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Abstract

The size and therefore the complexity of collected datasets has been grow-

ing over time as computational capacities increase. Therefore, estimation

methods that can take this complexity into account are needed. One such

complex dataset is the Programme for International Student Assessment

(PISA) by the Organisation for Economic Co-operation and Development

(OECD), which is carried out to measure reading, mathematics, and science

knowledge of 15-year-old students. PISA is conducted in different countries

with different educational systems. Countries are ranked according to their

students’ performance, which can have direct political consequences for the

educational system, especially in countries with lower ranks than their self-

image would dictate.

Latent abilities are estimated in the PISA test using a 2PL model from the

Item Response Theory (IRT) family. Before 2015, however, the Rasch model

was used to describe the data until studies could show that the rankings

change if more complex (and more plausible) models are used to analyze the

PISA datasets. Kreiner and Christensen (2014), for example, demonstrated

the usefulness of the inclusion of differential item functioning.

In this thesis, a multilevel IRT model with nonlinear latent variable ef-

fects model (MINoLEM) is presented. An estimation procedure based on

the Expectation-Maximization algorithm is deduced. The accuracy of this

estimation approach will be proven in several simulation studies and its

usefulness will be shown through comparisons to other IRT software with

ix



the potential to include multilevel structures or nonlinear latent variable ef-

fects. The applicability of the MINoLEM estimation technique to real data

is demonstrated by re-examining a PISA dataset and showing that latent

interaction effects can be found.
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Chapter 1

Introduction

Today, latent variables are very well known and widely used in several fields.

However, the first mention of the concept – to the best of our knowledge

today – came from Francis Galton (1888)1. According to Bollen (2002), the

concept is “at least as old as religion”. Nevertheless, Spearman (1904) was

the first to formalize the idea of underlying (hidden) factors that explain the

correlation between two variables:

“Two variable organs are said to be co-related when the variation of the

one is accompanied on the average by more or less variation of the other,

and in the same direction. [...] co-relation must be the consequence of the

variations of the two organs being partly due to common causes. If they

were wholly due to common causes, the co-relation would be perfect, as is

approximately the case with the symmetrically disposed parts of the body.”

Spearman realized that people should score similarly on two different tests

of mental abilities, thus suggesting the notion of the g-factor. However, since

the two test results were often not identical, he assumed they could be ex-

plained as the sum of a “common factor” g and an individual component,

1This was brought to the attention of Bartholomew, Knott, and Moustaki (2011) by
John Aldrich of the University of Southampton.

1



which he called the “specific factor”. In the 1930s, Thurstone (1931, 1935,

1947) picked up Spearman’s and also Binet’s work and generalized it for

the psychology context to include more than one common factor (van der

Linden, 2016a). Since then, latent variable modeling has been further devel-

oped and refined in many different fields – including psychology, the social

sciences, economics, medicine, and machine learning/artificial intelligence

– with a great variety of different applications. As an unfortunate conse-

quence, different names are used in different contexts. Typical examples are

unobservable variable, abstract concept, random effect and still (common)

factor (Bollen, 2002).

Latent variable models are widely used and probably familiar to most read-

ers of this thesis. Consequently, this chapter will be used to introduce the

main concepts that are relevant to this thesis and provide the necessary def-

initions. The readers will be referred to other publications for more detailed

introductions.

In this first chapter, latent variables are formally introduced in Structural

Equation Modeling (SEM). IRT – the main approach applied in this thesis –

is presented by describing several important models. Multilevel models are

then explained within the SEM and IRT contexts. Subsequently, Generalized

Linear Latent And Mixed Models (GLLAMM) are introduced, which rep-

resent a (partly) unifying framework for multilevel models, IRT, and SEM.

Throughout, the connection between IRT, SEM, and GLLAMM is explored

and IRT is framed from different perspectives. Then, the Expectation-

Maximization algorithm (EM) is explained, which is a powerful tool for

estimating latent variable models. It enables the statistician to interpret

model parameters as missing data and it helps avoid the need to compute

the immensely complex observed likelihood function.

In the second chapter, a multilevel IRT with Nonlinear Latent variable Ef-

fects Model (MINoLEM) will be presented and an EM algorithm will be

deduced to estimate this model. The implementation of the approach will

be discussed as well as numerical aspects that need to be dealt with.
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In the third chapter, the convergence of the model estimates to the true val-

ues will be shown in several simulation studies. Subsequently, the approach

will be applied to a PISA dataset to show its applicability and usefulness in

real-world data analyses.

Finally, the results of the thesis will be discussed. Limitations of the given

approach will be examined as well as aspects of further research.

1.1 Structural Equation Models

According to Bartholomew et al. (2011), there are two main reasons for

introducing latent variables in a model. First, “there may be variables of

interest that either were not measured, or cannot be measured without er-

ror” (Spirtes, 2001). Examples are “mathematical ability” or “business con-

fidence”, which are abstract constructs that cannot be measured directly.

Nevertheless, statisticians would like to treat them as if they were mea-

surable quantities. This requires a mapping of numbers to these abstract

constructs. In practice, a construct is first clearly defined theoretically and

then operationalized. That means that measurable indicators are chosen

which (only) depend on the latent variable and follow the given theoretical

definition of the latent variable.

The second reason for introducing latent variables is “that the latent variable

model may be a more parsimonious representation of the distribution over

the observed variables than any model without latent variables” (Spirtes,

2001). In other words, latent variables can help to reduce the dimension-

ality of a model in the sense that “the information contained in the inter-

relationships of many variables can be conveyed, to a good approximation,

in a much smaller set” (Bartholomew et al., 2011), which is the broad idea

behind factor analysis or data reduction techniques in general.

These two reasons essentially represent informal definitions of a latent vari-

able as either an unmeasurable or unobservable variable or as a means of

3



reducing data. Bollen (2002) mentions a third informal definition as a hy-

pothetical construct, in that latent variables are not real but only exist as a

thought experiment.

In his search for a more inclusive definition of a latent variable, Bollen (2002)

also discusses two mathematical concepts that involve latent variables. First,

local independence assumes that the connection between measured variables

is the result of one or more latent variables that influence those observed

variables. Local independence can formally be written as

P (X1, . . . , Xm) = P (X1|ξ) · · ·P (Xm|ξ)

where X1, . . . , Xm are the observed variables and ξ is a vector of latent vari-

ables. Local independence provides insight into the usage of latent variables

and describes them as a common source of variance for manifest variables.

Secondly, a latent variable can be seen as the expected value of the observa-

tions

Ti = E [Xi] .

This approach is adopted in Classical Test Theory, where Ti is not called

a latent variable but the true score that would result if infinitely many

observations were to be examined.

Bollen (2002) proposes that “a latent random (or nonrandom) variable is

a random (or nonrandom) variable for which there is no sample realization

for at least some observations in a given sample.” While he states that this

definition is not necessarily new, it formalizes the idea that a random variable

has no specific value – at least in a certain context. It also opens up the

possibility of a broader interpretation of latent variables, like seeing latent

variables as missing values. This point of view will be adopted later when

exploring the EM algorithm. A more detailed discussion of these definitions

is given in Bollen (2002).
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All of these definitions have their advantages and disadvantages, but most

importantly, the latent variable has to be clearly defined and operational-

ized. SEM is one example technique for linking measurable indicators to

latent variables. This framework includes both reasons given above for the

introduction of latent variables in the form of confirmatory factor analysis

and exploratory factor analysis.

In the following paragraphs, the basic SEM approach is introduced and

how nonlinear latent variable models are handled in this context is briefly

discussed. For a more detailed introduction, the reader is referred to Bollen

(1989).

1.1.1 The Basic Model

SEM is a combination of two aspects – the measurement model and the

structural model. The measurement model is the mathematical approach to

operationalizing the latent variables described above. Here, the collection

of m observable indicators (mathematically random variables), also called

manifest variables, will be denoted by X = (X1, X2, . . . , Xm)′. The latent

variable will be written as ξ = (ξ1, ξ2, . . . , ξn)′. Since the latent variables

cannot be observed directly, they are measured with some error using the

measurement model:

X = τ + Λξ + ε (1.1)

where τ is a (m × 1) vector of intercepts for X, Λ is a (m × n) factor

loading matrix giving the impact of ξ on X, and ε is a (m × 1) vector of

measurement errors. It is usually assumed that the errors are independent

and identically distributed and follow a normal distribution with mean zero.

This measurement model describes the operationalization of all n latent

variables in ξ and allows for so-called cross-loadings, which are loadings for

manifest variables that are influenced by more than one latent variable.
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The structural model, which stems from path analysis, captures the relations

between several latent variables. In SEM, a distinction is made between

exogenous variables (not influenced by other latent variables) and endoge-

nous variables (influenced by other latent variables), which are denoted by

ξ = (ξ1, ξ2, . . . , ξn1)
′ and η = (η1, η2, . . . , ηn2)

′, respectively, where ξ and η

are vectors depicting n1- and n2-dimensional latent constructs:

η = α+ Γξ + ζ

where α is an n2-dimensional intercept vector, Γ is the (n2 x n1) coefficient

matrix giving ξ’s impact on η, and ζ is the n2-dimensional disturbance

variable for η with E(ζ) = 0 and Cov(ζ, ξ′) = 0. The two latent variables

each have measurement models as in (1.1).

Figure 1.1 shows a simple path diagram with one exogenous latent variable

ξ, one endogenous latent variable η with three manifest variables each. The

indicators of η are labeled Y1, Y2, and Y3 with measurement errors δ1, δ2 and

δ3 to simplify the distinction between the respective measurement models.

ξ

X2X1 X3

ε1 ε2 ε3

λ1 λ2 λ3

η

Y1Y2 Y3

δ1 δ2 δ3

ζ

λ4 λ5 λ6

γ

Figure 1.1: Path diagram of a simple Structural Equation Model with two
latent variables ξ and η with three manifest variables each. The latent
variable η is linearly dependent on ξ.

Model parameters can be estimated by considering the difference between

the model implied variance-covariance matrix Σ and the observed variance-

covariance matrix Σ̂ (Bollen, 1989).
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1.1.2 Influence of Nonlinear Latent Variables

Having introduced the common notation, nonlinear latent variables will be

discussed in this section. Over the years, SEM has been extended in many

directions. For the purpose of this thesis, it is interesting to see how SEM

can incorporate latent variables with a nonlinear influence.

Approaches to Include Nonlinearity

Within the parametric framework, several approaches have been developed,

including product-indicator approaches (e.g., Kenny and Judd (1984), Jöreskog

and Yang (1996), Bollen (1995, 1996), Ping (1995), Marsh, Wen, and Hau

(2004), Kelava and Brandt (2009)), distribution-analytic approaches (e.g.,

Klein and Moosbrugger (2000), Klein and Muthen (2007)), moment-based

approaches (e.g., Mooijaart and Bentler (2010)), and Bayesian approaches

(e.g., Arminger and Muthen (1998), Lee (2007), Song and Lee (2007)).

One class of models that have been developed are semiparametric structural

equation models, which use mixtures of linear structural equation models to

approximate the nonlinearity in the data (e.g., Arminger and Stein (1997),

Arminger, Stein, and Wittenberg (1999), Bauer (2005), Jedidi, Jagpal, and

DeSarbo (1997), Kelava and Brandt (2014), and Kelava, Nagengast, and

Brandt (2014)). The advantage of these models is their applicability without

having to specify the function with which the latent variable nonlinearly

influences the model. However, this is also a disadvantage, since it is not

possible to quantify the nonlinear influence of the latent variable within this

framework.

The nonparametric approach by Kelava, Kohler, Krzyzak, and Schaffland

(2017) introduces a model in which the distribution of the latent variables is

not restricted and potentially nonlinear connections between the latent vari-

ables can be estimated using nonlinear or nonparametric regression methods.
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Here, the Latent Moderated Structural Equations (LMS) approach by Klein

and Moosbrugger (2000) will be presented in more detail since it inspired

the estimation approach that will be introduced later for a multilevel IRT

model with nonlinear latent variable effects.

Latent Moderated Structural Equations approach

Klein and Moosbrugger (2000) assume a structural model with possible

quadratic and interaction effects of the exogenous variable ξ on the endoge-

nous variable η

η = α + Γξ + ξ′Ωξ + ζ (1.2)

where η is a 1-dimensional latent endogenous variable, α is an intercept

term, ξ is a (n × 1) vector of latent exogenous variables, Γ is the (1 × n)

coefficient vector giving ξ’s impact on η, Ω is the (n× n) coefficient matrix

giving the impact of the product terms ξiξj (i < j) on η (which is assumed

to be an upper triangular matrix), and ζ is the disturbance variable. The

measurement models of the latent variables are defined as in equation (1.1)

with notation as in Figure 1.1. Under the usual assumptions that

• X ∼ N (µX ,ΣX),

• ε ∼ N (0,Σε) and δ ∼ N (0,Σδ) with Σε and Σδ diagonal,

• Cov(ε, δ) = Cov(ε, ξ) = Cov(ε, η) = Cov(δ, ξ) = Cov(δ, η) = 0, and

• ζ ∼ N (0, σζ) with Cov(ζ, ξ) = Cov(ζ, δ) = Cov(ζ, ε) = 0,

but, with the important exception that η is not assumed to follow a normal

distribution, Klein and Moosbrugger (2000) developed an adaptation of the

EM algorithm. It allows to estimate the model parameters in the presence

of the non-normality induced by the inclusion of the interaction between the

exogenous latent variables.
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Their first observation is that the exogenous latent variable can be rewritten

as ξ = Az using the Cholesky decomposition, with z being a standard

normally distributed random vector. Then, the positive definite variance-

covariance matrix Σξ of the normally distributed ξ can be rewritten as Σξ =

AA′ . This allows for estimating the lower triangular matrix A instead of

Σξ since the Cholesky decomposition is unique for positive definite matrices.

Now, the coefficient matrix Ω can be rearranged as an upper triangular

matrix (by simultaneously rearranging ξ) in which the first rows contain

the coefficients of those p latent variables that interact with each other to

influence η and the last rows are filled with zeros if there are latent variables

that don’t interact with each other but only influence η linearly.

Accordingly, the vector z can be partitioned so that z1 represents those

latent variables that interact with each other in the model and z2 are those

latent variables that influence the endogenous variable η only linearly

z =

(
z1

z2

)
=

(
z1

0

)
+

(
0

z2

)

with z1 = (z1,1, . . . , z1,p) and z2 = (z2,p+1, . . . , z1,q). If these transformations

are inserted into Equations (1.1) and (1.2), the model can be separated in

a linear and a nonlinear part. This implies that the joint distribution of

the manifest variables (X,Y ) is linear in z2 but nonlinear in z1. Thus,

the conditional distribution of (X,Y ) on z1 is multivariate linear and the

unconditional joint distribution can be expressed as

f(X,Y ) =

∫
Rk
φ0,Ik(z1)φµ(z1),Σ(z1)(X,Y )dz1 (1.3)

where φ0,Ik(z1) and φµ(z1),Σ(z1)(X,Y ) are the normal densities with respec-

tive mean and covariance in its indices. Klein and Moosbrugger (2000) de-

duced that the mean vector and variance-covariance matrix of φµ(z1),Σ(z1)(X, Y )

depend linearly on z1, except for the mean vector µy(z1) and the variance-

covariance matrix Σyy(z1) of the indicators Y , which depend nonlinearly on
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z1 since the latent variable η influencing Y depends nonlinearly on ξ. That

is why the joint distribution of (X,Y ) cannot be computed analytically and

is approximated using the Gauss-Hermite quadrature (GHQ). Subsequently,

the EM algorithm is adapted to estimate the model parameters of Equations

(1.1) and (1.2).

A detailed introduction to the EM algorithm is given in Section 1.6, from

which its application to the LMS can be deduced. For a description of the

EM algorithm in the LMS approach, see Klein and Moosbrugger (2000).

Klein and Muthen (2007) propose another, sightly more robust approach

allowing for small deviations from the assumed normal distribution of the

latent variables and the error terms and with a quicker implementation.

The later in Chapter 2 introduced estimation of a multilevel IRT model with

nonlinear latent variable effects will also use the GHQ and the EM algorithm,

like the LMS approach. It will differ, however, in the definition of the model

and the deduction of the estimation procedure.

1.2 Item Response Theory

Item Response Theory and Classical Test Theory are both founded on the

work of Charles Spearman (1904), mentioned previously. He introduced

the idea of separating the true score and random error when describing an

observed variable. Louis Thurstone built on Spearman’s and Alfred Binet’s

work (van der Linden, 2016a) to further develop latent variable models. The

normal ogive model by Thomson (1919) was extended by Lord (1952) to

include two parameters. Shortly after, Rasch (1960) developed an alternative

representation using a logistic model – the Rasch model. Lord and Novick

(1968) showed that both models (normal ogive and Rasch) result in almost

equal parameter estimates by introducing a scaling parameter (D ≈ 1.7) in

the Rasch model.

The logistic model was quickly further developed, and Rasch introduced
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a more general model that included polytomous responses (Rasch, 1961),

which was finally formalized by Andersen (1977) and Andrich (1978).

Alan Birnbaum relied on the work of Lord to build his three-parameter

logistic model (3PL) and his “chapters in Lord and Novick (1968) laid the

statistical foundation for maximum-likelihood estimation of the item and

ability parameters in this model” (van der Linden, 2016a).

The number of contributions to the field grew each year, as can be seen in

the fact that the first Handbook of Item Response Theory by van der Linden

and Hambleton (1997) consisted of only one volume while the most recent

consists of three volumes (van der Linden, 2016a, 2016b, 2016c). In the first

volume, the interested reader can find an extensive historical review of the

development of IRT.

In this section, IRT as a logistic model is introduced at the example of the

classical four-parameter logistic model (4PL, Barton and Lord (1981)), with

the more restrictive and more widely used 1PL, 2PL, and 3PL as special

cases. Subsequently, nonlinear models in the context of IRT will be dis-

cussed.

1.2.1 Introduction of the IRT Logistic Model

The literature and research on IRT models is extensive and they can therefore

have many different notations and representations. To build a common basis,

a widely used parameterization in the educational context will be applied

where ability is seen as a realization of a latent random variable that follows

a specified distribution.

Let ξj be the latent ability of a person j = 1, . . . , J , which is usually assumed

to follow a normal distribution ξj ∼ N (0, σξ). The probability of correctly

solving a dichotomous item i = 1, . . . , I is expressed by the so-called 4PL
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model

P (yij = 1|ξj, gi, ci, γi, δi) = gi + (ci − gi)
1

1 + exp(−(γi(ξj − δi))
, (1.4)

where γi is the item discrimination or slope of the latent ability, which indi-

cates how well an item can differentiate between different individuals.

The parameter δi is the difficulty of an item or item location. The higher its

value, the less likely a individual is able to correctly solve the item. If the

sign of δi is reversed in the argument of the exponential, it is often called

easiness.

The guessing parameter gi represents the probability of an individual guess-

ing the correct answer.

The ceiling effect ci stands for the probability of any individual making a

careless error and answering the item wrongly2.

If the careless error parameter ci is set to 1, one obtains the 3PL model by

Birnbaum (1968). Additional setting the guessing parameter gi to 0 yields

the 2PL model. The 1PL model – which is equivalent to the Rasch model

in its mathematical representation – also has the discrimination parameters

γi set to 1.

The 1PL, 2PL, and 3PL are widely used for dichotomous data, but many

extensions have been constructed, which will briefly be discussed in the fol-

lowing paragraphs.

The conditioning on the item parameters gi, ci, γi, and δi in Equation (1.4)

will be left out in future model descriptions to enhance the readability.

2Another widely used notation defines γ = a, δ = b, g = c, c = d.
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1.2.2 Multidimensional IRT and further Extensions

Masters (1982) introduced the Partial Credit Model (PCM) to incorporate

answers with more than two categories. It is an extension of the Rasch model

that can be applied to data with ordinal instead of dichotomous answer

categories. One advantage of the PCM is its membership in the Rasch family,

which means that the PCM shares the property of sufficient statistics for the

item (e.g., difficulty) and person (e.g., latent ability) parameters (Andersen,

1977).

The Generalized Partial Credit Model (GPCM) by Muraki (1992) combines

the PCM and the 2PL model. It includes an item discrimination parameter,

which leads to a loss of the assumption of sufficient data statistics. Another

general framework for ordinal data is the Graded Response Model (GRM),

which was first introduced by Samejima (1969). The differences between the

GRM and PCM are discussed in Masters (1982).

The inclusion of multidimensional latent variables is an important develop-

ment because it allows for more realistic model descriptions (e.g., McKinley

and Reckase (1983), Reckase (2009)). Mathematically, this requires a slight

change in the model

P (yij =
1

1 + exp(−(γiξj − δi))
(1.5)

so that γi is now an n-dimensional row vector of coefficients of the n-

dimensional column vector ξj of the multidimensional ability.

The difficulty δi now has to be interpreted differently (Reckase, 2009). In

a uni-dimensional IRT model, the difficulty defines the value of the latent

variable at which the probability of answering an item correctly is 50%. In

models with two latent variables, infinitely many combinations of both la-

tent variables exist that result in a 50% probability of answering the item

correctly. If, for example, γ1 = 1, γ2 = 0.4, and δi = −1, then the in-

tersections of the line with the coordinate axis are at −(−1)/1 = 1 and
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−(−1)/0.4 = 0.4, respectively, and all combinations of latent variables on

the line have a 50% probability of a correct answer (see the line in Figure

1.2).

ξ1

ξ2

1

0.4

b

Figure 1.2: Illustration of the multivariate difficulty for an item in a two-
dimensional IRT model with given parameter values. Each axis represents
one latent dimension. The points on the line are those factor scores that
result in a probability of 50% of answering the item correctly. The multi-
variate difficulty can be defined as the distance b between the line and the
origin.

However, the distance between that line and the origin of the vector space is

a unique indicator of the “difficulty” of the respective item (see the dashed

line in Figure 1.2) in a uni-variate sense. This is often called the mdiff

parameter (Reckase, 2009). It can be calculated by dividing the parameter

δi in (1.5) by the Euclidean length of the coefficient vector of the latent

variable:

bi =
−δi√
γiγ

′
i

.

In the example in Figure 1.2, the mdiff for that item would be given by

b = −(−1)/
√

12 + 0.42 ≈ 0.9. All this notwithstanding, the parameter δi

will be called difficulty throughout the thesis like in the uni-dimensional

case.
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1.2.3 Nonlinear IRT Models

Before discussing nonlinearity in IRT models, it first needs to be defined

what is meant by nonlinear IRT models. A logistic function, for example, is

already nonlinear, which is why IRT in general is seen as a nonlinear model

by scholars such as Vermunt (2004). Nonlinearity in this thesis implies a

nonlinear influence of the latent variable within the exponential of the IRT

function. Nonlinearity can be introduced, for example, by adding quadratic

effects of a latent variable. The use of multidimensional latent abilities

allows for the introduction of interactions between latent variables in the IRT

model. Most publications, however, deal with nonlinear effects in frameworks

other than IRT (e.g., Structural Equation Models, Generalized Linear Latent

and Mixed Models), which will be discussed in later sections of this chapters.

Nonparametric IRT models (e.g., Mokken (1971)), on the other hand, im-

plicitly also include possible nonlinear effects of the latent variable. However,

in these models, effect sizes cannot be evaluated and are more of a tool for

exploratory research (e.g., Sijtsma and Meijer (2007) and Sijtsma (1998)).

General Linear Latent Variable Model

Nonlinear latent effects within IRT have only been discussed by Rizopoulos

and Moustaki (2008). They introduce nonlinear latent variable effects in the

context of the General Linear Latent Variable Model (GLLVM) framework

(Bartholomew, 1987; Bartholomew et al., 2011).

The GLLVM assumes that the correlations between manifest variables X =

X1, . . . , Xm can be explained by two3 latent variables ξ = (ξ1, ξ2) and ob-

served covariates w. It is further assumed that the distribution of the man-

3The model theoretically accounts for an undefined number of latent variables, but is
restricted to two latent variables here for easier model description.
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ifest variables follows an exponential family

P (Xi|ξ,w, θi, φi) = exp

(
Xiθi − bi(θi)

ai(θi)
+ di(Xi, φi)

)
(1.6)

with i = (1, . . . ,m), where θi and φi are the natural and dispersion pa-

rameters of the exponential family. Since the functions ai(θi), bi(θi), and

di(Xi, φi) are defined for each manifest variable individually, each manifest

variable can follow a different member of the exponential family, making

these models very flexible and widely applicable. Therefore, dichotomous

variables are also allowed, which is necessary for IRT models.

Equation (1.6) also depends on the latent variables ξ and on the observed

covariates w. They are introduced to the model by including a linking

function g(·) as in Generalized Linear Models (GLM). The manifest variables

X are connected to ξ and possible covariates w by

g(E [Xi|W ]) = Wβ
(w)
i + Ξβ

(ξ)
i

where W and Ξ stand for the design matrices of the observed covariates

and the latent variables, respectively. The matrix Ξ is built as a function

of the latent variable ξ, which may include nonlinear latent variable effects.

Logistic IRT models can be built within this approach using the logit link

function.

From this general model description, Rizopoulos and Moustaki (2008) de-

rived the observed likelihood function l(ω), where ω are the model parame-

ters. They noticed that this derivative is also the expectancy of the derivative

of the complete data log-likelihood conditional on the posterior probability

of the latent variable given the data. As will be seen later, the conditional

expectancy of the complete data log-likelihood with respect to the posterior

probability of the latent variable is the main component of the Expectation-

Maximization algorithm that will be introduced in Section 1.6. The model

parameters can therefore either be estimated by applying the derivative

∂l(ω)/∂ω of the observed likelihood function as an EM algorithm, or by
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directly finding the root of l(ω). This implies that the model by Rizopoulos

and Moustaki (2008) can be estimated using a hybrid algorithm. The EM is

applied to quickly converge to the proximity of a solution and then a com-

mon optimization is carried out after a certain number of iterations, using

the same objective function. This is because the biggest strength of the EM

is its quick convergence at the beginning. However, since it converges more

slowly the nearer it gets to the optimum, the algorithm can be switched to

the common minimization of the derivative of the observed likelihood, which

can be expected to converge quickly close to the solution.

In other implementations, hybrid algorithms that switch between the EM

and a common Maximum Likelihood Estimation (MLE) have been used as

well. But in these implementations, the algorithm is applied to the observed

log-likelihood and the complete log-likelihood directly instead of their deriva-

tives.

1.3 Multilevel Models

In this section, after clarifying the terminology of multilevel models, three

types of multilevel models are introduced. First, the common notation is

given with the multilevel regression model. Second, an extension of SEMs is

presented to include a multilevel structure. Third, multilevel models in the

context of IRT are discussed.

1.3.1 Terminology of Multilevel Models

SEMs were developed to analyze the relationships between latent variables.

IRT evolved in the context of tests and tries to capture the influence of

latent ability and item covariates on the probability of solving an item.

Nevertheless, in both frameworks, data can occur that exhibits dependencies

between groups and independence only within groups.
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An example is provided by income. There are differences in mean income

between countries, but incomes within a country are independent of each

other4.

Models that account for such clustered / dependent data were developed un-

der many different names in different fields, such as random effects models

(statistics, econometrics), linear mixed models (statistics), variance compo-

nents models (statistics), hierarchical linear models (education, Bayesian),

multilevel models (sociology, education), contextual effects models (soci-

ology), random-coefficient models (econometrics), and repeated measures

models / repeated measures ANOVA (statistics, psychology).

Due to this development in many different fields and frameworks, different

terminology is used for the clustering, like levels or groups; the different

clusters may be called Level 1, Level 2, and so on or the between- and

within-cluster levels (in two-level models only).

This thesis focuses on IRT models, which are mostly used in the educational

context, where the term multilevel models was coined. This term will be

used here as well. For a more detailed introduction, see e.g., Snijder and

Bosker (2012), Heck and Thomas (2015), and Hox, Moerbeek, and van de

Shoot (2018).

1.3.2 Multilevel Regression Model

Multilevel models try to capture unobserved heterogeneity between observed

variables by introducing a random variable. Effects that commonly affect

all observed variables are assumed to follow a distribution, which is mim-

icked by that random variable. This allows for homogeneity within clusters

while differences between the clusters are modeled by a latent variable. One

4The model could of course be extended to show dependencies within a country as well
by including more clustered structures.
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classical way of defining a multilevel model is a multilevel regression model

yjk = β0k + β1jxjk + εjk (1.7)

β0k = α00 + α01wk + δ0k (1.8)

β1k = α10 + α11wk + δ1k (1.9)

with

εjk ∼ N (0, σ2)

δ0k ∼ N (0, σ2
0)

δ1k ∼ N (0, σ2
1).

The yjk is the the value of the dependent variable for individual j = 1, . . . , J

in cluster k = 1, . . . , K with independent variables xjk and cluster covariate

wk. The variable α00 is the overall intercept and α10 is the mean coefficient

of xjk. The random effect εjk is the individual-specific error term, δ0k is the

cluster-specific random effect with normal distribution and δ1k is the cluster-

specific random effect for the slope of xjk. The random effects δ0k and δ1k

can also be seen as error terms at the cluster level. Often, their covariances

are not assumed to be zero, while the covariances between them and the

individual error term εjk are assumed to be zero.

Substituting equations (1.7) and (1.8) into (1.9) and rearranging them yields

yjk = (α00 + α01wk + δ0k) + (α10 + α11wk + δ1k)xjk + εjk

⇔ yjk = α00 + α01wk + α10xjk + α11wkxjk + δ0k + (δ1kxjk + εjk).

Depending on how δ1k is interpreted, either the influence of the independent

variable xjk changes in each cluster (δ1k as random effect) or the error in

each cluster depends on the value of xjk (δ1k as error term). Additionally, an

interaction term is automatically created between the independent variables

on the cluster level wk and on the individual level xjk. This it not, however,

an interaction between latent variables.
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Figure 1.3: Example for multilevel data. The salary depends on neuroti-
cism, while the education of each individual influences their relationship.
This multilevel model allows for different means in each cluster (educational
background), resulting in parallel regressions. In addition, the well-known
Simpson’s paradox is shown here, with the overall relationship (black line)
inversed correlated to the relations within each cluster (colored lines). The
figure is inspired by van der Laken (2017).

The multilevel regression model allows different means between groups (see

Figure 1.3) as well as varying influences of explanatory variables across

groups (see Figure 1.4). Figure 1.3 also depicts the well-known Simpsons

paradox, which describes cases in which the overall correlation is in the op-

posite direction as the correlation within each cluster. On the one hand,

this paradox provides a rational for applying multilevel modeling, while on

the other hand, the example warns to not blindly transfer relationships from

one level to another.

Multilevel regression and structural equation models were mostly developed

independently. Nevertheless, over time it became clear that there is equiva-

lence between some models in both frameworks. Curran (2003) and Bauer

(2003), for example, explore how SEM can be used to estimate multilevel

regression models and show its advantages and limitations. In the following

subsection, multilevel Structural Equation Models will be introduced.
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Figure 1.4: This multilevel model allows for different slopes within each
cluster in addition to different means. In this simulated example, salary
depends on interest in research or interest in gaining knowledge, but the
relationship changes depending on the level of education. Persons with lower
education might use their thirst for knowledge to gain more insight and reach
higher levels of responsibility on their job. Persons with high education,
however, might tend to enter careers in academia if their interest in research
is high enough, which could result in a lower income than in the private
sector.

1.3.3 Multilevel Structural Equation Model

There are two main ways to develop Multilevel Structural Equation Models

(ML-SEMs): starting with multilevel regression or starting with structural

equation models (Rabe-Hesketh, Skrondal, & Pickles, 2004). The first ap-

proach will be presented in a subsequent subsection on GLLAMM, while the

second approach is introduced here.

Historical Development

“The general statistical model for multilevel SEM is complicated and, as a

practical matter, was difficult to implement in software programs because

of the complexities in computing separate variance-covariance matrices for
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units of varying sample sizes” (Heck & Thomas, 2015). However, Gold-

stein and McDonald (1988), McDonald and Goldstein (1989), B. Muthén

(1989), and Lee (1990) almost simultaneously published approaches for a

two-level SEM. Later, Liang and Bentler (2004) showed similarities between

these approaches and built an EM estimator, representing a partly5 unifying

framework. Where further developments to these approaches and even al-

ternative approaches exist, most are based on the model presented in Liang

and Bentler (2004), which is why it will be used to briefly introduce the

(two-level) ML-SEM. This will be done using the model built by B. Muthén

(1989).

The Model

First, observations zk (k = 1, . . . , K) on the cluster level are assumed to be

independent and identically distributed and observations yjk (j = 1, . . . , Nk)

on the individual level are assumed to be only independent and identically

distributed within a given cluster. The individual cluster sizes are denoted by

Nk. Second, the individual observations are decomposed into uncorrelated

random vectors yjk = uk + ξjk representing the between- and within-level

effects, respectively. As in McDonald and Goldstein (1989) and B. Muthén

(1989), it is assumed that ξjk and zk are uncorrelated. The observed vari-

ables can therefore be summarized as(
zk

yjk

)
=

(
zk

uk

)
+

(
0

ξjk

)
. (1.10)

This basic decomposition is common to all four of the aforementioned ap-

proaches and facilitates the formulation of the necessary assumptions

(
zk

uk

)
∼ N (µ,ΣB) with µ =

(
µz

µu

)
and ΣB =

(
Σzz Σzu

Σuz Σuu

)
5Although these approaches are not completely mathematically equivalent, they show

significant similarities.
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and

ξjk ∼ N (0,ΣW )

where all variance-covariance matrices are positive definite. Following B. Muthén

(1989), the measurement and structural models can then be written as

yjk = ν + Ληjk + εjk

ηjk = αc + πjk (1.11)

αk = α+ Γzk + δk

where ν is the vector of the overall means, Λ is the parameter matrix, and εjk

is the measurement error vector with mean 0. The latent variable vector η

in turn has a mean that is determined by the overall mean α, the observable

Level 2 variables zk (with coefficient matrix Γ), a random vector δk with

mean 0, and πjk which represents the random individual influence.

Now, the basic decomposition in (1.10) can be rewritten to match this spe-

cific model (
zk

yjk

)
=

(
zk

ν + Λαk

)
+

(
0

Λπjk + εjk

)
(1.12)

and the values of the mean vectors and variance-covariance matrices in the

assumptions can be updated accordingly.

Further Research

It should be noted that in this original formulation only one latent variable

on the within-level is possible. It is also important to mention that this is

only one representation of a ML-SEM and there are several further develop-

ments based on the approaches mentioned earlier (e.g., B. Muthén (1991),

B. Muthén (1994), B. Muthén (1997), Kelava and Brandt (2009), Kelava

and Brandt (2014), and Rockwood (2019)).
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Figure 1.5: Depiction of a multilevel structural equation model. The upper
rectangle shows the relationships among three latent variables on Level 1.
One latent variable has a random intercept αk whose Level 2 relations are
shown in the lower rectangle.

Figure 1.5 provides an illustrative depiction of a more complex multilevel

SEM from Kelava and Brandt (2014). In the upper rectangle – on Level

1 – are three latent variables η11jk, η12jk, and η13jk that are each measured

by three manifest variables yijk (i = 1, . . . , 9). The affiliation to Level 1
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is shown by the description ‘individual j’. The illustration is the same as

a structural equation model without a hierarchical structure, but with an

additional index k and a dot with the label αk. The variable αk stands for

a random variable (as did αk in 1.11), so that the latent variable η13jk has a

(potentially) different intercept in each cluster.

The variable αk is assumed to follow a distribution. In the lower frame are

further relationships with αk that take place on Level 2. The affiliation to

Level 2 is shown by the description ‘cluster k’. The figure shows that in each

cluster the random intercept αk is influenced by two Level 2 latent variables

η21k and η22k that are each measured by 3 Level 2 manifest variables.

Today, multilevel SEM based on SEM (ML-SEM) or multilevel regression

can be estimated with many different software solutions using frequentist

methods, including lavaan (in R) (Rosseel, 2012), Mplus (L. Muthén &

Muthén, 1998-2017), EQS (Bentler, 2006), or Bayesian methods, among

which are Mplus, (Open)Bugs (Thomas, 2005), JAGS (Plummer, 2007), and

Stan (Stan Development Team, 2018). For a more detailed introduction, see

e.g. Heck and Thomas (2015), Lee (2007), and Mehta and Neale (2005).

1.3.4 Multilevel Item Response Theory Models

Multilevel IRT models are especially useful and necessary in educational

contexts to account for clustered structures like students in classes or schools.

Over the years, different approaches have been developed. Adams, Wilson,

and Wu (1997) and Mislevy and Bock (1989), for example, both combined

multilevel regression models with the IRT framework. Later, Fox and Glas

(2001) introduced a broad model that integrated multilevel features into

IRT models in the context of Bayesian estimation. As for SEM, there is also

a connection between multilevel regression models and IRT. Singer (1998)

and Kamata (2001), for example, showed that Rasch models can also be

estimated as multilevel regression models. For a more detailed introduction,

see e.g., Kamata and Vaughn (2010) or Sulis and Toland (2017).
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As several, very similar, approaches exist, a multilevel IRT model will be

presented that is (on paper) straightforward. A multilevel 2-PL model with

random intercept can be built by adding a random intercept uk ∼ N (0, σ2
u)

that varies on the cluster level, so that

P (yijk = 1|ξjk, uk) =
1

1 + exp(−(γiξjk − δi + uk))
(1.13)

where the difficulty δi and the latent ability ξjk are defined as in Equation

(1.4) above. This model has a slightly different parameterization than Fox’s

model, as he – like many others – adds the random intercept as the mean of

the latent ability ξjk:

P (yijk = 1|ξjk, uk) =
1

1 + exp(−(γi(ξjk + uk)− δi))
. (1.14)

The main difference between the two models lies in their interpretation. In

the first model (1.13), the cluster affects the mean solving probability within

each cluster, and in the second model (1.14), the cluster influences the mean

ability of each student within a cluster.

A random slope can be added by letting γi vary on the cluster level as well

by setting γik = βi + uik where uik ∼ N (0, σ2
γi

), which results in

P (yijk = 1|ξjk, uk) =
1

1 + exp(−((βi + uik)ξjk − δi + uk))

=
1

1 + exp(−(βiξjk + uikξjk − δi + uk))

Technically speaking, this model introduces an interaction between latent

variables but not an interaction effect of the latent abilities. The model is

still linear in its predictors.

Even though this model can be built on paper, the existing software only

allows either a random slope or a random intercept to be estimated.

26



1.4 Generalized Linear Latent and Mixed

Models

As mentioned before, multilevel SEM can be built using either multilevel

regression models or structural equation models as a foundation. Thus,

Rabe-Hesketh et al. (2004) extended GLMs to include latent variables. This

created the GLLAMM framework, which combines the previously defined

constructs – SEM, IRT, and multilevel modeling. As a rational for their

approach, Rabe-Hesketh et al. (2004) noted disadvantages of previous ap-

proaches, such as the potential need of different types of balances in ML-

SEM (as presented above) – complete multivariate responses without missing

items, a balanced multilevel design, and balanced covariates with the same

sets of values on every level – and realized that they are not necessary when

using multilevel regression (Skrondal & Rabe-Hesketh, 2004).

1.4.1 The General Model

The framework developed by Rabe-Hesketh et al. (2004) is divided into three

parts – the response model, the structural model for the latent variables, and

the distribution of the latent variables. These three parts will be presented

next before focusing on more detailed descriptions and applications of the

GLLAMM framework. The notations given in Rabe-Hesketh et al. (2004)

will be adjusted to match the notation used in this thesis.

The Response Model The first step in their response model is to define

the linear predictor ν for K levels and Nk latent variables. The first level is

reserved for fixed effects only, so that k = 2, . . . , K, which results in

ν = β′w +
K∑
k=2

Nk∑
n=1

ξ(k)
n λ

(k)′
n z(k)

n . (1.15)
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The elements of w are the explanatory variables or covariates, which are

weighted by the regression coefficients β. The latent variables ξ
(k)
n for each

level are multiplied by a linear combination of exploratory variables z
(k)
n

with factor loadings λ(k)
n (usually λ

(k)
1 is set to 1). In a second step, the

linear predictor ν – as in generalized linear models – is linked to the condi-

tional expectation of the response vector y given the covariates w. Defining

z = (z(2)′ , . . . ,z(K))′ (with z(k) = (z
(k)
1 , . . . ,z

(k)
Nk

)′) and ξ = (ξ(2)′, . . . , ξ(K)′)′

(with ξ(k) = (ξ
(k)
1 , . . . , η

(k)
Nk

)′) the linear predictor can be written as

g(E [y|w, z, ξ]) = ν (1.16)

with a link function g(·). In a final step, a distribution from the exponential

family must be chosen upon which to build the conditional expectation. By

defining different fixed parameters, link functions, and distributions in these

three steps, different models can be built.

Structural Model As in SEM, the structural model is given by

ξ = Γξ +BW + ζ

where Γ and B are N×N and N×Q parameter matrices, respectively. The

predictors of covariates of the latent variable is given as W . The error is as

usually defined as ζ.

As defined above, the vector ξ includes the latent variable vectors on each

level. Therefore, this structural model theoretically allows for dependencies

between latent variables on different levels. However, latent variables cannot

be directly dependent on latent variables at a lower level, and since the model

is a strictly recursive framework, the matrix Γ is an upper triangular matrix.

Distribution of the Latent Variables There are two variables that po-

tentially need a specified distribution – the error term ζ and the latent vari-

able ξ when their independence is assumed. The distribution of ζ should
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be specified if a structural model is defined within this framework. In other

cases, its distribution may follow from the chosen link function. The distri-

bution of the latent variables (within each level) can either be predefined or

estimated, depending in the estimation method used.

1.4.2 IRT in GLLAMM

A formulation of the 1-PL, 2-PL, PCM and rating scale model in the GLLAMM

framework can be found in Zheng and Rabe-Hesketh (2007) as well as in the

gllamm syntax in Stata (StataCorp., 2019). Here, a two-level IRT model

with a two-dimensional latent ability (N2 = 2, N3 = 1) will be presented.

As mentioned above, the first level in the GLLAMM context does not include

latent variables but is reserved for item variables (in the IRT case), so that

a two-level IRT model is a three level GLLAMM model (K = 3).

First, a multilevel IRT model in which the overall mean depends on the

levels as in Equation (1.13) is shown. The response model in (1.15) is then

written as

logit
(
E
[
yijk|ξ(2)

njk, ξ
(3)
k

])
=β′wi +

3∑
k=2

Nk∑
n=1

ξ
(k)
njkλ

(k)′
n z

(k)
ni

=− βi + ξ
(2)
1jkλ

(2)
1i + ξ

(2)
2jkλ

(2)
2i + ξ

(3)
1k (1.17)

with a logit link function g(·) as defined in (1.16), where the conditional

expectation of yijk results in a probability, since yijk is dichotomous. In

the second line of Equation (1.17), the change of the indices in β and λ(2)
n

is achieved by setting the i-th entry on the diagonal of wi and z
(2)
ni to −1

and 1, respectively. Since these are matrices that (in this case) only carry

information about which values of β and λ(2)
n influence the current item, wi

and z
(2)
ni can be left out when introducing the right indices.

The parameter λ
(3)
n is instead set to 1 as is z

(3)
1i , so that ξ

(3)
1k does not depend
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on the item. The structural model is given as the identity with the error

ζ = 0.

In the IRT context, ξ1jk and ξ2jk can now be seen as the individuals’ abilities

with loadings λ1i and λ2i, which are independent of the cluster (no random

slope). The random variable ξ
(3)
1k on the third level is redefined as the random

intercept uk and βi as the difficulty δi. Then, (1.17) can be rewritten in a

classical IRT notation as in Equation (1.13):

logit (E [yijk|ξ1jk, ξ2jk, uk]) =− δi + ξ1jkλ1i + ξ2jkλ2i + uk

⇔ P (yijk|ξ1jk, ξ2jk, uk) =
1

1 + exp (− (ξ1jkλ1i + ξ2jkλ2i + uk − δi))
.

Second, a multilevel IRT model with random latent variable intercepts as

in Equation (1.14) is shown. The GLLAMM model has again three levels,

however the third level is introduced differently. The response model in

(1.15) is written as

logit
(
E
(
yijk|ξ(2)

njk, ξ
(3)
k

))
=β′wi +

2∑
k=2

Nk∑
k=1

ξ
(k)
njkλ

(k)′
n z

(k)
ni

=− βi + ξ
(2)
1jkλ

(2)
1i + ξ

(2)
2jkλ

(2)
2i (1.18)

with N2 = 2, a logit link function g(·), and wi and z
(2)
ni defined as for

Equation (1.17). The third level is introduced by defining the structural

model as

ξ
(2)
njk =ξ

(3)
nk + ζ

(2)
njk (1.19)

with N3 = 2 where the parameter matrix B is set to 0 and the matrix Γ to

I2. Substituting (1.19) into (1.18) results in

logit
(
E
[
yijk|ξ(2)

njk, ξ
(3)
nk

])
=βi +

(
ξ

(3)
1k + ζ

(2)
1jk

)
λ

(2)
1i +

(
ξ

(3)
2k + ζ

(2)
2jk

)
λ

(2)
2i .

(1.20)
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The redefinition of the parameters λ
(2)
ni (for n = 1, 2) and βi to match the

IRT context is done as before. The random variables, however, have to be

defined differently. The Level 2 error terms ζ
(2)
1jk and ζ

(2)
2jk now can be seen

as the variation between individuals and are redefined as the individuals’

abilities ξ1jk and ξ2jk, respectively. The random intercepts u1k and u2k, on

the other hand, are the re-definitions of ξ
(3)
1k and ξ

(3)
2k , respectively.

Then, (1.20) can be rewritten in a classical IRT notation as in Equation

(1.14):

logit (E [yijk|ξ1jk, ξ2jk, u1k, u2k])

= −δi + (ξ1jk + σ1k)λ1i + (ξ2jk + σ2k)λ2i

⇔P (yijk|ξ1jk, ξ2jk, u1k, u2k)

=
1

1 + exp (− ((ξ1jk + u1k)λ1i + (ξ2jk + u2k)λ2i − δi))

where δi is the difficulty of an item and λni (for n = 1, 2) are the discrim-

ination parameters. This model is depicted in Figure 1.6 from the point of

view of SEM.

ξ1

x2x1 x3

ε1 ε2 ε3

ξ2

x5x4 x6

ε4 ε5 ε6

u1k u2k

unit j

cluster k

Figure 1.6: Path diagram of a two-level IRT model with two latent variables
at the unit level. The means of the latent variables η1 and η2 depend on the
random intercepts u1k and u2k at the cluster level, respectively, which are
assumed to be correlated.
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Note that within the GLLAMM framework it is not possible to build an IRT

model that includes nonlinear latent variable effects, but as was shown here,

other IRT models can be described to a certain extent.

1.4.3 IRT in SEM

As described above, the GLLAMM approach is a combination of SEM and

GLM. It also possible to estimate some IRT models within SEM alone (e.g.,

Takane and de Leeuw (1987)), which will now be demonstrated using the

example of the 2PL model

P (yij = 1|ξj) =
1

1 + exp(−(γi(ξj − δi))
(1.21)

as defined in Equation (1.4), with ξj being the latent ability of a person

j = 1, . . . , J , γi describing the item discrimination, and δi the difficulty of

an item. The measurement model is defined as in Equation (1.1)

X = Λξ + ε (1.22)

with the manifest variables being denoted by X = (X1, X2, . . . , Xm)′, the

latent variable by ξ with Λ as its factor loading matrix, and ε as the vector

of measurement errors. A structural model needs to be specified along with

a vector of intercepts τ . The latent variable ξ is set to be one-dimensional.

To show the equivalence of the 2PL model and the corresponding SEM

measurement model, first, dichotomous items must be included in the SEM

framework. In order to do so, Christoffersson (1975) assumed that the di-

chotomous observed variable yij actually follows an underlying logistic dis-

tribution and can be described as a metric variable y∗ij with distribution

parameters α = 0 and β = σ2. A threshold τi (not denoting the intercept of

the measurement model in this context) is estimated for every item, which

determines when y∗ij takes the value 0 or 16.

6In the case of polytomous items, this idea is extended to include more thresholds.
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Second, the relationship between the parameters in both approaches needs

to be clarified. Since different parameterizations can be chosen in both

approaches, here the focus is on models that are identified by fixing one factor

loading to 1 and the parameter σ2 of the underlying logistically distributed

observed variable y∗ij to 1.

For a detailed description of the conversions for different parameterizations,

see Kamata and Bauer (2008). In essence, the matrix of loadings Λ in (1.22)

corresponds to the vector of discriminations γ in (1.21) and the thresholds τij

correspond to the difficulties δ in (1.21). With the chosen parameterization,

the following transformations result in the parameters in IRT notation:

γi =
λi√

1− λ2
i

δi =
τi
λi
.

If the 2PL model is written to account for multidimensional latent variables

as in (1.5) with the exponent γiξj − δ∗i , the difficulty δ∗i is instead given by
τi√
1−λ2i

.

A more intuitive way would be to assume that y∗ij ∼ N (0, σ2), but that

would correspond to a probit link (in GLM) and would result in the 2PL

ogive model instead. However, the 2PL IRT model and the 2PL normal

ogive model are closely related. The 2PL IRT model can approximate the

normal ogive model by multiplying the exponent by 1.702 (see e.g., Camilli

(1994)).

In both cases, estimation is usually done using MLE, which assumes nor-

mality of the continuous underlying y∗ij. A more robust approach was devel-

oped by B. Muthén (1992) and B. Muthén (1997) based on Weighted Least

Square (WLS) estimation that circumvents the normality assumption of y∗ij.

The approach is called Weighted Least Square Mean and Variance adjusted

(WLSMV) estimator in Mplus (L. Muthén & Muthén, 1998-2017) and is also

implemented in lavaan (Rosseel, 2012). It will be discussed in Section 3.1.1.
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1.5 Estimation Techniques

In the previous sections, several models and approaches to include latent

variables were introduced. The variety of estimators for these models is

immense. Some of these will be briefly introduced here, with a focus on

appropriate estimators for IRT models. Broader introductions to estimation

procedures can be found in Bollen (1989) and Reise and Reviecki (2015).

1.5.1 Joint Maximum Likelihood Estimation

Maximum Likelihood Estimation is one of the most frequently used estima-

tion procedures in all disciplines. MLE procedures estimate parameters of a

probability distribution by maximizing a likelihood in which observed data

is most probable under the assumption of a specific model.

One such MLE approach is Joint Maximum Likelihood (JML) estimation,

which “is one of the earliest approaches to fitting item response theory (IRT)

models. This procedure treats both the item and person parameters as

unknown but fixed model parameters and estimates them simultaneously

by solving an optimization problem. However, the JML estimator is known

to be asymptotically inconsistent for many IRT models, when the sample

size goes to infinity and the number of items keeps fixed. Consequently,

in the psychometrics literature, this estimator is less preferred to the MML

estimator” (Y. Chen, Li, & Zhang, 2017). Y. Chen et al. (2017) go on to

re-investigate the performance of JML in high-dimensional exploratory item

factor analysis and show that their adjusted estimator performs similarly to

Marginal Maximum Likelihood (MML) estimators when the dimensionality

of the latent variable is high enough.
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1.5.2 Marginal Maximum Likelihood Estimation

MML is another approach to estimate models, in which latent variables are

present – as in SEM or IRT. As the name suggests the latent variables

are marginalized out of the likelihood by integrating over them, given their

assumed distribution. Assuming a 2PL model as in Equation (1.4), the

likelihood – usually in logarithmic form – can be written as

logL(γ, δ|Y, ξ)

=
J∑
j=1

I∑
i=1

yij logP (yij = 1|γ, δ, ξj) + (1− yij) logP (yij = 0|γ, δ, ξj).

In many cases, a solution can be found by deriving the log-likelihood and

finding its roots for the parameters. To achieve maximum likelihood solu-

tions more efficiently when missing data are present Dempster, Laird, and

Rubin (1977) formulated the EM algorithm based on prior developments

(e.g., Hartley (1958), Brown (1974), and T. Chen and Fienberg (1976)).

They showed that latent variables and parameters could be seen as missing

data in this context, which led to a variety of research on the EM. Today,

the EM is a frequently used maximum likelihood solution and it will be

introduced in more detail in Section 1.6

1.5.3 Weighted Least Square Estimation

One possible disadvantage of likelihood approaches is the assumption of a

distribution (usually, normality is assumed – especially in the social sciences)

of the latent variables and – in the SEM context – of the underlying distri-

bution of the dichotomous observed variables. B. Muthén (1984) developed

a Weighted Least Square estimator that minimizes the squared difference

between the observed variables and the predicted values given by the model.

The weight matrix is a positive definite matrix which is the estimated asymp-

totic variance-covariance matrix of the polychoric correlation and threshold
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estimates. However, normality is still assumed in this approach. To be ro-

bust against violations of the normality assumption and thus overcome the

limitations of MLE and the full WLS approach, when dichotomous vari-

ables are used, a robust weighted least square estimation was developed by

B. Muthén (1992). In this approach, the weight function is only diagonal and

does not need to be positive definite, which improves estimation compared

to the WLS (Li, 2015).

1.5.4 Markov Chain Monte Carlo Methods

A different approach to the aforementioned estimation methods can be de-

vised within the framework of Bayesian statistics. In Bayesian analysis, prior

information about the parameters f(ω) from e.g., earlier experiments or a

theoretical assessment, as well as the likelihood of the data given the pa-

rameters f(Y |ω) are used to gain knowledge about the posterior density of

the parameters f(ω|Y ) given the data. The relationship between the three

densities can be described as

f(ω|Y ) ∝ f(Y |ω)f(ω). (1.23)

A frequently applied method are Markov Chain Monte Carlo (MCMC) algo-

rithms. “MCMC uses the proportionality in Equation (1.23) to evaluate the

relative likelihoods of parameter estimates. Ultimately, the goal of MCMC is

to reproduce the f(ω|Y ) distribution, which often cannot be determined an-

alytically. Therefore, the characteristics of the distributions are determined

by sampling enough observations from the posterior” (Natesan, Nandaku-

mar, Minka, & Rubright, 2016).

The basic idea of MCMC is to construct a Markov chain7 whose station-

ary distribution8 corresponds to the desired distribution. A random walk

7A Markov chain simulates a sequence of events or states. The probability of each
event depends only on the previous event(s). The shift from one neighboring event to
another is called a step.

8A vector giving the probabilities of ending a sequence of steps at any of the events
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through the Markov chain with a fixed number of steps is simulated with

a given number of repetitions. Depending on the number of steps and rep-

etitions, the probabilities of ending up in each state converge towards the

stationary / desired distribution.

MCMC algorithms can differ, for example, in the way the Markov chain is

built. Gibbs sampling algorithms (Geman & Geman, 1984), for instance,

create a chain in which the probability of the next sample is calculated

as being conditional on the current sample, whereas Metropolis-Hastings

algorithms can be used when the probability of the next sample cannot

be calculated directly – as Metropolis-Hastings is not conditional on the

ability to sample from the posterior probability. The number of different

application of MCMC methods to approximate an object is extensive and

cannot be covered in its entirety here.

The Gibbs sampler can also be seen as a bayesian alternative to the EM

algorithm. As will be discussed in the next section, the EM encompasses

two steps – the expectation step and the maximization step – as does the

Gibbs sampler, with the difference that the Gibbs sampler does not maximize

over the posterior distributions (as the EM does) but rather samples datasets

from the posterior distribution to estimate the parameters.

A more detailed introduction can be found in e.g., Lee (2007) or Lambert

(2018).

1.5.5 Metropolis-Hastings Robbins-Monro Algorithm

Another method to obtain ML estimates is the Metropolis-Hastings Robbins-

Monro (MHRM) algorithm Cai (2008). Like the EM algorithm, it is based

on Fisher’s Identity, which posits a connection between the observed data

in the Markov chain is called a stationary distribution if multiplying this vector with
the matrix representing the transition probabilities of each event to a neighboring event
results again in the same vector.
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log-likelihood and the complete data log-likelihood:

∂ logP (yj|ω)

∂ω
=

∫
∂P (yj, ξ|ω)

∂ω
P (ξ|yj,ω)dξ (1.24)

where yi is the observed variable, ξ is the latent variable and ω is the parame-

ter vector. Fisher’s Identity will be discussed in more detail in Appendix A.1.

The MHRM uses the MCMC method “Metropolis-Hastings” to draw val-

ues for the latent variables from the posterior distribution. Subsequently,

these values are used to approximate the complete data gradient as given

in Fisher’s identity (1.24). Finally, the parameter estimates are updated in

each iteration using a so-called Robbins-Monro update, finalizing the name

of the approach. A comprehensive introduction to the MHRM is given in

Cai and Thissen (2015).

1.6 The Expectation-Maximization Algorithm

In the following section, the EM will be introduced in more detail, as it

will subsequently be used as basis to derive the estimation procedure for

a multilevel IRT model with nonlinear latent variable effects. It will be

reasoned why the EM was chosen over other possible estimation approaches

based on the current literature. The EM will be introduced in general terms,

followed by a technical description.

1.6.1 Comparison of the EM Algorithm to Other Ap-

proaches

Naturally, many studies have compared estimation methods with different

latent variable models in different circumstances. Arguably, the three most

established estimation methods are the WLSMV for SEM models with or-

dinal data and the two MLE approaches MHRM and EM in the context of
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IRT models. Han and Paek (2014) compared implementations of the MHRM

algorithm and of the EM in the software Mplus (L. Muthén & Muthén, 1998-

2017), flexMIRT Cai (2017), and IRTPRO (Cai, Thissen, & du Toit, 2015).

They observed that all methods recovered the parameters of multivariate

two-parameter IRT model with little bias. Kuo and Sheng (2016) analyzed

the MHRM and an EM implementation from IRTPRO. They could replicate

the finding that both yielded a similarly low bias when recovering the pa-

rameters in a graded response IRT model.

Cai (2010) compared the EM algorithm and his MHRM, finding that they

achieve almost equal results but that the MHRM becomes more efficient as

more dimensions of the latent variable are considered in the model.

Nevertheless, the studies by Cai (2010), Han and Paek (2014), and Kuo and

Sheng (2016) might suggest that the EM with Gauss-Hermite quadrature

has a slightly lower bias than the MHRM implementation, especially in small

datasets and as the correlation between the latent variables ξ rises.

Sims (2017) conducted a simulation study comparing MHRM, EM, and

WLSMV implemented in Mplus and IRTPRO. She could show that all three

methods recovered difficulty parameters and loadings of several multidimen-

sional IRT models well, even though the variance of the EM estimates was

not stable with increasing sample size. Li (2015) found that ML could better

recover interfactor correlations than the WLSMV.

Overall, EM, MHRM, and WLSMV have been shown to perform very simi-

larly in recovering IRT parameters. Although the WLSMV performs equally

well as EM and MHRM, it was developed in the context of SEM, which is

why it was not chosen as a foundation for this thesis. Instead, the EM was

chosen over the MHRM even though both would be valid options. Further

explanations are given in Section 2.2.
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1.6.2 General Introduction to the EM Algorithm

The term “EM algorithm” was first introduced by Dempster et al. (1977),

who summarized the already existing literature (e.g., Hartley (1958), Brown

(1974), and T. Chen and Fienberg (1976)) and provided a unifying frame-

work resulting in more interest and research on the approach. The EM

became a standard tool for problems involving missing data, which are in-

terpreted very broadly in the EM context. Parameters and latent variables,

for example, can be described as missing data. This stems from the property

that – mathematically – missing data and latent variables are formulated as

random variables that follow a certain distribution, which in turn can be in-

formed by the observed data. The EM exploits the interpretation as random

variable, resulting in some computational advantages.

In the context of IRT, as in model (1.5), the data can be divided into the ob-

served data y and the unobserved ability ξ. The latter can be seen as missing

values for which only the distribution is assumed – often given as N (0, 1).

Taking the information of the observed data into account, the expectation

from the ability conditional on the observed data – the posterior probability

– is developed. The posterior probability could be used to calculate factor

scores9 for each individual, and treat them as observed variables in the es-

timation of the model parameters. Instead of determining the factor scores,

however, the expectation of the complete data (y, ξ) likelihood conditional

on the posterior probability of the ability is analyzed in the EM. Based on

this expected likelihood, the item parameters are estimated using maximum

likelihood estimation.

This procedure will yield the same results as a maximum likelihood esti-

mation based on the observed likelihood. However, one advantage of the

EM in the IRT context is that it takes further information about the latent

variables into account by considering the posterior probability. Another ad-

9Shortly put, factor scores are values that represent relative spacing of an object /
individual on the latent factor. They can be seen as realizations of the random variable
/ latent variable.
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vantage is that the conditional complete data likelihood is computationally

easier to handle than the observed likelihood. In general, the EM provides

a framework for easily handling missing data. For models whose density is

from the exponential family, the EM further facilitates the estimation by

reducing the needed data to the data’s sufficient statistic (Bock & Aitkin,

1981; Dempster et al., 1977; Schilling & Bock, 2005).

1.6.3 Technical Introduction to the EM Algorithm

The EM algorithm is a framework providing tools to obtain MML estimates.

It needs to be deduced for each model individually. In this section, the

general idea of the EM is technically introduced, partly following Dempster

et al. (1977).

Initial Definitions

Let Y be the observed data from a sample space Y and ξ the missing data

from a sample space Ξ, so that X = (Y , ξ) is the complete data from

the sample space (Y ,Ξ). The unobserved data can, for example, describe

latent variables (as in factor scores estimation (e.g., Bartlett (1935), Thur-

stone (1935)), parameters of a distribution (e.g., the variance and mean of

a normal distribution) or parameters of a model (e.g., item difficulty, item

discrimination and item guessing parameters (e.g., Bock and Aitkin (1981),

Harwell, Baker, and Zwarts (1988)).

In this thesis, latent variables ξ ∈ Rn, e.g., latent abilities of test-takers,

are present in the model, which can be interpreted as missing data with a

distribution fξ(ξ|ω∗) which depends on distribution parameters ω∗. The

unobserved latent variables influence the observed data y ∈ 0, 1J×I , e.g.,

responses to test items. Here J is the number of test-taker, n is the number

of latent abilities and I is the number of items administered in the test. The

complete data X = (Y , ξ) are assumed to follow a distributional family

41



f(X|ω) depending on parameters ω (including ω∗) in the parameter space

Ω10. The observed data are defined to be drawn from a distributional family

g(Y |ω). The observed (incomplete) data distribution can then be written

as

g(Y |ω) =

∫
R
f(X|ω)dξ =

∫
R
g(Y |ξ,ω)f(ξ|ω)dξ. (1.25)

The Objective Function

As in maximum likelihood estimation, the goal is to choose those ω that

maximize the observed likelihood, which is usually written in logarithmic

form

L(ω) = log g(Y |ω).

Because direct optimization can be complicated, however, Dempster et al.

(1977) introduced an alternative. First, they introduce the posterior proba-

bility of the missing data, given the observed data:

k(ξ|Y ,ω) =
f(ξ,Y |ω)

g(Y |ω)

so that the observed likelihood can be rewritten as

L(ω) = log(f(ξ,Y |ω))− log(k(ξ|Y ,ω)). (1.26)

The expectations of the complete data log-likelihood f(ξ,Y |ω) and of the

posterior probability k(ξ|Y ,ω), each conditional on the observed data Y

and on a different realization of the parameters ω′, can be defined as

Q(ω,ω′) = E [log(f(ξ,Y |ω))|Y ,ω′] (1.27)

H(ω,ω′) = E [log(k(ξ|Y ,ω))|Y ,ω′] .

10Not to be mistaken for the (bold) coefficient matrix Ω of the nonlinear latent variable
effects. The correct interpretation will always be clear in the context.
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Building the expectancy on both sides of Equation (1.26), again conditional

on the observed data Y and on a different realization of the parameters ω′,

then results in

E [L(ω)|Y ,ω′] = E [log(f(ξ,Y |ω))− log(k(ξ|Y ,ω))|Y ,ω′]

⇐⇒ E [log(g(Y |ω))|Y ,ω′] = Q(ω,ω′)−H(ω,ω′)

⇐⇒ log(g(Y |ω′)) = L(ω′) = Q(ω,ω′)−H(ω,ω′) (1.28)

Optimization of the Complete Data Likelihood

The heuristic idea of the EM is to maximize Q(ω,ω′) instead of L(ω) in

an iterative process. Let ω(p) be the estimates of the current iteration p.

First, the function Q(ω,ω(p)) is computed for fixed ω(p), which results in

a function that depends only on the unknown ω. In an application that

could mean that those terms in Q(ω,ω(p)) are determined that depend only

on the current estimates ω(p). One example could be the calculation of the

posterior probability of the missing data ξ given the observed data Y and

the current estimates of the parameters ω(p):

P (ξ|Y ,ω(p)) =
f(ξ,Y |ω(p))

g(Y |ω(p))

=
g(Y |ξ,ω(p))P (ξ|ω(p))∫
g(Y |ξ,ω(p))P (ξ|ω(p))dξ

.

In fact, the function Q(ω,ω(p)) in (1.27) is integrated with respect to this

posterior probability.

Second, Q(ω,ω(p)) is maximized to find

ω(p+1) = arg max
ω

E
[
log(f(ξ,Y |ω))|Y ,ω(p)

]
.

For the expectations of the the posterior probability k(ξ|Y ,ω) conditional
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on the observed data Y and on a different realization of the parameters ω′

H(ω,ω′) ≤ H(ω,ω) (1.29)

holds for any pair of (ω,ω′). The proof will follow in Section 2.3.3 in Equa-

tion (2.14). Applying (1.29), it can be proven that the maximization of

Q(ω,ω(p)) also maximizes L(ω):

L(ω(p)) = Q(ω,ω(p))−H(ω,ω(p))

≤ Q(ω(p+1),ω(p))−H(ω(p+1),ω(p))

= L(ω(p+1)).

In summary, the EM has two steps

1. Expectation-step: Calculate the conditional expectation Q(ω,ω(p))

2. Maximization-step: Find ω(p+1) = arg max
ω

E
[
log(f(ξ,Y |ω))|Y ,ω(p)

]
that are iterated until convergence occurs. Naturally, starting values ω(0)

need to be chosen before the first iteration.
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Chapter 2

A Multilevel IRT Model with

Nonlinear Latent Effects

In the previous chapter, latent variable models were introduced as well as

extensions to multivariate latent variables, nonlinear latent variable effects,

and multilevel structures. Estimation methods that allow to attain the un-

known parameters were discussed and different latent variable frameworks

containing some of these extensions were reviewed. Unfortunately, there

seems to be no framework capable yet of simultaneously estimating an IRT

model containing nonlinear latent variable effects and a multilevel structure.

In this chapter, these approaches are merged to first define the Multilevel

IRT with Nonlinear Latent variable Effects Model (MINoLEM). An esti-

mation procedure for this model will be presented by deriving the likelihood

function of an EM algorithm and its derivative. Necessary implementation

steps will be established, including the search for appropriate starting values

for the optimization.
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2.1 Definition of the Model

The model is based on the 2PL IRT model with multivariate latent variables

within the IRT framework (1.5). Alternatively, it can also be seen as an

extension of the GLLAMM framework to include nonlinear latent variable

effects in the linear predictor in Equation (1.15).

A multilevel structure is considered by adding a random intercept uk that

follows a normal distribution N (0, σ2). This random intercept changes the

complete exponent by a different constant in every cluster rather than chang-

ing the mean abilities in every cluster as in some multilevel models (see e.g.,

Fox’s model in Equation (1.14)). This also influences the definition of the

ability ξjk, which is a multidimensional (n× 1) vector of person parameters

or latent abilities (e.g., reading ability, math ability, listening ability). These

belong to a person j (j = 1, ..., Jk) from a cluster k (k = 1, ..., K), and follow

a multivariate normal distribution N (0,Σξ).

Finally, an interaction / quadratic effect of the latent variable is included in

the model by adding ξ′jkΩikξjk into the exponent. The parameter matrix

Ωi is a (n × n) lower triangular matrix indicating the loadings for every

interaction / quadratic effect of the latent ability ξjk.

The probability of answering a dichotomous item correctly is then given by

P (Yijk = 1|ω, ξjk, uk) =
1

1 + exp(−(ξ′jkγi + ξ′jkΩiξjk − δi + uk))
(2.1)

with

ω = (γ1, . . . , γI ,Ω
11
1 , . . . ,Ω

nn
1 , . . . ,Ω11

I , . . . ,Ω
nn
I , δ1, . . . , δI ,Σξ, σ

2). (2.2)

The parameter vector ω includes the difficulties δi for every item, the coeffi-

cients γi and Ωi of the latent variables for every item,the variance-covariance

matrix Σξ of the latent variables, and the variance σ2 of the random intercept

uk.
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2.2 The Choice of Framework and Estima-

tion Method

In this section, the choice of the EM algorithm as estimation method will be

explained. First, the choice of IRT as framework will be discussed.

The model (2.1) could also have been framed within the SEM context. How-

ever, this would have required essentially three adjustments to the general

model – dichotomous items, nonlinear latent variable effects, and a multi-

level structure. Therefore, it seemed more straightforward to circumvent the

transformation of continuous variables to binary variables and choose IRT

directly.

Nevertheless, the LMS approach by Klein and Moosbrugger (2000) gave

some insights into handling nonlinearity. They tackled the well-known non-

linear model by Kenny and Judd (1984) and added possible interactions and

quadratic effects to their model. Furthermore and more importantly, they

estimated the model using an EM algorithm. The advantage of framing

the problem with IRT instead of SEM is that the nonnormal distribution

resulting from latent interactions or quadratic effects does not need to be

taken into account as it does in LMS. It is possible to directly use numeri-

cal integration if a normal distribution is assumed for each individual latent

variable.

Additional understanding stems from the GLLAMM by Rabe-Hesketh et al.

(2004), whose very broad framework already incorporates dichotomous data

and multilevel structures. However, possible models do not include nonlinear

latent variable effects. Rizopoulos and Moustaki (2008) introduced nonlinear

latent variable effects within the similar GLLVM framework by Bartholomew

et al. (2011). They base their approach on models that can be represented

by the exponential family, which is, unfortunately, not straightforward for

the MINoLEM. The more promising approach is the adoption of IRT and

instead being inspired by GLLAMM, GLLVM, and LMS.
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The MHRM algorithm (Cai, 2008) presented earlier is a valid option for

estimating a multilevel IRT model with nonlinear latent variable effects.

As mentioned before, simulation studies (e.g., Cai (2010), Han and Paek

(2014), and Kuo and Sheng (2016)) show that both the EM with Gauss-

Hermite quadrature and the MHRM produce comparably small bias and

RMSE. However, these studies also suggest that the EM with GHQ has

a slightly lower bias than the MHRM implementation, especially in small

datasets and as the correlation between the latent variables ξ rises. The

inclusion of nonlinear latent variable effects further complicates an already

complex multilevel model. Therefore, a decision was made in favor of a

potentially more accurate estimation method, at the cost of a slower per-

formance, compared to the one that the MHRM would have undoubtedly

provided. Nonetheless, the MHRM algorithm should be investigated in fu-

ture research.

2.3 Deduction of the Estimation Procedure

In this section, the objective function for estimating all parameters from

Model (2.1) using the EM will be developed. First, the basic theoretical

EM is deduced. In order to better understand the derivation and be able

to implement and apply it, a different – more intuitive – perspective of the

EM algorithm will be presented, which was first introduced by Neal and

Hinton (1998) and revised by Dellaert (2002). They deduced the EM as

an algorithm that iteratively maximizes a lower bound of the observed data

likelihood.

First, the EM will be defined for a single-level model with nonlinear latent

variable effects by creating a lower bound to the observed data log-likelihood.

This perspective will then be compared to Dempster et al. (1977), as dis-

cussed in Section 1.6. Finally, the extension to the complete multilevel IRT

model with nonlinear effects is presented.
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2.3.1 The EM Objective Function

In Section 1.6, the general objective function of the EM from Dempster et

al. (1977) for a model without hierarchical structure was given in (1.27) as

Q(ω,ω′) = E [log(f(Y , ξ|ω))|Y ,ω′] .

The parameters in ω are estimated conditional on the fixed parameter values

in ω′. The Model (2.1) that needs to be estimated now, is a multilevel model

with two kinds of latent variables (ξjk belonging to the individuals and the

random intercept uk), which can be interpreted as missing values since they

cannot be observed directly. For Model (2.1) the general objective function

is then given as

Q(ω,ω′) =E [log(f(Y , ξ, u|ω))|Y ,ω′]

=

∫
u

∫
ξ

log(f(Y , ξ, u|ω))P (ξ|Y ,ω′)P (u|Y ,ω′)dξdu

=

∫
u

P (u|Y ,ω′)
[∫

ξ

log(f(Y , ξ, u|ω))P (ξ|Y ,ω′)dξ
]
du.

However, it conceals important aspects that must be understood to actu-

ally implement the estimation procedure. In the following sections, the EM

is fully deduced from a different perspective, resulting in the same basic

formula. However, the new procedure will be more detailed, give more infor-

mation on the inner workings of the EM and provide insight into numerical

aspects that need to be taken into account.

2.3.2 EM for an IRT Model with Nonlinear Latent

Variable Effects

The overall goal is the estimation of Model (2.1). For better understanding,

the deduction is first conducted for a model without a random intercept

where only one cluster is present.
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The Log-Likelihood

A straightforward way would be to use MML and maximize the likelihood

/ posterior probability L(ω̃|Y ) of the reduced parameter vector ω̃ without

the variance σ2 of the random intercept

ω̃ = (γ1, . . . , γI ,Ω
11
1 , . . . ,Ω

nn
1 , . . . ,Ω11

I , . . . ,Ω
nn
I , δ1, . . . , δI ,Σξ)

given the data Y . Mathematically, however, a likelihood function of the

parameters can be written as P (Y |ω̃), where the data Y are fixed and the

parameters ω̃ are free (in contrast to a probability where the parameters are

fixed and the data are free).

Therefore, here it is given as the distribution of the observed variables given

the parameters, which can be rewritten using the complete data likelihood.

To facilitate the calculation, the logarithm of the likelihood is taken, which

results in

arg max
ω̃∈Ω

logP (Y |ω̃) = arg max
ω̃∈Ω

log
∑
ξ∈Ξ

P (Y , ξ|ω̃). (2.3)

A Lower Bound

The integration over the ability ξ is potentially multidimensional with the

same dimensionality as ξ. Unfortunately, the logarithm of a sum / integral

is numerically not helpful. However, using Jensen’s inequality, the logarithm

can be brought into the sum

logP (Y |ω̃) = log
∑
ξ∈Ξ

P (Y , ξ|ω̃)

= log
∑
ξ∈Ξ

f(ξ|ω̃)
P (Y , ξ|ω̃)

f(ξ|ω̃)

≥
∑
ξ∈Ξ

f(ξ|ω̃) log
P (Y , ξ|ω̃)

f(ξ|ω̃)
(2.4)
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where f(ξ|ω̃) is an arbitrary probability distribution of ξ depending on the

same parameters as the likelihood. This simultaneously creates a lower

bound to the log-likelihood of the observed data. The EM now uses the

best possible lower bound and maximizes it to approximate logP (Y |ω̃). In

other words, it uses that density f(ξ|ω̃) that maximizes the lower bound,

which is then in turn maximized. Dempster et al. (1977) showed that this

procedure converges to a maximum of logP (Y |ω̃) if the maximization of

the lower bound is iterated by substituting the current estimates into the

density f(ξ|ω̃).

The Optimal Lower Bound

To achieve the optimal lower bound, the function (2.4) will be maximized

over f(ξ|ω̃). To assure that the density f(ξ|ω̃) stays normalized, a Lagrange

multiplier is added to the objective function, which results in

Gλ(f) =
∑
ξ∈Ξ

f(ξ|ω̃) logP (Y , ξ|ω̃)−
∑
ξ∈Ξ

f(ξ|ω̃) log f(ξ|ω̃)

+ λ

(
1−

∑
ξ∈Ξ

f(ξ|ω̃)

)
.

Its first partial derivative with respect to f(ξ|ω̃) is found using the functional

derivative ∑
ξ∈Ξ

∂Gλ

∂f(ξ|ω̃)
φ(ξ) =

[
d

dε
Gλ(f(ξ|ω̃) + εφ(ξ))

]
ε=0

=

[
d

dε

∑
ξ∈Ξ

(f(ξ|ω̃) + εφ(ξ)) logP (Y , ξ|ω̃)

−
∑
ξ∈Ξ

(f(ξ|ω̃) + εφ(ξ)) log(f(ξ|ω̃) + εφ(ξ))

+λ

(
1−

∑
ξ∈Ξ

(f(ξ|ω̃) + εφ(ξ))

)]
ε=0
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=
∑
ξ∈Ξ

φ(ξ) logP (Y , ξ|ω̃)−
∑
ξ∈Ξ

(1 + log(f(ξ|ω̃))φ(ξ) +
∑
ξ∈Ξ

(−λφ(ξ))

=
∑
ξ∈Ξ

(logP (Y , ξ|ω̃)− log(f(ξ|ω̃))− 1− λ)φ(ξ)

which results in

∂Gλ

∂f(ξ|ω̃)
= logP (Y , ξ|ω̃)− log(f(ξ|ω̃))− 1− λ. (2.5)

Setting Equation (2.5) equal to zero1 yields

logP (Y , ξ|ω̃)− log(f(ξ|ω̃))− 1− λ !
= 0 (2.6)

⇔f(ξ|ω̃) =
P (Y , ξ|ω̃)

exp (1 + λ)
. (2.7)

The normalization term still needs to be defined by setting the first partial

derivative of Gλ with respect to λ equal to zero and solving for exp (1 + λ).

It trivially results in

∂Gλ

∂λ
= 1−

∑
ξ∈Ξ

f(ξ|ω̃)
!

= 0

⇔ 1 =
∑
ξ∈Ξ

f(ξ|ω̃)
(2.7)
=

1

exp (1 + λ)

∑
ξ∈Ξ

P (Y , ξ|ω̃)

⇔ exp (1 + λ) =
∑
ξ∈Ξ

P (Y , ξ|ω̃). (2.8)

Substituting (2.8) into (2.7) results in the density function

f(ξ|ω̃) =
P (Y , ξ|ω̃)∑

ξ∈Ξ

P (Y , ξ|ω̃)
=
P (Y |ξ, ω̃)P (ξ|Σξ)

P (Y |ω̃)
= P (ξ|Y , ω̃) (2.9)

that achieves the optimal lower bound in (2.4). The optimal density function

(2.9) can be described as the posterior distribution of the latent variable ξ.

Since it was earlier assumed that ξ ∼ N (0,Σξ), the parameter vector ω̃ in

P (ξ|ω̃) was substituted with the only relevant parameters Σξ.

1Setting an equation equal to a different term is written as
!
= in mathematical contexts.
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The reevaluation of the inequality (2.4) for f(ξ|ω̃) = P (ξ|Y , ω̃) = P (Y ,ξ|ω̃)
P (Y |ω̃)

∑
ξ∈Ξ

f(ξ|ω̃) log
P (Y , ξ|ω̃)

f(ξ|ω̃)
=
∑
ξ∈Ξ

P (Y , ξ|ω̃)

P (Y |ω̃)
log

P (Y , ξ|ω̃)
P (Y ,ξ|ω̃)
P (Y |ω̃)

=
∑
ξ∈Ξ

P (Y , ξ|ω̃)

P (Y |ω̃)
logP (Y |ω̃)

= logP (Y |ω̃) (2.10)

shows that in Jensen’s Inequality, even equality to the log-likelihood of the

observed parameters is achieved when the posterior likelihood of the missing

data is used – with the same set of parameters ω̃ in both the posterior and

the likelihood.

The optimal lower bound will be denoted by

B(ω̃, ω̃(p)) =
∑
ξ∈Ξ

P (ξ|Y , ω̃(p)) log
P (Y , ξ|ω̃)

P (ξ|Y , ω̃(p))
(2.11)

where different sets of parameters – ω̃(p) and ω̃ – are included. The vector

ω̃(p) are the parameters of iteration p which are fixed in the posterior proba-

bility of the latent variables. This essentially corresponds to the expectation

step since the current values of the missing data are estimated using their

conditional expectation given the data and the current parameter estimates.

The maximization step is given by maximizing B(ω̃, ω̃(p)) over the unknown

ω̃ which only vary in the complete likelihood function P (Y , ξ|ω̃).

Visualization of the Lower Bound

The more intuitive and visual aspect of this approach becomes clearer by

observing that the optimization to obtain parameters ω̃(p+1) is initiated using

the starting values ω̃(p). This in turn results in

B(ω̃(p), ω̃(p)) = logP (Y |ω̃(p))
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so that B(ω̃(p), ω̃(p)) builds a tangent to logP (Y |ω̃(p)) for the current pa-

rameter estimates. After the optimization, B(ω̃(p+1), ω̃(p+1)) again builds a

tangent to logP (Y |ω̃(p+1)) in ω̃(p+1).

In other words, the current objective function builds a tangent to the ob-

served data likelihood at the optimal values of the previous iteration, which

Figure 2.1 depicts for a one-dimensional parameter vector. The optimal

value ω̃(p+1) of B(ω̃, ω̃(p)) is then always an improvement on the observed

data likelihood since the slopes of both functions are the same in ω(p). The

objective function B(ω̃, ω̃(p+1)) of the next iteration again builds a tangent,

now in P (Y |ω̃(p+1)). The B(ω̃(p), ω̃(p)) always form a lower bound on the

observed log-likelihood, which is steadily increased until the lower bound is

close enough to the (local) maximum of logP (Y |ω̃(p)).

ω̃(p+1)ω̃(p) ω̃

f(ω̃)
P (Y |ω̃)

B(ω̃|ω̃(p))

Figure 2.1: Illustration of the EM objective function B(ω̃, ω̃(p)) as a tangent
to the observed data likelihood P (Y |ω̃) in the current optimal value ω̃(p).

Additionally, it can be observed that B(ω̃, ω̃(p)) can be split

B(ω̃, ω̃(p)) =
∑
ξ∈Ξ

P (ξ|Y , ω̃(p)) logP (Y , ξ|ω̃)−
∑
ξ∈Ξ

P (ξ|Y , ω̃(p)) logP (ξ|Y , ω̃(p))

into the expectancy of the complete data log-likelihood conditioned on the

data and the parameters of the current iteration and into the entropy of the

posterior distribution of the latent trait. Since the second term only depends

on the parameters of the current iteration ω̃(p) and not on ω̃, it can be left
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out when maximizing B(ω̃, ω̃(p)), resulting in the objective function

BO(ω̃, ω̃(p)) =
∑
ξ∈Ξ

P (ξ|Y , ω̃(p)) logP (Y , ξ|ω̃). (2.12)

2.3.3 Comparison of two EM approaches

The alternative deduction of the EM in the previous section is now brought

together with the perspective from Section 1.6. The examination of the EM

using integrals or infinite sums as notation for the expectation facilitates

handling the functions in Dempster et al. (1977).

The equivalence of the EM objective function Q(ω̃, ω̃′) given in Equation

(1.27) and the one given in the previous section in (2.12) can easily be seen.

The objective function BO(ω̃, ω̃(p)) can be interpreted as the expectation of

the complete data log-likelihood logP (Y , ξ|ω̃) conditional on the observed

data Y and the current estimates ω̃(p), so that

BO(ω̃, ω̃(p)) =
∑
ξ∈Ξ

P (ξ|Y , ω̃(p)) logP (Y , ξ|ω̃) = E [log(f(ξ,Y |ω̃))|Y , ω̃′]

=Q(ω̃, ω̃′).

Consequently, the equivalence of the objective function BO(ω̃, ω̃(p)) to the

sum of the expectation of the posterior log-likelihood k(ξ|Y , ω̃), conditional

on the observed data Y and on a different realization of the parameters ω̃′,

and of the observed log-likelihood as in Equation (1.28) is valid here as well:

B(ω̃, ω̃(p)) =
∑
ξ∈Ξ

P (ξ|Y , ω̃(p)) logP (Y , ξ|ω̃)

=
∑
ξ∈Ξ

P (ξ|Y , ω̃(p)) log (P (ξ|Y , ω̃) · P (Y |ω̃))

=
∑
ξ∈Ξ

P (ξ|Y , ω̃(p)) logP (ξ|Y , ω̃) +
∑
ξ∈Ξ

P (ξ|Y , ω̃(p)) logP (Y |ω̃)

= H(ω̃|ω̃(p)) + logP (Y |ω̃). (2.13)
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Now, the still-to-be-done proof of the inequation (1.29) is much easier. For

all pairs (ω̃, ω̃′) ∈ (Ω,Ω)

H(ω̃, ω̃′)−H(ω̃′, ω̃′)

=
∑
ξ∈Ξ

P (ξ|Y , ω̃′) logP (ξ|Y , ω̃)−
∑
ξ∈Ξ

P (ξ|Y , ω̃′) logP (ξ|Y , ω̃′)

=
∑
ξ∈Ξ

P (ξ|Y , ω̃′) log
P (ξ|Y , ω̃)

P (ξ|Y , ω̃′)

Jensen
≤ log

∑
ξ∈Ξ

P (ξ|Y , ω̃′) P (ξ|Y , ω̃)

P (ξ|Y , ω̃′)

= log
∑
ξ∈Ξ

P (ξ|Y , ω̃)

=0. (2.14)

The intuitive deduction of the EM as a lower bound also better explains why

it is sufficient to only consider BO(ω̃, ω̃(p)) = Q(ω̃, ω̃(p)) even though (1.28)

might suggest that H(ω̃, ω̃(p)) should also be included in the optimization

process. Furthermore, H(ω̃, ω̃′) ≤ 0, which justifies seeing Q(ω̃, ω̃(p)) as a

lower bound in (1.28).

2.3.4 EM for a Multilevel IRT Model with Nonlinear

Latent Variable effects

In Section 2.3.2, the estimation of an IRT model with nonlinear latent vari-

able effects was deduced. However, if a hierarchical structure is present, the

same deduction needs to be done twice, since not only the latent abilities

but also the random intercept need to be marginalized out of the likelihood.

Furthermore, the variance of the random intercept is estimated separately

from the item parameters and the variance-covariance matrix, which stabi-

lizes the optimization. The individual objective functions are deduced and

the estimation process is described.
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The General Objective Function for MINoLEM

Unlike the former calculations, this time the indices for every person are

included as in Model 2.1. Furthermore, the parameter vector

ω = (γ1, . . . , γI ,Ω
11
1 , . . . ,Ω

nn
1 , . . . ,Ω11

I , . . . ,Ω
nn
I , δ1, . . . , δI ,Σξ, σ

2)

needs to be extended again to include the variance of the random intercept.

The complete objective function for a multilevel IRT model with nonlinear

latent variable effects can be build as in Section 2.3.2. First, the logarithm

is brought into the integration over u and then into the integration over ξ:

logP (Y |ω)

= log
K∏
k=1

∑
u∈U

Jk∏
j=1

∑
ξ∈Ξ

P (Yjk, ξ, u|ω)

= log
K∏
k=1

∑
u∈U

f(u|ω)

Jk∏
j=1

∑
ξ∈Ξ

P (Yjk, ξ, u|ω)

f(u|ω)

≥
K∑
k=1

∑
u∈U

f(u|ω)

(
log

(
Jk∏
j=1

∑
ξ∈Ξ

P (Yjk, ξ, u|ω)

)
− log (f(u|ω))

)
(2.15)

≥
K∑
k=1

∑
u∈U

f(u|ω)

(
Jk∑
j=1

∑
ξ∈Ξ

f(ξ|ω) log
P (Yjk, ξ, u|ω)

f(ξ|ω)
− log (f(u|ω))

)
(2.16)

For each inequality (2.15) and (2.16) it can be shown (see Section 1.6) that

the lower bounds are optimal if the posterior probabilities of the random

intercept P (u|Yk and the latent variable P (ξ|Yjk,ω) are chosen for f(u|ω)
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and f(ξ|ω), respectively. The posterior probabilities are given by

P (u|Yk,ω) =
P (Yk, u|ω)

P (Yk|ω)
=
P (Yk|u,ω)P (u|σ2)

P (Yk|ω)

=

Jk∏
j=1

∑
ξ∈Ξ

I∏
i=1

P (Yijk|ξ, u,ω)P (ξ|Σξ)P (u|σ2)

∑
u∈U

Jk∏
j=1

∑
ξ∈Ξ

I∏
i=1

P (Yijk|ξ, u,ω)P (ξ|Σξ)P (u|σ2)

and

P (ξ|Yjk,ω) =
P (Yjk, ξ|ω)

P (Yjk|ω)
=

P (Yjk|ξ,ω)P (ξ|Σξ)∑
ξ∈Ξ P (Yjk|ξ,ω)P (ξ|Σξ)

=

∑
u∈U

I∏
i=1

P (Yijk|ξ, u,ω)P (ξ|Σξ)P (u|σ2)

∑
ξ∈Ξ

∑
u∈U

I∏
i=1

P (Yijk|ξ, u,ω)P (ξ|Σξ)P (u|σ2)

Again, since u ∼ N (0, σ2) and ξ ∼ N (0,Σξ), the parameter vector ω is

substituted by σ2 and Σξ in the distributions of the latent variables. For

better readability, the variance-covariance matrix of ξ will in the future only

be written as Σ. Substituting f(u|ω) and f(ξ|ω) in the objective function

(2.16) results in

logP (Y |ω)

=
K∑
k=1

∑
u∈U

P (u|Yk,ω)

(
Jk∑
j=1

∑
ξ∈Ξ

P (ξ|Yjk,ω) log(P (Yjk, ξ, u|ω))

)
(2.17)

−
K∑
k=1

∑
u∈U

P (u|Yk,ω)

(
log(P (u|Yk,ω)) +

Jk∑
j=1

∑
ξ∈Ξ

P (ξ|Yjk,ω) log(P (ξ|Yjk,ω))

)
.

Again, the first term in (2.17) is the expectation of the complete data likeli-

hood conditional on the posterior likelihoods of the random intercept u and

the latent ability ξ. The second term is the entropy of the posterior of u

(summed over all clusters) and the expected entropy of the posterior of ξ

conditional on the random intercept u (and summed over all clusters).
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As established for Equation (2.13), the parameter values in the posterior

probabilities will be fixed to the estimates of the current iteration, which

gives the objective function

BOF (ω,ω(p)) (2.18)

=
K∑
k=1

∑
u∈U

P (u|Yk,ω(p))

(
Jk∑
j=1

∑
ξ∈Ξ

P (ξ|Yjk,ω(p)) log(P (Yjk, ξ, u|ω))

)

where the second term from (2.17) can be left out, since it only contains the

fixed parameters ω(p) and is therefore constant within an optimization. This

objective function can also be described as the expectation of the complete

data log-likelihood conditional on the posteriors of the latent ability and the

random intercept.

Individual Objective Functions for Each Parameter Set

Raudenbush and Bryk (2002) describe that the estimation of the variance

components depends on the information about the fixed parameters and vice

versa. That is why they build two separate likelihoods for the variance and

fixed effects and iterate their estimation until convergence is achieved.

However, this only applies to the variance of the random intercept. Simu-

lations have shown that the estimation performs significantly better if the

variance-covariance matrix Σ of the latent variable ξ is estimated together

with the item parameters.

Accordingly, the estimation of the variance of the random intercept and of

the fixed parameters together with Σ from Model (2.1) should be separated

and iterated as well. To better show the estimation of the variance-covariance

matrix Σ and of the variance σ2, the parameter vector ω will, once again,

be redefined without them as

ω = (γ1, . . . , γI ,Ω
11
1 , . . . ,Ω

nn
1 , . . . ,Ω11

I , . . . ,Ω
nn
I , δ1, . . . , δI)
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The objective function (2.18) will be defined once with fixed variance σ(p)

and once with fixed parameters ω(p) and Σ(p). The objective function to

estimate ω and Σ is given by

BOF−ω(ω,ω(p))

=

K∑
k=1

∑
u∈U

P (u|Yk,ω(p), σ(p))

 Jk∑
j=1

∑
ξ∈Ξ

P (ξ|Yjk,ω(p),Σ(p)) log(P (Yjk, ξ, u|ω))


=

K∑
k=1

∑
u∈U

P (u|Yk,ω(p), σ(p))

 Jk∑
j=1

∑
ξ∈Ξ

P (ξ|Yjk,ω(p),Σ(p)) log(P (Yjk|ξ, u,ω))


+

 Jk∑
j=1

∑
ξ∈Ξ

P (ξ|Yjk,ω(p),Σ(p)) log(P (ξ|Σ))

 (2.19)

+

 Jk∑
j=1

∑
ξ∈Ξ

P (ξ|Yjk,ω(p),Σ(p)) log(P (u|σ(p)))

 .
The probability of Yjk is transformed to be dependent on the latent variables

ξ and u by multiplying with their respective probabilities. The last term

does not depend on ω or Σ and can be ignored in the optimization. For the

objective function to estimate σ, the same considerations lead to

BOF−σ(σ, σ(p))

=
K∑
k=1

∑
u∈U

P (u|Yk,ω(p), σ(p))(
Jk∑
j=1

∑
ξ∈Ξ

P (ξ|Yjk,ω(p),Σ(p)) log(P (Yjk, ξ, u|ω(p)))

)

=
K∑
k=1

∑
u∈U

P (u|Yk,ω(p), σ(p))[(
Jk∑
j=1

∑
ξ∈Ξ

P (ξ|Yjk,ω(p),Σ(p)) log(P (Yjk|ξ, u,ω(p)))

)]

+
K∑
k=1

∑
u∈U

P (u|Yk,ω(p), σ(p)) · log(P (u|σ))

Jk∑
j=1

1, (2.20)
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where a property of densities was applied:

Jk∑
j=1

∑
ξ∈Ξ

P (ξ|Yjk,ω(p),Σ(p)) log(P (u|σ)) = log(P (u|σ))

Jk∑
j=1

1.

It is important to note that additive last term of the objective function is

the product of the posterior probability of the random intercept and the

logarithm of its assumed distribution. This is what primarily drives the

optimization of the variance between the clusters. The same is true for

the product of the posterior probability of the random variable ξ and the

logarithm of its assumed distribution in Equation (2.19): This term is mainly

responsible for the estimation of the variance-covariance matrix Σ.

Ultimately, the EM for a multilevel IRT model with nonlinear latent variable

effects consists of 3 steps:

1. Expectation Step: calculate the posterior probabilities

P (ξ|Yjk,ω(p),Σ(p)) and P (u|Yk,ω(p), σ(p))

2. Maximization Step I: maximize the likelihood BOF−ω(ω,ω(p)) with

fixed random intercept σ(p)

3. Maximization Step II: maximize the likelihood BOF−σ(σ, σ(p))

with fixed item parameters ω(p+1) and fixed variance-covariance

matrix Σ(p+1) from step 2.

These are iterated until convergence is reached.

2.4 Numerical Application of the Estimation

Procedure

In the previous sections, the theoretical EM algorithm for a multilevel IRT

model with nonlinear latent variable effects was introduced. In order to ap-

ply the procedure, a few additional steps must be taken into account. The
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integrals need to be calculated numerically by applying GHQ. The deriva-

tives of the objective functions are needed to optimize them more efficiently.

At the beginning of the estimation, starting values need to be chosen, which

will be discussed here. The convergence of the implementation will be ex-

amined as well.

2.4.1 Numerical Integration

The chosen method of numerical integration is GHQ. A possible alternative

is adaptive GHQ (Liu & Pierce, 1994), which achieves reasonable accuracy

with significantly fewer quadrature points. However, since this estimation

procedure is new, computationally complex, and GHQ theoretically achieves

arbitrary accuracy, a decision was made in favor of the potentially more

accurate GHQ.

The GHQ can be applied to integrals that have the form∫ +∞

−∞
e−x

2

f(x) dx ≈
n∑
i=1

αif(xi)

where αi are the weights, xi are the quadrature points, and n is the number

of quadrature points chosen by the user. The more quadrature points are

chosen, the more accurate the integral is estimated, but the more computa-

tionally demanding the problem becomes. The quadrature points are gained

by finding the roots of the physicists’ Hermite polynomial Hn(x) of the order

n. The corresponding weights are given by

αi =
2n−1n!

√
π

n2[Hn−1(xi)]2
.

To apply the GHQ, a Cholesky Decomposition must be used, as the GHQ

is built for standard normally distributed variables, but the (2-dimensional)

latent variable and the random intercept are assumed to follow a normal

62



distribution with

ξ ∼ N

((
0

0

)
,Σ =

(
σ2

11 r

r σ2
22

))
and u ∼ N (0, σ2).

However, a variance-covariance matrix can be written as

Σ = LL′

where L is a lower triangular matrix. This representation is unique and

possible since Σ – as a variance-covariance matrix – is positive definite. In

the case of a 2× 2 variance-covariance matrix, L can be deduced by

Σ = LL′ =

(
σ2

11 r

r σ2
22

)
=

(
a 0

b c

)(
a b

0 c

)
=

(
a2 ab

ab b2 + c2

)

⇒


σ11 = a

r = a · b

σ2
22 = b2 + c2

⇔


a = σ11

b = r
σ11

c =

√
σ2

22 −
(

r
σ11

)2

which results in

L =

σ11 0

r
σ11

√
σ2

22 −
(

r
σ11

)2


Furthermore, a multivariate standard normally distributed vector

Z = (z1, . . . , zn)′ can be transformed so that L ·Z ∼ N (0,LL′) = N (0,Σ).

Using the Cholesky transformation, the GHQ can be applied to integrals

that include an arbitrary normal distribution since the GHQ needs integrals

of the form ∫
e−x

2

f(x)dx (2.21)
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and approximates the integral with a sum

n∑
i=1

wif(xi),

where the weights wi and the quadrature points xi are both determined by

Hermite polynomials.

The application of GHQ is first illustrated with the objective function (2.19)

of the item parameters ω and of the variance-covariance matrix Σ of the

latent variables, presented here in a more detailed form:

K∑
k=1

∑
u∈U

P (u|Yk,ω(p), σ(p))·

[
Jk∑
j=1

∑
ξ∈Ξ

P (ξ|Yjk,ω(p),Σ(p)) log[L(Yjk, ξ, u, |ω)]

]
(2.22)

=
K∑
k=1

∑
u∈U

P (u|Yk,ω(p), σ(p))·
Jk∑
j=1

∑
ξ∈Ξ

∑
u∈U

I∏
i=1

P (Yijk|ξ, u,ω(p))P (ξ|Σ(p))P (u|σ(p))

∑
ξ∈Ξ

∑
u∈U

I∏
i=1

P (Yijk|ξ, u,ω(p))P (ξ|Σ(p))P (u|σ(p))

·

log
[
L(Yjk|ξ, u,ω)P (ξ|Σ)P (u|σ(p))

] ]
=

K∑
k=1

∑
u∈U

P (u|Yk,ω(p), σ(p))·


Jk∑
j=1

∑
ξ∈Ξ

∑
u∈U

I∏
i=1

P (Yijk|ξ, u,ω(p))
exp(−1

2ξ
′Σ−1

(p)ξ)√
4π2 det(Σ(p))

exp(− u2

2σ2
(p)

)√
2πσ2

(p)

∑
ξ∈Ξ

∑
u∈U

I∏
i=1

P (Yijk|ξ, u,ω(p))
exp(−1

2ξ
′Σ−1

(p)ξ)√
4π2 det(Σ(p))

exp(− u2

2σ2
(p)

)√
2πσ2

(p)

· (2.23)

log

L(Yjk|ξ, u,ω)
exp(−1

2ξ
′Σ−1ξ)√

4π2 det(Σ)

exp(− u2

2σ2
(p)

)√
2πσ2

(p)

 , (2.24)

where the fractions of the distributions in (2.23) can be reduced, since the
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terms
√

4π2 det(Σ(p)) and
√

2πσ2
(p) occur in the nominator and the denom-

inator.

Unfortunately, the objective function is not in a form as in Equation (2.21),

yet. First, the random effects need to be reparameterized to become stan-

dard normally distributed variables. As established before, a multivariate

standard normally distributed n-dimensional vector Z can be written as

L · Z = ξ ∼ N (0,Σ) with Σ = LL′. The random intercept can be trans-

formed by σ · z = u ∼ N (0, σ2).

The Cholesky transformation is applied by integrating by substitution. In

the case of a one-dimensional variable∫ ϕ(b)

ϕ(a)

f(u) du =

∫ b

a

f(ϕ(x))ϕ′(x) dx (2.25)

holds with ϕ(x) = u. In the multivariate case∫
ϕ(U)

f(v) dv =

∫
U

f(ϕ(u)) |detϕ′(u)| du (2.26)

holds with ϕ(u) being the multivariate transformation function. However,

the reparameterising functions do not only contain the Cholesky Decompo-

sition but also the factor
√

2 to obtain the function exp(−x2) as in Equation

(2.21).

The needed derivatives from ϕξ(ξ) =
√

2L(p) · Z and ϕu(u) =
√

2σ(p) · z
are given by ϕ′ξ(ξ) =

√
2L(p) and ϕ′u(u) =

√
2σ(p), respectively. According

to Equations (2.25) and (2.26), the substitution of the latent variables will

result in a multiplication of the integrand with

√
2| det(L(p))| ·

√
2σ(p) = 2| det(L(p))| · σ(p). (2.27)

It needs to be noted that variance-covariance matrix is present in the like-

lihood as fixed values Σ(p) and as parameters Σ, while the variance of the

random intercept σ(p) occurs only fixed, since it is not estimated with this
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likelihood. Therefore, the substitutions need to be done with the fixed pa-

rameter values of the previous iteration so that the posterior probabilities

still only depend on the fixed estimates, for which Σ(p) = L(p)L
′
(p) needs to

be defined.

Now, the Cholesky Decomposition can be applied, and the GHQ can be

presented for Equation (2.22). The nominator and denominator in Equation

(2.23) differ only in the integration over ξ. Therefore, only the nominator is

considered at first to simplify the portrayal of the equations. The first step

is the substitution of the latent variables (omitting the multiplication with

(2.27)), followed by applying Σ(p) = L(p)L
′
(p):

∑
ξ∈Ξ

∑
u∈U

I∏
i=1

P (Yijk|ξ, u,ω(p))exp(−1

2
ξ′Σ−1

(p)ξ)exp(− u2

2σ2
(p)

)

=
∑
Z∈Zξ

∑
z∈Zu

I∏
i=1

P (Yijk|
√

2L(p)Z,
√

2σ(p)z,ω
(p))· (2.28)

exp(−Z ′L′(p)Σ−1
(p)L(p)Z)exp(−

σ2
(p)z

2

σ2
(p)

)

=
∑
Z∈Zξ

∑
z∈Zu

I∏
i=1

P (Yijk|
√

2L(p)Z,
√

2σ(p)z,ω
(p))exp(−Z ′Z)exp(−z2) (2.29)

Next, the term in (2.24) is considered:

log

L(Yjk|ξ, u,ω)
exp(−1

2
ξ′Σ−1ξ)√

4π2 det(Σ)

exp(− u2

2σ2
(p)

)√
2πσ2

(p)



log

L(Yjk|
√

2L(p)Z,
√

2σ(p)z,ω)
exp(−Z ′L′(p)Σ−1L(p)Z)√

4π2 det(Σ)
·
exp(−

σ2
(p)
z2

σ2
(p)

)√
2πσ2

(p)


log(L(Yjk|L(p)Z,

√
2σ(p)z,ω))−Z ′L′(p)Σ−1L(p)Z − log(

√
4π2 det(Σ))

− z2 − log(
√

2πσ2
(p)) (2.30)

The terms -z2-log(
√

2πσ2
(p)) will only be multiplied by the posterior probabil-
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ities. They will not depend on ω or Σ and can be left out in the optimization.

Combining the calculations in Equations (2.29), (2.30), and (2.27) results in

the complete objective function for (2.19):

=
K∑
k=1

∑
z∈Zu

P (z|Yk,ω(p), σ(p))·
Jk∑
j=1

∑
Z∈Zξ

∑
z∈Zu

I∏
i=1

P (Yijk|
√

2L(p)Z,
√

2σ(p)z,ω
(p))exp(−Z ′Z)exp(−z2)

∑
Z∈Zξ

∑
z∈Zu

I∏
i=1

P (Yijk|
√

2L(p)Z,
√

2σ(p)z,ω(p))exp(−Z ′Z)exp(−z2)[
log(L(Yjk|L(p)Z,

√
2σ(p)z,ω))−Z ′L′(p)Σ−1L(p)Z

− log(
√

4π2 det(Σ))
] ]

2| det(L(p))| · σ(p) (2.31)

Since this function will be optimized, the constant term 2 · | det(L(p))| · σ(p)

can be left out. Furthermore, the term exp(−Z ′Z) is necessary to apply
GHQ to the integration over Z (formerly ξ). The term for applying GHQ to
the integration over z (formerly u) results from making the same conversions
for the posterior P (z|Yk,ω(p), σ(p)). Now the objective function has a form in
which GHQ can be applied. Every integral has the form

∫
f(x)e−x

2
and can

be approximated by introducing quadrature points (for a two-dimensional

latent variable ξ) Q
(p1)
ξ (p1 = 1, . . . , P1) for Z1, Q

(p2)
ξ (p2 = 1, . . . , P2) for Z2,

Q
(p3)
σ (p3 = 1, . . . , P3) for z, and corresponding weights α

(p1)
ξ , α

(p2)
ξ , and α

(p3)
σ .

For a two-dimensional latent variable, this results in the approximation

K∑
k=1

P3∑
p3

α(p3)
σ

K∏
j=1

P1∑
p1

α
(p1)
ξ

P2∑
p2

α
(p2)
ξ

I∏
i=1

P (Yijk|
√

2L(p)(Q
(p1)
ξ , Q

(p2)
ξ )′, σ(p)Q

(p3)
σ ,ω(p))

P3∑
p3

α
(p3)
σ

K∏
j=1

P1∑
p1

α
(p1)
ξ

P2∑
p2

α
(p2)
ξ

I∏
i=1

P (Yijk|
√

2L(p)(Q
(p1)
ξ , Q

(p2)
ξ )′, σ(p)Q

(p3)
σ ,ω(p))

·

 Jk∑
j=1

P1∑
p1

α
(p1)
ξ

P2∑
p2

α
(p2)
ξ

P3∑
p3

α
(p3)
σ

I∏
i=1

P (Yijk|
√

2L(p)(Q
(p1)
ξ , Q

(p2)
ξ )′, σ(p)Q

(p3)
σ ,ω(p))

P1∑
p1

α
(p1)
ξ

P2∑
p2

α
(p2)
ξ

P3∑
p3

α
(p3)
σ

I∏
i=1

P (Yijk|
√

2L(p)(Q
(p1)
ξ , Q

(p2)
ξ )′, σ(p)Q

(p3)
σ ,ω(p))[

log
(
L(Yjk|

√
2L(p)(Q

(p1)
ξ , Q

(p2)
ξ )′, σ(p)Q

(p3)
σ ,ω,Σ, σ(p))

)
−
(

(Q
(p1)
ξ , Q

(p2)
ξ )L′(p)Σ

−1L(p)(Q
(p1)
ξ , Q

(p2)
ξ )′) + log(

√
4π2 det(Σ))

)]]
.
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For the objective function of the variance σ of the random intercept u in

Equation (2.20) the Cholesky Decomposition is given by

BOF−σ(σ, σ(p))

=
K∑
k=1

∑
u∈U

P (u|Yk,ω(p), σ(p)) ·

 Jk∑
j=1

∑
ξ∈Ξ

P (ξ|Yjk,ω(p),Σ(p)) log(L(Yjk|ξ, u,ω(p))


+

K∑
k=1

∑
u∈U

P (u|Yk,ω(p), σ(p)) · log(P (u|σ))

=
K∑
k=1

∑
z∈Zu

P (z|Yk,ω(p), σ(p))·
Jk∑
j=1

∑
Z∈Zξ

∑
z∈Zu

I∏
i=1

P (Yijk|L(p)Z,
√

2σ(p)z,ω
(p))exp(−Z ′Z)exp(−z2)

∑
Z∈Zξ

∑
z∈Zu

I∏
i=1

P (Yijk|L(p)Z,
√

2σ(p)z,ω(p))exp(−Z ′Z)exp(−z2)(
log
(
L(Yjk|L(p)Z,

√
2σ(p)z,ω

(p))
)
−
σ2

(p)

σ2
z2 − log(

√
2πσ2)

)]

The application of GHQ (for a two-dimensional latent variable ξ) with

quadrature points Q
(p1)
ξ (p1 = 1, . . . , P1) for Z1, Q

(p2)
ξ (p2 = 1, . . . , P2) for

Z2, Q
(p3)
σ (p3 = 1, . . . , P3) for z, and corresponding weights α

(p1)
ξ , α

(p2)
ξ , and

α
(p3)
σ results in

K∑
k=1

P3∑
p3

α(p3)
σ

K∏
j=1

P1∑
p1

α
(p1)
ξ

P2∑
p2

α
(p2)
ξ

I∏
i=1

P (Yijk|L(p)(Q
(p1)
ξ , Q

(p2)
ξ )′, σ(p)Q

(p3)
σ ,ω(p))

P3∑
p3

α
(p3)
σ

K∏
j=1

P1∑
p1

α
(p1)
ξ

P2∑
p2

α
(p2)
ξ

I∏
i=1

P (Yijk|L(p)(Q
(p1)
ξ , Q

(p2)
ξ )′, σ(p)Q

(p3)
σ ,ω(p))

·

 Jk∑
j=1

P1∑
p1

α
(p1)
ξ

P2∑
p2

α
(p2)
ξ

P3∑
p3

α
(p3)
σ

I∏
i=1

P (Yijk|L(p)(Q
(p1)
ξ , Q

(p2)
ξ )′, σ(p)Q

(p3)
σ ,ω(p))

P1∑
p1

α
(p1)
ξ

P2∑
p2

α
(p2)
ξ

P3∑
p3

α
(p3)
σ

I∏
i=1

P (Yijk|L(p)(Q
(p1)
ξ , Q

(p2)
ξ )′, σ(p)Q

(p3)
σ ,ω(p))(

log
(
L(Yjk|L(p)(Q

(p1)
ξ , Q

(p2)
ξ )′, σ(p)Q

(p3)
σ ,ω(p))

)
−

(
σ2
(p)

σ2
(Q(p3)

σ )2 + log(
√

2πσ2)

))]
.

However, there is a very important detail that needs to be changed in the

implementation. From the given deduction, it follows that the log-likelihood

of the data log(L(Yjk|L(p)Z,
√

2σ(p)z,ω
(p))) does not contain the parameter
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σ (only σ(p)) that is supposed to be estimated. The EM, however, is built

so that the parameters to be estimated are set freely in the complete log-

likelihood and then the expectation is taken over the posterior probabilities

of the latent variables with all parameters fixed. Therefore, the fixed σ(p)

in log(L(Yjk|L(p)Z,
√

2σ(p)z,ω
(p))) has to be set to σ instead, but not in

log(P (u|σ)) =
σ2
(p)

σ2 z
2 + log(

√
2πσ2) where σ is already present.

The optimal number of quadrature points for the latent variables highly

depends on factors such as the complexity of the model and the size of the

dataset. Therefore, it will be increased with rising numbers of iterations,

which improves the estimation as noted by Stanley (2017).

2.4.2 Derivatives

The derivatives of the objective function are needed for optimization with

quasi-Newton algorithms. The derivatives are built with the following ob-

servations. First, using local independence the log-likelihood is given by

log(L(yjk|ξ, u,ω)) =

I∑
i=1

log(L(yijk|ξ, u,ωi))

=
I∑
i=1

yijk log(L(yijk = 1|ξ, u,ωi))

+
I∑
i=1

(1− yijk) log(1− L(yijk = 1|ξ, u,ωi)). (2.32)

Since the parameters (that are not fixed to the previous estimates) only occur

within the likelihood of the data given the latent variables, the derivatives

of BOF−ω(ω,ω(p)) can be built based on the derivatives of (2.32). Second,

the converse probability of a logistic function merely changes the sign of the

exponent

1− 1

1 + exp(x)
=

1

1 + exp(−x)
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and furthermore, the derivations of the logarithm of a logistic function is

again a logistic function

∂

∂x
ln

(
1

1 + exp(−f(x))

)
=

∂
∂x
f(x)

1 + exp(f(x))

∂

∂x
ln

(
1

1 + exp(f(x))

)
=

− ∂
∂x
f(x)

1 + exp(−f(x))
.

Using these considerations, the derivatives of BOF−ω(ω,ω(p)) after the item

parameters in ω can be given. Let γi,r be the coefficient of the r-th latent

variable of the n-dimensional vector ξ and let Ωi,(n1,n2) be the coefficient of

the interaction / quadratic effect of the n1-th latent variable with the n2-th

latent variable. Then:

∂

∂δi
BOF−ω(ω,ω(p))

=
K∑
k=1

∑
u∈U

P (u|Yk,ω(p), σ(p))

[
Jk∑
j=1

∑
ξ∈Ξ

P (ξ|Yjk,ω(p),Σ(p)) ·(
−yijk

1 + exp(ξ′γi + ξΩiξ
′ − δi + u)

+
1− yijk

1 + exp(−(ξ′γi + ξΩiξ
′ − δi + u))

)]
,

∂

∂γi,r
BOF−ω(ω,ω(p)) (2.33)

=
K∑
k=1

∑
u∈U

P (u|Yk,ω(p), σ(p))

[
Jk∑
j=1

∑
ξ∈Ξ

P (ξ|Yjk,ω(p),Σ(p)) ·(
yijk · ξn

1 + exp(ξ′γi + ξΩiξ
′ − δi + u)

− (1− yijk) · ξn
1 + exp(−(ξ′γi + ξΩiξ

′ − δi + u))

)]
,

and in the case of a two-dimensional latent variable with interaction present

∂

∂Ωi,(n1,n2)

BOF−ω(ω,ω(p)) (2.34)

=
K∑
k=1

∑
u∈U

P (u|Yk,ω(p), σ(p))

[
Jk∑
j=1

∑
ξ∈Ξ

P (ξ|Yjk,ω(p),Σ(p)) ·(
yijk · ξn1ξn2

1 + exp(ξ′γi + ξΩiξ
′ − δi + u)

− (1− yijk) · ξn1ξn2

1 + exp(−(ξ′γi + ξΩiξ
′ − δi + u))

)]
.

70



Finally, the derivative of the objective function (2.31) with respect to the

correlation ρ – if estimated – can be given. The correlation – as a pa-

rameter to be estimated – is only present in the variance-covariance matrix

Σ. The matrix L(p) includes the correlation only as a fixed value since the

substitution (using the Cholesky Decomposition) is done with the fixed val-

ues. Therefore, only the term (Z ′L′(p)Σ
−1L(p)Z) + log(

√
4π2 det(Σ)) in the

objective function (2.31) needs to be derived, which will now be done in

the case of a two-dimensional standard normally distributed latent variable

Z = (Z1, Z2). Furthermore, the variance-covariance matrix will be set to

Σ =

(
1 ρ

ρ 1

)
. The variances in Σ are set to 1 to identify the model.

∂

∂ρ

[
Z ′L′(p)Σ

−1L(p)Z + log
(√

4π2 det(Σ)
)]

=
∂

∂ρ

(Z1 Z2

)1 ρ(p)

0
√

1− ρ2
(p)

( 1
1−ρ2

−ρ
1−ρ2

−ρ
1−ρ2

1
1−ρ2

) 1 0

ρ(p)

√
1− ρ2

(p)

(Z1

Z2

)

+0.5 log

(
4π2 det

(
1 ρ

ρ 1

))]

=
∂

∂ρ

[
1

(ρ2 − 1)

[
(−ρ2

(p) + 2ρ(p)ρ− 1)Z2
1 + (2

√
1− ρ2

(p)(ρ− ρ(p)))Z1Z2

+ (ρ2
(p) − 1)Z2

2

]
+ 0.5 log

(
4π2(1− ρ2)

)]
=

−2

(ρ2 − 1)2

[
(ρ2

(p)ρ+ ρ− ρ(p) − ρ(p)ρ
2)Z2

1 +
√

1− ρ2
(p)(2ρ(p)ρ− ρ2 − 1)Z1Z2

+ (ρ− ρ2
(p)ρ)Z2

2

]
− ρ

1− ρ2

Combining this derivative with the objective function (2.31) result in

∂

∂ρ
BOF−ω(ω,ω(p))

=K ·
Jk∑
j=1

∑
Z∈Ξ

P (ξ|Yjk,ω(p),Σ(p))

[
2

(ρ2 − 1)2

[
(ρ2

(p)ρ+ ρ− ρ(p) − ρ(p)ρ
2)Z2

1

+
√

1− ρ2
(p)(2ρ(p)ρ− ρ2 − 1)Z1Z2 + (ρ− ρ2

(p)ρ)Z2
2

]
+

ρ

1− ρ2

]
.
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Since the remaining integral does not depend on the random intercept u, the

term
K∑
k=1

∑
z∈U

P (u|Yk,ω(p), σ(p)) = K in (2.31) can be introduced as a scalar.

2.4.3 Standard Errors

The standard errors of the estimates are estimated using the bootstrap algo-

rithm. The basic idea behind this algorithm can be described in four steps.

First, the observed data are defined as the population. From this population,

a new sample is drawn (with replacement) with the same size as the original

observed dataset. Second, the same estimation procedure is applied to the

new sample and the results are saved. Third, the first two steps are repeated

several hundred times, so that several hundred estimates are obtained that

all essentially come from different datasets. The last step is to calculate the

standard deviation of those estimates, which is the standard error of the es-

timates. By also calculating the mean of the estimates, confidence intervals

can be built as well.

2.4.4 Starting Values

Choosing starting values is a very important part of the estimation of IRT

models (and of most models), since poorly chosen starting values can poten-

tially cause the whole estimation to fail or to end up in a local minimum,

especially as the model becomes more and more complex. It can also signif-

icantly increase the time to converge, which can be especially inconvenient

since the EM is known to have problems with slow convergence and to be

dependent on starting values.

Speeding up the calculation has been the object of some research over the

years in different contexts. Unfortunately, the research on appropriate start-

ing values for an EM algorithm is very thin. This can partly be explained by

the variety of different fields in which the EM is used, all of which might need
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individual solutions. Therefore, there has only been some improvement in

specific fields (e.g., in Gaussian mixture modeling: McLachlan (1988), Bier-

nacki, Celeux, and Govaert (2003), Karlis and Xekalaki (2003), and Shire-

man, Steinley, and Brusco (2015)). However, not much improvement has

been achieved for the estimation of latent variable models or IRT models.

Starting Values in Different Software

In current software, the starting values for the latent variable loadings are

chosen, for example, as classical test theory estimates (in the software BILOG

(Du Toit, 2003; M., E., R., & R.D., 2003; Nader, Tran, & Voracek, 2015)),

fixed to 1 for all loadings (in the R package ltm Rizopoulos (2006)) or as

other fixed values depending on the chosen model (e.g., Mplus). Another

discussed approach is to choose those random values that have the lowest

likelihood function value after some initial iterations. Thus, in most cases,

the starting values depend on chance, either literally choosing random values

or by choosing fixed values and hoping they are close enough even in extreme

cases.

Difficulties

Here, some heuristics will be presented for finding appropriate starting values

for all parameters. The difficulties δi (i = 1, . . . , I) will be chosen as the logit

of the empirical probability of solving each item

δi = log

( ∑N
j=1 yij/N

1−
∑N

j=1 yij/N

)
,

which is the inverse of an IRT model in which only the difficulty is present

in the linear predictor (Carlson, 1987).
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Loadings

Those loadings γi are chosen for which the polyserial correlation ρps between

the dichotomous data and the probability of an IRT model with difficulties

(fixed to the starting values) and loadings is the highest

γi = arg max
γ̂i∈R

(ρps (yijk, P (Yijk = 1|ξjk, γ̂i, δi))) .

Essentially, the model for estimating initial difficulties was simply extended

to include the loadings.

To avoid a numerical integration in this step, the latent variables are inserted

in the model as fixed parameters (or factor scores). The easiest approach

is to calculate the Ordinary Least Square (OLS) estimator for every person,

ignoring the multilevel structure:

ξOLSjk = (γi
′γi)

−1γi
′yijk.

Since the slope parameters γi are obviously not available yet, they are sub-

stituted with 1. The best results are achieved if the factor scores are built

without using items that load (in the model) on more than one latent vari-

able dimension. Finally, the estimated factor scores are scaled, since it is

assumed in the model that they follow a standard normal distribution.

More advanced versions could also be chosen here, like Maximum A Posteri-

ori (MAP) estimates. However, since the available model at this point only

includes the difficulty and is therefore preliminary in any case, the slight im-

provement does not justify the computational cost, particularly given that

it only serves as an initial value for starting the estimation process of initial

values.
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Nonlinear Effects

The loadings for the interaction / quadratic terms Ωi are chosen in the same

way as the loadings of the latent variables γi, but now with the estimated

loadings present as:

Ωi = arg max
Ω̂i∈R

(
ρps

(
yijk, P (Yijk = 1|ξjk,γi, Ω̂i, δi)

))
.

Naturally, these heuristics work best for many items, particularly when a

second dimension of the latent variable is added. Inspired by the use of

random values as starting values, these heuristics are improved by initiating

them with several random values for the parameters and choosing those for

which the observed log-likelihood function of the respective model has the

highest value.

One needs to consider that the item parameters should also have limits.

If too-high values are chosen, they can lead to items that are solved by

everyone or no one, which can potentially cause numerical problems2. This

needs to be taken into account in the starting values. That is why it is

useful to implement ceilings for all parameters that are not exceeded in the

estimation, since the results are not interpretable otherwise.

Random Intercept

An initial value for the variance σ2 of the random intercept in a multilevel

model needs to be chosen. There is no existing literature on choosing an

appropriate initial value in this context. One heuristic idea that proved to

be stable is based on an Analysis of Variance (ANOVA). The variance in the

(non)linear predictor depends on the variance that stems from every person

2An item that has no variance could lead to values that are calculated to be zero.
Since several calculations involve division (e.g., posterior probabilities), this could cause
a division by zero.
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(the variance of the latent variable ξij) and on the variance of the random

intercept uk of every level. In the absence of a multilevel structure, the mean

variance of the factor scores (the only source of variance in the (non)linear

predictor), which are estimated separately within every cluster, would be

the same as the variance of the factor scores estimated using all people.

If there is a multilevel structure, the distance between these variances can

only stem from the random intercept. Therefore, the initial estimate of the

variance σ2
u is set to this sum of the differences of the variances. The factor

scores are again estimated as before using OLS with the previously estimated

parameter values. Since the variances of the latent variables ξ are set to be

1 in every cluster, all variances are accordingly scaled so that the difference

properly represents the variance of the random intercept.

Correlation of the Random Variables

In the previously presented estimations of the starting values, the factor

scores of the random variables were estimated – for the variance of the ran-

dom intercept and for the coefficients of the latent variable. The correlation

is estimated as the correlation between those most recently estimated factor

scores.

Simulations

Naturally, none of these heuristics produce perfect estimates, but they prove

to be better than fixing values to 1, for example, as is done in some imple-

mentations. In other software several random starting values are drawn and

results are calculated for all of them. The results with the best likelihood

are then chosen to not end up in a local minimum. Good heuristics may be

able to achieve the same result by calculating starting values only once.

All starting values were calculated for clusters of different numbers NC =

50, 100, 200 and sizes NS = 50, 100, 150. Two latent variables were assumed
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with variances of 1. In the estimation the variances of the latent variables

are set to 1 to identify the problem. Ten items were simulated and the

true values for the difficulties δ, latent variable coefficients γ, coefficients of

the interactions Ω, the correlation between the latent variables ρ, and the

variance of the random intercept σ were set to

δ = (1,−1.2,−0.2, 0.6, 1.2,−0.6, 0.2,−1, 0,−0.4),

γ =

(
1 0.5 0.55 1.2 0 0 0 0 0.45 1.1

0 0 0 0 1 1.15 0.95 0.6 1.05 0.65

)
,

Ω9 =

(
0 0

0.1 0

)
, Ω10 =

(
0 0

1 0

)
,

ρ = 0.3, and

σ = 0.125.

The biases of the starting values, estimated using the presented methods,

are compared to the distance between common fixed values and the true

values (‘fix’ in the tables). The results don’t differ between a fixed number

of clusters and a fixed size of clusters. Therefore, only the tables for a fixed

number of clusters are presented in this section. The results for a fixed size

of clusters are given in Appendix B.2 in Tables B.5, B.6, and B.7.

In most software, the difficulties are fixed to 0 in the beginning. The biases

in Table 2.1 for the heuristic are very low and in all cases much smaller than

the difference between 0 and the true value, except for δ9 = 0. The variances

are very small as well, which indicates that the estimation of the difficulties

is stable.

The starting values for latent variable coefficients are often fixed to 1 in

software. The biases for γ2,1, γ3,1, and γ8,2 in Table 2.2 are higher compared

to the biases of the other loadings. They are also higher than the difference

between 1 and the true values, which are not not small with 0.5 and 0.45.

The variances for γ2,1, γ3,1, and γ8,2 are high as well. Those item loadings

don’t seem to be well approximated by the heuristic.
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Table 2.1: RMSE, bias, and variance of the difficulties of simulation of
starting values. Data was simulated for model with hierarchical struc-
ture (σ2 = 0.125) and estimated correlation between the latent variables
of ρ = 0.3. The number of clusters is fixed to NC = 100. NS = Number of
individuals per cluster. The column ‘fix’ indicates the difference between the
commonly chosen fixed starting value and the true value in the simulation.

NS δ1 δ2 δ3 δ4 δ5

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

50 .258 -.180 .034 .134 .089 .010 .050 .018 .002 .206 -.143 .022 .318 -.222 .051
100 .253 -.177 .033 .132 .089 .009 .048 .021 .002 .196 -.136 .020 .306 -.215 .047
150 .260 -.183 .034 .133 .091 .009 .043 .018 .002 .202 -.141 .021 .310 -.217 .049
fix 1 -1.2 -.2 .6 1.2

NS δ6 δ7 δ8 δ9 δ10

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

50 .192 .133 .019 .064 -.035 .003 .149 .100 .012 .041 -.007 .002 .068 .038 .003
100 .195 .136 .020 .058 -.032 .002 .146 .099 .012 .033 -.003 .001 .068 .043 .003
150 .190 .132 .018 .064 -.038 .003 .139 .095 .010 .034 -.008 .001 .065 .041 .003
fix -.6 .2 -1 0 -.4

The loadings γ9,1 and γ10,2, on the other hand, have a similar true value as

γ2,1, γ3,1, and γ8,2, but they are estimated more accurately and with less

variance. The biases are much lower than the differences between 1 and the

true values.

The biases and variances of the other loadings are in the same order of

magnitude. Some biases (γ4,1, γ6,2, and γ9,2) are smaller than or equal to

the difference between 1 and the true value, others (γ1,1, γ10,1, γ5,2, and γ7,2)

have a higher bias. Although three of the loadings with higher biases are in

items that have true values of 1 and 1.05.

Overall, the results are ambiguous. Adopting the heuristics does not always

seem to improve the starting values, but only in a few cases the heuristic

produces a bias higher than the difference between 1 and the true values.

The interaction effects are usually set to 0 in the beginning. The heuristic

performs much better for both, the small true value of 0.1 and for the higher

value of 1, than the fixed value. the variances are also small and indicate a
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Table 2.2: RMSE, bias, and variance of loadings of the latent variables of
simulation of starting values. Data was simulated for model with hierarchical
structure (σ2 = 0.125) and estimated correlation between the latent variables
of ρ = 0.3. The number of clusters is fixed to NC = 100. NS = Number of
individuals per cluster. The column ‘fix’ indicates the difference between the
commonly chosen fixed starting value and the true value in the simulation.

NS γ1,1 γ2,1 γ3,1 γ4,1

rmse bias var rmse bias var rmse bias var rmse bias var

50 .283 .199 .040 .835 .590 .349 .868 .613 .377 .140 .096 .010
100 .278 .196 .039 .838 .593 .352 .864 .611 .374 .134 .093 .009
150 .281 .198 .040 .837 .592 .350 .868 .614 .377 .133 .093 .009
fix 0 .5 .45 -.2

NS γ9,1 γ10,1 γ5,2 γ6,2

rmse bias var rmse bias var rmse bias var rmse bias var

50 .214 .145 .025 .391 -.273 .078 .297 .210 .044 .226 .158 .026
100 .204 .142 .022 .391 -.275 .077 .298 .210 .045 .222 .156 .025
150 .201 .140 .021 .400 -.282 .081 .300 .212 .045 .222 .156 .025
fix .55 -.1 0 -.15

NS γ7,2 γ8,2 γ9,2 γ10,2

rmse bias var rmse bias var rmse bias var rmse bias var

50 .498 .351 .125 .682 .482 .233 .108 .060 .008 .099 -.056 .007
100 .496 .350 .123 .687 .485 .236 .098 .061 .006 .102 -.065 .006
150 .494 .349 .123 .686 .485 .236 .090 .058 .005 .095 -.063 .005
fix .05 .4 -.05 .35

Table 2.3: RMSE, bias, and variance of the interaction coefficients of sim-
ulation of starting values. Data was simulated for model with hierarchical
structure (σ2 = 0.125) and estimated correlation between the latent vari-
ables of ρ = 0.3. The number of clusters is fixed to NC = 100. NS =
Number of individuals per cluster. The column ‘fix’ indicates the difference
between the commonly chosen fixed starting value and the true value in the
simulation.

NS Ω
(2,1)
9 Ω

(2,1)
10 ρ σ2

rmse bias var rmse bias var rmse bias var rmse bias var

50 .153 .017 .023 .477 -.327 .121 .201 -.142 .020 .043 -.027 .001
100 .105 .002 .011 .468 -.325 .114 .202 -.143 .021 .031 -.018 .001
150 .078 .001 .006 .474 -.331 .115 .199 -.141 .020 .025 -.012 .000
fix .1 1 .3 .125
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stable estimation.

Unsurprisingly, the heuristics for the correlation and the variance of the

random intercept are better than setting them to 0. Especially the variance

σ2 is estimated accurately in this simulation and with a very low variance.

It is neither surprising nor worrying that an increasing number of clusters

or cluster sizes does not improve the calculated starting values. It is of

more importance to consistently choose good starting values rather than

have consistent starting values.

2.4.5 Convergence

In Section 2.3.4 it was established that the MINoLEM estimation process

is a twofold iteration. On the one hand, the classical E-step and M-step

are iterated, and on the other hand, the estimation of the item parameters

and of the variance of the random intercept are iterated within the M-step.

To establish a convergence criterion one needs to observe the following: the

objective function changes within each of these iterations. This is due to the

posterior probabilities, which are built with estimates from the respective

previous iteration. As a result, not only can the distinct objective functions

for the item parameters (2.19) and the variance of the random intercept

(2.20) not be compared, neither also not the objective functions for either

the item parameters or the variance of the random intercept between two

M-steps. The value of the objective function may even decrease between two

iterations. Therefore, the observed data log-likelihood

Lobs(Y |ω(p), σ(p))

=
K∑
k=1

log

(∑
u∈U

Jk∏
j=1

∑
ξ∈Ξ

L(Yjk|ξ, u,ω(p), σ(p))P (ξ|Σξ)P (u|σ(p))

)

needs to be calculated in each M-step to measure the rate of convergence.
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The stop criterion is then given by the distance between the last two eval-

uations of Lobs after the estimation of σ2 divided by the distance between

the last evaluation of the observed log-likelihood and the evaluation of Lobs
after the estimation of the starting values, to be less dependent on the scale

of the likelihood:

Lobs(Y |ω(p+1), σ(p+1))− Lobs(Y |ω(p), σ(p))

Lobs(Y |ω(p+1), σ(p+1))− Lobs(Y |ω(0), σ(0))
< ε.

In contrast to the objective functions of the EM, the observed log-likelihood

is monotonous, as shown in Section 1.6, so that every improvement of the

parameter estimates is mirrored by an increase in the observed log-likelihood

function.

2.4.6 Numerical Accuracy

The more people there are in a cluster, the more probability terms need to

be multiplied to form the posterior probabilities of the random intercept.

However, a computer cannot handle arbitrarily small values and R has a

specific limit for the smallest representable number, which depends on the

machine R is installed on. This may lead to products of probabilities being

rounded to 0 and therefore potentially to infinite or NaN values if there is a

division by 0. To avoid this problem, the accuracy of R needs to be increased

in these cases, which can be achieved using the R package Rmpfr by Maechler

(2020).

The accuracy of the estimation is also influenced by the chosen optimization

method in the M-step. A common approach for nonlinear problems are quasi-

Newton methods. Here, the Broyden–Fletcher–Goldfarb–Shanno (BFGS)

algorithm was applied, which is implemented in the optim function in R.
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Chapter 3

Data Simulations

In this chapter, the proposed MINoLEM estimation is tested in several sim-

ulation studies and compared to other implementations. As a part of this, a

selection of software solutions for IRT models is presented and their differ-

ences are briefly discussed. Subsequently, data without hierarchical struc-

ture are simulated to investigate the performance of MINoLEM for different

model formulations. Finally, data for the full model, as presented in Equa-

tion (2.1), are simulated, and the results are discussed.

All deductions in Chapter 2 are valid for quadratic and interaction effects

of the latent variables. In the implementation, however, interaction effects

were prioritized, since interaction effects are considered more complex than

quadratic effects.

3.1 Different Implementations for IRT Models

Various latent variable frameworks were introduced in Chapter 1. The esti-

mation of IRT models is, to a certain extent, possible in all of these frame-

works. Therefore, different implementations exist that are able to estimate

IRT models.
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Table 3.1: Common IRT models that can be estimated by each program.
‘Multivariate’ indicates that the software is able to estimate latent variables
with more than one dimension. ‘Multilevel’ indicates that the software is able
to estimate models which include a hierarchical structure of the observed
data. ‘Interaction’ indicates that the software is able to estimate models
that incorporate nonlinear latent variable effects as defined in Section 1.2.3.
‡ only sirt.
Model mirt lavaan TAM Mplus GLLAMM flexmirt ltm MINoLEM
1PL/Rasch X X X X X X X X
2PL X X X X X X X X
3PL X X X X
4PL X
Part. Credit X X X X X X X
Gr. Response X X X X X X
Multivariate X X X X X X X X
Multilevel X X‡ X X X X
Interaction X X

In this section, three different sources are considered

• R packages (mirt (Chalmers, 2012), lavaan (Rosseel, 2012), TAM (Ro-

bitzsch, Kiefer, & Wu, 2020), and ltm (Rizopoulos, 2006)),

• GLLAMM implemented in Stata (StataCorp., 2019), and

• paid programs (Mplus (L. Muthén & Muthén, 1998-2017) and flexmirt

(Cai, 2017)).

The implementations of mirt, TAM, and flexmirt, are based on the classical

IRT framework, while lavaan and Mplus estimate IRT from the point of

view of SEM. GLLAMM and ltm are based on generalized linear models (see

Section 1.4 and Section 2.3.4). A wider range of R packages are inspected in

Choi and Asilkalkan (2019), and a comparison of commercial software can

be found in Han and Paek (2014).
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Table 3.2: Implemented estimation methods for dichotomous dependent
variables in each program. The estimation procedure available for the most
complex models possible in each respective software (thus including multi-
level or nonlinear latent effects) is circled.
Estimator mirt lavaan sirt / TAM Mplus GLLAMM flexmirt ltm

MLE X X X X X X
EM X X X X X©
JML X X
WLSMV X© X©
MCMC X© X
MHRM X© X©

3.1.1 Range of Implementations

Table 3.1 provides an overview of the different IRT models, which the afore-

mentioned programs are able to estimate. All considered implementations

cover the 1PL, 2PL, and PCM, and all can handle multivariate latent vari-

ables. With the exception of ltm and lavaan1, all packages can include a

multilevel structure, but ltm is the only program that can handle a nonlin-

ear influence of the latent variables. Overall, the mirt package is the most

capable IRT software in this regard and is also one of the most widely used

implementations. However, there is no software that can simultaneously in-

corporate nonlinear latent variable effects and a multilevel data structure.

The MINoLEM introduced in this thesis cannot yet be applied to all IRT

models, but it expands the range of applicable models.

3.1.2 Different Estimators

As described in Section 1.5, not only different frameworks but also different

estimation procedures can be applied. Table 3.2 shows some of the esti-

mation procedures, which the different software can apply, if dichotomous

observed data are present.

1Generally lavaan can handle hierarchical data, but not for categorical dependent
variables.
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An MLE, which is in most cases implemented using the EM algorithm, is

applied by all software except lavaan. JML is implemented in the TAM and

Mplus software, because the number of items in large scale assessments is

usually very high and its lack of consistency might not be a problem in these

cases (see e.g., Haberman (1977) for Rasch-models).

The WLSMV estimator is implemented in lavaan and Mplus. It is worth

noting that both implementations use a probit link and that the parame-

ters are given in SEM notation. To get IRT notation with a logit link, a

transformation is necessary (see Section 1.4.3).

The MHRM algorithm is implemented in the software flexmirt (which is

co-created by the author of MHRM) and in mirt, while MCMC methods

are possible in TAM and Mplus.

The estimation procedure available for the most complex model in each

respective software (thus including multilevel or nonlinear latent effects) is

circled in the table.

3.2 Simulation Study – Single-Level

In the first simulation study, the estimation procedure is analyzed for a model

without hierarchical structure (without random intercept). The results will

be compared to the implementation by Rizopoulos and Moustaki (2008) in

the R package ltm (Rizopoulos, 2006), which is able to estimate nonlinear

latent variable effects in a single-level context. The model to simulate the

data is given by

P (Yij = 1|ξj,γi,Ωi, δi) =
1

1 + exp(−(ξ′jγi + ξ′jΩiξj − δi))
.
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The difficulties and the latent variable coefficients are set to

δ = (1,−1.2,−0.2, 0.6, 1.2,−0.6, 0.2,−1, 0,−0.4) and (3.1)

γ =

(
1 0.5 0.55 1.2 0 0 0 0 0.45 1.1

0 0 0 0 1 1.15 0.95 0.6 1.05 0.65

)t

, (3.2)

respectively. The latent variable ξ is assumed to be two-dimensional and

follow the multivariate standard normal distribution N (0, I2). Its variances

are set to 1 to identify the model. The last two items are influenced by the

interaction of the latent variables. An interaction however is most mean-

ingful if the item is also influenced by the main effects of the corresponding

latent variables. Therefore, both items are set to have cross-loadings. Fur-

thermore, defining one of those items to be dependent on only one main

effect, could cause problems in the estimation of both, the interaction and

the main effects.

3.2.1 Uncorrelated Latent Variables

Unfortunately, the correlation cannot be estimated in the ltm package. Since

the correlation is considered an important aspect in this thesis, the simula-

tion is separated into two parts – first without and then with correlation.

Furthermore, two different sets of coefficients for the latent interaction –

moderate and high – are examined. The number of observations was varied

between N = 500, 1000, 2000, 5000 and 200 datasets were simulated for each

condition.

Moderate Interaction Effects

First, moderate interactions are investigated for the last two items with

Ω9 =

(
0 0

0.1 0

)
and Ω10 =

(
0 0

1 0

)
. (3.3)
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Table 3.3: RMSE, bias, and variance of the difficulties of the last five items
for simulation of single-level model and fixed correlation between the latent
variables to ρ = 0. The interaction terms have medium values. EM =
Estimation with MINoLEM. EL = Estimation with ltm.

N δ1 δ2 δ3 δ4 δ5

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

500
EM .145 .026 .020 .123 -.019 .015 .099 -.001 .010 .125 -.003 .016 .157 .021 .024
EL .147 .028 .021 .124 -.019 .015 .099 .001 .010 .133 .001 .018 .159 .025 .025

1000
EM .099 .006 .010 .086 -.011 .007 .066 -.002 .004 .089 .015 .008 .099 .008 .010
EL .100 .004 .010 .085 -.010 .007 .066 -.002 .004 .092 .017 .008 .101 .009 .010

2000
EM .073 .014 .005 .061 .001 .004 .050 -.002 .002 .067 .008 .004 .075 .007 .006
EL .074 .012 .005 .061 .002 .004 .050 -.001 .002 .069 .009 .005 .075 .006 .006

5000
EM .043 .003 .002 .035 -.001 .001 .031 -.004 .001 .042 -.002 .002 .044 -.000 .002
EL .042 .000 .002 .035 -.000 .001 .031 -.004 .001 .042 -.003 .002 .045 -.001 .002

NC δ6 δ7 δ8 δ9 δ10

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

500
EM .131 .008 .017 .112 .020 .012 .112 -.004 .013 .164 .018 .027 .162 .013 .026
EL .140 .001 .020 .109 .020 .012 .112 -.008 .013 .140 .020 .019 .196 -.016 .038

1000
EM .083 .004 .007 .074 .005 .005 .076 -.003 .006 .091 .001 .008 .115 .014 .013
EL .084 .003 .007 .073 .004 .005 .075 -.002 .006 .091 .002 .008 .130 -.007 .017

2000
EM .058 -.004 .003 .055 -.001 .003 .060 -.001 .004 .059 .002 .004 .070 .020 .005
EL .058 -.004 .003 .055 -.002 .003 .060 -.001 .004 .060 .004 .004 .075 .001 .006

5000
EM .043 .002 .002 .033 -.003 .001 .034 .000 .001 .039 -.005 .002 .043 .010 .002
EL .043 .002 .002 .033 -.003 .001 .034 .000 .001 .039 -.003 .002 .050 -.010 .002

The biases of the difficulties in Table 3.3 are low and almost equal for ltm

(EL) and MINoLEM (EM). They tend to decline with a rising number of

individuals, which indicates consistent estimation of the difficulties. The

variances decrease in all cases, as does the RMSEs. For all sizes of the

dataset, the estimation seems to be very stable, and with a small dataset of

N = 500, the estimation with ltm or MINoLEM produces only a small bias.

With N = 5000, the biases and variances are very low, and the estimation

is very accurate and efficient.

The biases of the coefficients of the latent variables in Table 3.4 are in the

same order of magnitude as the biases of the difficulties. The estimates of the

cross-loadings do not have an increased bias, but γ10,1 has a higher variance

in ltm and MINoLEM for N = 500, which indicates that some datasets are
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Table 3.4: RMSE, bias, and variance of the coefficients of the first latent
dimension for simulation of single-level model and fixed correlation between
the latent variables to ρ = 0. The interaction terms have medium values.
EM = Estimation with MINoLEM. EL = Estimation with ltm.

N γ1,1 γ2,1 γ3,1 γ4,1

rmse bias var rmse bias var rmse bias var rmse bias var

500
EM .267 .069 .066 .186 .004 .035 .180 .012 .032 .311 .013 .097
EL .267 .065 .067 .184 .001 .034 .178 .005 .032 .352 .039 .123

1000
EM .176 .024 .030 .137 .008 .019 .115 .003 .013 .200 .023 .039
EL .183 .019 .033 .137 .003 .019 .118 -.002 .014 .233 .034 .053

2000
EM .140 .032 .018 .089 .006 .008 .086 .009 .007 .149 .022 .022
EL .145 .027 .020 .088 .002 .008 .084 .003 .007 .166 .025 .027

5000
EM .074 .007 .005 .058 .007 .003 .058 .014 .003 .089 .009 .008
EL .074 -.000 .006 .057 .004 .003 .056 .010 .003 .095 .007 .009

N γ9,1 γ10,1 γ5,2 γ6,2

rmse bias var rmse bias var rmse bias var rmse bias var

500
EM .247 .049 .059 .451 .013 .203 .256 .016 .065 .287 .037 .010
EL .212 .034 .044 .503 .088 .246 .265 .025 .069 .323 .058 .010

1000
EM .147 .016 .021 .257 -.009 .066 .169 .007 .029 .167 .006 .010
EL .147 .016 .021 .312 .053 .095 .177 .011 .031 .172 .009 .010

2000
EM .087 .002 .008 .179 -.065 .028 .116 .006 .013 .119 .014 .010
EL .088 .003 .008 .191 -.007 .036 .117 .006 .014 .121 .014 .010

5000
EM .058 -.002 .003 .118 -.041 .012 .078 -.002 .006 .078 .006 .010
EL .058 -.000 .003 .134 .024 .017 .079 -.003 .006 .080 .004 .010

N γ7,2 γ8,2 γ9,2 γ10,2

rmse bias var rmse bias var rmse bias var rmse bias var

500
EM .233 .002 .054 .163 -.001 .027 .456 .147 .186 .255 .006 .065
EL .239 .003 .057 .163 -.007 .026 .292 .099 .076 .317 .058 .097

1000
EM .158 -.001 .025 .124 .002 .015 .186 .051 .032 .200 .004 .040
EL .159 -.005 .025 .124 .000 .015 .184 .048 .032 .231 .040 .052

2000
EM .117 .016 .013 .088 .002 .008 .120 .021 .014 .116 -.029 .013
EL .116 .012 .013 .088 .001 .008 .121 .020 .014 .122 .001 .015

5000
EM .068 .004 .005 .054 .001 .003 .066 .006 .004 .076 -.019 .005
EL .067 .001 .005 .054 .000 .003 .067 .005 .004 .085 .013 .007

not as well estimated as most.

Especially for smaller datasets, the estimation can converge to a local min-

imum, which is far away from the true values. The MINoLEM approach

seems to have fewer of those cases, and this problem occurs less likely with
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an increasing size of the datasets. To counter this problem in a reasonable

way, a dataset was not taken into account (also in the following simulations),

if at least one parameter estimate was estimated above 5 in absolute values.

For those, it was assumed that the estimation diverged and that it would

also be apparent in an applied case. Nevertheless, the higher variance can

be explained by remaining poorly estimated datasets.

Overall, the variances are small and decline with increasing number of indi-

viduals. The RMSEs decline as well, and are mostly in the same order of

magnitude as for the difficulties. The interaction effects in Table 3.5 show

Table 3.5: RMSE, bias, and variance of the interaction coefficients for simu-
lation of single-level model and fixed correlation between the latent variables
to ρ = 0. The interaction terms have medium values. EM = Estimation with
MINoLEM. EL = Estimation with ltm.

N Ω
(2,1)
9 Ω

(2,1)
10

rmse bias var rmse bias var

500
EM .521 .058 .268 .537 -.015 .288
EL .428 .234 .128 .712 .127 .491

1000
EM .233 .027 .054 .416 -.025 .172
EL .214 .104 .035 .479 .077 .223

2000
EM .169 .014 .028 .239 -.072 .052
EL .141 .052 .017 .275 .024 .075

5000
EM .099 .020 .009 .168 -.063 .024
EL .080 .013 .006 .195 .042 .036

slightly higher biases than the difficulties and coefficients for both meth-

ods. The biases of Ω
(2,1)
10 do not seem to decline with more individuals in

MINoLEM. The variances decrease, and while the first interaction effect

Ω
(2,1)
9 is estimated as well as most factor loadings concerning the RMSEs,

the RMSEs of the second interaction effect Ω
(2,1)
10 and of the factor loading

γ10,1 are higher. This can be explained by the relatively high true interaction

coefficient, as detailed in the following paragraph.

The influence of the interaction effect on the Item Response Surface (IRS)

can be seen in Figures 3.1 to 3.4. Each plot shows the probability of an-

swering an item correctly, depending on latent variables η1 and η2. The
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Figure 3.1: Item response surface of
2-dimensional IRT model item with-
out interaction effect.
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Figure 3.2: Item response surface of
2-dimensional IRT model item with
low interaction effect of Ω = 0.4.

interaction coefficient is varied while the other item parameters are fixed to

the values of item nine of the previous simulation.

The IRS of an item without an interaction effect, as in Figure 3.1, is a bent

surface, where the degree of the bend depends solely on the coefficients of

the latent variables. Adding an interaction coefficient of Ω = 0.4 introduces

a twist in the surface and hints at a saddle (see Figure 3.2). Figure 3.3 with

Ω = 1.6 shows that further increase of the interaction coefficient creates a

saddle, which gets narrower with higher interaction coefficients.

With rising difficulty of the item, the saddle becomes deeper. The coefficients

of the individual latent variables determine where the saddle lies in the ξ1-

ξ2-plane. Introducing a negative interaction coefficient instead, turns the

orientation of the saddle by 90◦.

The differences between the Figures 3.1 and 3.2 and the Figures 3.3 and 3.4

each lies in an increase of the interaction coefficient by 0.4. However, the
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Figure 3.3: Item response surface of
2-dimensional IRT model item with
moderate interaction effect of Ω =
1.6.
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Figure 3.4: Item response surface of
2-dimensional IRT model item with
high interaction effect of Ω = 2.
test

distinction is much more apparent between Figures 3.1 and 3.2, while Figures

3.3 and 3.4 only show a slight difference, if looked closely. This explains

why especially the efficient estimation (with low standard error) of high

interaction coefficients is more difficult than for low interaction coefficients.

This can also be seen in Table 3.5, where the first interaction coefficient is

set to Ω
(2,1)
9 = 0.1, while the second is set to Ω

(2,1)
10 = 1. The RMSE is greater

for Ω
(2,1)
10 , which is coherent with the previous explanation, since distinctions

get more difficult between different coefficients of latent interactions, when

they increase in size.
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High Interaction Effects

Setting both interaction effects to high values

Ω9 =

(
0 0

−1.9 0

)
and Ω10 =

(
0 0

2 0

)
, (3.4)

while keeping all other parameters, demonstrates even better that the esti-

mation of high interaction effects is difficult. The number of observations

was again varied between N= 500, 1000, 2000, 5000 and 200 datasets were

simulated for each condition.

Table 3.6: RMSE, bias, and variance of the difficulties of the last five items
for simulation of single-level model and fixed correlation between the latent
variables to ρ = 0. The interaction terms have high values. EM = Estimation
with MINoLEM. EL = Estimation with ltm.

N δ1 δ2 δ3 δ4 δ5

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

500
EM .139 .024 .019 .124 -.024 .015 .097 .008 .009 .130 .008 .017 .142 .016 .020
EL .141 .025 .019 .124 -.019 .015 .098 .002 .010 .127 -.002 .016 .152 .020 .023

1000
EM .096 .002 .009 .089 -.014 .008 .067 -.004 .004 .091 .017 .008 .099 .004 .010
EL .097 .004 .009 .086 -.012 .007 .066 -.002 .004 .089 .013 .008 .101 .010 .010

2000
EM .071 .012 .005 .061 .002 .004 .049 -.001 .002 .065 .006 .004 .076 .011 .006
EL .069 .009 .005 .060 .003 .004 .050 -.001 .002 .067 .006 .004 .076 .008 .006

5000
EM .040 .004 .002 .036 -.002 .001 .031 -.004 .001 .041 .001 .002 .045 .004 .002
EL .040 .000 .002 .036 -.000 .001 .031 -.003 .001 .042 -.002 .002 .044 .001 .002

NC δ6 δ7 δ8 δ9 δ10

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

500
EM .130 .002 .017 .113 .026 .012 .109 -.008 .012 .186 .025 .034 .186 .003 .035
EL .133 .006 .018 .109 .020 .011 .114 -.009 .013 .191 .007 .037 .978 -.146 .935

1000
EM .083 .006 .007 .075 .010 .006 .072 -.001 .005 .106 .009 .011 .118 .021 .014
EL .084 .004 .007 .074 .005 .005 .073 -.000 .005 .112 .005 .012 .174 -.014 .030

2000
EM .060 .000 .004 .055 .000 .003 .060 .002 .004 .088 .011 .008 .106 .017 .011
EL .057 -.003 .003 .055 -.002 .003 .060 .000 .004 .076 -.005 .006 .106 -.007 .011

5000
EM .043 .003 .002 .034 -.001 .001 .034 .001 .001 .058 -.003 .003 .076 .026 .005
EL .042 .002 .002 .033 -.004 .001 .034 .000 .001 .050 -.010 .002 .059 -.006 .003

First, it can be said that the estimation of the difficulties in Table 3.6 is not

affected by the higher interaction values. The bias is as low as for medium
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interaction values and declines as well. The RMSEs and variances are also

in the same order of magnitude.

Table 3.7: RMSE, bias, and variance of the coefficients of the first latent
dimension for simulation of single-level model and fixed correlation between
the latent variables to ρ = 0. The interaction terms have high values. EM
= Estimation with MINoLEM. EL = Estimation with ltm.

N γ1,1 γ2,1 γ3,1 γ4,1

rmse bias var rmse bias var rmse bias var rmse bias var

500
EM .254 .060 .061 .172 .005 .029 .173 .024 .029 .312 .039 .096
EL .246 .058 .057 .178 .003 .032 .180 .001 .032 .346 .027 .119

1000
EM .172 .021 .029 .135 .012 .018 .114 .001 .013 .180 .017 .032
EL .170 .019 .028 .133 .011 .018 .114 -.003 .013 .196 .012 .038

2000
EM .133 .029 .017 .086 .006 .007 .084 .008 .007 .152 .013 .023
EL .129 .018 .016 .084 .002 .007 .082 .004 .007 .155 .014 .024

5000
EM .074 .009 .005 .061 .008 .004 .055 .011 .003 .096 .022 .009
EL .067 .001 .004 .058 .004 .003 .052 .006 .003 .090 .009 .008

N γ9,1 γ10,1 γ5,2 γ6,2

rmse bias var rmse bias var rmse bias var rmse bias var

500
EM .432 .050 .184 .483 -.037 .232 .241 .012 .058 .295 .060 .010
EL .963 .163 .901 3.459 .920 11.118 .250 .013 .062 .291 .036 .010

1000
EM .309 .016 .095 .405 -.057 .161 .164 .008 .027 .182 .017 .010
EL .295 .031 .086 1.447 .276 2.019 .168 .016 .028 .180 .009 .010

2000
EM .289 .042 .082 .327 -.099 .097 .122 .010 .015 .128 .013 .010
EL .180 .010 .032 .314 .035 .097 .123 .010 .015 .119 .007 .010

5000
EM .220 -.003 .049 .274 -.112 .063 .081 .004 .007 .084 .012 .010
EL .115 -.015 .013 .186 .035 .033 .080 .003 .006 .076 .004 .010

N γ7,2 γ8,2 γ9,2 γ10,2

rmse bias var rmse bias var rmse bias var rmse bias var

500
EM .221 .009 .049 .162 -.001 .026 .504 .051 .251 .345 .023 .118
EL .223 .011 .050 .165 -.003 .027 4.650 1.229 2.116 1.847 .379 3.268

1000
EM .158 .013 .025 .114 -.003 .013 .482 .061 .228 .310 -.019 .096
EL .154 -.000 .024 .115 -.006 .013 1.059 .224 1.072 .384 .057 .144

2000
EM .115 .019 .013 .087 -.002 .008 .415 .066 .168 .260 -.049 .065
EL .113 .014 .012 .087 -.003 .008 .737 .123 .529 .213 -.004 .046

5000
EM .070 .006 .005 .054 .002 .003 .310 -.013 .096 .185 -.063 .030
EL .068 -.001 .005 .053 -.001 .003 .170 .022 .028 .125 .003 .016

The coefficients of the latent variables of the items, that are only affected by

one main effect (γ1,1, γ2,1, γ3,1, γ4,1, γ5,2, γ6,2, γ7,2, and γ8,2) in Table 3.7, are

also not affected in both methods as well. RMSEs, biases, and variances
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are as low as before, and the biases are mostly decreasing and indicating

consistency.

However, the cross-loadings in ltm are not being estimated adequately in

some cases. There seem to be more datasets for which ltm ‘diverges’, al-

though datasets with any estimated values of 5 and above are not con-

sidered again. MINoLEM does not show this behavior and estimates the

cross-loadings stable for all sizes of the dataset.

Nevertheless, the values do not decrease as much as for the medium interac-

tion effects in the previous section. The explanation is given above as well by

the increased complexity of estimating interaction effects and the respective

loadings if they values get higher.

Table 3.8: RMSE, bias, and variance of the interaction coefficients for simu-
lation of single-level model and fixed correlation between the latent variables
to ρ = 0. The interaction terms have high values. EM = Estimation with
MINoLEM. EL = Estimation with ltm.

N Ω
(2,1)
9 Ω

(2,1)
10

rmse bias var rmse bias var

500
EM .823 -.065 .674 .757 -.052 .571
EL 6.704 -1.931 41.220 5.629 1.652 28.960

1000
EM .794 -.049 .627 .719 -.062 .513
EL 1.506 -.323 2.164 2.051 .463 3.991

2000
EM .754 -.094 .560 .656 -.107 .419
EL 1.104 -.193 1.181 .588 .119 .332

5000
EM .631 .011 .398 .494 -.215 .198
EL .291 -.036 .084 .327 .054 .104

The results in Table 3.8 for the interaction effects confirm this observa-

tion. Again, ltm has various issues in the estimation, especially for smaller

datasets, while MINoLEM is stable in all conditions. For N = 5000, ltm

does not show these estimation issues anymore, but the values stay slightly

higher than before, when smaller interaction effects were estimated.

Nonetheless, the simulations show that the estimation of interaction effects,
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difficulties, and coefficients is handled well by ltm and slightly more stable

by MINoLEM. Low biases and variances could be observed in all conditions.

3.2.2 Correlated Latent Variables

In this simulation, the correlation between the latent variables, set to ρ = 0.3,

is estimated as well. The ltm package cannot estimate correlations and fixes

it to ρ = 0. The misspecification results in high RMSE values. Therefore,

only the results of the MINoLEM approach are presented.

Since the focus lies on the interaction and the correlation between the latent

variables, only those results are given here. The results of the difficulties

and the coefficients of the latent variables are not affected by the additional

estimation of the correlation and are given in Appendix B.1 in Tables B.1

to B.4.

Table 3.9: RMSE, bias, and variance of the interaction coefficients for sim-
ulation of single-level model and estimated correlation between the latent
variables of ρ = 0.3. The interaction terms have medium values. EM =
Estimation with MINoLEM.

N Ω
(2,1)
9 Ω

(2,1)
10 ρ

rmse bias var rmse bias var rmse bias var

500 EM .429 -.015 .184 .570 .095 .316 .123 -.014 .015
1000 EM .280 .018 .078 .360 -.068 .125 .090 -.028 .007
2000 EM .204 -.003 .042 .218 -.039 .046 .054 -.014 .003
5000 EM .124 .019 .015 .175 -.058 .027 .048 -.023 .002

Tables 3.9 and 3.10 show that the additional estimation of the correlation

between the latent variables only marginally influences the estimation of the

interaction terms for medium and high values, as defined in Equations (3.3)

and (3.4). In comparison to the simulation, in which the correlation was

fixed to ρ = 0, the biases are slightly higher, while the variances are lower.

At first sight, estimation of the correlation appears to be more efficient, but

it also slightly increases the bias.
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Table 3.10: RMSE, bias, and variance of the interaction coefficients for sim-
ulation of single-level model and estimated correlation between the latent
variables of ρ = 0.3. The interaction terms have high values. EM = Estima-
tion with MINoLEM.

N Ω
(2,1)
9 Ω

(2,1)
10 ρ

rmse bias var rmse bias var rmse bias var

500 EM .636 .186 .370 .657 -.261 .364 .112 -.028 .012
1000 EM .465 .185 .182 .676 -.374 .317 .085 -.035 .006
2000 EM .421 .207 .134 .519 -.301 .179 .057 -.023 .003
5000 EM .355 .196 .088 .506 -.320 .153 .053 -.029 .002

The correlation is estimated with a low bias, which is not influenced by

increasing the value of the interaction effects. The bias does not decrease

with an increasing number of individuals and is negative in all cases, which

indicates a slight underestimation. The variances and therefore the RMSEs

decrease with more individuals in the datasets and have values as low as

those of the difficulties in the previous simulation.

3.2.3 Estimation of Zero Loadings

In this simulation, the difficulties and loadings are, as before, defined in

Equations (3.1) and (3.2). As in Equation (3.3), the interaction effects take

moderate values, and the latent variables are assumed to be uncorrelated,

to allow the comparison with ltm.

Contrary to the estimation in Section 3.2.1, the coefficient γ8,1 of the reading

ability and the loading Ω
(2,1)
8 of an interaction effect for item eight are freely

estimated, instead of being fixed to their true value 0. This tests the handling

of the wrong assumption that item eight does not only depend on the second

latent variable dimension but also on the first dimension, as well as on the

interaction of both latent variables.

The results show that MINoLEM and ltm have no problem detecting the
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true relationships. The biases, variances, and RMSEs of the difficulty of item

eight in Table 3.11 are basically unchanged in comparison to Section 3.2.1

with slightly higher values. The results of the other item difficulties are not

affected.

Table 3.11: RMSE, bias, and variance of difficulties of simulation for single-
level model and correlation between the latent variables of 0. The loading
γ8,1 of the reading ability and the loading Ω

(2,1)
8 of an interaction effect for

item 8 are simulated to be 0 but estimated nevertheless.
NC δ1 δ2 δ3 δ4 δ5

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

500
EM .144 .028 .020 .123 -.020 .015 .098 -.000 .010 .130 .001 .017 .158 .023 .024
EL .183 .033 .032 .123 -.019 .015 .098 .001 .010 .137 .003 .019 .162 .027 .025

1000
EM .101 .007 .010 .086 -.011 .007 .067 -.001 .004 .088 .015 .008 .100 .009 .010
EL .101 .005 .010 .085 -.010 .007 .066 -.002 .004 .092 .017 .008 .101 .009 .010

2000
EM .073 .014 .005 .061 .001 .004 .050 -.002 .002 .067 .008 .004 .075 .007 .006
EL .074 .012 .005 .061 .003 .004 .050 -.001 .002 .069 .008 .005 .075 .006 .006

5000
EM .043 .003 .002 .035 -.001 .001 .031 -.004 .001 .042 -.002 .002 .044 -.000 .002
EL .043 .000 .002 .035 -.000 .001 .031 -.004 .001 .043 -.002 .002 .044 -.001 .002

NC δ6 δ7 δ8 δ9 δ10

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

500
EM .136 .003 .018 .112 .021 .012 .131 -.026 .016 .137 .015 .018 .160 .018 .025
EL .141 .001 .020 .110 .021 .012 .135 -.031 .017 .139 .020 .019 .201 -.018 .040

1000
EM .084 .003 .007 .074 .005 .005 .079 -.012 .006 .092 -.001 .008 .112 .020 .012
EL .084 .003 .007 .074 .004 .005 .080 -.012 .006 .091 .002 .008 .132 -.008 .017

2000
EM .058 -.004 .003 .055 -.001 .003 .061 -.005 .004 .059 .001 .004 .071 .020 .005
EL .058 -.004 .003 .055 -.002 .003 .061 -.005 .004 .060 .004 .004 .075 .001 .006

5000
EM .043 .002 .002 .033 -.003 .001 .035 -.002 .001 .040 -.006 .002 .043 .009 .002
EL .043 .002 .002 .033 -.003 .001 .035 -.002 .001 .039 -.003 .002 .050 -.010 .002

The results of γ8,2 in Table 3.12 are not influenced by the additional esti-

mation of γ8,1 and Ω
(2,1)
8 in MINoLEM and ltm. Bias, variance, and RMSE

of γ8,1 are even lower compared to the other loadings in MINoLEM. In ltm,

however, they are bigger. MINoLEM seems to estimate the zero-loading

more accurately than ltm.

The results for the zero-interaction Ω
(2,1)
8 are very good for both implemen-

tations. The values are lower than for the other two non-zero interaction

terms, which are not affected. The biases, variances, and RMSEs decrease
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Table 3.12: RMSE, bias, and variance of the coefficients of the latent vari-
ables of simulation for single-level model and correlation between the latent
variables of 0. The loading γ8,1 of the reading ability and the loading Ω

(2,1)
8

of an interaction effect for item 8 are simulated to be 0 but estimated nev-
ertheless.
NC γ1,1 γ2,1 γ3,1 γ4,1 γ8,1

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

500
EM .264 .068 .065 .185 .008 .034 .179 .014 .032 .320 .023 .102 .182 -.006 .033
EL .366 .076 .128 .185 .002 .034 .179 .005 .032 .375 .045 .139 .233 .143 .034

1000
EM .181 .026 .032 .137 .009 .019 .119 .006 .014 .200 .023 .040 .124 .003 .015
EL .186 .021 .034 .136 .003 .019 .119 -.001 .014 .235 .032 .054 .157 .097 .015

2000
EM .140 .032 .019 .090 .006 .008 .086 .009 .007 .149 .020 .022 .089 -.006 .008
EL .145 .027 .020 .088 .002 .008 .084 .003 .007 .166 .024 .027 .112 .069 .008

5000
EM .074 .007 .005 .058 .007 .003 .059 .014 .003 .089 .007 .008 .055 -.008 .003
EL .074 -.000 .006 .057 .004 .003 .056 .010 .003 .095 .007 .009 .070 .044 .003

NC γ9,1 γ10,1 γ5,2 γ6,2 γ7,2

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

500
EM .204 .022 .041 .351 -.022 .123 .258 .024 .010 .298 .050 .086 .234 .009 .055
EL .211 .029 .044 .553 .095 .297 .278 .032 .010 .327 .053 .104 .243 .001 .059

1000
EM .146 .014 .021 .226 -.029 .050 .172 .010 .010 .169 .012 .028 .160 .002 .025
EL .147 .017 .021 .308 .053 .092 .177 .011 .010 .172 .008 .030 .160 -.005 .026

2000
EM .088 .000 .008 .176 -.065 .027 .117 .007 .010 .120 .017 .014 .118 .017 .014
EL .089 .003 .008 .190 -.006 .036 .118 .006 .010 .121 .013 .015 .116 .012 .013

5000
EM .058 -.003 .003 .115 -.036 .012 .078 -.003 .010 .079 .006 .006 .069 .005 .005
EL .058 -.001 .003 .134 .023 .018 .079 -.003 .010 .080 .004 .006 .067 .000 .005

NC γ8,2 γ9,2 γ10,2

rmse bias var rmse bias var rmse bias var

500
EM .185 .016 .034 .275 .088 .068 .243 -.002 .059
EL .191 .017 .036 .301 .097 .081 .362 .068 .126

1000
EM .128 .011 .016 .179 .045 .030 .181 -.006 .033
EL .129 .012 .017 .184 .047 .031 .236 .041 .054

2000
EM .091 .005 .008 .120 .019 .014 .114 -.030 .012
EL .091 .005 .008 .122 .021 .014 .121 .001 .015

5000
EM .055 .003 .003 .066 .005 .004 .076 -.016 .006
EL .055 .003 .003 .066 .005 .004 .086 .014 .007

with increased numbers of individuals.

Overall, both implementations can correctly distinguish between items that

are influenced by both latent variables and their interaction and items that

are only affected by one latent variable.
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Table 3.13: RMSE, bias, and variance of the coefficients of the interaction
between the latent variables, the correlation between the latent variables,
and the variance of the random intercept of simulation for single-level model
and correlation between the latent variables of 0. The loading γ8,1 of the

reading ability and the loading Ω
(2,1)
8 of an interaction effect for item 8 are

simulated to be 0 but estimated nevertheless.

NC Ω
(2,1)
8 Ω

(2,1)
9 Ω

(2,1)
10

rmse bias var rmse bias var rmse bias var

500
EM .292 .023 .085 .389 .070 .147 .440 -.031 .192
EL .309 .011 .095 .438 .234 .137 .833 .158 .670

1000
EM .187 -.017 .035 .239 .041 .056 .343 -.056 .115
EL .190 -.006 .036 .218 .106 .036 .479 .079 .223

2000
EM .126 .007 .016 .170 .022 .028 .229 -.070 .048
EL .128 .012 .016 .140 .052 .017 .278 .026 .077

5000
EM .076 -.006 .006 .105 .029 .010 .159 -.048 .023
EL .076 -.001 .006 .080 .013 .006 .198 .042 .037

3.2.4 Single-Level Data with Multilevel Model Speci-

fication

Before presenting the simulations for the full multilevel model, it is shown

that MINoLEM is able to identify a missing hierarchical structure and still

estimate the single-level model properly. This in turn gives the estimation

of non-zero variances of a random intercept more weight in applications.

A model with hierarchical structure was estimated, while the data were sim-

ulated as a single-level model. The datasets were drawn with the same

parameters as in Equations (3.1) and (3.2) with correlation ρ = 0.3 be-

tween the latent variables. The sizes of the datasets were set to N =

2500, 5000, 7500, so that the model is estimated assuming NC = 50 clus-

ters with NS = 50, 100, 150 individuals each.

The RMSEs, biases, and variances of the item parameters and of the cor-

relation between the latent variables in Tables 3.14, 3.15, and 3.16 are very

similar to the results, in which no multilevel structure was assumed (e.g.,

in Tables B.3 and B.4 in the appendix and Table 3.10). The very low bias,
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Table 3.14: RMSE, bias, and variance of the difficulties of a simulation,
in which a hierarchical structure was assumed while none was present. The
correlation between the latent variables was set to 0.3. The interaction terms
have medium values.
N δ1 δ2 δ3 δ4 δ5

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

N=50·50 .058 .009 .003 .052 .003 .003 .044 .001 .002 .060 .009 .004 .065 -.002 .004
N=100·50 .042 .003 .002 .033 .000 .001 .030 -.003 .001 .038 .004 .001 .045 .008 .002
N=150·50 .036 .000 .001 .029 .002 .001 .025 -.002 .001 .034 .002 .001 .038 .003 .001

N δ6 δ7 δ8 δ9 δ10

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

N=50·50 .058 -.003 .003 .046 -.002 .002 .054 -.004 .003 .055 -.001 .003 .072 -.007 .005
N=100·50 .042 -.006 .002 .035 -.002 .001 .035 .002 .001 .039 -.001 .002 .050 -.011 .002
N=150·50 .036 -.005 .001 .029 .005 .001 .030 .002 .001 .033 -.004 .001 .042 -.009 .002

Table 3.15: RMSE, bias, and variance of the coefficients of the latent vari-
ables of a simulation, in which a hierarchical structure was assumed while
none was present. The correlation between the latent variables was set to
0.3. The interaction terms have medium values.
N γ1,1 γ2,1 γ3,1 γ4,1

rmse bias var rmse bias var rmse bias var rmse bias var

N=50·50 .106 .010 .011 .078 .002 .006 .086 .005 .007 .134 .008 .018
N=100·50 .077 .005 .006 .056 .001 .003 .054 .008 .003 .087 .011 .007
N=150·50 .063 -.000 .004 .044 -.001 .002 .041 .002 .002 .080 .021 .006

N γ9,1 γ10,1 γ5,2 γ6,2

rmse bias var rmse bias var rmse bias var rmse bias var

N=50·50 .102 .030 .009 .151 -.014 .023 .105 .004 .011 .107 .010 .001
N=100·50 .064 .015 .004 .120 -.038 .013 .073 .017 .005 .079 .008 .001
N=150·50 .058 .014 .003 .099 -.033 .009 .059 .010 .003 .067 .014 .001

N γ7,2 γ8,2 γ9,2 γ10,2

rmse bias var rmse bias var rmse bias var rmse bias var

N=50·50 .092 -.008 .008 .075 .018 .005 .117 .001 .014 .124 -.014 .015
N=100·50 .059 .002 .003 .047 -.001 .002 .073 .002 .005 .081 -.003 .007
N=150·50 .047 .003 .002 .038 -.003 .001 .063 .006 .004 .069 -.007 .005

variance, and RMSE for the variance σ2 of the random intercept in Table

3.16 suggests that the alleged variance of the random intercept is correctly

estimated close to 0 – consistently for every condition. MINoLEM recognizes
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the missing multilevel structure, while estimating all the other parameters

correctly as well.

Table 3.16: RMSE, bias, and variance of the difficulties of a simulation,
in which a hierarchical structure was assumed while none was present. The
correlation between the latent variables was set to 0.3. The interaction terms
have medium values.

N Ω
(2,1)
9 Ω

(2,1)
9 ρ σ2

rmse bias var rmse bias var rmse bias var rmse bias var

N=50·50 .178 -.002 .032 .230 -.043 .051 .053 -.019 .002 .001 .000 .000
N=100·50 .121 .009 .015 .167 -.060 .024 .042 -.016 .001 .000 .000 .000
N=150·50 .096 .005 .009 .148 -.053 .019 .036 -.015 .001 .000 .000 .000

3.3 Simulation Study – Multilevel

In the final simulation, the complete model with the consideration of hierar-

chical data as in Equation (2.1) is examined. To investigate the consistency

of the estimation, the results are presented in two parts. First, the number

of individuals per cluster NS is fixed, which allows to observe the influence of

an increasing number of clusters. Second, the number of clusters NC is fixed,

which allows to observe the influence of an increasing number of individuals

per cluster. The results of MINoLEM (EM) are compared to the estimates

of mirt (Em), a package in R (Chalmers, 2012). The interaction is only

estimated by MINoLEM, but both account for the hierarchical structure.

The parameters were equal in both simulations. The difficulties for the 10

items were, once again, set to

δ =
(

1 −1.2 −0.2 0.6 1.2 −0.6 0.2 −1 0 −0.4
)t
,

while a two-dimensional latent variable with ξ ∼ N (0, I2) was assumed.

Each latent variable had four items that depended only on them – the first

four on the first latent variable dimension and the following four on the
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second dimension. The last two items were affected by both latent variable

dimensions

γ =

(
1 0.5 0.55 1.2 0 0 0 0 0.45 1.1

0 0 0 0 1 1.15 0.95 0.6 1.05 0.65

)t

,

as well as by the interaction of the latent variables

Ω9 =

(
0 0

0.45 0

)
and Ω10 =

(
0 0

1.1 0

)
.

The variance of the random intercept was set to σ2 = 0.125, and the corre-

lation between the latent variables to ρ = 0.3.

3.3.1 Fixed Size of Clusters

A multilevel model with varying numbers of clusters NC = 50, 100, 200 and

a fixed cluster size to NS = 100 was simulated. The minimum number of

clusters is in accordance with McNeish and Stapleton (2016), who suggest at

least 50 clusters to estimate the Level 2 variance (for estimation with FIML).

They also suggest a cluster size of at least 10 for Level 1 fixed effects, which

is later increased to NS = 50, since nonlinear effects usually need more

resources to be estimated accurately.

Difficulties of the Items

The biases of the difficulties in Table 3.17 are very small for the estimates

of MINoLEM (EM) for all numbers of clusters. The estimates of mirt (Em)

show a slightly higher bias for NC = 50 and NC = 100, but the bias decreases

with rising numbers of clusters and is in the same order of magnitude as

those of MINoLEM when NC = 200. The only exception is the bias of the

difficulty δ10 of item ten. MINoLEM shows slightly higher values than for the

other item difficulties. The biases of mirt increase with higher numbers of
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Table 3.17: RMSE, bias, and variance of difficulties of simulation for multi-
level model and correlation between the latent variables of 0.3. The number
of individuals per cluster is fixed to NS = 100. NC = Number of clusters.
EM = Estimation with MINoLEM. Em = Estimation with mirt.

NC δ1 δ2 δ3 δ4 δ5

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

50
EM .062 .003 .004 .059 -.001 .003 .056 -.001 .003 .065 .002 .004 .062 .006 .004
Em .076 .015 .006 .071 .014 .005 .068 .013 .004 .079 .015 .006 .076 .019 .005

100
EM .047 .007 .002 .041 -.002 .002 .041 .002 .002 .045 .005 .002 .042 .003 .002
Em .054 .014 .003 .050 .012 .002 .050 .014 .002 .053 .012 .003 .049 .012 .002

200
EM .032 -.002 .001 .031 -.005 .001 .029 -.001 .001 .032 -.002 .001 .033 .001 .001
Em .037 -.003 .001 .034 .001 .001 .032 .002 .001 .037 -.003 .001 .038 .001 .001

NC δ6 δ7 δ8 δ9 δ10

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

50
EM .061 -.001 .004 .060 -.001 .004 .061 -.004 .004 .056 -.002 .003 .067 -.010 .004
Em .075 .015 .005 .074 .014 .005 .070 .011 .005 .068 .006 .005 .079 -.030 .005

100
EM .044 -.001 .002 .041 .002 .002 .046 .003 .002 .043 .002 .002 .046 -.010 .002
Em .052 .012 .003 .050 .012 .002 .055 .015 .003 .049 .004 .002 .066 -.035 .003

200
EM .032 -.005 .001 .030 -.001 .001 .030 -.005 .001 .031 -.004 .001 .040 -.015 .001
Em .035 -.001 .001 .034 .000 .001 .033 -.002 .001 .037 -.010 .001 .077 -.049 .004

clusters and are significantly higher than those of MINoLEM. The package

mirt, however, estimates a misspecified model, since the interactions are

not taken into account. That explains the higher bias of mirt. Surprisingly,

this effect is not as big for δ9, where the interaction is also not estimated in

mirt. Both methods show clear signs of consistency: Whenever the number

of clusters is increased, the bias is decreased.

The variances and the RMSEs of the estimates decrease for all difficulties

and for both methods. The only exceptions are again the values of mirt for

δ10, which are slightly higher due to the misspecification.

Loadings of the Latent Variables

The biases of the loadings of the latent variables in Table 3.18 are very small

for both methods and all conditions. The order of magnitude of the biases
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are similar to the difficulties’ biases. More than 10 times larger values can,

once again, be observed in mirt for the loadings of the latent variables for

item ten (γ10,1 and γ10,2). Since the biases for the cross-loadings of the first

latent dimension do not increase in mirt, the misspecification seems to ‘push’

all bias to one item only. The biases of MINoLEM for γ10,1 and γ10,2 are also

slightly higher than the biases for the other latent variable coefficients, which

can be explained by the additional dependence of the item on the interaction.

Table 3.18: RMSE, bias, and variance of the coefficients of the latent vari-
ables of simulation for multilevel model and correlation between the latent
variables of 0.3. The number of individuals per cluster is fixed to NS = 100.
NC = Number of clusters. EM = Estimation with MINoLEM. Em = Esti-
mation with mirt.
NC γ1,1 γ2,1 γ3,1 γ4,1

rmse bias var rmse bias var rmse bias var rmse bias var

50
EM .079 .007 .006 .050 .002 .002 .051 .011 .003 .085 .009 .007
Em .084 .001 .007 .055 .002 .003 .055 .006 .003 .095 .001 .009

100
EM .052 .004 .003 .038 .003 .001 .038 .001 .001 .064 .012 .004
Em .057 -.012 .003 .041 -.006 .002 .042 -.007 .002 .070 -.015 .005

200
EM .039 .011 .001 .029 .007 .001 .026 .005 .001 .047 .014 .002
Em .038 -.004 .001 .028 -.002 .001 .026 -.004 .001 .049 -.010 .002

NC γ9,1 γ10,1 γ5,2 γ6,2

rmse bias var rmse bias var rmse bias var rmse bias var

50
EM .069 .024 .004 .124 -.053 .013 .075 .007 .006 .075 .016 .005
Em .066 .017 .004 .375 -.259 .073 .076 .005 .006 .079 .014 .006

100
EM .054 .017 .003 .097 -.044 .007 .049 .005 .002 .053 .014 .003
Em .051 .001 .003 .378 -.264 .073 .051 .003 .003 .053 .003 .003

200
EM .040 .015 .001 .084 -.045 .005 .033 .004 .001 .038 .006 .001
Em .037 .009 .001 .383 -.270 .074 .032 -.001 .001 .039 .000 .001

NC γ7,2 γ8,2 γ9,2 γ10,2

rmse bias var rmse bias var rmse bias var rmse bias var

50
EM .063 .009 .004 .055 .008 .003 .078 .010 .006 .085 -.025 .007
Em .066 .006 .004 .056 .008 .003 .084 .008 .007 .347 -.240 .063

100
EM .047 .005 .002 .037 .002 .001 .054 .005 .003 .066 -.023 .004
Em .048 .000 .002 .039 .000 .002 .059 .007 .003 .347 -.243 .062

200
EM .034 .005 .001 .024 .002 .001 .038 .006 .001 .047 -.019 .002
Em .035 .000 .001 .025 -.001 .001 .044 .007 .002 .333 -.234 .056

For both methods, the biases are reducing with increasing numbers of clus-
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ters, although not as clearly as for the difficulties. Signs of consistency are

visible but ambiguous for some coefficients.

The RMSEs and the variances, however, decline with rising numbers of clus-

ters for both methods (except in mirt for item ten).

Overall, both methods show very similar values for the biases, variances, and

RMSEs of the difficulties and the loadings, if the increased values, due to

the misspecification in mirt, are not taken into account.

Interaction Coefficients, Correlation, and Random Intercept

The biases of the first interaction coefficient Ω
(2,1)
9 in Table 3.19 are very

low and of the order of magnitude as the biases of the loadings of the main

effects. The biases of the second interaction coefficient Ω
(2,1)
10 are higher, due

to the higher true value, as was discussed in Section 3.2.1. Both biases stay

relatively constant with rising numbers of clusters, which might indicate that

the number of clusters has no or only little influence on the estimates of the

interaction coefficients, contrary to the estimates of the difficulties and the

loadings.

Table 3.19: RMSE, bias, and variance of the coefficients of the interaction
between the latent variables, the correlation between the latent variables,
and the variance of the random intercept of simulation for multilevel model
and correlation between the latent variables of 0.3. The number of individ-
uals per cluster is fixed to NS = 100. NC = Number of clusters. EM =
Estimation with MINoLEM. Em = Estimation with mirt.

NC Ω
(2,1)
9 Ω

(2,1)
10 ρ σ2

rmse bias var rmse bias var rmse bias var rmse bias var

50
EM .118 .001 .014 .201 -.103 .030 .048 -.026 .002 .027 -.012 .001
Em .039 .001 .002 .037 .002 .001

100
EM .084 .004 .007 .168 -.092 .020 .040 -.022 .001 .022 -.012 .000
Em .030 .009 .001 .022 -.002 .000

200
EM .055 .004 .003 .150 -.091 .014 .034 -.020 .001 .018 -.010 .000
Em .020 -.002 .000 .014 -.002 .000
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However, both the variances and the RMSEs decrease, which shows that

the estimation becomes more accurate with an increase of the number of

clusters.

The correlation between the latent variables has a slightly higher bias in

MINoLEM than in mirt, but it decreases with rising numbers of clusters.

Both methods have equally low variances and a declining RMSEs.

The variance of the random intercept is, once again, more accurately esti-

mated by mirt regarding the bias. The seemingly contradicting values of the

RMSE (lower for MINoLEM than for mirt, although the bias and the vari-

ance are lower in mirt) are caused by rounding – the variances of MINoLEM

for NC = 50 and NC = 100 are lower than the variances of mirt.

In summary, both methods show a very good performance. The package

mirt seems to cope with the misspecifation, while MINoLEM seems to ac-

curately estimate the interaction coefficients, as well as the multilevel struc-

ture in form of a random intercept. No significant difference between the two

compared methods can be observed regarding the estimation of the difficul-

ties, the loadings of the latent variables, the correlation between the latent

variables, and the random intercept.

3.3.2 Fixed Number of Clusters

The total number of individuals can be increased by either adding more

clusters, or by adding more individuals to each cluster. To investigate the

second possibility, the number of clusters is fixed to NC = 100 and the

number of individuals per cluster varies between NS = 50, 100, 150. The

true values are chosen as before.
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Difficulties of the Items

MINoLEM has almost the same results as for fixed NS. The biases decrease

with rising numbers of individuals per cluster and show clear signs of con-

sistency. The biases of mirt decrease as well, however not as much as before

and they are consistently higher than the biases of MINoLEM. The biases

of the difficulty δ10 of item ten are, once again, slightly higher for mirt, due

to the misspecification.

The variances and the RMSEs of both methods are small and decrease, as

they did for a fixed number of clusters.

Table 3.20: RMSE, bias, and variance of difficulties of simulation for multi-
level model and correlation between the latent variables of 0.3. The number
of cluster is fixed to NC = 100. NC = Number of clusters. EM = Estimation
with MINoLEM. Em = Estimation with mirt.

NS δ1 δ2 δ3 δ4 δ5

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

50
EM .055 .008 .003 .049 -.001 .002 .045 -.001 .002 .053 -.002 .003 .061 -.008 .004
Em .067 .016 .004 .059 .016 .003 .058 .014 .003 .061 .007 .004 .066 .006 .004

100
EM .047 .007 .002 .041 -.002 .002 .041 .002 .002 .045 .005 .002 .042 .003 .002
Em .054 .014 .003 .050 .012 .002 .050 .014 .002 .053 .012 .003 .049 .012 .002

150
EM .038 .003 .001 .036 -.001 .001 .036 -.002 .001 .038 -.000 .001 .042 .002 .002
Em .046 .009 .002 .047 .014 .002 .046 .011 .002 .047 .007 .002 .051 .011 .002

NS δ6 δ7 δ8 δ9 δ10

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

50
EM .053 -.005 .003 .047 -.001 .002 .051 .004 .003 .055 -.004 .003 .067 -.016 .004
Em .063 .011 .004 .057 .013 .003 .063 .020 .004 .059 .001 .003 .078 -.039 .005

100
EM .044 -.001 .002 .041 .002 .002 .046 .003 .002 .043 .002 .002 .046 -.010 .002
Em .052 .012 .003 .050 .012 .002 .055 .015 .003 .049 .004 .002 .066 -.035 .003

150
EM .038 -.003 .001 .039 -.004 .001 .038 -.003 .001 .040 -.005 .002 .042 -.012 .002
Em .047 .012 .002 .047 .008 .002 .049 .011 .002 .047 -.000 .002 .066 -.036 .003

Loadings of the Latent Variables

All three measured features of the estimates, RMSE, bias, and variance

still basically do not change for both methods. For the estimation of the
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latent variable coefficients, it does not seem to matter whether the total

number of individuals is increased by adding more clusters or by adding

more individuals per cluster.

Table 3.21: RMSE, bias, and variance of the coefficients of the latent vari-
ables of simulation for multilevel model and correlation between the latent
variables of 0.3. The number of cluster is fixed to NC = 100. NC = Number
of clusters. EM = Estimation with MINoLEM. Em = Estimation with mirt.

NS γ1,1 γ2,1 γ3,1 γ4,1

rmse bias var rmse bias var rmse bias var rmse bias var

50
EM .079 .018 .006 .054 -.001 .003 .054 .005 .003 .084 .017 .007
Em .079 -.000 .006 .057 -.011 .003 .057 -.006 .003 .085 -.003 .007

100
EM .052 .004 .003 .038 .003 .001 .038 .001 .001 .064 .012 .004
Em .057 -.012 .003 .041 -.006 .002 .042 -.007 .002 .070 -.015 .005

150
EM .047 .011 .002 .035 .007 .001 .032 .008 .001 .052 .012 .003
Em .046 -.006 .002 .036 -.006 .001 .032 -.003 .001 .055 -.009 .003

NS γ9,1 γ10,1 γ5,2 γ6,2

rmse bias var rmse bias var rmse bias var rmse bias var

50
EM .070 .013 .005 .123 -.035 .014 .073 -.002 .005 .083 .016 .007
Em .070 .001 .005 .396 -.274 .082 .077 -.001 .006 .089 .013 .008

100
EM .054 .017 .003 .097 -.044 .007 .049 .005 .002 .053 .014 .003
Em .051 .001 .003 .378 -.264 .073 .051 .003 .003 .053 .003 .003

150
EM .049 .019 .002 .105 -.059 .007 .043 .008 .002 .046 .008 .002
Em .044 .007 .002 .394 -.277 .079 .044 -.003 .002 .048 -.005 .002

NS γ7,2 γ8,2 γ9,2 γ10,2

rmse bias var rmse bias var rmse bias var rmse bias var

50
EM .064 .012 .004 .056 -.000 .003 .077 .003 .006 .083 -.008 .007
Em .067 .010 .004 .057 -.001 .003 .083 .010 .007 .333 -.231 .058

100
EM .047 .005 .002 .037 .002 .001 .054 .005 .003 .066 -.023 .004
Em .048 .000 .002 .039 .000 .002 .059 .007 .003 .347 -.243 .062

150
EM .040 .009 .002 .034 .010 .001 .044 .002 .002 .051 -.019 .002
Em .039 -.003 .002 .032 .003 .001 .047 -.003 .002 .332 -.234 .056

Interaction Coefficients, Correlation, and Random Intercept

The coefficients of the latent variable interaction seem to be estimated

slightly more accurately when the number of individuals per cluster is fixed

with an increasing number of clusters. The biases and the variances are

109



marginally higher in this condition, except for the values of Ω
(2,1)
10 when

NS = 50, which are smaller.

The correlation between the latent variables is estimated equally well by

both methods as in the previous section.

When the number of individuals is increased, the estimation of the vari-

ance of the random intercept, however, produces a slightly rising bias for

MINoLEM. The package mirt produces the same results as with varying

numbers of clusters.

Table 3.22: RMSE, bias, and variance of the coefficients of the interaction
between the latent variables, the correlation between the latent variables,
and the variance of the random intercept of simulation for multilevel model
and correlation between the latent variables of 0.3. The number of clusters
is fixed to NC = 100. NC = Number of clusters. EM = Estimation with
MINoLEM. Em = Estimation with mirt.

NS Ω
(2,1)
9 Ω

(2,1)
10 ρ σ2

rmse bias var rmse bias var rmse bias var rmse bias var

50
EM .129 .008 .017 .178 -.072 .027 .043 -.017 .002 .019 -.002 .000
Em .043 .005 .002 .023 -.003 .001

100
EM .084 .004 .007 .168 -.092 .020 .040 -.022 .001 .022 -.012 .000
Em .030 .009 .001 .022 -.002 .000

150
EM .069 .010 .005 .174 -.106 .019 .039 -.023 .001 .030 -.020 .001
Em .023 -.001 .001 .021 -.001 .000

Overall, most results show little to no difference, if either the number of

clusters or the number of individuals per cluster is fixed, while the other is

increased.

The results demonstrate that MINoLEM is capable of estimating a multilevel

IRT model with interaction effects of the latent variables. The comparison

to the R packages ltm and mirt show that MINoLEM performs equally well

as those established implementations. Furthermore, MINoLEM can help to

extend the range of IRT models that can be estimated.
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Chapter 4

An Application to PISA Data

In the previous chapter, extensive simulations showed that the estimation

with MINoLEM produces results that are comparable to the established

packages mirt and ltm. MINoLEM extends them by adding interaction

effects and hierarchical structures, respectively, which are estimated with

low bias, variance, and RMSE. In this chapter, PISA data are evaluated

with MINoLEM to give a proof of concept and show its applicability to real

data.

4.1 Introduction to PISA

According to the website of the OECD, PISA is described as “the OECD’s

Programme for International Student Assessment. PISA measures 15-year-

olds’ ability to use their reading, mathematics and science knowledge and

skills to meet real-life challenges” (OECD, 2021).

The first PISA survey was done in 2000 and was repeated every three years

since then in each OECD country and in a rising number of other countries

as well. One goal of the study is to provide comparable results of children’s

abilities between countries. OECD Secretary-General Angel Gurŕıa elabo-
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rated that

“PISA is not only the world’s most comprehensive and reliable indicator of

students’ capabilities, it is also a powerful tool that countries and economies

can use to fine-tune their education policies” (Schleicher, 2018).

In many countries, the results of PISA are discussed in detail in the me-

dia, and changes in the educational system are demanded. Especially in

Germany, the media echo was immense after the first three surveys (Popp,

2010). As a response, the Kultusministerkonferenz (conference of ministers

of education) decided on German wide learning standards and founded the

Institut zur Qualitätsentwicklung im Bildungswesen (Institute for Educa-

tional Quality Improvement - IQB) in 2004 (IQB, 2021).

However, since the beginning of PISA, many have criticized the methods,

with which the results are achieved. Roughly speaking, two estimation pro-

cedures are performed. First, IRT is applied to evaluate the items. For each

of the three fields, reading, mathematics, and science knowledge, an underly-

ing factor is assumed that follows a normal distribution and that affects the

probability of answering an item correctly. In the beginning, the relation-

ship between the factors and the items was estimated with a Rasch model.

Critics raised concern that more complex models are needed and it could be

proven that the results change significantly (e.g., Kreiner and Christensen

(2014)). Today, the relationships are estimated with a 2PL model.

Second, plausible values are drawn from a posterior probability of the abili-

ties of the students that resulted from the IRT evaluation. Those plausible

values represent random student scores. The plausible values are then used

to rank the participating countries according to the abilities of their stu-

dents. Much more detailed descriptions can be found in the technical report

from the OECD for each PISA study (e.g., of the OECD (2017)).

Among other aspects, the inspection PISA’s items does not account for

the hierarchical structure of different educational systems around the world.
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Furthermore, no cross-loadings or interactions between the latent abilities

are allowed. Therefore, the MINoLEM model will be applied to PISA data

to explore, whether those extensions could improve the results of the PISA

surveys.

4.2 Estimating parameters in OECD Coun-

tries

Here, the data from the survey 2006 were chosen, in which 22 reading items

and 44 math items were administered. The study was conducted in all 30

OECD countries and in additional 27 other countries, one of which (Lichten-

stein) was excluded from the analyses, because it had too few participants.

The missing values were imputed with the amelia package (Honaker, King,

& Blackwell, 2011) using an EM algorithm.

Two different sets of countries were analyzed – all 56 countries together

(next section) and only the OECD countries (this section) – to see how the

variance of the random intercept might change. To give every country the

same weight, 100 individuals from each country were sampled.

The reading items are assumed to be influenced only by reading ability of the

students. The performance in the math items, however, might also depend

on reading ability of the students. Therefore, 34 of the 44 math items were

set to be influenced by an interaction of reading and math ability and by

both main effects. Ten math items were chosen, which were defined to only

depend on math ability to build a stable factor. Unfortunately, the item

formulations are not publicly available, so that it is not possible to choose

those items that might depend the least on reading ability. Furthermore,

it is possible that the influences change between different languages so that

instead the first ten items are chosen to build the factor for math ability.

The estimates of all 66 difficulties in Table 4.1 range from −2.42 to 2.38 and
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approximately follow a bell shaped distribution (see Figure 4.1) with a slight

shift to the left of 0, so that more items could be labeled easy than difficult.

This indicates a reasonably well estimation of the difficulties.

Table 4.1: Estimated difficulties of the reading and math items of the PISA
data (2006) in the OECD countries.

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10 δ11 δ12 δ13 δ14 δ15 δ16 δ17
-1.28 .10 -.33 -.95 -1.60 .67 .22 -1.44 -1.24 .52 -.51 -.21 -.80 -1.25 .29 -.37 -.34

δ18 δ19 δ20 δ21 δ22 δ23 δ24 δ25 δ26 δ27 δ28 δ29 δ30 δ31 δ32 δ33 δ34
-1.31 -.52 -.10 -.20 -.85 -1.04 .21 -.56 -.27 .36 -.24 -2.42 -1.17 .89 -.38 .97 1.54

δ35 δ36 δ37 δ38 δ39 δ40 δ41 δ42 δ43 δ44 δ45 δ46 δ47 δ48 δ49 δ50 δ51
.12 -.11 .22 -.03 -.49 1.50 .72 -1.17 .37 -.79 2.38 -.74 .98 -.91 -.08 -.60 -.55

δ52 δ53 δ54 δ55 δ56 δ57 δ58 δ59 δ60 δ61 δ62 δ63 δ64 δ65 δ66
.13 .19 .10 -.29 .18 .55 .71 -1.64 .91 -.41 -.66 .52 -.18 .83 .73
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Figure 4.1: Histogram of the estimated difficulties for the OECD PISA data
for all 66 items.
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The estimates of the loadings of reading and math ability in Tables 4.2 and

4.3 are predominantly positive. Only a few items have loadings close to zero

that should be investigated further.

Table 4.2: Estimated coefficients of the reading items of the PISA data
(2006) in the OECD countries. The coefficients γ33,1 to γ66,1 are cross-
loadings.

γ1,1 γ2,1 γ3,1 γ4,1 γ5,1 γ6,1 γ7,1 γ8,1 γ9,1 γ10,1 γ11,1 γ12,1 γ13,1 γ14,1
.64 .93 1.07 1.07 .64 .78 .91 .72 .80 .44 .94 1.19 1.15 .97

γ15,1 γ16,1 γ17,1 γ18,1 γ19,1 γ20,1 γ21,1 γ22,1 γ33,1 γ34,1 γ35,1 γ36,1 γ37,1 γ38,1
1.10 .83 .77 1.00 .70 .54 .98 1.17 -.25 -.14 .19 .52 .08 .28

γ39,1 γ40,1 γ41,1 γ42,1 γ43,1 γ44,1 γ45,1 γ46,1 γ47,1 γ48,1 γ49,1 γ50,1 γ51,1 γ52,1
.57 -.28 -.22 .04 .35 .64 -.25 .25 -.14 .15 .05 .11 .20 .04

γ53,1 γ54,1 γ55,1 γ56,1 γ57,1 γ58,1 γ59,1 γ60,1 γ61,1 γ62,1 γ63,1 γ64,1 γ65,1 γ66,1
.04 .25 .28 .21 .25 .02 .27 -.10 .58 .37 .35 .36 .06 .09

Table 4.3: Estimated coefficients of the math items of the PISA data (2006)
in the OECD countries. The coefficients γ33,2 to γ66,2 are cross-loadings.

γ23,2 γ24,2 γ25,2 γ26,2 γ27,2 γ28,2 γ29,2 γ30,2 γ31,2 γ32,2 γ33,2 γ34,2 γ35,2 γ36,2 γ37,2
.64 .85 .82 .67 .92 .67 .66 .76 1.19 .52 1.29 1.01 .69 .61 .64

γ38,2 γ39,2 γ40,2 γ41,2 γ42,2 γ43,2 γ44,2 γ45,2 γ46,2 γ47,2 γ48,2 γ49,2 γ50,2 γ51,2 γ52,2
.50 .96 .84 .78 .40 .77 .44 .95 .69 1.15 .42 .92 .58 .59 .56

γ53,2 γ54,2 γ55,2 γ56,2 γ57,2 γ58,2 γ59,2 γ60,2 γ61,2 γ62,2 γ63,2 γ64,2 γ65,2 γ66,2
.58 .72 .39 .58 .75 .78 .13 1.24 .43 .54 .81 .50 .64 .59

Of most interest are the loadings of the interaction effects. Ten items have

coefficients between 0.1 < |Ω(2,1)
i | < 0.2. As can be seen in Figure 4.2, this

adds a significant twist to the IRS. Therefore, the probabilities of answering

those items correctly, seem to be influenced not only by students’ math

ability, but also by their reading ability and by the interaction of both factors.

The correlation between the two latent variables – math and reading abil-

ity – is estimated very high with ρ = 0.72. This might indicate that the

measured concepts are not as distinct as assumed. The variance of the ran-

dom intercept, however, is estimated low with σ2 = 0.03, which implies that
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the OECD countries do not differ much between each other in their mean

probability of answering an item correctly.

Table 4.4: Estimated coefficients of the interaction effects, the correlation
between the latent variables, and the variance of the random intercept of
the PISA data (2006) in the OECD countries.

Ω
(2,1)
33 Ω

(2,1)
34 Ω

(2,1)
35 Ω

(2,1)
36 Ω

(2,1)
37 Ω

(2,1)
38 Ω

(2,1)
39 Ω

(2,1)
40 Ω

(2,1)
41 Ω

(2,1)
42 Ω

(2,1)
43 Ω

(2,1)
44

.04 .20 -.04 .11 .10 -.05 .16 .10 .16 -.02 .00 -.13

Ω
(2,1)
45 Ω

(2,1)
46 Ω

(2,1)
47 Ω

(2,1)
48 Ω

(2,1)
49 Ω

(2,1)
50 Ω

(2,1)
51 Ω

(2,1)
52 Ω

(2,1)
53 Ω

(2,1)
54 Ω

(2,1)
55 Ω

(2,1)
56

.19 -.03 .02 -.05 -.04 -.07 .03 .10 .09 -.00 .04 .06

Ω
(2,1)
57 Ω

(2,1)
58 Ω

(2,1)
59 Ω

(2,1)
60 Ω

(2,1)
61 Ω

(2,1)
62 Ω

(2,1)
63 Ω

(2,1)
64 Ω

(2,1)
65 Ω

(2,1)
66 ρ σ2

.01 .09 .01 .17 .05 -.01 .01 .00 .03 .04 .72 .03
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Figure 4.2: Item response surfaces of 2-dimensional IRT model item with
interaction effects Ω = 0, Ω = 0.1, and Ω = 0.2, respectively.

Standard errors are not presented for this estimation, due to the prohibitive

amount of computing time needed by the current version of MINoLEM to

estimate a model with 202 parameters. To provide a model with standard

errors, the number of items was reduced to twelve. Four items are assumed

to be influenced only by either reading ability or math ability, respectively.

Four items depend on both main effects and on their interaction. Those items

with the most matching values in the previous estimation were chosen, so

that items 12, 13, 15, and 22, define reading ability, items 33, 47, 57, and 63
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define math ability, and items 34, 44, 45, and 60 will be assumed to depend

on both latent variables and their interaction.

Table 4.5: Estimated difficulties of the reading and math items of the reduced
PISA data (2006) in the OECD countries. The standard errors are given in
brackets.

δ12 δ13 δ15 δ22 δ33 δ47

-.302(.052) -.875(.065) .286(.042) -.790(.047) 1.061(.061) .984(.052)

δ57 δ63 δ34 δ44 δ45 δ60

.548(.047) .465(.044) 1.895(.138) -.715(.059) 2.195(.093) .747(.059)

The difficulties of the reduced dataset in Table 4.5 approximately match

those of the complete data. The estimated loadings in Table 4.6 are also

approximately the same, except for γ34,1 and γ34,2.

Table 4.6: Estimated loadings of the reading and math items of the reduced
PISA data (2006) in the OECD countries. The standard errors are given in
brackets.

γ12,1 γ13,1 γ15,1 γ22,1 γ34,1 γ44,1

1.610(.127) 1.710(.149) .835(.077) .855(.071) -.912(.252) .544(.100)

γ45,1 γ60,1 γ33,2 γ47,2 γ57,2 γ63,2

-.247(.140) .064(.110) 1.439(.096) 1.031(.072) .800(.063) .934(.069)

γ34,2 γ44,2 γ45,2 γ60,2

2.583(.283) .425(.096) .907(.137) .923(.101)

The correlation of the latent variables and the variance of the random in-

tercept in Table 4.7 change only slightly. The standard errors suggest that

the 95% confidence intervals of all those values do not include 0 and are

therefore significant (on a α = 0.05 error level), except for the two values

γ45,1 and γ60,1, which are too small and not significant.

The different operationalizations of the latent variables, however, affect the

coefficients of the interaction effects. None of them are close to the estimated
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Table 4.7: Estimated loadings of the interaction effects, the correlation be-
tween the latent variables, and the variance of the random intercept of the
reduced PISA data (2006) in the OECD countries. The standard errors are
given in brackets.

Ω
(24,1)
9 Ω

(44,1)
10 Ω

(2,1)
45 Ω

(2,1)
60 ρ σ2

-.122(.188) .003(.086) .050(.101) .079(.087) .676(.039) .050(.011)

values of the complete dataset. Since all four values are very small, none of

them are significant. Nevertheless, the application demonstrates that further

investigation of the PISA data is necessary, and that MINoLEM could be

one way to reevaluate the PISA analysis.

4.3 Estimating parameters in all Countries

In the previous section, the PISA data was examined for the OECD coun-

tries. In this simulation, the PISA data are examined for all participat-

ing countries, including OECD, to show that the hierarchical aspect of MI-

NoLEM can be of importance in different circumstances.

Table 4.8: Estimated difficulties of the reading and math items of the PISA
data (2006) for all countries.

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10 δ11 δ12 δ13 δ14 δ15 δ16 δ17

-1.09 .28 -.11 -.69 -1.48 1.02 .57 -1.18 -1.04 .64 -.31 .20 -.32 -.92 .63 -.23 -.22

δ18 δ19 δ20 δ21 δ22 δ23 δ24 δ25 δ26 δ27 δ28 δ29 δ30 δ31 δ32 δ33 δ34

-1.10 -.35 .22 .04 -.45 -.75 .46 -.29 .03 .57 -.01 -1.98 -.81 1.08 -.14 1.14 1.85

δ35 δ36 δ37 δ38 δ39 δ40 δ41 δ42 δ43 δ44 δ45 δ46 δ47 δ48 δ49 δ50 δ51

.50 .29 .36 .29 -.20 1.59 .72 -1.00 .64 -.47 2.37 -.50 1.29 -.69 .18 -.33 -.31

δ52 δ53 δ54 δ55 δ56 δ57 δ58 δ59 δ60 δ61 δ62 δ63 δ64 δ65 δ66

.20 .26 .33 -.28 .32 .73 .86 -1.76 1.18 -.17 -.54 .74 -.03 .83 .89

Again, all items are taken into account, and 100 individuals from each of the
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now 56 countries are drawn. A comparison between the estimated difficulties

of the OECD dataset (Table 4.1) and all countries (Table 4.8) shows slight

differences between the values, but overall similar results.

Table 4.9: Estimated coefficients of the reading items of the PISA data
(2006) for all countries. The coefficients γ33,1 to γ66,1 are cross-loadings.

γ1,1 γ2,1 γ3,1 γ4,1 γ5,1 γ6,1 γ7,1 γ8,1 γ9,1 γ10,1 γ11,1 γ12,1 γ13,1 γ14,1
.75 .77 1.05 1.13 .67 .73 .99 .91 .90 .35 .83 1.15 1.28 1.04

γ15,1 γ16,1 γ17,1 γ18,1 γ19,1 γ20,1 γ21,1 γ22,1 γ33,1 γ34,1 γ35,1 γ36,1 γ37,1 γ38,1
1.04 .85 .77 .91 .76 .60 .95 1.17 -.37 -.58 .12 .42 .17 .15

γ39,1 γ40,1 γ41,1 γ42,1 γ43,1 γ44,1 γ45,1 γ46,1 γ47,1 γ48,1 γ49,1 γ50,1 γ51,1 γ52,1
.42 -.26 -.35 .14 .26 .46 -.28 .18 -.39 .20 .04 .26 .14 -.08

γ53,1 γ54,1 γ55,1 γ56,1 γ57,1 γ58,1 γ59,1 γ60,1 γ61,1 γ62,1 γ63,1 γ64,1 γ65,1 γ66,1
-.17 .01 .23 .15 .07 -.12 .30 -.05 .23 .24 .07 .20 .19 -.07

The coefficients of reading and math abilities in Tables 4.9 and 4.10 and the

coefficients of their interaction in Table 4.11, are very similar to the estimates

of the OECD data (Tables 4.2, 4.3, and 4.4), as well. Since the estimated

correlation between the latent variables for all countries is also close to the

value for the OECD countries, it can be assumed that the model itself is

stable and is not affected by changing the range of the inspected countries.

Table 4.10: Estimated coefficients of the math items of the PISA data (2006)
for all countries. The coefficients γ33,2 to γ66,2 are cross-loadings.

γ23,2 γ24,2 γ25,2 γ26,2 γ27,2 γ28,2 γ29,2 γ30,2 γ31,2 γ32,2 γ33,2 γ34,2 γ35,2 γ36,2 γ37,2
.66 .94 .85 .73 .96 .64 .57 .80 .98 .55 1.40 1.44 .70 .67 .46

γ38,2 γ39,2 γ40,2 γ41,2 γ42,2 γ43,2 γ44,2 γ45,2 γ46,2 γ47,2 γ48,2 γ49,2 γ50,2 γ51,2 γ52,2
.57 .96 .77 .88 .31 .86 .68 .78 .70 1.38 .48 .92 .59 .65 .63

γ53,2 γ54,2 γ55,2 γ56,2 γ57,2 γ58,2 γ59,2 γ60,2 γ61,2 γ62,2 γ63,2 γ64,2 γ65,2 γ66,2
.75 .89 .44 .58 .84 .81 .10 1.05 .78 .75 .98 .72 .59 .74

The variance of the random intercept, however, is much higher, when all

countries are taken into account than for the OECD countries. The absolute

values only differ by 0.07, but that can be regarded as a significant increase
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for a variance of a random intercept, especially in comparison to the fixed

variances of the latent variables to 1. As expected, this result shows that

there is more variation between countries, if not only the OECD countries

are considered.

Table 4.11: Estimated coefficients of the interaction effects, the correlation
between the latent variables, and the variance of the random intercept of
the PISA data (2006) for all countries. The coefficients γ33,1 to γ66,1 are
cross-loadings.

Ω
(2,1)
33 Ω

(2,1)
34 Ω

(2,1)
35 Ω

(2,1)
36 Ω

(2,1)
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(2,1)
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(2,1)
41 Ω

(2,1)
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(2,1)
43 Ω

(2,1)
44

.09 .20 .00 -.01 .12 .00 .02 .12 .16 -.08 -.01 -.02

Ω
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45 Ω

(2,1)
46 Ω

(2,1)
47 Ω
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(2,1)
49 Ω

(2,1)
50 Ω

(2,1)
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(2,1)
52 Ω

(2,1)
53 Ω

(2,1)
54 Ω

(2,1)
55 Ω

(2,1)
56

.18 .02 .12 -.07 .03 -.04 .03 .09 .10 .15 -.01 .06

Ω
(2,1)
57 Ω

(2,1)
58 Ω

(2,1)
59 Ω

(2,1)
60 Ω

(2,1)
61 Ω

(2,1)
62 Ω

(2,1)
63 Ω

(2,1)
64 Ω

(2,1)
65 Ω

(2,1)
66 ρ σ2

.07 .10 -.09 .12 .01 .01 .03 -.01 -.03 .02 .72 .10

Possible interactions between the latent variables, that effect the solving

probability of an item, are confirmed for all data as well. In combination

with high loadings of reading ability on math items, this might indicate that

solving a math item also depends on the ability to understand the item on

a linguistic level.

In the reduced OECD model, the interaction effects could not be properly

estimated. Therefore, no additional reduced model for all of the countries

was estimated.

Overall, the analysis of PISA data with MINoLEM shows its applicability

to real data and how it could help to examine complex datasets. The results

suggest that the probability of answering a math item in PISA depends not

only on math ability, but also on reading ability. Additionally, the influence

of the math ability might be intermediated by the reading ability. More in

depth calculations are needed to confirm this theory.
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Chapter 5

Discussion and Conclusion

In this chapter, the main theoretical results of the thesis, as well as the results

of the simulations, and the application to the PISA data will be summarized.

The thesis will also be set in relation to the current state of research on latent

variable models. Subsequently, possible extensions of MINoLEM and future

research will be discussed.

5.1 Context and Summary

The estimation of latent variable models is an important research topic in

many different fields and is therefore conducted from several different per-

spectives. One widely used approach are SEMs, which assume that (con-

tinuous) manifest variables are influenced by (continuous) latent variables.

Their main goal is to analyze the relationships between the latent variables.

If the manifest variables are not continuous, and the researcher is mostly

interested in the effect of latent variables, and other factors on the manifest

variables, IRT provides a framework for investigating these relationships. As

was shown in this thesis, there is a very close connection between IRT and

SEM, and their distinction lies more in perspective than in their mathemat-
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ical estimation approach. Many IRT models – as well as some multilevel

models – can therefore also be formulated and estimated in a SEM setting.

Models based on generalized linear models, such as GLLAMM and GLLVM,

incorporate many SEM and IRT models (including hierarchical structures)

and therefore build a partly unifying framework.

The model in this thesis is presented as an IRT model but can potentially

be described by using all of the aforementioned frameworks. Furthermore,

MINoLEM can extend some aspects of these frameworks, since it includes

a hierarchical structure as well as nonlinear influences of latent variables.

Many existing models only allow for one of those properties.

Not only can frameworks vary but also the approach with which a model

is estimated. A short overview of such methods was given, while two of

the most frequently used estimation procedures – the classic EM and the

Metropolis-Hating Robins-Monroe algorithm – were discussed in more de-

tail. The decision in favor of the EM algorithm was based on simulation

studies suggesting that MHRM, while very efficient, might be slightly less

accurate. MINoLEM includes two complex aspects – a hierarchical struc-

ture and nonlinear latent variable effects – that each on its own require a

substantial number of observations to be estimated correctly. Accordingly,

the construction of an estimation procedure was focused on accuracy. The

GHQ can – theoretically – be made as exact as the applier wishes by in-

creasing the number of quadrature points. Therefore, the GHQ was favored

over Bayesian sampling methods or the adaptive GHQ.

Thus, an EM algorithm was derived that allows for the estimation of a mul-

tilevel IRT model with nonlinear latent variable effects. The maximization

of the complete data log-likelihood, with respect to the item and variance-

covariance parameters conditional on the posterior probability, is carried

out with a BFGS algorithm. This is an iterative quasi-Newton method for

nonlinear problems, which uses the Hessian matrix to update the solution.

To increase the efficiency and accuracy of the maximization, the analytic
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derivations are supplied to the algorithm.

Furthermore, the choice of starting values plays an important role in the

speed of convergence and in efforts to avoid local maxima. To improve both,

heuristics were developed that outperform the common choice of setting

starting points to fixed values.

Finally, MINoLEM was applied to data. First, extensive simulations studies

showed that MINoLEM is capable of estimating a single-level model with

latent interaction effects equally well as the R package ltm. Extending the

ltm model by the estimation of the correlation between the latent variables

demonstrated that the additional parameter does not affect the results much.

The difficulties are estimated consistently, and the coefficients of the latent

variables are estimated with small variances and biases that partially show

consistency. The interaction effects were be estimated with low RMSE, bias,

and also variance proving that MINoLEM works as intended.

Furthermore, it was shown that the estimation of loadings, set to 0, does

not pose a problem, so that specific model assumptions can be tested. Data,

simulated without hierarchical structure, were correctly identified by MI-

NoLEM, by estimating the variance of the random intercept to zero.

Subsequently, MINoLEM was applied to simulated data with two levels and

interaction effects. The results indicated consistency for the estimation of

the difficulties, the loadings of the latent variables, and the correlation be-

tween the latent variables. The consistency of the estimation of the random

intercept depended on the way the number of individuals was increased. If

the number of clusters was fixed, but the number of individuals per cluster

increased, the bias slightly increased. If the number of individuals per cluster

was fixed, but the number of clusters increased, the bias slightly decreased.

An explanation might be that adding more people per cluster gives more

weight to the estimation of the item parameters, while adding more clusters

increases the information about the differences between the clusters. Further

studies are needed to investigate this behavior and improve the consistency.
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The comparison of MINoLEM with the mirt showed that both approaches

produce similar results. The R package mirt has some expected bias for

those items that depend on the interaction of the latent variables, since the

interaction was not estimated in mirt resulting in misspecification of the

model.

Overall, it was be demonstrated that MINoLEM can add to the existing

literature and software by estimating a multilevel IRT model with nonlinear

effects of the latent variables.

The applicability and usefulness for real datasets was shown by reanalyzing

PISA data with MINoLEM. The results indicated that the items to measure

the mathemetics ability of students might also depend on the student’s read-

ing ability, as well as on the interaction of both latent traits. The estimation

of the variance of a random intercept for the different countries (OECD and

other) implied that a multilevel model might be suitable for the data.

The implementation is not efficient enough yet, to bootstrap the standard

errors for a complete PISA dataset with all items. Further calculations are

needed to explore, to what extent MINoLEM could improve the estimation of

PISA data. Further limitations of MINoLEM are addressed in the following

section.

5.2 Future Extensions and Research

There are still aspects that can be extended in the future to improve the

model’s applicability. For now, only dichotomous items can be analyzed,

but polytomous items could be included in the future, as it is done in the

GLLAMM or GLLVM frameworks. The extension to polytomous items also

opens the door to the analysis of Generalized Partial Credit or Graded re-

sponse models. More possible models can be found in van der Linden (2016a,

2016b, 2016c) and Kelava, Noventa, and Robitzsch (2020).
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The coefficients of the latent variables and their interactions do not vary

between clusters. A random slope model can be built, in which the coef-

ficients follow a distribution that depends on the cluster structure. It can

be expected, however, that both of these extensions would require a larger

number of items and observations to be estimated accurately.

Furthermore, other existing IRT models could be taken into consideration.

Covariates, as well as guessing and ceiling parameters, could be added to

extend the 3PL and 4PL model with a multilevel structure and nonlinear

latent variable effects.

Rizopoulos and Moustaki (2008) suggested a hybrid algorithm. The EM is

applied for some iterations since it converges quickly to the proximity of a

solution. As soon as the improvement of the EM estimates slows down, a

common optimization of the observed data likelihood function is applied,

that converges quickly if the starting values are already close to a solution.

A similar approach as in Rizopoulos and Moustaki (2008) could be inves-

tigated, where they found equality of the derivative of the observed data

log-likelihood and the expectancy of the complete data log-likelihood condi-

tional on the posterior probability of the latent variables. The latter is the

main component of the EM.

In the implementation of the MINoLEM estimation, the latent variables

are assumed to follow a (multivariate) normal distribution. In many cases,

this is a sensible assumption, but the inclusion of other distributions might

be necessary for some applications. Since the estimation is conducted us-

ing Gauss-Hermite quadrature, a first step might be the inclusion of mix-

tures of normal distributions, as in Bauer (2003), for example. A switch to

other integral approximation methods – like MCMC sampling – might make

distribution-free estimations possible. Current advances in research could

also help with extensions – for example, Garcia and Ma (2016) propose an

estimator for logistic models with a distribution-free random intercept.

The simulations showed that the random intercept is slightly underesti-

125



mated. This could be improved, for example, by analyzing the approach

by Elff, Heisig, Schaeffer, and Shikano (2020), who use restricted Maximum

Likelihood estimation to achieve unbiased estimates. In simulated data with

very high coefficients for the interaction terms, the estimates of those coef-

ficients showed some bias. This can be expected for such high values, since

the distinction between values becomes numerically very difficult, when the

number of items and the amount of observed data is not sufficiently large.

Nevertheless, an improvement in accuracy should be investigated, in order

to deliver better performance for smaller datasets.

In extending the existing estimation method, different estimation paths

could also be explored. As explained earlier, the EM was chosen over the

MHRM, but additionally estimating the model, using this more Bayesian

form of the EM, might provide additional insights. Specifically, this method

might provide a more efficient estimation, while maintaining the stability.

The estimation of complex models can converge in a local minimum. This

is addressed in the current approach by choosing starting values that are

already close to the optimal solution. Better heuristics might be found by

applying more complex methods to generate good starting points. The de-

terministic annealing EM algorithm by Ueda and Nakano (1998) provides

– in simpler models – estimates that do not depend on the starting values.

Since the starting values are calculated in an ascending manner, beginning

with the simplest model, applying this approach for several iterations on less

complex instances of the model might provide more accurate starting values.

Apart from examining possible extensions, MINoLEM can also be applied to

different data to investigate where the new model might improve the analysis.

The application of the MINoLEM estimation to a PISA dataset, for example,

showed that the data indicate a potentially more complex relationship in the

assessment of students’ ability than is currently considered. More detailed

explorations of PISA and other datasets might prove that more complicated

models need to be included in such analyses - especially in the educational

context. In future projects, the data from all previous PISA studies could
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be analyzed and compared to the official results.

With increasing computational capacities, it is to be expected that more

complex data is gathered in a more complex fashion. Advanced methods are

therefore needed by researchers. MINoLEM’s property of simultaneously es-

timating a hierarchical structure and nonlinear effects of the latent variables

provides the opportunity to analyze those complex datasets with additional

assumptions in the structure of the data.
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Appendix A

Supplementary Information

A.1 Fisher’s Identity

In the context of derivatives it is worth noting that the EM algorithm can

also be discussed starting with Fisher’s Identity, which describes a connec-

tion between the derivative of the observed data log-likelihood and of the

complete data log-likelihood

∂

∂ω
logP (yj|ω) =

∫
∂

∂ω
P (yj, ξ|ω)P (ξ|yj,ω)dξ

where yj is the observation belonging to a person j with ability ξj and

ω are again the parameters of the model behind P (yj|ξ,ω). Essentially,

Fisher’s Identity assures equality if the derivatives of the individual like-

lihoods are considered in the final objective function (2.18) BO(ω,ωk) =∑
ξ∈Ξ

P (ξ|Y ,ωk) logL(Y , ξ|ω) while equality without the derivatives can only

be proven for

logL(Y |ω) =
∑
ξ∈Ξ

P (ξ|Y,ω) log
L(Y , ξ|ω)

P (ξ|Y ,ω)
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as in (2.10). The roots of the derived observed log-likelihood and of the

expectancy of the derived complete data log-likelihood conditional on the

posterior probability of the latent variable ξ are equal. This serves as a

rationale for optimizing the expectancy of the complete data log-likelihood

conditional on the posterior probability of the latent variable instead of

the observed log-likelihood, which is the result of the EM in the objective

function BO(ω,ωk).

Fisher’s Identity can also be extended to include a multilevel structure:

∂

∂ω
log (P (Y |ω))

=
∂

∂ω
log

 K∏
k=1

∫  Jk∏
j=1

∫ [ I∏
i=1

P (Yijk, ξ, u|ω)

]
dξ

 du
 (A.1)

=

K∑
k=1

∂

∂ω
log

∫  Jk∏
j=1

∫ [ I∏
i=1

P (Yijk, ξ, u|ω)

]
dξ

 du
 (A.2)

=

K∑
k=1

∂
∂ω

[∫ [ Jk∏
j=1

∫ [ I∏
i=1

P (Yijk, ξ, u|ω)

]
dξ

]
du

]
∫ [ Jk∏

j=1

∫ [ I∏
i=1

P (Yijk, ξ, u|ω)

]
dξ

]
du

(A.3)

Leibniz
=

K∑
k=1

∫
∂
∂ωP (Y k, u|ω)du

P (Yk|ω)
(A.4)

=

K∑
k=1

∫
∂

∂ω
[logP (Y k, u|ω)]

P (Y k, u|ω)

P (Y k|ω)
du (A.5)

=

K∑
k=1

∫
∂

∂ω
[logP (Y k, u|ω)]P (u|Y k,ω)du (A.6)

(A.1)−(A.6)
=

K∑
k=1

∫  Jk∑
j=1

∫ [
∂

∂ω

[
log (P (Y jk, ξ, u|ω))

]
P (ξ|Y jk,ω)

]
dξP (u|Y k,ω)

 du
In (A.5), the property f ′(x) = (log(f(x)))′f(x) of the logarithm is used. In

the last line, all the steps from Equations (A.1) to (A.6) are done in the

same manner, but for ∂
∂ω

[logP (Y k, u|ω)] instead of ∂
∂ω

log (P (Y |ω)).
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A.2 Graph of Convergence

In this section, the development of an estimation of a MINoLEM is depicted

in a plot. It is an exemplary course of estimation and can be observed

similarly in most of the simulated datasets in Chapter 3, as the results show.

One dataset was simulated as in the multilevel simulation study with NC =

NS = 100. The difficulties, named ‘d 01’ to ‘d 10’ in the graph, for the 10

items were, once again, set to

δ =
(

1 −1.2 −0.2 0.6 1.2 −0.6 0.2 −1 0 −0.4
)t
,

and a two-dimensional latent variable with ξ ∼ N (0, I2) was assumed. Each

latent variable had four items that depended only on them. The last two

items were affected by both latent variable dimensions. In the plot, the

coefficients are named ‘g 01,1’, for example, which stands for γ1,1, and so

forth. The coefficients are given by

γ =

(
1 0.5 0.55 1.2 0 0 0 0 0.45 1.1

0 0 0 0 1 1.15 0.95 0.6 1.05 0.65

)t

.

Items nine and ten are also influenced by the interaction of the latent vari-

ables

Ω9 =

(
0 0

0.1 0

)
and Ω10 =

(
0 0

1 0

)
,

which are named ‘o 01’ and ‘o 02’, respectively, in the plot. The variance

of the random intercept, named ‘s’ in the plot, was set to σ2 = 0.125, and

the correlation between the latent variables, named ‘p’, to ρ = 0.3. In the

figures, those true values are depicted as dotted lines, while the continuous

lines represent the estimates. The convergence criterion was met after 16

iterations. The estimated values for each iteration are given in Tables A.1

and A.2.
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The upper plot A in Figure A.1 shows the values of the difficulty estimates in

each iteration. It can be observed that the difficulties are quickly estimated

very close to the true values – in this simulation even after the first iteration.

The coefficients of the latent variables in the lower plot B in A.1 are con-

tinuously improved with each iteration. After approximately ten iterations

all coefficient estimates are very close to the true values and don’t improve

significantly. The estimates of the coefficients converge nicely to the true

values.
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Figure A.1: Plot of convergence of the difficulties (A) and the latent variable
coefficients (B) in exemplary dataset. The dotted lines represent the true
values. The continuous lines represent the estimates in each iteration. The
difficulties δ1 to δ10 are named ‘d 01’ to ‘d 10’. The loadings of the latent
variables are named ‘g 01,1’, for example, which stands for γ1,1, and so forth.
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The estimation of the correlation, named ‘p’, between the latent variables

in plot A in Figure A.2 improves in each iteration and converges to the true

value. In this simulation, the variance of the random intercept, named ‘s’,

in plot B in Figure A.2 is already estimated well by the heuristic for the

starting value. The estimate in the last iteration is slightly improved.
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Figure A.2: Plot of convergence of the correlation between the latent vari-
ables (A) and the variance of the random intercept (B) in exemplary dataset.
The dotted lines represent the true values. The continuous lines represent
the estimates in each iteration. The correlation ρ is named ‘p’ in the plot.
The variance of the random intercept σ2 is named ‘s’.

The estimates of the interaction effects in plot A in Figure A.3 improve in

each iteration and converge to the true values, as the coefficient estimates

did. In the last iteration the estimates are very close to the true values.
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Figure A.3: Plot of convergence of the interaction coefficients (A) and of the
values of the observed data log-likelihood (B) in exemplary dataset. The
graph B shows values for 2 · 16 = 32 iterations, since all the log-likelihood
values are presented after the estimation of the item parameters and after
the estimation of the variance of the random intercept. The dotted lines
represent the true values. The continuous lines represent the estimates in
each iteration. The interaction coefficients Ω9 and Ω10 are named ‘o 01’ and
‘o 02’, respectively. The observed data log-likelihood is named ‘obs l’.

As expected, the values of the observed data log-likelihood logP (Y |ω),

named ‘obs l’, in plot B in Figure A.3 increase in each iteration. The graph

B shows values for 2 · 16 = 32 iterations, since all the log-likelihood values

are presented that result after each estimation of the item parameters and

after each estimation of the variance of the random intercept. It can be

134



observed that the log-likelihood does not seem to rise much after iteration

five. However, the improvements of the estimates are still significant after

that. That shows that the objective function is sensible to improvements of

the estimates, even if the changes in the objective function are minimal.

Overall, it can be noted that good estimates are obtained after a few itera-

tions. Especially, the item difficulties are quickly estimated accurately. The

estimates of the interaction effects are the only ones that significantly im-

prove until the last iteration. This indicates that the convergence criterion

works well.

Table A.1: Results in each iteration of exemplary multilevel dataset with
nonlinear latent variable effects – part 1.
It δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10 γ1,1 γ2,1 γ3,1

1 .802 -1.104 -.144 .461 .989 -.456 .176 -.896 -.025 -.362 1.174 1.095 1.195
2 .989 -1.271 -.172 .591 1.236 -.575 .239 -1.028 -.024 -.440 1.095 .848 .953
3 .990 -1.244 -.170 .594 1.222 -.583 .228 -1.012 -.027 -.444 1.061 .707 .809
4 .986 -1.229 -.171 .589 1.209 -.588 .219 -1.003 -.032 -.447 1.049 .626 .721
5 .988 -1.214 -.166 .590 1.205 -.589 .217 -.993 -.034 -.448 1.047 .577 .664
6 .991 -1.206 -.164 .591 1.202 -.589 .216 -.988 -.034 -.447 1.048 .548 .629
7 .993 -1.202 -.162 .592 1.200 -.589 .215 -.985 -.033 -.447 1.051 .531 .608
8 .991 -1.204 -.166 .590 1.196 -.592 .211 -.988 -.034 -.447 1.054 .521 .595
9 .989 -1.206 -.169 .586 1.193 -.595 .208 -.991 -.037 -.449 1.056 .515 .587
10 .986 -1.208 -.172 .583 1.189 -.599 .204 -.994 -.039 -.450 1.057 .510 .582
11 .983 -1.210 -.175 .580 1.186 -.602 .201 -.996 -.042 -.449 1.058 .508 .578
12 .984 -1.206 -.171 .580 1.186 -.601 .203 -.992 -.043 -.449 1.058 .505 .574
13 .986 -1.204 -.170 .581 1.187 -.600 .204 -.991 -.041 -.447 1.058 .504 .572
14 .987 -1.202 -.168 .583 1.188 -.598 .205 -.989 -.039 -.445 1.058 .503 .570
15 .989 -1.201 -.167 .584 1.189 -.597 .206 -.988 -.037 -.443 1.058 .502 .569
16 .990 -1.199 -.166 .585 1.190 -.596 .207 -.987 -.036 -.442 1.058 .501 .569
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Table A.2: Results in each iteration of exemplary multilevel dataset with
nonlinear latent variable effects – part 2.

It γ4,1 γ9,1 γ10,1 γ5,2 γ6,2 γ7,2 γ8,2 γ9,2 γ10,2 Ω
(2,1)
9 Ω

(2,1)
10 ρ σ2

1 1.325 .522 .815 1.194 1.304 1.325 1.103 1.071 .584 -.066 .677 .158 .114
2 1.241 .508 .860 1.101 1.235 1.186 .858 1.066 .615 -.033 .700 .186 .114
3 1.201 .495 .895 1.046 1.198 1.101 .723 1.062 .628 -.010 .727 .201 .113
4 1.185 .484 .929 1.016 1.181 1.051 .649 1.064 .635 .007 .755 .213 .114
5 1.177 .474 .961 .997 1.172 1.021 .607 1.065 .641 .019 .783 .222 .115
6 1.173 .467 .988 .986 1.168 1.002 .583 1.066 .647 .030 .809 .230 .115
7 1.171 .460 1.011 .980 1.167 .990 .571 1.068 .653 .039 .834 .238 .114
8 1.170 .456 1.029 .978 1.167 .982 .565 1.072 .656 .047 .858 .244 .113
9 1.169 .451 1.044 .977 1.167 .977 .561 1.074 .659 .054 .879 .250 .113
10 1.168 .447 1.057 .977 1.167 .974 .559 1.076 .662 .060 .898 .255 .112
11 1.167 .442 1.069 .976 1.166 .971 .557 1.076 .663 .065 .917 .260 .114
12 1.164 .438 1.081 .973 1.165 .969 .556 1.075 .667 .069 .934 .263 .116
13 1.163 .434 1.093 .971 1.165 .967 .555 1.074 .670 .072 .950 .266 .117
14 1.161 .431 1.102 .970 1.164 .967 .554 1.073 .673 .075 .964 .269 .118
15 1.159 .428 1.111 .969 1.164 .966 .554 1.073 .676 .078 .978 .271 .119
16 1.158 .426 1.119 .968 1.164 .966 .554 1.072 .680 .080 .990 .273 .118
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Appendix B

Additional Tables

B.1 Tables for Single-Level Data with Esti-

mated Correlation

Table B.1: RMSE, bias, and variance of the difficulties for simulation of
single-level model and estimated correlation between the latent variables of
ρ = 0.3. The interaction terms have medium values. EM = Estimation with
MINoLEM.
N δ1 δ2 δ3 δ4 δ5

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

500 EM .157 .024 .024 .126 -.019 .015 .102 -.011 .010 .139 .017 .019 .159 .023 .025
1000 EM .097 .014 .009 .085 -.007 .007 .067 .003 .005 .092 .014 .008 .102 .003 .010
2000 EM .069 .010 .005 .062 -.004 .004 .049 -.000 .002 .066 .007 .004 .070 .007 .005
5000 EM .042 .007 .002 .033 .003 .001 .029 -.002 .001 .041 -.001 .002 .042 .001 .002

NC δ6 δ7 δ8 δ9 δ10

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

500 EM .118 .002 .014 .111 .021 .012 .120 -.006 .014 .140 .031 .019 .177 -.015 .031
1000 EM .083 -.002 .007 .076 .002 .006 .080 -.002 .006 .091 .000 .008 .119 -.019 .014
2000 EM .060 -.005 .004 .052 -.001 .003 .065 -.004 .004 .060 .002 .004 .083 -.013 .007
5000 EM .043 .000 .002 .032 -.001 .001 .034 -.000 .001 .038 -.003 .001 .047 -.013 .002
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Table B.2: RMSE, bias, and variance of the coefficients of the latent variables
for simulation of single-level model and estimated correlation between the
latent variables of ρ = 0.3. The interaction terms have medium values. EM
= Estimation with MINoLEM.
N γ1,1 γ2,1 γ3,1 γ4,1

rmse bias var rmse bias var rmse bias var rmse bias var

500 EM .266 .056 .068 .194 .029 .037 .169 .022 .028 .322 .052 .101
1000 EM .185 .027 .034 .129 .013 .016 .106 -.004 .011 .198 .018 .039
2000 EM .129 .023 .016 .103 .003 .011 .079 .007 .006 .143 .018 .020
5000 EM .073 .016 .005 .052 .006 .003 .055 .007 .003 .086 .009 .007

N γ9,1 γ10,1 γ5,2 γ6,2

rmse bias var rmse bias var rmse bias var rmse bias var

500 EM .264 .069 .065 .444 .062 .193 .254 .018 .064 .275 .047 .010
1000 EM .172 .038 .028 .248 -.003 .062 .174 -.000 .030 .181 .015 .010
2000 EM .108 .006 .012 .177 -.036 .030 .114 .009 .013 .113 .017 .010
5000 EM .070 .009 .005 .116 -.028 .013 .072 .001 .005 .078 .008 .010

N γ7,2 γ8,2 γ9,2 γ10,2

rmse bias var rmse bias var rmse bias var rmse bias var

500 EM .229 .012 .052 .183 -.009 .033 .300 .091 .082 .337 .042 .112
1000 EM .140 .008 .020 .114 .007 .013 .214 .070 .041 .196 -.010 .039
2000 EM .110 .022 .012 .088 .007 .008 .145 .039 .019 .111 -.006 .012
5000 EM .063 .000 .004 .049 .002 .002 .084 .022 .007 .087 -.009 .008

Table B.3: RMSE, bias, and variance of the difficulties a for simulation of
single-level model and estimated correlation between the latent variables of
ρ = 0.3. The interaction terms have high values. EM = Estimation with
MINoLEM.
N δ1 δ2 δ3 δ4 δ5

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

500 EM .162 .029 .026 .124 -.022 .015 .103 -.011 .010 .142 .025 .019 .162 .028 .025
1000 EM .097 .017 .009 .085 -.008 .007 .067 .002 .005 .095 .018 .009 .103 .010 .011
2000 EM .069 .011 .005 .061 -.005 .004 .049 -.000 .002 .067 .013 .004 .071 .011 .005
5000 EM .043 .009 .002 .033 .002 .001 .029 -.002 .001 .041 .004 .002 .044 .005 .002

N δ6 δ7 δ8 δ9 δ10

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

500 EM .120 -.005 .014 .112 .021 .012 .118 -.008 .014 .200 .056 .037 .178 .006 .032
1000 EM .083 -.006 .007 .077 .003 .006 .079 -.001 .006 .138 .051 .017 .132 -.017 .017
2000 EM .061 -.009 .004 .052 .000 .003 .065 -.004 .004 .092 .032 .007 .086 -.007 .007
5000 EM .044 -.002 .002 .032 .000 .001 .035 -.000 .001 .070 .028 .004 .054 -.008 .003
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Table B.4: RMSE, bias, and variance of the coefficients of the latent variables
for simulation of single-level model and estimated correlation between the
latent variables of ρ = 0.3. The interaction terms have high values. EM =
Estimation with MINoLEM.
N γ1,1 γ2,1 γ3,1 γ4,1

rmse bias var rmse bias var rmse bias var rmse bias var

500 EM .263 .067 .064 .196 .040 .037 .163 .025 .026 .327 .088 .099
1000 EM .173 .036 .029 .125 .021 .015 .107 -.001 .011 .198 .041 .037
2000 EM .123 .023 .015 .100 .009 .010 .078 .010 .006 .150 .047 .020
5000 EM .078 .023 .006 .052 .010 .003 .053 .009 .003 .099 .031 .009

N γ9,1 γ10,1 γ5,2 γ6,2

rmse bias var rmse bias var rmse bias var rmse bias var

500 EM .332 -.007 .110 .428 -.162 .157 .261 .028 .067 .313 .084 .011
1000 EM .231 -.038 .052 .324 -.138 .086 .177 .018 .031 .197 .039 .011
2000 EM .175 -.061 .027 .285 -.158 .057 .116 .016 .013 .134 .041 .011
5000 EM .129 -.056 .014 .247 -.147 .039 .078 .010 .006 .089 .025 .011

N γ7,2 γ8,2 γ9,2 γ10,2

rmse bias var rmse bias var rmse bias var rmse bias var

500 EM .245 .024 .060 .178 -.003 .032 .361 -.102 .120 .344 -.073 .113
1000 EM .142 .015 .020 .116 .004 .013 .245 -.041 .058 .276 -.120 .062
2000 EM .118 .028 .013 .087 .007 .008 .220 -.095 .039 .185 -.085 .027
5000 EM .067 .010 .004 .051 .003 .003 .178 -.083 .025 .180 -.101 .022
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B.2 Tables for Simulation of Starting Values

Table B.5: RMSE, bias, and variance of the difficulties of simulation of
starting values. Data was simulated for multilevel model (σ2 = 0.125) and
estimated correlation between the latent variables of ρ = 0.3. The number
of individuals per cluster is fixed to NS = 100. NC = Number of clusters.
The column ‘fix’ indicates the difference between the commonly chosen fixed
starting value and the true value in the simulation.

NC δ1 δ2 δ3 δ4 δ5

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

50 .262 -.181 .036 .140 .091 .012 .060 .019 .003 .202 -.138 .022 .306 -.214 .048
100 .253 -.177 .033 .132 .089 .009 .048 .021 .002 .196 -.136 .020 .306 -.215 .047
200 .266 -.187 .036 .125 .086 .008 .037 .017 .001 .204 -.143 .021 .308 -.217 .048
fix 1 -1.2 -.2 .6 1.2

NC δ6 δ7 δ8 δ9 δ10

rmse bias var rmse bias var rmse bias var rmse bias var rmse bias var

50 .198 .136 .021 .072 -.035 .004 .145 .094 .012 .045 -.005 .002 .078 .044 .004
100 .195 .136 .020 .058 -.032 .002 .146 .099 .012 .033 -.003 .001 .068 .043 .003
200 .187 .131 .018 .057 -.036 .002 .131 .091 .009 .026 -.007 .001 .058 .037 .002
fix -.6 .2 -1 0 -.4
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Table B.6: RMSE, bias, and variance of the loadings of the latent variables
of simulation of starting values. Data was simulated for multilevel model
(σ2 = 0.125) and estimated correlation between the latent variables of ρ =
0.3. The number of individuals per cluster is fixed to NS = 100. NC =
Number of clusters. The column ‘fix’ indicates the difference between the
commonly chosen fixed starting value and the true value in the simulation.

N γ1,1 γ2,1 γ3,1 γ4,1

rmse bias var rmse bias var rmse bias var rmse bias var

50 .277 .195 .039 .840 .594 .353 .870 .614 .379 .134 .092 .010
100 .278 .196 .039 .838 .593 .352 .864 .611 .374 .134 .093 .009
200 .283 .200 .040 .839 .593 .352 .866 .612 .375 .133 .093 .009
fix 0 .5 .45 -.2

NC γ9,1 γ10,1 γ5,2 γ6,2

rmse bias var rmse bias var rmse bias var rmse bias var

50 .210 .143 .024 .398 -.278 .081 .300 .212 .045 .223 .156 .025
100 .204 .142 .022 .391 -.275 .077 .298 .210 .045 .222 .156 .025
200 .206 .144 .022 .391 -.275 .077 .298 .210 .045 .222 .156 .025
fix .55 -.1 0 -.15

NC γ7,2 γ8,2 γ9,2 γ10,2

rmse bias var rmse bias var rmse bias var rmse bias var

50 .500 .353 .125 .690 .488 .239 .113 .063 .009 .113 -.067 .008
100 .496 .350 .123 .687 .485 .236 .098 .061 .006 .102 -.065 .006
200 .499 .353 .125 .683 .483 .234 .093 .060 .005 .095 -.064 .005
fix .05 .4 -.05 .35

Table B.7: RMSE, bias, and variance of the interaction coefficients of simula-
tion of starting values. Data was simulated for multilevel model (σ2 = 0.125)
and estimated correlation between the latent variables of ρ = 0.3. The num-
ber of individuals per cluster is fixed to NS = 100. NC = Number of clusters.
The column ‘fix’ indicates the difference between the commonly chosen fixed
starting value and the true value in the simulation.

NC Ω
(2,1)
9 Ω

(2,1)
10 ρ σ2

rmse bias var rmse bias var rmse bias var rmse bias var

50 .143 -.007 .021 .495 -.338 .130 .203 -.143 .021 .036 -.017 .001
100 .105 .002 .011 .468 -.325 .114 .202 -.143 .021 .031 -.018 .001
200 .070 .004 .005 .472 -.331 .113 .202 -.143 .020 .027 -.017 .000
fix .1 1 .3 .125
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Popp, M. (2010). Viel lärm um PISA: Eine qualitative-vergleichende

presseanalyse zu den reaktionen auf die PISA-studie in deutschland,
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