (see also Figure 7.1 C). Additionally, we 

were also interested in the combination of the sign and denominator flip strategies: 

negative fractions with common numerators (i.e., -  and - ) are compared by 

executing the sign and the denominator flip consecutively (irrespective of order; see 

also Figure 7.1 D). 

Expanding previous research findings, we aimed to evaluate whether a) 

strategies for negative number processing (i.e., sign shortcut and sign flip 

mechanism; Krajcsi & Igács, 2010) generalize to negative fraction processing. 
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Furthermore, we aimed at b) replicating the effect of a denominator flip for negative 

fractions (see Huber et al., 2014; Meert, Grégoire, & Noël, 2009).  

 

 

Figure 7.1: The different strategies of interest during the fraction magnitude comparison task. (A) 
Sign-shortcut: only the polarity signs are considered during the comparison. (B) Sign flip: The overall 
fraction magnitude is first considered. Then the answer is reversed. (C) Denominator flip: only the 
magnitudes of the denominators are compared. Then the answer is reversed. (D) Sign and 
Denominator flip: Both strategies are conducted one after the other. 

 



125 

 

For this purpose, we used a 2 (denominator- vs. numerator-relevant) x 2 

(homogeneous vs. heterogeneous) x 2 (blocked vs. mixed presentation of 

homogeneous and hetereogeneous pairs) design. Fraction pairs used in the present 

study only differed concerning one component and thus either shared the numerator 

(i.e., the denominator is relevant) or the denominator (i.e., the numerator is relevant). 

We additionally manipulated the polarity of the fraction pairs: they consisted either of 

two positive fractions (i.e., homogenous pairs), two negative fractions (i.e., 

homogenous pairs), or a pair of fractions with one positive and one negative fraction 

(i.e., heterogenous pairs). Finally, the presentation format of the fraction comparison 

task was manipulated. The experiment consisted of a blocked (i.e., only one type of 

fraction comparison) and a mixed condition (i.e., different types of fraction 

comparisons) to account for predictability of the decision-relevant components of 

each type of fraction comparison. In addition to the speed and accuracy of 

responses, participant’s eye movements were recorded. 

Regarding the respective strategies used, we tested the following hypotheses with 

specific contrasts:  

1. In line with the findings of Krajcsi & Igács (2010), we expected participants 

to use the sign-shortcut strategy resulting in significantly faster processing of 

heterogeneous fraction pairs (i.e., + – / – +) than homogeneous fraction pairs (i.e., – 

– or ++). Moreover, further evidence for componential processing should be found in 

participants’ eye movements. Participants should spend proportionally more time 

fixating the polarity signs than on the other areas of interest (AOIs; i.e., the numerator 

and denominator). 

2. In line with the sign flip strategy (see Krajcsi & Igács, 2010), we expected 

participants to be significantly faster when confronted with positive homogeneous 

numerator-relevant fraction pairs (++) than negative homogenous numerator-relevant 

fraction pairs (– –), because the sign flip strategy predicts additional costs for 

homogenous negative fraction pairs. Moreover, reflecting componential processing 

strategies, these additional costs should be reflected in proportionally more time 

spent on the numerators when comparing negative fraction pairs than positive 

fraction pairs. 

3. Replicating the findings of Huber et al. (2014) and Meert et al. (2009), we 

expected to find the denominator flip strategy in positive fraction pairs: participants 
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should be significantly faster when processing positive homogenous numerator-

relevant fraction pairs (++) than positive homogenous denominator-relevant fraction 

pairs, reflecting additional flipping costs for denominator-relevant fraction pairs. 

Furthermore, these additional costs should be reflected by proportionally more time 

spent fixating on the denominator for positive homogenous denominator-relevant 

fraction pairs compared to processing positive homogenous numerator-relevant 

fraction pairs.  

4. Extending the findings of Huber et al. (2014) and Meert et al. (2009), we 

expected to find a combination of the sign- and denominator flip in negative fraction 

pairs (i.e., in trails were negative homogeneous denominator-relevant fraction pairs 

were compared). There are two ways to approach this analysis: i) comparing 

negative and positive denominator-relevant fraction pairs or ii) comparing negative 

numerator- and denominator-relevant fraction pairs. In particular, participants should 

need significantly more time processing negative denominator-relevant fraction pairs 

than positive denominator-relevant and negative numerator-relevant fraction pairs. 

Moreover, irrespective of processing order (i.e., polarity sing or fraction component) 

we expected participants to spend proportionally more reading time on the polarity 

sign and the denominators than the numerator, respectively.  

5. Finally, the presentation format (i.e., blocked vs. mixed) of the fraction pairs 

should affect participants' performance. In particular, reaction times should be higher 

in mixed conditions as compared to blocked conditions because of additional 

switching costs during mixed conditions (Huber et al., 2014).  

 

Table 7.1: Overview of the different processing strategies 

 
strategy 

 
relevant 

polarities in 
analysis 

 

 
relevant fraction 
components in 

analysis 

 
additional costs 

expected for 

 
most time 
spend on 

 
Sign-Shortcut 

 
+ – /  – + 
++ / – – 

 

 
numerator and 
denominator 

 
++ / – – 

numerator- and 
denominator-

relevant 
 

 
polarity sign 

Sign flip ++ / – – 
 

numerator – – numerator-
relevant 

  

numerator 
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7.2 Methods 

Participants 

Thirty volunteers from the University of Tübingen (24 female, 6 male) ranging 

in age from 18 to 51 years (M = 23.4 years, SD = 6.9 years) participated in the 

experiment. All participants reported to be right-handed and had normal or corrected 

to normal vision. Informed consent was obtained from all participants.  

Stimuli  

Stimuli consisted of 200 different fractions pairs with numerators comprising 

the numbers 1, 2, 3, 4, 5, and 7, and denominators comprising the numbers 3, 4, 5, 

6, 7, 8, and 9. All generated fractions were proper fractions (i.e., smaller than 1) and 

could not be shortened. Polarity signs were presented for both negative and positive 

fractions. Furthermore, pairs always had one component (numerator or denominator, 

see Table 7.1) in common.  

As illustrated in Table 7.1, there were six different types of fraction pairs 

manipulated according to polarity (two positive fractions [++] vs. two negative 

fractions [– –] vs. one positive and one negative fraction [+ –/– +]) and relevant 

component (numerator-relevant vs. denominator-relevant). For both numerator-

relevant and denominator-relevant fraction pairs, respectively, there were 25 positive 

homogeneous (++) and 25 negative homogeneous fraction pairs (– –). Positive and 

negative homogeneous fraction pairs only differed from each other with respect to the 

polarity sign (i.e., the absolute numerical values were the same). For homogeneous 

fraction pairs, the position of the larger fraction (left vs. right) was counterbalanced. 

To generate heterogeneous fraction pairs, the polarity sign of the first fraction of the 

homogeneous fraction pairs was inverted. Thus, heterogeneous fraction types 

Denominator flip ++ 
 

numerator and 
denominator  

++ denominator-
relevant 

 

denominator 

Sign & 
Denominator flip 

 ++ / – – 
 

 – – 
 

denominator 
 

numerator and 
denominator 

 

 
– – denominator-

relevant 
 

denominator 
 

denominator 
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contained 50 stimuli with the positive fraction presented first in 25 fraction pairs, and 

the negative fraction presented first in another 25 pairs.  

Fraction pairs were matched for numerator-relevant and denominator-relevant 

pairs with respect to absolute numerical distance between whole fractions, numerical 

distance between corresponding components, problem size of the whole fraction (i.e., 

(fraction 1 + fraction 2)/ 2) and problem size of the components [i.e., (numerator 1 + 

numerator 2)/ 2 or (denominator 1 + denominator 2)/ 2]. Some matching parameters 

for heterogeneous fraction pairs necessarily deviate from parameters of 

homogeneous fraction pairs: Overall distance is necessarily larger for heterogeneous 

pairs because the distance is larger from a positive to a negative fraction (or vice 

versa) than from a positive to another positive or a negative to another negative 

fraction. Additionally, overall problem size is necessarily smaller for heterogeneous 

pairs as one fraction is negative and therefore smaller. Furthermore, we assigned the 

polarity sign to the numerator for computing distances and problem sizes. Therefore, 

problem size of numerators of heterogeneous pairs is smaller than numerators of 

homogeneous pairs (see Table S7.1 for all stimuli; see Table 7.2 for all matching 

parameters).  

Table 7.2: Matching parameters for the six stimulus categories. 

example polarity 
relevant 

component 
distance 
fraction 

distance 
num 

distance 
denom 

PS 
fraction 

PS 
num 

PS 
denom 

 

     ++ Num 0.15 0.00 2.60  0.40  2.72 7.06 

+   +   ++ Denom 0.37 2.56 0.00  0.40  2.68 6.92 

         – – Num 0.15 0.00 2.60 -0.40 -2.72 7.06 

 

– – Denom 0.37 2.56 0.00 -0.40 -2.68 6.92 

 

+ –/– + Num 0.15 0.00 2.60  0.00  0.00 7.06 

 

+ –/– + Denom 0.37 2.56 0.00  0.00  0.00 6.92 
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Note: The negative algebraic sign was assigned to the numerator to calculate distances and problem sizes 
for heterogeneous number pairs (+ –). PS = problem size; num = numerator; denom = denominator.  

  

Eye-Tracking 

Eye movements were recorded using an Eye Link 1000 Eye Tracker (SR-Research, 

Kanata, Ontario, Canada). Employing a 9-point calibration at the beginning of the 

experiment and drift corrections before each trial, a spatial resolution of less than 

0.5° visual angle was possible with this system. 

Procedure 

Stimuli and instructions were presented on a 19“ monitor (resolution: 1024 x 

768 pixels, frame rate: 120 Hz). Viewing distance was approximately 60 cm. Stimuli 

were presented in white against a black background. The non-proportional font 

Courier New (size 48, bold) was used to ensure that all numbers had the same width. 

Fraction pairs were presented horizontally next to each other. The center of the left 

fraction was presented at x/y-coordinates 512/384 and the corresponding polarity 

sign at x/y-coordinates 458/384. The center of the right fraction was presented at x/y- 

coordinates 768/384 and the corresponding polarity sign at 714/384. Each trial was 

preceded by a fixation cross presented for 500 ms at the center of the screen. 

The experiment was conducted in a single session in a quiet and dimmed 

room. Written instructions to identify the numerically larger fraction were presented 

on the monitor. To indicate that the right fraction was the larger one, participants had 

to press the right trigger button of a game controller with the right index finger and 

vice versa for the left fraction being the larger one. Participants were instructed to 

react as fast as possible while avoiding errors. Pairs of fractions were presented until 

a response was recorded. No feedback about the correctness of the response was 

given.  

The experiment started with six independent practice trials (one trial per 

stimulus condition). All experimental stimuli were presented twice as we manipulated 

the presentation format (blocked vs. mixed). In the blocked condition, the six different 

types of fraction pairs were presented in six separate blocks. Stimulus order within 

these blocks was randomized. In the mixed condition, stimuli of all six stimulus 
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conditions were presented in randomized order. Every 25 trials, participants had the 

chance to take a break irrespective of presentation format.   

Order of presentation format and stimulus categories were pseudo-

randomized across participants. Half of the participants started with the blocked, the 

other half with the mixed presentation format. Within the blocked condition, half of the 

participants started with the numerator-relevant trials; the other half started with the 

denominator-relevant trials. Finally, the order of polarity (++ vs. – – vs. +–/–+) was 

counterbalanced across participants. The experiment took approximately 45 minutes.  

Analysis  

Behavioral analysis 

Analyses of reaction times (RT), error rates (ER), and eye movements were 

performed using R (R Development Core Team, 2019). To directly test our 

hypotheses, we fitted five specific linear mixed-effects models using ‘lmer’ from the 

“lme4” R package (Bates, Mächler, Bolker, & Walker, 2014) for RT and eye-tracking 

data, respectively.  

For analyzing the eye-tracking data, the proportion of reading time in the 

relevant area of interest (AOI; i.e., signs, numerators, or denominators) compared to 

all relevant AOIs (i.e., signs, numerators, and denominators) for only correctly solved 

items was considered. Reading time was defined as the total amount of time a 

participant fixated an AOI. Interest areas around each digit and polarity sign were 

defined with a height of 100 pixels and width of 45 pixels for the digits, and a height 

of 75 pixels and width of 60 pixels for the polarity sign. As we were only interested in 

differences in the number of fixations for polarity signs, numerators, and 

denominators, we collapsed the data over both fractions of a pair, not differentiating 

between the left and right fraction. 

Additionally, for ER data analyses, we conducted five generalized linear effect 

models (GLME) to address the four specific strategies, again applying the R package 

lme4 (Bates et al., 2015). ERs were analyzed using GLMEs with a binomial error 

distribution and logit as the link function. To increase readability, log odds are also 

given in percent error. To facilitate reading flow of the current paper and because 

results of RT and error rates largely overlapped, we report the results of the analyses 

of error rates in the supplementary material (S7.2). 
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For all conducted models, we used the ‘summary’ function of the “lmerTest” R 

package (Kuznetsova, Brockhoff, & Christensen, 2018) to provide p-values. Post hoc 

analyses were run using the R package lsmeans (Lenth & Lenth, 2018). To account 

for multiple testing, p-values were corrected using the false discovery rate (Benjamini 

& Hochberg, 1995). Additionally, for reaction times and eye-tracking analysis, 

summary statistics were extracted via the ‘analyze’ function of the “psycho” R 

package (Makowski, 2018).  

RT data trimming 

Only correctly solved trials were considered for analyses. Participants who 

committed more than 33% errors (50% was guessing rate) in one experimental 

condition were excluded from further analyses (this affected 6 participants). RTs 

smaller than 200ms were also excluded. After inspection, RTs were log-transformed 

to correct for their right-skewed distribution (as suggested by Ratcliff, 1993). 

Additionally, a model-based trimming procedure was applied to remove further 

outliers. In particular, a linear mixed-effects model on log-transformed RTs (logRT) 

and presentation format (blocked vs. mixed), relevant component (numerator-

relevant vs. denominator-relevant), polarity (+ + vs. – – vs. + –/– +), as well as the 

respective two- and three-way interactions as fixed effects and a random effect for 

participants (random intercept as well as random slopes for presentation, component, 

polarity, and the respective interactions) was run. Data were trimmed by z-

standardizing residuals of this linear mixed-effects model and excluding all logRTs 

with residuals deviating more than ±3 SD from the estimated mean (Baayen & Milin, 

2010). Data trimming (i.e., reaction times < 200 ms and +/- 3 SDs) resulted in a loss 

of 0.08% of data. Results of analyses on reaction times are given in both logRT and 

plain RT to increase readability. 
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7.3 Results13 

Strategy 1: Sign-shortcut  

The sign-shortcut strategy reflects that heterogenous fraction pairs (+ –/– +) 

should be compared significantly faster than homogenous fraction pairs (++/– –). 

Thus, the vital role of the polarity sign for this strategy should also be reflected by 

proportionally longer times spend fixating the polarity signs than on other areas of 

interest. To investigate whether participants were using the sign-shortcut strategy, all 

fraction pairs (i.e., heterogenous and homogeneous and numerator- and 

denominator-relevant) were considered for analyses. 

Reaction times 

A linear mixed effect model with the fixed factors presentation format (blocked 

vs. mixed), component (numerator-relevant vs. denominator-relevant), and polarity 

(homogenous vs. heterogenous) and a random intercept to account for participants’ 

individual differences was run on logRTs. The model explained a significant 

proportion of variance of logRT (R2 = 81.58%; fixed effects: R2 = 70.46%). Moreover, 

the fixed effects of presentation format [β = 0.67, SE = 0.07, t(264) = 10.20, p < .001], 

component [β = - 0.22, SE = 0.07, t(264) = - 3.32, p < .01], and polarity [β = - 0.67, 

SE = 0.07, t(264) = - 10.14, p < .001] were significant. RTs were smaller in the 

blocked [M = 6.78 (883ms), SE = 0.04] as compared to the mixed condition (M = 7.34 

(1540ms), SE = 0.04). Moreover, heterogeneous fraction pairs (M = 6.61 (745ms), 

SE = 0.05) were solved fastest, followed by positive homogeneous pairs (M = 7.22 

(1365ms), SE = 0.05) and again followed by negative homogeneous pairs (M = 7.35 

(1561ms), SE = 0.05). Pairwise post hoc comparisons indicated that RTs significantly 

differed between + – vs. – – (t(275) = 22.02, p < .001) and + – vs. + + (t(275) = - 

18.03, p < .001) and + + vs. – – (t(275) = 3.99, p < .001). Finally, numerator-relevant 

fractions pairs were compared faster (M = 6.98 (1071ms), SE = 0.04) than 

denominator-relevant fraction pairs (M = 7.15 (1269ms), SE = 0.04).  

Furthermore, the two-way interaction of presentation format and polarity was 

significant [β = - 0.33, SE = 0.09, t(264) = - 3.50, p < .001]. We further inspected the 

 
13 Please note that in a second analysis, we additionally included the holistic distance effect as 
variable of interest for each strategy separately. However, for the sake of readability and since this 
analysis revealed consistently no significant distance effect across all strategies the analyses are not 
reported in this manuscript.  
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interaction by running pairwise post hoc comparisons for the blocked and the mixed 

condition separately. We found that in the blocked condition RTs were significantly 

faster for heterogenous pairs (M = 6.44 (623ms), SE = 0.06) than for positive and 

negative homogenous pairs (M = 6.92 (1008ms), SE = 0.06 vs. M = 7.00 (1095ms), 

SE = 0.06). Polarity significantly differed between + – vs. – – (t(118) = 10.64, p < 

.001) and + – vs. + + (t(118) = - 9.08, p < .001). The comparison between ++ and – – 

was not significant (t(118) = 1.56, p = .121). For the mixed condition, RTs were again 

faster for heterogenous pairs (M = 6.79 (889ms), SE = 0.05) than for positive and 

negative homogenous pairs (M = 7.52 (1847ms), SE = 0.05 vs. M = 7.71 (2223ms), 

SE = 0.05). Polarity significantly differed between + – vs. – – (t(118) = 23.10, p < 

.001), + – vs. + + (t(118) = - 18.42, p < .001) and + + vs. – – (t(118) = 4.67, p < .001). 

Finally, the two-way interaction component and polarity was significant [β = 

0.21, SE = 0.09, t(264) = 2.23, p < .05]. We further inspected the interaction by 

running pairwise post hoc comparisons for denominator- and numerator-relevant 

fraction pairs separately. We found that for denominator-relevant fraction pairs RTs 

were faster for heterogenous pairs (M = 6.61 (745ms), SE = 0.06) than for positive 

and negative homogenous pairs (M = 7.38 (1606ms), SE = 0.06 vs. M = 7.44 

(1709ms), SE = 0.06). Polarity significantly differed between + – vs. – – (t(118) = 

10.41, p < .001) and + – vs. + + (t(118) = - 9.63, p < .001). The comparison between 

++ and – – was not significant (t(118) = 0.78, p = .435). For numerator-relevant 

fraction pairs RTs were again lower for heterogenous pairs (M = 6.61 (744ms), SE = 

0.06) than for positive and negative homogenous pairs (M = 7.06 (1160ms), SE = 

0.06 vs. M = 7.26 (1425ms), SE = 0.06). Polarity significantly differed between + – vs. 

– – (t(118) = 8.15, p < .001), + – vs. + + (t(118) = - 5.57, p < .001) and + + vs. – – 

(t(118) = 2.58, p < .05).  

Eye Tracking 

A linear mixed effect model with presentation format (blocked vs. mixed), 

component (numerator-relevant vs. denominator-relevant), and polarity (++ vs. – – 

vs. + –/– +) as fixed factors and a random intercept to account for participants’ 

individual differences was run on the relative total reading time on the AOI polarity 

signs. The model explained a significant proportion of variance (R2 = 50.73%; fixed 

effects: R2 = 22.90%). Moreover, the fixed effect of polarity was significant [β = 0.28, 

SE = 0.04, t(264) = 6.97, p < .001]. In heterogeneous fraction pairs the polarity sign 
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was fixated relatively longer with 47.6% (SE = 2.6%) reading time compared to 31.6 

% (SE = 2.6%) in positive homogenous pairs and 29.0% (SE = 2.6%) in negative 

homogenous pairs. Pairwise post hoc comparisons indicated that relative total 

reading time on the polarity sign significantly differed between + – vs. – – (t(275) = - 

9.03, p < .001) and + – vs. + + (t(275) = 7.77, p < .001). The comparison between ++ 

and – – was not significant (t(275) = - 1.26, p = .207).  

Additionally, the interaction of presentation format and polarity was significant 

[β = -0.15, SE = 0.06, t(264) = -2.65, p < .01]. We further inspected the interaction by 

running pairwise post hoc comparisons for the blocked and the mixed condition 

separately. We found that the reading time on the polarity sign in the blocked 

condition was higher for heterogenous pairs than for negative and positive 

homogenous pairs [51.5% (SE = 0.03%) vs. 27.2% (SE = 0.03%) vs. 26.1% (SE = 

0.03%)]. More specifically, the reading time for the blocked condition significantly 

differed between + – vs. – – (t(118) = - 7.60, p < .001) and + – vs. + + (t(118) = 7.93, 

p < .001). The comparison between ++ and – – was not significant (t(118) = 0.34, p = 

.738). Finally, for the mixed condition, we again found that reading time on the 

polarity sign was higher for heterogenous pairs than for positive and negative 

homogenous pairs [43.8% (SE = 0.03%) vs. 37.1% (SE = 0.03%) vs. 30.8% (SE = 

0.03%)]. Moreover, reading time for the mixed condition significantly differed between 

+ – vs. – – (t(118) = - 6.77, p < .001), + – vs. + + (t(118) = 3.49, p < .01) and + + vs. – 

– (t(118) = - 3.28, p < .01). Neither the fixed effects of presentation format nor 

component nor the interactions presentation format and component as well as 

polarity and component were significant [all t ≤ 1.89, all ps > .05].  

Taken together, both RT and eye movement data provide strong evidence for 

a sign-shortcut strategy when comparing fractions. This applies to both blocked and 

mixed presentation of item categories. 

Strategy 2: Sign flip 

The sign flip strategy would be indicated when positive homogenous fraction 

pairs (++) were processed faster than negative homogenous fraction pairs (– –). The 

reasoning behind this assumption is that negative homogenous fraction pairs are 

processed in two steps: first by only comparing the magnitudes of the fractions 

independent of their polarity and second by then considering the negative sign. This 

two-step process should be reflected by increased reaction times in negative 
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compared to positive homogenous fraction pairs as well as proportionally longer 

reading times spend on the numerator for negative fraction pairs than positive 

fraction pairs. To specifically investigate whether participants used the sign flip 

strategy, only homogenous numerator-relevant fraction pairs were considered for 

analyses.  

Reaction times 

A linear mixed effect model with the fixed factors presentation format (blocked 

vs. mixed) and polarity (i.e., homogenous pairs only ++ vs. – –) and a random 

intercept to account for participants’ individual differences was run on logRTs. The 

model explained a significant proportion of variance in RT (R2 = 71.75%; fixed 

effects: R2 = 57.23%). The fixed effect of presentation format [β = - 0.37, SE = 0.04, 

t(72) = - 10.37, p < .001] was significant. RTs were smaller in the blocked (M = 6.82 

(920ms), SE = 0.05) as compared to the mixed condition (M = 7.49 (1797ms), SE = 

0.05). Additionally, the fixed effect of polarity was significant [β = - 0.21, SE = 0.05, 

t(72) = - 4.05, p < .001]. Participants answered faster when comparing positive 

homogenous pairs (M = 7.06 (1160ms), SE = 0.05) than negative homogenous pairs 

(M = 7.26 (1425ms), SE = 0.05). The interaction of presentation format and polarity 

was not significant [t(72) = 1.48, p > .05]. 

Eye Tracking 

A linear mixed effect model with the fixed effects presentation format (blocked 

vs. mixed), and polarity (++ vs. – –) was run on the proportion of total reading time on 

the AOI numerator. The model explained a significant proportion of variance (R2 = 

52.77%; fixed effects: R2 = 13.25%). Only the fixed effect of presentation format was 

significant [β = - 0.14, SE = 0.05, t(72) = - 3.01, p < .01] with 46.1% (SE = 3.8%) of 

reading time on numerators in blocked trials vs. 30.3 % (SE = 3.8%) in mixed trials. 

Neither the fixed effect of polarity nor the interaction of presentation format and 

polarity was significant [all t ≤ - 0.57, all ps > .05]. 

To investigate whether the sign flip strategy might influence reading time on 

the polarity sign, a second linear mixed effect model with the same fixed and random 

factors was run on the relative total reading time on the AOIs polarity signs and 

showed no significant effects [all t ≤ 1.29, all ps > .05]. 
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Taken together, only RT data provided evidence for a sign flip strategy when 

comparing fractions whereas our hypothesis for eye tracking data was not supported 

by the data.  

Strategy 3: Denominator flip 

When participants use the denominator flip strategy, they compare 

denominators of fraction pairs in two steps. First, the magnitudes of the denominators 

are compared. Subsequently, the answer is reversed due to the inverse relationship 

between the overall fraction magnitude and the magnitude of the denominator (e.g., 

denominators with greater magnitudes are the fractions with overall smaller 

magnitude: ). Thus, reaction times are expected to be larger when comparing 

denominator-relevant fraction pairs compared to numerator-relevant fraction pairs. 

Additionally, participants should spend proportionally more reading time on the 

denominator than on other AOIs. To evaluate whether participants used the 

denominator flip strategy, only positive homogenous numerator- and denominator-

relevant fraction pairs were considered for analyses. 

Reaction times 

A linear mixed effect model with the fixed factors presentation format (blocked 

vs. mixed) and component (numerator-relevant vs. denominator-relevant) and a 

random intercept to account for participants’ individual differences was run to analyze 

logRTs. The model explained a significant proportion of variance in RT (R2 = 76.92%; 

fixed effects: R2 = 61.35%). Moreover, the fixed effects of presentation format [β = 

0.62, SE = 0.06, t(72) = 10.08, p < .001] and component [β = - 0.31, SE = 0.06, t(72) 

= - 5.14, p < .001] was significant. RTs were faster in blocked (M = 6.92 (1008ms), 

SE = 0.05) as compared to mixed condition (M = 7.52 (1847ms), SE = 0.05). 

Additionally, numerator-relevant pairs were solved faster (M = 7.06 (1160ms), SE = 

0.05) than denominator-relevant pairs (M = 7.38 (1606ms), SE = 0.05). The two-way 

interaction presentation format and component was not significant [t(72) = - 0.25, p > 

.05].  

Eye Tracking 

A linear mixed effect model with presentation format (blocked vs. mixed) and 

component (numerator-relevant vs. denominator-relevant) as fixed factors and a 
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random intercept to account for participants’ individual differences was run on the 

relative total reading time on the AOIs denominators. The model explained a 

significant proportion of variance (R2 = 59.70%; fixed effects: R2 = 31.95%). The fixed 

effect of presentation format [β = 0.62, SE = 0.06, t(72) = 10.08, p < .001] was 

significant, indicating more (44.3%, SE = 3.8%) reading time on denominators in 

blocked as compared to mixed presentation (38.1%, SE = 3.8%). Additionally, the 

fixed effect of component was significant [β = 0.62, SE = 0.06, t(72) = 10.08, p < 

.001]. This indicated more (53%, SE = 3.8%) reading time on denominators in 

denominator-relevant trials as compared to numerator-relevant trials (29.4%, SE = 

3.8%). Furthermore, the interaction of presentation format and component was 

significant [β = 0.62, SE = 0.06, t(72) = 10.08, p < .001]. We further inspected the 

interaction by running pairwise post hoc comparisons among conditions. We found 

that reading time for numerator-relevant fraction pairs during the mixed condition was 

significantly higher than during the blocked condition [34.7% (SE = 0.05%) vs. 24% 

(SE = 0.05%), p < .05]. Whereas for denominator-relevant fraction pairs reading time 

was significantly higher for blocked conditions than mixed condition [64.5% (SE = 

0.05%) vs. 41.5% (SE = 0.05%), p < .001]. Therefore, the fixed effects of 

presentation format and component should not be interpreted. 

Taken together, both RT and eye movement data provided clear evidence for 

a denominator flip strategy when comparing negative fractions. This held true for both 

blocked and mixed presentation format. 

Strategy 4: Combination of sign and denominator flip 

We ran two separate analysis to investigate whether participants were using a 

combination of the sign and denominator flip during the most challenging fraction 

comparisons (i.e., negative homogenous denominator-relevant fraction pairs). First, 

only homogenous (++ and – –) denominator-relevant fraction pairs were considered 

to isolate the sign flip strategy. Second, only negative homogenous denominator- and 

numerator-relevant fraction pairs were considered to isolate the denominator flip 

strategy. Participants RTs should be the longest when comparing negative 

denominator-relevant fraction pairs in case both strategies were used consecutively 

(see Table S7.2 for mean RTs for all conditions). Moreover, irrespective of 

processing order (i.e., polarity sing or fraction component) we expected participants 

to spend proportionally more reading time on the denominators than the other AOIs 
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when comparing homogeneous denominator-relevant fraction pairs and more time on 

the polarity sign when comparing negative homogenous fraction pairs. 

Reaction times 

A first linear mixed effect model with the fixed factors presentation format 

(blocked vs. mixed) and polarity (++ vs. – –) and a random intercept to account for 

participants’ individual differences was run on homogeneous denominator-relevant 

fraction pairs. The model explained a significant proportion of variance in RT (R2 = 

68.37%; fixed effects: R2 = 47.50%). The fixed effect of presentation format [β = 0.67, 

SE = 0.08, t(72) = 8.76, p < .001] was significant. RTs were shorter in the blocked (M 

= 7.09 (1201ms), SE = 0.06) compared to the mixed condition (M = 7.73 (2286ms), 

SE = 0.06). Neither the fixed effect of polarity nor the interaction of presentation and 

polarity was significant [all t ≤ - 0.46, all ps > .05]. 

Second, a linear mixed effect model with the fixed factors presentation format 

(blocked vs. mixed) and component (i.e., numerator- or denominator-relevant) and a 

random intercept to account for participants’ individual differences was run on 

negative fraction pairs. The model explained a significant proportion of variance in RT 

(R2 = 64.58%; fixed effects: R2 = 49.97%). Both fixed effects of presentation format [β 

= 0.67, SE = 0.09, t(72) = 7.51, p < .001] and component [β = - 0.22, SE = 0.09, t(72) 

= - 2.45, p < .05] were significant. RTs were significantly smaller in the blocked (M = 

7.00ms (1095ms), SE = 0.06ms) compared to the mixed condition (M = 7.71ms 

(2223ms), SE = 0.06ms). Additionally, numerator-relevant pairs were solved 

significantly faster (M = 7.26ms (1425ms), SE = 0.06) than denominator-relevant 

pairs (M = 7.44ms (1709ms), SE = 0.06). The interaction of presentation and 

component was not significant [ t(72) = 0.58, p > .05]. 

Eye Tracking 

Similar to the reaction time analysis outlined above, two separate linear mixed 

effect models were conducted. First, a linear mixed effect model with the fixed factors 

presentation format and polarity and a random intercept to account for participants’ 

individual differences was run on the proportion of total reading time on the AOI 

denominators. The model explained a significant proportion of variance (R2 = 

47.26%; fixed effects: R2 = 14.84%). Only the fixed effect of presentation format was 

significant [β = - 0.14, SE = 0.05, t(72) = - 2.66, p < .01], indicating more (62%, SE = 
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4%) reading time on denominators in blocked as compared to mixed presentation 

(43.6%, SE = 4%). The fixed effect of polarity and the interaction presentation format 

and polarity were not significant [all t ≤ 0.98, all ps > .05]. 

The second linear mixed effect model discerned the factors presentation 

format and component on the proportion of total reading time on the AOI polarity 

signs. The model explained a significant proportion of variance (R2 = 50.87%; fixed 

effects: R2 = 3.61%). The fixed effects of presentation format [β = 0.07, SE = 0.03, 

t(72) = 2.11, p < .05] and component were significant [β = 0.08, SE = 0.03, t(72) = 

2.20, p < .05]. Participants spend more (30.8%, SE = 3%) reading time on the sign in 

mixed as compared to blocked presentation (27.2%, SE = 3%). Moreover, 

participants spend significantly more (30.9%, SE = 3%) reading time on the sign in 

numerator-relevant as compared to denominator-relevant trials (27%, SE = 3%). The 

interaction presentation format and component was not significant [t(72) = - 1.52, p > 

.05]. 

Additional Exploratory Analysis  

One notable discovery was that for the most complex condition (i.e., – – 

denominator-relevant), a subgroup of six participants managed to solve these trials 

roughly as fast as the other less complex conditions. In an exploratory, descriptive 

analysis, we examined the proportion of reading times on all relevant AOIs to identify 

specific, unpredicted strategies used in this subsample. Comparisons of mean values 

suggested that this subgroup of participants spent larger proportions of reading time 

inspecting denominators (M = 71.6%, SE = 6.3% vs. 54.5%, SE = 4.4%) and lesser 

proportions of reading time inspecting the polarity signs (M = 18.1% vs. M = 27.6%, 

SE = 3.9%). This exploratory analysis revealed a difference in strategy use between 

these participants and the rest of the sample suggesting that these participants might 

have applied a strategy that we did not consider beforehand. 

For the two final analyses, we excluded these six participants which seemed 

to have used a different strategy to investigate whether there is evidence for the use 

of the sign and denominator flip strategy in the rest of the sample. First, to investigate 

the sign-flip strategy in homogeneous denominator-relevant fraction pairs, we re-ran 

the linear mixed effect model with the fixed factors presentation format (blocked vs. 

mixed) and polarity (++ vs. – –) and a random intercept to account for participants’ 

individual differences. And indeed, results showed a significant fixed effect of polarity, 
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indicating increased reaction times for negative homogenous denominator-relevant 

fraction pairs than positive denominator-relevant fraction pairs (M = 7.49 (1798ms), 

SE = 0.05 vs. M = 7.39 (1612ms), SE = 0.05).  

In the second analysis we again investigated the use of the denominator flip 

strategy in the remaining 18 participants and found a significant fixed effect of 

component, indicating increased reaction times for negative denominator-relevant 

fraction pairs than positive denominator-relevant fraction pairs (M = 7.49 (1797ms), 

SE = 0.04 vs. M = 7.31 (1489ms), SE = 0.04).  

Taken together, analyzing the combined use of the sign and denominator flip 

strategy yielded unexpected findings: a first analysis with all participants did not 

confirm a combined use of these strategies for negative denominator-relevant 

fraction pairs. However, two additional exploratory analysis on eye tracking and 

reaction time data revealed not only that one subgroup of participants used a 

different strategy, but also that the rest of the participants seemed to have used a 

combination of the sign and denominator flip strategy while solving negative 

homogenous fraction comparisons. 

 

7.4 Discussion 

The aim of the present study was to investigate strategies applied when 

processing negative fractions. In a magnitude comparison task homogeneous (++/– –

) or heterogeneous (+ –/–+) numerator- or denominator-relevant fraction pairs were 

presented. Additionally, fraction pairs were presented either in a mixed or a blocked 

presentation format. Participants were asked to select the numerically larger of the 

two fractions, whereby reaction times, error rates (for results of the error rates please 

see S7.2), and the number of fixations on the defined AOIs were evaluated. In 

particular, we investigated four different strategies: i) sign shortcut, ii) sign flip (i.e., 

mirror mechanism for negative numbers), iii) denominator flip (i.e., mirror mechanism 

for fractions), as well as iv) a combined sign flip and denominator flip strategy. 

Furthermore, a potential modulation through block vs mixed presentation format was 

also investigated. In the following, the results concerning these four different 

strategies are discussed separately.  
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Sign Shortcut Strategy 

The sign shortcut strategy reflects that comparisons of numbers with 

heterogeneous signs are processed faster than comparisons of number with 

homogenous signs (Krajcsi & Igács, 2010). Krajcsi & Igács, (2010) argued that in 

heterogeneous number pairs the exclusive consideration of the sign is sufficient for 

the decision in a magnitude comparison task. Additionally, their assumption was 

endorsed by a missing distance effect. The distance effect reflects an inverse 

relationship between numerical difference of two to be compared numbers and 

performance during the comparison (Moyer & Landauer, 1967): The closer the 

numbers on the number line, the more difficult the comparison. This becomes evident 

by increased reaction times and error rates. Thus, the missing distance effect while 

applying the sign shortcut strategy corroborates that the magnitudes of the numbers 

are not considered for solving the task.  

In the present study, we investigated whether the sign shortcut strategy generalizes 

to the case of fraction comparison. And indeed, consistent evidence for the 

application of this strategy was found for both blocked and mixed presentation 

formats as indicated by faster reaction times for heterogeneous as compared to 

homogeneous fraction pairs.  

While the comparison of heterogeneous and homogeneous fraction types 

clearly indicate that the sign shortcut strategy is used, the comparison of numerator- 

and denominator-relevant heterogeneous fraction pairs further suggests that 

participants do not seem to consider/be influenced by the (magnitudes of) other 

fraction components when a sign shortcut is a sufficient strategy. In particular, if the 

magnitudes of the fraction components do not play a role when employing the sign 

shortcut strategy, then the manipulation of the relevant fraction component (i.e., 

numerator- and denominator-relevant) should not impact performance in 

heterogeneous fraction pairs. In fact, there was no evidence for such an interaction: 

participants responded equally fast when comparing heterogenous fractions pairs 

independent of the relevant component. And similarly, reading time on the polarity 

signs was significantly longer for heterogenous fraction pairs than homogenous 

fraction pairs independent of the relevant component. Thus, while there are many 

examples indicating that the single components of multi-symbol numbers (cf. Huber 

et al., 2016) are processed even in case they are irrelevant for the task at hand, the 

current study may suggest that in case of (negative) fraction processing, parallel 
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processing of all fraction components might be less automatically achieved or more 

successfully suppressed. One might speculate that participants seem to disregard 

any fraction-related information if not required for the task at hand. 

 

Sign flip 

The sign flip (cf., mirror mechanism; Krajcsi & Igács, 2010) refers to the 

observation that negative numbers are processed by first comparing the magnitude 

of the respective numbers without considering the negative polarity signs. Only in a 

second step the negative polarity sign is considered and the answer from step one is 

reversed. Krajcsi & Igács (2010), for instance, demonstrated that the sign flip strategy 

resulted in increased response times for negative homogenous number pairs 

compared to positive homogenous number pairs. Generalizing results by Krajacsi & 

Ignács’ (2010) observed for whole number comparison to fraction comparison, 

participants in the present study answered significantly faster when comparing 

positive fraction pairs than when comparing negative fraction pairs. When inspecting 

mean reaction times between positive and negative fraction pairs (M = 7.06 (1160ms) 

vs. M = 7.26 (1425ms)), we found a considerable difference in RT of over 250ms. 

This difference might reflect the additional cost of reversing the answer while 

comparing negative numerator-relevant fraction pairs. Interestingly, ER and eye 

tracking results did not support our hypothesis. In both cases only the fixed effect of 

presentation was significant. Blocked conditions were less error prone and had 

proportionally more fixations on numerators than during mixed conditions. However, 

inspecting mean values of accuracy revealed descriptively more errors for negative 

numerator-relevant fraction pairs than for positive numerator-relevant fraction pairs 

(96.08% accuracy vs. 97.17 % accuracy). We additionally inspected proportional 

fixation duration for numerators when comparing negative and positive fraction pairs. 

We found that participants were descriptively fixating longer on numerators while 

comparing negative fraction pairs than positive fraction pairs (40,6% proportional 

reading time on the AOI numerator vs. 35.9% proportional reading time on the AOI 

numerator compared to all AOIs). Additionally, we ran a second analysis on fixation 

duration on the AOI signs when comparing negative and positive numerator-relevant 

fraction pairs. This analysis revealed no significant effect. Participants were fixating 

descriptively longer positive numerator-relevant fraction pairs than negative 

numerator relevant fraction pairs (34.8% proportional reading time vs. 30.9% 
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proportional reading time). This indicates, that for the reversion of the initial 

magnitude comparison participants need to fixate longer on the numerator but not 

necessarily on the sign. This might reflect additional needed working memory 

capacity for negative fraction pairs as the magnitudes of the numerators need to be 

memorized longer to give the correct answer. Whereas for positive fraction pairs this 

is not needed, and the positive sign gives the additional important information to not 

reverse the answer. According to Krajcsi & Igács (2010) the mirror mechanism (in our 

study renamed to sign flip strategy) represents a support system that transfers 

negative numbers to the mental number line, which in general is a metaphor for the 

nature of the number magnitude representation for positive numbers. In western 

cultures on this mental number line the magnitudes increase from left to right (Göbel, 

Shaki, & Fischer, 2011). Thus, this support system for negative numbers is 

necessary, since the phylogenetically old analogue magnitude system can only 

process positive numbers (Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999).   

Therefore, our results support the use of the sign flip strategy for negative 

homogenous numerator-relevant fraction pairs. 

Denominator flip 

A denominator flip might be used in case that homogeneous fractions with 

common numerator, but different denominators need to be compared. In a first step, 

the denominators of given fractions are compared as if they were natural numbers. In 

a second step the answer is reversed as the smaller denominator belongs to the 

larger fraction. In accordance with the findings of Huber et al. (2014) and Meert et al. 

(2009), using the denominator flip while comparing two fractions should result in 

longer reaction times as well as higher error rates and a larger number of fixations for 

denominator-relevant fraction pairs compared to numerator-relevant fraction pairs. 

To investigate the use of the denominator flip strategy we focused on positive 

homogenous numerator- and denominator-relevant fraction pairs. Both RT and eye 

fixation results clearly showed that participants were relying on the denominator flip 

strategy while solving positive homogenous denominator-relevant fraction 

comparisons. Eye-tracking results examining the proportion of reading time on the 

AOI denominators additionally supported our hypothesis: the interaction presentation 

and component was significant. During blocked conditions proportional reading time 

on denominators was significantly higher for denominator-relevant fraction pairs than 
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numerator-relevant fraction pairs. Interestingly, during mixed conditions proportional 

reading time on denominators was significantly higher for numerator-relevant fraction 

pairs than denominator-relevant fraction pairs. One possible reason might be that 

during mixed conditions a prediction of the next task to come is not given. Therefore, 

a basic reaction can always be to focus on the numerator first, since the magnitude of 

the numerator is easier to interpret in relation to the overall magnitude of the fraction 

than the magnitude of the denominator. However, for ERs we could only find a 

significant fixed effect of presentation format, but not a significant fixed effect of 

component.  

According to Huber et al., (2014), the denominator flip strategy is a reflection 

of the inverse relationship between the magnitude of the denominator and the overall 

magnitude of the fraction in contrast to the corresponding relationship between the 

size of the numerator and the overall fraction magnitude. When the larger 

denominator is identified, the answer must be still reversed to correctly identify the 

larger fraction. This additional cognitive effort, which is not necessary for numerator-

relevant fraction pairs, can be considered as the reason for longer reaction times, 

higher error rates, and larger number of fixations for denominator-relevant fraction 

pairs during blocked conditions. 

Sign and denominator flip 

To investigate the possible combined application of sign and denominator flip 

during negative denominator-relevant fraction comparisons a two-step analysis 

approach was used. First, to analyze the use of the sign flip strategy we only included 

homogenous (++ and – –) denominator-relevant fraction pairs in the analysis. 

Second, to analyze the use of the denominator flip strategy we only included 

negative homogenous numerator- and denominator-relevant fraction pairs.   

For RTs, ERs and eye tracking data the first analysis revealed a significant 

fixed effect of presentation format. Participants responded faster and less error prone 

during blocked conditions than mixed conditions. Moreover, proportional reading time 

on denominators was higher during blocked conditions than mixed conditions. 

Additionally, for ERs the fixed effect of polarity was significant, indicating that 

participants made less errors for positive denominator-relevant fraction pairs than 

negative denominator-relevant fraction pairs. Surprisingly, neither for RT analysis nor 

eye tracking analysis the fixed effect of polarity was significant. This means that there 
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was no difference between reaction times of positive of negative denominator-

relevant fraction comparisons. Thus, there is no proof for the use of a sign flip 

strategy for negative denominator-relevant fraction comparisons.  

The second analysis revealed again a significant fixed effect of presentation 

format for RTs, ERs as well as eye tracking data. Participants responded faster and 

less error prone during blocked conditions than mixed conditions. Moreover, 

proportional reading time on the AOI signs was higher during mixed conditions than 

blocked conditions. For this analysis we found also a significant fixed effect of 

component for all three data types. Numerator-relevant fractions pairs were 

compared faster and less errors were made during these comparisons than for 

denominator-relevant fraction pairs. Furthermore, eye fixation behaviour revealed 

that participants spend proportionally more time on the signs for numerator-relevant 

fraction pairs than denominator-relevant fraction pairs compared to all AOIs.  

Inspecting the mean values of the participants for the comparison of negative 

denominator-relevant fraction pairs revealed that a subgroup of participants managed 

to solve the comparisons of negative denominator-relevant fraction pairs way faster 

than the rest of the participants. Moreover, they were roughly as fast as in other less 

complex comparisons. Thus, in an exploratory descriptive analysis we decided to 

examine the proportion of reading times on all relevant AOIs (i.e., denominators and 

signs) to find indications for different strategy use in these participants compared to 

the rest of the participants. Interestingly, this analysis revealed that these participants 

spend larger proportions of time inspecting denominators and lesser proportion of 

time inspecting signs. This indicates that there is a difference in strategy use between 

these participants and the rest of participants. Indicating, that these participants were 

spontaneously able to apply a different strategy by realizing that this most difficult 

comparison could actually be correctly solved in only comparing the magnitudes of 

the denominators. Moreover, a reversion of the answer for applying the denominator 

flip strategy and a second reversion for applying the sign flip strategy is not 

necessary (see Figure 7.2 B).  
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Figure 7.2: Graphical comparison of (A) Sign and Denominator flip: Both strategies are conducted 
one after the other and (B) The different strategy: A subgroup of the participants managed to find a 
simpler strategy to correctly solve negative denominator-relevant fraction pairs by realizing that they 
only had to compare the magnitudes of the denominators without reversing the answer and without 
considering the negative sign. 

 

This leads to extraordinary short reaction times while solving this task. 

Furthermore, the different processing strategy of this subgroup might be the reason 

that we could not find the use of the sign flip strategy in the first reaction time and eye 

tracking analysis. This is further corroborated by the fact that the second eye-tracking 

analysis revealed that participants spend more time fixating the sign during 

numerator-relevant comparisons than denominator-relevant comparisons as the 

information of the sign is redundant for solving the task when applying the different 

strategy.  

Finally, we excluded the six participants which used a different strategy to see 

whether the rest of the participants were applying the combination of the sign flip and 

denominator strategy. In the first analysis we again investigated the use of the sign 

flip strategy in these participants and found a significant fixed effect of polarity, 

indicating increased reaction times for negative homogenous denominator-relevant 

comparisons than positive denominator-relevant comparisons (M = 7.49 (1798ms), 

SE = 0.05 vs. M = 7.39 (1612ms), SE = 0.05). In the second analysis we again 

investigated the use of the denominator flip strategy in these participants and found a 
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significant fixed effect of component, indicating increased reaction times for negative 

denominator-relevant fraction pairs than positive denominator-relevant fraction pairs 

(M = 7.49 (1797ms), SE = 0.04 vs. M = 7.31 (1489ms), SE = 0.04). Therefore, our 

results confirm the combined use of the sign and denominator flip strategy while 

solving negative homogenous fraction comparisons for the remaining participants 

that did not use a different strategy to solve the task. 

7.5 Conclusion 

Our results proofed, that processing mechanisms postulated for fractions and 

negative integers separately also apply for the processing of negative fractions. It 

needs to be further noted that we did not instruct participants to use the investigated 

strategies. We were able to substantiate the use of the sign shortcut, the sign flip, 

and the denominator flip strategy. Moreover, we could show that some participants 

applied a combination of the sign flip and denominator flip strategy for negative 

homogenous denominator-relevant fractions. The most interesting and surprising 

finding was the discovery that a small subgroup of participants managed to solve the 

most complex comparison (i.e., comparing negative homogenous denominator-

relevant fraction pairs) by applying a different strategy. In realizing that they could 

solve the task by only comparing the magnitudes of both denominators participants 

processed these comparisons by using a task-related strategy shift.  
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SUPPORTING ONLINE MATERIAL 

 

Fraction pairs included in the study for all conditions 
 

Table S7.1 

denominator-relevant numerator-relevant 

++ – – +– / – + ++ – – +– / – + 

+1/9 +1/8 -1/9 -1/8 -1/8 +1/9 +2/9 +1/9 -2/9 -1/9 +2/9 -1/9 

+1/7 +1/9 -1/7 -1/9 -1/9 +1/7 +4/9 +1/9 -4/9 -1/9 +4/9 -1/9 

+1/6 +1/9 -1/6 -1/9 -1/9 +1/6 +1/9 +5/9 -1/9 -5/9 +1/9 -5/9 

+1/9 +1/5 -1/9 -1/5 -1/5 +1/9 +7/9 +1/9 -7/9 -1/9 +7/9 -1/9 

+1/4 +1/9 -1/4 -1/9 -1/9 +1/4 +1/8 +3/8 -1/8 -3/8 +1/8 -3/8 

+1/8 +1/7 -1/8 -1/7 -1/7 +1/8 +5/8 +1/8 -5/8 -1/8 +5/8 -1/8 

+1/8 +1/5 -1/8 -1/5 -1/5 +1/8 +1/8 +7/8 -1/8 -7/8 +1/8 -7/8 

+1/7 +1/5 -1/7 -1/5 -1/5 +1/7 +1/7 +2/7 -1/7 -2/7 +1/7 -2/7 

+1/3 +1/7 -1/3 -1/7 -1/7 +1/3 +3/7 +1/7 -3/7 -1/7 +3/7 -1/7 

+2/9 +2/7 -2/9 -2/7 -2/7 +1/9 +4/7 +1/7 -4/7 -1/7 +4/7 -1/7 

+2/9 +2/5 -2/9 -2/5 -2/5 +1/9 +1/7 +5/7 -1/7 -5/7 +1/7 -5/7 

+2/3 +2/9 -2/3 -2/9 -2/9 +1/3 +1/6 +5/6 -1/6 -5/6 +1/6 -5/6 

+2/7 +2/5 -2/7 -2/5 -2/5 +1/7 +2/5 +1/5 -2/5 -1/5 +2/5 -1/5 

+3/7 +3/8 -3/7 -3/8 -3/8 +3/7 +3/5 +1/5 -3/5 -1/5 +3/5 -1/5 

+3/8 +3/5 -3/8 -3/5 -3/5 +3/8 +4/5 +1/5 -4/5 -1/5 +4/5 -1/5 

+3/8 +3/4 -3/8 -3/4 -3/4 +3/8 +4/9 +2/9 -4/9 -2/9 +4/9 -2/9 

+3/5 +3/7 -3/5 -3/7 -3/7 +3/5 +2/9 +5/9 -2/9 -5/9 +2/9 -5/9 

+4/7 +4/9 -4/7 -4/9 -4/9 +4/7 +3/4 +1/4 -3/4 -1/4 +3/4 -1/4 

+4/5 +4/9 -4/5 -4/9 -4/9 +4/5 +2/7 +3/7 -2/7 -3/7 +2/7 -3/7 
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+5/9 +5/8 -5/9 -5/8 -5/8 +5/9 +2/7 +4/7 -2/7 -4/7 +2/7 -4/7 

+5/7 +5/9 -5/7 -5/9 -5/9 +5/7 +1/3 +2/3 -1/3 -2/3 +1/3 -2/3 

+5/9 +5/6 -5/9 -5/6 -5/6 +5/9 +3/8 +5/8 -3/8 -5/8 +3/8 -5/8 

+4/5 +4/7 -4/5 -4/7 -4/7 +4/5 +2/5 +3/5 -2/5 -3/5 +2/5 -3/5 

+5/8 +5/7 -5/8 -5/7 -5/7 +5/8 +4/5 +2/5 -4/5 -2/5 +4/5 -2/5 

+7/8 +7/9 -7/8 -7/9 -7/9 +7/8 +3/7 +5/7 -3/7 -5/7 +3/7 -5/7 

    +1/8 -1/9     -2/9 +1/9 

    +1/9 -1/7     -4/9 +1/9 

    +1/9 -1/6     -1/9 +5/9 

    +1/5 -1/9     -7/9 +1/9 

    +1/9 -1/4     -1/8 +3/8 

    +1/7 -1/8     -5/8 +1/8 

    +1/5 -1/8     -1/8 +7/8 

    +1/5 -1/7     -1/7 +2/7 

    +1/7 -1/3     -3/7 +1/7 

    +2/7 -2/9     -4/7 +1/7 

    +2/5 -2/9     -1/7 +5/7 

    +2/9 -2/3     -1/6 +5/6 

    +2/5 -2/7     -2/5 +1/5 

    +3/8 -3/7     -3/5 +1/5 

    +3/5 -3/8     -4/5 +1/5 

    +3/4 -3/8     -4/9 +2/9 

    +3/7 -3/5     -2/9 +5/9 

    +4/9 -4/7     -3/4 +1/4 
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    +4/9 -4/5     -2/7 +3/7 

    +5/8 -5/9     -2/7 +4/7 

    +5/9 -5/7     -1/3 +2/3 

    +5/6 -5/9     -3/8 +5/8 

    +4/7 -4/5     -2/5 +3/5 

    +5/7 -5/8     -4/5 +2/5 

    +7/9 -7/8     -3/7 +5/7 

 

S7.2 Error rates 

Strategy 1: Sign-shortcut 

A GLME with the fixed effects presentation format, component and polarity as 

well as the respective two- and three-way interactions was run. Moreover, we 

included a random intercept for participants in the GLME. All three fixed effects were 

significant (presentation format: χ²(1) = 55.35, p < .001, component: χ²(1) = 16.54, p 

< .001, and polarity:  χ²(2) = 127.63, p < .001, respectively). Fewer errors were made 

in the blocked (log odds = -4.43 (1.2%), SE = 0.17) than in the mixed presentation 

format (log odds = -3.42 (3.2%), SE = 0.13). Moreover, fewer errors were made for 

numerator-relevant pairs (log odds = -4.13 (1.6%), SE = 0.16) than for denominator-

relevant pairs (log odds = -3.72 (2.4%), SE = 0.15). Finally, fewest errors were made 

for heterogeneous fraction pairs (log odds = -5.17 (0.6%), SE = 0.21), followed by 

positive homogeneous (log odds = -3.56 (2.8%), SE = 0.16) again followed by 

negative homogeneous fraction pairs (log odds = -3.05 (4.5%), SE = 0.14; all p < 

.01). Pairwise post hoc comparisons among the fixed effect polarity indicated that 

error rates significantly differed between + – vs. – – (z = 9.82, p < 0.001) and + – vs. 

+ + (z = - 7.02, p < 0.001) and + + vs. – – (z = 3.11, p < 0.01). In contrast to RT 

results, none of the interactions reached significance (χ²(2) ≤ 2.90, all ps > 0.05).   

Strategy 2: Sign flip 

A GLME with the fixed effects presentation format, polarity, the interaction of 

presentation format x polarity, and a random intercept for participants was run on 

errors. The fixed effect of presentation format was significant (χ²(1) = 18.70, p < .001) 
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indicating that fewer errors were made in the blocked (log odds = -4.22 (1.5%), SE = 

0.27) than in the mixed presentation format (log odds = -3.13 (4.2%), SE = 0.20). In 

contrast to RT results, neither the fixed effect of polarity nor the interaction of 

presentation format x polarity was significant (χ²(2) ≤ 2.27, all ps > 0.05). 

Strategy 3: Denominator flip 

A GLME with the fixed effects presentation format, component, the interaction 

of presentation format x component, and a random intercept for participants was run 

on errors. The fixed effect of presentation format was significant (χ²(1) = 20.24, p < 

.001) indicating that fewer errors were made in the blocked (log odds = -4.13 (1.6%), 

SE = 0.25) than in the mixed presentation format (log odds = -3.00 (4.7%), SE = 

0.17). Neither the fixed effect of component nor the interaction of presentation format 

x component was significant (χ²(2) ≤ 2.26, all ps > 0.05). 

Strategy 4: Combination of sign and denominator flip 

A first GLME with the fixed effects presentation format, and polarity was run on 

errors. Random intercepts for participants were included in the GLME. Both fixed 

effects of presentation format and polarity were significant (χ²(1) = 51.84, p < .001 

and χ²(1) = 15.05, p < .001, respectively). Fewer errors were made in the blocked 

(log odds = -3.86 (2.1%), SE = 0.18) than in the mixed presentation format (log odds 

= -2.74 (6.1%), SE = 0.14). Furthermore, fewer errors were made for positive 

homogeneous, denominator-relevant pairs (log odds = -3.58 (2.7%), SE = 0.17) than 

for negative homogeneous, denominator-relevant pairs (log odds = -3.02 (4.6%), SE 

= 0.15). The interaction of presentation format x polarity was not significant (χ²(1) = 

0.02, p = .882). 

A second GLME with the fixed effects presentation format, and component 

was run on errors. A random intercept for participants was also included in the 

GLME. Both the fixed effects of presentation format and component were significant 

(χ²(1) = 31.56, p < .001 and χ²(1) = 16.18, p <  .001, respectively). Fewer errors were 

made in the blocked (log odds = -3.60 (2.6%), SE = 0.21) than in the mixed 

presentation format (log odds = -2.50 (7.6%), SE = 0.15). Furthermore, fewer errors 

were made for negative homogeneous, numerator-relevant fraction pairs (log odds = 

-3.43 (3.1%), SE = 0.20) than for negative homogeneous, denominator-relevant 
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fraction pairs (log odds = -2.68 (6.4%), SE = 0.16). The interaction of presentation 

format x component was not significant (χ²(1) < 0.01, p = .951). 

 
Mean RTs for all conditions 
      
Table S7.2 

 
Presentation  

format 
 

 
Relevant  

component 

 
Polarity 

 
RT (in ms) 

 
logRT 

 
b 

 
N 

 
+– / – + 

 
663.62 

 

 
6.43 

 
m 

 
N 

 
+– / – + 

 
963.68 

 

 
6.79 

 
b 

 
D 

 
+– / – + 

 
676.47 

 

 
6.44 

 
m 

 
D 

 
+– / – + 

 
980.89 

 

 
6.79 

 
b 

 
N 

 
++ 

 
948.67 

 

 
6.76 

 
m 
 

 
N 

 
++ 

 
1654.86 

 

 
7.35 

 
b 

 
D 

 
+ + 

 
1380.55 

 

 
7.07 

 
m 

 
D 

 
++ 

 
2315.11 

 

 
7.68 

 
b 

 
N 

 
– – 

 
1172.46 

 

 
6.89 

 
m 

 
N 

 
– – 

 
2200.67 

 

 
7.62 

 
b 

 
D 

 
– – 

 
1477.22 

 

 
7.11 

 
m 
 

 
D 

 
– – 

 
2551.39 

 

 
7.76 

Note: Presentation format: b = block, m = mixed; Relevant component: D = denominator-relevant, N = 
numerator-relevant; Polarity: – – = negative homogenous, ++ = positive homogenous, +– / – + = 

heterogenous 
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Studies of Section 3: 

Motivational and Affective Predictors of Fraction Processing 

 

Study 4: Ninaus, M., Kiili, K., Wortha, S. M., & Moeller, K. (2021). Motivationsprofile  

    bei Verwendung eines Lernspiels zur Messung des Bruchverständnisses in  

    der Schule - Eine latente Profilanalyse. Psychologie in Erziehung und  

    Unterricht, 68(1), 42-57. 

 

Study 5: Klein, E.*, Bieck, S. M.*, Bloechle, J., Huber, S., Bahnmueller, J., Willmes,  

    K., & Moeller, K. (2019). Anticipation of difficult tasks: neural correlates of  

    negative emotions and emotion regulation. Behavioral and Brain  

    Functions, 15(1), 1-13. 

 

 

 

 

 

 

 

 

 

 

 

 

* Equal contribution 
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in der Schule - Eine latente Profilanalyse. Ninaus, M., Kiili, K., Wortha, S.M., & Moeller, K. (2021). 
https://doi.org/10.2378/PEU2021.ART03D; copyright to reuse the content.   
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Zusammenfassung 

Lernspiele gewinnen auch in der Schule zunehmend an Bedeutung als 

motivationsförderliche Lehr- und Lernmethode. In einer Feldstudie mit 256 

Schülerinnen und Schülern der siebten Schulstufe wurde daher untersucht i) 

inwiefern sich grundlegende Effekte der Forschung zu numerischer Kognition mit 

einem digitalen Lernspiel zur Messung des Verständnisses von Brüchen replizieren 

lassen und ii) ob sich spezifische Motivationsprofile bei der Benutzung des Lernspiels 

identifizieren lassen. Die beobachtete spezifische Assoziation der Leistung im 

Lernspiel mit Mathematiknoten als auch der aus der Grundlagenforschung bekannte 

Distanzeffekt belegen die Validität des Lernspiels. Mittels latenter Profilanalyse 

wurden drei Gruppen von Schülerinnen und Schülern identifiziert, die sich hinsichtlich 

selbst- und fremdbestimmter Motivation sowie dem wahrgenommen positiven Affekt 

während des Spielens unterschieden. Erwartungsgemäß verbrachten selbstregulierte 

Schülerinnen und Schülern die meiste Zeit mit dem Spiel und hatten das positivste 

Spielerleben. Diese Ergebnisse spezifizieren die motivationalen Möglichkeiten 

(digitaler) Lernspiele im Schulunterricht. 

 

Stichwörter: Lernspiele, Mathematik, Motivation, Brüche, Bruchverständnis 
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Summary 

Educational games are becoming increasingly important to foster motivation in 

schools. In a field study with 256 seventh-grade students, we evaluated whether a 

digital learning game for assessing fraction understanding allows i) replication of 

fundamental effects of numerical cognition research and ii) the evaluation of 

motivation profiles when using the game. Validity of the learning game was 

demonstrated by replicating both the specific association of performance in the game 

and mathematics school grades as well as the numerical distance effect. Using latent 

profile analysis we identified three groups of students who differed in terms of self- 

and externally determined motivation as well as their perceived positive affect during 

playing the game. As expected, self-regulated pupils spent more time playing the 

game and reported most positive player experience. In sum, these results specify the 

motivational possibilities of (digital) games in school.  

 

Keywords: game-based learning, mathematics, motivation, fractions, fraction 

understanding 



162 

 

 

In den letzten Jahren hat der Einsatz von spielbasierten Lernansätzen bzw. 

Lernspielen im Bildungskontext erheblich zugenommen (für eine Übersicht siehe 

Boyle et al., 2016). Dies ist nicht unbegründet, da aktuelle Metanalysen darauf 

hinweisen, dass spielbasierte Lernansätze konventionellen überlegen sein können 

(z.B. Sailer & Homner, 2019; Wouters, van Nimwegen, van Oostendorp & van der 

Spek, 2013). Neben der Verbesserung der Lernleistung deuten die Ergebnisse 

darauf hin, dass auch motivationale Variablen wie Einstellungen, Arbeitsmoral und 

intrinsische Motivation durch spielbasierte Ansätze erhöht werden können (für eine 

Meta-Analyse siehe z.B. Sailer & Homner, 2019). Daher ist es wenig verwunderlich, 

dass immer öfter versucht wird, sich den motivationalen Anreiz von Spielen für 

Lernzwecke zu Nutze zu machen um Lernerfolge zu verbessern (z.B. Erhel & Jamet, 

2013; Ninaus, 2017). Empirische Studien dazu sind im schulischen Kontext jedoch 

bislang kaum vorhanden.   

Im Bereich des Mathematiklernens scheinen Lernspiele im besonderen Maße effektiv 

zu sein (z.B. Kiili, Moeller & Ninaus, 2018; für eine Meta-Analyse siehe Wouters et 

al., 2013). In der aktuellen Feldstudie verwendeten wir daher ein digitales Lernspiel 

zur Verbesserung des Verständnisses von Bruchzahlen. In kleineren experimentellen 

Studien wurde dieses Lernspiel bereits erfolgreich als Mess- (Ninaus, Kiili, McMullen 

& Moeller, 2017) und Trainingsinstrument (Kiili, Moeller, et al., 2018) eingesetzt und 

grundlegende Effekte der Forschung zu numerischer Kognition konnten repliziert 

werden. In der aktuellen Studie sollen für das Lernspiel unter realen 

Schulbedingungen motivationale Profile einer größeren Stichprobe von Schülerinnen 

und Schüler mit einem personenzentrierten Ansatz untersucht werden.  

Im Folgenden führen wir daher zuerst in die Inhaltsdomäne des verwendeten 

Lernspiels und relevante motivationale Theorien und Ergebnisse ein, bevor wir die 

Fragestellungen der aktuellen Studie genauer erläutern.  
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8.1 Theoretischer Hintergrund 

Bruchzahlen  

Brüche gelten als ein anspruchsvolles Thema im Mathematikunterricht (National 

Mathematics Advisory Panel, 2008). Das Verstehen von und der korrekte Umgang 

mit Brüchen sind jedoch wesentliche mathematische Kompetenzen und korrelieren 

entsprechend hoch mit aktueller (z.B. Booth & Newton, 2012; Kiili, Moeller, et al., 

2018) aber auch zukünftiger Mathematikleistung (z.B. Bailey, Hoard, Nugent & 

Geary, 2012; Booth & Newton, 2012). Damit scheint das Veständnis von Brüchen mit 

entscheidend zu sein für das Erlernen weiterer mathematischer Inhalte.  

Eines der größten Probleme für Schülerinnen und Schüler ist das Verständnis der 

numerischen Größe von Brüchen (im englischen Original magnitude understanding, 

z.B. Siegler, Fazio, Bailey & Zhou, 2013).  

Das Konzept des mentalen Zahlenstrahls ist dabei eine häufig benutzte Metapher für 

die mentale Repräsentation von Zahlengröße. Dementsprechend wird die 

sogenannte Zahlenstrahlaufgabe (im englischen Original number line estimation 

task) häufig zur Messung und Förderung des Größenverständnisses von 

(Bruch)Zahlen benutzt (z.B. Kiili, Moeller, et al., 2018) und auch in vielen aktuellen 

Schulbüchern zur Einführung von Bruchzahlen eingesetzt (Padberg & Wartha, 2017). 

In dieser Aufgabe soll die Position einer Zielzahl (z.B. 1/4) auf einem Zahlenstrahl 

(z.B. von 0 bis 1) bestimmt werden (z.B. Siegler & Opfer, 2003). Die Performanz in 

dieser Aufgabe ist mit aktueller und zukünftiger Mathematikleistung korreliert (z.B. 

Booth & Siegler, 2006). Dies verdeutlicht die Bedeutung des Verständnisses von 

Zahlengröße für numerische Entwicklung (vgl. Siegler, 2016).  

Aktuelle Studien zeigten, dass die mentale Repräsentation von Zahlengröße von 

Schülerinnen und Schülern durch das Training mit der Zahlenstrahlaufgabe 

verbessert werden kann (z.B. Kiili, Moeller, et al., 2018; Schneider & Stern, 2010). In 

den meisten Studien wurden jedoch konventionelle computer-basierte oder Papier-

Bleistift Versionen der Zahlenstrahlaufgabe zum Training oder der Messung des 

Größenverständnisses benutzt. In den letzten Jahren wurden jedoch zunehmend 

neue und innovative Methoden zur Umsetzung der Zahlenstrahlaufgabe erprobt [z.B. 

verkörperlichte (Fischer, Dackermann, Cress, Nuerk & Moeller, 2014), oder 

spielbasierte Implementationen (z.B. Fazio, Kennedy & Siegler, 2016)]. 
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Kinder entwickeln ein initiales Verständnis von ganzen Zahlen als zählbare 

Einheiten, bevor sie im Schulunterricht das Konzept von Brüchen erlernen müssen. 

Daher greifen sie bei der Verarbeitung von Brüchen auf dieses initiale Verständnis 

von ganzen Zahlen zurück und versuchen dies bei rationalen Zahlen -- wie etwa 

Brüchen -- anzuwenden (DeWolf & Vosniadou, 2015; Stafylidou & Vosniadou, 2004). 

Missverständnisse oder falsche Vorstellungen über Brüche entstehen daher oft auf 

Grund der fehlerhaften Annahme, dass Eigenschaften von ganzen Zahlen auf 

Brüche übertragen werden können (Padberg & Wartha, 2017). Laut DeWolf und 

Vosniadou (2015) neigen Kinder entsprechend dazu Nenner und Zähler als zwei 

getrennte ganze Zahlen zu behandeln, anstatt ihre Beziehung zueinander zu 

betrachten. Aufgrund dieser fehlerhaften Konzeptualisierung mancher Schülerinnen 

und Schüler (z.B. Gómez & Dartnell, 2019) schließen sie dann oftmals 

fälschlicherweise, dass die numerische Größe eines Bruchs zunimmt, wenn 

entweder der Nenner oder der Zähler größer wird [z.B. 2/5 (0,4) > 3/8 (0,375), 

obwohl 2 < 3 und 5 < 8].  

Neben der Zahlenstrahlaufgabe wird Größenverständnis von Brüchen auch mit 

Größenvergleichsaufgaben erfasst (im englischen Original magnitude comparison 

task) in der Probanden entscheiden müssen, welcher von zwei Brüchen numerisch 

größer ist: 2/8 (0,25) oder 4/5 (0,8) (z.B. Padberg & Wartha, 2017). Entsprechend 

wird diese Aufgabe auch verwendet, um das Größenverständnis von (Bruch)Zahlen 

zu fördern bzw. Misskonzeptionen in Bezug auf Brüche zu identifizieren. Aus der 

Grundlagenforschung ist bekannt, dass der bei Größenvergleichsaufgaben der so 

genannte Distanzeffekt auf eine erfolgreiche Repräsentation von Bruchgröße 

hinweist [z.B. Schneider & Siegler, 2010; d.h. längere und fehleranfälligere Antworten 

beim Vergleich von Zahlen mit kleinerer numerischer Distanz, z.B. 2/5 (0,4) vs. 3/8 

(0,375) im Vergleich zu 1/5 (0,2) vs. 3/4 (0,75)].  

Dementsprechend wurden im vorliegenden Lernspiel zur Förderung des 

Größenverständnisses von Bruchzahlen (für eine Übersicht siehe Kiili, Koskinen & 

Ninaus, 2019) Aufgabenmechaniken der Zahlenstrahlaufgabe und 

Größenvergleichsaufgaben als Spielmechaniken implementiert. 

 

Motivation - Selbstbestimmungstheorie 
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Der wohl am häufigsten angeführte Grund Spiele im Bildungskontext zu nutzen ist 

deren motivationaler Anreiz (z.B. Garris, Ahlers & Driskell, 2002; Wouters et al., 

2013). Die sog. Selbstbestimmungstheorie (Deci & Ryan, 2000; Ryan & Deci, 2000) 

postuliert, dass der intrinsisch motivationale Anreiz von Spielen dadurch erklärt 

werden kann, dass Spiele grundlegende psychologische Bedürfnisse von sozialem 

Bezug, Autonomie und Kompetenz befriedigen (Przybylski, Rigby & Ryan, 2010). Die 

Befriedigung dieser Bedürfnisse führt nicht nur zu erhöhter intrinsischer Motivation, 

sondern bewegt Menschen auch dazu, jene befriedigende Aktivität weiterhin 

auszuführen (z.B. Ryan, Rigby, & Przybylski, 2006). Dementsprechend weisen 

Studien darauf hin, dass im Bereich von Mathematik Motivation, Interesse aber auch 

Freude an Mathematik bedeutsam für die Beschäftigung mit Mathematik sind (z.B. 

Hannula et al., 2016; Schiepe-Tiska & Schmidtner, 2013). Im Vergleich zu anderen 

OECD Ländern scheint die Freude an Mathematik bei Schülerinnen und Schülern in 

Deutschland jedoch eher gering ausgeprägt zu sein. Die Mehrheit der Jugendlichen 

berichtete in der Studie von Schiepe-Tiska und Schmidtner (2013) wenig bis keine 

Freude bzw. Interesse an Mathematik. Spielbasierte Lernansätze könnten, vor dem 

Hintergrund, dass Freude nicht nur die Lernbereitschaft, sondern auch die 

Beschäftigung mit Mathematik fördert, hier einen wichtigen Beitrag leisten. Für eine 

spielbasierte Lernumgebung würde dies bedeuten, dass die Lernenden mehr Spaß 

bzw. Freude an der Anwendung haben (z.B. Ninaus et al., 2019), sich länger mit den 

Lerninhalten beschäftigen und dadurch bessere Lernleistungen erzielen können (z.B. 

Kiili, Lindstedt & Ninaus, 2018; Kiili, Ojansuu, Lindstedt & Ninaus, 2018).  

In erster Linie konzeptualisiert die Selbstbestimmungstheorie (Deci & Ryan, 2000; 

Ryan & Deci, 2000) Motivation entlang eines Kontinuums von Selbst- zu 

Fremdbestimmung, d.h. von intrinsischer Motivation, die auftritt, wenn Individuen 

Aktivitäten aus Freude an dieser ausführen, zu extrinsischer Motivation, die auftritt, 

wenn Aktivitäten v.a. auf Grund instrumenteller Gründe ausgeführt werden.  

Bei intrinsischer Motivation handelt es sich um eine autonome und selbstgesteuerte 

Form von Motivation. Wenn Schülerinnen und Schüler u.a. aus Neugierde, 

persönlichem Interesse oder Freude lernen, ist dies mit wahrgenommener 

psychologischer Freiheit und internalen Kontrollüberzeugungen assoziiert 

(Vansteenkiste, Lens, De Witte, De Witte & Deci, 2004).  
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Aber auch wenn kein persönliches Interesse vorhanden ist, kann Lernen 

selbstbestimmt erlebt werden, wenn das zu Lernende als persönlich relevant 

bewertet wird. Diese sogenannte identifizierte Regulation tritt daher auf, wenn 

Personen entscheiden, dass eine bestimmte Aktivität von persönlicher Bedeutung ist 

um beispielsweise zukünftige Ziele zu erreichen (Vansteenkiste, Sierens, Soenens, 

Luyckx & Lens, 2009).  

Intrinsische Motivation und identifizierte Regulation gelten als selbstbestimmte Typen 

der Motivation. Viele Studien weisen auf die positiven Folgen selbstbestimmter 

Motivation hin, wie zum Beispiel erhöhtes psychologisches Wohlbefinden (z.B. 

Levesque, Zuehlke, Stanek & Ryan, 2004), erhöhter Einsatz und 

Durchhaltevermögen (z.B. Hardre & Reeve, 2003; Ryan & Connell, 1989), sowie 

verbesserte kognitive Verarbeitung (z.B. Vansteenkiste, Simons, Lens, Soenens & 

Matos, 2005). 

Externale Regulation ist eine nicht internalisierte Form der extrinsischen Motivation 

am unteren Ende des Selbst- bzw. Fremdbestimmungs-Kontinuums, die auftritt, 

wenn Aktivitäten auf Grund von externalen Belohnungen, Bestrafungen oder 

Erwartungen ausgeführt werden. Schließlich beschreibt die 

Selbstbestimmungstheorie die sogenannte Amotivation, die auftritt, wenn Personen 

Aktivitäten ausführen, ohne deren Sinn zu kennen oder diese erst gar nicht 

ausgeführt werden (Deci & Ryan, 2000; Ryan & Deci, 2000). In unterschiedlichen 

Studien wurde fremdgesteuerte Motivation mit negativen Folgen wie verringerter 

Konzentration (z.B. Vansteenkiste, Zhou, Lens & Soenens, 2005), oberflächlicherer 

kognitiver Verarbeitung (z.B. Vansteenkiste, Simons, et al., 2005), und erhöhtem 

Dropout (z.B. Soenens & Vansteenkiste, 2005) assoziiert.  

 Diese Ergebnisse und theoretischen Annahmen weisen deutlich auf die 

Vorteile selbstgesteuerter gegenüber fremdgesteuerter Motivation hin und betonen 

die hohe Bedeutung der Erfassung von unterschiedlichen Motivationstypen bei 

Schülerinnen und Schülern. Im Rahmen der Selbstbestimmungstheorie werden zwei 

Typen der Messung von Motivation unterschieden (Wang et al., 2017). Die 

gebräuchlichste Art ist die Verwendung von Fragebögen [z.B. „Situational Motivation 

Scale“, SIMS; (Guay, Vallerand & Blanchard, 2000) oder „Intrinsic Motivation 

Inventory“ (McAuley et al., 1989)]. Insbesondere im Bereich des spielbasierten 

Lernens wird zudem der positive Affekt beim Spiel [z.B. mit dem Game Experience 
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Questionnaire - GEQ (IJsselsteijn, de Kort & Poels, 2013) bzw. dessen Subskala 

„positiver Affekt“ (für eine Übersicht siehe Mekler, Bopp, Tuch & Opwis, 2014)]. Die 

zweite Art Motivation zu erheben ist die Messung von behavioralen 

Motivationsindikatoren, wie zum Beispiel die verbrachte Zeit mit einer 

Lernanwendung (z.B. Prins, Dovis, Ponsioen, ten Brink & van der Oord, 2011), oder 

die Anzahl an bearbeiteten Aufgaben (z.B. Mekler, Brühlmann, Tuch & Opwis, 2017). 

Die Verwendung von Fragebogendaten ohne dazugehörige behaviorale Indikatoren 

wird meist als Limitation vieler Studien genannt (z.B. Schwinger, Steinmayr & 

Spinath, 2012), da nur deren Kombination eine Untersuchung des Zusammenhangs 

zwischen Selbstbericht und Verhalten ermöglicht. Dementsprechend wurden in der 

aktuellen Feldstudie beide Arten der Messung von (intrinsischer) Motivation 

berücksichtigt.  

 

Aktuelle Studie und Fragestellungen 

Die aktuelle Studie verfolgte die folgenden zwei Fragestellungen: 

1. Können grundlegende Effekte der Forschung zu numerischer Kognition in 

einer Feldstudie mit Schülerinnen und Schülern der siebten Schulstufe unter 

Verwendung eines digitalen Lernspiels zur Messung des Bruchverständnisses 

repliziert werden? 

2. Welche motivationalen Profile können bei der Nutzung des Lernspiels von 

Schülerinnen und Schülern identifiziert werden und wie stehen diese in 

Zusammenhang mit dem Nutzungsausmaß und dem Spielerlebnis? 

Im Rahmen der ersten Fragestellung sollte sich die beobachtete hohe Relevanz des 

Verständnisses von Bruchzahlen für die allgemeine Mathematikleistung (z.B. Booth & 

Newton, 2012; Kiili, Moeller, et al., 2018) durch eine spezifische Assoziation der 

Leistung im verwendeten Lernspiel mit den Schulnoten in Mathematik, nicht aber in 

einem unrelatierten Schulfach ausdrücken (Hypothese 1a). Zudem sollte sich bei 

Schülerinnen und Schülern der siebten Klassenstufe, die bereits im formalen 

Mathematikunterricht mit Brüchen konfrontiert waren, ein Distanzeffekt bei 

Größenvergleichsaufgaben zeigen (Hypothese 1b; z.B. Schneider & Siegler, 2010).   

Zur Beantwortung der zweiten Fragestellung wurden die motivationalen Profile der 

Schülerinnen und Schüler mittels der personenzentrierten Methode der Latenten 
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Profilanalyse untersucht. Entsprechend der Selbstbestimmungstheorie sollten 

zumindest zwei unterschiedliche Gruppen von Schülerinnen und Schülern 

identifizierbar sein, welche vorrangig selbstgesteuerte vs. vorrangig fremdgesteuerte 

Motivationsprofile zeigen sollten (Hypothese 2a). Aufgrund der bisherigen 

Befundlage sollten vor allem selbstregulierte Schülerinnen und Schüler mehr Zeit in 

das Spiel investieren und eine positivere Spielerfahrung berichten als Schülerinnen 

und Schüler mit vor allem fremdregulierter Motivation (Hypothese 2b).  

 

8.2 Methode 

 

Die Daten dieser Studie wurden in einem großen Forschungsprojekt an deutschen 

Gymnasien unter der Leitung des Hector-Instituts für Empirische Bildungsforschung 

und dem Leibniz-Institut für Wissensmedien Tübingen erhoben. In diesem Projekt 

soll unter anderem untersucht werden, wie motivationale und kognitive Merkmale von 

Schülerinnen und Schülern zu einer lernförderlichen Nutzung von Tablets im 

Unterricht beitragen. Für die vorliegende Studie wurde im Rahmen dieses Projekts 

der Einsatz der spielbasierten Lernanwendung „Semideus“ für Tablets im Feld 

erprobt.  

Stichprobe 

Insgesamt nahmen 510 Schülerinnen und Schüler der siebten Jahrgangsstufe an der 

Studie teil. Das Einverständnis der Eltern wurde vor Beginn der Studie eingeholt. Die 

Beantwortung der aktuellen Fragestellungen beruht auf Daten von n = 256, 106 

Schülerinnen und 97 Schülern (MAlter = 12.64 Jahre; SD = 0.87 Jahre; 51/53 

Teilnehmende ohne Altersangabe/Geschlechtsangabe), die eine Version von 

Semideus spielten, die sowohl Zahlenstrahl- als auch Größenvergleichsaufgaben 

beinhaltete. Die anderen Schülerinnen und Schüler bearbeiteten eine andere Version 

des Spiels und wurden daher nicht in der aktuellen Analyse berücksichtigt.  

 

Beschreibung der Intervention und Ablauf 

Semideus ist eine Spiele-Engine, womit unterschiedliche Spielversionen zur 

Förderung des Verständnisses von rationalen Zahlen erstellt werden können (vgl. 
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Kiili, Moeller, et al., 2018; Ninaus, Kiili, et al., 2017; Ninaus, Moeller, McMullen & Kiili, 

2017). Für die vorliegende Studie wurde das Spiel SemideusDE konfiguriert und für 

iPads frei verfügbar gemacht (https://itunes.apple.com/de/app/semideus-

de/id1363119927).  

Die Grundmechanik des Spiels basiert auf einem Zahlenstrahl, der als begehbare 

Plattform implementiert ist. Spielerinnen und Spieler steuern den Charakter 

Semideus, der versucht Goldmünzen wiederzufinden, die gestohlen und entlang des 

Weges versteckt wurden indem sie das Tablet nach links oder rechts neigen. Für die 

aktuelle Studie wurden Zahlenstrahl- und Größenvergleichsaufgaben im Spiel 

implementiert. In den Zahlenstrahlaufgaben mussten Spielerinnen und Spieler die 

genaue Position der vergrabenen Goldmünzen identifizieren und ausgraben. Die 

Position der Goldmünzen wurde über die Zielzahl im jeweiligen Trial dargestellt (z.B. 

7/9; siehe Abbildung 8.1 links). In der Größenvergleichsaufgabe mussten zwei 

Brüche, die auf zwei Steinen geschrieben standen, hinsichtlich ihrer numerischen 

Größe verglichen werden (siehe Abbildung 8.1 rechts) indem die Steine hinsichtlich 

ihrer numerischen Größe in aufsteigender Reihenfolge von links nach rechts 

angeordnet wurden. Die jeweilige Position auf dem Zahlenstrahl spielte dabei keine 

Rolle. In beiden Aufgaben erhielten Schülerinnen und Schüler positives/negatives 

Feedback für korrekte/falsche Antworten. 

 

 

Figure 8.1: Beispiele für Zahlenstrahlaufgabe (links) und Größenvergleichsaufgabe (rechts). 

 

SemideusDE sollte im Rahmen des Mathematikunterrichts in 5 aufeinanderfolgenden 

Wochen für jeweils 10 Minuten verwendet werden. Die Lehrerinnen und Lehrer 

wurden lediglich instruiert das Spiel im Mathematikunterricht wie gefordert zu 
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verwenden. Dazu wurde den Lehrerinnen und Lehrern das Spiel vorgestellt und sie 

erhielten schriftliche Instruktionen zum Spiel. Eine Woche nach der letzten 

Spieleinheit wurden subjektive Erfahrungen mit dem Spiel mit Hilfe von 

unterschiedlichen Fragebögen erhoben15 (siehe unten). Diese wurden für die 

vorliegende Studie mit den Spielinteraktionsdaten zusammengeführt. 

 

Material 

Insgesamt wurden 40 Level mit Zahlenstrahl- und 40 Level mit 

Größenvergleichsaufgaben erstellt, die sukzessive in alternierender Reihenfolge 

gespielt werden sollten. Jedes Level beinhaltete 8 Zahlenstrahl- bzw. 

Größenvergleichsaufgaben. Insgesamt wurden alle 45 möglichen Brüche im 

Zahlenraum zwischen 0 und 1 verwendet (d.h. mit Nennern von 2, z.B. 1/2, bis 10, 

z.B. 9/10). Aus diesen 45 Brüchen wurden 160 Größenvergleichsausgaben erstellt 

die jeweils zwei Mal dargeboten wurden (1/5 vs. 7/10 bzw. 7/10 vs. 1/5). Die 

numerischen Distanzen zwischen den Brüchen lagen zwischen 0.01 und 0.8 (MDistanz 

= 0.38; SD = 0.22). Die Reihenfolge der Items in den Zahlenstrahl- und 

Größenvergleichsausgaben war randomisiert. Bei der Planung und dem Design der 

Studie wurde die Anzahl an unterschiedlichen Aufgaben priorisiert, da Schülerinnen 

und Schüler das Spiel über einen längeren Zeitraum nutzen sollten. Aus diesem 

Grund war es nicht möglich die Aufgaben hinsichtlich kongruenter (d.h. Zähler 1 > 

Zähler 2 und Nenner 1 > Nenner 2; Bruch 1 > Bruch 2, z.B. 3/8 < 5/9) und 

inkongruenter Größenvergleiche (Zähler 1 > Zähler 2 und Nenner 1 > Nenner 2; 

Bruch 2 > Bruch 1, z.B. 3/8 < 2/5) im Sinne des sogenannten whole number bias (vgl. 

Ni & Zhou, 2005) zu balancieren.  

Die Verwendung von SemideusDE ermöglichte die Aufzeichnung zahlreicher 

Spielinteraktionsdaten. Zur Beantwortung der vorliegenden Fragestellungen wurden 

die folgenden berücksichtigt: i) Genauigkeit der Schätzung in Zahlenstrahlaufgaben 

in Prozent (1 -- |geschätzte Position -- korrekte Position| * 100; z.B. für den Bruch 

2/5: 1 -- |0,35-0,4| * 100 = 95,00%); ii) Leistung [(Anzahl an korrekten Antworten / 

Anzahl an Antworten) * 100] und Antwortzeit bei Größenvergleichsausgaben; iii) 

 
15 Im Rahmen des groß angelegten Forschungsprojekts an deutschen Gymnasien wurden noch 
weitere kognitive (z.B. Intelligenz, Lesegeschwindigkeit, etc.) und personenspezifische Variablen (z.B. 
Tabletnutzung in der Schule, familiärer Hintergrund, etc.) erhoben. Diese Daten sind jedoch für die 
Beantwortung der aktuellen Fragestellungen nicht relevant und werden daher nicht berücksichtigt. 
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Anzahl der gespielten Level und Anzahl der gespielten Tage im 

Interventionszeitraum und danach (bis 6 Monate nach Beendigung der Intervention). 

Zur Erfassung der Motivation wurde die „Situational Motivation Scale“ (SIMS; Guay et 

al., 2000) ins Deutsche übersetzt und vorgegeben. Diese umfasst 16 Aussagen, die 

auf einer Likert-Skala von 1 („trifft gar nicht zu“) -- 7 („trifft voll zu“) hinsichtlich der 

Gründe wieso SemideusDE gespielt wurde, beantwortet werden sollten. Die Skala 

beinhaltet 4 Subskalen mit folgenden Werten für die interne Konsistenz in der 

aktuellen Stichprobe: (i) intrinsische Motivation (α = .87; 4 Items z.B. „Weil ich denke, 

dass es eine interessante Aktivität ist.“), (ii) identifizierte Regulation (α = .82; 4 Items 

z.B. „Ich spiele es zu meinem eigenen Besten.“), (iii) externale Regulation (α = .71; 4 

Items z.B. „Weil Semideus spielen etwas ist was ich tun muss“) und (iv) Nicht-

Regulation/Amotivation (α = .75; 4 Items z.B. „Es gibt vielleicht gute Gründe 

Semideus zu spielen, aber ich persönlich sehe keine“).  

Zur Erfassung des allgemeinem Spielerlebnisses wurde das Core-Modul des „Game 

Experience Questionnaire“ (GEQ; IJsselsteijn, de Kort & Poels, 2013) ins Deutsche 

übersetzt und vorgegeben. Dieses umfasst 33 Aussagen, die auf einer Likert-Skala 

von 1 („überhaupt nicht“) -- 5 („sehr“) beantwortet werden sollen. Der Fragebogen 

besteht aus 7 Subskalen: (i) Kompetenz (α = .73; 5 Items, z.B.: „Ich habe die Ziele 

des Spiels schnell erreicht.“), (ii) Sensorische und imaginative Immersion (α = .84; 6 

Items, z.B.: „Ich habe mich fantasievoll und einfallsreich gefühlt.“), (iii) Flow (α = .84; 

5 Items, z.B.: „Während des Spielens habe ich alles um mich herum vergessen.“), 

(iv) Anspannung/Ärger (α = .69; 3 Items, z.B.: „Ich war genervt“), (v) Herausforderung 

(α = .65; 5 Items, z.B.: „Ich habe mich herausgefordert gefühlt.“), (vi) negativer Affekt 

(α = .79; 4 Items, z.B.: „Ich habe vom Spielen schlechte Laune bekommen.“) und (vii) 

positiver Affekt (α = .90; 5 Items, z.B.: „Es hat mir Spaß gemacht.“). Für die aktuelle 

Studie wurde nur die Subskala „positiver Affekt“ verwendet, da diese am besten die 

Freude am Spiel erfasst (vgl. Mekler et al., 2014) und somit relevant für die 

Motivation der Schülerinnen und Schüler sein sollte. 

Im Rahmen des groß angelegten Forschungsprojektes konnten wir zudem für einen 

Großteil der Schülerinnen und Schüler auf die Schulnoten unterschiedlicher 

Unterrichtsfächer im letzten Zeugnis zugreifen, welche mittels Selbstauskunft der 

Schülerinnen und Schüler erfasst wurden. Die Schulnoten wurden auf einer 21-

stufigen Skala erfasst (Schulnote = Skalenwert; 1=1; 1--=2; 1--2=3; 2+=4; 2=5; 2--=6; 
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2--3=7; 3+=8; 3=9; 3--=10; 3--4=11; 4+=12; 4=13; 4--=14; 4--5=15; 5+=16; 5=17; 5--

=18; 5--6=19; 6+=20; 6=21), wobei höhere Zahlenwerte schlechtere Schulleistung im 

jeweiligen Unterrichtsfach widerspiegeln. Für die vorliegende Studie verwendeten wir 

die Noten in den Fächern Deutsch und Mathematik.  

Analyse 

In einem ersten Schritt wurden zur Untersuchung des Zusammenhangs zwischen der 

Leistung in den Zahlenstrahl- bzw. Größenvergleichsaufgaben und den Schulnoten 

Rangkorrelationen nach Spearman gerechnet, um den Einfluss von Ausreißern zu 

minimieren. Zusätzlich wurde Steigers Z-Test verwendet, um Unterschiede zwischen 

den Korrelationen der Spielleistung und den Noten in Deutsch bzw. Mathematik zu 

überprüfen. Die Schulnoten in Mathematik und Deutsch waren jedoch nur für 166 

Schülerinnen und Schüler verfügbar.  

Zur Bestimmung des Distanzeffekts bei den Größenvergleichsaufgaben wurde eine 

lineare Regressionsanalyse durchgeführt mit Antwortzeit als abhängiger Variable und 

numerischer Distanz als Prädiktor.  

Zur Identifikation von möglichen Subgruppen bzw. latenten Profilen mit ähnlichen 

Motivations- und Leistungsprofilen wurden in einem zweiten Schritt latente 

Profilanalysen (vgl. Hickendorff, Edelsbrunner, McMullen, Schneider & Trezise, 2018; 

mit dem Paket „mclust“, (Scrucca, Fop, Murphy & Raftery, 2016), in R durchgeführt. 

Die Klassifizierung der latenten Profile erfolgte auf Basis der berichteten 

Motivationstypen der Schülerinnen und Schüler anhand der vier Subskalen des SIMS 

und der Anzahl der gespielten Level als objektiven behavioralen Motivationsindex. 

Zusätzlich wurde noch die Subskala „positiver Affekt“ des GEQ als Indikator für 

Freude am Spiel und die Leistung in Zahlenstrahlaufgaben und 

Größenvergleichsaufgaben als Leistungsindikatoren mit berücksichtigt.  

Bei der latenten Profilanalyse wurde anhand des Bayes‘schen Informationskriterien 

(BIC) das passendste Gaussian Mixture Modell für die Daten identifiziert, wobei 

verschiedene Clusteranzahlen k und verschiedene Modellklassen (Charakteristika 

wie Verteilung, Volumen, Orientierung und Form) berücksichtigt wurden und der am 

wenigsten negative BIC-Wert das am besten geeignete Modell beschreibt. Hierfür 

wurden die Daten z-standardisiert und nur vollständige Datensätze berücksichtigt 

(d.h. Daten von 218 Schülerinnen und Schülern). Für das Ergebnis wurde 
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anschließend mit dem Integrated Completed Likelihood Kriterium noch ein weiterer 

Modellfit Index berücksichtigt, der zusätzlich die Überlappung der Cluster stärker 

berücksichtigt (Bertoletti, Friel & Rastelli, 2015). Schließlich wurde ein Bootstrap 

Likelihood Ratio Test (BLRT) mit den Standardeinstellungen des „mclust“ Pakets 

durchgeführt (999 Bootstrap-Replikationen; non-parametrisches Bootstrapping), um 

den Modellfit zwischen Modellen mit k-1 und k Clustern zu vergleichen.  

 

8.3 Ergebnisse 

Replikation basisnumerischer Befunde  

Spielleistung und Schulnoten 

Hypothese 1a: Es zeigte sich ein signifikant negativer Zusammenhang zwischen der 

Leistung in der Zahlenstrahlaufgabe (Genauigkeit der Schätzung) und der Schulnote 

in Mathematik (rho=--.45, p<.001, siehe Abbildung 8.2A). Zudem zeigte sich ein 

signifikant negativer Zusammenhang zwischen der Größen vergleichsleistung 

(Anzahl an korrekten Antworten / Anzahl an Antworten) und der Schulnote in 

Mathematik (rho=--.16, p<.05, siehe Abbildung 8.2 B). Das heißt, dass gute Leistung 

im Spiel mit besseren Mathematiknoten assoziiert war.  

Zudem zeigte sich ein signifikanter Zusammenhang zwischen Schätzleistung (rho=--

.19, p<.05, siehe Abbildung 8.2 C) bzw. Größenvergleichsleistung (rho=--.21, p<.01, 

siehe Abbildung 8.2 D) und der Schulnote in Deutsch. Jedoch war der 

Zusammenhang zwischen der Leistung in der Zahlenstrahlaufgabe und der 

Mathematiknote in signifikant größer als der Zusammenhangmit der Deutschnote (Z= 

--3.32, p < .001). Der Vergleich der Zusammenhänge der Größenvergleichsleistung 

mit den Schulnoten in Mathematik bzw. Deutsch ergab keinen signifikanten 

Unterschied (Z= 0.60, p = .55).  
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Figure 8.2: Streudiagramme; A: Korrelation zwischen Leistung in der Zahlenstrahlaufgabe und der 
Schulnote in Mathematik; B:  Korrelation zwischen Leistung in der Vergleichsaufgabe und der 
Schulnote in Mathematik; C: Korrelation zwischen Leistung in der Zahlenstrahlaufgabe und der 
Schulnote in Deutsch; D: Korrelation zwischen Leistung in der Vergleichsaufgabe und der Schulnote 
in Deutsch; Die grau schattierten Bereiche zeigen 95%-Konfidenzintervalle der Korrelationen. 

 

Distanzeffekt 

Hypothese 1b: Die Ergebnisse der Regressionsanalyse weisen darauf hin, dass die 

Antworten mit größer werdender numerischer Distanz signifikant schneller wurden 

[β=--0.24; p<.01; F(1,137)=8.14; p<.01; korrigiertes R²=0.05).    

 

Motivation -- behaviorale und subjektive Indikatoren 

Deskriptive Ergebnisse -- Spielausmaß 

Die Anzahl an gespielten Leveln und an wie vielen Tagen die Schülerinnen und 

Schüler gespielt haben dienten als behaviorale Motivationsindikatoren. Während des 

Interventionszeitraums wurden durchschnittlich 47.92 Level (SE=2.29) gespielt (siehe 

Abbildung 8.3 A), was in etwa 384 Aufgaben entspricht, an durchschnittlich 6.36 



175 

 

unterschiedlichen Tagen (SE=0.21; (siehe Abbildung 8.3 C). Nach der Intervention -- 

Zeitraum vom ersten Tag nach der Intervention bis 6 Monate danach -- wurden 

immer noch durchschnittlich 4.60 Level (SE=0.82; siehe Abbildung 8.3 B) an 

durchschnittlich 0.85 Tagen (SE=0.07; siehe Abbildung 8.3 D) gespielt. 

 

 

Figure 8.3: Deskriptive Darstellung von Anzahl der gespielten Level und der Anzahl an gespielten 
Tagen im Interventionszeitraum (A & C) bis 6 Monate danach (B & D; Darstellung für Schülerinnen 
und Schüler die mindestens ein Level bzw. einen Tag spielten). 

 

Profilanalysen 

Hypothese 2a: Tabelle 8.1 gibt einen Überblick über die Fitindizes BIC und ICL der 3 

besten Profilösungen der latenten Profilanalyse. Sowohl BIC als auch ICL weisen 

darauf hin, dass eine Lösung mit 3 Profilen, ellipsenförmigen Clustern und gleicher 

Orientierung (VVE) anzustreben ist. 
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Table 8.1: BIC und ICL Fitindizes für die besten 3 Lösungen der latenten Profilanalyse; VVE = 
ellipsenförmigen Cluster mit gleicher Orientierung; EVE = ellipsenförmige Cluster mit gleichem 
Volumen und gleicher Orientierung. 

Beste BIC Lösungen    

Form und Anzahl an Clustern VVE, 3 VVE, 4 EVE, 3 

BIC -4160.45 -4205.42 -4206.19 

BIC diff 0.00 -44.97 -45.74 

    

Beste ICL Lösungen    

Form und Anzahl an Clustern VVE, 3 EVE, 3 VVE, 4 

ICL -4217.73 -4244.63 -4259.97 

ICL diff 0.00 -26.90 -42.24 

 

 

Der Bootstrap Likelihood Ratio Test zeigte, dass die Hinzunahme eines weiteren 

Profils/Clusters keine signifikante Verbesserung ergab (3 vs. 4 Cluster: likelihood-

ratio=46.33; p=.09). Daher wurde die 3-Clusterlösung als finale Lösung 

angenommen (finales Modell: log-likelihood=--1870.77; n=215; df =78). Die z-

standardisierten Mittelwerte der aufgenommen Variablen in den jeweiligen 

Profilgruppen sind in Tabelle 8.2 dargestellt und in Abbildung 8.4 graphisch 

veranschaulicht.   

 

Table 8.2: z-standardisierte Mittelwerte aller Variablen und Anzahl an Personen in den 3 latenten 
Profilen. GEQ_posAffekt = Subskala positiver Affekt des GEQ; SIMS-Amotivation = Subskala 
Amotivation des SIMS; SIMS-exReg = Subskala externale Regulation des SIMS; SIMS-idReg = 
Subskala identifizierte Regulation des SIMS; SIMS-intrMot = Subskala intrinsische Motivation des 
SIMS. 

Latente Profile 

 n Schätz-
genauigkeit 

Größen-
vergleichs-
leistung 

Anzahl 
gespielter 
Level 

GEQ- 

posAffekt 

SIMS- 

amotivation   

SIMS- 

exReg         

SIMS- 

idReg        

SIMS- 

intrMot      

1 91 0.37 0.53 -0.32 -0.32 0.39 0.48 -0.51 -0.38 

2 71 0.32 0.13 0.80 0.21 -0.23 -0.37 0.42 0.26 

3 53 -0.89 -1.05 -0.40 0.14 -0.22 -0.28 0.26 0.26 
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Figure 8.4: Ausprägung der unterschiedlichen Variablen in den 3 unterschiedlichen Profilen die durch 
die latente Profilanalyse festgestellt wurden. GEQ_posAffekt = Subskala positiver Affekt des GEQ; 
SIMS-Amotivation = Subskala Amotivation des SIMS; SIMS-exReg = Subskala externale Regulation 
des SIMS; SIMS-idReg = Subskala identifizierte Regulation des SIMS; SIMS-intrMot = Subskala 
intrinsische Motivation des SIMS. 

 

Hypothese 2b: Schülerinnen und Schüler, die dem ersten Profil zugeordnet wurden, 

zeigten im Vergleich zur restlichen Stichprobe überdurchschnittliche Leistungen im 

Spiel (Schätzgenauigkeit und Größenvergleichsleistung), spielten mitunter jedoch die 

wenigsten Level, berichteten unterdurchschnittlich positiven Affekt während des 

Spielens und nahmen ihre Handlung des Spielens als überdurchschnittlich 

fremdbestimmt wahr (externale Regulation und Amotivation). Sie stellten somit eine 

Gruppe von fremdbestimmten High-Performern dar.  

Schülerinnen und Schüler im zweiten Profil waren ebenso im Vergleich zur restlichen 

Stichprobe überdurchschnittlich gut im Spiel, spielten deutlich die meisten Level, 

berichteten überdurchschnittlich positiven Affekt während des Spielens und nahmen 

ihre Handlung des Spielens als überdurchschnittlich selbstbestimmt wahr 

(identifizierte Regulation und intrinsische Motivation). Sie stellten damit eine Gruppe 

selbstbestimmter High-Performer dar.  
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Die Schülerinnen und Schüler im dritten Profil erbrachten im Vergleich die 

schlechtesten Leistungen im Spiel, spielten jedoch ähnlich viele Level wie 

fremdbestimmte High Performer (Profil 1). Zudem berichteten sie im Vergleich zur 

restlichen Stichprobe einen überdurchschnittlich hohen positiven Affekt und nahmen 

ihre Handlung des Spielens als überdurchschnittlich selbstbestimmt wahr. Dies 

entspricht einer Gruppe von selbstbestimmten Low-Performern. 

 

8.4 Diskussion 

In der vorliegenden Feldstudie konnten (i) grundlegende Effekt aus der Forschung 

zur numerischen Kognition mit einem digitalen Lernspiel zur Messung des 

Bruchverständnisses im Feld repliziert werden und (ii) drei unterschiedliche 

Motivationsprofile von Schülerinnen und Schülern in der Verwendung des Lernspiels 

identifiziert werden. Im Folgenden werden diese Ergebnisse eingehender diskutiert.  

Replikation basisnumerischer Effekte 

Um die Validität als auch Anwendbarkeit von digitalen Lernspielen im Schulunterricht 

zu demonstrieren sollten in der aktuellen Studie grundlegende Effekte aus der 

numerischen Kognition repliziert werden. Es zeigte sich, dass sowohl die 

Schätzgenauigkeit in den Zahlenstrahlaufgaben als auch die 

Größenvergleichsleistung im Spiel signifikant mit der aktuellen Schulnote in 

Mathematik korrelierten. Dabei ist wichtig zu berücksichtigen, dass der 

Zusammenhang zwischen der Schätzgenauigkeit in Zahlenstrahlaufgaben im Spiel 

und der aktuellen Schulnote in Mathematik signifikant größer war als der 

Zusammenhang mit der aktuellen Schulnote in Deutsch. Dieses Ergebnis legt nahe, 

dass sich dieser Zusammenhang nicht auf allgemein bessere Schulleistungen 

zurückführen lässt. Jedoch muss angemerkt werden, dass sich kein signifikanter 

Unterschied zwischen den Zusammenhängen der Größenvergleichsleistung im Spiel 

und den aktuellen Schulnoten in Mathematik bzw. Deutsch ergab. Dies könnte darauf 

hinweisen, dass die Leistung in der Zahlenstrahlaufgabe ein besserer und 

spezifischerer Indikator für allgemeine Leistung im Mathematikunterricht ist als die 

Leistung in der Größenvergleichsaufgabe. Die Ergebnisse replizieren und 

substantiieren damit die schon in früheren Studien berichtete hohe Relevanz des 

Verständnisses von Brüchen für die allgemeine Mathematikleistung (z.B. Booth & 
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Newton, 2012; Kiili, Moeller, et al., 2018). Bei der Interpretation der aktuellen 

Ergebnisse sollte jedoch berücksichtigt werden, dass die Erfassung der 

Mathematikkompetenz mittels Selbstauskunft der Schülerinnen und Schüler 

hinsichtlich der von ihnen erreichten Schulnoten kein standardisiertes Testverfahren 

darstellt -- die Verwendung von Schulnoten für derartige Analysen ist in der Literatur 

jedoch nicht unüblich (Kiili, Moeller, et al., 2018; Schneider, Grabner & Paetsch, 

2009; Torbeyns, Schneider, Xin & Siegler, 2014). Zudem wurde in einer Meta-

Analyse (Schneider, Merz, et al., 2018), die den Zusammenhang zwischen 

Mathematikkompetenz und Leistung in der Zahlenstrahlaufgabe untersuchte, kein 

signifikanter Unterschied zwischen unterschiedlichen Maßen der 

Mathematikkompetenz (d.h., Schulnoten, standardisierte Mathematiktests, 

Arithmetik, etc.) beobachtet. Darüber hinaus ermöglichte dieser Zugang ein kosten- 

und zeiteffizientes Vorgehen -- sehr relevante Punkte in groß angelegten 

Schultestungen -- und die Möglichkeit Leistung unterschiedlicher Schulfächer zu 

berücksichtigen, um differentielle Aussagen zu ermöglichen.  

Des Weiteren konnte der Distanzeffekt für die Größenvergleichsaufgaben repliziert 

werden. Die Schülerinnen und Schüler zeigten bei Vergleichen von Zahlen mit kleiner 

numerischer Distanz längere Reaktionszeiten als bei Vergleichen mit großer 

numerischer Distanz (z.B. Schneider & Siegler, 2010). Dieser Effekt weist darauf hin, 

dass ein erfolgreiches Verständnis von Bruchzahlen gegeben zu sein scheint und 

entspricht unseren Erwartungen für Schülerinnen und Schüler der siebten Klasse. 

Die erfolgreiche Replikation dieser grundlegenden Effekte spricht für die interne 

Validität und Anwendbarkeit des verwendeten digitalen Lernspiels und betont die 

Bedeutung der Berücksichtigung von Befunden aus der Grundlagenforschung für die 

Entwicklung von neuen und innovativen Lernansätzen. Ein weiterer wichtiger Aspekt, 

welcher bei der Akzeptanz und Implementation von neuen Lernansätzen 

berücksichtigt werden muss, ist die Motivation der Schülerinnen und Schüler.   

Motivation -- Selbst- vs. fremdbestimmte Motivationsprofile 

Der motivationale Anreiz ist wohl einer der häufigsten Gründe Lernspiele in den 

Unterricht zu integrieren (z.B. Garris et al., 2002; Wouters et al., 2013). In der 

aktuellen Studie wurde die Motivation der Schülerinnen und Schüler auf zwei 

unterschiedliche Ebenen untersucht. Es wurden Motivationstypen mit einem 

Fragebogen erhoben sowie behaviorale Motivationsindikatoren herangezogen, um 
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die Übereinstimmung von Selbstbericht und tatsächlich gezeigtem Verhalten zu 

untersuchen. 

Die deskriptive Analyse der behavioralen Motivationsindikatoren deutete auf eine 

hohe Akzeptanz des Spiels seitens der Schülerinnen und Schüler hin. Während des 

Interventionszeitraums absolvierten diese eine beträchtliche Anzahl von 

durchschnittlich rund 384 Aufgaben. Zudem spielten die Schülerinnen und Schüler 

an durchschnittlich 6.36 unterschiedlichen Tagen, und damit an mehr als den fünf in 

der Studie vorgesehenen Trainingstagen. Dies scheint besonders indikativ für den 

hohen motivationalen Anreiz des Spiels und dessen Akzeptanz, wie auch die 

Tatsache, dass selbst nach Beendigung der Intervention das Spiel von den 

Schülerinnen und Schülern weiterhin benutzt wurde. 

Um die motivationalen Beweggründe der Schülerinnen und Schüler besser zu 

verstehen wurde eine latente Profilanalyse durchgeführt. Mit dieser 

personenzentrierten Analyse konnten 3 unterschiedliche Profile von Schülerinnen 

und Schülern identifiziert werden. Wie erwartet unterschieden die Profile deutlich 

zwischen den Motivationstypen und entsprechen hinsichtlich der eindeutigen 

Unterscheidbarkeit von selbst- und fremdbestimmter Motivation den Ergebnissen 

vorangegangener Studien (z.B. Deci & Ryan, 2000; Schwinger et al., 2012). 

Schülerinnen und Schüler des ersten Profils bzw. der ersten Gruppe -- sogenannte 

fremdbestimmte High-Performer -- waren vor allem fremdbestimmt motiviert und eher 

demotiviert. Hingegen waren Schülerinnen und Schüler der zweiten (selbstbestimmte 

High-Performer) und dritten Gruppe (selbstbestimmte Low-Performer) identifiziert 

reguliert und intrinsisch motiviert. Es zeigte sich zudem, dass damit die Mehrheit der 

Schülerinnen und Schüler der aktuellen Stichprobe selbstbestimmt motiviert waren.  

Bei deskriptiver Betrachtung scheint der wahrgenommene positive Affekt während 

des Spiels wichtig für die Unterscheidung von fremd- oder selbstbestimmter 

Motivation zu sein. Dies entspricht den Ergebnissen früherer Studien, die einen 

positiven Zusammenhang zwischen selbstbestimmter Motivation und positiven 

Spielerleben berichten (z.B. Kiili, Lindstedt, et al., 2018; Kiili, Ojansuu, et al., 2018). 

Interessanterweise ließ sich dies nicht auf die Leistung im Spiel zurückführen, da 

auch selbstbestimmte Low-Performer im Vergleich zur restlichen Stichprobe 

überdurchschnittlich positives Spielerleben berichteten. Das heißt, dass, obwohl 

selbstbestimmte Low-Performer entsprechend ihrer unterdurchschnittlichen Leistung 
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relativ häufig negatives Feedback im Spiel erhielten -- zumindest im Vergleich zu den 

restlichen Schülern und Schülerinnen -- sich dies nicht negativ auf ihre 

selbstbestimmte Motivation und ihren Spaß am Spiel auswirkte. Es muss jedoch 

darauf hingewiesen werden, dass die Ergebnisse der Profilanalyse immer hinsichtlich 

der aktuellen Stichprobe von Schülerinnen und Schülern von deutschen Gymnasien 

interpretiert werden müssen; d.h. im Vergleich zu Stichproben aus anderen 

Schultypen (z.B. Hauptschule) könnten die Low-Performer der aktuellen Stichprobe 

gute Leistungen erbracht haben.  

Nichtsdestotrotz stellt sich die Frage, welche weiteren Faktoren positives 

Spielerleben begünstigen. Neuere Erkenntnisse legen nahe, dass individuelle 

Präferenzen für unterschiedliche Spielelemente dabei eine Rolle spielen könnten 

(z.B. Jia, Liu, Yu & Voida, 2017; Tondello et al., 2016). Zudem hat sich gezeigt, dass 

die Präferenz von Schülerinnen und Schülern digitale Spiele im Schulunterricht zu 

verwenden außerdem von Faktoren wie der Vorerfahrung mit und der 

wahrgenommenen Nützlichkeit von digitalen Spielen beeinflusst wird (Bourgonjon, 

Valcke, Soetaert & Schellens, 2010).  

Hinsichtlich der Anzahl an gespielten Leveln zeigte sich ein ähnlich 

erwartungskonformes Bild. Fremdbestimmte High-Performer absolvierten mitunter 

die wenigsten Level. Selbstgesteuerte High-Performer hingegen spielten die meisten 

Level, was für erhöhten Einsatz und Durchhaltevermögen bei Personen mit 

selbstgesteuerter Motivation spricht (siehe z.B. Hardre & Reeve, 2003; Ryan & 

Connell, 1989). Es muss jedoch berücksichtigt werden, dass selbstgesteuerte Low-

Performer nicht mehr Level absolvierten als fremdbestimmte High-Performer. Dies 

könnte darauf hinweisen, dass die Menge an positivem Feedback in Kombination mit 

selbstbestimmten Formen der Motivation eine optimale Konstellation für freiwillig 

erbrachten Einsatz im schulischen Kontext darstellt. Entsprechend sollten 

Lehrerinnen und Lehrer selbstbestimmte Motivation fördern, um Schülerinnen und 

Schüler dazu zu bewegen sich freiwillig mehr mit mathematischen Inhalten zu 

beschäftigen. Dies entspricht auch Erkenntnissen von Wang et al. (2017), dass 

Schülerinnen und Schüler mit selbstbestimmter Motivation über die Hausaufgaben 

hinaus mehr Aufwand und Zeit in Mathematik investierten. 
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8.5 Zusammenfassung und Ausblick 

Die Ergebnisse zeigten, dass mit dem vorliegenden digitalen Lernspiel zur Messung 

des Bruchverständnisses grundlegende Effekte der numerischen Kognition repliziert 

werden konnten. So war die Leistung im Spiel mit den Schulnoten in Mathematik 

assoziiert und es wurde der Distanzeffekt bei Größenvergleichsaufgaben beobachtet. 

Außerdem konnten drei unterschiedliche Motivationsprofile bei Schülerinnen und 

Schülern identifiziert werden, die sich vor allem hinsichtlich selbst- und 

fremdbestimmter Motivation sowie dem positiven Affekt während des Spielens 

unterschieden. Wie erwartet verbrachten selbstregulierte Schülerinnen und Schüler 

mehr Zeit mit dem Spiel und berichteten positiveres Spielerleben. 

Die aktuelle Studie demonstriert damit sowohl die Validität von digitalen Lernspielen 

und deren Anwendbarkeit im Unterricht als auch die hohe Akzeptanz von digitalen 

Lernspielen seitens der Schülerinnen und Schüler. Es soll jedoch erwähnt werden, 

dass es durchaus Schülerinnen und Schüler gab, die weniger positive Erfahrungen 

mit dem Spiel schilderten. Aus praktischer Sicht weisen die Ergebnisse darauf hin, 

dass (digitale) Lernspiele dazu führen können, dass sich Schülerinnen und Schüler 

über das geforderte Maß hinaus mit mathematischen Inhalten beschäftigen. Zudem 

zeigten Ergebnisse aus anderen Studien, dass Lernspiele wie Semideus 

konventionelle Lehr- und Lernmethoden sinnvoll ergänzen können (z.B. Kiili, Moeller, 

et al., 2018).  
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Abstract 

Background: Difficult cognitive tasks are often associated with negative feelings. 

This can be already the case for the mere anticipation of having to do a difficult task. 

For the case of difficult math tasks, it was recently suggested that such a negative 

emotional response may be exclusive to highly math-anxious individuals. However, it 

is also conceivable that negative emotional responses simply reflect that math is 

perceived as difficult. Here we investigated whether non-math-anxious individuals 

also experience negative emotional responses when anticipating to do difficult math 

tasks. 

Methods: We compared brain activation following the presentation of a numerical 

cue indicating either difficult or easy upcoming proportion magnitude comparison 

tasks.  

Results: Comparable to previous results for highly math-anxious individuals we 

observed a network associated with negative emotions to be activated in non-math-

anxious individuals when facing cues indicating a difficult upcoming task. Importantly, 

however, math anxiety scores did not predict the neural response. Furthermore, we 

observed activation in areas associated with processes of cognitive control areas 

such as anterior cingulate cortex, which were suggested to play a key role in emotion 

regulation.  

Conclusion: Activation in the emotion processing network was observed when 

anticipating an upcoming difficult (math) task. However, this activation was not 

predicted by individual’ degree of math anxiety. Therefore, we suggest that negative 

emotional responses to difficult math tasks might be a rather common reaction not 

specific to math-anxious individuals. Whether or not this initial negative response 

impairs math performance, however, might depend on the ability to regulate those 

emotions effectively.  

 

Word count: 250 

 

Key words: task difficulty, difficult math, cognition and emotion, emotion regulation, 

fMRI 
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9.1 Introduction 

Research repeatedly showed that doing difficult tasks is often associated with 

negative feelings such as high arousal, stress or anxiety. In particular, these negative 

feelings seem to be more pronounced for difficult as compared to more easy tasks 

(see [1] for a review) and can negatively affect cognitive performance on a variety of 

tasks (e.g., reading, attention, etc. [2–4]). In this context, difficulty is typically 

characterized by the demand for attentional, cognitive, etc. resources needed to 

master the task at hand. This way, a difficult (i.e., more demanding) task in turn leads 

to compromised performance because arousal, stress and anxiety consume cognitive 

resources (e.g., [5]). This may even end in a vicious circle where the individual 

perceives demanding tasks as threatening, which then leads to more anxiety. Anxiety 

is typically defined as a negative emotional state that occurs in situations in which the 

level of perceived demands to the individual is experienced as outweighing her/his 

resources to complete the task at hand [6].  

The relationship between task difficulty and performance is reflected by 

cortical activation during task performance. One assumption is that anxious 

individuals worry more about a demanding and potentially threatening task and how 

to cope with it. As a result, these anxious participants try to employ strategies to 

reduce effects of anxiety to master the task, which is reflected by enhanced activation 

in amygdala and reduced recruitment of areas associated with cognitive control and 

inhibition such as dorsolateral prefrontal cortex (DLPFC; see [7], for a review). In 

contrast, non-anxious participants might also feel anxious about a difficult upcoming 

task but then, however, successfully employ processes of emotion-regulation (e.g., 

[8]) to reappraise negative feelings in unemotional terms, which may be reflected by 

increased activation in these areas associated with cognitive control. 

Interestingly, negative feelings are also often reported in the context of 

mathematical tasks (e.g., [7–9]). For instance, dealing with numbers was shown to 

induce intense negative emotions and stress so reliably that mental arithmetic is one 

of the most commonly used tasks to induce stress in laboratory settings (e.g., [10–

13]). Increased stress levels may, for instance, be reflected by increases in heart rate 

and blood pressure (e.g., [14,15]). It is possible that these strong negative reactions 

to mathematical tasks reflect a specific anxiety associated with numerical tasks (i.e., 

math anxiety, e.g. [9]). It is, however, also conceivable that the negative reactions 
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simply reflect the fact that math is perceived as difficult. Interestingly, more difficult 

numerical tasks seem to elicit stronger negative emotions and physiological 

responses than easier numerical tasks (e.g., [16,17]; see also [8] for neural 

correlates). Therefore, probably both, difficult tasks as well as numerical tasks are 

associated with negative feelings in general, so that the strongest emotional and 

physiological response to math should be observed when participants have to solve 

difficult mathematical tasks [8] in particular.  

As mentioned above, it is possible that strong negative reactions to 

mathematical tasks simply reflect that math is perceived difficult. Nevertheless, there 

is a rich body of literature on math anxiety, showing that if such negative emotional 

responses to math or the anticipation of having to do math cannot be regulated or 

compensated, performance in numerical tasks is significantly reduced in a wide 

variety of everyday life and academic situations. In this case, affected individuals are 

classified as math-anxious (e.g., [18,19]; for a review see [20]). Math-anxious 

individuals were observed repeatedly to perform poorly in tasks which involve 

numerical information, while their performance in other general reasoning tasks is not 

affected and typical (e.g., [21,22]).  

In order to deepen our understanding of underlying mechanisms leading to 

decreased numerical information processing in the context of difficult math tasks, 

research on the neuro-cognitive underpinnings of negative emotional reactions while 

doing math is highly relevant. However, it was suggested that a negative emotional 

response to mathematic is only observed in high math-anxious participants [8,9]. 

Moreover, because emotional responses to math are strongest when participants 

have to solve difficult mathematical tasks, Lyons and Beilock [8,9] evaluated neural 

activation patterns in response to difficult tasks from participants performing both, 

difficult and easy numerical and non-numerical tasks. Importantly, the authors 

evaluated neural activation during the actual completion of the task [8] as well as 

during the mere anticipation of having to do the respective numerical task, this 

means, following presentation of a cue indicating the nature of the upcoming task 

(i.e., difficult vs. easy [8,9]). The authors observed that already after the presentation 

of a cue indicating a difficult upcoming numerical task and thus before the respective 

task has to be performed, brain regions associated with the processing of negative 

emotions [8] and even pain [9] were activated. The network for negative emotions 
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comprised bilateral hippocampus and (pre)frontal areas [8], but not the amygdala, 

which is typically activated in emotion processing [23], whereas the pain network 

included the insula and middle cingulate cortex [8].  

However, Lyons and Beilock [8,9] reported that math-anxious participants, who 

showed typical and thus unimpaired performance in math tasks, activated not only 

neural networks associated with the processing of negative emotions and pain, but 

also a network associated with cognitive control processes. This cognitive control 

network was argued to be involved in regulating negative feelings of fear, despair or 

pain by reappraisal and involved dorsolateral prefrontal cortex (DLPFC) and anterior 

cingulate cortices (ACC). Importantly, areas forming this cognitive control network 

also seem to play a key role in emotion regulation more generally (e.g., [24]; for a 

review see [25]).   

Interestingly, neural networks for processing negative emotions and pain as well 

as for evincing cognitive control were shown to be activated already when 

participants anticipated the upcoming numerical task. This indicates that emotional 

effects associated with math can already be observed when investigating the time 

interval between cue presentation and the beginning of the actual task [8,9] and 

these emotional effects are thus not confounded by neural activation associated with 

actually performing the task. In case emotion regulation is successful, the task at 

hand may then be performed with all available cognitive resources [21] so that 

performance should not be impaired [8].  

However, it is important to note that the latter assumptions of Lyons and Beilock 

(i.e., no impairment of performance with successful emotion regulation) are based on 

the comparison of highly math-anxious with low math-anxious participants (i.e., 

participants scoring in the upper vs. in the lower quintile in a math anxiety screening 

test [8] and on a comparison within highly math-anxious participants [9]. According to 

the authors, the network associated with processing negative emotions should only 

be observed in highly math-anxious participants because low math anxious persons 

“[...] do not have a negative emotional response in anticipation of math that requires 

reinterpreting" ([8], p. 2108). If this assumption was true, one should neither be able 

to observe activation within this network for processing negative emotions in non-

math-anxious participants when anticipating a difficult upcoming numerical task, nor 

should non-math-anxious participants express negative feelings when asked after 
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task completion (e.g., in a questionnaire). Additionally, they should not show 

activation in the cognitive control network subserving the regulation of emotions.  

However, there is evidence showing that i) negative emotional responses in 

anticipation of a difficult task seem to be more like a general tendency rather than an 

exception (cf. [26] for a review) and ii) that these negative emotions can be 

successfully regulated using reappraisal [27] and mechanisms of cognitive control 

[24,28]. According to the process model of emotion regulation, reappraisal is an early 

emotional control process and provides one of the most effective means to diminish 

the negative emotions associated with an aversive event [24,27,29]. When the 

regulation of the initial emotional response is successful, task performance will be 

better, as demonstrated by Lyons and Beilock [8,9] for the case of highly math-

anxious participants. Therefore, we hypothesize that non-math-anxious participants 

should not necessarily be characterized by the absence of activation in the network 

associated with processing negative emotions. Instead non-math-anxious 

participants should be characterized by the presence of (sufficient) activation in 

networks subserving cognitive control/ emotion regulation during number processing 

– an interplay which was shown by Lyons and Beilock [9] for highly math-anxious 

participants with normal math performance.  

 

The present study 

In this study, we aimed at investigating neural activation of non-math anxious 

participants during the anticipation of difficult and easy numerical tasks. We used a 

numerical task because math is typically perceived as difficult and demanding. In 

particular, we employed a comparison task on relative magnitudes (i.e., fractions and 

proportions) and investigated neural activation in response to cues indicating these 

upcoming tasks. We used magnitude comparison of proportions, because fractions 

and proportions are difficult enough to elicit emotional responses in non-math-

anxious participants. At the same time, proportions are also well suited for 

manipulating task difficulty. To avoid that observed effects are driven by notation-

specific processes, we used both symbolic and non-symbolic proportions. This is 

important because we wanted to evaluate rather general cognitive processing 

mechanisms. Therefore, we did not expect to observe specific IPS activation, 

because the IPS is generally assumed to subserve the processing of number 
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magnitude in a notation independent manner [30–33]. As it was found that magnitude 

comparison of decimals is easier than magnitude comparison of fractions [34], we 

used fraction comparison as the more difficult and decimal comparison as the easier 

condition in symbolic notation. For non-symbolic notation, we used proportions 

visualized by dot patterns (i.e., the relation of blue to yellow dots, see also Fig 1) as 

the more difficult and pie charts as the easier condition according to behavioral pilot 

data.  

 

Figure 9.1: Experimental design. (A) Illustration of the experimental procedure at the beginning of 
each block (i.e., one out of five trials). (B) Presented cues in all notation formats. 

 

Moreover, to complement neural activation data with a subjective measure of 

emotional responses and to determine whether these responses were actually 

negative or positive, participants also answered a stress appraisal questionnaire after 

completing the tasks. We hypothesized that negative emotional responses to the 

anticipation of doing difficult math are present in all individuals irrespective of their 

math-anxiety level. In this case, it would be less important how strong this emotional 

response is rather than how well it can be regulated.  

Thus, we hypothesized that the more difficult tasks should elicit stronger 

negative emotional responses in our non-math-anxious participants both subjectively 
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(as shown in a questionnaire) and objectively (as shown by neural activations during 

anticipation) independent of presentation notation. Since we evaluated non-math-

anxious participants, we also expected concurrent activation in a network associated 

with cognitive control reflecting emotion regulation. In order to determine the 

influence of math anxiety values subjectively assessed with the Abbreviated Math 

Anxiety Scale (AMAS; [35]) on activation patterns, the activation predicted by math 

anxiety values was modelled separately. 

In addition to this hypothesis on notation-independent processes of emotion 

regulation, we also expected specific differences in activation patterns for symbolic 

digital and non-symbolic cues. In particular, we expected to find activation in areas 

associated with the identification of Arabic digits such as the visual number form 

(VNF) following symbolic cues (i.e., fractions, decimals). As the VNF is supposed to 

be automatically involved in the processing of visual numerals [36,37], whenever one 

visually perceives symbolic numerical stimuli. 

 

9.2 Methods and Materials 

Participants 

25 right-handed adult volunteers (13 female, mean age = 23.2 years; SD = 

2.99 years) participated in the study. Written informed consent was obtained from all 

participants. The experiment was approved by the local Ethics Committee of the 

Medical Faculty of the University of Tuebingen (274/2013BO2). All participants 

reported normal or corrected to normal vision and no previous history of neurological 

or psychiatric disorders. In particular, neurological and psychiatric disorders were 

assessed using both, a detailed self-assessment questionnaire and an diagnostic 

questionnaire, which was completed by a specifically trained and certified MR 

investigator to rule out anxiety disorders according to DSM-5 [38]. Moreover, 

participants were not math anxious according to the Abbreviated Math Anxiety Scale 

(AMAS; [35]). Only participants who were not taking any medications other than oral 

contraceptives were included in the study.  
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Stimuli and Design  

In the magnitude comparison task, participants had to decide which of two 

presented proportions was the larger one. We used four different presentation 

notations of proportions: fractions, decimals, pie charts, and dot patterns (see Fig 1A 

for an example). Each block of magnitude comparison tasks was preceded by a cue 

indicating the respective proportion notation to be expected on the next five trials. 

The cue always was the proportion 1/4 shown in the different notations in the center 

of the screen against a grey background (see Fig 1B). A total of 24 items entered the 

cues analysis. Importantly, we evaluated only the neural response following cue 

presentation, but not the activation during the actual magnitude comparison. 

For the magnitude comparison tasks, we constructed 30 items for each of the 

four presentation notations. Proportions were presented in pairs with the magnitude 

of the first proportion ranging from 0.13 to 0.86 and the second proportion ranging 

from 0.22 to 0.89. Absolute distances between proportions ranged from 0.02 to 0.22.  

Before and after completing the proportion comparison task within the 

scanner, participants were asked to rate their anticipated feelings regarding the four 

presentation notations using an adapted version of the Stress Appraisal Measure 

[39,40] provided as paper and pencil questionnaire. In this Stress Appraisal Measure, 

six items (three items each) assessed challenge (positive emotional valence) and 

threat (negative emotional valence) participants experienced related to the task (e.g., 

challenge, positive: “I think I can master these tasks”; threat, negative: “I am afraid of 

not being able to solve the tasks”). The idea is that individuals assess whether they 

can master a difficult task by weighing the perceived task demands (e.g., task effort) 

against their perceived resources (e.g., skills; [41,42]). A task is considered as a 

threat when their task demands seem to outweigh their resources or as a challenge 

when their resources seem to match or exceed task demands [42,43]. 

Procedure 

Before entering the scanner, participants completed the Stress Appraisal 

Measure. Then participants were put into the scanner and stimuli were projected on a 

screen above their head. Participants viewed the stimuli through a mirror mounted on 

the head coil of the scanner. Fractions as well as decimals were presented in blue 

(RGB-values: 53, 85, 204; font type: Arial; font size: 80) against a grey background 
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(RGB-values: 204, 204, 204). Pie charts were drawn by dividing circles into two pie 

segments, one depicted in blue (same blue as for fractions) and the other in yellow 

(RGB-values: 203, 187, 0; see Fig 1B) against the same grey background color. Dot 

patterns were colored according to the fractions they denoted using the same colors 

as for the pie charts.  

Head movements were prevented by using foam pads. To familiarize 

participants with the task, all volunteers were given the opportunity to practice on 

several items of each condition preceded by the respective cues before starting the 

actual experiment. None of these practice items was repeated during the critical 

measurement.  

At the beginning of each block a cue was presented for 500ms that indicated 

the respective proportion notation to be expected on the next five trials. 

Subsequently, a black screen was presented for 4,000ms. To investigate processes 

associated with handling inherent numerical features of and affective associations 

with the numerical cues, we chose a design, in which the presentation of a cue was 

followed by a long-time interval (4,000ms) with no further visual input until the cued 

task was actually presented. As pointed out by Brass and von Cramon [44], it might 

be difficult to otherwise isolate task preparation from task execution using 

neuroimaging methods (see also [8,9]). While the time needed to prepare for a task 

may be very short, the hemodynamic response is comparably slow (i.e., peaking at 

about 6 seconds post stimulus, cf. [45]). This can possibly lead to an overlap of the 

hemodynamic responses for the cue and target period.  

After 4,000ms, comparison trials were presented starting with a black fixation 

cross on a grey background for 500ms, followed by the presentation of a proportion 

comparison stimulus for up to 5,000ms (see Fig 1A for an illustration of the procedure 

at the beginning of a block). Participants had to respond within this time frame by 

pressing one of two MRI compatible response buttons with either their left (indicating 

left proportion larger) or right thumb (indicating right proportion larger). Proportion 

comparison items were presented in six blocks of 5 items each. After one block was 

completed, the next block was introduced by the next cue. We focused our analyses 

of neural activation observed during cue presentation and the following 4,000ms of a 

blank screen. Activation during the actual comparison of proportions was not 

considered in the present study. 
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(f)MRI acquisition 

MRI data were acquired using a 3T Siemens Magnetom TrioTim MRI system 

(Siemens AG, Erlangen, Germany). A high resolution T1- weighted anatomical scan 

(TR = 2300 s, matrix = 256 × 256, 176 slices, voxel size = 1.0 × 1.0 × 1.0 mm3; FOV 

= 256 mm², TE = 2.92 ms; flip angle = 8°) was collected at the end of the 

experimental session. All functional measurements covered the whole brain using 

standard echo-planarimaging sequences (TR = 2400 ms; TE = 30 ms; flip angle = 

80°; FOV = 220 mm², 88 x 88 matrix; 42 slices, voxel size = 2.5 × 2.5 × 3.0 mm3, gap 

= 10%). fMRI data was acquired in a single run. Total scanning time was 

approximately 20 minutes. We included pauses between blocks in which a black 

screen was presented for 6,000 ms. 

 

Analysis 

Behavioral analysis 

Because the primary focus of the current study was on the neural correlates of 

processing numerical cues for task preparation activation, we only report the analysis 

of behavioral data with the view of a manipulation check for our 2 x 2 manipulation of 

task difficulty and notation. 

We inspected response times (RT) and error rates (ER) to examine whether 

the difficulty of the presentation notations differed. Initial inspection of the behavioral 

data indicated that the distribution of response times was strongly skewed to the 

right, in particular for decimals (skewness: 2.608, SD=.456) and pies (skewness: 

2.426, SD=.456). Therefore, we applied the inverse transformation converting 

response times into speed with measurement unit 1/sec to approach normal 

distribution [46]. This way larger values indicate faster speed, while smaller values 

indicate slower responses. 

Speed and error rates were analyzed running (generalized) linear mixed 

models [(G)LME] to include random effects for both participants and items (e.g., [47]). 

In the GLME (for ER), we used the logit as the link function and assumed a binomial 

error distribution. We included the fixed effect of presentation notation (fractions, 

decimals, pie charts, and dot patterns) and random intercepts for participants as well 
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as items (crossed random effects), and a random slope for presentation notation in 

the LME as well as the GLME. 

In the analysis of speed, we considered correctly solved trials only. Moreover, 

we removed trials with absolute z-scaled residuals of the full model larger than 3. In 

total, the analysis of speed was based on 82.6% of all trials. Data from the appraisal 

questionnaire completed after the experiment on negative (‘threat’) as well as positive 

(“challenge”) emotions towards the four conditions were analyzed each by a 2 × 2 

repeated measures ANOVA discerning the two factors task difficulty (difficult vs. 

easy) and notation (symbolic vs. non-symbolic).  

Statistical analyses were run using R [48] and the R packages lme4 [49] and 

afex for executing the (G)LME [50]. P-values for fixed effects of LME were calculated 

running F-Tests using the Kenward-Roger approximation for degrees of freedom 

(e.g., [51]) and for GLME, we carried out likelihood ratio tests (LRT). Post-hoc tests 

were run relying on the R package lsmeans [52] and the Tukey HSD (honestly 

significant difference) method was used to adjust p-values for multiple comparisons. 

Plots were drawn using the R packages ggplot2 [53] and cowplot [54]. 

 

Imaging analysis 

Imaging data analysis was performed using SPM12 

(http://www.fil.ion.ucl.ac.uk/spm). Images were slice-time corrected, motion 

corrected, and realigned to each participant’s mean image. The mean image was co-

registered with the anatomical whole-brain volume. Imaging data was then 

normalized into standard stereotaxic MNI space (Montreal Neurological Institute, 

McGill University, Montreal, Canada). Images were resampled every 2.5 mm using 

4th degree spline interpolation to obtain isovoxels and then smoothed with a 6 mm 

full-width at half-maximum (FWHM) Gaussian kernel to accommodate inter-subject 

variation in brain anatomy and to increase signal-to-noise ratio in the images. Data 

were high-pass filtered (128s) to remove low-frequency noise components and 

corrected for autocorrelation assuming an AR(1) process.  

In the first-level analysis, the onsets of the cues for the four presentation 

formats (i.e., fractions, decimals, pie charts, dot patterns) were entered as separate 

conditions in the GLM. Importantly, the neural response associated with the critical 
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items was evaluated from the beginning of each cue presentation until the start of the 

fixation cross preceding the magnitude comparison task (duration of 4,500ms). Thus, 

activation during the actual comparison of proportions was not considered in the 

present analysis. Movement parameters estimated at the realignment stage of 

preprocessing were included as covariates of no interest. Motion parameters did not 

exceed 2.5 mm translation in total (i.e., they did not exceed voxel size) and a head 

rotation of 1.5 degree in pitch, roll, and yaw in total. Therefore, none of the 

participants had to be excluded from the analyses because of head movements. 

Brain activity was convolved over all experimental trials with the canonical 

hemodynamic response function (HRF) as implemented in SPM12 and its time and 

dispersion derivatives.  

These contrast images then entered the second-level random-effects group 

analysis. The second-level analysis was realised using a flexible factorial design for 

repeated measures with difficulty (easy/difficult) and notation (symbolic/non-symbolic) 

as within-subject factors as well as math anxiety (AMAS score) as covariate. We 

evaluated both, main effects of difficulty and notation as well as the interaction 

between the two factors. Additionally, we evaluated the fMRI signal explained by low 

or high values of the covariate math anxiety. 

The SPM Anatomy Toolbox [55], available for all published cytoarchitectonic 

maps (www.fz-juelich.de/ime/spm_anatomy_toolbox), was used for anatomical 

localization of effects where applicable. In areas not yet implemented, the anatomical 

automatic labelling tool (AAL) in SPM12 (http://www.cyceron.fr/web/aal 

anatomical_automatic_labeling.html) was applied. Activations were thresholded at an 

uncorrected p-value of < .001 at the voxel level with a cluster size of k = 10 voxels 

and were reported when they remained significant following family-wise error 

correction (FWE) at the cluster-level with pcluster-corr < .05. 

 

9.3 Results 

9.3.1 Behavioral results 

The (ordinal) interaction between notation and difficulty was significant for 

speed, F(1, 24.45) = 78.96, p < .001 (see Fig 2A) indicating that the effect of the 
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factor difficulty was more pronounced for symbolic as compared to non-symbolic 

notation.  

 

Figure 9.2: Behavioral data as manipulation check. (A) mean speed and (B) error rates in the four 
conditions (dot patterns, pie charts, fractions, and decimals). Error bars indicate one standard error of 
the mean. 

 

We further inspected the interaction by running pairwise post-hoc comparisons 

among conditions. We found that speed differed significantly between these different 

presentation formats [dot patterns vs. pie charts: t(28.70) = 8.65, p < .001; dot 

patterns vs. decimals: t(24.37) = 12.64, p < .001; fractions vs. pie charts: t(26.33) = 

10.04, p < .001; fractions vs. decimals: t(29.71) = 18.08, p < .001; pie charts vs. 

decimals: t(28.53) = 9.48, p < .001], except for dot patterns and fractions [t(32.28) = 

0.39, p = .980]. Thus, decimals were compared fastest (M = 1.34 item/s, SE = 0.04 

items/s), followed by pie charts (M = 0.87 item/s, SE = 0.04 items/s), whereas 

fractions (M = 0.54 item/s, SE = 0.04 items/s) and dot patterns (M = 0.55 item/s, SE = 

0.05 items/s) were compared about equally fast. Moreover, main effects of notation, 

F(1, 27.75) = 24.93, p < .001, and difficulty, F(1, 24.24) = 208.88, p < .001, were 

significant. However, the main effect of notation should not be interpreted, because 

the (simple) main effect of notation was only present for easy tasks [pie charts vs. 

decimals: t(28.53) = 9.48, p < .001] (i.e., not for dot patterns vs. fractions [t(32.28) = 

0.39, p = .980]). In contrast, there were significant differences between easy and 
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difficult tasks for both symbolic [fractions vs. decimals: t(29.71) = 18.08, p < .001] and 

non-symbolic [dot patterns vs. pie charts: t(28.70) = 8.65, p < .001] notations. This 

indicated that overall, easier tasks were compared faster than more difficult tasks 

(easy: M = 1.00 item/s, SE = 0.04 items/s vs. difficult: M = 0.54 item/s, SE = 0.04 

items/s). 

We also observed a significant interaction between notation and difficulty for 

ER, χ²(1) = 22.92, p < .001. It indicated that - although all pairwise comparisons were 

significant (dot patterns vs. fractions: z = 2.92, p = .019; dot patterns vs. pie charts: z 

= 8.33, p < .001; dot patterns vs. decimals: z = 8.09, p < .001; fractions vs. pie charts: 

z = 4.84, p < .001; fractions vs. decimals: z = 7.14, p < .001; pie charts vs. decimals: 

z = 4.95, p < .001) – the difference between symbolic and non-symbolic notation was 

smaller for difficult as compared to easy comparisons (difficult: log odds = 0.57, SE = 

0.23 vs. easy: log odds = 2.53, SE = 0.51). For reasons of readability, the following 

descriptions of results also incorporate ERs in percent. Accordingly, error rates for 

decimals were lowest (log odds: M = -5.06, SE = 0.53; 1%), followed by pie charts 

(log odds: M = -2.53, SE = 0.25; 7%) and fractions (log odds: M = -1.53, SE = 0.24; 

18%) and highest for dot patterns (log odds: M = -0.86, SE = 0.24; 30%). Again, main 

effects of notation, χ²(1) = 27.73, p < .001, as well as difficulty, χ²(1) = 46.32, p < 

.001, were significant. The main effect of notation indicated that comparing symbolic 

proportions (log odds: M = -3.30, SE = 0.32; 4%) was less error prone than 

comparing non-symbolic proportions (log odds: M = -1.29, SE = 0.22; 16%). 

Furthermore, participants’ error rates were lower in easier (log odds: M = -3.80, SE = 

0.32; 2%) than in more difficult tasks (log odds: M = -1.19, SE = 0.21; 23%). 

 

Results for Appraisal questionnaire  

The ANOVA on threat (i.e., negative emotions) revealed main effects of both 

notation, F(1, 24) = 21.45, p < .001, and difficulty, F(1, 24) = 31.93, p < .001. The 

main effect of notation indicated that participants rated proportions presented in non-

symbolic notations (i.e., dot patterns and pie charts) more negative (i.e., threatening, 

M = 7.86, SE = 0.55, 95 % CI = [6.74, 8.98]) than proportions presented symbolically 

(i.e., fractions and decimals, M = 6.00, SE = 0.55, 95 % CI = [4.88, 7.12]). The main 

effect of difficulty indicated that participants rated difficult proportions (i.e., fractions 

and dot patterns) as more negative (i.e., threatening, M = 8.66, SE = 0.59, 95 % CI = 
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[7.46, 9.86]) than easy proportions (i.e. pie charts and decimals, M = 5.20, SE = 0.59, 

95 % CI = [4.00, 6.40]). The interaction between notation and difficulty was not 

significant, F(1, 24) = 1.78, p = .60. 

The ANOVA on challenge (i.e., positive emotions) revealed a main effect of 

difficulty, F(1, 24) = 16.43, p < .001. The main effect of difficulty indicated that 

participants rated easy proportions more positive (i.e., challenging, pie charts and 

decimals, M = 4.73, SE = 0.24, 95 % CI = [4.24, 5.23]) than difficult proportions (i.e., 

fractions and dot patterns, M = 4.20, SE = 0.23, 95 % CI = [3.72, 4.68]). There was 

neither a main effect of notation, F(1, 24) = 2.11, p = .16, nor an interaction between 

notation and difficulty, F(1, 24) < 1, p = .44.” 

9.3.2 Imaging results 

The F-contrast of the ANCOVA revealed no supra-threshold clusters for the 

interaction between difficulty (easy/difficult) and notation (symbolic/non-symbolic).  

The analysis of the main effect of difficulty yielded the following results: Cues 

indicating a difficult upcoming task (dots, fractions) as compared to an easy task 

(pies, decimals) led to increased activation in a network including bilateral amygdala, 

bilateral ACC, bilateral hippocampus, left temporal gyrus and bilateral paracentral 

gyrus (Fig 3, Table 9.1). For the opposite contrast (cues for easy vs. difficult tasks) no 

supra-threshold clusters were observed. 

 

Figure 9.3: Negative emotional response to anticipating difficult math.  Negative emotion network 
stronger associated with cues indicating upcoming difficult (including fractions and dots) than with 
cues indicating an easy proportion comparison task (involving pies and decimals). Abbreviations: ACC 
– anterior cingulate cortex; HC – hippocampus.  
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Table 9.1: Cortical regions more strongly activated in the conjunction of viewing at cues for 
upcoming dots and fractions (difficult conditions) compared to pies and decimals (easy conditions), 
controlled for math anxiety values as measured with the AMAS. 

              

Contrast Brain region 
MNI (x, y, z) 

Cluster 

size 
t 

              

       
Difficult vs. easy LH anterior cingulate cortex -5 43 -15 446 5.59 

 RH anterior cingulate cortex 3 31 -15  4.64 

 

LH amygdala -27 1 -23 63 4.61 

 

RH amygdala 28 6 -28 15 3.75 

 

RH hippocampus 31 -10 -18 66 4.13 

 

LH middle temporal gyrus -57 -10 -13 15 3.92 

 

LH paracentral gyrus -7 -40 73 46 4.50 

 

RH postcentral gyrus 13 -42 70 31 4.33 

              

       
pcluster-corr < .05 (k = 10 voxels); LH: left hemisphere; MNI: Montreal Neurological Institute coordinates; 

RH: right hemisphere; *: minor maximum; t = t-value.  

 

The main effect of notation revealed no supra-threshold activation differences 

between conditions when corrected for multiple comparisons. However, as we had 

the hypothesis that symbolic vs. non-symbolic cues should activate the VNF, we also 

did the analysis at an uncorrected p-value of .001 and found activation in the left 

inferior temporal gyrus at MNI coordinates -51, -55, -16 (t = 3.22).  

Neither large nor small values of the covariate math anxiety (as reflected by 

participants’ AMAS scores) explained any suprathreshold cluster of activation. This 

means that math anxiety scores did not explain variance of the fMRI signal during 

cue presentation. For the sake of completeness, simple effects for each of the four 

cues (dots, fractions, pies, decimals) are given in the supplementary materials 

(Figures S9.1 – S9.3 and Tables S9.1 – S9.3). 
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9.4 Discussion 

The mere anticipation of doing difficult tasks is often associated with negative 

emotions (e.g., [5,56]). However, in the case of math such a negative emotional 

response was proposed to be only observed in highly math-anxious participants 

according to Lyons and Beilock [8]. In the present study, we aimed at evaluating i) 

that negative emotional responses in anticipation of a difficult math task is a general 

response, which can be seen in non-math-anxious individuals as well and ii) that it is 

the regulation of the initial emotional response which is crucial for later task 

performance.  

Subjective and objective behavioral measures confirmed that our manipulation 

of difficulty was successful. Additionally, difficult items were subjectively rated as 

more negative (i.e., threatening), while easy items were rated as more positive (i.e., 

challenging). More specifically, our non-math-anxious participants explicitly indicated 

that more difficult comparisons of fractions and dot patterns were associated with 

more negative feelings. This further supports the notion that activation associated 

with the anticipation of difficult trials indeed reflects processes related to negative 

emotions.  

In line with our hypothesis, imaging data revealed a common (sub-)network 

associated with the processing of negative emotions activated independently of 

notation (symbolic/non-symbolic) and math anxiety scores, but dependent on the 

degree of difficulty. In our non-math-anxious participants, cues indicating a more 

difficult upcoming task led to activation in a network comprising bilateral amygdala 

and hippocampus, which has been previously associated with the processing of 

negative emotions (e.g., [57,58]). In line with our hypothesis, these participants also 

revealed activation in areas associated with cognitive control such as anterior 

cingulate cortex (ACC). Networks of cognitive control have been suggested to be 

involved in emotion regulation during numerical tasks (e.g., [8,9]). Importantly, when 

examining whether fMRI signal was predicted by the degree of math anxiety (as 

reflected by participants’ AMAS scores) in our non-math anxious sample, neither high 

nor low values of math anxiety explained any supratheshold cluster of activation. This 

means that math anxiety scores did not explain fMRI signal during cue presentation. 

In other words, while the activation observed in the emotion processing network 
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seems to be associated with the anticipation of an upcoming difficult (math) task, it 

was clearly not associated with participants’ degree of math anxiety. 

Finally, in line with our expectations we only found specific activation of the 

VNF area following symbolic numerical cues, whereas IPS activation was not 

observed specifically for symbolic notation.  

Affective responses associated with cues for difficult numerical tasks 

Behavioral data indicated that magnitude comparison performance indeed 

differed significantly as a function of task difficulty. Comparisons of fractions and dot 

patterns were responded to slower and with more errors than comparisons of 

decimals and pies. Imaging data revealed that, when presented with cues indicating 

a difficult upcoming task, our non-math-anxious participants showed activation in a 

network associated with the processing of negative emotions comprising 

hippocampus and amygdala, while math anxiety scores did not modulate the fMRI 

signal. Lyons and Beilock [8] recently reported activation of a similar network 

comprising hippocampus in anticipation of doing math for individuals with high math 

anxiety and claimed that networks of emotion processing should not be observed to 

be active for non-math-anxious individuals. However, it has been shown in both 

human lesion and neuroimaging studies that the amygdala, which we additionally 

found active, plays a crucial role in classical fear conditioning and fear-potentiated 

startle [57,59]; for a review see [26]. In turn, amygdala and hippocampus were shown 

to work closely integrated in emotional responses (e.g., [58]). Therefore, it is likely 

that the network observed in the present study resembles a network for emotion 

processing. Involvement of networks associated with the processing of emotions and 

pain when anticipating doing difficult numerical tasks [9] was further substantiated by 

a conjunction analysis between cues indicating upcoming dot and fraction magnitude 

comparison tasks (see Table and Figure S9.1).  

It needs to be acknowledged, however, that we only measured non-math-

anxious participants. As such we cannot be sure that the networks identified in non-

math-anxious participants when they anticipated a difficult math task are identical to 

those recently reported for high math-anxious participants [8,9]. However, math 

anxiety scores did not explain variance of the fMRI signal. Furthermore, the fact that 

we observed activation of a network typically associated with the processing of 

(negative) emotions suggests an emotional reaction of the present non-math-anxious 
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participants anticipating the upcoming difficult math tasks. Additionally, it is important 

to note that these results do not reflect absolute activation of the network while 

participants anticipated the difficult math task but the relative stronger activation of 

these areas in anticipation of a difficult vs. an easier math task. Finally, the results on 

the neural level are substantiated by the results of the appraisal questionnaire that 

suggest that the respective emotions may have been negative indeed (see also [17] 

for physiological data).  

Importantly, cues indicating difficult upcoming tasks also led to activation in 

bilateral anterior cingulate cortex. ACC is part of the cognitive control network, which 

is in turn suggested to play a key role in emotion regulation and the regulation of 

negative emotions via reappraisal (e.g., [24]); for a review see [25,60]. This suggests 

that in our non-math-anxious participants the initial negative emotional response 

seemed to be sufficiently regulated so that the participants were not identified as 

math anxious in the Abbreviated Math Anxiety Scale [35].  

This idea of a counter play between initial negative emotional responses and 

emotion regulation is in line with recent work on math anxiety (e.g., [8,22]). The 

authors suggested that efficient regulation and control mechanisms of negative 

emotions before starting a task should increase math performance in highly math 

anxious participants. Therefore, Maloney and Beilock [22] suggested that training 

highly math anxious individuals in emotion regulation might limit negative effects of 

math anxiety on math performance. In turn, better emotion regulation may even lead 

to better math performance in highly math-anxious people. However, we suggest that 

negative emotions in anticipation of doing difficult math are to be expected in general, 

which does not only occur in highly math-anxious but also in non-math-anxious 

participants. This means that the (successful) regulation of an initial emotional 

response by means of cognitive control processes might be crucial for actual math 

performance. In case emotion regulation is sufficient, the task at hand can be 

performed with all available cognitive resources [21], so that performance does not 

have to be impaired even in highly math-anxious participants [8]. We suggest that 

successful emotion regulation accompanied by the experience of better performance 

may in turn reduce negative feelings such as fear in anticipation of doing math so 

that individuals with better cognitive control/ emotion regulation should be less likely 

to develop math anxiety. However, we wish to note that in the current study we did 
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not directly assess emotion regulation or demonstrate a relationship between 

emotion regulation and task performance. Therefore, this interpretation has to remain 

speculative; nevertheless, this interpretation is in line with the idea already proposed 

by Lyons & Beilock [8,9] that it may not be the initial negative affective response, 

which is indicative of math anxiety, but the inability to regulate this response 

effectively, which in turn may lead to resource depletion and reduced math 

performance in those with high math anxiety.  

Responses associated with cues containing Arabic digits 

We observed no general effect of notation. However, only symbolic cues (i.e., 

fractions and decimals) led to significant number-specific activation in the posterior 

inferior temporal gyrus (pITG). This region was reported to selectively respond to 

visually presented numerals using intraoperative electrocorticography recordings [61] 

and fMRI [62]. Accordingly, the authors suggested that the visual number form might 

be represented in the bilateral inferior temporal gyri rather than the bilateral fusiform 

gyri as proposed by Dehaene and Cohen [36,63]. Recently, Daitch et al., [64] 

substantiated this claim for a subregion within the pITG selectively responding to 

numerals compared to morphologically similar stimuli using electrocorticography. 

Therefore, the present data are in line with the notion that pITG might indeed be 

involved in the processing of visual numerals, while the fusiform gyrus may be less 

selectively involved in the detection and early non-semantic higher order visual 

analysis of symbolic and non-symbolic patterns.  

Interestingly and in contrast to pITG, IPS activation observed in the current 

study was neither specific for symbolic notation nor for task difficulty. This is 

consistent with the findings of Shi et al. [65], who reported IPS activation associated 

with the mere anticipation of numerical magnitude comparison without the actual 

presentation of numbers themselves. As regards notation-related effects, our results 

are also in line with the literature because the IPS is generally assumed to subserve 

a notation-independent representation of number magnitude [30–33].  

Implications for the concept of math anxiety 

Our results are fully consistent with the account proposed by Lyons and 

Beilock [8,9] that more difficult numerical tasks may elicit negative emotions or even 

associations with pain, which require counter regulation by processes of cognitive 
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control so that individuals can keep their focus on accomplishing the task at hand. 

However, the present results indicate that this may not be exclusively the case for 

math-anxious individuals, as suggested by Lyons and Beilock [8,9]. Instead, these 

data imply that the account of initial (negative) emotional responses and the need for 

subsequent counter regulation of these responses generalizes also to the case of 

non-math-anxious participants. Thus, a neuronal signature of negative emotions in 

anticipation of doing difficult math seem to be a rather general response taking place 

in the human brain, even in individuals not diagnosed with math-anxiety. This would 

be in line with previous findings that individuals generally become more anxious 

when anticipating a relatively difficult task and thus require emotional regulation 

[56,66].  

However, we agree with Lyons and Beilock [8,9] who question whether or not 

this initial negative response actually hinders math performance might depend on the 

ability to regulate these emotions. We suggest that successful regulation of negative 

emotions not only helps to solve the actual tasks (reflected by typical task 

performance), as proposed by Lyons and Beilock [8,9], but that, depending on 

cognitive predisposition and other factors such as social influences [22], successful 

cognitive regulation might also prevent the development of math anxiety. This might 

have been the case for our non-math-anxious participants. Therefore, our study 

supports the idea that it should be more effective to train math-anxious individuals in 

emotion regulation to foster cognitive control processes (see for example [20]) than to 

train mathematical tasks themselves, as previously proposed by Lyons and Beilock 

([8]; see also [22]).  

9.5 Limitations of the present study 

It is important to note that there are some aspects that need to be considered 

when interpreting the results of the current study. First, we did not assess a non-

mathematical control condition. Therefore, we cannot and do not want to make any 

claims on whether the effect observed is a general effect of difficulty or indeed 

specific to the anticipation of difficult math tasks. However, we would suggest that the 

idea of a negative emotional response in anticipation of doing difficult tasks might 

rather be a general mechanism instead of a mechanism specific to vulnerable 

individuals. Future studies are needed to decide whether this finding is limited to the 

case of mathematical tasks or not.  
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Furthermore, we evaluated non-math-anxious participants only. Therefore, we 

cannot tell for sure whether the observed activation patterns in anticipation of doing 

difficult (math) tasks are identical in low and highly math-anxious participants. 

However, we want to point out that the general neural response pattern we observed 

seems to indicate a (negative) emotional response in non-math-anxious participants 

as well as processes of emotion regulation. Therefore, we suggest that the overall 

response patterns seem to show at least similar reactions (negative emotions, 

emotion regulation) to the anticipation of difficult tasks as they have already been 

shown for highly math-anxious participants. As such, we agree with the account 

proposed by Lyons and Beilock [8] who described coupled processes of negative 

emotions with subsequent emotion regulation in anticipation of doing math. 

Nevertheless, we would like to suggest that this account may also generalize to the 

case of non-math-anxious individuals. Future studies would be desirable to evaluate 

this suggestion.  

Finally, we wish to note that in the current study we did not directly assess 

emotion regulation or demonstrate a relationship between emotion regulation and 

task performance. Therefore, our interpretation that it is the ability to sufficiently 

regulate emotions that prevents the initial negative response to difficult math tasks 

from actually hindering math performance must remain speculative for the time being. 

Nevertheless, we wish to note that our interpretation is generally in line with ideas 

already proposed by Lyons & Beilock [8,9]. 

9.6 Conclusion 

When anticipating a difficult upcoming task, non-math-anxious participants 

revealed activation within a network associated with the processing of negative 

emotions. However, whether or not this initial negative response actually hinders 

math performance seems to depend on the ability to sufficiently regulate these 

emotions. While the relevance of such emotion regulation for typical task 

performance has been suggested before for the case of highly math-anxious 

individuals, we propose to extend this account to the case of non-math-anxious 

individuals. We suggest that the observed pattern of neuronal responses on emotion 

processing and emotion regulation mechanisms seem to indicate a general 

mechanism rather than a mechanism specific to math-anxious individuals. As such 
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successful emotion regulation might be a general prerequisite for cognitive 

performance when facing demanding numerical tasks. 
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SUPPORTING ONLINE MATERIAL 

 

 

 

Figure S9.1 Preparation network associated with cues indicating an upcoming magnitude 
comparison task with either dots or fractions. The color bar indicates t-values (pcluster-corr < .05, 
cluster size k = 10). A negative emotion network can be observed including amygdala, hippocampus, 
insula, and ACC as well as the preparation network (fusiform gyrus, IPS). 
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Table S9.1 Cortical regions more strongly activated when looking at cues indicating an 
upcoming dot or fraction magnitude comparison task compared to rest. pcluster-corr < .05 (k = 10 
voxels); LH: left hemisphere; MNI: Montreal Neurological Institute coordinates; RH: right hemisphere; t 
= t-value. * Minor maximum. 

       

       

Contrast Brain region MNI (x, y, z) Cluster size  t 

              

       

Cue dots vs. baseline LH amygdala -30 -2 -30 24 4.47 

 

LH insula -40 -2 8 46 4.25 

 

LH hippocampus -35 -20 -18 48 6.45 

 

RH hippocampus 33 -17 -20 18 5.00 

 

RH anterior cingulate cortex 13 43 0 13 4.68 

 

LH intraparietal sulcus (hIP3) -25 -65 43 311 5.48 

 

LH supplementary motor area -2 6 53 559 6.71 

 

RH supplementary motor area* 11 6 45 

 

5.73 

 

LH middle frontal gyrus -27 -2 53 27 4.66 

 

LH middle frontal gyrus -30 36 30 20 4.25 

 

RH middle temporal gyrus 66 -47 5 105 4.84 

 

RH middle temporal gyrus 58 -2 -15 27 4.48 

 

LH temporal pole -47 11 -23 43 4.51 

 

LH middle temporal gyrus* -45 3 -25 

 

4.47 

 

RH fusiform gyrus 41 -42 -28 291 7.00 

 

LH fusiform gyrus -37 -45 -18 58 4.64 

 

LH retrosplenial cortex 1 -35 30 103 4.88 

 

RH precuneus 8 -70 40 54 4.54 

 

LH inferior occipital gyrus -47 -70 -13 110 6.24 

 

RH superior occipital gyrus 31 -70 40 110 5.59 

 

LH middle occipital gyrus -20 -95 10 304 8.92 

 

RH middle occipital gyrus 28 -90 15 165 7.09 

       
Cue fractions vs.  LH amygdala -22 -5 -23 31 5.23 

baseline LH insula -40 -15 3 11 4.42 

 

RH insula  41 6 -10 10 4.24 

 

LH hippocampus -35 -20 -18 85 6.32 

 

RH hippocampus 31 -10 -18 15 4.64 

 

RH anterior cingulate cortex 3 40 -5 34 5.07 

 

LH intraparietal sulcus (hIP3) -27 -63 40 77 5.09 
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RH supplementary motor area 1 3 55 287 5.45 

 

LH supplementary motor area* -7 13 45 

 

4.86 

 

RH caudate nucleus 8 18 5 535 5.49 

 

LH middle frontal gyrus -30 43 35 29 4.64 

 

LH middle frontal gyrus -35 48 23 17 4.59 

 

LH superior temporal gyrus -62 -22 13 23 4.64 

 

LH superior temporal gyrus -60 3 0 46 4.52 

 

RH medial temporal pole 36 11 -33 18 5.21 

 

LH post. inferior temporal gyrus -45 -65 -10 260 6.61 

 

RH post. inferior temporal gyrus 51 -67 -10 17 4.22 

 

RH inferior temporal gyrus 43 -55 -13 17 4.20 

 

RH fusiform gyrus 33 -40 -25 191 5.27 

 

LH fusiform gyrus -24 -82 -10 53 5.78 

 

LH precuneus -12 -65 33 92 4.67 

 

LH retrosplenial cortex -2 -40 25 274 5.92 

 

LH middle occipital gyrus -22 -95 8 255 7.65 

 

RH middle occipital gyrus 28 -90 13 129 6.78 
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Figure S9.2 Preparation network for cues indicating an upcoming magnitude comparison task 
with either pies or decimals. The color bar indicates t-values (pcluster-corr < .05, cluster size k = 10). 
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Table S9.2 Cortical regions more strongly activated when viewing at cues indicating an 
upcoming pie or decimal magnitude comparison task compared to rest. pcluster-corr < .05 (k = 10 
voxels); LH: left hemisphere; MNI: Montreal Neurological Institute coordinates; RH: right hemisphere; t 
= t-value. * Minor maximum. 
       
              

Contrast Brain region MNI (x, y, z) Cluster size t 

              

       

Cue pies vs. baseline RH intraparietal sulcus (hIP3) 30 -56 45 246 6.46 

 

LH intraparietal sulcus (hIP2) -48 -42 50 58 4.77 

 

LH superior parietal lobe (PSPL) -22 -72 55 321 5.88 

 

LH supplementary motor area -5 6 55 94 5.28 

 

LH middle cingulate cortex -10 13 38 290 4.57 

 

LH inferior temporal gyrus -47 -67 -10 158 6.33 

 

RH inferior temporal gyrus 46 -55 -10 94 5.68 

 

RH fusiform gyrus 33 -37 -25 109 5.14 

 

LH fusiform gyrus -37 -45 -18 344 4.22 

 

RH retrosplenial cortex 6 -35 30 34 4.89 

 

LH middle occipital gyrus -20 -95 10 377 7.37 

 

RH middle occipital gyrus 28 -90 15 133 6.36 

       
Cues decimals vs.  LH hippocampus -32 -25 -18 10 4.43 

baseline LH anterior cingulate cortex 1 11 30 17 4.14 

 

LH middle cingulate cortex -10 13 38 33 5.23 

 

LH intraparietal sulcus (hIP3) -25 -62 48 471 6.96 

 

LH intraparietal sulcus (hIP2) -45 -39 43 66 5.48 

 

RH intraparietal sulcus (hIP3) 33 -52 43 494 4.29 

 

LH supplementary motor area -2 6 53 67 4.91 

 

LH inferior frontal gyrus (44) -45 1 30 97 6.19 

 

RH inferior frontal gyrus (45) 46 8 28 22 4.61 

 

RH middle frontal gyrus 31 -2 53 14 4.32 

 

LH post. inferior temporal gyrus -47 -55 -15 322 6.56 

 

RH post. inferior temporal gyrus 46 -57 -13 291 6.41 

 

RH retrosplenial cortex 1 -34 28 93 5.25 

 

LH fusiform gyrus -17 -90 -10 326 8.83 

 

RH fusiform gyrus 18 -90 -8 276 7.23 

 

LH middle occipital gyrus -20 -95 8 1164 7.29 

 

LH inferior occipital gyrus -47 -65 -15 446 7.32 

 

RH middle occipital gyrus 28 -90 13 408 7.23 
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Figure S9.3 Conjunction of cues indicating a difficult (involving dots and fractions) or easy 
(involving pies and decimals) upcoming magnitude comparison task. The color bar indicates t-
values (pcluster-corr < .05, cluster size k = 10). 
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Table S9.3 Cortical regions more strongly activated in the conjunction of viewing at cues for 
upcoming dots and fractions compared to rest. pcluster-corr < .05 (k = 10 voxels); LH: left hemisphere; 
MNI: Montreal Neurological Institute coordinates; RH: right hemisphere; t = t-value.  

 

              

Contrast Brain region MNI (x, y, z) Cluster size t 

              

       
Conjunction  LH amygdala -30 -2 -30 84 5.40 

cues dots and fractions LH hippocampus -35 -20 -18 195 6.32 

 

LH insula -42 8 0 16 3.57 

 

RH insula 63 3 10 10 3.55 

 

RH anterior cingulate cortex 13 46 -3 14 4.20 

 

RH middle cingulate cortex 3 8 43 408 5.45 

 

LH intraparietal sulcus (hIP3) -27 -65 40 429 5.09 

 

RH intraparietal sulcus (hIP3) 31 -60 45 31 3.90 

 

LH fusiform gyrus -37 -42 -20 367 6.24 

 

RH fusiform gyrus 31 -42 -23 396 5.09 

 

RH lingual gyrus 21 -90 -8 77 4.87 

 

LH lingual gyrus 8 -82 -10 15 3.85 

 

RH retrosplenial cortex 1 -35 30 206 4.88 

 

RH supplementary motor area 13 1 68 104 3.64 

 

LH middle frontal gyrus -30 41 33 64 4.18 

 

LH middle frontal gyrus -32 48 23 15 3.91 

 

LH temporal pole -55 6 -5 74 4.04 

 

RH temporal pole 58 8 -5 10 3.57 

 

RH medial temporal pole 38 8 -33 22 4.13 

 

LH superior temporal gyrus -62 -25 13 23 3.84 

 

RH middle temporal gyrus 51 6 -25 19 3.74 

 

RH middle temporal gyrus 56 -5 -18 10 3.44 

 

LH superior medial gyrus -15 51 0 11 3.44 

 

RH middle orbital gyrus 8 61 -3 11 3.49 

 

LH middle occipital gyrus -22 -95 8 412 7.59 

 

RH middle occipital gyrus 28 -90 13 163 6.63 

       
Conjunction  RH intraparietal sulcus (hIP3) 30 -65 42 221 6.46 

cues pies and decimals LH intraparietal sulcus (hIP3) -25 -65 40 313 5.88 

 

LH intraparietal sulcus (hIP2) -45 -35 43 98 4.75 



226 

 

 

LH fusiform gyrus -37 -45 -18 325 6.33 

 

RH fusiform gyrus 47 -58 -10 175 5.68 

 

RH fusiform gyrus 33 -37 -25 55 3.86 

 

RH lingual gyrus 21 -90 -8 95 5.14 

 

LH supplementary motor area -2 6 53 189 4.91 

 

LH inferior frontal gyrus (44) -42 1 28 35 4.38 

 

RH retrosplenial cortex 3 -35 30 67 4.42 

 

RH precuneus 11 -67 43 34 3.83 

 

LH middle occipital gyrus -20 -95 8 323 7.11 

 

RH middle occipital gyrus 28 -90 15 121 6.36 
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PART III: DISCUSSION 

 

General Discussion 

 

Previous studies suggested that a lack of fraction knowledge limits academic 

and professional as well as general life prospects. The ability to handle and 

understand fractions is essential for children’s mathematical development in 

secondary school (Lamon, 2020; Litwiller & Bright, 2002; NMAP, 2008). In particular, 

higher-order mathematics like algebra, but also the development of abstract 

mathematical thinking, logical reasoning, modeling, and pattern recognition have 

been associated with fraction knowledge (Booth & Newton, 2012; Booth et al., 2014; 

DeWolf et al., 2016; Empson, 1999; Empson & Levi, 2011; Empson et al., 2011; Wu, 

2001). Moreover, in the light of the recent COVID-19 pandemic, this lack of 

understanding fractions in terms of relative frequencies has become even more 

apparent (Lau et al., 2021; Thompson et al., 2020). Over the last four decades, 

research on fraction processing has increased rapidly (for a selection of reviews on 

this topic, see Booth & Newton, 2012; Lortie-Forgues et al., 2015; Obersteiner, 

Dresler, et al., 2019; Siegler et al., 2013). One crucial development in this research 

area was Siegler et al.’s proposal of the integrated theory of numerical development 

(ITND; Siegler & Lortie‐Forgues, 2014; Siegler et al., 2011). The ITND highlights 

magnitude processing as the key mechanism that integrates all numbers and is 

therefore also crucial for fraction understanding. Moreover, recent research on the 

improvement of fraction knowledge via NLE training seems to substantiate this theory 

(e.g., Barbieri, Rodrigues, Dyson, & Jordan, 2020; Dyson, Jordan, Rodrigues, 

Barbieri, & Rinne, 2020; Fazio, Kennedy, & Siegler, 2016; Gunderson, Hamdan, 

Hildebrand, & Bartek, 2019; Hamdan & Gunderson, 2017; Kiili, Moeller, & Ninaus, 

2018; Schumacher et al., 2018; Sidney, Thompson, & Rivera, 2019). However, 

despite intense research in this area, the problems children, adults, and even 

teachers face when learning and dealing with rational numbers and especially 

fractions remain the same (Siegler & Lortie‐Forgues, 2014).  

 For this reason, the present thesis aimed to evaluate different cognitive and 

non-cognitive predictors of fraction processing with the main goal of proposing a 

comprehensive framework of fraction processing. This framework builds on the core 

assumption of the ITND (i.e., magnitude processing as the central ability for fraction 



228 

 

understanding) by evaluating the neural correlates of NLE training and expands it by 

integrating additional cognitive, motivational, and affective predictors important for the 

mastery of fractions. Thus, the framework aims to provide a more comprehensive 

picture of important predictors for fraction processing beyond magnitude processing 

and across domains. 

Therefore, the general discussion is organized in four parts: First, I will discuss 

the major results of the five empirical studies with respect to the research question of 

this thesis. Second, I propose and discuss a comprehensive framework of fraction 

processing by extending the core assumptions of the ITND based on my empirical 

findings and findings in the literature presented in sections 2 and 3. In addition, I also 

integrate a preliminary model proposed by me, which depicts the temporal course of 

fraction processing into the framework. Third, I will present possible perspectives for 

future research that might help to validate the proposed framework. Finally, I discuss 

a selection of additional cognitive, non-cognitive and meta-cognitive predictors that 

should be considered in future studies and added to the proposed framework. 

10. Discussion of the Empirical Findings 

In the following, I will summarize the main results of the five empirical studies 

presented in my dissertation in light of the comprehensive framework of fraction 

processing that I will propose and discuss in subsequent sections 11 and 12. 

 

10.1 Cognitive Predictors of Fraction Processing 

 The main focus and the major contribution of the ITND lies in the overarching 

and unifying role of magnitude for all numbers. The ITND postulates that magnitude 

is the common factor shared between all kinds of numbers (Siegler & Lortie‐Forgues, 

2014; Siegler et al., 2011). Therefore, the representation of number magnitude brings 

together all numbers by reference to the mental number line. The mental number line 

is a popular metaphor for the assumed mental representation of number magnitude: 

especially in western cultures, numbers seem to be represented spatially with their 

magnitudes increasing from left to right (Göbel, Shaki, & Fischer, 2011). Research on 

the beneficial role of NLE training on fraction magnitude processing substantiates 

these assumptions (Barbieri et al., 2020; Gunderson et al., 2019; Hamdan & 

Gunderson, 2017). However, given the complexity and difficulty of fraction processing 
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and understanding compared to natural numbers, focusing only on magnitude 

processing as a core cognitive predictor of fraction understanding might not give a 

complete picture of all relevant factors that influence fraction processing. In the 

present work, the main assumption of the ITND and possible additional cognitive 

predictors, which are partially magnitude unrelated (i.e., independent of magnitude 

processing), were addressed in Section 2. Therefore, in the first three studies of my 

dissertation, I aimed to evaluate the core assumption of the ITND and extend this 

theory with additional cognitive predictors that might play a role for fraction 

processing.  

 In Study 1, I investigated changes in neuro-functional correlates of fraction 

magnitude processing following an intensive 5-day NLE training in adult participants. 

The aims of Study 2 and 3 were to investigate additional cognitive predictors that 

might be relevant for fraction processing as well as related and unrelated to 

magnitude processing. Therefore, in Study 2, I investigated the role of domain-

specific numerical skills by using a comprehensive battery of basic numerical skills, 

not only assessing magnitude processing, to evaluate their relative importance for 

fraction processing. Finally, in Study 3, I used a fraction magnitude comparison task 

with positive and negative fractions to focus on the role of strategies for fraction 

processing and to evaluate which role magnitude processing actually plays in 

processing negative fractions.  

 

10.1.1 Findings of Study 1: Neural correlates of a fraction training  

Concerning the role of magnitude processing for fraction understanding and 

learning, Study 1 was able to substantiate the main assumption of the ITND that 

magnitude information is a crucial aspect thriving fraction processing even in well-

educated adults that should be familiar with fractions (i.e., even two-digit fractions; 

Jordan et al., 2017; Mou et al., 2016; Siegler, 2016; Siegler & Lortie‐Forgues, 2014; 

Siegler et al., 2011). Moreover, the ITND indicates that promoting fraction magnitude 

understanding via NLE training can foster conceptual understanding of fractions (see 

also Fazio & Siegler, 2011). Behavioral intervention studies have already shown that 

the NLE task is an important tool to improve fraction processing (Barbieri et al., 2020; 

Fazio, Kennedy, et al., 2016; Gersten et al., 2017; Gunderson et al., 2019; Hamdan 

& Gunderson, 2017; Kiili et al., 2018). Additionally, several recommendations for 
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teachers have been made by policymakers and researchers to highlight the 

importance of number lines for fraction understanding (Fazio & Siegler, 2011; NMAP, 

2008).  

To the best of my knowledge, Study 1 is the first to show the effect of an NLE 

training on both the behavioral and the neural level. In addition to a behavioral 

improvement (i.e., fewer errors), the training led to an improvement of symbolic 

fraction processing as indicated by the numerical distance effect on a neural level. In 

particular, significant modulation of brain activation by numerical magnitude (as 

reflected by the distance effect) was found for the processing of symbolic fractions 

after but not before the training. Importantly, comparing the distance effect after the 

training to the distance effect before the training in the symbolic fraction magnitude 

comparison task revealed significantly increased activation differences in a bilateral 

fronto-parietal network centered around the intraparietal sulcus. Moreover, this 

training effect was observed to generalize to untrained items. This means that a 

transfer effect from trained to untrained items was elicited by the NLE training 

indicating that strengthening fraction magnitude processing for some fractions also 

seems to foster more general conceptual knowledge of fractions. Hence, the 

assumptions of the ITND regarding the prominent role of (fraction) magnitude 

processing for fraction understanding is supported by Study 1 and extended to 

numerate adults, complex fractions, and even untrained (novel) fractions. As such, 

this study further supports the importance of number line representations for fraction 

understanding.  

10.1.2 Findings of Study 2: The role of magnitude-related and unrelated basic 
numerical skills 

Even though the role of cognitive predictors has been extensively investigated 

in previous studies (see Table 2.1 of this dissertation for a summary of the main 

studies; e.g., Jordan, Resnick, et al., 2017), the ITND focuses exclusively on the 

unique role of magnitude for number processing in general and fraction processing in 

particular as well as the role of NLE representations for promoting conceptual fraction 

knowledge (Siegler & Lortie‐Forgues, 2014; Siegler et al., 2011). Although the 

fundamental role of basic numerical skills for numerical development is well known, 

most of the studies focused on cognitive domain-general (e.g., working memory, 

attention, reading fluency) as well as domain-specific (e.g., number line estimation, 
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arithmetic, number knowledge) predictors which involved also advanced 

mathematical skills like fraction or proportional reasoning measures (e.g., Bailey et 

al., 2014; Hansen et al., 2015; Jordan et al., 2013; Namkung & Fuchs, 2016). While 

the ITND predicts that fraction magnitude processing should be correlated with 

performance in fraction arithmetic problems, evidence on other basic numerical skills 

not primarily reflecting magnitude processing and their association with fraction 

processing is still patchy (Siegler et al., 2011).  

Study 2 investigated the role of a comprehensive battery of basic numerical 

skills for fraction processing. Importantly, this battery included magnitude-related 

(e.g., addition, subtraction, number line estimation) and magnitude unrelated (e.g., 

multiplication, basic geometry, and conceptual knowledge about arithmetic) basic 

numerical skills. Study 2 revealed that number line estimation, subtraction, 

conceptual knowledge about arithmetic, and multiplication significantly predicted 

fraction understanding. This is largely in line with previous studies that showed that 

number line estimation with whole numbers (Bailey et al., 2014; Jordan et al., 2013; 

Resnick et al., 2016) and arithmetic with whole numbers (Bailey et al., 2014; Resnick 

et al., 2016) were important predictors of different measures of fraction 

understanding. While number line estimation, and subtraction are magnitude-related 

variables (Berteletti, Man, & Booth, 2015; Siegler & Opfer, 2003), the test on 

conceptual knowledge about arithmetic requires more general knowledge about 

relationships of arithmetic operators with each other. Thus, basic principles of 

arithmetic are tested that do not necessarily require magnitude processing (e.g., 

multiplication as the repeated addition of equal summands). Moreover, fact retrieval 

plays a crucial role when solving multiplication problems. Fact retrieval is associated 

with activation in the gyrus angularis (Grabner et al., 2009) and therefore might be 

more unrelated to magnitude processing than, for instance, solving subtraction 

problems. 

Regarding the relative importance of the predictor variables for the fraction 

understanding task, Study 2 revealed that the most relevant predictor was 

multiplication, followed by subtraction, conceptual knowledge, and number line 

estimation. Furthermore, this analysis revealed that the basic numerical predictors 

addition, basic geometry, and approximate arithmetic, which were initially not found 

to be significant predictors in the multiple regression analysis, might still play a 

relevant role for fraction processing.  



232 

 

Interestingly, Study 2 also showed that number line estimation, which is 

considered as one of the classical magnitude measures, was not the most important 

predictor for fraction processing. In fact, the role of basic arithmetic operations like 

multiplication, subtraction, addition, and general knowledge about these operations 

were more important than just magnitude processing. Thus, although arithmetic 

processes are magnitude-related, this study can extend the ITND in showing that not 

only number line estimation, but also other basic numerical skills are important 

predictors for fraction processing. Moreover, Study 2 revealed that magnitude-related 

basic numerical skills and magnitude unrelated skills like conceptual knowledge 

about arithmetic, multiplication, and basic geometry are important predictors of 

fraction understanding. Therefore, Study 2 supports previous findings and 

assumptions of the ITND and extends the ITND in considering magnitude-related and 

unrelated basic numerical skills as important predictors for fraction processing. 

10.1.3 Findings of Study 3: The importance of magnitude related and unrelated 
strategies 

Although the predecessor version of the ITND points out that the development 

and successful use of strategies is critical for acquiring fraction knowledge (Siegler et 

al., 2011), this point received little attention in the current version of the ITND (Siegler 

& Lortie‐Forgues, 2014). However, as fractions are unlikely to be processed 

automatically, the proper application of processing strategies seems critical.  

Moreover, almost all strategies that can be found in the literature are magnitude-

related strategies (e.g., holistical or componential strategies). Thus, magnitude 

processing is highly interrelated with strategy use for fraction processing.  

Moreover, the final report of the NMAP concludes that “the most important 

foundational skill not presently developed appears to be proficiency with fractions 

(including decimals, percent, and negative fractions)”(NMAP, 2008, p.18). However, 

although this was in 2008 still almost nothing is known about the processing of 

negative fractions. Nevertheless, the ITND claims that the unifying theme of all 

number types is magnitude knowledge, and that the role of magnitude is similar for 

positive and negative numbers.  

To the best of my knowledge, Study 3 of this dissertation is the first study to 

investigate fraction magnitude processing for both negative and positive fractions. 

Concerning this point, Study 3 revealed that processing strategies of negative 
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fractions for magnitude comparison tasks depend on the combination of fractions at 

hand (i.e., comparing only positive fraction pairs, comparing only negative fraction 

pairs, or comparing a positive with a negative fraction). Four different strategies were 

tested: i) sign-shortcut strategy, ii) sign flip strategy, iii) denominator flip strategy, and 

iv) a combination of sign flip and denominator flip strategy. Fraction pairs included in 

this study, where either heterogenous (i.e., one of the to-be compared fractions is 

positive and the other one is negative) or homogenous (i.e., both to-be compared 

fractions are positive or negative) as well as numerator-relevant (i.e., different 

numerators but identical denominators) or denominator-relevant (i.e., different 

denominators but identical numerators). 

When applying the sign-shortcut strategy, magnitude processing should not be 

necessary. Whereas when applying the sign flip strategy, denominator flip strategy, 

and the combination of both, magnitude processing should be involved. Results 

indicated that the sign-shortcut strategy (Krajcsi & Igács, 2010) was employed when 

heterogenous numerator- and denominator-relevant fraction pairs (e.g.., comparing -

1/8 and +1/9) were compared and relied only on the information of the sign. Thus, a 

decision can be made by only considering the sign without involving the magnitudes 

of the fractions. Accordingly, no significant holistic distance effect could be found for 

the sign-shortcut strategy.  

The sign flip strategy (Krajcsi & Igács, 2010) was primarily applied when 

negative homogenous numerator-relevant (e.g., comparing -2/9 and -1/9) fraction 

pairs were compared. With this strategy, a decision can be made by only considering 

the absolute magnitudes of the numerators and reversing the answer. Again, no 

significant holistic distance effect could be found, indicating that participants did not 

process the magnitudes of both fractions holistically. Suggesting that participants 

processed the components separately and therefore it is more likely that a 

componential strategy was applied. Interestingly, eye-tracking data revealed that 

participants did not significantly spend more reading time on the numerator or the 

sign. Thus, only behavioral data provided evidence for the sign flip strategy.  

The denominator flip strategy (Huber et al., 2014) was applied when positive 

homogenous denominator-relevant (i.e., comparing +1/8 and +1/9) fraction pairs 

were compared. When applying this strategy, a decision can be made by only 

considering the absolute magnitudes of the denominators and reversing the answer. 

Similar to the sign flip strategy, no significant holistic distance effect could be found. 
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Thus, participants did again not process the magnitudes of both fractions holistically. 

However, eye-tracking data revealed that participants spend more reading time on 

the denominators in denominator-relevant trails as compared to numerator-relevant 

trails. Thus, eye-tracking data indicated that participants might have used 

componential processing strategies.  

Finally, a combination of sign flip and denominator flip strategy was 

investigated. This strategy can be applied when negative denominator-relevant 

fraction pairs are compared (e.g., comparing -1/8 and -1/9). Again, no significant 

holistic distance effect was found. Effects for eye-tacking data were mixed: while 

participants spend a significant amount of reading time one the sign, reading time on 

the denominator was not significant. 

Hence, Study 3 suggested that the processing of (negative) fractions is mostly 

based on componential processing strategies and that a comparison of a negative 

and a positive fraction can be solved without applying a magnitude-related strategy 

but by only considering the sign. Therefore, Study 3 supports the extension of the 

ITND in considering magnitude-related and unrelated strategies as important 

predictors for fraction processing. Additionally, Study 3 underpins the assumption of 

the ITND that magnitude processing also plays an important role when comparing 

negative fractions.  

 

10.2 Motivational and Affective Predictors of Fraction Processing 

While the main focus of the ITND lies on magnitude processing, it does not 

consider that non-cognitive variables could also substantially influence fraction 

processing. Therefore, this study aims to extend the ITND with crucial non-cognitive 

predictors for fraction processing. For example, in education and learning, two 

common non-cognitive predictors are motivation and (negative) emotions. It is well 

known that both non-cognitive variables are crucial for academic success in general 

(Graziano et al., 2007; Linnenbrink & Pintrich, 2002) and also for mathematical 

achievement in particular (Hannula, 2006a, 2006b, 2015; Schukajlow et al., 2017). 

Moreover, considering that fractions are perceived as complex learning content 

(Lamon, 2020) motivation and (negative) emotions could explain proficiency with 

fractions in addition to and beyond cognitive predictors. 
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 In the present work, the possible role of motivation and negative emotions for 

learning and, particularly for fraction learning, were evaluated in Section 3. Therefore, 

in the last two studies of my dissertation, I aimed to investigate the possible role of 

these two non-cognitive predictors and to extend the ITND by including motivational 

and affective predictors that might play a role in fraction processing. 

 In Study 4, different motivation profiles and their association with fraction 

understanding were examined to elaborate on the role of intrinsic and extrinsic 

motivation for fraction processing. For this, 256 7th grade school students played a 

computerized learning game for assessing fraction understanding over a period of 5 

weeks. Finally, in Study 5, I investigated the role of negative emotions and emotion 

regulation for the anticipation of symbolic (i.e., fractions and decimals) and non-

symbolic (i.e., pie charts and dot patterns) proportion processing, which differed in 

task difficulty.  

 

10.2.1 Findings of Study 4: Motivation is important but not always sufficient 

 The role of motivation for learning, especially in academic settings, is well 

known. Motivation is a driving force that can either lead to task avoidance or 

devotion. Although Hecht & Vagi (2010) and Bailey et al. (2014) point out that 

motivation might be a factor of particular relevance for fraction achievement, little is 

known about the role of motivation for fraction learning and processing. One of the 

few studies investigating the role of teaching practices, motivation, and fraction 

achievement found that high student motivation was associated with better skills on 

fraction tasks (Stipek et al., 1998). However, as motivation is critical when engaging 

with complex mathematical content, it seems crucial to focus more on this 

relationship.  

 Thus, Study 4 of this dissertation aimed to investigate in more depth the role of 

motivation (intrinsic and extrinsic) for achievement in two computerized game-based 

fraction tasks (i.e., NLE and fraction magnitude comparison). To the best of my 

knowledge, this is the first study to examine motivation profiles for fraction 

achievement. For this, latent profiles based on students' reported motivation types 

(via a motivation questionnaire) and their performance in these fraction tasks were 

examined. Additionally, the number of levels and days students played were 
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additional motivational indicators to examine the consistency of self-reported 

motivation and actual corresponding behavior. Three relevant profiles were identified: 

Students of the first motivation profile showed above-average performances. 

Interestingly, they engaged less with the computerized game, as indicated by played 

levels, experienced below-average positive affect while playing the game, and 

perceived their game play as more externally determined. Thus, they were 

categorized into a profile of externally determined high performers.  

Students of the second motivation profile also showed above-average 

performance. However, they engaged highly with the game, experienced above-

average positive affect while playing the game, and perceived their gameplay as 

more self-determined. Therefore, they could be assigned to a profile of self-

determined high performers.  

Finally, students of the third motivation profile performed poorly but played a 

similar number of levels as students of the first profile. Interestingly, they experienced 

above-average positive affect and perceived their gameplay as above-average self-

determined. Thus, they were categorized into a profile of self-determined low 

performers. 

Hence, Study 4 suggests that motivation can play a role for performance in 

fraction tasks like the NLE and fraction magnitude comparison task. However, this is 

not always sufficient. As seen in the third student profile, these students were highly 

intrinsically motivated but performed the worst. Additionally, the first motivation profile 

shows that students were able to perform above average, although they experienced 

mainly extrinsic motivation and were actually rather demotivated. Only in the second 

profile, students perceived that high intrinsic motivation was corresponding with their 

task performance. Therefore, Study 4 suggests that motivation might play a vital role 

for students’ performance and their achievement on fraction tasks. However, it might 

not have the same importance as other cognitive and non-cognitive predictors. 

Nevertheless, especially with difficult learning content, motivation could be decisive in 

engaging more with the learning content, which can strengthen conceptual 

understanding and leads to better performance. For this reason, Study 4 supports the 

extension of the ITND by considering motivation as a relevant predictor for fraction 

processing which plays a mediating role between engagement with the learning 

content and performance.  
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10.2.2 Findings of Study 5: The role of negative emotions and emotion 
regulation for fraction processing 

Negative emotions are common factors in educational settings. They can have 

a detrimental impact on learning engagement and academic achievement (Pekrun & 

Linnenbrink-Garcia, 2012, 2014). Similar to motivation, emotions are driving forces. 

Thus, negative emotions can lead to impaired task performance and even avoidance 

of the task (Pekrun et al., 2002; Pekrun & Linnenbrink-Garcia, 2012). In this context, 

emotion regulation is also of particular relevance (Boekaerts & Pekrun, 2015; Bradley 

et al., 2010). Especially in school mathematics, math anxiety is a prominent effect 

where negative emotions impair performance on several math-related tasks 

(Ashcraft, 2002; Dowker et al., 2016). In connection with fractions, few studies 

showed that math anxiety negatively influences task performance on NLE, magnitude 

comparison, and procedural and conceptual knowledge tasks in adult math-anxious 

participants (Rayner et al., 2009; Sidney, Thalluri, et al., 2019). However, a more in-

depth investigation on how negative emotions affect fraction processing and the role 

of emotion regulation for fraction processing is still missing.   

In this context, the final study of this dissertation aimed to investigate the role 

of negative emotions and emotion regulation in non-math-anxious adult participants 

while anticipating proportion magnitude comparison tasks. Importantly, these tasks 

could be distinguished into difficult (i.e., fractions and dot patterns) and easy (i.e., 

decimals and pie charts) proportion magnitude comparison tasks. Additionally, a 

stress appraisal questionnaire was conducted to assess if participants experienced 

challenge (positive emotional valence), or threat (negative emotional valence) 

associated with the respective task.  

The questionnaire revealed that participants experienced difficult proportions 

more negative than easy proportions. Moreover, participants experienced easy 

proportions more positively than difficult proportions. Additionally, neurofunctional 

data revealed that the anticipation of difficult upcoming tasks (i.e., fractions and dot 

patterns) lead to increased activation of a so-called negative emotion network 

(Phelps, 2004), including the bilateral amygdala, bilateral hippocampus, left temporal 

gyrus, and bilateral paracentral gyrus compared to the anticipation of easy (i.e., 

decimals and pie charts) upcoming tasks. Importantly, the bilateral anterior cingulate 

cortex (ACC) was also activated, and the covariate math anxiety did not yield to any 
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suprathreshold cluster of activation. This indicates that math anxiety scores did not 

explain the variance of the fMRI signal during the anticipation of proportion 

magnitude comparison tasks.  

Moreover, the ACC is known to be a key brain region involved in emotion 

regulation (Stevens, Hurley, & Taber, 2011). Thus, Study 5 indicated that non-math-

anxious individuals experience more negative feelings in association with fractions 

and dot patterns, which are more complex compared to easier proportions like 

decimals and pie charts. Moreover, this study showed that, although participants 

were not math-anxious, their initial neural response to difficult proportion cues was an 

increased activation of brain regions which normally can be found active in math-

anxious participants when engaging with a mathematical task (Lyons & Beilock, 

2012). However, the additional activation of the ACC might lead to a regulation of this 

initial negative emotional response to difficult proportions. Which in turn might be 

crucial for task performance.  

Therefore, Study 5 highlights the importance of negative emotions and 

emotion regulation for fraction processing. Even in non-math-anxious adult 

participants, fractions elicit an initial negative reaction which might impair proficiency 

with fractions if the ability to regulate this initial response is impaired. For this reason, 

Study 5 supports the extension of the ITND to negative emotions as an important 

non-cognitive predictor for fraction processing. 

Taken together, I could show that a variety of cognitive and non-cognitive 

predictors play a crucial role for fraction processing and, therefore, proficiency with 

fractions. Study 1 supported the assumptions of the ITND regarding the prominent 

role of (fraction) magnitude processing and number line representations for fraction 

understanding and processing. Additionally, this assumption was extended to 

numerate adults, complex fractions, and even untrained (novel) fractions. Study 2 

could show that magnitude-related and unrelated basic numerical skills are important 

predictors of fraction understanding. Therefore, this study supports previous findings 

and assumptions of the ITND and extends the ITND in considering magnitude-related 

and unrelated basic numerical skills as important predictors for fraction processing. 

Study 3 indicated that the processing of negative fractions is mostly based on 

componential processing strategies (i.e., a magnitude-related strategy) and that a 

comparison of a negative and a positive fraction can be solved without applying a 
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magnitude-related strategy but by only considering the sign. Therefore, Study 3 

shows that strategies play an important role for fraction processing and suggests that 

the ITND should be extended by considering magnitude-related and unrelated 

strategies as important predictors for fraction processing. Study 4 suggests that 

motivation can play a role for performance in fraction tasks. However, it seems that 

motivation is not always sufficient because some students where highly motivated but 

still performed poorly in fraction tasks. Nevertheless, this study indicates that the 

ITND should be extended with motivation as an important predictor. Finally, Study 5 

investigated the importance of negative emotions and emotion regulation for fraction 

processing. This study could show that both play a role for fraction processing even 

in non-math-anxious adult participants. For this reason, Study 5 supports the 

extension of the ITND to negative emotions as an important non-cognitive predictor 

for fraction processing. 

While the ITND is an influential theory for the development of number 

processing and especially fraction processing, it mainly focuses on the role of 

magnitude processing as the link between all number types. However, number 

processing and, in particular, fraction processing is a complex mechanism that 

involves many different processes. Therefore, as a first step, in the following section, 

I want to propose a comprehensive framework which aims to integrate different 

cognitive and non-cognitive predictors to better understand their complex role for 

fraction processing.  

11. A comprehensive Framework for Fraction Processing 

In the following, the major findings of the five empirical studies of this thesis are 

integrated into a comprehensive framework of fraction processing by considering 

both cognitive and non-cognitive predictors. In particular, I will build and evaluate the 

comprehensive framework in two steps: Since the main scope of this dissertation is 

on fraction processing, I will first introduce a tentative model focusing on the temporal 

course of fraction magnitude processing, which I have recently already proposed in 

another context (Wortha, Obersteiner, & Dresler, 2021). Then, in a second step, I will 

subsequently build a comprehensive framework of fraction processing. For this, I 

incorporated the main assumption of ITND (i.e., the role of magnitude processing) 

and extended this approach by including cognitive as well as non-cognitive (i.e., 

motivational and affective) predictors.  
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11.1 The temporal course of fraction processing 

Successful fraction magnitude processing is the key ability underpinning fraction 

learning and understanding. Accordingly, the temporal course in which individuals 

process (symbolic) fraction magnitudes is an important aspect of this mechanism. 

Unfortunately, little is known about the temporal processes. One methodological 

possibility to investigate such chronological sequences is electroencephalography 

(EEG) because of its high temporal resolution (msec range; Nidal & Malik, 2014). 

With this method, it is possible to record event-related potentials (ERPs). ERPs are 

voltage fluctuations (positive or negative) that are time-locked to the onset of an 

event of interest (e.g., fraction magnitude processing). Some well-known ERPs are 

the N100, N200, P300 and N400. For instance, the N100 has a negative peak 

around 100 msec after stimulus onset and can be associated with matching the 

physical properties of the perceived stimulus with the previous stimulus (Sur & Sinha, 

2009). The N200 is associated with conflict monitoring and has a negative peak 

around 200 msec after stimulus onset (Donkers & Van Boxtel, 2004). The P300 can 

reflect information processing and its integration into memory representation and its 

positive peak can be found most prominently 300 msec after stimulus onset (Polich, 

2007). Finally, the N400 peaks around 400 msec after stimulus onset and is elicited 

during the semantic evaluation of the stimulus (Lau, Phillips, & Poeppel, 2008). While 

there are a couple of studies that investigated electrophysiological correlates of 

fraction magnitude processing (Barraza, Gómez, Oyarzún, & Dartnell, 2014; Fu, Li, 

Xu, & Zeng, 2020; Rivera & Soylu, 2018; Zhang, Wang, Lin, Ding, & Zhou, 2013; 

Zhang et al., 2012), there is yet no consensus on the temporal sequence in which 

this process occurs.  

However, based on a temporal model of Dehaene (1996) for number processing 

and the EEG literature on fraction processing, I proposed a first preliminary model 

which highlights four chronological stages of fraction magnitude processing during a 

magnitude comparison task (see Fig. 11.1). Stage 1: identification (i.e., identifying 

visual stimulus), Stage 2: magnitude representation (depending on the experience of 

the individual; representing the numerator and denominator of both fractions 

separately and integrating the ratios to one magnitude representation for each 

fraction), Stage 3: comparison (i.e., comparing the magnitudes of both fractions), and 

Stage 4: response (i.e., deciding which fraction is the larger one). While this model 
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needs to be evaluated empirically, previous evidence from the literature supports the 

model. For instance, Zhang et al. (2013) showed that the N100 was elicited during 

stimulus-specific identification of symbolic fractions and non-symbolic proportions. 

This may reflect Stage 1 of the proposed model. Moreover, Fu et al. (2020) and 

Zhang et al. (2012) showed that both the N200 and P300 are involved in the 

componential processing of fractions and inhibitory control to exceed the natural 

number bias, which could be caused by the individual components of the fractions. 

This would correspond to Stage 2 of the model. Finally, Barraza et al. (2014) found 

that the N400 was more pronounced during holistic processing of the fractions than 

componential processing. Which also corresponds well with Stage 2 but could also 

be an indicator of the initiation of Stage 3 (i.e., the actual fraction magnitude 

comparison) of the temporal model of fraction processing. 

 

Figure 11.1: Proposed model for the temporal course of fraction magnitude processing. Adapted 
from (Wortha et al., 2021). Please note that for reasons of convenience, only one symbolic fraction is 
displayed. However, this model describes temporal processes during a fraction magnitude 

comparison task which always requires two fractions. Thus, the first two stages must be performed 
twice for each fraction, whereas in the third stage, both fraction magnitudes are compared to provide a 
response in Stage 4 to the question of which fraction is the larger one. 

 

Errors can occur during each stage of the proposed model. However, Stage 2 is 

particularly prone to errors as integrating the two respective magnitudes from the 
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numerator and denominator into one fraction magnitude representation is an effortful 

process. Moreover, this integration depends on individual strategic preferences (e.g., 

cross-multiplication, visualization, estimation, benchmark strategies) and is not fully 

understood yet. Therefore, it is of importance to investigate these and other possible 

stages of fraction magnitude processing to understand better the involved cognitive 

mechanisms and their temporal course. The framework proposed in the next 

subsection aims to identify possible relevant predictors of fraction processing, 

whereby I always refer to the already presented temporal course of fraction 

(magnitude) processing. 

11.2 Integrating Cognitive and Non-Cognitive Predictors into a comprehensive 
Framework of Fraction Processing  

In the following I will propose a comprehensive framework of fraction processing 

in three steps: First, I will explain the general structure of the framework to provide an 

overview about the different building blocks of each section (i.e., building blocks of 

the cognitive predictor section and the non-cognitive predictor section). These 

building blocks are based on the findings of my five empirical studies included in this 

dissertation. Additionally, I will further substantiate the connections between building 

blocks proposed in the first step by existing studies (see Fig. 11.2). In a second step, 

I will elaborate on connections between building blocks that I did not investigate 

empirically in the context of this thesis with existing studies from the fraction literature 

(see Fig. 11.3). Finally, for connections between building blocks where studies on 

fraction processing are still missing, I will provide evidence from studies involving 

natural numbers to show that these connections exist, at least for another type of 

number (see Fig. 11.4).  

It is important to emphasize, however, that unlike other prominent models or 

theories of numerical processing and development such as the Triple Code Model 

(TCM; Dehaene, Piazza, Pinel, & Cohen, 2003) or the ITND (Siegler & 

Lortie‐Forgues, 2014; Siegler et al., 2011), the goal of this approach is not to explain 

how fraction processing occurs or develops in detail, but rather to provide an account 

of what factors might be important and influence fraction processing.  

 

Step 1: The general structure of the comprehensive framework  
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This framework (see Fig. 11.2) consists of two areas and five distinct building 

blocks. The two areas are called cognitive and non-cognitive predictors which each 

include their respective building blocks. Thus, the building blocks magnitude 

processing, basic numerical skills and strategies are located within the area cognitive 

predictors. Moreover, the building blocks motivation and (negative) emotions are 

located within the area non-cognitive predictors. The predictors can be interrelated 

with each other (called connections in the following) or with fraction processing. 

Therefore, connections between building blocks indicate that some predictors are 

partially dependent on other predictors (i.e., some basic numerical skills are 

magnitude-related and depend on the building block magnitude).  

Similar to the ITND, my starting point is magnitude processing. An 

overwhelming body of literature has proven that the core assumption of the ITND is 

indeed fundamental for fraction processing (Gersten et al., 2017; Gunderson et al., 

2019; Hamdan & Gunderson, 2017; Liu, 2018; Obersteiner, Dresler, et al., 2019; 

Sidney, Thompson, & Rivera, 2019; Siegler & Lortie‐Forgues, 2014). Moreover, 

although I aimed to evaluate the influences of different cognitive and non-cognitive 

predictors in the five studies of my dissertation, magnitude processing was always a 

common theme across these studies because magnitude is the shared core across 

all number types. Thus, magnitude processing is without a doubt the key feature that 

is fundamental for fraction processing. Additionally, it has a unique and substantial 

role for number processing in general (Leibovich, Katzin, Harel, & Henik, 2017; 

Siegler, 2016). Therefore, in my comprehensive framework, magnitude processing 

builds the basis of the whole framework (see Fig. 11.2, building block magnitude 

processing). Additionally, in Study 1 of my dissertation I was able to substantiate the 

main assumption of the ITND and provide behavioral as well as neuro-functional 

evidence for the importance of magnitude processing for fraction learning. Therefore, 

in my comprehensive framework the building block magnitude processing is 

connected with fraction processing (see Fig. 11.2; thick arrow 1). Moreover, as 

revealed by Study 2 and 3 of my dissertation magnitude processing also has direct 

links to other basic numerical skills (e.g., number line estimation, basic arithmetic, 

counting) and strategy choice (e.g., componential vs. holistic processing of fractions). 

Therefore, magnitude processing is connected with basic numerical skills (Fig. 11.2; 

thick arrow 2) and the building block strategies (Fig. 11.2; thick arrow 3). 
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Based on magnitude processing, the two other building blocks that indirectly 

influence fraction processing in terms of cognitive predictors are basic numerical 

skills and different strategy types of processing fractions. In addition, a variety of 

studies have shown that different domain-specific skills, which partially involved also 

basic numerical skills, were direct or indirect predictors of fraction processing (Bailey 

et al., 2014; Hansen et al., 2015; Hecht & Vagi, 2010; Jordan et al., 2013; Liu & 

Wong, 2020; Mou et al., 2016; Namkung & Fuchs, 2016; Namkung et al., 2018; 

Seethaler et al., 2011; Siegler & Pyke, 2013; Stelzer, Andrés, et al., 2019; Stelzer, 

Richard’s, et al., 2019; Vukovic et al., 2014; Ye et al., 2016).  

Most of the domain-specific skills examined in these studies were magnitude-

related (e.g., number line estimation, arithmetic), which means that it was necessary 

to process numerical magnitude to master that skill. For instance, when performing 

basic arithmetic like subtraction (e.g., 4 - 2), it is necessary to process the minuend 

and the subtrahend. However, in Study 2 of this dissertation, I also showed that 

magnitude unrelated basic numerical skills such as basic geometry might play a role 

for fraction processing. Therefore, the building block basic numerical skills is also 

directly connected with fraction processing in my comprehensive framework (Fig. 

11.2, thick arrow 2). Moreover, applying or recruiting a particular basic numerical skill 

may also be interpreted as a strategic choice to solve a particular task. For instance, 

to solve the basic arithmetic problem “6 + 9”, individuals can either add the two 

numbers to solve this problem or solve by adding “6 + 9” and subsequently subtract 1 

(i.e., 6 + 10 - 1= 6 + 9). To account for this in my tentative framework the building 

block basic numerical skills projects on the building block strategies. 

Strategies play a prominent role in fraction processing. Compared to natural 

numbers, where magnitudes are typically processed automatically (Berch et al., 

1999; Gebuis et al., 2009; Rubinsten & Henik, 2005; Siegler & Braithwaite, 2017), 

fraction processing is usually not a highly automated process but rather solved by 

strategic choices (Fazio, DeWolf, et al., 2016; Siegler et al., 2011). The two 

processing strategies typically observed are componential and holistic processing of 

fractions (Meert, Grégoire, & Noël, 2009). However, in Study 3 of this dissertation, I 

showed that there are also magnitude unrelated strategies (i.e., sign shortcut 

strategy) that allow coming to a correct decision in a magnitude comparison task 

without the necessity of processing the magnitudes of the two to be compared 
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fractions. Therefore, the building block strategies is also directly connected with 

fraction processing in my comprehensive framework (Fig. 11.2, thick arrow 3). So far, 

the comprehensive framework considers that the three predictors of the cognitive 

domain magnitude processing, basic numerical skills, and strategies are related to 

each other and influence fraction processing directly or indirectly.  

Motivation and negative emotions are considered explicitly in the non-cognitive 

section of the framework. To allow clear visibility of all arrows and for reasons of 

simplified presentation, the non-cognitive predictors appear twice in the framework 

above and below the cognitive predictors. Research on the role of non-cognitive 

motivational and affective predictors is still scarce. In Study 4 of my dissertation, I 

showed that different motivation profiles are associated with differences in 

performance in fraction magnitude tasks. Thus, the building block motivation is 

connected with magnitude processing (see Fig. 11.2, thick arrow 4). Finally, Study 5 

of my dissertation suggests that negative emotions and emotion regulation might 

have an impact on fraction processing (see Fig. 11.2, thick arrow 5). Taken together 

with the five studies of my thesis and supported by further literature on fraction 

processing, I proposed a first tentative framework for fraction processing (see Fig. 

11.2).  
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Figure 11.2: First step of the proposed comprehensive framework of fraction processing. Thick 

arrows: interrelations of the building blocks of this framework as evaluated by the five empirical 

studies of this dissertation. 1)  Study 1 investigated the role of fraction magnitude processing via an 

NLE training for fraction processing. 2) Study 2 investigated basic numerical skills related to and 

unrelated to magnitude processing for fraction processing. 3) Study 3 investigated the role of 

magnitude-related and unrelated strategies for fraction processing. 4) Study 4 investigated the role of 

motivation by considering different motivation profiles, and 5) Study 5 examined the role of negative 

emotions and emotion regulation for fraction processing.  

 

Step 2: Substantiating connections between building blocks by existing 

studies on fraction processing 

In the second step, I will point to studies that underpin connections between 

building blocks that I could not investigate as a part of my thesis (thin lines, see Fig. 

11.3). In particular, this concerns the role of negative emotions (i.e., math anxiety) for 

fraction magnitude processing (Sidney, Thalluri, et al., 2019) and the use of 

strategies to solve procedures (Rayner et al., 2009). In fact, Sidney, Thalluri, et al. 

(2019) showed that performance on both fraction magnitude comparison and NLE 

task was poorer in adult participants with higher math anxiety compared to low math-

anxious participants. Therefore, the building blocks (negative) emotions and 

magnitude processing are connected in my comprehensive framework (see Fig. 11.3, 

thin arrow a). Additionally, Rayner, Pitsolantis, and Osana (2009) found that math 

anxiety negatively affected preservice teachers' performance on a procedural fraction 

knowledge test, which involved solving fraction arithmetic problems. This finding is 

depicted by the connection between (negative) emotions and strategies (thin arrow 

b). 

Taken together, these studies support the proposed preliminary 

comprehensive framework and indicate that the role of negative emotions for fraction 

processing should not be underestimated and considered as an important building 

block that can influence the ability to process fractions dramatically. 
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Figure 11.3: Second step of the proposed comprehensive framework of fraction processing. For the 
sake of readability only the new proposed connections are described. For an explanation on the 
connections evaluated by the studies of my dissertation (thick arrows 1-5), please see Fig. 11.2. 

Thin arrows: interrelations of the building blocks of this framework that were not investigated by this 
dissertation but can be evaluated with existing studies. a) Sidney, Thalluri, et al. (2019) and Rayner, 
Pitsolantis, and Osana (2009) could show that math anxiety affected performance in different fraction 
tasks like magnitude comparison, NLE, and conceptual knowledge. b) Rayner, Pitsolantis, and Osana 
(2009) also showed that math anxiety affected performance in a procedural knowledge task for 
fraction arithmetic. 

 

Step 3: Evaluating missing connections between building blocks by existing 

studies on natural numbers 

 

So far, this tentative comprehensive framework is based on findings provided 

by the five studies of my dissertation and further already existing studies. 

Additionally, the interrelations between building blocks and fraction processing that I 

could not investigate in the context of this dissertation have been evaluated by 

previous studies investigating fraction processing. In a final step, I want to give some 

examples for missing connections between building blocks that were neither part of 

my dissertation nor could be substantiated by already existing studies from the large 

body of fraction literature with the help of studies involving natural numbers (Fig. 

11.4, grey lines). Although natural numbers are a different number type and there are 

many notable differences between natural numbers and fractions (see Section 1.2), it 

is reasonable to assume that the superordinate influence of motivation and negative 
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emotion observed for natural number processing may be generalized to fraction 

processing.  

In line with this argument, Wang, Shakeshaft, Schofield, & Malanchini (2018) 

observed eight distinct profiles which could be distinguished by different 

combinations of math anxiety and motivation levels. Additionally, these distinct 

profiles differed in ranges of mathematical achievement (example study for the 

connection between motivation and negative emotion in the comprehensive 

framework; see Fig 11.4, grey line i).  

Moreover, in a longitudinal study, Mercader, Miranda, Presentación, 

Siegenthaler, & Rosel (2018) showed that motivation affected early numeracy skills 

and indirectly affected later mathematical achievement (example study for the 

connection between motivation and basic numerical skills in the comprehensive 

framework; see Fig 11.4, grey line ii). Furthermore, many studies have shown that 

motivation plays a crucial role in problem-solving, which can be defined as a strategic 

process in mathematics (see Schukajlow et al., 2017 for a review on the role of 

motivation on mathematics achievement and problem-solving; see Fig 11.4, grey line 

iii). Finally, an overwhelming body of literature shows that math anxiety affects 

various mathematical tasks and skills, including problem-solving abilities and basic 

numerical skills (see Maloney & Beilock, 2012 for a review as an example between 

negative emotions and basic numerical skills; see Fig 11.4, iv). 

It must be pointed out that connections between some building blocks are 

more likely to be intertwined, but for the sake of simplicity, only one direction of 

influence is shown in the comprehensive framework. For instance, the building block 

negative emotion can have mutual effects with every other building block. In general, 

negative emotions like math anxiety lead to poorer task performance, which can lead 

to even more anxiety, resulting in a vicious circle that is hard to overcome.  

Finally, in Fig.11.4 the complete proposed comprehensive framework of 

fraction processing is additionally combined with the tentative model of the temporal 

course of fraction processing (Fig. 11.4, B). This shows that fraction processing is a 

notoriously challenging process which can go wrong in many areas. 
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Figure 11.4: Third step of the proposed comprehensive framework of fraction processing. A. 
Proposed framework of fraction processing. B. Tentative model of the temporal course of fraction 
processing. For the sake of readability only the new proposed connections are described. For an 
explanation on the connections evaluated by the studies of my dissertation (thick arrows 1-5) and by 

additional studies of the literature on connections that were not investigated by my dissertation (thin 
arrows a + b), please see Fig. 11.2 and Fig. 11.3. Grey lines: interrelations of the building blocks of 
this framework that were neither evaluated in this dissertation nor by existing studies investigating 
fraction processing. i) Wang, Shakeshaft, Schofield, & Malanchini (2018) were able to show that there 
are different profiles distinguished by combinations of math anxiety and motivation levels. 
Furthermore, these profiles differ in mathematical achievement. ii) Mercader, Miranda, Presentación, 
Siegenthaler, & Rosel (2018) showed that motivation affected early numeracy skills. iii) Schukajlow et 
al., 2017 show that mtivation is important for motivation on mathematics achievement and problem-
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solving iv) A large body of studies has shown that math anxiety affects performance on basic 
numerical skills. For a review, see Maloney & Beilock (2012). 
 

12. Future Directions 

The proposed framework of fraction processing may be a first approach to 

comprehensively describe the complex processes involved in fraction understanding 

and learning by integrating both cognitive and non-cognitive predictors involved in 

fraction processing. However, it should be noted that this framework is a preliminary 

theoretical proposal based mainly on the synthesis of the present results and the 

described literature. Thus, research is needed to evaluate the validity of the proposed 

framework in more depth. Furthermore, as one of the major contributions of this 

framework is the integration of non-cognitive predictors, I want to specifically focus on 

the connection between negative emotions and fraction processing. Therefore, in the 

following, I will propose some ideas of how to test this connection of the framework in 

more depth. 

In particular, direct and indirect links, as well as developmental aspects 

between negative emotions and fraction processing, should be investigated more 

closely. Study 5 of this dissertation made a first attempt to shed more light on the role 

of negative emotions on fraction processing. However, to understand this role, 

different aspects need to be considered: i) differences and similarities between non-

math anxious participants and math-anxious participants, ii) differences and 

similarities between typically developed participants and participants with 

mathematical disabilities, iii) the direct impact of negative emotions on achievement 

in fraction tasks (e.g., fraction magnitude comparison task), and iv) whether applying 

emotion regulation strategies or an intervention for emotion regulation is beneficial 

especially for math-anxious participants and participants with mathematical 

disabilities.  

In doing so, it is not necessary to design a completely new study. But one 

might instead extend the study design of study 5 of this dissertation into a pre-post 

intervention study with different groups and an emotion regulation training as 

intervention. For instance, the study may include several groups, like one group 

consisting of math-anxious participants with no other mathematical disabilities, the 

second group consisting of participants with mathematical disabilities but without 

suffering from math anxiety, and a control group that is neither math-anxious nor 

suffers from mathematical disabilities. Including math-anxious participants and 
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participants with mathematical disabilities at the same time might help to examine 

with more extend the possible impact of an emotion regulation training on task 

achievement. Math-anxious participants are known to be poorer in handling 

mathematical problems because they tend to avoid any situation that requires 

mathematical skills. However, math-anxious individuals do not suffer from cognitive 

impairments that would result in their inability to solve the task (Ashcraft, 2002; 

Dowker et al., 2016). In contrast, participants with mathematical disabilities like 

dyscalculia suffer from the inability to solve number-related tasks (Von Aster & 

Shalev, 2007).  

Therefore, emotion regulation training should have a more pronounced 

positive impact on the math-anxious participants than on the other two groups in the 

experiment (i.e., mathematical disability and control group). This effect should also be 

detectable in neuro-functional measures in terms of a more pronounced activation of 

the ACC, especially in the math anxiety group from pre- to post-measurement. 

However, while previous studies suggested that dyscalculia and math anxiety are two 

disabilities that can usually be separated, it is known that children suffering from 

dyscalculia also can experience math anxiety as a result of their poor performance in 

math-related tasks (Devine, Hill, Carey, & Szűcs, 2018). Therefore, an emotion 

regulation intervention might also be helpful to improve the attitude towards 

mathematics in children with developmental dyscalculia. However, it is unlikely that 

an emotion regulation intervention would improve performance on mathematical 

problems in children with developmental dyscalculia. Since participants with 

dyscalculia suffer from dysfunctions especially involving the IPS (Price et al., 2007), it 

is rather unlikely that an intervention targeting the ACC will improve impairments 

originating from dysfunctions involving the IPS. 

Additionally, another study might investigate the direct impact of negative 

emotions on achievement in a fraction magnitude comparison task. This might be 

possible by investigating performance on a fraction magnitude comparison task and 

employing an emotion regulation task before the fraction task. This emotion 

regulation task either triggers or reduces negative emotions or does not elicit any 

negative emotions (neutral condition; Morawetz, Mohr, Heekeren, & Bode, 2019). For 

this purpose, images are presented that evoke a negative reaction or that are not 

intended to evoke any emotion (so-called neutral images). The experiment would 

consist of three conditions: a) a negative condition without emotion regulation, b) a 
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neutral condition without emotion regulation (which should not evoke any emotion 

and therefore emotion regulation is not necessary), and c) a negative condition with 

emotion regulation. In the negative and neutral condition without emotion regulation, 

participants would be presented either an image that evokes negative emotions or an 

image that does not evoke emotions and would be asked to experience any 

emerging emotion without actively manipulating them. In the negative condition with 

emotion regulation, participants are again shown images that evoke negative 

emotions and are asked to reduce the intensity of this initial negative reaction 

actively. This can be done by distancing themselves from the presented image while 

actively becoming an observer of the presented image. Subsequently, after each 

emotion regulation task, a fraction magnitude comparison task would be presented. If 

negative emotions affect fraction magnitude performance, participants should 

perform better after each negative condition with emotion regulation compared to the 

neutral condition without emotion regulation. In turn, participants should perform 

worse on a fraction magnitude comparison task after the negative condition without 

emotion regulation compared to the neutral condition without emotion regulation. 

Employing this study design in combination with fMRI measurements would also help 

further examine the role of emotion regulation and, in particular, ACC for fraction 

processing. 

13.  Additional relevant Predictors of Fraction Processing 

 Since a dissertation can usually only examine and illuminate a narrow part of a 

research area due to economic and time constraints, in the following section, I would 

first like to briefly introduce a selection of cognitive, non-cognitive, and meta-cognitive 

predictors that might also be of relevance for fraction processing. Following this 

introduction, I will extend my proposed comprehensive framework of fraction 

processing with these additional predictors derived from the literature. 

13.1 Cognitive Predictors 

Many cognitive abilities may play a role in rational number and especially 

fraction processing. However, I want to highlight executive functions as mental 

processes that might be particularly relevant for fraction processing. In general, 

executive functions are crucial for learning and development (e.g., Hughes, 2002). 

They are superordinate mental processes with which we can monitor our behavior 
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(for a review, see Diamond, 2013). For instance, executive functions enable 

controlling emotions, attention, and pursuing goal-directed behavior (Cristofori, 

Cohen-Zimerman, & Grafman, 2019). In particular, executive functions include a) 

working memory, b) inhibitory control, and c) cognitive flexibility. In the following, I 

want to focus on working memory and inhibitory control as two executive functions 

that are assumed to be relevant for fraction processing.  

13.1.1 Working Memory 

 Working memory enables the mental storage and manipulation of information 

over a short period of time. In educational research, cognitive load is particularly 

relevant (Sweller, Van Merrienboer, & Paas, 1998). Cognitive load theory suggests 

that working memory capacity is limited. This means that the amount of available 

working memory (e.g., the number of units simultaneously held, manipulated, and 

remembered) is a restricting factor for learning and problem-solving. Suggesting 

solving a task becomes more difficult if the task occupies more working memory 

capacity (e.g., De Jong, 2010).  

A meta-analysis including 110 studies showed a significant correlation 

between working memory and mathematics (r = .35), with whole number arithmetic 

and word problems showing the strongest association. Moreover, the correlation 

between working memory and mathematics was stronger for children with 

mathematical difficulties. Additionally, this meta-analysis indicated a significant 

correlation of r = .30 between working memory and fraction processing in particular. 

However, the number of included correlations for fractions was relatively small 

compared to other included numerical variables (i.e., 26 correlations for fraction tasks 

vs. 143 for word problems), suggesting that the real effect might be more pronounced 

(Peng, Namkung, Barnes, & Sun, 2016).  

The role of working memory for fraction problem-solving may be of particular 

relevance compared to natural numbers, especially for componential fraction 

processing. For instance, when solving a fraction magnitude comparison task with 

the help of componential processing, the following solution steps might be necessary: 

1) separately processing numerators and denominators of the two fractions, 2) 

separately compute overall magnitudes from the bipartite structure of the two 

fractions by comparing numerators and denominators (please note that there are 
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many different ways to achieve this step, for instance, one might be cross-

multiplication), 3) compare both magnitudes for solving the task. Given the number of 

processing steps and the units that must be held and manipulated in working memory 

during such a task, it becomes evident that cognitive load might be a limiting factor 

when solving fraction tasks. However, so far, only a small number of studies have 

investigated the role of working memory for fraction processing either directly or 

indirectly (e.g., Fuchs et al., 2014; Hansen et al., 2015). For instance, Fuchs et al. 

(2014) could show that working memory is an important moderator of NLE fraction 

interventions focusing on fraction interpretations (e.g., part-whole interpretation and 

ordering, comparing and placing fractions on number lines). Moreover, Hansen et al. 

(2015) found that working memory was a significant predictor of 6th graders' 

understanding of fraction concepts. Thus, more research is needed to examine 

whether working memory capacity might be crucial, especially in the early stages of 

fraction learning.   

13.1.2 Inhibitory Control 

 Another aspect of executive functions that might be relevant for fraction 

processing is inhibitory control. Inhibitory control reflects the ability to suppress goal 

irrelevant stimuli and behavioral responses. Additionally, it is also essential for 

regulating and controlling emotions. In academic settings, inhibitory control was 

frequently reported to be predictive of mathematical achievement (e.g., Bull & Scerif, 

2001; St Clair-Thompson & Gathercole, 2006). 

In the context of rational number processing, it is assumed that inhibitory 

control is needed to overcome the natural number bias. This means that the primary 

urge to solve a fraction problem by applying previously acquired knowledge about 

natural numbers and apply them to rational numbers needs to be overcome by 

inhibition. For instance, previous studies showed that inhibition processes are 

necessary to quickly and correctly solve fraction magnitude comparison tasks (Fu et 

al., 2020; Gómez, Jiménez, Bobadilla, Reyes, & Dartnell, 2015; Rossi, Vidal, Letang, 

Houdé, & Borst, 2019). Thus, it might be possible that the initial unconscious (brain) 

reaction to solve a fraction problem is trying to apply natural number knowledge 

(except for highly trained fractions like 1/2, 1/4, or 3/4). Additionally, with study 5 of 

this dissertation, I showed that fractions, as challenging learning content, trigger the 

initial neural activation of a negative emotion network, which might be regulated via 
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inhibitory control through activation of the ACC. Therefore, future research should 

focus more on the role of inhibitory control for fraction processing, the relationship 

between inhibitory control and the natural number bias, and interventions that can 

foster inhibiting the natural number bias and negative emotions associated with 

rational numbers. 

13.2 Non-Cognitive Predictors 

In this dissertation, I have shown that non-cognitive predictors like motivation 

and negative emotions also play a role in fraction processing. Both are driving forces 

that can result in avoiding or embracing to deal with fractions. In educational 

research, however, other non-cognitive predictors also play a role as driving forces 

for learning and in the classroom. Two constructs of particular interest in 

mathematics that are known to influence learning and achievement are boredom and 

self-efficacy. In the following, I will introduce both constructs as two additional non-

cognitive predictors that may be of interest for future research on fraction processing. 

13.2.1 Boredom 

 Academic boredom is a common emotion in educational and school settings. It 

can be broadly defined as a negative experience involving low arousal and 

unpleasant feeling. Furthermore, boredom is classically categorized as a deactivating 

emotion which is more common than frustration, anxiety, and anger during learning 

(Ahmed, van der Werf, Minnaert, & Kuyper, 2010; Pekrun, 2006). For instance, 

Larson & Richards (1991) showed that around 36% of middle school students had 

experienced boredom in the classroom and 40% while doing their homework. It is 

known to have a negative impact on learning and achievement and can lead to 

school dropout (Bearden, Spencer, & Moracco, 1989; Pekrun, Goetz, Daniels, 

Stupnisky, & Perry, 2010).  

Additionally, boredom can also have a negative effect on motivation (Pekrun et 

al., 2010). It can be caused by a perceived over- or under-challenge while dealing 

with the learning content. Moreover, little perceived importance of school tasks and 

content might also be a relevant cause for boredom (Pekrun, 2006). Given that the 

importance and relevance of rational numbers in general and fractions, in particular, 

is often doubted by students and adults, it might be possible that boredom plays a 

role for fraction processing (Padberg & Wartha, 2017). Additionally, perceived over-
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challenge while dealing with fractions could also lead to boredom. Finally, as already 

mentioned, boredom is one of the most common emotions in the classroom and 

during learning. Therefore, it might also be of relevance for fraction learning.    

13.2.2 Self-efficacy 

 Academic self-efficacy describes learners' perceptions of their academic 

abilities and performance to achieve goals in school settings (Elias & MacDonald, 

2007). It has strong links to performance, achievement, and learning across the 

lifespan (Honicke & Broadbent, 2016) as well as on school subjects like mathematics 

(Randhawa, Beamer, & Lundberg, 1993). Unfortunately, there is little research on 

self-efficacy and achievement in the content area of fractions. However, one of the 

few studies revealed gender differences in self-efficacy for a fraction task in 7 to 10 

graders, with girls being less confident than boys to accurately solve the task, even 

though no performance differences were found between girls and boys (Ross, Scott, 

& Bruce, 2012). Moreover, a second study showed that self-efficacy beliefs on the 

ability to use multiple representations (e.g., number line and different area diagrams) 

for fraction concepts had a beneficial influence on achievement in fraction addition 

problems (Panaoura, Gagatsis, Deliyianni, & Elia, 2009). Thus, strengthening 

students' self-efficacy for fraction knowledge and concepts might be helpful for 

fraction learning and facilitate fraction processing. Moreover, self-efficacy seems to 

be a crucial factor for self-regulation, which will be described in the following 

subsection. 

13.3 Predictors involving metacognition and self-regulation 

Metacognition has become an increasingly popular topic in educational 

research. Simplified, it can be defined as cognition about cognition (Flavell, 1976). 

Thus, reflecting on one's own cognition. Including knowledge about how to use 

specific strategies for learning and problem-solving. In general, metacognition entails 

monitoring and control of cognitive processes (Nelson & Narens, 1994). Based on 

these estimations, students decide if, what, and which strategies they will learn 

(Ehrlinger, Johnson, Banner, Dunning, & Kruger, 2008; Koriat, 2012). These 

decisions are part of and build the basis for self-regulation and self-regulated learning 

(Schunk & Greene, 2018). Many studies across different age groups, content 

domains (including mathematics), and settings (e.g., school or laboratory 
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experiments) have shown that especially self-regulation and self-regulated learning 

plays a crucial role for successful academic learning (Dignath, Buettner, & Langfeldt, 

2008; Dignath & Büttner, 2008; Jansen, Van Leeuwen, Janssen, Jak, & Kester, 2019; 

Sitzmann & Ely, 2011).  

However, research on fraction processing involving self-regulation or even 

self-regulated learning is still scarce. One recently developed intervention to improve 

fraction processing is the so-called self-regulated strategy intervention (SRSD). This 

intervention has already been successfully applied in teaching writing and reading 

(for two meta-analyses, see Graham & Harris, 2003; Sanders et al., 2019). SRSD 

aims to improve students’ academic abilities by fostering self-regulation skills. In 

particular, students with emotional and learning disabilities can benefit from this 

intervention (Bak & Asaro-Saddler, 2013; Lienemann & Reid, 2006). The intervention 

consists of six stages which necessarily involve student-teacher interaction and 

teacher guidance by providing background knowledge (stage 1), strategy discussion 

(stage 2), strategy modeling (stage 3), memorize techniques for the strategy (stage 

4), and strategy support (stage 5). During these stages, the teacher monitors the 

students’ performance of the strategy. Ultimately, the student should be able to use 

the strategy independently with the help of different self-regulation skills (stage 6). In 

connection with fractions, SRSD has been successfully used as a teaching 

intervention (Ennis & Losinski, 2020; Hacker, Kiuhara, & Levin, 2019; Kiuhara et al., 

2020; Losinski, Ennis, Sanders, & Wiseman, 2019; Losinski, Ennis, & Shaw, 2021; 

Wang et al., 2019). For instance, Losinski et al. (2021) used an SRSD intervention 

with a step-by-step strategy to improve fraction addition and subtraction with unlike 

denominators. This strategy consists of the following steps: i) identify the 

denominators, ii) identify multiples of the denominators, iii) find the least common 

multiple, iv) extend fractions with corresponding multiples two create two fractions 

with common denominators, and v) solve fraction subtraction or addition problem. 

The stages of the SRSD intervention subsequently provided the following lessons 

conducted by teachers: a) essential knowledge on the structure (numerator and 

denominator) and concepts (e.g., part-whole) of fractions, b) discussion of the 

strategy for fraction addition and subtraction with unlike denominators, c), and d) 

practice and memorize the strategy on different fraction problems and strengthening 

self-regulation by using a checklist with the different steps of the strategy, self-

explanation and visual aids, e) teacher and students practice the strategy together, f) 
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students apply the strategy independently and without help of the strategy checklist 

and visual aids. Studies targeting improvement of proficiency with fractions through 

SRSD interventions revealed pre-post improvements of participants in fraction 

addition and subtraction tasks with unlike denominators (Ennis & Losinski, 2019b; 

Losinski et al., 2021) as well as fraction knowledge (Hacker et al., 2019; Kiuhara et 

al., 2020). Thus, SRSD seems to be a promising intervention to improve fraction 

understanding and could also be helpful for typically developing children. 

13.4 Extending the comprehensive Framework of Fraction Processing with 
additional Predictors 

In this last subsection, I want to extend my comprehensive framework of 

fraction processing with the additional predictors mentioned in subsections 13.1 – 

13.3. However, for the sake of readability, this extension will only focus on the 

connections between the primarily involved building blocks of my comprehensive 

framework (i.e., strategies, magnitude, and motivation) and the additional predictors 

that were previously identified. Moreover, the approach of this extension is to provide 

a picture of the negative and positive effects of each predictor on the respective 

building blocks and their indirect or direct impact on fraction processing. However, it 

is important to note that this extension is highly speculative as little to no research 

has been done in connection with the additional proposed predictors and fraction 

processing. 

In the previous subsections, possible additional cognitive (i.e., working 

memory and inhibitory control), non-cognitive (i.e., boredom and self-efficacy), and 

metacognitive predictors (i.e., self-regulation) were identified. To capture the 

association of each predictor to their respective area faster, the predictors are color-

coded. Similar to the comprehensive framework, cognitive predictors are depicted in 

blue, non-cognitive predictors are depicted in red, and self-regulation as the only 

metacognitive predictor is depicted in ocher. In the following, I will explain each 

identified connection and the influence of each additional predictor on previous 

building blocks and direct influences (if applicable) on fraction processing. 

Working Memory: This variable is a cognitive predictor which could be added 

to the comprehensive framework. Higher working memory capacity should positively 

impact strategy use, and magnitude processing (e.g., Fuchs et al., 2014; Hansen et 

al., 2015) as both variables are highly interrelated. Especially when it comes to 
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componential processing of fractions as the different numerators and denominators 

must be held in working memory until the fraction task at hand is solved. In turn, this 

should improve fraction processing. The more processing steps and units that must 

be held in working memory, the more important working memory capacity is to solve 

the task.  

 

Figure 13.1: Overview of the extension of the proposed comprehensive framework of fraction 
processing. Red boxes: non-cognitive predictors. Blue boxes: cognitive predictors. Ocher box: 
metacognitive predictor. White arrow pointing upwards: increase. White arrow pointing downwards: 
decrease. Plus sign: positive effect. Minus sign: negative effect. 

 

 Inhibitory control: Inhibitory control is the second identified additional predictor 

that might be added to this framework. Inhibitory control might be relevant to 

overcome the natural number bias (e.g., Fu et al., 2020; Gómez, Jiménez, Bobadilla, 

Reyes, & Dartnell, 2015; Rossi, Vidal, Letang, Houdé, & Borst, 2019). Natural 

numbers are deeply rooted within ourselves, as they are the first number type 

individuals encounter in school, and natural numbers are dominant in occurrence 

compared to other number types. Therefore, similar to working memory, this predictor 

could influence strategy use and magnitude processing. For instance, a lack of 

inhibitory control could lead to wrongly rely on strategies that are usually applied to 

natural numbers (e.g., treating numerators and denominators as natural numbers and 

adding them separately while solving a fraction addition task).  
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 Boredom: Boredom is an additional non-cognitive predictor that might be 

added to the comprehensive framework of fraction processing. Increased boredom is 

known to have a negative impact on motivation (Pekrun et al., 2010). This could lead 

to less motivation or even demotivation, which in turn might negatively affect fraction 

processing. Additionally, many students perceive fractions as less important, which 

can also cause boredom and less engagement with fractions. Thus, boredom could 

also have a direct negative effect on fraction processing. 

 Self-efficacy: Self-efficacy is the second identified non-cognitive predictor that 

might be added to the framework. Although there is little research on self-efficacy and 

fraction processing, it can be assumed that less self-efficacy negatively impacts 

fraction processing. If individuals do not perceive themselves as confident enough to 

solve a task, task performance could be affected because insecurities might lead to 

more inattention and errors during problem-solving. 

 Self-regulation: This predictor is the only metacognitive predictor that could be 

additionally added to the framework. In general, self-regulation has been identified to 

be important for learning. As shown by studies on SRSD interventions (Ennis & 

Losinski, 2020; Hacker, Kiuhara, & Levin, 2019; Kiuhara et al., 2020; Losinski, Ennis, 

Sanders, & Wiseman, 2019; Losinski, Ennis, & Shaw, 2021; Wang et al., 2019), 

increased self-regulation can positively impact strategy learning and, in turn, strategy 

use. Additionally, SRSD interventions foster student’s self-regulation to improve their 

task performance. 

Taken together, the suggested extensions of the previously proposed 

comprehensive framework of fraction processing give first insights into the 

interrelations and direct or indirect (positive or negative) influences of the predictors 

on fraction processing. However, the proposed extensions need to be supported by 

empirical studies as little to no research has been done to investigate the role of the 

respective predictors on fraction processing.  

14.  Conclusion 

While the importance of the mastery of fractions for individuals' mathematical 

development is undeniable, the inability to handle and understand fractions still 

remains (Booth & Newton, 2012; Obersteiner, Dresler, et al., 2019). Therefore, the 

current dissertation aimed to identify important predictors that are essential to deal 
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with fractions efficiently. To date, the ITND is the most influential developmental 

theory of number processing and, in particular, fraction processing (Siegler & 

Lortie‐Forgues, 2014; Siegler et al., 2011). However, focusing only on magnitude 

processing might not give a complete picture of the involved mechanisms to fraction 

processing. To this end, a comprehensive framework of fraction processing was 

proposed by including cognitive and non-cognitive (i.e., motivational, and affective) 

predictors. This framework extends upon the ITND by building on the core 

assumption of the integrated theory that magnitude processing is the key ability for 

fraction understanding and processing. Specifically, it expands the ITND by 

integrating additional cognitive, motivational, and affective predictors important to 

master fractions.  

To pursue this issue, I employed five empirical studies that investigated 

potential predictors of fraction processing. In particular, I was able to confirm the 

importance of magnitude processing and the relevance of number line 

representations for fraction processing by providing both behavioral and neuro-

functional evidence (Study 1). Moreover, I was able to substantiate the importance of 

different magnitude-related and unrelated basic numerical skills as well as 

magnitude-related and unrelated strategies for fraction processing (Study 2 and 3). 

Further, I showed that motivation might be a relevant predictor of fraction processing 

(Study 4). Finally, I could underpin the importance of negative emotions and emotion 

regulation for fraction processing (Study 5).  

Nevertheless, the comprehensive framework remains a tentative proposal 

based on the present findings and the existing literature on fraction processing. 

Future research is needed to evaluate the validity of the proposed framework. 

However, the comprehensive framework sheds more light on the complex 

mechanisms involved in fraction processing. Together with the presented tentative 

model of the temporal course of fraction processing and the additionally suggested 

extension of the comprehensive framework, a bigger picture is provided to answer 

the question on what are relevant factors of fraction processing and were are starting 

points to improve it. This provides the basis for future research and interventions that 

foster comprehensive fraction understanding and related processes.  
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