
Advances in Reliably Evaluating and
Improving Adversarial Robustness

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Jonas Rauber
aus Rottweil

Tübingen
2021

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 5. November 2021
Dekan: Prof. Dr. Thilo Stehle
1. Berichterstatter: Prof. Dr. Matthias Bethge
2. Berichterstatterin: Prof. Dr. Zeynep Akata
3. Berichterstatter: Prof. Dr. Alois Knoll

Summary
Machine learning has made enormous progress in the last five to ten years. We can
nowmake a computer, amachine, learn complex perceptual tasks from data rather than
explicitly programming it. When we compare modern speech or image recognition
systems to those from a decade ago, the advances are awe-inspiring.

The susceptibility of machine learning systems to small, maliciously crafted adversarial
perturbations is less impressive. Almost imperceptible pixel shifts or background
noises can completely derail their performance. While humans are often amused by
the stupidity of artificial intelligence, engineers worry about the security and safety
of their machine learning applications, and scientists wonder how to make machine
learning models more robust and more human-like. This dissertation summarizes and
discusses advances in three areas of adversarial robustness.

First, we introduce a new type of adversarial attack against machine learningmodels in
real-world black-box scenarios. Unlike previous attacks, it does not require any insider
knowledge or special access. Our results demonstrate the concrete threat caused by
the current lack of robustness in machine learning applications.

Second, we present several contributions to deal with the diverse challenges around
evaluating adversarial robustness. The most fundamental challenge is that common
attacks cannot distinguish robust models from models with misleading gradients. We
help uncover and solve this problem through two new types of attacks immune to
gradientmasking. Misaligned incentives are another reason for insufficient evaluations.
We published joint guidelines and organized an interactive competition to mitigate
this problem. Finally, our open-source adversarial attacks library Foolbox empowers
countless researchers to overcome common technical obstacles. Since robustness
evaluations are inherently unstandardized, straightforward access to various attacks
is more than a technical convenience; it promotes thorough evaluations.

Third, we showcase a fundamentally new neural network architecture for robust
classification. It uses a generative analysis-by-synthesis approach. We demonstrate its
robustness using a digit recognition task and simultaneously reveal the limitations of
prior work that uses adversarial training. Moreover, further studies have shown that
our model best predicts human judgments on so-called controversial stimuli and that
our approach scales to more complex datasets.

Zusammenfassung

Machine Learning hat in den letzten fünf bis zehn Jahren enorme Fortschritte gemacht.
Heutzutage könnenwir Computer,Maschinen, dazu bringen, komplexeWahrnehmungs-
aufgaben aus Daten zu lernen, anstatt sie explizit zu programmieren. Besonders mo-
derne Sprach- und Bilderkennungssysteme erreichen im Vergleich zu denen von vor
einem Jahrzehnt mittlerweile eine beeindruckende Genauigkeit.

Weniger beeindruckend ist die Anfälligkeit von Machine-Learning-Systemen für kleine,
böswillig herbeigeführte Störungen. Kaumwahrnehmbare Hintergrundgeräusche oder
Veränderungen ausgewählter Pixel können sie komplett in die Irre führen. Während
Menschen sich oft über diese Dummheit künstlicher Intelligenz amüsieren, machen
sich Entwickler Sorgen um die Sicherheit ihrer Machine-Learning-Anwendungen, und
Wissenschaftler suchen nach robusteren Machine-Learning-Modellen, derenWahrneh-
mung mehr der des Menschen entspricht. Diese Dissertation fasst Fortschritte in drei
Bereichen rund um die Robustheit gegen gezielte Störungen zusammen und diskutiert
ihre Implikationen.

Erstens stellenwir eine neueArtAttacke vor, dieMachine-Learning-Anwendungen ganz
unmittelbar angreifen kann. Im Gegensatz zu vorangegangenen Attacken erfordert sie
weder Insiderwissen noch besonderen Zugang zum Modell. Unsere Ergebnisse zeigen
die konkrete Bedrohung, die durch die derzeitig fehlende Robustheit von Machine-
Learning-Anwendungen entsteht.

Zweitens präsentieren wir mehrere Arbeiten, die sich mit den verschiedenen Heraus-
forderungen bei der Robustheits-Evaluierung befassen. Die grundlegendste Herausfor-
derung dabei ist, dass gängige Testmethoden robuste Modelle nicht von Modellen mit
irreführenden Gradienten unterscheiden können. Durch zwei neue Arten von Testme-
thoden, die immun gegen irreführende Gradienten sind, helfen wir, dieses Problem
aufzudecken und zu lösen. Falsche Anreize sind ein weiterer Grund für fehlerhafte
Evaluierungen. Um dieses Problem zu lindern, haben wir gemeinsame Richtlinien
veröffentlicht und einen interaktivenWettbewerb organisiert. Schlussendlich haben
wir mit Foolbox eine Open-Source-Softwarebibliothek mit Testmethoden veröffent-
licht, die unzähligen Forschern hilft, gängige technische Hindernisse beim Evaluieren
von Modellen zu überwinden. Da die Evaluierung von Robustheit grundsätzlich nicht
standardisiert werden kann, führt der einfache Zugang zu verschiedenen Testmetho-

den in der Praxis darüberhinaus zu gründlicheren Evaluierungen und verlässlicheren
Ergebnissen.

Drittens haben wir eine völlig neue neuronale Netzwerk-Architektur entwickelt, die
robustes Klassifizieren ermöglichen soll. Sie verwendet einen generativen Analysis-by-
Synthesis-Ansatz. Am Beispiel eines Modells zur Ziffernerkennung demonstrieren wir
die Robustheit dieser Architektur und zeigen gleichzeitig die Grenzen früherer Arbeiten
auf, die Adversarial Training verwenden. Neuere Studien haben außerdem gezeigt, dass
unser Modell die menschlicheWahrnehmung sogenannter kontroverser Stimuli besser
als andere Modelle vorhersagt und dass unser Ansatz auch auf komplexere Datensätze
skaliert.

Contents

Summary 3

Zusammenfassung 5

1 Introduction 11
1.1 Definitions & Background . 14
1.2 Research Questions . 22
1.3 Publications . 27

2 Results 31
2.1 Decision-Based Adversarial Attacks . 31
2.2 Architecture-Based Adversarial Attacks . 34
2.3 Foolbox Adversarial Attacks Library . 38
2.4 Fast Framework-Agnostic Attacks Using EagerPy 40
2.5 Robust Analysis by Synthesis . 43

3 Discussion 45
3.1 No Robustness Through Obscurity . 46
3.2 The Misconception of White-Box and Black-Box Attacks 47
3.3 Evaluating Adversarial Robustness Cannot Be Standardized 48
3.4 Has the Adversarial Robustness Problem Now Been Solved? 50
3.5 Conclusions & Outlook . 51

Bibliography 52

Appendix 67
Foolbox: A Python Toolbox to Benchmark the Robustness of ML Models 69
Decision-Based Attacks: Reliable Attacks Against Black-Box ML Models 77
Towards the First Adversarially Robust Neural Network Model on MNIST 91
Scaling up the Linear Region Attack Reveals Overestimation of Robustness 111
EagerPy: Writing Code That Works Natively with PyTorch, TF, JAX, and NumPy . . . 131
Foolbox Native: Fast Attacks to Benchmark the Robustness of ML Models 143

Acknowledgments 149

Chapter 1

Introduction

This dissertation addresses the challenge of reliably evaluating and improving the
adversarial robustness of machine learning models. Even though adversarial robust-
ness only became a prominent field of research in the last few years, many of us have
a decade-long personal connection to it. A spam filter screens every email sent to
our address and decides what goes into our inbox and what is discarded right away.
Nevertheless, most of us still receive spam emails. This is not simply because spam
filters have not learned to recognize spam despite years of training. It is because spam
emails are created with spam filters in mind (Dalvi et al. 2004). Spammers are the
adversaries of our spam filters.

Spam filters are one of the first widespread applications of machine learning, the
technique tomake a computer, amachine, learn the operations needed to perform a task
from data rather than explicitly programming it. In the last five to ten years, machine
learning has advanced rapidly and revolutionized related fields such as computer
vision, natural language processing, and speech recognition. Machine learning is now
applied throughout the sciences, from archeology to astronomy. In commerce and
industry, machine learning is considered a key driver for innovation and automation.
For example, it is used to detect production defects, predict the need for maintenance,
target advertisements, filter undesired content, forecast market demand, optimize
logistics, recommend related products, or reduce pesticides. Under the buzzword
artificial intelligence, we also see increasing use of machine learning in consumer
products. For example, we now have voice assistants that understand what we say,

cars that drive themselves, smartphones that recognize our faces, apps that identify
plants, services that translate our texts, and wearables that call an ambulance when
we become unconscious.

For some of these applications, it is hard to imagine anyone having adversarial inter-
ests. However, for other applications, an adversary who could mislead the machine
learning model would pose a substantial security risk. So are such adversarial attacks
against machine learning models practically possible in real-world scenarios? This is
an important question, one that we would like to answer in this dissertation.

First Research Challenge: Attackingmachine learningmodels in real-world scenarios.

The potential security threat of adversarial attacks is one reason for studying how to
improve the adversarial robustness of machine learning models, but not the only one.
There are two other reasons worth considering, the first of which is safety.

Security and safety may sound like two sides of the same coin. In fact, in German,
they share the same word: Sicherheit. In this context, however, their goals can be
nicely differentiated. Security aims at protecting the machine learning application
from adversaries or, more generally, from the environment. In contrast, safety aims at
protecting the environment (e.g., humans) from themachine learning system’s inherent
imperfection. Of course, both are related because attacks against insecure applications
in safety-critical environments may cause unsafe behavior, but safety as such is an
important goal even in settings without an explicit adversary. Imagine a machine
learning model with sufficiently high accuracy to be, in theory, safely deployed in a
particular application. In practice, however, the distribution of inputs in a real-world
scenario might be ever so slightly different from the distribution seen during training.
How can we guarantee safety when we do not precisely know how the inputs will
change once the model is deployed? One solution is to aim for robustness against
worst-case perturbations. If a model can safely handle worst-case perturbations, it
can safely handle real-world perturbations.

A shift in perspective—away from applications—reveals the third, more fundamental
reason for studying how to improve adversarial robustness: progress towards human
abilities. Humans can, for example, usually explain their decisions. One approach
to explaining a machine learning model’s decision is to reveal the features crucial
for that decision. A counterfactual explanation (Sokol et al. 2019) does so by asking
the model for the smallest modification to its input that would change its prediction

12

in a certain way. The same question also arises when we aim to influence human
perception by targeting amachine learningmodel trained to predict human perception.
Imagine, for example, a model that predicts where people look in images (Kümmerer
et al. 2015). Influencing where people look is then—in principle—nothing else than
asking the model for the smallest modification of the input image that would change
the predicted gaze in the desired way. Mathematically, asking this question, in turn,
is the same as adversarially attacking the model. We only get helpful counterfactual
explanations (or perturbations that effectively influence the human gaze) if the model’s
minimal adversarial perturbations are large enough and semantically meaningful to
affect humans.

Unfortunately, improving a model’s adversarial robustness is not as straightforward as
one might hope.

What you cannot measure, you cannot improve.
—Peter Drucker

This statement is not merely a platitude; before we can aim at improving adversarial
robustness, we have to have a way to measure it.

Of course, some metrics are trivial to measure, and in such cases, the sole focus can be
directly on improving them. Test accuracy is a case in point. Improving it can be an art
in itself, but reliably and accurately estimating it is usually as trivial as it gets.

Estimating adversarial robustness is less trivial. There is no fixed algorithm that
returns the one correct estimate of a model’s adversarial robustness. Bounds on a
model’s robustness from above and below may hint at its actual robustness, but
it remains doubtful whether these bounds are equally tight (or loose) for different
models. To complicate matters further, a model’s adversarial robustness is not even
a single number but a distribution of individual robustness estimates, one for each
data point. Depending on how the distributions are aggregated, one or the other
model may seem more robust. Before attempting to improve a model’s adversarial
robustness, this dissertation thus puts particular emphasis on reliably evaluating
adversarial robustness.

Second Research Challenge: Reliably evaluating adversarial robustness.

With progress on reliably evaluating adversarial robustness, we then have the tools,

13

methods, and understanding to test new hypotheses for making machine learning
applications safer and more secure and machine learning models more human-like. In
short, we can finally aim at improving adversarial robustness.

Third Research Challenge: Improving adversarial robustness.

These are the three research challenges that underlie the work presented in this disser-
tation. Before we derive concrete research questions from these challenges, we review
the relevant prior work and summarize important background information. More
recent literature is being discussed as needed in the individual publications (chapter 2)
as well as the overall discussion (chapter 3).

1.1 Definitions & Background

The term adversarial exampleswas first introduced in the context of modern machine
learning in 2013 when it was found that by “applying an imperceptible non-random
perturbation to a test image, it is possible to arbitrarily change the […] prediction [of a
neural network]” (Szegedy et al. 2013).1 This observation should not be mistaken for a
definition of adversarial examples (though, unfortunately, it often is).

Instead, adversarial examples are “inputs formed by applying small but intention-
ally worst-case perturbations to examples from the dataset, such that the perturbed
input results in the model outputting an incorrect answer” (Goodfellow et al. 2015).
Worst-case adversarial perturbations are generated by minimizing the perturbation
under the constraint that the perturbed input is misclassified (or by maximizing the
prediction error given a bound on the perturbation size); they are not necessarily
imperceptible.

A classifier’s adversarial robustness 𝑟𝑥,𝑙 on an input 𝑥with label 𝑙 can then be defined as
the distance to the closest input 𝑥̃ that is not classified as 𝑙. For an input 𝑥 ∈ 𝐷with a
label 𝑙 ∈ 𝐶, this can be formalized as

𝑟𝑥,𝑙 = min
𝑥̃∈𝐷

𝑑(𝑥, 𝑥̃) subject to 𝑓(𝑥̃) ≠ 𝑙,

where 𝐷 is the input domain, 𝐶 = {1,… ,𝑁} is the set of classes, 𝑁 is the number of
classes, 𝑑(𝑥, 𝑦) is a distance metric, and 𝑓 ∶ 𝐷 → 𝐶 is the classifier. Note that the

1 The adversarial robustness of classic machine learning algorithms like linear classifiers has been studied
much earlier (e.g., Lowd et al. 2005).

14

above focus on classification is for simplicity; the definition can be generalized to other
machine learning tasks if necessary. Unless 𝑓 is a degenerated classifier that classifies
everything into the same class, an 𝑥̃ that solves the above equation always exists.

For the common case of an additive perturbation 𝛿, an input domain 𝐷 ⊆ ℝ𝑁, and a
simple 𝑝-norm, the equation simplifies to

𝑟𝑥,𝑙 = min
𝛿∈ℝ𝑁

‖𝛿‖𝑝 s. t. 𝑓(𝑥 + 𝛿) ≠ 𝑙 and 𝑥 + 𝛿 ∈ 𝐷.

After the minimization, 𝑥̃ and 𝛿—the arguments of the minimization—represent the
adversarial example and the adversarial perturbation, respectively.

With this definition, adversarial attacks are algorithms to approximate the minimum
(to find adversarial examples that humans still classify like the original input and to
measure the robustness 𝑟), not to find adversarial examples at all. For classifiers with
high accuracy, practically any sample from the training set belonging to a different
class is already an adversarial example, though, of course, an extremely sub-optimal
one. Not the existence of adversarial examples is disturbing, but the observation that
“[f]or all the networks we studied […], for each sample, we have always managed to
generate very close, visually hard to distinguish, adversarial examples” (Szegedy et al.
2013).

In contrast to adversarial attacks, adversarial defenses try to change (or replace) the
classifier 𝑓 such that larger perturbations are necessary to flip the classification (or,
more generally, change the model’s prediction). An optimal adversarial defense is one
for which even the smallest possible adversarial perturbations are still so large that
the human perception is influenced in ways similar to the machine learning model’s
perception.

Additionally, an optimal adversarial defense should classify unrecognizable inputs
with low confidence. This goes back to an observation by Nguyen et al., who found
that it is possible to create “images that are completely unrecognizable to humans, but
that state-of-the-art DNNs believe to be recognizable objects with 99.99% confidence”
(Nguyen et al. 2015). Such (adversarially created) unrecognizable inputs are not classic
adversarial examples because they are not perceptually similar to real data points
and because they cannot be misclassified (for the lack of ground truth), but the fact
that they are classified with high confidence reveals another important discrepancy
between human and machine perception.

15

While the work by Szegedy et al. can be seen as starting a new field, the concept of
an adversary that attempts to evade a machine learning system at test time was not
new. In the computer security community, such attacks against machine learning
systems are known as evasion attacks and were studied in particular in the context
of spam classification and malware detection (Biggio, Corona, et al. 2013). Evasion
attacks that perturb inputs at test time can be distinguished from poisoning attacks that
manipulate the training data itself. Like evasion attacks, poisoning attacks are not new
(Barreno et al. 2006; Rubinstein et al. 2009; Biggio, Nelson, et al. 2012) but have regained
interest in the context of modern machine learning, for example, through works that
poison the training data to introduce backdoors into neural networks (Gu et al. 2019;
X. Chen et al. 2017; Yingqi Liu et al. 2018). Other adversarial problems include model
stealing, where the attacker tries to obtain a copy of the model (Tramèr, F. Zhang, et al.
2016), and adversarial reprogramming, where the attacker tries to steal computational
resources by repurposing a publicly accessible model (Elsayed et al. 2019). While these
are all important adversarial problems, particularly from a security perspective, in
this dissertation, we focus—as motivated in the introduction—on evasion attacks
and the robustness against them and refer to them as adversarial attacks as defined
above.

Adversarial Attacks

The space of adversarial attacks is huge. With dozens of new adversarial attacks or
variations of other attacks in 2020 alone1, there are far too many to list them all, let
alone to go into detail. Instead, we will introduce the adversarial attacks that are
most important, either for historical reasons or because they are most widely used
or otherwise well known. We will focus primarily on those attacks that predate the
attacks presented in this dissertation (sections 2.1 and 2.2).

For their first-ever adversarial attack against deep neural networks, Szegedy et al.
(2013) reformulated the above optimization problem such that it can be (approxi-
mately) solved using L-BFGS-B (Byrd et al. 1995). While L-BFGS-B can handle the
domain constraint 𝑥 + 𝛿 ∈ 𝐷 natively (assuming 𝐷 = [0, 1]𝑁), the misclassification
constraint 𝑓(𝑥 + 𝛿) ≠ 𝑙 has to be continuously approximated (e.g., using the negative
cross-entropy). It can then be integrated into the optimization through a weighted

1 In 2020, hundreds of publications on adversarial robustness were published on arXiv (Carlini 2020). More
than two hundred of them contain “adversarial attack” in their title, and a significant share of those are
actual new attacks or attack variations.

16

combinationwith ‖𝛿‖𝑝. The relativeweighting of the two terms determines the empha-
sis that L-BFGS-B puts on minimizing the perturbation vs. achieving misclassification
when solving the resulting optimization problem

min
𝛿∈ℝ𝑁

𝑐 ‖𝛿‖𝑝 + loss𝑓,𝑙(𝑥 + 𝛿) s. t. 𝑥 + 𝛿 ∈ [0, 1]𝑁.

The relative weight 𝑐 of the minimization term is chosen using a line search that
determines the largest 𝑐 such that L-BFGS-B still returns a 𝛿 for which 𝑓(𝑥+𝛿) ≠ 𝑙.

Instead of minimizing the negative cross-entropy between the predicted distribution
and the label 𝑙, Szegedy et al. actually minimized the (positive) cross-entropy between
the predicted distribution and some fixed target class ̂𝑙 ≠ 𝑙 (and perform the line search
such that 𝑓(𝑥 + 𝛿) = ̂𝑙). Such targeted attacks can be more worrisome from a security
perspective and more relevant if a dataset has many similar classes (e.g., ImageNet
(Deng et al. 2009)), but for consistency and to avoid clutter, we will confine ourselves
to the untargeted case when describing the following attacks.

The popular Carlini-Wagner attack is a second attack that builds on the same reformula-
tion of the optimization problemas above. In contrast to the L-BFGS-B attack, Carlini and
Wagner (2017b) changed the loss function (loss𝑓,𝑙) used to encourage misclassification
from cross-entropy to the logit difference, avoid the box constraint (𝑥+𝛿 ∈ [0, 1]𝑁) using
a change of variables, and—with the box constraint out of the way—then switched to
the Adam optimizer (Kingma et al. 2015). Like the L-BFGS-B attack, the Carlini-Wagner
attack is computationally expensive because the inner optimization has to be repeated
for each step of the line search.

DeepFool (Moosavi-Dezfooli et al. 2016) sits at the other end of the spectrum; it is one
of the fastest adversarial attacks because it radically approximates the problem. First,
it assumes that the decision boundaries are linear. Second, it only considers the top k
other classes (e.g., k = 10). Third, it analytically computes the optimal step to cross the
(linear) decision boundary. To compensate for the linearity assumption, it performs a
small overshoot (e.g., 5%). If this approach is not successful (the class has not changed),
it is repeated a few times until it is. Despite these coarse approximations, DeepFool
can find surprisingly small adversarial perturbations.

The three adversarial attacks we have looked at so far all ultimatelyminimize the per-
turbation under the constraint that the perturbed input is misclassified. This approach
follows naturally from the optimization problem stated above. Another group of adver-

17

sarial attacks does, however, take the orthogonal approach. They attempt tomaximize
misclassification (e.g., maximize the cross-entropy between the predicted distribution
and the label) of the perturbed input under the constraint that the perturbation is
smaller than some bound 𝜖. To achieve this, they perform gradient ascent on the loss
and project or clip the result to the 𝜖-ball. The size of the returned perturbations is then
no longer minimal but predefined as 𝜖. This approach is taken by popular adversarial
attacks such as FGSM, BIM, and PGD.

The Fast Gradient Sign Method FGSM (Goodfellow et al. 2015) can be seen as the single-
step special case of these attacks. It simply perturbs the input in the direction of the
pointwise sign of the gradient scaled with 𝜖 (and clips the result to the valid space).
It takes the sign because it assumes 𝜖 to be an 𝐿∞ bound. The 𝐿2 equivalent of the
attack (FGM) omits the sign and scales the 𝐿2-normalized gradient instead. FGSM
and FGM are arguably the fastest adversarial attacks.1 Importantly, this is the very
reason why FGSM was created: to efficiently construct adversarial examples on the fly
during training (in an attempt to perform adversarial training, which we will discuss
in a moment). In other words, FGSM was not meant for robustness evaluation but,
unfortunately, it is often misused for precisely that.

The Basic Iterative Method BIM (Kurakin et al. 2017) was motivated as the multi-step
iterative extension of FGSM. It repeatedly takes the sign of the gradient, rescales it
with an additional step size parameter, perturbs the input, and clips the result to the
input domain and the 𝜖-ball.

The Projected Gradient Descent attack PGD (Madry et al. 2018) is, in effect, nothing
else than the Basic Iterative Method except that it is typically started from a random
point within the 𝜖-ball rather than from the original unperturbed input. It thus avoids
potentially relatively flat regions around the data points, and it can be restarted several
times with different random initializations (something that has been shown to make
the attack much more effective (Mosbach et al. 2018)). In practice, PGD also uses
smaller step sizes and more steps than BIM. The increased number of steps and the
repeated random restarts make PGD more effective than BIM at the cost of increased
computational needs.

Other noteworthy adversarial attacks—excluding ours2—are JSMA, EAD, MIM, DDN,
1 FGSM and FGM still have to pay the cost of computing the gradient. Simply perturbing an input in
the direction of a data point from another class could be seen as an even faster (yet extremely naive)
adversarial attack.

2 The above list excludes the attacks that we will introduce later, our Boundary Attack (section 2.1) and our

18

and—last but not least—transfer attacks. The Jacobian-Saliency-Map-Attack JSMA
(Papernot, McDaniel, Jha, et al. 2016) was the first attack that minimized the 𝐿0 norm
of the perturbation. The EAD attack (P.-Y. Chen, Sharma, et al. 2018) generalized the
𝐿0, 𝐿2, 𝐿∞ Carlini-Wagner attack to the 𝐿1 norm. The Momentum Iterative MethodMIM
(Dong et al. 2018) added a momentum term to BIM and PGD. And the DDN attack
improves attack efficiency by “decoupling the direction and the norm of the adversarial
perturbation” (Rony et al. 2019).

The term transfer attack does not describe yet another adversarial attack but an alter-
native method to indirectly attack a model with any of the above adversarial attacks.
Transfer attacks work as follows. First, the actual attack is run against some other
model, the substitute model. The obtained adversarial example is then tested on the
target model. Interestingly, even though the adversarial examples were created for the
substitute model, they can fool the target model.

This surprising transferability of adversarial examples, of course, depends on different
factors. The more similar the two models are, the better the adversarial examples
transfer from one to the other. Targeted adversarial examples transfer best if they
are sourced from an ensemble of models (Yanpei Liu et al. 2017). Papernot, McDaniel,
Goodfellow, et al. (2017) showed that a good substitutemodel can be trained by creating
labels on-the-fly from the target model’s predictions (it still helps to have a similar
architecture). The size of the adversarial perturbation also plays a role. Minimal
adversarial perturbations (found by “better” adversarial attacks) are less likely to
transfer than larger perturbations because they are sensitive to small changes of the
decision boundary. Thus, it works best to transfer only the direction of the adversarial
perturbation and then perform a line search until the target model is fooled or, more
simply, to upscale the perturbation a bit. Transfer attacks require access to the target
model to test different samples (possibly already needed to train the substitute model),
but all the gradient information comes from the substitute model.

The transferability of adversarial examples between similar models even allows us to
attack machine learning models operating in the physical world. The physical transfor-
mation caused by the camera and the environment is noisy and variable, and gradients
cannot be backpropagated through it, but upscaled adversarial perturbations created
for the machine learning model behind the camera can survive physical transforma-

Linear Region Attack (section 2.2), as well as our other attacks, the Pointwise Attack (Schott et al. 2019)
and the Brendel Bethge Attack (Brendel, Rauber, Kümmerer, et al. 2019).

19

tions such as printing and recording with a camera and transfer to the physical model
(Kurakin et al. 2017).

Adversarial Attack Libraries

The previous section contains references to fourteen different adversarial attacks, and
these are just the most important ones. Even if all authors were sharing reference
implementations of their attacks, evaluating one’s own model with the various adver-
sarial attacks would be difficult because of inconsistent interfaces, assumptions, and
framework requirements. CleverHans (Papernot, Goodfellow, et al. 2016), an adversar-
ial attacks library for TensorFlow (Abadi et al. 2016), was the first library seeking to
solve this problem by establishing common standards. Other noteworthy adversarial
attack libraries—excluding ours1—are AdverTorch (Ding et al. 2019) and ART (Nicolae
et al. 2018). They all come with their own advantages and disadvantages (see sections
2.3 and 2.4).

Adversarial Defenses

Szegedy et al. (2013) not only attacked deep neural networks (and discovered their
adversarial susceptibility) but also already suggested (but not implemented) a first
potential adversarial defense: adversarial training. The number of proclaimed ad-
versarial defenses—like the number of adversarial attacks—has since skyrocketed.
Proposed defense mechanisms include distillation (#1Papernot, McDaniel, Wu, et al.
2016), saturating activations (#2Nayebi et al. 2017), input discretization (#3Buckman
et al. 2018), regularization (#4Kannan et al. 2018), input transformations (#5Guo et al.
2018), preprocessing (#6Bafna et al. 2018; #7Y. Yang et al. 2019), new activation functions
(#8Zantedeschi et al. 2017; #9Xiao et al. 2020), new loss functions (#10Pang, Xu, Dong,
et al. 2020), learned projections (#11Meng et al. 2017; #12Shen et al. 2019; #13Song et al.
2018; #14Samangouei et al. 2018), denoising (#15Liao et al. 2018), stochasticity (#16Xie et al.
2018; #17Prakash et al. 2018; #18Pang, Xu, and Zhu 2020), generative models (#19Y. Li et al.
2019), pruning (#20Dhillon et al. 2018), outlier detection (#21Roth et al. 2019; #22Ma et al.
2018; #23Z. Yang et al. 2019; #24Hu et al. 2019), and ensembling (#25Verma et al. 2019;
#26Pang, Xu, Du, et al. 2019; #27Sen et al. 2020).

Unfortunately, the above defense mechanisms are not robust; all of the above publica-

1 Our own adversarial attack libraries, Foolbox (Rauber, Brendel, et al. 2017) and Foolbox Native (Rauber,
Zimmermann, et al. 2020), will be introduced in sections 2.3 and 2.4, respectively.

20

tions overestimated their robustness (Carlini andWagner 2016 broke #1; Brendel and
Bethge 2017 broke #2; Carlini and Wagner 2017a broke #8, 11, 12; Athalye, Carlini, and
Wagner 2018 broke #3, 5, 13, 14, 16, 20, 22; Athalye and Carlini 2018 broke #15, 17; Engstrom
et al. 2018 broke #4; and Tramèr, Carlini, et al. 2020 broke #6, 7, 9, 10, 18, 19, 21, and 23–27).
Moreover, the above defenses’ problems were not spotted after years of improvements
in evaluating adversarial robustness, but often shortly after publication. For example,
Athalye, Carlini, andWagner (2018) and Athalye and Carlini (2018) broke as many as
nine defenses within days after publication at ICLR 2018 and CVPR 2018, respectively.
The defense suggested by Szegedy et al.—adversarial training—is an exception to this
rule.

Adversarial training augments the training data with adversarially perturbed training
samples. Similar to how data augmentation can make models more robust against
particular types of noise or perturbations, adversarial training is expected to improve
the robustness against adversarial perturbations. The adversarial perturbations have
to be created on-the-fly because—unlike random noise—they depend on the model
(and the model changes in every training step). This is why Szegedy et al. (2013) only
suggested adversarial training; their L-BFGS-B attack was too slow to try adversarial
training in practice (given the computational resources at the time).

FGSM—asmentioned above—was specifically created to overcome this problem (Good-
fellow et al. 2015). It was fast enough to create adversarial perturbations on-the-fly.
After the adversarial training, Goodfellow et al. tested their model’s robustness against
the FGSM attack and—as hoped—found that the model was robust. Unfortunately
(or fortunately), Tramèr, Papernot, et al. (2017) later showed that it was only robust
against FGSM and not against adversarial attacks in general. Goodfellow et al. had
overestimated the model’s robustness because they evaluated it with the same attack
they had used during training.

This raised the question of whether adversarial training would always overfit to the
specific attack (or attacks) used during training or whether it could lead to real robust-
ness against any attack. This question was empirically answered by Madry et al. (2018).
Using PGD with 40 steps instead of FGSM to create tiny adversarial perturbations
on-the-fly, they adversarially trained both an MNIST (LeCun et al. 1998) and a CIFAR-10
(Krizhevsky et al. 2009) model. Again, both models seemed much more robust than
standard models, but to be sure, they invited the research community to scrutinize
their results. Despite great efforts, the independent evaluations revealed only a small

21

overestimation of robustness by Madry et al. and, overall, confirmed the robustness of
both models against adversarial perturbations (with a bounded 𝐿∞ norm)—in contrast
to the many failed defenses above.

Robustness Guarantees

The underlying problem of all the failed robustness evaluations is that adversarial
attacks give an upper bound on the adversarial robustness by constructing adversarial
examples. Whether this upper bound is tight or loose is hard to know. Lower bounds on
the size of the minimal adversarial perturbation, on the other hand, would guarantee
a certain robustness. Deriving such guarantees, like developing better adversarial
attacks, is an active area of research (Hein et al. 2017; Raghunathan et al. 2018; Anil
et al. 2019; Croce, Andriushchenko, and Hein 2019; Q. Li et al. 2019; Croce and Hein
2020). Despite substantial improvements, there remains a large gap between the lower
bounds (guarantees) and the upper bounds (attacks).

1.2 Research Questions

In the introduction, we have taken different perspectives on adversarial examples
and identified three research challenges to focus on. In this section, we revisit each
of these three research challenges (RC1, RC2, and RC3) in light of the existing prior
work and derive concrete open research questions that we aim to answer in this
dissertation.

Figure 1 on page 30 provides a comprehensive overview of the relationships between
the research challenges and research questions identified in this chapter, the results and
publications summarized in chapter 2, and the overall discussions in chapter 3.

Attacking Machine Learning Models in Real-World Scenarios (RC1)

One property all the adversarial attacks reviewed above have in common is that they
use gradient descent. This does not come as a surprise. Neural networks are trained
with gradient descent and differentiable by design, so it seems obvious that adversarial
attacks should exploit this.

When trying to attack models in real-world scenarios, using gradient descent becomes
a problem. Machine learningmodels deployed in applications are black-boxes. Outside

22

access to the models’ gradients is an unrealistic assumption, and so the above adver-
sarial attacks cannot be used directly. Transferring adversarial examples from a similar
model offers away out, but only if we already know a similar model (Kurakin et al. 2017)
or can access the training data to construct one (Papernot, McDaniel, Goodfellow, et al.
2017). Moreover, transfer attacks operate on a relatively coarse scale; the adversarial
perturbations are typically much larger than those found by direct attacks. Without
gradients or a good proxy model, none of the existing attacks are possible. This raises
the following question:

Research Question 1: Are adversarial attacks a threat to real-world black-box machine
learning models, or is robustness through obscurity a viable option?

We address this question in our work on decision-based adversarial attacks (section 2.1)
and discuss its implications in section 3.1.

Reliably Evaluating Adversarial Robustness (RC2)

The following four research questions represent different aspects of what makes it
difficult to evaluate adversarial robustness.

When CleverHans was first released in 2016, it solved an important problem: com-
bining various adversarial attacks into one joint library. It was no longer necessary
to study each attack’s code individually and to adapt the evaluation to the respective
interface. What CleverHans—aTensorFlow library—could not solve were the problems
caused by the different deep learning frameworks. TensorFlowwas in its infancy at the
time; many researchers (and thus models) were still using Theano (Team et al. 2016)
and Lasagne (Dieleman et al. 2015) or Caffe (Jia et al. 2014). The dominant frameworks
changed over time, but the fundamental problem remained. In early 2017, before new
adversarial attack libraries for other frameworks emerged, we, therefore, wondered
whether adversarial attacks could be implemented in a future-proof way—indepen-
dent of a specific deep learning framework—so that different frameworks could be
supported as they would emerge or become obsolete. Besides, a framework-agnostic
adversarial attacks library would ensure consistent and comparable results across
frameworks.

Research Question 2: How can we build an adversarial attacks library that supports eval-
uating the robustness of machine learning models implemented in different deep learning
frameworks?

23

A solution to this problem (see section 2.3 for our attempt) would be an important
first step to make evaluations possible. In practice, new problems occur as soon as
we do not just evaluate the robustness of simple standard models created without
considering adversarial examples but instead analyze defended models (also known
as defenses) that are supposed to be robust against adversarial examples.

Gradient masking (Papernot, McDaniel, Goodfellow, et al. 2017) is the most prominent
issue when evaluating the adversarial robustness of a defended model. Gradients
that are masked on purpose are also known as obfuscated gradients (Athalye, Car-
lini, and Wagner 2018). This is not the only form of gradient masking. In practice,
gradients can become unreliable accidentally just as easily as they can be obfuscated
intentionally.

The idea behind intentional gradient masking is robustness through obscurity. All the
common adversarial attacks, e.g., DeepFool, the Carlini-Wagner attack, or PGD, require
reliable gradients. When the gradient backpropagation through the neural network is
disturbed, e.g., by introducing non-differentiable elements, these adversarial attacks
will fail or at least be less effective. The size of the adversarial perturbations found by
the attacks will grow, and the “defended” model will seem more robust. Obviously,
this does not improve the true robustness, but it makes it more difficult to find small
adversarial perturbations.

Accidental gradient masking is evenmore tricky because it might easily stay unnoticed.
It can be caused by defense mechanisms that look innocent. Even adversarial train-
ing—without any change to the architecture—might cause some amount of gradient
masking because it encourages flat regions around training samples, and in these flat
regions, it can be difficult to perform gradient descent (Madry et al. 2018, updated
version from September 4, 2019). Consequently, potential gradient masking is an
omnipresent problem and deserves appropriate attention.

Research Question 3: How can we find small, close to minimal adversarial perturbations
despite gradient masking?

We explore two alternative approaches to answer this question: decision-based ad-
versarial attacks (section 2.1) and architecture-based adversarial attacks (section 2.2).
Together, they reveal a common misconception about black-box and white-box attacks
that we discuss in section 3.2.

Apart from the quite technical gradient masking problem, the evaluation of adversarial

24

defenses suffers from a significant incentive problem. Researchers that want to claim
robustness have little incentive to prove themselves wrong. The lack of incentives
does not require willful misconduct to become a problem; even unintentionally, it
can cause an insufficient evaluation. Whether at ICLR (Athalye, Carlini, andWagner
2018), ICML (Tramèr, Carlini, et al. 2020), CVPR (Athalye and Carlini 2018), or NeurIPS
(Tramèr, Carlini, et al. 2020), the current peer-review process has proven inadequate
to catch even common evaluation problems—and calls for changes.

Research Question 4: How can we incentivize strong robustness evaluations and ensure an
adequate peer-review process?

We tested three different ideas to create new incentives and to improve the peer-review
process. First, we joined efforts with several other groups to publish comprehensive
guidelines on evaluating adversarial robustness (Carlini, Athalye, et al. 2019). In this
way, we hoped to increase the awareness of both reviewers and defense researchers
for common pitfalls and best practices. Second, to make the review process itself more
adversarial, we organized a competition that pitched proposed defenses against active,
opposing evaluators (Brendel, Rauber, Kurakin, Papernot, Veliqi, Salathé, et al. 2018).
Third, to simulate this approach in a standard review process, we assigned different
roles to different co-authors when publishing our own defense (Schott et al. 2019). We
discuss all three ideas and their effectiveness in section 3.3.

The above research questions illustrate the progress made in recent years. The second
research question was aimed at laying the technical foundation to evaluate adversarial
robustness. The third and the fourth research question concerned the two main
issues when evaluating adversarial robustness: gradient masking and the incentive
problem, respectively. The fifth research questionwill now focus onmaking robustness
evaluations fast.

Make it work. Make it right. Make it fast.
—Kent Beck

Running adversarial attacks as fast as possible is not merely about saving time. That is
not to say that saving time is not important: Of course, saving time is economically
and ecologically beneficial and facilitates rapid iteration. However, the ability to run
an adversarial attack faster can also be correlated with making it stronger. Running an
attack for more steps (e.g., when performing gradient descent) or restarting an attack

25

multiple times (e.g., when the attack entails randomness) generally makes the attack
more effective at reducing the size of the adversarial perturbations. As there are no
fixed evaluation procedures that dictate a certain number of iterations or restarts (for
reasons being discussed in section 3.3) and adversarial attacks are expensive to run,
researchers often have to trade off strength (iterations, restarts) against what they
can afford (time, money). Faster attack implementations can thus promote stronger
evaluations.

Unfortunately, using a highly optimized deep learning framework to run adversarial
attacks natively on GPUs for maximum performance is at odds with supporting differ-
ent deep learning frameworks (research question 2). This conflict has led to several
adversarial attack libraries that all sacrifice one or the other: our original Foolbox
library (section 2.3)—developed in response to the second research question—and ART
(Nicolae et al. 2018) sacrifice performance while CleverHans (Papernot, Goodfellow,
et al. 2016) and AdverTorch (Ding et al. 2019) sacrifice the advantages of supporting
different frameworks. Resolving this conflict would liberate researchers from the need
to use different libraries in different situations.

Research Question 5: Can we resolve the contradiction between performance and support
for different deep learning frameworks?

We attempt to answer this question in section 2.4. With the above four research
questions on evaluating adversarial robustness (and our answers in chapter 2), we have
laid the groundwork for our ultimate goal: improving adversarial robustness.

Improving Adversarial Robustness (RC3)

Since Madry et al. (2018) showed how to make adversarial training effective, it is often
seen as the solution to the problems posed by adversarial examples. Conceptually
that makes sense. Adversarial training is a form of robust optimization, a well-known
approach to achieve robustness in worst-case scenarios. Nevertheless, considering the
numerous variables concerning the definition of adversarial robustness (e.g., the vari-
ous datasets or the different metrics), it is worth investigating the current limitations
of adversarial training.

Research Question 6: Does adversarial training with PGD—as done by Madry et al.—solve
the problems posed by adversarial examples, or what are its limitations?

This question is not answered simply by assessing the correctness of Madry et al.’s

26

results but also depends on the relevance of the setting they considered and on the
generalizability of their results to other settings.

Either way, adversarial training is a naive “brute-force” approach that tries to teach
robustness through plenty of examples. It would be great if we could instead de-
sign neural networks with built-in robustness. They might be more efficient, might
guarantee robustness, and might be closer to human perception in other ways as
well.

Research Question 7: Can a neural network architecture be robust by design rather than
through adversarial training?

In section 2.5, we try to find such an inherently robust architecture by taking inspiration
from the generative understanding of the physical world attributed to humans.

1.3 Publications

I worked on these research questions together with numerous collaborators. Below,
I list the publications that have resulted from these collaborations together with the
names of all co-authors. The publications are grouped according to their role in this
dissertation. A star indicates joint first authorship.

Publications Included in This Dissertation

The six publications below—four peer-reviewed conference papers or journal articles,
one workshop contribution, and one manuscript—form the foundation of this disserta-
tion. They are included in full in the appendix, and their main motivation, results, and
discussion are summarized in the next chapter. In addition, the appendix contains a
detailed description of each author’s contribution to each paper.

• Wieland Brendel*, Jonas Rauber*, Matthias Bethge (2018). “Decision-Based Adver-
sarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models”. Sixth
International Conference on Learning Representations (ICLR 2018).

• Francesco Croce*, Jonas Rauber*, MatthiasHein (2020). “Scaling up the Randomized
Gradient-Free Adversarial Attack Reveals Overestimation of Robustness Using
Established Attacks”. International Journal of Computer Vision (IJCV) 128:1028-1046.

• Jonas Rauber*, Wieland Brendel*, Matthias Bethge (2017). “Foolbox: A Python

27

toolbox to benchmark the robustness ofmachine learningmodels”. ReliableMachine
Learning in the Wild Workshop, 34th International Conference on Machine Learning
(ICML 2017).

• Jonas Rauber, Matthias Bethge, Wieland Brendel (2020). “EagerPy: Writing Code
ThatWorksNativelywith PyTorch, TensorFlow, JAX, andNumPy”. Preprint available
on arXiv, 2008.04175.

• Jonas Rauber, Roland Zimmermann, Matthias Bethge, Wieland Brendel (2020).
“Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine
learning models in PyTorch, TensorFlow, and JAX”. Journal of Open Source Software,
5(53), 2607.

• Lukas Schott*, Jonas Rauber*, Matthias Bethge, Wieland Brendel (2019). “Towards
the first adversarially robust neural networkmodel onMNIST”. Seventh International
Conference on Learning Representations (ICLR 2019).

Related Work Not Included in This Dissertation

The following five publications comprise two peer-reviewed conference papers, a
competition proposal, a living document, and a book chapter. They are not formally
included in this dissertation butwill, in some cases, be referred to in the joint discussion
in chapter 3.

• Wieland Brendel, Jonas Rauber, Alexey Kurakin, Nicolas Papernot, Behar Veliqi,
Marcel Salathé, Sharada P. Mohanty, Matthias Bethge (2018). “Adversarial Vision
Challenge”. Competition Track of the Thirty-second Conference on Neural Information
Processing Systems (NeurIPS 2018).

• Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber,
Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, Alexey Kurakin (2019). “On
Evaluating Adversarial Robustness”. Living Document (arXiv:1902.06705).

• Robert Geirhos*, Carlos R.MedinaTemme*, Jonas Rauber*, HeikoH. Schütt, Matthias
Bethge, Felix A. Wichmann (2018). “Generalisation in humans and deep neural
networks”. Advances in Neural Information Processing Systems 31 (NeurIPS 2018).

• Wieland Brendel, Jonas Rauber, Matthias Kümmerer, Ivan Ustyuzhaninov, Matthias
Bethge (2019). “Accurate, reliable and fast robustness evaluation”. Advances in
Neural Information Processing Systems 32 (NeurIPS 2019).

28

• Wieland Brendel, Jonas Rauber, Alexey Kurakin, Nicolas Papernot, Behar Veliqi,
Sharada P. Mohanty, Florian Laurent, Marcel Salathé, Matthias Bethge, Yaodong Yu,
Hongyang Zhang, Susu Xu, Hongbao Zhang, Pengtao Xie, Eric P. Xing, Thomas Brun-
ner, Frederik Diehl, Jérôme Rony, Luiz Gustavo Hafemann, Shuyu Cheng, Yinpeng
Dong, Xuefei Ning, Wenshuo Li, YuWang (2020). “The NeurIPS ’18 Competition:
Adversarial Vision Challenge”. The Springer Series on Challenges in Machine Learning.

29

Ch
ap

te
r 1

Ch
ap

te
r 2

Ch
ap

te
r 3

Re
se

ar
ch

 C
ha

lle
ng

es
Re

se
ar

ch
 Q

ue
st

io
ns

Re
su

lts
Pu

bl
ic

at
io

ns
Di

sc
us

si
on

RC
1

A
tt

ac
ki

ng
 M

ac
hi

ne

Le
ar

ni
ng

 M
od

el
s

in
 

Re
al

-W
or

ld
 S

ce
na

ri
os

RQ
1

A
re

 a
dv

er
sa

ri
al

 a
tt

ac
ks

 a
 th

re
at

 to
 r

ea
l-w

or
ld

 b
la

ck
-b

ox

m
ac

hi
ne

 le
ar

ni
ng

 m
od

el
s,

 o
r

is
 r

ob
us

tn
es

s
th

ro
ug

h
ob

sc
ur

ity
 

a
vi

ab
le

 o
pt

io
n?

2.
1

D
ec

is
io

n-
Ba

se
d

A
dv

er
sa

ri
al

 A
tt

ac
ks

D
ec

is
io

n-
Ba

se
d

A
dv

er
sa

ri
al

 A
tt

ac
ks

: R
el

ia
bl

e
A

tt
ac

ks
 A

ga
in

st
 B

la
ck

-B
ox

 M
ac

hi
ne

 L
ea

rn
in

g
M

od
el

s

3.
1

N
o

R
ob

us
tn

es
s 

Th
ro

ug
h

O
bs

cu
ri

ty

RC
2

Re
lia

bl
y

Ev
al

ua
ti

ng

A
dv

er
sa

ri
al

 R
ob

us
tn

es
s

RQ
3

H
ow

 c
an

 w
e
fin

d
sm

al
l,

cl
os

e
to

 m
in

im
al

 a
dv

er
sa

ri
al

pe

rt
ur

ba
tio

ns
 d

es
pi

te
 g

ra
di

en
t m

as
ki

ng
?

3.
2

Th
e

M
is

co
nc

ep
ti

on
 o

f
W

hi
te

-B
ox

 a
nd

 B
la

ck
-

Bo
x

A
tt

ac
ks

2.
2

A
rc

hi
te

ct
ur

e-
Ba

se
d

A
dv

er
sa

ri
al

 A
tt

ac
ks

Sc
al

in
g

up
 th

e
ra

nd
om

iz
ed

 g
ra

di
en

t-
fr

ee

ad
ve

rs
ar

ia
l a

tt
ac

k
re

ve
al

s
ov

er
es

tim
at

io
n

of

ro
bu

st
ne

ss
 u

si
ng

 e
st

ab
lis

he
d

at
ta

ck
s

RQ
2

H
ow

 c
an

 w
e

bu
ild

 a
n

ad
ve

rs
ar

ia
l a

tt
ac

ks
 li

br
ar

y
th

at

su
pp

or
ts

 e
va

lu
at

in
g

th
e

ro
bu

st
ne

ss
 o

f m
ac

hi
ne

 le
ar

ni
ng

m

od
el

s
im

pl
em

en
te

d
in

 d
iff

er
en

t d
ee

p
le

ar
ni

ng
 fr

am
ew

or
ks

?
2.

3
Fo

ol
bo

x
A

dv
er

sa
ri

al

A
tt

ac
ks

 L
ib

ra
ry

Fo
ol

bo
x:

 A
 P

yt
ho

n
to

ol
bo

x
to

 b
en

ch
m

ar
k

th
e

ro
bu

st
ne

ss
 o

f m
ac

hi
ne

 le
ar

ni
ng

 m
od

el
s

3.
3

Ev
al

ua
ti

ng
 A

dv
er

sa
ri

al

R
ob

us
tn

es
s

Ca
nn

ot
 B

e
St

an
da

rd
iz

ed

RQ
4

H
ow

 c
an

 w
e

in
ce

nt
iv

iz
e

st
ro

ng
 r

ob
us

tn
es

s
ev

al
ua

ti
on

s 
an

d
en

su
re

 a
n

ad
eq

ua
te

 p
ee

r-
re

vi
ew

 p
ro

ce
ss

?
di

sc
us

se
d

bu
t p

ub
lic

at
io

ns
 

no
t f

or
m

al
ly

 in
cl

ud
ed

A
dv

er
sa

ri
al

 V
is

io
n

Ch
al

le
ng

e
Pr

op
os

al

A
dv

er
sa

ri
al

 V
is

io
n

Ch
al

le
ng

e
Re

su
lts

O
n

Ev
al

ua
tin

g
A

dv
er

sa
ri

al
 R

ob
us

tn
es

s

RQ
5

Ca
n

w
e

re
so

lv
e

th
e

co
nt

ra
di

ct
io

n
be

tw
ee

n
pe

rf
or

m
an

ce
 

an
d

su
pp

or
t f

or
 d

iff
er

en
t d

ee
p

le
ar

ni
ng

 fr
am

ew
or

ks
?

2.
4

Fa
st

 F
ra

m
ew

or
k-

A
gn

os
ti

c
A

tt
ac

ks

U
si

ng
 E

ag
er

Py

Ea
ge

rP
y:

 W
ri

tin
g

Co
de

 Th
at

 W
or

ks
 N

at
iv

el
y

w
ith

 P
yT

or
ch

, T
en

so
rF

lo
w

, J
A

X
, a

nd
 N

um
Py

Fo
ol

bo
x

N
at

iv
e:

 F
as

t a
dv

er
sa

ri
al

 a
tt

ac
ks

 to

be
nc

hm
ar

k
th

e
ro

bu
st

ne
ss

 o
f m

ac
hi

ne
 le

ar
ni

ng

m
od

el
s

in
 P

yT
or

ch
, T

en
so

rF
lo

w
, a

nd
 J

A
X

RC
3

Im
pr

ov
in

g
A

dv
er

sa
ri

al

Ro
bu

st
ne

ss

RQ
6

D
oe

s
ad

ve
rs

ar
ia

l t
ra

in
in

g
w

ith
 P

GD
—

as
 d

on
e

by
 M

ad
ry

 e
t a

l.
—

so
lv

e
th

e
pr

ob
le

m
s

po
se

d
by

 a
dv

er
sa

ri
al

 e
xa

m
pl

es
, o

r
w

ha
t

ar
e

its
 li

m
it

at
io

ns
?

2.
5

Ro
bu

st
 A

na
ly

si
s

by

Sy
nt

he
si

s
To

w
ar

ds
 th

e
fir

st
 a

dv
er

sa
ri

al
ly

 r
ob

us
t n

eu
ra

l
ne

tw
or

k
m

od
el

 o
n

M
N

IS
T

3.
4

H
as

 th
e

A
dv

er
sa

ri
al

R

ob
us

tn
es

s
Pr

ob
le

m

N
ow

 B
ee

n
So

lv
ed

?
RQ

7
Ca

n
a

ne
ur

al
 n

et
w

or
k

ar
ch

ite
ct

ur
e

be
 r

ob
us

t b
y

de
si

gn
 

ra
th

er
 th

an
 th

ro
ug

h
ad

ve
rs

ar
ia

l t
ra

in
in

g?

Fi
gu
re
1:
O
ve
rv
ie
w
of
th
e
re
la
ti
on
sh
ip
s
be
tw
ee
n
di
ff
er
en
tp
ar
ts
of
th
is
di
ss
er
ta
ti
on
.

Chapter 2

Results

2.1 Decision-Based Adversarial Attacks

This section summarizes:

Wieland Brendel*, Jonas Rauber*, Matthias Bethge (2018). “Decision-Based Adversarial
Attacks: Reliable Attacks Against Black-Box Machine Learning Models”. Sixth International
Conference on Learning Representations (ICLR 2018).

The full publication can be found in the appendix on page 77. * joint first authorship

Motivation

Many existing adversarial attacks rely on gradients (section 1.1) or scores (e.g., P.-Y. Chen,
H. Zhang, et al. 2017; Narodytska et al. 2017) to find small adversarial perturbations.
Unfortunately, gradients and scores are unreliable sources of information. It has been
shown repeatedly that gradients can be easily masked or obfuscated in various ways,
both intentionally and unknowingly (Papernot, McDaniel, Goodfellow, et al. 2017;
Athalye, Carlini, and Wagner 2018). Scores (e.g., probabilities) can be equally easily
manipulated.

With existing adversarial attacks being so easily averted, judging whether a model is
genuinely robust or just insufficiently evaluated is difficult. This problem is the root
cause of many premature robustness claims (see research question 3).

Attacking deployed machine learning models is even more difficult. Deployed models
are usually black-boxes whose inner workings, such as gradients, cannot be accessed
at all. This raises the question whether robustness through obscuritymay actually be a
viable option (see research question 1).

However, both scenarios—gradients and scores being unreliable or unavailable—leave
us with one source of information: the actual decisions. A model’s decisions are
always reliable because any defense that tampers with them by definition jeopardizes
the model’s accuracy and thus defeats its whole purpose. Similarly, even black-box,
real-world machine learning models cannot bluntly hide their decisions because their
decisions are how they affect the world. Adversarial attacks that only rely on a model’s
decisions thus have the potential to attack real-world machine learning systems and
might be less prone to simple, non-robust pseudo-defense like gradient masking.

To capture the characteristics of these attacks, we termed them decision-based adver-
sarial attacks and introduced a new taxonomy that distinguishes adversarial attacks
based on the information or mechanism they depend on. It separates decision-based
attacks from score-based attacks that require meaningful confidence scores (Narodytska
et al. 2017; P.-Y. Chen, H. Zhang, et al. 2017), from transfer-based attacks that depend on
a substitute model from which adversarial perturbations can be transferred (Papernot,
McDaniel, Goodfellow, et al. 2017), and from the common gradient-based attacks that
rely on informative gradients (see section 1.1).1

The goal of this study was to test whether decision-based adversarial attacks are indeed
able to find small adversarial perturbations, attack deployed black-box machine learn-
ing models, and break existing, non-robust defense mechanisms. Inspired by the most
naive decision-based attacks—noise attacks that randomly sample large perturbations
until the input is misclassified (Rauber, Brendel, et al. 2017)—we created the Boundary
Attack. The Boundary Attack is the first non-trivial decision-based adversarial attack
able to attack models directly. Additionally, it can handle various definitions of adver-
sarial examples, including untargeted and targeted attacks. Simply put, it starts with a
far-away adversarial example (e.g., by picking a real, correctly-classified example from
a different class), then moves towards the decision-boundary using a line search, and
finally travels along the decision-boundary (always staying on the adversarial side) us-

1 Croce and Hein (2019) and our follow-up work (Croce, Rauber, et al. 2020) later introduced a new adversar-
ial attack that exploits the piecewise linearity of standard deep neural network architectures. This attack
extends our taxonomy with a fifth attack type (see figure 2, section 3.2). For consistency and following
our new nomenclature, I call it architecture-based attacks (section 2.2).

32

ing a random rejection sampling scheme to find ever smaller adversarial perturbations
until it eventually converges.

Results

We found that our decision-based adversarial attack is competitive with common
gradient-based adversarial attacks in terms of perturbation size in both untargeted
and targeted scenarios. We tested our attack on standard computer vision models for
MNIST, CIFAR-10, and ImageNet and compared the median minimal 𝐿2 adversarial
perturbation size with established gradient-based attacks such as DeepFool (Moosavi-
Dezfooli et al. 2016) and the Carlini-Wagner attack (Carlini and Wagner 2017b). Our
median perturbation size is always within a factor of two compared to the best attack
and often better than at least either DeepFool or Carlini-Wagner.

Running our attack against a model trained with defensive distillation (Papernot,
McDaniel, Wu, et al. 2016), a defense known to introduce gradient masking rather than
truly increasing the robustness (Carlini andWagner 2016), confirmed our hypothesis
that decision-based adversarial attacks can work well when gradient-based attacks
fail because of gradient masking.

To demonstrate that decision-based adversarial attacks pose a realistic threat to real-
world models, we attacked celebrity and logo recognition models hosted by Clarifai, a
web service that offers (black-box) access to various machine learning and computer
vision models. We found that even with the reduced number of queries available
in real-world scenarios, the Boundary Attack can find adversarial examples that are
practically indistinguishable from the original images.

Discussion

Our results not only confirmed that the Boundary Attack could break defenses thanks
to its restriction to decisions but also proved that it could quite effectively minimize the
adversarial perturbations despite this limitation.

“It’s surprising that something so simple works so well.”
—Nicholas Carlini, 2017

This was surprising because a priori, there was no reason to assume that traveling
along the decision-boundary would not quickly get stuck in local minima, and it asks
for caution. The Boundary Attack may still rely on implicit assumptions, local minima

33

may still be a problem in other cases, and non-robust defense mechanisms other
than standard gradient masking may still render the attack ineffective. As with any
other attack, its ineffectiveness should not be misinterpreted as proof of a model’s
robustness. The Boundary Attack could, however, have caught many false robustness
claims prior to publication. Decision-based attacks in general, and the Boundary
Attack in particular, are thus an excellent addition to our arsenal of tools to assess the
robustness of machine learning models.

Our experiments also raised newquestions regarding the security and safety ofmachine
learning applications. In the past, deployedmachine learningmodels seemed relatively
safe from attacks. Their gradients and scores could be hidden from outside attackers,
and transferring adversarial perturbations required a good substitute model (or a
well-matching architecture and access to the training data, neither of which may be
available). Our direct attack against a deployed black-box machine learning model
destroyed this illusion of robustness through obscurity. Consequently, the security and
safety of machine learning applications should be reevaluated.

Given the unique advantages of decision-based adversarial attacks for assessing the
robustness of machine learning models and for attacking models in black-box settings,
our new fine-grained taxonomy is well justified. Our 𝐿2 Boundary Attack was just the
first of its kind. We have since complemented it with the 𝐿0 Pointwise Attack (Schott
et al. 2019), and numerous follow-up works have improved its query-efficiency (e.g.,
Jianbo Chen et al. 2020; H. Li et al. 2020; Maho et al. 2020) or introduced decision-based
attacks for other norms (Ilyas et al. 2018).

2.2 Architecture-Based Adversarial Attacks

This section summarizes:

Francesco Croce*, Jonas Rauber*, Matthias Hein (2020). “Scaling up the Randomized
Gradient-Free Adversarial Attack Reveals Overestimation of Robustness Using Established
Attacks”. International Journal of Computer Vision (IJCV) 128:1028-1046.

The full publication can be found in the appendix on page 111. * joint first authorship

Motivation

Croce and Hein (2019) proposed a new adversarial attack that exploits the piecewise
linearity of standard deep neural network architectures. “The principle of the attack

34

[is] to solve the minimal adversarial perturbation problem on each linear region as it
boils down to a convex [quadratic programming] problem” (Croce, Rauber, et al. 2020).
While the attack requires white-box access to the model (including all intermediate
layers) to specify the quadratic programming problems, it does not use the model’s
gradient for gradient descent. Even a flat region without any gradient can be handled
just like any other region. Unlike gradient-based attacks, it is thus not susceptible to
gradient-masking and suchlike. In this dissertation, we introduce the term architecture-
based attacks to reflect this difference. This new attack type extends the taxonomy
established in the preceding section 2.1.

Croce and Hein (2019) showed that the attack was feasible on small fully-connected
neural networks with up to ten layers of 1024 neurons each and that it outperformed
the then state-of-the-art Carlini-Wagner attack. Unfortunately, the attack was difficult
to scale to larger and more interesting neural networks. It required computing the
full Jacobian matrix of all intermediate pre-ReLU activations w.r.t. the network’s input
for each tiny linear region. This would quickly get out of hand for larger networks,
requiring far more memory and computations than realistically available. Repeatedly
solving the resulting, potentially gigantic quadratic programming problems increases
the computational burden further.

This study aimed to overcome these problems and scale the Linear Region attack to
larger networks. For this, two great ideas had to come together. First, we replaced the
black-box QP solver Gurobi (Gurobi Optimization 2016) used by Croce and Hein (2019)
with a custom solver. When repeatedly solving the quadratic programming problems
of neighboring linear regions, we are only interested in solutions smaller than our
current best adversarial perturbation. Our custom solver for the dual problem can
abort as soon as its lower bound on the solution surpasses the best prior solution.

Beyond the immediate advantage of early stopping, controlling the QP solver’s inner
workings offered another advantage that laid the foundation for our second idea. All
instances of the QP problem’s constraint matrix within our QP solver’s code were either
vector-matrix or matrix-vector products. The constraint matrix, in turn, coincides with
the stacked Jacobian matrices up to a linear transformation. Explicitly computing
the Jacobian matrices thus becomes obsolete. Instead, we can use automatic dif-
ferentiation algorithms to directly and efficiently compute the vector-Jacobian and
Jacobian-vector products using reverse and forward accumulation, respectively.1

1 Reverse-mode automatic differentiation is a generalization of the well-known backpropagation algorithm

35

Thus, these two ideas massively reduced the attack’s computational and memory
requirements and allowed us to scale tomuch larger networks, including ResNets (He et
al. 2016) with convolutional and pooling layers and residual connections. Finally, with
an overhauled region selection strategy, we hoped to improve the attack’s effectiveness
and efficiency even further.

Results

The quality of an attack cannot easily be reduced to a single number. The optimal
attack differs from dataset to dataset, model to model, 𝜖-bound to 𝜖-bound, and even
data point to data point. Robust accuracy, the accuracy remaining despite adversarial
perturbations, depends on the size of the allowed perturbations (𝜖-bound) and, of
course, on themodel. Each attack provides an upper bound on the robust accuracy that
we can compare with the best attack in each condition. The difference between each
attack’s upper bound and the best attack reveals how much the attack overestimates
the robust accuracy (at least). We consider the amount of overestimation for 45 different
conditions covering three datasets, MNIST, GTS, and CIFAR, with three models (with
and without adversarial training) and five 𝜖-bounds each. Looking at the average-case
and worst-case across conditions helps us understand the quality of an attack.

We found that across all conditions, our attack never overestimates the robust accuracy
bymore than 5 percentage points whereas all other attacks (including PGDwith 10000
restarts and Carlini-Wagner with 100000 iterations) overestimate the robust accuracy
by more than 50 percentage points in at least one condition. While this striking
difference is primarily driven by the differences on MNIST, our attack also shows the
best worst-case behavior on all three datasets individually and the best average-case
behavior on two of the three datasets.

To demonstrate the scalability of our attack, we tested it on a wide ResNet with
2 883 593 neurons (a 280-fold increase over Croce and Hein (2019)). It included convolu-
tional and pooling layers, residual connections (He et al. 2016), and batch normalization

used to train neural networks. (The gradient is a degenerated vector-Jacobian product.) Forward-mode
automatic differentiation is less common in machine learning and, until recently, GPU implementations
were relatively scarce. It was available in Theano, but its development ceased in 2017 (Team et al. 2016).
Support in TensorFlow was limited to a third-party implementation (Ren 2017), and PyTorch did not
support it at all. In 2018, JAX (Bradbury et al. 2018) finally ported autograd’s comprehensive automatic
differentiation support (Maclaurin et al. 2015) to GPU (which we ended up using). Interestingly, thanks to
a “new trick for calculating [Jacobian-vector] products” (Townsend 2017) without specialized code by
composing two reverse-mode vector-Jacobian products, TensorFlow and PyTorch have recently retrofitted
official support for forward-mode automatic differentiation after all.

36

(Ioffe et al. 2015), all of which were not previously supported. We found that our at-
tack was competitive with PGD with 1000 restarts and, again, demonstrated the best
worst-case behavior, overestimating robust accuracy by at most 1 percentage point
(compared to PGD’s 3 percentage points).

Discussion

Wehave alreadymotivated the attack by explaining that it is not susceptible to gradient-
masking and suchlike because it does not use themodel’s gradient for gradient descent.
For the same reason, the attack is also “less sensitive to the choice of hyperparameters
as no careful selection of the stepsize is required” (Croce, Rauber, et al. 2020). Even
though themaximally black-box decision-based attacks and themaximally white-box
architecture-based attacks sit at opposite ends of the spectrum, their advantages
over gradient-based attacks thus match in an important aspect. What may seem
contradictory, reveals a common misconception about black-box and white-box attacks
that we discuss further in section 3.2.

The risk for severely overestimating the robust accuracy with established gradient-
based attacks such as PGD, Carlini-Wagner, and DeepFool demonstrated the practical
importance of evaluating adversarial robustness with the Linear Region attack. It is not
always an explicit component in the neural network that causes gradient masking. Our
results showed that gradient-based attacks may work well on an architecture in one
case but can still grossly overestimate the robust accuracy when the same architecture
is trained with adversarial training. Such implicit gradient masking limits the inter-
pretability of robustness evaluations with gradient-based attacks. Our attack’s reliable
worst-case effectiveness demonstrated that it is not subject to such limitations.

Finally, scaling up the original attack by two to three orders of magnitude proved that
the attack’s alternative approach is feasible on large, interestingmodels and not limited
to a prototype. The new attack’s GPU memory requirements are roughly comparable
to training the respective neural network. As long as the network’s architecture is
piecewise linear or can be well approximated with a piecewise linear substitute model,
our attack can measure its robustness. Unlike implicit or accidental gradient masking,
violations of the piecewise linearity are always explicit. The attack is thus well-suited
to reliably estimate the robustness of any piecewise linear model.

37

2.3 Foolbox Adversarial Attacks Library

This section summarizes:

Jonas Rauber*, Wieland Brendel*, Matthias Bethge (2017). “Foolbox: A Python toolbox to
benchmark the robustness of machine learning models”. Reliable Machine Learning in the
Wild Workshop, 34th International Conference on Machine Learning (ICML 2017).

The full publication can be found in the appendix on page 69. * joint first authorship

Motivation

Adversarial robustness is a young and technologically heterogeneous field. While
Python (Van Rossum et al. 1995) has established itself as the field’s de facto standard
programming language, new deep learning frameworks emerge constantly, and the
dominant framework changes every fewyears (e.g., Caffe, Theano, TensorFlow, and now
PyTorch). Additionally, adversarial attacks and machine learning models offer different
interfaces, follow different conventions, and make different assumptions.

These inconsistencies create a huge hurdle for adversarial robustness research. What
if an attack assumes pixel values between -1 and 1, while one model requires mean-
normalized inputs and the other expects values scaled between 0 and 255? How should
one compare one’s own TensorFlowmodel against someone else’s Theano model using
an adversarial attack only implemented for PyTorch? Does the attack expect that the
model’s output tensor represents logits or probabilities?

CleverHans (Papernot, Goodfellow, et al. 2016) was the first adversarial attacks library
trying to address some of these issues. It was no longer necessary to study each attack’s
code individually and to adapt the evaluation to the respective interface. However,
one important problem remained: As a TensorFlow library, CleverHans could not
solve the problems caused by the different deep learning frameworks. Comparing the
robustness of models implemented using different frameworks and ideally adapting to
new frameworks remained an open problem. This study aimed to close this gap with
a framework-agnostic adversarial attacks library (research question 2).

38

Results

The result of our work was Foolbox, the first framework-agnostic adversarial attacks
library. It standardized the interface between attacks and models. This decoupling
of framework-agnostic and framework-specific code allowed us to add support for
various frameworks without reimplementing the attack algorithms. Foolbox launched
with support for five frameworks, PyTorch (Paszke et al. 2019), Keras (Chollet et al.
2015), TensorFlow (Abadi et al. 2016), Theano (Team et al. 2016), and MXNet (T. Chen
et al. 2015), and later gained support for Caffe (Jia et al. 2014), JAX (Bradbury et al. 2018),
MXNet Gluon (T. Chen et al. 2015), and TensorFlow Eager (Agrawal et al. 2019).

Foolbox also launched with fifteen different adversarial attacks and was constantly
updated to include all relevant attacks. Amongst others, Foolbox offered implementa-
tions of DeepFool (Moosavi-Dezfooli et al. 2016), the Carlini-Wagner attack (Carlini and
Wagner 2017b), the L-BFGS attack (Szegedy et al. 2013), FGSM (Goodfellow et al. 2015),
the Local Search Attack (Narodytska et al. 2017), the Basic Iterative Method (Kurakin
et al. 2017), PGD (Madry et al. 2018), the Saliency Map Attack (Papernot, McDaniel,
Jha, et al. 2016), NewtonFool (Jang et al. 2017), and reference implementations of the
Boundary Attack (Brendel, Rauber, and Bethge 2018), the Pointwise Attack (Schott et al.
2019), and the Brendel Bethge attack (Brendel, Rauber, Kümmerer, et al. 2019).

To harmonize the interface of this diverse set of adversarial attacks, Foolbox introduced
a declarative API that extended the decoupling to two more factors: the distance
measure and the adversarial criterion. The former controls how the size of adversarial
perturbations is measured (e.g., using the 𝐿2 norm), while the latter defines the type of
adversarial example (e.g., targeted misclassification). A triplet consisting of a model, a
distance measure, and an adversarial criterion thus concretely describes an adversarial
problem that can then be solved by an adversarial attack for different inputs.

The final step to harmonize the adversarial attacks concerned their results. Given the
above description of an adversarial problemand a specific input, the obvious robustness
measure is the minimal adversarial perturbation size. For those adversarial attacks
that instead “maximize the misclassification” given an 𝜖-bound on the perturbation
size (see section 1.1), Foolbox thus performs an additional line search over that 𝜖-bound
to find the smallest one for which the attack still succeeds.

39

Discussion

Foolbox showed that a simple, declarative API for adversarial attacks reduces the
entrance barrier for new researchers in the field. Numerous scientists and students
profited from easy access to a diverse set of attacks. The extensive support for different
deep learning frameworks helped Foolbox’s widespread adoption. Most notably, it
was the first adversarial attacks library for PyTorch.

Foolbox also laid the foundation for later contributions. The decoupling of attacks and
models using a standardized API inspired our new attack taxonomy that distinguishes
attacks based on the information or mechanism they depend on (section 2.1). The
internal search over 𝜖-bounds to transform fixed-𝜖 attacks into minimization attacks
inspired naive noise attacks. The noise attacks’ decision-based approach, in turn,
inspired the Boundary Attack (Brendel, Rauber, and Bethge 2018).

2.4 Fast Framework-Agnostic Attacks Using EagerPy

This section summarizes two publications:

Jonas Rauber, Matthias Bethge, Wieland Brendel (2020). “EagerPy: Writing Code That
Works Natively with PyTorch, TensorFlow, JAX, and NumPy”. Preprint, arXiv:2008.04175.
and

Jonas Rauber, Roland Zimmermann, Matthias Bethge, Wieland Brendel (2020). “Foolbox
Native: Fast adversarial attacks to benchmark the robustness of machine learning models
in PyTorch, TensorFlow, and JAX”. Journal of Open Source Software, 5(53), 2607.

The full publications can be found in the appendix on page 131 and 143, respectively.

Motivation

New adversarial attacks, new discoveries, and new hardware have increased the need
for fast and efficient implementations of adversarial attacks. The Boundary Attack
queries thousands or even millions of decisions (Brendel, Rauber, and Bethge 2018).
The Linear Region attack executes expensive computations (Croce, Rauber, et al. 2020).
And PGD benefits from hundreds of thousands of restarts (Mosbach et al. 2018). At the
same time, GPUs have been getting faster and faster, demanding implementations that
fully exploit their potential.

40

This development challenges existing framework-agnostic attack libraries. To commu-
nicate with different deep learning frameworks, they require a common interface. To
that end, Foolbox 1 (Rauber, Brendel, et al. 2017), ART (Nicolae et al. 2018), and AdvBox
(Goodman et al. 2020) have all been built using NumPy (Oliphant 2006). NumPy is
the lingua franca for numerical computations in Python and directly supported by all
deep learning frameworks. Unfortunately, it runs on the CPU and using it comes at the
cost of expensive memory copies between CPU and GPU.

Framework-specific attack libraries do not have this problem. CleverHans (Papernot,
Goodfellow, et al. 2016) and AdverTorch (Ding et al. 2019) are two popular adversarial
attack libraries implemented specifically for TensorFlow and PyTorch, respectively.
The attacks and models use the same framework and thus can communicate maxi-
mally efficiently. These libraries, however, forego the benefits of framework-agnostic
attacks.

This study aimed to overcome the shortcomings of both types of libraries and unify
the framework-agnostic design of Foolbox with the performance of native PyTorch,
TensorFlow, or JAX code.

Results

We found that the eager execution APIs in PyTorch, TensorFlow, and JAX have con-
verged sufficiently to build a lightweight abstraction that unifies them. In contrast to
PyTorch and JAX, TensorFlow has only recently adopted eager execution, providing this
new opportunity (Agrawal et al. 2019). With eager execution, all three frameworks now
represent GPU tensors as objects and offer functions or methods to directly (eagerly)
execute computations on them.

Of course, there remain substantial syntactic and semantic differences between the
frameworks. Most notably, the approaches to automatic differentiation range from low-
level in-place methods (PyTorch) through mid-level context managers (TensorFlow) to
high-level functional transformations (JAX).

Our abstraction has removed all these differences and offers a “unifiedAPI that transpar-
ently maps to the different underlying frameworks without computational overhead”
(Rauber, Bethge, et al. 2020). We published our abstraction as an independent library
called EagerPy because we expected it to be useful in many other contexts beyond our
application to Foolbox.

41

EagerPy promises native performance in PyTorch, TensorFlow, and JAX, and our reim-
plementation of Foolbox using EagerPy instead of NumPy confirmed this. Attacks in
Foolbox Native are as fast as attacks directly implemented in, for example, PyTorch, but
support all three frameworks at the same time. In addition, the attacks will automati-
cally inherit support for future frameworks added to EagerPy.

Reimplementing Foolbox with performance in mind implied two other changes. Fool-
box Native no longer forces an attack to minimize the perturbation. Instead, it distin-
guishesminimization attacks from fixed-𝜖 attacks and automatically runs them once
or once for each 𝜖, respectively, to calculate the robust accuracies. The fixed-𝜖 attacks
can even be used efficiently for adversarial training. Finally, all attacks in Foolbox
Native have been rewritten with real batch support and are now amongst the fastest
implementations available.

Discussion

EagerPy unified two goals that previously seemed at odds with each other. Libraries
such as Foolbox can now support more than one framework without sacrificing perfor-
mance and without code duplication. Despite its recent release, other developers have
already adopted EagerPy for their libraries (Maria et al. 2014; Whidden 2020). Even
deep learning researchers working only with a single framework may benefit from us-
ing EagerPy thanks to its other advantages, “such as comprehensive type annotations
and consistent support for method chaining” (Rauber, Bethge, et al. 2020).

There is no shortage of adversarial attack libraries. Google’s CleverHans (Papernot,
Goodfellow, et al. 2016), Borealis AI’s AdverTorch (Ding et al. 2019), IBM’s ART (Nicolae
et al. 2018), Baidu’s AdvBox (Goodman et al. 2020), our Foolbox (Rauber, Brendel, et al.
2017), to just name the most important ones. Of course, each new library justifies itself
with unique advantages. But the large number of libraries also comes at a cost. Can
we expect attack developers to add implementations to all libraries? Certainly not.
Will the library maintainers reimplement all attacks? Unlikely. Already today, specific
attacks are only available in specific attack libraries. But if one has to use different
attack libraries, that puts their whole idea into question. As the field matures, the
different attack libraries should consolidate their efforts. Foolbox Native provides a
chance to do so because it combines advantages previously split between different
attack libraries.

42

2.5 Robust Analysis by Synthesis

This section summarizes:

Lukas Schott*, Jonas Rauber*, Matthias Bethge, Wieland Brendel (2019). “Towards the first
adversarially robust neural network model on MNIST”. Seventh International Conference on
Learning Representations (ICLR 2019).

The full publication can be found in the appendix on page 91. * joint first authorship

Motivation

This study aimed to measure the robustness of a classifier that has learned the distribu-
tion of each class rather than just discriminating between the classes. Inspiration for
this approach came from the observation that it is possible to create unrecognizable
images that DNNs classify as recognizable objects with high confidence (Nguyen et al.
2015). Standard discriminatively trained classifiers do not learn the data distribution
and thus cannot easily prevent this behavior. In contrast, generative models can
evaluate an input’s likelihood and adjust their confidence accordingly.

Using a separate generative model for each class, we can build a classifier. Each class’s
generative model analyzes the input by synthesizing its most likely approximation. The
input is then classified as the class that best explains the observation. We hypothe-
sized that such an analysis-by-synthesis approach should be more robust to adversarial
perturbations because an adversarially perturbed sample from one class should still be
best approximated by that class’s generative model.

Results

Our experiments on the MNIST dataset confirmed our hypothesis. For many samples,
the minimal adversarial perturbations necessary to mislead our analysis-by-synthesis
model were so large that humans could not always unambiguously classify the per-
turbed samples either. Our model also proved robust against attempts to create un-
recognizable images that our model would classify with high confidence. Moreover,
the generative analysis-by-synthesis approach allowed us to directly derive instance-
specific robustness guarantees that were on par with then state-of-the-art methods to
derive guarantees in discriminative classifiers (Hein et al. 2017).

We compared our model with the then state-of-the-art adversarial defense (Madry

43

et al. 2018) and to a standard CNN that binarizes all input pixels to black and white
before classifying the image. Repeating our evaluation procedure on Madry et al.’s
adversarially trained model confirmed their 𝐿∞ robustness results but revealed that
they had substantially overestimated their model’s 𝐿2 robustness.1 In contrast to their
results, we showed that their model “is still highly vulnerable to tiny perturbations
that are meaningless to humans” (Schott et al. 2019). Using the standard CNN with
binarization, we further found that binarization alone is sufficient to achieve substantial
𝐿∞ robustness on the MNIST dataset.

Discussion

Our results indicate that a considerable part of Madry et al.’s increase in 𝐿∞ robustness
can be attributed to learning binarization or thresholding.2 The mostly black and
white pixels in the MNIST dataset entail that the 𝐿∞ norm is not suitable to measure or
bound adversarial perturbation sizes. From Madry et al.’s 𝐿∞ robustness results alone,
it is thus unclear how effective adversarial training with PGD would be in less trivial
settings. Overall, our evaluation of Madry et al.’s model demonstrated the limitations
of adversarial training in its current form and showed that adversarial robustness on
MNIST had not already been achieved (research question 6).

Concerning our own model, our results showed that an analysis-by-synthesis architec-
ture could be robust by design without adversarial training (see research question 7).
Minimal adversarial examples that are hard to classify even for humans are an im-
portant step forward. Nevertheless, it also became clear that different metrics favor
different models and that human-like universal adversarial robustness against pertur-
bations of any kind remains challenging. Besides, the analysis-by-synthesis approach
has yet to be scaled up to more complex datasets (see Ju et al. (2020) for a recent step
in that direction).

On the meta-level, our study has demonstrated that adversarial robustness can be
reliably evaluated if potential pitfalls such as gradient masking and the incentive
problem are taken into account, e.g., by adapting and customizing attacks, using
decision-based attacks, or splitting development and evaluation between co-authors.

1 Madry et al. (2018) have since updated their paper’s preprint version on arXiv to reflect our findings. In its
fourth version (from September 4, 2019), they reversed their interpretation of the results in question and
now state that they had overestimated their model’s 𝐿2 robustness, most likely due to implicit gradient
masking caused by the adversarial training and the learned thresholding.

2 “the first layer […] maps the […] image to three copies thresholded at different values” (Madry et al. 2018)

44

Chapter 3

Discussion

In the studies summarized in this dissertation, we investigated new methods for
evaluating and improving the adversarial robustness ofmachine learningmodels.

First, we showed that adversarial attacks could be effective even without access to
the attacked model’s gradients (section 2.1). This was a crucial finding because all
effective attacks to that point relied on gradient descent, either using the true gradi-
ent or an approximated or transferred gradient (section 1.1). Our results imply that
adversarial attacks are a more realistic threat to machine learning applications than
previously assumed (further discussed in section 3.1) and that it is—even in white-box
scenarios—worthwhile to evaluate a model’s robustness with decision-based attacks
because they do not suffer from the omnipresent gradient masking problem.

Next, we showed that the latter argument could equally be made for another new
type of adversarial attacks that—using the model’s gradient to the largest extent
possible—sits at the other end of the spectrum (section 2.2). Together, these results
imply that the space of adversarial attacks is much broader than previously thought
and that the terms white-box and black-box are inadequate and even misleading when
choosing adversarial attacks (further discussed in section 3.2).

In the introduction, we identified the incentive problem (research question 4) as well
as the practical need for a framework-agnostic adversarial attacks library (section 2.3)
with fast attack implementations (section 2.4). However, we have not yet discussed
the root cause of both the incentive problem and the importance of good tooling: the

45

empirical evaluation of adversarial robustness cannot be standardized as an explicit,
mechanistic process (further discussed in section 3.3).

Finally, we designed an alternative neural network architecture and demonstrated its
robustness using our newmethods for evaluating robustness. This chapter takes a step
back from the concrete discussion of this finding (section 2.5) and instead discusses
how the underlying goal influences our results’ ultimate interpretation (further discussed
in section 3.4).

3.1 No Robustness Through Obscurity

One shall not count on robustness through obscurity. This is perhaps the most im-
portant lesson that machine learning application developers should take from this
dissertation. Not all application developers have to worry about attacks. For some
applications, it is simply implausible that someone has adversarial interests; for others,
even a successful adversarial attack may not pose a problem. However, if adversarial
attacks are a conceptual threat for the respective application, then they should also be
considered a practical threat.

Limitations of the Boundary Attack, like the relatively large number of queries, should
not be considered principal limitations that can be exploited to prevent decision-based
attacks. Our NeurIPS 2018 Adversarial Vision Challenge (Brendel, Rauber, Kurakin,
Papernot, Veliqi, Mohanty, et al. 2020) has demonstrated that the Boundary Attack
was just the first of its kind and that decision-based attacks can be made much more
query-efficient (e.g., Jianbo Chen et al. 2020; H. Li et al. 2020; Maho et al. 2020).

Moreover, one often overestimates the ability to keep certain information secret. The
long history of failed attempts to achieve security through obscurity demonstrates
that attackers can often obtain much more information than expected, e.g., through
side channels or social engineering. Trying to achieve robustness through obscurity in
machine learning applications would be another flawed attempt at security through
obscurity.

For the above reasons, a model’s worst-case robustness in black-box scenarios may be
better captured by its robustness in a white-box setting than by assuming any specific
black-box scenario. Even if outside attackers are confined to a black-box scenario,
evaluating the robustness in a white-box scenario can thus be advisable.

46

3.2 The Misconception of White-Box and Black-Box Attacks

Which adversarial attack should I choose? This question gets asked a lot, and it is a
legitimate question. The sheer number of adversarial attacks is overwhelming, and
the various types of adversarial attacks can be confusing. As if that were not enough,
our work introduced two new types of adversarial attacks—decision-based adversarial
attacks (section 2.1) and architecture-based adversarial attacks (section 2.2)—that
extend the space of adversarial attacks at both ends of the spectrum (figure 2).

Decision-Based Score-Based Transfer-Based Gradient-Based Architecture-Based

less information more information

final model predictions
(e.g., predicted classes)

predicted logits or
probabilities

training data and
similar architecture

gradient suitable for
gradient descent

piecewise linear architecture
and access to all parameters

Boundary Attack Local Search, ZOO,
CMA-ES, etc.

Learned Substitute,
Ensemble Transfer, etc.

PGD, Carlini-Wagner,
DeepFool, FGSM, etc.

Linear Region Attack

Figure 2: Extended version of our attack taxonomy (Brendel, Rauber, and Bethge 2018)

We found that both new types are less susceptible to gradient masking than the
common gradient-based attacks. While sections 2.1 and 2.2 explained this observation,
they only started to explore its implications, which are therefore discussed in more
detail in the following.

Threat scenarios have a clear hierarchy. In a white-box scenario, an attacker has access
to all internal information. Gradient- and architecture-based attacks typically require a
white-box scenario because gradients are not usually accessible externally. In a black-
box scenario, an attacker is limited to the information and access inherently offered
by the model. Decision-, score-, and transfer-based attacks are typically considered
possible even in a black-box scenario (depending on what is available). This is why the
two groups are often called white-box and black-box attacks, respectively.

Unfortunately, this naming convention ismisleading because it implies a false hierarchy
between attacks. The amount of information an attack requires, uses, and has access
to is not indicative of its strength or reliability in either direction. “Black-box” attacks
may find tiny perturbations even without gradients (section 2.1). “White-box” attacks
may exploit the gradient despite gradient masking and flat regions (section 2.2). An
attack’s effectiveness depends on its assumptions (coarsely captured by the different
types in our taxonomy) and their compatibility with the attacked model and with the
threat scenario, but not on whether it is a “white-box” or “black-box” attack.

47

To avoid the common fallacy thatwhite-box attacks are stronger than black-box attacks,
the terms “white-box” and “black-box” should only be used to distinguish threat
scenarios—where there is a clear hierarchy—but not to characterize adversarial attacks.
A white-box scenario permits all attacks, and all types of attacks should be considered,
not just the ones that require a white-box scenario.

3.3 Evaluating Adversarial Robustness Cannot Be Standardized

When a measure becomes a target, it ceases to be a good measure.
—Goodhart’s law (Strathern 1997)

Applied to adversarial robustness, Goodhart’s law implies that any concrete robustness
evaluation procedure with select attacks ceases to be a good measure of adversarial
robustness when it becomes the target of defenses.

Unfortunately, targeting the measure is almost an axiom of human behavior. From the
scientist who plays the citation game (Biagioli 2016) to the automobile manufacturer
that activates emission controls only during testing (Reynaert et al. 2016), humans
target the chosenmeasure, and the once informative proxy loses its value. In the case of
adversarial robustness, it is even more absurd because the defense developers—apart
from occasional input from reviewers—choose the evaluation procedure themselves.
Either way, it follows from Goodhart’s law that a standardized evaluation procedure
known to the defense will not be a good measure of adversarial robustness.

For this reason, judging a defense’s empirical adversarial robustness is ultimately
always at the discretion of humans and cannot be fully automized with adversarial
attacks (by contrast, robustness guarantees can be objectively verified but are, as
of yet, often uninformative). This view is not only supported by our guidelines on
evaluating adversarial robustness (Carlini, Athalye, et al. 2019) but also by a recent
paper emphasizing the importance of carefully adapting the attacks to the respective
defenses and explaining how to do so (Tramèr, Carlini, et al. 2020).

Having said that, there are also recent attempts to standardize the benchmarking of
adversarial defenses by imposing restrictions on the models (Croce, Andriushchenko,
Sehwag, et al. 2020). It remains to be seen whether those restrictions are sufficient to
ensure that their standardized evaluation remains informative in the long run, and

48

the authors themselves already acknowledge that adaptive attacks may improve over
their standardized evaluation.

Of course, a non-standardized adaptive evaluation process that is at the discretion
of the respective researchers bears a risk that we identified earlier as the incentive
problem (section 1.2). In the fourth research question, we asked how to overcome
this problem and promised to discuss three ideas. The first idea was establishing the
guidelines mentioned above (Carlini, Athalye, et al. 2019). It is difficult to assess the
extent to which they increased the awareness of reviewers and defense researchers
for common pitfalls and best practices. On the one hand, many publications refer to
these guidelines to justify their evaluation procedure. On the other hand, insufficiently
evaluated defenses still pass the peer-review processes of top-tier conferences to this
day (Tramèr, Carlini, et al. 2020). Time will tell whether Tramèr et al.’s more explicit
demonstration of the methodology behind adaptive attacks can further mitigate this
problem.

Second, we organized the Adversarial Vision Challenge, a competition that pitched
proposed defenses against active, opposing evaluators (Brendel, Rauber, Kurakin,
Papernot, Veliqi, Salathé, et al. 2018). The goal of this challenge was twofold. On the
concrete level, the challenge aimed, among other things, to stimulate new decision-
based adversarial attacks. On the meta-level, organizing this two-sided competition
aimed at spreading the idea that the development of a defense mechanism and its
robust evaluation should be separated and executed by independent parties. To that
end, the restriction to decision-based attacks was a severe limitation. Nevertheless,
the challenge demonstrated the principles of an active review process.

In the future, machine learning conferences and journals should consider making
their own standard peer-review process more adversarial by requiring all proclaimed
defenses to release their code publicly at submission time and by asking reviewers
and third-parties to perform adaptive attacks against the submissions prior to accep-
tance.

Until then, we can simulate this separation of concerns by assigning different roles to
different co-authors. We followed this third idea when publishing our own defense
(Schott et al. 2019), and the longevity of the results suggests that this may have been
beneficial.

Finally, in the context of a non-standardized evaluation that leans on individual re-

49

searchers, having access to the right tools and fast adversarial attack implementations
(see section 2.4) is not a mere convenience but can directly impact the researchers’
choices and, ultimately, the results. Further elaboration of this point can be found in
the fifth research question’s derivation on page 25.

3.4 Has the Adversarial Robustness Problem Now Been Solved?

Has the adversarial robustness problem, at least on MNIST, now been solved? This
question has been asked when Madry et al. (2018) demonstrated effective adversarial
training on MNIST. It has been brought up again when we introduced our analysis-by-
synthesis model on MNIST. Rarely, someone answers with an unconditional, satisfying
yes or no. Instead, it prompts a counterquestion: What does it mean to solve adversarial
robustness?

One option is to define the adversarial robustness problem as solved if the model
achieves high accuracy despite adversarial perturbations up to a certain size. This is
what we practically capture through the definitions introduced in section 1.1. Once a
metric and an allowed perturbation size have been specified, the objective is mathemat-
ically well-defined. Adversarial attacks and robustness guarantees can approximate it
from both sides, independent of human perception. We obtain a concrete quantitive
measure of a model’s adversarial robustness, e.g., 88% robust accuracy on MNIST for
𝜖𝐿∞ = 0.3 (Madry et al.’s model) or 80% robust accuracy for 𝜖𝐿2 = 1.5 (our analysis-
by-synthesis model). Finally, we can interpret the quantitative result to claim that
the problem has been solved or not. Given that even human accuracy starts to dete-
riorate for perturbations with an 𝐿2 norm of 1.5, it seems reasonable to interpret the
glass as half full rather than half empty, but the ultimate interpretation is left to the
reader.

Another option is to return to our actual motivation for improving a specific model’s
adversarial robustness. If an application’s security hinges on a machine learning
model’s adversarial robustness, then eliminating that threat is what defines whether
the respective robustness problem has been solved. In some cases, it may be enough
to prevent imperceptible adversarial perturbations. In others, it can be important to
be robust to perturbations up to a certain physical size before it becomes acceptable to
make mistakes. Ultimately, the criterion depends on the model’s concrete application
and not on the machine learning task itself. Whether adversarial robustness on MNIST
is solved or not is—from this perspective—inherently undefined. It depends onwhether

50

we, for example, aim to recognize the postal code on a letter or the digits on a street
sign.

If our motivation for adversarial robustness was instead to create a model that mimics
human perception to the largest extent possible, it implies yet another definition
of solved. In this case, it is inevitable to compare our model’s perception with our
own perception. This is typically done by qualitatively assessing whether minimal
adversarial perturbations that mislead the machine learning model are also ambiguous
to humans. In such an analysis, our analysis-by-synthesis model showed a substantial
improvement over all other models (our results refuted Madry et al.’s original claim
in this regard) and so got much closer to resembling human perception, albeit a gap
remains. While the analysis-by-synthesis model may not have fully solved adversarial
robustness on MNIST, it is currently the machine learning model that is most similar
to human digit perception.

This view is not only supported by our experiments but also by results obtained in
other labs. Golan et al. (2020) tested different machine learning models on controver-
sial stimuli that generalize the concept of adversarial examples and reveal the models’
inductive biases. They found that our analysis-by-synthesis model was the best per-
forming model on controversial stimuli. Additionally, a very recent study (Ju et al.
2020) extended the analysis-by-synthesis approach to more complex image classifica-
tion tasks, including street sign recognition and SVHN. Independent of whether the
adversarial robustness problem has now been solved or not, we can thus conclude
that important progress has been made in recent years.

3.5 Conclusions & Outlook

Four years ago, adversarial examples were easily dismissed as practically irrelevant
because they could only be created with access to the models’ gradients. Any hy-
pothesis for an effective defense mechanism was impossible to confirm because an
improvement in robustness could not be distinguished from an impairment of the
evaluation methods. Testing a model’s robustness with a specific adversarial attack
was cumbersome and time-consuming.

Today, we are aware of the threats posed by adversarial attacks. We now have the
tools to run adversarial attacks effortlessly. Gradient masking can be identified and
circumvented, and reviewers start taking a closer look before accepting dubious de-

51

fenses. We even see the first genuine improvements in adversarial robustness thanks
to adversarial training and the analysis-by-synthesis architecture. The contributions
presented in this dissertation are an essential part of this success.

Notwithstanding the progress that has been made, there remains work to be done. By
advancing adversarial training and the analysis-by-synthesis architecture, it may be
possible to scale these ideas to more complex datasets. The recent extension of the
analysis-by-synthesis model is a promising example (Ju et al. 2020). Equipped with
the techniques and attack methods to reliably estimate adversarial robustness, also
completely new hypotheses for defense mechanisms can now be tested. In addition
to defense mechanisms, it seems worthwhile to investigate new architectures and
constraints that facilitate better robustness guarantees. There is still a considerable
gap between robustness guarantees and adversarial attacks. At the same time, it is
important not to lose sight of the underlying goals. Those—and not robust accura-
cies—ultimately determine where we stand and where we want to go.

52

Bibliography

Abadi, Martı́n, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. (2016).
“TensorFlow: A System for Large-Scale Machine Learning.” In: 12th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283. ISBN:
978-1-931971-33-1. arXiv: 1605.08695 (cit. on pp. 20, 39).

Agrawal, Akshay, Akshay Naresh Modi, Alexandre Passos, Allen Lavoie, Ashish Agarwal,
Asim Shankar, Igor Ganichev, Josh Levenberg, Mingsheng Hong, Rajat Monga, et
al. (2019). “TensorFlow Eager: A multi-stage, Python-embedded DSL for machine
learning.” In: Systems for Machine Learning (SysML) 2019 (cit. on pp. 39, 41).

Anil, Cem, James Lucas, and Roger Grosse (2019). “Sorting out Lipschitz function
approximation.” In: International Conference on Machine Learning. PMLR, pp. 291–301.
arXiv: 1811.05381 (cit. on p. 22).

Athalye, Anish and Nicholas Carlini (2018). “On the Robustness of the CVPR 2018
White-Box Adversarial Example Defenses.” In: arXiv: 1804.03286 (cit. on pp. 21, 25).

Athalye, Anish, Nicholas Carlini, and David AWagner (2018). “Obfuscated Gradients
Give a False Sense of Security: Circumventing Defenses to Adversarial Examples.”
In: Proceedings of the 35th International Conference on Machine Learning. Vol. 80.
Proceedings of Machine Learning Research. PMLR, pp. 274–283. arXiv: 1802.00420.
URL: http://proceedings.mlr.press/v80/athalye18a.html (cit. on pp. 21, 24, 25, 31).

Bafna, Mitali, Jack Murtagh, and Nikhil Vyas (2018). “Thwarting Adversarial Exam-
ples: An 𝐿0-Robust Sparse Fourier Transform.” In: Advances in Neural Information
Processing Systems 31, pp. 10075–10085. arXiv: 1812.05013 (cit. on p. 20).

Barreno, Marco, Blaine Nelson, Russell Sears, Anthony D Joseph, and J D Tygar (2006).
“Can Machine Learning Be Secure?” In: Proceedings of the 2006 ACM Symposium on
Information, Computer and Communications Security. ASIACCS ’06. Association for

53

https://arxiv.org/abs/1605.08695
https://arxiv.org/abs/1811.05381
https://arxiv.org/abs/1804.03286
https://arxiv.org/abs/1802.00420
http://proceedings.mlr.press/v80/athalye18a.html
https://arxiv.org/abs/1812.05013

Computing Machinery, pp. 16–25. ISBN: 1-59593-272-0. DOI: 10.1145/1128817.1128824
(cit. on p. 16).

Biagioli, Mario (2016). “Watch out for cheats in citation game.” In: Nature 535.7611,
pp. 201–201. DOI: 10.1038/535201a (cit. on p. 48).

Biggio, Battista, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel
Laskov, Giorgio Giacinto, and Fabio Roli (2013). “Evasion attacks against machine
learning at test time.” In: Joint European Conference on Machine Learning and Knowl-
edge Discovery in Databases. Springer, pp. 387–402. DOI: 10.1007/978-3-642-40994-3_25
(cit. on p. 16).

Biggio, Battista, Blaine Nelson, and Pavel Laskov (2012). “Poisoning Attacks against
Support Vector Machines.” In: Proceedings of the 29th International Coference on
International Conference on Machine Learning. ICML’12. Omnipress, pp. 1467–1474.
ISBN: 978-1-4503-1285-1. arXiv: 1206.6389 (cit. on p. 16).

Bradbury, James, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,
Dougal Maclaurin, and SkyeWanderman-Milne (2018). JAX: composable transforma-
tions of Python+NumPy programs. URL: http://github.com/google/jax (cit. on pp. 36,
39).

Brendel, Wieland and Matthias Bethge (2017). “Comment on ‘Biologically inspired
protection of deep networks from adversarial attacks’.” In: arXiv: 1704.01547 (cit. on
p. 21).

Brendel, Wieland, Jonas Rauber, and Matthias Bethge (2018). “Decision-Based Adver-
sarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models.” In:
International Conference on Learning Representations. arXiv: 1712.04248. URL: https:
//openreview.net/forum?id=SyZI0GWCZ (cit. on pp. 39, 40, 47).

Brendel,Wieland, Jonas Rauber,Matthias Kümmerer, IvanUstyuzhaninov, andMatthias
Bethge (2019). “Accurate, reliable and fast robustness evaluation.” In: Advances in
Neural Information Processing Systems 32. arXiv: 1907.01003 (cit. on pp. 19, 39).

Brendel,Wieland, Jonas Rauber,AlexeyKurakin,Nicolas Papernot, BeharVeliqi, Sharada
PMohanty, Florian Laurent,Marcel Salathé,Matthias Bethge,YaodongYu,Hongyang
Zhang, Susu Xu, Hongbao Zhang, Pengtao Xie, Eric P Xing, Thomas Brunner, Fred-
erik Diehl, Jérôme Rony, Luiz Gustavo Hafemann, Shuyu Cheng, Yinpeng Dong,
Xuefei Ning, Wenshuo Li, and YuWang (2020). “Adversarial Vision Challenge.” In:
The NeurIPS ’18 Competition. Springer International Publishing, pp. 129–153. ISBN:
978-3-030-29135-8. DOI: 10.1007/978-3-030-29135-8_5 (cit. on p. 46).

Brendel,Wieland, Jonas Rauber, Alexey Kurakin, Nicolas Papernot, Behar Veliqi, Marcel
Salathé, Sharada PMohanty, andMatthias Bethge (2018).Adversarial Vision Challenge.

54

https://doi.org/10.1145/1128817.1128824
https://doi.org/10.1038/535201a
https://doi.org/10.1007/978-3-642-40994-3_25
https://arxiv.org/abs/1206.6389
http://github.com/google/jax
https://arxiv.org/abs/1704.01547
https://arxiv.org/abs/1712.04248
https://openreview.net/forum?id=SyZI0GWCZ
https://openreview.net/forum?id=SyZI0GWCZ
https://arxiv.org/abs/1907.01003
https://doi.org/10.1007/978-3-030-29135-8_5

Competition Proposal. NeurIPS 2018 Competition Track. arXiv: 1808.01976 (cit. on
pp. 25, 49).

Buckman, Jacob, Aurko Roy, Colin Raffel, and Ian Goodfellow (2018). “Thermometer
Encoding: One HotWayTo Resist Adversarial Examples.” In: International Conference
on Learning Representations. URL: https://openreview.net/forum?id=S18Su--CW
(cit. on p. 20).

Byrd, Richard H, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu (1995). “A Limited Mem-
ory Algorithm for Bound Constrained Optimization.” In: SIAM Journal on scientific
computing 16.5, pp. 1190–1208. DOI: 10.1137/0916069 (cit. on p. 16).

Carlini, Nicholas (2020). A Complete List of All (arXiv) Adversarial Example Papers. URL:
https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
(cit. on p. 16).

Carlini, Nicholas, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber,
Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Kurakin (2019). “On
Evaluating Adversarial Robustness.” In: arXiv: 1902.06705. URL: https://github.com/
evaluating-adversarial-robustness/adv-eval-paper (cit. on pp. 25, 48, 49).

Carlini, Nicholas and David AWagner (2016). “Defensive Distillation is Not Robust to
Adversarial Examples.” In: arXiv: 1607.04311 (cit. on pp. 21, 33).

Carlini, Nicholas and David AWagner (2017a). “Magnet and ‘efficient defenses against
adversarial attacks‘ are not robust to adversarial examples.” In: arXiv: 1711.08478
(cit. on p. 21).

Carlini, Nicholas and David AWagner (2017b). “Towards Evaluating the Robustness of
Neural Networks.” In: 38th IEEE Symposium on Security and Privacy. IEEE, pp. 39–57.
DOI: 10.1109/SP.2017.49 (cit. on pp. 17, 33, 39).

Chen, Jianbo, Michael I Jordan, and Martin JWainwright (2020). “HopSkipJumpAttack:
A query-efficient decision-based attack.” In: 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, pp. 1277–1294. DOI: 10.1109/SP40000.2020.00045 (cit. on pp. 34,
46).

Chen, Pin-Yu, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh (2018). “EAD:
Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples.” In: AAAI,
pp. 10–17. arXiv: 1709.04114. URL: https://www.aaai.org/ocs/index.php/AAAI/
AAAI18/paper/view/16893 (cit. on p. 19).

Chen, Pin-Yu, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh (2017). “ZOO:
Zeroth Order Optimization Based Black-Box Attacks to Deep Neural Networks
without Training Substitute Models.” In: Proceedings of the 10th ACMWorkshop on

55

https://arxiv.org/abs/1808.01976
https://openreview.net/forum?id=S18Su--CW
https://doi.org/10.1137/0916069
https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
https://arxiv.org/abs/1902.06705
https://github.com/evaluating-adversarial-robustness/adv-eval-paper
https://github.com/evaluating-adversarial-robustness/adv-eval-paper
https://arxiv.org/abs/1607.04311
https://arxiv.org/abs/1711.08478
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP40000.2020.00045
https://arxiv.org/abs/1709.04114
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16893
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16893

Artificial Intelligence and Security. AISec ’17. Association for Computing Machinery,
pp. 15–26. ISBN: 978-1-4503-5202-4. DOI: 10.1145/3128572.3140448 (cit. on pp. 31, 32).

Chen, Tianqi, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao,
Bing Xu, Chiyuan Zhang, and Zheng Zhang (2015). “MXNet: A Flexible and Efficient
Machine Learning Library for Heterogeneous Distributed Systems.” In: LearningSys
Workshop at Neural Information Processing Systems 2015. arXiv: 1512.01274 (cit. on
p. 39).

Chen, Xinyun, Chang Liu, Bo Li, Kimberly Lu, andDawn Song (2017). “Targeted backdoor
attacks on deep learning systems using data poisoning.” In: arXiv: 1712.05526 (cit. on
p. 16).

Chollet, François et al. (2015). Keras. URL: https://keras.io (cit. on p. 39).
Croce, Francesco, Maksym Andriushchenko, and Matthias Hein (2019). “Provable Ro-

bustness of ReLU networks via Maximization of Linear Regions.” In: Proceedings
of Machine Learning Research. Vol. 89. Proceedings of Machine Learning Research.
PMLR, pp. 2057–2066. arXiv: 1810.07481. URL: http://proceedings.mlr.press/v89/
croce19a.html (cit. on p. 22).

Croce, Francesco, Maksym Andriushchenko, Vikash Sehwag, Nicolas Flammarion,
Mung Chiang, Prateek Mittal, and Matthias Hein (2020). “RobustBench: a standard-
ized adversarial robustness benchmark.” In: arXiv: 2010.09670 (cit. on p. 48).

Croce, Francesco and Matthias Hein (2019). “A Randomized Gradient-Free Attack on
ReLU Networks.” In: Pattern Recognition (GCPR 2018). Springer International Publish-
ing, pp. 215–227. ISBN: 978-3-030-12939-2. DOI: 10.1007/978-3-030-12939-2_16 (cit. on
pp. 32, 34–36).

Croce, Francesco andMatthias Hein (2020). “Provable robustness against all adversarial
𝑙𝑝-perturbations for 𝑝 ≥ 1.” In: International Conference on Learning Representations.
arXiv: 1905.11213. URL: https://openreview.net/forum?id=rklk_ySYPB (cit. on p. 22).

Croce, Francesco, Jonas Rauber, and Matthias Hein (2020). “Scaling up the Random-
ized Gradient-Free Adversarial Attack Reveals Overestimation of Robustness Using
Established Attacks.” In: International Journal of Computer Vision. ISSN: 1573-1405.
DOI: 10.1007/s11263-019-01213-0 (cit. on pp. 32, 35, 37, 40).

Dalvi, Nilesh, Pedro Domingos, Mausam, Sumit Sanghai, and Deepak Verma (2004).
“Adversarial Classification.” In: Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’04. ACM, pp. 99–108. ISBN:
1-58113-888-1. DOI: 10.1145/1014052.1014066 (cit. on p. 11).

Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei (2009). “ImageNet:
A large-scale hierarchical image database.” In: IEEE Conference on Computer Vision

56

https://doi.org/10.1145/3128572.3140448
https://arxiv.org/abs/1512.01274
https://arxiv.org/abs/1712.05526
https://keras.io
https://arxiv.org/abs/1810.07481
http://proceedings.mlr.press/v89/croce19a.html
http://proceedings.mlr.press/v89/croce19a.html
https://arxiv.org/abs/2010.09670
https://doi.org/10.1007/978-3-030-12939-2_16
https://arxiv.org/abs/1905.11213
https://openreview.net/forum?id=rklk_ySYPB
https://doi.org/10.1007/s11263-019-01213-0
https://doi.org/10.1145/1014052.1014066

and Pattern Recognition (CVPR). IEEE, pp. 248–255. DOI: 10.1109/CVPR.2009.5206848
(cit. on p. 17).

Dhillon, Guneet S., Kamyar Azizzadenesheli, Jeremy D. Bernstein, Jean Kossaifi, Aran
Khanna, Zachary C. Lipton, and Animashree Anandkumar (2018). “Stochastic ac-
tivation pruning for robust adversarial defense.” In: International Conference on
Learning Representations. arXiv: 1803.01442. URL: https://openreview.net/forum?id=
H1uR4GZRZ (cit. on p. 20).

Dieleman, Sander, Jan Schlüter, Colin Raffel, Eben Olson, Søren Kaae Sonderby, et al.
(2015). Lasagne: First release. DOI: 10.5281/zenodo.27878 (cit. on p. 23).

Ding, Gavin Weiguang, Luyu Wang, and Xiaomeng Jin (2019). “AdverTorch v0.1: An
Adversarial Robustness Toolbox based on PyTorch.” In: arXiv: 1902.07623 (cit. on
pp. 20, 26, 41, 42).

Dong, Yinpeng, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo
Li (2018). “Boosting Adversarial AttacksWithMomentum.” In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). DOI: 10.1109/CVPR.
2018.00957 (cit. on p. 19).

Elsayed, Gamaleldin F, Ian Goodfellow, and Jascha Sohl-Dickstein (2019). “Adversarial
Reprogramming of Neural Networks.” In: International Conference on Learning Repre-
sentations. arXiv: 1806.11146. URL: https://openreview.net/forum?id=Syx_Ss05tm
(cit. on p. 16).

Engstrom, Logan, Andrew Ilyas, and Anish Athalye (2018). “Evaluating and under-
standing the robustness of adversarial logit pairing.” In: arXiv: 1807.10272 (cit. on
p. 21).

Geirhos, Robert, Carlos R Medina Temme, Jonas Rauber, Heiko H Schütt, Matthias
Bethge, and Felix AWichmann (2018). “Generalisation in humans and deep neural
networks.” In: Advances in Neural Information Processing Systems 31. arXiv: 1808.
08750.

Golan, Tal, Prashant C Raju, and Nikolaus Kriegeskorte (2020). “Controversial stimuli:
Pitting neural networks against each other as models of human cognition.” In:
Proceedings of the National Academy of Sciences 117.47, pp. 29330–29337. ISSN: 0027-
8424. DOI: 10.1073/pnas.1912334117 (cit. on p. 51).

Goodfellow, Ian, Jonathon Shlens, and Christian Szegedy (2015). “Explaining and Har-
nessing Adversarial Examples.” In: International Conference on Learning Representa-
tions. arXiv: 1412.6572 (cit. on pp. 14, 18, 21, 39).

57

https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/1803.01442
https://openreview.net/forum?id=H1uR4GZRZ
https://openreview.net/forum?id=H1uR4GZRZ
https://doi.org/10.5281/zenodo.27878
https://arxiv.org/abs/1902.07623
https://doi.org/10.1109/CVPR.2018.00957
https://doi.org/10.1109/CVPR.2018.00957
https://arxiv.org/abs/1806.11146
https://openreview.net/forum?id=Syx_Ss05tm
https://arxiv.org/abs/1807.10272
https://arxiv.org/abs/1808.08750
https://arxiv.org/abs/1808.08750
https://doi.org/10.1073/pnas.1912334117
https://arxiv.org/abs/1412.6572

Goodman, Dou, Hao Xin, Wang Yang, Wu Yuesheng, Xiong Junfeng, and Zhang Huan
(2020). Advbox: a toolbox to generate adversarial examples that fool neural networks.
arXiv: 2001.05574 (cit. on pp. 41, 42).

Gu, Tianyu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg (2019). “BadNets: Eval-
uating Backdooring Attacks on Deep Neural Networks.” In: IEEE Access 7, pp. 47230–
47244. DOI: 10.1109/ACCESS.2019.2909068 (cit. on p. 16).

Guo, Chuan, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten (2018).
“Countering Adversarial Images using Input Transformations.” In: International
Conference on Learning Representations. arXiv: 1711.00117. URL: https://openreview.
net/forum?id=SyJ7ClWCb (cit. on p. 20).

Gurobi Optimization, Inc. (2016). Gurobi Optimizer Reference Manual. URL: http://www.
gurobi.com (cit. on p. 35).

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). “Deep Residual
Learning for Image Recognition.” In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 770–778. DOI: 10.1109/CVPR.2016.90 (cit. on
p. 36).

Hein, Matthias and Maksym Andriushchenko (2017). “Formal Guarantees on the Ro-
bustness of a Classifier against Adversarial Manipulation.” In: Advances in Neural
Information Processing Systems 30, pp. 2266–2276. arXiv: 1705.08475 (cit. on pp. 22,
43).

Hu, Shengyuan, Tao Yu, Chuan Guo, Wei-Lun Chao, and Kilian QWeinberger (2019).
“A New Defense Against Adversarial Images: Turning aWeakness into a Strength.”
In: Advances in Neural Information Processing Systems. Vol. 32, pp. 1635–1646. arXiv:
1910.07629 (cit. on p. 20).

Ilyas, Andrew, Logan Engstrom, Anish Athalye, and Jessy Lin (2018). “Black-box Ad-
versarial Attacks with Limited Queries and Information.” In: Proceedings of the 35th
International Conference on Machine Learning. Vol. 80. Proceedings of Machine Learn-
ing Research. PMLR, pp. 2137–2146. arXiv: 1804.08598. URL: http://proceedings.mlr.
press/v80/ilyas18a.html (cit. on p. 34).

Ioffe, Sergey and Christian Szegedy (2015). “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift.” In: Proceedings of the 32nd
International Conference on International Conference on Machine Learning - Volume 37.
ICML’15, pp. 448–456. arXiv: 1502.03167 (cit. on p. 37).

Jang, Uyeong, Xi Wu, and Somesh Jha (2017). “Objective Metrics and Gradient Descent
Algorithms for Adversarial Examples in Machine Learning.” In: Proceedings of the
33rd Annual Computer Security Applications Conference. ACSAC 2017. Association for

58

https://arxiv.org/abs/2001.05574
https://doi.org/10.1109/ACCESS.2019.2909068
https://arxiv.org/abs/1711.00117
https://openreview.net/forum?id=SyJ7ClWCb
https://openreview.net/forum?id=SyJ7ClWCb
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1705.08475
https://arxiv.org/abs/1910.07629
https://arxiv.org/abs/1804.08598
http://proceedings.mlr.press/v80/ilyas18a.html
http://proceedings.mlr.press/v80/ilyas18a.html
https://arxiv.org/abs/1502.03167

Computing Machinery, pp. 262–277. ISBN: 978-1-4503-5345-8. DOI: 10.1145/3134600.
3134635 (cit. on p. 39).

Jia, Yangqing, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell (2014). “Caffe: Convolutional archi-
tecture for fast feature embedding.” In: Proceedings of the 22nd ACM international
conference on Multimedia, pp. 675–678. DOI: 10.1145/2647868.2654889 (cit. on pp. 23,
39).

Ju, An and David AWagner (2020). “E-ABS: Extending the Analysis-By-Synthesis Robust
Classification Model to More Complex Image Domains.” In: Proceedings of the 13th
ACM Workshop on Artificial Intelligence and Security. AISec’20. Association for Com-
puting Machinery, pp. 25–36. ISBN: 978-1-4503-8094-2. DOI: 10.1145/3411508.3421382
(cit. on pp. 44, 51, 52).

Kannan, Harini, Alexey Kurakin, and Ian Goodfellow (2018). “Adversarial logit pairing.”
In: arXiv: 1803.06373 (cit. on p. 20).

Kingma, Diederik P and JimmyBa (2015). “Adam:Amethod for stochastic optimization.”
In: International Conference on Learning Representations. arXiv: 1412.6980 (cit. on
p. 17).

Krizhevsky, Alex and Geoffrey Hinton (2009). Learning multiple layers of features from
tiny images. Technical Report. University of Toronto. URL: http://www.cs.toronto.
edu/~kriz/learning-features-2009-TR.pdf (cit. on p. 21).

Kümmerer, Matthias, Lucas Theis, and Matthias Bethge (2015). “Deep Gaze I: Boosting
Saliency Prediction with Feature Maps Trained on ImageNet.” In: ICLR Workshop.
arXiv: 1411.1045 (cit. on p. 13).

Kurakin, Alexey, Ian Goodfellow, and Samy Bengio (2017). “Adversarial examples in the
physical world.” In: ICLR Workshop. arXiv: 1607.02533 (cit. on pp. 18, 20, 23, 39).

LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner (1998). “Gradient-based
learning applied to document recognition.” In: Proceedings of the IEEE 86.11, pp. 2278–
2324. DOI: 10.1109/5.726791 (cit. on p. 21).

Li, Huichen, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, and Bo Li (2020). “QEBA: Query-
Efficient Boundary-Based BlackboxAttack.” In: Proceedings of the IEEE/CVFConference
on Computer Vision and Pattern Recognition (CVPR). DOI: 10.1109/CVPR42600.2020.
00130 (cit. on pp. 34, 46).

Li, Qiyang, Saminul Haque, Cem Anil, James Lucas, Roger B Grosse, and Jörn-Henrik
Jacobsen (2019). “Preventing Gradient Attenuation in Lipschitz Constrained Convo-
lutional Networks.” In: Advances in neural information processing systems, pp. 15390–
15402. arXiv: 1911.00937 (cit. on p. 22).

59

https://doi.org/10.1145/3134600.3134635
https://doi.org/10.1145/3134600.3134635
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/3411508.3421382
https://arxiv.org/abs/1803.06373
https://arxiv.org/abs/1412.6980
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://arxiv.org/abs/1411.1045
https://arxiv.org/abs/1607.02533
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/CVPR42600.2020.00130
https://doi.org/10.1109/CVPR42600.2020.00130
https://arxiv.org/abs/1911.00937

Li, Yingzhen, John Bradshaw, and Yash Sharma (2019). “Are Generative Classifiers More
Robust to Adversarial Attacks?” In: Proceedings of the 36th International Conference
on Machine Learning. Vol. 97. Proceedings of Machine Learning Research. PMLR,
pp. 3804–3814. arXiv: 1802.06552. URL: http://proceedings.mlr.press/v97/li19a.html
(cit. on p. 20).

Liao, Fangzhou,Ming Liang,Yinpeng Dong, Tianyu Pang, Jun Zhu, andXiaolin Hu (2018).
“Defense Against Adversarial Attacks Using High-Level Representation Guided
Denoiser.” In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 1778–1787. DOI: 10.1109/CVPR.2018.00191 (cit. on p. 20).

Liu, Yanpei, Xinyun Chen, Chang Liu, and Dawn Song (2017). “Delving into Transfer-
able Adversarial Examples and Black-box Attacks.” In: International Conference on
Learning Representations. arXiv: 1611.02770. URL: https://openreview.net/forum?id=
Sys6GJqxl (cit. on p. 19).

Liu, Yingqi, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, WeihangWang, and
Xiangyu Zhang (2018). “Trojaning Attack on Neural Networks.” In: 25nd Annual
Network and Distributed System Security Symposium (NDSS). The Internet Society.
DOI: 10.14722/ndss.2018.23291 (cit. on p. 16).

Lowd, Daniel and Christopher Meek (2005). “Adversarial Learning.” In: Proceedings of the
Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining.
KDD ’05. ACM, pp. 641–647. ISBN: 1-59593-135-X. DOI: 10.1145/1081870.1081950 (cit. on
p. 14).

Ma, Xingjun, Bo Li, YisenWang, Sarah M Erfani, Sudanthi Wijewickrema, Grant Schoe-
nebeck, Michael E Houle, Dawn Song, and James Bailey (2018). “Characterizing
Adversarial Subspaces Using Local Intrinsic Dimensionality.” In: International Con-
ference on Learning Representations. arXiv: 1801.02613. URL: https://openreview.net/
forum?id=B1gJ1L2aW (cit. on p. 20).

Maclaurin, Dougal, David Duvenaud, and Ryan P Adams (2015). “Autograd: Effortless
Gradients in NumPy.” In: ICML 2015 AutoML Workshop. URL: https://github.com/
HIPS/autograd (cit. on p. 36).

Madry, Aleksander, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu (2018). “Towards Deep Learning Models Resistant to Adversarial Attacks.”
In: International Conference on Learning Representations. eprint: 1706.06083. URL:
https://openreview.net/forum?id=rJzIBfZAb (cit. on pp. 18, 21, 22, 24, 26, 39, 43, 44,
50, 51).

Maho, Thibault, Teddy Furon, and Erwan Le Merrer (2020). “SurFree: a fast surrogate-
free black-box attack.” In: arXiv: 2011.12807 (cit. on pp. 34, 46).

60

https://arxiv.org/abs/1802.06552
http://proceedings.mlr.press/v97/li19a.html
https://doi.org/10.1109/CVPR.2018.00191
https://arxiv.org/abs/1611.02770
https://openreview.net/forum?id=Sys6GJqxl
https://openreview.net/forum?id=Sys6GJqxl
https://doi.org/10.14722/ndss.2018.23291
https://doi.org/10.1145/1081870.1081950
https://arxiv.org/abs/1801.02613
https://openreview.net/forum?id=B1gJ1L2aW
https://openreview.net/forum?id=B1gJ1L2aW
https://github.com/HIPS/autograd
https://github.com/HIPS/autograd
1706.06083
https://openreview.net/forum?id=rJzIBfZAb
https://arxiv.org/abs/2011.12807

Maria, Clément, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec (2014). “The
Gudhi Library: Simplicial Complexes and Persistent Homology.” In:Mathematical
Software – ICMS 2014. Springer Berlin Heidelberg, pp. 167–174. ISBN: 978-3-662-44199-
2. DOI: 10.1007/978-3-662-44199-2_28 (cit. on p. 42).

Meng, Dongyu and Hao Chen (2017). “Magnet: a two-pronged defense against adver-
sarial examples.” In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, pp. 135–147. DOI: 10.1145/3133956.3134057 (cit. on
p. 20).

Moosavi-Dezfooli, Seyed-Mohsen, Alhussein Fawzi, and Pascal Frossard (2016). “Deep-
Fool: A Simple and Accurate Method to Fool Deep Neural Networks.” In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2574–
2582. DOI: 10.1109/CVPR.2016.282 (cit. on pp. 17, 33, 39).

Mosbach, Marius, MaksymAndriushchenko, Thomas Trost, Matthias Hein, and Dietrich
Klakow (2018). “Logit pairing methods can fool gradient-based attacks.” In: NeurIPS
2018 Workshop on Security in Machine Learning. arXiv: 1810.12042 (cit. on pp. 18, 40).

Narodytska, Nina and Shiva Prasad Kasiviswanathan (2017). “Simple Black-Box Adver-
sarial Perturbations for Deep Networks.” In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pp. 1310–1318. DOI: 10.1109/CVPRW.2017.
172 (cit. on pp. 31, 32, 39).

Nayebi, Aran and Surya Ganguli (2017). “Biologically inspired protection of deep net-
works from adversarial attacks.” In: arXiv: 1703.09202 (cit. on p. 20).

Nguyen,AnhMai, JasonYosinski, andJeffClune (2015). “Deepneural networks are easily
fooled: High confidence predictions for unrecognizable images.” In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 427–436.
ISBN: 978-1-4673-6964-0. DOI: 10.1109/CVPR.2015.7298640 (cit. on pp. 15, 43).

Nicolae, Maria-Irina, Mathieu Sinn, Minh Ngoc Tran, Beat Buesser, Ambrish Rawat,
Martin Wistuba, Valentina Zantedeschi, Nathalie Baracaldo, Bryant Chen, Heiko
Ludwig, et al. (2018). “Adversarial Robustness Toolbox v1.0.0.” In: arXiv: 1807.01069
(cit. on pp. 20, 26, 41, 42).

Oliphant, Travis (2006). NumPy: A guide to NumPy. URL: https://numpy.org (cit. on
p. 41).

Pang, Tianyu, Kun Xu, Yinpeng Dong, Chao Du, Ning Chen, and Jun Zhu (2020). “Re-
thinking Softmax Cross-Entropy Loss for Adversarial Robustness.” In: International
Conference on Learning Representations. arXiv: 1905.10626. URL: https://openreview.
net/forum?id=Byg9A24tvB (cit. on p. 20).

61

https://doi.org/10.1007/978-3-662-44199-2_28
https://doi.org/10.1145/3133956.3134057
https://doi.org/10.1109/CVPR.2016.282
https://arxiv.org/abs/1810.12042
https://doi.org/10.1109/CVPRW.2017.172
https://doi.org/10.1109/CVPRW.2017.172
https://arxiv.org/abs/1703.09202
https://doi.org/10.1109/CVPR.2015.7298640
https://arxiv.org/abs/1807.01069
https://numpy.org
https://arxiv.org/abs/1905.10626
https://openreview.net/forum?id=Byg9A24tvB
https://openreview.net/forum?id=Byg9A24tvB

Pang, Tianyu, Kun Xu, Chao Du, Ning Chen, and Jun Zhu (2019). “Improving Adversarial
Robustness via Promoting Ensemble Diversity.” In: Proceedings of the 36th Interna-
tional Conference on Machine Learning. Vol. 97. Proceedings of Machine Learning
Research. PMLR, pp. 4970–4979. arXiv: 1901.08846. URL: http://proceedings.mlr.
press/v97/pang19a.html (cit. on p. 20).

Pang, Tianyu, KunXu, and Jun Zhu (2020). “Mixup Inference: Better ExploitingMixup to
Defend Adversarial Attacks.” In: International Conference on Learning Representations.
arXiv: 1909.11515. URL: https://openreview.net/forum?id=ByxtC2VtPB (cit. on p. 20).

Papernot, Nicolas, Ian Goodfellow, and Patrick McDaniel (2016). “cleverhans v0.1: an
adversarial machine learning library.” In: arXiv: 1610.00768 (cit. on pp. 20, 26, 38, 41,
42).

Papernot, Nicolas, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik, and
Ananthram Swami (2017). “Practical Black-Box Attacks Against Machine Learning.”
In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security. ASIA CCS ’17. ACM, pp. 506–519. ISBN: 978-1-4503-4944-4. DOI: 10.1145/
3052973.3053009 (cit. on pp. 19, 23, 24, 31, 32).

Papernot, Nicolas, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami (2016). “The Limitations of Deep Learning in Adversarial
Settings.” In: 2016 IEEE European Symposium on Security and Privacy (EuroS P), pp. 372–
387. DOI: 10.1109/EuroSP.2016.36 (cit. on pp. 19, 39).

Papernot, Nicolas, Patrick McDaniel, XiWu, Somesh Jha, and Ananthram Swami (2016).
“Distillation as a defense to adversarial perturbations against deep neural networks.”
In: 2016 IEEE Symposium on Security and Privacy (SP). IEEE, pp. 582–597. DOI: 10.1109/
SP.2016.41 (cit. on pp. 20, 33).

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. (2019).
“PyTorch: An imperative style, high-performance deep learning library.” In: Advances
in neural information processing systems, pp. 8026–8037. arXiv: 1912.01703 (cit. on
p. 39).

Prakash, Aaditya, Nick Moran, Solomon Garber, Antonella DiLillo, and James Storer
(2018). “Deflecting Adversarial AttacksWith Pixel Deflection.” In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). DOI: 10.1109/
CVPR.2018.00894 (cit. on p. 20).

Raghunathan, Aditi, Jacob Steinhardt, and Percy Liang (2018). “Certified Defenses
against Adversarial Examples.” In: International Conference on Learning Representa-

62

https://arxiv.org/abs/1901.08846
http://proceedings.mlr.press/v97/pang19a.html
http://proceedings.mlr.press/v97/pang19a.html
https://arxiv.org/abs/1909.11515
https://openreview.net/forum?id=ByxtC2VtPB
https://arxiv.org/abs/1610.00768
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
https://arxiv.org/abs/1912.01703
https://doi.org/10.1109/CVPR.2018.00894
https://doi.org/10.1109/CVPR.2018.00894

tions. arXiv: 1801.09344. URL: https://openreview.net/forum?id=Bys4ob-Rb (cit. on
p. 22).

Rauber, Jonas, Matthias Bethge, andWieland Brendel (2020). “EagerPy: Writing Code
ThatWorks Natively with PyTorch, TensorFlow, JAX, and NumPy.” In: arXiv: 2008.
04175 (cit. on pp. 41, 42).

Rauber, Jonas,Wieland Brendel, andMatthias Bethge (2017). “Foolbox: A Python toolbox
to benchmark the robustness of machine learning models.” In: Reliable Machine
Learning in the Wild Workshop, 34th International Conference on Machine Learning.
arXiv: 1707.04131 (cit. on pp. 20, 32, 41, 42).

Rauber, Jonas, Roland Zimmermann, Matthias Bethge, andWieland Brendel (2020).
“Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine
learning models in PyTorch, TensorFlow, and JAX.” In: Journal of Open Source Soft-
ware 5.53, p. 2607. DOI: 10.21105/joss.02607 (cit. on p. 20).

Ren, Mengye (2017). Forward-mode Automatic Differentiation for TensorFlow. URL: https:
//github.com/renmengye/tensorflow-forward-ad (cit. on p. 36).

Reynaert, Mathias and James M Sallee (2016). Corrective Policy and Goodhart’s Law: The
Case of Carbon Emissions from Automobiles. Working Paper 22911. National Bureau of
Economic Research. DOI: 10.3386/w22911 (cit. on p. 48).

Rony, Jérôme, Luiz G Hafemann, Luiz S Oliveira, Ismail Ben Ayed, Robert Sabourin, and
Eric Granger (2019). “Decoupling direction and norm for efficient gradient-based l2
adversarial attacks and defenses.” In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4322–4330. DOI: 10.1109/CVPR.2019.00445
(cit. on p. 19).

Roth, Kevin, Yannic Kilcher, and Thomas Hofmann (2019). “The Odds are Odd: A Statisti-
cal Test for Detecting Adversarial Examples.” In: Proceedings of the 36th International
Conference on Machine Learning. Vol. 97. Proceedings of Machine Learning Research.
PMLR, pp. 5498–5507. arXiv: 1902.04818. URL: http://proceedings.mlr.press/v97/
roth19a.html (cit. on p. 20).

Rubinstein, Benjamin I P, Blaine Nelson, Ling Huang, Anthony D Joseph, Shing-hon
Lau, Satish Rao, Nina Taft, and J D Tygar (2009). “ANTIDOTE: Understanding and
Defending against Poisoning of Anomaly Detectors.” In: Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement. IMC ’09. Association for Computing
Machinery, pp. 1–14. ISBN: 978-1-60558-771-4. DOI: 10.1145/1644893.1644895 (cit. on
p. 16).

Samangouei, Pouya, Maya Kabkab, and Rama Chellappa (2018). “Defense-GAN: Pro-
tecting Classifiers Against Adversarial Attacks Using Generative Models.” In: In-

63

https://arxiv.org/abs/1801.09344
https://openreview.net/forum?id=Bys4ob-Rb
https://arxiv.org/abs/2008.04175
https://arxiv.org/abs/2008.04175
https://arxiv.org/abs/1707.04131
https://doi.org/10.21105/joss.02607
https://github.com/renmengye/tensorflow-forward-ad
https://github.com/renmengye/tensorflow-forward-ad
https://doi.org/10.3386/w22911
https://doi.org/10.1109/CVPR.2019.00445
https://arxiv.org/abs/1902.04818
http://proceedings.mlr.press/v97/roth19a.html
http://proceedings.mlr.press/v97/roth19a.html
https://doi.org/10.1145/1644893.1644895

ternational Conference on Learning Representations. arXiv: 1805.06605. URL: https:
//openreview.net/forum?id=BkJ3ibb0- (cit. on p. 20).

Schott, Lukas, Jonas Rauber, Matthias Bethge, andWieland Brendel (2019). “Towards
the first adversarially robust neural network model on MNIST.” In: International
Conference on Learning Representations. arXiv: 1805.09190. URL: https://openreview.
net/forum?id=S1EHOsC9tX (cit. on pp. 19, 25, 34, 39, 44, 49).

Sen, Sanchari, Balaraman Ravindran, and Anand Raghunathan (2020). “EMPIR: Ensem-
bles ofMixed PrecisionDeepNetworks for IncreasedRobustnessAgainstAdversarial
Attacks.” In: International Conference on Learning Representations. arXiv: 2004.10162.
URL: https://openreview.net/forum?id=HJem3yHKwH (cit. on p. 20).

Shen, Shiwei, Guoqing Jin, Ke Gao, and Yongdong Zhang (2019). “APE-GAN: Adversar-
ial Perturbation Elimination with GAN.” In: ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3842–3846. DOI:
10.1109/ICASSP.2019.8683044 (cit. on p. 20).

Sokol, Kacper and Peter A Flach (2019). “Counterfactual Explanations of Machine
Learning Predictions: Opportunities and Challenges for AI Safety.” In: Proceedings of
the AAAI Workshop on Artificial Intelligence Safety 2019. URL: https://openreview.net/
forum?id=H1-Y7RedZr (cit. on p. 12).

Song, Yang, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman (2018).
“PixelDefend: Leveraging Generative Models to Understand and Defend against
Adversarial Examples.” In: International Conference on Learning Representations. arXiv:
1710.10766. URL: https://openreview.net/forum?id=rJUYGxbCW (cit. on p. 20).

Strathern, Marilyn (1997). “‘Improving ratings’: audit in the British University system.”
In: European Review 5.3, pp. 305–321. DOI: 10.1002/(SICI)1234-981X(199707)5:3<305::
AID-EURO184>3.0.CO;2-4 (cit. on p. 48).

Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus (2013). “Intriguing properties of neural networks.” In:
International Conference on Learning Representations. arXiv: 1312.6199. URL: https:
//openreview.net/forum?id=kklr_MTHMRQjG (cit. on pp. 14–17, 20, 21, 39).

Team, The Theano Development, Rami Al-Rfou, Guillaume Alain, Amjad Almahairi,
Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin
Bayer, Anatoly Belikov, et al. (2016). “Theano: A Python framework for fast com-
putation of mathematical expressions.” In: arXiv: 1605.02688 (cit. on pp. 23, 36,
39).

Townsend, Jamie (2017). A new trick for calculating Jacobian vector products. URL: https:
//j-towns.github.io/2017/06/12/A-new-trick.html (cit. on p. 36).

64

https://arxiv.org/abs/1805.06605
https://openreview.net/forum?id=BkJ3ibb0-
https://openreview.net/forum?id=BkJ3ibb0-
https://arxiv.org/abs/1805.09190
https://openreview.net/forum?id=S1EHOsC9tX
https://openreview.net/forum?id=S1EHOsC9tX
https://arxiv.org/abs/2004.10162
https://openreview.net/forum?id=HJem3yHKwH
https://doi.org/10.1109/ICASSP.2019.8683044
https://openreview.net/forum?id=H1-Y7RedZr
https://openreview.net/forum?id=H1-Y7RedZr
https://arxiv.org/abs/1710.10766
https://openreview.net/forum?id=rJUYGxbCW
https://doi.org/10.1002/(SICI)1234-981X(199707)5:3<305::AID-EURO184>3.0.CO;2-4
https://doi.org/10.1002/(SICI)1234-981X(199707)5:3<305::AID-EURO184>3.0.CO;2-4
https://arxiv.org/abs/1312.6199
https://openreview.net/forum?id=kklr_MTHMRQjG
https://openreview.net/forum?id=kklr_MTHMRQjG
https://arxiv.org/abs/1605.02688
https://j-towns.github.io/2017/06/12/A-new-trick.html
https://j-towns.github.io/2017/06/12/A-new-trick.html

Tramèr, Florian, Nicholas Carlini, Wieland Brendel, and Aleksander Madry (2020).
“On Adaptive Attacks to Adversarial Example Defenses.” In: Advances in Neural
Information Processing Systems 33. arXiv: 2002.08347 (cit. on pp. 21, 25, 48, 49).

Tramèr, Florian, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel
(2017). “The Space of Transferable Adversarial Examples.” In: arXiv: 1704.03453
(cit. on p. 21).

Tramèr, Florian, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart (2016).
“Stealing machine learning models via prediction APIs.” In: 25th USENIX Security
Symposium (USENIX Security 16), pp. 601–618. arXiv: 1609.02943 (cit. on p. 16).

Van Rossum, Guido et al. (1995). Python reference manual. Centrum voorWiskunde en
Informatica Amsterdam. URL: https://ir.cwi.nl/pub/5008/05008D.pdf (cit. on p. 38).

Verma, Gunjan and Ananthram Swami (2019). “Error Correcting Output Codes Improve
Probability Estimation and Adversarial Robustness of Deep Neural Networks.”
In: Advances in Neural Information Processing Systems. Vol. 32, pp. 8646–8656. URL:
https://dl.acm.org/doi/10.5555/3454287.3455063 (cit. on p. 20).

Whidden, Peter (2020). Tensor Canvas. URL: https://github.com/PWhiddy/tensor-canvas
(cit. on p. 42).

Xiao, Chang, Peilin Zhong, and Changxi Zheng (2020). “Enhancing Adversarial Defense
by k-Winners-Take-All.” In: International Conference on Learning Representations.
arXiv: 1905.10510. URL: https://openreview.net/forum?id=Skgvy64tvr (cit. on p. 20).

Xie, Cihang, JianyuWang, Zhishuai Zhang, Zhou Ren, andAlanYuille (2018). “Mitigating
Adversarial Effects Through Randomization.” In: International Conference on Learning
Representations. arXiv: 1711.01991. URL: https://openreview.net/forum?id=Sk9yuql0Z
(cit. on p. 20).

Yang, Yuzhe, Guo Zhang, Dina Katabi, and Zhi Xu (2019). “ME-Net: Towards Effective
Adversarial Robustness with Matrix Estimation.” In: Proceedings of the 36th Inter-
national Conference on Machine Learning. Vol. 97. Proceedings of Machine Learning
Research. PMLR. URL: http://proceedings.mlr.press/v97/yang19e.html (cit. on p. 20).

Yang, Zhuolin, Bo Li, Pin-Yu Chen, and Dawn Song (2019). “Characterizing Audio Ad-
versarial Examples Using Temporal Dependency.” In: International Conference on
Learning Representations. arXiv: 1809.10875. URL: https://openreview.net/forum?id=
r1g4E3C9t7 (cit. on p. 20).

Zantedeschi, Valentina, Maria-Irina Nicolae, and Ambrish Rawat (2017). “Efficient De-
fenses Against Adversarial Attacks.” In: Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security. AISec ’17. Association for Computing Machinery,
pp. 39–49. ISBN: 978-1-4503-5202-4. DOI: 10.1145/3128572.3140449 (cit. on p. 20).

65

https://arxiv.org/abs/2002.08347
https://arxiv.org/abs/1704.03453
https://arxiv.org/abs/1609.02943
https://ir.cwi.nl/pub/5008/05008D.pdf
https://dl.acm.org/doi/10.5555/3454287.3455063
https://github.com/PWhiddy/tensor-canvas
https://arxiv.org/abs/1905.10510
https://openreview.net/forum?id=Skgvy64tvr
https://arxiv.org/abs/1711.01991
https://openreview.net/forum?id=Sk9yuql0Z
http://proceedings.mlr.press/v97/yang19e.html
https://arxiv.org/abs/1809.10875
https://openreview.net/forum?id=r1g4E3C9t7
https://openreview.net/forum?id=r1g4E3C9t7
https://doi.org/10.1145/3128572.3140449

Appendix

The publications are ordered chronologically.

Foolbox: A Python Toolbox to Benchmark the Robustness of ML Models 69
Decision-Based Attacks: Reliable Attacks Against Black-Box ML Models 77
Towards the First Adversarially Robust Neural Network Model on MNIST 91
Scaling up the Linear Region Attack Reveals Overestimation of Robustness 111
EagerPy: Writing Code That Works Natively with PyTorch, TF, JAX, and NumPy 131
Foolbox Native: Fast Attacks to Benchmark the Robustness of ML Models 143

Foolbox: A Python toolbox to benchmark the robustness of machine
learning models

The following six pages have been published as:

Jonas Rauber*, Wieland Brendel*, Matthias Bethge (2017). “Foolbox: A Python toolbox to
benchmark the robustness of machine learning models”. Reliable Machine Learning in the
Wild Workshop, 34th International Conference on Machine Learning (ICML 2017).

A summary of the motivation, results, and discussion can be found in section 2.3 on page 38. * joint first authorship

Abstract

Even todaysmost advancedmachine learningmodels are easily fooled by almost imper-
ceptible perturbations of their inputs. Foolbox is a new Python package to generate such
adversarial perturbations and to quantify and compare the robustness ofmachine learn-
ing models. It is build around the idea that the most comparable robustness measure is
theminimumperturbation needed to craft an adversarial example. To this end, Foolbox
provides reference implementations of most published adversarial attack methods
alongside some new ones, all of which perform internal hyperparameter tuning to find
theminimum adversarial perturbation. Additionally, Foolbox interfaces withmost pop-
ular deep learning frameworks such as PyTorch, Keras, TensorFlow, Theano andMXNet
and allows different adversarial criteria such as targeted misclassification and top-k
misclassification as well as different distance measures. The code is licensed under
the MIT license and is openly available at https://github.com/bethgelab/foolbox. The
most up-to-date documentation can be found at http://foolbox.readthedocs.io.

https://github.com/bethgelab/foolbox
http://foolbox.readthedocs.io

Foolbox: A Python toolbox to benchmark the
robustness of machine learning models

Jonas Rauber * 1 2 3 Wieland Brendel * 1 2 Matthias Bethge 1 2 4 5

Abstract

Even todays most advanced machine learning
models are easily fooled by almost impercepti-
ble perturbations of their inputs. Foolbox is a
new Python package to generate such adversar-
ial perturbations and to quantify and compare
the robustness of machine learning models. It is
build around the idea that the most comparable
robustness measure is the minimum perturbation
needed to craft an adversarial example. To this
end, Foolbox provides reference implementa-
tions of most published adversarial attack meth-
ods alongside some new ones, all of which per-
form internal hyperparameter tuning to find the
minimum adversarial perturbation. Additionally,
Foolbox interfaces with most popular deep learn-
ing frameworks such as PyTorch, Keras, Tensor-
Flow, Theano and MXNet and allows different
adversarial criteria such as targeted misclassifi-
cation and top-k misclassification as well as dif-
ferent distance measures. The code is licensed
under the MIT license and is openly available
at https://github.com/bethgelab/foolbox.
The most up-to-date documentation can be found
at http://foolbox.readthedocs.io.

In 2013, Szegedy et al. demonstrated that minimal per-
turbations, often almost imperceptible to humans, can have
devastating effects on machine predictions. These so-called
adversarial perturbations thus demonstrate a striking dif-
ference between human and machine perception. As a re-
sult, adversarial perturbations have been subject to many

*Equal contribution 1Centre for Integrative Neuroscience, Uni-
versity of Tübingen, Germany 2Bernstein Center for Compu-
tational Neuroscience, Tübingen, Germany 3International Max
Planck Research School for Intelligent Systems, Tübingen, Ger-
many 4Max Planck Institute for Biological Cybernetics, Tübin-
gen, Germany 5Institute for Theoretical Physics, University
of Tübingen, Germany. Correspondence to: Jonas Rauber
<jonas.rauber@bethgelab.org>.

Reliable Machine Learning in the Wild Workshop, 34 th Interna-
tional Conference on Machine Learning, Sydney, Australia, 2017.

studies concerning the generation of such perturbations and
strategies to protect machine learning models such as deep
neural networks against them.

A practical definition of the robustness R of a model, first
used by Szegedy et al. (2013), is the average size of the
minimum adversarial perturbation ρ(x) across many sam-
ples x,

R = 〈ρ(x)〉x where (1)

ρ(x) = min
δ
d(x,x+ δ) s.t. x+ δ is adversarial (2)

and d(·) is some distance measure.

Unfortunately, finding the global minimum adversarial per-
turbation is close to impossible in any practical setting, and
we thus employ heuristic attacks to find a suitable approx-
imation. Such heuristics, however, can fail, in which case
we could easily be mislead to believe that a model is robust
(Brendel & Bethge, 2017). Our best strategy is thus to em-
ploy as many attacks as possible, and to use the minimal
perturbation found across all attacks as an approximation
to the true global minimum.

At the moment, however, such a strategy is severely ob-
structed by two problems: first, the code for most known
attack methods is either not available at all, or only avail-
able for one particular deep learning framework. Second,
implementations of the same attack often differ in many
details and are thus not directly comparable. Foolbox im-
proves upon the existing Python package cleverhans by Pa-
pernot et al. (2016b) in three important aspects:

1. It interfaces with most popular machine learning
frameworks such as PyTorch, Keras, TensorFlow,
Theano, Lasagne and MXNet and provides a straight
forward way to add support for other frameworks,

2. it provides reference implementations for more than
15 adversarial attacks with a simple and consistent
API, and

3. it supports many different criteria for adversarial ex-
amples, including custom ones.

This technical report is structured as follows: In section 1
we provide an overview over Foolbox and demonstrate how

71

Foolbox: A Python toolbox to benchmark the robustness of machine learning models

to benchmark a model and report the result. In section 2
we describe the adversarial attack methods that are imple-
mented in Foolbox and explain the internal hyperparameter
tuning.

1. Foolbox Overview
1.1. Structure

Crafting adversarial examples requires five elements: first,
a model that takes an input (e.g. an image) and makes a
prediction (e.g. class-probabilities). Second, a criterion
that defines what an adversarial is (e.g. misclassification).
Third, a distance measure that measures the size of a per-
turbation (e.g. L1-norm). Finally, an attack algorithm
that takes an input and its label as well as the model, the
adversarial criterion and the distance measure to generate
an adversarial perturbation.

The structure of Foolbox naturally follows this layout and
implements five Python modules (models, criteria, dis-
tances, attacks, adversarial) summarized below.

Models
foolbox.models

This module implements interfaces to several popular ma-
chine learning libraries:

• TensorFlow (Abadi et al., 2016)
foolbox.models.TensorFlowModel

• PyTorch (The PyTorch Developers, 2017)
foolbox.models.PyTorchModel

• Theano (Al-Rfou et al., 2016)
foolbox.models.TheanoModel

• Lasagne (Dieleman et al., 2015)
foolbox.models.LasagneModel

• Keras (any backend) (Chollet, 2015)
foolbox.models.KerasModel

• MXNet (Chen et al., 2015)
foolbox.models.MXNetModel

Each interface is initialized with a framework specific rep-
resentation of the model (e.g. symbolic input and output
tensors in TensorFlow or a neural network module in Py-
Torch). The interface provides the adversarial attack with
a standardized set of methods to compute predictions and
gradients for given inputs. It is straight-forward to imple-
ment interfaces for other frameworks by providing methods
to calculate predictions and gradients in the specific frame-
work.

Additionally, Foolbox implements a CompositeModel
that combines the predictions of one model with the gra-
dient of another. This makes it possible to attack non-
differentiable models using gradient-based attacks and al-
lows transfer attacks of the type described by Papernot et al.
(2016c).

Criteria
foolbox.criteria

A criterion defines under what circumstances an [input,
label]-pair is considered an adversarial. The following cri-
teria are implemented:

• Misclassification
foolbox.criteria.Misclassification

Defines adversarials as inputs for which the predicted
class is not the original class.

• Top-k Misclassification
foolbox.criteria.TopKMisclassification

Defines adversarials as inputs for which the original
class is not one of the top-k predicted classes.

• Original Class Probability
foolbox.criteria.OriginalClassProbability

Defines adversarials as inputs for which the probabil-
ity of the original class is below a given threshold.

• Targeted Misclassification
foolbox.criteria.TargetClass

Defines adversarials as inputs for which the predicted
class is the given target class.

• Target Class Probability
foolbox.criteria.TargetClassProbability

Defines adversarials as inputs for which the probabil-
ity of a given target class is above a given threshold.

Custom adversarial criteria can be defined and employed.
Some attacks are inherently specific to particular criteria
and thus only work with those.

Distance Measures
foolbox.distances

Distance measures are used to quantify the size of adversar-
ial perturbations. Foolbox implements the two commonly
employed distance measures and can be extended with cus-
tom ones:

• Mean Squared Distance
foolbox.distances.MeanSquaredDistance

Calculates the mean squared error
d(x,y) = 1

N

∑
i(xi − yi)2

between two vectors x and y.

72

Foolbox: A Python toolbox to benchmark the robustness of machine learning models

• Mean Absolute Distance
foolbox.distances.MeanAbsoluteDistance

Calculates the mean absolute error
d(x,y) = 1

N

∑
i |xi − yi|

between two vectors x and y.

• L∞
foolbox.distances.Linfinity

Calculates the L∞-norm d(x,y) = maxi |xi − yi|
between two vectors x and y.

• L0
foolbox.distances.L0

Calculates the L0-norm d(x,y) =
∑

i 1xi 6=yi be-
tween two vectors x and y.

To achieve invariance to the scale of the input values, we
normalize each element of x,y by the difference between
the smallest and largest allowed value (e.g. 0 and 255).

Attacks
foolbox.attacks

Foolbox implements a large number of adversarial attacks,
see section 2 for an overview. Each attack takes a model
for which adversarials should be found and a criterion that
defines what an adversarial is. The default criterion is mis-
classification. It can then be applied to a reference input to
which the adversarial should be close and the correspond-
ing label. Attacks perform internal hyperparameter tuning
to find the minimum perturbation. As an example, our
implementation of the fast gradient sign method (FGSM)
searches for the minimum step-size that turns the input into
an adversarial. As a result there is no need to specify hy-
perparameters for attacks like FGSM. For computational
efficiency, more complex attacks with several hyperparam-
eters only tune some of them.

Adversarial
foolbox.adversarial

An instance of the adversarial class encapsulates all infor-
mation about an adversarial, including which model, crite-
rion and distance measure was used to find it, the original
unperturbed input and its label or the size of the smallest
adversarial perturbation found by the attack.

An adversarial object is automatically created whenever an
attack is applied to an [input, label]-pair. By default, only
the actual adversarial input is returned. Calling the attack
with unpack set to False returns the full object instead.
Such an adversarial object can then be passed to an ad-
versarial attack instead of the [input, label]-pair, enabling
advanced use cases such as pausing and resuming long-
running attacks.

1.2. Reporting Benchmark Results

When reporting benchmark results generated with Foolbox
the following information should be stated:

• the version number of Foolbox,
• the set of input samples,
• the set of attacks applied to the inputs,
• any non-default hyperparameter setting,
• the criterion and
• the distance metric.

1.3. Versioning System

Each release of Foolbox is tagged with a version number of
the type MAJOR.MINOR.PATCH that follows the princi-
ples of semantic versioning1 with some additional precau-
tions for comparable benchmarking. We increment the

1. MAJOR version when we make changes to the API
that break compatibility with previous versions.

2. MINOR version when we add functionality or make
backwards compatible changes that can affect the
benchmark results.

3. PATCH version when we make backwards compatible
bug fixes that do not affect benchmark results.

Thus, to compare the robustness of two models it is impor-
tant to use the same MAJOR.MINOR version of Foolbox.
Accordingly, the version number of Foolbox should always
be reported alongside the benchmark results, see section
1.2.

2. Implemented Attack Methods
We here give a short overview over each attack method im-
plemented in Foolbox, referring the reader to the original
references for more details. We use the following notation:

x a model input
` a class label

x0 reference input
`0 reference label

L(x, `) loss (e.g. cross-entropy)
[bmin, bmax] input bounds (e.g. 0 and 255)

2.1. Gradient-Based Attacks

Gradient-based attacks linearize the loss (e.g. cross-
entropy) around an input x to find directions ρ to which
the model predictions for class ` are most sensitive to,

L(x+ ρ, `) ≈ L(x, `) + ρ>∇xL(x, `). (3)

Here ∇xL(x, `) is referred to as the gradient of the loss
w.r.t. the input x.

1http://semver.org/

73

Foolbox: A Python toolbox to benchmark the robustness of machine learning models

Gradient Attack
foolbox.attacks.GradientAttack

This attack computes the gradient g(x0) = ∇xL(x0, `0)
once and then seeks the minimum step size ε such that x0+
εg(x0) is adversarial.

Gradient Sign Attack (FGSM)
foolbox.attacks.GradientSignAttack

foolbox.attacks.FGSM
This attack computes the gradient g(x0) = ∇xL(x0, `0)
once and then seeks the minimum step size ε such that x0+
ε sign(g(x0)) is adversarial (Goodfellow et al., 2014).

Iterative Gradient Attack
foolbox.attacks.IterativeGradientAttack

Iterative gradient ascent seeks adversarial perturbations by
maximizing the loss along small steps in the gradient di-
rection g(x) = ∇xL(x, `0), i.e. the algorithm iteratively
updates xk+1 ← xk + εg(xk). The step-size ε is tuned
internally to find the minimum perturbation.

Iterative Gradient Sign Attack
foolbox.attacks.IterativeGradientSignAttack

Similar to iterative gradient ascent, this attack seeks
adversarial perturbations by maximizing the loss along
small steps in the ascent direction sign(g(x)) =
sign (∇xL(x, `0)), i.e. the algorithm iteratively updates
xk+1 ← xk + ε sign(g(xk)). The step-size ε is tuned in-
ternally to find the minimum perturbation.

DeepFool L2 Attack
foolbox.attacks.DeepFoolL2Attack

In each iteration DeepFool (Moosavi-Dezfooli et al., 2015)
computes for each class ` 6= `0 the minimum distance
d(`, `0) that it takes to reach the class boundary by approx-
imating the model classifier with a linear classifier. It then
makes a corresponding step in the direction of the class
with the smallest distance.

DeepFool L∞ Attack
foolbox.attacks.DeepFoolLinfinityAttack

Like the DeepFool L2 Attack, but minimizes the L∞-norm
instead.

L-BFGS Attack
foolbox.attacks.LBFGSAttack

L-BFGS-B is a second-order optimiser that we here use to
find the minimum of

L(x+ ρ, `) + λ ‖ρ‖22 s.t. xi + ρi ∈ [bmin, bmax]

where ` 6= `0 is the target class (Szegedy et al., 2013). A
line-search is performed over the regularisation parameter
λ > 0 to find the minimum adversarial perturbation. If the

target class is not specified we choose ` as the class of the
adversarial example generated by the gradient attack.

SLSQP Attack
foolbox.attacks.SLSQPAttack

Compared to L-BFGS-B, SLSQP allows to additionally
specify non-linear constraints. This enables us to skip the
line-search and to directly optimise

‖ρ‖22 s.t. L(x+ ρ, `) = l ∧ xi + ρi ∈ [bmin, bmax]

where ` 6= `0 is the target class. If the target class is not
specified we choose ` as the class of the adversarial exam-
ple generated by the gradient attack.

Jacobian-Based Saliency Map Attack
foolbox.attacks.SaliencyMapAttack

This targeted attack (Papernot et al., 2016a) uses the gradi-
ent to compute a saliency score for each input feature (e.g.
pixel). This saliency score reflects how strongly each fea-
ture can push the model classification from the reference to
the target class. This process is iterated, and in each iter-
ation only the feature with the maximum saliency score is
perturbed.

2.2. Score-Based Attacks

Score-based attacks do not require gradients of the model,
but they expect meaningful scores such as probabilites or
logits which can be used to approximate gradients.

Single Pixel Attack
foolbox.attacks.SinglePixelAttack

This attack (Narodytska & Kasiviswanathan, 2016) probes
the robustness of a model to changes of single pixels by set-
ting a single pixel to white or black. It repeats this process
for every pixel in the image.

Local Search Attack
foolbox.attacks.LocalSearchAttack

This attack (Narodytska & Kasiviswanathan, 2016) mea-
sures the model’s sensitivity to individual pixels by apply-
ing extreme perturbations and observing the effect on the
probability of the correct class. It then perturbs the pixels
to which the model is most sensitive. It repeats this process
until the image is adversarial, searching for additional crit-
ical pixels in the neighborhood of previously found ones.

Approximate L-BFGS Attack
foolbox.attacks.ApproximateLBFGSAttack

Same as L-BFGS except that gradients are computed nu-
merically. Note that this attack is only suitable if the input
dimensionality is small.

74

Foolbox: A Python toolbox to benchmark the robustness of machine learning models

2.3. Decision-Based Attacks

Decision-based attacks rely only on the class decision of
the model. They do not require gradients or probabilities.

Boundary Attack
foolbox.attacks.BoundaryAttack

Foolbox provides the reference implementation for the
Boundary Attack (Brendel et al., 2018). The Boundary At-
tack is the most effective decision-based adversarial attack
to minimize the L2-norm of adversarial perturbations. It
finds adversarial perturbations as small as the best gradient-
based attacks without relying on gradients or probabilities.

Pointwise Attack
foolbox.attacks.PointwiseAttack

Foolbox provides the reference implementation for the
Pointwise Attack. The Pointwise Attack is the most ef-
fective decision-based adversarial attack to minimize the
L0-norm of adversarial perturbations.

Additive Uniform Noise Attack
foolbox.attacks.AdditiveUniformNoiseAttack

This attack probes the robustness of a model to i.i.d. uni-
form noise. A line-search is performed internally to find
minimal adversarial perturbations.

Additive Gaussian Noise Attack
foolbox.attacks.AdditiveGaussianNoiseAttack

This attack probes the robustness of a model to i.i.d. normal
noise. A line-search is performed internally to find minimal
adversarial perturbations.

Salt and Pepper Noise Attack
foolbox.attacks.SaltAndPepperNoiseAttack

This attack probes the robustness of a model to i.i.d. salt-
and-pepper noise. A line-search is performed internally to
find minimal adversarial perturbations.

Contrast Reduction Attack
foolbox.attacks.ContrastReductionAttack

This attack probes the robustness of a model to contrast re-
duction. A line-search is performed internally to find min-
imal adversarial perturbations.

Gaussian Blur Attack
foolbox.attacks.GaussianBlurAttack

This attack probes the robustness of a model to Gaussian
blur. A line-search is performed internally to find minimal
blur needed to turn the image into an adversarial.

Precomputed Images Attack
foolbox.attacks.PrecomputedImagesAttack

Special attack that is initialized with a set of expected input

images and corresponding adversarial candidates. When
applied to an image, it tests the models robustness to the
precomputed adversarial candidate corresponding to the
given image. This can be useful to test a models robust-
ness against image perturbations created using an external
method.

3. Acknowledgements
This work was supported by the Carl Zeiss Foundation
(0563-2.8/558/3), the Bosch Forschungsstiftung (Stifter-
verband, T113/30057/17), the International Max Planck
Research School for Intelligent Systems (IMPRS-IS), the
German Research Foundation (DFG, CRC 1233, Robust
Vision: Inference Principles and Neural Mechanisms)
and the Intelligence Advanced Research Projects Activ-
ity (IARPA) via Department of Interior/Interior Business
Center (DoI/IBC) contract number D16PC00003. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright annotation thereon. Disclaimer: The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the of-
ficial policies or endorsements, either expressed or implied,
of IARPA, DoI/IBC, or the U.S. Government.

References
Abadi, Martín, Agarwal, Ashish, Barham, Paul, et al. Ten-

sorflow: Large-scale machine learning on heterogeneous
distributed systems. CoRR, abs/1603.04467, 2016. URL
http://arxiv.org/abs/1603.04467.

Al-Rfou, Rami, Alain, Guillaume, Almahairi, Amjad,
Angermüller, Christof, et al. Theano: A python frame-
work for fast computation of mathematical expressions.
CoRR, abs/1605.02688, 2016. URL http://arxiv.
org/abs/1605.02688.

Brendel, W. and Bethge, M. Comment on “Biologically
inspired protection of deep networks from adversarial
attacks”. arXiv, abs/1704.01547, 2017. URL http:
//arxiv.org/abs/1704.01547.

Brendel, Wieland, Rauber, Jonas, and Bethge, Matthias.
Decision-based adversarial attacks: Reliable attacks
against black-box machine learning models. In In-
ternational Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=
SyZI0GWCZ.

Chen, Tianqi, Li, Mu, Li, Yutian, Lin, Min, Wang,
Naiyan, Wang, Minjie, Xiao, Tianjun, Xu, Bing, Zhang,
Chiyuan, and Zhang, Zheng. Mxnet: A flexible and ef-
ficient machine learning library for heterogeneous dis-
tributed systems. Neural Information Processing Sys-

75

Foolbox: A Python toolbox to benchmark the robustness of machine learning models

tems, Workshop on Machine Learning Systems, 2015.
URL http://arxiv.org/abs/1603.04467.

Chollet, François. Keras. https://github.com/
fchollet/keras, 2015.

Dieleman, Sander, Schlüter, Jan, Raffel, Colin, Olson,
Eben, Sonderby, Søren Kaae, et al. Lasagne: First re-
lease., August 2015. URL http://dx.doi.org/10.
5281/zenodo.27878.

Goodfellow, Ian J, Shlens, Jonathon, and Szegedy, Chris-
tian. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

Moosavi-Dezfooli, Seyed-Mohsen, Fawzi, Alhussein, and
Frossard, Pascal. Deepfool: a simple and accu-
rate method to fool deep neural networks. CoRR,
abs/1511.04599, 2015. URL http://arxiv.org/abs/
1511.04599.

Narodytska, Nina and Kasiviswanathan, Shiva Prasad.
Simple black-box adversarial perturbations for deep net-
works. CoRR, abs/1612.06299, 2016. URL http:
//arxiv.org/abs/1612.06299.

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik,
Z. B., and Swami, A. The limitations of deep learning in
adversarial settings. In 2016 IEEE European Symposium
on Security and Privacy (EuroS P), pp. 372–387, March
2016a. doi: 10.1109/EuroSP.2016.36.

Papernot, Nicolas, Goodfellow, Ian, Sheatsley, Ryan, Fein-
man, Reuben, and McDaniel, Patrick. cleverhans v1.0.0:
an adversarial machine learning library. arXiv preprint
arXiv:1610.00768, 2016b.

Papernot, Nicolas, McDaniel, Patrick D., Goodfellow,
Ian J., Jha, Somesh, Celik, Z. Berkay, and Swami,
Ananthram. Practical black-box attacks against deep
learning systems using adversarial examples. CoRR,
abs/1602.02697, 2016c. URL http://arxiv.org/abs/
1602.02697.

Szegedy, Christian, Zaremba, Wojciech, Sutskever, Ilya,
Bruna, Joan, Erhan, Dumitru, Goodfellow, Ian J., and
Fergus, Rob. Intriguing properties of neural networks.
CoRR, abs/1312.6199, 2013.

The PyTorch Developers. Pytorch. http://pytorch.org,
2017.

76

Decision-BasedAdversarial Attacks: ReliableAttacksAgainstBlack-Box
Machine Learning Models

The following twelve pages have been published as:

Wieland Brendel*, Jonas Rauber*, Matthias Bethge (2018). “Decision-Based Adversarial
Attacks: Reliable Attacks Against Black-Box Machine Learning Models”. Sixth International
Conference on Learning Representations (ICLR 2018).

A summary of the motivation, results, and discussion can be found in section 2.1 on page 31. * joint first authorship

Abstract

Many machine learning algorithms are vulnerable to almost imperceptible perturba-
tions of their inputs. So far it was unclear how much risk adversarial perturbations
carry for the safety of real-world machine learning applications because most meth-
ods used to generate such perturbations rely either on detailed model information
(gradient-based attacks) or on confidence scores such as class probabilities (score-based
attacks), neither of which are available in most real-world scenarios. In many such
cases one currently needs to retreat to transfer-based attackswhich rely on cumbersome
substitute models, need access to the training data and can be defended against. Here
we emphasise the importance of attacks which solely rely on the final model decision.
Such decision-based attacks are (1) applicable to real-world black-box models such as
autonomous cars, (2) need less knowledge and are easier to apply than transfer-based
attacks and (3) aremore robust to simple defences than gradient- or score-based attacks.
Previous attacks in this category were limited to simple models or simple datasets.
Here we introduce the Boundary Attack, a decision-based attack that starts from a
large adversarial perturbation and then seeks to reduce the perturbation while staying
adversarial. The attack is conceptually simple, requires close to no hyperparameter
tuning, does not rely on substitute models and is competitive with the best gradient-
based attacks in standard computer vision tasks like ImageNet. We apply the attack on
two black-box algorithms from Clarifai.com. The Boundary Attack in particular and the
class of decision-based attacks in general open new avenues to study the robustness
of machine learning models and raise new questions regarding the safety of deployed
machine learning systems. An implementation of the attack is available as part of
Foolbox (https://github.com/bethgelab/foolbox).

https://github.com/bethgelab/foolbox

Published as a conference paper at ICLR 2018

DECISION-BASED ADVERSARIAL ATTACKS:
RELIABLE ATTACKS AGAINST BLACK-BOX MACHINE
LEARNING MODELS

Wieland Brendel∗, Jonas Rauber∗ & Matthias Bethge
Werner Reichardt Centre for Integrative Neuroscience,
Eberhard Karls University Tübingen, Germany
{wieland,jonas,matthias}@bethgelab.org

ABSTRACT

Many machine learning algorithms are vulnerable to almost imperceptible pertur-
bations of their inputs. So far it was unclear how much risk adversarial pertur-
bations carry for the safety of real-world machine learning applications because
most methods used to generate such perturbations rely either on detailed model
information (gradient-based attacks) or on confidence scores such as class prob-
abilities (score-based attacks), neither of which are available in most real-world
scenarios. In many such cases one currently needs to retreat to transfer-based
attacks which rely on cumbersome substitute models, need access to the training
data and can be defended against. Here we emphasise the importance of attacks
which solely rely on the final model decision. Such decision-based attacks are (1)
applicable to real-world black-box models such as autonomous cars, (2) need less
knowledge and are easier to apply than transfer-based attacks and (3) are more ro-
bust to simple defences than gradient- or score-based attacks. Previous attacks in
this category were limited to simple models or simple datasets. Here we introduce
the Boundary Attack, a decision-based attack that starts from a large adversarial
perturbation and then seeks to reduce the perturbation while staying adversarial.
The attack is conceptually simple, requires close to no hyperparameter tuning,
does not rely on substitute models and is competitive with the best gradient-based
attacks in standard computer vision tasks like ImageNet. We apply the attack on
two black-box algorithms from Clarifai.com. The Boundary Attack in particu-
lar and the class of decision-based attacks in general open new avenues to study
the robustness of machine learning models and raise new questions regarding the
safety of deployed machine learning systems. An implementation of the attack is
available as part of Foolbox (https://github.com/bethgelab/foolbox).

Gradient-based
Model M

Untargeted
Flip to any
label

Targeted
Flip to
target label

FGSM, DeepFool

L-BFGS-B, Houdini, JSMA,
Carlini & Wagner, Iterative

Gradient Descent

Score-based
Detailed Model Prediction Y
(e.g. probabilities or logits)

ZOO

Local Search

Decision-based
Final Model Prediction Ymax

(e.g. max class label)

this work
(Boundary Attack)

Transfer-based
Training Data T

FGSM Transfer

Ensemble Transfer

Clarifai Brand Classifier
Original Adversarial

Tide No Logo

Apple Inc No Logo

less information

Figure 1: (Left) Taxonomy of adversarial attack methods. The Boundary Attack is applicable to real-
world ML algorithms because it only needs access to the final decision of a model (e.g. class-label
or transcribed sentence) and does not rely on model information like the gradient or the confidence
scores. (Right) Application to the Clarifai Brand Recognition Model.

∗Equal contribution.

1

79

Published as a conference paper at ICLR 2018

1 INTRODUCTION

Many high-performance machine learning algorithms used in computer vision, speech recognition
and other areas are susceptible to minimal changes of their inputs (Szegedy et al., 2013). As a
concrete example, a modern deep neural network like VGG-19 trained on object recognition might
perfectly recognize the main object in an image as a tiger cat, but if the pixel values are only slightly
perturbed in a specific way then the prediction of the very same network is drastically altered (e.g.
to bus). These so-called adversarial perturbations are ubiquitous in many machine learning models
and are often imperceptible to humans. Algorithms that seek to find such adversarial perturbations
are generally denoted as adversarial attacks.

Adversarial perturbations have drawn interest from two different sides. On the one side, they
are worrisome for the integrity and security of deployed machine learning algorithms such as au-
tonomous cars or face recognition systems. Minimal perturbations on street signs (e.g. turning a
stop-sign into a 200 km/h speed limit) or street lights (e.g. turning a red into a green light) can have
severe consequences. On the other hand, adversarial perturbations provide an exciting spotlight
on the gap between the sensory information processing in humans and machines and thus provide
guidance towards more robust, human-like architectures.

Adversarial attacks can be roughly divided into three categories: gradient-based, score-based and
transfer-based attacks (cp. Figure 1). Gradient-based and score-based attacks are often denoted
as white-box and oracle attacks respectively, but we try to be as explicit as possible as to what
information is being used in each category1. A severe problem affecting attacks in all of these
categories is that they are surprisingly straight-forward to defend against:

• Gradient-based attacks. Most existing attacks rely on detailed model information includ-
ing the gradient of the loss w.r.t. the input. Examples are the Fast-Gradient Sign Method
(FGSM), the Basic Iterative Method (BIM) (Kurakin et al., 2016), DeepFool (Moosavi-
Dezfooli et al., 2015), the Jacobian-based Saliency Map Attack (JSMA) (Papernot et al.,
2015), Houdini (Cisse et al., 2017) and the Carlini & Wagner attack (Carlini & Wagner,
2016a).
Defence: A simple way to defend against gradient-based attacks is to mask the gradients,
for example by adding non-differentiable elements either implicitly through means like de-
fensive distillation (Papernot et al., 2016) or saturated non-linearities (Nayebi & Ganguli,
2017), or explicitly through means like non-differentiable classifiers (Lu et al., 2017).

• Score-based attacks. A few attacks are more agnostic and only rely on the predicted scores
(e.g. class probabilities or logits) of the model. On a conceptual level these attacks use the
predictions to numerically estimate the gradient. This includes black-box variants of JSMA
(Narodytska & Kasiviswanathan, 2016) and of the Carlini & Wagner attack (Chen et al.,
2017) as well as generator networks that predict adversarials (Hayes & Danezis, 2017).
Defence: It is straight-forward to severely impede the numerical gradient estimate by
adding stochastic elements like dropout into the model. Also, many robust training meth-
ods introduce a sharp-edged plateau around samples (Tramer et al., 2017) which not only
masks gradients themselves but also their numerical estimate.

• Transfer-based attacks. Transfer-based attacks do not rely on model information but need
information about the training data. This data is used to train a fully observable substitute
model from which adversarial perturbations can be synthesized (Papernot et al., 2017a).
They rely on the empirical observation that adversarial examples often transfer between
models. If adversarial examples are created on an ensemble of substitute models the success
rate on the attacked model can reach up to 100% in certain scenarios (Liu et al., 2016).
Defence: A recent defence method against transfer attacks (Tramer et al., 2017), which is
based on robust training on a dataset augmented by adversarial examples from an ensemble
of substitute models, has proven highly successful against basically all attacks in the 2017
Kaggle Competition on Adversarial Attacks2.

1For example, the term oracle does not convey what information is used by attacks in this category.
2https://www.kaggle.com/c/nips-2017-defense-against-adversarial-attack

2

80

Published as a conference paper at ICLR 2018

The fact that many attacks can be easily averted makes it often extremely difficult to assess whether
a model is truly robust or whether the attacks are just too weak, which has lead to premature claims
of robustness for DNNs (Carlini & Wagner, 2016b; Brendel & Bethge, 2017).

This motivates us to focus on a category of adversarial attacks that has so far received fairly little
attention:

• Decision-based attacks. Direct attacks that solely rely on the final decision of the model
(such as the top-1 class label or the transcribed sentence).

The delineation of this category is justified for the following reasons: First, compared to score-based
attacks decision-based attacks are much more relevant in real-world machine learning applications
where confidence scores or logits are rarely accessible. At the same time decision-based attacks
have the potential to be much more robust to standard defences like gradient masking, intrinsic
stochasticity or robust training than attacks from the other categories. Finally, compared to transfer-
based attacks they need much less information about the model (neither architecture nor training
data) and are much simpler to apply.

There currently exists no effective decision-based attack that scales to natural datasets such as Ima-
geNet and is applicable to deep neural networks (DNNs). The most relevant prior work is a variant
of transfer attacks in which the training set needed to learn the substitute model is replaced by
a synthetic dataset (Papernot et al., 2017b). This synthetic dataset is generated by the adversary
alongside the training of the substitute; the labels for each synthetic sample are drawn from the
black-box model. While this approach works well on datasets for which the intra-class variabil-
ity is low (such as MNIST) it has yet to be shown that it scales to more complex natural datasets
such as CIFAR or ImageNet. Other decision-based attacks are specific to linear or convex-inducing
classifiers (Dalvi et al., 2004; Lowd & Meek, 2005; Nelson et al., 2012) and are not applicable to
other machine learning models. The work by (Biggio et al., 2013) basically stands between transfer
attacks and decision-based attacks in that the substitute model is trained on a dataset for which the
labels have been observed from the black-box model. This attack still requires knowledge about the
data distribution on which the black-box models was trained on and so we don’t consider it a pure
decision-based attack. Finally, some naive attacks such as a line-search along a random direction
away from the original sample can qualify as decision-based attacks but they induce large and very
visible perturbations that are orders of magnitude larger than typical gradient-based, score-based or
transfer-based attacks.

Throughout the paper we focus on the threat scenario in which the adversary aims to change the de-
cision of a model (either targeted or untargeted) for a particular input sample by inducing a minimal
perturbation to the sample. The adversary can observe the final decision of the model for arbitrary
inputs and it knows at least one perturbation, however large, for which the perturbed sample is
adversarial.

The contributions of this paper are as follows:

• We emphasise decision-based attacks as an important category of adversarial attacks that
are highly relevant for real-world applications and important to gauge model robustness.

• We introduce the first effective decision-based attack that scales to complex machine learn-
ing models and natural datasets. The Boundary Attack is (1) conceptually surprisingly
simple, (2) extremely flexible, (3) requires little hyperparameter tuning and (4) is compet-
itive with the best gradient-based attacks in both targeted and untargeted computer vision
scenarios.

• We show that the Boundary Attack is able to break previously suggested defence mecha-
nisms like defensive distillation.

• We demonstrate the practical applicability of the Boundary Attack on two black-box ma-
chine learning models for brand and celebrity recognition available on Clarifai.com.

1.1 NOTATION

Throughout the paper we use the following notation: o refers to the original input (e.g. an image),
y = F (o) refers to the full prediction of the model F (·) (e.g. logits or probabilities), ymax is the

3

81

Published as a conference paper at ICLR 2018

predicted label (e.g. class-label). Similarly, õ refers to the adversarially perturbed image, õk refers
to the perturbed image at the k-th step of an attack algorithm. Vectors are denoted in bold.

2 BOUNDARY ATTACK

The basic intuition behind the boundary attack algorithm is depicted in Figure 2: the algorithm is
initialized from a point that is already adversarial and then performs a random walk along the bound-
ary between the adversarial and the non-adversarial region such that (1) it stays in the adversarial
region and (2) the distance towards the target image is reduced. In other words we perform rejection
sampling with a suitable proposal distribution P to find progressively smaller adversarial perturba-
tions according to a given adversarial criterion c(.). The basic logic of the algorithm is described in
Algorithm 1, each individual building block is detailed in the next subsections.

Data: original image o, adversarial criterion c(.), decision of model d(.)
Result: adversarial example õ such that the distance d(o, õ) = ‖o− õ‖22 is minimized
initialization: k = 0, õ0 ∼ U(0, 1) s.t. õ0 is adversarial;
while k < maximum number of steps do

draw random perturbation from proposal distribution ηk ∼ P(õk−1);
if õk−1 + ηk is adversarial then

set õk = õk−1 + ηk;
else

set õk = õk−1;
end
k = k + 1

end
Algorithm 1: Minimal version of the Boundary Attack.

2.1 INITIALISATION

The Boundary Attack needs to be initialized with a sample that is already adversarial3. In an untar-
geted scenario we simply sample from a maximum entropy distribution given the valid domain of
the input. In the computer vision applications below, where the input is constrained to a range of
[0, 255] per pixel, we sample each pixel in the initial image õ0 from a uniform distribution U(0, 255).
We reject samples that are not adversarial. In a targeted scenario we start from any sample that is
classified by the model as being from the target class.

2.2 PROPOSAL DISTRIBUTION

The efficiency of the algorithm crucially depends on the proposal distribution P , i.e. which random
directions are explored in each step of the algorithm. The optimal proposal distribution will generally
depend on the domain and / or model to be attacked, but for all vision-related problems tested here
a very simple proposal distribution worked surprisingly well. The basic idea behind this proposal
distribution is as follows: in the k-th step we want to draw perturbations ηk from a maximum
entropy distribution subject to the following constraints:

1. The perturbed sample lies within the input domain,

õk−1
i + ηki ∈ [0, 255]. (1)

2. The perturbation has a relative size of δ,∥∥ηk
∥∥
2
= δ · d(o, õk−1). (2)

3. The perturbation reduces the distance of the perturbed image towards the original input by
a relative amount ε,

d(o, õk−1)− d(o, õk−1 + ηk) = ε · d(o, õk−1). (3)
3Note that here adversarial does not mean that the decision of the model is wrong—it might make perfect

sense to humans—but that the perturbation fulfills the adversarial criterion (e.g. changes the model decision).

4

82

Published as a conference paper at ICLR 2018

In
pu

t D
im

en
si

on
 1

Input Dimension 2

classified correctly

starting image

steps of the algorithm

original image

classified correctly

Basic Intuition Single step
#1. random orthogonal step
#2. step towards original image

#1

#2
sphere around
original image

(equidistant)

Hyperparameters
Adjusting step-size of #1

~50% of orthogonal perturbations
should be within adversarial region

Adjusting step-size of #2

Success rate of total perturbation should
be higher then threshold (e.g. 25%).

classified incorrectly
(adversarial)

Figure 2: (Left) In essence the Boundary Attack performs rejection sampling along the boundary
between adversarial and non-adversarial images. (Center) In each step we draw a new random
direction by (#1) drawing from an iid Gaussian and projecting on a sphere, and by (#2) making
a small move towards the target image. (Right) The two step-sizes (orthogonal and towards the
original input) are dynamically adjusted according to the local geometry of the boundary.

In practice it is difficult to sample from this distribution, and so we resort to a simpler heuristic: first,
we sample from an iid Gaussian distribution ηk

i ∼ N (0, 1) and then rescale and clip the sample such
that (1) and (2) hold. In a second step we project ηk onto a sphere around the original image o such
that d(o, õk−1 + ηk) = d(o, õk−1) and (1) hold. We denote this as the orthogonal perturbation
and use it later for hyperparameter tuning. In the last step we make a small movement towards the
original image such that (1) and (3) hold. For high-dimensional inputs and small δ, ε the constraint
(2) will also hold approximately.

2.3 ADVERSARIAL CRITERION

A typical criterion by which an input is classified as adversarial is misclassification, i.e. whether
the model assigns the perturbed input to some class different from the class label of the original
input. Another common choice is targeted misclassification for which the perturbed input has to
be classified in a given target class. Other choices include top-k misclassification (the top-k classes
predicted for the perturbed input do not contain the original class label) or thresholds on certain
confidence scores. Outside of computer vision many other choices exist such as criteria on the word-
error rates. In comparison to most other attacks, the Boundary Attack is extremely flexible with
regards to the adversarial criterion. It basically allows any criterion (including non-differentiable
ones) as long as for that criterion an initial adversarial can be found (which is trivial in most cases).

2.4 HYPERPARAMETER ADJUSTMENT

The Boundary Attack has only two relevant parameters: the length of the total perturbation δ and the
length of the step ε towards the original input (see Fig. 2). We adjust both parameters dynamically
according to the local geometry of the boundary. The adjustment is inspired by Trust Region meth-
ods. In essence, we first test whether the orthogonal perturbation is still adversarial. If this is true,
then we make a small movement towards the target and test again. The orthogonal step tests whether
the step-size is small enough so that we can treat the decision boundary between the adversarial and
the non-adversarial region as being approximately linear. If this is the case, then we expect around
50% of the orthogonal perturbations to still be adversarial. If this ratio is much lower, we reduce
the step-size δ, if it is close to 50% or higher we increase it. If the orthogonal perturbation is still
adversarial we add a small step towards the original input. The maximum size of this step depends
on the angle of the decision boundary in the local neighbourhood (see also Figure 2). If the success
rate is too small we decrease ε, if it is too large we increase it. Typically, the closer we get to the
original image, the flatter the decision boundary becomes and the smaller ε has to be to still make
progress. The attack is converged whenever ε converges to zero.

5

83

Published as a conference paper at ICLR 2018

3 COMPARISON WITH OTHER ATTACKS

We quantify the performance of the Boundary Attack on three different standard datasets:
MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky & Hinton, 2009) and ImageNet-1000 (Deng
et al., 2009). To make the comparison with previous results as easy and transparent as possible, we
here use the same MNIST and CIFAR networks as Carlini & Wagner (2016a)4. In a nutshell, both
the MNIST and CIFAR model feature nine layers with four convolutional layers, two max-pooling
layers and two fully-connected layers. For all details, including training parameters, we refer the
reader to (Carlini & Wagner, 2016a). On ImageNet we use the pretrained networks VGG-19 (Si-
monyan & Zisserman, 2014), ResNet-50 (He et al., 2015) and Inception-v3 (Szegedy et al., 2015)
provided by Keras5.

We evaluate the Boundary Attack in two settings: an (1) untargeted setting in which the adversarial
perturbation flips the label of the original sample to any other label, and a (2) targeted setting in
which the adversarial flips the label to a specific target class. In the untargeted setting we compare
the Boundary Attack against three gradient-based attack algorithms:

• Fast-Gradient Sign Method (FGSM). FGSM is among the simplest and most widely used
untargeted adversarial attack methods. In a nutshell, FGSM computes the gradient g =
∇oL(o, c) that maximizes the loss L for the true class-label c and then seeks the smallest ε
for which o+ε·g is still adversarial. We use the implementation in Foolbox 0.10.0 (Rauber
et al., 2017).
• DeepFool. DeepFool is a simple yet very effective attack. In each iteration it computes for

each class ` 6= `0 the minimum distance d(`, `0) that it takes to reach the class boundary by
approximating the model classifier with a linear classifier. It then makes a corresponding
step in the direction of the class with the smallest distance. We use the implementation in
Foolbox 0.10.0 (Rauber et al., 2017).

• Carlini & Wagner. The attack by Carlini & Wagner (Carlini & Wagner, 2016a) is es-
sentially a refined iterative gradient attack that uses the Adam optimizer, multiple starting
points, a tanh-nonlinearity to respect box-constraints and a max-based adversarial con-
straint function. We use the original implementation provided by the authors with all hy-
perparameters left at their default values4.

To evaluate the success of each attack we use the following metric: let ηA,M (oi) ∈ RN be the
adversarial perturbation that the attack A finds on model M for the i-th sample oi. The total score
SA for A is the median squared L2-distance across all samples,

SA(M) = median
i

(
1

N
‖ηA,M (oi)‖22

)
. (4)

For MNIST and CIFAR we evaluate 1000 randomly drawn samples from the validation set, for
ImageNet we use 250 images.

3.1 UNTARGETED ATTACK

In the untargeted setting an adversarial is any image for which the predicted label is different from
the label of the original image. We show adversarial samples synthesized by the Boundary Attack
for each dataset in Figure 3. The score (4) for each attack and each dataset is as follows:

ImageNet
Attack Type MNIST CIFAR VGG-19 ResNet-50 Inception-v3

FGSM gradient-based 4.2e-02 2.5e-05 1.0e-06 1.0e-06 9.7e-07
DeepFool gradient-based 4.3e-03 5.8e-06 1.9e-07 7.5e-08 5.2e-08
Carlini & Wagner gradient-based 2.2e-03 7.5e-06 5.7e-07 2.2e-07 7.6e-08
Boundary (ours) decision-based 3.6e-03 5.6e-06 2.9e-07 1.0e-07 6.5e-08

4https://github.com/carlini/nn_robust_attacks (commit 1193c79)
5https://github.com/fchollet/keras (commit 1b5d54)

6

84

Published as a conference paper at ICLR 2018

MNIST

O
ri

gi
na

l
Ad

ve
rs

ar
ia

l
D

iff
er

en
ce

CIFAR ImageNet (VGG-19)

Figure 3: Adversarial examples generated by the Boundary Attack for an MNIST, CIFAR and Im-
ageNet network. For MNIST, the difference shows positive (blue) and negative (red) changes. For
CIFAR and ImageNet, we take the norm across color channels. All differences have been scaled up
for improved visibility.

1.4e-01

0 calls

5.6e-02

80 calls

1.8e-02

454 calls

1.7e-02

711 calls

8.0e-03

1053 calls

2.1e-03

1229 calls

5.6e-04

1828 calls

3.3e-04

2476 calls

1.7e-04

3470 calls

1.1e-04

4513 calls

7.7e-05

5601 calls

4.4e-05

8272 calls

6.1e-06

42213 calls

1.2e-06

200667 calls Original

Figure 4: Example of an untargeted attack. Here the goal is to synthesize an image that is as close
as possible (in L2-metric) to the original image while being misclassified (the original image is
correctly classified). For each image we report the total number of model calls (predictions) until
that point (above the image) and the mean squared error between the adversarial and the original
(below the image).

Despite its simplicity the Boundary Attack is competitive with gradient-based attacks in terms of
the minimal adversarial perturbations and very stable against the choice of the initial point (Fig-
ure 5). This finding is quite remarkable given that gradient-based attacks can fully observe the model
whereas the Boundary Attack is severely restricted to the final class prediction. To compensate for
this lack of information the Boundary Attack needs many more iterations to converge. As a rough
measure for the run-time of an attack independent of the quality of its implementation we tracked
the number of forward passes (predictions) and backward passes (gradients) through the network
requested by each of the attacks to find an adversarial for ResNet-50: averaged over 20 samples and
under the same conditions as before, DeepFool needs about 7 forward and 37 backward passes, the
Carlini & Wagner attack requires 16.000 forward and the same number of backward passes, and the
Boundary Attack uses 1.200.000 forward passes but zero backward passes. While that (unsurpris-
ingly) makes the Boundary Attack more expensive to run it is important to note that the Boundary
Attacks needs much fewer iterations if one is only interested in imperceptible perturbations, see
figures 4 and 6.

3.2 TARGETED ATTACK

We can also apply the Boundary Attack in a targeted setting. In this case we initialize the attack
from a sample of the target class that is correctly identified by the model. A sample trajectory from
the starting point to the original sample is shown in Figure 7. After around 104 calls to the model

7

85

Published as a conference paper at ICLR 2018

4.4e-08 4.4e-08 4.5e-08 4.6e-08 4.8e-08

9.8e-08 9.9e-08 9.9e-08 1.0e-07 1.0e-07

Figure 5: Adversarial perturbation (difference between
the adversarial and the original image) for ten repetitions
of the Boundary Attack on the same image. There are
basically two different minima with similar distance (first
row and second row) to which the Boundary Attack con-
verges.

0 1M 2M
model calls

10 7

10 6

10 5

10 4

10 3

10 2

10 1

di
st

an
ce

Figure 6: Distance between adversar-
ial and original image over number of
model calls for 12 different images
(until convergence). Very few steps
are already sufficient to get almost im-
perceptible perturbations.

0 calls 613 calls 2449 calls 4039 calls 5455 calls 13301 calls 15981 calls

18184 calls 20813 calls 23292 calls 56650 calls 67519 calls 155433 calls 416094 calls original

Figure 7: Example of a targeted attack. Here the goal is to synthesize an image that is as close as
possible (in L2-metric) to a given image of a tiger cat (2nd row, right) but is classified as a dalmatian
dog. For each image we report the total number of model calls (predictions) until that point.

the perturbed image is already clearly identified as a cat by humans and contains no trace of the
Dalmatian dog, as which the image is still classified by the model.

In order to compare the Boundary Attack to Carlini & Wagner we define the target target label for
each sample in the following way: on MNIST and CIFAR a sample with label ` gets the target label
`+1 modulo 10. On ImageNet we draw the target label randomly but consistent across attacks. The
results are as follows:

Attack Type MNIST CIFAR VGG-19
Carlini & Wagner gradient-based 4.8e-03 3.0e-05 5.7e-06
Boundary (ours) decision-based 6.5e-03 3.3e-05 9.9e-06

4 THE IMPORTANCE OF DECISION-BASED ATTACKS TO EVALUATE
MODEL ROBUSTNESS

As discussed in the introduction, many attack methods are straight-forward to defend against. One
common nuisance is gradient masking in which a model is implicitely or explicitely modified to yield
masked gradients. An interesting example is the saturated sigmoid network (Nayebi & Ganguli,
2017) in which an additional regularization term leads the sigmoid activations to saturate, which in
turn leads to vanishing gradients and failing gradient-based attacks (Brendel & Bethge, 2017).

8

86

Published as a conference paper at ICLR 2018

Another example is defensive distillation (Papernot et al., 2016). In a nutshell defensive distillation
uses a temperature-augmented softmax of the type

softmax(x, T)i =
exi/T∑
j e

xj/T
(5)

and works as follows:

1. Train a teacher network as usual but with temperature T .
2. Train a distilled network—with the same architecture as the teacher—on the softmax out-

puts of the teacher. Both the distilled network and the teacher use temperature T .
3. Evaluate the distilled network at temperature T = 1 at test time.

Initial results were promising: the success rate of gradient-based attacks dropped from close to 100%
down to 0.5%. It later became clear that the distilled networks only appeared to be robust because
they masked their gradients of the cross-entropy loss (Carlini & Wagner, 2016b): as the temperature
of the softmax is decreased at test time, the input to the softmax increases by a factor of T and so
the probabilities saturate at 0 and 1. This leads to vanishing gradients of the cross-entropy loss w.r.t.
to the input on which gradient-based attacks rely. If the same attacks are instead applied to the logits
the success rate recovers to almost 100% (Carlini & Wagner, 2016a).

Decision-based attacks are immune to such defences. To demonstrate this we here apply the Bound-
ary Attack to two distilled networks trained on MNIST and CIFAR. The architecture is the same
as in section 3 and we use the implementation and training protocol by (Carlini & Wagner, 2016a)
which is available at https://github.com/carlini/nn_robust_attacks. Most im-
portantly, we do not operate on the logits but provide only the class label with maximum probability
to the Boundary Attack. The results are as follows:

MNIST CIFAR
Attack Type standard distilled standard distilled

FGSM gradient-based 4.2e-02 fails 2.5e-05 fails
Boundary (ours) decision-based 3.6e-03 4.2e-03 5.6e-06 1.3e-05

The size of the adversarial perturbations that the Boundary Attack finds is fairly similar for the dis-
tilled and the undistilled network. This demonstrates that defensive distillation does not significantly
increase the robustness of network models and that the Boundary Attack is able to break defences
based on gradient masking.

5 ATTACKS ON REAL-WORLD APPLICATIONS

In many real-world machine learning applications the attacker has no access to the architecture or
the training data but can only observe the final decision. This is true for security systems (e.g. face
identification), autonomous cars or speech recognition systems like Alexa or Cortana.

In this section we apply the Boundary Attack to two models of the cloud-based computer vision
API by Clarifai6. The first model identifies brand names in natural images and recognizes over 500
brands. The second model identifies celebrities and can recognize over 10.000 individuals. Multiple
identifications per image are possible but we only consider the one with the highest confidence score.
It is important to note that Clarifai does provide confidence scores for each identified class (but not
for all possible classes). However, in our experiments we do not provide this confidence score to the
Boundary Attack. Instead, our attack only receives the name of the identified object (e.g. Pepsi or
Verizon in the brand-name detection task).

We selected several samples of natural images with clearly visible brand names or portraits of
celebrities. We then make a square crop and resize the image to 100× 100 pixels. For each sample
we make sure that the brand or the celebrity is clearly visible and that the corresponding Clarifai

6www.clarifai.com

9

87

Published as a conference paper at ICLR 2018

Clarifai Brand Model

O
ri

gi
na

l
A

dv
er

sa
ri

al

Clarifai Celebrity Model

J. Lawrence J. Depp E. Stone G. Clooney L. DiCaprio

D. HoffmanC. Aguilera K. Williams J. TerryH. Hasselhoff

SAP UPS Mercedes Shell Samsung

No LogoNo Logo No Logo No LogoWarner Brothers

Figure 8: Adversarial examples generated by the Boundary Attack for two black-box models by
Clarifai for brand-detection (left side) and celebrity detection (right side).

model correctly identifies the content. The adversarial criterion was misclassification, i.e. Clarifai
should report a different brand / celebrity or None on the adversarially perturbed sample.

We show five samples for each model alongside the adversarial image generated by the Boundary
Attack in Figure 8. We generally observed that the Clarifai models were more difficult to attack
than ImageNet models like VGG-19: while for some samples we did succeed to find adversarial
perturbations of the same order (1e−7) as in section 3 (e.g. for Shell or SAP), most adversarial
perturbations were on the order of 1e−2 to 1e−3 resulting in some slightly noticeable noise in some
adversarial examples. Nonetheless, for most samples the original and the adversarial image are close
to being perceptually indistinguishable.

6 DISCUSSION & OUTLOOK

In this paper we emphasised the importance of a mostly neglected category of adversarial attacks—
decision-based attacks—that can find adversarial examples in models for which only the final deci-
sion can be observed. We argue that this category is important for three reasons: first, attacks in this
class are highly relevant for many real-world deployed machine learning systems like autonomous
cars for which the internal decision making process is unobservable. Second, attacks in this class do
not rely on substitute models that are trained on similar data as the model to be attacked, thus making
real-world applications much more straight-forward. Third, attacks in this class have the potential
to be much more robust against common deceptions like gradient masking, intrinsic stochasticity or
robust training.

We also introduced the first effective attack in this category that is applicable to general machine
learning algorithms and complex natural datasets: the Boundary Attack. At its core the Bound-
ary Attack follows the decision boundary between adversarial and non-adversarial samples using
a very simple rejection sampling algorithm in conjunction with a simple proposal distribution and
a dynamic step-size adjustment inspired by Trust Region methods. Its basic operating principle—
starting from a large perturbation and successively reducing it—inverts the logic of essentially all
previous adversarial attacks. Besides being surprisingly simple, the Boundary attack is also ex-
tremely flexible in terms of the possible adversarial criteria and performs on par with gradient-based
attacks on standard computer vision tasks in terms of the size of minimal perturbations.

The mere fact that a simple constrained iid Gaussian distribution can serve as an effective proposal
perturbation for each step of the Boundary attack is surprising and sheds light on the brittle informa-
tion processing of current computer vision architectures. Nonetheless, there are many ways in which
the Boundary attack can be made even more effective, in particular by learning a suitable proposal
distribution for a given model or by conditioning the proposal distribution on the recent history of
successful and unsuccessful proposals.

Decision-based attacks will be highly relevant to assess the robustness of machine learning models
and to highlight the security risks of closed-source machine learning systems like autonomous cars.
We hope that the Boundary attack will inspire future work in this area.

10

88

Published as a conference paper at ICLR 2018

ACKNOWLEDGMENTS

This work was supported by the Carl Zeiss Foundation (0563-2.8/558/3), the Bosch Forschungss-
tiftung (Stifterverband, T113/30057/17), the International Max Planck Research School for Intel-
ligent Systems (IMPRS-IS), the German Research Foundation (DFG, CRC 1233, Robust Vision:
Inference Principles and Neural Mechanisms) and the Intelligence Advanced Research Projects
Activity (IARPA) via Department of Interior/Interior Business Center (DoI/IBC) contract number
D16PC00003. The U.S. Government is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright annotation thereon. Disclaimer: The views and
conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of IARPA, DoI/IBC,
or the U.S. Government.

REFERENCES

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Gior-
gio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 387–
402. Springer, 2013.

Wieland Brendel and Matthias Bethge. Comment on “biologically inspired protection of deep net-
works from adversarial attacks”. CoRR, abs/1704.01547, 2017. URL http://arxiv.org/
abs/1704.01547.

Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks.
CoRR, abs/1608.04644, 2016a. URL http://arxiv.org/abs/1608.04644.

Nicholas Carlini and David A. Wagner. Defensive distillation is not robust to adversarial examples.
CoRR, abs/1607.04311, 2016b. URL http://arxiv.org/abs/1607.04311.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order op-
timization based black-box attacks to deep neural networks without training substitute models.
CoRR, abs/1708.03999, 2017. URL http://arxiv.org/abs/1708.03999.

Moustapha Cisse, Yossi Adi, Natalia Neverova, and Joseph Keshet. Houdini: Fooling deep struc-
tured prediction models. CoRR, abs/1707.05373, 2017. URL http://arxiv.org/abs/
1707.05373.

Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, and Deepak Verma. Adversarial clas-
sification. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’04, pp. 99–108, New York, NY, USA, 2004. ACM. ISBN
1-58113-888-1. doi: 10.1145/1014052.1014066. URL http://doi.acm.org/10.1145/
1014052.1014066.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pp. 248–255. IEEE, 2009.

Jamie Hayes and George Danezis. Machine learning as an adversarial service: Learning black-
box adversarial examples. CoRR, abs/1708.05207, 2017. URL http://arxiv.org/abs/
1708.05207.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, University of Toronto, 2009.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
CoRR, abs/1607.02533, 2016. URL http://arxiv.org/abs/1607.02533.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

11

89

Published as a conference paper at ICLR 2018

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial exam-
ples and black-box attacks. CoRR, abs/1611.02770, 2016. URL http://arxiv.org/abs/
1611.02770.

Daniel Lowd and Christopher Meek. Adversarial learning. In Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD ’05, pp. 641–
647, New York, NY, USA, 2005. ACM. ISBN 1-59593-135-X. doi: 10.1145/1081870.1081950.
URL http://doi.acm.org/10.1145/1081870.1081950.

Jiajun Lu, Theerasit Issaranon, and David A. Forsyth. Safetynet: Detecting and rejecting adversarial
examples robustly. CoRR, abs/1704.00103, 2017. URL http://arxiv.org/abs/1704.
00103.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. CoRR, abs/1511.04599, 2015. URL http:
//arxiv.org/abs/1511.04599.

Nina Narodytska and Shiva Prasad Kasiviswanathan. Simple black-box adversarial perturbations
for deep networks. CoRR, abs/1612.06299, 2016. URL http://arxiv.org/abs/1612.
06299.

Aran Nayebi and Surya Ganguli. Biologically inspired protection of deep networks from adversarial
attacks. CoRR, abs/1703.09202, 2017. URL http://arxiv.org/abs/1703.09202.

Blaine Nelson, Benjamin I. P. Rubinstein, Ling Huang, Anthony D. Joseph, Steven J. Lee, Satish
Rao, and J. D. Tygar. Query strategies for evading convex-inducing classifiers. J. Mach. Learn.
Res., 13:1293–1332, May 2012. ISSN 1532-4435. URL http://dl.acm.org/citation.
cfm?id=2188385.2343688.

Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Anan-
thram Swami. The limitations of deep learning in adversarial settings. CoRR, abs/1511.07528,
2015. URL http://arxiv.org/abs/1511.07528.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a
defense to adversarial perturbations against deep neural networks. In Security and Privacy (SP),
2016 IEEE Symposium on, pp. 582–597. IEEE, 2016.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, pp. 506–519. ACM, 2017a.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, ASIA CCS ’17, pp. 506–519,
New York, NY, USA, 2017b. ACM. ISBN 978-1-4503-4944-4. doi: 10.1145/3052973.3053009.
URL http://doi.acm.org/10.1145/3052973.3053009.

Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox v0.8.0: A python toolbox to
benchmark the robustness of machine learning models. CoRR, abs/1707.04131, 2017. URL
http://arxiv.org/abs/1707.04131.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014. URL http://arxiv.org/abs/1409.1556.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. CoRR, abs/1312.6199, 2013. URL
http://arxiv.org/abs/1312.6199.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. CoRR, abs/1512.00567, 2015. URL
http://arxiv.org/abs/1512.00567.

Florian Tramer, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and Patrick McDaniel. Ensemble
adversarial training: Attacks and defenses. CoRR, abs/1705.07204, May 2017. URL http:
//arxiv.org/abs/1705.07204.

12

90

Towards thefirst adversarially robust neural networkmodel onMNIST

The following 17 pages have been published as:

Lukas Schott*, Jonas Rauber*, Matthias Bethge, Wieland Brendel (2019). “Towards the first
adversarially robust neural network model on MNIST”. Seventh International Conference on
Learning Representations (ICLR 2019).

A summary of the motivation, results, and discussion can be found in section 2.5 on page 43. * joint first authorship

Abstract

Despite much effort, deep neural networks remain highly susceptible to tiny input
perturbations and even for MNIST, one of the most common toy datasets in computer
vision, no neural network model exists for which the adversarial perturbations are
large and make semantic sense to humans. We show that the widely recognized and
by far most successful defense by Madry et al. (1) overfits on the 𝐿∞ metric (it’s highly
susceptible to 𝐿2 and 𝐿0 perturbations), (2) classifies unrecognizable images with high
certainty, (3) a simple defense based on binarization performs almost as well and
(4) its adversarial perturbations make little sense to humans. These results suggest
that MNIST is far from being solved in terms of adversarial robustness. We present
a novel robust classification model that performs analysis by synthesis using learned
class-conditional data distributions. We derive robustness guarantees and go to great
length to empirically evaluate our model using maximally effective adversarial attacks
by (a) applying decision-based, score-based, gradient-based and transfer-based attacks
for several different 𝐿𝑝 norms, (b) by designing a new attack that exploits the structure
of our defended model and (c) by devising a novel decision-based attack that seeks to
minimize the number of perturbed pixels (𝐿0). The results suggest that this approach
yields state-of-the-art robustness on MNIST against 𝐿0, 𝐿2 and 𝐿∞ perturbations and
we demonstrate that most adversarial examples are strongly perturbed towards the
perceptual boundary between the original and the adversarial class.

Published as a conference paper at ICLR 2019

TOWARDS THE FIRST ADVERSARIALLY ROBUST
NEURAL NETWORK MODEL ON MNIST

Lukas Schott1-3∗, Jonas Rauber1-3∗, Matthias Bethge1,3,4† & Wieland Brendel1,3†

1Centre for Integrative Neuroscience, University of Tübingen
2International Max Planck Research School for Intelligent Systems

3Bernstein Center for Computational Neuroscience Tübingen
4Max Planck Institute for Biological Cybernetics

∗Joint first authors
†Joint senior authors

firstname.lastname@bethgelab.org

ABSTRACT

Despite much effort, deep neural networks remain highly susceptible to tiny input
perturbations and even for MNIST, one of the most common toy datasets in com-
puter vision, no neural network model exists for which adversarial perturbations
are large and make semantic sense to humans. We show that even the widely
recognized and by far most successful L∞ defense by Madry et al. (1) has lower
L0 robustness than undefended networks and is still highly susceptible to L2 per-
turbations, (2) classifies unrecognizable images with high certainty, (3) performs
not much better than simple input binarization and (4) features adversarial perturba-
tions that make little sense to humans. These results suggest that MNIST is far from
being solved in terms of adversarial robustness. We present a novel robust classifi-
cation model that performs analysis by synthesis using learned class-conditional
data distributions. We derive bounds on the robustness and go to great length to
empirically evaluate our model using maximally effective adversarial attacks by (a)
applying decision-based, score-based, gradient-based and transfer-based attacks
for several different Lp norms, (b) by designing a new attack that exploits the
structure of our defended model and (c) by devising a novel decision-based attack
that seeks to minimize the number of perturbed pixels (L0). The results suggest
that our approach yields state-of-the-art robustness on MNIST against L0, L2 and
L∞ perturbations and we demonstrate that most adversarial examples are strongly
perturbed towards the perceptual boundary between the original and the adversarial
class.

1 INTRODUCTION

Deep neural networks (DNNs) are strikingly susceptible to minimal adversarial perturbations
(Szegedy et al., 2013), perturbations that are (almost) imperceptible to humans but which can switch
the class prediction of DNNs to basically any desired target class.

One key problem in finding successful defenses is the difficulty of reliably evaluating model robust-
ness. It has been shown time and again (Athalye et al., 2018; Athalye & Carlini, 2018; Brendel &
Bethge, 2017) that basically all defenses previously proposed did not increase model robustness but
prevented existing attacks from finding minimal adversarial examples, the most common reason
being masking of the gradients on which most attacks rely. The few verifiable defenses can only
guarantee robustness within a small linear regime around the data points (Hein & Andriushchenko,
2017; Raghunathan et al., 2018).

The only defense currently considered effective (Athalye et al., 2018) is a particular type of adversarial
training (Madry et al., 2018). On MNIST, as of today this method is able to reach an accuracy of
88.79% for adversarial perturbations with an L∞ norm bounded by ε = 0.3 (Zheng et al., 2018). In
other words, if we allow an attacker to perturb the brightness of each pixel by up to 0.3 (range [0, 1]),

1

93

Published as a conference paper at ICLR 2019

then he can only trick the model on ≈ 10% of the samples. This is a great success, but does the
model really learn more causal features to classify MNIST? We here demonstrate that this is not the
case: For one, the defense by Madry et al. (SOTA on L∞) has lower L0 robustness than undefended
networks and is still highly susceptible in the L2 metric. Second, the robustness results by Madry
et al. can also be achieved with a simple input quantization because of the binary nature of single
pixels in MNIST (which are typically either completely black or white) (Schmidt et al., 2018). Third,
it is straight-forward to find unrecognizable images that are classified as a digit with high certainty.
Finally, the minimum adversarial examples we find for the defense by Madry et al. make little to no
sense to humans.

Taken together, even MNIST cannot be considered solved with respect to adversarial robustness. By
“solved” we mean a model that reaches at least 99% accuracy (see accuracy-vs-robustness trade-off
(Tsipras et al., 2018; Bubeck et al., 2018)) and whose adversarial examples carry semantic meaning
to humans (by which we mean that they start looking like samples that could belong to either class).
Hence, despite the fact that MNIST is considered “too easy” by many and a mere toy example, finding
adversarially robust models on MNIST is still an open problem.

A potential solution we explore in this paper is inspired by unrecognizable images (Nguyen et al.,
2015) or distal adversarials. Distal adversarials are images that do not resemble images from the
training set but which typically look like noise while still being classified by the model with high
confidence. It seems difficult to prevent such images in feedforward networks as we have little control
over how inputs are classified that are far outside of the training domain. In contrast, generative
models can learn the distribution of their inputs and are thus able to gauge their confidence accordingly.
By additionally learning the image distribution within each class we can check that the classification
makes sense in terms of the image features being present in the input (e.g. an image of a bus should
contain actual bus features). Following this line of thought from an information-theoretic perspective,
one arrives at the well-known concept of Bayesian classifiers. We here introduce a fine-tuned variant
based on variational autoencoders (Kingma & Welling, 2013) that combines robustness with high
accuracy.

In summary, the contributions of this paper are as follows:

• We show that MNIST is unsolved from the point of adversarial robustness: the SOTA defense of
Madry et al. (2018) is still highly vulnerable to tiny perturbations that are meaningless to humans.

• We introduce a new robust classification model and derive instance-specific robustness guarantees.
• We develop a strong attack that leverages the generative structure of our classification model.
• We introduce a novel decision-based attack that minimizes L0.
• We perform an extensive evaluation of our defense across many attacks to show that it surpasses

SOTA on L0, L2 and L∞ and features many adversarials that carry semantic meaning to humans.

We have evaluated the proposed defense to the best of our knowledge, but we are aware of the
(currently unavoidable) limitations of evaluating robustness. We will release the model architecture
and trained weights as a friendly invitation to fellow researchers to evaluate our model independently.

2 RELATED WORK

The many defenses against adversarial attacks can roughly be subdivided into four categories:

• Adversarial training: The training data is augmented with adversarial examples to make models
more robust (Madry et al., 2018; Szegedy et al., 2013; Tramèr et al., 2017; Ilyas et al., 2017).

• Manifold projections: An input sample is projected onto a learned data manifold (Samangouei
et al., 2018; Ilyas et al., 2017; Shen et al., 2017; Song et al., 2018).

• Stochasticity: Certain inputs or hidden activations are shuffled or randomized (Prakash et al.,
2018; Dhillon et al., 2018; Xie et al., 2018).

• Preprocessing: Inputs or hidden activations are quantized, projected into a different representation
or are otherwise preprocessed (Buckman et al., 2018; Guo et al., 2018; Kabilan et al., 2018).

There has been much work showing that basically all defenses suggested so far in the literature do not
substantially increase robustness over undefended neural networks (Athalye et al., 2018; Brendel &

2

94

Published as a conference paper at ICLR 2019

I. Optimize latent distribution p(z|x) in each digit model
to find likelihood of sample x under each model.

II. Decide based on most likely class

Generator0

Generator9

Forward
Gradient

. .
 .

Sample x

p(class | x)

z0

z9

LOGITS
scale0

scale9

m
od. softm

ax

M
od

el
 0

M
od

el
 9

0
1
2
3
4
5
6
7
8
9

Figure 1: Overview over model architecture. In a nutshell: I) for each sample x we compute a lower
bound on the log-likelihood (ELBO) under each class using gradient descent in the latent space. II) A
class-dependent scalar weighting of the class-conditional ELBOs forms the final class prediction.

Bethge, 2017). The only widely accepted exception according to Athalye et al. (2018) is the defense
by Madry et al. (2018) which is based on data augmentation with adversarials found by iterative
projected gradient descent with random starting points. However, as we see in the results section,
this defense is limited to the metric it is trained on (L∞) and it is straight-forward to generate small
adversarial perturbations that carry little semantic meaning for humans.

Some other defenses have been based on generative models. Typically these defenses use the gener-
ative model to project onto the (learned) manifold of “natural” inputs. This includes in particular
DefenseGAN (Samangouei et al., 2018), Adversarial Perturbation Elimination GAN (Shen et al.,
2017) and Robust Manifold Defense (Ilyas et al., 2017), all of which project an image onto the mani-
fold defined by a generator network G. The generated image is then classified by a discriminator in
the usual way. A similar idea is used by PixelDefend (Song et al., 2018) which uses an autoregressive
probabilistic method to learn the data manifold. Other ideas in similar directions include the use of
denoising autoencoders (Liao et al., 2017) as well as MagNets (Meng & Chen, 2017), which projects
or rejects inputs depending on their distance to the data manifold. All of these proposed defenses
except for the defense by Ilyas et al. (2017) have been tested by Athalye et al. (2018); Athalye &
Carlini (2018); Carlini & Wagner (2017) and others, and shown to be ineffective. It is straight-forward
to understand why: For one, many adversarials still look like normal data points to humans. Second,
the classifier on top of the projected image is as vulnerable to adversarial examples as before. Hence,
for any data set with a natural amount of variation there will almost always be a certain perturbation
against which the classifier is vulnerable and which can be induced by the right inputs.

We here follow a different approach by modeling the input distribution within each class (instead of
modeling a single distribution for the complete data), and by classifying a new sample according to
the class under which it has the highest likelihood. This approach, commonly referred to as a Bayesian
classifier, gets away without any additional and vulnerable classifier. A very different but related
approach is the work by George et al. (2017) which suggested a generative compositional model of
digits to solve cluttered digit scenes like Captchas (adversarial robustness was not evaluated).

3 MODEL DESCRIPTION

Intuitively, we want to learn a causal model of the inputs (Schölkopf, 2017). Consider a cat: we
want a model to learn that cats have four legs and two pointed ears, and then use this model to check
whether a given input can be generated with these features. This intuition can be formalized as
follows. Let (x, y) with x ∈ RN be an input-label datum. Instead of directly learning a posterior
p(y|x) from inputs to labels we now learn generative distributions p(x|y) and classify new inputs
using Bayes formula,

p(y|x) = p(x|y)p(y)
p(x)

∝ p(x|y)p(y). (1)

The label distribution p(y) can be estimated from the training data. To learn the class-conditional
sample distributions p(x|y) we use variational autoencoders (VAEs) (Kingma & Welling, 2013).
VAEs estimate the log-likelihood log p(x) by learning a probabilistic generative model pθ(x|z)

3

95

Published as a conference paper at ICLR 2019

with latent variables z ∼ p(z) and parameters θ (see Appendix A.3 for the full derivation). For
class-conditional VAEs we can derive a lower bound on the log-likelihood log p(x|y) as

log p(x|y) ≥ Ez∼qφ(z|x,y) [log pθ(x|z, y)]−DKL [qφ(z|x, y)||p(z)] =: `y(x), (2)

where p(z) = N (0,1) is a simple normal prior and qφ(z|x, y) is the variational posterior with
parameters φ. The first term on the RHS is basically a reconstruction error while the second term
on the RHS is the mismatch between the variational and the true posterior. The term on the RHS is
the so-called evidence lower bound (ELBO) on the log-likelihood (Kingma & Welling, 2013). We
implement the conditional distributions pθ(x|z, y) and qφ(z|x, y) as normal distributions for which
the means are parametrized as DNNs (all details and hyperparameters are reported in Appendix A.7).

Our Analysis by Synthesis model (ABS) is illustrated in Figure 1. It combines several elements to
simultaneously achieve high accuracy and robustness against adversarial perturbations:

• Class-conditional distributions: For each class y we train a variational autoencoder VAEy on
the samples of class y to learn the class-conditional distribution p(x|y). This allows us to estimate
a lower bound `y(x) on the log-likelihood of sample x under each class y.
• Optimization-based inference: The variational inference qφ(z|x, y) is itself a neural network

susceptible to adversarial perturbations. We therefore only use variational inference during
training and perform “exact” inference over pθ(x|z, y) during evaluation. This “exact” inference
is implemented using gradient descent in the latent space (with fixed posterior width) to find the
optimal zy which maximizes the lower bound on the log-likelihood for each class:

`∗y(x) = max
z

log pθ(x|z, y)−DKL [N (z, σq1)||N (0,1)] . (3)

Note that we replaced the expectation in equation 2 with a maximum likelihood sample to avoid
stochastic sampling and to simplify optimization. To avoid local minima we evaluate 8000 random
points in the latent space of each VAE, from which we pick the best as a starting point for a
gradient descent with 50 iterations using the Adam optimizer (Kingma & Ba, 2014).

• Classification and confidence: Finally, to perform the actual classification, we scale all `∗y(x)
with a factor α, exponentiate, add an offset η and divide by the total evidence (like in a softmax),

p(y|x) =
(
eα`
∗
y(x) + η

)
/
∑

c

(
eα`
∗
c(x) + η

)
. (4)

We introduced η for the following reason: even on points far outside the data domain, where
all likelihoods q(x, y) = eα`

∗
y(x) + η are small, the standard softmax (η = 0) can lead to sharp

posteriors p(y|x) with high confidence scores for one class. This behavior is in stark contrast
to humans, who would report a uniform distribution over classes for unrecognizable images.
To model this behavior we set η > 0: in this case the posterior p(y|x) converges to a uniform
distribution whenever the maximum q(x, y) gets small relative to η . We chose η such that the
median confidence p(y|x) is 0.9 for the predicted class on clean test samples. Furthermore, for
a better comparison with cross-entropy trained networks, the scale α is trained to minimize the
cross-entropy loss. We also tested this graded softmax in standard feedforward CNNs but did not
find any improvement with respect to unrecognizable images.

• Binarization (Binary ABS only): The pixel intensities of MNIST images are almost binary. We
exploit this by projecting the intensity b of each pixel to 0 if b < 0.5 or 1 if b ≥ 0.5 during testing.

• Discriminative finetuning (Binary ABS only): To improve the accuracy of the Binary ABS
model we multiply `∗y(x) with an additional class-dependent scalar γy. The scalars are learned
discriminatively (see A.7) and reach values in the range γy ∈ [0.96, 1.06] for all classes y.

On important ingredient for the robustness of the ABS model is the Gaussian posterior in the
reconstruction term which ensures that small changes in the input (in terms of L2) can only entail
small changes to the posterior likelihood and thus to the model decision.

4 TIGHT ESTIMATES OF THE LOWER BOUND FOR ADVERSARIAL EXAMPLES

The decision of the model depends on the likelihood in each class, which for clean samples is mostly
dominated by the posterior likelihood p(x|z). Because we chose this posterior to be Gaussian, the

4

96

Published as a conference paper at ICLR 2019

class-conditional likelihoods can only change gracefully with changes in x, a property which allows
us to derive lower bounds on the model robustness. To see this, note that equation 3 can be written as,

`∗c(x) = max
z
−DKL [N (z, σq1)||N (0,1)]− 1

2σ2
‖Gc(z)− x‖22 + C, (5)

where we absorbed the normalization constants of p(x|z) into C and Gc(z) is the mean of p(x|z, c).
Let y be the ground-truth class and let z∗x be the optimal latent for the clean sample x for class y. We
can then estimate a lower bound on `∗y(x+ δ) for a perturbation δ with size ε = ‖δ‖2 (see derivation
in Appendix A.4),

`∗y(x+ δ) ≥ `∗y(x)−
1

σ2
ε ‖Gy(z

∗
x)− x‖2 −

1

2σ2
ε2 + C. (6)

Likewise, we can derive an upper bound of `∗y(x+ δ) for all other classes c 6= y (see Appendix A.5),

`∗c(x+ δ) ≤ −DKL [N (0, σq1)||N (0,1)] + C −
{

1
2σ2 (dc − ε)2 if dc ≥ ε
0 else

. (7)

for dc = minz ‖Gc(z)− x‖2. Now we can find ε for a given image x by equating (7) = (6),

εx = min
c6=y

max

{
0,
dc + `∗y(x)−DKL [N (0, σq1)||N (0,1)]

2(dc + ‖Gy(z∗x)− x‖2)

}
. (8)

Note that one assumption we make is that we can find the global minimum of ‖Gc(z)− x‖22. In
practice we generally find a very tight estimate of the global minimum (and thus the lower bound)
because we optimize in a smooth and low-dimensional space and because we perform an additional
brute-force sampling step. We provide quantitative values for ε in section 7.

5 ADVERSARIAL ATTACKS

Reliably evaluating model robustness is difficult because each attack only provides an upper bound
on the size of the adversarial perturbations (Uesato et al., 2018). To make this bound as tight
as possible we apply many different attacks and choose the best one for each sample and model
combination (using the implementations in Foolbox v1.3 (Rauber et al., 2017) which often perform
internal hyperparameter optimization). We also created a novel decision-based L0 attack as well as a
customized attack that specifically exploits the structure of our model. Nevertheless, we cannot rule
out that more effective attacks exist and we will release the trained model for future testing.

Latent Descent attack This novel attack exploits the structure of the ABS model. Let xt be the
perturbed sample x in iteration t. We perform variational inference p(z|xt, y) = N (µy(xt), σqI) to
find the most likely class ỹ that is different from the ground-truth class. We then make a step towards
the maximum likelihood posterior p(x|z, ỹ) of that class which we denote as x̃ỹ ,

xt 7→ (1− ε)xt + εx̃ỹ. (9)

We choose ε = 10−2 and iterate until we find an adversarial. For a more precise estimate we perform
a subsequent binary search of 10 steps within the last ε interval. Finally, we perform another binary
search between the adversarial and the original image to reduce the perturbation as much as possible.

Decision-based attacks We use several decision-based attacks because they do not rely on gradient
information and are thus insensitive to gradient masking or missing gradients. In particular, we
apply the Boundary Attack (Brendel et al., 2018), which is competitive with gradient-based attacks
in minimizing the L2 norm, and introduce the Pointwise Attack, a novel decision-based attack that
greedily minimizes the L0 norm. It first adds salt-and-pepper noise until the image is misclassified and
then repeatedly iterates over all perturbed pixels, resetting them to the clean image if the perturbed
image stays adversarial. The attack ends when no pixel can be reset anymore. We provide an
implementation of the attack in Foolbox (Rauber et al., 2017). Finally, we apply two simple noise
attacks, the Gaussian Noise attack and the Salt&Pepper Noise attack as baselines.

5

97

Published as a conference paper at ICLR 2019

0 1 2 3 4
0%

20%

40%

60%

80%

100%
Ac

cu
ra

cy

(a) L2 distance

0.0 0.1 0.2 0.3 0.4 0.5
0%

20%

40%

60%

80%

100%

(b) L∞ distance

0 20 40 60 80
0%

20%

40%

60%

80%

100%
CNN
Binary CNN
Madry et al.
Nearest Neighbor
Binary ABS
ABS

(c) L0 distance

Figure 2: Accuracy-distortion plots for each distance metric and all models. In (b) we see that a
threshold at 0.3 favors Madry et al. while a threshold of 0.35 would have favored the Binary ABS.

Transfer-based attacks Transfer attacks also don’t rely on gradients of the target model but instead
compute them on a substitute: given an input x we first compute adversarial perturbations δ on the
substitute using different gradient-based attacks (L2 and L∞ Basic Iterative Method (BIM), Fast
Gradient Sign Method (FGSM) and L2 Fast Gradient Method) and then perform a line search to find
the smallest ε for which x+ εδ (clipped to the range [0, 1]) is still an adversarial for the target model.

Gradient-based attacks We apply the Momentum Iterative Method (MIM) (Dong et al., 2017) that
won the NIPS 2017 adversarial attack challenge, the Basic Iterative Method (BIM) (Kurakin et al.,
2016) (also known as Projected Gradient Descent (PGD))—for both the L2 and the L∞ norm—as
well as the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014) and its L2 variant, the Fast
Gradient Method (FGM). For models with input binarization (Binary CNN, Binary ABS), we obtain
gradients using the straight-through estimator (Bengio et al., 2013).

Score-based attacks We additionally run all attacks listed under Gradient-based attacks using
numerically estimated gradients (possible for all models). We use a simple coordinate-wise finite
difference method (NES estimates (Ilyas et al., 2018) performed comparable or worse) and repeat the
attacks with different values for the step size of the gradient estimator.

Postprocessing (binary models only) For models with input binarization (sec. 6) we postprocess
all adversarials by setting pixel intensities either to the corresponding value of the clean image or the
binarization threshold (0.5). This reduces the perturbation size without changing model decisions.

6 EXPERIMENTS

We compare our ABS model as well as two ablations—ABS with input binarization during test time
(Binary ABS) and a CNN with input binarization during train and test time (Binary CNN)—against
three other models: the SOTA L∞ defense (Madry et al., 2018)1, a Nearest Neighbour (NN) model
(as a somewhat robust but not accurate baseline) and a vanilla CNN (as an accurate but not robust
baseline), see Appendix A.7. We run all attacks (see sec. 5) against all applicable models.

For each model and Lp norm, we show how the accuracy of the models decreases with increasing
adversarial perturbation size (Figure 2) and report two metrics: the median adversarial distance
(Table 1, left values) and the model’s accuracy against bounded adversarial perturbations (Table 1,
right values). The median of the perturbation sizes (Table 1, left values) is robust to outliers and
summarizes most of the distributions quite well. It represents the perturbation size for which the
particular model achieves 50% accuracy and does not require the choice of a threshold. Clean samples
that are already misclassified are counted as adversarials with a perturbation size equal to 0, failed
attacks as∞. The commonly reported model accuracy on bounded adversarial perturbations, on the
other hand, requires a metric-specific threshold that can bias the results. We still report it (Table 1,
right values) for completeness and set εL2 = 1.5, εL∞ = 0.3 and εL0 = 12 as thresholds.

1We used the trained model provided by the authors: https://github.com/MadryLab/mnist_challenge

6

98

Published as a conference paper at ICLR 2019

CNN Binary
CNN

Nearest
Neighbor

Madry
et al.

Binary
ABS ABS

Clean 99.1% 98.5% 96.9% 98.8% 99.0% 99.0%

L2-metric (ε = 1.5)
Transfer Attacks 1.1 / 14% 1.4 / 38% 5.4 / 90% 3.7 / 94% 2.5 / 86% 4.6 / 94%
Gaussian Noise 5.2 / 96% 3.4 / 92% ∞ / 91% 5.4 / 96% 5.6 / 89% 10.9 / 98%
Boundary Attack 1.2 / 21% 3.3 / 84% 2.9 / 73% 1.4 / 37% 6.0 / 91% 2.6 / 83%
Pointwise Attack 3.4 / 91% 1.9 / 71% 3.5 / 89% 1.9 / 71% 3.1 / 86% 4.6 / 94%
FGM 1.4 / 48% 1.4 / 50% ∞ / 96%
FGM w/ GE 1.4 / 42% 2.8 / 51% 3.7 / 79% ∞ / 88% 1.9 / 68% 3.5 / 89%
DeepFool 1.2 / 18% 1.0 / 11% 9.0 / 91%
DeepFool w/ GE 1.3 / 30% 0.9 / 5% 1.6 / 55% 5.1 / 90% 1.4 / 41% 2.4 / 83%
L2 BIM 1.1 / 13% 1.0 / 11% 4.8 / 88%
L2 BIM w/ GE 1.1 / 37% ∞ / 50% 1.7 / 62% 3.4 / 88% 1.6 / 63% 3.1 / 87%
Latent Descent Attack 2.6 / 97% 2.7 / 85%

All L2 Attacks 1.1 / 8% 0.9 / 3% 1.5 / 53% 1.4 / 35% 1.3 / 39% 2.3 / 80%

L∞-metric (ε = 0.3)
Transfer Attacks 0.08 / 0% 0.44 / 85% 0.42 / 78% 0.39 / 92% 0.49 / 88% 0.34 / 73%
FGSM 0.10 / 4% 0.43 / 77% 0.45 / 93%
FGSM w/ GE 0.10 / 21% 0.42 / 71% 0.38 / 68% 0.47 / 89% 0.49 / 85% 0.27 / 34%
L∞ DeepFool 0.08 / 0% 0.38 / 74% 0.42 / 90%
L∞ DeepFool w/ GE 0.09 / 0% 0.37 / 67% 0.21 / 26% 0.53 / 90% 0.46 / 78% 0.27 / 39%
BIM 0.08 / 0% 0.36 / 70% 0.36 / 90%
BIM w/ GE 0.08 / 37% ∞ / 70% 0.25 / 43% 0.46 / 89% 0.49 / 86% 0.25 / 13%
MIM 0.08 / 0% 0.37 / 71% 0.34 / 90%
MIM w/ GE 0.09 / 36% ∞ / 69% 0.19 / 26% 0.36 / 89% 0.46 / 85% 0.26 / 17%

All L∞ Attacks 0.08 / 0% 0.34 / 64% 0.19 / 22% 0.34 / 88% 0.44 / 77% 0.23 / 8%

L0-metric (ε = 12)
Salt&Pepper Noise 44.0 / 91% 44.0 / 88% 161.0 / 88% 13.5 / 56% 146.0 / 94% 165.0 / 94%
Pointwise Attack 10x 9.0 / 19% 11.0 / 39% 10.0 / 34% 4.0 / 0% 22.0 / 77% 16.5 / 69%

All L0 Attacks 9.0 / 19% 11.0 / 38% 10.0 / 34% 4.0 / 0% 21.5 / 77% 16.5 / 69%

Table 1: Results for different models, adversarial attacks and distance metrics. Each entry shows the
median adversarial distance across all samples (left value, black) as well as the model’s accuracy
against adversarial perturbations bounded by the thresholds εL2

= 1.5, εL∞ = 0.3 and εL0
= 12

(right value, gray). “w/ GE” indicates attacks that use numerical gradient estimation.

7 RESULTS

Minimal Adversarials Our robustness evaluation results of all models are reported in Table 1 and
Figure 2. All models except the Nearest Neighbour classifier perform close to 99% accuracy on clean
test samples. We report results for three different norms: L2, L∞ and L0.

• For L2 our ABS model outperforms all other models by a large margin.

• For L∞, our Binary ABS model is state-of-the-art in terms of median perturbation size. In terms
of accuracy (perturbations < 0.3), Madry et al. seems more robust. However, as revealed by the
accuracy-distortion curves in Figure 2, this is an artifact of the specific threshold (Madry et al. is
optimized for 0.3). A slightly larger one (e.g. 0.35) would strongly favor the Binary ABS model.

• For L0, both ABS and Binary ABS are much more robust than all other models. Interestingly, the
model by Madry et al. is the least robust, even less than the baseline CNN.

In Figure 3 we show adversarial examples. For each sample we show the minimally perturbed L2

adversarial found by any attack. Adversarials for the baseline CNN and the Binary CNN are almost

7

99

Published as a conference paper at ICLR 2019

0→6

CNN

0→6

Binary
CNN

0→6

Nearest
Neighbor

0→8

Madry
et al.

0→6

Binary
ABS

0→6

ABS

1→4 1→7 1→7 1→4 1→4 1→2

2→0 2→3 2→8 2→8 2→7 2→7

3→9 3→7 3→7 3→2 3→7 3→7

4→7 4→7 4→9 4→9 4→9 4→9

5→8

CNN

5→8

Binary
CNN

5→8

Nearest
Neighbor

5→8

Madry
et al.

5→8

Binary
ABS

5→8

ABS

6→8 6→0 6→0 6→8 6→0 6→0

7→3 7→3 7→3 7→2 7→9 7→2

8→2 8→9 8→2 8→2 8→2 8→2

9→4 9→7 9→7 9→8 9→7 9→7

Figure 3: Adversarial examples for the ABS models are perceptually meaningful: For each sample
(randomly chosen from each class) we show the minimally perturbed L2 adversarial found by any
attack. Our ABS models have clearly visible and often semantically meaningful adversarials. Madry
et al. requires perturbations that are clearly visible, but their semantics are less clear.

imperceptible. The Nearest Neighbour model, almost by design, exposes (some) adversarials that
interpolate between two numbers. The model by Madry et al. requires perturbations that are clearly
visible but make little semantic sense to humans. Finally, adversarials generated for the ABS models
are semantically meaningful for humans and are sitting close to the perceptual boundary between the
original and the adversarial class. For a more thorough comparison see appendix Figures 5, 6 and 7.

Lower bounds on Robustness For the ABS models and the L2 metric we estimate a lower bound
of the robustness. The lower bound for the mean perturbation2 for the MNIST test set is ε =
0.690 ± 0.005 for the ABS and ε = 0.601 ± 0.005 for the binary ABS. We estimated the error by
using different random seeds for our optimization procedure and standard error propagation over
10 runs. With adversarial training Hein & Andriushchenko (2017) achieve a mean L2 robustness
guarantee of ε = 0.48 while reaching 99% accuracy. In the Linf metric we find a median robustness
of 0.06.

CNN Madry et al. ABS

Figure 4: Images of ones classified with a
probability above 90%.

Distal Adversarials We probe the behavior of CNN,
Madry et al. and our ABS model outside the data distri-
bution. We start from random noise images and perform
gradient ascent to maximize the output probability of
a fixed label until p(y|x) ≥ 0.9 (as computed by the
modified softmax from equation (8)). The results are
visualized in Figure 4. Standard CNNs and Madry et al.
provide high confidence class probabilities for unrecognizable images. Our ABS model does not
provide high confidence predictions in out-of-distribution regions.

8 DISCUSSION & CONCLUSION

In this paper we demonstrated that, despite years of work, we as a community failed to create neural
networks that can be considered robust on MNIST from the point of human perception. In particular,
we showed that even today’s best defense is susceptible to small adversarial perturbations that make
little to no semantic sense to humans. We presented a new approach based on analysis by synthesis
that seeks to explain its inference by means of the actual image features. We performed an extensive
analysis to show that minimal adversarial perturbations in this model are large across all tested Lp
norms and semantically meaningful to humans. Note that our architecture derives its robustness from
its design and does not require any additionally training with adversarial examples.

We acknowledge that it is not easy to reliably evaluate a model’s adversarial robustness and most
defenses proposed in the literature have later been shown to be ineffective. In particular, the structure

2The mean instead of the median is reported to allow for a comparison with (Hein & Andriushchenko, 2017).

8

100

Published as a conference paper at ICLR 2019

of the ABS model prevents the computation of gradients which might give the model an unfair
advantage. We put a lot of effort into an extensive evaluation of adversarial robustness using a large
collection of powerful attacks, including one specifically designed to be particularly effective against
the ABS model (the Latent Descent attack), and we will release the model architecture and trained
weights as a friendly invitation to fellow researchers to evaluate our model.

Looking at the results of individual attacks (Table 1) we find that there is no single attack that
works best on all models, thus highlighting the importance for a broad range of attacks. Without
the Boundary Attack, for example, Madry et al. would have looked more robust to L2 adversarials
than it is. For similar reasons Figure 6b of Madry et al. (2018) reports a median L2 perturbation size
larger than 5, compared to the 1.4 achieved by the Boundary Attack. Moreover,the combination of all
attacks of one metric (All L2 / L∞ / L0 Attacks) is often better than any individual attack, indicating
that different attacks are optimal on different samples.

Our conceptual implementation of the ABS model with one VAE per class neither scales efficiently
to more classes nor to more complex datasets (a preliminary experiment on CIFAR10 provided only
54% test accuracy). However, first experiments on two class CIFAR indicate that the proposed model
is also robust on CIFAR (we reach a median L2 robustness of 2.6 compared to 0.8 for a vanilla CNN,
see Appendix A.1) for details). To increase the accuracy, there are many ways in which the ABS
model can be improved, ranging from better and faster generative models (e.g. flow-based) to better
training procedures.

In a nutshell, we demonstrated that MNIST is still not solved from the point of adversarial robustness
and showed that our novel approach based on analysis by synthesis has great potential to reduce the
vulnerability against adversarial attacks and to align machine perception with human perception.

ACKNOWLEDGMENTS

This work has been funded, in part, by the German Federal Ministry of Education and Research
(BMBF) through the Bernstein Computational Neuroscience Program Tübingen (FKZ: 01GQ1002) as
well as the German Research Foundation (DFG CRC 1233 on “Robust Vision”). The authors thank the
International Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting L.S. and
J.R.; J.R. acknowledges support by the Bosch Forschungsstiftung (Stifterverband, T113/30057/17);
W.B. was supported by the Carl Zeiss Foundation (0563-2.8/558/3); M.B. acknowledges support by
the Centre for Integrative Neuroscience Tübingen (EXC 307); W.B. and M.B. were supported by
the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior / Interior
Business Center (DoI/IBC) contract number D16PC00003.

REFERENCES

Anish Athalye and Nicholas Carlini. On the robustness of the cvpr 2018 white-box adversarial example defenses.
arXiv preprint arXiv:1804.03286, 2018.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420, 2018.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

W. Brendel and M. Bethge. Comment on “biologically inspired protection of deep networks from adversarial
attacks”. arXiv preprint arXiv:1704.01547, 2017.

Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable attacks
against black-box machine learning models. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=SyZI0GWCZ.

Sébastien Bubeck, Eric Price, and Ilya Razenshteyn. Adversarial examples from computational constraints.
arXiv preprint arXiv:1805.10204, 2018.

Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer encoding: One hot way to
resist adversarial examples. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=S18Su--CW.

9

101

Published as a conference paper at ICLR 2019

Nicholas Carlini and David Wagner. Magnet and" efficient defenses against adversarial attacks" are not robust to
adversarial examples. arXiv preprint arXiv:1711.08478, 2017.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning by
exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Guneet S. Dhillon, Kamyar Azizzadenesheli, Jeremy D. Bernstein, Jean Kossaifi, Aran Khanna, Zachary C.
Lipton, and Animashree Anandkumar. Stochastic activation pruning for robust adversarial defense. In Inter-
national Conference on Learning Representations, 2018. URL https://openreview.net/forum?
id=H1uR4GZRZ.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Xiaolin Hu, Jianguo Li, and Jun Zhu. Boosting
adversarial attacks with momentum. arxiv preprint. arXiv preprint arXiv:1710.06081, 2017.

Dileep George, Wolfgang Lehrach, Ken Kansky, Miguel Lázaro-Gredilla, Christopher Laan, Bhaskara Marthi,
Xinghua Lou, Zhaoshi Meng, Yi Liu, Huayan Wang, Alex Lavin, and D. Scott Phoenix. A generative vision
model that trains with high data efficiency and breaks text-based captchas. Science, 358(6368), 2017. ISSN
0036-8075. doi: 10.1126/science.aag2612. URL http://science.sciencemag.org/content/
358/6368/eaag2612.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. Countering adversarial images
using input transformations. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=SyJ7ClWCb.

Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier against
adversarial manipulation. In Advances in Neural Information Processing Systems 30, pp. 2266–2276. Curran
Associates, Inc., 2017.

Andrew Ilyas, Ajil Jalal, Eirini Asteri, Constantinos Daskalakis, and Alexandros G Dimakis. The robust manifold
defense: Adversarial training using generative models. arXiv preprint arXiv:1712.09196, 2017.

Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with limited
queries and information. arXiv preprint arXiv:1804.08598, 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Vishaal Munusamy Kabilan, Brandon Morris, and Anh Nguyen. Vectordefense: Vectorization as a defense to
adversarial examples. arXiv preprint arXiv:1804.08529, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world. arXiv preprint
arXiv:1607.02533, 2016.

Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Jun Zhu, and Xiaolin Hu. Defense against adversarial
attacks using high-level representation guided denoiser. arXiv preprint arXiv:1712.02976, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep
learning models resistant to adversarial attacks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJzIBfZAb.

Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial examples. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 135–147. ACM, 2017.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confidence
predictions for unrecognizable images. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015.

Aaditya Prakash, Nick Moran, Solomon Garber, Antonella DiLillo, and James Storer. Deflecting adversarial
attacks with pixel deflection. arXiv preprint arXiv:1801.08926, 2018.

10

102

Published as a conference paper at ICLR 2019

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial examples.
In International Conference on Learning Representations, 2018. URL https://openreview.net/
forum?id=Bys4ob-Rb.

Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A python toolbox to benchmark the robustness
of machine learning models. arXiv preprint arXiv:1707.04131, 2017. URL http://arxiv.org/abs/
1707.04131.

Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-GAN: Protecting classifiers against adversarial
attacks using generative models. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=BkJ3ibb0-.

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry. Adversarially
robust generalization requires more data. CoRR, abs/1804.11285, 2018. URL http://arxiv.org/abs/
1804.11285.

Bernhard Schölkopf. Causal learning, 2017. URL https://icml.cc/Conferences/2017/
Schedule?showEvent=931. Thirty-fourth International Conference on Machine Learning.

Shiwei Shen, Guoqing Jin, Ke Gao, and Yongdong Zhang. Ape-gan: Adversarial perturbation elimination with
gan. arXiv preprint arXiv:1707.05474, 2017.

Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixeldefend: Leveraging
generative models to understand and defend against adversarial examples. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=rJUYGxbCW.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. Ensemble
adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204, 2017.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry. There is no
free lunch in adversarial robustness (but there are unexpected benefits). arXiv preprint arXiv:1805.12152,
2018.

Jonathan Uesato, Brendan O’Donoghue, Pushmeet Kohli, and Aaron van den Oord. Adversarial risk and the
dangers of evaluating against weak attacks. In Proceedings of the 35th International Conference on Machine
Learning, 2018. URL http://proceedings.mlr.press/v80/uesato18a.html.

Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating adversarial effects
through randomization. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=Sk9yuql0Z.

Tianhang Zheng, Changyou Chen, and Kui Ren. Distributionally adversarial attack. arXiv preprint
arXiv:1808.05537, 2018.

11

103

Published as a conference paper at ICLR 2019

A APPENDIX

A.1 TWO CLASS CIFAR

We estimate the robustness of our ABS model on two class CIFAR (airplane vs. automobile). Preliminary results
suggest that our robustness is not limited to MNIST.

In order to adapt to CIFAR, we modified the ABS slightly by modifying encoder and decoder to fit (32x32x3)
CIFAR images. We also increased the number of dimensions in the latent space form 8 to 20.

Model CNN ABS
Accuracy 97.1% 89.7%
Median L2 distance 0.8 (with BIM) 2.5 (with Latent Descent attack)

Table 2: Accuracy and estimated robustness on two class CIFAR.

A.2 FIGURES

1
.Q

u
a
n
ti

le

CNN

5→39→3

1→55→3

2
.Q

u
a
n
ti

le

1→72→7

1→42→8

3
.Q

u
a
n
ti

le

0→53→2

0→90→9

4
.Q

u
a
n
ti

le

8→33→9

2→83→9

Binary
CNN

3→76→4

1→29→2

6→86→0

5→33→5

2→85→8

2→86→4

0→85→8

8→-13→9

Nearest
Neighbor

4→93→7

6→45→3

0→54→9

9→73→5

1→78→5

1→67→9

6→41→4

2→35→8

Madry
et al.

4→99→3

9→44→9

4→92→7

4→93→9

1→81→7

1→35→8

6→82→4

7→80→8

Binary
ABS

4→89→7

8→23→2

5→80→9

6→05→4

8→54→5

1→54→5

5→93→5

4→50→5

ABS

9→45→8

3→55→3

8→96→5

1→85→3

5→87→8

1→84→2

9→89→8

3→29→8

Figure 5: L0 error quantiles: We always choose the minimally perturbed L0 adversarial found by
any attack for each model. For an unbiased selection, we then randomly sample images within four
error quantiles (0− 25%, 25− 50%, 50− 75%, and 75− 100%). Where 100% corresponds to the
maximal (over samples) minimum (over attacks) perturbation found for each model.

12

104

Published as a conference paper at ICLR 2019

1
.Q

u
a
n
ti

le
CNN

4→70→9

0→84→9

2
.Q

u
a
n
ti

le

8→29→4

4→83→9

3
.Q

u
a
n
ti

le

1→49→4

3→90→6

4
.Q

u
a
n
ti

le

8→96→8

9→45→8

Binary
CNN

2→74→1

4→13→2

1→70→7

0→66→0

1→79→7

4→88→3

5→96→0

2→87→3

Nearest
Neighbor

4→93→7

6→46→0

5→82→7

9→78→5

0→68→2

5→86→4

5→81→7

2→30→6

Madry
et al.

6→43→7

7→46→8

3→83→5

0→41→7

6→25→3

0→91→8

2→87→8

0→83→2

Binary
ABS

5→98→3

3→25→9

9→43→5

0→46→0

4→91→4

6→09→7

1→45→3

2→74→8

ABS

5→39→3

5→39→7

4→84→9

5→75→3

6→05→3

0→91→2

5→33→5

0→65→8

Figure 6: L2 error quantiles: We always choose the minimally perturbed L2 adversarial found by any
attack for each model. For an unbiased selection, we then randomly sample 4 images within four
error quantiles (0− 25%, 25− 50%, 50− 75%, and 75− 100%).

1
.Q

u
a
n
ti

le

CNN

6→85→3

4→91→2

2
.Q

u
a
n
ti

le

6→82→7

9→40→9

3
.Q

u
a
n
ti

le

7→38→2

0→93→9

4
.Q

u
a
n
ti

le

8→96→4

5→86→0

Binary
CNN

4→19→5

4→64→9

1→72→3

0→78→5

0→69→4

1→88→9

4→81→8

1→85→3

Nearest
Neighbor

5→75→3

4→65→3

0→73→5

5→86→0

9→48→3

4→93→5

0→56→2

2→10→6

Madry
et al.

5→37→9

4→60→4

4→98→3

1→48→7

0→61→8

2→36→0

6→40→6

2→12→3

Binary
ABS

3→55→9

4→94→9

0→93→5

3→76→4

2→19→7

0→91→4

1→47→5

2→15→2

ABS

5→39→4

7→95→9

8→26→8

3→20→4

0→93→5

3→21→2

0→90→3

6→80→9

Figure 7: L∞ error quantiles: We always choose the minimally perturbed L∞ adversarial found by
any attack for each model. For an unbiased selection, we then randomly sample images within four
error quantiles (0− 25%, 25− 50%, 50− 75%, and 75− 100%).

13

105

Published as a conference paper at ICLR 2019

threshold

0 1 2 3 4

(a) L2 distance

threshold

0.0 0.1 0.2 0.3 0.4 0.5

(b) L∞ distance

CNN

threshold

Binary CNN

Nearest Neighbor

Madry et al.

Binary ABS

0 20 40 60 80

ABS

(c) L0 distance

Figure 8: Distribution of minimal adversarials for each model and distance metric. In (b) we see that
a threshold at 0.3 favors Madry et al. while a threshold of 0.35 would have favored the Binary ABS.

14

106

Published as a conference paper at ICLR 2019

A.3 DERIVATION I

Derivation of the ELBO in equation 2.

log pθ(x) = log

∫
dz pθ(x|z)p(z),

where p(z) = N (0,1) is a simple normal prior. Based on the idea of importance sampling using a variational
posterior qφ(z|x) with parameters φ and using Jensen’s inequality we arrive at

= log

∫
dz

qφ(z|x)
qφ(z|x)

pθ(x|z)p(z),

= logEz∼qφ(z|x)

[
pθ(x|z)p(z)
qφ(z|x)

]
,

≥ Ez∼qφ(z|x)

[
log

pθ(x|z)p(z)
qφ(z|x)

]
,

= Ez∼qφ(z|x)

[
log pθ(x|z) + log

p(z)

qφ(z|x)

]
,

= Ez∼qφ(z|x) [log pθ(x|z)]−DKL [qφ(z|x)||p(z)] .

This lower bound is commonly referred to as ELBO.

A.4 DERIVATION II: LOWER BOUND FOR L2 ROBUSTNESS ESTIMATION

Derivation of equation 6. Starting from equation 3 we find that for a perturbation δ with size ε = ‖δ‖2 of sample
x the lower bound `∗y(x+ δ) can itself be bounded by,

`∗y(x+ δ) = max
z
−DKL [N (z, σq1)||N (0,1)]− 1

2σ2
‖Gy(z)− x− δ‖22 + C,

≥ −DKL [N (z∗x, σq1)||N (0,1)]− 1

2σ2
‖Gy(z

∗
x)− x− δ‖22 + C,

where z∗x is the optimal latent vector for the clean sample x for class y,

= `∗y(x) +
1

σ2
δ>(Gy(z

∗
x)− x)− 1

2σ2
ε2 + C,

≥ `∗y(x)−
1

σ2
ε ‖Gy(z

∗
x)− x‖2 −

1

2σ2
ε2 + C. (10)

A.5 DERIVATION III: UPPER BOUND FOR L2 ROBUSTNESS ESTIMATION

Derivation of equation 7.

`∗c(x+ δ) = max
z
−DKL [N (z, σq1)||N (0,1)]− 1

2σ2
‖Gy(z)− x− δ‖22 + C,

≤ −DKL [N (0, σq1)||N (0,1)] + C −min
z

1

2σ2
‖Gc(z)− x− δ‖22 ,

≤ −DKL [N (0, σq1)||N (0,1)] + C −min
z,δ

1

2σ2
‖Gc(z)− x− δ‖22 ,

= −DKL [N (0, σq1)||N (0,1)] + C −

{
1

2σ2 (dc − ε)2 if dc ≥ ε
0 else

. (11)

for dc = minz ‖Gc(z)− x‖2. The last equation comes from the solution of the constrained optimization
problem mind(d − ε)2d s.t. d > dc. Note that a tighter bound might be achieved by assuming single δ for
upper and lower bound.

A.6 L∞ ROBUSTNESS ESTIMATION

We proceed in the same way as for L2. Starting again from

`∗c(x) = max
z
−DKL [N (z, σq1)||N (0,1)]− 1

2σ2
‖Gc(z)− x‖22 + C, (12)

15

107

Published as a conference paper at ICLR 2019

let y be the predicted class and let z∗x be the optimal latent for the clean sample x for class y. We can then
estimate a lower bound on `∗y(x+ δ) for a perturbation δ with size ε = ‖δ‖∞,

`∗y(x+ δ) = max
z
−DKL [N (z, σq1)||N (0,1)]− 1

2σ2
‖Gy(z)− x− δ‖22 + C,

≥ −DKL [N (z∗x, σq1)||N (0,1)]− 1

2σ2
‖Gy(z

∗
x)− x− δ‖22 + C,

where z∗x is the optimal latent for the clean sample x for class y.

= `∗y(x) +
1

σ2
δ>(Gy(z

∗
x)− x)− 1

2σ2
‖δ‖22 + C,

≥ `∗y(x) + C +
1

2σ2
min
δ

(
2δ>(Gy(z

∗
x)− x)− ‖δ‖22

)
,

= `∗y(x) + C +
1

2σ2

∑
i

min
δi

(
2δi[Gy(z

∗
x)− x]i − δ2i

)
,

= `∗y(x) + C +
1

2σ2

∑
i

{
[Gy(z

∗
x)− x]2i if |[Gy(z

∗
x)− x]i| ≤ ε

ε |[Gy(z
∗
x)− x]i| else

. (13)

Similarly, we can estimate an upper bound on `∗c(x+ δ) on all other classes c 6= y,

`∗c(x+ δ) ≤ −DKL [N (0, σq1)||N (0,1)] + C −min
z

1

2σ2
‖Gc(z)− x− δ‖22 ,

≤ −DKL [N (0, σq1)||N (0,1)] + C −min
z,δ

1

2σ2
‖Gc(z)− x− δ‖22 ,

= −DKL [N (0, σq1)||N (0,1)] + C −min
z

1

2σ2

∑
i

min
δi

([Gc(z)− x]i − δi)2 ,

= −DKL [N (0, σq1)||N (0,1)] + C

−min
z

1

2σ2

∑
i


0 if |[Gy(z

∗
x)− x]i| ≤ ε

([Gy(z
∗
x)− x]i − ε)2 if [Gy(z

∗
x)− x]i > ε

([Gy(z
∗
x)− x]i + ε)2 if [Gy(z

∗
x)− x]i < ε

.

(14)

In this case there is no closed-form solution for the minimization problem on the RHS (in terms of the minimum
of ‖Gc(z)− x‖2) but we can still compute the solution for each given ε which allows us perform a line search
along ε to find the point where equation 13 = equation 14.

A.7 MODEL & TRAINING DETAILS

Hyperparameters and training details for the ABS model The binary ABS and ABS have the same
weights and architecture: The encoder has 4 layers with kernel sizes= [5, 4, 3, 5], strides= [1, 2, 2, 1] and feature
map sizes= [32, 32, 64, 2∗8]. The first 3 layers have ELU activation functions (Clevert et al., 2015), the last layer
is linear. All except the last layer use Batch Normalization (Ioffe & Szegedy, 2015). The Decoder architecture
has also 4 layers with kernel sizes= [4, 5, 5, 3], strides= [1, 2, 2, 1] and feature map sizes= [32, 16, 16, 1]. The
first 3 layers have ELU activation functions, the last layer has a sigmoid activation function, and all layers except
the last one use Batch Normalization.

We trained the VAEs with the Adam optimizer (Kingma & Ba, 2014). We tuned the dimension L of the latent
space of the class-conditional VAEs (ending up with L = 8) to achieve 99% test error; started with a high weight
for the KL-divergence term at the beginning of training (which was gradually decreased from a factor of 10 to 1
over 50 epochs); estimated the weighting γ = [1, 0.96, 1.001, 1.06, 0.98, 0.96, 1.03, 1, 1, 1] of the lower bound
via a line search on the training accuracy. The parameters maximizing the test cross entropy3 and providing a
median confidence of p(y|x) = 0.9 for our modified softmax (equation 8) are η = 0.000039 and α = 440. For
our latent prior, we chose σq = 1 and for the posterior width we choose σ = 1/

√
2

Hyperparameters for the CNNs The CNN and Binary CNN share the same architecture but have dif-
ferent weights. The architecture has kernel sizes = [5, 4, 3, 5], strides = [1, 2, 2, 1], and feature map sizes
= [20, 70, 256, 10]. All layers use ELU activation functions and all layers except the last one apply Batch
Normalization. The CNNs are both trained on the cross entropy loss with the Adam optimizer (Kingma & Ba,
2014). The parameters maximizing the test cross entropy and providing a median confidence of p(y|x) = 0.9 of
the CNN for our modified softmax (equation 8) are η = 143900 and α = 1.

3Note that this solely scales the probabilities and does not change the classification accuracy.

16

108

Published as a conference paper at ICLR 2019

Hyperparameters for Madry et al. We adapted the pre-trained model provided by Madry et al4. Basi-
cally the architecture contains two convolutional, two pooling and two fully connected layers. The network is
trained on clean and adversarial examples minimizing the cross cross-entropy loss. The parameters maximizing
the test cross entropy and providing a median confidence of p(y|x) = 0.9 for our modified softmax (equation 8)
are η = 60 and α = 1.

Hyperparameters for the Nearest Neighbour classifier For a comparison with neural networks, we
imitate logits by replacing them with the negative minimal distance between the input and all samples within each
class. The parameters maximizing the test cross entropy and providing a median confidence of p(y|x) = 0.9 for
our modified softmax (equation 8) are η = 0.000000000004 and α = 5.

4https://github.com/MadryLab/mnist_challenge

17

109

Scaling up the randomized gradient-free adversarial attack reveals over-
estimation of robustness using established attacks

The following 19 pages have been published as:

Francesco Croce*, Jonas Rauber*, Matthias Hein (2020). “Scaling up the Randomized
Gradient-Free Adversarial Attack Reveals Overestimation of Robustness Using Established
Attacks”. International Journal of Computer Vision (IJCV) 128:1028-1046.

A summary of the motivation, results, and discussion can be found in section 2.2 on page 34. * joint first authorship

Abstract

Modern neural networks are highly non-robust against adversarial manipulation. A
significant amount of work has been invested in techniques to compute lower bounds
on robustness through formal guarantees and to build provably robust models. How-
ever, it is still difficult to get guarantees for larger networks or robustness against larger
perturbations. Thus attack strategies are needed to provide tight upper bounds on the
actual robustness. We significantly improve the randomized gradient-free attack for
ReLU networks (Croce and Hein in GCPR, 2018), in particular by scaling it up to large
networks. We show that our attack achieves similar or significantly smaller robust
accuracy than state-of-the-art attacks like PGD or the one of Carlini andWagner, thus
revealing an overestimation of the robustness by these state-of-the-art methods. Our
attack is not based on a gradient descent scheme and in this sense gradient-free, which
makes it less sensitive to the choice of hyperparameters as no careful selection of the
stepsize is required.

International Journal of Computer Vision (2020) 128:1028–1046
https://doi.org/10.1007/s11263-019-01213-0

Scaling up the Randomized Gradient-Free Adversarial Attack Reveals
Overestimation of Robustness Using Established Attacks

Francesco Croce1 · Jonas Rauber1 ·Matthias Hein1

Received: 3 March 2019 / Accepted: 12 August 2019 / Published online: 3 October 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Modern neural networks are highly non-robust against adversarial manipulation. A significant amount of work has been
invested in techniques to compute lower bounds on robustness through formal guarantees and to build provably robust
models. However, it is still difficult to get guarantees for larger networks or robustness against larger perturbations. Thus
attack strategies are needed to provide tight upper bounds on the actual robustness. We significantly improve the randomized
gradient-free attack for ReLU networks (Croce and Hein in GCPR, 2018), in particular by scaling it up to large networks.
We show that our attack achieves similar or significantly smaller robust accuracy than state-of-the-art attacks like PGD or
the one of Carlini and Wagner, thus revealing an overestimation of the robustness by these state-of-the-art methods. Our
attack is not based on a gradient descent scheme and in this sense gradient-free, which makes it less sensitive to the choice
of hyperparameters as no careful selection of the stepsize is required.

Keywords Adversarial attacks · Adversarial robustness · White-box attacks · Gradient-free attacks

1 Introduction

Recent work has shown that state-of-the-art neural networks
are non-robust (Szegedy et al. 2014; Goodfellow et al. 2015),
in the sense that a small adversarial change of a (even
with high confidence) correctly classified input leads to a
wrongdecision again potentiallywith high confidence.While
Szegedy et al. (2014), Goodfellow et al. (2015) have brought
up this problem in object recognition tasks, the problem itself
has been discussed for some time in the area of email spam
classification (Dalvi et al. 2004; Lowd and Meek 2005).
However, since machine learning is nowadays used as a
component for automated decision making in safety criti-
cal systems e.g. autonomous driving or medical diagnosis
systems, fixing this problem should have high priority as it
potentially can lead to fatal failures beyond the eminent secu-
rity issue (Liu et al. 2017).

Communicated by Thomas Brox.

Francesco Croce, Jonas Rauber: shared first author.

B Francesco Croce
francesco91.croce@gmail.com

1 Department of Computer Science, University of Tübingen,
Tübingen, Germany

While a lot of research has been done on attacks and
defenses (Papernot et al. 2016; Liu et al. 2017; Kurakin et al.
2017; Yuan et al. 2019) it has been shown that all existing
defense strategies can be broken again (Carlini and Wagner
2017a; Athalye et al. 2018), with two exceptions. The first
one are methods which provide provable guarantees on the
robustness of a network (Katz et al. 2017; Tjeng et al. 2019;
Hein and Andriushchenko 2017; Raghunathan et al. 2018;
Wong and Kolter 2018; Mirman et al. 2018; Weng et al.
2018; Schott et al. 2019; Croce et al. 2019) and which have
proposed new ways of training (Wong and Kolter 2018; Mir-
man et al. 2018) or of regularizing neural networks (Hein
and Andriushchenko 2017; Croce et al. 2019) to make them
more robust.While this area has made huge progress it is still
difficult to provide such guarantees for medium-sized net-
works (Wong and Kolter 2018; Mirman et al. 2018). Then
the only way to evaluate robustness for large networks is
still to use successful attacks which thus provide, for every
clean input, an upper bound on the norm of the minimal per-
turbation necessary to change the class. In fact, this is an
approach to the problem of estimating robustness symmetric
to formal certificates, which are lower bounds on the actual
robustness. The first attack scheme based on L-BFGS has
been proposed in Szegedy et al. (2014), afterwards research
has produced a variety of adversarial attacks of growing

123

112

International Journal of Computer Vision (2020) 128:1028–1046 1029

effectiveness (Goodfellow et al. 2015; Huang et al. 2016b;
Moosavi-Dezfooli et al. 2016). However, it has been recog-
nized that simple attacks often fail when they face a defense
created against the specific attacks but which can be easily
broken again using other more powerful techniques (Carlini
and Wagner 2017a; Athalye et al. 2018). Apart from these
white-box attacks (model is known at attack time), also sev-
eral black-box attacks have been proposed Liu et al. (2017),
Narodytska and Kasiviswanathan (2016) and Brendel et al.
(2018).

The second exception is adversarial training with a rela-
tively powerful attack (Madry et al. 2018) based on projected
gradient descent (PGD). This defense technique could not be
broken even using the state-of-the-art attack of Carlini and
Wagner (2017b), Carlini and Wagner (2017a), Athalye et al.
(2018).

In this paper we extend the white-box attack scheme pro-
posed inCroce andHein (2018), originally designed to attack
fully-connected neural networks using ReLU type activation
function. It iswell known that these networks result in contin-
uous piecewise affine functions (Arora et al. 2018), that is the
domain is decomposed into linear regions given as polytopes
on which the classifier is affine. The principle of the attack
of Croce and Hein (2018) is then to solve the minimal adver-
sarial perturbation problem on each linear region as it boils
down to a convex optimization problem. In Croce and Hein
(2018) they report that the attack outperforms the DeepFool
attack (Moosavi-Dezfooli et al. 2016) and the state-of-the-
art Carlini–Wagner attack (CW) (Carlini andWagner 2017b)
by up to 9% relative improvement in the norm of the small-
est perturbation δ needed to change the classifier decision.
However, the attack has been limited to small fully-connected
neural networks with up to 10,000 neurons. In this paper we
show that this attack can also be applied to convolutional,
residual and dense networks with piecewise affine activa-
tion functions as well as max and average pooling layers
and scales to networks consisting of more than 2.5 million
neurons and achieving state-of-the-art performance.

The main contributions of this paper are (1) an upscaling
of the attack to large networks so that it can be applied to stan-
dard networks forCIFAR-10 and (2) supporting now themost
common types of layers, e.g. convolutional and residual ones.
The key for the upscaling is a very fast solver for the dual
of the quadratic program which has to be solved for finding
minimal l2 perturbations. The employed accelerated gradient
descent scheme achieves quickly medium accuracy, which
is enough for our purposes. Moreover, we use the fact that
the solver just needs matrix-vector products of the constraint
matrix and thus the explicit computation of the constraint
matrix is not needed. This leads to a small memory footprint
so that we can use this solver directly on the GPU. Finally,
compared to Croce andHein (2018)we have designed amore
efficient sampling scheme of the next region to be checked.

All these speed-ups together allow us now to attack networks
as long as they basically fit into GPU memory. In this paper
the largest network has over 2.8 million neurons, which is
280 times more than in Croce and Hein (2018). We show
that in most of the cases our attack performs at least as good
as the best attack among PGD (Madry et al. 2018), DeepFool
(Moosavi-Dezfooli et al. 2016) and CW (Carlini and Wag-
ner 2017b). In particular our algorithm works well across
architectures, datasets and training schemes, being always
the most successful or very close to the best of the competi-
tors. Notably, we show especially for models trained with
adversarial training (Madry et al. 2018) against the l∞-norm
and provably robust models (Croce et al. 2019; Wong and
Kolter 2018) that the other attacks overestimate, partially by
large margin, the robustness wrt to the l2-norm.

We thus recommend our attack if a reliable estimation
of the real robustness of a network is needed, as our attack
not only performs well on average but does not, unlike the
established state-of-the-art attacks (PGD, DeepFool, CW),
lead to gross overestimation of the robustness of the network
in some cases.

2 Piecewise Affine Formulation of ReLU
Networks

It has been noted in Arora et al. (2018), Croce and Hein
(2018) that ReLU networks, that is networks that use only
the ReLU activation function, result in continuous piece-
wise affine classifiers in the form f : R

d → R
K , where

d is the input dimension and K the number of classes. This
implies that there exists a finite set of polytopes Qr , with
r = 1, . . . , R, such that on each polytope the classifier is an
affine function, that is there exists W ∈ R

K×d and b ∈ R
K

such that f (x) = Wx + b holds for x ∈ Qr . Note that,
although we here focus on ReLU, the same property hold for
any piecewise affine activation function, like Leaky ReLU.
In the following we generalize the construction from Croce
and Hein (2018) done for fully-connected networks to the
case of other layer types, so that it extends to convolutional
networks (CNNs), ResNets (He et al. 2016) and DenseNets
(Huang et al. 2016a).

We can write ReLU networks with L hidden layers as the
composition of L + 1 functions, each standing for one of the
layers (including the output layer), f (1), . . . , f (L+1). Note
that we consider the application of the activation function
as a stand-alone layer (called ReLU layer). Denoting with
n j , for j = 1, . . . , L + 1, the number of units in layer j (in
particular nL+1 = K and we assume n0 = d), we can define,
for j = 1, . . . , L + 1,

f (j) : Rn0 × R
n1 × . . . × R

n j−1 −→ R
n j (1)

123

113

1030 International Journal of Computer Vision (2020) 128:1028–1046

and the output of the j-th layer is obtained as

x (j) = f (j)(x, x (1), . . . , x (j−1)), (2)

where x is the input of the network. Then, the final output of
the classifier f is given by

f (x) ≡ x (L+1) = f (L+1)(x, x (1), . . . , x (L)). (3)

If we make explicit the relation between each x (j) and the
input x we can recover the formulation of classifier f as a
function from R

d to R
K . While this definition of a classi-

fier differs from the usual recursive formulation, it allows to
handle also connections between non-consecutive layers [as
it happens for residual networks (He et al. 2016)]. Finally,
the class c which is assigned to x is given by

c = argmax
r=1,...,K

fr (x) = argmax
r=1,...,K

x (L+1)
r .

Every layer has one of the following types: dense, convolu-
tional, skip connection, ReLU (or leaky ReLU), avg-pooling,
max-pooling, batch normalization. We now show how it is
possible to rewrite each of them, f (j), j = 1, . . . , L + 1, as
an affine function

A(j) : Rn0 × R
n1 × . . . × R

n j−1 −→ R
n j ,

A(j)(t) = A(j)t + a(j),
(4)

with A(j) ∈ R
n j×N j , a(j) ∈ R

n j , N j = ∑ j−1
i=0 ni , in the

linear region Q(x) corresponding to the input x (see below
for the definition). For simplicity in the following we call
y = (x, x (1), . . . , x (j−1)) the fixed input of the layer f (j) we
are considering (see Eq. 2).

First, let us notice that dense, convolutional, skip connec-
tion and batch normalization (at inference time) layers are
already affine operations, which means A(j) ≡ f (j).

Second, ReLU layers apply the function σ(t) = max{0, t}
componentwise to the output of the previous layer. Thus, they
can be, noticing that y is defined so that the last n j com-
ponents correspond to x (j−1), replaced by linear functions
explicitly represented by the matrices Σ ∈ R

n j×N j defined
as

Σ =

⎛

⎜
⎜
⎜
⎜
⎝

0 . . . 0 h(x (j−1)
1) 0 . . . 0

0 . . . 0 0 h(x (j−1)
2) . . . 0

...
. . .

...
...

...
. . .

...

0 . . . 0 0 0 . . . h(x (j−1)
n j)

⎞

⎟
⎟
⎟
⎟
⎠

,

with

h : R −→ R, h(t) =
{
0 if t < 0
1 else

.

Then, the desired affine function is A(j)(t) = Σ t . Since
Σ depends on the input of the layer, A(j) and A(j) are not
shared by all the input points.

Third, average pooling computes the mean over certain
subsets of the input vector. For example, the average of the
first four entries of y is obtained, introducing

a =
(
1

4
,
1

4
,
1

4
,
1

4
, 0, . . . , 0

)

∈ R
N j ,

as 〈a, y〉. Then, since we have n j pools of p elements, it is
sufficient to create n j vectors similar to a, with entries equal
to 1/p in the positions of the elements we want to average and
zero else. We use then these vectors as rows of the matrix
A(j), getting A(j)(t) = A(j)t . We notice that A(j) does not
depend on the input y (as avg-pooling is already an affine
function).

Finally, the construction of A(j) for max-pooling layers
is analogue (as these layers return the maximum instead of
the mean). The main difference is that in this case A(j) may
change as y does. In fact, going back to our example, if we
want to extract the maximum among the first four entries of
y and assume that it is realized by the second component, we
can set a = (0, 1, 0, 0, . . . , 0) ∈ R

N j . If the position of the
maximum changes also the vector a changes. Again, 〈a, y〉
returns the value we are interested in. If p1, . . . , pn j are the
positions of the maxima for each of the n j pools, we can then
build A(j) ∈ R

n j×N j as

A(j)
rs =

{
1 if s = pr

0 else
, s = 1, . . . , N j , r = 1, . . . , n j ,

so that A(j)(t) = A(j)t . Please notice that, similarly to the
case of ReLU layers, avg- and max-pooling layers usually
involve only the output of the immediately preceding layer.

Oncewehave computed the affine functionsA(j) for every
j = 1, . . . , L + 1 we can explicitly derive recursively the
affine functions V(j) : R

d −→ R
n j , represented by the

matrices V (j) ∈ R
n j×d and vectors v(j) ∈ R

n j , satisfying
the conditions

f (j)(x, x (1), . . . , x (j−1)) ≡ V(j)(x) = V (j)x + v(j). (5)

Let us start with j = 1, that is the first layer. Then V (1) and
the v(1) are the linear function and the bias which defineA(1),
namely A(1) and a(1).

Assuming now thatV(l) are available for l = 1, . . . , j−1,
we get V(j) combining Eqs. (2) and (5) and the definition of
A(j), so that

V(j)(x) = A(j)(x,V(1)(x), . . . ,V(j−1)(x)), (6)

123

114

International Journal of Computer Vision (2020) 128:1028–1046 1031

which is affine as a composition of linear and affine functions
is affine again.

It still remains to compute the polytope Q(x) contain-
ing x on which all the previous affine approximations hold
exactly. First, note thatA(j) is independent of its input y (and
thus from the input x of the network as well) if j is either
a dense, convolutional, residual, avg-pooling or batch nor-
malization layer, meaning that A(j) is equivalent to f (j) on
the whole input space. Thus these layers do not contribute to
the definition of Q(x). We are left to define where the linear
reformulations of ReLU andmax-pooling layers hold. As we
noticed above, these kinds of layers only take into account the
output of the immediately previous layer. Therefore, while
considering layer j , we are allowed to act like the only input
of f (j) was x (j−1).

Let f (j) be a ReLU layer and notice that the matrix Σ

computed for x (j−1) is the same for any vector whose com-
ponents have the same sign as those of x (j−1). Defining δ

elementwise as

δr = sgn(x (j−1)
r), r = 1, . . . , n j−1,

with the convention sgn(0) = 11, we then get the set

S(j)(x (j−1)) = {z ∈ R
n j−1 | sgn(zr) = δr ,

r = 1, . . . , n j−1}

containing the points ofRn j−1 which lead to the same matrix
Σ as x (j−1). We note that the condition sgn(zr) = δr is
equivalent to zrδr ≥ 0 and that we are interested in the
intersection of S(j) and the domain of layer j . With (5), we
define the polytope on which f (j) is affine,

Q(j)(x) = {z ∈ R
d

∣
∣ δrV(j−1)(z) ≥ 0, r = 1, . . . , n j−1}

=
{
z ∈ R

d
∣
∣ δr (V

(j−1)z + v(j−1)) ≥ 0,

r = 1, . . . , n j−1
}
.

(7)

The set Q(j)(x) defines the region of the input space contain-
ing x and where A(j)(x) and thus f (j) is an affine function.
If f (j) is instead a max-pooling layer, we can see that
A(j) is preserved as long as the maximum within each
pool is realized at the same position. We can denote the
n j pools as the sets P1, . . . , Pn j , whose elements are the
indices of the components of the input (of the max-pooling
layer) involved in the pool. Moreover we define for every
r = 1, . . . , n j

1 The case x (j−1)
r = 0 implies that the region on which the affine

approximation holds has dimension smaller than that of the input space.
Setting sgn(0) = 1 we consider a polytope which contains as a face the
hyperplane defined by the condition x (j−1)

r = 0.

prmax = argmax
i∈Pr

x (j−1)
i ,

that is the index of the component of x (j−1) attaining the
maximum for each pool Pr . Then, for r = 1, . . . , n j ,

S(j)
r (x (j−1)) = {

z ∈ R
n j−1 | z prmax

≥ zi , ∀i ∈ Pr}

is the set of the vectors inRn j−1 preserving the position of the
maximum computed at x (j−1) for pool Pr . Similar to what
has been done for ReLU layers, we define

Q(j)
r (x) =

{
z ∈ R

d | V(j−1)
prmax

(z) ≥ V(j−1)
i (z), ∀i ∈ Pr

}

=
{
z ∈ R

d |
(
V (j−1)
prmax

− V (j−1)
i

)
z

+ v
(j−1)
prmax

− v
(j−1)
i ≥ 0, ∀i ∈ Pr

}
,

(8)

so that, finally, Q(j)(x) = ⋂n j
r=1 Q

(j)
r (x) is the subset of the

input space containing x on which f (j) is an affine function.
Note that Q(j)(x) = R

d if j is neither a ReLU nor a max-
pooling layer. The polytope Q(x) on which f (L+1) (and all
layers below) is affine is given by

Q(x) =
L+1⋂

j=1

Q(j)(x).

In the following we refer to Q(x) as the linear region of x .
Note also that the intersection of Q(x) with any other poly-
tope is still a polytope (e.g. this is necessary when the input
domain of a classifier is a subset ofRd). Note that the explicit
storage of thematrices V (j) is not possible for large networks
and high input dimension as one needs O(Nd) memory. In
Sect. 4 it will turn out that our attack algorithm only requires
matrix-vector products V (j)x which can be done without
computing V (j) explicitly and thus we can do the whole
attack on the GPU as long as the network itself fits into GPU
memory.

3 Minimal Adversarial Perturbation Inside a
Linear Region

Classifiers based on neural networks have been shown to be
vulnerable to adversarial samples, that is they misclassify
inputs which are almost indistinguishable from an original,
correctly recognized test image (Szegedy et al. 2014; Good-
fellow et al. 2015). The minimal adversarial perturbation δ

wrt an l p-norm is defined as the solution of the following
optimization problem

123

115

1032 International Journal of Computer Vision (2020) 128:1028–1046

min
δ∈Rd

‖δ‖p s.th. max
l �=c

fl(x + δ) ≥ fc(x + δ),

x + δ ∈ C,
(9)

with C being a set of constraints the input of f has to sat-
isfy (in the following we assume that C is a polytope), e.g.
images scaled to be in [0, 1]d , x ∈ R

d is the original point
and c the class assigned to x by f (we assume x is correctly
classified by f). The l p-norm of δ measures the difference
between original and adversarial inputs (changing p leads
to adversarial samples with different properties). In practice,
one often uses p = 2 or p = ∞. We concentrate for sim-
plicity in this paper on p = 2, even though the framework
allows to handle any p-norm given that a fast solver is avail-
able for the following linearized problem (11). Note that (9)
represents an untargeted attack, that is we just want that the
decision changes but we do not want to achieve that x + δ is
classified as a particular class.

Theoptimizationproblem (9) is in general non-convex and
NP-hard (Katz et al. 2017). However, as shown in Croce and
Hein (2018), one can solve it efficiently inside every linear
region of the classifier, that is if we add to (9) the constraint
x+δ ∈ Q(y), where Q(y) is the linear regionwhich contains
the point y ∈ R

d . In fact, recalling Sect. 2, we introduce for
l �= c the vectors δl as the solutions of the K − 1 convex
problems (note that we assume that C is a polytope)

min
δ∈Rd

‖δ‖p s.th.
〈
V (L+1)
l − V (L+1)

c , x + δ
〉

+ v
(L+1)
l − v(L+1)

c ≥ 0,

x + δ ∈ C ∩ Q(y).

(10)

Then, the solution of Problem (9) restricted to the linear
region Q(y) is argmin

{δl :l �=c}
‖δl‖p. While we are mainly inter-

ested in untargeted attacks, we would like to highlight that
targeted attacks against any of the classes s �= c are easily
possible by solving instead the following problem:

min
δ∈Rd

‖δ‖p s.th.
〈
V (L+1)
s − V (L+1)

r , x + δ
〉

+ v(L+1)
s − v(L+1)

r ≥ 0, ∀r �= s,

x + δ ∈ C ∩ Q(y).

(11)

Please note that if one would solve (10) for all possible linear
regions and take the smallest perturbation, then this the exact
solution of (9). However, due to the extremely large number
of linear regions this is infeasible in practice. Thus we use
a randomized scheme for selecting the next linear region
which is described in Sect. 4 together with a description of
the particular solver for the resulting quadratic program in
(10) for the choice of p = 2.

4 Generation of Adversarial Samples
Through Randomized Local Search

In the following we present an improved selection scheme
of the linear regions compared to the one in Croce and Hein
(2018). The observation motivating our scheme is that the
decision surface dividing areas of the input space assigned
to different classes extends continuously across neighbor-
ing linear regions. If a point, say y, lying on the decision
boundary is available, it is highly likely to find in its vicin-
ity other points, again on the decision boundary between
two classes, closer than y to the target image x . However,
as pointed out in Croce and Hein (2018) it is very diffi-
cult to determine neighboring regions as a large number
of the constraints defining the polytope are active at the
solution of (10). In this case the neighboring region is not
unique and checking all of them is infeasible and ineffi-
cient.
Thus we sample random points (more details below) in a
small ball centered around the currently best point y, that is
realizing the smallest adversarial perturbation found so far,
and then solve (10) in the corresponding linear region until
we find a better adversarial sample.
Moreover,we save the activation patterns of the linear regions
we have explored. Before checking a point and its corre-
sponding linear region we compare the activation pattern
to the ones of the points which we have already visited. If
the activation patterns agree it means that the two points
belong to the same region and then we can skip checking it
again.

Algorithm1 showsour overall attack for a general l p-norm
trying to solve the optimization problem (9) for the minimal
adversarial perturbation. In the experiments we use either
N = 400 or N = 500, that is we check 400 resp. 500 linear
regions. Please note that Algorithm 1 requires to be fed with
a feasible point δWS of (9). There are several possibilities
e.g. an adversarial sample of a fast attack like DeepFool as
has been used in Croce and Hein (2018). In this paper we
prefer to be independent of another attack. Thus we are using
the following scheme to choose M starting points. At x we
rank the classes {1, . . . , K } according to the components of
corresponding classifier output f (x) in descending order ρ,
where ρ1 is the class which is assigned to x . We choose
the M classes ρ2, . . . , ρM+1 in the ranking and compute the
point z j in the training set correctly classified by f in class
ρ j which is closest to x for j = 2, . . . , M + 1. In order to
be speed up the attack we do for each z j a binary search
on [x, z j] and identify the point u j which is closest to x

but is classified differently from x and use δ
(j)
WS = u j − x ,

j = 2, . . . , M +1, as starting perturbations for Algorithm 1.

123

116

International Journal of Computer Vision (2020) 128:1028–1046 1033

Algorithm 1: Our attack
Input : x original image, δWS starting perturbation, γ, N , p
Output: δ adversarial perturbation

1 δ ← δWS , u ← ‖δ‖p

2 for j = 1, . . . , N do
3 y ← sampled according to (14)
4 if region containing y has not been checked already then
5 computation of Q(y)
6 δtemp ← solution of Problem (10) on Q(y)
7 if

∥
∥δtemp

∥
∥
p < u then δ ← δtemp , u ← ‖δ‖p

8 end
9 end

At each of the N iterations we sample a point around the
current best (smallest l p-norm) feasible point y := x + δ

of (9). The following sampling scheme is biased towards x ,
where q ∈ [12 , 1] is a parameter controlling the bias towards
x (q = 1

2 no bias, q = 1maximal bias) and γ > 0 is a param-
eter controlling how localized our search is (the larger γ , the
more localized). We provide an analysis of the influence of
these parameters in Sect. 5.5.We sample (i) uniformly a point
y⊥ from the intersection of the unit sphere Sd centered in y
and the hyperplane containing y with normal vector δ, and
(ii) an angle θ ∈ [−π, π] given by

X1 r.v. : P(X1 = 1) = q, P(X1 = −1) = 1 − q,

X2 ∼ U[0, π],
θ = X1X2,

(12)

where U[0, π] is the uniform distribution on the interval
[0, π]. We define δ⊥ = y⊥ − y. Note that by construction∥
∥δ⊥∥

∥
2 = 1. Finally,

δnew = cos(θ)δ⊥ − sin(θ)
δ

‖δ‖2 ,

rnew = ‖δ‖2 Xγ
3 with X3 ∼ U[0, 1]

(13)

give direction and step size to produce the next point ynew
whose linear region will be checked, defined as

ynew = y + rnewδnew. (14)

Note that the larger γ the more biased ynew will be towards y.
On the other hand our sampling scheme makes a difference
between the half-sphere centered at y with pole at x = y− δ

versus the half-sphere with pole at y + δ. If q = 1
2 samples

from both half-sphere are equally probable, whereas if q = 1
one samples just from the half-sphere pointing towards x . At
first sight it might look strange that we do not choose q = 1,
as points sampled from the half-sphere pointing away from
x have larger distance from x than y. However, experiments
on a small subset of points show that a value of q = 0.8
leads to best results even though the difference to q = 1 is

not large and thus we fix it to q = 0.8 for all experiments.
Moreover, we use γ = 6 or γ = 9 for all experiments, noting
anyway that the attack is not very sensitive to this value as γ

in the range between 3 and 9 lead to very similar results. In
Sect. 5.5 we provide a detailed analysis of the influence of
these two parameters on the performance of our scheme.

If C is a polytope e.g. C = [0, 1]d , then the optimization
problems (10) and (11) are equivalent to linear programs
(LP) for p = ∞ and p = 1 and equivalent to a quadratic
program (QP) for p = 2. The main cost of the attack is to
solve the optimization problem.Nextwe describe an efficient
scalable way of solving (10) for p = 2, avoiding the explicit
calculation of the linear regions.

4.1 A Scalable and Efficient Solver for the Quadratic
Program

Let us suppose x + δ is our current best found solution, then
we would like that the solution of (10) produces a new δ′
which satisfies

∥
∥δ′∥∥

2 < ‖δ‖2. This implies that as soon as
we have a certificate that the optimal value of (10) is larger
than ‖δ‖2 then we can stop the solver as checking this region
will not yield an improvement. Thus we work with the dual
of (10) as the dual objective is always a lower bound on the
primal objective. As soon as we have found dual parameters
realizing a larger dual objective than ‖δ‖2 we can stop.

In the followingwe describe first howwe solve the generic
resulting dual QP using accelerated gradient descent together
with coordinate descent in a subset of the variables. Then we
describe how this algorithm for solving the QP can be effi-
ciently implemented on the GPU without having to ever to
compute the constraint matrix. Note that in Croce and Hein
(2018) we used the commercial package Gurobi for solving
the QP on the CPU. Now we present an own implementation
fully running on the GPU which is roughly three orders of
magnitude faster than then our old implementation on the
CPU and which allows us to deal with fully-connected, con-
volutional and residual layers.

Solving the Dual Problem As we are mainly interested in
applications in computer vision we specialize to the case
C = [0, 1]d in (10), which can then be formulated as

min
z∈Rd

‖z − x‖22 s.th. Az ≤ b, z ∈ [0, 1]d . (15)

Note that the formulation is different from (10) but can be
transformed into each other using δ = z− x . The chosen for-
mulation of the optimization problem in (15) is better adapted
to the componentwise constraints imposed by C . The primal
problem is strongly convex and thus has a unique solution.
We derive the dual problem as

123

117

1034 International Journal of Computer Vision (2020) 128:1028–1046

max
α,β∈Rd ,μ∈Rm

q(μ, α, β) s.th. α ≥ 0, β ≥ 0, μ ≥ 0,

(16)

where

q(μ, α, β) = −1

2

∥
∥
∥ATμ + α − β

∥
∥
∥
2

2
+

〈
ATμ + α − β, y

〉

− 〈α, 1〉 − 〈μ, b〉

and the inequalities in (16) are componentwise. The corre-
spondence between the primal variable z and the dual optimal
variables α, β, μ is given by

z = y − ATμ − α + β. (17)

Note however that even for dual feasible α, β and μ, the
primal variable z need not to be feasible. TheKKTconditions
are

αi (xi − 1) = 0, βi xi = 0, μi ((Ax)i − bi) = 0.

This implies αiβi = 0. Solving for α, β yields

α = max{0, y − ATμ − 1}, β = max{0, ATμ − y}. (18)

Thus for fixed μ we can directly find the optimal values of
α and β. The dual problem is also a quadratic program but it
is not necessarily strongly convex as AAT does not need to
be positive definite. However, the gradient

∇μq = −AATμ + A(y − α + β) − b

∇αq = ATμ + α − β + y − 1

∇βq = −(ATμ + α − β) − y

is Lipschitz continuous and the Lipschitz constant L can be
upper bounded as,

L ≤ max

{∥
∥
∥AT A

∥
∥
∥
2
,

∥
∥
∥AT A

∥
∥
∥ , 1

}

. (19)

We estimate
∥
∥AT A

∥
∥2 via the power method with 20 iter-

ations, which is enough to get already a quite accurate
estimate. We solve the QP itself with accelerated projected
gradient descent (Nesterov 1983; Beck and Teboulle 2009;
Chambolle and Pock 2011) in μ by setting α and β to their
optimal values for given μ as in (18) which can be seen as a
mixture of a coordinate descent in α, β and accelerated pro-
jected gradient descent in μ. Note that in all steps we never
need the matrix A explicitly, but just matrix vector products
ATμ or Az if we want to compute feasibility of the current
primal variable z. Even for the computation of

∥
∥AT A

∥
∥ we

use the power method which also only requires matrix vec-
tor products. The only caveat is a good pre-conditioning of

the problem, which can be achieved by normalizing the rows
ai , i = 1, . . . , N of A to have unit norm (with correspond-
ing rescaling of b). One can compute them via matrix vector
productsai = AT ei , but thiswould require toomanyof them.
We discuss how this can be resolved in the next section and
how the whole QP solver can be ported to the GPU.

4.2 Solving the QP Efficiently on the GPUWithout
Explicit Computation of the Constraint Matrix A

As discussed at the end of the previous section, the QP solver
via accelerated gradient descent does not require the explicit
computation of A as long as there is a way to compute matrix
vector products ATμ and Az efficiently. While in Croce and
Hein (2018) the matrix A has been explicitly computed on
the CPU, this is no longer feasible for larger networks as
the memory consumption is O(Nd), where d is the input
dimension and N the total number of neurons. Even if one
uses sparse matrix formats e.g. in the case of convolutional
layers, this does not help to reduce the required memory
significantly if the network is deep. Moreover, also the com-
putation of the hyperplanes requires a computational cost
equivalent to d forward passes of the network.

Thus a major improvement of this paper compared to
Croce and Hein (2018) is the transfer of all computations
from the CPU to the GPUwhich is only possible if the matrix
A is not explicitly computed as the GPU memory would not
suffice for this. The major insight to do this is that acceler-
ated gradient descent only requires matrix-vector products
of the form ATμ and Az. Note that A contains basically the
concatenated matrices V (j) from (7) and (8). However, we
note that according to (5) it holds

f (j)(x, x (1), . . . , x (j−1)) = V(j)(x) = V (j)x + v(j),

and thus V (j) is nothing else than the Jacobian J f (j) of f (j)

with respect to x and

v(j) = f (j)(x, x (1), . . . , x (j−1)) − V (j)x .

Suppose for simplicity that

f (j)(x) = g j (g j−1(. . . (g1(x)) . . .)).

Then the Jacobian J f (j) of f (j) at x is given by the chain
rule as

V (j) = J f (j)
∣
∣
x

= Jg j
∣
∣
g j−1(x)

Jg j−1
∣
∣
g j−2(x)

· · · Jg1
∣
∣
x .

Note that V (j)u can be evaluated as

V (j)u = J f (j)
∣
∣
xu

123

118

International Journal of Computer Vision (2020) 128:1028–1046 1035

= Jg j
∣
∣
g j−1(x)

(
Jg−1

∣
∣
g j−2(x)

(
· · ·

(
Jg1

∣
∣
xu

)
· · ·

))
.

In the same way we can compute wT V (j) as

wT V (j) = wT J f (j)
∣
∣
x

=
(

· · ·
(
wT Jg j

∣
∣
g j−1(x)

)
Jg j−1

∣
∣
g j−2(x)

· · ·
)
Jg1

∣
∣
x .

Thus calculating V (j)u requires a single forward pass
through the network and wT V (j) requires a forward pass for
computing thevalues g j (x) and then abackwardpass through
the network. More general, the computation of the Jacobian-
vector products can be done via automatic differentiation
(forward-mode resp. backward-mode automatic differentia-
tion). Finally, to calculate the above expressions efficiently
we still need a fast way to compute Jgk

∣
∣
yv and zT Jgk

∣
∣
y for

primitive functions gk e.g. if gk is a convolution, then Jgk
∣
∣
yv

can be computed as well as a convolution and zT Jgk
∣
∣
y as

the transposed convolution. Fortunately, modern implemen-
tations of automatic differentiation already comewith a large
collection of primitive functions and corresponding rules for
Jgk(y)v and zT Jgk(y). Thus, we can directly and efficiently
compute them on the GPU without computing the Jacobians
itself. Thus our QP solver does not require much more mem-
ory than the network itself which allows it to scale to large
networks.

Note that for pre-conditioning of A it would make sense
to rescale the rows of A to have unit norm (one has to rescale
correspondingly also the vector b). While every row vector
ai of A can be obtained as ai = eTi A and thus also just
via matrix-vector products, doing this for every row is pro-
hibitively expensive. Thus we use the fact that the norms of
the row vectors corresponding to the same hidden layer have
quite similar norms (typically we see increasing norms as
one moves from lower to upper layers). Thus we just sample
a small number of rows (in our case 10) of each layer, com-
pute their norms, take the mean of them and use the inverse
of that as a rescaling factor for that layer. While this coarse
pre-conditioning scheme is worse than if one rescales every
row individually, it is significantly better than not doing any
rescaling at all. There is one exception: we upscale the con-
straint of the decision boundary, as we have found that this
leads to faster feasibility of this constraint which is the most
important one of all the constraints.

Moreover, we do not need an accurate solution of (10)
and thus we have found that in practice 500 iterations of the
accelerated gradient descent scheme suffice to get a reason-
able solution. As the primal variable z in (17) obtained from
the dual variables need not be feasible, we explicitly check
if the output z is an adversarial sample. If not then we check
via a small line search x + α(z − x), where α ≥ 1, if it is an
adversarial sample as long as α ‖z − x‖2 < ‖δ‖, where ‖δ‖

is the norm of the perturbation of the currently best adver-
sarial sample x + δ. Finally, this leads to a scheme which is
more than three orders of magnitude faster than that in Croce
and Hein (2018).

5 Experiments

In this section we show that our attack often outperforms
the state-of-the-art methods to compute upper bounds on the
robust accuracy of a model, which is defined for a given
ε > 0, as the minimal accuracy that the classifier can achieve
if each test sample is allowed to be perturbedwithin a p-norm
ball of radius ε in order to achieve a misclassification. The
smaller the found robust accuracy the stronger is the attack
and the less robust is the network. We focus here on the l2-
attack. The code for our attack is publicly available.2

We show that current state-of-the-art attacks sometimes
overestimate the robustness of classifiers. In fact, with our
attack we are often able to achieve smaller robust accuracy
thanour competitors, and evenwhenwedonotwenever over-
estimate the robust test accuracymore than 5.0%compared to
the minimal one found by the competitors. In contrast, all the
other attacks have caseswhere they achieve a robust accuracy
at least 50.4% larger than that provided by our method (see
Table 1). Thus if one just evaluates robustness using the com-
peting attacks, one would consider models robust which are
in fact quite non-robust. Our technique does not show a sim-
ilar weakness in any setting, pointing out how our algorithm
is, on one side, able to recover in general small adversar-
ial perturbations and, on the other side, less susceptible to
changes in the characteristics of the network. Interestingly,
we notice that l2- gradient-based methods suffer especially
when attacking models trained with l∞-adversarial training.

We consider three datasets: MNIST, German Traffic Sign
(GTS) (Stallkamp et al. 2012) and CIFAR-10 (Krizhevsky
et al. 2014) (all images are scaled in [0, 1]d). On each of
them three models are trained, the plain model (plain), one
with l2-adversarial training (called l2-at) and one with l∞-
adversarial training (l∞-at) (we use the adversarial training
scheme of Madry et al. (2018) that is based on the Projected
Gradient Descent attack). More details about architectures
and training are provided below.

Wecompareour attack against: ProjectedGradientDescent
on the loss function (PGD) (Madry et al. 2018), Carlini–
Wagner l2-attack (CW) (Carlini and Wagner 2017b) and
DeepFool (DF) (Moosavi-Dezfooli et al. 2016). We use two
versions of PGD: PGD-1 uses a single starting point, while
PGD-10k exploits 10,000 restarts, randomly sampled in the
l2-ball of radius ε around the original image. This large num-
ber of restarts is motivated by a recent paper which could

2 https://github.com/jonasrauber/linear-region-attack.

123

119

1036 International Journal of Computer Vision (2020) 128:1028–1046

Table 1 Performances of
different attacks

Model PGD-1 PGD-10k CW-10k CW-100k DF Ours

Average difference to the best l2 robust accuracy

MNIST 0.2367 0.1011 0.1701 0.1681 0.3135 0.00051

GTS 0.0361 0.0237 0.0177 0.0172 0.0643 0

CIFAR-10 0.0693 0.0515 0.0045 0.00037 0.0812 0.0060

Maximum difference to the best l2 robust accuracy

MNIST 0.7800 0.5040 0.6200 0.6120 0.9000 0.00500

GTS 0.1600 0.1260 0.0440 0.0420 0.1140 0

CIFAR-10 0.2280 0.2040 0.0180 0.0180 0.1220 0.00140

For each dataset, attack and threshold ε, we compute the differences between the robust accuracies estimated
by an attack and the best one among those of all the attacks. We here report, given dataset and attack, the
mean (top) and the maximum (bottom) of these differences across the thresholds. We can see that our attack
has the smallest average distance from the best on two of three datasets and always achieves the best maximal
distance. Notably, on GTS both mean and maximum for our attack are 0, which means that it gets the lowest
robust accuracy for every model and ε

In bold the best, for each dataset, average or maximum “difference to the best l2 robust accuracy” (lower is
better)

break a certain defense only when using 10,000 restarts of
PGD (Mosbach et al. 2018). For both PGD versions we set
k = 40 iterations and, if ε is the threshold at which we want
to evaluate robust accuracy, we use a step size of ε/4. Sim-
ilarly, we evaluate CW in the implementation of Papernot
et al. (2017) with 40 binary search steps and either 10,000
(CW-10k) or 100,000 iterations (CW-100k). We use the DF
implementation as in Rauber et al. (2017).

Since the objective of PGD is only to find out if there exists
an adversarial sample with norm less than the threshold ε,
it provides directly the robust accuracy at ε (and must be
rerun for each threshold ε). On the contrary, CW, DeepFool
and our attack try to find the minimal adversarial perturba-
tion as in (9). After running these attacks, we compute the
robust accuracy for a given threshold as the fraction of points
whose adversarial examples are farther, in l2-distance, than
ε. Note that we only check correctly classified points for all
methods. The obtained values of robust accuracy achieved
for all attacks and different thresholds are reported in Tables
2 (MNIST), 3 (GTS) and 4 (CIFAR-10).

In order to thoroughly evaluate the effectiveness of an
attack, it is necessary to assess average and worst case
performance. In this way one can see whether it overfits
to some particular model, dataset or training scheme. For
every dataset we compute for all thresholds ε the difference
between the robust accuracy provided by every attack and
the minimal robust accuracy across all the attacks for the
fixed threshold. Thus the worse the performance a method
achieves, the larger the difference is. In Table 1 we report for
each attack the mean and the maximal distance from the best
accuracy, across the three models and five thresholds ε, for
each of the three datasets. It can be directly seen from this
table that our attack has at the same time the best worst case

performance for all three datasets and the best average per-
formance in two of three datasets with only a tiny difference
in the case it is worse.

In particular, we can see how on MNIST the second best
attack (PGD-10k) is on average 10.11%worse than the mini-
mal robust accuracy, compared to 0.51% for our attack, while
in the worst case it returns a robust accuracy 50.4% larger
than the minimal one versus 5.0% for our method. On GTS,
both average andmaximal difference are 0.0% for our attack,
meaning that it always achieves the minimal robust accuracy
among all competing methods. Although on CIFAR-10 we
cannot match the average result of CW attack, our attack has
nevertheless the best worst case performance, highlighting
the quality of our approach.

5.1 Main Experiments: Details

MNIST ForMNISTweuse the same architecture as inMadry
et al. (2018), consisting in 2 convolutional layers of 16 and
32 filters, each followed by max-pooling, and 2 dense layers.
In particular, the plain and l∞- trained models are the natural
and secret models of “MNIST Adversarial Examples Chal-
lenge”,3 based on Madry et al. (2018). For l2-at we adapted
the code of Madry et al. (2018) to perform adversarial train-
ing using the PGD attack wrt the l2-norm with ε = 2 and
40 iterations. The clean accuracy of the models can be found
in Table 2 in the row corresponding to ε = 0. Moreover,
we use M = 5 different starting points for our attack (cor-
responding to five classes) and N = 500 as the maximum
number of linear regions checked, or equivalently iterations

3 https://github.com/MadryLab/mnist_challenge.

123

120

International Journal of Computer Vision (2020) 128:1028–1046 1037

Table 2 Robustness of MNIST
models

Model ε PGD-1 PGD-10k CW-10k CW-100k DF Ours

l2 robust accuracy on MNIST

plain 0.0 0.984

0.5 0.928 0.926 0.926 0.926 0.936 0.926

1.0 0.508 0.472 0.474 0.474 0.586 0.474

1.5 0.168 0.106 0.088 0.088 0.198 0.078

2.0 0.106 0.028 0.006 0.006 0.018 0.002

2.5 0.078 0.014 0.000 0.000 0.000 0.000

l2-at 0.0 0.986

1.0 0.930 0.930 0.926 0.926 0.938 0.926

1.5 0.838 0.834 0.846 0.848 0.872 0.834

2.0 0.698 0.672 0.706 0.706 0.790 0.680

2.5 0.468 0.366 0.466 0.464 0.674 0.416

3.0 0.192 0.096 0.170 0.172 0.542 0.112

l∞-at 0.0 0.984

1.0 0.924 0.878 0.888 0.888 0.948 0.736

1.5 0.886 0.748 0.774 0.776 0.932 0.258

2.0 0.812 0.536 0.652 0.644 0.918 0.032

2.5 0.758 0.248 0.552 0.538 0.904 0.004

3.0 0.658 0.064 0.480 0.468 0.848 0.000

We report upper bounds on the robust accuracy, that is the fraction of points in the test set which are still
correctly classified when any perturbation of l2-norm smaller than or equal to ε is allowed in order to achieve
a misclassification (a smaller robust accuracy means a stronger attack). The statistics are computed on the
first 500 points of the MNIST test set
For each threshold and model we highlight in bold the lowest robust accuracy, which indicates the strongest
attack

in Algorithm 1, for each starting point. Moreover we set the
parameter γ = 6 in Algorithm 1.

In Table 2 we report the robust accuracy, computed on 500
points of the test set, for the threemodels when the l2-norm of
the perturbations is bounded by ε. We see that in most of the
cases our attack achieves the best performance. In particular,
on the l∞-trainedmodel all the other gradient-basedmethods
suggest that the classifier is highly robust, while our attack
shows that this is not the case, as it turns out to be just slightly
less vulnerable to adversarial examples than the plainmodel
(e.g. at ε = 2.0 the best of other attacks reduces accuracy
only to 53.6% while our technique brings it down to 3.2%).

Notably, in Schott et al. (2019) the same l∞-at model was
tested and, taking the pointwise best output among those of 11
attacks of various nature, the authors could decrease robust
accuracy no more than 35% with ε = 1.5. On the other
hand we see that our attack alone, without even testing all
the possible 9 target classes, yields an upper bound on robust
accuracy for the same ε of 25.8%, which is almost 10% less
than the current state-of-the-art (Brendel et al. 2018).

GTS In this case the models are CNNs with 2 convolutional
layers (16 and 32 feature maps) with stride 2, which replaces

max-pooling for downsizing, and 2 dense layers. Adversarial
training is based on 40 iterations of PGD attack, with ε = 0.5
for l2-at and ε = 4/255 for l∞-at. Since GTS has 43 classes,
we run our algorithmwithM = 15 starting points, 500 linear
regions each and γ = 9.

Table 3 shows how the upper bounds on robust accuracy,
computed on the first 500 images of the test set, obtained
through our technique are always smaller than those by the
competitors, apart from 4 cases out of 15 where the PGD
results can onlymatch ours.We notice that, although in some
cases the difference is not extremely large, in 3 of 15 settings
our attack reduces the robust accuracy at least by 2% com-
pared to the best result of the othermethods, with amaximum
of 4.2% for ε = 1.25 for the l∞-trained model (robust accu-
racy of 11.4% by CW-100k vs. 7.2% for our attack).

CIFAR-10 Since CIFAR-10 represents a more difficult clas-
sification task, we use for it a deeper and wider architecture,
made of 8 convolutional layers (with number of filters
increasing from 96 to 384) and 2 dense layers, which con-
tains overall more than 375000 units.We perform adversarial
training again with the PGD attack, with 10 iterations, ε =
80/255 and ε = 4/255 for l2- and l∞-robust training respec-

123

121

1038 International Journal of Computer Vision (2020) 128:1028–1046

Table 3 Robustness of GTS
models

Model ε PGD-1 PGD-10k CW-10k CW-100k DF Ours

l2 robust accuracy on GTS

plain 0.0 0.946

0.1 0.746 0.746 0.754 0.754 0.788 0.740

0.2 0.568 0.562 0.566 0.566 0.628 0.550

0.4 0.360 0.348 0.334 0.334 0.408 0.316

0.6 0.298 0.274 0.214 0.214 0.292 0.178

0.8 0.268 0.234 0.124 0.124 0.210 0.108

l2-at 0.0 0.908

0.1 0.818 0.818 0.826 0.820 0.826 0.818

0.2 0.708 0.704 0.706 0.710 0.728 0.704

0.4 0.488 0.472 0.496 0.496 0.538 0.468

0.6 0.328 0.320 0.322 0.322 0.378 0.320

0.8 0.222 0.218 0.224 0.222 0.284 0.212

l∞-at 0.0 0.904

0.25 0.690 0.686 0.692 0.692 0.718 0.686

0.5 0.460 0.446 0.468 0.466 0.500 0.444

0.75 0.302 0.288 0.300 0.300 0.338 0.280

1.0 0.212 0.200 0.214 0.214 0.246 0.194

1.25 0.164 0.130 0.116 0.114 0.172 0.072

We report upper bounds on the robust accuracy, that is the fraction of points in the test set which are still
correctly classified when any perturbation of l2-norm smaller than or equal to ε is allowed in order to achieve
a misclassification (a smaller robust accuracy means a stronger attack). The statistics are computed on the
first 500 points of the GTS test set
For each threshold and model we highlight in bold the lowest robust accuracy, which indicates the strongest
attack

tively. We here run our attack with 400 iterations and 3
starting points, fixing γ = 9.

The statistics over the first 500 points of the test set are
summarized inTable 4.Althoughwith this datasetwe see that
the best performances are achieved by different methods in
many situations, we can nevertheless notice that our attack
clearly outperforms PGD and DF and is at most 1.4% off
from the best robust accuracy. CW attack performs here very
well but it still has a slightly worse performance in the worst
case setting, as we can see in Table 1.

Moreover, these CIFAR-10 networks are less robust than
those trained onMNIST and GTS, so that the task of crafting
small adversarial examples is easier than previously. This
implies that evenweak attackers can succeed in finding good,
maybe almost optimal, adversarial perturbations.

5.2 Testing Provably Robust Models

In this sectionwe test classifiers trained to be provably robust,
that is it is possible to compute for a large fraction of the test
points if there exists or not an adversarial perturbation with
norm smaller than a fixed threshold. This means that non-
trivial lower bounds on the robust accuracy are provided.

For what concerns upper bounds, we have mostly to rely,
especially for the l2 case, on the adversarial examples pro-
vided by the attacks. Then, using powerful attacks allows
also to correctly assess the tightness of the lower bounds or
equivalently the effectiveness of the verification methods.

We consider the models presented in Croce et al. (2019),
that is CNNs with 2 convolutional layers of 16 and 32 fil-
ters and a hidden fully-connected layer of 100 units. These
are trained with the techniques of either (Croce et al. 2019)
(called MMR) or (Wong and Kolter 2018; Wong et al. 2018)
(KW) to be robust wrt the l2-norm at εtrain = 0.3 for
MNIST and εtrain = 0.1 for CIFAR-10, wrt the l∞-norm
at εtrain = 0.1 for MNIST and εtrain = 2/255. We decide to
test the l2 robustness of all themodelswith thresholds ε larger
than those used for l2 robust training since at those levels the
uncertainty on robust accuracy is limited as tight bounds on
it are available (see Croce et al. 2019). We run our attack for
500 regions and 5 starting points. In Tables 5 (MNIST) and
6 (CIFAR-10) we report similarly to the previous section the
upper bounds on the robust accuracy, computed with 500 test
points, provided the different attacks (we here use PGD-1k
with 1000 restarts instead of the weaker version with a single
restart).

123

122

International Journal of Computer Vision (2020) 128:1028–1046 1039

Table 4 Robustness of
CIFAR-10 models

Model ε PGD-1 PGD-10k CW-10k CW-100k DF Ours

l2 robust accuracy on CIFAR-10

plain 0.0 0.892

0.1 0.686 0.676 0.694 0.694 0.722 0.690

0.15 0.546 0.536 0.554 0.552 0.626 0.550

0.2 0.440 0.422 0.434 0.432 0.512 0.434

0.3 0.256 0.234 0.216 0.216 0.338 0.220

0.4 0.182 0.146 0.094 0.092 0.208 0.098

l2-at 0.0 0.812

0.25 0.658 0.656 0.660 0.660 0.670 0.656

0.5 0.496 0.488 0.482 0.482 0.538 0.478

0.75 0.382 0.362 0.324 0.324 0.422 0.324

1.0 0.358 0.322 0.212 0.204 0.300 0.216

1.25 0.336 0.302 0.114 0.114 0.224 0.124

l∞-at 0.0 0.794

0.25 0.646 0.644 0.646 0.646 0.670 0.644

0.5 0.488 0.484 0.484 0.484 0.530 0.488

0.75 0.390 0.368 0.332 0.332 0.414 0.334

1.0 0.352 0.332 0.226 0.228 0.326 0.228

1.25 0.348 0.324 0.120 0.120 0.242 0.130

We report upper bounds on the robust accuracy, that is the fraction of points in the test set which are still
correctly classified when any perturbation of l2-norm smaller than or equal to ε is allowed in order to achieve
a misclassification (a smaller robust accuracy means a stronger attack). The statistics are computed on the
first 500 points of the CIFAR-10 test set
For each threshold and model we highlight in bold the lowest robust accuracy, which indicates the strongest
attack

For both datasets we see that our attack outperforms, often
significantly, the competitors, with the only exception being
the largest value of ε on the model trained with KW tech-
nique wrt l∞-norm onMNIST.Moreover, note that similar to
Table 2, the largest differences (over 22% between the upper
bounds on robust accuracies of PGD-100k and our attack) are
reached for the classifier trained on MNIST with adversarial
training from Madry et al. (2018) wrt l∞.

5.3 Attacking LargeModels

In order to show the scalability of our approach to large mod-
els,wehere attack the networks from“CIFAR-10Adversarial
ExamplesChallenge”4 trainedonCIFAR-10with either plain
or l∞-adversarial training (Madry et al. 2018) (called nat-
urally trained and secret in the original challenge). The
architecture used is a residual convolutional network con-
sisting of a convolutional layer, five residual blocks and a
fully-connected layer, derived from the “w32-10 wide” vari-
ant of theTensorFlowmodel repository,with 2.883.593units.
In order to apply our algorithm we had to replace the per
image normalization, which is not an affine operation on the

4 https://github.com/MadryLab/cifar10_challenge.

input, with the following step: for each input image, we sub-
tract the mean of its entries and divide it by a constant (0.21,
which is an approximation of the average standard deviation
across the images of the training set).Note that this small vari-
ation does not affect the performance of the classifier while
allows the network to result in a piecewise affine function.

In Table 7 we report the robust accuracy, on the first 100
test points, given by the three methods (in this case we use
PGDwith 1000 but not 10,000 restarts as it would be compu-
tationally too expensive). We omit CW since with the default
parameters it fails to provide meaningful results. For our
method we use 5 starting points. While DeepFool is always
worse than the others, PGD and our attack perform similarly,
although the largest gap (3%, achieved at ε = 1.25 for the
l∞-at model) is in favour of our method.

5.4 Runtime Comparison

We analyze the runtime the different attacks take to return
results on 500 test points on the plainmodel on CIFAR-10 of
Sect. 5.1 using a single GPU. Note that CW, DeepFool and
our method aim at finding the minimal adversarial perturba-
tion within a limited budget of iterations while PGD takes as

123

123

1040 International Journal of Computer Vision (2020) 128:1028–1046

Table 5 Provably robust
MNIST models

Model ε PGD-1k PGD-10k CW-10k CW-100k DF Ours

l2 robust accuracy on MNIST

l∞-MMR-at 0.0 0.988

1.0 0.828 0.816 0.854 0.854 0.868 0.704

1.5 0.488 0.428 0.642 0.642 0.682 0.250

2.0 0.310 0.270 0.414 0.412 0.642 0.048

2.5 0.222 0.180 0.196 0.194 0.238 0.004

3.0 0.136 0.116 0.074 0.070 0.084 0.000

l∞-KW 0.0 0.982

1.0 0.924 0.910 0.924 0.924 0.926 0.854

1.5 0.674 0.600 0.834 0.834 0.898 0.478

2.0 0.226 0.176 0.664 0.662 0.844 0.148

2.5 0.030 0.020 0.454 0.454 0.784 0.018

3.0 0.002 0.000 0.264 0.264 0.644 0.002

l2-MMR-at 0.0 0.986

1.0 0.848 0.848 0.850 0.850 0.868 0.842

1.5 0.608 0.606 0.622 0.622 0.682 0.576

2.0 0.286 0.270 0.312 0.312 0.462 0.238

2.5 0.050 0.048 0.090 0.090 0.238 0.044

3.0 0.016 0.012 0.032 0.030 0.084 0.010

l2-KW 0.0 0.988

1.0 0.916 0.916 0.914 0.914 0.928 0.912

1.5 0.722 0.716 0.740 0.740 0.826 0.692

2.0 0.392 0.366 0.438 0.438 0.690 0.298

2.5 0.214 0.202 0.166 0.166 0.478 0.078

3.0 0.172 0.152 0.046 0.046 0.292 0.012

We report upper bounds on the robust accuracy, that is the fraction of points in the test set which are still
correctly classified when any perturbation of l2-norm smaller than or equal to ε is allowed in order to achieve
a misclassification (a smaller robust accuracy means a stronger attack). The statistics are computed on the
first 500 points of the MNIST test set
For each threshold and model we highlight in bold the lowest robust accuracy, which indicates the strongest
attack

input a thresholds ε and looks for a manipulation with norm
smaller than it, but does not try to minimize it. This means
that, in order to build Table 4 one has to run PGD once for
each value ε. Conversely, for the other attacks a single run is
sufficient to compute the robust accuracy at every threshold.

We compare the runtime of the attacks in the setting used
for the experiment in Table 4, and report the total time needed
to run the attacks on 500 different points on a single GPU:
PGD-10k takes around 18 h for a single threshold. CW-100k
needs 55 h in total and our method takes 150 h (using 3
starting points), while the fastest but also weakest attack is
DeepFool with a runtime of less than 1 min.

5.5 Choosing Parameters

In order to choose a proper parameter q for the sam-
pling scheme in Equation (12) we run our attack on the

MNIST plain model, already introduced in Sect. 5.1, with
q ∈ {0.6, 0.7, 0.8, 0.9, 1.0} and with the scheme proposed
in Croce and Hein (2018), where the next linear region to
check is chosen by sampling uniformly a direction from the
current best solution (corresponding to q = 0.5). In Fig. 1 we
show the development of median (left), maximum (center)
and mean (right) of the l2-norms of the adversarial perturba-
tions found as a function of the explored linear regions. We
can see that the final values of the statistics do not differ sig-
nificantly. Moreover, we repeat the previous experiment, this
time varying the value of γ in Eq. (13). In particular, we test
γ = 1, . . . , 9 and report in Fig. 2 median (left), maximum
(center) and mean (right) of the l2-norms of the adversar-
ial perturbations found as a function of the explored linear
regions. We can see that, while for γ = 1 the results are
much worse and for γ = 2 the convergence to the final solu-

123

124

International Journal of Computer Vision (2020) 128:1028–1046 1041

Table 6 Provably robust
CIFAR-10 models

Model ε PGD-1k PGD-10k CW-10k CW-100k DF Ours

l2 Robust accuracy on CIFAR-10

l∞-MMR-at 0.0 0.638

0.25 0.504 0.504 0.490 0.490 0.498 0.484

0.5 0.332 0.330 0.340 0.340 0.348 0.314

0.75 0.180 0.174 0.176 0.174 0.210 0.154

1.0 0.066 0.064 0.070 0.070 0.096 0.056

1.25 0.036 0.034 0.032 0.032 0.050 0.028

l∞-KW 0.0 0.532

0.25 0.390 0.390 0.376 0.376 0.374 0.364

0.5 0.238 0.236 0.218 0.218 0.236 0.216

0.75 0.132 0.130 0.128 0.128 0.146 0.104

1.0 0.060 0.060 0.064 0.064 0.082 0.036

1.25 0.018 0.018 0.032 0.032 0.036 0.014

l2-MMR-at 0.0 0.618

0.25 0.418 0.418 0.404 0.404 0.412 0.398

0.5 0.270 0.266 0.264 0.262 0.284 0.252

0.75 0.146 0.144 0.146 0.146 0.174 0.128

1.0 0.076 0.076 0.094 0.094 0.104 0.064

1.25 0.032 0.032 0.050 0.050 0.054 0.024

l2-KW 0.0 0.614

0.25 0.492 0.492 0.478 0.478 0.480 0.478

0.5 0.384 0.384 0.374 0.374 0.376 0.360

0.75 0.266 0.266 0.262 0.262 0.284 0.246

1.0 0.172 0.172 0.176 0.176 0.190 0.152

1.25 0.094 0.092 0.108 0.108 0.122 0.082

We report upper bounds on the robust accuracy, that is the fraction of points in the test set which are still
correctly classified when any perturbation of l2-norm smaller than or equal to ε is allowed in order to achieve
a misclassification (a smaller robust accuracy means a stronger attack). The statistics are computed on the
first 500 points of the CIFAR-10 test set
For each threshold and model we highlight in bold the lowest robust accuracy, which indicates the strongest
attack

tion is significantly slower, the algorithm appears to perform
similarly with γ between 3 and 9.

We also run the experiments on the GTS plain model. In
Fig. 3 one can see that higher values of q lead to faster con-
vergence to the final solutions (we fix γ = 9). In Fig. 4 we
test different values of γ between 1 and 9 keeping constant
q = 0.8. We notice that all the runs achieve similar per-
formance, even for small values of γ differently from what
happens on MNIST. This observation, together with the fact
that about 15 regions are sufficient for the results to be almost
indistinguishable from thefinal ones, suggests that thismodel
is easier to attack than the one on MNIST.

Thus we choose to set q = 0.8 as for smaller values the
runs converge slightly more slowly, while for q = 1.0 the
maximum appears to be marginally suboptimal (anyway we
want to highlight that the results are in the end almost iden-
tical).

Finally, from these ablation studies one can also appreciate
the stability of the method with respect to the random part
inherent to the algorithm. In fact, with the exception of the
case γ = 1 on MNIST, in all the runs obtained varying the
parameters q and γ , median, maximum and mean converge
to the same or very similar values, meaning that sampling
different points and then possibly checking different regions
does not lead to inconsistent results.

6 Visualizing the Decision Boundary

While our attack runs, almost at each iteration an image
lying on the decision boundary, that is the classifier outputs
assigns the same (up to a tolerance) probability for the input
to belong to different classes, is available. In fact, unless
the linear region to which the current solution belongs does

123

125

1042 International Journal of Computer Vision (2020) 128:1028–1046

Table 7 Large models

Model ε PGD-1k DF Ours

l2 robust accuracy of large networks on CIFAR-10

plain 0.0 0.96

0.05 0.78 0.83 0.78

0.075 0.61 0.75 0.60

0.1 0.43 0.63 0.44

0.15 0.18 0.42 0.18

0.2 0.08 0.26 0.07

l∞-at 0.0 0.85

0.25 0.72 0.75 0.71

0.5 0.53 0.62 0.54

0.75 0.36 0.51 0.37

1.0 0.23 0.44 0.22

1.25 0.15 0.37 0.12

We report here the robust accuracy, that is an upper bound on the frac-
tion of points in the test set which are correctly classified when any
perturbation of l2-norm smaller than or equal to ε is allowed (a smaller
robust accuracy means a stronger attack). The statistics are computed
on the first 100 points of the CIFAR-10 test set
For each threshold and model we highlight in bold the lowest robust
accuracy, which indicates the strongest attack

not intersect the decision boundary, the solution of problem
(10) is attained when the first constraint holds as an equal-
ity.

In Fig. 5 we show some of these intermediate solutions
found while crafting an adversarial example. The first three
rows are obtained attacking the plain models reported in the
Sect. 5, while for the fourth to sixth rowwe used respectively
the l∞-at network onMNIST and the l2-at classifiers onGTS
and CIFAR-10. For every row, the first image is the starting
point of our method and belongs to the training set of the
respective dataset, while the second image is the point we
get through the initial binary search on the segment joining
the starting point and the target image for which we want to
provide an adversarial perturbation (represented in the last
image of each row). We also report the l2-distance between
each image and the target image,which is equivalent to the l2-
norm of the adversarial manipulation found at that iteration
of the algorithm.

We can see that, apart from the starting image and the
target image, all the images lie on the decision boundary.
Furthermore, in many cases, although the distance from the

Fig. 1 Progression of our attack for different sampling schemes on
MNIST. We show median (left), maximum (center) and mean (right)
of the norms of the adversarial perturbations found by our attack as a
function of the explored linear regions. We repeat the experiments for

different values of q (see Eq. 12), represented in different colors, and
with the uniform sampling scheme (q = 0.5) from Croce and Hein
(2018) as a comparison (Color figure online)

Fig. 2 Progression of our attack for different values of the parameter γ

onMNIST.We showmedian (left), maximum (center) and mean (right)
of the norms of the adversarial perturbations found by our attack as a

function of the explored linear regions. We repeat the experiments for
γ = 1, . . . , 9 (see Eq. 13) represented in different colors (Color figure
online)

123

126

International Journal of Computer Vision (2020) 128:1028–1046 1043

Fig. 3 Progression of our attack for different sampling schemes on
GTS. We show median (left), maximum (center) and mean (right) of
the norms of the adversarial perturbations found by our attack as a
function of the explored linear regions. We repeat the experiments for

different values of q (see Eq. 12), represented in different colors, and
with the uniform sampling scheme (q = 0.5) from Croce and Hein
(2018) as a comparison (Color figure online)

Fig. 4 Progression of our attack for different values of the parameter
γ on GTS. We show median (left), maximum (center) and mean (right)
of the norms of the adversarial perturbations found by our attack as a

function of the explored linear regions. We repeat the experiments for
γ = 1, . . . , 9 (see Equation (13)) represented in different colors (Color
figure online)

target image is notable, they are clearly assignable to a spe-
cific class, meaning that the decision boundary is still wrong
showing that there is still quite some way to go if we want
to achieve robustness with respect to human perception of
these images.

We can also check how large the linear regions are. The
first polytope Q(y) our attack checks is the one containing
the point y of the linear search performed as initial step of the
attack between the image from the training set and the target
image. We show the image y and the solution of (10) on
Q(y). Both images are contained in Q(y) and both lie on the
decision boundary. In Fig. 6 we show these two images for
some cases for theGTSmodels. It is interesting that, although
the number of polytopes is extremely large, they are still wide
enough to contain images of such different appearance and
with significant l2-distance.

7 Conclusion

We extended the white-box gradient-free adversarial attack
of Croce and Hein (2018) by (i) deriving a new, scal-
able QP solver, (ii) solving the QP problem efficiently on
GPUwithout computing the constraint matrix explicitly, (iii)
adding support for more layer types, and (iv) introducing a
new attack scheme to select regions. Taken together, these
improvements allowed us to attack larger and more complex
neural networks in less time and finding better adversarial
examples. We demonstrated the importance of evaluating
robustness with our attack by showing that all the established
methods for producing adversarial examples have at least
one case where they estimate a robust accuracy at least 50%
higher (in absolute value) than that given by the best attack,
while our attack is never farther than 5%. This means that,
while most of the attacks perform well on average, for all

123

127

1044 International Journal of Computer Vision (2020) 128:1028–1046

8, d=8.516 0/8, d=5.847 0/8, d=5.445 0/8, d=4.779 0/8, d=4.423 0/8, d=2.160 0/8, d=1.910 target image

12, d=11.597 12/13, d=8.584 12/13, d=3.698 12/13, d=3.049 12/13, d=2.711 12/13, d=2.361 12/13, d=1.973 target image

dog, d=11.336 dog/truck, d=5.280 dog/truck, d=2.088 dog/truck, d=1.956 dog/truck, d=1.479 dog/truck, d=1.082 dog/truck, d=0.707 target image

4, d=6.124 4/6, d=3.481 4/6, d=2.300 4/6, d=2.026 4/6, d=1.862 4/6, d=1.809 4/6, d=1.673 target image

38, d=15.337 1/38, d=11.278 1/38, d=3.039 1/38, d=2.557 1/38, d=2.363 1/38, d=2.042 1/38, d=1.879 target image

dog, d=9.984 dog/horse, d=5.811 dog/horse, d=2.976 dog/horse, d=2.334 dog/horse, d=1.727 dog/horse, d=1.396 dog/horse, d=0.876 target image

Fig. 5 Progression of our attack. In each row, the first image is from
the training set, the second is obtained with the linear search towards
the target image (last image) for which we create an adversarial exam-
ple. The other images are intermediate adversarial images found by our
attack (the seventh is the final output). Apart from the starting image and
the target image, all are on the decision boundary, that is between the

classes indicated on top of each picture (0/8 means it is on the decision
boundary between class 0 and 8).We also report the l2-distance between
each image and the target image (d). First three rows: non-robust plain
model, last three rows: l∞ (first) and l2 (second, third) adversarially
trained models on MNIST, GTS and CIFAR-10

123

128

International Journal of Computer Vision (2020) 128:1028–1046 1045

12/13, d=8.584 12/13, d=4.984

1/38, d=11.278 1/38, d=7.793

Fig. 6 The linear regions can be large. For the same cases reported in
Fig. 5 for GTS we show here the image got by the initial linear search,
say y, and that obtained by solving (10) on the first region Q(y). This
means that the two images of each row belong to the same linear region
even though their appearance is quite different. This shows that some
of the linear regions cover quite large parts of the input space

of them except ours there exist situations where they heavily
overestimate the adversarial robustness.

Acknowledgements F. C. and M. H. acknowledge support from the
BMBF through the Tübingen AI Center (FKZ: 01IS18039A) and by
the DFG via Grant 389792660 as part of TRR 248 and the Excel-
lence Cluster “Machine Learning-New Perspectives for Science”. J. R.
acknowledges support from the Bosch Research Foundation (Stifter-
verband, T113/30057/17) and the International Max Planck Research
School for Intelligent Systems (IMPRS-IS).

References

Arora, R., Basuy, A.,Mianjyz, P., &Mukherjee, A. (2018). Understand-
ing deep neural networks with rectified linear unit. In ICLR.

Athalye, A., Carlini, N., &Wagner, D. A. (2018). Obfuscated gradients
give a false sense of security: Circumventing defenses to adver-
sarial examples. In ICML.

Beck,A.,&Teboulle,M. (2009).A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM Journal on Imaging
Sciences, 2, 183–202.

Brendel, W., Rauber, J., & Bethge, M. (2018). Decision-based adver-
sarial attacks: Reliable attacks against black-boxmachine learning
models. In ICLR.

Carlini, N., &Wagner, D. (2017a). Adversarial examples are not easily
detected: Bypassing ten detection methods. In ACM workshop on
artificial intelligence and security.

Carlini, N., & Wagner, D. (2017b). Towards evaluating the robustness
of neural networks. In IEEE symposium on security and privacy.

Chambolle, A., & Pock, T. (2011). A first-order primal-dual algorithm
for convex problems with applications to imaging. Journal of
Mathematical Imaging and Vision, 40(1), 120–145.

Croce, F., Andriushchenko,M., &Hein,M. (2019). Provable robustness
of ReLUnetworks viamaximization of linear regions. InAISTATS.

Croce, F., & Hein, M. (2018). A randomized gradient-free attack on
ReLU networks. In GCPR.

Dalvi, N., Domingos, P., Mausam, S., & Verma, D. (2004). Adversarial
classification. In KDD.

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and
harnessing adversarial examples. In ICLR.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for
image recognition. CVPR (pp. 770–778).

Hein, M., & Andriushchenko, M. (2017). Formal guarantees on the
robustness of a classifier against adversarial manipulation. In
NIPS.

Huang, G., Liu, Z., & Weinberger, K. Q. (2016a). Densely connected
convolutional networks. In CoRR, abs/1608.06993.

Huang, R., Xu, B., Schuurmans, D., & Szepesvari, C. (2016b). Learning
with a strong adversary. In ICLR.

Katz, G., Barrett, C., Dill, D., Julian, K., & Kochenderfer, M. (2017).
Reluplex: An efficient SMT solver for verifying deep neural net-
works. In CAV.

Krizhevsky, A., Nair, V., & Hinton, G. (2014). Cifar-10 (canadian insti-
tute for advanced research). https://www.cs.toronto.edu/~kriz/
cifar.html.

Kurakin, A., Goodfellow, I. J., & Bengio, S. (2017). Adversarial exam-
ples in the physical world. In ICLR workshop.

Liu, Y., Chen, X., Liu, C., & Song, D. (2017). Delving into transferable
adversarial examples and black-box attacks. In ICLR.

Lowd, D., & Meek, C. (2005). Adversarial learning. In KDD.
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Valdu, A. (2018).

Towards deep learning models resistant to adversarial attacks. In
ICLR.

Mirman, M., Gehr, T., & Vechev, M. (2018). Differentiable abstract
interpretation for provably robust neural networks. In ICML.

Moosavi-Dezfooli, S.-M., Fawzi, A., & Frossard, P. (2016). Deepfool:
A simple and accurate method to fool deep neural networks. In
CVPR (pp. 2574–2582).

Mosbach, M., Andriushchenko, M., Trost, T., Hein, M., & Klakow,
D. (2018). Logit pairing methods can fool gradient-based attacks.
In NeurIPS 2018 workshop on security in machine learning.
arXiv:1810.12042.

Narodytska, N., & Kasiviswanathan, S. P. (2016). Simple black-box
adversarial perturbations for deep networks. In CVPR 2017 Work-
shops.

Nesterov, Y. E. (1983). A method of solving a convex programming
problemwith convergence rate O(1/k2). Soviet Mathematics Dok-
lady, 27(2), 372–376.

Papernot, N., Carlini, N., Goodfellow, I., Feinman, R., Faghri, F., &
Matyasko, A., et al. (2017). cleverhans v2.0.0: An adversarial
machine learning library. preprint arXiv:1610.00768.

Papernot, N., McDonald, P., Wu, X., Jha, S., & Swami, A. (2016).
Distillation as a defense to adversarial perturbations against deep
networks. In IEEE symposium on security & privacy.

Raghunathan, A., Steinhardt, J., & Liang, P. (2018). Certified defenses
against adversarial examples. In ICLR.

Rauber, J., Brendel, W., & Bethge, M. (2017). Foolbox: A python tool-
box to benchmark the robustness of machine learning models. In
ICML reliable machine learning in the wild workshop.

Schott, L., Rauber, J., Bethge, M., & Brendel, W. (2019). Towards
the first adversarially robust neural network model on MNIST.
In ICLR.

Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2012). Man vs.
computer: Benchmarking machine learning algorithms for traffic
sign recognition. Neural Networks, 32, 323–332.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., & Good-
fellow, I., et al. (2014). Intriguing properties of neural networks.
In ICLR (pp. 2503–2511).

123

129

1046 International Journal of Computer Vision (2020) 128:1028–1046

Tjeng, V., Xiao, K., & Tedrake, R. (2019). Evaluating robustness
of neural networks with mixed integer programming. preprint
arXiv:1711.07356v3.

Weng, T., Zhang, H., Chen, H., Song, Z., Hsieh, C., & Daniel, L., et al.
(2018). Towards fast computation of certified robustness for ReLU
networks. In ICML.

Wong, E., & Kolter, J. Z. (2018). Provable defenses against adversarial
examples via the convex outer adversarial polytope. In ICML.

Wong, E., Schmidt, F., Metzen, J. H., & Kolter, J. Z. (2018). Scaling
provable adversarial defenses. In NeurIPS.

Yuan, X., He, P., Zhu, Q., Bhat, R. R., & Li, X. (2019). Adversarial
examples: Attacks and defenses for deep learning. IEEE Transac-
tions on Neural Networks and Learning Systems, 30, 2805–2824.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

130

EagerPy: Writing Code That Works Natively with PyTorch, TensorFlow,
JAX, and NumPy

The following nine pages have been published as:

Jonas Rauber, Matthias Bethge, Wieland Brendel (2020). “EagerPy: Writing Code That
Works Natively with PyTorch, TensorFlow, JAX, and NumPy”. Preprint, arXiv:2008.04175.

A summary of the motivation, results, and discussion can be found in section 2.4 on page 40.

Abstract

EagerPy is a Python framework that lets you write code that automatically works
natively with PyTorch, TensorFlow, JAX, and NumPy. Library developers no longer
need to choose between supporting just one of these frameworks or reimplementing
the library for each framework and dealing with code duplication. Users of such
libraries can more easily switch frameworks without being locked in by a specific 3rd
party library. Beyond multi-framework support, EagerPy also brings comprehensive
type annotations and consistent support for method chaining to any framework. The
latest documentation is available online at https://eagerpy.jonasrauber.de and the code
can be found on GitHub at https://github.com/jonasrauber/eagerpy.

https://eagerpy.jonasrauber.de
https://github.com/jonasrauber/eagerpy

ar
X

iv
:2

00
8.

04
17

5v
1

 [
cs

.L
G

]
 1

0
A

ug
 2

02
0

EagerPy: Writing Code That Works Natively with

PyTorch, TensorFlow, JAX, and NumPy

Jonas Rauber1,2 jonas.rauber@bethgelab.org

Matthias Bethge1,3,† matthias.bethge@bethgelab.org

Wieland Brendel1,3,† wieland.brendel@bethgelab.org

1 Tübingen AI Center, University of Tübingen, Germany
2 International Max Planck Research School for Intelligent Systems, Tübingen, Germany
3 Bernstein Center for Computational Neuroscience Tübingen, Germany
† joint senior authors

Abstract

EagerPy is a Python framework that lets you write code that automatically works natively

with PyTorch, TensorFlow, JAX, and NumPy. Library developers no longer need to choose

between supporting just one of these frameworks or reimplementing the library for each

framework and dealing with code duplication. Users of such libraries can more easily

switch frameworks without being locked in by a specific 3rd party library. Beyond multi-

framework support, EagerPy also brings comprehensive type annotations and consistent

support for method chaining to any framework. The latest documentation is available

online at https://eagerpy.jonasrauber.de and the code can be found on GitHub at

https://github.com/jonasrauber/eagerpy.

Keywords: Eager Execution, PyTorch, TensorFlow, JAX, NumPy, Python

1. Introduction

The recent advances in deep learning go hand in hand with the development of more and
more deep learning frameworks. These frameworks provide high-level yet efficient APIs for
automatic differentiation and GPU acceleration and make it possible to implement extremely
complex and powerful deep learning models with relatively little and simple code.

Originally, many of the popular frameworks like Theano (Team et al., 2016), Caffe
(Jia et al., 2014), MXNet (Chen et al., 2015), TensorFlow (Abadi et al., 2016), and CNTK
(Seide and Agarwal, 2016) used a graph-based approach. The user first defines a static
data flow graph that can then be efficiently differentiated, compiled, and executed on GPUs.
Knowing the whole computation graph ahead of time is useful for achieving high performance.
It can, however, make it difficult to debug models and to implement dynamic models with
changing graphs such as RNNs.

More recently, eager execution of deep learning models has become the dominant ap-
proach in deep learning research. Instead of building a static data flow graph ahead of
time, eager execution frameworks provide a define-by-run API that builds dynamic, tem-

1

133

Rauber, Bethge, and Brendel

porary graphs on the fly. The first popular implementations of this approach were Torch
(Collobert et al., 2011), Chainer (Tokui et al., 2015), and DyNet (Neubig et al., 2017). Us-
ing the define-by-run approach, they made it much easier to debug models and to implement
dynamic computation graphs such as RNNs. Originally, this came at the cost of lower per-
formance or the need to use less popular programming languages. This changed when Py-
Torch (Paszke et al., 2019) combined the advantages of the different eager execution frame-
works, that is it combined high performance—competitive to graph-based frameworks—
with an easy-to-use define-by-run Python API. With the introduction of TensorFlow Eager
(Agrawal et al., 2019) and the switch to eager execution in TensorFlow 2, eager execution is
now being used by the two dominant deep learning frameworks, PyTorch and TensorFlow.

Despite these similarities between PyTorch and TensorFlow 2, it is not easily possible to
write framework-agnostic code that directly works with both frameworks. At the semantic
level, the most fundamental difference lies in the APIs for automatic differentiation. In Py-
Torch, gradients are requested using an in-place requires_grad_() call, zeroed out using
the zero_grad() function, backpropagated by calling backward() and finally read using
the .grad attribute. TensorFlow offers a more high-level GradientTape context manager to
track gradients and a tape.gradient function to query gradients. Beyond that, the APIs of
PyTorch and TensorFlow 2 differ a lot at the syntactic level, e.g. in how they name param-
eters (e.g. dim vs. axis), classes (e.g. CrossEntropyLoss vs. CategoricalCrossentropy),
and functions (e.g. sum vs. reduce_sum), and whether they support method chaining.

EagerPy resolves these differences between PyTorch and TensorFlow 2 by providing a
single unified API that transparently maps to the different underlying frameworks without
computational overhead. This is similar to how Keras (Chollet et al., 2015) unified the graph-
based APIs of TensorFlow 1 and Theano. The difference is that EagerPy focuses on eager
execution instead of graph building. In addition, EagerPy’s approach is very transparent
and allows users to easily combine framework-agnostic EagerPy code with framework-specific
code. This makes it possible to gradually adopt EagerPy for individual functions.

Supporting additional eager execution frameworks in EagerPy is just a matter of spec-
ifying the necessary translations. EagerPy therefore also comes with support for JAX
(Bradbury et al., 2018), a relatively new framework that has recently gotten a lot of traction
thanks to its functional design, NumPy-compatible API and innovative features such as au-
tomatic vectorization. In fact, EagerPy’s approach to unify the different APIs for automatic
differentiation borrows a lot from the high-level functional automatic differentiation API
in JAX. Finally, EagerPy also supports NumPy (Oliphant, 2006) as yet another backend,
though of course NumPy neither supports automatic differentiation nor GPU acceleration.

EagerPy thus makes it possible to write framework-agnostic code that works natively
with PyTorch, TensorFlow, JAX, and NumPy. In a first step, developers of new libraries
profit from this because they no longer need to choose between supporting just one of
these frameworks or reimplementing their library for each framework and dealing with code
duplication. In a second step, the users of these libraries profit because they can more easily
switch frameworks without being locked in by a specific 3rd party library.

Beyond that, even users of only a single framework can benefit from EagerPy because
it brings all of EagerPy’s API improvements such as comprehensive type annotations and
consistent support for method chaining to each supported framework.

2

134

EagerPy

2. Design & Implementation

EagerPy is build with four design goals in mind. The two key goals are to provide a
unified API for eager execution (Section 2.1) and to maintain the native performance of
the underlying frameworks (Section 2.2). These two key goals define what EagerPy is and
are core to its design. The two additional goals, a fully chainable API (Section 2.3) and
comprehensive type checking support (Section 2.4), make EagerPy easier and safer to work
with than the underlying framework-specific APIs. Despite these changes and improvements,
we try to not unnecessarily sacrifice familiarity. Whenever it makes sense, the EagerPy API
follows the standards set by NumPy, PyTorch, and JAX.

2.1 Unified API

To achieve syntactic consistency, we define an abstract Tensor class with the appropriate
methods and an instance variable holding the native tensor, and then implement a specific
subclass for each supported framework. For many operations such as sum or log this is
as simple as calling the underlying framework, for others it is slightly more work. The
most difficult part is unifying the automatic differentiation APIs. PyTorch uses a low-level
autograd API that allows but also requires precise control over the backpropagation (see
Section 1 for some details). TensorFlow uses a slightly higher-level API based on gradient
tapes. And JAX uses a very high-level API based on differentiating functions. To unify
them, EagerPy mimics JAX’s high-level functional API and reimplements it in PyTorch and
TensorFlow. EagerPy exposes it through its value_and_grad_fn() function (Appendix C).

Being able to write code that automatically works with all supported frameworks re-
quires not only syntactic but also semantic unification. To guarantee this, EagerPy comes
with a huge test suite that verifies the consistency between the different framework-specific
subclasses. It is automatically run on all pull-requests and needs to pass before new code can
be merged. The test suite also acts as the ultimate reference for which operations and which
parameter combinations are supported. This avoids inconsistencies between documentation
and implementation and in practice results in a test-driven development process.

2.2 Native Performance

Without EagerPy, code that wants to interface with different deep learning frameworks has
to go through NumPy. This requires expensive memory copies between CPU (NumPy) and
GPU (PyTorch, TensorFlow, JAX) and vice versa. Furthermore, many computations are
then only executed on CPU. To avoid this, EagerPy just keeps references to the original
native framework-specific tensors (e.g. the PyTorch tensor on GPU) and delegates all oper-
ations to the respective framework. This introduces virtually no computational overhead.

2.3 Fully Chainable API

Many operations such as sum or square take a tensor and return one. Often, these operations
are applied sequentially, e.g. square, sum, and sqrt to compute the L2 norm. In EagerPy,
all operations are available as methods on the tensor object. This makes it possible to chain
the operations in their natural order: x.square().sum().sqrt(). In contrast, NumPy, for
example, requires an inverted order of operations: np.sqrt(np.square(x).sum()).

3

135

Rauber, Bethge, and Brendel

2.4 Type Checking

In Python 3.5, the Python syntax was extended to support type annotations (van Rossum et al.,
2015). Even with type annotations, Python remains a dynamically typed programming lan-
guage and all type annotations are currently ignored during runtime. They can however be
checked by static code analyzers before running the code.

EagerPy comes with comprehensive type annotations of all parameters and return values
and checks them using Mypy (Lehtosalo et al., 2016). This helps us catch bugs in EagerPy
that would otherwise stay undetected. EagerPy users can further benefit from this by type
annotating their own code and thus automatically checking it against EagerPy’s function sig-
natures. This is particularly useful because TensorFlow, NumPy, and JAX do not currently
provide type annotations themselves.

3. Examples

Listing 1 shows a generic EagerPy norm function that can be called with a native tensor
from any framework and returns its norm, again as a native tensor from the same framework.
More examples with detailed explanations can be found in Appendix A and Appendix B.

1 import eagerpy as ep

2

3 def norm(x):

4 x = ep. astensor(x) # native tensor to EagerPy tensor

5 result = x.square ().sum().sqrt()

6 return result.raw # EagerPy tensor to native tensor

Listing 1: A framework-agnostic norm function

4. Use Cases

Foolbox (Rauber et al., 2017) is a highly popular adversarial attacks library (more than
220 citations and 1.500 stars on GitHub) that has long supported different deep learning
frameworks through a common NumPy interface. With Foolbox 3.0 aka Foolbox Native
(Rauber et al., 2020), it has been completely reimplemented using EagerPy. It now achieves
native performance while still supporting different frameworks using a single code base.

While EagerPy was specifically created with Foolbox in mind, it is now being adopted
by other libraries as well. GUDHI (Maria et al., 2014), for example, is a library for compu-
tational topology. It uses EagerPy to support automatic differentiation in PyTorch, Tensor-
Flow, and JAX without code duplication. Moreover, EagerPy also makes it easy to share
framework-agnostic reference implementations of algorithms (Rauber and Bethge, 2020).

5. Conclusion

EagerPy provides a unified API to PyTorch, TensorFlow, JAX, and NumPy without sacri-
ficing performance. Automatic tests guarantee consistency across frameworks. Automatic
deployments encourage rapid releases. Comprehensive type annotations help detecting bugs
early. Consistent support for method chaining enables beautiful code. And being the foun-
dation of the popular Foolbox library ensures continuous development.

4

136

EagerPy

Acknowledgments

J.R. acknowledges support from the Bosch Research Foundation (Stifterverband, grant
T113/30057/17) and the International Max Planck Research School for Intelligent Systems
(IMPRS-IS). This work was supported by the German Federal Ministry of Education and
Research (BMBF): Tübingen AI Center, FKZ: 01IS18039A, and by the Intelligence Ad-
vanced Research Projects Activity (IARPA) via Department of Interior/Interior Business
Center (DoI/IBC) contract number D16PC00003. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. Disclaimer: The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of IARPA, DoI/IBC, or the U.S. Government.

References

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. TensorFlow:
A system for large-scale machine learning. In 12th USENIX symposium on operating
systems design and implementation (OSDI 16), pages 265–283, 2016.

Akshay Agrawal, Akshay Naresh Modi, Alexandre Passos, Allen Lavoie, Ashish Agarwal,
Asim Shankar, Igor Ganichev, Josh Levenberg, Mingsheng Hong, Rajat Monga, et al.
TensorFlow Eager: A multi-stage, Python-embedded DSL for machine learning. In Sys-
tems for Machine Learning (SysML) 2019, 2019.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,
Dougal Maclaurin, and Skye Wanderman-Milne. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/google/jax.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing
Xu, Chiyuan Zhang, and Zheng Zhang. MXNet: A flexible and efficient machine learn-
ing library for heterogeneous distributed systems. In LearningSys Workshop at Neural
Information Processing Systems 2015, 2015.

François Chollet et al. Keras. https://keras.io, 2015.

Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A Matlab-like envi-
ronment for machine learning. In BigLearn, NeurIPS workshop, 2011.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Gir-
shick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast
feature embedding. In Proceedings of the 22nd ACM international conference on Multi-
media, pages 675–678, 2014.

Jukka Lehtosalo et al. Mypy: Optional static typing for python, 2016. URL
https://github.com/python/mypy.

5

137

Rauber, Bethge, and Brendel

Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec. The gudhi
library: Simplicial complexes and persistent homology. In Hoon Hong and Chee Yap,
editors, Mathematical Software – ICMS 2014, pages 167–174, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg. ISBN 978-3-662-44199-2.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios
Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin
Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhi-
guna Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda, Matthew
Richardson, Naomi Saphra, Swabha Swayamdipta, and Pengcheng Yin. DyNet: The
dynamic neural network toolkit. arXiv preprint arXiv:1701.03980, 2017.

Travis Oliphant. NumPy: A guide to NumPy. USA: Trelgol Publishing, 2006. URL
http://www.numpy.org/.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imper-
ative style, high-performance deep learning library. In Advances in neural information
processing systems, pages 8026–8037, 2019.

Jonas Rauber and Matthias Bethge. Fast differentiable clipping-aware nor-
malization and rescaling. arXiv preprint arXiv:2007.07677, 2020. URL
https://github.com/jonasrauber/clipping-aware-rescaling.

Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A Python toolbox to
benchmark the robustness of machine learning models. In Reliable Machine Learning
in the Wild Workshop, 34th International Conference on Machine Learning, 2017. URL
https://arxiv.org/abs/1707.04131.

Jonas Rauber, Roland Zimmermann, Matthias Bethge, and Wieland Brendel. Foolbox
Native: Fast adversarial attacks to benchmark the robustness of machine learning
models in PyTorch, TensorFlow, and JAX. Manuscript in preparation, 2020. URL
https://foolbox.jonasrauber.de.

Frank Seide and Amit Agarwal. CNTK: Microsoft’s open-source deep-learning toolkit. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 2135–2135, 2016.

The Theano Development Team, Rami Al-Rfou, Guillaume Alain, Amjad Almahairi,
Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer,
Anatoly Belikov, et al. Theano: A python framework for fast computation of mathematical
expressions. arXiv preprint arXiv:1605.02688, 2016.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a next-generation
open source framework for deep learning. In LearningSys Workshop at Neural Information
Processing Systems 2015, 2015.

Guido van Rossum, Jukka Lehtosalo, and Łukasz Langa. Type hints. PEP 484, Python
Software Foundation, 2015. URL https://www.python.org/dev/peps/pep-0484/.

6

138

EagerPy

Appendix A. Converting Between EagerPy and Native Tensors

A native tensor could be a PyTorch GPU or CPU tensor (Listing 2), a TensorFlow tensor
(Listing 3), a JAX array (Listing 4), or a NumPy array (Listing 5).

1 import torch

2 x = torch.tensor ([1., 2., 3., 4., 5., 6.])

Listing 2: A native PyTorch tensor

1 import tensorflow as tf

2 x = tf. constant([1., 2., 3., 4., 5., 6.])

Listing 3: A native TensorFlow tensor

1 import jax.numpy as np

2 x = np.array([1., 2., 3., 4., 5., 6.])

Listing 4: A native JAX array

1 import numpy as np

2 x = np.array([1., 2., 3., 4., 5., 6.])

Listing 5: A native NumPy array

No matter which native tensor you have, it can always be turned into the appropriate
EagerPy tensor using ep.astensor. This will automatically wrap the native tensor with
the correct EagerPy tensor class. The original native tensor can always be accessed using
the .raw attribute. A full example is shown in Listing 6.

1 # x should be a native tensor (see above)

2 # for example:

3 import torch

4 x = torch.tensor ([1., 2., 3., 4., 5., 6.])

5

6 # Any native tensor can easily be turned into an EagerPy tensor

7 import eagerpy as ep

8 x = ep. astensor(x)

9

10 # Now we can perform any EagerPy operation

11 x = x.square ()

12

13 # And convert the EagerPy tensor back into a native tensor

14 x = x.raw

15 # x will now again be a native tensor (e.g. a PyTorch tensor)

Listing 6: Converting between EagerPy and native tensors

Especially in functions, it is common to convert all inputs to EagerPy tensors. This
could be done using individual calls to ep.astensor, but using ep.astensors this can be
written even more compactly (Listing 7).

7

139

Rauber, Bethge, and Brendel

1 # x, y should be a native tensors (see above)

2 # for example:

3 import torch

4 x = torch.tensor ([1., 2., 3.])

5 y = torch.tensor ([4., 5., 6.])

6

7 import eagerpy as ep

8 x, y = ep.astensors(x, y) # works for any number of inputs

Listing 7: Converting multiple native tensors at once

Appendix B. Implementing Generic Framework-Agnostic Functions

Using the conversion functions shown in Appendix A, we can already define a simple framework-
agnostic function (Listing 8). This function can be called with a native tensor from any
framework and it will return the norm of that tensor, again as a native tensor from that
framework (Listing 9, Listing 10).

1 import eagerpy as ep

2

3 def norm(x):

4 x = ep. astensor(x)

5 result = x.square ().sum().sqrt()

6 return result.raw

Listing 8: A simple framework-agnostic norm function

1 import torch

2 norm(torch.tensor ([1., 2., 3.]))

3 # tensor (3.7417)

Listing 9: Calling the norm function using a PyTorch tensor

1 import tensorflow as tf

2 norm(tf.constant([1., 2., 3.]))

3 # <tf.Tensor: shape=(), dtype=float32 , numpy =3.7416575 >

Listing 10: Calling the norm function using a TensorFlow tensor

If we would call the function in Listing 8 with an EagerPy tensor, the ep.astensor call
would simply return its input. The result.raw call in the last line would however still
extract the underlying native tensor. Often it is preferably to implement a generic function
that not only transparently handles any native tensor but also EagerPy tensors, that is
the return type should always match the input type. This is particularly useful in libraries
like Foolbox that allow users to work with EagerPy and native tensors. To achieve that,
EagerPy comes with two derivatives of the above conversion functions: ep.astensor_ and
ep.astensors_. Unlike their counterparts without an underscore, they return an additional
inversion function that restores the input type. If the input to astensor_ is a native tensor,

8

140

EagerPy

restore_type will be identical to .raw, but if the original input was an EagerPy tensor,
restore_type will not call .raw. With that, we can write generic framework-agnostic
functions that work transparently for any input (Listing 11, Listing 12).

1 import eagerpy as ep

2

3 def norm(x):

4 x, restore_type = ep.astensor_(x)

5 result = x.square ().sum().sqrt()

6 return restore_type(result)

Listing 11: An improved framework-agnostic norm function

1 import eagerpy as ep

2

3 def example(x, y, z):

4 (x, y, z), restore_type = ep.astensors_(x, y, z)

5 result = (x + y) * z

6 return restore_type(result)

Listing 12: Converting and restoring multiple inputs using ep.astensors_

Appendix C. Automatic Differentiation in EagerPy

EagerPy uses a functional approach to automatic differentiation. You first define a function
that will then be differentiated with respect to its inputs. This function is then passed
to ep.value_and_grad to evaluate both the function and its gradient (Listing 13). More
generally, you can also use ep.value_aux_and_grad if your function has additional auxiliary
outputs and ep.value_and_grad_fn if you want the gradient function without immediately
evaluating it at some point x.

1 import torch

2 x = torch.tensor ([1., 2., 3.])

3

4 # The following code works for any framework , not just Pytorch!

5

6 import eagerpy as ep

7 x = ep. astensor(x)

8

9 def loss_fn(x):

10 # this function takes and returns an EagerPy tensor

11 return x.square ().sum()

12

13 print(loss_fn(x))

14 # PyTorchTensor(tensor (14.))

15

16 print(ep.value_and_grad(loss_fn , x))

17 # (PyTorchTensor(tensor (14.)) , PyTorchTensor(tensor ([2., 4., 6.])))

Listing 13: Using ep.value_and_grad for automatic differentiation in EagerPy

9

141

Foolbox Native: Fast adversarial attacks to benchmark the robustness
of machine learning models in PyTorch, TensorFlow, and JAX

The following three pages have been published as:

Jonas Rauber, Roland Zimmermann, Matthias Bethge, Wieland Brendel (2020). “Foolbox
Native: Fast adversarial attacks to benchmark the robustness of machine learning models
in PyTorch, TensorFlow, and JAX”. Journal of Open Source Software, 5(53), 2607.

A summary of the motivation, results, and discussion can be found in section 2.4 on page 40.

Abstract

Machine learning has made enormous progress in recent years and is now being used
in many real-world applications. Nevertheless, even state-of-the-art machine learning
models can be fooled by small, maliciously crafted perturbations of their input data.
Foolbox is a popular Python library to benchmark the robustness of machine learning
models against these adversarial perturbations. It comes with a huge collection of
state-of-the-art adversarial attacks to find adversarial perturbations and thanks to its
framework-agnostic design it is ideally suited for comparing the robustness of many
different models implemented in different frameworks. Foolbox 3 aka Foolbox Native
has been rewritten from scratch to achieve native performance onmodels developed in
PyTorch, TensorFlow, and JAX, all with one codebase without code duplication.

Foolbox Native: Fast adversarial attacks to benchmark
the robustness of machine learning models in PyTorch,
TensorFlow, and JAX
Jonas Rauber1, 2, Roland Zimmermann1, 2, Matthias Bethge∗1, 3, and
Wieland Brendel1, 3

1 Tübingen AI Center, University of Tübingen, Germany 2 International Max Planck Research
School for Intelligent Systems, Tübingen, Germany 3 Bernstein Center for Computational
Neuroscience Tübingen, Germany

DOI: 10.21105/joss.02607

Software
• Review
• Repository
• Archive

Editor: Yuan Tang
Reviewers:

• @GregaVrbancic
• @ethanwharris

Submitted: 10 August 2020
Published: 27 September 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Machine learning has made enormous progress in recent years and is now being used in
many real-world applications. Nevertheless, even state-of-the-art machine learning models
can be fooled by small, maliciously crafted perturbations of their input data. Foolbox is
a popular Python library to benchmark the robustness of machine learning models against
these adversarial perturbations. It comes with a huge collection of state-of-the-art adversarial
attacks to find adversarial perturbations and thanks to its framework-agnostic design it is
ideally suited for comparing the robustness of many different models implemented in different
frameworks. Foolbox 3 aka Foolbox Native has been rewritten from scratch to achieve native
performance on models developed in PyTorch (Paszke et al., 2019), TensorFlow (Abadi et al.,
2016), and JAX (Bradbury et al., 2018), all with one codebase without code duplication.

Statement of need

Evaluating the adversarial robustness of machine learning models is crucial to understanding
their shortcomings and quantifying the implications on safety, security, and interpretability.
Foolbox Native is the first adversarial robustness toolbox that is both fast and framework-
agnostic. This is important because modern machine learning models such as deep neural
networks are often computationally expensive and are implemented in different frameworks
such as PyTorch and TensorFlow. Foolbox Native combines the framework-agnostic design of
the original Foolbox (Rauber, Brendel, & Bethge, 2017) with real batch support and native
performance in PyTorch, TensorFlow, and JAX, all using a single codebase without code
duplication. To achieve this, all adversarial attacks have been rewritten from scratch and now
use EagerPy (Rauber et al., 2020) instead of NumPy (Oliphant, 2006) to interface natively
with the different frameworks.
This is great for both users and developers of adversarial attacks. Users can efficiently evaluate
the robustness of different models in different frameworks using the same set of state-of-the-
art adversarial attacks, thus obtaining comparable results. Attack developers do not need to
choose between supporting just one framework or reimplementing their new adversarial attack
multiple times and dealing with code duplication. In addition, they both benefit from the
comprehensive type annotations (Rossum, Lehtosalo, & Langa, 2015) in Foolbox Native to
catch bugs even before running their code.

∗joint senior authors

Rauber et al., (2020). Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow,
and JAX. Journal of Open Source Software, 5(53), 2607. https://doi.org/10.21105/joss.02607

1

145

The combination of being framework-agnostic and simultaneously achieving native perfor-
mance sets Foolbox Native apart from other adversarial attack libraries. The most popular
alternative to Foolbox is CleverHans1. It was the first adversarial attack library and has tra-
ditionally focused solely on TensorFlow (plans to make it framework-agnostic in the future
have been announced). The original Foolbox was the second adversarial attack library and the
first one to be framework-agnostic. Back then, this was achieved at the expense of perfor-
mance. The adversarial robustness toolbox ART2 is another framework-agnostic adversarial
attack library, but it is conceptually inspired by the original Foolbox and thus comes with
the same performance trade-off. AdverTorch3 is a popular adversarial attack library that was
inspired by the original Foolbox but improved its performance by focusing soley on PyTorch.
Foolbox Native is our attempt to improve the performance of Foolbox without sacrificing the
framework-agnostic design that is crucial to consistently evaluate the robustness of different
machine learning models that use different frameworks.

Use Cases

Foolbox was designed to make adversarial attacks easy to apply even without expert knowl-
edge. It has been used in numerous scientific publications and has already been cited more
than 220 times. On GitHub it has received contributions from several developers and has gath-
ered more than 1.500 stars. It provides the reference implementations of various adversarial
attacks, including the Boundary Attack (Brendel, Rauber, & Bethge, 2018), the Pointwise
Attack (Schott, Rauber, Bethge, & Brendel, 2019), clipping-aware noise attacks (Rauber &
Bethge, 2020), the Brendel Bethge Attack (Brendel, Rauber, Kümmerer, Ustyuzhaninov, &
Bethge, 2019), and the HopSkipJump Attack (Chen, Jordan, & Wainwright, 2020), and is
under active development since 2017.

Acknowledgements

J.R. acknowledges support from the Bosch Research Foundation (Stifterverband,
T113/30057/17) and the International Max Planck Research School for Intelligent
Systems (IMPRS-IS). This work was supported by the German Federal Ministry of Education
and Research (BMBF): Tübingen AI Center, FKZ: 01IS18039A, and by the Intelligence
Advanced Research Projects Activity (IARPA) via Department of Interior/Interior Business
Center (DoI/IBC) contract number D16PC00003. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. Disclaimer: The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of IARPA, DoI/IBC, or the U.S. Government.
We thank all contributors to Foolbox, in particular Behar Veliqi, Evgenia Rusak, Jianbo Chen,
Rene Bidart, Jerome Rony, Ben Feinstein, Eric R Meissner, Lars Holdijk, Lukas Schott, Carl-
Johann Simon-Gabriel, Apostolos Modas, William Fleshman, Xuefei Ning, and many others.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., et al. (2016).
TensorFlow: A system for large-scale machine learning. In 12th USENIX symposium on
operating systems design and implementation (OSDI 16) (pp. 265–283).

1https://github.com/tensorflow/cleverhans
2https://github.com/Trusted-AI/adversarial-robustness-toolbox
3https://github.com/BorealisAI/advertorch

Rauber et al., (2020). Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow,
and JAX. Journal of Open Source Software, 5(53), 2607. https://doi.org/10.21105/joss.02607

2

146

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., &
Wanderman-Milne, S. (2018). JAX: Composable transformations of Python+NumPy
programs. Retrieved from http://github.com/google/jax

Brendel, W., Rauber, J., & Bethge, M. (2018). Decision-based adversarial attacks: Reliable
attacks against black-box machine learning models. In International conference on learning
representations. Retrieved from https://openreview.net/forum?id=SyZI0GWCZ

Brendel, W., Rauber, J., Kümmerer, M., Ustyuzhaninov, I., & Bethge, M. (2019). Accurate,
reliable and fast robustness evaluation. In Advances in neural information processing
systems 32.

Chen, J., Jordan, M. I., & Wainwright, M. J. (2020). HopSkipJumpAttack: A query-efficient
decision-based attack. In 2020 ieee symposium on security and privacy (sp) (pp. 1277–
1294). IEEE. doi:10.1109/SP40000.2020.00045

Oliphant, T. (2006). NumPy: A guide to NumPy. USA: Trelgol Publishing. Retrieved from
http://www.numpy.org/

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., et al.
(2019). PyTorch: An imperative style, high-performance deep learning library. In Advances
in neural information processing systems (pp. 8026–8037).

Rauber, J., & Bethge, M. (2020). Fast differentiable clipping-aware normalization and rescal-
ing. arXiv preprint arXiv:2007.07677. Retrieved from https://github.com/jonasrauber/
clipping-aware-rescaling

Rauber, J., Bethge, M., & Brendel, W. (2020). EagerPy: Writing code that works natively
with PyTorch, TensorFlow, JAX, and NumPy. arXiv preprint arXiv:2008.04175. Retrieved
from https://eagerpy.jonasrauber.de

Rauber, J., Brendel, W., & Bethge, M. (2017). Foolbox: A Python toolbox to benchmark the
robustness of machine learning models. In Reliable machine learning in the wild workshop,
34th international conference on machine learning. Retrieved from https://arxiv.org/abs/
1707.04131

Rossum, G. van, Lehtosalo, J., & Langa, Ł. (2015). Type hints (PEP No. 484). Python
Software Foundation. Retrieved from https://www.python.org/dev/peps/pep-0484/

Schott, L., Rauber, J., Bethge, M., & Brendel, W. (2019). Towards the first adversarially
robust neural network model on MNIST. In International conference on learning represen-
tations. Retrieved from https://openreview.net/forum?id=S1EHOsC9tX

Rauber et al., (2020). Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow,
and JAX. Journal of Open Source Software, 5(53), 2607. https://doi.org/10.21105/joss.02607

3

147

Acknowledgments
The work presented in this dissertation would not have been possible without the
amazing people who accompanied me along the way.

Matthias Bethge first took me on as a young student when I just started my master’s
degree. From the first day, he provided an environment where I felt welcome, em-
powered, and valued. I am grateful for his trust, for the inspiration and freedom he
provided, for all his advice, mentoring, and support over the years, for sharing his
enthusiasm and energy, and for the great time we had together.

Wieland Brendelwas the one who showed and taught me how to turn ideas into results.
I am grateful for his trust, for all the time we spent iterating ideas, for his patience
when things took longer than expected, for his constant support and guidance, and for
the chance to work together on so many exciting and impactful projects.

I also want to thank all my other co-authors for many productive collaborations. I
want to give special thanks to Lukas Schott, Robert Geirhos, Francesco Croce, andMatthias
Hein, without whom our joint papers would not exist.

I am grateful to all members of the Bethge lab—and the Schölkopf group when they
generously hosted us for a year—for providing a great environment, for teaching me
many new things and explaining the latest papers, and for exciting discussions and the
fun we had. Special thanks to Heike König for her constant support, always closing the
gap betweenmywishful thinking and the hard reality of the university’s administration,
and to Judith Lam for her constant cheerfulness and for always helping out.

I thank the Bosch Research Foundation for its generous funding, and its members as
well as my advisory committee—Matthias andWieland, Michael Black, and Matthias
Hein—for listening to my progress and providing valuable feedback. Furthermore, I
thank Zeynep Akata, Alois Knoll, andMatthias for reviewing my dissertation.

I am grateful to my friends for making my time in Tübingen so enjoyable and for many
lasting memories. Special thanks to Timothy Gebhard, Mara Weis, and Santiago Cadena
for always having an open ear and to Felix Riese for sharing his valuable tips.

Finally, I am deeply grateful to my parents Michaela and Lothar for their unlimited
support and everything they did for me.

	Summary
	Zusammenfassung
	1 Introduction
	1.1 Definitions & Background
	1.2 Research Questions
	1.3 Publications

	2 Results
	2.1 Decision-Based Adversarial Attacks
	2.2 Architecture-Based Adversarial Attacks
	2.3 Foolbox Adversarial Attacks Library
	2.4 Fast Framework-Agnostic Attacks Using EagerPy
	2.5 Robust Analysis by Synthesis

	3 Discussion
	3.1 No Robustness Through Obscurity
	3.2 The Misconception of White-Box and Black-Box Attacks
	3.3 Evaluating Adversarial Robustness Cannot Be Standardized
	3.4 Has the Adversarial Robustness Problem Now Been Solved?
	3.5 Conclusions & Outlook

	Bibliography
	Appendix
	Foolbox: A Python Toolbox to Benchmark the Robustness of ML Models
	Decision-Based Attacks: Reliable Attacks Against Black-Box ML Models
	Towards the First Adversarially Robust Neural Network Model on MNIST
	Scaling up the Linear Region Attack Reveals Overestimation of Robustness
	EagerPy: Writing Code That Works Natively with PyTorch, TF, JAX, and NumPy
	Foolbox Native: Fast Attacks to Benchmark the Robustness of ML Models

	Acknowledgments

