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1. Introduction 

1.1 Background 

 
The evolution led to the development of a complex immune system in the 

human body in order to defend itself against external pathogens, such as 

viruses or bacteria (1, 2). However, also chemical or physical stimuli can 

trigger inflammatory responses (3). The immune response is depending on a 

complex interplay in the inflamed tissue at a molecular and cellular level. 

Many diseases are caused by either an insufficient or an exaggerated immune 

response (2). Tissue damage by excessive immune responses can lead to a 

loss of function, which causes the symptoms of many autoimmune diseases 

like rheumatoid arthritis or multiple sclerosis (4). Therefore, an important task 

of the immune system is not only the elimination of the inflammatory trigger 

but also the complex regulation of the immune response especially in regards 

to excessive tissue damage (5). In contrary, insufficient immune responses 

are a major problem in infectious diseases but also in carcinogenesis and 

cancer immunotherapy (6, 7). 

To reveal and understand the regulatory mechanisms of inflammation are of 

paramount importance to develop tailored therapies and enable treatment 

monitoring of various diseases. Despite enormous research efforts, to date 

only limited knowledge about the regulatory processes in inflamed tissue is 

available. Furthermore, only very few in vivo molecular imaging strategies 

have been developed to monitor non-invasively the time course of the 
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regulatory processes as well as therapeutic interventions in inflammatory 

diseases. 

 

1.2 Delayed-type hypersensitivity reaction (DTHR)  

The 2,4,6-trinitrochlorobenzene (TNCB) induced cutaneous DTHR, a well 

established inflammation model, provides profound insights into the 

emergence of acute and chronic T-cell driven inflammatory immune 

responses (8-11). The advantages of this model are the fast and reliable 

induction of the inflammation as well as the possibility for easy quantitative 

non invasive monitoring of clinical symptoms by assessing the ear swelling (8-

10). To elicit a TNCB-specific T-cell dependent DTHR at the ear, sensitization 

with the hapten TNCB is indispensable, which is performed at the shaved 

abdomen of the experimental mice (8-11). Haptens are binding to proteins 

and modify them before they get presented as foreign antigens by dendritic 

cells (DC) (12). However, also other mechanisms are involved in the DC 

activation, as for example TNCB is also able to degrade hyaluronic acid, 

which activates DCs via Toll-like receptor (TLR)2 and TLR4 (13, 14). 

Furthermore, the release of extracellular adenosine triphosphate (ATP) from 

damaged cells is able to activate the NACHT, LRR and PYD domains-

containing protein (NLRP) 3 inflammasome through the purine receptor P2X7 

(15). This protein complex leads to the cleavage of the pro-Interleukin (IL)-1β 

and pro-IL-18 by caspase-1 and -5. These cytokines are crucial for the 

migration and antigen presentation by DCs as well as the activation, 

proliferation and immigration of T cells (16-19). 
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The migration of activated DCs to the draining lymph nodes (20) is depending 

on the activity of matrix metalloproteases (MMPs), which allows them to move 

through the tissue (21). In the draining lymph nodes the DCs present the 

processed antigens on major histocompatibility complex (MHC) II molecules 

tissue (22). Naive CD4+ T lymphocytes (T helper cells; Th) bind with their T 

cell receptor to the antigen-loaded MHC II molecules of the antigen presenting 

cells (APC). Nevertheless, Bouloc et al. revealed that a TNCB specific DTHR 

is inducible in MHC II deficient mice, which is then induced by a MHC I 

dependent activation of CD8+ T cells (23). If the T cell receptor of T cells 

recognizes its specific antigen in the presence of costimulatory signals (e.g. 

CD28 and CD80/CD86 interaction), the T cell will be activated and starts to 

differentiate, proliferate and migrate into the bloodstream (24, 25). 

After successful sensitization, the second contact of the primed immune 

system to TNCB elicits a TNCB-specific adaptive immune response, which is 

performed in our experiments by application of 1% TNCB solution on the skin 

of the right ear. A striking feature of this model is that the opposite (left) ear 

serves as an internal control. While after the TNCB application at the right ear 

(challenge) an acute DTHR is induced, repeated applications of TNCB are 

causing a continuous development of a chronic cutaneous DTHR. 



 7

 

Figure 1: C57BL/6 mice were sensitized at the abdomen using a 5% TNCB solution. At day 7 

the acute TNCB specific DTHR was elicited at the right ear by application of a 1% TNCB 

solution (challenge). Repetitive challenges up to five times induced a chronic DTHR. Ear 

tissue stained by Hematoxylin&Eosin (H&E) revealed a strong edema and leukocyte 

infiltration dominated by polymorphonuclear neutrophils in mice with acute DTHR 12 hours 

after the first challenge (center) compared naïve, non–TNCB-challenged ear tissue (left). Ear 

tissue derived after five challenges (chronic DTHR) displayed tissue remodeling characterized 

by acanthosis, hyperkeratosis, angiogenesis and a dense leukocyte infiltrate (right, 12 hours 

after challenge, magnification 100×). (Adapted from Schwenck et al. 2014 (8)) 
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In the TNCB induced acute and chronic DTHR interferon-γ (IFN-γ) producing 

CD4+ T cells (Th1) and CD8+ cytotoxic T cells (Tc1) are dominating in 

comparison to other T-cell subsets (26). Interestingly, a contact allergic 

reaction can be elicited in the absence of MHC II and CD4+ Th1 cells, which is 

then characterized by CD8+ Tc1 cells (27). Furthermore, NK cells play an 

important role in the contact hypersensitivity and are able to elicit 

inflammatory responses independently of T and B cells (28). Chemokines and 

cytokines, like IL-8 (murine: macrophage inflammatory protein 2; MIP-2) and 

IL-1β, are promoting the immigration of neutrophilic granulocytes, mast cells 

and other effector cells by chemotaxis. Additionally, IL-17 is of particular 

importance for the migration of neutrophilic granulocytes (29). Furthermore, 

the immune infiltrate is heavily depending on the expression of adhesion 

molecules such as selectins and integrins on the cell surface and the vessel 

endothelia. In in vivo experiments, where adhesion molecules such as 

intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule 

(VCAM)-1, α4β7 integrin, E-, L- or P-selectin are missing, a significantly 

reduced TNCB induced DTHR was observed (30-37). 

The inflammatory infiltrate in the TNCB induced DTHR is dominated by 

neutrophilic granulocytes which form subepithelial abscesses. Activated 

neutrophilic granulocytes express tissue-destroying enzymes such as 

elastases and cathepsins but also myeloperoxidase which induces oxidative 

stress. Additionally, tumor necrosis factor (TNF), IL-8 (murine MIP-2), 

histamine and prostaglandins are released e.g. by activated mast cells (9, 38). 



 9

To avoid excessive tissue damage, the adaptive immune response is also 

triggering anti-inflammatory responses. For example, the inflamed tissue in 

TNCB induced DTHR is also infiltrated by regulatory T lymphocytes (Tregs). 

The Treg derived cytokine IL-10 reduces the immigration of circulating 

leukocytes (39, 40). Furthermore, the release of adenosine by Tregs leads to 

a reduced expression of the adhesion molecules E- and P-selectin on the 

vessel endothelia (41). Contact of Tregs with DCs suppresses the antigen 

presentation and thus, decreases T cell priming. Experimental studies 

revealed that the absence of Tregs significantly prolongs the inflammatory 

reaction (42). 

1.3 Proteases in inflammation 

Proteases fulfill diverse extra- and intracellular functions in healthy and 

diseased tissue. Proteases can be classified according to their catalytic 

residues in the active site, which also defines their specific cleavage sites. 

Catalytic residues comprise mostly amino acids, whereas the group of 

metalloproteases are using metal ions in their catalytic centers (43). An 

important group of metalloproteases are matrix metalloproteases (MMPs) 

which are containing a Zn2+ ion in the active site (44).  

MMP activity has been explored in recent years in several experimental 

disease models, such as cardiovascular diseases (45, 46), chronic obstructive 

pulmonary disease (47), tumor progression and metastasis (48-51), as well as 

autoimmune diseases like rheumatoid arthritis (52). Recently we have 

investigated the increasing in vivo MMP activity during the time course of 

acute and chronic TNCB induced DTHR (8).  
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MMPs can be attached to the cellular membrane or released freely into the 

extracellular matrix (53, 54). Like other proteases, MMPs are expressed as 

inactive pro-forms and can be activated e.g. by cleavage through other 

proteases (55) or oxidation caused by reactive oxygen species (ROS) (56, 

57).  

In the inflamed tissue, neutrophilic granulocytes, macrophages, fibroblasts 

and mast cells secrete MMPs upon stimulation (57-61), which is dependent on 

NF-κB signaling (62-66). Also the activation of p38 mitogen-activated protein 

(MAP) kinases plays a decisive role in the expression of MMPs (67-70).  

MMPs cleave components of the extracellular matrix such as collagen, 

fibronectin and laminin and are therefore crucial for tissue remodeling and 

immune cell migration (71, 72). Thus, MMPs are for example critically involved 

in the migration of activated DCs through the tissue (21). Moreover, MMPs 

facilitate angiogenesis by degrading the basal lamina and the extracellular 

matrix as well as untying the cell–cell contacts in the endothelium, which 

enables endothelial cells to migrate and proliferate (73). MMPs are also 

heavily contributing to the extracellular processing and activation of several 

important mediators and cytokines such as IL-1β, TNF, vascular endothelial 

growth factor (VEGF) as well as induction of E-selectin expression (74, 75). 

Mediators, which are bound to the extracellular matrix like e.g. the basic 

fibroblast growth factor (bFGF) or transforming growth factor (TGF), can be 

released by specific cleavage of binding motives via MMPs (53, 76-78). 

Besides the MMPs, cysteine proteases like cathepsins are another important 

group of proteases, which were first discovered in lysosomes where they 
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degrade ingested proteins (79). Although cysteine-type cathepsins have been 

initially described as intracellular enzymes, complex intra- and extracellular 

interactions of cathepsins were discovered recently (80). Depending on the 

conditions, the half-life of cysteine cathepsins in cellular environment can 

account a few minutes up to multiple hours (81-83). 

The ubiquitously expressed cysteine exopeptidase cathepsin B is critically 

involved in several steps during the activation of the innate and adaptive 

immune response (84). Consequently, elevated cathepsin B expression was 

described in many different diseases such as autoimmune diseases like 

rheumatoid arthritis (85) or multiple sclerosis (86), but also in pancreatitis (87), 

in the microenvironment of several tumor entities (88) as well as in 

neurodegeneration like Alzheimer´s disease (89). In the tumor 

microenvironment cathepsin B is one of the most abundantly expressed 

proteases of macrophages (90, 91).  

Like other proteases cathepsin B is expressed as a proenzyme, which can be 

activated by cleavage of itself in the early endosome, a process called 

autocatalysis (84, 92). In the endolysome cathepsin B plays an important role 

in the processing of ingested antigens, which afterwards can be loaded on 

MHCII molecules and presented on the cellular surface to elicit an adaptive 

immune response. Interestingly, cathepsin B is highly active in MHC-

dependent antigen processing within the lysosome but, unlike cathepsin S, 

the activity of cathepsin B is not obligatory (93-95). 

Furthermore, cathepsin B is critically involved in TLR signaling (96), apoptosis 

(97) and TNF secretion (98). Regardless of the neutral pH in the extracellular 
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compartment, cathepsin B is an important factor in extracellular matrix 

remodeling and cell migration (99) as well as angiogenesis (100). 

A variety of protease inhibitors have been developed in recent years. CA-074 

is a irreversible inhibitor which specifically interacts with amino acids in the 

characteristic occluding loop next to the active site of intracellular cathepsin B 

in vitro (101, 102). Similarly, also inhibitor 17 is targeting the occluding loop 

next to the active site of cathepsin B (103). 

1.4 Reactive oxygen species 

Proteases are closely interacting with other molecular processes in the 

inflammatory tissue, e.g. reactive oxygen species (ROS) and reactive nitrogen 

species (RNS). ROS and RNS represent large groups of different oxidative 

molecules, which are on the one hand cellular stress factors occurring as 

byproducts of the cellular metabolism but on the other hand are acting as 

signaling and effector molecules e.g. generated by inflammatory cells like 

neutrophilic granulocytes or macrophages (104, 105). 

neutrophilic granulocytes can be considered as a primary source of ROS/RNS 

in the TNCB-induced DTHR, because of their strong accumulation in both 

acute and chronic stage (8). Neutrophilic granulocytes elicit ROS/RNS during 

the so called „oxidative burst“, which is essential for the establishment of 

several autoimmune diseases like rheumatoid arthritis and psoriasis vulgaris 

(10).  

ROS are generated within the cell via different biochemical mechanisms, 

leading to a large variety of chemically different ROS species with distinct half 

lifes in the intra- and extracellular environment. In the mitochondria oxygen is 
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converted by NADPH oxidase complexes (NOX) via oxidative phosphorylation 

into the primary radical superoxide anion (O2
-), which can then quickly react to 

secondary ROS/RNS. The highly abundant ROS species hydrogen peroxide 

(H2O2) is generated by catalase or glutathione peroxidase and is able to 

diffuse through cellular membranes. Additionally, the enzyme MPO, which is 

heavily expressed by neutrophilic granulocytes but also by macrophages, 

generates a variety of ROS, like hypochlorous acid (HClO), hypothiocyanous 

acid (HOSCN) and others (106). A main source of RNS is the nitric oxide 

synthase (NOS) producing nitric oxide (NO), which reacts with O2
 to 

peroxynitrite (ONOO-) (107).  

Considering the important role of ROS/RNS in inflammatory immune 

responses, the establishment of antioxidative treatment approaches in 

inflammatory and autoimmune disease was a consequent aim. N-

acetylcysteine (NAC) is the most often clinically applied antioxidant drug, 

which was shown to reduce ROS in vitro and in vivo in preclinical experiments 

(108-111). Cells are able to synthesize glutathione from NAC, but NAC seems 

to have much more effects independently of glutathione synthesis (112). For 

example, similar to NAC, the stereoisomer N-acetyl-D-cysteine, which can not 

be converted into glutathione, has antioxidative effects in vivo (110). In 

addition, NAC is able to contain T-cell activation in vitro mainly by inhibition of 

DCs (113).  

In vivo, NAC reduced acute and chronic DTHR induced by TNCB and other 

allergens (8, 114, 115). Also, a suppressive effect on collagen-induced 

arthritis has also been reported (116). In human studies anti-inflammatory 
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effects in sepsis and cystic fibrosis have been observed (117-120), but 

unfortunately many clinical trials addressing ROS failed to improve the 

disease outcome significantly (121-125). 

 

1.5 The NF-κB signaling pathway 

The transcription factor NF-κB (nuclear factor 'kappa-light-chain-enhancer' of 

activated B-cells) is ubiquitously expressed in human as well as murine cells 

and is located in the cytoplasm when inactivated. After activation of 

membranous receptors such as TNF and TLR receptors, various pathways 

lead, to the activation of NF-κB. However, also other stimuli can trigger NF-κB 

activation, like for example ROS and RNS (126-128). Because 

premanufactured, preformed inactive NF-κB heterodimers are constitutively 

present in the cytoplasm, cells are able to respond to NF-κB-dependent 

signals very fast. The heterodimer NF-κB is formed by five different proteins in 

15 possible combinations (129). Mainly, two major NF-κB signaling pathways 

are described inducing the transcription of specific genes. The heterodimer 

consisting of the proteins p50 and RelA (p65) mediates the canonical or 

classical NF-κB signaling pathway, while the heterodimer of p52 and RelB is 

eliciting the non-canonical or alternative NF-κB signaling pathway (126, 127, 

130). The activation of the canonical signaling pathway is faster and 

associated with innate immune responses. A knockout of the canonical 

signaling pathway leads to a higher sensitivity for bacterial infections but to an 

increased resistance against viral infections (131). The slower, non-canonical 

pathway seems to be mainly involved in adaptive immune responses as well 
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as developmental processes e.g. during embryogenesis (132-135). 

Knockdown of the non-canonical pathway inhibits an adequate adaptive 

immune response against viruses (136). Both pathways are interacting with 

each other very closely, e.g. by cleavage of pro-forms or phosphorylation of 

kinases (129, 137-140). 

Finally, both signaling pathways lead to the binding of NF-κB heterodimers to 

specific DNA promotors and the transcription of NF-κB dependent genes 

which are involved in many important processes such as cell proliferation and 

apoptosis (127, 141). 

Regarding the regulation of the inflammatory response, NF-κB enables the 

transcription of important pro-inflammatory mediators such as IL-1β, IL-6 and 

TNF e.g. via activation of TNF-, TLR- or lymphotoxin receptors (63, 126, 133, 

142). Therefore, the activation of DCs but also T and B lymphocytes is highly 

dependent on NF-κB (143-145). Beside its antioxidative effect, NAC inhibits 

also the activation of NF-κB by interaction with the IκBkinasen IKKα and IKKβ 

(146). 

 

1.6 In vivo Optical Imaging 

Molecular imaging has evolved a small, but growing portfolio of approaches to 

address regulatory mechanisms of inflammation. Optical imaging is an 

established molecular imaging method based on the in vivo detection of 

fluorescence, bioluminescence and chemiluminescence signals. The probes 

are injected intravenously (i.v.) or intraperitoneally (i.p.) into an experimental 

animal. The fluorescent dyes need to be excited by a light source with a 
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specific wavelength, while bioluminescence and chemiluminescence probes 

emitting photons which are occurring in biochemical reactions. The emitted 

fluorescence signal can be measured in vivo by a highly sensitive camera. An 

additionally recorded bright field image allows the signal to be assigned to the 

corresponding anatomical structures of the animal.  

 

Through shielding of the scattered light using a light-proof "dark box" and 

cooling of the camera chip up to -70°C a highly specific and sensitive 

measurement of the emitted signal in vivo is possible. In case of fluorescence 

probes excitation and emission filters with the narrowest possible bandwidth 

decrease disturbing light sources like autofluorescence. The light absorption 

of water and hemoglobin in the used wavelength spectrum near of infrared 

(700-900 nm) is relatively low, which allows measurements in the tissue up to 

a depth of 2-3 cm (147, 148). 

With optical imaging, molecular processes can be monitored in vivo without 

exposure to radioactive radiation. Further advantages over other methods of 

molecular in vivo imaging are the short acquisition time and the relatively low 

technical effort. However, absolute quantification and reliable three-

dimensional reconstructions are not feasible with optical imaging.  



 17

 

Figure 2: A Activatable optical imaging probes are designed in a way that without protease 

acitvity a peptide sequence is holding two fluorochromes closely together, which leads to a 

quenching of the fluorescence signal by fluorescent resonance energy transfer (FRET). 

Cleavage of the peptide sequence, which possesses a protease-specific cleavage site, 

activates the fluorescence and enables the measurement of a protease dependent signal by 

optical imaging. B The photograph shows an exemplary optical imaging setup which was 

typically used for the experiments in this thesis consisting of an excitation light source [1], a 

lightproof dark box [2] and a highly sensitive charge-coupled device (CCD) camera [3]. C In 

our experiments, the optical imaging probes were injected intravenously 12 hours after TNCB 

ear challenge when the peak of the inflammatory responses was reached in chronic DTHR. 

The in vivo optical imaging measurements were performed 24 hours later according to the 

manufacturer’s recommendations and previous results (8, 149). 
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To assess the in vivo activity of cathepsins, protease activatable probes have 

been developed for noninvasive optical imaging (150, 151). These probes are 

possessing a peptide sequence which can be cleaved preferentially by 

specific proteases. If proteases, like cathepsin B, are cleaving this specific 

peptide sequence, the fluorescence signal is not quenched by fluorescence 

resonance energy transfer (FRET) anymore and a fluorescence signal 

depending on the specific protease activity can be measured using in vivo 

optical imaging (150, 151). 

Recently, we investigated the in vivo MMP activity over the time course of 

acute and chronic cutaneous DTHR and monitored the anti-inflammatory 

treatment effect of NAC using a optical imaging probe, which is specifically 

activated by MMPs (8).  

The in vivo detection of ROS in inflamed tissue is difficult, not only due to the 

short lifetime in the range of milliseconds up to minutes, but also due to the 

vast biochemical variety of the ROS/RNS species. So far, some approaches 

for non invasive in vivo ROS detection have been published, mostly based on 

the chemiluminescent probe luminol or derivatives like L-012  (152-159). The 

ROS species O2
- oxidizes L-012, which is then emitting photons detectable by 

optical imaging (153, 160). Nevertheless, according to results from different 

groups also other ROS species are contributing to the measured L-012 

chemiluminescent signal (152, 161, 162). Some investigators have also 

suggested that RNS lead to a pronounced L-012 signal (153, 161). 

NF-κB-luciferase-reporter mice are enabling a non-invasive in vivo detection 

of NF-κB activation by bioluminescence optical imaging. The firefly luciferase 
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is expressed in these transgenic mice induced by three NF-κB response 

elements (163). These and similar imaging techniques to asses NF-κB activity 

by non invasive in vivo optical imaging in NF-κB-luciferase-reporter mice have 

been used already successfully in several experimental disease models such 

as bacterial infections (164), arthritis models (163, 165) and experimental 

tumor models (166, 167).  

 

Figure 3: A The activation of the NF-κB pathway, e.g. by receptors on the cellular surface like 

TNF, leads to the NF-κB dependent expression of the enzyme luciferase. Luciferase is 

catalyzing the oxidation of luciferin using adenosine triphosphate (ATP) and oxygen (O2) 

which results in the emissions of photons detectable by optical imaging. B The 

chemiluminescence agent L-012 reacts with ROS and forms intermediate products which are 

emitting measurable photons for optical imaging (adapted from Goiffon et al. 2015 (160)).   
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1.7 Aims 

In this thesis optical imaging was employed to analyze the different molecular 

mechanisms involved in the regulation of inflammation, namely ROS/RNS 

production, the activation of the NF-κB pathway and the activity of cathepsin 

B. The T-cell driven acute and chronic TNCB induced DTHR served as a well 

established experimental model to study the dynamics of molecular events 

and their changes under targeted therapeutic interventions. 
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2. Results  

This thesis consists of two original publications on the molecular processes in 

the inflamed tissue of acute and chronic TNCB-induced DTHR. The first 

publication focuses on the analysis of the temporal dynamics of ROS/RNS 

production and the activation of the inflammatory NF-κB pathway during acute 

and chronic inflammation (168). The second publication is delineating the in 

vivo cathepsin activity during the acute TNCB-specific DTHR. The cathepsin 

B-expressing inflammatory cells at the sites of inflammation and draining 

lymph nodes were identified and the effects of cathepsin B deficiency as well 

as specific therapeutic interventions were investigated (169). 
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2.1 Temporal Dynamics of Reactive Oxygen and Nitrogen Species and 

NF-κB Activation during Acute and Chronic T Cell-Driven Inflammation 

(168) 

 

The article included in this chapter was published in 

Molecular Imaging and Biology 2020 Jun;22(3):504-514. 

”Temporal Dynamics of Reactive Oxygen and Nitrogen Species and NF-κB 

Activation During Acute and Chronic T Cell–Driven Inflammation” 

Johannes Schwenck, Roman Mehling, Wolfgang M. Thaiss, Daniela Kramer, 

Irene Gonzalez Menendez, Hasan Halit Öz, Dominik Hartl, Klaus Schulze-

Osthoff, Stephan Hailfinger, Kamran Ghoreschi, Leticia Quintanilla-Martinez, 

Harald Carlsen, Martin Röcken, Bernd J. Pichler, Manfred Kneilling. 
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Abstract

Purpose: Reactive oxygen and nitrogen species (ROS/RNS) production and the NF-κB

activation are critically involved in inflammatory responses, but knowledge about the temporal

dynamics during acute and chronic inflammation is limited. Here, we present a comparative

longitudinal in vivo study of both parameters in an experimental model of acute and chronic T

cell–driven delayed-type hypersensitivity reaction (DTHR) using noninvasive optical imaging.

Procedures: Trinitrochlorobenzene (TNCB)-sensitized NF-κB-luciferase-reporter and wild-type

mice were TNCB challenged on the right ear to elicit acute DTHR and then repetitively

challenged (up to five times) to induce chronic DTHR. Mice were treated with the ROS-

scavenging and NF-κB inhibiting molecule N-acetylcysteine (NAC) or underwent sham

treatment. ROS/RNS production was noninvasively analyzed in vivo using the ROS-/RNS-

sensitive chemiluminescent probe L-012, and NF-κB activation was measured using NF-κB-

luciferase-reporter mice. H&E staining, CD3 and myeloperoxidase (MPO) immunohistochemis-

try (IHC), and quantitative PCR (qPCR) analyses were employed to investigate immune cell
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infiltration and expression of NF-κB- and ROS-/RNS-driven genes.

Results: In acute DTHR, we found strongly elevated ROS/RNS production and NF-κB activation

12 h after the 1st TNCB ear challenge, peaking at 24 h after the challenge. In chronic DTHR,

ROS production peaked as early as 4 h after the 5th TNCB challenge, whereas NF-κB activity

peaked after 12 h. The increase in ROS/RNS production in acute DTHR was higher than the

increase in NF-κB activity but the relationship was inverse in chronic DTHR. Treatment with the

ROS scavenger NAC had differential effects on ROS/RNS production and NF-κB activation

during acute and chronic DTHR. Ex vivo cross-validation by histopathology and qPCR analysis

correlated closely with the in vivo imaging results.

Conclusions: Noninvasive in vivo imaging is capable of assessing the temporal dynamics of

ROS/RNS production and NF-κB activation during progression from acute to chronic DTHR and

enables monitoring of anti-inflammatory treatment responses.

Key Words: Optical imaging, Delayed-type hypersensitivity reaction, Contact allergy, N-

acetylcysteine, Contact hypersensitivity reaction, Inflammation, Anti-inflammatory effect, L-012,

NF-κB

Introduction

Reactive oxygen species (ROS) and reactive nitrogen
species (RNS), a heterogeneous group of oxidative mole-
cules, are common stress factors for cells. ROS/RNS appear
in both physiological, e.g., as byproducts of cellular
metabolism or as signaling molecules, and pathological
conditions, such as when ROS/RNS are generated by
inflammatory cells, including polymorphonuclear neutro-
phils (PMNs) or macrophages [1, 2].

In particular, oxidative phosphorylation in mitochondria
and NADPH oxidase complexes (NOX) convert oxygen into
the primary radical superoxide anion (O2

−), which is rapidly
converted into secondary ROS/RNS. Membrane-permeable
hydrogen peroxide (H2O2) is generated by catalase or
glutathione peroxidase. Myeloperoxidase (MPO) generates
various other ROS, such as hypochlorous acid (HClO),
hypothiocyanous acid (HOSCN), and other radicals, by
oxidation of organic and inorganic substrates [3]. Further,
RNS such as peroxynitrite are formed by a reaction between
O2

− and nitric oxide (NO), which is produced by nitric oxide
synthases (NOS) [4]. Since ROS/RNS participate in multiple
biochemical interactions, the roles of ROS/RNS in inflam-
mation have more than one dimension: both pro- and anti-
inflammatory roles have been described, which lead to either
tissue-destructive or tissue-protective effects [5].

Therefore, maintenance of a regulated balance between
ROS/RNS and antioxidants is necessary for the control of
immune responses. The multiple effects of ROS become
evident in patients with chronic granulomatous disease
(CGD), which is caused by an inherited deficiency of
NOX2 activity. CGD patients suffer from both persistent
bacterial and fungal infections as well as autoimmune
diseases such as arthritis [6].

The immunomodulatory effects of ROS/RNS on inflam-
matory immune responses are caused by a variety of
mechanisms, including interactions with signaling pathways

such as nuclear factor (erythroid-derived 2)-like 2 (NRF2) or
p38 mitogen-activated protein (MAP) kinases [7], but they
also influence the mechanisms of antigen presentation and T
cell receptor signaling as well as aerobic glycolysis in
activated CD4+ T cells [3]. A major ROS-sensitive regulator
of inflammatory immune responses is the NF-κB pathway
[8]. The NF-κB protein family consists of five proteins that
can form multiple heterodimeric NF-κB protein complex and
induce the transcription of many genes, including pro-
inflammatory mediators such as IL-1β, IL-6, and TNF as
well as other pro- and antioxidative target genes [9].

So far, little is known about the temporal dynamics of
ROS/RNS production and their interactions with inflamma-
tory pathways, such as NF-κB. Due to the short lifetime,
ranging from milliseconds to minutes, and the chemical
variety of different ROS, measurement of ROS/RNS remains
challenging. A few detection strategies have been described
to noninvasively study ROS production in vivo [10–17].

L-012 is a luminol-based chemiluminescent (CL) probe,
which was evaluated for preclinical in vivo optical imaging
(OI) experiments by Kielland et al. [10]. The oxidized form
of L-012 reacts with O2

− to form an excited-state interme-
diate, which emits detectable photons by chemiluminescence
[11]. Some investigators have suggested that RNS lead to a
pronounced L-012 chemiluminescent signal, while the
contribution of H2O2 to the luminescent signal is relatively
small [11, 18].

In this study, we focused on the temporal dynamics of
ROS/RNS production and their influence on NF-κB signal-
ing by noninvasive in vivo OI in acute and chronic TNCB-
induced cutaneous contact hypersensitivity, a well-
characterized and established experimental model for T
cell–driven DTHR [19–21]. DTHRs are orchestrated mainly
by interferon-γ-producing CD4+ (Th1) and CD8+ (Tc1) T
cells [22, 23] and characterized by accumulations of PMNs.
PMNs elicit ROS/RNS during oxidative burst, which is
critically involved in the pathogenesis of several
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autoimmune diseases, such as rheumatoid arthritis and
psoriasis vulgaris [24].

To our knowledge, this is the first noninvasive in vivo
study investigating the temporal dynamics of ROS/RNS
production and NF-κB activation in parallel during different
stages of inflammation, employing L-012 and NF-κB-
luciferase-reporter mice combined with ex vivo cross-
validation employing H&E staining, CD3- and MPO-IHC,
and qPCR analysis of NF-κB- and ROS-driven genes. In
addition, we studied the influence of NAC treatment on
ROS/RNS production and NF-κB activation dynamics using
these two imaging tools.

Materials and Methods

Animal Experiments

We used 8- to 12-week-old female C57BL/6 mice from
Charles River Laboratories (Sulzfeld, Germany) and NF-κB-
luciferase-reporter mice provided by Harald Carlsen (Nor-
wegian University of Life Sciences, Ås, Norway) [25].
An ima l e xp e r ime n t s we r e a pp r o v e d by t h e
Regierungspräsidium Tübingen. The details on the animal
experiments are provided in the electronic supplementary
material (ESM).

Treatment Approach

Two days prior to the first TNCB ear challenge, we started
to add NAC continuously to the drinking water until the
experiments were finished (5 mg/ml; Sigma-Aldrich,
Steinheim, Germany) [20]. Sham-treated mice received
normal drinking water.

Optical Imaging

To measure in vivo NF-κB activation, we injected luciferin
(150 mg/kg body weight) i.p. into NF-κB-luciferase-reporter
mice 5 min before OI (n = 10). For in vivo ROS detection,
we injected wild-type mice with ROS-sensitive L-012
(25 mg/kg body weight; i.p.) 5 min before OI (n = 8). L-
012 (Wako Chemical, Neuss, Germany) was dissolved in
ultrapure H2O at a concentration of 5 mg/ml. To assess L-
012 chemiluminescence and NF-κB-luciferase biolumines-
cence signals in vivo, we used the IVIS Spectrum OI System
(PerkinElmer, Rodgau-Jügesheim, Germany). For details,
see ESM.

RNA Extraction and Gene Expression Analysis,
Histopathology, and Statistical Analysis

Details are described in the ESM.

Results

Time Course of ROS Production and NF-κB
Activity in Acute and Chronic Cutaneous DTHR

First, we evaluated the time course of ROS/RNS production
and NF-κB activity in acute DTHR at baseline, 4 h, 12 h,
and 24 h after the 1st challenge. At baseline, we recorded
only very faint L-012 signal in ears of wild-type mice
(Fig. 1a). Additionally, a faint luciferase-mediated signal
was recorded in inflamed ears of NF-κB reporter mice (Fig.
1b). As early as 4 h after the 1st TNCB challenge, ear
thickness had increased, but we found no enhancement of
ROS/RNS production or NF-κB activation (Fig. 1a and b).
However, 12 h after the 1st TNCB challenge, both ROS/
RNS production and NF-κB activity in inflamed ears
increased dramatically (ROS/RNS: 60-fold; NF-κB activity:
18-fold) when compared with baseline and it further
increased at 24 h.

We next compared the signal intensities from L-012
chemiluminescence and bioluminescence from inflamed ears
of NF-κB-reporter mice at baseline with the signal intensities
at 4 h, 12 h, and 24 h post-TNCB challenge. The increase in
ROS-/RNS-mediated L-012 signal intensity in inflamed ears
was significantly higher than the measured increase in NF-
κB activity 12 h after the first TNCB challenge (Fig. 1c).

As repeated TNCB challenges lead to chronic cutaneous
DTHR [20], we investigated the time course of ROS/RNS and
NF-κB activity after the 3rd and 5th TNCB ear challenges.
During early chronic DTHR, we determined clear enhancement
of ROS/RNS production and NF-κB activity in inflamed ears by
4 h after the 3rd TNCB ear challenge (Fig. 2a and b). The peak
in ROS/RNS production and NF-κB activity shifted from 24 h
after the 1st TNCB ear challenge to 12 h after the 3rd TNCB ear
challenge. In contrast, the ear thickness indicated no significant
change between 12 h and 24 h after the 3rd TNCB ear challenge.
ROS/RNS production was already present as early as 4 h after
the 5th TNCB ear challenge, whereas the NF-κB activity did not
peak until 12 h after the 5th challenge (Fig. 2a and b).

When comparing the relative change in ROS/RNS
production and NF-κB activity in the inflamed ears with
early chronic and chronic cutaneous DTHR to the baseline at
0 h before the 1st TNCB ear challenge, we determined
before (0 h) the 3rd and 5th TNCB ear challenge slightly
elevated NF-κB activity values. ROS/RNS production
values were remarkably elevated most probably due to the
PNMs infiltrating the chronically inflamed ears after the
previous TNCB challenges (Figs. 2c, 3b). The relative
increase in NF-κB activity at 12 h and 24 h after the 3rd
and 4 h, 12 h, and 24 h after the 5th TNCB ear challenge
was more pronounced than the increase in ROS/RNS
production (Fig. 2c). Interestingly, when calculating the
relative change in signal intensity within the course of the
3rd or 5th TNCB ear challenge, using the 0 - h timepoint of
the 3rd or 5th challenge as baseline, the relative increase in
NF-κB activity 12 h and 48 h after the 3rd TNCB ear
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a

b

c

Fig. 1 ROS/RNS production and NF-κB activity in C57BL/6 wild-type mice and C57BL/6 NF-B-luciferase-reporter mice with
acute cutaneous DTHR; L-012: n = 8; NF-κB-luciferase-reporter mice: n = 10. (A) Temporal dynamics of ROS/RNS production
(L-012 optical imaging). The peak of the signal intensity (24 h) and the baseline signal intensity was compared using a paired,
two tailed Student’s t test. (B) Temporal dynamics of NF-κB activity. (NF-κB-luciferase-reporter mice) the peak of the signal
intensity (24 h) and the baseline signal intensity was compared using a paired, two tailed Student’s t test. (C) To compare the
increase in ROS/RNS production with the increase in NF-κB activation, we calculated the relative change compared with
baseline (not inflamed healthy ear) at 0 h, initially before the 1st TNCB ear challenge. Relative enhancement of ROS/RNS
production was significantly stronger than relative activation of NF-κB 12 h after the 1st TNCB challenge (unpaired, two-tailed
Student’s t test). Data are presented as the mean ± SEM.
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b
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Fig. 2 ROS/RNS production and NF-κB activity in C57BL/6 wild-typemice and C57BL/6 NF-κB-luciferase-reporter mice with early
chronic and cutaneous chronic DTHR; L-012: n = 8; NF-κB-luciferase-reporter mice: n = 10. (A) Temporal dynamics of ROS/RNS
production (L-012 optical imaging). The peak of the signal intensity (24 h) and the baseline signal intensity was compared using a
paired, two tailed Student’s t test. (B) Temporal dynamics of NF-κB activity (NF-κB-luciferase-reporter mice). The peak of the signal
intensity (24 h) and the baseline signal intensity was compared using a paired, two tailed Student’s t test. (C) To compare the increase
in ROS/RNS production with the increase in NF-B activation, we calculated the relative change compared with baseline in healthy
not inflamed ears initially before (0 h) the 1st TNCB ear challenge. Data are presented as the mean ± SEM.

Schwenck J. et al.: In vivo Imaging of ROS Production and NF-κB Activation in Inflammation



challenge and especially 4 h, 12 h, and 24 h after the 5th
TNCB ear challenge rose up to 80-fold while the relative
increase in ROS/RNS production was moderate (Suppl.
Fig. 1, see ESM).

Ex vivo Analysis of Inflamed Ears with Acute and
Chronic Cutaneous DTHR

For ex vivo cross-validation of our in vivo imaging results on
ROS/RNS production and NF-κB activity, we performed

H&E staining and CD3- and MPO-IHC as well as qPCR
analysis focusing on NF-κB and ROS-/RNS-driven genes in
inflamed ears with acute and chronic cutaneous DTHR.

Standard H&E histopathology as well as CD3- and MPO-
IHC revealed in inflamed ears with acute cutaneous DTHR
(4 h after the 1st TNCB ear challenge) edema with dilated
blood vessels and the presence of MPO+ PMNs within the
blood vessels, but not in the surrounding tissue. Only scarce
CD3+ T cells were found in the dermis. At 12 h after the 1st
TNCB ear challenge, the edema was more evident, with
large dilated blood vessels and extravasation of PMNs,

a (acute DTHR)

b (chronic DTHR)

Fig. 3 Standard H&E histopathology as well as CD3 and MPO IHC from (a) naïve mice (0 h), inflamed ears with (a) acute
cutaneous DTHR 4 h, 12 h, and 24 h after the 1st TNCB ear challenge and (b) chronic cutaneous DTHR before (48 h after the 4th
TNCB ear challenge) 4 h, 12 h, and 24 h after the 5th TNCB ear challenge (n = 4; only 12 h after the 5th TNCB ear challenge: n = 3).
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which were also found in large clusters in the dermis. Scarce
CD3+ T cells and macrophages were present within the
epidermis and in the dermis, while PMNs were significantly

increased in the dermis. Strikingly, 24 h after the 1st TNCB
ear challenge, a massive infiltration of PMNs within the
dermis accompanied with abscesses and small crusts was

a

b

Fig. 4 qPCR analysis of NF-κB- and ROS-/RNS-driven genes of ((a) naïve mice (0 h), inflamed ears with (a) acute cutaneous
DTHR 4 h, 12 h, and 24 h after the 1st TNCB ear challenge and (b) chronic cutaneous DTHR before (48 h after the 4th TNCB ear
challenge) 4 h, 12 h, and 24 h after the 5th TNCB ear challenge (n = 4). Data are represented as mean +/- SEM.
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observed together with a mild increase of CD3+ T cells and
macrophages within the dermis (Fig. 3a; Suppl. Table 2;
Suppl. Fig. 2—see ESM).

Before the 5th TNCB ear challenge, 48 h after the 4th
TNCB ear challenge, we observed thickening of the
epidermis as a consequence of the chronic inflammation.
The dermis showed a mild edema accompanied with dilated
blood vessels and an infiltrate of CD3+ T cells and
macrophages but only a few MPO+ PMNs. After 4 h, 12 h,
and 24 h, a similar thickened epidermis with few small
crusts and abscesses were identified together with an
increased infiltrate of CD3+ T cells and MPO+ PMNs within
the dermis (Fig. 3b; Suppl. Table 2; Suppl. Fig. 2—see
ESM). In summary, the histopathological evaluation of the
degree of inflammation and the homing dynamics of MPO+

PMNs during acute and chronic cutaneous DTHR fit well
with our in vivo ROS/RNS production and NF-κB activity
imaging results. The increase in RNS/ROS production was
accompanied with a pronounced PMN recruitment within
the inflamed ears (Fig. 3a, b).

Next, we focused on the gene expression patterns in
healthy and inflamed ears with acute and chronic cutaneous
DTHR. A remarkable increase in the expression of NF-κB-
driven genes encoding II1b, TNF, and Ptgs2 (COX-2)
became evident 12 h after the 1st TNCB ear challenge. In
line with the NF-κB imaging results, induction of pro-
inflammatory gene expression peaked after 24 h. Ccl2 and
Il10 mRNA expression reached a maximum as early as 12 h
after the 1st TNCB ear challenge (Fig. 4a). In chronic
DTHR, all investigated NF-κB-driven genes peaked already
4 h after 5th TNCB ear challenge (Fig. 4a), which coincided
with the strongly enhanced NF-κB signal in the inflamed
ears of the luciferase-reporter mice peaking at 12 h (Fig. 2b).
The mRNA expression levels of ROS-inducible genes did
not follow the in vivo dynamics of ROS production during
acute and chronic DTHR (Fig. 4b). Nevertheless, an increase
in mRNA expression of ROS-regulated proteins (Nrf2,
Hmox1 (HO-1), and Alox5 (LOX-5)) was evident in chronic
cutaneous DTHR when compared with the acute phase (Fig.
4b).

Impact of NAC Treatment on ROS Production and
NF-κB Activity

Next, we analyzed the differential effects of NAC treatment
on ROS/RNS production expression and NF-κB activity
during acute and chronic DTHR. In agreement with our
recent experiments [20], NAC treatment significantly sup-
pressed TNCB-induced ear-swelling responses during acute
and chronic DTHR when compared with those of sham-
treated mice.

Despite the reported significant anti-inflammatory effect
of NAC (Fig. 5a), its impact on ROS/RNS production and
NF-κB activity was heterogeneous. Maximum ROS/RNS
production in inflamed ears was reached at 12 h after the 1st

challenge in sham-treated mice and at 24 h in NAC-treated
mice, whereas NF-κB expression peaked at 24 h in sham-
treated mice and at 12 h in NAC-treated mice (Fig. 5b and
c). Intriguingly, ROS production was higher in NAC-treated
mice at 24 h following the 1st TNCB ear challenge than in
sham-treated mice.

After the 3rd TNCB ear challenge, which corresponded to
early chronic DTHR, ROS/RNS production in inflamed ears of
NAC-treated mice was normal at 4 h and 12 h post challenge,
but it was 3-fold higher at 24 h post challenge compared with
that of sham-treated mice. In contrast, NF-κB activity in
inflamed ears of NAC-treated mice was completely unchanged
4–24 h after TNCB ear challenge when compared with that of
sham-treated mice (Fig. 5b and c).

After the 5th challenge, during chronic cutaneous DTHR,
we observed almost no reduction in ROS production in
inflamed ears of NAC-treated mice when compared with that
of inflamed ears of sham-treated mice (Fig. 5b). In contrast,
NF-κB activity was strongly reduced 4 h after the 5th TNCB
ear challenge as a consequence of NAC treatment and was
marginally elevated after 12 h and 24 h in comparison with
that of sham-treated mice (Fig. 5c).

Histological analysis of inflamed ears 24 h after the 5th
TNCB ear challenge, a time point when the ear-swelling
response in NAC-treatment mice was only moderately reduced
compared with the sham-treatment (Fig. 5a), revealed
acanthosis with the presence of intra-epidermal PMNs and
focal hyperkeratosis as well as edema and dilated blood and
lymphatic vessels in the dermis in both experimental groups
(Fig. 5c; Suppl. Fig. 3—see ESM). The inflammatory infiltrate
was focal and mild in the H&E staining, while CD3 and MPO
IHC did not reveal significant differences between the two
experimental groups (Fig. 5d), correlating well to our in vivo L-
012 imaging results (Fig. 5c).

Discussion

In this study, we noninvasively evaluated the temporal
dynamics of ROS/RNS production and NF-κB activation
during acute and chronic cutaneous DTHR in vivo. During
acute cutaneous DTHR, both ROS/RNS production and NF-
κB activation were strongly increased 12 h after the first
TNCB challenge and reached a maximum after 24 h. During
early chronic cutaneous DTHR, ROS/RNS production and
NF-κB activation peaked simultaneously 12 h after the third
repetitive TNCB ear challenge. While in chronic cutaneous
DTHR, after five repetitive TNCB ear challenge, we were
able to measure strongly elevated ROS/RNS production and
NF-κB activation as early as 4 h (Fig. 2a and b).

Both ROS/RNS production and NF-κB have been
extensively investigated in vitro but have hardly been
investigated in vivo. Sustained ROS stress in vitro causes
proteasome inactivation by 50–80 % and therefore less
degradation of the inhibitory I-κBα protein, resulting in
suppressed NF-κB activation [26].
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d (chronic DTHR)

Fig. 5 Impact of NAC-treatment on ROS/RNS production and NF-κB activity (NF-κB-luciferase-reporter mice: NAC treatment
n = 5, sham treatment n = 4; L-012: NAC treatment n = 5, sham treatment n = 5). (A) Time course of the ear thickness 0–24 h
after the 1st, 3rd, and 5th TNCB ear challenges. (B) Temporal dynamics of ROS/RNS production in inflamed ears of NAC-
treated or sham-treated mice with acute, early chronic, and chronic cutaneous DTHR. (C) Temporal dynamics of NF-κB
activation in inflamed ears of NAC-treated or sham-treated mice with acute, early chronic, and chronic cutaneous DTHR. Data
are presented as mean ± SEM. (D) H&E histology and MPO and CD3 IHC 24 h after the 5th TNCB ear challenge (chronic
cutaneous DTHR; n = 4).
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A characteristic feature of the NF-κB signaling pathway is
that immediate responses to various stimuli are feasible, as the
transcription factors are stored in an inactive state in the
cytoplasm. In general, two distinct NF-κB signaling pathways
that result in two different NF-κB-dependent gene expression
patterns have been described (See Suppl. 1 Discussion in ESM).

Among the NF-κB-driven genes are multiple antioxidant
and ROS-/RNS-promoting gene targets, but NF-κB itself
also heavily influences ROS/RNS expression [27]. ROS/
RNS measurements are especially challenging in vivo. In our
study, we confirmed the feasibility of noninvasively deter-
mining ROS/RNS production in vivo and longitudinally
monitoring the changes in ROS/RNS production during
progression from acute to chronic cutaneous DTHR. We
employed the chemiluminescent probe L-012, which has
been extensively used in several in vitro studies, but the use
of L-012 in in vivo studies is rare. Kielland et al. used L-012
for in vivo studies in experimental LPS-induced acute
systemic inflammation, PMA-induced inflammation of the
ear, and collagen-induced arthritis [10].

Another established chemiluminescent probe is lucigenin.
Tseng et al. demonstrated that the lucigenin chemilumines-
cent signal is independent of MPO but requires NADPH
oxidase (Phox) activity in macrophages, while the luminol
chemiluminescent signal largely depends on MPO expres-
sion by PMNs [28].

In our experiments, the measured L-012 signal intensity in
inflamed ears with acute cutaneous DTHR closely followed the
infiltration of MPO+ PMNs, both peaking 24 h after the 1st
TNCB ear challenge (Figs. 1a,3a). In chronic DTHR, a slightly
elevated L-012 signal intensity was detectable before the 5th
TNCB ear challenge (0 h), 48 h after the 4th TNCB ear
challenge, as a consequence of the already established skin
inflammation and the presence of MPO+ PMNs (Figs. 2a, 3b).
The L-012 signal peaked already after 4 h, coinciding with an
increased number of MPO+ PMNs in the dermis. Thereafter, the
L-012 signal decreased until 24 h after the 5th TNCB ear
challenge, while the number of MPO+ PMNs remained constant
(Figs. 2a, 3b). Interestingly, the ROS/RNS production values in
chronic cutaneous DTHR were lower than in the acute phase of
inflammation (Figs. 1a, 2a). Analysis of the genomic expression
of ROS-/RNS-driven antioxidative proteins revealed elevated
expression patterns in chronic cutaneousDTHRwhen compared
with the acute phase (Fig. 4b). This might explain why the ROS/
RNS production values, determined by L-012 optical imaging,
were lower in chronic when compared with acute cutaneous
DTHR as antioxidative proteins need time to be produced and
expressed [29–31]. The mRNA expression of ROS-/RNS-
inducible genes is a part of the cellular response to oxidative
stress, the regulation of which is slower and maybe more
complex than the response to NF-κB activation which reached
similarly high signal intensity levels in NF-κB-reporter mice
with acute and chronic cutaneous DTHR (Fig. 1b, Fig. 2b). In
addition, it has to be taken in account that the immune cell
infiltrate in acute and chronic cutaneous DTHR differs
significantly (Fig. 3a and b). Thus, the NF-κB activity in acute

DTHRmight be mainly related to the affected keratinocytes and
the infiltration of PMNs, whereas in the chronic phase, the
immune cell infiltrate is more heterogeneous and composed of
PMNs, T cells, B cells, and macrophages. For instance, the
strongly enhanced Il1b mRNA expression in acute DTHR most
likely originates from keratinocytes, whereas the immune cell
infiltrate might be mainly responsible for the elevated TNF
expression (Fig. 4a and b).

We used two different noninvasive in vivo tools to
measure ROS/RNS production and NF-κB activation and
to longitudinally monitor the antioxidative and NF-κB
signaling inhibiting properties of NAC during different
stages of cutaneous DTHR. In accordance with our
previously published data [20], NAC was highly efficient
in suppressing ear-swelling responses during acute and
chronic cutaneous DTHR due to its antioxidative and NF-
κB-inhibiting effects (Fig. 5a).

Surprisingly, we were not able to identify a clear trend
when comparing the measured in vivo ROS/RNS production
and NF-κB activity in inflamed ears of NAC- and sham-
treated mice (Fig. 5b and c). At the later time points,
especially 24 h after the 1st (acute DTHR) and 3rd (early
chronic DTHR) TNCB ear challenges, we observed en-
hanced ROS/RNS production in inflamed ears of NAC-
treated mice, but at the earlier time points, we saw a rather
reduced ROS/RNS production when compared with that of
the sham-treatment (Fig. 5b). Thus, NAC treatment might
mainly change the temporal dynamics of ROS/RNS produc-
tion. Despite the indisputable therapeutic effect of NAC
(Fig. 5a, right graph), we measured almost no NAC
treatment-induced effect on ROS/RNS production in in-
flamed ears with chronic cutaneous DTHR 24 h after the 5th
TNCB ear challenge (Fig. 5b, right graph). NAC treatment
was effective during acute, and early chronic and chronic
cutaneous DTHR. We observed an elevated baseline (0 h)
NF-κB activity level, strongly reduced levels at 4 h after the
5th TNCB ear challenge, and rather enhanced activity after
12 h and 24 h (Fig. 5c).

Despite its widespread use, e.g., as a mucolytic agent or
antidote for acetaminophen intoxication, many of the
complex and controversial effects induced by NAC are still
under debate (See Suppl. 2 Discussion in ESM).

Conclusions

The temporal dynamics of ROS/RNS production and NF-κB
activity during the progression from acute to chronic T cell–
driven cutaneous DTHR, and during a ROS/RNS and NF-
κB activity targeting treatment approach, can be noninva-
sively monitored in vivo. Our study revealed that ROS/RNS
production and also NF-κB activity are highly dynamic and
are part of a complex interplay between immune cell
migration and gene expression. Determination of the
temporal dynamics of ROS/RNS production and NF-κB
activity may open a new avenue to understand, characterize,
and noninvasively monitor inflammatory responses in vivo;
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therefore, it might enable the improvement of therapeutic
interventions. This knowledge could be a prerequisite for the
identification of the therapeutic windows for innovative
treatment approaches in other types of DTHR, such as
psoriasis or rheumatoid arthritis.
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Short title: In vivo imaging of ROS production and NF-κB activation in 

inflammation 
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Materials and Methods 

Animal experiments 

Mice were sensitized by topical application of TNCB (5% TNCB; 80 µl 

dissolved in a 4:1 mixture of acetone/Miglyol 812; Sasol, Witten, Germany) to 

the abdomen and challenged on the right ear at day 7 (1% TNCB; 20 µl 

dissolved in a 9:1 mixture of acetone/Miglyol 812) to elicit acute DTHR. To 

induce chronic DTHR, mice were challenged every 48 h, for up to 5 times. Ear 

swelling was quantified by measuring the ear thickness with a micrometer 

(Kroeplin, Schlüchtern, Germany) before TNCB ear challenge and 4 h to 24 h 

afterwards. All measurements of the challenged right ears were compared to 

the nonchallenged left ears of the mice. 

 
Optical imaging 

OI measurements were performed 5 min after injection of 100 µl L-012 

solution (5 mg/ml) (170). During optical imaging, mice were anesthetized by 

inhalation of isoflurane-O2 (1.5% Forane, Abbott GmbH, Wiesbaden, 

Germany) and placed on a heating pad to maintain body temperature 

between 36°C and 37°C. To measure the whole upper surface area of the 

mouse ears, the ears were carefully fixed on a flat black plate by a nylon 

thread. Regions of interest (ROIs) were drawn on the right and left ears, 

enabling a semiquantitative analysis of the detected bioluminescence and 

chemiluminescence average radiance [p/s/cm2/sr] as previously described (8, 

170). Image analysis was performed using Living Image Software (Perkin 

Elmer). 
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RNA extraction and gene expression analysis 

Ear samples of the treated mice were sheared in Qiazol (79306, Qiagen) and 

total RNA was isolated in accordance with the manufacture`s protocol. 

Genomic DNA was removed by DNAse I digestion (EN0523, Thermo Fisher), 

followed by cDNA synthesis using oligo(dT) primer (SO132, Thermo Fisher) 

and Revert Aid reverse transcriptase (EP0441, Thermo Fisher). The 

expression of the indicated genes was quantified using the Green Master mix 

(M3023, Genaxxon) and self-designed primers (Suppl Table 1). PCR 

conditions were as follows: Initial denaturation 15 min at 95°C, followed by 45 

cycles of 95°C for 15 s and 60°C for 45 s. Relative mRNA levels were 

calculated by normalization to the reference gene Actin using the 2-∆∆CT 

method. 

 

Histopathology 

Tissue samples were fixed in 4% formalin and subsequently paraffin 

embedded. For histology 3-5 µm-thick sections were cut and stained with 

haematoxylin and eosin (H&E). Immunohistochemistry was performed on an 

automated immunostainer (Ventana Medical Systems, Inc.) according to the 

company’s protocols for open procedures with slight modifications. The slides 

were stained with the antibodies CD3 (Clone SP7, DCS Innovative 

Diagnostik-Systeme GmbH u. Co. KG, Hamburg, Germany) and MPO (Anti-

Myeoloperoxidase Ab-1, Lab Vision UK, Ltd., Newmarket, Suffolk). 

Appropriate positive and negative controls were used to confirm the adequacy 

of the staining. Photomicrographic images were acquired with an Axioskop 2 
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plus Zeiss microscope equipped with a Jenoptik (Laser Optik System, Jena, 

Germany) ProgRes C10 plus camera and software. The epidermal 

inflammation score was based on the presence and number of epidermal 

abscesses and crusts per section (0 = no damage, 1 = presence of 

abscesses, 2 = between 1 and 5 crusts, 3 = between 6 and 10 crusts, 4 = 

more than 11 crusts). A semiquantative analysis of dermal inflammation was 

also performed (“-“ = no inflammatory infiltrate, “+” = minimal inflammatory 

cells, “++” = mild inflammation, “+++” = moderate inflammation, “++++” = 

severe presence of inflammatory cells).  

 

Statistical analysis 

A paired, two tailed Student’s t test was used to compare the peak of the 

optical imaging signal and the baseline signal (Fig. 1a and b; Fig. 2a and b). 

Unpaired, two-tailed Student’s t test was utilized to compare the relative 

changes of ROS production and NF-κB activation after the first TNCB 

challenge as well as after the third and the fifth TNCB challenge (Fig. 1c and 

2c). Differences in ear thickness, L-012 signal intensities or NF-κB activation 

signal intensities (NF-κB reporter mice) between NAC- and sham-treated mice 

were examined by unpaired, two-tailed Student’s t test (Fig. 3a - c). P values 

below 0.05 were considered statistically significant. Quantitative data are 

reported as the mean and standard error of the mean (± 1 SEM). 
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Suppl. Discussion 1 
 

The heterodimer of the proteins p50 and RelA (p65) form the canonical NF-κB 

signaling pathway, whereas p52 and RelB are driving the alternative (non-

canonical) NF-κB signaling pathway (130, 171, 172). While the canonical NF-

κB signaling pathway is faster and more involved in unspecific innate immune 

responses, the slower alternative pathway is associated with adaptive immune 

responses and developmental processes (173-176). Knockout experiments 

revealed that mice deficient in alternative NF-κB signaling are unable to 

develop an adequate adaptive immune response against viral infections (177). 

However, mice deficient in classical NF-κB signaling are more sensitive to 

bacterial infections (131). Together both, the canonical and alternative NF-κB 

signaling pathway, represent an interdependent, highly complex regulation 

system that are influencing each other by expression of NF-κB-monomers, 

phosphorylation or cleavage of pro-forms (139, 178-181). Both NF-κB 

signaling pathways are interacting with hundreds of gene loci due to a distinct 

palindromic DNA sequence (182). Physiologically NF-κB signaling is involved 

in embryonal development as well as in immune reactions. The relevance of 

functional NF-κB signaling is underlined by multiple diseases directly caused 

by genetic malfunctions of NF-κB proteins leading mostly to immune defects 

or developmental disorders (182). Beyond that, the onsets of a broad range of 

diseases are caused by cellular responses transmitted by NF-κB signaling, 

including cancer or neurodegeneration (183, 184). 
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ROS species interfere with both the canonical as well as the noncanonical 

NF-κB signaling pathways and are believed to be major regulators of NF-κB-

mediated cell responses (185-189). How ROS/RNS interact with NF-κB 

pathways has not yet been fully elucidated. In vitro experiments show that 

cysteines of NF-κB signaling molecules can be oxidized by ROS/RNS, 

resulting in inactivation of NF-κB signaling molecules. This inactivation can in 

turn lead to activation or inactivation of the NF-κB signaling pathway 

depending on the negative or positive regulatory function of the oxidized NF-

κB signaling molecule. The oxidation can be reversed by antioxidative 

glutathione (186). Furthermore, the oxidation of a specific cysteine within the 

p50 molecule can lead to the inhibition of its DNA binding and therefore to 

reduced NF-κB signaling. In contrast, mitochondrial ROS are able to enhance 

NF-κB signaling (190). Modulatory signaling pathways upstream of NF-κB 

(e.g., TNF signaling by ROS) are another mode of interaction (186, 191). 

 

Suppl. Discussion 2 

It has been demonstrated that NAC can increase the ability of the NF-κB 

transcription factor subunit p65 to bind to DNA (192). Previously, we reported 

a suppressive effect of NAC treatment on matrix metalloproteinase activity 

and angiogenesis (8). The p38 MAP kinase pathway represents another major 

ROS-sensitive signaling pathway that is involved in establishing and 

maintaining inflammatory responses (193-197). NAC effectively inhibits p38 

MAP kinase signaling in T cells and dendritic cells (198, 199). In our 

experiments, we observed a nonuniform effect of NAC treatment on in vivo 
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ROS/RNS production and NF-κB activity despite the clear anti-inflammatory 

effect demonstrated by the reduced ear swelling responses, possibly due to 

interactions with other pathways. 
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Suppl. Table 1 

gene forward primer reverse primer 

Actin AGGAGTACGATGAGTCCGGC GGTGTAAAACGCAGCTCAGTA 

Alox5 TGTACACACCAGTTCCTGGC GTTTGGTTGAGCTGGATGGC 

Ccl2 CTGGAGCATCCACGTGTTGG CCCATTCCTTCTTGGGGTCAG 

Hmox1 TGACACCTGAGGTCAAGCAC AAGTGACGCCATCTGTGAGG 

Il10 GCATTTGAATTCCCTGGGTGAG CATGGCCTTGTAGACACCTTGG 

Il1b AGCTGAAAGCTCTCCACCTC GCTTGGGATCCACACTCTCC 

Nrf2 TAGTTCTCCGCTGCTCGGAC TGTCTTGCCTCCAAAGGATGTC 

Ptgs2 AGCAGATGACTGCCCAACTC GGAAGCTCCTTATTTCCCTTCAC 

Tnf AAGTTCCCAAATGGCCTCCC TTGCTACGACGTGGGCTAC 
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Suppl. Table 2 

1st challenge 5th challenge 

 

 

 

 

 

 

 

 

 

 

 

Results of the histological scoring: Epidermal inflammation score was based 

on the presence and number of epidermal abscesses and crusts per section 

(0 = no damage, 1 = presence of abscesses, 2 = between 1 and 5 crusts, 3 = 

between 6 and 10 crusts, 4 = more than 11 crusts). IHC was analysed by a 

semiquantative analysis of dermal inflammation (“-“ = no inflammatory 

infiltrate, “+” = minimal inflammatory cells, “++” = mild inflammation, “+++” = 

moderate inflammation, “++++” = severe presence of inflammatory cells). (n = 

4; only 12 h after the 5th TNCB ear challenge: n = 3). 

 score MPO CD3 

naive 0 - - 

naive 0 - - 

naive 0 - - 

naive 0 - - 

4 h 0 - - 

4 h 0 - - 

4 h 0 + + 

4 h 0 + + 

12 h 0 + + 

12 h 0 ++ + 

12 h 0 ++ + 

12 h 0 +++ + 

24 h 1 + + 

24 h 2 ++++ + 

24 h 2 ++++ ++ 

24 h 3 ++++ + 

 

 score MPO CD3 

0 h 0 +++ + 

0 h 1 + ++ 

0 h 2 ++ + 

0 h 2 + ++ 

4 h 2 ++ + 

4 h 2 + + 

4 h 0 +++ ++ 

4 h 2 +++ +++ 

12 h 2 +++ +++ 

12 h 2 ++ ++ 

12 h 2 ++ +++ 

24 h 2 +++ +++ 

24 h 2 +++ +++ 

24 h 1 ++ +++ 

24 h 2 ++ ++ 
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Suppl. Fig. 1 

 

When calculating the relative change in signal intensity within the course of 

the 3rd or 5th TNCB ear challenge, using 0 h of the 3rd or 5th challenge as 

baseline, the relative increase in NF-κB activity 12 h and 48 h after the 3rd 

TNCB ear challenge and especially 4 h, 12 h and 24 h after the 5th TNCB ear 

challenge was impressively higher whereas the relative increase in ROS/RNS 

production was moderate. 12 h after the 5th TNCB challenge the relative 

change in NF-κB activation was significantly higher compared to the relative 

change in ROS/RNS production (unpaired, two-tailed Student’s t-test). Data 

are presented as the mean ± SEM. 

 

0

500

1000 
1500 
2000 
2500 
3000 
3500 
4000 
4500 

4h 12h 24h

3
rd

 challenge

0

2000

4000

6000

8000 

10000

12000

4h 12h 24h 

5
th

 challenge
%

 c
h

a
n

g
e
 %
 c

h
a
n

g
e
 

ROS
NF-κB-activation
* 



 48

Suppl. Fig. 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corresponding images with 50x magnification of the CD3 and MPO IHC from 

(a) naïve mice (0 h), inflamed ears with (a) acute cutaneous DTHR 4 h, 12h 

and 24 h after the 1st TNCB ear challenge and (b) chronic cutaneous DTHR 
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before (48 h after the 4th TNCB ear challenge) 4 h, 12h and 24 h after the 5th 

TNCB ear challenge (n = 4; only 12 h after the 1st TNCB ear challenge: n = 3).  
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Suppl. Fig. 3 

 

Corresponding images with 50x magnification of the CD3 and MPO IHC of 

NAC- and sham treated mice 24 h after the last TNCB ear challenge. CD3 

and MPO IHC did not reveal significant differences between the two 

experimental groups. 

 

 

 

 

  

5
th

 challenge 24h (chronic DTHR)

Sham

NAC 

MPO 50x CD3 50x 



 51

 

2.2 Cysteine-type Cathepsins Promote the Effector Phase of Acute 

Cutaneous Delayed-Type Hypersensitivity Reactions (169) 

 

The article included in this chapter was published in 

Theranostics 2019 May 31;9(13):3903-3917. 

”Cysteine-type cathepsins promote the effector phase of acute cutaneous de-

layed-type hypersensitivity reactions” 

Johannes Schwenck, Andreas Maurer, Birgit Fehrenbacher, Roman 

Mehling, Philipp Knopf, Natalie Mucha, Dennis Haupt, Kerstin Fuchs, 

Christoph M. Gries-singer, Daniel Bukala, Julia Holstein, Martin Schaller, 

Irene Gonzalez Menendez, Kamran Ghoreschi, Leticia Quintanilla-Martinez, 

Michael Gütschow, Stefan Laufer, Thomas Reinheckel, Martin Röcken, 

Hubert Kalbacher, Bernd J Pichler, Manfred Kneilling. 
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Abstract 

Cysteine-type cathepsins such as cathepsin B are involved in various steps of inflammatory processes such 
as antigen processing and angiogenesis. Here, we uncovered the role of cysteine-type cathepsins in the 
effector phase of T cell-driven cutaneous delayed-type hypersensitivity reactions (DTHR) and the 
implication of this role on therapeutic cathepsin B-specific inhibition. 

Methods: Wild-type, cathepsin B-deficient (Ctsb-/-) and cathepsin Z-deficient (Ctsz-/-) mice were 
sensitized with 2,4,6-trinitrochlorobenzene (TNCB) on the abdomen and challenged with TNCB on the 
right ear to induce acute and chronic cutaneous DTHR. The severity of cutaneous DTHR was assessed by 
evaluating ear swelling responses and histopathology. We performed fluorescence microscopy on tissue 
from inflamed ears and lymph nodes of wild-type mice, as well as on biopsies from psoriasis patients, 
focusing on cathepsin B expression by T cells, B cells, macrophages, dendritic cells and NK cells. 
Cathepsin activity was determined noninvasively by optical imaging employing protease-activated 
substrate-like probes. Cathepsin expression and activity were validated ex vivo by covalent active site 
labeling of proteases and Western blotting. 

Results: Noninvasive in vivo optical imaging revealed strong cysteine-type cathepsin activity in inflamed 
ears and draining lymph nodes in acute and chronic cutaneous DTHR. In inflamed ears and draining lymph 
nodes, cathepsin B was expressed by neutrophils, dendritic cells, macrophages, B, T and natural killer 
(NK) cells. Similar expression patterns were found in psoriatic plaques of patients. The biochemical 
methods confirmed active cathepsin B in tissues of mice with cutaneous DTHR. Topically applied 
cathepsin B inhibitors significantly reduced ear swelling in acute but not chronic DTHR. Compared with 
wild-type mice, Ctsb-/- mice exhibited an enhanced ear swelling response during acute DTHR despite a 
lack of cathepsin B expression. Cathepsin Z, a protease closely related to cathepsin B, revealed 
compensatory expression in inflamed ears of Ctsb-/- mice, while cathepsin B expression was reciprocally 
elevated in Ctsz-/- mice. 

Conclusion: Cathepsin B is actively involved in the effector phase of acute cutaneous DTHR. Thus, 
topically applied cathepsin B inhibitors might effectively limit DTHR such as contact dermatitis or 
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psoriasis. However, the cathepsin B and Z knockout mouse experiments suggested a complementary 
role for these two cysteine-type proteases. 

Key words: inflammation, proteases, cathepsin B, optical imaging, delayed-type hypersensitivity 

Introduction 

Proteases are known for their diverse extra- and 
intracellular functions under both physiological and 
pathological conditions. Cysteine-type cathepsins, a 
large family of proteases, were first found in 
lysosomes and have been considered strict 
intracellular enzymes that degrade ingested proteins 
[1]. However, in recent years, complex intra- and 
extracellular interactions of cathepsins have been 
discovered [2]. 

In this study, we focused on cathepsin B, a 
ubiquitously expressed cysteine exopeptidase [3]. 
Cathepsin B is expressed as a proenzyme, which is 
activated in early endosomes by autocatalytic 
cleavage [3, 4]. In the acidic pH of the endolysosomal 
cell compartment, cathepsin B is involved in the 
antigen processing crucial for adaptive immunity. 
Indeed, the contribution of cathepsin B to Toll-like 
receptor (TLR) signaling [5], apoptosis [6] and tumor 
necrosis factor (TNF) secretion [7] is critical for the 
innate immune response. Although cathepsin B is 
unstable at neutral pH, several experiments have 
shown that cathepsin B is involved in extracellular 
processes such as angiogenesis [8], extracellular 
matrix remodeling and cell migration [9]. Thus, a 
wide variety of diseases, such as rheumatoid arthritis 
[10], multiple sclerosis [11], pancreatitis [12], cancer 
[13] and Alzheimer´s disease [14], are associated with 
enhanced cathepsin B expression. 

Noninvasive optical imaging using 
protease-activatable probes is a well-established tool 
to determine the activity of cathepsins in vivo [15, 16]. 
The protease-activatable probe features a peptide 
sequence preferentially cleaved by the corresponding 
protease. Cleavage at this site by proteases such as 
cathepsin B, Z, L or S abolishes the fluorescence 
resonance energy transfer (FRET)-mediated 
quenching of the fluorescence signal, enabling the 
measurement of cathepsin activity by in vivo optical 
imaging [15, 16]. 

Contact hypersensitivity reactions are cutaneous 
delayed-type hypersensitivity reactions (DTHR) 
mediated by interferon (IFN)-γ-producing CD8+ 
(cytotoxic T (Tc)1) and CD4+ (T helper (Th)1) cells. 
Our group extensively studied the role of mast cell 
TNF secretion [17], matrix metalloproteinase (MMP) 
activity [18], αVβ3 integrin expression and 
angiogenesis [19] in acute and chronic experimental 
2,4,6-trinitrochlorobenzene (TNCB)-induced cuta-
neous DTHR. Because TNF secretion [7] and 

angiogenesis [8] are considered cathepsin 
B-dependent, this protease seems to be a further 
candidate target molecule for therapeutic approaches 
for cutaneous DTHR. To date, no in vivo data exist 
regarding the efficacy of specific topically applied 
cathepsin B inhibitors in inflammatory processes such 
as T cell-driven, TNCB-induced cutaneous DTHR. 
The irreversible cathepsin B inhibitor CA-074 was 
developed from the broad-spectrum cathepsin 
inhibitor E-64 [20] and highly selectively inhibits 
intracellular cathepsin B in vitro [21]. To attain 
enhanced selectivity, CA-074 interacts with amino 
acids in the characteristic structural feature of 
cathepsin B, the occluding loop, as does the recently 
designed inhibitor 17 [22]. 

In this study, we focused on the in vivo sites of 
cathepsin activity and the identification of cathepsin 
B-expressing inflammatory cells at the inflammation 
sites and draining lymph nodes. To our knowledge, 
the topical application of cathepsin B inhibitors has 
not yet been tested. Here, we investigated the efficacy 
of the topical, highly specific cathepsin B inhibitors 
CA-074 and inhibitor 17 to suppress ear swelling 
responses in TNCB-induced experimental cutaneous 
DTHR. 

Materials and Methods 

Animals 

In this study, we used 8- to 12-week-old female 
C57BL/6 mice (Charles River Laboratories, Sulzfeld, 
Germany). Cathepsin B-deficient (Ctsb-/-) and 
cathepsin Z-deficient (Ctsz-/-) mice were backcrossed 
to the C57BL/6 genetic background for 10 generations 
[23, 24]. All animal experiments and methods were 
approved by the Regierungspräsidium Tübingen and 
were performed in accordance with relevant 
guidelines and regulations. 

In vivo experiments 

We sensitized mice on the shaved abdomen 
(size, approximately 2 cm × 2 cm) by applying 80 μL 
of 5% TNCB dissolved in a 4:1 mixture of 
acetone/Miglyol 812 (SASOL, Witten, Germany). To 
elicit acute cutaneous DTHR, the animals were 
challenged with 20 μL of 1% TNCB (dissolved in a 1:9 
mixture of acetone/Miglyol 812) on both sides of the 
right ear seven days later. The TNCB ear challenge 
was repeated every 2-3 days on the right ear, up to 
five times, to induce chronic cutaneous DTHR. As a 
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control, naïve (nonsensitized) mice were challenged 
with 1% TNCB on the right ear (irritant-toxic 
reaction). We measured the ear thickness with a 
micrometer (Kroeplin, Schlüchtern, Germany) and 
quantified ear swelling by subtracting the ear 
thickness before ear challenge from the ear thickness 
12 h to 24 h after ear challenge. 

Treatment approach 

The cathepsin B inhibitor CA-074 (PeptaNova, 
Sandhausen, Germany) and a newly developed 
cathepsin B inhibitor, called inhibitor 17 [25], were 
dissolved in a 1:9 mixture of acetone/Miglyol 812 
(SASOL), and 20 μL of the 0.1 mM CA-074 or 0.1 mM 
inhibitor 17 solution was applied topically to the right 
ear every 24 h starting three days prior to the first 
TNCB ear challenge. As the sham-treatment, we used 
a 9:1 mixture of acetone/Miglyol 812 (SASOL). 

Histology 

We sacrificed mice 24 h after TNCB ear challenge 
and fixed the ear tissue in 4% buffered formalin. We 
embedded the tissue in paraffin, cut 5-μm sections 
using a microtome (Leica, Wetzlar, Germany) and 
performed hematoxylin and eosin (H&E)-staining 
according to standard procedures [26]. 

Optical imaging 

In vivo cathepsin activity was measured by 
optical imaging using a ProSense activatable 
fluorescent probe, the corresponding noncleavable 
control probe and CatB680 (PerkinElmer, Waltham, 
USA). We injected the probes intravenously 12 h after 
TNCB ear challenge and performed in vivo optical 
imaging measurements 24 h later according to the 
recommendation of the manufacturer. For optical 
imaging, a Hamamatsu Aequoria Dark Box and a 
C4880 Hamamatsu dual mode cooled CCD camera 
(Hamamatsu Photonics Deutschland GmbH, 
Herrsching, Germany) were used. During the 
measurement, mice were anesthetized by the 
inhalation of isoflurane-O2 (1.5%; Forane, Abbott 
GmbH, Wiesbaden, Germany) and heated to maintain 
the body temperature between 36 °C and 37 °C. 

For the appropriate determination of signal 
intensity (SI) by optical imaging, we carefully fixed 
the ears planar on a flat black plate using a nylon 
thread [18]. Regions of interest (ROI) were drawn on 
the images of the TNCB-challenged right ear and the 
untreated left ear (internal control) and analyzed 
semiquantitatively using Wasabi imaging software 
(Hamamatsu). 

Fluorescence microscopy 

Mouse ears and (cervical) draining lymph nodes 
were collected 24 h after the first TNCB ear challenge, 

placed in RPMI (Biochrom, Berlin, Germany) and 
immediately frozen in liquid nitrogen. Skin biopsies 
were taken from patients with plaque psoriasis. The 
biomaterial collection study was approved by the 
ethics committee of Eberhard Karls University 
(protocol 545/2014BO2), and patients provided 
written informed consent. Frozen sections were fixed 
with periodate-lysine-paraformaldehyde (0.1 M 
L-lysine-HCl; 2% paraformaldehyde; and 0.01 M 
sodium metaperiodate, pH 7.4). Sections were 
blocked using donkey serum and were then incubated 
with the following primary antibodies (Ab): rabbit 
anti-cathepsin B (1:20, antibodies-online GmbH, 
Aachen, Germany), goat anti-CD20 (1:50, Santa Cruz 
Biotechnology, Dallas, USA), mouse anti-CD20 (1:100, 
Agilent, Santa Clara, USA), goat anti-CD3-ε (1:50, 
Santa Cruz Biotechnology), hamster anti-49b-Alexa 
Fluor 647 (Biolegend, San Diego, USA), rabbit 
anti-CD56 (1:100, Cell Marque, Rocklin, USA), rat 
anti-F4/80 (1:100, Abcam, Cambridge, UK), mouse 
anti-CD163 (1:100, DCS, Hamburg, Germany), 
Armenian hamster anti-CD11c-Alexa Fluor 647 
(BioLegend) and rabbit anti-Factor XIIIa (1:100, DCS, 
Hamburg, Germany). Bound antibodies were 
visualized using Dylight 549- and Dylight 
649-conjugated donkey anti-rabbit IgG (Dianova, 
Hamburg, Germany), Cy3-conjugated donkey 
anti-rabbit IgG (Dianova), Cy5-conjugated donkey 
anti-goat IgG (Dianova), Cy5-conjugated donkey 
anti-mouse IgG, (Dianova), Dylight 549-conjugated 
donkey anti-rat IgG (Dianova), Cy3-conjugated 
donkey anti-goat IgG (Dianova) and Alexa 
647-conjugated donkey anti-rabbit IgG (Dianova) 
antibodies. For nuclear staining, we used Yopro 
(1:2000, Invitrogen, Carlsbad, USA) and mounted the 
slides using Mowiol (Hoechst, Frankfurt, Germany). 
Sections were analyzed using an LSM 800 (Zeiss, 
Oberkochen, Germany) or a Leica TCS-SP/Leica DM 
RB confocal laser scanning microscope (Leica 
Microsystems, Wetzlar, Germany) and an HCX PL 
APO 63×/1.132-0.6 oil CS objective lens. Images were 
processed with Leica Confocal Software (LCS, version 
2.61). The original magnification was ×63. Cells 
double positive for cathepsin B and the specific cell 
surface antigen were counted in representative areas, 
and the means are displayed as a percentage of the 
mean of all cells expressing the specific cell surface 
antigen. 

Active site labeling 

Mouse ears and draining lymph nodes were 
collected 24 h after the first TNCB ear challenge and 
homogenized in lysis buffer (100 mM 
citrate/phosphate; 2 mM EDTA; 1% NP40, pH 5) 
using an Ultra-Turrax disperser (IKA-Werke, Staufen, 
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Germany). Lysates were cleared by centrifugation 
(20800 g, 10 min) and stored at -80 °C. Active site 
labeling of cysteine proteases was performed as 
previously described [27]. Briefly, 10 µg of cellular 
protein was preincubated for 15 minutes with 12.5 µM 
E-64d or solvent control (dimethylsulfoxide; DMSO) 
in the presence of 50 mM dithiothreitol, followed by 
the addition of 12.5 µM DCG-04 and incubation at 
room temperature for 30 minutes. Samples were then 
subjected to reducing SDS-PAGE on minigels 
containing 15% polyacrylamide, followed by Western 
blotting. The biotinylated probe was detected on 
PVDF membranes using either streptavidin- 
conjugated peroxidase, Amersham ECL Prime 
substrate and Amersham Hyperfilm ECL 
photosensitive film (Amersham, GE Healthcare) or 
IRDye 680LT streptavidin and an Odyssey Sa imaging 
system (LI-COR Biotechnology, Bad Homburg, 
Germany; samples from Ctsb-/-/Ctsz-/-/wild-type 
mice are shown in Figure 4B). To validate the 
specificity of the cathepsin B bands, which were 
identified at 27-30 kDa by active site labeling, we used 
an anti-cathepsin B antibody (goat anti-cathepsin B, 
1:2222; R&D Systems, Minneapolis, USA) and an 
anti-cathepsin Z antibody (goat anti-cathepsin Z, 
1:2222; R&D Systems, Minneapolis, USA) visualized 
by a donkey anti-goat IgG antibody (LI-COR, Lincoln, 
USA), as shown in Figure S5. The original blots are 
shown in Figures S7-S13. 

Flow cytometry 

Spleens and lymph nodes were passed through a 
70 µm cell strainer to achieve a single-cell suspension, 
which was then washed in phosphate-buffered saline 
(PBS) supplemented with 1% fetal bovine serum. 
Spleens were subjected to an additional erythrocyte 
lysis step with ACK lysing buffer (BioWhittaker, 
Basel, Switzerland). Cells were counted with a C-Chip 
disposable counting chamber (NanoEnTek, Seoul, 

Korea), and 4.5x106 cells per sample were used for 
staining. For the T cell panel, flow cytometry staining 
was performed using monoclonal antibodies (mAbs) 
against the following proteins and conjugated to the 
indicated fluorophores: V450-CD3, V500-CD45.2, 
FITC-CD8, PE-CD4, APC-Cy7-CD62L, Fc-Block (all 
from BD Biosciences, Franklin Lakes, USA), 
PE-Cy7-CD69 (eBioscience, Santa Clara, USA), and 
APC-NK1.1 (Miltenyi Biotec, Bergisch Gladbach, 
Germany). For the myeloid cell panel, PE-F4/80 
(BioLegend, San Diego, USA), V500-CD45.2, 
APC-CD11c, PE-Cy7-CD11b, Fc-Block (all from BD 
Biosciences), V450-Gr1, FITC-MHC-II, and 
APC-Cy7-CD19 (all from eBioscience) were used. 
Single-cell suspensions were input to a BD LSR 
Fortessa (BD Biosciences), and analysis was 

performed using FlowJo software (Ashland, USA). 
For intracellular flow cytometry (Figure S1) ears 

and draining cervical lymph nodes were collected 24 
h after the first TNCB ear challenge. The ears were cut 
into very small pieces and incubated in a digestion 
mix containing collagenase IV (Worthington, 
Lakewood, USA) and DNase I (Sigma, St. Louis, USA) 
in RPMI (Biochrom, Berlin, Germany). After tissue 
digestion, the ears and lymph nodes were passed 
through a 70 µm cell strainer to achieve a single-cell 
suspension, which was then washed with FACS 
buffer (phosphate-buffered saline supplemented with 
2 % fetal bovine serum and 5 mM EDTA). 
Non-specific bindings were blocked using Fc-Block 
(BioLegend, San Diego, USA) and donkey serum 
(Millipore, Burlington, USA). Surface and viability 
staining was performed using following antibodies 
and dyes: Pacific Blue™-CD3, PE-CD19, 
PE-Cy7-NK1.1 (all from BioLegend, San Diego, USA), 
Fixable Viability Dye eFluor™ 520 (eBioscience, Santa 
Clara, USA). For intracellular staining, cells were 
fixed with 2 % Formaldehyde and cell membrane was 
permeabilized by incubation with 90 % Methanol 
followed by washing with FACS buffer containing 0.5 
% Saponin. Cells were then incubated with 
goat-anti-cathepsin B antibody 1:1000 (R&D Systems, 
Minneapolis, USA) and donkey anti-goat-Alexa Fluor 
647 1:800 (Dianova, Hamburg, Germany) was used as 
secondary antibody. For negative control, cells were 
incubated only with the secondary antibody. The 
expression of cell surface antigens and cathepsin B 
was analyzed by LSRII flow cytometer (BD 
Biosciences, Heidelberg, Germany) and FlowJo 
software (Ashland, USA). 

Statistical analysis 

An unpaired, two-tailed Student’s t-test was 
used to compare the optical imaging signal intensities 
(Figure 1B right/left ear; Figure S2B/D, CA-074/ 
sham-treatment; Figure S5A, Ctsb-/-/wild-type mice). 

To analyze the differences in the optical imaging 
signal intensities between the inflamed right ears of 
mice with irritative-toxic reactions and cutaneous 
DTHR after 1, 3 and 5 challenges, we used one-way 
analysis of variance (ANOVA; Figure 1D). Differences 
in the ear swelling responses were compared by an 
unpaired, two-tailed Student’s t-test (Figure 4A). 
According to Bonferroni correction for multiple 
comparisons, the significance level was adjusted to p< 
0.0125. 

Differences in the ear swelling responses 
between the sham- and CA-074-treated groups with 
chronic cuteaneous DTHR were compared by 
Dunnett’s test (Figure S2A). We analyzed the ear 
swelling responses between Ctsb-/- and wild-type 
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mice with acute cutaneous DTHR using an unpaired, 
two-tailed Student’s t-test with Bonferroni correction 
of the significance level (p< 0.025) due to multiple 
comparisons (Figure 5A; Figure S3A). Ctsz-/- mice 
were compared only qualitatively due to the small 
sample size (Figure 5A). 

Quantitative data are reported as the means ± 
standard errors of the mean (SEMs).  

Results 

In vivo protease activity in acute and chronic 
TNCB-induced cutaneous DTHR 

To measure protease activity in chronic 
cutaneous DTHR induced in mice by five TNCB 
challenges, we employed noninvasive imaging of ears 
using a substrate-like protease-activated probe 
(ProSense). This probe can be cleaved by several 
proteases and subsequently detected by 
fluorescence-based optical imaging [28]. ProSense or 

the noncleavable control probe was injected 12 h after 
the fifth challenge, and optical imaging was 
performed 24 h later. We found a 4-fold increase in 
protease activity in the inflamed right ear compared 
with that in the untreated left ear. In contrast, the 
noncleavable control probe produced only a very faint 
background signal, indicating that only the cleavable 
probe emits a signal of reasonable intensity (Figure 
1A/B). 

Considering that proteases are significantly 
activated during chronic cutaneous DTHR, we 
focused on the specific participation of cathepsins 
using an optical imaging probe preferentially cleaved 
by cathepsin B (CatB680) but cleavable to a lesser 
extent, by other cathepsins, such as cathepsin S [29]. 
The ear tissue of an untreated naïve control mouse 
yielded a faint fluorescence signal corresponding to 
low cathepsin activity in healthy tissue (Figure 1C/D). 
In the ear with acute cutaneous DTHR elicited by one 
TNCB challenge one week after sensitization, the 

 

 
Figure 1: In vivo imaging of proteases in cutaneous DTHR. Mice were sensitized with 5% TNCB on the abdomen and, after one week, were challenged with 1% TNCB 
on the right ear to induce acute cutaneous DTHR. As a control, nonsensitized mice were challenged with 1% TNCB on the right ear (irritative-toxic reaction). To induce chronic 
cutaneous DTHR, mice were repetitively challenged every two days, up to five times. A: ProSense, a probe activatable by several proteases, and ProSense-control, a 
nonactivatable probe, were injected 12 h after the fifth challenge, and in vivo optical imaging was performed 24 h later. B: The ProSense signal intensity was 4-fold higher in the 
inflamed right ears than in the control left ears. The nonactivatable control probe displayed almost no signal (n=2; unpaired, two-tailed Student’s t-test; mean±SEM). C/D: The 
signal intensity of CatB680, a probe preferentially activated by cathepsin B, was measured after the first, third and fifth TNCB challenges. After the first challenge, the signal 
intensity was 4-fold higher than that in untreated control ears. After the third and fifth challenges, the signal intensity increased to 400% and 620% of the control signal intensity 
(one-way ANOVA; mean±SEM). Unsensitized mice, which developed an irritative-toxic reaction after a single challenge, showed a slightly lower signal than sensitized mice. 
Untreated naïve mice showed signal intensities similar to those in the untreated left ears. 
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CatB680 signal was 4-fold higher than that in the 
healthy ear. However, this signal was only slightly 
higher than that in the ears of nonsensitized naïve 
mice after a single TNCB challenge (nonspecific 
irritative-toxic control; Figure 1C/D). Ongoing 
accelerated chronic cutaneous DTHR was associated 
with an almost linear increase in the CatB680 signal 
intensity. After five TNCB ear challenges, the signal 
intensity in chronically inflamed right ears was 
2.6-fold higher than that in ears with acute cutaneous 
DTHR. Importantly, in this context, the signal 
intensity in the control ears of mice challenged with 
TNCB five times on the contralateral ears was slightly 
increased as a consequence of some degree of TNCB 
spread caused by the cleaning behavior of the 
experimental mice (Figure 1C/D). 

Cellular sources of cathepsin B in acute 
cutaneous DTHR 

To determine the cellular sources of cathepsin B 
in acute cutaneous DTHR, we conducted 
immunofluorescence microscopy analyses of ears and 
draining lymph nodes obtained 24 h after a single 
TNCB ear challenge. Based on cell surface marker 
expression, we focused on cathepsin B expression in 
dendritic cells (DCs; CD11c), B cells (CD20), T cells 
(CD3), macrophages (F4/80), and NK cells (CD49b). 
For quantification, we assessed the percentage of 
cathepsin B-positive CD11c-, CD20-, CD3-, F4/80- and 
CD49b-expressing cells (Figure 2A). In the healthy 
ears of naïve mice, which exhibited neither 
histopathological signs of inflammation nor a 
leukocytic infiltrate, we could identify almost no 
cathepsin B-expressing resident cells. However, in 
ears with acute TNCB-induced cutaneous DTHR, we 
found strong edema, as well as extensive infiltration 
of inflammatory cells, as reported by Schwenck et al. 
[18]. In the present study, cathepsin B expression was 
detected in 36% of CD11c-positive cells (mainly 
dendritic cells), 27% of CD20-positive B cells, 26% of 
CD3-positive T cells, 25% of F4/80-positive 
macrophages and 15% of CD49b-positive NK cells in 

ear tissue with acute TNCB-induced cutaneous DTHR 
(Figure 2A/B). Interestingly, acute cutaneous DTHR 
was associated with an impressively higher 
percentage of cathepsin B-positive inflammatory cells 
in draining lymph nodes than in inflamed ear tissue 
(Figure 2C). Specifically, in lymph nodes, we detected 
cathepsin B expression in 73% of dendritic cells, 64% 
of B cells, 63% of T cells, 80% of macrophages and 64% 
of NK cells (Figure 2C). Even in lymph nodes of naïve 
healthy mice, 11% of dendritic cells, 27% of B cells, 
38% of T cells, 6% of macrophages and 53% of NK 
cells stained positive for cathepsin B (Figure 2D). 
Importantly, in this context, cathepsin B was found 

within the cell cytoplasm as well as in the 
extracellular space. Intracellular cathepsin B flow 
cytometry analysis revealed a strong cathepsin B 
expression in the leucocytes with high granularity 
(most probably neutrophils) isolated from the 
inflamed ears with acute cutaneous DTHR (Figure 
S1).  

To determine whether our results are applicable 
to human disease, we analyzed skin tissue from a 
patient suffering from psoriasis. Like experimental 
cutaneous DTHR in mice, psoriatic lesions were 
dominated by neutrophils (Figure 3A). 
Immunofluorescence microscopy revealed notable 
cathepsin B expression in B cells, dendritic cells, T 
cells and NK cells, in accordance with our murine 
data (Figure 3B). 

Specific cathepsin inhibition suppresses acute 
but not chronic cutaneous DTHR 

To address the role of cathepsin B expression 
and the therapeutic potential of cathepsin B inhibition 
in acute and chronic cutaneous DTHR, we topically 
treated TNCB-sensitized mice with the cathepsin B 
inhibitor CA-074 twice daily. This compound 
irreversibly inactivates its target, cathepsin B, 
selectively at nanomolar concentrations but tends to 
inhibit multiple cysteine-type cathepsins at higher 
concentrations. We started topical CA-074 treatment 
four days after sensitization and three days prior to 
the first TNCB ear challenge to ensure no impairment 
of the sensitization phase and to achieve a sufficient 
degree of cathepsin B inhibition. Topically 
administered CA-074 significantly reduced the ear 
swelling responses 12 h and 24 h after the first TNCB 
challenge (Figure 4A) but displayed no significant 
therapeutic effect on chronic cutaneous DTHR (Figure 
S2A). In contrast, histological H&E staining of 
CA-074-treated ears with acute cutaneous DTHR 
revealed strong reductions in ear thickness, edema, 
hyperkeratosis, acanthosis and inflammatory cell 
infiltration of compared with these features in 
sham-treated ears (Figure 4B). Interestingly, 
noninvasive in vivo optical imaging of CA-074-treated 
mice using the CatB680 probe showed that the signal 
intensity in the inflamed ears was not significantly 
reduced compared to that in the ears of wild-type 
mice (Figure S2B), suggesting that other proteases 
may be involved in the activation of the CatB680 
optical imaging probe (see discussion). Ex vivo optical 
imaging of draining lymph nodes revealed a tendency 
towards decreased CatB680 signal intensity, while the 
contralateral cervical, axillary, inguinal and 
mesenteric lymph nodes and the thymus, including 
the perithymic lymph nodes, remained unaffected 
(Figure S2C/D). 



 Theranostics 2019, Vol. 9, Issue 13 
 

 
http://www.thno.org 

3909 

 
Figure 2: Cellular sources of cathepsin B. Cellular sources of cathepsin B were analyzed by immunofluorescence microscopy using staining with a cathepsin B-specific 
antibody. The cell types of cathepsin B-expressing cells were determined by antibodies against specific surface antigens. A: Immunofluorescence staining of cathepsin B (red) and 
specific cell surface antigens (blue) in tissue from the right ear and draining lymph nodes of sensitized mice 24 h after TNCB challenge allowed the identification of cathepsin 
B-expressing immune cells (green represents nuclei). Cells with both antibodies bound appear purple. B: Cells onto which both anti-cathepsin B- and anti-cell surface antigen 
antibodies bound (purple), were counted. The results are shown as the percentage of all cells expressing the specific cell surface antigen (blue+purple). At the site of inflammation 
(the right ear) in sensitized mice 24 h after TNCB challenge, CD11c-positive dendritic cells exhibited the highest percentage of cells expressing cathepsin B, while CD49b-positive 
NK cells expressed cathepsin B most rarely among the immune cell populations (n=4; mean±SEM). C: In draining lymph nodes of sensitized mice 24 h after TNCB challenge, the 
percentage of cells expressing cathepsin B was higher than that in inflamed ear tissue. Almost 80% of the F4/80-positive macrophages expressed cathepsin B, while only a few cells 
in the other populations produced cathepsin B (n=4; mean±SEM). D: In cervical lymph nodes of naïve mice, 53% of the CD49b-positive NK cells expressed cathepsin B, while the 
expression of cathepsin B in F4/80-positive macrophages and CD11c-positive dendritic cells was comparatively low (n=2 mean±SEM). 

 

To exclude potential off-target effects of CA-074, 
we tested the anti-inflammatory potential of a second 
cathepsin B inhibitor. We selected the recently 
developed inhibitor 17, which strongly differs from 

CA-074 in its chemical characteristics and exhibited 
potent inhibitory effects on cathepsin B in vitro [22]. 
Inhibitor 17 reduced ear swelling in acute cutaneous 
DTHR most effectively at 24 h after the TCNB 
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challenge (Figure S3A). At this time point, H&E 
histology of the ears derived from sham- or inhibitor 
17-treated mice confirmed reduced edema and 
leukocyte infiltration as a consequence of inhibitor 17 
treatment (Figure S3B). 

Active site labeling confirms the therapeutic 
inhibition of cathepsin B 

We chose to use ex vivo active site labeling of 
cysteine-type cathepsins to demonstrate sufficient 
specific cathepsin B inhibition by CA-074 during acute 
cutaneous DTHR. Thus, we labeled protease active 
sites using the activity-based probe DCG-04 [30], 
which was developed from the broad-spectrum 
cathepsin inhibitor E-64d. First, we labeled lysates of 
inflamed ear tissue obtained from mice 24 h after a 
single TNCB challenge. Competitive labeling with 
E-64d, which does not produce a signal in this assay, 
revealed signal suppression by E-64d in several 
bands, thereby indicating the positions of active 
cathepsins on the gels (Figure 4C). Treatment of mice 
with the covalently binding cathepsin B inhibitor 
CA-074 abolished DCG-04 labeling of a single band, 
thereby identifying cathepsin B and proving selective 
inhibition of this protease in vivo. Hence, active 
cathepsin B was present at the site of the 
inflammatory process, i.e., the ear (Figure 4C). 
Interestingly, the level of active cathepsin B in 
draining lymph nodes revealed much stronger 
cathepsin B activity than that in inflamed ear tissue 
(Figure 4D). Again, CA-074 treatment effectively 
reduced active cathepsin B levels in draining lymph 
nodes during cutaneous DTHR, confirming the 

efficacy of selective, irreversible cathepsin B inhibition 
by CA-074 (Figure 4D). Nevertheless, active site 
labeling could not assess the inhibitory effect of 
inhibitor 17, most likely because of the reversible 
binding mode of inhibitor 17 to cathepsin B (Figure 
S3C/D). Most importantly, the expression of 
cathepsin Z in inflamed ears of CA-074 treated mice 
remained unaffected (Figure S4). 

Role of cathepsin Z in Ctsb-/- mice 

Despite the known proinflammatory role of 
cathepsin B, Ctsb-/- mice revealed an enhanced ear 
swelling response compared to that of wild-type mice 
during acute cutaneous DTHR, especially 24 h after 
challenge (Figure 5A). The absence of cathepsin B may 
be compensated by another protease. Since cathepsin 
Z (also known as cathepsin X) is the other 
carboxypeptidase in the cysteine-type cathepsin 
family, and because compensatory expression of those 
proteases has been reported previously [31], we 
analyzed cathepsin Z in more detail. In sharp contrast 
to Ctsb-/- mice, Ctsz-/- mice exhibited a trend towards 
reduced ear swelling responses 12 h and 24 h after 
TNCB ear challenge compared with those of 
wild-type mice (Figure 5A). H&E staining of ear tissue 
obtained from Ctsb-/- mice 24 h after TNCB ear 
challenge revealed more severe ear swelling, more 
pronounced edema and a higher density of 
infiltrating neutrophils than in wild-type mice. 
However, we could not identify any histopathological 
differences between Ctsz-/- and wild-type mice 
(Figure 5B). 

 

 
Figure 3: Cathepsin B expression in human inflammatory disease. A: H&E staining of human psoriatic skin tissue obtained from a clinically indicated punch biopsy 
shows parakeratosis and a dense neutrophil infiltrate. B: Immunofluorescence microscopy revealed cathepsin B expression by T cells (CD3), dendritic cells (Factor XIIIa), B cells 
(CD20) and NK cells (CD56) comparable to that in tissue from mice with experimental acute cutaneous DTHR (Figure 2). Cathepsin B (red); nuclei (green), CD3/Factor 
XIIIa/CD20/CD56 (blue); cathepsin B and CD3/Factor XIIIa/CD20/CD56 double-positive cells (pink). 
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Figure 4: Therapeutic impact of the specific cathepsin B inhibitor CA-074. The specific cathepsin B inhibitor CA-074 or a sham-treatment was applied topically on the 
right ears daily, starting three days prior the first challenge. A: CA-074-treated mice showed a highly significant decrease in ear swelling responses 12 h after the first challenge. 
Twenty-four hours after the first challenge, the effect on the ear swelling response was lower but still significant (treatment group: n=14; control groups: 12 h, n=28; 24 h, n=25; 
unpaired, two-tailed Student’s t-test; Bonferroni correction for multiple comparisons, significance level p< 0.0125; mean±SEM). B: Ear tissue was harvested 24 h after challenge 
and stained with H&E according to standard protocols. Tissue from CA-074-treated mice showed noticeably reduced ear thickness and reduced edema, hyperkeratosis, 
acanthosis and inflammatory cell infiltration (magnification 100x). C: To analyze active cathepsin B in vitro in tissue harvested from inflamed ears and draining lymph nodes of 
sensitized mice 24 h after TNCB challenge, we used an activity-based probe, which is an analog of broad-spectrum cysteine-type cathepsin inhibitor the E-64. Active site labeling 
of probes in inflamed ear tissue revealed active cathepsin B during acute cutaneous DTHR in sham-treated mice. Targeted CA-074 treatment reduced active cathepsin B levels 
very effectively. D: CA-074 strongly suppressed cathepsin B activation in draining lymph nodes. 
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Figure 5: Effect of cathepsin B deficiency. Ctsb-/- mice, Ctsz-/- mice and wild-type mice were sensitized on the abdomen with 5% TNCB and challenged seven days later on 
the right ear. A: We observed significantly enhanced ear swelling in Ctsb-/- mice during acute cutaneous DTHR 24 h after challenge compared to that in wild-type mice, while 
Ctsz-/- mice showed a trend towards reduced ear swelling compared to that in wild-type mice (wild-type: n=8; Ctsb-/- mice: n=11; Ctsz-/- mice: n=3; two-tailed Student’s t-test 
with Bonferroni correction p< 0.025; mean±SEM). B: H&E staining of inflamed ear tissue harvested 24 h after TNCB challenge revealed more severe ear swelling, more 
pronounced edema and a higher density of infiltrating neutrophils in Ctsb-/- mice than in wild-type mice. However, Ctsz-/- and wild-type mice exhibited no histopathological 
differences. C: Active site labeling revealed a diminished cathepsin B-sized band in the lanes corresponding to samples from Ctsb-/- mice. The cathepsin B bands in the lanes 
corresponding to samples from Ctsb-/- mice were more prominent than those in the lanes corresponding to samples from wild-type mice, suggesting upregulation of cathepsin 
B expression (Ctsb-/-: n=4; Ctsz-/-: n=3; wild-type: n=4). D: To confirm the identity of the bands detected by active site labeling, we performed immunoblotting on the same gel 
using a cathepsin B-specific antibody. Immunoblotting indicated a trend towards enhanced cathepsin B expression in Ctsz-/- mice and verified diminished cathepsin B expression 
in Ctsb-/- mice (Ctsb-/-: n=4; Ctsz-/-: n=3; wild-type: n=4). E: Immunoblotting using a cathepsin Z-specific antibody demonstrated a slight trend towards elevated cathepsin Z 
expression in some Ctsb-/- mice and virtually no cathepsin Z expression in Ctsz-/- mice (Ctsb-/-: n=4; Ctsz-/-: n=3; wild-type: n=4). 
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Optical imaging using the CatB680 probe during 
acute TNCB-induced cutaneous DTHR revealed a 
tendency towards increased signal intensity in the 
inflamed right ears of Ctsb-/- mice compared with that 
in wild-type mice (Figure S5A), suggesting 
compensatory effects of other proteases, especially 
since fluorescence microscopy analysis (Figure S5B) as 
well as Western blot analysis for cathepsin B 
expression showed cathepsin B deficiency in the 
inflamed ears of Ctsb-/- mice (Figure 5D). 

One day after the first TNCB ear challenge, 
DCG-04 labeling of ear tissue from Ctsb-/- mice 
revealed markedly reduced cysteine-type cathepsin 
activity in the region where cathepsin B activity was 
expected, while cathepsin B was detectable in 
wild-type and Ctsz-/- mice (Figure 5C). Western blot 
analysis using cathepsin B- and cathepsin Z-specific 
antibodies clearly identified the cathepsin B- and 
cathepsin Z-expressing bands that were detected with 
active site labeling (Figure 5C/D). Interestingly, the 
cathepsin B immunoblots revealed a trend towards 
reinforced cathepsin B bands in the lanes 
corresponding to samples from the inflamed ears of 
Ctsz-/- mice compared to those of wild-type mice, 
whereas, consistent with our expectations, no 
cathepsin B-positive band was detectable in samples 
from Ctsb-/- mice (Figure 5D). A similar effect was 
observed on the cathepsin Z immunoblots: We 
determined a pronounced cathepsin Z band in the 
lanes corresponding to samples from the inflamed 
ears of Ctsb-/- mice compared to those of wild-type 
mice, while Ctsz-/- mice did not express cathepsin Z 
(Figure 5E). These results suggest a compensatory role 
for cathepsin Z in Ctsb-/- mice and may explain the 
proinflammatory effects in Ctsb-/- mice. Analysis of 
cathepsins in draining lymph nodes revealed a similar 
level of cathepsin Z expression in Ctsb-/- mice and 
wild-type mice; similarly, no differences in cathepsin 
B expression were seen between Ctsz-/- and wild-type 
mice (Figure S5C-E). 

To test whether cathepsin B or cathepsin Z 
deficiency differentially impairs the immune system 
of Ctsb-/- and Ctsz-/- mice, we first analyzed the 
cellular composition of the spleen and the inguinal 
and axillary lymph nodes at the site of abdominal 
TNCB sensitization by flow cytometry, mainly 
focusing on CD4+ T helper cells and CD8+ cytotoxic T 
cells. Neither Ctsb-/- nor Ctsz-/- mice (naïve or 
TNCB-sensitized) exhibited significant alterations in 
the composition of immune cells or the T cell 
polarization in the spleen or mesenteric draining 
lymph nodes (sensitization phase) relative to those 
factors in wild-type mice with acute cutaneous DTHR 
(Figure S6). 

Discussion 

In this study, we examined the importance of the 
activity of proteases such as cathepsin B in cutaneous 
DTHR and the resulting implications for future 
therapeutic strategies. 

Proteases play an essential role in different steps 
of inflammatory process establishment. Cathepsins, a 
diverse group comprising approximately 15 cysteine, 
serine or aspartic proteases, are mainly active in the 
acidic environment of endolysosomes, where they are 
involved in processing the MHC class II-associated 
invariant chain and MHC-bound antigens [4]. While 
cathepsins B and D are not essential for 
MHC-dependent antigen processing [32], cathepsin S 
is indispensable for processing antigens and the 
invariant chain [33]. The ubiquitously expressed 
cathepsin B is considered a key enzyme in the 
degradation of immune complexes bound to Fcγ 
receptors (FcγRs) on antigen-presenting cells (APCs) 
[34]. 

In addition to the intracellular roles of cathepsin 
B, many of its extracellular functions, such as the 
extracellular matrix degradation and angiogenesis, 
have been described [8, 9], although the neutral pH 
outside of the lysosome leads to the inactivation and 
instability of the cathepsin B molecule [35]. The ability 
of heparin to prevent pH-dependent cathepsin B 
degradation has been described [36]. In addition to 
the proteolytic effect of cathepsin B itself, this enzyme 
can inactivate inhibitors of MMPs, which are other 
highly potent mediators of extracellular matrix 
degradation and angiogenesis [37]. 

We recently established in vivo optical imaging 
as a tool to noninvasively assess the activity of MMPs 
in cutaneous DTHR [18]. In this study, we measured 
high in vivo protease activity in ears with chronic 
cutaneous DTHR using a ProSense probe (Figure 1 
A/B). ProSense probes contain an oligo-L-lysine 
sequence with attached near-infrared fluorochromes 
and methoxypolyethylene glycol side chains [38]. The 
oligo-L-lysine sequence is cleaved not only by several 
cathepsins but also by the proteases trypsin, 
urokinase and plasmin [37, 39]. 

Furthermore, we evaluated the CatB680 probe, 
which is more specific for cathepsins than the 
ProSense probe [29]. Our measurements revealed a 
4-fold enhancement of in vivo CatB680 signal intensity 
in ears (right side) with acute cutaneous DTHR 
compared with that in healthy control ears (left side). 
Ears with chronic cutaneous DTHR exhibited a 
further increase in the CatB680 signal intensity 
(Figure 1C/D). 

CatB680 is cleaved preferentially by cathepsin B; 
however, Lin et al. reported substantial cleavage by 
cathepsin S but only a very faint interaction with 
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cathepsins L, D and K [29]. Cathepsin S is mostly 
expressed by APCs such as dendritic cells as well as 
macrophages [4] and is more stable than cathepsin B 
at neutral pH [40]. Therefore, a considerable 
contribution of cathepsin S to the cleavage of the 
CatB680 probe seems plausible. 

Various probes for noninvasive in vivo imaging 
of cathepsin B activity are available, for example, 
nanoparticles with linkers to quenched fluorescent 
dyes [41], lysosome targeting groups [42] or 
prodrug-inspired probes [43]. Nevertheless, 
substrate-like activatable probes are dependent on 
cleavage sites consisting of peptide sequences that are 
not exclusively cleaved by one single protease (such 
as cathepsin B) since active sites are highly conserved 
throughout the cathepsin family [2, 44]. Caculitan et 
al. investigated an antibody-drug conjugate with a 
linker domain designed to be cleaved by cathepsin B, 
which should lead to the specific release of a cytotoxic 
drug in the target tissue. Their experiments revealed 
multiple approaches to produce active catabolites 
from the antibody-drug conjugate and demonstrated 
that cathepsin B is dispensable for the cleavage of this 
linker [45]. 

Cathepsin inhibitors, antibodies or designed 
ankyrin repeat proteins (DARPins) [46] labeled with 
fluorophores or radioactive isotopes can be highly 
specific but do not reflect the actual proteolytic 
activity of cysteine-type cathepsins such as cathepsin 
B. Activity-based probes combine both principles; 
such probes bind specifically to the protease after 
activation by proteolytic cleavage [44, 47, 48] but lack 
signal amplification, as a protease molecule can cleave 
multiple molecules of a substrate-like activatable 
probe. 

Unfortunately, most of the available probes have 
not been thoroughly evaluated in vivo by specific 
inhibitor treatment or gene knockout in mice. Our 
optical imaging experiments revealed a decreasing 
trend in the CatB680 signal only in draining lymph 
nodes and not the inflamed ear tissue of 
CA-074-treated mice (Figure S2B/C; see discussion 
below). In Ctsb-/- mice, we measured an enhanced 
CatB680 signal intensity compared with wild-type 
mice (Figure S5A; see discussion below). 

Data concerning the exact cellular sources of 
cathepsin B during inflammatory processes are scarce. 
However, immunofluorescence microscopy and flow 
cytometry analysis identified neutrophils, dendritic 
cells, macrophages and lymphocytes as the main 
cathepsin B-expressing cell populations (Figure 2). 

Lautwein et al. detected cathepsin B expression 
in peripheral monocytes, as well as in stimulated and 
unstimulated dendritic cells [49]. Cathepsin B 
expression in T cells and monocytic cells is elevated 

after activation and is involved in the migration of 
these immune cells [50]. In cytotoxic T cells, cathepsin 
B is found at the cell surface, suggesting that it 
protects the cell by cleaving secreted perforin [51]. 
However, in Ctsb-/- mice, the function and survival of 
cytotoxic T cells were not impaired [52]. Thus, Pipkin 
et al. assumed that other cathepsins assume the 
functions of cathepsin B [53]. 

The percentage of cathepsin B-expressing cells 
was much higher in draining lymph nodes (Figure 
2C) than in inflamed ear tissue (Figure 2B), suggesting 
an important role for cathepsin B in adaptive 
immunity, as in antigen processing. 

In particular, a high percentage of macrophages 
and dendritic cells showed cathepsin B expression. 
While cathepsin B in macrophages and dendritic cells 
is known for its involvement in antigen processing, no 
data exist on whether cathepsin B is involved in 
lymphocyte expansion, possibly explaining the high 
numbers of cathepsin B-expressing B and T cells in 
draining lymph nodes (Figure 2C). Regarding B cells, 
Cathepsin B has been shown to be involved in 
lymphopoiesis [54]. High-throughput sequencing of 
macrophages, monocytes and neutrophils from fresh 
mouse tissues revealed expression of cathepsin B as 
well as cathepsin Z in multiple subsets of 
macrophages and neutrophils [55]. 

Interestingly, neutrophil elastase leads to an 
upregulation of cathepsin B and MMP-2 expression in 
macrophages [56]. Regarding neutrophils, most 
evidence suggests that the secretion of 
granule-derived cathepsin G mediates the killing of 
certain bacteria [57] and activates proinflammatory 
cytokines [58]. An important inducer of cathepsin B 
release in neutrophils is fluid shear stress [59]. In 
addition, cathepsin B was found to control the 
persistence of memory CD8+ T cells after viral 
infection [60]. Fewer cells, especially dendritic cells 
and macrophages, expressed cathepsin B in the lymph 
nodes of naïve mice than in the lymph nodes of mice 
with DTHR, suggesting an elevation of cathepsin B 
expression through inflammatory processes. Only the 
percentage of cathepsin B-expressing NK cells 
remained almost unchanged (Figure 2D). NK 
cell-derived cathepsin B is suggested to protect cells 
from self-destruction [51]. 

To elucidate the therapeutic impact of 
specifically targeting cathepsin B, we treated mice 
with the selective cathepsin B inhibitor CA-074. In 
mice with acute cutaneous DTHR, CA-074 reduced 
the ear swelling 12 h and 24 h after challenge 
compared with that in sham-treated mice (Figure 4A). 
The anti-inflammatory effect of CA-074 was 
confirmed by histological analyses of ear sections, 
which revealed reductions in ear thickness, edema, 



 Theranostics 2019, Vol. 9, Issue 13 
 

 
http://www.thno.org 

3915 

hyperkeratosis, acanthosis and inflammatory cell 
infiltration in CA-074-treated mice compared with 
these parameters in sham-treated mice (Figure 4B). 

CA-074 binds to the active site and occludes the 
loop of cathepsin B [61]. CA-074 inhibits cathepsin B 
most effectively at acidic pH, which is common in 
lysosomes [62]. The anionic CA-074 molecule was 
thought to be unable to penetrate the cell membrane 
and to inhibit only extracellular cathepsin B, but 
Szpaderska et al. demonstrated that high 
concentrations of CA-074 can suppress intracellular 
cathepsin B in vitro [63]. Very possibly, cells can ingest 
increased concentrations of CA-074 via endocytosis. 
Several in vivo experiments confirmed the 
effectiveness of cathepsin B inhibition by CA-074. In a 
murine model of leishmaniasis, CA-074 could trigger 
the switch from a Th2-dominated inflammatory 
response to a Th1 immune reaction associated with 
IFN-γ production [64]. In an in vivo tumor xenograft 
model, CA-074 inhibited tumor growth and the 
metastatic potential of human melanoma [65]. 

We further analyzed inflamed ear tissue and 
draining lymph nodes by active site labeling, a highly 
sensitive in vitro method to tag and visualize the 
active form of enzymes such as cathepsin B [27]. 

This method revealed the presence of active 
cathepsin B in inflamed ear tissue (Figure 4C) and 
even higher levels in draining lymph nodes (Figure 
4D). Topical treatment with the cathepsin B inhibitor 
CA-074 led to a clear reduction in active cathepsin B 
levels in inflamed ear tissue and draining lymph 
nodes compared with these levels in sham-treated 
mice (Figure 4C/D). 

The regulatory dynamics of proteases are largely 
unknown, but it is plausible that in mice treated with 
a specific inhibitor such as CA-074, compensatory 
upregulation of other cathepsins may not occur 
immediately. This delay could explain why the 
therapeutic effect of CA-074 is present in acute but not 
in chronic cutaneous DTHR (Figure S2A). 

Surprisingly, we observed enhanced acute 
TNCB-induced cutaneous DTHR in Ctsb-/- mice 
(Figure 5A), despite the disrupted cathepsin B 
expression confirmed by immunohistochemistry, 
active site labeling and Western blotting (Figure 
5C/D; Figure S3B-D). 

In vivo optical imaging using the CatB680 probe 
in CA-074-treated mice showed, paradoxically, 
slightly enhanced cathepsin activity (Figure S2B), 
whereas ex vivo cathepsin activity in the lymph nodes 
was decreased (Figure S1C/D). These results differed 
from those of our ex vivo active site labeling 
experiments (Figure 4C/D). 

As mentioned above, CatB680 also interacts with 
cathepsin S, as reported previously [29]. The inhibitor 

CA-074 acts specifically on cathepsin B; Katunuma 
reported that CA-074 does not affect cathepsin S [61]. 
Therefore, cathepsin S may compensate for cathepsin 
B to cleave the CatB680 probe. However, whether 
treatment with CA-074 affects the expression of other 
cathepsins that are able to activate CatB680 has not yet 
been investigated. 

Furthermore, these differences between 
cathepsin B activity in lymph nodes and ear tissue in 
our ex vivo and in vivo studies may also be due to 
differing cathepsin B activity and expression in 
diverse cell compartments. 

Through tissue homogenization, protease 
activity in the extracellular space and all intracellular 
compartments can be detected in vitro. Optical 
imaging of protease-activatable probes was thought to 
selectively detect extracellular protease activity; 
nevertheless, Blum et al. showed that a 
protease-activatable probe could specifically detect 
protease activity in intracellular lysosomes in vitro 
[16]. Whether protease-activatable optical imaging 
probes are internalized into lysosomes or can 
penetrate the cell membrane remains unknown. 

Several cathepsins, such as cathepsins S and L, 
have endopeptidase functions like those of cathepsin 
B [66]. Orlowski et al. revealed a redundant function 
of cathepsins B, L, C, S and X in pro-IL-1β synthesis 
and NLRP3-mediated IL-1β activation [67]. This 
redundancy suggests that a compensatory function of 
other cathepsins could be the reason for the 
undiminished cutaneous DTHR in Ctsb-/- mice. 
Interestingly, optical imaging using CatB680 in Ctsb-/- 
mice showed a higher signal intensity than that in 
wild-type mice (Figure S5A). Lin et al. showed that 
CatB680 is mainly activated by cathepsin B but also, to 
a lesser extent, by cathepsin S [29]. 

Our results suggest that cathepsin Z may 
compensate for cathepsin B deficiency in Ctsb-/- mice 
(Figure 5C/D). Both cathepsin Z and cathepsin B are 
carboxypeptidases in the family of cysteine-type 
cathepsins and are, therefore, quite similar 
biochemically [2]. Functionally, cathepsin B is 
considered an endopeptidase and a 
carboxydipeptidase [68], whereas cathepsin Z is 
considered a carboxymonopeptidase [69]. A 
compensatory role for cathepsin Z in cathepsin B 
deficiency was previously studied by Vasiljeva et al. 
[31] and Sevenich et al. [24] in an experimental breast 
cancer model. To our knowledge, however, this study 
is the first to investigate the role of cathepsin B and 
cathepsin Z together in inflammation. 

Conclusions 

Cysteine-type cathepsins such as cathepsin B are 
involved in various steps of inflammatory immune 



 Theranostics 2019, Vol. 9, Issue 13 
 

 
http://www.thno.org 

3916 

response establishment, especially in draining lymph 
nodes but also at the site of inflammation. We found 
that cathepsin B is highly expressed in draining 
lymph nodes and that the therapeutic effects on active 
cathepsin B occur mainly in draining lymph nodes. 
Topical treatment with CA-074, a highly specific 
cathepsin B inhibitor, revealed a significant 
anti-inflammatory effect in acute but not chronic 
cutaneous DTHR. Topically applied cathepsin B 
inhibitors may reflect a new therapeutic tool for 
inflammatory skin diseases such as psoriasis.  
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Supplementary Figures 

 
Supplementary Fig. 1 

 

A: In chronic CHSR after three or five TNCB challenges no significant 

differences in ear swelling response between sham- and CA-074 treated mice 

were observed (n=7). B: In vivo optical imaging with the cathepsin-activatable 

probe CatB680 displayed no significant difference in signal-intensity between 

mice treated with CA-074 and sham-treatment in the right ear (n=4). C: Ex 
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vivo optical imaging yielded a reduced CatB680 signal-intensity in the draining 

cervical LNs of CA-074 treated mice. Axillary and inguinal LNs showed high 

signal intensities in both groups. D: Ex vivo CatB680 signal intensity of the 

cervical draining lymph nodes was slightly lower in CA-074-treated mice 

(n=4). 
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Supplementary Fig. 2 
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A: Topical treatment with Inhibitor 17 reduced ear swelling 12 h and 24 h after 

TNCB challenge compared to sham treated mice (n=8). B: H&E histology of 

ear tissue derived from Inhibitor 17 and sham treated mice 24 h after 

challenge revealed a reduced edema and leukocyte infiltration as a 

consequence of Inhibitor 17 treatment. C/D: Active site labelling and immune 

blotting of ear tissue as well as the draining lymph nodes  was not able to 

assess differences between inhibitor 17 and sham treated mice, most 

probably because of the reversible covalent binding of inhibitor 17 to 

cathepsin B (n=8). 
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Supplementary Fig. 3 
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A: Optical imaging of Ctsb-/- mice and wildtype mice using CatB680 revealed 

a higher SI in cathepsin B deficient mice after the first challenge (1x challenge 

n=10; 1x/3x challenge n=7). B: Immune fluorescence staining of cathepsin B 

(red) of right ear tissue and the draining lymph node of sensitized Ctsb-/- and 

wildtype mice 24 h after TNCB-challenge revealed suppressed cathepsin B 

expression in Ctsb-/- mice (goat anti–cathepsin B Ab 1:20; R&D Systems, 

Minneapolis, USA; visualized using Cy3-donkey anti-goat Ab; Dianova). C: 

Active site labeling of the draining lymph node derived from  Ctsb-/- mice 

revealed a diminished cathepsin B band but equivalent Cathepsin B 

expression in Ctsz-/-  mice compared to wildtype mice (Ctsb-/- n=4; Ctsz-/- n=3; 

wildtype n=4). D: Immunoblotting using a cathepsin B specific antibody on the 

same confirmed the bands detected by active site labeling and indicated 

normal cathepsin B expression in the draining lymph nodes of Ctsz-/- mice 

while cathepsin B expression in Ctsb-/- mice  was diminished (Ctsb-/- n=4; 

Ctsz-/- n=3; wildtype n=4). E: Cathepsin Z expression detected by 

immunoblotting using a cathepsin Z specific antibody was similar in the 

draining lymph nodes of Ctsb-/- and wildtype mice, while cathepsin Z was 

virtually absent in Ctsz-/- mice (Ctsb-/- n=4; Ctsz-/- n=3; wildtype n=4). 
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Supplementary Fig. 4 

 

We performed flow cytometry analysis of inguinal and axillary lymph nodes 

(TNCB-sensitization at the abdomen) and spleen tissue derived from naïve 
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and TNCB-sensitized and challenged wild-type, Ctsb-/-, and Czsb-/- mice. 

Neither Ctsb-/- or Ctsz-/- mice showed significant alterations in the cellular 

composition of immune cells in the spleen or the lymph nodes compared to 

wildtype mice in naïve state or 24 h after the challenge (TNCB-sensitized and 

challenged mice: n = 3-4; naïve mice: n = 1-3). 
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Supplementary Fig. 5 

 

Original blots from Figure 4 C/D. A: Blot active site labelling (shown in Fig 

4C): lane 1 CA-074 treatment + E64d, lane 2 CA-074 treatment, lane 3 CA-

074 treatment + E64d, lane 4 CA-074 treatment, lane 5 CA-074 treatment + 

E64d, lane 6 CA-074 treatment, lane 7 CA-074 treatment + E64d, lane 8 CA-

074 treatment, lane 9 sham treatment + E64d, lane 10 sham treatment, lane 

11 sham treatment + E64d, lane 12 sham treatment, lane 13 sham treatment 

+ E64d, lane 14 sham treatment, lane 15 sham treatment + E64d, lane 16 

sham treatment. B: Blot active site labelling (shown in Fig 4D): lane 1 CA-074 
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treatment + E64d, lane 2 CA-074 treatment, lane 3 CA-074 treatment + E64d, 

lane 4 CA-074 treatment, lane 5 CA-074 treatment + E64d, lane 6 CA-074 

treatment, lane 7 CA-074 treatment + E64d, lane 8 CA-074 treatment, lane 9 

sham treatment + E64d, lane 10 sham treatment, lane 11 sham treatment + 

E64d (no proteases detectable, data not shown in Fig. 4D), lane 12 sham 

treatment (no proteases detectable, data not shown in Fig. 4D), lane 13 sham 

treatment + E64d, lane 14 sham treatment, lane 15 sham treatment + E64d, 

lane 16 sham treatment. 
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Supplementary Fig. 6 

 

Original blots from Figure 5 C/D. A: Blot 1 active site labelling (shown in Fig 

5C): lane 1 Ctsb-/-, lane 2 Ctsb-/- + E64d, lane 3 Ctsz-/-, lane 4 Ctsz-/- + E64d, 

lane 5 wildtype, lane 6 wildtype + E64d, lane 7 wildtype, lane 8 wildtype + 
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E64d. B: Blot 1 cathepsin B Western blot (shown in Fig 5D): lane 1 Ctsb-/-, 

lane 2 Ctsb-/- + E64d, lane 3 Ctsz-/-, lane 4 Ctsz-/- + E64d, lane 5 wildtype, lane 

6 wildtype + E64d, lane 7 wildtype, lane 8 wildtype + E64d. C: Membrane 2 

active site labelling: lane 1 Ctsb-/-, lane 2 Ctsb-/- + E64d, lane 3 Ctsz-/-, lane 4 

Ctsz-/- + E64d, lane 5 wildtype, lane 6 wildtype + E64d, lane 7 Ctsb-/-, lane 8 

Ctsb-/- + E64d. D: Blot 2 cathepsin B Western blot: lane 1 Ctsb-/-, lane 2 Ctsb-/- 

+ E64d, lane 3 Ctsz-/-, lane 4 Ctsz-/- + E64d, lane 5 wildtype, lane 6 wildtype + 

E64d, lane 7 Ctsb-/-, lane 8 Ctsb-/- + E64d. E: Blot 3 active site labelling: lane 

1 Ctsb-/-, lane 2 Ctsb-/- + E64d, lane 3 Ctsz-/-, lane 4 Ctsz-/- + E64d, lane 5 

wildtype, lane 6 wildtype + E64d. F: Blot 3 cathepsin B Western blot: lane 1 

Ctsb-/-, lane 2 Ctsb-/- + E64d, lane 3 Ctsz-/-, lane 4 Ctsz-/- + E64d, lane 5 

wildtype, lane 6 wildtype + E64d. 
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Supplementary Fig. 7

 

 

Original blots from Figure 5 E. A: Blot 1 active site labelling: lane 1 Ctsb-/-, 

lane 2 Ctsb-/- + E64d, lane 3 Ctsz-/-, lane 4 Ctsz-/- + E64d, lane 5 wildtype, lane 
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6 wildtype + E64d, lane 7 wildtype, lane 8 wildtype + E64d. B: Blot 1 

cathepsin Z Western blot (shown in Figure 5 E): lane 1 Ctsb-/-, lane 2 Ctsb-/- + 

E64d, lane 3 Ctsz-/-, lane 4 Ctsz-/- + E64d, lane 5 wildtype, lane 6 wildtype + 

E64d, lane 7 wildtype, lane 8 wildtype + E64d. C: Blot 2 active site labelling: 

lane 1 Ctsb-/-, lane 2 Ctsb-/- + E64d, lane 3 Ctsz-/-, lane 4 Ctsz-/- + E64d, lane 5 

wildtype, lane 6 wildtype + E64d, lane 7 Ctsb-/-, lane 8 Ctsb-/- + E64d. D: Blot 

2 cathepsin Z Western blot: lane 1 Ctsb-/-, lane 2 Ctsb-/- + E64d, lane 3 Ctsz-/-, 

lane 4 Ctsz-/- + E64d, lane 5 wildtype, lane 6 wildtype + E64d, lane 7 Ctsb-/-, 

lane 8 Ctsb-/- + E64d. E: Blot 3 active site labelling: lane 1 Ctsb-/-, lane 2 Ctsb-

/- + E64d, lane 3 Ctsz-/-, lane 4 Ctsz-/- + E64d, lane 5 wildtype, lane 6 wildtype 

+ E64d. F: Blot 3 cathepsin Z Western blot: lane 1 Ctsb-/-, lane 2 Ctsb-/- + 

E64d, lane 3 Ctsz-/-, lane 4 Ctsz-/- + E64d, lane 5 wildtype, lane 6 wildtype + 

E64d. 
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Supplementary Fig. 8 

 

 

Original blots from Supplementary Fig. 2 C. A: Blot 1 active site labelling: lane 

1 sham treatment, lane 2 sham treatment + E64d, lane 3 inhibitor 17, lane 4 

inhibitor 17 + E64d, lane 5 sham treatment, lane 6 sham treatment + E64d, 
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lane 7 inhibitor 17, lane 8 inhibitor 17 + E64d. B: Blot 1 cathepsin B Western 

blot: lane 1 sham treatment, lane 2 sham treatment + E64d, lane 3 inhibitor 

17, lane 4 inhibitor 17 + E64d, lane 5 sham treatment, lane 6 sham treatment 

+ E64d, lane 7 inhibitor 17, lane 8 inhibitor 17+ E64d. C: Blot 2 active site 

labelling: : lane 1 sham treatment, lane 2 sham treatment + E64d, lane 3 

inhibitor 17, lane 4 inhibitor 17 + E64d, lane 5 sham treatment, lane 6 sham 

treatment + E64d, lane 7 inhibitor 17, lane 8 inhibitor 17 + E64d. D: Blot 2 

cathepsin B Western blot: lane 1 sham treatment, lane 2 sham treatment + 

E64d, lane 3 inhibitor 17, lane 4 inhibitor 17 + E64d, lane 5 sham treatment, 

lane 6 sham treatment + E64d, lane 7 inhibitor 17, lane 8 inhibitor 17 + E64d. 

E: Blot 3 active site labelling: lane 1 sham treatment, lane 2 sham treatment + 

E64d, lane 3 inhibitor 17, lane 4 inhibitor 17 + E64d, lane 5 sham treatment, 

lane 6 sham treatment + E64d, lane 7 inhibitor 17, lane 8 inhibitor 17 + E64d. 

F: Blot 3 cathepsin Z Western blot: cathepsin B Western blot: lane 1 sham 

treatment, lane 2 sham treatment + E64d, lane 3 inhibitor 17, lane 4 inhibitor 

17 + E64d, lane 5 sham treatment, lane 6 sham treatment + E64d, lane 7 

inhibitor 17, lane 8 inhibitor 17 + E64d. G: Blot 3 active site labelling: lane 1 

sham treatment, lane 2 sham treatment + E64d, lane 3 inhibitor 17, lane 4 

inhibitor 17 + E64d, lane 5 sham treatment, lane 6 sham treatment + E64d, 

lane 7 inhibitor 17, lane 8 inhibitor 17 + E64d. H: Blot 3 cathepsin Z Western 

blot: cathepsin B Western blot: lane 1 sham treatment, lane 2 sham treatment 

+ E64d, lane 3 inhibitor 17, lane 4 inhibitor 17 + E64d, lane 5 sham treatment, 

lane 6 sham treatment + E64d, lane 7 inhibitor 17, lane 8 inhibitor 17 + E64d. 
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Supplementary Fig. 9 

 

Original blots from Supplementary Fig. 2 D. A: Blot 1 active site labelling: lane 

1 sham treatment, lane 2 sham treatment + E64d, lane 3 inhibitor 17, lane 4 

inhibitor 17 + E64d, lane 5 sham treatment, lane 6 sham treatment + E64d, 

lane 7 inhibitor 17, lane 8 inhibitor 17 + E64d. B: Blot 1 cathepsin B Western 

blot: lane 1 sham treatment, lane 2 sham treatment + E64d, lane 3 inhibitor 

17, lane 4 inhibitor 17 + E64d, lane 5 sham treatment, lane 6 sham treatment 

+ E64d, lane 7 inhibitor 17, lane 8 inhibitor 17+ E64d. C: Blot 2 active site 

labelling: : lane 1 sham treatment, lane 2 sham treatment + E64d, lane 3 

inhibitor 17, lane 4 inhibitor 17 + E64d, lane 5 sham treatment, lane 6 sham 

treatment + E64d, lane 7 inhibitor 17, lane 8 inhibitor 17 + E64d. D: Blot 2 

cathepsin B Western blot: lane 1 sham treatment, lane 2 sham treatment + 
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E64d, lane 3 inhibitor 17, lane 4 inhibitor 17 + E64d, lane 5 sham treatment, 

lane 6 sham treatment + E64d, lane 7 inhibitor 17, lane 8 inhibitor 17 + E64d. 
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Supplementary Fig. 10 

 

Original blots from Supplementary Fig. 3 C/D. A: Blot 1 active site labelling 

(shown in Supplementary Fig 3C): lane 1 Ctsb-/-, lane 2 Ctsb-/- + E64d, lane 3 
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Ctsz-/-, lane 4 Ctsz-/- + E64d, lane 5 wildtype, lane 6 wildtype + E64d, lane 7 

wildtype, lane 8 wildtype + E64d. B: Blot 1 cathepsin B Western blot (shown 

in Supplementary Fig 3D): lane 1 Ctsb-/-, lane 2 Ctsb-/- + E64d, lane 3 Ctsz-/-, 

lane 4 Ctsz-/- + E64d, lane 5 wildtype, lane 6 wildtype + E64d, lane 7 wildtype, 

lane 8 wildtype + E64d. C: Membrane 2 active site labelling: lane 1 Ctsb-/-, 

lane 2 Ctsb-/- + E64d, lane 3 Ctsz-/-, lane 4 Ctsz-/- + E64d, lane 5 wildtype, lane 

6 wildtype + E64d, lane 7 Ctsb-/-, lane 8 Ctsb-/- + E64d. D: Blot 2 cathepsin B 

Western blot: lane 1 Ctsb-/-, lane 2 Ctsb-/- + E64d, lane 3 Ctsz-/-, lane 4 Ctsz-/- 

+ E64d, lane 5 wildtype, lane 6 wildtype + E64d, lane 7 Ctsb-/-, lane 8 Ctsb-/- + 

E64d. E: Blot 3 active site labelling: lane 1 Ctsb-/-, lane 2 Ctsb-/- + E64d, lane 

3 Ctsz-/-, lane 4 Ctsz-/- + E64d, lane 5 wildtype, lane 6 wildtype + E64d. F: Blot 

3 cathepsin B Western blot: lane 1 Ctsb-/-, lane 2 Ctsb-/- + E64d, lane 3 Ctsz-/-, 

lane 4 Ctsz-/- + E64d, lane 5 wildtype, lane 6 wildtype + E64d. 
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Supplementary Fig. 11 

 

Original blots from Supplementary Fig. 3 E. A: Blot 1 active site labelling: lane 

1 Ctsb-/-, lane 2 Ctsb-/- + E64d, lane 3 Ctsz-/-, lane 4 Ctsz-/- + E64d, lane 5 
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wildtype, lane 6 wildtype + E64d, lane 7 wildtype, lane 8 wildtype + E64d. B: 

Blot 1 cathepsin Z Western blot (shown in Figure 5 E): lane 1 Ctsb-/-, lane 2 

Ctsb-/- + E64d, lane 3 Ctsz-/-, lane 4 Ctsz-/- + E64d, lane 5 wildtype, lane 6 

wildtype + E64d, lane 7 wildtype, lane 8 wildtype + E64d. C: Blot 2 active site 

labelling: lane 1 Ctsb-/-, lane 2 Ctsb-/- + E64d, lane 3 Ctsz-/-, lane 4 Ctsz-/- + 

E64d, lane 5 wildtype, lane 6 wildtype + E64d, lane 7 Ctsb-/-, lane 8 Ctsb-/- + 

E64d. D: Blot 2 cathepsin Z Western blot: lane 1 Ctsb-/-, lane 2 Ctsb-/- + E64d, 

lane 3 Ctsz-/-, lane 4 Ctsz-/- + E64d, lane 5 wildtype, lane 6 wildtype + E64d, 

lane 7 Ctsb-/-, lane 8 Ctsb-/- + E64d. E: Blot 3 active site labelling: lane 1 Ctsb-

/-, lane 2 Ctsb-/- + E64d, lane 3 Ctsz-/-, lane 4 Ctsz-/- + E64d, lane 5 wildtype, 

lane 6 wildtype + E64d. F: Blot 3 cathepsin Z Western blot: lane 1 Ctsb-/-, lane 

2 Ctsb-/- + E64d, lane 3 Ctsz-/-, lane 4 Ctsz-/- + E64d, lane 5 wildtype, lane 6 

wildtype + E64d. 
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3. Discussion 

Various complex mechanisms are involved in the development, regulation and 

resolution of inflammatory processes. A comprehensive network of 

interactions is needed to fine tune these mechanisms in order to avoid on the 

one hand insufficient inflammatory responses and on the other hand 

overreactions of the immune system leading to tissue destruction and finally to 

organ failure. Targeted therapeutic interventions are necessary to modulate 

the inflammatory response especially in autoimmune diseases like rheumatoid 

arthritis. Molecular imaging represents an important tool to investigate 

potential targets for therapeutic interventions particularly as timing in the 

highly dynamic inflammatory processes is critical. 

 

Here in this thesis, important players in the inflammatory mechanisms with 

very different biochemical and functional properties were investigated during 

the time course of acute and chronic TNCB-induced DTHR by molecular 

imaging. 

In the acute cutaneous DTHR a strong induction of ROS/RNS expression, NF-

κB activation and cathepsin B activity was detected 12h after the first TNCB 

challenge (168, 169). During the early chronic DTHR after the third TNCB 

challenge and in chronic DTHR after the fifth TNCB challenge the peak of 

ROS/RNS expression and NF-κB activation shifted to earlier time points. 

Thus, the maximum ROS/RNS production and NF-κB activation was already 

measured 12 h after the third repetitive TNCB ear challenge whereas the peak 
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in ROS/RNS production and NF-κB activation during chronic cutaneous 

DTHR could be observed as early as 4-12 h after the fifth TNCB challenge 

(168) (Fig. 2a/b).  

Although all probes were injected at 12h after the TNCB challenges, the 

assessment of cathepsin B activity might represent different temporal 

characteristics. The chemiluminescence probe L-012 and the transgene NF-

κB-luciferase reporter system allow a very rapid measurement already 5 min 

after injection (168), while the cathepsin B activity can be detected by optical 

imaging only 24 h after injection using the fluorescence activated optical 

imaging probe CatB680 (169). Thus, a distinct assessment of the cathepsin B 

activity 4-24h after challenge was not possible with the cathepsin B 

activatable optical imaging probe because of the long uptake time on the one 

side and the dynamic changes of the inflammatory response in the TNCB 

induced DTHR on the other side. Therefore, only a steady increase of 

cathepsin B activity from acute (after the first challenge) to early chronic (after 

the third challenge) and chronic DTHR (after the fifth challenge) was 

observed. The measurement of the peak cathepsin B activity after the 

respective challenges was not possible in vivo using this optical imaging 

technique (169).  
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Figure 4: Noninvasive in vivo optical imaging displayed an intense activity of cysteine-type 

cathepsins in the inflamed ears as well as the draining lymph nodes of mice with acute 

cutaneous DTHR. Fluorescence microscopy revealed the cathepsin B expression by 

neutrophils, dendritic cells, macrophages, B, T and natural killer (NK) cells in inflamed ears 

and draining lymph nodes during acute DTHR. The topically applied cathepsin B inhibitor CA-

074 significantly reduced ear swelling in acute DTHR, while Ctsb-/- mice exhibited an 

enhanced ear swelling response during acute DTHR compared with wild-type mice despite a 

lack of cathepsin B expression. Cathepsin Z, a protease closely related to cathepsin B, 

revealed compensatory expression in inflamed ears of Ctsb-/- mice, while cathepsin B 

expression was reciprocally elevated in Ctsz-/- mice (169). 

 

To prevent pathological tissue destruction a tightly regulated balance between 

ROS/RNS and antioxidants needs to be maintained (200). Remarkably, pro- 

and anti-inflammatory roles are associated with the expression of ROS/RNS, 



 93

which can provoke both tissue-destructive or -protective effects (201). 

Interactions with signaling pathways like the nuclear factor (erythroid-derived 

2)-like 2 (NRF2) or the p38 MAP kinase (185, 187, 188, 202, 203), but also 

the direct biocidal activity e.g. against bacteria (204, 205) are some examples 

of many described pro–inflammatory effects. The pathway with the most 

described interactions with ROS is NF-κB, which in return induces the 

expression of multiple genes with pro- or antioxidative effects (63).  

Furthermore, in acute TNCB-specific DTHR ROS are involved in the 

degradation of a hyaluronic acid, a component of the extracellular matrix 

(206). The fragments of the hyaluronic acid are known TLR-2 and -4 agonists 

with consecutive pro-inflammatory effects leading to innate immune activation 

(207, 208). ROS/RNS are also affecting the metabolism of T-cells, in 

particular the aerobic glycolysis which is associated with activation and 

proliferation of T cells (106). Furthermore, T cell receptor signaling as well as 

antigen presentation is modulated by ROS and RNS (106). 

The anti-inflammatory effects of ROS are less studied, but evidence for these 

effects is given e.g. by experiments with NCF1 deficient mice, where a 

reduced ROS production results in increased experimental arthritis and 

autoimmune encephalomyelitis (209-212). ROS reduced also the in vitro 

expression of pro-inflammatory IL-1β, IL-6, IL-8, iNOS and cyclooxygenase-2 

in chondrocytes (213, 214). Inherit mutations of the NADPHoxidase in patients 

is causing the chronic granulomatous disease (CGD), where patients are 

suffering from recurrent bacterial and fungal infections (215), but also an 
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increased incidence of autoimmune diseases such as rheumatoid arthritis was 

observed (216, 217).  

 

Optical imaging revealed a very similar temporal dynamic of ROS expression 

and NF-κB activation in acute and early chronic DTHR. Only in chronic DTHR 

after five TNCB challenges the peak of ROS expression seems to be shifted 

to 4h while the NF-κB activation peak was observed 12h after the fifth 

challenge (168). In in vitro experiments the prolonged expression of ROS 

inactivated 50–80% of the proteasomes, which resulted in decreased NF-κB 

activation because less NF-κB inhibiting IκBα was degraded by the 

proteasome (218). If this might be a reason for the shift of the ROS 

expression peak to 4h after challenge in our experiments, is debatable (168). 

Treatment with the antioxidative and NF-κB inhibiting drug NAC decreased 

the inflammatory response assessed by the ear swelling response in acute 

and chronic DTHR. However, in vivo optical imaging revealed an inconclusive 

influence on the ROS/RNS production measured by L-012 and NF-κB 

activation in NF-κB-reporter mice during acute and chronic DTHR. 

Although the activity of cathepsin B were increasing drastically from acute to 

chronic DTHR in our experiments (169), the peaks of ROS/RNS expression 

and NF-κB activation stayed on the same level, but were reached earlier after 

challenge (168).  

 

The function of proteases in an inflammatory environment can be described 

rather as a proteolytic network than the result of the activity from a single 
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protease. By cleavage of inactive pro-forms proteases are able to regulate 

each others proteolytic activity (43). This close interaction between several 

proteases and their inhibitors is needed to prevent, for example, unintended 

tissue destruction.  

A major hub of this proteolytic network is the cysteine protease cathepsin B 

(43). For instance, cathepsin B is able to degrade MMP inhibiting molecules 

and thereby regulate extracellular matrix degradation and angiogenesis 

induced by MMPs (219), which play an important role in acute and chronic 

TNCB-induced DTHR (8). 

In the proteolytic network deficiency of a specific protease can be 

compensated by other proteases (43). Cathepsin B is primarily cleaving the 

activatable fluorescence probe CatB680, which we facilitated in our optical 

imaging experiments. Nevertheless CatB680 is also cleaved by active 

cathepsin S (220) which is expressed by many APCs like DCs and 

macrophages (92) and has a higher stability at neutral pH than cathepsin B 

(221). Consequently, the measured CatB680 signal intensity is probably also 

influenced by cathepsin S to a certain extent. This could explain the trend 

towards a higher CatB680 signal intensity in mice treated with the specific 

cathepsin B inhibitor CA-074 (Figure S2B) (169), because CA-074 does not 

interfere with cathepsin S (222), but may lead to an compensatory 

upregulation of cathepsin S. The contribution of other cathepsins like 

cathepsin L, D or K to the cleavage of CatB680 is probably very little (220). 

In our experiments, cathepsin B deficient mice (Ctsb-/-) revealed an enhanced 

acute DTHR along with a trend towards increased CatB680 signal intensity 



 96

when compared to inflamed ears of wildtype mice (169). Active site labeling 

suggested that cathepsin Z may compensate the lack of cathepsin B activity in 

the inflamed tissue (Figure 5C/D) (169). The effect that cathepsin Z is 

compensating the cathepsin B deficiency was already proven in the 

microenvironment of an experimental breast cancer model (91, 223). Flow 

cytometry analysis revealed no alterations in the immune cell composition of 

cathepsin B deficient mice (169), which is in line with previously published 

results, where function and survival of cathepsin B deficient CD8+ T cells was 

not influenced (224).  

Treatment with the specific cathepsin B inhibitor CA-074 reduced acute DTHR 

but no significant effect during chronic DTHR was observed after the third and 

fifth TNCB challenge (Fig. S2A) (169). This might be explained by 

compensatory mechanisms, e.g. via cathepsin Z upregulation as discussed 

above, but no according data are available yet. 

In the acute TNCB induced DTHR, especially neutrophilic granulocytes, 

dendritic cells, macrophages and lymphocytes expressed cathepsin B 

according to immunohistochemistry and flow cytometry results (Figure 2; 

Supplementary Fig. 1) (169). The highest amount of cathepsin B-expressing 

cells (dendritic cells, macrophages and lymphocytes) was located in the lymph 

nodes, which are draining the inflamed tissue (Figure 2C)(169). Especially 

cathepsin B expression in macrophages and dendritic cells was induced 

during acute DTHR compared to naïve controls (169), where cathepsins are 

highly involved in antigen processing (225, 226). In CD8+ T cells, cathepsin B 

can be detected at the cell surface, where a protective mechanism against the 
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secreted perforin is discussed (227, 228). Cathepsin B and other cathepsins 

are also important for the migration of immune cells (229).  

Controversial results have been reported lately regarding the interaction 

between ROS and cathepsins. Cysteine cathepsins require a reducing redox 

potential for optimal cleaving conditions (230). Therefore, the activity of 

cathepsins are impaired by ROS because of oxidization and consecutive 

inactivation of the enzymes (83). In contrary, Bai et al. reported that the ROS 

species H2O2 leads to enhanced cathepsin B activity, which induces the 

secretion of IL-1β depending on the NLRP3 inflammasome (231). 

Nevertheless, cathepsin B is also influencing ROS generation as Ni et al. 

detected reduced ROS production in cathepsin B deficient mice (232). 

Cathepsins are also interfering with signaling pathways such as NF-κB, as for 

example the inhibition of cathepsin B and S is reducing the NF-κB signaling in 

hepatic cell lines (233). 

 

An important pivot in the inflammatory cascade is the NLRP3 inflammasome. 

Inflammasomes are intracellular complexes, which form large supramolecular 

structures consisting of sensor molecules, adapter molecules and the 

protease caspase 1 as effector molecule (234). Disrupted lysosomes might 

lead to release of lysosomal cathepsin B into the intracellular space where it 

interacts with the NLRP3 inflammasome (234-236). Several groups confirmed 

either a role of ROS (234, 237, 238) or cathepsin B (234, 235, 239) in the 

activation of the NLRP3 inflammasome, while Bai et al. even suggested that 
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the NLRP3 inflammasome might serve as a crucial link between these 

molecular effectors (231).  

The cathepsin B inhibitor CA-074-Me suppressed the activation of the NLRP3 

inflammasome in several experiments, while in macrophages from cathepsin 

B-deficient mice only a slight or no effect on the NLRP3 inflammasome 

activation could be observed (240). Like shown in this thesis (169), a 

compensatory role of other cathepsins, like cathepsin Z might be a reason for 

this effect (241). Some experiments also suggest a non-redundant role of 

cathepsin Z in the activation of the NLRP3 inflammasome (242, 243). The 

effect of ROS on the activation of the NLRP3 inflammasome is associated 

with mitochondrial dysfunction (234) and different anti-oxidative treatments 

like NAC are reducing the NLRP3 inflammasome activation (244). 

NF-κB induces the expression of pro-IL-1β and NLRP3 which are necessary 

to form the NLRP3-inflammasome, but it also limits the inflammasome 

activation by p62 dependent disruption of damaged mitochondria (245). 

Beside its important role in inflammation, inflammasome activation have been 

also associated with carcinogenesis and tumor progression, especially in skin 

cancer, although no distinct mechanism could be figured out yet (246). 

 

The investigated in vivo cathepsin activity, NF-κB signaling and ROS 

production are involved in cellular stress responses like autophagy and 

senescence, which are accompanied with inflammation (247-252). Oh et al. 

observed that the inhibition of cathepsin B leads to cellular senescence 

associated with increased glycogen synthase induction (253). Also deficiency 
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of cathepsin Z, which may possesses redundant functions to cathepsin B 

(169, 241), induces cellular senescence detected by β-galactosidase activity 

in fibroblasts (254).  

Mitochondrial ROS is involved in the induction of cellular senescence via 

several mechanisms e.g. interactions with p53, NF-κB and the p38 MAP 

kinase signaling pathway (255). In addition, the NF-κB pathway is highly 

activated in senescent cells and was also shown to induce the senescence 

associated secretory phenotype (SASP) (256). 

Autophagy is a cellular response to stress with whom the cell e.g. tries to 

maintain energy homeostasis, to control the quality of proteins and organelles 

or to dispose intracellular pathogens (251). ROS is a well known inducer of 

autophagy (251), while cathepsin B is an essential player in the lysosome and 

therefore an important regulator of autophagy (257, 258).   

The NF-κB signaling pathway is inducing autophagy-associated proteins like 

beclin 1 (BECN1) or SQSTM1. However, autophagy is inhibiting NF-κB 

signaling by degradation of IKK as negative feed back loop (256). 

Furthermore, NF-κB seems to link autophagy to senescence via the 

transcription factor GATA4, but also other mechanisms like the mechanistic 

Target of Rapamycin (mtor) complex are involved in these processes (259, 

260). Moreover, Capparelli et al. revealed that cathepsin B expression was 

induced in cancer associated fibroblasts during both senescence and 

autophagy, which can lead to tumor progression (261). Nevertheless, the 

interplay between senescence and autophagy seems to be dependent on its 

temporal dynamic (262).  
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As inflammation is driving the pathogenesis of many diseases, the 

investigated dynamic role of cathepsin B, NF-κB and ROS in acute and 

chronic DTHR (168, 169) might be also important in diseases, which are not 

primarily associated with cutaneous inflammation. Cathepsin B, NF-κB and 

ROS are playing a crucial role in carcinogenesis and tumor progression (51, 

256, 263).  

An important example for carcinogenesis in the context of chronic 

inflammation is the non alcoholic steatohepatitis (NASH), a disease of fast 

growing importance, which is already a leading cause of hepatocellular 

carcinoma (HCC) worldwide (264-266). In this disease, a T cell driven chronic 

inflammation, induced by a high caloric diet, leading to an irreversible 

transformation of the liver tissue and finally to carcinogenesis (267-272). 

NF-κB signaling might link the conversion from inflammatory NASH to the 

carcinogenesis of HCC (268, 273). ROS are highly involved in this process, 

but the exact mechanism as well as the temporal dynamics are largely 

unknown (274-277). Moreover, Cathepsin B is essentially involved in these 

transformations leading to NASH and HCC (233, 278, 279), possibly because 

of its role in autophagy and senescence (253, 280). However, the exact role 

during the time course of NASH and HCC development is not entirely clear 

yet, which would be of paramount importance for therapeutic targeting 

especially in the clinical setting.  
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Here in this thesis, the complex regulatory mechanisms and their temporal 

dynamics during acute and chronic TNCB induced DTHR were investigated. 

Especially the effects of targeted therapeutic interventions were studied in this 

experimental model of cutaneous inflammation. This knowledge might be 

helpful to understand and treat other T cell driven diseases like rheumatoid 

arthritis or NASH. Furthermore, the ability of molecular imaging e.g. optical 

imaging is of tremendous importance to understand the underlying biological 

mechanisms during the time course of acute and chronic inflammation, but 

also to understand subsequent processes like carcinogenesis and tumor 

progression. Moreover, molecular imaging helps to identify relevant treatment 

targets and is able to find appropriate windows of opportunity for successful 

therapeutic interventions.  
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4. Summary 

Inflammatory responses are involving a complex interplay between molecular 

and cellular mechanisms. Here in this thesis, different players within the 

inflammatory tissue and draining lymph nodes such as cathepsin B, reactive 

oxygen species (ROS) and reactive nitrogen species (RNS) as well as the NF-

κB pathway were investigated in a model of acute and chronic delayed type 

hypersensitivity reaction (DTHR) by non invasive in vivo optical imaging. 

Cathepsin B represents an important intra- and extracellular protease, which 

is of immense importance during the establishment of an immune response 

e.g. in antigen processing. ROS and RNS are a byproduct of cellular 

metabolism but are also produced as effector and signaling molecule mainly 

by neutrophilic granulocytes. NF-κB is an important signaling pathway which 

is sensing inflammatory stimuli and leads to the expression of many genes 

involved in the immune response. 

The T-cell driven acute cutaneous DTHR was induced by sensitizing mice at 

the abdomen and eliciting the inflammatory response 7 days later at the right 

ear using the hapten 2,4,6-trinitrochlorobenzene (TNCB). Repetitive 

application of TNCB at the right ear for up to five times induced chronic 

DTHR. Beside wild-type C57BL/6 mice, we used cathepsin B-deficient (Ctsb-/-

), cathepsin Z-deficient (Ctsz-/-) and NF-κB-luciferase-reporter mice to induce 

the acute and chronic TNCB specific DTHR. Cathepsin B activity, ROS/RNS 

production and NF-κB activation were measured noninvasively by optical 

imaging employing protease-activatable fluorescence probes, the ROS-
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sensitive chemiluminescence probe L-012 and luciferin for bioluminescence 

imaging in NF-κB-luciferase-reporter mice.  

 

Extensive ex vivo validation was performed including histopathology, 

immunohistochemistry, flow cytometry, fluorescence microscopy, RT-PCR as 

well as active site labeling of proteases and Western blotting. Furthermore, 

the therapeutic effects of N-acetylcysteine (NAC) and the cathepsin-inhibitors 

CA-074 and Inhibitor 17 were investigated.  

In acute cutaneous DTHR in vivo optical imaging detected an intense 

cathepsin B activity as well as ROS/RNS production and NF-κB activation 

peaking at 24 h after the 1st TNCB ear challenge. In chronic DTHR the 

cathepsin B activity further increased while the peaks of ROS/RNS production 

and NF-κB activation were shifted to an earlier timepoint.  

NAC treatment decreased the ear swelling response in acute and chronic 

DTHR while the influence on the ROS/RNS production and NF-κB activation 

during acute and chronic DTHR assessed by in vivo optical imaging was 

divergent. 

The cathepsin B inhibitors CA-074 and Inhibitor 17 reduced inflammation in 

acute but not in chronic DTHR, while Ctsb-/- mice exhibited an even enhanced 

ear swelling response during acute DTHR caused by a compensatory 

expression of cathepsin Z. Ex vivo analysis revealed enhanced cathepsin B 

expression in neutrophilic granulocytes, dendritic cells, macrophages, B, T 

and natural killer (NK) cells within inflamed ears and draining lymph nodes. 
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The investigated mechanisms are an essential part of the multifaceted 

interplay which is needed to establish and maintain inflammatory immune 

responses. Molecular imaging involving optical imaging is a highly capable 

tool to monitor these mechanisms in vivo and to asses targeted therapeutic 

interventions. These results could be of high importance not only to modulate 

inflammatory autoimmune diseases like rheumatoid arthritis but also to 

prevent carcinogenesis in chronic inflammation like non alcoholic 

steatohepatitis. 
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5. German summary 

Entzündungsreaktionen beruhen auf einer komplexen Wechselwirkung 

zwischen molekularen und zellulären Mechanismen. In dieser Arbeit wurden 

verschiedene Akteure im entzündeten Gewebe und in den drainierenden 

Lymphknoten wie Cathepsin B, reaktive Sauerstoffspezies (ROS) und reaktive 

Stickstoffspezies (RNS) sowie der NF-κB-Signalweg in einem experimentellen 

Mausmodell der akuten und chronischen Kontaktallergiereaktion vom 

verzögerten Typ (delayed type hypersensitivity reaction; DTHR) durch nicht-

invasive optische Bildgebung in vivo untersucht. Cathepsin B stellt eine 

wichtige intra- und extrazelluläre Protease dar, die z.B. bei der 

Antigenprozessierung von immenser Bedeutung ist. ROS und RNS können 

als Nebenprodukt des zellulären Metabolismus anfallen, werden aber auch 

z.B. von neutrophilen Granulozyten gezielt als Effektor- und Signalmolekül 

produziert. NF-κB ist ein wichtiger Signalweg, der auf Entzündungsreize 

reagiert und zur Expression vieler, an der Immunantwort beteiligter Gene 

führt. 

Um eine akute kutane DTHR zu induzieren wurden Mäuse am Abdomen mit 

dem Hapten 2,4,6-Trinitrochlorobenzen (TNCB) sensibilisiert und 7 Tage 

später die Entzündungsreaktion am rechten Ohr durch erneutes Auftragen 

einer TNCB-Lösung ausgelöst. Die chronische DTHR wurde durch 

wiederholte Applikation der TNCB-Lösung am rechten Ohr induziert. Neben 

Wildtyp-C57BL/6-Mäusen verwendeten wir Cathepsin-B-defiziente (Ctsb-/-), 

Cathepsin-Z-defiziente (Ctsz-/-) und NF-κB-Luciferase-transgene 

Reportermäuse. Die Cathepsin-B-Aktivität, die ROS/RNS-Produktion und die 
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NF-κB-Aktivierung wurden nicht-invasiv durch optische Bildgebung unter 

Verwendung von Protease-aktivierbaren Fluoreszenzmarkern, dem ROS-

sensitiven Chemilumineszenzmarker L-012 und Luciferin, welches mit der 

Luciferase der NF-κB-Reportermäusen reagiert, gemessen.  

Die Ergebnisse wurden durch umfassende ex vivo Experimente mittels 

Histopathologie, Immunhistochemie, Durchflusszytometrie, 

Fluoreszenzmikroskopie, RT-PCR sowie active site labelling und Western 

Blotting der Proteasen validiert. Darüber hinaus wurden die therapeutischen 

Effekte von N-Acetylcystein (NAC) sowie der Cathepsin-Inhibitoren CA-074 

und Inhibitor 17 untersucht.  

Während der akuten kutanen DTHR zeigte die optische in vivo Bildgebung 

eine intensive Cathepsin-B-Aktivität, ROS/RNS-Produktion und NF-κB-

Aktivierung. Nach Auslösen der chronischen DTHR stieg die Cathepsin-B-

Aktivität weiter an, während die maximale ROS/RNS-Produktion sowie die 

maximale NF-κB-Aktivierung schon zu einem früheren Zeitpunkt gemessen 

werden konnte.  

Die Therapie mit NAC verringerte die TNCB-spezifische 

Ohrschwellungsreaktion während der akuten und chronischen DTHR. Der 

Einfluss der NAC Therapie auf die ROS/RNS-Produktion und die NF-κB-

Aktivierung während der akuten und chronischen DTHR folgte jedoch nicht 

eindeutig diesem Trend. 

In der akuten DTHR konnte im entzündeten Ohrgewebe und in den 

drainierenden Lymphknoten eine erhöhte Cathepsin B Expression in 

neutrophilen Granulozyten, dendritischen Zellen, Makrophagen, B-, T- und 
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natürlichen Killerzellen (NK-Zellen) nachgewiesen werden. Die Cathepsin B-

Inhibitoren CA-074 und Inhibitor 17 reduzierten die akute, jedoch nicht die 

chronische DTHR. Dahingegen zeigten Ctsb-/- Mäuse während der akuten 

DTHR eine verstärkte Ohrschwellungsreaktion, die durch eine 

kompensatorische Expression von Cathepsin Z verursacht wurde. 

Die untersuchten Mechanismen sind ein wesentlicher Bestandteil des 

komplexen Zusammenspiels molekularer Prozesse, welche für die 

Entstehung und Aufrechterhaltung von Entzündungsreaktionen erforderlich 

sind. Die molekulare optische Bildgebung ist ein sehr leistungsfähiges 

Instrument zur Untersuchung dieser regulatorischen Mechanismen und zur 

Beurteilung des Einflusses gezielter therapeutischer Interventionen. Diese 

Ergebnisse können nicht nur für die Behandlung von Autoimmunkrankheiten 

wie der rheumatoiden Arthritis von großer Bedeutung sein, sondern auch z.B. 

zur Prävention der Karzinogenese beitragen, welche durch chronische 

Entzündungsprozesse wie der nichtalkoholischen Steatohepatitis ausgelöst 

werden kann. 
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