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vorgelegt von

Björn Rudzewitz

aus

Albstadt

2021



Gedruckt mit Genehmigung der Philosophischen Fakultät
der Eberhard Karls Universität Tübingen

Dekan: Prof. Dr. Jürgen Leonhardt

Hauptberichterstatter: Prof. Dr. Detmar Meurers

Mitberichterstatter: Prof. Dr. Andreas Lachner

Tag der mündlichen Prüfung: 23.06.2021
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Abstract

With an increase in digitalization in all areas of society, including education,
data and technology offer new and exciting potentials. Systems can diagnose
potential problems of learners, systems and humans can learn from data to con-
tinuously improve concrete teaching practices, and researchers can contribute
to an understanding of learning in specific domains and in general. It is not en-
tirely clear what contributes to the incredible ability of human learning. Learn-
ing Analytics can shed light on what factors contribute to learning and can help
improve education, thus having a positive impact on society. Learning Analytics
allows us to learn from the past to improve the future.

While data points are generated already with every interaction in digital
applications – such as tutoring systems – there need to be principled ways
for making sense of and using the potential of these data. Concretely, the
interdisciplinary context needs to provide guidance regarding which features
to consider in the process of going from raw interaction logs to interpretable
feature representations. Empirical Educational Science and pedagogy need to
guide the design of systems, Learning Analytics tools, and data analyses to
be relevant not only from a scientific, but also a pedagogical perspective. So
far, there is a glaring lack of interdisciplinary collaboration between Empirical
Educational Scientists, system designers, pedagogues, Computational Linguists,
and Second Language Acquisition researchers. Furthermore, little research has
been conducted in this area outside of strictly constrained lab studies or studies
with small or homogenous samples.

In order to address this gap, in this thesis we explore Learning Analytics in
the context of Intelligent Computer-Assisted Language Learning in large-scale,
ecologically valid contexts.

We start by laying the foundation by describing the three main research
fields this dissertation builds upon: Second Language Acquisition, Tutoring
Systems, and Learning Analytics and Educational Data Mining. In the second
part of the thesis, we establish an empirical basis for subsequent analyses and
applications. We describe the FeedBook system and its feedback mechanisms
in detail, before we turn to the FeedBook study and the data collected in it.
The third part combines the two previous parts by showcasing both a range of
Learning Analytics applications, targeting the needs of different user groups, and
data analyses that shed light on the relation between learning process features
and learning outcomes.

With respect to the Learning Analytics functions, we show how an open
learner model can fulfill the needs of individual students, how information can
be aggregated on the school class level and presented to fulfill the requirements
of teachers, and how data about the entire learner population can be made ac-
cessible in a useful way for material designers. The findings demonstrate that
raw feedback counts are not useful in predicting learning gains. Rather, answers
submitted correctly to the teacher are indicative. We investigate this learning
product and split it up into learning process variables. Previous knowledge man-
ifested in answers submitted correct at first try, and uptake based on specific
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feedback both lead to correctly submitted answers, and are significant predic-
tors of learning gains. In contrast, uptake based on blocked (i.e. only binary
feedback) is not indicative of learning gains. Furthermore, we show an effect of
time-on-task for the control group. Taken together, the results indicate that not
only the provision of specific feedback, but additionally attention to feedback
and efficient strategies for processing predict learning gains.

The main contributions of this thesis arise from its unique place at the
interdisciplinary crossroads of Empirical Educational Science, Computational
Linguistics, Second Language Acquisition, and Learning Analytics. Our primary
contributions are the development and description of a tutoring system with
interactive real-time feedback, the implementation of diverse Learning Analytics
tools using and visualizing the learning process data collected with this system
for different educational stakeholders, and the advancement of statistical models
empirically linking learning process features postulated by learning theories with
learning outcomes from authentic, large-scale contexts.
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Chapter 1

Introduction

1.1 Motivation

“[I]t is essential that future learning analytics developments and innovations
draw on, and advance educational research and practice.”

—– Gašević et al. (2015, p. 3)

In their seminal work, Gašević et al. (2015) reflect on lessons learned from
the first years of the field of Learning Analytics based on influential studies.
On the basis of these insights, the authors outline directions in which the field
needs to move in the future.

Let’s take a step back to start with and understand the above quotation.
Learning Analytics is “the measurement, collection, analysis and reporting of
data about learners and their contexts, for purposes of understanding and opti-
mizing learning and the environments in which it occurs” (Siemens and Baker,
2012, p. 1) Learning Analytics can thus be conceptualized as data-driven meth-
ods applied to the educational context that serve the purpose of understanding
learning and improving the conditions under which learning happens.

This approach thus needs data. Where does the data come from? In general,
Learning Analytics focuses on data from educational contexts. This can be data
available also in traditional learning and teaching settings, such as classroom
participation, course completion, or even homework accuracy data (Romero and
Ventura, 2007). However, it can also be data not available in paper-based or
traditional settings, such as interaction data or learning process data: when
a learner submits an answer on paper, the teacher only has access to the last
version. If learning process data is not made available, the learning process
remains a black box, with potentially many similar submission, but no insights
or diagnostic value from the interactions (Mangaroska and Giannakos, 2018). In
the context of this thesis, we are primarily interested in making learning process
data distilled from interactions meaningfully available to different end users.

What are learners interacting with? In our case learners are using an intelli-
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gent tutoring system for learners of English in 7th grade, the FeedBook (Rudze-
witz et al., 2017). What sets it apart from submissions on paper and from
non-intelligent tutoring systems is the provision of specific feedback (Rudzewitz
et al., 2018). Tutoring systems serve the purpose of modeling and teaching
parts of a specific learning domain, such as algebraic operations, or, in our case,
language structures and their usage (Lynch et al., 2006), as specified in the
Bildungsplan (curriculum points defined by the state) for 7th grade English.

Since the system provides feedback and adapts its behavior towards the
productions of learners (Chatti et al., 2013), we can not only observe learning
products but also the learning process of individual learners (Hattie and Tim-
perley, 2007). Concretely, tutoring systems generate interaction logs that record
how end users, and especially learners, are working with system (Sclater et al.,
2016).

In order to get insights from interaction data, it is necessary to define features
that quantify certain aspects of the interaction (Patchan et al., 2016). How to get
from interactions to learning process or product features? Learning Analytics
researchers engineer features by defining abstractions over the raw data that
quantify certain events logged as entries in the interaction log. How to decide
which features to engineer? First of all, what can be analyzed depends on the
richness of the original log. Information that has not been logged is very difficult
to reconstruct. Ideally, the selection of features and their operationalization is
theory-driven. Previous research on (a) learning in general and (b) the domain
and (c) learning in this specific domain should guide which features are extracted
and used in various ways, such as visualizations or statistical models. Based on
the insights from these processes, ideally the results are fed back to the theory
and are integrated. This allows for a circle in which theory guides practical
work, and results from practical work guide the theory. This is what the quote
mentioned in the beginning really implies and what constitutes the imperative
of this thesis.

In the context of this work, we explore how to approach educational data
from different perspectives. We investigate how to make the process of learning
– and different factors contributing to it – tangible and thereby contribute to
an understanding of it. Concretely, we explore how to provide Learning Ana-
lytics end user applications that address the real needs of different user groups
(students, teachers, material designers, and administrators). Furthermore, we
conduct statistical tests with the goal of empirically and rigorously testing which
factors can predict learning gains. In essence, we are interested in contribut-
ing insights to the question of what contributes to learning a language. We
are interested in finding patterns of behavior that are indicative for successful
learning. Knowing about factors that contribute to it allows for (a) humans
to make decisions based on visualizations of relevant factors or metrics (b) ma-
chines to make decisions by estimating models of users, adapting their behavior,
and predicting the next steps of these users.

Analyses of this type are especially relevant in the context of tutoring sys-
tems. While we live in a world of an ever increasing amount of digitalization
across all elements of our society – including education – , surprisingly little re-
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search has been conducted on the role and effectiveness of tutoring systems, let
alone on language tutoring systems. On top of that, most research on tutoring
systems has been conducted in controlled lab settings or with adult learners.
The idea pursued in our work is to conduct research where it matters: in eco-
logically valid contexts with a diverse group of learners. Or, as Gašević et al.
(2015, p. 5) put it, “the true test for learning analytics is demonstrating a
longer term impact on student learning and teaching practice.”

1.2 Thesis Overview

This thesis is structured in three main parts, with each part building on the
previous part(s).

In Part I, we provide the theoretical background and literature reviews on
Second Language Acquisition (Chapter 2), Learning Analytics and Educational
Data Mining (Chapter 3), and tutoring systems (Chapter 4).

The content of Part II is to establish an empirical basis for Part Part III.
In Chapter 5, we describe the FeedBook tutoring system as an instrument for
collecting learning process data, enabled via the feedback mechanisms described
in Chapter 6. In Chapter 7, we specifically describe the year long study in which
we used the FeedBook system in a range of different schools.

The third part is concerned with making sense of and allowing different user
groups to make sense of the data collected. We start by exploring Learning
Analytics tools for individual learners in Chapter 8, with a focus on an open
learner model. Then we zoom out to a group of learners by describing Learning
Analytics tools for teachers that allow them to get insights into the learning
of their school class, described in Chapter 9. In Chapter 10, we take another
step back and present Learning Analytics tools that use the data of the entire
learner population and meet the demands of material designers and educational
administrators. Chapter 11 concludes the third part by reporting the results of
exploratory data analyses that identify learning process features indicative of
learning gains.

As the ultimate step, we summarize the results, draw conclusions, and pro-
vide an outlook in Chapter 12 .
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Chapter 2

Second Language
Acquisition

“Second language acquisition (SLA, for short), is the scholarly field of inquiry
that investigates the human capacity to learn languages other than the first
[. . . ] once the first language or languages have been acquired.” (Ortega, 2009,
p.1–2).

Second Language Acquisition is distinguished from First Language Acquisi-
tion (FLA). Following this distinction, it is possible that a learner has several
second languages: every language learned in addition to the first language(s)
is referenced as a second language. While the lines can be fuzzy between SLA
and research on bilingualism, SLA research typically focuses on later stages of
acquisition towards the end of childhood, adolescence or adulthood.

The field of study of SLA is highly interdisciplinary, including general lin-
guistics (the domain to be acquired), psychology (conducting research on the
processes underlying learning), and pedagogy (the method with which the con-
tents are taught). Depending on the perspective, the field also incorporates
aspects of statistics and other fields. The goal of SLA is to gain an under-
standing of and insights into how humans learn languages other than the first
language(s); it combines both quantitative (e.g. feedback interaction models)
and qualitative methods (e.g. error analysis).

Adopting this definition, we provide an overview about core concepts from
the field of SLA relevant to this thesis. In section 2.1, we discuss the role of
practice. Since practice seems to be fundamental for language acquisition, and
for learning in a more general sense, we discuss factors that contribute to the
nature and effect of practice. During practice, learners have the chance to try
out different forms, potentially revealing a misconception, error or mistake. In
order to draw a learner’s attention to a specific form and to guide them towards
a correct or targeted form, an interaction partner (such as a teacher) can provide
feedback to the learner. We discuss the role of and parameters involved in the
the concept of feedback in section 2.2. In an ideal scenario, learners benefit from
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feedback and are capable of integrating the feedback to remedy the problems
addressed by it. This reaction is operationalized in the concept of uptake is the
reaction of a learner to corrective feedback, revealing if and how learners react
to the support of an interlocutor. In section 2.3, we discuss both the concept of
uptake and factors influencing the uptake process.

Disclaimer: This chapter and its parts have not been published before.

2.1 The Role of Practice

Practice is key to learning. Under a cognitive-interactionist perspective to Sec-
ond Language Acquisition, practice is an essential factor for learning. The
success of practice depends on both internal factors (such as motivation, learn-
ing goals, and attention to forms) and external factors (such as the learning
material received or the learning environment) (cf. Ortega (2009)).

Receiving only input is not sufficient. In order to learn, it is necessary to
practice and produce output, since only then feedback can be provided on the
learner production, and misconceptions can be addressed. Swain (1985, 2000)
stated this in the context of the Pushed Output Hypothesis. This theory predicts
that learning is the product of interaction partner pushing a learner to produce
a better answer.

There are a range of different theoretical approaches towards explaining the
effect of practice, such as the acculturation model (putting high emphasis on
social factors for SLA, e.g. Schumann (1990)), or universal grammar models
(assuming an innate, underlying universal grammar, e.g. White (1987); duP-
lessis et al. (1987)). For this thesis we adopt a cognitivist perspective in the
form of the Skill Acquisition Theory (DeKeyser, 2003, 2007) combined with a
socio-cultural focus assuming a Zone of Proximal Development (e.g. Vygot-
sky (1978); Lantoff and Appel (1994)). The Skill Acquisition Theory assumes
that declarative knowledge is automatized via practice and becomes procedural
knowledge. During practice, feedback is necessary to to draw the attention of
learners to specific aspects of their production (cf. section 2.2). The input pro-
vided to learners needs to be interpretable, ’comprehensible’ input (Krashen,
1985), since otherwise learners are not able to relate parts of the input to their
previous knowledge and interpret it. Via interaction with a competent partner,
such as a teacher or a tutoring system, tasks that are not too easy and not too
hard can be completed in a practice phase. The tasks need to be at an ap-
propriate difficulty level, challenging the learner without frustrating them and
allowing them to succeed with passable effort.

In a recent special issue on the role of practice in SLA, Suzuki et al. (2019)
identified factors influencing the effect of practice. In the following paragraph,
we will summarize the main points of this work illustrated with examples and ref-
erences from related work. The nature of practice depends on the tasks learners
are working on, from closed, form-focused exercises to open, communication-
oriented tasks. Closely related to this dimension is the modality of input (e.g.
selection vs. free production tasks) and stimuli (e.g. reading vs. listening texts).
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Timing of practice and the temporal distribution of practice sessions is a rele-
vant factor to consider (see also Trautwein (2007)). Closely related to timing is
the order in which practice tasks are presented, categorized as blocking versus
interleaving (tasks for different categories of constructs presented at the same
time). An important factor related to the role of practice are aptitude-treatment
interactions. Individual differences such as working memory or previous knowl-
edge relative to the requirements of the current task need to be considered (cf.
also DeKeyser (2012); Ruiz Hernández (2018); Suzuki et al. (2020)). In order
to evaluate the effects of practice, different approaches can be pursued. One
dimension to consider whether the focus is on learning products (e.g. test or
exam results) or learning processes (e.g. interaction logs and reaction to correc-
tive feedback). A related concept is the distinction between explicit, declarative
and implicit, procedural knowledge. With respect to measuring competence,
different approaches are possible, such as a delayed post test design or tasks
requiring transfer to new contexts. Furthermore, external factors such as learn-
ing conditions (e.g. practice in school vs. homework), the cultural context, and
personal/emotional factors play a role.

According to Shute (2007), there are different goal orientations with respect
to practice in the context of learning and SLA. The key is that ”for a learner
to remain motivated and engaged depends on a close match between a learner’s
goals and his or her expectations that these goals can be met” (Shute, 2007,
p. 12). This work distinguishes between different learner goal types: avoidance
types (with the goal of avoiding negative consequences for not performing a
task), learning orientation types (with the goal to increase competence), and
performance orientation types (with the goal to demonstrate performance). A
learning orientation is often considered favorable, since it is compatible with the
idea that errors are important for learning.

Research in psychology categorizes behavior for reaching a goal into extrinsic
and intrinsic motivation (Sansone and Harackiewicz, 2000). Extrinsic motiva-
tion is driven by external rewards or punishments. For example in school, an
extrinsic motivation can be grades. Intrinsic motivation, in contrast, relates
to rewards that are not related to external rewards or punishments, for exam-
ple reading a book for pleasure. The pedagogical value of factors of extrinsic
motivation has been discussed controversially and with contradictory findings
(Deci et al., 2001). A negative effect of extrinsic motivation described in the
literature is that it can decrease or supersede intrinsic motivation with learners
optimizing their behavior towards reaching external goals only. On the other
hand, extrinsic motivation has been shown to increase self-efficacy and intrinsic
motivation. According to the Cognitive Evaluation Theory (Ryan, 1982), ex-
trinsic motivation increases intrinsic motivation as long as the external rewards
increase the perceived competence and self-determination.

Due to the complexity of factors involved in practice, it is highly challenging
to capture all relevant factors in studies looking at the role of practice. How-
ever, attempts have been made to shed light on the influence of a combination of
factors. For example, Jurik et al. (2014) investigated individual differences, mo-
tivation, and student profiles with respect to practice. The study investigated
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the interaction between teacher behavior (questions and feedback), gender, and
self-reported learning activity in terms of depth of processing. The authors
showed that more autonomous learners were more successful than students who
needed a lot of guidance. In their study, they adopted the learner types/profiles
described by Seidel (2006) to classify learners into strong students, uninterested
students, underestimating students, overestimating students, and struggling stu-
dents. For example, underestimating students have high previous knowledge,
but a low self-concept. Learner types are thus used as a way of combining several
factors of learners into one label or category. Furthermore, the authors showed
that there is a difference in the effect of deep reasoning questions versus tasks
requiring shallow reasoning skills. In a study with 1,335 learners from 79 ninth
grade physics classes from Germany and Switzerland, they collected pretests
and self-reports after recorded lesson. Regression analyses showed that deep
reasoning tasks led to higher cognitive activity and more intrinsic motivation,
especially for strong learner types (in contrast to struggling learners). Different
types of feedback were not taken into account, but hypothesized to have an ef-
fect. Strong and overestimating learners were more active in the classroom than
other learner types. Underestimating learners benefited from praise and deep
reasoning tasks since it encouraged them and had a positive impact on their
self-concept. They call for teaching approaches that adapt to different learner
types and scaffold them according to their profile’s needs.

To sum up, the range of studies discussed different aspects of the role of
practice for learning. We saw that there are aspects on different levels that play
a role: on the level of learners (such as motivation, goal orientation, previous
knowledge), on the level of tasks learners are working on (such as openness or
reasoning types), but also on the level of the environment (such as the cultural
context).

2.2 Feedback

Feedback is “information provided by an agent [. . . ] regarding aspects of one’s
performance or understanding” (Hattie and Timperley, 2007, p. 81). The core
idea of feedback is that a competent entity is assisting a learner in doing exer-
cises by pointing out differences between the learner production and an expected
target answer. While it is beyond the scope of this thesis to discuss the entire
research on feedback, we will discuss a range of studies and models in the fol-
lowing that are relevant for this work because they shed light on factors that
interact with feedback.

Ortega (2009), in her overview about feedback, highlights the importance
of social components in Second Language Acquisition research with respect to
feedback. Since feedback involves an interaction between the learner and the
learning partner (e.g. teacher, parent, peer, tutoring system), there clearly is a
social component involved between the interaction partners.

The concept of social interaction is central to the Zone of Proximal Devel-
opment (ZPD). As stated by Vygotsky (1978, p. 131), “The zone of proximal
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development [. . . ] is the distance between the [child’s] actual developmental
level as determined by independent problem solving and the level of potential
development as determined by independent problem solving under adult guid-
ance or in collaboration with more capable peers.” This means that for exercises
that a learner attempts, (s)he is capable of reaching more when working together
with some form of partner compared to working alone. Or in other words: in
this case, one plus one equals more than two, since the (social) interaction be-
tween the learning partners allows them to reach a goal jointly that they could
not have reached independently and helps to reduce the distance between the
exercise level and the learners’ proficiency level. While this concept was for-
mulated before the age of computers, the computer in the form of a tutoring
system can serve as a competent partner, with the explicit knowledge encoded
in its domain model and the interaction with the learner guided by its pedagogy
module. The Vygostkyan strand of research in Second Language Acquisition
research has seen continued popularity and been extended in various ways (cf.
e.g. Lantoff and Appel (1994)).

An influential feedback model in Second Language Acquisition research was
proposed by Hattie and Timperley (2007). They propose a theoretical model
combined with findings distilled from literature reviews. In the following, we
will summarize their feedback model.

The authors describe that feedback leads to interaction with two compo-
nents: interaction with the feedback (message), and interaction with original
task. Originally, learners are working on a task and interacting with it (e.g. by
reading the instructions), but once feedback is displayed, learners partly shift
their cognitive resources to the feedback and interact with the feedback.

Feedback leads to cognitive processes such as confirmation, restructuring of
knowledge, or pursuit of different task strategies. Since an important function
of feedback is to guide learners towards a correct solution, feedback is most
effective in cases in which it targets very specific erroneous aspects the learner
can relate to, but not very effective if the student does not understand the task
at all. The difference is explained by the fact that in the former case, the feed-
back is related to the specific task, whereas in the case of a complete lack of
knowledge, feedback can not correct, but would have to add information to the
learner’s knowledge representation. Hattie and Timperley (2007) explain that
a meta-analysis of feedback studies showed that feedback is effective if the feed-
back is on a task or/and task strategies. For this reason, positive feedback was
often shown to not be effective since praise mostly does not contain task-specific
information, i.e. explanations of why a specific answer was correct. Further-
more, positive feedback can also decrease intrinsic motivation, or replace it with
extrinsic motivation. Feedback, in order to be effective, needs to incorporate the
goal towards it leads, information about the progress towards the goal, and next
steps for learners to take. According to the model, there are four levels/aspects
on which feedback has an effect, which we will describe in the following.

Feedback can change the approach by a learner to a certain task (as is the
case for corrective feedback). As stated above, feedback on erroneous parts is
more effective than feedback on a lack of information. If feedback is on a task,
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more explicit feedback works better. But in any case, feedback is only effective
if the learners actively pay attention to the feedback messages.

Another level on which feedback can work is the working or learning process
in general. Hattie and Timperley (2007) distinguish shallow learning from deep
learning strategies. The form of feedback can have different effects on these task
strategies, interacting with the proficiency of learners.

In addition, feedback has effects on self-regulation, that is the regulation of
behavior for accomplishing a task. The idea here is to get from external feedback
to internal feedback loops in which learners evaluate how to proceed next and on
other tasks. Feedback has been shown to influence the self-monitoring, with the
highest effects in cases where the learner expects a correct answer, but received
feedback that shows it is not correct.

On an affective or personal level, feedback on the person of the learner can
lead to higher effort on tasks, but also be detrimental, e.g. in classroom situ-
ations in which praise id distributed only very selectively by a teacher. Praise
was shown to only be effective if it contains task-related information, but it
is not effective if it is praise in general not about the task strategies a learner
implemented. Negative feedback can have the effect that the goals of learners
are adapted and raised, whereas for positive feedback, learners are not forced
to adjust their goals.

Regarding the timing of feedback, Hattie and Timperley (2007) state that
feedback at the task level is effective when it is delayed, since then and especially
for more difficult tasks, learners have enough time to think about the task
and how their solution corresponds to it, so that later they can mentally put
the feedback in relation to the task’s requirements. In contrast, feedback at
the process level is most effective when it is given immediately, i.e. formative
feedback that supports the process of accomplishing certain components of tasks.

The article concludes with the observation that very little research on feed-
back in actual classrooms has been conducted, even though it has been shown
to be highly effective. This shows that there is a gap for the provision of timely
formative feedback that tutoring systems can partly fill, justifying the imple-
mentation and testing of tutoring systems with immediate feedback.

Fyfe and Rittle-Johnson (2016) showed that the effectiveness of feedback
interacts with prior knowledge. Feedback can have negative effects for learn-
ers with prior knowledge because some learners with more previous knowledge
did not accept feedback due to their confidence in the subject matter and per-
formed later worse than learners with less previous knowledge who accepted
the feedback. The authors explain this finding with the possibility of cognitive
overload because learners with previous knowledge need to deal with feedback
that contains redundant information and thus would be better off without feed-
back about aspects they already already know about – but given that feedback
is displayed, they still have to process it. Feedback was, in their study, found
to be more helpful for learners without or with only little previous knowledge.
Another finding was that immediate feedback can lead to learners giving up
their previously established feedback strategies for problem solving and adopt-
ing new strategies more tailored towards the feedback mechanism, i.e. they
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optimize their behavior towards the feedback mechanism.
Golke et al. (2015) investigated how motivation and attention interact with

feedback processing and transfer. According to Golke et al. (2015, page 2), feed-
back “does not function automatically. It instead demands an active learner who
is motivated to process the feedback information.” In essence, when a feedback
message just pops up, but learners are not motivated to engage with it, the feed-
back will not have a positive effect. They further explain that effectiveness of
feedback also depends on the content and formulation of the feedback message
(with differences in the degree of explicitness of the feedback), the timing with
respect to its presentation, and the presentation type of the feedback. The au-
thors found that immediate corrective feedback was more effective than delayed
feedback for incorrect responses, and specific feedback was more effective than
unspecific, generic feedback. In their study, time-on-task did not differ for feed-
back vs. non-feedback condition. However, Golke et al. (2015) found a difference
in feedback processing with respect to whether a person or a computer deliv-
ered it. The presence of a human increased the chances that the feedback was
processed successfully, partly because of the social component involved when an
actual person is present in the same room. In their study, computer-mediated
feedback was not as effective as feedback delivered by a person. One reason for
this was that learners had no motivation because the task to which feedback
was provided was de-contextualized and did not lead to an ultimate goal such
as higher final grades – in this case, only a social component could motivate
them to engage with feedback.

Patchan et al. (2016) investigated different factors influencing the effective-
ness of feedback. They build on a model by Nelson and Schunn (2009), in which
feedback is seen as a concept relating to a combination of cognitive and affective
features. Cognitive features such as the specificity of the feedback, highlighting
of errors, or the explanation of errors contribute to supporting the understand-
ing of students. In contrast, affective factors such as praise or mitigation of
the error serve to increase the agreement of the learner to the feedback. Both
types of factors, relating to understanding and to agreement, need to be present
for feedback to be effective for learners. In their experiment, they looked at
432 university students in an introductory psychology class. They reported un-
clear findings with respect to the effectiveness of feedback of different specificity
and detrimental effects on providing only a target answer or mitigating errors.
Instead, they found positive effects for feedback localizing an error. Another
interesting finding was that showing more errors reduced the likelihood of feed-
back shown later to be implemented, probably because learners were already
cognitively exhausted after reading the first feedback messages. They found a
positive effect for praise, but only for high amounts of praise.

Cerezo (2016) investigated the granularity of the explicitness of feedback.
They went through the relevant literature and identified as a trend that more
specific feedback leads to higher learning outcomes. But: binary feedback has
also been shown to be effective. With their participants, consisting of inter-
mediate learners of Spanish, the authors triangulated different data sources for
learner modeling that goes beyond competence measures and includes quali-
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tative aspects such as think-aloud protocols, but also click-streams on items.
They found out that additional practice can lead to fatigue and boredom and
diminish the effects of more practice and feedback. An important finding from
their study is that deeper processing and more attention leads to higher learning
gains. Feedback can not necessarily be processed and does not lead to higher
learning gains if learners are exhausted from practice. Only when learners are
actively engaging with a task and feedback, this can lead to deeper processing
(cf. also Leow (2019)), and subsequently a positive effect on learning outcomes.

With respect to time-on-task, the relation between time spent and learning
gains is still unclear. While classical approaches like Cooper and Pantle (1967) or
Carroll (1963) propose a total-time law in psychology, claiming a direct relation
between time spent studying and amount of learning, more recent work views
this more critically. As mentioned above, Cerezo (2016) showed that additional
practice – and thus more time-on-task spent – can lead to fatigue and diminish
the effects of more practice and feedback. Going from lab-based scenarios to
authentic, real-life contexts, the relation between time spent and learning gains
is poorly understood (cf. e.g. the research on homework by Trautwein and
Köller (2003)).

Lyster and Ranta (1997) distinguish a range of feedback types discussed in
the following. An explicit correction consists of explicitly providing a correct
form. A recast is an implicitly provided correct form via embedded in a reformu-
lated version of the learner answer. In clarification requests, teachers/learning
interaction partners indicate that a part of the student answer is ill-formed and
needs to be repaired. Meta-linguistic feedback is a type of feedback in which a
teacher provides information about a deviating form or meaning of a student
answer without providing a correct or target answer. Finally, elicitation can
be achieved via strategic pauses with gaps for student to fill in the gap, i.e.
provide a context in which the student knows she needs to react to the pause
with another attempt at the correct answer.

As Heift (2010a) explains, corrective feedback is on a scale between two
extremes. In the least specific case, a system provides unspecific default feedback
that does not address a specific error. In contrast, the most extreme case is to
display the target answer. On both ends of the extremes, no specific error
feedback is displayed.

Panova and Lyster (2002) explain that there are different kinds of feedback
with respect to the target and timing. Formative feedback is provided on the
process of working on an exercise, whereas summative feedback sums up the
performance on a task after having submitted it. Formative feedback is defined
as ”information communicated to the learner that is intended to modify his or
her thinking or behavior for the purpose of improving learning” (Shute, 2007,
p.1). The noticing hypothesis (Schmidt, 1990) states that learners can only
notice a gap/difference between their answer and a target answer if it is salient
enough. Corrective feedback can help point out gaps in the process of working
on a task by comparing the learner response to a target representation and
drawing attention to a specific part of the answer.

With respect to the timing of feedback, there are conflicting findings (Shute
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(2007), which serves at the basis for the following arguments). There is support
for delayed feedback. There is some evidence that learners forget errors, i.e.
errors will not be persisted in memory. Furthermore, studies have shown that
transfer of knowledge to new tasks was higher with delayed feedback. On the
other hand, there is support for the positive effects of immediate feedback. It
has been demonstrated that immediate feedback is better for training procedural
skills, for short-term outcomes, and for more complex tasks.

According to Shute (2007), immediate feedback is often shown to be effective
in field studies in contrast to delayed feedback, which is often shown to be
effective in lab studies. Furthermore, low-achieving students or students with
low learning orientation benefit more from immediate feedback, whereas high-
achieving students benefit more from delayed feedback.

Shute (2007) attempted to identify explanations for conflicting findings from
the literature on the effect of formative feedback. Factors identified in previous
research as having negative effects were critical feedback, controlling feedback,
grades or scores comparing students to peers together with lack of transparency
or vagueness, and feedback from external source that disrupts learning. The
functions of feedback, according to Shute (2007), can be categorized into direc-
tive feedback (specific feedback referring to an error in the learner answer and
providing information about what needs to be fixed) and in facilitative feed-
back (providing hints or examples, students need to come up with the error
types themselves). As cognitive mechanisms for feedback the author lists the
reduction of uncertainty for learners on their production, the reduction of cog-
nitive load since part of it is outsourced to the system providing feedback, the
correction of strategies for solving tasks, and the correction of misconceptions.
Related to that, the author argues that unspecific feedback is challenging for
students since it requires learners to invest cognitive load in order to detect the
problem. Another aspect discussed is that for low achieving students, compar-
isons with others (the norm) is frustrating and decreases their motivation. In
contrast, ”self-referenced feedback” (Shute, 2007, p. 20) is beneficial since it
shows them that via practice they can get better results than before.

2.3 Reaction to Feedback: Uptake

”Comprehensible input alone is not sufficient for successful L2 learning; com-
prehensible output is also required” (Lyster and Ranta, 1997, p. 41). In their
seminal work, Lyster and Ranta (1997) explain that practice generates student
output, in which errors occur, and of which teachers correct some. In order
for learners to benefit from the error correction process, there is a necessity for
teachers to highlight parts of the learner input or output to draw attention to
specific (in the case of language learning linguistic) features. In the following,
we will summarize their work and classical model.

Uptake can be observed as part of an interaction sequence, each of which
is initiated by a leaner error. As a reaction to corrective feedback, teachers
can continue without feedback (referred to as topic continuation) or give cor-
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rective feedback. The decision as to when feedback is provided is of a peda-
gogical nature. Students then can react to corrective feedback (uptake) or not
(topic continuation). This student reaction can still contain errors (referred to
as needs-repair) or not; in the case of needs-repair, the entire process can be
repeated and start over again.

Lyster and Ranta (1997, p. 49) define uptake as a ”student’s utterance
that immediately follows the teacher’s feedback and that constitutes a reaction
in some way to the teacher’s intention to draw attention to some aspect of
the student’s initial utterance.” Uptake is here defined in a general sense as a
reaction to corrective feedback. The authors distinguish uptake with repair, in
which a specific error targeted by corrective feedback repaired from uptake that
still needs repair. In the case of uptake with repair, there often is a reinforcement
by the teacher after the successful correction. In FeedBook, this is approximated
via the green check marks following a correct answer.

Types of reactions that still require repair are acknowledgment (saying that
the teacher said what the student wanted to say), making the same error, making
a different error, making another error while the original error is not corrected or
repeated, providing an off-target response (circumventing feedback and original
error, no further errors), a hesitation, or a partial repair (a correction of sub part
of original error). These types of uptake are reflected and serve as the theoretical
basis for the FeedBook learner model (chapter 8). They acknowledge, but do not
consider, cases with self-initiated repair. In FeedBook thus only the intervention
group is compatible with this model since there the uptake is not self-initiated
(in contrast to the control group where the feedback was partly blocked).

In a quantitative analysis, Lyster and Ranta (1997) showed that 62% of
learner errors were followed by corrective feedback. 55% of the corrective feed-
back moves were followed by uptake (27% with repair, with 28% needs-repair).
Meta-linguistic feedback formed only 8% of the teacher feedback, even though
meta-linguistic feedback was more effective in generating student uptake with
repair (45%) than other types of corrective feedback.

Ellis et al. (2001) extended the work by Lyster and Ranta (1997) and defined
the following types of uptake: acknowledgment (learners acknowledge feedback),
uptake with repair (error targeted in feedback corrected), uptake that still needs
repair (form targeted in feedback still not used correctly), recognition (learner
recognizes the error), application (learner attempts to apply the feedback and
use the form), and needs application (learners do not apply the targeted form).

Smith (2005) takes a different perspective with respect to the effects of up-
take. From a terminological standpoint, the author points out that the definition
of uptake changed over time. First, it represented a recall of learned concepts.
Then it was used for an immediate reaction to corrective feedback. More re-
cently, it was also used to describe an optional learner move as a reaction to
implicit or explicit highlighting of a linguistic feature in the learner production.
In a study over the duration of 6 weeks, the author analyzed the data of 24
university level participants of English as a Second Language. Specifically, the
author looked at synchronous computer-mediated communication, i.e. chats
that learners collaboratively used to solve tasks. This setting was chosen in
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contrast to other studies since it was hypothesized to involve factors beneficial
to SLA learners in that they would have the chance to anonymously try out new
forms produce output in a written manner allowing for a direct focus on specific
forms. The author found out that (I)CALL and SLA theories are not always
compatible in that they found no clear link between uptake and acquisition.
They broke down sequences of chat interactions into episodes and identified 66
uptake observation of different types. Among no uptake, this included a passive
recognition (learners indicated that they understood the feedback) and an active
application (learners used forms under discussion actively). The results showed
that post test scores can not be predicted by uptake observations, that the ac-
quisition is not predicted by uptake, and that the complexity not is correlated
with uptake.

Panova and Lyster (2002) define uptake as an immediate learner response
to corrective feedback referring back to the original answer. They distinguish
uptake with repair from uptake that still needs repair. Of uptake that needs
repair, they distinguish an acknowledgment of the error, learners committing
the same error, learners committing a different error, learners going off-target,
a hesitation, or partial repair. In cases where teachers continue with different
topics or the student does not refer back to the original answer (e.g. when a
student did not notice corrective feedback), no uptake can be observed. Based
on the literature, they expected that specific types of corrective feedback (clari-
fication requests, elicitations, meta-linguistic feedback, and repetition) correlate
more with uptake than explicit correction or recasts In their study with 25 adult
learners of English, they observed corrective feedback to 48% of the student an-
swers and uptake to 47% of the corrective feedback instances. 34% of the uptake
instances were with repair. The main finding of Panova and Lyster (2002) was
that corrective feedback instances that give away target answers do not lead to
uptake.

Heift (2004) investigated learner uptake in the context of computer-assisted
language learning. Based on the theoretical foundation of the interaction hy-
pothesis, which states that learners negotiate linguistic forms with a partner
(such as a teacher or a system), and based on the noticing hypothesis, which
states that input needs to be comprehensible for learners to notice features in
the input, they investigated the distribution of corrective feedback types in re-
lation to learner uptake and learner characteristics (gender, native language,
previous exposure, and computer experience). In the context of e-tutor (cf.
section 4.4.2), different types of corrective feedback with different specificity
are considered: meta-linguistic, meta-linguistic with highlighting, and repeti-
tion with highlighting. The study involved 177 students over the course of one
semester who used e-tutor for 15 weeks covering four chapters with 50 exercises
per chapter, plus pretests, post tests, and a questionnaire. Uptake here is de-
fined as student responses to corrective feedback. For this study, students were
able to resubmit an answer and get feedback again, ask for the correct answer,
or skip to the next exercise. Heift (2004) conducted a quantitative analysis of
the collected data by looking at the number of interactions per interaction type.
The types considered were answers correct at the first attempt, correct but not
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on the first attempt, submission of answers with errors, skipping an exercise,
and peeking at a correct answer. The main findings of the study were that
that there was no effect of gender or proficiency on the revision patterns, that
more explicit feedback is desired by learners, and that more explicit feedback
correlates with more error corrections and thus leads to more successful uptake.
Open questions that could not be answered were the effect of error types on
uptake, the effect of motivation and learner type/strategy on uptake, and the
effect of additional linked material on uptake.

As a follow-up study, Heift (2010a) investigated the effect of uptake in e-tutor
more longitudinally. Over the course of twelve months spanning three consecu-
tive German courses over three semesters, ten learners of German as a second
language (seven female, three male, average 20 years) were observed. The study
altered the types of feedback provided to learners, with each participant initially
randomly assigned to a test group and swapped after each of the 13 chapters.
The chapters included a total of 633 distinct exercises. The first test group
received meta-linguistic explanations including highlighting, a reference to the
error category, and specific feedback. The second group received only meta-
linguistic clues in the form of highlighting of error and a mention of the error
category. The feedback categories included grammar and spelling. The grading
consisted of looking at whether exercises have been completed (not whether they
have been completed successfully or correctly). Based on previous research, the
author hypothesized that more specific or explicit feedback is more helpful to
students. In order to allow for comparisons across learners, uptake was normal-
ized by the number of exercises completed (student uptake divided by exercises
completed). The study investigates the effect of learner uptake with respect to
grammar or spelling errors, the effect of learner uptake in beginner, advanced
beginner, intermediate course, and the effect of learner uptake across all courses
(longitudinal modeling). The uptake categories considered in this study included
successful uptake (no errors in learner answer), unsuccessful uptake (learner an-
swer still contains errors after learner reaction to feedback), and no uptake
(skipping exercise or looking up target answer). The data consisted of 6,111
exercises/prompts completed by students, with around 200 exercises/prompts
completed per course and student. 2,974 exercises/prompts were not completed
correctly at first try. A total of 12,137 submissions (attempts) for these exercises
were collected, with an average of 1.99 submissions per exercise. Of these, 4,943
submissions were correct at first try, 7,194 submissions with errors. In 16.2% of
the cases for both experimental groups, no uptake was found. A t-test revealed
that the group with feedback with explanations showed significantly more up-
take and more re-submissions/attempts. Furthermore, Heift (2010a) found out
that more specific feedback was more helpful for grammar than spelling errors,
since for grammar errors there is more ambiguity, and specific feedback narrows
the room of options more down. Consequently, there was a higher proportion
of uptake for grammar errors compared to spelling errors, with more uptake
for more specific feedback. The study revealed a larger difference for higher or
more advanced courses, again especially for specific feedback.

In a discussion section, the author points out that uptake is not equal to
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mastery. A limitation discussed is that the study did not take into account
specific types of grammar errors, but only the frequency of uptake independent
of the specific error. The FeedBook data can provide this type of information.
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Chapter 3

Learning Analytics and
Educational Data Mining

Learning Analytics is “the measurement, collection, analysis and reporting of
data about learners and their contexts, for purposes of understanding and opti-
mizing learning and the environments in which it occurs” (Siemens and Baker,
2012, p. 1). Or, as Mangaroska and Giannakos (2018, p. 3) sustain, the task of
Learning Analytics is the “development of measures that can increase the un-
derstanding into the learning processes and interpret those measures to inform
existing theories for the purpose of developing actionable initiatives in teaching
practices and design of learning environments.”
While Learning Analytics can be used to analyze data from traditional face-
to-face teaching settings, it is primarily concerned and relevant in the context
of web-based learning, since in contrast to traditional classrooms, learners and
instructors are separated spatially and often also temporally. This disconnect
deprives instructors from a direct monitoring of their students during the learn-
ing process, generating a need for tools that provide instructors with learning
process related information (Romero and Ventura, 2007).
The data that are used as input to these Learning Analytics applications typi-
cally consist of client-server log data. Every entry in the log consists of a time
stamp, a user id, and an action, potentially with context such as the exercise
a learner is currently working on (Romero et al., 2014). Log entries can be
generated every time the learner interacts with a system (Baker and Yacef,
2009). This typically results in large quantities of data points that need to be
pre-processed, evaluated, and made interpretable for different purposes of dif-
ferent stakeholders (learners, instructors, material designers, researchers). Pre-
processing data in the educational area is especially challenging when compared
to other domains since on the one hand, large quantities of data of different
granularity are available, but on the other hand, the data is often incomplete,
since not all learners always do all activities they are asked to do (Romero et al.,
2014), especially in ecologically valid settings (Siemens, 2013), which, however,
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provide the most valuable data.
Typical applications of Learning Analytics as discussed by Papamitsiou and
Economides (2014), are student behavior modeling (e.g. learning strategies,
response times to questions), the prediction of future performance of learners
(e.g. using grades, participation metrics), fostering an increase in progress re-
flection and awareness of learning progress (e.g. student-at-risk detection), the
prediction of dropout and retention in courses, the improvement of feedback
and student assistance services, and the recommendation of resources (sequenc-
ing of materials). Romero and Ventura (2007) mention further applications in
the form of the identification of misleading feedback, the data-driven evaluation
of the difficulty of learning material, and an automatic sequencing of material
based on this. In the context of intelligent tutoring systems, a further common
application of Learning Analytics is the implementation of open learner models
to increase the meta-cognition of learners regarding their progress (Bull and
Kay, 2006). In order to arrive at such analyses and applications, it is necessary
to define features that provide quantified abstractions over the raw log data, i.e.
feature engineering.
Based on a literature review, Gašević et al. (2015, p.3) argue that “learning
analytics needs to ground data collection, measurement, analysis, reporting and
interpretation processes within the existing research on learning”. This means
that the analyses and features should make use of findings related to learning
processes as a guidance and theoretical basis. With a theoretical framework
making use of pedagogy and cognitive science, it is possible to put theoretical
findings relating to learning processes to the test. With human learning being
a complex process, an important question to ask is whether there are simpler
features that can be extracted from the log files commonly used in Learning
Analytics that (partly) correlate with or allow to predict the learning process.
The selection and engineering of specific features depends on the relevant task
at hand and is therefore domain-specific and differs depending on which appli-
cation should be implemented. For example, an application designed to provide
sequencing of mathematical exercises uses different features than an open learner
model in a system offering a dashboard to students visualizing the complexity
of essays in a foreign language.
In this chapter, we approach the research field of Learning Analytics and Educa-
tional Data Mining from different perspectives. We start by looking at how these
research field emerged historically (section 3.2), and which definition is adopted
today in the research community and this dissertation (section 3.1). In the next
section (3.3), we inspect in which domains Learning Analytics and Educational
Data Mining are used, and for what purposes. Following this discussion, we
dive deeper into one application especially relevant for this dissertation: the
modeling of competence (3.4), subdividing this topic into the modeling of task
difficulty (3.4.1) and the competence of learners in learner models (3.4.2). We
conclude this chapter by discussing open challenges of Learning Analytics and
Educational Data Mining in section 3.5.

Disclaimer: This chapter and its parts have not been published before.
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3.1 Definition of Fields

In the following sections, we will establish definitions of the areas of Learning
Analytics (3.1.1) and Educational Data Mining (3.1.2). We present and compare
different high-level definitions established in the literature, zoom into different
components of them, and then elaborate certain aspects of these definitions in
order to give an understandable and self-contained definition for each field. In
section 3.1.3, we provide a comparison based on these definitions.

3.1.1 Learning Analytics

Learning Analytics is “the measurement, collection, analysis and reporting of
data about learners and their contexts, for purposes of understanding and op-
timizing learning and the environments in which it occurs”. This definition
by Siemens and Baker (2012, p. 1) was adopted by the Society for Learning
Analytics Research 1 and forms the official definition for this research field.

Various authors have rephrased or slightly extended this definition, with each
of the definitions discussed in the following putting emphasis on an extension
of a specific aspect of the original definition.

According to Mangaroska and Giannakos (2018, p. 3), Learning Analytics
constitutes the “development of measures that can increase the understanding
into the learning processes and interpret those measures to inform existing the-
ories for the purpose of developing actionable initiatives in teaching practices
and design of learning environments.” This definition stresses the importance
of a strong theoretical basis for Learning Analytics. Measures that are imple-
mented and presented to humans for decision making should not be arbitrary,
but instead have a justification from a theoretical point of view.

An alternative definition is provided by Sclater et al. (2016, p. 4). They
define Learning Analytics as “the measurement, collection, analysis and report-
ing of data about the progress of learners and the contexts in which learning
takes place”. In this definition, the focus lies on the progress of learners. Since
every interaction with a digital learning system, e.g. client-server interaction
or client-side events triggered by the learner, generates log traces that can be
stored and used as input to Learning Analytics, measures that characterize the
process of learning, as opposed to summative “snapshot” measures, can be de-
veloped. When a learner submits an exam paper, the teacher can only see
the final product of the task completion process. In contrast, when a learner
works on a digital exercise, this provides the opportunity to save intermediate
versions leading up to the final submitted version. This begs the question of eth-
ical practices regarding data store, usage, processing, and presentation. System
designers have to find solutions in agreement with ethical committee guidelines,
local legislation, and best practices in system design.

Ferguson (2012), in their definition, makes additional assumptions about
Learning Analytics to delineate it from other educational research. The author

1https://www.solaresearch.org/about/what-is-learning-analytics/, last accessed
2020-01-28
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presupposes that Learning Analytics work is based on data in a quantity that
makes manual analysis not very feasible. Closely related to research in Edu-
cational Data Mining, this leads to approaches where bigger amounts of data
are combined by methods such as clustering, aggregation, or visualization in
dashboards in order to allow humans to find patterns that are otherwise not
obvious because they are distributed over many individual log entries.

Gašević et al. (2015, p. 5) state that the “true test for Learning Analytics is
demonstrating a longer term impact on student learning and teaching practices.”
While the authors emphasize that Learning Analytics needs to be informed by
and using insights from previous theoretical research on psychology/learning
processes, they formulate the ultimate goal as a positive change in authentic
environments. This implies that decisions beneficial for the learning process
have been taken, and these decisions were enabled by Learning Analytics.

Or, as Chatti et al. (2013, p. 6) put it, the goal of Learning Analytics is
to enable taking actions. Siemens and Baker (2012) share this perspective by
stating that the goal of Learning Analytics is that machines inform humans to
support their decision making or action taking process in the sector of education.

The concrete actions in this case consist of the following cases: analysis and
monitoring of students, prediction of success or risk of failure in a course, as-
sessment of students, adaptivity in learning software, fostering of meta-cognitive
learning processes and self-reflection, provision of feedback to learners, fostering
empirical testing of pedagogical interventions and teaching strategies. In section
3.3, we go into more detail for each of these actions.

Different authors disagree where to draw the line between Learning Analytics
and related disciplines. Chatti et al. (2013) view the process of data collection
and pre-processing as a part of Learning Analytics. In contrast, Ferguson (2012)
make the assumption that Learning Analytics always works with existing data
in digital form, thus excluding the stage of data collection from this research
field.

Combined in essence, Learning Analytics is the activity and research of build-
ing tools with the purpose of enabling to take action in the domain of education.
Or, in a nutshell, Learning Analytics is concerned with going from educational
data to “actionable intelligence”(Arnold and Pistilli, 2012, p.1).

3.1.2 Educational Data Mining

Educational Data Mining (EDM) is a research field that constitutes of the ap-
plication of data mining methods to educational data.

Data Mining refers to the task of “the discovery of interesting, unexpected
or valuable structures in large data sets” (Hand, 2007, p. 1). The assumption
underlying this research is that ’interesting’ information is contained implicitly
in large amounts of data, and that data mining techniques allow to extract
this information (Bissantz and Hagedorn, 2009; Raghavan, 2005). In order to
extract initially hidden information, two categories of approaches are pursued:
model building (supervised machine learning) and pattern discovery (unsuper-
vised machine learning) (cf. e.g. Petersohn (2005)).
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The definition of what counts as interesting depends on both the domain
and the purpose of the analysis. For example, data mining in the domain of
bio-informatics has an interest in discriminating genome sequences (Frank et al.,
2004), whereas a typical goal for data mining in the business sector is the identi-
fication of customer groups and purchase patterns (Bose and Mahapatra, 2001).
In the educational domain, data mining is concerned with the understanding
and modeling of learning processes and the contexts of learning, thus pursuing
the same ultimate goal as Learning Analytics (cf. section 3.1.1).

A criterion applicable to all subdomains of data mining is the availability
and usage of bigger amounts of data. While this formulation is somewhat im-
precise in that the perception of what constitutes a ’big’ amount of data varies
according to the development and availability of improved technology (Fan and
Bifet, 2013), the notion of data mining presupposes electronically available data
in a quantity that would render the time needed to have it analyzed manu-
ally by humans unreasonably disproportionate in comparison to an analysis by
computers.

Having approached Data Mining from a general high-level perspective, let
us turn to Educational Data Mining specifically. According to Siemens and
Baker (2012, p. 1), Educational Data Mining is a research field “concerned
with developing methods for exploring the unique types of data that come from
educational settings, and using those methods to better understand students,
and the settings which they learn in”. They sustain that the goal of Educa-
tional Data Mining is to use automated, data-driven methods to isolate certain
characteristics of learners, tasks, or the environment in order to gain insights
into the learning process or adapt the behavior of learning/tutoring systems.

According to Romero et al. (2010), Educational Data Mining emerged as
a follow-up to data mining methods applied to business and biology. In order
to delineate Educational Data Mining from its predecessor in Business Analyt-
ics, they compare the two fields in certain aspects. In business data mining,
the ultimate goal is to maximize profit, whereas in Educational Data Mining,
the goal is to maximize the learning. They point out that the data employed
in Educational Data Mining is much richer, since specific analyses of input and
feedback are employed in contrast to server logs or purchase lists in the commer-
cial sector. This allows for a more fine-grained modeling of the involved humans
in this domain. While this claim was most likely true at the time of writing,
in the meantime the commercial data mining market has changed drastically:
with a very broad adoption of smartphones and sales via apps on smartphones,
users typically provide apps with extensive rights to access all the data stored
on the device such as telephone or message logs, data from other apps, GPS lo-
cation, etc. (Grace et al., 2012). So in today’s situation, commercial apps often
have more fine-grained information about their users since they can not only
log all the data inside the app, but join it together with data from other apps
or the device. With respect to the data mining methodology and techniques
employed, the two sub fields have a significant overlap, but Educational Data
Mining requires special emphasis on modeling the dependence between individ-
uals since learners often learn in groups (typically school classes) and therefore
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influence each other. A straightforward approach to model these dependencies
is multilevel modeling (e.g. Gelman (2006)).

In order to perform any analysis in data mining, an essential and one of
the biggest steps is to conduct pre-processing of the raw source data. In their
Survey on Pre-Processing Educational Data, Romero et al. (2014) summarize
approaches of pre-processing of Educational Data Mining.

Compositionally, Educational Data Mining contains the term “mining”. In
mining, the goal is to extract valuable materials from a planet’s upper layers of
the crust. In order to find the valuable veins of rare materials, tools guided by
humans are necessary to remove big amounts of stone first. Once potential veins
are discovered, they have to be extracted and further processed by specialized
tools, whereas the surrounding stones are discarded. In Educational Data Min-
ing, the removal of stones corresponds to pre-processing of raw data, and the
processing of veins of potentially valuable materials corresponds to educational
data mining for valuable learning information. Two types of pre-processing have
to be distinguished: (1) filtering of information relevant for a specific task and
(2) transforming the data into a shape that a specific analysis tool requires. For
case (1), imagine a scenario in which access patterns of exercises by learners
should be analyzed. In this case, and when a raw server log serves as a basis,
log statements about teachers correcting exercises of learners can most likely be
filtered out of the log. In case (2), sticking to our example, the task identifiers
in the log statements may be in a string format, whereas the analysis tool may
require the identifiers in a numeric format.

In detail, the following steps are necessary for processing educational data
in the context of Educational Data Mining (Romero et al., 2014). Educational
Data Mining researchers need to gather data, potentially from different sources.
The different data sets then need to be integrated into a common data set, or
prepared into a representation that can easily be merged or joined. Especially
for different data sets, the data will contain aspects not relevant to the current
analysis, requiring a round of data cleaning. After this, the next step is the
identification of data by user and/or session. This is a necessary step for the
attribute selection phase. The next step they describe consists of filtering the
data in the sense that data only on a specific level is selected, for example
data for a specific task or for sessions in a certain time frame. The last pre-
processing step is data transformation, where the data is normalized and features
summarizing other features are defined, e.g. normalization or outlier removal.

Once these steps are completed, Educational Data Mining research then can
use the features as input to analyses to (a) understand learning and the learning
environments better and (b) improve learning and learning environments better.
The process is not one-directional, but instead circular: the results of analyses
can be used to adjust systems that generate data that can be analyzed and so
on.

Educational Data Mining as an interdisciplinary research field builds mainly
upon educational research, pedagogy, social sciences, computer science, human-
computer interaction, data visualization, machine learning, artificial intelli-
gence, information retrieval, recommender systems, Academic Analytics (a form
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of Business Analytics applied to education) (e.g. Chatti et al. (2013)). For dif-
ferent stakeholders, a different emphasis is put on the importance of different
related neighboring areas, depending on the needs for the specific target groups.

As Siemens and Baker (2012) summarize, Educational Data Mining is about
humans informing machines to make decisions in a learning context and to
automatically build models about learning.

3.1.3 Comparison

In conclusion, the two research areas, while historically treated as separate
fields, have converged to a point where the similarities strongly outweigh the
differences. Rather than different research fields, we argue that they are different
strands of the same research field, with slight differences in the emphasis of their
application.

In both areas, the shared goal is to help understand and improve learn-
ing (Liñán and Pérez, 2015). What differs between the fields is mainly the
methodology: while Learning Analytics puts higher emphasis on building tools
that inform humans about the learning process, in Educational Data Mining
research often more importance is put on using human intelligence to inform
automated models (Siemens and Baker, 2012). In a nutshell, Learning Analytics
fosters human inspection of learning data, and Educational Data Mining fosters
automatic modeling of learning data.

3.2 Historical Perspective

In section 3.1, we discuss current and established definitions commonly adopted
for and in the context of Learning Analytics and Educational Data Mining.
While these definitions serve to provide a concise and precise definition of the
fields, it can be insightful to look at concrete work performed in this domain
to gain insights into what type of work has been conducted in practice. This
is relevant in that the general definitions abstract away from concrete work.
With the goal of approaching the fields from a more practical perspective, we in
the following provide a discussion of past work based on systematic literature
reviews. With a comprehensive literature review of all the many hundreds of
papers published in Learning Analytics and Educational Data Mining in the
last three decades infeasible for the scope of this thesis, we instead take existing
literature reviews as a basis. In the following, we summarize several literature
reviews with different perspectives on the historical development of the field.
Each of the reviews offers a different perspective and approach to the historical
development of the field.

3.2.1 Romero et al. (2010) and Romero and Ventura (2010)

Romero et al. (2010) and Romero and Ventura (2010) provide a very compre-
hensive literature review covering the time period 1993 to 2010. Educational
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Data Mining emerged as a follow-up to data mining methods applied to business
and biology.

Data mining methodology was, in the public or business sector, first applied
successfully for Business Analytics. Only after having been applied there suc-
cessfully and showing the positive impact of this methodology, these methods
were transferred to the educational sector, thereby forming the first wave of
work in Educational Data Mining.

While a tiny amount (less than five papers per year) were published before
the turn of the millennium, the first substantial wave of papers in data mining
(in general) was published in the year 2000 (cf. also (Raghavan, 2005)). In
the context of Educational Data Mining, more than five papers per year were
published only since 2001, more than ten papers per year since 2002, with
from then on an approximately exponential growth (with the study examining
306 publications until 2009). In reviewing these articles, the authors identified
as trends eleven categories of applications in Educational Data Mining, which
we summarize, order and further combine into six groups of categories in the
following.

The first and most important trend identified is to provide statistics and
visualizations for showing information and supporting different stakeholders
(learners, teachers, researchers, course developers, organizations, administra-
tors) in their decision making processes. The most common methodology for
these analyses consists of the use of statistical tools and dashboards. Features
that served as input to this type of analysis consisted of navigation patterns,
material access patterns, types of end user devices, demographic information,
temporal development of the usage of system features, search behavior or in-
formation, forum activities, online postings, time employment, user behavior in
different time frames, exercise completion, and attendance patterns. For cases
where learners actively produced contents themselves, as in forums, threads,
and exercises, certain analyses provided both a content analysis of the text and
an indication of learner answers and errors.

As a second trend, Romero and Ventura (2010) identified functions that
provide feedback to teachers. In contrast to the descriptive analyses presented
as part of the first trend, these analyses go more into the direction of diagnos-
tic and even prescriptive tools. The most common methodology for this area
consists of association rule mining, clustering, and correlation analysis. Note
that these are methods that put data in relation to other data and features of
interest, and not merely describe it. Work in this domain concretely consisted of
providing tools for the analysis of the relation between resource usage and learn-
ing outcomes, detecting patterns or associations in learner behavior or profile
features, providing feedback to material designers or course authors regarding
the effectiveness of tasks or curricula, mining of temporal patterns including
enrollment, grouping of items in terms of diagnostic value or redundancy, alerts
for problematic learning patterns, and analysis of chats or threads with respect
to course outcomes.

The third trend is a summary of several areas considered separate by the
authors of the mentioned literature reviews and put here under the label provid-
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ing recommendations to learners. An important strand of research deals with
providing feedback or recommendations for students. Similarly to the second
trend, a common methodology is association rule mining, but also other tech-
niques such as unsupervised machine learning, sequential pattern mining, or
decision trees. A type of information relevant to learners is the identification
of sequences of behavior associated with successful or unsuccessful outcomes.
This can provide learners with diagnostic value about their behavior. On the
prescriptive side, a common approach is to automatically recommend activi-
ties or resources to learners, recommend shortcuts on materials, recommending
reading materials based on vocabulary profiles, automatic recommendations for
learning partners, and course recommendations.

The prediction of student performance, and learner modeling in general, can
be considered as a fourth major area in Educational Data Mining. The goal is
to model different, primarily performance or knowledge oriented, characteristics
of learners. As a methodology, supervised machine learning is used for the
prediction of learner performance, Bayesian networks primarily for knowledge
modeling, association rule mining, Markov decision models, sequential pattern
mining, or social network analysis for grouping of learners. Areas of interest
constitute the use of information about motivation, affective features, learning
styles, system behavior, indicators of off-topic or cheating behavior, prediction
of dropout or students-at-risk, recommendation of remedial classes to learners,
analysis of learning styles, and the automatic formation of learner groups.

Closely related to student modeling is the task of knowledge mapping. The
task here is to create a model of the learning domain contents. By using mostly
association rules and text mining tools, work in this area consisted of the auto-
matic organization of domain knowledge in concept maps or concept networks,
inferring relationships between domain concepts by mining the content of dis-
cussion boards, or the creation of ontologies spanning an entire sub domain.

Constructing course ware and planning courses is the sixth and final area.
By using mostly unsupervised machine learning and association rules, features
under consideration are the promotion of re-use of materials, the planning of
courses based on past experiences, the admission and counseling of students,
and the data-driven identification of gaps in courses and development of new
programs based on it.

3.2.2 Siemens and Baker (2012)

While relatively concise, Siemens and Baker (2012) is considered a seminal ar-
ticle since it provides a very widely cited historical development of the fields of
Learning Analytics and Educational Data Mining and how they compare.

While sustaining that the historical roots of Learning Analytics and Edu-
cational Data Mining date back to 1995, they define the starting point of the
professional development of the field as the conduction of the first dedicated in-
ternational workshops. For Educational Data Mining, the first dedicated work-
shop was held in 2005, and the first international conference on in 2008. The
field of Learning Analytics started a bit later in 2010 with the first dedicated
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conference. In 2011, a professional association for Educational Data Mining, the
’International Educational Data Mining Society’ was founded, the same year as
the foundation of the ’Society for Learning Analytics Research’.

Siemens and Baker (2012) describe that Learning Analytics, from its be-
ginnings, put higher value on incorporating psychological or psychometric mea-
sures, while the focus of Educational Data Mining is more on the technical
adaptation of methods and their usage on data from an educational context.
While they outline some trends (summarized in the following), they emphasize
that there is a considerable overlap between the Learning Analytics and Edu-
cational Data Mining communities with no clear boundaries between the fields,
rather trends about directions of conducted past research.

As referenced in section 3.1, Learning Analytics puts more importance on
human discovery of interesting patterns in data than Educational Data Mining,
which promotes more automated discovery and adaptation methods. Learning
Analytics typically emphasizes a more holistic understanding, whereas in Edu-
cational Data Mining researchers often try to break complex systems down to
individual components. According to Siemens and Baker (2012, p. 2, table 1),
the methodology of Learning Analytics historically consisted primarily of social
network or sentiment analysis, sentiment analysis, learner modeling, and domain
modeling techniques. In Educational Data Mining, the methodology consisted
more of classification, clustering, Bayesian modeling, relationship mining, and
visualization.

3.2.3 Liñán and Pérez (2015)

Liñán and Pérez (2015) describe the historical development of the two fields by
reviewing articles from 1995 to 2015. They identify how they developed and
how they compare.

Before computers were available, education mostly consisted of traditional
face-to-face instruction. This allowed teachers to directly monitor students by
observing them in the classroom. The data that could be used for analytics con-
sisted of data from examinations (mostly on paper, potentially with multiple
data points over time), attendance data, or qualitative insights from teachers
(cf. also Romero and Ventura (2007)). Then, in the next period where com-
puters or at least television devices were available, but no world wide web,
instruction could in principle be made available partly in a digital manner. An
example given by the authors is television-based instruction (either recorded or
broadcasted in real time). A problem with this method though, in comparison
to traditional or more modern ways of instruction, was that this only allowed
for passive consumption, leading to either no or very delayed interaction (e.g.
by submitting answers via actual physical mail).

The introduction of the world wide web led to a new era of distance learning.
The key difference is that the world wide web allowed a more timely provision of
interaction, for example via e-mail (reducing the time for feedback in comparison
to television-based methods from weeks to hours or minutes) ,or even real-time
interactivity in online courses that provide exercises for learners with immediate
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feedback, real-time chats, course forums, etc.
In essence, with the rise and adoption of the web, the distance in distance

education became much smaller and much quicker traversable. This interaction,
enabled via the world wide, web generated data traces that could be stored and
analyzed. This and the fact that hardware and memory became and are still be-
coming cheaper led to the introduction, development and fostering of Learning
Analytics and Educational Data Mining, with the professional societies Inter-
national Educational Data Mining Society and Society for Learning Analytics
Research founded in 2011.

The first considerable amount of papers from Educational Data Mining stems
from 2005/2006, the first substantial amount of papers from Learning Analytics
from 2010/2011. They analyze that in the first phase of the fields from 1995
to 2005 (with fewer papers), mostly relationship mining methods were popular,
but from 2008 on prediction methods, exploratory data analysis, and clustering
gained momentum.

3.2.4 Papamitsiou and Economides (2014)

In their literature review of Learning Analytics and Educational Data Mining
spanning the time period 2008 to 2013, Papamitsiou and Economides (2014)
identify research objectives, methods, and significant results in both Learning
Analytics and Educational Data Mining from this time frame, summarized in
the following.

For learning settings, most research is based on interaction with learning
management systems. Other forms of computer-based education, including tu-
toring systems and massive open online courses, have been used, but play a
less important role in comparison. The data was engineered into and combined
with features such as login frequencies, number of chat messages, number of
questions to instructor, response times, time on task, which resources accessed,
previous grades, final grades, profiles, preferences in systems and observations
of affect. The actual methodology of data analyses consisted of mostly clas-
sification (supervised machine learning), followed by clustering (unsupervised
machine learning), and discovery with models. Based on a review of 209 ar-
ticles, Papamitsiou and Economides (2014) grouped the work according to six
research objectives summarized in the following.

The first research objective is to model the behavior of students. This in-
cludes, in the most basic approach, an observation of sequences of learner ac-
tions. On a higher level, and by adding a layer of interpretation, researchers
have attempted to model meta-cognitive states, the response time for exercise
items, and the identification of different learning strategies.

Moving from modeling the behavior to modeling the performance of learners
and predicting it, the second research trend becomes clear. Researchers have
posed the question of which factors can contribute predicting the performance
of individual learners. Features under consideration discussed in this literature
review are demographic factors, grades, portfolios, multi modal skills, partici-
pation, enrollment, engagement, and affective states.
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As third research objective consists of the promotion of an increase in (self-)
reflection and awareness. One way of pursuing this research objective has been
to build tools that allow instructors to identify students that are disconnected
from the rest, i.e. show a progress that is different from the normal progress.
This can be seen as a student-at-risk identification task. An alternative approach
under this research objective is to provide tools for students such as open learner
models, dashboards, or textual output. The goal is to inform students about
their progress and performance indicators. This can include the possibility for
them to compare their performance to peers. An example for textual output is
the visualization of output from association rule mining algorithms regarding
the relation of usage of learning materials with respect to learning outcomes.

Very similar to the second and third research objective is the fourth objec-
tive, namely the prediction of student dropout and retention on a course or
institute level. Research under this objective has made use of engagement pat-
terns that are clustered and thereby allow to identify groups of learners with
different characteristics. Researchers have also included factors regarding stu-
dent satisfaction such as the perceived usefulness or the perceived efficiency of
the training offered in a course.

A more distinct area of research and objective is the improvement of feedback
and assessment services. Research has explored different types of feedback and
the quantitative effects on performance and qualitative perceptions both for
students and teachers. Furthermore, it has been explored how tests can be made
more flexible moving away from static tests with a one-size-fits-all approach
towards adaptive testing. Other studies looked at the effect of automatically
suggesting tasks enabled by an adaptive sequencing algorithm.

This is highly related to the final research objective concerned with auto-
matic recommendations. Though similar to the fifth area, the focus here is more
on how to determine exercise-specific parameters related to the complexity of
tasks. This includes modeling the performance of learners and putting it into
relation with exercise parameters, but also modeling exercise parameters inde-
pendent of the learner performance and using it for clustering exercises. System
designers have combined different approaches in recommender system models
that use affective states, competence models, and exercise and item models.

3.2.5 Mangaroska and Giannakos (2018)

Mangaroska and Giannakos (2018) review literature from the time frame 2007
to 2017, with a special emphasis on Learning Analytics.

They identified that the sample population in most studies primarily con-
sisted of undergraduate students and teachers.

The most popular learning system providing data for analyses was Moodle,
but they also state that in the studies under consideration there is an approxi-
mately equal distribution of studies with purely digital, hybrid, or face-to-face
classrooms. Most studies based their analyses on logs of specific systems or
learning management systems, some on interviews or questionnaires.
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From an analysis point of view, the analysis techniques used mostly are re-
gression, clustering, and correlation analysis. Very similar to what Papamitsiou
and Economides (2014) identified (cf. section 3.2.4), Mangaroska and Giannakos
(2018) state the following research goals: evaluation of learning activities and
environments, learner modeling, effectiveness of usage and impact of Learning
Analytics tools for different stakeholders, predictive modeling, assessment, and
adaptivity.

In their review, they not only identified trends, but also several areas where
problems occurred. One example is that although many tools offer visualizations
in dashboards to inform learners or students, (at the time of the publication of
the respective studies) they were mostly available outside of the actual learning
environments. They furthermore stress the importance of using time as an ex-
plicit factor in modeling learners, tasks, learner performance, and usage trends.
The authors also lament a lack of theoretical grounding of the analyses.

3.3 Domains of Application

In Learning Analytics and Educational Data Mining research, there are different
approaches with a different degree of complexity, but also a different degree of
merit, as exemplified e.g. by the Society for Learning Analytics Research 2.
The work, as classified by them, can be placed in in four categories. In the
following, we will describe these categories and substantiate them with examples
and actual systems.

The simplest category of work are descriptive statistics. This line of
application is concerned with describing previously collected data. Its purpose is
thus to describe and abstract over instances of past events. Typical applications
in this domain are visualizations of learning activities (Duval, 2011), either for
individual learners or tasks, or in dashboards that integrate multiple levels of
data and present them in an intuitive way (Verbert et al., 2013). These tools
often are implemented as dashboard visualizations that enable self-reflection
and self-quantification (a detailed quantification on different levels and with
different aspects, comparable to e.g. fitness apps). The information can be
visualized with respect to different needs depending on the target user (Romero
and Ventura, 2010).

Descriptive analyses can help discover problems related to learners or learn-
ing materials. This forms the basis for the next category of work in Learning
Analytics/Educational Data Mining: diagnostic analysis. In this strand, the
goal is to diagnose why a certain problem arose, or why a certain success con-
dition was met. As for the first category, research in this category is conducted
on past data. It however goes further by asking why something happened, and
not only what happened. This typically involves putting measures of (learning)
success or failure in relation to measures of process data. Since in educational
environments the ultimate goal is to foster learning and acquire competence

2https://www.solaresearch.org/about/what-is-learning-analytics/, last accessed
2020-01-31
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in an area, the diagnostic measures typically involve some sort of competence
modeling associated with tasks and mapped for individual learners (Bull et al.,
2015). Another application in this area put forward by Romero et al. (2010)
is the inference or testing of domain structures based on learner responses (e.g.
Junker et al. (2010)). Diagnostic analysis is typically integrated as part of
learner models Kump et al. (2012) that can be visualized or used as input to
cluster analyses (Romero and Ventura, 2013). Another application on this level
is domain modeling, i.e. data-driven modeling of learning materials, the con-
structs, and the performance of learners on them (Sottilare et al., 2016).

Going one step further on the spectrum, predictive statistics allow to
compute predictions about the future based on past data. Based on diagnostic
analyses, these models predict how certain learners will develop or how certain
tasks will be received, i.e. a future diagnosis based on the current state. This
requires that the models that are trained on past data generalize and allow to
make claims about future states, i.e that there is enough information in the
past data to make reliable predictions. This can be especially challenging in
cases where there are non-linear developments. A typical application in this
domain is the task of student-at-risk identification (Stevens and Pihl, 1982) or
the prediction of learning outcomes and grades (Romero et al., 2010).

The most advanced application domain of Learning Analytics is the task of
prescriptive analysis. Based on a predictive analyses, prescriptive analyses
suggest interventions/actions that, given a predictive model, would affect the
current prediction the model is making, i.e. it attempts to not only generalize
based on past events to the future, but also to make changes so that the currently
predicted state in the future is not reached in this form (Soltanpoor and Sellis,
2016).

This can have different consequences, depending on what optimality crite-
ria are defined for the specific task at hand. For example, while a prescriptive
analysis prescribing exercises for learners for an improvement of their domain
competence as a consequence of diagnosed insufficient knowledge with the goal
of better preparing a student for an exam (e.g. Linillos et al. (2006)) can in
general be viewed as a beneficial intervention, other prescriptive approaches
can invoke different perspectives. In an extreme case, an over-sensitive system
might suggest to exclude a student from a course based on short-term perfor-
mance metrics such as two consequent assignments not submitted. The actual
reason for the student’s (temporary) lack of display of performance might how-
ever be rooted in external factors not known to the system, such as the loss of a
close family member and a permission by the teacher to not submit the assign-
ments. If this information is not known by an administrator on a higher level,
the administrator could decide to exclude the student because the prescriptive
model makes this suggestion. This example shows that for prescriptive analy-
ses, systems/models make recommendations, but it is important that humans
stay in control of decision making and critically evaluate all predictions by the
system.

Prescriptive analysis is commonly performed in the context of tutoring sys-
tems that sequence exercises based on the performance of learners (e.g. Linillos
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et al. (2006)). Another application in the same vein is the recommendation of
educational courses enabled by recommender systems (Zhang et al., 2014).

When talking about domains of application, a practical consideration that
influences the possible analyses – or complicates them – is the location and rep-
resentation of the involved data. As for example Chatti et al. (2013) discuss,
there is a fundamental difference between instances of centralized learning sys-
tems such as for example Moodle, versus distributed learning environments on
the other hand. In the former case, all data and actions are performed, logged
and stored in one system (e.g. click streams, material accesses, tests results).
For distributed systems or systems that incorporate different data sources, data
from different contexts, devices, with different formats, potentially a different
granularity of etc. pose challenges both for data exchange and merging of data.

3.4 Competence Modeling

The concept of competence is not well-defined and consequently viewed as a
multi-faceted and fuzzy concept (e.g. Ashworth and Saxton (1990)). For the
purpose of this thesis, we define competence as the mastery of a set of pre-defined
skills based on the empirical evidence of interaction data.

In this part of the thesis, we primarily discuss the modeling of competence in
learner models in section 3.4.2. In this section, we explain conceptually different
approaches towards representing different skills in, and estimating the values for,
learner models in tutoring systems.

However, we are aware that it is not possible to separate the modeling of
competence of learners from the modeling of task difficulty. The reason is that
learners can only demonstrate competence or lack of it when they are working
on tasks. Provided that we assume that different tasks differ in their complex-
ity, both between tasks and when related to the skills of (different groups of)
learners, we take a quick glance at data-driven task difficulty modeling in sec-
tion 3.4.1. We acknowledge that it is not entirely clear what contributes to the
difficulty of tasks and that giving a comprehensive overview of cognitive models
for task difficulty is not the focus and would clearly go beyond the scope of this
thesis

3.4.1 Modeling of Task Difficulty

Task difficulty models are concerned with modeling how challenging exercises
are for different learners. It allows to predict the difficulty of different tasks
when compared to each other, as well as the difficulty of tasks for different
groups of learners differing in their knowledge and skills.

While we are aware that there are more approaches for modeling task dif-
ficulty, e.g. the widely known Cognition Hypothesis (Robinson, 2007), we de-
scribe a widely used and well understood formalism for task difficulty analysis:
Item Response Theory (IRT, e.g. von Davier and Lee (2019)). The core idea is
that each item in a task has a specific difficulty level, with the probability for a
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successful completion of an items related to (a) the item difficulty and (b) the
skill level of test takers.

IRT models are latent class models. The models assume that unobserved,
latent classes underlie exercise completion and determine or explain observed
variables. The test takers are assumed to belong to different classes that perform
differently for tasks, with each test taker belonging to one specific class. The
number of classes is not determined beforehand, but emerges from the data.

Item-characteristic curves allow to plot the ability of learners against the
probability of obtaining a correct response. The shape of the curve allows
to determine how well the item discriminates between different types/classes of
learners. Similarly, Wright maps allow to plot the skill of participants versus the
item difficulty on the other side. IRT models assume a categorical outcome vari-
able (item solved correctly or not), but continuous values of traits/skills/abilities
to predict it.

The models are typically implemented as logarithmic models and are similar
to linear or mixed regression models, with a so-called link function mapping the
input (learner skills and task difficulty) to the output (probability of answering
an item correctly).

There are different types of IRT models, most notably the distinction be-
tween parametric and non-parametric variants. In parametric variants, models
assume a set of skills associated with persons and items, whereas non-parametric
variants assume only one dimension. Explanatory IRT (Wilson et al., 2008; Har-
tig and Höhler, 2010), also called MIRT (multidimensional IRT) models tasks
with different constructs/skills involved. It attempts to explain how specific
item properties influence the probability of correct answers. The goal is to ex-
plain what causes certain items to elicit patterns of responses of certain groups
of learners. Double explanatory models contain factors about both persons and
items.

A widely used special case of IRT models is the Rasch model (e.g. An-
dersen (1973); Masters (1982); Bond et al. (2020)). It only assumes a single
skill/component for all items and computes the difference between the intercept
(person parameter) and the item difficulty scaled by a logarithmic function.

3.4.2 Modeling Competence in Learner Models

The idea of modeling competence in learner models is to store properties inferred
by the system about a learner that serve as the basis for inspection by users or
adaptation by the system (Slavuj et al., 2017).

A learner model is by definition a model of the interpretation of user ac-
tions that abstract over and approximate certain aspects of learner interactions.
Learner models typically consist of a learner profile comprising stable traits
(name, age, gender, etc.) on the one hand, and a learner model with dynamic
(frequently updated) data on the other hand. The approaches described in this
section are based on the work by Slavuj et al. (2017) and refer to the second
source of information. The dynamic data comprises both domain-unrelated data
such as the device used, learning style, age, but also domain-specific data such
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as the learning path, learning goals, tasks, interests, or test results. Again,
we are interested in approaches that are concerned with the second source of
information.

Since the data is partly dynamic, we are interested in different adaptation
processes of domain-specific data (Slavuj et al., 2017). There are long-term,
stable traits that change and need to be adapted at most over many sessions,
such as aptitude, learning style, or personal data. Mid-term data is stable over
the duration of one learning session such as the device used, the location, or
the time. Finally, there are short-term properties that are dynamic within one
session such as activities, goals, or affective states. Competence models can
include short-term properties (e.g. interaction with feedback mechanism), mid-
term properties (e.g timing of learning), and long-term properties (e.g. previous
knowledge from certain courses).

Important to keep in mind in the discussion about different approaches for
modeling the competence of learners is that there is not ’one’ way of design-
ing learner models (Bull and Kay, 2006). Instead, there are many different
approaches that have different strengths and weaknesses and can often be com-
bined with each other depending on the system needs. There are conceptually
different learner models regarding explicitness. In approaches with observable
nodes, values can be updated directly (e.g. overlay models), whereas in models
with unobservable nodes, the values can not be updated directly (e.g. Bayesian
models). In the following, we will discuss different approaches for modeling
competence in learner models.

In their discussion and literature review of different types of competence
models, Chrysafiadi and Virvou (2013) distinguish at least five approaches for
learner model representations. In the following, we will use their categoriza-
tion for a presentation of learner models augmented with examples from the
literature.

In an overlay approach, the learner model is a simple overlay over the
domain model. The domain model represents the concepts to be learned in a
structured way. For each of those elements, there is a corresponding value in
the learner model that indicates how well the learner has mastered this element.
Typically, the values are numerical, but categories like for example “mastered”
or “struggling” are possible as well. The goal of the system is to minimize the
divergence between the learner model and the domain model. An important
aspect for overlay models is that the complexity of the approach depends on the
complexity of the domain and the estimation technique for values in the learner
model. This means that even though the approach may seem simplistic at first
glance, having a complex domain model and an elaborate technique to update
the values, can make overlay models complex and powerful. A weakness with
respect to overlay models is that often a simplistic way of representing concepts
in the domain model is chosen that assumes independence of the concepts in
the domain. While this provides simplicity, it often causes a weakness in terms
of power of the derived learner models (cf. also von Davier and Lee (2019)).

An example for an overlay approach is described by Bull and Nghiem (2002).
In their approach, they present an open learner model that allows to compare
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the performance of one learner to the performance of peers in the same group
(school class). For each of the concepts in an associated domain model, the
system stores the number of attempts that were correct and incorrect related
to this concept in the learner model. The data for these values comes from
multiple choice tasks where each item is assigned to a domain concept. The
frontend allows to display the data in two formats: in a tabular format and as
a bar chart. In this specific system, the learner model is open to both students
and their teachers.

The perturbation approach is an extension of the overlay model that in
addition includes misconceptions. The misconceptions can be modeled/represented
in different form, for example as a set of mal-rules/misconceptions specific to a
student, target topic, or task. The FeedBook learner model (cf. chapter 8) is
an instance of a perturbation model.

In a stereotype approach, the population of learners is divided into groups
or clusters. Each group (or stereotype) represents common characteristics and
serves as a category summarizing shared characteristics. Stereotype-based ap-
proaches implement both trigger and retraction conditions that determine the
assignment to specific stereotypes. Stereotype-based systems solve one impor-
tant problem that other approaches face: the cold start problem. Since in the
beginning only very limited data is available, the question is how to estimate
values for unobserved properties. Even with incomplete knowledge, stereotype-
based approaches allow to assign learners to a group/stereotype and make use
of information about the group for estimating unknown values. Typically, sys-
tem designers hand-construct stereotypes before a system goes live. While the
assignment of learners to groups is dynamic, the stereotypes themselves are
typically static. Stereotypes can combine different information sources from
the learner model or profile, both permanent traits and dynamically computed
features emerging from interaction with a system.

An example of a stereotype-based approach is described by Jurik et al.
(2014). In the context of physics education, they define five stereotypes: strong,
uninterested, underestimating, overestimating, and struggling students. The
stereotypes combine properties like cognitive activation and previous knowledge.
They show that learners of different stereotypes react differently to questions of
teachers that require deeper versus more shallow processing.

Another way of modeling competence in learner models is the constraint-
based approach. The idea here is that the domain model is represented as
constraints, and the learner model is represented as those constraints that learn-
ers have violated while working on an exercise. Suraweera and Mitrovic (2002)
present a hybrid approach that combines a constraint-based model with an over-
lay approach. In the domain of teaching learners about relational data bases,
the system implements short-term and a long-term component of the learner
model. The short-term model is used to generate feedback for specific tasks,
whereas the long-term model is an overlay approach that stores the frequency
of applied constraints in the learner model.

In Bayesian approaches, knowledge is traced in a probabilistic manner
and updated with every interaction. The domain is modeled as a network with
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nodes that represent knowledge states and misconceptions, and edges that rep-
resent the transitions between sets of states. Edges can have different functions
or conditions of applicability, including causal links between knowledge states
and/or misconceptions. Bayesian networks are typically based on structures
defined by experts, but there are also data-driven approaches. It is important
to keep in mind that Bayesian approaches, in contrast to competing models,
are probabilistic and thus able to model uncertainty. The Andes tutoring sys-
tem discussed in section 4.3.4 implements a Bayesian knowledge tracing learner
model.

3.5 Challenges

Educational Data Mining and Learning Analytics are concerned with modeling
learning. Since different learning domains differ in their domain structure and
pedagogical approaches and comprise very different subjects, the two fields are
by definition interdisciplinary. Interdisciplinary work requires a team with ex-
perts from each domain. It is not sufficient that some team members involved
have a little bit of knowledge or even no knowledge in one of the fields involved.
The Dunning-Kruger effect states that people with less knowledge tend to over-
state their perceived knowledge of fields when compared to real experts in fields
(Kruger and Dunning, 1999). This can lead to making wrong decisions and
being confident about them. The solution to this is to involve real experts from
all the domains relevant for the Learning Analytics or Educational Data Mining
project to help make sound decisions.

Another important challenge is that developing, testing, and maintaining
systems is difficult and expensive. This holds for the duration of research
projects (in the context of which tutoring systems are often developed), but is
aggravated after the end of projects (typically three years). Retaining develop-
ers and the competence in developing a specific system over time can be difficult.
Furthermore, often research prototypes are developed under time pressure and
lack good code documentation, making it more difficult for other programmers
later to work on the code quickly.

In an ideal world, Learning Analytics and Educational Data Mining are cyclic
processes where systems are always updated based on the gained knowledge, re-
evaluated, and so on. Due to the limitations discussed, this can be difficult in
reality. Related to that is the fact that standards change over time and should
also be updated. However, once something is updated, it should be evaluated,
and the feedback should be incorporated in the refinement. For example, user
interfaces outdate after a while – a user interface of a web application from 20
years ago is significantly different from a web application now since the standards
have evolved over time.

Another aspect that can cause problems for Learning Analytics and Educa-
tional Data Mining is the question of ethics. For example if a system provides
misleading feedback and this leads to a bad grade, who is responsible for this?
Data privacy in general, but also the question of who makes directives about
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how to deal with problematic cases needs to be considered carefully. For exam-
ple, how should teachers be treated who seem to under perform in comparison
with their peers? In general, a problem for systems that are developed or used in
more than one country is that different data regulation frameworks apply in dif-
ferent parts of the world. This can lead to an information asymmetry between
the involved stakeholders that goes up to the point where there is a shift of
power and responsibility from state-regulated institutions to digital publishers.

Learning Analytics and Educational Data Mining tools need to address real
needs and solve problems for all involved stakeholders and not just provide
some fancy or primitive visualizations or only address the needs of one party.
For example in the case of tutoring systems, teachers should have less (tedious,
repetitive, time-consuming) correction work and more time for preparing classes.
Students (and parents) need to benefit in that learners learn more and more
deeply, get better grades, and spend less time stuck on exercises. Administrators
should benefit from better grades for students and graduates, and from teachers
that are satisfied with their job. If a tool does not address real-life needs, then
its adoption will be very difficult (cf. also Meurers et al. (2018)).

Finally, a huge challenge is that a lot of Learning Analytics and Educational
Data Mining approaches attempt to explain or approximate the human learning
process with features that are easy, reliably measurable, and do not overwhelm
the involved stakeholders. In contrast, the human learning process is extremely
complex and not understood entirely up to this day. It is questionable if such a
complex process can be approximated sufficiently with simple models involving
only a few factors.



Chapter 4

Tutoring Systems

From a high-level perspective, tutoring systems are software applications de-
signed for teaching aspects of a learning domain to a specific target group of
learners.

In order to achieve this, tutoring systems model a part of a domain to be
learned, for example a foreign language or an area of mathematics. This can be
done explicitly with a domain model where the structure of a domain is made
explicit, such as with a hierarchical structure of concepts or with knowledge
rules allowing to solve problems from this domain.

Or it can be done implicitly with another essential component: tutoring sys-
tems need to provide materials from the domain under consideration. This can
be exercises, but also instructional materials such as fact sheets or educational
videos.

Materials are worked on by users, thus requiring that tutoring systems have
some kind of information about who is interacting with it, and a user interface for
interaction. In the simplest case, the user model is simply a session identifier or
user name, but many tutoring system go beyond that and also model properties
like exercise completion states or some form of competence estimation.

On top of a domain model, a user model, and a material pool, tutoring
systems implement one or more pedagogical strategies in a pedagogical mod-
ule. When users interact with a tutoring system, the system reacts to user
actions with some form of feedback. This can be for example explanations
about incorrect answers, statistics, or a suggestion of new exercises or mate-
rials. Arroyo et al. (2014) summarize this in a concise manner: according to
them, instructional systems model or predict some aspects about learners, and
use this information to chose a pedagogical strategy to help learners master a
part of the learning domain.

Optionally, and depending on the intended usage, tutoring systems can in-
form other stakeholders about interaction data in the system. In the case of
a tutoring system employed in schools, teachers typically are informed about
what learners from their school class did or how they interacted in the system.
Such extensions with reporting tools about learning actions are implemented as
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Learning Analytics modules.
Tutoring systems are used in different and diverse educational contexts. In a

relatively traditional setup, they can assist learners and teachers in the form of
homework helpers. In flipped classroom scenarios, they can be used in schools
or at home. Distance education, as in the case of massive open online courses,
offers the possibility to deploy tutoring systems for a high number of users
without direct involvement of teachers. Finally, many tutoring systems get
used in purely experimental contexts or research labs.

In order to delineate tutoring systems from other software for the purpose of
this thesis, we require that tutoring systems fulfill two criteria: interactivity and
adaptivity. Interactivity in this context means that learners get the opportunity
to actively interact with the system and not only passively consume its content,
as would be the case in a system only offering educational videos. Adaptivity
in this context means that these systems are aware of certain learner actions
and react on them, for example by adapting the materials, providing feedback,
or visualizing collected past data for users.

The rest of this chapter is structured as follows. Section 4.1 explains the
architecture of tutoring systems in depth. Given the importance of feedback in
tutoring systems and for this thesis, we dedicate section 4.2 to a discussion of
strategies for and steps in providing feedback. In section 4.3, we take a look
at non-language tutoring systems before moving to a discussion of language
tutoring systems in section 4.4. We conclude this chapter with a review of the
usage of tutoring systems in authentic or even ecologically valid contexts in
section 4.5.

Disclaimer: This chapter and its parts have not been published before.
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4.1 Architecture of Tutoring Systems

The architecture of tutoring systems in general consist of three pillars (e.g.
Padayachee (2002)): a student model of the learners and their current state of
knowledge, a domain model containing expert knowledge about the contents of
the learning domain, and a tutoring module that contains information about
how to instruct the learner. In addition, there are practical requirements like
a user interface allowing learners to interact with the system, a data base for
storing records, and source code that connects the listed modules with each
other. Figure 4.1 depicts the conceptual architecture of tutoring systems. In
the following sections, the conceptual components, abstracting from specific
implementation issues, will be described.

domain model student model

tutoring model

user interface

user input

Figure 4.1: Conceptual architecture of tutoring systems

4.1.1 Domain Model

The domain model contains a structured representation of the learning domain.
Essentially it models what should be learned by learners using the tutoring
system, how this knowledge is structured, and how this knowledge can be used
to solve problems in the domain.

In order to achieve a structuring of the domain, it is necessary to break the
domain knowledge down into smaller parts. This division of the domain into
learning points or knowledge items has to be performed by experts in the specific
domain. For this reason, the domain model is often also called expert model
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(Anderson, 1988; Ramesh and Rao, 2012). The complexity of the breakdown of
a domain model into smaller units correlates with whether the learning domain
is a well-defined domain (in which case by its nature it is easier) or an ill-
defined domain. In section 4.2.1, we provide a discussion of ill-defined versus
well-defined domains.

The domain model on the one hand contains facts, and on the other hand
rules. Nkambou (2010) describes these two components of a domain model:
a knowledge representation containing declarative knowledge, and an inference
mechanism representing procedural knowledge.

For example in the case of language learning, these rules can be in the form
of NLP components that process text and provide analyses thereof. It can also
contain patterns for typical errors or mechanisms to detect them (Padayachee,
2002) (cf. section 4.2 for a detailed discussion).
Slavuj et al. (2017) describe a range of different approaches for structuring and
modeling domains, which will be discussed in the following. In the simplest
case, all items are defined independently without any relations between them.
In this so-called “vector model” (Slavuj et al., 2017, p. 72), each knowledge item
is represented as one dimension in a vector space with each smallest knowledge
unit completely independent of all others.
In contrast, network models contain links between knowledge items. These links
can have different categories. An instance of such models consists of encoding
that certain knowledge items are prerequisites for other items. This allows to
draw inferences like if one skill or knowledge item is known by a learner, then it
is likely that those forming the prerequisites are also known. Another instance
of modeling domains is to order skills or knowledge items by parameters related
to cognitive complexity, such as the requirement of different skills to complete
an exercise (Nkambou, 2010).

Another approach is to model that certain knowledge items are sub items of
more general items/skills, forming a hierarchical representation of domain items.
Going one step further in this direction, ontologies have been proposed as an
instance of semantic networks to map knowledge items and logical relations
between them (e.g. Wang et al. (2014)).

Amaral and Meurers (2008) discuss structuring domains according to acqui-
sition sequences found in Second Language Acquisition research and structuring
the domain according to course curricula.

Another approach discussed by Nkambou (2010) is to use frame-based ap-
proaches like HPSG (Götz and Meurers, 1995) in order to define semantically
rich ontologies with links between the frames. Götz and Meurers (1995) point
out that there has to be a trade-off between expressivity of the domain repre-
sentation language and the computability of the approach.

There are different definitions as to what constitutes and is modeled in the
domain. On the one hand, there is the possibility to index knowledge items,
like for example mathematical axioms or rules, or rules for tense formation in
language teaching. On the other hand, there is the possibility to add more
complex material. Slavuj et al. (2017) and Brusilovsky (2012) discuss an ap-
proach called indexing that goes beyond purely structuring knowledge items
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and also includes an indexing of educational materials such as exercises in the
domain model. More specifically, educational materials are mapped to smaller
knowledge items or skills.

4.1.2 Student Model

A student model, or from a more general perspective, a user model, is a set of
variables associated with a user in a tutoring system. Generally speaking, this
models someone who is learning the contents of the domain model. There are
different dimensions for classifying the contents of student models (cf. Slavuj
et al. (2017)) on which also the following discussion is based). One dimension
is the distinction between stable aspects and dynamic (i.e. frequently updated)
content. In this case, the static part is called learner profile and the dynamic
part learner model. Another dimension is to distinguish between (learning)
domain-related and domain-unrelated data. In any case, a learner model can
be conceptualized as a map with keys mapping to values, with the keys being
from the domain model and the values different among users.
“Stable” here does not necessarily mean that the values are never changed, but
they are typically stable over longer periods of time, such as the duration of an
entire seminar. Instances of variables in this area are the name of learners, their
user id, their date of birth, their gender, their background (e.g. first language),
but also individual difference measures classified as stable traits like personality
traits (Matthews et al., 2003). To a certain extent this can also include factors
such as their previous knowledge (e.g. preceding courses taken) or their instruc-
tor for a specific course.
Moving on the spectrum towards more dynamic variables, student models can
represent information stable over one session . This typically includes the device
and software (e.g. web browser) used, the location of the learner, the time of
the last login, and the time of the day.
Finally, the student model contains dynamic fields that can have multiple changes
in their values during one session. This on the one hand includes domain-
independent factors such as a user’s navigation history, affective states, and
measures of specific task strategies (Amaral and Meurers, 2008). On the other
hand, there are domain-specific variables like scores for the proficiency related
to certain domain contents, lists of activities related to specific domain contents,
or task-specific measures like number of attempts or frequency of errors.
The dynamic part of a learner model consists of concrete and frequently up-
dated measures for sub parts of the domain model. In summary, the domain
model represents what can be learned, and the student model represents how
well this has been learned by an individual student.
The goal of this section is to provide a general description of student models in
the context of tutoring systems. In section 3.4 we dive into details about how
the dynamic measures of competence mentioned here are represented, measured,
and updated.

One distinction of student models that does not pertain to the modeling of
competence, but to its presentation is to distinguish closed from open learner
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models.

Open Learner Models

Closed learner models are only visible to the developers of systems, whereas
open learner models are visualized for and visible by end users. End users can
be different user groups, and the selection and visualization of the underlying
data can and often should vary depending on the user group it is visualized for
(Lee and Bull, 2008).

Reasons for Opening Learner Models Bull and Kay (2010) discuss rea-
sons for opening learner models, which will be used as a basis for discussion in
the following. The first reason for opening learner models is to not only display
the data, but additionally provide options to edit the data. When users first
interact with a tutoring system, no or only very little data is available. The
problem is that the tutoring system has to base its pedagogical decisions on
some data. This data can come from the domain model, and/or the student
model in order to personalize the system behavior. However in the beginning
with only few interactions the data in the learner model is very sparse, and due
to this, the few data points are over-interpreted since they can not be compared
or put into relation to other values. This issue has been discussed in the liter-
ature as “cold start problem” (e.g. Zhang et al. (2014)). In order to overcome
this, a possibility is to open learner models for end users so that they can fill
in missing data. Opening learner models for edits opens up the potential for
misuse, making it important to implement checks for ensuring the validity of
edits, like for example test questions that pertain to the specific parameter and
have to be answered in order to accept the edit (e.g. Mabbott and Bull (2006)).
Another reason for opening learner models is to increase and foster meta-
cognition. The goal is to encourage learners to reflect on their learning, both
by rewarding them to see the system acknowledges they have learned a specific
knowledge item and to allow them to identify knowledge gaps and take action to
fill these gaps. Similarly, if a learner model is open to teachers or parents, it can
serve as the basis for planning, interventions, and evaluation. If the model is in
addition open to, or available in some form, to other learners, it can stimulate
competition among learners (Brusilovsky et al., 2015). In case several learner
models are open to a teacher, this can help instructors to form groups for col-
laboration among the learners since students with complimentary strengths and
weaknesses can be paired up upon comparison of learner models.
Furthermore, the learner model can serve as a means of navigation in the tu-
toring system in that the learner model can contain suggestions for exercises or
pointers to learning materials learners directly accessible from there, with the
content of the pointers depending on the learner model of an individual student.
Another purpose of open learner models is to realize the (legal) right of users
to know what data a system has collected about them. Especially in European
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legislation where the DSGVO1 grants each user the right to ask for all the data
a system has collected. This need can be satisfied with an open learner model
displaying all the information.
Finally, learner models can serve as a means of assessment. In contrast to exams
that only test knowledge in a “snapshot approach”, i.e. only testing learners
in a short period of time, learner models collect data over much longer peri-
ods of time and can serve as an alternative means of assessing the knowledge
of learners and its temporal development. This longitudinal assessment shifts
the focus away from performance more towards competence since over longer
periods of time differences in performance can be ironed out with a larger data
point sample size.

Visualizing Open Learner Models Open learner models have been imple-
mented in a range of different ways and presentation styles. Even with the same
underlying data, many different visualizations are possible, plus the data can be
aggregated in new ways if needed for specific visualizations. Since the goal of
Learning Analytics (see chapter 3) is “the measurement, collection, analysis and
reporting of data about learners and their contexts, for purposes of understand-
ing and optimizing learning and the environments in which it occurs” (Siemens
and Baker, 2012), the task of visualizing data in an open learner model is a
Learning Analytics task.

In their literature review, Bull and Kay (2006) present a range of visual-
izations of open learner models. In text-based formats, different text snippets
can be shown depending on the student level. Similarly, numerical values like
probabilities for knowing a concept can be displayed in textual format. Graph-
ical representations of skills can be skill meters, where progress bars act as an
indicator of progression or knowledge (e.g. Mitrovic and Martin (2002)). Alter-
natively, or as a supplement, colors have been used with different color values
and intensities signifying different levels of knowledge (e.g. Zapata-Rivera and
Greer (2004)). This can be extended to include the values of peers by adding
more bars or lines. Similarly, line charts have been proposed with average lines
to allow learners to see whether they are above or below the given average (Bull,
2004). Going beyond individual indicators, visualizations of networks have been
proposed where the visualizations of individual components are connected and
form a larger picture of how knowledge is distributed among areas of the domain
(e.g. Mabbott and Bull (2006)). Special considerations have to be made if the
open learner model’s primary users are younger children. In this case, special
emphasis has to be put on a visualization that is understandable and accessible
to them (Bull et al., 2005). For example, text-based formats are less recom-
mendable than more graphical types of visualization. Another consideration is
whether users only have access to one visualization or to multiple visualizations,
potentially linked to each other with more information available if requested or
users zoom in for details.

1https://eur-lex.europa.eu/eli/reg/2016/679/oj, last accessed 2019-08-28
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4.1.3 Tutoring Model

The tutoring model, also called adaption model (Slavuj et al., 2017) or in-
struction model (Amaral and Meurers, 2008), links the domain model with the
student model (cf. Figure 4.1), and steers the interaction with learners. As
(Ramesh and Rao, 2012, p. 1) puts it, the tutoring model “designs and regu-
lates instructional interactions with the students.” The key task of this model is
to provide an adaptive and interactive link between the learner on one side, and
the domain contents and educational material on the other side. Chatti et al.
(2013) distinguish between adaptivity and adaptability. Adaptivity means that
a system automatically adapts contents to learners, whereas adaptability de-
notes the concept of learners having the possibility to adapt a system according
to their preferences. In this section, we refer to the concept of adaptivity. This
adaptivity can have different forms discussed in the following.

Sequencing of Material

One instance of adaptivity in the tutoring model is to adapt the sequence of
educational resources (exercises, content pages, tests) according to the learner
model and the domain model. The alternative to not having a sequencing model
would be to provide no guidance at all to the learner what to do next. Conceptu-
ally there are two broad strands: prevent the learner from accessing higher-level
material until certain criteria are met, or suggest material to the learner to in-
teract with next.
This implies that the instruction model has information about the level or diffi-
culty of educational material. In the simplest case, this is approximated via an
index assigned to each educational material, such as a theme, chapter, or page
number in a work book. In a more complex scenario, explicit models of task
difficulty are used (Quixal (2012), cf. also section 3.4.1 in this thesis). A task
model making explicit factors such as the complexity and types of the constructs
involved, the format of the task, the strategies required to successfully complete
the task, and the previous performance of learners on it allows the tutoring
model to compare these task models with the model of the current learner and
suggest tasks that are most likely to maximize the learning gain for this learner.
The sequencing does not necessarily have to be restricted to exercises, but in-
stead a system can also suggest other educational resources like explanation
pages to the learner. Slavuj et al. (2017) further suggest to incorporate factors
such as the time of day in order to provide learners with material when they
have shown to be most productive. Another approach, involving simpler or no
task models, consists of automatically learning sequences of effective tasks and
using these sequences to suggest new exercises. An approach allowing this is to
employ association rule mining (Kotsiantis and Kanellopoulos, 2006).

Adaptation of the Presentation of Material

Another possibility to adapt material is to modify the presentation of (already
selected) material to the learner (Slavuj et al., 2017). This can be achieved
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by having pre-compiled, different versions of the same material, or it can be
done by having a modular approach where parts of an exercise can be swapped.
There are different parameters that can be altered such as the complexity of
the material (Robinson, 1995), the modality (visual/textual/dynamic/etc., e.g.
Holzinger et al. (2008)), the salience of specific parts of the material (White
et al., 1991), but also the explicitness of feedback provided to learners (Heift
and Rimrott, 2008).
Note that this involves, but goes beyond decisions regarding the presentation
of feedback (section 4.2.3), since it involves altering the presentation of entire
exercises.

Provision of Feedback to Learner Productions

The provision of feedback to learner productions (in Figure 4.1 “user input”)
constitutes a form of adaptivity in the sense that the system adaptively has to
process user input and select a tutoring strategy to react to it. The tutoring
model is responsible for passing the learner production to the domain model.
In the domain model, the necessary processing tools are present that have the
ability to analyze the learner production (section 4.2.1). The analysis is returned
to the tutoring model, which then consults the student model. Based on the
learner’s previous interaction data, the analyses returned from the domain model
are re-ranked in the tutoring model (section 4.2.2) and a strategy for presenting
feedback is selected based on the analysis and the student model (section 4.2.3).
In section 4.2, we explain the entire process of taking a learner production as
input, processing it, selecting a pedagogical strategy, and displaying feedback
in detail.

4.1.4 User Interface

The task of the user interface is to provide a means of interaction for users
with the system. Fundamentally there are two types of interfaces that can be
used: graphical user interfaces and text-based interfaces. With early operating
systems for home computers only providing console-based user interfaces, early
tutoring systems like Typing Tutor III from 19812 needed to make use of the
command line as a text-based interface. Since console-based tutors however only
constitute a minority in comparison to tutoring systems that offer a graphical
user interface, we base our discussion of user interfaces for the remainder of this
section on graphical user interfaces in tutoring systems.

In modern devices where user interfaces can be displayed not only as text
like in console programs, it is common to have input modalities that go beyond
keyboard input only. On desktop and laptop computers, commonly a mouse or
touch pad is available in addition to a keyboard. This opens up opportunities
for inputs like drag and drop or point and click. When moving to mobile phones,
typically even more sensors are available that user interfaces can make use of

2https://archive.org/details/a2_Typing_Tutor_III_1981_Image_Producers, last ac-
cessed 2019-08-30



68 CHAPTER 4. TUTORING SYSTEMS

and, like in the case of touch screens, also have to accommodate for. These
include for example brightness sensors, the location of the device in terms of
coordinates, acceleration and movement sensors, cameras, microphones, heart
rate sensors, eye tracking sensors, and thermometers. With the broad range
of devices a system can be deployed on, especially if it is a web application,
it is important that the user interface adapts to multiple resolutions, operating
systems, and screen sizes. This is typically achieve with a responsive design that
uses breakpoints to switch components of the layout depending on viewport size
parameters (Kim, 2013).

User interfaces should have a good usability and support learners in learning
instead of posing obstacles. Molich and Nielsen (1990) in their seminal work
proposed nine design principles for user interfaces that involve human-computer
interactions, which will be listed in the following. User interfaces should be re-
stricted in terms of the information presented to the necessary facts and avoid
unnecessary and superfluous information. This information should be formu-
lated in consistently used language understandable to the end user instead of
technical system terms. This also means that the same action should always be
associated with the same term. Furthermore, the user interface should be self-
explanatory and intuitive, and if necessary, help and guidance should be easily
available. The user interface should be responsive to user actions and provide
feedback in a time frame comprehensible to the user. They describe that it is
important to always provide clear exits from every part of the interface to navi-
gate quickly and without hurdles. Related to this mention that a system should
provide shortcuts for experienced users to work efficiently. Finally, a user inter-
face should be stable, i.e. avoid crashes, but if a crash occurs, error messages
should be clearly formulated, provide useful suggestions for next actions, and
avoid blaming the user for the crash.

Moving from fundamental design principles, Schrepp et al. (2017) emphasize
the importance of testing user interfaces. They present the popular User Expe-
rience Questionnaire (UEQ) that contains questions on six scales related to the
usability of user interfaces. The first scale is overall attractiveness of the sys-
tem, i.e. whether users in general subjectively like the system. The second scale
is perspicuity, meaning designating how easy it is for users to get used to the
interface. Similarly, the third scale, efficiency, measures how efficient users can
handle the interface. The fourth scale is dependability. This indicates whether
the user feels in control and secure when in the human-computer interaction.
The last two scales, stimulation and novelty, capture if the user interface is
motivating and creatively designed.

In the case of tutoring systems, specific considerations need to be made,
which are partly covered by the previous points, but for the sake of clarity
shall be made explicit. The user interface of a tutoring system needs to be
tailored towards the groups of users that use it. As motivated in section 4.1.2,
different user groups such as students, teachers, parents, and administrators
can be given access to the system and then need a user interface that suits
their needs (Rudzewitz et al., 2017). This also implies that the interface is age-
appropriate in its presentation and (if present) language. In case of tutoring
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systems, it is crucial that the user interface provides a means of displaying
feedback. Depending on where the feedback should be displayed (overlay of
text, inline, below the text), this factor has to be considered early in the design
phase of the user interface of a tutoring system.

4.2 Strategies for Providing Feedback in Tutor-
ing Systems

The process of taking a learner production as input and generating and display-
ing feedback to the learner can be broken down into five conceptual steps, illus-
trated in Figure 4.2. Given a learner production, such as a word or a sentence,
the first step is to generate potential analyses of this user-generated content.
The next step, denoted with a (2) in the figure, is to select a target hypothesis
from the set of analyses generated in step (1), i.e. an interpretation that, given
the task and learner, is most likely in this context. In the next step (3), tutoring
systems need to determine how to use the selected target hypothesis, thus de-
termine a pedagogical strategy and rank feedback candidates in order to present
the interpretation of the analyses to the learner. This involves decisions about
factors like modality or location of presentation of the feedback. The last step
in the figure is optional and for this reason depicted with a dashed line. This
step represents the usage of Learning Analytics. When feedback is presented
to the learner (step 3), the system can record if and how the learners reacts to
the feedback (step 4), for example how long they look at the feedback message,
or whether they manage to address the error pointed out by the system. This
information can be stored in both a learner model (to record measures of com-
petence/performance of individual learners), as well as in a task model to get
keep track of the complexity and interaction with a task. This information then
can be fed back into the loop to adjust feedback strategies. In the following
subsections, all these steps are explained in more detail.

4.2.1 Analysis of Learner Production

The first step in providing feedback in a tutoring system given a learner pro-
duction is to perform an analysis of the learner production. This analysis varies
depending on different factors. First of all, the learning domain of a tutor-
ing system can determine the type of learner production and thus the analysis
strategies. In the literature about tutoring systems, usually two domains are
distinguished: well-defined domains and ill-defined domains (e.g. Roscoe and
McNamara (2013)).

Since the subsequent work is based on the processing of (learner) language,
we turn to a discussion of how ill-defined domains are different from well-defined
domains. Lynch et al. (2006) define five criteria for distinguishing ill-defined
from well-defined domains, which will be described in the following.
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(1) analysis of learner production

learner production

(2) representation of target hypothesis

(3) presentation of interpretation of target hypothesis

(4) recording of interaction with feedback in learner/task model

Figure 4.2: Conceptual overview about feedback process in tutoring systems
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Definition of Ill-defined Domains

The first criterion is verifiability: in well-defined domains, a production by
a learner to a given task is clearly verifiable. This means that there is (at
least) one single clear correct solution, and the criteria for its correctness are
precisely, explicitly, and formally defined. In contrast, in ill-defined domains
there is typically not one correct answer, but an undefined number of answers
can potentially be viewed as correct. Qualitative reasoning and world knowledge
instead of or in addition to formal criteria can be employed to determine whether
an answer is considered correct or not. An example provided by Lynch et al.
(2006) is an exercise in mathematics, for which a clear verifiable solution exists,
in contrast to a task in architecture, where many competing solutions for one
task can exist.

The second criterion is the existence of formal descriptive theories. In well-
defined domains, there are formal, empirically validated domain theories that
comprehensively structure and describe the domain knowledge. In contrast,
in ill-defined domains, theories typically cover parts of the domain only, and
different theoretical attempts at describing the domain with different degrees of
empirical validity compete. As Lynch et al. (2006) mention, domain theories in
ill-defined domains (such as law) tend to be more prescriptive, whereas domain
theories in well-defined domains (such as physics) are more descriptive.

The third principle mentioned is the structure of tasks. Similar to the first
principle, the authors argue that in ill-defined domains, tasks often have a ”de-
sign” (i.e. more open-ended) nature encouraging creative solutions, whereas in
well-defined domains, tasks require primarily analytical strategies.

The fourth and fifth characteristic mentioned is that in ill-defined domains,
concepts are abstract and consisting of multiple sub concepts that can not be
solved independently of each other. Concepts in ill-defined domains, such as for
example a ”good movie” from the domain of film studies, are abstract and not
clearly defined in all aspects and design principles. Sticking to the example of
a movie, a movie scene consists of many sub concepts such as the angle of the
camera, the lighting, the location etc. It is not possible to treat them completely
independently since the mutually influence each other.

Language as an Ill-defined Domain

Hockett and Hockett (1960) describe 13 design principles that characterize hu-
man language. Of relevance to our discussion are the principles discreteness, pro-
ductivity, semanticity, arbitrariness, and displacement. Discreteness describes
the phenomenon that languages are compositional (to a certain degree) into
smaller, discrete components. Productivity describes the fact that these smaller
units can be composed in productive ways to form completely new utterances
that are nevertheless understandable to speakers of this language. Arbitrariness
describes the fact that there is no direct link between the form in the language
and the object denoted, and semanticity the fact that signal units have an asso-
ciated meaning. Finally displacement describes the ability to talk about entities
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or affairs not present at the time of utterance, such as past or future events.
These properties combined lead to human language as an open communication
system allowing to talk about abstract concepts in arbitrarily many new ways.

The task of short answer assessment (SAA, Burrows et al. (2015)) will be
used as an illustration of these findings and their relevance and relation to
language as an ill-defined domain. In short answer assessment, the task to au-
tomatically classify or grade a short answer given to a question (Ziai, 2018) in
terms of the answer’s semantic correctness. The task is to allow for form vari-
ation while focusing the comparison on semantic aspects of the answer. The
evaluation is performed by comparing a learner answer to one or more target
answers, commonly provided by the question author. Due to the described prop-
erties of human language, it is very likely that a system grading short answers is
provided with unseen answers (e.g. Heilman and Madnani (2013)). The unseen
answer can be new in different aspects: it can contain unseen vocabulary, un-
seen grammatical structures, or unseen semantics. This requires short answer
assessment systems to abstract away from the concrete form to more abstract
levels of comparison. In this abstraction however, important nuances can be
lost, and it is not clear on which level of abstraction a comparison should take
place. An additional complication arises when learners use hypernyms or hy-
ponyms, or provide extra not-at-issue-material (Tonhauser, 2012). While there
are more challenges related to short answer assessment, these examples serve to
illustrate that the verifiability of short answers, and by extension language, is
not straightforward, and that language thus falls, under this perspective, into
the category of an ill-defined domain.

The second criterion of ill-defined domains is a lack of comprehensive formal,
descriptive theories. While for certain languages like English a lot of different
theoretical frameworks for the analysis of aspects of the language have been
proposed, many smaller languages are under-researched or even in danger of
being lost (e.g. Hale (1992)). Provided that language loss is happening now,
and that lost languages are not recoverable once lost, there is no general theory
of language, which would be a criterion for well-defined domains.

Coming back to our example of short answer assessment, it can be argued
that since short answer assessment is often done with questions posed for reading
comprehension requiring the extraction and summary of information from a
reading text and the synthesis of an answer based on this information, these
tasks require creative work in summarizing and extracting answers and lead to
linguistic variation in the learner responses (Roy et al., 2015). Other task types
like fill-in-the-blank exercises with pre-defined lemmas are less open-ended, but
the spectrum of tasks related to language include open-ended tasks with design
elements.

The fourth criterion, the abstractness, or lack of clear definition of concepts,
becomes evident when looking at distributional semantics models. In distribu-
tional semantics, words are represented as high-dimensional vectors with each
dimension standing for a context the word occurred in in some training data
(Erk, 2012). In this framework, words are treated as concepts that are not ex-
plicitly defined, but implicitly as some combination of the contexts they occur
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in. Approaches have however been made to build ontologies and hierarchies of
words, such as WordNet (Hirst and St. Onge, 1998), to explicitly model the
semantics of words by providing explanations, examples and relations between
words/concepts such as synonymy, hypernomy etc. One challenge with this ap-
proach is that the examples and explanations are again consisting of language
material for which a definition is required. This is a recursive problem in that
the object under consideration and its explanation are both language. This and
the fact that in distributional semantics, the dimensions in the vector are only
useful when in combination with the other dimensions, clearly fulfills the crite-
rion of ill-defined domains with respect to an interdependence of sub problems
and an abstractness of the concept under consideration.

The application of these criteria shows that language can be considered an
ill-defined domain. What aggravates this problem is that in language tutoring
systems, the type of language being processed is learner language, for which
there is not necessarily a one-to-one correspondence between the form of the
language and the meaning intended by the learner, introducing another signifi-
cant level of ambiguity (Dı́az Negrillo et al., 2010). In this case, language is not
only to be considered an ill-defined domain, but the language being processed
is in addition ill-formed and requires special analysis methods to derive inter-
pretations that accommodate for this fact rather than gloss over it. In the next
subsection, we discuss this ambiguity and approaches to deal with it.

Deriving Linguistic Analyses of Learner Language

Learner language, in contrast to standard language produced by native speakers,
often contains non-standard elements. As Dı́az Negrillo et al. (2010) demon-
strate, learner language can exhibit divergences on the level of distribution,
morphology, and lexicon. In standard language, when looking at a specific
form, the analysis found on the analysis level of distribution, morphology, and
lexicon converge and lead to one interpretation of a form (if the context is not
ambiguous). In contrast, for learner language it is the case that the evidence at
the various levels point to different analyses and it is not clear how to select one
of the alternatives. For example, (Dı́az Negrillo et al., 2010, page 8) show the
example “to be choiced for a job”. In this example, the word “choiced” exhibits
a mismatch between its stem and its distribution, as well as a mismatch between
its stem and morphology. The stem of the word is a noun (“choice”), but it is
used in a distributional slot expecting an adjective. Furthermore, it contains
a morphological marker that is used to mark past participles (“-ed”), but this
suffix is attached to a noun and not to a verb as it is done in standard language.

In these cases multiple competing analyses are possible. In order to arrive
at these analyses, two steps are necessary: (1) analyze the learner language
on different levels of linguistic evidence to derive competing analyses, and (2)
represent the different analyses in order to allow for a selection of the most likely
one(s). For the remainder of this section we illustrate step (1), and in section
4.2.2 we discuss step (2).

Meurers (2012) describes strategies to analyze learner language that serve to
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identify linguistic divergences instead of glossing over them or ignoring one level
of linguistic evidence, since the linguistic divergences of evidence are the cases
tutoring systems should be able to recognize and provide feedback on. Meur-
ers (2012) distinguishes two conceptually different strands: language licensing
versus pattern matching approaches. In the former, the complete learner an-
swer is analyzed and needs to be parseable by the analyzer. They describe two
mechanisms for language licensing: in a validity-based approach, the idea is
to have a set of formal grammar rules that consists of both rules for licensing
standard language, as well as extensions in the form of rules that cover certain
non-standard phenomena found in learner language. This approach allows to
parse learner language that would not be parseable with a grammar for stan-
dard language only, and the type of non-standard rules (’mal-rules’) used in the
parse analysis can provide guidance towards diagnosing a specific error in the
learner answer. As an alternative, constraint-based approaches are discussed.
In this case, the formal grammar consists of a set of constraints that must not
be violated. The constraint(s) violated can give insights into the divergence in
the learner answer. Conceptually different are approaches that are based on
pattern matching. In this case, not the complete learner answer is parsed, but
instead patterns are applied that, if matched, indicate the presence of a specific
mistake or error. The key difference between pattern matching and validity-
based approaches lies in the fact that in the latter case, the complete answer is
parsed, whereas in the former case, only parts of the answer are parsed (those
that contain the error/mistake).

Another approach discussed in the literature to derive analyses of learner
answers is to not directly analyze learner answers, but rather compare them via
(non-linguistic) similarity metrics to previously analyzed learner answers (e.g.
Paaßen et al. (2017)).

All these approaches have the goal to derive a set of analyses of learner
answers that accommodate for the fact that these learner answers contain di-
vergences when compared to utterances in the standard language. The next
step, described in the next section, is to derive one or more target hypotheses
from the set of possible analyses.

4.2.2 Representation of Target Hypotheses

In the previous section we explained how (linguistic analyses) of learner lan-
guage can be computed and how often multiple competing analyses of learner
productions are possible. This section is concerned with two interrelated ques-
tions: how to integrate one or more of the generated analyses into a target
hypothesis, and how to represent target hypotheses.

Target hypotheses are “some kind of reconstructed learner utterance” (Reznicek
et al., 2013, p. 1). Target hypotheses are modified variants of learner answers
where annotators have changed one or more parts of the learner answer. The
specific correction of one part of a learner error is often dependent on a specific
correction of another part of the learner production, a typical characteristic of
ill-defined domains (cf. section 4.2.1). This leads to the fact that for the same er-
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ror(s), there is ambiguity since it is not clear what the learner wanted to express.
This ambiguity can be represented by annotating different target hypotheses
prioritizing different aspects in the learner answer. Lüdeling et al. (2005) show
how one learner answer can be altered in terms of orthography, grammar, lexi-
cal aspect, information structure and style. This generation of multiple learner
production variants on one single and on multiple levels of linguistic representa-
tion leads to the question of whether these minimal target hypotheses should be
treated independently or whether they should be combined in some manner, i.e.
viewed not independently but rather emerging from a joint cause manifesting in
multiple places. Lüdeling et al. (2005) argue for combining minimal edits into
two target hypotheses for each learner answer: target hypothesis one contains
corrections only on the grammatical and morphological level, whereas target hy-
pothesis two contains corrections on the pragmatic, stylistic, and lexical level.
This bipartite approach allows to represent corrections of learner utterances in
terms of (1) form and (2) meaning.

The next step is to represent these target hypotheses, both conceptually and
in practice. Lüdeling et al. (2005) present different approaches discussed in the
following. One approach is to collapse multiple target hypotheses/analyses into
one single complex annotation. This annotation can be represented easily in a
tabular format with each line standing for one word and its annotation. Advan-
tages are the simplicity of the approach and the unification of information in
one category. On the other hand, this makes it difficult to have overlapping or
discontinuous annotations. Having complex labels that join information, Port-
monteau tags (Meurers, 2015), can potentially lead to a difficulty in interpreting
these complex categories and a large number of artificially created categories.
Furthermore, contrary to what is claimed in the article, it is possible to have
categories that span multiple words if the tags contain indicators of whether
they are part of a sequence or not, analogous to how the UTF-8 encoding works
with characteristic high bits for multi-byte sequences (Allen et al., 2012).

Another approach discussed is a tree structure annotation. In this approach,
inline markup is used to annotate spans of the learner answer. The approach
discussed uses an XML–based mixed content model in which tags and text are
on one level. This allows to have annotations that span more than one single
word, and also annotations that are nested within each other. A problem with
such a mixed content model is however though that due to a core principle of
XML stating that every XML document should be mappable to a well-formed
tree (e.g. Harold and Means (2004)), it is not possible not have overlapping
spans on the same level since this would violate the tree structure of XML.
Furthermore, the introduction of annotations directly inside the source text
can make it non-trivial to revert to the original text because it is modified
and meta characters with a special meaning are introduced, such as ’<’ or ’“’,
requiring these characters to be escaped or replaced by entities in the original
text, adding another level of modification of the original. This violates best
practices in corpus annotation, as discussed for example by Leech (1993).

The third approach discussed is the usage of multi-layer standoff annotation
models. In this setting, annotations are not placed inside the source text, but
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rather in a separate location and refer to the original text with the means of
indexes that point to specific places in the original document. Since the annota-
tions can be independent, but can also potentially refer to other annotations, this
approach allows for an unlimited number of annotations and annotation layers
with potentially overlapping spans. This representation, like the tree-structure
approach, can use XML as a representation format, but with the annotations
placed in a different part of the tree. This model does not require a collapse
of annotations into combined tags, but allows to represent competing analyses
in parallel. This approach thus overcomes certain problems present in other
approaches due to its flexibility, both from a theoretical and a practical stand-
point, and therefore can be considered the most elegant solution to represent
target hypotheses.

4.2.3 Presentation of Interpretation of Target Hypotheses

Having established what types of target hypotheses can in principle be anno-
tated and how to annotate them in practice, the next question is how to proceed
with a set of target hypotheses in order to provide some kind of interpretation
of one or more target hypotheses to a learner using a tutoring system. It was
established by van der Linden (1993) that in the context of a tutoring system,
feedback with three or more lines of text is not read by most learners. While
three lines seems like an arbitrary number, the underlying insight is that learn-
ers can easily be overwhelmed by too much information. This finding is in line
with the cognitive load theory (Sweller, 2005). This theory states that learning
is facilitated or hindered by intrinsic load (the complexity of exercise material),
extraneous load (the presentation of the learning material), and germane load
(the creation of schematic representations of regarding the learning domain).

These findings imply that it is advisable to not present to the learner the
interpretations of all target hypotheses at the same time, but rather restrict the
feedback to a subset of the analyses only. Heift (2001), based on van der Linden
(1993), suggested to only present feedback describing one error at a time. This
poses the problem of how target hypotheses can be ranked in order to select
the most important feedback message for a specific student and exercise. This
involves two considerations: (1) which target hypothesis should be chosen for
an ambiguous part of the learner answer that can be analyzed in different ways,
and (2) how to, given a target hypothesis, select the best pedagogical strategy
for presenting the interpretation of this target hypothesis.

Ranking of Target Hypotheses

In ranking the target hypotheses, three factors play a main role: (1) the lan-
guage, (2) the task, and (3) the learner.

On the language side, the target hypotheses should be based on and similar
to the learner answer. The modifications should be minimal edits like described
by Reznicek et al. (2013) and not attempts at replacing learner tokens with e.g.
completely different words or inserting lots of new material. While this is a
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rather abstract perspective, it can be seen as a guiding principle to be opera-
tionalized in a specific manner for specific applications. A concrete illustration
of how to operationalize this principle would be to implement a beam search
algorithm (e.g. Koehn (2004)) that uses the edit distance as a cost function
and searches the space of edits while only considering the edits within a specific
beam width and discarding hypotheses where the edit distance is too far off a
pre-defined beam.

The second factor to be considered is the specific task for which the learner
language was produced. The task should and can be made use of in different
ways to weight target hypotheses. On the one hand, the task performed by
the learner always consists of some language material. In the minimal case the
context consists of the instruction, but often also more facets are available like
a reading text for reading comprehension tasks, the transcription of an audio
clip for listening comprehension exercises, or a list of lemmas provided in fill-
in-the-blank tasks that need to be inflected and inserted into a gap. Priming is
an effect researched on in psycholinguistics that describes the phenomenon that
recently perceived words or linguistic constructions are more salient in memory
and more likely to be used (e.g. Tulving and Schacter (1990)). Since a learner is
exposed to the task context when working on an exercise, and since priming as
an unconscious process takes place, a target hypothesis ranking algorithm should
give higher weight to a target hypothesis with a normalization that occurs in
the task context than to a target hypothesis that has a normalization for the
same source material but with a normalization appearing not in the context.
An example for such a task-specific weighting is a spell checker that gives higher
weight and likelihood to words that appear in the context material rather than
corrections to other words. Flor and Futagi (2012) present a context-sensitive
spell checker with this property.
Furthermore, the task context can be used in another, complimentary way when
prioritizing target hypotheses. A task always has a certain pedagogical goal with
the aim of eliciting learner productions of a specific form and/or content. For
example, a reading comprehension task with an associated task that asks the
learner to compare two entities from the text might require the learner to make
use of comparatives. The practice of comparatives is thus one of the pedagogical
goals of this exercise. In this example, the remaining language that has to be
produced serves only the secondary purpose to enable the usage of comparatives.
For this reason, target hypotheses that correct an incorrect usage or formation
of a comparative should be ranked higher than target hypotheses that target
other aspects of the learner production.

The third factor to consider is the learner that produced an utterance. The
concept is to use this learner’s profile (cf. also section 4.2.4) in order to rank tar-
get hypotheses differently for each individual learner. This can lead to different
target hypotheses being prioritized for each learner because each learner has a
different background and history of interaction with the system. A first instance
of how learner profile data can be used in order to weight target hypotheses is to
check at which stage a learner currently is in the curriculum. In terms of lexicon
and linguistic constructions, the curriculum serves as a proxy of what a learner



78 CHAPTER 4. TUTORING SYSTEMS

has already been exposed to or, ideally, learned. If there are target hypotheses
with corrections that contain lexical material or linguistic constructions that are
far beyond the current state of the learner, the information will be difficult to
understand to the user. Furthermore, it has been shown that there are certain
orders of acquisition in second language learning (Larsen-Freeman, 1976), and
by combining the learner’s current state in the curriculum and the order of ac-
quisition of constructions, certain target hypotheses can be ruled out or ranked
lower if there is a big divergence, i.e. if it is the case that a learner is very un-
likely to have learned this construction or word already. An example would be a
form that involves a tense form that is learned much later in the curriculum: in
this case, a target hypothesis that correct the learner production to a tense that
is near the current state of where the learner stands in the curriculum should be
prioritized over a form that is much further down the curriculum. In the same
line, vocabulary information can be used: if for example a beginning learner
writes a nonword, and there are two target hypotheses, with one that correct
the nonword to a very rare and exotic word, and the other one to a word that is
on the same level as the learner is currently in, the the latter target hypothesis
should receive higher priority. Note that these types of rankings are not possible
by using surface measures only like for example edit distance.
Another way of using the learner profile to rank target hypotheses is to use, in
addition to the specific task, the constructs in the learner’s Zone of Proximal
Development (Vygotsky, 1978) and prioritize constructs that the learner is cur-
rently in the process of acquiring. A concrete operationalization of this approach
could be to give higher priority to target hypotheses that contain corrections
for which the learner has shown some uptake already, but has not mastered it
(i.e. also still shows some errors).
Regarding the learner background, information about the learner’s language
background can be incorporated. Cross-linguistic influences, i.e. transfer from
the first language to the second language, have been shown to have significant
impacts on the language produced by learners in the second language (Odlin,
2005). Similarities between the first and second language, as well as the presence
of constructions in the second language not present in the first language, have
specific influences on the language and types of errors language learners make in
the second language. Furthermore, similarities between other second languages
and the target language learned at the moment have strong influences on the
production of learner language (Ringbom, 2007). Therefore, target hypothe-
ses that contain phenomena explicable by typical patterns of transfer from the
learner’s first language or other second languages should be given higher prior-
ity than target hypotheses that do not show any of these patterns. The factors
described to rank target hypothesis paying attention to the learner, the lan-
guage, and the task are not exclusive and ideally all combined into a ranking
mechanism. The highest ranked target hypothesis is selected by jointly making
use of these factors.
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Selection of a pedagogical strategy for presenting feedback

After having prioritized target hypotheses, the divergences between the target
hypothesis/target answers and the learner production should be presented to
the learner, i.e. the actual feedback should be provided to the learner. In
order to display the feedback, a range of pedagogical considerations need to
be made. While human teachers will make many of these decisions by intu-
ition, for computer-based tutoring systems it is necessary to explicitly code and
parametrize the decision points. For this reason, we will discuss each individual
decision in the following by going over the points listed in Table 4.1.

learner answer correct consideration for pedagogical strategy
true 1) absence of negative feedback

2) reinforcement
false 3) modality of signal for feedback

4) specificity of feedback message
5) formulation of feedback
6) marking of location of error
7) time of presentation of feedback
8) location of display of feedback
9) learner interaction history

Table 4.1: Considerations in displaying feedback

In the easiest case, the learner answer is identical to the target answer, or
similar enough to be accepted by the system. This means that in the target hy-
pothesis, there are no significant changes. What constitutes a significant change
is dependent on the task: while for form-based activities a tense formation error
might be a criterion to reject a learner answer, for meaning-based tasks like
a listening comprehension exercise this might be an insignificant divergence as
long as the semantics are correct. As discussed in section 4.2.1, form and mean-
ing are not independent or separable and therefore algorithms that check the
correctness of learner answers need to consider both simultaneously.

If an answer is recognized as correct, there are two options: in the easiest
case, no error or feedback message is shown. This distinguishes this case from
the instances when a learner makes an error and gets shown feedback. In a
more elaborate case, a learner receives a positive reinforcement (e.g. Lyster and
Ranta (1997)). This reinforcement can have different forms like for example a
green check mark or a message praising the learner for having produced a correct
form like ”Well done“. The motivation for the reinforcement is to psychologically
encourage the learner to attempt to produce a correct answer again next time.

In the more complex case, a learner answer is not accepted as correct by
the system. In this case, there is some divergence in the learner answer worth
pointing out that the system should provide feedback for. The first consider-
ation is the modality of the signal for feedback. In a dialogue-based system
with spoken communication, a feedback in the form of audio might be more
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appropriate than a written feedback. Related to this, system designers can de-
cide whether or not to associate feedback with certain audiovisual signals like a
specific sound playing or a symbol in a specific color, e.g. red, popping up. The
second and third point, the specificity of the feedback and its formulation, are
closely related. The most unspecific way of presenting feedback is to just use a
symbol or sound to indicate that there is some deviation in the learner answer.

Feedback can be made more specific by marking the location of an error
(next point in table) and by providing an explanation of an error. This expla-
nation is the point where the formulation of the feedback can fine-tune different
degrees of specificity of the feedback. Heift (2010a) conducted experiments in
a tutoring system to measure the effect of highlighting only versus explanation.
They showed that more explicit feedback led to more uptake (i.e. successful cor-
rections) by learners, but also that more specific feedback was more beneficial
for learners with higher proficiency. Going into more specific feedback, the for-
mulation of feedback becomes important. Lyster and Ranta (1997) distinguish
five types of formulations with respect to corrective feedback. The first type,
named explicit correction, points the learners to the error and directly provides
them with the correct form. This type of feedback that gives away the correct
form has been shown to be ineffective (e.g. Panova and Lyster (2002)). The
second type is a recast that is a ”reformulation of all or parts of a student’s
utterance, minus the error“(Lyster and Ranta, 1997, page 46). Often tutors
also change their intonation to make the location and nature of the correction
more salient to the learner. Another type of feedback formulation is a clarifi-
cation request. In this case, a teacher or the system points out that a part of
the learner answer is not correct and asks the learner to clarify or correct this
point.

The fourth type of feedback presented, elicitation, is closely related to a
clarification request. In elicitations, tutors repeat a part of the learner answer,
but make a pause and indicate to learners that they have to provide a corrected
form to fill this gap. Finally the most specific type of feedback is meta-linguistic
feedback. The aspect of linguistics included is due to the domain of language
learning this paper originated from. From a more general point of view, this type
of feedback is concerned with the provision of domain knowledge explaining to
the learner why, in comparison to the model of the learning domain, the answer
is incorrect, without providing a correct answer to the learner. This type of
feedback has been shown to be very effective for learning (e.g. Heift (2010a);
Meurers et al. (2019a)).

The formulation of the error is also related to the point termed ”learner
interaction history“ from Table 4.1. If there is an interaction history of the
learner (cf. section 4.2.4) and the learner has made a specific error before and
been shown a certain feedback message before, then this history can be used
to adapt the specificity of the formulation. If a learner makes the same error
or an error of the same nature again, potentially in a specific time interval
or the same exercise, then the formulation can be adapted, for example to
make it more specific. Another example of how the interaction history can be
used is to adapt the feedback based on whether a learner has previously shown
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to have mastered a specific form. In this case the feedback formulation can
differ depending on whether the system diagnoses it as a competence error or a
performance error. In the latter case, the learner in principle has acquired the
correct form or construction, but made a spurious error, e.g. via distraction,
whereas in the former case, the learner has not learned or sufficiently practiced
the concept needed to be successful for a form or construction of this type. A
further consideration is the time of presentation of feedback. Conceptually two
types can be distinguished. Formative feedback describes an approach in which
feedback is provided while the learner is working on an exercise.

Formative here means that the process of practice is formed and scaffolded
by feedback that is presented directly while a learner is working on an exercise.
In contrast, summative feedback is a type of feedback provided after an exercise
has been submitted by a learner. Summative means that the performance of
the learner is summed up. An example of a type of summative feedback is a
grade assigned to an essay. Especially relevant for formative feedback is the
next parameter, the location of display of feedback. While this at first glance
might seem more like a user interface consideration, it does have implications
relevant for learning.

Two approaches can be distinguished with respect to this parameter. The
first approach is that feedback is displayed at some location outside of the actual
exercise data, for example at the bottom of the page. Alternatively, feedback
can be displayed next to or inside the input field (or in the case of paper, on
the same line on the sheet). Computer-based tutors also offer further options
like displaying the feedback in a popup window anywhere on the screen. The
positioning of the feedback message can have implications on the salience of the
feedback and thus the probability of it being read and implemented by learners.

4.2.4 Recording of Interaction with Feedback in Learner
and Task Models

In the previous section we established what parameters can be tweaked with
respect to feedback presentation. The combination of these parameters and the
effectiveness of certain parameter configurations can be stored for each student
and task. Every time feedback is generated and displayed by the tutoring sys-
tem, this event, together with the reaction of the learner to whom the feedback
was shown, can be recorded. This interaction data serves as the basis for sub-
sequent Learning Analytics procedures and is typically recorded in the form of
time-stamped log entries (Romero and Ventura, 2007).

In chapter 3 we explain in detail different types of Learning Analytics, and in
chapter 2 more about different types of learner reactions to corrective feedback.
In this section, we focus on the immediate application of the records of learner-
feedback interaction in the process of providing feedback in tutoring systems.
From a general standpoint, the interaction data can be stored in or associated
with both a model of the exercise and a model of the learner, contributing to
task and learner models.



82 CHAPTER 4. TUTORING SYSTEMS

Regarding step (1) in Figure 4.2, the linguistic analysis of learner produc-
tions, the first usage of Learning Analytics can be an optimization of parsers
for learner language for individual tasks, users, or combinations thereof. If the
Learning Analytics data shows that certain rules are applied more frequently,
and/or if the data shows that analyses with certain rules more often lead to
corrections by learners, then these rules can be ranked higher so that they are
applied before other rules in order to arrive at a linguistic analysis more quickly.
This is especially useful in pattern-matching approaches that stop after one error
pattern has been detected. In linguistic analysis frameworks using probabilities
or weights for individual rules, the weights can be adjusted based on frequency
and success metrics.

This weighting is at the boundary between step (1) step (2), the selection
and representation of target hypotheses. If there are ties in the ranks of target
hypothesis, or also to select more likely target hypothesis by adjusting their
weights, learner and task models can be used in the target hypothesis rank-
ing process. The first language of the learner can be explicitly encoded in the
learner model. Rules also have to be labeled with information regarding their
frequency of application for learners with a specific first language. These labels
can be assigned top-down with knowledge about different language families, or,
as illustrated in Figure 4.2 in a data-driven bottom-up approach. The combina-
tion of labels for rules and learners can rank target hypotheses higher for cases
where there is a match in these parameters. Furthermore, target hypotheses
that prioritize constructs that the learner is learning at the moment, but has
not yet mastered, can be ranked higher, i.e. constructs in the Zone of Proximal
Development (Vygotsky, 1978). The decision as to which construct has been
learned already can come from the Learning Analytics records, more specifically
from the learner model.

Regarding the third step, the presentation of the interpretation of a target
hypothesis, interaction data can reveal which presentational parameters have
shown to be most effective for specific learners. Research on individual dif-
ferences in second language acquisition has shown that learners with different
learning styles exist (Cronbach and Snow, 1977; Corbett and Smith, 1984; Plass
et al., 1998). Visual learners prefer feedback and explanations in visual mode,
such as in images or videos explaining concepts or feedback. Auditory learners
learn best with feedback and explanations in audio form, and verbal learners
favor feedback in static written form. The parameters described in section 4.2.3
allow to adapt the tutoring system behavior to accommodate for these presen-
tation styles. If in the interaction data the system stores information about the
modality of presentation, and if the system varies the presentation format, or if
the learner indicates a certain specific learning style preference, then this data
can be used to select which modality of presentation is most effective and apply
this strategy for this learner.
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4.3 Non-Language Tutoring Systems

4.3.1 Overview and Definition

Non-language tutoring systems, in the context of this thesis, describes tutoring
systems whose primary learning subject is not a second language. Concretely,
the goal of these systems is not to teach a language first and foremost.

This delineation is necessary since tutoring systems of this type still em-
ploy language in various ways, and language often plays an important role. For
example, most tutoring systems provide task instructions in textual form. Un-
derstanding the instruction and thus language is key to solving exercises. In
the MathSpring system (cf. section 4.3.3), learners are required to first select
which type of activity a task constitutes before being allowed to work on the
actual exercise. With this step, the developers aim at ensuring that the learners
can understand the language and textual cues for specific types of exercises.
The primary goal of MathSpring is still to teach mathematics, but (specific)
language still constitutes a part of the learning domain.

Relatedly, exercises always require some form of response of learners. While
there is the option to allow input only via pre-defined options or only in math-
ematical terms, as soon as understanding should be tested without an easy way
of guessing, learners have to justify their reasoning via language. An example
for this is ASSISTments (cf. section 4.3.2). The primary goal of this tutoring
system is to teach Mathematics. However, in addition to providing mathemat-
ical solutions, in certain tasks learners have to justify their answer in textual
form, and the system attempts to automatically score learner responses (see
Erickson et al. (2020)).

Even for tasks where there is non-textual input, non-language tutoring sys-
tems provide sophisticated answer checking mechanisms that are in principle
transferable to a language learning context. Systems such as Andes (cf. sec-
tion 4.3.4) are cognitive tutors which model rules in a domain (in this example
physics) explicitly, are able to combine rules, and thereby solve problems based
on these rules independently. Since language tutoring systems (cf. section 4.4)
are often also based on production rules for language, the approach is compati-
ble.

In the remainder of this section, we discuss examples of non-language tu-
toring systems mainly for mathematics and physics, i.e. well-defined domains,
since these systems offer interesting aspects apart from language processing.
These aspects comprise user model designs, domain models, exercise difficulty
estimations, the employment of tutoring system in studies, among other aspects,
and are in general transferable to language tutoring systems.

4.3.2 ASSISTments

ASSISTments (Heffernan and Heffernan, 2014) is a tutoring system platform
originally designed for mathematics. It is used mostly in the domain of mathe-
matics, but has also been extended to other domains, including English.
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The term tutoring system platform in this case means that the system has
been designed with flexibility in mind in the sense that the system can be in-
stantiated for different domains. As Heffernan and Heffernan (2014) explain,
a platform can be used to create systems for a specific purpose. A wide range
of studies testing different parameters and contents with the system have been
conducted, also in large-scale contexts (see e.g. Kelly et al. (2013)). For stud-
ies, an established design consists of a pretest and post test to measure the
effect of an intervention. However, traditionally pre-post test designs costly in
preparation and administration for both researchers and teachers. In order to
facilitate such study setups, the developers of ASSISTments allow researchers
and teachers to design and run randomized controlled field trials with different
experimental groups, pretests, and post tests in the system within the normal
usage instead of as extra activities to be done outside.

A key principle in the design of the system is to put the teacher in charge:
they can create their own materials, hard code the sequencing for exercises
depending on their students’ performance, and have reports generated with
performance indicators of their students. The last functionality is achieved
with a form Learning Analytics tool for teachers that shows metrics such as the
percentage of correct answers, but also frequent errors by learners as a means
of supporting the preparation of school class lessons. In summary, the authors
argue against a too strong integration of automatic methods, but more a design
where the teacher is always in control for keeping them in the loop and control.

It is important to note that teachers can give away some control though,
but they need to actively take action. If they chose to do so, they can assign
their students to a round of mastery learning for a specific skill. The idea is
that the system only lets students move to another topic once it recognized
that they have mastered the current topic. The system performs this kind of
gating by giving new tasks to students until a mastery criterion is reached. The
default case in ASSISTments is to achieve a direct sequence of three correct
items. Additionally, the system offers the option for spaced repetition in which
the system repeats a certain topic/skill in a fixed interval span.

Another way in which teachers can give away control is via a form of adap-
tive sequencing in a variant of the system called PLACEments. This system
explicitly models a skill hierarchy and uses it for an automatic suggestion of ex-
ercises based on skills associated with exercises. When a learner doesn’t answer
an item correctly, the system recommends exercises for the respective skill.

Another feature worth mentioning is the parent notification functionality.
Parents can subscribe to notifications about the progress in terms of exercises
and homework. This feature has been shown to increase homework completion
rates.

In terms of task types, the system offers multiple choice, selection, ranking,
and free text input. It does not incorporate NLP, therefore the free text input
needs to be graded by teachers or students via peer feedback. For cases where
the system provides feedback, in the mathematics domain, it implements a
model tracing approach, but without a very specific student model or advanced
deduction. As the authors put it, “ASSISTments does not know how to solve
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the problem” (Heffernan and Heffernan, 2014, p. 3). Earlier versions of the
system were more focused on production rules and allowing users to extend the
grammar the system uses. This however proved to be too time-intensive and
required too much expert knowledge for users, therefore there was a shift to
write examples and solutions instead of production rules. The reasoning here
is that with enough examples, the output of a model tracing approach could
be imitated closely enough. In order to get examples and information about
teaching strategies, the developers also recorded teachers in their classroom to
learn which pedagogical strategies they use.

Interestingly, the system’s capabilities were extended in a way that the sys-
tem can be seen as a hybrid between a language and a non-language tutoring
system. In certain tasks, learners need to provide an answer in mathematical no-
tation, and justify their reasoning in textual form. ASSISTments then conducts
short answer assessment on these semi open tasks and attempts to automati-
cally classify the answers in terms of their correctness for this task (Erickson
et al., 2020).

In 2014, the developers reported 4,000 concurrent users every day (Heffernan
and Heffernan, 2014) of the platform/system, which, in contrast to many other
system, is tightly integrated in the school context in the United States and 13
other countries in 20203. The contents of various state-approved text books
have been adapted for use in the system. The data from the system has been
and is used in data mining competitions, like for example the ASSISTments
Data Mining Competition 2017 (Patikorn et al., 2018).

4.3.3 MathSpring/Wayang Outpost

MathSpring, formerly known as Wayang Outpost Arroyo et al. (2014), is a
tutoring system for mathematics. Based on a high variation between students in
terms of motivation and knowledge in mathematics, as well as different degrees
of aptitude, the authors argue for a system that is adaptive on an affective,
meta-cognitive, and cognitive level.

In this paper it is explained that there is a correlation between memory-
related capacities and mathematical abilities. Difficulties with self-regulation
and affective experiences play a big role as well (e.g. implicit motivation for the
subject).

Key features of the system to act upon are a model of affective states, a model
of self-regulation, and an adaptive exercise sequencing model. In combination,
these components allow the system to select a suitable pedagogical strategy.

Similar to what is described in section 4.3.2, MathSpring follows an example-
based approach, drawing partly on a pool of items from standardized tests. Ar-
royo et al. (2014) compare this approach to model tracing approaches and argue
that this approach takes additional affective and meta-cognitive factors into ac-
count and models exercise difficulty not only in terms of correct or incorrect
attempts like in Item Response Theory, but also includes and considers time

3https://new.assistments.org/, last accessed 2020-03-17
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and feedback behavior. The result is a continuous update of a range of diverse
difficulty metrics for exercises in the system.

When working on an exercise, learners first have to identify which type of
problem it is they are working on (i.e. from which sub area of mathematics)
in order to help them chose an appropriate strategy. The authors argue that
students often show difficulties in determining what kind of problem they are
working on, but once the type of problem has been decided, following a solu-
tion strategy is less difficult. While learners are working on an actual exercise,
the tutoring system offers scaffolding feedback with different modalities of feed-
back: explanations of errors with different media, highlighting, enhancements
via drawings, sound, examples of solutions, and steps towards solutions for sim-
ilar problems.

The system provides an adaptive sequencing of materials with the goal to
keep learners in the Zone of Proximal Development, i.e. make the exercises not
too easy or too difficult. The number of exercises given to a learner is not fixed,
but rather determined by when a certain mastery criterion has been reached.
The idea is to give harder exercises when learners show a good performance,
and sequence easier tasks when learners struggle. It is worth mentioning that
teachers are still in the loop: they can limit the domain in which learners should
practice, and additionally limit the time. The sequencing algorithm considers
time, feedback, and trials.

Different scenarios are distinguished with different sequencing criteria: ex-
ercises that are too easy or too hard, students putting in low effort trying to
game the system, exercises at the right difficulty, and students avoiding hints
provided. In essence, the system puts effort, hints and success into relation with
each other. By doing this, they link behavior to diagnoses and provide meta-
cognitive strategies. The item difficulty parameters are estimations based on
past trials, concretely an expectancy value computation based on a statistical
region of parameters such as hint taking or time-on-task of past attempts. A
concrete example is the situation of mastery with high effort: in this case, the
system recognizes a longer working time than the average student, but also that
the learner did not request many hints. In this scenario, the system chooses
the strategy to maintain the current difficulty of tasks to be sequenced, and to
praise the learners for their effort.

Teachers are able to use Learning Analytics functions for visualizing student
progress. They can look at the progress of their school class as well as individual
students, and visualize the metrics on both a topic and an item level. These
metrics include time-on-task, feedback behavior, engagement, motivation, and
success criteria and serve the purpose of helping teachers to prepare their next
classes.

For students, the system also offers Learning Analytics tools with the goal
of increasing self-regulation and meta-cognition, both of which have been show
to have an impact on mathematics performance. Firstly, the system incorpo-
rates an open learner model where the progress is visualized for different topics.
For each topic, it allows to continue working on it, reviewing past exercises,
and requesting challenging new exercises. The learner model is not only pas-
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sively waiting to be opened by learners, but the system contains affect detectors
that open the learner model based on certain recognized affective states, more
specifically transitions between affective states.

These affective states are detected via sensor-free affect detectors that can
recognize confidence vs. anxiety, interest vs. boredom, frustration, and excite-
ment (based on interaction log patterns). The system contains animated figures
that display emotions and encourage students to work on the problems, moti-
vate and encourage them, and ignore them if the system classifies the student
behavior as not exerting effort. These characters showed a high positive effect
especially for initially lower performing students, with better results when the
gender of the scaffolding character matched the gender of the learner.

Secondly, the system offers progress screens after every six completed items.
Based on the learner’s performance, these screens show different hints and vi-
sualizations, corresponding to different pedagogical strategies.

MathSpring and it predecessor Wayang Outpost are in use since 2004, and
their effectiveness has been demonstrated in various studies in both pretest/post
test designs and in delayed standardized tests showing significantly better results
for students using the system.

4.3.4 Andes

Andes (Vanlehn et al., 2005) is a cognitive tutor for physics. This type of tutor-
ing system contains explicit domain and problem solving knowledge enabling it
to automatically solve the exercises included in it.

Designed as a homework helper, it assists learners in physics education on the
topics of mechanics, magnetism, and electricity. In the learning of these topics
the demonstration of the steps towards the target answer, i.e. the derivations,
has higher priority for teachers, and not only the final result. For this reason,
Andes was designed for formative scaffolding feedback on individual derivations
steps of exercises.

Learners can write equations freely in input boxes of exercises with one input
box for every step in a derivation. The authors however acknowledge that the
required input format is more precise than in regular interaction in class.

Given a learner answer, the system first conducts a binary correctness check.
Correctness in this case has two notions: a learner answer is correct if either
logically follows from the task, or is a valid part of the system’s pre-computed
derivation towards the target answer. Once binary feedback has been provided,
learners can receive detailed specific feedback, but only when they actively re-
quest it after an answer has already been flagged as incorrect in the binary
feedback step.

Upon requesting specific feedback, the rest of the interface gets disabled
while feedback is shown in the system in order to focus attention on the mes-
sage content. A message consists of a sequence of three hints with increasing
specificity per feedback message, with the last part of the message telling learn-
ers explicitly what they need to do in the given situation. This hint is however
not shown in the beginning; instead learners can, after each hint, request more



88 CHAPTER 4. TUTORING SYSTEMS

(specific) hints, or alternatively confirm to return to the exercise to continue
working on it.

The rules underlying the distinction specific feedback distinguish between
errors and mistakes so that conceptual errors are prioritized over spurious mis-
takes. Each rule or pattern encodes whether it models an error or mistake, thus
offering a rule-based approach to this problem. These error patterns and/or
mal-rules explicitly offer conceptual feedback. Earlier versions of the system
came with a matching of learner answers to target answers (or their equiva-
lence in terms of derivation step equations), but the system did not provide
conceptual feedback, only syntactic feedback. This approach leading to surface
corrections without a deeper understanding fostered a switch to error pattern
rules with scaffolding information.

In terms of handling ambiguities, i.e. in cases where the system does not
understand an answer, it asks learners to provide the principles they intended
to apply so that the system can narrow down potential problems. Additionally,
Andes requires learners to provide formal definitions of variables via a drop
down menu (thus offering the system an unambiguous denomination). Making
the connection to language tutoring systems, this solves problems inherent in
language tutoring systems where the system needs to decide on a target hy-
pothesis of an incorrect learner answer. Selecting an explicit variable definition
is comparable to a selection of parts of speech of words by a learner.

Additionally to the feedback on a wrong answer, learners can request a
conceptually different type of feedback. This type of feedback describes the
next steps learners should do for this task and does not point out properties
of a specific learner answer, but instead is guided by the task and pedagogical
considerations. This type of feedback takes into account what has been entered
already, what typical steps are to be taken at this stage in general for this type
of exercise, and what the next target steps are for this concrete task. Different
from feedback that points out what is wrong in a specific step, this feedback
type informs learners about what steps to take next.

Another type of assistance to learners is an equation solving tool that allows
to automatically solve equations by variables in order to let learners focus on
the conceptual understanding of physics rather than algebraic operations. After
having used the correct formulae, this tool can, as a last step, assist in computing
the concrete target quantity.

Andes computes a score based on the correct attempts and frequency of
requested specific feedback. The score is increased with correct attempts and
not subtracted when learners request the least specific feedback, but only when
they request the most specific feedback telling them exactly the next step to
pursue.

This tutoring system can be categorized as a cognitive tutor, i.e. a type
of system that is able to solve problems from its domain. In the associated
authoring tool, authors thus provide exercises, but no answers. Andes attempts
to solve them, computes a solution, and shows authors the steps involved to-
wards the solution. Underlyingly, the system uses 550 rules underlying the
exercises/computations/principles. These rules are used for a pre-generation of
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derivations of all problems before the system is deployed (offline generation ap-
proach, cf. also section 6.2). Generated from that is are output files representing
directed graphs of the space and sequence of steps for reaching a solution.

The effectiveness of Andes with its approach to emphasize the importance of
and apply the fundamental principles underlying a problem has been confirmed
in multiple longitudinal studies in the United States Naval Academy.

4.4 Language Tutoring Systems

4.4.1 Overview and Definition

A language tutoring system is a form of tutoring system in which language is
the main pedagogical content. ’Main’ pedagogical content because language
is used to communicate meaning, and, especially in the school context, the
introduction of new language structures is often associated with cultural studies
of the countries in which the foreign language is spoken. While this constitutes
an aspect, the focus of system designers for language tutoring is on language as
a system and its linguistic properties.

Meurers (2012) distinguishes between language tutoring systems that ana-
lyze the language of learners in the target language, and systems that analyze
utterances of native speakers in the target language for language learners. The
first type of systems typically provides feedback to learner productions (e.g. E-
tutor, cf. section 4.4.2), whereas the second type often performs input enhancing
for learners (e.g. View/Werti, cf. section 4.4.8).

Another relevant distinction for language tutoring systems is the target user
group addressed by the system designers. Systems like FLAIR (Chinkina et al.,
2016) support language teachers in selecting relevant material for their students,
while tutoring systems like TAGARELA (cf. section 4.4.3) are designed to
support students while working on exercises.

In general, the number of language tutoring systems in comparison to tutor-
ing systems in other, well-defined domains, is smaller given that on the one hand
free input interaction by learners is desirable, but on the other hand the inter-
pretation of input that is not fully constrained is very difficult due to ambiguity
inherent in natural language.

In the following, we discuss a range of language tutoring systems that illus-
trate different approaches towards building and using language tutoring systems.
E-tutor (section 4.4.2) and TAGARELA (section 4.4.3) illustrate the concept
of feedback and an architecture supporting it for language tutoring systems.
iTutor (section 4.4.4) is interesting since it illustrates how tutoring systems can
be integrated into authentic school contexts. ROBO-SENSEI (section 4.4.5)
serves as an example of how to generate feedback for natural language tasks.
CASTLE (section 4.4.6) is discussed because it shows how Learning Analytics
can be combined with language tutoring systems into learner models. Finally,
View/Werti (section 4.4.8) demonstrates how language tutoring systems can be
used to enhance native language for learners of this language.
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4.4.2 E-tutor

E-tutor is a web-based tutoring system for learning German as a second lan-
guage (Heift, 2010b). Originally, it was called German Tutor (Heift, 1998) and
iteratively developed and improved since 1999. The typical use case of e-tutor
consists of the system as a supplement to a regular workbook combined with
traditional classroom instruction. In the application, content is organized ac-
cording to chapters and mirrors the content of three subsequent introductory
courses of German. Each chapter contains both exercises and supplementary
content. The exercises have one of nine types ranging from vocabulary exercises
to essay writing tasks. In the background, there is one common analysis module
for all task types, but different pedagogical module instances for specific task
types, allowing to re-rank feedback according to exercise requirements. The
learner progress is saved between sessions.

The system offers immediate feedback on learner productions with respect
to spelling and grammar. In addition to displaying meta-linguistic feedback on
errors in the learner production, the location of an error is highlighted. Only
one error at a time is displayed. Every time a feedback message is displayed, this
action is stored in log record and can be accessed by the learner while working
on a n exercise. Learners furthermore have the option to show the solution for
an exercise (Heift and Rimrott, 2008).

The log data is the basis for a learner model to individualize pedagogical
interventions, provide progress reports to learners and instructors, and alert
learners if exercises are probably too difficult. Additionally, the system com-
piles learner corpora that can be searched for examples via an interface in the
system, forming the basis for an analysis of task difficulty based on performance
of learners recorded in the system. E-Tutor has been used in a range of studies
investigating design choices and learner behavior in ICALL systems. For ex-
ample, Heift (2002) identified four types of learners based on their interaction
behavior with the feedback and system functionality: browsers, peekers (fre-
quent and sporadic), and adamant learners. Furthermore, the system has been
used to investigate the effect of different types of corrective feedback and the
reactions of learners towards it (cf. section 2.3).

4.4.3 TAGARELA

The web-based tutoring system TAGARELA (Teaching Aid for Grammatical
Awareness, Recognition and Enhancement of Linguistic Abilities) (Amaral and
Meurers, 2008, 2011) is an electronic workbook that provides interactive feed-
back for learners of Portuguese. Developed since 2005, it contains a range of
exercises that are independent of a specific printed workbook. Its intended usage
is as a supplement in traditional classroom teaching. In the system, there are
six exercise types with different contexts: listening comprehension, reading com-
prehension, vocabulary, reformulation, and picture description. The expected
input ranges from individual words in, for example, fill-in-the-blanks exercises
to single sentences in short answer tasks. TAGARELA is capable of provid-



4.4. LANGUAGE TUTORING SYSTEMS 91

ing feedback to spelling, grammar, morphology, and semantics, thereby going
beyond e-tutor in terms of feedback variability. One notable characteristic of
TAGARELA is its activity model. For each activity, it stores information about
the difficulty level, length of expected learner production, task type correspond-
ing to how much manipulation of the content is necessary by the learner, and
required strategies to accomplish the task. Interactions with the system are
recorded and stored in a (closed) learner model where the learner competence
is recorded by type (form or meaning), task type, required task strategies, and
transfer from the first language.

4.4.4 iTutor

The iTutor system (Choi, 2016) is an ICALL system that is designed to support
Korean learners of English. In use since 2016, the system has been tested
in elementary, middle, and high schools. The electronic workbook consists of
stories in Korean followed by fill-in-the-blanks translation tasks. The base forms
of the (translated) words expected in the blanks are provided, but the gaps
were selected in a way that requires learners to inflect the words in certain
linguistic forms, thus eliciting and testing certain grammatical constructions.
While learners are working on a gap, the system checks the learner production
in a multi-stage process. If a learner answer is incorrect in the first attempt, the
system highlights the part of the learner answer that is not expected. This is
referred to as “elicitation” (Choi, 2016, p.342). If the answer is still incorrect in
the following attempt, the system provides highlighting again and additionally
displays meta-linguistic corrective feedback regarding the learner answer. If
the correct answer is still not produced by the learner in the next step, it is
displayed in the gap. The feedback provided by the system, as categorized by
Choi (2016), falls either into the category of syntactical errors (misordering of
lexical elements) or lexical errors (malformation, addition, omission of words).

4.4.5 ROBO-SENSEI

ROBO-SENSEI: Personal Japanese Tutor (Nagata, 2009) is a language tutoring
system for learners of Japanese. It covers grammatical structures of the first
three years of Japanese learning by using NLP analyses for enabling scaffolding
feedback.

The motivation for the system is to deal with a combinatorial explosion
for word forms that already becomes evident for well-formed variants. Since
language is a creative system, for a simple sentence, already many thousands of
well-formed variants are possible. Since interlanguage introduces non-standard
variants of forms, even more forms are possible. Nagata (2009) argues that
this abundance of form requires automatic methods to be able to deal with the
variability.

As a mechanism for providing feedback, ROBO-SENSEI makes use of manu-
ally constructed answer templates that are automatically compiled out to natu-
ral language strings and stored as target answers with some linguistic analyses,
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primarily token segmentation boundaries. Further analyses are then computed
in the live system, analogous to the processing of the student answer.

The system generates fine-grained annotations on the token, morphology,
syntactical, and semantic role level. For segmentation, the system searches
the longest common sub string segmentation of tokens and chunks, augmented
with a constraint-based approach including grammatical knowledge about which
constellations are possible or impossible. For every token, the system adds
morphological analyses by looking up the corresponding entry in the system
lexicon. The next step consists of parsing: by using 14 context-free rules in a
bottom-up parsing method, the system creates a constituency parse tree. This
parser includes a feedback module that generates a feedback message based on
divergences of the linguistic analyses of the learner and target answer(s). This
is conducted by reducing answer schemata, basically by selecting the target
answer (generated from the manually constructed answer templates) that is
most closely related to the learner answer, i.e. most constraints are satisfied
(e.g. presence of a certain word), and comparing its analysis to the analysis of
the learner answer. The system provides meta-linguistic feedback on different
levels of analysis.

First of all, it detects words in the student answer that are unknown, i.e.
not in the system lexicon. Not all words are simply treated as out-of-vocabulary
items: the algorithm includes a rule-based handling of common spelling error
patterns by learners and then gives specific feedback pointing towards them.

Secondly, the system detects missing words: if a word is present in the target
answer, but not in the learner answer, then the learner answer is flagged with a
missing word error.

Inversely, the system also recognizes unexpected/extra words that are not
present in a target answer. In addition to the simple checks, the system in-
cludes a rule-based handling of special cases, e.g. confusion of different types of
appellations in Japanese.

Based primarily on the morphological annotations, the system furthermore
gives feedback on predicate form errors regarding tense, negation, auxiliaries,
and style. The semantic role annotations are used to give feedback on semantic
errors, when learners for example confused the subject and object of a sentence.
A final category of feedback consists of the detection of word order problems.

Since the system generates a parse forest based on the learner answer, and
since for every learner answer potentially a different target answer gets selected,
the system needs to rank the analyses for displaying feedback on the highest
ranked learner-target answer pair. This ranking is conducted by selecting the
analysis with the fewest number of detected errors in its analysis. As a means of
improving the system over time, the author talks about a mechanism in which
erroneous analyses can be flagged and then are then excluded in the live system
in subsequent parsing approaches.

Once the learner answer is fully analyzed and compared, the system con-
catenates the feedback messages of all errors into one error message (which can
potentially become very long) and displays it. The textual representation of
the feedback messages is created by using feedback templates with slots. These
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slots are filled with relevant sub strings from the learner answer in the message
template and the all the triggered templates are concatenated into one feedback
message text.

4.4.6 CASTLE

The CASTLE system (Murphy and McTear, 1997) is a language tutoring system
for English.

It contains both grammar and function-oriented tasks (operationalized via
role play tasks for learners in different scenarios). The system contains exercises
where the base words to fill in are provided, but with the system allowing free-
text input.

As a first strategy, CASTLE suggests exercises with a functional goal. If
a learner encounters problems with them and makes errors, the system is able
to recognize the points where the learner had problems and suggests grammar-
oriented tasks focusing on these points.

The system’s architecture consists of several modules that interact with each
other. In the context model, the system stores session-specific information in-
formed by the other modules. The diagnosis module is responsible for analyses
and feedback generation. This is done via a chart parser for creating analy-
ses, and error rules that model specific error patterns. Errors in CASTLE are
organized in a hierarchical data structure.

The job of the tutoring module is to adapt exercises and decide on peda-
gogical strategies most suitable for the learner in terms of feedback type and
exercises.

The domain model follows an ontology-like approach organizing the con-
structs to be learned in a hierarchy. Top-level categories in the domain model
are simple present, simple past, present progressive, and present perfect. This is
important because the learner model builds upon the domain module and thus
implicitly also has information about a hierarchy of constructs.

More specifically, the learner model consists of a profile (background, name,
motivation etc.), a model of the estimated proficiency of different grammar
constructs, and a ’cognitive’ model (storing feedback preferences, exercise pref-
erences, and the student’s interest in grammar).

In the learner model, the system keeps track of four levels of proficiency for
every category. In the beginning, where there are not enough data points for
a reliable learner model, the system uses a stereotype-based approach to assign
learners to proficiency levels based on a pretest and on stereotypes encoded in
the system. The values in the learner model are initialized according to the
closest stereotype. Stereotypes indicate the proficiency in certain parts of the
domain model and are labelled with four levels of expertise (novice, beginner,
intermediate, advanced). The score for each grammar construct is based on
the performance in items relating to this construct and the number of feedback
messages needed for reaching a correct answer.

Worth mentioning is the system’s implicit acquisition rule mechanism: when
a learner successfully completes an exercises that tests a more complex topic that
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has a set of simpler prerequisite constructs, the system also updates the learner
model proficiency levels for these simpler prerequisite items. Furthermore it
keeps track of an error proneness measure that models the number of errors
committed divided by the number of questions answered.

By interacting with each other, the individual models allow for adaptivity.
CASTLE implements a constraint-based approach towards sequencing materi-
als by considering both explicit prerequisites in terms of constructs that are
necessary to learn, and also taking pedagogical considerations of what is nor-
mally taught first into account. After three errors of one category (with errors
organized into categories), the system sequences a grammar exercise focused on
this specific category the learner has problems with. While learners also have
the option to choose exercises, the system warns them if the selected exercises
are estimated to be too easy or complex given the current proficiency.

4.4.7 ICICLE

ICICLE (Interactive Computer Identification and Correction of Language Er-
rors) (Michaud and McCoy, 2000, 2006) is a language tutoring system for English
as a second language. The target group consists of learners that are deaf and
use sign language (American Sign Language) as their primary language The
authors explain that in sign languages, different features are relevant in the
communication compared to standard language, for example the use of facial
expressions.

The tutoring system offers diagnostic capabilities paired with a pedagogical
model in order to react appropriately to diagnostic information, with a user
model central to both processes. The use of this user model is twofold: inter-
preting learner language and sequencing material.

A component called SLALOM (Steps of Language Acquisition in a Layered
Organization Model) forms the core of the user model, with each grammar
point in the learner model marked with a value from a tripartite value space:
acquired, not acquired, and in the process of being acquired. The learner model
is implemented as an overlay over the system’s domain model, in which grammar
points are ordered by typical sequences of acquisition in different areas, but with
connecting layers across these areas that mark features from different areas that
are acquired concurrently, e.g. from the morphology and sentence structure area.
These layers in the domain model, which can be conceptualized as stereotypes,
are used for the initialization of the learner model, i.e. to overcome the cold
start problem, but later actual evidence based on the learner’s productions is
used to override the initial stereotype-based values. This approach allows to
initialize the learner model even with incomplete data in the beginning.

Based on this model of acquired or partly acquired grammar points, ICI-
CLE is able to adapt the interpretation of language productions for individual
learners. In order to provide meta-linguistic feedback for written production
together with a highlighting of errors, the system needs to find the most plau-
sible interpretation of what the learner wrote. This is achieved by combining
a set of standard grammar rules with a set of mal-rules modeling patterns of
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misconceptions. The grammar used in the parser spans over 300 context-free
rules.

When parsing a production by a learner, standard grammar rules are user
for features that have been marked as acquired by this user, mal-rules are used
for unacquired phenomena, and both types of rules for grammar points in the
Zone of Proximal Development (since learners experiment with forms and fea-
tures currently in the Zone of Proximal Development). By implementing these
dimensions, ICICLE is able to distinguish between competence errors and (acci-
dental) mistakes of already acquired concepts, and prioritizes feedback on actual
errors. Incorporating the aforementioned pedagogical information about what
is teachable at a certain stage, i.e. in a typical acquisition sequence, this al-
lows ICICLE to scaffold on and sequence exercises on those points with errors
that are in the Zone of Proximal Development rather than on points that are
normally acquired and taught later or have been marked as already acquired.

4.4.8 View/Werti

WERTi (Working with English Real Texts interactively) (Meurers et al., 2010;
Ziegler et al., 2017) is a visual input enhancement system for learners of English
as a second language. Implemented as a browser plugin, it allows learners to
use any web page as input to the system. A benefit of this feature is that the
material selection can be tailored by the learners based on their own interests.

The English version of the system models a range of constructs on a lexical
as well as syntactic level, such as determiners and prepositions, conditionals,
gerunds, questions, and phrasal verbs. In order to identify these constructs,
WERTi builds on a UIMA-based NLP pipeline to add multiple layers of anno-
tation while preserving the original text. Internally, it combines a part-of-speech
tagger with a constraint grammar to first get basic analyses and then search for
specific patterns relating to constructs based on the previous annotations.

Once the annotations have been added, users can select between three task
types: firstly, the system offers a highlighting of a specific construction on the
web page. A feature worth emphasizing is that in the case of multi-word ex-
pressions, including discontinuous annotations, elements with different functions
and linguistic categories are highlighted with different colors. Secondly, users
have the option to work on selection activities where every word on the page is
clickable, and users receive correct or false feedback depending on whether they
clicked on a word relating to the selected target construction. Thirdly, WERTi
offers fill-in-the-blanks activities with binary feedback based on a string identity
comparison with the original form.

WERTi has been extended to support multiple languages into the Visual
Input Enhancement of the Web (VIEW) system. One extension of the approach
towards Russian, with a special emphasis on the morphology level, is described
by Reynolds et al. (2014).
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4.5 Usage and Role of Tutoring Systems in Au-
thentic Contexts

There is a fundamental difference between the usage of tutoring systems in
controlled, experimental, or even lab-based conditions and the usage of tutoring
systems in authentic, open, ecologically valid contexts.

Essentially, a tutoring system is a tool that is designed for a certain task (to
support learners in a specific domain). The difference between the conditions
is that in very controlled settings, the interaction, i.e. the usage of the tool, is
constrained to the design of the experiment. Metaphorically, and sticking to our
analogy of tool usage, a very constrained lab-based usage is like an experiment
where students are supposed to learn how to use a hammer, but their hand
and arm are always guided by an experimenter. In more open experiments,
students may get explanations and controlled first experiences of how to use the
tools, but may then experiment themselves with different types of usage (in the
metaphor e.g. using the hammer in new creative ways) and combination of the
tools not intended by the experimenters.

One illustration of such a highly creative and innovative approach happened
during our FeedBook study (cf. chapter 7): talking to a participating teacher
we learned that he had invented a completely novel way of using the FeedBook:
instead of letting students work individually with the system - as we had en-
visaged it - he created a game in which he would use a projector to show an
instance of the FeedBook system to his school class on the wall. The class would
be split into several groups to compete against each other. While the teacher
moved from prompt to prompt in an exercise, the groups had to shout the so-
lution when they thought they knew the answer to the current prompt. This
allowed them to collect points, and the group with the most points won the
game.

In the end, when tutoring systems are supposed to be adopted in a standard
curriculum, they need to function and provide a tangible value in authentic or
ecologically valid scenarios and under different use cases, and not only in tightly
controlled experimental conditions that do not mirror the everyday usage, since
not all users will and can be expected to use tutoring systems in a predefined
way.

Arguably, tightly controlled experimental conditions are important for sci-
entific inquiries into the design and effectiveness of components of a tutoring
system when there are design choices with open answers (e.g. Heift (2002)).
However, after certain design choices have been made - ideally based on con-
trolled experiments - it is essential that the question of generalizability is ad-
dressed. Are the results replicable for different learner samples? Does the
approach transfer to different contexts, e.g. from a lab to classrooms? What is
the impact of teachers or learners with different backgrounds on the findings?
In which different authentic contexts does the approach work in ow well?

A crucial aspect determining whether a tutoring system is used in real-
life contexts is whether it addresses real-life needs of the involved stakeholders,
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primarily students and teachers (cf. chapter 8 and 9 for a discussion of the needs
analysis). As (Heift, 2010b, page 457) put it, ”both learners and instructors
must experience immediate benefits.“ If the adoption or usage of a tutoring
system creates more problems than it offers benefits, the likelihood of it being
adopted will be small.

There are a few examples of tutoring systems that have managed the tran-
sition from development and testing in controlled experiments to a larger scale
adoption and integration into regular classrooms. The ASSISTments system
(Heffernan and Heffernan, 2014) is a prime example for how tutoring systems
can be adapted to the needs of the involved educational stakeholders (teach-
ers, students, researchers) to foster a more widespread adoption. The system
has been continuously developed for over two decades, with an increase in the
amount of contents, a continuous feedback loop to teachers and students, and
a range of studies that systematically tested new features that would later be
integrated into the main system. Kelly et al. (2013) is an example of such
a study, comparing feedback in web-based homework with a more traditional
homework setting in which feedback would not be given immediately by the
system. The study comprised 63 learners in middle school that needed to do
regular class work in mathematics, both using ASSISTments, but one group re-
ceiving feedback and the ability to correct answers based on binary feedback. A
post test revealed higher learning gains for the group with immediate feedback.
McGuire et al. (2017) followed up on this research and designed an experiment
using ASSISTments with different feedback conditions: image-based feedback,
textual feedback, and binary correctness feedback. They found out that image-
based feedback led to consistently lower results and completion rates than the
other types of feedback, with binary feedback leading to the highest completion
rates. In 2020, ASSISTments reported over 20,000 teachers using the system 4.
While this is a positive example of how a tutoring system can be adopted by a
mainstream user base, it is important to keep in mind that it required decades
of funding, a modular code base that can be adapted by researchers to do both
experiments and adapt the system to the needs of users, and the involvement of
teachers in the system design and material creation. For many other projects
working on tutoring systems, one of the listed conditions is not met and the
tutoring system does not see continuous widespread adoption.

Arroyo et al. (2014) shed light on another relevant point related to an adop-
tion of tutoring systems. In the discussion so far, the main focus was on how to
address needs of teachers, developers, and researchers. In their article, Arroyo
et al. (2014) emphasize that the tasks in their tutoring system (MathSpring)
are tailored towards a preparation of learners for standardized tests. Especially
for tutoring systems that are designed to support learners outside of the school
for homework (cf. also VanLehn et al. (2005) for the Andes system), it is crucial
that learners experience direct benefits like higher grades in examinations. In-
directly, this point also involves meeting the needs of parents: if they pay for a
license allowing their children to use a tutoring system, the question of whether

4https://new.assistments.org/, last accessed 2020-05-18
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they are willing to pay continuously depends on the effectiveness of the system.
The E-Tutor/German Tutor system is an example of a tutoring system that

has been in use for over a decade (Heift, 2010b), but only in a relatively con-
trolled, academic setting. Heift (2010b) points out that in many tutoring sys-
tems coming from an academic context, there are most of the time limited
human resources for the technical development of tutoring systems, especially
for cases where development should be continuous over a longer period of time
to adapt to both needs of existing and new users and to keep up with the
fast-paced world of application and especially web development.

Despite the positive examples outlined here, there is a general trend that
most tutoring systems are developed as prototypes that remain in the prototype
stage. They are used for testing certain features in some experiments, but not
for a longer period of time (Heift and Schulze, 2007; Rudzewitz et al., 2017).
For the systems that manage to build a large enough user base over time to be
adopted broadly, a diverse team of researchers, developers, and pedagogues is
necessary to ensure a demand-driven development.

Most systems that reach popularity are tutoring systems for well-defined
domains where the processing of user input is associated with less interpretation.
There are counter examples, like Duolingo5, that have become popular language
learning applications. For the majority of tutoring systems that have seen a rise
in popularity and users, there is however a considerable gap between what the
systems offer and what research has established as effective and beneficial for
learning (Meurers et al., 2018).

While tutoring systems can see a wider adoption, this requires significant
resources on multiple level: first of all a system can not be used for a longer time
if it does not provide enough materials for a longer period of time. Secondly,
a system used by many users needs to be built on a scalable architecture to
support multiple requests and concurrent backend processing. Thirdly, a system
needs to be built in a modular fashion that allows to update or change certain
components. Monolithic systems, especially in the fast-paced context of web
technology, sooner or later run into the problem that the technology is outdated
with the effect that for features present in other architectures, disproportional
effort needs to be done to reverse-engineer features from there. In order to
do this, a team of experts on each of the different areas is necessary, adding
a financial dimension to the endeavor of bringing a tutoring system to wider
adoption.

In essence, tutoring systems need to address real-life needs, provide enough
materials, and be continually maintained, updated, improved, and tested if they
are to be adopted in everyday teaching and learning contexts by a mainstream
user base. The very small number of systems that manage this shows the diffi-
culty of this endeavor.

5https://www.duolingo.com/, last accessed 2020-05-18
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Chapter 5

FeedBook as an Instrument
for Data Collection

5.1 Overview

The FeedBook is a tutoring system for English 7th grade. It is a multi-layered
web application that represents the adaptation of a paper-based work book
enhanced with scaffolding feedback and Learning Analytics. It is implemented
as a platform-independent system in the Google Web Toolkit (GWT1) and
usable with any web browser supporting HTML5 and JavaScript.

Developed in the Transferprojekt 1 (T1) in the Sonderforschungsbereich
(SFB) 833 of the University of Tübingen, it is based on the SFB project A4
”Comparing Meaning in Context“, of which it transfers fundamental research
insights into an authentic application scenario.

Special about this project is the fact that it constitutes a cooperation project
with an application partner, in this case the Westermann Gruppe. The applica-
tion partner provided a starting point with a work book already established and
in use in schools, of which all materials used in the system were adapted. The
application partner thus provided a link to the actual school context in which
the system was evaluated.

The system was developed in three year project starting in September 2016,
but development began already in August 2016 since a pilot was needed for the
start of the school year in 2016. From a high-level perspective, the system was
developed over time in mainly three stages, with each stage corresponding to
one year of the project.

The goal of the first stage was to build a web application for displaying
exercises to students, as close as possible to the printed version. What emerged
from this was a fully-fledged modern online platform with user management,
user roles, profile management, navigation, messaging system, and many more.

1http://www.gwtproject.org/, last accessed 2020-05-11
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The reason is that users will not use a system if it does not provide basic features
that are established for modern web applications (Rudzewitz et al., 2017).

In the second stage, the focus was on implementing orthography, grammar,
and meaning feedback, and to implement Learning Analytics functions such
as an open learner model of task analytics views that make use of the data
generated through the feedback. This phase constitutes the step of going from
a system where teachers need to do all the correction work to a system where for
most tasks learners are supported by the system and led to a correct solution,
requiring the implementation of Learning Analytics tools that provide different
stakeholders insight into the learning process.

In the third phase and year, a year-long study was run. The main focus was
to ensure system stability, implementing and conducting pretests and post test,
and to collect data.

It is very important to emphasize that the FeedBook was not developed by a
single person, but by a team of researchers with different backgrounds and skill
sets, and research assistants helping in the realization of certain aspects of the
system. The system is the result of group work by a large set of involved people.
Even though we describe it here, it is important to keep in mind that it is the
result of group work and would have been impossible without the contribution
of everyone who worked on it. The author of this thesis is merely a member of
the team that collaboratively developed the system.

Another point to make explicit is that in the dissertation, the final state of
the system is described, as used in the study (see section 7). In certain works
that describe the system on the way towards the final stage, previous versions of
the system in different stages were described. The system developed over time
and the earlier articles do not always reflect the final stage.

Since there is no data collection without an instrument, in this chapter
present the FeedBook as a system. We explicitly exclude both the feedback gen-
eration mechanism, since this aspect is described in chapter 6, and the Learning
Analytics functions, which are described in chapters 8, 9, and 10.

The motivation for the work described in this section is to give users a
system that they can use and that is useful to them. For teachers, they can
save time and effort if the system grades student submission automatically. For
students, they can learn while being supported with the system offering real-
time feedback. In return for the benefits offered, we get data that we can analyze
for scientific purposes and use for improving the system.

This chapter is structured in two conceptual parts: in section 5.2, we de-
scribe the system from the perspective of exercises. We explain how exercises
are displayed, entered, represented and interacted with. In the second part in
section 5.3, we describe essential system functions apart from exercises that
are nevertheless important for running a system, such as user management, a
messaging system, and student and teacher start pages.

Disclaimer: Specific sub parts of the contents of this chapter have been men-
tioned or referenced in Rudzewitz et al. (2017) and are cited accordingly in the
running text of the respective sessions.
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5.2 Exercises in FeedBook

Exercises constitute the central ingredient of the FeedBook. They allow students
to practice and test their English skills. Having a system with exercises enables
interaction and feedback both between students and the system, and between
students and teachers (Rudzewitz et al., 2017). Exercises furthermore provide
the basis for the work of material designers and researchers, since interaction
with exercises creates interaction data that serves as input to Learning Analytics
tools and Educational Data Mining applications.

Since all exercises in FeedBook are adapted from the paper-based and state-
approved workbook Camden Town Gymnasium 3 by Westermann Gruppe2,
several steps and stages with associated interfaces to the system are necessary
to arrive at a system with workable exercises.

First of all, it is necessary that exercise data is entered into the system’s
data base in a structured way. In order to do this, an authoring tool (cf. section
5.2.3) built on top of a domain model (cf. section 5.2.2) is necessary to enter and
edit exercises in the system. For entered exercises, an interface to display them
to students is needed (cf. section 5.2.4), with different renderings dependent on
different task types (cf. section 5.2.4). For exercises with interactive feedback,
this includes components to display generated feedback to learners (cf. section
5.2.5). For submissions of students to exercises, the system requires a grading
interface for teachers (cf. section 5.2.6), and an interface displaying the teacher
feedback to students (cf. section 5.2.7). In the following sections, we will explain
each of these components in detail.

5.2.1 From Paper to Digital Version

The FeedBook is based on the paper workbook ”Camden Town Gymnasium
3“ by the project cooperation partner Westermann Gruppe. The reason for
building on this established workbook is that on the one hand, it is already
approved by the state and integrated in regular teaching in schools, and on the
other hand the exercises in it are present and can be built on.

The idea behind the adoption of an established workbook is to take it as
a basis and make it one step better with real-time feedback. To this end, the
adaptation from the paper workbook was conducted with the goal to make
the system look and feel as similar to the printed, established, already known
workbook as possible. Keeping the system as close to the existing workbook as
possible allows users to focus on the added features while feeling familiar with
the rest. Figure 5.1 shows a comparison of the FeedBook version (top) with the
printed version (bottom) of the same exercise, adapted from Rudzewitz et al.
(2017).

While we aimed to mirror the printed workbook as close as possible for
what is supported, not the entire breadth of tasks in the paper workbook could
be supported. In order to determine which tasks to include, we first classified

2https://www.westermanngruppe.de/, last accessed 2020-05-11



104 CHAPTER 5. FEEDBOOK FOR DATA COLLECTION

every exercise in the workbook terms of activity format, language topics, input
types/modalities, task orientation (form/meaning), and openness (restrictions
of expected input by the task context) (Rudzewitz et al., 2017).

In the first stage of the project we only included a constrained set of 55
exercises that were determined suitable for interactive feedback. No tasks were
included which require peer interaction. In the selection of exercises we made
sure that they cover all linguistic constructs in the state curriculum for 7th
grade. In the second phase of the project, we step by step extended the exercise
data base to 230 tasks from the workbook, and an additional 154 exercises with
annotated difficulty from an accompanying book ”Camden Town 3 Differen-
zieren und Individualisieren 3“. The reason behind the inclusion of a lot more
tasks was to make the adoption of the FeedBook easier for a usage in regular
teaching via a broader coverage of printed workbook content. Even if not all
tasks are enhanced with scaffolding feedback, school classes do not always have
to switch between the printed and online version if the online version provides a
high enough coverage of tasks. Another advantage of having as many tasks on
the online version as possible is that the FeedBook tasks include all the media
normally delivered on a separate DVD delivered with the book. Playing the
media from the companion DVD causes learners more trouble than when the
media are already delivered in the exercise itself. In the meantime, the BiBox3

by the cooperation partner offers the delivery of media files as well.
Not only the exercises were adapted from paper, but also the error categories

for the feedback algorithm (Rudzewitz et al., 2018) and the error categories in
the teacher grading interface (Rudzewitz et al. (2017), cf. section 5.2.6). A
teacher in the project analyzed scans of workbooks with student answers and
teacher corrections made available via the cooperation partner serves as the
basis for analyzing which errors 7th grade learners typically make, and what
type of feedback teachers provided to the learner answers.

In the next section, we describe which task types were developed based on the
printed workbook and how they are used to render exercises in a programmatic
way.

5.2.2 Task Domain Model

In order to represent tasks with all the information required to display them
to end users and allow for interaction, we developed a domain model for tasks
consisting of three levels (cf. Table 5.1): tasks, sub tasks, and task fields.

A task is essentially only an indexed (task id) wrapper around sub tasks.
Sub tasks, in turn, are a wrapper around task fields. Let us begin by explaining
the properties of sub tasks.

Each sub task is assigned to one task type that determines the display and
prompt structure (cf. section 5.2.4). The instruction and instruction at the
bottom are text fields with HTML instruction texts display on top and below
the exercise. The page number is the corresponding number from the work

3https://www.bibox.schule/
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85

Diverse Britain 5
B5   Extra: Viewing: Exciting things happening at Brixton Village indoor market 
 Brixton Village indoor market  Viewing, Textbook p. 139

a) Watch the clip and find out why the man is so excited.

 The man is excited because a new project has opened

 in Brixton Village.

There are lots of new shops and galleries for people 

to visit.

b) Watch it again and answer the following questions.

1.  When does the report 
take place?

 On a snowy December night

2.  What was the situation 
in the market up to 6 
weeks ago?

many/20 empty shops

3.  What has happened 
since? 

meeting for people to look at empty shops and come up with ideas;  

since then, the 30 people with the best ideas have opened up shops

4.  What kind of shops 
can you find here now? 
Name 2.

two of the following: old-fashioned sweet shop, (vintage) clothes shops, 

lantern maker, ethical fashion designer, furniture restorer, pop-up galleries,  

a community shop

5.  What is the man’s 
 message to his viewers?

come to Brixton, check out the project and be part of the future of  

Brixton Village

B6  Words: Find the right nouns  
You can make nouns from all these verbs.  
Find the right nouns and sort them into the grid.

-ation -ion -ing -y no ending

celebration

combination

expression

impression

ending

meaning

apology
change

challenge

end 

report

   Working with words, Textbook p. 146

apologize · celebrate · change · challenge · 
combine · end · express · impress · mean · report

Figure 5.1: Theme 5, task 5b5 in the FeedBook (top) and in the printed work-
book (bottom) © Westermann Gruppe, integrated like in Rudzewitz et al.
(2017)
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task sub task task field
task id subtask id sortIndex
list of subtasks list of taskfields prompt text

task type input type
instruction target answer
instruction at the bottom example answer
page number link to information sources
links to media files list type indicator
links to grammar sections
support text
given words
task focus
task orientation
target language constructs
difficulty level
feedback disabled

Table 5.1: Domain model: properties of tasks, sub tasks, and task fields

book. In the feature links to media files, references to media such as images of
texts, audio or video files are stored. Links to grammar sections is similar, but
contains references to HTML pages explaining specific grammar phenomena.
The support text is simply a plain text field that provides additional hints to
students and is rendered at the top of the page. In given words, a list of words
provided for this exercise is encoded. These will be rendered as clickable objects
that upon click are enhanced with a strike-through decoration, comparable to
crossing out words on paper. The task focus property indicates whether it is
a meaning-oriented, form-oriented, or meaning-and-form-oriented task, relevant
when generating and displaying feedback. Related to that is the task orien-
tation property responsible for indicating the degree of openness of the task
(open, closed, or completely open). This again determines if feedback is dis-
played (if it is not a completely open task), and if yes which type of feedback
(general-purpose grammar feedback for open tasks, specific scaffolding feedback
for closed tasks). In target language constructs, a list of manually selected lan-
guage constructs is stored that indicate the pedagogical goals of the task in
terms of language constructs to acquire or practice. The difficulty level feature
was introduced to accommodate the difficulty rating (easy, medium, complex)
assigned to exercises provided as additional materials to the workbook. Finally,
feedback disabled is a flag that allows to turn feedback off for cases where the
data shows it is not helpful or confusing.

Task fields constitute individual prompts or items and are always assigned
to a specific subtask. The sort index annotation tells the system about the
order of the prompts. In prompt text, the text of this item is stored, with the
format depending on the task type (cf. section 5.2.4). Similarly, input types
(character, partial word, sentence, text, true/false input), target answers and
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example answers are dependent on the task type and discussed in more detail in
the respective sub sections. For meaning-oriented tasks, the link to information
sources contains a reference to media with annotations for the part of the input
that answers this task field. The last property, list type indicator, determines
whether the answer to this task field is a list of items or a single item. In the
former case, it tells the system how many items are expected (in any order).

5.2.3 Authoring Tool

In the FeedBook system, each exercise was entered manually into the system.
First, an exercise needs to be added to the system’s table of contents. Once
present there, it can be edited in the system’s authoring tool.

The authoring tool allows to create objects and annotate all properties of
the system’s domain model (cf. section 5.2.2) on the level of sub tasks and task
fields.

One shared domain structure for all task types (cf. section 5.2.4) is used.
The advantage is that internally the data structures for all task types is shared
and the interface can be built once on the same format. On the other hand,
it requires flexibility in the format used for different task types since when all
data structures are shared, distinctions can only be made in the values of the
data structures.

The interface is split in two parts: at the top (cf. Figure 5.2), meta data of
the sub task like instructions, given words, etc. are annotated. These properties
are independent of the specific task type selected (cf. Figure 5.2 at the top for
the selection of a task type). Below the sub task meta data part, the interface
allows to add and edit task fields (cf. Figure 5.3). Annotators need to add one
prompt at a time, select an input type, add a sort index, and then add properties
like a target answer or prompt text (cf. Table 5.1 for a comprehensive list).

The task of ’translating’ tasks from the printed work book into the system
constitutes going from unstructured data in the printed work book to structured
data in the system’s domain model. This translation is not lossless since the
system’s domain model represents an abstraction over many examples that can
not fully accommodate for specifics of all examples, especially in term of how
elements will be rendered.

5.2.4 Displaying Exercises to Students

Just like the authoring interface (cf. section 5.2.3), the exercise perspective for
students is split in a task type-independent and a task type-dependent part.
In general, the target is to display exercises as close as possible to the printed
version.

In the task type-independent part at the top of the exercise (cf. Figure 5.4),
the interface displays the workbook chapter and chapter title. On the right,
there is a print button in case students want to print the exercise out and wok
on paper. Below the header, the interface displays the task number and title
as a heading. The next element is the instruction text for the exercise. Below
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Figure 5.2: Annotator view: authoring tool for task meta data

Figure 5.3: Annotator view: authoring tool for task fields
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that, the interface shows a link to a grammar section, in Figure 5.4 a link to
an explanation of the simple past. Clicking on it opens a popup window with
the grammar section in it. Below this, there is a list of given words that can
be clicked on for striking them through. To the right, there is a text box titled
”Support“, which contains additional hints for students. In the example, an
image is displayed. In the general case, the system supports the display of any
number of media (audio/video/photo/text) in this section.

Figure 5.4: Student view: exercise display task type-independent information

FeedBook offers five exercise/task types. A task type is a generalization
away from a specific exercise example to a principled way of representing and
displaying an exercise. Having exercise types allows to automatically generate
the display of an exercise instead having to fully spell out the entire HTML
of a task like in a traditional approach. A task type not only determines the
rendering of a task, it also determines the representation of task information.

Worth mentioning before that is that the domain model (cf. 5.2.2) is the
same for all task types apart from the task type setting and the prompts. For
example an exercise can always have an instruction or prompt image at the
top, independent of the task type. The function of a task type is to provide a
principled way of representing and visualizing prompts.

For example while for short answer tasks the prompt text is always a sentence
or phrase above a learner answers, for fill-in-the-blanks tasks the prompt text
is the text up to a gap and not the entire sentence or reading text. In the
following, we will present the different task types one by one.

Short Answers Short answer tasks consist of a list of individual prompts
(typically questions or statements) and an input field allowing the student to
provide a short answer, typically one sentence. Each prompt is displayed on
a separate line and comes with a textual target answer that provides a direct
answer to the question raised in the prompt. Figure 5.5 shows an example of a
short answer task in which students need to use the textual cues and images to
form sentences using the past progressive.
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Figure 5.5: Exercise view: short answer task

Fill-in-the-Blanks Fill-in-the-blanks tasks consists of a list of prompts that,
taken together, form a text with gaps to fill in. Each prompt models a gap
and the text following the gap. The target answer of a fill-in-the-blanks task
is the textual representation of the answer to the gap in front of the prompt
text. Therefore, the task context of one fill-in-the-blanks gap can span multiple
prompts since a sentence can have multiple gaps and is thus split up into several
prompts internally. This requires a special treatment of the first prompt: it
solely consists of a prompt text and no input type or target answer, since there
is no gap or interaction method right at the beginning of the task. The system
offers the function to present learners with a multiple choice menu instead of a
gap for this activity type to avoid typing errors. In this case, the target answer
consists of an index that indicates which of a list of provided example answers
is the target answer. Figure 5.6 shows an example of a fill-in-the-blanks task in
which learners have to use the correct tense forms to fill out the text’s gaps.

True/False In true/false tasks, each item consists of a statement that learners
have to evaluate as either true or false. The prompts are rendered sequentially
below each other in a table. Upon clicking on a cell, an arrow is inserted in the
corresponding cell, with no cell selected if the learner did not yet interact with
this prompt. The target answer of a true/false prompt consists of a number with
’0’ meaning false and ’1’ meaning true. In the example in Figure 5.7, learners
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Figure 5.6: Exercise view: fill-in-the-blank task

need to listen to a spoken text and tick each statement as true or false.

Mapping Mapping tasks require learners to provide a response of one char-
acter (letter or numeral) to map a prompt text to a set of alternatives. Figure
5.8 illustrates this: learners need to read a text and are then presented with a
set of statements. Each prompt requires the learner to evaluate which of the
given labeled answers is correct and communicate this choice to the system by
entering the index/label of the choice into the input field. In a later stage of
the project, mapping tasks were subsequently modeled as fill-in-the-blanks tasks
with multiple choice input.

Survey Survey tasks offer a list of choices to learners where they need to
fill out which of the options pertain to them. The system allows to configure
whether only one choice can be given, multiple of them, or even if there are
free-text input fields. Items in survey fields do not come with target answers,
since the answer depends on each individual student. This is illustrated in the
example in Figure 5.9, where learners need to state which of the given languages
they are learning in school.

In follow-up projects of FeedBook, more task types such as jumbled sen-
tences, categorization tasks, drag-drop exercises, memory, and more were devel-
oped and implemented, but were not part of the system described here.
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Figure 5.7: Exercise view: true/false task

Figure 5.8: Exercise view: mapping task
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Figure 5.9: Exercise view: survey/questionnaire

5.2.5 Displaying Feedback

Feedback is computed and displayed as soon as a learner leaves an input field
(i.e. it loses focus) or when a user clicks on a question mark next to an input
field. In the former case the feedback popup is triggered automatically, in the
latter case the learner actively requests feedback. In an earlier version of the
system, the practice interface contained additionally a ”check all“ button which
triggered the computation of feedback for all input fields. In this case, learners
had to click on the question mark next to an input field to get the textual
feedback in the feedback popup. The same mechanism was used for checking
learner answers before submitting them to a teacher and when re-entering a
previously saved, but not submitted exercise.

As shown in Figure 5.10, the system displays a green check mark for answers
that have been evaluated as correct by the system. For cases where the learner
answer does not match a target answer, a red cross is displayed. Furthermore,
the student text is displayed in the same color. In case feedback was blocked
in the study (when a learner was in the control group for a certain language
phenomenon), no check mark or cross ways displayed and the learner answer
remained gray.

Once feedback is computed and the system decided the learner can see it, it
displays it in a popup. The popup contains the feedback text, a magnifying glass,
a radio button, and an ’ok’ button which closes the popup window. Initially,
the system only tells the learner that there is an error, but not where the error
is (cf. Figure 5.10). In case learners want to get this information, they can
click on the magnifying glass. This extends the feedback message by repeating
the learner answer and displaying the location of the error (cf. Figure 5.11).
Especially for longer learner answers, this is a useful feature to pinpoint the
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Figure 5.10: Exercise view: displaying feedback (stage 1)

location of the error. The highlighting shown there is based on an efficient
surface form comparison of words in the target and learner answer and also
used in the teacher grading interface (cf. section 5.2.6).

Once a feedback has been computed, it is cached on the client side. When the
learner enters the same answer in the same input field again, the system can then
efficiently retrieve it again. For every computed feedback, even if it is filtered
and blocked by the blacklist for experimental groups, a LoggingToken object is
created and added to the interaction log. This object contains information about
when it was computed in the form of a numeric sort index for this task and this
student along with a server time stamp. Additionally, it contains a reference to
the feedback message and the learner input and a flag that indicates whether
this is a manually triggered feedback or automatically triggered. Automatically
triggered means that this feedback was computed as part of a batch process,
either with the check-all button, with the check-all function when re-opening
an exercise, or when submitting to the teacher. The manual case includes both
cases in which a learner actively clicked on a question mark and when the
feedback got displayed because the input field lost focus.

5.2.6 Teacher Grading Interface

The teacher grading interface (Rudzewitz et al., 2017) allows teachers to provide
delayed feedback to students. This interface was developed in the first stage of
the project where no automatic feedback was given yet by the system. In essence
the task of this component is to offer teachers the opportunity to grade student
submissions as similar as possible compared to the paper version, but with some
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Figure 5.11: Exercise view: displaying feedback (stage 2)

assistance.

The key functionality of the teacher interface consists of the function to add
annotations. Teachers can select a span of a learner answer with the mouse, or
they can touch a learner answer and are then offered two sliders in a popup to
determine a span of the learner answer they want to mark. Once the span is
determined, the system opens the annotation dialog popup (see Figure 5.12).
As a first step, teachers select the type of error: the system offers a choice
of thirteen form error categories and six content error types depicted in Table
5.2. The error types were determined based on errors annotated by teachers
in paper data that served as the basis for creating the initial version of the
FeedBook (cf. section 5.2.1). Below the error type selection, teachers have the
option to adjust the error span post-hoc. The annotation popup furthermore
contains two free text input fields: the first one is used for providing comments
or hints to the student about this error, the second one contains by default the
target answer. Teachers can modify the contents of both input fields to provide
students with additional explanations. Once a teacher clicks on ”Update“, the
annotation is added next in a column to the exercise, with a handler to delete
them again if needed. Once a teacher saves the correction of a learner answer,
all annotations are saved in the data base with information about which task
field the annotation pertains to and which teacher created this annotation.

The first feature to assist teachers in grading is a visual marking of learner
answers. If an answer is identical to a target answer, it is marked with a green
check mark next to it. For answers that are not identical to a target answer,
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Figure 5.12: Teacher view: assigning an error annotation to a learner answer
enhanced with the highlighting of the difference to the target answer. Taken
from (Rudzewitz et al., 2017, page 6)

Language form errors Content errors
phrasing, agreement, problematic understanding,
determiner, preposition, missing information,
grammar, spelling, wrong information,
pronoun, tense, lack of understanding,
clause structure, extra information,
word choice, missing word, alternate answer
word order, punctuation

Table 5.2: Error types in FeedBook (taken from (Rudzewitz et al., 2017, page
6))
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the system computes a visualization of a diff algorithm. This works by aligning
each word in the learner answer to the closest word in the target answer in
terms of edit distance on the surface form. In order to avoid that parts of
the learner answer are aligned that only happen to share some characters, and
given that the algorithm does not work on more levels of abstractions (like in
Ziai (2018)), a heuristic is applied: only for words with half or more than half of
the characters shared between the learner and target answer, a diff is computed
and visualized. In Figure 5.12, the algorithm marked the character ’e’ in the
word ”get“ (target answer: ”got“).

As described above, annotations are saved with information about the task
field and the teacher. This data is used for the second type of assistance, the
feedback memory. If for the same task field the same learner answer was given
already by another student, and if there is a previous annotation for it, then
this annotation is loaded again from the the feedback memory. This component
works similar to a translation memory (cf. e.g. Somers (2003)) in that previous
translations (in this case corrections) are loaded again, saving the teacher the
time and effort to add the same annotation again. Teachers can configure via
their profile page whether they want to use the feedback memory, and if so,
whether they only want to load annotations by themselves or also annotations
by other teachers.

In case there are no previous annotations, the system tries to suggest some
annotations (which are modifiable or deletable by teachers). The system uses a
lightweight variant of the feedback generation NLP pipeline to annotate learner
answers and compare them with pre-annotated target answers having the same
levels of annotations. Table 5.3 shows the components of the pipeline. These
components are used for creating and annotating a Common Analysis Structure
in UIMA (Ferrucci and Lally, 2004) with all the NLP tools providing linguistic
annotations. The system then applies rule heuristics to detect spelling errors,
wrong word choices, and tense confusions. If a rule is applicable, it adds a
proposal for an annotation to teacher interface distinguished with a different
color to make clear that this is an automatic annotations. This rule-based
algorithm is less capable than the full feedback generation algorithm (cf. chapter
6), but still can provide assistance and paved the way to the more advanced
processing techniques described later.

Below the exercise and annotations, there is a free text input fields in which
teachers can provide a global comment and provide a star rating by selecting
stars from a range of one to five. This information, along with the annotations,
is visualized in the student result view.

5.2.7 Student Result View

The student result view allows learners to inspect the feedback provided by the
teacher. While the exercise itself is rendered in the same way as during the
practice mode, it contains additional feedback by the teacher.

4https://emorynlp.github.io/nlp4j
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NLP task Component Used
Tokenization, NLP Toolkit
Sentence Detection, for JVM Languages
POS tagging NLP4J4

Lemmatization Morpha (Minnen et al., 2001)
Morphology SFST with EMOR model

(Schmid, 2005; Karp et al., 1992)
Dependency Parsing MaltParser (Nivre et al., 2007)

Table 5.3: NLP components used in auto-correction (taken from (Rudzewitz
et al., 2017, page 6))

For answers that are correct, a green check mark is displayed next to the
learner answer. Incorrect answers, in contrast, are rendered without a check
mark and potentially a teacher annotation. In an early version of the system
everything that was not marked as false by the teacher was marked with a green
check mark, but later we refrained from that since the assumption that teachers
would mark every single error or mistake did not hold.

Teachers can mark parts of a learner answer (cf. section 5.2.6), assign an
error category to this span, and potentially a comment and the target answer.
Every error type is assigned a specific color which is used for an underline
decoration under the marked span of the learner answer, and as the color of a
small flag in the actual annotation.

In the student result view, these annotations are placed in a column to
the right of the exercise display (see Figure 5.13). For annotations that come
from the system’s auto-correction, the annotation is rendered with a yellow
background, whereas annotations by the teacher are rendered with a blue back-
ground. This allows learners to see which of feedback was annotated by their
actual teacher. Inside the annotations, a label indicates the type of annotation,
followed by the target answer (if the teacher agreed to show it), potentially
followed by a comment written by the teacher.

Due to technical reasons (responsive layout with multiple column), it was not
possible to render annotations on the same line as the learner answer. There-
fore, the reference of annotations to learner answer is rendered in the following
way. When a learner hovers over an annotation, or when a learner touches an
annotation on a touch device, then the learner answer this annotation pertains
to is highlighted with a yellow background. This allows learners to hover over
the list of annotations and then see which parts of their answers have been
marked by the teacher.

Below the exercise and annotation display, learners see a star rating by the
teacher, with five stars as the maximum. If a learner received less than five
stars, the higher stars are rendered as empty. At the bottom of the page, the
system displays a free-text comment by the teacher if present. The ”Gesehen“
button at the bottom takes the learner back to the student lobby.
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Figure 5.13: Exercise view: displaying the result of feedback by the teacher



120 CHAPTER 5. FEEDBOOK FOR DATA COLLECTION

5.3 System Environment around Exercises

Apart from a possibility for students to work on exercises, a web application
in the form of a tutoring system to be adopted in an everyday teaching and
learning context, needs additional functions and user interfaces to them.

In this section, we discuss what is necessary in the system apart from ex-
ercises and Learning Analytics to support what we actually want to do. We
discuss different functions and user interfaces that fulfill some of the basic needs
of users so that they will eventually use and adopt the system, interact with the
exercises, and allow us to learn from their behavior.

5.3.1 Student Lobby

The student lobby is the central start page and the first interface learners see
when they log into the system. The term ’lobby’ is used in this context because,
just like in a hotel reception lobby, this is the starting point from which students
are forwarded or proceed by themselves to other functions of the system.

The lobby primarily provides students with a hierarchical index to tasks
adopted from the workbook. Learners are able to see what tasks the system
offers, and what the status of a task is for the current student (e.g. saved but
not submitted or waiting for review by a teacher). FeedBook does not provide a
linear index as it is the case for the normal workbook where it is possible to flip
through the pages, but instead offers a hierarchical access to chapters, sections
dividing the chapter, and group of tasks in sections. The alternative would be
to provide all tasks in sequential order or via digital version of the book pages.
A linear index, however, bears the danger that learners are overwhelmend if
there would be too many tasks displayed at one time. And for a model in which
the tasks are presented via digitalized book pages, a large amount of work in
terms of layout needs to be put into it. The focus of the FeedBook project, in
contrast, is to do computational linguistics and not digital publishing. A system
going more in this direction is the BiBox5 by Westermann Gruppe.

With a world of web technology increasingly fragmented, it is important
that a system uses responsive web technologies. In April 20206, 54% of users
use mobile clients, 42% use desktops, and 4% tablets. This is further fragmented
into different browsers (with Chrome, Safari, Firefox the three biggest, in this
order) and operating systems (Android, Windows, iOs, in this order).

In order to provide scalability across devices, FeedBook uses the Bootstrap
framework 7. In the student lobby specifically, the system uses Bootstrap’s
grid system for a responsive design. The grid system defines five responsive
breakpoints that allow to change the layout depending on which viewport size
is detected (extra small, small, medium, large, extra large). The core idea is
that a web page defines rows, with each row consisting of twelve columns. For

5https://www.bibox.schule/, last accessed 2020-05-04
6source: https://gs.statcounter.com/platform-market-share/

desktop-mobile-tablet, last accessed 2020-05-04
7https://getbootstrap.com/, last accessed 2020-05-02
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each break point, user interface designers can can define how many of the twelve
columns are taken by an element.

In the case of the FeedBook, the list of elements corresponding to the six
book chapters is defined as one row. For big viewports (e.g. desktop computers),
each chapter display takes three columns, i.e. four chapters are displayed in one
row (cf. Figure 5.14). For medium screens (e.g. tablets), each chapter occupies
six columns (cf. Figure 5.15). For small screens (e.g. mobile phones), each
chapter occupies the full twelve columns (cf. Figure 5.16).

Figure 5.14: Student view: large viewport layout

Once a student selects a chapter by clicking on or touching a tile, a list of
sections is displayed (cf. Figure 5.17). There is one tile for each of the book
sections (A, B, C, Extra Training) and one section for tasks adapted from the
additional material (Additional Practice).

Clicking on a section displays a list of tiles, each tile standing for a task
from the work book. In case an exercise consists of multiple parts, one tile is
displayed for every sub task to make transparent to learners that an exercise
has multiple parts and that the multiple parts (e.g. part a and b of an exercise)
can have a different nature in terms of activity type and feedback support.

Each task tiles displays a thumbnail to users to give them some information
about the task (cf. Figure 5.18). The task image in the middle indicates what
type of activity it is from the perspective of the exercise modality (reading,
listening, vocabulary, writing, grammar, mediation, speaking) As a means of
creating a link between the printed workbook and the digital version, the subtask
tiles indicate the task number (central badge) and page number (left lower
corner).
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Figure 5.15: Student view: medium viewport layout

Figure 5.16: Student view: small viewport layout
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Figure 5.17: Student view: displaying sections

At the top of a task tile, a symbol indicates what type of feedback or support
the system offers, with a light bulb standing for scaffolding feedback, a green
eye symbol for general-purpose grammar checks, and no symbol for no feedback.
In chapter 6, we explain each feedback type in detail.

Finally, each task tile gives learners information about the status of the
associated task with a symbol displayed in the lower right corner. If this exercise
has not been attempted, this space remain empty. In case a learner attempted
and saved, but not submitted this task, a blue circle is showed. When a task
has been submitted to the teacher and is pending for grading, an hourglass is
shown. Once an exercise has been corrected by the teacher, a check mark is
shown there in different colors corresponding to the star rating, from red (1
star) to green (5 stars).

Apart from providing access to chapters, sections and tasks, the student
lobby furthermore contains tiles that offer access to the learner model (cf. Figure
5.14, bottom left) and special tiles for additional functions like questionnaires
or individual difference tests.

5.3.2 Teacher Lobby

The teacher lobby is the central start page that users with a teacher role see
when logging into the system.

It consists of a table of contents represented in a tree with sections and
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Figure 5.18: Student view: displaying tasks
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individual tasks on the left side, and a task table with information about student
submissions for a selected task on the right side (cf. Figure 5.19). Clicking on
a chapter in the first level of the tree displays all tasks from the chapter’s main
sections (A, B, C ). For the supplementary sections (Extra Training, Additional
Practice), separate nodes are shown in the tree that can be unfolded to below
it display the section’s tasks. The tree thus represents a hierarchical index to
exercises (as it is the case for students), but projected to be displayed on one
single page instead of several pages.

On the right side of the page, the system shows a table listing all students
in the class and the submission status for a task selected in the tree. This table
displays submission data of all students in the class and displays the data in
five columns. The first column lists the names of all students in the school class
assigned to this teacher. In the next column ”Abgabe“, there is either a blank
value if the given student has not submitted yet, or, for submitted tasks, it lists
the date (not time of the day) of when the corresponding student submitted
their answers to this task. The ”Status“ columns is used to display if for this
student there is no submission yet (”nicht abgegeben“), if the submission is
pending (”zu korrigieren“), if it is partly corrected (”teilweise korrigiert“), or if
it is corrected and sent back to the student (”korrigiert“). A list with additional
information, used for displaying whether reminders have been sent to students,
gets rendered in the column ”Anm“. (Anmerkungen). The last column has the
label ”Bewertung“ and shows a rating for tasks that the teacher has corrected or
that the student submitted as fully correct. It is rendered out as a check mark
in a color range from red (one star) to green (five stars), visualizing the star
rating assigned by this teacher to this submission, analogous to the visualization
in the student lobby (cf. section 5.3.1).

Clicking on a row in the task table prompts the teacher forwards the teacher
to the correction interface for tasks that are pending for correction. For students
who did not submit yet, the system asks teachers if they want to send a reminder.
For already corrected tasks teachers are prompted in a dialog window whether
they want to correct the task, unlock the task again for revision by the student,
or view their earlier correction.

As an alternative to the tree view visualizing submissions by chapter, section
and task, teachers can get list of all student submissions for all tasks. Clicking
on the top menu entry ”Abgaben“ loads an alternative view of the teacher lobby,
but instead of a tree to select, it displays a version of the task table (which is
by default shown right to the tree) with a list of all submissions across tasks.
In this view, the students without submissions are not displayed, but only the
actual submissions. This widget can thus serve as a ToDo list for teachers where
they can see what submissions are pending for grading.

Shared for both views is a list of filters to hide information (cf. Figure 5.19
above the task table). This is especially useful for bigger school classes. The
filters allow to hide or show only submissions that need to be graded or are
already corrected. Another functionality worth mentioning are the buttons at
the bottom of the task table: they allow to automatically accept corrections by
the system for the given task and students (green button), send a reminder to
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those who did not submit yet (purple button), unlock the task again for those
who have already submitted (violet button), or mark all submissions as seen
but not yet graded (yellow button).

At the bottom right of the teacher lobby, teachers can see a news feed that
automatically minimizes when selecting a task in the tree view (cf. section 5.3.3).
On the bottom left, for teachers who participated in the study (cf. chapter 7),
teachers see an overview over the school class’ progress on selected core tasks
with one progress bar for every core task visualizing the percentage of students
who worked on this task. At the top of the widget, the progress is displayed
for the current and thus most recent chapter, older chapters are shown further
down the list. This widget can be minimized, but not hidden with the intention
to create a salient representation of the progress of students on core tasks that
need to be done in the study.

In a nutshell, the teacher lobby provides an overview over who did an exercise
when, what needs to be corrected, what has been corrected, and how good a
submission was.

Figure 5.19: Teacher view: Start page/lobby

5.3.3 Administrative System Functions

User Management In FeedBook, users with one of five roles exist: student,
teacher, admin, material designer, and annotator. Users with the role admin
have the possibility to create teachers and associate school classes to teachers.
The task of teachers when logging into the system is to create student accounts
for every student in their class, who will be added to the school class associated
with this teacher. admin users can furthermore create annotator accounts: these
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users have the ability to modify exercises via the authoring tool (cf. section
5.2.3). While admin users have the ability to reset or change the password of
all users, teachers can manage the passwords of the students in their class (cf.
Figure 5.20).

Figure 5.20: Teacher view: managing student accounts

Each user has a profile page where they can select an avatar picture, associate
an e-mail address, and change their current password (cf. Figure 5.21).

Messaging system The system implements a messaging system allowing for
both automatically generated messages and manually written messages by other
users. Automatically generated messages are sent to a student when an exercise
has been corrected by or submitted to the associated teacher, or when a teacher
sent a reminder that an exercise has not been submitted yet. For manual mes-
sages, the recipient list is constrained. While every user can send a message
to the admin and thus the developers, students can write to their teacher, and
teachers can write to their students. An often requested, but not implemented
feature, is the ability to add friends and have real-time chat. Whenever a mes-
sage is created for a user, a news feed pops up and is displayed on the start
page of each user at the bottom right. The messages are sorted from most
recent (top) to oldest (bottom) and can be deleted individually or in a batch
in the news feed. Depending on the type of the message, the background is
rendered in a different color. In the example in Figure 5.22, this user received
a reminder to do a specific exercise (orange message), and then submitted this
exercise to the teacher (yellow message). On the profile page, users have the
option to automatically receive an e-mail notification when a new message is
sent to them. Clicking on a message opens the message writing view with the
sender of the original message as the recipient, allowing users to quickly answer.
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Figure 5.21: Profile page

Figure 5.22: News feed with two messages: reminder (orange) and submission
confirmation (yellow)
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Navigation system In order to emulate a stateful experience, the system
implements a navigation/routing system. In order to do this, the system stores
the names of the last two interfaces a user selected. Based on this, and on
explicit knowledge about which interfaces are accessible from where, the system
can reload any previous pages. Clicking on the system’s or the browser’s back
button leads the user back to the previous view(s). For interfaces requiring a
lot of computations and/or network traffic, static results are cached to allow a
faster reloading next time the user navigates there.

Login screen At the beginning of each session, users see the login screen
shown in Figure 5.23. It prompts user to authenticate via user name and pass-
word. Also it includes a link to the support in case a user forgot their password.
If a wrong password is entered 15 times in a row, the interface is locked, a
message is sent to the admin, and the user is informed that they need to get
into contact with the support. This measure was taken as a step to prevent
bot attacks. Furthermore, the login page contains a link to the project web site
for more information and a hint telling interested teachers how they can get an
account.

Figure 5.23: Login screen
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Feedback form FeedBook was released as a research prototype under devel-
opment and not a product in a final state. In other words, the system was not
perfect in terms of usability and contained a range of bugs. As a means to en-
able users to provide feedback, we implemented a feedback form allowing users
to provide feedback to the developers. While in an initial version it was a plain
text field, we later adapted it so that users would need to provide more specific
information about the type of problem (feature request/bug) and the specific
location of the issue (e.g. which exercise). For every submitted feedback, a
message in the admin’s news feed as well as a message to the developers was
created. Clicking in the admin interface on the feedback message allows the
admin to type a response to the user who submitted the feedback, ideally to
inform them that the reported problem has been solved.



Chapter 6

Interactive Real-Time
Feedback in FeedBook

In chapter 2, we carved out the relevance and beneficial effects of feedback
with special attention to interactive, real-time scaffolding feedback. FeedBook
implements three types of feedback to provide learners with immediate feedback
while working on exercises.

The system employs different feedback modules that provide feedback on
different levels of representation of language. The spelling feedback (section
6.1) provides feedback on the level of individual characters. This type of feed-
back operates on the level of orthography. Form feedback (section 6.2) aims at
correcting individual words with respect to grammar. This type of feedback
operates on the morphological and syntactic level. The third feedback, mean-
ing feedback (section 6.3), operates primarily on the level of entire sentences or
clauses. This type of feedback operates on the semantic level.

Since the feedback modules operate on different levels of language represen-
tation, they do not exclude but rather complement each other. Orthographical
feedback is given for tasks where by default grammar or meaning feedback is pro-
vided. It thus complements both other feedback types. Additionally, grammar
feedback is provided for meaning-based activities once the learner and target
answer are close enough, i.e. when quasi meaning equivalence is established.

A common trend when comparing the three strands of feedback is that all
types use the task context to generate and select feedback. The feedback on
orthography uses a task-specific weighting to guide the selection of target words
for spelling. The grammar feedback algorithms operates by taking target an-
swers from the task context and generating alternative forms from them. The
meaning feedback highlights information sources in the task context to guide
a learners’ attention towards it. In the following, we will describe each of the
feedback types in detail and put them into a context of related work.

Disclaimer: Specific sub parts of the contents of this chapter have been men-
tioned or referenced in Rudzewitz et al. (2018); Ziai et al. (2018, 2019); Meurers
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et al. (2018) and are cited accordingly in the running text of the respective
sessions.

6.1 Orthography

FeedBook contains a noisy channel spelling normalization component that is
used in two application contexts. The first application is as a normalization
module in the short answer assessment algorithm for meaning comparison (cf.
section 6.3). In addition, it is used as a standalone module for providing scaf-
folding feedback regarding orthography to learners (Ziai et al., 2019).

In the following we will motivate the implementation of spelling feedback
for learners (section 6.1.1) and explain the different error categories related to
feedback on orthography (section 6.1.2). Then we will explain the noisy channel
model and how it is tuned towards a specific task (section 6.1.3). In section 6.1.4,
we describe the results of a validation experiment that demonstrated the impact
of using a spelling normalization component for short answer assessment. We
conclude the discussion by putting the approach into a context of related work
in section 6.1.5.

6.1.1 Motivation

The spelling feedback approach was implemented for different reasons that we
will describe in this section. The first reason is that short answer assessment
approaches for meaning feedback typically work better with spelling correction
component (cf. section 6.3.6 for a discussion and section 6.1.4). This insight is
sustained by qualitative analyses of the data collected in the first and second
year, which showed a lot of variation due to spelling errors. It became evident
that a real-life usage of a tutoring system with free-text input creates a lot of
variability in learner answers.

After the spelling feedback had been implemented, we made it available
outside of the meaning feedback component for two reasons. First, when in-
specting the data, we saw that default feedback is given frequently for cases
where it would be easy for the system to provide more specific feedback and
spelling correction. Secondly, this offered an opportunity to implement another
feedback strategy that uses the task context to guide specific feedback, in line
with the grammar feedback approach (cf. section 6.2).

6.1.2 Error Categories

The system uses two types of feedback templates to provide feedback on spelling
listed in Table 6.1.

The casing template is more specific than the second template since it is
only applied in cases where the system detected a match between a learner
answer word and a reference answer word when ignoring case, but not when
conducting a case-sensitive match. The second template is used for other types
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feedback template message
CASING DEFAULT There is a problem with capitalization in your answer.
SPELLING DEFAULT The following words in your answer seem to contain

spelling errors: ${SPELLING ERROR}

Table 6.1: Spelling error feedback templates and messages.

of spelling errors that do not fall into the first category. It contains a placeholder
${SPELLING ERROR}. This placeholder is filled at runtime with the first word
in the learner answer that contains a spelling error. In the first implementation
of the system, all words with spelling errors were inserted into the placeholder
separated by commas, but later a break was added to only give feedback to one
word at a time.

6.1.3 Using the Task Context for Feedback on Orthogra-
phy

The spell checking approach in FeedBook is based on the noisy channel model
proposed by Brill and Moore (2000) enhanced with a task-specific weighting,
described in the following. The implementation is based on a reference Java
implementation by Adriane Boyd1.

The noisy channel model is an approach that assumes that noise is introduced
between what a person is trying to express and what this person writes.

While the model’s task is to correct misspelling of individual words at a
time, and not of a list of words, it nevertheless uses contextual information for
returning the most appropriate correction.

The algorithms starts by generating all possible partitions inside words, i.e.
splitting the characters of a word into groups of different lengths. Then it
computes a conditional probability of corrections, not on individual characters,
but on the chunks/partitions of the word. It computes an edit distance by
counting the edit operations needed to correct the source to the target and
ranking the corrections by the minimal edit distance. Positional information is
included in this process by modeling edits not in isolation, but as adjacent edits.
Furthermore, the approach incorporates a trigram language model that models
the probability of the word sequence looking two words to the left to estimate
how likely it is that the given correction appears in the context to the left.

In the noisy channel approach, the lexicon used in the system consists of two
sets of words. On the one hand, there is a set of valid words, i.e. words that the
algorithm is supposed to suggest. In the FeedBook system, we use the list of
words provided in the school books of grade 5, 6 and 7 as the set of valid words,
extracted from the vocabulary lists in the school books. As described by Ziai
et al. (2019), we use the school book data to approximate the vocabulary known
by the learners at this stage. This however only represents a minimum baseline

1https://github.com/adrianeboyd/BrillMooreSpellChecker, last accessed 2020-06-02
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since students most likely know more words in English from other domains via
exposure to the language also outside of the classroom.

On the other hand, the approach needs a list of words that were misspelled
together with target corrections. For this, we use data from the EFCamDat cor-
pus (Geertzen et al., 2013). The data sample consists of approximately 10,000
misspellings with corrections, with the misspellings produced by German learn-
ers of English.

We tune the spell checker towards specific tasks in FeedBook by ranking
candidates for corrections dynamically for every task. This works by assigning
a weight of 1 to each (correction) word by default. This default weight is,
however, increased if the word appears in the language material occurring in
the specific task. The system then assigns a weight corresponding to the term
frequency of the word in the associated reading text or transcription of the
listening text.

This leads to a prioritization of the words occurring in the task context,
making the spell checker task aware. Just as for the grammar feedback 6.2.2,
the idea is to use the task context to provide feedback that is appropriate and
dynamically tuned towards the current task the learner is working on.

6.1.4 Validation Experiment

Ziai et al. (2019) conducted an experiment to test the validity of the spelling
correction approach. In this experiment, they tested the impact of using a
spelling normalization for short answer assessment in the context of meaning
feedback (cf. section 6.3).

They extracted learner data for all reading and listening comprehension tasks
in the system. For 25 tasks with a total of 123 items, they extracted 3,829 unique
answer types. Each answer type was rated as acceptable or not acceptable by
an English teacher working in the project. Ziai et al. (2019) report a majority
baseline of 62 % for the correct class.

In their experiments, they tested the impact of spelling correction by com-
paring the system performance with and without a spelling normalization. In
order to derive generalizable results, they constructed three scenarios: testing
with unseen answers, testing with unseen items, and testing with unseen tasks.
The results show that the short answer assessment system with spelling normal-
ization outperforms both the majority baseline and a system variant without
spelling normalization. The results show that the positive accuracy impact of
spelling normalization is biggest when testing on out-of-domain data in the sce-
nario of unseen tasks. They also found out that task properties such as task
format, task media type (text/audio), and expected answer length influence the
effectiveness of the spelling normalization. Overall, the results show a clear pos-
itive effect of spelling normalization for the short answer assessment component
in FeedBook.
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6.1.5 Comparison with Existing Approaches

The origins of the noisy channel model and probabilistic models for spelling
correction date back to the early 1990s (Kernighan et al., 1990; Church and
Gale, 1991). Various extensions of the noisy channel model have been proposed
to add more information sources, e.g. by including phonological information
(Toutanova and Moore, 2002).

Another direction ox extensions of the approach is described by Duan and
Hsu (2011), who use a noisy channel normalization and prediction algorithm
that goes beyond simple edits and explicitly models different types/sources of
misspellings like keyboard adjacency, quick typing, inconsistencies between or-
thography and pronunciation, and more categories.

This line of research is further pursued in spelling correction approaches for
search engine queries. Similar to the case of tutoring system, search engines
need to deal with spelling errors by its users (e.g. Li et al. (2006)). The perfor-
mance of such approaches is important in that feedback or corrections need to
be very efficient in order to provide interactive and immediate feedback. In the
context of search engines, like for tutoring systems that perform short answer
assessment, the system needs to abstract from the form to the semantics of the
query/answer. What is different between the application of spelling normaliza-
tion in tutoring systems and search engines is, however, that for search engines,
often not only only normalization, but also the prediction of subsequent words
is required

Turning towards tutoring systems, spelling correction has been implemented
in tutoring systems, but very little literature is available for it. Elmi and Evens
(1998) implemented spelling correction in a tutoring system for medical stu-
dents to provide real-time spelling correction and normalization with a special
emphasis on the spelling of medical terms.

A problem is that language learners make different types of errors compared
to native speakers. Rimrott and Heift (2008) showed that out-of-the-box spell
checkers for native speakers do not cover the majority of spelling errors pro-
duced by language learners. Learners and native speakers commit substantially
different spelling errors, since learners do not ’only’ produce pure spelling errors,
but often a mix between competence errors and spelling errors/mistakes.

In a study involving E-Tutor (cf. section 4.4.2 for a discussion), Heift and
Rimrott (2008) tested different types of spelling feedback with different degrees
of explicitness. Their experiments tested spelling feedback with or without sug-
gestions for corrections, and with or without highlighting of the error location.
They found out that more explicit feedback with highlighting and suggestions
was most helpful for learners. Their data showed more uptake for feedback that
included suggestions than for feedback without suggestions. Furthermore, they
observed more correct learner responses for cases where the target word was in
the list of suggestions.

Another line of research in conjunction with tutoring systems and spelling
correction aims to put teachers into the loop. Laarmann-Quante (2017) de-
scribes a spelling error detection and classification tool geared towards teachers
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to inspect the types of spelling errors that were produced by their students.
The approach is not integrated in an actual tutoring system, but offers an in-
teresting perspective since the target group are teachers, not students. The au-
thors de Haan and Oppenhuizen (1994) present the SPELLER tutoring system
that offers suggestions for corrections to learners in an interactive way. Their
approach includes an early form of Learning Analytics that informs teachers
about the individual keystrokes of their learners and how they interacted with
the spelling correction mechanism.

6.2 Grammar

The grammar feedback algorithm in FeedBook is built on two pillars: an offline
pre-generation and analysis part, and an online part that matches pre-computed
analyses with learner answers (Rudzewitz et al., 2018).

The key idea is to use the task context for a pre-generation of the space
of well-formed and ill-formed alternatives to avoid online processing of highly
ambiguous learner language. Concretely, the system analyzes the target answer
of a task in the context of the other language material provided in this task
and generates alternatives of it based on errors observed in learner answers
to exercises in the workbook. Since target answers represent native language
productions, we avoid having to process interlanguage in the live system since
when errors are introduced as part of the alternative answer generation process,
the modification is explicitly encoded in a transformation rule and the resulting
analysis is unambiguously determined by the rule.

Another reason to split the feedback process into two parts is to outsource
part of the computational complexity from a live system to an offline generation
approach. In a pre-generation algorithm, the entire computing power of the
server can be used to generate analyses. In a live system, in contrast, the
computing power needs to be split between many requests via concurrency and
each user only receives a small share of the system’s power.

In this section we start by talking about the development of error types
used in the feedback (section 6.2.1), motivate the approach further from the
perspective of the task context (section 6.2.2), before we talk about the offline
generation part in detail. This includes the linguistic analysis and application of
transformation rules (section 6.2.3), the combination of rules to rule chains (sec-
tion 6.2.4), and the association of feedback templates with generated answers
(section 6.2.5). For the online part we explain the flexible matching (section
6.2.6) and display of feedback, before we conclude with a comparison with re-
lated work (section 6.2.8).

6.2.1 Development of Error Types

The error types used in the system were developed based on two sources of
information: paper work books and learner data from the first system usage.
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The development started off with an analysis of a set of paper workbooks
with learner answers and teacher corrections (Rudzewitz et al., 2017). The first
set of error categories derived from there were first integrated in the teacher
interface (cf. 5.2.6). In a second phase, we combined the workbook data with
learner answers entered into the system by test classes in the first and second
year of the project. Based on this data, a teacher employed in the project
derived specifications for rules.

These specifications consisted of the learner answer, the target answer, a
feedback code, and a feedback message. Based on the specification, we built
transformation rules that transform the target answer into the specified learner
answer and associate the given error code with it. We however did not only write
rules that exactly work for the one example provided, but instead abstracted
from the concrete example to a set of similar cases in a step of generalizing the
errors from examples to rules that abstract and capture multiple examples. For
example, the specification consisted of the confusion of certain selected tenses –
we then wrote rules for the confusion of all possible tenses.

The final set of 88 fine-grained error categories thus constitutes a combina-
tion of bottom-up driven categories (what errors did students actually make on
paper) and top-down driven categories (e.g. confusion of all tenses).

6.2.2 Basis for Feedback: Using the Task Context

The transformation rules use the target answer as the basis upon which analyses
are conducted. As a first step, the system creates a text from the target answer
plus the prompt context (e.g. the surrounding text in a fill-in-the-blanks activ-
ity). Both the prompt text and the target answer constitute the task context,
since they stem from the exercise definition.

This combined text is stored in a UIMA JCAS (Java Common Analysis
Structure, Götz and Suhre (2004)) object. A JCAS is a Java container around
a CAS, which in turn is a wrapper around UIMA multi-layer standoff annota-
tions. The annotations are defined in a type system. In FeedBook, we use the
DKPro type system (de Castilho and Gurevych, 2014) enhanced with custom
types. Building on DKPro makes the components interoperable and modularly
exchangeable.

Once a JCAS is created, we run the NLP tools listed in Table 6.2 on the
target answer and prompt. The analyses add word and sentence boundaries,
part-of-speech tags, dependency annotations, lemmata, and morphological anal-
yses. After these analyses provided by DKPro, we run over 40 KeyValuePair
annotators to annotate properties that are shared across rules and that extend
the existing linguistic analyses with specialized information like for example the
type of comparative, whether words have regular or irregular tense forms, or
signal words for specific tenses.

An important design feature of the feedback generation algorithm is that it
analyzes language that is well formed and according to the grammar rules of the
target language (cf. also Meurers et al. (2018)). This circumvents the problem
that when analyzing learner language with errors, there is inherent ambiguity
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task tool
segmentation ClearNLP

(Choi and Palmer, 2012)
part-of-speech tagging ClearNLP
dependency parsing ClearNLP
lemmatization Morpha

(Minnen et al., 2001)
morphological analysis Sfst (Schmid, 2005)

Table 6.2: NLP tasks and tools, taken from Rudzewitz et al. (2018)

as to how to interpret it. As discussed in section 4.2.1, for ill-defined domains
like language, analysis tools developed for native language only work reliably
for input in the native language. Given that the feedback generation algorithm
always starts off with an analysis of native language, the tools are more accurate
than in approaches where actual learner input needs to be processed.

6.2.3 Implementation of Transformation Rules

The target answers analyzed in context (section 6.2.2) are used as input to trans-
formation rules that change one aspect of them. Each transformation rule inher-
its from an interface class that defines two obligatory methods: isApplicable

and apply.

The isApplicable method returns a Boolean value and contains the logic
to determine whether this rule is applicable for a given JCAS. By extracting
KeyValuePair annotations, this function is used to ensure that the rule is only
applied to JCases in which the structures targeted by this rule are present. For
example in tense substitution rules, the isApplicable function checks whether
the tense to be substituted is present in the given input configuration.

If and only if the isApplicable returns true, the rule is applied. The apply

function takes as input a JCAS and returns as output a JCAS again. The
JCAS returned is not the same object, but a deep copy modified with one
single change introduced by the rule. It does, however, contain a reference to
its predecessor JCAS to make the rule application chain traceable. The change
introduced by the rule conceptually amounts to introducing an error or variation
pre-envisaging a response pattern by a learner. Each rule has a different logic
for introducing errors, but most rules are configurable with parameters to make
them general enough to model several related regularities. For example in the
aforementioned tense substitution rule, it is possible to determine the source
tense and the target tense, allowing this rule to be used for substitutions of
arbitrary tense pairings.

The apply function not only edits the source text of a JCAS, but also adapts
all the associated layers of linguistic annotation layers. Since there is a symmetry
between input and output, and given that the output of one rule can be used as
input to other rules, the rules need to ensure that their resulting analyses are
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as complete as possible (with some difficulties arising in assigning annotations
designed for native language to generated interlanguage).

There are two strategies for generating linguistic analyses of edited JCASes.
For the output of rules which generate well-formed alternatives, such as for
rules expanding contractions or substituting tenses, we perform a re-analysis
of the edited part. In order to do this, we first re-analyze the entire edited
JCAS document text in a temporary JCAS from a pool of temporary JCASes
held back for this purpose. Then we copy all annotations that overlap with a
window defined over the edited part from the temporary JCAS into the original
deep copy, after which the temporary JCAS is reset and released back into the
JCAS pool. This step is necessary since JCASes are not garbage collected and
we can not create arbitrarily many new JCASes in memory. The idea of cloning
and using JCASes in pools does not seem to have been an intended use case,
but with the described tweaks it does the job.

The alternative strategy, namely to manually add new annotations as part
of the rule logic, is only chosen when the rule yields a non-well formed source
text, such as in a rule that constructs a regular past tense form for irregular
verb forms. Since standard NLP tools can not handle these cases reliably, we
manually encode the linguistic annotation layers for these forms to the extent
that they are applicable.

The implementation of rules that are able to feed other rules is inspired by
configuration-based parsers and the graph search algorithms implemented in
them. The key insight and design pattern is the symmetry between the input
representation and the output representation.

6.2.4 Combining Transformation Rules in a Configuration-
based Transformation Algorithm

Transformation rules are organized in layers that control the order of their
application. As shown in Table 6.3, there are four rule layers.

The first layer contains rules that do not add diagnoses, but generate al-
ternative well-formed variants of the target answer, primarily the expansion of
contracted forms. In the second layer, rules are put that primarily generate
forms that are well-formed in the target language system, but are not appropri-
ate in the given task context, such as a tense form. These rules are put in the
second layer in order to allow the system to generate ill-formed derivatives from
it. Rules that generate forms that are not well-formed are placed in the third
layer. Output from this layer is never grammatical in the target language sys-
tem. Finally, the fourth layer contains rules that generate normalized forms
again, given that some forms have been expanded in the first layer.

Every non-final layer contains a SelfCopyRule, which is a rule that simply
generates an identical deep copy of the input JCAS. This allows the original
target answer to percolate through all layers, allowing rules in later layers to
be applied to the original target answer. If this was not the case, the process
would stop early if a rule is unable to pass through earlier normal rule layers.
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As the starting point, the system attempts to apply the rules in the first
layer. At least the SelfCopyRule can be applied. For every applied rule, the
cloned JCAS is put on a stack and available for application in later rules. This
means that the output of every rule application is put back to the input stack
and percolates through all rule layers, either as a direct copy or as the output
of a transformation rule. Figure 6.1 depicts this process.

target
answer

rule 1

rule 2

rule 3

. . .

rule i

layer 1 layer 2 layer m

rule 5

rule 6

rule 7

. . .

rule j

. . . rule 8

rule 9

rule 10

. . .

rule n

hypothesis 1

hypothesis 2

hypothesis 3

. . .

hypothesis q

Figure 6.1: Multi-layered hypotheses generation process, taken from Rudzewitz
et al. (2018)

For every output of a rule application, the system associates a feedback
template and saves the result in the data base (cf. section 6.2.5). The first
version of this algorithm was implemented as a single-threaded application with
a stack of JCASes, but later we changed it in a second version to a scalable
multi-threading implementation with a JCAS pool.

The approach is similar to breadth-first search algorithms in that the algo-
rithm first tries to apply all rules in one layer before moving on to deeper layers.
The algorithm thus traverses the layers first in the breadth before moving into
the depth with higher layers. Conceptually, the system generates and searches
a graph in a network representing the space of well-formed and ill-formed alter-
natives. Each reached node represents a state in which a target hypothesis is
saved in the data base, i.e. the result of the successful application of a transfor-
mation rule. It avoids cycles by grouping rules into rule layers and employing a
breadth-first approach to prevent that the same form is generated again, thus
controlling the flow through the network.
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layer 1 layer 2 layer 3 layer 4
NegationExpansionRule WellformedTenseSubstitutionRule VerbSuffixMalrule ContractNotRule
ApostropheExpansionRule Tense2BaseformRule DoNegationTenseMalrule ContractAuxFormRule
ContractionExpansionRule InflectedBe2BeMalrule ReciprocalReflexiveConfusionRule
SelfCopyRule AuxDeletionRule PronounSubstitutionRule

Participle2BaseFormRule WasFormConfuserRule
Participle2SimpleTenseRule NegationDoDeletionRule
Tense2ParticipleRule ExtraS SimplePastMalrule
AuxSubstitutionRule GerundExtraToMalrule
SelfCopyRule MoreMostOmissionRule

DoubleComparativeMalrule
AdverbReductionRule
ExtraMoreMostMalrule
PronounSubstitutionRule
ComparativeYNotChangedMalRule
PresentNoAgreementMalrule
VerbOverregularizationRule
IrregularSimplePastEdMalrule
PronounMisspellRule
KeyValueWordDeletionRule
RelativePronounPluralPersonalPronounMalrule
RelativeClauseCommaMalrule
RelativePronounDeterminerRule
ExtraObjectPronounRelativeRule
WordDeletionRule
ComparativeAdverbReductionRule
AdverbCompExtraMoreMalrule
GerundMisspellMalrule
GerundToInfinitiveRule
IngFormVowelAbstrMalrule
GerundLooseRule
GerundExtraPronounInsertionRule
AdjectiveCompExtraMoreMalrule
ComparativeAdjectiveReductionRule
AdjectiveCompDoubleConsReductionRule
AdjectiveCompLongReductionRule
WordSubstitutionRule
InfinitiveTenseMalrule
AdjectiveBadExtraMoreMalrule
AdjectiveDeterminerComparativeMalrule
ComparativeAdjectiveSuperlativeThanMalrule
PronounMisspellRule
VerbOverReflexivizationRule
SelfCopyRule

Table 6.3: Feedback generation rules ordered in layers
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6.2.5 Computation of Template Specificity and Ranking
of Candidates

The application of a transformation rule can yield two cases: for rules that
introduce errors, a diagnosis is associated as an annotation on the edited part.
For rules that do transformations such as contraction expansions, no diagnosis
is associated, and the answer is treated as correct by the system.

Diagnoses contain both a diagnosis span and a list of side conditions. The
side conditions can be empty, but if they are present, the specificity of the
respective diagnosis is higher than if there are no side conditions. For certain
phenomena, such as tense confusions, there are feedback templates with different
specificity. Figure 6.2 shows a feedback template whose target form is simple
past and the diagnosed form is simple present. It does not specify side conditions
and is thus an error code used for tense confusions. Figure 6.3 shows a template
with the same target and diagnosed form, but additionally a side condition that
specifies that this template is only applicable if the diagnosed form is part of an
if-clause. In this case, the system tells the learner about a rule of how to form if
clauses. The same problem was diagnosed, but in a more specific context, and
therefore the system can give more specific feedback.

Target form: SIMPLE PAST

Diagnosed form: SIMPLE PRESENT

Side conditions:
Feedback message: “This is the simple past You need to use the simple

present here.”

Figure 6.2: Example error template

Target form: SIMPLE PAST

Diagnosed form: SIMPLE PRESENT

Side conditions: IF-CLAUSE

Feedback message: “With conditional clauses (type 2), we use the simple
past in the if-clause, not the simple present.”

Figure 6.3: Example error template, taken from Rudzewitz et al. (2018)

During the feedback generation process, the system always associates the
most specific feedback template applicable. It computes a specificity score for
every generated form and applicable feedback. This score consists of three num-
bers: a binary indicator whether the target form of the template and diagnosis
match, a binary indicator whether the diagnosed form is matched, and a natu-
ral number expressing the number of side conditions matched. This allows for
flexibility in terms of matching, since not all conditions need to be met, but the
most specific template can nevertheless be selected. In principle, this also allows
to introduce a weighting function for the specific score to give higher weight to
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certain parts, e.g. the diagnosed condition, but in the FeedBook, equal weight
was given to all dimensions.

6.2.6 Flexible Matching

Since the system needs to deal with variations in learner input, especially for
semi-open tasks where the task context constrains the input, but learners still
need to provide a response in the form of an entire sentence, it is not feasible to
generate out and anticipate all possible learner answers (cf. also Nagata (2009)).

The goal here is to allow for variation in the learner answer, but still be
able to diagnose learner errors. In order to achieve this goal, the system uses
a Lucene search index. In this index, the learner answer is treated as a query
and the generated target hypotheses as documents. A ’document’ is only found,
i.e. the feedback is only selected, when the text of the diagnosis span of the
generated hypothesis has been found in the learner answer. The system selects
the closest match between the learner answer and the generated hypothesis by
weighting words in the diagnosis span higher than words in the surrounding
learner answer, telling the search index to prioritize generated hypothesis for
which the maximum number of words associated with a diagnosis are matched.
This in essence results in a search index for which the diagnosis is an obligatory
part and the remainder an optional part, which is taken into account, but with
priority given to diagnosed words. Technically, this is realized via Lucene’s
query boosting functionality, assigning a value of 5 to a diagnosed part of the
learner answer and a value of 1 to the remaining text (Ziai et al., 2018). Once
the most likely candidate is returned, the system stops and returns the template
associated with the generated form. In an early version of the system, the Lucene
index operated not only on surface forms, but also on the basis of soundex
matches. This was however not as reliable and later disabled.

Target answer (for reference):

Figure 6.4: Student answer including multiple errors with feedback based on a
partial hypothesis match, taken from Rudzewitz et al. (2018)

In Figure 6.4, the learner wrote “If she listens to Gillian, she feels better.”
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The target answer is “If Mrs. Collins listened more to Gillian, she would not feel
so bad.” The learner used a pronoun (“she”) instead of a proper name, confused
the tense form (“listens” instead of “listened”), omitted the word “more”, and
wrote a different sentence in the main clause (“she would feel better” instead
of “she would not feel so bad”). Despite all these changes, the system was able
to recognize the tense confusion in the if-clause and provide specific feedback
about it to the learner.

6.2.7 Combining the Functionality

Figure 6.5 shows a pseudo code version of the feedback computation algorithm.
The system first performs a very efficient direct lookup check to determine if
there is a direct match between the student answer and a target answer. It does
also take generated hypotheses into account which do not have an associated
template. If a match is found, the algorithm stops and tells the learner the
answer is correct. If not, the system first performs another efficient lookup to
see if there is a generated target hypothesis which has exactly the source text
the learner provided as input. If this is the case, which frequently happens for
fill-in-the-blanks activities, the system directly returns the feedback template
associated with this generated form. Only if both the previous checks fail, the
system performs flexible matching. In this case, the system searches for the best
match and returns the feedback associated with the highest ranked generated
target hypothesis.

if student input == target answer:

visualize this with green check mark

-> DONE

else:

retrieve direct hypothesis matches

if there are direct matches:

show associated feedback

else:

perform token-level Lucene query

if there are Lucene hits:

for every hypothesis:

if student answer matches criteria:

show associated feedback

else:

show default feedback

Figure 6.5: Feedback algorithm (simplified pseudo-code), taken from Rudzewitz
et al. (2018)
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6.2.8 Comparison with Existing Approaches

The traditional paradigms for generating feedback for a specific task consist
of (a) mal-rules, (b) constraint relaxation approaches, and (c) pre-generation
algorithms.

For the first approach, mal-rules, feedback is generated by running a parser
on the learner input. For parts that can not be matched with standard rules, the
algorithm introduces mal-rules which model non-standard patterns. The result
of this algorithm is a parse tree of the learner answer with diagnostic information
from the applied mal-rules. This approach requires a structural live analysis of
the learner answer. As explained in section 4.2, the inherent ambiguity in learner
language and the resulting differences in the analysis makes it difficult to arrive
at an analysis or interpretation of learner answers that is as complete as in a
mal-rule approach. In comparison, the FeedBook grammar feedback mechanism
only requires a shallow surface analysis at run time. While structurally less rich,
the potential for errors is reduced and the complexity outsourced to analyses
of generated target hypotheses based on the analysis of native language in the
form of the original target answer used as input to the transformation rules.

For the second case, constraint relaxation approaches, a similar pattern
arises. A system based on such a paradigm attempts to analyze learner language
by parsing it with standard rules, but relaxing some constraints if a student an-
swer can not be analyzed successfully. Again, this requires live processing and
implicitly assumes that the analysis from which constraints are relaxed is a suf-
ficiently accurate representation and starting point for the constraint relaxation
procedure. This assumption, however, can not always be assumed to be met
due to the nature of interlanguage. As for case (a), FeedBook circumvents this
problem by basing analyses on native language with controlled, explicitly mod-
eled derivations for which the changes are made evident, and with a minimal
live processing aspect in the system usage.

The third paradigm, pre-generation, is most similar to the approach de-
scribed in the FeedBook. A pre-generation approach uses the target answer and
thus the task as a starting point and anticipates possible alternative variants
from there. The novel feature described here, and the feature that makes such
an approach work in an authentic scenario, is the implementation of a flexible
matching component. The system does not use the pre-generated forms as the
solution, but as input to a matching algorithm, thus offering the flexibility that
most hinders traditional pre-generation algorithms.

The FeedBook pre-generation algorithm integrates structural information
in the form of a richly annotated JCAS, similar to information retrieved from
approaches like mal-rules or constraint relaxation, but combines it with a pre-
generation algorithm that outsources a large part of the complexity to an offline
generation part. Its design offers a strong integration of the task context and
rich analyses while reducing the required live processing to a minimum. As a
hybrid drawing from all three approaches, it combines strengths from all three
paradigms.
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6.3 Meaning

FeedBook contains an extended version of the CoMiC (Meurers et al., 2011; Ott
et al., 2012, 2013) meaning diagnosis component (Ziai et al., 2018). Originally
developed in the SFB 833 A4 project, it was ported over and integrated into
the FeedBook system. The A4 project created the theoretical and technical
foundation for the alignment-based approach.

The design of the algorithm prioritizes meaning over form with respect to
learner answers given as a response to semi-open questions. While the task con-
strains the space of semantic variability to a certain extent, the system needs to
be able to deal with more variability on the morphological, syntactic, pragmatic,
and semantic level. The approach is thus a short answer assessment (Ziai et al.,
2012; Burrows et al., 2015) algorithm. Different from the grammar feedback,
the algorithm performs a live analysis since it is not feasible to anticipate all
possible learner answers in contexts with semi-open tasks.

The task of the meaning diagnosis component is to evaluate if a learner an-
swer and a target answer are semantically equivalent or close enough to accept
them as quasi-equivalent, and, if not, diagnose what kind of divergence there is
between the learner and the target answer. The algorithm is capable of diag-
nosing missing concepts, extra concepts, and concepts that are not equivalent
by aligning a learner answer with a target answer on different levels of linguistic
abstraction.

While the algorithm prioritizes meaning over form, the two approaches do
not exclude each other. Once the learner and target answer have been evaluated
as semantically equivalent, the system attempts to diagnose form errors (cf.
section 6.2) in a component for incidental focus on form.

The system offers three types of assistance to learners in conjunction with
the meaning feedback. The first assistance comes in the form of an information
source highlighting with different degrees of specificity. If a learner answer is
not semantically equivalent to a target answer, the system replaces the default
media (task text image or task audio clip) with a modified version with manually
highlighted information sources. Concretely, for reading comprehension tasks,
it replaces the photo of the task text with a version in which a teacher has
added color markings for the part of the text that contains the answer to the
current question. For listening comprehension tasks, the audio file containing
the listening text recording is replaced by a shorter version that contains only
the part which answers the current prompt. A second type of support is a
visual highlighting of the parts of the student answer which diverge from the
target answer (cf. also section 5.2.6). This allows learners to see which part of
their answer needs to be changed. The third type of assistance is the textual
representation of the feedback template and thus meaning diagnosis, telling the
learner the result of the meaning comparison with the target answer.

In the following sections, we describe the approach in detail. Firstly, we
explain how the linguistic analysis of a learner answer is conducted in the live
system (section 6.3.1). In section 6.3.2, we turn to the alignment algorithm,
which serves as the basis for the algorithm that diagnoses the type of divergence
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(section 6.3.3). We then discuss how the generated feedback is displayed and
enhanced with a display of information sources for the current task (section
6.3.4). Finally, we explain how form and meaning feedback can be combined in
an incidental focus on form case (section 6.3.5) before concluding by discussing
related work from short answer assessment (section 6.3.6).

6.3.1 Computational Linguistic Analysis of Learner An-
swer

For meaning-based feedback, the system performs a live analysis of the learner
answer and extends the analysis of the answer to which it is compared. Since
the system pursues an alignment-based approach on multiple levels of linguistic
analyses, the first step is to add annotations on all levels of linguistic abstraction
needed for the alignment (cf. section 6.3.2).

Table 6.4 lists the Natural Language Processing tasks and tools used in the
meaning feedback analysis, listed in the order in which they are run. The first
part of the pipeline up to the morphological analyzer is shared with the grammar
feedback analysis and described in section 6.2.2. The next tool in the pipeline
is a component that, for each word in the input, annotates the synset, listing
the synonyms of each word extracted from WordNet (Leacock and Chodorow,
1998). Next, the system uses the OpenNLP chunker (Baldridge, 2005) to anno-
tate multi-word units. In the next step, we use a component ported over from
the CoMiC system (Meurers et al., 2011). It extracts keywords in the form
of dependency heads extracted from the dependency parse tree annotated via
ClearNLP (Choi and Palmer, 2012). The last step is to annotate word embed-
dings via ELMO (Peters et al., 2018). This is a distributional representation
serving as an alternative, statistics-based representation of the meaning of a
word – parallel to the manually annotated synonyms like in WordNet.

task tool
segmentation ClearNLP (Choi and Palmer, 2012)
part-of-speech tagging ClearNLP
dependency parsing ClearNLP
lemmatization Morpha (Minnen et al., 2001)
morphological analysis Sfst (Schmid, 2005)
synonym annotator WordNet (Leacock and Chodorow, 1998)
chunking OpenNLP (Baldridge, 2005)
keyWordFromDepExtractor CoMiC (Meurers et al., 2011)
word embeddings ELMO (Peters et al., 2018)

Table 6.4: Meaning-based feedback pipeline, originally adapted from Rudzewitz
et al. (2018), but extended with meaning feedback analysis components

The second part of the NLP analysis is also performed on the reference
answer selected as an alignment partner to the student answer since the stored
linguistic analysis (UIMA CAS) of the target answer does not contain these
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more abstract levels of analysis. Since these layers are needed to compute the
similarity between the learner and target answer, these annotation layers need
to be computed in the live processing step.

6.3.2 Alignment-based Matching of Target And Learner
Answer

In order to align the learner answer to a reference answer, the first step is to
select a reference answer to which to align to. In the most straightforward case,
the reference answer is the target answer. Due to the high variability and the
task-based approach of many exercises in the workbook combining functional
goals with specific forms to realize these functions, the system needs to implicitly
take into account form variants also in meaning-based tasks.

The system employs a two-stage strategy for selecting a reference answer.
The goal of this process is to find the closest matching pre-analyzed answer in
the system. First, it checks if the data base contains a reference answer that is
string-identical to the learner answer. This includes the target answer as well as
generated alternatives. Since the generated alternatives are variants with form
changes, but only very limited meaning changes (for example meaning changes
as a consequence of tense changes), the system does not restrict the alignment to
the target answer only. If the system can align the learner answer to a reference
answer, the system can interpret the learner answer more comprehensively. The
system contains the option to perform the spelling normalization described in
section 6.1 on the learner answer before performing the lookup, thereby allowing
to account for more variability (Ziai et al., 2019).

Since the direct lookup is a very efficient data base operation, the system
quickly returns a reference answer in this scenario. In many cases however,
especially for semi-open tasks, the system is not able to find a direct match.
The algorithm in this case uses a flexible matching approach with diagnosis
weighting (cf. section 6.2.6 for a detailed description) to select the interpretable
reference answer in the system which is closest.

Once a reference answer is selected, the system uses the NLP tools listed in
the second half of Table 6.4 to add the linguistic annotation levels not present
in the stored CAS analyses of the reference answer.

The annotations are used as input to a multi-level alignment process. In
the first step, the algorithm defines which words are alignable and which ones
are ignored. By adding a custom annotation type ’Mappable Annotation’ to
the CAS of the learner and target answer, the system initially marks all words,
chunks, and dependency triples as alignable. The mappable annotation consti-
tutes a ’shadow’ annotation added behind every token, chunk, and dependency
triple.

The system applies a punctuation filter to exclude punctuation from the
alignment. As the next step, a ’naive’ givenness filter is applied which excludes
words from the alignment which are given in the prompt text by comparing their
surface forms (cf. e.g. Ziai and Meurers (2018) for a discussion). Furthermore,
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this component allows to filter pronouns and determiners, with only the pronoun
filter active.

Since the alignment is conducted not only on the token, but also on the
chunk and dependency level, both the punctuation filter and the naive given-
ness filter allow to exclude chunks that contain words which are excluded from
the alignment. All words which have been marked as alignable are aligned on
the lowercase surface level, on the surface level, lemma level, synonym (Word-
Net) level, and embedding level (ELMO). For each word in the target answer
that can be aligned to a word in the learner answer, a potential match is marked.
This configuration of potential matches is used as input to the Traditional Mar-
riage Algorithm (TMA, (Gale and Shapley, 1962)) to select a globally optimal
configuration in which each annotation is aligned to only one other annotation
and the configuration, in which most words are aligned, is selected.

After the token alignment, the chunk aligner is applied, which takes as a basis
chunk annotations and aligned words. For each nominal, adverbial, adjectival,
or verbal chunk, it computes a score between the student and target answer
chunk based on the similarity of the chunk lengths and the number and type
of token alignments covered by the chunk annotations. A chunk which has a
similar length and many alignments to the other chunk’s words on less abstract
levels (e.g. surface level) gets a high score. Again, the TMA is used for selecting
a globally optimal chunk alignment configuration.

Finally, the dependency aligner takes all argument relations and checks if
the tokens corresponding to the head and dependent are aligned to each other.
If yes, the system adds a dependency mapping annotation to the learner and
target answer.

6.3.3 From Alignment Configuration to Feedback Label

Based on the computed alignment configuration, the system determines whether
an answer is accepted as correct, or if not, what type of problem there is. An
answer is marked as accepted if there are no unaligned target tokens, no extra
material in the form of open word classes (nouns, verbs, adjectives, adverbs)
in the learner answer, and if there are no unaligned negation words in the
learner answer. The last check is needed because in the case when a learner
writes exactly the target answer with the prefix “not”, this would yield a perfect
alignment from the target answer side since “not” does not fall into open word
classes and does thus not hinder a perfect alignment score. To counter this, we
added an extra check for negated statements.

As a next step, the system runs two rules to detect the type of divergence
between the learner and the target answer. The MissingConceptRule checks if
for open word classes, there are words in the target answer that fall into these
classes and that are unaligned. The ExtraInformationRule is applied on the
learner answer to check if there are words belonging to open word classes that
have not been aligned to words in the target answer. For efficiency reasons, as
soon as one of the rules finds a divergence, the system returns a diagnosis which
is used to inform the learner about the problem.
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If the answer is semantically accepted by the system, the system checks if the
reference answer is a generated alternative with a diagnosis. If so, it generates
a diagnosis for the form problem (cf. section 6.3.5). If this is not the case, the
system checks if there are any spelling errors in the learner answer (cf. section
6.1), and if so, creates a diagnosis relating to the first diagnosed spelling error.

This approach of diagnosing a problem and providing feedback on it is con-
ceptually different from the CoMiC approach (Ziai et al., 2018). CoMiC used a
memory-based learner (Meurers et al., 2011) to derive a binary classification of
the semantic correctness based on examples. This machine learning approach
is not pursued here, but replaced with a rule-based approach for generating
feedback diagnoses.

6.3.4 Displaying Meaning Feedback

Once a meaning diagnosis has been computed, the system displays it along with
two additional types of assistance for the learner. Figure 6.6 shows different
stages of meaning feedback with the exercise (frame 1), different stages of the
highlighting of information sources along with diagnoses (frame 2 and 3), inci-
dental focus on form (frame 4), and finally the correct answer (frame 5). In the
following, we will explain these stages.

Meaning Diagnosis Display The system informs the user about what spe-
cific meaning divergence it has detected. This can be missing information, extra
information, or non-equivalence of certain parts. The feedback templates are
loaded and displayed in the same way as the grammar feedback, allowing a
seamless integration of the meaning feedback into the grammar feedback fron-
tend developed before it.

Error Location Highlighting The integration of the meaning feedback al-
gorithm into the existing frontend means that it can benefit from the error loca-
tion highlighting implemented in there. It computes a diff between the learner
answer and the student answer and highlights those parts that are divergent
(cf. section 5.2.5 for an in-depth discussion). In the case of incidental focus on
form, the form diagnosis location is highlighted, in case of meaning diagnoses,
all parts that are different from the target answer are visually distinguished.
Different from the grammar feedback, meaning feedback templates that point
to extra information, verbally mention the word(s) they refer to. Figure 6.7,
frame 4, shows an example of a rule that points to an additional “no” in the
learner answer and mentions this in the feedback message.

Information Source Highlighting Since questions in reading and listening
comprehension exercises require the learner to locate the relevant information
source in the input material, the system offers support to learners for detect-
ing where they need to look to get the relevant information for answering the
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Figure 6.6: Display of meaning feedback, with different stages of assistance:
coarse information source, precise information source, positive feedback
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current question. In order to offer a scaffolded feedback to the learner with-
out giving away the target answer, the system offers a two-stage information
source highlighting. If a learner answer is not semantically equivalent to a target
answer, the system replaces the default media (task text image or task audio
clip) with a modified version with manually highlighted information sources.
For reading comprehension tasks, it replaces the photo of the task text with a
version in which a teacher has added color markings for the part of the text
that contains the answer to the current question. Figure 6.6 shows an example
of this. In frame 2, the system highlights the first two sentences in the text with
green color to draw the learner’s attention to this part. In frame 3, the learner
still did not submit the correct answer. In this case, the system marked with
yellow color the first part of the second sentence, significantly narrowing down
the information source location.

For listening comprehension tasks, the audio file containing the listening
text recording is replaced by a shorter version that contains only the part which
answers the current prompt. Figure 6.7 shows the different scaffolding stages
for a listening comprehension task. The system first presents the learner with
a short version of the original audio clip (frame 2), which is 10 seconds short
instead of 2:11 minutes (frame 1). Since the learner did not provide the correct
answer in frame 3, the system displays the transcription of the audio file.

6.3.5 Incidental Focus on Form Feedback

The system combined meaning and form feedback in an incidental focus on form
approach. If the meaning of the learner answer is similar enough to the target
answer, or, concretely in this case, if there is a direct match between the learner
answer and a generated target hypothesis, the system returns form feedback for
meaning-based activities.

Since the generated target hypotheses contain form errors and not primarily
meaning errors (apart from some changes via e.g. tense confusions), the system
displays form feedback only if there are no meaning errors. The algorithm
always prioritizes meaning feedback in meaning-based activities in order to avoid
that learners are exposed to form feedback early on which leads them to a
semantically incorrect form, given that the task in this type of exercises is to
get the meaning right.

Thus, as soon as quasi meaning equivalence is established (quasi since e.g.
different tense forms impact the meaning), but the interpretation of the diver-
gence to the target answer is still explicitly known to the system via the genera-
tion algorithm, the system provides form feedback to learners in meaning-based
activities. Figure 6.6 shows this process where the system first guides the learner
to the correct meaning and then provides feedback on remaining form errors.

6.3.6 Comparison with Existing Approaches

The approach described here is an application of a short answer assessment
algorithm in the context of tutoring systems. Short answer assessment is the
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Figure 6.7: Display of meaning feedback for listening comprehension task, with
different stages of assistance: shorter audio clip with information source, display
of transcription of audio text, negation detection
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automatic evaluation of short learner responses (typically one sentence) to ac-
tivities that typically require the learner to understand and adapt contents from
a task’s context material, such as in a reading text or listening task. It is chal-
lenging for computers to perform reliable short answer assessment since prompts
used as input to short answer assessment tasks typically do not prescribe words
that need to be used in the answer. Instead, learners (re-)formulate an answer
based on what they read. This typically leads to variation in both the mean-
ing and the form of learner responses. The task of a short answer assessment
algorithm is to abstract away enough from the surface to allow for form vari-
ation (primarily on the level of syntax and morphology), while keeping close
enough to what the learner wrote to preserve and evaluate the semantics. Short
answer assessment systems thus need to establish a balance between form ab-
straction and preservation. Ziai et al. (2012) and Burrows et al. (2015) provide
comprehensive overviews over the field of short answer assessment and different
approaches. While we refer the interested reader to these excellent overviews,
in the following we will discuss only the most relevant approaches related to the
current work.

The approach most closely related to the present work is the CoMiC system
(e.g. Meurers et al. (2011)), since the short answer assessment system in Feed-
Book was ported from the CoMiC system and shares its key components. The
CoMiC system in turn was a re-implementation of the CAM system (Bailey and
Meurers, 2008). The CoMiC system served as a basis for the exploration of the
design and effectiveness of meaning diagnosis components, such as an extension
to use focus to replace the naive givenness filter (Ziai, 2018) or an adaptation
to more open.ended community question answering tasks (Rudzewitz and Ziai,
2015).

Horbach et al. (2013) describe a re-implementation of the CoMiC system
that takes into account the reading text and information source by using the
closest sentence in the reading text as a feature. This approach is highly related
to the approach described here since in both cases the information source is
modeled explicitly. Their approach goes even one step further in the modeling
of the explicitness of the information source in that the language material of the
information source is actively used in the meaning assessment part. Another
shared feature of the two approaches is that the information source is manually
annotated from human annotators: in FeedBook it was annotated by a teacher
in the project who highlighted the information source in the reading text images
and cut the audio files into smaller parts, whereas in the Horbach et al. (2013)
approach three human annotators marked the information source.

Leacock and Chodorow (2003) describe the C-rater system. This approach
abstracts learner and target answers to abstract, canonical representations,
which are used as input to rules serving to to detect divergences between the
two representations. This work is similar to the present work since Leacock
and Chodorow (2003) also use a rule-based approach to detect specific types of
divergences between learner and target answers, comparable to the rules in the
FeedBook approach that detect extra or missing information.

In the approach by Mohler et al. (2011), the authors use dependency triples
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as input to an alignment-based short answer assessment system. It is related
to the present work in that both approaches use dependency triples as input
to the alignment. The key difference here is that the system by Mohler et al.
(2011) applies transformation rules during the alignment instead of before the
alignment like with the target hypothesis generation approach in FeedBook.
Another parallel is that they also use a givenness filter to exclude material given
in the prompt. Instead of a surface form-based filter, they use a similarity-based
variant.

Short answer assessment components are rarely integrated into real tutoring
systems. Most approaches remain in the prototype stage and as stand-alone
applications instead of being integrated into a larger tutoring system or ap-
plication. There are, however, examples of cases where tutoring systems are
enhanced with short answer assessment components.

Erickson et al. (2020) describe an extension of the ASSISTments system (see
4.3.2 for a detailed discussion) with a short answer assessment component. The
component is used for an automatic assessment of answer to mathematical ques-
tions requiring free-text input. They make use of the large number of answers
collected with the ASSISTments system to compare different approaches. In
their experiments, a random forest classifier outperforms a Rasch model and a
deep learning model.

Nielsen et al. (2009) describe textual entailment in tutoring systems for a
range of different topics. Their system derives facets from learner and target
answers that model dependency triples and thematic roles. These facets are
compared and described with different labels related to textual entailment. An-
other parallel to the present work is that they use a spelling correction module
to correct errors in student answers as a preparation for meaning comparisons.
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Chapter 7

The FeedBook Study

In this chapter, we report on the FeedBook study. Conducted over the duration
of one school year, and in an ecologically valid context, this study offers a rare
opportunity to conduct research on a large scale. While by its nature such an
endeavor results in less controlled settings and more noisy data compared to
lab-based studies, it also allows to test the generalizability and robustness of
theories about learning (e.g. Renkl (2013)).

Conducting studies in authentic, ecologically valid contexts is relevant in
that the vast majority of learning and teaching takes place outside of labs.
While there have been encouraging attempts to move from lab-based studies to
actual classrooms (e.g. Cornillie et al. (2017)), there is still leeway. Conducting
studies ’in the wild’ not only allows to advance the understanding about learning
processes, but also to put domain-specific technologies to the test. In the case of
the FeedBook study specifically, the present study allows to test computational
linguistic technology where it matters: by actual users in an end-to-end testing.

To our best knowledge, the FeedBook study is the first study testing an
Intelligent Computer-Assisted Language Learning system for English on a large
scale in Germany (cf. also section 4.5 for a discussion of tutoring systems in
authentic contexts). While there are other, commercial products that have been
adopted by a larger amount of users, e.g. as side products to printed workbooks,
they are not used as scientific instruments and have a much looser connection
to the current state of research.

The contents of this chapter are based on Meurers et al. (2019a). This
chapter is divided into two parts. In section 7.1, we describe the method of the
study. The second part in section 7.2 describes the raw data collected with this
method.

We start the methods section by discussing the participants in section 7.1.1.
As a next step, we introduce the diverse range of materials used as a basis for
learning, testing, and data collection in section 7.1.2. This includes exercises
(section 7.1.2), pretests and post tests (section 7.1.2), individual difference tests
(section 7.1.2), c-tests (section 7.1.2), questionnaires (section 7.1.2), and a free-
writing task (section 7.1.2). To conclude this part, we discuss the procedure in
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the form of research question and study design in section 7.1.3.
Following the discussion of the method, we take a detailed look at different

types of collected data in the system in section 7.2 as a source of data allowing
to look at learning products and learning processes. For learning process data,
we describe the different types of logs in section 7.2.1. We conclude this chapter
with a discussion of learning products in the form of submissions for tasks to
teachers in section 7.2.2.

Disclaimer: Specific sub parts of the contents of this chapter have been men-
tioned or referenced in Meurers et al. (2019a) and are cited accordingly in the
running text of the respective sessions.

7.1 Method

7.1.1 Participants

The participants of the study are described in Meurers et al. (2019a). In the
following, we will use this article as a reference for the reported information.
The study started off with 14 school classes. Two classes dropped out early
on due to work overload by the associated teachers. For one school class, the
parents of the students in these classes decided to stop participating in the study.
Additionally, two held-out control classes were recruited, but since they would
not benefit from participating in pretests and post test, decided not to take
part. The final sample of school classes that participated from the beginning to
end thus comprised eleven school classes.

The test classes were distributed among four secondary schools (“Gymna-
sium”) in the state of Baden-Württemberg (Germany), with the two held-out
control classes in another school. Three schools were public, one was private.
Schools differed in their foci, with one school specifically focused more on sci-
ences and one with an emphasis on arts and sports. The average class size was
25 students. One school class happened to only include boys, the rest a mix
between genders. The technology focus also varied, with two classes working
with tablets the entire year and the rest only occasionally using internet-capable
devices. For several school classes, teacher trainees taught the school classes for
certain periods of time during the school year.

In the system, 339 student accounts were registered for the participating
school classes, with 284 students in the test classes and 56 student accounts
for the two control classes. However, these numbers are maximum numbers
that can not directly be used for analyses given that due to the ecologically
valid settings, not all students participated in all data collection rounds. For
example in one test for theme 2, the internet connection in the classroom broke.
As a consequence, the students had to go to other rooms, changing the test
conditions and making the monitoring of them difficult. Other reasons included
cases where students were sick and could not attend school on some test dates,
but rarely also technical problems. In a system used over a longer period of
time, wit a diverse sample of students, and in very diverse contexts, missing
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data commonly occurs, needs to be expected, and dealt with. For each analysis,
the number of participants depends on how many students completed all the
required materials.

Of the 306 students who submitted their student questionnaire data, 172
reported male gender, 123 female, and 11 did not make an indication. The
average reported age of the 296 students who submitted a value was 13 years.
In sum, the sample is a vertical slice comprising of a diverse set

7.1.2 Materials

In this section, we describe the materials used in the study. The materials are
divided into different categories. We first take a closer look at the exercises in the
system that were used by learners. Then we describe the pre- and post tests.
The conducted individual difference tests are presented in the next section,
followed by the description of a c-test. Following this, we describe both a student
and teacher questionnaire. We conclude this part with a discussion of a free
writing task.

Exercises

Table 7.1 lists the number of exercises per theme and section (cf. section 5.3
for a detailed illustration of the exercise hierarchy structure). Since many tasks
consist of subtasks (part a, b, etc.), we report both the number of tasks and
subtasks. Theme 0 is special in that it does not have a subdivision into sections,
but all tasks are on the same level. For themes 1 to 4, there is a section “Ad-
ditional Practice”, containing a range of supplementary exercises (cf. chapter
5).

Table 7.2 provides an alternative perspective on the tasks in each topic. For
every theme, it lists the number of tasks where the manually assigned pedagog-
ical target constructs annotated by the material designers matched the given
construct. The table shows that theme 0 and theme 1 focus on repeating tenses.
This is relevant since, as the table shows, tenses are also a topic in theme 3 and
4. This also means that the learners from the intervention group of theme 1 did
not see some feedback in higher chapters, since also there the tenses that are on
their blacklist are a topic. On the other hand, Table 7.2 also shows that in every
topic, new grammar topics are introduced. For example, gerunds are introduced
in theme 1, comparatives and relatives in theme 2, etc (corresponding to the
grammar topics listed in Table 7.3).

Pre-/Post Tests

Language Topics The basis for the analysis of the pre-post test learning gain
analysis are eleven language topics. Table 7.3 lists all language topics covered
in the pre-/post tests of the different chapters. For each of the topics, there is
an identical pre test and and a post test about this topic.
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theme section number of tasks number of subtasks
0 6 14
1 A 5 9
1 B 7 9
1 C 6 10
1 Check Your Progress 6 7
1 Extra Training 6 6
1 Additional Practice 39 50
2 A 4 7
2 B 7 10
2 C 6 9
2 Check Your Progress 7 7
2 Extra Training 7 7
2 Additional Practice 40 45
3 A 3 5
3 B 7 14
3 C 6 10
3 Check Your Progress 5 7
3 Extra Training 5 7
3 Additional Practice 36 44
4 A 5 8
4 B 7 9
4 C 5 9
4 Check Your Progress 6 7
4 Extra Training 6 6
4 Additional Practice 37 40
5 A 4 7
5 B 6 12
5 C 5 11
5 Check Your Progress 6 6
5 Extra Training 6 6
6 A 5 8
6 B 6 7
6 C 5 12
6 Check Your Progress 6 6
6 Extra Training 6 8
total 329 439

Table 7.1: Number of tasks distributed across themes and sections
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Theme grammar topic number of tasks
0 question 1
0 present perfect 1
0 simple present 1
0 simple past 2
0 present progressive 1
1 gerund 9
1 present perfect 4
1 question 6
1 past perfect 3
1 adjective 4
1 adverb 3
1 simple present 10
1 will future 4
1 past progressive 6
1 connective 1
1 simple past 15
1 present progressive 9
2 question 3
2 relative clause 7
2 adverb 4
2 simple present 3
2 comparative 4
2 modalverb 9
2 will future 3
2 simple past 9
3 present perfect 1
3 relative clause 4
3 past perfect 7
3 passive 8
3 will future 1
3 past progressive 1
3 simple past 9
3 connective 1
4 question 5
4 reflexive pronoun 7
4 reported speech 9
4 modalverb 3
4 indirect question 1
5 question 1
5 adverb 2
5 adjective 5
5 comparative 1
5 connective 1
5 superlative 1
5 indirect question 3
6 gerund 1
6 adjective 3
6 preposition 1
6 comparative 3
6 modalverb 3
6 superlative 2

Table 7.2: Distribution of tasks per grammar topic per theme
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The topics covered in the individual chapters are different in their nature.
While the tenses in chapter one that are presented in a contrastive manner are
already covered in the previous year and constitute a repetition, the topic of
gerunds is new in this grade. In chapter two, comparatives, relative clauses, and
conditionals type 2 are tested. Since for conditionals it is necessary to know how
to use tenses that are repeated in chapter one, the topic of conditionals type
2 in chapter 2 can be seen as a direct continuation. Chapter three introduces
both a new tense (past perfect), but also a new voice: passive. Finally, the last
chapter that included a pretest and post test is chapter four. In this chapter,
reported speech and reflexive pronouns are covered.

chapter task language topic
1 1 present perfect vs. simple past
1 2 simple present vs. present progressive
1 3 simple past vs. past progressive
1 6 gerunds
2 7 conditional type 2
2 8 comparison of adverbs
2 9 relative clauses
3 4 past perfect
3 10 passive
4 5 reported speech
4 11 reflexive pronouns

Table 7.3: Language topics covered in the pre-/post tests

These topics are defined in the Bildungsplan (state curriculum, Kultusmin-
isterium (2016)). This document defines what contents and language topics
have to be covered in specific types of schools (in this case Gymnasium) and in
specific subjects (in this case English). The reason why these topics are covered
in the pre-/post tests is that the respective chapters in the existing workbook
contain exercises that allow to practice these grammar topics or language points.

Test Dates Table 7.4 lists the dates of the pretests and post tests for each
school class. In addition to the four themes, the table lists the date of the
delayed post test. This post test included a repetition of the first two subtasks
of each pretest task. For each of the tests, a member of the project team was
present in order to give instructions to students and monitor the process.

The teacher H907 skipped chapter three of the workbook in FeedBook. For
this reason, there is no pretest and post test for chapter three. When the post
test for theme two was conducted, the pretest of theme four was conducted.

For the teachers FQ8D, P7IB, M62N and FZJT the time between the post
test of theme four and the delayed post test would have been too small to have
a real delayed test design. Therefore, no dedicated post test of theme four was
conducted, but instead only the delayed post test covering the post tests of all
themes.
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teacher/ pre 1 post 1/ post 2/ post 3/ post 4 delayed
class pre 2 pre 3 pre 4 post 4 post
940B 18-09-25 18-11-26 19-01-21 19-02-18 19-05-03 19-07-10
1NVY 18-09-25 18-11-30 19-01-29 19-03-26 19-05-21 19-07-16
FQ8D 18-09-25 18-11-09 19-01-15 19-02-18 N-A 19-07-09
LTTS 18-09-25 18-11-27 19-01-29 19-03-26 19-05-28 19-07-09
M4SW 18-09-25 18-11-23 19-01-22 19-03-19 19-05-28 19-07-12
P7IB 18-10-10 18-11-26 19-02-01 19-03-13 N-A 19-07-12
YWL7 18-09-20 18-11-22 19-01-24 19-03-18 19-04-29 19-07-05
M62N 18-09-26 18-11-21 19-01-23 19-03-13 N-A 19-07-03
ZHOZ 18-10-08 18-11-19 19-02-11 19-03-18 19-05-28 19-07-05
H907 18-10-08 18-12-10 19-02-15 N-A 19-04-12 19-07-12
FZJT 18-10-01 18-12-10 19-02-14 19-04-11 N-A 19-07-09

Table 7.4: Dates of the pre- and post tests per school class. Classes with
incomplete data are marked in gray.

Format of Tests Each pretest had the same format as the corresponding post
test. The first part of each pretest consisted of a true/false task. Learners had
to either perform grammaticality judgment tasks by ticking the correct options,
or select sentences which contained a specific structure. Figure 7.1 shows an
example of such a task. In this example, learners have to select all sentences in
which the relative pronoun was used correctly.

The second part of each test consisted of a fill-in-the-blanks exercise with pre-
defined options. Learners had to select one of the provided options. Initially, this
was implemented as a fill-in-the-blanks task with options provided in brackets.
Later, this was changed to a fill-in-the-blanks task with multiple choice drop
down menus.

The third part of pretests and post tests consisted of prompts with less
constrained input. In contrast to the second part, the options are not given
here and students can type answers freely. This led to a significant amount of
variation in the answer and allowed for task avoidance behavior.

Control Variables

OSPAN In order to test working memory, we used a variant of the OSPAN
test with Klingon characters (Hicks et al., 2016; Ruiz Hernández, 2018). Each
trial consisted of a simple math exercise (checking if they were paying attention)
and a sequence of Klingon characters. In the following screen, learners had to
select the Klingon characters in the order in which they recalled them. This
complex span task involves performing two tasks jointly. The final OSPAN score
takes into account the math accuracy as well as the correctness of parts of the
recalled symbols in the sequence of symbols previously displayed.

MLATV We used a part of the Modern Language Aptitude Test (MLATV)
test described in Ruiz Hernández (2018) to test verbal declarative memory.
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Figure 7.1: Pretest task part a: selection task implemented as true/false exercise

Learners were given a test in which they were supposed to learn translations
of English words into a fantasy language. After a test trial as part of the test
explaining to them how the test works, they essentially did a vocabulary test
and the test score indicated how many words they recalled correctly.

Typing Tests In conjunction with the tests for theme 4, learners were asked
to do a typing test. The test had three attempts, with each attempt requiring
them to type words shown in a box above the input field. The test computed
an accuracy for each of the trials, taking into account the speed of typing, but
also the accuracy (typing errors). The test is an adapted version of an existing
typing test 1.

C-Test

At the beginning of the school year, and as part of the delayed post test, learners
were asked to complete a c-test. C-tests can be used as a measure of general
language proficiency as well as proficiency in sub domains (e.g. Eckes and
Grotjahn (2006)). Figure 7.4 shows an example of one page of the c-test in the
FeedBook system. While the first page explains the task, the remaining five
subtasks consist of tasks of this form.

1https://github.com/anschwa/typing-test, last accessed 2020-08-14
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Figure 7.2: Pretest task part b: fill-in-the-blanks exercise with provided options

Personal Background and System Usage Questionnaire

Student questionnaire At the end of theme 2, learners completed a ques-
tionnaire asking about personal information. The questionnaire consisted of
eight parts, implemented as eight tasks in FeedBook. Table 7.5 lists the differ-
ent parts of the questionnaire, the topic, and examples for each of the questions
in each part. Figure 7.5 shows an example of how the questionnaire is rendered
in the system. Parts four and five of the test contains items from a previously
established student questionnaire described in Gaspard et al. (2017).

Teacher questionnaire In addition to the student questionnaire, we sent a
short questionnaire to teachers focusing on user satisfaction. It comprised 25
items and was sent out on paper to teachers when they were asked to send a list
of the final English grades of their students assigned to the user pseudonyms
(not real or user names). The test contains both multiple-choice single selection
items and free text input items. The first six questions focused on the usability
of the system, with question seven allowing to provide comments about how
it could be improved further. The next questions asked about how and how
long teachers used the system and to what extend they were satisfied with the
tasks and task types implemented in the system. The questions explicitly asked
how much time they invested into the system and how much time they could
use for other activities. Further questions targeted technical problems and a
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Figure 7.3: Pretest task part c: short-answer exercise with free input

part topic examples of questions
1 personal details birthday, previous grade, language back-

ground
2 family background languages spoken at home, origin of parents
3 English usage parent support for English in school, sources

of English input
4 skill self-assessment estimated skills and attitude towards English
5 attitude English in schools, English teacher
6 homework effort, time, frequency, difficulty, attitude
7 FeedBook homework same as homework, plus impression of system
8 internet usage timing, devices, attitude towards computers

Table 7.5: Overview about student questionnaire

comparison of FeedBook with other digital learning systems. Finally, teachers
were asked whether they would use the system again for teaching English.

Writing Tasks

At the end of the school year, students were given a free writing task that
implicitly required them to use the constructs learned during the school year.
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Figure 7.4: C-Test exercise

Figure 7.5: Example screen of the student questionnaire
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Students were asked to compare two of their last holiday trips (requiring tenses
and comparatives), describe their next holiday trips (requiring the use of future
tense), and imagining what they would do with a lot of money during their
next holiday trip (requiring the use of conditionals). This led to a substantial
amount of learner responses, the analysis of which lies beyond the scope of this
thesis.

7.1.3 Procedure

The FeedBook study was conducted over the course of an entire school year from
September 2018 to July 2019. The central research question of this study was
whether immediate formative meta-linguistic scaffolding feedback by a tutoring
system was beneficial for learning, and if yes, for which linguistic constructs and
outcomes.

Figure 7.6: Experimental design with rotating groups (taken from (Meurers
et al., 2019a, p. 13) and slightly adapted)

At the beginning of each chapter, before the tasks were unlocked in the
system, learners took part in a pretest that tested prior knowledge about the
linguistic constructs introduced in this chapter (cf. section 7.1.2). The same
test was administered at the end of the chapter when the teacher decided to
move to the next chapter. In conjunction with the post test, the pretest for the
next chapters was conducted. This procedure was repeated for themes 1 to 4.
Overall, the study tested whether for different linguistic constructs, introduced
in four chapters across a school year, scaffolding feedback by the FeedBook
system was beneficial for explicit learning of these grammar constructs.

The learners were divided into an experimental and a control group, with
the assignment rotating with each chapter. For each school class, the system
randomly assigned each student to test group A or B, but ensuring that the
number of students in each experimental group was balanced for each school
class (within-class randomization). This balance of participants with respect
to experimental groups per school class was conducted in order to account for
effects of between-teacher effects.

Figure 7.6 illustrates the rotating design of the randomized controlled field
trial study. The intervention group of theme 1 became the control group for
them 2 and vice versa. Furthermore, the graphics shows supplementary materi-
als collected, such as individual difference tests, which are described in section
7.1.2. The difference between the control and the intervention group was that
for the control group, feedback templates that target the constructs introduced
in the respective chapter, were blocked (i.e. computed, but not displayed). The
rest of the feedback was still accessible to the control group. Only for tasks in
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which the only constructs covered were exclusively from the set of new grammar
topics introduced in this chapter, the feedback was deactivated altogether for
the control group. For items or tasks where the system did not provide feedback
to students in the control group, teachers could still provide feedback. This was,
however, only possible after learners submitted an exercise to the teacher, sim-
ilar to a submission on paper that a teacher collects, grades, and hands back.
The feedback for the control-group for language topics on their blacklist was
thus delayed (versus immediate) and manually provided (versus automatic).

This worked by implementing a blacklist consisting of language constructs.
For each feedback template, we know what target language construct is associ-
ated with it. Whenever a feedback message is generated, the system can check
whether this targets one of the constructs on the blacklist for this experimental
group, and if yes, block it from the end user. The blacklist is thus construct-
specific, and not chapter-specific.

Students and teacher were free to use the system in their own way. The
only requirement was that teachers were asked to assign a set of core tasks in
each chapter to their students, with core tasks focused on the new grammar
topics. From informal conversations with the teachers, we learned that the
system was used in a range of different ways. While the system was mostly used
for homework assignments, some teachers also used it (partly) in the classroom.
In terms of devices, the school classes differed. While some classes were using
tablet computers on a regular basis, others used stationary computers. The
input devices and conditions thus differed between the individual school classes
and schools.

Ecological Validity The study was conducted under ecologically valid con-
ditions. Schmuckler (2001) defines ecological validity as a combination of three
criteria: setting of an experiment, stimuli used, and type of responses elicited.
In terms of experimental setting, the object under investigation should be ob-
served in an authentic, naturalistic context, and not detached from real-life or
in artificial contexts. This also includes an authentic sample of participants. As
described above, in the FeedBook study we analyzed the data from a horizontal
slice of schools and participants in actual school contexts. The second criterion
for ecological validity pertains to the stimuli. According to Schmuckler (2001),
research should be conducted on stimuli in the experiment that occur in the
same way in real life. Since we used exercises from an existing, state-approved
workbook already in use, this criterion is fulfilled. As the final criterion, it is
necessary that what is measured in the experiment as the responses to tasks is
what is also produced by the participant´s. Given that both in the exercises in
FeedBook, in the pretest and post test, and in the exams in school, the same
type of responses were collected and evaluated, the nature of the response and
the measured responses are similar in their nature, fulfilling also this criterion.
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7.2 Collected Data

7.2.1 System Log

FeedBook logs the actions of users in two ways. On the one hand, the system
contains a general system interaction log (section 7.2.1). It provides general
system usage information that allow to quantify the usage. For example, it
stores when users logged in, where they navigated inside the system, and when
they logged out. This is a relevant source of information in distance learning,
since it allows to see whether learners had problems with the system (e.g. when
the system crashed). Complementing this, the system also contains an exercise-
specific interaction log (section 7.2.1) providing information about the interac-
tion of learners with exercises and especially with the feedback mechanism. In
contrast to the general interaction log, the exercise-specific log specifically holds
language information. What differentiates the two logs is thus their contents:
general interaction and interaction with language. In the following, we will de-
scribe both types of logs. We conclude this section with a description of how to
filter the data by interaction dates and the output of these processes in section
7.2.1.

General System Server Log

The general system server log contains all the information logged by the web
application container in which the system was running. It contains information
that stems from the container, such as instances in which the application we
undeployed or deployed, but also information that is specific to the FeedBook
system. The log data in this category can be subdivided into pre-envisaged
statements and incidental log entries. The latter consists of exceptions logged
by the system, such as run time exceptions when unexpected input is encoun-
tered or resources are unavailable. The former consists of statements that are
intentionally generated when certain actions are performed in the system. While
initially this consisted of statements that are called when users navigate between
different interfaces (e.g. navigating between chapters and exercises), it was ex-
tended over the course of the study to include more fine-grained distinctions
such as learners actively requesting or clicking on feedback messages or the
time-on-task between opening and leaving an exercise.

In sum, it contains general usage information only indirectly related to lan-
guage such as navigation patterns, login and logout information, and error mes-
sages. The system log can answer questions like who used the system when,
what are typical navigation patterns in the system, or did learners attempt to
do their homework.

Figure 7.7 shows an excerpt of the system log. The format of the log is one
line with a time stamp and the logging tool, and then one line with the actual
log message. The two lines together form one logging entry. In the example
provided, the first entry indicates that a learner logs into the system. As the
next step, this user sees the start page (mosaic lobby). meanwhile, another
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Figure 7.7: General system server log (user names blinded)

user exited an exercise after having looked at it for 4 seconds and worked on
it for 0 seconds (log entries 3 and 4). This user (blinded for anonymization)
then goes back to the start page. The system then lists all the currently online
users. Subsequently, more users log in, and one of them opens the interface in
which all messages are displayed. Later, even more users log in and work on
different exercises in the system. While it constitutes only a small excerpt from
the log, it illustrates the format and type of information present in the log. For
any analyses, we replaced the user names with pseudonyms before analyzing the
data.

Exercise Interaction Log

The system generates an interaction log that stores the actions of learners per-
formed when working on exercises. The content of this log consists of learner
answers, diagnoses of misconceptions, system feedback, and time stamps. This
is complementary to the general system log in that it contains language data.

The subject of the general system log is a domain-independent system usage
and could be extracted fro or implemented in every type of web application. In
contrast, the subject of the exercise log are domain-specific learner interactions
on exercises designed to practice language. For this reason, the exercise log
contains language data.

For every answer a learner submits, either by hitting the enter key, hitting
tab to change the focus on another input field, or clicking on the feedback
request question mark symbol, the system generates a LoggingToken and adds
it to the interaction log of this student for this exercise. This is also the case
for instances in which the feedback was blocked via the blacklist.

Each LoggingToken contains the following fields: learner answer (what the
learner typed), taskfield (reference to which item the answer was provided to),
feedback string (feedback message text plus degree of specificity), feedback tem-
plate (internal code for error type, or null if answer is correct), time index
(relative position in log), and time stamp (server time when the feedback was
logged). Additionally, the LoggingToken contains a Boolean variable ”auto-
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matic“, which is set to true if the LoggingToken was triggered by an automatic
check (when entering the exercise, clicking the earlier existent check-all button,
or before submitting to the teacher). In essence, it expresses whether a learner
answer was checked in isolation from this specific item or on conjunction with
other items. Later, we added an explicit indication of whether the feedback was
blocked via the blacklist.

Figure 7.8: Exercise-specific interaction log (user names blinded)

Figure 7.8 shows an excerpt of the exercise log. In this example, the learner
typed “Caroline asked Leon if he like english girls”. The target answer is “Caro-
line asked Leon if he liked English girls”. The feedback, which is the eighth (time
index 8) in this interaction, was based on the feedback code VP SPA LE M 01
and read “Simple past with regular verbs: verb + -ed.” It’s specificity is 1 (in
contrast to 0 for default feedback) and the feedback was generated automatically
(e.g. when the learner opened this exercise). However, due to the student being
in the experimental group for which feedback on tense formation was blocked,
this specific feedback was blacklisted and not displayed. The next feedback
(time index 9) was shown for the input “After that she asked” for the target
answer “After that she asked him who his favourite British musician was.” This
LoggingToken also shows that the example answer of this item is “After that
she asked”. This means that in this case, the automatic feedback was triggered
on an item in which only the already provided example answer was present,
i.e. an item which the learner has not worked on so far. This message, which
relates to relative pronouns, is not blocked by the blacklist and accessible to the
learner. This is also expressed in the first message of this log at the top of the
figure.

While the data of LoggingTokens is straightforward, the interpretation is not
trivial. Difficulties arise when looking at the granularity of the data structures.
An open question is whether to count individual instances of logging tokens or
modeling sequences of them. While the data structure expresses interaction with
feedback, this does not happen in isolation, but as part of a bigger process of
working on this task. Then, while the LoggingToken refers to an individual item,
the task context constitutes of more than only the item. In order to interpret
the LoggingTokens in the context in which they were generated, they need to be
interpreted with respect to explicit task models. Another question is whether to
weight information differently over time. Related to this is the question of how
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to handle periods of non-activity (i.e. the time between interactions) or pauses
(when learners left a task and opened it again later to continue working). Then
there are differences between school classes and chapters, with consequences on
hidden vs. displayed feedback (cf. section 7.1.3 for a detailed discussion of the
blacklist filtering and section 8.2 for the underlying data model).

Filtering the Interaction Logs by Test Dates

As Table 7.4 shows, the pretest and post test dates varied depending on which
school class learners belonged to. If analyses have the goal of linking interaction
data from one theme to the pretest and post test results, then it is necessary to
filter the interaction data to only include the data between the test dates.

For the general system log, due to the variations between the test dates, the
log can not simply be cut into slices where the split points are the test date.
Instead, we implemented a script that splits the log by linking each participant
to a test date and filtering out all the interactions of this user that took place
before the pretest and after the post test. The result is a log with the same
format as before, but filtered by test dates individually for each student.

Table 7.6 lists the number of lines in the separated system log files. The
number of log statements is relatively stable across the themes, with theme 3
having the smallest number of log entries.

theme log file line count
1 303,119
2 286,902
3 280,694
4 303,820
total 1,174,535

Table 7.6: Number of lines in logs filtered per theme

theme number of LoggingTokens
1 140,893
2 75,422
3 49,648
4 35,827
total 301,790

Table 7.7: Number of LoggingTokens (recorded interactions) per theme

Table 7.7 shows the number of LoggingTokens by theme. The number of
LoggingTokens decreases from theme 1 to theme 4. An important factor that
partly explains this is the fact that the check-all button was disabled after
having been initially active. This button had triggered a check for all the items
in a given exercise, inflating the number of LoggingTokens. However, the fact
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that the number of LoggingTokens still decreases for later chapters still shows
a reduction in exercise activity later in the school year.

7.2.2 Submissions

Table 7.8 lists the number of tasks submitted to teachers by learners for each
chapter and section. The table shows that for the optional chapters 5 and 6,
which were not part of the study, the number of submissions is lower than for
other chapters. Also for chapter, 4, which was covered towards the end of the
school year, there are less submissions. In total, there are 8,608 submissions for
the exercises in theme 1 to 6 and 8,432 for themes 1 to 4.
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theme section number of submitted tasks
0 72
1 A 249
1 B 847
1 C 468
1 Check Your Progress 331
1 Extra Training 425
1 Additional Practice 403
2 A 306
2 B 628
2 C 113
2 Check Your Progress 224
2 Extra Training 454
2 Additional Practice 701
3 A 117
3 B 403
3 C 326
3 Check Your Progress 353
3 Extra Training 377
3 Additional Practice 342
4 A 245
4 B 232
4 C 162
4 Check Your Progress 238
4 Extra Training 253
4 Additional Practice 163
5 A 46
5 B 73
5 C 1
5 Check Your Progress 17
5 Extra Training 15
6 A 10
6 B 12
6 C 2
6 Check Your Progress 0
6 Extra Training 0
total 8,608

Table 7.8: Number of tasks submitted to teachers for each chapter and section



176 CHAPTER 7. THE FEEDBOOK STUDY



Part III

Learning Analytics in
Practice
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Chapter 8

Modeling Individual
Learners

In this chapter, we present Learning Analytics functions for individual learners.
This perspective is complemented by Learning Analytics tools for groups of
learners in the form of school classes (chapter 9) and by Learning Analytics
functions that take into account the entire learner population (chapter 10).

We start off by analyzing the needs of students in an educational context
in section 8.1. Learners need to know, among other factors, how well they are
performing for a specific language construct, how their competence developed
over time, and what information a system has about them. In order to provide
such an open learner model, a tutoring system needs to be able to diagnose
construct-specific competence and errors related to a specific target construct.
We use section 8.2 to explain how this competence mapping was conducted in
FeedBook.

In section 8.3, we turn to the actual open learner model implemented in
FeedBook and discuss the individual components of it. We start by showing
the top level of the learner model in section 8.3.1, which provides learners with
a quick overview about their competence in the areas of a specific language
topic. In section 8.3.2, we show a visualization of errors per linguistic target
construct before we turn to a visualization of the longitudinal development of
competence and uptake of learners in section 8.3.3. We conclude the chapter
with a discussion of an adaptive proficiency-dependent and item-specific exercise
sequencing algorithm in section 8.3.4.

Disclaimer: Specific sub parts of the contents of this chapter have been men-
tioned or referenced in Rudzewitz et al. (2020) and are cited accordingly in the
running text of the respective sessions.
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8.1 Needs Analysis: Students

Students in a school context have different needs with respect to Learning An-
alytics in the educational context (Rudzewitz et al., 2020). Since students con-
stitute by far the largest user group in a tutoring system, it is important that
their needs are satisfied. In the following, we will outline the most important
needs with regard to Learning Analytics for students.

First of all, learners need to know what they have already learned. This
includes information about what has been practiced and how much practice has
been put into a specific topic.

The next need emerges from the first need. Learners not only need to know
what and how much they have learned, but also how well they performed. In
essence, this amounts to a visualization of the degree of mastery of a concept.
With mastery offering a positive perspective on the competence data, the other
side is equally relevant. Learners need to know which misconceptions have been
diagnosed and which errors or mistakes they have made.

Moving from functions that aggregate past data to estimate and visualize the
current state, students have needs relating to the future. Students need guidance
and suggestions for the next steps, especially which exercises to practice on next.
The selection of exercises should take into account the degree of mastery and
misconceptions. An adaptive sequencing tailored towards the state of individual
learners needs to serve the goal to overcome the misconceptions, as well as offer
an individualized access to new material.

Finally, from a general point of view, learners (like other user groups), need
to know what the system knows about them. Especially in the light of recent
data protection regulations, and given how rich learning interaction data is, it
is essential to provide learners with access to their data.

Without Learning Analytics, students are confronted with a black box that
collects but not outputs data as well as a lack of adaptivity and transparency.
Given the needs and state of research it is irresponsible to not implement Learn-
ing Analytics functionalities in a tutoring system.

8.2 Diagnosing Construct-Specific Positive and
Negative Evidence for Competence

In order to diagnose both competence and a lack thereof for the open learner
model, we implemented a bidirectional competence mapping. The mapping
links individual items with multiple linguistic target constructs on the one hand
with feedback templates associated with one linguistic target construct on the
other hand. Especially for items with longer input fields, often multiple con-
structs from different areas need to be produced by the learner. For example,
in a sentence like “Paul is usually driving faster than Dom”, in an imaginative
exercise with the pedagogical goal of comparatives, learners need to produce a
correct form of the present progressive, produce correct agreement between the
subject and predicate, and obey the correct word order.
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This leads to the challenge of how to interpret learner actions that do not
result in a correct answer with respect to the competence modeling. While an
exercise is typically designed to practice a certain target language construct,
learners need to actively produce constructs that are not sub constructs of the
pedagogical set of target constructs, but rather side constructs. However, in-
dependent of whether a construct is a pedagogical target construct or not, the
learner model needs to diagnose whether a learner produced it correctly or not.
For this reason, it is not sufficient to associate an item with only the pedagogical
target construct, but instead it is necessary to model all language constructions
that make up a specific item.

When a learner produces an answer that is identical to a target answer, the
learner model update is trivial. In this case, all target constructs associated
with an item can be updated with a positive increment. The interesting case
is when an answer is (partly) (in)correct. In this scenario, the system needs
to diagnose which of the set of target constructs associated with the item are
affected by the learner error(s) and which ones not.

The computation of this delta between the learner answer’s constructs and
the item’s target constructs is enabled by associating each feedback template
with an explicit target construct where applicable. In addition to modeling an
error with the diagnosed construct and error code (see Figure 6.2 for an exam-
ple), the feedback template also expresses what the linguistic target construct
is. This allows to see which of the constructs tested in the item are affected by
the error in the learner answer.

Concretely, we build an index of target constructs per task field once during
the feedback generation process for form feedback (section 6.2). Since rules
add one diagnosis associated with a feedback template, and since the feedback
template is associated with a positive target construct, we store the target
constructs of all feedback templates along with their side conditions added by
all applicable rules in the feedback pre-generation process. They are stored
in a special data structure TargetConstructsByTaskField in the data base for
an efficient lookup at run time. This process only conducted for specific form
feedback, i.e. not meaning or spelling or default feedback, since in the latter
cases, no explicit target constructs are available that could be compared to an
item’s target constructs.

We use this mechanism to update the learner model in real time for every
interaction with the feedback mechanism, i.e. every time a learner sends an
answer to the server for checking its correctness. While we record simple error
template frequencies by learners with a time stamp, the described bi-directional
competence mapping is used to compute fine-grained diagnoses. Table 8.1 lists
all the categories used in the competence modeling in FeedBook. Every time one
of the categories is applicable, it is stored in the data base along with the target
construct and side conditions, a time stamp, and a reference to the learner. In
the following, we will explain them one by one.
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uptake/evidence type description
correct at first try positive feedback for

all target constructs
answer fully correct after feedback correct evidence for all

target constructs
after feedback

different error for same construct after feedback different error, but
same target construct

different error for different construct after feedback feedback to something
else

correct but not necessarily at first try something right, but
the system doesn’t
know if it was correct
already before

answer ultimately correct answer is identical to
target answer
when the student sub-
mits it

answer ultimately false answer is not identical
to target answer
when the student sub-
mits it

Table 8.1: Uptake types recorded in the learner model in FeedBook
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Correct at first try When a learner submits an answer that is evaluated as
correct, and the learner has not interacted with the given item before, positive
evidence at first try is recorded for all target constructs associated with this task
field. We distinguish this category from correct after feedback since it expresses
the fact that the learner did not need feedback to arrive at a correct answer.

Answer fully correct after feedback When an answer is first incorrect and
a learner receives specific feedback related to one of the target constructs, then
manages to implement this feedback and produce a correct answer, the system
records for the specific target construct associated with the feedback that the
learner addressed this specific construct. Essentially, the system records an
instance of helpful feedback for a specific construction.

However, it is possible that the learner answer contained more errors that
were not targeted by the feedback, but nevertheless addressed by the learner in
the revision process of the answer following the feedback. For this reason, the
system additionally records uptake of type “correct, but not necessarily at first
try” at the same time for all constructs associated with this item, in contrast
to the uptake type “Answer fully correct after feedback” only recorded for the
construct targeted in the feedback template.

Different error for same construct after feedback Since many feedback
template are associated with a target construct, we can map errors to specific
language constructs. This allows to determine whether two feedback templates
displayed in succession target the same language construct or different con-
structs. Since the same construct can be produced in many different, linguis-
tically incorrect ways, it is possible that a learner makes a sequence of errors
working on the same form or construct. For example in a tense exercise with
the target answer “I got up today”, a learner can write first write “get” and
then “gots” instead of “got”. In this example, the same target construct (first
person simple past for an irregular verb) is the target of two errors that express
a different error (tense confusion vs. agreement), but they both map to the
same target construct.

Different error for different construct after feedback This type of reac-
tion to corrective feedback is similar to Different error for same construct after
feedback, but instead of the same target construct, two subsequent templates
refer to different linguistic target constructs in the learner answer.

Correct, but not necessarily at first try Since when feedback occurs it is
only clear that the specific target construct referenced in the template is wrong,
but not whether other constructs in the learner answer are also wrong, it can
only be diagnosed with certainty that the other constructs are right once the
learner submits a fully correct answer. Simply taking the difference between
the current target construct and all target constructs is not valid since learner
language contains ambiguities and we only know that one construct is wrong,
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but it does not imply that all other constructs are correct. Therefore, this type
of competence modeling is stored in the data base only once a learner submits
a fully correct answer.

Answer ultimately correct This type of reaction to feedback is technically
not uptake in the strict sense, but modeled internally in the system in the same
data structure and thus described here. When a learner answer is submitted
to the teacher, the system evaluates whether the learner submitted a correct
answer or not. This is not as trivial as comparing a leaner answer with a target
answer, but requires specific treatment depending on the task type and feed-
back. Especially for meaning-oriented tasks, the correctness of a learner answer
is determined based on a similarity computation that uses an alignment configu-
ration as a basis. In interfaces such as the material designer perspective for task
performance (cf. chapter 10), the system needs to quickly fetch the ultimate
correctness status of a large number of learner answers. An implementation that
re-evaluates and re-analyzes all learner answers would by highly inefficient and
unusable in an authentic context with big amounts of data. For this reason, the
system offers a shortcut by storing once whether an answer has been evaluated
as correct.

Answer ultimately false This feature is similar to Answer ultimately correct,
but a specific learner answer, at submission time, was not identical to one of
the target answers and has not been evaluated as correct during the interaction
process.

8.3 Open Learner Model

The FeedBook system contains a learner model implemented to address the
need of learners outlined in section 8.1. The learner model is accessible from
the start page of the system (see Figure 5.14 bottom left) to all learners. The
learner model is open to end users in that it presents all information to individual
learners that the system has collected about them. As discussed in section 4.1.2
in detail, there are many reasons for opening learner models to learners.

In order to prevent that learners are cognitively overloaded by too much
information, the learner model is organized in a hierarchical structure. This al-
lows to display information on demand when learners request it. The hierarchy
consists of three levels: top level grammar topics, performance data for gram-
mar points under a top level category, and detailed information for an individual
grammar point. The grammar points represent all linguistic constructions listed
in the state curriculum for English 7th grade. Purely linguistic in nature, these
grammar points do not contain pedagogical information. They thus do not di-
rectly mirror the curriculum, but offer a model of it from a linguistic perspective
closely tied in with the feedback generation algorithm.

Figure 8.1 shows the learner model at the top level as it is displayed when
learners first enter it. It displays ten categories covering all constructs from
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Figure 8.1: Learner model top level
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the state curriculum. Additionally it contains one category “other” for further
constructs that do not fall under the other top-level categories. This category
was, however, not used in the system, i.e. does not contain sub categories.

Upon clicking on one of the top level categories, the learner model displays
detailed information. The respective Learning Analytics interfaces are discussed
in the following. In section 8.3.1, we describe the second level of the learner
model offering a spider web chart that presents aggregated information about
learners allowing learners to see at one glance where strengths, weaknesses, and
gaps for a top-level category are. We then proceed with information on the
third level. Section 8.3.2 illustrates a visualization of error frequencies by tar-
get constructs. We continue with a discussion of the longitudinal development
of competence for the specified construct (section 8.3.3). We conclude by ex-
plaining how the open learner model implements an adaptive, item-specific and
proficiency-dependent sequencing of material (section 8.3.4).

8.3.1 Language Area Competence Visualization

Figure 8.2 shows the second level of the learner model after clicking on one of the
top-level categories (in this case present tense). The first type of information
the system presents to the learner when opening a top-level category is a wind
rose chart offering the learner an overview over his or her performance on this
topic at one glance. The wind rose chart offers an easy-to-interpret summary
of the learner performance for this grammar topic by indicating for each sub
topic (each corner in the diagram) with green color instances of successful usage
of this construct and in red instances of errors observed for this learner and
this target construct. The size of the red or green part differs depending on the
number of observations and on the proportion of correct vs. incorrect usage. The
chart does not only allow to compare correct vs. incorrect usage, but also gaps
in practice or underuse of a construct. If there is no or very little performance
data available (like simple present with regular verbs in Figure 8.2), the absence
of red and green bars in contrast to the other existing data shows to the learner
that he or she did not do exercises for which the respective construct needed to
be produced. This allows to identify areas in which, without an open learner
model, learners could get into a situation in which they do not know that they
do not know something because they did not encounter this phenomenon before.

Technically, the system adds the instances of answer fully correct after feed-
back, correct at first try, answer ultimately correct and correct but not neces-
sarily at first try to generate the green data points, and counts the number of
misconceptions related to this grammar topic to generate the red data display.
This approach was chosen since misconceptions (error frequencies) are clearly
assigned to an error, whereas (partly) successful uptake can be related to mul-
tiple problems and correct forms. Therefore, the system needs to account for
multiple cases here.

Every corner of the spiderweb chart is associated with one of the language
topics assigned to the top level topic. In the example in Figure 8.2, this is
the simple present and the present progressive, along with several special cases
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where these tenses occur in regular or irregular verb forms or signal words. For
each of the grammar sub topics, the spiderweb contains an edge, but in addition,
the system renders a graphical element below the diagram. It is rendered with
a background color and information text, the label of the grammar topic, and
a star rating.

The background color is directly related to the spiderweb diagram and ren-
ders a label in red, yellow or green. Red is selected if a learner made more errors
than correct instances for a grammar topic. Yellow is chosen when the positive
and negative evidence is equally sized. Green is selected if the positive evidence
outweighs the negative evidence. For example in Figure 8.2, the grammar topic
present progressive has a red label, and the spiderweb chart shows for this topic
that the red bar is higher. Compare this to present progressive with present
progressive signal, where the green bar outweighs the red bar and the graphical
element related to the language topic is rendered in green.

The star rating indicates how often this learner was able to show successful
uptake for errors related to this language construct. Similar to the computation
of the red, green and yellow color assignment, the system computes a ratio of
answer fully correct after feedback plus answer ultimately correct over different
error for same construct after feedback plus answer ultimately false. It thus
puts instances of successful uptake for this construct in relation to unsuccessful
uptake, both locally after one feedback message and globally when submitting
an answer.

The learner model contains an additional feature: if a construct has not been
practiced for a specific amount of time (in the system: 30 days), the system adds
a gray filter on the construct box. The learner model thus makes use of temporal
information in this specific case. A potential drawback of the learner model is
related to his point: the spiderweb chart does not only take into account recent
data, but all data observed since the beginning. This implies that with continued
usage and an improvement of a learner with respect to a language construct,
the red parts get smaller with more positive evidence, but never completely
disappear. Since every data point used as input to the diagram is associated
with a time stamp, it would be possible to only take data into account for a
certain time window.

Upon clicking on one of the boxes, the system allows learners to look at
more fine-grained information like error frequencies (section 8.3.2), the temporal
development of performance measures over time (section 8.3.3), and an adaptive
selection of exercises (section 8.3.4).

8.3.2 Target Construct Specific Error Frequencies

When learners request more information about a specific language topic, they
can visualize information about the most common errors they made related to
the given language topic. For every type of error where the target construct of
the feedback template was the given language construct, the system adds a bar
in a bar chart (see Figure 8.3). By looking at the height of the bars, learners can
easily see which errors they made most commonly in their productions related
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Figure 8.2: Learner model, taken from Rudzewitz et al. (2020)
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to this grammar topic. For example in Figure 8.3, this learner’s most common
error with respect to the present tense was a confusion of the will future with
the simple present.

Figure 8.3: Typical errors visualized for the language topic simple present, taken
from Rudzewitz et al. (2020)

8.3.3 Longitudinal Modeling of Learning Paths

Learners can inspect how their observed performance in the system developed
over time for individual grammar points. Figure 8.4 shows an example of the
development of the grammar topic simple present for a learner over time. The
x-axis has a unit of 1 and has one value per day since the day this construct
was used for the first time. In the given example, the learner used the construct
for the first time 150 days ago. The y-axis shows the number of observations
on the given day, with red showing incorrect usage (recorded misconceptions),
green indicating correct usage at first try (uptake type correct at first try), and
yellow representing successful uptake (uptake types answer fully correct after
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feedback, correct, but not necessarily at first try, and answer ultimately correct).
Initially, the learner required some feedback, but got the language form

correct after feedback (yellow bars). For some forms, the learner also got them
correct at first try without needing feedback (green bars). Then, between around
the 20th day, the learner suddenly made a number of errors related to this form.
There can be many reasons for that; it could be that the learner went from
receptive to productive tasks, or it could be that this language form was used
in the context of another, new or complex language form, e.g. conditionals type
1. From day 40 to day 70, the learner did not practice this grammar construct.
When he or she practiced it again for some days around day 80, the results were
mixed with some incorrect forms and some feedback required initially, but later
the positive evidence outweighed the negative by far. After a long break, this
learner used the construct again 150 days after the first usage and was able to
produce the form correctly.

8.3.4 Adaptive Sequencing of Material

The learner model in FeedBook contains an interface that suggests to learners
exercises that target a selected grammar topic and that match, in their difficulty,
the current proficiency level of this learner for the targeted grammar topic. As
described in section 5.2.1, the system contains 154 exercises from accompanying
material to the school book with every exercise available in epistemic difficulty
levels 1 (easy), 2 (medium), and 3 (hard).

Every exercise in the system was manually assigned a set of grammar topics
that represent the pedagogical goal of the exercise. Additionally, the feedback
generation mechanism recognizes which grammar topics are targeted for every
item (see introduction to chapter 8). The combination of this information al-
lows to determine which exercises either explicitly via the pedagogical goal, or
implicitly via the required language forms, target a specific language form.

The learner model makes use of these information sources to make proficiency-
dependent, construct-specific suggestions for exercises to learners via the open
learner model. When learners click on “Vorschläge für Übungen”, the system
presents to them exercises that are selected based on the language construct
selected and the learner’s observed difficulty level. If the positive evidence out-
weighs the negative evidence, the system thinks that the learner is good at this
topic and suggests exercises of difficulty level 3. For example in Figure 8.5, the
system marked the grammar point simple present with green color. For this
reason, all the exercises suggested by the system are at difficulty level 3 (hard)
so that the learner is challenged and not bored. If the language construct has
been marked as yellow, the system proposes exercises at difficulty level 2, and
for cases where the negative evidence outweighs the positive evidence, the sys-
tem presents exercises at the easiest level for the learner, allowing them to start
practicing with introductory exercises. In essence, the system attempts to sug-
gest exercises that lie in the Zone of Proximal Development (Vygotsky, 1978)
for this learner given the specific language construct(s).

This interface is adaptive since when learners are working on one of the
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Figure 8.4: Development of competence over time (green: correct usage,
red:incorrect usage, yellow: successful uptake), taken from Rudzewitz et al.
(2020)
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Figure 8.5: Proficiency-appropriate sequencing of material in learner model,
taken from Rudzewitz et al. (2020)
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suggested exercises, the learner model collects traces about the performance of
learners for this grammar construct. When the learner uses the suggestion mech-
anism again next time after having worked on a task, the suggestion mechanism
takes this evidence into account and potentially presents different suggestions
to the learner. For example, it is possible that a learner starts with more neg-
ative than positive evidence and gets exercises at difficulty level 1. Since these
exercises are the easiest, the learner is able to work on them successfully. After
having shown enough positive evidence, the system shifts to suggesting exercises
on the medium level. Once the learner was able to produce correct forms at this
stage, the system finally suggests the hardest exercises at difficulty level 3.
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Chapter 9

Modeling School Classes

In this chapter, we present Learning Analytics tools that make interaction data
of school classes available to teachers in a way meeting their demands. In
chapter 8, we presented Learning Analytics tools for individual learners. For
this chapter, we will zoom out from an individual learner to a group of learners
in the form of school classes. Since school classes are managed by teachers, the
tools presented here are designed with teachers as the target user group.

We argue that it is crucial to provide teachers with Learning Analytics tools
since they need insights into the learning process and not only the learning
products. In a situation with distance education (with spatial and geographical
distance between teachers and learners), as well as tasks traditionally performed
by teachers such as the provision of feedback or revision of tasks outsourced to
a tutoring system instead of to the teacher, most of the data that allow for
diagnostic information about students is part of the interaction data. In a
tutoring system with helpful feedback, more correct answers will be submitted
to teachers, enabled via the assistance by the system. However, while many
answers will be correct, the learning path towards these answers can differ. For
example, learners can reach a correct answer with a correct attempt at first
try, or it can take them a long interaction path with a range of different errors
and reactions to feedback by the system. We get back to this observation in
chapter 11.

In this regard, Learning Analytics tools are crucial to shed light on the
learning process that otherwise would constitute a black box to teachers. We
explain a range of different Learning Analytics tools that provide teachers with
different interfaces that offer different perspectives on the interaction data of
school classes by making data accessible from the perspective of learners, from
the perspective of items, and from the perspective of tasks.

In section 9.1, we start off with an analysis of the needs of teachers in
the educational context. Section 9.2 presents a Learning Analytics interface in
FeedBook offering an item-specific, fine-grained analysis of learner interaction
with the item so that teachers can see how specifically the learners in the school
class interacted with this item. Section 9.3 takes a different turn by allowing
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teachers to see which and how many tasks the learners have completed so far in
the school year, and which tasks are still pending. We show an interface that
enables teachers to inspect learner logs in section 9.4. In contrast to section 9.2,
the data is not aggregated per task field, but visualizes the actual interaction
logs over time as produced by the learners. Finally, in section 9.5 we showcase
an interface that allows teachers to see at one glance before class what the
most frequent problems were for a specific task and inspect selected interaction
quantification metrics like different types of errors, successful uptake, time-on-
task, effort, and more. In the following, we will present school class Learning
Analytics tools offering perspectives on data per learners, per items, and per
tasks.

Disclaimer: Specific sub parts of the contents of this chapter have been men-
tioned or referenced in Rudzewitz et al. (2020); Meurers et al. (2019b) and are
cited accordingly in the running text of the respective sessions.

9.1 Needs Analysis: Teachers

The basic need of teachers in an educational context is to get information about
the proficiency of learners with respect to the topics the teacher covered in
class. Apart from knowing about who does well, teachers especially need to
help learners who have problems. In order to address the problems, teachers
need to know about problems of specific learners and the school class as a whole.
Ideally, they can get this information for specific items, for exercises comprising
of multiple items, and across exercises.

In a traditional approach with submissions on paper, teachers can (to a
certain extent) see what learners write on their first attempt. These answers
are valuable for the teacher as a diagnostics instrument since the correctness
or errors in the answer provide the teacher with clues about where the learner
shows strengths and has misconceptions.

This is not the case in tutoring systems, since a tutoring system like the
FeedBook is designed to guide learners towards a correct solution before sub-
mitting to the teacher. As a consequence, assuming that the tutoring system
provides helpful feedback, more correct than incorrect answers will be submitted
to the teacher. This raises a need for teachers to get insight into the learning
process that led to the correct solutions in order for the teacher to still get some
diagnostic information about the students in class. If a tutoring system does
not provide this process information, this creates a ’black box’ in which many
learners submit correct answers, but potentially needed a lot of attempts to
arrive there, without the teacher knowing about which problems occurred on
the way.

Since one task of teachers is to help weaker students to catch up with stronger
students in the subject at hand, teachers should know by themselves or via a
tutoring system which students are at risk (and in which areas), so that an
intervention by the teacher can be planned. A student-at-risk detection system
needs to know what the expectations are so that it can compare the learner



9.2. ITEM-LEVEL PERFORMANCE ANALYTICS 197

model to the reference and detect deviations. In a milder version, teachers at
least need to know where they need to put in effort next, i.e. grade submissions
and provide feedback to learners with open submissions.

Another need of teachers is to see see where learners are in terms of their
progress. This can include local aspects like how many students did how much
of the assigned homework for the next session, probably also with respect to the
next exam, but also globally over the school year and the material that needs
to be covered in the school year and respective curriculum.

During the school year, and especially in a system like the FeedBook where
learners have a free choice to work on exercises even if they have not been
assigned explicitly by the teacher, teachers need to know the progress of the
school class for a specific chapters so that they know when the learners have
invested sufficient work so that they can move on to the next chapter.

Finally, a need shared by learners and teachers is to provide an opportunity
to reach the actual person sitting in front of the screen. This includes being able
to receive and send messages for a range of purposes like class management or
asking and answering clarification questions. Teachers need to be reachable as a
partner, also through the system, since some of the interaction that previously
took place face-to-face is now mediated via the computer.

While addressing all the outlined needs would go beyond the scope of this
thesis, in the following we will explain how some important needs are addressed.
Section 9.2 presents an interface that allows teachers to zoom in further and get
analytic information on the level of individual items. In section 9.3, we present
interfaces that inform teachers about the progress of learners. This is comple-
mented by an interface showing log data to teachers for specific exercises (section
9.4). Finally, we show an interface that allows to visualize the interaction data
of learners on a specific task in section 9.5.

9.2 Item-Level Performance Analytics

In a typical setup, teachers assign one or two exercises to learners for homework.
When a paper workbook is used, the teacher would ideally collect the test papers
and grade them. Due to time constraints, often homework is discussed in class
and individual students need to present their answers to the teacher. In the
case when a learner presents an incorrect answer, the teacher would explain to
the students why the answer is wrong and how to fix it.

In a situation with a web-based tutoring system like the FeedBook, teachers
can assign exercises in the same way. The difference, however, is that the system
provides formative feedback during the exercise completion process, guiding
learners towards a correct solution. What the teacher then sees as learner
submissions is not comparable to the submissions on paper since it represents
the result of an interaction of potentially many turns between the system and
the learner. This leads to the situation that a teacher can receive only correct
submissions, but on the way towards reacting the correct solutions, the learners
showed a lot of problems and potentially were even attempting to guess the
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correct answer. In this scenario, when teachers only look at the final result,
they will be misled into thinking that the learners are well-prepared on this
topic, e.g. for the next exam.

What is instead needed to address this problem is a Learning Analytics
interface that presents not only the learning product data, but additionally
the learning process data. In FeedBook, this is addressed in an interface that
provides a fine-grained analysis of the interaction of learners of a school class
with the feedback mechanism on the level of individual prompts. This level of
granularity relating to prompts was chosen since this allows teachers to zoom
in on individual items, just like in a traditional setup for discussing homework
results.

The interface shown in Figure 9.1 provides a list of all tasks that offer scaf-
folding feedback. When a teacher selects one of the tasks, the system loads the
exercise in the exact same way as the learners saw the exercise, with one notable
exception: instead of the question mark symbol for requesting feedback, there
is an arrow symbol. This symbol is associated with a click handler that allows
to load the learning process data related to this item for the students in the
school class of this teacher.

Upon clicking on a gap or the symbol next to it, the system loads a popup
for item-level learning analytics. At the top of the popup, the system shows
the target answer(s) of the item in green. Below this, a pie chart is rendered.
Every slice of the pie chart represents a feedback template that was computed in
the interaction with this item. This also includes feedback that was computed,
but not displayed due to the blacklist filter. The size of the slice depends on
the frequency of the provision of the feedback template, with more frequent
templates taking up more space. This allows the teacher to see at one glance
what the most common problems of the class were for this item. For example
in Figure 9.1, the biggest slice with 45.38% is associated with a template about
the usage of the past progressive in relation with the signal word ’while’. The
teacher thus immediately knows that the class struggles with the fact that ’while’
is a signal word for the past progressive.

The figure, however, shows more: the second biggest slice of the feedback pie
with 42% is default feedback, i.e. cases where the system could not meaningfully
interpret the learner utterance. This points in the direction of limitations of the
feedback capabilities by the system and could potentially be relevant informa-
tion for system designers (see chapter 10). However, as a trained professional, a
teacher can recognize what the problems were. To this end, the system allows
to zoom in further for every slice of the feedback pie chart. Below the chart,
the system offers a responsive table that, for every slice in the pie chart, allows
to query more detailed information. The elements in the table are ordered by
decreasing frequency, thus mirroring the pie chart information at the top level.
In this example, the feedback related to the usage of the past progressive with
the signal word ’while’ is consequently displayed at the top. in addition to the
feedback message, the top level elements contains a badge with the absolute
frequency of the computation of this feedback for this item. In the example,
this feedback message was computed 393 times. Upon clicking on the element,
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the system displays all the types of learner answers that triggered this feed-
back template. The types are ordered by the frequency of occurrence, which is
displayed in square brackets behind the actual learner answer. In the concrete
example, the most frequent answer with 15 occurrences was “Charlie was buying
Arsenal tickets while Gillian sit on the bus.”. The fact that the most frequent
type occurred only 15 times out of 343 cases, representing only 4% of the learner
answer tokens, illustrates (a) how much variability there is in authentic learner
answers and (b) that the system’s flexible matching algorithm is both necessary
and working (cf. also Meurers et al. (2019b,a)).

Figure 9.1: Prompt-specific learner answer analysis, taken from (Rudzewitz
et al., 2020)
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9.3 Learner Progress Visualization

Teachers need to know how much of the material assigned has been covered
by students in their class. In a traditional face-to-face teaching setup, teachers
can collect filled out work sheets or they can walk through the rows and put a
check mark for every student who shows that they completed the assigned tasks.
In a tutoring system, teachers also can get insights into who submitted what.
While the teacher lobby view (cf. section 5.3.2) lists all the submissions for one
specific task, but not a list of tasks. While teachers can also click on “Abgaben”
at the top menu (cf. Figure 5.19) and receive a list of all submissions sortable
by tasks, this list does not include the delinquent students who did not submit,
but only the actual submissions. So in order to display a list of exercises and
the progress of learners in terms of the completion status on them, an additional
Learning Analytics interface is needed. Figure 9.2 shows a full version of the
widget displayed in minimized form at the bottom left of Figure 5.19. While
the widget can be minimized, it can not be closed and is loaded in a maximized
version every time a teacher logs into the system. The content of the widget is a
completion progress overview for the ’core tasks’ of specific chapters (cf. chapter
7). The core tasks of the current chapter are displayed at the top to increase the
salience, with the other core tasks displayed in the order of completion of the
chapters below. In the example shown in Figure 9.2, this teacher was working
on theme 3 of the workbook at the moment. The interface allows teachers to
recognize at one glance for which of the tasks that need to be completed in this
chapter the completion rate is significantly different from 100%. For the tasks
with identified lack of coverage, teachers can then look into who specifically did
not submit the tasks yet via the list of submissions per tasks described in section
5.3.2.

9.4 Learner Log Perspective

While interfaces such as the item-level performance view (section 9.2) or the
task-level performance analytics (section 9.5) present information aggregated
across all interaction steps, for an interpretation of learner data from a peda-
gogical (and also from a system development) perspective, an approach different
from aggregating data across the interaction steps is to visualize the interactions
as a process. Figure 9.3 shows an interface which, after selecting a specific ex-
ercise from the system, visualizes the interaction steps. In this interface, the
interaction of learners is “replayed”. Unlike in the teacher correction interface
(section 5.2.6), in which only the final submitted answers are displayed, this
interface shows the steps taken by learners towards these final submitted an-
swers. The system displays the data per learner, with learners separated by
line breaks and whitespace. For every logging token of a learner, the system
displays one line. The first element is a time index, which represents a number
that is counted up every time a new LoggingToken is added to the interaction
log. This number allows to reconstruct the order in which the learner answers
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Figure 9.2: Visualization of learner progress over core tasks
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were entered. While the logging token data structure also contains a time stamp
for every interaction, the readability of the interface would suffer if instead of
the time index a time stamp would be displayed. The second element for each
interaction is the index of the task field. This allows to see for which specific
item this answer was given. Again, an index is used for readability of the in-
terface. After this, the system displays the actual learner answer, followed by a
green check mark if this interaction took place for an answer that was evaluated
as correct. If the submitted answer was not correct, a red cross is displayed. In
this case, after the red cross, the system displays the feedback message that the
system computed for the given learner, item, and learner answer.

Figure 9.3: Log data view

This interface allows to see how learners interacted when working on a given
task. It visualizes the steps they took for reaching their final submissions and
how they, in negotiation with the system, worked step by step to arrive at what
they submitted. It also allows to get insight into task strategies employed by
learners. For example, in the example in Figure 9.3 at the top, it can be seen
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that first the learner works his or her way up to item 15 (time point 48), but
in the end of the interaction (time points 49 and 50), jumps back to the first
item and manages to provide a correct solution for it, after before having not
managed to solve it. While this interface can give teachers the capabilities of
coming up with fine-grained diagnoses of the problems of learners for a specific
task, this interface can also provide valuable insights to material designers (see
chapter 10) about which exercise design triggers which interactions on the task
and of the learners with the feedback mechanism.

9.5 Task-Level Performance Analytics

Figure 9.4 shows an interface that visualizes interaction metrics for sub tasks
(i.e. individual parts of tasks in the system). At the top, the system allows
to select an exercise, along with two options. the first option allows to restrict
the data only to a specific group of learners (no filter, only control group, only
intervention group). The second option in the form of a check box serves to
indicate whether automatic logging tokens should be included or filtered out for
the interface. Confer section 5.2.5 for a discussion of different types of logging
tokens.

At the top of the interface, the system displays a pie chart that indicates the
percentage of each type of feedback computed while learners were interacting
with the exercise. Each slice of the pie chart stands for one feedback template,
with the size visualizing its frequency. In the example in Figure 9.4, the default
feedback was the most frequent template with 61.5%. The most frequent spe-
cific template with 10.25% out of 5, 374 interactions, equaling 551 instances, is
a template that indicates an incorrect formation of the simple past for an ir-
regular verb. The second most frequent specific template is concerned with the
formation of simple past forms for regular verbs. Followed by this is a template
that tells learners that they confused the simple past and the simple present
form of a verb. Note that this pie chart is computed for all task fields/items of
this task. While in section 9.2 we show a pie chart visualizing interaction data
in the same way, the difference here is that in the interface shown in Figure
9.4, the data takes into account all the interactions for a task and not only for
a specific task field. With this interface, teachers can see globally for one task
what the most common problems are. This visualization of complex interaction
data in a simple way for an entire exercise was implemented in this way since
the time of teachers is very limited and before class, they might only have a
few minutes to prepare the discussion of homework, underlining the need for a
simple and easy-to-understand user interface.

In the second part of the interface, a bar chart with interaction metrics is
shown. The metrics displayed there quantify the interaction in terms of errors,
correct answers, time-on-task, uptake, and effort. A detailed explanation of
every metric displayed can be found in Table 10.1 in section 10.3.2.
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Figure 9.4: Task Performance View



Chapter 10

Modeling the Learner
Population

Moving from Learning Analytics modeling single learners in chapter 8 over
Learning Analytics about school classes that form groups of learners in chapter
9, in this chapter we now turn to explaining Learning Analytics for modeling
the entire learner population in this chapter.

The Learning Analytics functionalities are designed for different stakeholders
involved in the educational context, but with a shared interest for Learning
Analytics that model more than one school class. In section 10.1, we outline
the needs of material designers, primarily related to functions that allow them
to evaluate how well tasks are designed based on the interaction data from
learners working on these tasks. In section 10.2, we take a different perspective
and analyze certain needs of educational administrators. Their needs center
around observing the progress of school classes over time to ensure persistent
high-quality teaching and coverage of materials by a set of school classes.

Having delineated the needs of the different stakeholders for which these
Learning Analytics tools were designed, we look at interfaces that address these
needs. In section 10.3, we showcase an interface visualizing the interaction
data of learners. Part of this interface is the functionality described in section
10.3.1 that puts effort in relation to success. Another component of this inter-
face displays key interaction metrics informed by SLA research (section 10.3.2).
In section 10.4, we explore how to display to educational administrators how
learners in school classes develop over time by displaying anonymized excerpts
of learner models. Section 10.5 offers a different perspective on the learner
population in the form of a user interface for material designers that enables
them to inspect the well-formed and ill-formed variability elicited by tasks, and
how the system handled it. As a follow-up, section 10.6 shows an interface
designed for a data-driven extension of target answers based on actual learner
answers. Based on the observed variability, material designers can add language
forms that were previously not anticipated in the task design. Finally, section
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10.7 concludes the chapter with an interface visualizing the completion rate of
learners over selected mandatory core tasks to educational administrators and
researchers conducting studies.

Disclaimer: Specific sub parts of the contents of this chapter have been men-
tioned or referenced in Rudzewitz et al. (2020); Meurers et al. (2019b) and are
cited accordingly in the running text of the respective sessions.

10.1 Needs Analysis: Material Designers

Material designers are users that take on the role of creating educational mate-
rials in the system and can provide input on the system’s behavior with respect
to its feedback behavior. The role of material designers can be shared between
persons who work(ed) for a publishing house as authors and write exercise texts
etc., and system designers that make the system behave and make the exercises
look as specified by the content authors.

Material designers, like for example representatives of publishing houses or
users who create content, need to be able to make observations that are informed
by data from as many users as possible to be able to distinguish trends from
outliers. This implies they need to be given the opportunity to look at the
data aggregated across school classes without being able to identify or track
individual learners or teachers.

An important task of material designers is to detect and correct situations
with misunderstandings related to the design of exercises. In order to be able
to find answers to these questions, teachers first need to know which exercises
learners work on or which exercises are avoided by the learner population. The
next question is to get insights into whether an exercise is too hard, just at the
right level, or too difficult for the learner population. Closely related to this
is the need to have means to answer the question of whether learners actually
benefit from working on an exercise. If yes, they should be enabled to answer
the question of why an exercise worked well, and how this knowledge can be
transferred to the design of other exercises. If not, they need to be able to
distinguish whether the feedback mechanism or the design of the exercise, or a
combination of both are responsible for the problems observed with this exercise.
Approaching the system designers with data-driven observations and being able
to edit an exercise on-the-fly allows to improve the system and solve the observed
problems.

10.2 Needs Analysis: Educational Administra-
tors

Educational administrators are people in positions to decide about the contexts
for teaching. In the school context, this could be the headteachers of a school. In
their role, they need to satisfy a range of users including the learners, teachers,
parents, and potentially decision makers on a higher level of administration like
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school supervisory boards. The latter group includes decision makers that look
at performance indicators like grade averages.

Needs that administrators can have in conjunction with a tutoring system
can be to see whether, across school classes, the learners actually benefit from
using the system. When learners benefit, both the learners and their parents will
be satisfied with the education and thus the school. Since the administrators
need to satisfy and care for the teachers employed by them, a relevant question
with respect to teachers is whether teachers save time working with the system in
comparison to colleagues not using such a system. If a system can help keep work
time in a reasonable frame, it is beneficial for all stakeholders. Closely related
to that is the need to know if the system is easy to integrate into the regular
teaching and whether it creates hurdles for teachers, learners, or potentially
parents.

Not in the case of FeedBook, but in general for systems with a commercial
license, educational administrators decide whether the school spend money on
the acquisition of commercial licenses for a tool/systems. In order to answer
this question, they need to be able to see how effective a system is, and how
effectively it is used. One indicator for this is the completion of exercises.
Educational administrators should be able to get insights into the progress of
school classes in the curriculum. To this end, they need to see if some school
classes are lagging behind other school classes in this school.

In the end of a school year, the decision makers in the educational context
should be able to see how the final grades of learners using the system behave
in contrast to learners from previous years or learners from school classes that
did not use it.

10.3 Interaction Performance Metrics Perspec-
tive

Figure 10.1 shows a Learning Analytics interface that visualizes performance
metrics based on interaction patterns. The interface consists of three compo-
nents: a selection of a specific task from the system at the top, a line chart
visualizing effort in relation to task success in the middle, and a bar chart plot-
ting different error and uptake metrics next to each other. In the following, we
will explain the different components in detail.

10.3.1 Effort in Relation to Success Perspective

The line chart in Figure 10.1 visualizes the effort learners put into an exercise
in relation to their ultimate success or failure on the task. As a first step, the
interface makes explicit what the data source used in the current view consists
of. In the example in Figure 10.1, the data underlying the view consists of a
total of 264 submissions by learners, of which 170 were submitted without any
errors in the final submission to the teacher, and 94 submissions with at least one
deviation from one of the target answers. The relation of ultimately correct vs.
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Figure 10.1: Interaction performance metrics, taken from Rudzewitz et al.
(2020)
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incorrect submissions can be a first indicator of how well this exercise matches
the ability of the involved learners.

Below this, the system renders a line diagram. On the x-axis, the system
visualizes effort operationalized as the number of attempts learners spent on this
task. Every interaction with the feedback mechanism increases the value on the
x-axis by one. On the y-axis, the system plots the number of submissions with
as many attempts as the x-axis indicates. It is a frequency of submissions with
the indicated number of attempts and expresses how many learners submitted
this task to the teacher with this many attempts. In essence, this interface
visualizes how many people submitted with how many attempts and whether
they were successful.

Since every exercise can have a varying number of items, in order to be able
to interpret the displayed values, material designers using the system need to
have the opportunity to put the number of attempts in relation to the number of
items – ten attempts on a task with ten items should be interpreted differently
compared to ten attempts on a task with two items. To this end, the system
indicates the number of attempts in the chart with a vertical gray line. In Figure
10.1, this is visualized at the x value of 3, meaning that this task consists of
three items that require learner input.

The actual values for the line chart are plotted in green and red. Data points
visualized in green represent learner submissions that were submitted with all
learners answer evaluated as correct by the system. For grammar tasks, this
implies identity to one of the target answers. For meaning tasks, this can also be
the case, but since the evaluation of learner answers for meaning-based activities
allows for answers that are treated as equal due to similarity measures rather
than string identity, the system in order to enable this visualization checks in
the interaction log whether there has been a logging token without an associated
error code for a specific task field. Given that it is important that an interface
like this loads fast, a re-evaluation of learner answers with the memory-intensive
alignment approach (cf. section 6.3) is not feasible at runtime. Instead, the
system uses a shortcut by checking whether an answer, and projected from that
a submission for a task, has been evaluated as correct in the past and uses this
as evidence. For all submissions for which at least one answer has not been
evaluated as correct, the system adds a data point in red into the chart (cf. also
Meurers et al. (2019b,a)).

Let’s look at the example in Figure 6.3 in more detail. All the data points left
to the gray line are marked in red. The reason is that it is not possible to sub-
mit an exercise with all items answered correctly if the number of interactions
is not at least equal to the number of items. In other words: these data points
represent submissions of learners who did not provide an answer to all items.
At the x axis value 3 indicating the number of items, there are 18 fully correct
and 26 not fully correct submissions. This means that 18 learners managed to
submit a correct answer for every item on their first attempt. In contrast, 26
learners submitted after interacting with each item only once (another hypo-
thetical explanation would be they interacted with fewer items but more often).
To the right of the gray line (i.e. x > 3), the trend is that the green line is above
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the red line, with only two exceptions at x = 12 and x = 18. The interpretation
for the observed values is that for the majority of learners, interacting with the
exercise led to ultimate success. In other words, this trend shows that it pays off
for learners to interact with this task since the likelihood of reaching a correct
submission in the end is higher than the likelihood of submitting something to
the teacher that contains errors. Another observation related to this interface is
that the maximum of correct submissions is at x = 5, followed closely by x = 6.
22 learners submitted a correct submission for x = 5 versus 7 learners with an
incorrect submission. This shows two things: firstly, the exercise is designed in
a way that in tendency is not too easy in the sense that the highest number of
submissions can be observed for learners who on average had two interactions
per item. Secondly, the effort learners invest into interacting with the task is
not in vain since it is much more likely to get it right in the end than otherwise.

Compare this to the chart for a different exercise depicted in Figure 10.2.
First of all, this exercise was not remotely as popular as the other task, with
only 15 submissions in total. A reason for this could be that it was part of
the Additional Practice section with optional tasks. Secondly, the maximum
number of submissions is at x = 1, meaning learners only interacted once with
this exercise offering eight items and decided to submit directly. At x = 11,
the only two correct submissions for this task can be observed. One learner
interacted 19 times, but was still unable to reach a correct submission. The
visualization for this exercise shows that learners were both not motivated to
put effort into this task, and for those who were motivated, the effort did not pay
off. The likelihood of reaching a correct submission is much lower than reaching
an incorrect submission. This can be an indicator for material designers to check
the validity of the design of this exercise.

This interface can answer the question of whether an exercise is appropriate
for a specific learner population and whether effort of learners invested in this
specific task pays off for them.

10.3.2 Uptake Metrics Visualization

In addition to the line chart, the system plots different quantities that express
features related to interaction patterns of the given exercise in a bar chart.
The quantities are plotted in different colors to visually distinguish them, and
plotted in one graph in order to make the quantities comparable. The purpose
of visualizing these quantities is to give material designers an accessible and
easy-to-interpret overview about how learners interacted with this task that
goes beyond only ultimate success or failure. In chapter 11, we analyze the
predictive power of (some of) these features with respect to learning gains.

Table 10.1 lists the features in the order in which they are visualized in the
chart from left to right. Along with the description, the table lists a short ex-
planation for the conceptual motivation of the respective feature. Every feature
is computed on all available data (i.e. across all school classes) for this task in
the system.
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Figure 10.2: Interaction performance metrics for an exercise that shows prob-
lems

The first feature, correct at first try, counts the number of uptake obser-
vations of the associated uptake type, as described in section 8.2. It can be
interpreted as a proxy for previous knowledge since these are cases where learn-
ers only need to interact once and in this one interaction show that they already
know the solution and can thus use the associated grammar construct in this
context correctly.

The next feature, errors, expresses the total number of learner answers that
were submitted during the interaction that were evaluated as not correct. Since
this category includes all the different types of errors handled and not handled
in the system, it expresses how many errors in general were committed in this
exercise. Material designers can see whether this task in general elicits many
errors or not and can put this into relation with the number of items visualized
in the chart described in section 10.3.1.

In contrast to the feature errors, which expresses the errors committed dur-
ing the interaction, the feature incorrect answers indicates how many incorrect
answers (or to be more precise, how many answers not recognized as correct by
the system), were submitted to the teacher. Technically, this is a count of uptake
types of the sort answer ultimately incorrect (cf. section 8.2) The interpretation
of this feature is the number of instances (on an item level) where the system
could not provide feedback that led to a correct solution, including cases where
the feedback was disabled for the control group. The alternative interpretation
is that the system provided feedback that could have led to a correct solution,
but learners did not use the feedback to correct their answers before submitting.
This again can have a range of reasons (see also section 2.2), including motiva-
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tional issues or feedback that is not formulated in an understandable manner
for a specific student.

Similar to that is the next feature, correct answers, given that it expresses the
opposite case compared to incorrect answers. These are instances in which, for
a specific item, learners submitted an answer to the teacher that was evaluated
as correct by the system. The interpretation of this feature is that these are
cases where learners either had previous knowledge or showed successful uptake
to reach a correct solution, i.e. cases where the system offered helpful feedback
leading to a correct solution. This feature thus expresses for how many cases it
was possible to ultimately succeed in getting a correct answer.

The feature interactions indicates how many times in total learners inter-
acted with the feedback mechanism. This feature is a summary statistic of the
data points displayed in the chart described in section 10.3.1 visualized above.
The same holds for the feature submissions, which simply indicates the absolute
number of submissions to teachers for this task. This can be a proxy for how
popular an exercise was (if it was not a mandatory task).

The next feature, gaps, is a measure of how many answers (on an item level)
were submitted to the teacher that were not empty. A common problem is that
learners submit tasks before having filled out all the gaps. This is evidenced in
for example Figure 10.1 with the data points in red left to the gray vertical line.
Another problem can be that learners submit their answers for one subtask
without realizing that there is a second subtask they could switch to. This
feature thus expresses the coverage for learner submissions for this task.

The feature average time is a measure of the average time-on-task learners
spent for this exercise. Comparing the number of items with the average time-
on-task allows to see how long the learners on average spent on the items in
this task. Similarly, comparing the number of interactions with the average
time-on-task allows to get insight into whether learners are putting effort into
an exercise or just trying out a few answers and then submit quickly. Related
to that, combining this with the line chart visualized above, it allows to relate
the number of interactions with ultimate success and the time invested. For
example, if the line chart shows it is unlikely that learners who invest effort into
the system will reach a correct solution, plus the time-on-task is high, then this
is an indicator that the design of an exercise could be problematic.

Encoded by the feature correct only after feedback is the number of uptake
observations of the type answer fully correct after feedback (cf. section 8.2).
This encodes a sequence of two interaction steps in which a learner went from
an incorrect answer to a correct answer. In essence, this feature thus expresses
instances of successful corrections by learners. Since the interaction takes place
with the system as the interaction partner, these are cases in which the sys-
tem was able to provide helpful feedback. With this feature, and especially
in relation to the feature errors expressing the intermediate steps with errors,
material designers can evaluate whether the feedback capabilities of the system
are compatible with the exercise design, i.e. whether the feedback can guide
learners to a correct solution in this specific task context.

In order to give material designers insight into the proportion of different
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feedback types, the system visualizes the number of the sum of feedback in-
stances for groups of templates. An important feature for material designers
is the quantity of default feedback. Default feedback is only triggered in cases
where the system is unable to interpret the learner answer. While it contains
highlighting capabilities to indicate which parts of the learner answer need to
be changed, which can be helpful for e.g. lexical substitutions, this type of
feedback is the least specific version. Every instance of default feedback means
that the system was unable to deal with the learner answer in a more specific
way, i.e. did not find a rule or target hypothesis to interpret the learner an-
swer. If this number is high, it is an indicator for material designers to look
into more detail into what specific aspects of the learner answers the system
was unable to interpret given the lack of coverage of specific feedback. This can
be achieved with Learning Analytics functions like the item-level performance
analysis perspective described in section 9.2.

The feature meaning errors expresses the number of problems related to the
semantics of learner answers. This is completed with grammar errors represent-
ing morphological and syntactical problems, as well as spelling errors that tell
material designers how many instances of orthographical problems the system
detected. The amount of and relation between the different feedback types can
give material designers insight into what types of problems the learners have
in this exercise. For example, if the amount of spelling feedback and default
feedback is very high, but the amount of meaning and grammar feedback very
low, the exercise is unlikely to provide opportunities for meaningful interaction
on the pedagogical target constructs associated with this exercise. In essence,
these features allow to compare whether the frequency of different groups of
errors triggered by the learners are in line with the pedagogical design of the
exercise.

The last feature visualized in the bar chart is the longest sequence. It ex-
presses the maximum length of a learner interaction sequence on one of the
items in this task. The motivation for this feature is to offer a measure of per-
severance of learners for reaching correct answers on this specific task. While
it is sensitive to outliers and could in principle be complemented with measures
of central tendency related to interaction sequence lengths, this feature allows
for material designers to see if the exercise design on the item level is appealing
enough so that at least one learner attempted in a continuous manner to solve
an item. Both extreme cases, only a very short longest interaction, as well as a
very long longest interaction, can be warning signs for material designers that
an item is either not appealing enough to invite longer interactions, or that
learners need to put in many interactions on one or more items. Note that this
feature is conceptually different, being on the item level, from the line chart
that aggregates attempts across items for one task.

While there are many features that could be visualized in addition to the
presented features, a consideration in the design was to only visualize key in-
formation to material designers and to keep the interface interpretable in a
reasonable time frame.
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feature description interpretation

correct at first try number of instances
students filled in a
correct answer at
their first attempt

previous knowledge

errors number of diagnosed
errors

misconceptions

incorrect answers number of answers
submitted to teacher
with errors

cases where the sys-
tem was unable to
lead to a correct solu-
tion

correct answers number of answers
submitted to teacher
without errors

previous knowledge or
successful uptake

interactions total number of inter-
actions with feedback
mechanism

number of times
learners requested
feedback

submissions number of submission
to teachers by stu-
dents

size of data set under-
lying visualization

gaps number of gaps filled
out

coverage of learner
submission for task

average time average time taken by
learners for exercise

time on task

correct only after feedback number of prompts
where feedback led to
correct solution (up-
take)

number of cases where
system feedback was
effective

default feedback learner answers with
no associated diagno-
sis

lack of coverage of
specific system feed-
back

meaning errors diagnosed missing or
additional informa-
tion

semantic misunder-
standings

grammar errors diagnosed grammati-
cal misconceptions

morphological or syn-
tactic misunderstand-
ings

spelling errors diagnosed mis-
spellings

orthographic misun-
derstandings

longest sequence maximum number of
steps for prompt

perseverance of learn-
ers for reaching cor-
rect answers

Table 10.1: Uptake metrics presented to material designers, taken from Rudze-
witz et al. (2020)
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10.4 Learning Path Perspective

Educational administrators need to keep track of how school classes are perform-
ing over the school year. At the end of the school year (and in the middle after
one term has ended), each student receives a grade. Depending on the educa-
tional system, administrators might be obliged to report grades to authorities or
higher educational institutions. Having grade averages that are below the stan-
dard or comparative schools can then have an impact on funding and benefits
the next time resources are distributed.

Among the primary concern to foster the learning of students, this can be an
incentive to ensure a high level of quality in the education of students resulting
in decent grade averages. While it does not need to be (and should not be)
a concern of administrators about who specifically performs how, identifying
trends when comparing school classes can be an understandable need.

Figure 10.3 shows an interface that fulfills this need. It allows to select a
specific school class at the top along with a language construct of interest. The
interface then loads the temporal development of all learners of this class for
this construct – without displaying the name of any of the students. These
components constitute parts of the learner models (see section 8.3.3) and al-
low administrators to identify trends with respect to how the learners in this
school class are developing on this language construct over time. Loading the
perspective with different school classes allows to draw comparisons, identify
successful instances for a specific construct, but also to see if a school class is
underperforming for a specific grammar topic.

10.5 Answer Variability View

The type-token ratio (Richards, 1987) indicates how many strings versus how
many different strings are present in a specific scenario. A low type-token
ratio indicates that there are not many different variants, whereas a high ratio
indicates that there is a lot of variability.

Figure 10.4 displays the answer variability for one item in terms of types
and tokens. The interface displays the information for both well-formed and ill-
formed variability. For grammar tasks, the number of correct answers is identical
to the number of target answers (or only has minimally higher numbers due to
variance caused by expanded contractions etc.). In contrast, for meaning-based
activities, the correctness of an answer does not depend on a string identity with
one of the target answers. In this case, the number of correct answer types or
tokens can be higher.

Ideally, the variability observed in an answer contains systematic patterns
covered by the feedback algorithm, or, if the patterns are not covered, systematic
patterns that could be covered if the feedback algorithm would be extended. On
the other hand, if the variability shows that learners did not know what to do
in this specific task, with answers that contain parts unrelated to any of the
target answers, then this shows a problem with the design of an exercise that
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´

Figure 10.3: Visualization of uptake over time
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needs to be tackled by re-designing (parts of) this exercise. The difference
between the two types of variability is that in the first case, these are errors
that are pedagogically anticipated (e.g. confusions of tenses), constituting a
form of variability that is desired, versus the second case, where the errors
do not constitute pedagogically meaningful ways of intervention to remedy the
errors.

Figure 10.4: Answer variability view: type/token visualization (part 1)

The next follow-up question related to observed variability is how the system
deals with it. Concretely, system designers need to be able to interpret which
parts of the variability are covered by the system. To this end, Figure 10.5 shows
a screenshot of the lower part of the interface displayed in Figure 10.4. This is
in essence a flat representation of the information encoded in an interactive way
in the item-level performance analytics view (section 9.2).

In the example displayed in Figure 10.5, the target answer is ’is’. The inter-
face shows that this answer has been submitted 52 times to the teachers (token
count of submitted answers), and appeared 147 times in the log. This number
is higher since when learners re-open an exercise or before they submit answers,
their answers are re-evaluated. These instances are counted in the log, resulting
in the higher numbers. This is different from the item-level performance ana-
lytics view (section 9.2), where these duplicates are filtered out before rendering
the data. The most common answer in the discussion is the correct answer, fol-
lowed by the form ’was’, where the system was able to provide specific feedback
to learners in the form of the feedback template “This is the simple past. You
need to use the simple present here.” The next position of the most frequent
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Figure 10.5: Answer variability view: aggregated log data visualization (part 2)
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answer is shared between the form ’been’ and ’will be’. For the latter case, the
system was able to provide specific feedback (“This is the will future. You need
to use the simple present here.”), but in the former case the system could not
provide specific feedback. Since a form like ’been’ is related to the target answer
via lemma identity, this shows an instance of a problem for which a rule that
generalizes this pattern should be written so that this type of error in which an
inflected form is replaced by the past participle will be recognized and handled
for all exercises in which inflected forms are target forms.

10.6 Data-driven Target Answer Extension View

Figure 10.6: Interface for data-driven extension of target answer

When a system is used for a longer period of time, the amount of collected
data increases. These data can help identify where the system does not behave
in a manner expected by a significant number of the learner population. Prob-
lems could be a lack of coverage in the feedback algorithm, exercises that are
defined in a problematic or unclear way, or simply errors in the specification of
exercises such as additional characters in a target answer. In addition to errors,
a continuous usage of a system also allows to look at data from the space of
well-formed variability. Typically, for grammar-oriented tasks, FeedBook only
contains a few alternative answers. This is reasonable for answers of limited
length, such as in fill-in-the-blanks tasks. However, for longer tasks there is
more variability in the expression of answers by learners. This most likely in-
cludes alternatives that are acceptable, but were not anticipated by the original
authors of the respective exercise. Keep in mind that all exercises in FeedBook
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were originally designed on paper and the entire evaluation of the correctness
of answers was supposed to be done by human teachers who can deal with
the exhibited answer variability. The target answers were entered as they were
present in the printed workbook, in which they were entered from a top-down
perspective and not in a bottom-up approach based on collected data. In order
to allow for more variability in the target answers, we implemented an interface
which allows material designers to extend target answers with types of learner
answers observed in the interaction of learners with a specific item. Figure 10.6
shows an example of this interface. Material designers can see the current tar-
get answer and then select one or more target answers from the observed types.
Clicking the button extends the target answer with all those selected types that
are not yet present in the current target answer.

10.7 Progress View per School Class

Educational administrators, as well as researchers conducting a study, should
be able to know about the progress of school classes on the materials. Figure
10.7 shows a user interface in the system where all the mandatory core tasks
are listed as rows. The interface has one column for every test school class.
Each cell contains a percentage indication for the completion rate of this task
for the given school class. The completion rate is visualized in a traffic light
system with three sections: the cell is colored in red if less than one third of the
school class have completed the respective task, yellow if the completion rate is
between one third and two thirds, and green if less than two thirds of the class
have completed the specific exercise.

The interface allows to filter the values so that the data is only displayed for
either the control or the intervention group for a specific chapter. Furthermore,
the interface allows to select for which chapter the data should be displayed.

While the interface was designed to display the progress on a small set of core
tasks for the context of the FeedBook study, it can be straightforwardly extended
to include any set of tasks, accommodating the specific needs of educational
administrators and/or potentially teachers. For example, Figure 10.8 shows
an interface from Didi, the follow-up system on FeedBook, that is based on
this interface and shows how it can be altered. It visualizes the progress of
learners not based on core tasks, but based on linguistic phenomena the tasks
are assigned to. Another alternation that was made was to aggregate the data
across school classes and render the numbers in a bar chart instead of a table
(cf. also Figure 5.19).
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Figure 10.7: Progress view per school class (rotated 90 degrees to accommodate
for long format)
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Figure 10.8: Progress view of tasks across school classes



Chapter 11

Learning Analytics for
Second Language
Acquisition

In this chapter, we analyze and interpret data collected in the context of the
FeedBook study (chapter 7). While research in SLA (chapter 2) serves to guide
the operationalization of features, the very concrete computation going from
an abstract, theoretical description of a construct to concrete numbers, leaves
room for interpretation and thus multiple potential operationalizations. Due
to fuzzy, non-technical definitions of certain constructs, instead of making de-
cisions beforehand which variant of a feature we test, we simply output the
different variants and test them all. This allows us to see the effect of different
operationalization for an abstract concept.

For example, time-on-task can be defined as the time learners spend on
exercises. Does this include the time learners spend reading the instructions or
only the time learner spend filling gaps in an exercise? And should the unit be
seconds, minutes, hours, or only an abstract counter for the sessions instead of
the duration?

In line with testing different variants of features, we pursue an exploratory
analysis in which we aim to unveil relationships between learning process vari-
ables and learning products. The key question is: Why did the learning we
observed happen? Meurers et al. (2019a) showed that for theme 2 of FeedBook,
learners started off with similar pretest scores, but in the post test, they scored
significantly higher. The intervention group significantly outperformed the con-
trol group. We know from a top-down perspective that the difference between
the control and the intervention group is the provision of specific feedback. In
this chapter, we however pursue a bottom-up approach in which we output
learning process features and explore which differences in the data we see. The
idea in this chapter is thus to go from learning processes to learning products
by linking observations of interaction with learning outcomes.

223
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We start by discussing the method, procedure and participants sample in
section 11.1. The main part of this chapter is the data analysis in section 11.2,
in which we explore the effect of feedback, uptake, correct at first try, and
time-on-task. In section 11.3, we discuss the results and which conclusions and
implications we can draw, with special focus on SLA research and the design
of tutoring systems. We conclude with discussing limitations and opportunities
for future research in section 11.4.

Why should we care? Before we dive into the analyses, let’s take a step
back and ask ourselves why we are doing this. There are two reasons for con-
ducting the analyses presented in this chapter. The first reason is that we
are interested from a scientific point of view which factors are correlated with
eventual learning performance. Very few ICALL systems have been used in
ecologically valid environments (cf. section 4.5), and thus it is not clear which
learning process features play a role in predicting the change in grammatical
knowledge in individuals. The second reason is that the ultimate goal of the
development of tutoring systems should be to scale up research prototypes so
that they are used by a broader audience and outside of study contexts. In this
case, teachers are responsible for guiding learners in the usage of the system.
Since there are many learning processes or paths that lead to the same learning
product, Learning Analytics functions are needed to inform teachers about the
learning process of learners. If we know from these analyses that certain behav-
iors are associated with exceptional or underwhelming performance, this allows
future system designers to implement Learning Analytics functions that present
these metrics to teachers. Having such information available allows teachers to
diagnose especially students at risk of failing assignments or the course, thus
prompting the teacher to intervene and help the struggling students with extra
interventions like for example special recap sessions. In order to know which
metrics to display to the teacher, we however first need to find out what we
can learn from the logs and which metrics are useful and robust predictors of
learning gains.

Disclaimer: Specific sub parts of the contents of this chapter have been men-
tioned or referenced in Meurers et al. (2019a) and are cited accordingly in the
running text of the respective sessions.

11.1 Method

Meurers et al. (2019a) reported that for theme 2 of the FeedBook data, there is
a significant change in explicit grammatical knowledge from the pretest to the
post test. They furthermore reported that learners in the intervention group
learned 62% more than learners in the intervention group. Given that the only
difference between the intervention and control group is the provision of specific
feedback, they indirectly assumed that specific feedback is beneficial. However,
they did not provide a direct proof of any learning process measures that could
explain the learning products. In this section, we aim to address this gap by
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relating learning processes to the observed and reported learning products. The
key question is what it is in the behavior – as observed in the logs – that has
an effect on the learning gains. In order to find answers to this question, we
compute regression models that extend the models proposed by Meurers et al.
(2019a) while keeping the factors found to be significant in the models so that
our models are comparable. Concretely, we include a factor group that expresses
whether learners are in the intervention or control group, and a feature pretest
score that expresses the number of correctly answered items in the pretest, thus
expressing prior knowledge of the grammatical structures. In the following, we
conduct an exploratory analysis in which we test and explore various learning
process features that in the literature have been proposed as relevant factors in
determining learning gains.

First, we motivate the focus on theme 2 in section 11.1.1 and explain in more
detail how the scores were computed (section 11.1.2). Then we turn towards the
individual experiments testing groups of learning process features. We start by
exploring a broad range of feedback frequency features in section 11.2.1. Based
on the findings there, we turn towards answers submitted correct at first try
(section 11.2.5) before exploring different features related to uptake in section
11.2.3. Finally, we present analyses related to the time on task in section 11.2.6.
We conclude with a discussion in section 11.3.

11.1.1 Focus on Theme 2

For the subsequent analyses, we focus on theme 2 of the work book. We thereby
link up with and extend the work by Meurers et al. (2019a). For theme 1, the
system was still under development and contained several severe bugs that com-
promised the experimental design. On the one hand, the blacklist for filtering
constructs was incomplete and certain specific feedback messages for this chap-
ter could pass through and got displayed. On the other hand, there was a bug
in the implementation of the check-all button and the check of all answers when
submitting a task to the teacher. This led to specific feedback being computed
and available for inspection by learners by clicking on the question mark. This
bug compromised the experimental design in that both the intervention and con-
trol group received the specific feedback. In theme 2, the bugs had been fixed
and everything worked as expected. As described in Meurers et al. (2019a),
learners in the intervention group (n = 104) learned significantly more (mean
change score 7.82) than the learners in the control group (n = 101, mean change
score 4.81). For theme 3, the system worked as expected as well, and even more
information was logged, for example instances in which learners actively clicked
on question mark symbols to request specific feedback. However, when analyz-
ing the learning gains, we noticed that there were no significant learning gains
for the intervention or control group, and also no significant differences between
the pretest and post test. For the intervention group (n = 93) in theme 3, we
observed a change score of 2.8, for the control group (n = 96) a change score
of 2.19. A Welsh two-sample t-test revealed that there are no significant dif-
ferences (p = 0.3492). In theme 3, the topic were passive constructions. From
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the change scores, and from informal conversations with students and teachers,
we have to assume that the passive is too difficult at this stage of development.
For theme 4, the system worked properly as well, but, as Table 7.4 shows, there
are only very limited amounts of data available. Due to the proximity of the
chapter to the summer break at the end of the school year, we lack the post test
results of four school classes. Since one school class skipped theme 3 altogether,
we lack the pretest for one other school class.

11.1.2 Answer Comparisons beyond String Matches

We exported all answer types learners submitted in the pretest, post test, and
delayed post test. A member of the project who was involved in the creation
of the tasks labeled all answers that had not been marked as correct previously
as either false (default), correct alternative, or nonsense answer. An answer
marked as false is a variant that should (and was) not accepted by the system.
In contrast, a correct alternative is a learner answer that is not identical to one
of the target answers associated with a task field after string normalization.
We counted this as a correct answer, even though the system would not have
recognized it. These data can be used in future work to improve the system’s
paraphrase handling. Examples for correct alternatives are answers with casing
differences or answers with minor spelling differences, such as “woul be” instead
of “would be”. The last category, nonsense answer, was assigned to answers
that were off topic, such as copied web pages, random letter strings, names,
punctuation, whitespace, or swearwords. Examples for nonsense answers are
“Keine Ahnung”[sic], “Birne” or “?? i don’t know”[sic]. Examples of false an-
swers are “herself” (correct answer: “yourselves”) or “wellest” (correct answer:
“best”). Table 11.1 lists the number of answer types (not tokens) for each of
the three categories. The numbers only reflect the types from part (a) and (b)
of the pretest (cf. section 7.1.2), since in part (c) with sentence-length input
the variability was very high, leading to an exclusion of the respective task in
the subsequent analyses (cf. Meurers et al. (2019a)).

answer type number of answer types in this category
nonsense answer 766
correct alternative 1.182
false 6.076

Table 11.1: Answer types by category

11.1.3 Participants

For the experiments reported here, we use the data of the exactly same sample of
participants reported by Meurers et al. (2019a). For this reason, the information
about the participants is taken from this article and will be reported in the
following. This specific sample constitutes a sub sample of the entire set of
participants described in section 7.1.1.
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We report analyses for ten 7th grade school classes with 205 students. 104
participants were in experimental group A (intervention group for themes 2
and 4), and 101 in group B (intervention group for themes 1 and 3). The
algorithm randomly assigned half of the students in each school class to group
A and the other half to group B. The sample consists of 116 male students,
84 female students, and five students who did not report their gender. The
group assignment was conducted randomly before the beginning of the first
interaction with the system, with the assignment balanced within each school
class. The average age of the learners during the experiment was 13 years. From
the original, complete setup, two teachers dropped out due to work overload,
in one school class the parents opted to stop using the system, and in one
class problems with the internet connection during the test prevented valid test
results since the learners needed to change the room and partly worked together
on the solutions. Also, we excluded 33 students from the analyses who did not
consent to a usage of their data. The schools included a mix of public and
private schools, as well as several school classes with Content and Language
Integrated classes. In two school classes, the students used tablet computers for
the entire year.

11.1.4 Procedure

In section 11.2, we describe four experiments that test how features extracted
from the interaction of learners with the FeedBook can contribute to predicting
how learners develop in terms of explicitly tested grammatical knowledge. Since
before the start of the experiments it was not clear which features and which
feature operationalizations play a significant role, we conducted an exploratory
analysis. Each of the four experiments tests the effect of different variants of
related features by systematically following a shared procedure.

The regression models reported here extend the linear regression models pro-
posed by Meurers et al. (2019a). To this end, we controlled for and included the
two significant features reported by them. The feature pretest correct expresses
the number of correctly answered items in the pretest, thus acting as a proxy for
previous knowledge in the specific grammar topics tested in this chapter. The
other feature included from Meurers et al. (2019a) is group. This factor has two
levels: intervention and control.

As the first step in any experiment, we tested for potential main effects by
computing one model for each feature that includes the pretest score and group
plus the feature to test. As the second step, we tested for moderation effects by
testing whether any of the features interacts with the group, pretest scores, or
the number of attempted tasks. For the group interaction, we tested whether
there are interaction patterns and effects that differ between the intervention
and control group. Consequently, this allows to see if there is a difference re-
sulting from the difference in treatment of learners. If a feature interacts with
the pretest score, this means that learners with higher pretest score interact
differently, and that this difference is reflected in the change score. Since the
conditions between participants were not equal in that every student could in-
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dependently work on tasks of their choice, we also tested whether there was an
interaction with the number of tasks. As the third step, we tested for mediation
effects by computing models that test models that assume the pretest score or
group as independent variables and use the interaction features as (potential)
mediators. We report models for all significant paths of the mediation analyses.
We did not fit models that compute different slopes per school class/teacher,
given that Meurers et al. (2019a, p. 21) showed that the teacher has only a very
small effect on the change score and that the effects are stable across school
classes.

We summarize and interpret the results in a combined discussion section in
section 11.3. In section 11.4, we provide a combined discussion of limitations of
the approach.

11.1.5 Feature Operationalization

11.2 Results

11.2.1 Feedback

Feature Operationalization

Table 11.2 lists the feedback features we used in the experiments. The fea-
tures are organized in five groups, separated by horizontal lines. Note that the
feature groups are not exclusive - some features are aggregates of and corre-
lated with other features. For example, manualFeedback is equal to the sum
of all other features that start with the prefix manual. Provided that feedback
was computed and displayed in different ways, we operationalized feedback in
these different ways in order to test if any of the 14 features help predicting
the change in explicit grammatical knowledge from pretest to post test. The
feature set represents frequencies of feedback computations and includes both
displayed (seen) and blocked (blocked) feedback instances, as well as feedback
triggered only for a single item (manual) or for all items in a task (auto), i.e.
when re-entering, before submitting a task, or when clicking the check-all but-
ton. In order to scale the features, we z-standardized and log-transformed the
individual features.

We tested for potential main effects of the features by extending the signifi-
cant independent variables group and pretest correct from the regression models
by Meurers et al. (2019a) with the individual feedback features.

Results

Testing for Main Effects Table 11.3 shows a significant main effect of the
feature manualCorrectSeen (p = 0.0332). The model on the left uses the control
group as reference category, the model on the right uses the intervention group as
reference. There is a difference in terms of intercept between the control (5.210)
and intervention (7.706) group. The feature used in the reported equations



11.2. RESULTS 229

feature name description
manualFeedback number of feedback messages computed (displayed

and blocked) for a single item
automaticFeedback number of feedback messages computed (displayed

and blocked) for all items in a task
correctFeedback number of check marks displayed
falseFeedback number of times in which an incorrect answer was

submitted to the feedback algorithm
seenFeedback number of times feedback passed the blacklist filter
blockedfeedback number of times feedback was blocked by the black-

list filter
manualCorrectSeen number of times feedback requested for a single

item for a correct answer and displayed
manualCorrectBlocked number of times feedback requested for a single

item for a correct answer, but blocked via black-
list

manualFalseSeen number of times feedback requested for a single
item for an incorrect answer and displayed

manualFalseBlocked number of times feedback requested for a single
item for an incorrect answer, but blocked via black-
list

autoCorrectSeen number of check marks computed and displayed for
all items in a task

autoCorrectBlocked number of check marks computed for all items in a
task, but blocked via blacklist

autoFalseSeen number of feedback messages computed and dis-
played for all items in a task

autoFalseBlocked number of feedback messages computed for all
items in a task, but blocked via blacklist

Table 11.2: Feedback features considered in regression analyses
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expresses the number of times positive feedback in the form of a check mark
was computed and displayed (i.e. not blocked) for a single learner answer (not
all learner answers jointly). In other words, this feature expresses the number
of times a learner was able to reach a correct solution. For the thirteen other
features, we did not find a significant main effect.

Dependent variable:

changeScore

(1) (2)

manualCorrectSeen 0.737∗∗ 0.737∗∗

(0.344) (0.344)

pretest correct −3.352∗∗∗ −3.352∗∗∗

(0.295) (0.295)

groupintervention 2.496∗∗∗

(0.584)

groupcontrol −2.496∗∗∗

(0.584)

Constant 5.210∗∗∗ 7.706∗∗∗

(0.421) (0.414)

Observations 205 205
R2 0.437 0.437
Adjusted R2 0.429 0.429
Residual Std. Error (df = 201) 4.171 4.171
F Statistic (df = 3; 201) 52.050∗∗∗ 52.050∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.3: Regression model: significant main effect of correct feedback not
blocked and displayed for one item

Testing for Moderation Effects Next, we tested for potential interactions
with the feature group, given that we know from a top-down perspective the
values of the features are partly a result of the group assignment that leads to a
display or blocking of certain feedback messages. We found a marginally signifi-
cant interaction between group and autoCorrectSeen. By calculating the simple
effects, we see that there is only a significant effect of 1.3007 (p = 0.03762) for
the control group (the reference group in the left model in Table 11.4), but not
for the intervention group (-0.385, p=0.652, right model of Table 11.4), obtained
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via re-leveling). This effect is, however not strong, given that it disappears when
we include the pretest score into the equation. This can potentially be explained
in the following way: a bug was present in the system until November 11, 2018
that allowed the control group to receive specific feedback by requesting feed-
back for all items and later clicking on the question marks for individual items
to see the feedback popup. As can be seen in Table 7.4, there are three school
classes for which the pretest of theme 2 was conducted shortly before this date
(November 9 and 10, 2018). We furthermore found no interaction between the
number of tasks attempted and any of the feedback features.

Dependent variable:

changeScore

(1) (2)

autoCorrectSeen 1.301∗∗ −0.385
(0.622) (0.652)

groupintervention 2.307∗∗∗

(0.813)

autoCorrectSeen:groupintervention −1.686∗

(0.901)

groupcontrol −2.307∗∗∗

(0.813)

autoCorrectSeen:groupcontrol 1.686∗

(0.901)

Constant 5.395∗∗∗ 7.702∗∗∗

(0.595) (0.554)

Observations 205 205
R2 0.096 0.096
Adjusted R2 0.082 0.082
Residual Std. Error (df = 201) 5.287 5.287
F Statistic (df = 3; 201) 7.095∗∗∗ 7.095∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.4: Regression model: estimating simple effects of group and correct
feedback computed for all items in a task

We tested for potential interactions between the pretest score and the feed-
back features. We found an interaction between manualFalseBlocked (−1.2346,
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p=0.0282, feedback requested and blocked for a single item at a time) and au-
toCorrectSeen (−0.8087, p=0.0187, feedback requested and not blocked for all
items at a time). Table 11.5 shows the regression models.

Dependent variable:

changeScore

(1) (2)

manualFalseBlocked 0.468
(0.517)

autoCorrectSeen 0.533
(0.354)

pretest correct −3.625∗∗∗ −3.586∗∗∗

(0.332) (0.317)

groupintervention 2.631∗∗∗ 2.585∗∗∗

(0.596) (0.587)

manualFalseBlocked log:pretest correct −1.235∗∗

(0.558)

autoCorrectSeen log:pretest correct −0.809∗∗

(0.341)

Constant 5.151∗∗∗ 5.238∗∗∗

(0.444) (0.444)

Observations 205 205
R2 0.439 0.448
Adjusted R2 0.428 0.437
Residual Std. Error (df = 200) 4.176 4.141
F Statistic (df = 4; 200) 39.089∗∗∗ 40.604∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.5: Regression models: interaction of pretest score with feedback re-
questing features

Testing for Mediation Effects We furthermore tested potential mediation
effects of features with group and pretest score as dependent variables. We
found effects of group on the features that were blocked. However, given that in
mediation analyses it is necessary that the mediator can be computed equally
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for both groups, we can not draw conclusions from these analyses since the
mediator can not be computed equally for the two groups, but only for the
control group, for which the feedback was blocked.

11.2.2 From Learning Product to Learning Process

Having established a significant main effect of attempts that yielded a correct
answer, we decided to investigate this effect in more detail. Given that the
learning product in the form of a correct answer can be reached with different
learning processes, or different learning paths, we decided to zoom in and look at
different learning process measures that lead to correct answers. Fundamentally,
there are three ways in which a correct answer could be reached in the FeedBook.
In case (a), learners submit a correct answer that is correct at first try. In
this case, learners demonstrate previous knowledge. While it may also be the
case that learners are guessing correct at the first attempt, we assume that
the majority of answer submitted as correct at first try can be attributed to
previous knowledge of the learners. In case (b), learners first submit one or more
incorrect answers, but, after having seen feedback, show uptake with specific
feedback. In this case, the specific, corrective feedback helped learners reach a
correct solution. There is another case, (c), that arose due to the experimental
design. For the control group in each chapter, the specific feedback was blocked.
Learners did, however, in tasks which not exclusively focused on the constructs
covered in the pretest and post test, still receive the green check marks indicating
a correct answer. The specific feedback was, however, not displayed for learners
in the control group. Due to the absence of feedback and a green check mark,
learners were in a position to understand that their answer was not correct. This
could push them to correct their answer, leading to uptake without specific
feedback. In this case, and in contrast to the case of uptake with feedback,
learners can only focus on the form and did not receive an explanation of why or
how their answer was incorrect. Splitting up the learning product of a correct
answer into these three learning processes, we investigated which of them were
responsible for the learning product. In section 11.2.3, we investigate the role of
uptake, and in section 11.2.5, we continue with an in-depth investigation of the
phenomenon of answer submitted correctly at first try. Note that these learning
process features do not exclude each other, but rather are compatible with each
other.

11.2.3 Uptake

Feature Operationalization

We operationalized the concept of uptake discussed in section 2.3 as two features
listed in Table 11.6. The raw features were computed as frequency counts of
the exercise interaction log (cf. section 7.2).

The first feature, uptakeSeenFeedback, expresses an interaction sequence in
which learners submitted an answer, received feedback by the system, and man-
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feature description
uptakeSeenFeedback uptake (correction of learner answer)

after feedback displayed
uptakeBlockedFeedback uptake after feedback not displayed

due to blacklist filter

Table 11.6: Uptake feature operationalization

aged to correct their answer in the next step. It includes both instances of
specific and default feedback, but due to the study design (section 7.1), spe-
cific feedback for all constructs introduced in this chapter and covered in the
pretest and post test is only displayed to the intervention group. This feature
thus implicitly operationalizes aspects of the study design. The second feature,
uptakeBlockedFeedback, describes an interaction sequence in which a learner sub-
mitted an answer, the system computed feedback, and the feedback was blocked
since the construct was on the blacklist of the learner. However, due to the ab-
sence of a green check mark, the learner was still able to recognize that the
answer was incorrect and able to correct it.

This minimal difference in the operationalization allows to see whether it
is (a) the attention to the specific feedback or (b) only the attention to the
form without the specific feedback that leads to corrections and in the end an
influence on the change score.

In order to normalize the feature values, we z-standardized both predictor
values. By inspecting the distributions of the features (top plot in Figure 11.1),
we recognized that the distribution is left skewed. A skewness test (from the
library e1071 ) formally confirmed that the predictor variable is highly skewed
(+1.19). For this reason, we log-transformed the predictor values for these
experiments (bottom plot in Figure 11.1).

Results

Testing for Main Effects Table 11.7 shows a regression model testing a
potential main effect of the feature uptakeBlockedFeedback, in addition to the
predictors group and pretest correct established by Meurers et al. (2019a). It
shows that there is no main effect for the uptake feature with blocked feedback,
with the p-value 0.228 far from significance. For uptake based on seen feedback,
the model in Table 11.7 shows that there is a significant main effect (p = 0.0412).

Testing for Moderation Effects As a first step, we tested whether there is
an interaction effect of one of the uptake features with the independent variable
group. We found no significant interaction effect with group for either of the
uptake features. Table 11.8 lists the regression models that show that for neither
uptake with displayed nor for uptake with blocked feedback there is a significant
interaction with group.

We also tested whether there is an interaction between the uptake features
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Figure 11.1: Independent variable uptake after displayed feedback, normal z-
standardized values (top) and log-transformed, z-standardized values (bottom)
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Dependent variable:

changeScore

(1) (2)

uptakeSeenFeedback 0.678∗∗

(0.330)

uptakeBlockedFeedback 0.355
(0.294)

groupintervention 2.641∗∗∗ 2.631∗∗∗

(0.589) (0.598)

pretest correct −3.376∗∗∗ −3.321∗∗∗

(0.297) (0.298)

Constant 5.148∗∗∗ 5.149∗∗∗

(0.418) (0.425)

Observations 205 205
R2 0.436 0.428
Adjusted R2 0.428 0.420
Residual Std. Error (df = 201) 4.175 4.203
F Statistic (df = 3; 201) 51.831∗∗∗ 50.235∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.7: Regression model: uptake based on unseen feedback not significant,
uptake based on feedback significant
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Dependent variable:

changeScore

(1) (2)

uptakeSeenFeedback 0.682
(0.478)

uptakeBlockedFeedback 0.161
(0.401)

groupintervention 2.639∗∗∗ 2.806∗∗∗

(0.607) (0.647)

pretest correct −3.376∗∗∗ −3.330∗∗∗

(0.298) (0.298)

uptakeSeenFeedback:groupintervention −0.008
(0.654)

uptakeBlockedFeedback:groupintervention 0.415
(0.584)

Constant 5.148∗∗∗ 5.105∗∗∗

(0.421) (0.430)

Observations 205 205
R2 0.436 0.430
Adjusted R2 0.425 0.419
Residual Std. Error (df = 200) 4.185 4.208
F Statistic (df = 4; 200) 38.680∗∗∗ 37.710∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.8: Regression model: no interaction between group and uptake features
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and the number of attempted tasks. Table 11.9 shows a regression model for
both uptake features and their interaction with the number of tasks. The models
show that there is no direct interaction of either of the uptake features with
the number of attempted tasks. Furthermore, we tested whether there is an
interaction between the pretest score and any of the uptake features. We did
not find an interaction between the pretest score and the uptake features.

Dependent variable:

changeScore

(1) (2)

numTasksAttempted −0.642∗ −0.562∗

(0.328) (0.336)

uptakeSeenFeedback 0.991∗∗∗

(0.368)

uptakeBlockedFeedback 0.538
(0.338)

groupintervention 2.754∗∗∗ 2.707∗∗∗

(0.587) (0.604)

pretest correct −3.354∗∗∗ −3.280∗∗∗

(0.295) (0.298)

numTasksAttempted:uptakeSeenFeedback −0.256
(0.324)

numTasksAttempted:uptakeBlockedFeedback −0.214
(0.317)

Constant 5.264∗∗∗ 5.285∗∗∗

(0.434) (0.448)

Observations 205 205
R2 0.449 0.437
Adjusted R2 0.435 0.423
Residual Std. Error (df = 199) 4.147 4.193
F Statistic (df = 5; 199) 32.462∗∗∗ 30.883∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.9: Regression model: no direct interaction between uptake features
and number of tasks attempted
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Testing for Mediation Effects We tested whether group or pretest score are
mediated through one of the uptake features. For uptakeBlockedFeedback, we
observed that when fitting a model to estimate the effect on the mediator, there
is a significant effect of group and a marginally significant effect (p = 0.0614)
for the pretest score (Table 11.10). However, as Table 11.7 shows, the effect
disappears when estimating the indirect effect. This is explainable also with
regard to the fact that one of the pre-conditions of mediation analyses is that
the mediator needs to be computable in the same way for different experimental
group (such as time-on-task), which is not the case for uptake based on blocked
feedback. In contrast, uptake based on feedback can be computed for both
groups since some feedback was displayed for both groups.

Dependent variable:

uptakeBlockedFeedback

groupintervention −0.345∗∗

(0.141)

pretest correct 0.133 .
(0.071)

Constant −0.240∗∗

(0.100)

Observations 205
R2 0.048
Adjusted R2 0.039
Residual Std. Error 1.007 (df = 202)
F Statistic 5.144∗∗∗ (df = 2; 202)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.10: Regression model: significant effect of group, marginally significant
effect of pretest score on uptake based on blocked feedback

For uptakeSeenFeedback, we see that there is no effect of group on the (po-
tential) mediator, but a significant effect of pretest score (see Table 11.11).

When computing the indirect effect by including the mediator as a main
effect along the independent variables, we see that the significant effect of uptake
based on seen feedback persists.

Having already established a main effect of uptake based on displayed feed-
back (see Table 11.7), we computed a causal mediation analysis model based
on 1,000 iterations over the data, with pretest score as the independent variable
and uptake based on seen feedback as the mediator. The model displayed in
Table 11.13 formally asserts that uptake based on seen feedback is a partial me-
diator of pretest score. The model shows a significant average causal mediation
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Dependent variable:

uptakeSeenFeedback

groupintervention −0.196
(0.125)

pretest correct 0.150∗∗

(0.062)

Constant −0.124
(0.089)

Observations 205
R2 0.042
Adjusted R2 0.033
Residual Std. Error 0.890 (df = 202)
F Statistic 4.434∗∗ (df = 2; 202)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.11: Regression model: significant effect of pretest score on uptake
based on displayed feedback

effect of 0.1018 (p=0.03), an average direct effect of −3.3757 (p < 0.0001) and
a total effect of −3.2739 (p < 0.0001). While the effect of pretest score is very
strong, the mediation analysis shows that uptake based on seen feedback is a
factor to consider that can help explain the variance in the dependent variable
in a more detailed manner. We visualize the causal mediation model in Figure
11.2. Note that the validity of this analysis depends on whether pretest score is
accepted as the independent variable in this case. It is possible to argue that
the independent variable in a mediation analysis needs to be an experimental
condition assigned before the mediators were measured and that additionally
needs to have been assigned randomly, such as the group variable.

uptakeSeenFeedback

pretest score change score

0.15016, p = 0.0172∗ 0.6781, p = 0.0412∗

−3.2739, p < 0.0001∗∗∗

Figure 11.2: Mediation analysis of uptake based on seen feedback and pretest
score on the change score

In order to make the observed relation between the features more tangible,
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Dependent variable:

changeScore

uptakeSeenFeedback 0.678∗∗

(0.330)

groupintervention 2.641∗∗∗

(0.589)

pretest correct −3.376∗∗∗

(0.297)

Constant 5.148∗∗∗

(0.418)

Observations 205
R2 0.436
Adjusted R2 0.428
Residual Std. Error 4.175 (df = 201)
F Statistic 51.831∗∗∗ (df = 3; 201)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.12: Regression model: significant effect of uptake based on seen feed-
back

Causal Mediation Analysis

Nonparametric Bootstrap Confidence Intervals with the Percentile Method

Estimate 95% CI Lower 95% CI Upper p-value

ACME 0.1018 0.0048 0.23 0.03 *

ADE -3.3757 -4.0156 -2.75 <0.0000000000000002 ***

Total Effect -3.2739 -3.8917 -2.67 <0.0000000000000002 ***

Prop. Mediated -0.0311 -0.0764 0.00 0.03 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Sample Size Used: 205

Simulations: 1000

Table 11.13: Causal mediation analysis results of uptake based on seen feedback
(mediator) and pretest score (independent variable)
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we plotted the three dimension (uptake based on seen feedback, pretest score,
and change score) in three-dimensional plots (Figure 11.3). The plots suggest
non-linearities in the relationship that are not captured by individual regression
models, but can be approximated with an ensemble of models, as it is the case
in mediation analyses. We return to this in section 11.2.4.
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Figure 11.3: Visualization of uptake after displayed feedback (x-axis), pretest
score (y-axis), and change score (z-axis)
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Keeping the methodological limitation of the choice of independent variable
in the mediation analysis in mind, we conducted further analyses. As the second
step towards better understanding the significant effect of the uptake feature,
we conducted a causal mediation analysis of the uptake feature in relation to the
number of tasks. Due to the fact that in the FeedBook study every student could
independently work on tasks in that we did not restrict the tasks they could
work on (cf. section 7.1), the experimental conditions were not equal across
students, leading us to hypothesize that there could be a mediation through the
number of tasks. We computed supplementary models in addition to the main
effect model (Table 11.7), which we will report in the following. Table 11.14
tests the effect of the independent variable uptake with seen feedback on the
mediator number of tasks this learner attempted. There is a highly significant
effect (p < 0.0001) of uptake on the number of attempted tasks.

Dependent variable:

numTasksAttempted

uptakeSeenFeedback 0.505∗∗∗

(0.071)

groupintervention 0.169
(0.126)

pretest correct 0.028
(0.064)

Constant 0.027
(0.090)

Observations 205
R2 0.211
Adjusted R2 0.200
Residual Std. Error 0.895 (df = 201)
F Statistic 17.967∗∗∗ (df = 3; 201)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.14: Regression model: effect of independent variable on the mediator

Table 11.15 shows a regression model testing the effect of the mediator on
dependent variable changeScore. Since both the independent variable uptake-
SeenFeedback and the mediator numTasksAttempted are included, this regres-
sion model displays the total effect. The fact that there is a significant effect
(p = 0.0412) of the number of tasks attempted in conjunction with the uptake-
SeenFeedback is the last piece of the puzzle regarding the mediation analysis
and confirms that there is indeed a mediation through the number of tasks.
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Dependent variable:

changeScore

numTasksAttempted −0.661∗∗

(0.327)

uptakeSeenFeedback 1.012∗∗∗

(0.367)

groupintervention 2.753∗∗∗

(0.587)

pretest correct −3.357∗∗∗

(0.295)

Constant 5.166∗∗∗

(0.415)

Observations 205
R2 0.447
Adjusted R2 0.436
Residual Std. Error 4.143 (df = 200)
F Statistic 40.497∗∗∗ (df = 4; 200)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.15: Regression model: indirect effect of mediator on dependent variable
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In order to get a formal assertion of the mediation effect, we combined the
previous models into a causal mediation summary. Table 11.16 shows the output
of a causal mediation analysis summary provided by the mediation package in
R (cf. Tingley et al. (2014)). In a process of 1,000 resamples of the data,
the package estimated the confidence intervals for the individual effect. The
results show a significant (p = 0.048) average causal mediation effect (ACME)
of −0.3339, i.e. the complete indirect effect. Furthermore, the model shows a
significant (p = 0.004) average direct effect (ADE) of 1.0120. The total effect
with the value of 0.6781 is significant as well (p = 0.028). The model shows
a bootstrapped unstandardized indirect effect of −0.4924, which is marginally
significant (p = 0.076) given the 95% confidence intervals from −3.6588 to 0.08.
We visualize the results of the mediation analysis in Figure 11.4. The ACME
of −0.3339 is represented as its components in the form of the effect of the
independent variable on the mediator(0.505) and the indirect mediated effect of
the independent variable on the dependent variable (−0.062). The significant
direct effect of 0.678, as calculated in Table 11.7 and confirmed in the causal
mediation analysis in table 11.16, is visualized at the bottom of the visualization.

Causal Mediation Analysis

Nonparametric Bootstrap Confidence Intervals with the Percentile Method

Estimate 95% CI Lower 95% CI Upper p-value

ACME -0.3339 -0.7668 0.00 0.048 *

ADE 1.0120 0.2616 1.74 0.004 **

Total Effect 0.6781 0.0544 1.31 0.028 *

Prop. Mediated -0.4924 -3.6588 0.08 0.076 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Sample Size Used: 205

Simulations: 1000

Table 11.16: Causal mediation analysis results of uptake based on 1.000 itera-
tions

11.2.4 Exploring the Relationship between Predictors Fur-
ther

Visualization In order to gain insights into the, at first glance counter-
intuitive, negative weight of the number of tasks in the regression model (Table
11.15) visualized in the mediation structure in Figure 11.4, we visualized the
involved data in a 3-dimensional scatter plot in order to see the relevant di-
mensions together. We generated the plots displayed in Figure 11.5 with the
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number of tasks
attempted

uptakeSeenFeedback change score

0.505, p < 0.001∗∗∗ −0.662, p = 0.044∗

0.678, p = 0.028∗∗

Figure 11.4: Mediation analysis of uptake based on seen feedback and number
of attempted tasks on the change score

plot3D package (Soetaert (2014), version 1.3) in R. The graphic shows the re-
lation between uptake after displayed feedback (x-axis), number of attempted
tasks (y-axis), and the change score (z-axis). The change score is visualized as
values on the z-axis as well as on a color spectrum from blue (low) over green
(medium) to red (high). The two plots visualize the same data, just with the
perspective rotated.

The plots show the deepest blue points for those learners who attempted the
least number of tasks. With respect to uptake, the lower plot shows that learners
with much less than the average number of uptake observations (left side),
show a lower change score (green/light blue) than average learners (middle,
orange and red values). The learners with the highest number of uptake do not
perform better than learners with less uptake. Quite the contrary, the plots show
that there is a “happy medium” in that the highest chance scores are achieved
with average number of uptake observations on a larger number of tasks. We
hypothesized that the fact that the number of tasks coefficient in the mediation
analysis is negative could thus be explained by the fact that there is a non-linear
relationship of uptake and change score, and the coefficient of number of tasks
attempted needs to correct for this non-linearity. For this reason, in the next
section, we report exploratory non-linear models

Fitting Non-Linear Models In order to test whether the data can be fitted
more accurately with non-linear model, and whether we can gain insights about
the nature of the data from this, we computed non-linear alternatives to the
linear models reported. As a first step, we fitted a polynomial regression model
(Table 11.17). An Anova revealed that this model is not significantly better
than its simpler model alternative (p = 0.4699).

As a next step, we fitted generalized additive models on the data. Table
11.18 shows the model summary of one example model. The generalized additive
model shows that for uptake based on seen feedback, the optimal degree of the
polynomials is actually one - i.e. a linear function. For pretest, it however
estimates an optimal fit for a 6th-order polynomial. We visualize the fitted
parameter in Figure 11.6. The plot reveals a non-linear structure with a local
maximum in the center. While such a complex model can fit the data more



11.2. RESULTS 247

uptakeSeenFeedback

−3

−2

−1

0

1 nu
m

Ta
sk

sA
tte

m
pt

ed

−2

0

2

4

changeS
core

−10

0

10

20

−10

0

10

20

changeScore
(Points)

uptakeSeenFeedback

−3
−2

−1
0

1

nu
m

Ta
sk

sA
tte

m
pt

ed

−2

0

2

4

changeS
core

−10

0

10

20

−10

0

10

20

changeScore
(Points)

Figure 11.5: Visualization of uptake after displayed feedback (x-axis), number
of attempted tasks (y-axis), and change score (z-axis)
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Dependent variable:

changeScore

uptakeSeenFeedback 0.469
(0.439)

I(uptakeSeenFeedback̂ 2) −0.178
(0.246)

groupintervention 2.623∗∗∗

(0.590)

pretest correct −3.381∗∗∗

(0.298)

Constant 5.264∗∗∗

(0.448)

Observations 205
R2 0.438
Adjusted R2 0.426
Residual Std. Error 4.180 (df = 200)
F Statistic 38.912∗∗∗ (df = 4; 200)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.17: Polynomial regression model with uptake based on seen feedback
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Model 1
(Intercept) 5.00∗∗∗

(0.41)
groupintervention 2.63∗∗∗

(0.58)
EDF: s(uptakeSeenFeedback) 1.00∗∗

(1.00)
EDF: s(pretest correct) 6.14∗∗∗

(7.24)
EDF: s(numTasksAttempted) 1.00∗

(1.00)
AIC 1166.12
BIC 1203.14
Log Likelihood −571.92
Deviance 3180.64
Deviance explained 0.49
Dispersion 16.32
R2 0.46
GCV score 17.17
Num. obs. 205
Num. smooth terms 3
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 11.18: Generalized additive model with pretest, number of attempted
tasks, and uptake based on seen feedback

closely, it at the same time makes more assumptions and is less generalizable.
Given that a higher-order, non-linear model is only automatically selected for
the pretest score, but not for the learning process predictors under consideration,
we go with the simpler model specification following Ockham’s principle.

11.2.5 Correct at First Try

In this section, we continue to investigate the role of answers submitted correctly
at some point by testing if answers submitted correctly at first try are partly
responsible for the significant effect of the former.

Feature Operationalization

We extracted a feature from the interaction log that expresses the number of
task fields for which learners submitted a correct answer at first try. In order
to compute the feature, we extracted all interaction steps and sorted them per
learner by task field and ordered them by their time stamp. Then we counted
for how many cases the first logging token for each task field was associated
with a correct answer. Note that this approach does not exclude cases in which
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Figure 11.6: Polynomial fit of pretest score in relation to change score

learners later re-evaluated their answer again as correct, e.g. in a check-all
process triggered by a button or when re-entering a task. The extracted feature
values were z-standardized (centered and scaled).

Results

Testing for Main Effects We tested for a potential main effect of answers
submitted as correct at first try. Table 11.19 shows that there is a highly
significant effect of answers submitted correct at first try.

Testing for Moderation Effects As a next step, we tested for potential in-
teraction effects with the assignment to experimental group, the achieved num-
ber of points in the pretest and number of attempted tasks. Table 11.20 shows
that the feature correctAtFirstTry does not interact with group, but that there
is a significant interaction with the pretest score.

Testing for Mediation Effects In order to find out more about the relation
between pretest score and correct at first try, we conducted a causal mediation
analysis to test a potential mediation of the pretest score through the number
of correct tries at first attempt. Table 11.21 shows the significant total effect of
the pretest score. In Table 11.20, we see that there is a significant effect of the
independent variable pretest score on the mediator correct at first try.
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Dependent variable:

changeScore

correctAtFirstTry 0.899∗∗∗

(0.318)

groupintervention 2.592∗∗∗

(0.580)

pretest correct −3.488∗∗∗

(0.300)

Constant 4.959∗∗∗

(0.414)

Observations 205
R2 0.446
Adjusted R2 0.438
Residual Std. Error 4.137 (df = 201)
F Statistic 54.010∗∗∗ (df = 3; 201)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.19: Regression model: highly significant main effect of answers correct
at first try
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Table 11.20: Regression model: no significant interaction effects of answers
correct at first try with group assignment and number of attempted tasks, but
with pretest score
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Dependent variable:

changeScore

groupintervention 2.508∗∗∗

(0.590)

pretest correct −3.274∗∗∗

(0.295)

Constant 5.064∗∗∗

(0.419)

Observations 205
R2 0.424
Adjusted R2 0.419
Residual Std. Error 4.208 (df = 202)
F Statistic 74.449∗∗∗ (df = 2; 202)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.21: Causal mediation analysis: significant total effect of pretest score

Dependent variable:

correctAtFirstTry

groupintervention −0.093
(0.128)

pretest correct 0.238∗∗∗

(0.064)

Constant 0.116
(0.091)

Observations 205
R2 0.068
Adjusted R2 0.059
Residual Std. Error 0.915 (df = 202)
F Statistic 7.395∗∗∗ (df = 2; 202)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.22: Causal mediation analysis: significant effect of pretest score on the
mediator correct at first try
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Table 11.23 shows the combined effect of the mediator and independent
variable on the dependent variable changeScore. As displayed in the table,
there is a highly significant effect of both the mediator and the independent
variable on the outcome variable.

Dependent variable:

changeScore

correctAtFirstTry 0.899∗∗∗

(0.318)

groupintervention 2.592∗∗∗

(0.580)

pretest correct −3.488∗∗∗

(0.300)

Constant 4.959∗∗∗

(0.414)

Observations 205
R2 0.446
Adjusted R2 0.438
Residual Std. Error 4.137 (df = 201)
F Statistic 54.010∗∗∗ (df = 3; 201)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.23: Causal mediation analysis: significant effect of pretest score and
mediator correct at first try on gain score

The summary of a causal mediation analysis combining the models from
tables 11.21, 11.22 and 11.23 based on 1,000 iterations over the data set is de-
picted in Table 11.24. The table, generated as output of the mediation package
in R (cf. Tingley et al. (2014)), shows a highly significant (p = 0.01) average
causal mediation effect of 0, 23823 ∗ 0, 8994 = 0.2143, a highly significant aver-
age direct effect (p < 0.001), a highly significant total effect (p < 0.001), and a
highly significant bootstrapped unstandardized effect (p = 0.01). This analysis
shows that the correct at first try feature is a causal mediator of the pretest
score. We visualize the results of the causal mediation analysis in Figure 11.24.

We furthermore tested if there is a mediation effect with group as the in-
dependent variable and correct at first try as mediator. In order to test this,
we computed models predicting correctAtFirstTry with group alone and with
pretest and group together. As reported above, we found a mediation with
respect to pretest, but we found no mediation with respect to group. Taken to-
gether, the results indicate that previous knowledge plays a significant role with
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Causal Mediation Analysis

Nonparametric Bootstrap Confidence Intervals with the Percentile Method

Estimate 95% CI Lower 95% CI Upper p-value

ACME 0.2143 0.0543 0.43 0.01 **

ADE -3.4881 -4.1434 -2.81 <0.0000000000000002 ***

Total Effect -3.2739 -3.9037 -2.68 <0.0000000000000002 ***

Prop. Mediated -0.0654 -0.1324 -0.02 0.01 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Sample Size Used: 205

Simulations: 1000

Table 11.24: Causal mediation analysis results of correct at first try based on
1.000 iterations

correctAtFirstTry

pretest score change score

0.23823, p < 0.001∗∗∗ 0.8994, p = 0.004∗∗

−3.2739, p < 0.001∗∗∗

Figure 11.7: Mediation analysis of pretest score and number of items correctly
answered at first try with respect to the change score
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respect to learning gains. Answers submitted correct at first try are a proxy for
and express previous knowledge.

11.2.6 Time-on-Task

Feature Operationalization

We operationalize time-on-task in two features, both of which are directly logged
by the system and can bes estimated from parsing the server logs given that they
contain time stamp information. For the experiments described here, we parsed
the server log file. As described in Table 11.25, we distinguish raw time-on-task
from time-on-task working. The former is the time between entering and sub-
mitting an exercise. In cases in which a learner saved, quit, and later continued
an exercise, the feature expresses the sum of all sessions on this exercise. In
contrast, time-on-task working only starts to be counted as soon as a learner
interacts with the system’s feedback mechanism. This excludes for example the
time in which learners read the instructions or consume a task’s associated me-
dia like a reading text, audio recording, or video clip. Additionally, for both
features, we provide an abstracted version in which the exercise sessions (i.e.
contexts in which time-on-task was logged) are counted. This abstracts away
from concrete numbers and is thus more robust to outliers. Since these fea-
tures are quite sensitive to outliers, for example when learners are interrupted
during homework and leave the application open, we need to deal with outlier
normalization for the feature values. Since we know the maximum duration (60
minutes) that the server keeps a session open, we exclude (i.e. do not count) all
sessions which are longer than the maximum threshold, since these are learn-
ers who left the application open without logging out. In order to normalize
the feature values and make them comparable to other feature values, we z-
standardized (centered and scaled) and log-transformed the raw feature values
before the analyses, following the procedure of the previous sections. In order
to obtain the feature values, we parsed the server log files and added up the
time-on-task obtained from server log files. As a preparation for this step, we
first needed to reconstruct missing time-on-task statements (described below)
caused by a bug in the system. This shows the importance of having multiple
representations of the data: with only the exercise log, the reconstruction would
not have been noticed and impossible to conduct.

feature description
workingTime logged working time in seconds (starting from first

feedback interaction)
workingSessions number of exercise sessions with working time
timeOnTask logged time in seconds (starting when learners enter

exercises)
timeOnTaskSessions number of exercise sessions with log time statements

Table 11.25: Time-on-task feature operationalization
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Reconstructing Time-on-task Log Statements not Logged Over the
duration of the study, the tutoring system’s application logic contained a bug
that prevented time-on-task statements to be logged immediately before an
exercise was submitted to the teacher. This led to the fact that for the subtasks
that students worked on before they submitted to the teacher (typically the
last subtask of a task), the time-on-task was not logged or added to the data
base counter. In this section we describe how the missing time-on-task was
reconstructed.

The fundamental challenge underlying the reconstruction of time-on-task
statements is that the granularity of the task identifiers in the time-on-task log
statements and the practice interface opening statements on the one hand, and
the granularity of the task identifiers in the upload statements of exercises on
the other hand are not on the same level. The time-on-task measures and their
log statement expressions are based on and expressed in subtasks, whereas the
opening and upload statements are represented on the task level.

This leads to the necessity to (a) reconstruct the missing time-on-task and its
log statement expression before upload statements and (2) attribute the time-
on-task to a specific subtask. In order to find out which subtask the learner
worked on before uploading an exercise, different cases need to be distinguished
and treated differently.

As Algorithm 1 shows, we chose a lookback approach with several nested
lookback loops and multiple nested conditional statements. A lookback ap-
proach was chosen since in a lookback, the missing statements can be inserted
at the position of the reading head and then continued to avoid concurrent
modification exceptions and recurring cycles.

The algorithm scans the server log files until it encounters an upload state-
ment (line 3). Then it starts a lookback loop (line 4) to search if there are
time-on-task log statements for the task under consideration (line 5).

A necessary distinction that needs to be made is the difference between
tasks that only contain one single subtask (line 8) and tasks that have multiple
subtasks (line 16). In the first case, the time-on-task can always be attributed to
the first subtask from the time point on where the user re-entered the practice
interface with this task (line 10). It needs to be added to the previously logged
time-on-task (lines 7, 13) in order to compute the total time-on-task for this
task and subtask.

In case the uploaded task has multiple subtasks, the algorithm looks at
which statement is temporally closer to the upload statement, i.e. is less far
away from the upload statement. This can be either a time-on-task log state-
ment, or a practice interface opening statement. In case the exercise opening
statement is closer, then the user can not have changed between subtasks and
the missing time-on-task is attributed to the subtask with which the user entered
the practice interface (lines 18, 20). In case there is a time-on-task statement
closer to the upload statement, then the time-on-task needs to be attributed
not to this, but to another subtask (line 22).

A completely different case needs to be handled if no previous time-on-
task log statements exist (line 27). The algorithm here simply searches for the
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statement indicating that the learner opened this exercise and then subtracts
this time point from the upload time point (line 31).

The generated time-on-task log statements are added to the log file directly
after the uploads statement (line 34), with the exactly same format as the
regular time-on-task log statements to make them not distinguishable from the
original one. This approach was chosen since all subsequent processing tools that
analyze the log then do not need to be adapted. We validated the algorithm both
qualitatively by doing a plausibility analysis of the generated statements (with
markers to distinguish the newly generated log statements), and quantitatively
by comparing it with an alternative approach of computing time-on-task based
on auto-save statements.

Results

Testing for Main Effects We found no main effect for any of the time-on-
task features.

Testing for Moderation Effects Next, we tested for potential interaction
effects between the time-on-task features and the experimental group assign-
ment. For one feature, the time-on-task since entering an exercise, we found a
significant interaction with the experimental group (cf. Table 11.26). As the
models shows, there is a significant positive effect of time-on-task for the control
group (0.988, p=0.012261, left model), but not for the intervention group (right
model).

We furthermore tested for interactions with pretest scores and the number of
tasks learner attempted. As displayed in Table 11.27, we found a significant in-
teraction between time-on-task and the number of attempted tasks. The model
shows a negative coefficient of −0.623 of the interaction term.

We furthermore tested for potential interactions with pretest scores. We
found a significant interaction between the pretest score and time-on-task (see
Table 11.28) with a negative coefficient of −0.751.

Testing for Mediation Effects We tested for potential mediation effects
with group and pretest score as independent variables, and the time-on-task
features as (potential) mediators. The analyses showed no mediation effects.
However, one model showed an interesting effect of pretest score on time-on-
task (Table 11.29, left model). This effect is, however, not strong enough to
persist when time-on-task is included as a main effect to predict the change
score (Table 11.29, right model).

11.3 Discussion

We showed that learners who perform well when working in the system, i.e.
submit many correct answers, also perform well in the associated post test. The
analyses showed that this effect can be attributed to two learning paths leading
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1 for int i = 0; i <lines.size(); i++ do
2 print lines.get(i);
3 if msg.contains(”uploads the submission”) then

// lookback function

4 for int j = i - 1; j >-1; j– do
5 if prevLine.contains(”on the exercise”) then

// if the previous statement refers to the same task

6 if taskIDsMatch(tid, prevTaskID) then
// rember already logged time-on-task

7 prevTotalTime = prevLine[2]; // in case of one single

subtask, the missing time-on-task has to refer

to this one

8 if numSubTasks of current task == 1 then
9 for int k = i; k >-1; k– do

10 if kMsg.contains(”opens the practice”) then
11 if taskIDsMatch(kTaskID, tid) then

// local time-on-task since opening

an exercise

12 compTime = timepoint - kTime;
13 compTotalTime = prevTotalTime +

compTime;
14 foundTime = true;

// end lookback

15 break jloop;

16 else
17 for int k = i; k >-1; k– do

// what comes first: entering the exercise

or a time-spent log what happened closer

to the upload is the reference point

18 if kLine.contains(”opens the practice”) or
kLine.contains(”on the exercise”) then

19 if taskIDsMatch(kTaskID, tid) then
20 if kLine.contains(”opens the practice”)

then
21 oTime = kTime;

22 else
23 oTime = iTime;

24 compTime = timepoint - oTime;
25 foundTime = true;
26 break jloop;

// if no previously recored time has been found, compute the

time between opening the practice interface and the

upload, since then the students can not have left it

27 if !foundTime then
28 for int j = i - 1; j >-1; j– do
29 if prevLine.contains(”opens the practice”) then
30 if taskIDsMatch(tid, prevTaskID) then
31 compTime = timepoint - prevTime;
32 compTotalTime = compTime;
33 break;

34 print compTime, compTotalTime

Algorithm 1: Time-on-task reconstruction pseudo-code algorithm
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Dependent variable:

changeScore

(1) (2)

timeOnTask 0.988∗∗ −0.101
(0.391) (0.316)

groupintervention 2.167∗∗∗

(0.608)

groupcontrol −2.167∗∗∗

(0.608)

pretest correct −3.292∗∗∗ −3.292∗∗∗

(0.292) (0.292)

timeOnTask:groupintervention −1.088∗∗

(0.503)

timeOnTask:groupcontrol 1.088∗∗

(0.503)

Constant 5.365∗∗∗ 7.532∗∗∗

(0.432) (0.427)

Observations 205 205
R2 0.442 0.442
Adjusted R2 0.431 0.431
Residual Std. Error (df = 200) 4.162 4.162
F Statistic (df = 4; 200) 39.674∗∗∗ 39.674∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.26: Regression model: significant interaction between experimental
group and time-on-task
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Dependent variable:

changeScore

timeOnTask 0.582
(0.372)

numTasksAttempted −0.383
(0.349)

groupintervention 2.512∗∗∗

(0.584)

pretest correct −3.311∗∗∗

(0.296)

timeOnTask:numTasksAttempted −0.623∗∗

(0.312)

Constant 5.490∗∗∗

(0.445)

Observations 205
R2 0.446
Adjusted R2 0.433
Residual Std. Error 4.158 (df = 199)
F Statistic 32.097∗∗∗ (df = 5; 199)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.27: Regression model: significant interaction between time-on-task and
number of attempted tasks
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Dependent variable:

changeScore

timeOnTask 0.127
(0.339)

pretest correct −3.459∗∗∗

(0.303)

groupintervention 2.498∗∗∗

(0.585)

timeOnTask:pretest correct −0.751∗∗

(0.355)

Constant 5.206∗∗∗

(0.426)

Observations 205
R2 0.440
Adjusted R2 0.429
Residual Std. Error 4.170 (df = 200)
F Statistic 39.338∗∗∗ (df = 4; 200)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.28: Regression model: significant interaction between time-on-task and
pretest score
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Dependent variable:

timeOnTask changeScore

(1) (2)

timeOnTask 0.356
(0.324)

groupintervention 0.096 2.474∗∗∗

(0.128) (0.590)

pretest correct 0.145∗∗ −3.326∗∗∗

(0.064) (0.299)

Constant −0.287∗∗∗ 5.167∗∗∗

(0.091) (0.429)

Observations 205 205
R2 0.026 0.428
Adjusted R2 0.017 0.419
Residual Std. Error 0.913 (df = 202) 4.206 (df = 201)
F Statistic 2.732∗ (df = 2; 202) 50.087∗∗∗ (df = 3; 201)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11.29: Regression model: significant effect of pretest on time-on-task, but
no significant effect when predicting the change score
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to these correct answers: answers submitted correct at first try, and successful
uptake after specific feedback. Via a causal mediation analysis, we showed that
the answers submitted correct at first try are actually a (partial) mediator for
the pretest score and thus previous knowledge. This finding underlines the
importance of taking previous domain knowledge into account when predicting
learning gains. In systems implemented in ecologically valid settings outside of
study contexts, this information is relevant when designing Learning Analytics
tools: since in this case often no pretest results are available, systems still have
access to system logs and can extract the number of answers submitted correct
at first try.

Furthermore, we showed that not only previous knowledge resulting in cor-
rect answers at first try, but also successful uptake after specific feedback is
a learning process measure resulting in the learning product of correct answer
and a significant predictor of learning gains. In order to test whether it is the
attention to feedback or only the attention to the form of the learner answer,
we computed two features that form a minimal pair: uptake based on displayed
feedback and uptake based on blocked feedback. The difference is that in the
second case, the learners only knew that their answer was not accepted due to
the absence of a green check mark, whereas in the former case, learners received
an explanation as to why and how their learner answer was not accepted by
the system. The results show that uptake based on actually seen feedback is
a significant predictor for the change in explicit grammatical knowledge from
pretest to post test. In contrast, uptake for cases in which the specific feedback
was withheld and learners did not receive an explanation of why their answer
was incorrect before being corrected, was found to be not a significant predictor.
The only difference between the two features is thus the presence of feedback
and explanation of errors. Since we showed that uptake with feedback is a sig-
nificant predictor, we showed the effectiveness of feedback when learners attend
to it. Furthermore, by conducting a causal mediation analysis, we showed that
uptake is mediated through the number of attempted exercises. It thus makes
a difference whether learners can implement feedback in only few or across
multiple tasks. With different tasks offering different prerequisites, contexts,
formats, requirements, language forms, and thus feedback to different aspects
of language, the mediation highlights the need to consistently pay attention to
feedback in different environments and practice forms across tasks. The results
demonstrate that not (only) attention to forms, but feedback and especially
attention to feedback is relevant for learning. Our results fully confirm and are
compatible with previous research on the role of uptake (cf. section 2.3 for a
detailed discussion of the role of uptake). Regarding the implications of these
findings, it is thus not sufficient for systems to only indicate to learners that
their answer is not correct. What makes the difference is feedback explaining
the error, and whether learners pay attention to it across different tasks.

Providing feedback is, however, not enough for fostering learning. Learners
need to pay attention to and process the feedback. This finding is reflected
in the fact that raw feedback counts are not indicative for predicting learning
gains, but rather only instances of uptake in which learners were able to make



11.3. DISCUSSION 265

use of the feedback.

The finding that time-on-task is a significant predictor interacting with the
experimental group, with a significant positive effect for the control group, and
a negative (though insignificant) effect for the intervention group, supports this
finding: when learners do not have access to feedback (control group), they need
to spend more time to solve the exercises, but investing time eventually pays
off. A potential speculative interpretation of the negative effect of time-on-task
for the intervention group could be that those learners in the intervention group
who need to spend more time in comparison to their peers, are not efficiently
using the feedback offered by the system to them.

In essence, these findings show that (a) previous knowledge, (b) specific feedback
and (c) attention of learners to specific feedback and not only forms and (d)
strategies for efficient processing of feedback offered to learners are significant
predictors of learning gains.

The results link up with previous research in SLA regarding the role of
practice, feedback and uptake (cf. chapter 2). From the results, we draw the
following implications and conclusions: First of all, previous knowledge is an es-
sential parameter in determining how well learners will perform in assessments.
This can be manifested in pretest scores (if available), but also in learning pro-
cess data in non-laboratory settings in the form of answers submitted correct
at first try. Systems should track the number of correct attempts at first try to
estimate the previous knowledge of learners. Secondly, feedback per se is not
helpful. What matters is specific feedback explaining the source of the error,
and not just pointing out errors. It is insufficient for systems to point towards
an error, for learning systems have to explain errors. Thirdly, even specific feed-
back per se is not helpful by default – simply counting the number of provided
specific feedback messages is not indicative of learning gains. What matters is
whether learners pay attention to the feedback and are consequently able to use
it successfully, i.e. whether learners show successful uptake. Systems need to
record not necessarily the provided feedback, but rather instances of successful
uptake. Feedback can reduce the time learners need to spend to complete ex-
ercises. Thinking further along these lines, systems should make the feedback
process as motivating and interesting as possible to keep learners motivated and
cognitively focused on it. Finally, we demonstrated that it is not sufficient to
look at learning outcomes only. We demonstrated that there are fundamentally
different learning processes that result in the same learning outcomes, and that
these learning processes are significant predictors for learning outcomes in their
own right and need to be considered.
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11.4 Limitations and Avenues for Future Re-
search

In the context of this study, we worked on deriving learning process measures
from system interaction patterns and using them as predictors for learning gains.
This approach yielded promising and significant results, but we need to acknowl-
edge that this is a rather reductionist approach. We attempt to approximate
a highly complex and not entirely understood mechanism, the human capac-
ity to learn languages, or at least grammatical structures, with a small set of
interaction measures. While we showed that these measures contribute to the
predictions, we assume that there are more and far more complex processes not
captured by the current analyses.

In the present study, only a very limited number of cognitive measures are
available. For example, there is no ambulatory assessment of e.g. attention.
Given that we showed that attention to feedback is a significant predictor, having
information available on the current mood/state of the user could help interpret
the results. Apart from the cognitive aspects, more features could be imagined
like modeling the time when learners worked (e.g. morning vs. midnight),
location (e.g. at school/home/in the bus), or device (desktop computer vs.
smart phone) learners interacted with.

Another limitation is that no qualitative data is available, e.g. verbal re-
ports, that could be triangulated with the existing quantitative data. However,
given that these data are often not available when systems are used outside
of laboratory contexts, this is a consequence of the experimental design. While
ecologically valid settings provide a highly valuable opportunity to conduct end-
to-end testing, and allows to put technology and the concept behind it to the
test where it matters, a potential limitation is that many factors are not con-
trolled, constituting potentially confounding variables. We did not record or
consider social factors, for example learners comparing themselves with class-
mates or group dynamics arising when learners are working in the class room
in the presence of their peers.

Another limitation is the availability and quality of specific feedback. Going
through the log files, we recognized that many systematic error patterns are
not yet handled by the system. Also, in some case, the feedback was not very
intuitive or appropriate given the error. We acknowledge that there is room
for improvement in the feedback mechanism that, given more time, could be
tackled. With better and a broader range of feedback messages, the effects
could potentially become even clearer.

Furthermore, we are only testing explicit grammatical knowledge, but there
are other measures for competence beyond this. For example, we did not con-
duct tests targeting receptive skills or whether learners are able to transfer the
knowledge outside of grammar-focused exercise contexts. This was the case in
the delayed post test, but analyzing the delayed post test is beyond the scope
of this thesis.

The interpretation of the mediation analyses depends on whether pretest score
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is accepted as the independent variable in this case (cf. also VanderWeele and
Vansteelandt (2009)). It is possible to argue that the independent variable in
a mediation analysis needs to be an experimental condition assigned before the
mediators were measured and that additionally needs to have been assigned
randomly, such as the group variable. Furthermore, having a negative and a
positive path in a mediation, and values that are close to zero (relatively speak-
ing), could point at statistical artifacts. Nevertheless, the regression models by
themselves offer valuable insights into dependencies between factors. Even if for
certain models no causal link could be established depending on the method-
ological tradition, the individual models are methodologically valid and can be
interpreted in their own right. An avenue for future research could be to esti-
mate Complier Average Causal Effects (CACE) models (Nagengast et al., 2018)
that take into account both the group assignment (experimental versus control)
as well as the compliance with the conditions of the experiment.

Another methodological limitation is the focus on linear models (cf. also
McNeish et al. (2017)). While we found and reported results by following the
standard procedure of fitting linear models and explored some non-linear models
to complement this. Future work needs to approach the data with alternative,
non-linear models. If the focus is on model accuracy, future work could also
integrate random effects that model the clustering of learners into school classes
(cf. also McNeish and Stapleton (2016)) and implement hierarchical modeling
(Raudenbush and Bryk, 2002). However, especially in exploratory data analyses,
there is a danger of over-fitting the data at hand if very complex and powerful
(higher polynomial) models are employed from the beginning (Baayen et al.,
2017). In our analyses, we were interested in whether there are effects at all,
and in which direction(s) – having simpler models that make fewer assumptions
in this case supports the interpretability of the results and paves the way for
more complex models to be estimated later.

From a methodological point of view regarding the study setup, follow-up
studies should conduct a power analysis in advance to estimate the reliability
of the statistical effects – conducting it post-hoc would be highly problematic
(Zhang et al., 2019).

Another limitation is that we focused on one specific work book theme, as
justified in section 11.1.1. Future work needs to test whether the results found
in the context of this study generalize to other, comparable grammar topics.

In follow-up studies that employ the FeedBook or systems derived from it,
special attention should be paid to the factors discussed in the following. We
suggest to directly and explicitly log these features in suitable data structures
in order to facilitate the hypothesis testing approach. First of all, the system
should log the number of answers submitted correctly at first try – or rather
continue logging this or keep logging this in subsequent learner models, since
the original FeedBook learner model already provides functions to log this (cf.
chapter 8). Secondly, uptake based on feedback in relation to the time learners
spend on exercises should be represented prominently in any teacher dashboard
implemented in the system. Finally, the number of correctly submitted answers
should be represented not only per exercise, but rather across exercises since we
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showed that this is a highly predictive feature. In an ideal scenario, a teacher
dashboard in the system would make these metrics available to provide teachers
with valuable diagnostic information to help them identify on the one hand
struggling learners so that they can provide special support to them, and on
the other hand see which learners are performing already very well and can be
pushed further.



Part IV

Conclusion
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Chapter 12

Summary and Outlook

12.1 Discussion and Conclusions

The purpose of this thesis was to gain a better understanding of the intersection
between Second Language Acquisition, Intelligent Computer-Assisted Language
Learning, Computational Linguistics, Learning Analytics, and Empirical Edu-
cational Science. This is only possible with both a theoretical background (Part
I) and a practical application that supports learner interaction and data collec-
tion (Part II).

The thesis takes an exploratory approach towards the potentials of inter-
disciplinary work in this context (Part III). We pursued two main strands of
research, which use different methodologies, but serve the same purpose: con-
tributing to an understanding and enabling an improvement of learning and the
conditions in which it occurs - the central goal of Learning Analytics research.
In order to enable interesting analyses, rich data is necessary. In our case, these
data come from an Intelligent Computer-Assisted Language Learning system
with detailed interaction logs.

The first goal was to develop Learning Analytics for end users, i.e. tools
for humans to make decisions to understand and improve learning. The key
finding here is that different user groups need different tools tailored towards
their specific needs. While the data underlying the tools is the same for all tools,
our work highlights that it needs to be used and visualized very differently for
different stakeholders in the educational context.

Learners are most interested in their proficiency and how well they are pre-
pared for the next exam. Therefore, we propose an open learner model that
informs them about their proficiency on different levels and suggests exercises
to maximize it. Teachers have only very limited time and need to know quickly
about the progress and problems of their students, primarily in the preparation
of the next classroom session by getting insights into the learning processes of
their students and diagnostic information about their learners’ skills. To this
end, we propose Learning Analytics tools that both aggregate the interaction
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data of a teacher’s school class on individual items in assignments, as well as
tools to show the interaction by individual students. These tools help teachers
diagnose problems in the understanding of grammatical structures by their stu-
dents and allow them to extract valuable information that can be used to adjust
the content of the next classroom lecture. Material designers and educational
administrators again need different tools that allow to see how the entire learner
population interacts with exercises. We present Learning Analytics tools that
enable them to see how well exercises are working, identify problems in the ex-
ercise contents and the system’s feedback behavior, and remedy these problems.
The tools for the different user groups help educational stakeholders to learn
and work more efficiently and provide opportunities unavailable in traditional
paper-based setups.

The second goal was to extend the understanding of learning process factors
contributing to learning products. We exploratorily tested whether and which
learning process measures, identified in related work as contributing to learning,
have a predictive power regarding learning products. The results strongly imply
that correctly submitted answers are predictive of learning gains, i.e. instances
in which learners manage to submit a correct answer. We split this learning
product up into different learning processes that can result in obtaining correct
answers: answers submitted correctly at first try and answers submitted cor-
rectly after feedback, with and without specific explanations. We showed that
the number of answers submitted correct at first try is both a highly signifi-
cant predictor and a proxy for previous knowledge. We furthermore obtained
evidence that instances of successful uptake predict learning gains – but only
after specific feedback was actually displayed. Successful uptake after blocked
feedback, where learners only know that their answer was not correct but not
why, is not a significant predictor. Time-on-task was found to be a significant
predictor for the control group (i.e. an interaction effect), and negatively cor-
related with the test outcomes of the intervention group. One interpretation
of this finding is that when learners in the intervention group need more time
than their peers, they lack a deep and efficient processing of the displayed feed-
back. On the contrary, when learners in the control group invest more time to
overcome the lack of specific feedback, this effort pays off. We showed that raw
feedback counts are not indicative for learning gains. What makes the difference
between high and low learning gains is the attention to specific feedback and
efficient strategies for processing it.

Taken together, our findings underline the need to consider learning process
variables in addition to learning products in a very fine-grained manner. While
our results are compatible with previous research on the effect of uptake, in this
thesis we have shown that uptake per se is not a predictor of learning gains, but
rather uptake as a reaction to specific feedback with learners paying attention to
the feedback with efficient strategies for processing it efficiently. Whereas time-
on-task has been demonstrated to be a positive factor for learning in previous
research, we show that investing more time is beneficial, but only if there is
no other help in the form of feedback available (i.e. for the control group)
– if feedback is available, it is essential to engage with and make use of the
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feedback. Especially notable is that the findings constitute robust evidence
based on ecologically valid data from diverse settings that were only loosely
controlled (in contrast to the majority of research with lab studies and adult
learners).

There are a range of limitations concerning the results of the thesis (cf. sec-
tion 11.4 for a detailed discussion). A first limitation concerns the reductionist
approach chosen for the analysis: we approximate a highly complex process (the
human capacity to learn) with a small number of features. However, given that
in this specific domain there is so little research, we view this as a first step
towards understanding a more complex process. A second limitation related
to the first one is that we do not consider external factors like time (morning,
midnight, . . . ), location (mobile, at home, in school), or social context of the
interaction data used in the analyses. Furthermore, we do not make use of cog-
nitive measures and do not consider motivation or qualitative data that could
serve as valuable sources of information that complement the existing measures.
Certain limitations of this study could be addressed in future research. For ex-
ample, we know – from the Learning Analytics tools presented in this thesis –
that the system and its feedback are not perfect. Variance can be attributed
to errors systematically not covered by the feedback algorithm or feedback trig-
gered for ambiguous cases. In terms of outcome measures, we used only one test
measure in the form of the change in the number of points between the pretest
and post test but did not include more implicit measures and also did not check
for potential transfer of the knowledge to different types of tests. This can be
addressed in future work by analyzing the free writing tasks collected at the
end of the school year. Although the present methodological approach clearly
supports our findings, the employed linear models could be extended with more
non-linear models if future work focuses more on modeling accuracy. We fo-
cused on linear models as a standard practice for exploratory data analyses and
chose simpler over more complex (higher order polynomial) models to foster
interpretability and to avoid making too many assumptions or over-fitting the
data (cf. also Baayen et al. (2017)).

Despite these limitations, these results suggest several theoretical and prac-
tical implications. First of all, follow-up systems to FeedBook need to enable a
better logging of relevant features. The learning process features identified as
predictors of learning gains need to be logged explicitly so that no reconstruc-
tion via external log files is necessary. Furthermore, key features need to be
visualized prominently in Learning Analytics interfaces for all user groups (stu-
dents, teachers, material designers, educational administrators). With respect
to methods, apart from an extension to non-linear methods, we acknowledge
that we considered only one theme. Future work needs to test the generalizabil-
ity of the findings to comparable data sets and different language constructs.

This research can be seen as a first step towards integrating Computational
Linguistics, Second Language Acquisition, Learning Analytics, Empirical Edu-
cational Sciences, and Tutoring System Development research. To our knowl-
edge, these lines of research have not been linked in this manner before. With
the current system presenting a broad range of Learning Analytics tools next
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to each other, future work should consider providing a combination of the tools
in the form of dashboards instead of individual interfaces; this should connect
the information distributed across different interfaces instead of having them
side-by-side. From an analytical perspective, follow-up studies need to take the
findings into consideration, test them, and see if they can be confirmed and
potentially even refined with more detailed log data and measures. In any case,
it is essential that future work respects the unique interdiscplinary context this
work is situated in and continues to link the different lines of research.

12.2 Summary and Contributions

Part I: Background

In the first part of the thesis, we provide a comprehensive overview about the
interdisciplinary context in which this work is situated. We establish the the-
oretical background for the system design in the second part, and Learning
Analytics tools and the data analyses in the third part.

In the background chapter about Second Language Acquisition, we review
the role of practice. We zoom in on learning process observations, specifically
the reaction to corrective feedback in the form of uptake and its effects.

We explain the definition, historical development, and domains of application
of Learning Analytics and Educational Data Mining in Chapter 3. We argue
that the two (proposed) fields are actually different strands of the same field,
and that Learning Analytics tools are essential for tutoring systems to provide
teachers with insights into the learning process. In the context of tutoring
systems that help learners reach a correct solution, without Learning Analytics
teachers only see similar learning products even though the learning processes
and thus diagnostic information differs drastically.

In the third background chapter, we review tutoring systems, including their
architecture, components and implementation. We put a special focus on the
generation and provision of feedback to be able to relate back to this aspect
when presenting the FeedBook design. This chapter forms the theoretical basis
for the chapters about the system design and feedback algorithm design. In
this context, we discuss important related systems and describe which aspects
of these systems provide solutions to similar challenges/tasks as the FeedBook,
and how these solutions are implemented in the respective systems.

Contributions Our contributions in this part are three unpublished, compre-
hensive literature reviews. We lay the theoretical foundation for part II and III,
allowing us to situate our work in this interdisciplinary context.

Part II: Towards an Empirical Basis

We start the second part by describing the FeedBook system, its development,
and diverse user interfaces for learners, teachers, and material designers in the
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system. Chapter 5 describes the work flows of different user groups in the
system, and the user interfaces enabling these actions.

We then turn to the feedback algorithm by describing how feedback for
orthography, grammar, and semantics are generated, computed and displayed
in FeedBook. We describe both the individual feedback strategies and how they
relate to and are combined with each other.

The focus here is a detailed description of how the task context is used in
all three feedback modalities to generate feedback, with special emphasis on the
grammar feedback algorithm. We explain how pre-generating feedback parts
in an offline feedback generation approach is combined with a flexible online
matching part. We describe how grammar feedback is extended with feedback
on conceptually different types of errors on the level of spelling and meaning.

Chapter 7 describes the FeedBook study in detail. We utilize this chapter to
describe the procedure, participants and materials of the year-long study. That
is to say, we describe the randomized controlled field trial study and explain the
context from which the data comes that is later used in the third part.

Contributions Our contributions in this part are substantial contributions
to the implementation and design of the FeedBook system and the feedback
algorithm. We extend the description of the feedback algorithms in higher detail
than previously described. Moreover, we helped in the study and supported the
system, which allowed us to collect the data.

Part III: Learning Analytics in Practice

Part III builds on and combines the previous parts. Based on the theoretical
background (part I) and given the system (part II), we show how the two parts
can come together.

We start by presenting three chapters on Learning Analytics tools targeting
the needs of different user groups: learners, teachers and material designers.

To begin with, we present Learning Analytics tools for individual students,
most notably an open learner model integrated in FeedBook. This model offers
visualizations about the learner progress on different levels of granularity, the
development of accuracy in specific constructs over time, and an automatic,
proficiency-dependent and construct-specific sequencing of exercises.

Secondly, we introduce Learning Analytics tools for teachers that show ag-
gregated learning process data of their students. These tools provide insight
into the learning process and products, allowing teachers to see the learning
paths of their students and allowing them to diagnose errors on the way to help
for a better preparation for classroom teaching.

Finally, we showcase Learning Analytics tools for material designers and
educational administrators. In this chapter, we provide interfaces that allow
them to detect factors related to the quality of the design of exercises and the
strengths and weaknesses in the feedback algorithm for specific tasks. Most no-
tably, this includes user interfaces that put effort and learning process measures
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in relation to ultimate learning success and visualize process metrics for a range
of interaction patterns.

Taking a more analytical perspective, in the last chapter we exploratorily
test a range of theoretically motivated learning process measures with respect
to their predictive power regarding learning products. The theoretical back-
ground on SLA and Learning Analytics guides the selection and operationaliza-
tion of the features. Via regression models and causal mediation analyses, we
linked learning process features to learning products. First of all, we found out
that answers submitted correctly are a highly significant predictor of learning
outcomes in a grammar test scenario. We then dived deeper by splitting this
learning product up into different learning processes that can result in obtaining
correct answers: answers submitted correctly at first try and answers submit-
ted correct after feedback, with and without specific explanations. We showed
that the number of answers submitted correct at first try is a highly significant
predictor and a proxy for previous knowledge. Moreover, we demonstrated that
instances of successful uptake predict learning products – but only after spe-
cific feedback was actually displayed. Successful uptake after blocked feedback,
where learners only know that their answer was not correct but not why, is not a
significant predictor. Time-on-task was found to be only a significant predictor
for the control group (i.e. an interaction effect), and negatively correlated with
the test outcomes of the intervention group. When learners in the intervention
group need more time than their peers, they do not process the feedback effi-
ciently. On the contrary, when learners in the control group invest more time
to overcome the lack of specific feedback, this effort pays off. Taken together,
the findings underline the need to not only consider learning products, but also
learning processes. We showed that raw feedback counts are not indicative for
learning gains. What makes the difference between high and low learning gains
is the attention to specific feedback and efficient strategies for processing it.

Contributions Our contributions in this part constitute the development,
implementation and description of novel Learning Analytics tools that make
learning processes available. We present a very broad range of tools tailored
towards the needs of different user group and providing insight into the learning
process. Likewise, we formally establish – with statistical methods – learning
process measures whose design is driven by theory and demonstrate that they
have a predictive power with respect to learning products in data collected in
authentic, ecologically valid environments on a large scale. With the FeedBook
study the first large-scale test of intelligent tutoring systems in Germany, the
results fill an important research gap by identifying learning process features
that predict learning products in ecologically valid school contexts.

12.3 Outlook

In this thesis, we described the FeedBook system and the results obtained based
on the work in the corresponding project. This project officially ended in late
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2019. However, the system continues to be used and also extended in various
follow-up projects.

One project that is taking shape and that the author of this thesis is de-
veloping is the Didi system. This tutoring system builds on and extends the
FeedBook in various ways. First of all, this system provides exercise materials
that are independent of specific workbooks. Secondly, these exercise materials
are organized via language topics and sub topics. This is reflected in the student
perspective and in the teacher lobby. Figure 12.1 shows the student start page.
It shows a tile for every grammar topic, as well as a link to the pretests and to
the “Murkse-App”. This is an ambulatory assessment test for working memory
that is triggered at login every time the last interaction with this app is more
than four hours earlier.

Figure 12.1: Student lobby in Didi

In terms of the teacher interface, Figure 12.2 displays the start page teach-
ers see when logging in. It provides a hierarchical menu with three levels. The
filtering of submission has been changed so that initially, all submissions are
listed. Selecting a grammar topic or sub topic from the menu filters the current
view to display less information. This merged the two previous, distinct sub-
mission views into one perspective. While the submission table (on the right
hand side) was ported over from FeedBook, there are two new buttons on top
of it that allow teachers to lock a grammar topic or set it as active (i.e. as
a current assignment). The settings the teacher sets here are reflected in the
student perspective with locked tiles and tiles in a different color.

The Didi system furthermore offers a range of new task types, with an em-
phasis on easier accessible exercises. Figure 12.3 shows a categorization task.
Learners need to drag-and-drop elements into categories. In this example, the
task is to sort comparative forms into base, comparative, and superlative cate-
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Figure 12.2: Teacher lobby page in Didi

gories. In Figure 12.4, learners are presented with jumbled sentence parts and
need to drag-and-drop them to build correct sentences. Another new task type
is a memory game, for example the exercise displayed in Figure 12.5. Learners
need to find matching cards, with the remaining (i.e. non-matched pairs) cards
shuffled every time learners (re-)enter the exercise. In this example, learners
are asked to find pairs of infinitives and simple past forms. The last new task
type (Figure 12.6) requires learners to underline specific parts of a text. In this
example, learners need to mark all nouns in the given text. Common to all of
these new task types is that the system provides binary feedback by highlighting
the elements in either green (correct) or red (false).

While still under development, the Didi system offers a range of notable im-
provements over the FeedBook. For example, teachers have the option to sign
up themselves and create an account via the system’s login page. In terms of
NLP, the system implements a new, simplified learner model that uses linguis-
tic, but pedagogically selected categories. Each construct is recorded as either
a productive, receptive, or interactive constructs depending on whether learners
can edit the form (productive), the form appears in the context (receptive), or
learners can work with the form but not change it (interactive, e.g. memory
task). Instead of inside the system, the Didi system outsources the annota-
tion of linguistic constructs to a UIMA Rule-based Text Annotation component
that allows non-developers to write rules to detect linguistic constructs. The
long-term plan for this FeedBook successor system is to provide completely au-
tomatic, adaptive sequencing of learning materials. Studies with this system
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Figure 12.3: Categorization task in Didi

Figure 12.4: Jumbled sentence task in Didi
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Figure 12.5: Memory task in Didi

Figure 12.6: Underline task in Didi
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and potential follow-up studies will be able to confirm and extend the findings
of this thesis (cf. section 11.4).
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