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1 Abbreviations 

 

95 % CI: 95 % confidence interval 

95 % CI – lb: lower bound of the 95 % confidence interval 

AccuracyB: balanced accuracy 

AGE: advanced glycosylation end product 

au: arbitrary units 

AUROC: area under the curve of the receiver operating characteristic 

BMI: body mass index 

CoV: coefficient of variation 

CV: cross-validation 

CVD: cardiovascular disease 

DNL: de-novo lipid synthesis 

FFA: free fatty acids 

FPG: fasting plasma glucose 

GLCM: gray level co-occurrence matrix 

gldbw: gray level discretization bin width 

GLDM: gray level dependence matrix 

GLRLM: gray level run length matrix 

GLSZM: gray level size zone matrix 

HOMA-IR: homeostasis model assessment of insulin resistance 

HCC: hepatocellular carcinoma 

HDL-C: high-density lipoprotein cholesterol 
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ICC: intraclass correlation coefficient 

ICC(1,1): test-retest reliability 

ICC(3,k): inter-rater reliability 

IDF: international diabetes federation 

KORA: Cooperative Health Research in the Region of Augsburg (Kooperative 

Gesundheitsforschung in der Region Augsburg) 

LDL-C: low-density lipoprotein cholesterol 

MetS: metabolic syndrome 

MR: magnetic resonance 

MRI: magnetic resonance imaging 

MRS: 1H-magnetic resonance spectroscopy 

NAFLD: non-alcoholic fatty liver disease 

NASH: non-alcoholic steatohepatitis 

NCEP-ATPIII: National Cholesterol Education Program Adult treatment Panel III 

NGTDM: neighboring gray tone difference matrix 

NO: nitric oxide 

OGTT: oral glucose tolerance test 

OR: odds ratio 

PDFF: proton density fat fraction 

RF: random forest 

RFRAD: radiomics random forest 

rfwc: relative fat water content 

rfwcN: noise augmented relative fat water content 

SAT: subcutaneous adipose tissue 
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SD: standard deviation 

Sfat: fat-signal 

SIP: in-phase-signal 

SMOTE: synthetic minority over-sampling technique 

SOP: out-of-phase-signal 

SWater: water-signal 

T: Tesla 

T1-DED: T1-weighted dual-echo Dixon 

T1-MED: T1-weighted multi-echo Dixon 

T2-HASTE: T2-weighted half-Fourier singleshot turbo spin-echo 

T2DM: type 2 diabetes mellitus 

TE: echo time 

TR: repetition time 

VAT: visceral adipose tissue 

VIBE: volume interpolated breath hold 

VLDL: very low density lipoprotein 

VOI: volume of interest 

VOID: deformed volume of interest 

WC: waist circumference 

WHO: world health organization 
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2 Introduction 

2.1 Metabolic syndrome 

2.1.1 Origins of the metabolic syndrome 

 

Over the course of the last century the world has witnessed a constant and 

relentless global trend towards sedentary lifestyles and surplus dietary intake. 

Once limited to industrialized countries, such lifestyles have spread to the 

developing world and are now near ubiquitous (Saklayen, 2018). Our metabolism 

evolved eons ago in an age of caloric scarcity and it thus poorly adapted to current 

times. Beyond the ongoing global rise in obesity (NCP Risk Factor Collaboration, 

2017), an unforeseen consequence of these shifting life-styles, which took its 

origin in western industrial societies, has been an ever rising proportion of 

individuals suffering arterial hypertension, elevated triglycerides, low high-density 

lipoprotein cholesterol and impaired glucose metabolism (Kylin, 1923, Vague, 

1947, Haller H. and M., 1975). These conditions are all recognized as risk factors 

for cardiovascular disease (CVD) and occur in combination more frequently than 

predicted by chance (Eckel et al., 2005). This cluster of cardiovascular risk factors 

has been recognized as a clinical entity in its own right and is now referred to as 

metabolic syndrome (MetS) (Hanefeld and Leonhardt, 1981, Reaven, 1988, 

Eckel et al., 2005). 

Over the past 4 decades have seen a striking increase in the worldwide 

prevalence of MetS. This surge is closely associated with the global epidemics of 

obesity and type 2 diabetes mellitus (T2DM) (Ng et al., 2014, Khan et al., 2020). 

MetS is an established risk factor for progression of prediabetes to diabetes 

(Wang et al., 2007, Cameron et al., 2008) and many common cancers (Esposito 

et al., 2012). Yet despite the enormous human and economic cost of MetS 

(Nichols and Moler, 2011, Sullivan et al., 2007), its cause and interplay of risk 

factors at a basic biological level is still too poorly understood to provide 

personalized risk models and tailored plans for intervention.  
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2.1.2 Definition, epidemiology, economic and clinical aspects 

 

2.1.2.1 Diagnostic Definitions of the metabolic syndrome 

 

 

Several international bodies, including the World Health Organization 

(WHO) in 1999, the National Cholesterol Education Program Adult treatment 

Panel III (NCEP-ATPIII) in 2001, and the International Diabetes Federation (IDF) 

(Alberti et al., 2005) in 2005 have conceptualized the MetS in terms of 

overlapping diagnostic criteria. Their common denominator is the required 

combination of at least 3 of 5 cardiometabolic risk factors. Whilst NCEP-ATPIII 

criteria allow for any three risk factors to satisfy diagnostic criteria, the definitions 

formulated by the WHO and the IDF require either impaired glucose metabolism 

or central obesity respectively in addition to two further risk factors (Table 1). The 

multiplication of definitions made a unification of criteria desirable to facilitate 

comparison across cohorts, hence differences in thresholds for fasting plasma 

(FPG) glucose levels and WC for abdominal obesity were resolved to yield the 

consensus worldwide IDF criteria in 2006 (Alberti et al., 2006), which has found 

widespread application next to the NCEP-ATPIII definition and is employed in this 

study (Table 1). 

 

 

2.1.2.2 Epidemiology and risk of complications 

 

A comprehensive review by Saklayen (2018) estimated the global 

prevalence of MetS in 2018 at approximately 25 %. In western cohorts, the levels 

of MetS prevalence are plateauing in or above this range, whilst developing 

countries have approached similar levels over the last two decades. According to 

the most commonly used NCEP-ATPIII and IDF criteria, the overall prevalence 

of MetS in the United States ranges from 33.0 - 39.0 % (Ford, 2005a, Aguilar et 

al., 2015). In Europe the general age-adjusted prevalence is 24.3 %, with 
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considerable variation amongst countries (Scuteri et al., 2015). Mediterranean 

countries such as Spain and Italy report the highest prevalence of MetS with 31 % 

(Fernández-Bergés et al., 2012) and 33 % (Tocci et al., 2015), respectively. 

Estimates have put the prevalence of MetS in Germany at 22.7 % (Moebus et al., 

2008).  

In the early 2000s, incidence and prevalence in Asian countries were 

trailing their western counterparts considerably. At that point in China, Japan and 

Thailand, 9.5 %, 15.3 % and 12.8 % of the respective populations had met the 

criteria for MetS (Feng et al., 2006, Ishizaka et al., 2005, Lohsoonthorn et al., 

2006). However, longitudinal data from Korea (1999 - 2007) and China 

(1991 - 1995 to 2011 - 2015) exposed a growing MetS prevalence of 

approximately 0.6 % and 1 % per year (Lim et al., 2011, Huang et al., 2018), 

whilst similar studies from the United States show no significant change in MetS 

prevalence in the last two decades (Aguilar et al., 2015, Palmer and Toth, 2019). 

The prevalence of MetS is highly dependent on the composition of the 

studied population in terms age, sex and ethnicity in addition to the definition used 

for analysis, resulting in varying estimates even within countries and regions 

(Cameron et al., 2004, Gray et al., 2000, Alberti et al., 2006). However, an 

increase of MetS prevalence with age is observed regardless of cohort, peaking 

after around 60 years of age (Hirode and Wong, 2020, Ford, 2005a, Lim et al., 

2011). 

MetS accounts for up to 34 % of incident CVD and between 47 % to 62 % 

of diabetes over 8 years follow-up (Wilson et al., 2005). The cumulative lifetime 

incidence and prevalence must be considerably higher, thus the global rise in 

diabetes prevalence thought to be largely driven by MetS (Grundy, 2008). A 

meta-analysis of longitudinal data from several US cohorts with follow-up 

between 3 and 13.5 years attributes ~ 6 – 7 % of all-cause mortality to MetS 

(Ford, 2005b). A separate US-based investigation concluded that MetS conferred 

a 2.82 to 5.52 fold risk for cardiovascular mortality, more than double the odds 

ratio (OR) of all-cause mortality reported by the same investigation (Ho et al., 

2008).
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Table 1 - Diagnostic definitions of the metabolic syndrome 

BMI, body mass index; IDF, international diabetes federation; M, men; NCEP-ATPIII, National Cholesterol Education 

Program Adult treatment Panel III; W, women; WHO, World Health Organization. 

Risk factor WHO NCEP-ATPIII 2005 IDF 2006 

Comment Insulin resistance/ impaired 

glucose metabolism plus at 

least two risk factors. 

Presence of at least three 

risk factors. 

Abdominal obesity in terms 

of waist circumference and at 

least two more risk factors. 

Central/ Abdominal 

obesity (Waist 

circumference/ body 

mass index) 

Waist/hip ratio                             

M:  > 0.9,                                       

W:  > 0.85                                                   

OR                                                

BMI > 30 kg/m2 

Waist circumference                

M: > 102 cm,                          

W: > 88 cm  

Waist circumference 

(Europids)§                                  

M: > 94 cm,                              

W: > 80 cm  

Blood pressure > 140/90 mmHg > 130/85 mmHg                        

OR                                                

drug treatment for 

hypertension 

> 130/85 mmHg                        

OR                                                

drug treatment for 

hypertension 

Insulin resistance/ 

impaired glucose 

metabolism 

blood glucose > 6.1 mmol/L 

(110 mg/dl)                               

OR                                                

2 h blood glucose > 7.8 mmol 

(140 mg/dl)                         

(required) 

Blood glucose > 5.6 mmol/L 

(100 mg/dl)                                      

OR                                          

drug treatment for elevated 

blood glucose 

Blood glucose > 5.6 mmol/L 

(100 mg/dl)                                      

OR                                          

drug treatment for elevated 

blood glucose 
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Triglycerides > 1.7 mmol/L (150 mg/dl) > 1.7 mmol/L (150 mg/dl)           

OR                                        

drug treatment for elevated 

triglycerides 

> 1.7 mmol/L (150 mg/dl)           

OR                                         

drug treatment for elevated 

triglycerides 

High-density lipoprotein 

cholesterol 

M: < 0.9 mmol/L (35 mg/dL),   

F: < 1.0 mmol/L (40 mg/dL) 

M:  < 1.0 mmol/L (40 mg/dl),                                         

F: < 1.3 mmol/L (50 mg/dl)       

OR                                                        

drug treatment for elevated 

HDL-cholesterol 

M: < 1.0 mmol/L (40 mg/dl),                                           

F: < 1.3 mmol/L (50 mg/dl)           

OR                                                        

drug treatment for elevated 

HDL-cholesterol 

§ cutoffs for waist circumference are ethnicity- and gender-specific. 
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Vascular complications are not limited to CVD. Individuals with MetS are 

also at higher risk of ischemic stroke (adjusted OR 1.5); based on findings of a 

US cohort that attributes ~ 20 % of ischemic strokes to the MetS (Boden-Albala 

et al., 2008). Furthermore, in both Chinese and Scandinavian longitudinal cohort 

studies accelerated age-related decline of glomerular filtration rate was found to 

be associated with MetS after adjusting for epidemiological confounders (Chen 

et al., 2007, Stefansson et al., 2018). 

MetS is also linked to increased incidence of many frequent and rare 

cancers (Esposito et al., 2012), including prostate (Lund Haheim et al., 2006), 

breast (Dibaba et al., 2018), and early onset colorectal cancers (Chen et al., 

2020a). 

 

 

2.1.2.3 Economic impact of metabolic syndrome 

 

The economic perspective on MetS is equally disconcerting. Although 

there is no recent study estimating the global cumulative economic burden of 

MetS, the economic impact of its most severe complications T2DM and CVD 

have been thoroughly investigated.  

In 2015, the global economic burden of T2DM in adults, from medical costs 

including complications such as CVD and indirect costs due to lost productivity, 

disability and death was estimated at $1.31 trillion or 1.8 % of global gross 

domestic product (GDP) (Einarson et al., 2018). To put this staggering sum in 

perspective, global expenditure for armed violence, war, terrorism and military 

budgets amounted to $2.1 trillion (2.8 % GDP) in 2012 (Dobbs et al., 2014).   

In addition, MetS incurs increased medical costs regardless of incident 

cardiovascular complications and hospitalization (Nichols and Moler, 2011). A 

recent economic analysis of MetS components in a large US cohort (n = 43,037) 

revealed that individuals were up to 75 % more likely to miss days at work, up to 

39 % more likely to require emergency room care, and saw and increase of direct 
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medical cost of 117 % after adjusting for epidemiological confounders (Mcqueen 

et al., 2016).  

 

 

2.1.2.4 The components of the metabolic syndrome 

 

This section provides a brief overview of the five cardiometabolic risk 

factors that serve as diagnostic criteria for the MetS and their pathophysiological 

mechanisms contributing to increased risk for cardiovascular disease and other 

comorbidities. By their very nature, occurring as a cluster and seldom in isolation, 

a disentanglement of their relative impact on disease mechanism is currently not 

possible.  

 

 

2.1.2.4.1 Impaired glucose metabolism  

 

Elevated blood glucose profiles are the diagnostic definitions of both 

prediabetes and diabetes. The insulin resistance of target tissues has been 

identified as root cause of T2DM and has been reviewed in detail by (Yaribeygi 

et al., 2019).  

The diagnostic criteria for prediabetes and diabetes have been defined in 

a consensus report by the WHO & IDF (2006). The criteria for prediabetes are 

satisfied by diagnosis of impaired glucose tolerance (IGT) > 5.6 mmol/l (100 

mg/dl) and/or impaired fasting glucose (IFG) 5.6 – 6.9 mmol/l (100 – 125 mg/dl) 

and 2-hour plasma glucose of 7.8 – 11.0 mmol/l (140 – 199 mg/dl) in an oral 

glucose tolerance test (OGTT). Diabetes is diagnosed by an OGTT with 2-h 

plasma glucose levels of ≥ 11.1 mmol/l (200 mg/dl) and/or a fasting glucose 

levels of ≥ 7.0 mmol/l (126 mg/dl) . 
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Elevated glucose levels correlate with carotid intima media thickness, a 

common surrogate of atherosclerotic disease progression, in a dose dependent 

manner (Bulut and Avci, 2019). Prediabetes is significantly associated with total 

plaque area and number across all major vascular territories only in the presence 

of at least two other MetS components (Sanchez et al., 2019). Carotid intima 

media thickness however is independently associated with prediabetes 

(Bamberg et al., 2017). Prediabetes and diabetes mellitus are further associated 

with coronary atherosclerotic burden (Acar et al., 2019, Scicali et al., 2016). 

Diabetes also predicts progress of coronary atherosclerotic plaque volume (Yang 

et al., 2019). 

Glucose is a reactive substance developing relevant toxic effects at the 

increased concentrations found in prediabetes and diabetes. This glucotoxicity 

underlies complications including CVD, diabetic neuropathy, nephropathy, 

retinopathy and cataract formation. Details have been reviewed in detail 

elsewhere (Singh et al., 2014). In brief, glucose spontaneously undergoes a non-

enzymatic conversion forming reactive intermediaries, so-called advanced 

glycation end products (AGEs). AGE formation is accompanied by oxidative 

stress, which favors the generation of specific AGEs through glycoxidation of 

amino acid side chains but also cross-linking of proteins. Both the vascular 

system and in particular the endothelial cells are exposed to hyperglycemia, 

resulting in the accumulation of AGEs and cellular damage, further causing 

inflammation, macrophage invasion and tissue remodeling (Rhee and Kim, 

2018). AGEs also cause the uncoupling of nitric oxide synthase, resulting in 

diminished production of the vasoprotective NO and instead superoxide anion 

(O2-) formation, which further impairs endothelial repair (Forstermann and Sessa, 

2012). In conjunction these processes all participate in the progression of 

atherosclerosis as evidenced by increased hypertension, carotid intima-media 

thickness, severity of plaque formation as well as worse clinical outcomes in 

terms of incident cardiovascular and other vascular complications (Hegab et al., 

2012).  

The current standard of care aims at slowing the progress of prediabetes 

to diabetes through lifestyle modifications (American Diabetes Association, 
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2020). These measures including exercise, dietary adjustment and weight loss 

can reduce the relative risk of progress to T2DM by approximately 60 % 

(Perreault et al., 2012).  

For individuals that are diagnosed with T2DM, the latest European and 

American consensus guidelines recommend a combination of lifestyle 

modifications and pharmaceutical intervention comprising oral hypoglycemic 

agents and subcutaneous insulin for glycemic control (Davies et al., 2018).  

 

 

2.1.2.4.2 Impaired lipid homeostasis 

 

The abnormal concentration of lipids in circulation, or dyslipidemia, 

includes increased concentrations of plasma triglycerides > 1.7 mmol/L (150 

mg/dl) (hypertriglyceridemia), low levels of high-density lipoprotein cholesterol 

(HDL-C) with sex-specific cutoffs (men: < 1.0 mmol/L [40 mg/dl], women: 

< 1.3 mmol/L [50 mg/dl]), and the appearance of low-density lipoprotein 

cholesterol (LDL-C). Both hypertriglyceridemia and low HDL-C have been shown 

to be independent predictors of cardiovascular risk through acceleration of 

atherosclerotic plaque formation (Hokanson and Austin, 1996, Yarnell et al., 

2001, Barter and Genest, 2019). Both lipid abnormalities often appear in tandem 

(Fruchart et al., 2004, Castelli, 1992). Furthermore, insulin resistance has been 

recognized as a contributor in the development of hypertriglyceridemia and low 

HDL-C (Reaven and Chen, 1988, Reaven et al., 1967, Ginsberg et al., 2005). 

Current treatment guidelines for dyslipidemia recommend lifestyle 

modifications and prescription of lipid lowering medication (Mach et al., 2020). 

Statins are the first line medication for treating both hypertriglyceridemia HDL-C 

(Collins et al., 2016). Statin therapy can be further supplemented with other drugs 

such as ezetimibe (Vavlukis and Vavlukis, 2018) and/or PCSK9 inhibitors 

(Kaddoura et al., 2020) if statins alone are not sufficient to normalize the blood 

lipid profile. 
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2.1.2.4.3 Obesity 

 

The excess accumulation of fat in adipose tissue to an extend that is 

associated with deleterious effects on health is referred to as obesity (Haslam 

and James, 2005). According to the WHO (2020), individuals with a body mass 

index (BMI) as > 30 kg/m2 are considered obese. 

It has been recognized that beneath the clinical presentation of obesity, 

the distribution and relative amount of fat stored in the adipose tissue in different 

anatomical sites including subcutaneous adipose tissue (SAT) and visceral 

adipose tissue (VAT) are superior to anthropometric aggregate parameters such 

as WC and BMI at stratifying and assessing cardiometabolic risk (Kwon et al., 

2017, Kaess et al., 2012, Liu et al., 2010). Furthermore, ectopic fat depots, 

referring to fat storage in non-adipose tissue such as the liver or the pericardial 

sac have emerged more recently as CVD risk factors (Rosito et al., 2008, Cai et 

al., 2020, Rado et al., 2019). 

Even though the association of obesity and insulin resistance has not been 

disputed since they were formally linked in an early description of MetS by Gerald 

Reaven (1988) the pathological mechanism is elusive. In broader terms there is 

agreement that obesity is marked by an accumulation of inflammatory immune 

cells that contribute to insulin resistance and various tissue. Various hypotheses 

regarding direction of causality and the pathobiology have been put forward in 

this context and have been reviewed recently (Wu and Ballantyne, 2020).  

The treatment of obesity is based on the clinical disease model that 

regards the net surplus of calories as principle modifiable factor in the 

pathological built-up of fat. Thus, current guidelines recommend exercise and 

dietary intervention as therapeutic entry point (Yumuk et al., 2014). For 

pharmaceutical intervention orlistat, lorcaserin and phentermine/topiramate have 

been approved for long term weight management (Toplak et al., 2015). In those 

individuals that are either highly obese (≥ 40 kg/m2) or present with obesity (≥ 30 

kg/m2) and comorbidities, escalating treatment to bariatric surgery should be 

considered to improve long-term outcomes (Fried et al., 2013).  



15 

2.1.2.4.4 Hypertension 

 

Hypertension is caused by a mismatch of cardiac output and vascular 

resistance resulting in elevated systolic and/or diastolic blood pressure. Both 

European (Williams et al., 2018) and American (Unger et al., 2020) guidelines 

agree on critical thresholds of bloop pressure (BP) classification. A BP 

< 130/85 mmHg is defined as normal and BP in the range 

130 - 139/85 - 89 mmHg is considered high-normal. The diagnostic threshold for 

hypertension is set at 140/90 mmHg (Williams et al., 2018, Unger et al., 2020). A 

meta-analysis of 61 prospective studies with more than 1 million adults concluded 

that a 20 mmHg increase in systolic blood pressure is associated with a more 

than twofold risk of death from each stroke, ischemic heart disease and all other 

vascular causes (Lewington et al., 2002). 

In MetS, insulin resistance stimulates the sympathetic nervous system, 

upregulates angiotensin II receptors and reduces the production of NO 

(Mendizabal et al., 2013). In combination these effects cause hypertension by 

simultaneously increasing cardiac output on one hand and vascular resistance 

on the other. Approximately 80 % of individuals with MetS also suffer from 

hypertension (Katsimardou et al., 2020). MetS is also independently associated 

with an increased risk of poorly controlled blood pressure and conveys an 

increased risk of cardiovascular complications compared to individuals with 

isolated hypertension (Schillaci et al., 2004). 

Despite such findings, recently updated guidelines on the treatment of 

hypertension do not contain specific recommendations for individuals with MetS 

(Williams et al., 2018, Unger et al., 2020). Hypertension, like the other 4 

components of MetS, can be treated with lifestyle interventions that overlap in 

terms of weight loss, physical activity but also embrace dietary salt restriction 

(Goit and Yang, 2019). Treatment can be escalated with common anti-

hypertensive drugs such as thiazide diuretics, angiotensin converting enzyme 

inhibitors, angiotensin receptor blockers and calcium channel blockers. These 

oral agents have a proven track record of lowering blood pressure and reducing 
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the risk of cardiovascular events (ALLHAT, 2002). For full guidelines of 

hypertensive treatment please refer to Williams et al. (2018) and Unger et al. 

(2020). 

 

 

2.2 The liver and the metabolic syndrome 
 

The liver plays host to multiple metabolic pathways implied in the 

pathophysiology of MetS. Hepatocytes host the necessary enzymatic pathways 

for carbohydrate and lipid homeostasis (Trefts et al., 2017) and synthesizes a 

variety of systemically active vasoregulatory and vasoprotective enzymes (Anavi 

et al., 2017). In healthy individuals the liver achieves physiological glucose 

homeostasis by lowering (postbrandially) elevated blood glucose concentrations 

through glucose utilization and storage by glycogenesis and raising low blood 

glucose concentrations (during fasting) by releasing glucose generated by 

glycolysis and gluconeogenesis (Gerich, 1993). It is estimated that the liver is 

able to supply up to 90 % of blood glucose during prolonged fasting (Konig et al., 

2012). The homeostatic response is under hormonal control of insulin, the only 

hormone known to lower blood glucose and its main opponents glucagon and 

epinephrine (Gerich, 1993). The liver is likewise a central hub of lipid metabolism. 

Hepatocytes convert free fatty acids (FFA) to triglycerides for storage and are the 

only source of lipoproteins that enable lipid circulation (Nguyen et al., 2008).  

Insulin resistance, the key endocrine dysfunction underlying all 

components of MetS including T2DM also manifests in the liver. Here, insulin is 

no longer able to moderate the net output of glucose from the liver contributing to 

increased blood glucose levels (Trefts et al., 2017). At the same time, insulin 

loses its ability to suppress the production of triglyceride-rich very low density 

lipoprotein (VLDL) particles, whilst the stimulatory effect of insulin on de-novo 

lipid synthesis (DNL) is preserved (Smith et al., 2020) and the rate of cholesterol 

synthesis even increases (Pihlajamaki et al., 2004).  
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Whilst DNL is a minor pathway in healthy individuals, it is highly 

upregulated by the combination of elevated insulin and glucose concentrations, 

i.e. in a state of insulin resistance (Trefts et al., 2017). DNL is the major contributor 

to pathological fat accumulation by hepatocytes (Smith et al., 2020). In 

metabolically healthy young adults the hepatic fat fraction determined by clinical 

imaging rarely exceeds 4-5 % (Ulbrich et al., 2015), a value similar to skeletal 

muscle (Trinh et al., 2017). Once pathological DNL has been triggered by insulin 

resistance hepatic fat fraction frequently exceeds 5 %. In the absence of 

significant alcohol consumption or steatogenic medication this form of hepatic 

steatosis is referred to as non-alcoholic fatty liver disease (NAFLD) (Chalasani et 

al., 2018). Furthermore, the catalytic steps of DNL are a major source of oxidative 

stress and toxic lipid metabolites such as palmitate. A complication of the 

resulting irreversible cell damage and activation of pro-inflammatory signaling 

pathways is the increased incidence of liver fibrosis in individuals with NAFLD. 

The acute inflammatory form of NAFLD is the non-alcoholic steatohepatitis 

(NASH), which is marked by overt liver inflammation and accelerates progress to 

cirrhosis and liver failure (Chalasani et al., 2018). The increasing prevalence of 

liver fibrosis due to NAFLD (and NASH) also translates into higher incidence rates 

of hepatocellular carcinoma (HCC) (Younossi et al., 2015). 

NAFLD receives increasing recognition as a mediator of MetS, T2DM and 

CVD (Yki-Jarvinen, 2014). The interplay of NAFLD and cardiometabolic risk 

factors was addressed by multiple longitudinal studies, which came to the 

consistent conclusion that NAFLD independently predicts incident prediabetes 

(Zelber-Sagi et al., 2013), T2DM (Ballestri et al., 2016) and MetS (Ballestri et al., 

2016). In particular, the effect on T2DM incidence was dose dependent and 

reduction of steatosis grade resulted in decreased risk of new-onset T2DM 

(Yamazaki et al., 2015, Fukuda et al., 2016, Lee et al., 2020). Longitudinal cohort 

studies that relied on plasma enzyme biomarkers, an established semi-

quantitative marker of NAFLD, found a decreased survival in long term follow-ups 

(Nasr et al., 2020). Furthermore, prospective cohort studies concluded that 

NAFLD predicts subclinical atherosclerosis (Zhou et al., 2018) as well as CVD 

(Targher et al., 2016).  
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The mechanisms underlying these associations between NAFLD, MetS 

and CVD can be coherently explained, at least in part, in terms of the aberrant 

hepatocyte function described above. The hepatic overproduction of glucose 

contributes to hyperglycemia in prediabetes and T2DM. Steatotic hepatocytes 

also overproduce coagulation factors and fibrinogen thereby inducing a systemic 

procoagulatory state (Targher et al., 2009, Sookoian et al., 2010). The increased 

synthesis of triglyceride-rich VLDL and cholesterol synthesis are complicit in 

atherosclerotic plaque formation (Nordestgaard, 2016).  

The epidemiology of NAFLD is tightly entwined with obesity and MetS (Yki-

Jarvinen, 2014) and has emerged as the most common liver disease worldwide, 

with approximately 25 % of adults in the US and Europe being currently affected 

(Younossi et al., 2018). In respect to both its shared epidemiology and 

pathophysiology, NAFLD can be regarded as the hepatic manifestation of MetS. 

 

 

2.3 MR for assessment of hepatic fat 
 

Two non-invasive magnetic resonance (MR)-based imaging techniques, 

magnetic resonance imaging (MRI) and 1H-magnetic resonance spectroscopy 

(MRS) are available for the quantification of hepatic fat fraction (Bohte et al., 

2011). Both methods take advantage of the different resonance frequencies 

(chemical shifts) between water- and fat-bound protons to decompose the liver 

signal into its component water- (SWater) and fat-signals (SFat). The (per voxel) 

signal fraction attributable to fat, also known as signal fat fraction or relative fat 

water content (rfwc) can be calculated according to equation 1 (Reeder et al., 

2011). 

(equ. 1) 𝑟𝑓𝑤𝑐  (%) =  
𝑆𝐹𝑎𝑡

𝑆𝐹𝑎𝑡 + 𝑆𝑊𝑎𝑡𝑒𝑟
 × 100 

MRI employs so-called chemical shift-based methods (named “Dixon”-

sequences named after its discoverer (Dixon, 1984)) to obtain the water- and fat-
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components. Due to the differences in chemical shift, water- and fat-bound 

protons precess at slightly different frequencies (∆ ≈ 440 Hz at 3 Tesla [T]). For 

that reason their magnetization vectors will alternate periodically between 

pointing in the same direction (“in-phase”) resulting in signal summation and 

pointing in the opposite direction (“out-of-phase”) with converse (partial) signal 

cancellation. Acquisition sequences thus acquire at least two echo times (TEs) 

(as in T1-weighted dual-echo Dixon [T1-DED] MRI) beginning with the first out-

of-phase signal (SOP; 1.23 ms at 3T) and the first in-phase signal (SIP; 2.46 ms at 

3T) in order to maximize the signal-to-noise ratio and minimize signal loss from 

T2* decay. The SWater and SFat components can then be derived using equations 

2 a and b (Dixon, 1984). 

                                  (equ. 2 a)   𝑆𝑊𝑎𝑡𝑒𝑟 = |𝑆𝐼𝑃 + 𝑆𝑂𝑃| 

                                   (equ. 2 b)   𝑆𝐹𝑎𝑡    = |𝑆𝐼𝑃 − 𝑆𝑂𝑃| 

MRS by comparison relies on direct acquisition of proton signal spectrums 

from manually placed large voxels (eg. 3 × 3 × 3 cm3). The SWater and SFat 

components are then quantified as the areas under the curves from the spectral 

traces (Thomsen et al., 1994). 

Both methods suffer effects from a common set of confounders that need 

to be adjusted in order to convert the rfwc to the more accurate proton density fat 

fraction (PDFF) (Reeder et al., 2011). The confounding factors are the T1 bias, 

the T2 bias/T2* decay, and the spectral complexity of fat (Reeder et al., 2011).  

The T1 bias leads to the overestimation of the T1 fat-signal which relaxes 

faster than the corresponding T1 water-signal. This effect is countered by 

operating MRI sequences at small flip angles (Fishbein et al., 1997) to reduce 

T1-weighting and by using long repetition times (TR) for MRS (Kim et al., 2008), 

respectively.  

T2 bias is a phenomenon arising because even at the smallest possible 

TE some degree of T2 relaxation occurs before echo acquisition. A common 

strategy is to sample multiple echos to directly estimate and adjust for the T2 bias 

(Sharma et al., 2009). T2* decay is the apparent T2 relaxation, confounded by 
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local magnetic field inhomogeneities. A robust approximation and correction of 

T2* related signal decay can be achieved by applying echo trains with multiple 

TEs (Meisamy et al., 2011), as implemented for example in T1 multi-echo Dixon 

(T1-MED) MRI (Hetterich et al., 2016).  

Importantly, both T2 bias and T2* decay are amplified by hepatic iron 

overload, thus  adjustment permits more accurate quantification of the hepatic fat 

fraction (Lee et al., 2011, Reeder et al., 2011).  

Modern MRI post-processing models also correct for the spectral 

complexity of fat, ensuring that smaller peripheral peaks also contribute to the fat 

signal (Bydder et al., 2008, Meisamy et al., 2011). 

 

 

2.4 Radiomics: extracting more from plain sight 

 

Imaging is an important branch of medical science and is used in clinical 

practice to guide decision making (Aerts et al., 2014). As part of a broader 

evolution in the medical field, imaging is being actively developed to contribute 

towards personalized precision medicine (Hood and Friend, 2011). In this 

context, radiomics is one of the central technologies that enable the high-

throughput extraction of vast amounts of mineable image features from standard 

of care imaging data (Kumar et al., 2012, Lambin et al., 2012).  

Essentially, radiomics can be described as an umbrella term for equations 

that transform medical images - or to be more precise - regions of interests 

describing lesions, round-masses or organs to a set of quantitative high-

dimensional image descriptors (i.e. radiomics features) that capture salient 

information relating to interactions of voxel intensities and their respective 

locations. The quantitative nature of radiomics features is also particularly 

valuable in integrated “-omics” approaches. Radiomics data, which is both 

complementary and distinct from qualitative image features can be combined with 
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other patient information (epidemiology, genomic data, treatment) to improve 

decision making (Gatenby et al., 2013). 

Since the inception of the term “radiomics” in 2010 (Gillies et al., 2010), the 

field has moved rapidly and shown many promising results in oncological 

diagnostic support, prediction of therapy response and clinical endpoints 

(Nougaret et al., 2019). 

The main challenge faced by this field is the integration of radiomics 

information from different patient examinations and study centers to create 

standardized and robust models to guide clinical evaluation and decision making 

(Lambin et al., 2017). The utility of radiomics data can be greatly diminished by 

the variance introduced by reader disagreement, changes in patient positioning 

between sessions but also vendor specific hard- and software implementations, 

in addition to random noise (Zwanenburg et al., 2019). Several computational 

approaches have been presented that allow the assessment of feature 

robustness, also referred to as stability, without performing time consuming and 

costly physical test-retests and multiple manual delineations to gauge the effects 

of test-retest and inter-rater variance on radiomics model performance (Gevaert 

et al., 2014, Bologna et al., 2018, Zwanenburg et al., 2019). These concepts to 

simulate re-test and inter-rater variance were adapted by this study to select 

stable radiomics features, as described in later sections.  

 

 

2.5 Aim and scientific hypothesis 

 

Individuals with NAFLD are more likely to develop insulin resistance, T2DM, 

MetS and CVD and suffer from higher mortality compared to the general 

population. These entwined cardiometabolic disorders and their comorbidities 

place a considerable burden on global societies and healthcare systems, both in 

terms of human cost and economic expenditure.  
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The clinical use of MetS as a tool for individual risk stratification is limited 

due to its susceptibility to various confounders including age, gender and ethnicity 

that are difficult to adjust for resulting in broad confidence intervals in the OR of 

all-cause, cardiovascular and cancer mortality (Shi et al., 2020). Meanwhile 

researchers have widened their focus from isolated components of MetS to an 

integrated “-omics” approach that draws on liquid-biopsy and medical imaging to 

identify useful biomarkers to improve risk stratification and allow for targeted and 

personalized intervention. In recent years MRI has become the imaging modality 

of choice for the necessary large-scale cohort studies. In contrast to CT, MRI 

image acquisition is radiation free and generates images with the high soft-tissue 

contrast necessary for accurate assessment of the inner organs and fat deposits 

linked to cardiometabolic risk. Regarding the hepatic tissue aberrations of 

NAFDL, MRI-based imaging provided highly accurate estimates of hepatic fat 

fraction (HFF) (Bonekamp et al., 2014, Noureddin et al., 2013) and outperforms 

serological markers in the detection of early stage fibrosis (Park et al., 2019). 

 The aim of this study was to assess the microheterogeneity of hepatic fat 

in a cross-sectional cohort of 400 individuals from southern Germany without prior 

cardiovascular disease and representative prevalence of cardiometabolic risk 

factors including T2DM, MetS and NAFLD. Our analysis was based on volumetric 

segmentations of the entire liver, using T1-weighted dual-echo Dixon (T1-DED) 

image data to obtain per-voxel estimates of hepatic fat fraction. We hypothesized 

that hepatic fat heterogeneity, captured by radiomics features would allow to 

predict the participants’ T2DM and MetS status. To that end, radiomics features 

of hepatic fat fraction maps were extracted and assessed for stability in 

computationally simulated test-retest and inter-rater setups. Stable features were 

evaluated as biomarkers for T2DM and MetS in predictive machine learning 

models. 

Parts of the microheterogeneity analysis have previously been published 

(Gutmann et al., 2020). 
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3 Materials and Methods 

 

3.1 Study population 

 

 

This study used image data collected from participants (n = 400) of the 

Cooperative Health Research in the Region of Augsburg (KORA) MRI substudy 

carried out in 2013 - 2014. The cohort was nested within the 14 year follow-up 

FF4 study (n = 2,279) of the prospective population-based KORA survey S4 

(1999-2001; n = 4,261). T 

Participants of the FF4 study were eligible to be included in the MRI 

substudy if they had no history of prior cardiovascular events including myocardial 

infarction, stroke or revascularization, were < 73 years of age and had no 

contraindications to contrast-enhanced MRI examinations. These included 

medical implants, claustrophobia, pregnancy or breast-feeding, renal impairment 

(serum creatinine ≥ 1.3 mg/dl) and known allergy to contrast agents. The criteria 

were previously discussed (Bamberg et al., 2017).  

Full written consent was obtained from all individuals that were willing to 

participate. Ethical approval was also obtained from the institutional review board 

of the Medical Faculty of the Ludwig Maximilians University Munich, Germany. 

This ethical approval was reviewed and confirmed by the institutional review 

board of the Medical Faculty of the Eberhard Karls University Tübingen, Germany 

under the project number 576/2016BO2. Figure 1 provides a full overview of the 

study design. 
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Figure 1 – Structure of the KORA study and participant selection 
 
 



25 

3.2 Covariate collection 

 

Participants of the KORA MRI substudy were examined in a standardized 

fashion between June 2013 and September 2014 at the KORA study center. All 

covariables were collected from standardized interviews, laboratory tests and 

physical exams during the study visit. Covariate collection has been described in 

full (Holle et al., 2005, Bamberg et al., 2017) physical exams during the study 

visit. Covariate collection has been described in full (Holle et al., 2005, Bamberg 

et al., 2017) 

 

 

3.3 MRI acquisition parameters 

 

 All participants underwent identical imaging protocols on the same 3.0 

Tesla (T) whole body scanner (Magnetom Skyra, Siemens Healthcare, Erlangen, 

Germany). Participants were examined in supine position using an 18-channel 

body surface coil in conjunction with a table mounted spine matrix coil. Image 

data was acquired using a three-dimensional parallel accelerated volume 

interpolated T1-DED prototype sequence (VIBE) (Bashir et al., 2012, Bashir et 

al., 2013). Imaging parameters constituted TEs of 1.23 ms (out-of-phase), 

2.46 ms (in-phase), TR of 4.10 ms, flip angle of 9°and isotropic resolution of 

1.7 mm. Image data was acquired during a single breath hold of 15 sec to reduce 

movement artefacts. 

Details of T1-weighted T2*-corrected multi-echo Dixon (T1-MED) and T2-

corrected 1H-spectroscopy (MRS) sequences, and analysis of hepatic proton 

density fat fractions (PDFF) are described elsewhere (Hetterich et al., 2016). 
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3.4 Segmentation of volumetric liver masks 
 

For this study, a single reader manually delineated volumetric liver masks 

in the coronal plane of T1-DED water-phase maps employing the Medical 

Imaging Interaction Toolkit Workbench (MITK; release 2015.5.2) (Wolf et al., 

2005). Results were checked by an experienced radiologist with more than 5 

years experience in abdominal imaging and corrections were made as required. 

The resulting reference masks were screened for imaging artefacts by a single 

reader and images containing artefacts were excluded. 

 

 

3.5 Image and radiomics data processing. 
 

All necessary computational steps including radiomics features extraction 

were implemented using the programming language Python v2.7 (Sanner, 1999) 

and compatible open-source software libraries as described in the following 

sections. 

Firstly, the KORA MRI image data and the volumetric liver reference masks 

were converted to 3D arrays utilizing the SimpleITK package v.1.0 (Lowekamp et 

al., 2013). The computation of rfwc maps and all further data manipulation 

necessary for the generation of artificial test-retest and inter-rater scenarios were 

conveniently performed on these 3D arrays. 

 

 

3.5.1 Generation liver volumes of interest  
 

To avoid erroneous inclusion of visceral fat, the initial liver reference masks 

were eroded by 3 voxels to create the final liver volumes of interest (VOIs) using 

scipy v1.1.0 (Virtanen et al., 2020). 
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3.5.2 Computation of rfwc maps 

 

Volumetric rfwc maps were computed from water- and fat-phase T1-DED 

maps by applying equation 1 to their corresponding image arrays. 

 

 

3.5.3 Artificial test-retest and inter-rater scenarios  
 

To simulate a retest, copies of the rfwc maps were augmented with 

synthetic noise (rfwcN) to mimic the typical variance introduced by differences in 

acquisition and reconstruction parameters. Image noise was approximated by a 

gaussian distribution with a standard deviation (SD) corresponding to 

1.49 % rfwc. This value was chosen based on a meta-analysis that had evaluated 

the test-retest variance of MRI quantified hepatic fat fractions from 425 individuals 

published in 11 precision studies (Yokoo et al., 2018). 

The effect of variations from manual delineations between raters was 

assessed by creating computationally deformed VOIs (VOID). Three deformed 

VOID were created for each VOI by applying shape transforms implemented by 

the SimplTK library (Lowekamp et al., 2013). The dice coefficient (mean ± SD) of 

0.89 ± 0.08 was chosen based on a literature search of previously published inter-

rater variance of abdominal organ segmentation on MRI images (Noel et al., 

2014).  

After completion of all necessary steps, the 3D arrays representing the 

rfwc, rfwcN and VOI(D) were converted to the Nifty file format (.nii) as a suitable 

input for radiomics feature extraction. The original Dicom header files were used 

for voxel coordinate mapping. Furthermore, all image data and volumetric masks 

were interpolated to exact isotropic voxel dimensions of 1.7 x 1.7 x 1.7 mm3 to 

account for minimal incongruities. 
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3.5.4 Extraction of radiomics features 
 

For the radiomics analysis a total of 684 features were determined using 

the open-source software package PyRadiomics (v1.30) (Van Griethuysen et al., 

2017). This total constitutes 74 radiomics features for each of 9 gray level 

discretization bin widths (gldbw) and 18 first order features that are independent 

of the gldbw, respectively. 

The 74 radiomics features belonged to 5 families of quantitative image 

descriptors: gray level co-occurrence matrix (GLCM), gray level size zone matrix 

(GLSZM), gray level run length matrix (GLRLM), neighboring gray tone difference 

matrix (NGTDM) and gray level dependence matrix (GLDM). A summary is 

provided in Table 2 a. Gldbw values were selected at intensity bin width of 16, 

32, 64, 128, 192, 256, 384, 512 and 640 au (compare Table 2 b). Each textural 

radiomics feature was calculated in 3D for each voxel including all 26 neighboring 

voxels in the calculation.  

Furthermore, input data was z-score normalized and scaled by a factor of 

1000 to attenuate the effect of varying hepatic fat fractions on textural feature 

computation. 

 

3.5.5 Selection of stable radiomics features 
 

The stability of extracted radiomics features was assessed on the training 

set by calculating the intraclass correlation coefficients (ICCs) for test-retest 

reliability (ICC(1,1)) and inter-rater agreement (ICC(3,k)). 

To gauge test-retest reliability the ICC(1,1) with 95 % confidence interval 

(95 % CI) (Shrout and Fleiss, 1979) was calculated comparing each radiomics 

feature extracted from both the rfwc and rfwcN maps using the original VOI as 

mask input. 
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Table 2 - Description of radiomics features  
 
“(a) Properties and count of employed radiomics features (b) gldbw and 
corresponding approximate bin counts. GLCM, gray level co-occurrence matrix; 
gldbw, gray level discretization bin width; GLDM, gray level dependence matrix; 
GLSZM, gray level size zone matrix; GLRLM, gray level run length matrix; 
NGTDM, neighboring gray tone difference.” This table has previously been 
published in Academic Radiology (Gutmann, et al., 2020). 

 

a)                                                                                  b)     
Radiomics 
features 

# features Description 
   

gldbw mean bin count 

First order  18 

global 
intensity 
statistics; not 
affected by 
gldbw 

   
16 175 

 
32 87 

GLCM 23 

histogram 
statistics of 
voxel 
intensity co-
occurrence 

 
 

64 44 

 
128 22 

GLSZM 16 

statistics of 
connected 
voxels of 
same 
intensity 

 
 

192 15 

GLRLM 16 

statistics of 
consecutive 
voxels of 
same 
intensity 

 
 

256 11 

NGTDM 5 

statistics of 
differences 
between 
given voxels 
and 
surrounding 
intensities 

 
 

384 7 

GLDM 14 

statistics of 
connected 
voxels of 
same 
intensity 
dependent on 
center voxel 

 
 

512 5 

Total 92      640 4 
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Similarly, the inter-rater agreement was evaluated in terms of the ICC(3,k) 

with 95 % CIs. Each VOID was used as input mask to extract radiomics features 

from the rfwc map. The inter-rater agreement was calculated using the previously 

extracted features from the rfwc-VOI combination as reference. 

Radiomics features were considered stable if the lower bounds of the 

95 % CI (95 % CI - lb) for both test-retest reliability and intra-rater agreement 

were ≥ 0.85. 

Furthermore, feature stability was assumed to be independent of 

outcomes (T2DM or MetS). 

Unless otherwise stated, all ICC values in this thesis refer to the 

95 % CI - lb.  

 

 

3.5.6 Selection of stable features for predictive models 
 

Since the outcome classes were imbalanced, i.e. numbers of individuals 

not-affected and affected by either T2DM or MetS were unequal, the training data 

was rebalanced to potentially improve the ensuing machine learning steps. Thus 

the training data was processed using the synthetic minority over-sampling 

technique (SMOTE) (Chawla, 2002) which is part the imbalanced-learn package 

(https://imbalanced-learn.readthedocs.io). This method generates new 

“synthetic” data points based on the minority class data by combining similar data 

points. Therefore, two training sets were created, each re-balanced for either 

T2DM or MetS, respectively. 

The following steps describe the construction of predictive radiomics 

random forest (RF) models for outcomes T2DM and MetS.  

First, stable radiomics features were filtered by univariate RF analysis. On 

the SMOTE re-balanced training data the classification performance of each 

https://imbalanced-learn.readthedocs.io/
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radiomics feature was evaluated individually, relying on 5-fold cross-validation 

(CV) to optimize bias-variance trade-off. 

For each outcome features were assigned a univariate performance index 

(IP) in descending order according to their CV-score in terms of the receiver 

operating characteristic area under the curve (AUROC). To achieve low model 

complexity and stability only the best performing 10 features were used in the 

subsequent RF model training and evaluation. 

Next, radiomics features were subjected to sequential forward 

aggregation, thus training 10 RF models for each outcome using features with IP 

range (IN) 1 to 10. The training of each model was repeated 10-times with 

randomized 5-fold CV, recording the mean and SD of each IN CV-score (AUROC) 

to allow the calculation of the 95 % CI. For each outcome the RF models with the 

best IN CV-score (RFRad) were used for further evaluation.  

 

 

3.5.7  Training of benchmark RF models 
 

 

In order to benchmark the performance of the radiomics-based predictive 

models against established risk factors, the T1-MED and MRS quantifications of 

hepatic PDFF as well as the BMI were chosen to train RF models. Analogous to 

RFRad models, these benchmark RF models were trained on the SMOTE re-

balanced training sets for MetS and T2DM using 5-fold CV. 

 

3.5.8 Training and validation statistics of random forest models 
 

All RF models were evaluated on the independent validation set. To gain 

the necessary numeric stability the predictive performance was recorded after 

each iteration of 10 rounds of randomized 5-fold CV. The AUROC and the 
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balanced accuracy (AccuracyB) on the validation set are reported as mean and 

the 95 % CI. 

 

 

3.6 Statistical analysis 
 

Comparisons between variables of the training and validation sets were 

assessed using the independent t-test or Wilcoxon’s ranksums-test for 

continuous variables, depending on the results of the Shapiro-test for normality. 

Categorical variables were compared using the χ2-test. The mean hepatic fat 

fraction estimates quantified by T1-DED, T1-MED and MRS imaging were 

compared using the paired Wilcoxon’s ranksums-tests. Significance tests were 

performed using scipy v1.1.0 (Virtanen et al., 2020) and R v3.6 (R Core team, 

2016) . 

ICCs were calculated using the R-package psych (https://personality-

project.org/r/psych/). The lower boundaries of the 95% confidence interval were 

used for feature selection and all follow-on analysis. 

Correlations between variables were estimated with ordinary least square 

(OLS) linear regression models using the software package StatsModels 

(Seabold and Perktold, 2010). Results are reported as β - coefficients with the 

95% confidence interval in square brackets, the adjusted-R2 and p-value. 

Bland-Altman statistics and charts were prepared using the R-package 

BlandAltmanLeh (https://cran.r-project.org/web/packages/BlandAltmanLeh/). All 

other figures were prepared using the packages ggplot2 (Wickham, 2009), 

Matplotlib (Hunter, 2007) and Bokeh (Van De Ven, 2020). 

Training and validation set split, feature selection and random forests were 

implemented in scikit-learn (Pedregosa et al., 2011). 

The performance metrics of RF models, AUROC and AccuracyB are 

reported as mean and the boundaries of the 95% confidence interval. 
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Differences were deemed statistically significant at p-values below 0.05. 

All tests were two-tailed. The term “prediction” is used in its statistical sense to 

denote outcome classification on the validation data and does not imply temporal 

sequence or incident outcomes.  

 

 

4 Results 

 

4.1 General Results 
 

The KORA MRI substudy had primarily enrolled 400 individuals. Image data 

of 310 individuals (77.5 %) were used in this study (Gutmann et al., 2020). A total 

of 90 participants were excluded because of insufficient image quality (n = 53, 

13.3 % [eg. breathing/movement- and swap-artefacts, FOV misalignment]), liver 

lesions (n = 3; 0.8 %) and either missing or incomplete T1-DED sequences (n = 

37; 9.3 %). Compare Figure 1. 

 

4.2 Quality management 
 

The hepatic fat fraction of the 310 analyzed participants is presented by 

box-plots in Figure 2. The mean hepatic fat fraction estimated on whole liver T1-

DED rfwc maps was 8.50 ± 7.40, compared to 8.43 ± 8.35 by T1-MED and 8.74 

± 7.93 by MRS. The whole liver rfwc measurements (T1-DED) were strongly 

correlated with the PDFF quantifications from T1-MED and MRS (R = 0.967 and 

0.950; both p < 0.001) (Fig. 3 a, c). Analogous comparison by Bland-Altman plots 

shows harmonious agreement between the modalities with only few outliers (Fig. 

3 b, d) The results of the correlation and Band-Altman analysis are summarized 

in Table 3. 
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Figure 2 – Hepatic Fat Fraction quantified by T1-DED compared to T1-MED 
and MRS 
Hepatic fat fraction quantifications were performed on volumetric relative fat 
water maps (T1-weighted dual-echo Dixon, this study) and on manually drawn 
regions of interest of the liver parenchyme in T1-weighted Multi-echo Dixon and 
1H-magnetic resonance spectroscopy proton-density fat fraction maps. § p – 
values after bias calibration. T1-DED, T1-weighted dual-echo Dixon; T1-MED, 
T1-weighted multi-echo Dixon; MRS, 1H-magnetic resonance spectroscopy. 
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Figure 3 – Correlation and Band-Altman analysis of hepatic fat fraction 
quantified by T1-DED compared to T1-MED and MRS 
T1-weighted dual-echo Dixon and T1-weighted multi-echo Dixon compared by 
correlation with line of best fit (a) and Bland-Altman plot analysis (b). T1-
weighted dual-echo Dixon and 1H-magnetic resonance spectroscopy 
compared by correlation with line of best fit (c) and Bland-Altman plot analysis 
(d). T1-DED, T1-weighted dual-echo Dixon; T1-MED, T1-weighted multi-echo 
Dixon; MRS, 1H-magnetic resonance spectroscopy 
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Table 3 - Summary of the correlation and Bland-Altman analysis 
  
T1-DED, T1-weighted dual-echo Dixon; T1-MED, T1-weighted multi-echo Dixon; 
MRS, 1H-magnetic resonance spectroscopy. 
  

Variable 
T1-DED / T1-

MED 
p-value T1-DED / MRS p-value 

R 0.967  < 0.001 0.950  < 0.001 

Mean difference 
(95% CI ) 

0.28 % (-4.02 
to 4.59 %) 

< 0.001 
0.107$ 

0.17 % (-4.38 
to 4.73 %) 

0.006 
0.105$ 

$ p - value after bias calibration.  

 

 

 

4.3 Epidemiological characteristic of study sample 

 

The study population was predominantly male (57.1 %) and of middle age 

(mean age 56.1 years). Amongst the participants 12.6 % were diagnosed with 

T2DM and 34.5% (Gutmann et al., 2020) fulfilled the IDF diagnostic criteria for 

MetS.  

Applied statistical tests revealed no significant difference between the study 

population and the analyzed subset (p = 0.399 - 0.922) (Gutmann et al., 2020). 

Furthermore, epidemiological characteristics of training and validation sets were 

not statistically different (p = 0.443 - 0.995) (Gutmann et al., 2020).  

Table 4 provides a complete summary of epidemiological characteristic and 

statistical results of study population. 
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4.4 Analysis of selected radiomics features 

Analysis of the feature selection process revealed that radiomics features 

were more robust to inter-rater (567 [82.9 %])(Gutmann et al., 2020) than test-

retest variance (181 [26.5 %])(Gutmann et al., 2020). Of initially 684 radiomics 

features 171 (25.0 %) (Gutmann et al., 2020) exceeded the ICC cut-offs (≥ 0.85) 

for test-retest reliability (ICC(1,1)) and inter-rater agreement (ICC(3,k)) in the 

training set and were thus considered stable (Table 5 a).  

Associations of test-retest reliability, inter-rater agreement and the 

radiomics features’ coefficient of variation (CoV) between training and validation 

sets were investigated with linear regression models. All three parameters were 

strongly correlated with β - coefficients of 1.027 (Gutmann et al., 2020), 1.072 

(Gutmann et al., 2020) and 0.855 (Gutmann et al., 2020) for test-retest reliability 

(Fig. 4 a), inter-rater agreement (Fig. 4 b) and the CoV (Fig. 5), all with p < 0.001 

(Gutmann et al., 2020).  

The effect of a radiomics features CoV on the stability in the presence of 

test-retest and inter-rater variance was equally explored. In the training set, the 

test-retest reliability was positively correlated with the CoV (β 0.277, p < 0.001) 

(Gutmann et al., 2020) (Fig. 6 a), whereas no comparable correlation was found 

for inter-rater agreement (p = 0.329) (Gutmann et al., 2020) (Fig. 6 b). The results 

of the regression analysis are summarized in Table 6. 

Of 171 radiomics features that were stable in the training set and were 

evaluated for use in predictive RF models, 142 (83.0 %) (Gutmann et al., 2020) 

remained stable in the validation set (ICC ≥ 0.85). Table 5 b provides a 

comprehensive summary of the feature stabilities in the validation set. 

A box-plot analysis of test-retest reliability (ICC(1,1)) and inter-rater 

agreement (ICC(3,k)) of the selected stable features (n = 171) in the validation 

set is provided in Figure 7 a and b, respectively. 
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Table 4 - Summary of epidemiological characteristics 
 
“Basic characteristics of the KORA-MRI sub-study, analyzed subset, training and validation sets Continuous variables are 
presented as arithmetic mean ± SD. Categorical variables are presented as counts and percentages. P-values from independent 
t-tests, Wilcoxon’s ranksums-tests or χ2-tests. 95% CI – lb, lower bound of the 95% confidence interval; KORA, Cooperative 
Health Research in the Region of Augsburg (Kooperative Gesundheitsforschung in der Region Augsburg); MRI, magnetic 
resonance imaging; PDFF, proton density fat fraction; SD, standard deviation.” This table has previously been published in 
Academic Radiology (Gutmann, et al., 2020). 

              

  KORA-MRI  
analyzed 
subset 

p -value 
(KORA-MRI 
vs. analyzed 

subset) 

training 
set 

validation 
set 

p-value 
(training 

vs. 
validation) 

n 400  310   232 78   

gender (% male) 231 (57.8)  177 (57.1) 0.922 133 (57.3) 44 (56.4) 0.992 

age (years ± SD) 56.3 ± 9.2 56.1 ± 9.3 0.746 56.1 ± 9.3 56.1 ± 9.2 0.995 

weight (kg ± SD) 83.0 ± 16.6 81.9 ± 16.0 0.399 82.2± 16.3  80.9 ± 15.3 0.693 

height (cm ± SD) 171.6 ± 9.7 171.5 ± 9.5 0.822 171.5 ± 9.8 171.4 ± 8.8 0.983 

body mass index (kg/m2 ± SD) 28.1 ± 4.9 27.8 ± 4.7 0.451 27.9 ± 4.7 27.5 ± 4.8 0.443 

T1-weighted multi-echo Dixon 
PDFF (% ± SD) 

8.43 ± 8.35 8.25 ± 8.29 0.782 8.48 ± 8.70 7.56 ± 6.93 0.802 

1H-magnetic resonance 
spectroscopy PDFF (% ± SD) 

8.74 ± 7.93 8.28 ± 7.36 0.582 8.44 ± 7.62 7.78 ± 6.54 0.802 

              

type 2 diabetes mellitus (%) 54 (13.5) 39 (12.6) 0.804 29 (12.5) 10 (12.8) 0.902 

metabolic syndrome (%) 149 (37.3) 107 (34.5)  0.501 81 (34.9) 26 (33.3) 0.907 
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Table 5 - Radiomics features stability selection 

“(a) Summary of feature selection according to stability criterion ICC ≥ 0.85 for test-retest reliability (ICC(1,1)), inter-rater 
agreement (ICC(3,k)) and for both. (b) Stable features selected on training set data that remain stable (ICC ≥ 0.85) in the 
validation set for test-retest reliability (ICC(1,1)) and inter-rater agreement (ICC(3,k)) and for both. ICC, intraclass correlation 
coefficient.” This table has previously been published in Academic Radiology (Gutmann, et al., 2020). 

a) Selection of stable features on the training set 
   Stability criteria (ICC ≥   8 ) fulfilled (training set) 

  All features ICC(1,1) ICC(3,k)  ICC(1,1) + ICC(3,k)  

n (% all features) 684 (100) 181 (26.5) 567 (82.9) 171 (25.0) 

     
b) Proportion of stable features maintaining stability in the validation set 

   Stability criteria (ICC ≥   8 ) fulfilled (validation set) 

    ICC(1,1) ICC(3,k)  ICC(1,1) + ICC(3,k) 

n (% stable features 
per criterion) 

  150 (82.9) 545 (96.1) 142 (83.0) 
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Figure 5 - Association of radiomics feature coefficient of variation in validation 
and training sets 
Scatter plot with line of best fit. CoV, coefficient of variation. This figure has 
previously been published in Academic Radiology (Gutmann, et al. 2020). 
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Figure 6 - Association of the coefficient of variation with feature stability 
“Association of the feature coefficient of variation with (a) test-retest reliability (ICC(1,1)) and (b) inter-rater agreement 
(ICC(3,k)) in the training set, presented as scatterplots and linear regression line of best fit with 95 % confidence interval 
as shaded area. 95% CI – lb, lower bound of the 95% confidence interval; CoV, coefficient of variation; ICC, intraclass 
correlation coefficient.” This figure has previously been published in Academic Radiology (Gutmann, et al. 2020). 
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4.5 Predictive performance of radiomics features and 

benchmark parameters 
 

In the sequential forward aggregation for outcomes T2DM and MetS, the 

RF models comprising the top 6 and 8 radiomics features achieved the highest 

CV-sores, respectively (Fig. 8). These RFRad models were used for evaluation on 

the validation set and their constituent radiomics features are summarized in 

Table 7.  

The RFRAD models outperformed all benchmark RF models for both 

outcomes with respect to AUROC and AccuracyB.  

 

 

Figure 7 – Box-plots of feature stability in the validation set. 
“Box-plots of (a) test-retest reliability (ICC(1,1)) and (b) inter-rater agreement 
(ICC(3,k)) on the validation set for all features that were stable (ICC ≥ 0.85) in 
the training set. Individual radiomics features are shown as black dots. The 
stability threshold (ICC ≥ 0.85) is indicated by dashed horizontal line. 95% CI – 
lb, lower bound of the 95% confidence interval; CoV, coefficient of variation; ICC, 
intraclass correlation coefficient.” This figure has previously been published in 
Academic Radiology (Gutmann, et al. 2020). 
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Figure 8 – Feature selection cross-validation scores 
AUROC cross-validation scores for forward feature aggregation for the 
classification of type 2 diabetes mellitus (red) and metabolic syndrome (blue). 
The 95 % confidence interval of the AUROC is indicated by gray bands. “Vertical 
lines mark the number of features with the highest cross-validation scores. 
AUROC, area under the curve of the receiver operating characteristic; CV, cross-
validation; MetS, metabolic syndrome; T2DM, type 2 diabetes mellitus.” This 
figure has previously been published in Academic Radiology (Gutmann, et al. 
2020). 
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The T2DM RFRAD model achieved an AUROC of 0.835 (95 % CI: 

0.832 - 0.838) (Gutmann et al., 2020) and AccuracyB of 0.822 (95  % CI: 

0.819 - 0.824) (Gutmann et al., 2020). The benchmark RF models trained on 

hepatic PDFF (T1-MED: AUROC 0.795 [95 % CI: 0.789 - 0.801]; AccuracyB 

0.747 [95 % CI: 0.747 - 0.747], MRS: AUROC 0.742 [95 % CI: 0.737 - 0.747]; 

AccuracyB 0.742 [95 % CI: 0.736 - 0.748]) (Gutmann et al., 2020) performed 

better than the BMI-based RF model (AUROC 0.716 [95 % CI: 0.714 - 0.718]; 

AccuracyB 0.518 [95 % CI: 0.517 - 0.520]) (Gutmann et al., 2020). 

MetS was predicted by the RFRAD model with an AUROC of 0.838 (95 % 

CI: 0.836 - 0.839) (Gutmann et al., 2020) and AccuracyB of 0.787 (95 % CI: 

0.782 - 0.791) (Gutmann et al., 2020). The benchmark RF models for MetS 

followed a similar trend compared to T2DM with quantifications of hepatic fat 

(PDFF) outperforming (T1-MED: AUROC 0.824 [95 % CI: 0.822 - 0.826]; 

AccuracyB 0.750 [95 % CI: 0.735 - 0.765], MRS: AUROC 0.796 [0.794 - 0.798]; 

AccuracyB 0.750 [0.750 - 0.750]) (Gutmann et al., 2020) the BMI (0.780 

[0.779 - 0.781]; AccuracyB 0.725 [0.721 - 0.729)]) (Gutmann et al., 2020) in 

predictive modelling. 

The performance metrics of all RF models are summarized in Table 8. The 

receiver operating characteristic curves of all RF models are presented in 

Figure 9 a (T2DM) and b (MetS). 

 

 

4.6 Stability of radiomics RF model features in the 

validation set 

 

 

The stable feature selected for the predictive RFRAD  T2DM (n = 6) (Gutmann 

et al., 2020) and MetS (n = 8) (Gutmann et al., 2020) models were analyzed for 

both test-retest reliability (ICC(1,1)) and inter-rater agreement (ICC(3,k)) in the 
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validation set. For T2DM, 5 radiomics features remained stable (ICC ≥ 0.85) with 

one feature failing to meet the threshold (ICC ≥ 0.85) for test-retest reliability 

(ICC(1,1) = 0.79) (Gutmann et al., 2020). Similarly for MetS, one radiomics 

feature failed to satisfy the required test-retest reliability (ICC(1,1) = 0.82) 

(Gutmann et al., 2020). A pair plot of test-retest reliabilities (ICC(1,1)) and inter-

rater agreements (ICC(3,k)) of RFRAD features in the training and validation sets 

is provided in Figure 10 (compare Table 7). 

 

 

 

 

 

 

 

     
Table 6 - Radiomics features regression analysis 
  
“The variable associations were estimated using ordinary least squares 
regression models. β - coefficients are provided with the boundaries of the 95% 
CI in parenthesis. 95% CI, 95% confidence interval; CoV, coefficient of variation; 
ICC, intraclass correlation coefficient.” This table has previously been published 
in Academic Radiology (Gutmann, et al., 2020). 

        

Variables β-coeff. (95% CI) adjusted-R2 p-value 

ICC(1,1) training vs. 
validation  

1.027 (1.015 -
1.040) 

0.975 < 0.001 

ICC(3,k) training vs. 
validation  

1.072 (1.040 -
1.103) 

0.869 < 0.001 

CoV training vs. 
validation 

0.855 (0.839 -
0.871) 

0.943 < 0.001 

ICC(1,1) training vs. 
CoV training 

0.277 (0.211 -
0.342) 

0.089 < 0.001 

ICC(3,k) training vs. 
CoV training 

-0.006 (-0.018 -
0.006) 

0 0.329 

    



47 

 

Table 7 - Radiomics features of predictive random forest models 
  
“Stable and discriminative features of RFRAD models. Features names follow the 
standard PyRadiomics naming convention prefixed with gldbw, for brevity shortened 
to “Bw”, as well as the prefix “original” indicating extraction without image pre-
processing filters. 95% CI – lb, lower bound of the 95% confidence interval; gldbw, 
gray level discretization bin width; ICC, intraclass correlation coefficient; MetS, 
metabolic syndrome; RFRAD, radiomics random forest; T2DM, type 2 diabetes 
mellitus. § Not stable in the validation set with ICC(1,1) 95% CI – lb 0.79. † Not 
stable in the validation set with ICC(1,1) 95% CI – lb 0.82.” This table has previously 
been published in Academic Radiology (Gutmann, et al., 2020). 
  

# Radiomics features of RFRAD (T2DM) 

1 Bw_16_original_firstorder_RootMeanSquared 

2 Bw_64_original_glrlm_LongRunHighGrayLevelEmphasis 

3 Bw_192_original_gldm_LargeDependenceHighGrayLevelEmphasis§ 

4 Bw_640_original_glcm_JointEntropy 

5 Bw_64_original_glszm_SmallAreaHighGrayLevelEmphasis 

6 Bw_640_original_glcm_SumEntropy 

  

# Radiomics features of RFRAD (MetS)  

1 Bw_64_original_glcm_SumEntropy 

2 Bw_32_original_glcm_SumEntropy 

3 Bw_16_original_glcm_SumEntropy 

4 Bw_16_original_firstorder_InterquartileRange 

5 Bw_384_original_glcm_JointEnergy 

6 Bw_384_original_glcm_MaximumProbability 

7 Bw_384_original_glcm_SumEntropy 

8 Bw_64_original_gldm_DependenceEntropy† 

. 
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Table 8 – Random forest model performance for T2DM and MetS 
     

“Random forest performance metrics for outcomes type 2 diabetes mellitus and the metabolic syndrome are reported as 
AUROC and AccuracyB. All metrics are shown as mean and the boundaries of the 95 % confidence intervals in parenthesis. 
95% CI, 95% confidence interval; AccuracyB, balanced accuracy; AUROC, area under the curve of the receiver operating 
characteristic; MetS, metabolic syndrome; RF, random forest; RFRAD, radiomics random forest; T2DM, type 2 diabetes 
mellitus. $ cross-validation iterations converge on identical classification solutions.” This table has previously been published 
in Academic Radiology (Gutmann, et al., 2020). 

 T2DM MetS 

Predictors  AUROC (95% CI) AccuracyB (95% CI) AUROC (95% CI) AccuracyB (95% CI) 

Radiomic features 0.835 (0.832-0.838) 0.822 (0.819-0.824) 0.838 (0.836-0.839) 0.787 (0.782-0.791) 

Benchmarks:      

body mass index 0.716 (0.714-0.718) 0.518 (0.517-0.520) 0.780 (0.779-0.781) 0.725 (0.721-0.729) 

T1-weighted multi-echo 
Dixon (PDFF) 

0.795 (0.789-0.801) 0.747 (0.747-0.747)$ 0.824 (0.822-0.826) 0.750 (0.735-0.765) 

1H-magnetic resonance 
spectroscopy (PDFF) 

0.742 (0.737-0.747) 0.742 (0.736-0.748) 0.796 (0.794-0.798) 0.750 (0.750-0.750)$ 
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Figure 9 – Random forest receiver operating characteristic curves 
Receiver operating characteristic curves of predictive random forest models on the validation set for (a) type 2 diabetes 
mellitus, (b) the metabolic syndrome by radiomics features and the benchmark parameters. “BMI, body mass index; T1-MED, 
T1-weighted multi-echo Dixon; MetS, metabolic syndrome; MRS, 1H-magnetic resonance spectroscopy; PDFF, proton density 
fat fraction; T2DM, type 2 diabetes mellitus.” This figure has previously been published in Academic Radiology (Gutmann, et 
al. 2020). 



50 

 
Figure 10 - Pair plots of radiomic feature stability of in training and validation set. “Stability of RFRAD model features for 
(a) type 2 diabetes mellitus and (b) the metabolic syndrome in the training and validation sets. The stability threshold (ICC ≥ 
0.85) is shown as dashed line. Feature names correspond to standard PyRadiomics naming convention prefixed with the 
gldbw, for brevity shortened to “Bw”, as well as the prefix “original” indicating extraction without image pre-processing filters. 
95% CI – lb, lower bound of the 95% confidence interval; gldbw, grey level discretization bin width; ICC, intraclass correlation 
coefficient; MetS, metabolic syndrome; RFRAD, radiomics random forest; T2DM, type 2 diabetes mellitus.” This figure has 
previously been published in Academic Radiology (Gutmann, et al. 2020). 
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5 Discussion 
 

This study set out to explore the prospect of utilizing radiomics features, extracted 

from manually segmented T1-DED volumetric liver rfwc maps, to predict T2DM 

and MetS in individuals from a representative cross-sectional cohort. In outline, 

radiomics features were evaluated for stability by exploiting computationally 

simulated test-retest and inter-rater scenarios. Analysis revealed that radiomics 

features were more susceptible to test-retest than inter-rater variance (Gutmann 

et al., 2020). In general, stability observations on the training and validation set 

were strongly correlated (Gutmann et al., 2020). Features that were stable in the 

training set (ICC(1,1) and ICC(3,k) ≥ 0.85) were further down-sampled and used 

to train predictive RFRAD models for both T2DM and MetS (Gutmann et al., 2020). 

The RFRAD models predicted T2DM and MetS with higher AUROC and AccuracyB 

than T1-MED and MRS derived hepatic PDFF as well as the BMI (Gutmann et 

al., 2020). 

Participants of the KORA MRI substudy underwent an extensive imaging 

protocol that included three types of MRI imaging, namely the aforementioned 

T1-DED, T1-MED but also a T2-weighted half-Fourier singleshot turbo spin-echo 

(T2-HASTE) sequence that all provided a FOV with the desired full anatomical 

coverage of the liver (Bamberg et al., 2017). However, in order to compute 

rotationally invariant features, a prerequisite for reproducibility and comparison 

between datasets, image voxels dimensions need to be isotropic (Zwanenburg 

et al., 2016). Among the available data only the T1-DED images fulfilled this 

requirement without need for further processing steps. Since there is currently no 

consensus recommendation for an interpolation algorithm to be employed by 

radiomics studies (Zwanenburg et al., 2016), the anisotropic T1-MED and T2-

HASTE sequence data was forgone in favor of T1-DED images. 

Whilst the harnessed T1-DED images (Bashir et al., 2012, Hetterich et al., 

2016) provide the required isotropic voxel dimension, the sequence lacks the  

necessary multiple echo trains to correct for T2 bias as well as T2* decay and is 

thus susceptible to hepatic iron overload. Furthermore, the manually contoured 
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liver masks also enclose small blood vessels that may confound the hepatic fat 

fraction quantified as rfwc. Therefore, as a quality control step for the analyzed 

subset (n = 310), the rfwc values from T1-DED images were compared with 

previous quantifications from T1-MED and MRS sequence data that adjusted for 

T2 bias as well as T2* decay, (Hetterich et al., 2016, Bamberg et al., 2017) and 

were evaluated in regions of interest within the liver parenchyme that were drawn 

avoiding blood vessels (Hetterich et al., 2016) to detect random differences. The 

hepatic fat fraction values (rfwc) were found to be highly correlated with T1-MED 

(R = 0.967) and MRS (R = 0.950) PDFF. T1-DED values were higher (both 

comparisons p < 0.001) and in accordance the Band-Altman analysis detected a 

small positive bias in the quantification, which agrees with the preceding in-depth 

investigation of a smaller KORA MRI subset (n = 215), that included T1-DED rfwc 

quantifications from vessel free parenchyme (Hetterich et al., 2016). Importantly, 

T1-DED quantifications were not-significantly different from T1-MED (p = 0.107) 

and MRS (p = 0.105) after linear – i.e. non-random - calibration. In summary, 

there is no evidence that hepatic iron overload or the inclusion of small blood 

vessels did have an appreciable random effect on the volumetric liver rfwc maps 

used for the ensuing radiomics analysis. 

Next, a defined set of 684 radiomics features was computed from the 

volumetric liver rfwc maps of each participant (n = 310) and subjected to stability 

analysis. Of those, 171 features (25.0 %) were found to be stable in both 

simulated test-retest and inter-rater scenarios (ICC(1,1) and ICC(3,k) ≥ 0.85), a 

proportion that is comparable to reports from similar CT (Zwanenburg et al., 2019) 

and MRI based (Bologna et al., 2018, Schwier et al., 2019) studies. 

A basic requirement of any feature selection method, including the proposed 

approach, is the generalization of observed feature stabilities from the training to 

the independent validation set. In an analogous diagnostic setting, stable features 

could therefore be expected to report consistently on disease state in hitherto 

unseen patients. Accordingly, the stability selection was carried out on the 

training set, thus allowing for the desired independent evaluation on the validation 

set and comparison of observed feature stabilities in between these two sets. 

Regression models show strong, non-random (p < 0.001) associations between 
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feature stabilities in the training and validation sets near unity (β 1.0) and with 

excellent goodness-of-fit for both test-retest reliabilities (β 1.027 [1.015 – 1.040], 

adjusted-R2 0.975) (Gutmann et al., 2020) and inter-rater agreements (β 1.072 

[1.040 – 1.103], adjusted-R2 0.869) (Gutmann et al., 2020). Of 171 features that 

were stable in the training set and used for subsequent predictive modelling, 142 

(83.0 %) (Gutmann et al., 2020) also exceeded the ICC threshold (≥ 0.85) for 

test-retest reliability and inter-rater agreement in the validation set. The remaining 

29 (17.0 %) features still achieved stabilities of ICC > 0.70 (Gutmann et al., 

2020), which is considered a moderate reliability by clinical research standards 

(Portney and Watkins, 2009). As observed for stabilities, the COV of radiomics 

features from training and validation sets displayed a strong association with 

excellent goodness-of-fit (β 0.943, adjusted-R2 0.943) (Gutmann et al., 2020).  

This evidence outlined above supports the basic assumption that stabilities 

observed in the training set as well as the COV, a measure of dispersion and 

potential information content generalize to the validation set.  

Further analysis on training set data revealed that the COV was positively 

associated with the test-retest reliability, albeit weakly (β 0.277, adjusted-

R2 0.089, p < 0.001) (Gutmann et al., 2020), whereas the COV and the inter-rater 

agreement were not associated (p < 0.329) (Gutmann et al., 2020). At the same 

time, the breakdown of the selection process demonstrated that feature stability 

was far more susceptible to test-retest (26.5 % stable with ICC(1,1)  ≥ 0.85) 

(Gutmann et al., 2020) than inter-rater variance (82.9 % stable with 

ICC(3,k)  ≥ 0.85) (Gutmann et al., 2020). A possible explanation is that image 

noise comprising test-retest variance can subtly affect textures across the entire 

liver parenchyme resulting in more noticeable changes in the calculated features. 

The variance in the volumetric liver segmentation between readers that was 

approximated by deformed VOIs with mean dice coefficient of 0.89 ± 0.08 

(Gutmann et al., 2020) leaves most liver parenchyme unaltered for feature 

calculation. A recent study dedicated to quantifying the inter-rater effect on 

radiomics features stability in several large public CT tumor segmentation 

datasets (dice coefficients 0.85 to 0.87) found that between 84 % and 88 % of 
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features were stable at ICC > 0.8 (Haarburger et al., 2020), which is in good 

overall agreement with this present study.  

 The RFRAD model presented for the T2DM outcome prediction performed 

better than the RF model trained on the benchmark parameters obtained from 

the same study sample. Likewise, the RFRAD model was more effective than 

previously published models based on the MRI quantifications of hepatic PDFF 

in a Chinese cohort (Wang et al., 2019), VAT volume (Wang et al., 2019, Linge 

et al., 2019) or various combinations of these parameters including skeletal 

muscle fat infiltration (Linge et al., 2019). For the prediction of T2DM status, these 

studies reported AUROCs based on hepatic PDFF by T1-MED imaging of 0.79 

(Wang et al., 2019) or composites thereof including volumetric adipose tissue 

parameters of 0.78 (Linge et al., 2019). Models trained on the BMI predicted 

T2DM status with AUROC of 0.73 (Linge et al., 2019). Since Linge et al. (2019) 

only reported the BMI based predictions for the genders separately, the value is 

the mean reported for male and female study participants. The evaluation of RF 

benchmark models in the current investigation also concluded that T1-MED 

quantified hepatic PDFF was superior to the BMI for T2DM prediction with 

AUROCs of 0.795 (Gutmann et al., 2020) and 0.716 (Gutmann et al., 2020), 

respectively. The agreement on relative utility and similarity in performance with 

these prior studies may indicate that models based on radiomics signatures may 

equally perform better in other cohorts. However, the participants in these studies 

were either somewhat younger 51.5 ± 8.6 years (Wang et al., 2019) or older 62.60 

± 7.51 years (Linge et al., 2019) than those analyzed here with mean age of 56.1 

± 9.3 years (Gutmann et al., 2020). Further differences relating to participant 

selection, epidemiological parameters but also predictive modelling could 

confound this conclusion. The study by Linge et al. (2019) used a random split of 

participants for training and validations without ensuring representative 

stratification of epidemiological parameters. Since Wang et al. (2019) eschewed 

validation on independent data, the AUROC on independent data is likely to be 

lower. 

In the case of MetS, previous studies that investigated the relationships 

with hepatic fat fraction in terms of MRI quantified PDFF found statistically 
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significant associations (Ducluzeau et al., 2013) or increased risk for said 

outcome (Chen et al., 2020b). Unfortunately, the literature search could not 

identify any publications evaluating this relationship on cross-sectional cohorts in 

terms of predictive models for direct comparison of performance metrics. 

However, both the homeostasis model assessment of insulin resistance (HOMA-

IR), a blood test used in the clinical diagnosis of insulin resistance and pancreatic 

beta cell function, as well as the BMI collected from participants of two large 

cross-sectional cohorts were evaluated in predictive models. In a subset of a 

Spanish general population study (EPIRCE) comprising 2459 adult participants 

the BMI model predicted MetS with an AUROC of 0.69. In addition, RFRad models 

were superior to the anthropometric benchmark parameter BMI in the prediction 

of T2DM and MetS (Gutmann et al., 2020). 

 There are some limitations to this investigation. Firstly, it is uncertain 

whether the amount of noise introduced to simulate the test-retest scenario was 

appropriate. The studies that were used in the meta-analysis of test-retest 

reliabilities did not adhere to identical protocols to quantify the hepatic fat fraction 

from image data (Yokoo et al., 2018). Differences in the liver regions and volume 

analyzed adds “inter-protocol” variance to the estimated noise (Yokoo et al., 

2018). It should also be considered that some of the included data was collected 

before 2011 (Yokoo et al., 2018) and may be confounded by outdated image 

processing and reconstruction methods, not relevant to current studies. Future 

studies should take these effects into consideration to select optimal parameters 

since the stability of radiomic features was far more sensitive to test-retest than 

inter-rater variance to avoid either excessive or insufficient feature elimination. 

 The radiomic extraction process was designed in adherence to the Image 

Biomarker Standardization Initiative (IBSI) guidelines (Zwanenburg et al., 2016) 

for MRI image data. There is a clear and justified recommendation to compute 

radiomics features from isotropic and normalized image data, which was followed 

(Zwanenburg et al., 2016). In contrast, there is no guidance on the choice of 

optimal discretization bin width. An optimization of this parameter is necessary 

for each type of MRI sequence (Carre et al., 2020) and potentially also the tissue 

analyzed, although the latter point is conjecture. Thus, the optimal bin width is 
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usually selected empirically and/or under consideration of related work. In the 

present case, no previous study provided a precedent for MRI-derived hepatic fat 

fraction maps. Therefore, radiomics features were extracted over a wide range of 

discretization bin widths (gldbws) to increase the likelihood of obtaining a 

sufficient number of stable and informative features. Yet other methods that have 

shown to increase the number of stable features such as smoothing (Zwanenburg 

et al., 2019) and Wavelet (Schwier et al., 2019) filters have not been included in 

this study. Due to the combinatorial process of parameter search, the enormous 

number of resulting features over the wide range of discretizations would have 

been prohibitive. Future work could investigate the utility of these filters on a 

subset of features to improve their performance in radiomics models.  

 This investigation is further limited by the ethnic composition and by the 

nature of its study design. The cohort consists of Western-European individuals 

only, therefore it is uncertain whether the presented radiomics models are equally 

applicable to other ethnicities. Large cross-sectional studies have already shown 

clear evidence that age, gender and ethnicity confound the predictive power of 

anthropometric parameters for metabolic outcomes T2DM (Yoon et al., 2016, 

Hartwig et al., 2016) and MetS (Cheong et al., 2015). The influence of age, 

gender and ethnicity on radiomics models for these outcomes should be 

vigorously investigated using cohorts with a sufficiently large number of 

participants to draw conclusions with the necessary statistical confidence. A 

complete validation would also require a multi-center design to assess “non-

simulated” versus the proposed simulated test-retest and inter-rater setup. 

Although such computational approaches for stability selection have been tested 

previously (Gevaert et al., 2014, Bologna et al., 2018, Zwanenburg et al., 2019), 

multi-center data would allow for potential adjustment of dice-coefficients and 

image noise in future applications of the proposed feature selection methodology. 

Furthermore, in order to establish radiomics features as a biomarker of 

cardiometabolic risk, an analysis and evaluation on studies with follow-up design 

would be required. 

In summary, the proposed feature selection methodology has proven to be 

effective, at least in the context of imaging data of a single center study to select 
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stable radiomics features. In predictive models, stable radiomics features were 

effective biomarkers for the related CVD risk factors T2DM and MetS achieving 

higher AUROC and AccuracyB than MR-based quantifications of the hepatic 

fraction and the anthropometric obesity surrogate BMI. Therefore, radiomics 

features of hepatic fat fraction maps deserve consideration to be evaluated on 

larger and more diverse population cross-sections as well as longitudinal data to 

gauge their value in diagnostic and prognostic clinical settings. Eventually they 

could easily be combined with MRI whole body composition scores to develop 

personalized cardiometabolic risk models. 
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6 Summary 
 

Objective: To assess MRI derived radiomics features of liver fat collected from 

a cohort of individuals without prior cardiovascular events as imaging biomarkers 

of type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS). 

Material and methods: 400 participants of the KORA MRI substudy underwent 

comprehensive whole body MRI imaging protocols including T1-weighted dual-

echo Dixon (T1-DED), T1-weighted multi-echo Dixon (T1-MED) and magnetic 

resonance spectroscopy (MRS) sequences. A total of 684 radiomics features 

were extracted on T1-DED relative fat water content (rfwc) maps of 310 artefact 

free manually contoured liver volumes of interest (VOI). The corresponding 

individuals (n = 310, T2DM 12.6 %, MetS 34.5 %) were assigned to stratified 

training (n = 232, 75 %) and validation (n = 78, 25 %) sets. To assess feature 

stability, test-retest and inter-rater variance was approximated by generating 

noise augmented rfwc maps and computationally deformed VOIs, respectively. 

Feature stability was assessed in terms of the intraclass correlation coefficient 

(ICC) for test-retest reliability (ICC(1,1)) and inter-rater agreement (ICC(3,k)) on 

training set data. Stable features (ICC ≥ 0.85) were assessed as imaging 

biomarkers of T2DM and MetS in random forest (RF) models. For benchmarking, 

RF models were trained on the participants’ hepatic proton density fat fraction 

(PDFF) quantified previously on the T1-MED and MRS images as well as the 

body mass index (BMI). All RF models were evaluated on the validation set using 

the area under the curve of the receiver operating characteristic (AUROC) and 

the balanced accuracy (AccuracyB) as performance metrics. 

Results: The epidemiological characteristics in training and validation sets were 

not statistically significantly different (p < 0.001). Furthermore, training and 

validation sets showed strong associations for both test-retest reliability (β 1.027 

[1.015 – 1.040]) and inter-rater agreement (β 1.072 [1.040 – 1.103]). A total of 

171 features (25.0 %) met the stability threshold (ICC ≥ 0.85). In subsequent RF 

modelling radiomics features predicted T2DM with AUROC 0.835 and AccuracyB 
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0.822 and MetS with AUROC 0.838 and AccuracyB 0.787, thereby outperforming 

all benchmark RF models in both metric categories. 

Conclusion: In this single-center study radiomics features of MRI-derived 

hepatic fat were superior biomarkers of T2DM and MetS than hepatic PDFF and 

the BMI. In the future, hepatic radiomics features deserve further exploration and 

development as potential biomarkers in metabolic disease. 

  

 

 

Deutsche Zusammenfassung 

Ziel: Diese Arbeit untersucht radiomische Merkmale von Leberfett aus MRT 

Bilddaten einer Kohorte ohne vorherige kardiovaskuläre Ereignisse als 

bildgebende Biomarker für Diabetes mellitus Typ 2 (T2DM) und das metabolische 

Syndrom (MetS). 

Material und Methoden: Die 400 Probanden der KORA-MRT Studie wurden 

einer umfassenden Ganzkörper-MRT Untersuchung, einschließlich T1-

gewichtetem Doppelecho-Dixon (T1-DED), T1-gewichtetem Multiecho-Dixon 

(T1-MED) und einer Magnetresonanzspektroskopie (MRS) unterzogen. 

Insgesamt wurden jeweils 684 radiomische Merkmale aus T1-DED relativen 

Fettwassergehalts (rfwc)-Karten von 310 artefaktfreien manuell konturierten 

Lebervolumina (VOI) extrahiert. Die entsprechenden Probanden (n = 310, T2DM 

12,6 %, MetS 34,5 %) wurden stratifizierten Trainings- (n = 232, 75 %) und 

Validierungsdatensätzen (n = 78, 25 %) zugeordnet. Um die radiomische 

Merkmalsstabilität zu beurteilen, wurde die Test-Retest- und Interrater-Varianz 

durch Generieren von rauschverstärkten rfwc-Karten bzw. künstlich deformierten 

VOIs angenähert. Die Merkmalsstabilität wurde als Intraclass-

Korrelationskoeffizient (ICC) für die Test-Retest-Zuverlässigkeit (ICC (1,1)) und 

die Interrater-Reliabilität (ICC (3, k)) anhand des Trainingsdatensatzes bewertet. 

Stabile Merkmale (ICC ≥ 0.85) wurden als bildgebende Biomarker für T2DM und 
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MetS mittels Random Forest (RF) Modellen beurteilt. Für ein Benchmarking 

wurden zudem RF Modelle basierend auf der hepatischen Protonendichte-

Fettfraktion (PDFF), die zuvor in T1-MED- und MRS-Bilddaten der Probanden 

quantifiziert worden war, sowie ihrem Body Mass Index (BMI) erstellt. Alle RF 

Modelle wurden am Validierungsdatensatz unter Verwendung des Integrals der 

Empfänger-Opertationscharakteristik (AUROC) sowie der gewichteten 

Genauigkeit (AccuracyB) als Leistungsmetrik evaluiert. 

Ergebnisse: Die epidemiologischen Eigenschaften in Trainings- und 

Validierungsdatensätzen waren statistisch nicht signifikant unterschiedlich (p < 

0,001). Darüber hinaus zeigten Trainings- und Testdaten starke Assoziationen 

sowohl für die Test-Retest-Zuverlässigkeit (β 1,027 [1,015 – 1,040]) als auch für 

die Interrater-Reliabilität (β 1,072 [1,040 – 1,103]). Insgesamt 171 Merkmale 

(25,0 %) erfüllten die Stabilitätsschwelle (ICC ≥ 0,85). In der abschließenden 

radiomischen RF-Modellierung wurden T2DM mit einem AUROC von 0,835 und 

AccuracyB von 0,822 sowie MetS mit einem AUROC von 0,838 und AccuracyB 

von 0,787 vorhergesagt, welche damit alle Benchmark RF Modelle in den 

jeweiligen Metrikkategorien übertraf. 

Schlussfolgerung: In dieser Single-Center-Studie waren radiomische Merkmale 

von MRT-Bilddaten des Leberfettes als Biomarker für T2DM und MetS sowohl 

dem hepatischen PDFF als auch dem BMI überlegen. In Zukunft verdienen 

radiomische Merkmale der Leber eine weitere Erforschung und Entwicklung als 

potenzielle Biomarker bei Stoffwechselerkrankungen. 
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