Bringing Database Management Systems and Video Game

Engines Together

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultét
der Eberhard Karls Universitit Tiibingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von
Daniel O’GRADY
aus Mosbach

Tiibingen
2021

ii

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultit der
Eberhard Karls Universitit Tiibingen.

Tag der miindlichen Qualifikation: 25.06.2021
Dekan: Prof. Dr. Thilo Stehle
1. Berichterstatter: Prof. Dr. Torsten Grust

2. Berichterstatter: Prof. Dr.-Ing. Hendrik P. A. Lensch

iii

Declaration of Authorship

I, Daniel O’ GRADY, declare that this thesis titled, “Bringing Database Management Systems
and Video Game Engines Together” and the work presented in it are my own. I confirm that:

This work was done wholly or mainly while in candidature for a research degree at this
University.

Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated.

Where I have consulted the published work of others, this is always clearly attributed.

Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have made clear
exactly what was done by others and what I have contributed myself.

Signed:

Date:

TUBINGEN UNIVERSITY

Abstract

Faculty of Science

Department of Computer Science
Doctor of Science

Bringing Database Management Systems and Video Game Engines Together

by Daniel O’ GRADY

As video games gained more popularity through the years and became increasingly more
complex, the share of operations on large amounts of data within games hase risen as well.
This trend shifts the focus from mere implementation of functionality to the challenge of
maintaining, browsing, and processing large amounts of data. While video game engines are
gradually rediscovering concepts that are well-known in the relational world of databases by
implementing them in an imperative style, it stands to reason to meet midway and instead
implement data-heavy operations on the side of the database management system (DBMS)
for increased data locality. This thesis explores what databases can bring to the table beside
their already powerful capabilities of querying data when involving databases beyond their
role of simple data storages. For that purpose, typical components of video game engines,
that one would usually expect to find in the imperative parts of a video game, are explored
and evaluated in terms of their practicality and usability when implemented in SQL. Existing
intersections between database management systems and video games engines are pointed
out in the introduction. The following chapter covers Al in video games on the example of
Monte Carlo tree search (MCTS) and deterministic finite automatons (DFAs), after which the
generation of playing fields using either rule sets or predefined building blocks is covered.
As third and final component, path finding, specifically A*, within the database is explored,
with an optional expansion into the temporal dimension of the search space. Each chapter
features a section in which the suitability of the examined component in combination with a
DBMS is laid out, describing if the component is either suited for online usage, as in the case
of pathfinding and MCTS or DFAs respectively, or should mainly be used offline to make
use of the storage capabilities of DBMSs, as is the case for terrain generation. The thesis
is wrapped up with a general evaluation of the marriage between DBMSs and video game
engines, finding that while not revolutionising the gaming industry overnight, DBMSs can
enhance video game development in the long run.

HTTPS://UNI-TUEBINGEN.DE/
https://uni-tuebingen.de/en/faculties/faculty-of-science/
https://www.wsi.uni-tuebingen.de/fachbereich.html

vii

Acknowledgements

First and foremost, I want to thank my supervisor Torsten Grust for enabling and encouraging
me to pursue research in an unusual field I love and care about, and for offering guidance on
day-to-day obstacles one encounters in academia. I would also like to extend my thanks to my
colleagues at the chair for database management systems in Tiibingen. They provided me with
many insightful talks and technical discussions which in several cases were the initial spark
for the next step in my research. Finally, I am deeply grateful to my family and friends, both
local and remote, for continuing encouragement, understanding, and patience throughout my
journey.

Contents

Declaration of Authorship
Abstract
Acknowledgements

1 Introduction

1.1 Meetthe Spouses
1.1.1 Architecture of Video Games
1.1.2 MindtheGap
1.1.3 Data-Oriented Programming
1.1.4 Entity Component System
1.1.5 Data-Driven Games
1.2 Recursive SQL Queries e
1.3 OpenRA e
1.4 Methodology
141 Setup
142 QueryPlans.
1.5 Structure of This Document

2 Video Game Al

2.1 Artificial Intelligence in Video Games
2.2 Tactics ThroughDFA
2.3 Monte CarloTree Search
2.3.1 Relational Implementation
232 Memoisationo e e
24 Evaluation
241 MCTS . . . e
242 DFA . . .

3 Map Generation

3.1 Rule-Based Map Generation
3.2 Module-Based Map Generation
321 Preparations.
322 DuringRuntime L
3.2.3 Map Generationby Example
33 Evaluation
33.1 Rule-Based
332 Module-Based

4 Pathfinding
4.1 Path Findingin VideoGames

4.2
43
4.4

4.5
4.6
4.7

4.1.1 Different Neighbourhoods
Reducing the Search Space
Exploiting Connectivity to Speed up Pathfinding
Spatial A¥ —inPure SQL oL o
44.1 HeuriStics
442 Dimensionalityof A* oo
Temporal A* — Avoiding Collisions with a Booking System
Iterative Path Finding
Evaluation

5 Discussion and Final Remarks

A DDL Statements

Al

A2

A3

A4

Introduction
A.1.1 Recursive SQL Queries.
Video Game Al
A.2.1 Tactics ThroughDFA
A.22 Monte Carlo Tree Search
Map Generation e e e e
A.3.1 Rule-Based Map Generation
A.3.2 Module-Based Map Generation
A.3.3 Map Generationby Example
Pathfinding
A.4.1 PathFinding in Video Games
A.4.2 Temporal A* — Avoiding Collisions with a Booking System
A43 Tterative Path Finding

B Perlin Noise in SQL

Bibliography

91

93
93
93
93
93
94
94
94
95
95
97
97
98
98

99

103

Chapter 1

Introduction

“This is a fairly star-gazing view of how to
make games: the game is just one giant
database, running dynamic queries all the
time.”

Adam Martin

Video games and relational database management systems (RDBMSs) are like distant cousins
that only occasionally meet at family gatherings. They both roughly stem from the 1960s and
1970s and have since experienced continuous development and commercialisation. And even
though developing a video game and using a RDBMS often means tackling many similar
problems, they are rarely used together — or at least not to the extent they could be. This
mindset stood to reason during the early days of the two domains. While even the earliest
RDBMS were subject to scientific research [19], video games were little more than diversions
back then and their complexity was extremely limited by the technology of their time, devoid
of considerable amounts of data that had to be handled. Take, for example, Pong, which is
depicted in Figure 1.1. The two opposing players move their paddle up and down the screen
to deflect a ball, much like in tennis. Each time a player misses a ball, their opponent is
awarded a point. The game neither features complex logic, nor does it comprise of many
game elements. In fact, the visuals of a game of Pong are so simple, that Figure 1.1 is not
even an actual screenshot from the game, but a reconstruction built in IXTEX.

The complexity of video games has increased considerably to the current day, as not only have
they become more sophisticated in terms of rules and elements, but also the sheer amount of
objects that are being shown, computed, and put into relation with each other during the game
has grown significantly. Video games are no longer restricted to short rounds that only last a
few minutes, but can instead go on indefinitely, taking place in vast, persistent worlds, played
by hundreds of players simultaneously. This shift opens up a bag of topics that need to be
addressed: what does it mean when two players want to manipulate the same part of the game
world at the same time? Can we efficiently find a subset of game elements that are relevant
for a singular calculation, such as the objects that are currently visible to one player? When
we need to do these operations over many game objects at once, how do we avoid swapping
parts of the huge game world in and out of the main memory? Database management systems
(DBMSs) offer solutions to many of these problems natively: it is the bread and butter of a
RDBMS to handle large amounts of data with modest amounts of main memory and filter
datasets based on arbitrary criteria, sped up by a variety of readily available index structures.
Every RDBMS that offers the atomicity, consistency, isolation, durability (ACID) properties
will solve the issue of miraculous duplication when two players try to grab an item at the same
time (a well-known problem in the gaming community, called “duping”, while the database
community refers to it as “lost update”). Despite the relative similarities between RDBMS
and video games, it is not uncommon for business logic of any kind (including video games’)

2 Chapter 1. Introduction

FIGURE 1.1: Pong, one of the earliest video games. The gameplay elements

consist of the two paddles to the left and right, the ball (currently in the left

half of the screen), score tracking at the top, and the boundaries and centre
line of the playing field.

to read all data from the database, compute a subset of the data or transformation thereof in an
imperative programming language, and then write it back periodically. Complex calculations
of large amounts of data can be done much more efficiently if the operations are pushed to
the data instead. Game developers may of course implement mechanisms that support the
handling of their data — like indices — themselves. But DBMSs have decades of development
and optimisation under their belt, as can be seen in Figure 1.2.

This thesis explores a stronger incorporation of RDBMSs in the process of video game devel-
opment, namely establishing applications of RDBMSs beyond being dumbed down persistent
storages, as they are currently being used. Said applicability is demonstrated straightforwardly
by providing actual SOL code to solve tasks one would be presented with when implementing
a modern video game. This thesis deliberately refrains from introducing a Domain Specific
Language (DSL) to achieve the outlined tasks and uses only plain SQL without utilising any
imperative extensions like PostgreSQL’s PL/pgSQL. We also refrain from utilising an object-
relational database management system (ORDBMS) as a shortcut from the relational to the
object oriented world in which games often live in, so the terms RDBMS and DBMS are
used interchangeably throughout this document. While we try to present the code fragments
in their entirety if possible, slight abstractions or simplifications are applied if it increases
the readability without taking away from the completeness of the queries. This document is
therefore code-heavy by design. To ease the reader into the examination of the code frag-
ments, longer listings are broken into smaller parts with accompanying textual explanation.
In that case, the line number of the listing is continued among all parts, and continuation is
also implied by “em» in the last line of a continued listing.

Since video games are, and historically have been, largely a commercial domain where thor-
ough scientific write-up often takes a secondary role, a lot of the information on internals of
video games are propagated in sources that could be considered unquotable in scientific work,
such as blogs of game developers, conference talks, personal correspondence with develop-
ers, or inspection of open source code video games. Usage of such sources will largely be
restricted to cases when no more suitable sources are available.

Chapter 1. Introduction

Snueuss enads o ey sauBussery | (opo sopueenoppn wuerg (| ponuoosi ["

U 13xepalld
. T T T T
Loozen O 2002'90 B66T'SA 66T 91 SGBT E
g : ; o
J,
O|\< . o

2hilL-d (20pxN) $800 SadNan

Wag

O @

(W) s2dhH

T —0
) [.
neajges ’josajdoad L
anes

@

z:%/) o ;x.wmmezo > Qv__mmw_%g,sé
31 0007
a0z an socz 7 M 0 sauiiny
% I
S .
L 0027 U . PGS
ow2oz . N . /
AL — o TSTHel
[T ul 3Segp
1 Q

AN o) B w/u
L
N\ wonniBsyxa 0L S/
T
Wal " " m 3 5
AN ET e e v /ol wleanten

ge/waishs

(wal) Fuaisfs

WA 3SA 104 280
N
. ooz voozen Zs6r2n sosr 7
/ " 00¥/280 Y3340 W ¥I3y 00¥10S YUV V3NY AvE
002 faQpedy AdRO seotm esoen > S >Oz 60
oo g

asegaieys.

T T T T
002210 900279 500205n 002 TS N O
Y

N——>

PUELIOE (esuy) xopeseq

; s

T
o102 0re EIEPERL

——0

T
2102 0%10 (30) 80y s

O

ESETT (epesay) 210780

omoz'ssn

ssran

TS\ ser'sh T casTEn o

apei

veeT o €561 20N oldxod

(37 uonug) 00 Wl

O

T T T
oz zmn o0z TIn T00z 0T

13135 10 HOSODIN

{ =
| _I-Imus G 4314 0002

T
aw0zoen d¥S

86T 0T
YVd YIIY AVE

T T T
86616 TN esslom oesT 0w

80 onReuy xquioguy

10T H

xuilojuy

idw3
PUg PRy sai8ul Raraxiag

Y/

(uozewyy) 1y1uspay saiisod

(1m)) gasauon W @)

O (uapsaiq N1 vonoqoy) yava 1

a7

O T
o0z 1

(0661) G100 N5t/

e (102 poweia)) uendy

(fuedwo3) aweu sHaqQ O 1
Jsune|d
sjoquiAs pue saul| 0} Aa)] osseH

FIGURE 1.2: Genealogy of RDBMS over the years. This graphic was created

by the Hasso-Plattner-Institut fiir Digital Engineering gGmbH.

4 Chapter 1. Introduction

1.1 Meet the Spouses

Since their humble beginnings in the 1950s [47, Chapter 2] video games have moved beyond
being a pastime for a few interested enthusiasts. The Enfertainment Software Association
estimates the revenue generated by the video game industry in 2019 at around $ 43 billion [7]
and found that over 65 thousand employees worked in the sector by 2018 [6]. Serious gaming
as a way of ludic transfer of knowledge has found its way into education [46] and health
care [100, 29], and, since the advent of modern mobile phones, video games can be accessed
on the go even by casual gamers. Databases are not an entirely foreign concept to video game
developers, as they offer a way to persistently store game states between sessions, but the two
realms of data storage and computation are still largely separated to this day. The following
section sheds some light on techniques in video game development that already suggest a
certain proximity between video games and RDBMS, and gives an overview over vocabulary
that is used throughout this document.

1.1.1 Architecture of Video Games

Early video games were often developed and played on dedicated hardware, like arcade cab-
inets, that had been tailored to one specific game [47, Chapter 3]. Developing a new video
game could therefore mean for the developer to go back to the drawing board (literally) and
design circuitry and software from ground up. These days, video games are run on general
purpose processors, often implemented in widely spread high-level programming languages,
enabling developers to recycle code snippets or whole modules from other games. Taking
this one step further led to the development of video game engines, entire frameworks! to
help developers create video games by encapsulating recurring tasks. Video games can be
classified by their genre, which spans an extensive list of dozens of genres and sub-genres,
ranging from sports, to puzzles, over real-time strategy, to rhythm games. This spawned a
multitude of game engines that either specialise in one specific genre, like how the OpenRA-
engine [53] is meant to support developers in creating real time strategy games, or they try to
accommodate as many different genres as possible, like Unity [93] does. Depending on what
the engine offers, components include, but are not limited to:

Physics engine to simulate physical effects, like gravity, velocity, collisions, particles, and
rigid body dynamics.

Rendering engine which draws the visible part of the gaming world (frustum) to the screen.
This may for example include ignoring objects that lie completely without the field of
vision of the player (culling), faithfully rendering objects that partially overlap (occlu-
sion), scaling objects based on their distance or rendering more distant objects in lesser
detail (level-of-detail), and shader management.

Audio system which plays background music and ambient sounds, possibly fading them in
and out based on the distance between the source and the player, or in a surround fashion
to reinforce the impression of a three-dimensional world.

Input controls to receive input from the player through several devices, such as keyboard
and mouse, controllers, joysticks, or steering wheels and pedals.

Gregory discusses various common components of engines, as well as their dependence on a
certain genre in depth in [36, Chapter 1].

I'The line between the definitions of “framework” and “engine” is blurry, but the terms are used interchangeably
throughout this document.

1.1. Meet the Spouses 5

Unreal Engine

Source Engine

id Tech
CryEngine

Unity

FIGURE 1.3: Number of games published on Steam per used video game en-

gine (data retrieved on 5 February 2020). Note that only games for which an

engine could conclusively be determined are included in this graph, limited

to the five most commonly used engines. Also, different versions of the same
engine are subsumed in the same share.

A common denominator across most engines is the concept of a tick, also referred to as game
loop, which is a recurring event that gives components of the game an opportunity to update
their state. The frequency at which a component is updated may vary from multiple times
per second to only occasionally. For example, to maintain the illusion of fluid motion, games
usually render between 30 and 60 frames per second (FPS), but the physics may actually be
updated multiple times between the rendering of two frames. In simple engines a developer
is given little more than this update-render-loop, driven by the tick. They can then hook into
this loop to implement their game logic in a DSL the framework provides, or the language
the engine itself is written in.

1.1.2 Mind the Gap

Video games have for a long time been implemented in languages adhering to the object
oriented programming (OOP) paradigm. Figure 1.3 gives an overview over the usage of the
top five most heavily used game engines for games that have been published on the digital
distribution service Steam. Most of these engines, with the exception of idTech, feature OOP-
languages:

o Cry Engine [21]: C#, C++, LUA;
e idTech? [26, 71, 70, 72, 25]: Action Code Script, QuakeC;
e Source Engine: C++;

e Unreal Engine [94]: UnrealScript (proprietary language, similar to Java) in versions
1-3, C++ from version 4 onward [95];

e Unity [93]: C#, Boo, UnityScript (proprietary language, syntactically related to JavaScript),
starting with v2018.2, C# is the only supported language [92].

2 Also known as “Doom-Engine” (v1) and “Quake-Engine” (v2-3).

6 Chapter 1. Introduction

This factor seemingly moves video games and DBMSs even further apart, due to the impedance
mismatch [20] (which was promptly addressed in various ways, as Carey and DeWitt outline
in [14]) between these two worlds. The reasons for OOP being so prevalent are not far to
seek, as it lends itself well to how game worlds are conceived. Entities usually appear in
higher quantity than just one (think: during an adventure, the player encounters many ene-
mies, guarding many doors, behind which many treasures are hidden), which can often be
categorised by a list of attributes, decently fitting the concepts of structs and classes’ of OOP.
The following C#-snippet defines a struct called Position2D to be a composite of two
integers x and y, representing a coordinate in a two-dimensional space.

I public struct Position2D

2 o

3 public int x;
4 public int y;
50}

6 o=

OOP commonly takes this one step further and groups functionality with the data, demon-
strated in the following fragment, where the functions* Move, Damage, and IsAlive are part
of the class named Enemy.

7 public class Enemy

g A

9 public Position2D position;

10 private int health;

11

12 public void Move(int xDelta, int yDelta)
13 {

14 this.position.x += xDelta;
15 this.position.y += yDelta;
16 }

17

18 public void Damage(int by)

19 {

20 this.health -= by;

21 }

23 public boolean IsAlive()

24 {

25 return this.health > 0;

26 }

27

28 public Enemy()

29 {

30 this.position = new Position2D();
31 }

32}

33 CEED

So all objects of type Enemy feature a common interface, enabling iteration over multiple
instances:

34 public static void ApplyGravity(Enemy[] enemies)

35 |

36 for (int i = 0; i < enemies.Length; i++)
37 {

38 enemies[i] .position.y -= 1;

39 }

a0 }

Storing instances that way, where one element of a list makes up an entire entity with all its
attributes (even if they may not be required) is also referred to as array of structs (AOS). This
style is being challenged in recent development, which moves video games closer to the realm
of DBMS and is therefore discussed briefly in the following subsections.

3The semantics of the terms “struct” and “class” are not used consistently across programming languages, but
here a struct denotes a conglomerate of named values, while a class also encompasses functionality.
4Functions in the context of a class are also commonly referred to as “methods”.

1.1. Meet the Spouses 7

1.1.3 Data-Oriented Programming

During the 2010s, several game developers, including Mike Acton (Insomniac Games, Uni-
tyTechnologies) [1], Tony Albrecht (Overbyte, Riot) [2], and Jonathan Blow [10], have spoken
out against AOS style in favour of a more data-oriented way of thinking about programs. In
particular, they propose the usage of structs of arrays (SOA). In SOAs, instead of grouping
attributes into one object, all attributes are grouped separately. This makes sense as it is rare
to access all attributes of an object at once. Instead, it is much more common for many similar
objects to be transformed with regard to only a few of their attributes at a time, as is the case
in the for-loop in ApplyGravity from the snippet above; each Enemy has their position,
or more specifically the y-component of their position, updated. This circumstance was not
lost on game developers, which in one instance led to a SOA-oriented design in the program-
ming language JAI, which is being developed by Jonathan Blow at the time of writing [10].
Applied to the above example, the usage of SOAs over AOSs in a JAI-like fashion could look
like the following snippet, where the instances of the innermost attribute y make up the arrays,
whereas the instances of Enemy form an SOA, indicated by the keyword SOA.

| public static void ApplyGravity(Enemy SOA enemies)

{
3 for (int i = 0; i < enemies.positions.y.Length; i++)
I {
5 enemies.positions.y[i] -= 1;
6 }
7%

While the reasoning behind this change is mainly motivated by improved caching behaviour
and memory-access, or to facilitate data parallelism [9] it ties in with how column-based
storages in some DBMSs like MonetDB [42] have handled data for a long time now, while also
coexisting with the row-based approach the lends itself to the AOS style [55]. The memory
layout of the two approaches is visualised in Figure 1.5.

1.1.4 Entity Component System

Game developers have come to realise that deeply nested inheritance can be both confusing
and restrictive when trying to conceive a general framework for video games. They have
therefore rediscovered a certain fondness for how information is laid out in RDBMS. The
principle of composition over inheritance proposes to fragment complex objects into com-
ponents, each responsible to attach a small amount of functionality to the composite object.
The former complex object becomes a uniquely identifiable entity, that, in itself, does not
contain sophisticated functionality [50]. This makes it easy to attach and detach additional
functionality to and from entities even during runtime, giving the developer much more con-
trol over how their objects are structured. The running example from above would then be
implemented as:

8 Chapter 1. Introduction

I public class Enemy

> A
3 public readonly int id;
5 public Enemy()
6 {
/ this.id = GenerateUniqueId();
8 }
9 }
1€
11 public class HealthComponent
1 {
13 public readonly int entityId;
14 private int health;
15
16 public HealthComponent (int entityId)
17 {
18 this.entityld = entityld;
19 }
2
21 public void Damage(int by)
22 {
23 this.health -= by;
24 }
26 public boolean IsAlive()
27 {
28 return this.health > 0;
29 }
30}
31
32 public class PositionComponent
33 {
34 public readonly int entitylId;
35 private Position2D position;
36
37 public PositionComponent(int entityId)
38 {
39 this.entityld = entityld;
40 }
41
12 public void Move(int xDelta, int yDelta)
43 {
44 this.position.x += xDelta;
45 this.position.y += yDelta;
46 }
47
48}

Where GenerateUniqueld is a function that generates identifiers that are unique among
instances of the class, like a primary key. Note how this is a lot like how tables in DBMS
are put into relation with each other by using foreign keys. Each class can now safely be
thought of as a table in which instances of the corresponding class are stored as a single row.
This also facilitates the use of SOAs, as selecting all rows of a table or a subset thereof can
be done independently from other components. For example, selecting and manipulating the
PositionComponent of all enemies can be done without loading their HealthComponent.
Breaking up the nested structure of objects to access specific parts thereof more easily has
been explored by the database community before in the guise of flattening, which selectively
accesses nested attributes by exploiting relational layout in second normal form [91].

1.1.5 Data-Driven Games

Code traditionally not only defined the functionality and rules of games, but also the content
thereof. Content can refer to several things in this context: assets, like graphics and audio,
obviously qualify as such. But also the layout of the virtual world, tasks for the player to solve,
and ultimately even parameters, like magnitude of gravitational pull on virtual objects, can
serve as content. Most, if not all of these things, used to be baked into the code of the game
itself, requiring recompilation whenever the content changed. Not only can this be tedious in
general, but also unwieldy for uninitiated contributors. Disney’s Epic Mickey 2: The Power
of Two, for example, was worked on by over 700 people [44]. Of course, not the entire team
consisted of programmers that would be able to shape their ideas into code, but probably also

1.1. Meet the Spouses 9

has Enemy —<has

PositionComponent HealthComponent

Position

FIGURE 1.4: Entity—relationship diagram (ERD) for the running example
which follows the Entity Component System, instead of classic inheritance
and encapsulation from OOP.

included artists, writers, designers, and others. (Bates gives one possible breakdown for a
development team in [8, Chapter 8].) Nowadays, code can serve as a scaffold, while content
is provided in the form of data. This allows teams to be split up into different divisions,
where core functionality and content can be developed independently. It also facilitates the
use of user-provided content: the players themselves may enrich the games with their own
ideas, increasing the replay value of a game. Game developers may provide their players
with additional tools to produce assets, rule sets, and other types of content, and means to
share them with fellow players.

But not only have video games shifted towards a paradigm that is agreeable with databases,
SQL has also been enriched with features that make it much more akin to what programmers
might expect to find in a programming language, as is elaborated in Section 1.2.

10 Chapter 1. Introduction

: %1
4
%5 %2
— 1=
%3
i —
%4
. I |

0 1 2 3 4 B
(a) Playing field with five enemies. As in the running example, each enemy has an ID (subscripted), a
position, and health. Health may range from 0 to 100 in this example and is displayed through health
bars in this figure, as is common in video games. The green (left) part of the bar signifies the remaining
health points. For example, % 4 has 25 health left.

171 100
2 | 4 50
310 75
4 | 2 25
512 100

(b) Enemies in tabular notation. Singular name for consistency reasons.

Lol eJuwofofafofs0]s]ol]

L[75421025212]100]
(c) Entries from Figure 1.5(b) stored using row-oriented memory layout, where all rows with their
respective columns are stored in memory successively.

Lol lslafsfifafofal]o]

| | | | | 100 50 | 75 | 25 [100 |
(d) Entries from Figure 1.5(b) stored using column-oriented memory layout, where all entries of the
columns are stored in succession.

FIGURE 1.5: Several actors represented visually, relationally, and in-memory.

1.2. Recursive SQL Queries 11

1.2 Recursive SQL Queries

SQL:1999 introduced the concept of recursive queries to the SQL standard [85]. Since then,
many prominent DBMSs have gradually implemented this feature (Oracle: 2009 [54], Post-
greSQL: 2009 [33], SQLite: 2014 [34], MariaDB: 2016 [31], MySQL: 2018 [32], DuckDB:
2019 [30]). This language feature allows results to be built up gradually, each addition to
the resulting relation possibly being computed from intermediate results of earlier passes. As
many of the ideas presented in this thesis hinge on this concept, the semantics of recursive
queries are outlined below, following the syntax of PostgreSQL. As an example, the running
sample of applying gravity to position components will be demonstrated using a recursive
query, but instead of pulling each component down by just one unit, gravity will pull them
down until they firmly stand on solid ground, i.e. until they collide with a platform. The
relational input and a visual representation are given in Figure 1.6.

A recursive common table expression (CTE) consists of a non-recursive and a recursive sub-
query, as shown in Figure 1.7(a). The non-recursive subquery acts as a seed for further cal-
culations and can be any valid expression, including the selection of literals or values from
a table, as in the example. The recursive part may reference the CTE that is in the process
of being built. Doing so actually references the intermediate table R; of that CTE, which
only contains the values of the execution of the last step of the recursion, or the seed re-
spectively. This is outlined in Figure 1.7(b), where each computation step n was generated
from apply gravity©,_,. Additionally, a monotonously growing working table Ry, is main-
tained, which contains the cumulative results of IR;, shown in Figure 1.7(c). The recursion
stops when IR; evaluates to an empty table, i.e. no new rows are added to IRy;,. This could
happen by a restricting predicate, as is the case in the example query, or by utilising UNION se-
mantics (instead of UNION ALL), which are evaluated against IRy, to identify duplicate values
over all steps of the recursion. In this particular example, the query attempts to move all posi-
tion components down by one unit unless that would place them inside any of the platforms,
only computing successive results for components that have not yet collided. This becomes
evident in apply _gravity©,, which contains only one row, as the position component with
pos_id = 1 has already reached its final position. The collected rows of Ry, then make up
the contents of the CTE.

Note that multiple comma-separated CTEs C;..., can be defined per query after the WITH-
keyword, preceding the actual query. Also, each C; may reference earlier C;|j < i. In Post-
greSQL, if at least one C; is recursive, even if it is not the first in the list of CTEs, the whole
list must be preceded by WITH RECURSIVE instead:

I WITH RECURSIVE

2 a(x) AS (...), -- non-recursive
3 bO(x) AS (...), -- recursive

+ c(x) AS (...) -- non-recursive
5 SELECT

6 *

7 FROM

8 a,bo,c

As this blend of recursive and non-recursive expressions will be encountered frequently in
this thesis, recursive CTEs will be pointed out by a superscripted “00”, as shown above.
This notation, although consumable by the DBMS, is not required by PostgreSQL and solely
serves as visual cue for the reader. CTEs may contain side effects which manipulate tables
by inserting, deleting, or updating tows. This kind of CTEs will be prefixed with se_ in this
thesis to emphasise that the result of a CTE is probably of little interest — albeit the RETURNING
clause may be used to execute side effects and generate intermediate data in one go.

12 Chapter 1. Introduction

position_components

id

(a) Relational representation of the platforms and the initial position components used in the example.
A platform is represented by its bottom left corner and its width. Each platform has a height of 1.

O |
@ | @

0 1 2 3 4 5 0 1 2 3 4

(b) Before gravity is applied. (c) After gravity was applied.

FIGURE 1.6: Relational and visual representation of position components and

platforms, used to demonstrate gravity application using a recursive query.

Position components are marked with their id. Components do not refer to
any entities in this example for brevity.

1.2. Recursive SQL Queries 13

WITH RECURSIVE
apply_gravity© (pos_id, x, y) AS (

SELECT
pc.id AS pos_id,
pc.x AS x, .
pc.y ASy non-recursive part
FROM
position_components AS pc
UNION ALL
SELECT
ag.pos_id AS pos_id,
ag.x AS x,
ag.y -1 ASy
FROM

apply_gravity® AS ag > recursive part
LEFT JOIN platforms AS p
ON ag.y - 1 =p.y
AND ag.x BETWEEN p.x AND p.x + p.width
WHERE
p-x IS NULL

)

SELECT
pos_id,
MIN(x),
MIN(y)

FROM
apply_gravityO

GROUP BY
pos_id

(a) Application of gravity to all position components until they land on a platform.

apply_gravity©

pos_id X apply_gravity©,

pos_id x

apply_gravity©,

ity O
pos_id x vy apply_gravity©,

pos_id x vy

apply_gravity©

pos_id
1 1 4
2 4 3
1 1 3
2 4 2 (d) Result of the query in Figure 1.7(a).
2 4 1

(¢) Final contents of apply _gravity©.

14 Chapter 1. Introduction

1.3 OpenRA

OpenRA, shown in Figure 1.8, is an open source game engine that focusses on real time
strategy games. It started out as a reimplementation of the game Red Alert from the Command
and Conquer series in 2007. The project has since been abstracted into a more general engine
on which several aged real time strategy games have been reimplemented, but is also used to
create heavily modified versions of classic games or implement new games from ground up.
In this work, OpenRA is used as a vehicle to test some of the implemented components. This
serves as a proof of concept that the presented techniques can indeed be seamlessly integrated
into existing engines without requiring the entire runtime to be hurled over into the DBMS at
once. It also acts as a hands-on experiment as to how deep one has to plunge into the innards
of an engine to integrate a database into the established work flow. OpenRA was selected as
a target platform over more prevalent competitors like, say, Unity, for the following reasons:

e Since OpenRA is completely open source and under GNU General Public License, all
parts of it can be inspected and modified as seen fit.

e The engine is still under active development with a diligent community to contact for
inquiries.
e Being written in C#, all core components are realised in an OOP language, which, as

explained in the preceding sections, is still the de facto standard in the gaming industry.

e By concentrating on real time strategy games, OpenRA gives a clear-cut set of mech-
anisms that target the use case of managing several actors at once, which is especially
suited for the use with DBMSs.

Chapters on features that were integrated into OpenR A have a brief elaboration on the process
of incorporating the database into the respective component.

1.4. Methodology 15

Battlefield News

OpenRA
{DEV_VERSION] "«
Singleplayer 5

Multiplayer

[
i
i
i
i

-
1
¢

Settings

Extras

Manage Content

Quit

FIGURE 1.8: Screenshot of the open source real time strategy game engine
OpenRA. Displayed is the main menu of the reimplementation of Red Alert.

1.4 Methodology

14.1 Setup

All experiments in this write-up were conducted on a Lenovo Ideapad L340 81LWOOB6GE
with the following specifications:

e CPU: AMD Ryzen 7 3700U CPU

e RAM: 16 GiB of SODIMM DDR4

e Secondary memory: INTEL SSDPEKNWS512G8L 512 GB SSD
running a 64 bit Manjaro 20.1 with Kernel version 5.4.64-1.

The presented SQL queries were all executed on a PostgreSQL 12.4 server with the following
configuration adjustments:

e shared_buffers = 2 GB

o cffective_cache_size = 8 GB

e maintenance_work_mem = 512 MB
e wal buffers = 16 MB

e random_page_cost = 1.1

e effective_io_concurrency = 200

e work_mem = 40 MB

e min_wal_size = 100 MB

e max_wal_size =2 GB

16 Chapter 1. Introduction

These parameters were determined by consulting the configuration recommendations in the
PostgreSQL wiki [64]. Queries were executed in isolation from the psql command line utility
where appropriate and then timed utilising the “\timing on” switch PostgreSQL provides
to measure the wall clock time to execute the query and fetch the result back to the client. To
mitigate any caching or loading effects, queries were executed multiple times in succession
to average the runtime. Whenever consecutive execution led to extensive variation between
runs, e.g. when side effects influenced the workload, the minimum and maximum runtime
is given in addition to the average with an accompanying explanation for the deviation. If
an execution in isolation is not feasible, i.e. when the query has to be called from within
another application, the measurement will be done accordingly. When runtimes call for more
detailed analysis, the query plans produced by the DBMS will be consulted, which are outlined
in Section 1.4.2.

1.4.2 Query Plans

PostgreSQL allows for a deep inspection of the plan employed by the DBMS. In practice,
a DBMS can devise multiple plans for a query and estimate their respective execution cost.
These options are then analysed to find the most effective course of action [65]. The selected
sequence of operations and costs thereof can also be inspected by human readers which grants
insight into bottlenecks and expensive operations. Preceding a query with EXPLAIN retrieves
information about the selected plan and relevant estimations made by the planner, and us-
ing EXPLAIN ANALYZE also retrieves the time it actually took the DBMS to execute the plan.
As this feature is utilised throughout this thesis and the presented output is specific for Post-
greSQL, a quick rundown of the syntax of the plan in Figure 1.9 is given below. The plan was
devised from the execution of the query shown in Figure 1.7(a).

Plans are generally trees where each node represents an operation. For example, a join usually
consists of two child nodes, each producing a relation, and a condition on which the join
takes place. The structure of this tree is visualised by indentation and arrows towards child
nodes (->). While the nodes themselves can already give some discernment on inefficiently
used operators or indices, the estimated and actual cost for executing a node grant additional
insight. The estimated costs determined by the planner are displayed as a tuple. The unit
for costs is arbitrary and depends on the planner’s configuration. It could for example be
the number of disk page fetches, but this piece of information is mainly intended to be able
to compare costs of different plans [68, 66]. The specification of cost consists of start-up
cost and fotal cost. E.g. cost=18867.87..18869.87 denotes the estimated start-up cost
of 18867.87 before the actual output phase can begin. It is followed by the estimated total
cost of 18869.87 for retrieving all tuples, which is not necessarily done if a limiting clause is
implemented. The planner expects 200 rows to be produced, which will have an average width
of 12 bytes. The components of actual time are given in milliseconds and are therefore not
directly comparable to the estimated costs, although being similarly split into a startup time
and a time the query runs until completion. The final piece of information loops shows
how many times the plan node was executed. This is especially relevant for nodes which
are executed more than once by a parent node (e.g. in a nested loops joins or the recursive
part of a WITH RECURSIVE-CTE). If a node is executed multiple times, actual time is an
average over all iterations and the total runtime is the number of iterations times the actual
time. When consulting the query plan, a single typical configuration for the input parameters
is selected and executed using the auto_explain extension, to inspect plans of deeply nested
calls within user-defined functions (UDFs).

1.5. Structure of This Document 17

estimated startup cost actual startup time (ms)

estimated row count

estimated cost to retrieve all rows actual time to retrieve all rows (ms)
estimated average row width (bytes)
L

actual row count
execution count of this node
\ | | |

1 HashAggregate (cost=18867.87..18869.87 rows=200 width=12) (actual time=0.316..0.378 rows=2 loops=1)
2 Group Key: apply_gravity.pos_id

! CTE apply_gravity

5 -> Recursive Union (cost=0.00..13513.34 rows=194710 width=12)

6 (actual time=0.022..0.274 rows=5 loops=1)

7 -> Seq Scan on position_components pc (cost=0.00..30.40 rows=2040 width=12)

8 (actual time=0.011..0.022 rows=2 loops=1)

9 -> Hash Anti Join (cost=55.90..958.87 rows=19267 width=12)

10 (actual time=0.040..0.060 rows=1 loops=3)

11 Hash Cond: ((ag.y - 1) = p.y)

12 Join Filter: ((ag.x >= p.x) AND (ag.x <= (p.x + p.width)))

13 Rows Removed by Join Filter: 0O

14 -> WorkTable Scan on apply_gravity ag (cost=0.00..408.00 rows=20400 width=12)
15 (actual time=0.004..0.011 rows=2 loops=3)
16 -> Hash (cost=30.40..30.40 rows=2040 width=12)

17 (actual time=0.045..0.055 rows=2 loops=1)

18 Buckets: 2048 Batches: 1 Memory Usage: 17kB

19 -> Seq Scan on platforms p (cost=0.00..30.40 rows=2040 width=12)

20 (actual time=0.008..0.021 rows=2 loops=1)
21 -> CTE Scan on apply_gravity (cost=0.00..3894.20 rows=194710 width=12)

22 (actual time=0.029..0.279 rows=5 loops=1)

23 Planning Time: 0.522 ms
24 Execution Time: 0.667 ms

FIGURE 1.9: Full execution plan for the query in Figure 1.7(a), generated by
preceeding the query with EXPLAIN ANALYZE.

1.5 Structure of This Document

The remainder of this document is structured as follows: three components that could typi-
cally be found in video game engines are implemented in pure SQL to showcase how rela-
tional versions of these components can look like, how their relocation into a DBMS would
impact the engine, and how it could be beneficial. The first visited component is artificial
intelligence (Al) in the context of video games, which is considered on the strategic level of
forming a long term plan using Monte Carlo tree search (MCTS), and on the tactical level
of performing smaller steps towards the greater goal with the use of deterministic finite au-
tomatons (DFAs). Next is the generation of terrain on which games are played on, for which
two custom algorithms are explored; one expanding a seed using a set of expansion rules,
the other using predefined building blocks to put a map together iteratively. The third com-
ponent is path finding, specifically through the use of the A* algorithm, which is extended
into the temporal dimensions using a booking system to avoid collisions of actors during the
path finding phase. Each of these chapters features a separate evaluation section, in which
gathered measurements are presented and assessed. The final chapter gives conclusions and
critical review on how well the marriage between databases and video game engines worked
and in what areas further potential can be perceived. As the subject area with its three inde-
pendent components is rather broad, related work is given at the appropriate places instead
of in a separate central chapter. All chapters contain listings to outline their accompanying
implementations. Since the required relations differ largely in complexity, varying notations
were selected for their definitions, based on what we deemed the most fitting and most easy to
grasp in each given context. Appendix A contains data definition language (DDL) statements
for all tables and views used throughout this work as unified reference in alphabetical order.

19

Chapter 2

Video Game Al

2.1 Artificial Intelligence in Video Games

The term Al in the context of video games, although well established [75], may be a bit mis-
leading to academic readers. While games have long been a vehicle to further Al and put
new techniques to the test [43, 81, 79], it does not necessarily refer to Al techniques such
as machine learning, neural networks, or general problem solving techniques. Instead, Al in
video games refers to the reactive, proactive, or amending behaviour the computer displays
when partaking in a game, that may appear to be intelligent. Proactive and reactive behaviour
mostly concerns computer-controlled agents, also called non-player characters (NPCs), while
amending behaviour may apply to agents controlled by the player, also called playable char-
acters (PCs) or sometimes avatars. That can for example include

e phrases NPCs utter, either randomly (proactive), or when prompted by the player as
part of a dialogue (reactive);

e behaviour NPCs display towards the player or other NPCs (reactive/ proactive);

e simple — in some cases scripted — behaviour, like jumping in place at varying heights
(reactive/ proactive);

e complex behaviour with the goal to simulate human players with varying strategies and
skill level (reactive/ proactive);

e routes NPCs follow either actively to simulate natural behaviour, such as a fisherman
walking along a coast line (reactive/ proactive), or as part of the path search for a PC
(amending);

e tactics and strategies the computer follows to achieve certain goals, such as opening a
door, retreating from battle, or winning the game (reactive/ proactive).

Decision-making can take place on a strategic level, which encompasses the long term goals,
or on a factical level, which refers to smaller steps that are taken to work towards the long
term goal. If a tactic is simple enough, e.g. having an NPC directly attack the PC on sight,
it can easily be expressed by a DFA [75, Chapter 4.7.10][74, Chapter 5.18], which is dis-
cussed in Section 2.2. Expressing the overarching strategy in the same way can quickly lead
to very large, unwieldy DFAs. This calls for abstract modelling, coupled with more sophisti-
cated decision-making. MCTS, as one very recent technique to achieve this, is discussed in
Section 2.3.

It is important to note that the goal of an industrial video game Al (as opposed to Al as used
in academia) is not necessarily to find the optimal way to play the game, but to present the
player with an adequate challenge, which neither exceeds, nor falls below the player’s skills

20 Chapter 2. Video Game Al

A
ANXIETY

WORRY é&w
QS’
@)
& BOREDOM
<¢\»

ANXIETY

Action Opportunities (Challenges)

Y

Action Capabilities (Skills)

FIGURE 2.1: Flow channel after Csikszentmihalyi. A task that is balanced

between the challenge-level and skills of a person keeps them inside the Flow

channel. Deviating from the Flow channel makes the person experience bore-
dom, worry, or anxiety, respectively. Figure is created after [22, Figure 1].

drastically. This type of challenge that is aligned with a person’s skill is known as Flow ex-
perience, which has been coined by Csikszentmihalyi [22]. Originally observed in extreme
athletes, like rock climbers or race car drivers, Csikszentmihalyi describes a Flow experience
as a subjective state in which the experiencing person is completely absorbed in an activity, il-
lustrated in Figure 2.1, which requires “a clear set of goals”, “balance between perceived chal-
lenges and perceived skills”, and “presence of clear and immediate feedback™ [23, p. 230 ff.].
Csikszentmihalyi postulates Flow as a strong motivator, therefore making it desirable to not
always have the Al play as good as possible [98]. Some games, like Left for Dead [11], God
Hand [16], and the Half Life game engine with its Hamlet system [41] even go as far as trying
to read the skills of a player during a game and adjusting the difficulty dynamically. Present-
ing ways to make a video game Al optimal in terms of its decisions is therefore not the scope
of this work.

2.2 Tactics Through DFA

Even after an overall strategy has been determined, the execution needs to be broken down
into small, explicit pieces. For example, while the strategy in a real time strategy game may be
to directly attack an enemy with all available forces, each actor still needs to locate the enemy,
find a path to get there, follow that path until the enemy is in range, and then start attacking.
Including these finely grained actions in the overall strategy would blow up the search space.
Instead, the planning of the strategy can take place on a more abstract level and just include a
direct attack on the enemy. White et al. propose an entire scripting language Scalable Games
Language (SGL), which allows game developers to define finely-grained behaviour for actors,
which is then transformed into relational algebra [97, 84, 3].! But the steps each actor needs
to follow to partake in that attack can also be encoded in a DFA, as shown in Figure 2.2.

Assuming a data-centric point of view exposes the suitability of database systems for this task:
DFAs, states, and edges are each implemented as rows in separate tables, maintaining rela-
tionships through foreign keys. Each actor knows which DFA is currently controlling them

ISGL was later extended to model crowd simulations in the same vein [96].

2.2. Tactics Through DFA 21
enemy out
of range
find enemy
search
no enemy enemy
found o 1 range
n
° out of
range
enemy lost
start —| idle combat

4
state_id

FIGURE 2.2: DFA representing a simple tactic for an NPC. The NPC is idle

at first and automatically transits into the search state (else is an automatic

transition if no other condition holds). In the search state it will look for

the closest enemy. Once the NPC has found an enemy, it will start to chase

(move towards) it and engage in combat as soon as the enemy is within the

NPC’s range. Losing the enemy — for example because that particular actor
was defeated — restarts the DFA.

effects conditions
id : primary key id : primary key
fname : text fname: text R
id : primary key
: condition_id | 1 METS S 22l
effect_id | 1 - target_id| position : vector2d
edges 1 speed : double
" % range : double
id : primary key damage : int
weight : int ¥ hitpoints : int
*
¢ stat * actor_id % 1
hext_state 4 1 current_state dfa_id | 1 1
LSS 1 e dfa_id actor_states
id : primary key id : primary key 1 1

initial_state | 1

—_—

FIGURE 2.3: Schema required for running tactics through DFA. The table
actors is a simplified supplementary table which contains actors as they are
used in the running example in this chapter. The type vector2d is a custom
data type which supports standard vector operations, which are assumed to

2

be present in the guise of UDFs prefixed “vector_".

22 Chapter 2. Video Game Al

and what state they are on. Each edge has a condition that needs to be fulfilled in order for the
residing actor to traverse the edge. Conditions are expressed as functions with the signature
f(actor_id) — boolean which are checked on every tick. If more than one edge passes the
check, only the one with the highest weight is selected to avoid turning the DFA into an non-
deterministic finite automaton (NDFA), where an actor passes multiple edges simultaneously
and then finds itself in more than one state. When an actor passes an edge, an effect can be
triggered. Effects are functions with signature f(actor_id) — void, which may change the
actor or other parts of the game state through side effects.

Since SQL does not support higher order programming natively, in which functions are treated
as data as well, this approach employs a relaxed version of defunctionalisation for database
systems as proposed by Grust et al. [37]. While their original approach allows for arbitrary
function signatures and nested closures, the two described signatures for conditions and ef-
fects are sufficient to express any required functionality for our DFAs: both conditions and
effects are allowed to fully query and manipulate the current game state. The only required
information — around which actor the queries and updates need to be centred — is passed as
a parameter. Conditions only need to return boolean values to determine whether an edge
should be traversed, eliminating the need for arbitrary return types. This signature unification
is required to properly express conditions and effects through a foreign key relation. Since
each function signature requires its own table to store return and parameter types properly, we
could not reference functions easily without also expressing in which table they reside. While
only allowing functions with these two fixed signatures simplifies the process, generating a
dispatcher for each signature is still required. Game developers can specify their DFAs with
any desired transitions using conditions and effects in a higher order fashion and then sys-
tematically generate the dispatcher as described in [37]. The following section exemplifies
the full realisation of the DFA from Figure 2.2 in pure SQL, for which the schema is given in
Figure 2.3. As the shape of the actors and the effects and conditions that operate on them is
highly dependent on the game at hand, we use a simplified schema for actors in the running
example for DFAs.

First, we need to express all required conditions in the form of UDFs and implement the
dispatcher dispatch_condition. Note that UDFs prefixed “vector_” are textbook vector
calculations and their implementation is omitted for brevity. The condition functions prefixed
“cond_” are related to the edges in Figure 2.2. The function cond_true, which is always
satisfied, is used to express else-edges, which are edges that can always be traversed without
having to fulfil a specific condition.

| CREATE FUNCTION cond_true(_actor_id INT)
RETURNS BOOLEAN AS $$

SELECT TRUE
i $$ LANGUAGE sql;

W

6 CREATE FUNCTION cond_has_target(_actor_id INT)
7 RETURNS BOOLEAN AS $$

8 SELECT

9 COALESCE(that.hitpoints > 0, FALSE)

10 FROM

11 actors AS this,

12 actors AS that

13 WHERE
14 this.id = _actor_id
15 AND that.id = this.target_id

16 $$ LANGUAGE sql;

18 CREATE FUNCTION cond_target_in_range(_actor_id_this INT)
19 RETURNS BOOLEAN AS $$

20 SELECT

21 vector_distance(this.position, that.position) < this.range
22 FROM

23 actors AS this

24 JOIN actors AS that

25 ON this.target_id = that.id

26 WHERE

27 this.id = _actor_id_this

2.2. Tactics Through DFA 23

28 $$ LANGUAGE sql;

30 CREATE FUNCTION dispatch_condition(_fname TEXT, _actor_id INT)
31 RETURNS BOOLEAN AS $$

32 SELECT CASE _fname

33 WHEN ’cond_target_in_range’ THEN cond_target_in_range(_actor_id)
34 WHEN ’cond_has_target’ THEN cond_has_target(_actor_id)

35 WHEN ’cond_true’ THEN cond_true(_actor_id)

36 END

37 $$ LANGUAGE sql;

Effects are expressed in the same fashion as UDFs prefixed “eff_" with a designated dis-
patcher dispatch_effect. Here, each UDF expresses what happens when an actor resides
on a certain state. Again, the functions are related to what can be seen in Figure 2.2.

38 CREATE FUNCTION eff_attack_target(_actor_id_this INT)
39 RETURNS VOID AS $$

40 UPDATE actors AS that SET

41 hitpoints = that.hitpoints - this.damage

42 FROM

43 actors AS this

44 WHERE

45 that.id = this.target_id AND this.id = _actor_id_this

46 $$ LANGUAGE sql;

47

48 CREATE FUNCTION eff_target_closest(_actor_id_this INT)
49 RETURNS VOID AS $$

50 WITH

51 target (actor_id) AS (

52 SELECT

53 that.id

54 FROM

55 actors AS this,

56 actors AS that

57 WHERE

58 this.id = _actor_id_this
59 that.id <> _actor_id_this
60 ORDER BY

61 vector_distance(this.position, that.position) DESC
62 LIMIT 1

63)

64 UPDATE actors AS this SET

65 target_id = t.actor_id

66 FROM

67 target AS t

68 WHERE

69 this.id = _actor_id_this
70 $$ LANGUAGE sql;

72 CREATE FUNCTION eff_move_towards_target(_actor_id_this INT)
73 RETURNS VOID AS $$

74 WITH movement (this_v, that_v, this_speed, diff_v) AS (
75 SELECT

76 this.position,

77 that.position,

78 this.speed,

79 vector_substract (that.position, this.position)
80 FROM

81 actors AS this

82 JOIN actors AS that

83 ON this.target_id = that.id

84 WHERE

85 this.id = _actor_id_this

86)

87 UPDATE actors AS this SET

88 position = vector_add(m.this_v,

89 vector_scale(m.diff_v,

90 LEAST(m.this_speed,
91 vector_length(m.diff_v))))

92 FROM

93 movement AS m

94 WHERE

95 this.id = _actor_id_this

9 $$ LANGUAGE sql;

98 CREATE FUNCTION dispatch_effect(_fname TEXT, _actor_id INT)

99 RETURNS VOID AS $$

100 SELECT CASE _fname

101 WHEN ’eff_move_towards_target’ THEN eff_move_towards_target(_actor_id)

102 WHEN ’eff_target_closest’ THEN eff_target_closest(_actor_id)
103 WHEN ’eff_attack_target’ THEN eff_attack_target(_actor_id)

)
104 END
105 $$ LANGUAGE sql;

24 Chapter 2. Video Game Al

else else
start —| grab @

FIGURE 2.4: Example of else-edges coming in handy with a fixed sequence
of states requiring no further conditions to be fulfilled.

Finally, the tick itself is also expressed through a UDF. Each actor evaluates the conditions
for all outgoing edges of the state they are currently on. One of the edges which have their
condition fulfilled determines the new state e.next_state for the executing actor. Utilising
JOIN LATERAL in conjunction with LIMIT 1 ensures that each actor traverses only up to one
edge, avoiding situations where a single actor ends up in more than one state when multi-
ple conditions evaluate to TRUE. Selecting dispatch_effect(...) (which always returns
VOID) dispatches appropriate changes to the actor or the world around it as a side effect. All
actors are then advanced to the target state of the edge they traversed in an UPDATE-statement.

106 CREATE OR REPLACE FUNCTION tick()

107 RETURNS VOID AS $$

108 WITH updates(actor_id, next_state, effect_result) AS (
109 SELECT

110 advance.actor_id,

111 advance.next_state,

112 dispatch_effect(advance.fname, advance.actor_id)
113 FROM

114 actors AS a

115 JOIN LATERAL (

116 SELECT

117 states.actor_id,

118 e.next_state,

119 ef .fname

120 FROM

121 actor_states AS states

122 JOIN edges AS e

123 ON (states.dfa_id, states.state_id) = (e.dfa_id, e.current_state)
124 JOIN conditions AS c

125 ON e.condition_id = c.id

126 LEFT JOIN effects AS ef -- effects can be NULL!
127 ON e.effect_id = ef.id

128 WHERE

129 a.id = states.actor_id AND

130 dispatch_condition(c.fname, states.actor_id)
131 ORDER BY

132 e.weight DESC

133 LIMIT

134 1

135) AS advance(actor_id, next_state, fname) ON TRUE
136)

137 UPDATE actor_states AS current SET

138 state_id = updates.next_state

139 FROM

140 updates

141 WHERE

142 current.actor_id = updates.actor_id

143 $$ LANGUAGE sql;

States can be amended with else-edges. For one, they facilitate effects that are to be applied
when an actor should stay within the same state by creating an else-edges that loops back to
the current state. Allowing them also enables time-sequential actions that need to be executed
sequentially with each tick without having to fulfil any other conditions. For example an archer
firing an arrow would require the actor to draw an arrow from the quiver, nock it, and then
fire it at the target, as shown in Figure 2.4. These transitions do not require any additional
conditions, as they just need time to pass. else-edges should always have the lowest weight
to only be taken when no other edge is available, which makes them akin to the else-case in
regular branching control flow. It should be noted that such edges differ from e-edges that can
be used in NDFAs, which allow the automaton to transit to another state and stay in the same
state at the same time by requiring no input. In the case of else-edges we actually always
have the next tick as input, making for well-defined transition points.

2.3. Monte Carlo Tree Search 25

Having these bite-sized tactics available for actors can be used to conceive an overarching
strategy by abstracting the tactics into actions. The exploration of a game tree is explained in
the next section.

2.3 Monte Carlo Tree Search

After the IBM supercomputer Deep Blue had beaten Garry Kasparov in 1997 [56], the Chi-
nese board game Go, shown in Figure 2.5, became the new frontier for game Al. Go has
considerably less complex rules than chess: the two players alternately place immobile play-
ing pieces, also called stones, on a 19 X 19 board (other dimensions, such as 9 X9 or 13 x 13,
are possible). Players try to enclose areas with their stones while avoiding having their own
stones enclosed by enemy pieces, which marks them as captured. Points are given out by
conquering parts of the board and capturing enemy stones. The game ends when no more
stones can be placed. The player with the most points at the end of the game wins. Despite
this manageable set of rules, Go produces unwieldy game trees. Allis estimates an average
game of Go to last around 150 rounds, each having about 250 possible moves, reckoning the
game-tree complexity at around 1030 [5, p. 174]. This explosion in search space called for
the development of new exploration methods of which the most recent extensively used one is
MCTS. In October of 2015, the computer program AlphaGo, which utilises MCTS, defeated
the professional Go player Fan Hui on a 19 X 19 board without handicap. In March of 2016
AlphaGo defeated Lee Sedol, one of the world’s best professional Go players [80].

MCTS at its core iteratively builds a partial game-tree until a computational budget is ex-
hausted, modelling possible states of the game in terms of tree nodes. The tree can be succes-
sively expanded while the game is actually being played. The current state of the game can
therefore be imagined as a pointer to one of the nodes in the game-tree. Making a move in the
game advances that pointer to a child node — preferably one that has been thoroughly explored
in an earlier iteration. (The human player may of course choose an action that was not yet
considered by the A/, putting the game into an entirely unexplored state, effectively outsmart-
ing the computer, which caters to the Flow effect.) Each node maintains a node statistic to
denote how often it or its children have been visited and how promising it looks in terms of
expected reward. The edges from parent to child nodes each hold an action, which transforms
the parent state to the child state. Such an action can for example be the placement of a stone
on the board in the case of Go. Or it can be an abstracted action, as described in Section 2.2.
When building this tree, the algorithm tries to explore paths through the tree that are expected

°

33
®

m
®
-

J

OO

FIGURE 2.5: 9 X9 go board. Both players have enclosed small areas of the
board with their stones.

26 Chapter 2. Video Game Al

oEstets

(a) Selection (b) Expansion

Gy 7y

(c) Simulation (d) Backpropagation

FIGURE 2.6: Steps of the MCTS algorithm. Adapted from [13, Figure 2]

to yield high rewards, as well as areas that are not very well explored yet. The latter helps to
identify paths through the tree that do not look promising immediately but turn out to have a
high long term reward. This optimisation task is also known as the multi-armed bandit prob-
lem, where an agent is presented with a number of slot machines (“one-armed bandits”), each
with an unknown but fixed winning probability. The agent is tasked to play the machines in
a way that maximises their reward. In order to find machines with a high chance of winning
the agent has to balance how they stick with machines with seemingly high chance of win-
ning and unknown machines that may turn out to have an even higher chance. Browne et. al
identify four basic steps for MCTS in [13], which are visualised in Figure 2.6:

1. Selection: Find an expandable node in the current tree. Expandable nodes are non-
terminal states that can still be expanded by adding new children.

2. Expansion: Expand that node by applying an action to it that has not yet been applied,
producing a new child node.

3. Simulation: Run a simulation starting from the newly attached node to determine an
outcome.

4. Backpropagation: Propagate the outcome back up through the ancestor nodes to up-
date their node statistics.

The remaining part of this section will explain the four steps of the algorithm in greater detail
and lay out how they can be implemented in SQL.

Selection

The selection starts at the root node and determines a node that has not been fully expanded
yet. That is a node to which an action can be applied that has not yet been applied to that
node. The selection of the node (tree policy) should keep a balance between exploitation and
exploration. Exploitation denotes further expansion of nodes that have already been visited
and are known to promise a high reward. Exploration expresses how much unknown areas

2.3. Monte Carlo Tree Search 27

of the tree are being expanded, even if they do not seem to yield an immediate reward. This
ensures finding paths through the tree that only pay off later in the game but may offer an
overall better reward than paths that have an immediate reward. Nodes can be selected by
various strategies, of which several are discussed in [13].

Expansion

The expansion step is straightforward. An action that has not yet been applied to the node that
was selected in the last step is now applied, producing a new state. That state is set as child
for the selected node.

Simulation

The simulation process starts at the newly created node and simulates the remaining game.
That is, it chooses follow-up states following a rollout policy to reach a terminal state, in
which the game score can be calculated. That policy can be a uniformly random function.
Not every game is suited for random simulations. Imagine a game of chess, where certain
moves can be reversed, for example a knight jumping back and forth between two positions.
If both players happened to continuously execute such moves, the game can go on indefinitely
or even infinitely. Schadd therefore proposes cancelling the random simulation after a few
steps, evaluating the current game state heuristically, and instead increasing the number of
samples [76]. SQL actually excels at this, as taking multiple samples and unrolling them in
parallel for a few steps is more akin to relational thinking than sequentially following one
single state for a prolonged time.

Backpropagation

Backpropagation updates the statistics for all ancestor nodes. That is, the newly found reward
A and an increment of the visit-counter.

Finally, a move that is actually being played is selected from the tree. Various strategies for
selecting the move are feasible, of which Chaslot [15] proposes four:

1. Max child: the node with the highest predicted reward.
2. Robust child: the most visited node.

3. Robust-max child: the node with both the highest visit-count and the highest reward
(which does not necessarily exist at all times).

4. Secure child: the node that maximises a lower confidence bound.

Chaslot et al. have not found a significant difference between the four proposed strategies
when the tree was thoroughly explored between moves. Instead, they found max child to
perform slightly worse than the other strategies when the time constraints were tight. This
again underlines the importance of exploring parts of the tree that do not seem to yield a high
reward at first glance, but may turn out to be beneficial in the long run. The following section
explains the implementation of the steps of MCTS in SQL. The final selection following any
of the above strategies can be implemented using a trivial SQL-query and is therefore not
shown in detail.

2.3.1 Relational Implementation

The following implementation of MCTS in SQL is agnostic towards the actual game for the
most part, except for a few UDFs and views that are pointed out where appropriate. The game

28 Chapter 2. Video Game Al

noughts and crosses is used as a running sample to illustrate the game-specific steps of the
implementation. Noughts and crosses is a game for two players, one places X symbols, the
other places o symbols. Players take turn placing their symbol in an empty field in a 3 X 3
grid. A player wins if they manage to have three of their symbol in a horizontal, vertical, or
diagonal line. It should be noted beforehand that the basic MCTS produces tree structures.
An optional improvement which is elaborated in Section 2.3.2 may instead produce general
graphs. But for now assume that the resulting structures are actual trees.

MCTS hinges on forming and traversing game trees. Tree-like structures are easily repre-
sentable in relational form as a table of parent-child relations. Every row in a tree_children
table consists of the parent state, the child state and the action that produced the child from
the parent. All possible legal actions, depending on the game, are stored within the table
actions. Any action is referenced by ID and the table itself is therefore independent of the
specific game at hand. Arbitrary subtrees can be selected using the UDF subtree to only
work with specific parts of the tree: since actually playing out a move moves the current
game state down one level, all sibling states of the new state become unreachable and explor-
ing them is therefore no longer required.

| CREATE TABLE actions(

2 id SERIAL PRIMARY KEY,

3 . -- game specific

403

J

6 CREATE TABLE states(

7 id SERIAL PRIMARY KEY

8)

9

10 CREATE TABLE tree_children(

11 parent_id INT NOT NULL REFERENCES states(id),

12 action_id INT NOT NULL REFERENCES actions(id),

13 child_id INT NOT NULL REFERENCES states(id),

14 UNIQUE(parent_id, child_id), -- each tree can only be attached to another tree once
15 UNIQUE(parent_id, action_id) -- per parent, each action may only be applied once
16);

18 CREATE FUNCTION subtree(_root INT) RETURNS TABLE(state_id INT) AS $$
19 WITH RECURSIVE

20 treeQ (state_id) AS (

21 SELECT s.id FROM states AS s WHERE s.id = _root
22 UNION

23 SELECT

24 tc.child_id,

25 FROM

26 tree_children AS tc

27 JOIN tree® AS t

28 ON tc.parent_id = t.state_id

)
30 SELECT state_id FROM tree
31 $$ LANGUAGE sql;

MCTS requires statistics for each node, containing the expected reward when traversing an
edge towards that node, and how many times it has been visited. Rewards for each node are
stored as separate rows in the table rewards. The view tree_statistics shows how the
total rewards can then easily be calculated by aggregating rewards for the same node. When
a node is being inspected and receives a reward, all ancestor nodes of that node receive the
same reward as well, which can be explicitly propagated by recursively ascending through the
tree_children table, as is shown in the UDF propagate_reward.

32 CREATE TABLE rewards(
33 state_id INT REFERENCES states(id),
34 reward NUMERIC

3500);
36

37 CREATE VIEW tree_statistics(state_id, total_reward, visit_count) AS (

38 SELECT

39 r.state_id AS state_id,

40 SUM(r.reward) AS total_reward,
41 COUNT(r.reward) AS visit_count

42 FROM

2.3. Monte Carlo Tree Search 29

43 rewards AS r
44 GROUP BY
45 r.state_id

6)

18 CREATE FUNCTION propagate_reward(_state_id INT, _reward NUMERIC)
49 RETURNS TABLE(state_id INT, reward NUMERIC) AS $$

50 WITH RECURSIVE

51 ancestors® (state_id) AS (

52 SELECT

53 _state_id

54 UNION

55 SELECT

56 c.parent_id

57 FROM

58 ancestors® AS a

59 JOIN tree_children AS c

60 ON c.child_id = a.state_id
61)

62 INSERT INTO rewards(state_id, reward)
63 SELECT a.state_id, _reward FROM ancestors® AS a
64 RETURNING state_id, reward

65 $$ LANGUAGE sql;

As described above, MCTS continually explores the game tree until a given computation
budget is spent. Implementing a strict time limit in pure SQL is not possible, but it can be
approximated using WITH RECURSIVE: assume epoch_now() to be a function that returns
the current epoch timestamp as an integer value. Dragging the initial timestamp from the
non-recursive term through the recursion, we can check the elapsed time before each descent
into the next recursion level, using it to stop the exploration when the budget is used up. This
can lead to the query exceeding the budget by far, if the recursive term is a long-running query.
Since there is no way to interrupt an already running pure SQL query, this technique may lead
to unsatisfactory results but in practice is feasible if the number of unrolls per recursive step
is not too large. See also Section 2.4.

66 CREATE FUNCTION mcts(_root INT, _budget INT, _unrolls INT DEFAULT 1)
67 RETURNS TABLE(state_id INT) AS $$

68 WITH RECURSIVE

69 explorationO (state_id, start) AS (

70 SELECT _root, epoch_now()

71 UNION ALL

72 SELECT

73 explore(_root, _unrolls), -- always start again from the root
74 last.start

75 FROM

76 exploration® AS last

77 WHERE

78 epoch_now() - last.start < _budget

79)

80 SELECT state_id FROM explorationO

81 $$ LANGUAGE sql;

Selecting a node for expansion is based on two pieces of information: the statistics for the
nodes stored in tree_statistics, making sure we explore both untouched and promising
regions of the tree, and what options we have to further explore a given node. The game devel-
oper must define which actions can still be applied to the existing states in a view applicable.
For noughts and crosses for example, applicable contains all moves per node that have not
yet been applied to the state itself or any ancestor node, which is manageable, since noughts
and crosses features exactly 18 distinct moves. We can then unroll an arbitrary number of
nodes (_unrolls) by applying an action to them. This unrolling will produce new child
nodes in the game tree. Sorting the nodes that can be unrolled by their rating makes sure
that urgent nodes are unrolled first. The UDF rating has to be implemented by the game
developer and could for example be any strategy presented by Browne et al. in [13].

82 CREATE FUNCTION explore(_root INT, _unrolls INT DEFAULT 1)
83 RETURNS TABLE(state_id INT) AS $$

84 WITH

85 rollout(state_id, action_id) AS (

30 Chapter 2. Video Game Al

86 SELECT

87 app.state_id,
88 app.action_id
89 FROM

90 subtree(_root) AS st

91 JOIN applicable AS app

92 ON st.state_id = app.state_id
93 JOIN tree_statistics AS ts

94 ON ts.state_id = st.state_id
95 ORDER BY

96 rating(app.state_id) DESC

97 LIMIT

98 _unrolls

99)

100 SELECT

101 ex.state_id

102 FROM

103 rollout AS r,
104 LATERAL expand(r.state_id, r.action_id) AS ex(state_id)
105 $$ LANGUAGE sql;

The actual unrolling takes place in expand, which creates a new state, the tree edges, and prop-
agates the expected reward back up the tree. The reward is estimated by a UDF evaluate,
which is specific to the game at hand. The implementation of the other steps is straightforward
and therefore omitted. In the most basic case, the initialisation in line 110 creates a new state
in init_new_state which is written to the table of states and then creates an edge between
the new state and the state that is being unrolled. This particular place in the algorithm pro-
vides us with an opportunity to apply memoisation to the game tree, which is elaborated in
Section 2.3.2.

106 CREATE FUNCTION expand(_state_id INT, _action_id INT)

107 RETURNS INT AS $$

108 WITH

109 child_state(state_id) AS (

110 SELECT COALESCE(find_similar_state(_state_id, _action_id),
111 init_new_state(_state_id, _action_id))

112),

113 se_init_parent_relation(parent_id, child_id) AS (

114 INSERT INTO tree_children(parent_id, child_id, action_id)

115 SELECT

116 _state_id,

117 cs.state_id,

118 _action_id

119 FROM

120 child_state AS cs

121 RETURNING parent_id, child_id
122),

123 se_propagate_reward(state_id) AS (
124 SELECT

125 cs.state_id

126 FROM

127 child_state AS cs,

128 LATERAL propagate_reward(cs.state_id, (SELECT evaluate(cs.state_id)))

129
130 SELECT ns.state_id FROM se_propagate_reward AS ns
131 $$ LANGUAGE sql;

2.3.2 Memoisation

As hinted at in the last section, the process of expanding the game tree can be enhanced by
reusing states that reappear throughout the game by applying memoisation to it. The term
memoisation stems from Michie’s description of “memo functions”, where the result of func-
tions for specific parameters can be stored and later retrieved without recalculating that partic-
ular function-parameter-combination [51]. The advantages become obvious when looking at
the abstract call graph in Figure 2.7. Different shapes represent different results and edges are
either labelled 1 or 2. 6(n, e) = n’ is a function that takes a known node n from the graph and
an edge label e and deterministically produces a new node n’. Thus § is referentially trans-
parent in that passing the same arguments to § always produces the same resulting node [83].

2.3. Monte Carlo Tree Search 31

1 2
JAN L VTN
R 6/ JAN
Q (b) With memoisation.

(a) Without memoisation.

FIGURE 2.7: A tree where equal shapes represent equal states. Figure 2.7(b)
shows the benefit of memoisation by having the circle point to already exist-
ing states that are in turn partially explored.

A naive implementation could lead to indefinite or even infinite state expansion. See Fig-
ure 2.7(b), where each successive O-node can produce another identical node by applying 1
to it. Instead, for edges that would result in a node n; identical to a node n; that already exists
within the graph, the edge points to n;, as can be seen in Figure 2.7(b). The two nodes n; and
n; can be condensed into one node.

In the case of noughts and crosses (and a variety of other games) different parent states may
lead to an identical child state. See Figure 2.8, where the state (3) can be the child node of
both node (1) and (2). By combining the resulting states into a singular node (3), that exact
state now only needs to be fully explored once. In fact, two nodes can already be condensed
if they are sufficiently similar. The similarity of two states depends on the particular game
at hand and must therefore be defined by the game developer. Line 110 incorporates a call
to the UDF find_similar_state which gives the developer the opportunity to find a state
that is sufficiently similar to the state that would be produced. Providing an implementation
for find_similar_state also enables the reuse of (sub)trees from past rounds of the same
game, or trees crafted by experts. Picture a state that occurs frequently throughout many
rounds of a game. That state and its subtree can be included as a disjointed subgraph before
the game starts. If some node is recognised within the find_similar_state process, that
subtree is incorporated into the actual game graph by drawing an edge to it.

The implementation of noughts and crosses features a utility table state_hashs, which con-
catenates the three rows of the whole grid of one state into a string of nine characters (padded
with underscores), making it the perfect fit for a hash index, allowing for rapid retrieval of
existing states. The developer may choose to have find_similar_state always return NULL
if states are always unique or no feasible way of finding similar states can be devised. In that
case the produced graph takes on the shape of a traditional game tree. It should be noted
that using general graphs with possible cycles instead of a tree poses no problem for MCTS,
as both the descending function subtree (line 18) as well as the ascending table ancestors
(line 51) automatically remove duplicates created by cycles and only continue their evaluation
as long as unknown parts of the subgraph are found due to the use of UNION.

To ease some of the urgency during the early game, parts of game trees from former rounds
can be employed as opening books, which are databases containing the first few actions for
popular, recurring opening games. Since the whole game tree may remain within the database
with only a pointer indicating the actual current game state, the sequence and distribution of
moves can be analysed post-mortem. That information can be used to recreate play styles
of the human opponent, serving as a basis for player modelling [28], [99][Chapter 5], which
aims to emulate different characteristics of players to provide a more natural experience when

32 Chapter 2. Video Game Al

ey (2)

O

FIGURE 2.8: State (3) can be produced from either placing X in the top left
corner of (1) or by placing o in the centre row in the left column of (2). This
makes (3) a candidate for memoisation.

state_id hash

1 __O0OX____
2 X_0_X____
3 X_ooX

FIGURE 2.9: Hash of the states seen in Figure 2.8, making it easy to find
similar states.

playing against an Al or to (temporarily) replace players who left ongoing multiplayer matches
or fail to provide input in a timely manner [60][Section C], [61].

2.4 Evaluation

241 MCTS

Expectations for an Al differ from genre to genre: as explained in Section 2.1, Al in video
games is rarely expected to play perfectly or to always defeat the player by a landslide. At
the same time, most games feature a difficulty setting to adjust the challenge based on player
preference or skill, requiring the Al to play masterfully at times and be able behave like a
novice at others. A similar variance goes for expected decision speed. While longer reaction
times are deemed acceptable in turn-based strategy games like Sid Meier’s Civilization [78],
where the player may have to wait several seconds for the Al to finish the turn, many other
genres like real time strategy games require swift response to give the player the impression
of a vivid opponent. Generally, these requirements come as a trade-off, as more thorough
exploration of options will be more likely to yield a promising strategy. The implementation
of MCTS described in this chapter offers three major tuning knobs to influence the capability
of the Al during runtime:

1. Adjusting the number of most promising nodes that are unrolled during MCTS explo-
ration simultaneously.

2.4. Evaluation 33

2. The time budget the Al is given during which it repeatedly explores the tree.

3. The number of times the tree is revisited. This amounts to restarting the search entirely
on the current state of the tree and is therefore the frequency with which the exploration
of the tree is triggered.

The effects of increasing the allowed runtime (2 and 3) unsurprisingly leads to a more exten-
sive exploration. Therefore, the effect of varying the number of simultaneous unrolls as the
most relevant parameter in the context of DBMSs is observed in the following section on a
game of noughts and crosses. A new game tree is created for each experiment which is then
partially explored in a warm-up-phase. This is done to present the algorithm with enough un-
explored nodes to choose from, which represents a typical state of the tree during the game, as
opposed to having a blank slate on which the tree slowly unfolds during the first few iterations
before fanning out. The number of existing edges is used to express how thoroughly explored
the game tree is at any given time.

Figure 2.10 shows the effect of varying the number of nodes that are rolled out at once over
a fixed time budget per iteration, harnessing the ability of the DBMS to apply operations to
multiple rows at the same time. The time budget was set to 500 ms as a value that is reasonably
small to give a human player the impression of “fast thinking”, while having experimentally
proven as large enough to allow for more than one rollout cycle within the allowed time, as
should be the case under real conditions. While the number of edges expectedly increases
faster the more nodes are unrolled at once, the general overshoot of the allowed time budget
also rises. This happens due to how an ongoing SQL query will always run to completion,
and since extensive unrolling of multiple nodes will be more likely to take longer than the
allowed time, the individual overshooting accumulates accordingly. This overshoot is further
illustrated in Figure 2.11, where the average time for completing one iteration with differing
rollout parameter is distributed evenly onto the number of nodes that are rolled out. This
clearly shows that while the overshoot rises gradually with the number of simultaneous un-
rolls, the time per unrolled node reduces, which can be attributed to preparatory work that has
to be performed by the DBMS in any case, but repays especially when applying the operation
to more nodes at once. While the increasing overshoot seems to be a violation of the expecta-
tion of low latency, this is only a problem if there is a fixed order of exploring the tree first and
then selecting a move afterwards, where the exploration could become a bottleneck and grind
the reactivity of the Al to a halt. The well-established ACID properties of DBMSs, especially
the isolation property, solve this issue: moves are selected from the tree “as is” whenever the
Al needs to make a move while the tree is explored in the background. If the actual game state
is near leaf-level, conveying the urgency to generate more edges, short-running explorations
with a small rollout factor can be started to make sure the Al still maintains a bit of foresight.
During idle times, where the game delves into well-explored areas of the tree, long running
explorations can be started. As the proposed implementation offers a parameter to select a
root to start the exploration from, multiple explorations with varying rollout-parameter can
even be run at the same time in an isolated fashion. The benefit of rolling out multiple nodes
at once is also visible in Figure 2.11, where the increase in time to complete a single iteration
is compared to the ratio of time spent per iteration to the number of explored nodes. As the
number of simultaneously unrolled nodes increases, the overhead of preparing and executing
the query is distributed.

24.2 DFA

The performance of DFAs as a mean to implement simple behaviour was evaluated using the
DFA from Figure 2.2, as it reflects a standard behaviour that is time-tested [38][75][Chap-
ter 4.7.10] and can still be observed in modern video games. To test out the scalability of

Chapter 2. Video Game Al

8000 [8
86000 |- 1
5 1 rollout
“ —— 10 rollouts
B o —— 50 rollouts
—g —— 90 rollouts
=
Z.

| |
06 08 1 12
Time (ms) 100

FIGURE 2.10: Different rollouts running with a budget of 500 ms for each
iteration, 100 iterations each. The expected finish time is denoted as a red
line at 100 X 500 ms = 50ss.

1229

828 828

1200

1000 |-

895

800

lE Total time
B Time per node

600

400

200

Average Runtime per Iteration (ms)

1 10 50 90
Number of Rollouts

FIGURE 2.11: Average runtime per iteration compared to the average runtime
per iteration divided by the number of nodes rolled out simultaneously.

2.4. Evaluation 35

this approach, three experiments were conducted in which 100, 1 000, and 10 000 actors were
created on the initial state of the DFA, followed by 100 calls to tick() (line 106), shown
in Figure 2.12. Runtime expectedly varied depending on what state the majority of actors
were in. As the very first state idle features only one else-edge to the state search, where
the evaluation of the condition is basically a no-op, the first transition was executed relatively
quickly, peaking at a total 7410 ms execution time for 10 000 actors. Following transitions in
which more complex conditions had to be checked per-actor, such as a proximity-check for
finding and approaching other actors, reached higher runtime for larger numbers of actors on
average.

Figure 2.13 shows the plan of an exemplary execution when running tick() for 10000 ac-
tors on the DFA of the running example after a warmup phase. The total execution time of
the entire plan is at around 35 seconds (line 31), of which the majority is spent on generating
the CTE updates which contains the new states for all actors and executes all updating side
effects (line 2). Costs for evaluating conditions for edge traversal (line 24) and dispatching
effects (line 5) ended up at around 1 ms per actor each. Combined with the measurements in
Figure 2.12, linear runtime in dependence on the number of actors stands to reason. While
these times sum up to unacceptable waiting times for a tick in a live game, the presented
implementation does not make use of possible optimisations: as actors are updated indepen-
dently from each other and based on the global state of the former iteration, the computations
could be done in parallel. As the parallelisation mechanisms in the target version of Post-
greSQL are rather rudimentary at the time of writing, this has not been explored further but
leaves ample opportunity for improvements when running on a later version of PostgreSQL
or any other DBMS that makes proper use of parallel computation. For the case of online
games, where a dedicated server usually does the heavy lifting instead of the user’s machine,
horizontal sharding, where the tables are distributed onto multiple physical DBMS-servers,
lends itself to this type of application.

In its current state, the approach turned out viable for driving a few hundred actors at once,
but further improvements are required for the desired scale of large online games, in which
the number of active objects could increase by several orders of magnitude. One possible
extension to improve the overall performance is to group actors into urgency tiers. For exam-
ple, when a player leaves an area, the actors in that section might not require the same update
frequency to patrol the area and do idle tasks as when the player is near to actually notice
their behaviour. This improvement was not explored in the scope of this thesis and could be
subject to future work.

Actors Min (ms) Mean (ms) Median (ms) Max (ms)

100 29 101 104 162
1000 264 1478 1445 8303
10000 7409 31714 21135 769490

FIGURE 2.12: Minimum, maximum, mean, and median runtime for a single
update, determined by executing 100 consecutive updates on the DFA from
Figure 2.2 for 100, 1 000, and 10 000 actors.

36

Chapter 2. Video Game Al

16

18

20

Update on dfa.actor_states current (cost=3777369.52..3777707.06 rows=10001 width=50)
(actual time=35630.142..35630.201 rows=0 loops=1)
CTE updates
-> Nested Loop (cost=377.10..3776902.50 rows=10001 width=12)
(actual time=338.053..34949.837 rows=10001 loops=1)
Output: states.actor_id, e.next_state, CASE ef.fname WHEN [...] « effect dispatching
-> Index Only Scan using actors_pkey on dfa.actors a (cost=0.29..587.50 rows=10001 width=4)
(actual time=0.017..39.711 rows=10001 loops=1)
Output: a.actor_id
Heap Fetches: 1226
-> Limit (cost=376.81..376.82 rows=1 width=44)
(actual time=1.272..1.274 rows=1 loops=10001)
Output: states.actor_id, ef.fname, e.next_state, e.weight
-> Sort (cost=376.81..376.82 rows=1 width=44)
(actual time=1.267..1.267 rows=1 loops=10001)
Output: states.actor_id, ef.fname, e.next_state, e.weight
Sort Key: e.weight DESC
Sort Method: quicksort Memory: 25kB
-> Nested Loop Left Join (cost=1.46..376.80 rows=1 width=44)
(actual time=0.760..1.254 rows=2 loops=10001)
Output: states.actor_id, ef.fname, e.next_state, e.weight
Inner Unique: true
-> Nested Loop (cost=1.31..376.62 rows=1 width=16)
(actual time=0.746..1.225 rows=2 loops=10001)
Output: states.actor_id, e.next_state, e.weight, e.effect_id
Inner Unique: true
Join Filter: CASE c.fname [...] « condition dispatching
[...]
[...]
Query Text: SELECT dfa.tick();
Result (cost=0.00..0.26 rows=1 width=4) (actual time=35635.502..35635.509 rows=1 loops=1)

FIGURE 2.13: Query plan for a typical run of tick() on the DFA from
Figure 2.2 for 10 000 actors at once. Notable passages that caused the lion’s
share of the runtime are highlighted.

37

Chapter 3

Map Generation

Modern video games usually! require a field on which they are being played. Akin to their
analogous predecessors, playing fields in early video games would be called boards. Several
terms have emerged over the years, such as map, level, and stage. Some of these terms are
overloaded, as they may not only refer to the terrain, but also to the mission players need to
accomplish, or actors and items that can be found during the play. Throughout this chapter,
all the aforementioned terms will be used to refer to the terrain on which a game or part of a
game takes place.

Designing stages for a game requires meticulous understanding of the game at hand. While
some video games, such as early versions of Asteroids or Raiden (see Figure 3.3), conveyed
their game mechanics purely through the actors on screen (i.e. the map could be removed
without making the game unplayable), for many other games the map is a vital part of making
the game playable and enjoyable. Real time strategy games call for large open spaces, in
which units can be manoeuvred strategically (see Figure 3.4). Dungeon-crawling and some
adventure games tend to comprise their maps of multiple rooms, that are connected through
doors and passageways (see Figure 3.5). Games either come with a fixed set of maps, that
are usually hand-crafted, or with tools to create arbitrary new maps. This can include map
editors for end-users or generators that create maps based on certain rules. While Togelius
et al. argue that allowing the end-users to fabricate content themselves is an enjoyable part
of the gaming experience itself, they also raise points as to why having the game developer
provide the content, or at least the rules for the content, can be preferable at times [90]. This
chapter will therefore focus on how developers can be supplied with means to automatically
generate spatial content for their games in the relational world.

Established approaches can operate using only a handful of parameters, like a seed for the
random generator, to generate spatial information. Perlin Noise is a well-known algorithm
for generating randomised terrain, originally devised to generate graphics for movies. To not
just end up with complete randomness, a grid of random vectors is generated, which is then
used to interpolate the values between the grid points [57, 58]. Depending on the smoothing
functions and interpolation, Perlin Noise can yield quite diverse structures, such as textures,
organic-seeming surfaces and topographical maps, as seen in Figure 3.1, which is for example
used in Minecraft [52, 59]. While flexible and easy to implement in SQL?, its outcome is
still largely depended on the implementation details and used smoothing functions, which is,
again, not always accessible to the people responsible for creating the content, as described
in Section 1.1.5. Again, assuming a data-centric point of view on this problem facilitates
the usage of database systems in this aspect of video games. Instead of procedurally placing
elements, such as a piece of floor or a piece of wall, on a grid to fabricate a map (map editor),
we can view these elements as data and their positioning as their relation to one another.

I There are exception to this, such as purely text-based educational games.
2Implementation attached in Appendix B, which was used to generate the data for Figure 3.1(b).

38 Chapter 3. Map Generation

(a) Random noise. (b) Perlin noise.

FIGURE 3.1: Perlin noise can be used as a technique to generate randomised
terrain that is smoother than just random noise and therefore lends itself to
creating topographical maps.

@O ® O ©

(a) Walkable terrain (b) Walls (c) Coast (d) Water

FIGURE 3.2: Tiles used in the following examples.

The following section presents two such approaches. In both cases maps will be thought of
as two-dimensional grids of arbitrary granularity. That means, parts of the map could be as
coarse as a whole room or as small as a single pixel in the final rendering. Throughout all
examples, a small set of files, which represent a certain terrain type each, is used to build the
map from, which can be seen in Figure 3.2. Both algorithms make use of modules, which
are compounds of size 3 X 3, built from the aforementioned tiles. While other dimensions
are feasible, 3 X 3 has turned out to be convenient and suited for demonstration purposes.
Although all examples are kept in two dimensions for simplicity, both approaches can easily
be modified to work in three-dimensional games.

Chapter 3. Map Generation

39

FIGURE 3.3: The 1990 game Raiden by Seibu Kaihatsu. While thematically

fitting, the map purely serves as a background for aesthetic reasons. Game

mechanics are conveyed through the actors. The player character has been

outlined with a solid rectangle, two enemies are marked with dashed rectan-
gles.

FIGURE 3.4: Overview of a map for a real time strategy game, taken from
the open source engine OpenRA. Grey areas are walls, the white space is
walkable snow. The open structure caters to the nature of the game.

40 Chapter 3. Map Generation

I
4
I
4

SR

e
0 8% 3% &l

i85 i

FIGURE 3.5: Map overview of the Face Shrine in Nintendo’s The Leg-

end of Zelda: Link’s Awakening. The dungeon is divided into small

rooms of which the player only sees one at a time. (Image retrieved from
https://zelda.fandom.com/wiki/Face_Shrine_(dungeon) on 29.5.2019).

3.1 Rule-Based Map Generation

The first explored algorithm uses a recursive application of a two-dimensional grammar to
a starting point, to expand each singular tile from earlier steps into a full module. Gram-
mars with two dimension are already being used in image recognition and decomposition
known as picture languages [73, Chapter 4 ff.][69]. The approach is also related to the idea
of shape grammars presented by Stiny and Gips [88], as it repeatedly updates the structure
of the generated grid with finer detail. Two-dimensional rules are being used in the field of
cellular automata as well, albeit with inverse mapping, as rules do not unfold an element into
its neighbours, but rather collapse the state of an element’s neighbourhood to produce a new
state for the element at hand [89, Chapter 5]. The two-dimensional grammars used in this
approach yield fractal-like shapes, resembling interconnected rooms of varying size that are
partitioned into smaller rooms themselves. Grammars have historically been used in video
games to not only define the map, but also a series of objectives the player needs to achieve
to advance through the game. Shaker et al. cover this secondary use of grammars for content
generation in [77]. The following section focuses on grammars as a vehicle for map genera-
tion, although the way the grammar is represented and applied in relational form can also be
used for other applications.

https://zelda.fandom.com/wiki/Face_Shrine_(dungeon)

3.1. Rule-Based Map Generation 41

A two-dimensional grammar GRisa tuple 2, V', 0, vy), where
1. X is a set of terminal symbols (tiles).
2. V is a set of non-terminals.

3. o is a set of rules mapping a non-terminal onto a module consisting of terminals or
non-terminals.?

4. vy € V is the initial non-terminal the map starts out from.

An example for such a grammar is given in Figure 3.6, which is used throughout this section.
Figure 3.8 gives an idea of how that grammar generates structures similar to the dungeon
shown in Figure 3.5. The relational representation of the grammar is given in Figure 3.9.

Z=(l0
V = (A, B)
BBB HEE | || |
s=| A~ BBB, B~ H_HE ., B~ [B
BBB HER | [H[|
UO = A

FIGURE 3.6: Simple recursive grammar Gf.

Starting with v, and then repeatedly applying the rules in é to the existing tiles produces a map
of increasingly finer granularity, as all tiles unfold with each iteration. However, this technique
presents us with the issue of mapping a block with one coordinate in the two-dimensional
space to nine blocks with one coordinate each when applying a rule. This problem especially
occurs if for some blocks no rule exists to further unfold them, as is notably the case with
terminal symbols, causing a partial unfolding of the map, which then has “holes” in it. The
underlying issue is showcased in Figure 3.7, where rules can only be applied to non-terminals
in Figure 3.7(a), resulting in an irregular grid. This issue can be solved by extending & to &’
with supplementary rules:

000
5’=5U{ o~ o000 |VU€Z}
000
These rules effectively scale each terminal up as if it was a non-terminal that was being un-
folded and makes the assignment of coordinates clear. They do not change the terminal in
any other way. The utilisation of 6" is shown in Figure 3.7(b), which enables the usage of a
regular grid.

The SQL-implementation is explained in the following section in detail.

3If there are multiple applicable rules for a given non-terminal, an arbitrary mapping can be picked (pseudo-
randomly or by any other means). In fact, having multiple rules for the same non-terminal makes the resulting
map more interesting, as it varies in form.

42 Chapter 3. Map Generation

(U]
(O8]

HE N HEN
HBHEH - H-—::H
HEBN HE N

0 0
0 1 2 3 0 1 2 3

HEE
O
HEE

(a) Rule application without supplementary rules for terminal symbols. Only

the block at (1, 1) is divided into nine more blocks, while the other eight

blocks remain unaffected. A clear assignment of integer coordinates to the
new blocks is not possible.

HE N
H3H
HEBN ;

() 0

0] 2 3

(O8]

EEEEEEEEN
o (HHHEEEEENR
~(HHEEEEEENR
(A AEECOEEENE
o |HEEEEEEEE
(A EEEEEER
- |HHEEEEEEE
cHlNEE NN NN

(b) Rule application with additional rules for terminal symbols. All blocks,
including terminals, are expanded in each recursive step, making it easy to
assign integer coordinates to each block.

FIGURE 3.7: Snippet of a generated map illustrating of how extending é to
&' solves the issue of partial unfolding.

FIGURE 3.8: Exemplary map generated from the grammar in Figure 3.6.

3.1. Rule-Based Map Generation

rule input x y output rule input x y output rule input x y output
1| B |o|lo|] W 2| B |ojo| W 3| A |olo| B
1| B |o|l1] W 2| B |ol1| O 3| A |o|1| B
1| B |02 W 2| B |02 W 3| A |o|2| B
1 B 1|0 [] 2 B 1]0 O 3 A 110 B
1 B 11 O 2 B 1)1 B 3 A 11 B
1 B |12 ® 2| B |1]2] O 3| A |1]|2]| B
1 B 2|0 | 2 B |20] 3 A 2|0 B
1 B |2|1| m 2| B |21 O 3| A |2]|1]| B
1 B 2|2 [| 2 B |22 [| 3 A |22 B

rule input rule input
4 | O |o|1| O 5| @ |01 W
symbol terminal

4 | O o2 O 5| W [0/2] W
4 | O |10l O 5| B |10 W
4 O (1)1 O 5 m |11 [|
4 |12 O 5 W 1|2 [|
4 | O (2|0l O 5 | H [2/0] W
4 | O |21 O 5 | W [2/1] W
4 0|22 O 5 W 2|2 [|

FIGURE 3.9: Grammar from Figure 3.6 in relational form. For viewing con-

venience the 5-table has been visually divided into multiple tables, each hold-

ing one rule. Rules 4 and 5 are the result of adding the scaling rules for the two

terminal symbols. The contents of X and V' are condensed into a single table

2V for implementation reasons. An additional boolean flag distinguishes be-
tween terminals and non-terminals.

44 Chapter 3. Map Generation

As preliminary step, § is expanded to 6’ by creating a supplementary rule for each terminal.

I CREATE FUNCTION create_map(_v, TEXT, _max_generations INT)
> RETURNS TABLE(x INT, y INT, output TEXT) AS $$

3 WITH RECURSIVE

4 §'(rule, input, x, y, output, terminated) AS (

J

SELECT
6 rule AS rule,
7 input AS input,
8 X AS x,
9 y AS y,

10 output AS output,
11 FALSE AS terminated

12 FROM

13 o

14 UNION ALL

15 (

16 WITH

17 offsets(x,y) AS (

18 SELECT

19 X,y

20 FROM

21 generate_series(0,2) AS x,
22 generate_series(0,2) AS y
23),

24 -- give each terminal a single rule number,
25 -- based on the current max rule number
26 rule_numbers(n, symbol) AS (

27 SELECT

28 (SELECT MAX(rule) FROM §) + ROW_NUMBER() OVER (),
29 symbol

30 FROM

31 v

32 WHERE

33 2V.terminal

34 GROUP BY

35 symbol

36)

37 SELECT

38 rn.n AS rule,

39 rn.symbol AS input,

40 offsets.x AS x,

41 offsets.y AS y,

42 rn.symbol AS output,

43 TRUE AS terminated

44 FROM

45 rule_numbers AS rn

46 CROSS JOIN offsets

47)

8),

19 CEED

In this approach, a map generation is done by repeatedly joining the already generated por-
tion of the map with ', which produces an inward growing map. Each step unfolds all tiles
simultaneously, making the algorithm perfect fit to run on a database system, which excel at
putting large data sets in relation with each other (here: the map to unfold and the rule set).
Blocks are therefore treated as possible input for all rules, which produces a set of possible
rules for each block. Selecting a random matching rule per block using DISTINCT ON* then
generates the relation applicable.

4SELECT DISTINCT ON (x,y) isa PostgreSQL specific extension of the SQL standard to force a distinction
of the rows on x and y. Duplicates are handled by selecting the row that comes first in the defined ordering. This
can be implemented more verbosely in standard SQL, which is omitted for brevity.

3.1. Rule-Based Map Generation 45

59

66

69
70

-- all rules, but grouped to one row per rule number
rules(rule, input, terminated) AS (
SELECT DISTINCT ON (rule)
rule,
input,
terminated
FROM
6/
),
expando(generation, rule, input, output, x, y, terminated) AS (
(VALUES (1, -1, ?’, _vy, 0, O, FALSE))
UNION ALL

WITH
applicable(generation, input, x, y, rule) AS (
SELECT DISTINCT ON (ex.x, ex.y)
ex.generation + 1 AS generation,

ex.output AS input,

ex.x AS x,

ex.y AS vy,

r.rule AS rule
FROM

expandO AS ex
JOIN rules AS r
ON ex.output = r.input
ORDER BY
ex.x, ex.y, random()
),
D

Finally, the selected rules are applied to the blocks, creating a new generation of blocks. Each
original block produces nine new blocks to which the matching new coordinates are then
assigned. The generation process ends once the map does not contain any more non-terminals.
Additionally, a parameter _max_generations can be used to limit how many times the whole
map is expanded, constraining the map to at most 9(-max-generations—1) plockg,

79

96

unfolded(generation, rule, input, output, x, y, terminated) AS (

SELECT
a.generation AS generation,
a.rule AS rule,
a.input AS input,
5’ . output AS output,

3 % a.x + 6 .x AS x,
3%a.y+d.y ASy,
&' .terminated AS terminated
FROM
applicable AS a
JOIN &'
ON a.rule = ¢’ .rule

)
SELECT
unfolded. *
FROM
unfolded,
(SELECT COUNT(*) FROM unfolded WHERE NOT terminated) applications(c)
WHERE
applications.c > 0
AND generation <= _max_generations

Note how the semantics of WITH RECURSIVE leave us with the intermediate results of all
recursion steps as final result. That is, the initial v, is present in the result of the query, as
well the blocks it has been expanded to on the same coordinates, and so on. We therefore
finalise the result by applying DISTINCT ON to it, selecting only the tile from the youngest
generation for each distinct coordinate.

SELECT DISTINCT ON (x,y)
X, y, output
FROM
expand
ORDER BY
X, y, generation DESC
$$ LANGUAGE sql;

46 Chapter 3. Map Generation

While this approach produces some interesting maps, their general shape of nested rooms and
secluded areas suggest they are more apt to generate maps for adventure games, rather than
for general games, as mentioned earlier. This observation also matches the findings of Green
et al. [35]. On top of that, writing these kinds of rules for large boards that should have some
sort of aesthetic to them has proven to be tedious. Maps generated this way could still be used
in combination with the approach described in the following section to serve as a general
layout that is then filled with more content. Generating maps in multiple passes where the
rough outline is embellished further down the pipeline is not at all an unorthodox idea, as [27]
and [35] suggest.

3.2 Module-Based Map Generation

The unwieldiness of the rule-based approach led to the exploration of another technique. This
approach is based on the idea of having several small predefined map pieces (modules) which
are stitched together in a modular fashion based on compatibility rules. This facilitates a
data-centric view on map generation, where the user controls the output of the algorithm by
providing appropriate pieces, while the algorithm itself stays the same at core. Modules can be
grouped into multiple modulesets to create maps obeying different rule sets, like having maps
following an arctic or a tropical theme. The required user input is a tuple GM = (7, M, C, S)
consisting of

1. an alphabet of tiles T ;

2. a set of modules M, where each module is a grid of 3 X 3 tiles € 7. Each tile within
a module is uniquely identified by a coordinate (x, y)|x,y € {0, 1,2} specific to the
module they are in;

3. C being a set of ordered triples {(x, y, f)|x,y € T, f € N}, describing the compat-
ibility of x and y. Two tiles x and y are said to be compatible when y is allowed to be
placed next to x on the map. f denotes the frequency of this compatibility, which is
explained below;

4. an initial module S € M.

This approach then produces maps based on predefined modules to grow the map outwards
by repeatedly joining modules to the outsides of the map, as is shown in Figure 3.10.

A T A
4 - ‘ >
. . I3 KA K
(a) First expansion step.

(b) Second expansion step.

FIGURE 3.10: Two steps of an expansion.

A relational schema as used for the implementation is given in Figure 3.12 in slightly simpli-
fied form. The following section explains the algorithm in-depth, accompanied by appropriate
SQL snippets. Circled numbers mark regions in the visualisations presented in Figure 3.11.

3.2. Module-Based Map Generation

@

AN AN AN
suburbs () suburbs () suburbs () ’
suburbs () suburbs ()
InA ~ ~
~ ~ ~
suburbs () suburbs ()
syburbs () suburbs ()
burbs () burbs () burbs () ’
suburbs suburbs O [}, suburbs O {],

frequency mapside

Q
Q
Q

= oW W -

modside

Q

Q
Q
Q

FIGURE 3.11: Illustration of the process of finding a compatible module to
extend the map with. Module m, is compatible, as all three tiles can find a
join partner in C. Module m lacks a join partner for the bottom tile, rendering

the whole module incompatible.

Q

48

Chapter 3. Map Generation

modulesets id symbol modules
id id moduleset_id
N Tropical s s T
Arctic
module_contents
module_id x y tile_id moduleset_name module_id x y symbol
1 0|0 4 Tropical 1 0|0 ~
1 0|1 3 Tropical 1 0|1
1 0]2 2 Tropical 1 0]2 H
1 110 3 Tropical 1 110
1 111 3 Tropical 1 171
1 1]2 3 Tropical 1 11]2
1 2|0 4 Tropical 1 2|0 ~
1 2|1 3 Tropical 1 2|1
1 2|2 3 Tropical 1 2|2
2 0|0 4 Tropical 2 0|0 ~
2 0|1 4 Tropical 2 0|1
2 0|2 4 Tropical 2 0|2 ~
2 110 4 Tropical 2 110
2 1)1 4 Tropical 2 1)1 ~
2 112 4 Tropical 2 112 ~
2 2|0 4 Tropical 2 2|0
2 2|1 4 Tropical 2 2|1 R~
2 2|2 4 Tropical 2 2|2 ~
C
frequency mapside modside moduleset_id

2 O] O 1

1 [] [] 1

3 R R 1

3 1

1 r 1

FIGURE 3.12: Relational representation of G{” that is used in the implemen-
tation. The seed S is intentionally left out, as it does not need to be specified
before the generation process takes place and instead can be freely chosen
during runtime. Note that module sets bear no relevance for the implementa-
tion beyond filtering modules and rules that belong to a selected module set
and are therefore omitted in the following explanation.

3.2. Module-Based Map Generation 49

3.2.1 Preparations

The map generation can be executed during runtime either before the player dives into the
game or even to extend the map during playing. The latter is done in games with seemingly
infinite worlds, as is the case in Minecraft. Parts of these computations can be done offline
and result in a trade-off between runtime computation and memory consumption, as the pre-
computed results are explicitly stored in relational form. This is actually an advantage in this
case, as processing large amounts of data is a strong forte of database systems and presents us
with an opportunity to create indices and auxiliary structures. The relations in this subsection
are nonetheless presented as CTEs for simplicity reasons.

The preparations start with precomputing the edges of all modules, called module-edges sub-
sequently. That is, the adjacent tiles along all four sides of all modules are combined into
an edge together with the direction they are facing. This is done by grouping all tiles to-
gether that share a certain coordinate within the module. For example, all tiles that have the
x-coordinate of 0 within a module m are part of the left module-edge of m, which will assign
them <7 as junction. For each edge we also determine x_off and y_off to denote how the
position of a module attached to the edge at hand is calculated. If a module is attached to the
left edge of the map, its position is the position of the module it was attached to but with the
x-coordinate moved to the left by one, which is conveyed by the x_off of -1 for that partic-
ular module-edge. This step only has to be repeated if the underlying data changes, i.e. new
modules are created by a game designer or new compatibility rules are defined. centroid_x
and centroid_y denote the coordinate of the centre of an edge. In this context, any refers
to a special value that is equal to any integer, so basically a “do not care” value. THE is an
aggregation operator defined by Peyton Jones and Wadler in [45, Section 3.4], which selects
an arbitrary element from a list of identical values. We can safely use THE in this case, because
all attributes selected this way are functionally dependent on the grouping criterion.

1 WITH

2> module_edges(module_id, offered_junction, required_junction, edge,
3 x_off, y_off, centroid_x, centroid_y)

4 AS (

5 WITH module_edge_indicators(required_x, required_y

6 , x_off, y_off

7 , centroid_x, centroid_y

8 , offered_junction, required_junction)
9 As (

10 VALUES

1 (0, any, 1, 0,0, 1, °<1’, '),

12 (2, any, -1, 0, 2, 1, ’'>’, ’<1’),

13 (any, 0, 0, 1, 1,0, °A’, °V’),

14 (any, 2, 0, -1, 1, 2, °V’, ’A”)

15)

16 SELECT

17 m.module_id AS module_id,

18 i.offered_junction AS offered_junction,

19 THE(i.required_junction) AS required_junction,
20 array_agg(m.symbol ORDER BY m.x, m.y) AS edge,

21 THE(i.x_off) AS x_off,

2 THE(i.y_off) AS y_off,

23 THE(i.centroid_x) AS centroid_x,
24 THE(i.centroid_y) AS centroid_y
25 FROM

26 M AS m

27 JOIN module_edge_indicators AS i

28 ON m.x = i.required_x AND

29 m.y
30 GROUP BY

31 m.module_id, i.offered_junction
20,
33 N

i.required_y

To accommodate for having the tiles grouped into triples, we create C_edges =7 X T X T
to join the edges on later, restricting them to all combinations that actually form an edge.

50 Chapter 3. Map Generation

This leads to an explosion in possible combinations to find matches later on, as can be seen
in Figure 3.13. But again, creating these permutations offline is actually desirable as opposed
to having to create them during the map generation process.

34 C_edges(mapside, modside, frequencies) AS (

35 SELECT

36 ARRAY [c1.mapside, c2.mapside, c3.mapside] AS mapside,

37 ARRAY[c1.modside, c2.modside, c3.modside] AS modside,

38 ARRAY [c1.frequency, c2.frequency, c3.frequency] AS frequencies
39 FROM

40 C AS c1,

41 C AS c2,

42 C AS c3

13 module_edges AS mapside,

44 module_edges AS modside

15 WHERE

46 ARRAY [c1.mapside, c2.mapside, c3.mapside] = mapside.edge

47 AND ARRAY[cl.modside, c2.modside, c3.modside] = modside.edge
48 AND (cl.relative_x, cl.relative_y) = (c2.relative_x, c2.relative_y)

19 AND (c2.relative_x, c2.relative_y) = (c3.relative_x, c3.relative_y)

C_edges

number mapside modside frequencies
1 .. | {O0.m | {2,1,3}
2 {O.m.~} | {O.W.~} | {2,1,3}
3 {O.m.3 | {O.m.~} | {2,1,1}
4 {O0.m.01 {O.m.0r | {2,1,2}
5 {O.m.m {O.mm| {2,1,1}
6 O.m.-3 | {O0.mr | {2,1,3F

2730

2725 {5~ | {=,~,"} | {1,3,3}

2726 { ,~,~} {~,~,~} {1,3,3}

2727 {,~,"} | {=,~,~} | {1,3,1}

2728 {0,003 | {=,~,0r | {1,3,2}

2729 .~ 1 | {,~,0B | {1,3,1}
{

2, | A=~ | {1,3,3}

FIGURE 3.13: Compatible edges derived from C. The additional column
number is only included to emphasise the combinatory explosion.

The actual map generation process hinges on a three-way join between the map that has been
created up to a certain point, the compatibility table C, and the available modules M that can
be appended to the edges, as is illustrated in Figure 3.11. To speed up the generation process,
we can prepare an auxiliary table semiconnected, in which M has already been joined on C
to reduce the three-way join into a two-way join during runtime. Visually this step subsumes
@ and @ of Figure 3.11. In addition to these runtime savings we can also create a hash
index over this auxiliary table for additional speed gain.

3.2. Module-Based Map Generation 51

52 semiconnected(module_id, offered_junction, required_junction

53 , x_off, y_off

54 , offered_edge, required_edge

55 , centroid_x, centroid_y, edge_frequencies)
56 SELECT

57 me.module_id AS module_id,

58 me.offered_junction AS offered_junction,
59 me.required_junction AS required_junction,
60 me.x_off AS x_off,

61 me.y_off AS y_off,

62 c.mapside AS offered_edge,

63 c.modside AS required_edge,

64 me.centroid_x AS centroid_x,

65 me.centroid_y AS centroid_y,

66 c.frequencies AS edge_frequencies
67 FROM

68 module_edges AS me

69 JOIN C_edges AS c

70 ON c.modside = me.edge

),

72

This concludes the preparations and the actual map generation process can now be started.

3.2.2 During Runtime

The process commences with the seed S, which can either be chosen by the user or randomly
selected, indicated by init.id, which is not explicitly shown here. The final map will consist
of tiles, each being represented by a symbol € T, a coordinate (block_x|block_y) to identify
the 3 X 3 block they are part of, and another coordinate (x|y) with x € {0, 1,2}, ye {0, 1,2}
to show where in that block the tiles are situated.

73 expandO (block_x, block_y, x, y, symbol) AS (

74 (

75 SELECT

76 0 AS block_x,

77 0 AS block_y,

78 mc.x AS x,

79 mc.y AS vy,

80 t.symbol AS symbol

81 FROM

82 init

83 JOIN module_contents AS mc
84 ON mc.module_id = init.id
85 JOIN 7 AS t

86 ON mc.tile_id = t.id

87)

88 UNION ALL

89 (

90 CEED

In each recursive step, the algorithm inspects the modules on the borders of the map created
so far, marked with in Figure 3.11. These modules are the suburbs of that iteration. Their
edges facing away from the map created up to this point are the current map-edges (@ in
Figure 3.11). We also assign each such map-edge a required_junction to indicate what
directional symbol a module-edge should carry to be considered appendable.

52 Chapter 3. Map Generation

91 WITH

92 bounds(min_x, max_x, min_y, max_y) AS (
93 SELECT

94 MIN(e.block_x) AS min_x,

95 MAX(e.block_x) AS max_x,

96 MIN(e.block_y) AS min_y,

97 MAX(e.block_y) AS max_y

98 FROM

99 expandO AS e
00),
101 edge_indicators(required_block_x, required_block_y, required_x, required_y, required_junction) AS (

102 SELECT E.* FROM bounds AS b, LATERAL (VALUES
103 (b.min_x, any, 0, any, ’>?),
104 (b.max_x, any, 2, any, ’<1’),
105 (any, b.min_y, any, 0, °V’),
106 (any, b.max_y, any, 2, 'A%),
107 (b.min_x, b.min_y, 0, 0, ’Q?),
108 (b.max_x, b.min_y, 2, 0, ’/?),
109 (b.min_x, b.max_y, 0, 2, ’g?),
2,

110 (b.max_x, b.max_y, 2, [AVED!

111) E(required_block_x, required_block_y, required_x, required_y, required_junction)
1),

113 suburbs(block_x, block_y, required, edge) AS (

114 (SELECT

115 e.block_x AS block_x,
116 e.block_y AS block_y,
117 THE(i.required_junction) AS required,
118 array_agg(e.symbol ORDER BY e.x, e.y) AS edge
119 FROM

120 expand® AS e,

121 edge_indicators AS i

122 WHERE

123 i.required_block_x = e.block_x AND
124 i.required_block_y = e.block_y AND
125 i.required_x = e.x AND

126 i.required_y = e.y

127 GROUP BY

128 i.symbol, e.block_x, e.block_y

129)

130),

131 5

For each map-edge we look for modules that have an opposite-facing module-edge that is
compatible with regard to all three tiles. We call such a combination edge-compatible. Each
edge-compatible module is temporarily placed on the map based on the coordinates of the
module it was appended to and the corresponding offset. The maximum desired size, con-
tained in absolute_limits, consisting of min_x, max_x, min_y, and max_y, specified by
the user, is accounted for, in case a rectangular map is being generated, where we need more
horizontal than vertical expansion steps, or vice versa. So far, we are only performing the
horizontal and vertical (straight) expansion. Should multiple matching modules be found, a
semi-random ordering selects one match for each coordinate using DISTINCT ON.

3.2. Module-Based Map Generation 53

132 matches(module_id, block_x, block_y, edge_frequencies) AS (
133 SELECT DISTINCT ON (new_block_x, new_block_y)

134 semi.module_id AS module_id,

135 sub.block_x + semi.x_off AS new_block_x,

136 sub.block_y + semi.y_off AS new_block_y,

137 semi.edge_frequencies AS edge_frequencies

138 FROM

139 absolute_limits AS 1,

140 suburbs AS sub

141 JOIN semiconnected AS semi

142 ON semi.edge = sub.edge AND semi.junction = sub.required_junction
143 WHERE

144 (sub.block_x + semi.x_off BETWEEN 1.min_x AND 1.max_x) AND
145 (sub.block_y + semi.y_off BETWEEN 1l.min_y AND 1l.max_y)

146 ORDER BY

147 new_block_x, new_block_y, weighted_sort(edge_frequencies) DESC
148)

1499 SELECT

150 mat.block_x AS block_x,

151 mat.block_y AS block_y,

152 mc.Xx AS x,

153 mc.y AS y,

154 mc.symbol AS symbol

155 FROM

156 matches AS mat

157 JOIN module_contents AS mc

158 ON mc.module_id = mat.module_id

159),
160 straight_expansion(module_id, block_x, block_y, x, y, symbol) AS (

161 SELECT

162 mat.module_id AS module_id,

163 mat.block_x AS block_x,

164 mat.block_y AS block_y,

165 mc.x AS x,

166 mc.y AS y,

167 mc.symbol AS symbol

168 FROM

169 matches AS mat

170 JOIN module_contents AS mc

171 ON mc.module_id = mat.module_id
172 ORDER BY mat.block_x, mat.block_y, weighted_sort(edge_frequencies) DESC
173),

174 CEED

The ordering is influenced by the frequency of all tiles contained in the edge in question. The
higher their collective frequency, the more likely is it for the edge they make up to be sorted
as the first item and subsequently to be selected as distinct element.

-- orders a value randomly but with respect to its accumulated probability values.
CREATE FUNCTION weighted_sort(ps INT[])
RETURNS DOUBLE PRECISION AS $$
SELECT SUM(RANDOM() * p) FROM unnest(ps) AS ups(p);
$$ LANGUAGE SQL VOLATILE;

O N O

Based on the straight expansion, we can now fill in the diagonal gaps on the corners of the
map. This step ensures each iteration to create a proper rectangular map that can be built on in
subsequent steps. Not doing this diagonal fixup would lead to maps of the shape of a plus. To
find modules for the diagonal fixup, we first determine the blocks from the straight expansion
that are adjacent to any of the corner blocks. We can find those blocks by determining the
closest neighbours for the corner position based on the Euclidean distance of their centroid
from the corner’s centroid, visualised in Figure 3.14(a). From each of those blocks, we extract
the edge facing the corner in question by selecting the edge with the centroid closest to the
corner’s centroid, as shown in Figure 3.14(b).

54

Chapter 3. Map Generation

(a) Neighbours of the missing north-east cor-
ner Cyg can be determined by looking for the
module whose centroid (e) is closest to the
centroid of Cyg ().

175
176
177
178
179
18(

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

229

DR =D

g

37

PRI RN NN

FIGURE

(b) The edges facing Cyg can then be found
by looking for edges whose centroids (o) are
closest to the centroid of Cyg, (@).

3.14: Visualisation of centroids for modules and borders to deter-

mine relevant neighbouring edges for the corner modules. The closest cen-

diagonal_expansi
WITH
corner_coord
SELECT
XS.X
ys.y
FROM
(SEL
--C
(SEL
),
corner_neighl
SELECT
THE(
cc.b
cc.b
se.b
se.b
FROM
stra
corn
WHERE
ABS(
GROUP BY
cc.b
cc.b
se.b
se.b

),

troids are marked with dotted lines in both cases.

on(module_id, block_x, block_y, x, y, symbol) AS (
inates(block_x, block_y) AS (

>

ECT unnest(ARRAY[min_x-1,max_x+1]) FROM bounds) AS xs(x),
ompensate for straight expansion
ECT unnest (ARRAY[min_y-1,max_y+1]) FROM bounds) AS ys(y)

bours (module_id, corner_x, corner_y, neighbour_x, neighbour_y, c) AS (

se.module_id),

lock_x,

lock_y,

lock_x,

lock_y, ABS(cc.block_x - se.block_x) + ABS(cc.block_y - se.block_y)

ight_expansion AS se,
er_coordinates AS cc

cc.block_x - se.block_x) + ABS(cc.block_y - se.block.y) = 1

lock_x,
lock_y,
lock_x,
lock_y

corner_neighbour_edges (module_id, offered_junction, required_junction, edge

WITH all

SELE

FROM

)
SELECT
ane
ane.
ane.
ane.
ane.
ane.
ane
ane
FROM
all_
WHERE
ane.

, corner_x, corner_y

, neighbour_x, neighbour_y) AS (
_neighbour_edges (module_id

, offered_junction, required_junction

, edge, corner_x, corner_y

, neighbour_x, neighbour_y, distance) AS (
CT
cn.module_id AS module_id,
me.offered_junction AS offered_junction,
me.required_junction AS required_junction,

me.edge AS edge,

cn.corner_x AS corner_x,

cn.corner_y AS corner_y,

cn.neighbour_x AS neighbour_x,

cn.neighbour_y AS neighbour_y,

euklidian_distance(cn.neighbour_x * 3 + me.centroid_x, cn.neighbour_y * 3 + me.centroid_y,
cn.corner_x * 3 + 1, cn.corner_y * 3 + 1) -- (+1,+1) -> corner centroid

AS distance

corner_neighbours AS cn
JOIN module_edges AS me
ON me.module_id = cn.module_id

.module_id,

offered_junction,
required_junction,
edge,

corner_x,
corner_y,

.neighbour_x,
.neighbour_y

neighbour_edges AS ane

distance = 2

3.2. Module-Based Map Generation 55

Based on the edges facing the corners, we can now find candidates for the corner positions
through the same selection process we used for the straight expansion. With the slight dif-
ference of giving each candidate a rating € {0, 1,2}, reflecting if they are compatible to both
their (horizontal and vertical) neighbours, just one of them, or none. By selecting candidates
with the highest rating, corner modules will fit perfectly between the already generated neigh-
bours at best, or at least be compatible with one of their neighbours. Providing tilesets with
either high or unique compatibility enhances the quality of selected corner modules.

243 corner_candidates(module_id, corner_x, corner_y, neighbour_x, neighbour_y, edge_frequencies) AS (

244 SELECT DISTINCT ON (cne.corner_x, cne.corner_y, cne.neighbour_x, cne.neighbour_y, semi.module_id)
245 semi.module_id,

246 cne.corner_x,

247 cne.corner_y,

248 cne.neighbour_x,

249 cne.neighbour_y,

250 semi.edge_frequencies,

251 ROW_NUMBER() OVER (PARTITION BY cne.corner_x, cne.corner_y, semi.module_id) AS rating -- 1 or 2
252 FROM

253 corner_neighbour_edges AS cne

254 JOIN semiconnected AS semi

255 ON cne.required_junction = semi.offered_junction AND cne.edge = semi.offered_edge

256),
257 corner_modules(module_id, corner_x, corner_y) AS (

258 SELECT DISTINCT ON (cc.corner_x, cc.corner_y)
259 cc.module_id,

260 cc.corner_x,

261 cc.corner_y

262 FROM

263 corner_candidates AS cc

264 ORDER BY

265 cc.corner_x, cc.corner_y, cc.neighbour_x, cc.neighbour_y, cc.rating DESC,
266 weighted_sort(cc.edge_frequencies) DESC
267) N

268 corner_tiles(module_id, block_x, block_y, x, y, symbol) AS (
269 SELECT

270 cm.module_id AS module_id,

271 cm.corner_x AS block_x,

272 cm.corner_y AS block_y,

273 mc.x AS x,

274 mc.y AS y,

275 mc.symbol AS symbol

276 FROM

277 corner_modules AS cm

278 JOIN module_contents AS mc

279 ON cm.module_id = mc.module_id

280)
281 SELECT * FROM corner_tiles

The expansion step is finalised as straight_expansionUdiagonal_expansion.

This usage of frequencies is particularly useful if certain transitions should occur more or less
frequently than others. For example, Figure 3.12 contains the rows (1,.",~) and (3,".",".).
That makes it far more likely to have edges comprised of “." placed next to other such edges
than having ~ next to *.". Visually, this amounts to having long stretches of coastlines with
transitions to water after some blocks. The significance of different frequencies is indicated
in Figure 3.15.

As described above, the map is expected to be of rectangular shape. This can only be guaran-
teed if for each module we can find at least one other module to attach to every edge, or the
generation might produce maps with jagged edges where no module could be appended. The
database system provides us with this information by looking for modules that do not have at
least one open connection in every direction in the semiconnected table, allowing the game
designers to perform sanity checks on their data.

56 Chapter 3. Map Generation

frequency tile

-
22
Q

MzzMU

1

Q

1 ~

(a) Extending G{W from Figure 3.12 to Gé” = (T, M,,C,,S). Note how every row has the same
frequency of 1.

Q

~
~

Q

~
~

Q
Q
Q
It

Q
Q

~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ . . . ~ ~ ~ . . . ~ ~ ~

(b) Possible output when using Gé” . Not utilising the frequency may lead to a repeated alternation
between coast and water.

frequency tile with

M3=MU

1

Q

1 ~

(c) Extending G{W from Figure 3.12 to Gé"’ = (T, M3,C3,5).

~ ~
~ ~
~ ~
~laoll~rlell~ll 2~ 1 ~
NI~ ~NlININININININININN

(d) Possible output when using Gé"f . The increased frequency of 10 for connecting ~ with ~ leads to
a higher probability of having long stretches of water.

FIGURE 3.15: Two examples of the impact of the frequency frequency.

In both examples, the leftmost module is the seed and only the horizontal

expansion to the right side is shown. For reading convenience, a more visual
notation for M, has been chosen.

3.2. Module-Based Map Generation 57

I WITH

2> mod_dirs(module_id, junction) AS (
3 SELECT

4 m.id AS module_id,

5 dir.symbol AS junction

6 FROM

7 M AS m,

8 (VALUES (°<1*), (), CA*), V), %), Cq), L2),047))
9 AS dir(symbol)

10)

11 SELECT

12 md.module_id,

13 md. junction

14 FROM

15 mod_dirs AS md

16 LEFT JOIN semiconnected AS sc

17 ON md.module_id = sc.module_id AND md.junction = sc.junction
18 WHERE

19 sc.module_id IS NULL

It should also be noted that while it may seem restrictive to demand elements of the map to be
broken up into normalised chunks (i.e. modules), this approach is actually versatile enough
to express structures with dimensions that exceed that of a single module. For example, Fig-
ure 3.16 shows a pond structure that does not match the required dimensions of 3 X 3 and thus
is split into multiple modules. To avoid the resulting modules from being arranged differently
or composed with other modules, artificial tiles are introduced to the junctions between the
modules that make up the original structure (Figure 3.16(e)). A compatibility for each pair of
neighbouring artificial junction tiles is introduced in C (Figure 3.16(f)). This forces the gen-
eration algorithm to compose bigger structures exactly as they looked before being separated
into smaller modules.

3.2.3 Map Generation by Example

Composing maps from a set of pieces also offers the opportunity to decompose maps that
have already been crafted, even if they have been created manually. These pieces can in turn
be used to generate new maps from it. Game developers can use this approach to provide
small, hand-crafted input maps, which can serve as example for large maps, as is shown in
Figure 3.17.

We assume the map that serves as input to be available in the following simple schema, where
each coordinate of the map is given with a tile_id referencing a distinct terrain type. We
assume only one map to be present during the process in the following explanation, but mul-
tiple maps could be processed at once by introducing a map_id by which intermediate results
are grouped.

I CREATE TABLE mapdata(

2 id SERIAL PRIMARY KEY,
3 x INT,
4 y INT,

5 tile_id INT,
6 UNIQUE(x, y)

The tiles can be grouped into modules by mapping their global coordinate on the input map
to a module. The mapping is done in line 12 in the following listing.

58

Chapter 3. Map Generation

(a) A pond as it would be seen in the game.
(c) The pond split into four 3 X 3 modules.
Other ways to split the pond into modules are

conceivable. Blank fields could be padded
with tiles or left empty.

]y 0|
71 - - D2
6] ~ I
.. ...5 ...4 D

(e) Artificial tiles (7', (1%, (13, -4, .3, -6, -7,

and [J® have been introduced to the modules

to prevent accidental compatibilities with any
other modules.

(b) The same pond divided into tiles. Note
how it makes up a total of 16 tiles, requiring
more than one 3 X 3 module to represent it.

] .] .
-.-D

R L
L

(d) The same modules in symbol-based repre-
sentation.

C

frequency tile with
1 DS Dl
1 D2 D3
1 4 5
1 6 .'.7
1 I:ll DS
1 D3 DZ
1 5 ...4
1 7 '.6

(f) C enriched with the artificial compatibili-
ties, allowing ponds to only be composed as it
is seen in Figure 3.16(a).

FIGURE 3.16

3.2. Module-Based Map Generation 59

(a) Input

(b) Output

FIGURE 3.17: Exemplary usage of map generation by example. A relatively

small sample was given as input in Figure 3.17(a) to produce the output seen

in Figure 3.17(b). While different dimensions have deliberately been chosen

to showcase how a small example map can be used to generate a bigger map

with different aspect ratio as well, structures from the input can still be found
in the output.

9 CREATE VIEW read_modules(module_id, tile_id, module_x, module_y, x, y, global_x, global_y)

10 As (

11 SELECT

12 |md.x / 3] + [(SELECT MAX(x) + 1 FROM mapdata) / 3] * |md.y / 3|
13 AS module_id,
14 md.tile_id AS tile_id,
15 md.x / 3 AS module_x,
16 md.y / 3 AS module_y,
17 md.x % 3 AS x,

18 md.y % 3 AS y,

19 md.x AS global_x,
20 md.y AS global_y
21 FROM

22 dim,

23 mapdata AS md

24)5

25 EED

This process may result in having duplicate modules. Imagine a long stretch of beach that ac-
commodates many tiles of sand, all of them being grouped into 3 X 3 modules, but effectively
representing the same piece of a map. Each such module will have the same compatibilities,
resulting in a potential explosion of candidates when expanding the map. To stint this ex-
plosion, duplicates of modules can be eliminated and one representative module of the group
is given a higher frequency during the expansion as compensation. Equal modules can be
found by hashing the contents of each module and grouping the modules by hash. In this
implementation, the tile_ids of each module are concatenated as string, shown in line 34,
which enables easy comparison of modules. Note that in line 42 we are using MAX in this case
instead of THE to pick an arbitrary module. Having different identifiers per module renders
module_id invalid for the use of THE, but the modules are the same content-wise, sSo we can
pick an arbitrary module using any available aggregate function that yields a single identifier.

60 Chapter 3. Map Generation

26 CREATE VIEW unique_modules(module_id, tile_id,

27 module_x, module_y, x, Yy,
28 global_x, global_y, occurrences)
29 AS (

30 WITH

31 hashed_modules(module_id, hash) AS (

32 SELECT

3 m.module_id AS module_id,

34 string_agg(m.tile_id, ’|’ ORDER BY m.x,m.y) AS hash
35 FROM

36 read_modules AS m

37 GROUP BY

38 m.module_id

39),

40 module_set (module_id, occurrences) AS (
41 SELECT

42 MAX(m.id) AS module_id,

43 COUNT (%) AS occurrences

44 FROM

45 hashed_modules AS m

46 GROUP BY

47 m.hash

48)

49 SELECT

50 mod.id AS module_id,

51 mod.tile_id AS tile_id,

52 mod.module_x AS module_x,

53 mod.module_y AS module_y,

54 mod.x AS x,

55 mod.y AS vy,

56 mod.global_x AS global_x,

57 mod.global_y AS global_y,

58 ms.occurrences AS occurrences

59 FROM

60 read_module_set AS ms

61 JOIN read_modules AS mod

62 ON ms.module_id = mod.id

63)3

64 CEED

With all the distinct modules at hand, we can again determine compatibilities from how the
modules were arranged in the original map. Tiles that fall into adjacent modules and were
aligned next to each other in the original map are noted down as compatible, which is shown
in the following listing.

5 CREATE VIEW read_compatibilities(tile_idl, tile_id2, relative_x, relative_y, frequency) AS (

66 WITH

67 neighbours(tile_idl, tile_id2, relative_x, relative_y) AS (
68 SELECT

69 ml.tile_id AS tile_id1,

70 m2.tile_id AS tile_id2,

71 m2.global_x - ml.global_x AS relative_x,

72 m2.global_y - ml.global_y AS relative_y

73 FROM

74 read_modules AS mil,

75 read_modules AS m2

76 WHERE

77 (m2.global_x - ml.global_x, m2.global_y - mi.global_y) IN ((0,1),(1,0))
78)

79 compatible(tile_idl, tile_id2, relative_x, relative_y, frequency) AS (
80 SELECT

81 n.tile_id1l AS tile_id1l,
82 n.tile_id2 AS tile_id2,
83 n.relative_x AS relative_x,
84 n.relative_y AS relative_y,
85 COUNT (%) AS frequency
86 FROM

87 neighbours AS n

88 GROUP BY

89 n.tile_idl, n.tile_id2, n.relative_x, n.relative_y
90),

9] CEEB

As we only look for neighbours directly to the right and directly below each module, as per
the condition in line 77, we only have half the compatibilities. They can easily be made
bidrectional:

3.3. Evaluation 61

92 bidrectional(tile_idl, tile_id2, relative_x, relative_y, frequency) AS (
93 SELECT
94 c.tile_idl AS tile_idi,
c.tile_id2 AS tile_id2,
c.relative_x AS relative_x,
7 c.relative_y AS relative_y,
c.frequency AS frequency
99 FROM
100 compatible AS c
101 UNION ALL
102 SELECT
) c.tile_id2 AS tile_idi,
104 c.tile_id1l AS tile_id2,
105 -c.relative_x AS relative_x,
106 -c.relative_y AS relative_y,
)
)
)

107 c.frequency AS frequency
108 FROM

109 compatible AS c

110)

111 SELECT

112 b.tile_id1l AS tile_id1l,
113 b.tile_id2 AS tile_id2,
114 b.relative_x AS relative_x,
115 b.relative_y AS relative_y,
116 SUM(b.frequency) AS frequency
117 FROM

118 bidrectional AS b

119 GROUP BY

120 b.tile_idl, b.tile_id2, b.relative_x, b.relative_y
21)3

122 CEED

The final grouping in line 120 compacts the resulting compatibility table. Say the original de-
termined compatibility consisted of [(x, y,2), (¥, x, 3)], which would produce the bidrectional
compatibility [(x, y,2), (¥, x, 3), (x, ¥, 3), (¥, x, 2)], which obviously contains unnecessary du-
plicates, which are eliminated and condensed into a higher frequency for that compatibility:

[(x,,5), (¥, x,5)].

3.3 Evaluation

The following sections evaluates both, the rule-based, and the module-based approach in that
order.

3.3.1 Rule-Based

Assessing query plans for the rule-based approach showed that a considerable share of the
total runtime (around 7 — 11%) was spent on determining whether any non-terminals were
unfolded during the previous step of the unfolding process (line 97 when selecting from the
CTE unfolded). This was initially meant as an early exit when a map consisted only of ter-
minals at any given time, but was temporarily disabled for the measurements in Figure 3.19.
This change does not introduce any change in functionality that would be relevant for the fol-
lowing experiments, but makes other bottlenecks more obvious.

To conduct the measurements, a grammar consisting of either 100 or 1 000 rules, each rule
mapping the non-terminal A onto 3 X 3 copies of itself, was used to examine the effects of
having highly unselective joins as a worst case scenario. A single non-terminal A was then
unfolded up to five times by calling the UDF create_map with the appropriate parameters.
Increasing the number of rules in 6 slowed down the unfolding process considerably, as the
intermediate table to select the rule from grew accordingly, even prompting the DBMS to
resort to external merge sort on disk, as can be seen in Figure 3.18, which explains the surge
in time shown in Figure 3.19(a). Note that the exponential growth of the required time does
not come as a surprise, as the number of generated tiles grows exponentially as well. It can
be approximated as max({#r | (I — r) € §})", where i is the number of unfold steps and #r is

62 Chapter 3. Map Generation

I CTE applicable
2 -> Unique (cost=926.76..926.83 rows=10 width=60)
3 (actual time=8272.219..16576.595 rows=1476 loops=5)
Output: ((ex.generation + 1)), ex.output, ex.x, ex.y, "6’".rule_number, (random())

5 -> Sort (cost=926.76..926.78 rows=10 width=60)

6 (actual time=8271.067..12751.816 rows=1476200 loops=5)

7 Output: ((ex.generation + 1)), ex.output, ex.x, ex.y, "6'".rule_number, (random())
8 Sort Key: ex.x, ex.y, (random())

9 Sort Method: external merge Disk: 269672kB

10 -> Hash Join (cost=873.24..926.59 rows=10 width=60)

1 (actual time=45.864..2997.932 rows=1476200 loops=5)

12 Output: (ex.generation + 1), ex.output, ex.x, ex.y, "6’".rule_number, random()
13 Hash Cond: ("46’".input = ex.output)

14 [...]

FIGURE 3.18: Part of a query plan for generating a map from a grammar with
100 rules running for 5 iterations. The plan shows part of the subplan used
to evaluate the CTE applicable shown in Section 3.1.

the number of tiles in the right hand side of arule / — r. As all rules in the experiment map a
non-literal onto a 3 X 3 block, unfolding the initial tile five times produces 9° = 59049 tiles.
Since both the number of generated tiles and the runtime grow exponentially, the number
of tiles depends linearly on the invested time. This becomes more palpable when depicting
the number of generated tiles as a function of the passed time during the generation process
in Figure 3.19(b).

The resulting maps did indeed resemble structures that could be used for dungeon generation,
but the rule based approach was deemed unfit for excessive use beyond creating the general
shape of a map early on in development. Its major disadvantage remains the poor predictabil-
ity of how new rules affect the generated map. This makes the conception of large rule sets
tedious, rendering this approach hardly usable beyond small rule sets for the rough shaping
of worlds that then need to be enhanced using other approaches.

3.3.2 Module-Based

To evaluate the modular map generation process, maps of varying size were created using
module sets of increasing cardinality. To simulate a worst case scenario, the module sets
were comprised entirely of modules of 3 X 3 walkable tiles ((]). Adding ((], [, x) € C for an
arbitrary x > 0 guaranteed full compatibility between all modules, making the expansion of
each step as expensive as possible. As shown in Figure 3.22, the runtime grew linearly depen-
dent on the module count. Note that increasing the number of possible connectors would have
the same effect, as both module count and connector count ultimately influence the relation
semiconnected on which the intermediate map is joined in each iteration of the generation
process. Examining the query plan for generating a 700 X 700 map from one module reveals a
gross underestimation of the number of output rows by the planner, especially when predict-
ing the number of rows added per expansion, as can be seen in Figure 3.23. While this likely
contributed to an inefficient execution strategy, a drop in computational speed was to be ex-
pected, as the generation hinges on a line of CTEs, where index usage or predicate pushdown
becomes harder or even impossible to conduct [67]. In this instance for example, enforcing
the usage of an index to perform a hash join through a PostgreSQL switch cut the runtime
of the operation seen in Figure 3.23 in half. This sort of manual meddling with the planner,
however, is undesirable, as it offloads part of the work the DBMS is supposed to do onto the
user.

The proposed map generation can still be used effectively, albeit the seemingly poor perfor-
mance; large maps are unlikely to be generated on the fly, but rather offline, when the player
is either not involved in the process at all (i.e. during compile time), or at the start of a game,
during which the user is used to seeing loading screens anyway. Small parts of a map on

3.3. Evaluation

10

Time (s)

S

o9

I
1 2 3
Unfold Steps

© %
> o ™
Q Q N
o o M
4

150 -
100 |
50|
| e
B o () A N
LS © N
O \Q \Q \q/ -
1 2 3 4
Unfold Steps

(a) Time measured when unfolding a map comprised of a single initial character multiple times.

Generated Tiles

-10*
T

5 10
Time (s)
800
600 | a
400 - -
200 | a
0.05 Oil O.‘15 0.2

104
T
6 [
4
2 -
0 i | | |
0 100 150
Time (s)
800
600 - .
400 - -
200 - .
| | | |
05 1 15 2 25

(b) Number of generated tiles as a function of passed time during the unfolding process.

FIGURE 3.19: Measurements for unfolding a map up to five times using a
grammar with 100 (left) and 1 000 rules (right) respectively.

64 Chapter 3. Map Generation

FIGURE 3.20: Screenshot of a generated map inside of OpenRA, showing
areas enclosed by mountains and several ponds with a coastline.

the other hand can be generated while the game is taking place. This practice is for example
used in Minecraft, where the map is segmented into chunks of 16 X 16 X 256 blocks (the 3D
equivalent of the 2D tiles used in this chapter). Whenever the player reaches the edge of the
map, chunks are generated and appended to the map, as shown in Figure 3.21. Given ade-
quate parameters for the size, chunks can be gradually generated in SQL as well. The main
advantage of the module-based approach is the convenience for level designers. The concep-
tion of modules can be enhanced with appropriate visual editors, making it much easier for
uninitiated users to come up with building blocks for their terrain, instead of grappling with
formal definitions of rules or modifications of an algorithm.

The module-based map generation was included into OpenRA to complement the engine’s
ability to import hand-crafted maps from the map editor that comes bundled with the frame-
work. To avoid drastic changes to any peripheral components, like the way the engine gener-
ally stores, loads, and organises maps, generated maps are written to the file format used by
OpenRA. This format consists of a .bin file, which contains the terrain information for all
cells of the map, and a .yaml file, containing meta information, like positions players start
out on. This process was easily included by adding another button to the map selection inter-
face to trigger the generation process in the database, convert the resulting map information
to the expected format and reload all map files from the respective directory. This change
amounted to around 300 lines of C# code®. An example of a map generated directly from
within OpenRA with a modest tileset is shown in Figure 3.20.

SLines of code is obviously a very handwavy metric, especially in the light of C#s verbosity. This number is
therefore only meant to give a general idea of the implementation overhead.

3.3. Evaluation 65

FIGURE 3.21: Screenshot of the edge of a map in Minecraft. Chunks are
gradually generated as the player approaches the edge. Two places where
chunks are obviously still missing are highlighted.

——100 x 100 —=—200 x 200 ——400 x 400

15| 2
40 - 4 200 - g
10 |- 2
5| |1 20F - 100 - g
| | | | | | | | | | | |

200 400 600 800 200 400 600 800 200 400 600 800
Module Count

Time (s)

FIGURE 3.22: Measured duration in seconds to generate maps of size 100 X
100, 200 x 200, and 400 x 400 tiles with module sets of 200, 400, 600, and

800 3 x 3 modules each.
I CTE straight_expansion
2 [...]
3 -> Nested Loop (cost=1.30..8.10 rows=6 width=60)
4 (actual time=508.867..1149.138 rows=4141 loops=118)
5 Output: mat.module_id, mat.block_x, mat.block_y, mc.x, mc.y,
6 mc.symbol, mapgen.weighted_sort(mat.edge_frequencies)
7 -> CTE Scan on matches mat (cost=0.00..0.02 rows=1 width=44)
8 (actual time=508.549..521.628 rows=460 loops=118)

9 Output: mat.module_id, mat.block_x, mat.block_y, mat.edge_frequencies
10 -> Bitmap Heap Scan on mapgen.module_contents mc (cost=1.30..6.52 rows=6 width=44)
11 (actual time=0.019..0.043 rows=9 loops=54290)

12 Output: mc.module_id, mc.symbol, mc.x, mc.y

13 Recheck Cond: (mc.module_id = mat.module_id)

14 Heap Blocks: exact=54290

15 -> Bitmap Index Scan on module_contents_module_id_idx (cost=0.00..1.30 rows=6 width=0)

16 (actual time=0.010..0.010 rows=9 loops=54290)
17 Index Cond: (mc.module_id = mat.module_id)

FIGURE 3.23: Discrepancy between anticipated and actual number of rows

when generating a 700 X 700 map (dimensions chosen arbitrarily) from a

single module. The plan shows a single node from the subplan for calculating

straight_expansionin Section 3.2.2. Around 40% of the total runtime for
the entire map generation is spent executing this node.

67

Chapter 4

Pathfinding

4.1 Path Finding in Video Games

Pathfinding plays a central role in many video games in which actors are at least partially
autonomous. It encompasses a family of algorithms which, given a weighted graph, and two
points A and B, searches for a sequence of hops to move from A to B. As such, actors that
are entirely controlled by an Al need to find their way through the map just like a unit in a
strategy game that has been given a destination to reach by the player, making pathfinding
indispensable for many games. While Algfoor et al. describe several algorithms that have
been used in recent times in [4], they still identify the well-known A* algorithm as one of
the most popular and well-researched algorithms for this task, which is hence subject to the
investigations in this chapter. A* is a variation of Dijkstra’s pathfinding algorithm [24, 40],
making it an informed pathfinding algorithm, as it utilises additional knowledge to avoid ex-
ploring the entire graph in a brute-force fashion. Obviously, path finding is tightly coupled
with how the map is represented and primed.

Due to their ability to store information in large quantity, even redundantly if needed, stor-
ing the spatial information about the in-game world in a DBMS brings several benefits to the
table:

1. Easy implementation of additional constraints to avoid collisions upon planning, which
is explored in Section 4.5.

2. Preliminary reduction of the search space.
3. Preparatory analysis of the search space, which are done in Section 4.3.

4. Performing the path search completely within the DBMS close to the data, instead of
moving the data to external implementations, as shown in Section 4.4 and Section 4.6.

The following sections explore these advantages and suggest ways of executing path search
directly within the DBMS. PostgreSQL can be enhanced using the pgRouting extension [62]
to offer path finding capabilities through a variety of path finding algorithms, including A*,
through calls to UDFs. The pgRouting extension has been used as a baseline in this work, but
as its implementation is done in C++, it does not match the ambition to fully realise compo-
nents of video games in SQL in order to not be tied down to a specific DBMS. Still, it offers a
way of keeping the computation of paths entirely in the world of the DBMS and is therefore
considered in this chapter. Two additional custom implementations that run entirely within
the DBMS have been explored in this work. The required representation for each of them
might differ slightly, especially since pgRouting requires weights to be on the edges while
the other implementations expect weights to be written on the vertices. But as Skienne notes,
vertex-weighted graphs can easily be transformed into edge-weighted graphs [82, p. 209 f.].

68 Chapter 4. Pathfinding

The other way around can also be achieved by transforming all vertices of the input graph into
edges and vice versa.

The following chapter assumes the map on which the game is played to already be in a re-
lational representation. More specifically, the representation shown in Figure 4.1 is used
throughout all examples related to path finding.

LR

s (OO
|||}

(a) Rendered ingame. (b) Representation with terrain tiles.

cell_id terrain_id

cell_id x y terrain

1011 1 3 1 (11| =~
2 |12 2 2 2 [1]2

313 3 1 3 |1(3] O
4(1]4 4 1 4 |1la] O
5 21 5 3 5 [201] =
6|22 6 1 6 (2|2 O
7123 7 4 7 |23 W

X b =

8|24 8 1 2 8 |204] O
9 3|1 9 3 3| ~ 9 [3|1] =~
1032 10 2 4 W 10 |32

1133 11 1 11 (3(3] O
1234 12 1 12 [3l4] O
1341 13 3 13 41| =~
14 4|2 14 3 14 |4|2] =~
15|43 15 2 15 |43

16 4|4 16 1 16 |44 O

(c) Relational representation. Note that one cell can actually hold multiple terrain types, hence
the separation into multiple tables. This increases flexibility later on when defining what types
of terrain actors can tread on.

FIGURE 4.1: Segment of a map in three representations. Figure 4.1(c) is the
final representation as assumed in this section.

4.1. Path Finding in Video Games 69

Additionally, the ability of actors to pass over types of terrain is encoded relationally as well.
Actors can usually be grouped into classes (or types), which encompass certain attributes this
group has in common, as is done in OOP. These classes of actors are denoted by specific
symbols, such as ¥ which refers to the whole class of pedestrians. In practice, they could of
course be implemented as components, as explained in Chapter 1. Instances of such classes
(actors) feature a subscripted ID, such as % 4, being the pedestrian with unique ID 42. The
encoding is exemplified in Figure 4.2.

symbol description
pedestrian

boat

passable_terrain

actor_type_id

FIGURE 4.2: Relational representation of classes of actors and instances
thereof, and information on what types of terrain can be traversed by which
types of actors.

4.1.1 Different Neighbourhoods

When traversing a map, actors go from node to node strictly following through the neigh-
bourhood of the node they are currently standing on.! A neighbourhood of a node # is the
subset of the graph G = (V, E) with n € V' that is directly adjacent to n. While path finding
is viable on any kind of graph, we assume maps to generally be decomposable into grids of
arbitrary granularity. Neighbourhoods in a grid are either Von Neumann neighbourhoods or
Moore neighbourhoods [48]. In Von Neumann neighbourhoods, each cell has up to? four
neighbours, being the horizontally and vertically adjacent cells. A Moore neighbourhood
additionally consists of up to? four diagonal neighbours. The kind of neighbourhood that is
being used therefore determines whether actors may move diagonally. Both neighbourhoods
are visualised in Figure 4.3. As the used type of neighbourhood largely depends on the game

! Games could feature mechanics that allow actors to teleport between nodes of arbitrary distance, but this goes
beyond the scope of regular path finding.
2Cells on an edge or a corner of a lattice can obviously have fewer neighbours.

70 Chapter 4. Pathfinding

in question, a boolean pseudo-function neighbouring(a, b) isused in listings in this chap-
ter to signify a check if two coordinates a=(ax,ay) and b=(bx,by) are neighbours.

/ \ / \ / \ / \ / \ / \ / \ / \ /
(\ (\ (\ \ (\ (\ (\ (\

N4

N N N

VR

(\

N

7\ 77N\ 7\
(| (| (|
N _/ N
77\ 77\ 77\
(\ (\ (\
__/ __/ __/

7N /N /7 Y\

/ 77N\
(\ (\ (\ \ (\ (\ (\ (\

__ N4 N4 N4 N4 \. / N / \ / \.

(a) Von Neumann neighbourhood. (b) Moore neighbourhood.

FIGURE 4.3: Both types of neighbourhoods for the centre node C next to
each other. Nodes that are part of the neighbourhood of C are connected via
an edge and outlined in black. All nodes directly adjacent to C are labelled
by their cardinal direction relative to C: north (), north-east (NE), east (E),
south-east (SE), south (§), south-west (SW), west (W), and north-west (NW).

4.2 Reducing the Search Space

A classic approach to navigating an actor %, through a map is to start that actor off at a
start position s and look in the direct neighbourhood of s for edges %, can traverse. In a
modest map of 256 x 256 cells, using Von Neumann neighbourhood, we end up with 130 560
bidirectional edges. With no preliminary knowledge, the pathfinding component might need
to check the accessibility for ¥ . of every edge.

Accessibility denotes whether an actor is allowed to pass an edge and can usually be expressed
for classes of actors instead of for individuals, as can be seen in Figure 4.2. For example, we
can declare that forest terrain is not accessible to (any) boats, and therefore no node consisting
of forest is accessible to boats either. Actors can only tread on nodes which hold no terrain
they can not traverse. Ergo, we can find the appropriate subgraph for each actor by counting
how many terrain types per node he can traverse. If that number coincides with the total
number of terrain types on that node, it is traversable for the actor. Costs for traversing a cell
can be determined by an arbitrary aggregate function (e.g. SUM or MAX) over the costs of all
terrain types present on that cell.

By only selecting the appropriate parts of the graph, the search space can be reduced before
starting the pathfinding. Such a selection of subgraphs can be seen in Figure 4.5 for pedes-
trians and boats with Von Neumann neighbourhoods. This effort can in fact be done offline,
by redundantly storing all accessible nodes for each class of actors. Having these subgraphs
available allows us to exclude parts of the map before even starting the path search. It also
paves the way for additional analyses on the graph that are only relevant for specific types
of actors, as is described in Section 4.3. This selection is rather trivial and therefore not
elaborated, but the view passable_cells which is outlined in Figure 4.4 is assumed in the
following listings.

4.2. Reducing the Search Space 71

actor_types M passable_terrain X terrain_types M map =

passable_cells

cell_id x y actor_type actor_type_id traversal_cost
1 1|1 L 2 1
2 1 2 % 1 1
3 1 3 % 1 2
4 1 4 % 1 2
5 2 | 1 L 2 1

FIGURE 4.4: View passable_cells which holds the parts of a map that are
accessible to a certain type of actor.

7Y
O

ORO=0 ()
(b) Subgraph for actors that can only pass

(a) Full graph. walkable ([]) and coast (.") terrain.

O 6
®

(¢) Subgraph for boats that can only pass
water (~).

FIGURE 4.5: Preselected subgraphs for pedestrians and boats next to the full
graph they are generated from.

72 Chapter 4. Pathfinding

4.3 Exploiting Connectivity to Speed up Pathfinding

Redundantly storing multiple subgraphs of the full graph also enables us to find all unilat-
erally connected components within each subgraph to speed up pathfinding in some cases.
A unilaterally connected component G’ = (E’, V') is part of a graph G = (E, V) such that
E' C E and V' C V where for each pair of nodes (u,v) € V' we can find a way through
E’ from u to v or from v to u [39, p. 199]. If start s and destination d of a path are not part
of the same connected component, there is definitely no path connecting s and d and we can
bail from the path search early. Note that we do not require strongly connected components,
where we can find a way from u to v and from v to u, as that would give false positives as to
a possible path search from s to d where no path from d to s can be found [39, p. 199].
Finding these connected components can be done by flood filling the graph. A naive im-
perative implementation of flood filling would label a randomly picked unlabelled node and
propagate that label through the graph as far as possible through neighbouring nodes. If the
propagation stops, a new unlabelled node is picked. The algorithm would stop if all nodes
have been labelled. All nodes with the same label are part of the same connected component.
A more declarative approach would instead incrementally update the component each node
is in at once, stopping as soon as the graph has reached a stable state:

1. Initially treat each node as its own component with a unique ID.

2. For all neighbourhoods, that is: each node »n and all directly reachable nodes, label n
with the largest component ID present within that neighbourhood.

3. Repeat step 2 until no node changes their component ID any more.
This algorithm can be expressed in pure SQL, using the WITH RECURSIVE construct:

First, we determine the neighbours for all nodes of the graph. map is the part of the full map
that is traversable by a particular type of actor, as described in Section 4.2. Each neighbour-
hood consists of all adjacent nodes plus the node the neighbourhood is being found for, to
cover the case where a cell is already part of a component with a larger ID than all of its
neighbours. Initially, each node is a separate component.

I CREATE FUNCTION connected_components(_actor_type_id INT)
> RETURNS TABLE(cell_id INT, component_id INT) AS $$

3 WITH RECURSIVE

4 map(cell_id, x, y) AS (

5 SELECT

6 p.cell_id AS cell_id,

7 p-x AS x,

8 P.y AS y

9 FROM

10 passable_cells AS p

11 WHERE

12 p.actor_type_id = _actor_type_id
13),

14 neighbours(this_id, neighbour_id) AS (
15 SELECT

16 this.cell_id AS this_id,
17 ns.cell_id AS neighbour_id

18 FROM

19 map AS this,

20 map AS ns

21 WHERE

22 (this.x, this.y) = (ns.x, ns.y)
23 OR neighbouring((this.x, this.y), (ns.x, ns.y))
24),

25 components® (cell_id, component_id) AS (
26 (SELECT

27 m.cell_id AS cell_id,

28 m.cell_id AS component_id

29 FROM

30 map AS m

31)

4.3. Exploiting Connectivity to Speed up Pathfinding 73

In each recursive step we update the component ID for each cell by partitioning the graph into
the neighbourhoods and selecting the largest value within that neighbourhood.

33 UNION

SELECT

36 cl.cell_id AS cell_id,

37 MAX(c2.component_id) OVER (PARTITION BY cl.cell_id) AS component_id
38 FROM

39 components® AS ci

40 JOIN neighbours AS ns

41 ON cl.cell_id = ns.this_id

12 JOIN componentsO AS c2

43 ON c2.cell_id = cs.neighbour_id
44)

45 CEED

Due to the semantics of UNION the recursion stops once the largest component ID for each cell
has been determined and the join yields no unique rows that have not already been discovered.
In the final step, we select only the latest version of each cell, holding their largest and final
component ID.

46 SELECT DISTINCT ON (cell_id)

47 cell_id,

18 MAX (new_component_id) OVER (PARTITION BY cell_id)
49 FROM

50 components AS c

51 $$ LANGUAGE sql;

Figure 4.6 further illustrates this process in which all cells are flooding their neighbours at
once until a stable state has been reached and the connected components within the graph
have been established. The neighbouring(a, b) function introduced in Section 4.1.1 is
used for this task as well. Since the connected components derived with this method are
always specific to one actor type, the type of neighbourhood must reflect how that particular
actor type would traverse the map.

Note that this computation can be done offline which takes some additional load off the DBMS
during runtime.

74 Chapter 4. Pathfinding

3 ,
3 o
10
10 9

FIGURE 4.6: Flood filling over a graph with two connected components.
Each node starts out as its own component with a running ID in Figure 4.6(a).
In each step nodes are labelled with the highest component ID that has been
propagated to them up to this point. Propagation from neighbours is shown
with arrows: dotted grey arrows are being superseded, thick black arrows
prevail and become the node’s label in the next iteration. The flood filling
ends as soon as no changes happen any more, resulting in two connected
components with IDs 7 and 10 in Figure 4.6(f).

4.4. Spatial A* —in Pure SQL 75

4.4 Spatial A* — in Pure SQL

A* is an informed algorithm, building on the Dijkstra path finding algorithm on graphs, mean-
ing it does not necessarily explore the full graph. It finds the least expensive path from a
starting node to a destination node by exploring the most promising nodes known up to that
point. This well known algorithm can be implemented in SQL by utilising repeated updates
of the map on which the path finding takes place. An imperative pseudo code implementation
is given in Figure 4.7.

The following section explains the algorithm in detail. Since A* is well-known and the SQL
implementation may look unusual to the reader, the algorithm is broken down into core sec-
tions with circled numbers, which are also attached at the corresponding SQL snippets to
allow for a rough mapping of the SQL code to the imperative counterpart. Note that some
implementation details in the SQL code have been omitted for the sake of brevity and read-
ability.

def AStar(s, d, nodes):

closedlist := {}

openlist := {s}

parents := {}

gs = {(n,o)| Vn € nodes} ><:>
fs = {(n,)| Vn € nodes}

gs[s] := 0

fs[s] := h(s,d)

while openlist not empty: (:)
cheapest := pop_cheapest (openlist) (:)
if cheapest = d:
return Path(s, d, parents)
closedlist := closedlist |J {cheapest}
ns := neighbours(cheapest) \ closedlist (:)
for each n in ns:
g’ := gsl[cheapest] + c(cheapest, n) (:)
if n € openlist:
openlist := openlist (J {n} ><:>
if g’ < gsl[nl:
parents[n] := cheapest
gs[n] := g°
fs[n] := g’ + h(n, destination)

return "no path"

Q)

def Path(s, d, parents):
-- reconstruct the path by following the parents back to s
path := []
p :=d
while p # s:
append (path, p)
p := parents[p]
append (path, s)
return path

FIGURE 4.7: Pseudocode implementation of imperative A* where

pop_cheapest (xs) determines the element in xs with the entry with the

lowest cost in fs and neighbours (n) finds all nodes that are directly reach-
able from n. append (xs,x) appends x to a list xs.

76 Chapter 4. Pathfinding

Throughout the search for a path from s = (sx, sy) to d = (dx, dy), A* maintains information
about nodes that are yet to be visited (openlist) and which nodes have already been visited
(closedlist). For every node n we track the costs g(n) for travelling from s to n. Also, we
can calculate A(n), an estimation of the cost for travelling from » to d. This estimation must
never exceed the actual costs. A more detailed explanation of this requirement is given in
Section 4.4.1. Also, each visited node references a parent node from which it is reachable at
the lowest cost.

Initially, g is infinite for all nodes and no node has a parent. The starting node is an exception
to this, being the only node in the openlist, having precalculated costs, and a special parent
with ID = —1, indicating that it has no parent. We also maintain a counter iteration to
signify for each row in which step it received its most recent update.

The relation map(id, x, y) is the subset of the full map which the actor we are trying to

find a path for can pass.

WITH RECURSIVE

1

> map(cell_id, x, y, traversal_cost) AS (

3 SELECT

4 p.cell_id AS cell_id,

5 p.x AS x,

6 P.y AS y,

7 p.traversal_cost AS traversal_cost
8 FROM

9 passable_cells AS p

10 WHERE

11 p.actor_type_id = _actor_type_id -- id specified by caller
2),

13 astaro(iteration, cell_id, x, y, f, g, open, closed, parent, traversal_cost) AS (

14 SELECT

15 0 AS iteration,
16 m.cell_id AS cell_id,
17 m.Xx AS x,

18 m.y AS y,

19 CASE (m.x,m.y)

20 WHEN (sx,sy) THEN h(x,y, sx,sy)

21 ELSE 0.0

22 END AS £,

23 CASE (m.x,m.y)

24 WHEN (sx,sy) THEN O

25 ELSE oo

26 END AS g,

27 (m.x,m.y) = (sx,sy) AS open,

28 FALSE AS closed,
29 CASE (m.x,m.y)

30 WHEN (sx,sy) THEN -1

31 ELSE NULL

32 END AS parent,
3 m.traversal_cost AS traversal_cost
34 FROM

35 map AS m

36 X

At each step of the algorithm, the node cheapest from the openlist with the lowest f(n) =
g(n) + h(n) cost is removed and put into the closedlist, which can easily be achieved in

our relational representation through ORDER BY and LIMIT: @

4.4. Spatial A* —in Pure SQL

77

39

46

cheapest(iteration, cell_id, x, y, f,

SELECT
iteration + 1 AS
cell_id AS
X AS
y AS
£ AS
g AS
FALSE AS
TRUE AS
parent AS
traversal_cost AS

FROM
astar®

WHERE
open

ORDER BY
f ASC

LIMIT 1

))
=

iteration,

cell_id,

X,

Y

£,

g,

open, -- move from open...
closed, -- ...to closed list
parent,

traversal_cost

g, open, closed, parent, traversal_cost) AS (

The search is then extended cheapest’s spatial neighbours that are not yet part of the closedlist.
For each neighbour n we calculate a tentative g that is g(cheapest) + c(g, n), where c(g, n) are
the costs to move from g to n. @

58
59
60
61

62
64

65
66

69

spatial_neighbours(iteration, cell_id, x, y, f, g, open, closed, parent, tentative_g, traversal_cost) AS (

SELECT
a.iteration

.cell_id

bd

-y

£

-8

.open

.closed

.parent

oL E

AS iteration,
AS cell_id,
AS x,

AS vy,

AS £,

AS g,

AS open,

AS closed,

AS parent,

ch.g + a.traversal_cost AS tentative_g,

a.traversal_cost
FROM

cheapest AS ch,

astar® AS a
WHERE

AS traversal_cost

neighbouring((a.x, a.y), (ch.x, ch.y))

Of those neighbours we select only those that are not yet part of the closedlist and have a

lower tentative g than their current g-value. Their parent is also set to cheapest. @, @

89
90

neighbours(iteration, cell_id, x, y, f, g, open, closed, parent,

traversal_cost, checkin, checkout) AS (

SELECT
ns.iteration + 1 AS
ns.cell_id AS
ns.x AS
ns.y AS
ns.tentative_g + h(us.
ns.tentative_g AS
TRUE AS
ns.closed AS
ch.cell_id AS

ns.traversal_cost AS
FROM

cheapest AS
spatial_neighbours AS
JOIN map

ON ns.cell_id = map.

WHERE
NOT ns.closed

iteration,
cell_id,
X’

x, ns.y, _x2, _y2) AS f,

parent,
traversal_cost,

ch,
ns

cell_id

AND (NOT ns.open OR ns.tentative_g < ns.g)

)
aD

Unifying these newly found candidates for expansion with the updated cheapest node and the
former state of the map generates the new state. Note that at this point, all rows contributed
by neighbours and cheapest (rows, which received an update and therefore form a subset

78 Chapter 4. Pathfinding

of the former state) appear as duplicates of rows in astar (the complete former state). This
issue is visualised in Figure 4.8. We will fix that in the next step.

101 updated(iteration, cell_id, x, y, f, g, open, closed, parent,
102 traversal_cost, checkin, checkout) AS (

103 TABLE neighbours

104 UNION ALL

105 TABLE cheapest

106 UNION ALL

107 TABLE astar®
108)
100 CEED

By ordering all rows by the iteration they were generated in and selecting them distinct on their
ID, we can eliminate the duplicates caused by the last step and only have the latest version
of each row. We continue the recursion until we have either reached our destination or the
openlist is empty.

110 SELECT DISTINCT ON (u.id)

111 u.*

112 FROM

113 updated AS u,

114 cheapest AS ch,

115 (SELECT COUNT(x*) FROM updated WHERE open) AS olc(cnt)
116 WHERE

117 olc.cnt > 0O

118 AND (ch.x,ch.y) <> (dx,dy)

119 ORDER BY id, iteration DESC

120 CEED

When the algorithm has finished, each node n knows another node (parent) from which » can
be accessed with the least cost.

After completing the path search, the path can be constructed by recursively following the
parent nodes from d to s. Since we initially assigned s a parent ID of —1 we can use that to
terminate the reconstruction of the path. @

121 path_steps® (cell_id, x, y, parent, step) AS (

122 SELECT

123 a.cell_id AS cell_id,
124 a.x AS x,

125 a.y AS vy,

126 a.parent AS parent,
127 0 AS step

128 FROM

129 astar® AS a

130 WHERE

131 (a.x,a.y) = (dx,dy)

132

133 UNION ALL

134

135 SELECT

136 a.cell_id AS cell_id,
137 a.x AS x,

138 a.y AS y,

139 a.parent AS parent,
140 ps.step + 1 AS step

141 FROM

142 astar® AS a

143 JOIN path_steps® AS ps
144 ON a.id = ps.parent
145 WHERE

146 ps.parent > -1

4.4. Spatial A* —in Pure SQL 79

iy

FIGURE 4.8: Update step of A*. Only some of the nodes in the first step

labelled i receive an update in the second step labelled i,, rendered opaque.

That makes those exact nodes appear twice in the final result. Ordering them

descending on the step number they stem from and selecting them distinct on

their coordinate within the grid ensures that we only carry the most recent
version of each cell.

4.4.1 Heuristics

Heuristics for A* need to be admissible, meaning that they may not overestimate the actual
costs. Which heuristic is applicable for a path search depends on which kind of neighbour-
hood is being used.

When using a Von Neumann neighbourhood, the Manhattan distance is a commonly used
heuristic, which sums up the differences between the coordinate components of s and d. More
formally, the Manhattan distance between two n-dimensional coordinates p = (py, Py, *** » Pp_i> D)
and g = (qy, 95, *** » q,_1-q,) 1s defined as

n
M anhatten_Distance(p, q) = 2 |p; — 4l

i=1

For Moore neighbourhoods, the Manhattan distance would overestimate the cost, as moving
diagonally can decrease the costs compared to moving in a stair-like fashion. Instead we can
use the Euclidean distance, which is defined as

Euclidian_Distance(p, q) =

or the Chebyshev distance, which assumes a cost of 1 for moving onto any of the eight adjacent
cells:

Chebyshev_Distance(p, q) = max({|q; — p;||Vi € {1..n}})

All three heuristics are visualised in Figure 4.9.

80 Chapter 4. Pathfinding

4
2182842
3

~

\]
\
W

0
0 1 2 3 4

FIGURE 4.9: Manhattan distance of 2+ 3 = 5 between (1, 1) and (3,4) in
blue, Chebyshev distance of 14+ 1 4+ 1 = 3 in green and Euclidian distance of
2.828427 in red.

4.4.2 Dimensionality of A*

As the algorithm is generally oblivious towards the dimensionality of the map that is being
traversed, A* is used for both two-dimensional and three-dimensional path finding scenar-
ios. Applying A* to a map of higher dimension is easy in most cases. It usually suffices to
adjust neighbouring(a, b) to retrieve neighbours from the new dimension as well. See
Figure 4.10 to understand how the vertex in question (green rectangle or green cube respec-
tively) gains more neighbours (magenta circles or magenta spheres respectively) when lifted
from two-dimensional to three-dimensional space. The path finding algorithm stays the same
at core.

(a) Neighbouring vertices in a 2d grid of the green

centroid rectangle. (b) Neighbouring vertices in a 3d grid of the green
centroid cube.

FIGURE 4.10: Lifting neighbouring(a, b) from two to three dimensions
to acquire the Von Neumann neighbourhood.

4.5 Temporal A* — Avoiding Collisions with a Booking System

Path finding allows computer controlled actors to navigate through a map with static obsta-
cles, like walls or boulders. But in most scenarios, actors are also dynamic obstacles to each
other, meaning that they can not occupy the same space at the same time. Any game that
does not allow such states must implement a collision avoidance or resolution mechanism.
Games usually resolve collisions when they occur by having their colliding actors back up by
a random amount to give their adversary room to navigate around them. But conflicts like
this could actually be avoided in the planning phase: making the path search aware that parts
of the map can be temporarily occupied, and where in time-space the planning takes place,
enables the algorithm to choose paths presciently.

4.5. Temporal A* — Avoiding Collisions with a Booking System 81

passable_terrain’

actor_type terrain duration

(b) Spatial paths for # | from ns to n, and for

5 1 2 %) %, from n, to ng. Each cell has a list of reser-
vations next to it, consisting of tuples of time
6 4 00 %, period during which it is occupied and the ac-

(a) Tables holding how many time steps it tor which occupies the cell.

takes each actor to traverse terrain of a certain

type and to store reservations for cells of a re-

solved path. Foreign key relations have been
resolved in this rendering.

FIGURE 4.11: Example of how actors move through a graph of varying ter-
rain type, affecting the reservations on the nodes they visit.

While making for some interesting behaviour, just giving each coordinate (¢, ¢,, ***,¢,_1, ;)
in the graph another component ¢ to represent time does not give us the desired results for
navigating through the temporal dimension: in most games time strictly moves forward?,
so we must only include neighbours of future time steps. We also do not try to minimise
costs (that is in regards to time: finding the quickest way between two points) and therefore
can leave the heuristic unaffected. Instead it is more of an additional constraint embedded in
neighbouring(a, b): toavoid collisions, we need to determine for each neighbour of n how
long it would take our actor % , in question to travel through it, and whether that neighbour is
already being traversed by another actor during that time frame. If any two actors £, and % |
want to travel through any node in overlapping time frames, we have foreseen a collision and
can look for an alternative path. Instead of resolving this conflict when it happens, we can
avoid collisions during the path finding itself. To support this, each step in the path search
produces an additional column holding the timestamp at which the actor we search the path
for would start off at a given cell. We also define a relation reservations, to track when
an actor (resident) occupies a cell during a time frame, defined by a start (checkin) and
an end point (checkout). We also need to know for each actor how long it takes them to
traverse a cell of a certain type. For this, we can extend the passable_terrain relation
from Figure 4.2 with a duration column. Both tables are exemplified in Figure 4.11(a).

3The game Braid by Jonathan Blow makes a delightful exception to this.

82 Chapter 4. Pathfinding

When the search for spatial neighbours is done, we can already infer for each neighbour how
long it would take the travelling actor to traverse said neighbour if it was not occupied (speci-
fied by start and until), based on the underlying terrain, seen in Figure 4.11(a). We can use
that information to remove occupied cells from the spatial neighbours by performing an anti
Jjoin with the reservations table. An anti join I> is a binary operation on two relations R
and .S which produces only the tuples of R for which no join partner in .S can be found. It can
also be expressed as R> .S = R — (R X S). This presents us with the temporal neighbours:

temporal_neighbours .= spatial_neighbours > reservations
(checkin,checkout) not overlaps (start,until)

Take Figure 4.11(b) for example. % | wants to travel from ns to n,. A path for 2, from n, to
ng has already been scheduled. Both actors want to start their journey at timestamp ¢t = 1. ¥ ;
could spatially travel from n5 to n4, but that would mean they would need to occupy n, from
t = 3tot = 4. This overlaps with ¥, already having a reservation during that time, so % ;
instead travels via n;.

Adjusting the code in Section 4.4 would be rather easy: two new columns checkin and
checkout are added to the CTE map, which are dragged through the chain of CTEs to keep
track of hypothetical occupation of each cell by the actor for which the path is being found.
That is: change the CTE starting at line 3 to contain checkin and checkout, based on the
current timestamp in the game (now ()) and the travel duration over each cell:

3 SELECT
3 SELECT 4 p-cell_id AS cell_id,
4 p.cell_id AS cell_id, ; 2; 22 X,
; oox i\g X - 7 p.traversal_cost AS traversal_cost,
; c.Zraversal cost AS Zl,raversal cost § p.traversal_time AS traversal_time,
p. - - 9 now () AS checkin,

10 now()+p.traversal_time AS checkout

Maintain temporal information about the stay of the actor when determining the neighbours
in line 59:

59 SELECT
59 SELECT 60 a.iteration AS iteration,
60 a.iteration AS iteration, “e
. ce 71 a.traversal_cost AS traversal_cost,
71 a.traversal_cost AS traversal_cost — 72 c.checkout AS checkin,
72 FROM 73 c.checkout + a.traversal_time AS checkout
73 cheapest AS c, 74 FROM
74 astar©Q AS a 75 cheapest AS c,

76 astar® AS a

Finally, introduce a new CTE temporal_neighbours after spatial_neighbours which
removes all spatial neighbours for which a reservation is found for the timeframe it would
take the actor to traverse that neighbour:

77 , temporal_neighbours(iteration, cell_id, x, y, f, g,
78 open, closed, parent, tentative_g, traversal_cost)
79 AS (

80 SELECT

81 sn. *

82 FROM

83 cheapest AS c,

84 spatial_neighbours AS sn

85 JOIN map

86 ON sn.cell_id = map.cell_id

87 LEFT JOIN reservations AS r

88 ON sn.cell_id = r.cell_id

89 WHERE

90 -- these are not reserved at all

91 r.cell_id IS NULL

92 -- these are reserved, but do not overlap

93 OR NOT ((r.start, r.until) OVERLAPS (c.checkout + map.traversal_time,

94 c.checkout + 2 * map.traversal_time))

95)

4.6. Iterative Path Finding 83

Then base the selection of neighbours on those temporal neighbours, instead of the spatial
neighbours in line 93:

91 FROM 91 FROM

92 cheapest AS c, 92 cheapest AS c,

93 spatial_neighbours AS ns b d 93 temporal_neighbours AS ns

94 JOIN map 94 JOIN map

95 ON ns.cell_id = map.cell_id 95 ON ns.cell_id = map.cell_id

With this additional information, actors for which a path has been resolved can make reser-
vations ahead of their actual presence on each cell of the path, making them unavailable for
other actors during the respective time frame. Note that, while not shown in the accompa-
nying listings, this booking system also makes the implementation of a wait-operation fairly
simple, by making a cell its own spatial and temporal neighbour, enabling actors to wait for
other actors to pass if that is cheaper than finding a way around a temporarily blocked passage.

4.6 Iterative Path Finding

The implementation described in Section 4.4 maintains the interface programmers are used to
when utilising a path finding algorithm: a start and a destination position in an n-dimensional
space are specified, alongside a metric to properly calculate the traversal costs — the actor
for which a path is sought in this case. While algorithmically faithful to reference imple-
mentations, it comes with a certain disconnect from the set-based philosophy behind SQL,
which excels at specifying operations on many elements at once. So instead of following a
single actor through the whole process of the path search in a depth-first approach, the follow-
ing section proposes an alternative implementation which gradually finds paths for multiple
agents. Not only is this more in line with how DBMSs work natively, it also gives us the
opportunity to insert additional path finding processes into potentially long-running searches.
While the first approach relies on WITH RECURSIVE to drive the entire path search, the fol-
lowing approach needs to be called repeatedly to advance all ongoing path searches. These
calls could come from a rudimentary tick-loop that is not part of the SQL code. Not relying
on WITH RECURSIVE to drive the search also gives us the opportunity to make use of inde-
pendent writing queries, such as INSERT-, UPDATE-, or DELETE-statements, where we do not
need to drag intermediate results through a chain of CTEs.

Instead of having a CTE representing the state of the ongoing path search, we introduce an
additional table node_lists:

I CREATE TABLE node_lists(

2 node_list_id SERIAL PRIMARY KEY,

3 actor_id INT,

4 actor_type_id INT,

5 cell_id INT,

6 start POINT,

7 destination POINT,

8 position POINT,

9 traversal_cost DOUBLE PRECISION,

10 predecessor INT DEFAULT NULL,

11 g DOUBLE PRECISION DEFAULT oo,
12 £ DOUBLE PRECISION DEFAULT oo,
13 closed BOOLEAN DEFAULT FALSE,

14 open BOOLEAN DEFAULT FALSE,

15 FOREIGN KEY(actor_type_id) REFERENCES actor_types(actor_type_id),
16 FOREIGN KEY(actor_id) REFERENCES actors(actor_id),
17 FOREIGN KEY(cell_id) REFERENCES cells(cell_id),
18 FOREIGN KEY(predecessor) REFERENCES cells(cell_id),

19 UNIQUE(cell_id, actor_id)
20)

While a traditional imperative implementation would gradually add newly discovered nodes
to the closed and open list, each path finding process initialises all nodes for their respective
actor here. As before, only the part of the map the actor in question can actually pass is

84 Chapter 4. Pathfinding

considered, which is determined by their _actor_type_id. It is always assumed to have at
most one active path search per actor, so all nodes related to that search can be identified by
the actor_id.

21 CREATE FUNCTION init_nodelist(_actor_id INT, _actor_type_id INT, _start POINT, _destination POINT)
22 RETURNS VOID AS $$

23 -- cancel stale searches and start path search: init closed/open list

24 DELETE FROM node_lists WHERE actor_id = _actor_id;

25 INSERT INTO node_lists(actor_id, actor_type_id, cell_id, position, traversal_cost, start, destination)
26 SELECT

27 _actor_id,

28 _actor_type_id,

29 pc.cell_id,

30 POINT(pc.x, pc.y),
31 pc.traversal_cost,

32 _start,

33 _destination

34 FROM

35 passable_cells AS pc

36 WHERE

37 pc.actor_type_id = _actor_type_id
38 $$ LANGUAGE sql;

39 CEE

The node_list that was formerly initialised for the actor now has the starting point of the
search set as the cheapest available node in the open list.

40 CREATE FUNCTION init_search(_actor_id INT, _start POINT, _destination POINT)
41 RETURNS VOID AS $$

42 SELECT init_nodelist(_actor_id,

43 (SELECT type_id

44 FROM actors

45 WHERE actor_id = _actor_id),
46 start,

47 destination);

48 UPDATE

49 node_lists AS nl

50 SET

51 g = 0.0,

52 f =0.0,

53 open = TRUE

54 WHERE

55 nl.position = _start AND nl.actor_id = _actor_id
56 $$ LANGUAGE sql;

57 XD

The most striking difference from the previous implementation is the fact that we do not look
for the cheapest node in the open list upon expansion, but for the cheapest node per ongoing
search, which can easily be achieved by using a window-based partitioning by actor.

58 CREATE FUNCTION advance() RETURNS VOID AS $$

59 WITH

60 ordered(node_lists_id, actor_id, cell_id, position, g, f_rank) AS (
61 SELECT

62 id AS node_lists_id,

63 actor_id AS actor_id,

64 cell_id AS cell_id,

65 position AS position,

66 g AS g,

67 ROW_NUMBER() OVER (PARTITION BY actor_id ORDER BY f ASC) AS f_rank
68 FROM

69 node_lists AS nl

70 WHERE

71 open

72),

73 cheapest(actor_id, cell_id, position, g) AS (

74 UPDATE

75 node_lists AS nl
76 SET

77 open = FALSE,

78 closed = TRUE

79 WHERE

80 node_lists_id IN (SELECT node_lists_id FROM ordered WHERE f_rank = 1)
81 RETURNING

82 actor_id,

83 cell_id,

84 position,

85 g

86),

4.6. Iterative Path Finding 85

We can then proceed with the regular expansion step, in which the neighbours of the cheap-
est cells are incorporated into the search, if they have not already been fully explored. The
findings of the exploration are propagated to the node_list as an UPDATE-statement.

88 expand(actor_id, this_id, neighbour_id, neighbour_pos, open, tentative_g, g, destination) AS (
89 SELECT

90 this.actor_id AS actor_id,

91 this.cell_id AS this_id,

92 ns.cell_id AS neighbour_id,
93 ns.position AS neighbour_pos,
94 ns.open AS open,

95 this.g + ns.traversal_cost AS tentative_g,
96 ns.g AS g,

97 ns.destination AS destination

98 FROM

99 cheapest AS this

100 JOIN node_lists AS ns

1 ON neighbouring(this.position, ns.position)
2 AND this.actor_id = mns.actor_id

)
10
103 WHERE
104 NOT ns.closed AND NOT (ms.open AND (this.g + ns.traversal_cost) >= ns.g)
105)
106 UPDATE node_lists AS nl
107 SET
108 open = TRUE,
)

109 g = e.tentative_g,
110 f = e.tentative_g + h(e.neighbour_pos[0], e.neighbour_pos[1], e.destination[0], e.destination[1]),
111 predecessor = e.this_id

112 FROM

13 expand AS e

114 WHERE

115 nl.cell_id = e.neighbour_id AND nl.actor_id = e.actor_id
116 $$ LANGUAGE sql;

117 =

Calling the advance-routine may produce finished paths that will just reside within the node_1ist
table until retrieved. The UDF resolve_paths can then be either called every so often or
after each advance-call to collect paths that are complete. Endpoints that have a predeces-

sor are indicators for successful path searches, that can be reconstructed by following the
predecessors up to the start node, which has no predecessor, producing an empty result,
which stops the recursion.

118 CREATE FUNCTION resolve_paths()
119 RETURNS TABLE(steps INT, actor_id INT, cell_id INT, position POINT) AS $$

120 WITH RECURSIVE

121 endpoints(actor_id, cell_id, destination, position, predecessor) AS (
122 SELECT

123 actor_id,
124 cell_id,

125 destination,
126 position,
127 predecessor
128 FROM

129 node_lists
130 WHERE

131 destination = position AND predecessor IS NOT NULL
132),

133 complete_paths© (steps, actor_id, cell_id, position, predecessor) AS (

134 SELECT

135 0,

136 actor_id,

137 cell_id,

138 position,

139 predecessor

140 FROM

141 endpoints

142 UNION ALL

143 SELECT

144 p.steps + 1,

145 nl.actor_id,

146 nl.cell_id,

147 nl.position,

148 nl.predecessor

149 FROM

150 node_lists AS nl

151 JOIN complete_pathsO AS p
152 ON nl.cell_id = p.predecessor
153 AND nl.actor_id = p.actor_id
154),

155 CEED

86 Chapter 4. Pathfinding

Finally, we need to take into account that there might be no valid path between a desired start
and destination for an actor. Those paths can be identified by having destinations with no
predecessor, but no more nodes left to explore, which is implied by the open column. An
invalid path can be signalled in various ways, in this implementation, we return a single row
where all fields are NULL except for the actor_id of the actor we were searching a path for.

156 paths(steps, actor_id, cell_id, position, predecessor) AS (
157 SELECT * FROM complete_paths

158 UNION ALL (

159 -- unavailable paths

160 WITH

161 pending(actor_id) AS (

162 SELECT

163 actor_id

164 FROM

165 node_lists AS nl

166 WHERE

167 position = destination
168 AND predecessor IS NULL
169),

170 empty(actor_id) AS (

171 SELECT

172 nl.actor_id

173 FROM

174 node_lists AS nl

175 GROUP BY

176 nl.actor_id

177 HAVING

178 COUNT (open) FILTER (WHERE NOT open) = COUNT(nl.actor_id)
179)

180 SELECT

181 NULL,

182 p.actor_id,

183 NULL,

184 NULL,

185 NULL,

186 FROM

187 pending AS p JOIN empty AS e ON p.actor_id = e.actor_id
188)

189),

190 CEED

The node_list can then be cleaned up in an optional step by removing nodes for all actors
for which a path has been resolved.

191 se_cleanup(actor_id) AS (

192 DELETE FROM

193 node_lists AS nl
194 WHERE

195 nl.actor_id IN (SELECT DISTINCT actor_id FROM paths)
196 RETURNING

197 1

198)

199 SELECT

200 p.steps,

201 p.actor_id,

202 p.cell_id,

203 p.position

204 FROM

205 paths AS p

206 $$ LANGUAGE sql;

4.7 Evaluation

Path finding in video games needs to be able to determine paths in a timely manner to uphold
the illusion of autonomous actors. On the other hand, Claypool and Claypool found that
path finding is among the actions in a video game where players are willing to accept higher
latencies [18], which was especially confirmed for real time strategy games by Claypool [17],
for which path finding is especially important. The following section therefore evaluates the
performance of pathfinding within DBMSs as it was presented in the preceding sections.
Only the spatial, two-dimensional versions of all implementations are considered to maintain
comparability. Searches are always expected to resolve to a path. This is ensured through

4.7. Evaluation 87

300 | |—— OpenRA |
—— Raw
B

Time (ms)
[\®]
S
S

100 4

20 40 60 80 100
Path Length in Nodes

FIGURE 4.12: Comparison between times when calling pgRouting from
OpenRA versus calling it from the command line (raw).

the use of a labyrinth as map which forms a single component in which actors can search
for paths between random passable cells of the map. Therefore, no pre-emptive check for
the connectedness of the components in which start and destination lie is performed, which
would immediately terminate the path search if no path was available. To establish a baseline,
path finding based on pgRouting (and later the custom implementation) was integrated into
OpenRA: the entire map of a skirmish was written into the DBMS upon starting the game and
a thin wrapper around the path finding component was implemented to replace calls to the
native path finding of the engine with calls to pgRouting. To mitigate possible performance
hits, the requests to the database were sent in a separate thread. Actors were sent towards
their target coordinate in a straight line to give the player immediate palpable feedback for
their input. The actual path was pursued once the background thread returned.

As data set, the path finding during a game between two computer-controlled opponents was
recorded and timed, using the wall clock time between the moment the request to find a path
was sent, and the moment the path was fully returned to the engine and converted into C#
data-structures. Start, destination, and actor of each search were recorded and later replayed
directly on the DBMS to determine the impact of not having the entire engine within the
DBMS, but only swapping out the path finding itself. The results show that this split had
a considerable hit on the runtime, ramping up the time to find a path from around 100 ms
to around 200 ms. The found timings are shown in Figure 4.12. Naturally, this hit must be
applied to all other approaches as well, as it is a general penalty of travelling between the
DBMS and another system.

Then, the timings of running pgRouting from the command line were compared to the times
when running the same path search in the native SQL implementation from Section 4.4. While
the time stayed about the same throughout all calls when using pgRouting, the duration grad-
ually increased in relation to the resulting length of the path when using the native imple-
mentation. This can be explained by how the intermediate table during the native path search
grows in each step, resulting in more expensive intermediate joins.

88 Chapter 4. Pathfinding

Runtime of Path Search

T T T
500 | —* @ -
—— pgRouting

400 -
£ 300 .
()
g
=

200 |- .

100

0 | | | |
20 40 60 80 100
Path Length in Nodes

FIGURE 4.13: Comparison of path finding using pgRouting and the native

implementation @ in SQL from Section 4.4 . A loose boundary of 150 ms
as agreeable waiting time is delineated in red.

Shorter paths on the other hand can be found faster using the native implementation. This dis-
crepancy can be attributed to the fact that the accessible part of map for each actor is readily
available and indexed for the native implementation, whereas pgRouting needs to prepare the
graph beforehand. As different types of games come with different time boundaries for how
long players are willing for a path search to complete, we call on the measurements of compet-
itive StarCraft [86] games conducted by Lewis et al. [49] as a soft upper bound. They found
that professional gamers would execute up to 400 actions per minute (APM), i.e. one action
every 150 milliseconds, giving us a lose upper bound for preparatory work like determining
a path between actions.

Plotting the distribution of path lengths of the aforementioned match in Figure 4.14 shows that
a large share (57%) of all path searches were well within the range that resulted in agreeable
time boundaries. In real-world scenarios, especially for real time strategy games, short path
searches are the most time-critical ones, as they are part of the micromanagement of units that
occurs during heated battles.

Figure 4.15 shows a comparison between the imperative approach @ from Section 4.4, the
relational version from Section 4.6 and pgRouting. As advancing requires repeated
calls from an outside driver and capitalises on its potential when applied to many path searches

at once, it can hardly be compared to @ and pgRouting on singular searches. Instead, the
comparison shows how long it takes for all three approaches to return results for 1000 ran-

dom path searches. Each search is started as soon as possible; that is: @ and pgRouting

start each search consecutively whenever the result of the former call is yielded, while
starts all searches at once.

4.7. Evaluation 89

Distribution of Path Lengths
| | | |

T
|

1200

1000

T
|

800

LI
[

T
|

600

Occurrences

400

T
|

200

T
|

0 20 40 60 80 100
Path Length in Nodes

FIGURE 4.14: Distribution of resulting path lengths during a game between
two computer opponents.

Since is biased towards short-running path searches, returning their result as soon as
possible, the curve flattens towards the top, representing the long-running searches that are
returned last. The other two approaches expectedly produce a reliably linear curve.

Accordingly, the DBMS offers sufficiently fast means of finding paths for actors. While Post-
greSQL’s pgRouting offers an established extension, the two DBMS-agnostic approaches pre-
sented in this chapter perform well within the expected time-bounds. A reasonable speed-
boost can be achieved if the developers are willing to stray from the customary interface of

performing one entire path search at a time when using approach , favouring short path
searches.

90 Chapter 4. Pathfinding

Finished Paths Over Time

1000 |-

800 -

600 -

Finished Paths

400 |-

200 -

pgRouting

O | | | |
0O 20 40 60 80 100 120 140 160 180 200
Time (s)

FIGURE 4.15: Running 1 000 path searches in imperative A* @ from Sec-
tion 4.4, the relational version from Section 4.6, and on pgRouting.

91

Chapter 5

Discussion and Final Remarks

In this work we presented the implementation of typical components of a video game engine in
pure SQL, namely artificial intelligence in the sense of video games (Chapter 2), map genera-
tion (Chapter 3), and path finding (Chapter 4). The components were purposefully selected to
be applicable to a wide range of game genres, as opposed to concentrating on components that
are only used in niche games, such as a component for parallax scrolling, which would be very
specific for side scrolling games. Despite the intention of keeping the presented implementa-
tion of all components as general as possible, the proposed code is obviously not universally
applicable to all games without a certain amount of tweaking and certainly bears the potential
for further improvements. While one can hardly surpass the established finely tuned game
engines — that sometimes work hand in hand with hardware on a low level [87], as is the case
with NVidia’s PhysX [63] library — in all regards, the suggested implementations performed
acceptably for most use cases by running reasonably fast despite the additional abstraction
layer SQL has to deal with, or by making use of the time—memory trade-off (TMTO) by calcu-
lating data beforehand and storing it for efficient retrieval. This demonstrates that DBMS are
indeed a viable vehicle for transporting even the more unlikely parts of video game engines.
It is therefore important to note that the presented components are meant to be understood as
an advancement in addition to what DBMSs already have to offer for video game developers!
As mentioned in Chapter 1, game engines are already moving towards software design prin-
ciples that are more suitable to how DBMSs work with data by reinventing techniques that
are indigenous to the world of database systems. That means:

—_

structuring of complex data in a modular fashion through foreign key relations;
indexing attributes with a multitude of readily available suited index structures;
aggregating attributes efficiently

having a persistent and consistent data storage

A

performing spatial checks, i.e. collision detection or finding actors within a certain
proximity of each other

6. expressing updates as operations on sets, making them inherently suited for parallel
execution

7. post-mortem analysis of persistently stored game data and replay capabitilties if the
applied actions are preserved (see Section 2.3)

8. being able to shard computation and storage across servers, and so on

all come for free in addition to everything that was discussed in this work. Implementing
established components in SQL that perform reasonably well can thereby be deemed satis-
factory, as they serve as an enabler for the incorporation of benefits inherent to DBMSs. As

92 Chapter 5. Discussion and Final Remarks

discussed in Section 4.7, splitting the game engine between the imperative and the declara-
tive world comes with a certain hit to the runtime when transferring data between those two
realms. It stands to reason to try to move as many components of the game engine as possible
to the DBMS to make the data that has to travel to and from the database as lightweight as
possible. Obviously, there are some components that currently seem unlikely to ever be trans-
ferred entirely to a database. For instance, any component that receives and processes input
from the user via keystrokes, mouse clicks, motion control, or other means will likely stay on
the imperative side. Likewise, databases do not lend themselves to implement rendering —
although utilising the GPU from within the DBMS is not unheard of [12]. As such, a middle
ground between doing the heavy lifting of data transformation in a database-driven backend,
paired with a lean, imperative frontend towards the user appears to be a worthwhile long-term
goal.

The work presented in this thesis is just one step from the traditional use of databases towards
the world of imperative video game engines that are already taking large strides towards the
relational way of thinking.

Appendix A

DDL Statements

A.1 Introduction

A.1.1 Recursive SQL Queries

CREATE TABLE enemy (

1

2 id SERIAL PRIMARY KEY,
3 X INT,

4 y INT,

5 health INT

6)3

| CREATE TABLE platforms (

2 x INT,
3 INT,
4 width INT

505

CREATE TABLE position_components (
id SERIAL PRIMARY KEY,
x INT,
y INT

[S R NIRRT,

N

A.2 Video Game Al

A.2.1 Tactics Through DFA

I CREATE TABLE actors (

2 id SERIAL PRIMARY KEY,
3 name TEXT,

4 position VECTOR2D,

5 speed DOUBLE PRECISION,

6 range DOUBLE PRECISION,

7 damage INT,

8 hitpoints INT,

9 target_id INT REFERENCES actors(id)
0)

CREATE TABLE actor_states (

1

2 dfa_id INT REFERENCES dfas(id),

3 state_id INT REFERENCES states(id),
4 actor_id INT REFERENCES actors(id)
5003

| CREATE TABLE conditions (

2 id SERIAL PRIMARY KEY,

3 fname TEXT

4

CREATE TABLE dfas (
id SERIAL PRIMARY KEY,
initial_state INT REFERENCES states(id)

T

)

94 Appendix A. DDL Statements
| CREATE TABLE edges (

2 id SERIAL PRIMARY KEY,

3 weight INT,

4 current_state INT REFERENCES states(id),

5 condition_id INT REFERENCES conditions(id),

6 next_state INT REFERENCES states(id),

7 effect_id INT REFERENCES effects(id)

8)

I CREATE TABLE effects (

2 id SERIAL PRIMARY KEY,

3 fname TEXT

4

I CREATE TABLE states (

2 id SERIAL PRIMARY KEY

300);

A.2.2 Monte Carlo Tree Search

| CREATE TABLE actions(

2 id SERIAL PRIMARY KEY,

3 ... -- game specific

40

| CREATE TABLE rewards(

2 state_id INT REFERENCES states(id),

3 reward NUMERIC

4

I CREATE TABLE states(

2 id SERIAL PRIMARY KEY

300);

I CREATE TABLE tree_children(

2 parent_id INT NOT NULL REFERENCES states(id),
3 action_id INT NOT NULL REFERENCES actions(id),
4 child_id INT NOT NULL REFERENCES states(id),
5 UNIQUE(parent_id, child_id), -- each tree can only be attached to another tree once
6 UNIQUE(parent_id, action_id) -- per parent, each action may only be applied once
70

I CREATE VIEW tree_statistics(state_id, total_reward, visit_count) AS (
2 SELECT

3 r.state_id AS state_id,

4 SUM(r.reward) AS total_reward,

5 COUNT(r.reward) AS visit_count

6 FROM

7 rewards AS r

8 GROUP BY

9 r.state_id
0);

A.3 Map Generation

A.3.1 Rule-Based Map Generation

CREATE TABLE 6(

1

2 rule INT,

3 input TEXT NOT NULL REFERENCES XV(symbol)
4 X INT CHECK (x BETWEEN O AND 2),

5 y INT CHECK (y BETWEEN O AND 2),

6 output TEXT NOT NULL REFERENCES XV (symbol)
70

CREATE TABLE XV(
symbol TEXT PRIMARY KEY,
terminal BOOLEAN

T

)

A.3. Map Generation 95

A.3.2 Module-Based Map Generation

1

S}

16

CREATE TABLE C(
frequency INT,
mapside TEXT REFERENCES 7 (symbol),
modside TEXT REFERENCES 7 (symbol),
moduleset_id INT REFERENCES modulesets(id)
);

CREATE VIEW M (moduleset_name, module_id, x, y, symbol) AS (

SELECT
ms.moduleset_name AS moduleset_name,
m.id AS module_id,
mc.x AS x,
mc.y AS y,
t.symbol AS symbol

FROM

modulesets AS ms
JOIN modules AS m
ON ms.id = m.moduleset_id
JOIN module_contents AS mc
ON m.id = mc.module_id
JOIN 7 AS t
ON mc.tile_id = t.id
)

CREATE TABLE module_contents(
module_id INT REFERENCES modules(id),
x INT CHECK (x BETWEEN O AND 2),
y INT CHECK (y BETWEEN O AND 2),
tile_id INT REFERENCES 7 (id),
UNIQUE(module_id, x, y)

)

CREATE TABLE modules(
id SERIAL PRIMARY KEY,
moduleset_id INT NOT NULL REFERENCES modulesets(id)

H

CREATE TABLE modulesets(
id SERIAL PRIMARY KEY,
name TEXT UNIQUE

H

CREATE TABLE 7 (
id SERIAL PRIMARY KEY,
symbol TEXT UNIQUE

H

Module-Based Map Generation

A.3.3 Map Generation by Example

S

16

CREATE TABLE mapdata(

id SERIAL PRIMARY KEY,
x INT,

INT,
tile_id INT,

UNIQUE(x, y)
)

CREATE VIEW read_compatibilities(tile_idl, tile_id2, relative_x, relative_y, frequency) AS (
WITH
neighbours(tile_idl, tile_id2, relative_x, relative_y) AS (
SELECT
ml.tile_id,
m2.tile_id,
m2.global_x - ml.global_x,
m2.global_y - ml.global_y
FROM
modules AS mi,
modules AS m2
WHERE
),
compatible(tile_idl, tile_id2, relative_x, relative_y, frequency) AS (
SELECT
n.tile_id1,

96 Appendix A. DDL Statements
17 n.tile_id2,

18 n.relative_x,

19 n.relative_y,
20 COUNT (*)
21 FROM
22 neighbours AS n
23 GROUP BY
24 n.tile_idl, n.tile_id2, n.relative_x, n.relative_y
25),
26 bidrectional(tile_idl, tile_id2, relative_x, relative_y, frequency) AS (
27 SELECT
28 c.tile_idl,
29 c.tile_id2,
30 c.relative_x,
31 c.relative_y,
32 c.frequency
33 FROM

34 compatible AS c

35 UNION ALL

36 SELECT

37 c.tile_id2,

38 c.tile_id1l,

39 -c.relative_x,
40 -c.relative_y,
41 c.frequency
42 FROM

43 compatible AS c

44)

15 SELECT

46 b.tile_id1l,

47 b.tile_id2,

48 b.relative_x,

49 b.relative_y,

50 SUM(b.frequency)

51 FROM

52 bidrectional AS b

53 GROUP BY

54003

| CREATE VIEW read_modules(module_id, tile_id, module_x, module_y, x, y, global_x, global_y)
2 AS (

3 SELECT

4 |md.x / 3] + [(SELECT MAX(x) + 1 FROM mapdata) / 3] * |md.y / 3|
5 AS module_id,

6 md.tile_id AS tile_id,

7 md.x / 3 AS module_x,

8 md.y / 3 AS module_y,

9 md.x % 3 AS x,

10 md.y % 3 AS y,

11 md.x AS global_x,

12 md.y AS global_y

13 FROM

14 dim,

15 mapdata AS md

6)3

I CREATE VIEW unique_modules(map_id, module_id, tile_id,
2 module_x, module_y, x, y,

3 global_x, global_y, occurrences)
4 AS (

5 WITH

6 hashed_modules(module_id, hash) AS (

7 SELECT

8 m.module_id AS module_id,

9 string_agg(m.tile_id, ’|’ ORDER BY m.x,m.y) AS hash
10 FROM

11 read_modules AS m

12 GROUP BY

13 m.module_id

14),

15 module_set (module_id, occurrences) AS (

16 SELECT

17 MAX(m.id) AS module_id,

18 COUNT(*) AS occurrences

19 FROM

20 hashed_modules AS m

21 GROUP BY

22 m.hash

23)

24 SELECT

25 mod.id,

mod.tile_id,
mod.module_x,
mod.module_y,

A.4. Pathfinding

97

29
30
31
32

33

35
36
37

mod.x,
mod.y,
mod.global_x,
mod.global_y,
ms.occurrences
FROM
module_set AS ms
JOIN read_modules AS mod

ON ms.module_id = mod.id

A.4 Pathfinding

A.4.1 Path Finding in Video Games

1
N
3
4
5

6

B W =

BN —

CREATE TABLE cells(
id SERIAL PRIMARY KEY,
x INT,
y INT
UNIQUE(x, y)
H

CREATE TABLE cell_contents(

cell_id INT REFERENCES cells(id),
terrain_id INT REFERENCES terrain_types(id)

)

CREATE TABLE terrain_types(
id SERIAL PRIMARY KEY,
symbol TEXT UNIQUE

);

CREATE TABLE actor_types(
id SERTAL PRIMARY KEY,
symbol TEXT UNIQUE,

description TEXT
)3

CREATE TABLE passable_terrain(
actor_type_id INT REFERENCES

actor_type TEXT REFERENCES actor_types(symbol) -- only included for readability
terrain_id INT REFERENCES terrain_types(id),
terrain TEXT REFERENCES terrain_types (symbol),
traversal_cost INT CHECK (traversal_cost >= 0)
)3
CREATE TABLE actors(
id SERIAL PRIMARY KEY,
actor_type_id INT REFERENCES actor_types(id),
label TEXT
)3
CREATE VIEW map(cell_id, x, y, terrain) AS (
SELECT
c.id AS cell_id,
c.x AS x
c.y AS y,
tt.symbol AS terrain
FROM
cells AS c

JOIN cell_contents AS cc
ON c.id = cc.cell_id
JOIN terrain_types AS tt

actor_types(id),

ON cc.terrain_id = tt.id

CREATE VIEW passable_cells(cell_id, x, y, actor_type, actor_type_id, traversal_cost) AS (

)3

SELECT
map.cell_id AS
THE (map . x) AS
THE (map.y) AS
THE(at.actor_type) AS
at.actor_type_id AS
SUM(pt.traversal_cost) AS

FROM

actor_types AS at

cell_id,

X’

Yy

actor_type,
actor_type_id,
traversal_cost

-- only included for readability

98 Appendix A. DDL Statements

11 JOIN passable_terrain AS pt

12 ON at.id = pt.actor_type_id
13 JOIN terrain_types AS tt

14 ON tt.id = pt.terrain_id

15 JOIN map

16 ON map.terrain = pt.terrain
17 GROUP BY

18 map.cell_id, actor_type_id

19)

A4.2 Temporal A* — Avoiding Collisions with a Booking System

CREATE TABLE passable_terrain(

1

2 actor_type_id INT REFERENCES actor_types(id),

3 actor_type TEXT REREFENCES actor_types(symbol)
4 terrain_id INT REFERENCES terrain_types(id),

5 terrain TEXT REFERENCES terrain_types(symbol),
6 traversal_cost INT CHECK (traversal_cost >= 0),

7 duration INT CHECK (duration >= 0)

8)

I CREATE TABLE actors(

2 id SERIAL PRIMARY KEY,

3 actor_type_id INT REFERENCES actor_types(id),

4 label TEXT

500

A.4.3 Iterative Path Finding

CREATE TABLE node_lists(

I

2 node_list_id SERIAL PRIMARY KEY,

3 actor_id INT,

4 actor_type_id INT,

5 cell_id INT,

6 start POINT,

7 destination POINT,

8 position POINT,

9 traversal_cost DOUBLE PRECISION,

10 predecessor INT DEFAULT NULL,

11 g DOUBLE PRECISION DEFAULT oo,
12 f DOUBLE PRECISION DEFAULT oo,
13 closed BOOLEAN DEFAULT FALSE,

14 open BOOLEAN DEFAULT FALSE,

15 FOREIGN KEY(actor_type_id) REFERENCES actor_types(actor_type_id),
16 FOREIGN KEY(actor_id) REFERENCES actors(actor_id),
17 FOREIGN KEY(cell_id) REFERENCES cells(cell_id),

18 FOREIGN KEY(predecessor) REFERENCES cells(cell_id),

19 UNIQUE(cell_id, actor_id)
20)

Appendix B

Perlin Noise in SQL

CREATE TYPE vector AS (

1
2 x DOUBLE PRECISION,

3 y DOUBLE PRECISION

4

5
S
7

8 CREATE TABLE grid(

9 x INT,

10 y INT,

11 mesh INT,

12 v vector,

13 UNIQUE(x,y)

14);

15

16 CREATE TABLE pixels(

17 x INT,

18 y INT,

19 UNIQUE(x,y)

20)3

21

e T e
24 - determines the length of _v.

25 CREATE FUNCTION length(_v vector)

26 RETURNS DOUBLE PRECISION AS $$

27 SELECT SQRT(_v.x * _v.X + _V.y * _V.y);
28 $$ LANGUAGE sql IMMUTABLE;

29

30 -- subtracts _vl from _v2.

31 CREATE FUNCTION sub(_v1l vector, _v2 vector)

32 RETURNS vector AS $$

33 SELECT row(_v2.x - _vl.x, _v2.y - _vl.y)::vector;
34 $$ LANGUAGE sql IMMUTABLE;

36 -- adds _vl to _v2.

37 CREATE FUNCTION add(_v1l vector, _v2 vector)

38 RETURNS vector AS $$

39 SELECT row(_v2.x + _vl.x, _v2.y + _vl.y)::vector;
40 $$ LANGUAGE sql IMMUTABLE;

42 -- calculates the distance between _vl1 and _v2.

43 CREATE FUNCTION distance(_v1l vector, _v2 vector)

44 RETURNS DOUBLE PRECISION AS $$

45 SELECT SQRT((_vl.x - _v2.x) * (_vl.x - _v2.x) + (Lvl.y - _v2.y) * (_vi.y - _v2.y));
46 $$ LANGUAGE sql IMMUTABLE;

48 -- normalises _v to length 1. Vectors of length O will result in (0 0).
49 CREATE FUNCTION normalise(_v vector) RETURNS vector AS $$

50 SELECT CASE WHEN length(_v) = 0

51 THEN row(0,0)::vector

52 ELSE row(

53 _v.x / length(_v),

54 _v.y / length(_v)

55)::vector

56 END;

57 $$ LANGUAGE sql IMMUTABLE;

58

59 -- dot product between _v1 and _v2.

60 CREATE FUNCTIOn dot(_vl vector, _v2 vector)
61 RETURNS DOUBLE PRECISION AS $$

62 SELECT _vl.x * _v2.x + _vl.y * _v2.y;

63 $$ LANGUAGE sql IMMUTABLE;

64

65 -- linear interpolation of _x between _a and _b.

66 CREATE FUNCTION lerp(_a DOUBLE PRECISION, _b DOUBLE PRECISION, _x DOUBLE PRECISION)

100

67
68

69
70

71

72
73
74
75
76
T
78
79
80

81
82

84
85
86

87
88

90
91

127
128
129
130
131
132
133
134

136

137
138
139

RETURNS DOUBLE PRECISION AS $$
SELECT _a + _x * (_b - _a);
$$ LANGUAGE sql IMMUTABLE;

-- fade function as defined by Ken Perlin: 6t~5-15t~4+10t"3
CREATE FUNCTION fade(_x DOUBLE PRECISION)
RETURNS DOUBLE PRECISION AS $$
SELECT 6 * POWER(_x, 5) - 15 * POWER(_x, 4) + 10 * POWER(_x, 3);
$$ LANGUAGE sql IMMUTABLE;

-- scales _x between _lo and _hi. ie, scale(15, 10, 20) results in .5.
CREATE FUNCTION scale(_x INT, _lo INT, _hi INT)
RETURNS DOUBLE PRECISION AS $$
SELECT (_x - _lo)::DOUBLE PRECISION / (_hi - _lo);
$$ LANGUAGE sql IMMUTABLE;

-- creates a random vector between (-1 -1) and (1 1).
CREATE FUNCTION randomv ()
RETURNS vector AS $$

SELECT row(RANDOM() * 2 - 1, RANDOM() * 2 - 1)::vector;
$$ LANGUAGE sql VOLATILE;

-- initialises pixels (image) and grid. The grid will have a mesh size of _mesh
-- and will hang over all sides of the image, so even the border pixels will
-- have grid points to be calculated from.
CREATE FUNCTION init(_w INT, _h INT, _mesh INT)
RETURNS BOOLEAN AS $$
DELETE FROM pixels;
INSERT INTO
pixels(x, y)
SELECT
r.a,
s.b
FROM
generate_series(1, _w) AS r(a),
generate_series(1, _h) AS s(b)
s
DELETE FROM grid;
INSERT INTO
grid(x, y, mesh, v)
SELECT
r.a * _mesh,
s.b * _mesh,
_mesh,
randomv ()
FROM
generate_series (0,

w / _mesh)+1) AS r(a),
generate_series(0, (_h

_mesh)+1) AS s(b)

NN

SELECT TRUE;
$$ LANGUAGE sql VOLATILE;

-- determines the 4 nearest corners from the grid for each pixel.
-- Those are exactly the four corners of the enclosing unit square.
CREATE VIEW corners(x, y, cx, cy, influence) AS (
WITH corners(px, py, cx, cy, cv, drank) AS (
SELECT

p.x AS px,

p-y AS py,

g.x AS cx,

g.y AS cy,

g.v AS cv,

-- pixels that are situated exactly on a gridline can produce incorrect

neighbours when looking for the distance.

-- We therefore nudge on pixel up/ to the left/ both so that they properly fall

into a unit square.

-- 1 - ceil(x % n) / n) produces 1 for multiples of n and O for everything else

ROW_NUMBER() OVER
(PARTITION BY p.x, p.y

ORDER BY distance(row(p.x - (1 - CEIL((p.x % g.mesh) / g.mesh)), p.y - (1

- CEIL((p.y % g.mesh) / g.mesh)))::vector,
row(g.x, g.y)::vector))
AS drank
FROM
pixels AS p
JOIN grid AS g

-- this join condition is not really required, since we take the 4 nearest

neighbours anyway,

-- which are exactly the four corners of the unit square around the
coordinate,

-- but it produces a smaller intermediate result.

Appendix B. Perlin Noise in SOL

Appendix B. Perlin Noise in SOQL 101

ON distance(row(p.x, p.y)::vector,
row(g.x, g.y)::vector) <= g.mesh * 1.4142 -- times sqrt(2)
for the diagonal

)
SELECT

px AS x,

Py AS y,

cx AS cx,

cy AS cy,

dot (cv,

sub(row(px, py)::vector, -- \ distance vector
row(cx, cy)::vector)) -- /
AS influence

FROM
corners

WHERE
drank <= 4

-- generates perlin noise for an image of size _w x _h with a mesh size of _mesh.
CREATE FUNCTION noise(_w INT, _h INT, _mesh INT = 10)
RETURNS TABLE(x INT, y INT, value DOUBLE PRECISION) AS $$
SELECT init(_w, _h, _mesh);
WITH cs(x, y, infs, minx, miny, maxx, maxy) AS (
SELECT
X’
y’
ARRAY_AGG (influence),
MIN(cx) AS minx,
MIN(cy) AS miny,
MAX(cx) AS maxx,
MAX(cy) AS maxy

FROM
corners AS c
GROUP BY
X,
y
)
SELECT
X’
N
(lerp(lerp(
infs[1],
infs[2],
fade(scale(x, minx, maxx))),
lerp(
infs[3],
infs[4],
fade(scale(x, minx, maxx))),
fade(scale(y, miny, maxy))) + 1)/2 -- [-1,1] -> [0,1]
FROM
cs

;
$$ LANGUAGE sql VOLATILE;

103

Bibliography

[10]

[11]

[12]

Mike Acton. Data-Oriented Design and C++. https://www.youtube.com/watch
?7v=rX0ItVEVjHc. Accessed: 30 January 2020. Insomniac Games, 2014.

Tony Albrecht. The Latency Elephant. http://seven-degrees-of -freedom.b
logspot .com/2009/10/1latency-elephant . html. Accessed: 30 January 2020.
2009.

Robert Albright et al. “SGL: A Scalable Language for Data-Driven Games”. In: Pro-
ceedings of the 2008 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’08. Vancouver, Canada: Association for Computing Machinery, 2008,
1217-1222. 1SBN: 9781605581026. DOI: 10.1145/1376616.1376739. URL: https
://doi.org/10.1145/1376616.1376739.

Zeyad A. Algfoor, Mohd S. Sunar, and Hoshang Kolivand. “A Comprehensive Study
on Pathfinding Techniques for Robotics and Video Games”. In: Int. J. Comput. Games
Technol. 2015 (Jan. 2015). ISSN: 1687-7047. DOI: 10.1155/2015/736138. URL: ht
tps://doi.org/10.1155/2015/736138.

Louis V. Allis. Searching for Solutions in Games and Artificial Intelligence. Den
Haag, NL: CIP-Gegevens Koninklijke Bibliotheek, Jan. 1994. 1SBN: 9789090074887.
URL: https://books.google.de/books?id=c7FTAgAACAAJ.

Entertainment Software Associaction. 2018 Essential Facts About the Computer and
Video Game Industry. http://www.theesa.com/esa-research/2018-essent
ial-facts-about-the-computer-and-video-game-industry/. Accessed: 3
February 2020. 2018.

Entertainment Software Associaction. 2019 Essential Facts About the Computer and
Video Game Industry. https://wuw.theesa.com/esa-research/2019-essent
ial-facts-about-the-computer-and-video-game-industry/. Accessed: 3
February 2020. 2019.

Bob Bates. Game Design. 2nd. Boston, MA, USA: Thomson Course Technology,
2004. 1SBN: 9781592004935. URL: https://books . google . de/books 7id=£7
XFJInGrb3UC.

Guy E. Blelloch et al. “Implementation of a Portable Nested Data-Parallel Language”.
In: PPOPP ’93. San Diego, California, USA: Association for Computing Machinery,
1993, 102-111. 1SBN: 0897915895. DOI: 10.1145/155332. 155343, URL: https:
//doi.org/10.1145/155332.155343.

Jonathan Blow. Data-Oriented Demo: SOA, composition. https : //www . youtube
.com/watch?v=ZHqFrNyL1lpA. Accessed: 30 January 2020. 2015.

Michael Booth. The Al Systems of Left 4 Dead. http://www.valvesoftware. co
m/publications/2009/ai_systems_of_14d_mike_booth.pdf. Accessed: 21
August 2019. Valve, 2009.

Sebastian BreB et al. “GPU-Accelerated Database Systems: Survey and Open Chal-
lenges”. In: Transactions on Large-Scale Data- and Knowledge-Centered Systems XV:
Selected Papers from ADBIS 2013 Satellite Events. Ed. by Abdelkader Hameurlain et

https://www.youtube.com/watch?v=rX0ItVEVjHc
https://www.youtube.com/watch?v=rX0ItVEVjHc
http://seven-degrees-of-freedom.blogspot.com/2009/10/latency-elephant.html
http://seven-degrees-of-freedom.blogspot.com/2009/10/latency-elephant.html
https://doi.org/10.1145/1376616.1376739
https://doi.org/10.1145/1376616.1376739
https://doi.org/10.1145/1376616.1376739
https://doi.org/10.1155/2015/736138
https://doi.org/10.1155/2015/736138
https://doi.org/10.1155/2015/736138
https://books.google.de/books?id=c7FTAgAACAAJ
http://www.theesa.com/esa-research/2018-essential-facts-about-the-computer-and-video-game-industry/
http://www.theesa.com/esa-research/2018-essential-facts-about-the-computer-and-video-game-industry/
https://www.theesa.com/esa-research/2019-essential-facts-about-the-computer-and-video-game-industry/
https://www.theesa.com/esa-research/2019-essential-facts-about-the-computer-and-video-game-industry/
https://books.google.de/books?id=f7XFJnGrb3UC
https://books.google.de/books?id=f7XFJnGrb3UC
https://doi.org/10.1145/155332.155343
https://doi.org/10.1145/155332.155343
https://doi.org/10.1145/155332.155343
https://www.youtube.com/watch?v=ZHqFrNyLlpA
https://www.youtube.com/watch?v=ZHqFrNyLlpA
http://www.valvesoftware.com/publications/2009/ai_systems_of_l4d_mike_booth.pdf
http://www.valvesoftware.com/publications/2009/ai_systems_of_l4d_mike_booth.pdf

104

Bibliography

al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 1-35. ISBN: 978-3-662-
45761-0. por: 10.1007/978-3-662-45761-0_1. URL: https://doi.org/10.10
07/978-3-662-45761-0_1.

Cameron B. Browne et al. “Survey of Monte Carlo Tree Search Methods”. In: IEEE
Transactions on Computational Intelligence and Al in Games 4.1 (Mar. 2012), pp. 1-
43. 1SSN: 1943-068X, 1943-0698. DOI: 10 . 1109/ TCIAIG. 2012 .2186810. URL:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=614
5622.

Michael J. Carey and David J. DeWitt. “Of Objects and Databases: A Decade of Tur-
moil”. In: Proceedings of the 22th International Conference on Very Large Databases.
VLDB ’96. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., Sept. 1996,
3—14.1SBN: 1558603824.

Guillaume M. J-B. Chaslot et al. “Progressive Strategies for Monte-Carlo Tree Search”.
In: New Mathematics and Natural Computation 04.03 (Nov. 2008), pp. 343-357.
ISSN: 1793-0057. DOI: 10.1142/51793005708001094.

Chris Kohler interviewing Atsushi Inaba on “God Hand”. https://wuw.wired.c
om/2006/10/interview-atsus/. Accessed: 21 August 2019. Oct. 2006.

Mark Claypool. “The Effect of Latency on User Performance in Real-Time Strategy
Games”. In: Computer Networks 49 (Sept. 2005), pp. 52-70. DOI: 10.1016/j . comn
et.2005.04.008.

Mark Claypool and Kajal Claypool. “Latency and Player Actions in Online Games”.
In: Communications of the ACM 49.11 (Nov. 2006), 40—45. 1sSN: 0001-0782. DOIL:
10.1145/1167838.1167860. URL: https://doi.org/10.1145/1167838.11678
60.

Edgar F. Codd. “A Relational Model of Data for Large Shared Data Banks”. In: Com-
munications of the ACM 13.6 (June 1970), pp. 377-387. URL: http://www.seas.u
penn.edu/"zives/03f/cis550/codd.pdf.

George Copeland and David Maier. “Making Smalltalk a Database System”. In: SIG-
MOD Rec. 14.2 (June 1984), 316-325. 1SSN: 0163-5808. DOI: 10.1145/971697 .60
2300. URL: https://doi.org/10.1145/971697.602300.

Cry Engine. https://docs.cryengine.com/. Accessed: 11 March 2020. Crytek.
Mihaly Csikszentmihalyi. Beyond Boredom and Anxiety. San Francisco: Jossey-Bass,
1975. 1SBN: 0787951404. DOI: 10.2307/2065805.

Mihaly Csikszentmihalyi. Flow and the Foundations of Positive Psychology. New
York, NY, USA: Springer, 2014. 1SBN: 9789401790833. DOI: 10.1007/978-94-01
7-9088-8.

Edsger W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”. In: Nu-
merische Mathematik 1.1 (Dec. 1959), 269-271. 1SSN: 0029-599X. DOI: 10 . 1007
/BF01386390. URL: https://doi.org/10.1007/BF01386390.

Doom 3 Engine. https://github. com/id- Software/DO0OM- 3. Accessed: 11
March 2020. id Software.

DOOM Engine. https://github.com/id-Software/DO0M. Accessed: 11 March
2020. id Software.

Dungeon Generation in Diablo 1. https://www.boristhebrave.com/2019/07/1
4/dungeon-generation-in-diablo-1/. Accessed: 17 January 2020.

Sehar S. Farooq and Kyung-Joong Kim. “Game Player Modeling”. In: Encyclopedia
of Computer Graphics and Games. Ed. by Newton Lee. New York City, NY, USA:
Springer, Dec. 2015, pp. 1-5. ISBN: 978-3-319-08234-9. DOI: 10.1007/978-3-319
-08234-9_14-1. URL: https://doi.org/10.1007/978-3-319-08234-9_14-1.

https://doi.org/10.1007/978-3-662-45761-0_1
https://doi.org/10.1007/978-3-662-45761-0_1
https://doi.org/10.1007/978-3-662-45761-0_1
https://doi.org/10.1109/TCIAIG.2012.2186810
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6145622
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6145622
https://doi.org/10.1142/s1793005708001094
https://www.wired.com/2006/10/interview-atsus/
https://www.wired.com/2006/10/interview-atsus/
https://doi.org/10.1016/j.comnet.2005.04.008
https://doi.org/10.1016/j.comnet.2005.04.008
https://doi.org/10.1145/1167838.1167860
https://doi.org/10.1145/1167838.1167860
https://doi.org/10.1145/1167838.1167860
http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
https://doi.org/10.1145/971697.602300
https://doi.org/10.1145/971697.602300
https://doi.org/10.1145/971697.602300
https://docs.cryengine.com/
https://doi.org/10.2307/2065805
https://doi.org/10.1007/978-94-017-9088-8
https://doi.org/10.1007/978-94-017-9088-8
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://github.com/id-Software/DOOM-3
https://github.com/id-Software/DOOM
https://www.boristhebrave.com/2019/07/14/dungeon-generation-in-diablo-1/
https://www.boristhebrave.com/2019/07/14/dungeon-generation-in-diablo-1/
https://doi.org/10.1007/978-3-319-08234-9_14-1
https://doi.org/10.1007/978-3-319-08234-9_14-1
https://doi.org/10.1007/978-3-319-08234-9_14-1

Bibliography 105

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

Theresa Fleming et al. “Serious Games and Gamification for Mental Health: Current
Status and Promising Directions”. In: Frontiers in Psychiatry 7 (Jan. 2017). DOI: 10
.3389/fpsyt.2016.00215.

DuckDB Documentation on WITH RECURSIVE. https://github.com/cwida/duc
kdb/pull/404. Accessed: 5 November 2020.

MariaDB Documentation on WITH RECURSIVE. https://jira.mariadb.org/br
owse/MDEV-9864. Accessed: 5 November 2020. MariaDB Foundation.

MySQL Documentation on WITH RECURSIVE. https://dev.mysql.com/doc/ref
man/8.0/en/mysql-nutshell .html#mysql-nutshell-additions. Accessed:
5 November 2020. Oracle Corporation.

PostgreSQL Documentation on WITH RECURSIVE. https://postgresql.org/d
ocs/8.4/release-8-4.html. Accessed: 5 November 2020. PostgreSQL Global
Development Group.

SQLite Documentation on WITH RECURSIVE. https://sqlite.org/releaselog
/3_8_3.html. Accessed: 5 November 2020.

Michael C. Green et al. “Two-step Constructive Approaches for Dungeon Genera-
tion”. In: Proceedings of the 14th International Conference on the Foundations of
Digital Games. Vol. abs/1906.0. FDG °19. San Luis Obispo, California, USA: Asso-
ciation for Computing Machinery, Aug. 2019. ISBN: 9781450372176. DOI: 10.1145
/3337722 .3341847. arXiv: arXiv:1906.04660v1. URL: https://doi.org/10
.1145/3337722.3341847.

Jason Gregory. Game Engine Architecture, Second Edition. 2nd. Boca Raton, FL,
USA: CRC Press, 2014. ISBN: 1466560010.

Torsten Grust, Nils Schweinsberg, and Alexander Ulrich. “Functions Are Data Too:
Defunctionalization for PL/SQL”. In: vol. 6. 12. Riva del Garda, Trento, IT: VLDB
Endowment, Aug. 2013, pp. 1214-1217. DOI: 10.14778/2536274 . 2536279. URL:
http://dx.doi.org/10.14778/2536274.2536279.

Half Life Sourcecode. https://github.com/ValveSoftware/halflife/. Ac-
cessed: 16 October 2020. Valve.

Frank Harary. Graph Theory. Boston, MA: Addison-Wesley Publishing Company,
Inc. 1ISBN: 0-201-02787-9.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths”. In: IEEE Transactions on Systems Science
and Cybernetics 4.2 (July 1968), pp. 100-107.

Robin Hunicke and Vernell Chapman. “Al for Dynamic Difficulty Adjustment in
Games”. In: Challenges in Game Artificial Intelligence AAAI Workshop 2 (Jan. 2004),
pp- 91-96.

Stratos Idreos et al. “MonetDB: Two Decades of Research in Column-Oriented Database
Architectures”. In: IEEE Data Engineering Bulletin 35.1 (2012), pp. 40-45.

Philip C. Jr. Jackson. Introduction To Artificial Intelligence. 2nd. Mineola, NY, USA:
Dover Publications, 1985. 1ISBN: 048624864 X.

James Brightman interviewing Warren Spector. https://www.gamesindustry.bi
z/articles/2012-03-16-warren-spector-a-lifetime-of-achievements.
Accessed: 27 Feburary 2020. Mar. 2012.

Simon P. Jones and Philip Wadler. “Comprehensive Comprehensions”. In: Proceed-
ings of the ACM SIGPLAN Workshop on Haskell Workshop. Haskell *07. Freiburg,
Germany: ACM, Sept. 2007, pp. 61-72. ISBN: 978-1-59593-674-5. DOI: 10.1145/1
291201.1291209. URL: http://doi.acm.org/10.1145/1291201.1291209.
Korina Katsaliaki and Navonil Mustafee. “A Survey of Serious Games on Sustain-
able Development”. In: Proceedings of the Winter Simulation Conference. WSC *12.
Berlin, Germany: Winter Simulation Conference, Dec. 2012.

https://doi.org/10.3389/fpsyt.2016.00215
https://doi.org/10.3389/fpsyt.2016.00215
https://github.com/cwida/duckdb/pull/404
https://github.com/cwida/duckdb/pull/404
https://jira.mariadb.org/browse/MDEV-9864
https://jira.mariadb.org/browse/MDEV-9864
https://dev.mysql.com/doc/refman/8.0/en/mysql-nutshell.html#mysql-nutshell-additions
https://dev.mysql.com/doc/refman/8.0/en/mysql-nutshell.html#mysql-nutshell-additions
https://postgresql.org/docs/8.4/release-8-4.html
https://postgresql.org/docs/8.4/release-8-4.html
https://sqlite.org/releaselog/3_8_3.html
https://sqlite.org/releaselog/3_8_3.html
https://doi.org/10.1145/3337722.3341847
https://doi.org/10.1145/3337722.3341847
https://arxiv.org/abs/arXiv:1906.04660v1
https://doi.org/10.1145/3337722.3341847
https://doi.org/10.1145/3337722.3341847
https://doi.org/10.14778/2536274.2536279
http://dx.doi.org/10.14778/2536274.2536279
https://github.com/ValveSoftware/halflife/
https://www.gamesindustry.biz/articles/2012-03-16-warren-spector-a-lifetime-of-achievements
https://www.gamesindustry.biz/articles/2012-03-16-warren-spector-a-lifetime-of-achievements
https://doi.org/10.1145/1291201.1291209
https://doi.org/10.1145/1291201.1291209
http://doi.acm.org/10.1145/1291201.1291209

106

Bibliography

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Steven L. Kent. The Ultimate History of Video Games: From Pong to Pokemon — The
Story Behind the Craze That Touched Our Lives and Changed the World. New York
City, NY, USA: Crown, 2001. ISBN: 0761536434.

Tobias Kretz and Michael Schreckenberg. “Moore and More and Symmetry”. In:
Pedestrian and Evacuation Dynamics 2005. Ed. by Nathalie Waldau et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, May 2007, pp. 297-308. 1SBN: 978-3-540-
47064-9.

Joshua M. Lewis, Patrick Trinh, and David Kirsh. “A Corpus Analysis of Strategy
Video Game Play in Starcraft: Brood War”. In: Cognitive Science 33 (2011). ISSN:
1069-7977.

Adam Martin. Entity Systems are the future of MMOG development. http://t-mac
hine.org/index.php/2007/09/03/entity-systems-are-the-future-of-m
mog-development-part-1/. Accessed: 31 January 2020. Sept. 2007.

Donald Michie. ““Memo” Functions and Machine Learning”. In: Nature 218.5138
(Apr. 1968), p. 306. ISSN: 1476-4687. DOI: 10.1038/218306c0. URL: https://do
i.org/10.1038/218306c0.

Minecraft. https://www.minecraft.net/. Accessed: 4 April 2020. Mojang Stu-
dios.

OpenRA Engine. https://wuw.openra.net/. Accessed: 10 March 2020.

Oracle Documentation on WITH RECURSIVE.https://docs.oracle.com/cd/E11
882_01/server.112/e41360/chapterl.htm#NEWFT107. Accessed: 5 November
2020. Oracle Corporation.

Carlos Ordonez and Ladjel Bellatreche. “A Survey on Parallel Database Systems
From a Storage Perspective: Rows Versus Columns”. In: Database and Expert Sys-
tems Applications. Ed. by Mourad Elloumi et al. New York City, NY, USA: Springer
International Publishing, 2018, pp. 5-20. 1SBN: 978-3-319-99133-7.

Bruce Pandolfini. Kasparov and Deep Blue: The Historic Chess Match Between Man
and Machine. A Fireside Book. New York City, NY, USA: Touchstone, 1997. ISBN:
9780684848525. URL: https://books.google.de/books?id=4eZh2giYLEMC.
Ken Perlin. “An Image Synthesizer”. In: Proceedings of the 12th Annual Conference
on Computer Graphics and Interactive Techniques. Vol. 19. SIGGRAPH ’85 3. New
York, NY, USA: Association for Computing Machinery, July 1985, 287-296. ISBN:
0897911660. DOT: 10.1145/325334 . 325247. URL: https://doi.org/10.1145
/325334 .325247.

Ken Perlin. “Improving Noise”. In: SIGGRAPH ’02. San Antonio, Texas: Association
for Computing Machinery, July 2002, 681-682. 1ISBN: 1581135211. DOI: 10.1145/5
66570.566636. URL: https://doi.org/10.1145/566570.566636.

Perlin Noise in Minecraft. https://github. com/UnknownShadow200/ClassiCu
be/wiki/Minecraft-Classic-map-generation-algorithm/6234239c9429d
69dd9f945cef12d28c59e632cc7. Accessed: 20 July 2020. Dec. 2015.

Johannes Pfau, Jan David Smeddinck, and Rainer Malaka. “Towards Deep Player
Behavior Models in MMORPGs”. In: CHI PLAY ’18. Melbourne, VIC, Australia:
Association for Computing Machinery, Oct. 2018, 381—392. ISBN: 9781450356244.
DOI: 10.1145/3242671.3242706. URL: https://doi.org/10.1145/3242671.3
242706.

Johannes Pfau et al. “Bot or Not? User Perceptions of Player Substitution with Deep
Player Behavior Models”. In: Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. CHI °20. Honolulu, HI, USA: Association for Com-
puting Machinery, Apr. 2020, 1—10. ISBN: 9781450367080. DOI: 10.1145/331383
1.3376223. URL: https://doi.org/10.1145/3313831.3376223.

pgRouting. https://pgrouting.org/. Accessed: 7 September 2020.

http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1/
http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1/
http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1/
https://doi.org/10.1038/218306c0
https://doi.org/10.1038/218306c0
https://doi.org/10.1038/218306c0
https://www.minecraft.net/
https://www.openra.net/
https://docs.oracle.com/cd/E11882_01/server.112/e41360/chapter1.htm#NEWFT107
https://docs.oracle.com/cd/E11882_01/server.112/e41360/chapter1.htm#NEWFT107
https://books.google.de/books?id=4eZh2giYL5MC
https://doi.org/10.1145/325334.325247
https://doi.org/10.1145/325334.325247
https://doi.org/10.1145/325334.325247
https://doi.org/10.1145/566570.566636
https://doi.org/10.1145/566570.566636
https://doi.org/10.1145/566570.566636
https://github.com/UnknownShadow200/ClassiCube/wiki/Minecraft-Classic-map-generation-algorithm/6234239c9429d69dd9f945cef12d28c59e632cc7
https://github.com/UnknownShadow200/ClassiCube/wiki/Minecraft-Classic-map-generation-algorithm/6234239c9429d69dd9f945cef12d28c59e632cc7
https://github.com/UnknownShadow200/ClassiCube/wiki/Minecraft-Classic-map-generation-algorithm/6234239c9429d69dd9f945cef12d28c59e632cc7
https://doi.org/10.1145/3242671.3242706
https://doi.org/10.1145/3242671.3242706
https://doi.org/10.1145/3242671.3242706
https://doi.org/10.1145/3313831.3376223
https://doi.org/10.1145/3313831.3376223
https://doi.org/10.1145/3313831.3376223
https://pgrouting.org/

Bibliography 107

[63]

[64]

[65]

[66]

[67]

[68]

[69]
[70]
[71]
[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

PhysX. https://developer .nvidia. com/gameworks - physx - overview. Ac-
cessed: 11 November 2020. NVidia.

Postgresql Configuration Recommendations. https://wiki .postgresql.org/w
iki/Simple_Configuration_Recommendation#PostgreSQL_Configuration
_Recommendations. Accessed: 1 December 2020. PostgreSQL Global Development
Group.

Postgresql Documentation on Planner. https://www.postgresql.org/docs/cur
rent/planner-optimizer.html. Accessed: 28 October 2020. PostgreSQL Global
Development Group.

Postgresql Documentation on Planner Configuration. https://www.postgresql.o
rg/docs/current/runtime-config-query.html. Accessed: 28 October 2020.
PostgreSQL Global Development Group.

Postgresql Documentation on Predicate Pushdown in Common Table Expressions.
https://www.postgresql.org/docs/12/queries-with.html. Accessed: 24
November 2020. PostgreSQL Global Development Group.

Postgresql Documentation on EXPLAIN. https://www.postgresql.org/docs/c
urrent/using- explain.html. Accessed: 28 October 2020. PostgreSQL Global
Development Group.

Daniel Prtsa. “Two-Dimensional Languages”. PhD thesis. Charles University Prague,
2004.

Quake 2 Engine. https://github.com/id-Software/Quake-2. Accessed: 11
March 2020. id Software.

Quake Engine. https://github. com/id-Software/Quake. Accessed: 11 March
2020. id Software.

Quake 11l Arena Engine. https://github.com/id-Software/Quake-III-Aren
a. Accessed: 11 March 2020. id Software.

Azriel Rosenfeld. Picture Languages: Formal Models for Picture recognition. En-
glish. New York City, NY, USA: Academic Press New York, 1979, xiii, 225 p. ISBN:
0125973403.

Fabien Sanglard. Game Engine Black Book: Doom: vi.1. 1.1. Independently pub-
lished, 2019. 1SBN: 978-1099819773. URL: http://fabiensanglard.net/gebbd
oom_v1.1.pdf.

Fabien Sanglard. Game Engine Black Book: Wolfenstein 3D. Game Engine Black
Book. Scotts Valley, CA, USA: CreateSpace Independent Publishing Platform, 2017.
ISBN: 9781539692874.

Frederik C. Schadd. “Monte-Carlo Search Techniques in the Modern Board Game
Thurn and Taxis”. MA thesis. Maastricht University, Netherlands, 2009.

Noor Shaker et al. “Constructive generation methods for dungeons and levels”. In:
Procedural Content Generation in Games. New York City, NY, USA: Springer, Oct.
2016. Chap. 3, pp. 31-55. 1SBN: 978-3-319-42714-0. DOI: 10.1007/978-3-319-4
2716-4_3.

Sid Meier’s Civilization. https://civilization. com/. Accessed: 9 October 2020.
Firaxis Games.

David Silver et al. “Mastering Chess and Shogi by Self-Play with a General Rein-
forcement Learning Algorithm”. In: Computing Research Repository abs/1712.01815
(Dec. 2017). arXiv: 1712.01815.

David Silver et al. “Mastering the Game of Go Without Human Knowledge”. In: Na-
ture 550.7676 (Oct. 2017), pp. 354-359. ISSN: 1476-4687. DOI: 10.1038/nature24
270. URL: https://doi.org/10.1038/nature24270.

https://developer.nvidia.com/gameworks-physx-overview
https://wiki.postgresql.org/wiki/Simple_Configuration_Recommendation#PostgreSQL_Configuration_Recommendations
https://wiki.postgresql.org/wiki/Simple_Configuration_Recommendation#PostgreSQL_Configuration_Recommendations
https://wiki.postgresql.org/wiki/Simple_Configuration_Recommendation#PostgreSQL_Configuration_Recommendations
https://www.postgresql.org/docs/current/planner-optimizer.html
https://www.postgresql.org/docs/current/planner-optimizer.html
https://www.postgresql.org/docs/current/runtime-config-query.html
https://www.postgresql.org/docs/current/runtime-config-query.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/current/using-explain.html
https://www.postgresql.org/docs/current/using-explain.html
https://github.com/id-Software/Quake-2
https://github.com/id-Software/Quake
https://github.com/id-Software/Quake-III-Arena
https://github.com/id-Software/Quake-III-Arena
http://fabiensanglard.net/gebbdoom_v1.1.pdf
http://fabiensanglard.net/gebbdoom_v1.1.pdf
https://doi.org/10.1007/978-3-319-42716-4_3
https://doi.org/10.1007/978-3-319-42716-4_3
https://civilization.com/
https://arxiv.org/abs/1712.01815
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270

Bibliography

[89]

[90]

Herbert A. Simon and Toshinori Munakata. “The Implications of Kasparov Vs. Deep
Blue”. In: Communications of the ACM 40.8 (1997), pp. 21-25.1SSN: 15577317. DOL:
10.1145/257874.257878.

Steven S. Skiena. The Algorithm Design Manual. London, UK: Springer, Sept. 2008.
ISBN: 9781848000704 1848000707 9781848000698 1848000693. DOI: 10.1007/9
78-1-84800-070-4.

Harald Sgndergaard and Peter Sestoft. “Referential Transparency, Definiteness and
Unfoldability”. In: Acta Informatica 27.6 (May 1990), pp. 505-517. 1ssSN: 00015903.
DOI: 10.1007/BF00277387.

Benjamin Sowell et al. “From Declarative Languages to Declarative Processing in
Computer Games”. In: Computing Research Repository abs/0909.1770 (2009). arXiv:
0909.1770. URL: http://arxiv.org/abs/0909.1770.

International Organization for Standardization. ISO/IEC 9075-2:1999: Information
technology — Database languages — SQL — Part 2: Foundation (SQL/Foundation).
Geneva, CH: International Organization for Standardization, 1999, p. 1121. URL: ht
tp://www.iso.ch/cate/d26197 .html.

StarCraft. https://starcraft.com/. Accessed: 8 September 2020. Blizzard En-
tertainment.

Cardon Stéphane and Jacopin Eric. “Binary GPU-Planning for Thousands of NPCs”.
In: 2020 IEEE Conference on Games (CoG). Osaka, JP: IEEE, Aug. 2020, pp. 678—
681. DOI: 10.1109/C0G47356.2020.9231696.

George Stiny and James Gips. “Shape Grammars and the Generative Specification of
Painting and Sculpture”. In: Information Processing, Proceedings of IFIP Congress.
Ed. by Charles V. Freiman, John E. Griffith, and Jack L. Rosenfeld. Vol. 2. Amster-
dam, NL: North Holland Publishing, Jan. 1971, pp. 1460-1465.

Tommaso Toffoli and Norman Margolus. Cellular Automata Machines: A New Envi-

ronment for Modeling. Cambridge, MA, USA: MIT Press, Apr. 1987. 1SBN: 0262200600.

Julian Togelius et al. “What is Procedural Content Generation? Mario on the Bor-
derline”. In: Proceedings of the 2nd International Workshop on Procedural Content
Generation in Games. PCGames 11. Bordeaux, France: Association for Computing
Machinery, Jan. 2011. I1SBN: 9781450308724. DOI: 10 .1145/2000919 . 2000922.
URL: https://doi.org/10.1145/2000919.2000922.

Alexander Ulrich and Torsten Grust. “The Flatter, the Better: Query Compilation
Based on the Flattening Transformation”. In: Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data. SIGMOD ’15. Melbourne,
Victoria, Australia: Association for Computing Machinery, May 2015, 1421-1426.
ISBN: 9781450327589. DOI: 10.1145/2723372.2735359. URL: https://doi.or
g/10.1145/2723372.2735359.

Unity Blog. https://blogs.unity3d.com/2017/08/11/unityscripts- long
-ride-off-into-the-sunset/. Accessed: 11 March 2020. Unity Technologies,
Aug. 2017.

Unity Engine. https://unity.com. Accessed: 10 March 2020. Unity Technologies.
Unreal Engine. https: //www .unrealengine . com/. Accessed: 11 March 2020.
Epic Games.

Unreal Engine 4 — First Look. https://web.archive.org/web/2012052406293
5/http://gameindustry.about.com/od/trends/a/Unreal-Engine-4-First
-Look.htm. Accessed: 11 March 2020. Epic Games, May 2012.

Guozhang Wang et al. “Behavioral Simulations in MapReduce”. In: Computing Re-
search Repository abs/1005.3773 (2010). arXiv: 1005 .3773. URL: http://arxiv
.org/abs/1005.3773.

https://doi.org/10.1145/257874.257878
https://doi.org/10.1007/978-1-84800-070-4
https://doi.org/10.1007/978-1-84800-070-4
https://doi.org/10.1007/BF00277387
https://arxiv.org/abs/0909.1770
http://arxiv.org/abs/0909.1770
http://www.iso.ch/cate/d26197.html
http://www.iso.ch/cate/d26197.html
https://starcraft.com/
https://doi.org/10.1109/CoG47356.2020.9231696
https://doi.org/10.1145/2000919.2000922
https://doi.org/10.1145/2000919.2000922
https://doi.org/10.1145/2723372.2735359
https://doi.org/10.1145/2723372.2735359
https://doi.org/10.1145/2723372.2735359
https://blogs.unity3d.com/2017/08/11/unityscripts-long-ride-off-into-the-sunset/
https://blogs.unity3d.com/2017/08/11/unityscripts-long-ride-off-into-the-sunset/
https://unity.com
https://www.unrealengine.com/
https://web.archive.org/web/20120524062935/http://gameindustry.about.com/od/trends/a/Unreal-Engine-4-First-Look.htm
https://web.archive.org/web/20120524062935/http://gameindustry.about.com/od/trends/a/Unreal-Engine-4-First-Look.htm
https://web.archive.org/web/20120524062935/http://gameindustry.about.com/od/trends/a/Unreal-Engine-4-First-Look.htm
https://arxiv.org/abs/1005.3773
http://arxiv.org/abs/1005.3773
http://arxiv.org/abs/1005.3773

Bibliography 109

[97]

[98]

[99]

[100]

Walker M. White et al. “Scaling Games to Epic Proportions”. In: Proceedings of the
2007 ACM SIGMOD International Conference on Management of Data. SIGMOD
’07. Beijing, China: Association for Computing Machinery, June 2007, 31—42. ISBN:
9781595936868. DOI: 10.1145/1247480.1247486. URL: https://doi.org/10
.1145/1247480.1247486.

Georgios N. Yannakakis and John Hallam. “Evolving Opponents for Interesting In-
teractive Computer Games”. In: From Animals to Animats 8: Proceedings of the 8th
International Conference on Simulation of Adaptive Behavior. Santa Monica, CA,
USA: MIT Press, Jan. 2004, pp. 499-508. 1SBN: 9780262291446.

Georgios N. Yannakakis and Julian Togelius. Artificial Intelligence and Games. htt
p://gameaibook.org. New York, NY, USA: Springer, 2018.

Michael Zyda. “From Visual Simulation to Virtual Reality to Games”. In: Computer
38.9 (Sept. 2005), pp. 25-32. 1SSN: 1558-0814. pOI1: 10.1109/MC. 2005 .297.

https://doi.org/10.1145/1247480.1247486
https://doi.org/10.1145/1247480.1247486
https://doi.org/10.1145/1247480.1247486
http://gameaibook.org
http://gameaibook.org
https://doi.org/10.1109/MC.2005.297

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Meet the Spouses
	Architecture of Video Games
	Mind the Gap
	Data-Oriented Programming
	Entity Component System
	Data-Driven Games

	Recursive *SQL Queries
	*OpenRA
	Methodology
	Setup
	Query Plans

	Structure of This Document

	Video Game AI
	Artificial Intelligence in Video Games
	Tactics Through DFA
	Monte Carlo Tree Search
	Relational Implementation
	Memoisation

	Evaluation
	*mcts
	*dfa

	Map Generation
	Rule-Based Map Generation
	Module-Based Map Generation
	Preparations
	During Runtime
	Map Generation by Example

	Evaluation
	Rule-Based
	Module-Based

	Pathfinding
	Path Finding in Video Games
	Different Neighbourhoods

	Reducing the Search Space
	Exploiting Connectivity to Speed up Pathfinding
	Spatial *AStar – in Pure *SQL
	Heuristics
	Dimensionality of *AStar

	Temporal *AStar – Avoiding Collisions with a Booking System
	Iterative Path Finding
	Evaluation

	Discussion and Final Remarks
	DDL Statements
	Introduction
	Recursive *SQL Queries

	Video Game AI
	Tactics Through DFA
	Monte Carlo Tree Search

	Map Generation
	Rule-Based Map Generation
	Module-Based Map Generation
	Map Generation by Example

	Pathfinding
	Path Finding in Video Games
	Temporal *AStar – Avoiding Collisions with a Booking System
	Iterative Path Finding

	Perlin Noise in *SQL
	Bibliography

