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vorgelegt von

Johannes Bleher, MSc.

geboren in Münsingen
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Rümmele, Jakob Schwerter, Matthias Seckerl, Jantje Soenksen and Miriam Sturm.

Another shared flat was also an essential contribution to this dissertation: Susanne

Wellmann and her husband Jean-Paul Sezawo kindly provided me a place to stay during
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Introduction

In the year 1898 after a visit to the Liverpool Exchange Newsroom, Joseph Chamberlain,

father of the then future British Prime Minister Neville Chamberlain and Colonial Secretary

held a speech in Liverpool’s Conservative Club. In his speech, he uttered the phrase which

not only described the general newsroom feeling back then, at the dawn of the 19th century,

but probably could also be considered today as a fair description of nowadays volatile

environment:

I think that you will all agree that we are living in most interesting times. I

never remember myself a time in which our history was so full, in which day

by day brought us new objects of interest, and, let me say also, new objects

for anxiety.1

Since Chamberlain’s time, history has filled further and is fuller than ever. At the time of

writing this introduction, the world is faced with a pandemic of the Corona virus which

has led governments to impose lock-downs earlier this year of 2020 and to pass all sorts

of measures to stop the spreading of the virus. Yet, a second wave of the virus seems

to emerge in Germany, while in France and other European countries daily infections

are rising. Until now the pandemic is expected to have caused the greatest recession in

history or at least since 1929. 12 years after the 2008 financial crisis whose aftermaths

also caused the European Sovereign debt crisis in the early 2010s, governments around

the globe have again poured unprecedented amounts of their tax-payers money into their

economies. Central Banks have flooded the markets with liquidity. Amidst this pandemic,

Britain, four years after the referendum in which it decided to leave the European Union,

is actually about to leave the EU without a legal framework as negotiations about a free

trade agreement are stuck. Also, elections are about to be held in the United States of

America and their ramifications on world trade and international relations are uncertain.

In these times, not only every day brings more ’objects of interest’, but every hour, every

minute and even every second does. Today, we often see more news, more information

pouring in continuously. Information is constantly published and distributed around the

globe, available to everybody, almost instantly. No wonder, the flood of new information

1 The Western Daily Press, Mr. Chamberlain at Liverpool: A Series of Speeches, Patriotism Still a Live
Force, Quote Page 8, Column 3, Bristol, England. (British Newspaper Archive). January 21, 1898.
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and the change that spreads with it frightens us at times. The racist Victorian colonialist,

that Joseph Chamberlain was, had a similar feeling at the turn of the century. Under

the impression of a diverging Empire, he obviously felt that change was coming his and

Britain’s way. Even though we are skeptical and anxious about new information, and we

hawk bad news more widely, more detailed and longer than good news (Hornik, Satchi,

Cesareo and Pastore 2015), we often lack the skills to adequately process it. The ability

to use present information to predict future events is at times deranged. History holds

plenty of examples where the distinction between relevant information and irrelevant noise

has gone awefully wrong. We are, at times even tragically, bad at adequately predicting

certain aspects of the future. Four years ago, when this dissertation project began, nothing

in the current global environment was foreseeable. Or was it?

Now and more than a century ago when Joseph Chamberlain visited the Newsroom

nearby the Exchange Flags in Liverpool and held his speech on the interesting times

he lived in, financial markets – as the venue where people trade expectations about the

future – have been and still are especially keen on having the most current news available.

Naturally, the result of market participants’ interactions, transaction prices and volume,

is highly sensitive to new information. When trading financial instruments, knowing in

advance pays off. But what information is relevant? Information that drives prices may

concern the macroeconomic scale, e.g., information about prevailing inflation expectations,

or it may as well be rooted in microeconomic information, such as, whether a certain

financial asset attracts the interest of many. Price driving information may also originate

from the mechanics of markets’ microstrucure, e.g. the information how incoming and

canceled orders where distributed in the last five minutes may be predictive of future

price movements. This dissertation will investigate all three examples and end with a

new econometric method to determine the predictive power of almost any quantitative

information. The question, which information really is relevant for price movements will

be the recurrent theme of this dissertation.

In Chapter 1, we2 develop an algorithm to sensibly concatenate Google’s SVI so that it

can be used for research purposes. The regression-based algorithm allows to construct

arbitrarily many comparable, multi-annual, consistent time series on monthly, weekly,

daily, hourly and minute-by-minute search volume indices based on the scattered data

obtained from Google Trends. The accuracy of the algorithm is illustrated using old

datasets from Google that have been used previously in the literature. The algorithm is

used to construct an index of prices searched online (IPSO). Out-of-sample, the IPSO

improves monthly inflation and consumption forecasts for the US and the Euro Area.

In-sample it is contemporaneously correlated with US consumption, when controlling for

2 Chapter 1 is based on Bleher and Dimpfl (2019) available at SSRN https://ssrn.com/abstract=

3357424.
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seasonality, and Granger causes US inflation on a monthly frequency. Chapter 1 serves as

a basis for Chapter 2.

Chapter 2 starts with analyzing the question whether increased searches on Google have a

predictive ability for the transaction prices and volatility of several cryptocurrencies. The

analysis is based on a new algorithm which allows to construct multi-annual consistent time

series of Google Search Volume Indices (SVIs) on various frequencies. As cryptocurrencies

are actively traded on a continuous basis and react very fast to new information, the

analysis is initially conducted on a daily basis, lifting the data imposed restriction faced by

previous research. In line with the literature on financial markets, we3 find that returns

are not predictable while volatility is predictable to some extent. A number of reasons

are discussed why the predictive power is poor. One aspect is the observational frequency

which is therefore varied. The results of unpredictable cryptocurrency returns holds on

higher (hourly) and lower (weekly) frequencies. Volatility, in contrast, is predictable on all

frequencies and we document an increasing accuracy of the forecast when the sampling

frequency is lowered.

In Chapter 3 I review and with concrete examples the mathematical tools used in Chapter 4.

Then, in Chapter 4, the eagle-eyed perspective on financial markets is left for a microscopic

one. A financial market microstructure model for the limit order book is subsequently

presented in Chapter 4. In the model, the limit order book (LOB) is described as a

continuous Markov process. We4 develop an algebra to describe its dynamics based on

the fundamental events of the book: order arrivals and cancellations. It is shown how all

observables (prices, returns, and liquidity measures) are governed by the same variables

which also drive arrival and cancellation rates. This is where the influx of news can be

observed. It is where individual decisions of traders, based on the latest information, are

directly related to the price formation process. ’Interesting times’ where lots of news are

generated, such as the ones Chamberlain referred to, directly affect the price mechanism

as arrival and cancellation rates are shifted across price levels. The sensitivity of the

model developed in Chapter 4 is evaluated in a simulation study and an empirical analysis.

Several linearized model specifications based on the theoretical description of the LOB

are estimated and in- and out-of-sample forecasts on several frequencies conducted. The

in-sample results based on contemporaneous information suggest that the model describes

up to 90% of the variation of close-to-close returns, the adjusted R2 still ranges at around

80%. In the more realistic setting where only past information enters the model, we still

observe an adjusted R2 in the range of 15%. The direction of the next return can be

predicted, out-of-sample, with an accuracy of over 75% for short time horizons below

3 Chapter 2 is based on Bleher and Dimpfl (2019) published in the International Review of Financial
Analysis.

4 Chapter 4 is based on Bleher, Bleher and Dimpfl (2020) available at SSRN https://ssrn.com/

abstract=3589763 and arXiv https://arxiv.org/abs/2004.11953.
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10 minutes. Out-of-sample, on average, we obtain R2 values for the Mincer-Zarnowitz

regression of around 2-3% and an RMSPE that is 10 times lower than values documented

in the literature. These are remarkable results for high-frequency data which are usually

considered stochastically independent.

Last but not least, Chapter 5 presents a new estimation technique for relative entropy

measures. Especially, its application to transfer entropy is promising to answer whether

information from one random variable X is helpful in predicting another random variable Y .

In certain situations, transfer entropy may also be interpreted in the sense of information

flow between the two variables. In information abundant times, it may provide a measure

to distinguish the relevant from the irrelevant information. The estimation of relative

entropy measures, such as mutual information or transfer entropy, requires the estimation

of conditional and joint densities. When the data are continuous, a multi-variate kernel

density estimation or a discretization scheme is usually applied. I propose to estimate

the necessary joint and conditional frequencies by means of quantile regression. This

allows me to avoid arbitrary binning and all associated problems. Moreover, due to the

semi-parametric nature of this approach, the computational burden is decisively reduced

compared to multi-variate kernel density estimation. Instead, I show that one can flexibly

use quantile regressions to estimate joint and conditional densities in order to calculate

relative entropy measures such as transfer entropy and mutual information. The estimation

technique requires little restrictive assumptions and can help to analyze variables in

situations where only few data points are available. Furthermore, by casting the estimation

approach into a Generalized Method of Moments framework, I develop the basis for an

asymptotic theory to conduct inference on relative entropy measures for multiple variables.

In two short applications of the technique I analyze the temporal relationship between

Credit Default Swap premia and credit spreads, as well as transatlantic information flows.

I find that one minute returns on the German DAX contained predictive information for

the S&P500 one-minute returns.

In essence, this dissertation presents several studies, albeit each with a different focus, all

are connected by questions at the heart of financial econometrics: what affects prices, how

can we make sense of abundantly available information, what information does matter

and how do you separate the relevant from the irrelevant?

4



Chapter 1

Knitting Multi-Annual High-Frequency Google Trends to

Predict Inflation and Consumption1

There is a well-established branch in the academic literature which relies on Google’s search

volume indices (SVIs) for prediction. The very first application goes back to Ginsberg,

Mohebbi, Patel, Brammer, Smolinski and Brilliant (2009) who use SVIs to detect influenza

epidemics prior to their official acknowledgment or diagnosis. The main assumption is that

individuals rely on Google to gather subject related information at the time the information

is needed. Google’s SVI makes this information demand transparent and can therefore

serve as a good predictor in many fields. In Finance, for example, Bank, Larch and Peter

(2011), Da, Engelberg and Gao (2015), Dimpfl and Jank (2016), or Perlin, Caldeira, Santos

and Pontuschka (2017), among others, rely on Google’s SVI to improve predictions of

stock returns and/or volatility. Again, the main assumption is that retail investor’s use

Google to collect stock and stock market specific information before they trade. Hence,

Google’s SVIs are said to proxy retail investor attention to the market (cp. Chen, De,

Hu and Hwang 2014), in contrast to institutional investors who rely on other means (like

Bloomberg) to collect (real-time) information. Google SVIs are also used in other fields of

economics and business administration to now- and forecast key variables of interest. Choi

and Varian (2012), for example, predict vehicle sales or claims for unemployment benefits,

Qadan and Nama (2018) focus on the oil price, Rochdi and Dietzel (2015) consider real

estate investments, and Li, Shang, Wang and Ma (2015) predict inflation.

The identifying assumption which is common to the above cited articles is that for each

research question, increases or decreases in certain (patterns of) search-terms precede

economically relevant, individual behavior. To be able to exploit this relationship, nowadays

a careful construction of the included SVIs is paramount when using multi-annual SVIs

on a frequency higher than monthly. Ever since the first studies emerged, Google has

repeatedly changed the way it makes Google Trends time series available. Initially, they

were provided on a daily frequency and a reference date could be specified. The latter

served to standardize the time series so that the SVIs could be concatenated immediately.

1 This chapter is based on Bleher and Dimpfl (2019) available at SSRN https://ssrn.com/abstract=

3357424.
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Currently, the length of the time series is limited and no flexible reference date is available

which makes it impossible to download, for example, three years of daily search query

index values directly. Daily data are only provided for a 270 day period, but a reference

date cannot be fixed.

In this chapter, we propose and evaluate an algorithm which allows to knit multi-annual,

consistent Google Trends time series. To circumvent the problem that long consistent

time series are not directly available, recent research working with Google Trends SVIs is

usually based on low frequency time series, i.e., weekly or monthly (Kristoufek 2013, Scott

and Varian 2015, Dimpfl and Kleiman 2017) in order to cover longer time spans. To use

daily SVI time series, the short samples of 270 days have to be concatenated somehow and

different approaches have been proposed in the literature already. We contribute to the

literature with a regression-based construction algorithm (RBC algorithm) which relies on

a level and scale adjustment of Google SVIs based on sufficient non-zero overlapping search

volume data. Based on a mathematical formulation of Google’s adjustment procedure, we

are not only able to construct consistent, multi-annual time series, but also to compare

multiple series among each other.

The existing approaches range from a naive, direct concatenation to methods which are

similar to our approach. For example, Panagiotidis, Stengos and Vravosinos (2018b)

interpolate the available weekly data points. Garcia, Tessone, Mavrodiev and Perony

(2014) re-scale the directly downloadable daily SVI time series by transforming them in

such a way that the mean of the daily data series matches the weekly observations. In the

online appendix to Garcia et al. (2014), the method is sparsely described and evaluated

using a random walk simulation. As already mentioned, another approach is to naively

concatenate the downloaded data (e.g. Dastgir, Demir, Downing, Gozgor and Lau 2019).

When working with the SVI in levels, this is rather problematic as can be seen in Figure 1.1.

Due to the different scaling of the concatenated time frames, the levels are not comparable

over time anymore and the time series exhibits jumps at the break points. Some authors

argue that the problem is solved by using logarithmic first differences. We will show that

this argument does not always hold as the distributional properties are affected if the data

are not concatenated carefully before taking first differences.

Kristoufek (2015) uses another methodology to construct SVI time series on a daily

frequency. Unfortunately, the concatenation procedure is only described in two sentences:

“To obtain daily series for Google searches, one needs to download Google Trends SVI in

three months blocks. The series are then chained and rescaled using the last overlapping

month.” (Kristoufek 2015, p.5) From this brief explanation, we assume that he might

have constructed the daily price series similar to our proposed algorithm. Zhang, Wang,

Li and Shen (2018) used Google Trends SVIs by applying a similar approach, using an

overlapping period of two months.
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Figure 1.1: Original SVI and Naively Concatenated SVI

In the top graph the time series of the original SVI is depicted. It was directly downloadable from
google.com/trends prior to January, 2011. The bottom graph shows the naively concatenated SVI time
series that can be downloaded in time frames of 270 days, as of November, 2019.
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Recently, Google added a functionality to compare time frames. Based on this new

feature, Chronopoulos, Papadimitriou and Vlastakis (2018) describe an algorithm how

to retrieve consistent time series for several years. Hence, we argue that there are two

viable alternatives to obtain consistent Google Trends time series for longer time ranges:

Either one constructs a consistent time series by reversing the standardization employed

by Google as outlined below, or one may use the recently added comparison feature for

different time ranges offered by Google itself as described in Chronopoulos et al. (2018).

We will refer to this method as the time-frame comparison algorithm (TFC algorithm). We

show that our RBC algorithm performs better in situations where Google search volume

exhibits unprecedented peaks while average search volume is comparatively low. To this

end, we review the two methods and test their accuracy (along with a naive concatenation

scheme) using data sets provided by Dimpfl and Jank (2016).

The advantage of our methodology lies in its capability to make multiple SVIs comparable.

To date, Google offers the comparison of only up to five different search-terms. Our

methodology is suited to override this limitation which turns out to be important for

7
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our application where we predict inflation and consumption. Searches for consumption

products conducted via Google are often accompanied by a limiting price (e.g. 10 US dollar).

Based on the distribution of multiple price levels, we create an index which reflects the

willingness of online buyers to spend money on any product: the index of prices searched

online (IPSO). Subsequently, we use the IPSO to forecast inflation and consumption

measures for the US and the Euro Area. Using data limited to the US, we show that

the index is strongly contemporaneously correlated with monthly US consumption and

Granger causes monthly US-inflation, when controlling for seasonality (in-sample). In

out-of-sample one-step ahead forecasts for the US, the index is also able to reduce the root

mean squared prediction error (RMSPE) by around 30% compared to the RMSPE of a

benchmark autoregressive process. On a daily frequency, when forecasting the changes

of US break-even inflation rates, the index reduces the out-of-sample forecasts by more

than 50% compared to the autoregressive baseline model. Cross-checking our results for

Europe, we find no evidence in-sample that the index is contemporaneously correlated with

the European Harmonized Consumer Price Index (HCPI). Nonetheless, in out-of-sample

one-step ahead forecasts for Euro Area inflation, the index reduces the RMSPE by almost

30% compared to an autoregressive baseline model, when controlling for seasonality. As

monthly consumption data for Europe are not available, we check the predictive ability of

the index against monthly consumer credit growth. The out-of-sample performance of the

index in predicting the European consumption measure turns out to be very good as it

reduces the RMSPE by 70% compared to the baseline model, while accounting for annual

seasonality.

The chapter proceeds as follows. In the following section, we describe Google’s SVI and how

it is adjusted by Google before publication, and propose an algorithm to construct multi-

annual high-frequency Google SVI time series. The section also contains a comparison

of our proposed approach to an alternative approach using the time frame comparison

offered by Google. In the third section, we lay out the construction of the IPSO and apply

it in the forecasting of inflation and consumption measures. The last section summarizes

the main results and concludes.
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1.1 Constructing Multi-Annual, Comparable SVIs

With Google Trends, Google offers a service that allows to compare the relative popularity

of search-terms. There are two important issues to consider when using Google Trends

data. The first is concerned with the interpretation of the measure, while the second with

data preparation and the construction of multi-annual time series. Both issues are usually

treated subordinately in the literature.

Google computes and publishes a SVI that compares the occurrence of searches to the

entire volume of searches based on a data sample (Stephens-Davidowitz and Varian 2014).

Hence, a falling SVI does not (necessarily) mean that there are less searches than in the

past, but it means that a smaller share of searches in the drawn sample is dedicated to the

respective search-term. According to smartinsights.com2, Google’s total search volume

increased from a level of 1.2 billion searches per day in 2012 to about 4.5 billion in 2017.

This has a number of implications. First, it shows the importance of Google in the overall

internet search market today. Second, leaving the sample variance aside, the SVI numbers

provide a useful estimate for the propensity of people searching for a certain query at a

given time. Third, one has to bear in mind that the composition of Google users might

have changed over time. Thus, in essence, falling relative popularity of a search-term

over longer time frames and, therewith, a decreasing SVI, does not necessarily mean that

less people were searching for it; it may just mean that a whole lot of (new) Google

users were searching for something else at a certain time resulting in a lower SVI even

if the exact same number of searches for the respective search-term has been submitted.

Thus, the interpretation of the SVI as a proxy for search propensity within a given time

frame is useful. As the market share of Google in the search engine market lies around

90% worldwide since 20093, relating the volume of search-terms queried on Google to the

search-terms of all internet users seems justified.

Triggered by the market penetration of smartphones, a connection to the internet and,

thus, to Google’s search engine is omnipresent. These trends suggest that the overall

number of searches does not fluctuate much from day to day, but rather grows gradually

over the years as internet services become more widespread. Taking the sampling variance

into consideration, however, the fluctuations for search-terms with a small search volume

are large. Also, SVIs are only reported by Google as non-zero if the share indicates a

sufficient popularity. Unfortunately, it remains unclear which threshold Google defines as

’sufficient’. For search-terms with a small search volume, the use of SVIs is, thus, limited.

2 Source: https://www.smartinsights.com/search-engine-marketing/search-engine-

statistics/, last accessed: 2017-01-11
3 Source: https://gs.statcounter.com/search-engine-market-share#monthly-200901-201910,

last accessed: 2019-10-10.
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Table 1.1: Downloadable Frequencies and Time Frames

The table lists the maximum length of a time frame and the corresponding frequency of Google’s SVI
downloadable from www.google.com/trends as of October 2019.

Length Frequency Earliest available Date

no limit monthly January 1, 2004
5 years weekly January 1, 2004

270 days daily January 1, 2004
7 days hourly January 1, 2015

72 hours 16 mins January 1, 2015
36 hours 8 mins January 1, 2015
5 hours 1 min January 1, 2015

Keeping these perils in mind, we suggest to interpret Google’s SVI as relative interest in a

certain topic only for search-terms that exhibit very few missing or zero values.

Besides this interpretation issue, there are further limitations when using Google Trends.

For one, only five search-terms can simultaneously be compared with each other, and,

second, the maximum time frame for a download varies with the desired frequency. For

example, monthly Google Trends time series are made available without any limitation for

the entire history of searches, while daily data can only be obtained for time frames with

a maximal length of 270 days. Intraday data are only available for time frames starting

on or after January 1, 2015. Table 1.1 provides an overview of the available frequencies

(as of October 2019) along with the respective maximum length of the time series and

the earliest available date. To construct daily or intraday Google Trends time series for a

longer period of time, say several years, multiple SVIs have to be downloaded for smaller

time frames and concatenated.

1.1.1 The Rules of Google Trends

Before making the Google Trends time series available to the public, Google standardizes

the values of the SVI to the time frame the user wants to download. The values of the

SVI are also rounded to integers. Google does not reveal how exactly the standardization

is conducted. The description provided on Google’s FAQ website4, and reproduced here

for convenience, contains the following three rules (quote):

1) Each data point is divided by the total searches of the geography and time

range it represents to compare relative popularity. Otherwise, places with

the most search volume would always be ranked highest.

4 Source: https://support.google.com/trends/answer/4365533?hl=en , last accessed: 2019-10-15.
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2) The resulting numbers are then scaled on a range of 0 to 100 based on a

topic’s proportion to all searches on all topics.

3) Different regions that show the same search interest for a term don’t

always have the same total search volumes.

As Google does not provide a formal mathematical description, we present our understand-

ing of the above explanation in a mathematical framework. Note that rule 3 follows from

rules 1 and 2, and we thus only have to look at the first two in detail. Denote by T the

cover of the interval [0, T ], which is the overall time frame for which we want to download

a SVI time series. Let nj,i,t be the number of searches for search-term j ∈ S in region

i ∈ {1, . . . ,NR} in time interval t. S is the set of all distinct queries searched and NR is the

number of regions. t ⊂ T denotes the specific sub-interval for which the SVI is calculated.

Depending on the frequency, it may represent a month, a week, a day, an hour etc.

In rule 1, Google formulates the procedure to arrive at some comparable share of total

search volume sj,i,t. This is the relative propensity of searches for term j in region i for

time interval t:

sj,i,t =
nj,i,t

∑j∈S nj,i,t
=
nj,i,t
n⋅,i,t

.

In rule 2, Google describes the standardization procedure applied if the user chooses a set

of M = {j1, j2, j3} topics to compare. If the user chooses only one topic j1 (i.e., ∣M∣ = 1)

and selects region i1, this results in an index

SV Ij1,i,t = round(
sj1,i1,t −L

maxt∈T (sj1,i1,t) −L
) .

where L denotes the (unknown) threshold which defines the propensity level for which

Google deems that insufficient data are available.

Following the description in Google’s FAQs, we can extend this definition to a bundle

of search-terms, M, in region i during the time frame T . Google’s SVI for one specific

search-term j ∈ S is constructed as

SV Ij,i,t∣M,T = round
⎛

⎝

sj,i,t −L

maxm∈M
t∈T

(sm,i,t) −L

⎞

⎠
(1.1)

where sm,i,t denotes the relative propensity of searches in region i for time interval t. In

this way, the relative ratio between the subjects is preserved.

11



Ignoring the rounding of the index to an integer number, we can write Google’s SVI as an

affine-linear transformation of the scaled search propensity as

SV Ij,i,t∣M,T = αM,i,T + βM,i,T sj,i,t + νj,i,t, (1.2)

where the parameters α and β are given as

αM,i,T = −
L

maxm∈M,t∈T (sm,i,t) −L
,βM,i,T =

1

maxm∈M,t∈T (sm,i,t) −L
.

The rounding error νj,i,t can be assumed to be independently and identically distributed

(i.i.d.). In particular, it is independent of the total search volume sj,i,t.

Even though Google limits the length of the time frame which the user is allowed to choose,

the structure of the SVI as outlined in Equations (1.1) and (1.2) allows to construct a

consistent multi-annual SVI of arbitrary length based on downloading overlapping SVIs.

To do so, one can exploit the linear relationship between the SVIs obtained for two time

frames T and T ′ for the same point in time t ∈ {T ∩ T ′}, which is formally described as

SV Ij,i,t∣M,T = γ + δSV Ij,i,t∣M,T ′ + εj,i,t. (1.3)

δ and γ are the parameters of this linear relation and clearly depend on the region i,

the time interval t as well as the time frames T and T ′ as well as sets of simultaneously

downloaded search termsM andM′. For simplicity, all these dependencies are suppressed

in the notation of Equation (1.3).

Again, the rounding error εj,i,t is assumed to be i.i.d. More details on the derivation of

Equation (1.3) are provided in the appendix. We will use this linear relationship in the

next section to construct consistent multi-annual Google Trends time series.

1.1.2 Linear Regression and Evaluation

As there is little explanation made available by Google on how the SVI is calculated

exactly, and since the scientific literature that uses daily Google Trends SVIs is rather

unconcerned with a detailed explanation of constructing coherent time series, we deem

it necessary to clearly describe how we arrive at our algorithm. We assume, according

to the description Google provides, that Google adjusts the search volume according to

Equation (1.1) for a single search-term.

Another possibility, used by Google up to the end of 2011, is to standardize the time series

of search volume index values. To distinguish this standardization approach, we denote

the resulting index with vj,t, for some search-term j for some interval t ∈ [t0,T ]. Back
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then, Google subtracted the mean µt0,T , divided by the standard deviation σt0,T of the

number of searches within a certain time frame. Google then transformed the series to

unit mean µ̄ = 1 and unit standard deviation σ̄ = 1 to obtain the index

vj,t =
nj,t − µt0,T
σt0,T

σ̄ + µ̄. (1.4)

We know that Google made SVIs available according to Equation (1.4) in 20115. Back then,

the user could choose on which time frame the mean µt0,T and standard deviation σt0,T

would be calculated on. In ’relative mode’, mean and standard deviation were calculated

on the chosen time frame [t0, T ], whereas in fixed mode the user could choose a reference

time period [τ0, τ1]. The fixed mode allowed the construction of multi-annual, consistent

time series. Unfortunately, this is not the case anymore and only (another form of the

former) ’relative mode’ is available which, in our understanding, can be formalized by

Equation (1.1).

Due to Equation (1.3), however, we can knit separately scaled time series that are

downloadable from Google together if there are overlapping points in the data sets. In

theory, two overlapping points in time would suffice to identify the parameters γ and δ in

Equation (1.3). Since the relationship only holds approximately, we suggest at least 30

overlapping days. We estimate the parameters via standard ordinary least-squares (OLS)

regression. If the overlapping points contain a lot of zeros in both sets, an even longer

overlapping period is advisable. In our algorithm, we require that there are at least 30

days in the overlapping window where at least one of the two data sets has a non-zero

value. Furthermore, we require that within the overlapping time period each of the two

data sets taken alone exhibits at least 20 non-zero values.

According to whether we start with the youngest or oldest time frame when knitting

the time series together, we distinguish between the backward and forward method.

Furthermore, for each concatenation step, i.e., each time Equation (1.3) is used, we can

test whether our estimate for the constant parameter γ is statistically significant on a 5%

significance level. To calculate the test statistic, we use robust standard errors. If the null

hypothesis is not rejected on the 5% significance level in a two-sided test, we can choose

to re-estimate the linear relationship based on the model

SV Ij,i,t∣M,T = δSV Ij,i,t∣M,T ′ + εj,i,t. (1.5)

5 Source: Question 8 on https://web.archive.org/web/20101229150233/http://www.google.de:

80/intl/en/trends/about.html (Last access: February 13, 2018.)
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Figure 1.2: The Regression Based Construction Algorithm

The figure illustrates the forward method of the regression based construction algorithm.
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ŜV IA,tB = γ̂ + δ̂SV IB1,tB

A

A
B1

B2
B3

B4

The regression-based construction algorithm can be summarized in the following steps:

1. Download 270-day SVI data sets from Google for the time period of interest. Make

sure that each two subsequent data sets overlap by at least 30 non-missing values.

2. Estimate Equation (1.3) on the overlapping data points (do not exclude zeros). Begin

with the two data sets containing the youngest (backward method) or oldest (forward

method) SVI observations for a search-term. We call the data set containing the starting

point A and denote the values in it with SV Ij,i,t∣M,TA . The subsequent 270-day data

set is called B and the SVI values in it are denoted with SV Ij,i,t∣M,TB .

Test if the hypothesis for the intercept H0 ∶ γ̂ = 0 can be rejected. If so, keep estimates

for Equation (1.3). If not, estimate Equation (1.5).

3. Predict the SV Ij,i,t∣M,TA out of sample (over the time range of SV Ij,i,t∣M,TB without

the overlap) by using the estimates γ̂ and δ̂ for the relation in Equation (1.3) or only δ̂

if Equation (1.5) is used.

4. Concatenate the original SV Ij,i,t∣M,TA and the predicted values ŜV Ij,i,t∣M,TB to one

data set. This data set takes the place of data set A whereas B is replaced with the

next data set to be attached.

5. Repeat steps 2 to 4 until there are no further data sets left.

Figure 1.2 summarizes the steps of the algorithm (left) and illustrates the implementation

in an abstract way (right).
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Table 1.2: Correlations of Constructed and Original SVI

The table reports the correlation coefficients of the RBC SVI using the respective method with the original
search volume index as downloaded in 2012 by Dimpfl and Jank (2016).

With Intercept Optional Intercept

Index forward backward forward backward

CAC 0.9786 0.9777 0.9813 0.9804
DAX 0.9578 0.9758 0.9704 0.9779
DJIA 0.9911 0.9854 0.9913 0.9886
FTSE 0.9471 0.9610 0.9642 0.9615

We have two options to evaluate the accuracy of our proposed algorithm. First, we

compare a so-constructed data set to a data set which was obtained from Google when

immediate concatenation was still possible. Second, we can aggregate the RBC SVI to a

lower frequency and compare it to an SVI on this frequency obtained directly from Google.

The first option relies on the data sets used by Dimpfl and Jank (2016). In 2011, when

the authors collected the data, it was possible to download Google Trends SVI scaled

to a fixed reference date and simply string them together. Back then, the SVI was also

not rounded. Dimpfl and Jank (2016) downloaded data sets for the search-terms CAC

(related to the French stock index CAC40), DAX (related to the German stock market

index), Dow Jones and FTSE (related to the British Financial Times Stock Exchange

Index). The data cover Google’s SVI from July 3, 2006 until January 30, 2011 for searches

originating from the country in which the respective market is located.

For the construction of the SVI from currently accessible Google Trends time series, we

downloaded 24 separate data sets ranging back until 2004. Each data set contains 270

days and overlaps with the previous data set in at least 30 non-zero observations. We use

the data from Google Trends based on searches originating from the country in which the

respective index is located. The timezone is fixed to UTC+1.6

As we can either use the forward or the backward method, and choose to always include

an intercept or only if it is found to be statistically significant, we have 4 options to

construct the time series. Table 1.2 reports the correlation coefficients of the 4 methods

with the benchmark SVI times series. For all methods and search-terms, we find correlation

coefficients larger than 0.94. It turns out that we can increase the accuracy of the RBC

SVI time series by only optionally including the intercept parameter in the estimation.

Figure 1.3 compares the forward (upper panel) and backward (lower panel) RBC SVI

for the search-term Dow Jones when we always include an intercept to the benchmark

6 With the HTTP-request to Google Trends, a parameter tz is set to −60 if the request is made from
Germany which corresponds to a time-zone offset of 1 hour. We extended the gtrendsR-package
available for R to include the possibility to fix the time zone.
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Table 1.3: Correlation Between Naively Concatenated and RBC SVI with the Original SVI

The table presents the correlation of the naively concatenated and the RBC SVI with the original SVI
in levels and returns. The RBC SVI is calculated using the backward method including an intercept.
The biased returns are dropped from the naively concatenated SVI. The backward method including an
intercept consistently exhibits a higher correlation with the original SVI than using naively concatenated
SVI returns. For the backward method with optional intercept, this is not always the case. When
considering levels, the correlation of the RBC SVI with the backward method and optional intercept has a
high correlation with the original SVI.

In Levels Returns

Index RBC Naiv RBC Naiv

CAC 0.9777 0.2432 0.5078 0.4584
DAX 0.9758 0.2628 0.6358 0.5961
DJIA 0.9854 0.4036 0.7294 0.6496
FTSE 0.9610 0.2285 0.5837 0.5374

time series. Figure 1.4 compares the two methods when the intercept is only optionally

included when it turns out statistically significant in step 4 of the algorithm. Comparing

Figures 1.3 and 1.4, as well as Table 1.2, we can see that for the search-terms CAC, DAX,

Dow Jones and FTSE, all the methods perform well, but it seems admissible to use the

intercept only for concatenation if it is statistically significant.

When using SVIs in empirical work, usually the logarithmic growth rates of the SVI or

logarithmic first differences are used. To evaluate our method, we therefore report in

Table 1.3 the correlation between levels and first differences of the original SVIs of Dimpfl

and Jank (2016), the RBC SVI, and a naive concatenation where downloaded series are

attached to each other without adjustment. We interpret a correlation coefficient smaller

than 1 as a measure for the loss of information from the construction of the index.

As can be seen, the correlation between our RBC index in levels and the original one is

very close to one. In contrast, the naive concatenation comes at the cost of a huge loss

of information. This is in line with Figure 1.1 which shows that the naive concatenation

method results in an SVI time series which does not correspond to the original SVI series

at all. When using returns, the backward RBC SVI (with intercept) consistently exhibits

a higher correlation with the original time series than the naive SVI log-returns.

In order to evaluate whether our proposed regression-based construction method preserves

the statistical properties of the SVI, kernel densities and moments based on log-returns

of the original SVI, log-returns of the RBC SVI as well as log-returns from the naively

concatenated SVI are calculated. The kernel densities are displayed in Figure 1.5. For

the return series, it turns out that constructing the SVI backwards and always including

an intercept is the best choice for all series as this kernel density is closest to the one of

the original data. The naive concatenation always results in the worst approximation of
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Figure 1.3: Comparison: RBC SVI and Original Google SVI – Search-Term Dow Jones

Google’s original SVI index as downloaded on 30-1-2011 (right scale, black line) compared to the RBC
SVI based on currently available data (left scale, blue line). For the construction, a linear transformation
is used that always contains a constant.
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Figure 1.4: Comparison
of RBC SVI (Optional Intercept) and Original Google SVI – Search-Term Dow Jones

Google’s original SVI index as downloaded on 30-1-2011 (right scale, black line) compared to the RBC
SVI based on currently available time series (left scale, blue line). When constructing the SVI, in this case
we excluded the constant from the linear transformation, when we were not able to reject the hypothesis
γ = 0 based on a t-test with robust standard errors.
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Table 1.4: Moments of the Original, Naive and RBC SVI

The table displays the mean µ, standard deviation σ as well as the skewness and kurtosis of the returns of
the original SVI (Original) and of the backward regression-based constructed (RBC) for various search-
terms. When constructing the SVI returns backwards, an intercept is always included. The third line
(Naive) presents the moments, if returns are calculated on a naively concatenated SVI time series. As the
naively, concatenated SVI simply chains data time frames of 270 days together, the fourth line (Naive Ex.)
tables the moments, if the biased inter-time-frame-returns are excluded from the naively concatenated
time series.

Query Series µ σ Skewness Kurtosis

CAC

Original 0.00 0.15 0.84 9.60
RBC 0.00 0.15 0.60 7.27
Naive -0.00 0.26 0.18 4.40
Naive Ex. -0.00 0.25 0.15 4.01

DAX

Original 0.00 0.15 1.51 19.12
RBC -0.00 0.15 0.81 10.38
Naive -0.00 0.23 0.28 9.28
Naive Ex. 0.00 0.22 0.53 7.61

DJIA

Original 0.00 0.17 1.67 15.57
RBC 0.00 0.20 0.95 9.53
Naive -0.00 0.27 0.43 10.60
Naive Ex. 0.00 0.26 0.75 8.95

FTSE

Original -0.00 0.16 1.52 14.73
RBC -0.00 0.14 0.60 7.72
Naive -0.00 0.25 0.41 5.90
Naive Ex. -0.00 0.24 0.40 5.43

the original data, even if returns across the border points at which adjacent time frames

are concatenated are excluded. The comparison of moments is presented in Table 1.4.

The means of the logarithmic growth rates of the original as well as all RBC/naive SVIs

are centered around zero. However, the log-returns of the naive SVI are (in some cases

decisively) more volatile. Also, naive concatenation reduces skewness and kurtosis by much

more than our proposed algorithm, alienating the distributional properties further from

the original data. Considering volatility, skewness and kurtosis together, the returns from

the backward RBC SVI (with intercept) reflect the moments of the original SVI best and

in particular much better than the returns from the naively concatenated SVI.

Based on all the criteria above, we conclude that the regression-based construction of the

SVI according to our algorithm is sensible and useful. It is able to mimic the statistical

properties which a hypothetical time series that Google could provide might have. This is

most important if the data are to be used in levels (which is often the case in forecasting

applications). If first differences are used, our methodology still performs better than a

naive concatenation, but the differences are not as pronounced any more as for the levels.
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Figure 1.5: Density Comparison of the Logarithmic Growth Rates of SVIs

This figure compares the kernel density of the logarithmic growth rates of Google’s original SVI as
downloaded on 30-1-2011 (black line) to the kernel density of the logarithmic growth rates of the RBC
SVI based on currently available data (blue line). For the construction, the backwards method is used.
The density of a normal distribution with the same mean and standard deviation as the original SVI is
displayed with a dotted red line. In green, the kernel density estimation for the naively concatenated
SVI returns are displayed, which is almost identically with the naively kernel density estimate of the
concatenated SVI returns without the biased inter-time-frame-returns. The latter is depicted by the
orange dashed line.
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Figure 1.6: Comparison of Original and RBC Weekly SVI – Search-Term ”DAX”

The graph compares Google’s original weekly SVI (black line) and our transformed, aggregate weekly
RBC SVI (red line) for the term ”DAX”.
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As Google makes SVI time series available for longer time horizons with weekly resolution

and in order to evaluate the RBC algorithm with another data set directly obtained

from Google, we aggregate our constructed time series to a weekly frequency. For this

comparison, we limit ourselves to the SVI which turned out most accurate in the evaluation

above, i.e., the SVI based on the backwards construction with optional estimation of the

intercept. We aggregate it by taking the weekly sum of the daily observations.

After this aggregation step we still need to account for the scaling of the time series.

Therefore, we regress the downloaded weekly time series on the aggregated RBC SVI and

calculate the fitted values. The success of the method is illustrated in Figure 1.6 for the

DAX in which fitted values and the downloaded SVI series are shown. The two time series

can almost not be distinguished by the naked eye. The high fit is also supported by the

high R2s that result in the auxiliary regressions (not reported). These are above 98% for

all considered search-terms.

1.1.3 Time Frame Comparison

With the recently added functionality of comparing SVI values over different time frames,

Chronopoulos et al. (2018) suggest an algorithm to concatenate Google’s SVI over different

time frames to a consistent time series. Google Trends allows to download (up to five)

different time ranges for comparison. All values are then scaled to the maximum search

intensity within the (up to) five selected time ranges. Hence, once the time frame with the
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highest intensity is found, one can download other time frames and compare them to this

time frame. This ensures that the reference point for Google’s standardization is fixed and

a consistent time series can be produced.

Following Chronopoulos et al. (2018), we employ the time-frame comparison algorithm

(TFC algorithm) to download a multi-annual time frame T as follows:

1. Download monthly data since 2004 and find the maximum SVI within T .

2. Construct a time frame, A, that contains weekly data around the month with the

maximum value within T .

3. Download up to 4 other (adjacent) different time frames (B,C,D,E) on a weekly

frequency at the beginning of T together and in comparison to A. Concatenate them.

4. Check if the maximum value in the downloaded data is still in A. If the maximum

value is in A, substitute the four time ranges, B,C,D,E, with new time ranges and

concatenate the result. If the maximum value is not in A, substitute A with the

time range that includes the maximum value and start anew at step 3. Repeat this

step until the entire time period T is covered.

5. Find the maximum SVI in the concatenated data set that spans over T .

6. Start with step 2 again. Use the next lower frequency (daily, hourly, 16min, 8min,

1min).

The method works for most search-terms which is illustrated in Figure 1.7 for the search-

term “DAX”. Even though the concatenated time series only contains integers between 0

and 100, it exhibits the same dynamic as the original SVI downloaded in 2011 that allowed

for non-integer values.

However, an issue with the TFC method arises when there was a (short) hype for a certain

query such as for the search-term Bitcoin, for example. Since all values are scaled, in the

case of a hyped query, dynamics in periods with low search volume are set to zero by the

concatenation method employed by Chronopoulos et al. (2018). In essence, we find that if

the attention for a subject spikes at some point over several years, the dynamics at lower

values of the SVI is diluted by Google’s scaling between 0 to 100 and the unknown threshold

value L (cp. Equation (1.1)). This pathological case is illustrated in Figures 1.8a and 1.8b.

When plotted for multiple years (Figure 1.8a), the TFC SVI very often takes a value of 0.

In Figure 1.8b, where the TFC SVI time series (black line) is compared to the original SVI

time series (blue line) that can be directly downloaded from Google for the time frame

from April 5, 2012 until October 31, 2012, the problem becomes even clearer. The black

line of the concatenated time series only spikes at the end of August and at the mid of
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Figure 1.7: Comparison of Original and RBC SVI – Search-Term “DAX”

The figure compares Google’s original weekly SVI for the search-term“DAX”(black line) and a concatenated
SVI using Google’s time frame comparison (red line), based on the methodology suggested by Chronopoulos
et al. (2018).
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November 2012. At all other dates it remains zero. Hence, it either decisively over- or

underestimates the relative search propensity. It also does not provide information about

its dynamics which is the key to many forecasting applications. For comparison, we include

in Figure 1.8b also the RBC SVI time series using our methodology presented above (red

line). As can be seen, the RBC SVI captures the dynamics of the original SVI very closely.

This gives us reason to claim that our algorithm is a robust method which can deal with

these kind of pitfalls that may come up when constructing consistent, multi-annual SVIs.

1.1.4 Coherent Scale

The algorithms presented and evaluated above work for up to five search-terms since Google

limits the comparison to five search-terms. In order to assess the relative popularity of one

search-term with more than five, we can again use the linear relation of the search-terms

of Equation (1.3). The structure of the SVI allows to circumvent Google’s limitation and

to compare an arbitrary number of search-terms.

For this purpose, suppose we have two sets of search-terms M = {j1, j2, j3, j4, j5} and

M′ = {j1, j6, j7, j8, j9}. In order to convert all SVIs for all of these search-terms into a

coherent scale, we proceed as follows:
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Figure 1.8: Comparison Original SVI and TFC SVI

The top graph presents the concatenated SVI using Google’s time frame comparison (TFC) for the
search-term Bitcoin. The TFC SVI is plotted over several years. As can be seen, for periods prior to
2013 the series exhibits no dynamics and is often zero or close to zero. However, the original time series
within 2012 is far from being constant, as can be seen in the bottom graph, where the original time series
from 05-04-2012 until 31-10-2012 is compared on a daily basis to the TFC SVI and the RBC SVI. In the
bottom graph, the TFC as well as the RBC SVI use the same scale giving the impression that they fall
apart. The important thing is, however, that they exhibit a rather strong co-movement.
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Table 1.5: Comparison of Concatenation Procedures

The table compares our regression-based algorithm (RBC) to construct multi-annual time series with a
naive concatenation method (naive) and the time-frame comparison approach used by Chronopoulos et al.
(2018) (TFC). ✓ means that the respective feature is fully available, with a (✓) limited availability is
indicated, and × signifies that the feature is not supported.

RBC Naive TFC

Produces consistent time series ✓ × (✓)1

Handles outliers ✓ ✓ ×

Construct useful level data ✓ × (✓)1

Construct useful return data ✓ (✓)2 (✓)1

Comparable Searchterms ✓ × (✓)3

1 Feature is restricted if search-term is subject to a short hype.
2 Distributional properties are partially matched.
3 Only up to 2 search-terms can be compared.

1. Estimate the following regression model

SV Ij1,i,t∣M′,T = γ + δSV Ij1,i,t∣M,T + εj,i,t,

and calculate the fitted values ŜV Ij1,i,t∣M′,T .

2. Calculate the ratios

Rj,i,t =
SV Ij,i,t∣M,T

SV Ij1,i,t∣M,T

∀t ∈ T ,∀j ∈M.

3. Multiply the ratios with the fitted values from step 1 to obtain the adjusted SVIs

converted to the scale used in M.

Note that if sj,i,t ≫ L and sj1,i,t ≫ L, Rj,i,t is approximately equal to the ratio of searches.

Rj,i,t =
sj,i,t −L

sj1,i,t −L
≈
sj,i,t
sj1,i,t

=
nj,i,t
nj1,i,t

.

In any case, Rj,i,t can be interpreted as the ratio of distances of the search propensity to

the threshold value L.

To compare the different concatenation methods presented in this chapter, Table 1.5

summarizes the supported features of each of these methods.
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1.2 Empirical Application: Predicting Inflation and Con-

sumption

1.2.1 The Index of Prices Searched Online (IPSO)

As argued in the introduction, search queries should reflect information demand of individ-

uals, i.e., of consumers. When it comes to consumption decisions, they may be interested

in a product, but may not be willing to pay more than a certain amount. Hence, they

might gather product related information and also look for stores (online or offline) where

the price threshold is respected. If they are successful, they may subsequently engage in

buying a product. Hence, search queries with a limit price (irrespective of the product)

bear information on consumption behavior of online users and, in addition, about their

expectation of future prices, i.e., inflation.

Recently, D’Acunto, Malmendier, Ospina and Weber (2019) report that based on their

daily errands, consumers infer individual inflation expectations. If at least some consumers

use Google and search for prices online, these individuals reveal information about either

prevailing prices and/or their willingness to pay. The share of consumers that search for

prices online and have searched for $10 compared to those that have searched for $50

should, thus, contain information on the current price level (online) and/or the aggregate

willingness to pay (online).

The methodology to construct comparable multi-annual time series presented in the

preceding section bears the possibility to construct an Index of Prices Searched Online

(IPSO). In this context, it is also interesting that Google offers the possibility to explore

the most common queries submitted from users who searched for a given search-term.

This functionality is called related queries. For our purpose, we can deduce from this

functionality that when people search specific prices online, e.g. $1, they usually want to

find a product that is available for less or exactly $1. Table 1.6 lists the top 25 search

queries related to the search-term $1. Instead of the official symbol for US-dollars, people

may also use the word dollar or the currency acronym USD. With these other dollar

references, the related queries function of Google shows that users also search for specific

price levels when they would like to know the exchange rate of the specified amount

into another currency. Anecdotal evidence also suggests that such searches are often

connected to a product, found online, of which the price is only given in dollar, but the

user is more acquainted with another currency. We do not expect that currency traders or

other professionals that regularly exchange large amounts of money use Google to gather

information about exchange rates.
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Table 1.6: Related Queries to $1 in the US

The table lists the top 25 related queries on Google to the search-term $1 originating in the US.

$1 million
$1 movies
$1 coin
$1 bill
applebees $1
applebee
$1 movie
$1 store
regal $1 movies
applebees $1 drink
$1 tree
$1 in pesos
$1 silver certificate

$1 coin value
$1 drinks
stocks under $1
summer movies 2019
$1 books
$1 summer movies 2019
$1 taco bell
$1 pizza
$1 theater
krispy kreme
krispy kreme $1 dozen
regal $1 summer movies

As the search behavior of Google users when searching for prices is related to consumption

decisions (especially for price levels below 10,000 Dollar or Euro), we can take Google’s

SVI and construct an expected-value-like index of the price levels searched online and

relate it to consumption and inflation. The construction of this expected value is possible,

since for each point in time, Google’s SVIs preserve the relative popularity of a search-term

or at least it’s distance to the threshold value. In other words, the SVI is proportional to

the search propensity (minus the threshold value) of a certain search-term and only differs

from the propensity by a normalizing factor, i.e.,

SV Ij,i,t∣M,T ∝ (sm,i,t −L).

For the price levels P = { 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 20; 30; 40; 50; 60; 70; 80; 90; 100; 200;

300; 400; 500; 600; 1,000}, having at hand a set of identically scaled SVIs, denoted MP ,

for each point in time t, we can construct an approximation of the distribution function

for the probability that the price level a Google user searches is smaller than p. Careful

examination of the SVIs related to price levels above 1,000 has led us to the conclusion

that the data quality of the SVIs used is paramount. For that matter SVIs for price levels

above 1,000, which are often below the threshold or were not part of Google’s sample

within a specific day or month, exhibit a lot of missing values and had to be excluded from

the analysis. These SVIs for sparsely searched price levels would cause large jumps in the

IPSO since they have positive values only on a few days or months, when searches reach

the threshold. Also, price levels of above 1,000 denoted in Euro or Dollar are supposedly

less likely connected to consumption products and might have less informational content
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with respect to inflation or consumption prediction. There are also practical reasons as

for very large six-digit price levels the search-terms become to long for the Google Trends

API.

In order to approximate the cdf from the SVIs, we first calculate for all p ∈ P a discrete

(empirical) distribution function over our set of prices P

F (p) = Prob(P ≤ p) ≈
∑
p
s=1 SV Ijs,i,t∣P,T

∑s∈P SV Ijs,i,t∣MP ,T

. (1.6)

In a second step, we approximate the probability density function by a discrete probability

mass function for our set of prices P . Therefore, we calculate the differential quotient from

the points obtained by Equation (1.6) as

f(p) ≈
∆F (p)

∆p
.

For these calculations, we insert an extra point and assume that zero prices are searched

with probability zero.

In a third step, we then calculate the expected value of prices searched online through the

discrete probability mass function which we call the index of prices searched online

IPSO = E[P ] ≈ ∑
p∈P

pf(p).

Figure 1.9 shows the estimated cdf in blue as well as the corresponding linearly approx-

imated density function in green. The estimated expected value is shown as a vertical

black line. Such an approximated density function would assume that searches for prices

are equally likely between the discrete price levels. However, online users do not search

with equal probability for price levels between the levels included in our analysis. To make

this more clear, online users are less likely to search for $1.54 than $1 or $2. As rounded

values are usually searched by online users, we assume that our discrete version provides

a sufficient approximation to the true expected value of online searched prices. The fact

that the SVIs for higher price levels exhibit a lot of missing values speaks for a neglectable

probability mass related to the excluded upper tail of the price distribution.

The set of coherent SVIs, denoted Mp, which we use to construct the IPSO, is based

on a bundle of search-terms. Since US users may reference the currency searched for

with different symbols, names or abbreviations, we construct for each price level p ∈ P a

search-term as follows:

$p + p$ + p $ + pusd + p usd + p dollar −million −billion
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Figure 1.9: Empirical Distribution Function

The graph shows the empirically approximated distribution function for searched Dollar amounts on April

30th, 2018, in blue and the related density function in green. The black vertical line is the estimated

expected value.
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Note that + is the OR-operator when using Google Trends while − is the exclusion

operator.7 Also note that Google Trends interprets a blank space as an AND operator.

Furthermore, Google is not case sensitive. Since in the English price notation the currency

is specified first, we include all permutations in the search. The terms million(s) and

billion(s) are (in the US) frequently searched together with Dollar signs and numbers.

Hence, we exclude them from our search-term as they clearly belong to a much higher

price level.

For users that are searching for Euro prices, there are even more possibilities to reference

the Euro. This is of particular importance when worldwide searches are considered in

our application. Google does not offer the possibility to restrict the SVI to include only

searches originating from countries in the Euro Area. Since the HTTP-request to Google

Trends cannot incorporate all possibilities, we stick to the Euro names in the largest

economies as well as to the symbol and the abbreviation EUR. The words millions and

billions, or any other quantification of Euros, is not as frequently searched together with

Euro prices compared to Dollar prices. Therefore, the search-term for amounts denoted in

Euro is constructed for each p ∈ P as

p euro + p eur + eurp + pe + e p + p e + p ευρώ + p euros + p euroa

7 Source: https://support.google.com/trends/answer/4359582?hl=en (last visited: 09-09-2019)
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In addition, we omit the Slovenish, Estonian, Latvian, Maltese, and Lithuanian names for

the Euro.

As a check for robustness, we use the possibility Google offers to limit the geographic

origin of searches for Euro prices to Germany or France (as the two largest economies

in the Euro Area), separately. When we consider searches from Germany or France, we

construct the search-term for each p ∈ P as

p euro + p eur + eurp + pe + e p + p e + p euros

To download the data, we use a slightly modified version of the gtrendsR-package maintained

by Massicotte and Eddelbuettel (2018) in R.8

The IPSO can be constructed on a number of frequencies. Monthly IPSOs, for the US

and the Euro Area, are shown in Figures 1.10a and 1.10b, while daily IPSOs are shown in

Figure 1.10c. For the daily IPSO, the method presented in the previous section is used

to construct multi-annual coherent time series, while for the monthly IPSOs coherent

time series can be downloaded directly. For the multi-annual daily and monthly time

series, the method laid out above has to be used to make them comparable. Descriptive

statistics are available in Table 1.7. For the US the expectation of the prices searched

online, the daily IPSO, is on average at around $165 and varies with a daily standard

deviation of around $3. The average monthly IPSO for the US is around $111. The lower

scale of the monthly average may be due to Google’s scaling of the data. First, on a

monthly frequency, Google’s threshold as referred to in Equation (1.1) might be higher

and since a larger time frame is considered the maximum search intensity is higher as

well. Since for price levels above $1,000, search volume seems to be lower, higher price

levels are weighted less. Additionally, recall that the (average of the) daily expected values

does not have to be equal to the (average of the) monthly expected value. This means

that monthly and daily levels are not comparable. Interestingly, however, the level of

the IPSO for prices in Euro based on worldwide searches, as well as for the Dollar based

on American searches are comparable. However, the dynamics of the IPSO may contain

valuable information. This is because, in theory, expected price inflation should lead

to a shift in search propensities of different price levels. As inflation expectations rise,

Google users should exhibit a tendency to more often search for higher price levels. This

is then reflected in a higher IPSO. However, since Google estimates the SVIs based on

samples of searches, the sample variation may introduce noise into the measurement of the

IPSO. Furthermore, other factors that influence search behavior, such as the publication

or availability of collector coins, may also play a role for certain price levels and introduce

noise unrelated to inflation.
8 Our pull request to incorporate the operator functionality into the development version of the package

has been accepted by the maintainers on September 9th, 2019, available on github.com/PMassicotte/

gtrendsR.
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Figure 1.10: The Index of Prices Searched Online

The figure shows the constructed time series for the IPSO as set out in the section above for the US in
Dollar and the Euro Area, naturally, in Euro. The absolute value of the IPSO constructed on a daily basis
is not entirely comparable to that constructed on a monthly. This is because Google’s monthly threshold
may differ from the daily threshold, and the monthly IPSO is not simply the average of the daily IPSOs.
The daily IPSOs range back till January 1, 2010, while the monthly start in January, 2006. However, the
levels within one time series are comparable. The IPSOs depicted are constructed on search-terms for the
price levels P = { 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 20; 30; 40; 50; 60; 70; 80; 90; 100; 200; 300; 400; 500; 600;
1,000}
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Thus, we consider in our analysis the logarithmic growth rates of the IPSO in percent,

referred to in Table 1.7 as ∆IPSO. Also, inflation and the consumption measures are

reported as logarithmic growth rates in percent. The average 0.149% for monthly US-

inflation can be converted to an average annual inflation rate of 1.788%. Similar conversions

can be calculated for all other monthly and daily logarithmic growth rates. There are

some puzzling results. The average monthly ∆IPSO in the US implies an annual reduction

of around −2%, while the median ∆IPSO implies an annual reduction almost −9%. For

the EU the monthly ∆IPSO seems to be more centered.

32



1.2.2 Macroeconomic Data

As official inflation and consumption data are available on a monthly frequency or lower,

we test the forecasting ability of our measure on monthly macroeconomic data. For the US,

we consider inflation measured as the logarithmic growth rate of the Consumer Price Index

as published by the U.S. Bureau of Labor Statistics (2019) and the logarithmic growth

rate of real personal consumption expenditure from the U.S. Bureau of Economic Analysis

(2019). For the Euro Area, we consider the growth rate of the harmonized consumer price

index (HCPI) published by the ECB.

With respect to personal consumption expenditure in the Euro Area, we are faced with

the situation that the ECB only publishes quarterly data. Thus, to keep our analysis

simple, we consider instead the growth of loans granted to households for consumption

goods (excluding transportation and equipment) in the Euro Area.

To support our analysis for the US inflation, we also use inflation linked T-Bills to infer a

daily measure for inflation, the so called break-even inflation rate. We calculate the break

even inflation rate from

BEIRt =
1 + it,nom

1 + it,real

− 1,

where we use the market yield on U.S. Treasury securities at 5-year constant maturity,

quoted on investment basis and inflation-indexed9, denoted as ireal and the market yield

on U.S. Treasury securities at 5-year constant maturity, quoted on investment basis10,

denoted as inom.

1.3 Econometric Approach

To evaluate the forecasting ability of the IPSO, we use pairwise vector autoregressive

models (VARs). In each VAR, we use the IPSO and one other macroeconomic time series.

For each pair, we conduct a Granger causality test, i.e., we test the hypothesis whether

past values of the IPSO can help to predict inflation or consumption expenditure. The

analysis is conducted in R using the vars-package (Pfaff 2008). In a first analysis, we

only consider a VAR(1). We then extend the analysis on the basis of the Schwarz-Bayes

Information Criterion (BIC) to select the lag length of the model p.

9 Board of Governors of the Federal Reserve System (US), 5-Year Treasury Constant Maturity Rate, re-
trieved from https://www.federalreserve.gov/datadownload/Choose.aspx?rel=H15, Unique Iden-
tifier: H15/H15/RIFLGFCY05 XII N.B

10 Board of Governors of the Federal Reserve System (US), 5-Year Treasury Constant Maturity Rate, re-
trieved from https://www.federalreserve.gov/datadownload/Choose.aspx?rel=H15, Unique Iden-
tifier: H15/H15/RIFLGFCY05 N.B
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Figure 1.11: IPSO Growth and Macroeconomic Time Series

The figure shows in each panel the growth of the IPSO for the Euro Area or the US constructed on
search-terms for the price levels P = { 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 20; 30; 40; 50; 60; 70; 80; 90; 100; 200;
300; 400; 500; 600; 1,000} in red. The black lines are either US consumption growth, US inflation, EA
inflation or EA consumption loan growth.
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(b) ∆USD-IPSO and US-Inflation

2008 2010 2012 2014 2016 2018−
40

−
20

0
10

20
30

Time

G
ro

w
th

 o
f L

oa
ns

 t
o 

H
ou

se
ho

ld
s 

F
or

 C
on

su
m

pt
io

n

−
30

−
20

−
10

0
10

20
30

IP
SO

 G
ro

w
th
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The model set up for the VAR(p) is

xi,t = µi +
pi

∑
j=1

Ai,jxi,t−j +
S−1

∑
r=1

bi st−r + εi,t, (1.7)

where xi,t is a 2 × 1 vector that contains the logarithmic growth rate (in percent) of the

IPSOt as well as the logarithmic growth rate (in percent) of the variable of interest in the

various specifications. For monthly data, we only consider logarithmic growth rates as the

level prices are non-stationary and we are interested whether or not changes in the IPSO

are helpful to predict consumption growth or inflation. Also in the case of the daily BEIR,

we consider logarithmic growth rates.

The subscript i refers to the different combinations of time series. Ai,j are the 2 × 2

parameter matrices while µi is a vector of constants. st is a centered seasonal control

variable. When controlling for annual seasonality, i.e., S = 12, we include S − 1 = 11 lags of
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the control variable st. It is constructed as st = Dt −
1
S ∑

12
r=1Dt where Dt is a month specific

dummy variable which is 1 for a certain month and otherwise 0. In all of our VAR-models

for monthly time series, we control for annual seasonality. In the case of the BEIR time

series, on a daily frequency, we do not include any seasonal control variables. We assume

the innovations εi,t to be i.i.d. pi is the lag-length, either fixed to 1 or selected by the BIC.

To test for Granger causality (Granger 1969), we use the heteroskedasticity consistent

jackknife estimator of Efron (1982). Furthermore, we test for contemporaneous correlation,

termed instantaneous Granger causality, between the measures based on the test-statistic

developed by Granger (1969). However, Granger causality tests the in-sample relevance

of the measure. In order to assess the out-of-sample forecasting ability, we analyze

the out-of-sample forecasting performance with a rolling one-step ahead forecast. For

each prediction xi,t+1, we re-estimate a model based on the preceding L = 84 monthly

observations equivalent to the last 7 years of monthly data. For the break-even inflation

rate, which can be measured on a daily frequency, we use the last L = 250 observations

equivalent to the observations for the business days of the last year. In each window the

lag-length is either fixed to 1 or newly selected by the BIC.

To evaluate the forecasts, we report the out-of-sample root mean squared prediction error

RMSPEi of the predicted macroeconomic time series,

RMSPEi =

¿
Á
ÁÀ 1

T −L

T−1

∑
t=L

(xi,t+1 − x̂i,t+1)
2,

where xi,t+1 is the observed macroeconomic variable of interest, i.e., inflation or consumption.

For simplicity, we mostly report the RMSPEi only for out-of-sample forecasts in which the

lag-length in each rolling window has been selected by the BIC. However, in the case of the

test developed by Clark and West (2006, 2007), we have to use a one-size-fits-all estimation

strategy in which we fix the lag-length to pi = 1 across all forecasting windows. Only

then, we can test whether the RMSPE is significantly reduced when including the IPSO

by using the methodology of Clark and West (2006, 2007) for nested models. For that

purpose, we have to estimate a baseline model without the IPSO on the macroeconomic

time series of interest. The base model needs to be nested in the extended model including

the IPSO. In our case the base model is an auto-regressive model of order one, AR(1) and

the extended model is a VAR(1), including the IPSO. The null-hypothesis of the test is

that including the IPSO in the model setup does not affect the out-of-sample RMSPEi

and will result in the same forecast error as for the base model.
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The test statistic is calculated as

z = RMSPE0 − (RMSPEi − κi),

whereRMSPE0 is the root-mean-squared error of the base model, κi =
1
T−i ∑

T
t=p x̂i,t+1−x̂0,i,t+1

and x̂0,i,t+1 denotes the forecast of the base model for the macroeconomic time series i.

Critical values are available from Clark and West (2006, 2007).

We also calculate the R2 of the Mincer and Zarnowitz (1969) (R2
MZ) regression of the

realizations xi,t+1 on the out-of-sample forecasts x̂i,t+1 from the respective model. The

regression equation reads

xi,t+1 = a0 + a1x̂i,t+1 + em,t+1.

The higher R2
MZ the better the forecast.

1.4 Empirical Results

Our analysis focuses on two aspects. As set out above, we test for Granger and contempo-

raneous causality in-sample. With these tests, we check whether it does help to know the

current and the past values of the IPSO to predict consumption or inflation on a monthly

basis or not. For the US, we also analyze the relevance of the IPSO on daily basis for the

break-even inflation rate backed-out of bond yields. We check both the in-sample fit and

the out-of-sample prediction to examine whether they improve with the inclusion of the

IPSO or not.

1.4.1 US Results

We find that the IPSO as well as US-inflation exhibit strong seasonal components. The

results for the US are displayed in Table 1.8. In the case of consumption the in-sample

RMSE is not affected by the inclusion of the seasonal control variables. For US inflation the

RMSE, however, is slightly reduced. We conclude that controlling for seasonal dummies

is more important for consumption than inflation.

When controlling for the annual seasonal component (S = 12), the IPSO Granger causes

US-inflation at least on the 10% significance level. Not controlling for annual seasonal-

ity, renders a bi-directional Granger causality on the 5% significance level as well as a

contemporaneous correlation on the 10% significance level.

Interestingly, when controlling for the annual seasonality, the hypothesis that US-consumption

is not contemporaneously correlated with the IPSO can be rejected on a 5% significance
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Table 1.8: USD-IPSO: Causality Tests

The table shows the lag-length p selected by the BIC as well as the p-values for the Granger causality and
contemporaneous causality test. Furthermore, the in-sample RMSE is reported. The column denoted
IPSO→ shows the p-value for the test on whether IPSO Granger causes the respective other variable; the
column →IPSO shows the result on whether the IPSO is Granger caused by the respective variable.

Series S p Granger Contemp. RMSE
IPSO→ →IPSO

US Inflation
0 2 0.030 0.000 0.086 0.309
12 1 0.080 0.338 0.644 0.272

US
Consumption

0 1 0.886 0.815 0.322 0.280
12 1 0.875 0.324 0.039 0.281

US BEIR 0 2 0.306 0.427 0.036 0.030

Table 1.9: Out-of-Sample Fit: US Inflation and Consumption

The table displays the RMSPE and R2
MZ for the models with the IPSO (i.e., VAR(pi) models) and

without the IPSO (AR(pi) models) for the listed macroeconomic time series. For each time series, different
seasonality components are controlled for (S ∈ {0,4,12} for inflation and consumption and S ∈ {0,5,30}
for the US-BEIR) and the respective RMSPE and R2

MZ are reported. If the difference between the
RMSPEs of the models with and without IPSO is negative, then including the IPSO helps in predicting
the respective time series. For the difference of the R2

MZ it is the other way around: If the difference here
is positive then the IPSO increases the quality of the out-of sample prediction.

S with IPSO without IPSO Difference

US Inflation
RMSPE

0 0.172 0.277 -0.104
12 0.137 0.196 -0.059

R2
MZ

0 26.95 25.83 1.12
12 54.89 54.05 0.84

US
Consumption

RMSPE
0 0.180 0.364 -0.184
12 0.189 0.266 -0.078

R2
MZ

0 1.12 5.96 -4.84
12 1.76 1.45 0.31

US BEIR
RMSPE 0 0.0205 0.0459 -0.0253

R2
MZ 0 2.7696 4.7620 -1.9924
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level. On a daily frequency, an instantaneous correlation between the IPSO and the BEIR

can be established on a 5% significance level.

Out-of-sample the results for the RMSPE and the R2
MZ , reported in Table 1.9, give

also clues that including the IPSO helps in forecasting inflation and surprisingly also

consumption. Introducing the IPSO, reduces the RMSPE of forecasted monthly inflation

by 5.9 basis points when also controlling for seasonality i.e., a decrease of slightly less than

a third. Converted to yearly inflation rates, this would amount to a sizable reduction in the

RMSPE of around 70.8 basis points. When controlling for annual seasonality, including

the IPSO in forecasting US-inflation also increases the R2
MZ slightly. For the daily BEIR

measure, including the IPSO, effectively, more than halves the RMSPE. However, the

R2
MZ is decreased for the daily BEIR. In predicting consumption, the IPSO reduces the

RMSPE whether one controls for annual seasonality or not. However, the R2
MZ is only

increased slightly in the case when one includes seasonal dummies.

The results for the Clark-West test, presented in Table 1.10, calculated from the fixed

lag-length VAR(1) and AR(1) models on the various time series, indicate that including the

IPSO in the US inflation forecast reduces the RMSPE significantly on a 5% significance

level when controlling for monthly seasonal figures (S = 12). Not controlling for seasonality,

the Clark-West test, also, is in favor of the IPSO inclusion for inflation (S = 0). For

US-consumption, the results of the Clark-West test are entirely insignificant, as well as for

the daily BEIR.

We can see that the seasonal figure included in inflation is, to a large extent, mimicked by

the IPSO. However, beyond the seasonal figure, the IPSO still helps in predicting inflation

and exhibits a precursory and contemporaneous Granger causality. Knowing today’s IPSO,

apparently, helps to forecast tomorrow and today’s inflation in the US.

1.4.2 Euro Area Results

In order to check the robustness of the above findings, we repeat our analysis for the

Euro Area. However, the situation for the Euro Area (EA) is rather complicated. As

Google does not provide the possibility to limit the basis of searches on which the SVIs are

calculated to the EA, we have to find proxy SVIs for the Euro price SVIs by setting other

geographical limitations. Therefore, we simply take the basis of searches for Euro price

levels worldwide. This might include searches for Euro price levels from other countries,

and, thus, might add noise to the EA IPSO. This might hamper the correlation with

inflation and consumption within the EA. In addition, we take the largest economies in the

EA (France and Germany), and examine whether searches from within these two economies

have any relation with EA consumption or inflation. The Google user basis in Germany

or France, however, only partially matches the Euro Area’s user basis in total. Possible
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Table 1.10: Clark-West Test Results

The table displays the test statistics of the test developed by Clark and West (2006, 2007). In the test, an
AR(1) for inflation or consumption is compared with an equivalent VAR(1) which also includes the IPSO
as defined in Equation (1.7). For worldwide searches as well as searches from France and Germany, the
forecasts for inflation and growth of consumption loans in the Euro Area underlie the test. For searches
from the US, the US time series are used. S defines the frequency for which centered seasonal dummies
are included. The null hypothesis of the test is that the AR(1) yields the same RMSPE as the VAR(1).
It can be rejected on a 10% significance level when the test statistic exceeds 1.280 or on a 5% significance
level when the test statistics is larger than 1.645. The column ’Origin’ displays the two letter country
code for the origin of the searches with which the IPSO is constructed. If worldwide searches are used for
the construction ’all’ is displayed.

S

Series Origin 0 12

Monthly Inflation

all 1.52 -0.18
FR -0.16 -0.03
DE -0.49 -0.79
US 1.59 1.83

Monthly
Consumption

all -0.04 0.52
FR -0.32 1.30
DE -1.39 0.87
US -1.63 -0.69

Daily BEIR US 0.07 –

relations with EA-inflation or consumption might therefore also be veiled. Furthermore,

when it comes to consumption, the European Central Bank (ECB) and other European

institution do not provide monthly estimates for private consumption expenditure. This

is why we have to resort to the available monthly measure of consumption loans granted

to private households. We are, thus, strictly speaking not analyzing the relation of the

IPSO with consumption growth in the Euro Area, but its relation with the growth in

consumption loans granted to private households. The results for the EA are displayed in

Table 1.11.

They suggest that if no seasonal component is included, a bidirectional Granger-causality

between the IPSO, based on worldwide and French searches, and inflation on at least

a 10% significance level can be detected. For the IPSO based on worldwide searches,

a contemporaneous correlation can also be detected on a 10% significance level. When

German searches are used, the IPSO Granger causes inflation on a 1% significance level.

However, these results are not robust to including centered seasonal dummies.

In-sample, in the case of consumption loan growth, when no seasonal dummies are included,

on at least a 10% significance level, Granger causality can be found for the IPSO constructed

on worldwide searches. For the index constructed on French searches, on every conventional

significance level, the IPSO Granger causes consumption loan growth when controlling for
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Table 1.11: EUR-IPSO: Causality Tests

The table shows the lag-length selected by the BIC, p, the seasonal component controlled for S, as well as
the p-values for the Granger causality and contemporaneous causality test. Furthermore, the in-sample
RMSE is reported. The column denoted IPSO→ shows the p-value for the test on whether IPSO Granger
causes inflation or consumption, respectively; the column →IPSO shows the result on whether the IPSO is
Granger caused by the respective variables.

Series S p Granger Contemp. RMSE
IPSO→ →IPSO

Euro Area Inflation

Worldwide Searches

0 2 0.000 0.062 0.092 0.481
12 1 0.115 0.521 0.886 0.220

German Searches

0 6 0.330 0.006 0.266 0.405
12 1 0.593 0.997 0.479 0.221

French Searches

0 2 0.027 0.100 0.971 0.496
12 1 0.510 0.764 0.364 0.221

Euro Area
Consumption

Worldwide Searches

0 2 0.009 0.236 0.855 10.753
12 2 0.359 0.175 0.546 6.351

German Searches

0 2 0.793 0.783 0.126 11.107
12 2 0.168 0.557 0.121 6.322

French Searches

0 2 0.618 0.077 0.852 11.082
12 2 0.001 0.608 0.759 6.093

seasonality. For the IPSO constructed with worldwide searches, Granger causality of the

IPSO on consumption loan growth can only be found at every conventional significance

level when one is not controlling for seasonality.

Comparable to the US data, the out-of-sample results are a little more promising. When

looking at the RMSPEs of the out-of-sample forecasts reported in the Tables 1.12 1.13

and 1.14, when controlling for annual seasonality, we find that the RMSPE for inflation is

always reduced by the inclusion of the IPSO by around 30%. When controlling for monthly

seasonal dummies, in the case of inflation, the R2
MZ is rather unaffected and increased or

decreased marginally.
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Table 1.12: Out-of-Sample Fit: Euro Area Inflation and Consumption (Worldwide)

The table displays the RMSPE and R2
MZ for the models with the IPSO (i.e., VAR(pi) models) and

without the IPSO (AR(pi) models) for the listed macroeconomic time series. For each time series, different
seasonality components are controlled for (S ∈ {0,4,12} for inflation and consumption and S ∈ {0,5,30}
for the US-BEIR) and the respective RMSPE and R2

MZ are reported. If the difference between the
RMSPEs of the models with and without IPSO is negative, then including the IPSO helps in predicting
the respective time series. For the difference of the R2

MZ it is the other way around: If the difference here
is positive then the IPSO increases the quality of the out-of sample prediction.

S with IPSO without IPSO Difference

Euro Area
Inflation

RMSPE
0 0.377 0.774 -0.397
12 0.168 0.231 -0.064

R2
MZ

0 6.27 0.03 6.24
12 82.64 83.65 -1.01

Euro Area
Consumption

RMSPE
0 7.642 18.979 -11.337
12 3.999 15.855 -11.856

R2
MZ

0 19.15 7.30 11.85
12 80.98 19.96 61.02

For consumption loan growth the reduction in the RMSPE is drastic for indices based

on worldwide, French and German searches. For all indices, by including the IPSO when

forecasting EA consumption loan growth, the RMSPE is reduced to less than a third of

the RMSPE of the benchmark model. We also find that R2
MZ is always increased strongly

to levels over 70% for consumption loan growth by including the IPSO as well as centered

seasonal dummies for a monthly frequency.

For the EA forecasts of inflation, when controlling for annual seasonality, the null hypothesis

of the Clark-West test that a simple AR(1) model has the same RMSPE as a VAR(1)

model cannot be rejected on any significance level. When not controlling for seasonality,

the Clark-West test turns up significant on a 10% significance level for the IPSO based

on worldwide searches. For EA consumption, only when controlling for seasonality, the

Clark-West test indicates a significant reduction (on the 10% level) of the RMSPE for the

IPSO based on French searches.

Again we find that the IPSO mimics the seasonality in the macroeconomic time series.

When including seasonal dummies, for the Euro Area in-sample all results vanish, except

for the Granger causality of the IPSO based on French searches and consumption loan

growth. However, focusing only at the out-of-sample results, the improvements of including

the IPSO in forecasting inflation are sizable. The gains when predicting consumer loan

growth are very large.
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Table 1.13: Out-of-Sample Fit: Euro Area Inflation and Consumption (German Searches)

The table displays the RMSPE and R2
MZ for the models with the IPSO (i.e., VAR(pi) models) and

without the IPSO (AR(pi) models) for the listed macroeconomic time series. For each time series, different
seasonality components are controlled for (S ∈ {0,4,12} for inflation and consumption and S ∈ {0,5,30}
for the US-BEIR) and the respective RMSPE and R2

MZ are reported. If the difference between the
RMSPEs of the models with and without IPSO is negative, then including the IPSO helps in predicting
the respective time series. For the difference of the R2

MZ it is the other way around: If the difference here
is positive then the IPSO increases the quality of the out-of sample prediction.

S with IPSO without IPSO Difference

Euro Area
Inflation

RMSPE
0 0.415 0.774 -0.359
12 0.165 0.231 -0.067

R2
MZ

0 5.59 0.03 5.56
12 83.31 83.65 -0.34

Euro Area
Consumption

RMSPE
0 7.860 18.979 -11.119
12 4.368 15.855 -11.487

R2
MZ

0 15.89 7.30 8.59
12 76.96 19.96 57.00

Table 1.14: Out-of-Sample Fit: Euro Area Inflation and Consumption (French Searches)

The table displays the RMSPE and R2
MZ for the models with the IPSO (i.e., VAR(pi) models) and

without the IPSO (AR(pi) models) for the listed macroeconomic time series. For each time series, different
seasonality components are controlled for (S ∈ {0,4,12} for inflation and consumption and S ∈ {0,5,30}
for the US-BEIR) and the respective RMSPE and R2

MZ are reported. If the difference between the
RMSPEs of the models with and without IPSO is negative, then including the IPSO helps in predicting
the respective time series. For the difference of the R2

MZ it is the other way around: If the difference here
is positive then the IPSO increases the quality of the out-of sample prediction.

S with IPSO without IPSO Difference

Euro Area
Inflation

RMSPE
0 0.377 0.774 -0.397
12 0.164 0.231 -0.068

R2
MZ

0 5.29 0.03 5.26
12 83.67 83.65 0.02

Euro Area
Consumption

RMSPE
0 7.531 18.979 -11.448
12 3.973 15.855 -11.882

R2
MZ

0 21.77 7.30 14.47
12 81.77 19.96 61.82
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1.5 Summary

Google search queries are a popular addendum to autoregressive models used for prediction.

Their use is justified if one is willing to accept the assumption that people gather information

before taking action. From an econometric point of view, including Google’s search queries

or any derivatives based on search queries like our IPSO adds an additional source of

information to the autoregressive model and allows a faster adjustment of the dynamics

compared to a pure autoregressive model.

While Google data are therefore an attractive variable to improve predictions, they are

not directly available on all desired frequencies over long time horizons. We have therefore

proposed an algorithm which allows to construct multi-annual search volume indices based

on overlapping periods of subsequently downloaded subsamples for the same search query

where these subsamples contain a sufficient overlap. The method also paves the way to

make more than five SVIs comparable where five is the maximum that Google allows to

be compared directly on its website. During a detailed evaluation of our algorithm and a

comparison with other approaches to concatenate SVIs (naive concatenation scheme and a

method based on time frame comparison), it turns out that our algorithm is capable to

circumvent all potential pitfalls (zeros in the index or sudden spikes) while preserving the

statistical properties of the benchmark SVIs.

We illustrated the use of our algorithm in an application to forecast US and European

inflation and consumption measures, thereby discussing again potential pitfalls in gathering

adequate datasets. Multiple Google SVIs were made comparable and were aggregated to

an Index for the Prices Searched Online (IPSO) which constitutes an expected average

price level of individuals who engage in buying. The index based on US searches precedes

the monthly US inflation rate and is contemporaneously correlated with monthly US

inflation and consumption growth. When forecasting monthly US or Euro Area inflation

out-of-sample, the RMSPE can be reduced by around 30% when the IPSO is included.

Similarly, the prediction of Euro Area consumption loan growth is decisively improved

when the IPSO is included in the prediction model.
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Appendix

Suppose, we download SVIs for a search-term j ∈M and region i for two overlapping time

frames TA and TB. According to Equation (1.2), we can describe the SVIs at the point in

time of the overlap, i.e., t ∈ TA ∩ TB, as

SV IA,t = αA + βAst + νA,t, (1.8)

SV IB,t = αB + βBst + νB,t. (1.9)

Since the region i and the search-term j are fixed, we drop the respective subscripts in

Equations (1.8) and (1.9). Furthermore, we use A and B to clearly relate the objects

to the reference time frames TA and TB. Solving both equations for st and equating the

results yields

SV IA,t − αA − νA,t
βA

=
SV IB,t − αB − νB,t

βB
. (1.10)

Solving expression (1.10) yields Equation (1.3)

SV IA,t = αA −
βA
βB
αB

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

+
βA
βB
¯

SV IB,t + νA,t −
βA
βB
νB,t

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= γ + δ SV IB,t + εt
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Chapter 2

Today I Got a Million, Tomorrow, I Don’t Know: On the

Predictability of Cryptocurrencies by Means of Google

Search Volumes11

In November 2017, buying Bitcoin and other cryptocurrencies seemed like the perfect

investment. The media attention and news coverage was abundant and it seemed that

prices could only continue to skyrocket as Bitcoin prices had already surged by approxi-

mately 1700% from January to mid December 2017. However, this period has also been

accompanied by skepticism about the continued prosperity of cryptocurrencies as well as

the introduction of Bitcoin futures on the CME and CBOE. Ultimately, the Bitcoin bubble

(as it has been referred to by Corbet, Lucey and Yarovya (2018), Geuder, Kinateder and

Wagner (2018) and others) started to deflate and the price of Bitcoin is on a steady decline

since December 2017, having lost to date roughly 75% of its peak value.

A question that remains is whether the reversal was predictable which ultimately leads to

the question whether cryptocurrency markets are predictable in general. The numerous

events that surrounded in particular Bitcoin in 2017 (e.g. the fork into Bitcoin and Bitcoin

Cash on August 1, the close down of cryptocurrency platforms in China by September 30,

or the introduction of Bitcoin futures) created a need for information. Retail investors

satisfied their demand by means of online searches, in particular through Google’s search

engine. If these investors subsequently act on their findings, they might ultimately trigger

a price movement. In this chapter we reconsider the question whether Google’s search

volume indices (SVIs) can serve as a predictor for returns and volatility of cryptocurrency

markets. As both trading of cryptocurrencies as well as the search for and provision of

information is continuous and fast, we consider different high frequencies (hourly and

daily) as compared to weekly frequencies which are dominant in the literature up to now.

The reason for the latter is that Google has often changed the way data are provided since

the introduction of Google Trends. Initially, daily data could be downloaded with a fixed

reference date so that the SVI data could be concatenated without any problems. Today,

11 This chapter is based on Bleher and Dimpfl (2019) published in the International Review of Financial
Analysis.
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daily data are provided for a 270 day period, but a reference day cannot be fixed. Hence,

a long time series of daily data needs to be reconstructed by reversing the standardization

employed by Google or using a feature recently added by Google to compare the SVI for

different time frames. To this end, we propose in a separate accompanying article (Bleher

and Dimpfl 2019), reprinted in Chapter 1, a concatenation method to prepare Google

Trends data for high-frequency analysis.

While prior research found a more clear-cut relationship between Google search volume

and cryptocurrency returns (in particular Kristoufek (2013) for Bitcoin), we only find a

relationship for volatility. Returns are in general unpredictable. For volatility, we find

that on average large search volumes precede higher volatility and price uncertainty. The

forecast on lower frequencies turns out to be more accurate than on high frequencies.

We discuss in detail a number of reasons that can explain our findings, in particular the

time-varying relationship between Google Trends and Bitcoin returns, the impact of data

frequency as well as the data sources.

The chapter proceeds as follows. Section 2.1 provides an overview of the existing literature

and highlights our contribution. Section 2.2 describes the data used in this chapter and

Section 2.3 presents the models and evaluation criteria. Section 2.4 contains the in-sample

fit and out-of-sample forecast evaluation based on daily data. Section 2.5 discusses the

sensitivity of these results with respect to sample period, sampling frequency, and model

framework. Section 2.6 concludes.

2.1 Related Literature

Google search volume has been shown to be a useful predictor in various contexts. The

first application is by Ginsberg et al. (2009) who predict influenza epidemics well ahead

of the official registration. In economics, Choi and Varian (2012) predict vehicle sales or

claims for unemployment benefits. Returns and/or volatility prediction using Google’s

SVI has been conducted by Bank et al. (2011), Da et al. (2015), Dimpfl and Jank (2016),

Afkhami, Cormack and Ghoddusi (2017), or Perlin et al. (2017) to name but a few. These

authors assume that retail investors first satisfy their need for information by means of an

internet search which subsequently leads to trading activity. Hence, Google search volume

is used as a proxy for retail investor interest in the respective asset (cp. Chen et al. 2014).

While the early literature still made use of Google’s possibility to concatenate daily data,

recent research limits itself to weekly or monthly applications.

In our empirical analysis, we use daily time series constructed according to the algorithm

presented in the accompanying article (Bleher and Dimpfl 2019), reprinted in Chapter 1, to

see whether return and/or volatility prediction is possible in the cryptocurrency market on
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a daily basis. Only for the cryptocurrency Bitcoin (when denominated in US dollars) the

link to Google search queries is seemingly well-established. We contribute to the literature

by extending the analysis to multiple cryptocurrencies traded in Euro. We also improve

the data basis of former research as we use accurately constructed time series of Google

Trends.12

Most closely related to our work is Kristoufek (2013) who analyses the connection between

Bitcoin prices, Google’s SVI for Bitcoin and the number of visits to the Wikipedia article

of “Bitcoins” on a weekly basis. We overcome the limitation to weekly data imposed by the

direct availability of Google’s SVI and also construct daily data using 24 hours trading of

the cryptocurrencies instead of a hypothetical 8-hours return which is aggregated to weekly

returns. Based on impulse response analysis, Kristoufek (2013) finds that increased interest

in Bitcoin leads to higher prices, which again causes higher search volume. He concludes

that this forms the potential for a bubble development which might have been observed in

December 2017. Recently, Urquhart (2018) investigates the relationship between Bitcoin

returns, traded volume, and Google search queries and finds that search queries do not serve

as a predictor for volatility. However, he documents that trading activity and volatility

draw attention to Bitcoin which manifests in higher search activity.

Similarly, Garcia and Schweitzer (2015) use Google’s SVI for the search-term Bitcoin

among other variables (number of tweets or exchanged volume) to device a trading strategy.

Their results suggest that the SVI variable carries no information which is useful as a

trading signal, while variables measuring the sentiment of social activity provide robust

trading signals. This contradicts the findings of Kristoufek (2013). We therefore revisit the

question whether Google search volume indices, if constructed correctly, help to predict

returns or volatility of cryptocurrencies.

In principle, every pricing relevant factor qualifies as a potential predictor for returns. The

literature on Bitcoin and cryptocurrencies has identified a large number of such factors.

Kristoufek (2013) states that Bitcoin is not comparable to standard currencies, and thus,

has its own pricing relevant factors. In general, he classifies Bitcoin as a market without a

“fair” value, driven by the sentiment of investors which suggests that prediction based on

variables that are able to capture such sentiment is fruitful. Similarly, Garcia et al. (2014)

identify two feedback loops that lead public interest towards Bitcoin pacing from booms

to busts. Both loops suggest that individual investors satisfy their information demand

using Google or Wikipedia which then leads to trading activity in Bitcoin. Furthermore,

they find that search activity responds quicker to negative events (such as hacked Bitcoin

exchanges) than prices. Hence, one of these pricing factors may be public attention which

can be proxied by Google Trends data.

12 Our results also hold when the entire analysis is conducted using cryptocurrencies traded in US dollars.
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Using a LASSO approach, Panagiotidis et al. (2018b) find that gold and search intensity

are the most important drivers of Bitcoin returns. However, the authors interpolate weekly

data and model the relation to be contemporaneous which leaves the question whether

Google Trends data are helpful in forecasting future Bitcoin returns out of sample. Zhang

et al. (2018) also investigate contemporaneous cross-correlations between Google searches

and Bitcoin based on daily data and document that cross-correlation between Google

Trends and the Bitcoin prices is decreasing over time. Related to this finding is the work

of Dastgir et al. (2019) who analyze the connection between Bitcoin returns and Google

Trends based on a vector autoregressive model coupled with a specified volatility process.

They employ a copula-based test for contemporaneous correlation and find a bi-directional

effect in the left and right tail of the distribution.

Still, there might be additional fundamental factors. Hayes (2016) ascribes the determinants

of the Bitcoin price to the cost of production, i.e., essentially electricity cost, but leaves

demand aside. Ciaian, Rajcaniova and Kancs (2016) (who explicitly omit Google search

data since daily time series are not available) find that macroeconomic factors do not

influence the Bitcoin price while investor attractiveness does which suggests that the price

is mainly determined by the demand side. Kristoufek (2015) identifies technical drivers like

money supply, price level and usage in trade which are correlated with the price dynamic

of Bitcoin. However, he ultimately concludes that the major driver of the Bitcoin price is

only the public interest in the cryptocoin.

Furthermore, Alabi (2017) attributes the value of Bitcoin to network effects. He shows

that the price is described well by Metcalfe’s law (see e.g. Shapiro and Varian 1998) which

conjectures that the value of a network is proportional to the squared number of people

using it. However, whether the network effect is a dominant factor in pricing Bitcoin

remains doubtful (see Poon and Dryja 2015).

The possibility to transact value without any middlemen and oversight by a bank or cen-

tralized authority constitutes a pricing relevant feature of Bitcoin or other cryptocurrencies.

These features come at the cost that the high volatility of the currencies makes these

transactions an unreliable and risky undertaking (cp. Baur and Dimpfl 2021, Baur, Hong

and Lee 2018). A reliable forecast of volatility would allow to conduct transaction in low

volatility phases and, thus, reduce transaction costs. It should be noted, however, that

Bitcoin transactions are not fully anonymous (cp. Reid and Harrigan 2011).

Considering the above literature and the fact that the market is dominated by short-term

investors, trend chasers and speculators (cp. Kristoufek 2013, Yelowitz and Wilson 2015),

we would expect that the public interest measured with Google’s SVI for a particular

cryptocurrency should drive the price. Hence, Google Trends data should, in particular

on a high frequency, be a good predictor for Bitcoin returns and volatility. Taking into

account the characteristics of the various coins, we expect that some cryptocoins are
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driven by the general interest in the cryptocurrencies and others may have coin-specific

features that generate interest on their own. Thus, we contribute to the literature by an

investigation whether Google’s search volume indices (SVI) can be exploited systematically

for the prediction of key characteristics, namely returns and volatility, of Bitcoin and other

cryptocurrencies. This is accompanied by a concatenation algorithm which overcomes

the limitations and shortcomings in previous studies imposed by the (un-)availability of

Google Trends data on high frequencies.

2.2 Data Description

2.2.1 Cryptocurrency Price History

Focusing on the market for Euro denominated cryptocurrencies, we use prices of 12

cryptocurrencies traded on Kraken.com as of October 2018.13 Historical prices for our

cryptocurrency sample are obtained from CryptoCompare.com via its public access API.

Kraken is currently the most important market for trading Bitcoin against the Euro.

Figure 2.1 illustrates its market share in terms of transaction volume over time. By the

end of 2017, for example, it had a market share of roughly 65% of total trading of Bitcoin

in Euro. Up to 2013, MtGox was the dominant market, but it was closed down February

25, 2014. After MtGox’ bankruptcy, Kraken’s market share grew and it claims now to be

the most liquid market for trading Euro denominated cryptocurrencies.

CryptoCompare offers open, high, low, and close data on an hourly and daily frequency

which are retrieved for the maximum period for which the respective currency is available

on Kraken. Hence, the longest history is obtained for Bitcoin while the shortest time

series results for Bitcoin Cash as can be seen in Table 2.1 which lists in column 1 the

cryptocurrencies used and in column 2 the maximum available time span. Weekly data

are constructed from the daily data.

From the price history for each cryptocurrency, we calculate compound returns rt = pt−pt−1

based on the logarithmic close prices pt. As a measure for volatility, we consider the root

of the non-parametric variance measure of Garman and Klass (1980) which is estimated

as follows:

σ2
t =

1

2
(ht − lt)

2 − (2 log(2) − 1)(pt − ot)
2

where ot, ht, lt, pt denote logarithmic open, high, low, and close prices on day t. The

measure developed by Garman and Klass (1980) does neglect large jumps between the

13 In principle, there are 13 cryptocurrencies traded on Kraken in Euro. StellarLumens is excluded from
the analysis due to an extended period of missing values.
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Figure 2.1: Development of Market Shares of Exchanges

The graph depicts the market share of total annual traded volume of Euro against Bitcoin over time of the
various exchanges. With the downfall of MtGox, Kraken takes up the market share of MtGox and currently
is the most important exchange for trading Bitcoin against Euro. Source: data.bitcoinity.org, last
accessed: 2018-10-04.
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close price and the open price of the previous day (cp. Yang and Zhang 2000). However, as

Kraken allows trading around the clock, the problem of overnight jumps does not exist.14

Table 2.1 reports time series mean and standard deviation of the returns and the Garman

and Klass (1980) volatility measure σ on a daily basis. As can be seen, the average returns

range from a daily 0.54% for Ethereum to -0.56% for zCash. The associated daily standard

deviation of returns can be considered huge as compared to, for example, stock markets.

The latter usually exhibit a daily volatility of roughly 0.1% whereas the volatility of the

cryptocurrencies is 50 to 100 times higher.

2.2.2 Google Trends Data

With Google Trends, Google offers a service that allows to compare the relative popularity

of search-terms. Google computes and publishes a Search Volume Index that compares the

occurrence of searches to the entire volume of searches (Stephens-Davidowitz and Varian

14 We have also calculated the measures of Rogers and Satchell (1991) and Parkinson (1980) and find
that both are highly correlated with the measure of Garman and Klass (1980). The subsequent results
are robust to the choice of the variance measure.
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Table 2.1: Descriptive Statistics

The table summarizes the return and volatility series for the various cryptocurrencies. Dates are formatted
in dd/mm/yy. Reported means and standard deviations in percent.

Returns Volatility
Range Mean S.D. Mean S.D.

Bitcoin Cash 03/08/17 to 30/09/18 -0.01 9.15 7.69 6.36
Bitcoin 14/09/13 to 30/09/18 0.23 4.29 3.55 3.63
Dashcoin 14/04/17 to 21/09/18 0.19 6.78 6.53 5.13
EOS Token 03/07/17 to 30/09/18 0.01 15.26 7.84 5.09
Ethereum Classic 28/07/16 to 30/09/18 0.25 7.30 6.64 5.21
Ethereum 08/08/15 to 30/09/18 0.54 6.94 6.16 5.72
Gnosis 05/05/17 to 30/09/18 -0.46 6.60 8.41 6.35
Litecoin 17/09/13 to 30/09/18 0.17 7.17 5.44 6.70
Augur Coin 05/10/16 to 29/09/18 0.06 8.78 8.81 6.35
Monero 04/01/17 to 30/09/18 0.27 7.07 6.44 4.50
Ripple 22/06/17 to 30/09/18 0.16 8.22 7.07 6.05
zCash 29/10/16 to 30/09/18 -0.56 10.59 8.36 9.74

2014). Hence, a falling SVI does not (necessarily) mean that there are less searches than

in the past, but it means that a smaller share of searches is dedicated to the search-term.

The measure therefore has to be interpreted carefully as it cannot per se be equated with

a proxy for information demand. According to smartinsights.com15, Google’s total search

volume increased from a level of 1.2 billion searches per day in 2012 to about 4.5 billion per

day in 2017. Hence, if the exact same number of searches for one search-term would have

been conducted in 2012 or 2017, the SVI would report a lower share in 2017 as opposed

to 2012. To still allow for an interpretation as a valid measure of interest, we assume

that the Google user base is a random sample of total internet users. As a measure that

covaries with interest, we draw on the SVI as a predictor in accordance with the economic

literature.

To select the relevant search-terms, we follow the guidelines provided by Stephens-

Davidowitz and Varian (2014). We wish to identify the impact of the interest in a

specific coin. There are several possible search-terms, namely the respective coin-name,

the Kraken ticker symbol and the alternative ticker symbol16. We choose the most popular

one as identified by Google Trends. The resulting search-terms and the corresponding

ticker symbols are listed in Table 2.2.

15 Source: https://www.smartinsights.com/search-engine-marketing/search-engine-

statistics/, last accessed: 2017-01-11.
16 For some ticker symbols, such as XXBT Kraken also lists alternative ticker symbols XBT. A compre-

hensive list can be downloaded from https://api.kraken.com/0/public/Assets in JSON format,
last accessed: 2017-02-11
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Table 2.2: Coins and Corresponding Search-Terms

The table reports the ticker symbols used on Kraken.com and the associated search-terms. A minus in
the search-term means that the following word is taken out of the searches that constitute Google’s search
volume index. For example, Ethereum -Classic considers all searches for Ethereum without the addendum
of the word Classic.

Ticker Searchterm Cointicker Ticker Searchterm Cointicker

BCH Bitcoin Cash BCH GNO Gnosis GNO
XXBT Bitcoin -Cash -Future BTC XLTC Litecoin LTC
DASH Dashcoin DASH XREP Augur Coin REP
EOS EOS Token EOS XXMR Monero XMR

XETC Ethereum Classic ETC XXRP Ripple XRP
XETH Ethereum -Classic ETH XZEC zCash ZEC

In general, when searching for e.g. Bitcoin, Google Trends subsumes all searches that

contain this string. Therefore, when we are interested in Bitcoin only, we have to clean the

searches which are related to other Bitcoin related subjects (but not directly to trading

activity in Bitcoin itself) such as Bitcoin Cash or Bitcoin Futures which also contain

the string Bitcoin in the search query. This can be done using the minus operator when

downloading the SVI from Google Trends. The cryptocurrencies Ethereum (ticker symbol:

XETH) and Ethereum Classic (ticker symbol: XETC) are two distinct crypto-tokens.

Therefore, we choose to include the search-terms Etherum -Classic for XETH, i.e., all

searches for Ethereum that do not include the word “Classic”, and Etherum Classic for

XETC. Similar to the case of Bitcoin and Bitcoin Cash, when we refer to the search-term

Etherum what we actually mean is Etherum -Classic.

We deviate from the rule to take the most popular search-term in the following cases. The

search-term DASH is more popular than the search-term Dashcoin. Still, we choose to

include Dashcoin as it is more salient with respect to the currency. The word dash itself

has several meanings and there are several brands, computer games and other products

that include it. For the cryptocoin Augur, we do not use the search-term Augur or REP

which are the most popular search-terms, but bear other meanings as well. Instead we use

the search-term Augur Coin as it is more salient with respect to the cryptocurrency, and

is according to Google Trends more popular than Augur Reputation, Augur Reputation

Token and Augur Token. In order to construct a consistent SVI time series and due to

the low search volume for the search-term Augur Coin, only for this search-term we relax

the requirement of 30 non-zero elements in the overlapping time frame of two datasets

containing SVIs for subsequent time periods to 15. We also require only 10 non-zero

elements on each side instead of 20.
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Aside from the coin-names, we also include the search-term cryptocurrency in our analysis.

With the inclusion of this search-term, we evaluate if the overall interest in cryptocurrencies

helps to forecast price developments. It can also be argued that the overall interest in

cryptocurrencies is better reflected in the search-term Bitcoin which is the oldest and most

actively traded cryptocoin. A comparison of the popularity on Google Trends supports

this view. For the entire sample period, the search-term Bitcoin ranks highest in the

search popularity, followed by Ripple, Ethereum and cryptocurrency (not necessarily in

this order).

The popularity of search-terms is important for the quality of the SVI which raises several

problems (see e.g. Stephens-Davidowitz and Varian 2014). As Google estimates the SVI

for a search-term on a sample, if search volume is too low, the uncertainty about the SVI

estimate becomes a problem. Furthermore, if searches do not surpass a threshold, the

SVI value is set to 0 by Google. Google does not publish the used threshold. All SVIs

are downloaded using package gtrendsR (Massicotte and Eddelbuettel 2018) in R (2018).

Further details on the concatenation of the data are available in the accompanying article

(Bleher and Dimpfl 2019), reprinted in Chapter 1.

Figure 2.2 illustrates our dataset for Bitcoin and Ripple. We observe a co-movement of the

price or the volatility time series of Bitcoin with the respective Google SVI (depicted in

the upper graphs in Figure 2.2). For the cryptocoin Ripple a similar co-movement can be

observed (see bottom graphs in Figure 2.2). In the subsequent analysis we use log returns

of the SVI. We checked that all data are stationary using an ADF test with the lag length

suggested by the Schwartz Bayes information criterion (SIC).

2.3 Models and Forecast Evaluation Criteria

For each cryptocurrency, we can relate five time series with each other: the respective

returns of the exchange rate with the Euro, the volatility of these returns and Google’s

SVIs for the search-terms cryptocurrency, Bitcoin, as well as a search-term related to the

name of the respective cryptocurrency.

2.3.1 VAR Model for Returns and Volatility

From the basic asset pricing equation using the stochastic discount factor mt+1 (cp.

Cochrane 2008), the conditional moment of future returns Rt+1 is given by

Et[Rt+1] = R
f
t +R

f
t cov(mt+1,Rt+1),

where Rf
t is the currently prevailing risk free rate at time t.
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Figure 2.2: Closing Prices, Volatility and Search Volume Indices

The graphs compare the closing price and volatility (left scale, black line) with Google’s search volume
index for the coin-name (right scale, blue line). The two upper graphs refer to Bitcoin while the two
bottom graphs refer to Ripple.
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(b) Bitcoin Volatility and SVI
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(c) Ripple Price and SVI
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(d) Ripple Volatility and SVI
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Assuming that the law-of-one price and the no arbitrage condition hold, the stochastic

discount factor can be related to fundamental pricing factors. In our case, Google search

volume may proxy or co-vary with one or several of these pricing factors. Hence, we

assume that the future stochastic discount factor mt+1 can be proxied by a function of the

present SVIs. The specific functional form may be non-linear. However, as our focus lies

on predicting returns or volatility, we may approximate the conditional moment of returns

by a linear function. As the conditional second centered moment is a function of the first

moment and therewith a function of the factors determining it, a linear approximation for

the conditional variance is suitable as well.
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Table 2.3: Model Specification Overview

Included SVIs

Model Coin Name Cryptocurrency Bitcoin

0 – – –
1 ✓ – –
2 – ✓ –
3 – – ✓

4 ✓ ✓ –
5 ✓ ✓ ✓

Thus, we estimate VAR-models for either the returns or the volatility of cryptocurrencies

of the following form

xi,t = µi +
pi

∑
j=1

Ai,jxi,t−j + εi,t (2.1)

where xi,t is an R × 1 vector that contains one or several SVIs and either the return or the

volatility of the ith cryptocurrency. Ai,j are the R ×R parameter matrices while µi is a

vector of constants. The innovations εi,t are i.i.d. white noise. pi is the lag-length selected

by the SIC.17

We consider six models separately for either returns or volatility. Table 2.3 provides

an overview of the SVIs that are included in each model specification in addition to

autoregressive terms. Model 0, which reduces Equation (2.1) to a univariate AR(p)-model,

serves as a benchmark. Model 1 is the specification which relates the search volume of a

certain coin to the coin’s price or volatility. Model 2 considers the relevance of the general

interest in cryptocurrencies for forecasting returns and volatility as it includes the SVI for

the search-term cryptocurrency. Model 3 assesses whether the interest in Bitcoin as the

most pronounced cryptocoin helps to predict returns or volatility. With Models 4 and 5

we test if we can improve the forecasts by combining the general interest of Google users

in cryptocurrencies and their interest in the respective cryptocoin. In the case of Bitcoin,

Model 3 reduces to Model 1 and Model 5 reduces to Model 4 as the SVI for Bitcoin is

both the coin name as well as the proxy for general interest.

The models are estimated using OLS. Estimation is conducted in R (2018) using packages

forecast (Hyndman and Khandakar 2008) and vars (Pfaff 2008). Data and code are

available at https://tinyurl.com/y7chh5r6.

17 While an autoregressive model for the prediction of one variable suffices to predict one day ahead,
forecasting returns or volatility over several days with the help of Google’s SVI requires a VAR in order
to also predict the SVI development.
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2.3.2 Evaluation Measures

In order to assess whether Google’s SVIs help to predict returns or volatility, Model 0 has

to be outperformed by other model specifications according to the following measures. To

evaluate the in- and out-of-sample fit of the models, we calculate the root mean squared

error (RMSE) as

RMSEm =

¿
Á
ÁÀ 1

T − p − 1

T

∑
t=p

(xt+1 − x̂m,t+1)
2

where xt+1 is the observed variable of interest and can either be the return series or the

volatility series. m denotes any of the models 0 to 5. x̂t+1 denotes the forecasted value.

We then use the test developed by Clark and West (2006, 2007) for nested models, including

their critical values, to assess whether the RMSE is significantly reduced by the inclusion

of Google’s SVI in comparison to Model 0. The null-hypothesis of the test is that the

models have the same forecast error whereas the alternative is that Model m has a smaller

forecast error than the benchmark Model 0. The test statistic is calculated as

z = RMSE0 − (RMSEm − κm),

where κm = 1
T−p ∑

T
t=p x̂m,t+1− x̂0,t+1. In our case, the models are only partially nested. Hence,

it is not clear upfront which model is the more parsimonious one. In consequence, the

adjustment κm can be positive or negative. We therefore require upfront that the RMSE

of the model including the SVIs is strictly lower than the RMSE of the benchmark model.

We also run a Mincer-Zarnowitz regression (?) of the realizations xt+1 on the fitted values

x̂m,t+1 from the respective model to evaluate the in-sample fit. Out-of-sample the fitted

values are replaced by the forecasted values. The regression equation, thus, reads as

follows:

xt+1 = a0 + a1x̂m,t+1 + em,t+1.

The R2 of this regression (denoted by R2
MZ in the following) serves as a measure for the

quality of the in-sample fit or the out-of-sample forecast performance.

For the volatility models, we also calculate the quasi-likelihood loss function (QL) as in

Patton (2011) who shows that the QL is robust with regard to noise in the proxy measure

(the Garman and Klass (1980) volatility measures in our case). The QL is calculated as

follows:

QLm =
1

T − p

T

∑
t=p

(
σ2
t+1

σ̂2
m,t+1

− log(
σ2
t+1

σ̂2
m,t+1

) − 1) .

The better the forecast, the smaller is the QL measure.
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As volatility enters into the model in logarithmic form, before evaluation, we transform it

back to the standard, non-logarithmic measure of Garman and Klass (1980). Although

forecasting the logarithmic transform of a variable and then transforming it back, bears its

problems (cp. Granger and Newbold 1976), Lütkepohl and Xu (2012) show that forecasting

the logs can result in dramatic gains in forecast precision, when the resulting variance is

more homogeneous. This is the case in our application.18

Furthermore, we conduct Wald-tests to i) check the model fit and ii) to see whether the

SVIs Granger cause returns or volatility. The respective test scores w are constructed as

Wald-statistic of a univariate model which corresponds to the return or volatility equation

in the equation system (2.1). Hence, w is

w = (Râ − r)
′
(RΣ̂R′) (Râ − r) ,

where R is the matrix that linearly combines the vector of parameter estimates â, and r is a

vector of real numbers containing the numeric restrictions imposed on the so formed linear

combinations of parameter estimates. Σ̂ is the estimated asymptotic variance-covariance

matrix of the parameter estimates. We use the heteroskedasticity consistent jackknife

estimator of Efron (1982) as recommended by Long and Ervin (2000) to estimate the

variance/covariance matrix Σ̂

Σ̂ = (X′X)
−1

X′ diag(
e2
t

(1 − ht)2
)X (X′X)

−1
,

where the residuals are denoted as et = xt − µ −∑
p
j=1 xt−jaj (with xt representing either

the returns or the volatility). The matrix which collects all regressors in this equation is

X = (xt−1, . . . ,xt−p), and ht = xt (X′X)
−1

xt. The division of e2
t by (1 − ht)2 increases the

variance estimate for the high contribution of outliers. Asymptotically, the test statistic w

converges to a χ2-distribution with the number of hypotheses, q, as degrees of freedom.

18 Granger and Newbold (1976) also suggest multiplication with a corrective term to mimic the calculation
of the expectation of a log-normal distributed variable with the first two moments of the underlying nor-
mally distributed variable in logarithms to get the optimal forecast in levels as yopt

t+h∣t
= exp{xt+h∣t + 1

2
σ2
x}.

Lütkepohl and Xu (2012) find that the näıve transform of the logarithmic forecast, xnäıve
t+h∣t

= ext+h∣t ,

performs just as well as the optimal transformation suggested by Granger and Newbold (1976). We
tested both, and come to the same conclusion. Thus, we only use the näıve transformation.
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2.4 Forecast Evaluation

2.4.1 In-Sample Fit

For the return models, evidence for model significance is mixed. The results are summarized

in the upper panel of Table 2.4. For all cryptocoins but Bitcoin, EOS-Token, and Litecoin,

the null hypothesis that the parameter estimates are jointly zero cannot be rejected. Hence,

the specified models are not able to explain the variation in the return series of these

cryptocurrencies significantly better than a simple time series average. Considering that

we have conducted 60 tests, we would consider the statistical significance of the five models

for Bitcoin, EOS-Token, and Litecoin to be pure coincidence.

For the volatility models, the picture is exactly the opposite as documented by the lower

panel of Table 2.4. We can reject the null hypothesis that the respective model specification

has no explanatory power on a 1% significance level for all cryptocurrencies for all models.

Concerning Granger causality, Table 2.5 provides an overview of the results. For the

return models, the results of the test for no Granger causality are in line with the model

specification tests. The predictive ability of Google SVIs is in general not given. The only

two cryptocurrencies where the SVIs help to predict returns are EOSToken and Ripple.

However, significance is still rather weak and might also be attributed to chance given the

number of tests conducted.

The finding of no Granger causality for the vast majority of the coins comes at no surprise.

In an efficient market, we would expect that asset price movements are not predictable

in the short run. For the majority of cryptocoins, it seems, the market is aware of the

demand driven nature of the coins. Available information is already largely incorporated

in prices.

Concerning the volatility models, the picture is also mixed. For Gnosis and EOS-Token, we

cannot reject the hypothesis of no Granger-causality of Google search volume on volatility

on any conventional significance level. However, for all other coins at least for one of the

models including Google’s SVI we find that search volume Granger causes volatility.

From the comparison of the model specification test in Table 2.4 and the Granger-

causality test in Table 2.5 we conclude that volatility is rather persistent and can be

explained well exploiting its autoregressive dynamics. We also find that for the majority

of the cryptocurrencies considered, Google SVIs have non-negligible predictive power for

development of future volatility.

Whether public or coin specific interest is more important in predicting volatility can

also be inferred from the two tables. For Bitcoin, we can reject the null hypothesis of no
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Table 2.4: Model Significance

The table summarizes the results of Wald tests for the joint significance of all variables for the various
model specifications and cryptocurrencies. * (**,***) denotes statistical significance on a 10% (5% and
1%, respectively) significance level.

Returns

Model 1 Model 2 Model 3 Model 4 Model 5

BitcoinCash
Bitcoin * – –
Dashcoin
EOSToken ** *
EthereumClassic
Ethereum
Gnosis
Litecoin * **
AugurCoin
Monero
Ripple
zCash

Volatility

Model 1 Model 2 Model 3 Model 4 Model 5

BitcoinCash *** *** *** *** ***
Bitcoin *** *** – *** –
Dashcoin *** *** *** *** ***
EOSToken *** *** *** *** ***
EthereumClassic *** *** *** *** ***
Ethereum *** *** *** *** ***
Gnosis *** *** *** *** ***
Litecoin *** *** *** *** ***
AugurCoin *** *** *** *** ***
Monero *** *** *** *** ***
Ripple *** *** *** *** ***
zCash *** *** *** *** ***
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Table 2.5: Granger-Causality

The table summarizes the results from the results of the Granger-causality test for the various model
specifications. The null hypothesis for each model is that the Google SVI variables do not Granger
cause returns or volatility, respectively. * (**,***) denotes statistical significance on a 10% (5% and 1%,
respectively) significance level.

Returns

Model 1 Model 2 Model 3 Model 4 Model 5

BitcoinCash
Bitcoin – –
Dashcoin
EOSToken * ** *
EthereumClassic
Ethereum *
Gnosis
Litecoin
AugurCoin
Monero
Ripple * ** ** *
zCash

Volatility

Model 1 Model 2 Model 3 Model 4 Model 5

BitcoinCash * *
Bitcoin *** – *** –
Dashcoin *** ** *
EOSToken
EthereumClassic ** ** *** ** ***
Ethereum *** ** ** *** ***
Gnosis
Litecoin *** *** *** *** ***
AugurCoin * ** **
Monero *** *
Ripple *** ** ** *** ***
zCash *
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Granger causality on a 1% significance level. Hence, the volatility of Bitcoin is clearly

driven by the coin specific interest in Bitcoin. The volatility of BitcoinCash, Dashcoin,

and Monero feed off the general attention in cryptocurrencies (Model 2). The volatility of

zCash is driven partially by the attention to the cryptocurrency flagship Bitcoin (Model 3).

For all other coins, a mix of coin-specific and general interest in cryptocurrencies precedes

volatility (Model 4 and 5).

For Bitcoin, Ethereum Classic, Ethereum, Litecoin, AugurCoin, and Ripple, the searches

for these cryptocurrencies Granger cause their own volatility. For the remaining coins, only

the SVIs which capture general interest, Granger cause their volatility. As the literature

associates Google queries with the trading of individual investors (see for example Dimpfl

and Jank 2016) who add to overall volatility (e.g. Foucault, Sraer and Thesmar 2011), we

may conclude that trading of Bitcoin, Ethereum Classic, Ethereum, Litecoin, AugurCoin

and Ripple is attractive due to reasons rooted in the nature of these coins themselves as

opposed to a general interest in cryptocurrencies documented for the other cryptocurrencies.

Interestingly, those coins are also the most liquid ones (with the exception of AugurCoin).

Turning to the fit of the Mincer-Zarnowitz regression and the RMSE for the fitted values

of returns, we find that the in-sample fit is very low throughout the panel. Table 2.6

presents the detailed results. For the highly volatile return series of cryptocoins this is

an expected result. When forecasting returns within the framework of traditional factor

models, the R2
MZ is usually low (see for example Cochrane 2008). Even though we find

that Model 5 produces a significantly lower RMSE as well as a higher R2
MZ (compared

to the benchmark Model 0), we conclude that the gains in forecasting are economically

insignificant. Only for zCash the reduction in RMSE is sizeable; when SVIs are included

in the model, the RMSE is almost divided in half.

For Ethereum, the RMSE is reduced by roughly 20% when including all three SVIs for

the coin-name, the search-term cryptocurrency and the search-term Bitcoin which is a

non-negligible reduction from an economic point of view. For all other coins the reduction

of the RMSE is often limited to a few basis points, for example in the case of Bitcoin.

While the RMSE is always reduced when using Models 1 to 5 instead of Model 0, the

forecast error is still huge. It ranges from 0.0426 to 0.15. By Chebyshev’s inequality, in

the case of Bitcoin which has the lowest RMSE of 4.26%, this means that in up to 50% of

all forecasts, the absolute value of the forecast error is larger than 6%.

For the volatility models, the evaluation measures are presented in Table 2.7. First, for

Gnosis the RMSE cannot be reduced at all when any of the SVI variables are added to

model 0. For EOS-Token and zCash, the RMSE is reduced, albeit the reduction not being

statistically significant. The addition of SVIs for the coin-names improves the RMSE

significantly for Bitcoin, Dashcoin, Ethereum Classic, Ethereum, Litecoin, AugurCoin,

and Ripple. With the exception of Dashcoin, the latter subsample is the one for which
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we also document Granger causality (cp. Table 2.5). With the exception of Litecoin, the

addition of general interest SVIs can further reduce the RMSE and improve the model fit.

For Monero, the best fitting model is Model 2 which contains the SVI for the search-term

cryptocurrency, but not the SVI for its name. Lastly, for Bitcoin cash, Model 4 (which

includes search-terms for the coin’s name and cryptocurrency) is selected unanimously.

In general, the comparison of the in-sample fit across models is only clear for a few coins.

In summary, according to the in-sample results, the search volume of yesterday (for one

term or another) helps to predict today’s volatility for the majority of coins, but is not a

reliable predictor of today’s return.

2.4.2 Out-of-Sample Forecast Evaluation

To evaluate whether the focus of the search interest on Google really helps to predict

returns or volatility, we perform a one day, one week and 2 weeks ahead out-of-sample

forecast of returns and volatility by estimating model specifications 0 to 5 on a growing

sample size. We start with 180 observations and add one observation at a time to predict

the next day, next week (7 days) or the next two weeks (14 days). In order to arrive at a 2

week forecast for volatility, after transforming the forecasted, daily, log-volatility values

to volatility, we sum them up. Log-returns are also summed up. During each estimation

step the optimal lag-length is determined anew via the SIC based on the observations

within the growing sample window. As the one-step-ahead forecasts are exemplary for the

one-week (7-steps-ahead) and two-week (14-steps-ahead) forecasts, we only report these.

All other results are available from the authors upon request.

The one-day-ahead forecasts bear some remarkable results. In the case of the return models,

for four coins (BitcoinCash, Ethereum, Monero, and zCash) the RMSE is significantly

improved when Google search volumes are added to model 0 as can be seen from Table 2.8.

In all other cases, albeit we might observe a reduction of the RMSE, it is not statistically

significant. The R2
MZ is very low: In general, the variation in the forecast can explain less

than 1% of the variation in the observed returns. Hence, the prediction can be considered

random which is illustrated in Figures 2.3a and 2.4a.

Figure 2.3a presents a scatter plot of the forecasted and the observed returns for Bitcoin.

The black line is the 45○ line which marks the location of a perfect fit. As can be seen,

the forecasted values do not vary a lot, the prediction is always close to zero. Hence, the

location of the points is limited to a wide, ellipse-like area around the origin. For all other

cryptocurrencies, the shape of such a scatter plot is similar.

Figure 2.4a provides further details. We zoom into the prediction based on the best fitting

model for Bitcoin returns. The autoregressive process specified in Equation (2.1) cannot
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Figure 2.3: Fit of One-Day-Ahead Forecasts

The graphs depict the observed returns (horizontal axis) against the one-day-ahead forecasts based on
Model 0 (orange ◇), Model 1 (blue ○), Model 2 (red ▽) and Model 5 (black ⊠) for Dashcoin (left) and
Monero (right). A perfect fit would mean that the values are aligned on the 45○-degree line (black; note
the scaling of the axes).
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mimic the high volatility of the return series and therefore results in smooth forecasts

centered around zero. Furthermore, individual large spikes result in a forecast that is

further away from zero, albeit one period too late. In general, we conclude that for the

out-of-sample prediction of returns on a daily basis, Google searches are not helpful.

Table 2.9 holds the forecast evaluation results for the volatility models. In general, the

one-day-ahead forecast of volatility is improved when one or more of Google’s SVIs are

added to Model 0. Only for Ethereum Classic and AugurCoin none of the SVI models

reduces the RMSE significantly. For Dashcoin the QL selects the benchmark Model 0,

while RMSE and R2
MZ favor Model 4. The R2

MZ of the BitcoinCash-models favors the

benchmark Model 0, while QL and RMSE choose Model 4. With the exception of these

four coins, the evaluation criteria of all other coins select a model in which Google’s SVI is

added.

Figure 2.3b shows the scatter plot of the actual and forecasted volatility for Bitcoin. There

are two important takeaways. First, the model fit is much better than for returns (depicted

in Figure 2.3a) as the values are much more clustered around the 45○ line. Second, the

points that belong to Model 0 (orange) are further away from the 45○ line than the points

associated with any other model. In particular, the points which belong to Model 5 (black)

are the ones that are the closest to the line of the perfect fit, especially for high values of

volatility. Hence, we conclude that in general, the addition of Google-search volume helps
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Figure 2.4: Time Series of One-Day-Ahead Forecasts

The graph presents the observed time series of Bitcoin returns (a) and volatility (b) as a black solid line
and the one day ahead forecast (blue dots) based on Model 1, only including the SVI of the search-term
Bitcoin. Confidence intervals on the 0.95% level are shaded in gray.
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to predict volatility, which is further illustrated in Figure 2.4b. As in the case of returns,

when large changes occur in the volatility series, the forecast does not react as quickly

and picks up the movement with one period lag. It turns out that, in periods of extreme

volatility, the inclusion of SVIs is more helpful than in periods with low volatility which is

in line with the results of Dimpfl and Jank (2016).

2.5 Robustness and Sensitivity Analysis

Our results presented in Section 2.4 are to some extent in contrast to results reported in

previous literature. In particular, Kristoufek (2013) documents predictability of Bitcoin

returns while Urquhart (2018) finds no predictability of Bitcoin volatility. In the following,

we therefore discuss potential reasons which can explain this discrepancy such as the

considered time frame, the sampling frequency, or the restriction to linear models.

2.5.1 The Time Frame Matters

To analyze whether the time frame matters, we test Granger causality in rolling windows

of 180 days over the entire sample period. For returns, the results are similar to the

ones reported above in the sense that we do not find any extended period of time during

which SVIs would Granger cause returns. For volatility, Figure 2.5 illustrates the resulting
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p-values for each window for Ripple and Bitcoin. Here we find that there exist multiple

periods for which Granger causality is indeed a stable phenomenon. This holds particularly

true for Ripple (Figure 2.5a). Hence, the time frame of the considered sample for such

an analysis does matter. In sum, the propensity to find favorable results (i.e., significant

Granger causality) is higher for volatility than for returns. For the latter, this is unlikely,

but not impossible.

Figure 2.5: Granger Causality Test over Time: Daily Data

The graphs depict the p-values of a Granger causality test conducted in the context of Model 1 (which
includes the SVI for the coin name) over time. The respective null hypothesis is that the SVI does not
Granger cause volatility. The point in time associated with a p-value is the last date of a rolling window
of 180 days. For values below the blue horizontal line, the null hypothesis of no Granger-causality can be
rejected.
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This result makes sense in the light of the findings of Garcia and Schweitzer (2015) who

describe herding and bubble building behavior in the cryptocurrency market. Together

with the time series characteristics of the herding model described by Alfarano, Lux and

Wagner (2008), the results for the time varying nature of the relationship between Google

Trends and volatility of cryptocurrencies becomes more plausible. The model for which

Alfarano et al. (2008) describe time varying parameters was first introduced into the

economic literature by Kirman (1993). The stochastic model of Kirman (1993) transfers

the finding of Pasteels, Deneubourg and Goss (1987) into the economic realm. Pasteels

et al. (1987) found that a colony of ants, faced with two equi-distant food sources, behave

collectively asymmetric: They herd towards one food source. Kirman (1993) observed

the behavior in recruitment processes and suggested a stochastic model to describe it.

Alfarano et al. (2008) transferred the model then to financial markets. With its time

varying moments, the model suggests a GARCH-like structure for the second moments
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of returns. We find it interesting that in our context the time series characteristics of

the model described by Alfarano et al. (2008) exhibit similar dynamics to the p-values of

the rolling Granger Causality tests we conduct. While there are phases in which Google

Trends seem to help predict cryptocoin volatility for a longer period of time (almost up to

a year in 2017), the relationship breaks down in others. In the context of cryptocurrencies

and Google Trends these dynamics hints towards herding behavior in the attention for

and the investments made in the cryptocurrency markets. Aside from the fear of missing

out (FOMO) interpretation connected to the herding behavior, active pump-and-dump

operators in the market, which are more likely for smaller coins, might drive this result.

The orchestration of online coin advertising might have generated interest and investment

in a certain coin (pump-phase) reflected in rising Google SVIs and increased volatility in

the market. When prices soar, the pumpers cash in (dump-phase), first adding volatility

and thereby destroying the connection between volatility and Google’s SVI. The findings

of Baur and Dimpfl (2018b) also point in the direction of these results. In essence, we

conclude that the relationship between Google Trends and cryptocurrency volatility is

time varying. Attributing the time varying relationship to herding behavior, FOMO or

pump-and-dump schemes described in the literature (e.g. by Garcia and Schweitzer (2015)

or Baur and Dimpfl (2018b)) seems plausible.

2.5.2 Sampling Frequency Matters

As the literature uses different sampling frequencies, usually weekly data most recently,

we investigate how changing it impacts on the predictability of returns and volatility. In

the following, we consider weekly and hourly data.

Weekly Data

We conduct the weekly analysis for those cryptocurrencies for which we have more than

100 weekly observations. This leaves us with three cryptocurrencies: Bitcoin, Litecoin and

Ethereum. The restriction is rooted in the Google SVIs which, when downloaded on a

weekly basis, contain numerous missing values as the number of searches was below the

reporting threshold set by Google.

For the volatility models, we find again overall significance of the models and Granger

causality of Google’s SVIs. Table 2.10 summarizes the results. Even if we switch to prices

denoted in US Dollar and SVIs calculated from US searches only, the relationship between

volatility and Google searches remains robust. We conclude that Google search volume

helps to predict cryptocurrency volatility on a weekly basis.

70



In contrast, for returns the results are not as clear-cut. In the case of weekly Litecoin

returns, the SVI based on the coin-name bears significant explanatory power and Granger

causes returns. For weekly Ethereum returns, only for the model that includes all SVIs,

search volume is overall significant in explaining variation in returns and Granger cause

them. While for volatility, adding SVIs to the model reduces the RMSE decisively, for

the return models, the reduction in the RMSE is limited. Only in the case of Litecoin

the RMSE of the return forecast is reduced by more than 50% when the SVI for the

coin-name and the SVI of the search-term cryptocurrency is added. The results are also

summarized in Table 2.10.

Table 2.10: Compact Results: Weekly Data

The table gives an overview of the weekly in-sample fit (ins) and out-of-sample forecast (oos) evaluation
results. The reported pairs for returns (triples for volatility) contain the numbers m of the model selected
by (QL,) RMSE, and R2

MZ. Percentages are the p-values associated with the respective test. ✓ means
that the RMSE reduction is significant on a 10% significance level.

Bitcoin Ethereum Litecoin

ret. vola. ret. vola. ret. vola.

Model Significance: – all (1%) 5 (1%) all (1%) 1,4,5 (1%) all (1%)
Granger Causality: – all (1%) – all (1%) – 1 (5%), 2-5 (1%)

Model with best in-sample fit: (4,4) (1,4,4) (5,5) (5,5,5) (5,5) (5,5,5)
Best out-of-sample fit: (4,2) (4,4,1) (4,2) (4,4,4) (4,1) (5,5,1)

Reduction in RMSE significant (ins)? ✓ ✓ ✓ ✓ ✓ ✓
Reduction in RMSE significant (oos)? – ✓ ✓ ✓ ✓ ✓

While we document that Google search volume helps to predict returns in- and out-of-

sample on a weekly basis, one has to bear in mind that the RMSE is huge. Albeit the

significant reduction (which is in line with findings of Kristoufek (2013)), the prediction is

not useful. Drawing again on Chebyshev’s inequality, we may state that in the case of

Bitcoin, the forecast will be more than 1400 basis points off the true value in up to 50% of

all forecasts. Hence, investing a million today is a risky undertaking, as tomorrow still

remains unknown.

Hourly Data

As discussed in Section 2.1, Bitcoin trading is fast and therefore the observational frequency

of one hour might be too low already. On an hourly basis, we use data restricted by the

availability on Google Trends which date back at most to January 2016.

The in-sample results of our analysis are rather promising. For volatility, we find again

that on an hourly frequency all models including Google’s SVI have significant explanatory

power which is in line with the results documented in Section 2.4. The test results for

Granger-causality are very pronounced as well.
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For all coins the SVI for the search-term Bitcoin Granger-causes hourly volatility. We

therefore conclude that hourly volatility in the cryptomarket is Granger-caused by the

variation in the general search interest for the cryptomarket and Bitcoin as its flagship.

But also for returns, with the exception of Bitcoin Cash, the SVI models bear significant

explanatory power at least on a 5% significance level. Due to the large sample size, of

course the standard errors are smaller and, thus, smaller effects turn out statistically

significant. However, when testing for Granger causality, the results are much weaker,

similar to what is documented in Table 2.5 for daily data. Overall, the evaluation criteria

select either Model 4 or 5.

However, when conducting the out-of-sample forecast, the relationship breaks down for

both returns and volatility. Thus, we conclude that on an hourly frequency, Google search

volume does not help to predict cryptocurrency returns or volatility.

2.5.3 Discussion of the Model Assumptions

Regardless of the variables included in the model, within the class of linear models, the

VAR setup in Equation (2.1) results, theoretically, in the best linear predictor (cp. Hamilton

1994). Even in the case of a non-linear specification of the conditional expectation of

returns or volatility, the VAR provides the best, MSE minimizing linear approximation

to the non-linear conditional expectation function. What we strive for is a conservative

analysis based on a tested and carefully constructed data basis. To that end, the linear

VAR approach provides a robust framework.

By transforming the variables to logarithmic differences, we also cover a non-linear

relationship between the variables. We also tested non-logarithmic differences and obtained

qualitatively similar results. Based on our analysis, we find no systematic or general way

to forecast returns with Google search queries. On a daily and weekly frequency, we find

predictability of cryptocurrencies’ volatility by means of Google SVIs. Comparing weekly,

daily and hourly data, we conclude that the lower the frequency the more effective is the

addition of Google’s SVI.

Kristoufek (2013) and Panagiotidis, Stengos and Vravosinos (2018a) document that the

distinction whether the Bitcoin price is above or below its past moving average is important.

To check this conjecture, we construct a dummy variable which indicates the state of the

price following the description in Kristoufek (2013). It turns out that such a variable is

in general not statistically significant and does not lead to a significant reduction of the

out-of-sample RMSE in our application.

However, the assumption of a linear model might be too restrictive. To check whether the

forecast precision can be improved by a non-linear forecasting technique, we considered
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the fit of an autoregressive local polynomial regression (referred to as LOESS regression;

cp. Cleveland, Grosse and Shyu 1992). On any frequency, the results of the LOESS

regression do not improve the forecasting precision compared to the VAR models that

include Google’s SVIs. Only for the return models without SVIs, the LOESS regression

produces in general a slightly smaller RMSE compared to the corresponding Model 0.

Still, the RMSE remains huge.

2.6 Summary

Based on the assumption that Google search queries proxy the interest of retail investors,

we conduct a forecast analysis of cryptocurrency returns and volatility, similar to the

studies of Kristoufek (2013), Dimpfl and Jank (2016), or Urquhart (2018). We consider

weekly, daily and hourly sampling frequencies. Overall, we find that the in-sample fit of

the models is good irrespective of the frequency, while the out-of-sample performance is

mixed. For returns, the predictive ability is negligible and even though the inclusion of

SVIs improves the forecast, there is still a giant forecast error left. This result partially

contradicts the findings of Kristoufek (2013), but is in line with Aalborg, Molnár and

de Vries (2019) who also conclude that Bitcoin returns are not predictable.

Volatility is in general better predictable which is first and foremost rooted in its strong

persistence. However, we find that the inclusion of SVIs leads to a significantly better

in-sample fit of the models on all considered frequencies. This is in contrast to Urquhart

(2018) who cannot reject the hypothesis that Google’s search volume does not Granger

cause Bitcoin realized volatility. The out-of-sample prediction results are more mixed. It

turns out that on an hourly basis, the best performing model is a pure autoregressive

model of volatility. On a daily or weekly frequency, however, the inclusion of SVIs leads to

a non-negligible reduction of the forecast error. The daily analysis for the cryptomarket

is, therefore, in line with research on stock market indicies (e.g. Dimpfl and Jank (2016))

who find SVIs to help predict volatility of the Dow Jones index.

Irrespective of the considered sampling frequency, the time period analyzed has an impact

on the results. This is a particular issue when conducting only an in-sample test for model

fit and Granger causality. We show for our daily data that there are extended periods for

which Granger causality could be established, but that there are more periods when it

would have to be rejected. This issue is more important for returns than for volatility.

Overall we conclude that the inclusion of Google’s search volume indices can help to

predict cryptocurrency volatility, but does not help to predict returns. In this respect,

cryptocurrencies are much more similar to equity than currency markets – a profane insight

into cryptocurrency markets, yet another call from reality.
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Chapter 3

Review of Infinitesimal Stochastic Operators on Markov

Chains

In Chapter 4, heavy use of the operator algebra, described in Baez and Biamonte (2018),

is made. In order to facilitate the reading, I shortly review the key concepts of the

operator algebra related to Markov chains. Briefly, I also review the connection to moment

generating functions and characteristic functions. These are called functional bases in

Weber and Frey (2017) in the context of path integrals. However, in Weber and Frey

(2017), this connection is not made explicit.

3.1 Probability Generating Functions

A nice tool for theoretical considerations on probability distributions are (probability)

generating functions. They facilitate the handling of discrete random variables that can

only assume values in N0.

A fairly good introduction can be found in Feller (1957, 1968) in Chapter XI. First of

all, I start with Feller’s definition of a generating function (p.264): ’Let a0, a1, a2 . . . be a

sequence of real numbers. If

A(s) = a0 + a1s + a2s
2 + . . .

converges in some interval −s0 < s < s0, then A(s) is called the generating function of the

sequence {aj}.’

The main take-away from this definition is that with such a generating function, one is able

to collect some sequence of numbers {ai} ∀i ∈ N0 in a handy object A(s). Each element of

the sequence {ai} is connected to the respective index i. The variable s has no significance

and can take on any value and may also be complex. What is of relevance in this context

is the convergence of the entire series. For this purpose, we may restrict the support of s

to some interval in order to guarantee its convergence. The variable s is simply used to
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make the collection possible. All that needs to hold is that the sequence {ai} generated in

this manner does not take on arbitrarily large values, but is bounded by some finite value.

If the sequence {ai} is bounded, then the entire series converges in some interval at least

for ∣s∣ < 1.

One useful application of this object emerges in the context of discrete probability func-

tions. Assume we have a discrete random variable which can assume non-negative values

{0, 1, 2, . . .}, we can collect the probability masses associated with the respective values in

a probability generating function

P (z) =
∞

∑
n=0

ψnz
n.

Since for every probability distribution ∑nψn = 1 must hold, P (1) = 1. This means that

probability generating functions converge absolutely at least for ∣s∣ ≤ 1.

Furthermore, we can construct a generating function for the distribution function of the

discrete variable from this probability generating function by

Q(s) = q0 + q1s + q2s
2 + . . .

= (p1 + p2 + p3 + p4 + . . .) + (p2 + p3 + p4 . . .)s + (p3 + p4 + . . .)s
2 + . . .

= (1 − p0) + (1 − p0 − p1)s + (1 − p0 − p1 − p2)s
2 . . .

=
1 − P (s)

1 − s
.

This generating function converges at least for ∣s∣ < 1 as the coeffients are less than one

(cp. Feller 1957, 1968, p.265).

For example, consider a Poisson distributed random variable X with rate parameter λ.

Then we know that the weights of a probability generating function (PGF) should look

like ψn = e−λ
λn

n! . Hence, the PGF is given by

P (z) =
∞

∑
n=0

e−λ
λn

n!
zn = e−λ

∞

∑
n=0

(λz)n

n!
= eλ(z−1).

Hence, the generating function for the distribution function is

Q(z) =
1 − eλ(z−1)

1 − z
.

An interesting feature of PGFs is that they are related to the Moment Generating Function

(MGF) and the Characteristic Function (CF). The MGF is the PGF evaluated at z = et.
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So in the case of the Poisson distributed variable above, the MGF is given as

MGF (t) = P (et) = eλ(e
t−1).

The CF is the PGF evaluated at z = eit or the MGF evaluated at the imaginary axis

MGF (it) = CF (t), i.e.,

CF (t) = P (eit) = eλ(e
it−1).

Last but not least, from the MGF also the the cumulant generating function can be

constructed

CGF (t) = lnMGF (t).

3.2 Time Evolution with Generating Functions

Probability Generating Functions can be a powerful tool when thinking about the time

evolution of stochastic systems. Baez and Biamonte (2018) present how these functions can

be used to describe the dynamics of stochastic systems. They make use of two operators:

the creation operator a+ and the annihilation operator a−. Both operators act on the state

of some system that can assume only values in N0.19

The probability distribution of such a system can be described in the form of a power

series, which is the just discussed PGF in Section 3.1, i.e.,

Ψ(z) =
∞

∑
i=0

ψiz
i. (3.1)

One may as well consider i as the count of balls in a box, neatly lined up. The balls appear

and disappear randomly, and are distinguishable. ψi is the probability that we find the

box filled with i balls.

If we know the system to be in one state n with certainty, then the weights ψi = 0∀i ≠ n

except for i = n where ψn = 1. The probability distribution, represented with this power

series would be the Dirac Delta function and the associated PGF is given by

Ψ(z) = zn.

19 Weber and Frey (2017) show that other domains like Z are possible as well. The definition of the
basis function, i.e., the object on which they act, determines the support. In our case, we stick to the
generating functions discussed in Section 3.1.
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If we now put one extra ball in the box, then we can apply the creation operator to Ψ(z):

a+Ψ(z) = zn+1.

After the creation operator has acted (with certainty) on the certain state with n balls, i.e.

in PGF representation zn, we are, again with certainty, in a new state with n + 1 balls,

i.e., in PGF representation zn+1. Thus, the creation operator can be represented by the

multiplication with a+ = z in the PGF-context. Similarily, if we remove one ball from the

box, then we can apply the annihilation operator to Ψ(z) as

a−Ψ(z) = nzn−1.

After the annihilation operator has acted (with certainty) on the certain state with n balls,

i.e., in PGF representation zn, we find the box (with certainty) in one of n states with n−1

balls, i.e., in PGF representation zn−1. Note that the state with n − 1 is not unique. This

is because, there are n ways to remove one ball from the box. In the PGF representation,

the annihilation operator could be represented as the derivative with respect to z.

In order for the creation and annihilation operator to be infinitesimal stochastic operators

they need to preserve total probability. Since the annihilation and creation operators are

the transitions in the system, all transitions have to sum up to zero in order to preserve

total probability across all states. So, in this example for the creation operator the Dirac

Delta function is moved from state n to n + 1. If probability mass of 1 is created at state

n + 1, a probability mass of 1 needs to be subtracted from state n. Thus, the infinitesimal

stochastic annihilation operator is given by

(a+ − 1)Ψ(z) = zn+1 − zn.

In the case of the annihilation operator, total probability is preserved by the following

infinitesimal stochastic operator:

(a− − a+a−)Ψ(z) = nzn−1 − nzn.

3.3 Univariate Counting Processes

Equipped with this notation, consider a counting process, as for example the number of

customers that have visited a store at a given day. In the morning of this day, we start

with n = 0. The respective power series is given by

Ψ(z) = 1.

77



If now the customers arrive at rate α in the store then the instantaneous change of the

PGF would be

∂Ψ(z)

∂t
= α(a+ − 1)Ψ(z) = α(z − 1). (3.2)

Generalizing this and collecting the operator as well as the rate into an operator H, we

find that this is an ordinary differential equation of the form

∂Ψ(z)

∂t
=HΨ0(z), (3.3)

where H is called the Hamiltonian of the system and Ψ0(z) is the initial state of the

system. Equation (3.3) is called the Master Equation. Every Markov processes is governed

by such a Master Equation. In the financial literature, H is often represented in the form

of migration matrices (cp. Lando and Skødeberg 2002). Its matrix representation can be

estimated via the Aalen-Johanson estimator (Aalen and Johansen 1978).

Given an initial state Ψ0(z), Equation (3.3) solves to

Ψ(z) = eHtΨ0(z).

In the counting process example, the solution, thus, is

Ψ(z) = eα(a
+−1)tΨ0(z) = e

α(z−1)t.

Recalling that a+ represents multiplication by z and the definition of the expansion of the

exponential function, this gives

Ψ(z) = eα(z−1)t =
∞

∑
j=0

exp(−αt)
(α)j

j!
zj =

∞

∑
j=0

ψjz
j,

where the weight ψj is the probability that j customers have visited at a given day. The

resulting PGF represents the Poisson distribution.

3.4 Extension to Integer Numbers

The extension to integer numbers requires a change in the basis function. Weber and

Frey (2017) show that there exist several possible basis functions. In order to represent

probability distributions on the set of integer numbers, it is useful to change the variable
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to z = es. Recall the relation of the PGF to the MGF in this case from above:

Ψ(es) =
∞

∑
n=0

ψne
sn, (3.4)

where the index is set to n so that it is not confused with the imaginary unit i. The

infinitesimal stochastic creation and annihilation operators have to be exchanged with

a+ = exp(s) − 1 and a− = exp(−s) − 1.

Now consider the situation in which a diner is managed. There is a stack of plates for

customers to use. The stack can be reduced by 1 when a customer is served food. It can

also be increased by 1 when the dishwasher has cleaned a plate. At each point in time the

number of available plates can be evaluated. If no plates are available, but customers are

waiting to be served, there is a lack of plates, i.e., a negative number of plates.

The rate at which the dishwasher is cleaning the plates is on average relatively constant at

around α = 3 plates per minute. However, the rate at which customers arrive in the diner

depends on the time of the day and can be described by β(t) = 12(sin(t) + 1). Clearly,

the number of plates follows a so-called birth-death process. Each day the stack of plates

is prefilled with 100 available plates. The process can be sampled using the Gillespie

algorithm presented in Chapter 4. Figure 3.1 shows a possible simulation of the system.

Using the above operator algebra, we know that the Hamiltonian of the system is given by

H = 3(exp(s) − 1) + 12(sin(t) + 1)(exp(−s) − 1).

Hence, given the initial condition of n0 = 100 the Master equation solves to

MGF (s) = Ψ(es)

= exp(∫

t

0
3(exp(s) − 1) + 12(sin(t) + 1)(exp(−s) − 1)dt + sn0)

= exp ((es − 1)3t + (e−s − 1)(−12(cos(2t) − 1 − t) + 100s) (3.5)

which is the moment generating function of the number of plates. Forming derivatives of

this function with respect to s yields the moments of the distribution. This is also how the

red bounds were calculated for Figure 3.1: They represent twice the standard deviation

from the mean of the distribution. By expanding exponential functions and rearranging

terms, it can be shown that the number of plates follows a Skellam-distribution.
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Figure 3.1: Simulation of the Diner Example

The graph shows a simulation of the diner example described in the text. The red lines represent twice the
distance from the mean of the theoretical Skellam distribution. They have been calculated by differencing
the derived moment generating function in Equation (3.5).
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3.5 Extensions and the SIRDS-Model

The concept of generating functions for discrete variables can be extended to continuous

variables. Examples can be found in Weber and Frey (2017). In Weber and Frey (2017),

the functional basis as well as the reference to PGF, CF and MGF is generalized by the

usage of Dirac notation with bra and ket vectors. A ket vector represents a mixed or pure

state of an observable, much like the PGFs discussed above. For example, if a random

variable with support on the natural numbers is with certainty in the pure state n and we

choose the power series representation (the PGF) above as the basis, the ket vector ∣n⟩

could also be represented as zn. One could also think of the state as an infinite vector

filled with zeros and a single one at the n + 1 element. To each representation of such a

state, belongs a linear functional, the bra vector. Bra and ket vectors are the basis of a

Hilbert space and its dual. For the PGF representation above, the functional ⟨m∣ acts on

an element of the Hilbert space as follows

⟨m∣Ψ =
∂mz
m!

Ψ(z)∣
z=0

.

For the infinite vector representation, the transpose of the infinite vector would be the

corresponding bra vector (up to some normalizing scale factor).
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Figure 3.2: The Petri Net of the SIRDS-Model

The following figure illustrates the SIRDS-model. The round nodes represent four groups within a
population: The susceptical S, the infected I, the resistant R and the deceased D. The boxes signify
transitions between these groups.

S
nS

R
nR

D
nD

I
nI

Infection F
Recovery G

Death T

Loss of
Resistance L

So far I have only discussed transitions that increase or decrease a discrete variable by one

unit. The infinitesimal operator can be generalized to transitions that increase a variable

by m and decrease it by n. The method can also be extended to multivariate systems

with transitions between several in- and output variables. To illustrate this extension, I

discuss the SIRDS-model which is in the current Covid-19 pandemic often used to model

and forecast the spread of the virus.

There are four groups within a population: the susceptical S who may potentially be

infected with the virus; the confirmed infections I; the recovered R who have become

temporarily resistant; and the deceased D. I use the MGF basis function to derive the

Hamiltonian of the system. In this example, I consider the following transitions: death

T , infection F , gaining resistance G by recovery and losing the resitance L. The SIRDS

model can be illustrated using a petri net; which is presented in Figure 3.2.
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The partial Hamiltonians for each of these transitions are given by

T =D+I− − I+I−,

F = (I+)
2
S−I− − S+S−I+I−,

G = R+I− − I+I−,

L = S+R− −R+R−.

With the corresponding rates αT , αF , αG, αL, the system solves to

Ψ(z) = exp
⎛

⎝
∫ αT ((esD − 1)(e−sI − 1) − (e+sI − 1)(e−sI − 1))

+ αF ((esI − 1)2(e−sI − 1) − (esS − 1)(e−sS − 1)(esI − 1)(e−sI − 1))

+ αG ((esR − 1)(e−sI − 1) − (e+sI − 1)(e−sI − 1))

+ αL (((esS − 1)(e−sR − 1) − (e+sR − 1)(e−sR − 1)))dt
⎞

⎠
Ψ0(z).

If the coefficients were time independent, the MGF could be directly determined in a

closed form solution otherwise the integral across the time dependent rate functions has to

be considered. Having the MGF at our disposal, one can derive the time varying moments

of the dynamic system either in a closed form solution or numerically. Evaluating the

MGF on the imaginary axis, one can also derive the characteristic function of the time

varying joint distribution of the four groups. With a reversed Fourier transform, the joint

probability function can then be determined – at least numerically.

3.6 Summary

In this brief chapter, I presented the mathematical tools used in Chapter 4. Especially for

continuous time counting processes, the approach presented above is an interesting method

to determine the (non-stationary) dynamics and distributions of such processes. However,

the higher the number of variables, the more difficult it is to actually find a closed form

solution and the more expensive become numerical algorithms to determine the solutions.
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Chapter 4

A Stochastic Description of the Limit Order Book to

Forecast Intraday Returns20

Ever since Glosten (1994) raised the question whether ’the electronic open limit order

book [was] inevitable’, limit order books (LOBs) have become the most important way

of trading, resulting in more than 75% of exchanges around the world (including the

recently sprouting cryptocurrency exchanges) using order driven systems and relying (at

least partially) on limit order books (Jain 2003). Nevertheless, ’no comprehensive and

realistic models (either statistical or economic) exist’ (Hasbrouck 2007, Ch. 12, p. 118)

which describe the deep-rooted mechanisms of limit order markets in their entirety. While

Hasbrouck’s statement is more than 10 years old and the literature has made significant

progress, a dynamic model which comprehensively describes the interaction of individual

orders and is able to incorporate the (strategic) behavior of market participants has, to

the best of our knowledge, not yet been developed. Gould, Porter, Williams, McDonald,

Fenn and Howison (2013) provide an overview about research on the dynamics of the LOB

and identify (roughly speaking) two branches of research. One of them originates in the

field of physics and focuses mainly on idealized models to describe statistical features of

the LOB system, focusing on dynamic order flows. The second branch is rooted in the

economics literature which tends to treat order flows as static. According to Gould et al.

(2013), economists primarily focus on the (strategic) behavior of traders, but neglect the

dynamical structure. Of course, this reduction is too simplistic and there are multiple

attempts to combine strategic behavior and the order book dynamics. For example, Parlour

(1998) develops a stylized, dynamic model for the LOB and strategic order placement.

Nevertheless, only few models approach the subject by heuristically incorporating statistical

regularities observed in market microstructure and incorporate trader interaction based

on these statistical observations. A notable exception is Hautsch and Huang (2012) who

use high-frequency cointegrated vector autoregressive models to shift the spotlight on the

order flow of incoming orders and therewith, based on empirical analysis, draw attention

20 This chapter is based on Bleher et al. (2020) available at SSRN https://ssrn.com/abstract=3589763

and arXiv https://arxiv.org/abs/2004.11953.
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to the intersection of LOB mechanics and strategic behavior of market participants. They

show that the revelation of trading intentions through limit order placements affects the

LOB states. Large (2007) shows how trades of different size (marketable incoming orders)

affect future states of the LOB. Paulsen (2014) derives macroscopic limiting models for a

microscopic LOB system in which bid, ask, and transaction prices drive the dynamics of

the order flow. These limiting models serve as first order approximations of the stochastic

processes that describe the system.

This chapter aims to link models of statistical dynamic order flow and those of strategic

interaction. Adapting ideas from Paulsen (2014) and inspired by Baez and Biamonte

(2018), we relate the LOB dynamics to the modeling of reaction networks (developed

by Baez and Pollard 2017) and present a simple but comprehensive description of the

microscopic order book mechanisms. Based on operator algebra, we construct the LOB

dynamics bottom up from the elementary events of the book, namely the entry and exit

of orders which enables us to model the LOB system by a Markov process. Furthermore,

the Hamiltonian, i.e., the operator which governs the time dynamics of the system, can

be constructed from these elementary events. Similar to Paulsen (2014), our approach

allows to incorporate both the dynamics of the fundamental LOB mechanisms as well as

the (strategic) behavior of market participants. Using the event log of the first quarter

of 2004 from XETRA, we heuristically develop, simulate and empirically evaluate the

implications of our operator formulation. By describing the interaction of individual orders

in a purely statistical fashion, the state space of the order book system is worked out which

depends only on the rates of arriving and canceled orders as well as on the current state

of the book. Based on a limited set of key variables, we show that the return dynamics

can be approximated by a linear model. This variable set also allows to linearly forecast

returns, arrival rates, and other measures such as order book imbalance and liquidity.

Compared to prediction errors reported in the literature such as Zhou, Pan, Hu, Tang and

Zhao (2018), forecasts based on these variables reduce the root mean squared prediction

error (RMSPE) drastically by a factor of 1/10. The in-sample R2 as well as the R2 of a

Mincer and Zarnowitz (1969) type regression for the out-of-sample predictions show an

extraordinary fit for intraday return forecasts.

Similar to our approach, Cont, Stoikov and Talreja (2010) explore the idea of modeling the

order book as a Markov process depending on the rates of arrivals and cancellations. They

work out closed form solutions for the probability of an increase in the midprice, execution

of an order at the best bid price (before a change of the best ask price), and execution

of both a buy and a sell order at the best quotes before the price moves. Cont and

de Larrard (2013) show that such a model can also be used to calculate the distribution

of the duration between transactions. Unfortunately, as Cont and de Larrard (2012)

state, these models are based on several assumptions which empirical research has shown
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to be incorrect (Bouchaud, Mézard and Potters 2002, Hasbrouck 2007). In particular,

the time intervals between order arrivals and cancellations are neither independent nor

exponentially distributed and orders are not equally sized. Another model which is based

on the Markov properties of the order book has been developed by Daniels, Farmer,

Gillemot, Iori and Smith (2003) and extended by Smith, Farmer, Gillemot, Krishnamurthy

et al. (2003). However, the model imposes broad restrictions on the functional structure,

the parameters and the assumptions about the stochastic processes which govern the LOB

dynamics. Again, some of their assumptions like equal order size or balanced order flow,

order placement with uniform probability, among others are ’too simple to be literally

true’ (Smith et al. 2003), but the resulting insights provide a useful foundation for LOB

modeling.

The chapter proceeds as follows: Section 4.1 sets out the description of a typical LOB by

an algebra of operators. Simultaneously, we present some selected empirical characteristics

of the order book which guide our model development. Section 4.2 presents the XETRA

order book data. In Section 4.3, we report the results of a simulation study where we

identify key factors/drivers of the order flow which determine the statistical distribution

of what will happen in the order book and also when and where it happens on short

time horizons. Finally, Section 4.4 holds an empirical analysis of the XETRA LOB and

Section 4.5 concludes this chapter.

4.1 The Model

The limit order book is the place where traders’ orders meet. These orders carry information

about a trader’s willingness to accept a certain price, the limit price, in exchange for the

chosen number of instruments, or vice-versa. The price level at which two orders are

matched is called the reference price. Within the LOB, we distinguish buy (ask) order

and sell (bid) orders. Perceiving these two order types as species which populate price

and order size levels inspired the use of the mathematical tools presented in Baez and

Biamonte (2018). At any point in time the exchange keeps track of all orders within the

LOB. Aside from the market side, the location within the LOB is defined by three key

components: the limit price up to which the trader wants to buy or sell, the number of

securities, and the time when the order arrives in the LOB.

If traders require immediacy, they rely on market orders which can be thought to have an

infinite (bid order) or zero (ask order) limit price depending on the market side they were

issued from. These orders are matched immediately and, normally, do not reside in the

order book for an extended amount of time. They enter the LOB at the best price level of

all limit orders currently residing in the LOB on the opposite market side.
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The majority of orders, however, are designed to remain in the book for some time at

their specified limit price level. These are called limit orders which (as we will show in

Section 4.2) make up for roughly 90% of all orders in the XETRA LOB while only 3% are

market orders. Limit orders have a well defined location in the price dimension. If their

designated price location is behind the best price level of all limit orders which currently

reside in the LOB on the other side of the market, they are matched (partially) before

they can reach their designated limit price level. The smallest populated price level on the

sell side of the market is the best ask and the highest price level on the bid side is the best

bid. We will refer to one or the other as the best quote.

There are generally further order types that are only submitted to the market if certain

conditions are met, for example stop orders, which are inserted in the LOB contingently on

the reference price reaching or falling below a certain threshold price, or XETRA BEST

orders. But once such orders enter the LOB, they are effectively equivalent to market

or limit orders. As conditional orders can be perceived as more sophisticated versions

of limit or market orders, they can in principle be incorporated within the framework

presented below. For the purpose of this chapter, we restrict our considerations, thus, to

plain market and limit orders.

4.1.1 The LOB Algebra

In the following, we describe order creation and cancellation in the LOB as determined

by the rules of a typical order book. For this purpose, we borrow the so-called Dirac or

Bra-Ket Notation from physics, where the state of a system is denoted by a ket ∣ψ⟩. This

notation was already introduced in Section 3.5, in the previous chapter. In Section 4.1.2,

we will discuss the underlying notion of a state in detail. For now, we can refer to any

possible configuration of the order book with ∣ψ⟩. Even further, we can also assign weights

(probabilities) to each of these possible configurations and refer to such a weighted bundle

of pure states by ∣ψ⟩. Nevertheless, we start off with a very concrete state: the empty

order book (or vacuum) ∣0⟩. From this vacuum state, more complicated order book states

are created by successively acting on it with creation and annihilation operators. As we

will see below, the rules of the LOB induce certain commutation relations in the algebra

of these operators. It will be convenient to also introduce the notation

∣0⟩ = ∣0∣ (4.1)

which represents an empty ledger.
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Rule 1a (Ask Order Submission). Traders can submit a limit ask order of quantity q at a

specified price level k. The order is represented by a creation operator a+k,q that acts on the

order book state from the right.21

For example, if n ask orders are residing in the book, each with its associated limit price

ki and size qi, i ∈ 1, . . . , n, the order book state is given by

∣0∣a+k1,q1 . . . a
+
kn,qn

. (4.2)

Rule 1b (Bid Order Submission). Traders can submit a limit bid order of quantity q at a

specified price level k. The order is represented by a creation operator b+k,q that acts on the

order book state from the left.

Analogously, for m bid orders residing in the book with specified limit prices kj and sizes

qj with j ∈ 1, . . . ,m, the following string of operators describes the current state:

b+km,qm . . . b
+
k1,q1

∣0∣. (4.3)

Note, so far, the rules only describe the successive submission of orders. In particular, we

do not yet have a rule that would allow us to reorder the queue of creation operators. Put

differently, creation operators generally do not commute: a+k,qa
+
s,p ≠ a

+
s,pa

+
k,q. As a result,

the strings of creation operators of ask and bid type are time-ordered.

Rule 2a (Ask Order Cancellation). Traders can cancel a previously submitted ask order.

An ask order cancellation is represented by an annihilation operator a−k,q which acts from

the right and satisfies

∣0∣a+k,qa
−
k,q = ∣0∣. (4.4)

Clearly, the probability of a cancellation must be zero if there is no order in the book.

This means that when an annihilation operator acts on the empty order book, it generates

a state with probability mass zero:

∣0∣a−k,q = 0. (4.5)

21 This choice will become relevant in the context of price-time priority, see Rule 3.
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There is a standard argument, that there is always one more possibility to create and

then delete an object than deleting and then creating one. In terms of the operators this

argument is represented by the commutation relation22

[a+k,q, a
−
k,q] = 1

where [A,B] ∶= AB −BA denotes the commutator of two operators. In fact this relation

directly follows from (4.4) and (4.5)

∣0∣[a+k,q, a
−
k,q] = ∣0∣(a+k,qa

−
k,q − a

−
k,qa

+
k,q) = ∣0∣a+k,qa

−
k,q − ∣0∣a−k,qa

+
k,q = ∣0∣.

Furthermore, since the cancellation of an order a+k,q does not influence other orders a+s,p,

we also have

[a+s,p, a
−
k,q] = 0,

whenever s ≠ k and p ≠ q. We can summarize these algebraic relations as follows:

[a+k,q, a
−
s,p] = δskδpq, (4.6)

where δij is the Kronecker-Delta, defined on an index set I ∋ i, j by

δij =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if i = j

0 else.

In fact, these commutation relations are usually viewed as the defining properties of

creation and annihilation operators.

Rule 2b (Bid Order Cancellation). Traders can cancel a previously submitted bid order. A

bid order cancellation is an annihilation operator b−k,q that acts from the left. By analogy

with the ask cancellations, it satisfies

b−k,q ∣0∣ = 0, (4.7)

[b−k,q, b
+
j,p] = δkjδqp. (4.8)

In comparison to the commutation relation of ask orders, the order of annihilation and

creation operators is reversed since bid orders act from the left. When there are several

identical limit orders, i.e., orders with the same price level and quantity, we can distinguish

22 In physics, these commutation relations are known as canonical commutation relations.

88



their position in the order queue by means of their time stamp. In contrast, for cancellation

orders, an observer cannot predict which of the identical limit orders is supposed to be

canceled. The algebraic formalism captures this uncertainty: up to normalization, the

commutation relations lead to a stochastically mixed state that contains each possible

cancellation, for example

(∣0∣a+k,qa
+
r,sa

+
k,q)a

−
k,q = ∣0∣a+k,qa

+
r,s + ∣0∣a+r,sa

+
k,q.

Remark. We also introduce the convention that arrivals and cancellations with size q = 0

are equivalent to the identity operator. This is motivated by the fact that such arrivals

and cancellations in practice do not exist. However, if they existed, they would render the

current LOB state unchanged:

a+k,0 = a
−
k,0 = b

+
k,0 = b

−
k,0 = 1.

Rule 3 (Price-Time Priority). Orders are organized according to price-time priority.

The order book state is the result of successive order submissions and the corresponding

string of operators is strictly ordered by time. Hence, we get a price-time ordering by

rearranging the operators into groups with identical price level whilst maintaining the time

ordering within each group. This can be achieved by letting ask and bid orders commute

whenever they have different price levels k ≠ s:

[a+k,q, a
+
s,p] = 0, (4.9)

[b+k,q, b
+
s,p] = 0. (4.10)

Using these relations, the order book state can always be written in the price-time ordered

form

∣ψ⟩ = b+k1,q1 ⋯ b+kn,qn ∣0∣ a+kn+1,qn+1 ⋯ a+kn+m,qn+m , (4.11)

where ki ≤ ki+1. Whenever ki = ki+1, the order nearer to ∣0∣ was submitted first.

Given a LOB state in price-time ordered form, the priority of an order is encoded by its

distance to ∣0∣, where orders closer to ∣0∣ have higher priority.

Rule 4 (Order Matching). Two orders from different market sides permit a transaction if

they have highest priority and the bid price is bigger or equal to the ask price. When the

LOB executes orders that permit a transaction, the quantities are matched up as far as
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possible and unmatched quantities remain in the book. We write bk,q ∣0∣as,p for a pair of

executed orders, such that for k ≥ s the matching procedure is captured by

b+k,q ∣0∣a
+
s,p =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∣0∣a+s,p−q if q > p

∣0∣ if q = p

b+k,q−p∣0∣ if q < p

(4.12)

or as an algebraic relation of creation operators

b+k,qa
+
s,p = θ(q − p) b

+
k,q−p + θ(p − q) a

+
s,p−q,

where θ(x) is the Heaviside step function

θ(x) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1 if x > 0

1
2 if x = 0

0 else.

Recall for the case q = p that orders of size 0 are equivalent to the identity operator.

Since incoming bid (ask) orders always act on a state from the left (right), we need to

commute them through older orders until they reach their designated position in the

price-time ordered queue. This means orders automatically ’walk the book’23 until they

reach their destined price level k. Along its walk, an order may encounter orders of the

other market side and will then be executed as described by Rule 4. It follows that market

orders are described by creation operators a+k=0,q and b+k=∞,q, which will walk all the way

through the book until they are completely executed.

Let us stress that the price level k of an order a+k,q is not necessarily the transaction price

at which the order will be executed. Instead, the transaction price is usually determined

by the price level of the ’settled order’ that is encountered by the ’walking order’. The

’settled order’, however, may depend on the trading mode (see Section 4.1.5).

Also note that we did not yet specify when orders are executed and when a transaction

will take place. The reason is that such rules do not add further algebraic relations. The

question when orders are matched is not relevant for the description of the current state of

the book. However, it is relevant for the time dynamics, i.e., if we examine time series of

order book states. The question is whether matching occurs after each event, as continuous

trading dictates, or whether matching is only conducted hypothetically after each event to

23 In the LOB literature, ’walking the book’ usually refers to an arriving, marketable order that is executed
against several orders on the opposite market side. We borrow this notion of the walking order and
extend it. In our case, every order ’walks through the book’, however, only marketable orders encounter
orders on their way to their destined limit price level.
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produce indicative prices like in the pre-auction phase or at the end of an auction. These

different modes matter for the evolution of the book. A detailed discussion of transactions

and related issues follows in Section 4.1.5.

4.1.2 State Space and the Probability Generating Function

As we have seen in Section 4.1.1, for any given time the state of the order book is given by

a price-time ordered string of creation operators

∣ψ⟩ = b+k1,q1 ⋯ b+kj ,qj ∣0∣ a+kj+1,qj+1 ⋯ a+kn,qn ,

where ki ≤ ki+1 for all i ∈ S = {1, . . . , n}. Each operator in this string is specified by its

market side m ∈ {a, b} =M, the price level k ∈ K ⊂ R, and the order size q ∈ Q ⊂ R. Here

K and Q are the price and quantity levels at which orders can be submitted to the LOB.

These typically are discrete subsets of R. In principle, price and quantity levels can become

arbitrarily large, but in practice one can introduce a cutoff for both prices and quantities

at a large enough value. As a result, K and Q, can be thought of as finite sets.

It is convenient to introduce a partial ordering ≤ on creation operators via the following

set of relations:

b+k1,q1 ≤ b
+
k2,q2

≤ a+k3,q3 ≤ a
+
k4,q4

⇐⇒ k1 ≤ k2 ≤ k3 ≤ k4.

Then any price-time ordered string of creation operators is equivalent to a monotonically

increasing map

z ∶ S →M ×K ×Q

i↦ zi = (m+
i )ki,qi s.t. zi ≤ zi+1

from some finite set S ⊂ N to the set of creation operators. We denote the associated

states by

∣z⟩ ∶= z1⋯zj ∣0∣zj+1⋯zn.

The collection {∣z⟩} fully describes the possible configurations of the order book at any

given moment. We may refer to these states as pure states. Note that S, M, K, and Q

are countable sets, so the set {∣z⟩} is countable as well.

Clearly, any prediction of the future state of the order book must be probabilistic. So, while

pure states are potentially observable, mixed states are not. Mixed states are composed of

several pure states in which each pure state is weighted with some probability mass.
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For this reason, mixed and pure states are elements of the vector space spanned by the

pure states ∣z⟩:

H = { ∣ψ⟩ = ∑
∣z⟩∈H

p(z) ∣z⟩ ∣ p(z) ∈ R }.

In reality, the order book must be in a stochastically normalized state, i.e., a state

∣ψ⟩ = ∑∣z⟩ p(z) ∣z⟩, where 0 ≤ p(z) ≤ 1 for all ∣z⟩ and ∑∣z⟩∈H p(z) = 1. In this case, (the

coefficient) p(z) is the probability that the state ∣z⟩ will be realized.

Remark. The normalized states are a closed subset of the full vector space H. In particular,

they do not form a vector space themselves. It is often easier to work with unnormalized

vectors and rescale the result to a normalized state at the end.

In Section 4.1.3, we describe the time evolution of an initial state ∣z0⟩ at time t0. We will

see that (by construction) time evolution produces a state

∣ψ(t); z0, t0⟩ = ∑
z∈H

p(z, t∣z0, t0) ∣z⟩ . (4.13)

In the literature, this object is usually referred to as generalized probability generating

function (see for example Weber and Frey 2017, Section 2). For brevity, we often write

∣ψ(t)⟩ and drop the reference to the conditional nature of the generalized probability

generating function.

It is customary to denote linear functionals by ’bra’ vectors ⟨ψ∣ ∈ H∗ and introduce the

dual basis ⟨z∣, which satisfies

⟨z′∣z⟩ = δz′,z.

The conditional probability to find a state ∣z⟩ at time t in ∣ψ(t); z0, t0⟩ is then given by

p(z, t∣z0, t0) = ⟨z∣ψ(t)⟩ . (4.14)

4.1.3 Time Evolution

In this section, we introduce dynamics to the order book, i.e., we explain how an order book

state evolves over time. Throughout this section, we closely follow Baez and Biamonte

(2018), where the general theory of stochastic time evolution is laid out in great detail.

The future state of the order book arises from acting on an initial state with the order

operators introduced in Section 4.1.1. This means that we are automatically in the situation

of a Markov process.
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The only issue is that the rate (probability) of incoming orders can depend on the history

of the order book. It is, however, not sensible to assume that the entire history of the order

book affects the properties of arrival and cancellation rates as old configurations of the

LOB are usually not relevant for the decision process of market participants. They usually

seek to maximize the probability of order execution based on the current state of the order

book and possibly a very narrow history of preceding order book configurations. This only

implies that arrival rates may be dependent on several preceding states of the LOB, which

is not in contradiction to the Markov property per se. It would only mean that the process

governing the LOB dynamics might be of Markov order higher than 1. Theoretically,

by appropriately extending the state space, every Markov process of finite order can be

expressed as a Markov process of order one. Thus, we assume that the dynamics of the

order book follow a Markov process of order 1.

As a continuous Markov process, the order book satisfies the Master Equation (cp. van

Kampen 1992, Weber and Frey 2017). In our notation, the Master Equation is given by

∂

∂t
∣ψ(t)⟩ =H ∣ψ(t)⟩ , (4.15)

where the so-called Hamiltonian operator H encodes all information on the transition

probabilities between order book states.

A solution of the Master Equation is provided by a stochastic time evolution operator

U(t, t0) via

∣ψ(t)⟩ = U(t, t0) ∣ψ(t0)⟩ .

If the Hamiltonian is time-independent, the time evolution operator is remarkably easy:

U(t, t0) = e
H(t−t0). (4.16)

If the Hamiltonian is time dependent, the time evolution operator can similarly be written

as

U(t, t0) = exp( ∫

t

t0
H(τ)dτ) , (4.17)

but the evaluation of this expression is typically more involved.

We assume that other variables, like news from outside the order book, may impact

the rates of incoming orders. However, these variables are pre-determined outside the

mechanism of the order book. This may lead to time dependent arrival and cancellation

rates. In the system description, this would mean that the Hamiltonian is time dependent.

Nevertheless, a time-independent approximation of such a system may still serve as a
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good approximation if the time intervals are small enough. In Section 4.4, we will take an

indeterministic approach towards those other variables and regard them as predetermined

outside the book. Again, this is not in contradiction to the Markov property of the LOB

system which is the key assumption for the Master Equation (4.15) to hold. At this point,

it is also interesting to note that beyond the model presented in this chapter, the LOB may

be an open Markov process, which can be described by relying on a compositional model

framework – in the sense of Baez and Pollard (2017) – and would allow to incorporate

trader behavior.

Given the above considerations, the dynamics of the order book are fully described by the

choice of a Hamiltonian H. Baez and Biamonte (2018) show how H can be constructed

from infinitesimal stochastic operators which describe the elementary transitions that can

take place in a system.

In the LOB, there are four possible transitions for each price level k and each quantity q:

entry of an ask order EA
k,q = (a+k,q − 1)

entry of a bid order EB
k,q = (b+k,q − 1)

cancellation of an ask order CA
k,q = (a−k,q −N

A
k,q)

cancellation of a bid order CB
k,q = (b−k,q −N

B
k,q)

where a±k,q, b
±
k,q are the creation and annihilation operators of Section 4.1.1. The number

operators NA
k,q = a

+
k,qa

−
k,q and NB

k,q = b
+
k,qb

−
k,q return the number of active bid and ask orders

on price level k and of quantity q when they act on a pure LOB state (see Section 4.1.4).

Remark. Creation and annihilation operators are not infinitesimal stochastic operators.

This is why there are additional terms (−1,−N) in the operators corresponding to order

entry and cancellation.

As mentioned above, the Hamiltonian of the LOB is a combination of elementary transitions

H =∑
k

∑
q

EA
k,qαA(k, q) +E

B
k,qαB(k, q) +C

A
k,qωA(k, q) +C

B
k,qωB(k, q), (4.18)

where each transition is weighted by its arrival rate α or cancellation rate ω, respectively.

Also note that the arrival rates need to be scaled such that the time evolution operator

U(t, t0) is indeed stochastic and maps one stochastically normalized state to another.

Generally, the arrival and cancellation rates in a LOB are observed to be time dependent.

Intraday patterns of order flow have been documented for example by Biais, Hillion and

Spatt (1995). Even for the very recent development of international Bitcoin markets, in

which trading is possible 24/7 Eross, McGroarty, Urquhart and Wolfe (2019) document

activity patterns related to the opening and closing of major markets. The observed
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clustering of transactions in time can be conceived as the result of time dependent arrival

and cancellation rates. These are usually modeled using Autoregressive Conditional

Duration (ACD) models (see Engle and Russell 1998, Fernandes and Grammig 2006).

We may treat the arrival and cancellation rates, especially on small and intermediate

time scales, as mainly determined by the state of the order book, in the sense that the

distributions of the rates across k and q depend on the current state of the order book –

for example via current best bid/ask or the spread. With this dependence on the current

state, we allow for a quite general feedback mechanism between the current state of the

order book and arrival and cancellation rates. If the state of the LOB changes by an event,

the arrival and cancellation rates may change subsequently as well.

We investigate both static and dynamic specifications of arrival rates. In Section 4.3, we

will investigate static distributions using empirical unconditional frequencies and a uniform

as well as a theoretical discrete Gaussian exponential (DGX) distribution for arrival and

cancellation rates across price levels. The latter can be justified heuristically by the

characteristics found in our data as described in Section 4.2, in particular Figure 4.2. We

will, in one simulation scenario, also allow the parameters of the assumed DGX distribution,

for arrival and cancellation rates across relative price levels, to depend on the spread. In

Section 4.4, we measure the arrival rates during fixed non-overlapping time intervals and

therewith allow them to vary over time.

We also incorporate in our empirical analysis in Section 4.4 the idea of conditional

autoregressive arrival and cancellation rates and include lagged terms of arrival rates,

moments of the spread and the distance to the opposite best quote. Sampling the LOB

data on different time intervals, i.e., taking snapshots of the current state at different

frequencies (for example 1, 2, and 5 minutes), allows to relate the moments of the relative

integer distance dl (as defined in Equation (4.28) in Section 4.2) and the quantity of

incoming and canceled orders q to price changes and other observables of the system.

Empirical tests of these implications can be found in Section 4.4.

For now, we focus on the conceptual implications of these empirical findings and on how

they affect the set up of the time evolution of the LOB system. Thus, we denote the

arrival rate of an order at price k and quantity q as αM(k, q), M ∈M. Since the distance

to the opposite market side d and the prevalent spread ∆ depend on the current state of

the order book, the arrival rates must be considered to be operators. When αM(k, q) acts

on a pure state ∣z⟩, it returns an arrival rate which depends on the values of d and ∆ that

are realized in the state ∣z⟩:

αM(k, q; z) = ⟨z∣αM(k, q)∣z⟩ M ∈ {A,B}.
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A similar operator yields the distribution of cancellation rates corresponding to the current

state of the order book:

ωM(k, q; z) = ⟨z∣ωM(k, q)∣z⟩ M ∈ {A,B}.

In the Hamiltonian given in Equation (4.18) the operators αM(k, q) and ωM(k, q) act on

the state first, thus determining the rate of the corresponding transition EM
k,q that acts on

the state subsequently.

Remark. Since the Hamiltonian H is linear in the transition operators, it can be decomposed

into smaller pieces that describe a subsystem of the LOB. For example, we can split up

the Hamiltonian into ask and bid Hamiltonians

H =HA +HB

HM =∑
k,q

EM
k,qαM(k, q) +CM

k,qωM(k, q) , M ∈M.

Similarly, we could decompose H into the Hamiltonians for all price and quantity levels:

H =∑
k,q

Hk,q

Hk,q = E
A
k,qαA(k, q) +E

B
k,qαB(k, q) +C

A
k,qωA(k, q) +C

B
k,qωB(k, q).

While these decompositions are convenient in calculations, they also allow a different view

on the evolution of the book: In principle, one could argue that the time evolution should be

based on (groups of) traders, whose order submissions and cancellations can be described

by Hamiltonians Hg where the index g may indicate a group of traders or individual

traders. The notion of particular groups can be found quite often in the literature. For

example, Foucault et al. (2011) group traders into institutional and individual traders,

whereas Foucault, Kadan and Kandel (2005) distinguish patient and impatient traders.

These subsystems sum up to an effective Hamiltonian Heff = ∑Hg which will necessarily be

of the form (4.18). The only difference is that now the rates α and ω become population

parameters in a fundamental model about traders. In this chapter, we refrain from

modeling traders and instead estimate effective arrival rate distributions from LOB data.

However, there is surely a trader induced clustering or autocorrelation in arrival rates

which we cannot ignore. There are also patterns induced by general business activity

throughout the day. Additionally, when submitting orders to the LOB, traders often care

about the probability that their submitted orders are executed in due time. There is

a trade-off between immediacy and a slightly delayed order execution. The probability

that an order is executed is directly linked to the arrival rates of orders in the LOB.

Thus, traders may incorporate the history in their decision process, i.e., when, at which
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limit price, and with which quantity they want to submit their orders to the LOB and

again induce autocorrelation into arrival and cancellation rates. The decomposition of

the Hamiltonian, as discussed above, would allow for an explicit model and cover such a

scenario. In general, the model above does not exclude the notion of autocorrelation in

the arrival rates. Especially in Section 4.4, however, we take a more indeterministic view

in that we allow prior arrival and cancellation rates of ask or bid orders to proxy current

arrival and cancellation rates. The idea that prior arrival rates determine current rates is

also the guiding notion for the ACD literature mentioned above.

4.1.4 Observables

A specific configuration ∣ψ⟩ of the order book contains an enormous amount of information.

Usually, the focus lies on selected descriptive quantities which can be extracted from the

order book at any state. We will call these quantities observables and describe them by

the action of an operator O on pure order book states ∣z⟩. The value of O for a given state

∣z⟩ can be calculated as

O(z) = ⟨z∣O∣z⟩ .

More generally, given a state ∣ψ⟩, the νth conditional moment of the observable O is given

by24

E[Oν ;ψ] = ∑
∣z⟩∈H

⟨z∣Oν ∣ψ⟩ . (4.19)

Similarly, we can calculate the expected value of sums and products of distinct operators.

This gives rise to covariance and correlation measures, e.g.,

Cov(O1,O2) = ∑
∣z⟩∈H

⟨z∣ (O1 −E[O1])(O2 −E(O2)) ∣ψ⟩ .

Combined with the time evolution of an initial state ∣ψ0⟩, we obtain the moments of an

observable’s probability distribution at time t (t > t0) as

E[Oν ;ψ(t)] =∑
∣z⟩

⟨z∣OνeH(t−t0) ∣ψ0⟩ =∑
∣z⟩

⟨z∣Oν(1 +H(t − t0) +
1

2
H2(t − t0)

2 + . . . ) ∣ψ0⟩ .

(4.20)

24 In quantum mechanics, a similar relation holds, known as the Born rule ⟨Ψ∣ Ôν ∣Ψ⟩. Since we work with
stochastic probabilities (and not with quantum mechanical amplitudes), ⟨Ψ∣ needs to be replaced by
the sum over all dual basis vectors ⟨z∣.
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Note that the expected value in Equation (4.20) is a conditional expectation. It is

conditional on the state ∣ψ0⟩ at time t0. Later on, in Section 4.4, to make this conditioning

clear, we will denote conditional moments with Et0[Oν]. The following example illustrates

the rationale behind the formula in Equation (4.20). Consider the operator βB which

extracts the value of the best bid order in a state ∣z⟩ (cf. Section 4.1.4). Furthermore,

assume that at t0 = 0, the initial state is given in price-time ordered form by

∣ψ0⟩ = b
+
k1,q2

b+k2,q3 ∣0∣a
+
k3,q1

.

Clearly, since k1 < k2 < k3, the best bid is currently at price level k2. According to (4.20),

the expected value of βB at time t is given by an infinite sum. To begin with, we consider

terms for which the state does not change during the time period ∆t = t− t0. These include

of course the identity operator 1 in Equation (4.20). But H is built from terms of the form

α(p, q)(b+p,q − 1), so there are additional contributions at any order in Hk. Together, they

contribute the following term to the expected value of the best bid price only for price

level k2:

k2(1 −∑
k,q

α(k, q)∆t −∑
k,q

ω(k, q)∆t − . . .).

The expression in parenthesis is of course nothing but the probability that the state will

not change within ∆t.

For other price levels, these contributions are different. Therefore, we next investigate the

linear terms in H which describe the entry of a single order. There are only three cases

in which the best bid changes. First, we may observe an entry of a limit bid order with

a price level in between best ask and best bid. Its contribution to the expected value is

∑k2<k<k3,q kαB(k, q)∆t. Second, the order residing on k2, the current best bid price level,

may be canceled. In this case the contribution to the expected value is k1ω(k2, q2)∆t.

Third, an arrival of an ask order above the best bid which exhausts the best bid order’s

quantity may arrive. In this case we get ∑k≥k2,q≥q2 k3αA(k, q)∆t. In all other cases of

incoming limit orders the value of βB remains at k2.

A similar analysis is possible at order H2. This would entail interaction terms of two

orders entering the book: a+k,qαA(k, q)b
+
`,rαB(`, r). There are again several different cases

which depend on the type, price level and quantity of the incoming orders, each contribut-

ing differently to the expected value. More generally, at order Hn one encounters the

probabilities that n orders enter the book and influence the best bid during time period

∆t. For short time periods, such higher order contributions are negligible compared to the

linear contributions because they depend on products of arrival rates, which are typically

very small. However, for long time periods the powers ∆tn will eventually dominate.
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The example above illustrates an important property of the model. According to Equa-

tion (4.20), the moments of observables depend solely on the (current) distributions

αM(k, q) and ωM(k, q). These distributions, if they vary sufficiently slowly, may be mea-

sured or modeled from the event stream of the book. Therefore, a testable hypothesis

implied by our model is whether the distributional moments of k (or equivalently dl for

that matter) and q (calculated by perceiving αM(k, q) and ωM(k, q) as their underlying

probability functions) can be used to predict the expected value of observables, including

price changes and inter-transaction duration.

In the following, we present a selection of observables, which are important for our analysis.

Number and Volume Operators

A basic observable is the number of active orders on price level k with size q. It can be

described for the bid and ask side by the number operators

NB
k,q = b

+
k,qb

−
k,q,

NA
k,q = a

+
k,qa

−
k,q.

These operators can be utilized to extract several other observables. In particular, the

total number of active orders on price level k of ask or bid type M ∈M = {A,B}

NM
k =∑

q

NM
k,q,

the quantity of active orders on price level k and the total quantity on each market side

M ∈M

QM
k =∑

q

qNM
k,q,

QM =∑
k

QM
k ,

or the volume of active orders at price level k and the total volume on each market side

V M
k = kQM

k ,

V M =∑
k

V M
k .

There are also operators that describe a global aspect of the configuration of an order

book state ∣z⟩, e.g. the best bid and best ask prices βM , M ∈M. In the following, let the
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state of the LOB be

∣z⟩ = b+k1,q1 . . . b+kj ,qj ∣0∣ a+kj+1,qj+1 . . . a+kn,qn .

Then the best bid and best ask operators act on ∣z⟩ as follows:

βB ∣z⟩ = kj ∣z⟩ ,

βA ∣z⟩ = kj+1 ∣z⟩ .

Note that k on the right hand side is not an operator but the price level associated with

the best quote. Combining the two, one obtains the spread operator ∆ and mid price

operator βmid as

∆ = βA − βB,

βmid =
1
2
(βB + βA).

Order Book Imbalance

These operators also allow to extract more complicated measures from the book like the

order book imbalance, for example. It is a relevant quantity for order execution and

of special interest to practitioners that design and develop trading algorithms (see, e.g.,

Bechler and Ludkovski 2015, Lipton, Pesavento and Sotiropoulos 2014, Cartea, Jaimungal

and Penalva 2015). In general, the literature relies on two measures to quantify order book

imbalance. First, Lipton et al. (2014) use the total number of ask and bid orders in the

market and calculate order book imbalance IQ as the relative deviation of standing ask

and bid orders as

IQ =
QA −QB

Q
=
QA −QB

QA +QB
=

QA

QA +QB
−

QB

QA +QB
. (4.21)

Second, Bechler and Ludkovski (2015) use the volume of active orders. Their measure of

market imbalance IV is given by

IV =
V A − V B

V
=
V A − V B

V A + V B
=

V A

V A + V B
−

V B

V A + V B
. (4.22)

Liquidity

Harris (2003) defines liquidity as ’the ability to trade large size quickly, at low cost, when

you want to trade.’ According to the same source, the notion of liquidity incorporates four

dimensions: immediacy of trade execution for a given size, depth, width, and resilience of
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the market. Therefore, the spread itself is used frequently as a liquidity measure in the

literature.

There are multiple approaches to measure liquidity and we rely on the exchange liquidity

measure (XLM) which is based on the concept of implementation shortfall, introduced

by Gomber and Schweickert (2002). It covers three dimensions of liquidity: depth, width,

and immediacy. The XLM (also known as XETRA Liquidity Measure) is composed of

liquidity measures for the ask side (XLMA) and the bid side of the market (XLMB),

XLM =XLMA +XLMB, (4.23)

where

XLMA = 10,000

∑
∞
k V A

k

∑kQ
A
k

− βmid

∑
∞
k V A

k

∑kQ
A
k

, (4.24)

XLMB = 10,000
βmid −

∑
∞
k V B

k

∑kQ
B
k

∑
∞
k V B

k

∑kQ
B
k

. (4.25)

The XLM depends on the volume weighted price which can be realized immediately on

each side of the market for a round trip order with a certain volume V̄ , i.e., simultaneously

submitting marketable ask and bid orders with a total volume of V̄ . In other words, the

XLM measures the cost of a round trip order (in basis points).

4.1.5 Transactions

Up to now, we have deferred the discussion of transactions since, strictly speaking, they are

not necessary to set up the order book states. In this section we first discuss the trading

modes of the XETRA order book and explain how one can augment the LOB states to

also record information about transactions. This will allow us to study the transaction

price and transaction rates, which were so far not available in the order book state.

The XETRA order book is organized as continuous trading augmented by opening-,

intraday-, and closing-auctions. Before stating the rules for these modes, we make a small

change in notation: Instead of the symbol ∣0∣ for the empty book, we record via ∣Tk,q;t∣ the

last price k, quantity q, and time t at which a transaction occurred.

Rule 5a (Continuous Trading). Assume an incoming order is assigned highest priority and

is such that it permits a transaction with its partner on the opposite market side. Then the

orders will be executed at the price of the partner that was already residing in the market
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and a transaction of the matched-up quantity will be issued at this price. For an arriving

ask order, this results in

( ⋯b+k,q ∣0∣ ⋯)a+s,p = ⋯b
+
k,q ∣Tk,min(q,p);t ∣ a

+
s,p⋯ , (4.26)

while for an arriving bid order, we have

b+k,q ( ⋯∣0∣ a+s,p ⋯) = ⋯b+k,q ∣Ts,min(q,p);t ∣ a
+
s,p⋯ . (4.27)

Rule 5b (Auction). Auctions consist of an outcry/call phase, during which incoming

orders are collected and ordered by price-time priority as usual, but are not executed. The

exchange may provide an indicative pricing to market participants i.e., the price level at

which the current order book state would settle if the call phase were to end immediately.

Upon closing of the call phase the transaction price is determined according to the principle

of highest traded volume. Subsequently, orders of highest priority are executed iteratively at

the previously determined transaction price. The transaction is recorded at the transaction

price and with the total traded quantity. A description of the matching procedure like in

Equation (4.26) and Equation (4.27) is possible for concrete situations. The principle

of highest traded volume makes a general formulation exhausting and is not particularly

illuminating. Therefore, we omit a general formulation at this point.

The rules above are illustrated in Figure 4.1. We can now introduce the transaction price,

transaction quantity, and transaction volume operators, which extract the corresponding

numbers from the last recorded transaction. Let the state of the book be

∣z⟩ = z1 . . . zi ∣Tk,q;t ∣ zi+1 . . . zn .

The operators are then defined as follows

TK ∣z⟩ = k ∣z⟩ ,

TQ ∣z⟩ = q ∣z⟩ ,

TV ∣z⟩ = kq ∣z⟩ .

Furthermore, we can extract the time at which the last transaction occurred via Tt ∣z⟩ = t ∣z⟩.

This is the basis for an important observable, the inter-trade duration T∆t = t2 − t1, i.e.,

the time between two transaction. In our current setup, T∆t cannot be expressed as an

operator which only acts on the current state, while in practice we can calculate the time

intervals from remembering earlier transactions’ time stamps.
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Figure 4.1: Transaction Matching

The figure illustrates the matching bk,q ∣0∣as,p for s ≤ k and q > p.

s k price

a+s,p
b+k,q a+s,p

s k price

b+k,q−p

4.2 Data

The data used in the present chapter were provided by Deutsche Börse in 2004 and have

been previously used by Grammig, Heinen and Rengifo (2004). They consist of all recorded

order book events of the XETRA system25 for trading of the 30 stocks that constituted the

German stock market index, DAX between January 2 and March 26, 2004. Additionally,

Deutsche Börse provided the open order positions in their books as of January 1, 2004,

12 pm. The data allow for the full recovery of the order book. Over the three months

period, 228,275,832 events were recorded. Additionally, 2,282 initial positions are available

at the beginning of the period. The data cover order arrivals, (partial) matches, changes

and cancellations. The XETRA trading system allows for limit and market orders. It

is also possible to mix the two standard order types (market and limit orders) with a

market-to-limit order (MTL). An MTL order is filled on the best limit price in the book,

either fully or partially. If an MTL order is matched only partially on the best ask or bid

price, it enters the LOB on the best limit price with the remaining order size. Additionally,

iceberg orders (ICE) are allowed for which only a fraction of the total volume chosen by

the issuer is displayed to market participants.

Market and limit orders can also have a specified stop price. They are then called stop

orders. Different from the limit price, i.e., the price upon which the trader is willing to

trade, the stop price specifies a price level from which onwards the trader is willing to

submit an order. Hence, if the reference price exceeds (in case of bid order) or undercuts

(ask order) the stop price, the order is inserted in the book.

25 XETRA Release 7.0
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Furthermore, the XETRA system also allowed so called XETRA BEST execution orders

during the sample period at hand. The BEST execution orders are matched against

incoming market or crossing limit orders at a price level just before the currently prevailing

best ask and bid prices. In that way they introduce an extra hidden layer of occupied price

levels in front of the prevailing best ask and bid prices in the LOB. XETRA BEST orders

can be market or limit orders. Market-to-limit orders, iceberg orders and stop-orders

cannot be submitted as XETRA BEST orders. Also, if XETRA BEST orders are not

executed they do not enter the LOB event log at all. This happens if the associated

price level is better than the current best quote. If they are matched in a trade, they are

recorded as the counterparty of a transaction. If they are submitted as limit orders and

the associated price level is worse than the best quote, they enter as regular limit orders.

In the latter case, we cannot distinguish regular limit orders from XETRA BEST orders

in our data.

For all orders validity constraints can be set. Users may specify a termination date up to

which the order is valid. Without such a restriction, orders are valid for 90 days. Iceberg

orders, however, are only good for the day. Traders may also specify whether orders are

valid only for specific trading phases such as auctions, or during which auction the order

shall be valid. Orders with such a restricted validity reside in the book and become active

during the trading phase for which they are valid.

With regard to execution restrictions, the XETRA system allows for the following two

specifications for market, limit or MTL orders. First, the Fill-or-Kill order (FOK) is

either filled entirely or canceled. FOK orders are only recorded as entries to the book if

successfully filled. If no immediate filling is possible, FOK orders are canceled without

notification within the LOB event log. Second, the Immediate-or-Cancel order (IOC) is

filled as far as possible upon entry, or canceled. Similar to the FOK order, a record of the

order is only entered in the LOB event log in case of a successful (partial) filling.

All these different order types and restrictions can be incorporated in the time evolution

set out in Section 4.1 by introducing different types of arrival and cancellation rates for

the related events as elements of the Hamiltonian. These order types, however, do not

affect the generality of the algebra set up in Section 4.1.1.

Table 4.A.1 in Section 4.A provides an overview of the distribution of the events in the

LOB log. It presents the total number of submitted limit, market, iceberg, and MTL

orders along with their relative occurrences on the bid and ask side.

In empirical investigations of LOB data, it is frequently observed that the distributions

of arrival and cancellation rates show a relatively stable connection with the current

distance d = ∣βM − k∣ of the respective price level k to the best active price level on the

opposite market side βM , M ∈M = {A,B} (cp. Bouchaud et al. 2002). We find a similar
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phenomenon in the XETRA data. We set the distance d of all crossing, arriving orders to

0 and define the logarithmic relative integer distance as

dl = log (100 max(d,0) + 1) . (4.28)

Taking logarithms exposes the heavy tails of the distribution across price levels and its

similarities with the DGX-distribution (see Section 4.C for a short description and Bi,

Faloutsos and Korn (2001) for further details). For our simulation study in Section 4.3,

we use the DGX distribution to model order arrivals across dl. Figure 4.2 displays the

empirical logarithmic frequencies of order arrivals and cancellations at the logarithmic

relative integer distance dl of their limit order price to the best ask or best bid price,

respectively. The red line indicates a DGX distribution (truncated at 1). The logarithmic

frequencies of different types of marketable orders (limit, stop, iceberg and market orders)

are displayed separately at dl0 = 0 in Figure 4.2.

In our data, we also observe a small correlation between dl and the prevailing spread

∆ = vA − vB in logarithms. Figure 4.3 presents scatter plots of dl against the logarithmic

integer spread log(100∆). For large spreads there is a stronger correlation between events

that are mainly concerned with price levels around the best limit price of the same market

side. When the spread is small, it seems that events occur more evenly spread out up to as

much away as EUR 4 from the best limit price of the opposite market side. We also note

that events on the bid side are less dispersed across price levels than events on the ask side

as the natural limit price for a bid order is a price level of 0. For ask orders, theoretically,

no such limit exists.

With respect to order size, we observe no clear pattern between order size and the

logarithmic relative integer distance in the data, only a very small negative correlation can

be noted. Budget restrictions of market participants would suggest that order sizes further

away from the opposite best quote on the ask side bring order sizes down with growing

price levels. For the bid side, the inverse argument should hold, nevertheless, a small

negative correlation can also be observed for the bid side. However, as the correlations are

low, the price level and quantity, at least in logs, may justify the approximating assumption

of stochastic independence used in several scenarios of the simulation study in Section 4.3.

Table 4.1 lists the correlations between the order volume q associated with a certain event

and the logarithmic integer distance to the best opposite quote for the MEO stock. As can

be seen, the approximating assumption that the two variables q and dl are independent

does not mirror reality exactly. Nevertheless, we will make the assumption several times

in this chapter as it keeps the estimation and simulation manageable.
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Figure 4.2: Frequency of Order Arrivals

The graphs show the logarithmic frequency of arriving (a and b) or canceled (c and d)
limit orders (including stop and iceberg orders) for the stock MEO, respectively, on their
logarithmic relative integer distance to the best bid or ask prices. The logarithmic relative
integer distance is defined as dl = log (100 max(d,0) + 1). The red line is the logarithmic
probability of a truncated discrete Gaussian exponential (DGX) distribution for dl > 0, i.e.,
d > 1 (as described in Section 4.C). The theoretical value for dl = 0 or d = 1 is intentionally
ignored for the fitting of the parameters of the DGX distribution. At dl = 0 the logarithmic
frequencies of several types of marketable orders are displayed. The blue point represents
the logarithmic frequency of market orders. Also, the log frequency of marketable limit
orders at (red) and behind (green) the best quote is shown, as well as marketable iceberg
orders in purple, and marketable stop orders in orange. Crossing cancellations occur in
the XETRA event log when the orders are deleted before they are matched.
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Figure 4.3: Relation Between Spread and Relative Price Distance

The graphs present the logarithmic relative integer distance to the best bid or ask price of
orders arriving (a and b) or being canceled (c and d) related to the stock ALT together
with the prevailing logarithmic integer spread. The logarithmic relative integer distance is
defined as dl = log (100 max(d,0) + 1) whereas the logarithmic integer is log(100∆) with
∆ being the prevailing spread at arrival or cancellation. Even though cancellations smaller
than the spread seem counter intuitive, they occur when orders are immediately canceled
right after their insertion into the event log. The red line indicates the bisecting line.
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Figure 4.4: Relation Between Order Size and Relative Price Distance

The graphs show the decadic logarithmic relative integer distance to the best bid or ask
price of arriving (a and b) or canceled (c and d) orders related to the stock BAS against
the decadic logarithm of the size. The decadic, logarithmic, relative integer distance is
defined as dl = log10 (100 max(d,0) + 1). For the arriving orders, the order size depicted is
the original order size, while for the canceled orders, the order size depicted is the actually
canceled order size, not the original size at entry.
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Table 4.1: Correlations Between dl and q

The table lists the correlation coefficients r2 between the logarithmic integer distance to the
opposite best quote dl as defined in Equation (4.28) together with standard errors calculated

as s.e. =
√

(1 − r2)/(n − 2) where n is the number of observations. The approximately
standard normally distributed z-score= (r2)/(s.e.) is reported as well, complemented by
its p-value. All values reported concern the MEO stock.

Event r2 s.e. z-score p-value

ask arrivals -0.1517 0.0060 -25.2 <0.001
bid arrivals -0.2090 0.0058 -35.9 <0.001
ask cancellations 0.0291 0.0062 4.7 1
bid cancellations 0.0359 0.0061 5.87 1

4.3 Simulation

The simulation algorithm presented in this section generates order book events by generating

answers to the repeatedly asked question: When will what happen where next?

4.3.1 The Simulation Algorithm

In order to simulate the LOB, several assumptions have to be imposed on the functional

structure of the arrival and cancellation rates included in the Hamiltonian H of the model

developed in Section 4.1. The following section presents the stochastic simulation algorithm

(SSA) developed by Gillespie (1977) which can be used to simulate an artificial history

of the order book. The SSA is a direct consequence of the model and allows the exact

simulation of the system.

Note that the assumptions made about the immanent functional structure of the arrival

and cancellation rates are the crucial ingredients of the model. We therefore explore

possible calibrations of our model with the subsequent simulation study. Our goal is not

to fit the simulation results to an observed LOB history as closely as possible. Instead, the

simulation offers insights into the sensitivity of the order book dynamics, especially the

transaction price dynamics, to changes in the structure of arrival and cancellation rates.

The starting point of the SSA is based on the probability that within the next interval δτ

no event occurs which we can denote in our notation as

P0(δτ) = ∑
z∈H

⟨z∣ exp(diag(H)δτ) ∣Ψ(t0)⟩ , (4.29)

109



where the diagonal elements in H are obtained by

diag(H)δτ = ⟨z∣Hδτ ∣z⟩ = − ∑
k,q,M

αM(k, q; z)δτ − ∑
k,q,M

ωM(k, q; z)δτ.

This is the negative sum of the rates of all possible events conditional on the book being

in state ∣z⟩.

Gillespie (1977) shows how to formulate this probability for some event µ to happen during

the interval τ without the operator algebra. The probability that an order arrives during

the interval dτ is rµdτ , where rµ is the rate corresponding to the event. In our case, rµ may

be some rate from the set of arrival or cancellation rates, αM(k, q)δτ or ωM(k, q)δτ . In

fact, we may label all possible events with integer numbers and let µ be a specific integer

denoting a specific event. Setting τ = δτ + dτ , the probability that given the state ∣Ψ(t0)⟩

at time t0 the next reaction µ will happen during the next interval of τ , denoted P (τ, µ),

can be written as the product of the probability that nothing will happen during δτ and

the probability that µ will happen during dτ :

P (τ, µ) = P0(δτ)rµdτ. (4.30)

From Equation (4.30), Gillespie (1977) deduces that the probability that nothing happens

during τ , can be formulated as

P0(τ) = P0(δτ)(1 −∑
ν≠µ

rνdτ) . (4.31)

Noting that τ = δτ + dτ by definition, bringing all terms involving P0 to the left hand side,

dividing both sides by dτ and taking limits for δτ → 0, yields a differential equation that

is solved by setting

P0(τ) = exp(−∑
ν

rντ) . (4.32)

Substituting Equation (4.32) into Equation (4.31), the probability that µ will happen

during the next time interval τ is given by

P (τ, µ) = rµ exp(−r0τ) = rµ∑
z∈H

⟨z∣ exp(diag(H)τ) ∣Ψ(t0)⟩ , (4.33)

where in our case r0 = ∑k,q,M αM(k, q; z) +∑k,q,M ωM(k, q; z).

From Equation (4.33), we may randomly generate the pair (τ, µ), i.e., the time when an

event occurs τ and which event will happen µ. As we have set up the rates as price and

size specific, by generating the event µ we also specify the price location and the size
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which are affected by the event. By noting that Equation (4.33) determines an exponential

distribution with scale parameter r0, we can first sample τ by drawing u1 from a uniform

distribution U(0,1) and calculating

τ =
1

r0

log (
1

u1

) .

Having determined when an event occurs, we may now ask the question what will happen.

By numerically specifying the rates for all possible events rν and drawing a second

realization u2 from a uniform distribution U(0,1), we may find the integer µ by solving

µ−1

∑
ν=1

rν
r0

< u2 ≤

µ

∑
ν=1

rν
r0

for µ. In other words, by drawing u1 and u2, we can simulate an answer to the question

when something will happen with u1 and, with u2, what as well as where it will take place.

In fact, we also draw a third realization from a uniform distribution u3, to answer the

question what size is affected (see Section 4.B for details). Having drawn an event and

it’s characteristics, the current state of the system can be updated. This may change the

rates rν and their sum r0. Note that by sampling the events in this fashion, the events

are conditionally independent. They may not be independent as the rates are conditional

on the current state (and under the assumption of a higher Markov order also on finitely

many previous states) of the LOB.

In order to simulate the LOB dynamics, we have to specify the rates of all possible events

and how they depend on the current state. In our case, all possible events comprise the

order arrivals and order cancellations. Thus, we have to find a functional form for the

respective rates αM and ωM . In our specifications presented in Section 4.B, we let αM

and ωM be functions of the quantity q and the price level k (or more precisely of the

integer distance to the opposite best quote dl). For simplicity, we will assume that all

rates αM(k, q) and ωM(k.q) are separable in k and q such that

αM(k, q) = α1,M(k)α2,M(q) and ωM(k.q) = ω1,M(k)ω2,M(q).

As the rates are proportional to the probability distribution of arriving (or canceled)

orders across price and size, this means that the size of arriving (or canceled orders) is

stochastically independent of the price level they concern. In Figure 4.4, it can be seen

that for lower distances to the opposite best quote the size of arriving and canceled order

is equally spread out across possible size levels. A clear relationship between the price

level and the size level is not visible. In the absence of such a clear relationship, we find

the approximating assumption that the size and price level are stochastically independent

justifiable.

111



We decompose the arrival rates further by setting the general intensity of events for each

market side r̄0,M,i to the average event rate over the entire sample of stock i, where r̄0,M,i

is defined as

r̄0,M,i = ∑
k,q,j

αM,i(k, q) + ωM,i(k, q)

which is calculated as the number of events on one market side divided by the total number

of events. Note that since we have several order types, the arrival rates may be split

into market orders as well as marketable and non-marketable limit orders. The empirical

frequencies for r̄0,M,i are reported in the last column in Table 4.A.1.

Hence, the arrival and cancellation rates for limit orders can be described by the partitioning

of the average event rate r̄0,M,i,j,a across price levels k and order sizes q:

αM(k, q) = r̄0,M,i,j,a pK,M(k;θM,a) pQ,M(q;φM,a),

ωM(k.q) = r̄0,M,i,L,c pK,M(k;θM,c) pQ,M(q;φM,c), (4.34)

where r̄0,M,i,j,a is the rate for an order of type j (market or limit order) for stock i to arrive

and r̄0,M,i,L,c is the rate for a limit order (i.e., j = L) to be canceled. pK,M(k;θM,a) denotes

the discrete probability mass function of order arrivals across the integer price levels k

given some parameter set θM,a and similarly pQ,M(q;φM,a) is the discrete probability mass

function of order arrivals or cancellations across order sizes. The index a indicates the

parameters for order arrivals, c the parameters for cancellations. The index M denotes

the market side.

In our simulation, we consider three theoretical probability mass functions for pK,M(⋅):

The uniform distribution (uni), a discrete log-normal distribution with fixed parameters

(fix), and a discrete log-normal distribution which depends on the prevailing spread (dyn).

For pQ,M(⋅) we only consider a power law distribution (pow). The power-law distribution

captures the heavy tails of the volume distribution. The distribution of order size and the

heavy tails can be seen in Figure 4.5 which depicts the frequencies of order arrivals and

cancellations.

Section 4.B lists all the functional specifications as well as a description on how market

orders are incorporated in the distributional setup. Iceberg orders, stop orders or fill-or-kill

restrictions are neglected in the simulation study, as the events marked by these order

types only make up for less than 1% of all events in our data set.

Additionally, we also investigate cases in which pK,M(⋅) and pQ,M(⋅) are described by the

empirical univariate frequency distributions in our sample across k and q, respectively

(emp). We also utilize the joint frequency distribution of the observed pairs (k, q) in one

scenario (emp,emp). Note that although we use the empirical frequencies, the rates are
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Figure 4.5: Distribution of Logarithmic Order Size

The figure presents the logarithmic frequencies of logarithmic order sizes of the MEO stock
for arriving (a and b) or canceled (c and d) orders. For incoming orders, the logarithm
of the original order size is used, whereas for order cancellations, the actually canceled
remaining order size is utilized.
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Table 4.2: Mean and Standard Deviation of Simulated Price Changes

For each of the 30 stocks, the time series mean and standard deviation of the
logarithmic transaction price changes (in event time) across the 200 simulations
has been calculated. The table reports the average across the 30 means µ̄ and
standard deviations σ̄ multiplied by 103. In the last row, the average across the
observed time series means and standard deviations of the logarithmic transaction
price changes are reported.

Initial Position: January 2, 2004 March 31, 2004
Opening Auction Midday Auction Opening Auction Midday Auction

Scenario µ̄ σ̄ µ̄ σ̄ µ̄ σ̄ µ̄ σ̄

uni emp -0.12 3.82 -0.02 3.05 -0.06 3.82 -0.04 3.17
uni pow -0.11 3.17 0.00 2.57 -0.03 3.29 -0.01 2.67
fix emp 0.01 0.70 0.01 0.69 0.01 0.71 0.01 0.70
fix pow 0.01 0.70 0.01 0.68 0.01 0.69 0.01 0.69
dyn emp 0.00 1.21 0.00 1.17 -0.00 1.21 0.00 1.19
dyn pow 0.00 0.87 -0.00 0.85 0.00 0.87 -0.00 0.86
emp emp -0.01 3.43 -0.01 3.43 -0.04 2.67 -0.04 2.89
emp pow -0.04 2.37 -0.02 1.48 -0.03 1.53 -0.03 1.56

observed 0.02 0.67 0.01 0.58 0.00 0.67 -0.00 0.49

fixed over the entire simulation run. Thus, in the scenario ’emp’, no dynamic feedback

between the state of the book and the arrival and cancellation rates is introduced.

For all combinations of these distributional specifications (in total 8 scenarios26) for each

stock, we simulate 200 realizations of LOB evolutions over half a trading day (4 hours).

The state at the beginning of our sample, i.e., after the opening auction on January 2,

2004 at 9h00 CET, serves as a starting point for the simulation.

4.3.2 Discussion of the Simulation Results

We first turn to the results from the uni scenario which are depicted in Figure 4.6. In this

scenario, many simulation runs ended with an empty order book. We also see that the

variance of transaction prices, which is induced by the uniform distribution, is rather high,

especially, when using the empirical volume distribution. This is reported in Table 4.2

which shows the average mean and standard deviation of the simulated transaction price

changes across all simulation runs.

Note that for these simulations, the average event rates on each market side (which is

denoted r̄0,M,i,j,⋅ in Equation (4.34) in Section 4.B) are the same as in the case of the fixed

and dynamic arrival and cancellation rates. We may associate the uniform distribution

across price levels with somewhat uninformed traders who, regardless of the price, randomly

26 The scenarios are (uni,pow), (uni,emp), (fix,pow), (fix,emp), (dyn,pow), (dyn,emp), (emp,pow) and
(emp,emp) where the list of pairs utilizes the introduced abbreviations and states the distribution across
k in the first coordinate and the one across q in the second coordinate.
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Figure 4.6: Scenario: Uniformly Distributed Arrival and Cancellation Rates

The graphs show 200 simulated paths of transaction prices (in red) using the scenario in
which the arrivals and cancellations of orders follow a uniform distribution. The starting
point of each simulation is the LOB position of the MEO stock on January 2, 2004. The
true history of transaction prices during the first half of that day are depicted in black.
In 4.6a, the empirical order size distribution is taken to generate the samples. In 4.6b, a
power law is assumed to generate order sizes. Paths that end earlier than 12h00 result in
an empty order book.
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submit orders in the vicinity of the current best quote. With the uniform distribution, the

mean and variance of the price level is rather high compared to the DGX specifications in

other simulation scenarios as well as the empirically observed equivalents. Throughout all

simulation scenarios, we see that a higher mean and variance in the distribution across

price levels are related to a higher variance in transaction prices. This result is interesting

since, as noted before, arrival rates are linked to trader’s behavior. So, if traders are

uniformed on how the asset should be valued and constantly shift their valuation with no

clear tendency and/or if traders are indifferent between immediate execution and delayed

execution, transaction prices become highly volatile.

Second, the results for the fixed DGX distribution across price levels are presented in

Figure 4.8. We can see that the power law very rarely induces large jumps in transaction

prices due to the extremely large order sizes that are possible under this distributional

scheme. In general, however, differences between the volume distributions are not obvious,

neither in the ’uni’ scenario nor in the ’fix’ scenario. The average of the time series means

and standard deviations for the simulations with the fixed DGX distributions as provided

in Table 4.2 are close to the empirical ones. One very interesting result for the ’fix’ scenario

concerns the parameters of the DGX distribution. The distributional parameters µ and

σ are almost identically defined: The parameter µ of the DGX distribution for incoming

and canceled orders on the bid side has been specified slightly higher (at µB,a = 1.766

and µB,c = 1.674) than the one for the ask side (µA,a = 1.726 and µA,c = 1.620) to match

estimated parameters from empirically observed frequencies. However, this small difference,

does not seem to have any effect. In order to analyse the effect, we ran the simulation of

the ’fix’ scenario only for the stock MEO again with adjusted parameters: Leaving the
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Figure 4.7: Special Case: Fixed DGX Distribution with an Imbalance in Arrival Rates

The graphs show 200 simulated paths of transaction prices (in red) using the
scenario in which the arrival and cancellations of orders follow a fixed DGX
distribution across price levels. However, an imbalance in the distribution of
arrival rates is inserted as bid orders arrive densely in vicinity to the best ask
price level. The starting point of each simulation is the LOB position for the
MEO stock on March 31, 2004 after the midday auction at 13h00. The true
history of transaction prices for the first half of that day is depicted in black. In
4.8a, the empirical order size distribution is taken to generate the samples. In
4.8b, a power law is assumed to generate order sizes.
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distribution of the cancellation rates untouched, only the parameters of DGX distribution

across arrival rates are altered to µB,a = 0.1 and µA,a = 2 as well as σB,a = 0.2 and σA,a = 1.

Therewith, the distribution of bid order arrivals is much more dense around the best ask

price. The result can be seen in Figure 4.7.

The behavior of the transaction prices also depends crucially on the cancellation rates

as well as the volume distribution. In the case where order size is distributed according

to a power law distribution, order sizes on both market sides are identically distributed.

Furthermore, the power law distribution generates a lot of small orders while large orders

are very rare. At the same time, the initial position on the bid side contains several large

orders close to the best bid price (which are more likely to be canceled). The ask side

consists of several medium sized orders close to the best ask, while the large orders rest

deep in the book. So, the frequent small orders inserted at or close to the best ask price

are not able to move the market upwards permanently due to the medium sized orders

sitting in the book on the ask side. At the same time large orders at the front of the bid

side (from the initial position) are canceled frequently. One rare large ask order generated

by the power law, thus, is able to move the bid price quite a lot. The longer the simulation

is running, the more likely it is for a large ask order to occur and the more likely it is that

the large orders at the top of the bid side are already canceled. This makes it easier for

the ask side to move the best ask down and therefore transaction prices deteriorate.

In the empirical distribution, the volume distribution on the bid side dominates the volume

distribution of the ask side. Thus, bid orders inserted into the book are larger in size than
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Figure 4.8: Scenario: Fixed DGX Distribution for Arrival and Cancellation Rates

The graphs show 200 simulated paths of transaction prices (in red) using the scenario in
which the arrival and cancellations of orders follow a fixed DGX distribution across price
levels. The starting point of each simulation is the LOB position for the MEO stock on
January 2, 2004. The true history of transaction prices for the first half of that day are
depicted in black. In 4.8a, the empirical order size distribution is taken to generate the
samples. In 4.8b, a power law is assumed to generate order sizes.
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inserted ask orders. Since bid orders are inserted close to or at the best ask price level,

the bid side moves the market soon after the simulation starts upwards. This leads to a

hefty upward drift of transaction prices in each simulated transaction path and empty

order books on the ask side. Hence, we can conclude that limit order distributions with a

high probability mass in the vicinity of the best quote in one market side push transaction

prices in the direction of the opposite market side if the order size distribution allows for

frequent medium sized orders.

Third, the simulated transaction prices resulting from the scenario with dynamical shifting

and scaling DGX distributions which depend on the prevailing spread, are shown in

Figure 4.9. In this scenario the moments of the DGX distribution depend on the prevailing

spread. The dynamical adjustment of the arrival and cancellation rates across price levels

is balanced, So, the mean and standard deviation of the DGX distribution across price

levels is the same on both market sides. Furthermore, the large jumps induced by the

power law distribution are still rare, but rather pronounced. These jumps are, however,

not sufficient to cause an increase in volatility. In fact, the scenarios with a power law

distribution exhibit on average a slightly smaller volatility which might be due to the fact

that the order size is rather small. For the power law distributed order size, the time series

mean and standard deviation of the dynamically adjusting simulation scenario are close

to the time series mean and standard deviation of real observed logarithmic transaction

changes as presented in Table 4.2. The scenario with the empirical order size distribution

is too volatile.

Fourth, using the unconditional empirical frequency distributions as well as the empirical

rates r̄0,M,i,j,⋅, the results presented in Figure 4.10 deviate from empirical stylized facts in
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Figure 4.9: Scenario: Dynamical DGX Distribution for Arrival and Cancellation Rates

The graphs show 200 simulation paths of transaction prices (in red) using the scenario in
which the arrival and cancellations of orders follow a dynamical DGX distribution across
price levels. In the dynamical DGX distributions the parameters µ and σ are functions
of the prevailing integer spread. The starting point of each simulation were the LOB
positions for the MEO stock on January 2, 2004. The true history of transaction prices for
the first half of that day are depicted in black. In 4.9a, the empirical order size distribution
is taken to generate the samples. In 4.9b, a power law is assumed to generate order sizes.
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that the resulting paths are much more volatile. The imbalance between ask and bid order

arrivals and cancellations exhibited by some stocks, together with the observation that

on average ask orders arrive closer to the best bid than bid orders to the best ask, drags

transaction prices on average slightly down (see Table 4.2). The smaller distance to the

best quote, on average, of ask orders can be seen in Figure 4.2 as well as in Figure 4.11.

It seems that in our sample, sellers tend to seek quicker order execution by placing their

orders close to the buy side. Buyers on the other hand, test their fortunes and patiently

wait for a good deal to occur deeper in the book. This can be clearly seen in Figure 4.11:

For the same average spread, arriving bid orders are placed on average further away from

the opposite market side than arriving ask orders.

4.4 Empirical Analysis

In our empirical analysis, we focus on three variables that we deem most important to

market participants.The first is the logarithmic return which could be achieved based

on a buy-and-sell strategy in subsequent intervals. The second is the return of a sell-

and-buy strategy. The third one is the exchange liquidity measure (XLM) as introduced

in Section 4.1.4, calculated with a round-trip of EUR 100.000. To implement them, we

sample the data in intervals of fixed length ∆t (1, 2, 5, 10, 15, 30, 45, 50, 60, 120, 240

minutes). Let t denote the last point in time of some arbitrary interval and t − 1 the last

point in the previous interval. Then the logarithmic returns of a buy-and-sell (∆pt,b) and

118



Figure 4.10: Scenario: Empirical Frequency Distribution for Arrival and Cancellation Rates

The graphs show 200 simulation paths of transaction prices (in red) using the scenario in
which the arrival and cancellations of orders follow a dynamical DGX distribution across
price levels. In the dynamical DGX distributions the parameters µ and σ are functions of
the prevailing integer spread. The starting point of each simulation were the LOB position
for the MEO stock on January 2, 2004. The true history of transaction prices for the first
half of that day are depicted in black. In 4.10a, the empirical order size distribution is
taken to generate the samples. In 4.10b, a power law is assumed to generate order sizes.
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a sell-and-buy strategy (∆pt,s) are given as

∆pt,b = log(βA,t) − log(βB,t−1),

∆pt,s = log(βB,t) − log(βA,t−1).

For the XLM the last observation in the respective interval is taken.

We have shown in Equation (4.20) that the moments of some observable O of the LOB

system can be expressed as

Et0[O
ν] =∑

∣z⟩

⟨z∣OνeH(t−t0) ∣ψ0⟩ .

We can perceive the right hand side of this equation as an intricate function of the arrival

and cancellation rates. These rates depend on the event rates r̄0,M,i,j,e of arrivals and

cancellations of the various order types, the relative logarithmic integer price level dl,

the order size q, the spread ∆, and possibly other variables. Thus, we can formulate a

linear approximation for the expectation of any observable in the moments of exactly these

variables.

By repeated Taylor series approximations of the terms in Equation (4.34) in the variables

dl, q, and ∆ around their respective mean, collecting terms, taking expectations and

neglecting terms with an order higher than four (see Section 4.D), we get for the expected

value of some observable a linear approximation of the form
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Figure 4.11: Estimated DGX Parameters and Average Spread

The scatter plot depicts the average spread of DAX components in the sampling interval
(first quarter of 2004) during continuous trading of the XETRA order book against the
estimated parameters of a DGX-distribution fitted to the unconditional frequencies of
order arrivals (and cancellations) across price levels. The parameters were estimated using
the log-likelihood method described in Bi et al. (2001).
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(b) σ̂i against average spread

Et0[Oi,t] = γ0,i + (δi,0 + δi,1Et0[∆t] +
4

∑
v=2

δi,vEt0[(∆t − µ∆,t)
v]) ×

∑
M,j,e

ρ0,M,i,j,eEt0[r̄0,M,i,j,e,t] ×

(κM,i,j,e,0 + κM,i,j,e,1Et0,M,i,j,e[dl,t] +

4

∑
v=2

κM,i,j,e,vEt0,M,i,j,e[(dl,t − µdl,t)
v]) ×

(ξM,i,j,e,0 + ξM,i,j,e,1Et0,M,i,j,e[qt,M,j,e] +

4

∑
v=2

ξM,i,j,e,vEt0,M,i,j,e[(qt,M,j,e − µq,t)
v]) + εi, (4.35)

where µx,t = Et0,M,i,j,e[xt]. Note that the indices in the subscript of the expected values

indicate their conditioning set as outlined in Section 4.1.4. Hence, the tuple of subscripts

(t0,M, i, j, e) indicates that the conditional expectation is formed with information available

at time t0 for stock i given the market side M , order type j, and event type e.

As we are not interested in γ0,i, ρ0,M,i,j,e, κM,i,j,e,v, ξM,i,j,e,v, and δi,v, we can collect all

possible products in Equation (4.35) in the parameters γ0,i, γ1,i, . . . γ1,R. In total, this

120



yields 1.971 parameters. Hence, the estimation of the parameters is sensibly feasible using

ordinary least-squares up to non-overlapping intervals with a length of 15 minutes. For

non-overlapping 15 minute intervals, we can get 2.164 observations from the 64 trading

days in our sample. Increasing the interval length beyond 15 minutes makes the use of

overlapping intervals and rolling variable calculation necessary. While this is in principle

feasible, we restrict the analysis for the specification in Equation (4.35) to non-overlapping

intervals and sampling frequencies below 15 minutes.

To increase the length of the intervals, we use three alternative specifications which entail

less parameters. In the first alternative, the moments of the spread are only included

additively:

Et0[Oi,t] = γ0,i + δi,0 + δi,1Et0[∆t] +
4

∑
v=2

δi,vEt0[(∆t − µ∆,t)
v]+

∑
M,j,e

ρ0,M,i,j,eEt0[r̄0,M,i,j,e,t] ×

(κM,i,j,e,0 + κM,i,j,e,1Et0,M,i,j,e,t[dl,t] +

4

∑
v=2

κM,i,j,e,vEt0,M,i,j,e,t[(dl,t − µdl,t)
v]) ×

(ξM,i,j,e,0 + ξM,i,j,e,1Et0,M,i,j,e,t[qt,M,j,e] +

4

∑
v=2

ξM,i,j,e,vEt0,M,i,j,e,t[(qt,M,j,e − µq,t)
v]) + εi. (4.36)

This specification entails the estimation of 399 parameters. This enables us to estimate

the model on interval lengths of up to one hour.
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In the second alternative, the moments of the spread and the moments of the order size

are included additively:

Et0[Oi,t] = γ0,i + δi,0 + δi,1Et0[∆t] +
4

∑
v=2

δi,vEt0[(∆t − µ∆,t)
v]+

∑
M,j,e

ρ0,M,i,j,eEt0[r̄0,M,i,j,e,t] ×

(κM,i,j,e,0 + κM,i,j,e,1Et0,M,i,j,e,t[dl,t] +

4

∑
v=2

κM,i,j,e,vEt0,M,i,j,e,t[(dl,t − µdl,t)
v]) +

ξM,i,j,e,0 + ξM,i,j,e,1Et0,M,i,j,e,t[qt,M,j,e] +

4

∑
v=2

ξM,i,j,e,vEt0,M,i,j,e,t[(qt,M,j,e − µq,t)
v] + εi . (4.37)

This reduces the number of parameters to 95 and makes interval lengths of up to 4 hours

possible.

In the third alternative, we employ a completely additive structure:

Et0[Oi,t] = γ0,i + δi,0 + δi,1Et0[∆t] +
4

∑
v=2

δi,vEt0[(∆t − µ∆,t)
v]+

∑
M,j,e

ρ0,M,i,j,eEt0[r̄0,M,i,j,e,t] +

κM,i,j,e,0 + κM,i,j,e,1Et0,M,i,j,e,t[dl,t] +

4

∑
v=2

κM,i,j,e,vEt0,M,i,j,e,t[(dl,t − µdl,t)
v] +

ξM,i,j,e,0 + ξM,i,j,e,1Et0,M,i,j,e,t[qt,M,j,e] +

4

∑
v=2

ξM,i,j,e,vEt0,M,i,j,e,t[(qt,M,j,e − µq,t)
v] + εi . (4.38)

This reduces the number of parameters which have to be estimated further to 43.

For each of the four specifications in Equations (4.35) to (4.38), we use a formulation

in which the moments on both sides of the equations are estimated contemporaneously,

i.e., at the same time t. Naturally, this is only possible in-sample. Additionally, we also

investigate specifications of Equations (4.35) to (4.38) in which the moments on the right

hand side are estimated at t − 1 to describe the expectation of the observable on the left

hand side. This formulation allows for out-of-sample evaluation of the model in terms of

predictive power assuming that the moments in one interval anchor the moments of the

subsequent interval. We evaluate our model across several measures in- and out-of-sample.
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4.4.1 In-Sample Analysis

For the in-sample evaluation, we consider the adjusted and unadjusted R2 as well as the

root mean squared error (RMSE). Furthermore, following Zhou et al. (2018), we also use

the direction prediction accuracy (DPA) defined as

DPA =
100

T

T

∑
t=1

max (0,∆p⋅,t ⋅∆p̂⋅,t)

∆p⋅,t ⋅∆p̂⋅,t
. (4.39)

The in-sample results are depicted in Figures 4.12 to 4.15. In each figure, the contempo-

raneous models are depicted in subfigures (a) and (b) for returns and (e) for the XLM

measure while the results for the specifications which use only past information to model

the current state are presented in subfigures (c) and (d) for returns and (f) for the XLM

measure. Every line in the graph represents the results for one stock. The highlighted

thicker line is the average of the respective measure across all stocks. There are a few

noteworthy results.

The DPA as well as the R2 measures (adjusted and unadjusted) allow us to reject the

hypothesis that the contemporaneous as well as the lagged models have no significance

in explaining the data. Our results suggest that the extensive model in Equation (4.35)

overfits the data with growing sampling frequency and, hence, less observations. This can

be seen by the drastically increasing R2 and DPA values when the sampling frequency

is increased. The adjusted R2 should account for this effect, and indeed remains rather

stable. However, when the degrees of freedom of the model become sparse, the adjusted

R2 is not able to correct the full extent of the overfitting.

Nonetheless, the high values at the highest frequencies indicate that the contemporaneous

model describes high-frequency returns very well. As can be seen in Figures 4.12 to 4.15,

for all measures, the contemporaneous specification in Equation (4.35) (blue) turns out

to be superior to the specifications in Equation (4.36) (red), Equation (4.37) (green) and

Equation (4.38) (orange) , i.e., it has a higher direction prediction accuracy, better fit in

terms of higher R2 values, and results in a lower root mean squared error.

Subfigures (c), (d), and (f) in Figures 4.12 to 4.15 present the results using the lagged

specifications of Equations (4.35) to (4.38), i.e., they compare their out-of-sample forecast

performance. Recall that these specifications rely heavily on the assumption that the

arrival rates stay constant for some (very) short time horizons. Therefore, the results

regarding the performance of the different models turns out to be different compared to

the in-sample evaluation above. Now, the specifications in Equations (4.37) and (4.38),

which use far less interaction terms and have a rather small number of parameters, capture

the dynamics of returns almost as well as the other two specifications in Equations (4.35)
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and (4.36) which becomes apparent, for example, when looking at the DPA in Figure 4.12.

Only considering the adjusted R2 (Figure 4.13), the specification in Euqation (4.35) has a

better performance. It also slightly decreases the RMSE.

For the XLM measure, the performance of the highly parameterized models is better. In

our opinion, this is due to the following two reasons. First, the XLM measure changes with

each event, so that on a high frequency the volatility of the XLM measure is higher than

the volatility of returns. The second reason is rooted in the definition of the XLM measure

as a fraction of observables which in general requires a higher polynomial degree to arrive

at a sensible approximation. The more complex models in Equations (4.35) and (4.36)

are, thus, better suited to provide such an approximation. Note also that we take the

last observation for the XLM within an interval which is highly volatile. From a trading

perspective, the average XLM over the interval may be better suited to describe liquidity

of the market during the interval and might be a less volatile measure. Nevertheless, we

choose the more volatile measure for our analysis. Our results should therefore pose a

lower bound with respect to the modeling accuracy.

Nevertheless, for intraday returns, the relatively parsimonious models in Equations (4.37)

and (4.38) perform remarkably well. Compared to other studies like Zhou et al. (2018)

who use high-dimensional neural networks (without contemporaneous information), we

find a decisively smaller RMSE. For example, the out-of-sample forecast error reported

by Zhou et al. (2018) for their best model (GAN for minimizing forecast error loss and

direction prediction loss with training sets with a length of 20 days and test sets with a

length of 5 days) is 0.0079 with a DPA of 69% on a 1 minute interval. Even though the

in-sample results in our case are not exactly comparable, we can note that for the models

with lagged information on 1 minute intervals an average RMSE of 0.0010 can be achieved

together with a DPA slightly above 85% on average. We also see that, on high frequencies,

the models with lagged information all result in similar RMSE and DPA values. Again

the results for R2 show that overfitting is a problem for lower sampling frequencies. These

only differ in R2 (adjusted and unadjusted). Nevertheless, the size of the adjusted R2 of

around 15% on 1 minute intervals is remarkable.

All models perform better at intervals of 45 minutes than on other frequencies. This is

rooted in an above-average precision of the prediction of the return in the last interval

of the day. When using 45 minutes intervals, the last interval of the day is only 30

minutes long. Hence, estimated moments based on the observations within the previous

45min interval are used to predict the last, shorter, 30min-long interval. If these shorter

end-of-day intervals are not excluded from the data, the model performs better compared

to other frequencies. This suggests another avenue for further research: Can the model

performance be improved by using longer intervals to estimate sample moments to then

make predictions on smaller time horizons. Put differently, is it in general beneficial to

124



Figure 4.12: In-Sample Direction Prediction Accuracy

The figures report the in-sample direction prediction accuracy (DPA) (as defined in
Equation (4.39)). The in-sample DPA is reported for the estimated model equations
specified in Equation (4.35) (blue), Equation (4.36) (red), Equation (4.37) (green) and
Equation (4.38) (orange) for the sampling frequencies 1, 2, 5, 10, 15, 20, 30, 45, 60, 120
and 240.
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Figure 4.13: In-Sample Adjusted R2

The figures below report the in-sample, adjusted R2 for the estimated model equations
specified in Equation (4.35) (blue), Equation (4.36) (red), Equation (4.37) (green) and
Equation (4.38) (orange) for the sampling frequencies 1, 2, 5, 10, 15, 20, 30, 45, 60, 120
and 240.
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Figure 4.14: In-Sample R2

The figures report the in-sample R2 for the estimated model equations specified in Equa-
tion (4.35) (blue), Equation (4.36) (red), Equation (4.37) (green) and Equation (4.38)
(orange) for the sampling frequencies 1, 2, 5, 10, 15, 20, 30, 45, 60, 120 and 240.
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Figure 4.15: In-Sample RMSE

The figures report the in-sample RMSE for the estimated model equations specified in
Equation (4.35) (blue), Equation (4.36) (red), Equation (4.37) (green) and Equation (4.38)
(orange) for the sampling frequencies 1, 2, 5, 10, 15, 20, 30, 45, 60, 120 and 240.
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calculate moments on the last hour of data to forecast the next ten minutes? The result for

the 45min interval suggest there may be some benefits. However, answering the question

would entail a rolling calculation of means on overlapping intervals which is beyond the

scope of the current chapter.

4.4.2 Out-of-Sample Analysis

We also evaluate our models based on out-of-sample predictions using rolling windows.

Depending on the size of the non-overlapping intervals, we vary the number of intervals

included in the rolling window.27 Table 4.3 presents the lengths of these windows for the

frequencies considered.

In addition to the root mean squared prediction error (RMSPE) and the out-of-sample

DPA, we also use the R2 of a Mincer-Zarnowitz regression (Mincer and Zarnowitz 1969)

to evaluate the model.

Table 4.3: Rolling Windows

The table lists the number of intervals (and thus observations) within the rolling windows
used to fit the model. The third column lists the approximate number of trading days
over which the rolling window is spanned. For each window, we conduct an out-of-sample
prediction. In the last column, the potential total number of non-overlapping intervals, i.e.,
the number of available observations is reported. The actual number of observations for
which an out-of-sample forecast is produced depends on the availability of the necessary
moments for the estimation of Equations (4.35) to (4.38).

Frequency Intervals Days Total

1 min 10.000 21 32.503
2 min 5.000 21 16.252
5 min 4.000 42 6.501

10 min 2.500 52 3.251
15 min 1.500 47 2.167
20 min 750 31 1.626
30 min 500 31 1.084
45 min 500 47 723
60 min 300 38 542

120 min 150 38 271
240 min 100 50 136

27 Recall that when we talk about using non-overlapping intervals, we mean the procedure to use the
observations associated to the last interval of the rolling window to predict the observation of the next
interval. Alternatively, one could use overlapping-intervals, i.e., update the observation at each new
event to predict the next interval. However, this procedure is computationally very demanding and,
therefore, out of the scope of the current chapter.
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Results are reported in Table 4.4 for selected 1 and 5 minute intervals. As can be seen,

for the return series, the precision of the out-of-sample prediction is remarkably high. On

a 1 minute frequency, we are able to predict the direction of the next price change with

an average accuracy at or over 80%, irrespective of the model. But even on the 5 minute

frequency, the accuracy only falls slightly below 75%. For both buy and sell returns, we

deem the R2 rather high and the RMSPE rather low given that we intend to predict

financial returns on a ultra-high frequency.28

For the XLM , results are somewhat different. The precision of the forecast is poor which is

in line with the in-sample results. Again, this is due to the high variability of the measure

and its structure. The XLM changes with each event and is a highly nonlinear function in

the arrival rates (see Equations (4.23) to (4.25)). Therefore, the linear approximation may

be poor and the approximation for longer time horizons may be especially poor. In this

line of argument, it is worth mentioning that the model with the highest complexity in

our considerations (specified in Equation (4.35)) performs best in all evaluation measures.

The results for all stocks and all frequencies are presented in Figures 4.16 to 4.18. As

we can see the smaller the interval, the better the forecasting ability of all our linear

models. The extensive linear approximation in Equation (4.35) predicts the direction of

the returns very well on small intervals. The R2
MZ of the Mincer-Zarnowitz regression of

above 2% for the sell strategy is above what we had expected for returns on ultra-high

frequencies. On intervals longer than 10 minutes, the predictive ability of all three linear

approximations is, however, poor. It can also be noted, that the sparse model formulations

in Equations (4.37) and (4.38) perform just as well, or even better in some situations,

than the heavily parameterized formulation in Equation (4.35) in the case of the return

series. This is not true for the XLM . For the XLM , the more complex formulations in

Equation (4.35) and (4.36) perform better in all measures. Especially, the constant RMSE

and the increasing DPA and R2
MZ up to 5-min intervals are remarkable. The variance of

the DPA in Figure 4.16c shows how noisy the XLM and the associated forecasts are and

by how much the more complex model is able to reduce this variability.

28 For the stock ADS, we also observe a 100% accuracy when predicting the direction of the next price
change. Also the R2 of the Mincer-Zarnowitz regression is around 50%. However, it needs to be
mentioned that for this stock, only 19 out-of-sample predictions are made in total. Since, based on 1
minute intervals, some moments that enter the right hand side of Equations (4.35) to (4.37) cannot
be calculated, we drop the observations for these intervals from our sample. In effect ADS has 10.019
valid observations on a 1 minute frequency. Due to such missing values also out-of-sample 1 minute
results for DB1, FME and HEN3 are not reported since less than 10.000 observations are valid for these
stocks. This is why we do not include the 1-min out-of-sample results for ADS in the figures.
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Table 4.4: Out-of-Sample Results: 1 and 5 Minute Interval Forecasts

The table presents the out-of-sample results for the 1 and 5 minute intervals for the stocks
ALV and FME. The model alternatives in Equation (4.35), Equation (4.36), Equation (4.37)
and Equation (4.38) are referred to in the rows A1 - A4 respectively. For each model, the
RMSPE, the fit of the Mincer-Zarnowitz regression (R2

MZ) and the direction prediction
accuracy (DPA) are reported, both for the returns of the buy strategy ∆pt,b and the ones
of the sell strategy ∆pt,s. ALV is the most liquid stock with the highest number of events
in the sample period while FME is one of the less liquid stocks.

1min (ALV) 5min (FME)

Model ∆pt,s ∆pt,b XLM ∆pt,s ∆pt,b XLM

RMSPE

A1 0.00103 0.00104 146989 0.00202 0.00199 216247

A2 0.00095 0.00096 161087 0.00183 0.00174 220908

A3 0.00094 0.00094 164625 0.00180 0.00170 224286

A4 0.00094 0.00094 165198 0.00179 0.00170 224677

R2
MZ

A1 0.0101 0.0071 0.2546 0.0357 0.0150 0.1076

A2 0.0131 0.0099 0.0802 0.0307 0.0316 0.0372

A3 0.0146 0.0128 0.0396 0.0321 0.0378 0.0079

A4 0.0145 0.0137 0.0213 0.0323 0.0393 0.0050

DPA

A1 77.02 77.75 47.11 74.66 72.96 51.58

A2 80.22 80.45 46.56 78.28 79.19 41.18

A3 80.67 80.80 45.94 80.32 79.75 34.16

A4 80.72 80.92 46.32 80.54 79.86 32.13

4.5 Summary

In this chapter, we have shown that the limit order book (LOB) can be described as

a continuous Markov process. The description is based on the operator algebra which

we borrow from physics. Our model closely describes the reality of the order book and

identifies the arrival and cancellation rates as the key ingredients of the book’s dynamics.

Via a simulation study, we show that the distribution of order arrival rates across price

levels determines the shape of the book and, as a consequence, the transaction price

evolution. By varying the type and shape of arrival and cancellation rates across prices

and volume, we find that the moments of price levels and quantity levels of incoming and

canceled orders are important determinants for the evolution of the book.

In an empirical study which is based on a linearized version of our model, we estimate
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Figure 4.16: Out-of-Sample Direction Prediction Accuracy

The figures report the out-of-sample direction prediction accuracy (DPA) (as defined in
Equation (4.39)). The out-of-sample DPA is reported for the estimated model equations
specified in Equation (4.35) (blue), Equation (4.36) (red), Equation (4.37) (green) and
Equation (4.38) (orange) for the sampling frequencies 1, 2, 5, 10, 15, 20, 30, 45, 60, 120
and 240 minutes, estimated with a rolling window one-step ahead forecast. The respective
window lengths are listed in Table 4.3.
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(c) XLM

three different specifications on non-overlapping intervals of various frequencies. As we

have the entire record of the XETRA order book for 3 months at our disposition, we can

include a large number of parameters in the estimation such that an evaluation of the

model becomes feasible. In-sample, all considered models exhibit a good fit in terms of R2,

RMSE and direction prediction accuracy (DPA). Our fully parameterized model seems to

overfit the data on lower frequencies. Nevertheless, when using only past information, the

values for the adjusted R2 range for the minute-by-minute intervals around or over 10%

whereas the direction is correctly predicted in around 70% of all cases.

To evaluate the robustness of our results we also conduct an out-of-sample test of the

model. We use one-step-ahead forecasts on various frequencies and evaluate the accuracy

with the R2
MZ of a Mincer-Zarnowitz regression, the DPA as well as the RMSPE. We find
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Figure 4.17: Out-of-sample Mincer-Zarnowitz R2
MZ

The figures report the R2
MZ of the Mincer-Zarnowitz regression Mincer and Zarnowitz

(1969) based on the out-of-sample one-step ahead rolling window forecast. The R2
MZ

is reported for the estimated model equations specified in Equation (4.35) (blue),
Equation (4.36) (red) , Equation (4.37) (green) and Equation (4.38) (orange) for the
sampling frequencies 1, 2, 5, 10, 15, 20, 30, 45, 60, 120 and 240 minutes. The respective
window lengths are listed in Table 4.3.
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that our model predicts 1 minute returns very well. Again, we find an unexpected fit for

ultra-high returns as the R2
MZ is generally above 2%. In addition, on low frequencies the

DPA is around 80%, we can predict the directional change of the next return very well.

The time varying estimates for the parameters as well as the short forecasting horizon

make the return prediction astonishingly accurate. We also try to predict liquidity at the

end of each interval with the XLM measure. The measure cannot be forecast well for

longer time intervals with adequate accuracy. Also on very short time horizons, the best

fitting model is barely able to predict the direction of the next change of the XLM in

more than 50% of the cases. This has to do with the very volatile nature of the XLM and

how the XLM is defined in the first place.

On the basis of the event log of XETRA for the first quarter of 2004, we have, nevertheless,
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Figure 4.18: RMSPE

The figures below report the out-of-sample RMSPE for the estimated model equations
specified in Equation (4.35) (blue), Equation (4.36) (red), Equation (4.37) (green) and
Equation (4.38) (orange) for the sampling frequencies 1, 2, 5, 10, 15, 20, 30, 45, 60, 120
and 240. The predictions are based on the out-of-sample one-step ahead rolling window
forecast. The respective window lengths are listed in Table 4.3.

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Length of sample period in minutes

R
M

S
E

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Length of sample period in minutes

R
M

S
E

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Length of sample period in minutes

R
M

S
E

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

(a) Buy

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
Length of sample period in minutes

R
M

S
E

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
Length of sample period in minutes

R
M

S
E

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
Length of sample period in minutes

R
M

S
E

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
(b) Sell

0 50 100 150 2000e
+

00
4e

+
05

8e
+

05

0 50 100 150 2000e
+

00
4e

+
05

8e
+

05

Length of sample period in minutes

R
M

S
E

0 50 100 150 2000e
+

00
4e

+
05

8e
+

05

Length of sample period in minutes

R
M

S
E

0 50 100 150 2000e
+

00
4e

+
05

8e
+

05

Length of sample period in minutes

R
M

S
E

0 50 100 150 2000e
+

00
4e

+
05

8e
+

05

0 50 100 150 2000e
+

00
4e

+
05

8e
+

05

0 50 100 150 2000e
+

00
4e

+
05

8e
+

05

0 50 100 150 2000e
+

00
4e

+
05

8e
+

05

(c) XLM

shown that our model describes the LOB data well, both in- and out-of-sample. The data

requirements are rather high as knowledge about price and quantity levels of incoming

and canceled orders are required. This sort of data is usually not available. Even though

returns may be predicted, market impact of actual trading strategies as well as order costs

may hamper profitability of a trading strategy based on our model. Nevertheless, we are

convinced that our empirical analysis provides the lower limits of forecast accuracy, as we

have made several approximating decisions in the course of this chapter. In addition, for

time horizons beyond 1 minute other variables may possibly help to predict returns or any

other measure in the order book.
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Appendix

4.A Distribution of Events

Table 4.A.1: Number of Events Related to Order Type and Market Side

The table lists the total number of events related to limit (#L), market (#M), iceberg (#I), and
market-to-limit (#T) orders for each stock in our sample. In the columns %L, %M, %I, and %T the
percentage of events occurring on the sell (S) and buy (B) market side is tabled for each order type.
The last column (%Total) reports the share of all events for each market side.

Ticker #L #M #I #T %L %M %I %T %Total

ADS 1,129,682 16,976 4,749 1,969
B 48.4 55.1 49.7 41.4 48.5
S 51.6 44.9 50.3 58.6 51.5

ALT 1,094,414 16,785 9,552 1,412
B 46.4 50.1 60.6 39.9 46.6
S 53.6 49.9 39.4 60.1 53.4

ALV 4,237,243 68,446 39,416 2,105
B 48.3 55.3 44.4 51.2 48.4
S 51.7 44.7 55.6 48.8 51.6

BAS 2,585,776 31,450 36,082 1,885
B 49.5 50.7 58.7 45.3 49.7
S 50.5 49.3 41.3 54.7 50.3

BAY 2,199,894 34,187 29,943 1,721
B 49.6 50.9 42.9 46.5 49.5
S 50.4 49.1 57.1 53.5 50.5

BMW 2,087,167 28,557 34,625 1,707
B 48.6 60.5 47.0 45.0 48.7
S 51.4 39.5 53.0 55.0 51.3

CBK 1,676,325 23,601 24,753 1,413
B 49.8 48.7 44.2 41.7 49.7
S 50.2 51.3 55.8 58.3 50.3

CONT 1,130,309 15,866 9,641 1,419
B 48.5 49.2 51.0 43.6 48.6
S 51.5 50.8 49.0 56.4 51.4

DB1 936,959 16,205 16,381 1,315
B 48.5 50.8 49.2 39.4 48.5
S 51.5 49.2 50.8 60.6 51.5

DBK 3,339,752 48,314 47,215 2,278
B 49.3 46.2 50.9 45.8 49.3
S 50.7 53.8 49.1 54.2 50.7
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Ticker #L #M #I #T %L %M %I %T %Total

DCX 2,711,327 44,301 57,847 2,003
B 50.1 41.8 56.0 49.5 50.1
S 49.9 58.2 44.0 50.5 49.9

DPW 1,001,394 26,360 28,571 1,468
B 47.6 50.1 50.5 40.2 47.8
S 52.4 49.9 49.5 59.8 52.2

DTE 2,349,138 87,942 49,129 3,581
B 49.7 51.8 48.1 39.0 49.7
S 50.3 48.2 51.9 61.0 50.3

EOA 2,701,672 35,484 34,695 2,106
B 51.2 54.3 53.2 47.9 51.3
S 48.8 45.7 46.8 52.1 48.7

FME 801,834 11,156 4,159 1,223
B 48.9 50.4 56.2 39.8 49.0
S 51.1 49.6 43.8 60.2 51.0

HEN3 1,101,152 11,405 3,565 1,492
B 47.1 51.7 39.3 39.5 47.1
S 52.9 48.3 60.7 60.5 52.9

HVM 1,482,520 29,616 41,955 1,392
B 50.4 54.1 50.9 41.6 50.5
S 49.6 45.9 49.1 58.4 49.5

IFX 1,594,470 50,125 63,497 1,584
B 48.8 54.1 42.4 40.7 48.7
S 51.2 45.9 57.6 59.3 51.3

LHA 1,169,415 23,026 28,737 1,570
B 48.8 48.6 50.3 42.2 48.8
S 51.2 51.4 49.7 57.8 51.2

LIN 1,157,591 13,496 7,384 1,807
B 48.3 48.6 63.2 46.0 48.4
S 51.7 51.4 36.8 54.0 51.6

MAN 1,023,998 14,952 15,252 1,697
B 47.3 49.0 60.2 39.1 47.5
S 52.7 51.0 39.8 60.9 52.5

MEO 1,144,291 16,064 15,028 1,460
B 48.8 52.0 52.8 39.3 48.9
S 51.2 48.0 47.2 60.7 51.1

MUV2 2,896,094 46,036 37,068 1,908
B 49.2 57.0 43.7 45.4 49.3
S 50.8 43.0 56.3 54.6 50.7

RWE 2,061,625 31,746 35,398 2,014
B 51.6 44.6 53.3 47.5 51.5
S 48.4 55.4 46.7 52.5 48.5

SAP 2,800,569 36,907 20,332 1,530
B 49.6 49.4 57.1 42.9 49.7
S 50.4 50.6 42.9 57.1 50.3

SCH 1,312,153 24,385 17,908 1,439
B 48.3 50.3 51.6 41.6 48.4
S 51.7 49.7 48.4 58.4 51.6

SIE 3,444,640 58,410 54,186 2,172
B 48.3 49.5 53.8 48.0 48.4
S 51.7 50.5 46.2 52.0 51.6

TKA 1,130,506 23,019 19,060 1,797
B 48.5 52.8 45.2 41.1 48.5
S 51.5 47.2 54.8 58.9 51.5

TUI 970,118 21,965 15,737 1,269
B 48.7 53.8 40.5 40.4 48.7
S 51.3 46.2 59.5 59.6 51.3
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Ticker #L #M #I #T %L %M %I %T %Total

VOW 1,966,460 26,478 42,894 1,715
B 48.6 49.3 53.0 44.4 48.7
S 51.4 50.7 47.0 55.6 51.3

TOTAL 55,238,488 933,260 844,759 52,451
B 49.1 51.2 50.2 43.5 49.1
S 50.9 48.8 49.8 56.5 50.9

4.B Simulation Specification

In order to simulate the order book, several probabilities and other conventions have to be

specified. Therefore, we go through the terms in Equation (4.34) and present how we have

chosen to specify αM(k, q) and ωM(k, q). For convenience, recall Equation (4.34) as

αM(k, q) = r̄0,M,i,j,a pK,M(k;θM,a) pQ,M(q;φM,a)

ωM(k.q) = r̄0,M,i,L,c pK,M(k;θM,c) pQ,M(q;φM,a).

Figure 4.B.1 illustrates the components of Equation (4.34).

Recall that we choose three theoretical scenarios for the distributions across price levels

pK,M(⋅): First, the uniform distribution (uni), second, a discrete log-normal distribution

with fixed parameters (fix), and third, a discrete log-normal distribution with dynamic pa-

rameters where the parameters depend on the prevailing spread (dyn). For the distribution

across order sizes, we only consider one theoretical specification: a power law distribution.

Additionally, we also consider the unconditional empirical frequencies of incoming and

canceled orders as observed in the first quarter of 2004, both across price and size levels.

4.B.1 Rates of Order Types r̄0,M,i,j,e

The first element of Equation (4.34) is r̄0,M,i,j,e, the rate for an arrival (e = a) or a

cancellation (e = c) of order type j on market side M for stock i. We first need to specify

the order types that we include in the simulation. In Figure 4.2, we have depicted limit

orders and market orders across relative integer distances to the best quote to show that

there is a somewhat stable distribution across price levels when the best quote is used as a

fix point. At the zero level, we have plotted the marketable orders split up into different

types.

Table 4.B.2 shows the percentages of the different types of marketable orders in detail. In

general, approximately 10% of all incoming orders (cancellations excluded) are marketable.

In fact, about half of those marketable orders are arriving on the best quote i.e., with

d = 0. Around a quarter is due to market orders with no limit price d < −∞ and another
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Figure 4.B.1: Simulation Event Tree

The Figure depicts a decision tree to visualize the components of Equation (4.34). Taking
the subtree marked by the red box, each of the leafs that originate the red box has a
different rate r̄0,M,i,j,e where the subscript e refers either to a an order arrival or c an order
cancellation. Also each of the nodes inside the blue and green box has a different pK,M(⋅)
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quarter are marketable limit orders i.e., with d < 0. Marketable iceberg and stop order are

tiny in comparison. The inverse of the last column are the limit orders that are submitted

before the best quote. As depicted in Figure 4.B.1, in our simulation scenarios, we only

treat market and limit orders separately. We do not distinguish iceberg and stop orders,

since they are market and limit orders with some additional features. Thus, when we use

the unconditional empirical frequencies for r̄0,M,i,j,e, we calculate

r̄0,M,i,j,e =
nM,i,j,e

∆T
,

where nM,i,j,e is the number of arrivals (e = a) or cancellations (e = c) of order type j on

market side M for stock i observed during the entire first quarter of 2004. ∆T refers to the

total trading time during this period. In our case, ∆T is specified to be 64 trading days. As

we restrict the simulation to continuous trading, we only include events during the 8h28m

of continuous trading to calculate the frequencies. In our sample, option settlement is

conducted in three dates. On these three days, further 3 minutes have to be subtracted from

the continuous trading phase. In total, we have (64 ⋅(8+28/60) ⋅60−3 ⋅3) ⋅60 = 1,950,180s of

continuous trading time in our sample. Note that we can also decompose the unconditional

empirical rates according to

r̄0,M,i,j,e =
n⋅,i,⋅,⋅
∆T

⋅
nM,i,⋅,⋅

n⋅,i,⋅,⋅
⋅
nM,i,j,⋅

nM,i,⋅,⋅

⋅
nM,i,j,e

nM,i,j,⋅

, (4.40)

138



Table 4.B.1: Event Rates for Order Types

The table lists the order arrival and cancellation rates imposed in the scenarios ’dyn’, ’fix’ and ’uni’. The
separation between marketable limit orders is only used for the ’uni’ scenario. In the scenarios ’dyn’ and
’fix’, we only distinguish between market orders (incl. marketable limit orders) and limit orders. The rates
have are given in the unit [orders/second].

Order Type Market Side Rate

Limit Order
(non-marketable)

Arrival
ask 0.12
bid 0.12

Cancellation
ask 0.10
bid 0.10

Limit Order
(marketable)

Arrival
ask 0.0025
bid 0.0025

Market Order Arrival
ask 0.0025
bid 0.0025

where n refers to a number of events and the indices specify which characteristic is relevant

for counting. n⋅,i,⋅,⋅ means that only the index i (referring to the event concerning stock i)

is relevant to determine the number of events. Categories marked with a ⋅ in the index

are summed over. In other words, n⋅,i,⋅,⋅ denotes the number of events concerning stock

i. In the empirical scenarios, all elements of Equation (4.40) can be observed. In theory,

we can craft theoretical scenarios to investigate, ceteris paribus, the sensitivity of the

LOB dynamics to changes in just one conditional frequency in Equation (4.40). In this

chapter, we choose to focus on the sensitivity of the order book dynamics to changes in

the distribution across price and quantity levels.

In the scenarios that entail a theoretical distribution, we do not use the empirical values

observed in our sample. We also choose to focus on the distribution of arrival rates across

price and size levels. Thus, we set the values summarized in Table 4.B.1. The rates are

specified in the unit [orders/second]. They approximately mirror the observed values in

reality, but we fix them to parity, so that the two sides of the market are symmetric and

balanced.

One peculiarity in the theoretical scenarios ’fix’ and ’dyn’ is that we treat marketable limit

orders below or above the best quote as market orders. Marketable limit orders on the

best-quote, i.e., with d = 0, are modeled together with the rest of the limit orders as they

approximately seem to fit into the discrete logarithmic distributions across price levels (cp.

Figure 4.2). In the scenario ’uni’, we separate the market orders and the marketable limit

orders (strictly) below or above the best quote up to d = −10.
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Table 4.B.2: Marketable Orders by Type

The table reports the share of marketable orders of all incoming orders in percentages across all stocks in
the XETRA data. The column %L(d < 0) shows the share of marketable limit orders behind the best
quote, whereas the column %L(d = 0) gives the share of all marketable limit orders directly at the best ask
or bid. The column %M contains the percentages of market orders. %I tables the share of marketable
iceberg orders and %T those of stop orders. The column %all is the total share of all marketable orders.

Ticker Buy/Sell %L(d < 0) %L(d = 0) %M %I %T %all

ADS
S 5.40 1.73 1.50 0.14 0.02 8.79
B 5.70 1.97 1.93 0.00 0.03 7.69

ALT
S 6.61 1.61 1.69 0.03 0.05 9.99
B 7.54 2.06 1.76 0.00 0.06 9.67

ALV
S 5.09 2.59 1.99 0.02 0.05 9.74
B 5.73 3.07 2.58 0.00 0.04 8.85

BAS
S 6.67 2.11 1.47 0.03 0.07 10.35
B 6.63 2.15 1.46 0.00 0.10 8.88

BAY
S 7.15 1.93 1.90 0.01 0.10 11.08
B 7.76 2.27 1.92 0.00 0.09 10.13

BMW
S 6.87 1.87 1.22 0.03 0.13 10.12
B 6.97 2.10 2.00 0.00 0.12 9.19

CBK
S 6.10 1.34 1.81 0.01 0.11 9.37
B 6.28 1.56 1.59 0.00 0.09 7.93

CONT
S 6.50 1.37 1.57 0.02 0.07 9.53
B 6.75 1.53 1.35 0.00 0.06 8.34

DB1
S 7.14 1.93 1.98 0.03 0.13 11.21
B 7.66 2.08 1.98 0.00 0.14 9.88

DBK
S 7.01 2.90 2.07 0.04 0.06 12.08
B 7.37 2.95 1.65 0.00 0.08 10.40

DCX
S 7.90 2.49 2.50 0.02 0.12 13.02
B 7.85 2.52 1.56 0.00 0.15 10.53

DPW
S 8.24 1.80 3.10 0.04 0.21 13.40
B 9.56 1.85 3.22 0.00 0.25 11.67

DTE
S 12.56 3.20 5.02 0.21 0.13 21.12
B 13.09 3.34 5.43 0.00 0.11 16.54

EOA
S 6.97 2.42 1.51 0.04 0.06 11.00
B 6.65 2.37 1.69 0.00 0.06 9.09

FME
S 5.34 1.56 1.37 0.01 0.03 8.31
B 5.58 1.72 1.22 0.00 0.04 7.34

HEN3
S 4.20 1.31 0.98 0.05 0.01 6.56
B 4.44 1.68 1.03 0.00 0.01 6.13
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Ticker Buy/Sell %L(d < 0) %L(d = 0) %M %I %T %all

HVM
S 8.94 1.76 2.23 0.01 0.17 13.12
B 9.32 1.93 2.59 0.00 0.17 11.41

IFX
S 11.40 2.29 3.91 0.05 0.37 18.01
B 12.96 2.94 4.54 0.00 0.30 16.20

LHA
S 8.36 1.42 2.51 0.05 0.19 12.53
B 8.67 1.50 2.28 0.00 0.20 10.37

LIN
S 5.59 1.19 1.34 0.08 0.03 8.23
B 5.83 1.30 1.09 0.00 0.05 7.18

MAN
S 7.55 1.41 1.63 0.10 0.11 10.81
B 8.06 1.53 1.50 0.00 0.12 9.71

MEO
S 7.75 2.01 1.35 0.04 0.07 11.22
B 7.91 2.22 1.33 0.00 0.09 10.22

MUV2
S 6.41 2.98 1.72 0.02 0.07 11.20
B 6.90 3.32 2.39 0.00 0.06 10.29

RWE
S 7.67 2.16 2.26 0.04 0.11 12.24
B 7.17 2.04 1.45 0.00 0.12 9.33

SAP
S 5.57 2.53 1.67 0.01 0.04 9.83
B 5.79 2.58 1.61 0.00 0.05 8.43

SCH
S 7.57 1.67 2.31 0.03 0.09 11.67
B 8.32 1.99 2.32 0.00 0.11 10.41

SIE
S 7.31 2.61 2.22 0.03 0.08 12.25
B 8.08 3.02 2.25 0.00 0.10 11.20

TKA
S 7.54 1.89 2.42 0.10 0.14 12.09
B 8.12 1.64 2.68 0.00 0.13 9.89

TUI
S 6.82 1.50 2.62 0.01 0.16 11.12
B 7.67 2.07 2.96 0.00 0.15 9.88

VOW
S 8.55 2.85 1.55 0.01 0.16 13.13
B 9.09 3.16 1.43 0.00 0.19 12.44
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4.B.2 Order Distribution Across Price Levels pK,M(⋅)

For the probability distribution of order arrivals across price levels specified in the factor

pK,M(⋅), we distinguish three theoretical scenarios and one scenario using unconditional

empirical frequencies.

Uniform Distribution (uni)

The easiest approach to define the arrival rates across price levels is a uniform distribution.

In this scenario, we assume that the arrivals of orders are concentrated on the first 90

integer price levels before the best quote of the opposite market. Additionally, marketable

limit orders are also allowed to cross the best quote up to 10 price levels. In essence, this

means that the arrivals of bid and ask orders are concentrated on 100 price levels around

the best quote of the opposite market where the arrival rate on each price level is 0.0012

orders per second.

For the cancellations, we distribute the probability for an order cancellation uniformly

among the occupied price levels.

Fixed Probability Distribution (fix)

Empirical frequencies of (non-marketable) limit orders across relative price levels exhibit

pronounced probability mass at the tails of the distribution. For the distribution across

price levels, in the scenario ’fix’, we use a discrete Gaussian exponential distribution (DGX)

as presented by Bi et al. (2001). The distribution is especially useful in cases where the

random variable to be modeled is discrete and has pronounced probability mass at the tails.

It is particularly interesting that the DGX reduces to the generalized Zipf distribution

when µ→ −∞. Thus, it is flexible enough to incorporate situation where the probability

distribution is a straight line in log-log-plots and cases in which it exhibits some curvature.

A short summary of the DGX distribution is given in Section 4.C.

In the simulation scenario with a fixed probability distribution, we choose to set the values

as outlined in Table 4.B.3. The values are the empirical mean and standard deviation

across incoming orders of a random sample over several stocks. Note that the mean of

arrivals is slightly higher on the bid side of the market, i.e., orders are more likely to arrive

deeper in the book. Also the variance of order arrivals is higher. The same holds for

cancellations. So while there are more arrivals deeper in the book, slightly more orders

deep in the book are also canceled.
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Table 4.B.3: Parameters of Probability Distribution Across k

Order Type Market Side µ σ

Limit Order
(non-marketable)

Arrival
ask 1.726301 0.674654
bid 1.765909 0.711773

Cancellation
ask 1.619866 0.620127
bid 1.674366 0.650024

Dynamical Probability Distribution (dyn)

Similar to the case in which we use a DGX distribution with fixed parameters µ and σ,

in the simulation scenario with a dynamical distribution across price levels, we also use

the DGX distribution as the fundamental distribution. However, in this case we specify

the parameters of the distribution to depend on the prevailing spread. The functional

relationship we use is the following:

µ(∆) = log(100 ⋅∆) +
1

2
,

σ(∆) =
√

20 ⋅ log(100 ⋅∆) + 1.2.

The functional relation is inspired by a scatter plot of µ̂i and σ̂i estimated on the uncon-

ditional frequencies of order arrivals (and cancellations) across price levels against the

average spread ∆i for each stock i.29 This scatter plot is depicted in Figure 4.11. Note

also, that we have switched the scale of standard deviation and expectation as observed

in the data on purpose. In that way, we hope to get an impression on how an increase

in variance and a decrease of the mean may affect the characteristics of the order book

evolution. The ’dyn’ scenario is theoretically also motivated by the quest to study the

sensitivity of the LOB system to feedback reactions between the state of the book and

traders’ order submission behavior.

Empirical Distribution (emp)

We also simulate one scenario where we take the empirical frequencies observed across

price levels into account. The empirical log-frequencies are depicted in Figure 4.2.

29 We are aware of the fact that the expectation of the functional relationship between DGX parameters
and spread is not the same as a function for the log-likelihood in dependence of the expectation of the
spread i.e., Et0[µ(∆)] ≠ µ(Et0[∆]).
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4.B.3 Order Distribution Across Size Levels pQ,M(⋅)

For the distribution across volume, we employ two different specifications. In one specifi-

cation, we use a power law distribution. Even though, in our data at hand, we find that a

power law does not match the volume distribution. This can be seen by sheer eyeballing of

Figure 4.5. Nevertheless, the good fit of the power law distribution to describe order sizes

has been shown in various articles (Bouchaud et al. 2002, Gopikrishnan, Plerou, Gabaix

and Stanley 2000, Maslov and Mills 2001).

The probability mass function of a power law distribution where the smallest value of the

support is 1, is theoretically defined as

p(x;λ) = (λ − 1)xλ−1∀x ∈ N.

We fix the parameter in all simulations at λ = 1.6 which is close to empirically observed

values.

According to Clauset, Shalizi and Newman (2009, Appendix D), given a random number

u ∈ [0,1], we can generate an integer realization x̃ from the power law distribution by

calculating

x̃ = ⌊(1 − 0.5)(1 − u)−1/λ + 1/2⌋ − 1,

where ⌊⋅⌋ signify the floor operator which cuts off the decimal places of the argument.

Note that since we assume independence of pQ,M(⋅) and pK,M(⋅), and each arriving order

surely has to be assigned a size, we simply generate a third realization from a uniform

distribution U(0, 1) to determine the volume. In other words, before randomly generating

what size is affected with u3, we answer the question when something will happen with

u1 and, with u2, what as well as where (i.e., at which limit price level) it will happen, as

described in Section 4.3.

Empirical Distribution (emp)

We also simulate one scenario where we use the empirical frequencies observed across

quantity levels to simulate the LOB evolution. The empirical log-frequencies are depicted

in Figure 4.5.
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4.B.4 The Fully Empirical Scenario (emp,emp)

For the case where both the distribution across price levels and the distribution across price

levels are sampled from the empirically observed frequencies, we take the joint frequencies

(not the product of the marginal frequencies) to sample both size and price of an incoming

or canceled order.

4.C Discrete Gaussian Exponential Distribution (DGX)

In the simulation, as described in Section 4.B, we use the DGX for the simulation of order

arrivals and cancellations across price levels.

The probability mass function of the distribution can be defined according to Bi et al.

(2001) as

p(x = k;µ,σ) =
A(µ,σ)

k
exp(−

(log(k) − µ)2

2σ2
) , ∀k ∈ N,

where the normalizing constant A(µ,σ) is defined as

A(µ,σ) = {
∞

∑
k=1

1

k
exp(−

(log(k) − µ)2

2σ2
)}

−1

.

In Figure 4.2, we use a slightly modified version of the DGX by truncating the distribution

at 1 to show how the DGX can be fit to the data. The truncated DGX can be derived

from the truncated (log-)normal distribution for continuous values and has the following

probability distribution function:

p(x = k;µ,σ) =
1

1 − φ(−µσ)

AT (µ,σ)

kσ
exp(−

(log(k) − µ)2

2σ2
) , ∀k ∈ N.

The normalization factor AT (µ,σ) is similarly defined by

AT (µ,σ) =
1

σ (1 − φ(−µσ))
{
∞

∑
k=1

1

k
exp(−

(log(k) − µ)2

2σ2
)}

−1

.

The parameters µ and σ can be estimated using a maximum likelihood specification as

described in Bi et al. (2001).
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4.D Taylor Series Expansion of Linear Models

In this appendix the Taylor series expansion that justifies the model specifications in

Equations (4.35) to (4.38) is derived.

Starting point of the derivation is the decomposition of the event rate in Equation (4.34).

First, for the sake of brevity, we introduce the intensity of events at the price level k with

affected order size q given a prevailing spread ∆

rM,i,j,e(k, q ∣ ∆) = αM,i,j(k, q ∣ ∆) + ωM,i,j(k, q ∣ ∆),

where the index M denotes the market side (either bid or ask), i indicates the instrument,

j denotes the order type (limit or market) and e denotes the event type (arrival or

cancellation). The right hand side follows when writing arrival α and cancellation rates ω

separately.

As we have seen in Section 4.1.3, the Hamiltonian H is directly constructed from the event

rates. As a direct consequence, the conditional probability to find the system in state ∣z⟩

given that it has been in ∣z0⟩ at time t0 can be expressed as described in Equation (4.14)

or in more detail as

p(z, t∣z0, t0) = ⟨z ∣ ψ(t)⟩ = ⟨z∣U(t, t0) ∣ψ(t0)⟩ = ⟨z∣ exp ( ∫

t

t0
H(τ)dτ) ∣ψ(t0)⟩

= ⟨z∣
∞

∑
w=1

( ∫
t

t0
H(τ)dτ)

w

w!
∣ψ(t0)⟩ . (4.41)

As one can see, by construction the conditional distribution is polynomial in the (time

integral over) arrival and cancellation rates, and, depending on the succession of orders

in ∣z⟩ (see e.g. Equation (4.9)), further combinatorical factors have to be introduced

(which include the factorial w!). Only regarding the terms up to order one the conditional

probability can be written as

p(z, t∣z0, t0) = ⟨z ∣ ψ(t0)⟩ + ⟨z∣∫
t

t0
H(τ)dτ ∣ψ(t0)⟩ .

This first order approximation may fit the conditional probability for short time hori-

zons well, however, for longer time horizons the interactions between order arrivals and

cancellations may become the more important factor.
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Nevertheless, with this approximation, we may view the conditional expected value of

some observable O given the state of the order book at time t0 of stock i at some future

time t > t0 as

Et0[Oi,t] =∑
z

⟨z ∣ O ∣ ψ(t0)⟩ +∑
z

⟨z∣O∫
t

t0
H(τ)dτ ∣ψ(t0)⟩

= Oi,t0 +∑
z

⟨z∣O∫
t

t0
∑
q
∑
k

αM,i,j(k, q)EM,i,j + ωM,i,j(k, q)CM,i,jdτ ∣ψ(t0)⟩ ,

where E and C denote the order entry and cancellation operators laid out in Section 4.1.3

and Oi,t0 is the realization of the observable at time t0.

We may generalize this notion for the conditional expected value to some function that

depends on the intensity of events, and, thus, again on order size q, the price level k and

additionally further variables that determine arrival and cancellation rates, e.g. the spread.

Making the very crude assumption that the expected value of some observable is linear in

the intensity of events, we could formulate the approximation as

Et0[Oi,t] ≈ γ0,i + γ1,iE[rM,i,j,e(k, q ∣ ∆)].

Decomposing rM,i,j,e(k, q ∣ ∆) as done in Equation (4.34) and additionally assuming that

the average intensity r̄0,M,i,j,a(∆) is some function of the prevailing spread yields

Et0[Oi,t] ≈ γ0,i + γ1,iE[(αM,i,j(k, q ∣ ∆) + ωM,i,j(k, q ∣ ∆))]

≈ γ0,i + γ1,iE[r̄0,M,i,j,a(∆) pK,M(k;θM,a) pQ,M(q;φM,a)

+ r̄0,M,i,L,c(∆) pK,M(k;θM,c) pQ,M(q;φM,c)]. (4.42)

Now, expanding each term by a Taylor series expansion around the respective expected

value we have the following expansions for pQ,M(q;φM,e)

pQ,M(q;φM,e) ≈ pQ,M(E[q];φM,e) + dpQ,M(E[q];φM,e)(q −E[q])

+
d2pQ,M(E[q];φM,e)

2
(q −E[q])2 + . . . .

Taking expectations with respect to pQ,M(E[q];φM,e) yields an approximation of the

expected value in moments of order 2 and higher

E[pQ,M(q;φM,e)] ≈ pQ,M(E[q];φM,e) +
d2pQ,M(E[q];φM,e)

2
var[q] + . . . .
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Using then, again, the first order Taylor approximation of pQ,M(E[q];φM,e) around 0

reintroduces the first moment

E[pQ,M(q;φM,e)] ≈ pQ,M(0;φM,e) + dpQ,M(0;φM,e)E[q] +
d2pQ,M(E[q];φM,e)

2
var[q] + . . . .

Thus, we may write the expected value of pQ,M(q;φM,e) as a linear function of the moments

E[pQ,M(q;φM,e)] ≈ ξM,i,j,e,0 + ξM,i,j,e,1 E[q] + ξM,i,j,e,2 var[q] + . . . . (4.43)

Changing variables in pK,M(k;θM,e) by considering the relative distance dl to the opposing

best quote instead of the absolute price level k, the same can be done for E[pK,M(k;θM,e)]

E[pK,M(k;θM,e)] ≈ κM,i,j,e,0 + κM,i,j,e,1 E[dl] + κM,i,j,e,2 var[dl] + . . . . (4.44)

Last but not least, we may model the expected value of the event specific intensity by

its expected value shifted by a event specific factor ρ0,M,i,j,e and the expected value of an

event unspecific function f(∆) solely dependent on the spread

E[r̄0,M,i,j,e,t(∆)] = Et0[r̄0,M,i,j,e,t]ρ0,M,i,j,eE[f(∆)]. (4.45)

Approximating E[f(∆)] by an expansion in moments as above yields

E[f(∆)] = δi,0 + δi,1Et0[∆t] +
4

∑
v=2

δi,vEt0[(∆t − µ∆,t)
v]. (4.46)

Reinserting the Taylor expansions in Equations (4.43), (4.44) and (4.46) up to order four

together with Equation (4.45) in Equation (4.42) yields Equation (4.35)

Et0[Oi,t] = γ0,i + (δi,0 + δi,1Et0[∆t] +
4

∑
v=2

δi,vEt0[(∆t − µ∆,t)
v]) ×

∑
M,j,e

ρ0,M,i,j,eEt0[r̄0,M,i,j,e,t] ×

(κM,i,j,e,0 + κM,i,j,e,1Et0,M,i,j,e[dl,t] +

4

∑
v=2

κM,i,j,e,vEt0,M,i,j,e[(dl,t − µdl,t)
v]) ×

(ξM,i,j,e,0 + ξM,i,j,e,1Et0,M,i,j,e[qt,M,j,e] +

4

∑
v=2

ξM,i,j,e,vEt0,M,i,j,e[(qt,M,j,e − µq,t)
v]) + εi.
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Chapter 5

Estimation of Transfer Entropy and Other Relative Entropy

Measures Based on Smoothed Quantile Regressions30

Detecting dependencies between different variables is important across scientific fields.

Regardless of whether one is interested in finding a causal dependence or simply wants

to improve a prediction, identifying amidst a plenitude of variables the few that contain

important information for either of these goals is essential in empircal science. There are

well established tools across sciences to gauge associations between several measures. The

possibilities to discover structures in complex, multivariate, and often dynamic systems

are, however, usually limited to linear approximations. Haber and Unbehauen (1990) or

Giannakis and Serpedin (2001) provide an overview of the conventional methods.

Beyond these, relative entropy based measures (such as mutual information (Shannon

1948) or transfer entropy (Schreiber 2000)) identify these relationships among the random

variables, but are able to capture more general and in particular also non-linear functional

dependencies between them. Estimation of mutual information (MI) or transfer entropy

(TE), however, requires density estimation which is either computationally complex or,

when a discretization scheme is applied, to some extent arbitrary. In this chapter, I suggest

a new approach to calculate relative entropy measures based on quantile regression with

the aim to avoid binning and still keep the computational requirement to a minimum. In

addition, the resulting measures are statistically testable as I work out the asymptotic

distributions in a Generalized Method of Moments (GMM) framework. It turns out that

the computational complexity is relatively low and the calculation of relative entropy

measures are extendable to higher dimensions.

Relative entropy is a measure of divergence between two distributions of random variables,

say X and Y (cp. Cover and Thomas 2005, pp. 19f). It is, thus, a measure of the inefficiency

in describing X with Y . More precisely, it measures the inefficiency of assuming ’Y is

distributed like X’, when in reality it is not. Formally, relative entropy is defined as

30 The work on this chapter is part of the project ’Robust estimation of time-varying moments, mutual
information, and transfer entropy by means of quantile regression based density forecasts’ (DI2160/3-1)
and was funded by the Deutsche Forschungsgemeinschaft (DFG).
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the expected value of the logarithmic likelihood ratio, i.e., the Kullback-Leibler distance

(KL-distance). Especially in the time series context the estimation of TE, which is also a

relative entropy measure, can be a powerful tool. For time series, TE is interpreted as a

model-free measure describing the information flow between stochastic processes (cp. ?).

TE as well as causation entropy (also known as conditional transfer entropy; Sun and Bollt

2014) generalize the notion of Granger causality for linear dynamic systems in the sense

of predictive causality such that knowledge about one random variable helps to predict

another one. The measure has been used in a wide variety of subjects, for example in

biomedical engineering (Lee, Nemati, Silva, Edwards, Butler and Malhotra 2012, Zheng,

Pan, Li, Luo, Wang and Liu 2017), ecological modeling (Oh, Kim, Lim and Kim 2018),

economics (Dimpfl and Peter 2013, Sandoval, Mullokandov and Kenett 2015, Dimpfl and

Peter 2019), neuroscience (Dimitrov, Lazar and Victor 2011, Amblard and Michel 2011,

Vicente, Wibral, Lindner and Pipa 2011), or thermodynamics (Prokopenko, Lizier and

Price 2013). Still, care has to be taken since the underlying assumption of TE is that the

structure of relationships between the variables are pairwise or dyadic and can be reflected

by a directed graph (James, Barnett and Crutchfield 2016).31 Smirnov (2013) highlights

further limitations such as low temporal resolution of the samples at hand on which TE is

calculated or hidden variables. Nonetheless, I deem TE to be among the most empirically

relevant applications of relative entropy measures.

Still, even in the case where the data generating process of a time series and the theoretical

distributions of all random variables involved are known, the derivation of a closed form

solution for TE is cumbersome. Therefore, in this chapter, I conceive TE as a form of

conditional mutual information (CMI). I start the analysis with MI and then gradually

move to CMI. As set out in Section 5.1, conceptually, all measures are constructed as

KL-distances. Therefore, once I am in the position to estimate conditional and joint

distributions from a data sample, the calculation of the various relative entropy based

measures and the derivation of their asymptotic distribution is quite similar.

The prevailing approach to estimate relative entropy measures is based on conditional

frequencies which are calculated using the assumption that the underlying random variables

are discrete. In situations when this requirement is not met, several authors (?Sandoval

et al. 2015, Behrendt and Prange 2019) rely on a discretization of the continuous data based

31 A directed graph is a graph in which the nodes only have pairwise edges and the edge may have a
direction. A graph that reflects polyadic interactions between nodes is a graph in which nodes can have
more than one connection (polyadic). Such a graph is called an annotated hypergraph. Both, directed
graphs and annotated hypergraphs, can be illustrated by academic articles and their authorship as
described by Zhou, Huang and Schölkopf (2007). Assume that each article is a node of a graph. If one
forms a link between two articles if they have at least one (co)author in common, one gets a dyadic
graph. The information by how much an author contributed to an article, which is usually reflected in
the ordering of the authors, is lost in such a graph. Also the number of articles one author has written
is lost in such a graph. An annotated hypergraph is a graph in which this information is preserved.
Usually such graphs are hard to draw and represented as sets.
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on quantiles of the empirical distribution. In the respective applications, financial returns

are grouped into three bins based on the idea that tail events (either positive or negative)

have a higher information content than small observations in the center of the distribution.

This discretization comes at the cost that in particular for autoregressive models of higher

order, the number of observations required to fill all possible combinations is very high.

Furthermore, while the selection of the quantiles is motivated economically, the specific

choice (e.g. 5% or 10%) is still ad hoc. Introducing a symbol for each observation based

on the location of each quantile in the empirical distribution, i.e., based on the estimated

quantiles does not yield a consistent estimator for TE of the underlying continuous

distributions since the discretization scheme affects the shape of the distribution of symbols

as described by Kaiser and Schreiber (2002). Also, making the discretization scheme ever

finer bears another challenge mentioned by Kaiser and Schreiber (2002): A discretized

(coarse-grained) CMI (or TE) does not converge monotonically towards the continuous

counter part for a finer graining . This is not a problem for MI, only for CMI. A strategy

to remedy the situation would be consistent estimates for each point of the involved

continuous probability densities. Also the (asymptotic) distribution of these estimates

should be known. Given such estimates, the variance of relative entropy measures built

from these estimates can be worked out.

Estimating the required joint and conditional densities via quantile regressions can remedy

the situation in this manner. This is what I propose. I use quantile regression to directly

estimate the required joint and conditional density to estimate relative entropy measures

such as MI and TE calculation. I also provide the asymptotic distribution of the estimates

and facilitate hypothesis testing. Thereby, discretization of the data (and the problems

associated with it) are avoided. Furthermore, quantile regression allows a much more

flexible calculation of TE as the conditional models can be specified in a richer fashion as

opposed to joint frequencies which become more complex the more conditioning variables

there are. The approach is similar to Baur and Dimpfl (2018a) who use quantile regression

to estimate moments of a time series. Similar to their study, I rely on quantile regression

to obtain the conditional probability density functions.

This chapter proceeds as follows. In Section 5.1 I present the theoretical basis of the

estimation strategy. I outline how to estimate relative entropy measures based on condi-

tional probability density functions obtained through quantile regression. In Section 5.2

I evaluate the methodology by a simulation study and Section 5.3 presents two small

empirical examples. Section 5.4 concludes.
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Table 5.1: List of Relative Entropy Measures with KL-Representation

The table lists the relative entropy measures discussed in this chapter. The concept of entropy, mutual

information and conditional information go back to Shannon (1948) while their application to time series

data can be referenced to Schreiber (2000).

Name Associated KL-Divergence

Entropy h(X) =DKL (U(x)∥fX(x))

Mutual Information I(X,Y,Z) =DKL (fXY Z(x, y, z)∥fX(x)fY (y)fZ(z))

Cond. Mutual Information I(X,Y ∣Z) = ∫
R
DKL (fXY ∣Z(x, y ∣ z)∥fX ∣Z(x ∣ z)fY ∣Z(y ∣ z))dz

Lagged Mutual Information I(Xt, Yt−p) =DKL (fXt Yt−p(xt, yt−p)∥fXt(xt)fYt−p(yt−p))

Transfer Entropy TX→Y = I(Yt,Xt−1∶t−L∣Yt−1∶t−M)

5.1 Method

In order to facilitate the analysis and to have a clear theoretical basis for the later simulation

study, I present the estimation method first for MI and subsequently extend the analysis

to TE as a special case of CMI. Relative entropy measures are all defined through different

Kullback-Leibler distances. The Kullback-Leibler distance for two random variables X

and Y is defined as

DKL (fX∥fY ) = ∫
R
fX(u) log(

fX(u)

fY (u)
)du

where f⋅ denotes the respective density function. The KL distance can equivalently be

defined for discrete probability distributions by interchanging integration with summation.

Actually, the Kullback-Leibler distance is not a distance measure between probability

distributions, but merely a divergence measure. The KL-distance is not symmetric

DKL (fX∥fY ) ≠ DKL (fY ∥fX) and it does not satisfy the triangle inequality. Table 5.1 lists

the relative entropy measures referred to in this chapter in their Kullback-Leibler distance

form.

In order to estimate these relative entropy measures, one needs estimates for the joint

probability density function, possibly via conditional density functions, as well as the

marginal densities.
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To begin with, consider three random variables X, Y , and Z. Mutual information (cp.

Shannon 1948) is then given as

I(X,Y,Z) =∭
R3
fX,Y,Z(x, y, z) log(

fX,Y,Z(x, y, z)

fX(x)fY (y)fZ(z)
)dzdxdy (5.1)

=∭
R3
fX ∣Y,Z(x ∣ y, z)fY ∣Z(y ∣ z)fZ(z) log(

fX ∣Y,Z(x ∣ y, z)fY ∣Z(y ∣ z)

fX(x)fY (y)
)dzdxdy.

The estimation strategy is straightforward. The joint probability density function fX,Y,Z is

never estimated. Instead, I partition the joint density into conditional density functions for

which the corresponding quantile functions QX ∣Y,Z(τ ∣ ⋅) and QY ∣Z(τ ∣ ⋅) can be estimated

via quantile regression. τ is the vector of desired probability levels. Furthermore, I

use the representativity of the sample to estimate the integral in Equation (5.1) via a

sample mean. Note that the integral can be read as the expected value of the logarithmic

likelihood ratio. Thus, for the calculation of MI of K variables, I need to run K −1 quantile

regressions to estimate the conditional densities in the numerator of the fraction inside

the logarithmic term. Additionally, I need K − 1 estimates for the unconditional densities

in the denominator. These can be calculated using quantile regressions on a constant.

All in all, I need to run 2K − 2 quantile regressions. In the case of CMI this number is

reduced to 2 quantile regressions, one for the numerator and one for the denominator

of the log-likelihood ratio. Once the quantile functions Q⋅(τ ∣ ⋅) are estimated, I use a

locally weighted polynomial regression to fit the estimated conditional quantiles to the

corresponding probability levels τ at each point in the sample. The parameter estimates

of the locally weighted polynomial regression are associated with the derivatives of the

conditional distribution functions, i.e., the conditional probability densities. Equipped

with estimates for the (conditional) probability densities, a sample mean estimator of MI

can be constructed.

In this setting, MI is a function of the parameter estimates of several quantile regressions

on the same data set. In order to facilitate statistical tests on the resulting measure of

MI, an asymptotic theory for the parameter estimates’ joint distribution is needed. This

can be obtained by casting the quantile regression estimation problem into the GMM

framework without actually using it to estimate the parameters.

To outline the details, the present section is structured as follows. First, in Section 5.1.1,

I discuss the estimation of conditional and joint distributions using quantile regression.

Second, in Section 5.1.1, I present the GMM framework that allows me to obtain a joint

asymptotic theory for parameter estimates from several quantile regressions on the same set

of data. Third, Section 5.1.1 explains the smoothing and actual estimation of densities from

the fitted quantile functions obtained through quantile regression. The final calculation of

MI and the resulting asymptotic theory is presented in Section 5.1.2.
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5.1.1 Density estimation via Quantile Regression

Quantile Regression via General Method of Moments

The heart of quantile regression as introduced by Koenker and Bassett (1978) is the

specification of the conditional quantile function Qy(τj ∣X) =X ′θ(τj) where I denote with

τj the conditional probability τj = P (Qy(τj ∣X) ≤ Y ∣X). In the quantile regression setup

each conditional quantile τj is modeled as a linear combination governed by the parameters

θ of some set of regressors X. I use the subscript j in order to indicate that τj is the jth

entry in the vector τ in which I collect all probabilities for which the quantile regression

shall be estimated. In order to estimate the parameters θj, the following minimization

problem has to be solved:

Fj = min
θ∈R

N

∑
i=1

ρτj(yi −x
′
iθj), (5.2)

where ρτj(u) = u (τj − 1(u < 0)) with 1(⋅) as the indicator function. ρτj(u) is called the

check function and has a discontinuity at u0 = 0. The discontinuity is due to the indicator

function. The ultimate goal is to derive a joint asymptotic distribution for the parameter

estimates of several quantile regressions on the same data sample. This would enable

statistical tests based on functions of these parameter estimates. The parameter estimates

obtained from separate quantile regressions on the same sample may be related. To account

for these possible relations in the asymptotic joint distribution of the estimates, I translate

each quantile regression estimation into a GMM estimation problem. While the actual

parameter values are not estimated via GMM – the standard procedures and algorithms for

their estimation established in the literature (see Koenker (2005) for a detailed discussion)

are better suited for this task – I only base the estimation of the parameter estimates’ joint

variance-covariance matrix on the GMM theory. In order to do so, however, continuous

moment conditions are required (cp. Hansen 1982, Assumption 2.3).

Similar to Engle and Manganelli (2004), I suggest to substitute the indicator function

used in the check function in Equation (5.2) by the sigmoid function 1(t) = 1
1+eGt . These

functions are asymptotically equivalent as G goes to infinity, i.e.,

lim
G→∞

1

1 + eGt
= 1(t).

1 is thus a continuous counterpart of 1 which closely mimics its behavior when G is

sufficiently high. The derivatives of 1 are also well defined. As Engle and Manganelli

(2004) note, already for G = 10, 1(t) and 1(t) are quite similar.32 They also note that G

32 Note that in this form the indicator function is nothing else than the Heaviside-Step-Function in u.
The derivative of the Heaviside function is the Dirac Delta function and corresponds to the indicator

154



may be estimated as a parameter in the minimization problem. In their work, however,

they fix it to G = 10. In the applications later on, I set G = 100. With this change, the

derivatives of the indicator function are well defined and one can write the first order

conditions of Equation (5.2) as

∂Fj
∂θk

=
N

∑
i=1

xik (τj −
1

1 + eGui
) − xikuiG

eGui

(1 + eGui)2

!
= 0 (5.3)

or, in vector notation,

∂Fj
∂θ

= X ′

K×N
(τj − v

N×1
) −X ′diag(w)

N×N

u
N×1

!
= 0, (5.4)

where v = (1 + eGu)−1 and w = GeGu(1 + eGu)−2, and the exponential function e(⋅) denotes

elementwise operations on the vector u = y −Xθj rather than matrix exponentials.

Multiplying each line in the system of K equations given by Equation (5.4) by 1
N defines

the requirements for the K empirical moment condition estimates. The theoretical lth

moment function can be written as

gl(τj,θj) = E[Xl (τj − 1(U < 0)) −XlU 1(U = 0)].

The first order conditions of the quantile regression minimization problem put exactly

satisfiable requirements on the empirical moment conditions. Note that formulating

the problem in this manner violates one assumption for a consistent GMM estimator,

namely that of global identification. In order to obtain a globally identified and consistent

estimator, the moment conditions need to have a single root at the true parameter estimate

(cp. Assumption 2.4 in Hansen 1982). When substituting the indicator function with the

sigmoid function, this requirement does not hold even for large G. Figure 5.1 illustrates

that the continuous counterpart of the check function has two roots, one at u1 = 0 and

another one at some u2 > 0 (the exact location of u2 is not relevant). As G → ∞, the

two roots get closer and eventually merge to one in the limit. However, in finite samples,

the parameter estimates are in this setting not globally identified. For the application,

this is not necessary as I am only interested in the limiting distribution of θ̂. Instead,

the quantile regression approach of Koenker and Bassett (1978) can be used to identify

consistent estimates and use the GMM inference framework only to derive the joint limiting

distribution.

function 1(u = 0). Engle and Manganelli (2004) simply use a continuous approximation to the
Heaviside-Step-function in the context of quantile estimation.
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Figure 5.1: Check Function vs. Sigmoid Function

The black line plots the check function ρτ(u) = u (τ − 1(u < 0)) for τ = 0.3. The red line plots the
continuous counterpart of the check function, in which the indicator function 1(u < 0) is substituted with
the sigmoid function 1(u) = 1

1+eGu with G = 100. As one can see, the continuous function has two roots
(black dots) one at u = 0 and another positive root, whereas the check function has only one root at u = 0.
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Thus, the corresponding empirical means over the realizations of the moment condition

functions can be written as

1

N

N

∑
i=1

g1i(τj, θ̂j)
!
= 0

⋮

1

N

N

∑
i=1

gKi(τj, θ̂j)
!
= 0.

Stacking the empirical moment conditions for each quantile τj , for which the parameters θj

shall be estimated, together in one large vector of moment conditions, the joint distribution

of all estimated parameters θ̂ for all τj ∈ τ = (τ1, τ2, . . . , τQ)′ can be derived to be, following

standard asymptotic theory,

√
N(vec(θ̂) − vec(θ)) ∼ N (0,Avar(θ̂)) .
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The estimator of the asymptotic variance Âvar(θ̂), as derived by Hansen (1982), reads as

follows:

Âvar(θ̂) = (D̂′WD̂)−1 D̂′W Ŝ WD̂ (D̂′WD̂)−1,

where Ŝ is the asymptotic variance of the moment condition functions gN(τ ,θ) which

can be estimated from the observed deviations from the theoretical moment conditions

gi(τ ,θ). D̂ is the sample estimate of the derivative of the moment conditions with respect

to the vector θj. The element dlk in the lth row and kth column of D is the derivative of

the lth moment condition with respect to the kth parameter in θj and follows directly from

the system of equations in (5.4). dlk can be estimated by

dlk =
1

N

N

∑
i=1

2xikxiluiG
2 e2Gui

(1 + eGui)3
− xikxiluiG

eGui

(1 + eGui)2
.

W is the weighting matrix. Choosing S−1 as the weighting matrix gives the variance-

covariance estimate for the most efficient parameter estimates. I might as well choose

W as the identity matrix IKQ(2K−1) to calculate Ŝ. For N → ∞ the two estimates are

both asymptotically consistent as shown by Hansen (1982). In the concrete application

the variance-covariance matrix of the moment-conditions S may be singular. This may

be due to a situation where a high number of quantiles are estimated and the moment

conditions are (almost) perfectly correlated. In such a situation, I use the generalized

Moore-Penrose-inverse S+ as a weighting matrix. The variance estimate for θ̂, in this case

is 33

var(θ̂) = (D̂′S+D̂)+.

Smoothing of Estimated Quantiles and Density Estimation

For the calculation of the relative entropy based measures, one needs estimates of the

density function. One can obtain such estimates from the finite first difference of the fitted

values of the quantile function estimated via quantile regression as

f̂Y ∣X(y∣x) ≈
τj+1 − τj

Qy(τj+1∣X) −Qy(τj ∣X)
. (5.5)

However, a common problem when estimating the quantile function via quantile regression

is the crossing of the estimated quantiles. The latter would lead to negative estimates

33 The extension of Carrasco and Florens (2000) for an overidentified GMM setup with a continuum of
moment conditions for only one parameter is in the situation here not applicable. However, it may be
extended to a continuum of parameters as suggested in their conclusion. The idea of Carrasco and
Florens (2000) is based on the continuous equivalent of the Moore-Penrose pseudo inverse. I have
tested the possibility of such an integral operator, however, found that the pseudo inverse S+ is not as
computationally demanding as its continuous counterpart. The idea of Carrasco and Florens (2000) is
nonetheless remarkable and in the opinion worth further research.
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of the values of the density function at some points. Chernozhukov, Fernandez-Val and

Galichon (2007) suggests to rearrange the quantile estimates in order to get a strictly

increasing series of quantiles to circumvent the problem. A further problem is that the

density estimate is always restricted to the sample range or, more precisely, to the estimated

quantile range. For values outside this range no estimates can be found. To solve these

two issues, I propose to smooth the fitted values from the quantile regression and adding

ghost points at the tails of the distribution. This approach allows me to circumvent the

problem of crossing quantiles and to extrapolate to points outside the sample range.

Therefore, the second step in the approach to estimate MI is to smooth the conditional

distribution function described by the estimated quantiles. This can be done with a locally

weighted polynomial regression (cp. Stone 1977, 1980, 1982, Cleveland 1979, Fan and

Gijbels 1996) of the probabilities τj on the estimated quantiles Qy(τj ∣X). As the local fit

of the smoothing can be heavily impacted by outliers, Cleveland (1979) suggests a locally

estimated scatterplot smoothing (LOESS-regression) to make the local fit robust against

outliers, while Cleveland and Grosse (1991) propose an efficient algorithm to calculate

fitted values and parameters. For local polynomial regressions in general, Fan and Marron

(1994) and Seifert, Brockmann, Engel and Gasser (1994) propose an even faster algorithm.

In this case, the fitted values from the quantile regression are (usually) not very volatile

and are already designed to lie around the curve of the conditional distribution function.

So, in order to derive a clear asymptotic distribution and since I deem the problem of

outliers not relevant in the application, the iterative procedure suggested by Cleveland

(1979) is not used. Nonetheless, I have explored the method of Cleveland (1979) and have

attempted different orders of polynomials (selected locally), in combination with various

kernel functions together with the suggested relative nearest-neighbor bandwidth. I do

not reproduce all the exploratory results in this chapter, as the outcomes of the attempts

mirrored the well documented results of Fan and Gijbels (1996) which offer clear guidance

on the choice of these parameters.

As argued by Fan and Gijbels (1996), the choice of the kernel function and the local

selection of the order of the polynomial approximation is not as important as the locally

optimal choice of the bandwidth. They show that the Epanechnikov kernel function

minimizes the MSE at interior points. Thus, I choose this kernel function. The local

selection of the order of the local polynomial regression, described by Fan and Gijbels

(1996) introduces heavy computational requisites with no clear added value34. Ruppert

and Wand (1994) find that if the polynomial order exceeds the order of the derivative by

34 The selection of the optimal order of the polynomial approximation is based on an estimate of the
conditional mean squared error. This is in itself computational expensive. Furthermore, in this context
this estimate is potentially biased (see the discussion below) which may lead in small samples locally to
strange order selections. Choosing globally a local polynomial approximation of order p = 4, yields in
this context stable results.
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an odd number, the bias is smaller compared to an even number. Therefore, since I want

to use a first order approximation, I opt for a global polynomial order of p = 4. However,

due to its importance, I endure the computational costs of selecting a local, approximately

optimal, bandwidth h. I discuss the calculation in Section 5.1.1.

In summary the estimation approach consists in a first step of estimating Q quantiles via

quantile regression using the procedure introduced by Koenker and Bassett (1978) on the

data sample. In the second step, I estimate the density by smoothing the distribution

function implied by the quantile estimates from the first step. For this purpose, I use a

locally weighted polynomial regression of order p = 3 with an Epanechnikov kernel function

with a dynamically chosen bandwidth parameter. The parameter estimate of the linear

term in this local polynomial regression serves as an estimate for the conditional density.

More explicitly, to estimate the smooth density function from the quantile regression and

in order to calculate the value of the (conditional) distribution function at P = (θ̂x0, y0), I

construct the local polynomial regression estimator as

γ̂ = (Z ′
PWPZP )

−1Z ′
PWPτ , (5.6)

where ZP
Q×3

= (ι, θ̂x0 − y0, (θ̂x0 − y0)
2) with ι as the column vector of ones and WP =

diag (h−1K(
θ̂x0−y0

h )) where K(⋅) denotes the weight function and h is the chosen bandwidth.

Note that the matrix Z ′
PWPZP may not be invertible if the parameter h is small and

the kernel function selects less than 4 observations at each point to be included in the

estimation. Thus, algorithmically, one may require that h must be widened in some

situations in such a way that the matrix (Z ′
PWPZP ) is of full rank. As specified in

Equation (5.6) and recommended by Fan and Gijbels (1996) as well as by Ruppert and

Wand (1994), I use a fourth order (locally weighted) polynomial regression to estimate the

first derivative of the distribution function to reduce the bias of this estimate. While the

first entry of the vector γ̂ gives the fitted value for the distribution function γ̂0, the second

entry γ̂1 is a valid estimate for the density function at y0. 2!γ̂2 can provide an estimate for

the derivative of the density function and 3!γ̂3 for the third derivative.

Furthermore, in this chapter, the goal is to smooth a sufficiently high number of quantiles

in order to arrive at a density estimate γ1 even beyond the highest and lowest estimated

quantile. However, using local polynomial smoothing outside of the support covered by

the estimated quantiles produces heavy estimation errors. The solution, I propose, is to

add H ghost points both at the lower end of the estimated quantile function with the

coordinates Ξω,i = (min(θ̂x0) − ωi∆q,0) and again H ghost points at the upper end at

Ξω̄,i = (max(θ̂x0)+ωi∆q, 1) , where ω denotes some chosen share of the range between the

highest and the lowest estimated quantile ∆q = max(θ̂x0) −min(θ̂x0) and i ∈ {1, . . . ,H}.

I discuss the consequences of adding these extra points in Section 5.1.1.
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Note, as I approximate the distribution function with a finite polynomial, γ̂ is entirely

a function of the θ̂. However, even in the case where the parameter estimates for θ̂

would fall together with their true values θ, due to the finite polynomial approximation, a

deterministic smoothing error still be observed.

To see this, consider the framework of local polynomial regression (cp. Fan and Gijbels

1996, Chapter 3) in which we have an unknown continuous function which can only be

measured disturbed by some noise. In the case, the continuous function is the probability

distribution function FY ∣X(y ∣X = x). Since we are now talking about concrete realizations

or values of X that condition the distribution of Y , I specify these with the vector x.

The probability function is effectively defined by the uncountably infinite set of ordered

pairs FY ∣X = {(x, y, τ) ∈ Rk ×R × [0, 1] ∣ τ = FY ∣X(y ∣X = x)]} where k is the dimension of

the support of X. With quantile regression estimates – given the linear structure of the

conditional quantile function holds – the set of ordered pairs can be can be written as

FY ∣X = {(x, y, τ) ∈ Rk ×R × [0,1] ∣ y[τ] = Qy(τ ∣X = x)}.

Recall that in the quantile regression set up, it is assumed that

y[τ] = Qy(τ ∣X = x0) = θ(τ)x0.

Estimating the parameters θ(τ) in a finite sample introduces an estimation error ετ . Thus,

one can write

y[τ] = Q̂y(τ ∣X = x0) + ετ

= θ̂(τ)x0 + (θ(τ) − θ̂(τ))x0. (5.7)

Using a Taylor expansion of FY ∣X(y[τ] ∣X = x0), I get

τ = FY ∣X(y[τ] ∣X = x0) =
∞

∑
k=1

1

k!
F (k)(y0) (y[τ] − y0)

k
., (5.8)

where F (k)(x0) =
d(k)FY ∣X
dyk

∣
y=y0

. Substituting y in Equation (5.8) with the estimated quantile

function Equation (5.7) and extending X to be a real-valued multivariate random variable

with x0 as one specific point in its support yields

τ =
∞

∑
k=0

1

k!
F (k)(y0) (Q̂y(τ ∣X = x0) + ετ − y0)

k

=
∞

∑
k=0

1

k!
F (k)(y0)

k

∑
j=0

(
k

j
)(Q̂y(τ ∣X = x0) − y0)

j
εk−jτ .
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Thus, for example for a third order approximation, I have

τ = F (0)(y0) + b0τ

+ (F (1)(y0) + b1τ) (Q̂y(τ ∣X = x0) − y0)

+ (
F (2)(y0)

2
+ b2τ)(Q̂y(τ ∣X = x0) − y0)

2

+ (
F (3)(y0)

6
+ b3τ)(Q̂y(τ ∣X = x0) − y0)

3
+ ητ , (5.9)

where ητ is the approximation error while the bkτ are the unobserved biases and are

polynomials of ετ and defined by

bkτ =
εkτ
k!
F (k+1) (y0 + ετ) . (5.10)

In order to estimate the quantities γk =
F (k)(y0)

k! , a weighted local polynomial regression

can be conducted. Having the quantile regression estimates available, one can denote the

quantile estimates centered around some point y0 as Zτ = Q̂y(τ ∣X = x0)−y0. The objective

function of the locally weighted polynomial regression then reads

γ̂ = argmin
γ∈Θ

Q

∑
l=1

(τi −
p

∑
k=0

(γ̃k + bkτi)Z
k
i )

2

Kh(Zi). (5.11)

In matrix notation the first order conditions for this minimization problem can be written

as

Z ′W (τ −Zγ̂ − (Z ○ b) ι)
!
= 0,

where ○ denotes the element-wise (Hadamard) product and ι is the p × 1 vector of ones

ι = (1,1, . . . ,1)′. Solving for γ̂ yields

γ̂ = (Z ′WZ)
−1
Z ′W (τ − (Z ○ b) ι) .

The conditional moment of the estimate, thus, is equal to

E[γ̂ ∣X, θ̂,x0, y0] = (Z ′WZ)
−1
Z ′W (Zγ + η − (Z ○ b) ι)

= γ + (Z ′WZ)
−1
Z ′W (η − (Z ○ b) ι)

= γ + bias .

First, note that given X, θ̂,x0 and y0, the bias of the estimator is fully determined, but

unobserved. Second, the parameter estimates γ̂ are calculated from means across all τ

i.e., the different quantile levels. Third, one can also recognize that the bias of γ̂ depends
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on b, which crucially depends on the derivatives of the distribution function F (y0), but,

more decisively, on powers of the estimation error ετ introduced by the quantile regression

estimates at each τ . Since ετ → 0 for N →∞ in the case where the assumptions of the

quantile regression hold, the part of the bias (Z ○ b) ι→ 0 as well. I conjecture that the

even powers of ετ play a more dominant role in (Z ○ b) ι. Depending on the shape of

the distribution function, and thus the sign of its derivatives, the bias may be positive or

negative. Fourth, the bias also depends on η which depends on both the approximation

error of a finite Taylor expansion as well as on ετ . Recall that

ητ =
∞

∑
j=p+1

(
F (j)(y0)

j!
+ bjτ)(Q̂y(τ ∣X = x0) − y0)

j
.

If the bandwidth h→ 0, Q→∞ and N →∞, note, the parameter estimates are consistent

as ετ → 0 and also ητ → 0 at each τ , and, thus, E[γ̂] = γ in large samples with a large

number of quantiles estimated.

Since the estimate (including the bias) is fully determined by the quantile regression

estimates θ̂, the conditional variance of the parameter estimate is given by

var[γ̂ ∣X, θ̂,x0, y0] = (Z ′WZ)
−1
Z ′W Ω WZ (Z ′WZ)

−1
,

where under the assumption of homoscedasticity Ω can be expressed as

Ω = η′η − 2η′ (Z ○ b) ι + ι′(b′Z)2ι.

If the quantile specific biases bkτ for each of the k parameters in γ̂ as well as the quantile

specific approximation error ητ were observable in the sample, then the bias of γ̂ as well

as its variance could be estimated by sample means. This is unfortunately not the case.

However, note, the quantile specific as well as the usual bias of local polynomial regression

estimates are added on top of each other.

Since γ1 is estimated from a locally weighted polynomial regression with stochastic

bandwidth (the procedure is described in Section 5.1.1), the asymptotic bias of such

an estimator can be accounted for. For non-stationary strongly mixing processes, Masry

and Fan (1997) establish the bias and asymptotic normality of local polynomial estimates

obtained with non-stochastic bandwidths. Martins-Filho and Saraiva (2012) derive the

bias as well as the asymptotic normality of a local polynomial regression estimate with

stochastic bandwidth.
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Translating their Corollary 3.1 into the notation, establishes the asymptotic normality of

the estimate γ̂1 as

√
Qh3 ((γ̂1(y0;θ, h) − f(y0)) −

F p+1hp

(p + 1)!
+ hpop(1)) ∼ N (0, σ2

h) , (5.12)

where I have suppressed the dependence of h on the sample size Q, and op(1) represents

terms that converge in probability to 1 as Q→∞. Furthermore, σ2
h signifies the asymptotic

variance derived by Martins-Filho and Saraiva (2012). Since in the local polynomial

estimates are based on estimated quantiles from a quantile regression, I do not use the

variance developed by Martins-Filho and Saraiva (2012).

In the absence of the quantities necessary to estimate the exact bias, I account for the bias
F p+1hp
(p+1)! + h

p derived by Masry and Fan (1997). The estimation of F p+1 is also necessary to

calculate the variable bandwidth h in Section 5.1.1. As the bias and the bandwidth both

depend on the estimation of F p+1 which in turn requires the estimation of a polynomial

regression and a pilot bandwidth as set out in Section 5.1.1, I find that the bias correction

is only necessary when the estimate for F p+1 surpasses a certain threshold. In this chapter,

I use a fourth order local polynomial regression and find that if the value of the fifth

derivative F 5 exceed the value of 23 the correction is necessary. The value of 23 has been

established by graphically comparing the similarity between estimated and theoretical

density plots. Surely, there is a more systematic approach to determine the value. This

is left for the time being to future research. Nonetheless, some threshold value around

23 should be universally applicable to the smoothing of distribution functions, since the

function values are always restricted to unit interval.

In order to account for the special situation where the local polynomial estimation is based

on quantile regression results, I estimate the variance of γ̂1 via the procedure described

in Section 5.1.1 which is based on asymptotic theory rooted in the GMM setup already

described in Section 5.1.1. Before discussing the estimation of the variance of the parameter

estimate, however, I set out the estimation of the local bandwidth h in Section 5.1.1.

Bandwidth Selection

The choice of the optimal bandwidth manifests the trade-off between variance and bias

of the estimated parameter. Choosing the bandwidth too narrowly leaves out too many

estimations and increases the variance of the density estimator. Selecting a bandwidth

that is too wide reduces the variance of the estimator, while its bias is increased.

Since there is no clear guidance in the framework of Cleveland (1979), how the parameters

are chosen optimally, I opt for the locally optimal bandwidth as worked out by Fan, Gijbels,

Hu and Huang (1996). The locally optimal bandwidth requires several quantities to be
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estimated. In this way, the bandwidth and kernel function are chosen approximately

optimal in the sense that they approximately minimize the conditional mean squared error

at each point P = (θ̂x0, y0).

In this case, the choice of the bandwidth is not straightforward. While Fan et al. (1996) find

asymptotic expressions for the conditional bias and the variance for parameter estimates

of a general local polynomial expression to estimate the optimal bandwidth, in this

context these quantities are biased. Nevertheless, these asymptotic expressions still hold

approximately, especially when the sample size goes to infinity.

In a bivariate standard local polynomial setting with identically and independently dis-

tributed (iid) data points (X1, Y1) . . . (Xn, Yn) from a population (X,Y ) at hand, Fan and

Gijbels (1996) derive the optimal bandwidth at the point x0 to estimate the vth derivative

m(v)(x0) with a local polynomial regression of order p as

hopt(x0) = Cv,p(K) [
σ2(x0)

{m(p+1)(x0)}
2
f(x0)

]

1/(2p+3)

n−1/(2p+3), (5.13)

with

Cv,p(K) = [
(p + 1)!2(2v + 1) ∫ K

∗
v

2
(t)dt

(2p + 1 − v) {∫ t
p+1K∗

v dt}
2 ]

1/(2p+3)

.

and σ2(x0) being the conditional variance and f(x0) the design density at point x0. The

constants Cv,p(K) only depend on the kernel function and are easily calculated.

In this context, I choose p = 4 and approximate the first derivative of the conditional

distribution function, i.e., v = 1 . Thus, I use the constant C1,4 = 3.8565. If I would have

used p = 6 or p = 8 to estimate the first derivative, the constant would be larger by a factor

of 1.4 and 1.8, respectively. One can also choose p = 2. This would yield a smaller constant

by a factor of 0.6. Therefore, similar to Fan and Gijbels (1995), the resulting rule of thumb

bandwidth estimator – presented in Equation (5.16) below – is multiplied by a factor of

1.39 in order to form a compromise between the various candidates for the constant factor.

A conundrum emerges when estimating the quantities in the numerator and denominator

of Equation (5.13). The conditional variance σ2(x0), the design density f(x0), and the

derivative mp+1(x0) can only be estimated (by local polynomial regression) when the

optimal bandwidth is already known. One solution would be to conduct a grid search to

find the minimum of the residual squares criterion (RSC) as discussed in Fan and Gijbels

(1996). Another approach has been developed by Yu and Jones (1998) who resort to the

optimal bandwidth obtained by minimization of the mean integrated squared error (MISE)

as developed by Ruppert and Wand (1994) and refined in Ruppert, Sheather and Wand

(1995). Both approaches come with heavy computational costs. With the assumption that
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the underlying density does not have many high-frequency alternations, one can resort to

the rule of thumb approach presented in Fan and Gijbels (1995, 1996), slightly modified to

fit the situation. To obtain a approximately optimal bandwidth, I proceed as follows:

First, I fit a polynomial on the uncentered quantile estimates

τ̆ = Z̆γ̆

where Z̆ = (1, θ̂x0, (θ̂x0)
2, . . . , (θ̂x0)

p+3) and γ̆ = (γ̆0, γ̆1, . . . , γ̆p+3)
′.

Second, from the residuals of the first step ν = τ − τ̆ , I calculate an estimate for the

conditional variance as

σ̆2(y0) =
1

Q − p − 3 − 1

Q

∑
l=1

ν ′ν. (5.14)

Third, I use twice the standard deviation of θ̂x0 as a preliminary bandwidth parameter hp.

Fourth, using the results from the first and the third step, I obtain a rough estimate for

the denominator of the optimal bandwidth the probability weighted derivative of order

p + 1 of the distribution function F (p+1)(y0), as

{F (p+1)(y0)}
2
f(y0) ≈

1

Q

Q

∑
l=1

(
2

∑
j=0

(p + 1 + j)!

j!
γ̆p+1+j (θl x0)

j)

2

Khp (
θl x0 − y0

hp
) (5.15)

where Khp =K(⋅)/hp.

In a fifth last step, I combine these results to obtain the rule of thumb estimate for the

optimal local bandwidth

h(y0) = 1.39 ⋅C1,4(K) [
σ̆2(y0)

{F (p+1)(y0)}
2f(y0)

]

1/11

Q−1/11. (5.16)

Variance of the Density Estimate

In the following, I denote the estimate for the density fY ∣X(y0) as f̂(θ̂). This is the estimate

stemming from the local polynomial regression of order p with stochastic bandwidth h on

the estimated quantiles using the parameter estimates θ̂ which is already corrected for the

asymptotic bias F̂ p+1hp
(p+1)! + h

p.

Given the quantile regression assumptions hold, for N →∞ the parameter estimates from

the quantile regression converge θ̂ →p θ and ετ →p 0 ∀τ . Since the parameters θ̂ fully

determine the estimates f̂(θ̂), by the continuous mapping theorem, it follows that for
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N → ∞ and Q → ∞ as well as 0 < h → 0, the parameter estimates f̂(θ̂) converge in

probability to the conditional density function fY ∣X . Note that the rate of convergence of

h and Q need to ensure that h3Q→∞.35

This means only when both N and h3Q approach infinity, I have both a good fit of the

theoretical conditional quantile function and a good fit for the conditional density estimate

via the smoothing. Therefore N and h3Q need to be chosen sufficiently large in order for

f̂(θ̂) to approximate the true value.

Since the asymptotic variance of the quantile regression parameter estimates θ̂ has been

worked out previously in the literature (see Koenker 2005), one can determine the distri-

bution of the density function estimate f̂ .

The question how Avar (f̂ (θ)) can be approximated remains. This can be answered with

the mean value theorem (cp. Hayashi 2000). For this purpose, the estimation of the

derivative of f̂(θ̂) with respect to θ̂ is needed. Thus, for some sufficiently large fixed Q,

letting N →∞, in the limit, one can write

lim
N→∞

√
Qh3

(f̂(θ̂) − f)

vec(θ̂) − vec(θ)
≈
∂f̂

∂θ̄
∣
θ̄=θ̂

.

where f is the true value. Note that I have utilized the factor
√
Qh3 to stabilize the conver-

gence of the derivative of f̂(θ). This is the same stabilizing factor as in Equation (5.12).

Then, for Q and N sufficiently large and ∂f̂
∂θ̄

∣
θ̄=θ̂

= H, I have the approximation

√
Qh3 (f̂(θ̂) − f) ≈ vec (H)

′
(vec(θ̂) − vec(θ)) .

Since
√
N (vec(θ̂) − vec(θ)) is asymptotically normal distributed, I multiply both sides by

√
N . It follows that the left hand side is asymptotically normal distributed, as well, i.e.,

√
NQh3 (f̂(θ̂) − f) ∼ N (0,vec (H)

′
Avar(θ̂)vec (H)) . (5.17)

Equation (5.17) now allows for an approximation of the asymptotic variance of f̂ (θ) by

Avar (γ̂1 (θ)) ≈
1

NQh3
vec (H)

′
Avar(θ̂)vec (H) , (5.18)

where the calculation of the elements of the Q ×K matrix H is worked out in Section 5.B.

35 The rate of convergence of the local polynomial estimate for the first derivative has been worked out
under fairly general conditions with stochastic bandwidth by Martins-Filho and Saraiva (2012).
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Since f̂(θ̂) is a density, for some rare points where f̂(θ̂) < 0, I have to make the following

additional transformation which ensures that the density estimate is non-negative

f(θ̂) = max (0, γ̂1(θ̂)) .

Even though this case is rare, since the insertion of the ghost points almost eliminates its

occurrence, at some rare instances the transformation is necessary. These instances are

limited to density estimates outside of the range observed in the sampled data. However,

at this point a note of caution is in order. To apply the mean value theorem, one needs

the continuous mapping theorem to hold (e.g. Hayashi 2000). However, f(θ̂) has a

discontinuity at 0 and the maximum function is a non-continuous transformation. Thus,

variance estimates outside the support of the sample are prone to error. The ghost points

artificially reduce uncertainty for these estimates, as, for one, they increase the number of

observations, and second, they occur at a rather regular frequency. Thus, the flooring of

the density estimates by means of ghost points renders the presented asymptotic theory

prone to error, especially at the tails of the distribution.

While the distributional issues are challenging, the practical results of the procedure work

nicely. Figure 5.2 shows the results for two bivariate density estimates. I see that in the

center of the distribution the densities are slightly underestimated while at the tails the

converse is true and the density is slightly overestimated. However, for 1000 observations

and only 100 quantiles estimated in each regression, I deem the fit satisfactory.

Limitations

The limits of the procedure become apparent when looking at different distributions where

the conditional quantile functions are not linear and/or not continuous. For this purpose,

I consider samples of 1000 observations from a distribution on a 2 dimensional spherical

shell. Figure 5.2c shows the corresponding sample, the estimate and the theoretical density.

As can be seen the density is not continuous. Hence, the jump from 0 to the density value

(π2(ro − ri))−1 (where ri is the radius of the inner circle and ro is the radius of the outer

circle) cannot be picked up by the estimation procedure properly. By forcing the linear

structure of quantile regression on the figure, the procedures somewhat tries to square the

circle, a proverbial impossibility. Thus, the estimated densities assume high values at the

’edges of the circle’.

The geometrical figure of the spherical shell is extendible to n dimensions. I make use of

this in the simulation study for MI in Section 5.2.2 below. The distribution on a spherical

shell ensures non-linearity between all involved random variables, while simultaneously

exhibiting zero correlation between all related variables.
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Figure 5.2: Bivariate Normal and t-Distribution Estimates

The graph shows the theoretical joint density function (gray surface) of a bivariate normal distribution in
Subfigure 5.2a and of a t-distribution in Subfigure 5.2b. Simultaneously, the respective density estimates
based on smoothed quantile regressions (red points) are depicted. The black cloud of points at the top
of the density function is the sample of 1000 points on which the density estimates are based. For both
density estimates Q = 100 quantiles were estimated via quantile regression. Estimated quantiles were
fitted with a local polynomial regression of order 4 with stochastic bandwidth and an Epanechnikov-kernel
function. In order to plot the surface, the estimated density was evaluated on a grid with M = 100 points
in each dimension.

Y

X
(a) Multivariate Normal Distribution (b) Multivariate t-Distribution

(c) Uniform Distribution on a Spherical Shell
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While the approximation for the joint density obtained through the estimates may not be

satisfactory for other purposes, for the estimation of MI in a practical setting they may

be suitable anyway. The research question is often whether two or more variables are

unrelated. The null hypothesis for MI = 0 would most probably, also be rejected in this

setting with the estimated joint density. I consider such a case in the simulation study in

Section 5.2.2.

However, an exact estimate for MI is not possible for such a scenario. The class of densities

for which the quantile regression approach presented in this chapter is feasible, is limited

to the situation where the quantiles of the variables are globally linearily related.

At this point, one could think of a potentially problematic situation in which there are

several stochastically dependent variables and all estimated conditional quantiles are

parallel to the axis of the conditioning variable. However, if this is the case the variables

are by definition independent. Therefore, linear quantile regression is in principle suited to

detect non-zero MI and/or stochastic dependence among sets of random variables. However,

the approach is not exact concerning the concrete value of MI. A similar argument holds

for CMI and TE.

If the limitation for an exact estimate needs to be overcome, one could also use at each point

the quantile estimates of a locally weighted quantile regression. The further development

of this approach, however, is beyond the scope of this chapter and left to future research.

5.1.2 Asymptotic Theory for Relative Entropy Measures

As discussed in the introduction to this chapter and listed in Table 5.1, relative entropy

measures are constructed as Kulback-Leibler divergences. The discussion in Section 5.1.2

focuses first on the asymptotics of MI as a show case of the method. However, the

simulation study for MI will also be accompanied by another simulation study. I also look

at the specifics of TE as another example for a relative entropy measure and a special case

of CMI in Section 5.1.2. While discretization approaches are deemed appropriate for the

estimation of MI, for TE coarse-graining methods have some unsatisfying characteristics

(see Kaiser and Schreiber 2002). Therefore, even though I first focus on MI (and leave time

series considerations aside), I deem the asymptotic behavior and estimation technique for

TE as the major contribution of this chapter.

Mutual Information

While the concept of MI is defined in general for K variables, it is useful to limit the

discussion here to the three variable case in order to alleviate notational complexities. A
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limitation to two variables would be possible, however, for the extension to conditional MI

(and TE as a special case), I use the three variable case in which MI is defined as

I(X,Y,Z) = E [log(
fX,Y,Z(x, y, z)

fX(x)fY (y)fZ(z)
)] (5.19)

= ∫
x∈X
∫
y∈Y
∫
z∈Z

fX,Y,Z(x, y, z)C(x, y, z)dzdxdy

= ∫
x∈X
∫
y∈Y
∫
z∈Z

fX,Y,Z(x, y, z) log(
fX,Y,Z(x, y, z)

fX(x)fY (y)fZ(z)
)dzdxdy. (5.20)

This definition allows for two approaches to calculate MI. The first one calculates the sample

mean equivalent of Equation (5.19) over all observations (xi, yi, zi) with i ∈ {1, . . . ,N}.

Î(X,Y,Z) = E [log(
fX,Y,Z(x, y, z)

fX(x)fY (y)fZ(z)
)] ≈

1

N

N

∑
i=1

log(
f̂X,Y,Z(xi, yi, zi)

f̂X(xi)f̂Y (yi)f̂Z(zi)
) (5.21)

This approach uses the representativity of the sample to circumvent the integration over

a grid of artificial support points. Which leads to the other calculation approach: the

numerical integration suggested by the integral formulation in Equation (5.20). This entails

the integration across a grid that covers the sample space across the various dimensions.

If I chose M grid points then for three variables X,Y and Z, the integral would need to

be evaluated at M3 grid points. The number of points grows exponentially with each

dimension, making the calculation practically already for a small number of variables

infeasible. The expectation formulation is much more feasible.

For MI, another possibility of estimation seems interesting: One can estimate the involved

densities by means of kernel density techniques. For the concept of conditional MI and

TE, where the conditional densities are directly needed in the calculation, however, the

quantile regression approach emerges much more naturally as can be seen in Section 5.1.2

as it strongly limits the computational resources. So even though the approach may not

be the most flexibel to estimate MI, I use the method of smoothed quantile regression

estimates for MI estimation as a show case in order to make the concept more accessible.

Also, the estimates come with standard errors and are testable.

For the purpose of calculating the MI contributions via conditional densities, one can

rewrite the joint density as

fX,Y,Z(x, y, z) = fX ∣Y,Z(x∣y, z)fY ∣Z(y∣z)fZ(z).

This makes the summand for the ith observation in Equation (5.21)

C(xi, yi, zi) = log
⎛

⎝

f̂X ∣Y,Z(xi∣yi, zi)f̂Y ∣Z(yi∣zi)

f̂X(xi)f̂Y (yi)

⎞

⎠
.
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This decomposition provides the basis for the quantile regression based approach. All

constituents of the joint density can be estimated from the parameter estimates of the

respective quantile regression such that

f̂X,Y,Z(x, y, z) = γ̂1(θ̂X ∣Y,Z)γ̂1(θ̂Y ∣Z)γ̂1(θ̂Z).

Note, the summed up terms in the sample mean estimate Î(X,Y,Z) can again be conceived

as functions of the parameter estimates from the various quantile regressions.

Also recall that each of the density estimates in C may converge at a different rate to

the true density value. This is due to the result of Martins-Filho and Saraiva (2012) for

the asymptotic convergence of local polynomial regression parameters estimated with

stochastic bandwidths. The result for the local polynomial regression parameter associated

to the first order derivative is reproduced for convenience in Equation (5.12). Therefore, in

order to derive an asymptotic distribution of a test statistic, I need to align the convergence

of the density estimates. For the construction of a test statistic, I therefore divide each of

the density estimates by the square root of the third power of its bandwidth. In effect,

since MI is formulated in logarithms this is equivalent to subtracting a constant term from

the TE estimate. For the so normalized term, a function of normalized density estimates, I

conjecture that
√
Q-normality is sustained. The simulation results in section Section 5.2.3

underpin this conjecture.

For the construction of the test statistic, I treat the bandwidths as somewhat fixed and

independent of the regression estimates θ̂. The delta method for the adjusted contributions,

thus, can be derived to be

lim
N→∞

√
Q
Ĉ(θ̂) −C −C∗

θ̂ − θ
= lim
N→∞

1

θ̂ − θ

√
Q log

⎛

⎝

h−1
X ∣Y,Z

(f̂X ∣Y,Z − fX ∣Y,Z)h
−1
Y ∣Z

(f̂Y ∣Z − fY ∣Z)

h−1
X (f̂X − fX)h−1

Y (f̂Y − fY )

⎞

⎠

=
∂Ĉxi,yi,zi
∂θ̄lm

∣
θ̄lm=θ̂lm

,

where the correcting term C∗ = 3
2 log (

hX∣Y,ZhY ∣Z
hXhY

) is used.

In order to calculate the variance of the MI estimate, not only the variance of each

summand is needed, but also the covariances among all of the summands. Again, the

asymptotic convergence results for the density estimates developed in Section 5.1.1 are of

importance.

Knowing the limiting distribution of θ̂, one can work out the limiting distribution of each

summand Ĉ(x, y, z) and the covariance between any two summands Ci = C(xi, yi, zi) and

Cj = C(xi, yi, zi) using the delta method. Everything that is needed are the gradients of

the summands with respect to the parameter estimates θ̂.
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Collecting the derivatives of the ith contribution Ci with respect to θ in a matrix Υi, the

elements of Υi can be written as

∂Ĉxi,yi,zi
∂θ̄lm

∣
θ̄lm=θ̂lm

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f̂X∣Y,Z

f̂X∣Y,Z
if θ̂lm ∈ θ̂X ∣Y,Z

∂f̂Y ∣Z
f̂Y ∣Z

if θ̂lm ∈ θ̂Y ∣Z

0 if θ̂lm ∈ θ̂Z

− 1

f̂Y
∂f̂Y if θ̂lm ∈ θ̂Y

− 1

f̂X
∂f̂X if θ̂lm ∈ θ̂X

where the elements ∂f̂ can be replaced with the respective elements of H and f̂ with the

density estimates.

Note that when the representativity of the sample is not used and MI is estimated by

integrating over the estimated joint density function, the derivatives of the contributions

Ci need to be extended by additional terms.

Knowing Υi and its variance, the limiting distribution of the contribution can be approxi-

mated using the delta method (cp. Oehlert 1992, Hayashi 2000) which leads to

Ĉi (θ̂) +C
∗ ∼ N (Ci,

1

QN
vec (Υi)

′
Avar(θ̂)vec (Υi)) . (5.22)

In order to calculate MI, the conventions 0 log (0
0
) = 0, 0 log ( 0

fY
) = 0 as well as log (

fX
0
) =∞

need to be introduced (cp. Cover and Thomas 2005).36 Therewith, the covariance between

Ĉi (θ̂) and Ĉj (θ̂) may be approximated by (cp. Klein 1953)

cov (Ĉi (θ̂) , Ĉj (θ̂)) =
1

QN
vec (Υi)

′
Avar(θ̂)vec (Υj) . (5.23)

Based on the estimation of MI by the sample mean equivalent of Equation (5.21), the

variance of the MI estimate can be computed as

var (ÎX,Y,Z) =
1

N2

N

∑
i=1

N

∑
j=1

cov (Ĉi (θ̂) , Ĉj (θ̂))

=
1

QN

N

∑
i=1

N

∑
j=1

1

N
vec (Υi)

′
Avar(θ̂)

1

N
vec (Υj)

=
1

QN
[

1

N

N

∑
i=1

vec (Υi)]

′

Avar(θ̂) [
1

N

N

∑
j=1

vec (Υj)] . (5.24)

36 Note that during implementation, one can choose to numerically represent infinity by a sufficiently
large value. However, I choose to exclude such points in the calculation, since dragging these values
through all calculations results in numerical instabilities.
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This approach also leads me to conjecture that the limiting distribution of v̂ar (ÎX,Y,Z) is

a χ2 distribution. For the application, however, I am only interested in the distribution of

ÎX,Y,Z .

Transfer Entropy

Similar to Equations 5.19 and 5.20, transfer entropy as a special case of conditional MI in

a time series context with time ordered random variables can be constructed as

TX→Y = I(Yt,Xt−1 ∣ Yt−1)

= E [Θt] = E [log(
fYt∣Xt−1,Yt−1(yt ∣ xt−1, yt−1)

fYt∣Yt−1(yt ∣ yt−1)
)]

=∭
R3
fYt,Xt−1,Yt−1(yt, xt−1, yt−1) log(

fYt∣Xt−1,Yt−1(yt ∣ xt−1, yt−1)

fYt∣Yt−1(yt ∣ yt−1)
)dytdxt−1dyt−1

Note that only two quantile regressions are necessary to calculate the measure. Given

stationary and ergodic time series for yt, xt and zt, one can approximate TE via a sample

mean

T̂X→Y = E [log(
fYt∣Xt−1,Yt−1(yt ∣ xt−1, yt−1)

fYt∣Yt−1(yt ∣ yt−1)
)] ≈

1

T

T

∑
t=1

log(
fYt∣Xt−1,Yt−1(yt ∣ xt−1, yt−1)

fYt∣Yt−1(yt ∣ yt−1)
)

(5.25)

The derivative of each summand is then given by

∂Θ̂t

∂θ̄lm
∣
θ̄lm=θ̂lm

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∂f̂Yt ∣Xt−1,Yt−1
f̂Yt ∣Xt−1,Yt−1

if θ̂lm ∈ θ̂Yt∣Xt−1,Yt−1

−
∂f̂Yt ∣Yt−1
f̂Yt ∣Yt−1

if θ̂lm ∈ θ̂Yt∣Yt−1

The variance of T̂X→Y may be estimated analogously to MI.

5.2 Simulation Studies

In order to check the theoretical arguments and limiting distributions above, I conduct

several simulation studies. First, in Section 5.2.1, I analyze the asymptotic distribution of

the estimate γ1 for the conditional density fX ∣Y (X = x∣Y = y) as derived in Section 5.1.1.

Second, I investigate the asymptotic behavior of relative entropy estimates derived in

Section 5.1.2 such as estimates for the MI as well as TE.
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5.2.1 Simulation of Conditional Density Estimates

In this subsection, the behavior of the conditional densities estimates is discussed when

the number of observations N is varied. For this purpose and to keep it brief, I exclusively

sample in this section from the bivariate normal distribution of X and Y with the

parameters

µXY =
⎛

⎝

−0.4

−2.5

⎞

⎠
and ΣXY =

⎛

⎝

2.18 1.38

1.38 0.93

⎞

⎠
. (5.26)

I refer to this specific bivariate distribution as ΦXY for the rest of this section and ΦX ∣Y is

the conditional distribution of X given Y .

To roughly illustrate the support of the distribution, Figure 5.3 shows a random sample of

1,000 data points drawn from this bivariate normal distribution. The blue lines indicate

the conditional quantiles of Y at the 0.01, 0.1, 0.5, 0.9 and 0.99 level for each value of X,

estimated via quantile regression. The numbered red dots are located at the intersection

of 5 unconditional quantiles of X and Y . The coordinates of these red points are also

listed in Table 5.2.

Figure 5.3: Location of Simulation Points Si

The figure depicts a random sample of 1000 points drawn from the bivariate normal distribution ΦXY .
The blue lines indicate the conditional quantiles at the 0.01, 0.1, 0.5, 0.9 and 0.99 level estimated via
quantile regression. The points are located at combinations of theoretical quantiles of the univariate
marginal distributions of X and Y tabled in Table 5.2.
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Table 5.2: Theoretical Quantiles of ΦXY

The table lists the coordinates of selected points within the bivariate normal distribution ΦXY . The
points are located at combinations of theoretical quantiles of the univariate marginal distributions of X
and Y . Figure 5.3 further illustrates their location within a random sample of 1000 draws from ΦXY .

Quantile Y
0.05 0.25 0.5 0.75 0.95

Q
u
an

ti
le
X

0.05 S11:(-2.83,-4.09) S12:(-2.83,-3.15) S13:(-2.83,-2.5) S14:(-2.83,-1.85) S15:(-2.83,-0.91)

0.25 S21:(-1.4,-4.09) S22:(-1.4,-3.15) S23:(-1.4,-2.5) S24:(-1.4,-1.85) S25:(-1.4,-0.91)

0.5 S31:(-0.4,-4.09) S32:(-0.4,-3.15) S33:(-0.4,-2.5) S34:(-0.4,-1.85) S35:(-0.4,-0.91)

0.75 S41:(0.6,-4.09) S42:(0.6,-3.15) S43:(0.6,-2.5) S44:(0.6,-1.85) S45:(0.6,-0.91)

0.95 S51:(2.03,-4.09) S52:(2.03,-3.15) S53:(2.03,-2.5) S54:(2.03,-1.85) S55:(2.03,-0.91)

In a first step, I look at the conditional density function at the 0.05-, 0.5- and 0.75-

quantile of Y . The theoretical density function at Y = y[τ], i.e., the τ -quantile of

Y , is given by the density function of a normal distribution with parameterization

N (µX +
σX
σY
ρXY (y[τ] − µY ), (1 − ρ2

XY )σ
2
X), where ρXY is the correlation coefficient, σ de-

notes the standard deviation and µ the mean; subscripts indicate the corresponding random

variable.

Figure 5.4 shows density estimates for fX ∣Y at 200 equidistant points across the range of X

when Y is fixed to some quantile of Y . The sample size is varied in the rows of Figure 5.4.

One can see that the applied local polynomial approximation of order p = 4 produces a

good fit.

Recall that for a given number of N sample points, one can choose the number of quantiles

to be estimated (Q), the number of ghost points (H) inserted outside the range of the taken

sample (at the upper as well as at the lower tail) and the share of the distance at which the

first and every subsequent ghost point is inserted (ω). The density estimates below have

been calculated with the parameters H = 100, ω = 0.05, G = 100 for varying numbers of

observations. Since I am interested in density estimates as a result of smoothing quantile

estimates, a large number of quantiles improves the result of the smoothing. Therefore, I

set the minimal number of estimated quantiles to Q = 100. If the number of observations

is larger than 200, one may set the number of quantiles to Q = N/2, in order to use

the additional information available in the data. Theoretically, the bias of the density

estimate – especially at the mode of the distribution – may be reduced when more quantiles

are available. Producing density estimates with increasing numbers of quantiles comes,

however, at a significant computational cost and the additional accuracy is limited. I also

ran simulations setting the number of quantiles according to the rule

Q = min(max(100,
N

2
− 1) ,1000) . (5.27)
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Hence, the number of quantiles is capped, for N > 2000 to Q = 1000. If this rule is applied

the density estimates for N > 100 exhibit a better fit. This result is expected as more

information is used to construct the estimates. However, the distribution of the test

statistic under the correct null hypothesis is much more biased. Results can be seen in

Section 5.C

Developing a more systematic approach to derive the optimal number of quantiles, the

optimal number of ghost points as well as the optimal distance at which to insert these

ghost points is, for the time being, left for future research.

The choices have been obtained by extensive tests. I found that the choice of the bandwidth

has the highest impact on all results, density estimates as well as test statistics. Therefore,

I have implemented the data driven bandwidth selection as presented above.

The estimation of the density estimates’ variance brings me to the simulation of test

statistic and statistical inference. For this purpose, I have simulated a standard Z-

test statistic that follows from the asymptotic distribution of the density estimate f̂1

described in Equation (5.12). At each point Si listed in Table 5.2 the conditional density

ϕX ∣Y (X = xi∣Y = yi) (where xi and yi are the coordinates of Si) can be estimated as

f̂(Si,θX ∣Y ) with the variance
√

var(f̂(Si,θX ∣Y )). If f̂(Si,θX ∣Y ) was unbiased and the

variance was consistently estimated, then a z-score test statistic would be standard normally

distributed

tD =
f̂(Si,θX ∣Y ) − ϕX ∣Y (X = xi∣Y = yi)

√

var(f̂(Si,θX ∣Y ))

∼ N (0,1) .

From the discussions in Section 5.1.1, it is already known that the estimates are somewhat

biased. However, also the question remains whether the variance can sensibly be estimated

as discussed in Section 5.1.1. Nonetheless, in order to assess the distributional properties

of the estimate, I simulate this test statistic 5.000 times for selected points Si listed in

Table 5.2.

Looking at the location of the sample points Si in Figure 5.3, it can be sensibly expected

that the density estimates outside the sample support, especially those at the upper

left and lower right corner, are zero and their variance also has to approach zero. The

test-statistics for the densities at these points, thus, can be expected to be degenerate.

Thus, these points are not simulated.

More interesting are the test statistics at the points that lie on the anti-diagonal in the

point grid, i.e., S12, S23, S43, S22, S33 and S55. These points are all in the center of the

conditional densities. However, S33 has a very dense neighborhood whereas S12 and S43

are at the sparse rim of the distribution.
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Figure 5.4: Density Estimates

The panel shows density estimates for various sample sizes N at various quantiles y[τ] of the bi-variate
normal distribution ΦXY described by the moments given in Equation (5.26). The solid blue line depicts
the estimate using a polynomial smoothing of order p = 4. The solid black line shows the theoretical
distribution.
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The distribution of the test statistic at these points are shown in Figure 5.5 and 5.6. I use

kernel density estimates over 5000 test statistics calculated on varying sample sizes with

local polynomials of order p = 4 to illustrate the distribution. The black solid line shows

the theoretical standard normal distribution for comparison.

One can see in Figure 5.5, which presents the test-statistic simulations at the off-center

points, and in Figure 5.6, which covers the center points, several important characteristics

of the estimates. In the center of the conditional distributions at the points S22, S33

and S55 the estimates systematically underestimate the true density, i.e., the estimate

is slightly biased negatively. The distribution has similarities to a truncated normal
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Figure 5.5: Test Statistics for Conditional Densities (Off-Center)

The panel shows kernel density estimates of 5000 simulated test statistics (blue solid) at the respective
points Sij of ΦXY listed in Table 5.2. For this figure, only points that are not in the center of the
distribution, where the data density is low, were selected. For the graphs in each row, the sample size
N is fixed. Each statistic is calculated with local polynomials of order p = 4 and with a fixed number of
quantiles Q = 100. The black solid line shows the density of a standard normal distribution for comparison.
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distribution – truncated at the upper tail. Taking such a truncation into account, the

variance of the estimate would be, in the very center of the joint distribution at S33

estimated quite accurately. At the outter rim of the distribution, at S55 the variance is

slightly overestimated.

As can be seen in Figure 5.5, at the off-center points S12, S23 and S43 the truncation of the

density estimates at 0 becomes visible. At S12, the estimates are all zero. Therefore, the

distribution of the test statistic at this point is degenerate. The test statistic distributions

at S23 are asymmetric and have similarities to truncated normal distributions – truncated

at the lower tail.
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Figure 5.6: Test Statistics for Conditional Densities (Center)

The panel shows kernel density estimates of 5000 simulated test statistics (blue solid) at the respective
points Sij of ΦXY listed in Table 5.2. For this figure, only points that are in the center of the distribution,
where the data density is high, were selected. For the graphs in each row, the sample size N is fixed. Each
statistic is calculated with local polynomials of order p = 4 and with a fixed number of quantiles Q = 100.
The black solid line shows the density of a standard normal distribution for comparison.
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With the exception of the distribution at S23, the estimates seem unbiased or exhibit a

neglectable positive bias. Taking into account that the estimates are in-fact truncated

at zero and the similarity to the truncated normal distribution is expected, the variance

estimates seem to accurately reflect the true variance of the estimates.

In conclusion, depending on the location on the conditional density curve, the bias of the

estimate for the conditional density is either negative (closer to the center) or positive

(closer to the tails). Also, the less dense the neighborhood of the sampling point is, i.e.,

the further we move to the rim of the distribution, the more pronounced becomes the

location dependent bias for the reported estimates. The effect on relative entropy measure

estimates is not clear, as the slight bias in different directions at different locations of the

conditional density distribution maybe netted out. Nevertheless, these findings also have

some importance when analyzing the relative entropy measure estimates.
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5.2.2 Simulation of Mutual Information

In order to check the above derivations of the asymptotic distributions, I repeatedly

simulate a z-score test statistic of the form

tI =
Î − I0

√

var(Î)
∼ N (0,1) .

Especially the null hypothesis H0 ∶ I = 0, i.e., the hypothesis that the involved variables are

stochastically independent, is interesting for practical research. The ex-ante expectation

would be, that if the estimate as well as the estimate for its variance are consistently

estimated, the test-statistic is standard normally distributed. However, as can be seen in

Section 5.2.1, the density estimates are slightly biased in different directions in different

locations of the distribution. In order to estimate Î according to the procedure set out in

Section 5.1.2 using the techniques from Section 5.1, I use local polynomials of order 4 with

estimated, stochastic variable bandwidth. I fix the number of quantiles to Q = 100, the

number of ghost points to 100 and the parameter is also set to G = 100.

The MI estimate is calculated on samples from different distributions. First, I consider

2-, 3- and 5-dimensional normal distributions. In each case, I generate two samples. One

from an independent and one from a dependent joint normal distribution. The realisation

of the random variables collected in the matrix Y are generated in the form

Y = µ +Bε

where ε is a k×N matrix while each element is independently drawn from a standard normal

distribution. µ is a k × 1 vector that determines the mean of the simulated distribution

and the k × k matrix B scales the joint distribution and determines the variance. If B is a

diagonal matrix, the k variables are independent.

Second, I also explore the behavior of the method for realisations from uniform distributions

on spherical shells in 2, 3 or 5 dimensions. For this purpose, I use the method proposed

by Marsaglia (1972) where one draws k Euclidean coordinates X = (x1, x2, . . . xk)′ from a

standard normal distribution. To generate the realisations within a spheric shell, one then

calculates

Y = (u(1 −
ri
ro

) +
ri
ro

)

1
k roX
√
x2

1 + x
2
2 + . . . x

2
k

where u is a uniformly distributed random number u ∼ U(0,1). Furthermore, ri is the

radius of the inner sphere and ro the radius of the outer sphere of the shell. In the

simulations, I fix the inner radius to ri = 5 and the outer radius to ro = 10.
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Figure 5.7: Simulated Test Statistics for Mutual Information

The Figure 5.7a, 5.7b and 5.7c show the kernel density estimates of 2000 simulated test statistics tI for
different distributions of 2, 3 and 5 random variables, respectively. The variables are either drawn from a
uniform distribution of a n-dimensional sphere (red lines) or they are jointly normally distributed and
independent (blue lines) or dependent (green lines). Hence, the blue line represents the kernel density of
the independent case for which MI = 0 is the true value while for the jointly normal but dependent and
the n-sphere case the true MI value is not 0.
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(c) 5 Dimensions

The simulation results are presented in the form of plotted kernel densities of the test

statistics in Figure 5.7 and the MI values in Figure 5.8. As one can see from the distribution

of 2000 simulated test statistics, under the null hypothesis of no MI the distribution is not

standard normal. The estimated variance is too small and the MI estimates are slightly

biased positively. Depending on the number of variables involved, the distribution has

either a slight negative or a slight positive skewness. Also the test statistic does not keep

its size across dimensions. Different numbers of variables result in different quantiles.

Nevertheless, one can distinguish the case in which no MI is present from the case where

there is a connection between the variables by a very conservative rule of thumb. If the

test statistic is below -6 or above 4, one could reject the null hypothesis of no MI at least

on a two-sided 10%-significance level.
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Figure 5.8: Simulated Values for Mutual Information

The Figure 5.7a, 5.7b and 5.7c show the kernel density estimates of 2000 simulated estimates for mutual
information for different distributions of 2, 3 and 5 random variables, respectively. The variables are
either drawn from a uniform distribution of a n-dimensional sphere (red lines) or they are jointly normally
distributed and independent (blue lines) or dependent (green lines). Hence, the blue line represents the
kernel density of the independent case for which MI = 0 is the true value while for the jointly normal but
dependent and the n-sphere case the true MI value is not 0.
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The detection of no MI is not be possible based on the value of the MI alone, as can be

seen in Figure 5.8. While in Figure 5.8 the case for the dependent multivariate normal

distribution is outside the plotted range (theoretically a green line), the MI values for

the variabels uniformly distributed on a spherical shell are close to zero and exhibit a

similar distribution as the case of independent normal variables (blue line). The associated

variance of the estimate and the constructed test statistic can help to better distinguish

dependent from independent random variables. Nevertheless, in order to improve the

variance estimates and map the behavior of the test-statistic across different numbers of

observations, further research is necessary.
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5.2.3 Simulation of Transfer entropy

To assess the asymptotic theory for TE, I simulate three systems of time series and estimate

TX→Z in each of the three systems. Again, I consider a z-score test statistic of the form

tT =
T̂X→Z − TX→Z
√

var(T̂X→Z)
∼ N (0,1) .

Again the null hypothesis H0 ∶ TX→Z = 0, i.e., the hypothesis of no predictive ability of X

on Z, is interesting for practical research and, thus, the simulations solely concentrate on

the simulation of this hypothesis. If the estimate as well as the estimate for its variance

are unbiased, the test-statistic is standard normally distributed.

I estimate TX→Z according to the procedure set out above with local polynomial regression

of order 4 on quantiles estimated via quantile regression. I fix the number of quantiles to

Q = 100, the number of ghost points to 100 and the parameter is also set to G = 100.

For the simulation, I consider three time series whose specifications are inspired by Papana,

Kyrtsou, Kugiumtzis, Diks et al. (2013). The first is a system of stationary AR(1) processes

in which the TE is obviously 0:

yt = 0.5yt−1 + ε1t,

xt = 0.7xt−1 + ε2t,

zt = 0.3zt−1 + ε3t, (5.28)

where εit ∼ N (0, 1) ∀i ∈ {1, 2, 3}. I refer to this system in the following as the independent

case.

The second is a nonlinear auto-regressive system in which a linear dependence between

xt−1 and zt is somewhat hidden

yt = 0.4yt−1 + 0.001
√

∣2 − yt−1∣ − 0.1 exp(0.1y2
t−1) + 0.4ε1t,

xt = 0.9xt−1 + 0.001
√

∣2 − xt−1∣ − 0.1 exp(0.1x2
t−1) + 0.5yt−1 + 0.4ε2t,

zt = 0.4zt−1 + 0.001
√

∣2 − yt−1∣ − 0.1 exp(0.1y2
t−1) + 0.5yt−1 + 0.3xt−1 + 0.4ε3t, (5.29)

where again εit ∼ N (0,1) ∀i ∈ {1,2,3}. Since I investigate whether the linear relation

between zt and xt−1 is detected by the estimated TE measure, I refer to this system in the

following as the linear case. Clearly, there is also a non-linear relation between yt−1 and zt,

however this has no consequence for the linearity of the relationship between xt−1 and zt.
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The third system is a nonlinear auto-regressive system. Again, I focus on the connection

between xt−1 and zt which in this case is a nonlinear one.

yt = 3.4yt−1(1 − yt−1)
2 exp(−y2

t−1) + 0.4ε1t,

xt = 3.4xt−1(1 − xt−1)
2 exp(−x2

t−1) + 0.5yt−1xt−1 + 0.4ε2t,

zt = min(max(x5
t−1,−2),2)(1 − zt−1)

2 exp(−z2
t−1) + 0.03zt−1y

2
t−1 + 0.4ε3t, (5.30)

and as before εit ∼ N (0,1) ∀i ∈ {1,2,3}. I refer to this system as the non-linear case.

The results of the simulation are presented in form of kernel densities of the simulated

test statistics and in Figure 5.10. As can be seen for the simulated systems, the kernel

density estimate of the test statistic under the null hypothesis of no TE is close to, but

not identical with, the density of a standard normal distribution. The test statistic is

negatively biased while the actual TE values are biased positively. Also the test statistic

exhibits more outliers and has a somewhat higher probability mass at the tails.

Nonetheless, in order to distinguish the case of no TE from X → Z from a case where X

is able to help predict Z, both the test statistic as well as the raw TE values are helpful.

From the simulations, as a rule of thumb, one can state that a test statistic outside the

range between -2.3 and 1.9 would with a probability of less than 10% be associated to a

situation where no TE is present.

Nevertheless, in the case of TE, it seems the TE values alone are more distinct in

distinguishing the case of some predictive power of X on Z from the case of no TE.

However, no clear guidance is possible at this point in whether TE values of below or above

±0.02 can be conceived as a clear signal of non-zero TE. In order to improve the estimates

for the variance of the TE estimator and analyse the behavior of the TE test-statistic for

different numbers of observations, further research is needed.

5.3 Empirical Applications

In this section, two applications of TE in empirical finance are presented. In the first

application, I analyze the same dataset as Dimpfl and Peter (2013) on information flows

between the market for Credit Default Swaps (CDS) and bond markets. The second

application focuses on the impact of the financial crisis on transatlantic information flows

between stock indices, using the same dataset as Dimpfl and Peter (2014). While the TE

estimates of both studies are based on a symbolic encoding, i.e., a discrete binning of the

return time series, I use the quantile regression methodology presented in Section 5.1 to

investigate whether TE can be identified for the entire support of the data.
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Figure 5.9: Simulated Time Series for TE Estimation

The graph depicts samples of 100 observations from the systems of auto-regressive time series under
consideration. On the horizontal axis is the time index and on the vertical axis the value of the time series.
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5.3.1 Credit Default Swaps (CDS) and Bond markets

Using discretized time series, Dimpfl and Peter (2013) employ symbolic transfer entropy

to measure the information flow between CDS and bond markets. For this purpose they

consider the difference between the yield of a certain bond and the currently risk free rate

as mainly attributed to the credit risk, i.e, the risk that the issuer of the bond will fail

to pay the outstanding commitments and default. The difference is also called the credit

spread (CS). Inflation risk, liquidity risk, the risk that a holder of the bond has to reinvest

because the contract is terminated somehow earlier than agreed or other risks are not

considered dominant and are not controlled for.

As another measure for the default risk of a certain issuer, the authors consider the CDS

premium. With CDS the credit risk associated to the bond issuer can be traded, if such

CDS are available for the specific issuer. Since deviation of the CDS premium from the
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Figure 5.10: Simulated Transfer Entropy

The top figure shows the kernel density estimates of 5000 simulated test statistics tT for the three time
series systems in Equations (5.28) (the independent case), (5.29) (the linear case) and (5.30) (the non-linear
case) are depicted. The blue line represents the kernel density of the independent case for which TE = 0 is
true. The red and the green line show the densities for the linear and non-linear systems, respectively. For
both, TE ≠ 0. The coloring applies as well to the bottom graph. It shows the kernel density of the actual
estimated TE values.
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CS may present an arbitrage opportunity, CDS premium and the CS are usually modeled

in the literature as co-integrated process in a Vector Error Correction Model (VECM).

Dimpfl and Peter (2013) encode the times series of changes in the CDS premium as well

as the time series of changes in the CS in three discrete categories. All observations below

the estimated unconditional 5%-quantile belong to the first bin and are encoded as 1 and

observations between the 5%- up to the 95%-quantile belong to the second bin and are

encoded with 2. All other observations above the unconditional 95%-quantile are encoded

as 3 in the third bin. With these strongly coarse-grained time series, they find TE in both

directions. Hence, they find that knowing in which bin the change of CS was yesterday

helps to forecast the bin in which the CDS premium will be today, and vice-versa.

With the method developed in this chapter, I reanalyze the same time series Dimpfl

and Peter (2013) used and explore whether their result can be generalized to the entire,

continuous support of the CS and CDS premium. The results are presented in Table 5.3.

As one can see, I find that in general neither changes in the CDS premium help in predicting

changes in the CS nor is today’s CS helpful in predicting tomorrows CDS. This is not in

direct opposition to the results of Dimpfl and Peter (2013), since their time series was

encoded. On the contrary, it rather hints to the informativeness of tail events. However,

their results do not generalize to the continuous support of the underlying random variables.

5.3.2 Transatlantic Information Flows

Based on one minute intraday returns of the European, blue chip stock market indices the

German DAX30, the British FTSE50 and the French CAC40, Dimpfl and Peter (2014)

analyse the TE of these markets with the American S&P500 index. For the DAX, the

data sample spans the years 2003 until 2010. For the FTSE and the CAC, the years 2006

until 2010 are covered. The S&P data are available for both periods. With regard to the

financial crisis 2008, they subdivide their sample into a pre-crisis, crisis and post-crises

period. Based on their data set I only estimate the TE for the entire sample and omit the

partition of the sample with regard to the financial crisis. For all periods as well as for the

entire sample, Dimpfl and Peter (2013) find significant symbolic transfer entropy. Knowing

in which bin the return one minute ago was, helps to predict the current one-minute return.

In contrast to Dimpfl and Peter (2014), I not discretize the return series of the indices into

three bins. I use the techniques developed in this chapter to explore whether the results

for the encoded time series of Dimpfl and Peter (2014) can be generalized to the entire

continuous support of the respective return series and whether TE between the markets

can be detected.
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Table 5.3: Results: Transfer Entropy CDS and CS

The table shows the estimated transfer entropy values in the second and fourth column. The corresponding
test statistics are reported in the first and third column. The simulation study above indicates that values
below -2.3 and above 1.9 are rather rare and can be considered as significant deviations from the null
hypothesis.

tT,CDS→CS T̂CDS→CS tT,CS→CDS T̂CS→CDS

Allianz -0.0015 -0.0004 0.0327 0.0231
BASF 0.0070 -0.0017 0.1954 -0.0062
Bayer 0.0989 0.0055 0.0028 0.0019
BMW -0.0512 0.0063 0.2204 0.0085
Carrefour -0.1443 -0.0237 0.0001 -0.0067
Deutsche Telekom 0.0002 0.0140 0.0322 0.0122
Electricité de France -0.0016 0.0020 -0.0000 0.0006
Enel 0.0000 0.0196 -0.0192 -0.0015
Fortum Oyi 0.0000 0.0071 0.0030 0.0088
France Télécom 0.0000 0.0128 0.1419 0.0055
GDF Suez -0.0000 0.0019 -0.1117 -0.0053
Iberola 0.0636 0.0102 0.0509 0.0111
Koninklijke KPN -0.0282 0.0117 0.8598 0.0076
LVMH -0.0000 0.0076 0.3342 0.0142
Metro 0.5125 0.0099 0.1878 0.0098
ArcelorMIttal -0.0000 0.0138 -7.7769 0.0069
National Grid -0.1304 -0.0014 0.1796 0.0079
Repsol 0.0027 0.0026 0.0402 0.0012
RWE 0.0116 -0.0006 0.4038 0.0214
St. Gobain -0.0000 0.0018 -0.0110 0.0044
Solvay -0.0418 -0.0003 0.0008 -0.0078
Banco Santander Central Hispano 0.1395 0.0078 0.3026 0.0095
Telefonica 0.0186 -0.0068 0.2699 0.0165
Telecom Italia 0.0000 0.0472 0.2611 0.0098
Vattenfall -0.0000 -0.0093 -0.0198 -0.0026
Veolia -0.0000 0.0007 0.1663 -0.0077
VW -0.0000 0.0100 -0.0011 0.0043

188



Table 5.4: Results: Transfer Entropy Transatlantic Information Flow

The table shows the estimated transfer entropy values in the second and fourth column. The corresponding
test statistics are reported in the first and third column. The simulation study above indicates that values
below -2.3 and above 1.9 are rather rare and can be considered as significant deviations from the null
hypothesis.

tT,EU→US T̂EU→US tT,US→EU T̂US→EU

DAX 52.3082 0.0411 1.4214 -0.0006
CAC -0.1721 0.0150 5.0460 -0.0003
FTSE -1.8607 0.0081 0.7634 0.0038

The results are presented in Table 5.4. As one can see, only for the DAX, the TE value

is both distinctly different from zero (with 0.041) and the value of the z-score is higher

than the critical value obtained in the simulation (with 52.3). This is an interesting result,

since it indicates that during the underlying sample period, one minute returns from the

German DAX were able to help predict the one-minute returns of the S&P500. This

highlights the importance of the German market.

In all other cases, the result is not as clear. Even though the z-score for the CAC indicates

a reversed information flow from the S&P to the CAC the TE is with -0.0003 rather close

to zero. Even though the sample size is large with more than 100.000 observations, further

analysis of the test statistic for very large samples and values of TE close to zero need

to be undertaken in order to ensure that the test statistics keeps its size with a growing

sample size.

5.4 Summary

In this chapter I consider the estimation of MI based on density estimates obtained

via quantile regression. This approach avoids the necessary binning of continuous data

which is usually based on not data-driven choices of bin limits. Furthermore, I expect the

approach to require less data in complex settings than required for estimation of conditional

frequencies. Also, the computational intensity is lower compared to kernel density based

estimation of MI. My results indicate that testing MI and TE estimates on up to five

random variables from a sample with around 1.000 data points is sensible and possible.

There are several issues left that need to be analyzed more closely. The behavior of the

test statistic needs a more thorough examination. Namely, I have shown that the test

statistic does not keep its size and power when the number of involved random variables is

altered. Further research could focus on the question whether there is a missing factor

that may stabilize the distribution across dimensions. The question, how an increasing
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number of observations ameliorates the power of the test statistic, needs to be analyzed

more closely.

In the empirical applications analyzed in Section 5.3, I have shown that results obtained

with symbolic transfer entropy on encoded time series are different from a TE estimate that

uses the entire continuous support of the underlying data. The symbolic transfer results

based on the encoding of tail events, i.e., events below the 5%- or above the 95%-quantile

do not generalize to the entire support of the time series at hand and may lead to the

impression that some markets may contain predictive information for others when only the

tail events may contain some predictive information. Note that also the case where a tail

event in one time series is more often followed by an observation close to the median in the

other time series than the unconditional probability would suggest (i.e., the probability

without knowledge of the tail event would suggest), may also be classified as predictive

information. If this were the case, this may serve as a further justification for an error

correction model for the two time series.

All in all, I have shown that quantile regression is a powerful tool and can be used in

combination with local polynomial regressions to estimate conditional density as well

as relative entropy measures such as MI and TE. Especially, the estimation of TE via

smoothed quantile regression estimates can add to the scientific toolbox across disciplines.
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Appendix

5.A Calculation of γ1

5.A.1 Second Order

As introduced by Fan and Marron (1994) and summarized in Fan and Gijbels (1996)

(p. 95), the local polynomial estimator as defined in Equation (5.6) (for a second order

polynomial smoothing) can be rewritten as

γ̂ = (Z ′
PWPZP )

+Z ′
PWPτ

= S−1T

=

⎛
⎜
⎜
⎜
⎝

S0 S1 S2

S1 S2 S3

S2 S3 S4

⎞
⎟
⎟
⎟
⎠

−1
⎛
⎜
⎜
⎜
⎝

T0

T1

T2

⎞
⎟
⎟
⎟
⎠

(5.31)

where

Sj =
Q

∑
l=1

Kh {
K

∑
m=1

θ̂lmx0,m − y0}(
K

∑
m=1

θlmx0,m − y0)

j

(5.32)

Tj =
Q

∑
l=1

Kh {
K

∑
m=1

θ̂lmx0,m − y0}(
K

∑
m=1

θlmx0,m − y0)

j

τl (5.33)

where I have used the previous notation introduced in section 5.1.1. In order to simplify

the notation I shortened the kernel function Kh{⋅} =K(⋅/h)/h. Also note that in the above

equation, h depends on the choice of x0, the estimates θ̂ and y0. The inverse of S is given

by

S−1 =
1

det(S)

⎛
⎜
⎜
⎜
⎝

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎞
⎟
⎟
⎟
⎠

′
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where

C11 = S2S4 − S
2
3

C12 = −S1S4 + S2S3

C13 = S1S4 − S
2
2

C21 = −S1S4 + S3S2

C22 = S0S4 − S
2
2

C23 = −S0S3 + S2S1

C31 = S1S3 − S1S2

C32 = −S0S3 + S1S2

C33 = S0S2 − S
2
1

Note that Cij = Cji. Also, note that for the calculation of γ1 I only need the co-factors

in the second column (or row) of the co-factor matrix. Thus, the estimate for γ1 can be

written as

γ̂1 =
∑

3
k=1 Tk−1C2k

∑
3
v=1 SvC2v

=
−S1S4T0 + S3S2T0 + S0S4T1 − S2

2T1 − S0S3T2 + S2S1T2

S0S2S4 + 2S1S2S3 − S2
1S4 − S0S2

3 − S
3
2

(5.34)

5.A.2 Third Order

For the third order approximation, the general structure is maintained. However, the

matrix S is then a 4 × 4 matrix. Also note that the entry at the ith row and jth column

of S in general is Si+j−2. Since I am only interested in the second entry of γ and only

need the cofactors C2k, to save unnecessary computations one can choose to use Laplace’s

expansion formula along the second row to calculate the determinant

detS =
4

∑
j=1

SjC2j

where C2j are the entries in the second row of the co-factor matrix C of S. Again note

that I have C2j = Cj2.

C12 = C21 = − (S1S4S6 + S2S5S4 + S3S3S5 − S3S4S4 − S2S3S6 − S1S5S5)

C22 = (S0S4S6 + S2S5S3 + S3S2S5 − S3S4S3 − S2S2S6 − S0S5S5)

C32 = C23 = − (S0S3S6 + S1S5S3 + S3S2S4 − S3S3S3 − S1S2S6 − S0S5S4)

C42 = C24 = (S0S3S5 + S1S4S3 + S2S2S4 − S2S3S3 − S1S2S5 − S0S4S4)
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For the estimate of γ̂1, I get similar to the second order case

γ̂1 =
∑

4
k=1 Tk−1C2k

∑
4
v=1 SvC2v

5.B Calculation of the Derivative of γ1 with Respect to θlm

5.B.1 Second Order

Deriving Equation (5.34) with respect to θlm for the two order case is given, generally, by

∂γ1

∂θlm
=

1

∑
3
v=1 SvC2v

3

∑
k=1

(∂Tk−1 − γ1∂Sk)C2k + (Tk−1 − γ1Sk)∂C2k

or in detail

∂γ1
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=
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where I have omitted to extensively write the derivatives. Written more extensively, these
derivatives are

∂S0 =
∂S0

∂θlm
= ∂Kh

∂Sj =
∂Sj

∂θlm
= (

K

∑
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({F (p+1)(y0)}2f(y0))
2
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where ∂K is the derivative of the kernel function with respect to θlm. Depending on the

choice of the kernel function K{⋅} the above derivatives have to be adjusted accordingly.

For the derivatives of the preliminary estimate for the conditional variance ∂σ̆2(y0)
∂θlm

recalling

the definition from Equation (5.14) is helpful.

σ̆2(y0) =
1

Q − p − 3 − 1
(τ ′τ − τ ′Z̆ (Z̆ ′Z̆)

−1
Z̆ ′τ)

Denoting T̆ = Z̆ ′τ and S̆ = (Z̆ ′Z̆)
−1

the derivative of σ̆2(y0) can be derived to be

∂σ̆2(y0)

∂θlm
= −

1

Q − p − 3 − 1
(
∂T̆ ′

∂θlm
S̆−1T̆ + T̆ ′S̆−1 ∂S̆

∂θlm
S̆−1T̆ + T̆ ′S̆−1 ∂T̆

∂θlm
)

where ∂S̆
∂θlm

and ∂T̆
∂θlm

signify the derivatives of the entries of the vector T̆ and the matrix S̆.

The entries are defined as in Equation (5.31) without the weighting of the kernel function.

Their derivatives are similar to ∂Sj and ∂Tj above, again without the part that is due to

the kernel function. The derivative for {F (p+1)(y0)}
2
f(y0) follows the same logic as the

derivatives before.

5.B.2 Third Order

Again, the main structure of the derivative with respect to θlm remains the same. Thus, I

get

∂γ2

∂θlm
=

1

∑
4
v=1 SvC2v

4

∑
k=1

(∂Tk−1 − γ1∂Sk)C2k + (Tk−1 − γ1Sk)∂C2k

With the above, the detailed structure of ∂γ1 is clear.
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5.C Additional Graphs: Density Test Statistic Simulations

Figure 5.C.1: Test Statistics for Conditional Densities (Off-Center)

The panel shows kernel density estimates of 5000 simulated test statistics (blue solid) at the respective
points Sij of ΦXY listed in Table 5.2. For this figure, only points that are not in the center of the
distribution, where the data density is low, were selected. For the graphs in each row, the sample size
N is fixed. Each statistic is calculated with local polynomials of order p = 4. The number of quantiles
is chosen according to the rule in Equation (5.27). The black solid line shows the density of a standard
normal distribution for comparison.
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Figure 5.C.2: Test Statistics for Conditional Densities (Center)

The panel shows kernel density estimates of 5000 simulated test statistics (blue solid) at the respective
points Sij of ΦXY listed in Table 5.2. For this figure, only points that are in the center of the distribution,
where the data density is high, were selected. For the graphs in each row, the sample size N is fixed. Each
statistic is calculated with local polynomials of order p = 4. The number of quantiles is chosen according
to the rule in Equation (5.27). The black solid line shows the density of a standard normal distribution
for comparison.
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Conclusion

This dissertation presents a bouquet of studies that all follow the guiding questions: what

information does matter when prices are formed and how do you separate the relevant

from the irrelevant?

Starting with an eagle-eyed perspective, the question whether the search behavior of

Google users is helpful for the prediction of price movements in cryptocurrency markets.

This question is tackled in Chapter 2. First, for this purpose and in order to enable

further analysis, a regression based algorithm is developed in Chapter 1. With this

algorithm, consistent and coherent time series of Google’s search volume index (SVI) can

be constructed for arbitrary time frames. The algorithm is evaluated against current data

downloaded from Google recently for other frequencies, as well as checked against vintage

data, downloaded prior to 2011. Back then Google provided a more comparable version of

its search volume index. The regression based algorithm enables users also to compare

different SVIs for different search-terms with each other. Therefore, the limitations of

Google’s SVI when it comes to sample length and sample width are overcome. Using this

algorithm, an index of prices searched online, the IPSO, is constructed. In Chapter 1,

I demonstrate that the IPSO improves monthly inflation forecasts to the US and the

Euro Area. Especially, the clear results for household loan growth in the Euro Area are

remarkable.

With the algorithm developed in Chapter 1, the helpfulness of Google’s SVI on cryptocur-

rency returns and volatility is analyzed in Chapter 2. In this chapter, it is demonstrated

that in these cryptocurrency markets, where a majority of individual investors are active,

Google search volume does help to predict volatility, but fails to provide additional infor-

mation for the prediction of returns. For this purpose, data on several frequencies was

analyzed. While other studies in the literature were restricted to monthly or weekly data

with a limited sample, this study was able to analyze not only weekly, but also daily and

even hourly return and search volume data.

Chapter 2 and Chapter 1 show that the aggregate internet search behavior of individuals

contains predictive information for market price movements, both for individual assets

like cryptocurrencies as well as for inflation on a macroeconomic level. Chapter 4 takes

a different perspective by focusing on the microstructure of financial markets and the
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mechanics of the limit order book (LOB). By using elements of operator algebra, which

usually is heavily used in Quantum Mechanics, a bottom-up approach is taken to develop

a model for the limit order book that describes reality as closely as possible. In order to

introduce the used concepts, Chapter 3 provides a short introduction into the fundamental

ideas of these techniques. Using stochastic operators, the model allows for a very high

degree of complexity with very few assumptions. While previous models in the literature

resort to a variety of simplifying assumptions, the model shows in a realistic setting that

order flow is at the heart of price fluctuations. It allows for most of the complexities

encountered in reality. In this way, it ties the price formation process to the individual

decision of order submission. Harvesting the information contained in the distribution of

order flow across relative price levels contemporaneously describes price movements well

and is helpful in predicting price movements on frequencies up to 10 minutes. While the

model describes the relation between arrival rates and price movements to be a non-linear

one, the empirical specifications used to forecast returns are all linearized approximations.

There is plenty of opportunity to improve upon the specifications and the results. Machine

learning techniques may be able to better grasp the inherent non-linearity and improve

the forecast performance. Also on a theoretical level there is room for improvement in

this current state, the chapter does not provide the basis functions of the developed

operator algebra. These functions may provide additional insights; by specifying them, a

closed form solution for joint distributions or the time varying moments of prices, volume,

liquidity measures, and other observables of the limit order book may come into reach. In

this regard, Chapter 4 only provides a rudimentary basis for further research endeavors.

Nevertheless, it provides a new approach and adds a new perspective to the existing

literature on limit order books.

The last study, Chapter 5, again takes a step back. In the preceding chapters questions

are analyzed like: Does Google’s SVI help predict price movements in cryptocurrency

markets? Does Google’s SVI help predict inflation or consumption? Is information from

the sheer mechanics of limit order books helpful in describing price movements? To answer

all these questions linear approximations have been made to find answers. For each of the

questions, also non-linear relations were suspected between the variables. In Chapter 4,

such a non-linear relation was theoretically derived. From a generalizing point of view, all

of these studies analyze whether some set of variables X contains significant information

for the prediction of Y . In this sense, Chapter 5 provides a new approach to the research

questions for all of the studies by providing a method to answer the question of predictive

power of X on Y in a very general manner. Regardless of the functional form between

the variables, the measure of transfer entropy, if distinct from zero, is an indication for

predictive information in X. Using smoothed quantiles estimated with the well established

method of quantile regression, Chapter 5 provides first a way to estimate conditional

densities in order to subsequently use these conditional density estimates to calculate
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transfer entropy. Also the asymptotic properties of the transfer entropy measure are derived

and test statistics worked out. Even though the test statistics provide some indication

on whether transfer entropy is distinctly different from zero or not, further research has

to be undertaken to examine and generalize their behavior in different settings. Further

improvements with respect to the efficiency and consistency of the involved estimates are

possible. Nonetheless, I apply the new method to estimate the continuous transfer entropy

measure on datasets previously used in the literature on credit default swap premia and

credits spreads on bond market in Chapter 5. Furthermore, in a second application, the

transatlantic information flows between minute-by-minute returns are analyzed. In both

cases the positive results based on coarse grained measures of symbolic transfer entropy

can not be reproduced. Prior research found significant transfer entropy from the premia

paid on credit default swap markets to the credit spread observed in bond markets and

vice-versa. Previous literature also documents a significant information flow from leading

European indices to the American S&P. In this literature, returns are encoded into symbols

according to whether they belonged to the top or bottom 5% of observations or were

part of the other 90% in the center of the return distribution. Chapter 5 shows that by

omitting the encoding of the variables involved and estimating the continuous transfer

entropy instead of the symbolic transfer entropy, leads to different results. In the light of

these results, the interpretation of the symbolic transfer entropy is more nuanced, more

intricate and more determined by the applied discretization scheme than the interpretation

in the established literature previously expected.

All in all, this dissertation is a humble attempt to provide additional insights on a variety

of issues related to statistics of financial markets. I hope the answers discussed and the

methods developed in this dissertation may contribute also to other research projects and

help to improve the understanding of price formation in financial markets.

199



Bibliography

Aalborg, H. A., Molnár, P. and de Vries, J. E.: 2019, What can explain the price, volatility

and trading volume of bitcoin?, Finance Research Letters 29, 255–265.

Aalen, O. O. and Johansen, S.: 1978, An empirical transition matrix for non-homogeneous

markov chains based on censored observations, Scandinavian Journal of Statistics

pp. 141–150.

Afkhami, M., Cormack, L. and Ghoddusi, H.: 2017, Google search keywords that best

predict energy price volatility, Energy Economics 67, 17–27.

Alabi, K.: 2017, Digital blockchain networks appear to be following Metcalfe’s law,

Electronic Commerce Research and Applications 24, 23–29.

Alfarano, S., Lux, T. and Wagner, F.: 2008, Time variation of higher moments in

a financial market with heterogeneous agents: An analytical approach, Journal of

Economic Dynamics and Control 32(1), 101–136.

Amblard, P.-O. and Michel, O. J.: 2011, On directed information theory and granger

causality graphs, Journal of Computational Neuroscience 30(1), 7–16.

Baez, J. C. and Biamonte, J. D.: 2018, Quantum Techniques In Stochastic Mechanics,

World Scientific Publishing Company.

Baez, J. C. and Pollard, B. S.: 2017, A compositional framework for reaction networks,

Reviews in Mathematical Physics 29(09), 1750028.

Bank, M., Larch, M. and Peter, G.: 2011, Google search volume and its influence on

liquidity and returns., Financial Markets and Portfolio Management 25(3), 239–264.

Baur, D. G. and Dimpfl, T.: 2018a, A Quantile Regression Approach to Estimate the

Variance of Financial Returns*, Journal of Financial Econometrics 17(4), 616–644.

Baur, D. G. and Dimpfl, T.: 2018b, Asymmetric volatility in cryptocurrencies, Economics

Letters 173, 148–151.

200



Baur, D. G. and Dimpfl, T.: 2021, The volatility of bitcoin and its role as a medium of

exchange and a store of value, Empirical Economics .

Baur, D. G., Hong, K. and Lee, A. D.: 2018, Bitcoin: Medium of exchange or speculative

assets?, Journal of International Financial Markets, Institutions and Money 54, 177–189.

Bechler, K. and Ludkovski, M.: 2015, Optimal execution with dynamic order flow imbalance,

SIAM Journal on Financial Mathematics 6(1), 1123–1151.

Behrendt, S. and Prange, P.: 2019, What are you searching for? on the equivalence of

proxies for online investor attention, Finance Research Letters p. 101401.

Bi, Z., Faloutsos, C. and Korn, F.: 2001, The ’DGX’ distribution for mining massive,

skewed data, Proceedings of the seventh ACM SIGKDD international conference on

Knowledge discovery and data mining, pp. 17–26.

Biais, B., Hillion, P. and Spatt, C.: 1995, An empirical analysis of the limit order book

and the order flow in the Paris bourse, Journal of Finance 50(5), 1655–1689.

Bleher, J., Bleher, M. and Dimpfl, T.: 2020, The what, when and where of limit order

books, arXiv preprint arXiv:2004.11953 .

Bleher, J. and Dimpfl, T.: 2019, Knitting multi-annual high-frequency google trends to

predict inflation and consumption, Available at SSRN 3357424 .
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