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INTRODUCTION

This thesis contributes to the explicit classification of Fano and Calabi-Yau varieties.

A Fano variety is a normal projective variety with an ample anticanonical divisor. These
varieties gain attention due to their significant role in the Minimal Model Program, a
systematic approach to the classification of projective varieties up to birational equivalence
proposed by Mori [98,99]. The Fano varieties among the smooth surfaces are precisely the
classically known del Pezzo surfaces: a product of two projective lines, the projective plane
and its blow-ups in up to eight points in general position. The classification of smooth
Fano threefolds by Iskovskikh [8283] and Mori/Mukai [100,|101] marked an important
milestone in the study of Fano varieties. In higher dimensions the classification of smooth
Fano varieties is still an open problem. Particular results such as the classification of
smooth toric Fano varieties up to dimension nine [10}/11}77,/104,110] indicate that the
amount of Fano varieties rapidly increases with each dimension step.

The rich diversity of singular Fano varieties is illustrated by log del Pezzo surfaces, i.e.,
two-dimensional Fano varieties with at most log terminal singularities. Here we find
classification results for log del Pezzo surfaces of Gorenstein index at most three [6,/58,/103].
Furthermore, log del Pezzo surfaces with symmetry are an active field of research
[37H39,48-50]. In particular for surfaces with a torus action we mention the complete
classification of Gorenstein log del Pezzo surfaces [47,[70}74,(125], see also [4, Sec. 5.4.4].

Over the last two decades, extensive progress was made in the classification of Q-factorial
Fano threefolds of Picard number one with at most terminal singularities, often called
Q-Fano threefolds for short. Major contributions come from Brown, Prokhorov, Reid and
Suzuki [52526L[111-115,/124]. The toolbox of these authors contains the so-called graded
ring method, initiated by Reid. Roughly speaking this refers to the two-staged study
of Fano varieties in terms of the anticanonical ring. First, ingredients from geometry
and computer aid allow to produce lists including all Hilbert series associated with the
varieties in question. Then in a second step one checks which candidates for the Hilbert
series actually do occur, e.g. by applying constructive methods. An accurate introduction
to the graded ring approach can be found in [5]. The finite list of candidates for Hilbert
series of Q-Fano threefolds is documented in the Graded Ring Database [29].
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Introduction

In connection with the graded ring approach it is natural to consider embeddings into
weighted projective spaces. More generally, embeddings into toric varieties are a widely
used approach for classifying Fano varieties [35,41}80,/116,/117]. In the of
this thesis, which presents joint work with J. Hausen and M. Wrobel, we investigate non-
degenerate toric complete intersections, meaning complete intersections in projective toric
varieties arising from a non-degenerate system of Laurent polynomials; see Definitions|1.3.6
and This notion is originally due to Khovanskii in the smooth case [76]. We
approach the singular case by means of the anticanonical complex, a generalization of
the Fano polytope from toric geometry introduced in [17,/72]. Theorem shows
that non-degenerate toric complete intersections indeed admit an anticanonical complex.
This leads to Bertini type statements on terminal and canonical singularities, namely
that a non-degenerate toric complete intersection X C Z inherits precisely the terminal
(canonical) singularities from the minimal open toric subvariety of Z containing X.

Using this result we treat terminal Fano threefolds showing up as non-degenerate toric
complete intersection in a fake weighted projective space. Here, by a fake weighted
projective space we mean any normal Q-factorial projective toric variety of Picard number
one, thus generalizing the well-known weighted projective spaces. Toric terminal Fano
threefolds have been classified by Kasprzyk [87]. We present results for the non-toric
case.

Theorem 1. Any non-toric terminal Fano general complete intersection threefold X =
Xi1N---NXs in a fake weighted projective space Z is a member of precisely one of the
following families, specified by the generator degree matriz ) and the relation degree
matriz @ having the classes of the torus invariant prime divisors [D;] € CI(Z) resp. the
classes [X;] € CI(Z) as its columns. We also list —KC, —K? and h°(—K),

No. Cl(Z) Q U -k -K* Rr(-K)
1 2 3 54 30
2 zZ m111 1] 3 2 24 15
3 4 1 4 5
4 Z x /3L [(1) c1q %} [g} @) 8 5
5 zZ 1111 2 4 2 16 11
6 Zx1/2Z [(1) s ﬂ [g} @) 8 5
7 4 3 27 16
2 zZ 11122 6 | 3/2 3
9 7 x 1)2L [(1) - ﬂ [g} (5{’) 27/2 8
10 ZxZ/3Z [[1) 1L ﬂ [g} G) 1/2 1
11 zZ 1111 3 6 1 2 4
12 zZ 11123 6 2 8 7
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Moreover, each of these constellations defines non-degenerate toric complete intersections
with at most terminal singularities in a fake weighted projective space.

Fano varieties with mild singularities are Mori dream spaces |19] in the sense that they
are normal projective varieties X with finitely generated divisor class group Cl(X) and
finitely generated Cox ring

R(X):= € TI(X,0WD)).

[D]eCI(X)

The Cox ring fixes a variety up to small quasimodifications. Together with an ample class
a Mori dream space can be reconstructed from its Cox ring using geometric invariant
theory. In particular, Fano varieties are entirely determined by their Cox ring. We refer
to [4] for more background and the combinatorial treatment of this topic.

It turns out that, under suitable assumptions on the ambient toric variety, the Cox
ring of a non-degenerate toric complete intersection is given by its defining equations in
homogeneous coordinates; see Corollary This applies in particular to the varieties
from Theorem [l

Corollary 2. For any non-toric terminal Fano general complete intersection threefold
X =X1N---NXs in a fake weighted projective space Z we have Cl(X) = Cl(Z) and the
Coz ring of X is given by

R(X) = K[Tu,...,Tstal/{91,---,9s)s
des(T) = [Di) € CI(Z).
deg(g;) = [X;] € Cl(Z),

where K[T1, ..., Ts+4] = R(Z) is the Cox ring of the fake weighted projective space Z and
J1s---,9s € R(Z) are the defining C1(Z)-homogeneous polynomials for Xy,..., Xs C Z.
Moreover, T, . .., Tsyq define a minimal system of prime generators for R(X).

We turn to smooth Fano varieties. Although there exists no comprehensive description of
smooth Fano fourfolds so far, there are plenty of results providing a clear direction. Let
us mention for example partial classifications in terms of the Fano index by Fujita [57],
Mukai [102] and Wisniewski [130] as well as detailed studies of the birational geometry
including strong bounds on the Picard number by Casagrande [30-34]. As a result
the uncharted territories mainly restrict to Fano fourfolds of index one. Tackling this
class in Picard number one Kiichle [92] and Przyjalkowski/Shramov [116] have classified
all smooth Fano fourfolds showing up as general complete intersection in a weighted
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projective space. In terms of Cox rings, here the hypersuface case consists precisely of the
smooth Fano fourfolds of Picard number one that have a hypersuface Cox ring, i.e., R(X)
admits Cl(X)-homogeneous generators such that the relation ideal is generated by a
single equation. From the geometric point of view, a variety with a hypersurface Cox
ring is an especially neatly embedded hypersurface of a toric variety |4, Sec. 3.2.5].

Note that the first examples of smooth Fano varieties with a hypersurface Cox ring show
up in dimension three; see [51, Thms. 4.1 and 4.5], where, based on the classifications
mentioned before, the Cox rings of the smooth Fano threefolds of Picard numbers one
and two have been computed. While there are no smooth del Pezzo surfaces with a
hypersurface Cox ring, the singular case provides many examples [48].

In Chapter [2], together with J. Hausen and A. Laface, we provide classification results
on smooth Fano fourfolds of Picard number two with a hypersurface Cox ring. While
other recent Cox ring based classifications of Fano varieties exploit special relations,
e.g. quadrics [55,71], trinomials [56] or quadronomials [63], we consider equations of a
suitably general form. This leads to the notion of general and spread hypersurface Cox
rings, which is made precise in Definitions and Note that the latter intends
to make the somewhat nebulous term general more concrete and verifiable for explicit
examples. Here we restrict to a non-technical statement of our result.

Theorem 3. FEvery smooth Fano fourfold X of Picard number two that has a general
hypersurface Cox ring is isomorphic to a member of one of the following families of
smooth Fano fourfolds, specified by their Cox ring generator degrees wi, ..., w7, the
relation degree p and the anticanonical class —K in C1(X) = Z2.

No. [wi,...,wr] v -k K* No. [wi, ..., wr] p K K
1 (1,1) (3,2) 432 18 (3,1) (1,1) 38
2 (2.1) (2.2) 256 19 [ 1308008 @y ey
3 [1 11100 0} (3,1) (1,2) 80 20 (1,1) (3,1) 432
4 0000111l (129) (3,1) 270 00
5 (2,2) (2,1) 112 21 [_1 00011 1} (3,1) (2,1) 113
6 3,2) (1,1) 26
(3,2) (1,1) 22 [1 11100 0} (2,2) (2,3) 272
7 (1,1) (2,2) 416 23 (0011 111] (33)(1,2) 51
8 [1 11100 —1} (1,2) (2,1) 163
9 000011 1] (271) (1,2) 224 24 [53}3???} (4,4) (1,2) 34
10 (2,2) (1,1) 52
1123000
11 [1 11100 72] (1,1) (1,2) 464 25 [0 02311 1} (6,6) (1,2) 17
12 [0o0o0o011 1] (19) (1,1) 98 10000
26 0011111 (272) (173) 216
13 [1 11100 0} (1,2) (3,2) 352
0001111
1 @3 21 & 27 a3ty @o a2 e
15 [1 N *1] (1,3) (2,1) 83
poorty s [1430008 @0y s
16 1111100] (2,1) (3,2) 352
17 0000111 (392)(21) 81 29 [1111000} (2,2) (2,2) 192
30 [0o0o0riilil (33) (1,1) 18
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No.  [wy,...,wr7] w -k Kk* No.  |wi,...,w7] n -k K*
s [bhaitty] w2 a2 s s (1] we a2 2
2 [1h03009 @wo ay 2 11308 @e @3 e
1121000 53 1111110] (2,0) (4,1) 431
34 . (22) (3,4) 378 1111120
35 biii1sy (33 (2,3 144 55 [71000011} (3,0) (4,1) 376
36 (4,4) (1,2) 20 ..
% [dasastt] o @ s
37 0111211 44 (2,3) 96 T
111300l 57 [71000011} (6,0) (2,1) 31
38 0111311 (676) (172) 10 ,111 300_
L - 1
N 112300l 58 ooo0o0o011| (60 (1,2) 16
39 0112311 (66) (2,3) 48 :1112300:
- 59 6,0) (2,2) 64
40 1111000 (2’2) (274)352 _0000011_ ( )( )
A1 0111111 3,3) (1,3) 99 r a1 0]
: L/ L) o [i35501Y] @0 62 w0
42 1111000] (2,4) (2,5) 304 - -
43 2Rl 36 (1L,3) 54 61 looooo11 (40)(22) 128
(111200 0] - -
44 01 12111] (4,4) (1,3) 66 62 (1)3(1)(1)3}(1) (4,0) (3,2) 160
(111200 0] - -
B lreariy] @8 03 5 8 [13s5s0Y G0 2w
(112300 0] - -
46 0123111] (6,6) (1,3) 33 64 (1)(1](1)(1)3}(1) (3,0) (3,2) 240
1123000 - q
o beieriy) G103 1 B [1is5s0Y @0 G2 s
(111110 0] - -
48 01 11211] (2,2) (3,5) 433 66 [ééééé}ﬂ (2,0) (4,2) 480
(111110 0] - .
49 022231 1] (3,6) (2,5) 145 67 éééééf? (2,0) (5,2) 624
50 loriatii] (24) (23) 144

Moreover, each of the items 1 to 67 defines a non-empty family of smooth Fano fourfolds
of Picard number two and any two members from different families are not isomorphic.

In the of this dissertation we pursue the Cox ring approach in the world
of Calabi-Yau varieties, meaning normal projective varieties X with trivial canonical
class Kx, at most canonical singularities and h*(X,Ox) =0 fori = 1,...,dim(X) — 1.
Calabi-Yau varieties, especially threefolds, are intensively studied from various perspec-
tives, also including diverse classification approaches such as [106-108},/128//129] or more
recently . Similar to Fano varieties, they are considered a building block in
the Minimal Model Program. Note that a smooth Calabi-Yau variety of dimension at
most three is a Mori dream space if and only if its cone of effective divisors is rational
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polyhedral [97]. More general, Mori dream spaces of Calabi-Yau type are completely char-
acterized via the singularities of their total coordinate space Spec R(X) [88]. Furthermore,
Calabi-Yau varieties are central to the interdisciplinary research field of mirror symmetry,
connecting algebraic geometry and theoretical physics. Work by i.a. Batyrev [12-14] in
this area emphasizes Calabi-Yau hypersurfaces and complete intersections in toric vari-
eties as a rich source of explicit examples. The interest from physics also includes several
large-scale classifications of Calabi-Yau varieties based on combinatorial approaches and
computer aid [36},60,(78,122]. Besides, the graded ring method mentioned above applies
to the study of Calabi-Yau varieties as well [22H24}/118].

From the view of classical algebraic geometry Calabi-Yau varieties can be seen as
generalization of K3 surfaces, which are precisely the smooth Calabi-Yau varieties of
dimension two. Cox rings of K3 surfaces have been studied in [3,8,/109], in particular
describing several classes of K3 surfaces with a hypersurface Cox ring. Our results concern
smooth Calabi-Yau threefolds with a general hypersurface Cox ring. By and large, the
case of Picard number one is covered by Oguiso’s classification of smooth Calabi-Yau
threefolds that are general complete intersections in some weighted projective space [105]
providing all smooth Calabi-Yau threefolds with a general hypersurface Cox ring and
freely generated Picard group. There is one additional family if one allows torsion in
the Picard group; see Proposition Note that Przyjalkowski and Shramov have
established explicit bounds for smooth Calabi-Yau weighted complete intersections in
any dimension [116].

The main result of Chapter [3]is the classification of all smooth Calabi-Yau threefolds of
Picard number two that have a general hypersurface Cox ring.

Theorem 4. FEvery smooth Calabi- Yau threefold X of Picard number two that has a
general hypersurface Cox ring is isomorphic to a member of one of the following families
of smooth Calabi- Yau threefolds, specified by their Cox ring generator degrees w1, .. .,ws,
the relation degree v and an ample class u in C1(X).

No. Cl(X) [wi, ..., ws] [T No. Cl(X) [wi, ..., ws] ©Loou
) 111000] [3] [1] ) 11100 —2] [1] [1]

! z 000111| [3] |1 6 z 00011 1| [3] |1
1110007 [3] [1 11100 —3] [0] [1]

2 Z*xZ/3Z |000111| |3] |1 7T Z*xZJ/3Z |00011 1| |3] |1
012012 |0] O] 01212 0] (0] (O]

) [111100] [4] [2] ) 11100 =3] [o] [1]

3 z 001111| [4] [1 8 z 00023 1| |6 |1
) [111300] [6] [2] ) 111100] [4] [1

4 z 001311 1 9 z —200011| |o] |1
) 11100 —1] [2] [1] ) 111300] [6] [1

o z {00011 1] 31 |1 10 z —20001 1 1
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Moreover, each of the items 1 to 30 defines a non-empty family of smooth Calabi-Yau
threefolds of Picard number two and any two members from different families are not

isomorphic.



CHAPTER
ONE

NON-DEGENERATE TORIC COMPLETE INTERSECTIONS

We classify the terminal Fano threefolds that are embedded into a fake weighted projective
space via a general system of Laurent polynomials. Varieties arising in this way were
originally studied by Khovanskii in the smooth case |[76] and provide useful tools for
constructing explicit examples of Mori dream spaces with prescribed properties. Our
key tool for the combinatorial treatment of singularities is the anticanonical complex,
which generalizes the Fano polytope from toric geometry and has been used to study
Fano varieties with torus action so far [17,/72]. In this chapter, we enlarge the area of
application to complete intersections in toric varieties defined by non-degenerate systems
of Laurent polynomials. The results of this chapter are published in the joint work [67].

1.1 Results

The idea behind anticanonical complexes is to extend the features of the Fano polytopes
from toric geometry to wider classes of varieties and thereby to provide combinatorial
tools for the treatment of the singularities of the minimal model programme. If X is any
Q-Gorenstein variety, i.e. some positive multiple of a canonical divisor Kx is Cartier,
then these singularities are defined in terms of discrepancies that means the coefficients
a(FE) of the exceptional divisors E showing up in the ramification formula for a resolution
m: X' — X of singularities:

Ky = mKx + Y a(E)E.

The variety X has at most terminal, canonical or log terminal singularities if always
a(E) > 0,a(E) > 0or a(E) > —1. We briefly look at the toric case. For an n-dimensional
toric Fano variety Z, one defines the Fano polytope to be the convex hull A C Q" over the
primitive ray generators of the describing fan of Z. For any toric resolution w: 2/ — Z
of singularities, the exceptional divisors E, are given by rays of the fan of Z’' and one
obtains the discrepancies as

CL(EQ) _ ||UQ” o 17

A

9



Chapter 1. Non-degenerate toric complete intersections

where v, € g is the shortest non-zero lattice vector and v; € p is the intersection point of
o and the boundary 0A. In particular, a toric Fano variety Z is always log terminal and
Z has at most terminal (canonical) singularities if and only if its corresponding Fano
polytope A contains no lattice points except the origin and its vertices (no lattice points
in its interior except the origin). This allows the use of lattice polytope methods in the
study of singular toric Fano varieties; see [21,85,[86] for work in this direction.

This principle has been extended by replacing the Fano polytope with a suitable
polyhedral complex, named anticanonical complex in the setting of varieties with a torus
action of complexity one, which encodes discrepancies in full analogy to the toric Fano
polytope; see [17]. The more recent work [72] provides an existence result of anticanonical
complexes for torus actions of higher complexity subject to conditions on a rational
quotient. Applications to the study of singularities and Fano varieties can be found
in [7,28,73].

In the present chapter, we provide an anticanonical complex for subvarieties of toric
varieties arising from non-degenerate systems of Laurent polynomials in the sense of
Khovanskii [76]; see also Definition m Even in the hypersurface case, the subvarieties
obtained this way form an interesting example class of varieties which is actively studied
by several authors; see for instance [13,[53}81].

We briefly indicate the setting; see Section for the details. Let F' = (f1,..., fs) be
a non-degenerate system of Laurent polynomials in n variables and let ¥ be any fan in
Z" refining the normal fan of the Minkowski sum Bj + ... 4+ B, of the Newton polytopes
Bj of fj. Moreover, denote by Z the toric variety associated with ¥. We are interested
in the non-degenerate toric complete intersection defined by F' and X, that means the
variety

X = XiNn...nX; CZ,

where X; C Z is the closure of V(f;) C T". By Theorem the variety X C 7 is
a locally complete intersection, equals the closure of V(F) C T" and, in the Cox ring
of Z, the defining homogeneous equations of X generate a complete intersection ideal.
Theorem [T.4.4) shows that the union Zx C Z of all torus orbits intersecting X is open in
Z and thus the corresponding cones form a subfan X x C ¥. Moreover, the support of
Y x equals the tropical variety of V(F') C T".

We come to the first main result of this chapter. Suppose that Zx is Q-Gorenstein.
Then, for every ¢ € Yx, we have a linear form u, € Q™ evaluating to —1 on every
primitive ray generator v,, where g is an extremal ray of o. We set

A(o) == {veao; 0> (us,v) > -1} C o.

Theorem 1.1.1. Let X C Z be an irreducible non-degenerate toric complete intersection.
Then X C Z admits ambient toric resolutions. Moreover, if Zx is Q-Gorenstein, then X
is so and X has an anticanonical complex

Ax = U A(o).

oEX x

10



1.1. Results

That means that for all ambient toric modifications Z' — Z the discrepancy of any
exceptional divisor Ex: C X' is given in terms of the defining ray o € ¥ of its host
Ez C Z', the primitive generator v, € o and the intersection point vé of 0 and the
boundary 0Ax as

[0l
a(EX/) = —1
oAl

Observe that in the above setting, each vertex of Ax is a primitive ray generator
of the fan . Thus, in the non-degenerate complete toric intersection case, all vertices
of the anticanonical complex are integral vectors; this does definitely not hold in other
situations, see [17,72]. The following consequence of Theorem yields in particular
Bertini type statements on terminal and canonical singularities.

Corollary 1.1.2. Consider a subvariety X C Z as in Theorem and the associated
anticanonical complex Ax.

(i) X has at most log-terminal singularities.
(ii) X has at most terminal singularities if and only if Ax contains no lattice points
except the origin and its vertices.
(iii) X has at most canonical singularities if and only if Ax contains no interior lattice
points except the origin.

Moreover, X has at most terminal (canonical) singularities if and only if its ambient
toric variety Zx has at most terminal (canonical) singularities.

As an application of the first main result, we classify the general non-toric terminal
Fano non-degenerate complete intersection threefolds sitting in fake weighted projective
spaces; for the meaning of “general” in this context, see Definition [I.4.12] According
to [76], the general toric complete intersection is non-degenerate. Moreover, under
suitable assumptions on the ambient toric variety, we obtain the divisor class group and
the Cox ring for free in the general case; see Corollary This, by the way, allows
us to construct many Mori dream spaces with prescribed properties; see for instance
Example [1.4.16]

We turn to the second main result. Recall that a fake weighted projective space is
an n-dimensional toric variety arising from a complete fan with n 4+ 1 rays. Any fake
weighted projective space Z is uniquely determined up to isomorphism by its degree
matrix @), having as its columns the divisor classes [D;] € Cl(Z) of the toric prime divisors
Dl, .. 'aDn—i-l of Z.

Theorem 1.1.3. Any non-toric terminal Fano general complete intersection threefold
X =X1N...NX;s in a fake weighted projective space Z is a member of precisely one of
the following families, specified by the generator degree matriz Q@ and the relation degree
matriz p with respect to the Cl(Z)-grading. We also list —IC, —K?3 and h°(—K),

11
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27 A [1 23 10 15] 30 1 1/30 1
28 A 116 14 21] 42 1 1/42 2
29 [2 2] 2 32 19
111111
30 z [ ] [2 3] 1 6 6
111111 [2 2] 2
32 7 111222 [4 4] 1 2 3
11122 2] (4 4] 1
11122 2] [4 4] 1
11122 2] (4 4] 1
35 Zx(Z/27)? 001011 00 1 1/2 0
01010 1] 0 0] 1
36 A 122233 [6 6] 1 1/2 1
37 A 112333 [6 6] 1 2/3 2
38 A 12233 3 [6 6] 2 8/3 3
39 Z 111111 [222 1 8 7
111111 1] [2 2 2] 1
0 ZxZRL - 5550111 |00 0] (1) 4 3
11 11111] [22 2] 1
41 Zx(z/2Z)*> (0000111 000 1 2 1
0011001 (000 \I
1111111 [22 2] 1
3 0000111 000 1
42 Zx(Z2Z)" 15511001 |0o00| |1 1 0
010101 0] 10 0 0] 1

Moreover, each of these constellations defines non-degenerate toric complete intersections
with at most terminal singularities in a fake weighted projective space. In addition, for
the divisor class groups, we have CI(X) = Cl(Z) and the Coz ring of X is given by

where K[T7, . ..

deg

X) = K[Tl,...,TS+4]/<gl,...,gs>,
) = [D]eqz).
deg(g;) = [X;] € Cl(2),

yTst4] = R(Z) is the Cox ring of the fake weighted projective space Z and

J1s---,9s € R(Z) are the defining C1(Z)-homogeneous polynomials for Xy,..., Xs C Z.

Moreover, 11, . ..

, Tst4 define a minimal system of prime generators for R(X).

13



Chapter 1. Non-degenerate toric complete intersections

We note some observations around this classification and link to the existing literature.

Remark 1.1.4. The toric terminal Fano complete intersection threefolds in a fake
weighted projective space are precisely the three-dimensional terminal fake weighted
projective spaces; up to isomorphy, there are eight of them [87].

Recall that the Fano index of X is the maximal positive integer ¢x such that I = ¢x D
with a Weil divisor D on X.

Remark 1.1.5. For the X of Theorem with Cl(Z) torsion free, we have gx = —K,
regarding —K € Cl(Z) = Z as an integer. In the remaining cases, gx is given by

No. 4 6 9 10 17 22 31 33 34 35 40 41 42
¢x 2 13 1 1 1 1 1 1 1 1 1 1

Remark 1.1.6. Embeddings into weighted projective spaces have been intensely studied
by several authors. Here is how Theorem [I.1.3| relates to well-known classifications in
this case.
(i) Numbers 1, 2, 3, 5, 11, 12, 29, 30 and 39 from Theorem are smooth and
thus appear in the classification of smooth Fano threefolds of Picard number
one [84, § 12.2].
(ii) Every variety X from Theorem with Fano index gx = 1 defined by at most
two equations in a weighted projective space Z occurs in [80, Lists 16.6, 16.7].
(iii) The items from [80, Lists 16.6, 16.7] which don’t show up in Theorem are not
realizable as general complete intersections in a fake weighted projective space.

Recall that the Gorenstein index of a Q-Gorenstein variety X is the minimal positive
integer 1x such that 1x Kx is a Cartier divisor. So, 1x = 1 means that X is Gorenstein.

Remark 1.1.7. The Gorenstein varieties in Theorem [1.1.3| are precisely the smooth
ones. This is a direct application of Corollary showing that Zx is the union of all
torus orbits of dimension at least three and Proposition [1.4.9] which ensures that X and
Zx have the same Gorenstein index.

Remark 1.1.8. The anticanonical self intersection —k? together with the first coefficients
of the Hilbert series of X from Theorem with Cl(Z) having torsion occur in the
Graded Ring Database [5,[29]. Here are the corresponding IDs:

No. 4 6 9 10 17 22 31 33 34 35 40 41 42

ID 40245 23386 41176 2122 3508 1249 32755 4231 5720 237 14885 4733 258

We observe that Numbers 17 and 36 from Theorem [I.1.3] both realise the numerical data
from ID 3508 in the Graded Ring Database but the general members of the respective
families are non-isomorphic.

Remark 1.1.9. For Numbers 35 and 42 from Theorem the linear system | — Kx]|
is empty. In particular these Fano threefolds X do not admit an elephant, that means a
member of | — Kx| with at most canonical singularities. There appear to be only few
known examples for this phenomenon, compare [80, 16.7] and 120, Sec. 4].

14
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Remark 1.1.10. Numbers 4, 6, 9, 10, 22, 33, 34, 35, 40, 41 and 42 from Theorem
do not show up in any reference known to the authors apart from the candidate list for
terminal Fano threefolds provided by the Graded Ring Database.

1.2 Background on toric varieties

In this section, we gather the necessary concepts and results from toric geometry and
thereby fix our notation. We briefly touch some of the fundamental definitions but
nevertheless assume the reader to be familiar with the foundations of the theory of toric
varieties. We refer to [43]46,59] as introductory texts.

Our ground field K is algebraically closed and of characteristic zero. We write T" for
the standard n-torus, that means the n-fold direct product of the multiplicative group K*.
By a torus we mean an affine algebraic group T isomorphic to some T™. A toric variety
is a normal algebraic variety Z containing a torus T as a dense open subset such that
the multiplication on T extends to an action of T on Z.

Toric varieties are in covariant categorical equivalence with lattice fans. In this
context, a lattice is a free Z-module of finite dimension. Moreover, a quasifan (a fan) in
a lattice N is a finite collection ¥ of (pointed) convex polyhedral cones o in the rational
vector space Ng = Q ®z N such that given o € ¥, we have 7 € X for all faces 7 < o and
for any two 0,0’ € X, the intersection o N o’ is a face of both, o and ¢’. The toric variety
Z and its acting torus T associated with a fan ¥ in IV are constructed as follows:

T := SpecK[M], 7 = U Ze, Z, = SpecK[o¥ N M],
oEX

where M is the dual lattice of N and ¥ C My is the dual cone of ¢ C Ng. The inclusion
T C Z of the acting torus is given by the inclusion of semigroup algebras arising from
the inclusions ¥ N M C M of additive semigroups. In practice, we will mostly deal
with N = Z™ = M, where Z" is identified with its dual via the standard bilinear form
(u,v) = ujvy + ... + upvy,. In this setting, we have Ng = Q" = Mg. Moreover, given
a lattice homomorphism F': N — N, we write as well F': Ng — N for the associated
vector space homomorphism.

We briefly recall Cox’s quotient construction p: Z — Z of a toric variety Z given by
a fan ¥ in Z" from [44]. We denote by vy, ...,v, € Z" the primitive generators of ¥, that
means the shortest non-zero integral vectors of the rays o1, ..., 0, € 3. We will always
assume that vy, ..., v, span Q™ as a vector space; geometrically this means that Z has
no torus factor. By D; C Z we denote the toric prime divisor corresponding to g; € X..
Throughout the chapter, we will make free use of the notation introduced around Cox’s
quotient presentation.

Construction 1.2.1. Let X be a fan in Z™ and Z the associated toric variety. Consider
the linear map P: Z" — Z" sending the ¢-th canonical basis vector e; € Z" to the i-th
primitive generator v; € Z™" of 3, denote by 6 = QL the positive orthant and define a
fan ¥ in Z" by

S = {6 < 0; P(&y) C o for some o € X}
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Chapter 1. Non-degenerate toric complete intersections

As 3 consists of faces of the orthant 4, the toric variety Z defined by 3 is an open
T"-invariant subset of Z = K". We also regard the linear map P: Z" — Z™ as an n X r
matrix P = (p;;) and then speak about the generator matrix of ¥. The generator matrix
P defines a homomorphism of tori:

p: " — T", tos (g P,

This homomorphism extends to a morphism p: Z — Z of toric varieties, which in fact
is a good quotient for the action of the quasitorus H = ker(p) on Z. Let P* be the
transpose of P, set K = Z"/im(P*) and let Q: Z" — K be the projection. Then
deg(T;) == Q(e;) € K defines a K-graded polynomial ring

R(Z) = B R(Z)w = P K[TL,...,T1]w = K[T1,...,T,].
weK weK

There is an isomorphism K — Cl(Z) from the grading group K onto the divisor class
group Cl(Z) sending Q(e;) € K to the class [D;] € Cl(Z) of the toric prime divisor
D; C Z defined by the ray o; through v;. Moreover, the K-graded polynomial ring R(Z)
is the Cox ring of Z; see [4}, Sec. 2.1.3].

We now explain the correspondence between effective Weil divisors on a toric variety Z
and the K-homogeneous elements in the polynomial ring R(Z). For any variety X, we
denote by X;ee € X the open subset of its smooth points and by WDiv(X) its group of
Weil divisors. We need the following pull back construction of Weil divisors with respect
to morphisms ¢: X — Y: Given a Weil divisor D having ¢(X) not inside its support,
restrict D to a Cartier divisor on Yeg, apply the usual pull back and turn the result into
a Weil divisor on X by replacing its prime components with their closures in X.

Definition 1.2.2. Consider a toric variety Z and its quotient presentation p: Z = Z.
A describing polynomial of an effective divisor D € WDiv(Z) is a K-homogeneous
polynomial g € R(Z) with div(g) = p*D € WDiv(Z).

Example 1.2.3. An effective toric divisor a1.D1 + ... + a,D, on Z has the monomial
T/ - T € R(Z) as a describing polynomial. Moreover, in K = C1(X), we have
deg(Ty" ---T2) = Qlar,...,a;) = [a1D1+ ...+ a,Dy].

We list the basic properties of describing polynomials, which in fact hold in the much
more general framework of Cox rings; see |4, Prop. 1.6.2.1 and Cor 1.6.4.6].

Proposition 1.2.4. Let Z be a toric variety with quotient presentation p: Z = Z as in
Construction and let D be any effective Weil divisor on Z.
(i) There exist describing polynomials for D and any two of them differ by a non-zero
scalar factor.
(ii) If g is a describing polynomial for D, then, identifying K and C1(Z) under the
isomorphism presented in Construction |1.2.1], we have

p«(div(g)) = D,  deg(g) = [D] € Cl(Z) = K.
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1.2. Background on toric varieties

(iii) For every K-homogeneous element g € R(Z), the divisor p.(div(g)) is effective and
has g as a describing polynomial.

Let us see how base points of effective divisors on toric varieties are detected in
terms of fans and homogeneous polynomials. Recall that each cone ¢ € ¥ defines a
distinguished point z, € Z and the toric variety Z is the disjoint union over the orbits
T™ - z,, where o € X.

Proposition 1.2.5. Let Z be the toric variety arising from a fan ¥ in Z™ and D an
effective Weil divisor on Z. Then the base locus of D is T"™-invariant. Moreover, a point
Zo € Z 1s not a base point of D if and only if D is linearly equivalent to an effective toric
divisor a1D1 + - - - 4+ ar D, with a; = 0 whenever v; € o.

In the later construction and study of non-degenerate subvarieties of toric varieties,
we make essential use of the normal fan of a lattice polytope and the correspondence
between polytopes and divisors for toric varieties. Let us briefly recall the necessary
background and notation.

Reminder 1.2.6. Consider a polytope B C Q". We write B’ < B for the faces of B.
One obtains a quasifan ¥(B) in Z" by

¥(B) = {o(B'); B' < B}, o(B') = cone(u —u'; ue B, u € B")Y,

called the normal fan of B. The assignment B’ — o(B’) sets up an inclusion-reversing
bijection between the faces of B and the cones of 3(B).

Note the slight abuse of notation: the normal fan ¥(B) is a fan in the strict sense only
if the polytope B is of full dimension n, otherwise ¥(B) is a quasifan. Given quasifans 3
and Y in Z", we speak of a refinement ¥’ — 3 if ¥ and ¥’ have the same support and
every cone of ¥/ is contained in a cone of X.

Reminder 1.2.7. Let B = B;+- - -+ B be the Minkowski sum of polytopes By, ..., Bs C
Q". Each face B’ < B has a unique presentation

B = B{+-- + B., B} < By,...,B. < Bs.

The normal fan ¥(B) of B is the coarsest common refinement of the normal fans 3 (B;)
of the B;. The cones of X(B) are given as

o(B') = o(B))N---No(BY),

where B x B and B’ = B + ... + B! is the above decomposition. In particular,
o(B}) € 3(B;) is the minimal cone containing o(B’) € X(B’).

Reminder 1.2.8. Let B C Q™ be an n-dimensional polytope with integral vertices and

let ¥ be any complete fan in Z" with generator matrix P = [v1,...,v,]. Define a vector
a € 7" by
a = (ay,...,a), a; = —gé%l(u,vﬁ.
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Observe that the a; are indeed integers, because B has integral vertices. For u € B set
a(u) == P*u+ a and let B(u) < B be the minimal face containing u. Then the entries of
the vector a(u) € Q" satisfy

a(u); >0, fori=1,...,r, a(u); =0 < v; € o(B(u)).

Proposition 1.2.9. Let B C Q" be a lattice polytope and ¥ any complete fan in Z™ with
generator matriz P = [v,...,v.|. Witha € Z" from Reminder we define a divisor
on the toric variety Z arising from % by

D = aiDi+---+a.D, € WDiv(Z).

Moreover, for every vector u € BNZ", we have a(u) € Z" as in Remz’nder and
obtain effective divisors D(u) on Z, all of the same class as D by

D(u) = a(u)1D1+---+a(u),D, € WDiv(Z).

If ¥ refines the normal fan 3(B), then D and all D(u) are base point free. If ¥ equals
the normal fan X(B), then the divisors D and D(u) are even ample.

1.3 Laurent systems and their Newton polytopes

We consider systems F' of Laurent polynomials in n variables. Any such system F' defines
a Newton polytope B in Q™. The objects of interest are completions X C Z of the zero
set V(F) C T" in the toric varieties Z associated with refinements of the normal fan
of B. In Proposition we interpret Khovanskii’s non-degeneracy condition 76| in
terms of Cox’s quotient presentation of Z. Theorem [I.3.12] gathers complete intersection
properties of the embedded varieties X C Z given by non-degenerate systems of Laurent
polynomials.

We begin with recalling the basic notions around Laurent polynomials and Newton
polytopes. Laurent polynomials are the elements of the Laurent polynomial algebra for
which we will use the short notation

LP(n) = K[TFY,... TH).

Definition 1.3.1. Take any Laurent polynomial f =" c7» a,T" € LP(n). The Newton
polytope of f is
B(f) = conv(v € Z"; o, #0) C Q™.

Given a face B < B(f) of the Newton polytope, the associated face polynomial is defined
as

fB = Y, aT” € LP(n).

veBNZ"
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Construction 1.3.2. Consider a Laurent polynomial f € LP(n) and a fan ¥ in Z". The
pullback of f with respect to the homomorphism p: T" — T™ defined by the generator
matrix P = (p;;) of ¥ has a unique presentation as

P (T, T = f(TPY...TPr TP TPery = TVg(Ty, ..., T))

with a Laurent monomial 7% = Ty - - - T € LP(r) and a K-homogeneous polynomial
g € K[Ty,...,T,] being coprime to each of the variables T1,...,T,. We call g the
>:-homogenization of f.

Lemma 1.3.3. Consider a Laurent polynomial f € LP(n) with Newton polytope B(f)
and a fan ¥ in Z™ with generator matriz P = [v1,...,v,;] and associated toric variety Z.
Let a = (a1,...,ar) be as in Reminder[1.2.§ and D € WDiv(Z) the push forward of
div(f) € WDiv(T™).
(i) The X-homogenization g of f is a describing polynomial of D and with the homo-
morphism p: T — T™ given by P, we have

g = T%"f € R(Z), T = T ...T%.

(ii) The Newton polytope of g equals the image of the Newton polytope of f under the
injection Q" — Q" sending u to a(u) := P*u+ a, in other words

B(g) = P'B(f) +a = {a(u); u e B(f)}.

(iii) Consider a face B < B(f) and the associated face polynomial fg. Then the
corresponding face P*B + a < B(g) has the face polynomial

. i ) 0 v €o(B),
* — T,...,T 5 T =
gP*B+a g( 1 r) i {Tz UZ‘QO'(B).

Moreover, for each monomial TV of g — gp=p+a there is a proper face o < o(B)
such that every variable T; with v; € o(B) \ o divides T" .

(iv) The degree deg(g) € K of the ¥-homogenization g of f and the divisor class
[D] € CI(Z) of D € WDiv(Z) are given by

deg(g) = Q(a) = [a1D1+...4+a.D,] = [D].

(v) If ¥ is a refinement of the normal fan of B(f), then the divisor D € WDiv(Z) is
base point free on Z.

Proof. Assertions (i) to (iii) are direct consequences of Reminder Assertion (iv) is
clear by Proposition and (v) follows from Proposition [1.2.9] O

Remark 1.3.4. Situation as in Lemma If CI(Z) is torsion-free, then every
polynomial ¢’ with B(¢’) = B(g) = B,, is homogeneous of degree p = deg(g) = Q(a).
This becomes false when CI(Z) is not torsion-free. In this case there can be interior points
of B, which are not of the form P*u-+a where u € B. Hence one finds a non-homogeneous
polynomial having B, as its Newton polytope.
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Chapter 1. Non-degenerate toric complete intersections

Example 1.3.5. Consider B = conv((0, 1), (0,2),(3,0)) € Q2. The normal fan ¥ of B
has the generator matrix P and the associated toric variety is the fake weighted projective
plane Z with Cl(Z) = Z x Z/3Z and degree matrix @ as follows

2 11 111
P:[—3 3 0]’ Q:l(‘) 1 Q]’ a=(6,-3,0).

We compare the lattice polytopes B and B,, = P*B + a. First observe
p=0Q(a)=(3,0)€CLZ),  By=conv((3,0,0),(0,3,0),(0,0,3)) C Q*.

It turns out that B contains four lattice points whereas B,, contains ten lattice points.
For convenience we list them explicitly,

BNZ*={(0,1),(0,2),(3,0),(1,1)},
B,NZ*={(3,0,0),(0,3,0),(0,0,3), (1,1,1),(0,2,1),
(2,1,0),(1,2,0), (1,0,2),(0,1,2,),(2,0,1)}.

The first four points listed in B, N 73 are precisely those stemming from lattice points
in B. In other words, these are precisely the exponent vectors of monomials of Cl(Z)-
degree = (3,0). The remaining lattice points in B,, correspond to monomials having 3
as Z-part of their Cl(Z)-degree as well yet with a torsion component different from 0.

Here are the basic notions around systems of Laurent polynomials; observe that
item (iii) is precisely Khovanskii’s non-degeneracy condition stated in 76} Sec. 2.1].

Definition 1.3.6. Let f1,..., fs € LP(n) be Laurent polynomials with Newton polytopes
B; = B(f;) € Q™
(i) We speak of F' = (f1,..., fs) as a system in LP(n) and define the Newton polytope
of F' to be the Minkowski sum

B = B(F) = Bi+...+Bs C Q"

(ii) The face system F' of F associated with a face B’ < B of the Newton polytope is
the Laurent system

F/ = FB/ = (f{""?fé)?

where f; = fB; are the face polynomials associated with the faces B} < B; from
the presentation B’ = B + ...+ BL.

(iii) We call F' non-degenerate if for every face B’ < B, the differential DF’(z) is of
rank s for all z € V(F') C T™.

(iv) Let X be a fan in Z". The X-homogenization of F = (f1,...,fs) is the system
G = (91,.--,9s), where g; is the ¥-homogenization of f;.

(v) By an F'-fan we mean a fan ¥ in Z" that refines the normal fan ¥(B) of the Newton
polytope B of F.
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Note that Condition (iii) is fullfilled for suitably general choices of F'; see also
Section Even more, it is a concrete condition in the sense that for every explicitly
given Laurent system F', we can explicitly check non-degeneracy.

Remark 1.3.7. Every system in LP(n) can be turned into a system of polynomials by
multiplication with a suitable monomial without affecting non-degeneracy. Moreover, a
system F' = (fi,..., fs) of polynomials is non-degenerate if and only if for every face
B’ X B the associated face system F' = (fi,..., fl) satisfies

T,---T, € \/<f{,...,fg,m’1,...,m:i>

where mf, ..., m/, denote the (s x s)-minors of DF’. This condition can be checked by
Grobner basis computations for instance.

Construction 1.3.8. Consider a system F' = (f1,..., fs) in LP(n), a fan ¥ in Z™ and
the ¥-homogenization G of F. Define subvarieties

X =V(G)=V(g,...,95) C Z, X=V(fi)n...nV(fs) C Z,

where Z is the toric variety associated with ¥ and Z = K". The quotient presentation
p: Z — Z gives rise to a commutative diagram

X c Z
JH |p p|JH
X ¢ Z

where X == XN Z C 7 as well as X C Z are closed subvarieties and p: X > Xisa
good quotient for the induced H-action on X. In particular, X = p(X).

In our study of X, X and X, the decompositions induced from the respective ambient
toric orbit decompositions will play an important role. We work with distinguished points
2y € Z. In terms of Cox’s quotient presentation, z, € Z becomes explicit as z, = p(zs),

where 6 = cone(e;; v; € 0) € 3 and the coordinates of the distinguished point z5; € Z
are zs; = 0 if v; € 0 and 25 ; = 1 otherwise.

Construction 1.3.9. Consider a system F = (fi,..., fs) in LP(n), a fan ¥ in Z™ and
the ¥-homogenization G = (¢1,. .., gs) of F'. For every cone o € X define

0 wvi€o
¢ = g(17,....T7), I = o
g] g]( 1 r) % {Tz w%o.

This gives us a system G? = (g7,...,97) of polynomials in K[T};; v; ¢ o]. In the
coordinate subspace Z(0) = V(1;; v; € o) of K", we have

X(0) = XNZ(o) = V(G°) C Z(o).
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Note that Z(o) equals the closure of the toric orbit T" - z5 C K". Consider as well the
toric orbit T" - z, C Z and define locally closed subsets

X(o) = XNT" -2 C X, X(o) = XNnT"-2, C X.

Then we have X (o) = p(X(0)) and X C Z is the disjoint union of the subsets X (o),
where o € ¥.

The key step for our investigation of varieties X C Z defined by Laurent systems is to
interpret the non-degeneracy condition of a system F' in terms of its >-homogenization G.

Proposition 1.3.10. Let F' = (f1,..., fs) be a non-degenerate system in LP(n) and
let 3 be an F-fan in Z".
(i) The differential DG(Z) of the X-homogenization G of F is of full rank s at every
point Z € X.
(ii) For each cone o € X, the differential DG?(Z) of the system G is of full rank s at
every point 2 € X (o).
(iii) For every o € ¥, the scheme X (o) := X NI - 24, provided it is non-empty, is a
closed subvariety of pure codimension s in T" - z5.

Proof. We care about (i) and on the way also prove (ii). Since g1,...,g9s are H-
homogeneous, the set of points 2 € Z with DG(2) of rank strictly less than s is H-
invariant and closed in Z. Thus, as p: Z > Zisa good quotient for the H-action, it
suffices to show that for the points 2 € X with a closed H-orbit in Z the differential
DG(2) is of rank s. That means that we only have to deal with the points £ € X NI -
where o € 3.

So, consider a point 2 € X N'T" - z, let o' € X(B) be the minimal cone with o C ¢’
and let B’ < B be the face corresponding to ¢’ € 3(B). Then we have the Minkowski
decomposition

From Reminder we infer that o, = o(Bj) is the minimal cone of the normal fan %(B;)
with o C o7 Let F” be the face system of I’ given by B’ C B. Define G' = (g1, - ., g,),
where gé- is the face polynomial of g; defined by

P*Bj+a; < P*Bj+a; = B(g;), g; = T%p*f;.

According to Lemma m (iii), the polynomials g only depend on the variables T; with
v; ¢ o(B}). Moreover, we have

g_; :g]7 j:17"‘787

because due to the minimality of o, = o(B) each monomial of g; — ¢/ is a multiple of
some T; with v; € 0. Thus, G’ = G?. Using the fact that 2; = 0 if and only if v; € o, we
observe

97(2) =gj(2) =0, j=1,...,s, rank DG (2) =s = rank DG(2) =
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1.3. Laurent systems and their Newton polytopes

This reduces the proof of (i) to showing that DG?(Z2) is of full rank s, and the latter
proves (ii). Choose zZ € T" such that z; = 2; for all i with v; ¢ 0. Using again that the
polynomials ¢/ only depend on T; with v; & o, we see

97(2)=g7(2) =0, j=1,...,s, DG (2) = DG (2).

We conclude that F'(p(2)) = 0 holds. Thus, the non-degeneracy condition on the Laurent
system F ensures that DF'(p(2)) is of full rank s. Moreover, we have

DG(2) = DG7(3) = (T™,...,T%)(3) - DF'(p(2)) o Dp().

Since T% (2) # 0 holds for 7 = 1,...,s and p: T" — T™ is a submersion, we finally obtain
that DG7(2) is of full rank s, which proves (i) and (ii). Assertion (iii) follows from (ii)
and the Jacobian criterion for complete intersections. O

Remark 1.3.11. Given a system F' in LP(n) and an F-fan ¥ in Z", let G be the X-ho-
mogenization of F'. The proof of Proposition shows that the following statements
are equivalent:
(i) F is non-degenerate,
(ii) all DG (2), where o € ¥ and 2 € X (o), are of full rank,
(iii) all DG (%), where 0,0’ € ¥ with o < ¢’ and 2 € X(0”), are of full rank.

A first application gathers complete intersection properties for the varieties defined
by a non-degenerate Laurent system. Note that the codimension condition imposed on
X\ X in the fourth assertion below allows computational verification for explicitly given
systems of Laurent polynomials.

Theorem 1.3.12. Consider a non-degenerate system F = (fi,...,fs) in LP(n), an
F-fan ¥ in Z™ and the X-homogenization G = (g1,...,9s) of F.
(i) The variety X = V(G) in Z = K" is a complete intersection of pure dimension
r — s with vanishing ideal

[X) = (g1,--r00) C K[T1,.... T,

(ii) With the zero sets V(F) C T™ and V(G) C K" and the notation of Construc-
tion [1.3.8, we have

A

X =V(@)NT C Z, X =V(F) C Z

In particular, the irreducible components of X C Z are the closures of the irreducible
components of V(F) C T".

(iii) The closed hypersurfaces X; = V(f;) C Z, where j = 1,...,s, represent X as a
scheme-theoretic locally complete intersection

X =Xin...nX, € Z.

(iv) If X \ X is of codimension at least two in X, then X is irreducible and normal
and, moreover, X is irreducible.
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Proof. Assertion (i) is clear by Proposition (i) and the Jacobian criterion for
complete intersections. For (ii), we infer from Proposition (ii) that, provided it is
non-empty, the intersection X N'T" - z5 is of dimension r — s — dim(é). In particular no
irreducible component of V(G) is contained in X \ T”. The assertions follow.

We prove (iii). Each f; defines a divisor on Z having support X; and according to
Lemma m (v) this divisor is base point free on Z. Thus, for every o € X, we find a
monomial h,; of the same K-degree as g; without zeroes on the affine chart Z;C Z
defined by 6 € 3. We conclude that the invariant functions 91/hos ..., 9s/he s generate
the vanishing ideal of X on the affine toric chart Z, C Z.

We turn to (iv). Proposition and the assumption that X \ X is of codimension
at least two in X allow us to apply Serre’s criterion and we obtain that X is normal.
In order to see that X is irreducible, note that H acts on Z with attractive fixed point

0 € Z. This implies 0 € X, Hence X is connected and thus, by normality, irreducible. [

Remark 1.3.13. If in the setting of Theorem [1.3.12} the dimension of Z \ Z is at most
r — s — 2, for instance if Z is a fake weighted projective space, then the assumption of
Statement (iv) is satisfied.

The statements (i) and (iv) of Theorem [1.3.12) extend in the following way to the
pieces cut out from X by the closures of the T"-orbits of Z = K".

Proposition 1.3.14. Consider a non-degenerate system F = (f1,..., fs) in LP(n), an
F-fan ¥ in 7, the X-homogenization G = (g1,...,9s) of F', a cone 0 € ¥ and

Z(o) = V(Ti; v € 0), X(o) = XnZ(o).

If X(o)\ X (0) is of codimension least one in X(0), then X (o) = XNZ(0) is a subvariety
of pure codimension s in Z(o) with vanishing ideal

I(X(U)) = <gir7' : -;g?> c K[Ev Vi Q/ U]‘

If X(0) \ X is of codimension at least two in X (o), then the variety X (o) is irreducible
and normal.

Proof. If X (0)\ X (o) is of codimension least one in X (¢), then Proposition and the
Jacobian criterion ensure that X (o) is a complete intersection in K" with the equations
gi=0,j=1,...,s,and T; = 0, v; € 0. This gives the first statement. If X (o) \X(U) is
of codimension at least two in X (o), then we obtain irreducibility and normality as in
the proof of (iv) of Theorem replacing X with X (o). O

1.4 Non-degenerate toric complete intersections

We take a closer look at the geometry of the varieties X C Z arising from non-degenerate
Laurent systems. The main statements of the section are Theorem showing that
X C Z is always quasismooth and Theorem [I.4.4] giving details on how X sits inside Z.
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1.4. Non-degenerate toric complete intersections

Using these, we can prove Theorem which describes the anticanonical complex.
First we give a name to our varieties X C Z, motivated by Theorem[I.4.4] Finally, we see
that for a general choice of the defining Laurent system and an easy-to-check assumption
on the ambient toric variety Z, we obtain divisor class group and Cox ring of X for free,

see Corollary [[.4.13]

Definition 1.4.1. By a non-degenerate toric complete intersection we mean a variety
X C Z defined by a non-degenerate system F' in LP(n) and an F-fan 3 in Z".

An immediate but important property of non-degenerate toric complete intersections
is quasismoothness; see also [2] for further results in this direction. The second statement
in the theorem below is Khovanskii’s resolution of singularities |76, Thm. 2.2]. Observe
that our proof works without any ingredients from the theory of holomorphic functions.

Theorem 1.4.2. Let F' be a non-degenerate system in LP(n) and ¥ an F-fan in Z".
Then the variety X is normal and quasismooth in the sense that X is smooth. Moreover,
X N Zeg € Xreg. In particular, if Z is smooth, then X is smooth.

Proof. By Proposition (i), the variety X is smooth. As smooth varieties are
normal and the good quotient p: X=X preserves normality, we see that X is normal.
Moreover, if Z is smooth, then the quasitorus H = ker(p) acts freely on p~!(Zeg), hence
on X N p‘l(Zreg) and thus the quotient map p: X 5 X preserves smoothness over
X N Zyeg. O

The next aim is to provide details on the position of X inside the toric variety Z.
The considerations elaborate the transversality statement on X and the torus orbits of Z
made in [76] for the smooth case.

Definition 1.4.3. Let Z be the toric variety arising from a fan > in Z"™. Given a closed
subvariety X C Z, we set

Yx = {o€; X(o)# 0}, X(o) = XNT" - z,.

Theorem 1.4.4. Consider a non-degenerate system F = (fi,...,fs) in LP(n), an
F-fan X in Z™ and the associated toric complete intersection X C Z.
(i) For every o € Yx, the scheme X (o) NT" - z, is a closed subvariety of pure
codimension s in T" - z,.
(ii) The subset ¥x C X is a subfan and the subset Zx = T" - X C Z is an open toric
subvariety.
(iii) All mazimal cones of X x are of dimension n — s and the support of ¥x equals the
tropical variety of V(F) C T™.

Proof. We prove (i). Given a cone o € Y x consider & € $ and the corresponding affine
toric charts and the restricted quotient map:

XNnZ; = X Zs
”l lp
Xo Z

c cp Y2,

XNz, = c
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From Proposition [1.3.10| we infer that X (6) = T" - z5 N X is a reduced subscheme of pure
codimension s in T" - z5;. The involved vanishing ideals on Z, and Z; satisfy

I[(Xo)+ I(T" - 25) = I(Xo)T +I(T" - 25) = (I(X6)+I(1r’”-z&))H.

We conclude that the left hand side ideal is radical. In order to see that X (o) is of
codimension s in T" - z,, look at the restriction

p: Tz — T"- 2.

This is a geometric quotient for the H-action, it maps X (&) onto X (o) and, as X (&) is
H-invariant, it preserves codimensions.

We prove (ii) and (iii). First note that, due to (i), for any o € Y x we have
dim(o) <n —s. We compare Xx with trop(X). Tevelev’s criterion [126] tells us that a
cone o € X belongs to X x if and only if o° N trop(X) # () holds. As X is complete, we
conclude that trop(X) is covered by the cones of X x.

We show that the support of every cone of ¥ x is contained in trop(X). The tropical
structure theorem provides us with a balanced fan structure A on trop(X) such that
all maximal cones are of dimension n — s; see |94, Thm. 3.3.6]. Together with Tevelev’s
criterion, the latter yields that all maximal cones of ¥ x are of dimension n — s. The
balancy condition implies that every cone dg € A of dimension n — s — 1 is a facet of at
least two maximal cones of A. We conclude that every cone o € ¥ x of dimension n — s
must be covered by maximal cones of A.

Knowing that trop(X) is precisely the union of the cones of X x, we directly see that
Y x is a fan: Given o € Xy, every face 7 < o is contained in trop(X). In particular, 7°
intersects trop(X). Using once more Tevelev’s criterion, we obtain 7 € ¥x. O

Corollary 1.4.5. Let X C Z be a non-degenerate toric complete intersection given by
F = (f1,...,fs) in LP(n) and a simplicial F-fan . If X \ X is of dimension strictly
less than v — n, then we have

Yx = {o€k; dim(o) <n-—s}.

Proof. Assume that ¢ € ¥ is of dimension n — s but does not belong to ¥Xx. Then
X (o) = 0 and hence X (o) = (). This implies

X(0) = V(gi,--,9s) NV(Ti; vico) = |JXNT - 2.

o<1

As 3 is simplicial, P defines a bijection from )N onto .. Moreover, ¢ and o both have
n — s rays and we can estimate the dimension of X (o) as

dim(X(o)) > r—s—(n—s) = r—n.

Due to dim(X \ X) < r —n, we have X N'T" - 2 C X for some 6 < 7 € . Thus, o is a
proper face of P(7) € ©x. This contradicts to Theorem [1.4.4] (iii). O
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Example 1.4.6. Let f = S; + S5 + 1 € K[S1, S2, 53] and ¥ the fan in Z3 given via its

generator matrix P = [v1,...,v5] and maximal cones oy, = cone(v;, vj, vg):
-2 2 0 0 0
P=1-220220 0], Y = {0124, 0134, 0234, 0125, 0135, 0235 } -
1 11 1 -1

Then f is non-degenerate in LP(3) and ¥ is an F-fan. Thus, we obtain a nondegenerate
toric hypersurface X € Z. The ¥-homogenization of f is

g = TE+T5+T5.

The minimal ambient toric variety Zx C Z is the open toric subvariety given by the fan
Y x with the maximal cones 0;; = cone(v;, v;) given as follows

max
Y = {014,015,024, 095,034,035 }.

In particular, the fan ¥ x is a proper subset of the set of all cones of dimension at most
two of the fan 3.

Remark 1.4.7. The variety X from Example is a rational K*-surface as constructed
in [4, Sec. 5.4]. More generally, every weakly tropical general arrangement variety in the
sense of |63, Sec. 5] is an example of a non-degenerate complete toric intersection.

We approach the proof of Theorem The following pull back construction relates
divisors of Z to divisors on X.

Remark 1.4.8. Let X C Z be an irreducible non-degenerate toric complete intersection.
Denote by 2: X N Zeg — X and j: X N Zyeg — Zyeg the inclusions. Then Theorems m
and (ii) yield a well defined pull back homomorphism

WDiv!(Z) = WDiv' (Zieg) — WDiv(X), D = D|x = wJ"D,

where we set T = T" for short. By Theorem m (i), this pull back sends any invariant
prime divisor on Z to a sum of distinct prime divisors on X. Moreover, we obtain a well
defined induced pullback homomorphism for divisor classes

Cl(z) — CIX), [D] — [D]|x.

The remaining ingredients are the adjunction formula given in Proposition [[.4.9 and
Proposition [1.4.10| providing canonical divisors which are suitable for the ramification
formula.

Proposition 1.4.9. Let X C Z be an irreducible non-degenerate toric complete intersec-
tion given by a system F = (f1,..., fs) in LP(n).
(i) Let C; € WDiv(Z) be the push forward of div(f;) and Kz an invariant canonical
divisor on Z. Then the canonical class of X is given by

[Kx] = [Kz+Ci+...+Cylx € CI(X).
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(ii) The variety X is Q-Gorenstein if and only if Zx is Q-Gorenstein. If one of these
statements holds, then X and Zx have the same Gorenstein indez.

Proof. Due to Theorem and Theorem m (ii) it suffices to have the desired
canonical divisor on Zyeg N X C Xie. By Theorem the classical adjunction
formula applies, proving (i). For (ii), note that the divisors C; on Z are base point free
by Lemma [1.3.3] (v) and hence Cartier. The assertions of (ii) follow. O

Proposition 1.4.10. Consider an irreducible non-degenerate system F in LP(n), a
refinement X' — X of F-fans and the associated modifications w: Z' — Z and w: X' — X.
Then, for every o € Xx, there are canonical divisors Kx (o) on X and Kx/(o) on X'
such that
(i) Kx/(o) =7*Kx(o) holds on X'\ Y', where Y’ C Z' is the exceptional locus of the
toric modification w: Z' — Z,
(i) Kx/(0) —mKx(0) = Kz/|x — 7*Kz|x' holds on 771 (Z,) N X', where Z, C Zx
is the affine toric chart defined by o € Xx.

Proof. Fix 0 € ¥x. Then there is a vertex u € B of the Newton polytope B = B(F)
such that the maximal cone o(u) € X(B) contains 0. Write u = uy + ... + us with
vertices u; € B(f;). With the corresponding vertices a(u;) = P*u;j + a; of the Newton
polytopes B(g;), we define

D(o,j) = a(uj)1D1+...+a(uj),D, € WDiv(Z).

Let C; € WDiv(Z) be the push forward of div(f;). Propositions and together
with Lemma [1.3.3] (v) tell us

D(0.)] = [Cj] = deg(g;) € K = CAZ),  supp(D(0,4)) N Zs = 0.

Also for the ¥'-homogenization G’ of F, the vertices u; € B(f;) yield corresponding
vertices a'(u;) € B(g;) and define divisors

D'(0,j) = d'(uj)1D1+ ...+ d (u;)rDryy € WDiv(Z').

As above we have the push forwards C; € WDiv(Z') of div(f;) and, by the same
arguments, we obtain

[D'(0,7)] = deg(g;) € K' = CI(Z), supp(D'(c,5)) N1 (Z,) = 0.

Take the invariant canonical divisors Kz on Z and Ky in Z' with multiplicity —1 along
all invariant prime divisors and set

S S
Kx(o) = (Kz+ )Y D(5,j))lx, Kxi(o) = (Kz +Y_ D'(0,))lx
j=1 j=1
According to Proposition these are canonical divisors on X and X’ respectively.
Properties (i) and (ii) are then clear by construction. O
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Proof of Theorem [I.1.1] First observe that Ax is an anticanonical complex for the toric
variety Zx. Now, choose any regular refinement ¥/ — ¥ of the defining F-fan ¥ of the
irreducible non-degenerate toric complete intersection X C Z. This gives us modifications
m: Z' — Z and m: X’ — X. Standard toric geometry and Theorem yield that both
are resolutions of singularities.

Proposition provides us with canonical divisors on X’ and X. We use them
to compute discrepancies. Over each X N Z,, where o € X x, we obtain the discrepancy
divisor as

Kxi(o) —m"Kx(0) = Kz|x —m"Kz,|x.

By Theorem [1.4.4] (i), every exceptional prime divisor Ey C X' admits a unique ex-
ceptional prime divisor E, C Z' with E% C E’. Remark guarantees that the
discrepancy of Ey with respect to 7: X’ — X and that of £/, with respect ton: Z' — Zx
coincide. O

We conclude the section by discussing the divisor class group and the Cox ring of
a non-degenerate complete toric intersection and the effect of a general choice of the
defining Laurent system.

Proposition 1.4.11. Consider a non-degenerate system F = (f1,..., fs) in LP(n), an
F-fan ¥ in Z™ and the associated toric complete intersection X C Z. Assume that )_(\X
is of codimension at least two in X. If the pullback C1(Z) — CI(X) is an isomorphism,
then the Cox ring of X is given by

R(X) = K[T1,....T}]/(g1,---,9s),  deg(Ti) = [Xi] € CL(X),

where G = (g1, ..., 9s) is the X-homogenization of F. In this situation, we have moreover
the following statements.
(1) If X N V(T3) \ X is of codimension at least two in X NV (T}), then T; defines a
prime element in R(X).
(ii) If deg(g;) # deg(T;) holds for alli, j, then the variables Tt, ..., T, define a minimal
system of generators for R(X).

Proof. According to Theorem [1.3.12| (iv) ensures that X is normal. This allows us
to apply [4, Cor. 4.1.1.5], which shows that the Cox ring R(X) is as claimed. The
supplementary assertion (i) is a consequence of Proposition [1.3.14] and (ii) is clear. [

Definition 1.4.12. Let Bj,...,Bs; € Q™ be integral polytopes. The Laurent space
associated with By, ..., B; is the finite-dimensional vector space

S
V(By,...,Bs) = @K[T"; veB;NZL".
j=1

Given a non-empty open set U C V(By,..., Bs), we refer to the elements F' € U and
also to the possible associated toric complete intersections as U-general.
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Following common (ab)use, we say “the general Laurent system F' = (fi,..., fs)
in LP(n) satisfies ...” if we mean “there is a U C V(By,..., Bs) such that every U-
general F' satisfies ...”, where B; denotes the Newton polytope of f; for j = 1,...,s.
By [76, Thm. 2.2], the general Laurent system is non-degenerate.

Corollary 1.4.13. Let F = (f1,..., fs) be a general Laurent system in LP(n) and ¥
an F-fan in Z™. For the associated toric complete intersection X = X1 N---NX; C Z
assume that each X;, regarded as push-forward of div(f;) € WDiv(T"), is ample for
Z and

dim(Z\ Z) < r—s—2, dim(X) > 3.

Then the variety X is irreducible and normal, the pullback Cl(Z) — CI(X) is an isomor-
phism and the Cox ring of X is given as

R(X) =K[T,....T:] /{91, -, 9s),  deg(Ty) = [Di] € CIX) = Cl(Z),

where G = (g1, ..., gs) is the X-homogenization of F = (f1,..., fs) and D; C Z the toric
prime divisor corresponding to T; € R(Z) = K[T1,...,T;].

The proof of this Corollary is covered by the subsequent two remarks, which we
formulate separately as they touch aspects of independent interest.

Remark 1.4.14. Let F' = (f1,..., fs) be a Laurent system in LP(n) and ¥ an F-fan in Z".
Then Lemma [1.3.3] (ii) tells us that F is general if and only if its X-homogenization G is
general.

The second remark shows in particular that the easy-to-check assumption dim(Z \Z ) <
r — s — 2 might even be weakened and that it suffices to assume that suitable restrictions
of the X; are ample.

Remark 1.4.15. Consider a toric variety Z and a non-degenerate toric complete inter-
section X = X1 N---N X, in Z of dimension at least three and assume that each X; is
ample on Z. Then X is constructed by passing stepwise to hypersurfaces:

Xy =2, X, =X_NX;CZ j=1,...s

Then X = X! and each X ]’ is a non-degenerate toric complete intersection in Z. In each
step, Xj|x s a base point free and ample divisor on X ]’-71; see Lemma |1.3.3] The
i

Grothendieck-Lefschetz Theorem from [119] provides us with a pullback isomorphism

Cl(X}_,) — CI(X})

for a general choice of X;|x/ ) with respect to its linear system. In the initial step, the
i

linear system of X is just the projective space over the corresponding homogeneous

component of the Cox ring, that means that we have

X1 = PR(Z)x,]-
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Now consider a general X = X N---NX, C Z and suppose that X’ \ X’ is of codimension

at least two in X j’ in each step. Then we may apply Proposition [1.4.11| stepwise, where
in each step we observe

R( ;_1)[Xj|x/.71] - R(Z)[Xj]/<gl"“’gj*1>[Xj]'

Thus the general choice of X1 N---N Xy C Z induces a general choice of the divisor

Xjlx;_ on Xj_; in each step. In particular, we obtain C1(Z) = CI(X) and see that the
i

statements of Proposition [I.4.11] apply to X C Z.

Example 1.4.16. Corollary enables us to produce Mori dream spaces with
prescribed properties. For instance, consider general toric hypersurfaces

X =V(f) € PriagxPiio = Z,

where f is Z?-homogeneous of bidegree (di,ds) with di,d2 € Zs1. Corollary |1.4.13
directly yields Cl(X) = Z? and delivers the Cox ring as

Wo = W1 = (170)a w2 = (2>O)a

R(X) = K[To, T, T, 80,80 80/40), 0 3 2 ) e Z )

where w; = deg(7T;) and u; = deg(.S;). Corollary tells us that X has worst canonical
singularities. Moreover, if for instance d; = de = d, then in the cases

d> 4, d=4, d <4,

the Mori dream space X is of general type, satisfies x = 0 or is Fano, accordingly; use
Proposition [1.4.9

1.5 The non-degeneracy condition

The purpose of this section is to prove that the non-degenerate Laurent systems with
given Newton polytopes form a non-empty open subset of the Laurent space. This
involves a proof for non-degeneracy of a general Laurent system as stated by Khovanskii
as part of [76, Thm. 2.2] but without the use of complex spaces.

Proposition 1.5.1. The general Laurent system in LP(n) is non-degenerate.

Proof. Consider integral polytopes By,...,Bs C Q" and let Bji, ..., Bjn; be the faces
of B;. Given a choice of vertices b, ..., bs, where b; € Bj, we consider the index tuples

K::(kl,...,ks), 1§kj§mj, bjEBjk]..

Write V = V(Bjy,. .., Bs) for the Laurent space. For F' € V, we denote by F); the face
system of I given by (Bik, .- -, Bsk,). Then we have morphisms

O VxT" — VxK, (F2) — (FFu.()).
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For a system F' € V and a vector y € K*, the fiber of the morphism ®, over (F,y) is
given as

oM (Fy) = {(F.2); z€T", Fu(2) =y} = F'(y).

In particular, the fiber over 0 € K?® equals the solution set of F); = 0 in the torus T™. The
differential of ®, at any point (F,z) € ®,1(F,0) is of the form

idy 0
Do, (F,z) = l + DE.(2) ] .

Let K denote the set of all relevant x, that means those with F;, = 0 having non-empty
solution set for the general F. Then, for x € K and F being general, ®_!(F,0) is of
dimension n — s. Thus, by semicontinuity of fiber dimension, almost all fibers ®!(F, )
are of dimension n — s for k € K. Consequently, ®, is dominant whenever x € K.

Assume b; = ... = by = 0 for the moment. Then, for all face polynomials F,, =
(fiks .-, fsw) of the general F', each fj. has a constant term ¢;, only depending on F' and
j. For every k € K, Sard’s Theorem [123, Lemma 2.4] yields that the set Y,, C V x K¢
of regular values of @, is non-empty and open in V x K. Set

Y = (Y. € VxK.
reK

Then for every y € Y, scaling ¢; by 1 — y;/c;, we turn any general F' into a Laurent
system such that (F,0) is a regular value of @, for all kK € K. We conclude that in the
case by = ... = by = 0 all morphisms ®,,, where k € K, have (F,0) as a regular value for
the general system F' € V.

Now look at arbitrary vertices b1, ..., bs, where b; € B;. From the previous consid-
eration, we know that for the general system F' = (T~ f1,.,..., T~ f,.), all ®, have
(F',0) as a regular value. Multiplying componentwise with the monomials 77, ... T,
we see that also for arbitrary by, ..., bs, all morphisms ®, have (F,0) as a regular value
for the general system F' € V.

Finally, by finiteness of the number of possible choices, we see that for the general
F €V, for all choices of by,...,bs and all the associated tuples x, the morphisms &,
have (F,0) as a regular value. By the nature of the differential of ®,, we conclude that
the general F' € V' is non-degenerate. O

Lemma 1.5.2. Let a reductive algebraic group G act on a prevariety W, and let
p: W — Z be a good quotient onto a complete variety Z. Then for any prevariety
X and closed subset A C X x W the projection pry(A) C X is closed whenever A is
invariant under the G-action on X X W where G acts trivially on X.

Proof. The projections onto the first factor fit into the following commutative diagram

X xW X xZ

PTx prx
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where the horizontal arrow is the good quotient for G, acting trivially on X. Since
A C X x W is invariant under the G-action, the image of A in X x Z is closed. Since Z
is complete, the image pry(A) is closed in X. O

We introduce the relation space as homogeneous analog to the Laurent space. This
enables us to use techniques from toric geometry to investigate the Laurent space.

Definition 1.5.3. Let By,..., Bs C Q" be integral polytopes, B = B; + --- + B, the
Minkowski sum and ¥ a fan in Z™. The relation space associated with By,..., Bs; and X
is the finite-dimensional vector space

VE(Bla"'vBS) = @K[Tlv"'aTT]#j7 Hj = Q(aj) € CI(Z)
j=1

where a; is as in Reminder for each polytope Bj;.

Proposition 1.5.4. Let By,...,Bs C Q" be integral polytopes, B = By + --- + B, the
Minkowski sum, and X a fan in Z" refining the normal fan of B. Then we have an
isomorphism of vector spaces

(DZV(Bl,...,BS) — VE(Bl,...,BS),
(flv"'afs) = (Tap*fla”'aTap*fs)'
In particular, 3-homogenization establishes a one-to-one correspondence between Lau-

rent systems (fi,..., fs) in LP(n) having By, ..., Bs as Newton polytopes and systems
(91,---,9s) of homogeneous polynomials with Newton polytopes B,,,, ..., B,,.

Proof. Observe that ® is a well-defined injection since P* is injective and satisfies
ker(Q) = P*(Z"™). As ® is defined componentwise, it suffices to verify that ® is surjective
in the case s =1, i.e., By = B. Let a = (a1, ...,a,) be as in Reminder and consider
the divisorial polytope

B(D) = {u € Q% (u,v;) > —ai} € Q"

associated with the toric divisor D = a1 D1 + - -+ + a, D, arising from B. Gale duality
yields that all monomials of degree Q(a) = [D] stem from a lattice point of B(D), i.e.,

Q7 Y(Q(a)) NZLy = P*(B(D)NZ") +a.

Since ¥ refines the normal fan of B, the divisorial polytope B(D) equals B. We conclude
that each monomial of degree Q(a) is of the form T%+7 “(W) — Tap*Tu for some u € BNZ™,
hence @ is surjective. The supplement is clear by Lemma m (i). O

Remark 1.5.5. The linear map from Proposition fails to be surjective in general if
one drops the assumption that X refines the normal fan of B.
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For instance, consider the describing fan ¥ of P, with generator matrix P together
with the lattice polytope B C Q?,

P = l(l) (1) _ﬂ , B = conv(0, e1,e2,€1 + €2).
Here we have a = (0,0,2), thus D = 2D3 and [D] = Q(a) = 2 € Z = Cl(IPy). There
are precisely six monomials of degree 2 in T, T5, T3, which correspond to the lattice
points of the divisorial polytope B(D) = conv(0, 2¢e1,2e3). However, B is a proper subset
of B(D) only having four lattice points. This means that the Laurent space V(B) is
fourdimensional but the relation space Vx(B) is of dimension six.

Lemma 1.5.6. Consider a simplicial fan ¥ refining (B). The G = (g1,...,9s) €
Vs(By, ..., Bs) arising as Y-homogenization of a non-degenerate system F in LP(n) and
satisfying B(g;) = By, for all 1 < j <s form an open subset of Vs(Bu,..., Bs).

Proof. Throughout the proof we denote V' = Vx(Bj,..., Bs) for short. Observe that
B(gi) = By, simply means that the monomials 7" corresponding to the vertices v of
B,,; occur in g; with non-zero coefficient. Thus the set U of all G € V with B(g;) = By,
for any 1 < j < s is open in V. According to Proposition [I.5.4] each such G appears as
Y-homogenization of a system (fi,..., fs) in LP(n) with B(f;) = B; for all 1 < j <.
Note that the latter property ensures that ¥ is an F-fan. This allows us to apply
Remark and thus check non-degeneracy of F' in terms of the X-homogenization G.

Next, we show that the G € V not satisfying condition (iii) from Remark
form a closed subset of V. This implies in particular that those G € U arising from a
non-degenerate F' form an open subset of U. Now fix ¢ € ¥ and set

Wy = UTT-@:T’”-Z;,QZA.

oxT

Then p(W,) = T" - 2z, C Z, in particular p(W,) is complete. Moreover W, is an H-
invariant closed subset of Z, thus the restriction p : W, — p(W,) is a good quotient for
the H-action on W,. Now consider the morphism

0o 1V X W, 5 K x K7, (G,2) > (G(2), DG (2)).

The preimage A, of {0} x M where M denotes the set of matrices of rank strictly less
than s is a closed H-invariant subset of V' x W,. Lemma shows that pry (4,) CV
is closed. We finish the proof by observing that pry (A,) is precisely the set of G € V
which do not satisfy condition (iii) from Remark for fixed o. O

Proposition 1.5.7. Let By,...,Bs C Q" be lattice polytopes. The non-degenerate
Laurent systems (fi1,..., fs) in LP(n) with B(f;) = Bj for j =1,...,s form a non-empty
open subset of the Laurent space V(Bq,. .., Bs).
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1.5. The non-degeneracy condition

Proof. Consider the Minkowski sum B = By + - -+ + Bs. Then there exists a simplicial
fan ¥ in Z" that refines the normal fan ¥(B) of B; see for instance [43, Prop. 11.1.7]. Now
Lemma, applies to B, ..., Bs and X. From the correspondence in Proposition
we infer that the non-degenerate Laurent systems F' = (f1,..., fs) with B(f;) = B; for

all 1 < j < s form an open subset of U of V(Bjy,...,Bs). Finally, Proposition
ensures that U is non-empty. O
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Chapter 1. Non-degenerate toric complete intersections

1.6 Computing intersection numbers

This section is devoted to a simple algorithm for computing intersection numbers on
projective Q-factorial toric varieties in terms of combinatorial data in the rational divisor
class group. In particular this enables us to compute intersection numbers on Mori dream
spaces that have a complete intersection Cox ring; see Remark

Setting 1.6.1. Consider an n-dimensional projective Q-factorial toric variety Z with
divisor class group K together with an ample class u € Kg and the induced K-grading
on the polynomial algebra

S =K[T,...,T,], deg(T;) = w; =[D,,

where D1, ..., D, are the torus invariant prime divisors of Z. Let v1,...,v; € Kg be the
primitive lattice vectors lying on the rays of the GIT-fan A(S) and N; the number of
generator degrees w; lying on the ray cone(v;). Our goal is to explicitly compute the
intersection number u;g - - -u, € Q for given uy,...,u, € Kq.

We state the key formula for computing intersection numbers provided by [4, Prop.
2.4.2.11].

Proposition 1.6.2. Situation as in Setting|1.6.1. Consider pairwise different generator

degrees wj, , . .., w;, and the complementary degrees wj,,...,w;,_,. Then
o s — 1/[K : (wj,,...,wr—p)], ifu € cone(ws,... w;)°
" " 0 else .

Remark 1.6.3. In the situation of Setting [1.6.1| we can compute an intersection product
of the form v!' - -- vl in the following cases.

Case 1: l; < N; for all t =1,...,t. Here, for each v; we find pairwise different generator

degrees wj,,...,w; each of them being of the form w;, = cjv; with some ¢; € Z.

Successively replacing vl b 1 CL Wy, Wy, in vt ol leads eventually to
y replacing v;* by 1, Wiy ; in vy 7 y

I le _ ) )
vl ...rUt _szl...wzn

for some ¢ € Z and pairwise different generator degrees wy, , ..., w;, . Explicit computation
is now done by applying Proposition [1.6.2]

Case 2: u ¢ cone(v;; l; < N;). Here, the according divisors do not meet, hence vil = -vff

vanishes.

Remark 1.6.4. Consider the situation of Setting Since the toric variety Z defined
by u is Q-factorial, i.e., u lives in the relative interior of some full-dimensional GIT-cone,
for any subset I C {1,...,t} the cone cone(v;; i € I) is full-dimensional whenever it
contains u.
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In the situation of Setting[I.6.1] the following algorithm computes intersection numbers
by gradually reducing the problem to the feasible cases discussed in Remark [I.6.3] To
keep a record of this process the algorithm treats u; - - - u, as a formal polynomial in
v1,...,v; with rational coefficients.

Algorithm 1.6.5 (Computing intersection numbers).

Input: the degree matrix @), an ample class u € Kq for Z, uq,...,u, € Kg
Output: the intersection number uq - - - u, € Q
foreach 1 <i<ndo
‘ compute ¢;; € Q such that u; = ¢;1v1 + - - + ¢, v in Kg;
end
set fi=T1 (cinvr + ... + ¢, ve) € Qlug, ..., ve;
repeat
foreach term cvl' ---vl* of f do
if [; <N; foralli=1,...,t then
compute d := vll x -vllf by Remark
set f = f—cv1 "Uit—l-Cd;
else
if u ¢ cone(v;; I; < N;) then
‘ set f:= f—cv1 . vit,
else

choose some 1 < j <t with [; > N

compute ¢; € Q such that v; = Zli<Ni CiV;;

set

L =1 l l
f=f+c Hvi i Z cvp | — oot
end
end
end

until f is constant;
return f;

Proof. The only step which is not obviously doable is the computation of the rational
numbers ¢; in the innermost else-branch. Here, Remark ensures that the demanded
presentation of v; as linear combination over all v; with I; < N; exists

We show that the algorithm terminates. For any monomial v' = vl tof f
consider the sum L(v!) of all exponents [; with I; > N;. The maximum of all L( ) where
v runs over all monomials of f is strictly decreased in each step of the repeat structure
until it equals zero. Thus, after a finite number of steps all monomials of f satisfy I; < N;
forallt =1,...,t. In the following step all terms of f will be substituted by rationals
numbers, hence f becomes constant and the algorithm terminates.

According to Remark the output is the desired intersection number. O
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Chapter 1. Non-degenerate toric complete intersections

Mori dream spaces with complete intersection Cox rings inherit intersection theory
from ambient toric varieties thus fit into Setting when it comes to computing
intersection numbers; see [4, Sec. 3.3.3].

Remark 1.6.6. Consider an irreducible Q-factorial projective variety X with finitely
generated divisor class group K = CI(X) and a complete intersection Cox ring, i.e., there
is a graded presentation

R(X)=K[T1,....,T,)/{g1,---,9s), s=r—dim(X)—dim(Kg),

such that 77, ..., 7, define pairwise non-associated K-primes in R(X). Moreover, let Z
be a Q-factorial completion of the canonical ambient toric variety of X given by the
above presentation of R(X) and u € Kg and ample class for Z.

For any wi,...,ugim(x) € Kq the intersection product uy - - - ugim(x) on X equals
deg(g1) - - - deg(gs) - u1 - - Ugim(x) on Z. Thus the desired intersection number can be
computed by Algorithm with n = dim(X) + s and the following input data

U 1 <4 <dim(X),

Q = [deg(Ty), ..., deg(T)], . uz:{ (o) A%t i en

1.7 Proof of Theorem [1.1.3

Here we prove Theorem [I.1.3] The first and major part uses the whole theory developed
in this chapter to establish suitable upper bounds on the specifying data. Having reduced
the problem to working out a manageable number of cases, we proceed computationally,
which involves besides a huge number of divisibility checks the search for lattice points
inside polytopes tracing back to the terminality criterion provided in Corollary A
second and minor part concerns verifying and distinguishing items listed in Theorem
where we succeed with Corollary and the computation of suitable invariants.

We fix the notation around a non-degenerate complete intersection X in an n-
dimensional fake weighted projective space Z. The defining fan of ¥ in Z™ is simplicial,
complete and we denote its primitive generators by vg,...,v,. The divisor class group
Cl(Z) is of the form

ClZ) = ZXZ/UWL X - X L[tyL.

By w; = (z4,mi1,-..,1iq) € Cl(Z) we denote the classes of the torus invariant prime
divisors D; on Z. Recall that any n of wy,...,w, generate C1(Z). Moreover, as the
Cl(Z)-grading on R(Z) is pointed, we may assume

0 < 29 < ... < 4.

As before, X C Z arises from a Laurent system F' in LP(n) and ¥ is an F-fan. We
denote by G = (g1, ...,9s) the ¥-homogenization of F' = (f1,..., fs). Recall that the
Cl(Z)-degree pj = (uj,(ji1,--.,Cjq) of g; is base point free.
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Lemma 1.7.1. A divisor class [D] € Cl(Z) is base point free if and only if for any
i=0,...,n there ezists an l; € Z>1 with [D] = Lw; € Cl(Z).

Proof. This is a direct consequence of Proposition and the fact that the maximal
cones of ¥ are given by cone(v;; j # i) for i =0,...,n. O

The following lemma provides effective bounds on the orders t1,...,%, of the finite
cyclic components of C1(Z) in terms of the Z-parts x; of the generator degrees wo, ..., wy
and u; of the relation degrees pi,...,us for any toric complete intersection X in a
weighted projective space Z with zg = 1.

Lemma 1.7.2. Assume xo = 1. Moreover, let i = (u,(1,...,¢{;) € C(Z) be a base point
free divisor class. Then, for any k=1,...,q and j=1,...,n, we have

tr | lcm(u; i=1,....n, i#j).

T

In particular all ty, divide u. Moreover, for the Z-parts u; of the relation degrees p;, we
see that each of t1,...,tq divides ged(uy, ..., us).

Proof. Due to xg = 1, we may assume 791 = ... = 7og = 0. Lemma [I.7.T] delivers [; € Z>;
with u = l;w;. For ¢ =0,...,n that means

(l0,0,...,0) = lbwy = p = Liw; = (Lizi, lina, ..., Linig)-

Thus, we always have v = l;z; and [;m;x = 0. Now, fix 1 < j < n. As any n of the w;
generate C1(Z), we find o € Z"™! with a; = 0 and

aowp + ... +apw, = (1,1,...,1).

Scalar multiplication of both sides with lem(l;; 1 < i < mn, ¢ # j) gives the first claim.
The second one is clear. O

The next bounding lemma uses terminality. Given o € X, let I(o) be the set of
indices such that the v; with ¢ € I(o0) are precisely the primitive ray generators of o and
Uy € Q™ a linear form evaluating to —1 on each v; with ¢ € I(0). As before, we look at

A(o) = {veao; 0> (us,v) > -1} C o.
The point z, € Z is at most a terminal singularity of Z if and only if 0 and the v; with
i € I(o) are the only lattice points in A(c). According to Theorem the analogous

statement holds for the points € X with z € T" - z,.
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Lemma 1.7.3. Consider o € X2 such that z, € Z is at most a terminal singularity of Z.
(i) If o is of dimension two, then o is a reqular cone and C1(Z) is generated by the w;
with i € I(o). In particular, ged(zy; @ € I(0)) =1 holds.
(ii) If o is of dimension at least two, then ged(x;; @ & I(0)) is strictly less than the
sum over all z; with i € 1(o).

Proof. The first assertion can easily be verified directly. We turn to the second one.
Using x; € Z>1 and zovg + - - - + v, = 0, we obtain

o= — Z Ti0; = Z xv; € c°NZ™.
i¢1(o) i€l (o)

Write v = ged(x;; @ € I(0))v with v € 0° NZ". Due to dim(o) > 2, the vector v does
not occur among vy, ..., v,. Evaluating u, yields

0 > (ug,v) = ged(zs; i € 1(0) (ug,v') = —ged(as; i € 1(0))™ Y as
i€l(o)

By assumption, we have v € A(o). Consequently, the right hand side term is strictly less
than —1. This gives us the desired estimate. O

We turn to bounds involving the Fano property of a toric complete intersection
threefold X in a fake weighted projective space Z. A tuple £ = (x, ..., x,) of positive
integers is ordered if 9 < ... < x, holds and well-formed if any n of its entries are
coprime. For an ordered tuple £, we define

2m(§), @ =m(8),

m(§) = lem(xo,...,zy), M) = {m(ﬁ), z, # m().

We deal with well-formed ordered tuples £ = (xq, ..., x,) with n > 4. As we will see, the
Fano property forces the inequality

(n—3)M() < xo+ -+ zp. (1.1)

Lemma 1.7.4. Consider an ordered § = (xo, . ..,x4) such that any three of xg,...,x4 are
coprime and condition is satisfied. Then x4 < 41 holds or we have 1 < xg, x1,x2 < 2
and r3 = x4.

Proof. We first settle the case x4 = m(&). Then x4 is divided by each of xg, ..., z3. This
implies
ged(zi, zj) = ged(wi, xj,x4) = 1, 0<i<j<s.

Consequently, ¢ - - - x3 divides x4. Subtracting x4 from both sides of the inequality (1.1
leads to

To-rxy < x4 < 29+ ...+ 23.
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Using 1 < zg < --- < x3 and pairwise coprimeness of xg, ..., z3, we conclude that the
tuple (zg, z1,x2,x3) is one of

(1,1,2,3), (1,1,1,z3).

In the first case, we arrive at x4 < g+ ---+ x3 = 7. In the second one, x4 = drz holds
with d € Z>;. Observe

drs = x4 < o+ ---+x3 = 3+ x3.

Thus, we have to deal with d = 1,2,3. For d = 1, we arrive at x3 = x4 and the cases
d = 2,3 lead to z3 < 2 which means x4 < 5.

Now we consider the case z4 < m(£). Then m(§) = lxy with [ € Z>2. From
inequality we infer [ < 4 as follows:

lxg = m(&) < o+ +x4 < bay.

We first treat the case x3 = x4. Using the assumption that any three of xg,..., x4 are
coprime, we obtain

ged (i, xq) = ged(wi, x3,24) = 1, 1=0,1,2.

Consequently, zozy < m(&) = lxg and xo <1 < 4. For | = 2 this means 1 < zg, 21,22 < 2.
For | = 3,4, we use again (|1.1)) and obtain

Ty < (xo+x1 +x2) < 12.

1
-2
Now we turn to the case x3 < x4. Set for short d; := ged(w;,z4). Then, for all
0 <i<j <3, we observe

ged(di, dj) = ged(xs, xj,x4) = 1.

Consequently dop---d3 | z4. For i =0,...,3, write z; = f;d; with f; € Z>;. Then f;
divides [z4 and hence . Fix i, ..., i3 pairwise distinct with d;, < --- < d;,. Using ({.1),
we obtain

(l — 1)di0 cee di3 < (l — 1)334 < fiodio + -+ figdig < (2 + QZ)dZ‘3.

For the last estimate, observe that due to | = 2, 3,4, all f; # 1 have a common factor 2
or 3. Thus, as any three of xzg,...,x3 are coprime, we have f; = 1 for at least two i. We
further conclude

2+2]
diodildiz < (l 1) < 6.
This implies d;, = d;;, = 1 and d;, < 5. We discuss the case f;; = 1. There, we have
Zi; = diy, hence x;, | 4. By assumption, g < --- < z3 < x4 and thus z;;, < 4. We

conclude d;; = x;; < x4/2. From above we infer

(I=Dar < fidig+-+ fudiy < U2+dy) + 5
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Together with [ = 2,3,4 and d;, < 5 as observed before, this enables us to estimate x4 as
follows:

Now let fi; > 1. Then 2d;, < fi,di; = iy, < x4 holds. This gives d;; < x4/2. Using
d;, | £4 we conclude d;, < x4/3. Similarly as before, we proceed by

x
(I=1Dzg < figdig + -+ fisdiy < U2 +diy) +1di; < 1(2+dyy) + l%-
Again, inserting [ = 2, 3,4 and the bound d;, < 5 finally leads to the desired estimate

2+ diy < 42.
2l — 3

.5L‘4<3l

O]

Lemma 1.7.5. Consider a well-formed ordered & = (xg,...,xs5) satisfying . Then
x5 < 21 holds or we have 1 < xg,z1 < 2 and 19 = T3 = T4 = T5.

Proof. Let x5 > 22. We have M (§) = lzs with [ > 2. From (|1.1]) we infer 2lx5 < 6x5,
hence [ = 2. Thus, we can reformulate (1.1)) as

3rs < x9+ -+ 4.

Moreover, M (§) = 2x5 implies a;z; = 25 with suitable a; € Z>g for i = 0,...,4. In
particular, the possible values of xq, ..., x4 are given as
2 1 2 1 2
€5, 5T5, 5T5, =I5, 5 T5, L5,
5 3T 5Ts  pI5 g5 oI5

We show x4 = z5. Suppose x4 < x5. Then x4 < 2x5/3. We have 1 > 2x5/3, because
otherwise x; < x5/2 and thus
1

1 2 2 2
3rs < 20+ ...+ x4 < §x5+§x5+§x5+§x5—l—§x5 = 3xs,

a contradiction. We conclude z1 = --- = 24 = 2x5/3. By well-formedness, the integers
x1,...,os are coprime. Combining this with
31’1 = - = 31‘4 = 2.1‘5

yields x5 = 3, contradicting x5 > 22. Thus, x4 = x5, and we can update the previous
reformulation of (1.1) as

205 < x4+ -+ x3.
We show x3 = 5. Suppose x3 < x5. Then, by the limited stock of possible values for the
x;, the displayed inequality forces x3 = 2x5/3 and one of the following

2 2 1 2 1 1
T2 = Ts, T = 51'5751'5, gx57 T2 = s, xr1 = ZTs-
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By well-formedness, x1, ..., x5 are coprime. Depending on the constellation, this leads
to x5 = 3,6, 15, contradicting x5 > 22. Thus, x3 = x5. Observe

r5 < Xo+ X1+ T2, ged(zg, zj,x5) =1, 0<i<j<2

We show z9 = x5 by excluding all values z9 < x5. First note zo > x5/3. Assume
x9 = 2x5/5. Then, by the above inequality, 1 = 2x5/5. We obtain

52?1 = 5.T2 = 2$5.

thus ged(x1, 2, x5) = 1 implies x5 = 5, a contradiction to z5 > 22. Next assume
x9 = x5/2. The inequality leaves us with

1 2 1 2
1 = ZT5, £T5, 5T5, 5T5.

2 5 3 7

Thus, using ged(z1, 2, x5) = 1 we arrive at x5 = 2,10, 6, 14 respectively, contradicting
x5 > 22. Finally, let zo = 2x5/3. Then we have to deal with

2 1 2 1 2 1 2 1 2
r1] = -5, =I5, =T5, =x5, =T5, —L5, —L5, —L5, ——5.
1 3%5 5%5 £¥5, 35, ST5, T5, o¥5, 5 1775

Using ged(x1, x2,x5) = 1 gives x5 = 3,6,15,3,21,12,9, 15 in the first eight cases, exclud-
ing those. Thus, we are left with the three cases

2 2 2 1 2
To = =Is, rK = ——s5, To = T7%5, ;Ts, 13

11 117 6 5

In the first one, coprimeness of xg, x1, x5 gives x5 = 11 and in the second one coprimeness
of xg, xo, x5 implies x5 = 6. The third case is excluded by

ng(x1,$2,$5) =1 = x5 =33, ng(I‘o,LEQ,.’L’g)) =1 = x5 =39.

Thus, o = x5. We care about xg and x1. Well-formedness and z9 = ... = x5 yield that
T, T5 as well as x1, 5 are coprime. Thus, we infer 1 < xgp, z1 < 2 from

apgxryg — 2335, ai1xry — 21‘5.
O

Lemma 1.7.6. There exist only two ordered well-formed septuples (xg, . ..,xs) satisfy-
ing (1.1]), namely (1,1,1,1,1,1,1) and (2,2,3,3,3,3,3).

Proof. The case xg = 1 gives the first tuple. Let xg > 1. Then M(§) = lz¢ holds with
I > 2. Using (|1.1), we see 3lzg < 7Tz which means [ = 2. We obtain

g < xo+ -+ x5
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by adapting the inequality ([1.1]) to the present setting. Similar to the preceding proof,
M (&) = 2x¢ leads to presentations

2
r; = —Xg, a; € Z>2, 1=0,...,5.
473 -
Now, pick the unique j with zo <--- < x;_1 < x; = --- = x6. Well-formedness implies
J > 2. Moreover z;_1 < 2z¢/3 holds and thus
2. . 18—7
brg < —jag+ (6—j)rg = ]xg.
3 3
This implies j < 3. Thus j = 2, which means zo < 21 < x93 = --- = xg. Adapting the

inequality (1.1)) accordingly gives
re < Xo+ T1.-

Moreover, by well-formedness, xg, x¢ as well as x1, ¢ are coprime. Consequently, we can
deduce 1 < zg < 21 < 2 from

angrg — 25(36, a1xry — 21‘6.

Now, zg > 1 excludes x1 = 1. Next, zg = 1 would force zg = 2 = x1, contradicting the
choice of j. Thus, we arrive at xg =1 =2 and 2 = --- = 24 = 3. ]

The last tool package for the proof of Theorem [1.1.3| supports the verification of
candidates in the sense that it allows us to show that each of the specifying data in the
list do indeed stem from a toric complete intersection.

Reminder 1.7.7. Consider any complete toric variety Z arising from a lattice fan X
in Z™. With every invariant Weil divisor C = a1 Dy + ... + a, D, on Z one associates its
divisorial polytope

B(C) = {ue Q" (u,v)) > —a;, i=1,...,7} C Q".

If C is base point free, then B(C) has integral vertices and X refines the normal fan
of B(C). If in addition C' is ample, then B(C) is a full-dimensional lattice polytope
having ¥ as its normal fan.

Given base point free classes p1, ..., us on a toric variety Z, the question is whether
or not these are the relation degrees of a (general) toric complete intersection. The
following criterion relies on Corollary

Remark 1.7.8. Consider a complete toric variety Z given by a fan ¥ in Z" and let
fis ..., s € Cl(Z) such that each p; admits a base point free representative C; €
WDiv!(Z). Being integral, the B(C;) can be realized as Newton polytopes:

B(C]) = B(fj), fj S LP(TL), 3 =1,...,s.

Consider the system F' = (f1,..., fs) in LP(n). The fan ¥ refines the normal fan of the
Minkowski sum B(C}) + - - - + B(Cs) and hence is an F-fan. For the ¥-homogenization
G =(g1,...,9s) of F we have deg(g;) = p; € CI(Z).
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1.7. Proof of Theorem [1.1.3

(i) If F' is non-degenerate, then the associated variety X C Z is a toric complete
intersection.
(ii) If F' is non-degenerate, then there is a non-empty open U C Vg such that every
G’ € U defines a non-degenerate F’ € LP(n).
(iii) If F is general, C1, . .., Cs € WDiv(Z) are ample and we have dim(Z\ Z) < r—s—2,
then Cl(X) = Cl(Z) holds and the Cox ring of X is given as

R(X) = K[T,....T;]/{g1, - -+ 9s),

where deg(7;) € CI(X) is the class [D;] € Cl(Z) of the invariant prime divisor
D; C Z corresponding to T;.

Proof of Theorem[I.1.3 Let Z be a fake weighted projective space arising from a fan ¥
in Z" and let X = X1 N---NXs C Z be a general (non-degenerate) terminal Fano
complete intersection threefold. Write G = (g1, ..., gs) for the 3-homogenization of the
defining Laurent system F' = (f1,..., fs) of X C Z. We have

CUZ) = ZXZ/WL X --- X L[tyL

for the divisor class group of Z. As before, the generator degrees w; = deg(7;) and the
relation degrees p1; = deg(g;) in Cl(Z) are given as

w; = [Di] = (T4,Mi1, - Miq), wi = [X5] = (ug,G1,- 5 Gg)-

We assume that the presentation X C Z is irredundant in the sense that no g; has a
monomial T;; otherwise, as the Cl(Z)-grading is pointed, we may write g; = T; + h;
with h; not depending on 7; and, eliminating 77, we realize X in a smaller fake weighted
projective space. Moreover, suitably renumbering, we achieve

g < -0 < Xp, up < - < u.

According to the generality condition, we may assume that every monomial of degree p;
shows up in the relation g;, where j = 1,...,s. In particular, as Lemma m shows
i = ljw; with lj; € Z>1, we see that each power Tzl” is a monomial of g;. By
irredundance of the presentation, we have l;; > 2 for all 7 and j.

We will now establish effective bounds on the w; and p; that finally allow a com-
putational treatment of the remaining cases. The following first constraints are caused
by terminality. By Corollary all two-dimensional cones of ¥ belong to X x and
by Corollary [[.1.2] the toric orbits corresponding to these cones host at most terminal
singularities of Z. Thus, Lemma (i) tells us that Cl1(Z) is generated by any n — 1
of wo, ..., wy. In particular, any n — 1 of zg, ..., z, are coprime and, choosing suitable
generators for C1(Z), we achieve

ClZ) = ZXZ/WL X --- X LJt4L, g < n-—1.

Next, we see how the Fano property of X contributes to bounding conditions. Gener-
ality and Corollary [I.4.13] ensure that X inherits its divisor class group from the ambient
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Chapter 1. Non-degenerate toric complete intersections

fake weighted projective space Z. Moreover, by Proposition the anticanonical
class —Kx of X is given in terms of the generator degrees w; = deg(7;), the relation
degrees p; = deg(g;) and n = s+ 3 as

—Kx = wo+---+w,—p1—---—ps € Cl(Z) = CI(X).

Now, consider the tuples £ = (x¢,...,2,) and (u1,...,us) of Z-parts of the generator
and relation degrees. As seen above, we have u; = [;;x; with l;; € Z>o for all 4 and
j. Thus, m(§) = lem(zo, ..., x,) divides all u;, in particular m(§) < u;. Moreover, if
m(§) # xn, then we even have 2m(§) < u;. Altogether, with M (&) = 2m(§) if m(§) = z,
and M () == m(€) else, we arrive in particular at the inequality (L.1)):

(n—3)M() = sM(§) < up+--+us < xg+-+ Tn.

This allows us to conclude that the number s of defining equations for our X C Z
is at most three. Indeed, inserting 2z, < u; and x; < x,, we see that 2sx,, is strictly
less than (n + 1)z, = (s + 4)x,. We go through the cases s = 1,2,3 and provide upper
bounds on the generator degrees xg, ..., Z,.

Let s = 1. Then n = 4. We will show x4 < 41. As noted above any three of xg, ..., x4
are coprime. Thus, Lemma applies, showing that we have x4 < 41 or the tuple
(zg,...,x4) is one of

(171717*73471.4)7 (1,1,2,%’4,%4), (1,2,2,1’4,1'4).

In the latter case, consider o = cone(vg,vi,v2) € 3. Corollary ensures o € Xx.
Due to by Corollary we may apply Lemma m (ii), telling us

xqg = ged(zs,xg) < xo+2x1+22 < 5.

Let s = 2. Then n = 5. We will show z5 < 21. According to Lemma [1.7.5] we only have
to treat the case 2o = ... = x5. As noted above, we have

Irs = ng(xg,...,xg,) = 1.

Let s = 3. Then n = 6. Lemma leaves us with (zo,...,x¢) being one of the tuples
(1,1,1,1,1,1) and (2,2,3,3,3,3,3). As before, we can exclude the second configuration.

Next, we perform a computational step. Subject to the bounds just found, we
determine all ordered, well formed tuples £ = (xq,...,2,), where n = s+3 and s = 1,2,3,
that admit an ordered tuple (u1,...,us) such that

W
U+ -+ uUs <xo+ -+ Tp, lji =1 GZZQ, j=1...,8 1t=0,....n
i
holds and any n—1 of xq, ..., x, are coprime. This is an elementary computation leaving
us with about a hundred tuples £ = (x, ..., z,), each of which satisfies xg = 1.

As consequence, we can bound the data of the divisor class group Cl(Z). As noted,
we have ¢ < n — 1 and Lemma now provides upper bounds on the orders t; of the
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1.7. Proof of Theorem [1.1.3

finite cyclic factors. This allows us to compute a list of specifying data (@, y1, ..., us) of
candidates for X C Z by building up degree maps

Q:Z"? — CUZ)=ZxZ/MWT x - x L/t 7, e = w;

and pick out those that satisfy the constraints established so far. In a further step,
we check the candidates for terminality using the criterion provided Corollary
computationally, this amounts to a search of lattice points in integral polytopes. The
affirmatively tested candidates form the list of Theorem All the computations have
been performed with the Magma programs available at [68].

Remark shows that each specifying data (@, ) in the list of Theorem m
stems indeed from a general toric complete intersection X in the fake weighted projective
space Z. Finally, Corollary ensures that the Cox ring of all listed X is as claimed.
In particular, none of the X is toric. Most of the listed families can be distinguished
via the divisor class group Cl(X), the anticanonical self intersection —K3% and h%(—Kx).
For Numbers 12 and 39, observe that their Cox rings have non-isomorphic configurations
of generator degrees, which also distinguishes the members of these families. O
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CHAPTER
TWO

SMOOTH FANO FOURFOLDS OF PICARD NUMBER TWO

In this chapter we classify the smooth Fano fourfolds of Picard number two that have a
general hypersurface Cox ring.

This chapter is organized as follows. First, we present our classification results;
see Theorem [2.1.1] In the following Sections [2.2] and [2.3] we build up the necessary
background on factorially graded algebras and Mori dream spaces for proving our results.
Section [2:4] discusses the concept of a general hypersurface Cox ring and provides tools for
explicitly constructing examples. Sections to are then devoted to the classification
procedure. Afterwards we investigate different aspects of the varieties from Theorem [2.1.1
Section [2.10]is dedicated to a geometric description in terms of elementary contractions,
in Section we determine Hodge numbers and, finally, Section discusses the
connection between automorphisms and deformations of these varieties. The results of
this chapter are published in the joint work [66].

2.1 Classification results

By a Fano variety, we mean a normal projective complex variety with an ample anti-
canonical divisor. The Cox ring of a smooth Fano variety X is known to be a finitely
generated C-algebra [19]. We restrict our attention to simply structured Cox rings: We
say that a variety X with divisor class group Cl(X) = K has a hypersurface Cox ring if
we have a K-graded presentation

R(X) = Ry = C[T1,..., T:]/(9),

where ¢ is homogeneous of degree p € K and T1,...,7T, define a minimal system of
K-homogeneous generators. In this situation, we call R(X) spread if each monomial of
degree p is a convex combination of monomials of g. Moreover, we call R(X) general
(smooth, Fano) if g admits an open neighbourhood U in the vector space of all u-
homogeneous polynomials such that every h € U yields a hypersurface Cox ring Ry, of a
normal (smooth, Fano) variety X} with divisor class group K; see also Definition
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Chapter 2. Smooth Fano fourfolds of Picard number two

We approach our main result, concerning Fano fourfolds of Picard number two. The
notation is as follows. For any hypersurface Cox ring R(X) = R, graded by Cl(X) = K,
we write w; = deg(T;) € K for the generator degrees and u = deg(g) € K for the degree
of the relation. Moreover, in this setting, the anticanonical class of X is given by

K =w+...4w—p € CI(X) = K.

If R, is the Cox ring of a Fano variety X, then X can be reconstructed as the GIT
quotient of the set of (—K)-semistable points of Spec R, by the quasitorus Spec C[K].
In this setting, we refer to the Cox ring generator degrees wi,...,w, € K and the
relation degree p € K as the specifying data of the Fano variety X. In the case of a
smooth Fano fourfold X of Picard number two, C1(X) equals Z? and thus Spec C[K] is a
two-dimensional torus. Hence the hypersurface Cox ring R, is of dimension six and has
seven generators.

Theorem 2.1.1. The following table lists the specifying data wi,..., w7 and W in
Cl(X) = Z2, the anticanonical class —KC and K* for all smooth Fano fourfolds of
Picard number two with a spread hypersurface Cox ring.

No. [wi,...,wr] deg(g) —-K K* No. [wi,...,wr] w K K*
1 (1,1) (3,2) 432 24 111200 0] 44) (L2) 34
2 (271) (272) 256 _0012111_ (7)(7)
3 1111000 (3,1) (1,2) 80 1123000
4 [0000 11 1j| (172) (371) 270 25 0023111 (676) (172) 17
5 (2,2) (2,1) 112 . :
6 (3,2) (1,1) 26 26 5011111 (22) (1,3) 216
7 (1,1) (2,2) 416 o7 [1110000] o4y 9) 6y
8 [11110071] (1,2) (2,1) 163 oozttt
9 000011 1 (2,1) (1,2) 224 28 [1110000] 2.6) (1.1 8
10 (272) (171) 52 _0031111_ (7)(3)
29 T 1(2,2) (2,2) 192
11 _ 1,1) (1,2) 464 1111000 , ,
PR R R B S A 30 0001115 (35 (1L1) 18
1B faiiooo  (1,2) (3,2) 352 31 lpooir111| (42) (1,2) 48
14 0001111 (273) (27 1) 65 L J
32 (D11 Z20000 g4y (1,1) 12
15 [55100] a en w oo0ziiy] @YD
[1121000]
16 [1 111 100} (2,1) (3,2) 352 3 Jors2111] (46 (1,3) 50
0000111
7 32 &1 8 34 (2,2) (3,4) 378
D [1111 (31 (L1) 38 55 11110 63 @3 1w
o 5y ey e 36 (4.4) (1L2) 20
20 (1,1) (3,1) 432
s 111ty @wo @3 %
2 [1hehity ey ey us
38 [1111300} 6,6) (1,2) 10
22 [1111000] (2,2) (2,3) 272 o111311] (66 (12)
23 (0011111 3,3) (1,2) 51
SNCL) 2 [111239 ©o) @) a8
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2.1. Classification results

No.  |wi,...,w7] I -k Kk* No. |wi,...,w7] v K K
40 f1111000] (2,2) (2,4) 352 1111120
41 _O 11111 1_ (373) (173) 99 55 —-1000011 (370) (471) 376
42 Tii111000] (2,4 (2,5) 304 56 [jééééfﬂ (4,0) (4,1) 341
43 0222111 (3,6) (173) 54 .
- : 57 [_ } 6,0) (2,1) 31
T 100001y ©0 @D
. . 58 |LLLIL3000 g0y (1,2) 16
s [0y ws s w
: . 59 [”1“00} (6,0) (2,2) 64
46 Jo1351YY) (66 (1,3) 33 .
y , . 60 11123100 50)(3,2) 80
AT o2ictil (612) (1,3) 18 S
_ 61 [soo000s (40 (22) 128

48 lp1i11s1| (22) (3,5) 433

[
[
[

62 (500001 (40 (3,2) 160

o N
Jun
[

49 |02 s2311| (3,6) (2,5) 145

-
o

63 0000011 (30) (22) 192

[

50 foiiaii3] (24 (2,3) 144

-
[
[
[
Jun
o

64 (500001 (3,00 (3,2 240

st ity we a2 _ |
- . 65 |o oo l99% (2,0) (3,2) 432
o [111210) we @y e
1111110
53 { 111111 0} (2,0) (4,1) 431 66 000001 1] (2,0) (4,2) 480
54 —1 000011 (470) (2’1) 62

67 0000011 (20) (52) 624

Any two smooth Fano fourfolds of Picard number two with specifying data from distinct
items of the table are not isomorphic to each other. Moreover, each of the items 1 to 67
even defines a general smooth Fano hypersurface Cox ring and thus provides the specifying
data for a whole family of smooth Fano fourfolds.

Let us compare the result with existing classifications. Wisniewski classified in [130]
the smooth Fano fourfolds of Picard number and Fano index at least two, where the Fano
index is the largest integer ¢ such that —XC = ¢H holds with an ample divisor H.

Remark 2.1.2. In eight cases, the families listed in Theorem [2.1.1| consist of varieties of
Fano index two and in all other cases, the varieties are of Fano index one. The conversion
between Theorem and Wisniewski’s results as presented in the table [84] 12.7] is as
follows:

ro 1) | | | B9 9| 9| || D
REL127 [5[124 [10[1 |2 |3 |13
Theorem has no overlap with Batyrev’s classification [11] of smooth toric Fano
fourfolds. Indeed, toric varieties have polynomial rings as Cox rings which are by definition
no hypersurface Cox rings. However, there is some interaction with the case of torus
actions of complexity one.
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Chapter 2. Smooth Fano fourfolds of Picard number two

Remark 2.1.3. Eleven of the families of Theorem admit small degenerations to
smooth Fano fourfolds with an effective action of a three-dimensional torus. Here are
these families and the corresponding varieties from [56, Thm. 1.2].

Thm. 2.1.1] | 56, Thm. 1.2]

[ 4A:m=1,¢=0
4C.m=1

2

5 m=1
4A:m=1¢c=-1
1

10: m =2

7 m=1
122m=2,a=b=c=0
11: m=2,a,=1
11: m=2,a9 =2

Moreover, observe that for the families 1, 20, 48, 53, 65, 66 and 67 of Theorem the
degeneration process gives a Fano smooth intrinsic quadric; compare |55, Thm. 1.3].

Remark 2.1.4. Coates, Kasprzyk and Prince classified in [41] the smooth Fano fourfolds
that arise as complete intersections of ample divisors in smooth toric Fano varieties of
dimension at most eight. Comparing anticanonical self-intersection numbers as well as
the first six coefficients of the Hilbert series yields that at least the 17 families 14, 15, 24,
25, 28, 30, 32, 33, 38, 44, 45, 46, 47, 51, 52, 57 and 58 of Theorem do not show up
in [41].

2.2 Factorial gradings

Here we provide the first part of the algebraic and combinatorial tools used in our
classification. We recall the basic concepts on factorially graded algebras and, as a
new result, prove Proposition locating the relation degrees of a factorially graded
complete intersection algebra. Moreover, we recall and discuss the GIT-fan of the
quasitorus action associated with a graded affine algebra.

For the moment, K is any field. Let R be a K-graded algebra, which, in this chapter,
means that K is a finitely generated abelian group and R is a K-algebra coming with a
direct sum decomposition into K-vector subspaces

R = P Ry

weK

such that Ry, R, C Ry holds for all w,w’ € R. An element f € R is homogeneous if
f € Ry, holds for some w € K; in that case, w is the degree of f, written w = deg(f).
We say that R is K-integral if it has no homogeneous zero divisors.

Consider the rational vector space Kg := K ®z Q associated with K. The effective
cone of R is the convex cone generated by all degrees admitting a non-zero homogeneous
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2.2. Factorial gradings

element:

Eff(R) := cone(w € K; R, #0) C Kp.

The K-grading of R is called pointed if Ry = K holds and the effective cone Eff(R)
contains no line. Note that Eff(R) is polyhedral, if the K-algebra R is finitely generated.

Lemma 2.2.1. Let R be a K-graded algebra. Assume that R is K-integral and every
homogeneous unit of R is of degree zero.
(i) If Ro = K holds, then the K-grading is pointed and for every mon-zero torsion
element w € K, we have R, = 0.
(ii) The K-grading is pointed if and only if there is a homomorphism k: K — Z defining
a pointed Z-grading with effective cone Q>o.

Proof. We prove (i). It suffices to show that there is no non-zero w € K with R,, # 0 and
R_,, # 0. Consider f € Ry, and f' € R_,, both being non-zero. Then ff’ is a non-zero
element of Ry and hence constant. Thus, f and f’ are both units. By assumption, we
have w = 0.

We prove (ii). If the K-grading is pointed, then we find a hyperplane U C Ko
intersecting Eff(X) precisely in the origin. Let Ky C K be the subgroup consisting of all
elements w € K with w® 1 € U. Then K/Ky = Z holds and we may assume that the
projection k: K — Z sends the effective cone to the positive ray. Using (i), we see that
for the induced Z-grading all homogeneous elements of degree zero are constant. The
reverse implication is clear according to (i). O

Let R be a K-integral algebra. A homogeneous non-zero non-unit f € R is K-
irreducible, if admits no decomposition f = f’f” with homogeneous non-zero non-units
f',f" € R. A homogeneous non-zero non-unit f € R is K-prime, if for any two
homogeneous f’, f” € R we have that f | f'f” implies f | f' or f | f”. Every K-prime
element is K-irreducible. The algebra R is called K-factorial, or the K-grading just
factorial, if R is K-integral and every homogeneous non-zero non-unit is a product of
K-primes. In a K-factorial algebra, the K-prime elements are exactly the K-irreducible
ones.

An ideal a C R is homogeneous if it is generated by homogeneous elements. Moreover,
an ideal a C R is K-prime if for any two homogeneous f, f' € R we have that ff’' € a
implies f € a or f' € a. A homogeneous ideal a C R is K-prime if and only if R/a is

K-integral. We say that homogeneous elements g1, ...,g9s € R minimally generate the
K-homogeneous ideal a C R if they generate a and no proper subcollection of g1, ..., gs
does so.

Lemma 2.2.2. Let R be a K-graded algebra such that the grading is pointed, factorial
and every homogeneous unit is of degree zero. If g1,...,9s € R minimally generate a
K-prime ideal of R, then each g; is a K-prime element of R.

Proof. Assume that g1 is not K-prime. Then g is not K-irreducible and we can write
g1 = g}g{ with homogeneous non-zero non-units g, g{ € R. As the ideal (g1,...,9s) C R
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Chapter 2. Smooth Fano fourfolds of Picard number two

is K-prime, it contains one of gj and ¢, say ¢g;. That means that
g1 = hgi+ ...+ hsgs

holds with homogeneous elements h; € R. Take a coarsening K — Z of the K-grading as
provided by Lemma (ii). Then the above representation of g} yields

degz(g1) = degz(h1) +degz(g1) = ... = degg(hs) + degy(gs)-

Consequently, degy(g7) > degy(g1) or hy = 0. Since the Z-grading of R is pointed, we
have degy(g}) < degy(g)) + degy(g]) = degy(g1). Thus, h; = 0 holds. This implies
g1 = 9197 € {g2,...,gs). A contradiction. O

Given a finitely generated abelian group K and wi,...,w, € K, there is a unique
K-grading on the polynomial algebra K[T7, ..., T,] satisfying deg(T;) = w; fori =1,...,r.
We call such grading a linear grading of K[T1,...,T,].

Lemma 2.2.3. Consider a linear K-grading on K[T1,...,T,] and a K-homogeneous
g € K[Ty,...,T;]. Moreover, let1 <iy,...,iq <r be pairwise distinct. Assume that T;,

is not a monomial of g and that g,T;,,...,T;, minimally generate a K-prime ideal in
K[T1,...,T;]. Then we have a presentation

deg(g) = Zaj deg(T}), j#i1,...,0q, aj € L>p.

Proof. Suppose that deg(g) allows no representation as a positive combination over the
deg(Tj) with j & {i1,...,iq}. Then each monomial of g must have a factor T;, for some
7 =1,...,q. Write

g = glnl +92Ti2+"'+qu

g T

gli, +h

with polynomials g; € K[T1,...,T};] such that g; depends on none of T},,...,T;,. By
assumption, g;7;, is non-zero and we have a K-integral factor ring

K[T,..., T)/(9. Ty, .. T 2 KTy j # o, i)/ (1 T0).

Consequently, g17;, is a K-prime polynomial. This implies ¢; = ¢ € K* and thus we
arrive at ¢ = c¢Ij, + h; a contradiction to the assumption that 7;, is not a monomial
of g. O

If R is a finitely generated K-graded algebra, then R admits homogeneous genera-
tors fi,..., fr. Turning the polynomial ring K[T1,...,7,] into a K-graded algebra via
deg(T;) := deg(fi), we obtain an epimorphism of K-graded algebras:

m: K[Ty,...,T,] — R, T, — fi.

Together with a choice of K-homogeneous generators ¢i, ..., gs for the ideal ker(), we
arrive at K -graded presentation of R by homogeneous generators and relations:

R = K[Tl,...,TT]/<g1,...,gs>.

We call such presentation irredundant if ker(m) contains no elements of the form 7; — h;
with h; € K[T1,...,T,] not depending on T;.
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Proposition 2.2.4. Let R a finitely generated K -graded algebra such that the grading is
pointed, factorial and every homogeneous unit is of degree zero. Let

R = K[Tl,...,TT]/(g1,--~,gs>

be an irredundant K -graded presentation with dim(R) = r — s such that Ty, ..., T, define

K-prime elements in R. Then, for everyl =1,...,s, we have
deg(g;) € ﬂ cone(deg(Ty); k #1i, k#j) C Kg.
1<i<j<r

Proof. Tt suffices to show that for any two 1 < i < j < r, we can represent each deg(g;)
as a positive combination over the deg(7T)), where k # i,j. For [ =1,...,s, set

qrj = gl(Tl,...,Tj_l,O,Tj_H,...,Tr) S K[Tl,...,TT].

Since T} defines a K-prime element in R, the ideal (T}) C R is K-prime and (Tj) lifts to
a K-prime ideal

Ij = <gl,...,gs,Tj> = <gl,ja---7gs,jaTj> - K[Tl,...,TT].

Then K[T1, ..., T;]/1; is isomorphic to R/(T}). The latter algebra is of dimension r —s—1
due to our assumptions. Thus, g1 j,...,gs j, T; minimally generate I;. By Lemma [2.2.2
each g ; is K-prime and hence defines a K-integral factor algebra

KT m # jl/{ai;) = K[Th,...,T;]/{q, Tj).

We conclude that g;, 7; minimally generate a K-prime ideal in K[77,...,T;]. Thus, we
may apply Lemma [2.2.3| and obtain the assertion. ]

We turn to the geometric point of view. So, K is now algebraically closed of char-
acteristic zero and R an affine K-graded algebra, where affine means that R is finitely
generated over K and has no nilpotent elements. Then we have the affine variety X with
R as its algebra of global functions and the quasitorus H with K as its character group:

X = SpecR, H = SpecK[K].

The K-grading of R defines an action of H on X, which is uniquely determined by the
property that each f € R,, satisfies f(h-2) = x*(h)f(z) for all 2 € X and h € H, where
x" is the character corresponding to w € K. We take a look at the geometric invariant
theory of the H-action on X; see [4,15]. The orbit cone w, C Kg associated with x € X
and the GIT-cone A\, C Kg associated with w € Eff(R) are defined as

wy = cone(w € K; f(x)# 0 for some f € Ry), Ay = ﬂ W
:EGX,’U}GLUI

Orbit cones as well as GIT-cones are convex polyhedral cones and there are only finitely
many of them. The basic observation is that the GIT-cones form a fan A(R) in K, the
GIT-fan, having the effective cone Eff(R) as its support.
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Chapter 2. Smooth Fano fourfolds of Picard number two

Remark 2.2.5. Let K be a finitely generated abelian group and R a K-integral affine
algebra. Fix a K-graded presentation

R = K[Tl,...,Tr]/<g1,...,gs>.

This yields an H-equivariant closed embedding X = V(g1,...,gs) C K" of affine varieties.
Moreover, we have a homomorphism

Q:7" - K, v — videg(Th) + ...+ v deg(T,).

An X-face is a face 79 =< v of the orthant  := Lo admitting a point z € X such that
one has

i #0 <= e €
for ‘Ehe coordinates 1, . oy Ty of x and the canonical basis vectors eq,...,e. € Z". Write
S(X) for the set of all X-faces of v C Q". Then we have

{Q(10); 10 € S(X)} = {ws; z € X}

That means that the projected X-faces are exactly the orbit cones. The X-faces define a
decomposition into locally closed subsets

X = U X’('yo), X’('yo) = {xeX; A0S e €y} C X.
YES(X)

Definition 2.2.6. Let I = {i,...,ix} be a subset of {1,...,7}. Then the face s of the
orthant v = Q% associated with I is defined as

VI = Vir,ip = cone(e;, ..., €).
Moreover, for a polynomial g € K[T1,...,T,], the polynomial g; associated with I is
defined as
N 3 . T, icl,
= g(Ty,...,T,), T, =
gr g( 1 r) i {0’ ’Lg[

Remark 2.2.7. In the setting of Remark let I = {iy,...,ix} be a subset of
{1,...,7}.
(i) vz is an X-face if and only if (91,1, -.,9s,1) contains no monomial.
(ii) If deg(gj) & cone(w;; i € I) holds for j = 1,...,s, then 7/ is an X-face.
(iii) If (wy; i € I) is linearly independent in K, then 77 is an X-face if and only if none
of g1,...,gs has a monomial Tzll1 Tzl: with Iy, ...,y € Z>o.

Proposition 2.2.8. Let K be a finitely generated abelian group and R an affine algebra
with a pointed K-grading. Consider a K-graded presentation

R = K[Tv,....,T,]/{g1, ., 9s)

such that Ty, ..., T, define non-constant elements in R. Assume that there are a GIT-cone
A € A(R) of dimension at least two and an index i with deg(T;) € A°.
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(i) There exists a j such that g; has a monomial Tlll with l; € Z>o.
(ii) There exists a j such that deg(g;) = l; deg(T;) holds with l; € Z>o.
(iii) If s =1 holds, then, deg(T}) generates a ray of A(R) whenever k # i.

Proof. Because of deg(T;) € A°, the ray 7 generated by deg(7;) is not an orbit cone.
Thus, Q>pe; is not an X-face. This means that some g; has a monomial Tili, which in
particular proves (i) and (ii). To obtain (iii), first observe that deg(7}) € Kg is non-zero
and thus lies in the relative interior of some GIT-cone g € A(R) of positive dimension.
Suppose that ¢ is not a ray. Then (i) yields that besides Tzlz also T; ,i’“ is a monomial of
the relation g;. We conclude that ;  is an X-face. Thus, deg(7;) and deg(T}) lie on a
ray of A(R). A contradiction. O

2.3 Mori dream spaces

Mori dream spaces, introduced in [79], behave optimally with respect to the minimal
model programme and are characterized as the normal projective varieties with finitely
generated Cox ring. Well known example classes are the projective toric or spherical
varieties and, most important for the present chapter, the smooth Fano varieties. In
this section, we provide a brief summary of the combinatorial approach [4,/16,/62] to
Mori dream spaces, adapted to our needs. Moreover, as a new observation, we present
Proposition locating the relation degrees of a Cox ring inside the effective cone of
a quasismooth Mori dream space.

Let K be an algebraically closed field of characteristic zero, R be a K-graded affine
K-algebra and consider the action of H = Spec K[K] on variety X = Spec R. Mori dream
spaces are obtained as quotients of the H-action. We briefly recall the general framework.
Each cone A € A(R) of the GIT-fan defines an H-invariant open set of semistable points
and a good quotient:

X%\ = {zeX; ACuw,} C X, X5(\) — X*(\)JH,

where w, C Kq denotes the orbit cone of z € X. Each of the quotient varieties X*¥()\) J H
is projective over Spec Ry and whenever \' C \ holds for two GIT-cones, then we have
X55(\) € X*()\) and thus an induced projective morphism X**(\)JH — X*(X)JH of
the quotient spaces.

The K-grading of R is almost free if the (open) set Xo C X of points z € X
with trivial isotropy group H, C H has complement of codimension at least two in X.
Moreover, the moving cone of R is the convex cone Mov(R) C Kg obtained as the union
over all A € A(R), where X**()\) has a complement of codimension at least two in X.

Remark 2.3.1. Let R be a K-graded affine algebra such that the grading is factorial
and any homogeneous unit is constant. Then R admits a system fi, ..., f, of pairwise
non-associated K-prime generators. Moreover, if fi,..., f. is such a system of generators
for R, then the following holds.
(i) The K-grading is almost free if and only if any r—1 of deg(f1), ..., deg(f.) generate
K as a group.
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Chapter 2. Smooth Fano fourfolds of Picard number two

(ii) If the K-grading is almost free, then the orbit cones w,, where z € X, and the
moving cone are given by

wy = cone(deg(f); fi(z) #0),

Mov(R) = () coneldea(f;); j # ).
=1

We say that a K-graded affine K-algebra R is an abstract Cox ring if it is integral,
normal, has only constant homogeneous units, the K-grading is almost free, pointed,
factorial and the moving cone Mov(R) is of full dimension in Kg.

Construction 2.3.2. Let R be an abstract Cox ring and consider the action of the
quasitorus H = SpecK[K] on the affine variety X = Spec R. For every GIT-cone
A € A(R) with \° C Mov(R)®°, we set

X(\) = X*(\)/H.

The following proposition tells us in particular that Construction delivers Mori
dream spaces; see |4, Thm. 3.2.14, Prop. 3.3.2.9 and Rem. 3.3.4.2].

Proposition 2.3.3. Let X = X (\) arise from Construction . Then X s normal,
projective and of dimension dim(R) — dim(Kgq). The divisor class group and the Cox
ring of X are given as

Cl(X) = K, R(X) = @ I'(X.0x(D)) = @GRy = R
CI(X) K

Moreover, the cones of effective, movable, semiample and ample divisor classes of X are
given in Clg(X) = Kqg as

Eff(X) = Eff(R), Mov(X) = Mov(R),
SAmple(X) = A, Ample(X) = \°.

By [4, Cor. 3.2.1.11], all Mori dream space arise from Construction For the
subsequent work, we have to get more concrete, meaning that we will work in terms of
generators and relations.

Construction 2.3.4. Let R be an abstract Cox ring and X = X (\) be as in Construc-
tion Fix a K-graded presentation

R = K[Tl,...,Tr]/<g1,.--,gs>

such that the variables 11, ..., T, define pairwise non-associated K-primes in R. Consider
the orthant v = Q% and the projection

Q:7" — K, e; — w;:=deg(T;).
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An X-face is an X-face 9 < v with \° € Q(79)°. Let rlv(X) be the set of all X-faces
and 7: X*¥(\) — X the quotient map. Then we have a decomposition

X= J X
Yo€Erlv(X)

into pairwise disjoint locally closed sets X (y9) := 7(X (70)), which we also call the pieces
of X.

Recall that X is Q-factorial if for every Weil divisor on X some non-zero multiple
is locally principal. Moreover, X is locally factorial if every stalk O,, where z € X is a
(closed) point, is a unique factorization domain. Finally, X is quasismooth if the open set
X%5()\) C X of semistable points is a smooth variety.

Proposition 2.3.5. Consider the situation of Construction [2.5.4)

(i) The variety X is Q-factorial if and only if dim(A\) = dim(Kqg) holds for A =
SAmple(X).

(ii) The variety X is locally factorial if and only if for every X-face o < vy, the group
K is generated by Q(yo NZ").

(iii) The variety X is quasismooth if and only if every X (7o) consists of smooth points
of X for every X -face g =< 7.

(iv) The variety X is smooth if and only if X is locally factorial and quasismooth.

We refer to |4, Cor. 1.6.2.6, Cor. 3.3.1.8, Cor. 3.3.1.9] for the above statements. Next
we describe the impact of quasismoothness on the position of the relation degrees.

Proposition 2.3.6. In the situation of Construction assume dim(R) = r — s and
let X be quasismooth. Then, for every j =1,...,s, we have

deg(g;) € [ (Q(VO NZ U Jwi+ QN ZT)) :
Yo€Erlv(X) i=1

Proof. Consider any X-face 77, where I C {1,...,r}, and choose a point z € X (7).
Then x; # 0 holds if and only if 4 € I. For any monomial 7%, we have

oT”

T, () #0 = v € yiUr+ex = deg(T”) = Q(v) € Q(vr) U Q(71) + wg.
Now, since X is quasismooth, we have grad,, (x) #0 for all j =1,...,s. Thus, every g;
must have a monomial T with non-vanishing gradient at x. O

Finally, in case of a complete intersection Cox ring, we have an explicit description of
the anticanonical class; see |4, Prop. 3.3.3.2].

Proposition 2.3.7. In the situation of Construction assume that dim(R) =r — s
holds. Then the anticanonical class of X is given in K = C1(X) as

—Kx = deg(Ty) + -+ - + deg(T) — deg(g1) — - - — deg(gs)-
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2.4 General hypersurface Cox rings

First, we make our concept of a general hypersurface Cox ring precise. Then we present
the toolbox to be used in the proof of Theorem for verifying that given specifying
data, that means a collection of the generator degrees and a relation degree, allow indeed
a smooth general hypersurface Cox ring. We will have to deal with the following setting.

Construction 2.4.1. Consider a linear, pointed, almost free K-grading on the polynomial
ring S := K[T1,...,T;] and the quasitorus action H x Z — Z, where

H := SpecK[K], Z = SpecS = K.

As earlier, we write Q: Z" — K, e; — w; := deg(T;) for the degree map. Assume that
Mov(S) € Ky is of full dimension and fix 7 € A(S) with 7° C Mov(.S)°. Set

Z = Z%(r), Z = ZJH.

Then Z is a projective toric variety with divisor class group Cl(Z) = K and Cox ring
R(Z) = S. Moreover, fix 0 # p € K, and for g € S, set

Ry :=5/(g), Xg=V(g) CZ, Xy=XyNn2, Xg=Xy/HC Z.

Then the factor algebra R, inherits a K-grading from S and the quotient X, C 7 is a
closed subvariety. Moreover, we have

X, C Z, C Z

where Z, C Z is the minimal ambient toric variety of X,, that means the (unique)
minimal open toric subvariety containing X,.

Remark 2.4.2. In the situation of Construction there is a (unique) GIT-cone
A € A(Ry) such that we have

Xy = X;S()\), Xy = X;S(A)//H.

Thus, if R, is an abstract Cox ring and 17, ..., T} define pairwise non-associated K-primes
in Ry, then X, is as in Construction In particular

Cl(X) = K, R(X,) = R,

hold for the divisor class group and the Cox ring of X,. Moreover, in Kg we have the
following
7° = Ample(Z) C Ample(Z,;) = Ample(X,) = A°.

We are ready to formulate the precise definitions for our notions around hypersurface
Cox rings.

Definition 2.4.3. Consider the situation of Construction 2.4.1]
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(i) We call Ry a hypersurface Cox ring if T1,...,T, define a minimal system of K-
homogeneous generators for R,.

(ii) We say that R, is spread if every monomial T € KIT1,...,T}] of degree u =
deg(g) € K is a convex combination of monomials of g.

Here, we tacitly identify a monomial 7% = T7*---T¢" with its exponent vector
v=(v1,...,v) € Q" when we speak about convex combinations of monomials.

Remark 2.4.4. In the setting of Construction assume that R, is a hypersurface
Cox ring.
(i) Since T1,...,T; define a minimal system of K-homogeneous generators, R, is not
a polynomial ring.
(ii) As the K-grading is pointed, the T; define pairwise non-associated K-prime elements
in Ry.
(iii) Ry is spread if and only if the Newton polytope of g equals the convex hull over all
monomials of degree p = deg(g) € K.

Definition 2.4.5. Consider the situation of Construction and denote by S, C S =
K[T1,...,T,] the homogeneous component of degree u € K.
(i) A general hypersurface Cox ring is a family R4, where g € U with a non-empty
open U C S,,, such that each R, is a hypersurface Cox ring.
(ii) We say that a general hypersurface Cox ring R, is spread if each R,, where g € U,
is spread.
(iii) We say that a general hypersurface Cox ring R, is smooth (Fano) if for some
7 € A(S) all the resulting X, where g € U, are smooth (Fano).

Intrinsic quadrics provide first simple examples for general hypersurface Cox rings.

Example 2.4.6. Let r > 5. We run Construction for S = K[T1,...,T,] with the
Z-grading given by deg(T;) := 1. The choice of 7 = Q>0 and p = 2 leads to a quadric
hypersurface

X=V(g) CP_1 =27

The quadratic polynomials g € U, such that the according quadric V' (g) C P,_1 is of full
rank form a non-empty open subset U of S,,. For any g € U the ring R, is factorial; see
e.g. [121, Satz 60.12]. So R, is an abstract Cox ring. For any T; we have

Re/(T;) 2 K[y, ..., T,)/{g, Ti) 2 K[T, .., Toa] (T} + - + T)

for some k£ > 3. Thus, T; € R, is prime. Remark ensures that T1,...,T. € R,
form a minimal generator system for R,. Altogether, U defines a smooth Fano general
hypersurface Cox ring with specifying data @ = [1,...,1] and p = 2.

We turn to the toolbox for verifying that given specifying data w1, ...,w, € K and
u € K as in Construction lead to a smooth Fano general hypersurface Cox ring R,
in the above sense.
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Remark 2.4.7. In the notation of Construction[2.4.1} a general hypersurface Cox ring R,
is Fano if and only if the generator and relation degrees satisfy

K = wi+--+w —p € Mov(Ry)°.

In this case, the unique cone 7 € A(S) with —K € 7° defines Fano varieties X, for all
g € U; see Proposition 2.3.7 and Remark [2.4.2]

In the notation of Construction [2.4.1, we denote by U, C S,, the non-empty open
set of polynomials f € S of degree u € K such that each monomial of S, is a convex
combination of monomials of f.

Remark 2.4.8. If R;, where g € U, is a general hypersurface Cox ring, then R,, where
g € UNU,, is a spread general hypersurface Cox ring. In particular, we can always
assume a general hypersurface Cox ring to be spread.

Remark 2.4.9. In the situation of Construction consider the rings R, for g € U,,.
Then the following statements are equivalent.

(i) The variables T1,...,T, form a minimal system of generators for all R,, where
geU,.

(ii) The variables T7i,...,T, form a minimal system of generators for one R, with
g e U,

(iii) We have p # w; fori =1,...,r.
(iv) The polynomial g € U, is not of the form g = T; + h with h € S, not depending
on T;.

Lemma 2.4.10. Consider a linear, pointed K-grading on S := K[T1,...,T,]. Then, for
any 0 # p € K the irreducible polynomials g € S, form an open subset of S,,.

Proof. Lemma (ii) provides us with a coarsening homomorphism x: K — Z that
turns S into a pointed Z-graded algebra. Then S, is a vector subspace of the (finite
dimensional) vector space Si(u) of k(p)-homogeneous polynomials and we may assume
K = Z for the proof. Since the K-grading of S is pointed, we have S* = Sy \ {0}. Thus, a
polynomial g € S, is reducible if and only if it is a product of homogeneous polynomials
of non-zero K-degree.

Now, let u,v € Z with u+v = p and S, # {0} # S,. Then the set of y-homogeneous
polynomials g admitting a factorization g = fh with f € Sy, h € S, is exactly the affine
cone over the image of the projectivized multiplication map

P(Su) X P(Sy) — P(Su), ([F1:[h]) = [FA]

and thus is a closed subset of S,,. As there are only finitely many such presentations
u + v = u, the reducible g € S, form a closed subset of S,. O

Proposition 2.4.11. Consider the setting of Construction[2.4.1. For 1 <i <r denote
by U; € S, the set of all g € S,, such that g is prime in S and T; is prime in R,;. Then
U; € S, is open. Moreover, U; is non-empty if and only if there is a p-homogeneous
prime polynomial not depending on T;.
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Proof. By Lemma, the g € S, being prime in S form an open subset U C 5.
For any g € U, the variable T; defines a prime in R, if and only if the polynomial g; :=
g(Th,...,T;-1,0,Ti41, ..., Ty) is prime in K[Tj; j # i]. Thus, using again Lemma
we see that the g € U with T; € R, prime form the desired open subset U; C U. The
supplement is clear. O

Remark 2.4.12. An easy way to check the criterion from Proposition [2.4.11]is to look
for p-homogeneous prime binomials. Recall that a binomial T — T" is prime if and only
if 7%, T" are not divisible by a common variable and ged(k; — v, ...,k — 1) = 1 holds.

Checking the normality and K-factoriality of R, amounts, in our situation, to proving
factoriality. We will use Dolgachev’s criterion, see |53, Thm. 1.2] and [54], which tells us
that a polynomial g = " a,T" in K[T1,...,T,] defines a unique factorization domain if
the Newton polytope A C Q" of g satisfies the following conditions:

(i) dim(A) > 4,
(ii) each coordinate hyperplane of Q" intersects A non-trivially,
(iii) the dual cone of cone(Ag — u; u € Ap) is regular for each one-dimensional face
Ap 2 A,
(iv) for each face Ag < A the zero locus of >°, 5, a,/T" is smooth along the torus
T" = (K*)".
We will call for short a convex polytope A C QX with properties (i)-(iii) from above a
Dolgachev polytope. -

Proposition 2.4.13. In the situation of Construction |2.4.1), suppose that one of the
following conditions is fulfilled:
(i) K is of rank at most r — 4 and torsion free, there is a g € S,, such that Ty,..., T,
define primes in Ry, we have i € 7° and p is base point free on Z.
(ii) The set conv(v € ZLy; Q(v) = ) is a Dolgachev polytope.
Then there is a non-empty open subset of polynomials g € Sy such that the ring Ry is
factorial.

Proof. Assume that (i) is satisfied. If u = deg(7;) holds for some i, then, as the grading
is pointed, we have a non-empty open set of polynomials g = T; + h in S, with h not
depending on T;. The corresponding R, are all factorial. Now assume p # deg(7;) for
all .. By Proposition the set U C S, of all prime g € S, such that T1,...,T,
define primes in R, is open and, by assumption, U C S,, is non-empty. Remark
yields that T7,...,7T, form a minimal system of generators for R,. We conclude that
for all f € U, the complement of Xg in X'g is of codimension at least two. Since u is
base point free and ample on Z, we can apply [9, Cor. 2.3], telling us that after suitably
shrinking, U is still non-empty and R, is the Cox ring of X, for all g € U. In particular,
R, is K-factorial. Since K is torsion free, R, is a unique factorization domain.

Assume that (ii) holds. As A := conv(v € ZL,; Q(v) = p) is a Dolgachev polytope,
we infer from [76], §2, Thm. 2] that there is a non-empty open subset of polynomials g € S L
with Newton polytope A satisfying the above conditions (i) to (iv). Thus, Dolgachev’s
criterion shows that R, is a factorial ring. 0
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Remark 2.4.14. In the situation of Construction assume that Z is a fake weighted
projective space, i.e., Z is Q-factorial and Cl(Z) = K is of rank one. Then p € Cl(Z) is
base point free if and only if there is an l; € Z>1 with p = lw; for all 1 <7 <.

According to Remark general base point free hypersurfaces in fake weighted
projective spaces always stem from Cox ring embeddings. This fact provides us with the
following criterion for general hypersurface Cox rings of Picard number one.

Proposition 2.4.15. In the situation of Construction|2.4.1), suppose that K is of rank
one, r > 5 holds and that for any i = 1,...,r there is an l; € Z>1 with p = Lyw;.
Then there is a non-empty open subset of polynomials g € S, such that the ring Ry is
normal and K-factorial, and Tt, ..., T, € Ry are prime. In particular, there is a general
hypersurface Cox ring with specifying data w1, ..., w, and p.

We use the concept of algebraic modifications [4, Sec. 4.1.2] to provide further
factoriality criteria for graded hypersurface rings. These will apply to several cases where
the relation degree lies on the boundary of the moving cone.

Let us briefly recall the notion of polynomials arising from Laurent polynomials by
homogenization with respect to a lattice fan from Sections [I.2} [I.3] and [L.5

Remark 2.4.16. Let ¥ be a complete lattice fan in Z™ and vy, ..., v, the primitive
lattice vectors generating the rays of 3. Consider the following mutually dual exact
sequences

P
e

0 L z" z

Q p*

0 K z" z 0

This induces a pointed K-grading on the polynomial algebra S = K[T1,...,T;] via
deg(T;) = Q(e;) € K. For any w € K we denote S, C S for the finite-dimensional vector
space of homogeneous polynomials of degree w.

Moreover, fix a lattice polytope B C Q™ and set

a(¥) = (a1,...,a,) €Z", a; = —min(u, v;).
ueB

We call p = Q(a(X)) € K the X-degree of B. Besides u € K = Cl(Z) regarded as a
divisor class is base point free if X refines the normal fan of B. The Y-homogenization of
a Laurent polynomial f € K[Tlil, e ,Tﬁtl] with Newton polytope B(f) equal to B is the
p-homogeneous polynomial g = T%*)p* f € § where p : T" — T" is the homomorphism
of tori associated with P. Each spread polynomial g € S,, arises as ¥-homogenization of
a Laurent polynomial f with B(f) = B provided that X refines X(B).

Let X1, 3o be lattice fans refining the normal fan ¥(B) of B. The vector space V(B)
of all Laurent polynomials of the form ), cpg~z- a,T" fits into the following commutative
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diagram of vector space isomorphisms

©
Sy S
fHT“(Eljp“f\ 4;“@2)19;)‘
V(B)

Moreover, if g € S, is spread, then ¢(g) € Sy, is spread as well and g, ¢(g) are
homogenizations of a common Laurent polynomial with respect to different fans ;.

We state an adapted version of [4, Thm. 4.1.2.2]; see also [4, Prop. 4.1.2.4].

Theorem 2.4.17. Let f € LP(n) be a Laurent polynomial and Yo = 31 a refinement
of fans in Z"™. Moreover, let g; € K[T1,...,T;,] be the respective ¥;-homogenization of f
and consider the K;-graded algebra

Ry, = K[T,...,T.]/{g:)-

Assume that g1,g2 are prime polynomials, Th,..., T, define Ki-primes in Ry and
Ti,..., T, define Ko-primes in Ry,. Then the following statements are equivalent.

(i) The algebra Rg, is factorially Ki-graded.

(ii) The algebra Ry, is factorially Ko-graded.

Now let us bring this theorem in the context of general hypersurface rings. We show
that factoriality is inherited between general hypersurface rings with relation degrees
stemming from a common lattice polytope.

Proposition 2.4.18. Let B C Q" be a lattice polytope, 3o =< X1 <X X(B) a refinement
of fans in Z™, and p; € K; the respective X;-degree. Assume that for i = 1,2 there is a
pi-homogeneous prime polynomial g; and a non-empty open subset U; C S, such that
for all g; € U; the variables Ty, ..., T,, define K;-primes in the K;-graded algebra

Rgi = K[T17 s 7T7"i]/<gi>‘

Then the following statements are equivalent.
(i) There is a non-empty open subset of polynomials g1 € Sy, such that Ry, is K-
factorial.
(ii) There is a non-empty open subset of polynomials ga € S, such that Ry, is Ko-
factorial.

Proof. We know that the subset U,, C S, of spread p;-homogeneous polynomials is
open and non-empty. According to Remark there is an isomorphism ¢ : S, — Sy,
of vector spaces such that g and ¢(g) arise as ¥;-homogenization of the same Laurent
polynomial whenever g € Uy,. Besides, by Lemma the p;-homogeneous prime
polynomials form an open subset of S,;, which is non-empty by assumption. Therefore,
by suitably shrinking U; and U, we achieve
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o p(Ur) = Uy,
o g1 and go := p(g1) are respective Y;-homogenizations of a common Laurent polyno-
mial whenever g, € Uy,
o for every g € Uy the ring Ry, is integral and T17,...,T,, € Ry, are Ki-prime,
o for every go € U the ring Ry, is integral and 17, ...,T},, € Ry, are Ko-prime.
In this situation Theorem tells us that for any g; € Uy and g2 = ¢(g1) we have

R, is Ki-factorial <= R, is K>-factorial.

Now let V1 C S, be a non-empty open subset such that Ry, is factorially graded for
each g1 € Vi. Then V, := ¢(U; N'Vj) is a non-empty open subset of S, and R, is
K-factorial for all g2 € V5. This proves “(i) = (ii)”. The inverse implication is shown
analogously. O

Corollary 2.4.19. Let B C Q" be an integral n-simplex, ¥ a fan in Z™ refining the
normal fan of B, and u € K the X-degree of B. Assume that there is a p-homogeneous
prime polynomial g and a non-empty open subset U C S, such that for all g € U the
variables T, ..., T, define K-primes in the K-graded algebra

R, =K[T1,...,T;]/{9).
Then there is a non-empty open subset of polynomials g € S,, such that Ry is K-factorial.

Proof. Since B a is simplex, the toric variety associated with ¥(B) is Q-factorial and of
Picard number one. Now we apply Proposition [2.4.18 to the refinement ¥ < 3(B) and
the suitable open subset of polynomials provided by Proposition [2.4.15 ]

In many situations we encounter it can be read of straight from the specifying data
whether the conditions from Corollary 2.4.19] are met.

Corollary 2.4.20. Situation as in Construction [2.4.1 Assume that we have r > 5,
K =72 and the degree matriz is of the form

1 ... z, 0
Q:[wla---awr+1]:[_d1 —d: 1], x; € L>1, di € L.

Then for any u = (u1,pe) € K = Z? satisfying the subsequent conditions there is a
non-empty open subset of polynomials g € S,, such that Ry is factorial:
(i) for each i there exists some l; € Z>1 with p = Lz,

(ii) pe = —miny,1dy + -+ + dyv, where the minimum runs over all lattice points
v=(v1,...,) € 25y with vizy + -+ + vpxy = py,
(ili) there is some g € S, such that Ty, ...,T,41 define primes in R,.
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Proof. Observe that each r—1 of z1, ..., z, generate Z as a group since the first coordinate
of w41 vanishes and the Z2-grading associated with @ is almost free according to the
assumptions made in Construction Consider the weighted projective space

Z'=P(z1,...,1,).

Condition (i) ensures that u; € Z = Cl(Z’) regarded as a divisor class on Z’ is ample
and base point free. Choose some representative D € WDiv(Z’) of u;. The associated
divisorial polytope B := B(D) C Q"~! is a full-dimensional integral simplex.

The normal fan ¥’ of B is a lattice fan in Z"~! corresponding with Z’. Write
v1,...,v, € Z""1 for the primitive ray generators of ¥/. Observe that the maps

P7" -7 e v, Q:7" =7, e x;
fit into a mutually dual pair of exact sequences as shown in Remark Now set
Upy1 = dyvr + - + dpvr € /A d=(dy,...,d,)€Z".

The second row of () encodes the relation satisfied by v1,...,v,41 thus the following
maps constitute a pair of mutually dual sequences as well

P: 7Y S 7" e — v, Q: 7 - 72, e — w;.

Since the first r columns of @) generate Z2, the vector v, € Z'~! is primitive; see
[4, Lemma 2.1.4.1]. This allows us to consider the stellar subdivision ¥ of ¥ along v,41.

We show that p € Z? is the X-degree up of B. First note that ju; is the ¥'-degree
of B by construction. Consider

a=aX)=(dy,...,a), a=a(X)=(a1,...,ar4+1)

» T

from Remark [2.4.16] Since X arises from ¥’ by introducing an (r 4+ 1)-th ray, we have

a; = a} for i =1,...,r. From this we infer

p1=Q'(d) =ax1 + - +arxy,  pp=Q(a) =aiw; + -+ arp1Wrp1.
As the first coordinate of w,11 vanishes, we conclude that the first coordinate of up
equals p1. It remains to investigate the second coordinate of up. We have

_ . - _ . / _ . N %
ry1 = 21161]191@, Ur41) ggg(u, P'(d)) zrggl((P) u, d).

Using this presentation of a,1, the second coordinate of pup is given as

Qry1 — Zaidi = —L%i%((P’)*u’ d> _ <a/’ d> — _Lneig«P/)*u_i_ a/’ d>
i=1

From condition (ii) and the fact that the lattice points v € ZL, with Q(v) = p1 are
precisely those of the form v = (P')*u 4 a’ for some lattice point u € B follows that the
second coordinate of up equals po. Altogether we have verified p = up.

The above discussion combined with condition (iii) ensures that we may apply

Corollary 2.4.19 to @ and g which finishes the proof. O
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Proposition 2.4.21. In the setting of Construction assume that Zg, and Xg both
are smooth. Then X, is smooth.

Proof. Consider the quotient map p: Z — Z. Since Zg4 is smooth, H acts freely on
p~1(Z,). Thus, X, inherits smoothness from X, = p~1(X,). O

Lemma 2.4.22. Consider a linear, pointed K-grading on S = K[T},...,T,]. Let
X € A(S) and set W := (K")**(X). Then, for any pn € K, the polynomials g € S,, such
that grad(g) has no zeroes in W form an open subset of S,,.

Proof. Consider the morphism ¢: S, x W — K" sending (g, z) to grad,(g) and the
projection pry: S, x W — S, onto the first factor. Then our task is to show that
S, \ pri(¢~1(0)) is open in S,,. We make use of the action of H = Spec K[K] on W given
by the K-grading and the commutative diagram

Sy x W

S, x W/H

pry pry

I

where the horizontal arrow is the good quotient for H, acting trivially on S, and on W
as indicated above. Since ¢~1(0) C S, x W is invariant under the H-action, the image
of ¢71(0) in S, x W/ H is closed. Since W/ H is projective, the image pr,(¢~1(0)) is
closed in S,,. 0

Proposition 2.4.23. Consider the situation of Construction|2.4.1. Then the polynomials
g € S, such that g € S is prime and Xg is smooth form an open subset U C S,,.
Moreover, U is non-empty if and only if there are g1, g2 € Sy such that g1 € S is prime
and grad(gy) has no zeroes in Z.

Proof. By Lemma [2.4.10} the set V3 of all prime polynomials of S, is open. Moreover,
by Lemma [2.4.22} the set of all polynomials of S, such that grad(g) has no zeroes in Z
is open. The assertion follows from U = V3 N Vs. O

Corollary 2.4.24. Let X be a variety with a general hypersurface Cox ring R. If X is
smooth, then R is a smooth general hypersurface Cox ring.

Proposition 2.4.25. Consider the situation of Construction(2.4.1 If p € Cl(Z) is base
point free, then there is a non-empty open subset of g € S, such that X,N Z*°8 is smooth.

Proof. Observe that P(S,) is the complete linear system associated with the divisor
class p € Cl(Z). If p is a base point free class on Z, we can apply Bertini’s first
theorem [89, Thm. 4.1] stating that there is a non-empty open subset U C S, such that
for each g € U the singular locus of X, is precisely X, N Z5"¢_ In particular, Xy N Zree
is smooth for all g € U. O
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Remark 2.4.26. In the situation of Construction let N(g) be the Newton polytope
of g. For I C {1,...,r}, let 7 < v and g;r € K[T1,...,T}] be as in Definition m
Then [4, Prop. 3.1.1.12] yields the equivalence of the following statements.
(i) We have X, N Z(vs) # 0.

(ii) The polynomial g; is not a monomial.

(iii) The number of vertices of N(g) contained in 7 differs from one.
If, in addition, Z(ys) # 0 holds, then (i)—(iii) are equivalent to

(iv) We have X, N Z(vr) # 0.
In particular, for the non-empty open subset U, C S, of polynomials f € S of degree
p = deg(g) € K such that each monomial of S, is a convex combination of monomials
of f, we obtain Z, = Z, for all g,¢' € U,.

Definition 2.4.27. In the setting of Remark [2.4.26] we call Z,, := Z,, where g € U,
the p-minimal ambient toric variety.

Proposition 2.4.28. In the situation of Construction [2.4.1] the following statements are
equivalent.
(i) The p-minimal ambient toric variety Z,, is smooth.
(ii) For each v; =~y with 7° € Q(v7)° and |Q~1(u) N1 # 1 the group K is generated
by Q(yr N2,

Proof. First recall that a toric variety is smooth if its closed orbits are smooth. For
any spread g € S, all closed orbits of Z,, intersect X, non-trivially by construction of
the minimal ambient toric variety. Thus Z, is smooth if and only if all orbits Z(vr)
intersecting X, non-trivially are smooth. Observe that the number of vertices of N(g)
contained in 77 < 7 equals |Q~!(u) N ~;|. Hence, according to Remark a toric
orbit Z(v) intersects X, non-trivially if and only if |Q (1) N~o| # 1 holds. Finally,
Proposition tells us that Z(vy) is smooth if and only if Q(y; NZ") spans K. O

Corollary 2.4.29. In the setting of in Construction assume rank(K) = 2 and
that Z,, C Z is smooth. If p € T holds, then i is base point free. Moreover, then there is
a non-empty open subset of polynomials g € S,, such that X, is smooth.

Proof. According to |4, Prop. 3.3.2.8], the class u € Cl(Z) is base point free on Z if and
only if the following holds:

pe [ Qnz.

Yo€rlv(Z)

To check the latter, let v € rlv(Z). As Kg is two-dimensional, we find 1 <4, j < r with
ei,e; € 7o and A° C cone(w;, w;)°. If w;, w; generate K as a group, then K is torsion-free,
w;, wj form a Hilbert basis for cone(w;, w;) and thus y is a positive combination of w;, w;.
Otherwise, the toric orbit Z(v; ;) is not smooth, hence not contained in Z,. The latter
means V(g) N Z(vi ;) = 0, which in turn shows that g has a monomial of the form Tz-lin
where [; +1; > 0. Thus, ;1 is a positive combination of w; and wj.

Knowing that p is base point free, we obtain the supplement as a direct consequence
of smoothness of Z,, and Proposition [2.4.25] O
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2.5 Proof of Theorem [2.1.1: Constraints on hypersurface
Cox rings

We prepare the setting for the proof of Theorem [2.1.1] We work in the combinatorial
framework for Mori dream spaces provided in the preceding sections. The ground field
is now K = C, due to the references we use; see Remark 2.5.12] The major part of
proving Theorem [2.1.1] is to figure out the candidates for specifying data of smooth
general hypersurface Cox rings of Fano fourfolds of Picard number two. Having found
the candidates, the remaining task is to verify them, that means to show that the given
specifying data indeed define a smooth general hypersurface Cox ring of a Fano fourfold.

Setting 2.5.1. Consider a K-graded algebra R and X = X(\), where A € A(R) with
A° C Mov(R)°, as in Construction Assume that dim(Kqg) = 2 holds and that we
have an irredundant K-graded presentation

R = R, = C[T3,...,T,]/(g)

such that the 7T; define pairwise nonassociated K-primes in R. Write w; = deg(T;),
p = deg(g) for the degrees in K, also when regarded in Kg. Suitably numbering
wi, ..., w,, we ensure counter-clockwise ordering, that means that we always have

1 < j — det(wi,wj) > 0.

Note that each ray of A(R) is of the form g; = cone(w;), but not vice versa. We assume X
to be Q-factorial. According to Proposition this means dim(\) = 2. Then the
effective cone of X is uniquely decomposed into three convex sets,

Eff(X) = A" UAXN UM,

where A\~ and A" are convex polyhedral cones not intersecting A\° = Ample(X) and
A~ N AT consists of the origin. By Remark and Proposition each of A\~ and AT
contains at least two of the degrees w1, ..., w..

Note that A~ as well as AT might be one-dimensional. As a GIT-cone in Kgp = @2, the
closure A = SAmple(X) of A° = Ample(X) is the intersection of two projected X-faces
and thus we find at least one of the w; on each of its bounding rays.

Remark 2.5.2. Setting is respected by orientation preserving automorphisms of K.
If we apply an orientation reversing automorphism of K, then we regain Setting by
reversing the numeration of wy,...,w,. Moreover, we may interchange the numeration
of T; and T if w; and w; share a common ray without affecting Setting We call
these operations admissible coordinate changes.
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Working in Setting enables us to obtain constraints on the generator degrees
as well as the relation degree from their geometric constellation. For this the following
lemmas are crucial.

Lemma 2.5.3. Consider a locally factorial X = X (\) arising from Constmctionm
with only one relation, i.e., s = 1. Let i,j with A C cone(w;,w;). Then either w;, w;
generate K as a group, or g1 has precisely one monomial of the form TiliT]l-j, where
I + lj > 0.

Proof. 1f ~; j is an X-face, then Proposition m (ii) tells us that w; and w; generate K
as a group. Now consider the case that v;; is not an X-face. Then we must have
X\ Z Q(7:4)° or 7;; is not an X-face. Proposition m (i) excludes the first possibility.
Thus, the second one holds, which in turn means that g; has precisely one monomial of
the form T}' T}, where [; + I; > 0. 0

Lemma 2.5.4. Let X = X () be as in Setting[2.5.] and let 1 <i<j <k <r. If X is
locally factorial, then w;,wj,wy generate K as a group provided that one of the following
holds:
(i) wi,wj € A\~, wx, € AT and g has no monomial of the form T,ik,
(i) w; € A7, wj,wg € AT and g has no monomial of the form Tili,
(iii) w; € A7, wj; € A, wy € AT
Moreover, if (iii) holds, then g has a monomial of the form le-j where l; is divisible
by the order of the factor group K/(w;,wy). In particular, if K is torsion-free, then l; is
a multiple of det(w;, wy).

Proof. Assume that (i) holds. If K is generated by w;,wy or by wj, wy, then we are
done. Consider the case that none of the pairs w;, wy, and w;, wy generates K. Applying
Lemma to each of the pairs shows that g has precisely one monlomial of the form
TiliT,ik with I; + I > 0 and precisely one monomial of the form T;j Tli’“ with I; + 1}, > 0.
By assumption, we must have l;,1; > 0. We conclude that ; ;1 is an X-face. Since X
is locally factorial, Proposition [2.3.5] (ii) yields that w;, w;, wy, generate K. If (i) holds,
then a suitable admissible coordinate change leads to (i).

Assume that (iii) holds. If K is generated by w;, wy there is nothing to show. We
consider the case where w;,w; do not generate K. Lemma [2.5.3 Trields that g has a
monomial of the form Til"T ,i’“ with I; + [ > 0. From Proposition [2.2.8 we infer that g has

a monomial of the form TJl-j with [; > 0 as well. Remark |2.2.5/says that ; ;5 is an X-face.
Since X is locally factorial, Proposition m (ii) yields that w;, w;, wy generate K.

We turn to the supplement. Consider G = K /(w;, wy). Since w;, wj, wy generate K,
the class of w; generates G. From ljw; = p = l;w; + lpwy, we infer ljw; = 0 € G, thus [;
is divisible by ord(w;) = ord(G). O

Lemma 2.5.5. Assume u,wi,ws generate the abelian group 72, If w; = a;w holds with
a primitive w € Z? and a; € 7, then (u,w) is a basis for Z? and u is primitive.
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Chapter 2. Smooth Fano fourfolds of Picard number two

Lemma 2.5.6. Let wi,...,ws € Z? such that det(wy, ws3), det(wy,wy), det(ws, w3) and
det(wa,wyq) all equal one. Then wy = wy or wg = wy holds.

It turns out that for locally factorial X (\) and a suitably general relation g the
GIT-fan of R can be read from the geometric constellation of the Cox ring generator
degrees wy, ..., w, and the relation degree p even without explicit knowledge of their
coordinates.

Lemma 2.5.7. In Settz’ng assume that X = X (X) is locally factorial and Ry a
spread hypersurface Cox ring.
(i) If w; lies on the ray through u, then g has a monomial of the form Til" where l; > 2.
(ii) If wi, wj, where i # j, lie on the ray through p, then o; = o; € A(Ry) holds.

Proof. We show (i). Suppose that g has no monomial of the form Tllz where [; > 2. As
R, is a hypersurface Cox ring, also 7T; is not a monomial of g. Then, on one of the
extremal rays of Eff(R), we find a w; such that ~; ; is a X-face; see Remark (1).
Proposition m (ii) yields that w;,w; generate 7Z? as a group. In particular, w; is
primitive. Hence pu = kw; holds for some k € Z>1. As R, is spread, T} must be a
monomial of g. In addition, we obtain k > 2. A contradiction.

We prove (ii). Assertion (i) just proven and Remark (i) tell us that ; ; is an
X-face. Thus, being a ray, Q(vi;) = 0; = 0; belongs to the GIT-fan A(Ry). O

Proposition 2.5.8. Situation as in Setting . Assume that X (\) is locally factorial
and R is a spread hypersurface Coz ring. The ray o; is a GIT-cone if and only if one of
the following conditions hold:

(i) w is not contained in p;,

(i) p € 0; and w; € g; holds for some i # j.

Proof. The if-part is a direct consequence of Remark (ii) and Lemma (ii). We
turn to the only-if-part. So assume g; € A(R). If u ¢ o; holds, we are done. We consider
the case u € p;. Being a GIT-cone p; is the intersection of some projected X-faces.
Due to rank(K) = 2 every projected X-face is of the form cone(wy,w;) with k < 1. We
conclude that there is some X-face 7 < 7 such that Q(v;) = cone(w;, wy) holds. After
suitably renumbering wy, ..., w,, we may assume ¢ € I. According to Lemma the
polynomial g owns a monomial of the form Tlll Since 7 is an X-face, Remark (i)
ensures that gy, see Definition m has monomial 7% not equal to Tll’ Note that u lies
on an extremal ray of Q(vr). We conclude that I contains some i # j with w; € o; . O

Remark 2.5.9. In Setting all full-dimensional cones of the GIT-fan A(R) are of
the form cone(w;,w;). Moreover, taking counter-clockwise ordering of wi, ..., w, into
account we observe that 1 = cone(w;, w;) is a two-dimensional GIT-cone if and only if
(i) both p; and p; are distinct GIT-cones, and
(ii) for any wy € n° the ray g is not a GIT-cone.

Corollary 2.5.10. Situation as in Setting|2.5.1. Assume that X () is locally factorial
and R is a spread hypersurface Cox ring. Then the full-dimensional cones of A(R) are
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precisely the cones n = cone(w;, w;) where g; # 0; and one of the following conditions is
satisfied:
(i) w € o; holds, o; contains at least two generator degrees and n° contains no generator
degree,
(i) p € pj holds, oj contains at least two generator degrees and n° contains no generator
degree,
(iii) p € n° holds and there is at most one wy, € 1n°, which must lay on the ray through p,
(iv) p & n holds and n° contains no generator degrees.

Now we finalize the arrangements for the proof of Theorem [2.1.1]

Remark 2.5.11. In Setting [2.5.1] consider the rays g; := cone(w;) C Q?, where i =
1,...,r, and the degree p = deg(g) of the relation. Set

T = orU---U o, e = FﬁEff(R)o.

Then a suitable admissible coordinate change turns the setting into one of the following

e e e e

el
Dugl (ITa) 01 = 02 02 (I1c) 917&@2 (II) p € 01
0r—1 = 0r 9—=9 0r—1 % Or

where the figures exemplarily sketch the case r = 6, the black dots indicate the generator
degrees and the white dot stands for the relation degree.

Our proof of Theorem will be split into Parts I, IIa, IIb, IIc and III according
to the constellations of Remark [2.5.11] The reason why we restrict Theorem [2.1.1] to the
ground field K = C is that we use the following references on complex Fano varieties.

Remark 2.5.12. Let X be a smooth complex Fano variety. Then the divisor class group
Cl(X) of X is torsion free; see for instance [84, Prop. 2.1.2]. Moreover, if dim(X) = 4
holds, then [31, Rem. 3.6] tells us that any Q-factorial projective variety being isomorphic
in codimension one to X is smooth as well. In terms of Construction the latter
means that all varieties X (n) are smooth, where n € A(R) is full-dimensional with
n° C Mov(R)°.

2.6 Proof of Theorem [2.1.1; Collecting candidates I

We treat Case I from Remark 2.5.11] Here the degree of the defining relation is not
proportional to any of the Cox ring generator degrees. Here are first constraints on the
possible specifying data in this situation.

Proposition 2.6.1. Situation as in Setting|2.5.1. Assume that r = 7, K = Z? holds,
every two-dimensional A € A(R) with \° C Mov(R)® defines a locally factorial X (\)
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and p doesn’t lie on any of the rays 01, ..., 07. Then, after a suitable admissible coordinate
change, we have p € cone(wy, ws)° and one of the following holds:

(i) wy = wy and ws = wg, (iv) wy = w3 and wg = wr,
(ii) wy; = wa and wg = wy, (v) ws = wyq and ws = we,
(iii) wo = w3 and ws = we, (vi) w3 = wy and wg = wr.

Proof of Proposition [2.6.1. The assumption u & p; implies o; € A(R) fori =1,...,7, see
Remark (ii). Proposition [2.2.4] gives y € cone(ws, ws). The latter cone is the union
of cone(ws, wy) and cone(ws, ws); both are GIT-cones, one of them is two-dimensional
and hosts p in its relative interior. A suitable admissible coordinate change yields
i € cone(wy, ws)°.

First we show that if w; € g; holds for some 1 < ¢ < j < 4, then two of ws, we, wr
coincide. Consider the case ws, wg € p5. By assumption X (A) is locally factorial for
A = cone(wy, ws). Thus, we can apply Lemma to w;, w;, ws and also to w;, w;, we
and obtain that each of the triples generates K as a group. Lemma [2.5.5] yields that ws
and wg are primitive and hence, lying on a common ray, coincide. Now, assume wg & 05.
Then we consider X = X (\) for A = cone(ws, wg). Using Lemma as before, see that
w;, wj, we as well as w;, w;j, wy generate K as a group. For the primitive generator w
of 0; = g;, we infer det(w,wg) = 1 and det(w,w7) = 1 from Lemma [2.5.5 Moreover,
75,6 and 757 are X-faces due to Remark (ii). Thus, Proposition (ii) yields
det(ws, wg) = 1 and det(ws, wy) = 1. Lemmayields we = Wy.

We conclude the proof by showing that at least two of w1, ..., w4 coincide. Consider
the case wa € p3. Then, by the first step, there are 5 < ¢ < j < 7 with w; = w;.
Taking X (\) for A = cone(wy, ws) and applying Lemma to wa, w;, w; as well as to
w3, w;, w;, we obtain that each of these triples generates K. Because of w; = w;, we
directly see that wo and ws, each being part of a Z-basis, are primitive and hence coincide.
We are left with the case that A’ = cone(ws, ws) is of dimension two. By assumption,
the variety X’ defined by X is locally factorial. Moreover, Remark (ii) provides
us with the X'-faces 71 3,72,3,71,4 and v2,4. By Proposition m (i), all corresponding
determinants det(wy, wy,) equal one. Lemma shows that at least two of w1, ..., wy
coincide. O

We are ready to enter Part I of the proof of Theorem The task is to work out
further the degree constellations left by Proposition [2.6.1] This leads to major multistage
case distinctions.

Proof of Theorem [2.1.1): Part I. This part of the proof treats the case that p = deg(g)
doesn’t lie on any of the rays p; = cone(w;). In particular, by Remark (ii), all
rays o1, ..., 07 belong to the GIT-fan A(R). By Remark every two-dimensional
n € A(R) with n° C Mov(R)° produces a smooth variety X (n). Thus, we can apply
Proposition which leaves us with p € cone(ws, ws)° and the six possible constella-
tions for wy, ..., w; given there. Again by Remark the divisor class group of X is
torsion free, that means that we have K = Z2.
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Constellation 1| (7). We have w; = we and ws = wg. Lemma applied to
w1, Wa, Ws shows that w1, ws form a basis of Z?. Thus, a suitable admissible coordinate
change gives w; = (1,0) and wg = (0,1). Applying Lemma also to wi, we, w7 and
w;, w5, wg where ¢ = 1,...,4 yields the first coordinate of wi,...,ws and the second
coordinate of wy equal one. Thus, the degree matrix has the form

o—|11 1 100 —a
|00 b3 by 11 1

] , b3, by, a7 € Z>q.

We determine the possible values of b3 and by. If b3 > 0 holds, then 1 = cone(ws, w3) is
two-dimensional and satisfies ° C Mov(R)°. Because of u € cone(wy, ws)°, none of the

monomials of g is of the form TlllT;j with j = 3,4. Lemma [2.5.3 applied to X (n) gives
b; = det(wl,w]) =1 for j = 3,4. If b3 = 0 and by > 0 hold, we argue similarly with
= cone(wsy, wy) and obtain by = 1. Altogether, we arrive at the three cases

NN N

(i-a): by = by = 0, (i-b): by =0, by = 1, (i-c): by = by = 1.

Case (i-a). Here, the semiample cone A of X = X(A) must be the positive
orthant. Thus, X being Fano just means that both coordinates of the anticanonical class
—Kx € K = 7Z? are strictly positive. According to Proposition we have

—Kx = (4—a7—p1, 3 — p2).

We conclude 1 < ps < 2 and 1 < g1 < 4 — a7 which implies in particular 0 < a7 < 2.
Thus, the weights w1, ..., w7 and the degree u must be as in Theorem [2.1.1] Numbers []
to

Case (i-b). Here, either A\ = cone(ws, w4) or A = cone(wy, ws) holds. In any case,
the anticanonical class is given as

—Kx = (4—ar—p1, 4 — p2).

First assume that A = cone(ws,wy) holds. Then, X being Fano, we have —Kx € A\°.
The latter is equivalent to the inequalities

4—p2 > 0, p2 — p1 —ar > 0.

Using p € cone(wy, ws)°, we conclude 1 < py < pg < 3 and 0 < ay < 1. Thus, we end up
with
a7 =0and p = (1,2),(1,3),(2,3), a7 =1and p = (1,3).

Note that in all cases, 71,234 is an X-face according to Remark (ii). Since X is
quasismooth, Proposition [2.3.6] yields

po€ Q(n234) Uwr+Q(11,234)
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This excludes a7 = 0 and p = (1,3). The remaining three cases are Numbers (13| to [15] of
Theorem 2.1.11

Now, assume that A = cone(wy, ws) holds. The condition that X = X ()) is Fano
means —Kx € A°, which translates into the inequalities 0 < 4 — a7y — u1 < 4 — uo.
Moreover, p € X° implies 1 < pg and we conclude

1 <y < pe < pr+ar < 3.

This is only possible for a7 = 2 and p = (1,2). Then we have wy = (1,1) and wy = (=2, 1).
In particular, g admits no monomial of the form Ti4T7l7. Lemma tells us that wy
and wy generate K = 7Z? as a group. A contradiction.

Case (i-c). Applying Remark[2.5.12/and Lemma to X (n) with n = cone(wy, ws)

and ws, wg, wy yields det(wg,wy) = 1. From this we infer a; = 0. Thus, either A =
cone(wsg, ws) or A = cone(wy4, ws) holds. In any case, the anticanonical class is

—Kx = (4—p1,5— p2).

Assume A\ = cone(wsy,ws). Then the Fano condition —KCx € A° implies pu1 + 1 < po.
Remark (ii) says that 1234 is an X-face. As before, Proposition m gives

€ Q(n234) Uwr+Q(11,2,34)

We conclude p1 + 1 > pg. A contradiction. Now, assume A = cone(wy,ws). Then
—Kx € X° yields u1 > pe. But we have u € cone(wy,ws)°, hence py < po. A
contradiction.

Constellation (ii). We have w; = wp and wg = wy. Lemma applied to
w1, we, wy shows that wy, wy generate Z2. Hence, a suitable admissible coordinate change

yields w; = wy = (1,0) and wg = wy = (0,1). Applying Lemma to ws, wg, wy and
wy, Wg, w7, we obtain that the first coordinates of w3 and w4 both equal one. Thus, the
degree matrix has the form

(111 1 a 0 O
Q_[O 0 b3 by 1 1 1]’ a57b3)b4€ZZQ.

By assumption wy and ws don’t lie on a common ray. Consequently, by = 0 or a5 = 0
holds. If a5 = 0 holds, then we are in Constellation (i) just treated. So, assume
as > 0. Then bs = by = 0 holds. Taking X(n) for n = cone(ws,ws) and applying
Lemma to ws, wg yields as = 1. We arrive at the degree matrix

e[iiin)

Observe that either A = cone(wy,ws) or A = cone(ws,wg) holds. In any case, the
anticanonical class of X = X (\) is given as

= O

111
0 01

O =

—Kx = (5—#1,3—#2).
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First, assume A = cone(wy, ws). Then X being Fano means 0 < 3 — ug < 5 — p3. We
conclude po < 2 and p1 < pe + 1. Moreover, pu € cone(wy, ws)°® gives 0 < po < 1.
Thus, we have p; = p2 + 1 and arrive at the possibilities p = (2,1), (3,2), which are
Numbers [16{ and [17] in Theorem Now, let A = cone(ws, wg). Then X being Fano
gives 0 < 5—p1 < 3—po. We conclude pp = (4,1). Remark (ii) provides us with the

X-face 75 6,7. Proposition says that p should lie in Q(75,6,7) or in w1 + Q(V56,7). A
contradiction.

Constellation (@it). We have wy = w3 and ws = wg. Lemma applied to
wa, ws, we shows that ws, ws form a basis of Z2. A suitable admissible coordinate change
leads to wy = w3 = (1,0) and ws = wg = (0,1). Again Lemma [2.5.4] this time applied
to wi, ws, we, to wy, ws, ws and to wa, w3, wr, shows w; = (1, —a1), wy = (1,b4) and
wy = (—ay,1) where a1, a7,by € Z>o. From det(w;,w7) > 0 we infer a; = 0 or a7 = 0.
Since the case w; = wo is already covered by Constellation m (i), we may assume
wy # wo i.e. a; > 0 and a7 = 0. Hence, the degree matrix is

0=l 3 000 meznen,
We claim by = 0. Suppose by > 0. Then, n = cone(ws,ws) is a two-dimensional
GIT-chamber with n° C Mov(R)°. Consider the associated variety X (n). Due to
1 € cone(wy, ws)°, none of the monomials of g is of the form T T4*. From Lemma
we infer a; + by = det(w;,wy) = 1, hence a; = 0 or by = 0. A contradiction.
So, we have by = 0. By Proposition the anticanonical class —Kx is given as

—Kx =(4—p1,3— a1 — p2).

Here, we have A = cone(ws, ws), which is the positive orthant. Thus, X = X (\) being
Fano means that both coordinates of —Kx are positive. We directly obtain pu; < 3.
Moreover, from 3 — a1 — uo > 0 we deduce a1 = 1 and ps = 1. We end up with specifying
data as in Numbers [I8 to 20 from Theorem 2.1.11

Constellation (iv). We have wy = ws and wg = wy. Lemma applied to
wa, we, wr shows that wa, wg generate the group Z2. A suitable admissible coordinate
change leads to we = w3 = (1,0) and wg = wy = (0,1). Applying Lemma to
w1, wg, w7 and wy, wg, wy shows that the first coordinate of both wy and w4 equals one.
Lemma [2.5.4] applied to wa, w3, ws yields that the second coordinate of ws equals one.
Since the case ws = wg has already been treated in Constellation m (iii), we may
assume ws # (0,1). Thereby, det(wy,ws) > 0 gives wg = (1,0). The degree matrix is

11

11 0
—a; 0 0 O

Q = 1 1 bl

1

1 ai, € ZZ1 .

By Proposition the anticanonical class —Ky of X is given by
—Kx =(5—p1,3—ar — p2).
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From X = X (\) being Fano we infer —Kx € Mov(R)° i.e. both coordinates of —Kx are
positive. We directly obtain pu; < 4. From 3 —a; — g > 0 we deduce a; = 1 and puo = 1.
Now, we have det(w;, ws) = 2, thus Lemma tells us that g must have a monomial of
the form T111T5l5 where I +I5 > 0. From u € cone(wy, ws)° we infer ly,15 > 0. Moreover,
o = 1 means l5 = Iy + 1. Using [ +1l5 = g1 < 4 amounts to I} = 1, [5 = 2 and thus
p = (3,1). We have arrived at Number [21] from Theorem [2.1.1]

Constellation (v). We have ws = wgq and ws = wg. Lemma applied to
w3, wy, ws shows that wy, ws generate the group Z2. A suitable admissible coordinate
change leads to w3 = wy = (1,0) and ws = wg = (0,1). Applying Lemma to
w1, ws, wg and ws, ws, wg shows that wy,we are primitive. Thus, for i = 1,2 either
w; = w3 holds or 7 = cone(ws, w3) gives rise to a smooth variety X (7). According to
Lemma the latter implies w; = (1, —1). This amounts to w; = wy or wy = ws.
Hence, this constellation is completely covered by Constellations (1), (iii).

Constellation (vi). We have ws = wy and wg = wy. Lemma applied to
w3, wy, we shows that wy, we generate the group Z2. A suitable admissible coordinate
change leads to ws = wy = (1,0) and wg = wy = (0,1). Applying Lemma to
w1, wg, w7 and ws, wg, w7 shows that wq, ws are primitive. Thus, for ¢ = 1,2 either
w; = w3 holds or 7 = cone(ws, w3) gives rise to a smooth variety X (7). According to
Lemma the latter implies w; = (1,—1). This amounts to w; = wy or we = ws.
Hence, this constellation is completely covered by Constellations (ii), (iv). O

2.7 Proof of Theorem [2.1.1; Collecting candidates II

In the present part of the proof the Fano property will often lead to numerical constraints
which are presented directly as or can be rephrased as an inequation of the form

1T <T1 4+ Ty, X1,...,Tp € L>1. (2.1)

Lemma 2.7.1. Let n € Zx>2 and consider positive integers x1 < --- < x, satisfying
Eq. (2.1). Then x1,...,z,_1 all equal one or z, < n? —n holds.

Proof. Observe z1---x, < nz,. From this we infer z; < n foralli =1,...,n — 1. If
x; > 1 holds for some 1 <i<n-—1,ie x1---xp_1 > 1, then we obtain

< < —1)=n?—n.
mn_w1“'37n—1—1 <nn—1)=n‘—n

d

This allows us to explicitly present the solutions of Eq. (2.1) in the cases we will face
in the subsequent parts of the proof of Theorem [2.1.1]
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Remark 2.7.2. The following table describes the solutions of Eq. (2.1) for n = 3,4,5

where x1,...,x, are in ascending order. Here, % stands for an arbitrary positive integer.
n ‘ 1 T2 X3 X4 n ‘ T1 Ty T3 T4 Ty
Lx — 1 1 1 1
3|12 2 — 1 1 1 2 2
L2 3 — 111 203
1 1 1 * 1 1 1 2 4
411 1 2 3 1 1 1 2 5
1 1 92 4 1 1 1 3 3

Part ITa « We discuss Case Ila from Remark [2.5.11] i.e., the degree of the relation lies
in the interior of the effective cone, is proportional to some Cox ring generator degree
and o1 = 02 as well as g,_1 = o, hold.

Lemma 2.7.3. In Setting [2.5.1] assume that Mov(R) = Eff(R) and p € Eff(R)° hold.
Let Q denote the set of two-dimensional cones n € A(R) with n° C Mov(R)°.
(i) If X(n) is locally factorial for some n € ), then Eff(R) is a regular cone and every
w; on the boundary of Eff(R) is primitive.
(ii) If X(n) is locally factorial for all n € Q, then, for any w; € Eff(R)°, we have
w; = w1 + w, in Kg or g has a monomial of the form T,Lll

Proof. We show (i). Let w; € g,. Due to u € Eff(R)®, the relation g has no monomial of
the form TZZZ Thus, Lemmas and applied to the triple wy, wsq, w; show that w;
is primitive. Analogously, we see that any w; € g1 is primitive. In particular, we have
wy = ws. Thus, applying Lemma to wy, we, w,, we obtain that Eff(R) is a regular
cone.

We turn to (ii). Throughout this paragraph we regard wq,...,w, as elements of
Ko = Q2. By (i), we may assume w; = wp = (1,0) and w,—1 = w, = (0,1). Consider
w; € Eff(R)° such that Til" is not a monomial of g. Then we find GIT-cones n; C
cone(wy, w;) and 12 C cone(w;, w,) defining locally factorial varieties X (1) and X (2)
respectively. Lemma applied to wi, wy, w; together with X (1) and to w;, wy—1, w,
together with X (n2) shows w; = (1,1) = w; + w,. O

Proof of Theorem[2.1.1]: Part Ila. We deal with the specifying data of a smooth general
hypersurface Cox ring R as in Remark ITa defining a smooth Fano fourfold
X =X(\). By Proposition the relation degree i lies on g3, g4 or g5. We claim that
we can’t have p3 = o4 = p5. Otherwise Corollary shows 1 = cone(wi,ws3) € A(R).
Since X(n) is smooth by Remark , we may apply Lemma to the triple
wi, w3, w4. According to Lemma we obtain det(w;,v) = 1 where v denotes the
primitive generator of the ray g3. Analogous arguments yield det(v,w7) = 1. Using both
determinantal equations we conclude that v and w; + wy are collinear. In particular
wy + wy generates g3 = o4 = 05. Lemma (i) tells us w; = wy and wg = w7. As a
result, Proposition [2.3.7 gives —Kx € g3. Moreover, Lemma [2.5.7] (ii) tells us o3 € A(Ry)
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and thus A\ = g3, which contradicts Q-factoriality, see Proposition (i). A suitable
admissible coordinate change yields u ¢ g5 and we are left with the following three

constellations:

) 03 = 04, it € 03 (i) 03 # 04, 1 € 03 (iil) 03 # 04, 1t € 04

By Lemma (i), we can assume w; = wy = (1,0) and wg = wy = (0,1). We show

= (0,1). Otherwise, by Lemma (ii), we must have ws = (1,1). Consider
N = cone(ws,ws). Then u ¢ X holds. Remark (ii) tells us that 56 is an X'-
face and hence )\ is a GIT-cone. The associated variety X’ is smooth according to
Remark Thus, Proposition yields p € w; + N for some 1 < ¢ < 7. By the
geometry of the possible degree constellations, only ¢ = 1,2 come into consideration.
We conclude pp = (e + 1,e + f) with e, f € Z>o. Positive orientation of (p,ws) gives
f = 0. Hence, p is primitive. By Lemma [2.5.7] (i), this contradicts R, being a spread
hypersurface ring.

Constellation (i). Let v = (v1,v2) be the primitive generator of g3 = ps4. Due to
Lemma [2.5.7) (ii), we have o3 € A(Ry) and thus also X = cone(ws,wr) is a GIT-cone.
The associated variety X’ is smooth by Remark Applying Lemmas and
to the triple ws, w4, w7 yields v1 = 1 and that the first coordinates of w3, w4 are coprime.
Arguing similarly with wy, ws, wy gives vo9 = 1. So, the degree matrix has the form

a
a a,b € Z>1, ged(a,b)=1.

b 0 0 O
b 1 1 1

O =

1
Q=1

We may assume a < b. By Lemma (i), the relation g has monomials of the form Té?’
and Ti‘*. Since ged(a,b) = 1 holds, we conclude py = p = dab with d € Z>;. In
particular pq > ab holds. By Proposition the anticanonical class is given as

—Kx = 2+a+b—p1,3+a+b— pus).

From X being Fano we deduce —Kx € Eff(R)°, that means that each coordinate of —Kx
is positive. Thus, we obtain

24+a+b > dab > ab.
This implies a = 1 or a = 2,b = 3. Consider the case a = 1. Here we have p = dwy,
thus Ry being spread and irredundant ensures d > 2 . Now using the inequality again
leads to 3 + (1 — d)b > 0 and we end up with possibilities
b=1,d=2,3, b=2,d=2,
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leading to the specifying data of Numbers [22] to [24] of Theorem The constellation
a = 2,b = 3 immediately implies d = 1, which gives the specifying data of Number [25| of
Theorem 2.1.71

Constellation (ii). Here we obtain ws = (0, 1) by the same arguments used for showing
ws = (0,1). Write ws = (a3, bs) and let k be the unique positive integer with y = kws.
Then k > 2 as Ry is spread and T1,...,7T7 form a minimal system of generators. By
Proposition the anticanonical class of X = X () is given as

—Kx = 2+ (1 —k)as, 4+ (1 - k)bs).

Moreover, we have g3 ¢ A(R,) due to Lemma (i) and Remark (i), the defining
GIT-cone A of X is the positive orthant. Thus the Fano condition —[Cx € A° simply
means that both coordinates of —K x are positive. This leads to ag = 1, k = 2 and b3 < 3.
These are Numbers 26] to 28] of Theorem 2.1.1]

Constellation (#ii). We obtain w3 = (1,0) by analogous arguments as used for showing
ws = (0,1) before. The degree wy = (a4,by) has to be determined. A suitable admissible
coordinate change yields a4 > bsy. By Proposition the anticanonical class of
X = X () is given as

—Kx =3+ (1 —k)as, 3+ (1 —k)by),

where k € Z>( is defined via p = kws. As in the preceding constellation, we see that A
is the positive orthant. Thus, X (\) being Fano just means that both coordinates of
—Kx are positive. We end up with the specifying data from Numbers [29] to 32| of
Theorem 2.1.71 O

Part IIb « This part deals with Case IIb from Remark [2.5.11} Precisely one extremal
ray of Eff(R) contains more than one Cox ring generator degree, the relation degree lies
in the relative interior of Eff(R) and is proportional to some generator degree.

Lemma 2.7.4. Situation as in Setting . Assume that Ry is a spread hypersurface
Cox ring. If € Eff(R)° holds and every two-dimensional n € A(R) with n° C Mov(R)°
defines a locally factorial X (n), then there is at most one ray o; which is not contained
in the boundary of Eff(R) and contains more than one Cox ring generator degree w;.

Proof. Suppose there are indices 1 < i < j < r where g;, 9;, are different rays not
contained in the boundary of Eff(R) such that w;,, w;, € 0;, wj,, wj, € o; holds for some
1 <iy <ig2 < j1 < j2 <r. From Lemma (ii) we infer g;,0; € A(R). As a result,
there must be some full-dimensional n € A(R) with ° C Mov(R)° and n C cone(wj,, wj, ).
By assumption, X (n) is locally factorial. From Lemma we deduce that three of
Wi, , Wiy, W), , W, generate K as group. Using Lemma we may assume 0; = Q>peq
and o; = Q>pe2. Applying Lemma to wi, wj,, wj, shows that w; = (1,b1) € Kg
holds for some b; < 0. Analogously we obtain w, = (a,,1) € Kg with some a, < 0.
However, this leads to det(wi,w,) =1 —bja, < 0. A contradiction. O
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Lemma 2.7.5. Consider the situation of Setting|2.5.1 If we have wa = w3 and p € g2,
then w4 € p9 holds.

Proof. Suppose wy ¢ 02. Then every monomial of g not being divisible by 77 is of the
form TleT?lf’ where Iy + I3 > 0. Since g is prime, thus not divisible by 7}, at least one
such monomial occurs with non-zero coefficient in g. From ws = w3 we deduce that
g1 = ¢(0,T5,...,T;) is a classical homogeneous polynomial in T, T3, thus admits a
presentation g1 = £y - - - £,, where f1,...,¥¢,, are linear forms in T5 and T3. Here wo = wj
ensures that ¢1,..., ¢, are homogeneous w.r.t. the K-grading. Observe m > 1 as the
presentation of R = Ry is irredundant; see Setting We conclude that g; is not
K-prime, hence T1 € R is not K-prime either. A contradiction. O

Proof of Theorem [2.1.1): Part IIb. As in the previous parts of the proof we work in
Setting [2.5.1} In this part we consider the constellation IIb of Remark 2.5.11} Let us
establish first constraints. Lemma shows that wq, wg, wy generate Z? as group.
According to Lemma [2.5.5 by applying a suitable admissible coordinate we achieve
w1 = (1,0) and that the vector ea = (0,1) generates the ray gg = 07. The following
discussion splits into two major cases

02 # 03 and 03 = 03.

We start with g2 # 3. Here Proposition [2.2.4] ensures p1 & 2. This enables us to apply
Lemma [2.5.4] to wa, we, w7. We deduce that the first coordinate of wy equals one. So far,
the degree matrix is of the form

1 1 a3 a4 as; 0 O

Q= 0 by bs by bs bg br|’ as,as € Z>q, az,ba, ..., by € Z>1.

We claim p € p3. Otherwise, n = cone(ws, w3) € A(R) holds; see Corollary [2.5.10, The

associated variety X (n) is smooth by Remark [2.5.12] Applying Lemma to wy, ws
yields b3 = det(w;,ws3) = 1. Again by Lemma we obtain

1-— a3b2 = b3 — a3b2 = det(wg,wg) =1.

This leads to ag = 0 or by = 0. If ag = 0 holds, then Proposition shows that u lies
in the boundary of Eff(R). Besides by = 0 means g; = g2. Both cases contradict the
assumptions of constellation IIb. So we must have u € o3.

The relative positions of g3, 04, 05 establish three subcases:

N e 2

(i) 03 = 04 (i) 04 = 05 (ili) 03 # 04 # 05

Constellation IIb (i). Let v = (v1,v2) € Z? be a primitive lattice vector on g3 = p4.
According to Corollary [2.5.10| we have n = cone(ws,w3) € A(R). Moreover X (n) is
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smooth by Remark [2.5.12] Applying Lemmas [2.5.4] and [2.5.5] to the triples w1, ws, w4
and we, ws, wy yields vo = 1 and det(wq,v) = 1. Hence 1 — v1bg = 1. This implies v; =0
or by = 0, hence p3 = p7 or 91 = p2. As seen before, this is a contradiction.

Constellation IIb (ii). Let v = (vi,v9) € Z? be a primitive lattice vector on g4 = os.
According to Corollary we have n = cone(wy,wy) € A(R). Moreover X (n) is
smooth by Remark 2.5.12] Applying Lemmas [2.5.4] and [2.5.5] to the triples wy, wy, w3
and wy, wy, ws yields vy = 1 and det(wq,v) = 1. Hence 1 — v1be = 1. This implies v; = 0
or bo = 0. As seen before, this is a contradiction.

Constellation IIb (iii). Corollary [2.5.10| provides us with GIT-cones

m= COHe(w27w4)7 N2 = cone(w5,w6).

The associated varieties X (n;) and X (72) both are smooth by Remark Let us
consider X (72). We may apply Lemma to both pairs wy, wg and wy, wy. From this
we infer that wg and wy; are primitive, thus wg = wy; = (0,1). In addition, we obtain
wy = (1,bs) with some by € Z>1. Note that det(wsz,ws) > 0 implies by > 2.

To keep up an overview, we give the degree matrix with the entries known so far

1 1 a3 1 a5 0 O

Q= 0 by by by bs 1 1|’ as € Z>0, a3,b2,b3,b5 € Z>1, by € Z>o.

Moreover, Lemma (i) provides us with some k € Z>9 such that p = kws holds. To
continue we have to distinguish between o5 = 0g and 05 # 0¢.

We consider the case g5 = g first. Here, the first coordinate of ws vanishes. Applying
Lemma to wy, ws gives ws = (0,1). By Proposition the anticanonical class
—Kx of X is given by

—Kx = 3+ (1 —k)as, 34 by + by + (1 — k)bs).

From X being Fano we infer —Kx € Eff(R)°, in particular 3 + (1 — k)as > 0. Hence, we
must have one of the following configurations

k=2and a3z =1,2, k=3 and az = 1.

Now consider the smooth variety X (71). As we have det(w,ws) = by > 2, Lemma[2.5.3]
yields that ¢ has a monomial of the form TlllTi‘*. Thus by divides ps = kbs. Applying
Lemma [2.5.4] to w1, w3, wy yields ged(bs, by) = 1. So by must divide k. From k = 2,3 and
by > 2 we conclude by = k. Now, we can examine all three possible configurations.
o For k = 2 and a3 = 1 we obtain wy = (1,1), wg = (1,b3), ws = (1,2). Due to
the counter-clockwise order of ws, w3, wy, this amounts to g9 = p3 or 93 = 04. A
contradiction.

o For k = 2 and a3 = 2 the condition det(ws,ws) > 0 gives bs < 4. Moreover,
det(ws, w3) > 0 shows bs > 2. Hence, bs = 3. We end up with specifying data as in
Number B3] from Theorem 2.1.11
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e For k = 3 and ag = 1 we arrive at
= (3,6).

Here we have —Kx = (1, 3), which lies in the relative interior of the one-dimensional
GIT-cone p4. According to Proposition m (i), this contradicts X being Q-
factorial.

It remains to consider the case g5 # 0g. Corollary provides us with GIT-cones
m = cone(ws,wy), n2 = cone(wy,ws), N3 = cone(ws,ws).

For all i = 1,2, 3 the associated variety X (n;) is smooth by Remark Lemma
applied to X (n3) and ws, wg shows that the first coordinate of ws equals one. Applying
Lemma to X (n2) and wy, ws gives ws = (1,b4 + 1). We give an intermediate result
on the degree matrix

Q: é bi Zi b}l b4+1 (1) (1) ag,bz,bg,b56221,b46222.

For i = 4,5 applying Lemma [2.5.3] - to X(m1) and wi,w; yields that g must have a
monomial of the form TlllT ¢ thus b; divides po = kbs. For both triples wy, ws, w4 and
w1, ws, ws we may apply Lemma [2.5.4] - to X (m1). From this we deduce ged(bs,by) = 1
and ged(bs, by + 1) = 1. Together we obtain that by(bs + 1) divides k, in particular & > 6
holds. Proposition says the anticanonical class —Kx of X is given by

—Kx =4+ (1 —k)ag, 3+ by +2by — (1 — k)bs).

In the present case X being Fano implies that both coordinates of —Kx are positive.
From 4 + (1 — k)as > 0 we deduce k < 4. A contradiction.

We turn to the second major case of Part IIb and investigate oo = p3. Applying
Lemmas [2.5.4] and [2.5.5] to the triples ws, w3, wg and ws, w3, w7 shows that wg, wr are
primitive. Consequently wg = w7 = (0,1) holds. We have to work out the subsequent
degree constellations.

' & V2N %

(iv) 03 = 04 = 05 V) 03 # 04,04 = 05 (Vi) 03 = 04,04 # 05  (Vii) 03 # 04 # 05

Constellation IIb (iv). Let v = (v1,v2) € Z? be the primitive lattice vector lying on
02 = --- = p5. Then for each i = 2,...,5 we find a presentation w; = d;v with some
d; € Z>1. Similarly p = kv holds for some k € Z>3. Observe A = cone(ws, ws).
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Lemma yields that ws,ws, wy generate Z? as a group. Now Lemma says
v; = det(v,w7) = 1. This gives the degree matrix the following look

1 dy dz dy ds 0 O
o 0 dg’Ug dgvg d4U2 d5’02 1 1 ’

Q

where we may assume dy < --- < d5. Lemma m (i) guarantees that for any 2 <i <5
the relation g has a monomial of the form Tlll with [; € Z>9, hence we obtain

lidﬂ) = liwi = U = kv.

From this we conclude that k is divisible by each of ds, ..., ds. Moreover Lemma [2.5.4
yields that w;,w;, w7 generate Z? as a group for any 2 < i < j < 5. In particular
da,...,ds are pairwise coprime. Thus dy - -ds divides k as well. By Proposition [2.3.7]
the anticanonical class —Kx of X is given by

~Kx=0+da+---+ds =k, 2+ (d2+---+d5 — k)va).
The Fano condition —/Cx € A° is equivalent to the inequations

24 (do+---+ds —k)vo > (1 +da+---+ds — k)va,
do+---+ds+1>k.

The first inequation directly gives vo = 1 and the second implies ds + -+ + ds > ds - - - ds.
According to Remark we have one of the following two configurations:

d2:d3:d4:1, d2:d3:1,d4:2,andd5:3.

We treat the first configuration. Recall that k = l5ds holds for some l5 € Z>5. Inserting
into the second Fano inequation yields 4 — (1 — I5)ds > 0. We arrive at one of

l5:2andd5:1,2,3, l5:3,4andd5:1.

This immediately leads to specifying data as in Numbers [34] to [38] from Theorem

Dealing with the second configuration from above means to determine u or equiva-
lently k. The second Fano inequation tells us k < 7. Since k is divisible by dy---ds = 6,
we end up with £ = 6. This amounts to Number [39| from Theorem [2.1.1

Constellation IIb (v). The present constellation assumes that g2 = g3 is a not an extremal
ray of Eff(R) and that wy, w5 share a common ray. Remark allows us to apply
Lemma [2.7.4] From this we infer that g4 = g5 must be an extremal ray of Eff(R), hence
coincide with gg = 07. In particular u is not contained in g4 = 05. Thus we may apply
Lemma to both triples wo, w3, w4 and wo, w3, ws. This shows that wy, ws both are
primitive, hence wy = ws = wg = (0, 1).

Let v = (v1,v2) € Z? be the primitive generator of the ray po = 03. We have wo = dav
and ws = dzv for some dy,d3 € Z>;. Here we may assume dy < d3. Lemmas
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and applied to the triple weo,ws, w; yield v; = det(v,w7) = 1. Additionally we
obtain ged(dz,ds) = 1. So far, the degree matrix is given by

1 do dz 0 0 00
Q_ 0 dQUQ dg’Ug 1 1 1 1

According to the assumptions of Part IIb the relation degree u lives in the relative interior
of Eff(R) and is contained in some p;. This amounts to u € g3. Consequently, we find
some k € Z>g such that y = kv. Lemma (i) shows that k is divisible by both of the
coprime integers da, d3, in particular dads | k holds. According to Proposition the
anticanonical class —Kx of X is given by

—Kx = (1+dy+ds —k, 4+ (da + ds — k)va).

Since A = cone(ws,wy) is contained in the positive orthant, the Fano property of X
implies that the first coordinate of —Kx is positive. This leads to do+dg > dods. As do, d3
are coprime, we conclude dy = 1. Suppose d3 = 1. Then ws = w3 holds. Lemma
says wy € p9. A contradiction to gy # 04. We are left with d3 > 1. From ds|k < ds + 1
we conclude k = d3. We arrive at p = w3. This is not possible, since R, is spread and
comes with an irredundant presentation; see also Setting[2.5.1

Constellation IIb (vi). Let v = (v1,v2) € Z? denote the primitive generator of the ray
02 = 03 = p4. We have w; = d;v with some d; € Z>1 fori =2,3,4. Forany 2 <¢ < j <4
Lemma shows that w;, w;, w7 generate the group Z?. Using Lemma yields
that da, ds, d4 are pairwise coprime. In addition we infer v; = det(v, w7) = 1. Up to now,
the degree matrix has the form

1 do ds dg as 0 0

Q: 0 dgvg d31)2 d41)2 b5 1 1)’

as € Zzo, b5 S Zzl‘

Let k € Z>2 such that p = kv. Lemma (i) shows that k is divisible by each of
the pairwise coprime integers do, ds, d4, in particular dedsdy divides k. For the further
discussion we have to distinguish between g5 = pg and g5 # g¢-

First, we consider the case g5 = gg. Here the first coordinate as of ws vanishes.
Moreover, p is not contained in g5 because of p € Eff(R)°. Applying Lemmas m
and to the triple wy, w3, ws yields that ws is primitive, hence ws = (0,1). By
Proposition [2.3.7] the anticanonical class —Kx of X is given by

—Kx=1+ds+ds+dy—k, 3+(d2+d3+d4—k>’02).
Observe A = cone(ws, ws). Thus X = X (\) being Fano is equivalent to the inequations

3+ (do+ds+dy — k)va > (14 do + d3 + dy — k)vy,
1+dy+ds+dy—k > 0.
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Subtracting (d2 + d3 + dg — k)ve from both sides in the first inequation yields vo < 2.
Plugging dodsdy | k into the second inequation shows do + ds + dy > dodsdy. By
Remark [2.7.2] this leads to d2 = 1 and one of the following two configurations

d3:1, d3:2andd4:3.

We study the first configuration i.e. d3 = 1. Recall that k& = md, holds for some m € Z>;.
Inserting into the second Fano inequation gives 3 + (1 —m)ds > 0. We arrive at

dy=1and m=2,3, dy =2 and m = 2.

Altogether we end up with specifying data as in Numbers [0] to [45}

Dealing with the second configuration from above, d3 = 2, means to determine p or
equivalently k. The second Fano inequation gives k < 6. Since dodsdy = 6 divides k, we
conclude k£ = 6. This amounts to Numbers [46] and [47] from Theorem 2.1.11

The next step is to consider the case g5 # pg. According to Proposition we have
either p € g2 or p € p5. We deal with ;1 € g9 first and show afterwards that the latter
does not occur. Here, Corollary provides us with two GIT-cones

7 = cone(ws, ws), N2 = cone(ws,ws).

According to Remark [2.5.12 the associated varieties X (1) and X (n2) both are smooth.
Consider X (n2). Applying Lemma to ws, wg yields that the first coordinate of ws

equals one. Lemmas and applied to X (n2) and wa, w3, ws gives det(v, ws) = 1.
Due to v; = 1, we obtain ws = (1,v3 + 1). So far, the degree matrix is of the form

o[t & d 100

|0 dovy d3vy dyvg wve+1 1 1|°

By Proposition [2.3.7] the anticanonical class —Kx of X is given by
—Kx=02+de+ds+dy—k, 3+ (de+ds+dy+1—k)vs).

Since X is Fano, we have —Kx € Mov(R)°. Note Mov(R) = cone(v, wg). From this we
infer det(v, —Kx) > 0, i.e.,

3+ (1+de+ds+dy—k)vg > (2+de+ds+dy — k)va.

One directly obtains vo < 2. Remark ensures that 756 is an X (ny)-face. This
allows us to apply Proposition telling us that p € w; + Posg(ws, wg) holds for some
1 <4< 7. Only i =1 comes into consideration because of u € g2 and the geometric
constellation of wq,...,w7. So we have a presentation

kv =p=wi +ews + fws, e,f € Z>o.

Vanishing of the first coordinate of wg shows e = k—1. Considering the second coordinate
of p we obtain kve = (k — 1)(v2 + 1) 4+ f. Term manipulation gives vy + 1 = k + f, thus
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k <wy+ 1. We conclude k < 3. Lemma (i) ensures that k is a proper multiple of
each of do, ds, ds. Thus we must have dy = d3 = dy = 1. We have arrived at specifying
data of the following form

1 1 1 1 1 00

Q: 0 Vo Vg V2 U2+1 1 1)’ M:(k’kv2)’

vy <2, k<wy+ 1.

We show that the configuration ve = 2 and k& = 2 does not show up. Here, ws = (1, 3)
and pu = (2,4) holds. Consequently g has no monomial of the form TlllT5l5. Thus
Lemma yields det(wi,ws) = 1. A contradiction. The remaining configurations
amount to specifying data as in Numbers [48] and [49] from Theorem [2.1.1]

To conclude the discussion of Constellation IIb (vi), suppose p € 5. Here we have
A = cone(ws, wg). Lemma applied to w;, wg, wr yields that the first coordinate of w;
equals one for i = 2, 3,4. In particular ws, w3, w4 are primitive, hence coincide with the
primitive generator v = (1, vy) of the ray go = 03 = 4. Up to now, the degree matrix is

of the form
1 1 1 1 a5 0 O

= bs € Z
Q OU202U2b5117a5’5621

By Proposition the anticanonical class —Kx of X is given by
~Kx = (4+ (1 —-k)as, 3v2 +2+ (1 — k)bs).

From X being Fano we infer that —Kx lives in the relative interior of A\ = cone(v, wg).
This leads to the inequation

3vy 4+ 2+ (1 — k)bs > (4+ (1 — k)as)va,

This inequation can be simplified by subtracting 3vy from both sides. Moreover, combining
02 # 05 with counter-clockwise ordering of the generator degrees gives det(v,ws) > 0,
hence bs > asve. Altogether we obtain

1+ (1 — k‘)b5 > vg + (1 — k:)a5122 > v9 + (1 — k‘)b5.

This forces v9 = 0. A contradiction to g1 # o.

Constellation IIb (vii). Let v = (v1,v2) € Z* be the primitive lattice vector lying on the
ray 02 = p3. For i = 2,3 we have w; = d;v, with some d; € Z>1. Lemmas and
applied to we, w3, wg yield v; = det(v, wg) = 1 and ged(da, ds) = 1 in addition. For the
further discussion we have to distinguish between g5 = gg and g5 # g¢-

First we consider g5 = pg. Here, the first coordinate of ws vanishes. Applying
Lemmas and to the triple wa, w3, ws shows ws = (0,1). According to Proposi-
tion we face one of the following cases

B E 02 = 03, € 04.
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Assume p € p4. Here Lemma m (i) provides us with some k € Z>2 such that u = kwy.
Moreover Lemmas [2.5.4] and [2.5.5] this time applied to w;, wg, w7 for i = 2,3, give that
wa, ws are primitive, thus both equal v. So far, the degree matrix has the form

11 1 a4 0 0 O

Q= [w,...,wr] = 0 vy wo by 1 1 1| ag,by € Z>1.

The anticanonical class —Kx of X is given by Proposition [2.3.7] as
—Kx = (3 + (1 - k)CL4, 3+ 2v9 + (1 — k:)b4)

Here, we have A = cone(ws, ws); see also Corollary [2.5.10] As a result the Fano condition
—Kx € A° is equivalent to the inequations

34+2b+ (1 —k)by > (34 (1 —k)ay)ve, 34 (1 —k)ag > 0.
The second inequation implies that we must have one of the following configurations
k=2and a4 = 1,2, k=3and aqs = 1.

Inserting values for k& and a4 into the first inequation from above provides us with
further restrictions on vs, by in the respective configuration. We examine this for all three
configurations of k and ay.

o For k=2 and ag = 1 we get by < 3. From by — v9 = det(ws, wy) > 0 follows vy = 1
and by = 2. We arrive at specifying data Number [50| from Theorem [2.1.1

o For k =2 and a4 = 2 we obtain 3 — (bgy — 2v3) > v. Due to anti-clockwise ordering
of wy,v,ws we have vy > 0 and by — 2v9 > 0. Together we obtain by — 2vo = 1 and
v9 = 1. Therefore by = 3. We end up with specifying data as in Number [51| from
Theorem 2.1.71

o For k=3 and ag = 1 we get 3 — 2(by — v2) > v9. Taking by — vy = det(ws, wy) >0
into account yields vo < 1. A contradiction.

We turn to p € 0. As v is the primitive lattice vector generating s, we have u = kv
for some k € Z>;. Moreover, Corollary provides us with GIT-cones

m = cone(ws,wy), N2 = cone(wy,ws).

Each of them give rise to smooth a variety X (7;); see Remark Now we want
to determine wy = (a4,bs). We apply Lemma to X (n2) and wy, we, wy. Thus we
obtain a4 = det(wy,ws) = 1. Applying Lemmas and again, this time to X (1)
and wa, w3, wy, shows det(v,ws) = 1. We have v; = a4 = 1, thus we obtain by = vy + 1.
So far the degree matrix looks like

1 da ds

1
- 0 dQUQ dgvg U2+1

0 00
@ 1 1 1)°

1
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Proposition tells us that the anticanonical class —Kx of X is given by
—Kx=2+4+de+ds—k, 4+ (1+dy+ds — k)va).
From X being Fano we deduce —Kx € Mov(R)°. This yields det(v, —Kx) > 0, i.e.,
4+ (1+dy+ds —k)vg > (2+do + d3 — k)vs.

From this inequation one directly obtains vy < 3. Remark (ii) guarantees that
Y45 is an X (n2)-face. Applying Proposition yields pu € w; + Posz(wy, ws) for some
1 <i<7. Only ¢ =1 comes into consideration due to p € g2 = p3 and the geometric
constellation of wq,...,w7. So, we have a presentation

kv =p=wi +ews + fws, e, f € Z>o.

As the first coordinate of ws vanishes, we must have e = k — 1. Considering the second
coordinate of u gives kvy = (k—1)(va+1)+ f. Term manipulation leads to va+1 = k+ f.
This implies k < vy + 1, in particular k¥ < 4. Lemma (i) ensures that k is a proper
multiple of both de and ds. Thus, do and ds being coprime, we must have ds = 1 and
ds = 1,2. Note that do = d3 = 1 implies wy = w3. Lemma shows that this case
does not occur as we have g1 # g2 and g3 # 04. We are left with d3 = 2. This forces
k = 4 and thus vy = 3. The resulting specifying data is

1

121000
Q_036411

e on=2),
Here we have —Kx = (1,4), which lies in the relative interior of the one-dimensional
GIT-cone g4. According to Proposition (i), this contradicts X being Q-factorial.
The next step is to consider g5 # 0. According to Proposition [2.3.5] one of the
pairwise different rays g3, 04, 05 contains u. We claim that only u € g4 is possible.
Suppose p € p3. Here Corollary ensures 17 = cone(wy,ws) € A(R). The
associated variety X (n) is smooth by Remark Applying Lemma to the pairs
wy, ws and wy, we shows that det(wg, ws), det(wy, wg) both equal one. Lemmas m
and applied to we,ws,ws yields det(v,ws) = 1. In the same way we obtain
det(v,wg) = 1. Altogether, Lemma says p3 = 04 or o5 = gg. A contradiction.
Suppose u € p5. Corollary provides us with GIT-cones

1 = cone(ws,wy), 12 = cone(wy, ws).

According to Remark [2.5.12| they give rise to smooth varieties X (7;) and X (n2). Let
us determine wy = (a4,bs). Applying Lemma to X(m1) and wy,wy gives by = 1.
Lemma applied to X (12) and wy, we, w7 shows ag = 1. We obtain

det(v,wg) =1 —wvy <0.

As v and w3 are proportional and the generator degrees are in counter-clockwise order,
this contradicts o3 # 04.
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We must have i € g4. According to Corollary [2.5.10] the following GIT-cones are in
the game
7 = cone(ws, ws), N2 = cone(ws,ws).

The associated varieties X (11) and X (172) both are smooth; see Remark[2.5.12] Lemmal[2.5.3]
applied to X (n2) and ws, wg yields that the first coordinate of ws equals one. Recall that
v = (1, v9) is the primitive generator of the ray go = 03. Applying Lemmas and @
to X (m) and we,ws, ws gives ws = (1,v2 + 1). For ¢ = 2,3 applying Lemmas @
and to w;, wg, wy shows that w; is primitive. Hence wy and w3 equal v. At this
point the degree matrix is of the form

_t 1 a 100
Q_ 0 Vg V2 b4 1)2+1 1 1 ) a47b4€Z21.

Besides, Lemma (i) tells us p = kwy for some k € Z>3. By Proposition the
anticanonical class —/Cx of X is

—Kx =@+ (1 —k)ag, 3+ 3va+ (1 — k)by).
Since X is Fano, —Kx € Mov(R)® holds. This is equivalent to the inequations
34+ 3ve+ (1 —k)by > (44 (1 — k)ag)va, 44+ (1 —k)ag > 0.

Note that counter-clockwise ordering of ws, w4, ws implies a4 > 2. For this reason the
second inequation yields £ = 2 and a4 = 2,3. We have to determine v, by for both
configurations. Inserting & = 2 into the first inequation leads to 3 — (by — aqve) > vs.
Using by — aqvy = det(ws, wyq) > 0 shows aqvy — by = 1. This implies v9 = 1 and thus
by = a4 + 1. For ay = 2 this leads to Number from Theorem For a4 = 3 the
resulting specifying data is
1113 100
@=lp 11421 1] #0638
Here we have —Kx = (1,2), which lies in the relative interior of the one-dimensional
GIT-cone g5. According to Proposition (i), this contradicts X being Q-factorial. [

Part IIc o We elaborate Case Ilc from Remark 2.5.111 This means that each extremal
ray of Eff(R) contains precisely one Cox ring generator degree and the relation degree
shares a common ray with some generator degree living in the relative interior of Eff(R).

Proof of Theorem Part Ilc. In the present part of the proof, we have that g, ..., 06
are not contained in the boundary of Eff(R). Observe that g9, ..., 06 do not coincide.
Otherwise, Mov(R) is one-dimensional; a contradiction to the assumptions made in
Setting [2.5.1] Remark allows us to use Lemma From this we infer that
either g9, ..., 06 are pairwise different or that there is a unique ray o;, where 2 < j <5,
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such that o; contains between two and four of wo, ..., ws. We end up with four subcases
where N denotes the number of indices ¢ such that w; € ¢; holds.

N=4 N=3 (iii) N = (iv) o; # o for i # j

Constellation (Ilc-i). A suitable admissible coordinate change leads to

02 = 03 =04 =05, 0O5F 06

Let v € Z? be the primitive generator of the ray go. Proposition tells us p € 09.
We may apply Lemmas and to wa, w3, wy. This shows that v, w; generate Z2.
Thus, a further admissible coordinate change gives v = (1,0) and wy; = (0,1). Now,
Lemma applied to ws, w3, wg yields that the second coordinate of wg equals one.
So far, the degree matrix is given by

ar az a3z a4 as ag O

Q: _b, 0 0 0 0 1 1 al,...,aﬁ,b16221.

We may assume as < --- < a5. For each 1 <i < j <5 we apply Lemma to the
triple w;, wj, wr and obtain gecd(a;, a;) = 1. Besides, i € g2 means that the second
coordinate po of the relation degree p vanishes. By Proposition the anticanonical
class —Kx of X is thus given as

—ICX:(a1+~-'+a6—u1,2—bl).

From X being Fano we infer —Kx € Mov(R)°. As Mov(R) is contained in the positive
orthant, we immediately obtain by = 1. Observe det(wy,ws) = a1 + ag > 1. By
Lemma [2.5.3| the polynomial g must have a monomial of the form Th 1 ZG. Since po
Vanlshes7 we must have l; = lg. We conclude that a; +ag divides 1. Besides, Lemma
tells us that wy, w;, wg generate Z? for any 2 < i < 5. We conclude that the group Z?2 is
also spanned by

w1 + wg = (al + a670)7 w; = (ai70)a We = (aﬁa 1)

From this we deduce ged(a; + ag,a;) = 1. Using —Kx € Mov(R)° again we obtain
det(—Kx,ws) > 0 or equivalently

ai +---+as > pi. (2.2)

Lemma applied to wy, w7 provides us with some d; € Z>; such that dia; = g
holds. Moreover, Lemma tells us that for any 2 <4 <5 there is some d; € Z>o such
that u = d;w; holds. In particular, the first coordinate p; of p is divisible by each of the
pairwise coprime integers aq,...,as. We arrive at the following inequation

a1++a5>a1a5
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Note that aq,...,as are not necessarily in ascending order. Applying Remark

to a suitable permuation of ay,...,as yields that we have to deal with the following
configurations:

(1) ap=---=as=1and a5 > 1,

(2) ag >2and ag =---=as =1,

(3) ag=az =a3 =1, ag =2 and a5 = 3,
(4) a1:2,a2:a3:a4:1,a5:3,
(5) ag =3,a=a3 =a4 =1, a5 = 2.

Constellation (Ilc-i-1). We have u; = dsas where d; > 2. Inserting into the Fano
condition Eq. (2.2) yields 4 + a5 > dsas. Then again, this leads to

as =1 and d5 = 2, 3,4, as = 2,3 and ds = 2.

We examine these configurations explicitly.

e For as =1 and ds = 2 we have pu; = 2. From 3 being divisible by ag + 1 we infer
ag = 1. This amounts to Number [53] from Theorem [2.1.1

e For as =1 and ds = 3 we have pu; = 3. From p; being divisible by ag + 1 we infer
ag = 2. This amounts to Number [54] from Theorem

e For as =1 and ds = 4 we have pu; = 4. From p; being divisible by ag + 1 we infer
ag = 1,3. This amounts to Numbers [55] and [56] from Theorem [2.1.1]

e For as = 2 and ds = 2 we have 1 = 4. From pu; being divisible by ag + 1 we infer
ay + ag = 2,4. This contradicts ged(a; + ag,2) = 1.

e For a5 = 3 and d5 = 2 we have u; = 6. From pu; being divisible by ag + 1 we
infer ag = 1,2,5. We obtain ag = 1 due to ged(aj + ag,3) = 1. This amounts to
Number 57 from Theorem 2.1.11

Constellation (IIc-i-2). We have dya; = pu1 = liag + lgag where [, lg > 0. This implies
d1 > 2. Here, inserting into Eq. gives 4+ a1 > dya;. This leaves us with d; = 2 and
a; = 2,3. Suppose a; = 2. Then we have 1 = 4. From a1 + ag|p1 we infer ag = 2. This
contradicts ged (a1, ag) = 1. Suppose a; = 3. Then we have py = 6. From a; + ag|p1 we
infer ag = 3. This contradicts ged (a1, ag) = 1.

Constellation (IIc-i-3). We have puy = 3ds. Inserting into Eq. (2.2) gives 8 > 3d5, hence
ds = 2 and p3 = 6. From aj + ag|pu1 we infer ag = 1,2,5. In each of these cases the
choice of ag contradicts ged(ag + 1,2) = 1 or ged(ag + 1,3) = 1.

Constellation (IIc-i-4). We have py = 3ds. Inserting into Eq. (2.2) gives 8 > 3d5, hence
ds = 2 and py = 6. From ay + ag|p we infer ag = 3. This contradicts ged(as, ag) = 1.

Constellation (IIc-i-5). We have puy = 2ds. Inserting into Eq. gives 8 > 2ds, hence
ds = 2,3. Suppose ds = 2. Then we have p; = 4. From 3 + ag|p; we infer ag = 1. This
contradicts ged(aj + ag,2) = 1. Suppose ds = 3. Then we have p; = 6. From 3 + ag|u1
we infer ag = 3. This contradicts ged(a; + ag,2) = 1.

Constellation (IIc-ii). After a suitable admissible coordinate change we have g3 = g4 and
one of the following constellations.
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N N

(1) 02 = 03, 04 # 05, 05 # 06 (2) 02 # 03, 04 = 05, 05 # 06

Constellation (Ilc-ii-1). After a suitable admissible coordinate change we may assume
that e; = (1,0) generates the ray g2 = 03 = 04. Proposition says [t € g2 Or [ € Q5.
Thus we may apply Lemma [2.5.4] to both triples wa, w3, wg and we, w3, w7. From this we
infer that the first coordinates of wg, wy equal one. By applying a suitable admissible
coordinate change we achieve w7y = (0,1). Up to now, the degree matrix is of the form

ay ay a3 a4 a5 ag 0

Q:[w17"')w7]: _bl 0 0 0 b5 1 11’ aiubiGZZL

We narrow the position of the relation degree. Suppose p € g2. Then n = cone(ws, wg) is
a GIT-cone leading to a smooth variety X (n); see Corollary and Rernark Ap-
plying Lemma to X (n) and ws, wg gives as = det(ws, wy) = 1. Again Lemma
this time applied to ws, wg, shows 1 — aghs = det(ws, wg) = 1. Hence ag = 0 or bs = 0.
However, the current geometric constellation of the generator degrees ensures ag, bs > 0.
A contradiction. So we must have u € gs.

Lemma, tells us that p = kws holds for some k € Z>3. By Proposition [2.3.7] the
anticanonical class —/C of X is given by

—Kx = (a1 +ag + a3z +ag + ag + (1 — k)as, —by +2 + (1 — k)bs).

From X being Fano we infer —K € Mov(R)®°, in particular —b; + (1 —k)bs +2 > 0. As we
have by,b5; > 0 and k£ > 2, this inequation does not hold. We conclude that the present
constellation does not admit any candidate for a smooth Fano variety.

Constellation (Ilc-ii-2). By applying a suitable admissible coordinate change we achieve
that e; = (1,0) generates the ray o3 = o4 = p5. Proposition m gives |1 € ps.
Corollary [2.5.10] provides us with GIT-cones

7 = cone(ws, ws), N2 = cone(ws,ws).

Remark ensures smoothness of the associated varieties X (1), X (1n2). We may
apply Lemma to X (n1) and both triples wy, ws, ws and wy, w3, wy. From this we
obtain w; = (a;, —1) for i = 1,2. Applying Lemma to X (n2) and w3, wy, w; yields
that the second coordinate of wg, w7 equals one. We arrive at the following degree matrix

ai a2 asz a4 a5 ag ar

Q= -1 =1 0 0 0 1 1] ala“-aaGeZZl, a?GZzo.

Note that p € g3 implies that the second coordinate of y vanishes. Proposition [2.3.7]
yields that the second coordinate of —/Cx vanishes as well i.e. —Kx € p3. Since p3 is a
GIT-cone of dimension one, this contradicts Q-factoriality of X; see Proposition [2.3.5]
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Constellation (Ilc-iii). Here, there is exactly one index 2 < j < 5 such that o; = 0j4+1
holds. A suitable admissible coordinate change reduces the situation to the following

(1)j=2 (2)j=3

Constellation (Ilc-iii-1). We apply a suitable admissible coordinate change such that
e1 = (1,0) spans g2 = p3. Proposition says that u is contained in one of g3, 04, 05.
First, we treat the case u € ug. Corollary [2.5.10] provides us with GIT-cones

m = cone(ws,wy), 12 = cone(ws,ws).

According to Remark the varieties X (71), X (n2) both are smooth. Lemma
applied to X (1) and wa, w3, w; shows w; = (a;,1) for j = 5,6,7. A suitable admissible
coordinate change leads to wy = (0,1). From Lemma applied to X (n2) and ws, wy
we infer as = det(ws, w7) = 1. Applying Lemma once more, this time to ws, weg,
yields 1 — ag = det(ws,ws) = 1. We conclude ag = 0, thus wg = (0,1) = wy. A
contradiction to gg # o7.

Repeating the above arguments with 71 = cone(ws, ws) instead of 71 = cone(ws, wy)
yields that the case p € o4 neither shows up.

Now we turn to p € p5. We have n = cone(ws,ws) € A(R); see Corollary
Remark says that X(n) is smooth. Lemma applied to ws, w3, w; shows
w; = (aj,1) for j =4,6. A suitable admissible coordinate change leads to ws = (0, 1).
From g1 # g2 we deduce wy = (aj,—by1) for some ay,b; € Z>;. Moreover, observe
aq > 0, which is due to g4 # 6. This amounts to det(wq,ws) = a1 + a4b; > 1. However,
Lemma says det(wy,ws) = 1. A contradiction.

Constellation (Ilc-iii-2). We apply a suitable admissible coordinate change such that
e1 = (1,0) generates g3 = p4. Proposition [2.2.4] gives p1 € g3 or p € gs.

Suppose p € 3. Then n = cone(ws,ws) € A(R) defines a smooth X(n); see
Corollary and Remark Applying Lemma to w3, w4, w; shows w; =
(aj,1) for j =5,6,7. A suitable admissible coordinate leads to w7 = (0,1). Applying
Lemma to both pairs ws, wy and wg, wy yields ws = (1,1) = wg. A contradiction to

05 7 6.
We deal with u € p5. Corollary [2.5.10] provides us with GIT-cones

71 = cone(ws, ws), N2 = cone(ws, ws).
According to Remark [2.5.12 the associated varieties X (1) and X (n2) both are smooth.

Applying Lemma to X (n2) and the triples ws, w4, wg and ws, wy, w7 shows that the
first coordinate of wg and wy equals one. We apply Lemma to X (m1) and wy, w3
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Chapter 2. Smooth Fano fourfolds of Picard number two

respectively wo, w3. As a result, the second coordinates of wy and ws both equal minus
one. So far the degree matrix is of the form

ar a 1 1 a5 ag O

Q=17 1 0 0 by 1 1|’

a;, b5 S ZZl-

Remark ensures that we may apply Proposition to X (n1) and ~; 3. From this
we infer that p admits a presentation

p=wj+hw +l3ws, Ii,l3 € Z>o.

Because of p € g5 and the geometry of the present degree constellation, only j = 6,7
come into consideration. This amounts to us = 1 —1Iy. If [; = 0 holds, p is primitive.
Since R, is spread, this implies that 75 is a monomial of g. This contradicts the choice
of an irredundant presentation for R. If [y > 0 holds, us is negative, hence pu cannot lie
on ps5; a contradiction.

Constellation (IIc-iv). Proposition says 4 lies in one of g3, 04, 05. If 11 € p5 holds, a
suitable admissible coordinate change leads to u € 3. This reduces the situation to

& %

(1) p€ o3 (2) p € oa

Constellation (Ilc-iv-1). We apply a suitable admissible coordinate change such that
e1 = (1,0) spans the ray p4. Corollary [2.5.10] provides us with GIT-cones

1m = cone(wyg, ws), 12 = cone(ws, wg)

Then X (1) and X (n2) both are smooth by Remark For j =5,6,7 Lemma
applies to X (n1) and wy,w;. Thus the second coordinate of ws, wg, w7 equals one. A
suitable suitable admissible coordinate leads to w; = (0,1). Applying Lemma
again, this time to X (72) and ws, we respectively ws, wr, yields ws = (1,1) = wg. This
contradicts g5 # 0¢.

Constellation (IIc-iv-2). Corollary [2.5.10| provides us with GIT-chambers
n = cone(ws, ws), 12 = cone(ws,ws), N3 = cone(ws, W)

According to Remark [2.5.12| every associated variety X (n;) is smooth. Consider X (n;
Lemma applied to wy,ws and we, w3 yields det(wy,w3) = 1 and det(wq,ws) =
By applying a suitable admissible coordinate change we achieve

).
1.

. 1 as+1 a3 a4 ... ay

Q=1 1 1 by ... by| W@bi€Zx
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2.7. Proof of Theorem 2.1.1L Collecting candidates II

According to Lemma (i) we have u = kw, for some k € Z>s. In particular us is
divisible by bs. Applying Lemma to the pair wy,w; for j = 5,6,7 shows that o
is divisible by each of b5, bg,b7. From Lemma applied to any triple wq,w;, w;
where 4 < i < j < 7 follows that by, ...,b; are pairwise coprime. Together we obtain
by - - b7 | p2. By Proposition the anticanonical class —K of X is given by

—K=Q2+az+ - +ar—p1, 2+bs+ by — p2).

Since X is Fano, —K € Mov(R)° holds. In particular, the second coordinate of —K is
positive. This leads to the following inequation:

by by <o <bg+---4+br+2. (2.3)

Let 4 < j1,...,ja < 7 be pairwise different indices such that b;, < --- < bj, holds.
We can use Remark 2.7.2] to get constraints on bj,,...,bj,. In doing so we interpret
bj, ---bj, < bj, +---bj, +1 as an inequation in five variables where we only consider
solutions where at least one variable equals one and the remaining variables are pairwise
coprime. This leads to b, = bj, = 1 and one of the following configurations

bj3 = 1, bj3 =2 and bj4 = 3,5.

We study the case b;, = 1. First of all we show that bs = bg = b7 = 1 does not occur.
Suppose b; = bg = by = 1. Lemma applied two X (n3) yields det(ws,wg) = 1 and
det(ws,w7) = 1. This amounts to ag = a5 — 1 = a7 i.e. wg = w7. A contradiction. We
conclude bj, > 2 and by = 1. The latter implies o = k. Since b;,, bj,, bj, all equal one,
we may assume j; < jo < j3 in what follows. We know that the second coordinate of
w3, wj, , Wj,, Wj, equals one. Thus counter-clockwise orientation of these four generator
degrees implies
det(ws, wj,) = az — a;, > 3.

Note w4 € n5. We apply Lemma to X (n2) and wa, wy, wj, as well as w3, wy, wj,.
From this we infer that k = s is divisible by both det(ws, wj,) and det(ws, wj,). Observe

det(wg,sz) = det(wg, sz) + 1.

Thus u9 has a factor of the form n(n+1) where n > 3, in particular ps > 12. Furthermore,
we have o = dbj, for some d € Z>1. Suppose d = 1. Then us = b;, is true, hence g has

no monomial of the form Té3’1ﬁ4 where I3 +1;, > 0. Lemma [2.5.3| yields det(ws, w;,) = 1.
Since p € cone(ws, wj,) holds, u is an integral positive linear combination over ws, wj,.
A contradiction. We are left with d > 1. Inserting into yields 0 < (d — 1)bj, < 5.
This forces po = dbj, < 8. A contradiction.

We turn to bj, = 2 and b;, = 3. Inserting into gives kby = 2 < 9. Applying
Lemma to X (n2) to wa,ws,w; as as well w3, wy, w; yields that k is divisible by
both det(ws,w;) and det(ws, w;) for all j > 4. Due to bj, = b;, we may assume j; < jo
from here on. We have that the second coordinates of w3, w;,,w;j, all equal one. Thus
from w3, wj, ,w;, being oriented counter-clockwise we deduce

det(ws, wj,) = as — aj, > 2.
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Chapter 2. Smooth Fano fourfolds of Picard number two

Note ja > 4 and det(ws, wj,) = det(ws, wj,) + 1. We conclude that k has a factor of the
form n(n + 1) where n > 2. Now ug = kby < 9 forces pos = k =6 and by = 1 i.e. j; = 4.
Additionally, we obtain a3 — aj, = 2. Furthermore, we have

2a3 — aj, = det(wz, wj,) | k =6, 2a3 — aj, + 2 = det(ws, wj,) | k = 6.

The only positive integer n such that 6 is divisible by n as well as n +2 is n = 1. Thus
2a3 — aj, = 1. Similar arguments give 3az — aj, = 3. We have

’ij = (ag — 2, 1), wj3 = (20,3 — 1, 2), U]j4 = (3&3 — 3, 3)

Checking the orientation of wj,, wj,, w;, shows jo =7, j3 = 5, and js = 6. Hence we
may apply Lemma to X (n3) and wj, = ws, wj, = wy. We obtain det(ws,w7) =1,
yet this is a contradiction, since

det(wj,, wj,) = 2a3 — 1 — 2(ag — 2) = 3.

Finally we deal with b;, = 2 and b;, = 5. Inserting into gives kby = po < 11.
As by --- by = 10 divides po, we arrive at po = 10. Due to b;, = b;, we assume j; < jo
from here on. We have that the second coordinates of w3, w;,, w;, all equal one. Thus
from w3, w;, ,w;, being oriented counter-clockwise we deduce

det(ws, wj,) = as — aj, > 2.

Note jo > 4 and det(ws,w;,) = det(ws,w;,) + 1. Applying Lemma to X (n2)
and wa, wy, wj, as well as w3, wy, wj, yields that & is divisible by both det(w2,w;,) and
det(ws, wj,). We conclude that k and thus ps = 10 has a factor of the form n(n + 1) for
some n > 2. A contradiction. O

2.8 Proof of Theorem 2.1.1: Collecting candidates III

We treat Case III from Remark [2.5.11] i.e., the degree p of the relation lies in the
bounding ray o1 of the effective cone.

Lemma 2.8.1. Let X = X (\) be as in Setting and 1 < i < j <r such that g
neither depends on T; nor on T). If X is quasismooth, then w;, w; lie either both in A~
or both in \T.

Proof. Otherwise, we may assume w; € A\~ and w; € AT. Then ~;; is an X-face and
X (vi,5) is a singular point of X. According to Proposition m (iv), this contradicts
quasismoothness of X. O

Proof of Theorem [2.1.1): Part III. We may assume that the ray g; is generated by the
vector (1,0). Let m be the number with w1, ..., w, € 01 and wy41, ..., w7 € 1. Observe
that due to p € g1, the relation g only depends on T1,...,T,.

The first step is to show that only for m = 5, the specifying data wy, ..., w7 and p in
K = 72 allow a hypersurface Cox ring. Since p € o1, Proposition yields m > 3. As
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Mov(X) is of dimension two, we must have m < 5; see Setting Lemma shows
Wimatt,---,wr € AT, Applying Lemma to triples wy, wo,w; for i > m + 1, we obtain

w=(u1,0), w; = (a;,0), i=1,...,m, w; = (a;, 1), i=m+1,...,7,

where, for any two 1 <7 < j < m, the numbers a; and a; are coprime and we may
assume a7 = 0. Moreover, we must have a,,+1 = ... = ag, because otherwise we obtain
a GIT cone A # n € A(R) with n° € Mov(R)° and the associated variety X (n) is not
quasismooth by Lemma [2.8.1] contradicting Remark Proposition and the
fact that X is Fano give us

(@ +...+a6—p1, 7—m) = —Kx € X° = cone((1,0), (am+1,1))°.

Since ay, ..., a,, are pairwise coprime, the component p; of the degree of the relation
g is greater or equal to aj - - - ap,. Using moreover a,,+1 = ... = ag, we derive from the
above Fano condition

ar-am < pp < ap+ o+ am — Gpa,

where we may assume a1 < ... < a,,. We exclude m = 3: here, g = g(T1,T2,T3), the
above inequality forces a; = az = 1, hence (77,73, 0) is classically homogeneous and T3
is not prime in R, a contradiction. Let us discuss m = 4. The above inequality and
pairwise coprimeness of the a; leave us with

a1:a2:a3:1, a1:a2:1,a3:2,a4:3.

In the case a3 = 1, we must have p; = kay with some k € Z>2, because otherwise, the
relation would be redundant or, seen similarly as above, one of 17,75, T3 would not be
prime in R. The inequality gives (k — 1)ay < 3 — am41. We arrive at the following
possibilities:

am+1:a4:1,k:2, am+1:0,a1:1,k:2,3, am+1:0,a1:k:2.

The first constellation implies that R is not factorial and hence is excluded. In the each
of remaining ones, X is a product of Py and a surface Y which must be smooth as X is
so. Moreover, for the Picard numbers, we have

p(X) = p(P2) +p(Y).

Thus, p(Y) = 1. Finally, being a Mori fiber, Y is a del Pezzo surface. We arrive at
Y =P, and hence X is toric. A contradiction to X having a hypersurface Cox ring. We
conclude that m =5 is the only possibility. In this case, A = cone(wy, wg) holds and our
degree matrix is of the form

ay ... as Qg 0
— < <...< < .
Q 0 ... 0 1 1 lsms...sa5 0<ag
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Chapter 2. Smooth Fano fourfolds of Picard number two

As mentioned before, g neither depends on Tg nor on T7. Consequently, we can write R
as a polynomial ring over a K-graded subalgebra R’ C R as follows:

R = R'[Ty, T4, R = C[T,...,T5]/(g)-

Moreover, R’ is Z-graded via deg(T;) := a;. We claim that the Z-graded algebra R’ is a
smooth Fano hypersurface Cox ring. if the K-graded algebra R is so. First observe that R’
inherits the properties of an abstract Cox ring from R. Moreover, with X’ = V(g) C C?,
we have X = X’ x C2. Now, the action of the one-dimensional torus H’ = Spec C[Z] on
X’ admits a unique projective quotient in the sense of Construction namely

X' = X'JH, X' = X'\ {0}.

Propositions and show that X’ is a Fano variety. Observe that each X'-face of
75 < 7 of the orthant 4/ C Q5 defines and X-face vy = 7{, + cone(eg, e7). In particular,
using Proposition [2.3.5] (ii) and (iv), we see that X’ is smooth if X is so. Moreover, R’ is
a smooth hypersurface Cox ring if R is so. The smooth Fano threefolds with hypersurface

Cox ring are listed in [51, Thm. 4.1], which gives us the possible values of ay, ..., a5 and
from the Fano condition on X, we infer ag + u1 < a1 + ...+ as. So, we end up with the
specifying data as in Theorem [2.1.1] Numbers [5§] to [67} O

2.9 Proof of Theorem [2.1.1: Verification

The next to last step in the proof of Theorem [2.1.1]is to make sure that specifying data
as in Numbers [I] to [67] indeed lead to smooth general hypersurface Cox rings.

Let (@, p) be specifying data from Theorem Consider the linear Z?-grading on
S = K[T,...,T7] given by Q : Z" — Z?. We run Construction with 7 € A(S)
such that —K € 7° holds. In each case one easily verifies —KC € Mov(S5)°, so the
desired 7 always exists. We start constructing a non-empty open subset U C U, as in
Definition [2:4.5] thereby obtaining a Fano general hypersurface Cox ring. Afterwards we
shrink U suitably to achieve smoothness.

Table on page lists for each 1 < 4 < 7 a p-homogeneous prime binomial
T% —T" € S not depending on T;. Thus, Proposition provides us with a non-empty
open subset U C S, such that 711, ..., T} define primes in R, for all g € U. Since p # w;
holds for all 4, Remark [2:4.9] ensures that T, ..., 7% are a minimal system of generators
for Ry, whenever g € U. The next step is to make sure that each R, admits unique
factorization. Here we encounter three different classes of candidates.

Numbers and[50H67 One directly checks that the convex hull
over the v € Z7 with Q(v) = u is Dolgachev polytope; we have used the Magma program

from Intrinsic for this purpose. Proposition [2.4.13| (ii) ensures that R, is factorial
after suitably shrinking U.

Numbers [29{25, Here, the cone 7/ = cone(ws) € A(S) satisfies (7/)° C Mov(S)°. Thus,
Construction [2.4.1] gives raise to a toric variety Z’. We have p € (7/)° and one directly
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verifies that p is base point free for Z’'. Hence, Proposition [2.4.13| (i) shows that after
shrinking U suitably, R, admits unique factorization in R, for all g € U.

Numbers [£3, [{3, [£3, [47, [{9 After applying a suitable coordinate change, the specifying
data (@, i) is as in the following table.

No. Q I
11 1 2 2 20] (4-2)
-1 -1 -1 -1-1-11] (6,-3)
[ ] 1 1 1 2 2 40]

4_5 -1 -1 -1 -1 -1 -2 1 (8 —4)
[ ] 1 1 1 2 4 60

4 -1 -1 -1-1-2 =31 (12,-6)
[ ] 1 1 2 2 2 30]

f -1 -1 -1 -1 -1 =2 1] (6,-3)

We apply Corollary [2.4.20, In each case, conditions (i) and (ii) from Corollary [2.4.20
can be directly checked. Condition (iii) is not affected by coordinate changes, hence is

fullfilled according to the preceding considerations of U. As a result, we may shrink U
such that each R, is a factorial ring.

Cutting U down to U, leads to a general Fano hypersurface Cox ring. The final step is
to attain X, being smooth. Applying the Magma program from Intrinsic shows
that Z, is smooth in all 67 cases. Observe that we have u € 7 except for Numbers
[15], and [33] These four cases will be treated separately. For the other case we can verify
base point freeness of u on Z and hence may apply Corollary [2.4:29] allowing us to shrink
U once more such that X, is smooth for all g € U. We turn to the four exceptional cases.

For smoothness of X, it suffices to show that X'g is smooth; see Proposition [2.4.21] By
Proposition [2.4.23} it suffices to find some g € S, such that grad(g) has no zeroes in Z,
then shrinking U suitably yields that Xg is smooth for all g € U. We just chose a random
g of degree p and verified this using [69]. The subsequent polynomials ¢3,. .., gs3 do the
job for the respective numbers of Theorem [2.1.1}
13 = ST\ T2 + T\ TsTs + TV Ts Ty + 6T T2 + ATy T Ty + Th T2 + TToT2 4 TToTsTe + 3T T5 Ty
+ 8TYTE + 5ToTsTr + 8ToT? 4 5T3T2 + AT3T5 T + 9T3T5 Ty + 2T3T + 9T3Ts Ty + T3T7
+ 8TYTS + 3T, Ts + 6T, T,

Gra = TPTE + TPT2T6 + TPTET: + AT TsTg + TR TsTeTr + TP TsT2 + 61T + TETE Ty
+ TETeTZ 4 3T2T3 + TV T T3 + ThToTeTs + 6TV To T2 Ty + ThToT5T¢ + ToTsTsTr
+ TV T5T2 + ThTo T3 + 2T o T Ty + T T Te T2 + ThTo T3 + 8TyT5TE + Th T3 T3 Ts
+ 8TV\TST2Ty + ThT3Ts5TE + Th T3 Ts T Ty 4 Ti T3 TsT2 + ThT3Ty + 5Ty T3 T2 Ty
+ TV T3Te T2 + ThT5T3 + 3TTyT2 + ThTuTsTs + AT\ Ty Ts Ty + TV TYTE + Th Ty Ts Ty
+ TWTyT? + 5T5T3 + 3T5T3Ts +2 T2 T + 5T5T5Tg +° TsTeTr + T5 TsT7 + 51515
+ TETETr + TTeT29TITE + ToT3T3 + ATy T3 T2 Ts + ToT3TE Ty + ToT3T5TE
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+ 2T T3 TsT6 Ty + ToTsTsTE + 9T T3Te + ToTsTe Ty + ToTs3To T2 + 9T T3 TS + ToTyT2

+ 6T TyTZ 4+ ToTyTsTr + ToTyT? + 5T3T3 + ToT2Ts + ST T2 Ty + TiTsTe + T TsTo Ty
+ATTST? + TTE + TT5 T T + T35 T T3 + 8T5T5 + TsTuTe + T3TuTsTe + 5T3ThT5Ty
+ T3TyTg + TsTyTe Ty + 3T3TyT? + TiTs + TiTe + TiTy,

gis = TAT2 4+ 6TPTLTS + OTPTRTS + AT TS T2 + 3TETET? + AT2TETS 4 TR 13T

+ 3T T T5T? + ST T T6TE + 8TETS T2 + STETT5T + ST T3 TeTs + TTETAT?

+ 2T T2Ty + 5T TsTo Ty + 3TETE Ty + 8SThTS T2 + T TS T T3 + TV T3 T5T7

+ 6T Ty TeT7 + 6T T T5 T3 + 2T o T3 T5T7 + ST T T3 Te T2 + 2T To Ty T7 + 21 Th T2 T
+ 6T\ Ty TsTs Ty + 2T ToTo Ty + 5TA TS T2 4+ AT\ TETsT? + TT T3 T T2 4 AT\ T3 Ty T

+ 3N T3TETy + OV T3T5 T Ty + 6Ty T3 T2 Ty + STV Ty Ts Ty + Ty Ty T Ty + 3Ty TS + 8Ty T2 Ts
+ATVTSTE + ATVTG + ATy T3 + 3T3TST3 + 6T T5T7 + 9T 6T + 915 T3 T3

+ 8TEITST5T? + T3 T3 TeT? + ATSTYT? + 2T5T2 Ty + 213 TsTsTr + TT3TE Ty + 6T T3 TS
F T TETST? + 51T T T2 + 9T T3 Ty T3 + TToT3ToTy + 3ToT3TsTe Ty + 8ToT3Te Ty

+ T Ty Ts Ty + I TyTsTr + 3ToTE + ATo T2 Ts + SToTsTE + ATo T + 8T T3 + ST TsT2
FATSTT? + STETAT? + 6TiT2 Ty + 2T TsT6 Ty + 3TETE Ty + TsTyTs Ty + 9T3TyT6Tr
+ 5T5T% + T5TETs + ATST5TE + ATSTE + 8T Ty + TyT7 + 6Ty T5Ts + ATy 1§,

g3z = 2T} TS + TTHTETs + STHTE Ty + 9T TETE + T TET6 Ty + 6THTST? + STLTETE

102

+ 8THTETE Ty + 8T TS T T2 + 8TYTETS + 6TV T2 Ty + 9T T2 T Ty + 8THTETE TS

+ 9T TETETS + 6T TETS + ST TSTE + T T5Te Ty + ST TSI TS + 5T TSI T

+ 6T T To T + THTSTE + ATYTE + STHTE Ty + 2T TG T? + 5TLTETS + 5T TE T

+ 5TATET? + TTYTS + AT TLTS + 6T ToTeTo + 5T T T Ty + AT T TETE

+ I TS T Ty + TP TR TETE + TTY T TETE + ST TR T2 TS Ty + 6T T T2 T6 T
+IT3TYTETS + 3T T Ts T + 2T T T T Ty + ST T T TR T2 + 9T Ty T T T3

+ 8T T Ty + 5T ToTE + AT T T Tr + ST TR TeTE + TR TLTE TS + 6T T 6T

+ 3TPTT? + 6T Ty Te + ST Ty T3 Te + ST T TS Ty + AT Ty T2 TS + TP T T3 T T
FATPTAT2T2 + 8TYTWTSTE + TP TWTsTE Ty + 2T Ty T T6T7 + ST Ty Ts T2 + 8TETA T
+ 3T3TYTETy + STETYTET? + 3T T T2 + 8TETy Ty + AT TETS + TTET3TE T,

+ 6TETS T3 Ty + 3TRTSTETE + ATRTSTETo Ty + 2TETSTET? + TTETSTSTE

+ 3T2TETSTE Ty 4 TETITS T T2 + TETET5TS + TTET3TS + 3TETETS Ty + TTETETET?
+ 6TETE T TS + 2T TS T + TTE T TA TS + TR Ty TeTs + ST Ty Ty T2 Ty + ATE T Ty T5TE
+ 32T Ty TsTo Ty + STETLTUTsTZ + TEToTuTE + 8TE T Ty TaTy + TEToTyT6T?
F2TETLTYTE + 6T2TSTS + 8T T3T2Ts + 3TETSTE Ty 4 5T T3TsTy + 6T T3T5 T Ty
+ 8TETST5T? + 9T 3Ty + TR TRTa Ty + 9T T3Te T2 + 3TETTS + STETET?

+ OTPTETsTs + 3TETTs Ty + ATETLTE + 3TETET6 Ty + AT T T2 + 9TV TS TS
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+ 6T TSTETs + ThTsTETy + 2T T3 TsTE + 5T Ta T T Ty + STy TS Ts T + ATV T3 T

+ 6N TSTETy + 2T T3 Te T2 + IV T T3 + 6T\ Ty TyTe + TT Ta Ty TsTe + 8Ty T3 Ty Ts Ty

+ TVTETyTE + I T3 Ty T Ty + OV TETyTE + 6T\ ToT3T2 + 9Ty T T3 T T + 6T To T3 T5 Ty
2T\ Ty T3Tg + 2T To T3 T6 Ty + ATV ToT3T2 + 5T T TiTs + Th T TiTs + 5T To T2 T

+ 6TV T3 Ty Ts + AT\ T3TyTs + TT T3 Ty Ty + 3Th Ty + 8Ty T2 + ToTsTs + Ty Ts Ty + Ty TE
+ 8T TsTr + 5T T? + 6T5TyTs + TS Ty Ts + TTS Ty Ty + 9T T Ts + 3T T3 T + 9T T3 Ty
+ATIT? 4 6Ty T5Ty + 8T3.

We finish the proof by showing that each two varieties belonging to different families
from Theorem [2.1.1] are non-isomorphic. If two such varieties are isomorphic, then their
Cox rings are isomorphic as graded rings. Let us highlight two invariants in connection
with graded rings.

An important invariant of a graded ring R is the set of generator degrees Qg C K,
which in the situation of Setting is given as

QR:{wl,...,wr}gK.

The set of generator degrees is unique and does not depend on a graded presentation

of R. From this emerges another invariant: Choose pairwise different uy,...,uy, € K
such that Qg = {u1,...,un} and set d; := dimg R,,,. By suitably reordering ui, ..., un
we achieve dy < ... < d,,. We call (dy,...,dy) the generator degree dimension tuple

of R. If two graded rings are isomorphic, then their generator degree dimension tuples
coincide.

With the help of the Magma function Intrinsic [A-4.2] we have computed the anticanonical
self-intersection numbers of the families from Theorem Among all 67 families there
are 56 families with a unique anticanonical self-intersection number K*. It remains to
deal with those cases where families from Theorem [2.1.1] cannot be distinguished by their
anticanonical self-intersection number. There are precisely nine such cases.

Case 1: Numbers 1, 20, 65. Any member X of these families satisfies K% = 432. However,
the subsequent table shows that the generator degree dimension tuples (di,...,d;)
associated with each family are pairwise different.

No. l dl dz d3

1 2 3 4
20 31 3 6
65 2 2 5
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Case 2: Numbers 18, 16, /0. Any member X of these families satisfies IC%( = 352. However,
the subsequent table shows that the generator degree dimension tuples (di,...,d;)
associated with each family are pairwise different.

No. l d1 d2 d3

13 3 3 3 10
6 3 2 4 9
40 3 1 3 6

Case 3: Numbers 19, 29, 63. Any member X of these families satisfies K% = 192. However,
the subsequent table shows that the generator degree dimension tuples (di,...,d;)
associated with each family are pairwise different.

NO. l d1 d2 d3

9 3 1 3 6
29 3 3 3 10
63 3 2 5 -

Case 4: Numbers 30, 47. Let X39 be a member of Number 30 and X47 a member of
Number 47. The anticanonical self-intersection number of both X3g and X47 equals 18.
On the other side, the Cox ring of X3g has three generator degrees whereas the Cox ring
of X47 has five generator degrees. Consequently, X39 and X47 are non-isomorphic.

Case 5: Numbers 31, 39. Let X31 be a member of Number 31 and X39 a member of
Number 39. The anticanonical self-intersection number of both X3; and X39 equals 48.
On the other side, the Cox ring of X3; has three generator degrees whereas the Cox ring
of X39 has five generator degrees. Consequently, X3; and Xs3g are non-isomorphic.

Case 6: Numbers 35, 50. Let X35 be a member of Number 35 and X59 a member of
Number 50. The anticanonical self-intersection number of both X35 and X559 equals 144.
On the other side, the Cox ring of X35 has three generator degrees whereas the Cox ring
of X5o has four generator degrees. Consequently, X35 and X3¢ are non-isomorphic.

Case 7: Numbers 27, 59. Let Xo7 be a member of Number 27 and X59 a member of
Number 59. The anticanonical self-intersection number of both X97 and Xs59 equals 64.
On the other side, the Cox ring of Xo7 has three generator degrees whereas the Cox ring
of X59 has four generator degrees. Consequently, Xo7 and X9 are non-isomorphic.

Case 8: Numbers 14, 52. Let X14 be a member of Number 14 and X50 a member of
Number 52. The anticanonical self-intersection number of both X714 and X595 equals 65.
On the other side, the Cox ring of X4 has three generator degrees whereas the Cox ring
of X359 has five generator degrees. Consequently, X14 and Xs59 are non-isomorphic.

Case 9: Numbers 3, 60. Let X3 be a member of Number 3 and Xgy a member of
Number 60. The anticanonical self-intersection number of both X3 and Xgg equals 80.
On the other side, the Cox ring of X3 has two generator degrees whereas the Cox ring of
Xgo has five generator degrees. Consequently, X3 and Xgg are non-isomorphic.
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2.10. Birational geometry

2.10 Birational geometry

We begin with a look at the birational geometry of the Fano fourfolds from Theorem [2.1.1
Let us briefly recall the necessary background. Consider any Q-factorial Mori dream
space X = X () arising from an abstract Cox ring R = ®x R,, as in Construction m
Assume that Kg = Clg(X) is of dimension two. Then the GIT-fan A(R) looks as follows:

where, as in Setting[2.5.1] we order the generator degrees wy,...,w, € K of R counter-
clockwise. The moving cone Mov(X) is spanned by we and w,_1. If wy € X holds, then
with 7 = cone(wsg) we have

XN € X*(r),

which induces a morphism 7: X — Y from X = X**()\)/H onto Y = X**(7) /H. Recall
that 7 is an elementary contraction in the sense of [31]. In particular, we have the
following two possibilities:

o If wy & cone(w;) holds, then 7: X — Y is birational and contracts the prime
divisor D; C X corresponding to the ray through wj. In this case, we write X ~Y
for the morphism 7 and denote by C' C Y the center of the contraction.

e m: X — Y is a proper fibration with dim(Y’) < dim(X). In this case, we write
X — Y for the morphism 7 and denote by /' C X the general fiber.

Similarly, if w,_o € Mov(X) holds, we use the same notation. In general, A need not to
have common rays with Mov(X). However, given a ray ¢ C Mov(X), we find a small
quasimodification X --» X', where X' stems from a chamber A € A(R) sharing the
ray o with Mov(X). We then write X’ ~Y or X’ — Y etc. accordingly.

Remark 2.10.1. If X is as in Theorem then X admits at least one elementary
contraction and at most one small quasimodification X --» X’. If there is one, then X’
is smooth due to Remark 2.5.12

Now assume in addition that X has a hypersurface Cox ring and consider the toric
embedding X = X, C Z from Construction [2.4.1} Given an elementary contraction of
m: Xy — Y, a suitable choice of the cone 7 in Construction leads to a commutative
diagram

X ¢ Z
e
Y ¢ W

where mz: Z — W is an elementary contraction of the ambient toric variety Z. In
particular, we have in this setting that for every point y € Y, the fiber 77 1(y) C X is
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contained in the fiber W}l(y) C Z. This gives in particular a description for the general
fiber FF C X as a subvariety of the general fiber Fy C Z.

Let us fix the necessary notation to formulate the result. By Yd.akl Jin W€ denote

yAq 7 ey n

a (not necessarily general) hypersurface of degree d in the weighted projective space
I[Dak1 S where, as usual, afi means that a; € Z>1 is repeated k; times. For a

1 9eeOn

hypersurface of degree d in the classical projective space IP;, we just write Yy.,. In our
situation, this notation applies to the target spaces Y C W in case of a birational
elementary contraction and to the general fiber F' C Fz in case of a fibration.

Proposition 2.10.2. The subsequent table lists the possible elementary contractions
for X as in Theorem |2.1.1|, where X is not a cartesian product; the notation Y* in the
context of a birational contraction indicates that the target space is singular.

No. Contraction 1  Contraction 2 No. Contraction 1  Contraction 2
1 X‘)]Pg X‘)PQ 14 X*)]PJQ X/*>]P>2
F= Y1;2 F= YI;B F= YB;S F= Y2;3
2 X — Py X =Py 15 X — Py X'~ Y50
F = Yl;g F = }/2;3 F = Y3;2 CcC=Pr
3 X —P3 X =Py 16 X —P3 XI—>]P>1
F =Y F=Yjs3 F =Y F=Ys4
4 X — P3 X =Py 17 X — P3 X/—>]P>1
F =Y, F=Yis F =Y F=Ys4
5 X —Ps X =Py 18 X ~Yas X =Py
F =Y, F=Ys; C =P F=Ys;3
6 X*)]P:; X - Py 19 XN}/3;5 X - Py
F = Y2;2 F = Yg;g C= ]PQ F = Y2;3
7 X—)Pg XN}/Q;g) 20 XN}/Q;5 X—)PQ
F=Yi, C=Pr C =P F=Y3
S X 4)]?3 XNY3;5 21 XNY4;1572 X —->P
F=Y59 cC=Pr C =P F=Ys34
9 X —Ps X ~ Y3 29 X —= P X =Py
F=Yi, C=Pr F =Yy F=Ys3
10 X—)]P)g XNY4>';5 23 XI—>]P)1 X =Py
F=Y59 CcC=mM F=Ys4 F=Ys3
11 X = P3 XNY3>';14722 24 X/—>]P>1 X =Py
F=Y, C=Pr F=Yy0 F =Y,
* lA
12 X7B X Vo 95 KX oh X Py
F=Ys, cC=P F=Ys1323 F=Y51223
19 X =P X' =P, 2 X =P X — P
F = Yg;g F = 5/1;3 F= Y2;4 F= Y2;2
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No. Contraction 1 Contraction 2 No. Contraction 1  Contraction 2
p X P X —=Ps 45 X~ Ygis 004 X — P
F =Y F =Y C =Yy F=Yas
28 X —>P X — Ps 46 X ~ }/6;14,2,3 X =Py
F=Ys43 F =Y, C=Ye1.23 F=Y51223
29 X — IFD2 X — ]P)Z 47 X ~ Y1*2;13,2,4,6 X = ]PQ
F=Y3 F=Y3 C=Ys123 F=Ys1223
30 X =Py X =P 48 X ~Py X' =P
F=Yss  F=Ya C=P F = You
9 X — Py X — Py 49 X ~ Y2033 X' =P
F = }/2;3 F == YZL;1372 C - }/6;23,4 F = }/3;4
2 X - Py X - Py 5o X~ Yiso X =Py
F = Y4;13’2 F= }/4;13,2 C= IP>1 F= 1/2'3
99 X' ~ }/'6*;147273 X =Py 51 X ~ )/’(;15,3 X - Py
C = {pt} F =Yg c=m F=Y3,
2 X ~Yas X =P 50 X~ Y503 X =P
C=P xP F= }/2;4 C = Py F = Y4;14)2
25 XNY3;5 X =P 59 X ~Py X’\‘Q4
C:ng;g, F:1/3;4 C:]PHX]PH C:{pt}
% X ~ Y4;5 X =P 5 X ~ Y4;15’2 X ~ Y4;5
C=Yis F =Y C =Yy C = {pt}
97 g ~ }}:4;15,2 FX ;)/]P)l 55 X ~ ]P)4 X ~ Y3>t15,2
— . = .14
4;13,2 45142 C=Yss C = {pt}
38 )C(j ;/6;15,3 F)i;ipl 56 X ~Py X ~ Y3153
= Y5133 = Ig;14.3 C = Yz;;3 C= {pt}
39 )c(z 1}:6;14’2’3 F)_( ; . 57 X~ Vo3 X ~ Y503
= Y6,12,2,3 = rg;13,2,3 C = Y21;1373 C= {pt}
40 )éN_)[?f’ ;r(jypz o X7 Y¥szs X ~Yiuos
=P = Y23 F=P C:{pt}
41 )c(z ?5 zi(jyp2 o P Tawa XY,
= V3.0 = Y33 F=P C = {pt}
X~Y*, .. X-—>P
20T P op T ol
=P = I2:3 F=P C:{pt}
43 XCN_}/G{}Q’QS g:)YPQ 66 X — }/2;4 X ~ YYQTS
= Y3 =Y33 F=0P C = {pt}
1 X ~ Y52 X = Py X = Yoy X~ Yo
C=Yy2p F'=Yys 67 F=P C= {pt}
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The remaining families of Theorem consist of cartesian products Y x Py where the
first factor'Y is a smooth threedimensional Fano hypersurface of Picard number one as
displayed in the following table.

No. 58 59 61 63 65
Y Yeaua3 Yeasos Yanao Yzao You

The proof of this proposition is basically a case by case analysis of the contraction
maps in coordinates. We restrict ourselves to perform this in the subsequent remark for
one case, where we even go a bit deeper into the matter and specify also the singular
fibers of the fibration.

Remark 2.10.3. We take a closer look at the varieties X from No. 9 of Theorem 2111
In this case the specifying data, that means the degree matrix @) and the degree u of the
relation g, are given by

1 11100 -1
“=loooo11 10 H=E&D
Due to —K = (1,2), we have A = cone(w;j,ws). Observe that Mov(R) and A share
the rays 01 and g5. Thus X admits two elementary contractions m;: X — Y; and
m9: X — Y5 associated to g1 resp. g5. To study m; and m we make use of the toric
embedding X = X, C Z from Construction
First, we discuss m1. Since wo € p1 holds, the morphism 7 is a fibration. Moreover,
m is the restriction of the corresponding ambient toric elementary contraction 7 7z of Z,

which in turn is explicitly given as follows:

(21,...,Z7)i—>(21,...,24)

X ¢ K K*
| | |
| | |
Y \ \
X ¢ Z 7 Py

Suitably sorting the terms of g yields a presentation g = q115 + ¢21s + f1% where
q1,q2 € K[T1,...,Ty] both are quadrics and f € K[T7,...,Ty] is a cubic, each of which
is general. Note that V(g) C K’ projects onto K* thus ¥; = P3. For any point
y = [y1,...,va] € P the fiber m; ,(y) of the ambient toric variety is given by the
equations 7

yoln — Ty = ysTo —yoly = yalz —ysly = 0.

Besides we have y; # 0 for some i. Taking this into account one directly checks
T % (y) =& Ps. Being homogeneous g is compatible with this isomorphism, thereby we
obtain

() = V(o) To + yiee@) Ty + f(y)T2) C P

We conclude that the general fiber 7, 1(y) is isomorphic to P;. In addition, V' (q1, g2, f) C Ps
consists of precisely 12 points p1, ..., p12, each of which has fiber Fl_l(pi) =Py,
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We turn to me. From wr ¢ g5 follows that o is a birational morphism contracting
the prime divisor V(7%) C X. The according elementary contraction 73 z of the ambient
toric variety Z is the blow-up of P5 along C' = Vp, (Ty, ..., T3) = P1. The situation is as
in the subsequent diagram:

(21,..,27)>(2127,...,2427,25,26)

X ¢ K° K6
| | |
| | I
¥ v - v
X ¢ Z i Py

The target variety Yo C P5 of g is V(¢') C P5 where ¢’ = g(Ty,...,Ts,1). From this
we infer C' C Y3, so C is the center of my as well. In particular w9 is the blow-up of
Ys along C. Moreover, the polynomial ¢’ is an irreducible cubic living in (T, ... ,T3)2.
Consequently, Y3 is singular at every point of C.

2.11 Hodge numbers

Here we determine the Hodge numbers of the Fano fourfolds from Theorem First,
we note the following simple observation.

Proposition 2.11.1. Let X be a smooth projective Fano fourfold of Picard rank 2. Then
the Hodge diamond of X is the following.

1
0 0
0 2 0
0 h1,2 h2’1 0
0 h1’3 h2’2 h3’1 0
0 h3,2 h2’3 0
0 2 0
0 0
1

Proof. Ampleness of —K x and Kawamata-Viehweg vanishing give h?*(X) = 0 for any p >
0. Moreover, plugging H*(X,0) = 0 for i = 1,2 into the cohomology sequence associated
with the exponential sequence yields H?(X,C) = C2. The Hodge decomposition together
with A0(X) = h%1(X) = 0 shows A1} (X) = 2. O

By symmetry, we are left with computing the Hodge numbers h*!, h3! and h%2.
Here comes our result.

Proposition 2.11.2. The subsequent table lists the Hodge numbers h*', h*! and h*?
for X as in Theorem [2.1.1]
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Chapter 2. Smooth Fano fourfolds of Picard number two

No. h2’1 h3’1 h2’2 No. h2’1 h3’1 h2,2 No. h2’1 h3’1 h2,2
1 0 0 3 23 0 13 103 45 1 50 | 288
2 0 0 10 24 0 35 218 46 1 24 163
3 0 0 29 25 0 114 | 591 47 1 159 | 793
4 0 0 3 26 0 0 10 48 0 0 3
) 0 3 40 27 0 20 | 138 49 1 2 31
6 0 30 | 185 28 0 112 | 570 50 0 3 40
7 0 0 4 29 0 1 22 51 0 65 | 356
8 0 1 23 30 0 45 | 255 52 0 20 139
9 0 0 14 31 0 10 94 53 0 0 3

10 0 18 | 126 32 0 100 | 508 54 0 6 72
11 0 0 ) 33 0 24 | 162 55 0 0 8
12 0 12 95 34 0 0 4 56 0 1 21
13 0 0 4 35 0 1 28 57 0 25 181
14 0 6 65 36 0 22 | 162 58 52 0 2
15 0 ) 95 37 0 5 60 59 21 0 2
16 0 0 6 38 0 71 | 402 60 21 0 2
17 0 9 7 39 0 24 | 170 61 10 0 2
18 0 21 143 40 0 0 4 62 10 0 2
19 0 1 22 41 1 1 23 63 5 0 2
20 0 0 3 42 0 0 10 64 5 0 2
21 0 ) 93 43 1 19 | 131 65 0 0 2
22 0 0 10 44 1 ) 54 66 0 0 2
67 0 0 2

Proof. We consider the toric embedding X = X, C Z, as provided by Construction 2.4.1]
The five-dimensional toric ambient variety Z, is smooth and the decomposition

X = U X
Yo€rlv(X)

from Construction is obtained by cutting down the toric orbit decomposition of Z,.
Now the idea is to compute the Hodge numbers in question via the Hodge-Deligne
polynomial, being defined for any variety Y as

e(Y) = Zep’q(Y)xpiq € Zx, x|,

with eP?(Y") as in [52, p. 280]. We also write eP? instead of e4(Y"). Recall that P4 = %P
holds. Moreover, in case that Y is smooth and projective, the e”? are related to the
Hodge numbers as follows:

ep,q(y) — (_1)p+th,q(y)‘

The Hodge-Deligne polynomial is additive on disjoint unions, multiplicative on cartesian
products. We list the necessary steps for computing it in low dimensions. On Y = C*, it
evaluates to xz — 1. For a hypersurface Y C (C*)"™ with no torus factors, one has the
Lefschetz type formula

ePUY) = ePthatlcHm), forp+qg>n-—1,
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2.11. Hodge numbers

see |52, p. 290]. Moreover, according to [52, p. 291], with the Newton polytope A of the
defining equation of Y, one has the following identity

qzzg)ep’q(y) = (_1)p+n_1 <p+ 1) T (_1)n_1¢n—p(A)a

where, denoting by [*(B) the number of interior points of a polytope B, the function ¢;
is defined as

f0(d) = 0, @A) = i(—l)iﬂ‘(’?“)z*@m,

=1 L=

This leads to an explicit formula for all e?°(Y). Moreover, for dim(Y) < 3, all the
numbers eP? are directly calculated using the above formulas. For dim(Y') = 4, the values
of eb! + eb? 4+ el and e*! + €22 and e>! can be directly computed using the above
formulas. By the symmetry eP*? = e?P these sums involve just four numbers which thus
can be expressed in terms of one of them, say e!'?, plus known quantities. To determine
the value of e? one passes to a smooth compactification Y’ of Y for which

61’2(Y/) _ _h1,2(Y/) _ _h3,2(yl) _ 63’2(Y/)

holds by Serre’s duality and then observes that e*? can be computed for all the strata via
the Lefschetz formula. Now, we apply these principles to the strata Y = X (v9) that have
no torus factor and compute the desired eP?. If Y = X (v) has a torus factor, then we
use multiplicativity of the Hodge-Deligne polynomial and again the above principles. [

Finally, we extend the discussion of the varieties X from Number 9 of Theorem [2.1.1
started in Remark [2.10.3] by some topological aspects.

Remark 2.11.3. Let X be as in Theorem No. 9. Recall that we have a fibration
X — P53 with general fiber F' = Py and precisely 12 special fibers Fi, ..., Fio, lying over
P1,-..,p12 € P3, each of the F; being isomorphic to Py. We claim

F? =1 fori=1,...12, Fi-Fj=0 forl<i<j<I2

(2

The second part is clear because of F; and F} do not intersect for 7 < j. In order to
establish the first part, we show F? = 1, where we may assume p; = [1,0,0,0]. Consider
the zero sets Ly, Lo C X of two general polynomials in the variables T5,73,7y. By
definition L1 N Lo = F and Ly ~ Lo, that is the two surfaces are rationally equivalent.
Thus L; ~ F + S; for some surface S;. Observe that we have

F-Li =0, Si-Li =0

because L; is rationally equivalent to a complete intersection of two general polynomials
in 11, ..., Ty, which has empty intersection with L;. We deduce

F?2 = —F.S = 55 = 5159,
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Chapter 2. Smooth Fano fourfolds of Picard number two

using S7 ~ 2 in the last step. For computing the last intersection number, we may
assume Ly = V(Ts,T3,9) and Ly = V(T2,Ty, g). Then Sy = V (T, T3, hy) with

hi = Ty Yqi(11,0,0,Tu)T5 + g2(T1,0,0, )T + f(T1,0,0, Ty)Tr),

where the division by 74 can be performed because by hypothesis ¢;, g2 and f do not
contain a pure power of Tj. Similarly Sy = V (Ts, Ty, he), where

ho = T3 ' (q1(T1,0,T5,0)Ts + go(T1, 0, T3,0)Ts + £(T1,0,T3,0)T7).
It follows that

S10 Sy =V (Ty, T3, Ty, arT1 Ts + 0Ty T + a3 Ti Ty, f1TiTs + BoTiTe + BT Tr)
=V (1,15, Ty, 1 Ts + a1 + asTi T, 5115 + BoT6 + B3T1T7).

Now one directly checks that S; N Sy is a point and the intersection is transverse.
Thus, we arrive at Sp - Sy = 1, proving the F? = 1. Now, fix two general linear forms
1,05 € C[Tl, e 7T4] and set

E = V(T67T7vg) - X’ L= V(€1’€2’g) < X.

We claim that the classes of E,L, F},..., Fip in H>*(X) N H*(X,Q) are linearly in-
dependent. First observe that Fi,..., Fis are linearly independent: passing to the
self-intersection, >, a;F; ~ 0 turns into Y_; a? = 0 and thus, being rational numbers,
all a; vanish. Now, by definition of L one has L? = L - F; = 0 for any i, in particular the
class of L cannot be in the linear span of the classes of the 12 fibers. The statement then
follows from E - L = 2, which in turn holds due to

ENL = V(l,03,T5,T7,9) = V(l1,02,T6, T7,q1T5) = V(l1,02,T6,T7,q1).

Combining linear independence of E, L, Fy, ..., Fio € H*?(X)NH*(X, Q) with h??(X) = 14
as provided by Proposition [2.11.2] we retrieve that the varieties X from Number 9 of
Theorem [2.1.1] satisfy the Hodge Conjecture; which, in this case, is known to hold also
by [42] and [127, Proof of Lemma 15.2].

2.12 Deformations and automorphisms

We take a look at the deformations of the varieties from Theorem 2.1.1} For any variety
X, we denote by Tx its tangent sheaf. If X is Fano, then it is unobstructed and thus its
versal deformation space is of dimension h'(X,7x). The following observation makes
precise how the problem of determining h'(X, Tx) is connected with determining the
automorphisms in our setting.

Proposition 2.12.1. Let X be a smooth Fano variety X with a general hypersurface
Coz ring R(X) = C[T1,...,T,]/(g9) and associated minimal toric embedding X C Z.
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Assume that pn = deg(g) € Cl(Z) is base point free and no w; = deg(T;) € Cl(Z) lies in
W+ Zsowi + - - - + Z>ow,. Then we have

(X, Tx) = dim(R(Z),)— 1+ rank(Cl(Z Zdlm )+ h(X, Tx)
= —1+dim(R(Z),) — dim(Aut(2)) + dlm(Aut(X)).

Proof. First look at 0 — Tx — 1*Tz — Nx — 0, the normal sheaf sequence for the
inclusion 2: X C Z. By assumption, u — Kx is ample and thus we obtain

RY X, Tx) — hO(X, Tx) = —h%X,2*Tz) + h%(X, Nx) + hY (X, 2" T),

according to the Kawamata-Viehweg vanishing theorem. The task is to evaluate the right
hand side. First, note that we have

RO(X,Nx) = dim(R(X),) = dim(R(Z),) — 1.

For the remaining two terms, we use the Euler sequence of Z restricted to X which in
our setting is given by

0——0Ox ®C1(Z) H@;:l O)((Dl) 1T 0,

where D; C X denotes the prime divisor defined by the Cox ring generator 7;. Since X
is Fano, h'(X, Ox) vanishes for all i > 0. As first consequence, we obtain

(X,2*Tz) Z dim(R — rank(Cl(Z Z dim(R —rank(Cl(2)),

using R(X ), = H°(X, D;) and R(X )., = R(Z)w,, where the latter holds by assumption.
Moreover, we can conclude

(X, Tz) = > h'(X,Dy).
i=1

We evaluate the right hand side. Since X has a general hypersurface Cox ring, Z is
smooth [4, Prop. 3.3.1.12] and p is base point free, we can infer smoothness of

D, = V(gnV(T;) C Z

from Bertini’s theorem. Now choose € > 0 such that eD; — Kx is nef and big. Then,
using once more the Kawamata-Viehweg vanishing theorem, we obtain

RY(X,D;) = (X, Kx + (eD; — Kx)+ (1 —e)D;) = 0.

Consequently, h'(X,2*Tz) vanishes. This gives the first equality of the assertion. The
second one follow from [44) Thm. 4.2] and |93, Lemma 3.4]. O
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Chapter 2. Smooth Fano fourfolds of Picard number two

Observe that Proposition [2.12.1] applies in particular to all smooth Fano non-
degenerate toric hypersurfaces in the sense of Khovanskii [76] and Definition of this
thesis, where Lemma (v) guarantees base point freeness of u € Cl(Z). Concerning
the varieties from Theorem [2.1.1] we can say the following.

Corollary 2.12.2. For each of the Fano varietes X listed in Theorem except
possibly numbers 13, 14, 15, 33 and 67, we have

RY(X,Tx) = —1+dim(R(Z),) — dim(Aut(Z)) + dim(Aut(X)).

Proof. Using [4, Prop. 3.3.2.8] one directly checks that p € CI(X) and hence also
w € Cl(Z) are base point free in all cases except the Numbers 13, 14, 15 and 33.
Number 67 violates the assumption on the generator degrees. O

The only serious task left open by Propositionfor explicitly computing (X, Tx)
is to determine the dimension of Aut(X). As general tools we mention [65, Thm. 4.4],
the algorithms presented thereafter and their implementation provided by [75]. The
subsequent example discussions indicate how one might proceed in concrete cases.

Example 2.12.3. The variety X from No. 65 is a product of the smooth projective
quadric Q4 C P4 and a projective line. So, X is known to be infinitesimally rigid. Via
Proposition this is seen as follows:

(X, Tx) = —1+dim(R(Z),) — dim(Aut(Z)) + dim(Aut(X))
= —-1+15-27+4+13
= 0.

All ingredients are classical: First, by |20, Cor. 1.2] the unit component of the auto-
morphism group of a product is the product of the unit components of the respective
automorphism groups. Second, Aut(Q,) = O(n) is of dimension n(n —1)/2.

Example 2.12.4. For the varieties X from No. 1, the algorithm [75] is feasible and tells
us that Aut(X) is of dimension 12. In particular, we see that also these varieties are
infinitesimally rigid:

(X, Tx) = —1+dim(R(Z),) — dim(Aut(2)) + dim(Aut(X))
= —14+12-23+12
= 0.
In suitable linear coordinates respecting the grading, g = 1175 + 157 + 137+ holds and
the automorphisms on X are induced by the five-dimensional diagonally acting torus
respecting ¢ and the group GL(3) acting on R(X )y, & R(X)w, via
A (T, T, T3, Ty; T5, Tg, Tr) = (A- (T4, T2, T5), Tu; (A™H)" - (T5, Ts, T7)).
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The two previous examples fit into the class of intrinsic quadrics, that means varieties
having a hypersurface Cox ring with a quadric as defining relation. The ideas just
observed lead to the following general observation.

Corollary 2.12.5. Let X be a variety satisfying all the assumptions of Proposition|2.12.1
and assume that Auty(Z) acts almost transitively on R(Z),,.
(i) The variety X is infinitesimally rigid and the dimension of its automorphism group
is given by
dim(Aut(X)) = dim(Autg(2)) — (dim(R(Z),) — 1) — rank(C1(2)).
(i) If X is an intrinsic quadric, then Auty(Z) acts almost transitively on R(Z),, and
thus the statements from (i) hold for X.

Proof. We take X C Z as in Construction According to [65, Thm. 4.4 (iv)], the
unit component Aut(X)? equals the stabilizer Aut(Z)% of X C Z under the action of
Aut(Z)Y on Z. Thus, using [4, Thm. 4.2.4.1], we obtain

dim(Aut(X)) = dim(Aut(2)%)
= dim(Auty(2)°
= dim(Autg(2)°) — (dim(R(Z),) — 1) — rank(Cl(Z)),
where R(Z), is the space of defining equations and “—1” pops up as we are looking
for only the zero sets of these equations. Thus, Proposition 2.12.1] gives the first

statement. For the second one, note that Auty(Z) acts almost transitively on R(Z),
due to [55, Prop. 2.1]. O

Let us take up once more the geometric discussion of the varieties from No. 9 of
Theorem [2.1.1] started in Remarks [2.10.3|and [2.11.3] Using geometric properties observed
so far, we see Aut(X) is trivial.

Remark 2.12.6. Let X be as in Theorem No. 9. We claim that Aut(X) is finite
in this case. As a consequence, we obtain

(X, Tx) = dim(R(Z),)— 1+ rank(C1(Z)) — zr:dim(R(Z)wi)
=1

= 40-1+2-29
= 12.

Look at the fibration m: X — Y7 = P3 from Remark By [20, Prop. I.1], there is
an induced action of the unit component Aut(X)° on Y; turning 7 into an equivariant
map. This means in particular that the induced action permutes the image points of
the 12 singular fibers of 7. By the generality assumption, these 12 points don’t lie in
a common hyperplane and thus the induced action of Aut(X)" on Y7 must be trivial.
Recall that any point of the fiber 71 over [y] = [y1,...,y4] has Cox coordinates

[3/79572] = [yl)"'ay4)x1)x25'z]7 where Q1(y)$1 +92(y)$2+f(y)2’:0a
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Chapter 2. Smooth Fano fourfolds of Picard number two

with general quadrics ¢1, g2 and a general cubic f in the first four variables. Let us see
in these terms what it means that the mi-fibers are invariant under Aut(X)°. Consider
the action of the characteristic quasitorus H = Spec C[C1(Z)] on Z = C" given by the
Cl(Z)-grading of C[T7,...,T,]. The group Autg(Z) of H-equivariant automorphisms is
concretely given as

G = GL(4) x GL(2) x K*.

According to |65, Thm. 4.4], we obtain Aut(X)? as a factor group of the unit component
of the subgroup Auty (X) of Auty(Z) stabilizing X C Z. We take a closer look at the
action of an element v = diag(Ay, Az, a3) of Autg(X) on X C X. Given general y € C*
and z € C?, we find z € C such that [y, z, 2] is a point of X. In particular, ~ - ly, x, 2]
belongs to the fiber of w1 over [y]. The latter implies A; -y = ny with n € K* and for the
matrix Ap = (a;;) it gives

0 = q(y)(a11r1 + a1222) + q2(y)(a2121 + azew2) + a3 f(y)z
= q(y)((a11 — az)z1 + a1222) + q2(y) (a2171 + (a2 — a3)x2).

Recall that this holds for any general choice of y and z. As a consequence, we arrive at
a11—oa3 = 0 = a9, because otherwise c11c]2_1 € C(T1,T») holds in C(X) which is impossible
due to the general choice of ¢; and g2. By the same argument, we see aso — a3 = 0 = ao;.
Thus, v acts trivially on each fiber of m; and we conclude that Aut(X) is of dimension
Z€ero.

Proposition [2.12.1] suggests that the infinitesimal deformations of X can be obtained
by varying the coefficients of the defining equation in the Cox ring. As a possible approach
to turn this impression into a precise statement, we mention the comparison theorem of
Christophersen and Kleppe [40, Thm. 6.2] which relates in particular deformations of a
variety to deformations of its Cox ring.
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CHAPTER
THREE

SMOOTH CALABI-YAU THREEFOLDS
OF SMALL PICARD NUMBER

We classify the smooth Calabi-Yau threefolds of Picard number one and two that have a
general hypersurface Cox ring. The main result of this chapter is Theorem On
our way to the classification we use and complement the techniques developed in the
previous chapter. Parts of this chapter are published in [96].

3.1 Results

A Calabi- Yau variety is an irreducible normal projective variety X such that the canonical
class Kx of X is trivial, X has at most canonical singularities and H*(X, Ox) vanishes
forall i =1,...,dim(X) — 1.

Let us recall the notions on hypersurfaces Cox ring that are necessary to state our
results; cf. Section We say that a normal irreducible projective variety X with finitely
generated divisor class group Cl(X) = K has a hypersurface Cox ring if its Cox ring
R(X) admits a K-graded presentation

R(X) =Ry =K[T1,...,T;]/{9)

with a homogeneous polynomial g of degree u € K such that T1,...,7, form a minimal
system of K-prime generators for R,. Note that the number of generator degrees is

r = rank(K) + dim(X) + 1.

We say that R, resp. g is spread if each monomial of degree p is a convex combination over
those monomials showing up in g with non-zero coefficient. Besides, we call R, general
(smooth, Calabi-Yau) if g admits an open neighbourhood U in the finite dimensional vector
space of all u-homogeneous polynomials such that every h € U yields a hypersurface Cox
ring Ry of a normal (smooth, Calabi-Yau) variety X}, with divisor class group K.

Any projective variety X with Cox ring R, is encoded by R, and an ample class
u € K in the sense that X occurs as the GIT quotient of the set of u-semistable points of

121
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Spec R, by the quasitorus Spec K[K]. In this setting, we write w; = deg(T;) and refer to
the Cox ring generator degrees w1, ..., w, € K, the relation degree y € K and an ample
class u € K as specifying data of the variety X. The class u can be omitted whenever
rank(K') = 1 holds since two varieties with the same Cox ring are isomorphic in this case.

Proposition 3.1.1. The following table lists specifying data, wy, ..., ws and p = deg(g)
in CI(X) for all smooth Calabi-Yau threefolds X of Picard number one that have a spread
hypersurface Coz ring.

No ClI(X) [wy, ..., ws] W
1 y/ 11111 5
2 ZxZ/5Z [(1) Ly ﬂ (5,0)
3 Z 1 1112 6
4 Z 1 111 4 8
5 Z 111 2 5 10

Moreover, each of the items 1 to & even defines a general smooth Calabi-Yau hypersurface
Cozx ring and thus provides the specifying data for a whole family of smooth Calabi- Yau
threefolds. Any two smooth Calabi- Yau threefolds of Picard number one with specifying
data from distinct items of the table are not isomorphic to each other.

Remark 3.1.2. Number 1, 3, 4 and 5 from Proposition [3.1.1] are covered by Oguiso’s
classification of smooth Calabi-Yau threefolds showing up as general complete inter-
section in some weighted projective space [105, Thm 4.1]. Moreover Number 2 from
Proposition does not appear in [105, Thm 4.1] since its Picard group is not cyclic.

The main result of this chapter is concerned with Calabi-Yau threefolds of Picard
number two over the field of complex numbers.

Theorem 3.1.3. The following table lists specifying data, wy, ..., ws, p and u in Cl(X)
for all complex smooth Calabi-Yau threefolds X of Picard number two that have a spread
hypersurface Cox ring.

No. Cl(X) [wy,...,wg] 1w No. Cl(X) [wy,...,wg] p u
, 111000 , [111100] [4] [2
! z [000111 5% loor11f 4 o

3] [1
3] |1

111000] [3] [1 4 g2 [L11300] 6] [2

2 Z*xZ/3Z (000111 |3] |1 001311 [6] |1
0] [0
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No. Cl(X) [wi, ..., we] wooou No. CI(X)  [wi,...,ws] nooou
11100 -1] [2] [1] 111100] [4] [1]
2 2
g z ooo11 1] [3] |1 18z {—200111] 1] (2]
11100 -2] [1] [1] [111210] [6] [3]
2 2
0 2 loootr1 1) 3] [1] W2 looor11] |3 [1]
(11100 3] [o] [1] o0 72 M11410] [8] [3]
T ZPXZ3Z {00011 1| 3] |1 000211 [4] [1]
01212 0] [0] 9] o g2 (1115200 [10] [3]
g 72 11100 -3] [o] [t 000211 [4] |1
:00023 1: :6: :1: 0y 72 112510] [10] [3]
0 72 111100] [4] 1 000211 [4] |1
:_200011: :0: :1- 03 72 112730 [14] [4]
10 72 111300] [6] [1 000211 [4] [1]
(—200011] [0] [L w72 111210] [6] [2]
n 72 111100] [4] [2 —200011] |o] |[1]
:000111: :3: :1: o5 72 111130] [7] [4]
1 72 111100] [4] [1 —200011] |o] |[1]
:0001 1 1: :3: :2: o 511130 T8l T4
13 72 111300] [6] [1 —200011] |o] |[1]
_-000211-_ :4: :1- 97 72 112510] [10] [3]
) 111300] [6] [1 001311 6| |1
14 z —-100111| |2] |1 -
15 72 111100] [4] [2 001311 6] [2]
:_100111: :2: :1: 99 72 111410] [8] [5]
6 7 111100] [4] [1 -100111| 2] |1
:—100111: :2: :2: o . 211100 6l 12l
17 72 111100] [4] [2 -1-10011] [0] [1]
—200111] |1] |1

Moreover, each of the items 1 to[30 even defines a general smooth Calabi- Yau hypersurface
Coz ring and thus provides the specifying data for a whole family of smooth Calabi- Yau
threefolds. Any two smooth Calabi-Yau threefolds of Picard number two with specifying
data from distinct items of the table are not isomorphic to each other.

Remark 3.1.4. Each spread hypersurface Cox ring R with specifying data as in Number [3]
and [30] from Theorem [3.1.3| provides actually two full-dimensional GIT cones A1, Az
with A? € Mov(R)°. In any of these constellations the resulting varieties X (A1) and
X (A2) are isomorphic.

Hypersurfaces in toric Fano varieties form a rich source of examples for Calabi-Yau
varieties, e.g. [1,12,[13]. Theorem comprises several varieties of this type.
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Remark 3.1.5. Any Mori dream space X can be embedded into a projective toric variety
by choosing a graded presentation of its Cox ring R(X); see [4, Sec. 3.2.5] for details.
The following table shows for which varieties X from Theorem the presentation
R(X) = Ry gives rise to an embedding into a (possibly singular) toric Fano variety.
Observe that in our situation this simply means p € Ample(X).

12 3 4 5 6 7 8 9 10 11 12 13 14 15
A2 SN S22 S S SN S S A4
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
X v X v v vV VvV vV X X Xx X v vV X

3.2 Mori dream spaces with hypersurface Cox rings

In this section we work over an algebraically closed field K of characteristic zero. By a
Mori dream space we mean an irreducible normal projective variety X with a finitely
generated divisor class group CI1(X) and a finitely generated Cox ring R(X). We basically
use the same tools as shown in Sections to of this thesis. For convenience, we
gather the basic facts on the combinatorial description of Mori dream spaces with a
hypersurface Cox ring and how to construct families of them with prescribed properties
in this section.

Recall that an abstract Cox ring is an integral normal affine K-algebra with a grading
by a finitely generated abelian group K such that R has only constant homogeneous
units and the grading is almost free, pointed, factorial and the moving cone Mov(R) is of
full dimension in Kg. Abstract Cox rings are the basic ingredient for the combinatorial
description of Mori dream spaces since all of them arise from the following construction.

Construction 3.2.1. Let R be an abstract Cox ring and consider the action of the
quasitorus H = SpecK[K] on the affine variety X = Spec R. For every GIT-cone
A € A(R) with A° C Mov(R)°, we set

X(\) == X*(\)/H.

Then X is normal, projective and of dimension dim(R) — dim(Kg). The divisor class
group and the Cox ring of X are given as

Cl(X) = K, R(X) = P I'(X,0x(D)) = PRy = R
CI(X) K

Moreover, the cones of effective, movable, semiample and ample divisor classes of X are
given in Clg(X) = Kg as

Eff(X) = Eff(R), Mov(X) = Mov(R),
SAmple(X) = A, Ample(X) = \°.
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Choosing homogeneous generators for an abstract Cox ring gives rise to a closed
embedding into a projective toric variety.

Construction 3.2.2. In the situation of Construction [3.2.1] consider a K-graded
presentation

R=K[T},...,T,]/a

where T, ..., T, define pairwise non-associated K-primes in R and a C S = K[T},...,T)]
is a homogeneous ideal. The GIT-fan A(S) w.r.t. the diagonal H-action on K" = Spec S
refines the GIT-fan A(R). Let 7 € A(S) with A° C 7°. Running Construction for S
and 7 yields a projective toric variety Z fitting in the following diagram

X®(A) — (K")*(7)
o] Jos
X : Z

The embedding ¢ : X — Z is neat, i.e., it is a closed embedding, the torus invariant prime
divisors on Z restrict to pairwise different prime divisors on X and the induced pullback
of divisor class groups +* : C1(Z) — CI(X) is an isomorphism.

Now we specialize to the case where R is a hypersurface ring and explain how geometrical
properties of X interact with the combinatorial data behind.

Construction 3.2.3. In the situation of Construction [3.2.1] assume that R admits a
K-graded presentation

R = K[T1,....T:]/(9)

such that the variables 11, ..., T, define pairwise non-associated K-primes in R. Consider
the positive orthant v = Q% and the degree homomorphism

Q:7" — K, ei — w;:= deg(T;).
An X -face is a face v9 < v admitting a point z € X such that one has
2, #0 <= e €

for the coordinates z1,... s Ty of x and the canonical basis vectors eq,...,e, € Z.
Moreover, an X -face is an X-face 7o < v with A° C Q(0)°. Let rlv(X) be the set of all
X-faces and 7: X*°(\) — X the quotient map. Then we have a decomposition

X = J XM
YoErlv(X)

into pairwise disjoint locally closed sets X (7p) := 7(X (70)).
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Remark 3.2.4. We consider the situation of Construction Any subset I =
{i1,...,ix} of {1,...,r} defines a face s of the orthant by

VI = Yiy,...ip, = cone(ej,, ..., e;,) <.

Moreover, the polynomial g; € K[T7,...,T,] associated with I is defined as

- - - T, 1€l
=g(Ty,..., 1), T =
gar g( 1 ) % {0, Z¢I

Then ~; is an X-face if and only if g7 is no monomial.

Proposition 3.2.5. Consider the situation of Construction|3.2.3
(i) The variety X is Q-factorial if and only if dim(\) = dim(Kqg) holds for A\ =
SAmple(X).
(ii) The variety X is locally factorial if and only if for every X -face vy < =y, the group K
is generated by Q(vo NZ").
(iii) X dis smooth if and only if X is smooth and X C Z*& holds.

Furthermore, for hypersurface Cox rings, we have an explicit description of the
anticanonical class.

Proposition 3.2.6. In the situation of Construction[3.2.3, the anticanonical class of X
is given in K = Cl(X) as

—Kx = deg(T1) + -~ + deg(T}) — deg(g).

We call an irreducible normal variety X weakly Calabi- Yau if its canonical class Kx
vanishes. For varieties with hypersurface Cox ring this notion only depends on the
generator degrees and the relation degree. Moreover, it turns out that smooth weakly
Calabi-Yau hypersurfaces are Calabi-Yau varieties in the strong sense.

Remark 3.2.7. Consider the situation of Construction B.2.3

(i) From Proposition we deduce that X is weakly Calabi-Yau if and only if
p = wi + -+ + w, holds. In particular, p lies in the relative interior of Eff(R)
whenever X is weakly Calabi-Yau.

(ii) If X is weakly Calabi-Yau, then Proposition shows that X is an anticanonical
hypersurface of a projective toric variety Z as in Construction [3.2.2] If, in addition,
X is smooth, then Proposition allows us to apply [2, Prop. 6.1]. From this
we infer h(X,Ox) = 0 for all 0 < i < dim(X), hence X is Calabi-Yau.

In what follows we describe in outline the toolbox for producing general hypersurface
Cox rings with given data established in Section [2.4} proofs and more details can be
found at the same place.
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3.2. Mori dream spaces with hypersurface Cox rings

Construction 3.2.8. Consider a linear, pointed, almost free K-grading on the polynomial
ring S := KJ[T1,...,T,] and the quasitorus action H x Z — Z, where

H := SpecK[K], 7Z = SpecS = K.

We write Q: Z" — K, e; — w; := deg(T;) for the degree map. Assume that Mov(S) C Kg
is of full dimension and fix 7 € A(S) with 7° C Mov(S)°. Set

Z = Z%(r), Z = ZJH.

Then Z is a projective toric variety with divisor class group Cl(Z) = K and Cox ring
R(Z) = S. Moreover, fix 0 # p € K, and for g € S, set

Ry :=5/(g), Xg=V(g) CZ, Xy=Xyn2, Xy=X,/HC Z.

Then the factor algebra R, inherits a K-grading from S and the quotient X, C 7 is a
closed subvariety. Moreover, we have

X, C Z, C Z

where Z, C Z is the minimal ambient toric variety of X,, that means the (unique)
minimal open toric subvariety containing X,.

Remark 3.2.9. In the situation of Construction assume that R, is normal, factori-
ally graded and T1,...,T; define pairwise non-associated K-primes in R,. Then R, is
an abstract Cox ring and we find a GIT-cone A € A(R,) with 7° C A\° and X, = X®()).
This brings us into the situation of Constructions and so we have

Cl(Xy) = K, R(Xy) = Ry, 7% C Ample(Xy).

Moreover, for any g € U, the variables T1,...,T; form a minimal system of generators
for all R, if and only if we have p # w; for i =1,... 7.

Constructing a general hypersurface Cox ring with prescribed specifying data essen-
tially means to to find a suitable open subset U C S, such that R4, where g € U, satisfies
the conditions from the above remark. In the subsequent text we present several criteria
to check these conditions.

Proposition 3.2.10. Consider the setting of Construction[3.2.8 For 1 <i <r denote
by U; € S, the set of all g € S,, such that g is prime in S and T; is prime in R,;. Then
U; € S, is open. Moreover, U; is non-empty if and only if there is a p-homogeneous
prime polynomial not depending on T;.

Proposition 3.2.11. In the situation of Construction[3.2.8, suppose that K is of rank
one, r > 5 holds and that for any i = 1,...,r there is an l; € Z>1 with p = Lyw;.
Then there is a non-empty open subset of polynomials g € S, such that the ring Ry is
normal and K-factorial, and Tt, ..., T, € Ry are prime. In particular, there is a general
hypersurface Cox ring with specifying data w1, ..., w, and p.
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By a Dolgachev polytope we mean a convex polytope A C Q% of dimension at least

four such that each coordinate hyperplane of Q" intersects A non-trivially and the dual
cone of cone(Ag — u; u € Ag) is regular for each one-dimensional face Ay < A.

Proposition 3.2.12. In the situation of Construction[3.2.8, there is a non-empty open
subset of polynomials g € S, such that the ring Ry is factorial provided that one of the
following conditions is fulfilled:
(i) K is of rank at most r — 4 and torsion free, there is a g € S,, such that Ty,..., T,
define primes in Ry, we have jn € 7° and p is base point free on Z.
(ii) The set conv(v € ZLq; Q(v) = ) is a Dolgachev polytope.
(iii) ~ > 5, K = Z2, there is some g € Sy, such that T, ..., T, define primes in Ry, and
the degree matriz is of the form

r1r ... Tr_1 0

©= —dy ... —dy_; 1|’ x; € L>1, di € Z>o,

such that the first coordinate puy of p € Z2 is a multiple of each of x1,...,x,_1 and
the second coordinate uo of p satisfies

p2 = —min vidi + -+ dr—1vp—1

where the minimum runs over all v € Zgol with V1T + -+ Vp_1Tp—1 = 1.

We give another easy to check factoriality criterion for homogeneous polynomials
with degree arising from a lattice polytope in the following sense.

Remark 3.2.13. Let ¥ be a complete lattice fan in Z™ and wv1,...,v, the primitive
lattice vectors generating the rays of ¥. Consider the mutually dual exact sequences

P
0 L zr—L 7
0 K9 gr P gn 0

The X-degree of a lattice polytope B C Q" is Q(a(X)) € K where

a(X) = (a1,...,a,) € Z", a; == — min(u, v;).
ueB

Proposition 3.2.14. Let B C Q" be an integral n-simplex, 3 a fan in Z™ refining the
normal fan of B, and u € K the X-degree of B. Assume that there is a p-homogeneous
prime polynomial and a non-empty open subset U C S, such that for all g € U the
variables T, ..., T, define K-primes in the K-graded algebra

Ry =K[Ti, ..., T,]/(g).

Then there is a non-empty open subset of polynomials g € S,, such that Ry is K-factorial.
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3.3. Proof of Proposition [3.1.1

The spread p-homogeneous polynomials form an open subset U, C S,,. Moreover all
polynomials g € U, share the same minimal ambient toric variety Z,. We call Z, := Z,,
where g € Uy, the p-minimal ambient toric variety. The following propositions enable us
to verify smoothness of Z,, and the general X, in a purely combinatorial manner.

Proposition 3.2.15. In the situation of Construction[3.2.8 the following statements are
equivalent.
(i) The p-minimal ambient toric variety Z,, is smooth.
(ii) For each vy =~ with 7° € Q(7)° and |Q~ () Nyo| # 1 the group K is generated
by Q(yo NZ").

Proposition 3.2.16. In the setting of Construction assume rank(K) = 2 and
that Z,, C Z is smooth. If u € 7 holds, then  is base point free. Moreover, then there is
a non-empty open subset of polynomials g € S,, such that X, is smooth.

A further ingredient needed in the proofs of Proposition [3.1.1 and Theorem [3.1.3]
are invariants in connection with hypersurface Cox rings that distinguish varieties with
different specifying data. Let us highlight generator and relation degrees of a graded
algebra; for a detailed discussion of this topic we refer to [65] Sec. 2].

Remark 3.2.17. Let R = @,,cx R be an integral pointed K-graded algebra. We
denote S(R) = {w € K; Ry, # 0}. An important invariant of R is the set of generator
degrees generator degrees

Qr:={we S(R); Ry € Rew} C K

where R.,, denotes the subalgebra of R spanned by all homogeneous components R,
such that w = w’ 4+ wg holds for some 0 # wy € S(R). In the situation of Setting|3.5.1
the set of generator degrees is given as

QR:{wl,...,wr} gK

The set of generator degrees is unique and does not depend on a graded presentation

of R. From this emerges another invariant: Choose pairwise different uy, ..., u,, € K
such that Qr = {u1,...,un} and set d; = dimg R,,,. By suitably reordering uy, ..., up,
we achieve d; < ... <d,,. We call (dy,...,d,,) the generator degree dimension tuple of

R. If two graded algebras are isomorphic, then they share the same generator degree
dimension tuples.

Moreover, if R admits an irredundant graded presentation R = K[T1,...,T,]/{g),
then the relation degree p = deg(g) € K is unique and does not depend on the choice of
the minimal graded presentation.

3.3 Proof of Proposition (3.1.1

We work over an algebraically closed field K of characteristic zero. The proof of Propo-
sition can be seen as a lightweight version of the proof of Theorem [3.1.3] They
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Chapter 3. Smooth Calabi-Yau threefolds of small Picard number

are similar in their structure yet the first one does not involve detailed elaboration of
combinatorial configurations. Indeed, the combinatorial input restricts to the following
remark.

Remark 3.3.1. The following tables describes the solutions of the inequation

Ty Xy ST+ Tn, T1,e, T € L
for n = 3,4,5 where x1,...,x, are in ascending order. Here, % stands for an arbitrary
positive integer.
njxry T2 T3 T4 n|ry To X3 T4 Ts
L1« — 1 1 1 1 =
|12 2 — 1 1 1 2 2
L2 3 — 11 1 23
1 1 1 =« 1 1 1 2 4
411 1 2 3 L1t 1 25
1 1 2 4 1 1 1 3 3

Proof of Proposition[3.1.1. Let X be a smooth Calabi-Yau threefold of Picard number
one with a spread hypersurface Cox ring. Fix a graded presentation

R(X) =Ry =K[T1,...,T5]/{9)

and observe that we are in the situation of Construction Our major task is to

verify that Q = [wy,...,ws], where w; = deg(T}), is as in one of the items 1 to 5 from
Proposition [3.1.1
We claim that for i = 1,...,5 a power Tili shows up amongst the monomials of g .

Suppose that g has no monomial of the form Tili for some 1 <4 < 5. Then «; <« is an
X-face by Remark As X is locally factorial, Proposition (ii) says that w;
is a generator for K, in particular ¢ = l;w; holds for some l; € Z>;. The respective
monomial Tili is of degree p and admits no presentation as convex combination over other
monomials of the same degree. Since g is spread, Tl-li has a non-zero coefficient in g. A
contradiction.

Now Remark @ shows that that any twodimensional face v; ; < 7 is an X-face.
Thus any two w;, w; form a generating set for K; see Proposition (ii). Being an
abelian group of rank one generated by two elements K is of the form Z x Z/t7Z for some
t € Z>1. According to this presentation of K we denote

W; = (ai7<i)a M= (06,9), aG;, & S Z) Cl?e S Z/tZ
By applying a suitable automorphism of K and reordering 17, ...,T5 we achieve

1<a; <---<as
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3.3. Proof of Proposition [3.1.1

Our next task is to figure out all possible configurations of (aq,...,as). Observe that
ai,...,as are pairwise coprime. As the existence of monomials Tllz of degree i ensures
that « is divisible by each of aq, ..., a5, we obtain a; - - - a5 | @. From Proposition
and X being Calabi-Yau we infer y = w; + - - - + ws. This leads to

ay---as|a+---+as. (3.1)

Remark yields a1 = a2 = a3 = 1 and we are left with one of the following
configurations
ag =1, ay = 2 and as = 3, 5.

Inserting a4 = 1 into Eq. (3.1) amounts to a5 | 4, hence a5 = 1,2,4. Besides, a4 = 2 and
as = 3 does not satisfy Eq. (3.1). To sum it up, (aq,...,as) must be one of the following
(1,1,1,1,1), (1,1,1,1,2), (1,1,1,1,4), (1,1,1,2,5).

When K is torsion-free, these configurations lead to Numbers 1, 3, 4, and 5 from

Proposition [3.1.1]

The next step is to study the torsion subgroup of K. We produce upper bounds on the

order t of the torsion subgroup of K for each of the above configurations of (ay,...,as).
Since any of these configurations satisfies a; = 1 we achieve (; = 0 by applying a suitable
automorphism of K. Recall that Tili shows up as a monomial of ¢ for all i = 1,...,5.

From this we infer 0 = [;(; = 0. Moreover wi,w; form a generating set for K for any
j > 1. Thus each (; is a generator for Z/tZ. Then again [;(; = 6 = 0 forces ¢ | I; for
j=2,...,5. Using the presentation l; = «/a; we obtain that ¢ is a divisor of

d:—gcd(a,...,a).
az as

The following table lists the data in question explicitly.

(CLl, ,CL5) a d
(1,1,1,1,1) 5 5
(1,1,1,1,2) 6 3
(1,1,1,1,4) 8 2
(1,1,1,2,5) 10 1

One directly sees that K admits no torsion in the last case. We deal with the three
remaining cases. Since we are interested in the case where K is not torsion-free we
assume t > 1. From d being a prime multiple of ¢ we deduce ¢t = d. Consider indices
i # j with a; = a; = 1. From w;, w; spanning K as a group we infer {; # ;. Thus in the
first case, as = 1, the elements (3,..., (5 are pairwise different. After suitably reordering
T1,...,T5, we end up with specifying data as in Number 2 from Proposition For
the two remaining cases, as = 2,4, we obtain that (y,..., {4 are pairwise different. Note
that the cyclic factor Z/tZ of K has order at most three in these cases; a contradiction.
Hence these configurations of (ay,...,as) do not admit torsion in K.
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The next to last step is to make sure that each item from Proposition stems
from a general smooth Calabi-Yau hypersurface Cox ring. Fix specifying data (Q, u) as
listed in Proposition [3.1.1] and run Construction [3.2.8] Proposition [3.2.11] guarantees
that for the given data there exists indeed a general hypersurface Cox ring R(X) = R,.
Observe that X is quasismooth since a power of each variable T; shows up in g with
non-zero coefficient, hence X is smooth apart from the origin. Furthermore, one directly
checks that X is locally factorial using Proposition (ii). Altogether X is smooth
according to Proposition (iii). Moreover, Remark (i) says that X is weakly
Calabi-Yau, thus, being smooth, Calabi-Yau by Remark (ii).

Finally we have to verify that each two smooth Calabi-Yau threefolds with specifying
data from different items from Proposition [3.1.]] are non-isomorphic. Varieties from
Number 2 have a unique divisor class group among the varieties from Proposition [3.1.1
Thus it suffices to consider families 1, 3, 4, and 5. Dealing with pointed Z-gradings, the

assumption ay,...,as > 1 makes the set of Cox ring generator degrees {wy, ..., w5} =
{ai,...,as} unique. We conclude the discussion by observing that Numbers 1, 3, 4 and 5
have pairwise different set of generator degrees. O

3.4 A Flop Lemma

The aim of this section is to give a direct proof that small birational modifications of Mori
dream spaces with Picard number two that have a trivial canonical class are connected
by flops; see Proposition [3.4.2

Let us briefly recall the notion of flops [90,91] as well as some surrounding terminology.
A proper birational morphism ¢ : X — Y of normal varieties is called extremal, if X is
Q-factorial and for each two Cartier divisors D1, Dy on X there are aq,ao € Z where at
least one of a1, as is non-zero and ay Dy — as Ds is linearly equivalent to the pullback ¢*C
of some Cartier divisor C' on Y. This is essentially a condition on the Picard numbers of
X and Y.

Lemma 3.4.1. Let ¢ : X — Y be a dominant morphism of normal varieties with finitely
generated Picard groups. Then the following statements are equivalent.

(i) For each two Cartier divisors D1, Dy on X there are ay,as € Z where at least one
of a1, as s non-zero and a1 D1 — as Doy is linearly equivalent to the pullback ©*C' of
some Cartier divisor C on Y.

(ii) We have p(X) — p(Y) < 1.

Proof. Being a dominant morphism, ¢ induces an injective pull-back homomorphism
of Picard groups ¢* : Pic(Y) — Pic(X). In particular ¢*Pic(Y) is of rank p(Y) =
rank Pic(Y'). Consider the factor group G := Pic(X)/¢*Pic(Y). We have

dim Gg = rank Pic(X) — rank ¢*Pic(Y) = p(X) — p(Y).

Now observe that (i) means that each two elements from G lay on a common ray in the
rational vector space Gg i.e. dimGg < 1. 0
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3.4. A Flop Lemma

A Weil divisor D on a variety X is said to be relatively ample w.r.t a morphism
@ : X — Y of varieties, or just w-ample, if there is an open affine covering Y = |J V; such
that D restricts to an ample divisor on each ¢ ~1(V;). A birational map ¢ : X~ --» X+
of Q-factorial weakly Calabi-Yau varieties is a flop if it fits into a commutative diagram

where ¢~ : X~ — Y and ¢ : X~ — Y are small proper birational morphisms, ¢~ is
extremal and there is a Weil divisor D on X~ such that —D is ¢~ -ample and the proper
transform of D on X is pT-ample.

Proposition 3.4.2. Let R be an abstract Cox ring with grading group K of rank two
and \,n € A(R) full-dimensional cones with A°,n° C Mov(R)°. Consider the varieties
X (X) and X (n) arising from Construction|[3.2.1} If the canonical class of X () is trivial,
then there is a sequence of flops

X(A) -=» Xj == -+ == Xj, -—-» X(n).

We study the toric setting first. Consider S = K[T1,...,7,]| with a linear, pointed,
almost free grading of an abelian group K of rank two and the associated action of the
quasitorus H = Spec K[K] on K". Let us recall some facts about toric varieties arising
from GIT-cones as treated e.g. in |4, Chap. 2-3]. The degree homomorphism @ : Z" — K,
e; — w; = deg(T;) gives rise to a pair of mutually dual exact sequences:

0 L /R A

Q

0 K 7r < g 0

Given a GIT-cone 7 € A(S) with 7° C Mov(S)°, the associated toric variety Z =
(K"™)S(7)//H has the describing fan ¥(7) given by

(1) ={P(0); werlv(n)},  1lv(r) = {0 = 7° € Q1))

In particular all such fans share the same one-skeleton consisting of the pairwise different
rays generated by vq,...,v, where v; = P(e;) € Z". Moreover, we denote Z,, for the
affine toric variety associated with the lattice cone P(vg) C Q™. The covering of Z by
affine toric charts then formulates as

Z= | Z,
YoErlv(T)

Lemma 3.4.3. Let 71,70 € A(S) with 77 C Mov(S)°. Then for any v1 € rlv(m),
Yo € rlv(12) we have
P(3) € P(11) <= mn S e
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Proof. The implication “<" is clear. We show “=". Note that the cones P(v{) € X(m1)
and P(v3) € X(m2) both live in lattice fans having precisely vy, ..., v, as primitive ray
generators. Thus for 7 = 1,2 and any v; we have

v; € P(7j) <= Qxov; is an extremal ray of P(v;) <= e; € ;.
From this we infer that P(v5) C P(v{) implies 75 C ~7. This in turn means y; C v2. O

Let 77,77 C Q? = Kq be full-dimensional GIT-cones with (77)°, (77)° C Mov(S)°
intersecting in a common ray 70 =7 N7T.

Consider the projective toric varieties Z°, Z~, Z* associated with 70, 7= and 7% and
denote X0 = %(79), ¥~ = ¥(77) and ¥+ = X(7F) for the describing fans. Moreover the
inclusions of the respective semistable points induce proper birational toric morphims
0 : 727 = Z% ot Zt — ZY described by the refinements of fans ¥~ < X% and ¥+ < 3°
respectively. This yields a small birational map ¢: Z~ --» Z* as shown in the diagram

(K)=(r7) < (K)=(r%) 2 (K)*(r)

W ww)
. 70 il Vs
-

Lemma 3.4.4. Let —D be an ample divisor on Z~, then D regarded as a divisor on Z+
is T -ample.

Proof. By suitably applying an automorphism of K and relabeling wy, ..., w, € K we
achieve counter-clockwise ordering i.e.

i < j = det(w;, w;) >0

and det(w~,wt) > 0 for all w™ € 7, wt € 7. Moreover, we name the indices of the
weights that approximate 7° from the outside

i = max(i;w; €T ), it = min(7; w; € 7'+).

The geometric constellation of wr, ..., w, in Q? directly yields that the set of minimal
cones of rlv(7°) is

(i i~ <i<iTFU{ygi<it, j>it),
where «;, ;= cone(e;,,...,e;) = . The corresponding cones P(vg)* are precisely the
maximal cones of X°, in particular the associated toric charts Z, form an open affine
covering of Z°. We show that D is ample on each open subset (p7)71(Z,,) of Z7.
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3.4. A Flop Lemma

First, note that ¢ is an isomorphism over the affine toric charts of Z° associated
with the common minimal cones of rlv(7°) and rlv(r*), namely all Z,, , where i < i
and j > i*. In particular each preimage (¢T)~1(Z,, ) is affine. Since Z* is Q-factorial
by Proposition (i), the divisor D is Q-Cartier thus restricts to an ample divisor on
any open affine subvariety of ZT.

It remains to consider the charts of Z° defined by the faces of the form ~;. Let us
fix some i~ < j < i". The minimal cones 7y € rlv(7") with v; C vo are precisely those
of the form ~;; where ¢ > j. As the toric morphism ¢* is described by the refinement

¥t <30 Lemma yields
U= ()" (2,) = U 2y, 2.
i>it

Note that U C Z* is an open toric subset and the maximal cones of the associated
subfan Y’ of ¥ T are precisely the cones P(v;,;) where i > i*t. This shows that the
rays of ¥ are the rays of X1 minus p;. Thus the divisor class group of U is given by
Cl(U) = K/{(wj) and the projection corresponds to the restriction of divisor classes

ClZT) —“—= QD)

|

K —— K/(wj)

1R

Taking rank K = 2 into account, we may choose suitable coordinates leading to an
isomorphism Cl(U)g = Q such that for any w € C1(Z*) the restriction *(w) to C1(U)

and det(w;, w) have the same sign. Graphically this means that the sign of +*(w) € CI(U)

is positive if w lies above the ray 7° and negative if w lies below 7°.

Since we know the maximal cones of ¥’ we may compute the ample cone of U as

Ample(U) = ﬂ (2" 0 Q(7j4))° = Qx>0 € Q = Cl(U)q.

>t

Note that [-D] € Ample(Z~) = 7~ lies below 7, thus the class of —D (regarded on ZV)
restricted to U is negative, hence ¢*[D] € Ample(U). In other words, D is ample on U.
Altogether, we conclude that D is ¢T-ample. O

Proof of Proposition[3.4.2. First, we deal with the case that A and 7 intersect in a
common ray ¢ = ANn. Consider a K-graded presentation

R:K[Tl,...,TT]/Cl

where T1, ..., T, define pairwise non-associated K-primes in R and a C S = K|[T7,...,T}]
is a homogeneous ideal. The GIT-fan A(S) w.r.t. the H-action on S refines the GIT-fan
A(R). We may choose 7,77 € A(S) such that

(r7)° A (T+)O Cn’, T Ntt=o
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The toric morphisms ¢, goJZr arising from the face relations o < 7—,7% of GIT-cones
are compatible with the toric morphisms ¢~, ¢ arising from o < \,n as shown in the
following diagram where the vertical arrows are neat embeddings as in Construction [3.2.2]

¢z ¢F

Z(0) Z(r")

]

X(\) —— X (o) =— X(n)

We claim that the resulting birational map ¥ : X () --+ X (n) is a flop. First observe that
X~ is Q-factorial by Proposition (i) and ¢~, ¢ are small birational morphisms;
see |4, Rem. 3.3.3.4]. Lemma ures that ¢~ is extremal.

Let Dy be a torus invariant divisor on Z(77) such that —Dy is ample for Z(77).
Since X (\) C Z(77) is neatly embedded, we may restrict Dz to a divisor Dx on X ().
Note that —Dx is ample since —Dy is so. In particular —Dx is ¢~ -ample. Lemma m
yields that Dy is goJZr—ample. Let U C Z(p) be an affine open subset such that Dy is
ample on

-1
V= (cp}) (U) C Z(tT).
The further restriction of Dz from V to V N X (n) is still ample. In other words, Dx
restricted to (p7)71(X(7) N U) is ample. We conclude that Dx is ¢-ample.
Altogether ¢ : X(\) --» X(n) is a flop.
In the general case we find full-dimensional GIT-cones A = n,...,m = 1 where
1y € Mov(R)® holds for all 7 and each intersection 1; N7;4+1 is a ray of A(R). According to
the preceding discussion, we may successively construct the desired sequence of flops. [

3.5 Combinatorial constraints on smooth hypersurface Cox
rings

The proof of Theorem [3.1.3] basically uses the combinatorial framework for the classifi-
cation of smooth Mori dream spaces of Picard number two with hypersurface Cox ring
established in Section 2.5] Let us recall the notation from there and slightly extend it
to address the torsion subgroup of the grading group explicitly. We also present the
accompanying toolkit. Moreover we add some new tools for dealing with torsion.

We work over an algebraically closed field K of characteristic zero.

Setting 3.5.1. Consider K = Z? x I" where I is some finite abelian group of order ¢,
a K-graded algebra R and X = X()), where A € A(R) with A° C Mov(R)°, as in
Construction Assume that we have an irredundant K-graded presentation

R = R, = K[Th.....T,)/(g)

such that the T; define pairwise nonassociated K-primes in R. Write w; = deg(T;),
p == deg(g) for the degrees in K. According to the presentation K = Z? x I' we denote

w; = (ui7g’i)) o= (a70)7 Usy & S Z27 CZ)G S T.
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3.5. Combinatorial constraints on smooth hypersurface Cox rings

Similarly the degree matrix Q = [w1, ..., w,] is divided into a free part Q° and a torsion
part Q'°7, i.e., we set

Qoz[ul ur}, Qtor:[C1 CT}

Regarded as elements of Kg we identify w; with u; and p with a. Suitably numbering
wy, ..., w,, we ensure counter-clockwise ordering, that means that we always have

1<) = det(wi,wj) = det(ui,uj) > 0.

Note that each ray of A(R) is of the form p; = cone(w;), but not vice versa. We assume
X to be Q-factorial. According to Proposition this means dim(A) = 2. Then the
effective cone of X is uniquely decomposed into three convex sets,

Eff(X) = A" UAXN UM,

where A\~ and A" are convex polyhedral cones not intersecting A\° = Ample(X) and
A~ N AT consists of the origin.

Remark 3.5.2. Setting is respected by orientation preserving automorphisms of K.
If we apply an orientation reversing automorphism of K, then we regain Setting [3.5.1] by
reversing the numeration of w1, ..., w,. Moreover, we may interchange the numeration of
T; and T} if w; and w; share a common ray without affecting Setting We call these
operations admissible coordinate changes. Note that any automorphism of Z? naturally
extends to an automorphism of K = Z? x I acting as the identity on I

We state an adapted version of Proposition locating the relation degree.
Proposition 3.5.3. In the situation of Setting we have p € cone(ws, w,—2) C Kg.

A further important observation is that the GIT-fan structure of R, can be read of
from the geometric constellation of wy, ..., w, and u.

Proposition 3.5.4. Situation as in Setting . Assume that X (\) is locally factorial
and R is a spread hypersurface Cox ring. Then the full-dimensional cones of A(R) are
precisely the cones n = cone(w;,w;) where g; # 0j and one of the following conditions is
satisfied:
(i) w € o; holds, o; contains at least two generator degrees and n° contains no generator
degree,
(i) p € oj holds, oj contains at least two generator degrees and n° contains no generator
degree,
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(iii) u € n° holds and there is at most one wy € n°, which must lay on the ray through

Hs
(iv) p & n holds and n° contains no generator degrees.

The following lemmas are a crucial in gaining constraints on the specifying data.

Lemma 3.5.5. Situation as in Setting[3.5.1,. Let i, j with A C cone(w;,w;). If X = X(N)
is locally factorial, then either w;,w; generate K as a group, or g has precisely one

monomial of the form TiliTJl-j, where l; +1; > 0.

Lemma 3.5.6. Let X = X () be as in Setting andlet 1 <i<j<k<r. IfX is
locally factorial, then w;, w;, wy, generate K as a group provided that one of the following
holds:

(i) wi,wj €A™, wx, € AT and g has no monomial of the form T,i’“,

(ii) w; € A7, wj,wi € AT and g has no monomial of the form Tili,

(iii) w; € A7, wj € A%, wy € AT

Moreover, if (iii) holds, then g has a monomial of the form T]l-j where l; is divisible

by the order of the factor group K/(w;, wg). In particular l; is a multiple of det(u;, uy).

Lemma 3.5.7. Assume u,wy,ws generate the abelian group Z?2. If w; = a;w holds with
a primitive w € Z? and a; € Z, then (u,w) is a basis for Z> and u is primitive.

Now we present some structural observations which prove useful at different places
inside the proof of Theorem when we deal with specific configurations of generator
and relation degrees.

Lemma 3.5.8. Let uy,...,us € Z* such that det(uy,u3), det(ui,uy), det(ug,u3) and
det(ug,uq) all equal one. Then uy = ug or uz = uy holds.

Lemma 3.5.9. In Setting assume that X = X (X) is locally factorial and Ry a
spread hypersurface Cox ring. If w; lies on the ray through u, then g has a monomial of
the form Tz-li where 1; > 2.

Lemma 3.5.10. In Setting assume that Mov(R) = Eff(R) and p € Eff(R)° hold.
Let Q) denote the set of two-dimensional cones n € A(R) with n° C Mov(R)°.
(i) If X(n) is locally factorial for some n € Q, then Eff(R) is a regular cone and every
u; on the boundary of Eff(R) is primitive.
(ii) If X(n) is locally factorial for all n € Q, then, for any w; € Eff(R)°, we have
Uu; = U1 + up or g has a monomial of the form TZZZ

Lemma 3.5.11. Situation as in Setting . Assume that Ry is a spread hypersurface
Cox ring. If i € Eff(R)° holds and every two-dimensional n € A(R) with n° C Mov(R)°
defines a locally factorial X (n), then there is at most one ray o; which is not contained
in the boundary of Eff(R) and contains more than one w;.

Lemma 3.5.12. Situation as in Setting|3.5.1. If we have we = w3 and u € g2, then
wy € 02 holds.
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We have to bear in mind that the divisor class group K = CIl(X) of a smooth
Calabi-Yau threefold X is not necessarily torsion-free. The following lemmas show that
in the case of a hypersurface Cox ring the order of the torsion subgroup is bounded in
terms of monomials of the relation degree. A first important constraint is that the torsion
subgroup of K is cyclic.

Lemma 3.5.13. Situation as in Setting [3.5.1. If X = X (X) is locally factorial and
wé N then K =72 holds.

Proof. We have A\ = cone(w;, w;) for some generator degrees w;, w; lying on the boundary

of A. Due to p ¢ )\, there is no monomial Tzl'leJ of degree u. Lemma (3.5.5|yields that K

is generated by w;,w;. Since rank(K) = 2, this implies K = Z2. O

Lemma 3.5.14. Situation as in Setting |3.5.1 If X is locally factorial, then K =
72 x ZJtZ holds.

Proof. Both A~ and A" contain at least two Cox ring generator degrees. This allows us
to choose w;, w;, wy such that Lemma applies. This ensures that K is generated by
three elements. By Setting we have rank(K) = 2, thus K is as claimed. O

Lemma 3.5.15. Situation as in Setting|3.5.1 Let 1 < i,j < n with cone(w;, w;)NA° # 0.

If X = X(\) is locally factorial and p € X\ holds, then there is a monomial TiliTJl-j of
degree p where l; +1; > 0.

Proof. Since g is p-homogeneous, we are done when g has a monomial of the form Tfﬁ“jj .

We assume that g has no monomial of the form TiliT;j . Then p; and g; both are
GIT-rays, thus none of w;, w; lies in A°. This forces A C cone(w;, w;). Then Lemmam
tells us that w;, w; generate K as a group. Using g € A C cone(w;, w;j) we deduce
that p is an positive integral combination over w;, wj;, i.e., there exists a monomial as

desired. O

Lemma 3.5.16. Situation as in Setting|3.5.1. Let 1 <14, j,k <1 such that w;, w;, wy,
generate K as a group, det(u;, u;) = 1 and cone(w;, w;) NA° # (. If X is locally factorial,
then t | Iy holds for any monomial TZ-ZiT,i’C of degree .

Proof. Using det(u;, u;) = 1 enables us to apply a suitable admissible coordinate change
such that ¢; = ¢; = 0. Moreover we may assume A € y; otherwise Lemma [3.5.13] yields
t = 1 and there is nothing left to show. This allows us to use Lemma [3.5.15] From
this we infer that 1 = («, 0) is an integral positive combination over w;, w;, thus § = 0.
Since w;, w;, wy, generate K as a group, (j is a generator for I'. Using ¢; = 0 we obtain

I(x = 0 = 0 whenever TZ.ZZ'T,?c is of degree u. This implies ¢ | . O

Lemma 3.5.17. Situation as in Setting|3.5.1 Assume that X = X () is locally factorial.
If det(uy,u,) = 1 and a = lguy holds, then t | .

Proof. Lemma 3.5.6| yields that wi, wg,w, generate K as a group. Besides T,i’“ is of
degree p1 by Lemma |3.5.9| (i). Now Lemma |[3.5.16| tells us ¢ | Ij. O
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Lemma 3.5.18. Let w; = (u;,(;) € Z? x Z/tZ for 1 < i < 3. Ifu; = up holds and
w1, we, ws span Z2 x L/tZ as a group, then (1 — (o is a generator for Z/t7.

Proof. Choose a; € Z such that (; = a; € Z/tZ. Then 73 is the linear hull of the columns
of the following matrix, which we modify by subtracting the second from the first column

U
1 uz uz O N 0 us ug 0
a]; a2 as t al; —az a2 as t
Observe that ug, uz form a Z-basis for Z?2, thus a suitable unimodular row operation gives

0 us uz 0 0 up uz 0
|fL1—(I2 a2 asg t‘|—>|‘a1—a2 0 0 t]

The columns of the right-hand side matrix still form a generating system for Z3. This
implies that a; — ag = (3 — (2 generates the group Z/tZ. O

Lemma 3.5.19. Situation as in Setting|3.5.1. If X is locally factorial, det(uy,u,) =1,
and w; = wj holds for some 1 < @ < j < r, then (1 — (2 is a generator for I'. In
particular K is torsion-free or t # 2,4 holds.

Proof. First note that w;,w; share a common ray in Kg, thus do not lie in the relative
interior of the GIT-cone \; see Proposition So we have w; € A~ or w; € AT. By
applying an orientation reversing coordinate change if necessary we achieve w; € A\™.
We have K = 72 x Z/tZ; see Lemma Using det(u,u,) = 1 enables us to apply
a suitable admissible coordinate change such that ¢; = {, = 0. Remark ensures
that g has no monomial of the form 7. Hence Lemma yields that both triples
w1, w;, wy and wi, w;, w, generate K as a group. In particular ¢;, ¢; both are generators
for Z/tZ. Moreover Lemma tells us that w;, w;, w, form a generating set for K.
Lemma yields that {; — (; is a generator for Z/tZ. The proof is finished by the
fact that the difference of two generators for Z/2Z resp. 7 /47 is never a generator for
the respective group. O

3.6 Proof of Theorem (3.1.3; Collecting candidates

The first and major task in the proof of Theorem [3.1.3|is to show that we find specifying
data for any given smooth Calabi-Yau threefold X with spread hypersurface Cox ring
among the items displayed in Theorem This is done by a case-by-case analysis of
the geometric constellation of the Cox ring generator degrees.

Now the ground field is K = C. The sole reason for this is the reference involved in
the proof of the following proposition.

Proposition 3.6.1. Consider the situation of Setting|3.5.1. If X (\) is a smooth weakly
Calabi-Yau threefold, then any variety X (n) arising from a full-dimensional GIT-cone n
satisfying n° € Mov(R)® is smooth.
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3.6. Proof of Theorem 3.1.3L Collecting candidates

Proof. Proposition provides us with a sequence of flops
XN =X1 -5 ——» X = X(n).

According to [91, Thm. 6.15], see also [90], flops of threefolds preserve smoothness.

So we successively obtain smoothness for all varieties in the above sequence, especially
for X (n). O

Given a positive integer n, a sum of the form ny +---+n, = n where ny,...,ny € Z>
is called an integer partition of n. If one wants to emphasize the order of the summands,
one calls such a sum an integer composition of n. For instance, 1 + 1+ 2 = 4 and

1+ 2+ 1 =4 are two different integer compositions of 4 but they are equal as integer
partitions.

Remark 3.6.2. In Setting the geometric constellation of wy, ..., w, is described
by an integer composition of r in the following sense: First, we take into account that
some of the rays p; = cone(w;) may coincide and label the actual rays properly. Let
1 <j1 <---<js <rsuch that g;, # 0j, holds for ji, # ji and each g; equals some gj, .
Set o0y, := 0j,. We denote N}, for the number of Cox ring generator degrees w; lying on
0k. Then the distribution of the degrees w; on the rays oy is encoded by the composition

Ny4-+ Ny =r.

For example, when r = 4 holds, the integer compositions 1+1+2=4and 1+2+1=4

correspond to the constellations of w1, ..., wy illustrated below.
03 = 03 = 04 02 = 02 03 = 04 02 = 02 = 03
o1 = 01 01 = 01
1+14+2=4 1+2+1=4

Proposition 3.6.3. Situation as in Setting|3.5.1. If X is a weakly Calabi-Yau threefold,
then r = 6 holds and the constellation of w1, ..., we corresponds to one of the following
integer partitions N1 + ...+ Ng = 6 in the sense of Remark[3.6.3

»

N1 NQ N3 N4 N5 NG
3

I
T
v

Vi
Vil

O U A W W N
— = N W
o= =N
e NIV R
»-n»—loaw\

|

\
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Proof. Observe r = dim(X) + dim(Kg) + 1 = 6. The subsequent table shows all integer
partitions N; 4 --- + Ng = 6.

e
e
2
=
Z
=

I
II
II1

v

A%
VI
VII

O UL W W WD N
R R R R R RRENDWN RO
H»—lr—\H»—tmmwﬂkm‘

»—l»—lr—\L\DAAwl\D‘

Our task is to show that in the situation of Setting those partitions without roman
label do not admit a composition corresponding to the constellation of wy, ..., ws in Kq.

Observe that in the cases s = 1 and s = 2 where N; = 1, N» = 5 the moving
cone Mov(R) of R must be one-dimensional; a contradiction. From Proposition m
we deduce that any constellation given by Ny + No = 2+ 4 = 6 forces p to live in
the boundary of Eff(R). This contradicts Remark . Furthermore, the partition
Ny + Ny + N3 =1+ 1+ 4 comprises precisely two compositions, that is to say

N1+ No+N3g=1+4+1 and N+ Na+Ns=1+1+4.

The first of them implies that Mov(R) is one-dimensional; a contradiction. Considering
the latter, Proposition shows that p lies on the boundary of Eff(R); a contradiction
to Remark [3.2.7] O

We work in Setting for the proof of Theorem According to Remark (i) it
suffices to determine the degree matrix @ = [wy, ..., ws] in order to figure out candidates

for specifying data of X since the relation degree p is given by

When @ and p are fixed, we cover all possibilities (up to isomorphism) by picking an
interior point u of each full-dimensional GIT-chamber A with A° C Mov(R)°.

Our proof of Theorem [3.1.3 will be split into Parts I, ..., VII discussing the constella-
tions of wy, ..., we in the sense of Remark given by the accordingly labeled integer
partition of six from Proposition [3.6.3

Part I o We consider 3+ 3 = 6 i.e. the generator degrees w; are evenly distributed on
two rays o1, 02. S0 wi,...,wg lie all in the boundary of Eff(R).
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3.6. Proof of Theorem 3.1.3t Collecting candidates

Lemma [3.5.10] (i) tells us that each wj; is primitive and Eff(R) is regular. In particular
u1 = ug = ug and uq = us = ug. A suitable admissible coordinate change leads to

Qozll 1100 0]'

000111

If K is torsion-free, this leads to specifying data as in Number [I| from Theorem [3.1.3
We assume that K admits torsion. Remark [3.2.7] (i) implies o = ug + - - - +ug = (3, 3).

Lemma, guarantees that T23Tf’ is of degree pu. Lemma tells us that wy, ws, wy

generate K as a group and we have det(u1,us) = 1. Thus we may apply Lemma [3.5.16

From this we infer ¢ | 3, hence t = 3 i.e. K = Z? x Z/3Z; see also Lemma [3.5.14
Furthermore Lemma yields that K is generated by each of the triples

(w17w27w4)7 ('UJl,U)g,'UJ4), (w27w3aw4)‘

Since u; = us = ug, we conclude that n1,ns,n3 are pairwise different. Otherwise two
of wy,ws, ws coincide, hence K is generated by two elements; a contradiction. In the
same manner we obtain that n4, 5,76 are pairwise different. After suitably reordering
T1,...,Tg we arrive at specifying data as in Number [2] from Theorem [3.1.3

Part IT « We discuss the degree constellation determined by 2 4+ 2 + 2 = 6. Here the
generator degrees w; are evenly distributed on three rays o1, 09, o3.

We have u € oo by Proposition [3.5.3] Proposition [3.5.4] provides us with two GIT-cones
m = cone(wy, ws), 12 = cone(ws, ws).

According to Proposition the associated varieties X (n1), X (n2) both are smooth.
Lemma [3.5.10] (i) yields u1 = ug, us = ug and det(uj,us) = 1. After applying a suitable
admissible coordinate change the degree matrix is of the form

1 1 a3 a4 0 O
0 3 a4
= Zi>1.

@C=1000 by b1 1| @S

We may assume a3 < ag4. Let v = (v1,v2) € 7Z? be the primitive vector lying on os.
Applying Lemma to X(n2) and the triple ws, w4, ws shows ged(as,aqs) = 1. In
addition, we obtain v; = 1 from Lemma Lemma [3.5.6] again, this time applied
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to X(m1) and w, we, w3, gives v9 = 1. From v; = ve we deduce ag = b3 and a4 = by.
Lemma ensures that p is divisible by both ag and a4, thus asay | p1. Remark (i)
says = wy + ...+ wg. We conclude

agay | p1 = as + aqg + 2.

First we deduce a4 | a3 + 2. Moreover we obtain a3 < 4 due to az < ay. Altogether the
integers ag, a4 are bounded, so we just have to examine the possible configurations.

e a3 =1: From a4 | ag+2 = 3 we infer ay = 1,3. Now we show that K is torsion-free.
For a4 = 1 we have

111100
0 __ _
Q _lo 01 1 1 1]’ o= (4,4).

Observe p® = 4u3. Lemma [3.5.13| tells us ¢ | 4, thus K is torsion-free according to
Lemma [3.5.19] Similarly, for as = 3 we have

111300
0 _ _
Q _lo 01 3 1 1]’ o= (6,6).

Observe a = 2uy. Lemma tells us ¢ | 2, thus K is torsion-free according
to Lemma [3.5.19] We arrive at specifying data as in Numbers [3] and [ from
Theorem Observe X (1) = X(n2) in both cases due to the symmetry of
the geometric constellation of wi, ..., ws, . Thus it suffices to list an ample class
for X (n1) only.

e a3 = 2: From ay | ag +2 = 4 and a3 < a4 we infer ay = 2, 4. This contradicts
ged(as, aq) = 1.

e a3z = 3: From a4 | a3 +2 = 5 and a3 < a4 we infer ay = 5. This leads to
w1 = as + aq + 2 =10. A contradiction to ag | p1.

e a3 = 4: From a4 | a3 +2 = 6 and a3 < a4 we infer a4 = 6. This contradicts
ged(ag, aq) = 1.

Part IIT « In this part we consider the arrangements of w, ..., ws associated with
the integer partition 1+ 2 + 3 = 6. Here we have precisely three rays o1, 09, 03 each of
which contains a different number of Cox ring generator degrees. A suitable admissible
coordinate change turns the setting into one of the following:

IT1-i IT1-ii ITT-iii
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Case III-i. Here we have A = cone(w,wys). Let v € Z? be a primitive vector on o.
Proposition and Remark (i) tell us p € A° U oy. This allows us to apply
Lemmato wj, wy, ws for i = 1,2, 3. From this we infer det(u;,v) =1 fori=1,2,3.
In particular uy, ug, us are primitive, thus u; = uo = us. Applying Lemma to the
triple wy, we, we shows det(uy,us) = 1. A suitable admissible coordinate change amounts
tov =(0,1) and

111 0 0 —as

0 _

We may assume by < bs. To proceed we have to take the position of p into account.

Assume p € X°. Then we may apply Lemmas and to the two triples w1, wo, wy
and w1, ws, ws. We obtain that u4 and us both are primitive, hence

ug =us =v=(0,1).

From Remark (i) we infer a = (3 — ag, 3). Since p lives in the relative interior of A,
which is the positive orthant, we end up with ag = 1,2. We show that K is torsion free
in both cases.

e ag = 1. The free parts of the specifying data are given as
a=(2,3).

Lemma [3.5.15| ensures that T{T; is of degree p. Moreover Lemma m shows
that both triples wi, w4, ws and wi,ws,wys generate K as a group. Applying

Lemma [3.5.16| to w1, w4, ws and T2T yields ¢ | 3. Again Lemma [3.5.16] this time
applied to wy, we, wyq and TIQT?? shows ¢ | 2. Altogether ¢t = 1, thus K is torsion-free.

e ag = 2. The free parts of the specifying data are given as
a=(1,3).

Lemma [3.5.15| ensures that T'T} of degree . Moreover Lemma |3.5.6 shows that
w1, we, wy generate K as a group. Applying Lemma [3.5.16| to wy, we, wy and Ty T}
shows t = 1 i.e. K is torsion-free.

Eventually this leads to specifying data as in Numbers [f| and [6] from Theorem [3.1.3

Assume p € 09. Recall that v = (0, 1) spans the ray oy. So here we have oy = 0. From
Remark (i) we obtain ag = 3 and ay = by + bs + 1. Lemma yields by, b5 | ca.
Applying Lemma to wy, wa, ws shows ged(ba, bs) = 1. We conclude

b4b5|a2=b4+b5+1.

This implies b5 | by + 1. Moreover we deduce by < 3. We discuss the resulting cases:
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o by =1: From b5 | by + 1 = 2 we deduce b5 = 1,2. For b5 = 1 we have

11100 -3

0 _
@=10011 1> «=03)

Suppose that K is torsion-free. Then wy = ws holds. Reversing the order of the
variables by applying a suitable admissible coordinate change enables us to use
Lemma This forces two of the rays o; to coincide; a contradiction. So K has
torsion. From o = 3u4 and Lemma we obtain ¢ | 3, hence ¢ = 3. So we have
K = 7?* x Z/37. Using det(u1,ug) = 1 enables us to apply a suitable admissible
coordinate change such that {(; = (4 = 0. Now Lemma shows that both triples
w1, wo, wg and wi, w3, wg generate K as a group. From this we infer that (o and
(3 both are generators for Z x Z/3Z. Lemma yields that ws, w3, weg form a
generating set for K as well. This forces (5 # (3. Otherwise wyo = w3 holds, thus
K is spanned by two elements; a contradiction. Similarly, Lemma [3.5.6] applied
to wi, wy, wg and wy, ws, we yields that ¢4 and (5 both are generators for Z/3Z.
Moreover applying Lemma to w1, wy, ws ensures (4 # (5. After suitably
reordering 15, T3 and Ty, T5 we arrive at Number |Z| from Theorem |3.1.3

We turn to b5 = 2. Here the free parts of degree matrix and relation degree are

given by
11100 -3
0 _ _
@ lo 00 1 2 1]’ a=(0.4).

Note o = 2us. From Lemma [3.5.17| we infer ¢ | 2, hence K is torsion-free according
to Lemma, Moreover every u-homogeneous polynomial not depending on
T is a linear combination over the monomials Tf, T42T5, T52, thus reducible. This
implies that Ty € R is not prime. A contradiction.

o by =2: From b5 | by +1 = 3 and by < b5 follows bs = 3. This leads to

11100 -3
0 __ _
Q_lo 0023 1/ «=00)

Observe a = 3ug = 2uz. Lemma |3.5.17|yields ¢ | 2 and ¢ | 3, hence ¢t = 1. So K is
torsion-free. We end up with Number [§] from Theorem [3.1.3]

o by =3: From b5 | by +1 = 4 and by < b5 we infer b5 = 4. This implies ay = §8; a
contradiction to by | as.

Case III-ii. Here, we have X\ = cone(ws, ws). Proposition says j1 € og. Let v € Z2
be a primitive vector on o9. Applying Lemma [3.5.6] to wa, w3, ws as well as wa, w3, we
shows det(v,us) = 1 and det(v,ug) = 1. In particular us, ug are primitive and lie on
the same ray hence coincide. Again by Lemma [3.5.6] now applied to wq,ws, ws, we
obtain det(ui,us) = 1. A suitable admissible coordinate change amounts to v = (1,0)
and us = (0,1). As a result the free part Q¥ of the degree matrix @ is of the form

1a2a3a400

0_
Q_—200011’

as,as, a4 € ZZL
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Note that the second coordinate of u; is determined by as = 0 and Remark (1).
Furthermore, we may assume as < a3 < a4. Lemma |3.5.9 shows that a; is divisible by
each of az, az, as. From applying Lemma [3.5.6to all triples w;, wj, we where 2 < i < j <4
we infer that as, as, aq are pairwise coprime. This leads to

asasaq | a2 + az +ag + 1.
According to Remark [3.3.1] we have as = 1 and one of the following two configurations
a3 =1, a3=2and aq = 3.

Note that as = 2 and a4 = 3 amounts to oy = 7; a contradiction to as | a3. So we have
a3 = 1. Then a4 | o = 3 + a4 holds. We conclude ay4 | 3 i.e. ay = 1,3. We show that K
is torsion-free in both cases:

e a4 = 1. Here we have
111100
0 _ _
@ _l—2 000 1 1]’ @ =(40).

Note a = 4ug, thus ¢ | 4 by Lemma Now Lemma [3.5.19| ensures that K is

torsion-free.

e a4 = 2. Here we have
111300
0 _ _
@ _[—2 0001 1]’ = (6,0).

Note o = 2uy, thus t | 2 by Lemma [3.5.17, Now Lemma [3.5.19 ensures that K is
torsion-free.

We have arrived at Numbers [9 and from Theorem [B.1.3

Case III-ii. From Lemma [3.5.10| (i) we obtain
Up = u2 = us, Us = Ug, det(ul,UG) =1.
A suitable admissible coordinate change brings the degree matrix into the following form

Qo_l111a400

000 by 1 1]’ (4, by € L.

Moreover, Proposition tells us p € cone(wy,wyq)® or u € p4. Let us first assume
w € cone(wy,wy)®. According to Proposition we have GIT-cones

M = cone(wy,wy), 72 = cone(wy, ws),

both of them giving rise to a smooth variety X (7;); see Proposition We obtain

that K is torsion-free by applying Lemma [3.5.13 to X (12). Applying Lemma [3.5.10] (ii)
gives uqg = u; + ug = (1,1). We have arrived at Numbers [11| and (12| from Theorem
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The next step is to consider 4 € g4. Lemma [3.5.9] provides us with some k € Z>
such that u = kw4 holds. Using Remark (i) gives kby = ag = by + 2. We conclude
by | 2. This leads to one of the following two configurations

k=3 and by =1, k=2and by = 2.

Suppose k = 3. Using Remark (i) again shows 3as = 3 + a4, equivalently 2a4 = 3.
A contradiction. We must have ¥ = 2 and by = 2. Here Remark (i) implies
2a4 = 3 + a4, thus ay = 3. We have

o 111300 B
Q_[000211’ a=(6,4).

From o = 2uy we infer ¢ | 2 by Lemma [3.5.17, Thus Lemma [3.5.19| yields that K is
torsion-free. This amounts to Number [[3] from Theorem B.1.3

Part IV e This parts deals with the case of wy,...,ws being disposed on four rays
according to the integer partition 1 + 1+ 2+ 2 = 6. A suitable admissible coordinate
change leads to one of the subsequent constellations:

Nz Nz N e

IV-i IV-ii IV-iii IV-iv

Case IV-i. Here, Proposition [3.5.3] tells us p € o3. As a result, Proposition [3.5.4] provides
us with two GIT-cones

n1 = cone(wz, w3), 12 = cone(ws, ws).

Proposition ensures that the associated varieties X (11) and X (72) both are smooth.
Let v € Z? denote the primitive lattice vector lying on 3. Consider X (12). Applying
Lemmas [2.5.5] and [3.5.6] to the triples w3, wy, w5 and w3, wy, wg yields us = ug and
det(v,us) = 1. Thus we may apply a suitable admissible coordinate change such that
v =(1,0) and us = ug = (0,1). We apply Lemma again, this time to wy, ws, wg
and wo, ws,wg. This shows that the first coordinate of both w; and us equals one.
Now, consider X (7). We apply Lemma to w1, ws, w4, hence obtain u; = (1, —1).
Analogously, we obtain ug = (1, —1), thus u; = ug. This contradicts o1 # 0.

Case IV-ii. Proposition [3.5.3|says u € cone(ws, wy). First, we assume p € g4 = 03. Then
Proposition [3.5.4] ensures A = cone(ws, ws). Let v € Z? be the primitive lattice vector
on o2. Applying Lemmas and to all four triples

(wo, w3, ws), (w2, w3, wg), (w2, ws, we), (ws,ws,ws)
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shows that wus, us, us, ug are primitive, thus us = uz and us = ug. Additionally we
obtain det(ug,us) = 1. Lemma again, this time applied to wi, ws, wg, tells us
det(uy,us) = 1. A suitable admissible coordinate change eventually amounts to

e[t wnnen.
From Remark (i) we infer & = (as + 3, bs — by + 2). Lemma [3.5.9] provides us
with some k € Z>9 such that p = kw,s. In particular a4 | @y = a4 + 3. This implies
a4 = 1,3. Suppose a4 = 1. Then k = 4 holds. This leads to 4b4y = cg = by — b1 + 2, hence
3by = 2 — by. A contradiction to by,bqy > 1. We are left with a4 = 3 and k = 2. Inserting
into a = kus gives 2by = by — by + 2, thus by = 2 — by. This forces by =1 and by = 1
due to b1,by > 1. Moreover k = 2 implies ¢ | 2 by Lemma Thus K is torsion-free
according to Lemma We have arrived at Number [14] from Theorem [3.1.3]

We turn to the case u ¢ o3. Here Proposition provides us with two GIT-cones

M = cone(wy,wy), 72 = cone(wy, ws).

According to Proposition the according varieties X (1) and X (n2) both are smooth.
Consider X (72). Lemma applied to w4, ws and wy, wg yields det(ug, us) = 1 as
well as det(ug,us) = 1. Besides, Lemmas [2.5.5{ and [3.5.6| applied to wy, ws, ws give us
det(u1,us) = 1. Now consider X (1;). Let v € Z? be the primitive vector contained in o.
Applying Lemmas and to wa, w3, wy and wa, w3, ws shows det(v,uys) = 1 and
det(v,us) = 1. Now we apply an admissible coordinate change such that v = (1,0) and
us = (0,1) holds. Taking the determinantal equations from above into account amounts
to the following degree matrix

1 ao a3 1 0 O
0 _ 2 a3
Q - _bl O 0 1 1 1 ’ a27a37b1 EZZI
We may assume as < ag. From Remark (i) follows cvg = 3—by. Propositionmguar—
antees that u lives in the positive orthant, hence b; < 3. Furthermore, Lemma [3.5.5| ap-
plied w.r.t X (n;) and the pairs ws, w5 and ws, ws shows az, az | a1. Applying Lemma
to wa, w3, ws shows ged(ag, asz) = 1. Consequently asas | a1 = ag + ag + 2 holds. We end
up with as =1 and a3 =1, 3.

Let us discuss the case as = 1. Here specifying data looks as follows
00
1

1E o = (4, 3— bl), b € {1,2,3}.

1
0 _
Q_—b100

Suppose b; = 3. This implies a = (4,0) = 4uy. Lemmas [3.5.17 and [3.5.19| yield that K
is torsion-free. So we = ws holds. Note that ag = 0 means p € go. In this situation
Lemma says wy € p9. A contradiction to o9 # 03. So we have b; = 1,2. Observe
i € n7. Applying Lemma to X (n2) guarantees that K is torsion-free. We end up
with Numbers [T5] to I8 from Theorem
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We turn to ag = 3. Here we have a; = 6. According to Lemma applied to X (n1)
and ws, wy, there must be some monomial TéSTi“ of degree p because of det(us,uq) = 3.
As the second coordinate of ug vanishes, l4 = as = 3 — by holds. Inserting this into the
equation a; = l3as + l4a4 yields 3l3 4+ 3 — by = oy = 6. This forces by to be divisible by 3,
hence by = 3. We arrive at the following data
100
11

nE a = (6,0).

3
0

O =

-3

Observe that this grading does not admit any monomial of the form T]LllTi4 of degree p.
Thus det(u;,us) = 1 by Lemma applied to X (n;) and wy,wy. A contradiction.

Case IV-iii. Proposition ensures A = cone(ws,ws). Let v,v’ € Z? be the primitive
ray generators of o9, 03. We may apply Lemmas [2.5.5] and [3.5.6] to at least one of the
triples weo, w3, wy and wq, wy, ws. From this we infer det(v,v’) = 1. A suitable admissible
coordinate change leads to v = (1,0) and v = (0,1). Applying Lemma to wa, W3, We
yields wg = (—ag, 1) for some ag € Z>1. Similarly, one obtains w; = (1,—b1) with
by € Z>;. Counter-clockwise orientation yields det(wq,ws) = 1 — agby < 0. We conclude
by = ag = 1, hence w; = —wg. This contradicts Eff (R) being pointed.

Case IV-iv. We have p € cone(ws,wy) by Proposition Suppose u € cone(ws, wy)°.
Proposition allows us to apply Lemma (ii). From this we infer us = wuy, thus
o9 = 03; a contradiction. So we have u € o9 U g3. Taking the symmetry in the geometric
constellation of wy, ..., ws into account a suitable admissible coordinate change amounts
to u € o2. Lemma yields u1 = uo, us = ug and ug = u; + ug. Furthermore we
obtain det(uj,us) = 1. After applying another suitable admissible coordinate change the
degree matrix is of the following form

Q| 1a 100
100 b3 111

] 3 CL3,b3 € ZZI-

From X being Calabi-Yau we infer a = (a3 + 3, b3 + 3); see Remark Besides
Lemma [3.5.9 provides us with some k € Zxp such that y = kws holds. Altogether we
obtain (k — 1)as = 3 = (k — 1)bs, hence az = b3. This contradicts o9 # o3.

Part V e In this part we study the case of wy,...,wg being disposed on four rays
according to the integer partition 14+ 1+ 1+ 3 = 6. After applying a suitable admissible
coordinate change, we face one of the two constellations below.

s

V-i V-ii
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Case V-i. According to Proposition and Remark (i) either p € cone(ws,ws)°
or i € o9 holds. First, we assume p € cone(ws,w,)°. Here Proposition provides us
with two GIT-cones

71 = cone(ws, wy), 72 = cone(wy, ws).

Proposition tells us that each 7; defines a smooth variety X (n;). Let v € Z? be
the primitive vector lying on o;. Consider X(7;). Applying Lemmas [3.5.6| and [3.5.7]
to wy, we, ws and wy, we, wg shows that det(v,us) and det(v, ug) both equal one. Now
consider X (n2). From Lemma applied to both pairs w4, ws and wy, wg we infer
det(ug,us) = 1 and det(ug,us) = 1. We are in the situation of Lemma hence
V= U4 O U5 = Ug i.6. 01 = 09 or 03 = 04. A contradiction.

We turn to pu € o9. Here A = cone(ws, ws) holds due to Proposition Let v € Z?
be the primitive lattice vector in o;. Applying Lemma to wi, we, ws and wi, wa, we
shows det(v,us) = 1 and det(v, ug) = 1. We find a suitable admissible coordinate change
that amounts to v = (1,0) and

ar az az a4 az O

0 _
Q=10 0 0 b, 1 1> @b €Zn

We may assume a; < ao < az. Lemma says t = kwy holds for some k € Z>9, in
particular by | ap. From Remark (i) follows ag = by + 2, hence by | 2. This leads to
one of the configurations

by =1and k = 3, by =2 and k = 2.

Furthermore, Lemma shows that k is divisible by a; for all ¢ = 1,2,3. Lemma [3.5.0]
applied to all triples w;, w;, ws where 1 < ¢ < j < 4 guarantees that aq,...,a4 are
pairwise coprime. As as result we obtain ajagas | k. Since k£ < 3 holds, this forces

a1 =as =1and az = 1,k.

Remark (i) says p = w1 + ...+ wg. We combine this with p = kwy, consider the
first coordinate of o and eventually obtain that as is determined by

a5:(k—1)a4—a3—2.

Observe by(k — 1) = 2 for both configurations of by, k in question. Besides, note that
det(ug,us) > 0 means bjas < ay4. Plugging the above presentation of as into this
inequation yields

ag < b4(2 + ag).

At this point we have found upper bounds on all entries of QV. Let us make things
explicit:
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e by=1,k=3and ag =1: We have 0 < a5 < aq < 3 i.e. ay =2 and a5 = 1. This

152

amounts to
1 11 2 10
0 _ _
@ _lo 0011 1]’ a=(6,3)

Given that K is torsion-free this leads to specifying data as in Number [19| from
Theorem B.1.3

Now assume that the torsion subgroup of K is non-trivial. From o = 3u4 and
Lemma we infer ¢t = 3 i.e. K = Z? x Z/37. Using det(us,ug) = 1 enables us
to apply a suitable admissible coordinate change such that (5 = (¢ = 0. Moreover,
Lemma tells us that K is generated by each of the triples

(w1, w2, we), (wi,ws,we), (w2, ws,we).

Combining this with u; = us = us we deduce that (1, (o, (3 are pairwise different;
otherwise K would be spanned by only two elements. After suitably reordering 77,
T, T3 we may assume (1 = 0. Again Lemma shows that w, ws, wg form a
generating set for K as well. This contradicts (1 = (5 = (¢ = 0. As a consequence,
K must be torsion-free.

by =1, k=3 and ag = 3: We have a4 < 5. We exclude a4 = 2 because this choice
of a4 implies a5 = —1; a contradiction. Due to ged(as,as) = 1 the case ag = 3
does not show up either. The remaining case a4 = 4 leads to a5 = 3. However,
Lemma applied to ws, ws, wg states ged(as,as) = 1. A contradiction.

by = 2, k=2 and ag = 1: We have a4 < 6. From bgas < aq4 we deduce ay > 3.
From a4 = 3 follows a5 = 0; a contradiction. So we end up with

_111@4&50

QO_ 000 2 1 1|’ (a47a5):(471)7(572)’

From k = 2 and Lemma we infer ¢ | 2. Now Lemma ensures that K is
torsion-free. So we arrive at Numbers 20] and 21] from Theorem [3.1.3]

by =2, k=2 and az = 2: We have ay < 8. From a5 = (k — 1)ag —a3 — 2 =ay — 4
we deduce ag > 5. The case ay = 6 is excluded by ged(as, aq) = 1. The remaining
cases are (a4, as5) = (5,1),(7,3).

With (a4, as) = (5,1) we obtain

112510
0 _ _
Q _[0 002 1 1]’ = (10,4).

From a = 2uy4 we infer ¢ | 2 by Lemma @ Furthermore, Lemma ensures
that T3T¢ is of degree u. Applying Lemma [3.5.16] to w1, w3, ws and T5T2 yields
t | 3. Altogether ¢t = 1 i.e. K is torsion-free. This leads to Number from
Theorem B.1.3

Finally consider (a4,as) = (7,3). Here we have

o (112730 B
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Lemma [3.5.15| ensures that 7374 is of degree pu. Applying Lemma [3.5.16| to
wy, w3, ws and T g’Té yields t = 1. i.e. K is torsion-free. We end up with specifying

data as in Number 23] from Theorem [3.1.3

Case V-ii. Proposition says p € 0. We have A = cone(ws, ws) by Proposition [3.
Let v € Z? denote the primitive generator of the ray os. Applying Lemmas [3.
and to the triples we, w3, ws and wa, w3, we shows det(v, us) = 1 and det(v, ug) = 1.
A suitable admissible coordinate change leads to

(@
N

SR
>

QO: ay az as a4 a50
- 0 0 0 1 1}’

where a2 < ag < a4. Remark (i) yields ag = 2 — by. Since p € g2 means ay = 0,
we conclude b; = 2. Applying Lemma to w;, wj, we for any 1 <14 < j < 4 shows
that aq,..., a4 are pairwise coprime. According to Lemma the first coordinate aq
of « is divisible by ag,as,as. For i = 2,3,4 applying Lemma [3.5.6] to w1, w;, ws gives
ged(ag + 2as,a;) = 1 as well as det(ug,us) = a1 + 2as5 | a1. Altogether we have

al,...,a5,b1 € Zzl’

ajasasay + 2asazagas = (a1 + 2as)asasay | a1 = ay + -+ - + as. (3.2)

In particular, the left-hand side is less than or equal to the right-hand side. Plugging
az,as < ay, ajazazay > ay and agagasas > as into Eq. (3.2)) leads to azasasas < 3ay, thus
asazas < 3. Then ao < ag enforces as = 1. We end up with the following configurations

a3 =1and a5 =1,2,3, a3 = 2,3 and a5 = 1.
We gain bounds on a4 in terms of as, as by combining ajasasas > a1 and Eq. (3.2)) again:
(2&3@5 — 1)0,4 <az+as+ 1. (3.3)

As a result we obtain a3 = 1; otherwise we must have ag = 2,3 and a5 = 1 thus Eq. (3.3))
gives 3asq < 5 forcing as = 1, which is a contradiction to az < a4. From Lemma [3.5.5]
applied to wy, wg we deduce that aq divides oy = a1 + a4 + a5 + 2, thus

al ‘ aq + as + 2. (3.4)

Finally, we make things explicit and go through the cases a5 = 1,2, 3:

e a5 = 1: We have a4 < 3 due to Eq. . When a4 = 1 we end up with a1 = 1,2,4
due to Eq. . None of these configurations satisfies Eq. . When a4 = 2
holds, Eq. gives a1 = 1,5. The first value, a; = 1, leads to

1 11 2 10
P=150001 1] =60
From o = 3uy4 and Lemma we infer ¢ | 3. Moreover, Lemma ensures
that T2T¢ is of degree . Applying Lemma :3.5.16 to w1, we, ws and T2T2 shows
t | 2. Altogether t = 1 i.e. K is torsion-free. We arrive at Number from
Theorem The second value, a; = 5, does not satisfy Eq. . Finally, with
a4 = 4 we obtain a1 = 1,7 from Eq. . None of these configurations satisfies

Eq. .
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o a5 = 2: Inserting into Eq. (3.3)) yields 3a4 < 4, hence ay = 1. Now Eq. (3.4)) leads
to a; = 1,5. None of these configurations satisfies Eq. (3.2]).

e a5 = 3: Inserting into Eq. yields bas < 5, hence a4 = 1. Now Eq.
amounts to a; = 1,2,3,6. Applying Lemma to the triple wy,ws, wg shows
ged(ag, as) = 1. This reduces the situation to a; = 1, 2.

With a; = 1 we obtain

o [111130 -
Q‘l—200011’ a=(7,0).

Lemma [3.5.15| ensures that 7172 is of degree pu. Applying Lemma [3.5.16| to
wi, we, ws and T} 1T52 shows t = 1 i.e. K is torsion-free. We arrive at specifying data

as in Number 2§ from Theorem B.1.3
For a; = 2 we have the following data
1130

00 1 1]’ = (8,0).

Q
=]
Il
|

N DO
O

Again Lemma [3.5.15| ensures that 7172 is of degree u. Applying Lemma [3.5.16] to
w1, wo, ws and T} 1T52 shows t = 1 i.e. K is torsion-free. We arrive at specifying data
as in Number 26 from Theorem B.1.3]

Part VI « Here we treat the case where the generator degrees wy, ..., wg lie on five
different rays. After a suitable admissible coordinate change, we are in the situation of
one of the constellations illustrated below.

Ve Ve e

VI-i VI-ii VI-iii

Case VI-i. We claim p € o3. Otherwise Proposition tells us p € o9 U cone(ws, wq)°.
Then 1 = cone(wy, ws) is a GIT-cone by Proposition m Consider the associated
variety X (n). Proposition ensures that X (n) is smooth. Let v € Z? denote the
primitive generator of the ray ;. Lemmas and apply to wi,ws, w5 and
w1, wa, wg, therefore det(v,us) = 1 and det(v,ug) = 1. Moreover, Lemma applied
to both pairs w4, ws and wy, we gives det(ug,us) = 1 and det(ug,ug) = 1. We use
Lemma and obtain v = u4 or us = ug, thus 01 = o3 or o4 = 05. A contradiction.
So we have y € o3. Proposition provides us with GIT-cones

1 = cone(wy, ws), 12 = cone(ws, ws).
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According to Proposition the associated varieties X (1), X (n2) both are smooth.
Let us consider X (n;). Applying Lemma to the pairs w1, w3 and we, w3 yields

det(ui,u3) =1 and det(ug,uz) = 1.

From this we also infer that u; and us both are primitive, hence u; = uo. Now consider
X (n2). Lemma applied to both triples wy, we, ws and w1, we, wg gives

det(ui,us) =1 and det(ui,ug) = 1.
After applying a suitable admissible coordinate change the degree matrix is as follows

1 1 a3 a4 a5 O
0_ 3 G4 a5
Q — 0 0 1 b4 1 1l a37a47a57b4 EZZl
Lemma [3.5.9] provides us with some k € Z>» such that kws = pu. Remark (i) says
ag = by + 3. Together we obtain by | 3, thus by = 1,3. This implies £k = 1 + 3/by4.
Moreover, applying Lemma to ws, wy, wg yields

3

as = det(wg,w(;) | k=1+ a (35)

Again by Remark (i) we have kay = a1 = a3z + a4 + a5 + 2. This determines a4 by

az+as+2  by(az + a5+ 2)
(k—1) 3

ay4 = . (3.6)
Consider by = 1. From w3, w4, ws being oriented counter-clockwise we infer ag > a4 > as,
in particular as > 3. Then Eq. enforces ag = 4. This implies a5 < 2. For a5 = 1,2
one directly checks that Eq. does not yield an integer value for a4. A contradiction.

Consider by = 3. Equation says a3 = 1,2. From a3 > a5 > 0 we deduce az = 2
and a; = 1. Now inserting into Eq. leads to a4 = 5, hence

112510
0
@ [001311]’0‘ (10.6).

Lemma [3.5.15| makes sure that T§Tg is of degree p. Consider X(12). Applying
Lemma |3.5.16| to w3, ws, wg and T§1T ¢ yields t =1 i.e. K is torsion-free. This amounts to

Numbers 27 and Bg| from Theorem [B.1.3]

Case VI-ii. Repeating the arguments from Case VI-i shows u € o3. By Proposition
we have A = cone(ws,ws). Let v € Z? denote the primitive lattice in o9. Applying
Lemmas [3.5.6| and [3.5.7] to wa, ws, w5 as well as we, w3, wg shows det(v,us) = 1 and
det(v,ug) = 1. By a suitable admissible coordinate thus we achieve

0 ay ay a3 a4 as 0
Q _[ ai,...,as,by,by € Z>1,

S l=b1 0 0 by 1 1|
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where as < a3. By Lemma there is some k € Z>o with kwy = p. According to
Remark (i) we obtain kby = ag = by — by + 2. This leads to (k — 1)by = 2 — b;.
Since the left-hand side is positive, we conclude b; = 1 and consequently by = 1, k = 2.
Moreover, applying Lemma to wi,wy, ws yields

ay + as = det(uy,us) | k= 2.

From this we infer a; = 1 and a5 = 1. Analogously we obtain as,as | 2. Applying
Lemma to wy, w3, we shows ged(ag, az) = 1. Besides we have ag < az. Altogether
we arrive at ag = 1 and a3 = 1,2. From Remark (i) we infer ay = ag + 3.

The case a3 = 1 amounts to

111210

0_ _

C=l10011 1] @762

Note a = 3uy, thus ¢ | 3 by Lemma Furthermore, Lemma |3.5.15| guarantees

that TSTZ is of degree y. Lemma says that ws, ws, wg form a generating system
for K. Thus we may apply Lemma to ws, ws, wg and T36T62. From this we infer
t | 2. Altogether ¢t = 1, hence K is torsion-free. We have arrived at Number from
Theorem [B.1.3

To conclude Case VI-ii suppose a3 = 2. Then a4 = 5 holds. On the other side,
Lemma [3.5.6] applied to ws, w4, ws yields that as and a4 — a5 = 4 are coprime. A
contradiction.

Case VI-iii. Proposition 3.5.3] says p € o3. By Proposition we find GIT-chambers
m= cone(wg, w3)> N2 = cone(w4, ’U)5)

each of which defines a smooth variety X (7;); see Proposition Let v € Z2? be
the primitive lattice vector on the ray o3. Consider X(n;). Applying Lemma to
wi, w3, wy as well as wy, ws, wy yields det(u;,v) = 1 and det(ug,v) = 1. Analogously we
obtain det(v,us) = 1 and det(v, ug) = 1 when considering X (n2). Performing a suitable
admissible coordinate change leads to

QOZ fll ﬁ21 %3 %4 a15 (1) s al,...,a56221

where a1 < az and ged(as,as) = 1. Observe that uy,us do not span Z?, in particular
w1, ws do not span K. Thus Lemma gives us a monomial of the form TlllTé5 and
degree p. Recall that g € o3 means that the second coordinate of o vanishes. From
this we conclude l; = 5 hence a1 + a5 | @1. In the same way we obtain as + a5 | ay.
Furthermore, we infer as, a4 | @7 from Lemma Applying Lemma to w;, wj, ws
for all 1 <4 < j < 4 shows that the four integers a; + as, a2 + as, as, a4 are pairwise
coprime. We conclude

(a1 + as)(az + as)agay | a.
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Expanding the left-hand side and inserting the description for g provided by Re-
mark (i) while weaking the divisibility condition to an estimation leads to

2
a1aza3a4 + a1a3aqas + agazasas + azagas < ay + - -+ as.

One quickly checks that only a1 = 1,as = 2,a3 = a4 = a5 = 1 satisfies this inequation by
suitably estimating the single terms. For example, suppose a3 > 1. Then

ai1aza3a4 + azasaqas + azazaqas + a3a4a§ >2a2+a3+as+as >a; + -+ as.

Note that second estimation is due to ag > a1. Anyways, this is a contradiction. We give
the free parts of the final degree matrix and resulting relation degree explicitly

= (6,0).

Lemma ensures that both TTS and T3T?2 are of degree yu. Moreover Lemma m
yields that both triples wi, ws, wg and wa, wg, ws form a generating system for K. Ap-
plying Lemma to wy, ws, we and T3TS gives t | 3. Lemma again, this
time applied to ws, ws, ws and T2 , yields t | 2. Altogether t = 1 i.e. K is torsion-
free. Furthermore, the symmetry in the geometric constellation of wy, ..., wg, pu reveals
X (m1) = X (n2). This becomes even clearer if one applies an admissible coordinate change,
namely adding the first row of @) to the second row. Consequently, it suffices to list
X (m). We have arrived at specifying data as in Number [30 from Theorem

Part VII « We work out the the constellation where the Cox ring generator degrees
wi, ..., wg lie on pairwise different rays i.e. we have o; = ¢; for all ¢ = 1,...,6. Proposi-
tion “ 3.5.3| says p € cone(wg, w4) After applying a suitable admissible coordinate change
we have either p € cone(ws, w4)® or pu € p3.

e e

VII-a: p € cone(ws, wy)® VII-b: p € g3

Case VIl-a. Here, we assume u € cone(ws,wy)°. According to Proposition the
cones
71 = cone(ws, w3), 12 = cone(ws, wy), N3 = cone(wy, ws)

are GIT-cones leading to smooth varieties X (7;); see also Proposition Let us
consider X (n;). Lemma applied to wy,ws and wy, w3 yields det(u;,uz) = 1 and
det(ug,u3) = 1. Thus a suitable admissible coordinate change leads to

1 1 0 —a4 —a; —0ag

0 _ b
Q - _bl 0 1 b4 b5 b6 I aZ7bZ € ZZl
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Consider X (n3). Applying Lemma to w4, ws and wy, we gives det(ug,us) = 1 and
det(uq,ug) = 1. Since aq # 0, this is equivalent to

b5:a5b4—1, b6:a664_1.

a4 aq

(3.7)

Now consider X (n2). Applying Lemma to the pair ws, w; for i = 4,5,6 shows that
ay is divisible by each of a4, as, ag. Moreover, Lemma [3.5.6 applied to ws, w;, w; where
4 <1i < j < 6 ensures that a4, a5, ag are pairwise coprime. Together with Remark (i)
we obtain

a40506 ‘ a1 = a4+ as + ag — 2.

One quickly checks that this forces two of a4, as, ag to equal one. Suppose a5 = ag = 1.
Then Eq. (3.7)) implies bs = bg, thus us = ug. A contradiction. So we must have ag = 1,
in particular

b5 = a5b4 — 1, b6 = agb4 —1. (3.8)

Furthermore, Lemma :3.5.5 applied to wg,w; gives bj | ap for j = 4,5,6. In addition,
applying Lemma 3.5.6: to all triples wa, w;, w; where 4 <7 < j < 6 shows that b4, b5, be
are pairwise coprime. Once again by Remark (i) we obtain

b4bsbg | g =byg+bs+bg+1—by. (39)

Note that the right-hand side is positive due to the position of x. From this we deduce
babsbg < bg + bs + bg. According to Remark this inequation implies that either two
of by, bs, bg equal one or {bg, b5, bs} = {1,2,3}.

We exclude the first option. Here we have b5 # bg by Eq. , thus by = 1. However,
we also have a; = 1 for some ¢ € {5,6}. Then again Eq. implies b; =a; —1=0. A
contradiction. So we have {b4, b5, b5} = {1,2,3}.

Inserting into Eq. amounts to by = 1. Currently the degree matrix has the form

QO* 1 1 0 -1 —as5 —ag
S |-1 0 1 by by bs

Recall that a5 = 1 or ag = 1 holds. So we have by > b5 or by > bg due to the counter-
clockwise orientation of w4, ws, wg. From this we infer by # 1, hence b; = 1 for some
i € {5,6}. We are left with the cases by = 2,3. With by = 3, inserting into Eq.
gives 3a; —1 = b; = 1. A contradiction to a; € Z>;. With by = 2 we deduce a; =1
from Eq. (3.8). In particular w; = (—1,1) = —wy holds. A contradiction to Eff(R) being
pointed.

Case VII-b. Here, we assume p € 3. Proposition provides us with two GIT-cones
1 = cone(ws, wy), 12 = cone(wy, ws).
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Both of them give rise to a smooth variety X (7;); see Proposition Consider X (12).
Applying Lemma to both pairs wy,ws and w4, we yields det(uq,us) = 1 and
det(ug,ug) = 1. A suitable admissible coordinate change leads to

0 al a9 as 1 as 0
= i, b; € L>1.

Q _bl _b2 —b3 0 1 1l ai, 0; € >1
Lemma [3.5.9] provides us with some k € Zso such that p = kws holds. In particular,
we have ay = kas. Now consider X (7;). Lemma applied to the triples w1, w3, ws
and ws, w3, ws shows that a; + bias and as + bsas both divide k. Moreover, apply-
ing Lemma to w1, we, ws yields ged(ay + bias, as + boas) = 1. Together with

Remark (i) we obtain
(a1 =+ bla5)(a2 —+ bga5)a3 ’ a1 =a1+az+az+as+ 1.
We expand the left-hand side and give a rough estimation:

(a1 + bras)(ag + baas)az = ajazas + ajazasbs + asazasby + azazbiby
> a1 + a2+ az + as

Since ged(n, n+ 1) = 1 is true for every integer n, this inequation shows that equality
holds in the above divisibility condition. From this we infer

ag(alag — 1) + al(a3a5b2 — 1) + a3(a2a5b1 — 1) + a5(a3a5b1b2 — 1) =1.

Observe that every summand on the left-hand side is non-negative, hence precisely one of
them equals one while the other vanish. Since a1, as, as, a5 are non-zero, the factor in the
parenthesis vanishes whenever the whole summand vanishes. There are two summands
where b; shows up in the second factor. At least one of those parenthesis must vanish,
hence b; = 1. Repeating this argument yields bs = 1 as well as a3 = 1. Similarly, we
obtain a; = 1 or ag = 1. Altogether we have us = (1,—b3) and u; = (1,—1) where
i € {1,2}. This implies det(u;,u3) =1 — bg < 0; a contradiction to our assumption that
w1, ..., ws are in counter-clockwise order.

3.7 Proof of Theorem [3.1.3: Verification

The second mission in the proof of Theorem is to ensure that the list of specifying
data given there does not contain any superfluous items. So we have to verify that all
items from Theorem are realized by pairwise non-isomorphic smooth Calabi-Yau

threefolds having a (general) hypersurface Cox ring. We make extensive use of the toolbox
from Section

Lemma 3.7.1. Consider n-dimensional varieties X1, Xo with hypersurface Cox rings
having relation degree pu1 resp. po. If X1 and Xo are isomorphic, then ui = py where pl!
is the self-intersection number of u; regarded as a divisor class on X;.
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Proof. Let ¢ : X1 — X9 be an isomorphism. Then the induced pull-back maps

form an isomorphism (¢*, ¢*) of Cl(X;)-graded algebras. From this we deduce that the
pull-back @*(u2) € Cl(X2) of the relation degree ps € Cl(X3) of R(X3) is the unique
relation degree p € Cl(X1) of R(X1); see also Remark [3.2.17, Hence pf' = @*(u2)™ = pf.

O

Proof of Theorem[3.1.3: Verification. We show that each item from Theorem [3.1.3] in-
deed stems from a smooth Calabi-Yau threefold with a general hypersurface Cox ring.

Let (Q, p, u) be specifying data as presented in Theorem Consider the linear
K-grading on S = K[T1,...,Tg] given by @Q : Z5 — K. We run Construction with
the unique GIT-chamber 7 € A(S) containing u in its relative interior 7°. In doing
so u € Mov(S)° guarantees 7° C Mov(S)°. In what follows we construct a non-empty
open subset U C U, of polynomials satisfying the conditions from Remark thereby
obtaining a smooth general Calabi-Yau hypersurface Cox ring. This is done by starting
with U = U, and shrinking U successively.

Since p # w; holds for all i, Remark ensures that 77, ...,T form a minimal
system of generators for Ry, whenever g € U,. We want to achieve K-primeness of
Ti,...,Ts € R. Here Numbers [2] and [7] have to be treated separately. For all remaining
items from Theorem [3.1.3] and any 1 < ¢ < 6 we find in Table on page a -
homogeneous prime binomial 7% —T" € S not depending on 7;. Thus, Proposition [3.2.10]
allows us to shrink U such that T, ..., T define primes in R, for all g € U.

Number @ For Number 2 observe that all the generator degrees w; = deg(T;) are
indecomposable in the weight monoid

S(R) = {u € K; R, # 0} = Posg(wy, ..., w) C K.

Thus every T; € Ry is K-irreducible. As soon as we know that R, is K-factorial, we may
conclude that T; is K-prime.

Number[7. Table [3.1 on page shows p-homogeneous prime binomials T% — T € S
not depending on T; for ¢ = 1,...,5. Thus, Proposition [3.2.10] allows us to shrink U such
that T1,...,Ts define primes in R, for all g € U.

Observe that Ty defines a K-prime in Ry if and only if h == g(T1,...,75,0) € S is
K-prime. Since S is a UFD, thus K-factorial, the latter is equivalent to h € S being
K-irreducible. The only monomials of degree p not depending on Ty are T} and T3,
hence h = aT} — bT53. Note that T3, T53 are vertices of the polytope

conv (u € Zgo; deg(T") = y) .
From g being spread we infer a,b € K*. For degree reasons, any non-trivial factorization

of h has a linear form ¢ = a'Ty + b'T5 with o/, b’ € K* among its factors. From w4 # ws
we deduce that such ¢ is not homogeneous w.r.t the K-grading. We conclude that h

160



3.7. Proof of Theorem |3.1.3; Verification

admits no non-trivial presentation as product of homogeneous elements, i.e., h € S is
K-irreducible. This implies that Ts € R, is K-prime.

We take the next step, that is to make sure that each R, is normal and factorially graded.
For example this holds when R, admits unique factorization. Whenever K is torsion-free
the converse is also true. Here we encounter different classes of candidates.

Numbers 1, 2, 5, 6, 10 — 22, and 26 — 28. One directly checks that the convex hull over
the v € Zgo with Q(v) = u is Dolgachev polytope; we have used the Magma program
from Intrinsic for this task. Proposition (ii) ensures that Ry is factorial after
suitably shrinking U.

Numbers[3, [{} and[30 Here, the cone 7/ = cone(ws) € A(S) satisfies (7/)° C Mov(S)°.
Thus, Construction [2.4.1] gives raise to a toric variety Z’. We have p € (7/)° and one
directly verifies that p is base point free for Z’. Hence Proposition (i) shows that
after shrinking U suitably, R, admits unique factorization for all g € U.

Number[7]. We are aiming to apply Proposition For this purpose we have to verify
that p occurs as degree associated with a simplex in the sense of Remark [3.2.13] The
following polytope does the job:

B = conv((0,0,0,0), (0,0,0,3)(0,0,9,-3), (3,0,3,—1), (3,3,3,-2)) € Q.
The rays of its normal fan ¥(B) are given as the columns of the following matrix

-2 0 -1 0 1
-11 01 -1
-2 1 1 0 0
-3 3 00 0

P =

Now consider the stellar subdivision ¥y of 3(B) along (—1,0,0,0). The associated data
of X9 is Ky = 72 x 7./37 and

R IEE T

P, = ; Q=10 0 0 1 1 1].
-2 L1000 01213 0
-3 3 o0 O o0

We compute the Yo-degree ps of B. Observe a(¥2) = (9,0,0,0,3). From this we
infer uy = Q2(a(X2)) = (0,3,0). Note that (Qs2, u2) coincides with the specifying data
(Q, ) for which we run the verification process. In the previous step of this process we
have ensured that U C S, is a non-empty open subset of prime polynomials such that
Ti,...,Tg define K-primes in Ry whenever g € U. According to Proposition [3.2.14] we
may shrink U such that R, is K-factorial for each g € U.

Finally, Bechtold’s criterion [18, Cor. 0.6;|63, Prop. 4.1] directly implies that R, is
normal since each five of wq, ..., wg generate K as a group.

Numbers [8, [9, and . By applying a suitable coordinate change we achieve that
the degree matrix @) and the relation degree p are as in the following table.
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No. Q W
I L2 ww
TR
o 2] e
22 2 ] we
[ ] wo

We apply Proposition (iii). In the last three cases it is necessary to reorder the
variables such that ) has precisely the shape requested by Proposition (iii). Now
the conditions from there can be directly checked. As a result, we may shrink U such
that each R, is a factorial ring.

Number[26. Again we want to use Proposition [3.2.14] thus we have to present u as degree
associated with a simplex in the sense of Remark [3.2.13] Consider

B = conv((0,0,0,0), (0,0,0,8)(0,8,0,0), (0,0,4,0), (2,2,1,2)) C Q.

Its normal fan ¥; = ¥(B) has the rays given by the columns of the matrix

001 —1 3
102 -1 1
Pi=1g 1 92 -1 1
003 —1 1

Now consider the stellar subdivision 39 of ¥(B) along (1,0,0,0). Here associated data
of ¥ is given by Ky = Z? and

1001 -1 3

010 2 -1 1 211130
=190 12 -1 1|’ Q2_—200011'

0003 -1 1

We compute the Yo-degrees ug of B. Observe a(X2) = (0,8,0,0,0). From this we infer
2 = Q2(a(X2)) = (8,0). Here (Q2, u2) equals (Q, 1) from the specifying data for which
we run the verification process. In the previous step of this process we have ensured that
U C S, is a non-empty open subset such that T1,...,Ts define primes in R, whenever
g € U. Now Proposition shows that we may shrink U such that R, is factorial for
each g e U.

At this point we have that U defines a general hypersurface Cox ring. Note that
Proposition [2.3.7 immediately yields that the corresponding varieties X, are weakly
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3.7. Proof of Theorem |3.1.3; Verification

Calabi-Yau. The next step is to attain X, being smooth. Checking the condition from
Proposition with the help of the Magma program from Intrinsic shows that
Z,, is smooth in all 30 cases. Observe that we have p € 7 except for Numbers [T2} [T6}
and Whenever p € 7 holds we may apply Corollary allowing us to shrink U
once more such that X is smooth for all g € U. The four exceptional cases turn out to
be small quasimodifications of smooth weakly Calabi-Yau threefolds, hence are smooth
by Proposition m Eventually Remark (ii) ensures that X, is Calabi-Yau.

The last task in the proof of Theorem [3.1.3]is to make sure that two varieties from
different families from Theorem [3.1.3| are non-isomorphic. Note that if two varieties from
Theorem are isomorphic, then their Cox rings are isomorphic as graded rings. For
each family from Theorem [3.1.3| we give the number [ of generator degrees, the entries of
the generator degree dimension tuple (di,...,d;) and the self-intersection number p? of
the relation degree in the following table.

No. 1 di do d3 da ds deg 1 No. 1 di do dz dy ds 12
1 2 3 3 - - - - 486 6 4 1 2 4 8 - 512
2 6 1 1 1 1 1 1 162 17 4 1 2 5 9 - 539
3 3 2 2 6 - - - 512 18 4 1 2 5 - 512
4 4 2 2 5 31 - - 864 19 4 1 3 4 10 - 567
5 3 1 3 5 - - - 513 20 4 1 3 4 32 - 89
6 6 1 1 1 1 2 3 243 21 4 1 3 7 35 - 992
7 3 1 3 8 - - - 59 2 5 1 2 3 4 28 784
8 4 1 3 29 66 - - 1944 23 5 1 2 4 7 32 912
9 3 1 2 6 - - — 512 24 5 1 1 3 4 8 432

0 4 1 2 5 31 - - 864 25 4 1 1 4 21 - 686
1 3 2 3 7 - - - 513 26 4 1 1 3 14 - 512
2 3 2 3 7 - - - 512 27 5 1 2 3 6 31 864
13 3 2 3 3 - - - 864 28 5 1 2 3 6 31 872
4 4 1 2 4 31 - — 864 20 5 1 1 3 4 29 808
5 4 1 2 4 8 - — 52 30 5 1 1 3 4 4 432

Most of the varieties from Theorem [3.1.3] are distinguished by the generator degree
dimension tuple. Note that the pairs having the same generator dimension degree tuple

are precisely Numbers [11] & & & [18l and 7] & [28] as they share the same Cox

ring. These pairs can be distinguished by the relation degree self-intersection number. [J
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APPENDIX
A

MAGMA PROGRAMS

Throughout this thesis we have performed computations with the support of the computer
algebra system MAGMA [27]. The according functions have been bundled together into
a MAGMA package which is available at [95]. In this chapter we describe the essential
intrinsics of this package used for producing our results and provide examples how to
use them. The involved data is mainly stored in elementary structures from the MAGMA
language, such as sequences, allowing the users to easily modify the examples given in
this chapter.

A.1 Elementary algebraic and combinatoric intrinsics

We represent an element a = (2,71, ...,7q) of a finitely generated abelian group
K=7Z"XZ/tWZ x - x L[tyL

by an integer sequence [Z1,...,Zn, Y1, .., Yq) Of the length n + ¢ together with a second
integer sequence T = [t1,...,%,] containing the orders of the finite cyclic factors of K.
Moreover a group homomorphism @) : Z" — K identified with the matrix

T oo Iy
Q:[al ar}: . .
Yig -+ Urq

is represented by the sequence of its rows regarded as integer sequences together with
the accompanying sequence T = [t1, ..., %]

Intrinsic A.1.1 (IsZZGenerating). Check if given elements of K form a generating set.
Input: uy,...,us € K.
Parameters: if K has torsion, the torsion sequence T = [t1,...,1,].

Output: returns true if and only if uy,...,us form a generating set for K as a group.
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Example. First, we check that the group Z3 is generated by
up = (1,0,0), we=(0,1,0), wusz=(3,3,3), us=(4,4,4).

Then we verify that wy = (1,2,1), wy = (1, —1,T) do not span Z? x Z/27Z as a group.

> ul := [1,0,0];

> u2 := [0,1,0];

> u3 := [3,3,3];

> ud := [4,4,4];

> IsZZGenerating ([ul,u2,u3,u4]);

true

> wl := [1,2,1];

> w2 := [1,-1,1];

> IsZZGenerating ([wl, w2] : T := [2]);
false

Intrinsic A.1.2 (FiberPoints). Compute the intersection of a fiber of a group homo-
morphism with the positive orthant.

Input: a homomorphism @ : Z" — K such that Q(Q%,) € Q" = Kq is a pointed cone,
and w € K.

Parameters: if K has torsion, the torsion sequence T = [t1,...,1,].

Output: a sequence of all lattice points v € Z% with Q(v) = w.

Ezample. We consider K = Z x 7 /27 and compute all p € Zéo with Q(u) = w where

>Q := [[1,1,1,1], [0,0,1,1]];
> w o= [2, 11;
> FiberPoints(Q, w : T := [2]);
[

[ o, 1, 0, 11,

[1, 0, 0, 11,

[o, 1, 1, 01,

[ 1, 0, 1, 0 ]

Intrinsic A.1.3 (IsHomPermutation). Check if there is a permution that fixes the
columns of a given matrix and translates a given subsets of Z™ into another give one.

Input: an integral (m x n)-matrix @, finite subsets E, F' C Z".

Output: returns true if and only if there is a permutation o € S,, such that
o the i-th column of @ equals the o(i)-th column of @,
o E={o(v); veF} where o(v) = (Vg(1), -+ Vo(n))-
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Example. Consider the Z2-grading on K[T1,...,Ts] given by deg(T;) := w; with the
columns w; of the following matrix ) and polynomials g1, g2

111000

QZ[O 0 011 11’ g1 =TTy + 1515 + 1316, go = Th1s + 12Ty + T3T5.

We use IsHomPermutation to check whether there is a permutation o € Sg giving rise
to a graded automorphism ¢ : T; + T,(;y on K[T7,. .., Tg] such that ¢(g1) = ga.

> S := PolynomialAlgebra(Rationals (), 6);
>Q := [[t,1,1,0,0,0], [0,0,0,1,1,1]];

> gl := 8.1%S.4 + $.2%¥S.5 + S.3%5.6;

> g2 := S.1%x83.6 + S.2%¥S.4 + S.3*x3.5;

> E := [Exponent(f) : f in Monomials(gil)];
> F := [Exponents(f) : f in Monomials(g2)];
> IsHomPermutation(Q, E, F);

true [ 1, 2, 3, 6, 4, 5 1

A.2 Tools for hypersurface rings

We present computational tools for dealing with questions arising in the context of
Construction For convenience, let us recall the notation around the central objects
from there. We consider the polynomial algebra S = K[T1,...,T,] together with a
pointed linear K-grading described by the degree map @ : Z" — K, e; — deg(T;). For
any homogeneous polynomial g € S of degree u € K we set

R =Ry =K[T1,...,T}]/(9)-

Moreover, any GIT-cone 7 € A(S) with 7° C Mov(S)° gives rise to a projective toric
variety Z with a closed subvariety X, as shown in the following diagram:

V(ig) < K’
| \
| |
v y
Xy C A

Intrinsic A.2.1 (SearchPrimeBinomial). Check if T; € R, is prime for general g by
looking for prime binomials. Implements Proposition |2.4.11)/Remark [2.4.12

Input: @, u, an in index 1 <4 <.

Parameters: if K has torsion, the torsion sequence T = [t1,...,1,].

Output: Returns true if there is a y-homogeneous prime binomial not depending on T;
and false otherwise. If true, also returns exponents of such a prime binomial.

Ezample. We perform the test for 77 and Ty with data as in Number [7] from Theorem

11100 -3
K=7ZxZ7/3Z, Q=10 0 0 1 1 1|, p=(0,3,0)
01212 0
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In the first case the output additionally provides us with the binomial 73 — T3 T2TyT¢.
In the second case, the output can be easily verified by hand since the only monomials of
degree ;1 not depending on Ty are Tj and T5.

>Qq := [[1,1,1,0,0,-3], [0,0,0,1,1,1], [0,1,2,1,2,01];
> mu := [0,3,0];
> SearchPrimeBinomial(Q, mu, 1 : T := [3]);
true [
[o, o, 0, 0, 3, 01,
[ o, 4, 2, 1, 0, 2 1]
]
> SearchPrimeBinomial(Q, mu, 6 : T := [3]);
false

Intrinsic A.2.2 (DimHomComp). Compute the dimension of homogeneous components.
Input: Q, u, w € K.

Parameters: if K has torsion, the torsion sequence T = [t1,...,1,].

Output: the vector space dimension of R,,.

Ezxzample. We compute the dimension of R, for the data

111000

>Q := [[1,1,1,0,0,0], [0,0,0,1,1,11];
> mu := [1,1];

> w = [2,2];

> DimHomComp (Q, mu, w);

27

Intrinsic A.2.3 (GeneratorDegreeDimensionTuple). Computes the generator degree
dimension tuple of R.

Input: Q, p.
Parameters: if K has torsion, the torsion sequence T = [t1,...,1,].
Output: the generator degree dimension tuple of R.

Example. We compute the generator degree dimension tuple with data as in Number
from Theorem [3.1.3t

1 11 100
Q= ) w=(4,4).
001 111
>Q := [[1,1,1,1,0,0], [0,0,1,1,1,1]];
> mu := [4,4];
> GeneratorDegreeDimensionTuple (Q, mu);
[ 2, 2, 6]
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Intrinsic A.2.4 (HilbertCoeffs). Compute the first coefficients of the Hilbert series
of R.

Input: Q, p, n € Z>o.
Parameters: if K has torsion, the torsion sequence T = [t1,...,1,].

Output: the first n coefficients of the Hilbert series of R.

Ezxample. We compute the first six coefficients of the Hilbert series of Number [I] from
Theorem 2. 1.1

>Q := [[1,1,1,1,0,0,0], [0,0,0,0,1,1,1]];
> mu := [1,1];

> HilbertCoeffs(Q, mu, 6);

[ 1, 90, 700, 2695, 7371, 16456 ]

Intrinsic A.2.5 (IsMuAmbientSmooth). Check if the y-minimal ambient toric variety Z,
is smooth. Implements Proposition [2.4.28] Assumes rank(K) < 2.

Input: Q, u, an ample class u € 7° for Z.
Parameters: if K has torsion, the torsion sequence T = [t1,...,1,].

Output: returns true if and only if Z, is smooth.

Example. We perform the test for Number [33] from Theorem [2.1.1]i.e. with the data

) 1121000
>Q := [[1,1,2,1,0,0,0], [0,1,3,2,1,1,1]1];

> mu := [4, 6];

>u := [1, 3];

> SD := SpecifyingData(Q, [mul, u);

> IsMuAmbientSmooth (SD);

true

Intrinsic A.2.6 (QuasismoothTest). Check if the location of ;1 € Kq is compatible
with X being quasismooth. Implements Proposition Assumes rank(K) < 2.

Input: @, i, an ample class u € 7° for Z.
Parameters: if K has torsion, the torsion sequence T = [t1, ..., 1]

Output: Returns true if and only if

pne N (Q(w NZ") U U w; + Q1 mzm) .

~yréerlv(X) =1

If false, also returns I C {1,...,7} such that u ¢ (Q(yy NZ")UUi_; w; + Q(y1 NZ"))
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Ezample. We show that the following data does not lead to a quasismooth Xj:

1 111 0 0
>Q := [[t,1,1,1,0,0], [0,0,1,1,1,1]];
> mu := [1, 3];
>u := [2, 1]1;

> QuasismoothTest(Q, mu, u);
false [ 1, 3 1]

A.3 Newton polytopes and non-degenerate systems

The following intrinsics offer explicit treatment of the concepts introduced for systems
of (Laurent) polynomials in Section We use the MAGMA categories RngMPol for
polynomials and TorPol for convex polytopes.

Intrinsic A.3.1 (NewtonPolytope). Returns the Newton polytope of a polynomial. This
is a wrapper function to apply the existing intrinsic NewtonPolytope to the data type
RngMPolElt.

Input: a polynomial f € K[Ty,...,T,].

Output: the Newton polytope B(f) C Q" of f.

Intrinsic A.3.2 (FacePolynomial). Compute the face polynomial of a given polynomial.
Input: a polynomial f € K[T1,...,T,] and a face B’ < B(f) of its Newton polytope
Output: the face polynomial f’ associated with B’.

Intrinsic A.3.3 (FaceSystem). Compute the face system of a given system of polyno-
mials.

Input: a system F of polynomials and a face B’ < B(F) of its Newton polytope.
Output: the face system F’ associated with B’.

Intrinsic A.3.4 (IsNondegenerate). Check if a system of polynomials is non-degenerate
in the sense of Definition [[.3.6

Input: a system F' of polynomials.

Output: returns true if and only if F' is non-degenerate. If F' is not non-degenerate, also
returns a face B’ < B(F) which does not satisfy Definition [1.3.6] (iii).

Example. We investigate the system F' consisting of the single polynomial
f= (T D) (T3 — Tu) + T2
Since f fails to be non-degenerate, we also compute a critical face polynomial f’.
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> S<[T]> := PolynomialAlgebra(Rationals(), 5);
> f := (T[1] - T[2])=*(T[3] - T[4]) + T[5]1"2;
> ver, BO := IsNondegenerate ([f]);
> ver;
false
> BO;
2-dimensional polytope BO with 4 vertices:
(1, 0, 1, 0, 0),
(1, o, 0, 1, 0),
(0, 1, 1, 0, 0),
(0, 1, 0, 1, 0)
> FacePolynomial (£, BO);
T[11*T[3] - T[11*T[4] - T[2]*T[3] + T[2]1xT[4]

Intrinsic A.3.5 (IsDolgachevPolytope). Check if a polytope is Dolgachev. This is
used in connection with Dolgachev’s factoriality criterion; see also Proposition [2.4.13] (ii).

Input: a polytope P C Q".

Output: true if P is a Dolgachev polytope, false otherwise.

Example. We consider Q : Z7 — Z2, ;i € Z? as in Number [1] from Theorem and
verify that conv(v € Z7203 Q(v) = p) € Q" is a Dolgachev polytope.

]

>Q := [[1,1,1,1,0,0,0], [0,0,0,0,1,1,1]1];
> mu := [1,1];
> P := Polytope(FiberPoints (Q, mu));
> Py
5-dimensional polytope P with 12 generators
> Vertices (P);
[
(1, 0, 0, 0, O, 1, 0),
(o, 0, 0, 1, 1, 0, 0),
(0, 0, 1, 0, 0, 0, 1),
(1, 0, 0, 0, 1, 0, 0),
(o, o, 1, 0, 0, 1, 0),
(0, 1, 0, 0, 0, O, 1),
(0, 0, 1, 0, 1, 0, 0),
(0, 0, 0, 1, 0, 0, 1),
(, 1, 0, 0, 0, 1, 0),
(1, 0, 0, 0, 0, 0, 1),
(0, 1, 0, 0, 1, 0, 0),
(o, o, 0, 1, 0, 1, 0)

> IsDolgachevPolytope (P);
true

A.4 Intersection numbers

Intrinsic A.4.1 (ToricIntersectionProduct). Compute intersection numbers on an
n-dimensional Q-factorial projective toric variety Z. Implements Algorithm [1.6.5]

Input: degree map Q : Z" — K, ample class u € Kg for Z, uq,..

y gl

., Up € fﬂ@.
Parameters: if K has torsion, the torsion sequence T = [t1, ...

Output: the intersection number ug - - - u, € Q.
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Example 1. We compute the anticanonical self-intersection number of the toric complete
intersection Number 41 from Theorem We have K = Z x (Z/27Z)* and input data

1 1 11111
Q=100001 11|, wu=1,
0 011001
w=u=u3=-K=1, uw=us=us=p;=
>Q := [ [1,1,1,1,1,1,1],
[0,0,0,0,1,1,1],
[0,0,1,1,0,0,1]11;
>mu := [ [2], [2], [2]];
>u := [1];
> K := [1];
> D := mu cat [K, K, KI];
> ToricIntersectionProduct(Q, u, D : T := [2,2]);
2

Example 2. We compute the anticanonical self-intersection number of a variety X with
hypersurface Cox ring and specifying data as in Number 2 from Theorem [2.1.T} see also
Remark Here the anticanonical class of X is also ample for a Q-factorial ambient
toric variety X C Z. So the input data is

1 1110 00
Q_ ) u:(272)7
0 00 0 111
uy = :U4:—K:(2,2), U5:M:(2,1)
>Q := [ [1,1,1,1,0,0,0],
> [0,0,0,0,1,1,1] 1;
> mu := [2, 1];
>u = [2,2];
> K := [2,2];
> D := [K, K, K, K, mul;
> ToricIntersectionProduct(Q, u, D);
256

Intrinsic A.4.2 (FanoDegree). Compute the anticanonical self-intersection number of a
Q-factorial projective Fano variety X with complete intersection Cox ring and Picard
number at most two.

Input: specifying data @ and [u, ..., us] for X.
Parameters: if K has torsion, the torsion sequence T = [t1,...,1,].

Output: the anticanonical self-intersection number of X.

FEzxample. We compute the anticanonical self-intersection number of Number from
Theorem i.e. for the following data
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>Q := [[1,1,1,0,0,0,0],
> [0,0,2,1,1,1,1] 1;
> mu := [2, 4];

> FanoDegree(Q, [mul);

64
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