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Summary

Organisms affect and shape each other, both during their own lifespans and in evolutionary

terms. The relationship between a host and its colonizing microbes can have major immediate

and long-term effects on host health. Whether the colonizing microbes have a good impact or a

bad one depends in part on how those microbes interact with each other. Overproliferation of

pathogenic microbes is associated with negative impacts on the host health. This can be

countered by protective microbes, which may suppress pathogenic ones. Taken together with

the host immune system, the complicated host-microbe-microbe dynamics form a balance of

fitness between the host and its microbes. Of specific interest are the dynamics between plants

and microbes. Phytopathogens harm global agricultural production, yet are often somehow held

in check in wild settings. In this thesis, I am studying the plant-microbe-microbe interface using

Arabidopsis thaliana and its associated bacterial genus Pseudomonas, leveraging a collection of

1,524 Pseudomonas strains which were isolated from plants of the same geographic region.

In the first chapter, I focus on synergistic effects, studying the interactions between

multiple coexisting pathogenic and commensal Pseudomonas strains with a panel of Arabidopsis

thaliana accessions. By employing synthetic communities of genome-barcoded strains, I

monitored the abundance of individual isolates in the context of communities, including

exclusively commensal, exclusively pathogenic, and mixed commensal and pathogenic

communities. I revealed that the inclusion of commensal members led to inhibition of

pathogens, preventing the harmful effect on plant biomass. I associated these protective

interactions with both microbe-microbe interactions and with the host transcriptomic

signature. I found that the extent of plant protection varied with host genotype, further

highlighting the role of the host in mediating protective interactions. Finally, I unravelled similar
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genotype-specific effects on the microbial side, presenting how an individual Pseudomonas

pathogenic isolate caused this differential protection effect.

In the second chapter, I investigate (i) the prevalence of protection against pathogens by

commensal Pseudomonas, (ii) the taxonomic specificity of such protection and (iii) the bacterial

elements in commensal Pseudomonas that lead to protection. To address these questions, I

made systematic co-infections, pairing each of ninety-nine locally-isolated commensal isolates

with a local Pseudomonas pathogen. The majority of these wild commensal Pseudomonas

protected the plant to some extent. In particular, one taxonomic group was enriched for

protective isolates. However, the ability to protect the plant varied between closely related

strains, even within this protective group. I leveraged this variation to conduct a genome-wide

association study (GWAS), pinpointing gene orthologs in presence-absence variation that are

associated with the protective ability. Instead of a universal set, I found taxon-specific gene sets.

According to gene annotation, these sets indicated different mechanisms of protection,

including iron-uptake, antibiosis, and motility. Using gene deletion, I validated the role of a

subset of genes, confirming a link between plant protection with three iron-uptake genes and

one biofilm-related gene.

Collectively, this work advances our knowledge about how genetic diversity in both the

microbe and the host affects the outcome of the interaction, disentangling different aspects of

this complex system. Among the main conclusions of this work is that commensal bacteria are

an important factor in maintaining plant health, acting via multiple competitive microbe-microbe

mechanisms and via induction of the host immune response. Ultimately, application of such

commensal bacteria to control pathogens  may sustainably improve global agriculture.
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Zusammenfassung

Organismen befinden sich in ständiger Wechselwirkung und beeinflussen sich gegenseitig, im

Zuge ihres eigenen Lebenszyklusses und im Zusammenhang von evolutionären Aspekten. Die

Beziehung zwischen Wirt und seinem darauf lebenden Mikroben kann spontane und langfristige

Wirkungen auf die Gesundheits des Wirtes haben. Ob die kolonisierten Mikroben gute oder

schlechte Einwirkungen auf den Wirt haben, hängt mit den Wechselwirkungen der Mikroben

zusammen. Überstimulation von pathogenen Mikroben wirken sich negativ auf die Gesundheit

des Wirtes aus. Wohingegen schützende Mikroben eine schützende Wirkung auf den Wirt

ausüben können, indem sie das Wachstum von Pathogenen hemmen. Zusammen mit dem

Immunsystem des Wirtes und der komplexen Dynamik von Mikrob-Mikrob Interaktionen

entsteht ein Fitness Gleichgewicht zwischen dem Wirt und seinen Mikroben. Der Fokus hier

liegt auf der Dynamik zwischen Pflanzen und seinen Mikroben. Phytopathogene schädigen die

globale Produktion von Nutzpflanzen, dennoch ist es unklar, wie natürliche Umgebungen diese

abwehren. Diese Thesis, befasst sich mit den Interaktionen zwischen Wirt-Mikrob-Mikrob an

Arabidopsis thaliana und seinen assoziierenden Pseudomonas Genus, genauer eine Kollektion

von 1.524 Pseudomonas Spezien die auf derselben Pflanze sowie von derselben geografischen

Region isoliert wurden.

Das erste Kapitel umfasst die synergistischen Interaktionen zwischen unterschiedlichen

zusammenlebenden pathogenen und kommensalen Pseudomonas Spezien, die auf

unterschiedlichen Arabidopsis thaliana Linien vorkommen. Die synthetischen Gesellschaften

wurden basierend auf ihr Genom mit unterschiedlichen Barcoden markiert, dadurch konnte ich

die Fülle der individuellen Isolaten im Bezug auf die Gesellschaften analysieren. Aufgebaut waren

die Gesellschaften in nur kommensal, nur Pathogenen und gemischen kommensal und

pathogenen Gesellschaften. Die Einführung von kommensalen Mikroben hemmen die

pathogenen Mikroben und können dadurch die pflanzliche Biomasse schützen. Diese Pflanzen
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schützenden Wirkungen wurden wurde weiter untersucht mit zwischen bakteriellen

Interaktionen und dem Wirts Transkriptom. Daraus schloss ich, dass der Pflanzenschutz sich

unterscheidet zwischen den unterschiedlichen Pflanzen Genotypen. Dies bedeutet, dass der

Wirt unterschiedliche schützende Interaktionen einhergeht. Zu guter letzt, beobachtete ich, die

aehnliche Genotyp spezifischen Effekte auf der mikrobiellen Seite: wie ein einzelnes pathogenes

Pseudomonas Isolat verschiedene schützende Effekte hervorrufen kann.

Im zweiten Kapitel, wurden die schützenden kommensalen Pseudomonas Isolate genauer

untersucht auf (I) ihre Häufigkeit, (II) die spezifischen Taxa, und (III) die bakteriellen Elemente.

Dafür wurden verschiedene systematische Co-infektionen von jedem 99 lokal isolierten

kommensalen und pathogenen Pseudomonas Isolate miteinander zusammengestellt. Die

Mehrheit von diesen wilden kommensalen Pseudomonas Isolaten schützen die Pflanzen zu

einem gewissen Masse. Besonders auffallend war eine spezifische taxonomische Gruppe, die

jedoch Variationen aufzeigte von ihrer schützenden Wirkung mit sehr nah verwandten Spezien,

selbst wenn sie in derselben Gruppe auftauchten. Eine Genomweite-assoziation Studie (GWAS)

zeigte, dass schützende Wirkung zurückzuführen ist zu einem taxon-spezifischen Gen Sets, die

innerhalb einer orthologen Gruppe liegen. Diese Sets sind ein Indiz für die unterschiedlichen

Mechanismen die zum Pflanzenschutz führen. Laut den Gen Beschreibungen, sind die Gensets

relevant für unterschiedliche Schutzfunktionen, wie die Aufnahme von Eisen, Antibiose, und

Motilität. Verschiedene Gendeletionen bestätigen die Konnektivität zwischen Pflanzenschutz und

drei Genen die relevant sind für die Aufnahme von Eisen und eins dass zur Bildung von Biofilm

beiträgt.

Zusammenfassend, diese Arbeit erweitert unser Wissen wie genetische Diversität einen

Effekt hat auf mikrobielle und pflanzliche Ebene, im Sinne von unterschiedlichen Interaktionen

und somit wurde einen weiteren Aspekt in diesem komplexen System entschlüsselt. Eine der

Hauptaussage dieser Arbeit ist, dass kommensale Bakterien einen entscheidenden Faktor zum

Pflanzenschutz beitragen, durch die wett kämpferischen Interaktionen zwischen den Mikroben
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und durch die Aktivierung des Immunsystems vom Wirt. Die Anwendung von kommensalen

Mikroben um Pathogene zu kontrollieren kann die Nachhaltigkeit der globalen Landwirtschaft

stärken.
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Introduction

General introduction and motivation

As far as we know, unicellular organisms were the first forms of life on planet earth, dating to

about 3.5 billion years ago (Schopf 2006; Pearce et al. 2018). A current estimation dates the

emergence of land plants to about 3 billion years later, thus around 500 million years ago

(Morris et al. 2018), positioning plants as biological hosts that offer a niche for microbial

colonization.

The associations between plants and microbes have reciprocal effects on both the

organisms, ranging from beneficial (Finkel et al. 2017) to harmful (Mansfield et al. 2012; Dean et

al. 2012). On an ecological scale, these relationships have an importance in shaping the global

ecosystem (Langley and Hungate 2014; Vorholt 2012). In particular, they have had a substantial

impact on agricultural systems, from the dawn of the neolithic revolution (Stukenbrock and

McDonald 2008). Phytopathogens cause various diseases in crops, leading to an annual

reduction of more than 10% in worldwide food supply (Strange and Scott 2005), and up to 30%

in food-deficit areas (Savary et al. 2019). Besides these implications, dynamics between plants

and colonizing microbes project general rules governing other host-microbe systems, such as

humans and their colonizers, manifesting our health. Furthermore, microbes also interact

directly with each other within the plant, indicating patterns that resemble host-free

environments such as the ocean and soil.

Ultimately, understanding microbial colonization of plants facilitates our ability to

improve food production in a sustainable fashion. Furthermore, it can advance our knowledge

about the host-microbiome concept, promoting health care and global ecosystem preservation.

In this thesis, I am using the plant Arabidopsis thaliana and its colonizing bacterial genus

Pseudomonas as a model for plant-microbe-microbe relationships, focusing on protective
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microbial interactions in the phyllosphere (the aerial parts of the plant). I am detailing how

genetic diversity affects these relationships, using different genotypes of plants and bacteria

sampled from the same geographic region. I leverage this natural genetic diversity to understand

the underlying mechanisms leading to pathogen mitigation and a healthy plant, addressing both

the host- and microbial-related mechanisms. In a broader context, I am highlighting how the

plant-microbe and microbe-microbe dimensions come into play in the multifarious relationship

of plant-microbe-microbe, thus moving back and forth between the individual relationships and

their ensemble.

Below I introduce current relevant knowledge in the field, placing my work in the

appropriate scientific background.

Individual plant-microbe interactions

Wild plants are colonized by a vast diversity of microbes (Bai et al. 2015), manifesting multiple

direct interactions between microbes and their hosting plant. In this section I will present the

importance of individual plant-microbe interactions, detailing how they shaped the genetic

architecture of both plants and microbes. Side-by-side, I will cover relevant literature to

understand the extent to which these individual interactions reflect the complex relationships

between plants and consortia of microbes; is the whole greater than the sum of its parts?

Plant defensive system to control microbial colonization

Plants evolved several lines of defense to protect themselves from microbial invasion. The first

line of defense is physical. The leaf comprises a waxy cuticle that serves as an external barrier,

preventing the entering of microbes (Serrano et al. 2014; Reina-Pinto and Yephremov 2009).

Microbes can breach the cuticle layer and penetrate into the leaf via natural pores, such as

stomata (Melotto, Underwood, and He 2008) and hydathodes (Cerutti et al. 2017), as well as

via wounds. Some microbes can actively decompose the cuticle (Garrido et al. 2012). After
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breaching the cuticle, microbes will face the cell wall - another physical barrier preventing

microbes from exploiting plant resources (Lionetti and Métraux 2014; Miedes et al. 2014),

acting also as a reservoir of antimicrobial compounds (Schulze-Lefert 2004). Important to note

that both the cuticle and cell wall are not just passive physical barriers, but rather dynamic

systems that sense the environment and react (Underwood 2012). This topic is interesting, but

beyond the scope of this introduction.

The second line of plant defense comprises an active two-tiered immune system, which

specializes in the recognition of microbes, and the activation of appropriate antibacterial

pathways. The first tier includes pattern-recognition receptors (PRRs), which are cell surface

proteins that recognize general microbial- or pathogen-associated molecular patterns shared

across many taxa (MAMPs or PAMPs). These molecules are normally slowly evolving, for

instance flagellin (Jones and Dangl 2006). Recognition of PAMPs will result in a specific immune

response, referred to as PAMP-triggered immunity (PTI). The second tier of immunity is

tailor-made for the recognition of pathogens or lower taxonomic ranks, via molecules that are

rapidly evolving. It is actioned within the plant cell by a diverse family of nucleotide-binding site

leucine-rich repeat (NBS-LRR) proteins (McHale et al. 2006; Dodds and Rathjen 2010). These

NBS-LRRs are also referred to as resistance (R) proteins. R proteins are triggered by bacterial

effectors - proteins that are injected into the plant cell and in most cases suppress the initial PTI

response, consequently conferring higher survivability of the invading microbe (Toruño,

Stergiopoulos, and Coaker 2016). Both PTI and effector-triggered immunity (ETI) lead to the

activation of similar antimicrobial mechanisms, such as a burst of reactive oxygen species

(Nürnberger and Scheel 2001), though in different response amplitudes (Thomma, Nürnberger,

and Joosten 2011; Naveed et al. 2020). The ETI response is considered as stronger. This is

manifested by the stereotypical hypersensitive response (HR) - a programmed cell death

encapsulating biotrophic microbes, hence preventing their spread within the leaf (Morel and

Dangl 1997; Balint-Kurti 2019) .
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The distinction between ETI and PTI is becoming more and more blurred (Thomma,

Nürnberger, and Joosten 2011; Lu and Tsuda 2021), and their cross-talk is still under research.

What is clear is that the two mechanisms act together to confer higher survivability of plants in

the wild (M. Yuan et al. 2021) .

The underlying coevolution between plants and microbes

During evolution, the antagonistic relationships between plants and microbes yielded

co-evolutionary dynamics in which microbes evolved to invade, and plants to protect. At the

molecular level, these dynamics are demonstrated by the gene-for-gene model, which describes

how pairs of matching genes in a plant and a microbe determine the outcome of infection (Van

der Biezen and Jones 1998). Thus, the plant response to a given microbe is often determined by

the interaction of two molecules: a receptor (host-derived) and a ligand (microbe-derived). This

concept was introduced in 1956 by H.H. Flor (Flor 1956), who examined the inheritance of

disease in both flax (Linum usitatissimum) and its fungal pathogen Melampsora lini. Flor was the

first to propose that resistance in plants is the result of matching pairs of individual genes, one

in the host and one in the pathogen. In the course of time, numerous experimental evidences

have supported Flor’s theory (Leonelli et al. 2011; Petit-Houdenot and Fudal 2017; Kobayashi,

Tamaki, and Keen 1989; van Dijk et al. 1999), conceptualizing it as a paradigm in plant pathology.

Following Flor’s concept, the ‘zig-zag model’ entangles evolution with the gene-for-gene model,

presenting the genetic co-arms race over time between two molecules in two different

organisms, leading to their diversification (Jones and Dangl 2006). In agreement with the zig-zag

model, R genes in the plant species A. thaliana are highly polymorphic (Van de Weyer et al.

2019), as is the effector content in its pathogen Pseudomonas syringae (Dillon et al. 2019),

which is a compatible A. thaliana colonizer. This high polymorphism resembles what could be a

signature of a tight co-arms race between individual host R genes and their compatible bacterial

effectors, as presented in the zig-zag model.
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Nonetheless, the zig-zag model considers a scenario with one host and one microbe. In

reality, multiple microbes colonize diverse hosts that coexist in the same population. In other

words, plants from the very same population vary in their immune genes repertoire (Karasov,

Shirsekar, et al. 2020). This diversity leads to balancing selection rather than a selective sweep,

and reduces the importance of individual plants (Karasov, Shirsekar, et al. 2020; Karasov et al.

2014; Koenig et al. 2019). Therefore, plant resistance should be considered at the population

level, dynamics which are not incorporated in the zig-zag model. Furthermore, although the

zig-zag model is considered as a good expository model, it explicitly excludes major

determinants of successful microbial colonization, even in the context of individual plants.

Among these are the aforementioned simultaneous colonization of multiple microbes and the

existence of symbiosis types other than parasitism (Pritchard and Birch 2014).

Consequently, the one dimensional interactions between matching genes in plants and

microbes should have a limited predictability of colonization rate in most realistic scenarios.

Notwithstanding, it is clear that the plant immune system has an important role in microbial

colonization, especially regarding the colonization of phytopathogens.

The effect of individual microbes on plant health

The symbiotic interactions between plants and their colonizers range from mutualism, through

commensalism, to parasitism (Vorholt 2012; Finkel et al. 2017). Often, high ratios of microbial

to host cells are associated with pathogenicity, as was found in controlled infections (Velásquez

et al. 2017; Innerebner, Knief, and Vorholt 2011; Fabro et al. 2011), and concluded about wild

pathosystems (Karasov, Neumann, et al. 2020). This portrays a zero-sum game scenario in

which microbial proliferation comes at the account of the plant fitness, probably by depleting its

resources and reprogramming its physiological development. Nonetheless, there are microbes

that increase the ability of the plant to uptake nutrients from the environment, as exemplified by

nitrogen fixing bacteria (Jacoby et al. 2017; Hestrin et al. 2019), as well as microbes which
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prevent abiotic stresses such as heavy metal detoxifiers (Mishra, Singh, and Arora 2017),

presenting a win-win scenario.

Investigating how individual bacteria affect plant health is an important front to

understand the function of wild microbiomes. In particular, this approach can provide a

mechanistic understanding of microbial effects on plants. However, it is low in throughput, and

mostly focuses on a small subset of stereotypical microbes. This stands in contrast to the fact

that wild plants are colonized by consortia of microbes, provoking questions about the

importance of such binary interactions. An alternative approach is to investigate host-microbe

interaction in the context of multiple microbes. The added complexity is that microbes also

affect each other. This is exemplified by pathogen-suppressing strains, as found among the

genera Sphingomonas (Innerebner, Knief, and Vorholt 2011) and Pseudomonas (De

Vleesschauwer et al. 2008; Ganeshan and Manoj Kumar 2005) .

Plants microbial ecology: shifting from individuals to communities

Both prokaryotes and eukaryotes colonize the plant below and above ground (Bai et al. 2015;

Noble et al. 2020; Singh et al. 2019; Lundberg et al. 2012). Information about the identity and

function of these microbes is important to understand principles governing microbial

colonization of plants. One fundamental question regards the existence of a core microbiota,

thus querying about the existence of a specific subset of microbes that repeatedly reside in

plants. Such consistency would manifest particular functions that enable these microbes to

colonize plants. One aspect of such functions is actually related to microbe-microbe

interactions rather than plant-microbe, as microbes interact with each other, affecting the

proliferation of their co-colonizers.

In this section, I will introduce current knowledge about the ecology of microbes within

plants, starting with a chronological literature review about methods to identify and classify

microbes. This will be used as the background for subsequent introductory topics.
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Technological aspects in microbial characterization

The identification and classification of microbes are the very basics of microbiology, as even in

the simplest study it is required to know which microbes are presented in a given sample. In

1667, the Dutch scientist Antonie van Leeuwenhoek published the first documented

observation of microbes through a microscope (Lane 2015). Leeuwenhoek described the forms

he noted as “animalcules”, which translates from latin as “tiny animals”. A crucial improvement

in the visualization of microbes came in 1884 by Hans Christian Gram, in the form of bacterial

staining (Gram and Friedlaender 1884). While Gram created this technique to better visualize

bacteria in lung tissues, his method was subsequently used for bacterial classification, as only

one out of two bacterial types can be stained, based on the cell wall type (Coico 2005). Besides

microscopy, the cultivation of microbes greatly advanced microbiologists in the identification

and classification of microorganisms. Around the same time Gram published his staining

method, Angelina Hesse introduced the agar media (Hesse 1992), replacing older cultivating

techniques such as food assortment- and gelatin-based media. The usage of agar media,

combined with different nutrient sources, allowed microbiologists to cultivate a diverse set of

microorganisms, while researching their macroscopic colonies properties. Overall, microscopy

and cultivation methods were the available tools for microbial classification in the early days of

microbiology, and are still in common use.

However, today we classify microbes primarily relying on their DNA sequence, either

marker-gene- or whole-genome-based. The most common marker genes in use are the

conserved 16S rDNA for bacterial profiling and the internal transcribed spacers (ITS) 1 and 2

or rDNA for eukaryotic profiling. Profiling is done by PCR-amplification of the gene of interest,

followed by sequencing of the PCR product. The resulting sequences can be binned by their

similarity to compose ‘Operational Taxonomic Units’ (OTUs), and an exact nomenclature can

be then assigned to these units by mapping to existing databases (these act as a dictionary
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between sequences and taxonomic assignments) (Liu et al. 2020). Microbial profiling based on

marker genes has a few advantages, resulting from the low complexity of the data and its

long-time usage. To name the main advantages: (i) the lack of need in sequence assembly, (ii)

well maintained databases, and (iii) the low price, projected from the low coverage needed, thus

allowing the affordable profiling of many samples simultaneously (Caporaso et al. 2011). On the

other hand, marker-gene-based profiling, using short-read technologies, provides the confidence

to taxonomically classify microbes only up to the genus level (Johnson et al. 2019; Earl et al.

2018), which stands in a big contrast to current understandings about differences in genetics

even within a species (Barnes, Carter, and Lewis 2020; Tett et al. 2017; Yan et al. 2020).

Considering the breadth of evolution in microbial populations - both from the angle of single

nucleotide polymorphisms (SNPs) and presence-absence variation of genes (PAV) -

marker-gene-based profiling allows only a very limited view of evolutionary understanding in

microbes. Furthermore, since even highly related strains can differ in their activities (Barnes,

Carter, and Lewis 2020), marker genes are not very suitable for predicting the function of

profiled microbes.

An alternative approach is profiling by whole-genome-sequencing (WGS), which in

principle is suitable for the analysis of both individual culturable bacteria and for consortia

(although single-genome- and metagenomic-data are very different, as detailed below). In

contrast to marker-gene profiling, WGS profiling allows the taxonomic classification of microbes

up to the strain level, thus microbes within species can be distinguished (Ranjan et al. 2016).

Additionally, WGS provides the full genetic architecture of microbes, enabling various

gene-based analyses to estimate functions, as well as in-depth evolutionary dynamics in

microbes (Levy et al. 2017; Karasov et al. 2018). WGS is generating orders of magnitude more

data than marker-gene sequencing, thus is much pricier. Focusing on the plant phyllosphere,

WGS is suitable for culturable bacteria, producing a comprehensive analysis for a subset of

relevant microbes, as was done in Pseudomonas (Karasov et al. 2018). However, as
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demonstrated in wild A. thaliana, WGS is not suitable for the analysis of microbes in plant leaf

samples (Regalado et al. 2020). The main bottleneck is the high amount of host-related reads,

diluting microbial reads to a negligible fraction. This limitation is specific to endophytic microbes

- colonizers of the inner part of the leaf - which thus far cannot be appropriately separated

from the host tissue. However, WGS of microbial communities from abiotic environments can

yield enough data to produce metagenome assembled genomes (MAGs) (Tully, Graham, and

Heidelberg 2018), therefore enabling the reconstruction of individual genomes from mixed

communities.

In summary, DNA sequences of marker genes can be utilized to gain a general overview

of the microbial profile in a given sample, affordably, and with a high throughput. Analysis of the

exact microbial phylogeny, evolutionary dynamics and microbial functional annotation requires

the utilization of WGS, which is more suitable to culturable microbes in the plant phyllosphere.

The microbiota of the phyllosphere: a random mixture or a well defined team?

Among the pioneering studies that employed culture-independent methods to appreciate

microbial communities, Yang et al. (Yang et al. 2001) were the first to profile the microbiota of

the phyllosphere. Using the technology available at the time, they utilized denaturing gradient

gel electrophoresis (DGGE) with 16S rDNA primers, finding that the phyllosphere community

was more complex than previously thought based on culture-based methods. They reported an

overall number of only 17 unique bacterial sequences and three unique fungal. With the

emergence of high throughput sequencing, many more reports confirmed the existence of

hundreds of unique 16S rDNA sequences within individual leaf samples (Redford et al. 2010;

Lambais et al. 2006). The accumulated knowledge led to fundamental questions regarding the

consistency of the plant microbiota, with regards to geography, host genotype et cetera. The

first comprehensive research addressing this concept confirmed that a subset of bacteria is

consistently colonizing the plant roots, despite different soil sources, with a weak but significant
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effect of the host genotype on the bacterial profile (Lundberg et al. 2012; Bulgarelli et al. 2012).

Subsequent studies confirmed these findings, presenting a stereotypical microbial profile of

various plant species, while noting differences that are associated with the field, season and host

genotype (Bulgarelli et al. 2015; Brown et al. 2020; Regalado et al. 2020; Thiergart et al. 2020) .

The existence of a core microbiome in plant species indicates that only compatible

microbes can colonize the plant. The effect of the host genotype on the microbiome profile

highlights that compatibility is a function of the host genetic arsenal. Nonetheless, the effect of

the intraspecific host genotype on the microbiota was repeatedly found as weak, both in the

phyllosphere (Wagner et al. 2016; Brown et al. 2020) and the rhizosphere (Lundberg et al. 2012;

Durán et al. 2018; Brown et al. 2020; Thiergart et al. 2020). These findings supposedly are in

conflict with the aforementioned implications of the zig-zag model (Jones and Dangl 2006),

which translates into a high polymorphism of R genes within plant species (Van de Weyer et al.

2019). I.e, since different host genotypes hold a diverse set of R genes, they should present

substantial differences in the abundance of various microbes. However, the interactions

between effectors secreted by phytopathogens and their matching R gene compose only one

variable out of many in predicting the overall microbiome. In fact, the microbial profile of A.

thaliana is a polygenic trait, comprising various genes that exceed the scope of R genes (Horton

et al. 2014) .

Regardless of the exact genes in play, plant genetics seems to play only a modest role in

determining the overall microbiome profile. An additional dimension holds promise in helping to

explain the composition of microbial assemblage in the plant - the antagonism and mutualism

occurring between co-residing microbes.

Mechanisms of microbial antagonism

From the perspective of evolution, organisms that reproduce in the highest numbers win.

Reproduction depends on the available resources, and resources in most environments are
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practically finite. Thus, competition is common between organisms that reside together,

specifically within microbial communities (Hibbing et al. 2010; Foster and Bell 2012) .

Microbes have developed multiple mechanisms to proliferate in the presence of other

competitors. One of these mechanisms comprises a set of tools to inhibit or kill other

microbes. The type VI secretion system (T6SS) in bacteria is a contact-dependent

transmembrane contractile machine, responsible for the injection of effectors into other

organisms living in proximity (Hood et al. 2010). While different T6SSs have various functions

such as biofilm formation (Gallique et al. 2017) and metal uptake (Wang et al. 2015; Chen et al.

2016), the primary function of T6SSs is to toxify nearby bacterial opponents (Cianfanelli,

Monlezun, and Coulthurst 2016; Durand et al. 2014). The importance of this function is

manifested by its main role in shaping the overall microbiota, as was demonstrated in the human

gut (Verster et al. 2017; Sana et al. 2016; Chatzidaki-Livanis, Geva-Zatorsky, and Comstock

2016). Recently, the contact-dependent type IV secretion system (T4SS) - that has a main role

in transferring DNA to other bacterial cells (Grohmann et al. 2018) - was also found to be

involved in the injection of toxic effectors into other bacteria. This was demonstrated, for

example, in the plant pathogen Xanthomonas citri which antagonized other bacteria via T4SS,

leading to the hypothesis that T4SS role in microbial competition is underestimated (Souza et al.

2015). Other contact-dependent mechanisms include the type VII secretion systems (T7SSs),

the contact-dependent growth inhibition (CDI) systems, nanotubes and the outer membrane

exchange (OME), which are all found to be involved in toxification of other microbes (Granato,

Meiller-Legrand, and Foster 2019) .

Another way to fight rival microbes is by contact-independent toxin secretion systems.

These systems comprise diffusible antimicrobial molecules that can inhibit or kill microbes in

proximity by interfering with their basic biological activities (Kohanski, Dwyer, and Collins

2010). In most cases, the secreting bacteria will also hold the according resistance, to avoid

harming themselves (i.e. similar clones), though other clone types may also gain the appropriate
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resistance to confer protection (Harms, Maisonneuve, and Gerdes 2016). The diversity of

antibiotics production and resistance is a result of a probable coevolutionary arms race between

competing microbes (Granato, Meiller-Legrand, and Foster 2019). Antibacterial molecules can

also be produced by fungi, as was demonstrated by multiple fungi colonizing the leaf of

Indigofera suffruticosa (Dos Santos et al. 2015), noting that the competition in the phyllosphere

involves interkingdom interactions.

Conquering micro-niches that are rich in nutrients can greatly increase survivability and

growth, thus facilitating competition. Using chemoreceptors and mobility factors, microbes can

perform chemotaxis: sense the environment, and migrate towards a more beneficial or less

harmful environment (Wadhams and Armitage 2004). Adhesion (Schluter et al. 2015), the

secretion of extracellular slimy polymers that stop competitors and help the producers to

spread (Kim et al. 2014), and cell morphology (Smith et al. 2017) are all mobility tools that

determine the movement of microbes towards rich environments, on the account of their

competitors. Another communal property that increases the survivability of bacteria is biofilm

formation. Biofilm is the aggregation of bacterial communities, embedded in a matrix of

extracellular polymeric substances (EPS). Bacteria in biofilms have different properties than

free-living cells, such as enhanced resources uptake and increased resistance to antimicrobial

substances (Flemming et al. 2016). The decision to migrate or to aggregate is based on

cell-to-cell communication, and specifically on the cell density of cooperative bacteria - a

function called quorum sensing (Miller and Bassler 2001). In order to outcompete others,

microbes can also interfere with the quorum sensing of rivals (Xavier and Bassler 2005),

preventing them from making the right communal decisions.

The efficient uptake of available nutrients is another factor that determines success in a

competitive environment. Microbes differ in their ability to acquire and decompose different

nutrients from the environment. The set of various nutrition sources microbes can exploit

constrain their success rate in different environments (Wawrik et al. 2005; Seth and Taga 2014).
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Intermediate resources that can only be decomposed by a few microbial types relax the

competitive burden, while nutrients that are compatible with all microbes pose a higher

competition, especially when these are scarce (Seth and Taga 2014). A hallmark for the effect of

scarce nutrients is the battle over iron. Iron is an essential micronutrient, having a major role in

vital basic cellular activities such as respiration, DNA synthesis and resistance to reactive

oxygen species (Andrews, Robinson, and Rodríguez-Quiñones 2003). While it is generally

abundant on Earth, iron bioavailability is limited (Emerson, Roden, and Twining 2012), thus

bacteria must compete over iron in most environments. Bacterial iron uptake is done by a few

mechanisms, the main one is the secretion of iron scavenging molecules called siderophores and

their active take up by matching receptors (Guerinot 1994). There is a vast diversity of

siderophores and, in accordance, various siderophores receptors. Microbes differ in their

siderophore set and receptors, a polymorphism which creates a differential success rate of iron

sequestration (Kramer, Özkaya, and Kümmerli 2020). Some microbes cheat by stealing

siderophores produced by others, reflecting the competition over iron (Kramer, Özkaya, and

Kümmerli 2020).

Overall, microbes have an arsenal of functions to maintain their survival in a competitive

environment. A few of these functions were presented in this introduction, focusing on

antagonistic interactions. It is important to note that although functions related to cooperative

relationships were ignored, they play a role in the proliferation of microbes in competitive

conditions.

Competitive mechanisms dictate the nature of individual microbe-microbe interactions,

which in turn affect the microbial composition. Next, I will present how individual microbial

interactions come into play in consortia, which is the realistic scenario. I will highlight current

knowledge in the field, both in host-free environments and in the plant phyllosphere.
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Microbe-microbe interactions and the plant microbiota

Linking microbial composition of consortia to individual microbial interactions is a highly

challenging task. Generally, there are two approaches: the bottom-up, in which the individual

components are being studied to predict the ensemble, and the top-down, in which the

individual components are extrapolated from the ensemble. Each approach has its pros and

cons, and both are complementary for the understanding of microbial interactions in consortia.

The very basis of the bottom-up approach is the assumption that species in consortia

interact in a pairwise manner (Faust and Raes 2012). In its simplest form, it excludes the

non-additive higher-order effects - the unpredicted alteration of a pairwise interaction by a third

species - which can complicate the final outcome (Billick and Case 1994; Wootton 1994).

Dromann and Roxburgh (Dormann and Roxburgh 2005) were among the first to experimentally

validate how pairwise interactions fit with community assemblage, albeit not in microbes. They

used Lotka–Volterra (LV) equations (modelling classic predator-prey dynamics) to predict

biomass and coexistence of plants in three- and seven-species plant communities (appreciating

plant ecology rather than microbial ecology in plants). Overall, pairwise interactions failed to

predict the outcome of consortia in their study, highlighting that the interaction of multiple

organisms is not a straightforward result of the pairwise interactions. In more recent work, an

alternative qualitative model was employed to accurately predict 90% of three-species microbial

communities from pairs (Friedman, Higgins, and Gore 2017). Nonetheless, the pairwise model

failed to predict microbial communities of seven- and eight-species. When outcomes of the trio

competitions were incorporated, seven- and eight-species communities could be accurately

predicted, demonstrating how non-additive effects by a third species can affect complex

microbial communities (Friedman, Higgins, and Gore 2017).

Important to note that current pairwise-based equations produce an abstractive model

that ignores the mechanisms of interaction. Thus, on one hand such equations require minimum

input to predict the consortia (i.e., abundance change in pairwise interactions), but on the other
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hand they cannot predict complex interaction which results from the mechanistic context.

Inclusion of mechanistic information can reduce non-additive effects, and improve predictions of

microbial assembly based on pairwise interactions (Momeni, Xie, and Shou 2017). The

explanation is that non-additive effects often result from the high abstraction yielded by minimal

models (e.g., which account only for abundance change between two organisms). Such models

cannot explain complicated relationships between multiple microbes, as found in the wild.

The top-down approach is the symmetric complement for the bottom-up, aiming to

predict pairwise microbial interactions using communal data. In most cases, multiple samples

across time or space are analyzed for their microbial profile, and changes in the profile are

indicating microbial interactions. By concluding all pairwise co-occurrence associations, a

microbial network can be constructed. The network topology can reveal the importance of

each microbe in the communal context (Faust and Raes 2012). This is demonstrated by

microbial keystone taxa, which are microbes with high connectedness in the network, that

significantly affect the microbiome structure and function, irrespective of their abundance in

different samples or sampling time (Banerjee, Schlaeppi, and van der Heijden 2018). Such hub

microbes were found both in the rhizosphere (Jiang et al. 2017; Yan et al. 2017) and the

phyllosphere (Agler et al. 2016) of plants. Two hub microbes that were found in the

phyllosphere of A. thaliana - Albugo and Dioszegia - are eukaryotes that heavily affect bacteria,

representative of interkingdom interactions (Agler et al. 2016). Interkingdom relationships

within the A. thaliana microbiota were demonstrated also in the rhizosphere, noting how

bacteria alter the composition of diverse filamentous eukaryotes (Durán et al. 2018) .

While the top-down approach presents a feasible way to research microbial interactions

in complex communities, it is primarily based on correlations. Spurious correlations pose a

major risk to the reliability of such results. The risk is even greater when considering purley

compositional data such as relative abundance, often used to profile microbes in plants and

other hosts. Relative abundance is constrained to a constant amount of microbes in a given
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sample, and this mathematical property alone will often lead to false correlations (Gloor et al.

2017). To exemplify the issue, consider a community of two microbes: A and B. The abundance

of microbe A in both samples #1 and #2 is 100 cells. The abundance of microbe B in sample #1

is 100 cells, while in sample #2 is 300 cells. In this example, the abundance of microbe B does

not affect the abundance of microbe A. Nonetheless, a conversion to relative abundance will

lead to a false negative association: microbe A having an abundance of 50% in sample #1 and

25% in sample #2, while microbe B comprise 50% of sample #1 and 75% of sample #2. The

increase of microbe B could be associated with the decrease of microbe A, only due to a

mathematical constraint. There are mathematical tools to reduce the risk of such false

correlations (Friedman and Alm 2012; Morton et al. 2019). Another simple way to circumvent

the problem is by normalizing the amount of bacterial DNA to host DNA. Thus, the host is

used as a reference point to estimate the load of microbes. Indeed, when normalizing microbial

abundance to the plant, either by metagenomics (Regalado et al. 2020) or by PCR that

combines microbe and host markers (Lundberg et al. 2020), microbial networks in the

phyllosphere were substantially altered. Nonetheless, the paradigmatic risk of concluding

causality from associations (Hill 1965) remains. Thus, experimental validation of microbial

associations is still required. Among the common experimental approaches to validate the effect

of microbes in consortia is their exclusion from synthetic communities (SynComs). The same

approach can also be used naively, without prior information about microbial networks, to

estimate the effect of individual microbes in consortia (Vorholt et al. 2017). A systemic drop out

of individual bacteria from SynComs revealed keystone species in the phyllosphere of A. thaliana

(Carlström et al. 2019), demonstrating an alternative way to construct microbial networks

which are experimentally validated. Despite this advantage, such an approach is cumbersome

and low in throughput. Hence evidence may be inconclusive for wild microbiota, which are

much more complex (Banerjee, Schlaeppi, and van der Heijden 2018). A current compromise is
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the combination of co-occurrence networks with experimental validation of a few focal

microbes (Durán et al. 2018; Agler et al. 2016) .

In conclusion, microbe-microbe interactions have a major role in shaping microbial

communities, and specifically the phyllosphere microbiota. Combining microbe-microbe

interactions with the individual plant-microbe interactions will yield the final

plant-microbe-microbe relationships. In these relationships, all components affect each other,

creating a complex network of interactions which eventually determine the fitness of both the

host and its co-residing microbes.

The reciprocal effects between the plant and the microbiota

The plant plays a role as an encapsulating environment, providing the potential resources for

microbes that colonize this niche. Microbes can overpopulate the plant, deplete its resources,

and therefore lead to negative health impacts, as is common after the blooming of

phytopathogens. Nonetheless, such events are quite rare in wild ecosystems (Karasov,

Shirsekar, et al. 2020). In fact, wild Arabidopsis thaliana capacitate pathogenic microbes without

compromising their health, due to the activity of other protective microbes (Durán et al. 2018).

In other words, non-pathogenic microbes can affect the relationships of plants and pathogens.

The general concept is not new; Billick and Case (Billick and Case 1994) previously pointed out

that various kinds of relationships between two organisms, ranging from cooperative to

competitive, are constrained by the biotic environment.

In this section I will elaborate on the link between plant health and consortia of

microbes, focusing specifically on protective microbes in the phyllosphere.

Protective microbial interactions in plants

There is increasing amount of evidence linking members from the plant microbiome to the

mitigation of phytopathogens, both in the rhizosphere (Durán et al. 2018; Berendsen, Pieterse,
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and Bakker 2012; Mendes et al. 2011) and the phyllosphere (Agler et al. 2016; Qin et al. 2019).

The prevention of pathogen proliferation by other microbes is eventually resulting in plant

protection. Such microbial protective interactions occur between species of the same

taxonomic kingdom, for example among bacteria (Carlström et al. 2019), and between species

of different taxonomic kingdoms (Durán et al. 2018; Mendes et al. 2011; Barda et al. 2015).

Some protective microbes confer protection to a wide range of pathogens, while others are

more pathogen-specific (Lugtenberg et al. 2013). This reflects the differential mechanisms and

importance of microbes in determining plant health.

The majority of studies investigate the impact of individual protective microbes

(Innerebner, Knief, and Vorholt 2011; Haas and Défago 2005; Barda et al. 2015; Gu et al. 2020).

Nonetheless, there are a few examples demonstrating how a consortium of microbes acts as

one protective unit in plants (Berendsen et al. 2018; Wei et al. 2015), exemplifying protective

interactions that are consortium-dependent. Important to note is that as a general rule, the

more complex microbial communities are, the more stable they are (A. Mougi and Kondoh

2012). Consistent with this ecological principle, diverse consortia better resist pathogen

perturbations in plants (Ives, Klug, and Gross 2000; Morella et al. 2020). Hence, while individual

protective microbes may reflect competitive mechanisms which are specific to mitigate certain

pathogenic taxa, protection by consortia better reflect a general trend linking high diversity with

community stability, and improved plant health (Berg et al. 2017) .

Protective interactions in the plant can result from direct microbial warfare. For

example, competition over iron drives the control of the pathogen Ralstonia solanacearum by

microbiome members of tomato plants (Gu et al. 2020). However, protective interactions can

also be host-mediated, as will be expanded on in the next chapter.
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Protective microbe-host-microbe communication: interactions of microbes via the

plant immune system

To understand how plant health is maintained by consortia of microbes, it is important to

disentangle health effects derived from direct microbe-microbe interactions, which are local,

and the indirect microbe-host-microbe interactions, which can be either local or systemic.

Microbes interact in microenvironments, meaning that they can directly affect cells in their very

proximity (Esser et al. 2015), be it the host or other microbes. In contrast, plants are

multicellular organisms that generate both local and systemic signals.

Not only pathogens affect the plant immune system; non-pathogenic bacteria can also

manipulate the host defensive response (Hacquard et al. 2017), either by activating or

suppressing it (Vogel et al. 2016; Garrido-Oter et al. 2018; Lebeis et al. 2015). The interplay

between commensals and the plant defense response can affect other microbes, including

pathogens. For example, commensal microbes can prime the plant (a phenomenon also referred

to as induced systemic resistance [ISR]), conferring resistance to multiple pathogens in distal

tissues (Pieterse et al. 2014). The priming of plants by commensals seems to be a controlled

process with an evolutionary history (Selosse, Bessis, and Pozo 2014). This principle is

demonstrated by the recruitment of priming-microbes via root exudation, following encounters

with the pathogens Pseudomonas syringae (J. Yuan et al. 2018) and Hyaloperonospora

arabidopsidis (Berendsen et al. 2018) .

These lines of evidence point to the importance of host-facilitated interactions,

specifically highlighting how commensals mitigate pathogens via the host defense response, thus

maintaining its health.

Aims and objectives

The general aim of this work is to link microbial interactions with plant health. I focus on both

direct microbe-microbe and host-mediated interactions. I investigated these topics using the
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model plant Arabidopsis thaliana and a collection of Pseudomonas sampled from south west

Germany (Karasov et al. 2018) .

In my first project, I employed synthetic communities of Pseudomonas to study how

consortia of commensal and pathogenic bacteria affect each other - both within and among the

groups - and how they affect the plant response and eventually its health. I genome-barcoded a

selected set of Pseudomonas isolates, allowing the tracking of single isolates in a mixture. Thus,

I characterize microbe-microbe interactions and appreciate their effect on the plant health at

the intraspecific level. Another layer I addressed is the effect of the host genotype on bacterial

interactions, and finally on plant health. I combine information about the plant weight, load of

individual bacteria, host transcriptomic signature and pairwise bacterial suppression in vitro to

portray a complete image of the plant-microbe-microbe interface. In particular, I focus on how

the host facilitates protective microbial interactions and on how natural genetic variation affects

plant-microbe-microbe interactions.

In my second project, I unravel the protective ability of the genus Pseudomonas by

systematically testing pairwise interactions between one pathogenic lineage and a set of ~100

commensal Pseudomonas. This set spans the whole taxonomy of a three years collection in

south-west Germany (Karasov et al. 2018). I leverage whole genome sequencing (WGS) data to

perform a genome wide association study (GWAS), deciphering the protective bacterial gene

orthologs that lead to protection in different Pseudomonas taxonomic subgroups.

One general topic to which I draw special attention in these projects relates to the

synergistic effects of microbial consortia. Thus, I move back and forth between simple and

complex bacterial communities, aiming to infer general conclusions about the ensemble effect.

Among the questions I address in this work: (i) How do multiple interacting commensal

and pathogenic Pseudomonas affect plant health? (ii) To what extent does the plant affect

bacterial interactions? (iii) How common is it for commensal Pseudomonas to protect A.
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thaliana in the wild? And (iv) is there a global set of protective genes among commensal

Pseudomonas or are these genes taxon-specific?

Studying these topics can improve our understanding about the role of the microbiota in

maintaining plant health, as well as our conclusions about dynamics in the multifaceted

host-microbe-microbe relationships.
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Chapter one

Protective host-dependent antagonism among Pseudomonas in the

Arabidopsis phyllosphere

Content of this chapter is published as:

Shalev, O., Karasov, T.L., Lundberg, D.S., Ashkenazy, H., Weigel, D. (2021). BioRxiv

https://doi.org/10.1101/2021.04.08.438928*

*See thesis appendix I for an updated version, as submitted to Nature Ecology & Evolution.

Abstract

The plant microbiome is a rich biotic environment, comprising numerous taxa. The community

structure of these colonizers is constrained by multiple factors, including host-microbe and

microbe-microbe interactions, as well as the interplay between the two. While much can be

learned from pairwise relationships between individual hosts and microbes, or individual

microbes with themselves, the ensemble of interrelations between the host and microbial

consortia may lead to different outcomes that are not easily predicted from the individual

interactions. Their study can thus provide new insights into the complex relationship between

plants and microbes. Of particular importance is how strain-specific such

plant-microbe-microbe interactions are, and how they eventually affect plant health. Here, we

test strain-level interactions in the phyllosphere between groups of co-existing commensal and

pathogenic Pseudomonas among each other and with A. thaliana, by employing synthetic

communities of genome-barcoded isolates. We found that commensal Pseudomonas prompted

a host response leading to a selective inhibition of a specific pathogenic lineage, resulting in plant

protection. The extent of plant protection, however, was dependent on plant genotype,
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indicating that these effects are host-mediated. There were similar genotype-specific effects on

the microbe side, as we could pinpoint an individual Pseudomonas isolate as the predominant

cause for this differential interaction. Collectively, our work highlights how within-species

genetic differences on both the host and microbe side can have profound effects on

host-microbe-microbe dynamics. The paradigm that we have established provides a platform for

the study of host-dependent microbe-microbe competition and cooperation in the A.

thaliana-Pseudomonas system.

Contribution

O.S.S conceived and designed the research. D.S.L conceived bacterial barcoding and developed

the method with O.S.S.. O.S.S performed the experiments and analyzed the results, O.S.S, T.L.K,

D.S.L, H.A and D.W. discussed and interpreted the results. O.S.S wrote the first draft and the

manuscript was written by O.S.S. and D.W, with input from all authors.

Author Author
position

Scientific
ideas

Data
generation

Analysis &
interpretation

Paper
writing

Or Shalev
Skriptchak

1st 75% 98% 70% 70%

Talia L. Karasov 2nd 8% 1% 10% 4%

Derek S. Lundberg 3rd 7% 1% 5% 1%

Haim Ashkenazy 4th 3% - 8% 5%

Detlef Weigel 5th 7% - 7% 20%

Status in the publication process In peer-to-peer review in Nature Ecology & Evolution
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Chapter two

Commensal Pseudomonas protect Arabidopsis thaliana from a

coexisting pathogen via multiple taxonomy-dependent mechanisms

See thesis appendix II

Abstract

Plants are protected from pathogens by both their immune arsenal and colonizing microbes. In a

recent Pseudomonas survey, a pathogenic lineage was reported to dominate wild Arabidopsis

thaliana populations, while it was isolated from non-symptomatic plants. We previously

reported that coexisting commensal Pseudomonas protect A. thaliana from this pathogenic

lineage. However, it remained unclear (i) how common is protection among wild commensal

Pseudomonas strains (ii) how taxon-specific is the protective ability within the Pseudomonas

genus and (iii) what are the underlying bacterial genes and mechanisms leading to protection.

Here, we address these questions by systemically co-infecting A. thaliana plants with an

individual Pseudomonas pathogen and each of a hundred coexisting Pseudomonas commensals.

We found that plant protection is a common function among non-pathogenic Pseudomonas

taxa, and enriched in one lineage. Yet, we found a substantial variation in the protective ability

among isolates of the same lineage, implying gene presence-absence polymorphism. We

leveraged this variation to perform a genome-wide association study, discovering gene ortholog

associated with plant protection. We found different sets of taxon-specific orthologs,

highlighting various mechanisms that mitigate the pathogenic effect. By employing gene deletion,

we validated the protective role of an ortholog subset, unique to one Pseudomonas lineage. We

unraveled that iron acquisition and biofilm formation were the main mechanisms of plant

protection in this lineage. Collectively, our work illustrates the importance of commensal

bacteria in maintaining plant health, while presenting the diversity of underlying mechanisms.
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Contribution

O.S. conceived the research. O.S. performed the experiments and analyzed the results. M.N.

generated the knockout mutants. I.B. fine-tuned the image analysis algorithm for this study. O.S.,

H.A. and D.W. discussed and interpreted the results of this study. O.S. wrote the first draft and

the manuscript was written by O.S. and D.W, with input from all authors.

Author Author
position

Scientific
ideas

Data
generation

Analysis &
interpretation

Paper
writing

Or Shalev
Skriptchak

1st 85% 78% 80% 75%

Haim Ashkenazy 2nd 10% 10% 15% 10%

Manuela Neumann 3rd - 10% - -

Ilja Bezrukov 4th - 2% - -

Detlef Weigel 5th 5% - 5% 15%

Status in the publication process Unpublished, in preparation
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Discussion

Disentangling microbe-microbe and host-microbe from the plant-microbe-microbe

relationships

The multiple pairwise interactions between microbes among each other and with the host

create a highly connected network of relationships. It is crucial to differentiate direct and

host-facilitated interactions to understand how the microbiota assembles in plants. While it is

clear that microbial interactions occur in planta, the role of the host as a mediator is poorly

understood, despite numerous lines of evidence of host-mediated interactions (Barda et al.

2015; De Vleesschauwer et al. 2008; Kamle et al. 2020). In other words, it is unclear how

plant-specific the interactions in planta are.

Beneficial microbes prompt a protective response by the plant, leading to inhibition of

pathogens (Barda et al. 2015; De Vleesschauwer et al. 2008). Furthermore, direct inhibitions

between plant-associated microbes had been reported as well, inferred from in vitro

experiments (Helfrich et al. 2018). Nonetheless, how these are orchestrated in planta has not

been thoroughly studied. Rare exceptions are the studies of Duran et al. (Durán et al. 2018) and

Gu et al. (Gu et al. 2020), which though not focusing directly on host-facilitated interactions

demonstrates the relevance of in vitro direct microbial interactions in planta.

In this thesis, I present inconsistencies between microbial interactions in vitro and in

planta, and specifically a differential ability of commensals to inhibit pathogens in these two

environments (Chapter I; Thesis appendix I). Such differences manifest themselves in the

importance of the plant as a mediator of microbial interactions, and in this case plant-protective

interactions.

The host transcriptome signature provides strong evidence for how the plant may

mediate these protective microbial interactions; only commensal Pseudomonas prompted a

host immune response (Chapter I; Thesis appendix I). The lack of pathogen recognition denotes
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a possible suppression of the plant defense system. Alternatively, it notes the inability of the

tested plant genotype to recognize these pathogenic strains as different plant genotypes

differentially recognize microbes (Haddadi, Larkan, and Borhan 2019). When pathogens were

mixed with the commensal consortia, the plant immune response was activated (Chapter I;

Thesis appendix I). This response can explain the suppression of some pathogenic Pseudomonas

which could not be found in vitro, when tested against the commensal members. The set of

induced defensive genes was exclusively commensal-dependent - i.e., insensitive to the presence

of pathogens - and this may explain why the abundance of commensal isolates has not

substantially changed when mixed with pathogens: commensals were exposed to a similar host

defensive status, regardless of the presence of pathogens. Nonetheless, the mixture of

commensals and pathogens led to the upregulation of many genes that were not expressed in

each of the groups alone (Chapter I; Thesis appendix I). The synergistic effect derived from

mixing pathogens with commensals demonstrates the importance of studying plant

transcriptomics in the context of consortia, which is the realistic scenario. As far as I know, in

addition to the work presented here, only a single study investigated the response of the plant

to a consortia of microbes, using Medicago truncatula and two of its symbionts: rhizobia and

mycorrhizal fungi (Afkhami and Stinchcombe 2016). In their study, infection with a consortia led

to synergistic effects as well. The plant response to multiple microbes may be related to

microbial assembly and plant health, and thus should be further investigated.

In the light of these findings, it seems important to complement studies focusing on

microbial interactions in planta (Agler et al. 2016; Carlström et al. 2019) with host-free assays,

and vice versa - to complement interactions found in vitro (Helfrich et al. 2018) by plant

infections. Such a complementary approach will enable a full understanding of the plant-microbe

and microbe-microbe vectors in the complex plant-microbe-microbe interactions, a need that

was recently pointed out by others as well (Chaudhry et al. 2020) .
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Microbial dark matter: commensal microbes in plants

Many studies concentrated on the interactions between phytopathogens with plants, probably

due to their obvious role in food production. Yet, most of the plant’s microbiota seems to be

non-pathogenic, commonly referred to as commensals (Vorholt 2012). The term ‘commensal’ is

commonly interchangeable with ‘non-pathogen’ in host-microbe studies (Khan, Petersen, and

Shekhar 2019; Durán et al. 2018; Maignien et al. 2014), and such usage deviates from the strict

ecological definition of commensalism - a symbiosis where one organism gains something (i.e.,

the microbe) while the other gains nothing (i.e., the host) (Akihiko Mougi 2016). In fact,

non-pathogens can also be mutualists, e.g., providing the plant benefits such as higher nutrient

uptake or protection from pathogens. Therefore, the common usage of ‘commensalism’ in the

discipline of plant microbial ecology combines ‘commensalism’ and ‘mutualism’ in a single

phrase. The terminological difference is probably a result of our inability to characterize the

functions of each of the numerous microbes in the plant, making it easier to just assume a

microbe does nothing until it will be proven otherwise. This is especially true when considering

that some functions may be only observed in specific biotic backgrounds, as in the case of

protective microbes.

Here, I demonstrate that protection from a pathogen by non-pathogens is a common

feature, at least in the genus Pseudomonas (Chapter II; Thesis appendix II). More often than

not, commensal strains mitigated the effect of the tested pathogen. I demonstrated this

phenomenon using a reductionistic system, testing pairwise interactions between a pathogenic

Pseudomonas to putative commensal strains that span the whole taxonomy of a deep survey

recently published (Karasov et al. 2018). In chapter I (Thesis appendix I) I found similar

protective abilities of non-pathogenic Pseudomonas using consortia of commensal isolates,

tested against consortia of pathogenic Pseudomonas, in soil-grown plants (unsterile conditions).

The ability of commensal Pseudomonas to protect the plant in these different contexts and
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experimental settings demonstrates a robust phenomenon. These findings highlight the

unrealized potential of wild non-pathogens to maintain plant health.

Gu et al. (Gu et al. 2020) reported a strong ability of rhizosphere microbial members to

protect the plant. They tested these members for inhibition of the pathogen Ralstonia

solanacearum both in vitro and by infecting tomato plants. The importance of commensals in

maintaining plant health was also demonstrated by inferring keystone species from microbial

co-occurrence in wild Arabidopsis thaliana (Agler et al. 2016; Durán et al. 2018), implying that

wild plants capacitate pathogens, and pathogen control is commensal-dependent. Not

surprisingly, the importance of commensals in disease suppression is an emerging topic also in

the study of humans (Khan, Petersen, and Shekhar 2019) .

The accumulating evidence notes that many bacteria referred to as commensals are

actually mutualistic microbes. Can we predict such functions using sequencing data?

The plant microbiome and its function in the age of whole genome sequencing

As data about microbial genomes are exponentially growing, and annotations of genomes are

improving, it is becoming clear that the rough classification by individual marker genes - as 16S

and ITS - can predict microbial functions only to a very limited degree. This is especially true in

bacteria, having a very flexible genome that is heavily shaped by horizontal gene transfer (HGT)

(Garcia-Vallvé, Romeu, and Palau 2000). Such genomic variations often reflect functional

variation, as even highly similar bacterial strains can differ in biochemical and other activities

(Freschi et al. 2019; Heintz-Buschart and Wilmes 2018) .

Here, I document a substantial difference in the plant-protective ability among highly

related commensal Pseudomonas (Chapter II; Thesis appendix II). The isolates used in this study

were assigned to multiple taxonomic groups using a threshold of 99% similarity in their V3-V4

region of the 16S rDNA (Karasov et al. 2018), thus beyond the normal cutoff of 97% that

defines species (Chan et al. 2012). Nonetheless, I found functional variation not just among the
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taxonomic groups, but also within (Chapter II; Thesis appendix II). This means that isolates with

almost identical 16S sequences have a differential plant-protective ability. Conclusively, even

distinction of bacterial strains (thus, within species) is not enough to predict their effect on

plants.

According to this, the mainstream description of bacteria by their 16S rDNA similarity is

indeed too general to infer function. However, the microbiota of various plant species is

conserved at the class level, with many consistent members at the genus level (Trivedi et al.

2020). Such consistency hints to qualities that are shared among isolates of the same taxonomic

group, for example - the ability to colonize the plant. In agreement, my findings reveal how plant

protection is a function of phylogeny, as one commensal lineage (99% similarity of V3-V4 16S

rDNA) was enriched with protective isolates in comparison to other lineages (Chapter II;

Thesis appendix II). It is thus puzzling to pinpoint what is shared and what differs between

bacteria at a given taxonomic rank. This conflict challenges us in pinpointing the right taxonomic

resolution to infer microbial functions of interest, e.g. effect on plant health or microbial

assembly. To what taxonomic extent should we generalize microbial functions? Full genomes of

bacteria provide the appropriate data to answer this question.

As I reported in the genome-wide association study I conducted, the exact bacterial

gene set which leads to protection is taxon-specific (Chapter II; Thesis appendix II). This implies

multiple protective mechanisms within the genus Pseudomonas, as each lineage protects the

plant using a different set of genes. For example, iron competition was a prominent protective

mechanism in one taxonomic group, and the causal set of iron-related genes was unique only to

this lineage (Chapter II; Thesis appendix II). Therefore, microbial taxa do correlate with some

specific abilities. However, there are differences also within lineages with similar 16S rDNA,

hence between highly related bacteria. The iron-related gene set was present in only a subset of

isolates within the relevant lineage. posing a challenge in generalizing isolates of this group as

protective due to their high iron-competitiveness.
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Similarities in genome content and overall sequence identity (considering both core and

entire genome) are often conflicting (Bapteste et al. 2005; Gogarten, Doolittle, and Lawrence

2002; Puigbò, Wolf, and Koonin 2009), and combining the two is a matter of ongoing research

(Avni and Snir 2020). Taken together with the findings presented here (Chapter II; Thesis

appendix II), it seems risky to generalize functions by similarities in 16S or even by core

genomes, as such generalizations may be too broad. The implications may be troubling, raising

the need for sample-specific analysis, both in the case of individual bacteria and of consortia.

Although pricey, analysis of plant WGS-metagenomes provides a reliable base to predict

functions of plant-associated microbes. Therefore, inferring functions from metagenomic data of

plant microbiomes may build up our understanding about governing mechanisms in microbial

assembly, as well as the eventual effect on plant health. A specific challenge in analysing plant

phyllosphere samples is the inflation of host reads, which lead to negligible amounts of microbial

reads (Regalado et al. 2020). If this challenge will be solved, the phyllosphere microbiome could

be better assessed to understand its core-functions. This can be done by either processing

metagenomic assembled genomes (MAGs), which are more suitable for long-reads sequencing

data (Tsai et al. 2016), or by using unassembled data of short-reads which are enough for most

annotations (Tamames, Cobo-Simón, and Puente-Sánchez 2019).

Linking annotated data from WGS with phylogeny can improve our understanding about

the general role of dominant plant colonizers. A few pioneers have already taken such an

approach (Ofek-Lalzar et al. 2014; Chapelle et al. 2016; Bulgarelli et al. 2015), providing insights

about the genetic mechanisms which govern the stability of root-associated microbial consortia,

and specifically of microbial members which antagonise pathogen invasion. However, to

complement the link between phylogeny and functions, experimental validation should be

coupled with such annotative data. Furthermore, the reciprocal host response to different

microbial members should be investigated, as it affects the maintenance of plant health (Chapter

I; Thesis appendix I).
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The approach I took in chapter II (Thesis appendix II) can be expanded to tackle

interactions between multiple commensals and multiple pathogens, and monitor their effect on

plant health. Coupling data about bacterial genomes with the host transcriptome-response to

these infections can enable the production of a plant-microbe network at the gene level. This

network can be improved using multi-omics data (i.e. transcriptomics, proteomics and

metabolomics), creating multiple networks that manifest the relationships between

plant-microbe genes, proteins et cetera.

Eventually, such a high-depth overview can provide the appropriate level of information

to reveal core microbial functions which maintain plant health in the wild, putting emphasis also

on the interactive role of the host. As I repeatedly highlighted in this thesis, non-additive

interactions among consortia of microbes provide an important and unpredictable dimension in

the maintenance of plant health. The experimental approach I pursued can be expanded to

investigate the associations of trios rather than pairs, advancing our understanding about how

additive and non-additive interactions play a role in controlling pathogen invasion. This may

provide an explanation for why individual protective strains often fail to present protective

abilities in the field (Finkel et al. 2017) .

Conclusions and outlook

Agriculture, the food source of our world, is the practice of creating anthropogenic ecosystems

for the sake of humankind. The stability of agricultural ecosystems is considered to be low in

comparison to wild ecosystems. Specifically, the ability of pathogens to dominate plant

populations in agricultural settings - manifested by the relatively high disease rate in crops - is a

signature of our inability to mimic the stability found in wild ecosystems (Karasov, Shirsekar, et

al. 2020). Thus, in order to improve our agriculture, we should first learn how wild plants

develop in balance with their microbes (Vannier, Agler, and Hacquard 2019).
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My doctoral work revolved around different aspects of the plant-microbe-microbe

relationships, using A. thaliana and Pseudomonas as a model, and concentrating on pathogen

mitigation. One of the major topics I addressed is the facilitation of protective microbial

interactions by the plant. By presenting differences in microbial interactions in vitro and in

planta, I demonstrated that the plant has a substantial effect on microbial interactions which are

related to plant protection (Chapter I; Thesis appendix I). Furthermore, dynamics in the plant

transcriptome revealed association between exposure to commensal Pseudomonas and the

activation of the host immune system. Coupling these results, it seems that the mediation of

protective interactions by the plant is an active process, resulting from the expression of

defensive genes. According to this interpretation, the plant has a direct role in pathogen

inhibition - perhaps a systemic process - due to infection by commensal bacteria. This scenario

is supported by other studies (De Vleesschauwer et al. 2008; Barda et al. 2015). On the other

hand, I found in the same work that commensal members inhibit most pathogens in vitro, thus

regardless of the host response (Chapter I; Thesis appendix I). It thus remained unclear what

the exact mechanism of protection by commensal Pseudomonas was.

To address this question I conducted my second project, which takes an alternative

route - aiming to reveal the protective bacterial elements in Pseudomonas (Chapter II; Thesis

appendix II). I tested for multiple pairwise interactions between commensal Pseudomonas

members and a representative pathogen. Following a genome wide association study (GWAS),

sets of bacterial-related gene orthologs were associated with plant protection. The subset

which I experimentally validated presented relatedness to iron-uptake and biofilm formation.

These results indicate direct pathogen suppression in planta, a local event which requires

proximity (Esser et al. 2015) .

Taken together with the first project, this shows that both plant-mediated and direct

interactions have a role in protective microbial interactions, prompted by commensal bacteria.

Hence, protection against pathogens is an event which combines both local (direct interactions)
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and systemic (plant response) tools, driven by the relationships of the plant with commensal

bacteria. It is tempting to hypothesize that such relationships are a the outcome of long-term

coevolutionary processes, leading to a win-win situation: the plant is protected and can

capacitate pathogens (which are not taking over), while commensals are not being harshly

restricted by the plant, as they are ‘the least worst’. In other words, these so-called commensal

microbes are actually beneficial symbionts, maintaining the plant health in the presence of

microbial pathogens.

To advance agricultural applications of protective microbes, it is crucial to disentangle

host-mediated protection from direct microbe-microbe interactions. Specifically, it is important

to understand which mechanism dominates and when. When the plant is actively inhibiting

pathogens after exposure to commensal strains, the main questions are (i) which microbes

prompt such an immune response, (ii) what are the exact plant responses, and (iii) which

pathogens are inhibited by it. I assume that different commensals can activate similar defensive

mechanisms, considering the somewhat limited defensive arsenal of an individual plant. Thus,

different microbial molecules will yield a few general downstream responses, and in principal

these microbes could be replaced with the eliciting molecules for applicative purposes. On the

other hand, if the plant is majorly a passive mediator of protective interactions, then the exact

defense mechanism is microbial-related. Considering the broad range of microbes capacitating

the plant - and the corresponding large pan genome - one can safely assume a tremendous

amount of defense mechanisms that exist among microbes. Therefore, direct protective

interactions will raise the need for tailor-made, rationally designed microbiomes for agricultural

purposes, instead of focusing on elicitation of costley plant defenses.

In order to appreciate how active, host-mediated interactions affect direct

microbe-microbe interactions, I suggest ‘freezing’ the responsive host status by lysing leaf

tissues. As stated, a living leaf tissue offers a very dynamic and responsive environment to

colonizing microbes. Leaf lysates offer a passive environment that is somewhat comparable to a
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living tissue, reflecting the metabolic status of the tissue when it was last alive. Pathogenic

microbes can be tested for their growth in lysates of leaves that were pre-challenged with

microbes of interest. Therefore, it can be tested how the host response to a given microbe

alters pathogen growth. Doing so systemically, using a range of exposure periods (e.g.,

immediately after infection, 24 hours after infection, et cetera), can quantitatively examine how

the plant response to various microbes affects pathogen invasion. Moreover, competition

between microbes can be conducted on such lysates, revealing microbe-microbe interactions in

the static plant environment. Coupling metabolome analysis to such experiments will reveal if

the plant indeed produces pathogen-inhibiting products due to commensal exposure, while

pinpointing such products.

Extending this research direction, pairwise interactions can be decomposed into their

plant-microbe and microbe-microbe components, so that microbial networks will be improved

to mirror plant-microbe-microbe relationships. Previous microbial networks inferred from only

from co-occurrences of microbes in the plant (Durán et al. 2018; Agler et al. 2016), meaning

that it is not possible to approximate plant-mediation for a given pairwise interaction. Being able

to do so will improve our understanding about how plant-specific protective interactions are.

Another aspect of microbe-host-microbe interactions is the underlying genetics.

Similarly to the gene-for-gene model (Van der Biezen and Jones 1998), matching pairs of host

and microbial elements can be associated to unravel mechanisms behind host-mediated

interactions, and specifically of protective ones. Examples for questions that can be pursued in

this context are: (i) Which microbial elements prompt a systemic resistance, and what are the

responsive plant receptors? (ii) How taxon-specific are these elements and receptors? (iii) What

is different in plant-microbe relationships between commensals and pathogens? Answering these

paradigmatic questions, together with others, will enable us to have a deeper understanding of

what makes protective microbes. Finally, genetic characterization of different microbes can be

translated into function prediction of microbiomes, following recent trends in big data and
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machine learning (Cammarota et al. 2020). Thus, protective candidates can potentially be

identified in silico using metagenomic data.

Current practices in agriculture - our main food source for thousands of years - are now

endangering our planet. In part, this is due to plant diseases which cause heavy annual yield

losses (up to 30% in food-deficit areas; (Savary et al. 2019)), leading to extensive usage of

pesticides (Aktar, Sengupta, and Chowdhury 2009) and the need of more land area to provide

the global quota (Bommarco, Kleijn, and Potts 2013). Many of the challenges in crop health are

related to the differences between natural and anthropogenic ecosystems (McCann 2020;

Karasov, Shirsekar, et al. 2020). The robustness of wild plants is related to the interactions with

the microbiota, and mimicking these dynamics can eventually improve global agriculture in a

sustainable way. This approach will less likely lead to troubling ecological side effects, since it is

relying on long-term evolutionary processes that shaped ecosystems to be as balanced as

possible. In the age of climate change and other anthropogenic ecological hazards, human

society has a crucial role in maintaining global health, reducing the ecological burden. Thus, we

must follow sustainable agricultural developments.
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Abstract 11 

The plant microbiome is a rich biotic environment, comprising numerous taxa. The community 12 

structure of these colonizers is constrained by multiple factors, including host-microbe and 13 

microbe-microbe interactions, as well as the interplay between the two. While much can be 14 

learned from pairwise relationships between individual hosts and microbes, or individual 15 

microbes with themselves, the ensemble of interrelations between the host and microbial 16 

consortia may lead to different outcomes that are not easily predicted from the individual 17 

interactions. Their study can thus provide new insights into the complex relationship between 18 

plants and microbes. Of particular importance is how strain-specific such plant-microbe-19 

microbe interactions are, and how they eventually affect plant health. Here, we test strain-level 20 

interactions in the phyllosphere between groups of co-existing commensal and pathogenic 21 

Pseudomonas among each other and with A. thaliana, by employing synthetic communities of 22 

genome-barcoded isolates. We found that commensal Pseudomonas prompted a host response 23 

leading to a selective inhibition of a specific pathogenic lineage, resulting in plant protection. The 24 

extent of plant protection, however, was dependent on plant genotype, indicating that these 25 

effects are host-mediated. There were similar genotype-specific effects on the microbe side, as 26 

we could pinpoint an individual Pseudomonas isolate as the predominant cause for this 27 

differential interaction. Collectively, our work highlights how within-species genetic differences 28 

on both the host and microbe side can have profound effects on host-microbe-microbe 29 

dynamics. The paradigm that we have established provides a platform for the study of host-30 



Shalev et al.    Host-dependent antagonism among Pseudomonas in Arabidopsis 
 

 

       

Thesis appendix I – page 2 

dependent microbe-microbe competition and cooperation in the A. thaliana-Pseudomonas 31 

system.  32 

 33 

Introduction 34 

Plants, like other complex organisms, host a diverse set of microbes. The assembly of 35 

these microbial communities is shaped both by host-microbe as well as microbe-microbe 36 

interactions. These interactions may be of any symbiotic type: mutualistic, commensalistic or 37 

parasitic, and are dictated by the balance of inhibition and facilitation of growth. As has been 38 

exemplified in many studies, interactions between organisms are not static, but rather a dynamic 39 

process that depends on the environment - both biotic [1,2] and abiotic [3,4] - as well as on 40 

evolutionary history [5,6]. 41 

Many aspects of the dynamic interactions between plants and microbes have been 42 

studied in considerable detail, not least because of their implications for agriculture and ecology. 43 

Colonization of the plant depends on the ability of microbes to grow on and in the host, but also 44 

on the antagonistic ability of the host to promote or restrict such microbial growth. In the case 45 

of pathogens, there is often a co-evolutionary arms race, in which plants evolve recognition and 46 

immune tools to restrict the growth of microbes, while microbes evolve evasion and an offensive 47 

arsenal to further populate the plant [7,8]. These co-evolutionary dynamics typically fuel the 48 

generation of genetic diversity within both host and microbe, and the dependence of microbial 49 

colonization and host health on intraspecific variation has been documented in numerous studies 50 

[5,9–11]. Nonetheless, the extent to which intraspecific host variation shapes overall microbial 51 

composition is minimal  [3,4], with the most dramatic effects seen for specific taxa that are 52 

recognized by the immune system [12,13]. Instead, other environmental factors have a much 53 

larger influence on the overall composition [3,4], including other resident microbes [1,14,15]. 54 

Taken together, this suggests that successful colonizers reflect compatibility to grow in the 55 

presence of both the host and other microbes, and that this compatibility depends on their 56 

genetic makeup.  57 

The colonizing microbes exert differential effects on host health - from harmful [16] to 58 

beneficial [17]. These effects are mainly related to microbial load, since overpopulation of the 59 

plant by microbes can negatively impact its health [9,18]. Nonetheless, the host has the genetic 60 
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arsenal to control the growth of some microbes, thus avoiding negative outcomes [7]. This raises 61 

questions about the ability of the host plant to differentially recognize and respond to a 62 

consortium of microbes with a range of functions, i.e. differentiating friend from foe in a complex 63 

assembly of microbial taxa. While there is a growing body of literature about host response to 64 

individual pathogens [19] and individual commensals [20], a more realistic scenario is the 65 

integrated host response to communities that include both diverse pathogens and diverse 66 

commensals.  67 

In the same way, the numerous constraints resulting from multiple host-microbe and 68 

microbe-microbe interrelations create a complex system of relationships, making extrapolation 69 

of rules from simplistic systems likely difficult. For example, overpopulation of the plant by one 70 

microbe can result in negative health impacts, but these might be mitigated in the presence of 71 

other microbes [17,21]. While studies of microbe-microbe interactions in planta have paved the 72 

way for important findings about their impact on the overall community [14,15], the effect of the 73 

host on such microbial interactions has often not been considered, despite the host being able 74 

to affect these via direct host-microbe interactions [22]. Hence, the high degree of 75 

interconnectedness at the host-microbe-microbe interface calls for holistic research of this 76 

system, rather than tackling individual components, to unravel dynamics that result from the 77 

multiple constraints. Such an approach can be conducted using synthetic communities, which 78 

establish causality and not only associations between microbe-microbe and plant-microbe 79 

interactions [23]. 80 

In a previous study, Karasov and colleagues [11] surveyed Pseudomonas populations 81 

from leaves of wild Arabidopsis thaliana plants in south-west Germany. Among these, one 82 

lineage, which was highly pathogenic in axenic infections, often dominated endophytic microbial 83 

communities of A. thaliana leaves. Nonetheless, this lineage was isolated from plants without 84 

any visible disease symptoms, suggesting that other factors, including co-colonizing microbes, 85 

were mitigating the pathogenic phenotype. This includes other Pseudomonas lineages, which 86 

did not appear to have any significant impacts on host health when tested individually [11]. 87 

Here, we took advantage of our collection of wild Pseudomonas isolates to investigate 88 

intraspecific host-microbe-microbe dynamics by infecting A. thaliana plants with synthetic 89 

Pseudomonas communities. Specifically, we examined interactions between pathogenic and 90 

commensal Pseudomonas with the host leaves and with themselves, and the linkage of these to 91 

the host health. We found that the host facilitated protective commensal-pathogen interactions, 92 
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and revealed further complex interactions that could not be realized by studying host-microbe 93 

or microbe-microbe relationships individually. 94 

Results 95 

Genome barcoding of Pseudomonas isolates and experimental design 96 

To test possible host-commensal-pathogen dynamics in local populations, we colonized six A. 97 

thaliana genotypes with synthetic bacterial communities composed of pathogenic and 98 

commensal Pseudomonas candidates. Pathogenicity classification was based on demonstrated 99 

pathogenic potential effects of different Pseudomonas lineages in the Karasov collection [11]. 100 

Only one lineage - which dominated local plant population - was associated with pathogenicity, 101 

both according to its negative impact on rosette weight and to visible disease symptoms [11]. 102 

This lineage was previously named “OTU5” (Operational Taxonomic Unit number 5) [11]. We 103 

henceforth call “ATUE5” (isolates sampled from Around TUEbingen, group 5) to all isolates that 104 

share a common 16S rDNA sequence in the V3-V4 region, previously associated with 105 

pathogenicity, and “non-ATUE5” to all other Pseudomonas from the Karasov collection [11]. We 106 

interchangeably use the terms pathogens and ATUE5, as well as commensals and non-ATUE5. 107 

We used host genotypes that originated from the same host populations from which the 108 

Pseudomonads were isolated - neary Tübingen, Germany (Figure 1A), aiming to reflect 109 

interactions between coexisting hosts and microbes. 110 

Overall, seven pathogenic Pseudomonas and seven commensal isolates were chosen, 111 

prioritizing those with the highest estimated abundance in the field (Figure 1B). The abundance 112 

was estimated by the number of similar isolates (defined as nucleotide sequence divergence less 113 

than 0.0001 in their core genome) sampled in the original survey. Thus, the chosen isolates act 114 

as representatives for other similar isolates. In total, all 14 Pseudomonas isolates were classified 115 

as belonging to four OTUs, following 16S rDNA clustering at 99% sequence identity. Because 116 

of the high relatedness of several of the isolates, we could not rely upon a single endogenous 117 

genetic marker to distinguish between isolates. Instead, we genome-barcoded each of the 118 

isolates. We employed the mini-Tn7 system [24] to insert a single-copy of a 22 bp long unique 119 

sequence, flanked by universal priming sites, into the chromosome of each isolate (Illustration in 120 

Figure S1A). We validated the sequence of all barcodes in the corresponding isolates using 121 

Sanger sequencing (Table S1), and confirmed barcode integration by barcode-specific PCR 122 
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(Figure S2A). Furthermore, we confirmed that barcode-amplification yielded the expected 123 

products when PCR-amplified from DNA extracted from infected A. thaliana individuals (Figure 124 

S2B). While barcoding slightly impaired the growth rates of the isolates P3 and P4, the majority 125 

of barcoded bacteria exhibited similar growth dynamics as the non-barcoded parental strains 126 

when tested in Lysogeny Broth (LB) medium (Figure S3).  127 

 128 
Figure 1. Study system. A. Location of original A. thaliana and Pseudomonas sampling sites around 129 
Tübingen (Germany). B. Taxonomic representation of the 14 Pseudomonas isolates used, and their 130 
respective abundance in the 1,524 strains of the Karasov collection  [11]. Isolates were binned according 131 
to similarity (divergence < 0.0001 in core genome). Taxonomic assignment is indicated for each ATUE 132 
group (corresponding to a specific OTU in [11]). ‘P’ - Pathogen candidate. ‘C’ - Commensal candidate. 133 

 134 

Next, we constructed three synthetic communities using the barcoded isolates: An 135 

exclusively pathogenic synthetic community, comprising the seven ATUE5 isolates (hereafter 136 

‘PathoCom’), an exclusively commensal synthetic community, comprising the seven non-ATUE5 137 

isolates (hereafter ‘CommenCom’), and a joint synthetic community comprising all 14 isolates - 138 

both pathogens and commensals (hereafter ‘MixedCom’). Isolates were mixed in an equimolar 139 

fashion, and their absolute starting concentration was identical in each synthetic community. 140 
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Thus, the inoculum of the MixedCom with 14 isolates had twice the total number of bacterial 141 

cells as either the PathoCom or CommenCom inoculum.   142 

The community experiments were conducted in plants grown on soil in the presence of 143 

other microbes. Our decision to perform experiments on non-sterile soil stemmed from initial 144 

observations that the infection outcomes of plants grown on soil were more consistent with the 145 

outcomes observed in the field than infections of axenically grown plants. Specifically, our initial 146 

isolation of the focal bacterial strains was done from plants in the field that were alive and not 147 

obviously diseased [11]. In the lab, axenic infections with these strains showed rapid and 148 

dramatic phenotypic effects on the plants, often killing the plants as early as three days-post-149 

infection (Figure S4). In contrast, soil-grown plants displayed only mild disease symptoms and 150 

decreased size 12 dpi (Figure S4), phenotypes more consistent with those observed in the field.  151 

To more closely mimic natural infections, which likely occur through the air, we chose to 152 

infect plants by spraying with bacterial suspension, rather than direct leaf infiltration, as is 153 

common for testing of leaf pathogenic bacteria in A. thaliana. Twenty one days after sowing, we 154 

spray-infected the leaves of soil-grown A. thaliana plants raised in growth chambers with the 155 

three synthetic communities, and with bacteria-free buffer (hereafter ‘Control’). Twelve days after 156 

infection (dpi), we sampled the fresh rosettes, weighed them and extracted DNA (see Methods). 157 

Subsequently, we coupled barcode-specific PCR and qPCR. We included an amplicon from an 158 

A. thaliana-specific genomic sequence in the qPCR assay, which allowed us to approximate the 159 

absolute abundance per isolate, i.e., the ratio of isolate genome copies to plant genome copies 160 

(Figure S1B).  161 

 162 

Host-genotype effects on composition of synthetic communities 163 

The six A. thaliana genotypes used in this study were originally sampled from the same 164 

geographic region (Figure 1A) - a maximum of 40 km apart. They were all from the area from 165 

which the Pseudomonas strains used were isolated [11], and they were also all from  the same 166 

host genetic group [25]. In accordance, we expected that host genotype would have little, if any 167 

effect on the composition of our synthetic communities of local Pseudomonas isolates. However, 168 

while not large, there was a significant effect of host genotype, explaining 5 to 12% of 169 

compositional variation in the different communities, as determined by permutational multivariate 170 
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analysis of variance (PERMANOVA) with Bray–Curtis distances (Table 1). For comparison, the 171 

batch effect (between the different experiments) explained up to 26% of compositional variation. 172 

Analysis of similarities (ANOSIM) within each experiment indicated similar trends as 173 

PERMANOVA - with the genotype having a significant effect on isolate composition in each 174 

synthetic community (Table S2A). 175 

 176 

Table 1. Permutational multivariate analysis of variance (PERMANOVA) based on Bray-Curtis distances, 177 
for compositions of the 14 barcoded bacteria in treated hosts. The analysis was constrained by the host 178 
genotype and the experiment batch (‘exp’) to estimate their effect on the explained variance. n=170 for 179 
PathoCom, n=151 for CommenCom, and n=182 for MixedCom. 180 

 181 
 182 

We then examined bacterial composition clustering according to host genotype, by 183 

applying multilevel pairwise comparison using adonis (pairwise adonis, based on Bray-Curtis 184 

distances). Some pairs of genotypes differed in their effects on all three communities (Table 185 

S2B), an observation that was supported by nonmetric multidimensional scaling (NMDS) 186 

ordination of bacterial composition in each treatment (Figure S5A). The cumulative load of all 187 

isolates was associated with the loading on the NMDS1 axis (Pearson's r > 0.99 and p-value < 188 

2.2e-16, for all three communities), suggesting that a part of the compositional differences 189 

between host genotypes was due to absolute rather than relative abundance. In agreement, we 190 

observed differences in total bacterial load between the host genotypes, and the nature of the 191 

differences was treatment-dependent (Figure S5B). 192 

Treatment Df Sum Sq Pseudo-F R2 Pr(>f) Variation source 
 5 4.83 4.67 0.1199 0.0005 Genotype 
 1 1.68 8.11 0.0417 0.0005 Exp 

PathoCom 5 1.08 1.04 0.0268 0.3973 Genotype:Exp 
 158 32.68 NA 0.8116 NA Residuals 
 169 40.27 NA 1.0000 NA Total 
 5 2.36 3.88 0.0839 0.0005 Genotype 
 1 7.32 60.19 0.2604 0.0005 Exp 

CommenCom 5 1.53 2.52 0.0545 0.0030 Genotype:Exp 
 139 16.89 NA 0.6012 NA Residuals 
 150 28.1 NA 1.0000 NA Total 
 5 2.17 1.99 0.0456 0.0020 Genotype 
 1 6.29 28.89 0.1324 0.0005 Exp 

MixedCom 5 2.03 1.86 0.0427 0.0020 Genotype:Exp 
 170 36.99 NA 0.7793 NA Residuals 
 181 47.47 NA 1.0000 NA Total 

 
In bold, statistically significant relationships (P  0.05). 
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How do these different community compositions affect plant growth? 193 

Host-genotype dependent pathogenicity, growth promotion or protection 194 

PathoCom infection caused plants to grow less than control plants, during the 12 days of the 195 

experiment (Figure 2; Figure S6). In two out of the six host genotypes - Lu3-30 and TueWal-2 - 196 

weight decrease was milder, indicating a certain level of resistance to the PathoCom members 197 

(mean difference to control: Lu3-30 -29.1 mg [-59.3, -1.4], TueWal-2 -30.0 mg [-46.4, -13.4], 198 

Kus3-1 -77.2 mg [96.4, 54.2], Schl-7 -93.1 mg [123.5, 67.7], Ey15-2 -92.5 mg [116.4, 66.0] and 199 

HE-1 -53.9 mg [82.6, 27.0], with 95% confidence intervals in brackets). To validate that the effect 200 

of the PathoCom on plant weight was due to bacterial activity, and not merely a host response 201 

to the inoculum (e.g., PAMP-triggered immunity), we infected plants with heat-killed PathoCom. 202 

We found a minor weight decrease in three out of the six genotypes, but the overall contribution 203 

to weight reduction was small (Figure S7; heat-killed PathoCom accounts for 14% of the 204 

variation explained by the living PathoCom in the model shown).  205 

In contrast to PathoCom, infections with CommenCom led to a slight increase in fresh 206 

weight, suggesting plant growth promotion activity or alternatively protection from resident 207 

environmental pathogens (Figure S6A). This effect was independent on the host genotype 208 

(Figure S6B).  209 

Importantly, the negative growth effects of the PathoCom were greatly reduced in the 210 

MixedCom experiment. Plants infected with MixedCom grew to a similar extent as the control, 211 

with the exception of the genotype Ey15-2, which continued to suffer a substantial weight 212 

reduction when infected by the mixed community  (Figure 2; mean difference to Control = -48.5 213 

mg, [-74.8, -22.6] at 95% confidence interval). Nonetheless, this reduction was less than that 214 

caused on Ey15-2 by PathoCom. Hence, co-colonization of pathogenic Pseudomonas with 215 

commensals led to enhanced growth, while the magnitude was host-genotype dependent. 216 

These results support the role of ATUE5 strains as pathogenic, and provide additional 217 

evidence for protection against ATUE5 by commensal Pseudomonas strains that coexist with 218 

ATUE5 in nature. Next, we wanted to learn whether and how changes in bacterial abundance or 219 

shifts in Pseudomonas community composition led to differential impacts on growth of the 220 

infected plants.  221 
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 222 
Figure 2. Commensal Pseudomonas protect the plant in a host-dependent manner. Each of the six 223 
A. thaliana genotypes used in this study was treated with Control, PathoCom, CommenCom and 224 
MixedCom. Fresh rosette weight was measured 12 dpi. The top panel presents the raw data, the breaks 225 
in the black vertical lines denote the mean value of each group, and the vertical lines themselves indicate 226 
standard deviation. The lower panel presents the mean difference to control, inferred from bootstrap 227 
sampling [26][27], indicating the distribution of effect sizes that are compatible with the data. 95% 228 
confidence intervals are indicated by the black vertical bars. Shown here are the results of one experiment. 229 
A second experiment gave similar results. n=20-23. 230 

Differences in bacterial load and impact per a given load of pathogenic and commensal 231 

Pseudomonas  232 

We hypothesized that the total cumulative load of all barcoded isolates (i.e., regardless of the 233 

identity of the colonizing isolates) should be a significant explanatory variable for weight 234 

differences among treatments. We based this expectation on the association previously found 235 

between abundance in the field and pathogenicity for similar Pseudomonas isolates [11].  236 

Contrary to our hypothesis, we found that while the differences in plant weight between 237 

treatments were considerable, the bacterial loads of MixedCom and PathoCom were not 238 

significantly different from one another (Figure 3A). This result implies that plant weight is also a 239 

function of bacterial composition, and not load per se. In agreement with this inference, the load-240 

weight relationships were found to be treatment-dependent, indicating that weight can be better 241 

predicted by load within a treatment than among treatments (difference in expected log-scaled 242 

predictive density = -52.9 and in standard error = 9.4 when comparing the model weight ~ 243 
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treatment * log10(isolates load) + genotype + experiment + error to the same model without the 244 

treatment factor, using leave-one-out cross-validation; see Methods).  245 

 246 
Figure 3. Plants are more tolerant to commensals than pathogens. A. Density plot of log10(bacterial 247 
load) for the three synthetic communities. Vertical dashed lines indicate means, and the shaded areas 248 
95% credible intervals of the fitted parameter, following the model log10(bacterial load) ~ treatment + 249 
genotype + experiment + error. B. Correlation of log10(bacterial load) with rosette fresh weight. Shaded 250 
areas indicate 95% confidence intervals of the correlation curve; Bacterial load was defined as the 251 
cumulative abundance of all barcoded isolates that constituted a synthetic community. n=170 for 252 
PathoCom, n=151 for CommenCom, and n=182 for MixedCom. 253 

 254 

Notably, we noticed that the regression slope of PathoCom was more negative than the 255 

regression slope of CommenCom, suggesting that ATUE5 isolates had a stronger negative 256 

impact on weight per bacterial cell than non-ATUE5 isolates (Figure 3B; Figure S8A; 257 

CommenCom mean effect difference to PathoCom: 12.0 mg [4.4,19.5], at 95% credible interval 258 

of the parameter log10(isolates load) * treatment). From the reciprocal angle, that of the host, it 259 

can be seen that plants were less tolerant to ATUE5 isolates than non-ATUE5 isolates. 260 

MixedCom presented a regression slope between the two exclusive synthetic communities, 261 

implying that the impact on plant growth resulted from both groups - ATUE5 and non-ATUE5 262 

(MixedCom mean effect difference to PathoCom: 4.8 mg [-1.6,11.8], at 95% credible interval of 263 

the parameter log10(isolates load) * treatment). Lastly, we observed differential regression slopes 264 
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between the host genotypes, particularly among Pathocom- and CommenCom-infected hosts, 265 

revealing differential tolerance levels to the same Pseudomonas isolates (Figure S8B-C).  266 

We have described two general differences between pathogenic and commensal 267 

Pseudomonas: (i) on average pathogens have a greater impact per a given load on plant growth, 268 

and (ii) they can reach higher titers in A. thaliana leaves. Together, this points to dual effects of 269 

pathogens on plant health. In order to explain how commensal non-ATUE5 isolates were able to 270 

mitigate the harmful impact of pathogenic ATUE5 in MixedCom, we next addressed the bacterial 271 

compositionality in MixedCom-infected hosts.  272 

Protection by commensal members and host-mediated pathogen suppression 273 

Given that (i) MixedCom-infected plants grew better than PathoCom-infected plants (Figure 1A; 274 

Figure S6A), (ii) there was no considerable difference in total load between PathoCom- and 275 

MixedCom-infected plants (Figure 3A), and (iii) pathogens were found to cause more damage 276 

per cell (Figure 3B; Figure S8A), we expected commensal members to dominate MixedCom.  277 

Consistent with our expectations, the composition of MixedCom was more similar to 278 

CommenCom than PathoCom (Figure 4A). We then analyzed the change in bacterial abundance 279 

due to the mixture of pathogens and commensals at the isolate level. We compared the absolute 280 

abundance of each isolate among the treatments: Pathogenic isolates were compared between 281 

PathoCom and MixedCom, and commensals between CommenCom and MixedCom. In general, 282 

the abundance of pathogens was significantly lower in MixedCom, while the abundance of 283 

commensals was either similar or slightly higher in MixedCom (Figure 4B). Thus, the mixture of 284 

pathogens and commensals led to pathogen suppression, while commensal load was largely 285 

unchanged in MixedCom compared to CommenCom. Thus, non-ATUE5 isolates appear to be 286 

more competitive in the MixedCom context than ATUE5 isolates. The abundance change of each 287 

isolate in the presence of additional community members was similar among the host genotypes, 288 

implying that commensal-pathogen interactions were majorly a general trait, possibly 289 

independent of the host (Figure S9, Table S3).  290 

We therefore tested for direct, host-independent interactions among isolates with an in 291 

vitro growth inhibition assay (Methods). Each of the 14 isolates was examined for growth 292 

inhibition against all other isolates, covering all possible combinations of binary interactions. In 293 

total, three strains out of the 14 had inhibitory activity; all were non-ATUE5 (Figure 4C). 294 

Specifically, C4 and  295 
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 296 
Figure 4. Differential inhibition patterns of pathogens by commensals in vitro and in planta A. 297 
Nonmetric multidimensional scaling (NMDS) based on Bray-Curtis distances between samples infected 298 
with the three synthetic communities, across two experiments. The abundance of all 14 barcoded isolates 299 
was measured in all communities, including PathoCom and CommenCom, which contained only 7 of the 300 
14 isolates, to account for potential cross contamination and to avoid technical bias. Oct=October, 301 
Aug=August. n=170 for PathoCom, n=151 for CommenCom, and n=182 for MixedCom. B. Abundance 302 
change of the 14 barcoded isolates in MixedCom when compared to their exclusive community, in infected 303 
plants (i.e. PathoCom for ATUE5, and CommenCom for non-ATUE5). Abundance mean difference was 304 
estimated with the model log10(isolate load) ~ treatment * experiment + error, for each individual strain. 305 
Thus, the treatment coefficient was estimated per isolate. Dots indicate the medians, and vertical lines 306 

95% credible intervals of the fitted parameter. C. Taxonomic representation of the 14 barcoded isolates 307 
tested in vitro for directional interactions. Ring colors indicate the bacterial isolate classification, ATUE5 308 
or non-ATUE5. Directional inhibitory interactions are indicated from yellow to black. The experiments were 309 
repeated three times, with two technical replicates. Only inhibitions observed in at least in two independent 310 
experiments and in both technical replicates were considered. D. Correlation network of relative 311 
abundances of all 14 barcoded isolates in MixedCom-infected plants. Strengths of negative and positive 312 
correlations are indicated from yellow to purple.  Boldness of lines is also indicating the strength of 313 
correlation, and only correlations > |±0.2| are shown. Node colors indicate the bacterial isolate 314 
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classification, ATUE5 or non-ATUE5. E. in planta Abundance change of the seven ATUE5 isolates in non-315 
ATUE5 inclusive treatments, in comparison to PathoCom. Abundance mean difference was estimated with 316 
the model log10(isolate load) ~ treatment * experiment + error, for each individual strain. Thus, the treatment 317 
coefficient was estimated per isolate. Dots indicate the medians, and vertical lines 95% credible intervals 318 
of the fitted parameter. ‘Combi’ - combination of the isolates C3,C4,C5 and C7. n=23. 319 
 320 

C5 showed the same inhibition pattern: Both inhibited all pathogenic isolates but P1, and both 321 

inhibited the same two commensals, C6 and, only weakly, C3. C3 inhibited a total of three ATUE5 322 

isolates: P5, P6 and P7. In summary, the in vitro assay provides evidence that among the tested 323 

Pseudomonas, direct inhibition was a trait unique to commensals, and susceptible bacteria were 324 

primarily pathogens. This supports the notion that ATUE5 and non-ATUE5 isolates have 325 

divergent competition mechanisms, or at least differ in the strength of the same mechanism.  326 

The in vitro results recapitulated the general trend of pathogen inhibition found among 327 

treatments in planta. Nevertheless, we observed major discrepancies between the two assays. 328 

First, P1 was not inhibited by any isolate in the host-free assay (Figure 4C), though it was the 329 

most inhibited member in planta, among the communities (Figure 4B). Second, no commensal 330 

isolate was inhibited in plana, among communities (Figure 4B), while two commensals - C3 and 331 

C6 - were inhibited in vitro (Figure 4C). Both could suggest an effect of the host on microbe-332 

microbe interactions. To explore such effects, we analysed all pairwise microbe-microbe 333 

abundance correlations within MixedCom-infected hosts. When we used absolute abundances, 334 

all pairwise correlations were positive, also in CommenCom and PathoCom (Figure S10A), 335 

consistent with there being a positive correlation between absolute abundance of individual 336 

isolates and total abundance of the entire community (Figure S11), i.e., no isolate was less 337 

abundant in highly colonized plants than in sparsely colonized plants. It indicates that there does 338 

not seem to be active killing of competitors in planta in the CommenCom, which is probably not 339 

surprising. With relative abundances, however, a clear pattern emerged, with a cluster of 340 

commensals that were positively correlated, possibly reflecting mutual growth promotion, and 341 

several commensal strains being negatively correlated with both P6 and C7, possibly reflecting 342 

unidirectional growth inhibition (Figure 4D). We did not observe the same correlations within 343 

CommenCom among commensals and within PathoCom among pathogens as we did for either 344 

subgroup in MixedCom, reflecting higher-order interactions (Figure S10B). 345 

The in planta patterns, measured in complex communities, did not fully recapitulate what 346 

we had observed in vitro, with pairwise interactions. We therefore investigated individual 347 
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commensal isolates for their ability to suppress pathogens in planta, and also tested the 348 

entourage effect. We focused on the three commensals C3, C4 and C5 ,which had directly 349 

inhibited pathogens in vitro,  and C7, which had not shown any inhibition activity in vitro, as 350 

control. We infected plants with mixtures of PathoCom and each of the four individual 351 

commensals, as well as PathoCom mixed with all four commensals. Since pathogen inhibition 352 

seemed to be independent of the host genotype, we arbitrarily chose HE-1. Regardless of the 353 

commensal isolate, only P1 was significantly suppressed in all commensal-including treatments 354 

(Figure 4E), with P2,P3 and P4 being substantially inhibited only by the mixture of all four 355 

commensals. Together with the lack of meaningful inhibitory difference between individual 356 

commensals, this indicates that pathogen inhibition was either a function of commensal dose, 357 

or a result of interaction among commensals.   358 

An important finding was that four commensal strains had much more similar inhibitory 359 

activity in planta than in vitro, and that the combined action was greater than the individual 360 

effects. Together, this suggested that the host contributes to the observed interactions between 361 

commensal and pathogenic Pseudomonas. To begin to investigate this possibility, we studied 362 

potential host immune responses with RNA sequencing. 363 

Defensive response elicited by non-ATUE5 inferred from host transcriptome changes 364 

For the RNA-seq experiment, we treated plants of the genotype Lu3-30 with the three synthetic 365 

communities, and also used a bacteria-free control treatment. We sampled the treated plants at 366 

three and four days after infection (dpi), thus increasing the ability to pinpoint differentially 367 

expressed genes (DEGs) between treatments that are not highly time-specific. Exploratory 368 

analysis indicated that the two time points behaved similarly, and they were combined for further 369 

in-depth analysis. 370 

We first looked at DEGs in a comparison between infected plants and control; with 371 

PathoCom, there were only 14 DEGs, with CommenCom 1,112 DEGs, and MixedCom 1,949 372 

DEGs, suggesting that the CommenCom isolates, which are also present in the MixedCom, 373 

elicited a host stronger response than the PathoCom members. Furthermore, the high number 374 

of DEGs in MixedCom - higher than both PathoCom and CommenCom together - suggest a 375 

synergistic response derived from inclusion of both PathoCom and CommenCom members. 376 

Alternatively, this could also be a consequence of the higher initial inoculum in the 14-member 377 
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MixedCom than either the 7-member PathoCom or 7-member CommenCom, or a combination 378 

of the two effects (Figure 5A-B; Figure S12). 379 

The genes induced by the MixedCom fell into two classes: Group 5 (Figure 5A-B) was also 380 

induced, albeit more weakly, by the CommenCom, but not induced by the PathoCom. This 381 

 382 
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Figure 5. Only commensal members elicit a host-defensive response. A. Relative expression (RE) 383 
pattern of 2,727 differentially expressed genes (DEGs) found in at least one of the comparisons of 384 

CommenCom, PathoCom and MixedCom with control. DEGs were hierarchically clustered. B. Euler 385 
diagram of DEGs in PathoCom-, CommenCom- and MixedCom-treated plants, compared with control 386 

(log2[FC] > |±1|; FDR < 0.05; two-tailed Student’s t-test followed by Benjamini-Hochberg correction). C. 387 
Overrepresented GO terms in upregulated DEG subsets: CommenCom and MixedCom intersection (189 388 
DEGs), CommenCom unique (630 DEGs) and MixedCom unique (1,370 DEGs). Only the top ten non-389 
redundant GO terms are presented; for the full lists of overrepresented GO terms and expression data, 390 

see Table S4 and Supplementary Data 1. D. Expression values of six defense marker-genes. Mean ± SEM. 391 
Groups sharing the same letter are not significantly different (Tukey-adjusted, P>0.05); n=4. 392 
 393 

group was overrepresented for non-redundant gene ontology (GO) categories linked to defense 394 

(Figure 5C) and most likely explains the protective effects of commensals in the MixedCom. 395 

Specifically, among the top ten enriched GO categories in the shared MixedCom and 396 

CommenCom set, eight relate to immune response or response to another organism (‘defense 397 

response’, ‘multi−organism process’, ‘immune response’, ‘response to stimulus’, ‘response to 398 

biotic stimulus’, ‘response to other organism’, ‘immune system process’, ‘response to 399 

stress’)(Figure 5C). 400 

Group 4 was only induced in MixedCom, either indicating synergism between 401 

commensals and pathogens, or being a consequence of the higher initial inoculum. This group 402 

included a small number of redundant GO categories indicative of defense, such ‘salicylic acid 403 

mediated signaling pathway’, ‘multi-organism process’, ‘response to other organism’ and 404 

‘response to biotic stimulus’ (Table S4). Moreover, the MixedCom response cannot simply be 405 

explained by synergistic effects or commensals suppressing pathogen effects, since there was 406 

a prominent class, Group 2, which included genes that were induced in the CommenCom, but 407 

to a much lesser extent in the PathoCom or MixedCom. From their annotation, it was unclear 408 

how they can be linked to infection (Figure 5C). 409 

About 500 genes (Group 1) that were downregulated by all bacterial communities are 410 

unlikely to contain candidates for commensal protection (Figure 5A).  411 

Cumulatively, these results imply that the CommenCom members elicited a defensive 412 

response in the host regardless of PathoCom members, while the mixture of both led to 413 

additional responses. To better understand if selective suppression of ATUE5 in MixedCom 414 

infections may have resulted from the recognition of both non-ATUE5 and ATUE5 (reflected by 415 
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a unique MixedCom set of DEGs) or solely non-ATUE5 (a set of DEGs shared by MixedCom and 416 

CommenCom), we examined the expression of key genes related to the salicylic acid (SA) 417 

pathway and downstream immune responses. Activation of the SA pathway was previously 418 

related to increased fitness of A. thaliana in the presence of wild bacterial pathogens, a 419 

phenomenon which was attributed to an increased systemic acquired resistance (SAR) [28]. We 420 

observed a general trend of higher expression in MixedCom- and CommenCom-infected hosts 421 

for several such genes (Figure 5D). Examples are PR1 and PR5, marker genes for SAR and 422 

resistance execution. Therefore, according to the marker genes we tested, non-ATUE5 elicited 423 

a defensive response in the host, regardless of ATUE5 presence. 424 

We conclude that the expression profile of non-ATUE5 infected Lu3-30 plants suggests 425 

an increased defensive status, supporting our hypothesis regarding host-mediated ATUE5 426 

suppression. We note, however, that ATUE5 suppression was not associated with full plant 427 

protection (thus control-like weight levels) in all plant genotypes. One, Ey15-2, was only partially 428 

protected by MixedCom (Figure 2), despite levels of pathogen inhibition being not very different 429 

from other host genotypes (Figure S9).  430 

Lack of protection in the genotype Ey15-2 explained by a single pathogenic isolate 431 

The fact that Ey15-2 was only partially protected by MixedCom (Figure 2), manifest the 432 

importance of the host genotype in plant-microbe-microbe interactions, and reflecting dynamics 433 

between microbes and plants in wild populations. We wanted to reveal the cause for this 434 

differential interaction. 435 

Our first aim was to rank compositional variables in MixedCom according to their impact 436 

on plant weight, regardless of host genotype. Next, we asked whether any of the top-ranked 437 

variables could explain the lack of protection in Ey15-2. With Random Forest analysis, we 438 

estimated the weight-predictive power of all individual isolates in MixedCom, as well as three 439 

cumulative variables: Total bacterial abundance, total ATUE5 abundance, and total non-ATUE5 440 

abundance. We found that the best weight-predictive variable was the abundance of pathogenic 441 

isolate P6, followed by total bacterial load and total ATUE5 load - which were probably 442 

confounded by the abundance of P6 (Figure 6A). In agreement, P6 was the dominant ATUE5 in 443 

MixedCom (Figure 6B, Figure S13A). We thus hypothesized that the residual pathogenicity in 444 

MixedCom-infected Ey15-2 was caused by P6.  445 
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Although P6 grew best in Ey15-2, the difference to most other genotypes was not 446 

significant (Figure S13B). However, P6 was particularly dominant in Ey15-2 (Figure 6B).  447 

Given that pathogen load in Ey15-2 was driven to a substantial extent by P6, we assumed 448 

that this isolate had a stronger impact on the weight of this genotype than in others. We 449 

experimentally validated that removal of P6 restored protection, when Ey15-2 was infected with 450 

MixedCom (Figure 6C). To confirm that restored protection was due to the interaction of 451 

commensals with the five other pathogenic isolates (P1-P5), rather than simply removal of P6, 452 

we also treated Ey15-2 with PathoCom only, but lacking P6.  The removal of P6 did not diminish 453 

the negative weight impact of PathoCom (P1-P5) (Figure S14), implying that it was indeed the 454 

interaction between commensals with five out of six pathogenic isolates that mitigated the 455 

harmful effect of pathogens in Ey15-2 plants. 456 

 457 
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Figure 6. The effect of the isolate P6 on weight in MixedCom-infected hosts, and particularly on the 458 
host Ey15-2.  A. Relative importance (mean decrease accuracy) of 20 examined variables in weight 459 
prediction of MixedCom-infected hosts, as determined by Random Forest analysis. The best predictor 460 
was abundance of isolate P6. ‘Total Bacterial’, ‘Total ATUE5’ and ‘Total non-ATU5’ are the cumulative 461 

abundances of the 14 isolates, 7 ATUE5 isolates, and 7 non-ATUE5 isolates, respectively. B. Abundance 462 
of P6 compared with the other 13 barcoded isolates in MixedCom-infected hosts, across the six A. thaliana 463 
genotypes used in this study. Dots indicate the medians, and vertical lines 95% credible intervals of the 464 
fitted parameter, following the model log10(isolate load) ~ isolate * experiment + error. Each genotype was 465 
analyzed individually, thus the model was utilized for each genotype separately. Shaded area denotes the 466 

95% credible intervals for the isolate P6. C. Fresh rosette weight of Ey15-2 plants treated with Control, 467 

MixedCom and MixedCom without P6 (MixedCom ΔP6). Fresh rosette weight was measured 12 dpi. The 468 
top panel presents the raw data, with the breaks in the vertical black lines denoting the mean value of 469 
each group, and the vertical lines themselves indicating standard deviation. The lower panel presents the 470 
mean difference to control, plotted as bootstrap sampling [26,27], indicating the distribution of effect size 471 
that is compatible with the data. 95% confidence intervals are indicated by the black vertical bars. n=19. 472 
 473 

Collectively, these results reveal the outcome of direct host-microbe interactions in the 474 

context of multiple microbes. Furthermore, they illustrate how plant genotype affects 475 

colonization by microbes, and how this may lead to plant health outcomes.  476 

Discussion 477 

In this work, we aimed to understand how complex interactions between closely related 478 

Pseudomonas strains affect plant health, considering host-microbe, microbe-microbe and host-479 

microbe-microbe relationships. Not surprisingly, we found that genetics mattered at all levels: 480 

membership of Pseudomonas strain in commensal or pathogenic clade, genetic variation within 481 

each Pseudomonas clade, and genetic diversity among A. thaliana host strains. Commensal 482 

Pseudomonas can protect A. thaliana from the effects of pathogenic Pseudomonas by reducing 483 

their proliferation within the plant. However, although this was a general phenomenon, one A. 484 

thaliana genotype was only partially protected, and this was due to this genotype being 485 

particularly susceptible to a specific Pseudomonas pathogen. Together, this demonstrates how 486 

the host environment can affect microbe-microbe interactions.  487 

The importance of protective interactions for plant health has been demonstrated in both 488 

agricultural and wild contexts [1,21,29]. Our results reveal the extreme specificity of these 489 
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interactions, with closely related pathogenic isolates interacting differently with protective strains  490 

We found that upon co-infection with a mixture of pathogens and commensals, pathogens were 491 

preferentially suppressed. Perhaps our most important finding was that different plant responses 492 

induced by commensals, pathogens and mixed communities. Specifically, commensals, but not 493 

pathogens induced transcriptome signatures of defense, and these changes further enhanced 494 

in the presence of pathogens. In addition, there were sets of genes that were no longer induced 495 

when plants were infected by the mixed community rather than only commensals, as well as sets 496 

of genes specifically induced only by the mixed community. This suggests not only that microbe-497 

microbe interactions alter the plant response, but also that these altered plant responses are 498 

causal for the differential proliferation of commensals and pathogens in plants affected with 499 

mixed communities. Synergistic host responses were previously demonstrated in Medicago 500 

truncatula, following infections with two symbionts - rhizobia and mycorrhizal fungi [30]. These 501 

findings support the hypothesis that the complex interplay between the plant immune system 502 

and the microbiota goes beyond the individual plant-pathogen interactions, eventually leading 503 

to microbial homeostasis [31]. The exact mechanism behind the synergistic effect we describe 504 

must still be investigated, though known cases of host-dependent protective interactions 505 

provide plausible explanations. For example, early exposure to harmless rhizosphere microbes 506 

can prime the plant to suppress at a later time point a broad range of pathogens even in distal 507 

tissues, a phenomenon known as induced systemic resistance (ISR) [28]. 508 

Another strength of our study is that we used naturally co-occurring biological material, 509 

namely strains of A. thaliana host and Pseudomonas bacteria that had been isolated from a single 510 

geographic area. Our results help to explain why the Pseudomonas pathogens used here, which 511 

are lethal in mono-associations, seem to cause only limited disease in the field [11], namely their 512 

effects being modified by other microbes, including other Pseudomonas strains. 513 

A limitation of the current study was that we examined only a few commensal isolates, 514 

and tested them mostly in complex mixtures. A next logical step will be to test the protective 515 

effects of individual commensal Pseudomonas strains from the local Tübingen [11] collection, to 516 

explore (i) how common protection by commensal Pseudomonas is, (ii) how much it depends on 517 

the genotype of the pathogen, and (iii) what the genes are that support protection. 518 

We used pathogenic isolates that share over 99% of their 16S rDNA signature, and are 519 

highly similar in their core genome [11]. Nonetheless, we found functional differences, relating to 520 

both host-microbe and microbe-microbe interactions, exemplified by an individual pathogenic 521 

Pseudomonas isolate that both dominated the mixed synthetic communities, and that caused a 522 
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lack of protection in one host genotype. In agreement, Karasov and colleagues [11] had already 523 

found that members of this clade of Pseudomonas differ substantially in their ability to cause 524 

disease in mono-associations.  525 

Friedman and colleagues [32] accurately predicted microbial community structures in the 526 

form of trios based on information about pairwise interactions. How easily, however, higher-527 

order communities can be predicted from pairwise interactions, remains to be seen, although 528 

recent statistical advances are promising [33,34]. The genome-barcoding method we developed 529 

allows strain-level tracking, and thus can be implemented to understand multistrain community 530 

assembly. However, in its current format, it is limited to low-throughput studies, mainly due to 531 

the cumbersome cloning and transformation serial process. An alternative is presented by high-532 

throughput experiments that combine whole-genome sequencing with statistical reconstitution 533 

of known haplotypes [35,36], and which could be employed to study the dynamics of more 534 

complex communities. A growing body of literature is revealing effects that can only be found 535 

by the ensemble of relationships. For example, in inflammatory bowel disease [37] disease has 536 

been linked to changes in microbial community structure rather than to an individual microbe. 537 

Another example is provided by plant beneficial consortia, in which only microbial mixtures, but 538 

not any single strain triggered pathogen suppression [38,39]. 539 

Further advancements in understanding of the plant-microbe-microbe complex in the 540 

light of plant health can improve our agriculture practices, allowing the development of more 541 

sustainable plant protection methods [40–42].  542 

Methods 543 

Plant material 544 

The plant genotypes HE-1, Lu3-30, Kus3-1, Schl-7, Ey15-2 and Tue-Wal2 were used in this 545 

study, all originally collected from around Tuebingen, Germany. More details, including stock 546 

numbers, can be found in Table S5. Seeds were sterilized by overnight incubation at −80°C, 547 

followed by ethanol washes (shake seeds for 5-15min in solution containing 75% EtOH and 0.5% 548 

Triton-X-100, and then wash seeds with 95% EtOH and let them dry in a laminar flow hood). 549 

Seeds were stratified in the dark at 4°C for 6-8 days prior to planting on potting soil (CLT 550 

Topferde; www.einheitserde.de). Plants were grown in 60-pots trays (Herkuplast Kubern, 551 

Germany), in which compatible mesh-net pot baskets were inserted, to allow for subsequent 552 

relocation of the pots. All plants were grown in short days (8 h of light) at 23°C. Light was applied 553 
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using Cool White Deluxe fluorescent bulbs, at 125 to 175 μmol m-2 s-1. Relative humidity was 554 

set to 65%. 555 

  556 

Barcoding Pseudomonas isolates 557 

Excluding the E. coli strains that were used for cloning, all 14 bacterial isolates used in this study 558 

were classified as Pseudomonas and collected from two locations around Tuebingen (Germany) 559 

by Karasov and colleagues [11]. Full list, including metadata can be found in Table S1. The 560 

procedure of genome-barcoding of the 14 bacterial isolates included random barcodes 561 

preparation, cloning the barcodes into pUC18R6KT-mini-Tn7T-Km plasmid and co-562 

transformation of bacteria with the recombinant pUC18R6KT-mini-Tn7T-Km plasmid and pTNS2 563 

helper plasmid (both plasmids from [24]). Preparation of barcodes and the flanking priming sites 564 

was done by double stranding two overlapping single strand oligos: One that contains restriction 565 

sites, universal priming site, 16 random nucleotides and an overlapping region (Bar1), and 566 

another oligo that contains the reverse complement overlapping region, the second universal 567 

priming site and restriction sites (Bar2), as illustrated in Figure S15; Detailed oligo list in Table 568 

S6. The two overlapping single strand oligos were mixed in an equi-molar fashion (5ng each, 2μL 569 

in total), together with 0.2 μL Q5 high-fidelity DNA polymerase (New England Biolabs, Ipswich, 570 

MA, USA), 1x Q5 5x reaction buffer and 225 μM dNTP in a total reaction volume of 20 μL. The 571 

mixture went through a double stranding reaction using a thermocycler (Bio-Rad Laboratories, 572 

Hercules, CA, USA), with the following conditions: 95°C for 40 s, 55°C for 60 s and elongation at 573 

72°C for 3 min. The resulting product was cloned into pUC18R6KT-mini-Tn7T-Km plasmid, using 574 

the restriction enzymes XhoI and SacI and ligation with T4 DNA-Ligase (Thermo Fisher Scientific, 575 

USA). Standard restriction and ligation were conducted, as instructed by the manufacturer 576 

protocol. Pir1 competent E. coli (Thermo Fisher Scientific, USA) cells were transformed with the 577 

ligation product, and subsequently plated on selective Lysogeny broth (LB) agar (1.75%) with 50 578 

ng/mL Kanamycin and 100 ng/mL. Bacterial colonies were validated as successful transformants 579 

by PCR with the primers p1 and p2 that are specific for the foreign DNA (detailed oligo list in 580 

Table S6). Positive colonies were grown in LB overnight and then used for subsequent plasmid 581 

isolation (GeneJET Plasmid Miniprep Kit; Thermo Fisher Scientific, USA). About 150 582 

pUC18R6KT-mini-Tn7T-Km recombinant plasmids were stored at -4°C, each is expected to 583 

contain a unique barcode. Sanger sequencing was conducted on a subset of the plasmid library 584 

using the primer p1, to validate their barcodes sequence. 14 validated barcodes-inclusive 585 
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plasmids were randomly selected for the barcoding of the 14 isolates, and these were used for 586 

co-transformation together with the plasmid pTNS2 to genome-barcode the selected 14 587 

Pseudomonas isolates, as described in [24]. Briefly, Pseudomonas strains were grown overnight 588 

in LB, pelleted and washed with 300mM sucrose solution to create electrocompetent cells, and 589 

were finally electroporated with the recombinant pUC18R6KT-mini-Tn7T-Km (barcodes 590 

inclusive) and pTNS2 in a ratio of 1:1. Transformed Pseudomonas isolates were grown on 591 

selective LB-agar media with 30 mg/mL Kanamycin, and colonies were validated by PCR with 592 

the primers p1 and p2 (detailed oligo list in Table S6; Gel electrophoresis results in Figure S2A). 593 

Positive colonies were grown in LB with 30 mg/mL Kanamycin overnight, and one portion was 594 

stored at -80°C in 25% glycerol, while the other portion was used for DNA extraction (Puregene 595 

DNA extraction kit; Invitrogen, USA), followed by Sanger sequencing to validate the barcodes 596 

sequences (sequences detailed in Table S1). 597 

  598 

Barcoded and WT isolates growth comparison assay 599 

To compare the growth of the 14 barcoded bacteria with their respective WT, both barcoded 600 

and WT isolates were grown overnight in Lysogeny broth (LB) and 10 mg/mL Nitrofurantoin 601 

(antibiotic in which all isolated Pseudomonas can grow), diluted 1:10 in the following morning 602 

and grown for 3 additional hours until they entered log phase. Subsequently, bacteria were 603 

pelleted at 3500 g and resuspended in LB to a concentration of OD600 = 0.0025, in a 96-wells 604 

format plate with a transparent, flat bottom (Greiner Bio One, Austria). Finally, the plate was 605 

incubated in a plate reader at 28°C while shaking, for 10 hours (Robot Tecan Infinite M200; Tecan 606 

Life Sciences, Switzerland). OD600 was measured in one hour intervals. 607 

  608 

Synthetic communities infections and plant sampling 609 

All synthetic communities were prepared as followed: The relevant barcoded isolates were grown 610 

overnight in Lysogeny broth (LB) and 30 mg/mL Kanamycin, diluted 1:10 in the following morning 611 

and grown for 3 additional hours until they entered log phase, pelleted at 3500 g, resuspended 612 

in 10 mM MgSO4 and pelleted again at 3500 g to wash residual LB, and resuspended again in 613 

10 mM MgSO4 to a concentration of OD600 = 0.2, creating a stock solution per isolate for 614 

subsequent mixtures. Next, the relevant barcoded isolates were mixed to a final solution with a 615 

concentration of OD600 = 0.0143 per isolate. Thus, the total concentration per synthetic 616 

community was OD600 = (0.0143 * isolates number), e.g. PathoCom and CommenCom which 617 
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comprised 7 isolates had a total concentration of OD600 = ~0.1, and MixedCom which comprised 618 

14 isolates had a total concentration of OD600 = ~0.2. The prepared volume for any synthetic 619 

community was calculated by the function: Final volume = number of plants to infect * 2.5ml. 620 

Control treatment was sterile 10 mM MgSO4 solution. Heat-killed PathoCom was made by 621 

incubating a portion of the living PathoCom in 100°C for two hours. In Murashige and Skoog 622 

infections, PathoCom was diluted 1:10, thus infections were done using O.D. 0.01. All solutions 623 

with synthetic communities were stored at 4°C overnight, and infections were conducted in the 624 

morning of the following day. 625 

Infections in the Murashige and Skoog (MS) sterile system were done as described by 626 

Karasov and colleagues [11]. In brief, 12-14 days old plants were infected by drip-inoculating 627 

200 μl of the corresponding treatment onto the whole rosette. 628 

The leaves of soil-grown plants were spray-infected, 21 days post sowing. Spraying was 629 

done with an airbrush (BADGER 250-1; Badger Air-Brush Co., USA), and each plant was sprayed 630 

on both the abaxial and adaxial side for about 1.5 s each. Plants of the same treatment group 631 

were placed together in 60-pots trays (Herkuplast Kubern, Germany), in which compatible mesh-632 

net pot baskets were pre-inserted to allow for subsequent relocation of the pots. After the 633 

treatment, the transportable pots were reshuffled in new 60-pots trays to form a full randomized 634 

block design, thus each tray contained plants from all treatments, in equal amounts. The 635 

randomized trays were covered with a transparent lid to increase humidity (Bigger Greenhouse-636 

60x40cm; Growshop Greenbud, Germany). Four days post infection, two built-in openings in the 637 

lids were opened to allow for better air flow and to limit humidity. Eight days post infection, lids 638 

were removed. Twelve days post infection, the rosettes of all treated plants were detached using 639 

sterilized scalpel and tweezers, weighted, washed from epiphytes (sterile distilled water, 70% 640 

EtOH with 0.1% Triton X-100 and then again with sterile distilled water), dried using sterilized 641 

paper towels and sampled in 2ml screw cap tubes prefilled with Garnet sharp particles 1mm 642 

(Roth, Germany). Tubes with the sampled plants were flash freezed in liquid N2, and stored in -643 

80°C. 644 

  645 

DNA extraction, barcodes PCR and qPCR 646 

Frozen sampled plants were used for DNA extraction suitable for metagenomics, using a 647 

protocol that was previously described by karasov and colleagues [11]. Briefly, the samples were 648 

subjected to bead-beating in the presence of 1.5% sodium dodecyl sulfate (SDS) and 1 mm 649 
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garnet rocks, followed by SDS cleanup with 1/3 volume 5 M potassium acetate, and then SPRI 650 

beads. 651 

The resulting DNA was used for a two step PCR. The first PCR step amplified the 652 

genome-integrated barcodes and added short overhangs, using the primer p3 and the primers 653 

p4-p9. The latter are different versions of one primer with frameshifting nucleotides, allowing for 654 

better Illumina clustering, and thus sequencing quality, following the method described by [43] 655 

(2013; Detailed oligo list in Table S6). Each primer frameshift version was used for a different 656 

PCR plate (i.e. 96 samples). The second step primed the overhangs to Illumina adapters for 657 

subsequent sequencing, using standard Illumina TruSeq primer sequences. Unique tagging of 658 

PCR samples was accomplished by using 96 indexing primers, combined with the six 659 

combinations of frameshift primers in the first PCR (as detailed in [43]), allowing demultiplexing 660 

of up to 576 samples in one Illumina lane. The first PCR was done in 25 μL reactions containing 661 

0.125 μL TaqI DNA polymerase (Thermo Fisher Scientific, USA), 1x Taq1 10x reaction buffer, 662 

0.08 μM each of forward and reverse primer, 225 μM dNTP and 1.5 μL of the template DNA. The 663 

first PCR was run for 94°C for 5 min followed by 10 cycles of 94°C for 30 s, 55°C for 30 s, 72°C 664 

for 1 min, and a final 72°C for 5 min. 5 μL of the first PCR product was used in the second PCR 665 

with tagged primers including Illumina adapters, in 25 μL containing 0.25 μL Q5 high-fidelity DNA 666 

polymerase (New England Biolabs, USA), 1x Q5 5x reaction buffer, 0.08 μM forward and 0.16 667 

μM of reverse (tagging) primer and 200 μM dNTP. The final PCR products were cleaned twice 668 

using SPRI beads in a 1:1 bead to sample ratio, and eluted in 15 μL. Samples were combined 669 

into one library in an equimolar fashion. Final libraries were cleaned twice using SPRI beads in a 670 

0.6:1 bead to sample ratio to clean the primers from the product, and were finally eluted in half 671 

of their original volume. Samples were sequenced by a MiSeq instrument (Illumina), using a 50 672 

bp single-end kit. 673 

In order to estimate the ratio of barcoded Pseudomonas to plant chromosomes, two 674 

qPCR reactions were conducted - one which is specific to the barcodes, and the other which is 675 

plant-specific, targeting the gene GIGANTEA which is normally found in one copy. For barcodes-676 

specific qPCR, the primers p10 and p11 were used, and for plant-specific qPCR the primers p12 677 

and p13 (Table S6). qPCR reactions were done in 10 μL reactions containing x1 Maxima SYBR 678 

green qPCR master mix x2, 0.08 μM each of forward and reverse primer and 1 μL of template 679 

DNA. All qPCR reactions were run for 94°C for 2 min followed by 94°C for 15 s and 60°C for 1 680 
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min in a BioRad CFX384 Real Time System (Biorad, USA) qPCR machine. Reactions were done 681 

in triplicates. 682 

  683 

In vitro directional suppression assay 684 

All 14 barcoded isolates in vitro pairwise interactions were tested following the method described 685 

in Helfrich et al. [44], while adjusting the conditions to better fit Pseudomonas. Briefly, the 14 686 

barcoded isolates were grown in LB with 30 mg/mL Kanamycin overnight, diluted 1:10 the 687 

following morning and regrown. One portion was taken from each isolate after 3 hours (when 688 

entering the log phase), diluted to a final concentration of OD600 = 0.001 in 15ml LB with 1% agar 689 

and immediately poured into a square plate to form a uniform layer containing the test strain. 690 

Another portion pelleted at 3500 g, washed from residual LB in 10 mM MgSO4, pelleted again at 691 

3500 g in 10 mM MgSO4 with half of the original volume. Roughly 1 μL of each strain was printed 692 

onto the solidified agar layer containing the putative sensitive strain. Inhibitory interactions were 693 

estimated after 1-2 days incubation at 28°C by documenting observable halos. The strength of 694 

inhibitions was assessed by the halo size as previously described [44]). 695 

  696 

RNA-sequencing 697 

Plants from the genotype Lu3-30 were infected with Control, PathoCom, CommenCom and 698 

MixedCom as described below. Sampling was conducted three and four days post infection, 699 

two replicates per treatment in each time point, thus four samples per treatment in total. Plants 700 

were sampled using sterilized scalpel and tweezers and were immediately placed in 2ml screw 701 

cap tubes prefilled with Garnet sharp particles 1mm (Roth, Germany), flash freezed in liquid N2 702 

and stored in -80°C. RNA extraction was conducted on the frozen samples as previously 703 

described [45]. Briefly, a guanidine hydrochloride buffer was added to grounded frozen and 704 

rosettes, followed by phase separation and sediments removal. Combined with 96% EtOH, the 705 

solution was loaded onto a plasmid DNA extraction column (QIAprep Spin Miniprep Kit; Qiagen), 706 

and went through several washes before elution of the RNA. mRNA enrichment and sequencing 707 

libraries were prepared as previously described [46]. Briefly, mRNA enrichment was done using 708 

NEBNext Poly(A) mRNA Magnetic Isolation Module (New England Biolabs, USA), followed by 709 

heat fragmentation. Next, First strand synthesis (SuperScript II reverse transcriptase; Thermo 710 

Fisher Scientific, USA), and second strand synthesis (DNA polymerase I;  New England Biolabs, 711 

USA) were conducted, and subsequently end repair (T4 DNA polymerase, Klenow DNA 712 
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polymerase and T4 Polynucleotide Kinase ;New England Biolabs, USA) and A-tailing  (Klenow 713 

Fragment; New England Biolabs, USA). Nextera-compatible universal adapters [47] were ligated 714 

to the product (T4 DNA ligase; New England Biolabs, USA), and i5 and i7 PCR amplification was 715 

done (Q5 polymerase; New England Biolabs, USA). Size selection and DNA purification were 716 

made using SPRI beads. Samples were sequenced by a HiSeq3000 instrument (Illumina), using 717 

a 150 bp paired-end kit. 718 

  719 

Sampling locations map, phylogenetics and isolates abundance in the field 720 

Information about sampling locations of the six A. thaliana used in this study was retrieved from 721 

the 1001 genome project [25], and Pseudomonas sampling locations were retrieved from 722 

Karasov and colleagues [11]. The map was plotted using the “ggmap” function of the ggmap R 723 

package [48]. 724 

Phylogenetic analysis of the 14 selected Pseudomonas isolates was done using their core 725 

genomes, as they were previously published [11]. Maximum-likelihood phylogenies were 726 

constructed with RAxML (v.0.6.0) using GTR+Gamma model [49], and visualization was done by 727 

iTOL [50]. The abundance in the field of the selected isolates was estimated by binning similar 728 

isolates using a threshold of divergence less than 0.0001 in the core genome. The mean number 729 

of substitutions per site taken from the estimated branch length for the core-genome based 730 

phylogeny calculated by RAxML. Lastly, the number of binned isolates was divided by the total 731 

number of isolates surveyed by Karasov and colleagues [11]. 732 

  733 

Growth analysis of WT and barcoded isolates 734 

Growth of both WT and barcoded isolates was analyzed using the function 735 

“SummarizeGrowthByPlate” from the Growthcurver R package[51]. The change of barcoded 736 

isolates in comparison to their corresponding WT in growth rate, carrying capacity and area 737 

under the curve, was calculated by the model: Growth quantity ~ strain type (i.e. WT/barcoded). 738 

  739 

Plant weight analysis 740 

All rosette fresh weight analyses and visualizations were done using the function “dabest” of the 741 

dabestr R package [26,27]. 742 

  743 

Combining barcode PCR and qPCR results to estimate bacterial load per isolate 744 
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All reads from barcode-PCR sequencing were mapped against a custom barcodes database 745 

(Table S1) using the algorithm BWA-MEM[52] (version  0.7.17-r1188), and a count matrix of all 746 

14 isolates for every plant sample was created. Samples with less than a total of 200 hits were 747 

discarded or resequenced (mean=15709.8). Counts were transformed to proportions by dividing 748 

the counts of each isolate in the total hits per sample, resulting in relative abundance matrix. 749 

qPCR results were analyzed using the software Bio-Rad CFX Manager (v3.1) with default 750 

parameters. Quantification cycle (Cq) values smaller than 32 were discarded, and barcoded 751 

bacterial load was determined by the equation 𝑏𝑎𝑐𝑡𝑒𝑟𝑖└𝑙	𝑙𝑜𝑎𝑑	 = -./012(456789:	;<)

-./-12(>?>@ABC@	;<)
. The 752 

exponent bases (2.057 and 2.027) were adjusted according to primer efficiency - as determined 753 

by a calibration curve derived from a series of dilutions. The relative abundance matrix was 754 

factorized by bacterial load (relative abundance multiplied by bacterial load, per isolate) to 755 

manifest the ratio of bacterial to plant chromosomes per barcoded isolate. 756 

  757 

Regression analysis 758 

All posterior distributions of focal factors were estimated using the function “stan_glm” in the R 759 

package rstanarm ([53] or “lmBF” in the R package BayesFactor [54]). In both functions, default 760 

priors were used. In “stan_glm” default iteration number was used, and in “lmBF” 10,000 761 

iterations were used. In all figures, the median, as well as 2.5% and 97.5% (95% credible 762 

intervals) of the posterior distribution were presented for each factor of interest. The exact model 763 

for every analysis is presented in the figure legend, as well as the selected references for 764 

comparison. 765 

To compare the effect of individual predictors in a model, the full model was compared 766 

to a different model, lacking the predictor of interest (e.g. genotype). The comparison was 767 

conducted by a leave-one-out cross validation, using the function “loo_compare” in the R 768 

package Loo [55]. This Bayesian-based model comparison provides an estimate for the 769 

importance of a predictor in explaining the data. Leave-one-out cross validation improves the 770 

estimate in comparison to the common Akaike information criterion (AIC) and deviance 771 

information criterion (DIC) [55]. 772 

  773 

Variance partitioning of microbial community composition 774 
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NMDS analyses were conducted using the function “metaMDS” in the R package vegan [56], 775 

adjusting dissimilarity index to Bray-Curtis (method = “bray”), number of dimensions to 3 (k=3) 776 

and maximal iterations to 200 (trymax=200). Permutational multivariate analysis of variance 777 

(PERMANOVA) was conducted using the function “adonis”, and analysis of similarities (ANOSIM) 778 

was conducted using the function “anosim” in the R package vegan [56]. Both were adjusted to 779 

Bray-Curtis dissimilarity index (method = “bray”) and 2000 permutations (permutations = 2000).  780 

Multilevel pairwise comparison using adonis was conducted using the function 781 

“pairwise.adonis2” in the R package pairwiseAdonis [57]. 782 

  783 

Isolate-isolate interactions network 784 

All pairwise isolate-isolate Pearson correlations were calculated using the function “rcorr” in the 785 

R package Hmisc [58], and visualization was done with Cytoscape 3.7.0 [59].     786 

  787 

RNA-sequencing analysis 788 

Reads from RNA sequencing were mapped against the A. thaliana reference TAIR10 using STAR 789 

(v.2.6.0; [60] with default parameters. Transcript counts matrix was done using featureCounts 790 

[61], while restricting counts to exons only (-t exon). Differential gene expression (DEG) analysis 791 

was conducted using DESeq2 (v.1.22.2; [62]), using the model ‘gene_expression ~ Treatment + 792 

Time_point’. Genes with average counts of less than five were excluded from the analysis. Zero 793 

counts were converted to one to allow for the log conversion in unexpressed genes. Genes with 794 

log2FoldChange>|±1| and FDR<0.05 (two-tailed Student’s t-test followed by Benjamini-795 

Hochberg correction) were defined as DEGs. Euler diagrams were created using the function 796 

“euler” in the R package eulerr [63]. Statistically overrepresented GO terms were identified using 797 

the BiNGO plugin (v3.0.3) for Cytoscape [64]. Summarization and the removal of redundant 798 

overrepresented GO terms was done with the web server REVIGO [65] to extract the main trends 799 

found in the long full output by BiNGO (full list in Table S4). 800 

  801 

Statistical analysis 802 

All statistical analyses were performed using the R environment version 3.5.1, unless mentioned 803 

otherwise. Sample sizes were not predetermined using statistical methods. 804 

 805 
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 1001 
Figure S1. Illustration of (A) bacterial barcoding and (B) experimental design. 1002 
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 1019 
Figure S2. Validation of barcode integration and barcode-PCR specificity by agarose gel 1020 
electrophoresis of PCR amplified products. A. Validation of barcode integration to chosen isolates. 1021 
Lanes 1–10 used DNA from examined barcoded isolates, lane 11 is water (negative control), lane 12 is the 1022 
pUC18R6KT-mini-Tn7T plasmid into which a barcode was cloned (positive control), and lanes 13-14 are 1023 

replicates of the 14 pooled parental (wild-type, WT) isolates. B. Validation of barcode-PCR specificity. 1024 
Lanes 1-2 used DNA from plants infected with the 14 barcoded bacteria, lane 3 from an uninfected plant, 1025 
lane 4 pUC18R6KT-mini-Tn7T plasmid (positive control), and lane 5 is water (negative control). Both 1026 
infected and uninfected plants were grown in non-sterile conditions; barcode-specific primer sets yielded 1027 
expected product sizes of 522 bp. Lane M, DNA size marker. 500 bp marker indicated.  1028 
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 1041 
Figure S3. Comparison of growth characteristics between non-barcoded wild-type (WT) isolates 1042 

and their barcoded derivatives. A. Growth curves of the 14 WT parents and their barcoded derivatives 1043 
in Lysogeny broth (LB) over 10 hours, with OD600 recorded hourly. Mean ± SD, n=3. The change of 1044 

barcoded isolates in comparison to their corresponding parents in growth rate (B), carrying capacity (C), 1045 
and area under the curve  (D) is shown. All three growth parameters were derived from the original growth 1046 
curves. Dotted line signifies the non-barcoded parental baseline for a given quantity. Mean ± 95% cdl, 1047 
n=3. 1048 
 1049 
 1050 
 1051 
 1052 
 1053 
 1054 
 1055 
 1056 
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 1057 

 1058 
Figure S4. Illustrative photos of control- and PathoCom-treated plants, grown in either MS-agar 1059 

(sterile) or soil (unsterile). In both systems, the genotype Ey15-2 was used. For the MS-agar system, 1060 
photos were taken 3-dpi, for the soil system 14-dpi. Sizes of plants are comparable within each system, 1061 
but not between. Because images in the soil system were taken and parsed by pot automatically by a 1062 
high-throughput imaging pipeline, some plant images were cropped. 1063 
 1064 
 1065 
 1066 
 1067 
 1068 
 1069 
 1070 
 1071 
 1072 
 1073 
 1074 
 1075 
 1076 
 1077 
 1078 
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 1079 

Table S2. A. Analysis of similarities (ANOSIM) based on Bray-Curtis distances for compositions of the 14 1080 
barcoded bacteria in treated hosts. The analysis was constrained by the host genotype in each experiment 1081 
batch (exp) to estimate its effect on the explained variance. B. Multilevel pairwise comparison of barcoded 1082 
bacteria compositions for the different A. thaliana genotypes, using adonis based on Bray-Curtis 1083 
distances. Data derived from one representative experiment (October). 1084 

 1085 
 1086 
 1087 
 1088 
 1089 

 
Treatment R2 Pr(>f) Experiment 
PathoCom 0.0630 0.0175 August 

 0.1792 0.0005 October 
CommenCom 0.0622 0.0615 August 

 0.1761 0.0005 October 
MixedCom 0.0538 0.0265 August 

 0.0951 0.0005 October 
 

In bold, statistically significant relationships (P  0.05). 

 
Treatment R2 Pr(>f) Genotype1 Genotype2 
PathoCom 0.1491 0.005 Ey15-2 HE-1 

 0.2561 0.001 Ey15-2 Lu3-30 
 0.1236 0.01 Ey15-2 Schl-7 
 0.0804 0.044 HE-1 Kus3-1 
 0.1678 0.001 HE-1 Lu3-30 
 0.1313 0.001 Kus3-1 Lu3-30 
 0.0757 0.049 Kus3-1 Schl-7 
 0.0865 0.002 Lu3-30 Schl-7 
 0.1986 0.001 Lu3-30 Tue-Wal-2 

CommenCom 0.0813 0.035 Ey15-2 Lu3-30 
 0.1285 0.028 Ey15-2 Tue-Wal-2 
 0.1330 0.004 HE-1 Lu3-30 
 0.2450 0.001 HE-1  
 0.2197 0.001 Kus3-1 Lu3-30 
 0.1305 0.005 Kus3-1 Schl-7 
 0.1709 0.007 Kus3-1  
 0.4401 0.001 Lu3-30  
 0.3788 0.001 Schl-7  

Mixedcom 0.0825 0.012 Ey15-2 Lu3-30 
 0.0818 0.01 Ey15-2  
 0.0673 0.027 HE-1  
 0.1660 0.001 Kus3-1 Lu3-30 
 0.2283 0.001 Lu3-30  

 
Only statistically significant comparisons are presented (P  0.05). 

Tue-Wal-2

Tue-Wal-2
Tue-Wal-2
Tue-Wal-2

Tue-Wal-2
Tue-Wal-2

Tue-Wal-2

A

B
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 1090 

 1091 
Figure S5. Comparison of composition and load of the 14 barcoded isolates on different A. thaliana 1092 

genotypes. A. Nonmetric multidimensional scaling (NMDS) based on Bray-Curtis distances between six 1093 
A. thaliana genotypes, in one representative experiment (October). Each synthetic community was 1094 
analyzed separately. The abundance of all 14 barcoded isolates was considered, also among PathoCom 1095 
and CommenCom to account for cross contaminations and technical distortions. Shapes denote the 1096 

different genotypes, and bacterial load is indicated from blue to red. B. Isolate load of the six A. thaliana 1097 
genotypes, among the three synthetic communities. Isolate load was defined as the cumulative abundance 1098 
of all barcoded isolates that composed a synthetic community. Dots indicate the medians, and vertical 1099 
lines 95% credible intervals of the fitted parameter, following the model log10(isolates load) ~ genotype + 1100 
experiment + error. 1101 
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 1102 

 1103 

 1104 
Figure S6. Effects of treatment and treatment-by-genotype on fresh rosette weight. Both effects 1105 
were assessed using the model weight ~ treatment * genotype + experiment + error. A. Mean weight 1106 
difference of plants infected with each of the three synthetic communities relative to control - i.e., the 1107 

treatment coefficients. B. Mean treatment effect differences between the six A. thaliana genotypes used 1108 
in this study - i.e., the treatment * genotype coefficients. Kus3-1 was randomly selected as a reference; 1109 
dots indicate the medians, and vertical lines 95% credible intervals of the fitted parameter.  1110 
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 1124 

 1125 

 1126 
Figure S7. Fresh rosette weight of plants treated with Control, PathoCom or heat-killed PathoCom.  1127 
Each of the six A. thaliana genotypes used in this study was treated with control, PathoCom and heat-1128 
killed PathoCom inoculum, and fresh rosette weight was measured 12 dpi. The top panel presents the raw 1129 
data, the breaks in the vertical black lines denote the mean value of each group, and the vertical lines 1130 
themselves indicate standard deviation. The lower panel presents the mean differences to control, plotted 1131 
as bootstrap sampling [26,27], indicating the distribution of effect sizes that are compatible with the data. 1132 
95% confidence intervals are indicated by the black vertical bars. 1133 
 1134 
 1135 
 1136 
 1137 
 1138 
 1139 
 1140 
 1141 
 1142 
 1143 
 1144 
 1145 
 1146 
 1147 
 1148 
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 1149 
 1150 

 1151 
Figure S8. Effect of total load on weight, per treatment and genotype. A. Mean slope difference of the 1152 
three synthetic communities. The slope difference indicates the effect of the treatment on the correlation 1153 
between weight and isolate load - i.e. treatment * log10(cumulative isolate load) - following the model weight 1154 
~ treatment * log10(cumulative isolate load) + genotype + experiment + error. PathoCom was selected as 1155 
a reference. Dots indicate the medians, and vertical lines 95% credible intervals of the fitted parameter. 1156 

Related to Fig 3B. B. Correlation of log10(cumulative isolate load) with rosette fresh weight, for each of the 1157 
genotypes within each of the three synthetic communities. Shaded areas indicate 95% confidence 1158 

intervals of the correlation. Color codes in the bottom left box, on the right. C. Mean slope difference of 1159 
the six A. thaliana genotypes used in this study. The slope difference indicates the effect of the genotype 1160 
on the correlation between weight and isolate load - i.e. genotype * log10(cumulative isolate load) - following 1161 
the model weight ~ genotype * log10(cumulative isolate load) + experiment + error. Each treatment was 1162 
analyzed individually, thus the model was utilized for each treatment separately. Kus3-1 was randomly 1163 
selected as a reference. Dots indicate the medians, and vertical lines 95% credible intervals of the fitted 1164 
parameter. Related to panel B. n=170 for PathoCom, n=151 for CommenCom, and n=182 for MixedCom. 1165 
n=77-94 for the six A. thaliana genotypes.  1166 
 1167 
 1168 
 1169 
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 1170 
Figure S9. Effect of host genotype on abundance changes of the 14 barcoded isolates in MixedCom, 1171 

when compared to their exclusive community (i.e., PathoCom for ATUE5 and CommenCom for non-1172 
ATUE5). Abundance effect mean differences were estimated with the model log10(isolate load) ~ genotype 1173 
* treatment * experiment + error for each individual strain. Thus, the genotype * treatment coefficient was 1174 
estimated per each barcoded isolate. Dots indicate medians, and vertical lines 95% credible intervals of 1175 
the fitted parameter. 1176 
 1177 
 1178 
 1179 
 1180 
 1181 
 1182 
 1183 
 1184 
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 1185 
Figure S10. Correlation networks of barcoded bacteria. A. Correlation networks of absolute abundance 1186 

in PathoCom, CommenCom and MixedCom. B. Correlation networks of relative abundance in PathoCom 1187 
and CommenCom. Strengths of negative and positive correlations are indicated from yellow to purple.  1188 
Boldness of lines is related to the strength of correlation, and only correlations > |±0.2| are shown. Node 1189 
colors indicate the isolate classification: ATUE5 or non-ATUE5. 1190 
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 1203 
Figure S11. Correlations between the absolute abundance of each isolate and the cumulative 1204 
bacterial abundance in MixedCom. Each panel represents an individual isolate. Pearson correlation (R) 1205 
and p-value (p) are stated at the top, and the matching linear equation at the bottom of each panel. Shaded 1206 
areas indicate 95% confidence intervals of the correlation curve. N= 1207 
 1208 
 1209 
 1210 
 1211 
 1212 
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 1213 
Figure S12. Comparison of PathoCom, CommonCom and MixedCom DEGs across treatments. The 1214 
average z-score is presented for each sample. Downregulated and upregulated DEGs were analyzed 1215 
separately. In brackets - the number of DEGs in each category. n=4. 1216 
 1217 
 1218 
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 1233 
Figure S13. The abundance of P6 in MixedCom-infected hosts. A. Abundance of P6 compared with 1234 
the other 13 barcoded bacteria in MixedCom-infected hosts, for all host genotypes. Dots indicate the 1235 
medians, and vertical lines 95% credible intervals of the fitted parameter, following the model log10(isolate 1236 

load) ~ isolate * experiment + error. Shaded area denotes the 95% credible intervals of the isolate P6.  B. 1237 
The abundance of P6 in MixedCom-infected hosts, compared between the six A. thaliana genotypes used. 1238 
Dots indicate the medians, and vertical lines 95% credible intervals of the fitted parameter, following the 1239 
model log10(isolate load) ~ genotype * experiment + error. Shaded area denotes the 95% credible intervals 1240 
of the host genotype Ey15-2.   1241 
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 1259 
Figure S14. Fresh rosette weight of Ey15-2 plants treated with Control, PathoCom or PathoCom 1260 

without P6 (PathoCom ΔP6). Fresh rosette weight was measured 12 dpi. The top panel presents the raw 1261 
data, the breaks in the vertical black lines denote the mean value of each group, and the vertical lines 1262 
themselves indicate standard deviation. The lower panel presents the mean differences to control, plotted 1263 
as bootstrap sampling [26,27], indicating the distribution of effect sizes that are compatible with the data. 1264 
95% confidence intervals are indicated by the black vertical bars. n=25. 1265 
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 1279 
Figure S15. Illustration of barcodes design. Two single-stranded oligos were synthesized: ‘Bar1’ and 1280 
‘Bar2’. N symbolizes random nucleotides. 1281 

5’   GAATTCCTCGAGGTATCGCCTCCCTCGCGCCATCAGCCNNNNAANNNNTTNNNNTTNNNNATACATGACTGCTGTCGGCACAAGGGC  3’
3’   TGTACTGACGACAGCCGTGTTCCCGGACTCGCCCGACCGTTCCGCGTATCCTCGAGCCATGG  5’

ECoRi XhoI Optional priming site 1 Barcode Overlapping region

Overlapping region Optional priming site 2 SacI KpnI‘Bar1’ oligo

‘Bar2’ oligo
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Abstract 10 

Plants are protected from pathogens not only by their immune arsenal, but often also by  11 

colonizing commensal microbes. In a recent survey of plant-colonizing Pseudomonas strains, a 12 

cryptically pathogenic lineage was reported to dominate wild Arabidopsis thaliana populations. 13 

While the wild plant hosts seemed to be asymptomatic, infection trials in the laboratory 14 

demonstrated that members of this lineage can have a negative impact on plant growth. In the 15 

wild, this pathogenic lineage coexists with commensal Pseudomonas strains that can mitigate 16 

the fitness penalties imposed by the pathogens in the laboratory. Here we address (i) how 17 

common protection is among wild commensal Pseudomonas strains, (ii) how taxon-specific such  18 

protective ability within the Pseudomonas genus, and (iii) what the underlying bacterial genes 19 

and mechanisms for protection are. To do so, we systemically co-infected A. thaliana plants with 20 

an individual Pseudomonas pathogen and each of ninety-nine Pseudomonas commensals. We 21 

found plant protection to be a common function among non-pathogenic Pseudomonas taxa. 22 

While enriched in one specific lineage, there is also substantial variation in the protective ability 23 

among isolates of this lineage. These functional differences do not align with core-genome 24 

phylogenies, suggesting repeated gene inactivation or loss as causal. Using genome-wide 25 

association, we discovered that different bacterial genes are linked to plant protection in each 26 

lineage. We validated a protective role of several lineage-specific genes by gene inactivation, 27 

highlighting iron acquisition and biofilm formation as prominent mechanisms of plant protection 28 
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in this Pseudomonas lineage. Collectively, our work illustrates the importance of functional 29 

redundancy in plant protective traits across an important group of commensal bacteria. 30 

Introduction 31 

The health of a plant depends to a large extent on its resident microbiota. The effect of individual 32 

microbes on plant health has been extensively investigated since the dawn of phytopathology[1], 33 

mainly focusing on pathogens, considering their profound effect on global agriculture and food 34 

supply [2]. The ability of phytopathogens to overpopulate plants, leading to disease, is reflected 35 

in the reciprocal ability of the plant to recognize and control these pathogens [3]. Nonetheless, 36 

in recent years there has been an increasing realization that the plant relies not only on its 37 

immune system, but also on other resident microbes [4–7]. 38 

For example, in natural settings, the health of the ephemeral plant Arabidopsis thaliana is 39 

associated with the presence of several bacterial members, preventing the onset of filamentous 40 

microbes driven diseases [5]. Similar patterns have also been found in controlled settings, with 41 

suppression of bacterial pathogens by other bacteria [8,9]. These protective agents can have  42 

several modes of action, including (i) activation of systemic defences that spread throughout the 43 

plant [10], (ii) outcompeting pathogens over nutrients [11,12], and (iii) direct antibiosis [13,14]. 44 

These mechanisms are non-exclusive and can operate simultaneously. 45 

These studies have greatly advanced our understanding of protective interactions in 46 

plants, even if the investigated pathogens and protective microbes do not always coexist in the 47 

wild. An exception is a recent study [15], in which individual members of native tomato 48 

microbiomes were tested for suppression of the soil-borne pathogen Ralstonia solanacearum. 49 

These authors focused on siderophore production and competition for iron as a known 50 

mechanism for microbe-microbe competition, revealing a link to pathogen inhibition in the plant 51 

rhizosphere. This study [15] also highlighted the insights that could be gained from investigating 52 

pathogen protection in a phylogenetic framework. 53 

Recently, Karasov et al. [16] conducted a large scale survey of Pseudomonas in south 54 

west Germany, in which 1,524 isolates were sampled from wild A. thaliana plants. One 55 

pathogenic lineage dominated this collection, although other commensal strains were found as 56 

well. By employing synthetic communities of commensal and pathogenic Pseudomonas from 57 

this collection, we previously revealed that commensal strains protected A. thaliana from 58 

pathogenic Pseudomonas strain that co-occur in the wild [17]. In a related study, commensal 59 
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Pseudomonas was found to often outcompete pathogenic Pseudomonas syringae isolates 60 

sampled from the same plant [18]. 61 

These studies point to the importance of understanding interactions among wild 62 

Pseudomonas strains in maintaining plant health, and how this might be enhanced by an 63 

understanding of the underlying genetic mechanisms.  Here, we leveraged a local Pseudomonas 64 

collection [16] to examine the extent of protection conferred by commensal Pseudomonas 65 

against co-existing pathogenic Pseudomonas, and to discover some of the underlying 66 

mechanisms. Using a high throughput image-based assay, we monitored outcomes of 67 

systematic co-infections of a diverse set of commensal Pseudomonas with a focal Pseudomonas 68 

pathogen, covering the entire phylogeny of commensal Pseudomonas isolates in this collection. 69 

We found that protection by commensals was a common feature, although it was enriched in a 70 

specific taxon. We discovered bacterial genes for plant protection using genome-wide 71 

association and comparative genomics. Using knockout mutants, we experimentally validated 72 

the role of several candidate genes in plant protection, establishing a link to iron uptake and 73 

biofilm formation in the mitigation of phyllosphere pathogens. 74 

 75 

Results 76 

Systemic co-infections of commensal Pseudomonas with an individual pathogen  77 

To examine the ability of commensal Pseudomonas strains to protect host plants from members 78 

of the pathogenic Pseudomonas lineage, we made use of a local isolate collection [16]. We 79 

henceforth refer to an operational taxonomic unit (OTU) as reported in that study as “ATUE” 80 

(isolates from Around TUEbingen), and following previous findings [16,17], we refer to the lineage 81 

ATUE5 as pathogenic, and to all non-ATUE5 lineages as commensals. 82 

We grew plants on MS agar and monitored plant growth and health by extracting the 83 

number of green pixels from images over time (illustration in Figure 1A). Green pixel count and 84 

rosette fresh weight were strongly correlated (Figure S1; R2=0.92, Pval < 2.2e-16), validating the 85 

use of green pixels as a proxy for the plant biomass.  86 

We use a conservative definition of plant protection, considering protective strains as 87 

candidates leading to normal plant growth (comparable with uninfected plants) in the presence 88 

of a pathogen. To estimate how common the ability of non-ATUE5 strains to protect against the 89 
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impact of pathogenic Pseudomonas is, we infected plants with a panel of non-ATUE5 isolates in 90 

the presence of an common ATUE5 representative, strain ‘p4.C9’ (hereafter will be also referred 91 

to as ‘pathogen’). The pathogen was chosen because it is dominant over other ATUE5 strains 92 

but at the same time highly susceptible to the presence of non-ATUE5 strains, a phenomenon 93 

that correlated with plant protection [17]. We excluded highly similar isolates (Jaccard distance 94 

≥ 0.99 in gene content). From a total of 151 non-ATUE5 strains in our local collection [16], we 95 

initially chose a subset of 127 non-ATUE5 isolates, from which we were able to revive 99 isolates 96 

(Figure 1B; Table S1). We included three isolates from the pathogenic ATUE5 clade as control 97 

(Table S1), resulting in 102 strains that were tested in co-infections with the pathogen p4.C9.  98 

One of the 102 strains - p5.F2 - was known to suppress ATUE5 strains inside plants [17], 99 

and was used as ‘protective control’. To confirm that protection was due to bacterial activity and 100 

not merely a host response to the inoculum (e.g., PAMP-triggered immunity), we carried out 101 

infections with a heat-killed protective control. As expected, co-infection with the protective 102 

strain resulted in normal plant growth, while treatment with the pathogen by itself or co-103 

inoculation with the heat-killed protective strain impaired growth (Figure 1C; Figure S2; mean 104 

growth [Δ7dpi-0dpi green pixels]: control 29,227 [15,721, 40,662], pathogen 3,328 [-10,350, 105 

14,759], pathogen + heat-killed protective -5,222 [-16,410, 6,211] and protective 29,585 [16,323, 106 

40,812], at 95% confidence interval). 107 
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 108 
Fig 1. Panel of potentially protective Pseudomonas, and experimental design. A. Illustration of image 109 
processing to enumerate plant green pixels, approximating plant biomass. B. Phylogenetic tree of 127 110 
representative non-ATUE5 strains (i.e., putative commensals) sampled from south-west Germany [16]. All 111 
other non-ATUE5 isolates in this collection are represented in this core collection by a strain with which 112 
they shared ≥99% of genes ( Jaccard distance). Colors indicate the ATUE group (as previously 113 
determined[16]), and asterisks the 99 strains used here. C. Daily median of plant green pixels among the 114 
different treatments. Control treatments: Bacteria-free buffer, pathogen only, and co-infections of 115 
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pathogen with the protective strain and the heat-killed protective strain. Plant growth was measured daily 116 
by imaging. 8 replicates per treatment. 117 

Plant protection is ubiquitous, but also lineage-specific 118 

The co-inoculations of non-ATUE5 strains with the ATUE5 pathogen yielded a span of results, 119 

ranging from reduced to enhanced growth in comparison to uninfected plants, with protection 120 

being common (Figure 2A).  121 

Protection was unevenly distributed among the three highly sampled ATUE groups - 122 

ATUE2, ATUE3 and ATUE4 - with ATUE2 being the most protective mean growth (Δ[7 dpi]-[0 123 

dpi] green pixels, 95% CI): ATUE2 22,231 [19,522, 24,908], ATUE3 14,120 [10,780, 17,389], 124 

ATUE4 10,868 [6,844, 14,937], and bacteria-free 27,069 [19,882, 34,264]) (Figure 2B).  125 

Within each ATUE group, there was considerable variation in protective ability, even 126 

among strains with highly similar genomes (Figure 2C). In some cases, sister strains had 127 

opposite activities,: one providing protection and the other having no effect (e.g., ATUE2 strains 128 

p11.F1 and p12.H7; mean growth of p11.F1 25,554 pixels [8,303, 42,567] and p12.H7 -28,914 129 

pixels [-45,789, -11,837]). 130 

Even within ATUE5, some strains had protective ability. We had chosen the three ATUE5 131 

strains because in a previous set of experiments they were less competitive than our focal ATUE5 132 

pathogen p4.C9 [17]. Surprisingly, two of them also mitigated the pathogen effect, causing 133 

normal plant growth. This further exemplifies the differential functions within ATUE groups 134 

(Figure 2C).  135 

 136 
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 137 
Fig 2. Protection by different Pseudomonas strains is common, and enriched in the ATUE2 lineage. 138 

A. Mean plant growth difference to control, after co-infection with different Pseudomonas strains and the 139 
focal p4.C9 pathogen. Growth was measured as the change in green pixels between the day of infection 140 
until day 7 days later. Vertical lines indicate 95% credible intervals, and dots indicate the median. The 141 
dashed horizontal line signifies the baseline, average growth after bacteria-free treatment (i.e., negative 142 

control). 8 replicates each. B. Plant growth after co-infections, binned by ATUE group. Growth was 143 
measured as the change in green pixels between the day of infection until day 7 days later. In each ATUE 144 
group, raw data for individual replicates are shown with dots; the overlain shades of blue indicate the data 145 
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credible interval, as presented on the bottom right. The mean growth for each ATUE group is also shown; 146 
dot indicates for the median, thin horizontal line for 95% and thick line for 67% credible interval. For the 147 

number of strains in each ATUE group, see Table S1. C. Median plant growth after co-infections, ordered 148 
by phylogeny. Colors indicate ATUE groups [16]. Medians of plant growth in mono-association with 149 
pathogen p4.C9 or without infection indicated by dashed vertical lines. 150 

ATUE2 protective genes are lineage-specific 151 

That functional variation could not be explained by phylogeny (considering both topology and 152 

branch length) suggested that variation in gene content, possibly due to horizontal gene transfer, 153 

was causal for protection. We therefore examined associations between the presence/absence 154 

(P/A) of gene orthology groups with plant protection. 155 

There were 32,753 gene orthology groups that were not shared by all ATUE strains used 156 

for coinfections, but were found in more than one strain. We examined the correlation between 157 

plant growth and the presence of each of the individual orthology groups using treeWAS [19], a 158 

tool for genome-wide association studies (GWAS) in bacteria. Because treeWAS accounts for 159 

population structure, it will remove true positives that are highly correlated with population 160 

structure [20]. We therefore also used Spearman’s rank correlation coefficient (SC) to search for 161 

genes that were correlated with protection. SC was also useful to differentiate a global from a 162 

taxon-specific signal. To this end, we calculated SCs separately among the highly sampled 163 

ATUE2, ATUE3 and ATUE4 groups. For the SC test, we only considered the difference in median 164 

green pixels between 0 and 7 dpi. For treeWAS, we used four different plant growth metrics 165 

(Table S2; Methods). The extent of agreement between the four phenotypic metrics was used 166 

as another indicator for robustness of each association (Table S2). We overlapped the results 167 

from all four analyses and removed genes with a negative SC (SC<0), leaving us with 14 strong 168 

candidates for plant protection (Table S2). The nine genes with the highest SC values (Rho 0.37-169 

0.46) were unique to ATUE2 (Figure 3A).  170 

The existence of a gene set unique to one taxon implies that plant protection by 171 

Pseudomonas is not driven by a global mechanism, but rather by taxon-specific. To validate this 172 

assumption, we ran the same GWAS analysis on each of the main ATUE groups separately, i.e., 173 

independently analyzed the subsets of strains related to ATUE2, ATUE3 and ATUE4. In total, 95 174 

genes with positive SC were significantly associated with plant protection: 14 genes generated 175 

by the full set of strains, 46 genes by ATUE4, 35 genes by ATUE3 and no significant hits were 176 
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found in the ATUE2 dataset alone. Except for a single gene, we found no overlap among hits of 177 

the different ATUE datasets, providing further evidence for taxon-specificity (Figure S3).  178 

Around 50% of all protection-associated genes (47/95) were annotated as 179 

‘Uncharacterized protein’ or had no hit in either TrEMBL or Swiss-Prot databases (Table S2). 180 

Out of the well annotated genes, we observed a few noteworthy putative functions related to 181 

direct microbe-microbe interactions: three iron-uptake-related genes unique to ATUE2 182 

(GC00000450_7: ‘TonB_C domain-containing protein’, GC00000032_87: ‘Putative iron(III) 183 

dicitrate sensor protein FecR’ and GC00000050_54: ‘Probable RNA polymerase sigma factor 184 

FecI’), a gene related to resistance to antimicrobial peptides presented in ATUE3 185 

(GC00000089_55: ‘UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase’ 186 

[arnB][21]), and an antitoxin (GC00007392_r1_1: ‘Antitoxin FitA’) alongside mobility-related 187 

genes (GC00002204_5: ‘Twitching motility protein PilT’, GC00000715_r1_r1_2: ‘Pilus assembly 188 

protein PilW’) found in ATUE4. These putative functions indicate the diversity of protective 189 

mechanisms among commensal Pseudomonas. 190 

We observed that some significant genes had identical SC values in the examined ATUE 191 

group. Furthermore, these genes were all presented together in the same strains. Thus, we 192 

hypothesized that they may be in genetic linkage, i.e., forming genomic islands. We tested for 193 

chromosomal proximity between all the significant genes, and found clusters of proximal genes, 194 

confirming our hypothesis (Table S2; details in Methods). In these clusters, we found evidence 195 

for the horizontal gene transfer elements, for example phage elements combined with bacterial 196 

genes (proximity clusters 3 and 4 in Table S2). 197 

Cumulatively, these results portray a scenario in which plant protection by commensal 198 

Pseudomonas is driven by multiple, clade-specific mechanisms which were horizontally 199 

transferred. 200 

As described above, of the 14 protection-associated genes found among all strains, nine 201 

were unique to ATUE2 (Figure 3A). Albeit we found no significant hits when we analyzed ATUE2 202 

subset separately, strains holding these nine genes were more protective not only when 203 

compared among all strains, but also within ATUE2 (Plant mean growth for strains with zero 204 

genes in non-ATUE2 was 10,791 [7,541, 14,078], with zero genes in ATUE2 was 12,780 [6,891, 205 

18,821] and with at least one gene in ATUE2 was 29,299 [22,567, 35,983], at 95% confidence 206 

interval) (Figure 3B-C). Moreover, we found that the effect of these nine genes was additive 207 

within ATUE2, thus plant growth was associated with the number of genes presented in a given 208 
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strain (Figure S4; R2=0.55, Pval=0.0004). These results highlight the importance of these nine 209 

genes in plant protection both among all strains, and within ATUE2, despite the lack of statistical 210 

signal in the ATUE2 subset. 211 

 212 
Fig 3. Genes with the highest association to protection are unique to ATUE2. A. Presence / absence 213 
variation of the nine genes with the highest association to protection. Strains are ordered by their 214 
phylogeny. Strains belonging to the ATUE2 group are indicated by magenta color. Gene presence is 215 
indicated by grey filling, and absence by white. Median plant growth was measured by the median change 216 
in green pixels between day 7 post infection to the day of infection, and is indicated by shades of green. 217 
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B. Daily median of plant green pixels among all strains (top panel) or the ATUE2 subset (bottom panel). 218 
Shades of magenta indicate the number of protective genes present in each strain, out of the nine gene 219 
candidates that are detailed in panel A. Plants were assessed daily by imaging. 8 replicates per treatment. 220 
C. Plant growth after co-infections with the pathogen p4.C9, binned by (i) the presence of at least one 221 
gene from the set of the nine protective genes (presented in panel A) in a given commensal strain and (ii) 222 
affiliation to the ATUE2 group. Plant growth was measured by the change in green pixels between day 7 223 
post infection to the day of infection. In each group, raw data for individual replicates are shown with dots; 224 
the overlain shades of blue indicate the data credible interval, as presented on the bottom right. The mean 225 
growth for each group is also shown; dot indicates for the median, thin horizontal line for 95% and thick 226 
line for 67% credible interval. n = 8 per strain, while the number of strains differed among the categories 227 
as follows: zero genes in non-ATUE2 = 67, zero genes in ATUE2 = 20, and at least one gene in ATUE2 = 228 
16. 229 

Plant protection by ATUE2 is driven by iron acquisition and biofilm formation 230 

We selected the nine ATUE2-unique candidates for gene deletion to validate their role in plant 231 

protection. The protective strain ‘p5.F2’ was used as a representative for the ATUE2 clade, 232 

therefore we deleted each of the nine gene candidates in this strain. Since two genes were found 233 

in chromosomal proximity (GC00000032_87 and GC00000050_54), we treated them as one 234 

functional unit and deleted the whole cluster. Thus, we deleted a total of eight loci in p5.F2, 235 

comprising nine genes. 236 

Out of the eight knockout mutants, three lost their ability to mitigate the effect of the 237 

pathogen p4.C9 following co-infections (henceforth ‘non-protective mutants’), while the wild 238 

type strain protected the plant as expected (Figure 4A; Figure S5A). These three non-protective 239 

mutants did not affect plant weight when tested individually, similarly to the wild type (Figure 240 

S6A-B), implying that the weight reduction after co-infections was due to the pathogen or to the 241 

interaction with the pathogen, rather than the knockout mutants themselves. 242 

Out of these three non-protective mutants, two comprise the deletion of three genes that 243 

are annotated as iron-related (GC00000450_7: ‘TonB_C domain-containing protein’ [22,23], and 244 

a cluster of two genes - GC00000032_87: ‘Putative iron(III) dicitrate sensor protein FecR’ [24] 245 

and GC00000050_54: ‘Probable RNA polymerase sigma factor FecI’ [25]), while the third - 246 

ΔGC00003884_12 - is annotated as ‘Uncharacterized protein’ (Table S2). We noted an 247 

exceptional phenomenon in the tubes in which ΔGC00003884_12 was grown - formation of 248 

chunks, although bacteria were grown by shaking (Methods). Thus, we presumed that the 249 
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deleted gene in question is related to biofilm formation. To test this, we grew the WT and the 250 

mutated strain ΔGC00003884_12 overnight, and removed the tubes from shaking, placing them 251 

at room temperature for static incubation. After one hour, we noted sedimentation in the 252 

ΔGC00003884_12 tube (formation of clear liquid at the top and aggregates at the bottom) (Figure 253 

S7), unlike the WT strain which presented a homogenous opacity level. This phenotype implies 254 

that at least in the tested conditions, ΔGC00003884_12 has an augmented biofilm control in 255 

comparison to the WT strain, thus tends to form aggregates faster. 256 

To validate the role of ΔGC00000032_87 // GC00000050_54 and ΔGC00000450_7 257 

mutants in iron uptake, we performed an iron-deficiency growth assay in-vitro. The WT strain, 258 

the two iron knockout mutants and the pathogen were grown in LB with increasing levels of the 259 

iron chelator 2'2'-dipyridyl. We also tested the biofilm-related knockout mutant 260 

ΔGC00003884_12 in the same assay, but noted an exceptional growth curve shape for this 261 

strain, regardless of chelator levels (Figure S8), in agreement with the aggregates phenomenon 262 

we observed in the tubes (Figure S7). Consequently, we excluded the mutant ΔGC00003884_12 263 

from the in vitro assay analysis. Both the knockout mutants ΔGC00000032_87 // 264 

GC00000050_54 and ΔGC00000450_7, and the pathogen, presented reduced growth in LB 265 

without chelator, when compared to the WT strain (Figure 4B; Figure S8; Figure S9A; mean 266 

difference to control: pathogen -4,424 AUC [-5,299, -3,551], ΔGC00000450_7 -3,526 AUC [-267 

4,412, -2,634] and ΔGC00000032_87 // GC00000050_54 -2,469 AUC [-3,337, -1,587], with 95% 268 

confidence intervals in brackets). This confirms that both loci have a role in the growth of the WT 269 

strain p5.F2, regardless of iron availability. We then examined how the growth of focal mutants 270 

is affected by increasing iron chelator concentration, i.e. by decreasing iron levels. While the 271 

increasing chelator led to a similar reduction in growth between the WT and the knockout mutant 272 

ΔGC00000032_87 // GC00000050_54, both the pathogen and the mutant ΔGC00000450_7 273 

presented a sharper growth reduction - hence were more sensitive to iron deficiency (Figure 4B; 274 

Figure S8; Figure S9B; mean slope difference to control: pathogen -5.6 AUC [-10.5, -0.7], 275 

ΔGC00000450_7 -10.1 AUC [-15.1, -5.3] and ΔGC00000032_87 // GC00000050_54 -0.4 AUC [-276 

5.3, 4.3], with 95% confidence intervals in brackets). These findings provide further evidence for 277 

the involvement of iron acquisition in plant protection by ATUE2 strains, and specifically imply 278 

that ATUE2 strains protect the plant by outcompeting the pathogen over iron.  279 

Taken together, these results imply that ATUE2 can protect A. thaliana from the 280 

coexisting pathogenic ATUE5 via mechanisms related to iron uptake, and seemingly also to 281 
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biofilm formation. Do these mechanisms act specifically against the local ATUE5 or a wider 282 

pathogen range? To test this, we co-infected the protective WT and the three non-protective 283 

mutants with Pseudomonas syringae pv. tomato DC3000 (Pst). Pst was not observed in the local 284 

A. thaliana populations from which ATUE2 was sampled [16], hence it is not assumed to coexist 285 

with ATUE2 in these populations. Furthermore, it is a different species, as ATUE5 is classified as 286 

Pseudomonas viridiflava [16]. The WT was protective against Pst, leading to control-level growth 287 

(Figure 4C; Figure S5B). This reflects that ATUE2 protective ability is not restricted to the 288 

pathogenic lineage ATUE5, but rather works against a wider range of pathogenic Pseudomonas. 289 

However, the exact protective mechanism against the two pathogens seems to differ, as only 290 

two of the three tested mutants exhibited a mild reduction in protection (ΔGC00000450_7 and 291 

ΔGC00003884_12) (Figure 4C; Figure S5B); therefore while not resulting in control-level growth, 292 

their co-infections led to a higher weight in comparison to Pst alone (mean difference to Pst 293 

alone: ΔGC00000450_7 28,466 pixels [11,343, 45,597], ΔGC00000032_87 // GC00000050_54 294 

33,790 pixels [16,677, 50,862] and ΔGC00003884_12 31,687 pixels[14,814, 48,263], with 95% 295 

confidence intervals in brackets). This contrasts the co-infections with ATUE5 pathogen, in which 296 

co-infections with each of the three mutants resulted in pathogen-level weight (mean difference 297 

to p4.C9 alone: ΔGC00000450_7 -4,949 pixels [-23,916, 15,161], ΔGC00000032_87 // 298 

GC00000050_54 3,133 pixels [-15,959, 21,910] and ΔGC00003884_12 -14,601 pixels[-33,678, 299 

4,581], with 95% confidence intervals in brackets). These differences imply that distinct genes 300 

in ATUE2 cause protection against ATUE5 and Pst. 301 
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 302 
Fig 4. Three knockout mutants failed to confer protection, two associates with iron uptake. A. Daily 303 
median of plant green pixels after treatment with control, p4.C9 pathogen, the protective strain p5.F2, 304 
mixture of the pathogen and p5.F2, and mixture of the pathogen and each of eight p5.F2 knockout mutants 305 
(‘p5.F2 K.O.’). Dashed lines note three treatments comprising p5.F2 knockout mutants that lost their ability 306 
to protect the plant (‘Δ GC00000032_87 // GC00000050_54’, ‘Δ GC00000450_7’ and ‘Δ 307 
GC00003884_12’), as analyzed in Figure S5A. Plants were assessed daily by imaging. Experiments were 308 

performed two times with similar results. n=20. B. In vitro growth of the pathogen, p5.F2 and two knockout 309 
mutants (‘Δ GC00000032_87 // GC00000050_54’ and ‘Δ GC00000450_7’) as a function of 2,2'-bipyridine 310 
concentration. Each bacterial strain was grown in LB supplemented with seven different 2,2'-bipyridine 311 
concentrations (0, 50, 100, 150, 200, 250 and 300 nM), and OD600 was monitored for 10 hours (more details 312 
in Figure S5 and Methods). The logistic area under the growth curve was extracted as a proxy for bacterial 313 
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growth. Shaded area indicates 95% confidence intervals of the regression curve. n=4 for each bacterial 314 
strain grown in the corresponding 2,2'-bipyridine concentration. C. Daily median of plant green pixels after 315 
treatment with control, Pseudomonas syringae pv. tomato DC3000 (Pst), mixture of Pst and p5.F2, and 316 
mixture of Pst and each of the three tested p5.F2 knockout mutants (‘p5.F2 K.O.’) - the three mutants that 317 
lost their ability to protect the plant against the ATUE5 pathogen. Dashed lines note two treatments 318 
comprising p5.F2 knockout mutants that lost their ability to protect the plant (‘Δ GC00000032_87 // 319 
GC00000050_54’ and ‘Δ GC00000450_7’), as analyzed in Figure S5B. Plants were assessed daily by 320 
imaging. Experiments were performed two times with similar results. n=20. 321 
 322 

Discussion 323 

In this work, we systematically tested the ability of non-pathogenic Pseudomonas to protect the 324 

plant from a pathogenic Pseudomonas lineage, using a set of isolates sampled from the same 325 

spatio-temporal space. We found that plant protection is a common function among the non-326 

pathogenic Pseudomonas taxa, while unraveling differences between highly-related strains. Our 327 

genome wide association study (GWAS) implied taxon-specific gene sets which associate with 328 

plant protection. We selected the most promising gene set for knockout mutants validation, 329 

demonstrating that iron acquisition and biofilm formation play a major role in the mitigation of 330 

phyllosphere pathogens by protective bacteria. 331 

Our findings highlight the link between bacterial phylogeny to plant protectiveness. We 332 

document a Pseudomonas lineage enriched in protective isolates, alongside high variability 333 

within each bacterial lineage. Similar patterns were described in a recent study focused on 334 

bacterial mitigation of Ralstonia solanacearum, a tomato pathogen [15]. Such similarities imply 335 

the generality of these trends in plant-commensal-pathogen ecosystems, in particular when 336 

considering that different hosts and microbes were focused. 337 

Our work confirms the role of iron uptake in plant protection, pointing out how commensal 338 

Pseudomonas outcompete a pathogen over this nutrient, leading to plant protection. These 339 

evidences stand in line with current knowledge about the importance of iron competition in 340 

microbial communities [15,26–29] and about the link between iron availability to plant 341 

pathogenesis [30,31]. The weight of bacterial competition over iron is driven by its biological 342 

importance and environmental scarceness as it is an essential micronutrient [32] with limited 343 

bioavailability [33], fueling diversification of iron uptake instruments [34]. Therefore, it is not 344 

surprising that iron competition dictates microbial interactions within the plant, which in turn can 345 

affect host health. 346 
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Beyond the scope of iron acquisition, we experimentally validated a link between 347 

bacterial biofilm formation to plant protection, which as far as we know have yet to be described. 348 

It is clear that bacterial aggregation affects bacterial activities, altering competition with other 349 

bacteria [35]. Therefore, it is somewhat trivial that biofilm control can influence the competition 350 

between commensal and pathogenic Pseudomonas in the plant. Considering our findings and 351 

this simple explanation, we suggest further investigation of the role of biofilm control in shaping 352 

plant microbial communities and health. 353 

In this study, we utilized comparative genomics to pinpoint protective genes among 354 

various Pseudomonas commensal lineages. Our results imply that the underlying protective 355 

mechanism is clade-dependent, according to homology-based annotations. For example, iron 356 

uptake was associated with only a single taxonomic lineage among the eleven tested lineages. 357 

Considering that we examined interactions between commensals of the same genus to a single 358 

individual pathogen, we are surprised to find such a diversity of taxon-specific gene-sets, rather 359 

than a global set of protective genes. These findings hint at the complexity of competitive 360 

interactions among the whole microbiota, and perhaps note a signature of a coevolutionary arms 361 

race between pathogens and commensals.  362 

An additional complexity we note is the differential pathogen-specificity of the same 363 

protective genes. We found differences when tested the same knockout mutants against two 364 

different pathogens: the geographically coexisting Pseudomonas pathogen (corresponding to 365 

Pseudomonas viridiflava) and the exogenous Pseudomonas syringae pv. tomato DC3000 (Pst). 366 

Although the tested protective strain conferred protection against both pathogens, the knockout 367 

mutants that lost protection against the native pathogen were largely protective against Pst. This 368 

points out that protective strains may act via various mechanisms, tailor-made against a wide 369 

repertoire of pathogens. 370 

Albeit our study involved bacteria sampled from the same local survey [16], it is too 371 

reductionist to conclude the exact role of these specific bacteria in wild settings, as only pairwise 372 

interactions in gnotobiotic conditions were tested. However, the underlying protective 373 

mechanisms we revealed in the tested strains should mirror their functionality in nature to a 374 

certain extent. We tested only one pathogen against the whole commensal Pseudomonas panel. 375 

Hence, it is beyond the scope of this study to understand the pathogen range of the protective 376 

genes found in the GWAS. Consequently, we suggest to upscale the experimental effort taken 377 

here, following the general approach we implemented. Examining interactions between multiple 378 
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pathogens with multiple commensals would better manifest the importance of protective genes, 379 

evaluating their pathogen range. Such upscaling may require new methodological improvements 380 

to reach a higher throughput. 381 

Together with recent studies [5,36,37], our work emphasizes the importance of 382 

commensal microbes in maintaining plant health. Ultimately, the approach we took in this study 383 

can advance rational microbiome design for the sake of disease prevention in agriculture [38]. 384 

Understanding the stabilizing factors in wild plant-microbiota systems can enable their mimicry 385 

in agricultural systems - the food source of the world. In the heart of such emerging trends [38–386 

40] stands a safe bet for the human kind - relying on evolution to pave the way for stable 387 

anthropogenic ecosystems. 388 

Methods 389 

Plant material 390 

The plant genotype Ey15-2 was used in this study. It was originally collected from Eyach 391 

(Germany), near the sites in which Pseudomonas were isolated [16], and was found to represent 392 

a genetic background common to this region [41]. Seeds were sterilized by overnight incubation 393 

at −80°C, followed by ethanol washes (shake seeds for 5-15min in solution containing 75% EtOH 394 

and 0.5% Triton-X-100, and then wash seeds with 95% EtOH and let them dry in a laminar flow 395 

hood). Seeds were then stratified in the dark at 4°C for seven days, on ½ MS-agar media 396 

including vitamins and MES buffer (Duchefa, M0255). Plants were grown in 1.8 mL ½ MS-agar 397 

in 24-well plates. All plants were grown in long days (16 h of light) at 23°C, in controlled percivals 398 

(Plant Climatics, CLF CU-36L5). 399 

 400 

Plant protection assay 401 

All tested bacteria were taken from a previous Pseudomonas collection [16], except for 402 

Pseudomonas syringae pv. tomato DC3000 which was taken from our common-bacteria stock. 403 

All bacterial treatments were diluted to a concentration of OD600=0.01 per strain. Thus, in the co-404 

infections the total bacterial concentration was OD600=0.02, in a solution comprising a mixture of 405 

two strains (the pathogen and the candidate strain), while in treatments of individual strains the 406 

total concentration was OD600=0.01. Bacteria-free control was 10 mM MgSO4. 407 

Bacterial treatments were prepared as follows: The relevant isolates were grown 408 

overnight in Lysogeny broth (LB) and 10 mg/mL Nitrofurantoin (antibiotic in which all isolated 409 
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Pseudomonas can grow), diluted 1:10 in the following morning and grown for 3 additional hours 410 

until they entered log phase. Subsequently, bacteria were pelleted at 3500 g, resuspended in 10 411 

mM MgSO4, pelleted again at 3500 g to wash residual LB, and resuspended again in 10 mM 412 

MgSO4 to a concentration of OD600=0.02, creating a stock solution for each isolate for 413 

subsequent mixtures (with either 10 mM MgSO4 or a solution containing another strain, in both 414 

cases resulting in OD600=0.01 per strain).  415 

All plants were treated with the relevant treatment ten days post-stratification. Infections 416 

were done by drip-inoculation, pipetting 100 μl onto the whole rosette, and plates were 417 

subsequently sealed using a Micropore tape (3M, Germany). The plants were photographed on 418 

the day of infection (before the actual infection), one day post-infection (day 1), and consecutively 419 

from day 4 to day 7 post-infection, using a tripod-mounted Canon PowerShot G12 digital camera 420 

and built-in flash. Lids kept close to maintain sterility, while a backlight was used to avoid 421 

reflections due to the flash light. Green pixels approximation was done using the same pipeline 422 

as Karasov etl al. [42]. In brief, individual plants were segmented from the background using lab 423 

color space thresholds, followed by morphological-based noise removal. Lastly, GrabCut 424 

postprocessing was applied, resulting in a list of plant IDs and the corresponding green pixel 425 

count. The script was written in Python 3.6, bash using OpenVN 3.1.0 and scikit-image 0.13.0. 426 

 427 

Bacterial gene knockout 428 

Deletion of native bacterial genes was done on the strain ‘p5.F2’ [16]. First, 300bp flanking 429 

sequences of the relevant genes were extracted (p5.F2 full genome was previously published 430 

[16]). Subsequently, restriction sites were added between the two 300bp flanking sequences 431 

(XhoI / AvrII / PmeI / PmlI), and the resulting sequence was synthesized and cloned into 432 

pDEST2T18ms vector (https://www.addgene.org/72647/) by Twist Bioscience (USA; Full 433 

sequence list in Table S3).  434 

Gentamicin resistance gene (GmR) was amplified using the template pUC18-mini-Tn7T-435 

Gm-lux (https://www.addgene.org/64963/), using the primers 5’ cccgagctcatgcatgatcg 3’ and 5’ 436 

ccggacgatcgaattgggg 3’, and the reaction consisted of 25 μL containing 0.25 μL Q5 high-fidelity 437 

DNA polymerase (New England Biolabs, USA), 1x Q5 5x reaction buffer, 0.08 μM forward and 438 

0.16 μM of reverse (tagging) primer and 200 μM dNTP (PCR was run for 98°C for 30 s, followed 439 

by 30 cycles of 98°C for 15 s, 58°C for 20 s, 72°C for 2 min, and a final 72°C for 2 min). The 440 

amplified fragment was gel-purified (GeneJET Gel Extraction Kit; Thermo Scientific, USA), and 441 
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ligated between the 300bp flanking regions, utilizing the added PmeI restriction site and T4 DNA-442 

Ligase (Thermo Fisher Scientific, USA), and following the standard restriction-ligation protocol 443 

as instructed by the manufacturer. Thus, the resulting fragment for each gene was 5’ 444 

300bp_upstream - GmR - 300bp_downstream 3’, cloned in a pDEST2T18ms vector. DH5α 445 

competent E.coli were transformed with the ligation product, and subsequently plated on 446 

selective Lysogeny broth (LB) agar (1.75%) with gentamicin (10 ug/mL) and tetracycline (5 447 

ng/mL). Bacterial colonies were picked and used as a template for a colony-PCR, using primers 448 

matching the foreign DNA (Full primer list in Table S4), to validate successful transformants. PCR 449 

reaction consisted of 25 μL containing 0.25 μL Q5 high-fidelity DNA polymerase (New England 450 

Biolabs, USA), 1x Q5 5x reaction buffer, 0.08 μM forward and 0.16 μM of reverse (tagging) primer 451 

and 200 μM dNTP (PCR was run for 98°C for 30 s, followed by 30 cycles of 98°C for 30 s, 452 

matching annealing temperature (Table S4) for 30 s, 72°C for 2 min, and a final 72°C for 2 min). 453 

The same conditions applied to all following colony PCRs. 454 

Pseudomonas strain p5.F2 (i.e. ‘recipient’) was subjected to triparental mating with the 455 

positive DH5α colonies, carrying the pDEST2T18ms with the relevant insert for each gene (i.e. 456 

‘donor’), and a helper HB101 E. coli, carrying the plasmid pRK2013 that facilitates mobilization. 457 

Cultures of the donor, recipient and helper strains were grown overnight (shaking, 37°C for donor 458 

and helper, 28°C for the recipient) in LB with the relevant antibiotics (gentamicin 10 ug/mL and 459 

tetracycline 5 ng/mL for the donor, 100 ug/ml nitrofurantoin for the recipient and kanamycin 50 460 

ug/ml for the helper). In the following morning, cultures were diluted 1:10, and were grown for 461 

additional 2-4 hours. The three strains were then mixed in a single tube, followed by immediate 462 

centrifugation (3000 g), removal of supernatant and the resuspension in 1 ml LB. The same 463 

washing procedure was used again, only that the cells were resuspended in 100 ul LB. The 464 

mixture of cells was inoculated onto LB plates to allow mating, and incubated for 72 hours in 465 

28°C. The resulting blob was scraped off into 500 ul 10mM MgSO4 and centrifuged for 2 minutes 466 

at 3500 g. Supernatant was removed, and the cells were resuspended in 1 ml of 10mM MgSO4. 467 

A 100ul of the resulting mixture was plated onto LB-agar selective media including 100 ul/mL 468 

nitrofurantoin, gentamicin 10 ug/mL and tetracycline 5 ng/mL. The plates were incubated at 28°C 469 

for 2-3 days until visible colonies appeared. Colonies were conducted to PCR with matching 470 

primers to validate successful p5.F2 transformants, and to validate the absence of the native 471 

gene (should be replaced by GmR due to homologous recombination of the 300bp flanking arms; 472 

Full primer list in Table S4). Successful knockout were considered after the expected band size 473 
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appeared in gel electrophoresis (Table S4), and after the amplified fragment was gel-purified 474 

(GeneJET Gel Extraction Kit; Thermo Scientific, USA) and Sanger-sequenced, presenting the 475 

expected GmR sequence. Subsequently, successful colonies were plated in 5% sucrose and 476 

gentamicin 10 ug/mL media, to remove the pDEST2T18ms plasmid, utilizing a sucrose 477 

counterselection marker (SacB) found only in the plasmid. Finally, visible colonies were examined 478 

for the absence of SacB, following PCR (same reaction and conditions as for GmR PCR, primer 479 

list in Table S4) and gel electrophoresis, and re-examined for the absence of the native gene 480 

and for the presence of GmR. Successful candidates were stocked in 25% glycerol and kept in 481 

-80°C. 482 

 483 

 484 

Iron sensitivity assay 485 

Growth sensitivity to iron level was assayed as previously described [43]. Briefly, each strain was 486 

grown in 200 ul, LB in the presence of increasing 2,2'-dipyridyl concentration, ranging between 487 

0-300 nM. Bacteria were diluted to a starting concentration of OD600 = 0.05, in 96-wells format 488 

plate (Greiner Bio One, Austria). Plates were incubated in a plate reader (Robot Tecan Infinite 489 

M200; Tecan Life Sciences, Switzerland) at 28 °C while shaking for 10 hours, and OD600 was 490 

measured in 30 minutes intervals.  491 

 492 

Phylogenetic analysis 493 

All phylogenies were done based on the core genome (ortholog presence > 70%) of the relevant 494 

strains in the analysis, and were constructed with IQtree (v1.6.10; using the parameters: -mset 495 

LG -st AA -nt 16 -ntmax 16) [44], which analyse phylogeny based on maximum likelihood. 496 

Visualization was done by iTOL [45], except for the combined tree-heatmap plots, in which the 497 

R function ‘ggtree’ (from the package ‘ggtree’) was used [46]. 498 

 499 

Regression analysis  500 

Posterior distributions of the relevant predictors were approximated using the function 501 

“stan_glm” in the R package rstanarm [47]. Default settings were used (including prior 502 

distribution), unless more iterations were required (Rhat > 1.1), hence the number of iterations 503 

was increased until a sufficient number reached (Rhat < 1.1). In all figures, the median and 95% 504 

credible intervals (2.5% and 97.5%) of the posterior distribution were presented. The response 505 
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variable and predictors, as well as the reference for comparison, are explained in the figure 506 

legend for each analysis.  507 

 508 

Bacterial genome-wide association with plant protection 509 

Gene orthology clusters were retrieved from Karsov etl al. [16], as well as the phyletic pattern of 510 

gene presence/absence (P/A) for each strain used in this study. Gene orthologs were then 511 

associated with plant growth using treeWAS [19], a dedicated tool for bacterial GWAS.  512 

Four different sets of strains were used, in four separate analyses: All strains, ATUE2, 513 

ATUE3 and ATUE4. In each set the resulting maximum likelihood phylogeny was used in 514 

treeWAS. To gain higher sensitivity, each set of strains was analyzed using four different metrics, 515 

manifesting plant growth. All significant hits per set of strains were conjugated, and the number 516 

of tests in which an ortholog resulted as significant was counted, and is indicated in Table S2. 517 

The four plant growth metrics that were used were: The median change in green pixels between 518 

the last day of experiment (7 days post-infection) to the day of infection (‘median growth’), a 519 

bayesian-derived approximation of the ‘median growth’ (‘cdl50’, i.e. the posterior distribution 520 

median of the ‘median growth’), a binary categorization based on cdl50 (cdl =< 0 - i.e. zero 521 

growth, and cdl > 0 - i.e. any growth) and the area under the curve while accounting for all 522 

sampled time points (0-1, 4-7 days post-infection), using the value ‘auc_l’ after running the R 523 

function ‘growthcurver’ [48]. The four metrics that were used are also detailed in the legend of 524 

Table S2.  525 

Heatmaps were produced and combined with phylogenetic trees using the R function 526 

‘gheatmap’ (from the package ‘ggtree’) [46]. 527 

To test for proximity between significant genes (i.e. formation of genomic islands), we 528 

examined the location of the corresponding genes in strains that presented them all. We 529 

accounted for the gene ID provided by Prokka [49], that includes the order of genes within a 530 

contig (e.g. gene_1 and gene_3 are separated on contig_X only by gene_2). Only genes that were 531 

found on the same contig, and separated by no more than one gene were considered as 532 

consecutive. Thus, clusters of proximal genes were formed in each strain. We examined for 533 

disagreements between the strains, and could find no such disagreements. We further validated 534 

the proximity of these genes by examining the number of bases differing each consecutive pair 535 

of genes, finding individuals to hundreds.  536 

 537 
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Gene orthologs annotation 538 

To assign function to each of the studied proteins we first used the MSA of the protein orthology 539 

group to build a representative HMM model using HMMER (version 3.2.1). Next, the resulting 540 

HMMs were used to search for homologues proteins using hmmsearch against the UniProt 541 

Knowledgebase (Swiss-Prot+TrEMBL); release 2020_05. The function of the best significant hit, 542 

which covered at least 80% of the query protein, was transferred to the query protein. 543 

 544 

Analysis of growth in iron-sensitivity assay 545 

Growth of all bacteria was analyzed using the R function ‘SummarizeGrowthByPlate’ from the 546 

Growthcurver R package[48]. The logarithmic area under the curve (‘auc_l’) was extracted and 547 

compared between the WT, knockout strains of interest and the pathogen.  548 

 549 

Statistical analysis 550 

All statistical analyses were performed using the R environment version 3.5.1, unless mentioned 551 

otherwise. Sample sizes were not predetermined using statistical methods.  552 
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 711 
 712 

 713 
 714 

Fig S1. Correlation between green pixels count and rosette fresh weight. Plants were randomly 715 
sampled 7 days post-infection (end of experiment) for weight measurement. Green pixels count retrieved 716 
from the same day of sampling. Blue line indicates the regression line, and the shaded area indicates 95% 717 
confidence interval. n=251. 718 
 719 
 720 
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 721 
 722 
Fig S2. Plant growth in control treatments. Plant growth in the control treatments: Bacteria-free, 723 
pathogen and co-infections of the pathogen with the protective strain and heat-killed protective strain. 724 
Growth was measured by the median change in green pixels between day 7 post-infection to the day of 725 
infection. In each treatment, raw data is described by the dots at the top panel, and the shades of blue 726 
indicate data credible intervals. The bottom panel of each treatment manifests the mean growth: Dot 727 
indicates the median of the credible interval, while the vertical line indicates 95% credible interval. n=8. 728 
 729 

 730 

 731 
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 732 
 733 

Fig S3. Venn diagram of significant gene genes in three strain sets. Significant genes, as determined 734 
by treeWAS analysis[19] after including all strains, and the subsets of ATUE2, ATUE3 and ATUE4. Four 735 
analyses were conducted, using four different metrics to manifest plant growth (Table S2; Methods). Only 736 
significant hits with positive Spearman correlation (>0) were considered. No significant hit with positive 737 
correlation was found after analyzing the ATUE2 subset.  738 
 739 
 740 
 741 
 742 
 743 
 744 
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 745 
 746 

Fig S4. Correlation between median plant growth and the number of significant genes presented in 747 
a given strain, in the ATUE2 subset. Plant growth was measured by the median change in green pixels 748 
between day 7 post infection to the day of infection. The curated gene gene set was considered, as 749 
presented in figure 3A. Blue line indicates the regression line, and the shaded area indicates 95% 750 
confidence interval. n=8 per each of 36 strains. 751 

 752 
 753 
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 754 
 755 
Fig S5. Co-infections of the wild type p5.F2, and each of three tested knockout mutants with (A) 756 
ATUE5 pathogen and (B) Pseudomonas syringae pv. tomato DC3000 (Pst). Presented is the mean 757 
plant growth difference to control (bacteria-free treatment), signified by the dashed horizontal line. Growth 758 
was measured by the median change in green pixels between day 7 post infection to the day of infection. 759 
Vertical lines indicate 95% credible intervals of the mean, while dots indicate the median. Colors indicate 760 
the growth difference of co-infections to control, as determined by the overlap between the baseline and 761 
95% credible intervals. Experiment performed two times with similar results. n=20. Related to Figure 4. 762 

 763 
 764 
 765 
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 766 
 767 
Fig S6. Individual infections with the wild type and three non-protective knockout mutants. A. Daily 768 
median of plant green pixels after treatment with control, p5.F2 and the three non-protective knockout 769 

mutants (‘p5.F2 K.O.’). Plants were assessed daily by imaging. n=20. B. Mean plant growth difference to 770 
control after treating plants with the protective strain p5.F2 and the three p5.F2 knockout that lost their 771 
protective ability (‘Δ GC00000032_87 // GC00000050_54’, ‘Δ GC00000450_7’ and ‘Δ GC00003884_12’). 772 
Growth was measured by the median change in green pixels between day 7 post infection to the day of 773 
infection. Vertical lines indicate 95% credible intervals of the mean, while dots indicate the median. The 774 
dashed horizontal line signifies the baseline, which manifests plant growth after bacteria-free treatment 775 
(i.e. ‘control’). Colors indicate the growth difference of co-infections to control, as determined by the 776 
overlap between the baseline and 95% credible intervals. n=20.  Experiments were performed two times 777 
with similar results. 778 

 779 
 780 
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 785 
 786 
Fig S7. Representative images of LB-grown p5.F2 and its knockout mutant ΔGC00003884_12, one 787 
hour after static incubation. Experiment performed independently three times with similar results. 788 
  789 
 790 
 791 
 792 
 793 
 794 
 795 

 796 
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 797 
 798 
Fig S8. Growth curves of the wild type strain p5.F2, focal three knockout mutants and the pathogen 799 

in increasing 2,2'-bipyridine concentration. Bacteria were grown in LB medium, supplemented with 800 
seven different 2,2'-bipyridine concentrations (0, 50, 100, 150, 200, 250 and 300 nM). Growth was 801 
monitored for 10 hours in 30 minutes intervals. Shaded area indicates 95% confidence intervals of the 802 
regression curve. n=4 per strain.  803 
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Fig S9. Regression analysis of bacterial growth as a 817 
function of 2,2'-bipyridine concentration. The growth of 818 
the two p5.F2 knockout mutants (‘Δ GC00000032_87 // 819 
GC00000050_54’ and ‘Δ GC00000450_7’) and the pathogen 820 
were compared to the wild type protective strain p5.F2. The 821 
logistic area under the growth curve was extracted as a 822 
proxy for bacterial growth. The linear model {growth ~ 823 
strain*chelator} was analyzed, while ‘chelator’ states 2,2'-824 

bipyridine concentration. A. Growth difference without 825 
supplementation of 2,2'-bipyridine (thus, the difference to 826 
p5.F2 of the variable ‘strain’ while ‘chelator’ is zero, i.e. the 827 
intersection with the y axis). B. Difference in the effect of 2,2'-828 
bipyridine on growth, by strain (thus, the difference to p5.F2 829 
of the interaction between the variables ‘strain’ and 830 
‘chelator’, i.e. the slope of each strain). Vertical lines indicate 831 
95% credible intervals of the mean, while dots indicate the 832 
median. Dashed horizontal lines signify the baseline, which 833 
manifests the wild type strain p5.F2. Colors indicate the 834 
difference to p5.F2, as determined by the overlap between 835 
the baseline and 95% credible intervals. n=4 PER STRAIN. 836 

related to figure 4B.  837 

 838 


