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INTRODUCTION

This thesis contributes to the explicit classification of Fano and Calabi-Yau varieties.

A Fano variety is a normal projective variety with an ample anticanonical divisor. These
varieties gain attention due to their significant role in the Minimal Model Program, a
systematic approach to the classification of projective varieties up to birational equivalence
proposed by Mori [98,99]. The Fano varieties among the smooth surfaces are precisely the
classically known del Pezzo surfaces: a product of two projective lines, the projective plane
and its blow-ups in up to eight points in general position. The classification of smooth
Fano threefolds by Iskovskikh [82,83] and Mori/Mukai [100,101] marked an important
milestone in the study of Fano varieties. In higher dimensions the classification of smooth
Fano varieties is still an open problem. Particular results such as the classification of
smooth toric Fano varieties up to dimension nine [10,11,77,104,110] indicate that the
amount of Fano varieties rapidly increases with each dimension step.

The rich diversity of singular Fano varieties is illustrated by log del Pezzo surfaces, i.e.,
two-dimensional Fano varieties with at most log terminal singularities. Here we find
classification results for log del Pezzo surfaces of Gorenstein index at most three [6,58,103].
Furthermore, log del Pezzo surfaces with symmetry are an active field of research
[37–39,48–50]. In particular for surfaces with a torus action we mention the complete
classification of Gorenstein log del Pezzo surfaces [47,70,74,125], see also [4, Sec. 5.4.4].

Over the last two decades, extensive progress was made in the classification of Q-factorial
Fano threefolds of Picard number one with at most terminal singularities, often called
Q-Fano threefolds for short. Major contributions come from Brown, Prokhorov, Reid and
Suzuki [5,25,26,111–115,124]. The toolbox of these authors contains the so-called graded
ring method, initiated by Reid. Roughly speaking this refers to the two-staged study
of Fano varieties in terms of the anticanonical ring. First, ingredients from geometry
and computer aid allow to produce lists including all Hilbert series associated with the
varieties in question. Then in a second step one checks which candidates for the Hilbert
series actually do occur, e.g. by applying constructive methods. An accurate introduction
to the graded ring approach can be found in [5]. The finite list of candidates for Hilbert
series of Q-Fano threefolds is documented in the Graded Ring Database [29].
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Introduction

In connection with the graded ring approach it is natural to consider embeddings into
weighted projective spaces. More generally, embeddings into toric varieties are a widely
used approach for classifying Fano varieties [35,41,80,116,117]. In the first chapter of
this thesis, which presents joint work with J. Hausen and M. Wrobel, we investigate non-
degenerate toric complete intersections, meaning complete intersections in projective toric
varieties arising from a non-degenerate system of Laurent polynomials; see Definitions 1.3.6
and 1.4.1. This notion is originally due to Khovanskii in the smooth case [76]. We
approach the singular case by means of the anticanonical complex, a generalization of
the Fano polytope from toric geometry introduced in [17, 72]. Theorem 1.1.1 shows
that non-degenerate toric complete intersections indeed admit an anticanonical complex.
This leads to Bertini type statements on terminal and canonical singularities, namely
that a non-degenerate toric complete intersection X ⊆ Z inherits precisely the terminal
(canonical) singularities from the minimal open toric subvariety of Z containing X.

Using this result we treat terminal Fano threefolds showing up as non-degenerate toric
complete intersection in a fake weighted projective space. Here, by a fake weighted
projective space we mean any normal Q-factorial projective toric variety of Picard number
one, thus generalizing the well-known weighted projective spaces. Toric terminal Fano
threefolds have been classified by Kasprzyk [87]. We present results for the non-toric
case.

Theorem 1. Any non-toric terminal Fano general complete intersection threefold X =
X1 ∩ · · · ∩Xs in a fake weighted projective space Z is a member of precisely one of the
following families, specified by the generator degree matrix Q and the relation degree
matrix µ having the classes of the torus invariant prime divisors [Di] ∈ Cl(Z) resp. the
classes [Xi] ∈ Cl(Z) as its columns. We also list −K, −K3 and h0(−K),

No. Cl(Z) Q µ −K −K3 h0(−K)

1
Z [1 1 1 1 1]

2 3 54 30
2 3 2 24 15
3 4 1 4 5

4 Z× Z/3Z
[
1 1 1 1 1
0̄ 0̄ 1̄ 1̄ 2̄

] [
3
0̄

] (
2
1̄

)
8 5

5 Z [1 1 1 1 2] 4 2 16 11

6 Z× Z/2Z
[
1 1 1 1 2
0̄ 0̄ 1̄ 1̄ 1̄

] [
4
0̄

] (
2
1̄

)
8 5

7 Z [1 1 1 2 2] 4 3 27 16
8 6 1 3/2 3

9 Z× Z/2Z
[
1 1 1 2 2
0̄ 0̄ 1̄ 1̄ 1̄

] [
4
0̄

] (
3
1̄

)
27/2 8

10 Z× Z/3Z
[
1 1 1 2 2
0̄ 1̄ 2̄ 0̄ 1̄

] [
6
0̄

] (
1
1̄

)
1/2 1

11 Z [1 1 1 1 3] 6 1 2 4

12 Z [1 1 1 2 3] 6 2 8 7
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13 Z [1 1 2 2 3] 6 3 27/2 9

14 Z [1 1 2 3 3] 6 4 64/3 13

15 Z [1 2 2 3 3] 6 5 125/6 12

16 Z [1 1 1 2 4] 8 1 1 3

17 Z× Z/2Z
[
1 1 1 2 4
0̄ 0̄ 1̄ 1̄ 1̄

] [
8
0̄

] (
1
1̄

)
1/2 1

18 Z [1 2 3 3 4] 12 1 1/6 1

19 Z [1 1 3 4 4] 12 1 1/4 2

20 Z [1 1 2 2 5] 10 1 1/2 2

21 Z [1 1 2 3 6] 12 1 1/3 2

22 Z× Z/2Z
[
1 1 2 3 6
0̄ 1̄ 1̄ 0̄ 1̄

] [
12
0̄

] (
1
1̄

)
1/6 1

23 Z [1 1 1 4 6] 12 1 1/2 3

24 Z [1 1 2 6 9] 18 1 1/6 2

25 Z [1 1 4 5 10] 20 1 1/10 2

26 Z [1 1 3 8 12] 24 1 1/12 2

27 Z [1 2 3 10 15] 30 1 1/30 1

28 Z [1 1 6 14 21] 42 1 1/42 2

29 Z [1 1 1 1 1 1] [2 2] 2 32 19
30 [2 3] 1 6 6

31 Z× Z/2Z
[
1 1 1 1 1 1
0̄ 0̄ 0̄ 1̄ 1̄ 1̄

] [
2 2
0̄ 0̄

] (
2
1̄

)
16 9

32 Z [1 1 1 2 2 2] [4 4] 1 2 3

33 Z× Z/2Z
[
1 1 1 2 2 2
0̄ 0̄ 1̄ 0̄ 1̄ 1̄

] [
4 4
0̄ 0̄

] (
1
1̄

)
1 1

34 Z× Z/2Z
[
1 1 1 2 2 2
0̄ 0̄ 1̄ 1̄ 1̄ 1̄

] [
4 4
0̄ 0̄

] (
1
0̄

)
1 2

35 Z× (Z/2Z)2

[
1 1 1 2 2 2
0̄ 0̄ 1̄ 0̄ 1̄ 1̄
0̄ 1̄ 0̄ 1̄ 0̄ 1̄

] [
4 4
0̄ 0̄
0̄ 0̄

] (
1
1̄
1̄

)
1/2 0

36 Z [1 2 2 2 3 3] [6 6] 1 1/2 1

37 Z [1 1 2 3 3 3] [6 6] 1 2/3 2

38 Z [1 2 2 3 3 3] [6 6] 2 8/3 3

39 Z [1 1 1 1 1 1 1] [2 2 2] 1 8 7

40 Z× Z/2Z
[
1 1 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 1̄

] [
2 2 2
0̄ 0̄ 0̄

] (
1
1̄

)
4 3

41 Z× (Z/2Z)2

[
1 1 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 1̄
0̄ 0̄ 1̄ 1̄ 0̄ 0̄ 1̄

] [
2 2 2
0̄ 0̄ 0̄
0̄ 0̄ 0̄

] (
1
1̄
1̄

)
2 1
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42 Z× (Z/2Z)3

1 1 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 1̄
0̄ 0̄ 1̄ 1̄ 0̄ 0̄ 1̄
0̄ 1̄ 0̄ 1̄ 0̄ 1̄ 0̄

 2 2 2
0̄ 0̄ 0̄
0̄ 0̄ 0̄
0̄ 0̄ 0̄

 1
1̄
1̄
1̄

 1 0

Moreover, each of these constellations defines non-degenerate toric complete intersections
with at most terminal singularities in a fake weighted projective space.

Fano varieties with mild singularities are Mori dream spaces [19] in the sense that they
are normal projective varieties X with finitely generated divisor class group Cl(X) and
finitely generated Cox ring

R(X) :=
⊕

[D]∈Cl(X)
Γ(X,O(D)).

The Cox ring fixes a variety up to small quasimodifications. Together with an ample class
a Mori dream space can be reconstructed from its Cox ring using geometric invariant
theory. In particular, Fano varieties are entirely determined by their Cox ring. We refer
to [4] for more background and the combinatorial treatment of this topic.

It turns out that, under suitable assumptions on the ambient toric variety, the Cox
ring of a non-degenerate toric complete intersection is given by its defining equations in
homogeneous coordinates; see Corollary 1.4.13. This applies in particular to the varieties
from Theorem 1.

Corollary 2. For any non-toric terminal Fano general complete intersection threefold
X = X1 ∩ · · · ∩Xs in a fake weighted projective space Z we have Cl(X) = Cl(Z) and the
Cox ring of X is given by

R(X) = K[T1, . . . , Ts+4]/〈g1, . . . , gs〉,
deg(Ti) = [Di] ∈ Cl(Z),
deg(gj) = [Xj ] ∈ Cl(Z),

where K[T1, . . . , Ts+4] = R(Z) is the Cox ring of the fake weighted projective space Z and
g1, . . . , gs ∈ R(Z) are the defining Cl(Z)-homogeneous polynomials for X1, . . . , Xs ⊆ Z.
Moreover, T1, . . . , Ts+4 define a minimal system of prime generators for R(X).

We turn to smooth Fano varieties. Although there exists no comprehensive description of
smooth Fano fourfolds so far, there are plenty of results providing a clear direction. Let
us mention for example partial classifications in terms of the Fano index by Fujita [57],
Mukai [102] and Wiśniewski [130] as well as detailed studies of the birational geometry
including strong bounds on the Picard number by Casagrande [30–34]. As a result
the uncharted territories mainly restrict to Fano fourfolds of index one. Tackling this
class in Picard number one Küchle [92] and Przyjalkowski/Shramov [116] have classified
all smooth Fano fourfolds showing up as general complete intersection in a weighted
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projective space. In terms of Cox rings, here the hypersuface case consists precisely of the
smooth Fano fourfolds of Picard number one that have a hypersuface Cox ring, i.e., R(X)
admits Cl(X)-homogeneous generators such that the relation ideal is generated by a
single equation. From the geometric point of view, a variety with a hypersurface Cox
ring is an especially neatly embedded hypersurface of a toric variety [4, Sec. 3.2.5].

Note that the first examples of smooth Fano varieties with a hypersurface Cox ring show
up in dimension three; see [51, Thms. 4.1 and 4.5], where, based on the classifications
mentioned before, the Cox rings of the smooth Fano threefolds of Picard numbers one
and two have been computed. While there are no smooth del Pezzo surfaces with a
hypersurface Cox ring, the singular case provides many examples [48].

In Chapter 2, together with J. Hausen and A. Laface, we provide classification results
on smooth Fano fourfolds of Picard number two with a hypersurface Cox ring. While
other recent Cox ring based classifications of Fano varieties exploit special relations,
e.g. quadrics [55,71], trinomials [56] or quadronomials [63], we consider equations of a
suitably general form. This leads to the notion of general and spread hypersurface Cox
rings, which is made precise in Definitions 2.4.3 and 2.4.5. Note that the latter intends
to make the somewhat nebulous term general more concrete and verifiable for explicit
examples. Here we restrict to a non-technical statement of our result.

Theorem 3. Every smooth Fano fourfold X of Picard number two that has a general
hypersurface Cox ring is isomorphic to a member of one of the following families of
smooth Fano fourfolds, specified by their Cox ring generator degrees w1, . . . , w7, the
relation degree µ and the anticanonical class −K in Cl(X) = Z2.

No. [w1, . . . , w7] µ −K K4

1 [
1 1 1 1 0 0 0
0 0 0 0 1 1 1

] (1, 1) (3, 2) 432
2 (2, 1) (2, 2) 256
3 (3, 1) (1, 2) 80
4 (1, 2) (3, 1) 270
5 (2, 2) (2, 1) 112
6 (3, 2) (1, 1) 26

7 [
1 1 1 1 0 0 −1
0 0 0 0 1 1 1

] (1, 1) (2, 2) 416
8 (1, 2) (2, 1) 163
9 (2, 1) (1, 2) 224
10 (2, 2) (1, 1) 52

11 [
1 1 1 1 0 0 −2
0 0 0 0 1 1 1

] (1, 1) (1, 2) 464
12 (1, 2) (1, 1) 98

13 [
1 1 1 1 0 0 0
0 0 0 1 1 1 1

] (1, 2) (3, 2) 352
14 (2, 3) (2, 1) 65

15
[

1 1 1 1 0 0 −1
0 0 0 1 1 1 1

]
(1, 3) (2, 1) 83

16 [
1 1 1 1 1 0 0
0 0 0 0 1 1 1

] (2, 1) (3, 2) 352
17 (3, 2) (2, 1) 81

No. [w1, . . . , w7] µ −K K4

18 [
1 1 1 1 0 0 0
−1 0 0 0 1 1 1

] (3, 1) (1, 1) 38
19 (2, 1) (2, 1) 192
20 (1, 1) (3, 1) 432

21
[

1 1 1 1 1 0 0
−1 0 0 0 1 1 1

]
(3, 1) (2, 1) 113

22 [
1 1 1 1 0 0 0
0 0 1 1 1 1 1

] (2, 2) (2, 3) 272
23 (3, 3) (1, 2) 51

24
[

1 1 1 2 0 0 0
0 0 1 2 1 1 1

]
(4, 4) (1, 2) 34

25
[

1 1 2 3 0 0 0
0 0 2 3 1 1 1

]
(6, 6) (1, 2) 17

26
[

1 1 1 0 0 0 0
0 0 1 1 1 1 1

]
(2, 2) (1, 3) 216

27
[

1 1 1 0 0 0 0
0 0 2 1 1 1 1

]
(2, 4) (1, 2) 64

28
[

1 1 1 0 0 0 0
0 0 3 1 1 1 1

]
(2, 6) (1, 1) 8

29 [
1 1 1 1 0 0 0
0 0 0 1 1 1 1

] (2, 2) (2, 2) 192
30 (3, 3) (1, 1) 18
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No. [w1, . . . , w7] µ −K K4

31
[

1 1 1 2 0 0 0
0 0 0 1 1 1 1

]
(4, 2) (1, 2) 48

32
[

1 1 1 2 0 0 0
0 0 0 2 1 1 1

]
(4, 4) (1, 1) 12

33
[

1 1 2 1 0 0 0
0 1 3 2 1 1 1

]
(4, 6) (1, 3) 50

34 [
1 1 1 1 1 0 0
0 1 1 1 1 1 1

] (2, 2) (3, 4) 378
35 (3, 3) (2, 3) 144
36 (4, 4) (1, 2) 20

37
[

1 1 1 1 2 0 0
0 1 1 1 2 1 1

]
(4, 4) (2, 3) 96

38
[

1 1 1 1 3 0 0
0 1 1 1 3 1 1

]
(6, 6) (1, 2) 10

39
[

1 1 1 2 3 0 0
0 1 1 2 3 1 1

]
(6, 6) (2, 3) 48

40 [
1 1 1 1 0 0 0
0 1 1 1 1 1 1

] (2, 2) (2, 4) 352
41 (3, 3) (1, 3) 99

42 [
1 1 1 1 0 0 0
0 2 2 2 1 1 1

] (2, 4) (2, 5) 304
43 (3, 6) (1, 3) 54

44
[

1 1 1 2 0 0 0
0 1 1 2 1 1 1

]
(4, 4) (1, 3) 66

45
[

1 1 1 2 0 0 0
0 2 2 4 1 1 1

]
(4, 8) (1, 3) 36

46
[

1 1 2 3 0 0 0
0 1 2 3 1 1 1

]
(6, 6) (1, 3) 33

47
[

1 1 2 3 0 0 0
0 2 4 6 1 1 1

]
(6, 12) (1, 3) 18

48
[

1 1 1 1 1 0 0
0 1 1 1 2 1 1

]
(2, 2) (3, 5) 433

49
[

1 1 1 1 1 0 0
0 2 2 2 3 1 1

]
(3, 6) (2, 5) 145

50
[

1 1 1 1 0 0 0
0 1 1 2 1 1 1

]
(2, 4) (2, 3) 144

No. [w1, . . . , w7] µ −K K4

51
[

1 1 1 2 0 0 0
0 1 1 3 1 1 1

]
(4, 6) (1, 2) 22

52
[

1 1 1 2 1 0 0
0 1 1 3 2 1 1

]
(4, 6) (2, 3) 65

53 [
1 1 1 1 1 1 0
−1 0 0 0 0 1 1

] (2, 0) (4, 1) 431
54 (4, 0) (2, 1) 62

55
[

1 1 1 1 1 2 0
−1 0 0 0 0 1 1

]
(3, 0) (4, 1) 376

56
[

1 1 1 1 1 3 0
−1 0 0 0 0 1 1

]
(4, 0) (4, 1) 341

57
[

1 1 1 1 3 1 0
−1 0 0 0 0 1 1

]
(6, 0) (2, 1) 31

58
[

1 1 1 1 3 0 0
0 0 0 0 0 1 1

]
(6, 0) (1, 2) 16

59
[

1 1 1 2 3 0 0
0 0 0 0 0 1 1

]
(6, 0) (2, 2) 64

60
[

1 1 1 2 3 1 0
0 0 0 0 0 1 1

]
(6, 0) (3, 2) 80

61
[

1 1 1 1 2 0 0
0 0 0 0 0 1 1

]
(4, 0) (2, 2) 128

62
[

1 1 1 1 2 1 0
0 0 0 0 0 1 1

]
(4, 0) (3, 2) 160

63
[

1 1 1 1 1 0 0
0 0 0 0 0 1 1

]
(3, 0) (2, 2) 192

64
[

1 1 1 1 1 1 0
0 0 0 0 0 1 1

]
(3, 0) (3, 2) 240

65
[

1 1 1 1 1 0 0
0 0 0 0 0 1 1

]
(2, 0) (3, 2) 432

66
[

1 1 1 1 1 1 0
0 0 0 0 0 1 1

]
(2, 0) (4, 2) 480

67
[

1 1 1 1 1 2 0
0 0 0 0 0 1 1

]
(2, 0) (5, 2) 624

Moreover, each of the items 1 to 67 defines a non-empty family of smooth Fano fourfolds
of Picard number two and any two members from different families are not isomorphic.

In the third chapter of this dissertation we pursue the Cox ring approach in the world
of Calabi-Yau varieties, meaning normal projective varieties X with trivial canonical
class KX , at most canonical singularities and hi(X,OX) = 0 for i = 1, . . . ,dim(X)− 1.
Calabi-Yau varieties, especially threefolds, are intensively studied from various perspec-
tives, also including diverse classification approaches such as [106–108,128,129] or more
recently [45, 61, 64]. Similar to Fano varieties, they are considered a building block in
the Minimal Model Program. Note that a smooth Calabi-Yau variety of dimension at
most three is a Mori dream space if and only if its cone of effective divisors is rational
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polyhedral [97]. More general, Mori dream spaces of Calabi-Yau type are completely char-
acterized via the singularities of their total coordinate space SpecR(X) [88]. Furthermore,
Calabi-Yau varieties are central to the interdisciplinary research field of mirror symmetry,
connecting algebraic geometry and theoretical physics. Work by i.a. Batyrev [12–14] in
this area emphasizes Calabi-Yau hypersurfaces and complete intersections in toric vari-
eties as a rich source of explicit examples. The interest from physics also includes several
large-scale classifications of Calabi-Yau varieties based on combinatorial approaches and
computer aid [36,60,78,122]. Besides, the graded ring method mentioned above applies
to the study of Calabi-Yau varieties as well [22–24,118].

From the view of classical algebraic geometry Calabi-Yau varieties can be seen as
generalization of K3 surfaces, which are precisely the smooth Calabi-Yau varieties of
dimension two. Cox rings of K3 surfaces have been studied in [3, 8, 109], in particular
describing several classes of K3 surfaces with a hypersurface Cox ring. Our results concern
smooth Calabi-Yau threefolds with a general hypersurface Cox ring. By and large, the
case of Picard number one is covered by Oguiso’s classification of smooth Calabi-Yau
threefolds that are general complete intersections in some weighted projective space [105]
providing all smooth Calabi-Yau threefolds with a general hypersurface Cox ring and
freely generated Picard group. There is one additional family if one allows torsion in
the Picard group; see Proposition 3.1.1. Note that Przyjalkowski and Shramov have
established explicit bounds for smooth Calabi-Yau weighted complete intersections in
any dimension [116].

The main result of Chapter 3 is the classification of all smooth Calabi-Yau threefolds of
Picard number two that have a general hypersurface Cox ring.

Theorem 4. Every smooth Calabi-Yau threefold X of Picard number two that has a
general hypersurface Cox ring is isomorphic to a member of one of the following families
of smooth Calabi-Yau threefolds, specified by their Cox ring generator degrees w1, . . . , w6,
the relation degree µ and an ample class u in Cl(X).

No. Cl(X) [w1, . . . , w6] µ u

1 Z2
[

1 1 1 0 0 0
0 0 0 1 1 1

] [
3
3

] [
1
1

]

2 Z2 × Z/3Z

[1 1 1 0 0 0
0 0 0 1 1 1
0̄ 1̄ 2̄ 0̄ 1̄ 2̄

] [3
3
0̄

] [1
1
0̄

]

3 Z2
[

1 1 1 1 0 0
0 0 1 1 1 1

] [
4
4

] [
2
1

]
4 Z2

[
1 1 1 3 0 0
0 0 1 3 1 1

] [
6
6

] [
2
1

]
5 Z2

[
1 1 1 0 0 −1
0 0 0 1 1 1

] [
2
3

] [
1
1

]

No. Cl(X) [w1, . . . , w6] µ u

6 Z2
[

1 1 1 0 0 −2
0 0 0 1 1 1

] [
1
3

] [
1
1

]

7 Z2 × Z/3Z

[1 1 1 0 0 −3
0 0 0 1 1 1
0 1 2 1 2 0

] [0
3
0

] [1
1
0

]

8 Z2
[

1 1 1 0 0 −3
0 0 0 2 3 1

] [
0
6

] [
1
1

]
9 Z2

[
1 1 1 1 0 0
−2 0 0 0 1 1

] [
4
0

] [
1
1

]
10 Z2

[
1 1 1 3 0 0
−2 0 0 0 1 1

] [
6
0

] [
1
1

]
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No. Cl(X) [w1, . . . , w6] µ u

11 Z2
[

1 1 1 1 0 0
0 0 0 1 1 1

] [
4
3

] [
2
1

]
12 Z2

[
1 1 1 1 0 0
0 0 0 1 1 1

] [
4
3

] [
1
2

]
13 Z2

[
1 1 1 3 0 0
0 0 0 2 1 1

] [
6
4

] [
1
1

]
14 Z2

[
1 1 1 3 0 0
−1 0 0 1 1 1

] [
6
2

] [
1
1

]
15 Z2

[
1 1 1 1 0 0
−1 0 0 1 1 1

] [
4
2

] [
2
1

]
16 Z2

[
1 1 1 1 0 0
−1 0 0 1 1 1

] [
4
2

] [
1
2

]
17 Z2

[
1 1 1 1 0 0
−2 0 0 1 1 1

] [
4
1

] [
2
1

]
18 Z2

[
1 1 1 1 0 0
−2 0 0 1 1 1

] [
4
1

] [
1
2

]
19 Z2

[
1 1 1 2 1 0
0 0 0 1 1 1

] [
6
3

] [
3
1

]
20 Z2

[
1 1 1 4 1 0
0 0 0 2 1 1

] [
8
4

] [
3
1

]

No. Cl(X) [w1, . . . , w6] µ u

21 Z2
[

1 1 1 5 2 0
0 0 0 2 1 1

] [
10
4

] [
3
1

]
22 Z2

[
1 1 2 5 1 0
0 0 0 2 1 1

] [
10
4

] [
3
1

]
23 Z2

[
1 1 2 7 3 0
0 0 0 2 1 1

] [
14
4

] [
4
1

]
24 Z2

[
1 1 1 2 1 0
−2 0 0 0 1 1

] [
6
0

] [
2
1

]
25 Z2

[
1 1 1 1 3 0
−2 0 0 0 1 1

] [
7
0

] [
4
1

]
26 Z2

[
2 1 1 1 3 0
−2 0 0 0 1 1

] [
8
0

] [
4
1

]
27 Z2

[
1 1 2 5 1 0
0 0 1 3 1 1

] [
10
6

] [
3
1

]
28 Z2

[
1 1 2 5 1 0
0 0 1 3 1 1

] [
10
6

] [
3
2

]
29 Z2

[
1 1 1 4 1 0
−1 0 0 1 1 1

] [
8
2

] [
5
1

]
30 Z2

[
1 2 1 1 1 0
−1 −1 0 0 1 1

] [
6
0

] [
2
1

]

Moreover, each of the items 1 to 30 defines a non-empty family of smooth Calabi-Yau
threefolds of Picard number two and any two members from different families are not
isomorphic.
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CHAPTER
ONE

NON-DEGENERATE TORIC COMPLETE INTERSECTIONS

We classify the terminal Fano threefolds that are embedded into a fake weighted projective
space via a general system of Laurent polynomials. Varieties arising in this way were
originally studied by Khovanskii in the smooth case [76] and provide useful tools for
constructing explicit examples of Mori dream spaces with prescribed properties. Our
key tool for the combinatorial treatment of singularities is the anticanonical complex,
which generalizes the Fano polytope from toric geometry and has been used to study
Fano varieties with torus action so far [17, 72]. In this chapter, we enlarge the area of
application to complete intersections in toric varieties defined by non-degenerate systems
of Laurent polynomials. The results of this chapter are published in the joint work [67].

1.1 Results
The idea behind anticanonical complexes is to extend the features of the Fano polytopes
from toric geometry to wider classes of varieties and thereby to provide combinatorial
tools for the treatment of the singularities of the minimal model programme. If X is any
Q-Gorenstein variety, i.e. some positive multiple of a canonical divisor KX is Cartier,
then these singularities are defined in terms of discrepancies that means the coefficients
a(E) of the exceptional divisors E showing up in the ramification formula for a resolution
π : X ′ → X of singularities:

KX′ = π∗KX +
∑

a(E)E.

The variety X has at most terminal, canonical or log terminal singularities if always
a(E) > 0, a(E) ≥ 0 or a(E) > −1. We briefly look at the toric case. For an n-dimensional
toric Fano variety Z, one defines the Fano polytope to be the convex hull A ⊆ Qn over the
primitive ray generators of the describing fan of Z. For any toric resolution π : Z ′ → Z
of singularities, the exceptional divisors E% are given by rays of the fan of Z ′ and one
obtains the discrepancies as

a(E%) = ‖v%‖
‖v′%‖

− 1,

9



Chapter 1. Non-degenerate toric complete intersections

where v% ∈ % is the shortest non-zero lattice vector and v′% ∈ % is the intersection point of
% and the boundary ∂A. In particular, a toric Fano variety Z is always log terminal and
Z has at most terminal (canonical) singularities if and only if its corresponding Fano
polytope A contains no lattice points except the origin and its vertices (no lattice points
in its interior except the origin). This allows the use of lattice polytope methods in the
study of singular toric Fano varieties; see [21,85,86] for work in this direction.

This principle has been extended by replacing the Fano polytope with a suitable
polyhedral complex, named anticanonical complex in the setting of varieties with a torus
action of complexity one, which encodes discrepancies in full analogy to the toric Fano
polytope; see [17]. The more recent work [72] provides an existence result of anticanonical
complexes for torus actions of higher complexity subject to conditions on a rational
quotient. Applications to the study of singularities and Fano varieties can be found
in [7, 28,73].

In the present chapter, we provide an anticanonical complex for subvarieties of toric
varieties arising from non-degenerate systems of Laurent polynomials in the sense of
Khovanskii [76]; see also Definition 1.3.6. Even in the hypersurface case, the subvarieties
obtained this way form an interesting example class of varieties which is actively studied
by several authors; see for instance [13,53,81].

We briefly indicate the setting; see Section 1.3 for the details. Let F = (f1, . . . , fs) be
a non-degenerate system of Laurent polynomials in n variables and let Σ be any fan in
Zn refining the normal fan of the Minkowski sum B1 + . . .+Bs of the Newton polytopes
Bj of fj . Moreover, denote by Z the toric variety associated with Σ. We are interested
in the non-degenerate toric complete intersection defined by F and Σ, that means the
variety

X = X1 ∩ . . . ∩Xs ⊆ Z,

where Xi ⊆ Z is the closure of V (fi) ⊆ Tn. By Theorem 1.3.12, the variety X ⊆ Z is
a locally complete intersection, equals the closure of V (F ) ⊆ Tn and, in the Cox ring
of Z, the defining homogeneous equations of X generate a complete intersection ideal.
Theorem 1.4.4 shows that the union ZX ⊆ Z of all torus orbits intersecting X is open in
Z and thus the corresponding cones form a subfan ΣX ⊆ Σ. Moreover, the support of
ΣX equals the tropical variety of V (F ) ⊆ Tn.

We come to the first main result of this chapter. Suppose that ZX is Q-Gorenstein.
Then, for every σ ∈ ΣX , we have a linear form uσ ∈ Qn evaluating to −1 on every
primitive ray generator v%, where % is an extremal ray of σ. We set

A(σ) := {v ∈ σ; 0 ≥ 〈uσ, v〉 ≥ −1} ⊆ σ.

Theorem 1.1.1. Let X ⊆ Z be an irreducible non-degenerate toric complete intersection.
Then X ⊆ Z admits ambient toric resolutions. Moreover, if ZX is Q-Gorenstein, then X
is so and X has an anticanonical complex

AX =
⋃

σ∈ΣX

A(σ).

10
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That means that for all ambient toric modifications Z ′ → Z the discrepancy of any
exceptional divisor EX′ ⊆ X ′ is given in terms of the defining ray % ∈ Σ′ of its host
EZ′ ⊆ Z ′, the primitive generator v% ∈ % and the intersection point v′% of % and the
boundary ∂AX as

a(EX′) = ‖v%‖
‖v′%‖

− 1.

Observe that in the above setting, each vertex of AX is a primitive ray generator
of the fan Σ. Thus, in the non-degenerate complete toric intersection case, all vertices
of the anticanonical complex are integral vectors; this does definitely not hold in other
situations, see [17,72]. The following consequence of Theorem 1.1.1 yields in particular
Bertini type statements on terminal and canonical singularities.

Corollary 1.1.2. Consider a subvariety X ⊆ Z as in Theorem 1.1.1 and the associated
anticanonical complex AX .

(i) X has at most log-terminal singularities.
(ii) X has at most terminal singularities if and only if AX contains no lattice points

except the origin and its vertices.
(iii) X has at most canonical singularities if and only if AX contains no interior lattice

points except the origin.
Moreover, X has at most terminal (canonical) singularities if and only if its ambient
toric variety ZX has at most terminal (canonical) singularities.

As an application of the first main result, we classify the general non-toric terminal
Fano non-degenerate complete intersection threefolds sitting in fake weighted projective
spaces; for the meaning of “general” in this context, see Definition 1.4.12. According
to [76], the general toric complete intersection is non-degenerate. Moreover, under
suitable assumptions on the ambient toric variety, we obtain the divisor class group and
the Cox ring for free in the general case; see Corollary 1.4.13. This, by the way, allows
us to construct many Mori dream spaces with prescribed properties; see for instance
Example 1.4.16.

We turn to the second main result. Recall that a fake weighted projective space is
an n-dimensional toric variety arising from a complete fan with n + 1 rays. Any fake
weighted projective space Z is uniquely determined up to isomorphism by its degree
matrix Q, having as its columns the divisor classes [Di] ∈ Cl(Z) of the toric prime divisors
D1, . . . , Dn+1 of Z.

Theorem 1.1.3. Any non-toric terminal Fano general complete intersection threefold
X = X1 ∩ . . . ∩Xs in a fake weighted projective space Z is a member of precisely one of
the following families, specified by the generator degree matrix Q and the relation degree
matrix µ with respect to the Cl(Z)-grading. We also list −K, −K3 and h0(−K),

11
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No. Cl(Z) Q µ −K −K3 h0(−K)
1

Z [1 1 1 1 1]
2 3 54 30

2 3 2 24 15
3 4 1 4 5

4 Z× Z/3Z
[
1 1 1 1 1
0̄ 0̄ 1̄ 1̄ 2̄

] [
3
0̄

] (
2
1̄

)
8 5

5 Z [1 1 1 1 2] 4 2 16 11

6 Z× Z/2Z
[
1 1 1 1 2
0̄ 0̄ 1̄ 1̄ 1̄

] [
4
0̄

] (
2
1̄

)
8 5

7 Z [1 1 1 2 2] 4 3 27 16
8 6 1 3/2 3

9 Z× Z/2Z
[
1 1 1 2 2
0̄ 0̄ 1̄ 1̄ 1̄

] [
4
0̄

] (
3
1̄

)
27/2 8

10 Z× Z/3Z
[
1 1 1 2 2
0̄ 1̄ 2̄ 0̄ 1̄

] [
6
0̄

] (
1
1̄

)
1/2 1

11 Z [1 1 1 1 3] 6 1 2 4
12 Z [1 1 1 2 3] 6 2 8 7
13 Z [1 1 2 2 3] 6 3 27/2 9
14 Z [1 1 2 3 3] 6 4 64/3 13
15 Z [1 2 2 3 3] 6 5 125/6 12
16 Z [1 1 1 2 4] 8 1 1 3

17 Z× Z/2Z
[
1 1 1 2 4
0̄ 0̄ 1̄ 1̄ 1̄

] [
8
0̄

] (
1
1̄

)
1/2 1

18 Z [1 2 3 3 4] 12 1 1/6 1
19 Z [1 1 3 4 4] 12 1 1/4 2
20 Z [1 1 2 2 5] 10 1 1/2 2
21 Z [1 1 2 3 6] 12 1 1/3 2

22 Z× Z/2Z
[
1 1 2 3 6
0̄ 1̄ 1̄ 0̄ 1̄

] [
12
0̄

] (
1
1̄

)
1/6 1

23 Z [1 1 1 4 6] 12 1 1/2 3
24 Z [1 1 2 6 9] 18 1 1/6 2
25 Z [1 1 4 5 10] 20 1 1/10 2
26 Z [1 1 3 8 12] 24 1 1/12 2

12
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27 Z [1 2 3 10 15] 30 1 1/30 1
28 Z [1 1 6 14 21] 42 1 1/42 2
29 Z [1 1 1 1 1 1] [2 2] 2 32 19
30 [2 3] 1 6 6

31 Z× Z/2Z
[
1 1 1 1 1 1
0̄ 0̄ 0̄ 1̄ 1̄ 1̄

] [
2 2
0̄ 0̄

] (
2
1̄

)
16 9

32 Z [1 1 1 2 2 2] [4 4] 1 2 3

33 Z× Z/2Z
[
1 1 1 2 2 2
0̄ 0̄ 1̄ 0̄ 1̄ 1̄

] [
4 4
0̄ 0̄

] (
1
1̄

)
1 1

34 Z× Z/2Z
[
1 1 1 2 2 2
0̄ 0̄ 1̄ 1̄ 1̄ 1̄

] [
4 4
0̄ 0̄

] (
1
0̄

)
1 2

35 Z× (Z/2Z)2

1 1 1 2 2 2
0̄ 0̄ 1̄ 0̄ 1̄ 1̄
0̄ 1̄ 0̄ 1̄ 0̄ 1̄

 4 4
0̄ 0̄
0̄ 0̄

 1
1̄
1̄

 1/2 0

36 Z [1 2 2 2 3 3] [6 6] 1 1/2 1
37 Z [1 1 2 3 3 3] [6 6] 1 2/3 2
38 Z [1 2 2 3 3 3] [6 6] 2 8/3 3
39 Z [1 1 1 1 1 1 1] [2 2 2] 1 8 7

40 Z× Z/2Z
[
1 1 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 1̄

] [
2 2 2
0̄ 0̄ 0̄

] (
1
1̄

)
4 3

41 Z× (Z/2Z)2

1 1 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 1̄
0̄ 0̄ 1̄ 1̄ 0̄ 0̄ 1̄

 2 2 2
0̄ 0̄ 0̄
0̄ 0̄ 0̄

 1
1̄
1̄

 2 1

42 Z× (Z/2Z)3


1 1 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 1̄
0̄ 0̄ 1̄ 1̄ 0̄ 0̄ 1̄
0̄ 1̄ 0̄ 1̄ 0̄ 1̄ 0̄




2 2 2
0̄ 0̄ 0̄
0̄ 0̄ 0̄
0̄ 0̄ 0̄




1
1̄
1̄
1̄

 1 0

Moreover, each of these constellations defines non-degenerate toric complete intersections
with at most terminal singularities in a fake weighted projective space. In addition, for
the divisor class groups, we have Cl(X) = Cl(Z) and the Cox ring of X is given by

R(X) = K[T1, . . . , Ts+4]/〈g1, . . . , gs〉,
deg(Ti) = [Di] ∈ Cl(Z),
deg(gj) = [Xj ] ∈ Cl(Z),

where K[T1, . . . , Ts+4] = R(Z) is the Cox ring of the fake weighted projective space Z and
g1, . . . , gs ∈ R(Z) are the defining Cl(Z)-homogeneous polynomials for X1, . . . , Xs ⊆ Z.
Moreover, T1, . . . , Ts+4 define a minimal system of prime generators for R(X).
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We note some observations around this classification and link to the existing literature.

Remark 1.1.4. The toric terminal Fano complete intersection threefolds in a fake
weighted projective space are precisely the three-dimensional terminal fake weighted
projective spaces; up to isomorphy, there are eight of them [87].

Recall that the Fano index of X is the maximal positive integer qX such that K = qXD
with a Weil divisor D on X.

Remark 1.1.5. For the X of Theorem 1.1.3 with Cl(Z) torsion free, we have qX = −K,
regarding −K ∈ Cl(Z) = Z as an integer. In the remaining cases, qX is given by

No. 4 6 9 10 17 22 31 33 34 35 40 41 42
qX 2 1 3 1 1 1 1 1 1 1 1 1 1

Remark 1.1.6. Embeddings into weighted projective spaces have been intensely studied
by several authors. Here is how Theorem 1.1.3 relates to well-known classifications in
this case.
(i) Numbers 1, 2, 3, 5, 11, 12, 29, 30 and 39 from Theorem 1.1.3 are smooth and

thus appear in the classification of smooth Fano threefolds of Picard number
one [84, § 12.2].

(ii) Every variety X from Theorem 1.1.3 with Fano index qX = 1 defined by at most
two equations in a weighted projective space Z occurs in [80, Lists 16.6, 16.7].

(iii) The items from [80, Lists 16.6, 16.7] which don’t show up in Theorem 1.1.3 are not
realizable as general complete intersections in a fake weighted projective space.

Recall that the Gorenstein index of a Q-Gorenstein variety X is the minimal positive
integer ıX such that ıXKX is a Cartier divisor. So, ıX = 1 means that X is Gorenstein.

Remark 1.1.7. The Gorenstein varieties in Theorem 1.1.3 are precisely the smooth
ones. This is a direct application of Corollary 1.4.5 showing that ZX is the union of all
torus orbits of dimension at least three and Proposition 1.4.9 which ensures that X and
ZX have the same Gorenstein index.

Remark 1.1.8. The anticanonical self intersection −K3 together with the first coefficients
of the Hilbert series of X from Theorem 1.1.3 with Cl(Z) having torsion occur in the
Graded Ring Database [5, 29]. Here are the corresponding IDs:

No. 4 6 9 10 17 22 31 33 34 35 40 41 42
ID 40245 23386 41176 2122 3508 1249 32755 4231 5720 237 14885 4733 258

We observe that Numbers 17 and 36 from Theorem 1.1.3 both realise the numerical data
from ID 3508 in the Graded Ring Database but the general members of the respective
families are non-isomorphic.

Remark 1.1.9. For Numbers 35 and 42 from Theorem 1.1.3 the linear system | −KX |
is empty. In particular these Fano threefolds X do not admit an elephant, that means a
member of | −KX | with at most canonical singularities. There appear to be only few
known examples for this phenomenon, compare [80, 16.7] and [120, Sec. 4].
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Remark 1.1.10. Numbers 4, 6, 9, 10, 22, 33, 34, 35, 40, 41 and 42 from Theorem 1.1.3
do not show up in any reference known to the authors apart from the candidate list for
terminal Fano threefolds provided by the Graded Ring Database.

1.2 Background on toric varieties
In this section, we gather the necessary concepts and results from toric geometry and
thereby fix our notation. We briefly touch some of the fundamental definitions but
nevertheless assume the reader to be familiar with the foundations of the theory of toric
varieties. We refer to [43,46,59] as introductory texts.

Our ground field K is algebraically closed and of characteristic zero. We write Tn for
the standard n-torus, that means the n-fold direct product of the multiplicative group K∗.
By a torus we mean an affine algebraic group T isomorphic to some Tn. A toric variety
is a normal algebraic variety Z containing a torus T as a dense open subset such that
the multiplication on T extends to an action of T on Z.

Toric varieties are in covariant categorical equivalence with lattice fans. In this
context, a lattice is a free Z-module of finite dimension. Moreover, a quasifan (a fan) in
a lattice N is a finite collection Σ of (pointed) convex polyhedral cones σ in the rational
vector space NQ = Q⊗Z N such that given σ ∈ Σ, we have τ ∈ Σ for all faces τ 4 σ and
for any two σ, σ′ ∈ Σ, the intersection σ ∩ σ′ is a face of both, σ and σ′. The toric variety
Z and its acting torus T associated with a fan Σ in N are constructed as follows:

T := SpecK[M ], Z :=
⋃
σ∈Σ

Zσ, Zσ := SpecK[σ∨ ∩M ],

where M is the dual lattice of N and σ∨ ⊆MQ is the dual cone of σ ⊆ NQ. The inclusion
T ⊆ Z of the acting torus is given by the inclusion of semigroup algebras arising from
the inclusions σ∨ ∩M ⊆ M of additive semigroups. In practice, we will mostly deal
with N = Zn = M , where Zn is identified with its dual via the standard bilinear form
〈u, v〉 = u1v1 + . . . + unvn. In this setting, we have NQ = Qn = MQ. Moreover, given
a lattice homomorphism F : N → N ′, we write as well F : NQ → N ′Q for the associated
vector space homomorphism.

We briefly recall Cox’s quotient construction p : Ẑ → Z of a toric variety Z given by
a fan Σ in Zn from [44]. We denote by v1, . . . , vr ∈ Zn the primitive generators of Σ, that
means the shortest non-zero integral vectors of the rays %1, . . . , %r ∈ Σ. We will always
assume that v1, . . . , vr span Qn as a vector space; geometrically this means that Z has
no torus factor. By Di ⊆ Z we denote the toric prime divisor corresponding to %i ∈ Σ.
Throughout the chapter, we will make free use of the notation introduced around Cox’s
quotient presentation.

Construction 1.2.1. Let Σ be a fan in Zn and Z the associated toric variety. Consider
the linear map P : Zr → Zn sending the i-th canonical basis vector ei ∈ Zr to the i-th
primitive generator vi ∈ Zn of Σ, denote by δ = Qr

≥0 the positive orthant and define a
fan Σ̂ in Zr by

Σ̂ := {δ0 4 δ; P (δ0) ⊆ σ for some σ ∈ Σ}.
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As Σ̂ consists of faces of the orthant δ, the toric variety Ẑ defined by Σ̂ is an open
Tr-invariant subset of Z̄ = Kr. We also regard the linear map P : Zr → Zn as an n× r
matrix P = (pij) and then speak about the generator matrix of Σ. The generator matrix
P defines a homomorphism of tori:

p : Tr → Tn, t 7→ (tp11
1 · · · tp1r

r , . . . , tpn1
1 · · · tpnr

r ).

This homomorphism extends to a morphism p : Ẑ → Z of toric varieties, which in fact
is a good quotient for the action of the quasitorus H = ker(p) on Ẑ. Let P ∗ be the
transpose of P , set K := Zr/im(P ∗) and let Q : Zr → K be the projection. Then
deg(Ti) := Q(ei) ∈ K defines a K-graded polynomial ring

R(Z) :=
⊕
w∈K
R(Z)w :=

⊕
w∈K

K[T1, . . . , Tr]w = K[T1, . . . , Tr].

There is an isomorphism K → Cl(Z) from the grading group K onto the divisor class
group Cl(Z) sending Q(ei) ∈ K to the class [Di] ∈ Cl(Z) of the toric prime divisor
Di ⊆ Z defined by the ray %i through vi. Moreover, the K-graded polynomial ring R(Z)
is the Cox ring of Z; see [4, Sec. 2.1.3].

We now explain the correspondence between effective Weil divisors on a toric variety Z
and the K-homogeneous elements in the polynomial ring R(Z). For any variety X, we
denote by Xreg ⊆ X the open subset of its smooth points and by WDiv(X) its group of
Weil divisors. We need the following pull back construction of Weil divisors with respect
to morphisms ϕ : X → Y : Given a Weil divisor D having ϕ(X) not inside its support,
restrict D to a Cartier divisor on Yreg, apply the usual pull back and turn the result into
a Weil divisor on X by replacing its prime components with their closures in X.

Definition 1.2.2. Consider a toric variety Z and its quotient presentation p : Ẑ → Z.
A describing polynomial of an effective divisor D ∈ WDiv(Z) is a K-homogeneous
polynomial g ∈ R(Z) with div(g) = p∗D ∈WDiv(Z̄).

Example 1.2.3. An effective toric divisor a1D1 + . . .+ arDr on Z has the monomial
T a1

1 · · ·T ar
r ∈ R(Z) as a describing polynomial. Moreover, in K = Cl(X), we have

deg(T a1
1 · · ·T

ar
r ) = Q(a1, . . . , ar) = [a1D1 + . . .+ arDr].

We list the basic properties of describing polynomials, which in fact hold in the much
more general framework of Cox rings; see [4, Prop. 1.6.2.1 and Cor 1.6.4.6].

Proposition 1.2.4. Let Z be a toric variety with quotient presentation p : Ẑ → Z as in
Construction 1.2.1 and let D be any effective Weil divisor on Z.

(i) There exist describing polynomials for D and any two of them differ by a non-zero
scalar factor.

(ii) If g is a describing polynomial for D, then, identifying K and Cl(Z) under the
isomorphism presented in Construction 1.2.1, we have

p∗(div(g)) = D, deg(g) = [D] ∈ Cl(Z) = K.
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(iii) For every K-homogeneous element g ∈ R(Z), the divisor p∗(div(g)) is effective and
has g as a describing polynomial.

Let us see how base points of effective divisors on toric varieties are detected in
terms of fans and homogeneous polynomials. Recall that each cone σ ∈ Σ defines a
distinguished point zσ ∈ Z and the toric variety Z is the disjoint union over the orbits
Tn · zσ, where σ ∈ Σ.

Proposition 1.2.5. Let Z be the toric variety arising from a fan Σ in Zn and D an
effective Weil divisor on Z. Then the base locus of D is Tn-invariant. Moreover, a point
zσ ∈ Z is not a base point of D if and only if D is linearly equivalent to an effective toric
divisor a1D1 + · · ·+ arDr with ai = 0 whenever vi ∈ σ.

In the later construction and study of non-degenerate subvarieties of toric varieties,
we make essential use of the normal fan of a lattice polytope and the correspondence
between polytopes and divisors for toric varieties. Let us briefly recall the necessary
background and notation.

Reminder 1.2.6. Consider a polytope B ⊆ Qn. We write B′ 4 B for the faces of B.
One obtains a quasifan Σ(B) in Zn by

Σ(B) := {σ(B′); B′ 4 B}, σ(B′) := cone(u− u′; u ∈ B, u′ ∈ B′)∨,

called the normal fan of B. The assignment B′ 7→ σ(B′) sets up an inclusion-reversing
bijection between the faces of B and the cones of Σ(B).

Note the slight abuse of notation: the normal fan Σ(B) is a fan in the strict sense only
if the polytope B is of full dimension n, otherwise Σ(B) is a quasifan. Given quasifans Σ
and Σ′ in Zn, we speak of a refinement Σ′ → Σ if Σ and Σ′ have the same support and
every cone of Σ′ is contained in a cone of Σ.

Reminder 1.2.7. Let B = B1+· · ·+Bs be the Minkowski sum of polytopes B1, . . . , Bs ⊆
Qn. Each face B′ 4 B has a unique presentation

B′ = B′1 + · · ·+B′s, B′1 4 B1, . . . , B
′
s 4 Bs.

The normal fan Σ(B) of B is the coarsest common refinement of the normal fans Σ(Bi)
of the Bi. The cones of Σ(B) are given as

σ(B′) = σ(B′1) ∩ · · · ∩ σ(B′s),

where B′ 4 B and B′ = B′1 + . . . + B′s is the above decomposition. In particular,
σ(B′i) ∈ Σ(Bi) is the minimal cone containing σ(B′) ∈ Σ(B′).

Reminder 1.2.8. Let B ⊆ Qn be an n-dimensional polytope with integral vertices and
let Σ be any complete fan in Zn with generator matrix P = [v1, . . . , vr]. Define a vector
a ∈ Zr by

a := (a1, . . . , ar), ai := −min
u∈B
〈u, vi〉.
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Chapter 1. Non-degenerate toric complete intersections

Observe that the ai are indeed integers, because B has integral vertices. For u ∈ B set
a(u) := P ∗u+ a and let B(u) 4 B be the minimal face containing u. Then the entries of
the vector a(u) ∈ Qr satisfy

a(u)i ≥ 0, for i = 1, . . . , r, a(u)i = 0 ⇔ vi ∈ σ(B(u)).

Proposition 1.2.9. Let B ⊆ Qn be a lattice polytope and Σ any complete fan in Zn with
generator matrix P = [v1, . . . , vr]. With a ∈ Zr from Reminder 1.2.8, we define a divisor
on the toric variety Z arising from Σ by

D := a1D1 + · · ·+ arDr ∈ WDiv(Z).

Moreover, for every vector u ∈ B ∩ Zn, we have a(u) ∈ Zr as in Reminder 1.2.8 and
obtain effective divisors D(u) on Z, all of the same class as D by

D(u) := a(u)1D1 + · · ·+ a(u)rDr ∈ WDiv(Z).

If Σ refines the normal fan Σ(B), then D and all D(u) are base point free. If Σ equals
the normal fan Σ(B), then the divisors D and D(u) are even ample.

1.3 Laurent systems and their Newton polytopes

We consider systems F of Laurent polynomials in n variables. Any such system F defines
a Newton polytope B in Qn. The objects of interest are completions X ⊆ Z of the zero
set V (F ) ⊆ Tn in the toric varieties Z associated with refinements of the normal fan
of B. In Proposition 1.3.10, we interpret Khovanskii’s non-degeneracy condition [76] in
terms of Cox’s quotient presentation of Z. Theorem 1.3.12 gathers complete intersection
properties of the embedded varieties X ⊆ Z given by non-degenerate systems of Laurent
polynomials.

We begin with recalling the basic notions around Laurent polynomials and Newton
polytopes. Laurent polynomials are the elements of the Laurent polynomial algebra for
which we will use the short notation

LP(n) := K[T±1
1 , . . . , T±1

n ].

Definition 1.3.1. Take any Laurent polynomial f = ∑
ν∈Zn ανT

ν ∈ LP(n). The Newton
polytope of f is

B(f) := conv(ν ∈ Zn; αν 6= 0) ⊆ Qn.

Given a face B 4 B(f) of the Newton polytope, the associated face polynomial is defined
as

fB =
∑

ν∈B∩Zn

ανT
ν ∈ LP(n).
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1.3. Laurent systems and their Newton polytopes

Construction 1.3.2. Consider a Laurent polynomial f ∈ LP(n) and a fan Σ in Zn. The
pullback of f with respect to the homomorphism p : Tr → Tn defined by the generator
matrix P = (pij) of Σ has a unique presentation as

p∗f(T1, . . . , Tr) = f(T p11
1 · · ·T p1r

r , . . . , T pn1
1 · · ·T pnr

r ) = T νg(T1, . . . , Tr)

with a Laurent monomial T ν = T ν1
1 · · ·T νr

r ∈ LP(r) and a K-homogeneous polynomial
g ∈ K[T1, . . . , Tr] being coprime to each of the variables T1, . . . , Tr. We call g the
Σ-homogenization of f .

Lemma 1.3.3. Consider a Laurent polynomial f ∈ LP(n) with Newton polytope B(f)
and a fan Σ in Zn with generator matrix P := [v1, . . . , vr] and associated toric variety Z.
Let a := (a1, . . . , ar) be as in Reminder 1.2.8 and D ∈ WDiv(Z) the push forward of
div(f) ∈WDiv(Tn).
(i) The Σ-homogenization g of f is a describing polynomial of D and with the homo-

morphism p : Tr → Tn given by P , we have

g = T ap∗f ∈ R(Z), T a := T a1 · · ·T ar .

(ii) The Newton polytope of g equals the image of the Newton polytope of f under the
injection Qn → Qr sending u to a(u) := P ∗u+ a, in other words

B(g) = P ∗B(f) + a = {a(u); u ∈ B(f)}.

(iii) Consider a face B 4 B(f) and the associated face polynomial fB. Then the
corresponding face P ∗B + a 4 B(g) has the face polynomial

gP ∗B+a = g(T̃1, . . . , T̃r), T̃i :=
{

0 vi ∈ σ(B),
Ti vi 6∈ σ(B).

Moreover, for each monomial T ν of g − gP ∗B+a there is a proper face σ ≺ σ(B)
such that every variable Ti with vi ∈ σ(B) \ σ divides T ν .

(iv) The degree deg(g) ∈ K of the Σ-homogenization g of f and the divisor class
[D] ∈ Cl(Z) of D ∈WDiv(Z) are given by

deg(g) = Q(a) = [a1D1 + . . .+ arDr] = [D].

(v) If Σ is a refinement of the normal fan of B(f), then the divisor D ∈WDiv(Z) is
base point free on Z.

Proof. Assertions (i) to (iii) are direct consequences of Reminder 1.2.8. Assertion (iv) is
clear by Proposition 1.2.4 and (v) follows from Proposition 1.2.9.

Remark 1.3.4. Situation as in Lemma 1.3.3. If Cl(Z) is torsion-free, then every
polynomial g′ with B(g′) = B(g) = Bµ is homogeneous of degree µ = deg(g) = Q(a).
This becomes false when Cl(Z) is not torsion-free. In this case there can be interior points
of Bµ which are not of the form P ∗u+a where u ∈ B. Hence one finds a non-homogeneous
polynomial having Bµ as its Newton polytope.
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Chapter 1. Non-degenerate toric complete intersections

Example 1.3.5. Consider B = conv((0, 1), (0, 2), (3, 0)) ⊆ Q2. The normal fan Σ of B
has the generator matrix P and the associated toric variety is the fake weighted projective
plane Z with Cl(Z) = Z× Z/3Z and degree matrix Q as follows

P =
[
−2 1 1
−3 3 0

]
, Q =

[
1 1 1
0̄ 1̄ 2̄

]
, a = (6,−3, 0).

We compare the lattice polytopes B and Bµ = P ∗B + a. First observe

µ = Q(a) = (3, 0̄) ∈ Cl(Z), Bµ = conv((3, 0, 0), (0, 3, 0), (0, 0, 3)) ⊆ Q3.

It turns out that B contains four lattice points whereas Bµ contains ten lattice points.
For convenience we list them explicitly,

B ∩ Z2 = {(0, 1), (0, 2), (3, 0), (1, 1)},
Bµ ∩ Z3 = {(3, 0, 0), (0, 3, 0), (0, 0, 3), (1, 1, 1), (0, 2, 1),

(2, 1, 0), (1, 2, 0), (1, 0, 2), (0, 1, 2, ), (2, 0, 1)}.

The first four points listed in Bµ ∩ Z3 are precisely those stemming from lattice points
in B. In other words, these are precisely the exponent vectors of monomials of Cl(Z)-
degree µ = (3, 0̄). The remaining lattice points in Bµ correspond to monomials having 3
as Z-part of their Cl(Z)-degree as well yet with a torsion component different from 0̄.

Here are the basic notions around systems of Laurent polynomials; observe that
item (iii) is precisely Khovanskii’s non-degeneracy condition stated in [76, Sec. 2.1].

Definition 1.3.6. Let f1, . . . , fs ∈ LP(n) be Laurent polynomials with Newton polytopes
Bj := B(fj) ⊆ Qn.
(i) We speak of F = (f1, . . . , fs) as a system in LP(n) and define the Newton polytope

of F to be the Minkowski sum

B := B(F ) = B1 + . . .+Bs ⊆ Qn.

(ii) The face system F ′ of F associated with a face B′ 4 B of the Newton polytope is
the Laurent system

F ′ = FB′ = (f ′1, . . . , f ′s),

where f ′j = fB′j are the face polynomials associated with the faces B′j 4 Bj from
the presentation B′ = B′1 + . . .+B′s.

(iii) We call F non-degenerate if for every face B′ 4 B, the differential DF ′(z) is of
rank s for all z ∈ V (F ′) ⊆ Tn.

(iv) Let Σ be a fan in Zn. The Σ-homogenization of F = (f1, . . . , fs) is the system
G = (g1, . . . , gs), where gj is the Σ-homogenization of fj .

(v) By an F -fan we mean a fan Σ in Zn that refines the normal fan Σ(B) of the Newton
polytope B of F .
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1.3. Laurent systems and their Newton polytopes

Note that Condition 1.3.6 (iii) is fullfilled for suitably general choices of F ; see also
Section 1.5. Even more, it is a concrete condition in the sense that for every explicitly
given Laurent system F , we can explicitly check non-degeneracy.

Remark 1.3.7. Every system in LP(n) can be turned into a system of polynomials by
multiplication with a suitable monomial without affecting non-degeneracy. Moreover, a
system F = (f1, . . . , fs) of polynomials is non-degenerate if and only if for every face
B′ 4 B the associated face system F ′ = (f ′1, . . . , f ′s) satisfies

T1 · · ·Tn ∈
√
〈f ′1, . . . , f ′s,m′1, . . . ,m′d〉

where m′1, . . . ,m′d denote the (s× s)-minors of DF ′. This condition can be checked by
Gröbner basis computations for instance.

Construction 1.3.8. Consider a system F = (f1, . . . , fs) in LP(n), a fan Σ in Zn and
the Σ-homogenization G of F . Define subvarieties

X̄ := V (G) := V (g1, . . . , gs) ⊆ Z̄, X := V (f1) ∩ . . . ∩ V (fs) ⊆ Z,

where Z is the toric variety associated with Σ and Z̄ = Kr. The quotient presentation
p : Ẑ → Z gives rise to a commutative diagram

X̂ ⊆

p//H
��

Ẑ

//Hp

��
X ⊆ Z

where X̂ := X̄ ∩ Ẑ ⊆ Ẑ as well as X ⊆ Z are closed subvarieties and p : X̂ → X is a
good quotient for the induced H-action on X̂. In particular, X = p(X̂).

In our study of X̄, X̂ and X, the decompositions induced from the respective ambient
toric orbit decompositions will play an important role. We work with distinguished points
zσ ∈ Z. In terms of Cox’s quotient presentation, zσ ∈ Z becomes explicit as zσ = p(zσ̂),
where σ̂ = cone(ei; vi ∈ σ) ∈ Σ̂ and the coordinates of the distinguished point zσ̂ ∈ Ẑ
are zσ̂,i = 0 if vi ∈ σ and zσ̂,i = 1 otherwise.

Construction 1.3.9. Consider a system F = (f1, . . . , fs) in LP(n), a fan Σ in Zn and
the Σ-homogenization G = (g1, . . . , gs) of F . For every cone σ ∈ Σ define

gσj := gj(T σ1 , . . . , T σr ), T σi :=
{

0 vi ∈ σ,
Ti vi 6∈ σ.

This gives us a system Gσ := (gσ1 , . . . , gσs ) of polynomials in K[Ti; vi 6∈ σ]. In the
coordinate subspace Z̄(σ) = V (Ti; vi ∈ σ) of Kr, we have

X̄(σ) := X̄ ∩ Z̄(σ) = V (Gσ) ⊆ Z̄(σ).
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Note that Z̄(σ) equals the closure of the toric orbit Tr · zσ̂ ⊆ Kr. Consider as well the
toric orbit Tn · zσ ⊆ Z and define locally closed subsets

X̂(σ) := X̂ ∩ Tr · zσ̂ ⊆ X̂, X(σ) := X ∩ Tn · zσ ⊆ X.

Then we have X(σ) = p(X̂(σ)) and X ⊆ Z is the disjoint union of the subsets X(σ),
where σ ∈ Σ.

The key step for our investigation of varieties X ⊆ Z defined by Laurent systems is to
interpret the non-degeneracy condition of a system F in terms of its Σ-homogenization G.

Proposition 1.3.10. Let F = (f1, . . . , fs) be a non-degenerate system in LP(n) and
let Σ be an F -fan in Zn.

(i) The differential DG(ẑ) of the Σ-homogenization G of F is of full rank s at every
point ẑ ∈ X̂.

(ii) For each cone σ ∈ Σ, the differential DGσ(ẑ) of the system Gσ is of full rank s at
every point ẑ ∈ X̂(σ).

(iii) For every σ ∈ Σ, the scheme X̂(σ) := X̂ ∩ Tr · zσ̂, provided it is non-empty, is a
closed subvariety of pure codimension s in Tr · zσ̂.

Proof. We care about (i) and on the way also prove (ii). Since g1, . . . , gs are H-
homogeneous, the set of points ẑ ∈ Ẑ with DG(ẑ) of rank strictly less than s is H-
invariant and closed in Ẑ. Thus, as p : Ẑ → Z is a good quotient for the H-action, it
suffices to show that for the points ẑ ∈ X̂ with a closed H-orbit in Ẑ, the differential
DG(ẑ) is of rank s. That means that we only have to deal with the points ẑ ∈ X̂ ∩Tr · zσ̂,
where σ ∈ Σ.

So, consider a point ẑ ∈ X̂ ∩ Tr · zσ̂, let σ′ ∈ Σ(B) be the minimal cone with σ ⊆ σ′
and let B′ 4 B be the face corresponding to σ′ ∈ Σ(B). Then we have the Minkowski
decomposition

B′ = B′1 + . . .+B′s, B′j 4 Bj = B(fj).

From Reminder 1.2.7 we infer that σ′j = σ(B′j) is the minimal cone of the normal fan Σ(B′j)
with σ ⊆ σ′j . Let F ′ be the face system of F given by B′ ⊆ B. Define G′ = (g′1, . . . , g′s),
where g′j is the face polynomial of gj defined by

P ∗B′j + aj 4 P ∗Bj + aj = B(gj), gj = T ajp∗fj .

According to Lemma 1.3.3 (iii), the polynomials g′j only depend on the variables Ti with
vi 6∈ σ(B′j). Moreover, we have

g′j = gσj , j = 1, . . . , s,

because due to the minimality of σ′j = σ(B′j) each monomial of gj − g′j is a multiple of
some Ti with vi ∈ σ. Thus, G′ = Gσ. Using the fact that ẑi = 0 if and only if vi ∈ σ, we
observe

gσj (ẑ) = gj(ẑ) = 0, j = 1, . . . , s, rank DGσ(ẑ) = s ⇒ rank DG(ẑ) = s.
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1.3. Laurent systems and their Newton polytopes

This reduces the proof of (i) to showing that DGσ(ẑ) is of full rank s, and the latter
proves (ii). Choose z̃ ∈ Tr such that z̃i = ẑi for all i with vi 6∈ σ. Using again that the
polynomials g′i only depend on Ti with vi 6∈ σ, we see

gσj (z̃) = gσj (ẑ) = 0, j = 1, . . . , s, DGσ(ẑ) = DGσ(z̃).

We conclude that F ′(p(z̃)) = 0 holds. Thus, the non-degeneracy condition on the Laurent
system F ensures that DF ′(p(z̃)) is of full rank s. Moreover, we have

DGσ(ẑ) = DGσ(z̃) = (T a1 , . . . , T as)(z̃) · DF ′(p(z̃)) ◦ Dp(z̃).

Since T aj (z̃) 6= 0 holds for j = 1, . . . , s and p : Tr → Tn is a submersion, we finally obtain
that DGσ(ẑ) is of full rank s, which proves (i) and (ii). Assertion (iii) follows from (ii)
and the Jacobian criterion for complete intersections.

Remark 1.3.11. Given a system F in LP(n) and an F -fan Σ in Zn, let G be the Σ-ho-
mogenization of F . The proof of Proposition 1.3.10 shows that the following statements
are equivalent:
(i) F is non-degenerate,
(ii) all DGσ(ẑ), where σ ∈ Σ and ẑ ∈ X̂(σ), are of full rank,
(iii) all DGσ(ẑ), where σ, σ′ ∈ Σ with σ 4 σ′ and ẑ ∈ X̂(σ′), are of full rank.

A first application gathers complete intersection properties for the varieties defined
by a non-degenerate Laurent system. Note that the codimension condition imposed on
X̄ \ X̂ in the fourth assertion below allows computational verification for explicitly given
systems of Laurent polynomials.

Theorem 1.3.12. Consider a non-degenerate system F = (f1, . . . , fs) in LP(n), an
F -fan Σ in Zn and the Σ-homogenization G = (g1, . . . , gs) of F .
(i) The variety X̄ = V (G) in Z̄ = Kr is a complete intersection of pure dimension

r − s with vanishing ideal

I(X̄) = 〈g1, . . . , gr〉 ⊆ K[T1, . . . , Tr].

(ii) With the zero sets V (F ) ⊆ Tn and V (G) ⊆ Kr and the notation of Construc-
tion 1.3.8, we have

X̂ = V (G) ∩ Tr ⊆ Ẑ, X = V (F ) ⊆ Z.

In particular, the irreducible components of X ⊆ Z are the closures of the irreducible
components of V (F ) ⊆ Tn.

(iii) The closed hypersurfaces Xj = V (fj) ⊆ Z, where j = 1, . . . , s, represent X as a
scheme-theoretic locally complete intersection

X = X1 ∩ . . . ∩Xs ⊆ Z.

(iv) If X̄ \ X̂ is of codimension at least two in X̄, then X̄ is irreducible and normal
and, moreover, X is irreducible.
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Proof. Assertion (i) is clear by Proposition 1.3.10 (i) and the Jacobian criterion for
complete intersections. For (ii), we infer from Proposition 1.3.10 (ii) that, provided it is
non-empty, the intersection X̂ ∩ Tr · zσ̂ is of dimension r − s− dim(σ̂). In particular no
irreducible component of V (G) is contained in X̂ \ Tr. The assertions follow.

We prove (iii). Each fj defines a divisor on Z having support Xj and according to
Lemma 1.3.3 (v) this divisor is base point free on Z. Thus, for every σ ∈ Σ, we find a
monomial hσ,j of the same K-degree as gj without zeroes on the affine chart Ẑσ̂ ⊆ Ẑ
defined by σ̂ ∈ Σ̂. We conclude that the invariant functions g1/hσ,1, . . . , gs/hσ,s generate
the vanishing ideal of X on the affine toric chart Zσ ⊆ Z.

We turn to (iv). Proposition 1.3.10 and the assumption that X̄ \ X̂ is of codimension
at least two in X̄ allow us to apply Serre’s criterion and we obtain that X̄ is normal.
In order to see that X̄ is irreducible, note that H acts on Z̄ with attractive fixed point
0 ∈ Z̄. This implies 0 ∈ X̄, Hence X̄ is connected and thus, by normality, irreducible.

Remark 1.3.13. If in the setting of Theorem 1.3.12, the dimension of Z̄ \ Ẑ is at most
r − s− 2, for instance if Z is a fake weighted projective space, then the assumption of
Statement (iv) is satisfied.

The statements (i) and (iv) of Theorem 1.3.12 extend in the following way to the
pieces cut out from X̄ by the closures of the Tr-orbits of Z̄ = Kr.

Proposition 1.3.14. Consider a non-degenerate system F = (f1, . . . , fs) in LP(n), an
F -fan Σ in Zn, the Σ-homogenization G = (g1, . . . , gs) of F , a cone σ ∈ Σ and

Z̄(σ) = V (Ti; vi ∈ σ), X̄(σ) = X̄ ∩ Z̄(σ).

If X̄(σ)\X̂(σ) is of codimension least one in X̄(σ), then X̄(σ) = X̄∩ Z̄(σ) is a subvariety
of pure codimension s in Z̄(σ) with vanishing ideal

I(X̄(σ)) = 〈gσ1 , . . . , gσs 〉 ⊆ K[Ti; vi 6∈ σ].

If X̄(σ) \ X̂ is of codimension at least two in X̄(σ), then the variety X̄(σ) is irreducible
and normal.

Proof. If X̄(σ)\X̂(σ) is of codimension least one in X̄(σ), then Proposition 1.3.10 and the
Jacobian criterion ensure that X̄(σ) is a complete intersection in Kr with the equations
gj = 0, j = 1, . . . , s, and Ti = 0, vi ∈ σ. This gives the first statement. If X̄(σ) \ X̂(σ) is
of codimension at least two in X̄(σ), then we obtain irreducibility and normality as in
the proof of (iv) of Theorem 1.3.12, replacing X̄ with X̄(σ).

1.4 Non-degenerate toric complete intersections
We take a closer look at the geometry of the varieties X ⊆ Z arising from non-degenerate
Laurent systems. The main statements of the section are Theorem 1.4.2, showing that
X ⊆ Z is always quasismooth and Theorem 1.4.4 giving details on how X sits inside Z.
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Using these, we can prove Theorem 1.1.1 which describes the anticanonical complex.
First we give a name to our varieties X ⊆ Z, motivated by Theorem 1.4.4. Finally, we see
that for a general choice of the defining Laurent system and an easy-to-check assumption
on the ambient toric variety Z, we obtain divisor class group and Cox ring of X for free,
see Corollary 1.4.13.
Definition 1.4.1. By a non-degenerate toric complete intersection we mean a variety
X ⊆ Z defined by a non-degenerate system F in LP(n) and an F -fan Σ in Zn.

An immediate but important property of non-degenerate toric complete intersections
is quasismoothness; see also [2] for further results in this direction. The second statement
in the theorem below is Khovanskii’s resolution of singularities [76, Thm. 2.2]. Observe
that our proof works without any ingredients from the theory of holomorphic functions.
Theorem 1.4.2. Let F be a non-degenerate system in LP(n) and Σ an F -fan in Zn.
Then the variety X is normal and quasismooth in the sense that X̂ is smooth. Moreover,
X ∩ Zreg ⊆ Xreg. In particular, if Z is smooth, then X is smooth.

Proof. By Proposition 1.3.10 (i), the variety X̂ is smooth. As smooth varieties are
normal and the good quotient p : X̂ → X preserves normality, we see that X is normal.
Moreover, if Z is smooth, then the quasitorus H = ker(p) acts freely on p−1(Zreg), hence
on X̂ ∩ p−1(Zreg) and thus the quotient map p : X̂ → X preserves smoothness over
X ∩ Zreg.

The next aim is to provide details on the position of X inside the toric variety Z.
The considerations elaborate the transversality statement on X and the torus orbits of Z
made in [76] for the smooth case.
Definition 1.4.3. Let Z be the toric variety arising from a fan Σ in Zn. Given a closed
subvariety X ⊆ Z, we set

ΣX := {σ ∈ Σ; X(σ) 6= ∅}, X(σ) = X ∩ Tn · zσ.

Theorem 1.4.4. Consider a non-degenerate system F = (f1, . . . , fs) in LP(n), an
F -fan Σ in Zn and the associated toric complete intersection X ⊆ Z.
(i) For every σ ∈ ΣX , the scheme X(σ) ∩ Tn · zσ is a closed subvariety of pure

codimension s in Tn · zσ.
(ii) The subset ΣX ⊆ Σ is a subfan and the subset ZX := Tn ·X ⊆ Z is an open toric

subvariety.
(iii) All maximal cones of ΣX are of dimension n− s and the support of ΣX equals the

tropical variety of V (F ) ⊆ Tn.

Proof. We prove (i). Given a cone σ ∈ ΣX consider σ̂ ∈ Σ̂ and the corresponding affine
toric charts and the restricted quotient map:

X̄ ∩ Ẑσ̂ = X̂σ̂ ⊆

p

��

Ẑσ̂ ⊆

p

��

p−1(Zσ)

X ∩ Zσ = Xσ ⊆ Zσ
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From Proposition 1.3.10 we infer that X̂(σ̂) = Tr · zσ̂ ∩ X̂ is a reduced subscheme of pure
codimension s in Tr · zσ̂. The involved vanishing ideals on Zσ and Ẑσ̂ satisfy

I(Xσ) + I(Tn · zσ) = I(X̂σ̂)H + I(Tr · zσ̂)H =
(
I(X̂σ̂) + I(Tr · zσ̂)

)H
.

We conclude that the left hand side ideal is radical. In order to see that X(σ) is of
codimension s in Tn · zσ, look at the restriction

p : Tr · zσ̂ → Tn · zσ.

This is a geometric quotient for the H-action, it maps X̂(σ̂) onto X(σ) and, as X̂(σ̂) is
H-invariant, it preserves codimensions.

We prove (ii) and (iii). First note that, due to (i), for any σ ∈ ΣX we have
dim(σ) ≤ n− s. We compare ΣX with trop(X). Tevelev’s criterion [126] tells us that a
cone σ ∈ Σ belongs to ΣX if and only if σ◦ ∩ trop(X) 6= ∅ holds. As Σ is complete, we
conclude that trop(X) is covered by the cones of ΣX .

We show that the support of every cone of ΣX is contained in trop(X). The tropical
structure theorem provides us with a balanced fan structure ∆ on trop(X) such that
all maximal cones are of dimension n− s; see [94, Thm. 3.3.6]. Together with Tevelev’s
criterion, the latter yields that all maximal cones of ΣX are of dimension n − s. The
balancy condition implies that every cone δ0 ∈ ∆ of dimension n− s− 1 is a facet of at
least two maximal cones of ∆. We conclude that every cone σ ∈ ΣX of dimension n− s
must be covered by maximal cones of ∆.

Knowing that trop(X) is precisely the union of the cones of ΣX , we directly see that
ΣX is a fan: Given σ ∈ ΣX , every face τ 4 σ is contained in trop(X). In particular, τ◦
intersects trop(X). Using once more Tevelev’s criterion, we obtain τ ∈ ΣX .

Corollary 1.4.5. Let X ⊆ Z be a non-degenerate toric complete intersection given by
F = (f1, . . . , fs) in LP(n) and a simplicial F -fan Σ. If X̄ \ X̂ is of dimension strictly
less than r − n, then we have

ΣX = {σ ∈ Σ; dim(σ) ≤ n− s}.

Proof. Assume that σ ∈ Σ is of dimension n − s but does not belong to ΣX . Then
X(σ) = ∅ and hence X̂(σ) = ∅. This implies

X̄(σ) = V (g1, . . . , gs) ∩ V (Ti; vi ∈ σ) =
⋃
σ̂≺τ

X̄ ∩ Tr · zτ .

As Σ is simplicial, P defines a bijection from Σ̂ onto Σ. Moreover, σ̂ and σ both have
n− s rays and we can estimate the dimension of X̄(σ) as

dim(X̄(σ)) ≥ r − s− (n− s) = r − n.

Due to dim(X̄ \ X̂) < r − n, we have X̄ ∩ Tr · zτ ⊆ X̂ for some σ̂ ≺ τ ∈ Σ̂. Thus, σ is a
proper face of P (τ) ∈ ΣX . This contradicts to Theorem 1.4.4 (iii).
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Example 1.4.6. Let f = S1 + S2 + 1 ∈ K[S1, S2, S3] and Σ the fan in Z3 given via its
generator matrix P = [v1, . . . , v5] and maximal cones σijk = cone(vi, vj , vk):

P =

 −2 2 0 0 0
−2 0 2 0 0

1 1 1 1 −1

 , Σmax = {σ124, σ134, σ234, σ125, σ135, σ235}.

Then f is non-degenerate in LP(3) and Σ is an F -fan. Thus, we obtain a nondegenerate
toric hypersurface X ∈ Z. The Σ-homogenization of f is

g = T 2
1 + T 2

2 + T 2
3 .

The minimal ambient toric variety ZX ⊆ Z is the open toric subvariety given by the fan
ΣX with the maximal cones σij = cone(vi, vj) given as follows

Σmax
X = {σ14, σ15, σ24, σ25, σ34, σ35}.

In particular, the fan ΣX is a proper subset of the set of all cones of dimension at most
two of the fan Σ.

Remark 1.4.7. The variety X from Example 1.4.6 is a rational K∗-surface as constructed
in [4, Sec. 5.4]. More generally, every weakly tropical general arrangement variety in the
sense of [63, Sec. 5] is an example of a non-degenerate complete toric intersection.

We approach the proof of Theorem 1.1.1. The following pull back construction relates
divisors of Z to divisors on X.

Remark 1.4.8. Let X ⊆ Z be an irreducible non-degenerate toric complete intersection.
Denote by ı : X ∩Zreg → X and  : X ∩Zreg → Zreg the inclusions. Then Theorems 1.4.2
and 1.4.4 (ii) yield a well defined pull back homomorphism

WDivT(Z) = WDivT(Zreg) → WDiv(X), D 7→ D|X := ı∗
∗D,

where we set T = Tn for short. By Theorem 1.4.4 (i), this pull back sends any invariant
prime divisor on Z to a sum of distinct prime divisors on X. Moreover, we obtain a well
defined induced pullback homomorphism for divisor classes

Cl(Z) → Cl(X), [D] 7→ [D]|X .

The remaining ingredients are the adjunction formula given in Proposition 1.4.9 and
Proposition 1.4.10 providing canonical divisors which are suitable for the ramification
formula.

Proposition 1.4.9. Let X ⊆ Z be an irreducible non-degenerate toric complete intersec-
tion given by a system F = (f1, . . . , fs) in LP(n).

(i) Let Cj ∈WDiv(Z) be the push forward of div(fj) and KZ an invariant canonical
divisor on Z. Then the canonical class of X is given by

[KX ] = [KZ + C1 + . . .+ Cs]|X ∈ Cl(X).
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(ii) The variety X is Q-Gorenstein if and only if ZX is Q-Gorenstein. If one of these
statements holds, then X and ZX have the same Gorenstein index.

Proof. Due to Theorem 1.4.2 and Theorem 1.4.4 (ii) it suffices to have the desired
canonical divisor on Zreg ∩ X ⊆ Xreg. By Theorem 1.3.12, the classical adjunction
formula applies, proving (i). For (ii), note that the divisors Cj on Z are base point free
by Lemma 1.3.3 (v) and hence Cartier. The assertions of (ii) follow.

Proposition 1.4.10. Consider an irreducible non-degenerate system F in LP(n), a
refinement Σ′ → Σ of F -fans and the associated modifications π : Z ′ → Z and π : X ′ → X.
Then, for every σ ∈ ΣX , there are canonical divisors KX(σ) on X and KX′(σ) on X ′

such that
(i) KX′(σ) = π∗KX(σ) holds on X ′ \ Y ′, where Y ′ ⊆ Z ′ is the exceptional locus of the

toric modification π : Z ′ → Z,
(ii) KX′(σ)− π∗KX(σ) = KZ′ |X′ − π∗KZ |X′ holds on π−1(Zσ) ∩X ′, where Zσ ⊆ ZX

is the affine toric chart defined by σ ∈ ΣX .

Proof. Fix σ ∈ ΣX . Then there is a vertex u ∈ B of the Newton polytope B = B(F )
such that the maximal cone σ(u) ∈ Σ(B) contains σ. Write u = u1 + . . . + us with
vertices uj ∈ B(fj). With the corresponding vertices a(uj) = P ∗uj + aj of the Newton
polytopes B(gj), we define

D(σ, j) := a(uj)1D1 + . . .+ a(uj)rDr ∈ WDiv(Z).

Let Cj ∈WDiv(Z) be the push forward of div(fj). Propositions 1.2.5 and 1.2.9 together
with Lemma 1.3.3 (v) tell us

[D(σ, j)] = [Cj ] = deg(gj) ∈ K = Cl(Z), supp(D(σ, j)) ∩ Zσ = ∅.

Also for the Σ′-homogenization G′ of F , the vertices uj ∈ B(fj) yield corresponding
vertices a′(uj) ∈ B(g′j) and define divisors

D′(σ, j) := a′(uj)1D1 + . . .+ a′(uj)r+lDr+l ∈ WDiv(Z ′).

As above we have the push forwards C ′j ∈ WDiv(Z ′) of div(fj) and, by the same
arguments, we obtain

[D′(σ, j)] = deg(g′j) ∈ K ′ = Cl(Z ′), supp(D′(σ, j)) ∩ π−1(Zσ) = ∅.

Take the invariant canonical divisors KZ on Z and KZ′ in Z ′ with multiplicity −1 along
all invariant prime divisors and set

KX(σ) := (KZ +
s∑
j=1

D(σ, j))|X , KX′(σ) := (KZ′ +
s∑
j=1

D′(σ, j))|X′ .

According to Proposition 1.4.9, these are canonical divisors on X and X ′ respectively.
Properties (i) and (ii) are then clear by construction.
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Proof of Theorem 1.1.1. First observe that AX is an anticanonical complex for the toric
variety ZX . Now, choose any regular refinement Σ′ → Σ of the defining F -fan Σ of the
irreducible non-degenerate toric complete intersection X ⊆ Z. This gives us modifications
π : Z ′ → Z and π : X ′ → X. Standard toric geometry and Theorem 1.4.2 yield that both
are resolutions of singularities.

Proposition 1.4.10 provides us with canonical divisors on X ′ and X. We use them
to compute discrepancies. Over each X ∩ Zσ, where σ ∈ ΣX , we obtain the discrepancy
divisor as

KX′(σ)− π∗KX(σ) = KZ′ |X − π∗KZX
|X .

By Theorem 1.4.4 (i), every exceptional prime divisor E′X ⊆ X ′ admits a unique ex-
ceptional prime divisor E′Z ⊆ Z ′ with E′X ⊆ E′Z . Remark 1.4.8 guarantees that the
discrepancy of E′X with respect to π : X ′ → X and that of E′Z with respect to π : Z ′ → ZX
coincide.

We conclude the section by discussing the divisor class group and the Cox ring of
a non-degenerate complete toric intersection and the effect of a general choice of the
defining Laurent system.

Proposition 1.4.11. Consider a non-degenerate system F = (f1, . . . , fs) in LP(n), an
F -fan Σ in Zn and the associated toric complete intersection X ⊆ Z. Assume that X̄ \ X̂
is of codimension at least two in X̄. If the pullback Cl(Z)→ Cl(X) is an isomorphism,
then the Cox ring of X is given by

R(X) = K[T1, . . . , Tr]/〈g1, . . . , gs〉, deg(Ti) = [Xi] ∈ Cl(X),

where G = (g1, . . . , gs) is the Σ-homogenization of F . In this situation, we have moreover
the following statements.

(i) If X̄ ∩ V (Ti) \ X̂ is of codimension at least two in X̄ ∩ V (Ti), then Ti defines a
prime element in R(X).

(ii) If deg(gj) 6= deg(Ti) holds for all i, j, then the variables T1, . . . , Tr define a minimal
system of generators for R(X).

Proof. According to Theorem 1.3.12 (iv) ensures that X̄ is normal. This allows us
to apply [4, Cor. 4.1.1.5], which shows that the Cox ring R(X) is as claimed. The
supplementary assertion (i) is a consequence of Proposition 1.3.14 and (ii) is clear.

Definition 1.4.12. Let B1, . . . , Bs ⊆ Qn be integral polytopes. The Laurent space
associated with B1, . . . , Bs is the finite-dimensional vector space

V (B1, . . . , Bs) :=
s⊕
j=1

K[T ν ; ν ∈ Bj ∩ Zn].

Given a non-empty open set U ⊆ V (B1, . . . , Bs), we refer to the elements F ∈ U and
also to the possible associated toric complete intersections as U -general.
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Following common (ab)use, we say “the general Laurent system F = (f1, . . . , fs)
in LP(n) satisfies ...” if we mean “there is a U ⊆ V (B1, . . . , Bs) such that every U -
general F satisfies ...”, where Bj denotes the Newton polytope of fj for j = 1, . . . , s.
By [76, Thm. 2.2], the general Laurent system is non-degenerate.

Corollary 1.4.13. Let F = (f1, . . . , fs) be a general Laurent system in LP(n) and Σ
an F -fan in Zn. For the associated toric complete intersection X = X1 ∩ · · · ∩Xs ⊆ Z
assume that each Xi, regarded as push-forward of div(fi) ∈ WDiv(Tn), is ample for
Z and

dim(Z̄ \ Ẑ) ≤ r − s− 2, dim(X) ≥ 3.

Then the variety X is irreducible and normal, the pullback Cl(Z)→ Cl(X) is an isomor-
phism and the Cox ring of X is given as

R(X) = K[T1, . . . , Tr]/〈g1, . . . , gs〉, deg(Ti) = [Di] ∈ Cl(X) = Cl(Z),

where G = (g1, . . . , gs) is the Σ-homogenization of F = (f1, . . . , fs) and Di ⊆ Z the toric
prime divisor corresponding to Ti ∈ R(Z) = K[T1, . . . , Tr].

The proof of this Corollary is covered by the subsequent two remarks, which we
formulate separately as they touch aspects of independent interest.

Remark 1.4.14. Let F = (f1, . . . , fs) be a Laurent system in LP(n) and Σ an F -fan in Zn.
Then Lemma 1.3.3 (ii) tells us that F is general if and only if its Σ-homogenization G is
general.

The second remark shows in particular that the easy-to-check assumption dim(Z̄\Ẑ) ≤
r− s− 2 might even be weakened and that it suffices to assume that suitable restrictions
of the Xi are ample.

Remark 1.4.15. Consider a toric variety Z and a non-degenerate toric complete inter-
section X = X1 ∩ · · · ∩Xs in Z of dimension at least three and assume that each Xi is
ample on Z. Then X is constructed by passing stepwise to hypersurfaces:

X ′0 := Z, X ′j := X ′j−1 ∩Xj ⊆ Z, j = 1, . . . , s.

Then X = X ′s and each X ′j is a non-degenerate toric complete intersection in Z. In each
step, Xj |X′j−1

is a base point free and ample divisor on X ′j−1; see Lemma 1.3.3. The
Grothendieck-Lefschetz Theorem from [119] provides us with a pullback isomorphism

Cl(X ′j−1) → Cl(X ′j)

for a general choice of Xj |X′j−1
with respect to its linear system. In the initial step, the

linear system of X1 is just the projective space over the corresponding homogeneous
component of the Cox ring, that means that we have

|X1| = PR(Z)[X1].
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Now consider a general X = X1∩· · ·∩Xs ⊆ Z and suppose that X̄ ′j \X̂ ′j is of codimension
at least two in X̄ ′j in each step. Then we may apply Proposition 1.4.11 stepwise, where
in each step we observe

R(X ′j−1)[
Xj |X′

j−1

] = R(Z)[Xj ]/〈g1, . . . , gj−1〉[Xj ].

Thus the general choice of X1 ∩ · · · ∩ Xs ⊆ Z induces a general choice of the divisor
Xj |X′j−1

on X ′j−1 in each step. In particular, we obtain Cl(Z) = Cl(X) and see that the
statements of Proposition 1.4.11 apply to X ⊆ Z.

Example 1.4.16. Corollary 1.4.13 enables us to produce Mori dream spaces with
prescribed properties. For instance, consider general toric hypersurfaces

X = V (f) ⊆ P1,1,2 × P1,1,2 = Z,

where f is Z2-homogeneous of bidegree (d1, d2) with d1, d2 ∈ Z≥1. Corollary 1.4.13
directly yields Cl(X) = Z2 and delivers the Cox ring as

R(X) = K[T0, T1, T2, S0, S1, S2]/〈f〉, w0 = w1 = (1, 0), w2 = (2, 0),
u0 = u1 = (0, 1), u2 = (0, 2),

where wi = deg(Ti) and ui = deg(Si). Corollary 1.1.2 tells us that X has worst canonical
singularities. Moreover, if for instance d1 = d2 = d, then in the cases

d > 4, d = 4, d < 4,

the Mori dream space X is of general type, satisfies KX = 0 or is Fano, accordingly; use
Proposition 1.4.9.

1.5 The non-degeneracy condition
The purpose of this section is to prove that the non-degenerate Laurent systems with
given Newton polytopes form a non-empty open subset of the Laurent space. This
involves a proof for non-degeneracy of a general Laurent system as stated by Khovanskii
as part of [76, Thm. 2.2] but without the use of complex spaces.

Proposition 1.5.1. The general Laurent system in LP(n) is non-degenerate.

Proof. Consider integral polytopes B1, . . . , Bs ⊆ Qn and let Bj1, . . . , Bjmj be the faces
of Bj . Given a choice of vertices b1, . . . , bs, where bj ∈ Bj , we consider the index tuples

κ = (k1, . . . , ks), 1 ≤ kj ≤ mj , bj ∈ Bjkj
.

Write V = V (B1, . . . , Bs) for the Laurent space. For F ∈ V , we denote by Fκ the face
system of F given by (B1k1 , . . . , Bsks). Then we have morphisms

Φκ : V × Tn → V ×Ks, (F, z) 7→ (F, Fκ(z)).
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For a system F ∈ V and a vector y ∈ Ks, the fiber of the morphism Φκ over (F, y) is
given as

Φ−1
κ (F, y) = {(F, z); z ∈ Tn, Fκ(z) = y} ∼= F−1

κ (y).

In particular, the fiber over 0 ∈ Ks equals the solution set of Fκ = 0 in the torus Tn. The
differential of Φκ at any point (F, z) ∈ Φ−1

κ (F, 0) is of the form

DΦκ(F, z) =
[

idV 0
∗ DFκ(z)

]
.

Let K denote the set of all relevant κ, that means those with Fκ = 0 having non-empty
solution set for the general F . Then, for κ ∈ K and F being general, Φ−1

κ (F, 0) is of
dimension n− s. Thus, by semicontinuity of fiber dimension, almost all fibers Φ−1

κ (F, y)
are of dimension n− s for κ ∈ K. Consequently, Φκ is dominant whenever κ ∈ K.

Assume b1 = . . . = bs = 0 for the moment. Then, for all face polynomials Fκ =
(f1κ, . . . , fsκ) of the general F , each fjκ has a constant term cj , only depending on F and
j. For every κ ∈ K, Sard’s Theorem [123, Lemma 2.4] yields that the set Yκ ⊆ V ×Ks

of regular values of Φκ is non-empty and open in V ×Ks. Set

Y :=
⋂
κ∈K

Yκ ⊆ V ×Ks.

Then for every y ∈ Y , scaling cj by 1 − yj/cj , we turn any general F into a Laurent
system such that (F, 0) is a regular value of Φκ for all κ ∈ K. We conclude that in the
case b1 = . . . = bs = 0 all morphisms Φκ, where κ ∈ K, have (F, 0) as a regular value for
the general system F ∈ V .

Now look at arbitrary vertices b1, . . . , bs, where bj ∈ Bj . From the previous consid-
eration, we know that for the general system F ′ = (T−b1f1κ, . . . , T

−bsfsκ), all Φκ have
(F ′, 0) as a regular value. Multiplying componentwise with the monomials T−b1 , . . . , T−bs ,
we see that also for arbitrary b1, . . . , bs, all morphisms Φκ have (F, 0) as a regular value
for the general system F ∈ V .

Finally, by finiteness of the number of possible choices, we see that for the general
F ∈ V , for all choices of b1, . . . , bs and all the associated tuples κ, the morphisms Φκ

have (F, 0) as a regular value. By the nature of the differential of Φκ, we conclude that
the general F ∈ V is non-degenerate.

Lemma 1.5.2. Let a reductive algebraic group G act on a prevariety W , and let
p : W → Z be a good quotient onto a complete variety Z. Then for any prevariety
X and closed subset A ⊆ X ×W the projection prX(A) ⊆ X is closed whenever A is
invariant under the G-action on X ×W where G acts trivially on X.

Proof. The projections onto the first factor fit into the following commutative diagram

X ×W //

prX ##

X × Z

prX{{
X
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where the horizontal arrow is the good quotient for G, acting trivially on X. Since
A ⊆ X ×W is invariant under the G-action, the image of A in X × Z is closed. Since Z
is complete, the image prX(A) is closed in X.

We introduce the relation space as homogeneous analog to the Laurent space. This
enables us to use techniques from toric geometry to investigate the Laurent space.

Definition 1.5.3. Let B1, . . . , Bs ⊆ Qn be integral polytopes, B = B1 + · · ·+ Bs the
Minkowski sum and Σ a fan in Zn. The relation space associated with B1, . . . , Bs and Σ
is the finite-dimensional vector space

VΣ(B1, . . . , Bs) :=
s⊕
j=1

K[T1, . . . , Tr]µj , µj = Q(aj) ∈ Cl(Z)

where aj is as in Reminder 1.2.8 for each polytope Bj .

Proposition 1.5.4. Let B1, . . . , Bs ⊆ Qn be integral polytopes, B = B1 + · · ·+Bs the
Minkowski sum, and Σ a fan in Zn refining the normal fan of B. Then we have an
isomorphism of vector spaces

Φ: V (B1, . . . , Bs) → VΣ(B1, . . . , Bs),
(f1, . . . , fs) 7→ (T ap∗f1, . . . , T

ap∗fs).

In particular, Σ-homogenization establishes a one-to-one correspondence between Lau-
rent systems (f1, . . . , fs) in LP(n) having B1, . . . , Bs as Newton polytopes and systems
(g1, . . . , gs) of homogeneous polynomials with Newton polytopes Bµ1 , . . . , Bµs.

Proof. Observe that Φ is a well-defined injection since P ∗ is injective and satisfies
ker(Q) = P ∗(Zn). As Φ is defined componentwise, it suffices to verify that Φ is surjective
in the case s = 1, i.e., B1 = B. Let a = (a1, . . . , ar) be as in Reminder 1.2.8 and consider
the divisorial polytope

B(D) = {u ∈ Qn; 〈u, vi〉 ≥ −ai} ⊆ Qn

associated with the toric divisor D = a1D1 + · · ·+ arDr arising from B. Gale duality
yields that all monomials of degree Q(a) = [D] stem from a lattice point of B(D), i.e.,

Q−1(Q(a)) ∩ Zr≥0 = P ∗(B(D) ∩ Zn) + a.

Since Σ refines the normal fan of B, the divisorial polytope B(D) equals B. We conclude
that each monomial of degree Q(a) is of the form T a+P ∗(u) = T ap∗T u for some u ∈ B∩Zn,
hence Φ is surjective. The supplement is clear by Lemma 1.3.3 (i).

Remark 1.5.5. The linear map from Proposition 1.5.4 fails to be surjective in general if
one drops the assumption that Σ refines the normal fan of B.
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For instance, consider the describing fan Σ of P2 with generator matrix P together
with the lattice polytope B ⊆ Q2,

P =
[
1 0 −1
0 1 −1

]
, B = conv(0, e1, e2, e1 + e2).

Here we have a = (0, 0, 2), thus D = 2D3 and [D] = Q(a) = 2 ∈ Z = Cl(P2). There
are precisely six monomials of degree 2 in T1, T2, T3, which correspond to the lattice
points of the divisorial polytope B(D) = conv(0, 2e1, 2e2). However, B is a proper subset
of B(D) only having four lattice points. This means that the Laurent space V (B) is
fourdimensional but the relation space VΣ(B) is of dimension six.

Lemma 1.5.6. Consider a simplicial fan Σ refining Σ(B). The G = (g1, . . . , gs) ∈
VΣ(B1, . . . , Bs) arising as Σ-homogenization of a non-degenerate system F in LP(n) and
satisfying B(gj) = Bµj for all 1 ≤ j ≤ s form an open subset of VΣ(B1, . . . , Bs).

Proof. Throughout the proof we denote V = VΣ(B1, . . . , Bs) for short. Observe that
B(gi) = Bµj simply means that the monomials T ν corresponding to the vertices ν of
Bµj occur in gi with non-zero coefficient. Thus the set U of all G ∈ V with B(gi) = Bµj

for any 1 ≤ j ≤ s is open in V . According to Proposition 1.5.4 each such G appears as
Σ-homogenization of a system (f1, . . . , fs) in LP(n) with B(fj) = Bj for all 1 ≤ j ≤ s.
Note that the latter property ensures that Σ is an F -fan. This allows us to apply
Remark 1.3.11 and thus check non-degeneracy of F in terms of the Σ-homogenization G.

Next, we show that the G ∈ V not satisfying condition (iii) from Remark 1.3.11
form a closed subset of V . This implies in particular that those G ∈ U arising from a
non-degenerate F form an open subset of U . Now fix σ ∈ Σ and set

Wσ :=
⋃
σ4τ

Tr · zτ̂ = Tr · zσ̂ ⊆ Ẑ.

Then p(Wσ) = Tn · zσ ⊆ Z, in particular p(Wσ) is complete. Moreover Wσ is an H-
invariant closed subset of Ẑ, thus the restriction p : Wσ → p(Wσ) is a good quotient for
the H-action on Wσ. Now consider the morphism

ϕσ : V ×Wσ → Ks ×Ks×r, (G, ẑ) 7→ (G(ẑ), DGσ(ẑ)).

The preimage Aσ of {0} ×M where M denotes the set of matrices of rank strictly less
than s is a closed H-invariant subset of V ×Wσ. Lemma 1.5.2 shows that prV (Aσ) ⊆ V
is closed. We finish the proof by observing that prV (Aσ) is precisely the set of G ∈ V
which do not satisfy condition (iii) from Remark 1.3.11 for fixed σ.

Proposition 1.5.7. Let B1, . . . , Bs ⊆ Qn be lattice polytopes. The non-degenerate
Laurent systems (f1, . . . , fs) in LP(n) with B(fj) = Bj for j = 1, . . . , s form a non-empty
open subset of the Laurent space V (B1, . . . , Bs).
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Proof. Consider the Minkowski sum B = B1 + · · ·+Bs. Then there exists a simplicial
fan Σ in Zn that refines the normal fan Σ(B) of B; see for instance [43, Prop. 11.1.7]. Now
Lemma 1.5.6 applies to B1, . . . , Bs and Σ. From the correspondence in Proposition 1.5.4
we infer that the non-degenerate Laurent systems F = (f1, . . . , fs) with B(fj) = Bj for
all 1 ≤ j ≤ s form an open subset of U of V (B1, . . . , Bs). Finally, Proposition 1.5.1
ensures that U is non-empty.
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1.6 Computing intersection numbers

This section is devoted to a simple algorithm for computing intersection numbers on
projective Q-factorial toric varieties in terms of combinatorial data in the rational divisor
class group. In particular this enables us to compute intersection numbers on Mori dream
spaces that have a complete intersection Cox ring; see Remark 1.6.6.

Setting 1.6.1. Consider an n-dimensional projective Q-factorial toric variety Z with
divisor class group K together with an ample class u ∈ KQ and the induced K-grading
on the polynomial algebra

S := K[T1, . . . , Tr], deg(Ti) := wi = [Di],

where D1, . . . , Dr are the torus invariant prime divisors of Z. Let v1, . . . , vt ∈ KQ be the
primitive lattice vectors lying on the rays of the GIT-fan Λ(S) and Ni the number of
generator degrees wj lying on the ray cone(vi). Our goal is to explicitly compute the
intersection number u1 · · ·un ∈ Q for given u1, . . . , un ∈ KQ.

We state the key formula for computing intersection numbers provided by [4, Prop.
2.4.2.11].

Proposition 1.6.2. Situation as in Setting 1.6.1. Consider pairwise different generator
degrees wi1 , . . . , win and the complementary degrees wj1 , . . . , wjr−n. Then

wi1 · · ·win =
{

1/[K : 〈wj1 , . . . , wr−n〉], if u ∈ cone(wi1 , . . . , wir )◦,
0 else .

Remark 1.6.3. In the situation of Setting 1.6.1 we can compute an intersection product
of the form vl11 · · · v

lt
t in the following cases.

Case 1 : li ≤ Ni for all i = 1, . . . , t. Here, for each vi we find pairwise different generator
degrees wi1 , . . . , wili each of them being of the form wij = cjvi with some cj ∈ Z.
Successively replacing vlii by c1 · · · cliwi1 · · ·wij in vl11 · · · vltt leads eventually to

vl11 · · · v
lt
t = cwi1 · · ·win

for some c ∈ Z and pairwise different generator degrees wi1 , . . . , win . Explicit computation
is now done by applying Proposition 1.6.2.

Case 2 : u /∈ cone(vi; li < Ni). Here, the according divisors do not meet, hence vl11 · · · vltt
vanishes.

Remark 1.6.4. Consider the situation of Setting 1.6.1. Since the toric variety Z defined
by u is Q-factorial, i.e., u lives in the relative interior of some full-dimensional GIT-cone,
for any subset I ⊆ {1, . . . , t} the cone cone(vi; i ∈ I) is full-dimensional whenever it
contains u.
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In the situation of Setting 1.6.1 the following algorithm computes intersection numbers
by gradually reducing the problem to the feasible cases discussed in Remark 1.6.3. To
keep a record of this process the algorithm treats u1 · · ·un as a formal polynomial in
v1, . . . , vt with rational coefficients.

Algorithm 1.6.5 (Computing intersection numbers).
Input: the degree matrix Q, an ample class u ∈ KQ for Z, u1, . . . , un ∈ KQ
Output: the intersection number u1 · · ·un ∈ Q
foreach 1 ≤ i ≤ n do

compute cij ∈ Q such that ui = ci1v1 + · · ·+ citvt in KQ;
end
set f := ∏n

i=1(ci1v1 + . . .+ citvt) ∈ Q[v1, . . . , vt];
repeat

foreach term cvl11 · · · v
lt
t of f do

if li ≤ Ni for all i = 1, . . . , t then
compute d := vl11 · · · v

lt
t by Remark 1.6.3;

set f := f − cvl11 · · · v
lt
t + cd;

else
if u /∈ cone(vi; li < Ni) then

set f := f − cvl11 · · · v
lt
t ;

else
choose some 1 ≤ j ≤ t with lj > Nj ;
compute ci ∈ Q such that vj = ∑

li<Ni
civi;

set

f := f + c

∏
i 6=j

vlii · v
lj−1
j ·

 ∑
li<Ni

civi

− vl11 · · · vltt


end
end

end
until f is constant;
return f ;

Proof. The only step which is not obviously doable is the computation of the rational
numbers ci in the innermost else-branch. Here, Remark 1.6.4 ensures that the demanded
presentation of vj as linear combination over all vi with li < Ni exists.

We show that the algorithm terminates. For any monomial vl = vl11 · · · v
lt
t of f

consider the sum L(vl) of all exponents lj with lj > Nj . The maximum of all L(vl) where
vl runs over all monomials of f is strictly decreased in each step of the repeat structure
until it equals zero. Thus, after a finite number of steps all monomials of f satisfy li ≤ Ni

for all i = 1, . . . , t. In the following step all terms of f will be substituted by rationals
numbers, hence f becomes constant and the algorithm terminates.

According to Remark 1.6.3 the output is the desired intersection number.
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Chapter 1. Non-degenerate toric complete intersections

Mori dream spaces with complete intersection Cox rings inherit intersection theory
from ambient toric varieties thus fit into Setting 1.6.1 when it comes to computing
intersection numbers; see [4, Sec. 3.3.3].

Remark 1.6.6. Consider an irreducible Q-factorial projective variety X with finitely
generated divisor class group K = Cl(X) and a complete intersection Cox ring, i.e., there
is a graded presentation

R(X) = K[T1, . . . , Tr]/〈g1, . . . , gs〉, s = r − dim(X)− dim(KQ),

such that T1, . . . , Tr define pairwise non-associated K-primes in R(X). Moreover, let Z
be a Q-factorial completion of the canonical ambient toric variety of X given by the
above presentation of R(X) and u ∈ KQ and ample class for Z.

For any u1, . . . , udim(X) ∈ KQ the intersection product u1 · · ·udim(X) on X equals
deg(g1) · · · deg(gs) · u1 · · ·udim(X) on Z. Thus the desired intersection number can be
computed by Algorithm 1.6.5 with n := dim(X) + s and the following input data

Q = [deg(T1), . . . ,deg(Tr)], u, ui =
{
ui 1 ≤ i ≤ dim(X),
deg(gi−n) dim(X) + 1 ≤ i ≤ n.

1.7 Proof of Theorem 1.1.3

Here we prove Theorem 1.1.3. The first and major part uses the whole theory developed
in this chapter to establish suitable upper bounds on the specifying data. Having reduced
the problem to working out a manageable number of cases, we proceed computationally,
which involves besides a huge number of divisibility checks the search for lattice points
inside polytopes tracing back to the terminality criterion provided in Corollary 1.1.2. A
second and minor part concerns verifying and distinguishing items listed in Theorem 1.1.3,
where we succeed with Corollary 1.4.13 and the computation of suitable invariants.

We fix the notation around a non-degenerate complete intersection X in an n-
dimensional fake weighted projective space Z. The defining fan of Σ in Zn is simplicial,
complete and we denote its primitive generators by v0, . . . , vn. The divisor class group
Cl(Z) is of the form

Cl(Z) = Z× Z/t1Z× · · · × Z/tqZ.

By wi = (xi, ηi1, . . . , ηiq) ∈ Cl(Z) we denote the classes of the torus invariant prime
divisors Di on Z. Recall that any n of w0, . . . , wn generate Cl(Z). Moreover, as the
Cl(Z)-grading on R(Z) is pointed, we may assume

0 < x0 ≤ . . . ≤ xn.

As before, X ⊆ Z arises from a Laurent system F in LP(n) and Σ is an F -fan. We
denote by G = (g1, . . . , gs) the Σ-homogenization of F = (f1, . . . , fs). Recall that the
Cl(Z)-degree µj = (uj , ζj1, . . . , ζjq) of gj is base point free.
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Lemma 1.7.1. A divisor class [D] ∈ Cl(Z) is base point free if and only if for any
i = 0, . . . , n there exists an li ∈ Z≥1 with [D] = liwi ∈ Cl(Z).

Proof. This is a direct consequence of Proposition 1.2.5 and the fact that the maximal
cones of Σ are given by cone(vj ; j 6= i) for i = 0, . . . , n.

The following lemma provides effective bounds on the orders t1, . . . , tq of the finite
cyclic components of Cl(Z) in terms of the Z-parts xi of the generator degrees w0, . . . , wn
and uj of the relation degrees µ1, . . . , µs for any toric complete intersection X in a
weighted projective space Z with x0 = 1.

Lemma 1.7.2. Assume x0 = 1. Moreover, let µ = (u, ζ1, . . . , ζq) ∈ Cl(Z) be a base point
free divisor class. Then, for any k = 1, . . . , q and j = 1, . . . , n, we have

tk | lcm
(
u

xi
; i = 1, . . . , n, i 6= j

)
.

In particular all tk divide u. Moreover, for the Z-parts uj of the relation degrees µj, we
see that each of t1, . . . , tq divides gcd(u1, . . . , us).

Proof. Due to x0 = 1, we may assume η01 = . . . = η0q = 0. Lemma 1.7.1 delivers li ∈ Z≥1
with µ = liwi. For i = 0, . . . , n that means

(l0, 0, . . . , 0) = l0w0 = µ = liwi = (lixi, liηi1, . . . , liηiq).

Thus, we always have u = lixi and liηik = 0. Now, fix 1 ≤ j ≤ n. As any n of the wi
generate Cl(Z), we find α ∈ Zn+1 with αj = 0 and

α0w0 + . . .+ αnwn = (1, 1̄, . . . , 1̄).

Scalar multiplication of both sides with lcm(li; 1 ≤ i ≤ n, i 6= j) gives the first claim.
The second one is clear.

The next bounding lemma uses terminality. Given σ ∈ Σ, let I(σ) be the set of
indices such that the vi with i ∈ I(σ) are precisely the primitive ray generators of σ and
uσ ∈ Qn a linear form evaluating to −1 on each vi with i ∈ I(σ). As before, we look at

A(σ) := {v ∈ σ; 0 ≥ 〈uσ, v〉 ≥ −1} ⊆ σ.

The point zσ ∈ Z is at most a terminal singularity of Z if and only if 0 and the vi with
i ∈ I(σ) are the only lattice points in A(σ). According to Theorem 1.1.1, the analogous
statement holds for the points x ∈ X with x ∈ Tn · zσ.
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Lemma 1.7.3. Consider σ ∈ Σ such that zσ ∈ Z is at most a terminal singularity of Z.
(i) If σ is of dimension two, then σ is a regular cone and Cl(Z) is generated by the wi

with i 6∈ I(σ). In particular, gcd(xi; i 6∈ I(σ)) = 1 holds.
(ii) If σ is of dimension at least two, then gcd(xi; i 6∈ I(σ)) is strictly less than the

sum over all xi with i ∈ I(σ).

Proof. The first assertion can easily be verified directly. We turn to the second one.
Using xi ∈ Z≥1 and x0v0 + · · ·+ xnvn = 0, we obtain

v′ := −
∑
i/∈I(σ)

xivi =
∑
i∈I(σ)

xivi ∈ σ◦ ∩ Zn.

Write v′ = gcd(xi; i 6∈ I(σ))v with v ∈ σ◦ ∩ Zn. Due to dim(σ) ≥ 2, the vector v does
not occur among v0, . . . , vn. Evaluating uσ yields

0 ≥ 〈uσ, v〉 = gcd(xi; i 6∈ I(σ))−1〈uσ, v′〉 = − gcd(xi; i 6∈ I(σ))−1 ∑
i∈I(σ)

xi.

By assumption, we have v 6∈ A(σ). Consequently, the right hand side term is strictly less
than −1. This gives us the desired estimate.

We turn to bounds involving the Fano property of a toric complete intersection
threefold X in a fake weighted projective space Z. A tuple ξ = (x0, . . . , xn) of positive
integers is ordered if x0 ≤ . . . ≤ xn holds and well-formed if any n of its entries are
coprime. For an ordered tuple ξ, we define

m(ξ) := lcm(x0, . . . , xn), M(ξ) :=
{

2m(ξ), xn = m(ξ),
m(ξ), xn 6= m(ξ).

We deal with well-formed ordered tuples ξ = (x0, . . . , xn) with n ≥ 4. As we will see, the
Fano property forces the inequality

(n− 3)M(ξ) < x0 + · · ·+ xn. (1.1)

Lemma 1.7.4. Consider an ordered ξ = (x0, . . . , x4) such that any three of x0, . . . , x4 are
coprime and condition (1.1) is satisfied. Then x4 ≤ 41 holds or we have 1 ≤ x0, x1, x2 ≤ 2
and x3 = x4.

Proof. We first settle the case x4 = m(ξ). Then x4 is divided by each of x0, . . . , x3. This
implies

gcd(xi, xj) = gcd(xi, xj , x4) = 1, 0 ≤ i < j ≤ 3.

Consequently, x0 · · ·x3 divides x4. Subtracting x4 from both sides of the inequality (1.1)
leads to

x0 · · ·x3 ≤ x4 < x0 + . . .+ x3.
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Using 1 ≤ x0 ≤ · · · ≤ x3 and pairwise coprimeness of x0, . . . , x3, we conclude that the
tuple (x0, x1, x2, x3) is one of

(1, 1, 2, 3), (1, 1, 1, x3).

In the first case, we arrive at x4 < x0 + · · ·+ x3 = 7. In the second one, x4 = dx3 holds
with d ∈ Z≥1. Observe

dx3 = x4 < x0 + · · ·+ x3 = 3 + x3.

Thus, we have to deal with d = 1, 2, 3. For d = 1, we arrive at x3 = x4 and the cases
d = 2, 3 lead to x3 ≤ 2 which means x4 < 5.

Now we consider the case x4 < m(ξ). Then m(ξ) = lx4 with l ∈ Z≥2. From
inequality (1.1) we infer l ≤ 4 as follows:

lx4 = m(ξ) < x0 + · · ·+ x4 ≤ 5x4.

We first treat the case x3 = x4. Using the assumption that any three of x0, . . . , x4 are
coprime, we obtain

gcd(xi, x4) = gcd(xi, x3, x4) = 1, i = 0, 1, 2.

Consequently, x2x4 ≤ m(ξ) = lx4 and x2 ≤ l ≤ 4. For l = 2 this means 1 ≤ x0, x1, x2 ≤ 2.
For l = 3, 4, we use again (1.1) and obtain

x4 <
1

l − 2(x0 + x1 + x2) ≤ 12.

Now we turn to the case x3 < x4. Set for short di := gcd(xi, x4). Then, for all
0 ≤ i < j ≤ 3, we observe

gcd(di, dj) = gcd(xi, xj , x4) = 1.

Consequently d0 · · · d3 | x4. For i = 0, . . . , 3, write xi = fidi with fi ∈ Z≥1. Then fi
divides lx4 and hence l. Fix i0, . . . , i3 pairwise distinct with di0 ≤ · · · ≤ di3 . Using (1.1),
we obtain

(l − 1)di0 · · · di3 ≤ (l − 1)x4 < fi0di0 + · · ·+ fi3di3 ≤ (2 + 2l)di3 .

For the last estimate, observe that due to l = 2, 3, 4, all fi 6= 1 have a common factor 2
or 3. Thus, as any three of x0, . . . , x3 are coprime, we have fi = 1 for at least two i. We
further conclude

di0di1di2 <
(2 + 2l)
l − 1 ≤ 6.

This implies di0 = di1 = 1 and di2 ≤ 5. We discuss the case fi3 = 1. There, we have
xi3 = di3 , hence xi3 | x4. By assumption, x0 ≤ · · · ≤ x3 < x4 and thus xi3 < x4. We
conclude di3 = xi3 ≤ x4/2. From above we infer

(l − 1)x4 < fi0di0 + · · ·+ fi3di3 ≤ l(2 + di2) + x4
2 .
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Together with l = 2, 3, 4 and di2 ≤ 5 as observed before, this enables us to estimate x4 as
follows:

x4 < 2l2 + di2
2l − 3 ≤ 28.

Now let fi3 > 1. Then 2di3 ≤ fi3di3 = xi3 < x4 holds. This gives di3 < x4/2. Using
di3 | x4 we conclude di3 ≤ x4/3. Similarly as before, we proceed by

(l − 1)x4 < fi0di0 + · · ·+ fi3di3 ≤ l(2 + di2) + ldi3 ≤ l(2 + di2) + l
x4
3 .

Again, inserting l = 2, 3, 4 and the bound di2 ≤ 5 finally leads to the desired estimate

x4 < 3l2 + di2
2l − 3 ≤ 42.

Lemma 1.7.5. Consider a well-formed ordered ξ = (x0, . . . , x5) satisfying (1.1). Then
x5 ≤ 21 holds or we have 1 ≤ x0, x1 ≤ 2 and x2 = x3 = x4 = x5.

Proof. Let x5 ≥ 22. We have M(ξ) = lx5 with l ≥ 2. From (1.1) we infer 2lx5 < 6x5,
hence l = 2. Thus, we can reformulate (1.1) as

3x5 < x0 + · · ·+ x4.

Moreover, M(ξ) = 2x5 implies aixi = 2x5 with suitable ai ∈ Z≥2 for i = 0, . . . , 4. In
particular, the possible values of x0, . . . , x4 are given as

x5,
2
3x5,

1
2x5,

2
5x5,

1
3x5,

2
7x5, . . . .

We show x4 = x5. Suppose x4 < x5. Then x4 ≤ 2x5/3. We have x1 ≥ 2x5/3, because
otherwise x1 ≤ x5/2 and thus

3x5 < x0 + . . .+ x4 ≤
1
2x5 + 1

2x5 + 2
3x5 + 2

3x5 + 2
3x5 = 3x5,

a contradiction. We conclude x1 = · · · = x4 = 2x5/3. By well-formedness, the integers
x1, . . . , x5 are coprime. Combining this with

3x1 = · · · = 3x4 = 2x5

yields x5 = 3, contradicting x5 ≥ 22. Thus, x4 = x5, and we can update the previous
reformulation of (1.1) as

2x5 < x0 + · · ·+ x3.

We show x3 = x5. Suppose x3 < x5. Then, by the limited stock of possible values for the
xi, the displayed inequality forces x3 = 2x5/3 and one of the following

x2 = 2
3x5, x1 = 2

3x5,
1
2x5,

2
5x5, x2 = 1

2x5, x1 = 1
2x5.
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By well-formedness, x1, . . . , x5 are coprime. Depending on the constellation, this leads
to x5 = 3, 6, 15, contradicting x5 ≥ 22. Thus, x3 = x5. Observe

x5 < x0 + x1 + x2, gcd(xi, xj , x5) = 1, 0 ≤ i < j ≤ 2.

We show x2 = x5 by excluding all values x2 < x5. First note x2 > x5/3. Assume
x2 = 2x5/5. Then, by the above inequality, x1 = 2x5/5. We obtain

5x1 = 5x2 = 2x5.

thus gcd(x1, x2, x5) = 1 implies x5 = 5, a contradiction to x5 ≥ 22. Next assume
x2 = x5/2. The inequality leaves us with

x1 = 1
2x5,

2
5x5,

1
3x5,

2
7x5.

Thus, using gcd(x1, x2, x5) = 1 we arrive at x5 = 2, 10, 6, 14 respectively, contradicting
x5 ≥ 22. Finally, let x2 = 2x5/3. Then we have to deal with

x1 = 2
3x5,

1
2x5,

2
5x5,

1
3x5,

2
7x5,

1
4x5,

2
9x5,

1
5x5,

2
11x5.

Using gcd(x1, x2, x5) = 1 gives x5 = 3, 6, 15, 3, 21, 12, 9, 15 in the first eight cases, exclud-
ing those. Thus, we are left with the three cases

x2 = 2
3x5, x1 = 2

11x5, x0 = 2
11x5,

1
6x5,

2
13x5.

In the first one, coprimeness of x0, x1, x5 gives x5 = 11 and in the second one coprimeness
of x0, x2, x5 implies x5 = 6. The third case is excluded by

gcd(x1, x2, x5) = 1 ⇒ x5 = 33, gcd(x0, x2, x5) = 1 ⇒ x5 = 39.

Thus, x2 = x5. We care about x0 and x1. Well-formedness and x2 = . . . = x5 yield that
x0, x5 as well as x1, x5 are coprime. Thus, we infer 1 ≤ x0, x1 ≤ 2 from

a0x0 = 2x5, a1x1 = 2x5.

Lemma 1.7.6. There exist only two ordered well-formed septuples (x0, . . . , x6) satisfy-
ing (1.1), namely (1, 1, 1, 1, 1, 1, 1) and (2, 2, 3, 3, 3, 3, 3).

Proof. The case x6 = 1 gives the first tuple. Let x6 > 1. Then M(ξ) = lx6 holds with
l ≥ 2. Using (1.1), we see 3lx6 < 7x6 which means l = 2. We obtain

5x6 < x0 + · · ·+ x5
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by adapting the inequality (1.1) to the present setting. Similar to the preceding proof,
M(ξ) = 2x6 leads to presentations

xi = 2
ai
x6, ai ∈ Z≥2, i = 0, . . . , 5.

Now, pick the unique j with x0 ≤ · · · ≤ xj−1 < xj = · · · = x6. Well-formedness implies
j ≥ 2. Moreover xj−1 ≤ 2x6/3 holds and thus

5x6 <
2
3jx6 + (6− j)x6 = 18− j

3 x6.

This implies j < 3. Thus j = 2, which means x0 ≤ x1 < x2 = · · · = x6. Adapting the
inequality (1.1) accordingly gives

x6 < x0 + x1.

Moreover, by well-formedness, x0, x6 as well as x1, x6 are coprime. Consequently, we can
deduce 1 ≤ x0 ≤ x1 ≤ 2 from

a0x0 = 2x6, a1x1 = 2x6.

Now, x6 > 1 excludes x1 = 1. Next, x0 = 1 would force x6 = 2 = x1, contradicting the
choice of j. Thus, we arrive at x0 = x1 = 2 and x2 = · · · = x6 = 3.

The last tool package for the proof of Theorem 1.1.3 supports the verification of
candidates in the sense that it allows us to show that each of the specifying data in the
list do indeed stem from a toric complete intersection.

Reminder 1.7.7. Consider any complete toric variety Z arising from a lattice fan Σ
in Zn. With every invariant Weil divisor C = a1D1 + . . .+ arDr on Z one associates its
divisorial polytope

B(C) = {u ∈ Qn; 〈u, vi〉 ≥ −ai, i = 1, . . . , r} ⊆ Qn.

If C is base point free, then B(C) has integral vertices and Σ refines the normal fan
of B(C). If in addition C is ample, then B(C) is a full-dimensional lattice polytope
having Σ as its normal fan.

Given base point free classes µ1, . . . , µs on a toric variety Z, the question is whether
or not these are the relation degrees of a (general) toric complete intersection. The
following criterion relies on Corollary 1.4.13.

Remark 1.7.8. Consider a complete toric variety Z given by a fan Σ in Zn and let
µ1, . . . , µs ∈ Cl(Z) such that each µj admits a base point free representative Cj ∈
WDivT(Z). Being integral, the B(Cj) can be realized as Newton polytopes:

B(Cj) = B(fj), fj ∈ LP(n), j = 1, . . . , s.

Consider the system F = (f1, . . . , fs) in LP(n). The fan Σ refines the normal fan of the
Minkowski sum B(C1) + · · ·+B(Cs) and hence is an F -fan. For the Σ-homogenization
G = (g1, . . . , gs) of F we have deg(gj) = µj ∈ Cl(Z).
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(i) If F is non-degenerate, then the associated variety X ⊆ Z is a toric complete
intersection.

(ii) If F is non-degenerate, then there is a non-empty open U ⊆ VF such that every
G′ ∈ U defines a non-degenerate F ′ ∈ LP(n).

(iii) If F is general, C1, . . . , Cs ∈WDiv(Z) are ample and we have dim(Z̄\Ẑ) ≤ r−s−2,
then Cl(X) = Cl(Z) holds and the Cox ring of X is given as

R(X) = K[T1, . . . , Tr]/〈g1, . . . , gs〉,

where deg(Ti) ∈ Cl(X) is the class [Di] ∈ Cl(Z) of the invariant prime divisor
Di ⊆ Z corresponding to Ti.

Proof of Theorem 1.1.3. Let Z be a fake weighted projective space arising from a fan Σ
in Zn and let X = X1 ∩ · · · ∩ Xs ⊆ Z be a general (non-degenerate) terminal Fano
complete intersection threefold. Write G = (g1, . . . , gs) for the Σ-homogenization of the
defining Laurent system F = (f1, . . . , fs) of X ⊆ Z. We have

Cl(Z) = Z× Z/t1Z× · · · × Z/tqZ

for the divisor class group of Z. As before, the generator degrees wi = deg(Ti) and the
relation degrees µj = deg(gj) in Cl(Z) are given as

wi = [Di] = (xi, ηi1, . . . , ηiq), µj = [Xj ] = (uj , ζj1, . . . , ζjq).

We assume that the presentation X ⊆ Z is irredundant in the sense that no gi has a
monomial Ti; otherwise, as the Cl(Z)-grading is pointed, we may write gj = Ti + hj
with hj not depending on Ti and, eliminating Ti, we realize X in a smaller fake weighted
projective space. Moreover, suitably renumbering, we achieve

x0 ≤ · · · ≤ xn, u1 ≤ · · · ≤ us.

According to the generality condition, we may assume that every monomial of degree µj
shows up in the relation gj , where j = 1, . . . , s. In particular, as Lemma 1.7.1 shows
µj = ljiwi with lji ∈ Z≥1, we see that each power T lji

i is a monomial of gj . By
irredundance of the presentation, we have lji ≥ 2 for all i and j.

We will now establish effective bounds on the wi and µj that finally allow a com-
putational treatment of the remaining cases. The following first constraints are caused
by terminality. By Corollary 1.4.5, all two-dimensional cones of Σ belong to ΣX and
by Corollary 1.1.2, the toric orbits corresponding to these cones host at most terminal
singularities of Z. Thus, Lemma 1.7.3 (i) tells us that Cl(Z) is generated by any n− 1
of w0, . . . , wn. In particular, any n− 1 of x0, . . . , xn are coprime and, choosing suitable
generators for Cl(Z), we achieve

Cl(Z) = Z× Z/t1Z× · · · × Z/tqZ, q ≤ n− 1.

Next, we see how the Fano property of X contributes to bounding conditions. Gener-
ality and Corollary 1.4.13 ensure that X inherits its divisor class group from the ambient
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Chapter 1. Non-degenerate toric complete intersections

fake weighted projective space Z. Moreover, by Proposition 1.4.9, the anticanonical
class −KX of X is given in terms of the generator degrees wi = deg(Ti), the relation
degrees µj = deg(gj) and n = s+ 3 as

−KX = w0 + · · ·+ wn − µ1 − · · · − µs ∈ Cl(Z) = Cl(X).

Now, consider the tuples ξ = (x0, . . . , xn) and (u1, . . . , us) of Z-parts of the generator
and relation degrees. As seen above, we have uj = ljixi with lji ∈ Z≥2 for all i and
j. Thus, m(ξ) = lcm(x0, . . . , xn) divides all uj , in particular m(ξ) ≤ uj . Moreover, if
m(ξ) 6= xn, then we even have 2m(ξ) ≤ uj . Altogether, with M(ξ) := 2m(ξ) if m(ξ) = xn
and M(ξ) := m(ξ) else, we arrive in particular at the inequality (1.1):

(n− 3)M(ξ) = sM(ξ) ≤ u1 + · · ·+ us < x0 + · · ·+ xn.

This allows us to conclude that the number s of defining equations for our X ⊆ Z
is at most three. Indeed, inserting 2xn ≤ uj and xi ≤ xn, we see that 2sxn is strictly
less than (n+ 1)xn = (s+ 4)xn. We go through the cases s = 1, 2, 3 and provide upper
bounds on the generator degrees x0, . . . , xn.

Let s = 1. Then n = 4. We will show x4 ≤ 41. As noted above any three of x0, . . . , x4
are coprime. Thus, Lemma 1.7.4 applies, showing that we have x4 ≤ 41 or the tuple
(x0, . . . , x4) is one of

(1, 1, 1, x4, x4), (1, 1, 2, x4, x4), (1, 2, 2, x4, x4).

In the latter case, consider σ = cone(v0, v1, v2) ∈ Σ. Corollary 1.4.5 ensures σ ∈ ΣX .
Due to by Corollary 1.1.2, we may apply Lemma 1.7.3 (ii), telling us

x4 = gcd(x3, x4) < x0 + x1 + x2 ≤ 5.

Let s = 2. Then n = 5. We will show x5 ≤ 21. According to Lemma 1.7.5, we only have
to treat the case x2 = . . . = x5. As noted above, we have

x5 = gcd(x2, . . . , x5) = 1.

Let s = 3. Then n = 6. Lemma 1.7.6 leaves us with (x0, . . . , x6) being one of the tuples
(1, 1, 1, 1, 1, 1) and (2, 2, 3, 3, 3, 3, 3). As before, we can exclude the second configuration.

Next, we perform a computational step. Subject to the bounds just found, we
determine all ordered, well formed tuples ξ = (x0, . . . , xn), where n = s+3 and s = 1, 2, 3,
that admit an ordered tuple (u1, . . . , us) such that

u1 + · · ·+ us < x0 + · · ·+ xn, lji := uj
xi
∈ Z≥2, j = 1, . . . , s, i = 0, . . . , n

holds and any n−1 of x0, . . . , xn are coprime. This is an elementary computation leaving
us with about a hundred tuples ξ = (x0, . . . , xn), each of which satisfies x0 = 1.

As consequence, we can bound the data of the divisor class group Cl(Z). As noted,
we have q ≤ n− 1 and Lemma 1.7.2 now provides upper bounds on the orders tk of the
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finite cyclic factors. This allows us to compute a list of specifying data (Q,µ1, . . . , µs) of
candidates for X ⊆ Z by building up degree maps

Q : Zn+2 → Cl(Z) = Z× Z/t1Z× · · · × Z/tqZ, ei 7→ wi

and pick out those that satisfy the constraints established so far. In a further step,
we check the candidates for terminality using the criterion provided Corollary 1.1.2;
computationally, this amounts to a search of lattice points in integral polytopes. The
affirmatively tested candidates form the list of Theorem 1.1.3. All the computations have
been performed with the Magma programs available at [68].

Remark 1.7.8 shows that each specifying data (Q,µ) in the list of Theorem 1.1.3
stems indeed from a general toric complete intersection X in the fake weighted projective
space Z. Finally, Corollary 1.4.13 ensures that the Cox ring of all listed X is as claimed.
In particular, none of the X is toric. Most of the listed families can be distinguished
via the divisor class group Cl(X), the anticanonical self intersection −K3

X and h0(−KX).
For Numbers 12 and 39, observe that their Cox rings have non-isomorphic configurations
of generator degrees, which also distinguishes the members of these families.
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CHAPTER
TWO

SMOOTH FANO FOURFOLDS OF PICARD NUMBER TWO

In this chapter we classify the smooth Fano fourfolds of Picard number two that have a
general hypersurface Cox ring.

This chapter is organized as follows. First, we present our classification results;
see Theorem 2.1.1. In the following Sections 2.2 and 2.3 we build up the necessary
background on factorially graded algebras and Mori dream spaces for proving our results.
Section 2.4 discusses the concept of a general hypersurface Cox ring and provides tools for
explicitly constructing examples. Sections 2.5 to 2.9 are then devoted to the classification
procedure. Afterwards we investigate different aspects of the varieties from Theorem 2.1.1.
Section 2.10 is dedicated to a geometric description in terms of elementary contractions,
in Section 2.11 we determine Hodge numbers and, finally, Section 2.12 discusses the
connection between automorphisms and deformations of these varieties. The results of
this chapter are published in the joint work [66].

2.1 Classification results

By a Fano variety, we mean a normal projective complex variety with an ample anti-
canonical divisor. The Cox ring of a smooth Fano variety X is known to be a finitely
generated C-algebra [19]. We restrict our attention to simply structured Cox rings: We
say that a variety X with divisor class group Cl(X) = K has a hypersurface Cox ring if
we have a K-graded presentation

R(X) = Rg = C[T1, . . . , Tr]/〈g〉,

where g is homogeneous of degree µ ∈ K and T1, . . . , Tr define a minimal system of
K-homogeneous generators. In this situation, we call R(X) spread if each monomial of
degree µ is a convex combination of monomials of g. Moreover, we call R(X) general
(smooth, Fano) if g admits an open neighbourhood U in the vector space of all µ-
homogeneous polynomials such that every h ∈ U yields a hypersurface Cox ring Rh of a
normal (smooth, Fano) variety Xh with divisor class group K; see also Definition 2.4.5.
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Chapter 2. Smooth Fano fourfolds of Picard number two

We approach our main result, concerning Fano fourfolds of Picard number two. The
notation is as follows. For any hypersurface Cox ring R(X) = Rg graded by Cl(X) = K,
we write wi = deg(Ti) ∈ K for the generator degrees and µ = deg(g) ∈ K for the degree
of the relation. Moreover, in this setting, the anticanonical class of X is given by

−K = w1 + . . .+ wr − µ ∈ Cl(X) = K.

If Rg is the Cox ring of a Fano variety X, then X can be reconstructed as the GIT
quotient of the set of (−K)-semistable points of SpecRg by the quasitorus SpecC[K].
In this setting, we refer to the Cox ring generator degrees w1, . . . , wr ∈ K and the
relation degree µ ∈ K as the specifying data of the Fano variety X. In the case of a
smooth Fano fourfold X of Picard number two, Cl(X) equals Z2 and thus SpecC[K] is a
two-dimensional torus. Hence the hypersurface Cox ring Rg is of dimension six and has
seven generators.

Theorem 2.1.1. The following table lists the specifying data w1, . . . , w7 and µ in
Cl(X) = Z2, the anticanonical class −K and K4 for all smooth Fano fourfolds of
Picard number two with a spread hypersurface Cox ring.

No. [w1, . . . , w7] deg(g) −K K4

1 [
1 1 1 1 0 0 0
0 0 0 0 1 1 1

] (1, 1) (3, 2) 432
2 (2, 1) (2, 2) 256
3 (3, 1) (1, 2) 80
4 (1, 2) (3, 1) 270
5 (2, 2) (2, 1) 112
6 (3, 2) (1, 1) 26

7 [
1 1 1 1 0 0 −1
0 0 0 0 1 1 1

] (1, 1) (2, 2) 416
8 (1, 2) (2, 1) 163
9 (2, 1) (1, 2) 224
10 (2, 2) (1, 1) 52

11 [
1 1 1 1 0 0 −2
0 0 0 0 1 1 1

] (1, 1) (1, 2) 464
12 (1, 2) (1, 1) 98

13 [
1 1 1 1 0 0 0
0 0 0 1 1 1 1

] (1, 2) (3, 2) 352
14 (2, 3) (2, 1) 65

15
[

1 1 1 1 0 0 −1
0 0 0 1 1 1 1

]
(1, 3) (2, 1) 83

16 [
1 1 1 1 1 0 0
0 0 0 0 1 1 1

] (2, 1) (3, 2) 352
17 (3, 2) (2, 1) 81

18 [
1 1 1 1 0 0 0
−1 0 0 0 1 1 1

] (3, 1) (1, 1) 38
19 (2, 1) (2, 1) 192
20 (1, 1) (3, 1) 432

21
[

1 1 1 1 1 0 0
−1 0 0 0 1 1 1

]
(3, 1) (2, 1) 113

22 [
1 1 1 1 0 0 0
0 0 1 1 1 1 1

] (2, 2) (2, 3) 272
23 (3, 3) (1, 2) 51

No. [w1, . . . , w7] µ −K K4

24
[

1 1 1 2 0 0 0
0 0 1 2 1 1 1

]
(4, 4) (1, 2) 34

25
[

1 1 2 3 0 0 0
0 0 2 3 1 1 1

]
(6, 6) (1, 2) 17

26
[

1 1 1 0 0 0 0
0 0 1 1 1 1 1

]
(2, 2) (1, 3) 216

27
[

1 1 1 0 0 0 0
0 0 2 1 1 1 1

]
(2, 4) (1, 2) 64

28
[

1 1 1 0 0 0 0
0 0 3 1 1 1 1

]
(2, 6) (1, 1) 8

29 [
1 1 1 1 0 0 0
0 0 0 1 1 1 1

] (2, 2) (2, 2) 192
30 (3, 3) (1, 1) 18

31
[

1 1 1 2 0 0 0
0 0 0 1 1 1 1

]
(4, 2) (1, 2) 48

32
[

1 1 1 2 0 0 0
0 0 0 2 1 1 1

]
(4, 4) (1, 1) 12

33
[

1 1 2 1 0 0 0
0 1 3 2 1 1 1

]
(4, 6) (1, 3) 50

34 [
1 1 1 1 1 0 0
0 1 1 1 1 1 1

] (2, 2) (3, 4) 378
35 (3, 3) (2, 3) 144
36 (4, 4) (1, 2) 20

37
[

1 1 1 1 2 0 0
0 1 1 1 2 1 1

]
(4, 4) (2, 3) 96

38
[

1 1 1 1 3 0 0
0 1 1 1 3 1 1

]
(6, 6) (1, 2) 10

39
[

1 1 1 2 3 0 0
0 1 1 2 3 1 1

]
(6, 6) (2, 3) 48
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2.1. Classification results

No. [w1, . . . , w7] µ −K K4

40 [
1 1 1 1 0 0 0
0 1 1 1 1 1 1

] (2, 2) (2, 4) 352
41 (3, 3) (1, 3) 99

42 [
1 1 1 1 0 0 0
0 2 2 2 1 1 1

] (2, 4) (2, 5) 304
43 (3, 6) (1, 3) 54

44
[

1 1 1 2 0 0 0
0 1 1 2 1 1 1

]
(4, 4) (1, 3) 66

45
[

1 1 1 2 0 0 0
0 2 2 4 1 1 1

]
(4, 8) (1, 3) 36

46
[

1 1 2 3 0 0 0
0 1 2 3 1 1 1

]
(6, 6) (1, 3) 33

47
[

1 1 2 3 0 0 0
0 2 4 6 1 1 1

]
(6, 12) (1, 3) 18

48
[

1 1 1 1 1 0 0
0 1 1 1 2 1 1

]
(2, 2) (3, 5) 433

49
[

1 1 1 1 1 0 0
0 2 2 2 3 1 1

]
(3, 6) (2, 5) 145

50
[

1 1 1 1 0 0 0
0 1 1 2 1 1 1

]
(2, 4) (2, 3) 144

51
[

1 1 1 2 0 0 0
0 1 1 3 1 1 1

]
(4, 6) (1, 2) 22

52
[

1 1 1 2 1 0 0
0 1 1 3 2 1 1

]
(4, 6) (2, 3) 65

53 [
1 1 1 1 1 1 0
−1 0 0 0 0 1 1

] (2, 0) (4, 1) 431
54 (4, 0) (2, 1) 62

No. [w1, . . . , w7] µ −K K4

55
[

1 1 1 1 1 2 0
−1 0 0 0 0 1 1

]
(3, 0) (4, 1) 376

56
[

1 1 1 1 1 3 0
−1 0 0 0 0 1 1

]
(4, 0) (4, 1) 341

57
[

1 1 1 1 3 1 0
−1 0 0 0 0 1 1

]
(6, 0) (2, 1) 31

58
[

1 1 1 1 3 0 0
0 0 0 0 0 1 1

]
(6, 0) (1, 2) 16

59
[

1 1 1 2 3 0 0
0 0 0 0 0 1 1

]
(6, 0) (2, 2) 64

60
[

1 1 1 2 3 1 0
0 0 0 0 0 1 1

]
(6, 0) (3, 2) 80

61
[

1 1 1 1 2 0 0
0 0 0 0 0 1 1

]
(4, 0) (2, 2) 128

62
[

1 1 1 1 2 1 0
0 0 0 0 0 1 1

]
(4, 0) (3, 2) 160

63
[

1 1 1 1 1 0 0
0 0 0 0 0 1 1

]
(3, 0) (2, 2) 192

64
[

1 1 1 1 1 1 0
0 0 0 0 0 1 1

]
(3, 0) (3, 2) 240

65
[

1 1 1 1 1 0 0
0 0 0 0 0 1 1

]
(2, 0) (3, 2) 432

66
[

1 1 1 1 1 1 0
0 0 0 0 0 1 1

]
(2, 0) (4, 2) 480

67
[

1 1 1 1 1 2 0
0 0 0 0 0 1 1

]
(2, 0) (5, 2) 624

Any two smooth Fano fourfolds of Picard number two with specifying data from distinct
items of the table are not isomorphic to each other. Moreover, each of the items 1 to 67
even defines a general smooth Fano hypersurface Cox ring and thus provides the specifying
data for a whole family of smooth Fano fourfolds.

Let us compare the result with existing classifications. Wiśniewski classified in [130]
the smooth Fano fourfolds of Picard number and Fano index at least two, where the Fano
index is the largest integer ι such that −K = ιH holds with an ample divisor H.

Remark 2.1.2. In eight cases, the families listed in Theorem 2.1.1 consist of varieties of
Fano index two and in all other cases, the varieties are of Fano index one. The conversion
between Theorem 2.1.1 and Wiśniewski’s results as presented in the table [84, 12.7] is as
follows:

Thm. 2.1.1 2 7 29 40 59 61 63 66
[84, 12.7] 5 12 4 10 1 2 3 13

Theorem 2.1.1 has no overlap with Batyrev’s classification [11] of smooth toric Fano
fourfolds. Indeed, toric varieties have polynomial rings as Cox rings which are by definition
no hypersurface Cox rings. However, there is some interaction with the case of torus
actions of complexity one.
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Chapter 2. Smooth Fano fourfolds of Picard number two

Remark 2.1.3. Eleven of the families of Theorem 2.1.1 admit small degenerations to
smooth Fano fourfolds with an effective action of a three-dimensional torus. Here are
these families and the corresponding varieties from [56, Thm. 1.2].

Thm. 2.1.1 [56, Thm. 1.2]
1 4.A: m = 1, c = 0
4 4.C: m = 1
7 2
13 5: m = 1
20 4.A: m = 1, c = −1
34 1
48 10: m = 2
53 7: m = 1
65 12: m = 2, a = b = c = 0
66 11: m = 2, a2 = 1
67 11: m = 2, a2 = 2

Moreover, observe that for the families 1, 20, 48, 53, 65, 66 and 67 of Theorem 2.1.1 the
degeneration process gives a Fano smooth intrinsic quadric; compare [55, Thm. 1.3].

Remark 2.1.4. Coates, Kasprzyk and Prince classified in [41] the smooth Fano fourfolds
that arise as complete intersections of ample divisors in smooth toric Fano varieties of
dimension at most eight. Comparing anticanonical self-intersection numbers as well as
the first six coefficients of the Hilbert series yields that at least the 17 families 14, 15, 24,
25, 28, 30, 32, 33, 38, 44, 45, 46, 47, 51, 52, 57 and 58 of Theorem 2.1.1 do not show up
in [41].

2.2 Factorial gradings
Here we provide the first part of the algebraic and combinatorial tools used in our
classification. We recall the basic concepts on factorially graded algebras and, as a
new result, prove Proposition 2.2.4, locating the relation degrees of a factorially graded
complete intersection algebra. Moreover, we recall and discuss the GIT-fan of the
quasitorus action associated with a graded affine algebra.

For the moment, K is any field. Let R be a K-graded algebra, which, in this chapter,
means that K is a finitely generated abelian group and R is a K-algebra coming with a
direct sum decomposition into K-vector subspaces

R =
⊕
w∈K

Rw

such that RwRw′ ⊆ Rw+w′ holds for all w,w′ ∈ R. An element f ∈ R is homogeneous if
f ∈ Rw holds for some w ∈ K; in that case, w is the degree of f , written w = deg(f).
We say that R is K-integral if it has no homogeneous zero divisors.

Consider the rational vector space KQ := K ⊗Z Q associated with K. The effective
cone of R is the convex cone generated by all degrees admitting a non-zero homogeneous
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element:
Eff(R) := cone(w ∈ K; Rw 6= 0) ⊆ KQ.

The K-grading of R is called pointed if R0 = K holds and the effective cone Eff(R)
contains no line. Note that Eff(R) is polyhedral, if the K-algebra R is finitely generated.

Lemma 2.2.1. Let R be a K-graded algebra. Assume that R is K-integral and every
homogeneous unit of R is of degree zero.
(i) If R0 = K holds, then the K-grading is pointed and for every non-zero torsion

element w ∈ K, we have Rw = 0.
(ii) The K-grading is pointed if and only if there is a homomorphism κ : K → Z defining

a pointed Z-grading with effective cone Q≥0.

Proof. We prove (i). It suffices to show that there is no non-zero w ∈ K with Rw 6= 0 and
R−w 6= 0. Consider f ∈ Rw and f ′ ∈ R−w, both being non-zero. Then ff ′ is a non-zero
element of R0 and hence constant. Thus, f and f ′ are both units. By assumption, we
have w = 0.

We prove (ii). If the K-grading is pointed, then we find a hyperplane U ⊆ KQ
intersecting Eff(X) precisely in the origin. Let KU ⊆ K be the subgroup consisting of all
elements w ∈ K with w ⊗ 1 ∈ U . Then K/KU

∼= Z holds and we may assume that the
projection κ : K → Z sends the effective cone to the positive ray. Using (i), we see that
for the induced Z-grading all homogeneous elements of degree zero are constant. The
reverse implication is clear according to (i).

Let R be a K-integral algebra. A homogeneous non-zero non-unit f ∈ R is K-
irreducible, if admits no decomposition f = f ′f ′′ with homogeneous non-zero non-units
f ′, f ′′ ∈ R. A homogeneous non-zero non-unit f ∈ R is K-prime, if for any two
homogeneous f ′, f ′′ ∈ R we have that f | f ′f ′′ implies f | f ′ or f | f ′′. Every K-prime
element is K-irreducible. The algebra R is called K-factorial, or the K-grading just
factorial, if R is K-integral and every homogeneous non-zero non-unit is a product of
K-primes. In a K-factorial algebra, the K-prime elements are exactly the K-irreducible
ones.

An ideal a ⊆ R is homogeneous if it is generated by homogeneous elements. Moreover,
an ideal a ⊆ R is K-prime if for any two homogeneous f, f ′ ∈ R we have that ff ′ ∈ a
implies f ∈ a or f ′ ∈ a. A homogeneous ideal a ⊆ R is K-prime if and only if R/a is
K-integral. We say that homogeneous elements g1, . . . , gs ∈ R minimally generate the
K-homogeneous ideal a ⊆ R if they generate a and no proper subcollection of g1, . . . , gs
does so.

Lemma 2.2.2. Let R be a K-graded algebra such that the grading is pointed, factorial
and every homogeneous unit is of degree zero. If g1, . . . , gs ∈ R minimally generate a
K-prime ideal of R, then each gi is a K-prime element of R.

Proof. Assume that g1 is not K-prime. Then g1 is not K-irreducible and we can write
g1 = g′1g

′′
1 with homogeneous non-zero non-units g′1, g′′1 ∈ R. As the ideal 〈g1, . . . , gs〉 ⊆ R
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is K-prime, it contains one of g′1 and g′′1 , say g′1. That means that

g′1 = h1g1 + . . .+ hsgs

holds with homogeneous elements hi ∈ R. Take a coarsening K → Z of the K-grading as
provided by Lemma 2.2.1 (ii). Then the above representation of g′1 yields

degZ(g′1) = degZ(h1) + degZ(g1) = . . . = degZ(hs) + degZ(gs).

Consequently, degZ(g′1) ≥ degZ(g1) or h1 = 0. Since the Z-grading of R is pointed, we
have degZ(g′1) < degZ(g′1) + degZ(g′′1) = degZ(g1). Thus, h1 = 0 holds. This implies
g1 = g′1g

′′
1 ∈ 〈g2, . . . , gs〉. A contradiction.

Given a finitely generated abelian group K and w1, . . . , wr ∈ K, there is a unique
K-grading on the polynomial algebra K[T1, . . . , Tr] satisfying deg(Ti) = wi for i = 1, . . . , r.
We call such grading a linear grading of K[T1, . . . , Tr].
Lemma 2.2.3. Consider a linear K-grading on K[T1, . . . , Tr] and a K-homogeneous
g ∈ K[T1, . . . , Tr]. Moreover, let 1 ≤ i1, . . . , iq ≤ r be pairwise distinct. Assume that Ti1
is not a monomial of g and that g, Ti2 , . . . , Tiq minimally generate a K-prime ideal in
K[T1, . . . , Tr]. Then we have a presentation

deg(g) =
∑

aj deg(Tj), j 6= i1, . . . , iq, aj ∈ Z≥0.

Proof. Suppose that deg(g) allows no representation as a positive combination over the
deg(Tj) with j 6∈ {i1, . . . , iq}. Then each monomial of g must have a factor Tij for some
j = 1, . . . , q. Write

g = g1Ti1 + g2Ti2 + . . .+ gqTiq = g1Ti1 + h

with polynomials gj ∈ K[T1, . . . , Tr] such that g1 depends on none of Ti2 , . . . , Tiq . By
assumption, g1Ti1 is non-zero and we have a K-integral factor ring

K[T1, . . . , Tr]/〈g, Ti2 , . . . , Tiq〉 ∼= K[Tj ; j 6= i2, . . . , ir]/〈g1Ti1〉.

Consequently, g1Ti1 is a K-prime polynomial. This implies g1 = c ∈ K∗ and thus we
arrive at g = cTi1 + h; a contradiction to the assumption that Ti1 is not a monomial
of g.

If R is a finitely generated K-graded algebra, then R admits homogeneous genera-
tors f1, . . . , fr. Turning the polynomial ring K[T1, . . . , Tr] into a K-graded algebra via
deg(Ti) := deg(fi), we obtain an epimorphism of K-graded algebras:

π : K[T1, . . . , Tr] → R, Ti 7→ fi.

Together with a choice of K-homogeneous generators g1, . . . , gs for the ideal ker(π), we
arrive at K-graded presentation of R by homogeneous generators and relations:

R = K[T1, . . . , Tr]/〈g1, . . . , gs〉.

We call such presentation irredundant if ker(π) contains no elements of the form Ti − hi
with hi ∈ K[T1, . . . , Tr] not depending on Ti.
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Proposition 2.2.4. Let R a finitely generated K-graded algebra such that the grading is
pointed, factorial and every homogeneous unit is of degree zero. Let

R = K[T1, . . . , Tr]/〈g1, . . . , gs〉

be an irredundant K-graded presentation with dim(R) = r − s such that T1, . . . , Tr define
K-prime elements in R. Then, for every l = 1, . . . , s, we have

deg(gl) ∈
⋂

1≤i<j≤r
cone(deg(Tk); k 6= i, k 6= j) ⊆ KQ.

Proof. It suffices to show that for any two 1 ≤ i < j ≤ r, we can represent each deg(gl)
as a positive combination over the deg(Tk), where k 6= i, j. For l = 1, . . . , s, set

gl,j := gl(T1, . . . , Tj−1, 0, Tj+1, . . . , Tr) ∈ K[T1, . . . , Tr].

Since Tj defines a K-prime element in R, the ideal 〈Tj〉 ⊆ R is K-prime and 〈Tj〉 lifts to
a K-prime ideal

Ij := 〈g1, . . . , gs, Tj〉 = 〈g1,j , . . . , gs,j , Tj〉 ⊆ K[T1, . . . , Tr].

Then K[T1, . . . , Tr]/Ij is isomorphic to R/〈Tj〉. The latter algebra is of dimension r−s−1
due to our assumptions. Thus, g1,j , . . . , gs,j , Tj minimally generate Ij . By Lemma 2.2.2,
each gl,j is K-prime and hence defines a K-integral factor algebra

K[Tm; m 6= j]/〈gl,j〉 ∼= K[T1, . . . , Tr]/〈gl, Tj〉.

We conclude that gl, Tj minimally generate a K-prime ideal in K[T1, . . . , Tr]. Thus, we
may apply Lemma 2.2.3 and obtain the assertion.

We turn to the geometric point of view. So, K is now algebraically closed of char-
acteristic zero and R an affine K-graded algebra, where affine means that R is finitely
generated over K and has no nilpotent elements. Then we have the affine variety X̄ with
R as its algebra of global functions and the quasitorus H with K as its character group:

X̄ = SpecR, H = SpecK[K].

The K-grading of R defines an action of H on X̄, which is uniquely determined by the
property that each f ∈ Rw satisfies f(h · x) = χw(h)f(x) for all x ∈ X̄ and h ∈ H, where
χw is the character corresponding to w ∈ K. We take a look at the geometric invariant
theory of the H-action on X̄; see [4, 15]. The orbit cone ωx ⊆ KQ associated with x ∈ X̄
and the GIT-cone λw ⊆ KQ associated with w ∈ Eff(R) are defined as

ωx = cone(w ∈ K; f(x) 6= 0 for some f ∈ Rw), λw :=
⋂

x∈X̄,w∈ωx

ωx.

Orbit cones as well as GIT-cones are convex polyhedral cones and there are only finitely
many of them. The basic observation is that the GIT-cones form a fan Λ(R) in KQ, the
GIT-fan, having the effective cone Eff(R) as its support.

55



Chapter 2. Smooth Fano fourfolds of Picard number two

Remark 2.2.5. Let K be a finitely generated abelian group and R a K-integral affine
algebra. Fix a K-graded presentation

R = K[T1, . . . , Tr]/〈g1, . . . , gs〉.

This yields an H-equivariant closed embedding X̄ = V (g1, . . . , gs) ⊆ Kr of affine varieties.
Moreover, we have a homomorphism

Q : Zr → K, ν 7→ ν1 deg(T1) + . . .+ νr deg(Tr).

An X̄-face is a face γ0 � γ of the orthant γ := Qr
≥0 admitting a point x ∈ X̄ such that

one has
xi 6= 0 ⇐⇒ ei ∈ γ0

for the coordinates x1, . . . , xr of x and the canonical basis vectors e1, . . . , er ∈ Zr. Write
S(X̄) for the set of all X̄-faces of γ ⊆ Qr. Then we have

{Q(γ0); γ0 ∈ S(X̄)} = {ωx; x ∈ X̄}.

That means that the projected X̄-faces are exactly the orbit cones. The X̄-faces define a
decomposition into locally closed subsets

X̄ =
⋃

γ0∈S(X)
X̄(γ0), X̄(γ0) := {x ∈ X̄; xi 6= 0⇔ ei ∈ γ0} ⊆ X̄.

Definition 2.2.6. Let I = {i1, . . . , ik} be a subset of {1, . . . , r}. Then the face γI of the
orthant γ = Qr

≥0 associated with I is defined as

γI := γi1,...,ik := cone(ei1 , . . . , eik).

Moreover, for a polynomial g ∈ K[T1, . . . , Tr], the polynomial gI associated with I is
defined as

gI := g(T̃1, . . . , T̃r), T̃i :=
{
Ti, i ∈ I,
0, i 6∈ I.

Remark 2.2.7. In the setting of Remark 2.2.5, let I = {i1, . . . , ik} be a subset of
{1, . . . , r}.
(i) γI is an X̄-face if and only if 〈g1,I , . . . , gs,I〉 contains no monomial.
(ii) If deg(gj) 6∈ cone(wi; i ∈ I) holds for j = 1, . . . , s, then γI is an X̄-face.
(iii) If (wi; i ∈ I) is linearly independent in K, then γI is an X̄-face if and only if none

of g1, . . . , gs has a monomial T l1i1 · · ·T
lk
ik

with l1, . . . , lk ∈ Z≥0.

Proposition 2.2.8. Let K be a finitely generated abelian group and R an affine algebra
with a pointed K-grading. Consider a K-graded presentation

R = K[T1, . . . , Tr]/〈g1, . . . , gs〉

such that T1, . . . , Tr define non-constant elements in R. Assume that there are a GIT-cone
λ ∈ Λ(R) of dimension at least two and an index i with deg(Ti) ∈ λ◦.
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(i) There exists a j such that gj has a monomial T lii with li ∈ Z≥0.
(ii) There exists a j such that deg(gj) = li deg(Ti) holds with li ∈ Z≥0.
(iii) If s = 1 holds, then, deg(Tk) generates a ray of Λ(R) whenever k 6= i.

Proof. Because of deg(Ti) ∈ λ◦, the ray τ generated by deg(Ti) is not an orbit cone.
Thus, Q≥0ei is not an X̄-face. This means that some gj has a monomial T lii , which in
particular proves (i) and (ii). To obtain (iii), first observe that deg(Tk) ∈ KQ is non-zero
and thus lies in the relative interior of some GIT-cone % ∈ Λ(R) of positive dimension.
Suppose that % is not a ray. Then (i) yields that besides T lii also T lkk is a monomial of
the relation g1. We conclude that γi,k is an X̄-face. Thus, deg(Ti) and deg(Tk) lie on a
ray of Λ(R). A contradiction.

2.3 Mori dream spaces

Mori dream spaces, introduced in [79], behave optimally with respect to the minimal
model programme and are characterized as the normal projective varieties with finitely
generated Cox ring. Well known example classes are the projective toric or spherical
varieties and, most important for the present chapter, the smooth Fano varieties. In
this section, we provide a brief summary of the combinatorial approach [4, 16, 62] to
Mori dream spaces, adapted to our needs. Moreover, as a new observation, we present
Proposition 2.3.6, locating the relation degrees of a Cox ring inside the effective cone of
a quasismooth Mori dream space.

Let K be an algebraically closed field of characteristic zero, R be a K-graded affine
K-algebra and consider the action of H = SpecK[K] on variety X̄ = SpecR. Mori dream
spaces are obtained as quotients of the H-action. We briefly recall the general framework.
Each cone λ ∈ Λ(R) of the GIT-fan defines an H-invariant open set of semistable points
and a good quotient:

X̄ss(λ) = {x ∈ X̄; λ ⊆ ωx} ⊆ X̄, X̄ss(λ) → X̄ss(λ)//H,

where ωx ⊆ KQ denotes the orbit cone of x ∈ X̄. Each of the quotient varieties X̄ss(λ)//H
is projective over SpecR0 and whenever λ′ ⊆ λ holds for two GIT-cones, then we have
X̄ss(λ) ⊆ X̄ss(λ′) and thus an induced projective morphism X̄ss(λ)//H → X̄ss(λ′)//H of
the quotient spaces.

The K-grading of R is almost free if the (open) set X̄0 ⊆ X̄ of points x ∈ X̄
with trivial isotropy group Hx ⊆ H has complement of codimension at least two in X̄.
Moreover, the moving cone of R is the convex cone Mov(R) ⊆ KQ obtained as the union
over all λ ∈ Λ(R), where X̄ss(λ) has a complement of codimension at least two in X̄.

Remark 2.3.1. Let R be a K-graded affine algebra such that the grading is factorial
and any homogeneous unit is constant. Then R admits a system f1, . . . , fr of pairwise
non-associated K-prime generators. Moreover, if f1, . . . , fr is such a system of generators
for R, then the following holds.
(i) The K-grading is almost free if and only if any r−1 of deg(f1), . . . ,deg(fr) generate

K as a group.
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(ii) If the K-grading is almost free, then the orbit cones ωx, where x ∈ X̄, and the
moving cone are given by

ωx = cone(deg(fi); fi(x) 6= 0),

Mov(R) =
r⋂
i=1

cone(deg(fj); j 6= i).

We say that a K-graded affine K-algebra R is an abstract Cox ring if it is integral,
normal, has only constant homogeneous units, the K-grading is almost free, pointed,
factorial and the moving cone Mov(R) is of full dimension in KQ.

Construction 2.3.2. Let R be an abstract Cox ring and consider the action of the
quasitorus H = SpecK[K] on the affine variety X̄ = SpecR. For every GIT-cone
λ ∈ Λ(R) with λ◦ ⊆ Mov(R)◦, we set

X(λ) := X̄ss(λ)//H.

The following proposition tells us in particular that Construction 2.3.2 delivers Mori
dream spaces; see [4, Thm. 3.2.14, Prop. 3.3.2.9 and Rem. 3.3.4.2].

Proposition 2.3.3. Let X = X(λ) arise from Construction 2.3.2. Then X is normal,
projective and of dimension dim(R) − dim(KQ). The divisor class group and the Cox
ring of X are given as

Cl(X) = K, R(X) =
⊕

Cl(X)
Γ(X,OX(D)) =

⊕
K

Rw = R.

Moreover, the cones of effective, movable, semiample and ample divisor classes of X are
given in ClQ(X) = KQ as

Eff(X) = Eff(R), Mov(X) = Mov(R),

SAmple(X) = λ, Ample(X) = λ◦.

By [4, Cor. 3.2.1.11], all Mori dream space arise from Construction 2.3.2. For the
subsequent work, we have to get more concrete, meaning that we will work in terms of
generators and relations.

Construction 2.3.4. Let R be an abstract Cox ring and X = X(λ) be as in Construc-
tion 2.3.2. Fix a K-graded presentation

R = K[T1, . . . , Tr]/〈g1, . . . , gs〉

such that the variables T1, . . . , Tr define pairwise non-associated K-primes in R. Consider
the orthant γ = Qr

≥0 and the projection

Q : Zr → K, ei 7→ wi := deg(Ti).
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An X-face is an X̄-face γ0 � γ with λ◦ ⊆ Q(γ0)◦. Let rlv(X) be the set of all X-faces
and π : X̄ss(λ)→ X the quotient map. Then we have a decomposition

X =
⋃

γ0∈rlv(X)
X(γ0)

into pairwise disjoint locally closed sets X(γ0) := π(X̄(γ0)), which we also call the pieces
of X.

Recall that X is Q-factorial if for every Weil divisor on X some non-zero multiple
is locally principal. Moreover, X is locally factorial if every stalk Ox, where x ∈ X is a
(closed) point, is a unique factorization domain. Finally, X is quasismooth if the open set
X̄ss(λ) ⊆ X̄ of semistable points is a smooth variety.

Proposition 2.3.5. Consider the situation of Construction 2.3.4.
(i) The variety X is Q-factorial if and only if dim(λ) = dim(KQ) holds for λ =

SAmple(X).
(ii) The variety X is locally factorial if and only if for every X-face γ0 � γ, the group

K is generated by Q(γ0 ∩ Zr).
(iii) The variety X is quasismooth if and only if every X̄(γ0) consists of smooth points

of X̄ for every X-face γ0 � γ.
(iv) The variety X is smooth if and only if X is locally factorial and quasismooth.

We refer to [4, Cor. 1.6.2.6, Cor. 3.3.1.8, Cor. 3.3.1.9] for the above statements. Next
we describe the impact of quasismoothness on the position of the relation degrees.

Proposition 2.3.6. In the situation of Construction 2.3.4, assume dim(R) = r − s and
let X be quasismooth. Then, for every j = 1, . . . , s, we have

deg(gj) ∈
⋂

γ0∈rlv(X)

(
Q(γ0 ∩ Zr) ∪

r⋃
i=1

wi +Q(γ0 ∩ Zr)
)
.

Proof. Consider any X-face γI , where I ⊆ {1, . . . , r}, and choose a point x ∈ X̄(γI).
Then xi 6= 0 holds if and only if i ∈ I. For any monomial T ν , we have

∂T ν

∂Tk
(x) 6= 0 ⇒ ν ∈ γI ∪ γI + ek ⇒ deg(T ν) = Q(ν) ∈ Q(γI) ∪Q(γI) + wk.

Now, since X is quasismooth, we have gradgj
(x) 6= 0 for all j = 1, . . . , s. Thus, every gj

must have a monomial T νj with non-vanishing gradient at x.

Finally, in case of a complete intersection Cox ring, we have an explicit description of
the anticanonical class; see [4, Prop. 3.3.3.2].

Proposition 2.3.7. In the situation of Construction 2.3.4, assume that dim(R) = r − s
holds. Then the anticanonical class of X is given in K = Cl(X) as

−KX = deg(T1) + · · ·+ deg(Tr)− deg(g1)− · · · − deg(gs).
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2.4 General hypersurface Cox rings
First, we make our concept of a general hypersurface Cox ring precise. Then we present
the toolbox to be used in the proof of Theorem 2.1.1 for verifying that given specifying
data, that means a collection of the generator degrees and a relation degree, allow indeed
a smooth general hypersurface Cox ring. We will have to deal with the following setting.

Construction 2.4.1. Consider a linear, pointed, almost freeK-grading on the polynomial
ring S := K[T1, . . . , Tr] and the quasitorus action H × Z̄ → Z̄, where

H := SpecK[K], Z̄ := SpecS = Kr.

As earlier, we write Q : Zr → K, ei 7→ wi := deg(Ti) for the degree map. Assume that
Mov(S) ⊆ KQ is of full dimension and fix τ ∈ Λ(S) with τ◦ ⊆ Mov(S)◦. Set

Ẑ := Z̄ss(τ), Z := Ẑ//H.

Then Z is a projective toric variety with divisor class group Cl(Z) = K and Cox ring
R(Z) = S. Moreover, fix 0 6= µ ∈ K, and for g ∈ Sµ set

Rg := S/〈g〉, X̄g := V (g) ⊆ Z̄, X̂g := X̄g ∩ Ẑ, Xg := X̂g//H ⊆ Z.

Then the factor algebra Rg inherits a K-grading from S and the quotient Xg ⊆ Z is a
closed subvariety. Moreover, we have

Xg ⊆ Zg ⊆ Z

where Zg ⊆ Z is the minimal ambient toric variety of Xg, that means the (unique)
minimal open toric subvariety containing Xg.

Remark 2.4.2. In the situation of Construction 2.4.1, there is a (unique) GIT-cone
λ ∈ Λ(Rg) such that we have

X̂g = X̄ss
g (λ), Xg = X̄ss

g (λ)//H.

Thus, if Rg is an abstract Cox ring and T1, . . . , Tr define pairwise non-associatedK-primes
in Rg, then Xg is as in Construction 2.3.4. In particular

Cl(X) = K, R(Xg) = Rg

hold for the divisor class group and the Cox ring of Xg. Moreover, in KQ we have the
following

τ◦ = Ample(Z) ⊆ Ample(Zg) = Ample(Xg) = λ◦.

We are ready to formulate the precise definitions for our notions around hypersurface
Cox rings.

Definition 2.4.3. Consider the situation of Construction 2.4.1.

60



2.4. General hypersurface Cox rings

(i) We call Rg a hypersurface Cox ring if T1, . . . , Tr define a minimal system of K-
homogeneous generators for Rg.

(ii) We say that Rg is spread if every monomial T ν ∈ K[T1, . . . , Tr] of degree µ =
deg(g) ∈ K is a convex combination of monomials of g.

Here, we tacitly identify a monomial T ν = T ν1
1 · · ·T νr

r with its exponent vector
ν = (ν1, . . . , νr) ∈ Qr when we speak about convex combinations of monomials.

Remark 2.4.4. In the setting of Construction 2.4.1, assume that Rg is a hypersurface
Cox ring.
(i) Since T1, . . . , Tr define a minimal system of K-homogeneous generators, Rg is not

a polynomial ring.
(ii) As theK-grading is pointed, the Ti define pairwise non-associatedK-prime elements

in Rg.
(iii) Rg is spread if and only if the Newton polytope of g equals the convex hull over all

monomials of degree µ = deg(g) ∈ K.

Definition 2.4.5. Consider the situation of Construction 2.4.1 and denote by Sµ ⊆ S =
K[T1, . . . , Tr] the homogeneous component of degree µ ∈ K.
(i) A general hypersurface Cox ring is a family Rg, where g ∈ U with a non-empty

open U ⊆ Sµ, such that each Rg is a hypersurface Cox ring.
(ii) We say that a general hypersurface Cox ring Rg is spread if each Rg, where g ∈ U ,

is spread.
(iii) We say that a general hypersurface Cox ring Rg is smooth (Fano) if for some

τ ∈ Λ(S) all the resulting Xg, where g ∈ U , are smooth (Fano).

Intrinsic quadrics provide first simple examples for general hypersurface Cox rings.

Example 2.4.6. Let r ≥ 5. We run Construction 2.4.1 for S = K[T1, . . . , Tr] with the
Z-grading given by deg(Ti) := 1. The choice of τ = Q≥0 and µ = 2 leads to a quadric
hypersurface

X = V (g) ⊆ Pr−1 = Z.

The quadratic polynomials g ∈ Uµ such that the according quadric V (g) ⊆ Pr−1 is of full
rank form a non-empty open subset U of Sµ. For any g ∈ U the ring Rg is factorial; see
e.g. [121, Satz 60.12]. So Rg is an abstract Cox ring. For any Ti we have

Rg/〈Ti〉 ∼= K[T1, . . . , Tr]/〈g, Ti〉 ∼= K[T1, . . . , Tr−1]/〈T 2
1 + · · ·+ T 2

k 〉

for some k ≥ 3. Thus, Ti ∈ Rg is prime. Remark 2.4.9 ensures that T1, . . . , Tr ∈ Rg
form a minimal generator system for Rg. Altogether, U defines a smooth Fano general
hypersurface Cox ring with specifying data Q = [1, . . . , 1] and µ = 2.

We turn to the toolbox for verifying that given specifying data w1, . . . , wr ∈ K and
µ ∈ K as in Construction 2.4.1 lead to a smooth Fano general hypersurface Cox ring Rg
in the above sense.
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Remark 2.4.7. In the notation of Construction 2.4.1, a general hypersurface Cox ring Rg
is Fano if and only if the generator and relation degrees satisfy

−K = w1 + · · ·+ wr − µ ∈ Mov(Rg)◦.

In this case, the unique cone τ ∈ Λ(S) with −K ∈ τ◦ defines Fano varieties Xg for all
g ∈ U ; see Proposition 2.3.7 and Remark 2.4.2.

In the notation of Construction 2.4.1, we denote by Uµ ⊆ Sµ the non-empty open
set of polynomials f ∈ S of degree µ ∈ K such that each monomial of Sµ is a convex
combination of monomials of f .

Remark 2.4.8. If Rg, where g ∈ U , is a general hypersurface Cox ring, then Rg, where
g ∈ U ∩ Uµ, is a spread general hypersurface Cox ring. In particular, we can always
assume a general hypersurface Cox ring to be spread.

Remark 2.4.9. In the situation of Construction 2.4.1, consider the rings Rg for g ∈ Uµ.
Then the following statements are equivalent.
(i) The variables T1, . . . , Tr form a minimal system of generators for all Rg, where

g ∈ Uµ.
(ii) The variables T1, . . . , Tr form a minimal system of generators for one Rg with

g ∈ Uµ.
(iii) We have µ 6= wi for i = 1, . . . , r.
(iv) The polynomial g ∈ Uµ is not of the form g = Ti + h with h ∈ Sµ not depending

on Ti.

Lemma 2.4.10. Consider a linear, pointed K-grading on S := K[T1, . . . , Tr]. Then, for
any 0 6= µ ∈ K the irreducible polynomials g ∈ Sµ form an open subset of Sµ.

Proof. Lemma 2.2.1 (ii) provides us with a coarsening homomorphism κ : K → Z that
turns S into a pointed Z-graded algebra. Then Sµ is a vector subspace of the (finite
dimensional) vector space Sκ(µ) of κ(µ)-homogeneous polynomials and we may assume
K = Z for the proof. Since the K-grading of S is pointed, we have S∗ = S0 \{0}. Thus, a
polynomial g ∈ Sµ is reducible if and only if it is a product of homogeneous polynomials
of non-zero K-degree.

Now, let u, v ∈ Z with u+ v = µ and Su 6= {0} 6= Sv. Then the set of µ-homogeneous
polynomials g admitting a factorization g = fh with f ∈ Su, h ∈ Su is exactly the affine
cone over the image of the projectivized multiplication map

P(Su)× P(Sv) → P(Sµ), ([f ], [h]) 7→ [fh]

and thus is a closed subset of Sµ. As there are only finitely many such presentations
u+ v = µ, the reducible g ∈ Sµ form a closed subset of Sµ.

Proposition 2.4.11. Consider the setting of Construction 2.4.1. For 1 ≤ i ≤ r denote
by Ui ⊆ Sµ the set of all g ∈ Sµ such that g is prime in S and Ti is prime in Rg. Then
Ui ⊆ Sµ is open. Moreover, Ui is non-empty if and only if there is a µ-homogeneous
prime polynomial not depending on Ti.
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Proof. By Lemma 2.4.10, the g ∈ Sµ being prime in S form an open subset U ⊆ Sµ.
For any g ∈ U , the variable Ti defines a prime in Rg if and only if the polynomial gi :=
g(T1, . . . , Ti−1, 0, Ti+1, . . . , Tn) is prime in K[Tj ; j 6= i]. Thus, using again Lemma 2.4.10,
we see that the g ∈ U with Ti ∈ Rg prime form the desired open subset Ui ⊆ U . The
supplement is clear.

Remark 2.4.12. An easy way to check the criterion from Proposition 2.4.11 is to look
for µ-homogeneous prime binomials. Recall that a binomial T κ − T ν is prime if and only
if T κ, T ν are not divisible by a common variable and gcd(κ1 − ν1, . . . , κr − νr) = 1 holds.

Checking the normality and K-factoriality of Rg amounts, in our situation, to proving
factoriality. We will use Dolgachev’s criterion, see [53, Thm. 1.2] and [54], which tells us
that a polynomial g = ∑

aνT
ν in K[T1, . . . , Tr] defines a unique factorization domain if

the Newton polytope ∆ ⊆ Qr of g satisfies the following conditions:
(i) dim(∆) ≥ 4,
(ii) each coordinate hyperplane of Qr intersects ∆ non-trivially,
(iii) the dual cone of cone(∆0 − u; u ∈ ∆0) is regular for each one-dimensional face

∆0 � ∆,
(iv) for each face ∆0 � ∆ the zero locus of ∑ν∈∆0 aνT

ν is smooth along the torus
Tr = (K∗)r.

We will call for short a convex polytope ∆ ⊆ Qr
≥0 with properties (i)–(iii) from above a

Dolgachev polytope.

Proposition 2.4.13. In the situation of Construction 2.4.1, suppose that one of the
following conditions is fulfilled:
(i) K is of rank at most r − 4 and torsion free, there is a g ∈ Sµ such that T1, . . . , Tr

define primes in Rg, we have µ ∈ τ◦ and µ is base point free on Z.
(ii) The set conv(ν ∈ Zr≥0; Q(ν) = µ) is a Dolgachev polytope.

Then there is a non-empty open subset of polynomials g ∈ Sµ such that the ring Rg is
factorial.

Proof. Assume that (i) is satisfied. If µ = deg(Ti) holds for some i, then, as the grading
is pointed, we have a non-empty open set of polynomials g = Ti + h in Sµ with h not
depending on Ti. The corresponding Rg are all factorial. Now assume µ 6= deg(Ti) for
all i. By Proposition 2.4.11, the set U ⊆ Sµ of all prime g ∈ Sµ such that T1, . . . , Tr
define primes in Rg is open and, by assumption, U ⊆ Sµ is non-empty. Remark 2.4.9
yields that T1, . . . , Tr form a minimal system of generators for Rg. We conclude that
for all f ∈ U , the complement of X̂g in X̄g is of codimension at least two. Since µ is
base point free and ample on Z, we can apply [9, Cor. 2.3], telling us that after suitably
shrinking, U is still non-empty and Rg is the Cox ring of Xg for all g ∈ U . In particular,
Rg is K-factorial. Since K is torsion free, Rg is a unique factorization domain.

Assume that (ii) holds. As ∆ := conv(ν ∈ Zr≥0; Q(ν) = µ) is a Dolgachev polytope,
we infer from [76, §2, Thm. 2] that there is a non-empty open subset of polynomials g ∈ Sµ
with Newton polytope ∆ satisfying the above conditions (i) to (iv). Thus, Dolgachev’s
criterion shows that Rg is a factorial ring.
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Remark 2.4.14. In the situation of Construction 2.4.1, assume that Z is a fake weighted
projective space, i.e., Z is Q-factorial and Cl(Z) = K is of rank one. Then µ ∈ Cl(Z) is
base point free if and only if there is an li ∈ Z≥1 with µ = liwi for all 1 ≤ i ≤ r.

According to Remark 1.7.8 general base point free hypersurfaces in fake weighted
projective spaces always stem from Cox ring embeddings. This fact provides us with the
following criterion for general hypersurface Cox rings of Picard number one.

Proposition 2.4.15. In the situation of Construction 2.4.1, suppose that K is of rank
one, r ≥ 5 holds and that for any i = 1, . . . , r there is an li ∈ Z≥1 with µ = liwi.
Then there is a non-empty open subset of polynomials g ∈ Sµ such that the ring Rg is
normal and K-factorial, and T1, . . . , Tr ∈ Rg are prime. In particular, there is a general
hypersurface Cox ring with specifying data w1, . . . , wr and µ.

We use the concept of algebraic modifications [4, Sec. 4.1.2] to provide further
factoriality criteria for graded hypersurface rings. These will apply to several cases where
the relation degree lies on the boundary of the moving cone.

Let us briefly recall the notion of polynomials arising from Laurent polynomials by
homogenization with respect to a lattice fan from Sections 1.2, 1.3 and 1.5.

Remark 2.4.16. Let Σ be a complete lattice fan in Zn and v1, . . . , vr the primitive
lattice vectors generating the rays of Σ. Consider the following mutually dual exact
sequences

0 // L // Zr P
ei 7→vi

// Zn

0 Koo ZrQoo ZnP ∗oo 0oo

This induces a pointed K-grading on the polynomial algebra S = K[T1, . . . , Tr] via
deg(Ti) := Q(ei) ∈ K. For any w ∈ K we denote Sw ⊆ S for the finite-dimensional vector
space of homogeneous polynomials of degree w.

Moreover, fix a lattice polytope B ⊆ Qn and set

a(Σ) := (a1, . . . , ar) ∈ Zr, ai := −min
u∈B
〈u, vi〉.

We call µ = Q(a(Σ)) ∈ K the Σ-degree of B. Besides µ ∈ K = Cl(Z) regarded as a
divisor class is base point free if Σ refines the normal fan of B. The Σ-homogenization of
a Laurent polynomial f ∈ K[T±1

1 , . . . , T±1
n ] with Newton polytope B(f) equal to B is the

µ-homogeneous polynomial g = T a(Σ)p∗f ∈ S where p : Tr → Tn is the homomorphism
of tori associated with P . Each spread polynomial g ∈ Sµ arises as Σ-homogenization of
a Laurent polynomial f with B(f) = B provided that Σ refines Σ(B).

Let Σ1, Σ2 be lattice fans refining the normal fan Σ(B) of B. The vector space V (B)
of all Laurent polynomials of the form ∑

ν∈B∩Zr aνT
ν fits into the following commutative
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diagram of vector space isomorphisms

Sµ1
ϕ // Sµ2

V (B)
f 7→Ta(Σ1)p∗1f

bb

f 7→Ta(Σ2)p∗2f

<<

Moreover, if g ∈ Sµ1 is spread, then ϕ(g) ∈ Sµ2 is spread as well and g, ϕ(g) are
homogenizations of a common Laurent polynomial with respect to different fans Σi.

We state an adapted version of [4, Thm. 4.1.2.2]; see also [4, Prop. 4.1.2.4].

Theorem 2.4.17. Let f ∈ LP(n) be a Laurent polynomial and Σ2 � Σ1 a refinement
of fans in Zn. Moreover, let gi ∈ K[T1, . . . , Tri ] be the respective Σi-homogenization of f
and consider the Ki-graded algebra

Rgi = K[T1, . . . , Tri ]/〈gi〉.

Assume that g1, g2 are prime polynomials, T1, . . . , Tr1 define K1-primes in Rg1 and
T1, . . . , Tr2 define K2-primes in Rg2. Then the following statements are equivalent.
(i) The algebra Rg1 is factorially K1-graded.
(ii) The algebra Rg2 is factorially K2-graded.

Now let us bring this theorem in the context of general hypersurface rings. We show
that factoriality is inherited between general hypersurface rings with relation degrees
stemming from a common lattice polytope.

Proposition 2.4.18. Let B ⊆ Qn be a lattice polytope, Σ2 � Σ1 � Σ(B) a refinement
of fans in Zn, and µi ∈ Ki the respective Σi-degree. Assume that for i = 1, 2 there is a
µi-homogeneous prime polynomial gi and a non-empty open subset Ui ⊆ Sµi such that
for all gi ∈ Ui the variables T1, . . . , Tri define Ki-primes in the Ki-graded algebra

Rgi = K[T1, . . . , Tri ]/〈gi〉.

Then the following statements are equivalent.
(i) There is a non-empty open subset of polynomials g1 ∈ Sµ1 such that Rg1 is K1-

factorial.
(ii) There is a non-empty open subset of polynomials g2 ∈ Sµ2 such that Rg2 is K2-

factorial.

Proof. We know that the subset Uµi ⊆ Sµi of spread µi-homogeneous polynomials is
open and non-empty. According to Remark 2.4.16 there is an isomorphism ϕ : Sµ1 → Sµ2

of vector spaces such that g and ϕ(g) arise as Σi-homogenization of the same Laurent
polynomial whenever g ∈ Uµ1 . Besides, by Lemma 2.4.10 the µi-homogeneous prime
polynomials form an open subset of Sµi , which is non-empty by assumption. Therefore,
by suitably shrinking U1 and U2 we achieve

65
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• ϕ(U1) = U2,
• g1 and g2 := ϕ(g1) are respective Σi-homogenizations of a common Laurent polyno-

mial whenever g1 ∈ U1,
• for every g1 ∈ U1 the ring Rg1 is integral and T1, . . . , Tr1 ∈ Rg1 are K1-prime,
• for every g2 ∈ U2 the ring Rg2 is integral and T1, . . . , Tr2 ∈ Rg2 are K2-prime.

In this situation Theorem 2.4.17 tells us that for any g1 ∈ U1 and g2 := ϕ(g1) we have

Rg1 is K1-factorial ⇐⇒ Rg2 is K2-factorial.

Now let V1 ⊆ Sµ1 be a non-empty open subset such that Rg1 is factorially graded for
each g1 ∈ V1. Then V2 := ϕ(U1 ∩ V1) is a non-empty open subset of Sµ2 and Rg2 is
K2-factorial for all g2 ∈ V2. This proves “(i) ⇒ (ii)”. The inverse implication is shown
analogously.

Corollary 2.4.19. Let B ⊆ Qn be an integral n-simplex, Σ a fan in Zn refining the
normal fan of B, and µ ∈ K the Σ-degree of B. Assume that there is a µ-homogeneous
prime polynomial g and a non-empty open subset U ⊆ Sµ such that for all g ∈ U the
variables T1, . . . , Tr define K-primes in the K-graded algebra

Rg = K[T1, . . . , Tr]/〈g〉.

Then there is a non-empty open subset of polynomials g ∈ Sµ such that Rg is K-factorial.

Proof. Since B a is simplex, the toric variety associated with Σ(B) is Q-factorial and of
Picard number one. Now we apply Proposition 2.4.18 to the refinement Σ � Σ(B) and
the suitable open subset of polynomials provided by Proposition 2.4.15.

In many situations we encounter it can be read of straight from the specifying data
whether the conditions from Corollary 2.4.19 are met.

Corollary 2.4.20. Situation as in Construction 2.4.1. Assume that we have r ≥ 5,
K = Z2 and the degree matrix is of the form

Q = [w1, . . . , wr+1] =
[
x1 . . . xr 0
−d1 . . . −dr 1

]
, xi ∈ Z≥1, di ∈ Z≥0.

Then for any µ = (µ1, µ2) ∈ K = Z2 satisfying the subsequent conditions there is a
non-empty open subset of polynomials g ∈ Sµ such that Rg is factorial:

(i) for each i there exists some li ∈ Z≥1 with µ = lixi,
(ii) µ2 = −minν ν1d1 + · · · + drνr where the minimum runs over all lattice points

ν = (ν1, . . . , νr) ∈ Zr≥0 with ν1x1 + · · ·+ νrxr = µ1,
(iii) there is some g ∈ Sµ such that T1, . . . , Tr+1 define primes in Rg.
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Proof. Observe that each r−1 of x1, . . . , xr generate Z as a group since the first coordinate
of wr+1 vanishes and the Z2-grading associated with Q is almost free according to the
assumptions made in Construction 2.4.1. Consider the weighted projective space

Z ′ := P(x1, . . . , xr).

Condition (i) ensures that µ1 ∈ Z = Cl(Z ′) regarded as a divisor class on Z ′ is ample
and base point free. Choose some representative D ∈WDiv(Z ′) of µ1. The associated
divisorial polytope B := B(D) ⊆ Qr−1 is a full-dimensional integral simplex.

The normal fan Σ′ of B is a lattice fan in Zr−1 corresponding with Z ′. Write
v1, . . . , vr ∈ Zr−1 for the primitive ray generators of Σ′. Observe that the maps

P ′ : Zr → Zr−1, ei 7→ vi, Q′ : Zr → Z, ei 7→ xi

fit into a mutually dual pair of exact sequences as shown in Remark 2.4.16. Now set

vr+1 := d1v1 + · · ·+ drvr ∈ Zr−1, d := (d1, . . . , dr) ∈ Zr.

The second row of Q encodes the relation satisfied by v1, . . . , vr+1 thus the following
maps constitute a pair of mutually dual sequences as well

P : Zr+1 → Zn, ei 7→ vi, Q : Zr+1 → Z2, ei 7→ wi.

Since the first r columns of Q generate Z2, the vector vr+1 ∈ Zr−1 is primitive; see
[4, Lemma 2.1.4.1]. This allows us to consider the stellar subdivision Σ of Σ′ along vr+1.

We show that µ ∈ Z2 is the Σ-degree µB of B. First note that µ1 is the Σ′-degree
of B by construction. Consider

a′ := a(Σ′) = (a′1, . . . , a′r), a := a(Σ) = (a1, . . . , ar+1)

from Remark 2.4.16. Since Σ arises from Σ′ by introducing an (r + 1)-th ray, we have
ai = a′i for i = 1, . . . , r. From this we infer

µ1 = Q′(a′) = a1x1 + · · ·+ arxr, µB = Q(a) = a1w1 + · · ·+ ar+1wr+1.

As the first coordinate of wr+1 vanishes, we conclude that the first coordinate of µB
equals µ1. It remains to investigate the second coordinate of µB. We have

ar+1 = −min
u∈B
〈u, vr+1〉 = −min

u∈B
〈u, P ′(d)〉 = −min

u∈B
〈(P ′)∗u, d〉.

Using this presentation of ar+1, the second coordinate of µB is given as

ar+1 −
r∑
i=1

aidi = −min
u∈B
〈(P ′)∗u, d〉 − 〈a′, d〉 = −min

u∈B
〈(P ′)∗u+ a′, d〉.

From condition (ii) and the fact that the lattice points ν ∈ Zr≥0 with Q(ν) = µ1 are
precisely those of the form ν = (P ′)∗u+ a′ for some lattice point u ∈ B follows that the
second coordinate of µB equals µ2. Altogether we have verified µ = µB.

The above discussion combined with condition (iii) ensures that we may apply
Corollary 2.4.19 to Q and µ which finishes the proof.
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Proposition 2.4.21. In the setting of Construction 2.4.1, assume that Zg and X̂g both
are smooth. Then Xg is smooth.

Proof. Consider the quotient map p : Ẑ → Z. Since Zg is smooth, H acts freely on
p−1(Zg). Thus, Xg inherits smoothness from X̂g = p−1(Xg).

Lemma 2.4.22. Consider a linear, pointed K-grading on S := K[T1, . . . , Tr]. Let
λ ∈ Λ(S) and set W := (Kr)ss(λ). Then, for any µ ∈ K, the polynomials g ∈ Sµ such
that grad(g) has no zeroes in W form an open subset of Sµ.

Proof. Consider the morphism ϕ : Sµ × W → Kr sending (g, z) to gradz(g) and the
projection pr1 : Sµ × W → Sµ onto the first factor. Then our task is to show that
Sµ \pr1(ϕ−1(0)) is open in Sµ. We make use of the action of H = SpecK[K] on W given
by the K-grading and the commutative diagram

Sµ ×W //

pr1 ##

Sµ ×W//H

pr1
yy

Sµ

where the horizontal arrow is the good quotient for H, acting trivially on Sµ and on W
as indicated above. Since ϕ−1(0) ⊆ Sµ ×W is invariant under the H-action, the image
of ϕ−1(0) in Sµ ×W//H is closed. Since W//H is projective, the image pr1(ϕ−1(0)) is
closed in Sµ.

Proposition 2.4.23. Consider the situation of Construction 2.4.1. Then the polynomials
g ∈ Sµ such that g ∈ S is prime and X̂g is smooth form an open subset U ⊆ Sµ.
Moreover, U is non-empty if and only if there are g1, g2 ∈ Sµ such that g1 ∈ S is prime
and grad(g2) has no zeroes in Ẑ.

Proof. By Lemma 2.4.10, the set V1 of all prime polynomials of Sµ is open. Moreover,
by Lemma 2.4.22, the set of all polynomials of Sµ such that grad(g) has no zeroes in Ẑ
is open. The assertion follows from U = V1 ∩ V2.

Corollary 2.4.24. Let X be a variety with a general hypersurface Cox ring R. If X is
smooth, then R is a smooth general hypersurface Cox ring.

Proposition 2.4.25. Consider the situation of Construction 2.4.1. If µ ∈ Cl(Z) is base
point free, then there is a non-empty open subset of g ∈ Sµ such that Xg ∩Zreg is smooth.

Proof. Observe that P(Sµ) is the complete linear system associated with the divisor
class µ ∈ Cl(Z). If µ is a base point free class on Z, we can apply Bertini’s first
theorem [89, Thm. 4.1] stating that there is a non-empty open subset U ⊆ Sµ such that
for each g ∈ U the singular locus of Xg is precisely Xg ∩ Zsing. In particular, Xg ∩ Zreg

is smooth for all g ∈ U .
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Remark 2.4.26. In the situation of Construction 2.4.1, let N(g) be the Newton polytope
of g. For I ⊆ {1, . . . , r}, let γI 4 γ and gI ∈ K[T1, . . . , Tr] be as in Definition 2.2.6.
Then [4, Prop. 3.1.1.12] yields the equivalence of the following statements.
(i) We have X̄g ∩ Z̄(γI) 6= ∅.
(ii) The polynomial gI is not a monomial.
(iii) The number of vertices of N(g) contained in γI differs from one.
If, in addition, Z(γI) 6= ∅ holds, then (i)–(iii) are equivalent to
(iv) We have Xg ∩ Z(γI) 6= ∅.
In particular, for the non-empty open subset Uµ ⊆ Sµ of polynomials f ∈ S of degree
µ = deg(g) ∈ K such that each monomial of Sµ is a convex combination of monomials
of f , we obtain Zg = Zg′ for all g, g′ ∈ Uµ.

Definition 2.4.27. In the setting of Remark 2.4.26, we call Zµ := Zg, where g ∈ Uµ,
the µ-minimal ambient toric variety.

Proposition 2.4.28. In the situation of Construction 2.4.1 the following statements are
equivalent.

(i) The µ-minimal ambient toric variety Zµ is smooth.
(ii) For each γI � γ with τ◦ ∈ Q(γI)◦ and |Q−1(µ) ∩ γI | 6= 1 the group K is generated

by Q(γI ∩ Zr).

Proof. First recall that a toric variety is smooth if its closed orbits are smooth. For
any spread g ∈ Sµ all closed orbits of Zµ intersect Xg non-trivially by construction of
the minimal ambient toric variety. Thus Zµ is smooth if and only if all orbits Z(γI)
intersecting Xg non-trivially are smooth. Observe that the number of vertices of N(g)
contained in γI � γ equals |Q−1(µ) ∩ γI |. Hence, according to Remark 2.4.26, a toric
orbit Z(γI) intersects Xg non-trivially if and only if |Q−1(µ) ∩ γ0| 6= 1 holds. Finally,
Proposition 2.3.5 tells us that Z(γI) is smooth if and only if Q(γI ∩ Zr) spans K.

Corollary 2.4.29. In the setting of in Construction 2.4.1, assume rank(K) = 2 and
that Zµ ⊆ Z is smooth. If µ ∈ τ holds, then µ is base point free. Moreover, then there is
a non-empty open subset of polynomials g ∈ Sµ such that Xg is smooth.

Proof. According to [4, Prop. 3.3.2.8], the class µ ∈ Cl(Z) is base point free on Z if and
only if the following holds:

µ ∈
⋂

γ0∈rlv(Z)
Q(γ0 ∩ Zr).

To check the latter, let γ0 ∈ rlv(Z). As KQ is two-dimensional, we find 1 ≤ i, j ≤ r with
ei, ej ∈ γ0 and λ◦ ⊆ cone(wi, wj)◦. If wi, wj generate K as a group, then K is torsion-free,
wi, wj form a Hilbert basis for cone(wi, wj) and thus µ is a positive combination of wi, wj .
Otherwise, the toric orbit Z(γi,j) is not smooth, hence not contained in Zµ. The latter
means V (g) ∩ Z̄(γi,j) = ∅, which in turn shows that g has a monomial of the form T lii T

lj
j

where li + lj > 0. Thus, µ is a positive combination of wi and wj .
Knowing that µ is base point free, we obtain the supplement as a direct consequence

of smoothness of Zµ and Proposition 2.4.25.
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2.5 Proof of Theorem 2.1.1: Constraints on hypersurface
Cox rings

We prepare the setting for the proof of Theorem 2.1.1. We work in the combinatorial
framework for Mori dream spaces provided in the preceding sections. The ground field
is now K = C, due to the references we use; see Remark 2.5.12. The major part of
proving Theorem 2.1.1, is to figure out the candidates for specifying data of smooth
general hypersurface Cox rings of Fano fourfolds of Picard number two. Having found
the candidates, the remaining task is to verify them, that means to show that the given
specifying data indeed define a smooth general hypersurface Cox ring of a Fano fourfold.

Setting 2.5.1. Consider a K-graded algebra R and X = X(λ), where λ ∈ Λ(R) with
λ◦ ⊆ Mov(R)◦, as in Construction 2.3.2. Assume that dim(KQ) = 2 holds and that we
have an irredundant K-graded presentation

R = Rg = C[T1, . . . , Tr]/〈g〉

such that the Ti define pairwise nonassociated K-primes in R. Write wi := deg(Ti),
µ := deg(g) for the degrees in K, also when regarded in KQ. Suitably numbering
w1, . . . , wr, we ensure counter-clockwise ordering, that means that we always have

i ≤ j =⇒ det(wi, wj) ≥ 0.

Note that each ray of Λ(R) is of the form %i = cone(wi), but not vice versa. We assume X
to be Q-factorial. According to Proposition 2.3.5 this means dim(λ) = 2. Then the
effective cone of X is uniquely decomposed into three convex sets,

Eff(X) = λ− ∪ λ◦ ∪ λ+,

where λ− and λ+ are convex polyhedral cones not intersecting λ◦ = Ample(X) and
λ−∩λ+ consists of the origin. By Remark 2.3.1 and Proposition 2.3.3, each of λ− and λ+

contains at least two of the degrees w1, . . . , wr.

λ◦

wr

λ+

w1

λ−

Note that λ− as well as λ+ might be one-dimensional. As a GIT-cone in KQ ∼= Q2, the
closure λ = SAmple(X) of λ◦ = Ample(X) is the intersection of two projected X̄-faces
and thus we find at least one of the wi on each of its bounding rays.

Remark 2.5.2. Setting 2.5.1 is respected by orientation preserving automorphisms of K.
If we apply an orientation reversing automorphism of K, then we regain Setting 2.5.1 by
reversing the numeration of w1, . . . , wr. Moreover, we may interchange the numeration
of Ti and Tj if wi and wj share a common ray without affecting Setting 2.5.1. We call
these operations admissible coordinate changes.
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Working in Setting 2.5.1 enables us to obtain constraints on the generator degrees
as well as the relation degree from their geometric constellation. For this the following
lemmas are crucial.

Lemma 2.5.3. Consider a locally factorial X = X(λ) arising from Construction 2.3.4
with only one relation, i.e., s = 1. Let i, j with λ ⊆ cone(wi, wj). Then either wi, wj
generate K as a group, or g1 has precisely one monomial of the form T lii T

lj
j , where

li + lj > 0.

Proof. If γi,j is an X-face, then Proposition 2.3.5 (ii) tells us that wi and wj generate K
as a group. Now consider the case that γi,j is not an X-face. Then we must have
λ◦ 6⊆ Q(γi,j)◦ or γi,j is not an X̄-face. Proposition 2.3.5 (i) excludes the first possibility.
Thus, the second one holds, which in turn means that g1 has precisely one monomial of
the form T lii T

lj
j , where li + lj > 0.

Lemma 2.5.4. Let X = X(λ) be as in Setting 2.5.1 and let 1 ≤ i < j < k ≤ r. If X is
locally factorial, then wi, wj , wk generate K as a group provided that one of the following
holds:
(i) wi, wj ∈ λ−, wk ∈ λ+ and g has no monomial of the form T lkk ,
(ii) wi ∈ λ−, wj , wk ∈ λ+ and g has no monomial of the form T lii ,
(iii) wi ∈ λ−, wj ∈ λ◦, wk ∈ λ+.

Moreover, if (iii) holds, then g has a monomial of the form T
lj
j where lj is divisible

by the order of the factor group K/〈wi, wk〉. In particular, if K is torsion-free, then lj is
a multiple of det(wi, wk).

Proof. Assume that (i) holds. If K is generated by wi, wk or by wj , wk, then we are
done. Consider the case that none of the pairs wi, wk and wj , wk generates K. Applying
Lemma 2.5.3 to each of the pairs shows that g has precisely one monomial of the form
T lii T

lk
k with li + lk > 0 and precisely one monomial of the form T

lj
j T

l′k
k with lj + l′k > 0.

By assumption, we must have li, lj > 0. We conclude that γi,j,k is an X-face. Since X
is locally factorial, Proposition 2.3.5 (ii) yields that wi, wj , wk generate K. If (ii) holds,
then a suitable admissible coordinate change leads to (i).

Assume that (iii) holds. If K is generated by wi, wk there is nothing to show. We
consider the case where wi, wk do not generate K. Lemma 2.5.3 yields that g has a
monomial of the form T lii T

lk
k with li + lk > 0. From Proposition 2.2.8 we infer that g has

a monomial of the form T
lj
j with lj > 0 as well. Remark 2.2.5 says that γi,j,k is an X-face.

Since X is locally factorial, Proposition 2.3.5 (ii) yields that wi, wj , wk generate K.
We turn to the supplement. Consider G = K/〈wi, wk〉. Since wi, wj , wk generate K,

the class of wj generates G. From ljwj = µ = liwi + lkwk we infer ljwj = 0 ∈ G, thus lj
is divisible by ord(wj) = ord(G).

Lemma 2.5.5. Assume u,w1, w2 generate the abelian group Z2. If wi = aiw holds with
a primitive w ∈ Z2 and ai ∈ Z, then (u,w) is a basis for Z2 and u is primitive.
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Lemma 2.5.6. Let w1, . . . , w4 ∈ Z2 such that det(w1, w3), det(w1, w4), det(w2, w3) and
det(w2, w4) all equal one. Then w1 = w2 or w3 = w4 holds.

It turns out that for locally factorial X(λ) and a suitably general relation g the
GIT-fan of R can be read from the geometric constellation of the Cox ring generator
degrees w1, . . . , wr and the relation degree µ even without explicit knowledge of their
coordinates.

Lemma 2.5.7. In Setting 2.5.1, assume that X = X(λ) is locally factorial and Rg a
spread hypersurface Cox ring.
(i) If wi lies on the ray through µ, then g has a monomial of the form T lii where li ≥ 2.
(ii) If wi, wj, where i 6= j, lie on the ray through µ, then %i = %j ∈ Λ(Rg) holds.

Proof. We show (i). Suppose that g has no monomial of the form T lii where li ≥ 2. As
Rg is a hypersurface Cox ring, also Ti is not a monomial of g. Then, on one of the
extremal rays of Eff(R), we find a wj such that γi,j is a X-face; see Remark 2.2.7 (i).
Proposition 2.3.5 (ii) yields that wi, wj generate Z2 as a group. In particular, wi is
primitive. Hence µ = kwi holds for some k ∈ Z≥1. As Rg is spread, T ki must be a
monomial of g. In addition, we obtain k ≥ 2. A contradiction.

We prove (ii). Assertion (i) just proven and Remark 2.2.7 (i) tell us that γi,j is an
X̄-face. Thus, being a ray, Q(γi,j) = %i = %j belongs to the GIT-fan Λ(Rg).

Proposition 2.5.8. Situation as in Setting 2.5.1. Assume that X(λ) is locally factorial
and R is a spread hypersurface Cox ring. The ray %i is a GIT-cone if and only if one of
the following conditions hold:

(i) µ is not contained in %i,
(ii) µ ∈ %i and wj ∈ %i holds for some i 6= j.

Proof. The if-part is a direct consequence of Remark 2.2.5 (ii) and Lemma 2.5.7 (ii). We
turn to the only-if-part. So assume %i ∈ Λ(R). If µ /∈ %i holds, we are done. We consider
the case µ ∈ %i. Being a GIT-cone %i is the intersection of some projected X̄-faces.
Due to rank(K) = 2 every projected X̄-face is of the form cone(wk, wl) with k ≤ l. We
conclude that there is some X̄-face γI � γ such that Q(γI) = cone(wi, wk) holds. After
suitably renumbering w1, . . . , wr, we may assume i ∈ I. According to Lemma 2.5.7 the
polynomial g owns a monomial of the form T lii . Since γI is an X̄-face, Remark 2.2.5 (i)
ensures that gI , see Definition 2.2.6, has monomial T ν not equal to T lii . Note that µ lies
on an extremal ray of Q(γI). We conclude that I contains some i 6= j with wj ∈ %i .

Remark 2.5.9. In Setting 2.5.1 all full-dimensional cones of the GIT-fan Λ(R) are of
the form cone(wi, wj). Moreover, taking counter-clockwise ordering of w1, . . . , wr into
account we observe that η = cone(wi, wj) is a two-dimensional GIT-cone if and only if
(i) both %i and %j are distinct GIT-cones, and
(ii) for any wk ∈ η◦ the ray %k is not a GIT-cone.

Corollary 2.5.10. Situation as in Setting 2.5.1. Assume that X(λ) is locally factorial
and R is a spread hypersurface Cox ring. Then the full-dimensional cones of Λ(R) are
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precisely the cones η = cone(wi, wj) where %i 6= %j and one of the following conditions is
satisfied:
(i) µ ∈ %i holds, %i contains at least two generator degrees and η◦ contains no generator

degree,
(ii) µ ∈ %j holds, %j contains at least two generator degrees and η◦ contains no generator

degree,
(iii) µ ∈ η◦ holds and there is at most one wk ∈ η◦, which must lay on the ray through µ,
(iv) µ /∈ η holds and η◦ contains no generator degrees.

Now we finalize the arrangements for the proof of Theorem 2.1.1.

Remark 2.5.11. In Setting 2.5.1, consider the rays %i := cone(wi) ⊆ Q2, where i =
1, . . . , r, and the degree µ = deg(g) of the relation. Set

Γ := %1 ∪ · · · ∪ %r, Γ◦ := Γ ∩ Eff(R)◦.

Then a suitable admissible coordinate change turns the setting into one of the following

(I) µ 6∈ Γ
µ ∈ Γ◦

(IIa) %1 = %2
%r−1 = %r

µ ∈ Γ◦
(IIb) %1 6= %2

%r−1 = %r

µ ∈ Γ◦
(IIc) %1 6= %2

%r−1 6= %r

(III) µ ∈ %1

where the figures exemplarily sketch the case r = 6, the black dots indicate the generator
degrees and the white dot stands for the relation degree.

Our proof of Theorem 2.1.1 will be split into Parts I, IIa, IIb, IIc and III according
to the constellations of Remark 2.5.11. The reason why we restrict Theorem 2.1.1 to the
ground field K = C is that we use the following references on complex Fano varieties.

Remark 2.5.12. Let X be a smooth complex Fano variety. Then the divisor class group
Cl(X) of X is torsion free; see for instance [84, Prop. 2.1.2]. Moreover, if dim(X) = 4
holds, then [31, Rem. 3.6] tells us that any Q-factorial projective variety being isomorphic
in codimension one to X is smooth as well. In terms of Construction 2.3.2, the latter
means that all varieties X(η) are smooth, where η ∈ Λ(R) is full-dimensional with
η◦ ⊆ Mov(R)◦.

2.6 Proof of Theorem 2.1.1: Collecting candidates I

We treat Case I from Remark 2.5.11. Here the degree of the defining relation is not
proportional to any of the Cox ring generator degrees. Here are first constraints on the
possible specifying data in this situation.

Proposition 2.6.1. Situation as in Setting 2.5.1. Assume that r = 7, K ∼= Z2 holds,
every two-dimensional λ ∈ Λ(R) with λ◦ ⊆ Mov(R)◦ defines a locally factorial X(λ)
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and µ doesn’t lie on any of the rays %1, . . . , %7. Then, after a suitable admissible coordinate
change, we have µ ∈ cone(w4, w5)◦ and one of the following holds:

(i) w1 = w2 and w5 = w6,
(ii) w1 = w2 and w6 = w7,
(iii) w2 = w3 and w5 = w6,

(iv) w2 = w3 and w6 = w7,
(v) w3 = w4 and w5 = w6,
(vi) w3 = w4 and w6 = w7.

Proof of Proposition 2.6.1. The assumption µ 6∈ %i implies %i ∈ Λ(R) for i = 1, . . . , 7, see
Remark 2.2.7 (ii). Proposition 2.2.4 gives µ ∈ cone(w3, w5). The latter cone is the union
of cone(w3, w4) and cone(w4, w5); both are GIT-cones, one of them is two-dimensional
and hosts µ in its relative interior. A suitable admissible coordinate change yields
µ ∈ cone(w4, w5)◦.

First we show that if wi ∈ %j holds for some 1 ≤ i < j ≤ 4, then two of w5, w6, w7
coincide. Consider the case w5, w6 ∈ %5. By assumption X(λ) is locally factorial for
λ = cone(w4, w5). Thus, we can apply Lemma 2.5.4 to wi, wj , w5 and also to wi, wj , w6
and obtain that each of the triples generates K as a group. Lemma 2.5.5 yields that w5
and w6 are primitive and hence, lying on a common ray, coincide. Now, assume w6 6∈ %5.
Then we consider X = X(λ) for λ = cone(w5, w6). Using Lemma 2.5.4 as before, see that
wi, wj , w6 as well as wi, wj , w7 generate K as a group. For the primitive generator w
of %i = %j , we infer det(w,w6) = 1 and det(w,w7) = 1 from Lemma 2.5.5. Moreover,
γ5,6 and γ5,7 are X-faces due to Remark 2.2.7 (ii). Thus, Proposition 2.3.5 (ii) yields
det(w5, w6) = 1 and det(w5, w7) = 1. Lemma 2.5.6 yields w6 = w7.

We conclude the proof by showing that at least two of w1, . . . , w4 coincide. Consider
the case w2 ∈ %3. Then, by the first step, there are 5 ≤ i < j ≤ 7 with wi = wj .
Taking X(λ) for λ = cone(w4, w5) and applying Lemma 2.5.4 to w2, wi, wj as well as to
w3, wi, wj , we obtain that each of these triples generates K. Because of wi = wj , we
directly see that w2 and w3, each being part of a Z-basis, are primitive and hence coincide.
We are left with the case that λ′ = cone(w2, w3) is of dimension two. By assumption,
the variety X ′ defined by λ′ is locally factorial. Moreover, Remark 2.2.7 (ii) provides
us with the X ′-faces γ1,3, γ2,3, γ1,4 and γ2,4. By Proposition 2.3.5 (ii), all corresponding
determinants det(wk, wm) equal one. Lemma 2.5.6 shows that at least two of w1, . . . , w4
coincide.

We are ready to enter Part I of the proof of Theorem 2.1.1. The task is to work out
further the degree constellations left by Proposition 2.6.1. This leads to major multistage
case distinctions.

Proof of Theorem 2.1.1: Part I. This part of the proof treats the case that µ = deg(g)
doesn’t lie on any of the rays %i = cone(wi). In particular, by Remark 2.2.7 (ii), all
rays %1, . . . , %7 belong to the GIT-fan Λ(R). By Remark 2.5.12, every two-dimensional
η ∈ Λ(R) with η◦ ⊆ Mov(R)◦ produces a smooth variety X(η). Thus, we can apply
Proposition 2.6.1, which leaves us with µ ∈ cone(w4, w5)◦ and the six possible constella-
tions for w1, . . . , w7 given there. Again by Remark 2.5.12, the divisor class group of X is
torsion free, that means that we have K = Z2.
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Constellation 2.6.1 (i). We have w1 = w2 and w5 = w6. Lemma 2.5.4 applied to
w1, w2, w5 shows that w1, w5 form a basis of Z2. Thus, a suitable admissible coordinate
change gives w1 = (1, 0) and w6 = (0, 1). Applying Lemma 2.5.4 also to w1, w2, w7 and
wi, w5, w6 where i = 1, . . . , 4 yields the first coordinate of w1, . . . , w4 and the second
coordinate of w7 equal one. Thus, the degree matrix has the form

Q =
[

1 1 1 1 0 0 −a7
0 0 b3 b4 1 1 1

]
, b3, b4, a7 ∈ Z≥0.

We determine the possible values of b3 and b4. If b3 > 0 holds, then η = cone(w2, w3) is
two-dimensional and satisfies η◦ ⊆ Mov(R)◦. Because of µ ∈ cone(w4, w5)◦, none of the
monomials of g is of the form T l11 T

lj
j with j = 3, 4. Lemma 2.5.3 applied to X(η) gives

bj = det(w1, wj) = 1 for j = 3, 4. If b3 = 0 and b4 > 0 hold, we argue similarly with
η = cone(w2, w4) and obtain b4 = 1. Altogether, we arrive at the three cases

2.6.1 (i-a): b3 = b4 = 0, 2.6.1 (i-b): b3 = 0, b4 = 1, 2.6.1 (i-c): b3 = b4 = 1.

Case 2.6.1 (i-a). Here, the semiample cone λ of X = X(λ) must be the positive
orthant. Thus, X being Fano just means that both coordinates of the anticanonical class
−KX ∈ K = Z2 are strictly positive. According to Proposition 2.3.7, we have

−KX = (4− a7 − µ1, 3− µ2).

We conclude 1 ≤ µ2 ≤ 2 and 1 ≤ µ1 < 4 − a7 which implies in particular 0 ≤ a7 ≤ 2.
Thus, the weights w1, . . . , w7 and the degree µ must be as in Theorem 2.1.1, Numbers 1
to 12.
Case 2.6.1 (i-b). Here, either λ = cone(w3, w4) or λ = cone(w4, w5) holds. In any case,
the anticanonical class is given as

−KX = (4− a7 − µ1, 4− µ2).

First assume that λ = cone(w3, w4) holds. Then, X being Fano, we have −KX ∈ λ◦.
The latter is equivalent to the inequalities

4− µ2 > 0, µ2 − µ1 − a7 > 0.

Using µ ∈ cone(w4, w5)◦, we conclude 1 ≤ µ1 < µ2 ≤ 3 and 0 ≤ a7 ≤ 1. Thus, we end up
with

a7 = 0 and µ = (1, 2), (1, 3), (2, 3), a7 = 1 and µ = (1, 3).
Note that in all cases, γ1,2,3,4 is an X-face according to Remark 2.2.7 (ii). Since X is
quasismooth, Proposition 2.3.6 yields

µ ∈ Q(γ1,2,3,4) ∪ w7 +Q(γ1,2,3,4).
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This excludes a7 = 0 and µ = (1, 3). The remaining three cases are Numbers 13 to 15 of
Theorem 2.1.1.

Now, assume that λ = cone(w4, w5) holds. The condition that X = X(λ) is Fano
means −KX ∈ λ◦, which translates into the inequalities 0 < 4 − a7 − µ1 < 4 − µ2.
Moreover, µ ∈ λ◦ implies µ1 < µ2 and we conclude

1 ≤ µ1 < µ2 < µ1 + a7 ≤ 3.

This is only possible for a7 = 2 and µ = (1, 2). Then we have w4 = (1, 1) and w7 = (−2, 1).
In particular, g admits no monomial of the form T l44 T

l7
7 . Lemma 2.5.3 tells us that w4

and w7 generate K = Z2 as a group. A contradiction.
Case 2.6.1 (i-c). Applying Remark 2.5.12 and Lemma 2.5.4 to X(η) with η = cone(w4, w5)
and w3, w4, w7 yields det(w4, w7) = 1. From this we infer a7 = 0. Thus, either λ =
cone(w2, w3) or λ = cone(w4, w5) holds. In any case, the anticanonical class is

−KX = (4− µ1, 5− µ2).

Assume λ = cone(w2, w3). Then the Fano condition −KX ∈ λ◦ implies µ1 + 1 < µ2.
Remark 2.2.7 (ii) says that γ1,2,3,4 is an X-face. As before, Proposition 2.3.6 gives

µ ∈ Q(γ1,2,3,4) ∪ w7 +Q(γ1,2,3,4).

We conclude µ1 + 1 ≥ µ2. A contradiction. Now, assume λ = cone(w4, w5). Then
−KX ∈ λ◦ yields µ1 ≥ µ2. But we have µ ∈ cone(w4, w5)◦, hence µ1 < µ2. A
contradiction.

Constellation 2.6.1 (ii). We have w1 = w2 and w6 = w7. Lemma 2.5.4 applied to
w1, w6, w7 shows that w1, w7 generate Z2. Hence, a suitable admissible coordinate change
yields w1 = w2 = (1, 0) and w6 = w7 = (0, 1). Applying Lemma 2.5.4 to w3, w6, w7 and
w4, w6, w7, we obtain that the first coordinates of w3 and w4 both equal one. Thus, the
degree matrix has the form

Q =
[

1 1 1 1 a5 0 0
0 0 b3 b4 1 1 1

]
, a5, b3, b4 ∈ Z≥0.

By assumption w4 and w5 don’t lie on a common ray. Consequently, b4 = 0 or a5 = 0
holds. If a5 = 0 holds, then we are in Constellation 2.6.1 (i) just treated. So, assume
a5 > 0. Then b3 = b4 = 0 holds. Taking X(η) for η = cone(w5, w6) and applying
Lemma 2.5.3 to w5, w6 yields a5 = 1. We arrive at the degree matrix

Q =
[

1 1 1 1 1 0 0
0 0 0 0 1 1 1

]
.

Observe that either λ = cone(w4, w5) or λ = cone(w5, w6) holds. In any case, the
anticanonical class of X = X(λ) is given as

−KX = (5− µ1, 3− µ2).
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First, assume λ = cone(w4, w5). Then X being Fano means 0 < 3 − µ2 < 5 − µ1. We
conclude µ2 ≤ 2 and µ1 ≤ µ2 + 1. Moreover, µ ∈ cone(w4, w5)◦ gives 0 < µ2 < µ1.
Thus, we have µ1 = µ2 + 1 and arrive at the possibilities µ = (2, 1), (3, 2), which are
Numbers 16 and 17 in Theorem 2.1.1. Now, let λ = cone(w5, w6). Then X being Fano
gives 0 < 5−µ1 < 3−µ2. We conclude µ = (4, 1). Remark 2.2.7 (ii) provides us with the
X-face γ5,6,7. Proposition 2.3.6 says that µ should lie in Q(γ5,6,7) or in w1 +Q(γ5,6,7). A
contradiction.

Constellation 2.6.1 (iii). We have w2 = w3 and w5 = w6. Lemma 2.5.4 applied to
w2, w5, w6 shows that w2, w5 form a basis of Z2. A suitable admissible coordinate change
leads to w2 = w3 = (1, 0) and w5 = w6 = (0, 1). Again Lemma 2.5.4, this time applied
to w1, w5, w6, to w4, w5, w6 and to w2, w3, w7, shows w1 = (1,−a1), w4 = (1, b4) and
w7 = (−a7, 1) where a1, a7, b4 ∈ Z≥0. From det(w1, w7) > 0 we infer a1 = 0 or a7 = 0.
Since the case w1 = w2 is already covered by Constellation 2.6.1 (i), we may assume
w1 6= w2 i.e. a1 > 0 and a7 = 0. Hence, the degree matrix is

Q =
[

1 1 1 1 0 0 0
−a1 0 0 b4 1 1 1

]
, a1 ∈ Z≥1, b4 ∈ Z≥0 .

We claim b4 = 0. Suppose b4 > 0. Then, η = cone(w3, w4) is a two-dimensional
GIT-chamber with η◦ ⊆ Mov(R)◦. Consider the associated variety X(η). Due to
µ ∈ cone(w4, w5)◦, none of the monomials of g is of the form T l33 T

l4
4 . From Lemma 2.5.3

we infer a1 + b4 = det(w1, w4) = 1, hence a1 = 0 or b4 = 0. A contradiction.
So, we have b4 = 0. By Proposition 2.3.7 the anticanonical class −KX is given as

−KX = (4− µ1, 3− a1 − µ2).

Here, we have λ = cone(w3, w5), which is the positive orthant. Thus, X = X(λ) being
Fano means that both coordinates of −KX are positive. We directly obtain µ1 ≤ 3.
Moreover, from 3− a1−µ2 > 0 we deduce a1 = 1 and µ2 = 1. We end up with specifying
data as in Numbers 18 to 20 from Theorem 2.1.1.

Constellation 2.6.1 (iv). We have w2 = w3 and w6 = w7. Lemma 2.5.4 applied to
w2, w6, w7 shows that w2, w6 generate the group Z2. A suitable admissible coordinate
change leads to w2 = w3 = (1, 0) and w6 = w7 = (0, 1). Applying Lemma 2.5.4 to
w1, w6, w7 and w4, w6, w7 shows that the first coordinate of both w1 and w4 equals one.
Lemma 2.5.4 applied to w2, w3, w5 yields that the second coordinate of w5 equals one.
Since the case w5 = w6 has already been treated in Constellation 2.6.1 (iii), we may
assume w5 6= (0, 1). Thereby, det(w4, w5) > 0 gives w4 = (1, 0). The degree matrix is

Q =
[

1 1 1 1 1 0 0
−a1 0 0 0 1 1 1

]
, a1,∈ Z≥1 .

By Proposition 2.3.7 the anticanonical class −KX of X is given by

−KX = (5− µ1, 3− a1 − µ2).
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From X = X(λ) being Fano we infer −KX ∈ Mov(R)◦ i.e. both coordinates of −KX are
positive. We directly obtain µ1 ≤ 4. From 3− a1 − µ2 > 0 we deduce a1 = 1 and µ2 = 1.
Now, we have det(w1, w5) = 2, thus Lemma 2.5.3 tells us that g must have a monomial of
the form T l11 T

l5
5 where l1 + l5 > 0. From µ ∈ cone(w4, w5)◦ we infer l1, l5 > 0. Moreover,

µ2 = 1 means l5 = l1 + 1. Using l1 + l5 = µ1 ≤ 4 amounts to l1 = 1, l5 = 2 and thus
µ = (3, 1). We have arrived at Number 21 from Theorem 2.1.1.

Constellation 2.6.1 (v). We have w3 = w4 and w5 = w6. Lemma 2.5.4 applied to
w3, w4, w5 shows that w4, w5 generate the group Z2. A suitable admissible coordinate
change leads to w3 = w4 = (1, 0) and w5 = w6 = (0, 1). Applying Lemma 2.5.4 to
w1, w5, w6 and w2, w5, w6 shows that w1, w2 are primitive. Thus, for i = 1, 2 either
wi = w3 holds or η = cone(w2, w3) gives rise to a smooth variety X(η). According to
Lemma 2.5.3, the latter implies wi = (1,−1). This amounts to w1 = w2 or w2 = w3.
Hence, this constellation is completely covered by Constellations 2.6.1 (i), (iii).

Constellation 2.6.1 (vi). We have w3 = w4 and w6 = w7. Lemma 2.5.4 applied to
w3, w4, w6 shows that w4, w6 generate the group Z2. A suitable admissible coordinate
change leads to w3 = w4 = (1, 0) and w6 = w7 = (0, 1). Applying Lemma 2.5.4 to
w1, w6, w7 and w2, w6, w7 shows that w1, w2 are primitive. Thus, for i = 1, 2 either
wi = w3 holds or η = cone(w2, w3) gives rise to a smooth variety X(η). According to
Lemma 2.5.3, the latter implies wi = (1,−1). This amounts to w1 = w2 or w2 = w3.
Hence, this constellation is completely covered by Constellations 2.6.1 (ii), (iv).

2.7 Proof of Theorem 2.1.1: Collecting candidates II

In the present part of the proof the Fano property will often lead to numerical constraints
which are presented directly as or can be rephrased as an inequation of the form

x1 · · ·xn ≤ x1 + · · ·+ xn, x1, . . . , xn ∈ Z≥1. (2.1)

Lemma 2.7.1. Let n ∈ Z≥2 and consider positive integers x1 ≤ · · · ≤ xn satisfying
Eq. (2.1). Then x1, . . . , xn−1 all equal one or xn ≤ n2 − n holds.

Proof. Observe x1 · · ·xn ≤ nxn. From this we infer xi ≤ n for all i = 1, . . . , n − 1. If
xi > 1 holds for some 1 ≤ i ≤ n− 1, i.e. x1 · · ·xn−1 > 1, then we obtain

xn ≤
x1 + · · ·+ xn−1
x1 · · ·xn−1 − 1 ≤ n(n− 1) = n2 − n.

This allows us to explicitly present the solutions of Eq. (2.1) in the cases we will face
in the subsequent parts of the proof of Theorem 2.1.1.
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Remark 2.7.2. The following table describes the solutions of Eq. (2.1) for n = 3, 4, 5
where x1, . . . , xn are in ascending order. Here, ∗ stands for an arbitrary positive integer.

n x1 x2 x3 x4

3
1 1 ∗ —
1 2 2 —
1 2 3 —

4
1 1 1 ∗
1 1 2 3
1 1 2 4

n x1 x2 x3 x4 x5

5

1 1 1 1 ∗
1 1 1 2 2
1 1 1 2 3
1 1 1 2 4
1 1 1 2 5
1 1 1 3 3

Part IIa • We discuss Case IIa from Remark 2.5.11, i.e., the degree of the relation lies
in the interior of the effective cone, is proportional to some Cox ring generator degree
and %1 = %2 as well as %r−1 = %r hold.

Lemma 2.7.3. In Setting 2.5.1 assume that Mov(R) = Eff(R) and µ ∈ Eff(R)◦ hold.
Let Ω denote the set of two-dimensional cones η ∈ Λ(R) with η◦ ⊆ Mov(R)◦.
(i) If X(η) is locally factorial for some η ∈ Ω, then Eff(R) is a regular cone and every

wi on the boundary of Eff(R) is primitive.
(ii) If X(η) is locally factorial for all η ∈ Ω, then, for any wi ∈ Eff(R)◦, we have

wi = w1 + wr in KQ or g has a monomial of the form T lii .

Proof. We show (i). Let wi ∈ %r. Due to µ ∈ Eff(R)◦, the relation g has no monomial of
the form T lii . Thus, Lemmas 2.5.4 and 2.5.5 applied to the triple w1, w2, wi show that wi
is primitive. Analogously, we see that any wi ∈ %1 is primitive. In particular, we have
w1 = w2. Thus, applying Lemma 2.5.4 to w1, w2, wr, we obtain that Eff(R) is a regular
cone.

We turn to (ii). Throughout this paragraph we regard w1, . . . , wr as elements of
KQ = Q2. By (i), we may assume w1 = w2 = (1, 0) and wr−1 = wr = (0, 1). Consider
wi ∈ Eff(R)◦ such that T lii is not a monomial of g. Then we find GIT-cones η1 ⊆
cone(w1, wi) and η2 ⊆ cone(wi, wr) defining locally factorial varieties X(η1) and X(η2)
respectively. Lemma 2.5.4, applied to w1, w2, wi together with X(η1) and to wi, wr−1, wr
together with X(η2) shows wi = (1, 1) = w1 + wr.

Proof of Theorem 2.1.1: Part IIa. We deal with the specifying data of a smooth general
hypersurface Cox ring R as in Remark 2.5.11 IIa defining a smooth Fano fourfold
X = X(λ). By Proposition 2.2.4, the relation degree µ lies on %3, %4 or %5. We claim that
we can’t have %3 = %4 = %5. Otherwise Corollary 2.5.10 shows η = cone(w1, w3) ∈ Λ(R).
Since X(η) is smooth by Remark 2.5.12, we may apply Lemma 2.5.4 to the triple
w1, w3, w4. According to Lemma 2.5.5 we obtain det(w1, v) = 1 where v denotes the
primitive generator of the ray %3. Analogous arguments yield det(v, w7) = 1. Using both
determinantal equations we conclude that v and w1 + w7 are collinear. In particular
w1 + w7 generates %3 = %4 = %5. Lemma 2.7.3 (i) tells us w1 = w2 and w6 = w7. As a
result, Proposition 2.3.7 gives −KX ∈ %3. Moreover, Lemma 2.5.7 (ii) tells us %3 ∈ Λ(Rg)
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and thus λ = %3, which contradicts Q-factoriality, see Proposition 2.3.5 (i). A suitable
admissible coordinate change yields µ /∈ %5 and we are left with the following three
constellations:

(i) %3 = %4, µ ∈ %3 (ii) %3 6= %4, µ ∈ %3 (iii) %3 6= %4, µ ∈ %4

By Lemma 2.7.3 (i), we can assume w1 = w2 = (1, 0) and w6 = w7 = (0, 1). We show
w5 = (0, 1). Otherwise, by Lemma 2.7.3 (ii), we must have w5 = (1, 1). Consider
λ′ = cone(w5, w6). Then µ 6∈ λ′ holds. Remark 2.2.7 (ii) tells us that γ5,6 is an X ′-
face and hence λ′ is a GIT-cone. The associated variety X ′ is smooth according to
Remark 2.5.12. Thus, Proposition 2.3.6 yields µ ∈ wi + λ′ for some 1 ≤ i ≤ 7. By the
geometry of the possible degree constellations, only i = 1, 2 come into consideration.
We conclude µ = (e + 1, e + f) with e, f ∈ Z≥0. Positive orientation of (µ,w5) gives
f = 0. Hence, µ is primitive. By Lemma 2.5.7 (i), this contradicts Rg being a spread
hypersurface ring.

Constellation (i). Let v = (v1, v2) be the primitive generator of %3 = %4. Due to
Lemma 2.5.7 (ii), we have %3 ∈ Λ(Rg) and thus also λ′ = cone(w3, w7) is a GIT-cone.
The associated variety X ′ is smooth by Remark 2.5.12. Applying Lemmas 2.5.4 and 2.5.5
to the triple w3, w4, w7 yields v1 = 1 and that the first coordinates of w3, w4 are coprime.
Arguing similarly with w1, w3, w4 gives v2 = 1. So, the degree matrix has the form

Q =
[

1 1 a b 0 0 0
0 0 a b 1 1 1

]
, a, b ∈ Z≥1, gcd(a, b) = 1.

We may assume a ≤ b. By Lemma 2.5.7 (i), the relation g has monomials of the form T l33
and T l44 . Since gcd(a, b) = 1 holds, we conclude µ1 = µ2 = dab with d ∈ Z≥1. In
particular µ1 ≥ ab holds. By Proposition 2.3.7, the anticanonical class is given as

−KX = (2 + a+ b− µ1, 3 + a+ b− µ2).

From X being Fano we deduce −KX ∈ Eff(R)◦, that means that each coordinate of −KX
is positive. Thus, we obtain

2 + a+ b > dab ≥ ab.

This implies a = 1 or a = 2, b = 3. Consider the case a = 1. Here we have µ = dw4,
thus Rg being spread and irredundant ensures d ≥ 2 . Now using the inequality again
leads to 3 + (1− d)b > 0 and we end up with possibilities

b = 1, d = 2, 3, b = 2, d = 2,
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leading to the specifying data of Numbers 22 to 24 of Theorem 2.1.1. The constellation
a = 2, b = 3 immediately implies d = 1, which gives the specifying data of Number 25 of
Theorem 2.1.1.

Constellation (ii). Here we obtain w4 = (0, 1) by the same arguments used for showing
w5 = (0, 1). Write w3 = (a3, b3) and let k be the unique positive integer with µ = kw3.
Then k ≥ 2 as Rg is spread and T1, . . . , T7 form a minimal system of generators. By
Proposition 2.3.7, the anticanonical class of X = X(λ) is given as

−KX = (2 + (1− k)a3, 4 + (1− k)b3).

Moreover, we have %3 6∈ Λ(Rg) due to Lemma 2.5.7 (i) and Remark 2.2.7 (i), the defining
GIT-cone λ of X is the positive orthant. Thus the Fano condition −KX ∈ λ◦ simply
means that both coordinates of −KX are positive. This leads to a3 = 1, k = 2 and b3 ≤ 3.
These are Numbers 26 to 28 of Theorem 2.1.1.

Constellation (iii). We obtain w3 = (1, 0) by analogous arguments as used for showing
w5 = (0, 1) before. The degree w4 = (a4, b4) has to be determined. A suitable admissible
coordinate change yields a4 ≥ b4. By Proposition 2.3.7 the anticanonical class of
X = X(λ) is given as

−KX = (3 + (1− k)a4, 3 + (1− k)b4),

where k ∈ Z≥0 is defined via µ = kw3. As in the preceding constellation, we see that λ
is the positive orthant. Thus, X(λ) being Fano just means that both coordinates of
−KX are positive. We end up with the specifying data from Numbers 29 to 32 of
Theorem 2.1.1.

Part IIb • This part deals with Case IIb from Remark 2.5.11: Precisely one extremal
ray of Eff(R) contains more than one Cox ring generator degree, the relation degree lies
in the relative interior of Eff(R) and is proportional to some generator degree.

Lemma 2.7.4. Situation as in Setting 2.5.1. Assume that Rg is a spread hypersurface
Cox ring. If µ ∈ Eff(R)◦ holds and every two-dimensional η ∈ Λ(R) with η◦ ⊆ Mov(R)◦
defines a locally factorial X(η), then there is at most one ray %i which is not contained
in the boundary of Eff(R) and contains more than one Cox ring generator degree wi.

Proof. Suppose there are indices 1 < i < j < r where %i, %j , are different rays not
contained in the boundary of Eff(R) such that wi1 , wi2 ∈ %i, wj1 , wj2 ∈ %j holds for some
1 < i1 < i2 < j1 < j2 < r. From Lemma 2.5.7 (ii) we infer %i, %j ∈ Λ(R). As a result,
there must be some full-dimensional η ∈ Λ(R) with η◦ ⊆ Mov(R)◦ and η ⊆ cone(wi1 , wj1).
By assumption, X(η) is locally factorial. From Lemma 2.5.4 we deduce that three of
wi1 , wi2 , wj1 , wj2 generate K as group. Using Lemma 2.5.5 we may assume %i = Q≥0e1
and %j = Q≥0e2. Applying Lemma 2.5.4 to w1, wj1 , wj2 shows that w1 = (1, b1) ∈ KQ
holds for some b1 < 0. Analogously we obtain wr = (ar, 1) ∈ KQ with some ar < 0.
However, this leads to det(w1, wr) = 1− b1ar ≤ 0. A contradiction.
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Lemma 2.7.5. Consider the situation of Setting 2.5.1. If we have w2 = w3 and µ ∈ %2,
then w4 ∈ %2 holds.

Proof. Suppose w4 /∈ %2. Then every monomial of g not being divisible by T1 is of the
form T l22 T

l3
3 where l2 + l3 > 0. Since g is prime, thus not divisible by T1, at least one

such monomial occurs with non-zero coefficient in g. From w2 = w3 we deduce that
g1 := g(0, T2, . . . , Tr) is a classical homogeneous polynomial in T2, T3, thus admits a
presentation g1 = `1 · · · `m where `1, . . . , `m are linear forms in T2 and T3. Here w2 = w3
ensures that `1, . . . , `m are homogeneous w.r.t. the K-grading. Observe m > 1 as the
presentation of R = Rg is irredundant; see Setting 2.5.1. We conclude that g1 is not
K-prime, hence T1 ∈ R is not K-prime either. A contradiction.

Proof of Theorem 2.1.1: Part IIb. As in the previous parts of the proof we work in
Setting 2.5.1. In this part we consider the constellation IIb of Remark 2.5.11. Let us
establish first constraints. Lemma 2.5.4 shows that w1, w6, w7 generate Z2 as group.
According to Lemma 2.5.5, by applying a suitable admissible coordinate we achieve
w1 = (1, 0) and that the vector e2 = (0, 1) generates the ray %6 = %7. The following
discussion splits into two major cases

%2 6= %3 and %2 = %3.

We start with %2 6= %3. Here Proposition 2.2.4 ensures µ /∈ %2. This enables us to apply
Lemma 2.5.4 to w2, w6, w7. We deduce that the first coordinate of w2 equals one. So far,
the degree matrix is of the form

Q =
[
1 1 a3 a4 a5 0 0
0 b2 b3 b4 b5 b6 b7

]
, a4, a5 ∈ Z≥0, a3, b2, . . . , b7 ∈ Z≥1.

We claim µ ∈ %3. Otherwise, η = cone(w2, w3) ∈ Λ(R) holds; see Corollary 2.5.10. The
associated variety X(η) is smooth by Remark 2.5.12. Applying Lemma 2.5.3 to w1, w3
yields b3 = det(w1, w3) = 1. Again by Lemma 2.5.3 we obtain

1− a3b2 = b3 − a3b2 = det(w2, w3) = 1.

This leads to a3 = 0 or b2 = 0. If a3 = 0 holds, then Proposition 2.2.4 shows that µ lies
in the boundary of Eff(R). Besides b2 = 0 means %1 = %2. Both cases contradict the
assumptions of constellation IIb. So we must have µ ∈ %3.

The relative positions of %3, %4, %5 establish three subcases:

(i) %3 = %4 (ii) %4 = %5 (iii) %3 6= %4 6= %5

Constellation IIb (i). Let v = (v1, v2) ∈ Z2 be a primitive lattice vector on %3 = %4.
According to Corollary 2.5.10 we have η = cone(w2, w3) ∈ Λ(R). Moreover X(η) is
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smooth by Remark 2.5.12. Applying Lemmas 2.5.4 and 2.5.5 to the triples w1, w3, w4
and w2, w3, w4 yields v2 = 1 and det(w2, v) = 1. Hence 1− v1b2 = 1. This implies v1 = 0
or b2 = 0, hence %3 = %7 or %1 = %2. As seen before, this is a contradiction.

Constellation IIb (ii). Let v = (v1, v2) ∈ Z2 be a primitive lattice vector on %4 = %5.
According to Corollary 2.5.10 we have η = cone(w2, w4) ∈ Λ(R). Moreover X(η) is
smooth by Remark 2.5.12. Applying Lemmas 2.5.4 and 2.5.5 to the triples w1, w4, w5
and w2, w4, w5 yields v2 = 1 and det(w2, v) = 1. Hence 1− v1b2 = 1. This implies v1 = 0
or b2 = 0. As seen before, this is a contradiction.

Constellation IIb (iii). Corollary 2.5.10 provides us with GIT-cones

η1 = cone(w2, w4), η2 = cone(w5, w6).

The associated varieties X(η1) and X(η2) both are smooth by Remark 2.5.12. Let us
consider X(η2). We may apply Lemma 2.5.3 to both pairs w4, w6 and w4, w7. From this
we infer that w6 and w7 are primitive, thus w6 = w7 = (0, 1). In addition, we obtain
w4 = (1, b4) with some b4 ∈ Z≥1. Note that det(w2, w4) > 0 implies b4 ≥ 2.

To keep up an overview, we give the degree matrix with the entries known so far

Q =
[
1 1 a3 1 a5 0 0
0 b2 b3 b4 b5 1 1

]
, a5 ∈ Z≥0, a3, b2, b3, b5 ∈ Z≥1, b4 ∈ Z≥2.

Moreover, Lemma 2.5.7 (i) provides us with some k ∈ Z≥2 such that µ = kw3 holds. To
continue we have to distinguish between %5 = %6 and %5 6= %6.

We consider the case %5 = %6 first. Here, the first coordinate of w5 vanishes. Applying
Lemma 2.5.3 to w4, w5 gives w5 = (0, 1). By Proposition 2.3.7 the anticanonical class
−KX of X is given by

−KX = (3 + (1− k)a3, 3 + b2 + b4 + (1− k)b3).

From X being Fano we infer −KX ∈ Eff(R)◦, in particular 3 + (1− k)a3 > 0. Hence, we
must have one of the following configurations

k = 2 and a3 = 1, 2, k = 3 and a3 = 1.

Now consider the smooth variety X(η1). As we have det(w1, w4) = b4 ≥ 2, Lemma 2.5.3
yields that g has a monomial of the form T l11 T

l4
4 . Thus b4 divides µ2 = kb3. Applying

Lemma 2.5.4 to w1, w3, w4 yields gcd(b3, b4) = 1. So b4 must divide k. From k = 2, 3 and
b4 ≥ 2 we conclude b4 = k. Now, we can examine all three possible configurations.

• For k = 2 and a3 = 1 we obtain w2 = (1, 1), w3 = (1, b3), w4 = (1, 2). Due to
the counter-clockwise order of w2, w3, w4, this amounts to %2 = %3 or %3 = %4. A
contradiction.

• For k = 2 and a3 = 2 the condition det(w3, w4) > 0 gives b3 < 4. Moreover,
det(w2, w3) > 0 shows b3 > 2. Hence, b3 = 3. We end up with specifying data as in
Number 33 from Theorem 2.1.1.
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• For k = 3 and a3 = 1 we arrive at

Q =
[
1 1 1 1 0 0 0
0 1 2 3 1 1 1

]
, µ = (3, 6).

Here we have −KX = (1, 3), which lies in the relative interior of the one-dimensional
GIT-cone %4. According to Proposition 2.3.5 (i), this contradicts X being Q-
factorial.

It remains to consider the case %5 6= %6. Corollary 2.5.10 provides us with GIT-cones

η1 = cone(w2, w4), η2 = cone(w4, w5), η3 = cone(w5, w6).

For all i = 1, 2, 3 the associated variety X(ηi) is smooth by Remark 2.5.12. Lemma 2.5.3
applied to X(η3) and w5, w6 shows that the first coordinate of w5 equals one. Applying
Lemma 2.5.3 to X(η2) and w4, w5 gives w5 = (1, b4 + 1). We give an intermediate result
on the degree matrix

Q =
[
1 1 a3 1 1 0 0
0 b2 b3 b4 b4 + 1 1 1

]
, a3, b2, b3, b5 ∈ Z≥1, b4 ∈ Z≥2.

For i = 4, 5 applying Lemma 2.5.3 to X(η1) and w1, wi yields that g must have a
monomial of the form T l11 T

li
i , thus bi divides µ2 = kb3. For both triples w1, w3, w4 and

w1, w3, w5 we may apply Lemma 2.5.4 to X(η1). From this we deduce gcd(b3, b4) = 1
and gcd(b3, b4 + 1) = 1. Together we obtain that b4(b4 + 1) divides k, in particular k ≥ 6
holds. Proposition 2.3.7 says the anticanonical class −KX of X is given by

−KX = (4 + (1− k)a3, 3 + b2 + 2b4 − (1− k)b3).

In the present case X being Fano implies that both coordinates of −KX are positive.
From 4 + (1− k)a3 > 0 we deduce k ≤ 4. A contradiction.

We turn to the second major case of Part IIb and investigate %2 = %3. Applying
Lemmas 2.5.4 and 2.5.5 to the triples w2, w3, w6 and w2, w3, w7 shows that w6, w7 are
primitive. Consequently w6 = w7 = (0, 1) holds. We have to work out the subsequent
degree constellations.

(iv) %3 = %4 = %5 (v) %3 6= %4, %4 = %5 (vi) %3 = %4, %4 6= %5 (vii) %3 6= %4 6= %5

Constellation IIb (iv). Let v = (v1, v2) ∈ Z2 be the primitive lattice vector lying on
%2 = · · · = %5. Then for each i = 2, . . . , 5 we find a presentation wi = div with some
di ∈ Z≥1. Similarly µ = kv holds for some k ∈ Z≥2. Observe λ = cone(w2, w6).
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Lemma 2.5.4 yields that w2, w3, w7 generate Z2 as a group. Now Lemma 2.5.5 says
v1 = det(v, w7) = 1. This gives the degree matrix the following look

Q =
[
1 d2 d3 d4 d5 0 0
0 d2v2 d3v2 d4v2 d5v2 1 1

]
,

where we may assume d2 ≤ · · · ≤ d5. Lemma 2.5.7 (i) guarantees that for any 2 ≤ i ≤ 5
the relation g has a monomial of the form T lii with li ∈ Z≥2, hence we obtain

lidiv = liwi = µ = kv.

From this we conclude that k is divisible by each of d2, . . . , d5. Moreover Lemma 2.5.4
yields that wi, wj , w7 generate Z2 as a group for any 2 ≤ i < j ≤ 5. In particular
d2, . . . , d5 are pairwise coprime. Thus d2 · · · d5 divides k as well. By Proposition 2.3.7
the anticanonical class −KX of X is given by

−KX = (1 + d2 + · · ·+ d5 − k, 2 + (d2 + · · ·+ d5 − k)v2).

The Fano condition −KX ∈ λ◦ is equivalent to the inequations

2 + (d2 + · · ·+ d5 − k)v2 > (1 + d2 + · · ·+ d5 − k)v2,

d2 + · · ·+ d5 + 1 > k.

The first inequation directly gives v2 = 1 and the second implies d2 + · · ·+ d5 ≥ d2 · · · d5.
According to Remark 2.7.2 we have one of the following two configurations:

d2 = d3 = d4 = 1, d2 = d3 = 1, d4 = 2, and d5 = 3.

We treat the first configuration. Recall that k = l5d5 holds for some l5 ∈ Z≥2. Inserting
into the second Fano inequation yields 4− (1− l5)d5 > 0. We arrive at one of

l5 = 2 and d5 = 1, 2, 3, l5 = 3, 4 and d5 = 1.

This immediately leads to specifying data as in Numbers 34 to 38 from Theorem 2.1.1.
Dealing with the second configuration from above means to determine µ or equiva-

lently k. The second Fano inequation tells us k ≤ 7. Since k is divisible by d2 · · · d5 = 6,
we end up with k = 6. This amounts to Number 39 from Theorem 2.1.1.

Constellation IIb (v). The present constellation assumes that %2 = %3 is a not an extremal
ray of Eff(R) and that w4, w5 share a common ray. Remark 2.5.12 allows us to apply
Lemma 2.7.4. From this we infer that %4 = %5 must be an extremal ray of Eff(R), hence
coincide with %6 = %7. In particular µ is not contained in %4 = %5. Thus we may apply
Lemma 2.5.4 to both triples w2, w3, w4 and w2, w3, w5. This shows that w4, w5 both are
primitive, hence w4 = w5 = w6 = (0, 1).

Let v = (v1, v2) ∈ Z2 be the primitive generator of the ray %2 = %3. We have w2 = d2v
and w3 = d3v for some d2, d3 ∈ Z≥1. Here we may assume d2 ≤ d3. Lemmas 2.5.4
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and 2.5.5 applied to the triple w2, w3, w7 yield v1 = det(v, w7) = 1. Additionally we
obtain gcd(d2, d3) = 1. So far, the degree matrix is given by

Q =
[
1 d2 d3 0 0 0 0
0 d2v2 d3v2 1 1 1 1

]

According to the assumptions of Part IIb the relation degree µ lives in the relative interior
of Eff(R) and is contained in some %i. This amounts to µ ∈ %2. Consequently, we find
some k ∈ Z≥2 such that µ = kv. Lemma 2.5.7 (i) shows that k is divisible by both of the
coprime integers d2, d3, in particular d2d3 | k holds. According to Proposition 2.3.7 the
anticanonical class −KX of X is given by

−KX = (1 + d2 + d3 − k, 4 + (d2 + d3 − k)v2).

Since λ = cone(w2, w4) is contained in the positive orthant, the Fano property of X
implies that the first coordinate of −KX is positive. This leads to d2+d3 ≥ d2d3. As d2, d3
are coprime, we conclude d2 = 1. Suppose d3 = 1. Then w2 = w3 holds. Lemma 2.7.5
says w4 ∈ %2. A contradiction to %2 6= %4. We are left with d3 > 1. From d3|k ≤ d3 + 1
we conclude k = d3. We arrive at µ = w3. This is not possible, since Rg is spread and
comes with an irredundant presentation; see also Setting 2.5.1.

Constellation IIb (vi). Let v = (v1, v2) ∈ Z2 denote the primitive generator of the ray
%2 = %3 = %4. We have wi = div with some di ∈ Z≥1 for i = 2, 3, 4. For any 2 ≤ i < j ≤ 4
Lemma 2.5.4 shows that wi, wj , w7 generate the group Z2. Using Lemma 2.5.5 yields
that d2, d3, d4 are pairwise coprime. In addition we infer v1 = det(v, w7) = 1. Up to now,
the degree matrix has the form

Q =
[
1 d2 d3 d4 a5 0 0
0 d2v2 d3v2 d4v2 b5 1 1

]
, a5 ∈ Z≥0, b5 ∈ Z≥1.

Let k ∈ Z≥2 such that µ = kv. Lemma 2.5.7 (i) shows that k is divisible by each of
the pairwise coprime integers d2, d3, d4, in particular d2d3d4 divides k. For the further
discussion we have to distinguish between %5 = %6 and %5 6= %6.

First, we consider the case %5 = %6. Here the first coordinate a5 of w5 vanishes.
Moreover, µ is not contained in %5 because of µ ∈ Eff(R)◦. Applying Lemmas 2.5.4
and 2.5.5 to the triple w2, w3, w5 yields that w5 is primitive, hence w5 = (0, 1). By
Proposition 2.3.7 the anticanonical class −KX of X is given by

−KX = (1 + d2 + d3 + d4 − k, 3 + (d2 + d3 + d4 − k)v2).

Observe λ = cone(w2, w5). Thus X = X(λ) being Fano is equivalent to the inequations

3 + (d2 + d3 + d4 − k)v2 > (1 + d2 + d3 + d4 − k)v2,

1 + d2 + d3 + d4 − k > 0.
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Subtracting (d2 + d3 + d4 − k)v2 from both sides in the first inequation yields v2 ≤ 2.
Plugging d2d3d4 | k into the second inequation shows d2 + d3 + d4 ≥ d2d3d4. By
Remark 2.7.2 this leads to d2 = 1 and one of the following two configurations

d3 = 1, d3 = 2 and d4 = 3.

We study the first configuration i.e. d3 = 1. Recall that k = md4 holds for some m ∈ Z≥1.
Inserting into the second Fano inequation gives 3 + (1−m)d4 > 0. We arrive at

d4 = 1 and m = 2, 3, d4 = 2 and m = 2.

Altogether we end up with specifying data as in Numbers 40 to 45.
Dealing with the second configuration from above, d3 = 2, means to determine µ or

equivalently k. The second Fano inequation gives k ≤ 6. Since d2d3d4 = 6 divides k, we
conclude k = 6. This amounts to Numbers 46 and 47 from Theorem 2.1.1.

The next step is to consider the case %5 6= %6. According to Proposition 2.2.4 we have
either µ ∈ %2 or µ ∈ %5. We deal with µ ∈ %2 first and show afterwards that the latter
does not occur. Here, Corollary 2.5.10 provides us with two GIT-cones

η1 = cone(w2, w5), η2 = cone(w5, w6).

According to Remark 2.5.12 the associated varieties X(η1) and X(η2) both are smooth.
Consider X(η2). Applying Lemma 2.5.3 to w5, w6 yields that the first coordinate of w5
equals one. Lemmas 2.5.4 and 2.5.5 applied to X(η2) and w2, w3, w5 gives det(v, w5) = 1.
Due to v1 = 1, we obtain w5 = (1, v2 + 1). So far, the degree matrix is of the form

Q =
[
1 d2 d3 d4 1 0 0
0 d2v2 d3v2 d4v2 v2 + 1 1 1

]
.

By Proposition 2.3.7 the anticanonical class −KX of X is given by

−KX = (2 + d2 + d3 + d4 − k, 3 + (d2 + d3 + d4 + 1− k)v2).

Since X is Fano, we have −KX ∈ Mov(R)◦. Note Mov(R) = cone(v, w6). From this we
infer det(v,−KX) > 0, i.e.,

3 + (1 + d2 + d3 + d4 − k)v2 > (2 + d2 + d3 + d4 − k)v2.

One directly obtains v2 ≤ 2. Remark 2.2.5 ensures that γ5,6 is an X(η2)-face. This
allows us to apply Proposition 2.3.6 telling us that µ ∈ wi + PosZ(w5, w6) holds for some
1 ≤ i ≤ 7. Only i = 1 comes into consideration because of µ ∈ %2 and the geometric
constellation of w1, . . . , w7. So we have a presentation

kv = µ = w1 + ew5 + fw6, e, f ∈ Z≥0.

Vanishing of the first coordinate of w6 shows e = k−1. Considering the second coordinate
of µ we obtain kv2 = (k − 1)(v2 + 1) + f . Term manipulation gives v2 + 1 = k + f , thus
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k ≤ v2 + 1. We conclude k ≤ 3. Lemma 2.5.7 (i) ensures that k is a proper multiple of
each of d2, d3, d4. Thus we must have d2 = d3 = d4 = 1. We have arrived at specifying
data of the following form

Q =
[
1 1 1 1 1 0 0
0 v2 v2 v2 v2 + 1 1 1

]
, µ = (k, kv2),

v2 ≤ 2, k ≤ v2 + 1.

We show that the configuration v2 = 2 and k = 2 does not show up. Here, w5 = (1, 3)
and µ = (2, 4) holds. Consequently g has no monomial of the form T l11 T

l5
5 . Thus

Lemma 2.5.3 yields det(w1, w5) = 1. A contradiction. The remaining configurations
amount to specifying data as in Numbers 48 and 49 from Theorem 2.1.1.

To conclude the discussion of Constellation IIb (vi), suppose µ ∈ %5. Here we have
λ = cone(w2, w6). Lemma 2.5.4 applied to wi, w6, w7 yields that the first coordinate of wi
equals one for i = 2, 3, 4. In particular w2, w3, w4 are primitive, hence coincide with the
primitive generator v = (1, v2) of the ray %2 = %3 = %4. Up to now, the degree matrix is
of the form

Q =
[
1 1 1 1 a5 0 0
0 v2 v2 v2 b5 1 1

]
, a5, b5 ∈ Z≥1

By Proposition 2.3.7 the anticanonical class −KX of X is given by

−KX = (4 + (1− k)a5, 3v2 + 2 + (1− k)b5).

From X being Fano we infer that −KX lives in the relative interior of λ = cone(v, w6).
This leads to the inequation

3v2 + 2 + (1− k)b5 > (4 + (1− k)a5)v2,

This inequation can be simplified by subtracting 3v2 from both sides. Moreover, combining
%2 6= %5 with counter-clockwise ordering of the generator degrees gives det(v, w5) > 0,
hence b5 > a5v2. Altogether we obtain

1 + (1− k)b5 ≥ v2 + (1− k)a5v2 > v2 + (1− k)b5.

This forces v2 = 0. A contradiction to %1 6= %2.

Constellation IIb (vii). Let v = (v1, v2) ∈ Z2 be the primitive lattice vector lying on the
ray %2 = %3. For i = 2, 3 we have wi = div, with some di ∈ Z≥1. Lemmas 2.5.4 and 2.5.5
applied to w2, w3, w6 yield v1 = det(v, w6) = 1 and gcd(d2, d3) = 1 in addition. For the
further discussion we have to distinguish between %5 = %6 and %5 6= %6.

First we consider %5 = %6. Here, the first coordinate of w5 vanishes. Applying
Lemmas 2.5.4 and 2.5.5 to the triple w2, w3, w5 shows w5 = (0, 1). According to Proposi-
tion 2.2.4 we face one of the following cases

µ ∈ %2 = %3, µ ∈ %4.
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Assume µ ∈ %4. Here Lemma 2.5.7 (i) provides us with some k ∈ Z≥2 such that µ = kw4.
Moreover Lemmas 2.5.4 and 2.5.5, this time applied to wi, w6, w7 for i = 2, 3, give that
w2, w3 are primitive, thus both equal v. So far, the degree matrix has the form

Q = [w1, . . . , w7] =
[
1 1 1 a4 0 0 0
0 v2 v2 b4 1 1 1

]
, a4, b4 ∈ Z≥1.

The anticanonical class −KX of X is given by Proposition 2.3.7 as

−KX = (3 + (1− k)a4, 3 + 2v2 + (1− k)b4).

Here, we have λ = cone(w3, w5); see also Corollary 2.5.10. As a result the Fano condition
−KX ∈ λ◦ is equivalent to the inequations

3 + 2b+ (1− k)b4 > (3 + (1− k)a4)v2, 3 + (1− k)a4 > 0.

The second inequation implies that we must have one of the following configurations

k = 2 and a4 = 1, 2, k = 3 and a4 = 1.

Inserting values for k and a4 into the first inequation from above provides us with
further restrictions on v2, b4 in the respective configuration. We examine this for all three
configurations of k and a4.

• For k = 2 and a4 = 1 we get b4 < 3. From b4 − v2 = det(w3, w4) > 0 follows v2 = 1
and b4 = 2. We arrive at specifying data Number 50 from Theorem 2.1.1.

• For k = 2 and a4 = 2 we obtain 3− (b4− 2v2) > v2. Due to anti-clockwise ordering
of w1, v, w4 we have v2 > 0 and b4 − 2v2 > 0. Together we obtain b4 − 2v2 = 1 and
v2 = 1. Therefore b4 = 3. We end up with specifying data as in Number 51 from
Theorem 2.1.1.

• For k = 3 and a4 = 1 we get 3− 2(b4 − v2) > v2. Taking b4 − v2 = det(w3, w4) > 0
into account yields v2 < 1. A contradiction.

We turn to µ ∈ %2. As v is the primitive lattice vector generating %2, we have µ = kv
for some k ∈ Z≥1. Moreover, Corollary 2.5.10 provides us with GIT-cones

η1 = cone(w3, w4), η2 = cone(w4, w5).

Each of them give rise to smooth a variety X(ηi); see Remark 2.5.12. Now we want
to determine w4 = (a4, b4). We apply Lemma 2.5.4 to X(η2) and w4, w6, w7. Thus we
obtain a4 = det(w4, w6) = 1. Applying Lemmas 2.5.4 and 2.5.5 again, this time to X(η1)
and w2, w3, w4, shows det(v, w4) = 1. We have v1 = a4 = 1, thus we obtain b4 = v2 + 1.
So far the degree matrix looks like

Q =
[
1 d2 d3 1 0 0 0
0 d2v2 d3v2 v2 + 1 1 1 1

]
.
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Proposition 2.3.7 tells us that the anticanonical class −KX of X is given by

−KX = (2 + d2 + d3 − k, 4 + (1 + d2 + d3 − k)v2).

From X being Fano we deduce −KX ∈ Mov(R)◦. This yields det(v,−KX) > 0, i.e.,

4 + (1 + d2 + d3 − k)v2 > (2 + d2 + d3 − k)v2.

From this inequation one directly obtains v2 ≤ 3. Remark 2.2.7 (ii) guarantees that
γ4,5 is an X(η2)-face. Applying Proposition 2.3.6 yields µ ∈ wi + PosZ(w4, w5) for some
1 ≤ i ≤ 7. Only i = 1 comes into consideration due to µ ∈ %2 = %3 and the geometric
constellation of w1, . . . , w7. So, we have a presentation

kv = µ = w1 + ew4 + fw5, e, f ∈ Z≥0.

As the first coordinate of w5 vanishes, we must have e = k − 1. Considering the second
coordinate of µ gives kv2 = (k−1)(v2 +1)+f . Term manipulation leads to v2 +1 = k+f .
This implies k ≤ v2 + 1, in particular k ≤ 4. Lemma 2.5.7 (i) ensures that k is a proper
multiple of both d2 and d3. Thus, d2 and d3 being coprime, we must have d2 = 1 and
d3 = 1, 2. Note that d2 = d3 = 1 implies w2 = w3. Lemma 2.7.5 shows that this case
does not occur as we have %1 6= %2 and %3 6= %4. We are left with d3 = 2. This forces
k = 4 and thus v2 = 3. The resulting specifying data is

Q =
[
1 1 2 1 0 0 0
0 3 6 4 1 1 1

]
, µ = (4, 12).

Here we have −KX = (1, 4), which lies in the relative interior of the one-dimensional
GIT-cone %4. According to Proposition 2.3.5 (i), this contradicts X being Q-factorial.

The next step is to consider %5 6= %6. According to Proposition 2.3.5 one of the
pairwise different rays %3, %4, %5 contains µ. We claim that only µ ∈ %4 is possible.

Suppose µ ∈ %3. Here Corollary 2.5.10 ensures η = cone(w4, w5) ∈ Λ(R). The
associated variety X(η) is smooth by Remark 2.5.12. Applying Lemma 2.5.3 to the pairs
w4, w5 and w4, w6 shows that det(w4, w5), det(w4, w6) both equal one. Lemmas 2.5.4
and 2.5.5 applied to w2, w3, w5 yields det(v, w5) = 1. In the same way we obtain
det(v, w6) = 1. Altogether, Lemma 2.5.6 says %3 = %4 or %5 = %6. A contradiction.

Suppose µ ∈ %5. Corollary 2.5.10 provides us with GIT-cones

η1 = cone(w3, w4), η2 = cone(w4, w6).

According to Remark 2.5.12 they give rise to smooth varieties X(η1) and X(η2). Let
us determine w4 = (a4, b4). Applying Lemma 2.5.3 to X(η1) and w1, w4 gives b4 = 1.
Lemma 2.5.4 applied to X(η2) and w4, w6, w7 shows a4 = 1. We obtain

det(v, w4) = 1− v2 ≤ 0.

As v and w3 are proportional and the generator degrees are in counter-clockwise order,
this contradicts %3 6= %4.
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We must have µ ∈ %4. According to Corollary 2.5.10 the following GIT-cones are in
the game

η1 = cone(w2, w5), η2 = cone(w5, w6).

The associated varietiesX(η1) andX(η2) both are smooth; see Remark 2.5.12. Lemma 2.5.3
applied to X(η2) and w5, w6 yields that the first coordinate of w5 equals one. Recall that
v = (1, v2) is the primitive generator of the ray %2 = %3. Applying Lemmas 2.5.4 and 2.5.5
to X(η1) and w2, w3, w5 gives w5 = (1, v2 + 1). For i = 2, 3 applying Lemmas 2.5.4
and 2.5.5 to wi, w6, w7 shows that wi is primitive. Hence w2 and w3 equal v. At this
point the degree matrix is of the form

Q =
[
1 1 1 a4 1 0 0
0 v2 v2 b4 v2 + 1 1 1

]
, a4, b4 ∈ Z≥1.

Besides, Lemma 2.5.7 (i) tells us µ = kw4 for some k ∈ Z≥2. By Proposition 2.3.7 the
anticanonical class −KX of X is

−KX = (4 + (1− k)a4, 3 + 3v2 + (1− k)b4).

Since X is Fano, −KX ∈ Mov(R)◦ holds. This is equivalent to the inequations

3 + 3v2 + (1− k)b4 > (4 + (1− k)a4)v2, 4 + (1− k)a4 > 0.

Note that counter-clockwise ordering of w3, w4, w5 implies a4 ≥ 2. For this reason the
second inequation yields k = 2 and a4 = 2, 3. We have to determine v2, b4 for both
configurations. Inserting k = 2 into the first inequation leads to 3 − (b4 − a4v2) > v2.
Using b4 − a4v2 = det(w3, w4) > 0 shows a4v2 − b4 = 1. This implies v2 = 1 and thus
b4 = a4 + 1. For a4 = 2 this leads to Number 52 from Theorem 2.1.1. For a4 = 3 the
resulting specifying data is

Q =
[
1 1 1 3 1 0 0
0 1 1 4 2 1 1

]
, µ = (6, 8).

Here we have −KX = (1, 2), which lies in the relative interior of the one-dimensional
GIT-cone %5. According to Proposition 2.3.5 (i), this contradicts X being Q-factorial.

Part IIc • We elaborate Case IIc from Remark 2.5.11. This means that each extremal
ray of Eff(R) contains precisely one Cox ring generator degree and the relation degree
shares a common ray with some generator degree living in the relative interior of Eff(R).

Proof of Theorem 2.1.1, Part IIc. In the present part of the proof, we have that %2, . . . , %6
are not contained in the boundary of Eff(R). Observe that %2, . . . , %6 do not coincide.
Otherwise, Mov(R) is one-dimensional; a contradiction to the assumptions made in
Setting 2.5.1. Remark 2.5.12 allows us to use Lemma 2.7.4. From this we infer that
either %2, . . . , %6 are pairwise different or that there is a unique ray %j , where 2 ≤ j ≤ 5,
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such that %j contains between two and four of w2, . . . , w6. We end up with four subcases
where N denotes the number of indices i such that wi ∈ %j holds.

(i) N = 4 (ii) N = 3 (iii) N = 2 (iv) %i 6= %j for i 6= j

Constellation (IIc-i). A suitable admissible coordinate change leads to

%2 = %3 = %4 = %5, %5 6= %6.

Let v ∈ Z2 be the primitive generator of the ray %2. Proposition 2.2.4 tells us µ ∈ %2.
We may apply Lemmas 2.5.4 and 2.5.5 to w2, w3, w7. This shows that v, w7 generate Z2.
Thus, a further admissible coordinate change gives v = (1, 0) and w7 = (0, 1). Now,
Lemma 2.5.4 applied to w2, w3, w6 yields that the second coordinate of w6 equals one.
So far, the degree matrix is given by

Q =
[
a1 a2 a3 a4 a5 a6 0
−b1 0 0 0 0 1 1

]
, a1, . . . , a6, b1 ∈ Z≥1.

We may assume a2 ≤ · · · ≤ a5. For each 1 ≤ i < j ≤ 5 we apply Lemma 2.5.4 to the
triple wi, wj , w7 and obtain gcd(ai, aj) = 1. Besides, µ ∈ %2 means that the second
coordinate µ2 of the relation degree µ vanishes. By Proposition 2.3.7 the anticanonical
class −KX of X is thus given as

−KX = (a1 + · · ·+ a6 − µ1, 2− b1).

From X being Fano we infer −KX ∈ Mov(R)◦. As Mov(R) is contained in the positive
orthant, we immediately obtain b1 = 1. Observe det(w1, w6) = a1 + a6 > 1. By
Lemma 2.5.3 the polynomial g must have a monomial of the form T l11 T

l6
6 . Since µ2

vanishes, we must have l1 = l6. We conclude that a1+a6 divides µ1. Besides, Lemma 2.5.4
tells us that w1, wi, w6 generate Z2 for any 2 ≤ i ≤ 5. We conclude that the group Z2 is
also spanned by

w1 + w6 = (a1 + a6, 0), wi = (ai, 0), w6 = (a6, 1).

From this we deduce gcd(a1 + a6, ai) = 1. Using −KX ∈ Mov(R)◦ again we obtain
det(−KX , w6) > 0 or equivalently

a1 + · · ·+ a5 > µ1. (2.2)

Lemma 2.5.3 applied to w1, w7 provides us with some d1 ∈ Z≥1 such that d1a1 = µ1
holds. Moreover, Lemma 2.5.7 tells us that for any 2 ≤ i ≤ 5 there is some di ∈ Z≥2 such
that µ = diwi holds. In particular, the first coordinate µ1 of µ is divisible by each of the
pairwise coprime integers a1, . . . , a5. We arrive at the following inequation

a1 + · · ·+ a5 > a1 · · · a5.
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Note that a1, . . . , a5 are not necessarily in ascending order. Applying Remark 2.7.2
to a suitable permuation of a1, . . . , a5 yields that we have to deal with the following
configurations:
(1) a1 = · · · = a4 = 1 and a5 ≥ 1,
(2) a1 ≥ 2 and a2 = · · · = a5 = 1,
(3) a1 = a2 = a3 = 1, a4 = 2 and a5 = 3,
(4) a1 = 2, a2 = a3 = a4 = 1, a5 = 3,
(5) a1 = 3, a2 = a3 = a4 = 1, a5 = 2.

Constellation (IIc-i-1). We have µ1 = d5a5 where d5 ≥ 2. Inserting into the Fano
condition Eq. (2.2) yields 4 + a5 > d5a5. Then again, this leads to

a5 = 1 and d5 = 2, 3, 4, a5 = 2, 3 and d5 = 2.

We examine these configurations explicitly.
• For a5 = 1 and d5 = 2 we have µ1 = 2. From µ1 being divisible by a6 + 1 we infer
a6 = 1. This amounts to Number 53 from Theorem 2.1.1.

• For a5 = 1 and d5 = 3 we have µ1 = 3. From µ1 being divisible by a6 + 1 we infer
a6 = 2. This amounts to Number 54 from Theorem 2.1.1.

• For a5 = 1 and d5 = 4 we have µ1 = 4. From µ1 being divisible by a6 + 1 we infer
a6 = 1, 3. This amounts to Numbers 55 and 56 from Theorem 2.1.1.

• For a5 = 2 and d5 = 2 we have µ1 = 4. From µ1 being divisible by a6 + 1 we infer
a1 + a6 = 2, 4. This contradicts gcd(a1 + a6, 2) = 1.

• For a5 = 3 and d5 = 2 we have µ1 = 6. From µ1 being divisible by a6 + 1 we
infer a6 = 1, 2, 5. We obtain a6 = 1 due to gcd(a1 + a6, 3) = 1. This amounts to
Number 57 from Theorem 2.1.1.

Constellation (IIc-i-2). We have d1a1 = µ1 = l1a1 + l6a6 where l1, l6 > 0. This implies
d1 ≥ 2. Here, inserting into Eq. (2.2) gives 4 + a1 > d1a1. This leaves us with d1 = 2 and
a1 = 2, 3. Suppose a1 = 2. Then we have µ1 = 4. From a1 + a6|µ1 we infer a6 = 2. This
contradicts gcd(a1, a6) = 1. Suppose a1 = 3. Then we have µ1 = 6. From a1 + a6|µ1 we
infer a6 = 3. This contradicts gcd(a1, a6) = 1.
Constellation (IIc-i-3). We have µ1 = 3d5. Inserting into Eq. (2.2) gives 8 > 3d5, hence
d5 = 2 and µ1 = 6. From a1 + a6|µ1 we infer a6 = 1, 2, 5. In each of these cases the
choice of a6 contradicts gcd(a6 + 1, 2) = 1 or gcd(a6 + 1, 3) = 1.
Constellation (IIc-i-4). We have µ1 = 3d5. Inserting into Eq. (2.2) gives 8 > 3d5, hence
d5 = 2 and µ1 = 6. From a1 + a6|µ we infer a6 = 3. This contradicts gcd(a5, a6) = 1.
Constellation (IIc-i-5). We have µ1 = 2d5. Inserting into Eq. (2.2) gives 8 > 2d5, hence
d5 = 2, 3. Suppose d5 = 2. Then we have µ1 = 4. From 3 + a6|µ1 we infer a6 = 1. This
contradicts gcd(a1 + a6, 2) = 1. Suppose d5 = 3. Then we have µ1 = 6. From 3 + a6|µ1
we infer a6 = 3. This contradicts gcd(a1 + a6, 2) = 1.

Constellation (IIc-ii). After a suitable admissible coordinate change we have %3 = %4 and
one of the following constellations.
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(1) %2 = %3, %4 6= %5, %5 6= %6 (2) %2 6= %3, %4 = %5, %5 6= %6

Constellation (IIc-ii-1). After a suitable admissible coordinate change we may assume
that e1 = (1, 0) generates the ray %2 = %3 = %4. Proposition 2.2.4 says µ ∈ %2 or µ ∈ %5.
Thus we may apply Lemma 2.5.4 to both triples w2, w3, w6 and w2, w3, w7. From this we
infer that the first coordinates of w6, w7 equal one. By applying a suitable admissible
coordinate change we achieve w7 = (0, 1). Up to now, the degree matrix is of the form

Q = [w1, . . . , w7] =
[
a1 a2 a3 a4 a5 a6 0
−b1 0 0 0 b5 1 1

]
, ai, bi ∈ Z≥1.

We narrow the position of the relation degree. Suppose µ ∈ %2. Then η = cone(w5, w6) is
a GIT-cone leading to a smooth variety X(η); see Corollary 2.5.10 and Remark 2.5.12. Ap-
plying Lemma 2.5.3 to X(η) and w5, w6 gives a5 = det(w5, w7) = 1. Again Lemma 2.5.3,
this time applied to w5, w6, shows 1− a6b5 = det(w5, w6) = 1. Hence a6 = 0 or b5 = 0.
However, the current geometric constellation of the generator degrees ensures a6, b5 > 0.
A contradiction. So we must have µ ∈ %5.

Lemma 2.5.7 tells us that µ = kw5 holds for some k ∈ Z≥2. By Proposition 2.3.7 the
anticanonical class −K of X is given by

−KX = (a1 + a2 + a3 + a4 + a6 + (1− k)a5, −b1 + 2 + (1− k)b5).

From X being Fano we infer −K ∈ Mov(R)◦, in particular −b1 + (1−k)b5 + 2 > 0. As we
have b1, b5 > 0 and k ≥ 2, this inequation does not hold. We conclude that the present
constellation does not admit any candidate for a smooth Fano variety.
Constellation (IIc-ii-2). By applying a suitable admissible coordinate change we achieve
that e1 = (1, 0) generates the ray %3 = %4 = %5. Proposition 2.2.4 gives µ ∈ %3.
Corollary 2.5.10 provides us with GIT-cones

η1 = cone(w2, w3), η2 = cone(w3, w6).

Remark 2.5.12 ensures smoothness of the associated varieties X(η1), X(η2). We may
apply Lemma 2.5.4 to X(η1) and both triples w1, w3, w4 and w2, w3, w4. From this we
obtain wi = (ai,−1) for i = 1, 2. Applying Lemma 2.5.4 to X(η2) and w3, w4, wj yields
that the second coordinate of w6, w7 equals one. We arrive at the following degree matrix

Q =
[
a1 a2 a3 a4 a5 a6 a7
−1 −1 0 0 0 1 1

]
, a1, . . . , a6 ∈ Z≥1, a7 ∈ Z≥0.

Note that µ ∈ %3 implies that the second coordinate of µ vanishes. Proposition 2.3.7
yields that the second coordinate of −KX vanishes as well i. e. −KX ∈ %3. Since %3 is a
GIT-cone of dimension one, this contradicts Q-factoriality of X; see Proposition 2.3.5.
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Constellation (IIc-iii). Here, there is exactly one index 2 ≤ j ≤ 5 such that %j = %j+1
holds. A suitable admissible coordinate change reduces the situation to the following
cases.

(1) j = 2 (2) j = 3

Constellation (IIc-iii-1). We apply a suitable admissible coordinate change such that
e1 = (1, 0) spans %2 = %3. Proposition 2.2.4 says that µ is contained in one of %3, %4, %5.

First, we treat the case µ ∈ µ3. Corollary 2.5.10 provides us with GIT-cones

η1 = cone(w3, w4), η2 = cone(w5, w6).

According to Remark 2.5.12 the varieties X(η1), X(η2) both are smooth. Lemma 2.5.4
applied to X(η1) and w2, w3, wj shows wj = (aj , 1) for j = 5, 6, 7. A suitable admissible
coordinate change leads to w7 = (0, 1). From Lemma 2.5.3 applied to X(η2) and w5, w7
we infer a5 = det(w5, w7) = 1. Applying Lemma 2.5.3 once more, this time to w5, w6,
yields 1 − a6 = det(w5, w6) = 1. We conclude a6 = 0, thus w6 = (0, 1) = w7. A
contradiction to %6 6= %7.

Repeating the above arguments with η1 = cone(w3, w5) instead of η1 = cone(w3, w4)
yields that the case µ ∈ %4 neither shows up.

Now we turn to µ ∈ %5. We have η = cone(w3, w4) ∈ Λ(R); see Corollary 2.5.10
Remark 2.5.12 says that X(η) is smooth. Lemma 2.5.4 applied to w2, w3, wj shows
wj = (aj , 1) for j = 4, 6. A suitable admissible coordinate change leads to w6 = (0, 1).
From %1 6= %2 we deduce w1 = (a1,−b1) for some a1, b1 ∈ Z≥1. Moreover, observe
a4 > 0, which is due to %4 6= %6. This amounts to det(w1, w4) = a1 + a4b1 > 1. However,
Lemma 2.5.3 says det(w1, w4) = 1. A contradiction.

Constellation (IIc-iii-2). We apply a suitable admissible coordinate change such that
e1 = (1, 0) generates %3 = %4. Proposition 2.2.4 gives µ ∈ %3 or µ ∈ %5.

Suppose µ ∈ %3. Then η = cone(w5, w6) ∈ Λ(R) defines a smooth X(η); see
Corollary 2.5.10 and Remark 2.5.12. Applying Lemma 2.5.4 to w3, w4, wj shows wj =
(aj , 1) for j = 5, 6, 7. A suitable admissible coordinate leads to w7 = (0, 1). Applying
Lemma 2.5.3 to both pairs w5, w7 and w6, w7 yields w5 = (1, 1) = w6. A contradiction to
%5 6= %6.

We deal with µ ∈ %5. Corollary 2.5.10 provides us with GIT-cones

η1 = cone(w2, w3), η2 = cone(w3, w6).

According to Remark 2.5.12 the associated varieties X(η1) and X(η2) both are smooth.
Applying Lemma 2.5.4 to X(η2) and the triples w3, w4, w6 and w3, w4, w7 shows that the
first coordinate of w6 and w7 equals one. We apply Lemma 2.5.3 to X(η1) and w1, w3
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respectively w2, w3. As a result, the second coordinates of w1 and w2 both equal minus
one. So far the degree matrix is of the form

Q =
[
a1 a2 1 1 a5 a6 0
−1 −1 0 0 b5 1 1

]
, ai, b5 ∈ Z≥1.

Remark 2.2.5 ensures that we may apply Proposition 2.3.6 to X(η1) and γ1,3. From this
we infer that µ admits a presentation

µ = wj + l1w1 + l3w3, l1, l3 ∈ Z≥0.

Because of µ ∈ %5 and the geometry of the present degree constellation, only j = 6, 7
come into consideration. This amounts to µ2 = 1 − l1. If l1 = 0 holds, µ is primitive.
Since Rg is spread, this implies that T5 is a monomial of g. This contradicts the choice
of an irredundant presentation for R. If l1 > 0 holds, µ2 is negative, hence µ cannot lie
on %5; a contradiction.

Constellation (IIc-iv). Proposition 2.2.4 says µ lies in one of %3, %4, %5. If µ ∈ %5 holds, a
suitable admissible coordinate change leads to µ ∈ %3. This reduces the situation to

(1) µ ∈ %3 (2) µ ∈ %4

Constellation (IIc-iv-1). We apply a suitable admissible coordinate change such that
e1 = (1, 0) spans the ray %4. Corollary 2.5.10 provides us with GIT-cones

η1 = cone(w4, w5), η2 = cone(w5, w6)

Then X(η1) and X(η2) both are smooth by Remark 2.5.12. For j = 5, 6, 7 Lemma 2.5.3
applies to X(η1) and w4, wj . Thus the second coordinate of w5, w6, w7 equals one. A
suitable suitable admissible coordinate leads to w7 = (0, 1). Applying Lemma 2.5.3
again, this time to X(η2) and w5, w6 respectively w5, w7, yields w5 = (1, 1) = w6. This
contradicts %5 6= %6.

Constellation (IIc-iv-2). Corollary 2.5.10 provides us with GIT-chambers

η1 = cone(w2, w3), η2 = cone(w3, w5), η3 = cone(w5, w6).

According to Remark 2.5.12 every associated variety X(ηi) is smooth. Consider X(η1).
Lemma 2.5.3 applied to w1, w3 and w2, w3 yields det(w1, w3) = 1 and det(w2, w3) = 1.
By applying a suitable admissible coordinate change we achieve

Q =
[
1 a3 + 1 a3 a4 . . . a7
0 1 1 b4 . . . b7

]
, ai, bi ∈ Z≥1.
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According to Lemma 2.5.7 (i) we have µ = kw4 for some k ∈ Z≥2. In particular µ2 is
divisible by b4. Applying Lemma 2.5.3 to the pair w1, wj for j = 5, 6, 7 shows that µ2
is divisible by each of b5, b6, b7. From Lemma 2.5.4 applied to any triple w1, wi, wj
where 4 ≤ i < j ≤ 7 follows that b4, . . . , b7 are pairwise coprime. Together we obtain
b4 · · · b7 | µ2. By Proposition 2.3.7 the anticanonical class −K of X is given by

−K = (2 + a3 + · · ·+ a7 − µ1, 2 + b4 + · · · b7 − µ2).

Since X is Fano, −K ∈ Mov(R)◦ holds. In particular, the second coordinate of −K is
positive. This leads to the following inequation:

b4 · · · b7 ≤ µ2 < b4 + · · ·+ b7 + 2. (2.3)

Let 4 ≤ j1, . . . , j4 ≤ 7 be pairwise different indices such that bj1 ≤ · · · ≤ bj4 holds.
We can use Remark 2.7.2 to get constraints on bj1 , . . . , bj4 . In doing so we interpret
bj1 · · · bj4 ≤ bj1 + · · · bj4 + 1 as an inequation in five variables where we only consider
solutions where at least one variable equals one and the remaining variables are pairwise
coprime. This leads to bj1 = bj2 = 1 and one of the following configurations

bj3 = 1, bj3 = 2 and bj4 = 3, 5.

We study the case bj3 = 1. First of all we show that b5 = b6 = b7 = 1 does not occur.
Suppose b5 = b6 = b7 = 1. Lemma 2.5.3 applied two X(η3) yields det(w5, w6) = 1 and
det(w5, w7) = 1. This amounts to a6 = a5 − 1 = a7 i.e. w6 = w7. A contradiction. We
conclude bj4 ≥ 2 and b4 = 1. The latter implies µ2 = k. Since bj1 , bj2 , bj3 all equal one,
we may assume j1 < j2 < j3 in what follows. We know that the second coordinate of
w3, wj1 , wj2 , wj3 equals one. Thus counter-clockwise orientation of these four generator
degrees implies

det(w3, wj3) = a3 − aj3 ≥ 3.
Note w4 ∈ η◦2. We apply Lemma 2.5.4 to X(η2) and w2, w4, wj3 as well as w3, w4, wj3 .
From this we infer that k = µ2 is divisible by both det(w2, wj3) and det(w3, wj3). Observe

det(w2, wj3) = det(w3, wj3) + 1.

Thus µ2 has a factor of the form n(n+1) where n ≥ 3, in particular µ2 ≥ 12. Furthermore,
we have µ2 = dbj4 for some d ∈ Z≥1. Suppose d = 1. Then µ2 = bj4 is true, hence g has
no monomial of the form T l33 T

lj4
j4

where l3 + lj4 > 0. Lemma 2.5.3 yields det(w3, wj4) = 1.
Since µ ∈ cone(w3, wj4) holds, µ is an integral positive linear combination over w3, wj4 .
A contradiction. We are left with d > 1. Inserting into (2.3) yields 0 < (d− 1)bj4 < 5.
This forces µ2 = dbj4 ≤ 8. A contradiction.

We turn to bj3 = 2 and bj4 = 3. Inserting into (2.3) gives kb4 = µ2 < 9. Applying
Lemma 2.5.4 to X(η2) to w2, w4, wj as as well w3, w4, wj yields that k is divisible by
both det(w2, wj) and det(w3, wj) for all j > 4. Due to bj1 = bj2 we may assume j1 < j2
from here on. We have that the second coordinates of w3, wj1 , wj2 all equal one. Thus
from w3, wj1 , wj2 being oriented counter-clockwise we deduce

det(w3, wj2) = a3 − aj2 ≥ 2.
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Note j2 > 4 and det(w2, wj2) = det(w3, wj2) + 1. We conclude that k has a factor of the
form n(n+ 1) where n ≥ 2. Now µ2 = kb4 < 9 forces µ2 = k = 6 and b4 = 1 i.e. j1 = 4.
Additionally, we obtain a3 − aj2 = 2. Furthermore, we have

2a3 − aj3 = det(w2, wj3) | k = 6, 2a3 − aj3 + 2 = det(w3, wj3) | k = 6.

The only positive integer n such that 6 is divisible by n as well as n+ 2 is n = 1. Thus
2a3 − aj3 = 1. Similar arguments give 3a3 − aj4 = 3. We have

wj2 = (a3 − 2, 1), wj3 = (2a3 − 1, 2), wj4 = (3a3 − 3, 3).

Checking the orientation of wj2 , wj3 , wj4 shows j2 = 7, j3 = 5, and j4 = 6. Hence we
may apply Lemma 2.5.3 to X(η3) and wj3 = w5, wj2 = w7. We obtain det(w5, w7) = 1,
yet this is a contradiction, since

det(wj3 , wj2) = 2a3 − 1− 2(a3 − 2) = 3.

Finally we deal with bj3 = 2 and bj4 = 5. Inserting into (2.3) gives kb4 = µ2 < 11.
As b4 · · · b7 = 10 divides µ2, we arrive at µ2 = 10. Due to bj1 = bj2 we assume j1 < j2
from here on. We have that the second coordinates of w3, wj1 , wj2 all equal one. Thus
from w3, wj1 , wj2 being oriented counter-clockwise we deduce

det(w3, wj2) = a3 − aj2 ≥ 2.

Note j2 > 4 and det(w2, wj2) = det(w3, wj2) + 1. Applying Lemma 2.5.4 to X(η2)
and w2, w4, wj2 as well as w3, w4, wj2 yields that k is divisible by both det(w2, wj2) and
det(w3, wj2). We conclude that k and thus µ2 = 10 has a factor of the form n(n+ 1) for
some n ≥ 2. A contradiction.

2.8 Proof of Theorem 2.1.1: Collecting candidates III
We treat Case III from Remark 2.5.11, i.e., the degree µ of the relation lies in the
bounding ray %1 of the effective cone.

Lemma 2.8.1. Let X = X(λ) be as in Setting 2.5.1 and 1 ≤ i < j ≤ r such that g
neither depends on Ti nor on Tj. If X is quasismooth, then wi, wj lie either both in λ−
or both in λ+.

Proof. Otherwise, we may assume wi ∈ λ− and wj ∈ λ+. Then γi,j is an X-face and
X̄(γi,j) is a singular point of X̄. According to Proposition 2.3.5 (iv), this contradicts
quasismoothness of X.

Proof of Theorem 2.1.1: Part III. We may assume that the ray %1 is generated by the
vector (1, 0). Letm be the number with w1, . . . , wm ∈ %1 and wm+1, . . . , w7 6∈ %1. Observe
that due to µ ∈ %1, the relation g only depends on T1, . . . , Tm.

The first step is to show that only for m = 5, the specifying data w1, . . . , w7 and µ in
K = Z2 allow a hypersurface Cox ring. Since µ ∈ %1, Proposition 2.2.4 yields m ≥ 3. As
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Mov(X) is of dimension two, we must have m ≤ 5; see Setting 2.5.1. Lemma 2.8.1 shows
wm+1, . . . , wr ∈ λ+. Applying Lemma 2.5.4 to triples w1, w2, wi for i ≥ m+ 1, we obtain

µ = (µ1, 0), wi = (ai, 0), i = 1, . . . ,m, wi = (ai, 1), i = m+ 1, . . . , 7,

where, for any two 1 ≤ i < j ≤ m, the numbers ai and aj are coprime and we may
assume a7 = 0. Moreover, we must have am+1 = . . . = a6, because otherwise we obtain
a GIT cone λ 6= η ∈ Λ(R) with η◦ ∈ Mov(R)◦ and the associated variety X(η) is not
quasismooth by Lemma 2.8.1, contradicting Remark 2.5.12. Proposition 2.3.7 and the
fact that X is Fano give us

(a1 + . . .+ a6 − µ1, 7−m) = −KX ∈ λ◦ = cone((1, 0), (am+1, 1))◦.

Since a1, . . . , am are pairwise coprime, the component µ1 of the degree of the relation
g is greater or equal to a1 · · · am. Using moreover am+1 = . . . = a6, we derive from the
above Fano condition

a1 · · · am ≤ µ1 < a1 + · · ·+ am − am+1,

where we may assume a1 ≤ . . . ≤ am. We exclude m = 3: here, g = g(T1, T2, T3), the
above inequality forces a1 = a2 = 1, hence g(T1, T2, 0) is classically homogeneous and T3
is not prime in R, a contradiction. Let us discuss m = 4. The above inequality and
pairwise coprimeness of the ai leave us with

a1 = a2 = a3 = 1, a1 = a2 = 1, a3 = 2, a4 = 3.

In the case a3 = 1, we must have µ1 = ka4 with some k ∈ Z≥2, because otherwise, the
relation would be redundant or, seen similarly as above, one of T1, T2, T3 would not be
prime in R. The inequality gives (k − 1)a4 < 3 − am+1. We arrive at the following
possibilities:

am+1 = a4 = 1, k = 2, am+1 = 0, a1 = 1, k = 2, 3, am+1 = 0, a1 = k = 2.

The first constellation implies that R is not factorial and hence is excluded. In the each
of remaining ones, X is a product of P2 and a surface Y which must be smooth as X is
so. Moreover, for the Picard numbers, we have

ρ(X) = ρ(P2) + ρ(Y ).

Thus, ρ(Y ) = 1. Finally, being a Mori fiber, Y is a del Pezzo surface. We arrive at
Y = P2 and hence X is toric. A contradiction to X having a hypersurface Cox ring. We
conclude that m = 5 is the only possibility. In this case, λ = cone(w1, w6) holds and our
degree matrix is of the form

Q =
[
a1 . . . a5 a6 0
0 . . . 0 1 1

]
1 ≤ a1 ≤ . . . ≤ a5, 0 ≤ a6.
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As mentioned before, g neither depends on T6 nor on T7. Consequently, we can write R
as a polynomial ring over a K-graded subalgebra R′ ⊆ R as follows:

R = R′[T6, T7], R′ := C[T1, . . . , T5]/〈g〉.

Moreover, R′ is Z-graded via deg(Ti) := ai. We claim that the Z-graded algebra R′ is a
smooth Fano hypersurface Cox ring. if theK-graded algebra R is so. First observe that R′
inherits the properties of an abstract Cox ring from R. Moreover, with X̄ ′ = V (g) ⊆ C5,
we have X̄ = X̄ ′ × C2. Now, the action of the one-dimensional torus H ′ = SpecC[Z] on
X̄ ′ admits a unique projective quotient in the sense of Construction 2.3.2, namely

X ′ = X̂ ′//H ′, X̂ ′ = X̄ ′ \ {0}.

Propositions 2.3.3 and 2.3.7 show that X ′ is a Fano variety. Observe that each X ′-face of
γ′0 4 γ′ of the orthant γ′ ⊆ Q5 defines and X-face γ0 = γ′0 + cone(e6, e7). In particular,
using Proposition 2.3.5 (ii) and (iv), we see that X ′ is smooth if X is so. Moreover, R′ is
a smooth hypersurface Cox ring if R is so. The smooth Fano threefolds with hypersurface
Cox ring are listed in [51, Thm. 4.1], which gives us the possible values of a1, . . . , a5 and
from the Fano condition on X, we infer a6 + µ1 < a1 + . . .+ a5. So, we end up with the
specifying data as in Theorem 2.1.1 Numbers 58 to 67.

2.9 Proof of Theorem 2.1.1: Verification
The next to last step in the proof of Theorem 2.1.1 is to make sure that specifying data
as in Numbers 1 to 67 indeed lead to smooth general hypersurface Cox rings.

Let (Q,µ) be specifying data from Theorem 2.1.1. Consider the linear Z2-grading on
S = K[T1, . . . , T7] given by Q : Z7 → Z2. We run Construction 2.4.1 with τ ∈ Λ(S)
such that −K ∈ τ◦ holds. In each case one easily verifies −K ∈ Mov(S)◦, so the
desired τ always exists. We start constructing a non-empty open subset U ⊆ Uµ as in
Definition 2.4.5, thereby obtaining a Fano general hypersurface Cox ring. Afterwards we
shrink U suitably to achieve smoothness.

Table 2.1 on page 106 lists for each 1 ≤ i ≤ 7 a µ-homogeneous prime binomial
T κ−T ν ∈ S not depending on Ti. Thus, Proposition 2.4.11 provides us with a non-empty
open subset U ⊆ Sµ such that T1, . . . , Tr define primes in Rg for all g ∈ U . Since µ 6= wi
holds for all i, Remark 2.4.9 ensures that T1, . . . , T7 are a minimal system of generators
for Rg, whenever g ∈ U . The next step is to make sure that each Rg admits unique
factorization. Here we encounter three different classes of candidates.
Numbers 1–21, 26–41, 44, 46, 48, and 50–67. One directly checks that the convex hull
over the ν ∈ Z7 with Q(ν) = µ is Dolgachev polytope; we have used the Magma program
from Intrinsic A.3.5 for this purpose. Proposition 2.4.13 (ii) ensures that Rg is factorial
after suitably shrinking U .
Numbers 22–25. Here, the cone τ ′ = cone(w3) ∈ Λ(S) satisfies (τ ′)◦ ⊆ Mov(S)◦. Thus,
Construction 2.4.1 gives raise to a toric variety Z ′. We have µ ∈ (τ ′)◦ and one directly
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verifies that µ is base point free for Z ′. Hence, Proposition 2.4.13 (i) shows that after
shrinking U suitably, Rg admits unique factorization in Rg for all g ∈ U .
Numbers 42, 43, 45, 47, 49. After applying a suitable coordinate change, the specifying
data (Q,µ) is as in the following table.

No. Q µ

42
[

1 1 1 2 2 2 0
−1 −1 −1 −1 −1 −1 1

]
(4,−2)

43 (6,−3)

45
[

1 1 1 2 2 4 0
−1 −1 −1 −1 −1 −2 1

]
(8,−4)

47
[

1 1 1 2 4 6 0
−1 −1 −1 −1 −2 −3 1

]
(12,−6)

49
[

1 1 2 2 2 3 0
−1 −1 −1 −1 −1 −2 1

]
(6,−3)

We apply Corollary 2.4.20. In each case, conditions (i) and (ii) from Corollary 2.4.20
can be directly checked. Condition (iii) is not affected by coordinate changes, hence is
fullfilled according to the preceding considerations of U . As a result, we may shrink U
such that each Rg is a factorial ring.
Cutting U down to Uµ leads to a general Fano hypersurface Cox ring. The final step is
to attain Xg being smooth. Applying the Magma program from Intrinsic A.2.5 shows
that Zµ is smooth in all 67 cases. Observe that we have µ ∈ τ except for Numbers 13, 14,
15, and 33. These four cases will be treated separately. For the other case we can verify
base point freeness of µ on Z and hence may apply Corollary 2.4.29 allowing us to shrink
U once more such that Xg is smooth for all g ∈ U . We turn to the four exceptional cases.
For smoothness of Xg, it suffices to show that X̂g is smooth; see Proposition 2.4.21. By
Proposition 2.4.23, it suffices to find some g ∈ Sµ such that grad(g) has no zeroes in Ẑ,
then shrinking U suitably yields that X̂g is smooth for all g ∈ U . We just chose a random
g of degree µ and verified this using [69]. The subsequent polynomials g13, . . . , g33 do the
job for the respective numbers of Theorem 2.1.1:

g13 = 8T1T
2
5 + 7T1T5T6 + 7T1T5T7 + 6T1T

2
6 + 4T1T6T7 + T1T

2
7 + 7T2T

2
5 + 7T2T5T6 + 3T2T5T7

+ 8T2T
2
6 + 5T2T6T7 + 8T2T

2
7 + 5T3T

2
5 + 4T3T5T6 + 9T3T5T7 + 2T3T

2
6 + 9T3T6T7 + T3T

2
7

+ 8T4T5 + 3T4T6 + 6T4T7,

g14 = T 2
1 T

3
5 + T 2

1 T
2
5 T6 + T 2

1 T
2
5 T7 + 4T 2

1 T5T
2
6 + T 2

1 T5T6T7 + T 2
1 T5T

2
7 + 6T 2

1 T
3
6 + T 2

1 T
2
6 T7

+ T 2
1 T6T

2
7 + 3T 2

1 T
3
7 + T1T2T

3
5 + T1T2T

2
5 T6 + 6T1T2T

2
5 T7 + T1T2T5T

2
6 + T2T5T6T7

+ T1T2T5T
2
7 + T1T2T

3
6 + 2T1T2T

2
6 T7 + T1T2T6T

2
7 + T1T2T

3
7 + 8T1T3T

3
5 + T1T3T

2
5 T6

+ 8T1T3T
2
5 T7 + T1T3T5T

2
6 + T1T3T5T6T7 + T1T3T5T

2
7 + T1T3T

3
6 + 5T1T3T

2
6 T7

+ T1T3T6T
2
7 + T1T3T

3
7 + 3T1T4T

2
5 + T1T4T5T6 + 4T1T4T5T7 + 9T1T4T

2
6 + T1T4T6T7

+ T1T4T
2
7 + 5T 2

2 T
3
5 + 3T 2

2 T
2
5 T6 +2 T 2

5 T7 + 5T 2
2 T5T

2
6 +2 T5T6T7 + T 2

2 T5T
2
7 + 5T 2

2 T
3
6

+ T 2
2 T

2
6 T7 + T 2

2 T6T
2
7 9T 2

2 T
3
7 + T2T3T

3
5 + 4T2T3T

2
5 T6 + T2T3T

2
5 T7 + T2T3T5T

2
6
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+ 2T2T3T5T6T7 + T2T3T5T
2
7 + 9T2T3T

3
6 + T2T3T

2
6 T7 + T2T3T6T

2
7 + 9T2T3T

3
7 + T2T4T

2
5

+ 6T2T4T
2
6 + T2T4T6T7 + T2T4T

2
7 + 5T 2

3 T
3
5 + T 2

3 T
2
5 T6 + 8T 2

3 T
2
5 T7 + T 2

3 T5T
2
6 + T 2

3 T5T6T7

+ 4T 2
3 T5T

2
7 + T 2

3 T
3
6 + 7T 2

3 T
2
6 T7 + T 2

3 T6T
2
7 + 8T 2

3 T
3
7 + T3T4T

2
5 + T3T4T5T6 + 5T3T4T5T7

+ T3T4T
2
6 + T3T4T6T7 + 3T3T4T

2
7 + T 2

4 T5 + T 2
4 T6 + T 2

4 T7,

g15 = T 4
1 T

3
7 + 6T 3

1 T2T
3
7 + 9T 3

1 T3T
3
7 + 4T 3

1 T5T
2
7 + 3T 3

1 T6T
2
7 + 4T 2

1 T
2
2 T

3
7 + T 2

1 T2T3T
3
7

+ 3T 2
1 T2T5T

2
7 + 5T 2

1 T2T6T
2
7 + 8T 2

1 T
2
3 T

3
7 + 5T 2

1 T3T5T
2
7 + 5T 2

1 T3T6T
2
7 + 7T 2

1 T4T
2
7

+ 2T 2
1 T

2
5 T7 + 5T 2

1 T5T6T7 + 3T 2
1 T

2
6 T7 + 8T1T

3
2 T

3
7 + 7T1T

2
2 T3T

3
7 + 7T1T

2
2 T5T

2
7

+ 6T1T
2
2 T6T

2
7 + 6T1T2T

2
3 T

3
7 + 2T1T2T3T5T

2
7 + 5T1T2T3T6T

2
7 + 2T1T2T4T

2
7 + 2T1T2T

2
5 T7

+ 6T1T2T5T6T7 + 2T1T2T
2
6 T7 + 5T1T

3
3 T

3
7 + 4T1T

2
3 T5T

2
7 + 7T1T

2
3 T6T

2
7 + 4T1T3T4T

2
7

+ 3T1T3T
2
5 T7 + 9T1T3T5T6T7 + 6T1T3T

2
6 T7 + 8T1T4T5T7 + T1T4T6T7 + 3T1T

3
5 + 8T1T

2
5 T6

+ 4T1T5T
2
6 + 4T1T

3
6 + 4T 4

2 T
3
7 + 3T 3

2 T3T
3
7 + 6T 3

2 T5T
2
7 + 9T 3

2 T6T
2
7 + 9T 2

2 T
2
3 T

3
7

+ 8T 2
2 T3T5T

2
7 + 9T 2

2 T3T6T
2
7 + 4T 2

2 T4T
2
7 + 2T 2

2 T
2
5 T7 + 2T 2

2 T5T6T7 + 7T 2
2 T

2
6 T7 + 6T2T

3
3 T

3
7

+ 7T2T
2
3 T5T

2
7 + 5T2T

2
3 T6T

2
7 + 9T2T3T4T

2
7 + 7T2T3T

2
5 T7 + 3T2T3T5T6T7 + 8T2T3T

2
6 T7

+ 7T2T4T5T7 + 9T2T4T6T7 + 3T2T
3
5 + 4T2T

2
5 T6 + 8T2T5T

2
6 + 4T2T

3
6 + 8T 4

3 T
3
7 + 8T 3

3 T5T
2
7

+ 4T 3
3 T6T

2
7 + 8T 2

3 T4T
2
7 + 6T 2

3 T
2
5 T7 + 2T 2

3 T5T6T7 + 3T 2
3 T

2
6 T7 + T3T4T5T7 + 9T3T4T6T7

+ 5T3T
3
5 + T3T

2
5 T6 + 4T3T5T

2
6 + 4T3T

3
6 + 8T 2

4 T7 + T4T
2
5 + 6T4T5T6 + 4T4T

2
6 ,

g33 = 2T 4
1 T

6
5 + 7T 4

1 T
5
5 T6 + 3T 4

1 T
5
5 T7 + 9T 4

1 T
4
5 T

2
6 + 9T 4

1 T
4
5 T6T7 + 6T 4

1 T
4
5 T

2
7 + 8T 4

1 T
3
5 T

3
6

+ 8T 4
1 T

3
5 T

2
6 T7 + 8T 4

1 T
3
5 T6T

2
7 + 8T 4

1 T
3
5 T

3
7 + 6T 4

1 T
2
5 T

4
6 + 9T 4

1 T
2
5 T

3
6 T7 + 8T 4

1 T
2
5 T

2
6 T

2
7

+ 9T 4
1 T

2
5 T6T

3
7 + 6T 4

1 T
2
5 T

4
7 + 5T 4

1 T5T
5
6 + T 4

1 T5T
4
6 T7 + 5T 4

1 T5T
3
6 T

2
7 + 5T 4

1 T5T
2
6 T

3
7

+ 6T 4
1 T5T6T

4
7 + T 4

1 T5T
5
7 + 4T 4

1 T
6
6 + 8T 4

1 T
5
6 T7 + 2T 4

1 T
4
6 T

2
7 + 5T 4

1 T
3
6 T

3
7 + 5T 4

1 T
2
6 T

4
7

+ 5T 4
1 T6T

5
7 + 7T 4

1 T
6
7 + 4T 3

1 T2T
5
5 + 6T 3

1 T2T
4
5 T6 + 5T 3

1 T2T
4
5 T7 + 4T 3

1 T2T
3
5 T

2
6

+ 9T 3
1 T2T

3
5 T6T7 + 9T 3

1 T2T
3
5 T

2
7 + 7T 3

1 T2T
2
5 T

3
6 + 8T 3

1 T2T
2
5 T

2
6 T7 + 6T 3

1 T2T
2
5 T6T

2
7

+ 9T 3
1 T2T

2
5 T

3
7 + 3T 3

1 T2T5T
4
6 + 2T 3

1 T2T5T
3
6 T7 + 8T 3

1 T2T5T
2
6 T

2
7 + 9T 3

1 T2T5T6T
3
7

+ 8T 3
1 T2T5T

4
7 + 5T 3

1 T2T
5
6 + 4T 3

1 T2T
4
6 T7 + 8T 3

1 T2T
3
6 T

2
7 + T 3

1 T2T
2
6 T

3
7 + 6T 3

1 T2T6T
4
7

+ 3T 3
1 T2T

5
7 + 6T 3

1 T4T
4
5 + 5T 3

1 T4T
3
5 T6 + 5T 3

1 T4T
3
5 T7 + 4T 3

1 T4T
2
5 T

2
6 + T 3

1 T4T
2
5 T6T7

+ 4T 3
1 T4T

2
5 T

2
7 + 8T 3

1 T4T5T
3
6 + T 3

1 T4T5T
2
6 T7 + 2T 3

1 T4T5T6T
2
7 + 8T 3

1 T4T5T
3
7 + 8T 3

1 T4T
4
6

+ 3T 3
1 T4T

3
6 T7 + 5T 3

1 T4T
2
6 T

2
7 + 3T 3

1 T4T6T
3
7 + 8T 3

1 T4T
4
7 + 4T 2

1 T
2
2 T

4
5 + 7T 2

1 T
2
2 T

3
5 T6

+ 6T 2
1 T

2
2 T

3
5 T7 + 3T 2

1 T
2
2 T

2
5 T

2
6 + 4T 2

1 T
2
2 T

2
5 T6T7 + 2T 2

1 T
2
2 T

2
5 T

2
7 + 7T 2

1 T
2
2 T5T

3
6

+ 3T 2
1 T

2
2 T5T

2
6 T7 + T 2

1 T
2
2 T5T6T

2
7 + T 2

1 T
2
2 T5T

3
7 + 7T 2

1 T
2
2 T

4
6 + 3T 2

1 T
2
2 T

3
6 T7 + 7T 2

1 T
2
2 T

2
6 T

2
7

+ 6T 2
1 T

2
2 T6T

3
7 + 2T 2

1 T
2
2 T

4
7 + 7T 2

1 T2T4T
3
5 + T 2

1 T2T4T
2
5 T6 + 8T 2

1 T2T4T
2
5 T7 + 4T 2

1 T2T4T5T
2
6

+ 3T 2
1 T2T4T5T6T7 + 3T 2

1 T2T4T5T
2
7 + T 2

1 T2T4T
3
6 + 8T 2

1 T2T4T
2
6 T7 + T 2

1 T2T4T6T
2
7

+ 2T 2
1 T2T4T

3
7 + 6T 2

1 T3T
3
5 + 8T 2

1 T3T
2
5 T6 + 3T 2

1 T3T
2
5 T7 + 5T 2

1 T3T5T
2
6 + 6T 2

1 T3T5T6T7

+ 8T 2
1 T3T5T

2
7 + 9T 2

1 T3T
3
6 + 9T 2

1 T3T
2
6 T7 + 9T 2

1 T3T6T
2
7 + 3T 2

1 T3T
3
7 + 8T 2

1 T
2
4 T

2
5

+ 9T 2
1 T

2
4 T5T6 + 3T 2

1 T
2
4 T5T7 + 4T 2

1 T
2
4 T

2
6 + 3T 2

1 T
2
4 T6T7 + 4T 2

1 T
2
4 T

2
7 + 9T1T

3
2 T

3
5
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+ 6T1T
3
2 T

2
5 T6 + T1T

3
2 T

2
5 T7 + 2T1T

3
2 T5T

2
6 + 5T1T

3
2 T5T6T7 + 8T1T

3
2 T5T

2
7 + 4T1T

3
2 T

3
6

+ 6T1T
3
2 T

2
6 T7 + 2T1T

3
2 T6T

2
7 + 9T1T

3
2 T

3
7 + 6T1T

2
2 T4T

2
5 + 7T1T

2
2 T4T5T6 + 8T1T

2
2 T4T5T7

+ T1T
2
2 T4T

2
6 + 9T1T

2
2 T4T6T7 + 9T1T

2
2 T4T

2
7 + 6T1T2T3T

2
5 + 9T1T2T3T5T6 + 6T1T2T3T5T7

+ 2T1T2T3T
2
6 + 2T1T2T3T6T7 + 4T1T2T3T

2
7 + 5T1T2T

2
4 T5 + T1T2T

2
4 T6 + 5T1T2T

2
4 T7

+ 6T1T3T4T5 + 4T1T3T4T6 + 7T1T3T4T7 + 3T1T
3
4 + 8T 4

2 T
2
5 + T 4

2 T5T6 + T 4
2 T5T7 + T 4

2 T
2
6

+ 8T 4
2 T6T7 + 5T 4

2 T
2
7 + 6T 3

2 T4T5 + 9T 3
2 T4T6 + 7T 3

2 T4T7 + 9T 2
2 T3T5 + 3T 2

2 T3T6 + 9T 2
2 T3T7

+ 4T 2
2 T

2
4 + 6T2T3T4 + 8T 2

3 .

We finish the proof by showing that each two varieties belonging to different families
from Theorem 2.1.1 are non-isomorphic. If two such varieties are isomorphic, then their
Cox rings are isomorphic as graded rings. Let us highlight two invariants in connection
with graded rings.

An important invariant of a graded ring R is the set of generator degrees ΩR ⊆ K,
which in the situation of Setting 2.5.1 is given as

ΩR = {w1, . . . , wr} ⊆ K.

The set of generator degrees is unique and does not depend on a graded presentation
of R. From this emerges another invariant: Choose pairwise different u1, . . . , um ∈ K
such that ΩR = {u1, . . . , um} and set di := dimKRui . By suitably reordering u1, . . . , um
we achieve d1 ≤ . . . ≤ dm. We call (d1, . . . , dm) the generator degree dimension tuple
of R. If two graded rings are isomorphic, then their generator degree dimension tuples
coincide.

With the help of the Magma function Intrinsic A.4.2 we have computed the anticanonical
self-intersection numbers of the families from Theorem 2.1.1. Among all 67 families there
are 56 families with a unique anticanonical self-intersection number K4. It remains to
deal with those cases where families from Theorem 2.1.1 cannot be distinguished by their
anticanonical self-intersection number. There are precisely nine such cases.

Case 1: Numbers 1, 20, 65. Any member X of these families satisfies K4
X = 432. However,

the subsequent table shows that the generator degree dimension tuples (d1, . . . , dl)
associated with each family are pairwise different.

No. l d1 d2 d3

1 2 3 4 –
20 3 1 3 6
65 2 2 5 –
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Case 2: Numbers 13, 16, 40. Any memberX of these families satisfies K4
X = 352. However,

the subsequent table shows that the generator degree dimension tuples (d1, . . . , dl)
associated with each family are pairwise different.

No. l d1 d2 d3

13 3 3 3 10
16 3 2 4 9
40 3 1 3 6

Case 3: Numbers 19, 29, 63. Any memberX of these families satisfies K4
X = 192. However,

the subsequent table shows that the generator degree dimension tuples (d1, . . . , dl)
associated with each family are pairwise different.

No. l d1 d2 d3

19 3 1 3 6
29 3 3 3 10
63 3 2 5 –

Case 4: Numbers 30, 47. Let X30 be a member of Number 30 and X47 a member of
Number 47. The anticanonical self-intersection number of both X30 and X47 equals 18.
On the other side, the Cox ring of X30 has three generator degrees whereas the Cox ring
of X47 has five generator degrees. Consequently, X30 and X47 are non-isomorphic.
Case 5: Numbers 31, 39. Let X31 be a member of Number 31 and X39 a member of
Number 39. The anticanonical self-intersection number of both X31 and X39 equals 48.
On the other side, the Cox ring of X31 has three generator degrees whereas the Cox ring
of X39 has five generator degrees. Consequently, X31 and X39 are non-isomorphic.
Case 6: Numbers 35, 50. Let X35 be a member of Number 35 and X50 a member of
Number 50. The anticanonical self-intersection number of both X35 and X50 equals 144.
On the other side, the Cox ring of X35 has three generator degrees whereas the Cox ring
of X50 has four generator degrees. Consequently, X35 and X50 are non-isomorphic.
Case 7: Numbers 27, 59. Let X27 be a member of Number 27 and X59 a member of
Number 59. The anticanonical self-intersection number of both X27 and X59 equals 64.
On the other side, the Cox ring of X27 has three generator degrees whereas the Cox ring
of X59 has four generator degrees. Consequently, X27 and X59 are non-isomorphic.
Case 8: Numbers 14, 52. Let X14 be a member of Number 14 and X52 a member of
Number 52. The anticanonical self-intersection number of both X14 and X52 equals 65.
On the other side, the Cox ring of X14 has three generator degrees whereas the Cox ring
of X52 has five generator degrees. Consequently, X14 and X52 are non-isomorphic.
Case 9: Numbers 3, 60. Let X3 be a member of Number 3 and X60 a member of
Number 60. The anticanonical self-intersection number of both X3 and X60 equals 80.
On the other side, the Cox ring of X3 has two generator degrees whereas the Cox ring of
X60 has five generator degrees. Consequently, X3 and X60 are non-isomorphic.
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2.9. Proof of Theorem 2.1.1: Verification
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2.10. Birational geometry

2.10 Birational geometry
We begin with a look at the birational geometry of the Fano fourfolds from Theorem 2.1.1.
Let us briefly recall the necessary background. Consider any Q-factorial Mori dream
space X = X(λ) arising from an abstract Cox ring R = ⊕KRw as in Construction 2.3.2.
Assume that KQ = ClQ(X) is of dimension two. Then the GIT-fan Λ(R) looks as follows:

w1

w2

wr−1wr

λ

where, as in Setting 2.5.1, we order the generator degrees w1, . . . , wr ∈ K of R counter-
clockwise. The moving cone Mov(X) is spanned by w2 and wr−1. If w2 ∈ λ holds, then
with τ = cone(w2) we have

X̄ss(λ) ⊆ X̄ss(τ),
which induces a morphism π : X → Y from X = X̄ss(λ)//H onto Y = X̄ss(τ)//H. Recall
that π is an elementary contraction in the sense of [31]. In particular, we have the
following two possibilities:

• If w2 6∈ cone(w1) holds, then π : X → Y is birational and contracts the prime
divisor D1 ⊆ X corresponding to the ray through w1. In this case, we write X ∼ Y
for the morphism π and denote by C ⊆ Y the center of the contraction.

• π : X → Y is a proper fibration with dim(Y ) < dim(X). In this case, we write
X → Y for the morphism π and denote by F ⊆ X the general fiber.

Similarly, if wr−2 ∈ Mov(X) holds, we use the same notation. In general, λ need not to
have common rays with Mov(X). However, given a ray % ⊆ Mov(X), we find a small
quasimodification X 99K X ′, where X ′ stems from a chamber λ′ ∈ Λ(R) sharing the
ray % with Mov(X). We then write X ′ ∼ Y or X ′ → Y etc. accordingly.

Remark 2.10.1. If X is as in Theorem 2.1.1, then X admits at least one elementary
contraction and at most one small quasimodification X 99K X ′. If there is one, then X ′
is smooth due to Remark 2.5.12.

Now assume in addition that X has a hypersurface Cox ring and consider the toric
embedding X = Xg ⊆ Z from Construction 2.4.1. Given an elementary contraction of
π : Xg → Y , a suitable choice of the cone τ in Construction 2.4.1 leads to a commutative
diagram

X ⊆

π
��

Z

πZ

��
Y ⊆ W

where πZ : Z → W is an elementary contraction of the ambient toric variety Z. In
particular, we have in this setting that for every point y ∈ Y , the fiber π−1(y) ⊆ X is
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contained in the fiber π−1
Z (y) ⊆ Z. This gives in particular a description for the general

fiber F ⊆ X as a subvariety of the general fiber FZ ⊆ Z.
Let us fix the necessary notation to formulate the result. By Y

d;ak1
1 ,...,akn

n
we denote

a (not necessarily general) hypersurface of degree d in the weighted projective space
P
a

k1
1 ,...,akn

n
, where, as usual, aki

i means that ai ∈ Z≥1 is repeated ki times. For a
hypersurface of degree d in the classical projective space Pn we just write Yd;n. In our
situation, this notation applies to the target spaces Y ⊆ W in case of a birational
elementary contraction and to the general fiber F ⊆ FZ in case of a fibration.

Proposition 2.10.2. The subsequent table lists the possible elementary contractions
for X as in Theorem 2.1.1, where X is not a cartesian product; the notation Y ∗ in the
context of a birational contraction indicates that the target space is singular.

No. Contraction 1 Contraction 2

1 X → P3 X → P2
F = Y1;2 F = Y1;3

2 X → P3 X → P2
F = Y1;2 F = Y2;3

3 X → P3 X → P2
F = Y1;2 F = Y3;3

4 X → P3 X → P2
F = Y2;2 F = Y1;3

5 X → P3 X → P2
F = Y2;2 F = Y2;3

6 X → P3 X → P2
F = Y2;2 F = Y3;3

7 X → P3 X ∼ Y2;5
F = Y1;2 C = P1

8 X → P3 X ∼ Y3;5
F = Y2;2 C = P1

9 X → P3 X ∼ Y ∗3;5
F = Y1;2 C = P1

10 X → P3 X ∼ Y ∗4;5
F = Y2;2 C = P1

11 X → P3 X ∼ Y ∗3;14,22

F = Y1;2 C = P1

12 X → P3 X ∼ Y ∗5;14,22

F = Y2;2 C = P1

13 X → P2 X ′ → P2
F = Y2;3 F = Y1;3

No. Contraction 1 Contraction 2

14 X → P2 X ′ → P2
F = Y3;3 F = Y2;3

15 X → P2 X ′ ∼ Y4;15,2
F = Y3;2 C = P1

16 X → P3 X ′ → P1
F = Y1;2 F = Y2;4

17 X → P3 X ′ → P1
F = Y2;2 F = Y3;4

18 X ∼ Y4;5 X → P2
C = P2 F = Y3;3

19 X ∼ Y3;5 X → P2
C = P2 F = Y2;3

20 X ∼ Y2;5 X → P2
C = P2 F = Y1;3

21 X ∼ Y4;15,2 X → P1
C = P2 F = Y3;4

22 X ′ → P1 X → P2
F = Y2;4 F = Y2;3

23 X ′ → P1 X → P2
F = Y3;4 F = Y3;3

24 X ′ → P1 X → P2
F = Y4;14,2 F = Y4;13,2

25 X ′ → P1 X → P2
F = Y6;13,2,3 F = Y6;12,2,3

26 X → P1 X → P3
F = Y2;4 F = Y2;2
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No. Contraction 1 Contraction 2

27 X → P1 X → P3
F = Y4;14,2 F = Y2;2

28 X → P1 X → P3
F = Y6;14,3 F = Y2;2

29 X → P2 X → P2
F = Y2;3 F = Y2;3

30 X → P2 X → P2
F = Y3;3 F = Y3;3

31 X → P2 X → P2
F = Y2;3 F = Y4;13,2

32 X → P2 X → P2
F = Y4;13,2 F = Y4;13,2

33 X ′ ∼ Y ∗6;14,2,3 X → P2
C = {pt} F = Y4;13,2

34 X ∼ Y2;5 X → P1
C = P1 × P1 F = Y2;4

35 X ∼ Y3;5 X → P1
C = Y3;3 F = Y3;4

36 X ∼ Y4;5 X → P1
C = Y4;3 F = Y4;4

37 X ∼ Y4;15,2 X → P1
C = Y4;13,2 F = Y4;14,2

38 X ∼ Y6;15,3 X → P1
C = Y6;13,3 F = Y6;14,3

39 X ∼ Y6;14,2,3 X → P1
C = Y6;12,2,3 F = Y6;13,2,3

40 X ∼ Y2;5 X → P2
C = P1 F = Y2;3

41 X ∼ Y3;5 X → P2
C = Y3;2 F = Y3;3

42 X ∼ Y ∗4;13,23 X → P2
C = P1 F = Y2;3

43 X ∼ Y ∗6;12,23 X → P2
C = Y3;2 F = Y3;3

44 X ∼ Y4;15,2 X → P2
C = Y4;12,2 F = Y4;13,2

No. Contraction 1 Contraction 2

45 X ∼ Y ∗8;13,22,4 X → P2
C = Y4;12,2 F = Y4;13,2

46 X ∼ Y6;14,2,3 X → P2
C = Y6;1,2,3 F = Y6;12,2,3

47 X ∼ Y ∗12;13,2,4,6 X → P2
C = Y6;1,2,3 F = Y6;12,2,3

48 X ∼ P4 X ′ → P1
C = P1 F = Y2;4

49 X ∼ Y ∗6;12,23,3 X ′ → P1
C = Y6;23,4 F = Y3;4

50 X ∼ Y ∗4;15,2 X → P2
C = P1 F = Y2;3

51 X ∼ Y ∗6;15,3 X → P2
C = P1 F = Y4;13,2

52 X ∼ Y ∗6;14,2,3 X → P1
C = P1 F = Y4;14,2

53 X ∼ P4 X ∼ Q4
C = P1 × P1 C = {pt}

54 X ∼ Y4;15,2 X ∼ Y4;5
C = Y4;3 C = {pt}

55 X ∼ P4 X ∼ Y ∗3;15,2
C = Y3;3 C = {pt}

56 X ∼ P4 X ∼ Y3;15,3
C = Y4;3 C = {pt}

57 X ∼ Y6;14,2,3 X ∼ Y6;15,3
C = Y4;13,3 C = {pt}

60 X → Y6;13,2,3 X ∼ Y ∗6;14,2,3
F = P1 C = {pt}

62 X → Y4;14,2 X ∼ Y ∗4;15,2
F = P1 C = {pt}

64 X → Y3;4 X ∼ Y ∗3;5
F = P1 C = {pt}

66 X → Y2;4 X ∼ Y ∗2;5
F = P1 C = {pt}

67 X → Y2;4 X ∼ Y ∗2;15,2
F = P1 C = {pt}
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Chapter 2. Smooth Fano fourfolds of Picard number two

The remaining families of Theorem 2.1.1 consist of cartesian products Y × P1 where the
first factor Y is a smooth threedimensional Fano hypersurface of Picard number one as
displayed in the following table.

No. 58 59 61 63 65
Y Y6;14,3 Y6;13,2,3 Y4;14,2 Y3;4 Y2;4

The proof of this proposition is basically a case by case analysis of the contraction
maps in coordinates. We restrict ourselves to perform this in the subsequent remark for
one case, where we even go a bit deeper into the matter and specify also the singular
fibers of the fibration.

Remark 2.10.3. We take a closer look at the varieties X from No. 9 of Theorem 2.1.1.
In this case the specifying data, that means the degree matrix Q and the degree µ of the
relation g, are given by

Q =
[
1 1 1 1 0 0 −1
0 0 0 0 1 1 1

]
, µ = (2, 1).

Due to −K = (1, 2), we have λ = cone(w1, w5). Observe that Mov(R) and λ share
the rays %1 and %5. Thus X admits two elementary contractions π1 : X → Y1 and
π2 : X → Y2 associated to %1 resp. %5. To study π1 and π2 we make use of the toric
embedding X = Xg ⊆ Z from Construction 2.4.1.

First, we discuss π1. Since w2 ∈ %1 holds, the morphism π1 is a fibration. Moreover,
π1 is the restriction of the corresponding ambient toric elementary contraction π1,Z of Z,
which in turn is explicitly given as follows:

X̄ ⊆

��

K7

��

(z1,...,z7)7→(z1,...,z4) // K4

��
X ⊆ Z

π1,Z // P3

Suitably sorting the terms of g yields a presentation g = q1T5 + q2T6 + fT7 where
q1, q2 ∈ K[T1, . . . , T4] both are quadrics and f ∈ K[T1, . . . , T4] is a cubic, each of which
is general. Note that V (g) ⊆ K7 projects onto K4 thus Y1 = P3. For any point
y = [y1, . . . , y4] ∈ P3 the fiber π−1

1,Z(y) of the ambient toric variety is given by the
equations

y2T1 − y1T2 = y3T2 − y2T3 = y4T3 − y3T4 = 0.
Besides we have yi 6= 0 for some i. Taking this into account one directly checks
π−1

1,Z(y) ∼= P2. Being homogeneous g is compatible with this isomorphism, thereby we
obtain

π−1
1 (y) ∼= V (yiq1(y)T0 + yiq2(y)T1 + f(y)T2) ⊆ P2.

We conclude that the general fiber π−1
1 (y) is isomorphic to P1. In addition, V (q1, q2, f) ⊆ P3

consists of precisely 12 points p1, . . . , p12, each of which has fiber π−1
1 (pi) ∼= P2.
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We turn to π2. From w7 /∈ %5 follows that π2 is a birational morphism contracting
the prime divisor V (T7) ⊆ X. The according elementary contraction π2,Z of the ambient
toric variety Z is the blow-up of P5 along C = VP5(T0, . . . , T3) ∼= P1. The situation is as
in the subsequent diagram:

X̄ ⊆

��

K7

��

(z1,...,z7)7→(z1z7,...,z4z7,z5,z6) // K6

��
X ⊆ Z

π2,Z // P5

The target variety Y2 ⊆ P5 of π2 is V (g′) ⊆ P5 where g′ = g(T0, . . . , T6, 1). From this
we infer C ⊆ Y2, so C is the center of π2 as well. In particular π2 is the blow-up of
Y2 along C. Moreover, the polynomial g′ is an irreducible cubic living in 〈T0, . . . , T3〉2.
Consequently, Y2 is singular at every point of C.

2.11 Hodge numbers

Here we determine the Hodge numbers of the Fano fourfolds from Theorem 2.1.1. First,
we note the following simple observation.

Proposition 2.11.1. Let X be a smooth projective Fano fourfold of Picard rank 2. Then
the Hodge diamond of X is the following.

1
0 0

0 2 0
0 h1,2 h2,1 0

0 h1,3 h2,2 h3,1 0
0 h3,2 h2,3 0

0 2 0
0 0

1

Proof. Ampleness of−KX and Kawamata-Viehweg vanishing give hp,0(X) = 0 for any p >
0. Moreover, plugging H i(X,O) = 0 for i = 1, 2 into the cohomology sequence associated
with the exponential sequence yields H2(X,C) ∼= C2. The Hodge decomposition together
with h1,0(X) = h0,1(X) = 0 shows h1,1(X) = 2.

By symmetry, we are left with computing the Hodge numbers h2,1, h3,1 and h2,2.
Here comes our result.

Proposition 2.11.2. The subsequent table lists the Hodge numbers h2,1, h3,1 and h2,2

for X as in Theorem 2.1.1.
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Chapter 2. Smooth Fano fourfolds of Picard number two

No. h2,1 h3,1 h2,2

1 0 0 3
2 0 0 10
3 0 0 29
4 0 0 3
5 0 3 40
6 0 30 185
7 0 0 4
8 0 1 23
9 0 0 14
10 0 18 126
11 0 0 5
12 0 12 95
13 0 0 4
14 0 6 65
15 0 5 55
16 0 0 6
17 0 9 77
18 0 21 143
19 0 1 22
20 0 0 3
21 0 5 53
22 0 0 10

No. h2,1 h3,1 h2,2

23 0 13 103
24 0 35 218
25 0 114 591
26 0 0 10
27 0 20 138
28 0 112 570
29 0 1 22
30 0 45 255
31 0 10 94
32 0 100 508
33 0 24 162
34 0 0 4
35 0 1 28
36 0 22 162
37 0 5 60
38 0 71 402
39 0 24 170
40 0 0 4
41 1 1 23
42 0 0 10
43 1 19 131
44 1 5 54

No. h2,1 h3,1 h2,2

45 1 50 288
46 1 24 163
47 1 159 793
48 0 0 3
49 1 2 31
50 0 3 40
51 0 65 356
52 0 20 139
53 0 0 3
54 0 6 72
55 0 0 8
56 0 1 21
57 0 25 181
58 52 0 2
59 21 0 2
60 21 0 2
61 10 0 2
62 10 0 2
63 5 0 2
64 5 0 2
65 0 0 2
66 0 0 2
67 0 0 2

Proof. We consider the toric embedding X = Xg ⊆ Zg as provided by Construction 2.4.1.
The five-dimensional toric ambient variety Zg is smooth and the decomposition

X =
⋃

γ0∈rlv(X)
X(γ0)

from Construction 2.3.4 is obtained by cutting down the toric orbit decomposition of Zg.
Now the idea is to compute the Hodge numbers in question via the Hodge-Deligne
polynomial, being defined for any variety Y as

e(Y ) :=
∑
p,q

ep,q(Y )xpx̄q ∈ Z[x, x̄],

with ep,q(Y ) as in [52, p. 280]. We also write ep,q instead of ep,q(Y ). Recall that ep,q = eq,p

holds. Moreover, in case that Y is smooth and projective, the ep,q are related to the
Hodge numbers as follows:

ep,q(Y ) = (−1)p+qhp,q(Y ).

The Hodge-Deligne polynomial is additive on disjoint unions, multiplicative on cartesian
products. We list the necessary steps for computing it in low dimensions. On Y = C∗, it
evaluates to xx̄ − 1. For a hypersurface Y ⊆ (C∗)n with no torus factors, one has the
Lefschetz type formula

ep,q(Y ) = ep+1,q+1((C∗)n), for p+ q > n− 1,
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2.11. Hodge numbers

see [52, p. 290]. Moreover, according to [52, p. 291], with the Newton polytope ∆ of the
defining equation of Y , one has the following identity

∑
q≥0

ep,q(Y ) = (−1)p+n−1
(

n

p+ 1

)
+ (−1)n−1ϕn−p(∆),

where, denoting by l∗(B) the number of interior points of a polytope B, the function ϕi
is defined as

ϕ0(∆) := 0, ϕi(∆) :=
i∑

j=1
(−1)i+j

(
n+ 1
i− j

)
l∗(j∆),

This leads to an explicit formula for all ep,0(Y ). Moreover, for dim(Y ) ≤ 3, all the
numbers ep,q are directly calculated using the above formulas. For dim(Y ) = 4, the values
of e1,1 + e1,2 + e1,3 and e2,1 + e2,2 and e3,1 can be directly computed using the above
formulas. By the symmetry ep,q = eq,p these sums involve just four numbers which thus
can be expressed in terms of one of them, say e1,2, plus known quantities. To determine
the value of e1,2 one passes to a smooth compactification Y ′ of Y for which

e1,2(Y ′) = −h1,2(Y ′) = −h3,2(Y ′) = e3,2(Y ′)

holds by Serre’s duality and then observes that e3,2 can be computed for all the strata via
the Lefschetz formula. Now, we apply these principles to the strata Y = X(γ0) that have
no torus factor and compute the desired ep,q. If Y = X(γ0) has a torus factor, then we
use multiplicativity of the Hodge-Deligne polynomial and again the above principles.

Finally, we extend the discussion of the varieties X from Number 9 of Theorem 2.1.1
started in Remark 2.10.3 by some topological aspects.

Remark 2.11.3. Let X be as in Theorem 2.1.1, No. 9. Recall that we have a fibration
X → P3 with general fiber F = P1 and precisely 12 special fibers F1, . . . , F12, lying over
p1, . . . , p12 ∈ P3, each of the Fi being isomorphic to P2. We claim

F 2
i = 1 for i = 1, . . . 12, Fi · Fj = 0 for 1 ≤ i < j ≤ 12.

The second part is clear because of Fi and Fj do not intersect for i < j. In order to
establish the first part, we show F 2

1 = 1, where we may assume p1 = [1, 0, 0, 0]. Consider
the zero sets L1, L2 ⊆ X of two general polynomials in the variables T2, T3, T4. By
definition L1 ∩ L2 = F and L1 ∼ L2, that is the two surfaces are rationally equivalent.
Thus Li ∼ F + Si for some surface Si. Observe that we have

F · Li = 0, Si · Li = 0

because Li is rationally equivalent to a complete intersection of two general polynomials
in T1, . . . , T4, which has empty intersection with Li. We deduce

F 2 = −F · S1 = S1 · S1 = S1 · S2,
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Chapter 2. Smooth Fano fourfolds of Picard number two

using S1 ∼ S2 in the last step. For computing the last intersection number, we may
assume L1 = V (T2, T3, g) and L2 = V (T2, T4, g). Then S1 = V (T2, T3, h1) with

h1 = T−1
4 (q1(T1, 0, 0, T4)T5 + q2(T1, 0, 0, T4)T6 + f(T1, 0, 0, T4)T7),

where the division by T4 can be performed because by hypothesis q1, q2 and f do not
contain a pure power of T1. Similarly S2 = V (T2, T4, h2), where

h2 = T−1
3 (q1(T1, 0, T3, 0)T5 + q2(T1, 0, T3, 0)T6 + f(T1, 0, T3, 0)T7).

It follows that

S1 ∩ S2 = V (T2, T3, T4, α1T1T5 + α2T1T6 + α3T
2
1 T7, β1T1T5 + β2T1T6 + β3T

2
1 T7)

= V (T2, T3, T4, α1T5 + α2T6 + α3T1T7, β1T5 + β2T6 + β3T1T7).

Now one directly checks that S1 ∩ S2 is a point and the intersection is transverse.
Thus, we arrive at S1 · S2 = 1, proving the F 2

1 = 1. Now, fix two general linear forms
`1, `2 ∈ C[T1, . . . , T4] and set

E := V (T6, T7, g) ⊆ X, L := V (`1, `2, g) ⊆ X.

We claim that the classes of E,L, F1, . . . , F12 in H2,2(X) ∩ H4(X,Q) are linearly in-
dependent. First observe that F1, . . . , F12 are linearly independent: passing to the
self-intersection, ∑i aiFi ∼ 0 turns into ∑i a

2
i = 0 and thus, being rational numbers,

all ai vanish. Now, by definition of L one has L2 = L · Fi = 0 for any i, in particular the
class of L cannot be in the linear span of the classes of the 12 fibers. The statement then
follows from E · L = 2, which in turn holds due to

E ∩ L = V (`1, `2, T6, T7, g) = V (`1, `2, T6, T7, q1T5) = V (`1, `2, T6, T7, q1).

Combining linear independence of E,L, F1, . . . , F12 ∈ H2,2(X)∩H4(X,Q) with h2,2(X) = 14
as provided by Proposition 2.11.2, we retrieve that the varieties X from Number 9 of
Theorem 2.1.1 satisfy the Hodge Conjecture; which, in this case, is known to hold also
by [42] and [127, Proof of Lemma 15.2].

2.12 Deformations and automorphisms

We take a look at the deformations of the varieties from Theorem 2.1.1. For any variety
X, we denote by TX its tangent sheaf. If X is Fano, then it is unobstructed and thus its
versal deformation space is of dimension h1(X, TX). The following observation makes
precise how the problem of determining h1(X, TX) is connected with determining the
automorphisms in our setting.

Proposition 2.12.1. Let X be a smooth Fano variety X with a general hypersurface
Cox ring R(X) = C[T1, . . . , Tr]/〈g〉 and associated minimal toric embedding X ⊆ Z.
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Assume that µ = deg(g) ∈ Cl(Z) is base point free and no wi = deg(Ti) ∈ Cl(Z) lies in
µ+ Z≥0w1 + · · ·+ Z≥0wr. Then we have

h1(X, TX) = dim(R(Z)µ)− 1 + rank(Cl(Z))−
r∑
i=1

dim(R(Z)wi) + h0(X, TX)

= −1 + dim(R(Z)µ)− dim(Aut(Z)) + dim(Aut(X)).

Proof. First look at 0 → TX → ı∗TZ → NX → 0, the normal sheaf sequence for the
inclusion ı : X ⊆ Z. By assumption, µ−KX is ample and thus we obtain

h1(X, TX)− h0(X, TX) = −h0(X, ı∗TZ) + h0(X,NX) + h1(X, ı∗TZ),

according to the Kawamata-Viehweg vanishing theorem. The task is to evaluate the right
hand side. First, note that we have

h0(X,NX) = dim(R(X)µ) = dim(R(Z)µ)− 1.

For the remaining two terms, we use the Euler sequence of Z restricted to X which in
our setting is given by

0 // OX ⊗ Cl(Z) //⊕r
i=1OX(Di) // ı∗TZ // 0,

where Di ⊆ X denotes the prime divisor defined by the Cox ring generator Ti. Since X
is Fano, hi(X,OX) vanishes for all i > 0. As first consequence, we obtain

h0(X, ı∗TZ) =
r∑
i=1

dim(R(X)wi)− rank(Cl(Z)) =
r∑
i=1

dim(R(Z)wi)− rank(Cl(Z)),

using R(X)wi
∼= H0(X,Di) and R(X)wi = R(Z)wi , where the latter holds by assumption.

Moreover, we can conclude

h1(X, ı∗TZ) =
r∑
i=1

h1(X,Di).

We evaluate the right hand side. Since X has a general hypersurface Cox ring, Z is
smooth [4, Prop. 3.3.1.12] and µ is base point free, we can infer smoothness of

Di = V (g) ∩ V (Ti) ⊆ Z

from Bertini’s theorem. Now choose ε > 0 such that εDi − KX is nef and big. Then,
using once more the Kawamata-Viehweg vanishing theorem, we obtain

h1(X,Di) = h1(X, KX + (εDi −KX) + (1− ε)Di) = 0.

Consequently, h1(X, ı∗TZ) vanishes. This gives the first equality of the assertion. The
second one follow from [44, Thm. 4.2] and [93, Lemma 3.4].
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Observe that Proposition 2.12.1 applies in particular to all smooth Fano non-
degenerate toric hypersurfaces in the sense of Khovanskii [76] and Definition 1.4.1 of this
thesis, where Lemma 1.3.3 (v) guarantees base point freeness of µ ∈ Cl(Z). Concerning
the varieties from Theorem 2.1.1, we can say the following.

Corollary 2.12.2. For each of the Fano varietes X listed in Theorem 2.1.1, except
possibly numbers 13, 14, 15, 33 and 67, we have

h1(X, TX) = −1 + dim(R(Z)µ)− dim(Aut(Z)) + dim(Aut(X)).

Proof. Using [4, Prop. 3.3.2.8] one directly checks that µ ∈ Cl(X) and hence also
µ ∈ Cl(Z) are base point free in all cases except the Numbers 13, 14, 15 and 33.
Number 67 violates the assumption on the generator degrees.

The only serious task left open by Proposition 2.12.1 for explicitly computing h1(X, TX)
is to determine the dimension of Aut(X). As general tools we mention [65, Thm. 4.4],
the algorithms presented thereafter and their implementation provided by [75]. The
subsequent example discussions indicate how one might proceed in concrete cases.

Example 2.12.3. The variety X from No. 65 is a product of the smooth projective
quadric Q4 ⊆ P4 and a projective line. So, X is known to be infinitesimally rigid. Via
Proposition 2.12.1, this is seen as follows:

h1(X, TX) = −1 + dim(R(Z)µ)− dim(Aut(Z)) + dim(Aut(X))
= −1 + 15− 27 + 13
= 0.

All ingredients are classical: First, by [20, Cor. I.2] the unit component of the auto-
morphism group of a product is the product of the unit components of the respective
automorphism groups. Second, Aut(Qn) = O(n) is of dimension n(n− 1)/2.

Example 2.12.4. For the varieties X from No. 1, the algorithm [75] is feasible and tells
us that Aut(X) is of dimension 12. In particular, we see that also these varieties are
infinitesimally rigid:

h1(X, TX) = −1 + dim(R(Z)µ)− dim(Aut(Z)) + dim(Aut(X))
= −1 + 12− 23 + 12
= 0.

In suitable linear coordinates respecting the grading, g = T1T5 + T2T6 + T3T7 holds and
the automorphisms on X are induced by the five-dimensional diagonally acting torus
respecting g and the group GL(3) acting on R(X)w1 ⊕R(X)w5 via

A · (T1, T2, T3, T4;T5, T6, T7) := (A · (T1, T2, T3), T4; (A−1)t · (T5, T6, T7)).
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The two previous examples fit into the class of intrinsic quadrics, that means varieties
having a hypersurface Cox ring with a quadric as defining relation. The ideas just
observed lead to the following general observation.

Corollary 2.12.5. Let X be a variety satisfying all the assumptions of Proposition 2.12.1
and assume that AutH(Z̄) acts almost transitively on R(Z)µ.

(i) The variety X is infinitesimally rigid and the dimension of its automorphism group
is given by

dim(Aut(X)) = dim(AutH(Z̄))− (dim(R(Z)µ)− 1)− rank(Cl(Z)).

(ii) If X is an intrinsic quadric, then AutH(Z̄) acts almost transitively on R(Z)µ and
thus the statements from (i) hold for X.

Proof. We take X ⊆ Z as in Construction 2.4.1. According to [65, Thm. 4.4 (iv)], the
unit component Aut(X)0 equals the stabilizer Aut(Z)0

X of X ⊆ Z under the action of
Aut(Z)0 on Z. Thus, using [4, Thm. 4.2.4.1], we obtain

dim(Aut(X)) = dim(Aut(Z)0
X)

= dim(AutH(Z̄)0
X̄

)− dim(H)
= dim(AutH(Z̄)0)− (dim(R(Z)µ)− 1)− rank(Cl(Z)),

where R(Z)µ is the space of defining equations and “−1” pops up as we are looking
for only the zero sets of these equations. Thus, Proposition 2.12.1 gives the first
statement. For the second one, note that AutH(Z̄) acts almost transitively on R(Z)µ
due to [55, Prop. 2.1].

Let us take up once more the geometric discussion of the varieties from No. 9 of
Theorem 2.1.1 started in Remarks 2.10.3 and 2.11.3. Using geometric properties observed
so far, we see Aut(X) is trivial.

Remark 2.12.6. Let X be as in Theorem 2.1.1, No. 9. We claim that Aut(X) is finite
in this case. As a consequence, we obtain

h1(X, TX) = dim(R(Z)µ)− 1 + rank(Cl(Z))−
r∑
i=1

dim(R(Z)wi)

= 40− 1 + 2− 29
= 12.

Look at the fibration π1 : X → Y1 = P3 from Remark 2.10.3. By [20, Prop. I.1], there is
an induced action of the unit component Aut(X)0 on Y1 turning π1 into an equivariant
map. This means in particular that the induced action permutes the image points of
the 12 singular fibers of π1. By the generality assumption, these 12 points don’t lie in
a common hyperplane and thus the induced action of Aut(X)0 on Y1 must be trivial.
Recall that any point of the fiber π1 over [y] = [y1, . . . , y4] has Cox coordinates

[y, x, z] = [y1, . . . , y4, x1, x2, z], where q1(y)x1 + q2(y)x2 + f(y)z = 0,
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Chapter 2. Smooth Fano fourfolds of Picard number two

with general quadrics q1, q2 and a general cubic f in the first four variables. Let us see
in these terms what it means that the π1-fibers are invariant under Aut(X)0. Consider
the action of the characteristic quasitorus H = SpecC[Cl(Z)] on Z̄ = Cr given by the
Cl(Z)-grading of C[T1, . . . , Tr]. The group AutH(Z̄) of H-equivariant automorphisms is
concretely given as

G = GL(4)×GL(2)×K∗.

According to [65, Thm. 4.4], we obtain Aut(X)0 as a factor group of the unit component
of the subgroup AutH(X̄) of AutH(Z̄) stabilizing X̄ ⊆ Z̄. We take a closer look at the
action of an element γ = diag(A1, A2, α3) of AutH(X̄) on X̂ ⊆ X̄. Given general y ∈ C4

and x ∈ C2, we find z ∈ C such that [y, x, z] is a point of X̂. In particular, γ · [y, x, z]
belongs to the fiber of π1 over [y]. The latter implies A1 · y = ηy with η ∈ K∗ and for the
matrix A2 = (aij) it gives

0 = q1(y)(a11x1 + a12x2) + q2(y)(a21x1 + a22x2) + α3f(y)z
= q1(y)((a11 − α3)x1 + a12x2) + q2(y)(a21x1 + (a22 − α3)x2).

Recall that this holds for any general choice of y and x. As a consequence, we arrive at
a11−α3 = 0 = a12, because otherwise q1q

−1
2 ∈ C(T1, T2) holds in C(X) which is impossible

due to the general choice of q1 and q2. By the same argument, we see a22−α3 = 0 = a21.
Thus, γ acts trivially on each fiber of π1 and we conclude that Aut(X) is of dimension
zero.

Proposition 2.12.1 suggests that the infinitesimal deformations of X can be obtained
by varying the coefficients of the defining equation in the Cox ring. As a possible approach
to turn this impression into a precise statement, we mention the comparison theorem of
Christophersen and Kleppe [40, Thm. 6.2] which relates in particular deformations of a
variety to deformations of its Cox ring.
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CHAPTER
THREE

SMOOTH CALABI-YAU THREEFOLDS
OF SMALL PICARD NUMBER

We classify the smooth Calabi-Yau threefolds of Picard number one and two that have a
general hypersurface Cox ring. The main result of this chapter is Theorem 3.1.3. On
our way to the classification we use and complement the techniques developed in the
previous chapter. Parts of this chapter are published in [96].

3.1 Results
A Calabi-Yau variety is an irreducible normal projective variety X such that the canonical
class KX of X is trivial, X has at most canonical singularities and H i(X,OX) vanishes
for all i = 1, . . . ,dim(X)− 1.

Let us recall the notions on hypersurfaces Cox ring that are necessary to state our
results; cf. Section 2.4. We say that a normal irreducible projective variety X with finitely
generated divisor class group Cl(X) = K has a hypersurface Cox ring if its Cox ring
R(X) admits a K-graded presentation

R(X) = Rg = K[T1, . . . , Tr]/〈g〉

with a homogeneous polynomial g of degree µ ∈ K such that T1, . . . , Tr form a minimal
system of K-prime generators for Rg. Note that the number of generator degrees is

r = rank(K) + dim(X) + 1.

We say that Rg resp. g is spread if each monomial of degree µ is a convex combination over
those monomials showing up in g with non-zero coefficient. Besides, we call Rg general
(smooth, Calabi-Yau) if g admits an open neighbourhood U in the finite dimensional vector
space of all µ-homogeneous polynomials such that every h ∈ U yields a hypersurface Cox
ring Rh of a normal (smooth, Calabi-Yau) variety Xh with divisor class group K.

Any projective variety X with Cox ring Rg is encoded by Rg and an ample class
u ∈ K in the sense that X occurs as the GIT quotient of the set of u-semistable points of
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Chapter 3. Smooth Calabi-Yau threefolds of small Picard number

SpecRg by the quasitorus SpecK[K]. In this setting, we write wi = deg(Ti) and refer to
the Cox ring generator degrees w1, . . . , wr ∈ K, the relation degree µ ∈ K and an ample
class u ∈ K as specifying data of the variety X. The class u can be omitted whenever
rank(K) = 1 holds since two varieties with the same Cox ring are isomorphic in this case.

Proposition 3.1.1. The following table lists specifying data, w1, . . . , w5 and µ = deg(g)
in Cl(X) for all smooth Calabi-Yau threefolds X of Picard number one that have a spread
hypersurface Cox ring.

No. Cl(X) [w1, . . . , w5] µ

1 Z
[
1 1 1 1 1

]
5

2 Z× Z/5Z
[
1 1 1 1 1
0̄ 1̄ 2̄ 3̄ 4̄

]
(5, 0̄)

3 Z
[
1 1 1 1 2

]
6

4 Z
[
1 1 1 1 4

]
8

5 Z
[
1 1 1 2 5

]
10

Moreover, each of the items 1 to 5 even defines a general smooth Calabi-Yau hypersurface
Cox ring and thus provides the specifying data for a whole family of smooth Calabi-Yau
threefolds. Any two smooth Calabi-Yau threefolds of Picard number one with specifying
data from distinct items of the table are not isomorphic to each other.

Remark 3.1.2. Number 1, 3, 4 and 5 from Proposition 3.1.1 are covered by Oguiso’s
classification of smooth Calabi-Yau threefolds showing up as general complete inter-
section in some weighted projective space [105, Thm 4.1]. Moreover Number 2 from
Proposition 3.1.1 does not appear in [105, Thm 4.1] since its Picard group is not cyclic.

The main result of this chapter is concerned with Calabi-Yau threefolds of Picard
number two over the field of complex numbers.

Theorem 3.1.3. The following table lists specifying data, w1, . . . , w6, µ and u in Cl(X)
for all complex smooth Calabi-Yau threefolds X of Picard number two that have a spread
hypersurface Cox ring.

No. Cl(X) [w1, . . . , w6] µ u

1 Z2
[
1 1 1 0 0 0
0 0 0 1 1 1

] [
3
3

] [
1
1

]

2 Z2 × Z/3Z

1 1 1 0 0 0
0 0 0 1 1 1
0̄ 1̄ 2̄ 0̄ 1̄ 2̄

 3
3
0̄

 1
1
0̄



No. Cl(X) [w1, . . . , w6] µ u

3 Z2
[
1 1 1 1 0 0
0 0 1 1 1 1

] [
4
4

] [
2
1

]
4 Z2

[
1 1 1 3 0 0
0 0 1 3 1 1

] [
6
6

] [
2
1

]
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No. Cl(X) [w1, . . . , w6] µ u

5 Z2
[
1 1 1 0 0 −1
0 0 0 1 1 1

] [
2
3

] [
1
1

]
6 Z2

[
1 1 1 0 0 −2
0 0 0 1 1 1

] [
1
3

] [
1
1

]

7 Z2 × Z/3Z

1 1 1 0 0 −3
0 0 0 1 1 1
0 1 2 1 2 0

 0
3
0

 1
1
0


8 Z2

[
1 1 1 0 0 −3
0 0 0 2 3 1

] [
0
6

] [
1
1

]
9 Z2

[
1 1 1 1 0 0
−2 0 0 0 1 1

] [
4
0

] [
1
1

]
10 Z2

[
1 1 1 3 0 0
−2 0 0 0 1 1

] [
6
0

] [
1
1

]
11 Z2

[
1 1 1 1 0 0
0 0 0 1 1 1

] [
4
3

] [
2
1

]
12 Z2

[
1 1 1 1 0 0
0 0 0 1 1 1

] [
4
3

] [
1
2

]
13 Z2

[
1 1 1 3 0 0
0 0 0 2 1 1

] [
6
4

] [
1
1

]
14 Z2

[
1 1 1 3 0 0
−1 0 0 1 1 1

] [
6
2

] [
1
1

]
15 Z2

[
1 1 1 1 0 0
−1 0 0 1 1 1

] [
4
2

] [
2
1

]
16 Z2

[
1 1 1 1 0 0
−1 0 0 1 1 1

] [
4
2

] [
1
2

]
17 Z2

[
1 1 1 1 0 0
−2 0 0 1 1 1

] [
4
1

] [
2
1

]

No. Cl(X) [w1, . . . , w6] µ u

18 Z2
[

1 1 1 1 0 0
−2 0 0 1 1 1

] [
4
1

] [
1
2

]
19 Z2

[
1 1 1 2 1 0
0 0 0 1 1 1

] [
6
3

] [
3
1

]
20 Z2

[
1 1 1 4 1 0
0 0 0 2 1 1

] [
8
4

] [
3
1

]
21 Z2

[
1 1 1 5 2 0
0 0 0 2 1 1

] [
10
4

] [
3
1

]
22 Z2

[
1 1 2 5 1 0
0 0 0 2 1 1

] [
10
4

] [
3
1

]
23 Z2

[
1 1 2 7 3 0
0 0 0 2 1 1

] [
14
4

] [
4
1

]
24 Z2

[
1 1 1 2 1 0
−2 0 0 0 1 1

] [
6
0

] [
2
1

]
25 Z2

[
1 1 1 1 3 0
−2 0 0 0 1 1

] [
7
0

] [
4
1

]
26 Z2

[
2 1 1 1 3 0
−2 0 0 0 1 1

] [
8
0

] [
4
1

]
27 Z2

[
1 1 2 5 1 0
0 0 1 3 1 1

] [
10
6

] [
3
1

]
28 Z2

[
1 1 2 5 1 0
0 0 1 3 1 1

] [
10
6

] [
3
2

]
29 Z2

[
1 1 1 4 1 0
−1 0 0 1 1 1

] [
8
2

] [
5
1

]
30 Z2

[
1 2 1 1 1 0
−1 −1 0 0 1 1

] [
6
0

] [
2
1

]

Moreover, each of the items 1 to 30 even defines a general smooth Calabi-Yau hypersurface
Cox ring and thus provides the specifying data for a whole family of smooth Calabi-Yau
threefolds. Any two smooth Calabi-Yau threefolds of Picard number two with specifying
data from distinct items of the table are not isomorphic to each other.

Remark 3.1.4. Each spread hypersurface Cox ring R with specifying data as in Number 3,
4, and 30 from Theorem 3.1.3 provides actually two full-dimensional GIT cones λ1, λ2
with λ◦i ⊆ Mov(R)◦. In any of these constellations the resulting varieties X(λ1) and
X(λ2) are isomorphic.

Hypersurfaces in toric Fano varieties form a rich source of examples for Calabi-Yau
varieties, e.g. [1, 12,13]. Theorem 3.1.3 comprises several varieties of this type.
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Chapter 3. Smooth Calabi-Yau threefolds of small Picard number

Remark 3.1.5. Any Mori dream space X can be embedded into a projective toric variety
by choosing a graded presentation of its Cox ring R(X); see [4, Sec. 3.2.5] for details.
The following table shows for which varieties X from Theorem 3.1.3 the presentation
R(X) = Rg gives rise to an embedding into a (possibly singular) toric Fano variety.
Observe that in our situation this simply means µ ∈ Ample(X).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 3 7 7 3 3 7 7 7 7 3 7 3 3 3

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
7 3 7 3 3 3 3 3 7 7 7 7 3 3 7

3.2 Mori dream spaces with hypersurface Cox rings
In this section we work over an algebraically closed field K of characteristic zero. By a
Mori dream space we mean an irreducible normal projective variety X with a finitely
generated divisor class group Cl(X) and a finitely generated Cox ring R(X). We basically
use the same tools as shown in Sections 2.2 to 2.4 of this thesis. For convenience, we
gather the basic facts on the combinatorial description of Mori dream spaces with a
hypersurface Cox ring and how to construct families of them with prescribed properties
in this section.

Recall that an abstract Cox ring is an integral normal affine K-algebra with a grading
by a finitely generated abelian group K such that R has only constant homogeneous
units and the grading is almost free, pointed, factorial and the moving cone Mov(R) is of
full dimension in KQ. Abstract Cox rings are the basic ingredient for the combinatorial
description of Mori dream spaces since all of them arise from the following construction.

Construction 3.2.1. Let R be an abstract Cox ring and consider the action of the
quasitorus H = SpecK[K] on the affine variety X̄ = SpecR. For every GIT-cone
λ ∈ Λ(R) with λ◦ ⊆ Mov(R)◦, we set

X(λ) := X̄ss(λ)//H.

Then X is normal, projective and of dimension dim(R) − dim(KQ). The divisor class
group and the Cox ring of X are given as

Cl(X) = K, R(X) =
⊕

Cl(X)
Γ(X,OX(D)) =

⊕
K

Rw = R.

Moreover, the cones of effective, movable, semiample and ample divisor classes of X are
given in ClQ(X) = KQ as

Eff(X) = Eff(R), Mov(X) = Mov(R),

SAmple(X) = λ, Ample(X) = λ◦.
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3.2. Mori dream spaces with hypersurface Cox rings

Choosing homogeneous generators for an abstract Cox ring gives rise to a closed
embedding into a projective toric variety.

Construction 3.2.2. In the situation of Construction 3.2.1, consider a K-graded
presentation

R = K[T1, . . . , Tr]/a

where T1, . . . , Tr define pairwise non-associated K-primes in R and a ⊆ S = K[T1, . . . , Tr]
is a homogeneous ideal. The GIT-fan Λ(S) w.r.t. the diagonal H-action on Kr = SpecS
refines the GIT-fan Λ(R). Let τ ∈ Λ(S) with λ◦ ⊆ τ◦. Running Construction 3.2.1 for S
and τ yields a projective toric variety Z fitting in the following diagram

X̄ss(λ) //

//H

��

(Kr)ss(τ)
//H

��
X

ı // Z

The embedding ı : X → Z is neat, i.e., it is a closed embedding, the torus invariant prime
divisors on Z restrict to pairwise different prime divisors on X and the induced pullback
of divisor class groups ı∗ : Cl(Z)→ Cl(X) is an isomorphism.

Now we specialize to the case where R is a hypersurface ring and explain how geometrical
properties of X interact with the combinatorial data behind.

Construction 3.2.3. In the situation of Construction 3.2.1, assume that R admits a
K-graded presentation

R = K[T1, . . . , Tr]/〈g〉

such that the variables T1, . . . , Tr define pairwise non-associated K-primes in R. Consider
the positive orthant γ = Qr

≥0 and the degree homomorphism

Q : Zr → K, ei 7→ wi := deg(Ti).

An X̄-face is a face γ0 � γ admitting a point x ∈ X̄ such that one has

xi 6= 0 ⇐⇒ ei ∈ γ0

for the coordinates x1, . . . , xr of x and the canonical basis vectors e1, . . . , er ∈ Zr.
Moreover, an X-face is an X̄-face γ0 � γ with λ◦ ⊆ Q(γ0)◦. Let rlv(X) be the set of all
X-faces and π : X̄ss(λ)→ X the quotient map. Then we have a decomposition

X =
⋃

γ0∈rlv(X)
X(γ0)

into pairwise disjoint locally closed sets X(γ0) := π(X̄(γ0)).
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Chapter 3. Smooth Calabi-Yau threefolds of small Picard number

Remark 3.2.4. We consider the situation of Construction 3.2.3. Any subset I =
{i1, . . . , ik} of {1, . . . , r} defines a face γI of the orthant by

γI := γi1,...,ik := cone(ei1 , . . . , eik) � γ.

Moreover, the polynomial gI ∈ K[T1, . . . , Tr] associated with I is defined as

gI := g(T̃1, . . . , T̃r), T̃i :=
{
Ti, i ∈ I,
0, i 6∈ I.

Then γI is an X̄-face if and only if gI is no monomial.

Proposition 3.2.5. Consider the situation of Construction 3.2.3.
(i) The variety X is Q-factorial if and only if dim(λ) = dim(KQ) holds for λ =

SAmple(X).
(ii) The variety X is locally factorial if and only if for every X-face γ0 � γ, the group K

is generated by Q(γ0 ∩ Zr).
(iii) X is smooth if and only if X̄ss is smooth and X ⊆ Zreg holds.

Furthermore, for hypersurface Cox rings, we have an explicit description of the
anticanonical class.

Proposition 3.2.6. In the situation of Construction 3.2.3, the anticanonical class of X
is given in K = Cl(X) as

−KX = deg(T1) + · · ·+ deg(Tr)− deg(g).

We call an irreducible normal variety X weakly Calabi-Yau if its canonical class KX
vanishes. For varieties with hypersurface Cox ring this notion only depends on the
generator degrees and the relation degree. Moreover, it turns out that smooth weakly
Calabi-Yau hypersurfaces are Calabi-Yau varieties in the strong sense.

Remark 3.2.7. Consider the situation of Construction 3.2.3.
(i) From Proposition 3.2.6 we deduce that X is weakly Calabi-Yau if and only if

µ = w1 + · · · + wr holds. In particular, µ lies in the relative interior of Eff(R)
whenever X is weakly Calabi-Yau.

(ii) If X is weakly Calabi-Yau, then Proposition 3.2.6 shows that X is an anticanonical
hypersurface of a projective toric variety Z as in Construction 3.2.2. If, in addition,
X is smooth, then Proposition 3.2.5 allows us to apply [2, Prop. 6.1]. From this
we infer hi(X,OX) = 0 for all 0 < i < dim(X), hence X is Calabi-Yau.

In what follows we describe in outline the toolbox for producing general hypersurface
Cox rings with given data established in Section 2.4; proofs and more details can be
found at the same place.
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3.2. Mori dream spaces with hypersurface Cox rings

Construction 3.2.8. Consider a linear, pointed, almost freeK-grading on the polynomial
ring S := K[T1, . . . , Tr] and the quasitorus action H × Z̄ → Z̄, where

H := SpecK[K], Z̄ := SpecS = Kr.

We write Q : Zr → K, ei 7→ wi := deg(Ti) for the degree map. Assume that Mov(S) ⊆ KQ
is of full dimension and fix τ ∈ Λ(S) with τ◦ ⊆ Mov(S)◦. Set

Ẑ := Z̄ss(τ), Z := Ẑ//H.

Then Z is a projective toric variety with divisor class group Cl(Z) = K and Cox ring
R(Z) = S. Moreover, fix 0 6= µ ∈ K, and for g ∈ Sµ set

Rg := S/〈g〉, X̄g := V (g) ⊆ Z̄, X̂g := X̄g ∩ Ẑ, Xg := X̂g//H ⊆ Z.

Then the factor algebra Rg inherits a K-grading from S and the quotient Xg ⊆ Z is a
closed subvariety. Moreover, we have

Xg ⊆ Zg ⊆ Z

where Zg ⊆ Z is the minimal ambient toric variety of Xg, that means the (unique)
minimal open toric subvariety containing Xg.

Remark 3.2.9. In the situation of Construction 3.2.8 assume that Rg is normal, factori-
ally graded and T1, . . . , Tr define pairwise non-associated K-primes in Rg. Then Rg is
an abstract Cox ring and we find a GIT-cone λ ∈ Λ(Rg) with τ◦ ⊆ λ◦ and X̂g = X̄ss(λ).
This brings us into the situation of Constructions 3.2.1 and 3.2.2, so we have

Cl(Xg) = K, R(Xg) = Rg, τ◦ ⊆ Ample(Xg).

Moreover, for any g ∈ Uµ the variables T1, . . . , Tr form a minimal system of generators
for all Rg if and only if we have µ 6= wi for i = 1, . . . , r.

Constructing a general hypersurface Cox ring with prescribed specifying data essen-
tially means to to find a suitable open subset U ⊆ Sµ such that Rg, where g ∈ U , satisfies
the conditions from the above remark. In the subsequent text we present several criteria
to check these conditions.

Proposition 3.2.10. Consider the setting of Construction 3.2.8. For 1 ≤ i ≤ r denote
by Ui ⊆ Sµ the set of all g ∈ Sµ such that g is prime in S and Ti is prime in Rg. Then
Ui ⊆ Sµ is open. Moreover, Ui is non-empty if and only if there is a µ-homogeneous
prime polynomial not depending on Ti.

Proposition 3.2.11. In the situation of Construction 3.2.8, suppose that K is of rank
one, r ≥ 5 holds and that for any i = 1, . . . , r there is an li ∈ Z≥1 with µ = liwi.
Then there is a non-empty open subset of polynomials g ∈ Sµ such that the ring Rg is
normal and K-factorial, and T1, . . . , Tr ∈ Rg are prime. In particular, there is a general
hypersurface Cox ring with specifying data w1, . . . , wr and µ.
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Chapter 3. Smooth Calabi-Yau threefolds of small Picard number

By a Dolgachev polytope we mean a convex polytope ∆ ⊆ Qr
≥0 of dimension at least

four such that each coordinate hyperplane of Qr intersects ∆ non-trivially and the dual
cone of cone(∆0 − u; u ∈ ∆0) is regular for each one-dimensional face ∆0 � ∆.

Proposition 3.2.12. In the situation of Construction 3.2.8, there is a non-empty open
subset of polynomials g ∈ Sµ such that the ring Rg is factorial provided that one of the
following conditions is fulfilled:
(i) K is of rank at most r − 4 and torsion free, there is a g ∈ Sµ such that T1, . . . , Tr

define primes in Rg, we have µ ∈ τ◦ and µ is base point free on Z.
(ii) The set conv(ν ∈ Zr≥0; Q(ν) = µ) is a Dolgachev polytope.
(iii) r ≥ 5, K = Z2, there is some g ∈ Sµ such that T1, . . . , Tr define primes in Rg, and

the degree matrix is of the form

Q =
[
x1 . . . xr−1 0
−d1 . . . −dr−1 1

]
, xi ∈ Z≥1, di ∈ Z≥0,

such that the first coordinate µ1 of µ ∈ Z2 is a multiple of each of x1, . . . , xr−1 and
the second coordinate µ2 of µ satisfies

µ2 = −min
ν
ν1d1 + · · ·+ dr−1νr−1

where the minimum runs over all ν ∈ Zr−1
≥0 with ν1x1 + · · ·+ νr−1xr−1 = µ1.

We give another easy to check factoriality criterion for homogeneous polynomials
with degree arising from a lattice polytope in the following sense.

Remark 3.2.13. Let Σ be a complete lattice fan in Zn and v1, . . . , vr the primitive
lattice vectors generating the rays of Σ. Consider the mutually dual exact sequences

0 // L // Zr P
ei 7→vi

// Zn

0 Koo ZrQoo ZnP ∗oo 0oo

The Σ-degree of a lattice polytope B ⊆ Qn is Q(a(Σ)) ∈ K where

a(Σ) := (a1, . . . , ar) ∈ Zr, ai := −min
u∈B
〈u, vi〉.

Proposition 3.2.14. Let B ⊆ Qn be an integral n-simplex, Σ a fan in Zn refining the
normal fan of B, and µ ∈ K the Σ-degree of B. Assume that there is a µ-homogeneous
prime polynomial and a non-empty open subset U ⊆ Sµ such that for all g ∈ U the
variables T1, . . . , Tr define K-primes in the K-graded algebra

Rg = K[T1, . . . , Tr]/〈g〉.

Then there is a non-empty open subset of polynomials g ∈ Sµ such that Rg is K-factorial.
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3.3. Proof of Proposition 3.1.1

The spread µ-homogeneous polynomials form an open subset Uµ ⊆ Sµ. Moreover all
polynomials g ∈ Uµ share the same minimal ambient toric variety Zg. We call Zµ := Zg,
where g ∈ Uµ, the µ-minimal ambient toric variety. The following propositions enable us
to verify smoothness of Zµ and the general Xg in a purely combinatorial manner.

Proposition 3.2.15. In the situation of Construction 3.2.8 the following statements are
equivalent.

(i) The µ-minimal ambient toric variety Zµ is smooth.
(ii) For each γ0 � γ with τ◦ ∈ Q(γ0)◦ and |Q−1(µ) ∩ γ0| 6= 1 the group K is generated

by Q(γ0 ∩ Zr).

Proposition 3.2.16. In the setting of Construction 3.2.8, assume rank(K) = 2 and
that Zµ ⊆ Z is smooth. If µ ∈ τ holds, then µ is base point free. Moreover, then there is
a non-empty open subset of polynomials g ∈ Sµ such that Xg is smooth.

A further ingredient needed in the proofs of Proposition 3.1.1 and Theorem 3.1.3
are invariants in connection with hypersurface Cox rings that distinguish varieties with
different specifying data. Let us highlight generator and relation degrees of a graded
algebra; for a detailed discussion of this topic we refer to [65, Sec. 2].

Remark 3.2.17. Let R = ⊕
w∈K Rw be an integral pointed K-graded algebra. We

denote S(R) = {w ∈ K; Rw 6= 0}. An important invariant of R is the set of generator
degrees generator degrees

ΩR := {w ∈ S(R); Rw * R<w} ⊆ K

where R<w denotes the subalgebra of R spanned by all homogeneous components Rw′
such that w = w′ + w0 holds for some 0 6= w0 ∈ S(R). In the situation of Setting 3.5.1
the set of generator degrees is given as

ΩR = {w1, . . . , wr} ⊆ K.

The set of generator degrees is unique and does not depend on a graded presentation
of R. From this emerges another invariant: Choose pairwise different u1, . . . , um ∈ K
such that ΩR = {u1, . . . , um} and set di := dimKRui . By suitably reordering u1, . . . , um
we achieve d1 ≤ . . . ≤ dm. We call (d1, . . . , dm) the generator degree dimension tuple of
R. If two graded algebras are isomorphic, then they share the same generator degree
dimension tuples.

Moreover, if R admits an irredundant graded presentation R = K[T1, . . . , Tr]/〈g〉,
then the relation degree µ = deg(g) ∈ K is unique and does not depend on the choice of
the minimal graded presentation.

3.3 Proof of Proposition 3.1.1
We work over an algebraically closed field K of characteristic zero. The proof of Propo-
sition 3.1.1 can be seen as a lightweight version of the proof of Theorem 3.1.3. They
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are similar in their structure yet the first one does not involve detailed elaboration of
combinatorial configurations. Indeed, the combinatorial input restricts to the following
remark.

Remark 3.3.1. The following tables describes the solutions of the inequation

x1 · · ·xn ≤ x1 + · · ·+ xn, x1, . . . , xn ∈ Z≥1

for n = 3, 4, 5 where x1, . . . , xn are in ascending order. Here, ∗ stands for an arbitrary
positive integer.

n x1 x2 x3 x4

3
1 1 ∗ —
1 2 2 —
1 2 3 —

4
1 1 1 ∗
1 1 2 3
1 1 2 4

n x1 x2 x3 x4 x5

5

1 1 1 1 ∗
1 1 1 2 2
1 1 1 2 3
1 1 1 2 4
1 1 1 2 5
1 1 1 3 3

Proof of Proposition 3.1.1. Let X be a smooth Calabi-Yau threefold of Picard number
one with a spread hypersurface Cox ring. Fix a graded presentation

R(X) = Rg = K[T1, . . . , T5]/〈g〉

and observe that we are in the situation of Construction 3.2.3. Our major task is to
verify that Q = [w1, . . . , w5], where wi = deg(Ti), is as in one of the items 1 to 5 from
Proposition 3.1.1.

We claim that for i = 1, . . . , 5 a power T lii shows up amongst the monomials of g .
Suppose that g has no monomial of the form T lii for some 1 ≤ i ≤ 5. Then γi � γ is an
X-face by Remark 3.2.4. As X is locally factorial, Proposition 3.2.5 (ii) says that wi
is a generator for K, in particular µ = liwi holds for some li ∈ Z≥1. The respective
monomial T lii is of degree µ and admits no presentation as convex combination over other
monomials of the same degree. Since g is spread, T lii has a non-zero coefficient in g. A
contradiction.

Now Remark 3.2.4 shows that that any twodimensional face γi,j � γ is an X-face.
Thus any two wi, wj form a generating set for K; see Proposition 3.2.5 (ii). Being an
abelian group of rank one generated by two elements K is of the form Z×Z/tZ for some
t ∈ Z≥1. According to this presentation of K we denote

wi = (ai, ζi), µ = (α, θ), ai, α ∈ Z, ζi, θ ∈ Z/tZ.

By applying a suitable automorphism of K and reordering T1, . . . , T5 we achieve

1 ≤ a1 ≤ · · · ≤ a5.
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Our next task is to figure out all possible configurations of (a1, . . . , a5). Observe that
a1, . . . , a5 are pairwise coprime. As the existence of monomials T lii of degree µ ensures
that α is divisible by each of a1, . . . , a5, we obtain a1 · · · a5 | α. From Proposition 3.2.6
and X being Calabi-Yau we infer µ = w1 + · · ·+ w5. This leads to

a1 · · · a5 | a1 + · · ·+ a5. (3.1)

Remark 3.3.1 yields a1 = a2 = a3 = 1 and we are left with one of the following
configurations

a4 = 1, a4 = 2 and a5 = 3, 5.

Inserting a4 = 1 into Eq. (3.1) amounts to a5 | 4, hence a5 = 1, 2, 4. Besides, a4 = 2 and
a5 = 3 does not satisfy Eq. (3.1). To sum it up, (a1, . . . , a5) must be one of the following

(1, 1, 1, 1, 1), (1, 1, 1, 1, 2), (1, 1, 1, 1, 4), (1, 1, 1, 2, 5).

When K is torsion-free, these configurations lead to Numbers 1, 3, 4, and 5 from
Proposition 3.1.1.

The next step is to study the torsion subgroup of K. We produce upper bounds on the
order t of the torsion subgroup of K for each of the above configurations of (a1, . . . , a5).
Since any of these configurations satisfies a1 = 1 we achieve ζ1 = 0 by applying a suitable
automorphism of K. Recall that T lii shows up as a monomial of g for all i = 1, . . . , 5.
From this we infer θ = l1ζ1 = 0. Moreover w1, wj form a generating set for K for any
j > 1. Thus each ζj is a generator for Z/tZ. Then again ljζj = θ = 0 forces t | lj for
j = 2, . . . , 5. Using the presentation li = α/ai we obtain that t is a divisor of

d := gcd
(
α

a2
, . . . ,

α

a5

)
.

The following table lists the data in question explicitly.

(a1, . . . , a5) α d

(1, 1, 1, 1, 1) 5 5
(1, 1, 1, 1, 2) 6 3
(1, 1, 1, 1, 4) 8 2
(1, 1, 1, 2, 5) 10 1

One directly sees that K admits no torsion in the last case. We deal with the three
remaining cases. Since we are interested in the case where K is not torsion-free we
assume t > 1. From d being a prime multiple of t we deduce t = d. Consider indices
i 6= j with ai = aj = 1. From wi, wj spanning K as a group we infer ζi 6= ζj . Thus in the
first case, a5 = 1, the elements ζ1, . . . , ζ5 are pairwise different. After suitably reordering
T1, . . . , T5, we end up with specifying data as in Number 2 from Proposition 3.1.1. For
the two remaining cases, a5 = 2, 4, we obtain that ζ1, . . . , ζ4 are pairwise different. Note
that the cyclic factor Z/tZ of K has order at most three in these cases; a contradiction.
Hence these configurations of (a1, . . . , a5) do not admit torsion in K.
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The next to last step is to make sure that each item from Proposition 3.1.1 stems
from a general smooth Calabi-Yau hypersurface Cox ring. Fix specifying data (Q,µ) as
listed in Proposition 3.1.1 and run Construction 3.2.8. Proposition 3.2.11 guarantees
that for the given data there exists indeed a general hypersurface Cox ring R(X) = Rg.
Observe that X is quasismooth since a power of each variable Ti shows up in g with
non-zero coefficient, hence X is smooth apart from the origin. Furthermore, one directly
checks that X is locally factorial using Proposition 3.2.5 (ii). Altogether X is smooth
according to Proposition 3.2.5 (iii). Moreover, Remark 3.2.7 (i) says that X is weakly
Calabi-Yau, thus, being smooth, Calabi-Yau by Remark 3.2.7 (ii).

Finally we have to verify that each two smooth Calabi-Yau threefolds with specifying
data from different items from Proposition 3.1.1 are non-isomorphic. Varieties from
Number 2 have a unique divisor class group among the varieties from Proposition 3.1.1.
Thus it suffices to consider families 1, 3, 4, and 5. Dealing with pointed Z-gradings, the
assumption a1, . . . , a5 ≥ 1 makes the set of Cox ring generator degrees {w1, . . . , w5} =
{a1, . . . , a5} unique. We conclude the discussion by observing that Numbers 1, 3, 4 and 5
have pairwise different set of generator degrees.

3.4 A Flop Lemma
The aim of this section is to give a direct proof that small birational modifications of Mori
dream spaces with Picard number two that have a trivial canonical class are connected
by flops; see Proposition 3.4.2.

Let us briefly recall the notion of flops [90,91] as well as some surrounding terminology.
A proper birational morphism ϕ : X → Y of normal varieties is called extremal, if X is
Q-factorial and for each two Cartier divisors D1, D2 on X there are a1, a2 ∈ Z where at
least one of a1, a2 is non-zero and a1D1− a2D2 is linearly equivalent to the pullback ϕ∗C
of some Cartier divisor C on Y . This is essentially a condition on the Picard numbers of
X and Y .

Lemma 3.4.1. Let ϕ : X → Y be a dominant morphism of normal varieties with finitely
generated Picard groups. Then the following statements are equivalent.

(i) For each two Cartier divisors D1, D2 on X there are a1, a2 ∈ Z where at least one
of a1, a2 is non-zero and a1D1 − a2D2 is linearly equivalent to the pullback ϕ∗C of
some Cartier divisor C on Y .

(ii) We have ρ(X)− ρ(Y ) ≤ 1.

Proof. Being a dominant morphism, ϕ induces an injective pull-back homomorphism
of Picard groups ϕ∗ : Pic(Y ) → Pic(X). In particular ϕ∗Pic(Y ) is of rank ρ(Y ) =
rank Pic(Y ). Consider the factor group G := Pic(X)/ϕ∗Pic(Y ). We have

dimGQ = rank Pic(X)− rankϕ∗Pic(Y ) = ρ(X)− ρ(Y ).

Now observe that (i) means that each two elements from G lay on a common ray in the
rational vector space GQ i.e. dimGQ ≤ 1.
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3.4. A Flop Lemma

A Weil divisor D on a variety X is said to be relatively ample w.r.t a morphism
ϕ : X → Y of varieties, or just ϕ-ample, if there is an open affine covering Y = ⋃

Vi such
that D restricts to an ample divisor on each ϕ−1(Vi). A birational map ψ : X− 99K X+

of Q-factorial weakly Calabi-Yau varieties is a flop if it fits into a commutative diagram

X−
ψ //

ϕ− !!

X+

ϕ+
}}

Y

where ϕ− : X− → Y and ϕ+ : X− → Y are small proper birational morphisms, ϕ− is
extremal and there is a Weil divisor D on X− such that −D is ϕ−-ample and the proper
transform of D on X+ is ϕ+-ample.

Proposition 3.4.2. Let R be an abstract Cox ring with grading group K of rank two
and λ, η ∈ Λ(R) full-dimensional cones with λ◦, η◦ ⊆ Mov(R)◦. Consider the varieties
X(λ) and X(η) arising from Construction 3.2.1. If the canonical class of X(λ) is trivial,
then there is a sequence of flops

X(λ) 99K X1 99K · · · 99K Xk 99K X(η).

We study the toric setting first. Consider S = K[T1, . . . , Tr] with a linear, pointed,
almost free grading of an abelian group K of rank two and the associated action of the
quasitorus H = SpecK[K] on Kr. Let us recall some facts about toric varieties arising
from GIT-cones as treated e.g. in [4, Chap. 2–3]. The degree homomorphism Q : Zr → K,
ei 7→ wi := deg(Ti) gives rise to a pair of mutually dual exact sequences:

0 // L // Zr P // Zn

0 Koo ZrQoo ZnP ∗oo 0oo

Given a GIT-cone τ ∈ Λ(S) with τ◦ ⊆ Mov(S)◦, the associated toric variety Z =
(Kr)ss(τ)//H has the describing fan Σ(τ) given by

Σ(τ) = {P (γ∗0); γ0 ∈ rlv(τ)}, rlv(τ) = {γ0 � γ; τ◦ ⊆ Q(γ0)◦}

In particular all such fans share the same one-skeleton consisting of the pairwise different
rays generated by v1, . . . , vr where vi := P (ei) ∈ Zn. Moreover, we denote Zγ0 for the
affine toric variety associated with the lattice cone P (γ∗0) ⊆ Qn. The covering of Z by
affine toric charts then formulates as

Z =
⋃

γ0∈rlv(τ)
Zγ0 .

Lemma 3.4.3. Let τ1, τ2 ∈ Λ(S) with τ◦i ⊆ Mov(S)◦. Then for any γ1 ∈ rlv(τ1),
γ2 ∈ rlv(τ2) we have

P (γ∗2) ⊆ P (γ∗1)⇐⇒ γ1 ⊆ γ2.
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Proof. The implication “⇐” is clear. We show “⇒”. Note that the cones P (γ∗1) ∈ Σ(τ1)
and P (γ∗2) ∈ Σ(τ2) both live in lattice fans having precisely v1, . . . , vr as primitive ray
generators. Thus for j = 1, 2 and any vi we have

vi ∈ P (γ∗j ) ⇐⇒ Q≥0 vi is an extremal ray of P (γ∗j ) ⇐⇒ ei ∈ γ∗j .

From this we infer that P (γ∗2) ⊆ P (γ∗1) implies γ∗2 ⊆ γ∗1 . This in turn means γ1 ⊆ γ2.

Let τ−, τ+ ⊆ Q2 = KQ be full-dimensional GIT-cones with (τ−)◦, (τ+)◦ ⊆ Mov(S)◦
intersecting in a common ray τ0 := τ− ∩ τ+.

τ−
τ+

Consider the projective toric varieties Z0, Z−, Z+ associated with τ0, τ− and τ+ and
denote Σ0 = Σ(τ0), Σ− = Σ(τ−) and Σ+ = Σ(τ+) for the describing fans. Moreover the
inclusions of the respective semistable points induce proper birational toric morphims
ϕ− : Z− → Z0, ϕ+ : Z+ → Z0 described by the refinements of fans Σ− � Σ0 and Σ+ � Σ0

respectively. This yields a small birational map ψ : Z− 99K Z+ as shown in the diagram

(Kr)ss(τ−) ⊆

//H
��

(Kr)ss(τ0)

//H
��

(Kr)ss(τ+)

//H
��

⊇

Z−
ϕ− //

ψ

44Z0 Z+ϕ+
oo

Lemma 3.4.4. Let −D be an ample divisor on Z−, then D regarded as a divisor on Z+

is ϕ+-ample.

Proof. By suitably applying an automorphism of K and relabeling w1, . . . , wr ∈ K we
achieve counter-clockwise ordering i.e.

i ≤ j =⇒ det(wi, wj) ≥ 0

and det(w−, w+) ≥ 0 for all w− ∈ τ−, w+ ∈ τ+. Moreover, we name the indices of the
weights that approximate τ0 from the outside

i− := max(i;wi ∈ τ−), i+ := min(i;wi ∈ τ+).

The geometric constellation of w1, . . . , wr in Q2 directly yields that the set of minimal
cones of rlv(τ0) is

{γi; i− < i < i+} ∪ {γi,j ; i ≤ i−, j ≥ i+},
where γi1,...,ir = cone(ei1 , . . . , eir ) � γ. The corresponding cones P (γ0)∗ are precisely the
maximal cones of Σ0, in particular the associated toric charts Zγ0 form an open affine
covering of Z0. We show that D is ample on each open subset (ϕ+)−1(Zγ0) of Z+.
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First, note that ϕ+ is an isomorphism over the affine toric charts of Z0 associated
with the common minimal cones of rlv(τ0) and rlv(τ+), namely all Zγi,j where i ≤ i+

and j ≥ i+. In particular each preimage (ϕ+)−1(Zγi,j ) is affine. Since Z+ is Q-factorial
by Proposition 3.2.5 (i), the divisor D is Q-Cartier thus restricts to an ample divisor on
any open affine subvariety of Z+.

It remains to consider the charts of Z0 defined by the faces of the form γj . Let us
fix some i− < j < i+. The minimal cones γ0 ∈ rlv(τ+) with γj ⊆ γ0 are precisely those
of the form γj,i where i ≥ j. As the toric morphism ϕ+ is described by the refinement
Σ+ � Σ0, Lemma 3.4.3 yields

U := (ϕ+)−1
(
Zγj

)
=
⋃
i≥i+

Zγj,i ⊆ Z+.

Note that U ⊆ Z+ is an open toric subset and the maximal cones of the associated
subfan Σ′ of Σ+ are precisely the cones P (γ∗j,i) where i ≥ i+. This shows that the
rays of Σ′ are the rays of Σ+ minus %j . Thus the divisor class group of U is given by
Cl(U) = K/〈wj〉 and the projection corresponds to the restriction of divisor classes

Cl(Z+) ı∗ //

∼=
��

Cl(U)
∼=
��

K // K/〈wj〉

Taking rankK = 2 into account, we may choose suitable coordinates leading to an
isomorphism Cl(U)Q ∼= Q such that for any w ∈ Cl(Z+) the restriction ı∗(w) to Cl(U)
and det(wj , w) have the same sign. Graphically this means that the sign of ı∗(w) ∈ Cl(U)
is positive if w lies above the ray τ0 and negative if w lies below τ0.

Since we know the maximal cones of Σ′ we may compute the ample cone of U as

Ample(U) =
⋂
i≥i+

(ı∗ ◦Q(γj,i))◦ = Q>0 ⊆ Q = Cl(U)Q.

Note that [−D] ∈ Ample(Z−) = τ− lies below τ , thus the class of −D (regarded on Z+)
restricted to U is negative, hence ı∗[D] ∈ Ample(U). In other words, D is ample on U .
Altogether, we conclude that D is ϕ+-ample.

Proof of Proposition 3.4.2. First, we deal with the case that λ and η intersect in a
common ray % := λ ∩ η. Consider a K-graded presentation

R = K[T1, . . . , Tr]/a

where T1, . . . , Tr define pairwise non-associated K-primes in R and a ⊆ S = K[T1, . . . , Tr]
is a homogeneous ideal. The GIT-fan Λ(S) w.r.t. the H-action on S refines the GIT-fan
Λ(R). We may choose τ+, τ− ∈ Λ(S) such that(

τ−
)◦ ⊆ λ◦ (

τ+
)◦
⊆ η◦, τ− ∩ τ+ = %.
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The toric morphisms ϕ−Z , ϕ
+
Z arising from the face relations % � τ−, τ+ of GIT-cones

are compatible with the toric morphisms ϕ−, ϕ+ arising from % � λ, η as shown in the
following diagram where the vertical arrows are neat embeddings as in Construction 3.2.2

Z(τ−)
ϕ−Z // Z(%) Z(τ+)

ϕ+
Zoo

X(λ)

OO

ϕ− // X(%)

OO

X(η)

OO

ϕ+
oo

We claim that the resulting birational map ψ : X(λ) 99K X(η) is a flop. First observe that
X− is Q-factorial by Proposition 3.2.5 (i) and ϕ−, ϕ+ are small birational morphisms;
see [4, Rem. 3.3.3.4]. Lemma 3.4.1 ensures that ϕ− is extremal.

Let DZ be a torus invariant divisor on Z(τ−) such that −DZ is ample for Z(τ−).
Since X(λ) ⊆ Z(τ−) is neatly embedded, we may restrict DZ to a divisor DX on X(λ).
Note that −DX is ample since −DZ is so. In particular −DX is ϕ−-ample. Lemma 3.4.4
yields that DZ is ϕ+

Z -ample. Let U ⊆ Z(%) be an affine open subset such that DZ is
ample on

V :=
(
ϕ+
Z

)−1
(U) ⊆ Z(τ+).

The further restriction of DZ from V to V ∩X(η) is still ample. In other words, DX

restricted to (ϕ+)−1(X(τ) ∩ U) is ample. We conclude that DX is ϕ+-ample.
Altogether ψ : X(λ) 99K X(η) is a flop.
In the general case we find full-dimensional GIT-cones λ = η1, . . . , ηk = η where

η◦i ⊆ Mov(R)◦ holds for all i and each intersection ηi∩ηi+1 is a ray of Λ(R). According to
the preceding discussion, we may successively construct the desired sequence of flops.

3.5 Combinatorial constraints on smooth hypersurface Cox
rings

The proof of Theorem 3.1.3 basically uses the combinatorial framework for the classifi-
cation of smooth Mori dream spaces of Picard number two with hypersurface Cox ring
established in Section 2.5. Let us recall the notation from there and slightly extend it
to address the torsion subgroup of the grading group explicitly. We also present the
accompanying toolkit. Moreover we add some new tools for dealing with torsion.

We work over an algebraically closed field K of characteristic zero.
Setting 3.5.1. Consider K = Z2 × Γ where Γ is some finite abelian group of order t,
a K-graded algebra R and X = X(λ), where λ ∈ Λ(R) with λ◦ ⊆ Mov(R)◦, as in
Construction 3.2.1. Assume that we have an irredundant K-graded presentation

R = Rg = K[T1, . . . , Tr]/〈g〉

such that the Ti define pairwise nonassociated K-primes in R. Write wi := deg(Ti),
µ := deg(g) for the degrees in K. According to the presentation K = Z2 × Γ we denote

wi = (ui, ζi), µ = (α, θ), ui, α ∈ Z2, ζi, θ ∈ Γ.
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Similarly the degree matrix Q = [w1, . . . , wr] is divided into a free part Q0 and a torsion
part Qtor, i.e., we set

Q0 =
[
u1 . . . ur

]
, Qtor =

[
ζ1 . . . ζr

]
.

Regarded as elements of KQ we identify wi with ui and µ with α. Suitably numbering
w1, . . . , wr, we ensure counter-clockwise ordering, that means that we always have

i ≤ j =⇒ det(wi, wj) = det(ui, uj) ≥ 0.

Note that each ray of Λ(R) is of the form %i = cone(wi), but not vice versa. We assume
X to be Q-factorial. According to Proposition 3.2.5 this means dim(λ) = 2. Then the
effective cone of X is uniquely decomposed into three convex sets,

Eff(X) = λ− ∪ λ◦ ∪ λ+,

where λ− and λ+ are convex polyhedral cones not intersecting λ◦ = Ample(X) and
λ− ∩ λ+ consists of the origin.

λ◦

wr

λ+

w1

λ−

Remark 3.5.2. Setting 3.5.1 is respected by orientation preserving automorphisms of K.
If we apply an orientation reversing automorphism of K, then we regain Setting 3.5.1 by
reversing the numeration of w1, . . . , wr. Moreover, we may interchange the numeration of
Ti and Tj if wi and wj share a common ray without affecting Setting 3.5.1. We call these
operations admissible coordinate changes. Note that any automorphism of Z2 naturally
extends to an automorphism of K = Z2 × Γ acting as the identity on Γ.

We state an adapted version of Proposition 2.2.4 locating the relation degree.

Proposition 3.5.3. In the situation of Setting 3.5.1 we have µ ∈ cone(w3, wr−2) ⊆ KQ.

A further important observation is that the GIT-fan structure of Rg can be read of
from the geometric constellation of w1, . . . , wr and µ.

Proposition 3.5.4. Situation as in Setting 3.5.1. Assume that X(λ) is locally factorial
and R is a spread hypersurface Cox ring. Then the full-dimensional cones of Λ(R) are
precisely the cones η = cone(wi, wj) where %i 6= %j and one of the following conditions is
satisfied:
(i) µ ∈ %i holds, %i contains at least two generator degrees and η◦ contains no generator

degree,
(ii) µ ∈ %j holds, %j contains at least two generator degrees and η◦ contains no generator

degree,
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(iii) µ ∈ η◦ holds and there is at most one wk ∈ η◦, which must lay on the ray through
µ,

(iv) µ /∈ η holds and η◦ contains no generator degrees.

The following lemmas are a crucial in gaining constraints on the specifying data.

Lemma 3.5.5. Situation as in Setting 3.5.1. Let i, j with λ ⊆ cone(wi, wj). If X = X(λ)
is locally factorial, then either wi, wj generate K as a group, or g has precisely one
monomial of the form T lii T

lj
j , where li + lj > 0.

Lemma 3.5.6. Let X = X(λ) be as in Setting 3.5.1 and let 1 ≤ i < j < k ≤ r. If X is
locally factorial, then wi, wj , wk generate K as a group provided that one of the following
holds:
(i) wi, wj ∈ λ−, wk ∈ λ+ and g has no monomial of the form T lkk ,
(ii) wi ∈ λ−, wj , wk ∈ λ+ and g has no monomial of the form T lii ,
(iii) wi ∈ λ−, wj ∈ λ◦, wk ∈ λ+.

Moreover, if (iii) holds, then g has a monomial of the form T
lj
j where lj is divisible

by the order of the factor group K/〈wi, wk〉. In particular lj is a multiple of det(ui, uk).

Lemma 3.5.7. Assume u,w1, w2 generate the abelian group Z2. If wi = aiw holds with
a primitive w ∈ Z2 and ai ∈ Z, then (u,w) is a basis for Z2 and u is primitive.

Now we present some structural observations which prove useful at different places
inside the proof of Theorem 3.1.3 when we deal with specific configurations of generator
and relation degrees.

Lemma 3.5.8. Let u1, . . . , u4 ∈ Z2 such that det(u1, u3), det(u1, u4), det(u2, u3) and
det(u2, u4) all equal one. Then u1 = u2 or u3 = u4 holds.

Lemma 3.5.9. In Setting 3.5.1, assume that X = X(λ) is locally factorial and Rg a
spread hypersurface Cox ring. If wi lies on the ray through µ, then g has a monomial of
the form T lii where li ≥ 2.

Lemma 3.5.10. In Setting 3.5.1 assume that Mov(R) = Eff(R) and µ ∈ Eff(R)◦ hold.
Let Ω denote the set of two-dimensional cones η ∈ Λ(R) with η◦ ⊆ Mov(R)◦.
(i) If X(η) is locally factorial for some η ∈ Ω, then Eff(R) is a regular cone and every

ui on the boundary of Eff(R) is primitive.
(ii) If X(η) is locally factorial for all η ∈ Ω, then, for any wi ∈ Eff(R)◦, we have

ui = u1 + ur or g has a monomial of the form T lii .

Lemma 3.5.11. Situation as in Setting 3.5.1. Assume that Rg is a spread hypersurface
Cox ring. If µ ∈ Eff(R)◦ holds and every two-dimensional η ∈ Λ(R) with η◦ ⊆ Mov(R)◦
defines a locally factorial X(η), then there is at most one ray %i which is not contained
in the boundary of Eff(R) and contains more than one wi.

Lemma 3.5.12. Situation as in Setting 3.5.1. If we have w2 = w3 and µ ∈ %2, then
w4 ∈ %2 holds.
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We have to bear in mind that the divisor class group K = Cl(X) of a smooth
Calabi-Yau threefold X is not necessarily torsion-free. The following lemmas show that
in the case of a hypersurface Cox ring the order of the torsion subgroup is bounded in
terms of monomials of the relation degree. A first important constraint is that the torsion
subgroup of K is cyclic.

Lemma 3.5.13. Situation as in Setting 3.5.1. If X = X(λ) is locally factorial and
µ /∈ λ, then K ∼= Z2 holds.

Proof. We have λ = cone(wi, wj) for some generator degrees wi, wj lying on the boundary
of λ. Due to µ /∈ λ, there is no monomial T lii T

lj
j of degree µ. Lemma 3.5.5 yields that K

is generated by wi, wj . Since rank(K) = 2, this implies K ∼= Z2.

Lemma 3.5.14. Situation as in Setting 3.5.1. If X is locally factorial, then K ∼=
Z2 × Z/tZ holds.

Proof. Both λ− and λ+ contain at least two Cox ring generator degrees. This allows us
to choose wi, wj , wk such that Lemma 3.5.6 applies. This ensures that K is generated by
three elements. By Setting 3.5.1 we have rank(K) = 2, thus K is as claimed.

Lemma 3.5.15. Situation as in Setting 3.5.1. Let 1 ≤ i, j ≤ n with cone(wi, wj)∩λ◦ 6= ∅.
If X = X(λ) is locally factorial and µ ∈ λ holds, then there is a monomial T lii T

lj
j of

degree µ where li + lj > 0.

Proof. Since g is µ-homogeneous, we are done when g has a monomial of the form T lii T
lj
j .

We assume that g has no monomial of the form T lii T
lj
j . Then %i and %j both are

GIT-rays, thus none of wi, wj lies in λ◦. This forces λ ⊆ cone(wi, wj). Then Lemma 3.5.5
tells us that wi, wj generate K as a group. Using µ ∈ λ ⊆ cone(wi, wj) we deduce
that µ is an positive integral combination over wi, wj , i.e., there exists a monomial as
desired.

Lemma 3.5.16. Situation as in Setting 3.5.1. Let 1 ≤ i, j, k ≤ r such that wi, wj , wk
generate K as a group, det(ui, uj) = 1 and cone(wi, wj)∩λ◦ 6= ∅. If X is locally factorial,
then t | lk holds for any monomial T lii T

lk
k of degree µ.

Proof. Using det(ui, uj) = 1 enables us to apply a suitable admissible coordinate change
such that ζi = ζj = 0. Moreover we may assume λ ∈ µ; otherwise Lemma 3.5.13 yields
t = 1 and there is nothing left to show. This allows us to use Lemma 3.5.15. From
this we infer that µ = (α, θ) is an integral positive combination over wi, wj , thus θ = 0.
Since wi, wj , wk generate K as a group, ζk is a generator for Γ. Using ζi = 0 we obtain
lkζk = θ = 0 whenever T lii T

lk
k is of degree µ. This implies t | lk.

Lemma 3.5.17. Situation as in Setting 3.5.1. Assume that X = X(λ) is locally factorial.
If det(u1, ur) = 1 and α = lkuk holds, then t | lk.

Proof. Lemma 3.5.6 yields that w1, wk, wr generate K as a group. Besides T lkk is of
degree µ by Lemma 3.5.9 (i). Now Lemma 3.5.16 tells us t | lk.
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Lemma 3.5.18. Let wi = (ui, ζi) ∈ Z2 × Z/tZ for 1 ≤ i ≤ 3. If u1 = u2 holds and
w1, w2, w3 span Z2 × Z/tZ as a group, then ζ1 − ζ2 is a generator for Z/tZ.

Proof. Choose ai ∈ Z such that ζi = ai ∈ Z/tZ. Then Z3 is the linear hull of the columns
of the following matrix, which we modify by subtracting the second from the first column[

u1 u2 u3 0
a1 a2 a3 t

]
−→

[
0 u2 u3 0

a1 − a2 a2 a3 t

]

Observe that u2, u3 form a Z-basis for Z2, thus a suitable unimodular row operation gives[
0 u2 u3 0

a1 − a2 a2 a3 t

]
−→

[
0 u2 u3 0

a1 − a2 0 0 t

]

The columns of the right-hand side matrix still form a generating system for Z3. This
implies that a1 − a2 = ζ1 − ζ2 generates the group Z/tZ.

Lemma 3.5.19. Situation as in Setting 3.5.1. If X is locally factorial, det(u1, ur) = 1,
and ui = uj holds for some 1 < i < j < r, then ζ1 − ζ2 is a generator for Γ. In
particular K is torsion-free or t 6= 2, 4 holds.

Proof. First note that wi, wj share a common ray in KQ, thus do not lie in the relative
interior of the GIT-cone λ; see Proposition 3.5.4. So we have wi ∈ λ− or wi ∈ λ+. By
applying an orientation reversing coordinate change if necessary we achieve wi ∈ λ−.

We have K = Z2×Z/tZ; see Lemma 3.5.14. Using det(u1, ur) = 1 enables us to apply
a suitable admissible coordinate change such that ζ1 = ζr = 0. Remark 3.2.7 ensures
that g has no monomial of the form T lrr . Hence Lemma 3.5.6 yields that both triples
w1, wi, wr and w1, wj , wr generate K as a group. In particular ζi, ζj both are generators
for Z/tZ. Moreover Lemma 3.5.6 tells us that wi, wj , wr form a generating set for K.
Lemma 3.5.18 yields that ζi − ζj is a generator for Z/tZ. The proof is finished by the
fact that the difference of two generators for Z/2Z resp. Z/4Z is never a generator for
the respective group.

3.6 Proof of Theorem 3.1.3: Collecting candidates
The first and major task in the proof of Theorem 3.1.3 is to show that we find specifying
data for any given smooth Calabi-Yau threefold X with spread hypersurface Cox ring
among the items displayed in Theorem 3.1.3. This is done by a case-by-case analysis of
the geometric constellation of the Cox ring generator degrees.

Now the ground field is K = C. The sole reason for this is the reference involved in
the proof of the following proposition.

Proposition 3.6.1. Consider the situation of Setting 3.5.1. If X(λ) is a smooth weakly
Calabi-Yau threefold, then any variety X(η) arising from a full-dimensional GIT-cone η
satisfying η◦ ⊆ Mov(R)◦ is smooth.
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Proof. Proposition 3.4.2 provides us with a sequence of flops

X(λ) = X1 99K · · · 99K Xk = X(η).

According to [91, Thm. 6.15], see also [90], flops of threefolds preserve smoothness.
So we successively obtain smoothness for all varieties in the above sequence, especially
for X(η).

Given a positive integer n, a sum of the form n1 + · · ·+nk = n where n1, . . . , nk ∈ Z≥1
is called an integer partition of n. If one wants to emphasize the order of the summands,
one calls such a sum an integer composition of n. For instance, 1 + 1 + 2 = 4 and
1 + 2 + 1 = 4 are two different integer compositions of 4 but they are equal as integer
partitions.

Remark 3.6.2. In Setting 3.5.1 the geometric constellation of w1, . . . , wr is described
by an integer composition of r in the following sense: First, we take into account that
some of the rays %i = cone(wi) may coincide and label the actual rays properly. Let
1 ≤ j1 < · · · < js ≤ r such that %jk 6= %jl holds for jk 6= jl and each %i equals some %jk .
Set σk := %jk . We denote Nk for the number of Cox ring generator degrees wi lying on
σk. Then the distribution of the degrees wi on the rays σk is encoded by the composition

N1 + · · ·+Ns = r.

For example, when r = 4 holds, the integer compositions 1 + 1 + 2 = 4 and 1 + 2 + 1 = 4
correspond to the constellations of w1, . . . , w4 illustrated below.

σ1 = %1

σ2 = %2σ3 = %3 = %4

1 + 1 + 2 = 4

σ1 = %1

σ2 = %2 = %3σ3 = %4

1 + 2 + 1 = 4

Proposition 3.6.3. Situation as in Setting 3.5.1. If X is a weakly Calabi-Yau threefold,
then r = 6 holds and the constellation of w1, . . . , w6 corresponds to one of the following
integer partitions N1 + . . .+Ns = 6 in the sense of Remark 3.6.2.

s N1 N2 N3 N4 N5 N6

I 2 3 3 — — — —
II 3 2 2 2 — — —
III 3 1 2 3 — — —
IV 4 1 1 2 2 — —
V 4 1 1 1 3 — —
VI 5 1 1 1 1 2 —
VII 6 1 1 1 1 1 1
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Proof. Observe r = dim(X) + dim(KQ) + 1 = 6. The subsequent table shows all integer
partitions N1 + · · ·+Ns = 6.

s N1 N2 N3 N4 N5 N6

1 6 — — — — —
2 1 5 — — — —
2 2 4 — — — —

I 2 3 3 — — — —
II 3 2 2 2 — — —
III 3 1 2 3 — — —

3 1 1 4 — — —
IV 4 1 1 2 2 — —
V 4 1 1 1 3 — —
VI 5 1 1 1 1 2 —
VII 6 1 1 1 1 1 1

Our task is to show that in the situation of Setting 3.5.1 those partitions without roman
label do not admit a composition corresponding to the constellation of w1, . . . , w6 in KQ.

Observe that in the cases s = 1 and s = 2 where N1 = 1, N2 = 5 the moving
cone Mov(R) of R must be one-dimensional; a contradiction. From Proposition 3.5.3
we deduce that any constellation given by N1 + N2 = 2 + 4 = 6 forces µ to live in
the boundary of Eff(R). This contradicts Remark 3.2.7. Furthermore, the partition
N1 +N2 +N3 = 1 + 1 + 4 comprises precisely two compositions, that is to say

N1 +N2 +N3 = 1 + 4 + 1 and N1 +N2 +N3 = 1 + 1 + 4.

The first of them implies that Mov(R) is one-dimensional; a contradiction. Considering
the latter, Proposition 3.5.3 shows that µ lies on the boundary of Eff(R); a contradiction
to Remark 3.2.7.

We work in Setting 3.5.1 for the proof of Theorem 3.1.3. According to Remark 3.2.7 (i) it
suffices to determine the degree matrix Q = [w1, . . . , w6] in order to figure out candidates
for specifying data of X since the relation degree µ is given by

µ = w1 + · · ·+ w6.

When Q and µ are fixed, we cover all possibilities (up to isomorphism) by picking an
interior point u of each full-dimensional GIT-chamber λ with λ◦ ⊆ Mov(R)◦.

Our proof of Theorem 3.1.3 will be split into Parts I, . . . , VII discussing the constella-
tions of w1, . . . , w6 in the sense of Remark 3.6.2 given by the accordingly labeled integer
partition of six from Proposition 3.6.3.

Part I • We consider 3 + 3 = 6 i.e. the generator degrees wi are evenly distributed on
two rays σ1, σ2. So w1, . . . , w6 lie all in the boundary of Eff(R).
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Lemma 3.5.10 (i) tells us that each wi is primitive and Eff(R) is regular. In particular
u1 = u2 = u3 and u4 = u5 = u6. A suitable admissible coordinate change leads to

Q0 =
[
1 1 1 0 0 0
0 0 0 1 1 1

]
.

If K is torsion-free, this leads to specifying data as in Number 1 from Theorem 3.1.3.
We assume that K admits torsion. Remark 3.2.7 (i) implies α = u1 + · · ·+u6 = (3, 3).

Lemma 3.5.15 guarantees that T 3
2 T

3
4 is of degree µ. Lemma 3.5.6 tells us that w1, w2, w4

generate K as a group and we have det(u1, u4) = 1. Thus we may apply Lemma 3.5.16.
From this we infer t | 3, hence t = 3 i.e. K = Z2 × Z/3Z; see also Lemma 3.5.14.
Furthermore Lemma 3.5.6 yields that K is generated by each of the triples

(w1, w2, w4), (w1, w3, w4), (w2, w3, w4).

Since u1 = u2 = u3, we conclude that η1, η2, η3 are pairwise different. Otherwise two
of w1, w2, w3 coincide, hence K is generated by two elements; a contradiction. In the
same manner we obtain that η4, η5, η6 are pairwise different. After suitably reordering
T1, . . . , T6 we arrive at specifying data as in Number 2 from Theorem 3.1.3.

Part II • We discuss the degree constellation determined by 2 + 2 + 2 = 6. Here the
generator degrees wi are evenly distributed on three rays σ1, σ2, σ3.

We have µ ∈ σ2 by Proposition 3.5.3. Proposition 3.5.4 provides us with two GIT-cones

η1 = cone(w1, w3), η2 = cone(w3, w5).

According to Proposition 3.6.1 the associated varieties X(η1), X(η2) both are smooth.
Lemma 3.5.10 (i) yields u1 = u2, u5 = u6 and det(u1, u5) = 1. After applying a suitable
admissible coordinate change the degree matrix is of the form

Q0 =
[
1 1 a3 a4 0 0
0 0 b3 b4 1 1

]
, a3, a4 ∈ Z≥1.

We may assume a3 ≤ a4. Let v = (v1, v2) ∈ Z2 be the primitive vector lying on σ2.
Applying Lemma 3.5.6 to X(η2) and the triple w3, w4, w5 shows gcd(a3, a4) = 1. In
addition, we obtain v1 = 1 from Lemma 2.5.5. Lemma 3.5.6 again, this time applied
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to X(η1) and w1, w2, w3, gives v2 = 1. From v1 = v2 we deduce a3 = b3 and a4 = b4.
Lemma 3.5.9 ensures that µ1 is divisible by both a3 and a4, thus a3a4 | µ1. Remark 3.2.7 (i)
says µ = w1 + . . .+ w6. We conclude

a3a4 | µ1 = a3 + a4 + 2.

First we deduce a4 | a3 + 2. Moreover we obtain a3 ≤ 4 due to a3 ≤ a4. Altogether the
integers a3, a4 are bounded, so we just have to examine the possible configurations.

• a3 = 1: From a4 | a3 + 2 = 3 we infer a4 = 1, 3. Now we show that K is torsion-free.
For a4 = 1 we have

Q0 =
[
1 1 1 1 0 0
0 0 1 1 1 1

]
, α = (4, 4).

Observe µ0 = 4u3. Lemma 3.5.13 tells us t | 4, thus K is torsion-free according to
Lemma 3.5.19. Similarly, for a4 = 3 we have

Q0 =
[
1 1 1 3 0 0
0 0 1 3 1 1

]
, α = (6, 6).

Observe α = 2u4. Lemma 3.5.13 tells us t | 2, thus K is torsion-free according
to Lemma 3.5.19. We arrive at specifying data as in Numbers 3 and 4 from
Theorem 3.1.3. Observe X(η1) ∼= X(η2) in both cases due to the symmetry of
the geometric constellation of w1, . . . , w6, µ. Thus it suffices to list an ample class
for X(η1) only.

• a3 = 2: From a4 | a3 + 2 = 4 and a3 ≤ a4 we infer a4 = 2, 4. This contradicts
gcd(a3, a4) = 1.

• a3 = 3: From a4 | a3 + 2 = 5 and a3 ≤ a4 we infer a4 = 5. This leads to
µ1 = a3 + a4 + 2 = 10. A contradiction to a3 | µ1.

• a3 = 4: From a4 | a3 + 2 = 6 and a3 ≤ a4 we infer a4 = 6. This contradicts
gcd(a3, a4) = 1.

Part III • In this part we consider the arrangements of w1, . . . , w6 associated with
the integer partition 1 + 2 + 3 = 6. Here we have precisely three rays σ1, σ2, σ3 each of
which contains a different number of Cox ring generator degrees. A suitable admissible
coordinate change turns the setting into one of the following:

III-i III-ii III-iii

144



3.6. Proof of Theorem 3.1.3: Collecting candidates

Case III-i. Here we have λ = cone(w1, w4). Let v ∈ Z2 be a primitive vector on σ2.
Proposition 3.5.3 and Remark 3.2.7 (i) tell us µ ∈ λ◦ ∪ σ2. This allows us to apply
Lemma 3.5.6 to wi, w4, w5 for i = 1, 2, 3. From this we infer det(ui, v) = 1 for i = 1, 2, 3.
In particular u1, u2, u3 are primitive, thus u1 = u2 = u3. Applying Lemma 3.5.6 to the
triple w1, w2, w6 shows det(u1, u6) = 1. A suitable admissible coordinate change amounts
to v = (0, 1) and

Q0 =
[
1 1 1 0 0 −a6
0 0 0 b4 b5 1

]
, a6, b4, b5 ∈ Z≥1

We may assume b4 ≤ b5. To proceed we have to take the position of µ into account.

Assume µ ∈ λ◦. Then we may apply Lemmas 2.5.5 and 3.5.6 to the two triples w1, w2, w4
and w1, w2, w5. We obtain that u4 and u5 both are primitive, hence

u4 = u5 = v = (0, 1).

From Remark 3.2.7 (i) we infer α = (3− a6, 3). Since µ lives in the relative interior of λ,
which is the positive orthant, we end up with a6 = 1, 2. We show that K is torsion free
in both cases.

• a6 = 1. The free parts of the specifying data are given as

Q0 =
[
1 1 1 0 0 −1
0 0 0 1 1 1

]
, α = (2, 3).

Lemma 3.5.15 ensures that T 2
1 T

3
4 is of degree µ. Moreover Lemma 3.5.6 shows

that both triples w1, w4, w5 and w1, w2, w4 generate K as a group. Applying
Lemma 3.5.16 to w1, w4, w5 and T 2

1 T
3
4 yields t | 3. Again Lemma 3.5.16, this time

applied to w1, w2, w4 and T 2
1 T

3
3 shows t | 2. Altogether t = 1, thus K is torsion-free.

• a6 = 2. The free parts of the specifying data are given as

Q0 =
[
1 1 1 0 0 −2
0 0 0 1 1 1

]
, α = (1, 3).

Lemma 3.5.15 ensures that T 1
1 T

3
4 of degree µ. Moreover Lemma 3.5.6 shows that

w1, w2, w4 generate K as a group. Applying Lemma 3.5.16 to w1, w2, w4 and T1T
3
4

shows t = 1 i.e. K is torsion-free.
Eventually this leads to specifying data as in Numbers 5 and 6 from Theorem 3.1.3.

Assume µ ∈ σ2. Recall that v = (0, 1) spans the ray σ2. So here we have α1 = 0. From
Remark 3.2.7 (i) we obtain a6 = 3 and α2 = b4 + b5 + 1. Lemma 3.5.9 yields b4, b5 | α2.
Applying Lemma 3.5.6 to w1, w4, w5 shows gcd(b4, b5) = 1. We conclude

b4b5 | α2 = b4 + b5 + 1.

This implies b5 | b4 + 1. Moreover we deduce b4 ≤ 3. We discuss the resulting cases:
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• b4 = 1: From b5 | b4 + 1 = 2 we deduce b5 = 1, 2. For b5 = 1 we have

Q0 =
[
1 1 1 0 0 −3
0 0 0 1 1 1

]
, α = (0, 3).

Suppose that K is torsion-free. Then w4 = w5 holds. Reversing the order of the
variables by applying a suitable admissible coordinate change enables us to use
Lemma 3.5.12. This forces two of the rays σi to coincide; a contradiction. So K has
torsion. From α = 3u4 and Lemma 3.5.17 we obtain t | 3, hence t = 3. So we have
K = Z2 × Z/3Z. Using det(u1, u6) = 1 enables us to apply a suitable admissible
coordinate change such that ζ1 = ζ6 = 0. Now Lemma 3.5.6 shows that both triples
w1, w2, w6 and w1, w3, w6 generate K as a group. From this we infer that ζ2 and
ζ3 both are generators for Z× Z/3Z. Lemma 3.5.6 yields that w2, w3, w6 form a
generating set for K as well. This forces ζ2 6= ζ3. Otherwise w2 = w3 holds, thus
K is spanned by two elements; a contradiction. Similarly, Lemma 3.5.6 applied
to w1, w4, w6 and w1, w5, w6 yields that ζ4 and ζ5 both are generators for Z/3Z.
Moreover applying Lemma 3.5.6 to w1, w4, w5 ensures ζ4 6= ζ5. After suitably
reordering T2, T3 and T4, T5 we arrive at Number 7 from Theorem 3.1.3.
We turn to b5 = 2. Here the free parts of degree matrix and relation degree are
given by

Q0 =
[
1 1 1 0 0 −3
0 0 0 1 2 1

]
, α = (0, 4).

Note α = 2u5. From Lemma 3.5.17 we infer t | 2, hence K is torsion-free according
to Lemma 3.5.19. Moreover every µ-homogeneous polynomial not depending on
T6 is a linear combination over the monomials T 4

4 , T 2
4 T5, T 2

5 , thus reducible. This
implies that T6 ∈ R is not prime. A contradiction.

• b4 = 2: From b5 | b4 + 1 = 3 and b4 ≤ b5 follows b5 = 3. This leads to

Q0 =
[
1 1 1 0 0 −3
0 0 0 2 3 1

]
, α = (0, 6).

Observe α = 3u2 = 2u3. Lemma 3.5.17 yields t | 2 and t | 3, hence t = 1. So K is
torsion-free. We end up with Number 8 from Theorem 3.1.3.

• b4 = 3: From b5 | b4 + 1 = 4 and b4 ≤ b5 we infer b5 = 4. This implies α2 = 8; a
contradiction to b4 | α2.

Case III-ii. Here, we have λ = cone(w2, w5). Proposition 3.5.3 says µ ∈ σ2. Let v ∈ Z2

be a primitive vector on σ2. Applying Lemma 3.5.6 to w2, w3, w5 as well as w2, w3, w6
shows det(v, u5) = 1 and det(v, u6) = 1. In particular u5, u6 are primitive and lie on
the same ray hence coincide. Again by Lemma 3.5.6, now applied to w1, w5, w6, we
obtain det(u1, u5) = 1. A suitable admissible coordinate change amounts to v = (1, 0)
and u5 = (0, 1). As a result the free part Q0 of the degree matrix Q is of the form

Q0 =
[

1 a2 a3 a4 0 0
−2 0 0 0 1 1

]
, a2, a3, a4 ∈ Z≥1.
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Note that the second coordinate of u1 is determined by α2 = 0 and Remark 3.2.7 (i).
Furthermore, we may assume a2 ≤ a3 ≤ a4. Lemma 3.5.9 shows that α1 is divisible by
each of a2, a3, a4. From applying Lemma 3.5.6 to all triples wi, wj , w6 where 2 ≤ i < j ≤ 4
we infer that a2, a3, a4 are pairwise coprime. This leads to

a2a3a4 | a2 + a3 + a4 + 1.

According to Remark 3.3.1 we have a2 = 1 and one of the following two configurations

a3 = 1, a3 = 2 and a4 = 3.

Note that a3 = 2 and a4 = 3 amounts to α1 = 7; a contradiction to a3 | α1. So we have
a3 = 1. Then a4 | α1 = 3 + a4 holds. We conclude a4 | 3 i.e. a4 = 1, 3. We show that K
is torsion-free in both cases:

• a4 = 1. Here we have

Q0 =
[

1 1 1 1 0 0
−2 0 0 0 1 1

]
, α = (4, 0).

Note α = 4u2, thus t | 4 by Lemma 3.5.17. Now Lemma 3.5.19 ensures that K is
torsion-free.

• a4 = 2. Here we have

Q0 =
[

1 1 1 3 0 0
−2 0 0 0 1 1

]
, α = (6, 0).

Note α = 2u4, thus t | 2 by Lemma 3.5.17. Now Lemma 3.5.19 ensures that K is
torsion-free.

We have arrived at Numbers 9 and 10 from Theorem 3.1.3.

Case III-iii. From Lemma 3.5.10 (i) we obtain

u1 = u2 = u3, u5 = u6, det(u1, u6) = 1.

A suitable admissible coordinate change brings the degree matrix into the following form

Q0 =
[
1 1 1 a4 0 0
0 0 0 b4 1 1

]
, a4, b4 ∈ Z≥1.

Moreover, Proposition 3.5.3 tells us µ ∈ cone(w1, w4)◦ or µ ∈ %4. Let us first assume
µ ∈ cone(w1, w4)◦. According to Proposition 3.5.4 we have GIT-cones

η1 = cone(w1, w4), η2 = cone(w4, w5),

both of them giving rise to a smooth variety X(ηi); see Proposition 3.6.1. We obtain
that K is torsion-free by applying Lemma 3.5.13 to X(η2). Applying Lemma 3.5.10 (ii)
gives u4 = u1 + u6 = (1, 1). We have arrived at Numbers 11 and 12 from Theorem 3.1.3.
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The next step is to consider µ ∈ %4. Lemma 3.5.9 provides us with some k ∈ Z≥2
such that µ = kw4 holds. Using Remark 3.2.7 (i) gives kb4 = α2 = b4 + 2. We conclude
b4 | 2. This leads to one of the following two configurations

k = 3 and b4 = 1, k = 2 and b4 = 2.

Suppose k = 3. Using Remark 3.2.7 (i) again shows 3a4 = 3 + a4, equivalently 2a4 = 3.
A contradiction. We must have k = 2 and b4 = 2. Here Remark 3.2.7 (i) implies
2a4 = 3 + a4, thus a4 = 3. We have

Q0 =
[
1 1 1 3 0 0
0 0 0 2 1 1

]
, α = (6, 4).

From α = 2u4 we infer t | 2 by Lemma 3.5.17. Thus Lemma 3.5.19 yields that K is
torsion-free. This amounts to Number 13 from Theorem 3.1.3.

Part IV • This parts deals with the case of w1, . . . , w6 being disposed on four rays
according to the integer partition 1 + 1 + 2 + 2 = 6. A suitable admissible coordinate
change leads to one of the subsequent constellations:

IV-i IV-ii IV-iii IV-iv

Case IV-i. Here, Proposition 3.5.3 tells us µ ∈ σ3. As a result, Proposition 3.5.4 provides
us with two GIT-cones

η1 = cone(w2, w3), η2 = cone(w3, w5).

Proposition 3.6.1 ensures that the associated varieties X(η1) and X(η2) both are smooth.
Let v ∈ Z2 denote the primitive lattice vector lying on σ3. Consider X(η2). Applying
Lemmas 2.5.5 and 3.5.6 to the triples w3, w4, w5 and w3, w4, w6 yields u5 = u6 and
det(v, u5) = 1. Thus we may apply a suitable admissible coordinate change such that
v = (1, 0) and u5 = u6 = (0, 1). We apply Lemma 3.5.6 again, this time to w1, w5, w6
and w2, w5, w6. This shows that the first coordinate of both u1 and u2 equals one.
Now, consider X(η1). We apply Lemma 3.5.6 to w1, w3, w4, hence obtain u1 = (1,−1).
Analogously, we obtain u2 = (1,−1), thus u1 = u2. This contradicts σ1 6= σ2.

Case IV-ii. Proposition 3.5.3 says µ ∈ cone(w2, w4). First, we assume µ ∈ %4 = σ3. Then
Proposition 3.5.4 ensures λ = cone(w2, w5). Let v ∈ Z2 be the primitive lattice vector
on σ2. Applying Lemmas 2.5.5 and 3.5.6 to all four triples

(w2, w3, w5), (w2, w3, w6), (w2, w5, w6), (w3, w5, w6)
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shows that u2, u3, u5, u6 are primitive, thus u2 = u3 and u5 = u6. Additionally we
obtain det(u2, u5) = 1. Lemma 3.5.6 again, this time applied to w1, w5, w6, tells us
det(u1, u5) = 1. A suitable admissible coordinate change eventually amounts to

Q0 =
[

1 1 1 a4 0 0
−b1 0 0 b4 1 1

]
, a4, b1, b4 ∈ Z≥1.

From Remark 3.2.7 (i) we infer α = (a4 + 3, b4 − b1 + 2). Lemma 3.5.9 provides us
with some k ∈ Z≥2 such that µ = kw4. In particular a4 | α1 = a4 + 3. This implies
a4 = 1, 3. Suppose a4 = 1. Then k = 4 holds. This leads to 4b4 = α2 = b4− b1 + 2, hence
3b4 = 2− b1. A contradiction to b1, b4 ≥ 1. We are left with a4 = 3 and k = 2. Inserting
into α = ku3 gives 2b4 = b4 − b1 + 2, thus b4 = 2 − b1. This forces b1 = 1 and b4 = 1
due to b1, b4 ≥ 1. Moreover k = 2 implies t | 2 by Lemma 3.5.17. Thus K is torsion-free
according to Lemma 3.5.19. We have arrived at Number 14 from Theorem 3.1.3.

We turn to the case µ /∈ σ3. Here Proposition 3.5.4 provides us with two GIT-cones

η1 = cone(w2, w4), η2 = cone(w4, w5).

According to Proposition 3.6.1 the according varieties X(η1) and X(η2) both are smooth.
Consider X(η2). Lemma 3.5.5 applied to w4, w5 and w4, w6 yields det(u4, u5) = 1 as
well as det(u4, u6) = 1. Besides, Lemmas 2.5.5 and 3.5.6 applied to w1, w5, w6 give us
det(u1, u5) = 1. Now consider X(η1). Let v ∈ Z2 be the primitive vector contained in σ2.
Applying Lemmas 2.5.5 and 3.5.6 to w2, w3, w4 and w2, w3, w5 shows det(v, u4) = 1 and
det(v, u5) = 1. Now we apply an admissible coordinate change such that v = (1, 0) and
u5 = (0, 1) holds. Taking the determinantal equations from above into account amounts
to the following degree matrix

Q0 =
[

1 a2 a3 1 0 0
−b1 0 0 1 1 1

]
, a2, a3, b1 ∈ Z≥1.

Wemay assume a2 ≤ a3. From Remark 3.2.7 (i) follows α2 = 3−b1. Proposition 3.5.3 guar-
antees that µ lives in the positive orthant, hence b1 ≤ 3. Furthermore, Lemma 3.5.5 ap-
plied w.r.tX(η1) and the pairs w2, w5 and w3, w5 shows a2, a3 | α1. Applying Lemma 3.5.6
to w2, w3, w5 shows gcd(a2, a3) = 1. Consequently a2a3 | α1 = a2 + a3 + 2 holds. We end
up with a2 = 1 and a3 = 1, 3.

Let us discuss the case a3 = 1. Here specifying data looks as follows

Q0 =
[

1 1 1 1 0 0
−b1 0 0 1 1 1

]
, α = (4, 3− b1), b1 ∈ {1, 2, 3}.

Suppose b1 = 3. This implies α = (4, 0) = 4u2. Lemmas 3.5.17 and 3.5.19 yield that K
is torsion-free. So w2 = w3 holds. Note that α2 = 0 means µ ∈ %2. In this situation
Lemma 3.5.12 says w4 ∈ %2. A contradiction to σ2 6= σ3. So we have b1 = 1, 2. Observe
µ ∈ η◦1. Applying Lemma 3.5.13 to X(η2) guarantees that K is torsion-free. We end up
with Numbers 15 to 18 from Theorem 3.1.3.
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We turn to a3 = 3. Here we have α1 = 6. According to Lemma 3.5.5 applied to X(η1)
and w3, w4, there must be some monomial T l33 T

l4
4 of degree µ because of det(u3, u4) = 3.

As the second coordinate of u3 vanishes, l4 = α2 = 3− b1 holds. Inserting this into the
equation α1 = l3a3 + l4a4 yields 3l3 + 3− b1 = α1 = 6. This forces b1 to be divisible by 3,
hence b1 = 3. We arrive at the following data

Q0 =
[

1 1 3 1 0 0
−3 0 0 1 1 1

]
, α = (6, 0).

Observe that this grading does not admit any monomial of the form T l11 T
l4
4 of degree µ.

Thus det(u1, u4) = 1 by Lemma 3.5.5 applied to X(η1) and w1, w4. A contradiction.

Case IV-iii. Proposition 3.5.4 ensures λ = cone(w3, w5). Let v, v′ ∈ Z2 be the primitive
ray generators of σ2, σ3. We may apply Lemmas 2.5.5 and 3.5.6 to at least one of the
triples w2, w3, w4 and w2, w4, w5. From this we infer det(v, v′) = 1. A suitable admissible
coordinate change leads to v = (1, 0) and v′ = (0, 1). Applying Lemma 3.5.6 to w2, w3, w6
yields w6 = (−a6, 1) for some a6 ∈ Z≥1. Similarly, one obtains w1 = (1,−b1) with
b1 ∈ Z≥1. Counter-clockwise orientation yields det(w1, w6) = 1− a6b1 ≤ 0. We conclude
b1 = a6 = 1, hence w1 = −w6. This contradicts Eff(R) being pointed.

Case IV-iv. We have µ ∈ cone(w3, w4) by Proposition 3.5.3. Suppose µ ∈ cone(w3, w4)◦.
Proposition 3.6.1 allows us to apply Lemma 3.5.10 (ii). From this we infer u3 = u4, thus
σ2 = σ3; a contradiction. So we have µ ∈ σ2 ∪ σ3. Taking the symmetry in the geometric
constellation of w1, . . . , w6 into account a suitable admissible coordinate change amounts
to µ ∈ σ2. Lemma 3.5.10 yields u1 = u2, u5 = u6 and u4 = u1 + u6. Furthermore we
obtain det(u1, u6) = 1. After applying another suitable admissible coordinate change the
degree matrix is of the following form

Q0 =
[
1 1 a3 1 0 0
0 0 b3 1 1 1

]
, a3, b3 ∈ Z≥1.

From X being Calabi-Yau we infer α = (a3 + 3, b3 + 3); see Remark 3.2.7. Besides
Lemma 3.5.9 provides us with some k ∈ Z≥2 such that µ = kw3 holds. Altogether we
obtain (k − 1)a3 = 3 = (k − 1)b3, hence a3 = b3. This contradicts σ2 6= σ3.

Part V • In this part we study the case of w1, . . . , w6 being disposed on four rays
according to the integer partition 1 + 1 + 1 + 3 = 6. After applying a suitable admissible
coordinate change, we face one of the two constellations below.

V-i V-ii
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Case V-i. According to Proposition 3.5.3 and Remark 3.2.7 (i) either µ ∈ cone(w3, w4)◦
or µ ∈ σ2 holds. First, we assume µ ∈ cone(w3, w4)◦. Here Proposition 3.5.4 provides us
with two GIT-cones

η1 = cone(w3, w4), η2 = cone(w4, w5).

Proposition 3.6.1 tells us that each ηi defines a smooth variety X(ηi). Let v ∈ Z2 be
the primitive vector lying on σ1. Consider X(η1). Applying Lemmas 3.5.6 and 3.5.7
to w1, w2, w5 and w1, w2, w6 shows that det(v, u5) and det(v, u6) both equal one. Now
consider X(η2). From Lemma 3.5.5 applied to both pairs w4, w5 and w4, w6 we infer
det(u4, u5) = 1 and det(u4, u6) = 1. We are in the situation of Lemma 3.5.8, hence
v = u4 or u5 = u6 i.e. σ1 = σ2 or σ3 = σ4. A contradiction.

We turn to µ ∈ σ2. Here λ = cone(w3, w5) holds due to Proposition 3.5.4. Let v ∈ Z2

be the primitive lattice vector in σ1. Applying Lemma 3.5.6 to w1, w2, w5 and w1, w2, w6
shows det(v, u5) = 1 and det(v, u6) = 1. We find a suitable admissible coordinate change
that amounts to v = (1, 0) and

Q0 =
[
a1 a2 a3 a4 a5 0
0 0 0 b4 1 1

]
, a1, . . . , a5, b4 ∈ Z≥1.

We may assume a1 ≤ a2 ≤ a3. Lemma 3.5.9 says µ = kw4 holds for some k ∈ Z≥2, in
particular b4 | α2. From Remark 3.2.7 (i) follows α2 = b4 + 2, hence b4 | 2. This leads to
one of the configurations

b4 = 1 and k = 3, b4 = 2 and k = 2.

Furthermore, Lemma 3.5.5 shows that k is divisible by ai for all i = 1, 2, 3. Lemma 3.5.6
applied to all triples wi, wj , w6 where 1 ≤ i < j ≤ 4 guarantees that a1, . . . , a4 are
pairwise coprime. As as result we obtain a1a2a3 | k. Since k ≤ 3 holds, this forces

a1 = a2 = 1 and a3 = 1, k.

Remark 3.2.7 (i) says µ = w1 + . . .+ w6. We combine this with µ = kw4, consider the
first coordinate of α and eventually obtain that a5 is determined by

a5 = (k − 1)a4 − a3 − 2.

Observe b4(k − 1) = 2 for both configurations of b4, k in question. Besides, note that
det(u4, u5) > 0 means b4a5 < a4. Plugging the above presentation of a5 into this
inequation yields

a4 < b4(2 + a3).

At this point we have found upper bounds on all entries of Q0. Let us make things
explicit:
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• b4 = 1, k = 3 and a3 = 1: We have 0 < a5 < a4 < 3 i.e. a4 = 2 and a5 = 1. This
amounts to

Q0 =
[
1 1 1 2 1 0
0 0 0 1 1 1

]
, α = (6, 3).

Given that K is torsion-free this leads to specifying data as in Number 19 from
Theorem 3.1.3.
Now assume that the torsion subgroup of K is non-trivial. From α = 3u4 and
Lemma 3.5.17 we infer t = 3 i.e. K = Z2 × Z/3Z. Using det(u5, u6) = 1 enables us
to apply a suitable admissible coordinate change such that ζ5 = ζ6 = 0. Moreover,
Lemma 3.5.6 tells us that K is generated by each of the triples

(w1, w2, w6), (w1, w3, w6), (w2, w3, w6).

Combining this with u1 = u2 = u3 we deduce that ζ1, ζ2, ζ3 are pairwise different;
otherwise K would be spanned by only two elements. After suitably reordering T1,
T2, T3 we may assume ζ1 = 0. Again Lemma 3.5.6 shows that w1, w5, w6 form a
generating set for K as well. This contradicts ζ1 = ζ5 = ζ6 = 0. As a consequence,
K must be torsion-free.

• b4 = 1, k = 3 and a3 = 3: We have a4 < 5. We exclude a4 = 2 because this choice
of a4 implies a5 = −1; a contradiction. Due to gcd(a3, a4) = 1 the case a4 = 3
does not show up either. The remaining case a4 = 4 leads to a5 = 3. However,
Lemma 3.5.6 applied to w3, w5, w6 states gcd(a3, a5) = 1. A contradiction.

• b4 = 2, k = 2 and a3 = 1: We have a4 < 6. From b4a5 < a4 we deduce a4 ≥ 3.
From a4 = 3 follows a5 = 0; a contradiction. So we end up with

Q0 =
[
1 1 1 a4 a5 0
0 0 0 2 1 1

]
, (a4, a5) = (4, 1), (5, 2).

From k = 2 and Lemma 3.5.17 we infer t | 2. Now Lemma 3.5.19 ensures that K is
torsion-free. So we arrive at Numbers 20 and 21 from Theorem 3.1.3.

• b4 = 2, k = 2 and a3 = 2: We have a4 < 8. From a5 = (k − 1)a4 − a3 − 2 = a4 − 4
we deduce a4 ≥ 5. The case a4 = 6 is excluded by gcd(a3, a4) = 1. The remaining
cases are (a4, a5) = (5, 1), (7, 3).
With (a4, a5) = (5, 1) we obtain

Q0 =
[
1 1 2 5 1 0
0 0 0 2 1 1

]
, α = (10, 4).

From α = 2u4 we infer t | 2 by Lemma 3.5.17. Furthermore, Lemma 3.5.15 ensures
that T 3

3 T
4
5 is of degree µ. Applying Lemma 3.5.16 to w1, w3, w5 and T 3

3 T
4
5 yields

t | 3. Altogether t = 1 i.e. K is torsion-free. This leads to Number 22 from
Theorem 3.1.3.
Finally consider (a4, a5) = (7, 3). Here we have

Q0 =
[
1 1 2 7 3 0
0 0 0 2 1 1

]
, α = (14, 4).
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Lemma 3.5.15 ensures that T3T
4
5 is of degree µ. Applying Lemma 3.5.16 to

w1, w3, w5 and T 3
3 T

4
5 yields t = 1. i.e. K is torsion-free. We end up with specifying

data as in Number 23 from Theorem 3.1.3.

Case V-ii. Proposition 3.5.3 says µ ∈ σ2. We have λ = cone(w2, w5) by Proposition 3.5.4.
Let v ∈ Z2 denote the primitive generator of the ray σ2. Applying Lemmas 3.5.6
and 3.5.7 to the triples w2, w3, w5 and w2, w3, w6 shows det(v, u5) = 1 and det(v, u6) = 1.
A suitable admissible coordinate change leads to

Q0 =
[
a1 a2 a3 a4 a5 0
−b1 0 0 0 1 1

]
, a1, . . . , a5, b1 ∈ Z≥1,

where a2 ≤ a3 ≤ a4. Remark 3.2.7 (i) yields α2 = 2 − b1. Since µ ∈ %2 means α2 = 0,
we conclude b1 = 2. Applying Lemma 3.5.6 to wi, wj , w6 for any 1 ≤ i < j ≤ 4 shows
that a1, . . . , a4 are pairwise coprime. According to Lemma 3.5.9 the first coordinate α1
of α is divisible by a2, a3, a4. For i = 2, 3, 4 applying Lemma 3.5.6 to w1, wi, w5 gives
gcd(a1 + 2a5, ai) = 1 as well as det(u1, u5) = a1 + 2a5 | α1. Altogether we have

a1a2a3a4 + 2a2a3a4a5 = (a1 + 2a5)a2a3a4 | α1 = a1 + · · ·+ a5. (3.2)

In particular, the left-hand side is less than or equal to the right-hand side. Plugging
a2, a3 ≤ a4, a1a2a2a4 ≥ a1 and a2a3a4a5 ≥ a5 into Eq. (3.2) leads to a2a3a4a5 ≤ 3a4, thus
a2a3a5 ≤ 3. Then a2 ≤ a3 enforces a2 = 1. We end up with the following configurations

a3 = 1 and a5 = 1, 2, 3, a3 = 2, 3 and a5 = 1.

We gain bounds on a4 in terms of a3, a5 by combining a1a2a3a4 ≥ a1 and Eq. (3.2) again:

(2a3a5 − 1)a4 ≤ a3 + a5 + 1. (3.3)

As a result we obtain a3 = 1; otherwise we must have a3 = 2, 3 and a5 = 1 thus Eq. (3.3)
gives 3a4 ≤ 5 forcing a4 = 1, which is a contradiction to a3 ≤ a4. From Lemma 3.5.5
applied to w1, w6 we deduce that a1 divides α1 = a1 + a4 + a5 + 2, thus

a1 | a4 + a5 + 2. (3.4)

Finally, we make things explicit and go through the cases a5 = 1, 2, 3:
• a5 = 1: We have a4 ≤ 3 due to Eq. (3.3). When a4 = 1 we end up with a1 = 1, 2, 4

due to Eq. (3.4). None of these configurations satisfies Eq. (3.2). When a4 = 2
holds, Eq. (3.4) gives a1 = 1, 5. The first value, a1 = 1, leads to

Q0 =
[

1 1 1 2 1 0
−2 0 0 0 1 1

]
, α = (6, 0).

From α = 3u4 and Lemma 3.5.17 we infer t | 3. Moreover, Lemma 3.5.15 ensures
that T 2

1 T
4
5 is of degree µ. Applying Lemma 3.5.16 to w1, w2, w5 and T 2

1 T
4
5 shows

t | 2. Altogether t = 1 i.e. K is torsion-free. We arrive at Number 24 from
Theorem 3.1.3. The second value, a1 = 5, does not satisfy Eq. (3.2). Finally, with
a4 = 4 we obtain a1 = 1, 7 from Eq. (3.4). None of these configurations satisfies
Eq. (3.2).
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• a5 = 2: Inserting into Eq. (3.3) yields 3a4 ≤ 4, hence a4 = 1. Now Eq. (3.4) leads
to a1 = 1, 5. None of these configurations satisfies Eq. (3.2).

• a5 = 3: Inserting into Eq. (3.3) yields 5a4 ≤ 5, hence a4 = 1. Now Eq. (3.4)
amounts to a1 = 1, 2, 3, 6. Applying Lemma 3.5.6 to the triple w1, w5, w6 shows
gcd(a1, a5) = 1. This reduces the situation to a1 = 1, 2.
With a1 = 1 we obtain

Q0 =
[

1 1 1 1 3 0
−2 0 0 0 1 1

]
, α = (7, 0).

Lemma 3.5.15 ensures that T1T
2
5 is of degree µ. Applying Lemma 3.5.16 to

w1, w2, w5 and T1T
2
5 shows t = 1 i.e. K is torsion-free. We arrive at specifying data

as in Number 25 from Theorem 3.1.3.
For a1 = 2 we have the following data

Q0 =
[

2 1 1 1 3 0
−2 0 0 0 1 1

]
, α = (8, 0).

Again Lemma 3.5.15 ensures that T1T
2
5 is of degree µ. Applying Lemma 3.5.16 to

w1, w2, w5 and T1T
2
5 shows t = 1 i.e. K is torsion-free. We arrive at specifying data

as in Number 26 from Theorem 3.1.3.

Part VI • Here we treat the case where the generator degrees w1, . . . , w6 lie on five
different rays. After a suitable admissible coordinate change, we are in the situation of
one of the constellations illustrated below.

VI-i VI-ii VI-iii

Case VI-i. We claim µ ∈ σ3. Otherwise Proposition 3.5.3 tells us µ ∈ σ2 ∪ cone(w3, w4)◦.
Then η = cone(w4, w5) is a GIT-cone by Proposition 3.5.4. Consider the associated
variety X(η). Proposition 3.6.1 ensures that X(η) is smooth. Let v ∈ Z2 denote the
primitive generator of the ray σ1. Lemmas 3.5.6 and 3.5.7 apply to w1, w2, w5 and
w1, w2, w6, therefore det(v, u5) = 1 and det(v, u6) = 1. Moreover, Lemma 3.5.5 applied
to both pairs w4, w5 and w4, w6 gives det(u4, u5) = 1 and det(u4, u6) = 1. We use
Lemma 2.5.6 and obtain v = u4 or u5 = u6, thus σ1 = σ3 or σ4 = σ5. A contradiction.

So we have µ ∈ σ3. Proposition 3.5.4 provides us with GIT-cones

η1 = cone(w1, w3), η2 = cone(w3, w5).
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According to Proposition 3.6.1 the associated varieties X(η1), X(η2) both are smooth.
Let us consider X(η1). Applying Lemma 3.5.5 to the pairs w1, w3 and w2, w3 yields

det(u1, u3) = 1 and det(u2, u3) = 1.

From this we also infer that u1 and u2 both are primitive, hence u1 = u2. Now consider
X(η2). Lemma 3.5.6 applied to both triples w1, w2, w5 and w1, w2, w6 gives

det(u1, u5) = 1 and det(u1, u6) = 1.

After applying a suitable admissible coordinate change the degree matrix is as follows

Q0 =
[
1 1 a3 a4 a5 0
0 0 1 b4 1 1

]
, a3, a4, a5, b4 ∈ Z≥1.

Lemma 3.5.9 provides us with some k ∈ Z≥2 such that kw4 = µ. Remark 3.2.7 (i) says
α2 = b4 + 3. Together we obtain b4 | 3, thus b4 = 1, 3. This implies k = 1 + 3/b4.
Moreover, applying Lemma 3.5.6 to w3, w4, w6 yields

a3 = det(w3, w6) | k = 1 + 3
b4
. (3.5)

Again by Remark 3.2.7 (i) we have ka4 = α1 = a3 + a4 + a5 + 2. This determines a4 by

a4 = a3 + a5 + 2
(k − 1) = b4(a3 + a5 + 2)

3 . (3.6)

Consider b4 = 1. From w3, w4, w5 being oriented counter-clockwise we infer a3 > a4 > a5,
in particular a3 ≥ 3. Then Eq. (3.5) enforces a3 = 4. This implies a5 ≤ 2. For a5 = 1, 2
one directly checks that Eq. (3.6) does not yield an integer value for a4. A contradiction.

Consider b4 = 3. Equation (3.5) says a3 = 1, 2. From a3 > a5 > 0 we deduce a3 = 2
and a5 = 1. Now inserting into Eq. (3.6) leads to a4 = 5, hence

Q0 =
[
1 1 2 5 1 0
0 0 1 3 1 1

]
, α = (10, 6).

Lemma 3.5.15 makes sure that T 5
3 T6 is of degree µ. Consider X(η2). Applying

Lemma 3.5.16 to w3, w5, w6 and T 4
3 T6 yields t = 1 i.e. K is torsion-free. This amounts to

Numbers 27 and 28 from Theorem 3.1.3.

Case VI-ii. Repeating the arguments from Case VI-i shows µ ∈ σ3. By Proposition 3.5.4
we have λ = cone(w3, w5). Let v ∈ Z2 denote the primitive lattice in σ2. Applying
Lemmas 3.5.6 and 3.5.7 to w2, w3, w5 as well as w2, w3, w6 shows det(v, u5) = 1 and
det(v, u6) = 1. By a suitable admissible coordinate thus we achieve

Q0 =
[
a1 a2 a3 a4 a5 0
−b1 0 0 b4 1 1

]
, a1, . . . , a5, b1, b4 ∈ Z≥1,
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where a2 ≤ a3. By Lemma 3.5.9 there is some k ∈ Z≥2 with kw4 = µ. According to
Remark 3.2.7 (i) we obtain kb4 = α2 = b4 − b1 + 2. This leads to (k − 1)b4 = 2 − b1.
Since the left-hand side is positive, we conclude b1 = 1 and consequently b4 = 1, k = 2.
Moreover, applying Lemma 3.5.6 to w1, w4, w5 yields

a1 + a5 = det(u1, u5) | k = 2.

From this we infer a1 = 1 and a5 = 1. Analogously we obtain a2, a3 | 2. Applying
Lemma 3.5.6 to w2, w3, w6 shows gcd(a2, a3) = 1. Besides we have a2 ≤ a3. Altogether
we arrive at a2 = 1 and a3 = 1, 2. From Remark 3.2.7 (i) we infer a4 = a3 + 3.

The case a3 = 1 amounts to

Q0 =
[

1 1 1 2 1 0
−1 0 0 1 1 1

]
, α = (6, 2).

Note α = 3u4, thus t | 3 by Lemma 3.5.17. Furthermore, Lemma 3.5.15 guarantees
that T 6

3 T
2
6 is of degree µ. Lemma 3.5.6 says that w3, w5, w6 form a generating system

for K. Thus we may apply Lemma 3.5.16 to w3, w5, w6 and T 6
3 T

2
6 . From this we infer

t | 2. Altogether t = 1, hence K is torsion-free. We have arrived at Number 29 from
Theorem 3.1.3.

To conclude Case VI-ii suppose a3 = 2. Then a4 = 5 holds. On the other side,
Lemma 3.5.6 applied to w3, w4, w5 yields that a3 and a4 − a5 = 4 are coprime. A
contradiction.

Case VI-iii. Proposition 3.5.3 says µ ∈ σ3. By Proposition 3.5.4 we find GIT-chambers

η1 = cone(w2, w3), η2 = cone(w4, w5)

each of which defines a smooth variety X(ηi); see Proposition 3.6.1. Let v ∈ Z2 be
the primitive lattice vector on the ray σ3. Consider X(η1). Applying Lemma 3.5.6 to
w1, w3, w4 as well as w2, w3, w4 yields det(u1, v) = 1 and det(u2, v) = 1. Analogously we
obtain det(v, u5) = 1 and det(v, u6) = 1 when considering X(η2). Performing a suitable
admissible coordinate change leads to

Q0 =
[
a1 a2 a3 a4 a5 0
−1 −1 0 0 1 1

]
, a1, . . . , a5 ∈ Z≥1

where a1 < a2 and gcd(a3, a4) = 1. Observe that u1, u5 do not span Z2, in particular
w1, w5 do not span K. Thus Lemma 3.5.5 gives us a monomial of the form T l11 T

l5
5 and

degree µ. Recall that µ ∈ σ3 means that the second coordinate of α vanishes. From
this we conclude l1 = l5 hence a1 + a5 | α1. In the same way we obtain a2 + a5 | α1.
Furthermore, we infer a3, a4 | α1 from Lemma 3.5.9. Applying Lemma 3.5.6 to wi, wj , w5
for all 1 ≤ i < j ≤ 4 shows that the four integers a1 + a5, a2 + a5, a3, a4 are pairwise
coprime. We conclude

(a1 + a5)(a2 + a5)a3a4 | α1.
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Expanding the left-hand side and inserting the description for µ provided by Re-
mark 3.2.7 (i) while weaking the divisibility condition to an estimation leads to

a1a2a3a4 + a1a3a4a5 + a2a3a4a5 + a3a4a
2
5 ≤ a1 + · · ·+ a5.

One quickly checks that only a1 = 1, a2 = 2, a3 = a4 = a5 = 1 satisfies this inequation by
suitably estimating the single terms. For example, suppose a3 > 1. Then

a1a2a3a4 + a2a3a4a5 + a2a3a4a5 + a3a4a
2
5 ≥ 2a2 + a3 + a4 + a5 > a1 + · · ·+ a5.

Note that second estimation is due to a2 > a1. Anyways, this is a contradiction. We give
the free parts of the final degree matrix and resulting relation degree explicitly

Q0 =
[

1 2 1 1 1 0
−1 −1 0 0 1 1

]
, α = (6, 0).

Lemma 3.5.15 ensures that both T 3
1 T

3
5 and T 2

2 T
2
5 are of degree µ. Moreover Lemma 3.5.6

yields that both triples w1, w5, w6 and w2, w3, w5 form a generating system for K. Ap-
plying Lemma 3.5.16 to w1, w5, w6 and T 3

1 T
3
5 gives t | 3. Lemma 3.5.16 again, this

time applied to w2, w3, w5 and T 2
2 T

2
5 , yields t | 2. Altogether t = 1 i.e. K is torsion-

free. Furthermore, the symmetry in the geometric constellation of w1, . . . , w6, µ reveals
X(η1) ∼= X(η2). This becomes even clearer if one applies an admissible coordinate change,
namely adding the first row of Q to the second row. Consequently, it suffices to list
X(η1). We have arrived at specifying data as in Number 30 from Theorem 3.1.3.

Part VII • We work out the the constellation where the Cox ring generator degrees
w1, . . . , w6 lie on pairwise different rays i.e. we have σi = %i for all i = 1, . . . , 6. Proposi-
tion 3.5.3 says µ ∈ cone(w3, w4). After applying a suitable admissible coordinate change
we have either µ ∈ cone(w3, w4)◦ or µ ∈ %3.

VII-a: µ ∈ cone(w3, w4)◦ VII-b: µ ∈ %3

Case VII-a. Here, we assume µ ∈ cone(w3, w4)◦. According to Proposition 3.5.4 the
cones

η1 = cone(w2, w3), η2 = cone(w3, w4), η3 = cone(w4, w5)
are GIT-cones leading to smooth varieties X(ηi); see also Proposition 3.6.1. Let us
consider X(η1). Lemma 3.5.5 applied to w1, w3 and w2, w3 yields det(u1, u3) = 1 and
det(u2, u3) = 1. Thus a suitable admissible coordinate change leads to

Q0 =
[

1 1 0 −a4 −a5 −a6
−b1 0 1 b4 b5 b6

]
, ai, bi ∈ Z≥1.
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Consider X(η3). Applying Lemma 3.5.5 to w4, w5 and w4, w6 gives det(u4, u5) = 1 and
det(u4, u6) = 1. Since a4 6= 0, this is equivalent to

b5 = a5b4 − 1
a4

, b6 = a6b4 − 1
a4

. (3.7)

Now consider X(η2). Applying Lemma 3.5.5 to the pair w3, wi for i = 4, 5, 6 shows that
α1 is divisible by each of a4, a5, a6. Moreover, Lemma 3.5.6 applied to w2, wi, wj where
4 ≤ i < j ≤ 6 ensures that a4, a5, a6 are pairwise coprime. Together with Remark 3.2.7 (i)
we obtain

a4a5a6 | α1 = a4 + a5 + a6 − 2.

One quickly checks that this forces two of a4, a5, a6 to equal one. Suppose a5 = a6 = 1.
Then Eq. (3.7) implies b5 = b6, thus u5 = u6. A contradiction. So we must have a4 = 1,
in particular

b5 = a5b4 − 1, b6 = a6b4 − 1. (3.8)

Furthermore, Lemma 3.5.5 applied to w2, wj gives bj | α2 for j = 4, 5, 6. In addition,
applying Lemma 3.5.6 to all triples w2, wi, wj where 4 ≤ i < j ≤ 6 shows that b4, b5, b6
are pairwise coprime. Once again by Remark 3.2.7 (i) we obtain

b4b5b6 | α2 = b4 + b5 + b6 + 1− b1. (3.9)

Note that the right-hand side is positive due to the position of µ. From this we deduce
b4b5b6 ≤ b4 + b5 + b6. According to Remark 3.3.1 this inequation implies that either two
of b4, b5, b6 equal one or {b4, b5, b6} = {1, 2, 3}.

We exclude the first option. Here we have b5 6= b6 by Eq. (3.8), thus b4 = 1. However,
we also have ai = 1 for some i ∈ {5, 6}. Then again Eq. (3.8) implies bi = ai − 1 = 0. A
contradiction. So we have {b4, b5, b6} = {1, 2, 3}.

Inserting into Eq. (3.9) amounts to b1 = 1. Currently the degree matrix has the form

Q0 =
[

1 1 0 −1 −a5 −a6
−1 0 1 b4 b5 b6

]
.

Recall that a5 = 1 or a6 = 1 holds. So we have b4 > b5 or b4 > b6 due to the counter-
clockwise orientation of w4, w5, w6. From this we infer b4 6= 1, hence bi = 1 for some
i ∈ {5, 6}. We are left with the cases b4 = 2, 3. With b4 = 3, inserting into Eq. (3.8)
gives 3ai − 1 = bi = 1. A contradiction to ai ∈ Z≥1. With b4 = 2 we deduce ai = 1
from Eq. (3.8). In particular wi = (−1, 1) = −w1 holds. A contradiction to Eff(R) being
pointed.

Case VII-b. Here, we assume µ ∈ %3. Proposition 3.5.4 provides us with two GIT-cones

η1 = cone(w2, w4), η2 = cone(w4, w5).
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Both of them give rise to a smooth variety X(ηi); see Proposition 3.6.1. Consider X(η2).
Applying Lemma 3.5.5 to both pairs w4, w5 and w4, w6 yields det(u4, u5) = 1 and
det(u4, u6) = 1. A suitable admissible coordinate change leads to

Q0 =
[
a1 a2 a3 1 a5 0
−b1 −b2 −b3 0 1 1

]
, ai, bi ∈ Z≥1.

Lemma 3.5.9 provides us with some k ∈ Z≥2 such that µ = kw3 holds. In particular,
we have α1 = ka3. Now consider X(η1). Lemma 3.5.6 applied to the triples w1, w3, w5
and w2, w3, w5 shows that a1 + b1a5 and a2 + b2a5 both divide k. Moreover, apply-
ing Lemma 3.5.6 to w1, w2, w5 yields gcd(a1 + b1a5, a2 + b2a5) = 1. Together with
Remark 3.2.7 (i) we obtain

(a1 + b1a5)(a2 + b2a5)a3 | α1 = a1 + a2 + a3 + a5 + 1.

We expand the left-hand side and give a rough estimation:

(a1 + b1a5)(a2 + b2a5)a3 = a1a2a3 + a1a3a5b2 + a2a3a5b1 + a3a
2
5b1b2

≥ a1 + a2 + a3 + a5

Since gcd(n, n+ 1) = 1 is true for every integer n, this inequation shows that equality
holds in the above divisibility condition. From this we infer

a2(a1a3 − 1) + a1(a3a5b2 − 1) + a3(a2a5b1 − 1) + a5(a3a5b1b2 − 1) = 1.

Observe that every summand on the left-hand side is non-negative, hence precisely one of
them equals one while the other vanish. Since a1, a2, a3, a5 are non-zero, the factor in the
parenthesis vanishes whenever the whole summand vanishes. There are two summands
where b1 shows up in the second factor. At least one of those parenthesis must vanish,
hence b1 = 1. Repeating this argument yields b2 = 1 as well as a3 = 1. Similarly, we
obtain a1 = 1 or a2 = 1. Altogether we have u3 = (1,−b3) and ui = (1,−1) where
i ∈ {1, 2}. This implies det(ui, u3) = 1− b3 ≤ 0; a contradiction to our assumption that
w1, . . . , w6 are in counter-clockwise order.

3.7 Proof of Theorem 3.1.3: Verification
The second mission in the proof of Theorem 3.1.3 is to ensure that the list of specifying
data given there does not contain any superfluous items. So we have to verify that all
items from Theorem 3.1.3 are realized by pairwise non-isomorphic smooth Calabi-Yau
threefolds having a (general) hypersurface Cox ring. We make extensive use of the toolbox
from Section 3.2.

Lemma 3.7.1. Consider n-dimensional varieties X1, X2 with hypersurface Cox rings
having relation degree µ1 resp. µ2. If X1 and X2 are isomorphic, then µn1 = µn2 where µni
is the self-intersection number of µi regarded as a divisor class on Xi.
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Proof. Let ϕ : X1 → X2 be an isomorphism. Then the induced pull-back maps

ϕ∗ : R(X2)→ R(X1), ϕ̃∗ : Cl(X2)→ Cl(X1).

form an isomorphism (ϕ∗, ϕ̃∗) of Cl(Xi)-graded algebras. From this we deduce that the
pull-back ϕ̃∗(µ2) ∈ Cl(X2) of the relation degree µ2 ∈ Cl(X2) of R(X2) is the unique
relation degree µ1 ∈ Cl(X1) of R(X1); see also Remark 3.2.17. Hence µn1 = ϕ̃∗(µ2)n = µn2 .

Proof of Theorem 3.1.3: Verification. We show that each item from Theorem 3.1.3 in-
deed stems from a smooth Calabi-Yau threefold with a general hypersurface Cox ring.

Let (Q,µ, u) be specifying data as presented in Theorem 3.1.3. Consider the linear
K-grading on S = K[T1, . . . , T6] given by Q : Z6 → K. We run Construction 3.2.8 with
the unique GIT-chamber τ ∈ Λ(S) containing u in its relative interior τ◦. In doing
so u ∈ Mov(S)◦ guarantees τ◦ ⊆ Mov(S)◦. In what follows we construct a non-empty
open subset U ⊆ Uµ of polynomials satisfying the conditions from Remark 2.4.2, thereby
obtaining a smooth general Calabi-Yau hypersurface Cox ring. This is done by starting
with U := Uµ and shrinking U successively.

Since µ 6= wi holds for all i, Remark 3.2.9 ensures that T1, . . . , T6 form a minimal
system of generators for Rg, whenever g ∈ Uµ. We want to achieve K-primeness of
T1, . . . , T6 ∈ R. Here Numbers 2 and 7 have to be treated separately. For all remaining
items from Theorem 3.1.3 and any 1 ≤ i ≤ 6 we find in Table 3.1 on page 164 a µ-
homogeneous prime binomial T κ−T ν ∈ S not depending on Ti. Thus, Proposition 3.2.10
allows us to shrink U such that T1, . . . , T6 define primes in Rg for all g ∈ U .

Number 2. For Number 2 observe that all the generator degrees wi = deg(Ti) are
indecomposable in the weight monoid

S(R) = {u ∈ K; Ru 6= 0} = PosZ(w1, . . . , w6) ⊆ K.

Thus every Ti ∈ Rg is K-irreducible. As soon as we know that Rg is K-factorial, we may
conclude that Ti is K-prime.

Number 7. Table 3.1 on page 164 shows µ-homogeneous prime binomials T κ − T ν ∈ S
not depending on Ti for i = 1, . . . , 5. Thus, Proposition 3.2.10 allows us to shrink U such
that T1, . . . , T5 define primes in Rg for all g ∈ U .

Observe that T6 defines a K-prime in Rg if and only if h := g(T1, . . . , T5, 0) ∈ S is
K-prime. Since S is a UFD, thus K-factorial, the latter is equivalent to h ∈ S being
K-irreducible. The only monomials of degree µ not depending on T6 are T 3

4 and T 3
5 ,

hence h = aT 3
4 − bT 3

5 . Note that T 3
4 , T 3

5 are vertices of the polytope

conv
(
ν ∈ Z6

≥0; deg(T ν) = ν
)
.

From g being spread we infer a, b ∈ K∗. For degree reasons, any non-trivial factorization
of h has a linear form ` = a′T4 + b′T5 with a′, b′ ∈ K∗ among its factors. From w4 6= w5
we deduce that such ` is not homogeneous w.r.t the K-grading. We conclude that h
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admits no non-trivial presentation as product of homogeneous elements, i.e., h ∈ S is
K-irreducible. This implies that T6 ∈ Rg is K-prime.
We take the next step, that is to make sure that each Rg is normal and factorially graded.
For example this holds when Rg admits unique factorization. Whenever K is torsion-free
the converse is also true. Here we encounter different classes of candidates.
Numbers 1, 2, 5, 6, 10 – 22, and 26 – 28. One directly checks that the convex hull over
the ν ∈ Z6

≥0 with Q(ν) = µ is Dolgachev polytope; we have used the Magma program
from Intrinsic A.3.5 for this task. Proposition 3.2.12 (ii) ensures that Rg is factorial after
suitably shrinking U .
Numbers 3, 4, and 30. Here, the cone τ ′ = cone(w3) ∈ Λ(S) satisfies (τ ′)◦ ⊆ Mov(S)◦.
Thus, Construction 2.4.1 gives raise to a toric variety Z ′. We have µ ∈ (τ ′)◦ and one
directly verifies that µ is base point free for Z ′. Hence Proposition 3.2.12 (i) shows that
after shrinking U suitably, Rg admits unique factorization for all g ∈ U .
Number 7. We are aiming to apply Proposition 3.2.14. For this purpose we have to verify
that µ occurs as degree associated with a simplex in the sense of Remark 3.2.13. The
following polytope does the job:

B = conv((0, 0, 0, 0), (0, 0, 0, 3) (0, 0, 9,−3), (3, 0, 3,−1), (3, 3, 3,−2)) ⊆ Q4.

The rays of its normal fan Σ(B) are given as the columns of the following matrix

P1 =


−2 0 −1 0 1
−1 1 0 1 −1
−2 1 1 0 0
−3 3 0 0 0

 .
Now consider the stellar subdivision Σ2 of Σ(B) along (−1, 0, 0, 0). The associated data
of Σ2 is K2 = Z2 × Z/3Z and

P2 =


−2 0 −1 0 1 −1
−1 1 0 1 −1 0
−2 1 1 0 0 0
−3 3 0 0 0 0

 , Q2 =

1 1 1 0 0 −3
0 0 0 1 1 1
0 1 2 1 2 0

 .
We compute the Σ2-degree µ2 of B. Observe a(Σ2) = (9, 0, 0, 0, 3). From this we
infer µ2 = Q2(a(Σ2)) = (0, 3, 0). Note that (Q2, µ2) coincides with the specifying data
(Q,µ) for which we run the verification process. In the previous step of this process we
have ensured that U ⊆ Sµ is a non-empty open subset of prime polynomials such that
T1, . . . , T6 define K-primes in Rg whenever g ∈ U . According to Proposition 3.2.14 we
may shrink U such that Rg is K-factorial for each g ∈ U .

Finally, Bechtold’s criterion [18, Cor. 0.6; 63, Prop. 4.1] directly implies that Rg is
normal since each five of w1, . . . , w6 generate K as a group.
Numbers 8, 9, 10, and 24, 25 . By applying a suitable coordinate change we achieve that
the degree matrix Q and the relation degree µ are as in the following table.
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No. Q µ

8
[

1 1 1 6 9 0
−1 −1 −1 −4 −6 1

]
(18,−12)

9
[

1 1 1 6 9 0
−1 −1 −1 −4 −6 1

]
(8,−4)

10
[
0 2 2 2 1 1
1 −1 −1 −1 −1 −1

]
(8,−4)

24
[
0 2 2 4 3 1
1 −1 −1 −2 −2 −1

]
(12,−6)

25
[
0 2 2 2 7 1
1 −1 −1 −1 −4 −1

]
(14,−7)

We apply Proposition 3.2.12 (iii). In the last three cases it is necessary to reorder the
variables such that Q has precisely the shape requested by Proposition 3.2.12 (iii). Now
the conditions from there can be directly checked. As a result, we may shrink U such
that each Rg is a factorial ring.
Number 26. Again we want to use Proposition 3.2.14 thus we have to present µ as degree
associated with a simplex in the sense of Remark 3.2.13. Consider

B = conv((0, 0, 0, 0), (0, 0, 0, 8) (0, 8, 0, 0), (0, 0, 4, 0), (2, 2, 1, 2)) ⊆ Q4.

Its normal fan Σ1 = Σ(B) has the rays given by the columns of the matrix

P1 =


0 0 1 −1 3
1 0 2 −1 1
0 1 2 −1 1
0 0 3 −1 1

 .
Now consider the stellar subdivision Σ2 of Σ(B) along (1, 0, 0, 0). Here associated data
of Σ2 is given by K2 = Z2 and

P2 =


1 0 0 1 −1 3
0 1 0 2 −1 1
0 0 1 2 −1 1
0 0 0 3 −1 1

 , Q2 =
[

2 1 1 1 3 0
−2 0 0 0 1 1

]
.

We compute the Σ2-degrees µ2 of B. Observe a(Σ2) = (0, 8, 0, 0, 0). From this we infer
µ2 = Q2(a(Σ2)) = (8, 0). Here (Q2, µ2) equals (Q,µ) from the specifying data for which
we run the verification process. In the previous step of this process we have ensured that
U ⊆ Sµ is a non-empty open subset such that T1, . . . , T6 define primes in Rg whenever
g ∈ U . Now Proposition 2.4.18 shows that we may shrink U such that Rg is factorial for
each g ∈ U .
At this point we have that U defines a general hypersurface Cox ring. Note that
Proposition 2.3.7 immediately yields that the corresponding varieties Xg are weakly
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Calabi-Yau. The next step is to attain Xg being smooth. Checking the condition from
Proposition 3.2.15 with the help of the Magma program from Intrinsic A.2.5 shows that
Zµ is smooth in all 30 cases. Observe that we have µ ∈ τ except for Numbers 12, 16, 18,
and 27. Whenever µ ∈ τ holds we may apply Corollary 2.4.29 allowing us to shrink U
once more such that Xg is smooth for all g ∈ U . The four exceptional cases turn out to
be small quasimodifications of smooth weakly Calabi-Yau threefolds, hence are smooth
by Proposition 3.6.1. Eventually Remark 3.2.7 (ii) ensures that Xg is Calabi-Yau.

The last task in the proof of Theorem 3.1.3 is to make sure that two varieties from
different families from Theorem 3.1.3 are non-isomorphic. Note that if two varieties from
Theorem 3.1.3 are isomorphic, then their Cox rings are isomorphic as graded rings. For
each family from Theorem 3.1.3 we give the number l of generator degrees, the entries of
the generator degree dimension tuple (d1, . . . , dl) and the self-intersection number µ3 of
the relation degree in the following table.

No. l d1 d2 d3 d4 d5 d6 µ3

1 2 3 3 – – – – 486
2 6 1 1 1 1 1 1 162
3 3 2 2 6 – – – 512
4 4 2 2 5 31 – – 864
5 3 1 3 5 – – – 513
6 6 1 1 1 1 2 3 243
7 3 1 3 8 – – – 594
8 4 1 3 29 66 – – 1944
9 3 1 2 6 – – – 512
10 4 1 2 5 31 – – 864
11 3 2 3 7 – – – 513
12 3 2 3 7 – – – 512
13 3 2 3 31 – – – 864
14 4 1 2 4 31 – – 864
15 4 1 2 4 8 – – 520

No. l d1 d2 d3 d4 d5 µ3

16 4 1 2 4 8 – 512
17 4 1 2 5 9 – 539
18 4 1 2 5 9 – 512
19 4 1 3 4 10 – 567
20 4 1 3 4 32 – 896
21 4 1 3 7 35 – 992
22 5 1 2 3 4 28 784
23 5 1 2 4 7 32 912
24 5 1 1 3 4 8 432
25 4 1 1 4 21 – 686
26 4 1 1 3 14 – 512
27 5 1 2 3 6 31 864
28 5 1 2 3 6 31 872
29 5 1 1 3 4 29 808
30 5 1 1 3 4 4 432

Most of the varieties from Theorem 3.1.3 are distinguished by the generator degree
dimension tuple. Note that the pairs having the same generator dimension degree tuple
are precisely Numbers 11 & 12, 15 & 16, 17 & 18 and 27 & 28 as they share the same Cox
ring. These pairs can be distinguished by the relation degree self-intersection number.
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APPENDIX
A

MAGMA PROGRAMS

Throughout this thesis we have performed computations with the support of the computer
algebra system Magma [27]. The according functions have been bundled together into
a Magma package which is available at [95]. In this chapter we describe the essential
intrinsics of this package used for producing our results and provide examples how to
use them. The involved data is mainly stored in elementary structures from the Magma
language, such as sequences, allowing the users to easily modify the examples given in
this chapter.

A.1 Elementary algebraic and combinatoric intrinsics

We represent an element a = (x, y1, . . . , yq) of a finitely generated abelian group

K = Zn × Z/t1Z× · · · × Z/tqZ

by an integer sequence [x1, . . . , xn, y1, . . . , yq] of the length n+ q together with a second
integer sequence T = [t1, . . . , tq] containing the orders of the finite cyclic factors of K.
Moreover a group homomorphism Q : Zr → K identified with the matrix

Q =
[
a1 . . . ar

]
=


x1 . . . xr
y11 . . . yr1
...

...
y1q . . . yrq


is represented by the sequence of its rows regarded as integer sequences together with
the accompanying sequence T = [t1, . . . , tq].

Intrinsic A.1.1 (IsZZGenerating). Check if given elements of K form a generating set.
Input: u1, . . . , us ∈ K.
Parameters: if K has torsion, the torsion sequence T = [t1, . . . , tq].
Output: returns true if and only if u1, . . . , us form a generating set for K as a group.
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Example. First, we check that the group Z3 is generated by

u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (3, 3, 3), u4 = (4, 4, 4).

Then we verify that w1 = (1, 2, 1), w2 = (1,−1, 1) do not span Z2 × Z/2Z as a group.
1 > u1 := [1 ,0 ,0];
2 > u2 := [0 ,1 ,0];
3 > u3 := [3 ,3 ,3];
4 > u4 := [4 ,4 ,4];
5 > IsZZGenerating ([u1 ,u2 ,u3 ,u4 ]);
6 true
7

8 > w1 := [1 ,2 ,1];
9 > w2 := [1 , -1 ,1];

10 > IsZZGenerating ([w1 , w2] : T := [2]);
11 false

Intrinsic A.1.2 (FiberPoints). Compute the intersection of a fiber of a group homo-
morphism with the positive orthant.

Input: a homomorphism Q : Zr → K such that Q(Qr
≥0) ⊆ Qn = KQ is a pointed cone,

and w ∈ K.

Parameters: if K has torsion, the torsion sequence T = [t1, . . . , tq].

Output: a sequence of all lattice points ν ∈ Zr≥0 with Q(ν) = w.
Example. We consider K = Z× Z/2Z and compute all µ ∈ Z4

≥0 with Q(µ) = w where

Q =
[
1 1 1 1
0 0 1 1

]
, w = (2, 1).

1 > Q := [[1 ,1 ,1 ,1] , [0 ,0 ,1 ,1]];
2 > w := [2, 1];
3 > FiberPoints (Q, w : T := [2]);
4 [
5 [ 0, 1, 0, 1 ],
6 [ 1, 0, 0, 1 ],
7 [ 0, 1, 1, 0 ],
8 [ 1, 0, 1, 0 ]
9 ]

Intrinsic A.1.3 (IsHomPermutation). Check if there is a permution that fixes the
columns of a given matrix and translates a given subsets of Zn into another give one.

Input: an integral (m× n)-matrix Q, finite subsets E,F ⊆ Zn.

Output: returns true if and only if there is a permutation σ ∈ Sn such that
• the i-th column of Q equals the σ(i)-th column of Q,
• E = {σ(v); v ∈ F} where σ(v) := (vσ(1), . . . , vσ(n)).
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Example. Consider the Z2-grading on K[T1, . . . , T6] given by deg(Ti) := wi with the
columns wi of the following matrix Q and polynomials g1, g2

Q =
[
1 1 1 0 0 0
0 0 0 1 1 1

]
, g1 = T1T4 + T2T5 + T3T6, g2 = T1T6 + T2T4 + T3T5.

We use IsHomPermutation to check whether there is a permutation σ ∈ S6 giving rise
to a graded automorphism ϕ : Ti 7→ Tσ(i) on K[T1, . . . , T6] such that ϕ(g1) = g2.

1 > S := PolynomialAlgebra ( Rationals () , 6);
2 > Q := [[1 ,1 ,1 ,0 ,0 ,0] , [0 ,0 ,0 ,1 ,1 ,1]];
3 > g1 := S.1*S.4 + S.2*S.5 + S.3*S.6;
4 > g2 := S.1*S.6 + S.2*S.4 + S.3*S.5;
5 > E := [ Exponent (f) : f in Monomials (g1)];
6 > F := [ Exponents (f) : f in Monomials (g2)];
7 > IsHomPermutation (Q, E, F);
8 true [ 1, 2, 3, 6, 4, 5 ]

A.2 Tools for hypersurface rings
We present computational tools for dealing with questions arising in the context of
Construction 2.4.1. For convenience, let us recall the notation around the central objects
from there. We consider the polynomial algebra S = K[T1, . . . , Tr] together with a
pointed linear K-grading described by the degree map Q : Zr → K, ei 7→ deg(Ti). For
any homogeneous polynomial g ∈ S of degree µ ∈ K we set

R := Rg := K[T1, . . . , Tr]/〈g〉.

Moreover, any GIT-cone τ ∈ Λ(S) with τ◦ ⊆ Mov(S)◦ gives rise to a projective toric
variety Z with a closed subvariety Xg as shown in the following diagram:

V (g)

��

⊆ Kr

��
Xg ⊆ Z

Intrinsic A.2.1 (SearchPrimeBinomial). Check if Ti ∈ Rg is prime for general g by
looking for prime binomials. Implements Proposition 2.4.11/Remark 2.4.12.
Input: Q, µ, an in index 1 ≤ i ≤ r.
Parameters: if K has torsion, the torsion sequence T = [t1, . . . , tq].
Output: Returns true if there is a µ-homogeneous prime binomial not depending on Ti
and false otherwise. If true, also returns exponents of such a prime binomial.
Example. We perform the test for T1 and T6 with data as in Number 7 from Theorem 3.1.3:

K = Z× Z/3Z, Q =

1 1 1 0 0 −3
0 0 0 1 1 1
0 1 2 1 2 0

 , µ = (0, 3, 0).
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In the first case the output additionally provides us with the binomial T 3
5 − T 4

2 T
2
3 T4T

2
6 .

In the second case, the output can be easily verified by hand since the only monomials of
degree µ not depending on T6 are T 3

4 and T 3
5 .

1 > Q := [[1 ,1 ,1 ,0 ,0 , -3] , [0 ,0 ,0 ,1 ,1 ,1] , [0 ,1 ,2 ,1 ,2 ,0]];
2 > mu := [0 ,3 ,0];
3 > SearchPrimeBinomial (Q, mu , 1 : T := [3]);
4 true [
5 [ 0, 0, 0, 0, 3, 0 ],
6 [ 0, 4, 2, 1, 0, 2 ]
7 ]
8 > SearchPrimeBinomial (Q, mu , 6 : T := [3]);
9 false

Intrinsic A.2.2 (DimHomComp). Compute the dimension of homogeneous components.

Input: Q, µ, w ∈ K.

Parameters: if K has torsion, the torsion sequence T = [t1, . . . , tq].

Output: the vector space dimension of Rw.
Example. We compute the dimension of Rw for the data

Q =
[
1 1 1 0 0 0
0 0 0 1 1 1

]
, µ = (1, 1), w = (2, 2).

1 > Q := [[1 ,1 ,1 ,0 ,0 ,0] , [0 ,0 ,0 ,1 ,1 ,1]];
2 > mu := [1 ,1];
3 > w := [2 ,2];
4 > DimHomComp (Q, mu , w);
5 27

Intrinsic A.2.3 (GeneratorDegreeDimensionTuple). Computes the generator degree
dimension tuple of R.

Input: Q, µ.

Parameters: if K has torsion, the torsion sequence T = [t1, . . . , tq].

Output: the generator degree dimension tuple of R.
Example. We compute the generator degree dimension tuple with data as in Number 3
from Theorem 3.1.3:

Q =
[
1 1 1 1 0 0
0 0 1 1 1 1

]
, µ = (4, 4).

1 > Q := [[1 ,1 ,1 ,1 ,0 ,0] , [0 ,0 ,1 ,1 ,1 ,1]];
2 > mu := [4 ,4];
3 > GeneratorDegreeDimensionTuple (Q, mu);
4 [ 2, 2, 6 ]
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Intrinsic A.2.4 (HilbertCoeffs). Compute the first coefficients of the Hilbert series
of R.

Input: Q, µ, n ∈ Z≥2.

Parameters: if K has torsion, the torsion sequence T = [t1, . . . , tq].

Output: the first n coefficients of the Hilbert series of R.
Example. We compute the first six coefficients of the Hilbert series of Number 1 from
Theorem 2.1.1.

1 > Q := [[1 ,1 ,1 ,1 ,0 ,0 ,0] , [0 ,0 ,0 ,0 ,1 ,1 ,1]];
2 > mu := [1 ,1];
3 > HilbertCoeffs (Q, mu , 6);
4 [ 1, 90, 700 , 2695 , 7371 , 16456 ]

Intrinsic A.2.5 (IsMuAmbientSmooth). Check if the µ-minimal ambient toric variety Zµ
is smooth. Implements Proposition 2.4.28. Assumes rank(K) ≤ 2.

Input: Q, µ, an ample class u ∈ τ◦ for Z.

Parameters: if K has torsion, the torsion sequence T = [t1, . . . , tq].

Output: returns true if and only if Zµ is smooth.
Example. We perform the test for Number 33 from Theorem 2.1.1 i.e. with the data

K = Z2, Q =
[
1 1 2 1 0 0 0
0 1 3 2 1 1 1

]
, µ = (4, 6), u = (1, 3).

1 > Q := [[1 ,1 ,2 ,1 ,0 ,0 ,0] , [0 ,1 ,3 ,2 ,1 ,1 ,1]];
2 > mu := [4, 6];
3 > u := [1, 3];
4 > SD := SpecifyingData (Q, [mu], u);
5 > IsMuAmbientSmooth (SD);
6 true

Intrinsic A.2.6 (QuasismoothTest). Check if the location of µ ∈ KQ is compatible
with Xg being quasismooth. Implements Proposition 2.3.6. Assumes rank(K) ≤ 2.

Input: Q, µ, an ample class u ∈ τ◦ for Z.

Parameters: if K has torsion, the torsion sequence T = [t1, . . . , tq].

Output: Returns true if and only if

µ ∈
⋂

γI∈rlv(X)

(
Q(γI ∩ Zr) ∪

r⋃
i=1

wi +Q(γI ∩ Zr)
)
.

If false, also returns I ⊆ {1, . . . , r} such that µ /∈ (Q(γI ∩ Zr) ∪⋃ri=1wi +Q(γI ∩ Zr))
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Example. We show that the following data does not lead to a quasismooth Xg:

Q =
[
1 1 1 1 0 0
0 0 1 1 1 1

]
, µ = (1, 3), u = (2, 1).

1 > Q := [[1 ,1 ,1 ,1 ,0 ,0] , [0 ,0 ,1 ,1 ,1 ,1]];
2 > mu := [1, 3];
3 > u := [2, 1];
4 > QuasismoothTest (Q, mu , u);
5 false [ 1, 3 ]

A.3 Newton polytopes and non-degenerate systems
The following intrinsics offer explicit treatment of the concepts introduced for systems
of (Laurent) polynomials in Section 1.3. We use the Magma categories RngMPol for
polynomials and TorPol for convex polytopes.

Intrinsic A.3.1 (NewtonPolytope). Returns the Newton polytope of a polynomial. This
is a wrapper function to apply the existing intrinsic NewtonPolytope to the data type
RngMPolElt.

Input: a polynomial f ∈ K[T1, . . . , Tr].

Output: the Newton polytope B(f) ⊆ Qr of f .

Intrinsic A.3.2 (FacePolynomial). Compute the face polynomial of a given polynomial.

Input: a polynomial f ∈ K[T1, . . . , Tr] and a face B′ � B(f) of its Newton polytope

Output: the face polynomial f ′ associated with B′.

Intrinsic A.3.3 (FaceSystem). Compute the face system of a given system of polyno-
mials.

Input: a system F of polynomials and a face B′ � B(F ) of its Newton polytope.

Output: the face system F ′ associated with B′.

Intrinsic A.3.4 (IsNondegenerate). Check if a system of polynomials is non-degenerate
in the sense of Definition 1.3.6.

Input: a system F of polynomials.

Output: returns true if and only if F is non-degenerate. If F is not non-degenerate, also
returns a face B′ � B(F ) which does not satisfy Definition 1.3.6 (iii).
Example. We investigate the system F consisting of the single polynomial

f = (T1 − T2)(T3 − T4) + T 2
5 .

Since f fails to be non-degenerate, we also compute a critical face polynomial f ′.
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1 > S <[T]> := PolynomialAlgebra ( Rationals () , 5);
2 > f := (T[1] - T[2]) *(T[3] - T[4]) + T [5]^2;
3 > ver , B0 := IsNondegenerate ([f]);
4 > ver;
5 false
6 > B0;
7 2- dimensional polytope B0 with 4 vertices :
8 (1, 0, 1, 0, 0) ,
9 (1, 0, 0, 1, 0) ,

10 (0, 1, 1, 0, 0) ,
11 (0, 1, 0, 1, 0)
12 > FacePolynomial (f, B0);
13 T[1]*T[3] - T[1]*T[4] - T[2]*T[3] + T[2]*T[4]

Intrinsic A.3.5 (IsDolgachevPolytope). Check if a polytope is Dolgachev. This is
used in connection with Dolgachev’s factoriality criterion; see also Proposition 2.4.13 (ii).
Input: a polytope P ⊆ Qr.
Output: true if P is a Dolgachev polytope, false otherwise.
Example. We consider Q : Z7 → Z2, µ ∈ Z2 as in Number 1 from Theorem 2.1.1 and
verify that conv(ν ∈ Z7

≥0; Q(ν) = µ) ⊆ Q7 is a Dolgachev polytope.
1 > Q := [[1 ,1 ,1 ,1 ,0 ,0 ,0] , [0 ,0 ,0 ,0 ,1 ,1 ,1]];
2 > mu := [1 ,1];
3 > P := Polytope ( FiberPoints (Q, mu));
4 > P;
5 5- dimensional polytope P with 12 generators
6 > Vertices (P);
7 [
8 (1, 0, 0, 0, 0, 1, 0) ,
9 (0, 0, 0, 1, 1, 0, 0) ,

10 (0, 0, 1, 0, 0, 0, 1) ,
11 (1, 0, 0, 0, 1, 0, 0) ,
12 (0, 0, 1, 0, 0, 1, 0) ,
13 (0, 1, 0, 0, 0, 0, 1) ,
14 (0, 0, 1, 0, 1, 0, 0) ,
15 (0, 0, 0, 1, 0, 0, 1) ,
16 (0, 1, 0, 0, 0, 1, 0) ,
17 (1, 0, 0, 0, 0, 0, 1) ,
18 (0, 1, 0, 0, 1, 0, 0) ,
19 (0, 0, 0, 1, 0, 1, 0)
20 ]
21 > IsDolgachevPolytope (P);
22 true

A.4 Intersection numbers

Intrinsic A.4.1 (ToricIntersectionProduct). Compute intersection numbers on an
n-dimensional Q-factorial projective toric variety Z. Implements Algorithm 1.6.5.
Input: degree map Q : Zr → K, ample class u ∈ KQ for Z, u1, . . . , un ∈ KQ.
Parameters: if K has torsion, the torsion sequence T = [t1, . . . , tq].
Output: the intersection number u1 · · ·un ∈ Q.
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Appendix A. Magma programs

Example 1. We compute the anticanonical self-intersection number of the toric complete
intersection Number 41 from Theorem 1.1.3. We have K = Z× (Z/2Z)2 and input data

Q =

1 1 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 1̄
0̄ 0̄ 1̄ 1̄ 0̄ 0̄ 1̄

 , u = 1,

u1 = u2 = u3 = −K = 1, u4 = u5 = u6 = µi = 2.

1 > Q := [ [1 ,1 ,1 ,1 ,1 ,1 ,1] ,
2 [0 ,0 ,0 ,0 ,1 ,1 ,1] ,
3 [0 ,0 ,1 ,1 ,0 ,0 ,1]];
4 > mu := [ [2] , [2] , [2]];
5 > u := [1];
6 > K := [1];
7 > D := mu cat [K, K, K];
8 > ToricIntersectionProduct (Q, u, D : T := [2 ,2]);
9 2

Example 2. We compute the anticanonical self-intersection number of a variety X with
hypersurface Cox ring and specifying data as in Number 2 from Theorem 2.1.1; see also
Remark 1.6.6. Here the anticanonical class of X is also ample for a Q-factorial ambient
toric variety X ⊆ Z. So the input data is

Q =
[
1 1 1 1 0 0 0
0 0 0 0 1 1 1

]
, u = (2, 2),

u1 = · · · = u4 = −K = (2, 2), u5 = µ = (2, 1).

1 > Q := [ [1 ,1 ,1 ,1 ,0 ,0 ,0] ,
2 > [0 ,0 ,0 ,0 ,1 ,1 ,1] ];
3 > mu := [2, 1];
4 > u := [2 ,2];
5 > K := [2 ,2];
6 > D := [K, K, K, K, mu ];
7 > ToricIntersectionProduct (Q, u, D);
8 256

Intrinsic A.4.2 (FanoDegree). Compute the anticanonical self-intersection number of a
Q-factorial projective Fano variety X with complete intersection Cox ring and Picard
number at most two.
Input: specifying data Q and [µ1, . . . , µs] for X.
Parameters: if K has torsion, the torsion sequence T = [t1, . . . , tq].
Output: the anticanonical self-intersection number of X.
Example. We compute the anticanonical self-intersection number of Number 27 from
Theorem 2.1.1 i.e. for the following data

Q =
[
1 1 1 0 0 0 0
0 0 2 1 1 1 1

]
, µ = (2, 4).
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A.4. Intersection numbers

1 > Q := [[1 ,1 ,1 ,0 ,0 ,0 ,0] ,
2 > [0 ,0 ,2 ,1 ,1 ,1 ,1] ];
3 > mu := [2, 4];
4 > FanoDegree (Q, [mu ]);
5 64

173





ACKNOWLEDGEMENTS

First and foremost, I want to express my deepest gratitude to my advisor, Prof.Dr.
Jürgen Hausen, for his outstanding support and excellent advice in any situation, no
matter if mathematical or non-mathematical. Beginning with my very first lecture in
linear algebra, he understood to spark my interest in algebraic and geometric questions,
leading me into this beautiful area of mathematics. This thesis benefited immensely from
your inspiring guidance and strong encouragement!

Secondly, I want to thank Prof.Dr. Gavin Brown for agreeing to be the second referee
for this thesis and for his interest in my work.

Moreover, I want to thank my colleagues and friends from the algebra group for the good
times we had during our lunch breaks, walks and evening activities. I will particularly
miss the humorous conversations about mathematics and far beyond. The last few years
would have been much less enjoyable without your pleasant company!

I am thankful to all of my friends for their personal support and for always being there
with a sympathetic ear. Cozy evenings, making delicious pudding or playing board games
were some of the best ways to clear my mind and to draw new energy from. In addition,
I would like to thank those who helped proofreading this thesis.

Last but not least, I am grateful to my parents, my sister and my entire family for their
manifold support and encouragement to pursue my own interests. It was good to know
that I can make this journey with full backing from home.

175





BIBLIOGRAPHY

[1] M. Artebani, P. Comparin, and R. Guilbot, Families of Calabi-Yau hypersurfaces in Q-Fano toric
varieties, J. Math. Pures Appl. (9) 106 (2016), no. 2, 319–341, DOI 10.1016/j.matpur.2016.02.012
(English, with English and French summaries). MR3515305 ↑123

[2] M. Artebani, P. Comparin, and R. Guilbot, Quasismooth hypersurfaces in toric varieties, Proc.
Amer. Math. Soc. 147 (2019), no. 11, 4565–4579. ↑25, 126

[3] M. Artebani, C. Correa Deisler, and A. Laface, Cox rings of K3 surfaces of Picard number three, J.
Algebra 565 (2021), 598–626, DOI 10.1016/j.jalgebra.2020.08.016. MR4163070 ↑7

[4] I. Arzhantsev, U. Derenthal, J. Hausen, and A. Laface, Cox rings, Cambridge Studies in Advanced
Mathematics, vol. 144, Cambridge University Press, Cambridge, 2015. ↑1, 4, 5, 16, 27, 29, 36, 38,
55, 57, 58, 59, 64, 65, 67, 69, 117, 118, 119, 124, 133, 136

[5] S. Altınok, G. Brown, and M. Reid, Fano 3-folds, K3 surfaces and graded rings, Topology and
geometry: commemorating SISTAG, Contemp. Math., vol. 314, Amer. Math. Soc., Providence, RI,
2002, pp. 25–53, DOI 10.1090/conm/314/05420. MR1941620 ↑1, 14

[6] V. Alexeev and V. V. Nikulin, Del Pezzo and K3 surfaces, MSJ Memoirs, vol. 15, Mathematical
Society of Japan, Tokyo, 2006. MR2227002 ↑1

[7] I. Arzhantsev, L. Braun, J. Hausen, and M. Wrobel, Log terminal singularities, platonic tuples and
iteration of Cox rings, Eur. J. Math. 4 (2018), no. 1, 242–312. ↑10

[8] M. Artebani, J. Hausen, and A. Laface, On Cox rings of K3 surfaces, Compos. Math. 146 (2010),
no. 4, 964–998, DOI 10.1112/S0010437X09004576. MR2660680 ↑7

[9] M. Artebani and A. Laface, Hypersurfaces in Mori dream spaces, J. Algebra 371 (2012), 26–37. ↑63
[10] V. Batyrev, Toric Fano threefolds, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 4, 704–717, 927

(Russian). MR631434 ↑1
[11] V. Batyrev, On the classification of toric Fano 4-folds, J. Math. Sci. (New York) 94 (1999), no. 1,

1021–1050. Algebraic geometry, 9. ↑1, 51
[12] V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J.

Algebraic Geom. 3 (1994), no. 3, 493–535. MR1269718 ↑7, 123
[13] V. Batyrev, The stringy Euler number of Calabi-Yau hypersurfaces in toric varieties and the

Mavlyutov duality, Pure Appl. Math. Q. 13 (2017), no. 1, 1–47. ↑7, 10, 123
[14] V. Batyrev and L. A. Borisov, On Calabi-Yau complete intersections in toric varieties, Higher-

dimensional complex varieties (Trento, 1994), de Gruyter, Berlin, 1996, pp. 39–65. MR1463173
↑7

[15] F. Berchtold and J. Hausen, GIT equivalence beyond the ample cone, Michigan Math. J. 54 (2006),
no. 3, 483–515. ↑55

[16] F. Berchtold and J. Hausen, Cox rings and combinatorics, Trans. Amer. Math. Soc. 359 (2007),
no. 3, 1205–1252. ↑57

177



Bibliography

[17] B. Bechtold, J. Hausen, E. Huggenberger, and M. Nicolussi, On terminal Fano 3-folds with 2-torus
action, Int. Math. Res. Not. IMRN 5 (2016), 1563–1602. ↑2, 9, 10, 11

[18] B. Bechtold, Valuative and geometric characterizations of Cox sheaves, J. Commut. Algebra 10
(2018), no. 1, 1–43, DOI 10.1216/JCA-2018-10-1-1. MR3804845 ↑161

[19] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, Existence of minimal models for varieties of
log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468. ↑4, 49

[20] A. Blanchard, Sur les variétés analytiques complexes, Ann. Sci. Ecole Norm. Sup. (3) 73 (1956),
157–202 (French). ↑118, 119

[21] A. A. Borisov and L. A. Borisov, Singular toric Fano three-folds, Mat. Sb. 183 (1992), no. 2, 134–141
(Russian); English transl., Russian Acad. Sci. Sb. Math. 75 (1993), no. 1, 277–283. ↑10

[22] G. Brown and K. Georgiadis, Polarized Calabi-Yau 3-folds in codimension 4, Math. Nachr. 290
(2017), no. 5-6, 710–725, DOI 10.1002/mana.201600123. MR3636373 ↑7

[23] G. Brown and A. Kasprzyk, Four-dimensional projective orbifold hypersurfaces, Exp. Math. 25
(2016), no. 2, 176–193, DOI 10.1080/10586458.2015.1054054. MR3463567 ↑7

[24] G. Brown, A. Kasprzyk, and L. Zhu, Gorenstein formats, canonical and Calabi-Yau threefolds
(2014), available at arXiv:1409.4644. ↑7

[25] G. Brown and K. Suzuki, Fano 3-folds with divisible anticanonical class, Manuscripta Math. 123
(2007), no. 1, 37–51, DOI 10.1007/s00229-007-0082-6. MR2300058 ↑1

[26] G. Brown and K. Suzuki, Computing certain Fano 3-folds, Japan J. Indust. Appl. Math. 24 (2007),
no. 3, 241–250. MR2374989 ↑1

[27] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J.
Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London,
1993). ↑165

[28] L. Braun and D. Hättig, Canonical threefold singularities with a torus action of complexity one and
k-empty polytopes, Rocky Mountain J. Math. 50 (2020), no. 3, 881–939. ↑10

[29] G. Brown and A. M. Kasprzyk, The graded ring database (2020), http://www.grdb.co.uk. ↑1, 14
[30] C. Casagrande, On the Picard number of divisors in Fano manifolds, Ann. Sci. Éc. Norm. Supér. (4)

45 (2012), no. 3, 363–403, DOI 10.24033/asens.2168 (English, with English and French summaries).
MR3014481 ↑4

[31] C. Casagrande, On the birational geometry of Fano 4-folds, Math. Ann. 355 (2013), no. 2, 585–628.
↑4, 73, 109

[32] C. Casagrande, Numerical invariants of Fano 4-folds, Math. Nachr. 286 (2013), no. 11-12, 1107–1113,
DOI 10.1002/mana.201200141. MR3092275 ↑4

[33] C. Casagrande, Fano 4-folds, flips, and blow-ups of points, J. Algebra 483 (2017), 362–414, DOI
10.1016/j.jalgebra.2017.03.027. MR3649824 ↑4

[34] C. Casagrande, Fano 4-folds with rational fibrations, Algebra Number Theory 14 (2020), no. 3,
787–813, DOI 10.2140/ant.2020.14.787. MR4113781 ↑4

[35] T. Coates, A. Corti, S. Galkin, and A. Kasprzyk, Quantum periods for 3-dimensional Fano manifolds,
Geom. Topol. 20 (2016), no. 1, 103–256, DOI 10.2140/gt.2016.20.103. MR3470714 ↑2

[36] P. Candelas, A. M. Dale, C. A. Lütken, and R. Schimmrigk, Complete intersection Calabi-Yau man-
ifolds, Nuclear Phys. B 298 (1988), no. 3, 493–525, DOI 10.1016/0550-3213(88)90352-5. MR928308
↑7

[37] I. Cheltsov and Y. Prokhorov, Del Pezzo surfaces with infinite automorphism groups, Algebr. Geom.
8 (2021), no. 3, 319–357, DOI 10.14231/ag-2021-008. MR4206439 ↑1

[38] I. Cheltsov and C. Shramov, Del Pezzo zoo, Exp. Math. 22 (2013), no. 3, 313–326, DOI
10.1080/10586458.2013.813775. MR3171095 ↑1

178

https://arxiv.org/abs/1409.4644
http://www.grdb.co.uk


Bibliography

[39] I. Cheltsov and A. Wilson, Del Pezzo surfaces with many symmetries, J. Geom. Anal. 23 (2013),
no. 3, 1257–1289, DOI 10.1007/s12220-011-9286-9. MR3078353 ↑1

[40] J. A. Christophersen and J. O. Kleppe, Comparison theorems for deformation functors via invariant
theory, Collect. Math. 70 (2019), no. 1, 1–32. ↑120

[41] T. Coates, A. Kasprzyk, and T. Prince, Four-dimensional Fano toric complete intersections, Proc.
A. 471 (2015), no. 2175, 20140704, 14. ↑2, 52

[42] A. Conte and J. P. Murre, The Hodge conjecture for fourfolds admitting a covering by rational
curves, Math. Ann. 238 (1978), no. 1, 79–88. ↑116

[43] D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties, Graduate Studies in Mathematics,
vol. 124, American Mathematical Society, Providence, RI, 2011. ↑15, 35

[44] D. A. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), no. 1,
17–50. ↑15, 117

[45] S. Cynk and B. Kocel-Cynk, Classification of double octic Calabi-Yau threefolds with h1,2 ≤ 1
defined by an arrangement of eight planes, Commun. Contemp. Math. 22 (2020), no. 1, 1850082,
38, DOI 10.1142/S0219199718500827. MR4064906 ↑6

[46] V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), no. 2(200), 85–134,
247 (Russian). ↑15

[47] U. Derenthal, Universal torsors of del Pezzo surfaces and homogeneous spaces, Adv. Math. 213
(2007), no. 2, 849–864, DOI 10.1016/j.aim.2007.01.012. MR2332612 ↑1

[48] U. Derenthal, Singular del Pezzo surfaces whose universal torsors are hypersurfaces, Proc. Lond.
Math. Soc. (3) 108 (2014), no. 3, 638–681. ↑1, 5

[49] U. Derenthal and D. Loughran, Singular del Pezzo surfaces that are equivariant compactifications,
Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 377 (2010), no. Issledovaniya
po Teorii Chisel. 10, 26–43, 241, DOI 10.1007/s10958-010-0174-9 (English, with English and Russian
summaries); English transl., J. Math. Sci. (N.Y.) 171 (2010), no. 6, 714–724. MR2753646 ↑1

[50] U. Derenthal and D. Loughran, Equivariant compactifications of two-dimensional algebraic groups,
Proc. Edinb. Math. Soc. (2) 58 (2015), no. 1, 149–168, DOI 10.1017/S001309151400042X.
MR3333982 ↑1

[51] U. Derenthal, J. Hausen, A. Heim, S. Keicher, and A. Laface, Cox rings of cubic surfaces and Fano
threefolds, J. Algebra 436 (2015), 228–276. ↑5, 100
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10.1134/S0371968516030092 (Russian, with Russian summary). English version published in Proc.
Steklov Inst. Math. 294 (2016), no. 1, 139–153. MR3628498 ↑1

[115] Y. Prokhorov and M. Reid, On Q-Fano 3-folds of Fano index 2, Minimal models and extremal rays
(Kyoto, 2011), Adv. Stud. Pure Math., vol. 70, Math. Soc. Japan, [Tokyo], 2016, pp. 397–420, DOI
10.2969/aspm/07010397. MR3618268 ↑1

[116] V. Przyjalkowski and C. Shramov, Bounds for smooth Fano weighted complete intersections,
Commun. Number Theory Phys. 14 (2020), no. 3, 511–553, DOI 10.4310/CNTP.2020.v14.n3.a3.
MR4124110 ↑2, 4, 7

[117] V. Przyjalkowski and C. Shramov, Smooth prime Fano complete intersections in toric varieties
(2020), available at arXiv:2010.14447. ↑2

[118] M. I. Qureshi and B. Szendrői, Calabi-Yau threefolds in weighted flag varieties, Adv. High Energy
Phys., posted on 2012, Art. ID 547317, 14, DOI 10.1155/2012/547317. MR2872365 ↑7

[119] G. V. Ravindra and V. Srinivas, The Grothendieck-Lefschetz theorem for normal projective varieties,
J. Algebraic Geom. 15 (2006), no. 3, 563–590. ↑30

[120] T. Sano, Deforming elephants of Q-Fano 3-folds, J. Lond. Math. Soc. (2) 95 (2017), no. 1, 23–51.
↑14

[121] G. Scheja and U. Storch, Lehrbuch der Algebra. Teil 2, Mathematische Leitfäden. [Mathematical
Textbooks], B. G. Teubner, Stuttgart, 1988 (German). Unter Einschluss der linearen Algebra.
[Including linear algebra]. MR934019 ↑61

[122] F. Schöller and H. Skarke, All weight systems for Calabi-Yau fourfolds from reflexive polyhedra,
Comm. Math. Phys. 372 (2019), no. 2, 657–678, DOI 10.1007/s00220-019-03331-9. MR4032876 ↑7

[123] I. R. Shafarevich, Basic algebraic geometry. 1, Translated from the 2007 third Russian edition,
Springer, Heidelberg, 2013. Varieties in projective space. MR3100243 ↑32

[124] K. Suzuki, On Fano indices of Q-Fano 3-folds, Manuscripta Math. 114 (2004), no. 2, 229–246, DOI
10.1007/s00229-004-0442-4. MR2067795 ↑1

[125] Hendrik Süß, Canonical divisors on T-varieties (2010), available at arXiv:0811.0626. ↑1

182

https://polymake.org/polytopes/paffenholz/www/fano.html
https://polymake.org/polytopes/paffenholz/www/fano.html
https://arxiv.org/abs/2010.14447
https://arxiv.org/abs/0811.0626


Bibliography

[126] J. Tevelev, Compactifications of subvarieties of tori, Amer. J. Math. 129 (2007), no. 4, 1087–1104.
↑26

[127] C. Voisin, Some aspects of the Hodge conjecture, Jpn. J. Math. 2 (2007), no. 2, 261–296. ↑116
[128] P. M. H. Wilson, Calabi-Yau manifolds with large Picard number, Invent. Math. 98 (1989), no. 1,

139–155, DOI 10.1007/BF01388848. MR1010159 ↑6
[129] P. M. H. Wilson, Minimal models of Calabi-Yau threefolds, Classification of algebraic varieties

(L’Aquila, 1992), Contemp. Math., vol. 162, Amer. Math. Soc., Providence, RI, 1994, pp. 403–410,
DOI 10.1090/conm/162/01545. MR1272711 ↑6

[130] J. Wiśniewski, Fano 4-folds of index 2 with b2 ≥ 2. A contribution to Mukai classification, Bull.
Polish Acad. Sci. Math. 38 (1990), no. 1-12, 173–184. ↑4, 51

183





INDEX

H-equivariant embedding, 56
K-factorial, 63, 65
K-graded algebra, 52
K-graded presentation, 54, 58
K-grading

almost free, 57
factorial, 53
linear, 54
pointed, 53

K-integral, 52
K-irreducible, 53
K-prime

element, 53
ideal, 53

Rg, 60, 70, 136
X-face, 59
X(γ0), 59
Xg, 60
Σ-degree, 64
Σ-homogenization, 20, 64
Tn, see torus
X̄, 55
X̄-face, 56
γ, 56
S(X̄), 56
µ-minimal ambient toric variety, 69
rlv(X), 59

abstract Cox ring, 58
admissible coordinate change, 70, 137
almost free grading, 57
anticanonical class, 50, 59
anticanonical complex, 10

of a non-degenerate toric complete in-
tersection, 10

Calabi-Yau variety, 121
Cox ring

abstract, 58

describing polynomial, 16
discrepancies, 9
divisor class group

of a toric variety, 15
divisorial polytope, 44
Dolgachev polytope, 63, 171
Dolgachev’s criterion, 63

effective cone, 52
elementary contraction, 109
elephant, 14

face polynomial, 18, 170
face system, 20, 170
fake weighted projective space, 11, 24
fan, see lattice fan
Fano index, 14, 51
Fano variety, 49

general, 29, 61
generator degree dimension tuple, 129
GIT-chamber, 55
GIT-cone, 55, 72
GIT-fan, 55
good quotient, 57
Gorenstein index, 14
graded algebra, see K-graded algebra

185



Index

hypersurface Cox ring, 49, 61, 121
Calabi-Yau, 121
Fano, 49, 61
general, 49, 61
smooth, 49, 61, 68
spread, 49, 61

integer
composition, 141
partition, 141

intersection number, 36, 171, 172
irredundant presentation, 54

lattice fan, 15
Laurent space, 29
Laurent system

general, 29
linear grading, 54

Magma, 47
minimal ambient toric variety, 60

µ-, 69
Minkowski sum, 17, 20
Mori dream space, 58
moving cone, 57

Newton polytope, 18, 20
non-degenerate

polynomial, 20, 63
system, 20, 170
toric complete intersection, 25

normal fan, 17

orbit cone, 55
orthant, 56

quasismooth, 59
quasitorus, 55

refinement of fans, 17
relation degree, 129
relation space, 33

semistable points, 57
singularity

canonical, 9

log terminal, 9
terminal, 9

specifying data, 50, 122
spread, 61
system of Laurent polynomials, 20

toric variety, 15
quotient construction, 15

torus, 15
tuple

ordered, 40
well-formed, 40

variety
Q-factorial, 59
locally factorial, 59

186


	Introduction
	Non-degenerate toric complete intersections
	Results
	Background on toric varieties
	Laurent systems and their Newton polytopes
	Non-degenerate toric complete intersections
	The non-degeneracy condition
	Computing intersection numbers
	Proof of Theorem 1.1.3

	Smooth Fano fourfolds of Picard number two
	Classification results
	Factorial gradings
	Mori dream spaces
	General hypersurface Cox rings
	Proof of Theorem 2.1.1: Constraints on hypersurface Cox rings
	Proof of Theorem 2.1.1: Collecting candidates I
	Proof of Theorem 2.1.1: Collecting candidates II
	Proof of Theorem 2.1.1: Collecting candidates III
	Proof of Theorem 2.1.1: Verification
	Birational geometry
	Hodge numbers
	Deformations and automorphisms

	Smooth Calabi-Yau threefolds of small Picard number
	Results
	Mori dream spaces with hypersurface Cox rings
	Proof of Proposition 3.1.1
	A Flop Lemma
	Combinatorial constraints on smooth hypersurface Cox rings
	Proof of Theorem 3.1.3: Collecting candidates
	Proof of Theorem 3.1.3: Verification

	Magma programs
	Elementary algebraic and combinatoric intrinsics
	Tools for hypersurface rings
	Newton polytopes and non-degenerate systems
	Intersection numbers

	Acknowledgements
	Bibliography
	Index

